2023 Operations, Maintenance, and Monitoring Annual Report South Park Landfill

Volume I

Prepared for

March 2024

In Association with

2023 Operations, Maintenance, and Monitoring Annual Report South Park Landfill

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

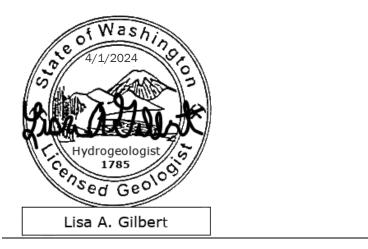
Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

In Association with
GEOSCIENCES INC.

March 2024 | 553-1550-067

Citation


Parametrix and HWA GeoSciences, Inc. 2024. 2023 Operations, Maintenance, and Monitoring Annual Report South Park Landfill. Prepared by HWA Geosciences in association with Parametrix, Seattle, Washington. March 2024.

Certification

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seal, as a professional hydrogeologist licensed to practice as such, is affixed below.

Prepared by Chris Bourgeois, LG, HWA GeoSciences Inc.

Reviewed by Lisa Gilbert, LHG, Parametrix

Approved by Tiffany Neier, P.E., Parametrix

Contents

1.	Intro	duction		1			
	1.1	.1 Regulatory Status					
	1.2	Settlem	ent Area Properties and Remedy Components	2			
		1.2.1	South Recycling and Disposal Station Property	2			
		1.2.2	CenterPoint South Park LLC Property	3			
	1.3	Hydroge	eologic Setting	3			
	1.4	Monitor	ing Program Overview	4			
		1.4.1	Annual Monitoring	4			
		1.4.2	Quarterly Monitoring	4			
		1.4.3	Unforeseen Emergency or Extreme Weather Events	4			
2.	Land	fill Cap S	System	6			
	2.1	Landfill	Cap Inspection Methodology	6			
	2.2	Landfill Cap Inspection and Maintenance Events					
		2.2.1	April 2023 Landfill Cap Inspection	8			
		2.2.2	October 2023 Mid-Year Landfill Cap Reinspection	8			
		2.2.3	Landfill Cap Maintenance Completed	9			
		2.2.4	Unforeseen Emergency or Extreme Weather Events	9			
	2.3	Activities Planned for the Next One-Year Period					
		2.3.1	SRDS Property	10			
		2.3.2	CPSP Property	10			
		2.3.3	Rights-of Way	10			
3.	Land	fill Gas S	System	11			
	3.1	Landfill	Gas Monitoring Methodology				
		3.1.1	Gas Probe Monitoring				
		3.1.2	Landfill Gas Triggers and Contingency Actions				
	3.2	Landfill Gas Monitoring Activities and Results					
		3.2.1	Perimeter Probe Monitoring	12			
		3.2.2	Building Monitoring	13			
		3.2.3	Operational Activities Completed	13			
		3.2.4	Gas Probe Maintenance Completed	13			
		3.2.5	Unforeseen Emergency or Extreme Weather Events	14			
	3.3	Activitie	s Planned for the Next One-Year Period	14			
		3.3.1	Landfill Gas Monitoring	14			
Mai	rch 202	24 553-1	1550-067	i			

Contents (continued)

		3.3.2	Gas Probe Maintenance	. 14					
		3.3.3	Shallow Gas Probe Replacement	. 14					
4.	Grou	ndwater	Monitoring System	. 15					
	4.1	Groundwater Monitoring Methodology							
		4.1.1	Water Level Measurement	. 15					
		4.1.2	Sampling and Analysis	. 15					
		4.1.3	Groundwater Contingency Triggers and Actions	. 16					
	4.2	Groundwater Monitoring Activities and Results							
		4.2.1	Long-Term Groundwater Monitoring	. 17					
		4.2.2	Monitoring Well Maintenance Completed	. 20					
		4.2.3	Unforeseen Emergency or Extreme Weather Events	. 20					
	4.3	Activities Planned for the Next One-Year Period							
		4.3.1	Groundwater Monitoring	. 20					
		4.3.2	Monitoring Well Maintenance	. 20					
5.	Conc	onclusions and Recommendations2							
	5.1	.1 Landfill Cap							
	5.2	.2 Landfill Gas							
	5.3	5.3 Groundwater							
6.	Refe	eferences							
LIS	T OF F	IGURES							
1	V	Vicinity Map							
2	P	Parcel Map with Rights-of-Way							

- 3 Perimeter Gas Probe Network
- 4 Flow Chart for Triggers and Contingent Actions for Perimeter Probe Monitoring
- 5 Groundwater Monitoring Well Network
- 6 Potentiometric Surface Map February 6, 2023
- 7 Potentiometric Surface Map May 1, 2023
- 8 Potentiometric Surface Map July 31, 2023
- 9 Potentiometric Surface Map November 6, 2023

Contents (continued)

LIST OF TABLES

- 1 Project Contact Information
- 2 Methane in Perimeter Gas Probes
- 3 Groundwater Monitoring Well Information
- 4 Groundwater Elevation Summary
- 5 Groundwater Vertical Gradients
- 6 Groundwater Flow Velocity
- 7 Groundwater Quality Data Summary
- 8 Summary of Vinyl Chloride Trend Analyses
- 9 Summary of Total Iron Trend Analyses
- 10 Summary of Total Manganese Trend Analyses

APPENDICES

- A Annual Report Checklist
- B Landfill Cap Inspection and Maintenance
 - B1 Cap Inspections
 - B1-A April 2023 Annual Inspection
 - B1-B October 2023 Mid-Year Inspection
 - B2 Cap Maintenance Documentation
 - B2-A Example Form
 - B2-B Completed Forms
 - B2-B.1 SRDS
 - B2-B.2 CenterPoint (former SPPD)
 - B2-B.3 ROW

C Landfill Gas Monitoring

- C1 Perimeter Probe Monitoring Field Forms
- C2 On-Site Building Monitoring Forms
- D Groundwater Monitoring
 - D1 Time-Series Plots
 - D2 Trend Analyses
 - D3 Groundwater Monitoring Well Data and Field Forms
 - D4 Laboratory Reports (contained in Volume II)
 - D5 Data Validation Memoranda

Acronyms and Abbreviations

CAP	Cleanup Action Plan
City	City of Seattle
COC	chemical of concern
CPOC	conditional point of compliance
CPSP	CenterPoint South Park LLC
County	King County
CUL	cleanup level
DCE	dichloroethene (cis-1,2-DCE is measured for the compliance monitoring)
Ecology	Washington State Department of Ecology
EPA	U.S. Environmental Protection Agency
ft	feet
GPS	global positioning system
HHW	household hazardous waste
IA	Interim Action
IAWP	Interim Action Work Plan
KIP	Kenyon Industrial Park
LEL	lower explosive limit
LFG	landfill gas
LFGCCS	landfill gas collection and control system
µg/L	micrograms per liter
mg/L	milligrams per liter
MTCA	Model Toxics Control Act
NAVD 88	North American Vertical Datum of 1988
OMM	operations, maintenance, and monitoring
OMMP	Operations, Maintenance, and Monitoring Plan
ppmv	parts per million by volume
PVC	polyvinyl chloride
redox	oxidation-reduction (potential)
RI/FS	Remedial Investigation/Feasibility Study
ROW	right-of-way
SPPD	South Park Property Development, LLC
SPU	Seattle Public Utilities
SR	State Route
SRDS	South Recycling and Disposal Station
WAC	Washington Administrative Code

1. Introduction

The South Park Landfill is a former municipal solid waste landfill in the South Park neighborhood of Seattle, Washington, generally located at 8100 and 8200 2nd Avenue South, in Section 32 of Township 24 North, Range 4 East (Figure 1). Figure 2 shows the landfill, associated parcels, and surrounding areas. The Edge of Refuse refers to that portion of the landfill area where landfill operations historically occurred and where solid waste was placed as interpreted by Floyd | Snider in the Remedial Investigation/Feasibility Study (RI/FS) (Floyd | Snider et al 2017).

The Settlement Area primarily consists of the two largest properties within the Edge of Refuse; South Recycling and Disposal Station (SRDS) and CenterPoint South Park LLC (CPSP), formerly owned by the South Park Property Development, LLC (SPPD). The SRDS property owner is the City of Seattle (City). The SPPD/CPSP property owner was SPPD until September 2022 when it was purchased by CPSP. The Settlement Area also includes certain adjacent City and Washington State rights-of-way (ROWs). The other properties within the Edge of Refuse are the Kenyon Industrial Park (KIP) and the 7901 2nd Avenue South properties.

This report presents the results of the 2023 operations, maintenance, and monitoring (OMM) that was conducted in accordance with the Final Cleanup Action Plan (CAP) for the Settlement Area (Ecology 2018a). The required monitoring is described in the Post-Closure Operation, Maintenance, and Monitoring Plan (OMMP), presented as Appendix A of the CAP.

Coordination and preparation of this report are being performed for the Settlement Area under a 2019 Consent Decree with the Washington State Department of Ecology (Ecology). Parametrix has been designated by the City and their agency, Seattle Public Utilities (SPU), as the Site Coordinator to perform the long-term monitoring and reporting required under the CAP and the OMMP. Contact information for the responsible parties is presented in Table 1. Figures and tables are appended at the end of the report.

The KIP and the 7901 2nd Avenue South properties are expected to come to an agreement with Ecology and be added the Consent Decree at a later time.

1.1 Regulatory Status

The landfill received solid waste from the 1930s until 1966, when it was closed under the existing landfill closure laws at the time. Investigations of groundwater, surface water, soil, and landfill gas (LFG) began in the late 1980s. In February 2007, the landfill was added to Ecology's Hazardous Sites List (Facility Site Identification No. 2180) based on concerns related to groundwater contamination and the presence of potentially flammable or explosive LFG.

In 2009, SPU and SPPD entered into Agreed Order No. 6706 with Ecology to conduct a RI/FS and to complete a preliminary draft CAP. The Agreed Order was amended in 2013 to include an Interim Action (IA) to be conducted primarily on the portion of the Settlement Area owned by SPPD (Farallon 2013) and was amended again in 2015 to include an IA to be conducted primarily on the SRDS portion, owned by SPU. The IAs included construction of a landfill cap, installing LFG and surface water control systems, establishing groundwater and LFG monitoring, and implementing institutional controls.

The South Park Landfill Final CAP (Ecology 2018a) was included as an attachment to the March 26, 2019, Consent Decree for the SPPD and SRDS properties. The selected cleanup action described in the CAP fulfills the requirements of the Model Toxics Control Act (MTCA), Chapter 70.105D of the

Revised Code of Washington, administered by Ecology under the MTCA Cleanup Regulation, Chapter 173-340 of the Washington Administrative Code (WAC).

The CAP is currently in the process of being amended (draft Amended CAP; Ecology 2023) to address redevelopment plan modifications for the SRDS property and add additional PLPs. Until 2020, SPU planned to construct support facilities for the adjacent South Transfer Station on the SRDS property in conjunction with implementation of the remedial action requirements. In 2020, SPU chose to reevaluate the best use of the SRDS property and decoupled the redevelopment elements from the remedial project. SPU will proceed with implementation of the required remedial action components defined in the CAP and will manage the SRDS property as a paved transfer station support facility with minor operational improvements for SPU activities.

1.2 Settlement Area Properties and Remedy Components

The Settlement Area includes the SRDS and CPSP (formerly SPPD) properties and certain adjacent City and Washington State ROWs. The locations of the properties are shown on Figure 2. Brief descriptions of each property and the completed, or planned, remedy components are provided in the following sections.

1.2.1 South Recycling and Disposal Station Property

The SRDS property includes County tax parcel No. 7328400005, encompassing 10.55 acres. A portion of this property was purchased by SPU in 1951. Later in the 1950s, the City sold some portions of the property to private individuals. Between 1965 and 1967, the City reacquired those portions of the property sold in the 1950s. Two additional strips of land defined by County tax parcel No. 3224049110, 60 feet (ft) on the west of the SRDS property and 30 ft on the south, were incorporated into the property in 2003 by City Ordinance 121306. This additional land is in the process of being recorded by the County and brings the area to approximately 11 acres.

A transfer station for municipal solid waste and recyclable materials operated from 1966 to 2013 on the SRDS property. In Spring 2013, SPU opened a new solid waste transfer station (South Transfer Station) to the north, across South Kenyon Street, and the transfer station on the SRDS property became inactive, except for limited support activities. SPU operates a household hazardous waste (HHW) collection site on the northernmost portion of the SRDS property near South Kenyon Street and 5th Avenue South.

The SRDS facility includes the main waste disposal building, a small maintenance facility, a scale house, two vehicle-fueling systems, and several additional small buildings used for offices and HHW collection. The offices and HHW collection are the only regularly occupied/active facilities. The majority of the facility is paved, except for some landscaped areas along the eastern edge of the property adjacent to 5th Avenue South, a landscaped strip along the south side of the property, a few landscape planter islands along the western side of the property, and other small areas in the interior of the property as shown in the aerial of Figure 2.

Under Amendment No. 2 of Agreed Order No. DE 6706, an IA was implemented for the SRDS property between 2015 and 2020, as detailed in an Interim Action Work Plan (IAWP) (Herrera 2021). The IA included monitoring during maintenance activities, evaluation of a groundwater seep, and a Supplemental Groundwater Investigation.

As required under the draft Amended CAP, SPU will demolish existing structures; abandon inactive utilities; install asphalt, concrete, or geomembrane landfill cap systems; install LFG and surface water

controls; implement institutional controls; and perform compliance monitoring. The LFG collection system will include horizontal (trench) collectors, conveyance piping, and vents to address areas covered by cap materials.

1.2.2 CenterPoint South Park LLC Property

The CPSP (former SPPD) property is King County (County) tax parcel No. 3224049005 and includes 21.0 acres of land purchased from the County in 2006. The property was purchased by CPSP in 2022. The property was previously purchased by the County in 1957 and leased to SPU from 1958 to 1978 for municipal solid waste disposal. After disposal operations ended in 1966, additional unclassified fill was added, and the property was graded (but not paved) as part of landfill closure. The County later leased portions of the property to a variety of tenants from the mid-1980s through the late 1990s, primarily for truck and equipment storage. In 2008, the property was largely cleared of vegetation and, in some areas, a layer of crushed concrete was added as ballast and the property was regraded.

In 2014 and 2015, the SPPD owner performed an IA for cleanup at the property in accordance with the 2013 Ecology-approved IAWP (Farallon 2013) under Amendment No. 1 of Agreed Order No. DE 6706. The IA was performed simultaneously with the redevelopment of the property. The property redevelopment included a modular building for employees and paved parking for employees and visitors. The IA work included regrading and capping the landfill surface, installing an engineered stormwater collection system, installing and operating an LFG control system, implementing institutional controls, and conducting monitoring.

1.3 Hydrogeologic Setting

South Park Landfill is located within the Lower Duwamish Valley, near the western valley wall, as shown in Figure 1. The landfill is at an elevation of approximately 15 to 30 ft above sea level. The southern portion (CPSP property) is generally at a higher elevation than the remainder of the landfill. The landfill has an overall shallow topographic gradient trending to the northeast towards the Duwamish Waterway. The Duwamish Waterway is approximately 1,700 to 2,000 ft northeast of the northeast landfill boundary.

The Duwamish Valley consists of a relatively thick sequence of historical channel, floodplain, and overbank alluvial deposits from the Duwamish River overlain by a relatively extensive layer of imported fill. The alluvial deposits range from 30 to 50 ft thick near the edge of the valley to more than 100 ft thick in the center of the valley (Hart Crowser 1998). Groundwater occurs throughout the alluvial deposits forming the Duwamish Valley Alluvial Aquifer. It is comprised of various zones of saturation and thickness occurring within the alluvial deposits. At the Settlement Area, there are three groundwater zones of interest; all are part of the upper portion of the Duwamish Valley Alluvial Aquifer system.

- The Perched Zone is a thin discontinuous layer of groundwater (mostly infiltrating rainwater) that exists above the Silt Overbank Deposit. In many places, the Perched Zone groundwater is in contact with solid waste and is conceptually equivalent to landfill leachate in those locations. The thickness of the Perched Zone may vary seasonally but is often only a few inches of water sitting on the hummocky surface of the Silt Overbank Deposit.
- The A-Zone of the Duwamish Valley Alluvial Aquifer is immediately beneath the Silt Overbank Deposit and is the critical zone where leachate (and perched water) can enter the groundwater system and move off-site. The A-Zone extends from the base of the Silt

Overbank Deposit for approximately 15 to 20 ft (generally to -15 ft elevation North American Vertical Datum of 1988 [NAVD 88]).

The B-Zone of the Duwamish Valley Alluvial Aquifer is the next deeper zone extending from approximately -15 ft elevation NAVD 88 to either the top of the estuarine/marine deposits or approximately -35 ft elevation NAVD 88, whichever is shallower.

The solid waste deposited in the landfill extends into the top of the A-Zone with the depth of waste extending down approximately to sea level (Floyd | Snider et al 2017). The lower portion of solid waste in the landfill is saturated (i.e., occurring below the local water table). Interpreted cross-sections of the landfill and surrounding area are included in Figures 5.2 to 5.7 in Floyd | Snider et al (2017).

1.4 Monitoring Program Overview

In accordance with the CAP, monitoring at the Settlement Area by the Site Coordinator consists of annual cap inspections, quarterly monitoring of LFG perimeter probes, and quarterly sampling and analysis of groundwater monitoring wells upgradient and downgradient of the Settlement Area. SPU assumed responsibility for the quarterly monitoring of LFG perimeter probes in the third quarter of 2022. Additional events may be triggered by LFG monitoring results at the perimeter probes or by unforeseen emergency or extreme weather conditions, as summarized in the following sections. Monitoring by the property owners (SPU and CPSP) consists of continuous methane monitoring in onsite buildings as defined in the OMMP. The status of the 2023 monitoring is documented in the Annual Report Checklist presented in Appendix A.

Monitoring performed by the Site Coordinator is in addition to the monitoring requirements of property owners in accordance with the CAP and OMMP.

1.4.1 Annual Monitoring

Cap inspections are conducted annually as described in Section 2 of this report. Maintenance forms are completed by the property owners to document repairs conducted and re-inspections are conducted by the Site Coordinator. The 2023 annual cap inspection results are presented in Appendix B.

1.4.2 Quarterly Monitoring

Quarterly monitoring at LFG perimeter probes and sampling and analysis of groundwater from monitoring wells was conducted as described in Sections 3 and 4, respectively, of this report. In addition to quarterly LFG monitoring, continuous methane detection systems with alarms are required to be operating in occupied buildings in the Settlement Area, and provisions are in place that would initiate methane monitoring in off-site buildings if triggered by LFG detections above regulatory limits in perimeter gas probes.

1.4.3 Unforeseen Emergency or Extreme Weather Events

An unforeseen emergency or extreme weather event, such as an earthquake, fire, flood, or other natural or man-made disaster, will trigger a requirement for an immediate Settlement Area-wide inspection. Such unforeseen events could cause sudden differential settlement of the landfill contents and/or cap that could affect the integrity of the landfill cap and infrastructure, including LFG control systems, monitoring probes, and monitoring wells, which could potentially result in

exposure to methane gas or affect safe operation of the LFG control system. The following criteria for unforeseen events would trigger an immediate Settlement Area-wide inspection:

- An earthquake along the Seattle fault that registers 4.0 or greater on the Richter scale.
- An earthquake within 100 miles of Seattle that registers 5.0 or greater on the Richter scale.
- A major storm that produces greater than 3.0 inches of rainfall within a 24-hour period.
- Any fire that occurs on or below the cap.
- Any other damage in the Settlement Area observed by the property owners, facility workers, or the public, such as damage sustained by high winds, or facility or vehicular accident(s).

The monitoring program will document monitoring and inspection results, provide information on maintenance requirements, and document OMM activities performed during the previous year.

2. Landfill Cap System

The CAP requires inspection and maintenance of the landfill cap, including pavement, roadways, surficial stormwater features, and vegetated areas. The purpose of the inspection and maintenance is to confirm that the landfill cap remedy is performing as intended by the CAP in a manner that protects human health and the environment.

The cleanup action requires a landfill cap covering all areas at the Settlement Area that contain solid waste. The primary goal of the landfill cap is to block access or exposure to the solid waste and soil; secondary goals are to limit stormwater infiltration and to facilitate the performance of the LFG systems.

The landfill cap consists of pavement, buildings, and geomembrane/soil layers that must be maintained in such a manner to prevent contact with the solid waste/soil beneath the cap, prevent "short-circuiting" of the LFG controls, and prevent interference with the stormwater controls. The cap is not required to entirely block the infiltration of stormwater. Existing or planned stormwater controls are described for each property as follows:

SRDS Property. Stormwater management on the SRDS property is primarily pavement, catch basins, and conveyance pipes with collection into two systems. One system collects stormwater and liquids that may have come into contact with solid waste and directs them to the sanitary sewer. The other system collects stormwater from around the property and connects to the City's storm drain system in 2nd Avenue South. This system ties into the storm drain system on State Route (SR) 509 that flows into the wetlands on the west side of SR 509. A series of roadside ditches and catch basins collect stormwater runoff from South Kenyon Street and 5th Avenue South. These stormwater systems also connect to the City's storm drain system in 2nd Avenue South.

After redevelopment, in accordance with the draft Amended CAP, stormwater drainage will be collected across the SRDS property with flow and quality mitigation using an above-grade stormwater treatment system. The location, treatment media, sizing, and configuration of the stormwater treatment system are currently in the design process.

CPSP Property. Stormwater capture on the CPSP property is achieved with a system of paved surfaces and catch basins, and conveyance via overland flow on paved surfaces and piping to detention and treatment in one of two CPSP property bioswales. A small proportion of CPSP property stormwater runoff (e.g., from the access driveway off 5th Avenue South) is outside the capture area of the bioswales and flows to catch basins in ROWs.

2.1 Landfill Cap Inspection Methodology

Annual inspections consist of a visual survey of the accessible cap surface exterior to buildings, including drainage features and surface components of stormwater conveyance (i.e., catch basins, swales). The inspection documents signs of cap damage, failure, deterioration, or disturbance. Observations are noted on the field inspection forms and via sketches or global positioning system (GPS) [for location] and photographs.

The following types of observations are documented for specific areas of the landfill cap.

- Asphaltic Concrete (Location numbers AC-):
 - → Cracking
 - → Uneven settlement or potholes
 - → Pooling or ponding
 - → Separation of pavement from curbs, gutters, or catch basins
 - → Sloughing or crumbling of edge materials
 - → Erosion
 - \rightarrow Other signs of cap damage, failure or disturbance
- Low Permeability Geomembrane (Location numbers G-):
 - → Erosion of cover soil
 - → Exposed geotextile
 - → Holes/signs of unauthorized digging
 - → Poor vegetative cover
 - → Invasive/deep-rooted plants
 - \rightarrow Exposed geomembrane
- Stormwater Management Facilities (Location numbers SW-):
 - → Signs of water infiltration below structure
 - → Erosion of soil
 - → Holes/signs of unauthorized digging
 - → Invasive/deep-rooted plants
 - → Poor vegetative cover
 - → Proper flow direction as designed

If any of the above are identified during an inspection, the condition will be documented and a recommendation for repairs or monitoring will be included on the Cap Inspection Report. Corrective actions proposed by the property owners should be coordinated with the Site Coordinator prior to taking action and the Site Coordinator should perform verification inspections during and/or after corrective actions are complete to determine if the maintenance and repairs are consistent with the intent of the regulatory requirements. The property owner should document any repairs or maintenance in Part 1 of the Cap Inspection Form B (a blank sample is located in Appendix B2-A) and the Site Coordinator will provide observations in Part 2 of the form after the verification inspection.

The basis of determining the timeline for repairs comes from the OMMP. The OMMP has the following guidance for the timeline of maintenance/repairs:

1. If underlying material (such as geomembrane) is exposed, corrective action shall occur within 60 days. These areas are of highest concern due to the potential compromise of the landfill cap and need to be further inspected, repaired, and restored in accordance with the approved 2013 IAWP of the Agreed Order.

- 2. If minor cracks or ponding do not expose underlying materials and the problem does not appear to be getting worse the issue shall be reinspected in 6 months.
- 3. If underlying material is not exposed but is worsening or the issue needs to be elevated to a repair before it worsens, the corrective action shall occur within the calendar year.

2.2 Landfill Cap Inspection and Maintenance Events

In accordance with the Cap Inspection Work Plan (Parametrix 2020), an annual inspection was conducted on April 6, 2023 and a mid-year landfill cap reinspection was conducted on October 11, 2023. Maintenance and repairs conducted by the property owners were documented and inspections were conducted by the Site Coordinator.

2.2.1 April 2023 Landfill Cap Inspection

The 2023 annual landfill cap inspection was conducted on April 6, 2023. Previously identified concerns that remained in the same general or worse condition were retained in the current list of concerns. The findings of the inspection are presented in the technical memorandum included as Appendix B1-A (Appendix B) and are summarized below.

SRDS Property. The general property condition was good. Pavement cracks, ruttings, and ponding areas remain the primary concerns; however, with the planned redevelopment of the property, temporary pavement restoration is not recommended based on conditions at this time, except at locations SRDS AC-13, AC-14, and AC-15, which are worsening.

CPSP Property. The general property condition was good. The paved area was in good condition, though ponding will be monitored to ensure the depressions do not get deeper, which could indicate asphaltic concrete cap damage. Vegetated slopes are uniform and generally in good condition with some erosion noted. The primary concerns were exposed geomembrane at the parking area interface at SPPD G-6, G-7 and G-8, and growth of vegetation through asphalt near the fences. In addition, there are two open pipes, one at the AC-3 location and one at the G-1 location, which were identified in a previous inspection.

Right-of-Way. Four areas in the ROW were identified as locations of concern due to asphalt cracking, rutting, and potholes that have continued to worsen.

2.2.2 October 2023 Mid-Year Landfill Cap Reinspection

A mid-year reinspection was conducted by the Site Coordinator on October 11, 2023. Locations identified in the April 2023 annual inspection were reinspected. The findings are presented in a technical memorandum included as Appendix B1-B (Appendix B) and are summarized below.

SRDS Property. The general property conditions observed were good and similar to previous inspections. Pavement cracks, ruttings, and ponding areas remain the primary concerns; however, with the planned redevelopment of the property, temporary pavement restoration were not recommended based on conditions at this time, except at locations SRDS AC-13, AC-14, and AC-20.

CPSP Property. The general property conditions observed were good and similar to previous inspections. The paved area was in good condition, though ponding will continue to be monitored to ensure the depressions do not get deeper, which could indicate asphaltic concrete cap damage. Vegetated slopes were uniform and generally in good condition with some erosion. The primary concerns were exposed geomembrane at the parking area interface at SPPD G-6, G-7 and G-8,

invasive plant growth, and growth of vegetation through asphalt. In addition, there was an open pipe identified in the April 2023 annual inspection at the G-1 location that was covered in dirt and vegetation.

Right-of-Way. The four areas in the ROW that were identified as locations of concern in the April 2023 annual inspection were reinspected.

2.2.3 Landfill Cap Maintenance Completed

Example forms to be used for documenting landfill cap maintenance are presented in Appendix B2-A of Appendix B. Cap maintenance completed during this reporting period is documented on Cap Maintenance Forms presented in Appendix B2-B, with Part 1 (Maintenance) completed by the property owner, and Part 2 (Observation/Review of Maintenance) completed by the Site Coordinator.

2.2.3.1 SRDS Property.

In February 2024, cracks were repaired at locations SRDS AC-13, AC-14, and AC-20 with hot mix asphalt and sealant. The Site Coordinator observed the repairs and determined the repair activities were complete.

2.2.3.2 CPSP Property.

On November 9, 2023, Catchment Solutions, on behalf of CenterPoint completed cap maintenance at Locations SPPD SW-3, SW-4, and AC-23. The drains were inspected, cleared, and sediment was removed from the drain areas at SPPD SW-3 and SW-4, and an invasive bush was removed from SPPD AC-23. The Site Coordinator has observed the repairs and determined the repair activities were complete.

On February 22 and 23, 2024, Veths Landscaping, on behalf of CenterPoint completed cap maintenance at Locations SPPD G-6, G-7, G-8, and G-12. Dead grass was removed, and new sod and re-seed was placed partially restoring areas of exposed geomembrane..

2.2.3.3 Rights-of-Way.

On February 6, 2024 the Site Coordinator observed previously-performed repairs on cracks and pot holes at Locations AC-1 and AC-4. The repairs at AC-4 are considered complete, and the repairs at AC-1 are considered partially complete, with a few large cracks remaining.

2.2.4 Unforeseen Emergency or Extreme Weather Events

No unforeseen emergency or extreme weather events were identified at the Settlement Area during 2023 that triggered an inspection to the landfill cap.

2.3 Activities Planned for the Next One-Year Period

The Site Coordinator will conduct an annual cap inspection in the first quarter of 2024 which will include reinspection of previous areas of concern, reviewing maintenance conducted, and looking for any new areas of concern. The previously identified locations of concern will be evaluated during the 2024 inspections (See tables presented in Appendices B1-A and B1-B for further details). A mid-year reinspection will be conducted in the Fall of 2024 to reinspect previous areas of concern.

2.3.1 SRDS Property.

The 2023 Landfill Cap Inspection conducted in April 2023, and 2023 Mid-Year Landfill Cap Reinspection conducted in October 2023, presented in Appendices B1-A and B1-B, identified areas of concern within the Settlement Area. All recommended repairs were completed by SPU. Additional work may be required if new areas of concern are identified during the 2024 cap inspection.

2.3.2 **CPSP Property**.

The 2023 Landfill Cap Inspection conducted in April 2023 and the 2023 Mid-Year Landfill Cap Reinspection conducted in October 2023, presented in Appendices B1-A and B1-B, identified areas of concern within the Settlement Area. Several areas of concern identified during the cap inspections were repaired during this reporting period. Additional work will be required in 2024 to complete and/or reinspect outstanding recommended repairs.

2.3.3 **Rights-of Way**.

The 2023 Landfill Cap Inspection conducted in April 2023, and 2023 Mid-Year Landfill Cap Reinspection conducted in October 2023, presented in Appendices B1-A and B1-B, identified areas of concern within the Settlement Area. Several areas of concern identified during the cap inspections were repaired during this reporting period. Additional work will be required in 2024 to complete and/or reinspect outstanding recommended repairs.

3. Landfill Gas System

The LFG control system consists of property-specific solutions designed to operate separately but be compatible and synergistic in how they control LFG across the Settlement Area. Brief descriptions of the existing or planned LFG control systems for each property are provided below with the LFG monitoring discussed in the following sections.

- SRDS Property. The buildings that are currently on the property are either naturally ventilated or are elevated and skirted with porous siding; both are appropriate methods of LFG mitigation. As part of the draft Amended CAP, SPU will install an LFG control system at the SRDS property, intended to be operated passively, with an option to convert to active operation if necessary. The final design for the LFG system at the SRDS property will be described in an Engineering Design Report, which will be finalized by 2025 per the schedule outlined in the draft Amended CAP. This system will also influence the ROW associated with 5th Avenue South adjacent to this property.
- CPSP Property. An active LFG control system was installed at the CPSP property as part of the IA development in 2014 and 2015 (Farallon 2013). The LFG system was designed to protect buildings on the CPSP property and to control gas migration along the southern, western, and eastern perimeter of the Settlement Area. The system consists of a network of vertical gas collection wells and horizontal gas collection trenches. LFG is extracted under an applied vacuum and discharged out a vent stack in the surface component equipment enclosure, which is located on the northwest portion of the CPSP property. It is operated by the CPSP property owner in accordance with an Ecology-approved LFG Collection and Control System OMMP (Farallon 2016).

3.1 Landfill Gas Monitoring Methodology

The LFG monitoring includes quarterly monitoring of perimeter probes; continuous monitoring of onsite buildings using methane detectors and alarms conducted by individual property owners; and offsite building monitoring, if necessary (see conditions in Figure 4). The primary goal of perimeter probe monitoring is to evaluate potential lateral off-site LFG migration, and the primary goal of building monitoring is to protect human health.

The perimeter gas probe network for the Settlement Area includes 17 probes installed at the locations shown on Figure 3. The Site Coordinator conducted the monitoring through the second quarter of 2022 and SPU assumed responsibility for the monitoring in the third quarter of 2022 and future quarterly monitoring of the perimeter LFG probes. Procedures for perimeter gas probe monitoring are presented in the OMMP – Landfill Gas Monitoring and Contingency Plan.

3.1.1 Gas Probe Monitoring

A Landtec GEM 5000 is used to measure barometric pressure at the beginning and end of each monitoring event, as well as static pressure and LFG concentrations in each gas probe. The barometric pressure status (rising, falling, steady) is recorded.

At each probe, static pressure is measured prior to purging, and then one probe volume is purged prior to recording concentrations of methane, carbon dioxide, and oxygen. The purge time using the Landtec GEM is calculated for each probe based on its construction. The LFG meter is connected to

LFG probes using Teflon tubing and a rubber stopper placed into probes without a valve. Teflon, silicone, and polyethylene tubing are utilized to connect to the LFG meter.

Several of the LFG probes exhibit water levels above their screens year-round, blocking landfill gas from entering the probes. If the probe is observed through field observations to be blocked by water during the purging process (e.g., high differential pressures, water entering Landtec GEM tubing), purging is discontinued and the probe is noted to be blocked and this information is entered directly into the Landtec GEM. All the data are downloaded from the Landtec GEM and submitted to the Site Coordinator.

3.1.2 Landfill Gas Triggers and Contingency Actions

The flow chart for the LFG triggers and contingency actions is presented in Figure 4, developed to clarify the flow chart presented in Figure A.2.6 of the OMMP (Parametrix 2021a). Methane concentrations in soil at the landfill boundary must not exceed 5 percent by volume, which is the lower explosive limit (LEL) for methane, or contingent actions are triggered as shown on Figure 4. The threshold criteria that would trigger additional off-site building monitoring is 1.25 percent by volume (25 percent of the LEL) for all probes other than GP-27 and GP-29. At probes GP-27 and GP-29, since methane concentrations of up to 5 percent by volume have been shown to be protective, the criterion for additional off-site building monitoring is 5 percent by volume.

3.2 Landfill Gas Monitoring Activities and Results

3.2.1 Perimeter Probe Monitoring

Quarterly perimeter probe monitoring events were conducted in January, April, July, and October 2023. The results are summarized in Table 2 and included on the gas probe monitoring field forms presented in Appendix C1.

Four gas probes (GP-11, GP-13, GP-15, and GP-32) were observed to be blocked (screened zones completely saturated) during one or more sampling events and any data measured from blocked probes during those events were not used.

LFG was measured at GP-09 during a separate event on February 6, 2024 in the first quarter, due to encroachment of a homeless encampment into the probe area presenting potential access and safety issues for field personnel. There were no methane concentrations measured during quarterly monitoring events that exceeded 5 percent by volume, which is the LEL for methane. Methane concentrations were less than the 1.25 percent by volume regulatory action limit, with the following exceptions:

- In the first quarter, methane at gas probe GP-33 was recorded at 4.9% by volume. The flow chart for triggers and contingent actions (Figure 4) was followed and CPSP was notified immediately. Farallon Consulting adjusted the CPSP landfill gas collection and control system (LFGCCS) bringing the methane concentration below 1.25% by volume within 1 week of notification of the elevated gas level.
- In the fourth quarter, methane at gas probe GP-13 was recorded at 4.2% by volume. The Cleanup Action Plan Landfill Gas Monitoring and Contingency Plan (Figure A.2.4) has a contingent action trigger for measurements below 5% and above 1.25%. GP-13 is a shallow probe blocked with water and therefore the recorded measurement is not representative of concentration in the screen zone. A work plan was approved by Ecology in December for installation of supplemental gas probes at probes that are consistently blocked with water.

3.2.2 Building Monitoring

Building monitoring is required for occupied on-site buildings unless the construction demonstrates effective LFG mitigation. Off-site building monitoring is required only if triggered by conditions in perimeter gas probes.

3.2.2.1 On-Site

All occupied buildings on the Settlement Area (on-site buildings) are required to have continuous (i.e., operate 24 hours per day, 7 days per week) methane detectors with alarms, with the exception of the current SRDS buildings which are naturally ventilated or elevated. Methane concentrations inside buildings and structures within the landfill boundary must not exceed 1.25 percent by volume, or 25 percent of the LEL; meters in buildings should be set with a low alarm warning at 10 percent of the LEL and the high alarm at 25 percent of the LEL. Quarterly inspections of these alarms are required by individual property owners in accordance with the manufacturer's recommendations to ensure proper operation and protection of human health.

SRDS Property. Continuous monitoring is not required until the property is redeveloped to include standard enclosed buildings and a new LFG system is installed.

CPSP Property. The CPSP property owner did not report any incidences of methane detections inside on-site buildings or structures during 2023. The methane alarms were inspected quarterly in 2023. Inspection checklists are included in Appendix C2.

3.2.2.2 Off-Site

Off-site building monitoring is required to be conducted by the CPSP and SRDS individual property owners when triggered by methane conditions measured in nearby perimeter probes, as indicated in Figure 4. Methane concentrations inside buildings and structures outside the landfill boundary must not exceed 100 parts per million by volume (ppmv), equivalent to 0.01 percent by volume or 0.2 percent of the LEL. These criteria are typically measured in the buildings/structures with either handheld or mounted equipment. Procedures for off-site building monitoring are detailed in the OMMP.

3.2.3 **Operational Activities Completed**

CPSP Property.

- Conducted quarterly operation and maintenance of the LFGCCS.
- Conducted ongoing remote monitoring of the CPSP property LFGCCS blowers.
- Conducted quarterly maintenance of the methane alarms in the on-site buildings.

3.2.4 Gas Probe Maintenance Completed

The City of Seattle cleared the homeless encampment from the ROW containing gas probe GP-09 and groundwater wells MW-10 and MW-25 in April 2023. The ROW was cleaned of debris and fencing was installed around the perimeter.

3.2.5 Unforeseen Emergency or Extreme Weather Events

No unforeseen emergency or extreme weather events were identified at the Settlement Area during 2023 that triggered an inspection of the perimeter gas probes or the LFG system.

3.3 Activities Planned for the Next One-Year Period

3.3.1 Landfill Gas Monitoring

Quarterly perimeter probe monitoring by SPU personnel is planned during the last week of January (completed), April, July, and October.

Monitoring records for on-site buildings will be provided by property owners on the form presented in Appendix C2.

3.3.2 Gas Probe Maintenance

Some additional future maintenance may be necessary at the following locations:

- There is asphalt erosion near gas probe GP-31. The roadway margin near the probe appears to be actively eroding due to heavy truck traffic. The condition of the probe will continue to be monitored to determine when actions are necessary to restore the asphalt near the probe.
- Repair cracked concrete around the casing at GP-28.

3.3.3 Shallow Gas Probe Replacement

Four of the compliance monitoring gas probes at South Park Landfill are consistently blocked with water so that the presence of LFG in the shallow subsurface cannot be monitored. The four gas probes are GP-11, GP-13, GP-15, and GP-32. The locations are on the west (GP-11 and GP-13) and south (GP-15 and GP-32) side of the Landfill. Since these probes are located in the vicinity of adjacent occupied buildings, these probes will be supplemented in 2024 with probes screened at shallower depths. A work plan (Parametrix 2023) was approved by Ecology in December 2023 and the work is scheduled to take place in spring 2024.

4. Groundwater Monitoring System

Long-term groundwater monitoring is being conducted to evaluate the effectiveness of cleanup actions at the Settlement Area on groundwater quality. The CAP requires long-term groundwater monitoring to continue until groundwater chemicals of concern (COCs) are in compliance at the conditional point of compliance (CPOC), which has been established at, or near, the downgradient Edge of Refuse. The monitoring program includes assessing current groundwater concentrations and monitoring trends to confirm that vinyl chloride, *cis*-1,2-dichloroethene (DCE), benzene, arsenic, iron, and manganese concentrations continue to decrease over time and in a reasonable restoration timeframe.

In accordance with the CAP, analysis for dissolved arsenic in CPOC wells (MW-08, MW-10, MW-12, MW-18, MW-24, MW-25, MW-26, MW-27, MW-32 and MW-33) was discontinued beginning in the second quarter of 2023 because concentrations remained in compliance with the CUL for 2 years. Additionally, analysis for benzene at well MW-25 was discontinued beginning in the third quarter of 2023 because concentrations remained in compliance for 2 years. 2023 because and dissolved arsenic results are presented in this report, but not discussed in detail.

There are 14 groundwater monitoring wells included in the long-term groundwater monitoring program for the Settlement Area at the locations shown on Figure 5. In addition to the CPOC wells, the monitoring well network also includes wells used to monitor upgradient groundwater conditions (MW-12, MW-14, and MW-29) and wells used to monitor downgradient groundwater conditions adjacent to the former Glitsa American, Inc. property (MW-30 and MW-31). All wells are completed in native material except MW-18, which is completed in refuse, and MW-32 and MW-33, which are completed beneath refuse at the edge of waste. Table 3 provides a summary of the well depths, screen intervals, type of pump, top of casing, and well completion elevations.

The monitoring wells are completed primarily in one of three groundwater zones (Perched Zone, A-Zone, or B-Zone), all of which are part of the Duwamish Valley Alluvial Aquifer. There are four well pairs downgradient of the landfill that are screened in two different zones: Perched Zone/A-Zone (MW30/MW-31) and A- and B-Zones (MW-27/MW-8, MW-25/MW-10, and MW-26/MW-24).

4.1 Groundwater Monitoring Methodology

Groundwater monitoring includes measuring groundwater levels and sampling groundwater at the 14 monitoring wells and analyzing the samples for Site-specific COCs.

4.1.1 Water Level Measurement

During each quarterly monitoring event, approximately time synchronous groundwater levels are measured with a precision of 0.01 foot using an electric water level indicator. Groundwater level measurements are made relative to the surveyed top of the polyvinyl chloride (PVC) well casing or other defined measuring point at the wellhead, typically the northern-most portion of the PVC casing stick-up.

4.1.2 Sampling and Analysis

Groundwater samples are collected according to procedures outlined in the OMMP, using either a dedicated bladder pump and Teflon tubing or a peristaltic pump with disposable low-density

polyethylene and silicon tubing. Details on which type of pump is used at each well are included in Table 3. The monitoring wells are purged using low-flow sampling procedures while field parameters (temperature, pH, specific conductivity, dissolved oxygen, and oxidation-reduction potential [redox]) are measured to determine stabilization using a calibrated multiparameter probe with a flow-through cell. Turbidity is also measured in the field using a separate turbidity meter outside of the flow through cell.

Long-term groundwater monitoring includes analyzing samples for vinyl chloride, iron, and manganese (groundwater COCs that have exceeded cleanup levels (CULs) at the CPOC); and cis-1,2-DCE, the precursor for vinyl chloride. Benzene was previously analyzed in samples from well MW-25 to track a localized plume that appears to originate upgradient of the Settlement Area; and arsenic was previously analyzed in samples from wells MW-08, MW-10, MW-12, MW-18, MW-24, MW-25, MW-26, MW-27, MW-32, and MW-33. Analysis of benzene and dissolved arsenic was discontinued prior to the third and second guarters of 2023, respectively.

Groundwater samples are analyzed using the following methods:

- cis-1,2-DCE: U.S. Environmental Protection Agency (EPA) Method 8260D
- Vinyl chloride: EPA Method 8260D-SIM
- Iron and manganese: EPA Method 6020A

4.1.3 Groundwater Contingency Triggers and Actions

The Site-specific CULs for groundwater at the Settlement Area as stated in the CAP, which are based on the protection of groundwater as a potential drinking water source, are as follows:

- Vinyl chloride 0.29 micrograms per liter (µg/L)
- Iron (Total) 27 milligrams per liter (mg/L) (A-Zone); 31 mg/L (B-Zone)
- Manganese (Total) 2.2 mg/L
- cis-1,2-DCE 16 µg/L
- Benzene 5.0 µg/L
- Arsenic (Dissolved) 5.0 μg/L (background; note that MW-27 is not a CPOC well for arsenic).

Trigger conditions and contingency actions for vinyl chloride are described in Section 4.1.3.1. Required actions for iron and manganese and arsenic are described in Sections 4.1.3.2 and 4.1.3.3.

4.1.3.1 Vinyl Chloride

In accordance with the CAP, either or both of the following two conditions will potentially trigger contingent actions based on monitoring in the existing compliance monitoring well network:

- Condition 1. Condition 1 (the concentration trigger) is based on groundwater concentrations. If concentrations in any downgradient well exceed 1.45 µg/L (five times the CUL) for two consecutive sampling events, a contingent response is triggered. This trigger is not applied to MW-30 and MW-31, whose concentrations are affected by a non-landfill source in addition to the landfill.
- **Condition 2.** Condition 2 (the trend trigger) is based on a statistically significant increase in groundwater concentrations over time in the monitoring wells. The trend identification uses the nonparametric Mann-Kendall method and will be applied to downgradient wells where the

concentration of vinyl chloride is greater than the CUL. The trend analysis will include MW-31 (which is screened in the alluvial aquifer) but not MW-30 (which is screened in the Silt Overbank Deposit).

4.1.3.2 Iron and Manganese

In accordance with the CAP, as long as the concentrations are stable or decreasing, no further action is required beyond monitoring. Once a dataset of eight quarterly events has been collected during long-term monitoring, Ecology may approve a decreased frequency of monitoring for iron and manganese. If the concentrations are increasing, the Subject PLPs will meet with Ecology to discuss next actions. Ecology will determine if further active remediation is needed and if this will require reopening the consent decree due to remedy failure.

4.2 Groundwater Monitoring Activities and Results

4.2.1 Long-Term Groundwater Monitoring

Quarterly long-term monitoring events were conducted in February, May, August, and November 2023. The measured groundwater levels, calculated gradients, interpreted flow directions, and groundwater quality results are presented in this section of the report.

4.2.1.1 Gradients and Flow Direction

Groundwater elevations calculated based on depth to groundwater measured in each well and the surveyed casing elevations are summarized in Table 4.

Horizontal Gradients

Groundwater gradient maps were prepared using data from all the A-Zone wells plus MW-18, as the A- and B-Zones are not separate aquifers or even hydraulically separated by any low permeability layers. Figures 6, 7, 8 and 9 show the interpreted gradients. The groundwater flow direction is generally to the east and northeast, toward the Lower Duwamish Waterway, with gradients ranging from 0.0083 to 0.0098 ft/ft in the northern region (calculated between MW-12 and MW-32) and 0.0089 to 0.0094 ft/ft in the southern region (calculated between MW-14 and MW-18). This is consistent with historical observations.

Vertical Gradients

Vertical groundwater gradients were calculated based on water level measurements collected in downgradient pairs completed in the Perched Zone/A-Zone of the Duwamish Valley Alluvial Aquifer (MW-30/MW-31) and the A- and B-Zones of the Duwamish Valley Alluvial Aquifer (MW-27/MW-8, MW-25/MW-10, and MW-26/MW-24). These data are presented in Table 5.

Boring logs show that the wells are mostly completed in the same alluvial aquifer, with some in the upper portions (A-Zone) and some in the lower (B-Zone), and no significant aquitards or low permeability layers in between the two zones. Vertical gradients measured in most of the well pairs during most of the sampling events were essentially neutral or within measurement error. Downward gradients were observed in well pair MW-30/MW-31 and are consistent with data presented in the RI indicating that the Silt Overbank Deposit is likely acting as a low permeability aquitard in this area.

Flow Velocity

Based on estimates of horizontal hydraulic conductivity and porosity determined in the RI/FS (Floyd|Snider et al. 2017) and the gradients measured in 2023, estimated horizontal groundwater flow velocities in the Duwamish Valley Alluvial Aquifer in the northern and southern regions of the Settlement Area are summarized in Table 6.

The two regions were identified in the RI/FS as having differing groundwater flow directions, soil types, and hydraulic conductivity estimates. The northern region of the Settlement Area (SRDS property) is in the vicinity of MW-10/MW-25, with a northeasterly groundwater flow direction and slightly higher hydraulic conductivities. The southern region of the Settlement Area CPSP property) is in the vicinity of MW-8/MW-27, with an easterly groundwater flow direction and slightly lower hydraulic conductivities due to siltier soils. These values are similar or higher than measured/estimated values during the RI/FS, due to steeper measured and interpreted gradients.

The following formula was used to calculate groundwater flow velocities:

V = Ki/ne, where:

- V =groundwater velocity (ft/day)
- K = hydraulic conductivity (ft/day)
- i = hydraulic gradient (ft/ft)
- ne = effective porosity (dimensionless)

Based on the observed gradients of 0.0083 to 0.0098 ft/ft in the northern region of the Settlement Area and 0.0089 to 0.0094 ft/ft in the southern region, the calculated flow velocity ranged from 4.65 to 7.79 ft/day in the northern region and 1.36 to 3.17 ft/day in the southern region of the Settlement Area.

4.2.1.2 Groundwater Quality Results

Groundwater samples were analyzed by Analytical Resources, Inc. in Tukwila, Washington. The quarterly groundwater quality data are summarized in Table 7. Field data sheets for each quarterly event are presented in Appendix D3. Laboratory reports and data validation memoranda are presented in Appendix D4 and D5, respectively.

The following is a summary of CUL exceedances in CPOC wells during 2023 monitoring events:

- Vinyl chloride concentrations exceeded the CUL of 0.29 μg/L in A-Zone wells MW-25 (Q1, Q2, and Q3), and MW-32 (Q1 and Q2).
- Total iron concentrations exceeded the CUL of 27 mg/L in A-Zone wells MW-25 (Q1, Q2, Q3, and Q4) and MW-27 (Q3); and the CUL of 31 mg/L in B-Zone well MW-10 (Q1, Q2, Q3, and Q4).
- Total manganese concentrations exceeded the CUL of 2.2 mg/L in A-Zone well MW-25 (Q1, Q2, Q3, and Q4) and B-Zone well MW-10 (Q1, Q2, Q3, and Q4).
- There were no concentrations of cis-1,2-DCE exceeding the CUL of 16 μg/L.
- There were no concentrations of benzene at MW-25 exceeding the CUL of 5.0 μg/L.
- There were no concentrations of dissolved arsenic exceeding the CUL of 5.0 μg/L.

Time-series plots for all COCs, showing data for all historical events and post-Consent Decree sampling events organized separately for the A-/Perched Zone and the B-Zone, are presented in Appendix D1. Time-series plots show CULs for all COCs and the concentration trigger value for vinyl chloride $(1.45 \ \mu g/L)$.

Vinyl Chloride Trigger Evaluation and Trend Analyses

In 2023, vinyl chloride concentrations exceeded the CUL in CPOC downgradient A-Zone wells MW-25 and MW-32 during at least two quarters, but none of the concentrations exceeded the concentration trigger value.

Time-series plots of all historical data presented in Appendix D1 show apparent overall stable or decreasing trends for vinyl chloride over the history of monitoring. Historic data coverage prior to 2020 for each well is summarized below.

- 1999-2014: MW-8, MW-10, MW-12, MW-14, MW-18, MW-24
- 2006-2014: MW-25, MW-26, MW-27
- 2013-2014: MW-29
- 2011-2014: MW-30, MW-31, MW-32, MW-33

Mann-Kendall trend analyses for the vinyl chloride post-Consent Decree data (second quarter 2020 through fourth quarter 2023) were conducted using the Excel-based program ProUCL (EPA 2015). The Mann-Kendall trend plots, calculations, and a summary of the approach used is provided in Appendix D2, and the results are summarized in Table 8. Note that trends are required to include MW-31 but not MW-30, even though these wells are not CPOC wells.

There were no statistically significant trends in the post-Consent Decree data for vinyl chloride in the two downgradient wells that had 2023 vinyl chloride concentrations above the CUL (MW-25 and MW-32). Statistically significant increasing trends were observed in wells MW-33 (A Zone) and well MW-24 (B-Zone), but at concentrations below the CUL.

Since there were no wells that exceeded either of the contingency trigger conditions for vinyl chloride in 2023 (concentrations above the concentration trigger criteria for two consecutive sampling events and an increasing trend in a well where the concentration of vinyl chloride is greater than the CUL), no additional actions were required.

Iron and Manganese

In 2023, iron and manganese concentrations exceeded the CUL during all four quarters in downgradient wells MW-25 (A-Zone) and MW-10 (B-Zone). The manganese concentration exceeded the CUL during one quarter in downgradient well MW-27 (A-Zone). Time-series plots for iron and manganese are presented in Appendix D1. Historic data coverage prior to 2020 for each well is summarized below.

- 1999-2003; 2011-2014: MW-08, MW-10, MW-12, MW-14, MW-18, MW-24
- 2006; 2011-2014: MW-25, MW-26, MW-27
- 2013-2014: MW-29, MW-30, MW-31, MW-32, MW-33

The time-series plots show generally stable or decreasing trends over the history of monitoring since 1999. One exception was the apparent increases in iron in well MW-25. Apparent decreases included iron in upgradient well MW-12 (A-Zone) and downgradient wells MW-32 (A-Zone) and MW-

08 and MW-18 (B-Zone); and manganese in upgradient well MW-12 (A-Zone), and downgradient wells MW-26, MW-29, and MW-32 (A-Zone) and MW-08 (B-Zone).

Mann-Kendall trend analyses for the iron and manganese post-Consent Decree data (second quarter 2020 through fourth quarter 2023) were conducted using the Excel-based program ProUCL (EPA 2015). The Mann-Kendall trend plots, calculations, and a summary of the approach used is provided in Appendix D2, and the results are summarized in Tables 9 and 10.

The trend analyses indicated statistically significant increasing trends in the post-Consent Decree data for iron in downgradient wells MW-25, MW-26, MW-31, MW-32, and MW-33 (A-Zone) and MW-24 (B-Zone); and for manganese in upgradient well MW-14 (A-Zone) and downgradient wells MW-25, MW-31, and MW-33 (A-Zone). Therefore, in accordance with the CAP, it is recommended that analyses for iron and manganese be continued during 2024. This recommendation will be discussed with Ecology.

4.2.2 Monitoring Well Maintenance Completed

The Site Coordinator installed new silicone tubing at wells with dedicated bladder pumps to replace deteriorated low density polyethylene discharge tubing at the wellheads, and the bolts for the well MW-29 monument were replaced in July 2023.

The City of Seattle cleared the homeless encampment from the ROW containing gas probe GP-09 and groundwater wells MW-10 and MW-25 in April 2023. The ROW was cleaned of debris and fencing was installed around the perimeter.

4.2.3 Unforeseen Emergency or Extreme Weather Events

No unforeseen emergency or extreme weather events were identified at the Settlement Area during 2023 that triggered an inspection to the groundwater monitoring wells.

4.3 Activities Planned for the Next One-Year Period

4.3.1 Groundwater Monitoring

During the next 1-year period, quarterly groundwater monitoring is planned during the months of February, May, August, and November.

4.3.2 Monitoring Well Maintenance

The bladder pump from MW-10 will be repaired or replaced to facilitate future groundwater monitoring. The well is currently sampled with a peristaltic pump.

The locking lid for MW-27 should be repaired/rewelded to ensure well security.

The old partially buried purge water drums that King County installed will be removed.

Additional discharge and air lines may be replaced with Teflon lined and polyethylene tubing depending upon field observations.

5. Conclusions and Recommendations

No unforeseen emergency or extreme weather events occurred during 2023 at the Settlement Area that triggered additional monitoring requirements.

5.1 Landfill Cap

The 2023 Landfill Cap Inspection was conducted on April 6, 2023 and identified some areas requiring additional monitoring, maintenance, and repairs. A Mid-Year Landfill Cap Reinspection was conducted on October 11, 2023. SRDS and CPSP conducted some of the recommended repairs during 2023-2024, and these repairs were observed by the Site Coordinator. Additional work is required based on the findings of the inspections. The Site Coordinator will conduct an annual inspection in the Spring of 2024.

5.2 Landfill Gas

LFG monitoring throughout 2023 indicated that LFG remains present at the Settlement Area and that the LFG is being effectively controlled without offsite migration above regulatory thresholds.

Supplemental shallow gas probe installation is scheduled for the spring of 2024 for probes with screened intervals that are typically blocked by groundwater (GP-11, GP-13, GP-15, and GP-32) since these probes are located in the vicinity of adjacent occupied buildings. A work plan to install the supplemental gas probes (Parametrix 2023) has been approved by Ecology.

5.3 Groundwater

The groundwater flow direction indicated by 2023 groundwater monitoring was toward the northeast and generally consistent with historical measurements. Based on the observed gradients, the calculated flow velocity ranged from 4.65 to 7.79 ft/day in the northern region and 1.36 to 3.17 ft/day in the southern region of the Settlement Area.

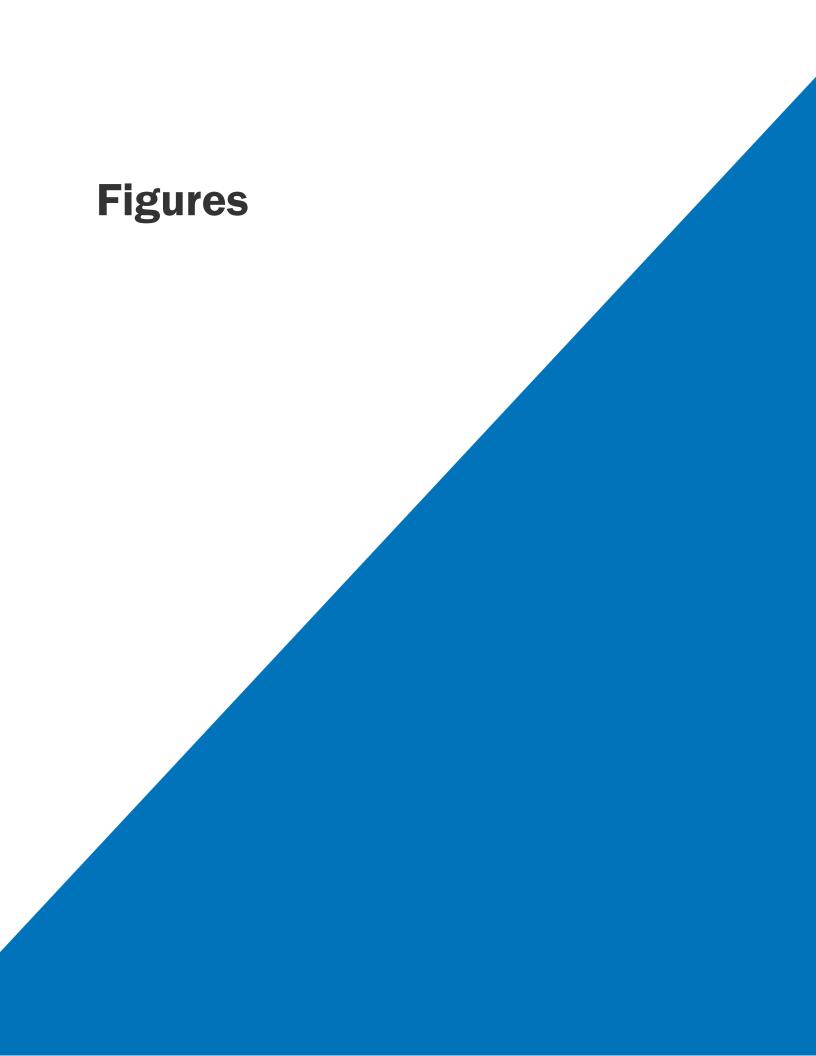
Comparison of water levels in the shallow and deep wells show slightly downward vertical gradients (water levels are higher in the shallower wells) most predominant in the MW-30/MW-31 well pair off the Settlement Area to the northeast.

The following CPOC wells had at least one COC concentration that exceeded the CUL during 2023:

- Vinyl chloride: downgradient wells MW-25 and MW-32 (A-Zone)
- Iron: downgradient wells MW-25 and MW-27 (A-Zone) and MW-10 (B-Zone)
- Manganese: downgradient wells MW-25 (A-Zone) and MW-10 (B-Zone)

The 2023 vinyl chloride data were evaluated and there were no conditions that triggered contingent actions. None of the vinyl chloride groundwater monitoring results exceeded the concentration trigger (concentration greater than $1.45 \ \mu g/L$ for two consecutive sampling events), and there were no statistically significant increasing trends in the post-Consent Decree data in the two downgradient wells that had vinyl chloride concentrations above the CUL (MW-25 and MW-32). Since there were no wells that exceeded either of these contingency trigger conditions for vinyl chloride in 2023, no additional

actions were required. Trends in vinyl chloride will be updated quarterly during 2024 in wells where measured concentrations exceed the CUL.


Since statistically significant upward trends during the Post-Consent Decree period were observed for iron and manganese in some wells (iron in wells MW-24, MW-25, MW-26, MW-31, MW-32, and MW-33, and manganese in wells MW-14, MW-25, MW-31, and MW-33), monitoring for iron and manganese will continue in 2024 in accordance with the CAP. Trends in iron and manganese will be reevaluated after fourth quarter 2024 to assess whether potential future reductions in monitoring frequency can be recommended.

Arsenic analysis was terminated after the first quarter of 2023, in accordance with the CAP, based on concentrations in CPOC wells remaining in compliance with the CUL for 2 years.

Benzene analysis in well MW-25 was terminated after the second quarter of 2023, in accordance with the CAP, because the concentrations remained in compliance for 2 years.

6. References

- Ecology (Washington State Department of Ecology). 2005. Implementation Guidance for the Ground Water Quality Standards. Washington State Department of Ecology Publication #96-02. Olympia, WA.
- Ecology. 2018a. South Park Landfill Final Cleanup Action Plan. Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- Ecology. 2018b. Guidance for Monitoring at Landfills and Other Facilities Regulated Under Chapters 173-304, 173-306, 173-350, and 173-351 WAC, Revised December 2018. Washington State Department of Ecology Publication no. 12-07-072. Olympia, WA.
- Ecology. 2021. Draft South Park Landfill Final Cleanup Action Plan: Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan, Amended 2021. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- EPA (U.S. Environmental Protection Agency). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance. EPA 530/R-09-007. U.S. Environmental Protection Agency Office of Resource and Recovery. Washington, D.C.
- EPA. 2015. ProUCL 5.0.00 User Guide (Draft): Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041. U.S. Environmental Protection Agency Office of Research and Development. Washington, D.C.
- Farallon. 2013. Interim Action Work Plan, South Park Landfill Site, Seattle, Washington. Prepared for South Park Landfill Development, LLC. February 22, 2013. Seattle, WA.
- Farallon. 2016. SPPD Property Landfill Gas Collection and Control System Operation, Maintenance, and Monitoring Plan, South Park Landfill, Seattle, Washington. Prepared for South Park Property Development, L.L.C. c/o SEACON, L.L.C. June 2016.
- Floyd | Snider, Aspect, BHC, and Herrera. 2017. Remedial Investigation/Feasibility Study. Prepared for City of Seattle South Park Property Development, LLC. July 2017. Seattle, WA.
- Hart Crowser. 1998. Duwamish Industrial Area Hydrogeologic Pathways Project: Duwamish Basin Groundwater Pathways Conceptual Model Report. Seattle, WA. 1 April.
- Herrera Environmental Consultants (Herrera). 2021. Draft Interim Action Work Plan Amended 2021: South Recycling and Disposal Station. Seattle, WA. February.
- Parametrix 2020. Cap Inspection Work Plan, South Park Landfill. Technical Memorandum prepared for Jerome Cruz, Project Manager, Washington State Department of Ecology. August 5, 2020.
- Parametrix 2021a. 2020 Operations, Maintenance, and Monitoring Annual Report, South Park Landfill. Prepared for SPU. March.
- Parametrix Inc. 2021b. Groundwater Monitoring Well Purge Water Discharge to Sewer. Technical Memorandum prepared for Jeff Neuner at SPU. June 28, 2021.
- Parametrix Inc. 2023. South Park Landfill Replacement Gas Probes Work Plan. Prepared for SPU. November 2023.

Contact	Title	Affiliation	Phone Number (s)	Mailing Address	Email Address
Ryan K. Gardiner	Ecology Site Manager	Ecology	425.681.5543 (C)	Northwest Region Toxics Cleanup Program	RYGA461@ECY.WA.GOV
	Ū			Washington State Dept. of Ecology	
				15700 Dayton Ave. N., Shoreline WA	
				98133	
Mark Jusayan	CIP and Landfill	SPU	206.684.4174	Seattle Public Utilities	Mark.Jusayan@seattle.gov
	Closure Program			P.O. Box 34018	
	Manager			Seattle, WA 98124-5177	
Min Soon Yim	Utility Manager	SPU	206.233.2629	Seattle Public Utilities	Min-Soon.Yim@seattle.gov
				Solid Waste Line of Business -	
				Landfill Closure Division	
				23076 Military Road So. Kent, WA	
				98032	
Shannon Straws	Sr. Environmental	SPU	206.233.2629 (W)	Seattle Public Utilities	Shannon.Straws@seattle.gov
	Analyst		206.348.7604 (C)	Solid Waste Line of Business -	
				Landfill Closure Division	
				23076 Military Road So. Kent, WA	
				98032	
Ashley Piatek	Environmental	CenterPoint	630.586.8023 (W)	CenterPoint Properties	apiatek@centerpoint.com
	Director		312.505.5001 (C)	1808 Swift Drive	
				Oak Brook, IL 60523	
Andrea Hacker	Local Property	CenterPoint	206.798.5342 (C)	CenterPoint Properties	ahacker@centerpoint.com
	Manager			111 Broadway, Suite 2130	
				Oakland, CA 94607	
John Houlihan	Legal Counsel	CenterPoint	206.547.5052 (W)	Houlihan Law	john@houlihan-law.com
			206.714.0296 (C)	100 N 35 th Street,	
				Seattle, WA 98103	
Laura Lee	Site Coordinator	Parametrix	425.941.9409 (C)	Parametrix	Lblee@parametrix.com
			206.394.3665 (W)	719 2nd Avenue, Suite 200	
				Seattle, WA 98104	

Table 1. Project Contact Information, South Park Landfill

Primary contacts in **bold**

2023 Operations, Maintenance, and Monitoring Annual Report South Park Landfill Seattle Public Utilities

Gas	Probe Diameter	Screened Interval	Purge Volume	Purge Duration (min) Purge rate =		Time of	Pressure	CH₄	CO2	0 ₂
Probe	(ft)	(ft btoc)	(cc) ¹	550 ml/min	Date Monitored		(in W.C.)	(% Volume)	(% Volume)	(% Volume)
GP-03	0.063	6.73 to 8.63	725	1.32	1/31/2023	9:47	-0.04	0.0	4.1	13.9
					4/25/2023	10:01	0.07	0.0	4.4	13.5
					7/25/2023	11:05	0.01	0.0	5.8	14.0
					10/31/2023	9:00	0.02	0.0	5.1	17.4
GP-07	0.063	5.75 to 6.25	519	0.94	1/31/2023	12:17	-0.08	0.0	1.3	18.1
					4/25/2023	12:12	0.08	0.0	1.9	18.7
					7/25/2023	9:51	-0.02 0.07	0.0	3.2 3.5	17.8
GP-09	0.063	6.62 to 10.62	899	1.63	2/6/2023	10:27 8:58	0.07	0.0	5.2	17.5 14.7
01-05	0.005	0.02 10 10.02	055	1.05	4/25/2023	9:27	0.09	0.0	7.5	12.6
					7/25/2023	10:30	0.03	0.0	5.4	16.7
					10/31/2023	10:16	0.22	0.0	6.7	15.4
GP-11	0.167	6.23 to 6.73	4,632	8.42	1/31/2023	9:33				
					4/25/2023	9:49				
					7/25/2023	10:51				
					10/31/2023	8:46	0.09	0.0	1.3	21.1
GP-13	0.167	4.91 to 5.41	4,014	7.29	1/31/2023	9:40				
					4/25/2023	9:54				
					7/25/2023	10:58				
CD 45	0.467	C C2 += 0 C2	5 5 5 0	10.11	10/31/2023	8:51				
GP-15	0.167	6.62 to 8.62	5,558	10.11	1/31/2023 4/25/2023	10:07 10:15	1.33	0.0	1.2	20.8
					7/25/2023	11:35	-7.64	0.0	0.5	20.8
					10/31/2023	11:23	-1.90	0.0	4.5	18.8
GP-16	0.167	6.60 to 9	5,867	10.67	1/31/2023	10:47	-0.10	0.0	1.1	19.4
			-,		4/25/2023	10:38	0.04	0.0	0.4	21.2
					7/25/2023	10:23	0.03	0.0	0.7	20.3
					10/31/2023	9:17	-0.04	0.0	11.8	6.8
GP-23	0.167	6.05 to 7.05	4,940	8.98	1/31/2023	12:33	-0.04	0.0	0.1	20.2
					4/25/2023	12:07	0.04	0.0	2.2	18.8
					7/25/2023	10:05	-0.01	0.0	7.6	13.7
					10/31/2023	10:41	-0.01	0.0	7.8	14.3
GP-26	0.063	4.62 to 9.62	868	1.57	1/31/2023	8:46	-0.05	0.0	1.8	19.2
					4/25/2023	8:49	0.14	0.0	1.7	19.5
					7/25/2023 10/31/2023	8:42 10:52	-0.05	0.0	2.2 3.2	19.1 17.8
GP-27	0.063	8.57 to 13.57	1 216	2.21	1/31/2023	10:32	-0.07	0.0	9.7	0.0
01 27	0.005	0.57 10 15.57	1,210	2.21	4/25/2023	11:02	0.08	0.4	8.5	0.0
					7/25/2023	9:22	0.03	0.0	12.2	0.0
					10/31/2023	9:41	0.03	0.1	14.0	0.0
GP-28	0.063	6.59 to 11.59	1,042	1.89	1/31/2023	11:09	-0.07	0.0	3.8	7.7
					4/25/2023	10:54	0.07	0.0	0.0	21.5
					7/25/2023	9:14	-0.07	0.0	0.0	20.8
					10/31/2023	9:31	0.10	0.0	0.1	22.1
GP-29	0.063	4.62 to 9.62	868	1.57	1/31/2023	10:57	-0.08	0.9	8.1	0.0
					4/25/2023	10:43	0.05	0.1	12.7	0.1
					7/25/2023	9:08 9:22	0.01	0.0	16.8 15.4	0.0
GP-31	0.063	4.64 to 9.64	868	1.57	10/31/2023 1/31/2023	10:28	-0.06	0.3	5.8	7.2
10-11	0.005	. 10 3.04	000	1.37	4/25/2023	10:28	0.16	0.0	1.9	17.4
					7/25/2023	11:40	0.01	0.0	10.8	7.9
					10/31/2023	11:01	0.01	0.0	9.9	7.6
GP-32	0.063	4.72 to 9.72	868	1.57	1/31/2023	9:55				
					4/25/2023	12:23				
					7/25/2023	11:14	-1.26	0.0	2.7	14.6
					10/31/2023	11:08				
GP-33	0.063	8.2 to 13.2	1,165	2.12	1/31/2023	11:24	-0.03	4.9	7.1	0.0
					4/25/2023	9:35	-0.05	0.0	1.1	20.1
					7/25/2023	8:58	-0.04	0.0	2.4	17.7
60.27	0.002	20+220	060	1 57	10/31/2023	8:30	-0.03	0.0	2.7	17.5
GP-37	0.063	2.8 to 7.8	868	1.57	1/31/2023	9:03	-0.06	0.0	7.4	4.4
					4/25/2023 7/25/2023	9:17 9:30	0.04	0.0	7.7	6.4 10.9
					10/31/2023	10:00	0.05	0.0	9.9	5.6
GP-38	0.063	3.8 to 8.8	882	1.6	1/31/2023	9:16	-0.02	0.0	10.4	4.2
2, 50	5.000		002		4/25/2023	9:07	0.05	0.0	11.9	4.5
					7/25/2023	9:40	0.01	0.0	18.4	2.1
					10/31/2023	10:09	0.02	0.0	15.7	2.5

Notes:

- ¹ Purge volume assumes no water present within the probe screen
- -- No measurement, screen blocked by water

Abbreviations:

- ft feet
- cc cubic centimeter W.C. Water Column
- CH_4 Methane
- CO_2 Carbon Dioxide
- O₂ Oxygen

										Pump Information					
			WASPN		Ground	Casing		Total Well		Screen	Screen Top	Screen Bottom			
	Latitude	Longitude	North	WASPN East	Elevation	Elevation	Stickup	Depth	Screen Top	Bottom	Elevation	Elevation			Target Intake or Top of Pump ³
Well ID	(NAD 83) ¹	(NAD 83) ¹	(ft NAD 83)	(ft NAD 83)	(ft NAVD 88)	(ft NAVD 88)	(ft)	(ft bgs)	(ft bgs)	(ft bgs)	(ft NAVD 88)	(ft NAVD 88)	Aquifer	Pump Type	(ft bgs)
MW-08	47.529801	-122.3273	196834.57	1271362.27	12.88	14.76	1.88	45.6	35.6	45.6	-22.72	-32.72	B-Zone	Bladder	40
MW-10	47.531977	-122.3306	197659.19	1270559.83	17.7	19.35	1.65	45	35	45	-17.3	-27.3	B-Zone	Peristaltic	40
MW-12	47.530062	-122.3337	196964.43	1269792.64	19.11	20.63	1.52	15.3	10	15	9.11	4.11	A-Zone	Bladder	12.5
MW-14	47.528523	-122.3329	196399.9	1269963.70	19.05	19.85	0.8	21.8	11.5	21.5	7.55	-2.45	A-Zone	Bladder	16.5
MW-18	47.528449	-122.3284	196350.26	1271077.67	20.78	22.03	1.25	40.4	30	40	-9.22	-19.22	B-Zone	Bladder	35
MW-24	47.530515	-122.3281	197110.02	1271165.6	13.57	15.13	1.56	45.3	35	45	-21.43	-31.43	B-Zone	Bladder	40
MW-25	47.532033	-122.3305	197657.49	1270566.75	17.3	20.09	2.79	27	22	27	-4.7	-9.7	A-Zone	Bladder	24.5
MW-26	47.53057	-122.3281	197121.60	1271164.4	13.55	15.94	2.39	25	15	25	-1.45	-11.45	A-Zone	Bladder	20
MW-27	47.529792	-122.3273	196835.06	1271357.64	12.72	14.76	2.04	20	10	20	2.72	-7.28	A-Zone	Bladder	15
MW-29	47.527537	-122.3316	196034.29	1270270.91	19.45	19.16	-0.29	30	20	30	-0.55	-10.55	A-Zone	Peristaltic	25
MW-30	47.532014	-122.3295	197655.77	1270826.64	17.6	17.07	-0.53	13	8	13	9.6	4.6	Perched	Peristaltic	10.5
MW-31	47.532027	-122.3295	197660.37	1270825.71	17.58	17.12	-0.46	23	18	23	-0.42	-5.42	A-Zone	Bladder	20.5
MW-32	47.531347	-122.3303	197416.52	1270622.16	17.51	17.07	-0.44	24	19	24	-1.49	-6.49	A-Zone	Peristaltic	21.5
MW-33	47.53092	-122.3298	197257.91	1270751.02	17.81	17.34	-0.47	25	20	25	-2.19	-7.19	A-Zone	Peristaltic	22.5

Table 3. Groundwater Monitoring Well Information, South Park Landfill

Notes:

¹ Converted from Washington State plane data.

² Well information sourced from the RI Table 5.4 (Floyd Snider, 2017).

³ Pump intake placed at the midpoint of the screen interval.

Abbreviations:

NAD 83 = North American Datum of 1983

NAVD 88 = North American Vertical Datum of 1988

ft = feet

- bgs = below ground surface
- btoc = below top of casing
- WASPN = Washington State Plane North 4601

	TOC (ft		Depth to	Water (ft)		Ground	water Elev	vation (ft NA	VD 88)
Well ID	NAVD 88)	2/6/23	5/1/23	7/31/23	11/6/23	2/6/23	5/1/23	7/31/23	11/6/23
Developed Zeve									
Perched Zone MW-30	17.07	9.20	9.59	10.71	10.06	7.87	7.48	6.36	7.01
Shallow / A-Z	one wells								
MW-12	20.63	5.60	5.69	6.49	4.58	15.03	14.94	14.14	16.05
MW-14	19.85	2.40	2.52	3.45	2.33	17.45	17.33	16.40	17.52
MW-25	20.09	13.13	13.25	14.19	13.41	6.96	6.84	5.90	6.68
MW-26	15.94	8.84	9.03	10.09	9.30	7.10	6.91	5.85	6.64
MW-27	14.76	7.52	7.72	8.83	8.11	7.24	7.04	5.93	6.65
MW-29	19.16	6.80	6.34	8.86	7.03	12.36	12.82	10.30	12.13
MW-31	17.12	10.24	10.40	11.32	10.50	6.88	6.72	5.80	6.62
MW-32	17.07	10.03	10.16	11.20	10.41	7.04	6.91	5.87	6.66
MW-33	17.34	10.17	10.29	11.36	10.59	7.17	7.05	5.98	6.75
Deep / B-Zon	e wells								
MW-08	14.76	7.56	7.72	8.83	8.15	7.20	7.04	5.93	6.61
MW-10	19.35	12.40	12.60	13.45	12.63	6.95	6.75	5.90	6.72
MW-18	22.03	14.60	14.70	15.85	15.09	7.43	7.33	6.18	6.94
MW-24	15.13	8.08	8.25	9.30	8.55	7.05	6.88	5.83	6.58

Table 4. Groundwater Elevation Summary, 2023, South Park Landfill

Abbreviations:

TOC = Top of casing

ft = feet

NAVD 88 = North American Vertical Datum of 1988

2023 Operations, Maintenance, and Monitoring Annual Report South Park Landfill Seattle Public Utilities

		Ground	dwater Elev	vation (ft N	AVD 88)	Mid-screen Mid-screen			Vertical gra	dient (ft/ft)	
Well Pairs	Zone	2/6/23	5/1/23	7/31/23	11/6/23	Elevation (ft NAVD 88)	Elevation Difference (ft)	2/6/23	5/1/23	7/31/23	11/6/23
MW-26	Shallow	7.10	6.91	5.85	6.64	-6.45	19.98	0.0025	0.001	0.0010	0.0020
MW-24	Deep	7.05	6.88	5.83	6.58	-26.43	19.98	0.0025	0.0015	0.0010	0.0030
						-			-		
MW-27	Shallow	7.24	7.04	5.93	6.65	-2.28	25.44	0.0016	0.0000	0.0000	0.0016
MW-08	Deep	7.20	7.04	5.93	6.61	-27.72	25.44	0.0016	0.0000	0.0000	0.0016
		•		•	•				•		
MW-25	Shallow	6.96	6.84	5.90	6.68	-7.2	15 1	0 0007	0.0060	0.0000	0.0026
MW-10	Deep	6.95	6.75	5.90	6.72	-22.3	15.1	0.0007	0.0060	0.0000	-0.0026
					•	•	•		•		
MW-30	Perched	7.87	7.48	6.36	7.01	7.1	10.02	0.0000	0.0750		0.0200
MW-31	Shallow	6.88	6.72	5.80	6.62	-2.92		0.0988	0.0758	0.0559	0.0389

Table 5. Groundwater Vertical Gradients, 2023, South Park Landfill

Notes:Positive vertical gradient represents downward hydraulic flowNegative vertical gradient represents upward hydraulic flow

Abbreviations:

ft = feet

NAVD 88 = North American Vertical Datum of 1988

Region	Horizontal Hydraulic Conductivity ¹ (ft/day)	2023 Horizontal Hydraulic Gradient (ft/ft)	Effective Porosity ¹	Horizontal Groundwater Velocity (ft/day)
Northern Region ²	145 to 167	0.0083 to 0.0098	0.21 to 0.26	4.65 to 7.79
Southern Region ³	40 to 71	0.0089 to 0.0094	0.21 to 0.26	1.36 to 3.17

Table 6. Groundwater Flow Velocity, South Park Landfill

Notes:

- ¹ Hydraulic Conductivity and Effective Porosity as determined from the RI-FS (Floyd Snider, 2017).
- ² Horizontal gradients for the northern region are calculated between A-Zone wells MW-12 and MW-32.
- ³ Horizontal gradients for the southern region are calculated between A-Zone well MW-14 and B-Zone well MW-18.

								Upgradie	nt Wells							Downgra	dient Well	S
								A-Zo	one							Perch	ed Zone	
			MW-12	MW-12	MW-12	MW-12	MW-14	MW-14	MW-14	MW-14	MW-29	MW-29	MW-29	MW-29	MW-30 ¹	MW-30 ¹	MW-30 ¹	MW-30
		Cleanup																
Parameter	Units	Level	2/8/23	5/3/23	8/1/23	11/8/23	2/8/23	5/3/23	8/1/23	11/8/23	2/6/23	5/3/23	8/1/23	11/8/23	2/7/23	5/2/23	7/31/23	11/7/2
Field Parameters																		
Temperature	С		9.7	11.5	15.2	14.6	12.9	13.4	16.5	15.7	11.9	12.3	13.4	12.7	11.1	11.3	14.9	15.0
Dissolved Oxygen	mg/L		1.47	0.7	0.22	0.81	0.26	0.1	0.28	0.16	0.11	0.1	0.16	0.25	0.55	0.4	0.28	0.89
Specific Conductivity	μS/cm		368.4	440.7	500.4	0.278	468.4	478.5	533.0	0.448	526.4	820	765	0.452	740	995	1066	0.425
рН	units		6.52	6.32	6.54	6.33	6.87	6.61	6.94	6.71	6.94	6.69	7.03	6.81	6.37	6.27	6.38	6.30
Redox	mv		184.6	40.1	43.0	48.9	-42.2	-49.1	-51.8	-51.4	-108.5	-108.7	-105.6	-107.9	39.9	49.4	-41.3	-6.6
Turbidity	NTU		0.82	2.02	4.08	1.06	4.61	8.14	4.03	3.35	0.92	1.72	3.59	0.78	1.37	2.47	0.24	1.49
Metals																		
Arsenic, Dissolved	μg/L	5.0	0.287															
Iron, Total	mg/L	27 A-Zone	0.0720 U	2.36	1.41	1.41	3.97	3.90	4.39	3.94	17.6	11.6	23.4	17.3	3.31	1.20	9.27	3.52
		31 B-Zone																
Manganese, Total	mg/L	2.2	0.0200	0.189	0.0993	0.132	0.851	0.740	0.797	0.865	0.434	0.291	0.562	0.441	0.138	0.0520	0.291	0.112
Volatile Organic Compounds	5																	
Vinyl Chloride	μg/L	0.29	0.0200 U	0.0312	0.0816	0.0667	0.427 1	0.0710										
Cis-1,2-Dichloroethene	μg/L	16	0.20 U	0.21	0.20 U	0.24	0.20 U	0.20 U	0.35	0.33	0.74	0.29						
Benzene	μg/L	5.0																

								D	owngradien		nt.)					
									A-Z	lone						
			MW-25	MW-25	MW-25	MW-25	MW-26	MW-26	MW-61 (MW-26	MW-26	MW-26	MW-27 ²	MW-27	MW-27	MW-27	MW-61 (MW-27
		Cleanup							Dup)							Dup)
Parameter	Units	Level	2/6/23	5/1/23	8/2/23	11/6/23	2/7/23	5/2/23	5/2/23	7/31/23	11/7/23	2/7/23	5/2/23	8/1/23	11/7/23	11/7/23
Field Parameters																
Temperature	С		13.3	13.6	14.8	14.0	12.0	11.9		12.6	12.0	11.0	11.6	13.8	13.3	
Dissolved Oxygen	mg/L		0.24	0.2	0.16	0.21	0.15	0.4		0.92	0.28	0.15	0.2	0.15	0.32	
Specific Conductivity	μS/cm		1089	1218	1200	0.96	227.8	287.1		338.5	0.314	384.5	435.5	521.3	0.316	
рН	units		6.77	6.53	6.85	6.61	6.22	5.97		6.32	6.02	6.71	6.49	6.85	6.47	
Redox	mv		-103.0	-101.8	-98.1	-110.8	35.2	23.4		14.3	15.5	-12.9	-64.0	-90.9	-111	
Turbidity	NTU		0.56	0.82	3.68	1.88	6.28	5.41		3.76	2.90	18.7	12.3	15.9	10.0	
Metals																
Arsenic, Dissolved	μg/L	5.0	0.308				0.647					3.70				
Iron, Total	mg/L	27 A-Zone	36.6	31.3	35.9	34.9	7.98	9.40	9.30	12.1	12.3	9.77	12.8	28.8	10.4	10.5
		31 B-Zone														
Manganese, Total	mg/L	2.2	2.90	2.47	2.88	2.78	0.0982	0.117	0.109	0.137	0.145	0.369	0.370	0.683	0.393	0.397
Volatile Organic Compounds																
Vinyl Chloride	μg/L	0.29	0.593	0.562	0.311	0.285	0.173	0.0219	0.0224	0.0200 U	0.0240	0.0778	0.155	0.0955	0.0200 U	0.0200 U
, Cis-1,2-Dichloroethene	μg/L	16	0.22	0.20 U	0.21	0.23	0.33	0.34	0.33	0.24	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Benzene	μg/L	5.0	3.99	2.49												

										ent Wells (co	ont.)					
									A-Zo	ne (cont.)						
			MW-31 ¹	MW-31 ¹	MW-31 ¹	MW-31 ¹	MW-32 ³	MW-32 ³	MW-60	MW-32 ³	MW-32 ³	MW-33 ³	MW-33 ³	MW-33 ³	MW-60	MW-33 ³
									(MW-32						(MW-33	
		Cleanup							Dup)						Dup)	
Parameter	Units	Level	2/7/23	5/2/23	7/31/23	11/7/23	2/6/23	5/1/23	5/1/23	8/2/23	11/6/23	2/6/23	5/1/23	8/2/23	8/2/23	11/6/23
Field Parameters																
Temperature	С		12.7	13.2	14.2	14.3	13.4	13.4		15.3	13.8	14.6	15.0	15.8		15.1
Dissolved Oxygen	mg/L		0.32	0.1	0.14	0.22	0.14	0.2		0.36	0.31	0.20	0.2	0.20		0.30
Specific Conductivity	μS/cm		439.4	495.8	493.6	0.422	754	844		850	0.62	1306	1450	1321		1.07
рН	units		6.63	6.35	6.67	6.44	6.99	6.73		7.06	6.80	6.89	6.69	7.01		6.74
Redox	mv		-53.8	-64.6	-96.0	-76.1	-115.2	-112.8		-109.6	-121.9	-114.4	-120.0	-114.7		-116.9
Turbidity	NTU		2.87	3.59	4.32	5.81	1.43	0.87		4.30	1.16	3.49	3.84	2.51		1.23
Metals																
Arsenic, Dissolved	μg/L	5.0					0.992					1.07				
Iron, Total	mg/L	27 A-Zone	18.2	17.2	21.4	21.3	16.2	14.0	13.9	18.6	14.7	19.6	18.8	20.8	19.5	15.2
		31 B-Zone														
Manganese, Total	mg/L	2.2	0.765	0.711	0.830	0.890	1.61	1.39	1.38	1.45	1.32	2.05	1.89	1.98	1.92	1.74
Volatile Organic Compounds	;															
Vinyl Chloride	μg/L	0.29	0.219	0.576 ¹	0.765 ¹	0.435 ¹	0.317	0.339	0.348	0.279	0.275	0.0967	0.133	0.168	0.164	0.104
Cis-1,2-Dichloroethene	μg/L	16	0.20 U	0.20 U	0.20 U	0.20 U	0.92	0.48 J	0.49	0.44	0.53	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Benzene	μg/L	5.0														

									Downgrad		(cont.)						
										B-Zone					2	2	2
			MW-08	MW-08	MW-08	MW-61	MW-08	MW-10	MW-10	MW-10	MW-10	MW-60	MW-18 ³	MW-60	MW-18 ³	MW-18 ³	MW-18 ³
						(MW-08						(MW-10		(MW-18			
		Cleanup				Dup)						Dup)		Dup)			
Parameter	Units	Level	2/7/23	5/1/23	8/1/23	8/1/23	11/7/23	2/6/23	5/1/23	8/2/23	11/6/23	11/6/23	2/6/23	2/6/23	5/3/23	8/1/23	11/8/23
Field Parameters																	
Temperature	С		11.5	13.0	14.1		12.9	13.4	13.7	14.8	14.1		13.5		14.7	16.6	14.7
Dissolved Oxygen	mg/L		0.11	0.1	0.28		0.21	0.27	0.3	0.27	0.31		0.16		0.2	0.87	0.30
Specific Conductivity	μS/cm		555.1	1139	1113		0.67	1299	1506	1428	1.15		785		831	738	0.50
рН	units		7.08	6.70	6.97		6.76	6.93	6.06	6.96	6.76		6.79		6.58	6.89	6.78
Redox	mv		-20.3	-106.9	-102.5		-109.6	-120.1	-102.7	-123.0	-135.3		-69.5		-68.2	-77.4	-80.9
Turbidity	NTU		3.46	4.75	4.23		2.56	3.41	0.88	3.73	1.51		0.55		1.57	3.75	1.40
Metals																	
Arsenic, Dissolved	μg/L	5.0	0.200 U					0.200 U					0.200 U	0.200 U			
Iron, Total	mg/L	27 A-Zone															
		31 B-Zone	2.70	17.6	17.1	16.1	14.3	37.9	36.6	45.8	43.9	44.5	14.1 J-	15.9	13.7	16.1	12.1
Manganese, Total	mg/L	2.2	0.825	0.914	0.979	0.934	0.802	2.37	2.26	2.51	2.51	2.63	1.27	1.20	1.07	1.17	0.943
Volatile Organic Compounds	;																
Vinyl Chloride	μg/L	0.29	0.0200 U	0.0850	0.0721	0.0704	0.0520	0.142	0.151	0.121	0.0877	0.0850	0.0264	0.0253	0.0268	0.0223	0.0222
Cis-1,2-Dichloroethene	μg/L	16	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.83	0.54	0.69	0.76	0.75	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Benzene	μg/L	5.0															

				Į	adient Wel -Zone (con			Trip I	Blanks	Trip Blanks		Trip I	Blanks	Trip E	Blanks
Parameter	Units	Cleanup Level	MW-24 2/7/23	MW-61 (MW-24 Dup) 2/7/23	MW-24 5/2/23	MW-24	MW-24 11/7/23	MW-80 2/6/23	MW-81 2/8/23	MW-80 5/1/23	MW-81 5/3/23	MW-80 8/2/23	MW-81 7/31/23	MW-80 11/6/23	MW-81 11/8/23
Field Parameters															
Temperature	С		11.6		12.1	12.5	12.1								
Dissolved Oxygen	mg/L		0.16		0.1	0.29	0.28								
Specific Conductivity	μS/cm		911		889	1001	0.75								
рН	units		6.80		6.63	6.82	6.54								
Redox	mv		-80.0		-71.4	-89.5	-78.1								
Turbidity	NTU		2.27		5.85	2.41	1.18								
Metals															
Arsenic, Dissolved	μg/L	5.0	0.200 U	0.200 U											
Iron, Total	mg/L	27 A-Zone													
	-	31 B-Zone	22.2	26.8	13.3	27.8	28.6								
Manganese, Total	mg/L	2.2	1.76	1.77	1.29	1.65	1.78								
Volatile Organic Compounds															
Vinyl Chloride	μg/L	0.29	0.0484	0.0482	0.0425	0.0489	0.0559	0.0200 U	0.0200 U	0.0200 U					
, Cis-1,2-Dichloroethene	μg/L	16	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Benzene	μg/L	5.0						0.20 U	0.20 U	0.20 U	0.20 U				

Notes:

¹ MW-30 and MW-31 monitor the former Glitsa property and are not CPOC wells.

² MW-27, a downgradient A-Zone well across SR 99 consistently has arsenic at concentrations greater than the CUL due to a cement kiln dust deposit that is across the street from the Settlement Area. MW-27 is not a CPOC well for arsenic.

³ MW-18 is completed in refuse along the downgradient edge of the Landfill; MW-32 and MW-33 are completed beneath refuse along the downgradient edge.

= Exceeds cleanup level for CPOC wells

- - = Not analyzed

U = The analyte was analyzed for but was not detected above the reported sample quantitation limit.

J = The result is an estimated quantity.

J - = The result is an estimated quantity, but the result may be biased low.

Abbreviations:

µg/L Micrograms per liter

mg/L Milligrams per liter

µS/cm Microsiemens per centimeter

NTU Nephelometric Turbidity unit

CPOC Conditional point of compliance

Well ID	# Samples	# ND's	% ND's	MK S Value ¹	Significance Level ²	Trend ²
Upgradient We	lls					
A-Zone						
MW-12	15	15	100	NA	NA	NA
MW-14	15	15	100	NA	NA	NA
MW-29	15	11	73.33	29	0.0840	no trend
Downgradient	Wells					
A-Zone						
MW-25	13	0	0	2	0.4760	no trend
MW-26	15	4	26.67	1	0.5000	no trend
MW-27	15	3	20.00	33	0.0570	no trend
MW-31	15	0	0	29	0.0840	no trend
MW-32	15	0	0	-11	0.3130	no trend
MW-33	15	0	0	36	0.0370	increasing
B-Zone						
MW-08	15	2	13.33	-7	0.3850	no trend
MW-10	13	0	0	22	0.1020	no trend
MW-18	15	1	6.67	-8	0.3490	no trend
MW-24	15	1	6.67	37	0.0370	increasing

Table 8. Summary of Vinyl Chloride Trend Analyses, South Park Landfill

Notes:

Trend analyses include all post-Consent Decree data (Second Quarter 2020 through Fourth Quarter 2023)

ND = Non-detected value

All ND's were replaced with estimated values using the ROS (Regression on Order Statistics) method.

NA = Not applicable

Bold = Downgradient well where the vinyl chloride concentration is greater than the CUL

- ¹ The Mann-Kendall test statistic, S, is based on pair-wise differences between each concentration and all earlier concentrations. A positive S value indicates an increasing trend, a zero value indicates no trend, and a negative value indicates a decreasing trend. The null hypothesis for this test is no trend. For a positive S value, the alternative hypothesis is an increasing trend. For a negative S value, the alternative hypothesis is a decreasing trend.
- ² Significance of the Mann-Kendall test statistic, S, is a function of the magnitude of S and the number of concentrations, with a larger positive or negative value of S and a greater number of concentrations leading to a higher statistical significance. An increasing or decreasing trend is considered statistically significant if the significance level is less than 0.05 (the confidence level is greater than 0.95); otherwise, no trend is indicated. Value provided is the tabulated p-value reported by ProUCL.

Well ID	# Samples	# ND's	% ND's	MK S Value ¹	Significance Level ²	Trend ²
Upgradient We	lls					
A-Zone						
MW-12	15	2	13.33	24	0.1200	no trend
MW-14	15	0	0	-7	0.3850	no trend
MW-29	15	0	0	-24	0.1200	no trend
Downgradient	Wells					
Perched Zoi	ne					
MW-30	15	0	0	17	0.2180	no trend
A-Zone						
MW-25	13	0	0	42	0.0050	increasing
MW-26	15	0	0	53	0.0040	increasing
MW-27	15	0	0	23	0.1410	no trend
MW-31	15	0	0	73	0.0000	increasing
MW-32	15	0	0	60	0.0010	increasing
MW-33	15	0	0	52	0.0040	increasing
B-Zone						
MW-08	15	0	0	-5	0.4230	no trend
MW-10	13	0	0	24	0.0820	no trend
MW-18	15	0	0	-41	0.0230	decreasing
MW-24	15	0	0	35	0.0460	increasing

Notes:

Trend analyses include all post-Consent Decree data (Second Quarter 2020 through Fourth Quarter 2023)

ND = Non-detected value

All ND's were replaced with estimated values using the ROS (Regression on Order Statistics) method. ¹ The Mann-Kendall test statistic, S, is based on pair-wise differences between each concentration and all earlier concentrations. A positive S value indicates an increasing trend, a zero value indicates no trend, and a negative value indicates a decreasing trend. The null hypothesis for this test is no trend. For a positive S value, the alternative hypothesis is an increasing trend. For a negative S value, the alternative hypothesis is a decreasing trend.

² Significance of the Mann-Kendall test statistic, S, is a function of the magnitude of S and the number of concentrations, with a larger positive or negative value of S and a greater number of concentrations leading to a higher statistical significance. An increasing or decreasing trend is considered statistically significant if the significance level is less than 0.05 (the confidence level is greater than 0.95); otherwise, no trend is indicated. Value provided is the tabulated p-value reported by ProUCL.

Well ID	# Samples	# ND's	% ND's	MK S Value ¹	Significance Level ²	Trend ²
Upgradient We	lls					
A-Zone						
MW-12	15	0	0	15	0.2480	no trend
MW-14	15	0	0	70	0.0000	increasing
MW-29	15	0	0	-49	0.0080	decreasing
Downgradient	Wells					
Perched Zor	ne					
MW-30	15	0	0	4	0.4230	no trend
A-Zone						
MW-25	13	0	0	38	0.0110	increasing
MW-26	15	0	0	18	0.1900	no trend
MW-27	15	0	0	5	0.4230	no trend
MW-31	15	0	0	81	0.0000	increasing
MW-32	15	0	0	-27	0.1010	no trend
MW-33	15	0	0	45	0.0140	increasing
B-Zone						
MW-08	15	0	0	-55	0.0030	decreasing
MW-10	13	0	0	-5	0.4290	no trend
MW-18	15	0	0	-45	0.0140	decreasing
MW-24	15	0	0	29	0.0840	no trend

Table 10. Summary of Total Manganese Trend Analyses, South Park Landfill

Notes:

Trend analyses include all post-Consent Decree data (Second Quarter 2020 through Fourth Quarter 2023)

- ND = Non-detected value
 - ¹ The Mann-Kendall test statistic, S, is based on pair-wise differences between each concentration and all earlier concentrations. A positive S value indicates an increasing trend, a zero value indicates no trend, and a negative value indicates a decreasing trend. The null hypothesis for this test is no trend. For a positive S value, the alternative hypothesis is an increasing trend. For a negative S value, the alternative hypothesis is a decreasing trend.
 - ² Significance of the Mann-Kendall test statistic, S, is a function of the magnitude of S and the number of concentrations, with a larger positive or negative value of S and a greater number of concentrations leading to a higher statistical significance. An increasing or decreasing trend is considered statistically significant if the significance level is less than 0.05 (the confidence level is greater than 0.95); otherwise, no trend is indicated. Value provided is the tabulated p-value reported by ProUCL.

Appendix A

Annual Report Checklist

SOUTH PARK LANDFILL ANNUAL REPORT CHECKLIST

DUE TO ECOLOGY March 31 of each calendar year (includes January 1 through December 31 of the previous year)

1. Landfill Cap Inspections and Maintenance

	Town of Antivity	Data Camulatad	Form	6t-
	Type of Activity	Date Completed	Completed	Comments
\boxtimes	Annual	April 6, 2023	\boxtimes	Annual inspection
\boxtimes	Maintenance	December 2, 2023		CenterPoint. Storm drain inspections and cleaning at locations SPPD SW-3 and 4 and AC-23.
		February 13, 2024		ROW. Repairs to asphalt at in the ROW at locations ROW AC-1 and 4.
		February 22, 2024		SRDS. Repairs to asphalt at locations SRDS AC-13, 14, and 20.
		February 28, 2024		CenterPoint. Repairs to geomembrane at locations SPPD G-6, 7, 8, and 12.
\boxtimes	Inspection	October 11, 2023	\boxtimes	Mid-Year Re-inspection

2. Quarterly LFG Perimeter Probe Monitoring

		Date Completed	Field Forms	Comments
\boxtimes	Q1	January 31 and February 6, 2023	\boxtimes	
\boxtimes	Q2	April 25, 2023	\boxtimes	
\boxtimes	Q3	July 25, 2023	\boxtimes	
\boxtimes	Q4	October 31, 2023	\boxtimes	

3. Owner-reported Quarterly Inspection of On-site Building Methane Detectors and Alarms

		Date Completed						
		SPPD	SRDS					
\boxtimes	Q1	March 14, 2023	Not required until redevelopment					
\boxtimes	Q2	June 12 and 13, 2023						
\boxtimes	Q3	September 12, 2023						
\boxtimes	Q4	December 12, 2023						
Off-s	site building r	monitoring conducted?	Yes 🛛 No					

4. C	. Quarterly Groundwater Monitoring								
		Date Completed	Field Forms	Uploaded into EIM					
\boxtimes	Q1	February 6 through 8, 2023	\boxtimes						
\boxtimes	Q2	May 1 through 3, 2023	\boxtimes						
\boxtimes	Q3	July 31 through August 2, 2023	\boxtimes						
\boxtimes	Q4	November 6 through 8, 2023	\boxtimes						

Site Coordinator Signature

March 29, 2024

Date

Source: South Park Landfill Final Cleanup Action Plan. Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan. Prepared by Washington State Department of Ecology 2018.

Appendix B

Landfill Cap Inspection and Maintenance

Appendix B1 Cap Inspections

Appendix B1-A

April 2023 Annual Inspection

TECHNICAL MEMORANDUM

DATE:	August 1, 2023
TO:	Mark Jusayan, Seattle Public Utilities Ashley Piatek, CenterPoint Properties
FROM:	Laura Lee and Tiffany Neier, PE
SUBJECT:	South Park Landfill 2023 Annual Landfill Cap Inspection
CC:	Julia Schwarz, Washington State Department of Ecology Ryan Gardiner, Washington State Department of Ecology
PROJECT NUMBER:	553-1550-067
PROJECT NAME:	South Park Landfill Site Coordination

INTRODUCTION

The purpose of this Technical Memorandum is to summarize the findings of the 2023 annual landfill cap inspection at South Park Landfill.

The inspection satisfies the requirements of the Cleanup Action Plan which fulfills a requirement of the Consent Decree that was signed on March 26, 2019. The primary objective of this inspection was to reinspect issues identified during the December 2022 mid-year inspection, document current status, and complete another inspection of the landfill cap to identify any additional areas of concern.

The 2023 inspection was performed on April 6, 2023, by Parametrix staff members from approximately 10 a.m. to 2 p.m. The weather was rainy, and the high temperature was around 50°F with heavy rainfall accumulation of approximately 0.53 inches of rain recorded at the King County Hamm Creek Rain Station (HAU2), the majority of which fell after the inspection. Figure 1 shows the approximate bounds of the landfill cap for the two Consent Decree Settlement Area properties and the right-of-way (ROW) as defined in the Cleanup Action Plan. Figure 1 also shows the approximate landfill refuse extent which goes below two additional properties that are not currently included in the Settlement Area. The landfill cover material is shown on Figure 2. Cap Inspection Form A, provided in Appendix A, was completed for the SRDS property, the CenterPoint (former SPPD) property, and the ROW. Photographs were taken using a Trimble DA2 GNSS Receiver which used GPS to tag the photographs. The photographs are included in Tables 1 through 3 with numbered locations mapped on Figures 1 through 5.

The basis of determining the timeline for repairs shown in the tables in this report comes from the Cleanup Action Plan Landfill Post-Closure Operations, Maintenance, and Monitoring Plan, which has the following guidance for the timeline of maintenance/repairs:

- 1. If underlying material (such as geomembrane) is exposed, corrective action shall occur within 60 days.
- 2. If minor cracks or ponding do not expose underlying materials and the problem does not appear to be getting worse the issue shall be reinspected in 6 months.
- 3. If underlying material is not exposed but is worsening or the issue needs to be elevated to a repair before it worsens, the corrective action shall occur within the calendar year.

Corrective actions proposed by the property owners should be coordinated with the Site Coordinator prior to taking action. The Site Coordinator should perform verification inspections during and/or after corrective actions are complete to determine if the maintenance and repairs are consistent with the intent of the regulatory requirements. The property owner should document any repairs or maintenance in Part 1 of the Cap Maintenance Form B and the Site Coordinator will provide observations in Part 2 of the form.

The next cap inspection shall occur in the third quarter of 2023.

SRDS PARCEL

The general property conditions observed were good and similar to previous inspections. Locations on the SRDS property identified in December 2022 mid-year inspection were reinspected during this site visit. Two new locations were identified during the 2023 annual inspection. Pavement cracks, ruttings, and ponding areas remain the primary concerns; however, with the planned redevelopment of the property, temporary pavement restoration is not recommended based on conditions at this time, except at locations SRDS AC-13, SRDS AC-14, and SRDS AC-15, which are worsening.

Table 1 describes the issue or concern at each location on the SRDS property, status of repairs or change of condition if applicable, proposes a recommended action, and indicates a timeline for repairs, maintenance, and/or reinspection. Each location of concern is identified by number in Figures 1, 2, and 3, and corresponding photographs are included in Table 1.

Figures 1 and 3 show the SRDS Cleanup Action Plan boundary and the locations of concern. The Cap Inspection Checklist Form A was completed for the SRDS property and is included in Attachment A-1.

CENTERPOINT PARCEL

The general property conditions observed were good and similar to previous inspections. Locations on the CenterPoint property identified in the December 2022 mid-year cap inspection were reinspected during this site visit. A few new inspection points were identified in April 2023 and are included in Table 2. The paved area is in good condition, though ponding will continue to be monitored to ensure the depressions do not get deeper, which could indicate asphaltic concrete cap damage. Vegetated slopes are uniform and generally in good condition with some erosion noted in Table 2. The primary concerns are exposed geomembrane at the parking area interface at SPPD G-6, G-7, and G-8 and the growth of vegetation through asphalt near the fences. In addition, there is an open pipe at the G-1 location that had been identified in a previous inspection.

Table 2 describes the issue or concern at each location on the CenterPoint property, status of previous repairs or change of condition if applicable, proposes a recommended action, and indicates a timeline for repairs, maintenance, and/or reinspection. Previous concerns identified primarily remain in the same general condition with improvements at several locations. Each location of concern is identified by number in Figures 1, 2, 4 and 5, and corresponding photographs are included in Table 2.

Figures 1, 4 and 5 show the CenterPoint Cleanup Action Plan boundary and the locations of concern. The Cap Inspection Form A was completed for the CenterPoint property and is included in Attachment A-2.

RIGHT-OF-WAY

There are three areas in the ROW that were identified as locations of concern in the December 2022 mid-year inspection. These three areas were reinspected along with a new location identified in April 2023. Table 3 describes the issue or concern at each location in the ROW, status of previous repairs or change of condition if applicable, proposes a recommended action, and indicates a timeline for repairs, maintenance, and/or reinspection. Each location of concern is identified by number in Figures 1 and 2, with corresponding photographs included in Table 3.

Figures 1, 3, 4 and 5 show the ROW Cleanup Action Plan boundary and the locations of concern. The Cap Inspection Form A was completed for the ROW and is included in Attachment A-3.

Under the Cleanup Action Plan, routine street maintenance does not require Ecology notification or maintenance reports.

TABLES

- Table 1. Status of Identified Locations of Concern on the South Park Landfill SRDS Property, April 6, 2023Reinspection
- Table 2.Status of Identified Locations of Concern on the South Park Landfill CenterPoint Property, April 6, 2023Reinspection
- Table 3.Status of Identified Locations of Concern in the South Park Landfill Right-of-Way (ROW), April 6, 2023Reinspection

FIGURES

- Figure 1. Landfill Cap Inspection Site Plan
- Figure 2. Landfill Cover Material
- Figure 3. April 6, 2023 Landfill Cap Inspection SRDS Property
- Figure 4. April 6, 2023 Landfill Cap Reinspection CenterPoint Property Amazon Tenant
- Figure 5. April 6, 2023 Landfill Cap Reinspection CenterPoint Property First Student Tenant

ATTACHMENTS

- A April 2023 Cap Inspection Checklists
 - A-1 SRDS Cap Inspection Checklist
 - A-2 CenterPoint Cap Inspection Checklist
 - A-3 ROW Cap Inspection Checklist
- B Maintenance Forms

No Maintenance has been reported since December 2022 Inspection

Tables

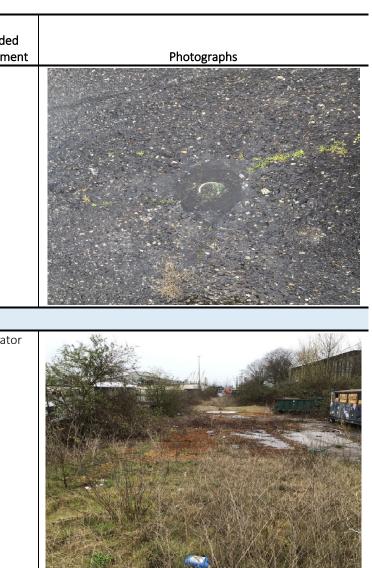
December 2022 Inspection April 2023 Inspection Timeline for **Conditions Observed and Recommended** Condition Conditions Observed and Recommended Repair and/or Recommend SRDS Description Action Action Taken Status Action Reinspection Action Assign Asphalt Concrete No significant Follow-up reinspection AC-1 Minor pavement cracking Follow-up inspection Site Coordina No actions taken or 6 months and ponding required changes observed AC-3 Minor pavement cracking Follow-up inspection No significant Follow-up reinspection 6 months Site Coordina No actions taken or and ponding required changes observed AC-4 No significant Follow-up reinspection 6 months Site Coordina Ponding Follow-up inspection No actions taken or changes required observed

Table 1. Status of Identified Locations of Concern on the South Park Landfill SRDS Property, April 06, 2023 Inspection

ded Iment	Photographs
nator	
lator	
nator	
hator	

	December 2022 Inspection					April 202	3 Inspection	
SRDS	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
AC-6	Minor pavement cracking and ponding	Additional areas of cracking. Continue to monitor for further deterioration during follow-up reinspection	No actions taken or required	No significant changes observed	Follow-up reinspection	6 months	Site Coordinator	
AC-7	Minor cracking and ponding in repatched area	Visible ponding near vehicle wash area appears related to wash pad. Low spot in pavement is not centered on the nearest storm drain. Ponding depth is less than a few inches. No concerns at this time. Follow-up reinspection	No actions taken or required	No significant changes observed	Follow-up reinspection	6 months	Site Coordinator	<image/>
AC-9	Ponding and minor cracking	Follow-up inspection	No actions taken or required	No significant changes observed	Follow-up reinspection	6 months	Site Coordinator	

		December 2022 Insp	ection			April 202	3 Inspection
SRDS	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignme
AC-10	Minor pavement cracking with grass growing in the cracks	Follow-up inspection	No actions taken or required	No significant changes observed	Follow-up reinspection	6 months	Site Coordinato
AC-11	Minor cracking with asphalt degrading and ponding	Follow-up inspection	No actions taken or required	No significant changes observed	Ponding in the area. Follow-up reinspection	6 months	Site Coordinato
AC-13	Minor pavement cracking and deep rutting	Observed much deeper rutting. to where soil may be exposed. The open crack should be patched.	No action taken	Worse	The hole is bigger with water accumulation inside the rut. The open hole should be patched.	No later than end of calendar year	SRDS



		December 2022 Insp	ection			April 2023 Inspection			
SRDS	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs	
AC-14	Minor pavement cracks with exposed moss	The spalling has continued to degrade the cap to the point where soil may be exposed. This area should be patched.	No action taken	No significant changes observed	Previous recommendation remains.	No later than end of calendar year	SRDS		
AC-15	Minor pavement cracking with moss growing in the cracks	Follow-up inspection	No actions taken or required	Worse	Observed more grass growing in the entire cracked areas. This area should be patched.	No later than end of calendar year	SRDS		
AC-16	Minor pavement cracking and ponding	Follow-up inspection	No actions taken or required	Worse	Follow-up reinspection	6 months	Site Coordinator		

		December 2022 Inspection			April 2023 Inspection						
SRDS	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs			
AC-17	Ponding	Follow-up inspection	No actions taken or required	No significant changes observed	Follow-up reinspection	6 months	Site Coordinator				
AC-18	Ponding	Follow-up inspection	No actions taken or required	No significant changes observed	Follow-up reinspection	6 months	Site Coordinator				
AC-19	Minor cracks in asphalt with ponding			New location	Follow up reinspection	6 months	Site Coordinator				

		December 2022 Insp	pection		T	1	3 Inspection
					Conditions Observed and Deserves and ad	Timeline for	Deserves and a
SBDS	Description	Conditions Observed and Recommended	Action Taken	Condition	Conditions Observed and Recommended	Repair and/or	Recommende
SRDS	Description	Action	Action Taken	Status	Action	Reinspection	Action Assignme
AC-20	Open pipe in the ground			New location	Determine what the pipe is and cap it.	No later than end of calendar year	SRDS
				Stormwate	r Management Facilities		
SW-4	Potential run-on from SPPD	Follow-up inspection	No actions taken or required	No significant changes observed	Follow-up reinspection	6 months	Site Coordinato

Notes: Locations with recommended repairs or action items are in BOLD text. NA = Not applicable

Center		December 2022 Inspec	ction			April 202	3 Inspection	
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
	<u>п. </u>		· · ·	-	halt Concrete			
AC-1	Ponding	Follow-up inspection	No actions taken or required	No significant changes observed	Follow-up reinspection	6 months	Site Coordinator	
AC-3	New buildings, potential cap penetrations.	There is one hole from where the previous building was that needs to have the seal fixed. An uncapped pipe protruding from the asphalt needs to be capped or filled and sealed. Property owner should request Occupancy Permit from tenant which would include drawings for the new buildings.	Holes have been sealed. Pipe is still not capped. No maintenance form was submitted.	Some improvement	Previous recommended action regarding open pipe remains.	60 days	CenterPoint	<image/>

Center		December 2022 Inspe	ction		April 2023 Inspection					
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs		
AC-4	Ponding	Follow-up inspection	No actions taken or required	No significant changes observed.	A larger extent of ponding observed due to rainfall accumulation. Follow-up reinspection	6 months	Site Coordinator			
AC-5	Ponding, modification of asphalt	Follow-up inspection	No actions taken or required	No significant changes observed	Follow-up reinspection	6 months	Site Coordinator			
AC-6	Gaps and holes in electric fence post holes and ponding	Seal the remaining gaps in the interface between the posts of the new electric fence and the asphalt There are still some electric fence posts that have not been completely sealed, especially around the back of the pipe where it would be hard to reach. There are also some holes that were drilled next to the installed post. All posts and holes need to have complete seals.	Action Not Yet Completed	No visible improvement	Previous recommended repairs remain.	No later than end of calendar year	CenterPoint			

Center		December 2022 Inspe	ction	April 2023 Inspection						
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs		
AC-7	Several areas of ponding	Follow-up inspection	No actions taken or required	No significant changes observed	Ponding in larger extent observed due to rainfall accumulation. Follow-up reinspection	6 months	Site Coordinator			
AC-8	Ponding	Follow-up inspection	No actions taken or required	No significant changes observed	Follow-up reinspection	6 months	Site Coordinator			

		December 2022 Inspe	action			April 202	3 Inspection	
Center Point (SPPD)	Description	Conditions Observed and Recommended		Condition	Conditions Observed and Recommended	Timeline for Repair and/or	Recommended	Dhatagrapha
Location AC-9	Ponding	Action Follow-up inspection	Action Taken No actions taken or required	Status No significant changes observed	Action Ponding in larger extent observed due to rainfall accumulation. Follow-up reinspection	Reinspection 6 months	Action Assignment Site Coordinator	<image/>
AC-10	Ponding	Follow-up inspection	No actions taken or required	No significant changes observed	Follow-up reinspection	6 months	Site Coordinator	

Center		December 2022 Inspec	ction		April 2023 Inspection						
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs			
	Ponding	Follow-up inspection	No actions taken or required	No significant changes observed		6 months	Site Coordinator				
AC-12	Ponding	Follow-up inspection	No actions taken or required	No significant changes observed	Follow-up reinspection	6 months	Site Coordinator				

Center		December 2022 Inspec	ction			April 202	3 Inspectior
Point (SPPD)	Description	Conditions Observed and Recommended Action		Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or	Recomme
AC-13	Description Blackberry shrubs growth and stagnated water behind the concrete blocks		Action Taken			Reinspection No later than end of calendar year	Action Assig

on	
mended signment	Photographs
rPoint	

Center		December 2022 Inspec	tion	April 2023 Inspection					
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs	
	Ponding			New Location	Follow-up reinspection	6 months	Site Coordinator		

Center		December 2022 Inspec	tion	April 2023 Inspection					
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs	
AC-15	Minor Cracking			New Location	Follow-up reinspection	6 months	Site Coordinator		
AC-17	Ponding			New location	Large area of ponding observed. Follow-up reinspection	6 months	Site Coordinator		
AC-18	Ponding			New location	Large area of ponding observed. Follow-up reinspection	6 months	Site Coordinator		

Center		December 2022 Inspecti	on			April 202	3 Inspection	
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
AC-19	Holes near fence allowing growth of grasses			New location	Remove plants and seal cap penetrations.	No later than end of calendar year	CenterPoint	
AC-20	Minor cracks and failed patch			New location	Follow-up reinspection	6 months	Site Coordinator	
AC-21	Holes near fence allowing growth of invasive plants & ponding presence			New location	Remove plants and seal cap penetrations.	No later than end of calendar year	CenterPoint	

Center		December 2022 Inspec	ction			April 202	3 Inspection	
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
AC-22	Holes near concrete post allowing invasive plant growth			New location	Remove plants and seal cap penetrations.	No later than end of calendar year	CenterPoint	
	I		• ·· • • · · · ·		ability Geomembrane			
G-1	An open pipe present	Pipes remain present. The origin and use of the pipes protruding from the ground needs to be investigated. Once the information about the pipe is known appropriate actions should be taken to ensure the integrity of the cap.	Action Not Yet Completed	No change	Need investigation of this open pipe and action should be taken to cap it, if it does not have any purpose.	No later than end of calendar year	CenterPoint	

December 2022 Inspection April 2023 Inspection Center Timeline for Point (SPPD) Conditions Observed and Recommended Condition Repair and/or Conditions Observed and Recommended Recom Location Description Action Taken Status Reinspection Action As Action Action G-3 Loss of vegetation and Minimal erosion of soil, netting from No actions taken or Improved Improved vegetation. 6 months Site Coo minimal erosion of soil vegetation correction is visible. Geomembrane required is not exposed. Reinspect every 6 months. If Follow-up reinspection loss of vegetation or erosion exposes the geomembrane, the actions recommended in the 2021 annual inspection should be taken.

Table 2. Status of Identified Locations of Concern on the South Park Landfill CenterPoint (Former SPPD) Property, April 6, 2023 Inspection

ion	
ion	
nmended Assignment	Photographs
ordinator	

Center		December 2022 Inspec	ction			April 202	3 Inspection	
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
G-4	Loss of grass cover along with blackberry shrubs growth in the area	April 2022 recommendations remain.	Action Not Yet Completed	Worse	Loss of grass around the concrete post exposing the soil and growth of blackberry shrubs around the region. Remove the blackberry shrubs before the roots spread and re-seed the grass.	No later than end of calendar year	CenterPoint	<image/>

Center		December 2022 Inspe	ection			April 202	3 Inspection	
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
G-5	New grass cover over previously exposed geomembrane	See Location G-4 2022 recommendations.	Action Not Yet Completed	Improved	Follow-up reinspection	6 months	Site Coordinator	
G-6	Geomembrane exposed in one area	See Location G-4 2022 recommendations.	Action Not Yet Completed	Some Improvement	Improved vegetation. Exposed geomembrane remains in one area. Add soil to exposed geomembrane and re- seed grasses	60 days	CenterPoint will work in coordination with Site Coordinator to establish a solution	

Center		December 2022 Inspe	ction			April 202	3 Inspection	
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
G-7	Exposed and damaged geomembrane at the parking area interface	The geomembrane remains exposed at G 7 and G-10. These locations are of the highest concern due to the potential compromise of the landfill cap. The configuration of the geomembrane and cover at the interface of the parking area does not appear to be in accordance with Figure 5 of the Interim Action Work Plan (IAWP). The geomembrane appears to be directly below the asphalt with no drainage layer or surfacing layer in between. Along with Site Coordinator, prepare a plan to reestablish cover over the geomembrane. Most likely, the area should be exposed, and the geomembrane tested for damage before repairs are be made. The crest of slope should then be provided cover to the maximum extent possible considering the existing asphalt and curb configuration	Action Not Yet Completed	Some improvement	Improved growth of grasses over the geomembrane. Exposed geomembrane remains. Add soil to exposed geomembrane and re-seed grasses. Previous recommendations remain.	60 days	CenterPoint will work in coordination with Site Coordinator to establish a solution	
G-8	Exposed geomembrane around utility access hole	Work with Site Coordinator to prepare a plan to re-establish cover over the geomembrane. The geomembrane should be carefully exposed so as to not damage the geomembrane and inspected to determine if it is excess material or part of the cover. Make repairs as necessary and install adequate cover soil in accordance with the IAWP.	No documentation of actions taken	Improved	Improved vegetation. Previous recommendations remain	60 days	CenterPoint will work in coordination with Site Coordinator to establish a solution	

Center		December 2022 Inspe	ection			April 202	3 Inspection	
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	
G-10	Exposed and damaged geomembrane at the parking area interface.	See Location G-4 2022 recommendations.	No documentation of actions taken	Improved	No exposed or damaged geomembrane visible during inspection. Poor growth of vegetation in this area. Follow-up reinspection	6 months	Site Coordinator	
G-11	Bare Patch			New location	Re-establish vegetated cover	No later than end of calendar year	CenterPoint	
G-12	Poor vegetative cover			New location	Areas of exposed soil. Grass should be re-seeded.	No later than end of calendar year	CenterPoint	

Center		December 2022 Inspecti	on			April 202	3 Inspection	
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
G-13	Grass growing unevenly. The upper portion of the slope has started to slough off.			New location	If this condition worsens take appropriate steps for prevention of sloughing. Follow-up reinspection	6 months	CenterPoint/Site Coordinator	
		•		Stormwater	Management Facilities			
SW-1	Standing water	The swale does not meet City of Seattle Stormwater Manual requirement for a biofiltration swale to have a minimum slope of 1.5%. Bottom channel should be regraded to the intended 1.5% slope. Along with Site Coordinator, prepare a plan to address this situation.	Action Not Yet Completed.	No Significant Change Observed	Previous recommended actions remain.	No later than end of calendar year	CenterPoint will work in coordination with Site Coordinator to establish a solution	<image/>

Center	December 2022 Inspecti	April 2023 Inspection						
Point (SPPD) Location	December 2022 Inspecti Conditions Observed and Recommended Action The willow (salix sp.) and black cottonwood (populus balsamifera) growing along the edge of the west bioswale are native but deep- rooted species that should be removed so that it does not damage the geomembrane on that side. This recommendation remains from April 2022.	ON Action Taken Action Not Yet Completed	Condition Status No Significant Change Observed	Conditions Observed and Recommended Action Previous recommendations remain	April 202 Timeline for Repair and/or Reinspection No later than end of calendar year	3 Inspection Recommended Action Assignment CenterPoint	Photographs	

Notes: Locations with recommended repairs or action items are in BOLD text. NA = Not applicable

Seattle Public Utilities South Park Landfill 2023 Annual Landfill Cap Inspection

		December 2022 Insp	ection			April 202	3 Inspection	
ROW Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
					sphalt Concrete	CO 10		
AC-1	Cracks and pavement repair	Roadway is in poor condition, there are large open cracks and ruts in the asphalt pavement. SDOT previously repaired a portion of this location but did not cover the entire area. Recommend coordination with SDOT.	No action taken	Worse	Cracks got worse with ponding. Repair/repatching should be coordinated with SDOT	60 days	SPU to coordinate with SDOT	

Table 3. Status of Identified Locations of Concern on the South Park Landfill Right-of-Way Property, April 6, 2023 Inspection

		December 2022 Insp	ection			April 202	3 Inspection	
ROW Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
AC-2	Asphalt open cracking	Follow-up inspection	No action taken or required	Worse	Cracks got bigger with ponding. Repatching should be coordinated with SDOT	No later than end of calendar year	SPU to coordinate with SDOT	
AC-3	Asphalt cracking and potholes alongside of street	Pothole appears to be getting worse and should be patched to prevent further erosion.	No action taken	No Significant Change Observed	Previous recommendations remain.	No later than end of calendar year	SPU to coordinate with SDOT	

Table 3. Status of Identified Locations of Concern on the South Park Landfill Right-of-Way Property, April 6, 2023 Inspection

Table 3. Status of Identified Locations of Concern on the South Park Landfill Right-of-Way Property, April 6, 2023 Inspection

		December 2022 Insp	ection			April 202	3 Inspection
						Timeline for	
ROW		Conditions Observed and Recommended		Condition	Conditions Observed and Recommended	Repair and/or	Recommende
Location	Description	Action	Action Taken	Status	Action	Reinspection	Action Assignme
AC-4	Potholes in the middle of roadway			New location	Repatch work should be arranged with SDOT	No later than end of calendar year	SPU to coordina with SDOT

Notes: Locations with recommended repairs or action items are in BOLD text.

Figures

Source: City of Seattle, King County, Floyd|Snider, Aspect, Herrera. 2018. South Park Landfi Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

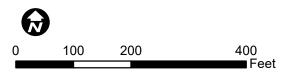
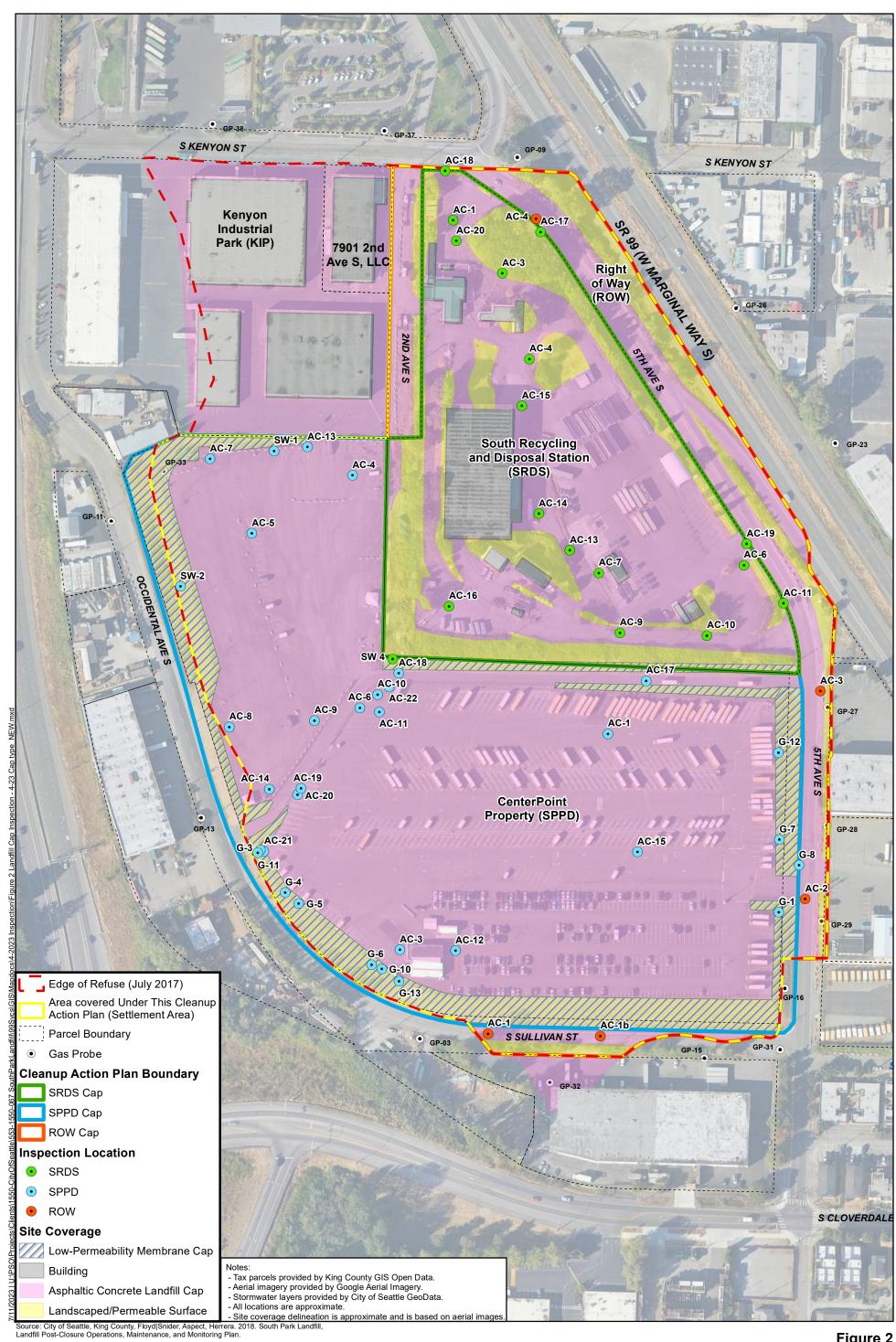



Figure 1 April 6, 2023 Landfill Cap Inspection Site Plan South Park Landfill Seattle, WA

Parametrix

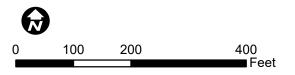
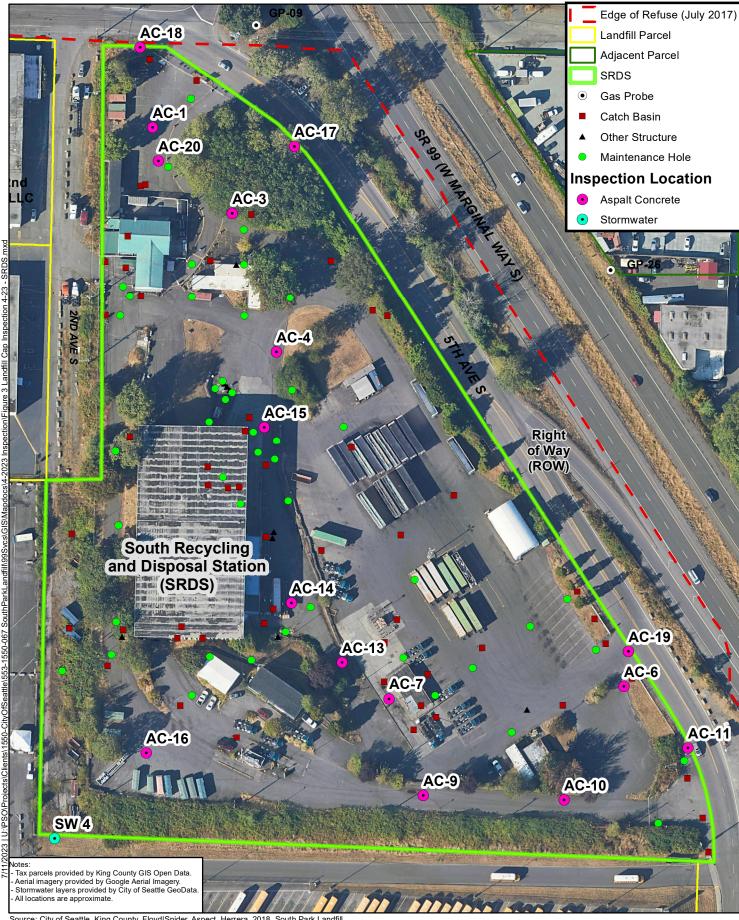



Figure 2 April 6, 2023 Landfill Cap Inspection Landfill Cover Material South Park Landfill Seattle, WA

Source: City of Seattle, King County, Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

arametrix Р

22

0

50 100

Figure 3 April 6, 2023 Landfill Cap Inspection **SRDS Property** South Park Landfill Seattle, WA

Source: City of Seattle, King County, Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 4 April 6, 2023 Landfill Cap Inspection CenterPoint Property - Amazon Tenant South Park Landfill Seattle, WA

Source: City of Seattle, King County, Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 5 April 6, 2023 Landfill Cap Inspection **CenterPoint Property - First Student Tenant** South Park Landfill Seattle, WA

Attachment A

April 2023 Cap Inspection Checklists

A-1 SRDS Cap Inspection Checklist

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:	Apr	il 6, 2023				Parcel Owi	Parcel Owner: 🛛 SRDS					
Inspector(s):	Tiffa	any Neier, Amanda	Weiss			CenterPoint (former SPPD)						
							□ F	ight-of-Wa	iy			
Type of Inspecti	ion:	🛛 Annual	🗆 Re	ı								
		□ Non-Routine	Reas	on:								
Last Rain Event	befor	e Daily precipit	ation o	bservations f	rom King	County Hamn	n Creek Rain S	tation (HAU2)).			
Inspection:		Source: <u>https:/</u>	<mark>//qreen2</mark>	kingcounty.go	v/hydrolog	y/DataDownloo	ad.aspx?G_ID=1	517&Paramete	er=Precipitation	<u>1</u>		
-				03/31/23	04/01/2	3 04/02/23	3 04/03/23	04/04/23	04/05/23	04/06/23		
		Precipitation	(in)	0.4	0.01	0.31	0.19	0.01	0.0	0.53		

VISUAL INSPECTION CHECKLIST

Asphalt Concrete										
	Yes	No	Needs Repair	If yes, describe:						
Minor cracking				Locations SRDS AC-1, AC-3, AC-6, AC-7, AC-9, AC-10, AC-11 AC-13, AC-14, AC-15, AC-16, AC-19 See Table 1 for details						
Open cracks/ruts	\boxtimes		\boxtimes	Locations SRDS AC-13, AC-16, AC-20 See Table 1 for details						
Differential settlement		\boxtimes								
Potholes		\boxtimes								
Pooling or ponding	\boxtimes			Locations SRDS AC-1, AC-3, AC-4, AC-6, AC-7, AC-9, AC-11, AC-13, AC-16, AC-17, AC-18, AC-19 See Table 1 for details						
Separation of pavement from curbs, gutters, or catch basins		\boxtimes								
Sloughing or crumbling of edge materials		\boxtimes								
Erosion		\boxtimes								
Other signs of cap damage, failure, or disturbance		\boxtimes								
Recommended Maintenance or Repair Ty See Table 1 for recommended actions.	/pe/Lo	cation:								

VISUAL INSPECTION CHECKLIST (continued)

Low-Permeability Geomembrane										
Yes No Needs Repair If yes, describe:										
Erosion of cover soil		\boxtimes								
Exposed geotextile		\boxtimes								
Holes/signs of unauthorized digging 🛛 🖂 🗌										
Poor vegetative cover		\boxtimes								
Exposed geomembrane		\boxtimes								
Recommended Maintenance or Repair Type/Location:										

	Yes	No	Needs Repair	If yes, describe
Signs of water infiltration below structures		\boxtimes		
Erosion of soil		\boxtimes		
Exposed geotextile membrane		\boxtimes		
Holes/signs of unauthorized digging		\boxtimes		
nvasive/deep-rooted plants		\boxtimes		
Poor vegetative cover		\boxtimes		
Incorrect drainage path or not draining	\boxtimes			Location SRDS SW-4

Attach necessary documentation such as photographs, sketches, and additional notes.

See Table 1, figures and inspection photos included in the cap inspection report.

A-2 CenterPoint Cap Inspection Checklist

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:	Apr	il 6, 2023				Parcel Owner: SRDS					
Inspector(s):	Tiffa	any Neier, Amanda	Weiss			🛛 CenterPoint (former SPPD)					
							□ R	ight-of-Wa	y		
Type of Inspecti	ion:	🛛 Annual	🗆 Re	า							
		□ Non-Routine	Reas	on:							
Last Rain Event	befor	e Daily precipi	tation o	bservations f	from King	County Hamm	Creek Rain St	ation (HAU2)			
Inspection:		Source: <u>https:</u>	<mark>//qreen2</mark> .	kingcounty.go	ov/hydrolog	y/DataDownloa	d.aspx?G_ID=1	517&Paramete	er=Precipitation	<u>1</u>	
-				03/31/23	04/01/2	3 04/02/23	04/03/23	04/04/23	04/05/23	04/06/23	
		Precipitation	(in)	0.4	0.01	0.31	0.19	0.01	0.0	0.53	

VISUAL INSPECTION CHECKLIST

Asphalt Concrete									
	Yes	No	Needs Repair	If yes, describe:					
Minor cracking	\boxtimes			Location SPPD-AC-15, AC-20					
Open cracks/ruts	\boxtimes		\boxtimes	Locations SPPD AC-6, AC-19, AC-21, AC-22					
				See Table 2 for details					
Differential settlement		\boxtimes							
Potholes		\boxtimes							
Pooling or ponding	\boxtimes		\boxtimes	Locations SPPD AC-1, AC-4, AC-5, AC-6, AC-7,					
				AC-8, AC-9, AC-10, AC-11, AC-12, AC-13,					
				AC-14, AC-17, and AC-18					
				See Table 2 for details					
Separation of pavement from curbs,		\boxtimes							
gutters, or catch basins									
Sloughing or crumbling of edge materials		\boxtimes							
Erosion		\boxtimes							
Invasive plant growth	\boxtimes		\boxtimes	Locations SPPD AC-13, AC-19, AC-21 and					
				AC-22					
				See Table 2 for details					
Other signs of cap damage, failure, or	\boxtimes		\boxtimes	Location SPPD AC-3					
disturbance				See Table 2 for details					
Recommended Maintenance or Renair Ty	ma /1 a	ation.		•					

Recommended Maintenance or Repair Type/Location:

See Table 2 for recommended actions.

VISUAL INSPECTION CHECKLIST (continued)

Low-Permeability Geomembrane									
Yes No Needs Repair If yes, describe:									
Erosion of cover soil	\boxtimes			Location SPPD G-3					
				See Table 2 for details					
Exposed geotextile		\boxtimes							
Holes/signs of unauthorized digging		\boxtimes							
Poor vegetative cover	\boxtimes		\boxtimes	Locations SPPD G-4, G-5, G-10, G-11, G-12					
				See Table 2 for details					
Exposed geomembrane	\boxtimes		\boxtimes	Locations SPPD G-6, G-7, G-8					
				See Table 2 for details					
Soil Sloughing	\boxtimes			Location SPPD G-13					
				See Table 2 for details					
Recommended Maintenance or Repair Type/Location: See Table 2 for recommended actions.									

Stormwater Management Facilities								
	Yes	No	Needs Repair	If yes, describe:				
Signs of water infiltration below structures		\boxtimes						
Erosion of soil		\boxtimes						
Exposed geotextile membrane		\boxtimes						
Holes/signs of unauthorized digging		\boxtimes						
Invasive/deep-rooted plants	\boxtimes			Location SPPD SW-2 See Table 2 for details				
Poor vegetative cover		\boxtimes						
Incorrect drainage path or not draining	\boxtimes		\square	Location SPPD SW-1 See Table 2 for details				

See Table 2 for recommended actions.

Attach necessary documentation such as photographs, sketches, and additional notes.

See Table 2, figures and inspection photos included in the cap inspection report.

A-3 ROW Cap Inspection Checklist

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:	Apr	il 6, 2023			P	Parcel Owner: SRDS					
Inspector(s):	Tiff	any Neier, Amanda	Weiss	5		CenterPoint (former SPPD)					
							🖾 R	ight-of-Wa	у		
Type of Inspecti	ion:	oxtimes Annual	🛛 Re	einspection	1						
		□ Non-Routine	Reas	son:							
Last Rain Event	befor	e Daily precipi	tation o	bservations f	rom King C	ounty Hamm (Creek Rain St	ation (HAU2)			
Inspection:		Source: <u>https:</u>	<mark>//qreen2</mark>	.kingcounty.go	v/hydrology,	<u>/DataDownload</u>	.aspx?G_ID=1	517&Paramete	er=Precipitation	<u>1</u>	
				03/31/23	04/01/23	04/02/23	04/03/23	04/04/23	04/05/23	04/06/23	
		Precipitatior	(in)	0.4	0.01	0.31	0.19	0.01	0.0	0.53	

VISUAL INSPECTION CHECKLIST

Asphalt Concrete									
	Yes	No	Needs Repair	If yes, describe:					
Minor cracking	\boxtimes			Locations ROW AC-1					
				See Table 3 for details					
Open cracks/ruts	\boxtimes		\boxtimes	Locations ROW AC-1, AC-2,					
				See Table 3 for details					
Differential settlement		\boxtimes							
Potholes	\boxtimes		\boxtimes	Locations ROW AC-1, AC-3, AC-4					
				See Table 3 for details					
Pooling or ponding		\boxtimes							
Separation of pavement from curbs,		\boxtimes							
gutters, or catch basins									
Sloughing or crumbling of edge materials		\boxtimes							
Erosion		\boxtimes							
Other signs of cap damage, failure, or		\boxtimes							
disturbance									
			1						
Recommended Maintenance or Repair Ty	pe/Loo	cation:							
See Table 3 for recommended actions.									

VISUAL INSPECTION CHECKLIST (continued)

Low-Permeability Geomembrane										
Yes No Needs Repair If yes, describe:										
Erosion of cover soil				Not applicable to ROW.						
Exposed geotextile				Not applicable to ROW.						
Holes/signs of unauthorized digging				Not applicable to ROW.						
Poor vegetative cover				Not applicable to ROW.						
Exposed geomembrane				Not applicable to ROW.						
Recommended Maintenance or Repair Type/Location:										

Stormwater Management Facilities									
Yes No Needs Repair If yes, describe:									
Signs of water infiltration below				Not applicable to ROW.					
structures									
Erosion of soil				Not applicable to ROW.					
Exposed geotextile membrane				Not applicable to ROW.					
Holes/signs of unauthorized digging				Not applicable to ROW.					
Invasive/deep-rooted plants				Not applicable to ROW.					
Poor vegetative cover				Not applicable to ROW.					
Incorrect drainage path or not draining				Not applicable to ROW.					
Recommended Maintenance or Repair Type/Location:									

Attach necessary documentation such as photographs, sketches, and additional notes.

See Table 3, figures and inspection photos included in the cap inspection report.

Attachment B

Maintenance Forms

No Maintenance Reported

Appendix B1-B

October 2023 Mid-Year Inspection

DATE:	December 6, 2023
TO:	Mark Jusayan, Seattle Public Utilities Ashley Piatek, CenterPoint Properties
FROM:	Laura Lee and Tiffany Neier, PE
SUBJECT:	South Park Landfill 2023 Mid-year Landfill Cap Inspection
CC:	Ryan Gardiner, Washington State Department of Ecology
PROJECT NUMBER:	553-1550-067
PROJECT NAME:	South Park Landfill Site Coordinator

Introduction

The purpose of this Technical Memorandum is to summarize the findings of the October 2023 mid-year landfill cap inspection at South Park Landfill.

The inspection satisfies the requirements of the Cleanup Action Plan which fulfills a requirement of the Consent Decree that was signed on March 26, 2019. The primary objective of this inspection was to reinspect issues identified during the April 2023 annual inspection and document recommended maintenance or repairs.

The 2023 mid-year inspection was performed on October 11, 2023, by Parametrix staff members from approximately 7:30 a.m. to 12 p.m. PST. The weather was rainy, and the high temperature was around 61°F with a rainfall accumulation of approximately 0.36 inches of rain recorded at the King County Hamm Creek Rain Station (HAU2). Figure 1 shows the approximate bounds of the landfill cap for the two Consent Decree Settlement Area properties and the right-of-way (ROW) as defined in the Cleanup Action Plan. Figure 1 also shows the approximate landfill refuse extent which goes below two additional properties that are not currently included in the Settlement Area. Cap Inspection Form A, provided in Appendix A, was completed for the SRDS property, the CenterPoint property, and the ROW. Photographs were taken using a Trimble DA2 GNSS Receiver which used GPS to tag the photographs. The photographs are included in Tables 1 through 3 with numbered locations mapped on Figure 1.

The basis of determining the timeline for repairs shown in the tables in this report comes from the Cleanup Action Plan Landfill Post-Closure Operations, Maintenance, and Monitoring Plan, which has the following guidance for the timeline of maintenance/repairs:

- 1. If underlying material (such as geomembrane) is exposed, corrective action shall occur within 60 days.
- 2. If minor cracks or ponding do not expose underlying materials and the problem does not appear to be getting worse the issue shall be reinspected in 6 months.
- 3. If underlying material is not exposed but is worsening or the issue needs to be elevated to a repair before it worsens, the corrective action shall occur within the calendar year.

ParametriX

Corrective actions proposed by the property owners should be coordinated with the Site Coordinator prior to taking action. The Site Coordinator should perform verification inspections during and/or after corrective actions are complete to determine if the maintenance and repairs are consistent with the intent of the regulatory requirements. The property owner should document any repairs or maintenance in Part 1 of the Cap Maintenance Form B and the Site Coordinator will provide observations in Part 2 of the form.

The next cap inspection shall occur in the first quarter of 2024.

SRDS Parcel

The general property conditions observed were good and similar to previous inspections. Locations on the SRDS property that were identified in the April 2023 cap inspection were reinspected during this site visit. Pavement cracks, rutting, and ponding areas remain the primary concerns; however, with the planned redevelopment of the property, temporary pavement restoration is not recommended based on conditions at this time, except at locations SRDS AC-13, SRDS AC-14, and SRDS AC-20 (see recommended actions in Table 1).

Table 1 describes the issue or concern at each identified location of concern on the SRDS property, status of repairs or change of condition if applicable, proposes a recommended action, and indicates a timeline for repairs or maintenance. Each location of concern is identified by number in Figure 1 and corresponding photographs are included in Table 1.

The Cap Inspection Checklist Form A was completed for the SRDS property and is included in Attachment A-1.

CenterPoint Parcel

The general property conditions observed were good and similar to previous inspections. Locations on the CenterPoint property that were identified in the April 2023 cap inspection were reinspected during this site visit. The paved area is in good condition, though ponding will continue to be monitored to ensure the depressions do not get deeper, which could indicate settlement or asphaltic concrete cap damage. Areas where maintenance was performed were inspected and documented in a Maintenance form (Attachment B-1). Vegetated slopes are uniform and generally in good condition with some erosion noted in Table 2. The primary concerns are exposed geomembrane, invasive plant growth, and the growth of vegetation through asphalt. In addition, there is an open pipe that was identified in the April reinspection that is now covered in dirt and vegetation at the G-1 location. G-12 appears to have had recent maintenance to it including tilling of the soil; if the soil was disturbed as part of maintenance a maintenance report should be submitted. Two new stormwater locations were identified for catch basin clogging at SW-3 and SW-4 which need to be cleared.

Table 2 describes the issue or concern at each location on the CenterPoint property, status of previous repairs or change of condition if applicable, proposes a recommended action, and indicates a timeline for repairs or maintenance. Previous concerns identified primarily remain in the same general condition with improvements at several locations. Each location of concern is identified by number in Figure 1 and corresponding photographs are included in Table 2.

Figure 1 shows the CenterPoint Cleanup Action Plan boundary and the locations of concern. The Cap Inspection Checklist Form A was completed for the CenterPoint property and is included in Attachment A-2.

Right-of-Way

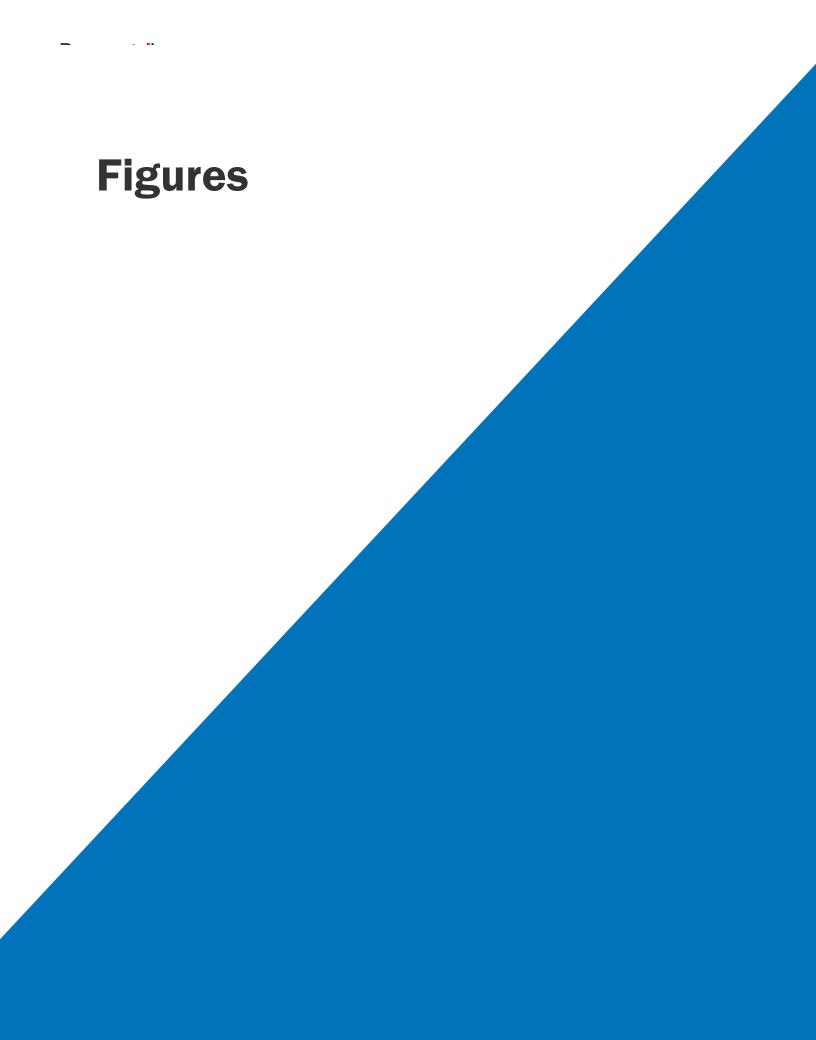
There are four areas in the ROW that were identified as locations of concern in the April 2023 annual inspection. These four areas were reinspected in October 2023. Table 3 describes the issue or concern at each location in the ROW, status of previous repairs or change of condition if applicable, proposes a recommended action, and indicates a timeline for repairs or maintenance. Each location of concern is identified by number in Figure 1 with corresponding photographs included in Table 3.

Figure 1 shows the ROW Cleanup Action Plan boundary and the locations of concern. The Cap Inspection Checklist Form A was completed for the ROW and is included in Attachment A-3.

Under the Cleanup Action Plan, routine street maintenance does not require Ecology notification or maintenance reports.

Figures

Figure 1. Landfill Cap Inspection Site Plan with Points of Concern


Tables

- Table 1. Status of Identified Locations of Concern on the South Park Landfill SRDS Property, October11, 2023 Inspection
- Table 2. Status of Identified Locations of Concern on the South Park Landfill CenterPoint Property,
October 11, 2023 Inspection
- Table 3. Status of Identified Locations of Concern in the South Park Landfill Right-of-Way, October 11,2023 Inspection

Attachments

- A October 2023 Cap Inspection Checklists
 - A-1 SRDS Cap Inspection Checklist
 - A-2 CenterPoint Cap Inspection Checklist
 - A-3 ROW Cap Inspection Checklist
- B Maintenance Forms

B-1 CenterPoint Maintenance Form

Source: City of Seattle, King County, Floyd|Snider, Aspect, Herrera. 2018. South Park Landfil Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

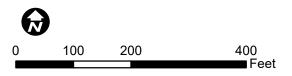
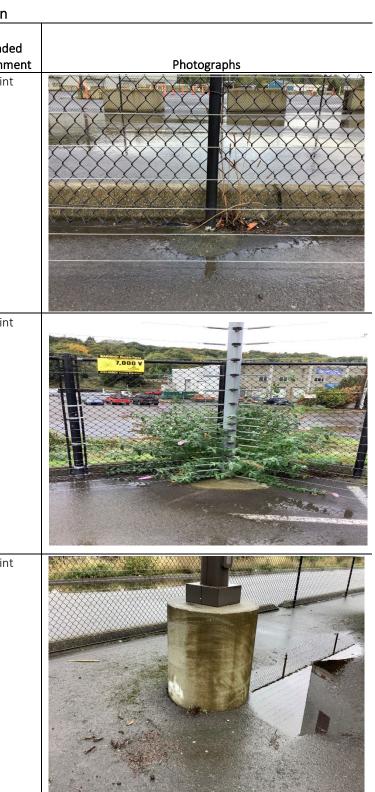


Figure 1 October 11, 2023 Landfill Cap Inspection Site Plan With Locations of Concern South Park Landfill Seattle, WA


Table 1. Status of Identified Locations of Concern on the South Park Landfill SRDS Property, October 11, 2023 Inspection

		April 2023 Inspectio	on			October 20	23 Inspection	
SRDS	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
					sphalt Concrete			· · · · · · · · · · · · · · · · · · ·
AC-13	Minor pavement cracking and deep rutting with water accumulation	Observed much deeper rutting. to where soil may be exposed. The open crack should be patched.	No action taken	No significant changes observed	The open hole should be patched.	No later than end of calendar year	SRDS	
AC-14	Minor pavement cracks with exposed moss	The spalling has continued to degrade the cap to the point where soil may be exposed. This area should be patched.	No action taken	No significant changes observed	Vegetation growing between asphalt cracks. This area should be patched.	No later than end of calendar year	SRDS	
AC-20	Open rut with grass growth	Open hole with stagnated water	No actions taken	Worse	Sediment and grass in the previously seen hole. This hole needs to be patched	No later than end of calendar year	SRDS	

Center		April 2023 Inspectio	on			October 20	23 Inspection	
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
				A	sphalt Concrete			
AC-3	Uncapped pipe	An uncapped pipe protruding from the asphalt needs to be capped or filled and sealed.	Pipe is still not capped.	No significant changes observed	Previous recommended action regarding open pipe remains.	60 days	CenterPoint	
AC-6	Gaps and holes in electric fence post holes and ponding	Seal the remaining gaps in the interface between the posts of the new electric fence and the asphalt There are still some electric fence posts that have not been completely sealed, especially around the back of the pipe where it would be hard to reach. There are also some holes that were drilled next to the installed post. All posts and holes need to have complete seals.	Action Not Yet Completed	No visible improvement	Ponding. Previous recommended repairs remain.	No later than end of calendar year	CenterPoint	
AC-13	Blackberry shrubs growth and stagnated water behind the concrete blocks	Remove blackberry shrubs and clear pathways to allow proper water flow into the storm drains. Follow up inspection	No Actions Taken	Worse	Blackberries continue to grow. Sediment blocking flow from the swale causing up to 4" of ponding water. Previous recommended repairs remain.	No later than end of calendar year	CenterPoint	

Center		April 2023 Inspectio	on			October 20)23 Inspection
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended
AC-19	Pavement cracks near to fences	Remove plants and seal cap penetrations	No actions taken or required	No significant changes observed	Plants look dead but the crack is not sealed. Previous recommended repairs remain.	No later than end of calendar year	CenterPoint
AC-21	Holes near fence allowing growth of invasive plants & ponding presence	Remove plants and seal cap penetrations.	No actions taken or required	Worse	Invasive plants continue to grow in hole near fence with ponding Previous recommendations remain	No later than end of calendar year	CenterPoint
AC-22	Unsealed pavement after plant removal	Remove plants and seal cap penetrations.	Actions Taken	Improved	Part of the plant has been removed but the pavement has not been sealed	No later than end of calendar year	CenterPoint

Center		April 2023 Inspectio	on			October 20	023 Inspection	
Point (SPPD) Location		Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
AC-23	Invasive plant growth			New location	6ft tall plant next to the storm drain. Remove the plants and seal the cap penetration.	No later than end of calendar year	CenterPoint	
				Low-Perm	neability Geomembrane			
G-1	An open pipe present	Need investigation of this open pipe and action should be taken to cap it, if it does not have any purpose.	Action Not Yet Completed	No significant changes observed	Previous recommendations remain	No later than end of calendar year	CenterPoint	
G-4	Blackberry shrubs growth in the area	Loss of grass around the concrete post exposing the soil and growth of blackberry shrubs around the region. Remove the blackberry shrubs before the roots spread and re-seed the grass.	Action Not Yet Completed	Worse	Improved growth of grass and growth of blackberry shrubs around the region. Previous recommendations remain	No later than end of calendar year	CenterPoint	

Center		April 2023 Inspectio	on	October 2023 Inspection					
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs	
G-6	Geomembrane exposed in this area	Improved vegetation. Exposed geomembrane remains in one area. Locations with exposed geomembrane are of the highest concern due to the potential compromise of the landfill cap. The configuration of the geomembrane and cover at the interface of the parking area does not appear to be in accordance with Figure 5 of the Interim Action Work Plan (IAWP). The geomembrane appears to be directly below the asphalt with no drainage layer or surfacing layer in between. Along with Site Coordinator, prepare a plan to reestablish cover over the geomembrane. Most likely, the area should be exposed, and the geomembrane tested for damage before repairs are be made. The crest of slope should then be provided cover to the maximum extent possible considering the existing asphalt and curb configuration	Action Not Yet Completed	No significant changes observed	Geomembrane still exposed. Previous recommendations from 2023 remain.	60 days	CenterPoint will work in coordination with Site Coordinator to establish a solution		
G-7	Exposed and damaged geomembrane at the parking area interface	The geomembrane remains exposed at G7. Locations with exposed geomembrane are of the highest concern due to the potential compromise of the landfill cap. The configuration of the geomembrane and cover at the interface of the parking area does not appear to be in accordance with Figure 5 of the Interim Action Work Plan (IAWP). The geomembrane appears to be directly below the asphalt with no drainage layer or surfacing layer in between. Along with Site Coordinator, prepare a plan to reestablish cover over the geomembrane. Most likely, the area should be exposed, and the geomembrane tested for damage before repairs are be made. The crest of slope should then be provided cover to the maximum extent possible considering the existing asphalt and curb configuration	Action Not Yet Completed	Worse	Geomembrane still exposed. Previous recommendations from 2023 remain.	60 days	CenterPoint will work in coordination with Site Coordinator to establish a solution		

Center		April 2023 Inspectio	on			October 20	23 Inspection
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommende Action Assignme
G-8	Exposed geomembrane around utility access hole	Work with Site Coordinator to prepare a plan to re-establish cover over the geomembrane. The geomembrane should be carefully exposed so as to not damage the geomembrane and inspected to determine if it is excess material or part of the cover. Make repairs as necessary and install adequate cover soil in accordance with the IAWP.	No documentation of actions taken	No significant changes observed	Previous recommendations from 2023 remain	60 days	CenterPoint wi work in coordination wi Site Coordinator establish a soluti
G-12	Poor vegetative cover	Areas of exposed soil. Grass should be re seeded. Follow-up inspection	No documentation of actions taken.	Changed	Dirt appears to be tilled and the area may have been seeded. No maintenance report received. Submit maintenance report if the tilling was intentional otherwise repair vegetation.	No later than end of calendar year	CenterPoint

Center		April 2023 Inspection	۱				23 Inspection	
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
G-14	Invasive Plants			New location	Invasive large plant growth. Remove the large plant due to risk of roots compromising the cover system.	No later than end of calendar year	CenterPoint	
				Stormwate	r Management Facilities			
SW-1	Standing water	The swale does not meet City of Seattle Stormwater Manual requirement for a biofiltration swale to have a minimum slope of 1.5%. Bottom channel should be regraded to the intended 1.5% slope. Along with Site Coordinator, prepare a plan to address this situation.	Action Not Yet Completed.	No Significant Change Observed	Improved plan growth but there are still patches of bare soil. Water presence in the swale due to improper sloping. Previous recommended actions from 2023 remain.	No later than end of calendar year	CenterPoint will work in coordination with Site Coordinator to establish a solution	

Center		April 2023 Inspectio	n			October 20	23 Inspection	
Point (SPPD) Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
SW-2	Invasive/Deep Rooted Plants	The willow (salix sp.) and black cottonwood (populus balsamifera) growing along the edge of the west bioswale are native but deep- rooted species that should be removed so that it does not damage the geomembrane on that side. This recommendation remains from April 2022.	Action Not Yet Completed	Worse	Trees have grown larger. Remove the tree coordinating with CenterPoint Previous recommendations from 2023 remain	60 days	CenterPoint will work in coordination with Site Coordinator to establish a solution	
SW-3	Catch basin clogged			New location	Catch basin inlet obstructed. Remove the obstruction.	60 days	CenterPoint will work in coordination with Site Coordinator to establish a solution	
SW-4	Catch basin clogged			New location	Catch basin inlet obstructed with sediment buildup and plant growth. Remove the obstruction and vegetation.	60 days	CenterPoint will work in coordination with Site Coordinator to establish a solution	

		April 2023 Inspec	tion			October 20	023 Inspection	
ROW Location	Description	Conditions Observed and Recommended Action	Action Taken	Condition Status	Conditions Observed and Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment	Photographs
				As	sphalt Concrete			
AC-1	Cracks and pavement repair	Cracks got worse with ponding. Repair/repatching should be coordinated with SDOT	No action taken	No significant changes	Previous recommendations from 2022 and 2023 remain.	60 days	SPU to coordinate with SDOT	<image/>
AC-2	Asphalt open cracking	Cracks got bigger with ponding. Repatching should be coordinated with SDOT	No action taken	Worse	Cracks got extended. Previous recommendation remains	60 days	SPU to coordinate with SDOT	<image/>

Table 3. Status of Identified Locations of Concern on the South Park Landfill Right-of-Way Property, October 11, 2023 Inspection

April 2023 Inspection October 2023 Inspection Timeline for ROW **Conditions Observed and Recommended** Condition Conditions Observed and Recommended Repair and/or Recommend Description Action Taken Reinspection Location Action Status Action Action Assign Pothole appears to be getting worse and Asphalt cracking and No action taken Previous recommendations remain. No later than SPU to coordi AC-3 No potholes alongside of street should be patched to prevent further Significant end of calendar with SDO Change erosion. year Observed Potholes in the middle of Repatch work should be arranged with SPU to coordi AC-4 No action taken Worse The pothole got bigger and ponding 60 days SDOT roadway inside. with SDO⁻ Repatching should be done coordinating with SDOT

Table 3. Status of Identified Locations of Concern on the South Park Landfill Right-of-Way Property, October 11, 2023 Inspection

n	
ded Iment	Photographs
linate)T	
linate)T	

Attachment A

October 2023 Cap Inspection Checklists

- A-1 SRDS Cap Inspection Checklist
- A-2 CenterPoint Cap Inspection Checklist
- A-3 ROW Cap Inspection Checklist

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:	October 11, 2023	Parcel Owner:	\boxtimes SRDS			
Inspector(s:	Tiffany Neier, Lauryn Guerrissi		🗆 CenterPoir	nt (former SF	PD)	
			🗆 Right-of-W	ay		
Type of Inspecti	on: 🗌 Annual 🛛 🖾 Reinspection					
	□ Non-Routine Reason:					
Last Rain Event	before Daily precipitation observations from H	ing County Hamm Cree	k Rain Station (HAU	2).		
Inspection:	Source: <u>https://green2.kingcounty.gov/hyd</u>	ology/DataDownload.asp.	x?G_ID=1517&Parame	ter=Precipitation	<u>!</u>	
-	10/05/23 10/	6/23 10/07/23 1	0/08/23 10/09/23	10/10/23	10/11/23	
	Precipitation (in) 0	0	0 0.02	0.41	0.36	

VISUAL INSPECTION CHECKLIST

		Aspha	It Concrete	
	Yes	No	Needs Repair	If yes, describe:
Minor cracking				Locations SRDS AC-13, AC-14 need repair. See Table 1 for details. There were multiple locations with minor conductions observed that do not currently need repair.
Open cracks/ruts	\boxtimes		\boxtimes	Locations SRDS AC-13, AC-20 need repair. See Table 1 for details.
Differential settlement		\boxtimes		
Potholes		\boxtimes		
Pooling or ponding			\boxtimes	Location SRDS AC-13 needs repair. See Table 1 for details. There were multiple locations with minor conductions observed that do not currently need repair.
Separation of pavement from curbs, gutters, or catch basins		\boxtimes		
Sloughing or crumbling of edge materials		\boxtimes		
Erosion		\boxtimes		
Other signs of cap damage, failure, or disturbance		\boxtimes		
Recommended Maintenance or Repair Ty	/pe/Lo	cation:		

See Table 1 for recommended actions.

VISUAL INSPECTION CHECKLIST (continued)

Low-Permeability Geomembrane							
Yes No Needs Repair If yes, describe:							
Erosion of cover soil		\boxtimes					
Exposed geotextile		\boxtimes					
Holes/signs of unauthorized digging		\boxtimes					
Poor vegetative cover		\boxtimes					
Exposed geomembrane		\boxtimes					
Recommended Maintenance or Repair Type/Location:							

	Yes	No	Needs Repair	If yes, describe:
Signs of water infiltration below structures		\boxtimes		
Erosion of soil		\boxtimes		
Exposed geotextile membrane		\boxtimes		
Holes/signs of unauthorized digging		\boxtimes		
Invasive/deep-rooted plants		\boxtimes		
Poor vegetative cover		\boxtimes		
Incorrect drainage path or not draining	\boxtimes			There were multiple locations with minor conductions observed that do not currently need repair.

Attach necessary documentation such as photographs, sketches, and additional notes.

See Figure 1 and Table 1

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:	October 11, 2023	Parcel Owner:					
Inspector(s):	Tiffany Neier, Lauryn Guerrissi		🛛 CenterPoin	it (former Si	PD)		
			🗌 Right-of-W	ау			
Type of Inspecti	on: 🗆 Annual 🛛 🖾 Reinspection						
	Non-Routine Reason:						
Last Rain Event	before Daily precipitation observations from	ing County Hamm Cree	k Rain Station (HAU2	2).			
Inspection:	Source: <u>https://green2.kingcounty.gov/hyd</u>	ology/DataDownload.asp	x?G_ID=1517&Parame	ter=Precipitatior	<u>1</u>		
-	10/05/23 10,	06/23 10/07/23 1	0/08/23 10/09/23	10/10/23	10/11/23		
	Precipitation (in) 0	0 0	0 0.02	0.41	0.36		

VISUAL INSPECTION CHECKLIST

Asphalt Concrete								
	Yes	No	Needs Repair	If yes, describe:				
Minor cracking	\boxtimes							
Open cracks/ruts	\boxtimes		\boxtimes	Locations SPPD AC-6, AC-19, AC-21, AC-22				
				need repair				
Differential settlement		\boxtimes						
Potholes		\boxtimes						
Pooling or ponding	\boxtimes		\boxtimes	Locations SPPD AC-6, AC-13, AC-21 need				
				repair				
Separation of pavement from curbs,		\boxtimes						
gutters, or catch basins								
Sloughing or crumbling of edge materials		\boxtimes						
Erosion	\boxtimes							
Invasive plant growth	\boxtimes		\boxtimes	Locations SPPD AC-13, AC-19, AC-21, and				
				AC-23 need repair				
Other signs of cap damage, failure, or	\boxtimes		\boxtimes	Location SPPD AC-3 needs repair				
disturbance								

See Table 2 for details and recommended actions.

VISUAL INSPECTION CHECKLIST (continued)

Low-Permeability Geomembrane							
	Yes	No	Needs Repair	If yes, describe:			
Erosion of cover soil		\boxtimes					
Exposed geotextile		\boxtimes					
Holes/signs of unauthorized digging		\boxtimes					
Poor vegetative cover	\boxtimes		\boxtimes	Location SPPD G-12 needs repair			
Exposed geomembrane	\boxtimes		\boxtimes	Locations SPPD G-6, G-7, G-8 need repair			
Soil Sloughing		\boxtimes					
Invasive plant growth	\boxtimes		\boxtimes	Locations G-4, G-14 need repair			
Recommended Maintenance or Repair Type/Location:							

See Table 2 for details and recommended actions.

	Yes	No	Needs Repair	If yes, describe:
Signs of water infiltration below		\boxtimes		
structures				
Erosion of soil		\boxtimes		
Exposed geotextile membrane		\boxtimes		
Holes/signs of unauthorized digging		\boxtimes		
Invasive/deep-rooted plants	\boxtimes		\boxtimes	Location SPPD SW-2 needs repair
Poor vegetative cover		\boxtimes		
Incorrect drainage path or not draining	\boxtimes		\boxtimes	Locations SPPD SW-1, SW-3, SW-4 need
				repair

Recommended Maintenance or Repair Type/Location:

See Table 2 for details and recommended actions.

Attach necessary documentation such as photographs, sketches, and additional notes.

See Figure 1 and Table 2

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:	October 11, 2023	Parcel Ov	vner: 🗆 S	RDS		
Inspector(s):	Tiffany Neier, Lauryn Guerrissi		CenterPoint (former SPPD)			
			$\boxtimes R$	ight-of-Wa	у	
Type of Inspecti						
	□ Non-Routine Reason:					
Last Rain Event	before Daily precipitation observations fro	om King County Han	nm Creek Rain St	ation (HAU2)		
Inspection:	Source: <u>https://green2.kingcounty.gov</u>	<u>/hydrology/DataDown</u>	load.aspx?G ID=1.	517&Paramete	r=Precipitation	<u>1</u>
-	10/05/23	10/06/23 10/07/	23 10/08/23	10/09/23	10/10/23	10/11/23
	Precipitation (in) 0	0 0	0	0.02	0.41	0.36

VISUAL INSPECTION CHECKLIST

Asphalt Concrete							
	Yes	No	Needs Repair	If yes, describe:			
Minor cracking	\boxtimes			Locations ROW AC-1			
				See Table 3 for details			
Open cracks/ruts	\boxtimes		\boxtimes	Locations ROW AC-1, AC-2, AC-3			
				See Table 3 for details			
Differential settlement		\boxtimes					
Potholes	\boxtimes		\boxtimes	Locations ROW AC-1, AC-3, AC-4			
				See Table 3 for details			
Pooling or ponding		\boxtimes					
Separation of pavement from curbs,		\boxtimes					
gutters, or catch basins							
Sloughing or crumbling of edge materials		\boxtimes					
Erosion		\boxtimes					
Other signs of cap damage, failure, or		\boxtimes					
disturbance							
P			1				
Recommended Maintenance or Repair Ty	pe/Loc	cation:					
See Table 3 for recommended actions.							

VISUAL INSPECTION CHECKLIST (continued)

Low-Permeability Geomembrane							
Yes No Needs Repair If yes, describe:							
Erosion of cover soil				Not applicable to ROW			
Exposed geotextile				Not applicable to ROW			
Holes/signs of unauthorized digging				Not applicable to ROW			
Poor vegetative cover				Not applicable to ROW			
Exposed geomembrane				Not applicable to ROW			
Recommended Maintenance or Repair Type/Location:							

Stormwater Management Facilities								
Yes No Needs Repair If yes, describe:								
Signs of water infiltration below				Not applicable to ROW				
structures								
Erosion of soil				Not applicable to ROW				
Exposed geotextile membrane				Not applicable to ROW				
Holes/signs of unauthorized digging				Not applicable to ROW				
Invasive/deep-rooted plants				Not applicable to ROW				
Poor vegetative cover				Not applicable to ROW				
Incorrect drainage path or not draining				Not applicable to ROW				
Recommended Maintenance or Repair Type/Location:								

Attach necessary documentation such as photographs, sketches, and additional notes.

See Figure 1 and Table 3

Attachment B Maintenance Forms

B-1 CenterPoint Maintenance Form

South Park Landfill

Cap Maintenance Form B

Date:	7/21/2023	Location: 82	49 5th Av	e S, Seattle	Owner: CenterPoint Properties
Mainte	enance Contractor:	AC Moate			
Reasor	n for Maintenance:	Alleviate pondin	g issues a	round parking	lot.
	be maintenance lo It area around Firs		ch, photo	graphs).	
					itional documentation as necessary). wing asphalt and replacing it with new
Class E	3 hot ashpalt. All ec	dges and cracks we	ere sealed.		
Is the i	maintenance activi	ty complete?	🕅 Yes	□ No	
lf no, e	explain:				
Approv	val/inspection of m	naintenance/repair	r:		
SITE CO	OORDINATOR		_	DATE	

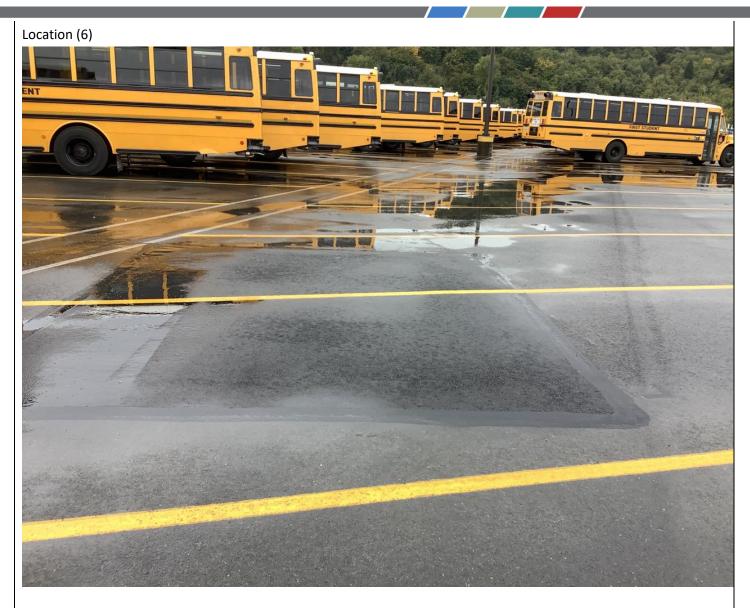
All maintenance and repair documentation must be provided to the Site Coordinator within 60 days of the completion of the maintenance/repair OR by March 1 if the activity is completed within 60 days prior to March 1.

	Part 2: Observation/Re		tenance				
Date of Observation/Review:	(Completed by Sit October 11, 2022	Inspector(s):	Tiffany Neier, Lauryn Guerrissi				
Observation Notes (attach pho		mopeeter(s)	many welci, Eddyn Gdernosi				
Pavement patches were inspected from the maintenance form CenterPoint Submitted. Patches have lo points causing ponding, especially at (1) and (8) as seen in the pictures below. We were not able to locate (7). No further modifications recommended at this time but we will continue to monitor the area for increased ponding. An additional patch was noted that was not included in the submitted maintenance report (last picture).							
Location (1)							

Location (2)

Location (3)

Location (4)


Location (5)

Parametrix ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

Parametrix ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

Location (8)

Additional Patch noted:

Appendix B2

Cap Maintenance Documentation

Appendix B2-A Example Form

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Parcel Owner:	\Box SRDS	Owner Contact:						
	🗆 CenterPoint (former S	mer SPPD)						
Part 1: Maintenance								
(Completed by Property Owner)								
Date of Repair/ Maintenance:			Repaired by:					
Reason for Maintenance:								
Describe Maintenance Location (attach sketch and photos):								
Describe Mainte	nance or Repair Performed	l (attach photos a	and documentation as necessary):					
Is the maintenar	nce activity complete?	□ Yes [□ No					
If no, explain:								
Property Owner	r Signature		Date					
	-	rovided to the Site Co	oordinator within 60 days of the completion of the					
	OR by March 1 if the activity is co							

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)								
Date of Observation/Review:	Inspector(s):							
Observation Notes (attach photos):								
Site Coordinator/Inspector Signature	Date							

Appendix B2-B Completed Forms

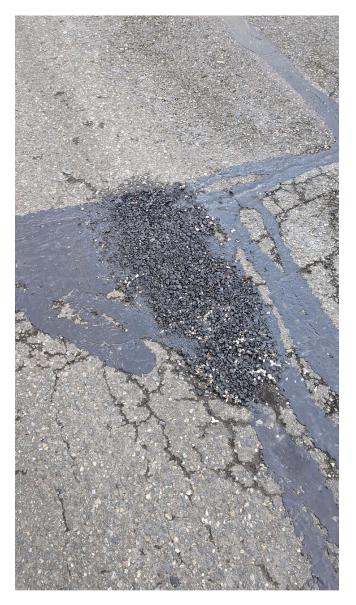
Appendix B2-B.1 SRDS

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Parcel Owner:

SRDS

Owner Contact: Min-Soon Yim


□ CenterPoint (former SPPD)

Part 1: Maintenance (Completed by Property Owner)							
Date of Repair/ Maintenance:	2/22/2024	Repaired by:	Hot Mix				
Reason for Maintenance:			Hot max				
Crack Open							
Describe Maintenance Location	(attach sketch and photos):					
AC-13							
	· Dorformod (attach photo	and documentati	on as nosossarul:				
Describe Maintenance or Repair	Performed (attach photos		on as necessary).				

Parametrix ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

Is the maintenance activity complete?	🛛 Yes	□ No	η
If no, explain:			
Minsoon Gim		2/22/2024	
Property Owner Signature		Date	
All maintenance and repair documentation must be pro maintenance/repair OR by March 1 if the activity is con			
maintenance/repair OK by March I in the activity is con	ipieteu within o	uays phor to warding 1.	

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)					
Date of Observation/Review: 3/05/2024 Inspector(s): Tiffany Neier, Amber Bailey					
Observation Notes (attach photos):					
Hole is patched with asphalt and sealant					
This Nin	3/07/2024				
Site Coordinator/Inspector Signature	Date				

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Parcel Owner:

 \boxtimes SRDS

Owner Contact: Min-Soon Yim

□ CenterPoint (former SPPD)

	art 1: Maintenance
	pleted by Property Owner)
Date of Repair/ Maintenance:	Repaired by: Hot Mix
Reason for Maintenance:	
Crack open	
Describe Maintenance Location (attach sketch	and photos):
AC-14	
Describe Maintenance or Repair Performed (at	tach photos and documentation as necessary):
Before	After

Parametrix ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

Is the maintenance activity complete?	🛛 Yes	□ No
If no, explain:		
Minsoon Gim		2/22/2024
Property Owner Signature		Date
All maintenance and repair documentation must be pro		
maintenance/repair OR by March 1 if the activity is com	ipieteu within o	uays phor to warch 1.

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)				
Date of Observation/Review:	3/05/2024	Inspector(s):	Tiffany Neier, Amber Bailey	
Observation Notes (attach photo	os):			
Hole is patched with	asphalt and sealan	it		
Tig Vin 3/07/2024				
Site Coordinator/Inspector Sign	ature	Date		

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Parcel Owner:

SRDS

Owner Contact: Min-Soon Yim

□ CenterPoint (former SPPD)

Part 1: Maintenance (Completed by Property Owner)				
Date of Repair/ Maintenance:	2/22/2024	Repaired by:	Hot Mix	
Reason for Maintenance:				
Crack open				
Describe Maintenance Location	attach sketch and phot	:os):		
AC-20				
Describe Maintenance or Repair	Performed (attach pho	tos and documentation	on as necessary):	
		100 M	A DECEMBER OF	
		all'ingitian	*	
			A state of the sta	
	Conc.			
			March 1	
- Andrew States				
and the second second				
A States				
	1000			
the state of the				
			and the second se	
Before		After		

Parametrix ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

Is the maintenance activity complete?	🛛 Yes	□ No
If no, explain:		
Mineral China		
Minsoon Gim		2/23/2024
Property Owner Signature		Date
All maintenance and repair documentation must be pro maintenance/repair OR by March 1 if the activity is com		
	.p.etea within o	

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)				
Date of Observation/Review: 3/05/2024	Inspector(s): Tiffany Neier, Amber Bailey			
Observation Notes (attach photos):				
Hole is patched with asphalt and sealant				
This Nice	3/07/2024			
Site Coordinator/Inspector Signature	Date			

Appendix B2-B.2

CenterPoint (former SPPD)

 \Box SRDS

_

Parcel Owner:

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Owner Contact: Andrea Hacker

🛛 CenterPoint (former SPPD)				
Part 1: Maintenance (Completed by Property Owner)					
Date of Repair/ Maintenance: 11/9		Repaired by:	Catchment Solutions		
Reason for Maintenance:					
Storm drain inspections and cleaning					
Describe Maintenance Location (attach sketch	and photo	s):			
SW-3 & SW-4; AC-23					
Describe Maintenance or Repair Performed (at	tach photo	os and documenta	tion as necessary):		
Drains inspected and cleared, sediment remove	d from aro	und drain. Butterf	ly bush removed from AC-23		
Is the maintenance activity complete?	🛛 Yes	□ No			
If no, explain:					
Llh	_				
Property Owner Signature		Date 1/	10/2024		
All maintenance and repair documentation must be provid	ed to the Site	e Coordinator within 6	0 days of the completion of the		

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)					
Date of Observation/Review: 3/05/2024 Inspector(s): Tiffany Neier, Amber Bailey					
Observation Notes (attach photos): AC-23: Plant was removed now pavement needs to be repaired					
SW-3: Catch basin needs to be cleaned again					
SW-4: Problem resolved					

This Nin

Site Coordinator/Inspector Signature

3/07/2024

Date

AC-23 - Plant cut but asphalt is cracked and pushed up

SW-3 - Catch basin still has obstructions though less than during previous inspection

> SW-4 - Catch basin has been cleaned of obstructions

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Parcel Owner:			Owne	r Contact: Andr	ea Hacker
	🛛 CenterPoin	t (former SPPD)			
		. ,			
		Dev	rt 1: Mair	******	
		-			
			eted by Pro	operty Owner)	
Date of Repair/ N		2/22 & 2/23		Repaired by:	Veths Landscaping
Reason for Main	tenance:				
Restoration of ex	posed geomemb	orane areas			
Describe Mainter	nance Location	attach sketch an	d photos):		
G-6, G-7, G-8, G-1	12				
Describe Mainter	nance or Repair	Performed (attac	ch photos a	nd documentatio	on as necessary):
Hand removal of dead grass, install new sod and re-seed					
Is the maintenan	ce activity comp	olete? 🛛 🖂	Yes 🛛] No	
If no, explain:					
		-			
٨	S				
L	In				
A					
Property Owner	Signature			Date 2/28	3/2024
All maintenance and repair documentation must be provided to the Site Coordinator within 60 days of the completion of the					
maintenance/repair	OR by March 1 if the	e activity is completed	d within 60 da	ys prior to March 1.	

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)					
Date of Observation/Review:	Inspector(s):				
Observation Notes (attach photos):	Observation Notes (attach photos):				
Site Coordinator/Inspector Signature	Date				

Appendix B2-B.3 ROW

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Parcel Owner:	\Box SRDS	Owner Co	ontact:
	\Box CenterPoint (former SPP	۰D)	
	⊠ ROW		
		Part 1: Mainte	enance
	(Cor	mpleted by Prope	erty Owner)
Date of Repair/ N	laintenance:	R	epaired by:
Reason for Maint	enance:		
D			
Describe Mainter	nance Location (attach sketc	n and photos):	
Describe Mainter	nance or Repair Performed (a	attach photos and	documentation as necessary):
		·	
Is the maintenand	ce activity complete?	🗆 Yes 🛛 N	0
If no, explain:			
Property Owner	-		Date
	repair documentation must be prov OR by March 1 if the activity is comp		inator within 60 days of the completion of the rior to March 1.

Part 2: Observation/Rev	
(Completed by Sit	e Coordinator)
Date of Observation/Review: 3/5/24	Inspector(s): Tiffany Neier, Amber Bailey
Observation Notes (attach photos):	
Road patches	
ROW AC-1. Partially complete. A large portion of this area of o	concern was patched; several of the potholes were filled,
but there is an area that still needs repair.	
Recently 1	A LIZA MARKAN AND
	NO TO A CONTRACTOR OF A CONTRACTOR
	the second s
This Nine	
	3/12/24
Site Coordinator/Inspector Signature	Date

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Parcel Owner:	\Box SRDS	Owner	r Contact:
	🗆 CenterPoint (former SPI	PD)	
	\boxtimes ROW		
		Part 1: Main	ntenance
	(Co	mpleted by Pro	operty Owner)
Date of Repair/ N	/laintenance:		Repaired by:
Reason for Maint	enance:		
Describe Mainter	nance Location (attach sketc	in and photos):	
Describe Mainter	nance or Repair Performed ((attach photos ar	nd documentation as necessary):
Is the maintenand	ce activity complete?	🗆 Yes 🛛] No
If no, explain:			
Property Owner	-		Date
	repair documentation must be pro OR by March 1 if the activity is com		ordinator within 60 days of the completion of the ys prior to March 1.

Part 2: Observation/Rev		tenance
(Completed by Site		
Date of Observation/Review: 3/15/24	Inspector(s):	Chris Bourgeois
Observation Notes (attach photos):		
Road patches		
ROW AC-4. Complete. Large and smaller potholes patched with	h asphalt.	
Sector and the sector of the		
	Mark State	
	- N	
The second se		
	and the second s	
	Strange by	
AND A REAL PROPERTY AND A REAL		
and a second second we will be the second		
and the second s		

Parametrix ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

Chris BS	3/28/24
Site Coordinator/Inspector Signature	Date

Appendix C

Landfill Gas Monitoring

Appendix C1

Perimeter Probe Monitoring Field Forms

GP03 1/31/2023 TS, WY 0 13.9 4.1 0.0 N 30.21 GP07 1/31/2023 TS, WY 0 18.1 1.3 -0.1 N 30.19 GP09 2/06/2023 WY 0 14.7 5.2 0.06 N 30.30 Probe inaccessible 1/31/2 GP11 1/31/2023 TS, WY 0 21.1 1.3 0.1 Y 30.21 GP13 1/31/2023 TS, WY 0 15.5 1.9 -15.4 Y 30.21 GP15 1/31/2023 TS, WY 0 13.6 3.9 1.1 Y 30.23 GP16 1/31/2023 TS, WY 0 19.4 1.1 -0.1 N 30.19 GP23 1/31/2023 TS, WY 0 20.2 0.1 0.0 N 30.17 GP26 1/31/2023 TS, WY 0 19.2 1.8 -0.1 N 30.23 GP27 1/31/2023 TS, WY 0 7.7 3.8 -0.1 N 30.21	Probe	Date	Technician	CH4 PPM	02 %	CO2 %	SP In/Wc	Blocked	BPS	Comment
GP-09 2/06/2023 WY 0 14.7 5.2 0.06 N 30.30 Probe inaccessible 1/31/2 GP11 1/31/2023 TS, WY 0 21.1 1.3 0.1 Y 30.21 GP13 1/31/2023 TS, WY 0 15.5 1.9 -15.4 Y 30.21 GP15 1/31/2023 TS, WY 0 13.6 3.9 1.1 Y 30.23 GP16 1/31/2023 TS, WY 0 19.4 1.1 -0.1 N 30.19 GP23 1/31/2023 TS, WY 0 20.2 0.1 0.0 N 30.17 GP26 1/31/2023 TS, WY 0 19.2 1.8 -0.1 N 30.23 GP26 1/31/2023 TS, WY 0 19.2 1.8 -0.1 N 30.17 GP26 1/31/2023 TS, WY 0 7.7 3.8 -0.1 N 30.15 GP28 1/31/2023 TS, WY 0 7.7 3.8 -0.1 N 30.19	GP03	1/31/2023	TS, WY	0	13.9	4.1	0.0) N	30.21	
GP111/31/2023TS, WY021.11.30.1Y30.21GP131/31/2023TS, WY015.51.9-15.4Y30.21GP151/31/2023TS, WY013.63.91.1Y30.23GP161/31/2023TS, WY019.41.1-0.1N30.19GP231/31/2023TS, WY020.20.10.0N30.17GP261/31/2023TS, WY019.21.8-0.1N30.23GP271/31/2023TS, WY00.09.7-0.1N30.15GP281/31/2023TS, WY07.73.8-0.1N30.21GP291/31/2023TS, WY90000.08.1-0.1N30.19	GP07	1/31/2023	TS, WY	0	18.1	1.3	-0.1	l N	30.19	
GP131/31/2023TS, WY015.51.9-15.4Y30.21GP151/31/2023TS, WY013.63.91.1Y30.23GP161/31/2023TS, WY019.41.1-0.1N30.19GP231/31/2023TS, WY020.20.10.0N30.17GP261/31/2023TS, WY019.21.8-0.1N30.23GP271/31/2023TS, WY40000.09.7-0.1N30.15GP281/31/2023TS, WY07.73.8-0.1N30.21GP291/31/2023TS, WY90000.08.1-0.1N30.19	GP-09	2/06/2023	WY	0	14.7	5.2	0.06	5 N	30.30	Probe inaccessible 1/31/24
GP15 1/31/2023 TS, WY 0 13.6 3.9 1.1 Y 30.23 GP16 1/31/2023 TS, WY 0 19.4 1.1 -0.1 N 30.19 GP23 1/31/2023 TS, WY 0 20.2 0.1 0.0 N 30.17 GP26 1/31/2023 TS, WY 0 19.2 1.8 -0.1 N 30.23 GP27 1/31/2023 TS, WY 0 19.2 1.8 -0.1 N 30.15 GP28 1/31/2023 TS, WY 0 7.7 3.8 -0.1 N 30.21 GP29 1/31/2023 TS, WY 9000 0.0 8.1 -0.1 N 30.19	GP11	1/31/2023	TS, WY	0	21.1	1.3	0.1	I Y	30.21	
GP16 1/31/2023 TS, WY 0 19.4 1.1 -0.1 N 30.19 GP23 1/31/2023 TS, WY 0 20.2 0.1 0.0 N 30.17 GP26 1/31/2023 TS, WY 0 19.2 1.8 -0.1 N 30.23 GP27 1/31/2023 TS, WY 4000 0.0 9.7 -0.1 N 30.15 GP28 1/31/2023 TS, WY 0 7.7 3.8 -0.1 N 30.21 GP29 1/31/2023 TS, WY 9000 0.0 8.1 -0.1 N 30.19	GP13	1/31/2023	TS, WY	0	15.5	1.9	-15.4	4 Y	30.21	
GP23 1/31/2023 TS, WY 0 20.2 0.1 0.0 N 30.17 GP26 1/31/2023 TS, WY 0 19.2 1.8 -0.1 N 30.23 GP27 1/31/2023 TS, WY 4000 0.0 9.7 -0.1 N 30.15 GP28 1/31/2023 TS, WY 0 7.7 3.8 -0.1 N 30.21 GP29 1/31/2023 TS, WY 9000 0.0 8.1 -0.1 N 30.19	GP15	1/31/2023	TS, WY	0	13.6	3.9	1.1	I Y	30.23	
GP26 1/31/2023 TS, WY 0 19.2 1.8 -0.1 N 30.23 GP27 1/31/2023 TS, WY 4000 0.0 9.7 -0.1 N 30.15 GP28 1/31/2023 TS, WY 0 7.7 3.8 -0.1 N 30.21 GP29 1/31/2023 TS, WY 9000 0.0 8.1 -0.1 N 30.19	GP16	1/31/2023	TS, WY	0	19.4	1.1	-0.1	l N	30.19	
GP27 1/31/2023 TS, WY 4000 0.0 9.7 -0.1 N 30.15 GP28 1/31/2023 TS, WY 0 7.7 3.8 -0.1 N 30.21 GP29 1/31/2023 TS, WY 9000 0.0 8.1 -0.1 N 30.19	GP23	1/31/2023	TS, WY	0	20.2	0.1	0.0) N	30.17	
GP281/31/2023TS, WY07.73.8-0.1N30.21GP291/31/2023TS, WY90000.08.1-0.1N30.19	GP26	1/31/2023	TS, WY	0	19.2	1.8	-0.1	l N	30.23	
GP29 1/31/2023 TS, WY 9000 0.0 8.1 -0.1 N 30.19	GP27	1/31/2023	TS, WY	4000	0.0	9.7	-0.1	l N	30.15	
	GP28	1/31/2023	TS, WY	0	7.7	3.8	-0.1	l N	30.21	
GP31 1/31/2023 TS, WY 0 7.2 5.8 -0.1 N 30.19	GP29	1/31/2023	TS, WY	9000	0.0	8.1	-0.1	l N	30.19	
	GP31	1/31/2023	TS, WY	0	7.2	5.8	-0.1	l N	30.19	
GP32 1/31/2023 TS, WY 0 20.2 0.3 0.5 Y 30.21	GP32	1/31/2023	TS, WY	0	20.2	0.3	0.5	5 Y	30.21	
GP33 1/31/2023 TS, WY 49000 0.0 7.1 0.0 N 30.20	GP33	1/31/2023	TS, WY	49000	0.0	7.1	0.0) N	30.20	
GP37 1/31/2023 TS, WY 0 4.4 7.4 -0.1 N 30.22	GP37	1/31/2023	TS, WY	0	4.4	7.4	-0.1	l N	30.22	
GP38 1/31/2023 TS, WY 0 4.2 11.8 -0.1 N 30.24	GP38	1/31/2023	TS, WY	0	4.2	11.8	-0.1	l N	30.24	

Probe	Date	Technician	CH4 PPM	02 %	CO2 %	SP In/Wc	Blocked	BPS	Comment
GP03	4/25/2023	TS, WY	0	13.5	4.4	0.1	Ν	30.34	
GP07	4/25/2023	TS, WY	0	18.7	1.9	0.1	Ν	30.34	
GP09	4/25/2023	TS, WY	0	12.6	7.5	0.1	Ν	30.34	
GP11	4/25/2023	TS, WY	0	21.0	0.8	0.0	Y	30.34	
GP13	4/25/2023	TS, WY	0	17.7	2.9	-14.6	Y	30.34	
GP15	4/25/2023	TS, WY	0	20.8	1.2	1.3	Ν	30.34	
GP16	4/25/2023	TS, WY	0	21.2	0.4	0.0	Ν	30.34	
GP23	4/25/2023	TS, WY	0	18.8	2.2	0.0	Ν	30.34	
GP26	4/25/2023	TS, WY	0	19.5	1.7	0.1	Ν	30.34	
GP27	4/25/2023	TS, WY	1000	0.0	8.5	0.1	Ν	30.34	
GP28	4/25/2023	TS, WY	0	21.5	0.0	0.1	Ν	30.34	
GP29	4/25/2023	TS, WY	1000	0.1	12.7	0.1	Ν	30.34	
GP31	4/25/2023	TS, WY	0	17.4	1.9	0.2	Ν	30.34	
GP32	4/25/2023	TS, WY	0	13.5	1.1	0.5	Y	30.34	
GP33	4/25/2023	TS, WY	0	20.1	1.1	-0.1	Ν	30.34	
GP37	4/25/2023	TS, WY	0	6.4	7.7	0.0	Ν	30.34	
GP38	4/25/2023	TS, WY	0	4.5	11.9	0.1	Ν	30.34	

Probe	Date	Technician	CH4 PPM	02 %	CO2 %	SP In/Wc	Blocked	BPS	Comment
GP03	7/25/2023	DF/WY/T	0	14.0	5.8	0.0	Ν	30.16	
GP07	7/25/2023	DF/WY/T	0	17.8	3.2	0.0	Ν	30.17	
GP09	7/25/2023	DF/WY/T	0	16.7	5.4	0.0	Ν	30.16	
GP11	7/25/2023	DF/WY/T	0	20.7	0.6	0.3	Y	30.16	
GP13	7/25/2023	DF/WY/T	0	12.0	4.3	-16.1	Y	30.15	
GP15	7/25/2023	DF/WY/T	0	20.7	0.5	-7.6	Ν	30.17	
GP16	7/25/2023	DF/WY/T	0	20.3	0.7	0.0	Ν	30.18	
GP23	7/25/2023	DF/WY/T	0	13.7	7.6	0.0	Ν	30.17	
GP26	7/25/2023	DF/WY/T	0	19.1	2.2	-0.1	Ν	30.15	
GP27	7/25/2023	DF/WY/T	0	0.0	12.2	0.0	Ν	30.18	
GP28	7/25/2023	DF/WY/T	0	20.8	0.0	-0.1	Ν	30.16	
GP29	7/25/2023	DF/WY/T	0	0.0	16.8	0.0	Ν	30.16	
GP31	7/25/2023	DF/WY/T	0	7.9	10.8	0.0	Ν	29.99	
GP32	7/25/2023	DF/WY/T	0	14.6	2.7	-1.3	Ν	30.18	
GP33	7/25/2023	DF/WY/T	0	17.7	2.4	0.0	Ν	30.17	
GP37	7/25/2023	DF/WY/T	0	10.9	9.9	0.1	Ν	30.16	
GP38	7/25/2023	DF/WY/T	0	2.1	18.4	0.0	Ν	30.17	

Probe	Date	Technician	CH4 PPM	02 %	CO2 %	SP In/Wc	Blocked	BPS	Comment
GP03	10/31/2023	TS	0	17.4	5.1	0.0	Ν	30.23	
GP07	10/31/2023	TS	0	17.5	3.5	0.1	Ν	30.23	
GP09	10/31/2023	TS	0	15.4	6.7	0.2	Ν	30.23	
GP11	10/31/2023	TS	0	21.1	1.3	0.1	Ν	30.23	
GP13	10/31/2023	TS	42000	0.2	3.4	-28.7	Y	30.23	
GP15	10/31/2023	TS	0	18.8	4.5	-1.9	Ν	30.23	
GP16	10/31/2023	TS	0	6.8	11.8	0.0	Ν	30.23	
GP23	10/31/2023	TS	0	14.3	7.8	0.0	Ν	30.23	
GP26	10/31/2023	TS	0	17.8	3.2	0.0	Ν	30.23	
GP27	10/31/2023	TS	1000	0.0	14.0	0.0	Ν	30.23	
GP28	10/31/2023	TS	0	22.1	0.1	0.1	Ν	30.23	
GP29	10/31/2023	TS	3000	0.0	15.4	0.0	Ν	30.23	
GP31	10/31/2023	TS	0	7.6	9.9	0.0	Ν	30.23	
GP32	10/31/2023	TS	0	13.4	3.6	-4.4	Y	30.23	
GP33	10/31/2023	TS	0	17.5	2.7	0.0	Ν	30.23	
GP37	10/31/2023	TS	0	5.6	10.4	0.0	Ν	30.23	
GP38	10/31/2023	TS	0	2.5	15.7	0.0	Ν	30.23	

Appendix C2

On-Site Building Monitoring Forms

Building Location: <u>Jraining Office / Supervisor</u> Office Make and Model of Detector: <u>Techamor</u>

	Monthly Check Press test button and confirm indicator light is illuminated.					
Pass	Date	Initials				
	3/14/23	BL				
	λ.					

	Quar	terly Test				
Direct gas from unlighted butane lighter into the detector through one of the vent holes and hold for several seconds. Confirm that red light and alarm activated.						
Pass	Date Initials					
	3/14/23	BL				

Building Location: Mens Damoom Make and Model of Detector: Techamor

Monthly Check							
	Press test button and confirm indicator light is illuminated.						
Pass	Date	Initials					
	3114/23	pul					
		1)					

	Quarte	rly Test
Direct gas from unlighted butane lighter into the detector through one of the vent holes and hold for several seconds. Confirm that red light and alarm activated.		
Pass	Date	Initials
M	3/14/23	wl

Building Location:

Training Office Supervisor Office Netector: Techanor

Make and Model of Detector:

Monthly Check Press test button and confirm indicator light is illuminated.		
Pass	Date	Initials
5 (2/12/123	m

	Quarter	ly Test
Direct gas from unlighted butane lighter into the detector through one of the vent holes and hold for several seconds. Confirm that red light and alarm activated.		
Pass	Date	Initials
	6/12/23	M

Building Location:

Mens bathroom

Make and Model of Detector: Techamor

	Monthly Check Press test button and confirm indicator light is illuminated.		
Pass	Date	Initials	
M	6/13/23	hm	

	Quarter	ly Test
Direct gas from unlighted butane lighter into the detector through one of the vent holes and hold for several seconds. Confirm that red light and alarm activated.		
Pass	Date	Initials
e	613123	m

Building Location:

Training office | Supervisor Office etector: Techamor

Make and Model of Detector:

Monthly Check Press test button and confirm indicator light is illuminated.		
Pass	Date	Initials
	9112123	wi

	Quarte	rly Test
Direct	gas from unlighted butane lighter into and hold for several seconds. Confiri	the detector through one of the vent holes m that red light and alarm activated.
Pass	Date	Initials
	9/12/23	m

Building Location:

Mens restroom

Make and Model of Detector: Techamor

Monthly Check Press test button and confirm indicator light is illuminated.		
Pass	Date	Initials
	9/12/23	hr

	Quarter	ly Test
Direct gas from unlighted butane lighter into the detector through one of the vent holes and hold for several seconds. Confirm that red light and alarm activated.		
Pass	Date	Initials
	9/12/23	m

* Found nutged

Building Location:

Traning

Make and Model of Detector:

Monthly Check Press test button and confirm indicator light is illuminated.		
Pass	Date	Initials
	12112123	m
	×	

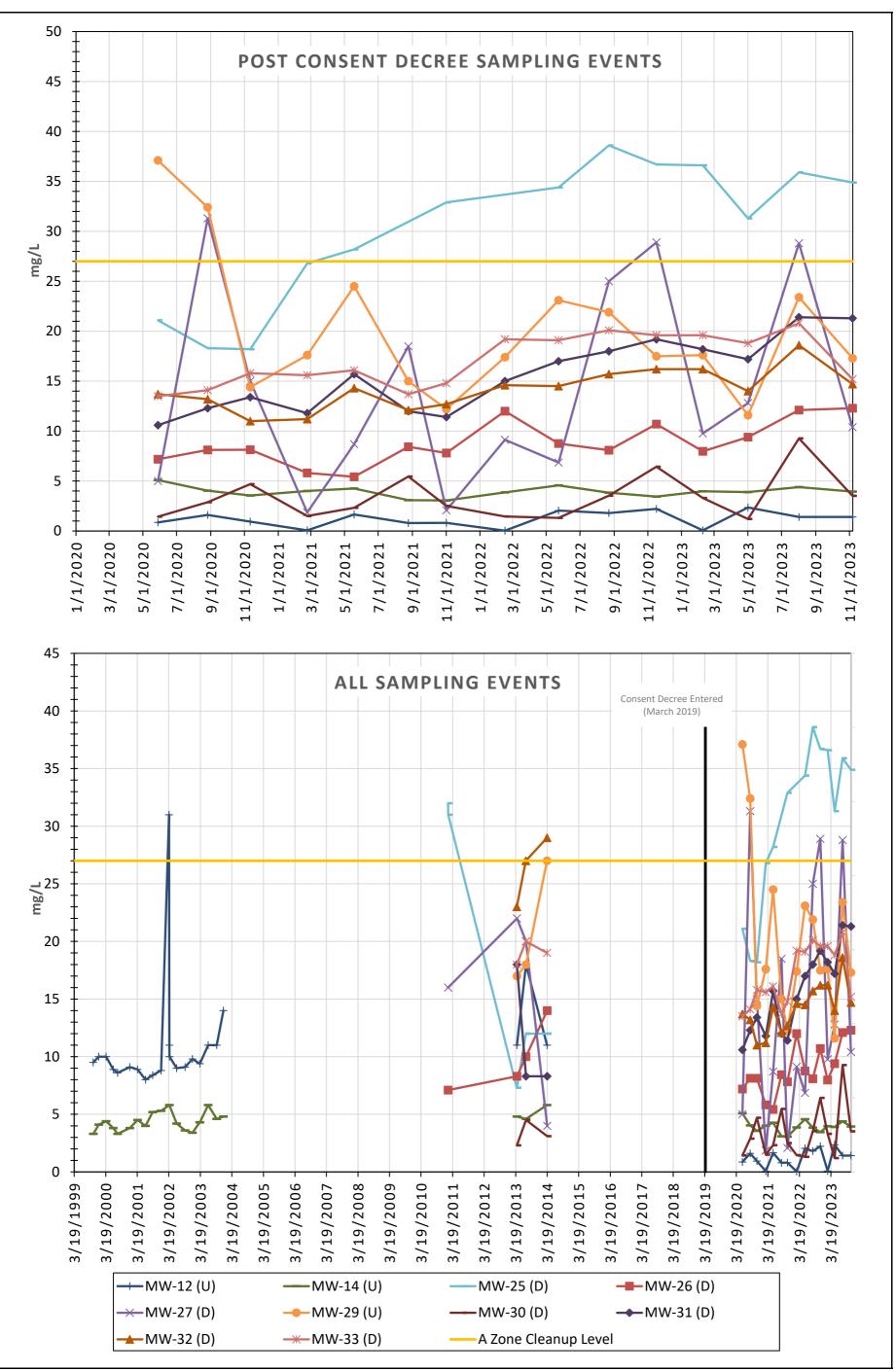
250	Quarterly	y Test
Direct	gas from unlighted butane lighter into th and hold for several seconds. Confirm	ne detector through one of the vent holes that red light and alarm activated.
Pass	Date	Initials
G	ialiala3	m

Building Location:

ple	2	Restroom

Make and Model of Detector:

Monthly Check Press test button and confirm indicator light is illuminated.			
Pass	Date	Initials	
9	12112123	m	


1	Quarter	y Test
Direct §	gas from unlighted butane lighter into t and hold for several seconds. Confirm	he detector through one of the vent holes that red light and alarm activated.
Pass	Date	Initials
5	12/12/23	un

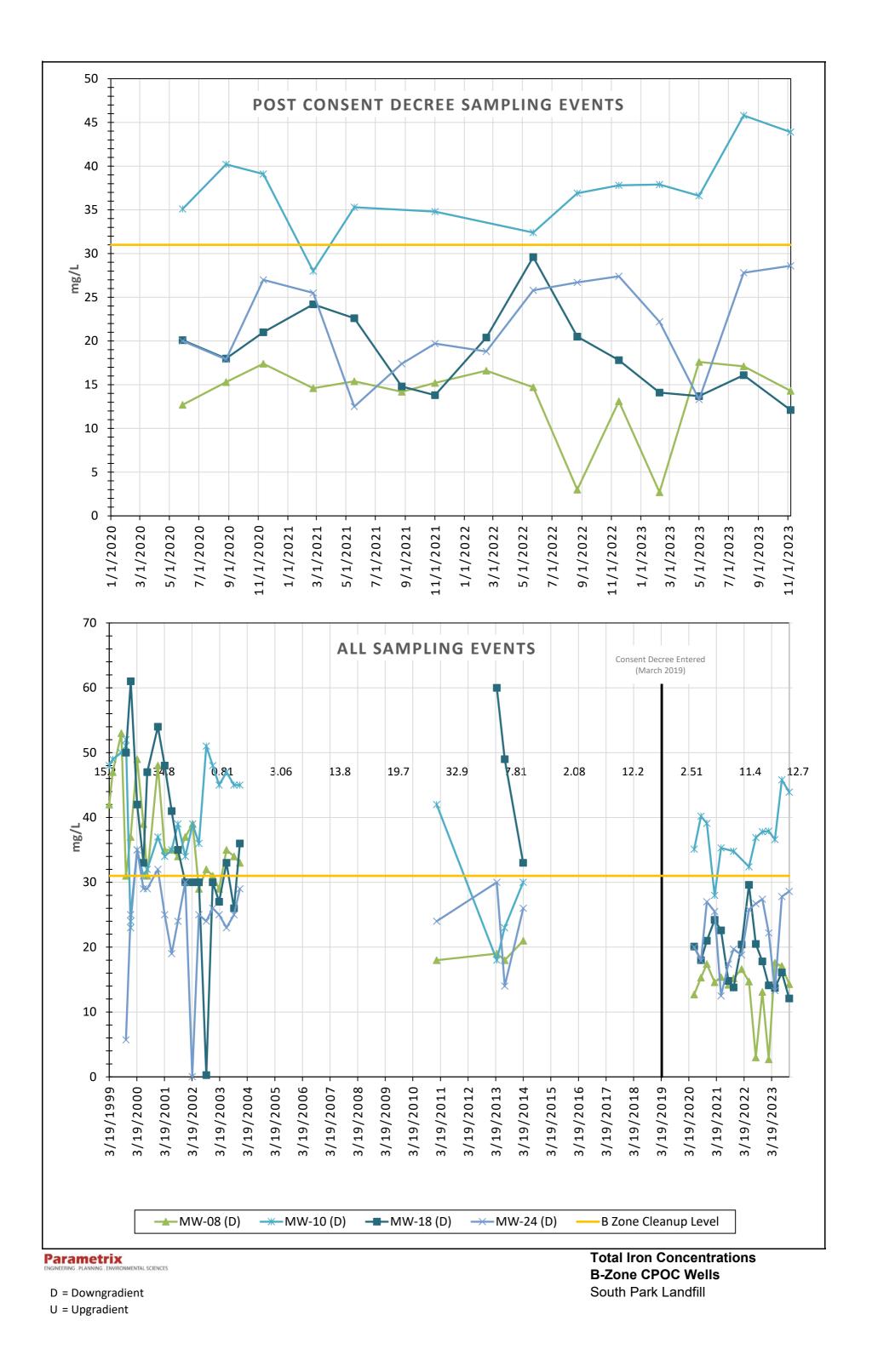
Appendix D

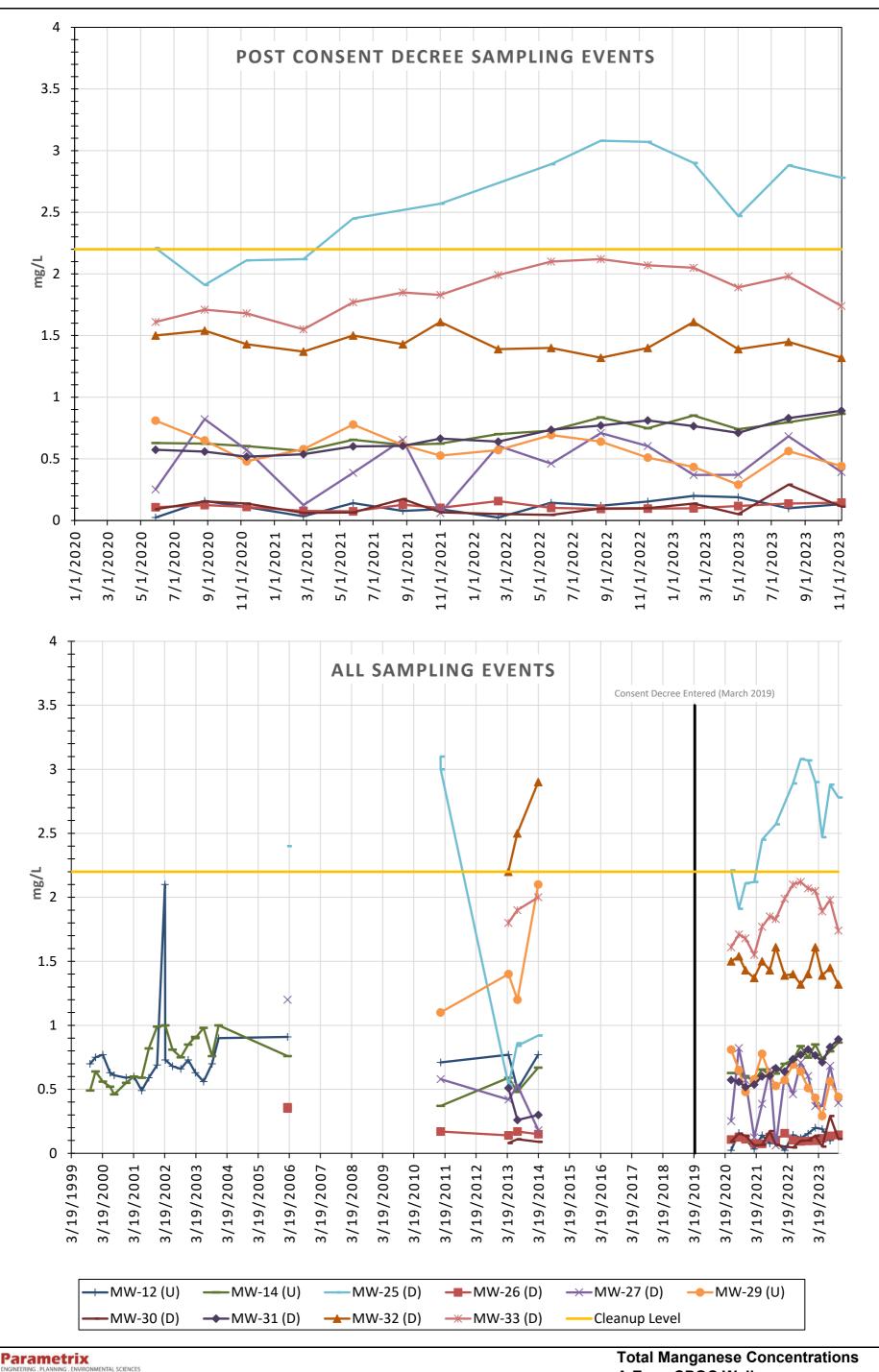
Groundwater Monitoring

Appendix D1

Time-Series Plots

Parametrix

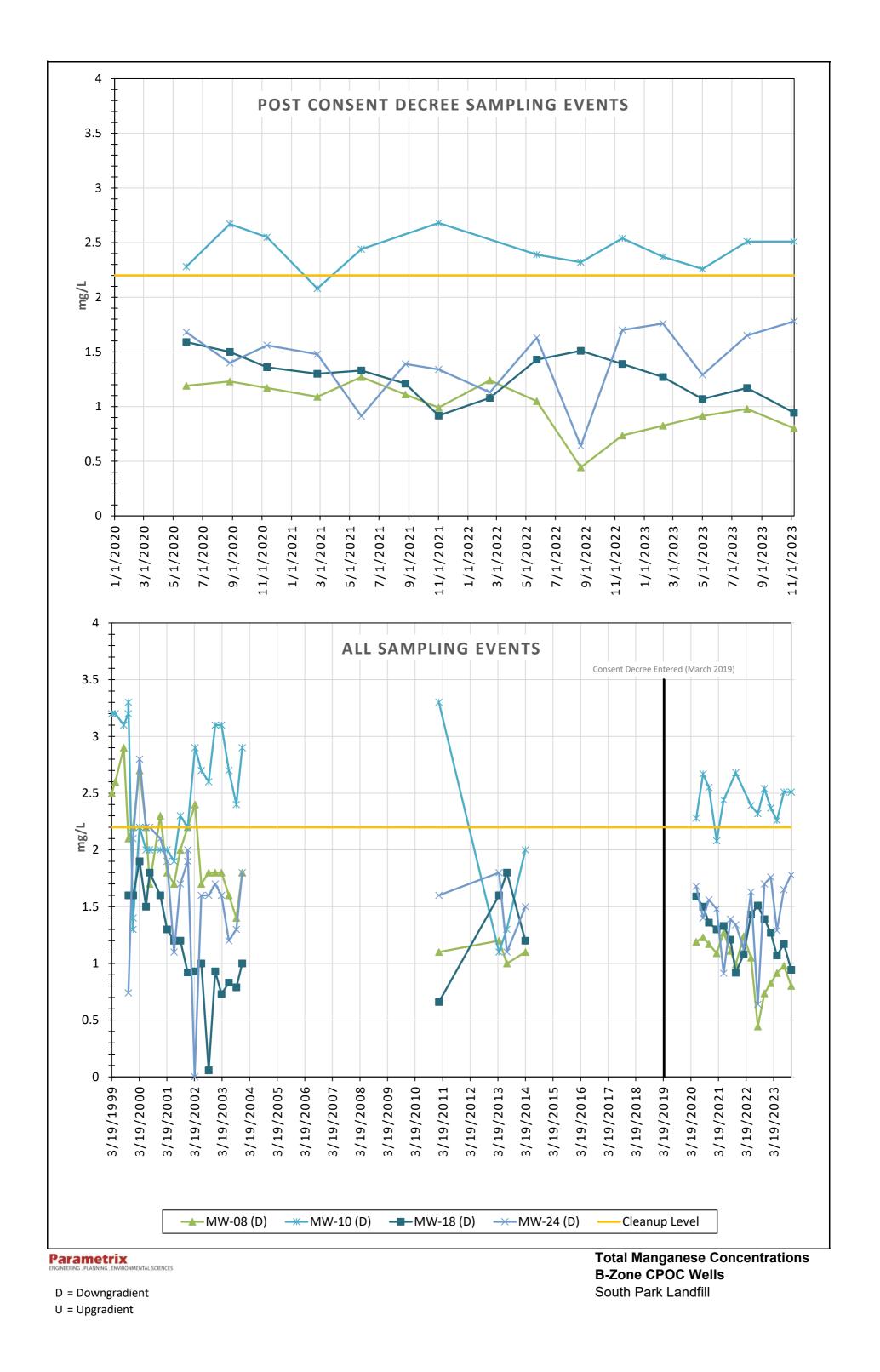

TAL SCIENCES

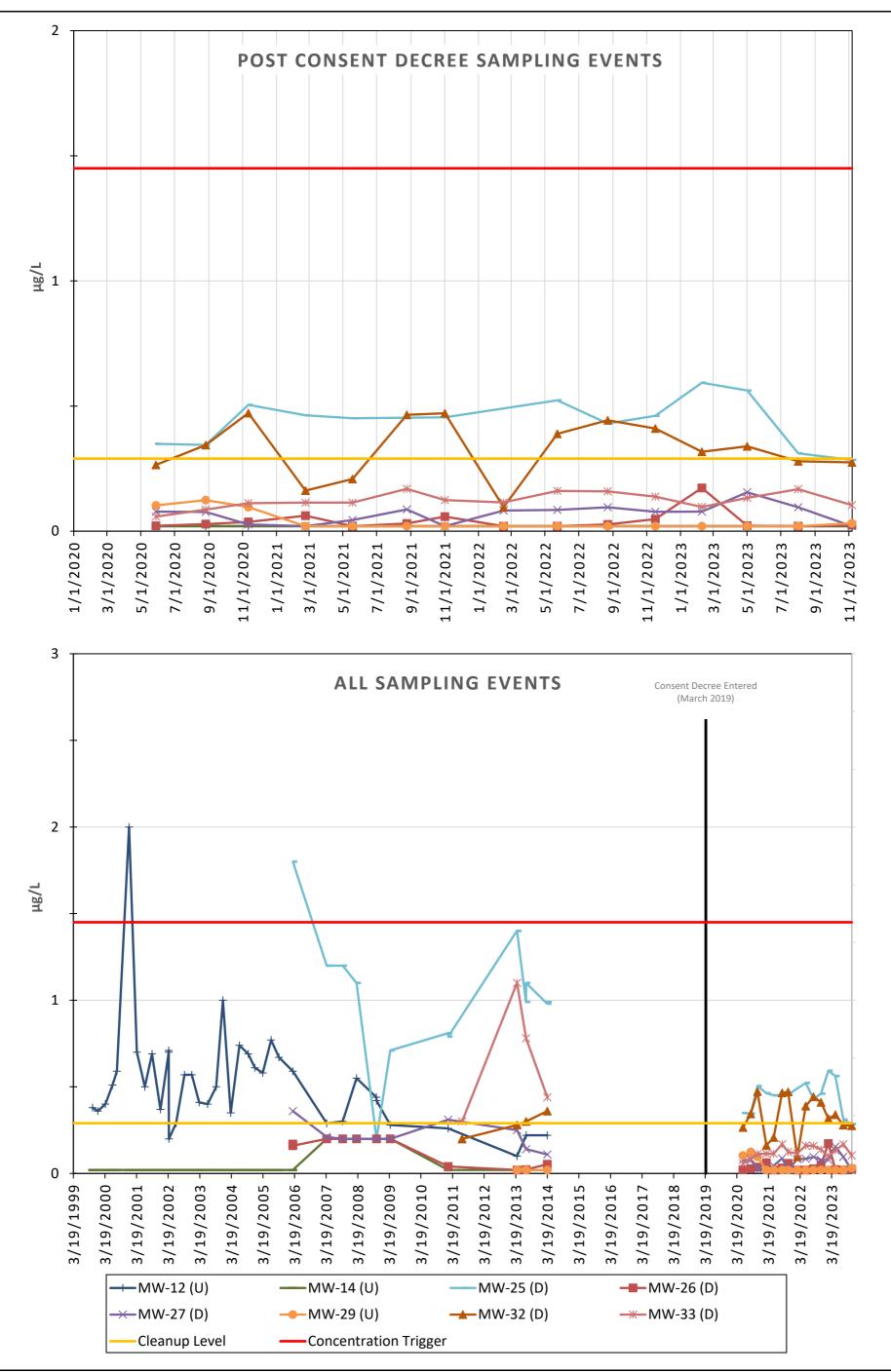

Total Iron Concentrations A-Zone CPOC Wells

D = Downgradient

U = Upgradient

South Park Landfill

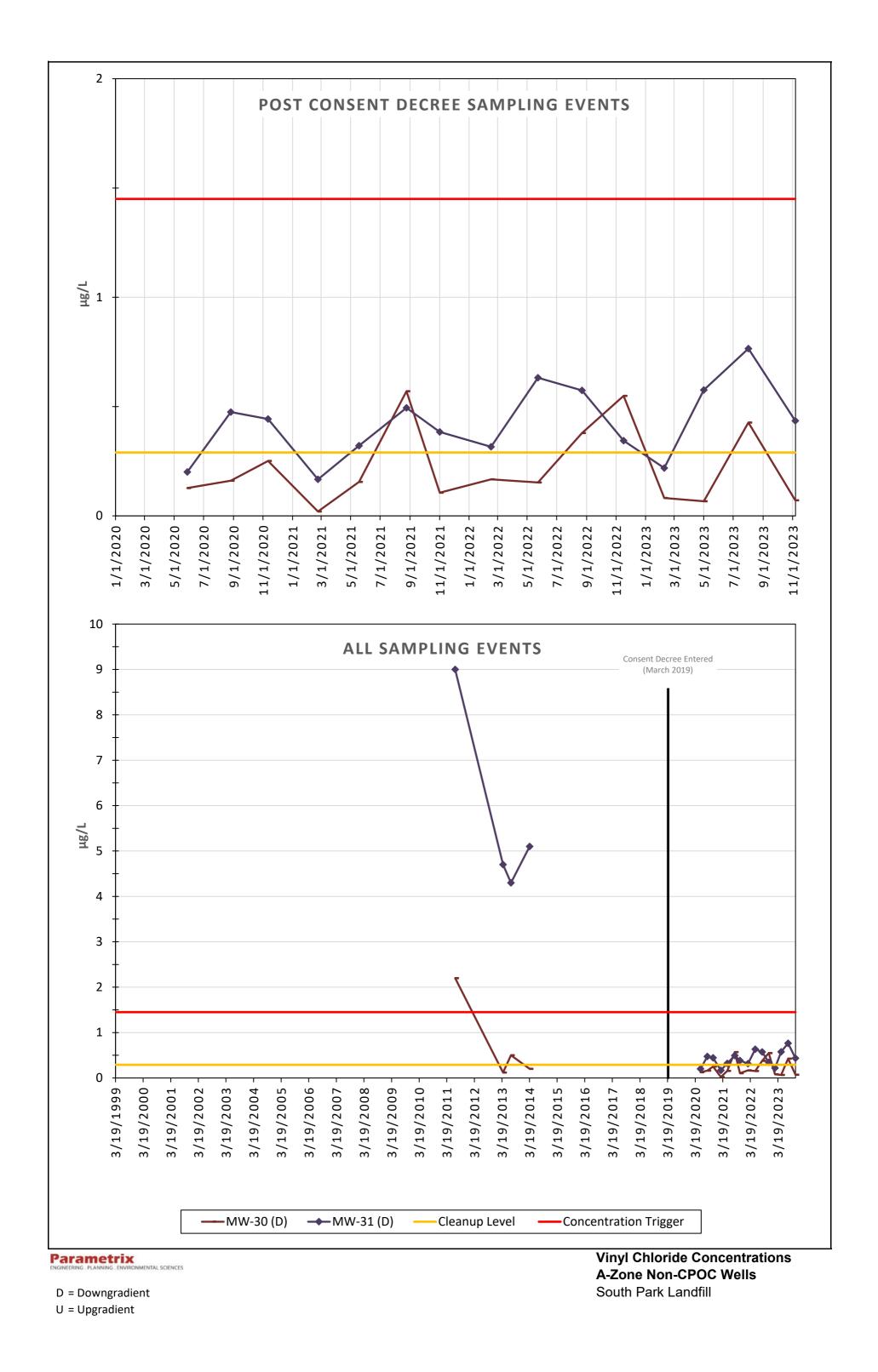


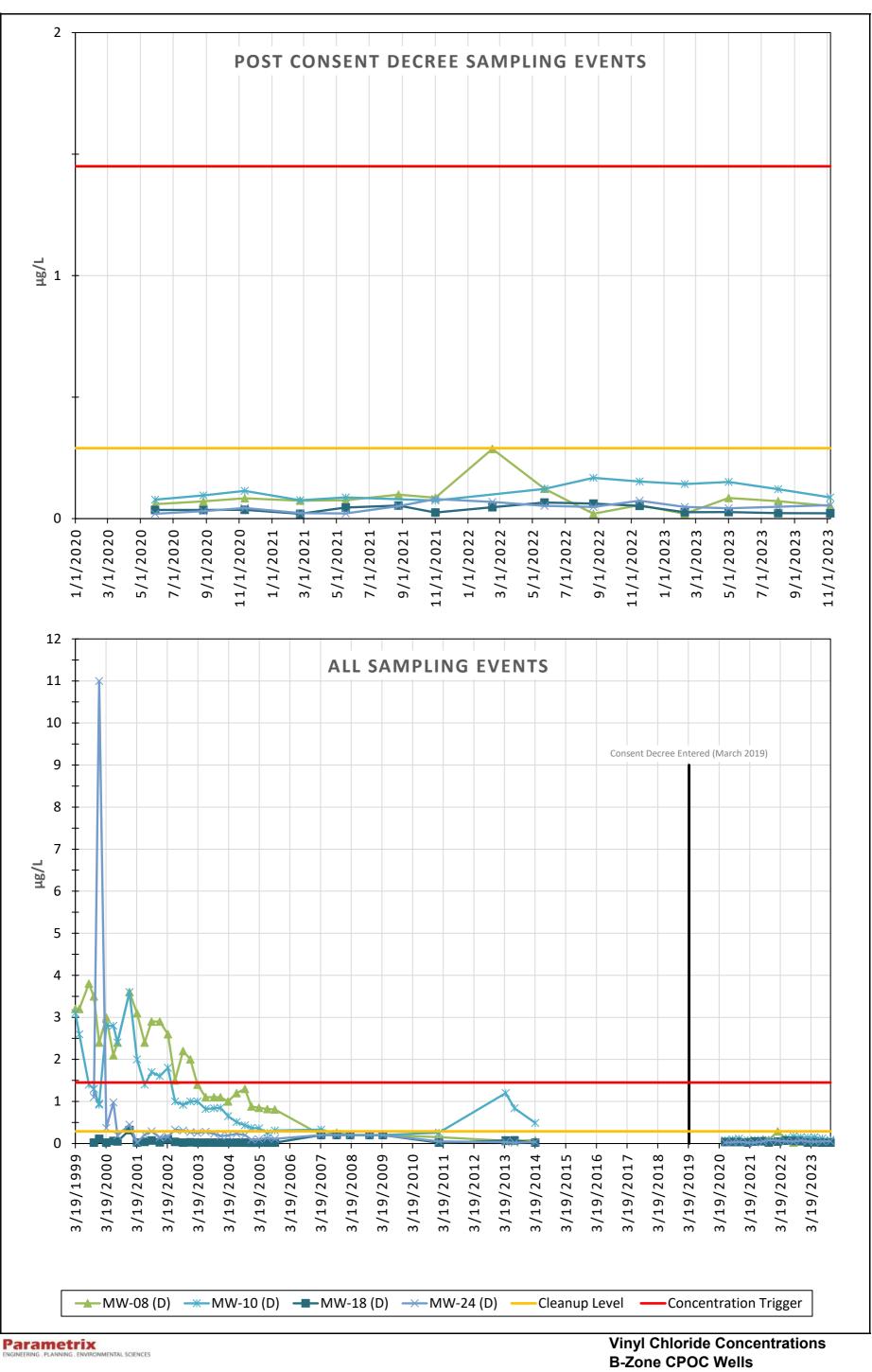

A-Zone CPOC Wells

South Park Landfill

D = Downgradient

U = Upgradient

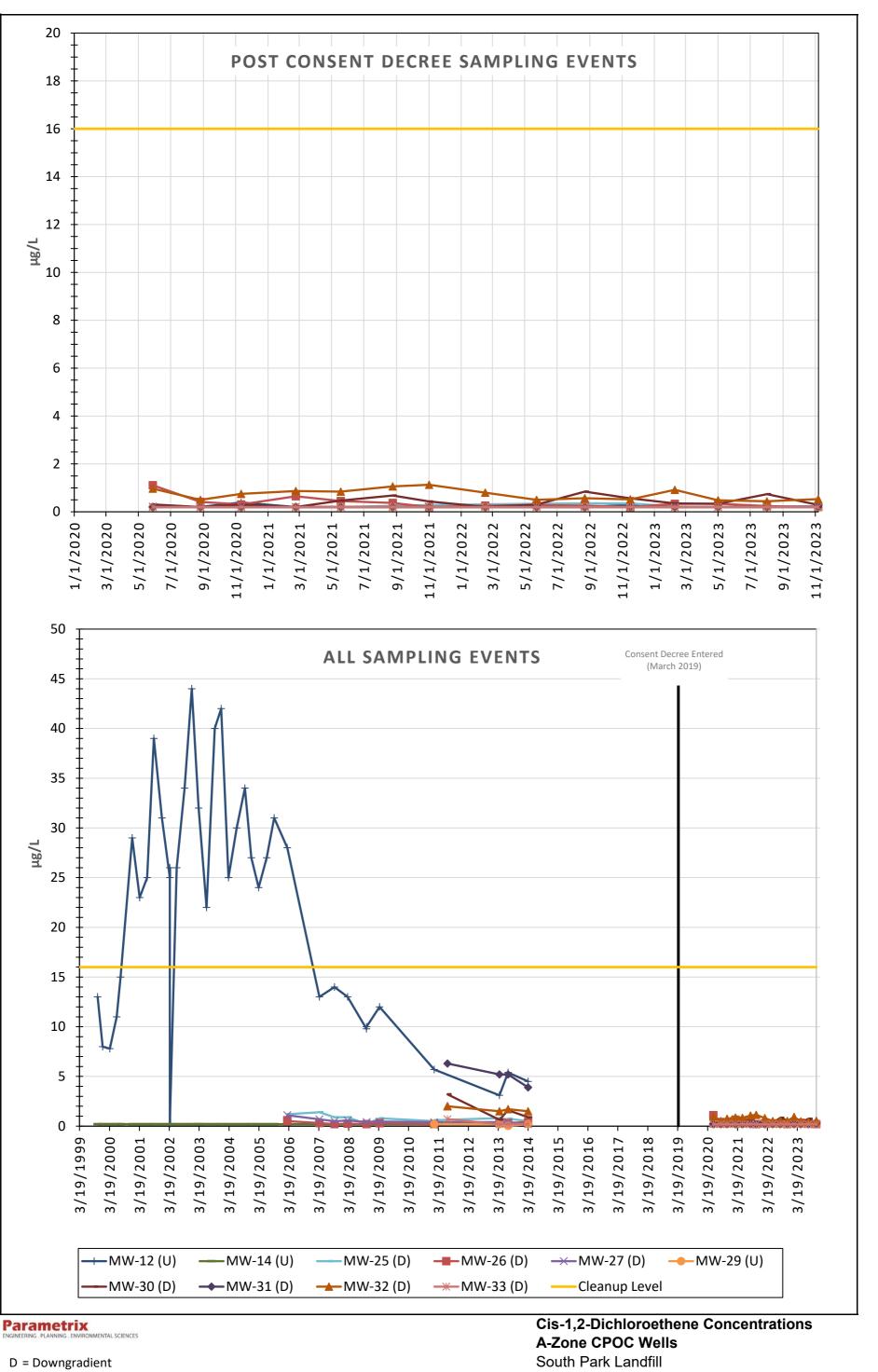

Parametrix ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

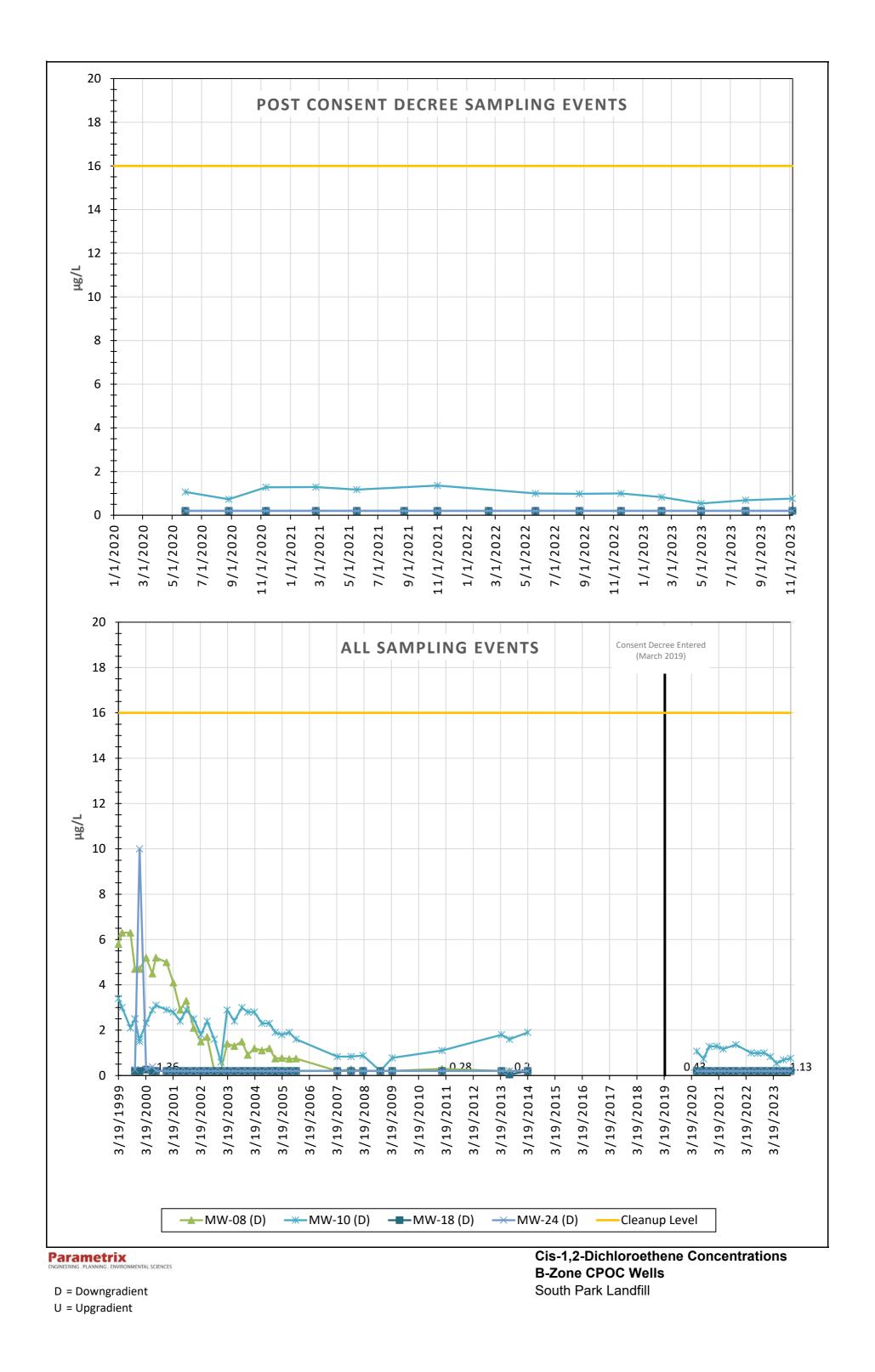

Vinyl Chloride Concentrations A-Zone CPOC Wells

D = Downgradient

U = Upgradient

South Park Landfill




D = Downgradient

U = Upgradient

South Park Landfill

U = Upgradient

Appendix D2

Trend Analyses

APPENDIX D2

Trend Analyses

Per the CAP, the Mann-Kendall test was used to statistically evaluate groundwater quality trends for vinyl chloride (μ g/L), total iron (mg/L), and total manganese (mg/L) using monitoring data collected in 2020 through 2023. The Mann-Kendall test is a nonparametric trend evaluation procedure that can be used when there are missing values or when the data do not conform to any particular distribution. The Mann-Kendall test only uses directional differences (positive, zero, negative) of the data rather than the measured values. In statistical terms, the Mann-Kendall test is a nonparametric test for zero slope of the linear regression of time-ordered data versus time (Gilbert 1987). For the Mann-Kendall test, the null hypothesis (H₀) is no trend (i.e., the observations are randomly ordered in time), which is tested against the alternative hypothesis (H_A) of an increasing or decreasing monotonic trend.

An assumption underlying the Mann-Kendall test is that the time-ordered data are monotonic (Salmi et al. 2002); that is, the successive values in the data set consistently increase or decrease, but not necessarily in a linear manner, and they display no seasonal or other cycle. If the data are not monotonic, then the statistical power of the Mann-Kendall trend test is reduced. One example of non-monotonic data is precipitation, which can vary seasonally as well as by larger time intervals (e.g., years or decades). Statistical power is the strength of a test to identify an actual release of contaminated groundwater or difference from a compliance standard (EPA 2009). In the case of the Mann-Kendall test, statistical power is the strength to correctly identify an increasing or decreasing trend in a set of time-ordered data.

The Mann-Kendall test computes an **S** statistic based on pair-wise differences between each timeordered value and all earlier values. A positive **S** value indicates an increasing trend, zero indicates no trend, and a negative value indicates a decreasing trend. The magnitude of **S** does not indicate the slope of the trend; instead, large positive values of **S** indicate that measurements taken later in time tend to be larger than those taken earlier. Similarly, large negative values of **S** indicate that measurements taken later in time tend to be smaller than those taken earlier (Gilbert 1987).

Significance of the Mann-Kendall test **S** statistic is a function of the magnitude of **S** and the number of measurements, with a larger positive or negative value of **S** and a greater number of measurements leading to a higher statistical significance (Gilbert 1987).

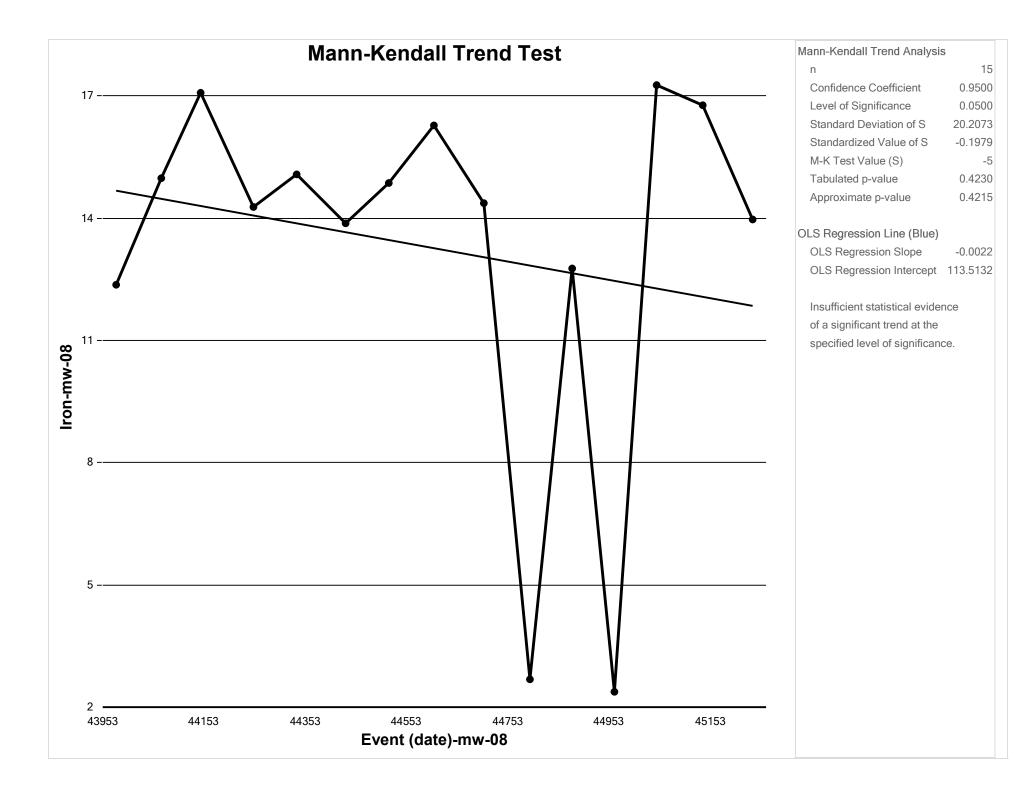
To evaluate trends in the monitoring data using the Mann-Kendall test, the EPA (2022) program ProUCL (version 5.2.0) was used. Per the CAP and Washington Department of Ecology guidance (Ecology 2005), groundwater monitoring data were evaluated at a 95 percent confidence level (5 percent significance level). That is, a trend was considered statistically significant if the confidence level was greater than 95 percent (the significance level was less than 5 percent).

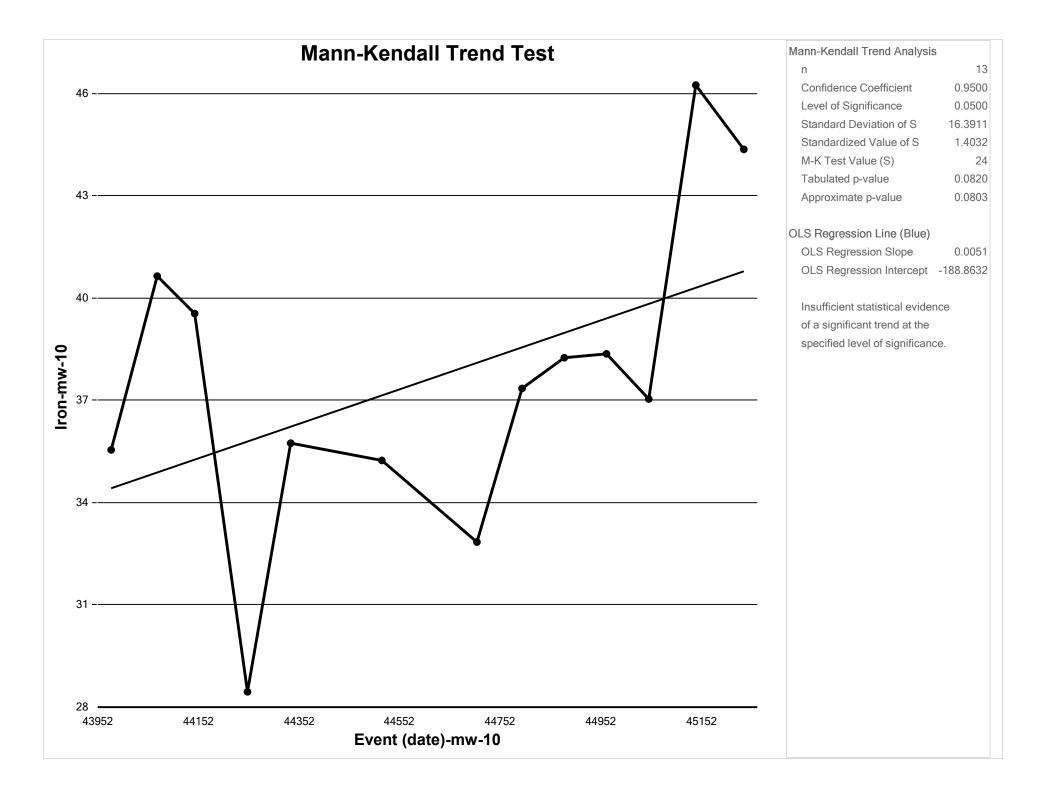
Table 1 lists the percent non-detects by chemical for each of the 14 wells evaluated. For data sets with non-detect, or "censored", results, per the Ecology *Guidance for Monitoring at Landfills and Other Facilities* (Ecology 2018), the censored data were handled as follows:

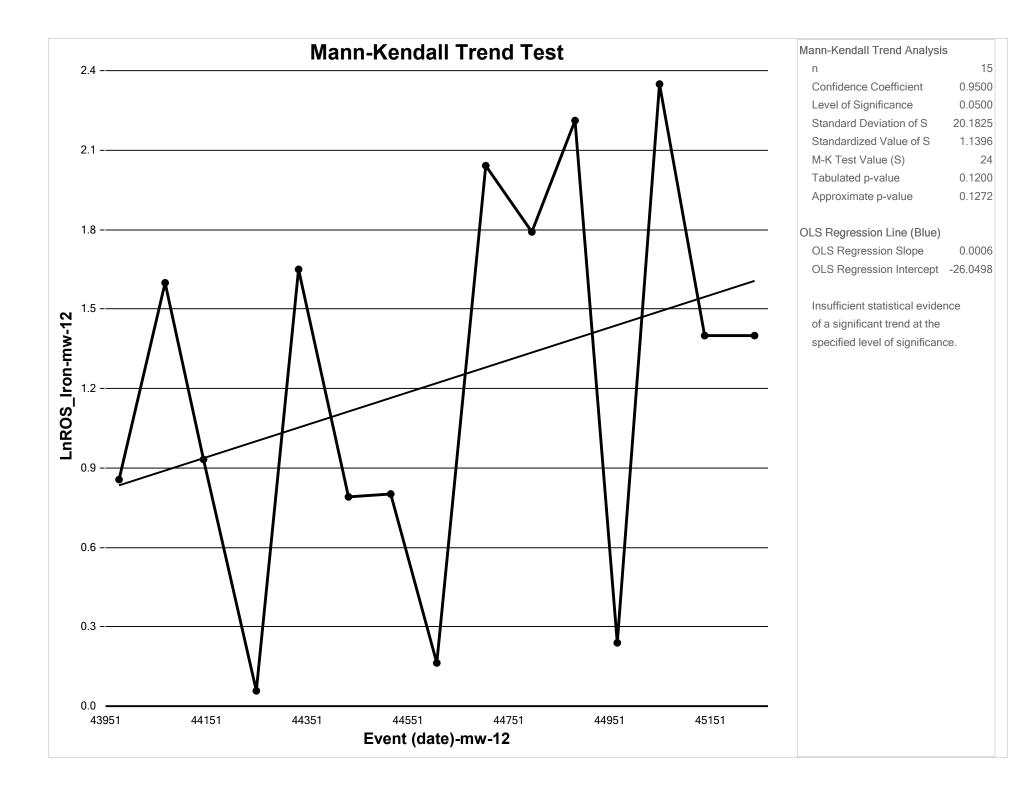
• ProUCL guidance (EPA 2022) states that the substitution of half detection limits for censored values is not recommended, as the bias cannot be quantified with certainty. Because the Mann-Kendall test is a nonparametric test, it was not necessary to substitute censored values with half detection limits for wells with fewer than 15 percent non-detects. The Mann-Kendall test only

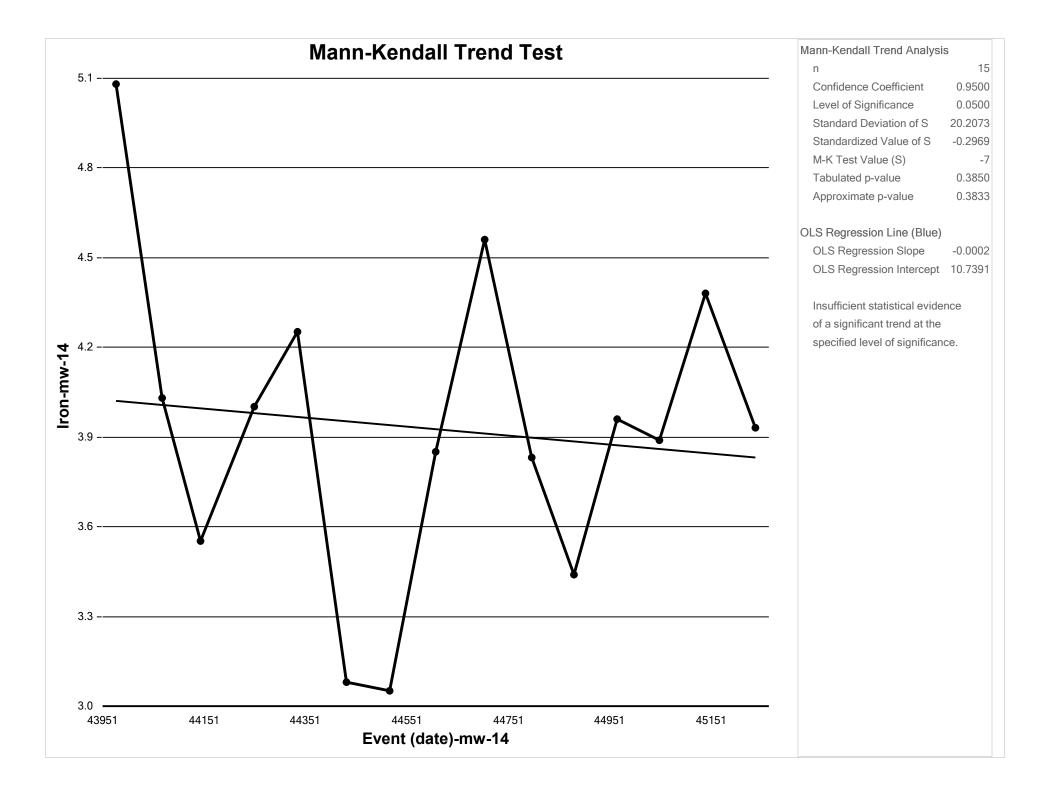
uses directional differences (positive, zero, negative), which are not affected by use of detection limits or half detection limits for censored values.

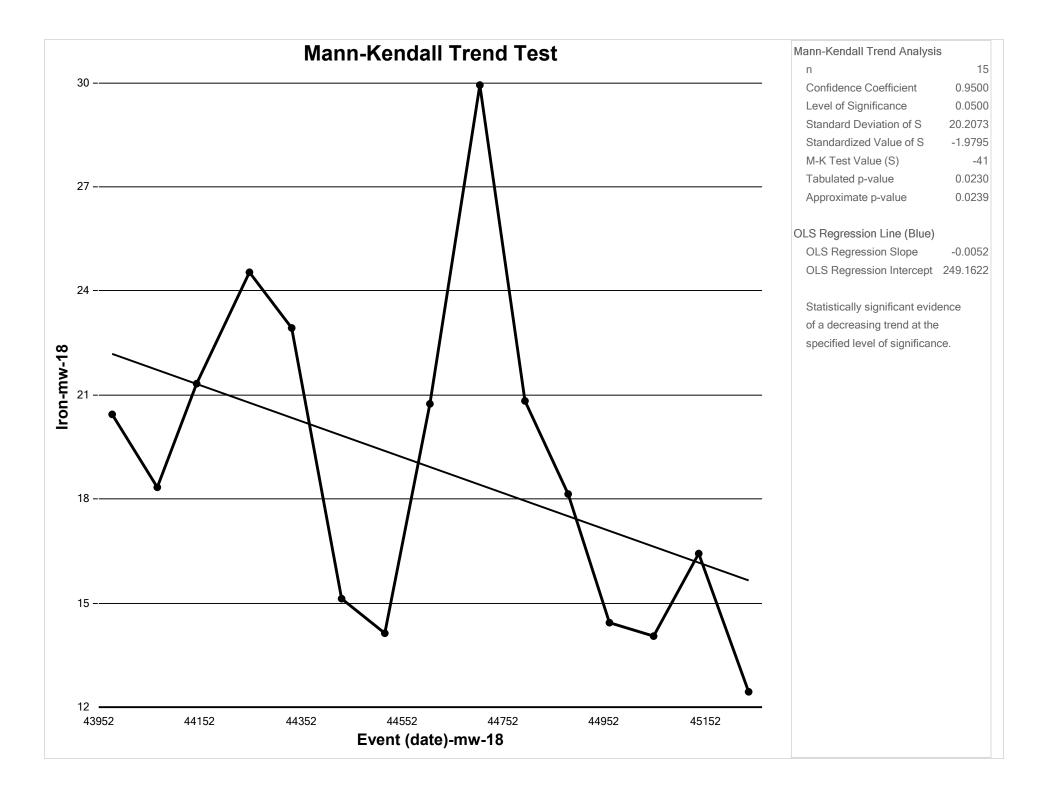
- For all wells, censored values were replaced with estimated values using the ROS method prior to statistical analysis. The ROS method fits a regression line to the uncensored data, then assigns values from that line below the detection limit to estimate concentrations for the censored observations. The uncensored values are then combined with the estimated censored values for further statistical analysis.
- Wells with more than 50 percent but less than 90 percent non-detects for a specific chemical were analyzed using the Mann-Kendall test; however, the results should be interpreted with caution, as significance of the analysis may be diminished due the large number of censored data. Statistical evaluations are typically not performed on data sets with more than 50 percent non-detects because meaningful trends are difficult to determine due to the large number of censored values.

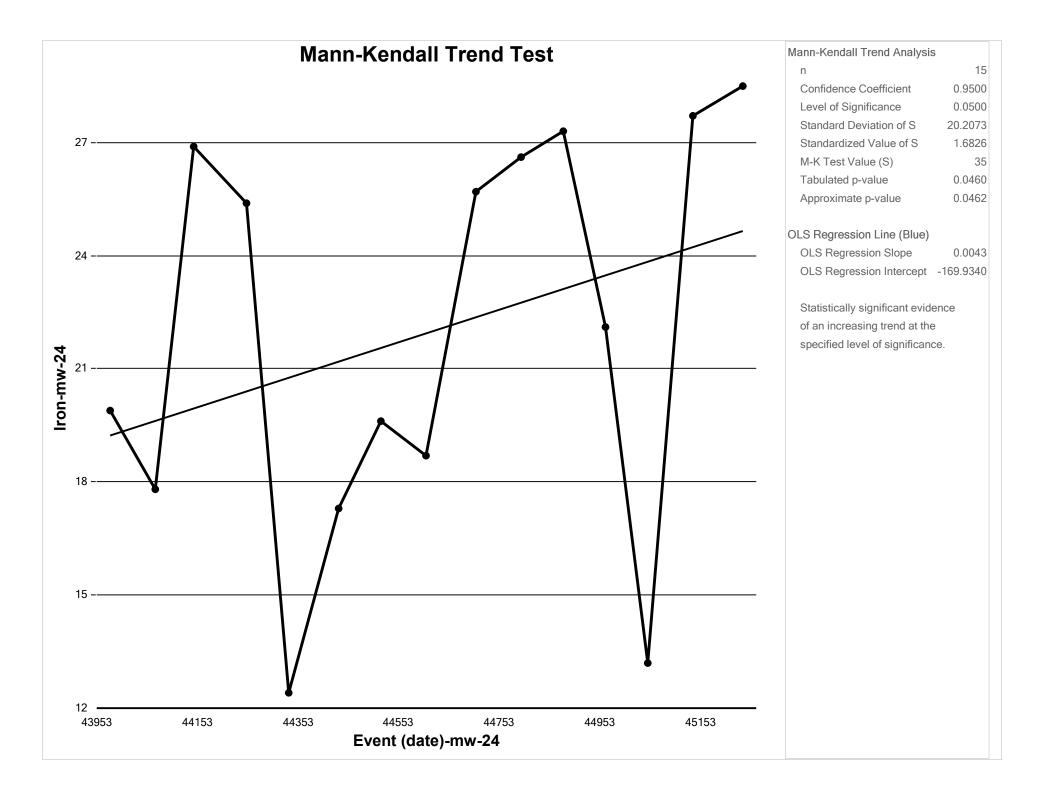

For wells with more than 90 percent non-detects (indicating only one or no detected values), Mann-Kendall tests were not run (see Table 1). No vinyl chloride, total iron, or total manganese values from any wells were detected at an order of magnitude higher than all other results (see time-series plot in Appendix D1) or means (per Ecology 2018), so no statistical outliers were suggested in the data.

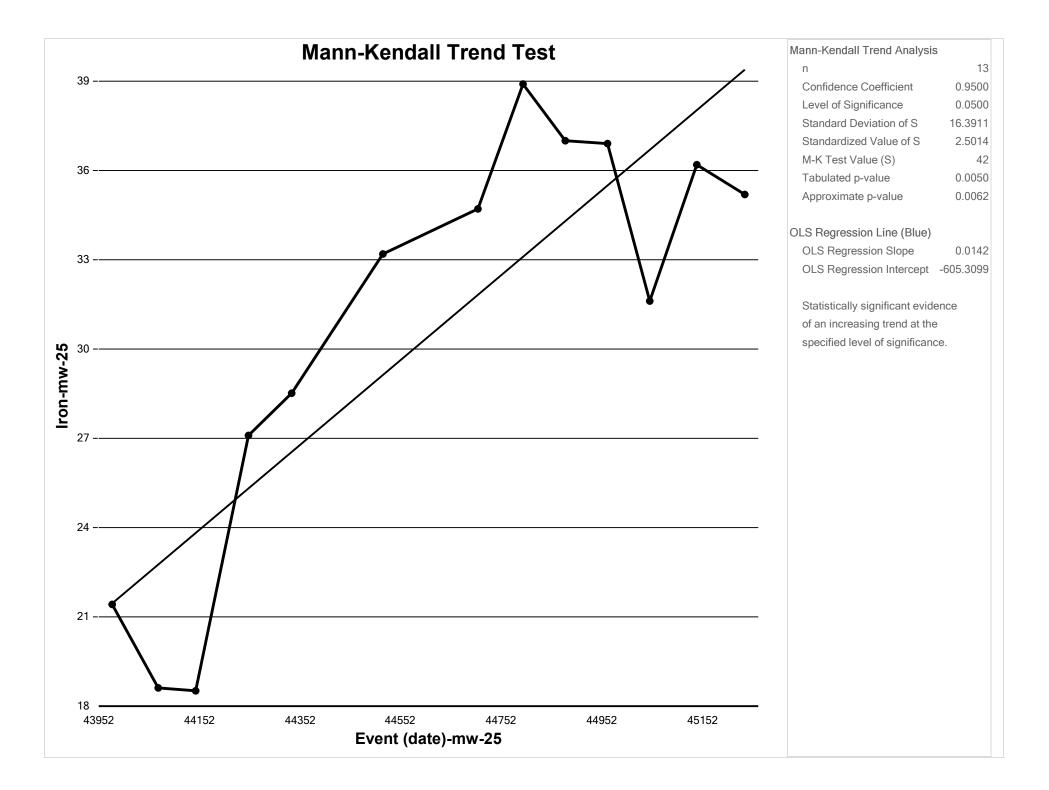

REFERENCES

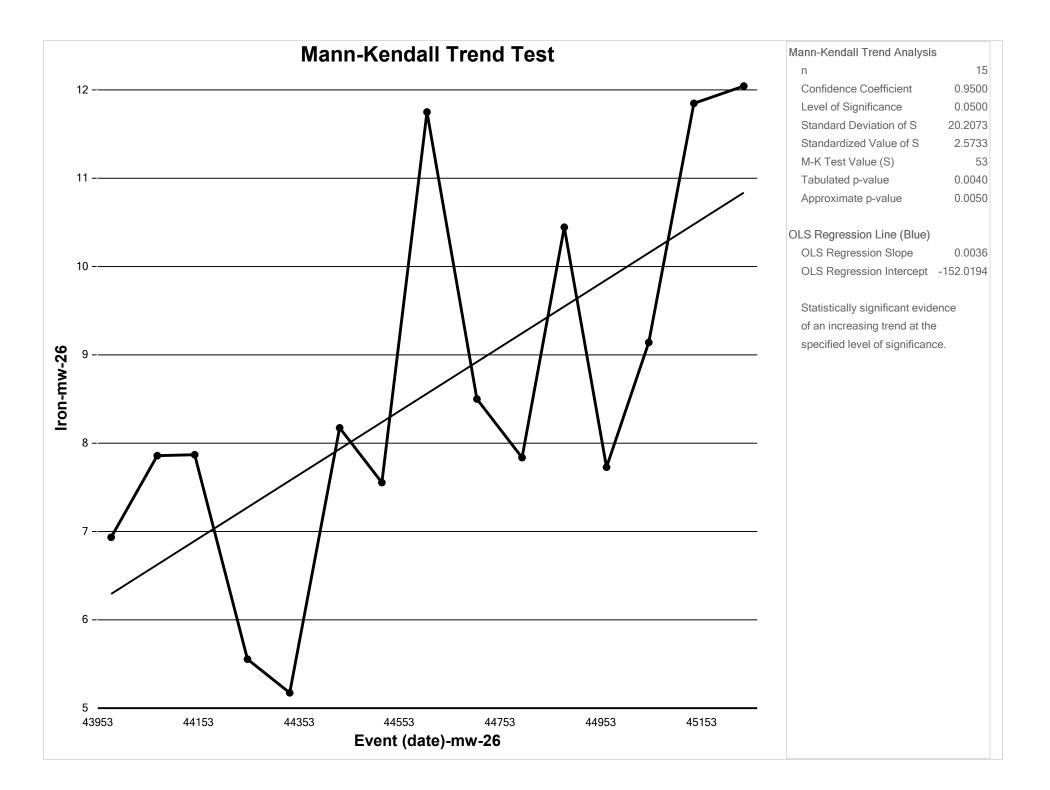

- Ecology (Washington State Department of Ecology). 2005. Implementation Guidance for the Ground Water Quality Standards. Washington State Department of Ecology Publication #96-02. Olympia, WA.
- Ecology. (Washington State Department of Ecology). 2018. Guidance for Monitoring at Landfills and Other Facilities Regulated Under Chapters 173-304, 173-306, 173-350, and 173-351 WAC, Revised December 2018. Washington State Department of Ecology Publication no. 12-07-072.
- EPA (U.S. Environmental Protection Agency). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance. EPA 530/R-09-007. March 2009. U.S. Environmental Protection Agency Office of Resource and Recovery. Washington, D.C.
- EPA (U.S. Environmental Protection Agency). 2022. ProUCL Version 5.2.0 Technical Guide: Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. April 2022. Prepared by Neptune and Company, Inc., Lakewood, CO. Prepared for U.S. Environmental Protection Agency Office of Research and Development. Washington, D.C.
- Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. John Wiley & Sons, Inc. New York, NY. 320 pages.

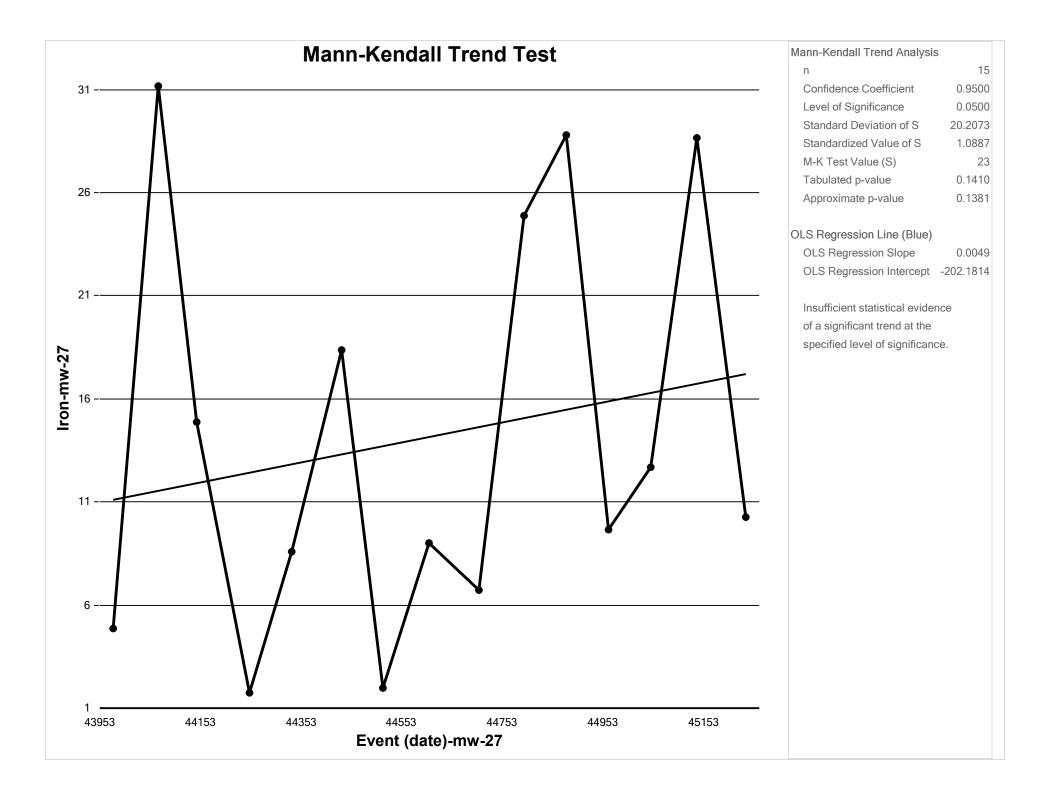

	Vinyl Chloride				Total Iron				Total Manganese			
Well	Sample Size	Number of Detects	Number of Non-detects	Percent of Non-detects	Sample Size	Number of Detects	Number of Non-detects	Percent of Non-detects	Sample Size	Number of Detects	Number of Non-detects	Percent of Non-detects
MW-08	15	13	2	13.33	15	15	0	0	15	15	0	0
MW-10	13	13	0	0	13	13	0	0	13	13	0	0
MW-12	15	0	15	100	15	13	2	13.33	15	15	0	0
MW-14	15	0	15	100	15	15	0	0	15	15	0	0
MW-18	15	14	1	6.67	15	15	0	0	15	15	0	0
MW-24	15	14	1	6.67	15	15	0	0	15	15	0	0
MW-25	13	13	0	0	13	13	0	0	13	13	0	0
MW-26	15	11	4	26.67	15	15	0	0	15	15	0	0
MW-27	15	12	3	20.00	15	15	0	0	15	15	0	0
MW-29	15	4	11	73.33	15	15	0	0	15	15	0	0
MW-30	15	14	1	6.67	15	15	0	0	15	15	0	0
MW-31	15	15	0	0	15	15	0	0	15	15	0	0
MW-32	15	15	0	0	15	15	0	0	15	15	0	0
MW-33	15	15	0	0	15	15	0	0	15	15	0	0

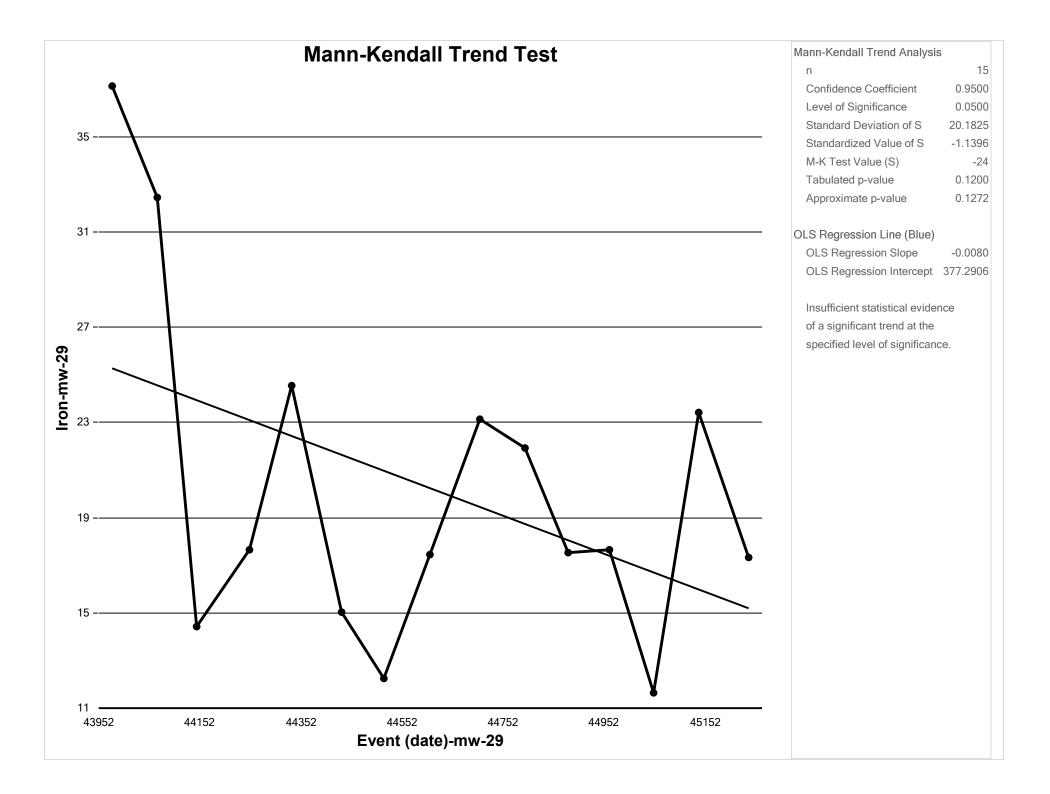

Table 1. Summary of Data Sets Used for Trend Tests

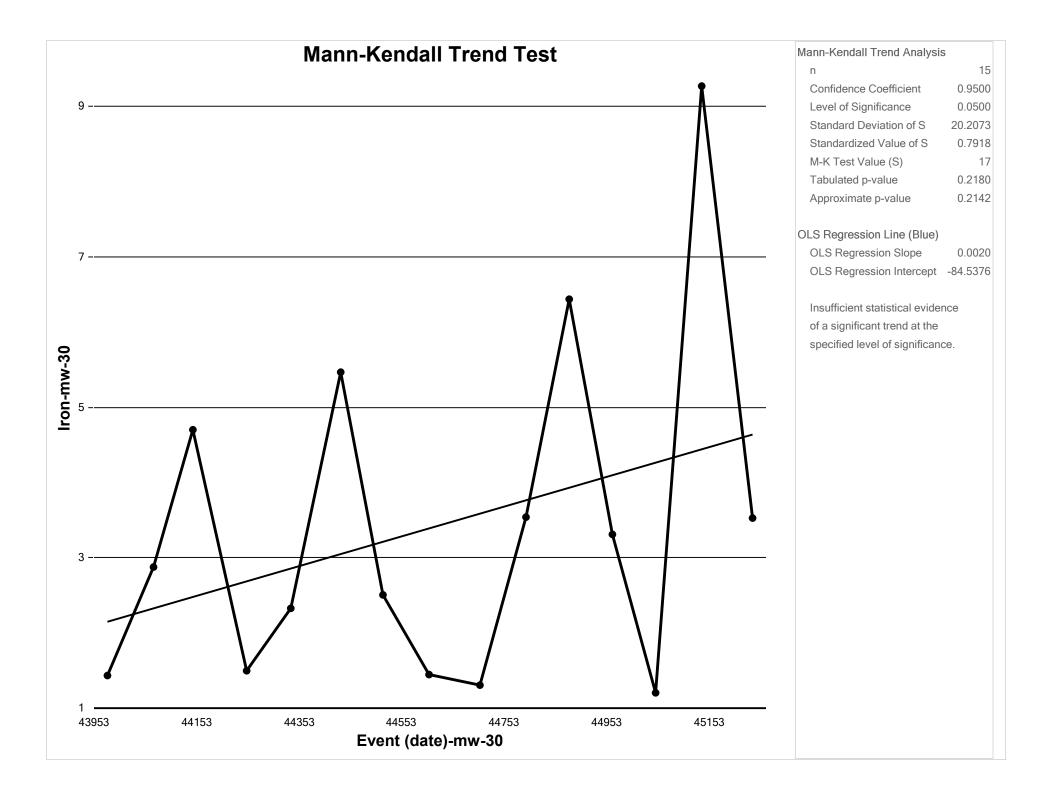


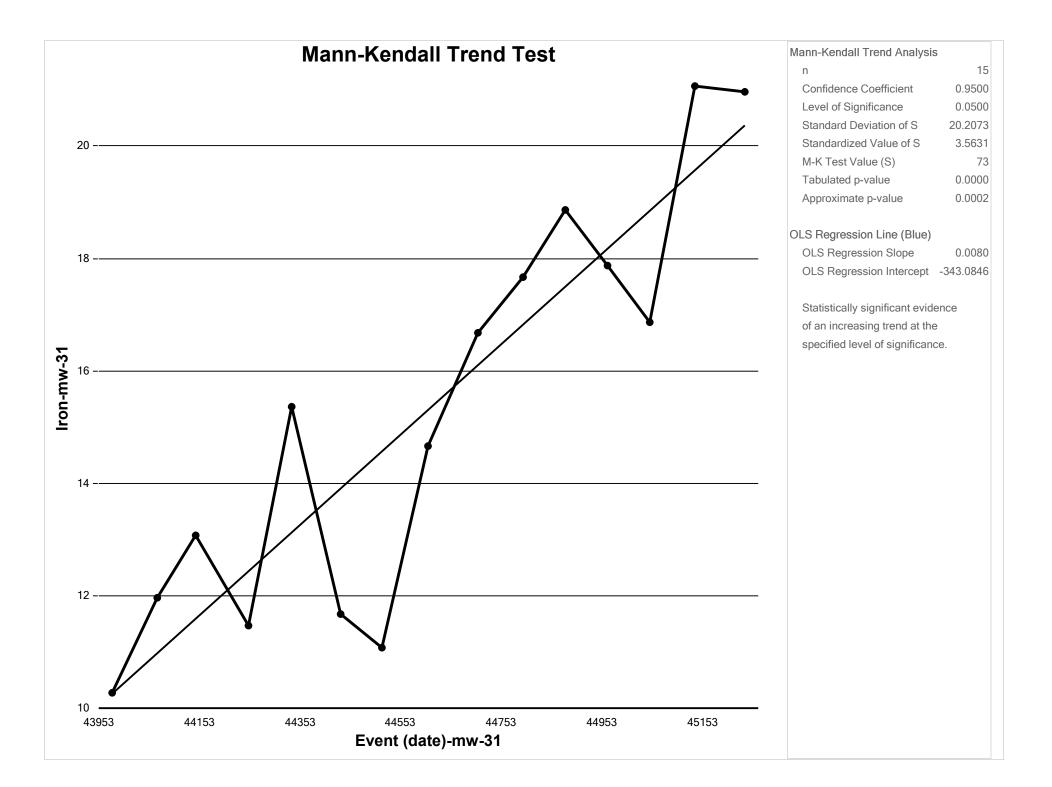


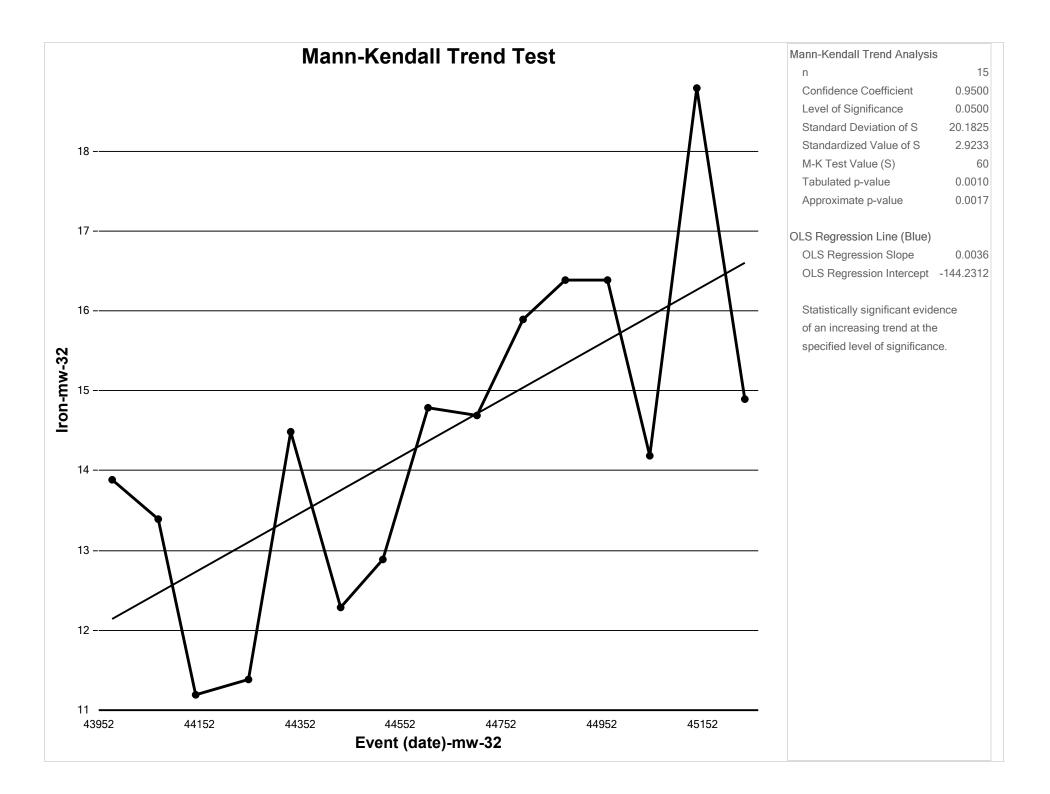


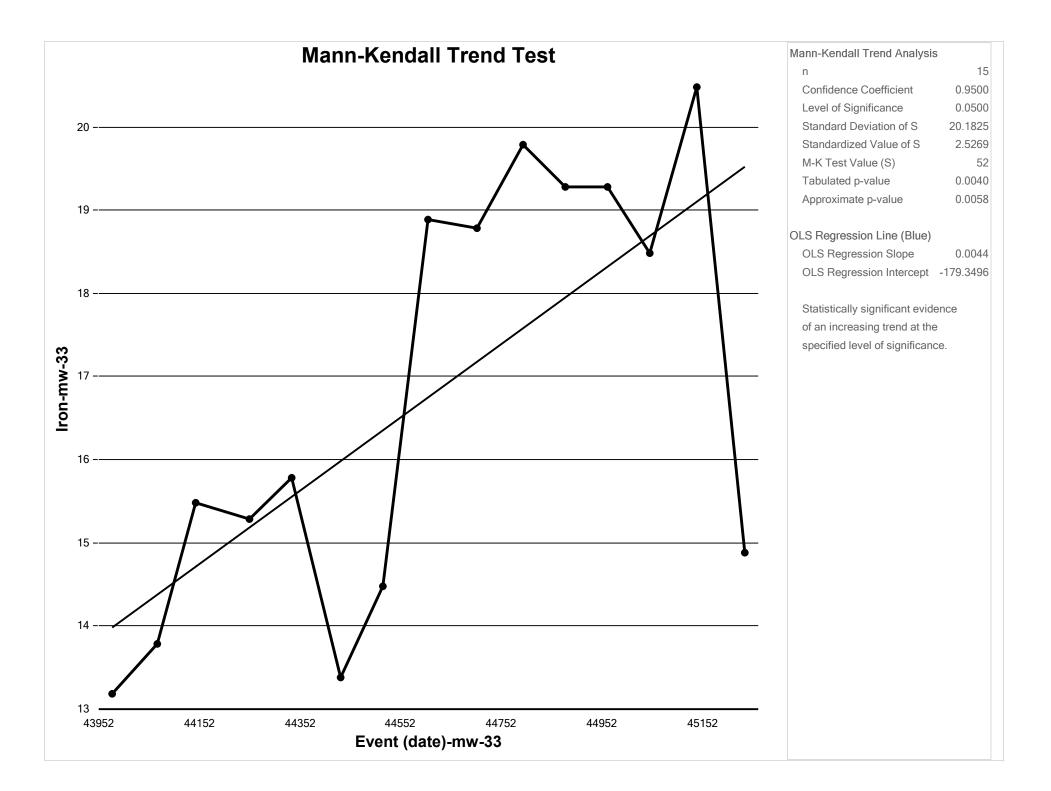


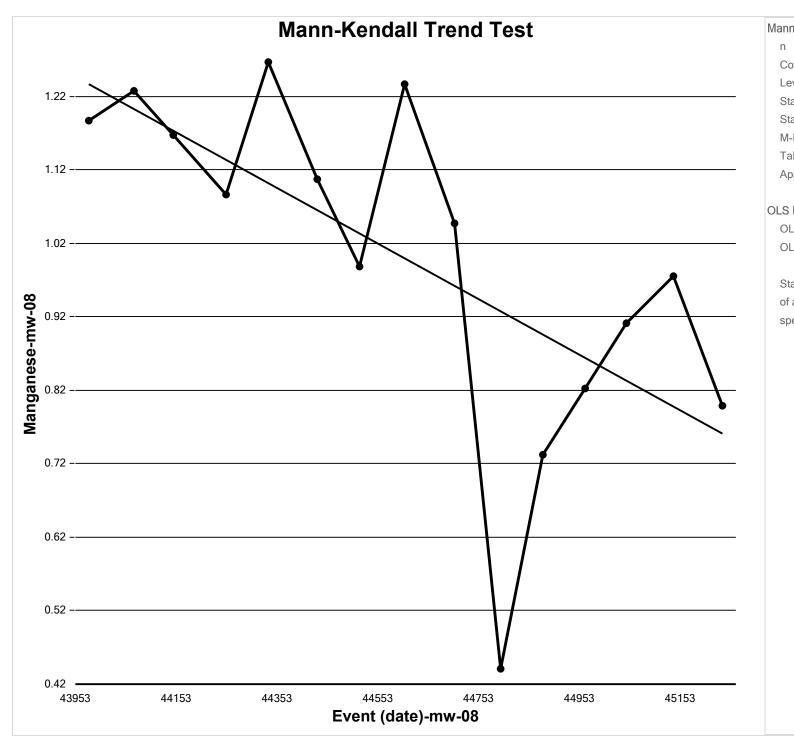


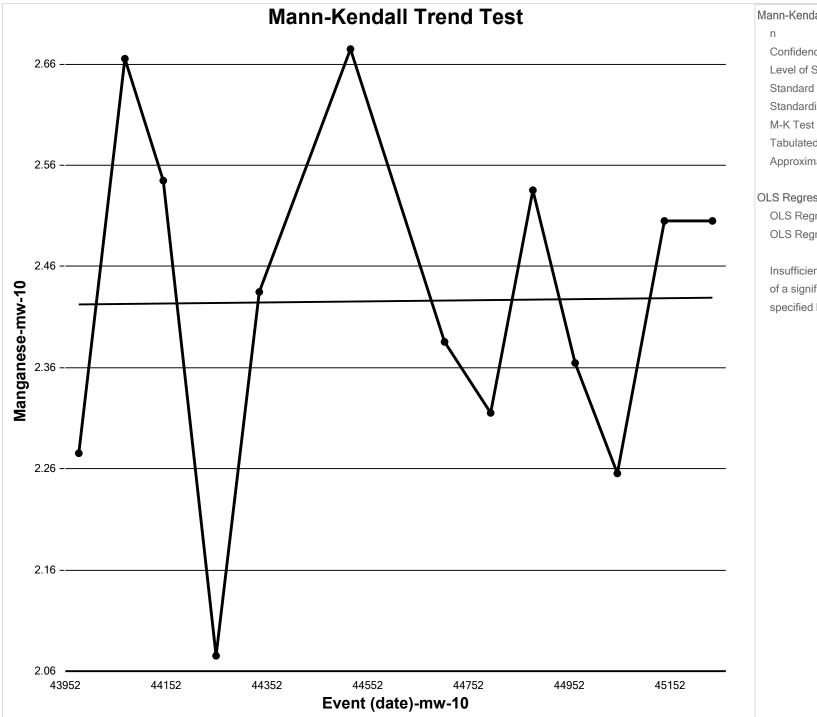


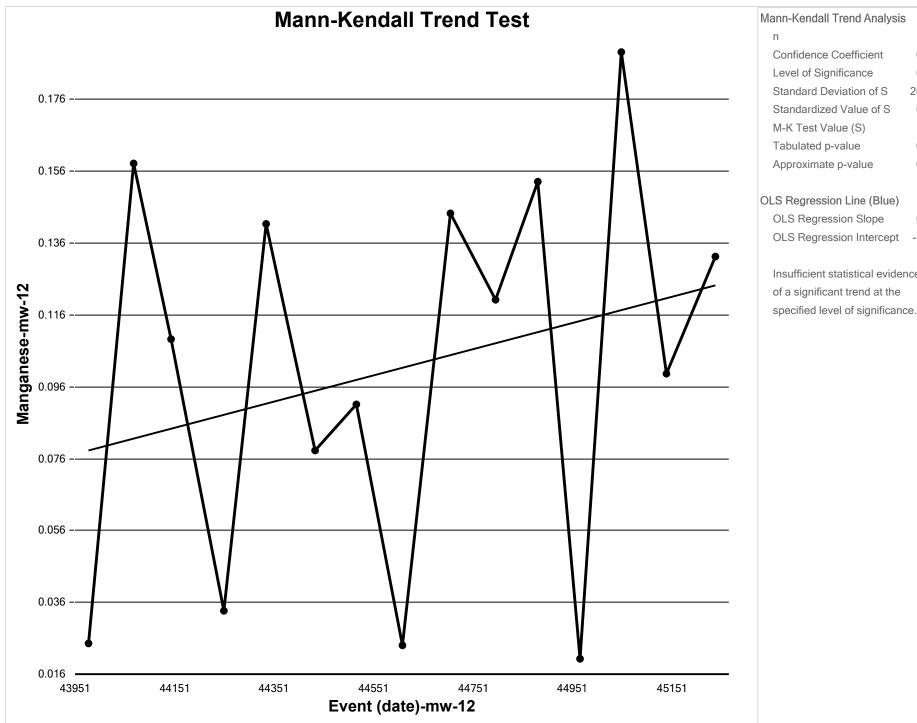




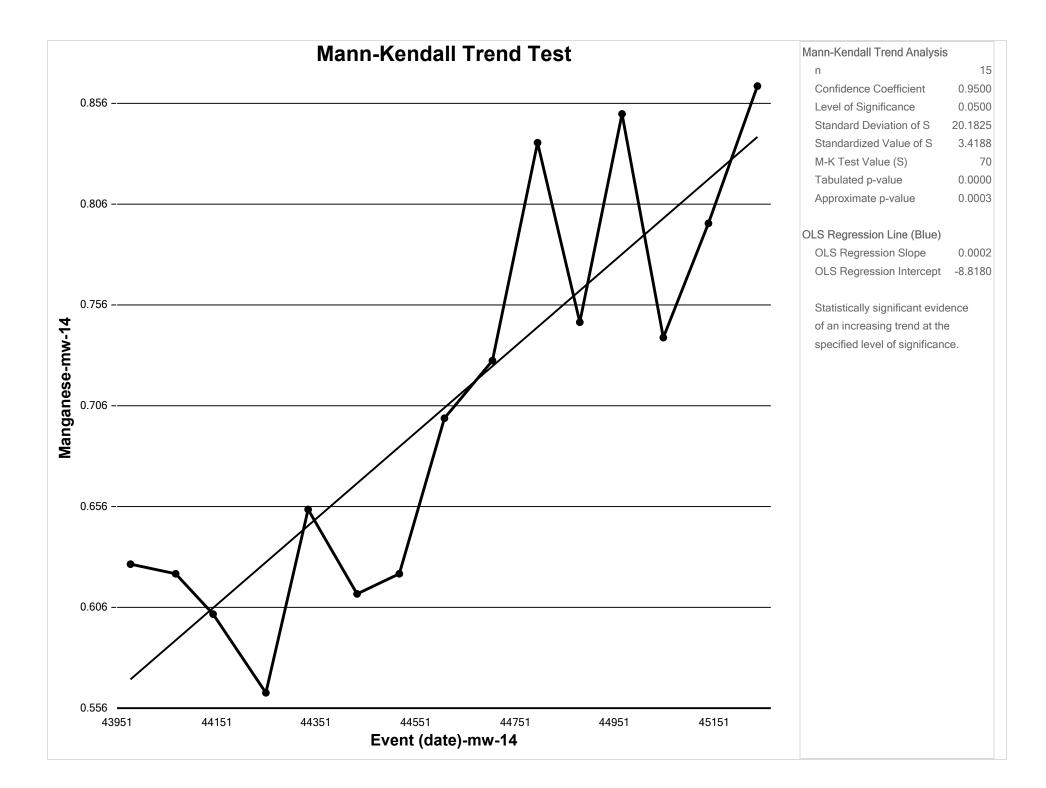


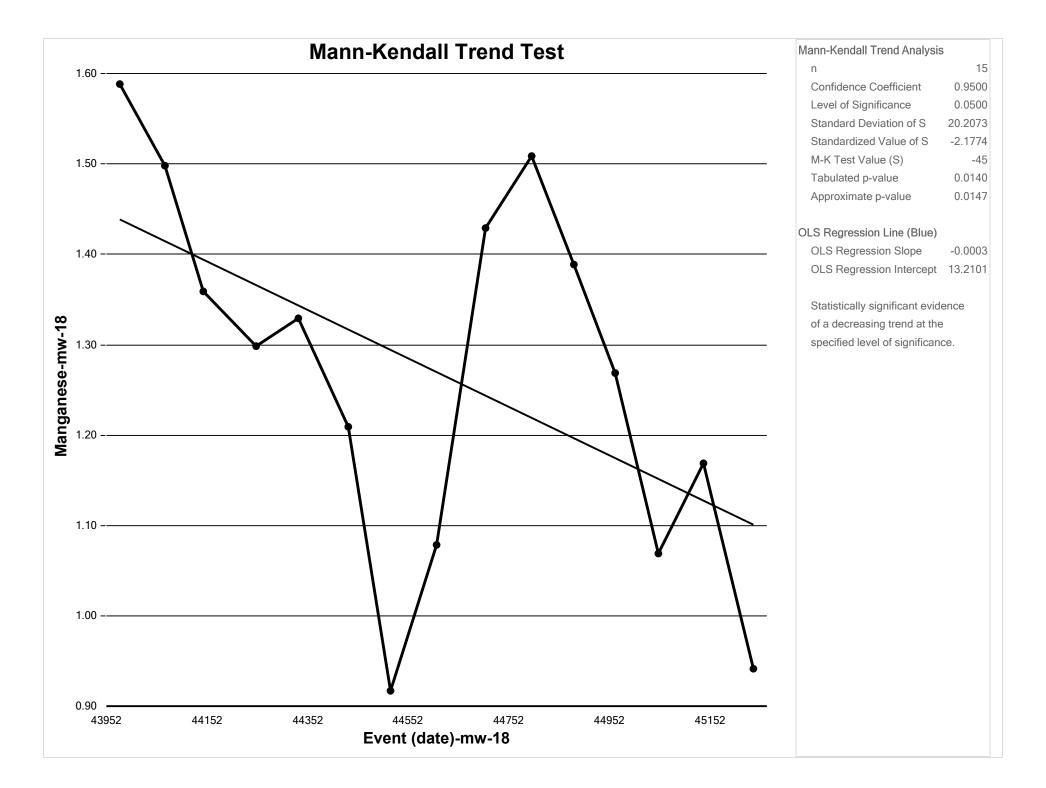


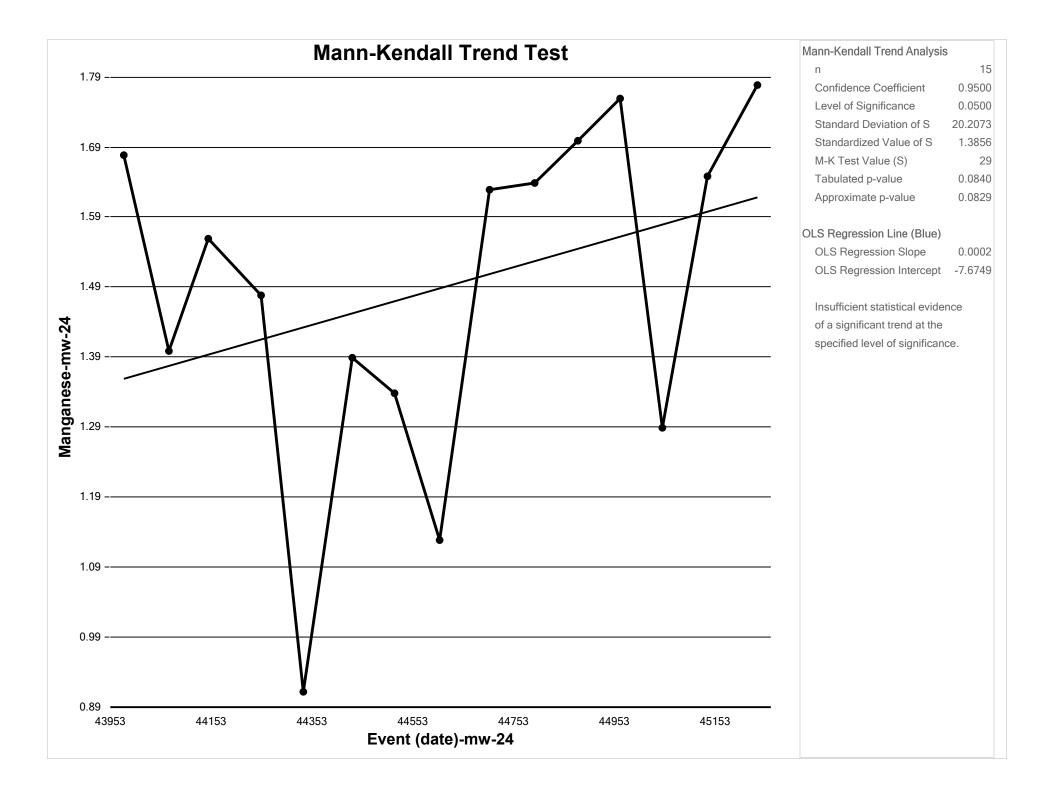


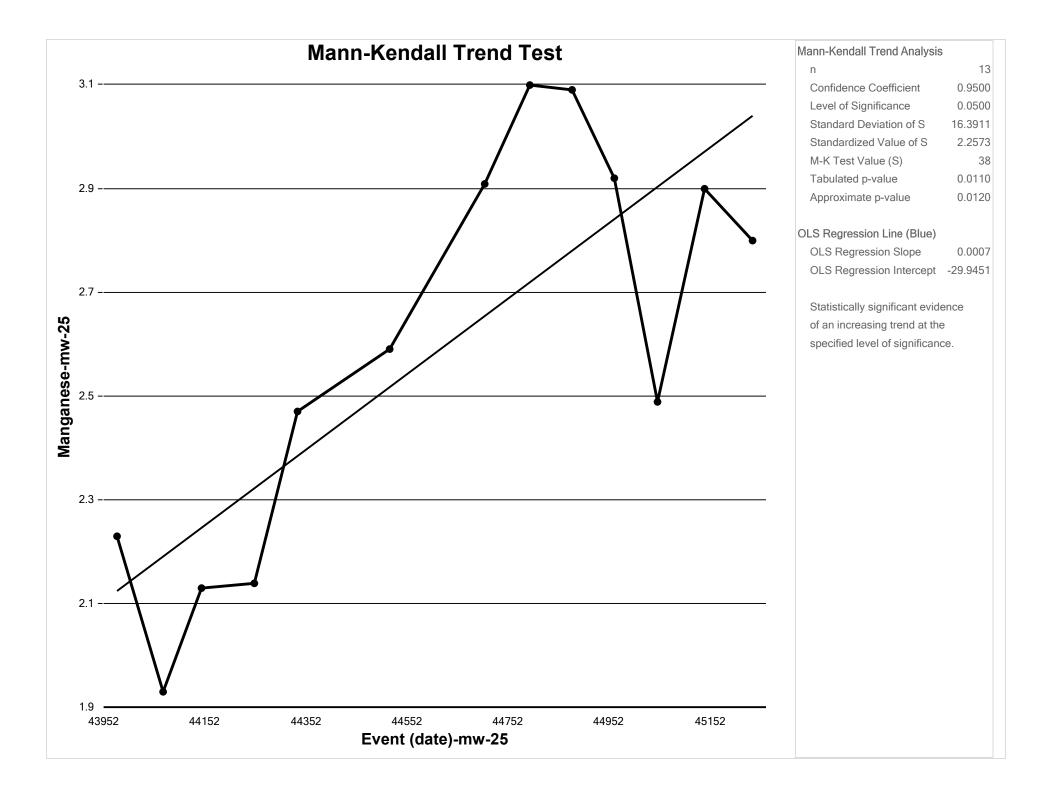

n-Kendall Trend Analysis		
	15	
onfidence Coefficient	0.9500	
evel of Significance	0.0500	
andard Deviation of S	20.2073	
andardized Value of S	-2.6723	
-K Test Value (S)	-55	
abulated p-value	0.0030	
oproximate p-value	0.0038	
Regression Line (Blue)		
LS Regression Slope	-0.0004	
LS Regression Intercept	17.8786	
atistically significant evide	ence	
a de sus estres duras de tables		

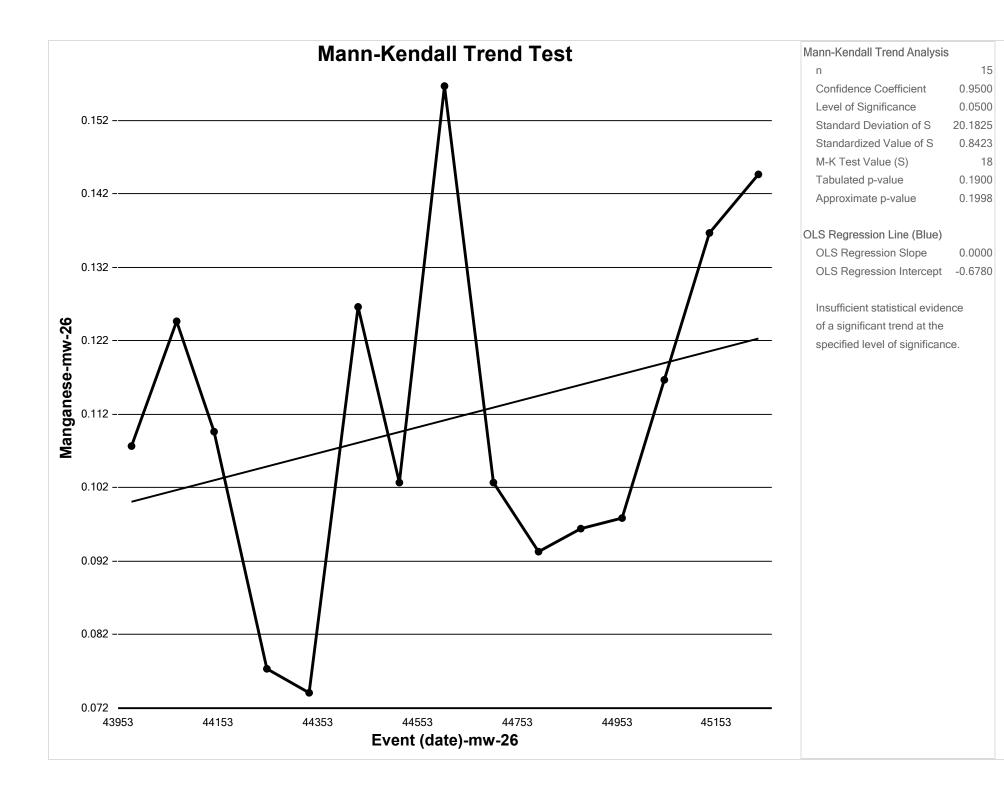
of a decreasing trend at the specified level of significance.

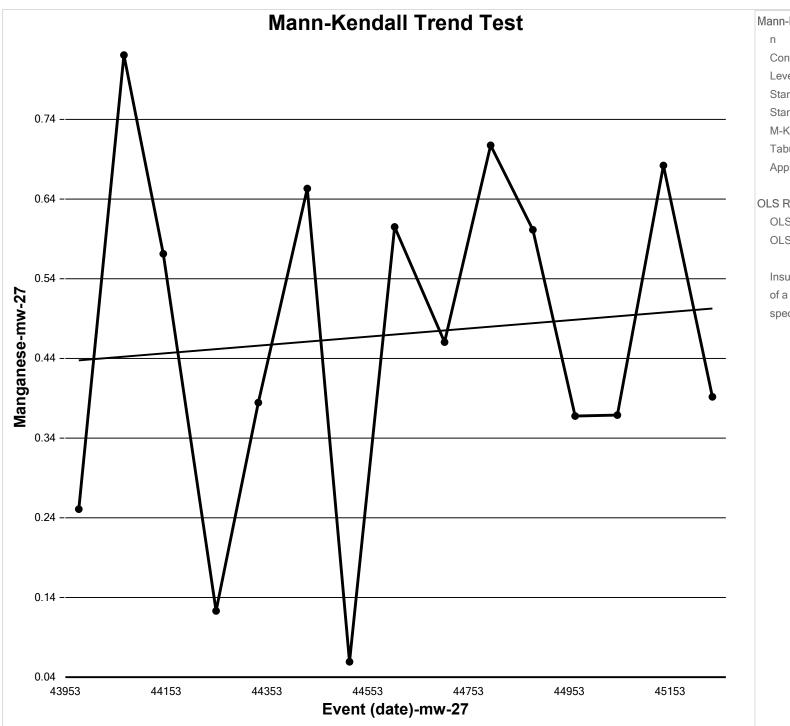


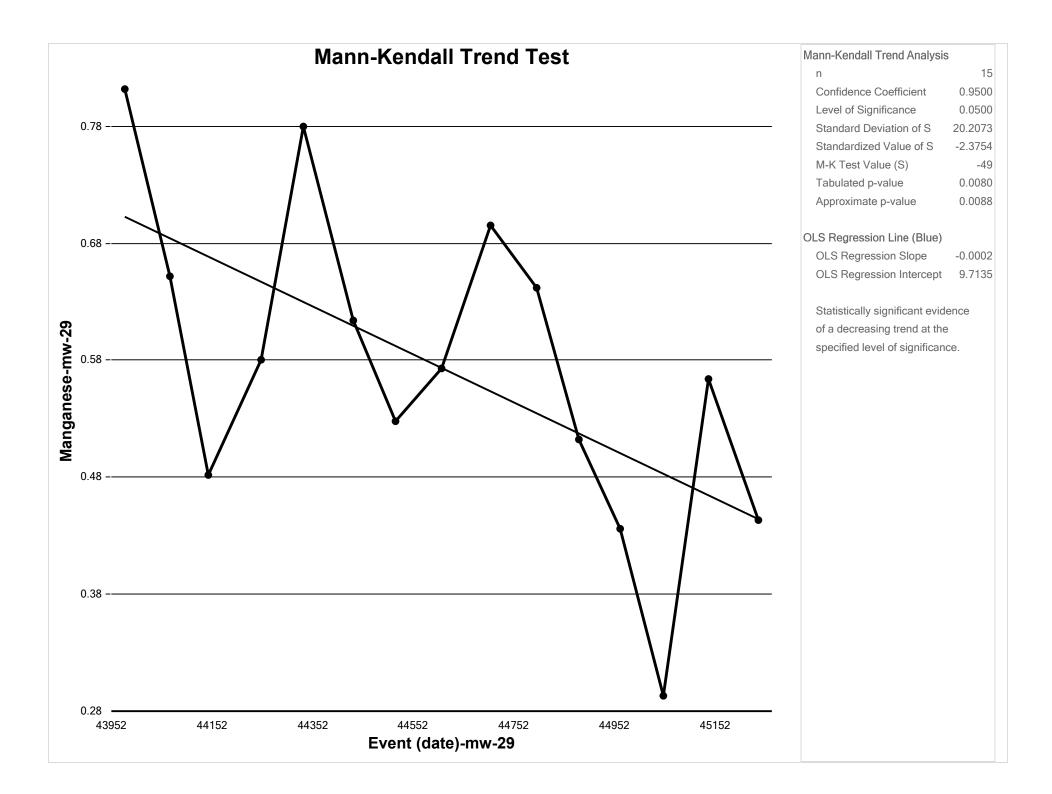

n-Kendall Trend Analysis		
	13	
onfidence Coefficient	0.9500	
evel of Significance	0.0500	
andard Deviation of S	16.3605	
andardized Value of S	-0.2445	
-K Test Value (S)	-5	
bulated p-value	0.4290	
proximate p-value	0.4034	
Regression Line (Blue)		
_S Regression Slope	0.0000	
_S Regression Intercept	2.1948	
sufficient statistical eviden	се	

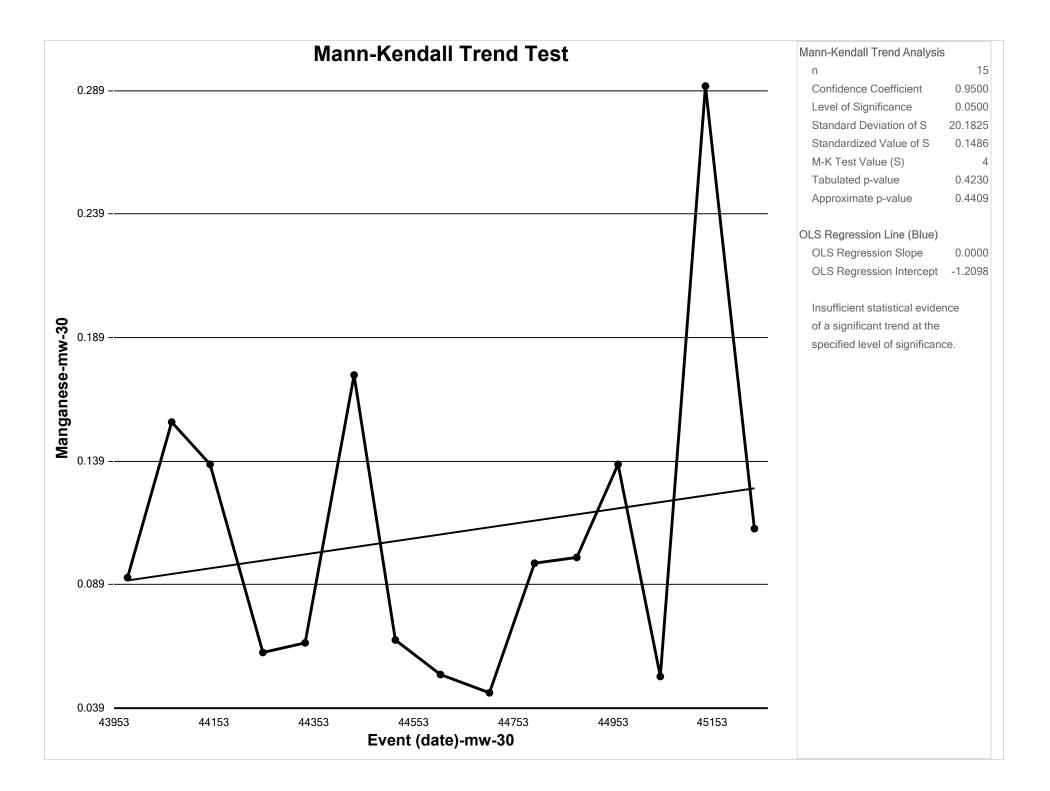

Insufficient statistical evidence of a significant trend at the specified level of significance.

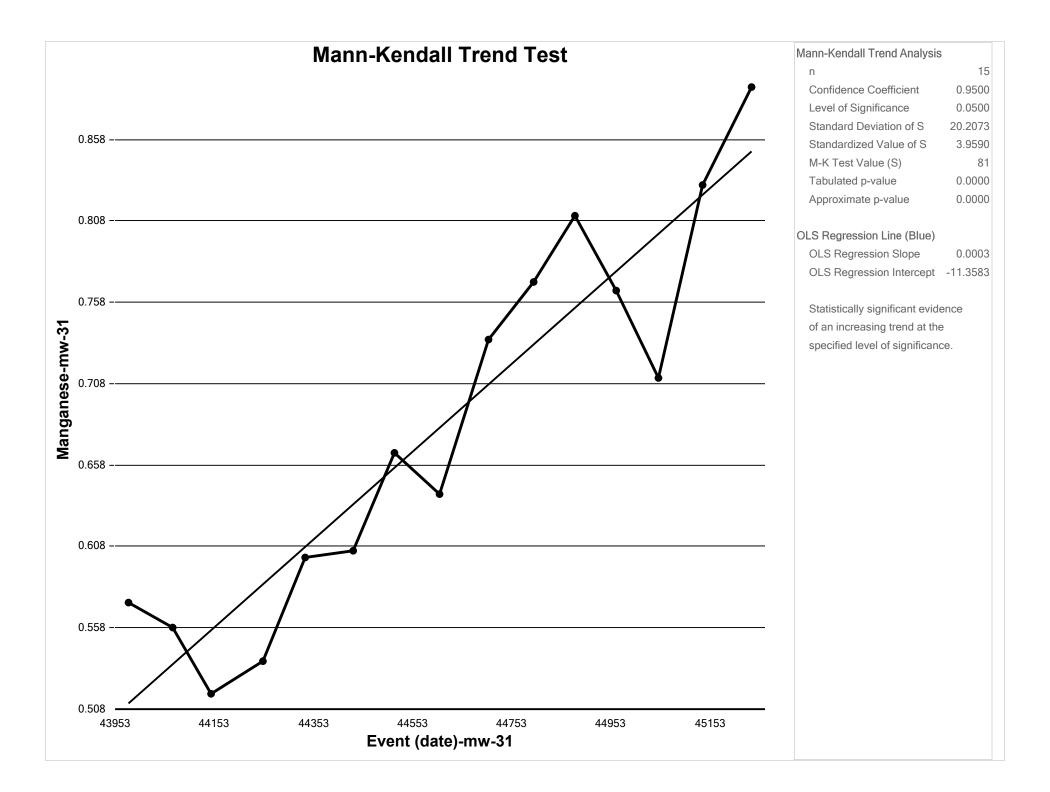


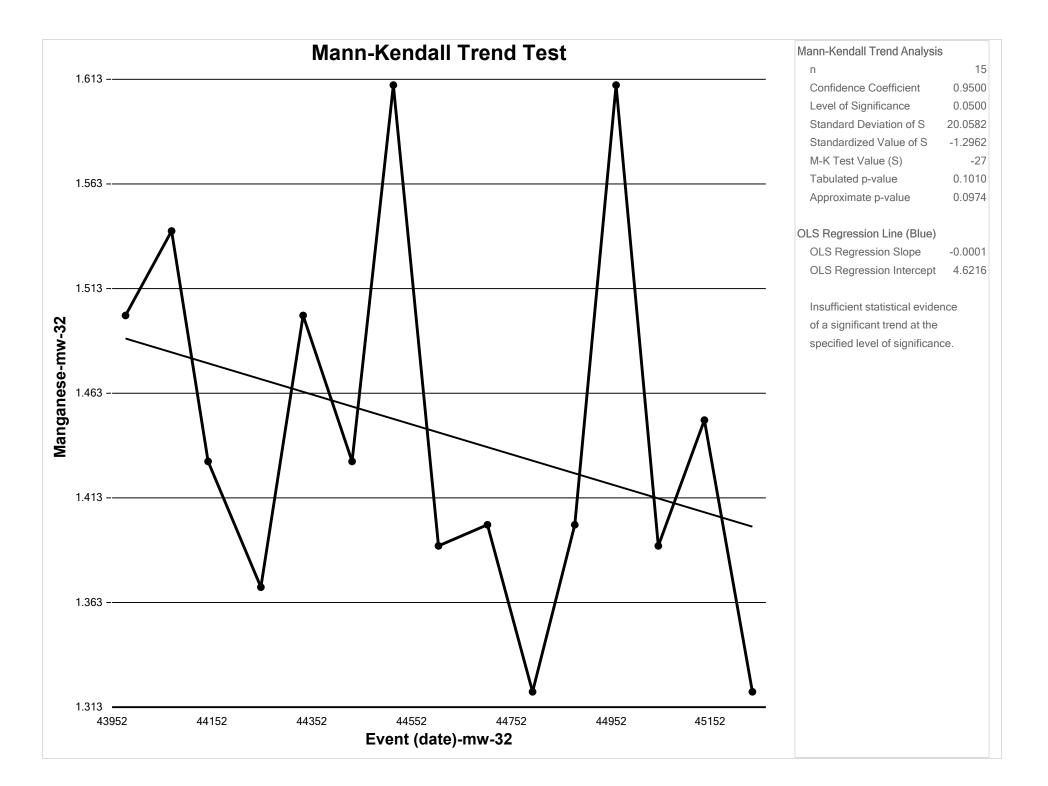

-Kendall Trend Analysis		
	15	
nfidence Coefficient	0.9500	
vel of Significance	0.0500	
andard Deviation of S	20.2073	
andardized Value of S	0.6928	
K Test Value (S)	15	
bulated p-value	0.2480	
proximate p-value	0.2442	
Regression Line (Blue)		
S Regression Slope	0.0000	
S Regression Intercept	-1.5243	
sufficient statistical eviden	се	

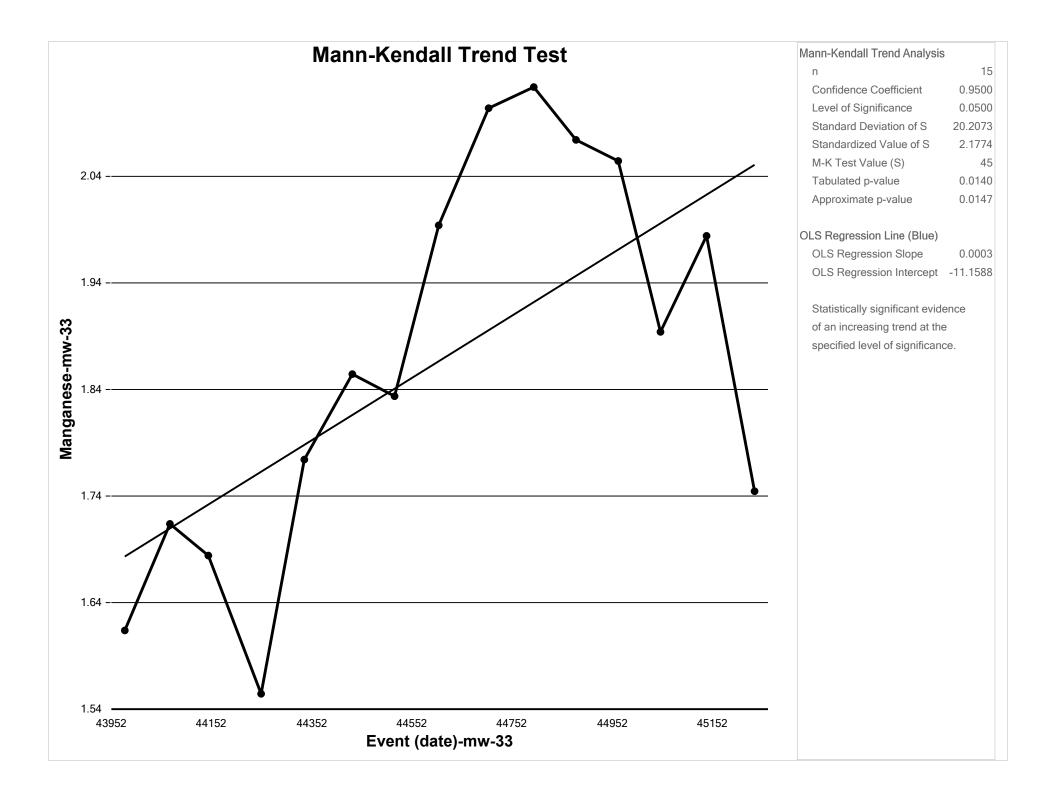


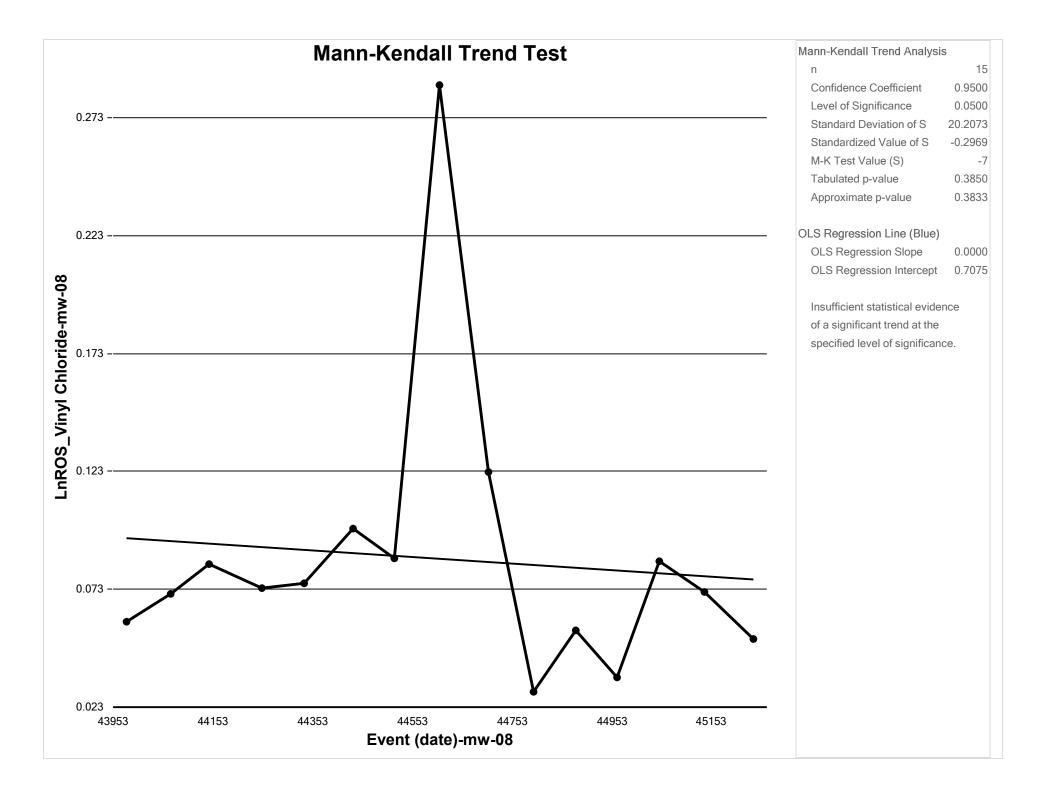


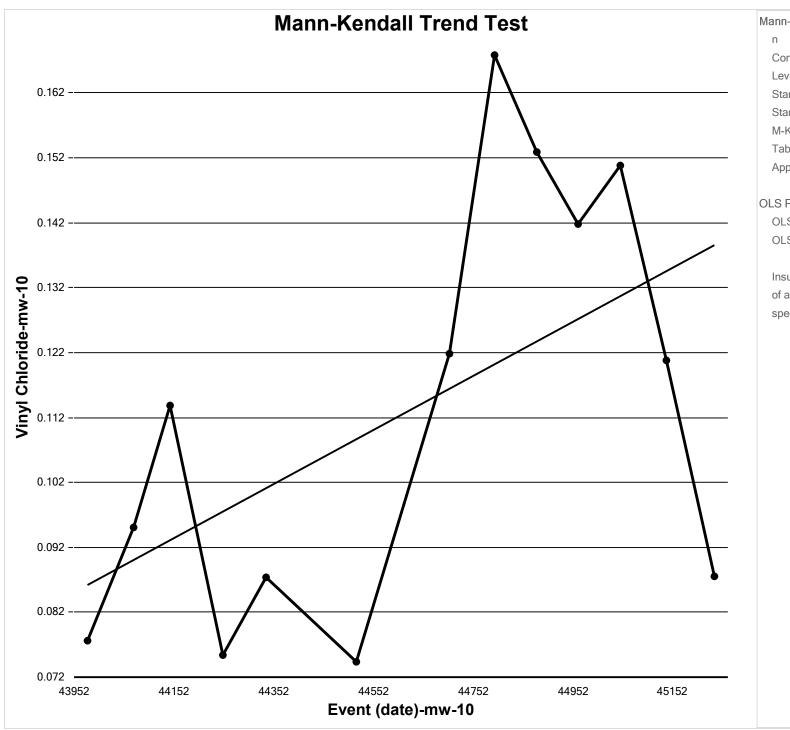


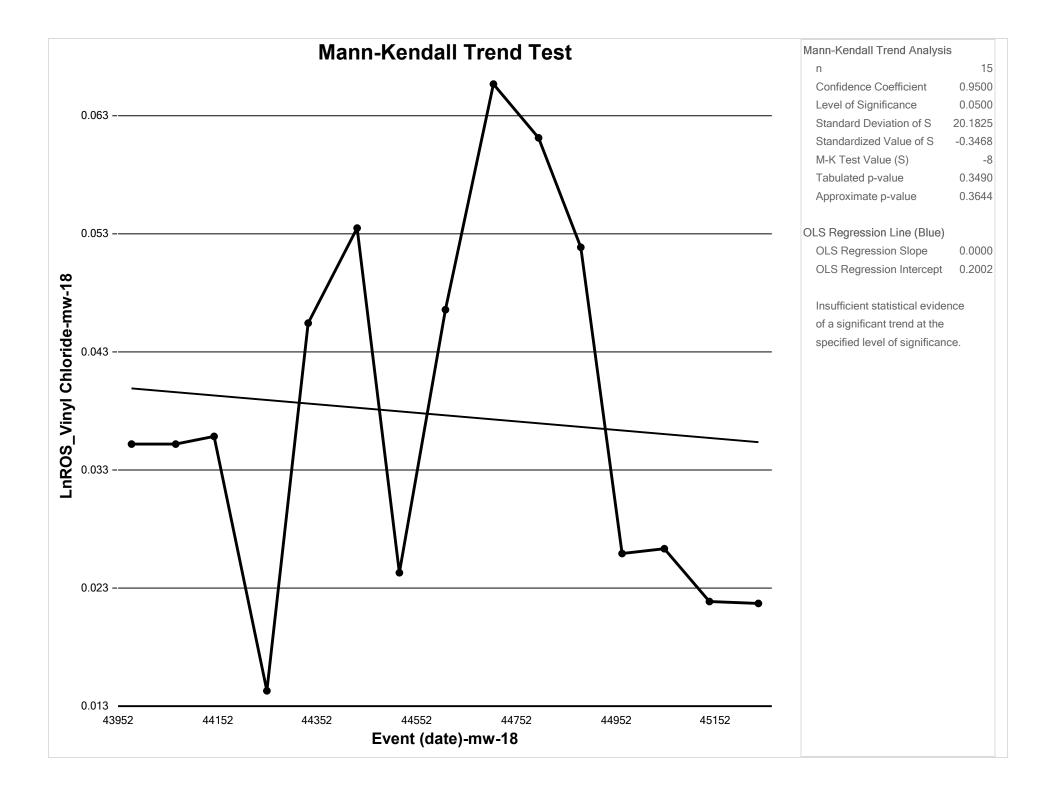


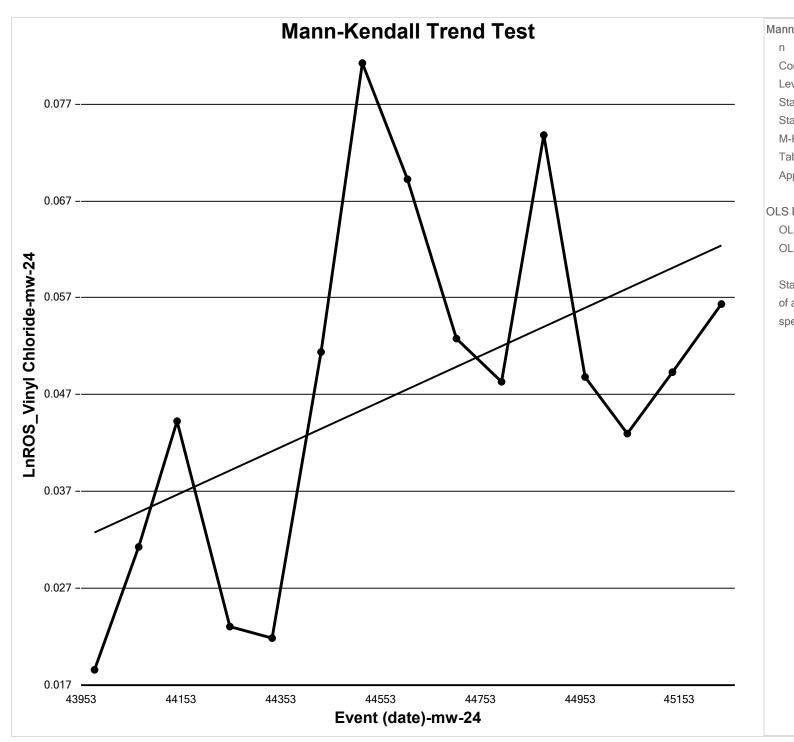

-Kendall Trend Analysis				
	15			
nfidence Coefficient	0.9500			
el of Significance	0.0500			
indard Deviation of S	20.2073			
indardized Value of S	0.1979			
K Test Value (S)	5			
oulated p-value	0.4230			
proximate p-value	0.4215			
Regression Line (Blue)				
S Regression Slope	0.0001			
S Regression Intercept	-1.8321			
ufficient statistical evidence				
a cinculfic and transfer at the				


of a significant trend at the specified level of significance.

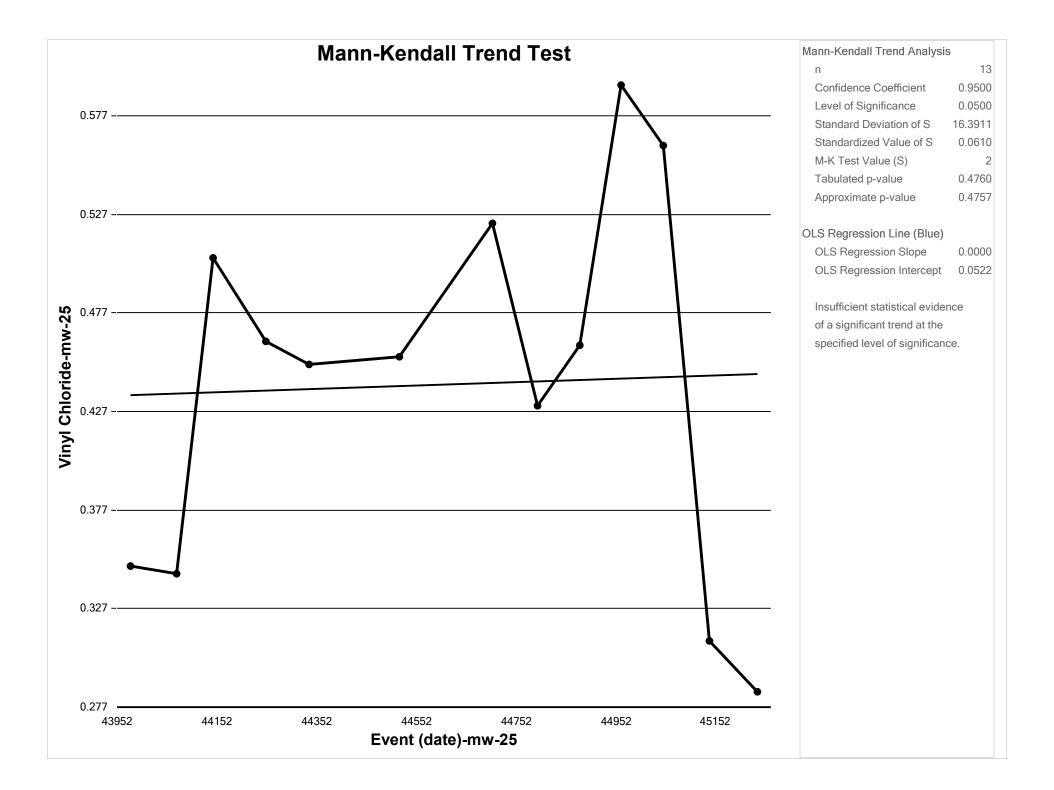


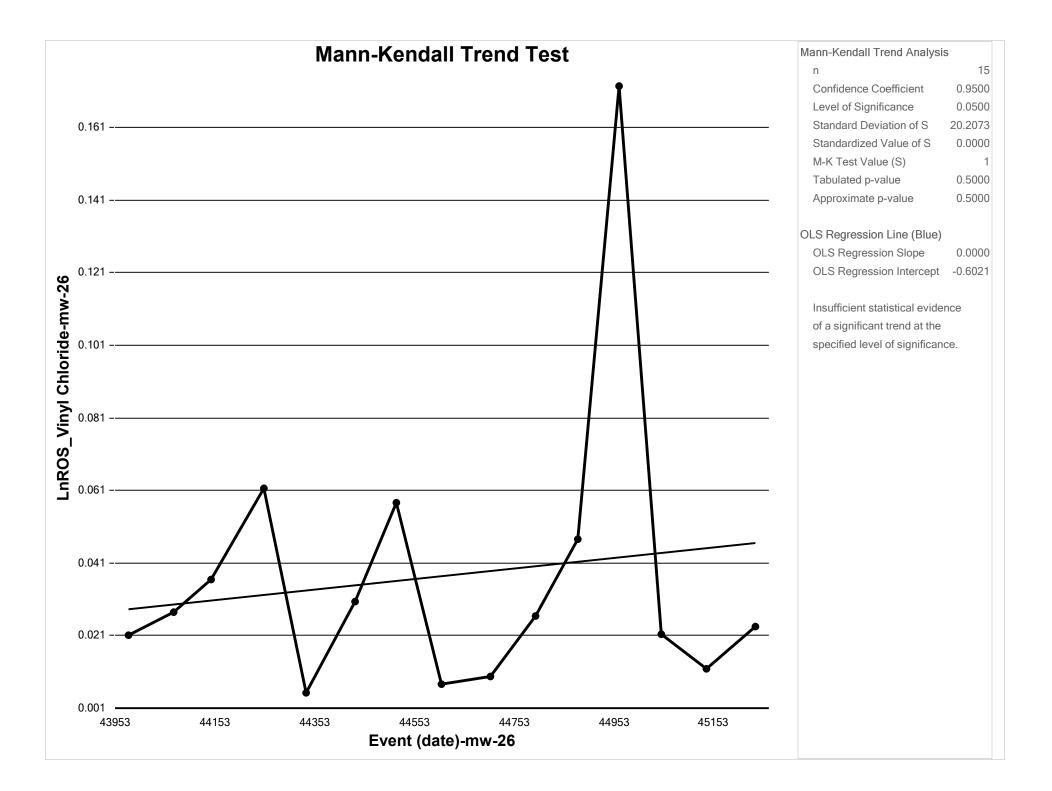


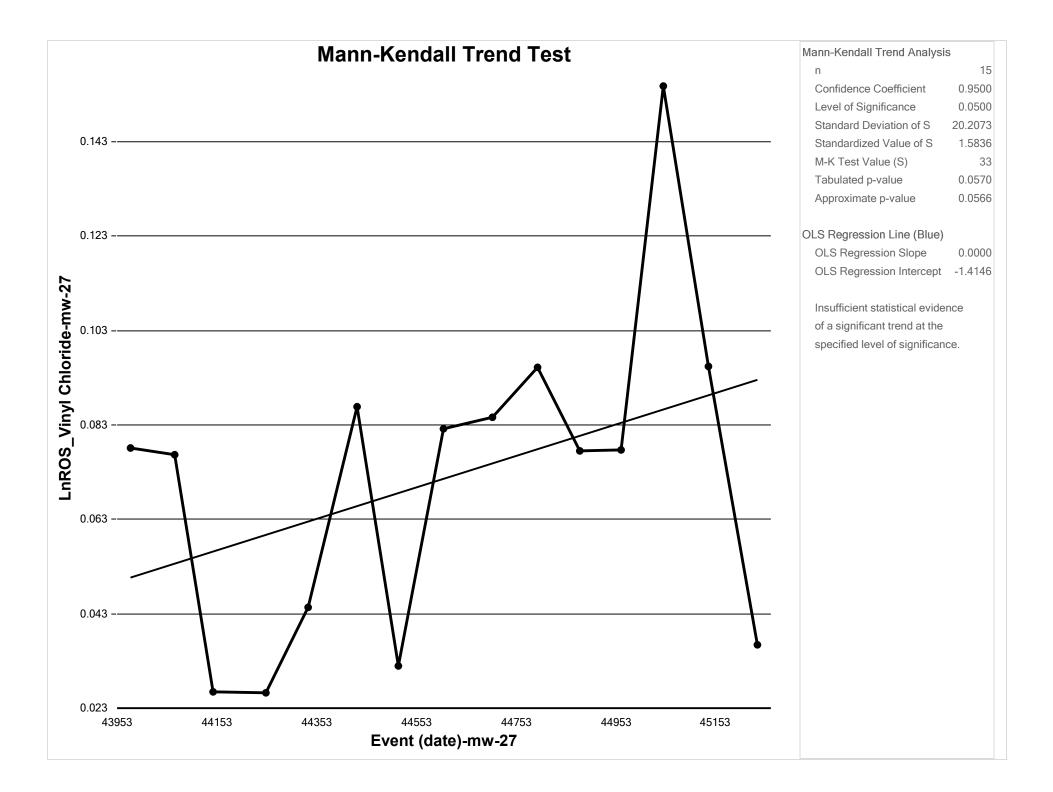


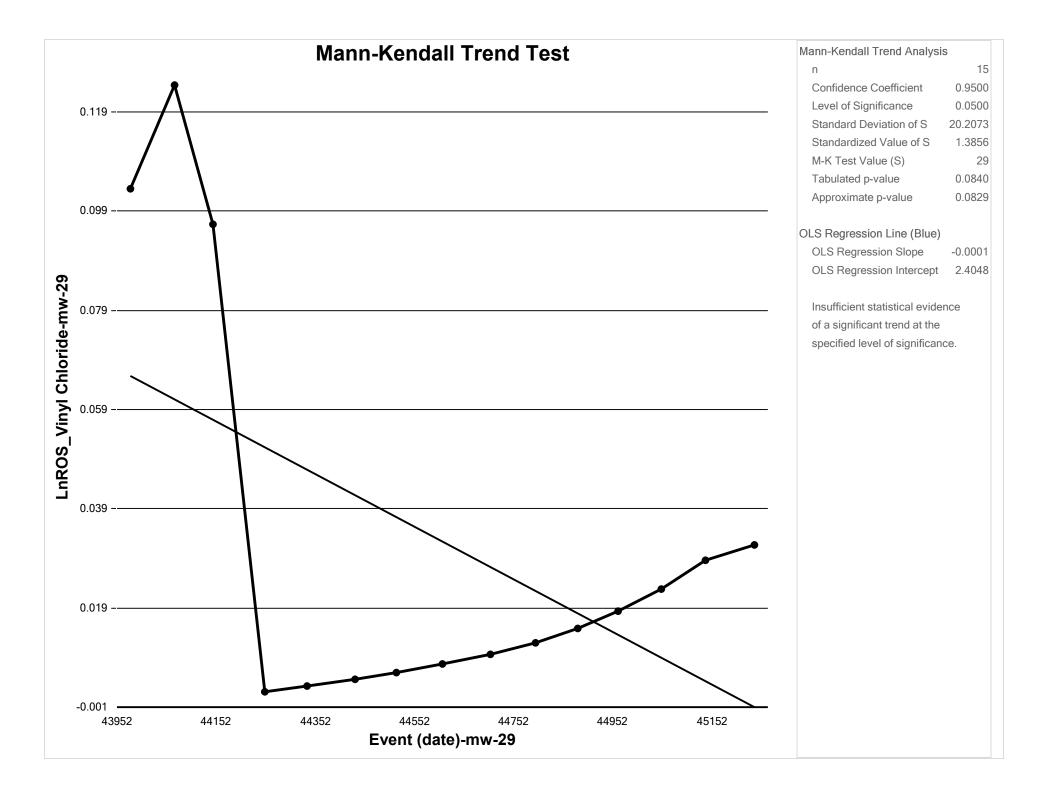


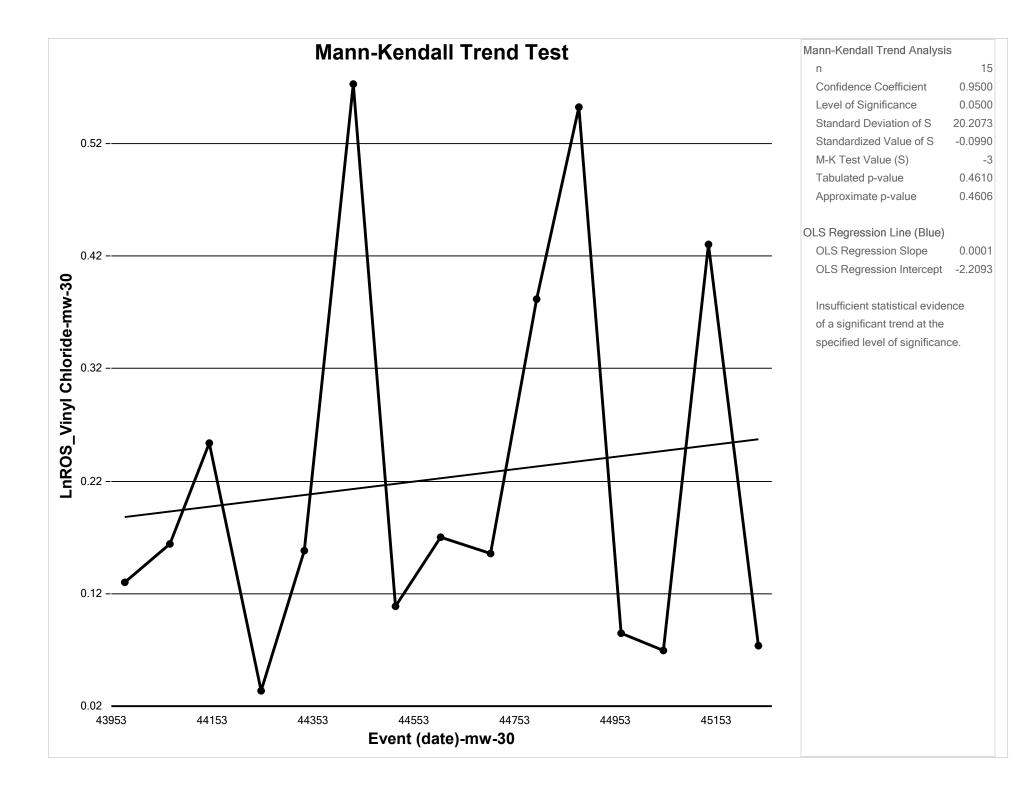
n-Kendall Trend Analysis	5	
	13	
onfidence Coefficient	0.9500	
vel of Significance	0.0500	
andard Deviation of S	16.3911	
andardized Value of S	1.2812	
K Test Value (S)	22	
bulated p-value	0.1020	
proximate p-value	0.1001	
Regression Line (Blue)		
S Regression Slope	0.0000	
S Regression Intercept	-1.7428	
sufficient statistical evider	nce	
a significant trend at the		

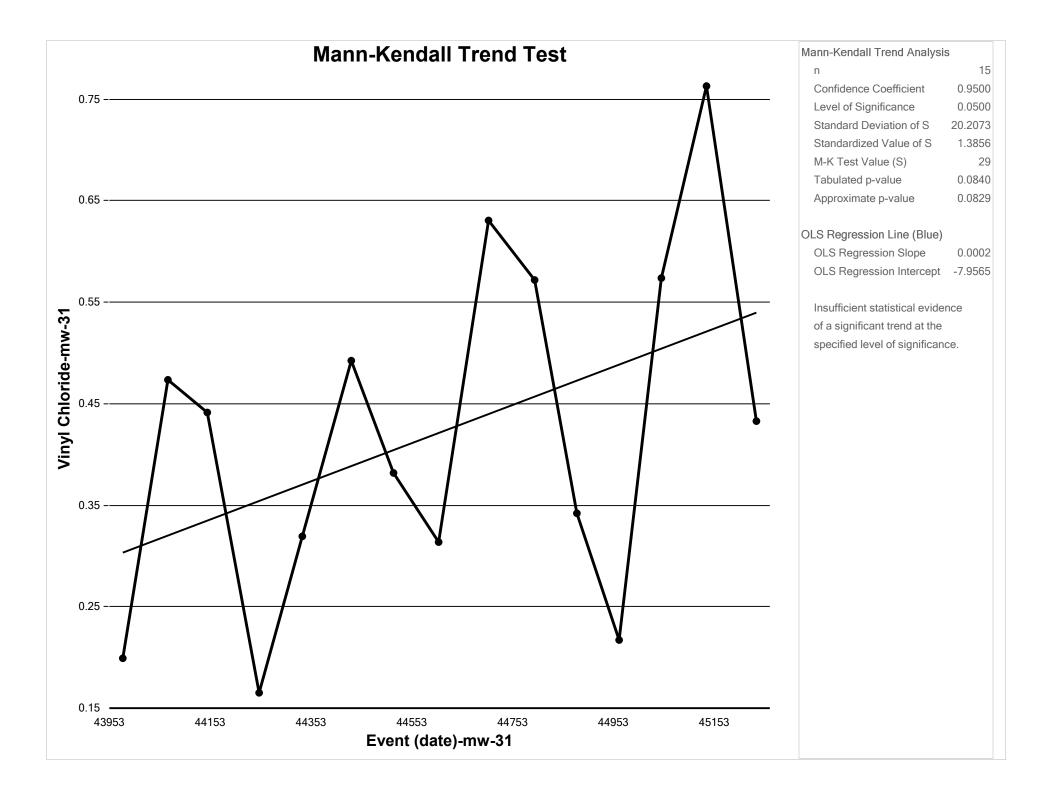

specified level of significance.

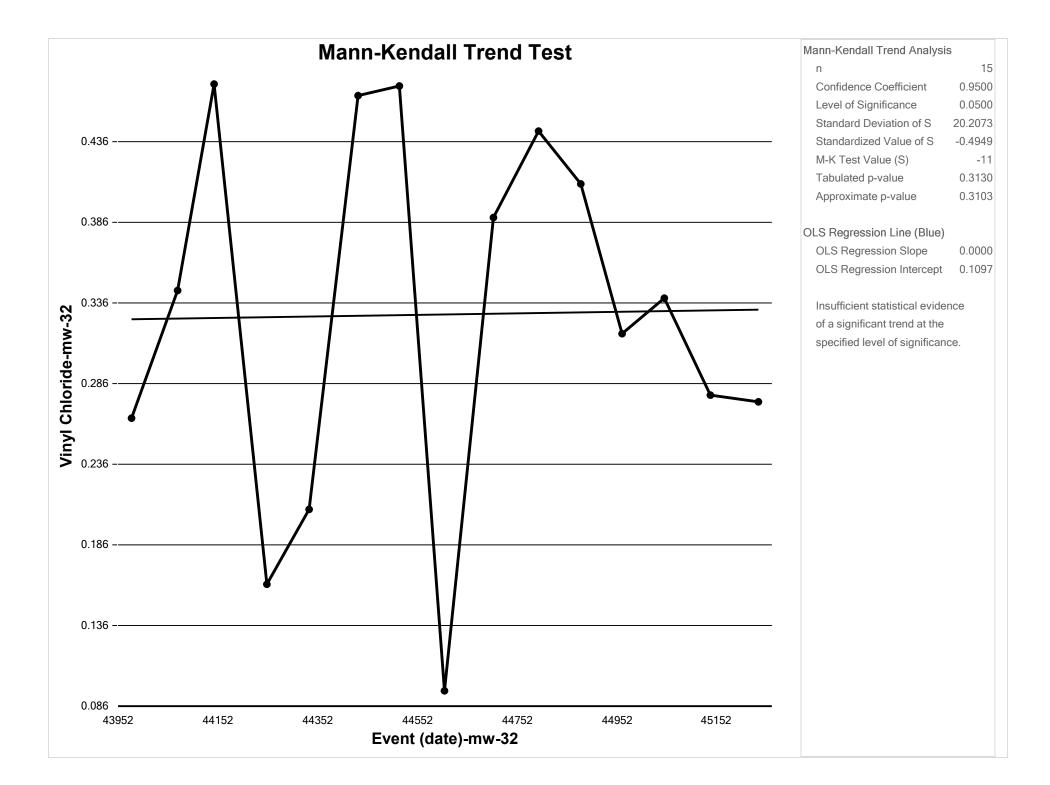


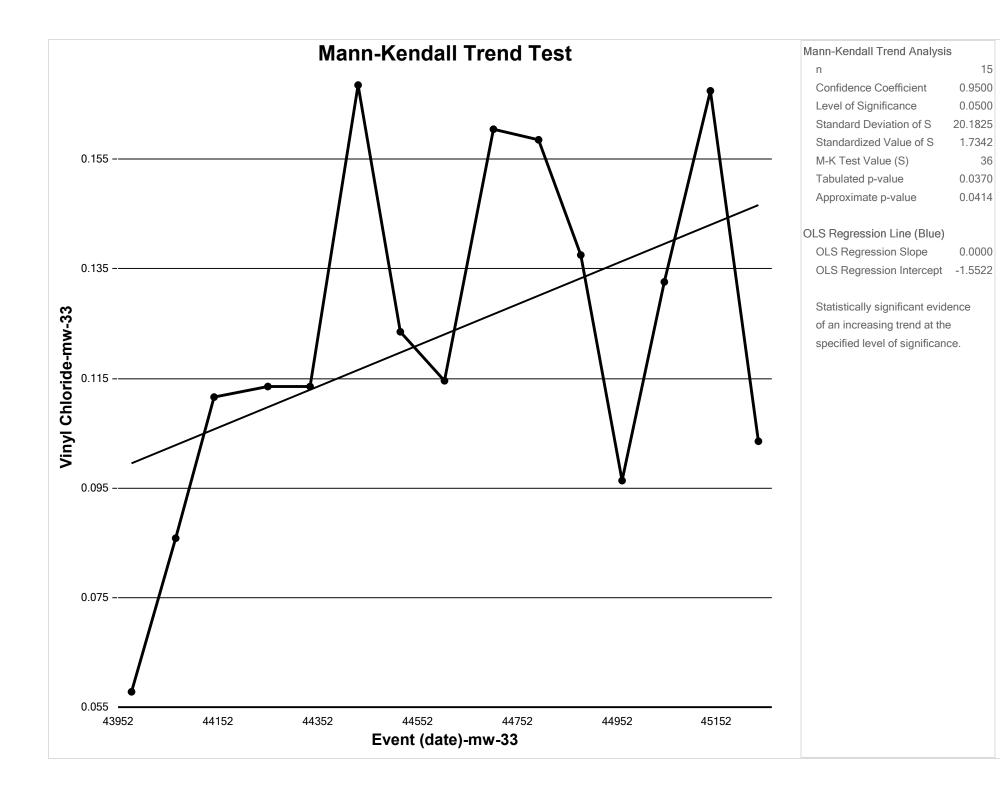



lann-Kendall Trend Analysis	6	
n	15	
Confidence Coefficient	0.9500	
Level of Significance	0.0500	
Standard Deviation of S	20.2073	
Standardized Value of S	1.7815	
M-K Test Value (S)	37	
Tabulated p-value	0.0370	
Approximate p-value	0.0374	
LS Regression Line (Blue)		
OLS Regression Slope	0.0000	
OLS Regression Intercept	-1.0060	
Statistically significant evide	ence	


Statistically significant evidence of an increasing trend at the specified level of significance.







Appendix D3

Groundwater Monitoring Well Data and Field Forms

PARAMETRIX

M

Water Level Measurement Field Report

	DATE	21612	2	JOB NO. 553	3-1550-067							
		South Park L			attle Public Utili	itioo						
		Seattle, WA		CLIENT, SE								
	WEATHER	Seallie, WA		0								
		K cash		Low Ho's	°at 劣(c °at (ጊ		AM					
	PRESENT A	TSITE	/ M.	l 40's			1	PM				
			, N. Kay	rise. Or	fficer ch	itten do						
	THE FOLL	OWING WAS	S NOTED:	/		h						
	WELL NUMBER	Time	Measured Depth to Water (ft from TOC or SG level)	Total Measured Well Depth (ft from TOC)	Measuring Point	Total Well Depth (ft bgs)	Screen Interval (ft bgs)	SU (ft				
	MW-12	1:63	16,65.6		тос	15.3	10-15	1.52				
	MW-14	11:47	2.40		тос	21.8	11.5-21.5	0.8				
*	MW-29	11:52	7.40*		тос	30	20-30	-0.29				
	MW-18	11:38	14.60		тос	40.4	30-40	1.25				
	MW-25	8:14	13.13		тос	27	22-27	2.79				
	MW-32	12:05	10.03		тос	24	19-24	-0.44				
	MW-33	1210	10,17		тос	25	20-25	-0.47				
	MW-26	1115	8.84		тос	25	15-25	2.39				
	MW-27	1128	7.52	In	тос	20	10-20	2.04				
	MW-10	818	12.37		TOC	45	35-45	1.65				
	MW-24	11:18	8.08		тос	45.3	35-45	1.56				
	MW-08	11:25	7.56		тос	45.6	35.5 – 45.5	1.88				
	MW-30	1100	9.20		тос	13	× 8-13	-0.53				
	MW-31	1105	10.24		TOC	23	35.5-45.5	-0.46				

4

Comments:

TOC - top of PVC SG - staff gauge casing

SIGNED: ____ Chv

×

**

GW Mong; @ 11:55 GW@ 6.80 add 0.03' because we had to remove cap to sit somely

e.

	553-155	50-067	1111			Date:	2/7/23	, >	Well ID:	MW-08					
Sampling C	Organization	: Parametr	rix		Sampl	ers: N	KIC	B							
Purge Data	a Scree	ned Interval	(ft bgs): 5	.0-20.0			Well Ca	asing/Diam	neter: P	VC/2 in					
Initial Dep	oth of Water	r (Ft below T	OC):	7.02		Purge Water Disposal Method: O/WS									
Purge Dev		cated bladder p			Pump Intake Depth: 10.5ft										
Begin Pur		1.2.5	~ 1				amp make ber								
Time:		4"	02			E	nd Purge Time:		1430						
	Depth to Water (feet			Liker Cum.			Specific								
Time	below MP)	Pump Setting	Purge Rate	Vol. Purged	Temp (°C)	DO (mg/L)	Conductivity (µS/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments				
14:05	7,12	2.33	250	1.6	11.2	0,29	552.6	7.06		9.97	white turbid.				
14:10	7.46		~	2.5	11.3	0.20	554.9	7.08		9.83					
14:15	7.46	- 6 ⁴	L.	3.5	11.3	0.20	554.8	7.08	-2.4	7.84	11 + 0500-				
14:10	11	1	11	7.75	11.7	0.15	554.7	7.08	-11.3	3.51	" + orange				
14:25	11			6.0	11.5	6.16	554.8	7.07		9.91					
14:20	L. 1	ts.	3,	7.0	11.5	0.11	555.1		- 20.3	3.76	ts.				
	<u> </u>					_									
											1				
				o <u> </u>											
	····														
											·				
							-								
	2														
						-									
			Stabilizat	ion Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5	NTU				
ampling D	ata														
Sample ID:	SPL-GW	MW08-0223		Time Co	llected	1435		Weath	or: 2	2	1/1000				
		olor, Turbidit	y, Odor, Oth			bear			er(VENCOUS	F/705				
Sample An	alyses: Ci	s-1,2-DCE.	, vinyl chloi	ride, total in	on, total m	nanganese. o	lissolved arse	nic							
	ample Colle			No	If yes, ID:										
MS/MSD C	ollected:		Yes 🦲	No											
dditional I	nformation,	/Comments													
		09	ial pr	evistult	ic pu	0 o d									
					F										

Project N	o.: 553-155	0-067				Date: 2	16/23		Well ID:	MW-10	
Sampling	Organization:	Parame	trix		Samp	lers: <u>L.</u>	Bourges	5 3	٢. ٦	Rgy Ke	
Purge Da	ta Scree	ned Interva	l (ft bgs):	35.0-44.0			Well Ca	sing/Diam		VC/2 in	
Purge De	epth of Water evice <u>per</u>			12.37			e Water Dispos ump Intake Dep	sal Metho	d: _O/\		1
Begin Pu Time:	Irge	Ê	330			E	nd Purge Time:	90	5		
Time 535 545 845 8:60 8:65 9:00 9:05	Depth to Water (feet below MP) 12.36 12.37 12.41	Pump Setting Z.S		cum.	Temp (°C) 13.3 (3.3 13.4 13.4 13.4 13.4 13.4	DO (mg/L) 6.49 0.42 Als 1035 0.30 0.29 0.28 0.22	Specific Conductivity (µS/cm) 1262 1259	pH (units) (6.57 (6.57 (6.89 (6.97 (6.97 (6.97 (6.97 (6.97 (6.97)	ORP (mv) -92.8 -98.8 -107.1	25.8 7.37 4.80	Comments Davh brown Clearer Low turb. Clear
Sampling [Data		Stabiliz	ation Criteria	3%	10% , or 3<0.5	3%	± 0.1	± 10 mv	10% or 3 <5	NTU
Sample ID Sample De Sample Ar): SPL-GW-M escription (Co nalyses: Cis Sample Collec	6-1,2-DCE		loride, total iro	clean	1		Weath No H		ivercas	.4
Additional	Information/										

۰

Project No	.: 553-155	50-067				Date: 2	18/23	V	Vell ID:	MW-12	
Sampling C	Organization	: Parametri	x		Sample	rs:	K+C	B			
Purge Data	a Scree	ned Interval (ft bgs): <u>10.</u>	0-15.0			Well Ca	sing/Diame	eter: PV	'C/2 in	
Purge Dev	vice ded	r (Ft below TC licated blado		5.44			e Water Dispos ump Intake Dep			/S	
Begin Pur Time:	ge	8:2	0			E	nd Purge Time:	G	-10		
Time 8:30 8:35 8:40 8:45 8:50 8:55 9:00 9:05 9:10 9:15	Depth to Water (feet below MP) 5,44 5,45 ; 1 11 11 11 11 11 11	Pump Setting	Purge Rate 350 200 ML 11 11 11 11 11 11	Cum. Vol. Purged 2,25 L 3,75 L 3,75 L 6,75 L 6,76 L 8,75 L 8,75 L 8,75 L	Temp (°C) 9.6 9.7 9.7 9.7 9.7 9.7 9.7	DO (mg/L) 1.88 1.86 1.73 1.63 1.63 1.63 1.59 1.49 1.48 1.48 1.47	Specific Conductivity (µS/cm) 364,8 362,3 365,2 365,2 365,9 366,5 367,2 368,3 368,7 368,4	pH (units) (0,57 (0,53) (0,53 (0,53) (0,53 (0,53) (0,52) (0,53) (0,53) (0,52) (0,53) (0,53) (0,53) (0,52) (0,53) (0,53) (0,52) (0,53)	ORP (mv) [88,0 186,3 185,5 185,0 185,0 185,0 185,0 185,0 184,8 184,6	Turbidity (NTU) 3.93 1.11 0.93 0.67 0.67 0.82 0.80 0.82	Comments Clear 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Sample A Duplicate MS/MSD	D: SPL-GW escription (C nalyses: Sample Coll Collected:	lected:	vinyl chloride Yes 🔲 Yes 🐻	Time Coll er): e, total iron, t No No	otal mang			±0.1 Weath	ier: 🔶		vtly cloudy
noot a	-th L vol read	001 -0		ic use		lican and	J LDPE	to Cou	nnect,		Parametrix

æ

	.: 553-155	i0-067				Date:	2823		Well ID:	MW-14	
Sampling C	Organization:	Parametr	x		Sampler	s: N	KdCP	7			
Purge Data	a Scree	ned Interval ((ft bgs): <u>11</u>	.5-21.5			Well Ca	sing/Diam	eter: PV	C/2 in	
Initial Dep Purge Dev Begin Pur Time:	vice ded	・(Ft below To icated blad 9ヶ50	der pump	2.37		F	ge Water Dispos Pump Intake Dep Ind Purge Time:	th: 16.		/S	
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductivity (µS/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
9:55 0:00 0:05 0:10 0:15 0:25 10:25 10:35 10:40 10:55 11:05 11:05	2:65 1:55 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	/Dp5i ii ii ii ii ii ii ii ii ii	22.5 11 11 11 11 11 11 11 11 11 1	3,75 4,75 5,9 6,16 7,9 8,5 9,15 10,75 11,75 12,0 14,0 15,6 (6,4 17,0	12.8 12.5 12.6 12.7 12.8 12.9 13.0 13.0 13.0 13.0 13.2 13.0 12.9 12.9 12.9	0.67 0.44 0.68 0.35 0.26 0.37 0.34 0.29 0.29 0.29 0.29 0.28 0.26 0.21 0.26 0.21 0.26	477,8 477,9 473,1 471,1 469,2 469,2 469,2 468,8 469,1 468,8 469,1 468,9 468,7 468,9 468,7 468,9 468,9 468,9 468,9	6,91 6,91 6,89 6,88 6,87 6,87 6,87 6,87 6,87 6,87 6,87	62.2 -0.9 -20.4 -27.6 -32.7 -31.9 -37.0 -38.3 -39.4 -40.3 -40.6 -41.1 -41.5 -42.2	93.3 81.7 94.4 94.3 42.5 30.8 16.9 14.7 11.2 8.18 7.06 7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.95 10% or 3 <5	Orange filt Clearer by sti '' '' '' '' '' '' '' '' '' '
Sampling D	Data										
Sample Ar Duplicate MS/MSD (escription (C nalyses: <u>C</u> Sample Coll Collected:	-MW14-0223 Color, Turbidi Sis-1,2-DCE ected:	, vinyl chlo Yes 🚺	-	min.		lity, cie	Weath		vercas as hut	1405 id a dar
			same Note:	mell b A at	eithe		as MW			Very	hears.
						1 of 1				7	Parametrix

	b.: 553-155	Landf	111	ė		Date:	1/1/2	3	Well ID:	MW-18	
		: Parametrix	(Sample	07	+ DK		well ID:	10100-10	
Purge Dat	ta Scree	ned Interval (f	t bgs): 3	0.0-40.0	_		Well Ca	sing/Diam	P	/C/2 in	
		r (Ft below TO		14.5	6	Pure	e Water Dispo		-	VS	
Purge De		licated bladd	er pump		*		ump Intake Dep				
Begin Pu Time:	rge	14:34				E	nd Purge Time:		1505		
Time 14:40 14:45 14:50	Depth to Water (feet below MP) [4,56 [4,56] [4,56]	Pump Setting 8/4(\9.)	Purge Rate 200	Cum. Vol. Purged I.L 1.75 L 2.75L	Temp (°C) 13.4 13.4 (3.5	DO (mg/L) 1.0(0 0.40 0.79	Specific Conductivity (µS/cm) 806 195 791	pH (units) 6,82 6,79 6,79	ORP (mv) 15,14 -39,1 -54,8	Turbidity (NTU) 2.93 - 2.81	Comments Slight Yellow The
14:05	14.56		¥	3.5L 4.0L 5L	13.5 13.6 13.6	0,22 0,19 0,16	785	6.79	-62.5 -66.2 -68.5	1.22	clearing up Clear
			4								
	· · · · · · · · · · · · · · · · · · ·										
Sampling	Data		Stabilizat	ion Criteria	3%	10% , or 3<0.!	5 3%	± 0.1	± 10 mv	10% or 3 <5	i NTU
Sample ID	1	-MW18-0223		Time Col	lected:	INCHS	150-5 151	0 Weath			1 Mid 40s
		olor, Turbidity	, Odor, Oth		letter.	clear	vo od	-	<u> </u>	ver cast	1000 705
Sample Ar					on, total m		issolved arse				
Duplicate	Sample Colle				If yes, ID:		w- 60	$\overline{\omega}$	1543	5	
MS/MSD (Collected:	9 Y	′es [No							
Additional	Information	/Comments						_	_		
X											

.....

A

GROUNDWATER SAMPLE COLLECTION FORM

.

Project No	o.: 553-155	50-067				Date: 2	-17/23	N	Well ID:	MW-24	
Sampling	Organization	: Paramet	rix		Sample	1.5	JK4CB				
Purge Dat	a Scree	ened Interval	(ft bgs): _35	5.0-45.0			Well Ca	sing/Diam	eter: P\	/C/2 in	
Initial De	pth of Wate	r (Ft below T	OC):	8.05		Pur	ge Water Dispos	al Methoo	: O/V	VS	
Purge De	evice dec	licated blac	lder pump			P	ump Intake Dep	oth: 40.0	D ft		
Begin Pu	rge		USCE						11:31	1	
Time:			1055			E	nd Purge Time:		11.21		
Time	Depth to Water (feet below MP)	१८। Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductivity (μS/cm)	pH (units)	ORP .(mv)	Turbidity (NTU)	Comments
1100	7,96				9.9	3.33	789	6.99		6.77	visible turb.
1105	7.97	48	150		(0.0)	-	820	6.85	10.8	6.03	0
1110	7.98	52	250		10.5	0.64	868	6.80	-30.3	3.80	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
1115	7.96	<u>, 1</u>	8	3.0	11.6	0.31	896	6.29	-53.2	4.15	L ¹
1120	7.95			4.5	11.5	0,19	908	6.80	-12,1	2.83	fr +
1125	11	<u></u>		5.5	11.6	0.16	909	6.80	-76.0	2.21	IK.
11:30		<u>11</u>		6.5	11.6	0,10	911	6,80	<u>-80,0</u>	2,27	
			Stabilizat	1	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5	
Sampling (11.20					
Sample IC	-	-MW24-0223		Time Co	llected:	1170)	Weath	er: V	ainy, c.	old windy
Sample D Sample A			ity, Odor, Oth - vinyl chlo		nihotel m	turbidit	dissolved arse	odu	Not	d.	/
	Sample Coll			No	If yes, ID:						
	Collected:			No							
Additional	Information										

ч.

1. 4

Project No.: 553-1550-067		Date:	2/6/23	Well ID:	MW-25
Sampling Organization: Para	metrix	Samplers:	L. Bowgeris	> N. Kap	nife
Purge Data Screened Int	erval (ft bgs): 20.0-27.0		Well Ca	3	/C/2 in
Begin Purge	bladder pump		Purge Water Dispos	al Method: O/V oth: 24.5 ft	VS
Time:	937		End Purge Time:	1005	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ng Rate Purged	Temp DO (°C) 13.6 13.2 0.4 13.2 0.31 13.3 0.31 13.3 0.24	0.15 1066 9 1076 2 1082 1085	pH ORP (units) (mv) 6.75 -87.7 6.76 -92.6 6.76 -100.6 6.77 -103.0 	Turbidity (NTU) Comments 2.68 Clear 1.16 Clear 0.66 1 0.98 1 0.56 1
	Stabilization Criteria	3% 10%	3%	± 0.1 ± 10 mv	10% or 2 cE NTH
Sampling Data		370 1070	370	10.1 10 mV	10% or 3 <5 NTU
Sample ID: SPL-GW-MW25-0 Sample Description (Color, Tu Sample Analyses: cis-1,2-I		W			cold, overcast.
Duplicate Sample Collected:		yes, ID:	nanyanese, uisso		
MS/MSD Collected:	Yes No				
Additional Information/Comm					
	minor	sheen on	to surt	ate of y	ourge bucket

æ

GROUNDWATER SAMPLE COLLECTION FORM

Project No.:	100	Lanur 0-067	111			Date:	17/23		Well ID:	MW-26	
		Parametrix	[Sampler	rs:N	K + CI	3			
Purge Data	Screer	ned Interval (f	t bgs): <u>15</u> .	0-25.0			Well Cas	sing/Diame	eter: PV	/C/2 in	
Initial Depth Purge Devic Begin Purge Time:	e dedi	(Ft below TO cated bladd		8.71*		Pu	e Water Dispos ump Intake Dep nd Purge Time:				÷
Time 12:,20	Depth to Water (feet below MP) 8.71 8.71 8.71 8.71 11 8.71 11 11 11 11 11 11 11 11 11 11 11 11 1	Pump Setting $30 \rho Si$ ii ii ii ii ii ii ii iii iii iii iii $iiii$ $iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii$	Purge Rate 300 250*** // // // // // // // // // // // //	Cum. Vol. Purged 0,76 L 1.75 L 2.75 L 4 L 6 L 6,75 7,75 8,75 1,75 8,75 1	Temp (°C) .5 .0 .7 .7 .7 .7 .7 .7 .7	DO (mg/L) 2198 113	Specific Conductivity (µS/cm) 249,1 232,9 •225,9 221,7 222,0 224,2 224,9 125,9 126,5 127,6 223,3 227,8	рН (units) (0:35) (0:25) (0:25) (0:25) (0:25) (0:25) (0:25) (0:25) (0:22) (0:22) (0:22) (0:22) (0:22) (0:22) (0:22) (0:22) (0:22) (0:22) (0:22) (0:22) (0:23) (0:23) (0:23) (0:23) (0:23) (0:25) (0:23) (0:25) (0:23) (0:25) (0:23) (0:23) (0:22) (0:2	ORP (mv) 33,3 48,9 48,3 46,8 44,7 42,0 40,5 38,9 37,7 36,7 36,7 36,7 36,2	Turbidity (NTU) 69.8 64.9 49.1 34.Ø 22.4 13.4 12.7 8.82 7.54 6.73	Comments + which 11 11 11 11 11 11 11 11 11 1
Sampling Da	ta										
Sample Ana Duplicate Sa MS/MSD Co	cription (C lyses: <u>c</u> ample Colle	ected:	rinyl chloride Yes 🔲 Yes 🚺	e, total iron, to No I No	Lay otal manga f yes, ID:	13:20 anese, dissolv		Weath	×	Peun /	40 s
Additional Ir	setting	/Comments	¥ read	ing take	en af	ter go	y nurge	el 15	reedi F real	no take	n at same
	-)						

٩

Project No.: 553		41111			Date:	2/7/23		iw-lup	MW-27	
Sampling Organiza		trix		Sample	a I M	L+CB		Well ID:	10100-27	
	creened Interva	44	0.0-20.0				sing/Diam	neter: P\	/C/2 in	
Begin Purge	dedicated bla		1.38		F	ge Water Dispos Pump Intake Dep	oth: 15.	0 ft	VS	
Time: Depth					ΕΕ	and Purge Time:	10	:06		
Wate (feet below Time MP)	er t PSL w Pump Setting	MU/miv. Purge Rate	کہ لیک Cum. Vol. Purged	Temp · (°C)	DO (mg/L)	Specific Conductivity (μS/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
1505 7.4 15:10 7.4 15:20 7.4 15:20 7.4 15:20 7.4 15:20 7.4 15:30 7.4 15:30 7.4 15:35 7.4 15:40 7.4 15:40 7.4 15:55 7.42 16:00	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ $	250 11 11 11 11 11 11 11 11 11 1	2.0 3L 4L 5L 6L 6L 6L 6L 6L 10L 10L 11L 13.35L 14L 14L 14L	10,9 10,9 10,9 10,9 11,0		2 8 8.5 266.2 281.1 307.5 338.7 354.4 363.8 376.3 378.8 380.6 382.4 384.6		87:3 93.9 94.0 87.6 71.9 48.6 34.2 22.4 10.9 -2.9 -7.7 -12.9	581 459 .375 542 306 83.4 49.2 35.8 26.6 24.9 18.7 19.5 18.7	Looks Like Tang. "" " " " " " " " " " " " " " " " " "
Sampling Data		510511201		3%	10% , or 3<0	.5 3%	± 0.1	T TO MV	10% or 3 <5	
Sample ID: SPL Sample Descriptio Sample Analyses: Duplicate Sample MS/MSD Collected	cis-1,2-DCl	E, vinyl chlo] Yes 🛛	ride, total iro	u.M.	1610 Inhidity hanganese, d	, Moda dissolved arse		her: <u>p</u> C	int sun	_ / 40 s
Additional Informa										

.

GROUNDWATER SAMPLE COLLECTION FORM

Project No.: 553-1550-067 Date: 2/6/23 Well ID: MW-29												
Sampling (Organization	Parametri	х		Sample	rs: <u>NK</u>	+CB					
Purge Dat	a Scree	ned Interval (ft bgs): 20	.0-30.0			Well Ca	sing/Diam	eter: PV	/C/2 in		
Initial Dep		(Ft below T		7.03		Purg	e Water Dispos	al Methoo	d: O/W	/S		
Purge De		staltic pum)			Pump Intake Depth: 25.0 ft						
Begin Pur Time:	.ge	16:01	2			Er	nd Purge Time:		6:3	7		
Time 16:05 16:10 16:15 16:20 16:25 16:30 16:35 16:40 16:45 16:45 16:45	Depth to Water (feet below MP) 7.03 7.26 7.31 1.32 7.33 1.34 7.34 7.34	Pump Setting 2,5 11 11 11	Purge Rate 2.50 11 11 11	Cum. Vol. Purged 075,L 1.5L 3.L 4L 6L 7L 	Temp (°C) 111,7 11,7 11,8 11,8 11,9 11,9 11,9 11,9 11,9 11,9	DO (mg/L) 2.16 1.79 0.12 0.16 0.12 0.12 0.11	Specific Conductivity (μS/cm) 470,6 476,5 501,6 512,2 526,0 526,0 526,4	рН (units) 6,91 6,92 6,92 6,91 6,91 6,94 6,94	ORP (mv) <u>8.8</u> - <u>38.0</u> - <u>81.4</u> - <u>95.7</u> - <u>102.5</u> - <u>106.8</u> - <u>108.5</u>		Comments Cleaver II	
Sampling Data												
Sample A	escription (C nalyses: c	sis-1,2-DCE,		e, total iron, t	total mang	16:40 2007 anese		Weath	ner: <u>0</u>	levcast/	mud 40s	
Duplicate Sample Collected: Image: Second												
		/Comments										
	* Tool	initia	2 GW	Measurer	nent	right ab	ter star	ted	Durgon	9		
									0)		

.*

Project No.: 553-1550-067 Date: 2/7/23 Well I										MW-30		
Sampling (Organization	: Parameti	rix		Sample	ers: C.	Burgeris	3	N. K.	10.5~		
Purge Dat	a Scree	ned Interval	(ft bgs):	8.0-13.0			Well Ca	sing/Diam	eter: P\	/C/2 in		
Initial Depth of Water (Ft below TOC):						Pump Intake Depth: 0/WS						
Time:		0	39		End Purge Time:9/27							
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductivity (µS/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments	
8:50 9:55 9:00 9:05 9:10 9:10 9:10 9:12 9:12 9:20 9:20 9:20	9.36 9.36 9.36 9.36 9.36 9.36 9.36 9.36	2.5 200 11 11 11 11 11 11		1.75L 3L 3.85L 5.ØL 6.5L 7.75L 8.75L 9.75L 11.ØL		0,46 0,45 0,52 0,49 0,48 0,56 0,59 0,59 0,55	1166 1001 946 880 822 785 751 740 740	6.37 6.37 6.38 6.37 6.37 6.37 6.37 6.36 6.37	18.0 27.5 28.7 32.5 32.5 36.4 38.9 40.0 39.9	7.35 6.12 4.32 4.77 3.83 2.49 1.96 1.77 1.37	minor turbidity 11 11 11 11 11 11 11 11 11 11 11 11 11	
Sampling I	Data		Stabiliz	ation Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5	NTU	
Sample ID		MW30-0223		Time Col	lected.	930	<u> </u>	Weath	er: i	rainy 2	and	
	escription (C		ity, Odor. C			min	turbil			Juny 1	U1-4L	
Sample A				ide, total iron,	total mang		- 4 4	7				
Duplicate	- Sample Coll	ected:] Yes	No No	If yes, ID:							
MS/MSD	Collected:] Yes	No No								
Additional	Information	n/Comment:	5									

GROUNDWATER SAMPLE COLLECTION FORM

Project No	553-155	0-067				Date: 1	-17/23		Well ID: MW-31				
Sampling (Organization	Paramet	rix		Sample	ers:	1K+CP	2					
Purge Dat	a Scree	ned Interval	(ft bgs):	18.0-23.0	Well Casing/Diameter: PVC/2 in								
initial De	pth of Water				10,17	Purg	ge Water Dispo	sal Metho	d: 0/V	VS			
Purge De		icated blac	lder pum	р		Pi	ump Intake Dep	oth: 20.	5ft				
Begin Pur Time:	ge		93 1 End Purge Time:										
Time 775	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Тетр (°С) (2. С	DO (mg/L) 9.79	Specific Conductivity (µS/cm) ५१४.४.४	pH (units) ر_ر	ORP (mv) - (0,7	Turbidity (NTU) 35. \	Comments		
9:45	10.16		200	21	12.8	0,31	433,4	6163	-40,3	Ital	11		
9:50	11	(L	11	2,75L	127	0127	437.6	6.63	- 47.3	8,42	11		
9:55	<u></u>	[]	- 11	3,256	12.7	0.22	438.7	6163	-50.5	6.10	cleaning up		
10:00				3.75L 4.25L	12.7	0.24	439.9	6.63	-92.2	4.92	11 3 1		
10:10			11	56	12.6	0.31	439.4	6.63	-53, 2 -53, 8	3,63	Clear Clear		
			Stabili	zation Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 </th <th></th>			
Sampling [Data												
Sample ID): SPL-GW	_MW31-0223		Time Co	llected:	10:15		Weat	ner: c	coil 3	Vany		
Sample D	escription (C	olor, Turbidi	itγ, Odor,	Other):	Char						/		
Sample A	nalyses:	is-1,2-DCE	, vinyl chlo	oride, total iron,	total mang	janese C							
Duplicate	Sample Colle	ected: 🗴	Yes	🔳 No	If yes, ID:	SPL-G	W W 61-11	122					
MS/MSD	Collected:	j]Yes	👰 No		05-							
Additional	Information	/Comments	s										

2

1

э н L

GROUNDWATER SAMPLE COLLECTION FORM

Project No	o.: 553-158	50-067			Date: 2/6/23 Well ID: MW-32							
Sampling (Organization	: Paramet	rix		Samplei	rs:	C. Bourge	ois à	N.	Knoise		
Purge Dat	a Scree	ened Interval	(ft bgs):	19.0-24.0			Well Ca	sing/Diam	eter: P\	/C/2 in		
Initial De	pth of Wate	r (Ft below T	OC):	10	3	Pur	ge Water Dispos	sal Method	I: 0/V	/S		
Purge De	vice per	istaltic pur	np 🔭			P	ump Intake Dep	oth: 21.	5 ft			
Begin Pu Time:	rge			220		F				250		
Depth to					t	nd Purge Time:	÷		0,0			
Time	Water (feet below MP)	Pump Setting	Purge Rate		Temp (°C)	DO (mg/L)	Specific Conductivity (μS/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments	
1225	10.03	2,5	260		13.3	1.17	710	6.98	-90.5			
12:30		U1	£1	2.91	13.4	0.22	779		-105.3	9.95	orange flecks	
12:35	11	11		\$3.9L	13.3				-110.7	8.05	11	
12:45	11			- 5.2L	13.4	0,17	761	6,99		3.18	11	
12:50		4.4		81	13.4	0.14	754	$\frac{7,00}{(0.99)}$		4.03	Silleaver	
								<u>Wir</u> t				
	<i></i>											
									·			
	_											
			-									
<u> </u>					v			_ 				
<u> </u>			-									
		- 1		ø			•					
						2						
			-									
Compliant	Dete		Stabil	ization Criteria	3%	10% , or 3<0	.5 3%	± 0.1	± 10 mv	10% or 3 <5	5 NTU	
Sampling I	Data		-									
Sample ID	D: SPL-GW	/_MW32-0223		Time Col	lected:	1255		Weath	ier:	NJ, dr	ゴモント	
Sample D	escription (C	Color, Turbid	ity, Odor,	Other):	Spa	NER OSA	nge El	ccus)	curt	h odor	?	
Sample A	nalyses:	cis-1,2-DCE	, vinyl chl	oride, total iron, t	total manga	anese, dissol	ved arsenic					
Duplicate	Sample Coll	lected:] Yes	No No	lf yes, ID:							
MS/MSD	Collected:		Yes	🗑 No								
Additional	Informatio	n/Comment	s									

.

.

GROUNDWATER SAMPLE COLLECTION FORM

Project No	D.: 553-155	50-067				Date:	210/23)	Well ID:	MW-33	
Sampling	Organization	: Paramet	rix		Sample	rs: CB	4 NK				
Purge Dat	a Scree	ned Interval	(ft bgs): 20	.0-25.0			Well Ca	ising/Dian	neter: P\	/C/2 in	
Initial Depth of Water (Ft below TOC): 10,17							ge Water Dispo				
Purge De Begin Pur		istaltic pum	ip			F	ump Intake Dep	-		7.5, se	e comments
Time:		32	Ч			E	nd Purge Time:	13	.50		
Time	Depth to Water (feet below MP)	Pump Setting	Purge	Cum. Vol.	Temp	DO (mg/l)	Specific Conductivity	pH (unita)	ORP	Turbidity	,
1330	10,17	Z.	Rate 30()	Purged 1.75L	(°C) 14,6	(mg/L) 0,29	(μS/cm)	(units) 6,91	(mv) -85,2	(NTU) (0,02	Comments
13:35	10.17	2.5	2.60	3L H.L	14.6	0,21	1272	6.89	-104.7		leaver trat
13:45	1'	1631	L.1	5L	14,6	0,18	1311	6.89	-112,5	2,33	////
13:50 13:55 14:00				6L	14,6	0,20	1306	6,89	-114,4	3.49	Shill yellowish thi
17/00						· · · · · · · · · · · · · · · · · · ·					
	á										
	<u> </u>					<u></u>					
									<u> </u>		
			Stabilizat	ion Criteria	3%	10% , or 3<0	.5 3%	± 0.1	± 10 mv	10% or 3 <5	NTU
Sampling [Data										
Sample ID): SPL-GW-	-MW33-0223		Time Col	lected:	1355		Weat	her: 📝	an 140	zl S
Sample D			ty, Odor, Oth		/		no oclor		ed.		
Sample Ai			, vinyl chlo	ide, total iro	on, total m	anganese,	dissolved arse	enic			
Duplicate	Sample Colle	ected:] Yes	No	If yes, ID:						
MS/MSD	Collected:] Yes	No							
	Information	/Comments			_						
	Whit ad	a substant	1	ore the	n 17.	J	1				
* Fi2	zy read	hon m	VOR			porgana	ter oral	ge b.	rowni	n buck	ct.

1 of 1

Parametrix

Water Level Measurement Field Report

DATE	5/1/23	5/\/13 JOB NO. 553-1550-067										
PROJECT: S	outh Park La	andfill	CLIENT: Sea	attle Public Utili	ties							
LOCATION:	Seattle, WA											
WEATHER		TEMP		50's ° at 8:00	A	M						
d Vera	cast	Star		50's at 13:00	1	F	M					
PRESENT AT												
		chnson 3	C. Borrge	03								
WELL NUMBER	Time	Measured Depth to Water (ft from TOC or SG level)	Total Measured Well Depth (ft from TOC)	Measuring Point	Total Well Depth (ft bgs)	Screen Interval (ft bgs)	SU (ft)					
MW-12	1152	5.69		тос	15.3	10-15	1.52					
MW-14	1157	2.52		тос	21.8	11.5-21.5	0.8					
MW-29	1204	6,86		тос	30	20-30	-0.29					
MW-18	12:12	14.70		тос	40.4	30-40	1.25					
MW-25	823	13.25		тос	27	22-27	2.79					
MW-32	1225	10.16		тос	24	19-24	-0.44					
MW-33	1240	10.29		тос	25	20-25	-0.47					
MW-26	1133	9.03		тос	25	15-25	2.39					
MW-27	1140	7.72		тос	20	10-20	2.04					
MW-10	819	12.60		тос	45	35-45	1.65					
MW-24	1130	8.25		тос	45.3	35-45	1.56					
MW-08	1135	7.72		тос	45.6	35.5 – 45.5	1.88					
MW-30	1118	9.59		тос	13	8-13	-0.53					
	1115	10,40		тос	23	35.5-45.5	-0.46					

¥

to hundreds at small black sugar ants in and around monument. on (but not inside at) well casing. Ants carrying small white material

TOC - top of PVC SG - staff gauge casing

Cer SIGNED:

South	Dark	land		GROUND	WATER S	AMPLE C	OLLECTION	FORM					
Project No.						Date:	12/23	5		MM/_08			
Sampling O			rix		Sample		e						
				5.0-45.0									
Purge Data		ned Interval	(it bgs):	-7.7	0				leter:				
Initial Dep Purge Dev	th of Water		00):				rge Water Dispo Pump Intake De			v5			
Begin Purg		10	20				r unp make De						
Time:			530				End Purge Time	4	40				
1340 1345 1350 1355	Depth to Water (feet below MP) 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.7	Pump Setting 2,5 11 11 11 11 11 11 11 11 11 1	Purge 300 Rate	Cum. Vol. Purged 2.00 2.00 2.00 5.75 7.00 8.00 9.00 10.00 13.00 14.00 15.00 15.00 16.00 15.00 16.00	$\frac{ 2.7 }{ 2.7 }$ $\frac{ 2.7 }{ 2.7 }$ $\frac{ 2.7 }{ 2.8 }$ $\frac{ 2.7 }{ 2.7 }$ $\frac{ 3.0 }{ 3.0 }$ $\frac{ 3.0 }{ 3.0 }$ $\frac{ 3.0 }{ 3.0 }$	DO (mg/L) 1.9 0.6 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Specific Conductivity (µS/cm) 760 1039 1118 1124 1134 1134 1134 1134 1134 1134 1137 1136 1141 1136 1141 1136 1141 1136 1142 1139	(units) 6.68 6.63 6.67 6.67 6.67 6.67 6.67 6.67 6.73	-94.9 -78.5 -102.1 -102.1 -103.L -104:- -105.5 -106.6 -107.7 -106.9	9.69 4.47 51.8 22.8 123 123 123 123 123 123 123 123	Comments Clear Turbidity Clear Clear		
Sampling Da	ata												
Sample ID: Sample De Sample Ana	scription (Co		ity, Odor, Oth	Time Co ner):	lear	1444	5 turbidt	 → (v	ner: <u>s</u> i iery	large	warm , srange)		
Duplicate S	ample Colle	ected:	Yes [No	If yes, ID:								
MS/MSD C	ollected:		Yes	No									
Additional I	nformation	/Comment	s										
			used	rdik perista	Longe 1+ic a	unal J	left Y3	bidit tot	y t	illing			

.

|--|

Parametrix

Project No.: 553-1550-067		Date: 5/1/23	Well ID:	MW-10
Sampling Organization: Parametrix	Sampler	s: N. Johnso	n 2 C. Ben	rgeois
Purge Data Screened Interval (ft bgs): 35.	0-44.0	Well Ca	asing/Diameter: PV	C/2 in
Initial Depth of Water (Ft below TOC):	12.60	Purge Water Dispo Pump Intake De		'S
Begin Purge		End Purge Time:	940	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{tabular}{ c c c c c } \hline L & & & & \\ \hline Cum. & & & & \\ \hline Vol. & & & & Temp \\ \hline Purged & (°C) \\ \hline 1.75 & & & & \\ \hline 1.75 & & & & \\ \hline 3.0 & & & & \\ \hline 5.0 & & & & \\ \hline 5.5 & & & & \\ \hline 13.7 & & $	$\begin{array}{c c} & & & & \\ & & & \\ DO & & Conductivity \\ (mg/L) & (\mu S/cm) \\ \hline 0,6 & 1722 \\ \hline 0,7 & 1416 \\ \hline 0.7 & 1416 \\ \hline 0.7 & 1440 \\ \hline 0.3 & 1460 \\ \hline 0.2 & 1472 \\ \hline 0.2 & 1472 \\ \hline 0.2 & 1472 \\ \hline 0.2 & 1470 \\ \hline 0.2 & 1470 \\ \hline 0.2 & 1490 \\ \hline 0.2 & 1512 \\ \hline 0.3 & 1506 \\ \hline \end{array}$	pH ORP (units) (mv) 2.36 113.8 2.92 82.7 3.33 57.3 3.60 $39.23.944$ 17.6 4.31 -3.7 4.61 -20.1 4.61 -20.1 4.96 -39.9 5.12 -49.5 5.35 -62.7	1.44 1.37 1.11 1.19 0.91
Stabilizatio	on Criteria 3%	10% , or 3<0.5 3%	± 0.1 ± 10 mv	10% or 3 <5 NTU
Sampling Data		0.1		
		9:50	Weather: <u></u>	veraust, So's
Additional Information/Comments	y low, ca	libration was	verified h	y vender 4/25/23

South	n P ark	Land	fill								
Project No	b.: 553-155	50-067				Date:	5/8/202	3	Well ID:	MW-12	
Sampling	Organization	: Paramet	rix		Sample	rs: 🚬 💫	, Johnson	3 L.	Biurg	eois	
Purge Dat	ta Scree	ned Interva	l (ft bgs): 10	0.0-15.0			Well Ca	sing/Diam	eter: P	/C/2 in	
Initial De	pth of Wate	r (Ft below 1	ГОС):	6.78	3	Pur	ge Water Dispos	al Metho	d: 0/V	VS	
Purge De	evice dec	licated bla	dder pump			P	ump Intake Dep	oth: 12.5	5 ft		
Begin Pu Time:	rge	82	6			E	nd Purge Time:		210		
Time 8305 840 845 855 900 905 900 905 900 900 905 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 9	Depth to Water (feet below MP) 5.77 5.77 5.77 5.77 5.77 5.77 5.77	Pump Setting 5 1	M 1/mi / Purge Rate 22 S 	1:1	Temp (°C) 11.7 11.2 11.2 11.3 11.3 11.4 11.4 11.4 11.5	DO (mg/L) 1.8 1.6 1.1 0.9 0.7 0.7 0.7 0.7	Specific Conductivity (μS/cm) 132.0 136.6 139.0 139.0 139.7 141.3	pH (units) 6.31 6.30 6.31 6.31 6.32 6.32 6.32 6.32		Turbidity (NTU) 5.63 6.00 7.06 2.85 7.36 7.60 2.53 7.02	
Sampling	Data										
Sample II Sample D		/_MW12-0523 Color, Turbic	s dity, Odor, Otl	Time Co ner):	llected:	92. 1. od	8	Weath	ner: <u>S</u>	unny,	<i>Uai</i> m
Sample A	Analyses:	cis-1,3-DCE, v	vinyl chloride, tot	al iron, total ma	anganese						
Duplicate	e Sample Col	lected:	Yes 🚺	No	lf yes, ID:						
MS/MSD	Collected:		Yes [No							
Additiona	l Informatio										
		+low to	~ 250 t		ample	d t q	10. Inc.	reused	pru	p 1410	w Vate

South Park Landfill Project No.: 553-1550-067 Date: 5/3/23 Well ID: MW-14 8. N. Sampling Organization: Parametrix C Bourgeois Johnson Samplers: 11.5-21.5 PVC/2 in **Purge Data** Screened Interval (ft bgs): Well Casing/Diameter: 2.56 Initial Depth of Water (Ft below TOC): Purge Water Disposal Method: O/WS dedicated bladder pump Pump Intake Depth: 16.5 ft **Purge Device Begin Purge** 1220 Time: End Purge Time: 1315 Depth to Water PS. (feet Cum. Specific below Pump Purge Vol. DO Conductivity Temp pН ORP Turbidity Time MP) Setting Rate Purged (°C) (mg/L) $(\mu S/cm)$ (units) (mv)(NTU) Comments 9 1225 2.64 1.8 13.8 1.7 6.83 569 250 564.9 -29.2 V. turkid 13.4 3:5 0.5 6.69 r 1230 2.64 q t 509.3 less 11 -47.9 7 11 1235 2.65 11 ۶ì 4.2 13.5 6.4 494.4 6.66 46.1 71.6 1240 2.65 çî. v 0.2 -45.3 13.4 486.3 5.0 6.64 49.3 1245 2.65 V 6.1 482.4 6.63 12 13.4 0.2 -75.5 25.9 visual clear, 2.64 1250 1.1 1.4 7.75 0.1 479 8 turbidit 13.4 6.62 -46.3 15.4 \$ *ر ۱* 255 2.64 8:25 - 76.9 779.5 13.4 0.1 6.62 14.3 13 1300 2.64 9.25 480.0 6.62 13.3 0.1 -77.4 A.I 1305 2.67 e C •4 (0.20 0.(- 47.9 13.3 478.0 8.87 6.62 0-1 2.64 1310 -48.8 ι... 14 11.80 13.3 7783 6.62 8.6 U. 0.1 1315 2.64 C1 12.70 478.5 6.61 -79.1 8.14 13.4 í. **Stabilization Criteria** 3% 10%, or 3<0.5 3% ± 0.1 ± 10 mv 10% or 3 <5 NTU **Sampling Data** 1325 Sample ID: SPL-GW-MW14-0523 Time Collected: Weather: Warm su Sample Description (Color, Turbidity, Odor, Other): clear Ver turk: dit min cis-1,2-DCE, vinyl chloride, total iron, total manganese Sample Analyses: Duplicate Sample Collected: Yes No 🖉 If yes, ID: MS/MSD Collected: Yes 🔳 No Additional Information/Comments

Project No.: 55	53-1550-067			Date: 5	13/23		Well ID:	MW-18	
Sampling Organ	ization: Parametri	х	Sampler	rs: <u>C. p</u>	source : o	s &	N- 1	Jolms	0A
Purge Data	Screened Interval (ft bgs): 30.0-40.0			Well Ca	asing/Diam	eter: PV	/C/2 in	
Purge Device Begin Purge	f Water (Ft below TC dedicated bladd		72	Р	ge Water Dispo ump Intake De	pth: <u>35.0</u>		/S	
Time: Den	t			E	nd Purge Time:				
Time Main 750 14 755 14 1006 14 1005 14 1010 14 1015 14	ater PSI ater PSI low Pump 73 20 .73 20 .73 20 .73 20 .73 20 .73 20 .73 20 .73 20 .73 20 .73 20 .73 20 .73 20 .73 20 .73 20 .73 20 .73 10 .74 10 .75 10 .75 10 .77 10 .77 10 .77 10 .77 10 .77 10 .77 10 .77 10 .77 10 .77 10 .77 10 .77 10 .77 10 .77 10 .77 10	Purge Cum. Rate Purged 250 1.00 11 3.20 11 3.20 11 3.20 11 3.20 11 3.20 11 3.20 11 3.20 11 3.20 11 3.00 11 3.00 11 3.20 11 3.20 11 3.20 11 3.20 11 3.20 12 3.20 13 7.0 14 3.20 15 3.20 16 3.20 11 3.20 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 10 10 10 10 11 10 12 10	Temp (°C) 14.4 (4.5 14.6 14.6 14.6 14.7 14.7	DO (mg/L) 2.9 1.0 0.5 0.2 0.2 0.2 0.2	Specific Conductivity (μS/cm) 815 822 830	pH (units) (58 (58 (58 (58 (58 (58 (58 (58 (58 (58) (58 (58) (58 (58) (-	ORP (mv) 28-7 -13,7 -55.6 -66.4 -66.4 -66.4 -66.4	2.01	Comments Cicar Visuch TUNOLARY (lear.
		Stabilization Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5	NTU
Sampling Data									
	le Collected:	/I chloride, total iron, total ma		1030 Clear		Weath	er: <u> </u>	varm /	sound
	mation/Comments								
	Re	command	replaci	ng lo	cle				

Project No	.: 553-155	0-067				Date: 5	2123		Well ID:	MW-24	
Sampling (Organization:	Paramet	rix		Samplei	rs: 16 🕅	N. Jo	husan	3 C.	Bingeo	2,0
Purge Data	a Scree	ned Interval	(ft bgs):	5.0-45.0			Well Ca	asing/Diam	eter: <u>PV</u>	'C/2 in	
Initial Dep	oth of Water			8.22		Pure	e Water Dispo	sal Method	i: 0/W	IS	
Purge De	vice ded	icated blac	dder pump			Ρ	ump Intake Dej	pth: 40.0) ft		
Begin Pur	ge	16.0	0								
Time:		1.62	~6			E	nd Purge Time:	_11	50		
	Depth to Water										
	(feet	psi		Cum.			Specific				
	below	Pump	Purge	Vol.	Temp	DO	Conductivity	рН	ORP	Turbidity	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(µS/cm)	(units)	(mv)	(NTU)	Comments
10:35		23	250	2.00	11.8	0.4	894	662			Clear
10:40	8.24			3.25	<u>)</u> \.9	0.2	870	6.63		8.82	
1045	8.25			5.00	<u>N.9</u>	0.1	876		0.82-		
1050	8.25	11		5.75	12.0	0.1	033		-64.0		
10 - 55	8.26			7.00	12.1	0.1	885	6.63		5.57	
1100	8.26	14		8.25	12.1	0.1	889	6.63	-71.4	6775	
										:	
				. <u> </u>							
			<u> </u>								
						<u></u>					
								<u></u>			
			<u> </u>					-			
<u> </u>											
			Stabilizat	ion Criteria	3%	10% , or 3<0.	5 3%	± 0.1	+ 10 mv	10% or 3 <5	NTU
Sampling D	Data		Stabilitat		370	2070 ; 01 0 40.		- 0.1	10 110	10/0 01 3 (3	
Sample ID	: SPL-GW-	MW24-0523		Time Col	llected:	1105		Weath	er: 6	0'5 , #	Thursday HAVE
Sample De	escription (C	olor, Turbid	ity, Odor, Otł	ner): C	RCA (~ ~ ~)
				-							
Sample Ai Duplicate	Sample Colle		inyl chloride, tot	al iron, total ma	If yes, ID:						
MS/MSD			_	No	. ,,	e			ر		-
	Information										
	(one		eplacin	5 1001	A						
					1.0						

Project No	o.: <u>553-155</u>	50-067				Date:	511123		Well ID:	MW-25	
Sampling	Organization	: Paramet	rix		Sampler	s: N.	Solmson	8	C. Q	ouse	0:5
Purge Dat	a Scree	ned Interval	(ft bgs): 22	.0-27.0				asing/Diam	neter: <u>PV</u>	/C/2 in	
Initial De	pth of Water			13.25		Pur	ge Water Dispo	sal Metho	d:0/W	IS	
Purge De	vice ded	licated blac	lder pump			F	oump Intake De	pth: 24.	5 ft		
Begin Pu	rge	10.	03						Neg	100	
Time:		10	03			E	ind Purge Time:		- F	1030	5
	Depth to										
	Water (feet	p51		Cum.			Constitu				
	below	Pump	Purge	Vol.	Temp	DO	Specific Conductivity	pН	ORP	Turbidity	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(µS/cm)	(units)	(mv)	(NTU)	Comments
10110	13.25	15	230	6.75	13.4	1.3	1173	6.53	-71.6	1.65	clear
10:15	13.25		- 11	8.00	13.5	0.7	1197	6.52	-87.2	1.18	
10:20	3.25			8.75	13.5	0.4	1208	6.53	-94.1	1.21	
10:25	13.25	- 11		10,00	15.6	0.3	1214	6.53	-100.4	080	
10:30	13.25			11.00	13.6	0.2	1218	6,53	-101.8	0.82	
					22						
						·					
			<u></u>								
<u> </u>											
		;									
							·				
							<u> </u>				
									s		
			Stabilizati	on Criteria	3%	10 %	3%	± 0.1	± 10 mv	10% or 3	<5 NTU
Sampling D	Data										
Sample ID	: SPL-GW-	MW25-0523		Time Col	llected:	10:35		Weath	er: Q	recost	r, 50's
Sample De	escription (Co	olor, Turbidi	y, Odor, Oth	er):	Cor						
Sample Ar	nalyses:	s-1,2-DCE, be	nzene, vinyl ch		200	nese					
Duplicate	Sample Colle	ected:	Yes 🚺	No	lf yes, ID:	_					
MS/MSD (Collected:		Yes 🚺	No							
Additional	Information	/Comments									
Col	iters	bride	John	e jef	toer	from	- hay	10			

				GROUND	VATER S	AMPLE CO	LLECTION	FORM			
South Project No.:			fill			Date:	12/25		Well ID:	MW-26	
Sampling Or			iy		Sample		12/25 Bourger	nis		N. 30	
	ganization:	Turumeur		0.05.0	Sample						MBOU
Purge Data	Scree	ned Interval ((ft bgs): 15	6.0-25.0			Well Ca	asing/Diam	leter:	/C/2 in	
		(Ft below TC		9.00		Purg	ge Water Dispo			VS	
Purge Devic		icated blad	der pump			Ρ	ump Intake De	pth: 20.	0 ft		
Begin Purge Time:	-	1128	2			E	nd Purge Time:	1	235		
Time 1135 140 140 145 150 1200 1205 1200 1205 1200 1205 1200 1205 1200 1205 1200 1205 1200 1205 1200 1205 1200 1205 1200 1205 1200 1205 1200 1205 1200 1000 1200 1000	Depth to Water (feet below MP) 8.99 8.99 8.99 8.99 8.99 8.99 8.99 8.9	Pump Setting 10 11 11 11 14 10 11 14 10 11 14 10 11 14 10 11 14 10 11 14 10 11 14 10 11 14 10 11 10 11 11 12 13 14 14 15 16 17 18 19 11 14 14 15 16 17 18 19 10 10 11 14 15 16 17 18 19 10 10 11 11 12 14 16	Purge Rate 250 ., ., ., ., ., ., ., ., ., ., ., ., .,	Cum. Vol. Purged 1.75 2.80 4.00 5.25 6.75 9.00 9.75 13.90 14.75 13.90 14.75 13.90 14.75 13.90 11.25 13.90 11.25 13.90 11.25 13.90 11.25 13.90 11.25 15.90 11.25 15.90 11.25 15.90 11.25 15.90 11.25 15.90 11.25 15.90 11.25 15.90 11.25 15.90 15.	Temp (°C) 11. 25 11. 25	DO (mg/L) 1.5 1.0 0.7 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	286.5 286.8 287.1	6.00 5.99 5.98 5.98 5.97 5.97 5.97 5.97 5.97 5.97	25.2 24.7 24.4 24.0 24.0 23.7 23.7 23.7 23.7 23.7	34,6 1714 12,3 18,95 5,95	
Sampling Da	ta										
Sample ID:	SPL-GW	_MW26-0523		Time Co	llected:	8112	10	Weath	ner:	sunny	3 coul
Sample Des	cription (C	olor, Turbidit	ty, Odor, Oth	ier):	Clear.					5	
Sample Ana	lyses: c	is-1,2-DCE, vir	ıyl chloride, tota	al iron, total ma	nganese						
Duplicate Sa	ample Colle	ected:	Yes	No	If yes, ID:	SPL-GW_	_MW61-0523	21	310		
MS/MSD Co] No							
••••••••••••••••••••••••••••••••••••••											

Project No	553-155	0-067				Date:	5/2/23		Well ID:	MW-27	
Sampling (Organization:	Parametri	Х		Sample	ers:	N.Johns	n h	C.B	ourge.	15
Purge Dat	a Scree	ned Interval (ft bgs): 10	.0-20.0			Well Ca	sing/Diam		/C/2 in	
Purge De Begin Pur	vice ded	(Ft below TC icated blade	der pump	7.69		P	ge Water Dispos ump Intake Dep	al Method th: 15.0	: <u>0</u> /W	VS	
Time:	 Depth to					E	nd Purge Time:				
Time 1500 1505 1510 1515 1525 1525 1530 1535	Water (feet below MP) 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.7	۲۶ ⁵ Pump <u>Setting</u> ۹ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰	ML / mix Purge Rate 306 U U U U U U U U U	Cum. Vol. Purged 1.8 2.5 3.5 5.0 6.0 7.0 8.0 9.1	Temp (°C) <u>11.6</u> <u>11.6</u> <u>11.6</u> <u>11.7</u> <u>11.7</u> <u>11.7</u>	DO (mg/L) 1.2 0.8 0.4 0.3 0.2 0.2 0.2	Specific Conductivity (μS/cm) 325.4 325.9 354.6 374.6 374.6 399.7 711.3 418.3 422.1	рН (units) 6.49 6.46 6.46 6.46 6.46 6.46 6.46 6.46	ORP (mv) <u>15.8</u> <u>20.1</u> <u>8.5</u> <u>-12.0</u> <u>-24.2</u> <u>-34.3</u> <u>-41.1</u> - 45.8	Turbidity (NTU) 493 591 450 250 250 250 250 250 250 250 250 250 2	Comments Strong Orange color Slightly clearer
1540 1545 1550 1555 1605 1605 1605	7.21 7.71 7.71 7.71 7.71 7.71 7.71		51 51 52 53 55 51 51 51 51 51 51 51 51 51	10.5 11.9 13.00 14.00 15.00 15.00 17.00	11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 <t< td=""><td>0,2 0,1 0,1 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,1 0,1 0,2 0,2 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1</td><td><u>427.6</u> <u>430.1</u> <u>429.9</u> <u>431.6</u> <u>433.6</u> <u>734.5</u> <u>435.5</u> <u>435.5</u></td><td>6.77 6.77 6.77 6.76 6.77 6.77 6.77</td><td>- 51, 7 - 54.8 - 58, 2 - 60, 6 - 67.0 - 67.0</td><td>18.7</td><td></td></t<>	0,2 0,1 0,1 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,1 0,1 0,2 0,2 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	<u>427.6</u> <u>430.1</u> <u>429.9</u> <u>431.6</u> <u>433.6</u> <u>734.5</u> <u>435.5</u> <u>435.5</u>	6.77 6.77 6.77 6.76 6.77 6.77 6.77	- 51, 7 - 54.8 - 58, 2 - 60, 6 - 67.0 - 67.0	18.7	
Sampling D	Pata										
Sample Ar Duplicate MS/MSD (escription (Co nalyses; <u>ci</u> Sample Colle		yl chloride, tota Yes	l iron, total mai	1.00-	(620 M)M	turb	Weath	er:	sunny,	Warm

Soutl	h P ark	Land	dfill								
Project No	D.: 553-155	50-067				Date:	5/3/23)	Well ID:	MW-29	
Sampling	Organization	: Parame	etrix		Sample	rs: N. 3	moon	de C	. Bo-	rgeni	S
Purge Dat	ta Scree	ned Interv	al (ft bgs): 2	20.0-30.0			Well C	asing/Diam	eter: P\	/C/2 in	
Initial De	pth of Water	r (Ft below	TOC):	6.34	F	Purg	e Water Dispo	sal Metho	d: <u>O/V</u>	VS	
Purge De	evice peri	istaltic pu	mp			Pu	ump Intake De	pth: 25.	0 ft		
Begin Pu Time:	rge	10:5	54			Er	nd Purge Time	<u></u>]]u	15		
Time Nes Nes Nes Nes Nes Nes Nes Nes	Depth to Water (feet below MP) 7.60 7.72 7.76 7.76 7.76 7.76 7.76 7.76 7.76	Pump Setting 2.5 N U I I I I I I I I I I I I I I I I I I	Purge Rate 2600 N N N N N N N N N N	Cum. Vol. Purged 1.50	Temp (°C) (2.2 (2.2 (2.2) (2.2) (2.2) (2.2) (2.2) (2.2) (2.2) (2.3) (2.3) (2.3) (2.3) (2.3) (2.3) (2.3) (2.3) (2.3) (2.3) (3.3	DO (mg/L) O. 6 O. 4 O. 4 O. 9 O. 6 O. 5 O. 3 O. 2 O. 1	Specific Conductivity (μS/cm) 89 1 89 2 840 840 840 840 840 840 840 840 840 840	(units) (6.62 (6.63 (6.63 (6.63 (6.63 (6.65 (6.65 (6.67	-92.4 -92.3 -92.1 -92.1 -94.6 .77.7 -101.8 -105.3	8.44 3.23 4.33 7.94 2.66 1.74 1.74 1.92	Comments Yellow hue Yellow hue Yellow hue Present
		· · · · · · · · · · · · · · · · · · ·	Stabiliza	ation Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	 10% or 3 <5	
Sampling	Data										
Sample II	D: SPL-GW	_MW29-052	3	Time Co	ollected:	11 55		Weath	ner: 🔪	non	Sum
Sample D	escription (C	olor, Turbi	idity, Odor, O	ther):	clea	er, mi	nor ye	امم	me		/
Sample A	nalyses: 0	cis-1,2-DC	E, vinyl chlor	ide, total iron,	total manga	anese	/				
Duplicate	e Sample Coll	ected:	Yes	No No	If yes, ID:	6					
MS/MSD	Collected:		Yes	No No							
Additiona	I Informatior	n/Commer	nts								

				ROUND	NATER S	SAMPLE CO	OLLECTION F	ORM			
South	n P ark	Land	fill				2				
Project No	b.: <u>553-155</u>	50-067				Date: 7	\$ 5/4/2	-3	Well ID:	MW-30	
Sampling	Organization	: Paramet	rix		Sample	ers:	N. Johnson	n 3	C. B6	rgeoin	\$
Purge Dat	ta Scree	ned Interval	(ft bgs):8.0)-13.0			Well Ca	ising/Diam	eter: P\	/C/2 in	
Initial De	pth of Water	r (Ft below T	OC):	9.6	0	Pur	rge Water Dispos	sal Metho	d: O/M	VS	
Purge De	vice per	istaltic pum	IP				Pump Intake Dep	oth: 10.	5 ft		
Begin Pu Time:	rge	8:22	2				End Purge Time:		45		
Time 825 830 835 940 845	Depth to Water (feet below MP) *17:72 9:73 9:73 9:73 9:73 9:73 9:73 9:73 9:73 9:73 9:73 9:73 9:73 9:73 9:73 9:73 9:73 9:73 9:73	Pump Setting 2.5 2.25 	My Jurion Purge Rate 200 250 	Cum. Vol. Purged 1,50 1.25 3.25 4.25 6,00 	Temp (°C) (N.3 (1.3 (1.3 (1.3 (1.3)	DO (mg/L) 0.9 0.5 0.4 0.4 0.4	Specific Conductivity (μS/cm) 99% 1008 1009 1001 99% 1001 99% 1001 99% 1001 99% 1001 99% 1001 99% 1001 99% 1001 99% 1001 99% 1001 99% 1001	pH (units) (6.23 (6.23 (6.24 (6.24)	61.8 55.6 51.4	Turbidity (NTU) 13.8 8.53 4.89 7.01 2.77	Comments
Sampling	Data		Stabilizati	on Criteria	3%	10% , or 3<0	0.5 3%	± 0.1	± 10 mv	10% or 3 <5	NTU
Sample I		_MW30-0523		Time Co	lloctod	855		W			+ 1. 50%
,	-		ity, Odor, Oth	-		-	clear, la	Weath	ier:	ice	t, low 505
Sample A			vinyl chloride			-	LICAY D		Alonte) oran	ye ciecces.
	Sample Coll		-	No	If yes, ID:						
	Collected:			No	,, 1	-					
	I Information										
		-	naht	z. fer	ver a	ants in	Moncor	ant	the.	64 51	(/23
			6-					well			

Parametrix

1 of 1

Project No.: 553-1550-067	Date:	5/2/23	Well ID:	MW-31
Sampling Organization: Parametrix	Samplers:	N. Jems	m & L. Bo	mryeoil
Purge Data Screened Interval (ft bgs): 18.0-23.0		Well Cas	sing/Diameter: P	/C/2 in
Initial Depth of Water (Ft below TOC): 10.37 Purge Device peristation pump Dadicuted.		Purge Water Dispos Pump Intake Dep		VS
Begin Purge				
Time: Q:08 Depth to Water (feet PS MM_{min} $Jsterres$ Cum. Time MP) Setting Rate Purge 71:05 0.37 15 350 2.25 9:20 0.37 13 350 2.25 9:20 0.37 13 260 4.00 9:30 0.37 11 11 4.75 9:30 0.37 11 11 4.75 9:30 0.37 11 11 4.75 9:30 0.37 11 11 5.25 9:30 0.37 11 11 5.25 9:40 10.32 2.50 5.5 9:45 10.40 10.40 10.00 9:55 10.40 10.00 10.00 9:55 10.40 10.00 10.00 9:55 10.40 10.00 10.00 9:55 10.40 10.00 10.00 9:55 10.00 10.00 10	Temp DO (°C) (mg/	3 489.5 493.8 494:3	$\begin{array}{c c} 955 \\ \hline pH & ORP \\ (units) & (mv) \\ \hline c.31 & -33.5 \\ \hline c.31 & -35.5 \\ \hline c.31 & -52.2 \\ \hline c.35 & -52.2 \\ \hline c.35 & -60.6 \\ \hline c.35 & -60$	9.94 clear u/ 5.69 orange flechs
Stabilization Criteria	3% 1 <mark>0%</mark> , or	3<0.5 3%	±0.1 ±10 mv	10% or 3 <5 NTU
Sample ID: SPL-GW_MW31-0523 Time Co Sample Description (Color, Turbidity, Odor, Other):	abe	D noland Ion E-GW_MW81-11	Weather: <u>c</u>	tecks
MS/MSD Collected: Yes No Additional Information/Comments				
	v	talt: - 20 ind Jampa (20.5' p		cu & the problem

		.: 553-155					Date: 5			Well ID:	MW-32	
-	Sampling (Organization:	Parametr			Sampler	s: N.	Johnson	$\sim \propto$	C. 1	bourge	20. S
_	Purge Dat	a Scree	ned Interval	(ft bgs): 19	9.0-24.0			Well Ca	ising/Diam	eter: PV	/C/2 in	
	Initial Dej Purge De	oth of Water vice <u>peri</u>	Ft below To staltic pum		10.10	0		e Water Dispos Imp Intake Dep			/S	
_	Begin Pur Time:	ge —	12	:35			En	d Purge Time:		310		
	Time 250 255 300 305 310	Depth to Water (feet below MP) \D.\& \D.\& \0.\& \0.\& \0.\&	Pump Setting 2.5 4 4 4 4	Purge Rate 250 	Cum. Vol. Purged V.25 2,5 3,75 5,75 6,75 8,00	Temp (°C) 13.2 13.4 13.4 13.4 13.4	DO (mg/L) 1.2 0.4 0.3 0.3 0.3 0.2	Specific Conductivity (µS/cm) 520.8 762 831 831 835 844	6.74		3.93 1.17 1.84 0.74	Comments Clear With Turbiti
				 Stabilizat		 3%	 10% , or 3<0.	5 3%	± 0.1	± 10 mv		NTU
	Sampling I	Data										
	Sample IE Sample D Sample A	escription (C			Time Co ner):	lear	345		Weath	ner: <u>0</u>	vercent	50'5
		Sample Coll	vic	_] No	If yes, ID:	SPL-GW_	MW60-0523	تا ھ	320		
		Collected:	-		 No		2					

Project No	553-155	50-067				Date:	5/1/23		Well ID:	MW-33	
Sampling (Organization	: Paramet	rix		Sample	rs:	N. Johnson	~ 7 (. Bour	geois	
Purge Dat	a Scree	ned Interval	(ft bgs): 20).0-25.0			Well Ca	sing/Diam	neter: P\	/C/2 in	
Initial De	pth of Wate	r (Ft below T	OC):	16.30		Pur	ge Water Dispos	al Metho	d: 0/W	/S	
Purge De	vice per	istaltic pur	ישר.				ump intake Dep		12		
Begin Pur	rge								-		
Time:			1901			E	nd Purge Time:	14.	25		
	Depth to Water		ml/m:								
	(feet below	Pump	Purge	Cum. Vol.	Temp	DO	Specific Conductivity	pН	ORP	Turbidity	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(μS/cm)	(units)	(mv)	(NTU)	Comments
1405	16.30	2.5	414	41	17.8	0.9	885	6.78	69.3	14.7	pale yallow
1410	10.30	2.5	275	1.8	14.9	0.4	1412	<u>େ</u> ଜ୍ମ	-97.6	2.37	hue minor
1415	10.31	5.ª		2.9	14.9	0.3	1447	6.68	-111.5	2.30	turbidity
1420	10.31	V H		4.0	15.0	0.2	1451	6.69	-116.5	3.55)
1425		1+	14	5.1	15.0	0.2	F1450	6.69	-120.0	3.84	
	<u></u>		<u> </u>								
					-						0
			<u> </u>							·····	6 <u></u>
					-	s 					2
						· /					
						· ·					
	<u></u>		÷		····						
· ····											
							· · · · ·				
							-				
·			<u></u>	<u> </u>			<u> </u>				
			Stabilizat	ion Criteria	3%	10% , or 3<0	.5 3%	± 0.1	± 10 mv	10% or 3 <	5 NTU
Sampling [Data										
Sample ID): SPL-GW	-MW33-0523		Time Co	llected:	1435		Weath	ner: d	vercust.	high So's
Sample D	escription (C	Color, Turbid	ity, Odor, Oth	ner):	Dale u	chow 1	we (min	1	VSIA	little	turkidit.
Sample A			inyl chloride, tot	-	1	/=			••9	Janua	
Duplicate	Sample Coll	ected:	Yes 🚺	No	If yes, ID:						
MS/MSD	Collected:		Yes	No							
Additional	Information	n/Comment	s								
DUG	000	- Pres	ned	JOA	GAP	o dete	ctive.	will	lita	de hou	ve loubble.
					- 1			00.00		7	

Water Level Measurement Field Report

	31/2023 South Park La	ndfill	CLIENT: Sea	attle Public Utili	ties		
	Seattle, WA						
WEATHER		TEMP		5 F ° at 866			M M
PRESENT A							
	Bourgeo	5 7 5. 1	gym				_
WELL	OWING WAS	NOTED: Measured Depth to Water (ft from TOC or SG level)	Total Measured Well Depth (ft from TOC)	Measuring Point	Total Well Depth (ft bgs)	Screen Interval (ft bgs)	SU (ft
MW-12	800	6.49		TOC	15.3	10-15	1.52
MW-14	807	3.75		TOC	21.8	11.5-21.5	0.8
MW-29	819	8.33		тос	30	20-30	-0.29
MW-18	824	15.85		тос	40.4	30-40	1.25
MW-25	857	1136	17.19	тос	27	22-27	2.79
MW-32	842	11.20		TOC	24	19-24	-0.44
MW-33	835	11:50 11.36		TOC	25	20-25	-0.47
MW-26	9567	K 94.30	10.09	TOC 🧋	25	15-25	2.39
MW-27	949	8.83		TOC	20	10-20	2.04
MW-10	852	13.45		тос	45	35-45	1.65
MW-24	955	9.30		тос	45.3	35-45	1.56
MW-08	946	0-83	8.83	тос	45.6	35.5 – 45.5	1.88
MW-30	1010	10.71		тос	13	8-13	-0.53
MW-31	1008	11.32		тос	23	35.5-45.5	-0.46

I tow vising significantly after opening well.

TOC – top of PVC SG – staff gauge casing

SIGNED: Chro

949 8.83 à mell nixt to murs (27) 957 10.09 à mell nett t. Mu-24 (26)

×

Project No.: 553-1550-067 1 Well ID: **MW-08** Date: Sampling Organization: Parametrix C. Bourgeois & S. Nguyen Samplers: PVC/2 in 35.0-45.0 Well Casing/Diameter: Screened Interval (ft bgs): **Purge Data** O/WS 8.82 Purge Water Disposal Method: Initial Depth of Water (Ft below TOC): 40.0 ft peristaltic Pump Intake Depth: **Purge Device Begin Purge** 820 91 5 End Purge Time: Time: Depth to L Water mL Specific Cum. (feet w Conductivity ORP Turbidity Purge Temp DO рΗ Vol. below Pump (µS/cm) (units) (mv)(NTU) Comments Purged (°C) (mg/L) Rate MP) Setting Time 14.6 10 724 190 7.00 -61.4 55 7.2 320 8.82 1244 14.2 116 -83 29.7 9 6.99 8.82 21 5 825 11 3.0 6.98 28 14. 1146 -92 1 830 8.83 4K \subset 140 435 4. 1.19 6.97 - 95.9 3 .8 2 8.84 1.08 6.96 -99.1 4.9 14.0 1138 10 840 8.81 5.9 1.03 1135 6-98 -100.8 9.5 845 8.96 14.1 1136 8.85 6.97 3 109 -98.7 14. 1 850 1125 -98.5 4.108 1.82 6.96 7.2 14.4 955 885 4.28 6.76 6.98 -95.6 8. 1120 COROLA 14.4 900 8.96 9.2 24 1121 6.97 - 08.9 4.33 14.1 8.84 0 0DC 10.3 0.34 14.0 1119 10-98 -101-2 4.25 8.95 910 0.28 6.97 14.1 113 2 -102.5 4 8.85 11 915 **Stabilization Criteria** 3% 10% , or 3<0.5 3% ± 0.1 ± 10 mv 10% or 3 <5 NTU **Sampling Data** Sunny 65 920 Weather: Time Collected: Sample ID: SPL-GW_MW08-0823 oderes dea Sample Description (Color, Turbidity, Odor, Other): cis-1,2-DCE, vinyl chloride, total iron, total manganese Sample Analyses: V-Yes SPL-GW MW61-0823 @ 945 No If yes, ID: **Duplicate Sample Collected:** Yes No MS/MSD Collected: Additional Information/Comments aivbubbles @ 900 adden the to minimize Air ug in silicon **Parametrix**

South	Park	Landfill	

ð,

8/2/23 Project No.: 553-1550-067 MW-10 Well ID: Date: Sampling Organization: Parametrix C. Bourgeois & S. Nguyen Samplers: PVC/2 in 35.0-44.0 Well Casing/Diameter: Screened Interval (ft bgs): **Purge Data** O/WS 3 3 4 Purge Water Disposal Method: Initial Depth of Water (Ft below TOC): 40.0 ft peristaltic Pump Intake Depth: Purge Device **Begin Purge** 845 920 End Purge Time: Time: Depth to Water lex 1 Specific Cum. (feet Turbidity Conductivity рĦ ORP Vol. Temp DO below Pump Purge

Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(µS/cm)	(units)	(mv)	(NTU)	Comments
850	19.45	2.6	125300	1.5	14.8	2.05	1381	6.99	-90.0	99,6	V. turbal
855	13.43	E)	N 82	3.0	14.7	2.16	1378	6.90	-100.3	25.5	
900	$\mathbf{\bar{y}}^{k} = \mathbf{w}^{k}$	24	- w	4.5	M.8	0.26	1386	6.38	-108.5		less terbid
905	1.2	<u></u>		6.0	14,8	0.27	170 5	6.92	-1143		<i></i>
910	et	4	¥-	2.5	149	6.30	1416	+	-1180	4.58	
115	6.4	E.c.	EX.	9.0	14-9	0-34	1427	6.96	-120,0	34.25	
920	6.5	- (u	10.5	14.8	0.22	1428	That	-123.0	3.73	(i
						-		6-96			
					_			s			
								·			
								·			
					_			·			
											·
								·			
						<u></u>					
							. 1				
			Stabilizati	on Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 </th <th>5 NTU</th>	5 NTU
Sampling	Data							-			
Sample II	D: SPL-GW	-MW10-0823		Time Co	ollected:	925		Weath	ner:	Sman	70'5

Sample ID: SPL-GW-MW10-0823	Time Collected: <u>42</u>	S Weather:	Sman tos
Sample Description (Color, Turbidity, Odor, Other):	clear, ador	ess I less bottle	(Hel-VOA)
Sample Analyses: cis-1,2-DCE, vinyl chloride, total iro	n, total manganese		
Duplicate Sample Collected: Yes	o If yes, ID:		
MS/MSD Collected: Yes	0		
Additional Information/Comments			
Q			

ä.

Project No	553-155	0-067		_		Date:	1/23	\	Vell ID:	MW-12	
ampling (Organization:	Parametr	ix		Sample	rs: C. Bourge	ois & S. Nguyen				
urge Dat	a Scree	ned Interval	(ft bgs): 10	.0-15.0			Well Ca	sing/Diam	eter: PV	/C/2 in	
Initial De	pth of Water	(Ft below T	OC):	6.57		Purg	e Water Dispos			/S	
Purge De	vice ded	icated blac	lder pump			Ρι	imp Intake Dep	th: 12.5	5 ft		
Begin Pu	rge	112	6			En	d Purge Time:	1	205		
Time:	Daugh da	((-					iu Purge fillie.		-		
	Depth to Water		me/min								
	(feet			Cum.	Tomm	DO	Specific Conductivity	pН	ORP	Turbidity	
Time	below MP)	Pump Setting	Purge Rate	Vol. Purged	Temp (°C)	(mg/L)	(µS/cm)	(units)	(mv)	(NTU)	Comments
130	6.78	18	180		16.0	1.09	495.4	6.53	50.5	24.9	
135	6.52	26	230	3.9	15.1	0.94	503.0	6.56		14.0	
140	6.65	<u>x x</u>	<u></u>	4,8	151	0.31	501.6	6.53	51.7	11.0	
145	6.57	8.5	- iX	5.8	15.2	0.47	<u>499.5</u> <u>499.5</u>	6.54	49.1	7.53	
160	6.49	<u> </u>		7.0	152	6.35	500 4	6-54	46.	3 <u>536</u> 4.86	
155	<u> </u>			10.5	15.1	0,27	500.5	6.57	43.6	4.22	
205		- 1 V.	(Te)	12.0	15.2	0.22	500.4	6.54	43.6	4.08	
201					12.2						
	12									3	
						-				×	
					_						
			-							72	
					5 					8	
										()	
						<u></u>					
<u> </u>					1						
					1	-					
			Stabilizati	ion Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5	
ampling	Data	_									
Sample II): SPL-GW	_MW12-0823		Time Co	llected:	1210		Weath	ner:	Sunny	70'5
Sample D	escription (C	olor, Turbid	ity, Odor, Oth	er):	elen	1. Oclo	145 C			<i>(</i>)	
Sample A			inyl chloride, tota		anganese		8				
	1		_	No							2
Duplicate	Sample Coll	ected:		_	If yes, ID:				-		
MS/MSD	Collected:		Yes 🗸	No							
dditiona	I Information	n/Comment	S								
		-	_	1							
			1.1	23							Paramet

11:21 يا ب н.

(2)

	: 553-155	Parametr	ix		Sample		/1/23 tois & S. Nguyen		Well ID:	MW-14				
	_	ned Interval	4.4	.5-21.5		-	_	sing/Diam	eter: P∖	/C/2 in				
urge Data		(Ft below T	(11 083).	3.4	5									
Purge Dev		icated blad		623	Pump Intake Depth: 16.5 ft									
Begin Purg			1232				•							
Time:			(1 5 "	י י		Er	nd Purge Time:	!	320					
	Depth to		0.14											
	Water (feet		and I min	Cum.			Specific							
	below	Pump	Purge	Vol.	Temp	DO	Conductivity	pH (unite)	ORP	Turbidity	Comments			
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	<u>(μS/cm)</u> 524-7	(units) 7.13	(mv) 25.7	(NTU) 15-5	Comments			
235	3.55	0		0.25	17.1	0.49	541.7	7.01	-46.9	10.2				
246	2.75				16.5	0.29	535.6	6.95	-46.8	8.58	1			
255	3.56			5.0	165	0.25	533.1	6.97	17.2	8.01				
300	3:52	<u> </u>	1 -	5.5	16.7	3.22	533.2	6.97	-47,5	6.17				
305	1.	~~~~	15	6.5	16.4	0.24	531.0	6.94		5.16				
310	1 3.5	3	1.5 C	7.5	16.4	0.26	532.6	6.94	-19:7	7.55				
315	3.54	<u></u>	U.	5.2	16.4	0.26	533.1		-50.7	4.09				
20	3.56	4.4	<u></u>	9.5	16.5	0.28	533 0	6.94	-51.5	4.03				
				<u> </u>						<u> </u>				
					_									
					-									
		······)					_							
			Stabilizat	ion Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5	S NTU			
mpling D	ata		<											
Sample ID	· SPL-GW	-MW14-0823		Time Co	llected:	[32]	5	Weat	her:	Sun,	mil 70's			
	· · · · · · · · · · · · · · · · · · ·							5	_					
			ity, Odor, Otł				odurlass							
ample Ar	nalyses: C	sis-1,2-DCE		ride, total ir	on, total r	manganese								
ouplicate	Sample Coll	ected:	Yes	No	If yes, ID:	0								
AS/MSD (Collected:		Yes 🚺	No										
Iditional	Information	n/Comment	5											

South Park Landfill	
550 4550 007	

Project No	.: 553-155	60-067				Date:	3/1/23		Well ID:	MW-18	
Sampling (Organization	: Paramet	rix		Sampler	C. Bourge	eois & S. Nguyen				
Purge Dat	a Scree	ned Interval	(ft bgs): 30	.0-40.0			Well Ca	sing/Diam	eter: PV	C/2 in	
Initial Dep	pth of Water			15.8	2		ge Water Dispos			'S	
Purge De	vice ded	icated blac	dder pump –	De		P	ump Intake Dep	oth: 35.0	ft		
Begin Pur Time:	rge	Si	15	0.6		E	nd Purge Time:	15	98		
	Depth to Water (feet		me/ma-	Cum.			Specific		000	Turkidian	
Time	below MP)	Pump Setting	Purge Rate	Vol. Purged	Temp (°C)	DO (mg/L)	Conductivity (μS/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
505	15.82	50'	230	~ LO	16.9	3.72	732	6.92		14.0	
50	12.02	50	11	2.5	16.7	1.66	745	and the second s	-52.7	7.69	
1515			- U	4.6	6.6	1.29	.745		-63.7	5.94	
1520			4	6.5	16.6	1.07	741	6.90	-68.7	4.69	
1525				7.1	16.5	1.00	\$ 739	6.90	-72.3	1.35	
1530		<u>ــــــــــــــــــــــــــــــــــــ</u>	41	9.0	(6.6	20,86	7.38	5.89	-74.7	3.87	
1535		~		10.0	16.4	3.87	240	6.89	-75.6		
1540	6	v	~	11.25	16.6	0.87	738	6.29		3.75	
19 10				<u>(··· - »_</u>			-	-			
	8		2								
							_				
					5						
					-						
					-						
						· · · ·	1				
				2			1				
	<u></u>	0								=	
						3					
										(=	
				-			2				
										(i	
		2	Stabilizat	ion Criteria	3%	10% , or 3<0	.5 3%	± 0.1	± 10 mv	10% or 3 <5	NTU
Sampling	Data		/ D								
Sample II): SPL-GW	/-MW18-0823		Time Co	llected:	1575		Weat	her: 🧾	in my	70s
Sample D	escription (C	Color, Turbic	lity, Odor, Oth	ner):	steer,	odale	67				
Sample A			inyl chloride, tot		inganese	0	3	4			
Duplicate	Sample Coll	lected:	Yes -	No	If yes, ID:	114 U	0			_	
MS/MSD	Collected:		Yes 🚺	No			0 131 2				
Additional	Informatio	n/Comment	ts								
_		_									

roject No	.: 553-155	0-067			Date: 7/31/23 Well ID: MW-24								
ampling C)rganization:	Parameti	rix		Samplers:C. Bourgeois & S. Nguyen								
urge Data	scree	ned Interval	(ft bgs): 35.	0-45.0	Well Casing/Diameter: PVC/2 in								
Initial Dep	oth of Water	(Ft below T	OC):	91 1	Purge Water Disposal Method: O/WS								
Purge Dev	vice ded	icated blac	lder pump		Pump Intake Depth: 40.0 ft								
Begin Pur Time:	ge –	1	239		End Purge Time: 🎾 1310								
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductivity (µS/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments		
1240	9.40	55	250 ml/win	1.9	12.4	0:76	974	6.80	-552				
1245	9.41		<u>н</u>	3.1_	12.6	0.38	987	6.83	74.9	6.36			
1250	9.45	<u> </u>	R	4.8	12.5	0.29	1002	6.83	- 87.1	1.98 -			
155	9.44			7.8	12.5	0.27	1002		-89.5				
	1.72							<u>0.00</u>		<u> </u>			
						· · · · · · · · · · · · · · · · · · ·							
										:=			
									<u> </u>				
						·^							
					. <u></u>	· · · · · · · · · · · · · · · · · · ·							
										~			
100			i,										
			Stabilizati	on Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5 l	UTU		
ampling D	Data												
Sample ID	: SPL-GW	-MW24-0823		Time Co	llected:	1305		Weath	ier: S	inne,	70'5		
Sample De	escription (C	Color, Turbid	ity, Odor, Oth	er):	¢	cher .	adoviess)			
ample Ar	nalyses:	cis-1,2-DCE, v	inyl chloride, tota	l iron, total ma	Inganese								
Duplicate	Sample Coll	ected:	Yes 🖌	No	If yes, ID:								
	Collected:		Yes 🔽	No									

P	a	r	a	m	e	tı	ri	X
	CI.		CI			G .		-

2			G	ROUNDV	VATER SA	MPLE CO	DLLECTION F	ORM			
South	n Park	Land	fill								
Project No	553-155	0-067		B	[Date:	8/2/23		W <mark>ell ID:</mark>	MW-25	
	Organization:		rix		Samplers	C. Bourg	eois & S. Nguyen				
Purge Dat		ned Interval		0-27.0			Well Ca	sing/Diam	eter: PV	C/2 in	
Initial De Purge De	pth of Water vice ded	(Ft below T icated blac		17.20	8		ge Water Dispos Jump Intake Dep			/S	
Begin Pu Time:	Begin Purge End Purge Time: & C										
Time 810 815 815 810 815 820 835 835 840	Depth to Water (feet below MP) 14-24 14-20 14-20 14-20 14-20	Pump Setting 35 N	mul Murge Rate 2.60 11	L Cum. Vol. Purged 1-5 3-0 4-1 5-5 8-2 9-9	Тетр (°С) 14.6 14.6 14.7 14.7 14.7 14.8 14.8	DO (mg/L) 1.09 0.48 0.32 0.24 0.20 0.16 0.16	Specific Conductivity (µS/cm) 11.69 11.84 11.84 11.87 11.92 11.92 11.92 11.92 11.92	pH (units) (0.482 (0.482 (0.482 (0.484 (0.484 (0.485)	ORP (mv) -72.9 -82.3 -87.7 -91.4 -94.7 -94.5 -94.5 -94.5	Turbidity (NTU) 2.3-22 1.4.50 9.00 9.00 9.09 4.74 3.33 3.68	Comments

	Stabilization Criteria	3%	10%	3%	±0.1 ±10) mv 10% o	r 3 < <mark>5 NT</mark> U
Sampling Data							
Sample ID: SPL-GW-MW25-0823	Time Colle	ected:	845		Weather:	Sunny	170°F
Sample Description (Color, Turbidity	, Odor, Other):		der,	colone	55	J	
Sample Analyses: cis-1,2-DCE, viny	l chloride, total iron, total mang	ganese					
Duplicate Sample Collected:	Yes 🔽 No I	f yes <mark>,</mark> ID:		_			
MS/MSD Collected:	Yes 🖌 No						
Additional Information/Comments							
			1 of 1		. °		Parametrix

South	Park	Land				0					
Project No.	: 553-1550	0-067				Date: 7	131/23	\	Well ID:	MW-26	
Sampling O	rganization:	Parametri	x		Samplers	S: C. Bourge	ois & S. Nguyen				х.
Purge Data	Screen	ed Interval (ft bgs):)-25.0			Well Ca	sing/Diam	eter: PV	'C/2 in	
Initial Dep Purge Dev		(Ft below TO cated blade		10,18			e Water Dispos Imp Intake Dep			/S	
Begin Purg Time:	ge	13	20 -			Er	nd Purge Time:		102		
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductivity (µS/cm) 377.3	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
1327 1327 1332 1332	10.14 10.15 10.16 10.16 10.16	100775 11 11	270 u u	12.8 13 14.1 1 2.5	12.9 12.9 12.5 12.5 12.6	1.34 1.44 1.30	234.00 222.95 238.3 338.2	6.32 6.32 6.32	<u>21.1</u> <u>21.1</u> <u>20.10</u> <u>19.5</u>	<u>20.8</u> <u>23.5</u> <u>15.4</u> <u>9.93</u>	S
1347 1347 1352 1357	10.15 10.15	11 11 11 11 11 11	(e 	2.8	12.6 12.6 12.8 12.8	1.20 1.07 1.07 1.01 0.92	337.2 338.0 337.2 338.0 338.5	6.32 6.32 6.32	17.7	+.46 4.69 3.81 3.76	
1402											
			Stabilizatio	on Criteria	<u>3%</u>	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5 N	
Sampling D	ata										
Sample ID Sample De Sample Ar	escription (C		ty, Odor, Othe Iyl chloride, total		د (1	140:	5 lerles	Weath	ner:	Sumy	70'F
	Sample Colle	ected:	/ Laan 	No	If yes, ID:					6	
MS/MSD (No							
Additional	Information	Comments	1		heres	-211	iew buch		123	C	
		Conti	with vo	1. from	n MW	641	HOW BOLL	na G	140	2	

Parametrix

GROUNDWATER SAMPLE COLLECTION FORM

	b.: 553-155		4t			A	(/23 Hois & S. Nguyen		Well ID:	MW-27	
Sampling	Organization	_	4	0.0-20.0	Sample	ers: C. Bourge			P۱	/C/2 in	
Purge Dat	ta Scree	ned Interva	l (ft bgs):	_	ň			ising/Diam	eter:	_	
	pth of Water			8.8	U		e Water Dispos	4.5		15	
Purge De		icated bia	dder pump			P	ump Intake Dep	oth: 10.			
Begin Pu Time:	rge –		948			Ε.	nd Purge Time:	(0	140		
	Depth to										
	Water (feet		mym.	Cum.			Specific				
	below	Pump	Purge	Vol.	Temp	DO	Conductivity	рН	ORP	Turbidity	6
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(µS/cm)	(units)	(mv)	(NTU)	Comments
950	8.85	20'	245		15.1	1.67	<u>454.2</u> 482.7	6.87		60.8	yarrow h
955	15	15)) ((2.80	13.9	0.56	499.9	6.07	-65,1	41.6	
1000		0 = 18		4.0	13.9	0.37	508.0	6.85	-77.1	35.5	
1005				6.8	13.8		517.5	6.81	-82.5	\$26.0	
1010	8.82			85	13.3	0.24	521.1	678	-819	262	~
1017	8.85			9.5	13.7	0.21	521.5	6.81	-86.1	19.1	L
1025	6.20		L.C.	6.11	13.8	6.19	520.0	6.83	-88.7		
1030	9.72			(2.25	13.7	6.18	520.6	6.83	-89.0	15.7	CX
1035	3.82	15	e 6	17.0	137	0.16	518.5	6,33	-90.1	154	
670	8.51		× 4	15.25	13.8	0.15	521.3	6.85	-90.9	15.9	US
				· · · · · · · · · · · · · · · · · · ·							
				_							
					<u>.</u>						
	presson			s s							
						<u>.</u>					
								·			
			7 <u></u>	<u> </u>			_				
			Stabiliza	ation Criteria	3%	10% , or 3<0	.5 3%	± 0.1	± 10 mv	10% or 3 <	5 NTU
Sampling	Data								_		
Sample II	D: SPL-GW	/-MW27-0823	l	Time Co	llected:	1045			-	inny	70'5
Sample D	Description (C	Color, Turbi	dity, Odor, O	ther):	patra	or Jottos	e clea	a/10	polort.	55	
Sample A	Analyses:	cis-1,2-DCE.	vinyl chloride, t	otal iron, total ma	anganese						
	e Sample Col			No	If yes, ID:						
		r			, co, io.						
	Collected:			No			_		2		
Additiona	I Informatio	n/Commen	ts							_	

Parametrix

J.C:11

Sampling (Organization	: Paramet	rix		Sample	rs: C. Bourge	ois & S. Nguyen				
Purge Dat	a Scree	ned Interval	(ft bgs): 20	.0-30.0			Well Ca	sing/Diam	eter: P\	/C/2 in	_
Initial De	oth of Water	r (Ft below T	OC):	8.86		Purg	e Water Dispos	al Method	l: 0/V	VS	
Purge De	vice peri	staltic pum	1p 135	-3		Pu	ump Intake Dep	oth: 25.0) ft		
Begin Pur	ge		135	2		F	d Dunne Times		144	6	
Time:			1.2.2	<u>).</u>			nd Purge Time:			_	
	Depth to Water										
	(feet	Burners	mar /mir	Cum.	् Tomp	DO	Specific Conductivity	pH	ORP	Turbidity	
Time	below MP)	Pump Setting	Purge Rate	Vol. Purged	Temp (°C)	(mg/L)	(µS/cm)	(units)	(mv)	(NTU)	Comments
1355	10.10	25	250	1.0	13.7	0.83	821	693	-74.	19.9	0
1405	10.23		. 1	5200	13.5	0.36	812	6.95		/	erange to
1410	10.28	~	X	ro y	13.6	0.53	781	6.96		10.9	Less turbi
:420	.0.2.	AV	<u> </u>	6	13.6	0.13	776	6.96	-87.5		
1425	10.30	~	- 10 - 2	7.5	13,6	0.34	770	6.97	-91-9	6.21	less tirb d
1430	10310	2.31		9.1	13.6	0.27	772		-100.9		
1740	10.32	N	10	12.5	13.4	0.16	765		-105.0		
<u> </u>	(0-3				- 21-1			۵ <u> </u>			
			-		-						
		_				· (
						a i			<u> </u>	~	
								·			
						· ·					
	-										
						· ·		·			
					9						
						· · /		h			
						= ;					
	÷					,		·			
			Stabilizat	ion Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <	5 NTU
Sampling	Data										
Sample II): SPL-GW	/_MW29-0823		Time Co	llected:	1445		Weath	ner: 5	nung.	70'5
	<u></u>	Color Turbid	lity, Odor, Oth	ler):	clea	, och	urless	-)	
Sample A	-		i, vinyl chlorid	_		Janese			_		
Duplicate	Sample Col	lected:	Yes 🕨	No	If yes, ID:	_	×				
MS/MSD	Collected:		Yes 🖌	No							
Additiona	Informatio	n/Comment	:S			2					

14:11

100 100

	n Park										
Project No	553-155	0-067				Date: 7	(3 / 23		Well ID:	MW-30	
Sampling (Organization:	Paramet	rix		Sampler	S: C. Bourge	eois & S. Nguyen				
Purge Data	a Scree	ned Interval	(ft bgs): 8.0	-13.0			Well Ca	sing/Diam	eter: PV	/C/2 in	
Initial De	pth of Water	(Ft below T	OC):	0.71	/		e Water Dispos				
Purge De	vice peri	staltic pum	np			P	ump Intake Dep	oth: 10.	5ft)2	0	
Begin Pur Time:	rge		025			E	nd Purge Time:	(045		
	Depth to Water (feet below	Pump	mb/min Purge	fit(25 Cum. Vol.	Temp	DO	Specific Conductivity	рН	ORP	Turbidity	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(µS/cm)	(units)	(mv)	(NTU)	Comments
1025	11.13	2.5	250	20.70		0.67	1029	6.36		W.W. 15.5	
030	11.25			2.20	15.0	0.39	1026	6.70	-31.1	<u>Y.88</u> 3.77	
1035	11.31		**	3.90	14.9	0.33	1054	6.37	-11.3	2.17	
1045	11.32			5.00	14.9	0.28	1066		-41.3	0.24	
1017	11.36			0.0	1.16.1	0,10	1-04	0,00			
				· · · · ·			-				
				2							
							-				
21											
				(<u></u>							
						·					
		8				· ·					
										<u> </u>	
			Stabilizat	ion Criteria	3%	10% , or 3<0	.5 3%	± 0.1	± 10 mv	10% or 3 <5 N1	ru
Sampling	Data		2				¥				
Sample II	D: SPL-GW	/_MW30-0823	3	Time Co	llected:	1050		Weat	her:	Sunn	
Sample D	escription (C	Color, Turbio	dity, Odor, Oth	ner):	Clea	ar, vol	erless				
Sample A	nalvses:	cis-1,2-DCE	E, vinyl chlorid	e, total iron,	total mang	anese					
	e Sample Coll	_	_	No	If yes, ID:						
MS/MSD	Collected:		Yes	No		. 9				_	
Additiona	I Informatio	n/Commen	ts								

GROUNDWATER SAMPLE COLLECTION FORM

	o.: 553-155	50-067				Date:	2/31/23	N	Well ID:	MW-31	
Sampling	Organization	Parametr	ix		Sample	rs: C. Bourg	jeois & S. Nguyen				
Purge Dat	ta Scree	ned Interval	(ft bgs): <u>18</u>	8.0-23.0			Well Ca	sing/Diam	eter: <u>PV</u>	C/2 in	
Initial De	epth of Water	r (Ft below T	OC):	1.38 (+	ahen a	fter Pur	ge Water Dispos	al Methoo	I: 0/W	'S	
Purge De	evice peris	staltic pump	_	-	benet	2) F	Pump Intake Dep	oth: 20.8	5ft		
Begin Pu	irge		~					. 1	155		
Time:)/ ·	20				End Purge Time:				
	Depth to Water (feet		willing	Cum.			Specific				
Time	below MP)	Pump Setting	Purge Rate	Vol. Purged	Temp (°C)	DO (mg/L)	Conductivity (µS/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
1110	11.25	25'	275	10.6*	14.2	6.37	485:6	6.65	- 52.0	24.5	
1115	11,40	f)	12	12.0	14.2	0.24	491.7		-67.2	14.7	
1120	11.36	$\sqrt{2}$		13.0	14.1	6.21	492.2	6.66	-74.6		
1125	11.36	45	1	15.0	14.1	0.18	494.5	6.64	-812.7	7.5	
1130	h.39	e tu	- 1	1.6	14.2	0.16	493.2		- 84.4	6.67	
1135	11.41	\$ \$	<u></u>	2.0	14.1	0.15	<u> 194.9</u>		-87.8	5.67	
1140	11.37			3.5	14.2	0.15	494.8	6.66	-92.0	5.57	
1145	11.38		L ¹	5.0	14.2	0.14	494.2	6.65	- 93.6	M.81	
1150	(1.39			9.2	14.2	0.14	493.6		-96.0	7.32	
1122				(* 5	1 7 Gars	on (1 3.0	0.00	1010		
					-						
	-										
										0	
					_						
				· /				ē ——			
			Stabiliza	tion Criteria	3%	10% , or 3<	0.5 3%	± 0.1	± 10 mv	10% or 3 <5	NTU
5ampling	Data										
Sample I	ID: SPL-GW	/_MW31-0823		Time Co	llected:	1204		Weath	ner: S	inny	70°F
Sample I	Description (0	Color, Turbid	ity, Odor, Ot	her):	Smal	1 oran	se flee	ks.		J	
				de, total iron,			Y				
	e Sample Col			No	If yes, ID:						
	O Collected:		Yes [No							
Additiona	al Informatio	n/Comment	s								
		sed by		trom 1	10-20	U.					-
		20 50		W 113+	·						
		y		- 1 · Arre							

Parametrix

ampling (Organization:	Paramet	rix		Sample	rs: C. Bourge	eois & S. Nguyen				
urge Dat		ned Interval	40	.0-24.0			Well Ca	sing/Diam	eter: PV	/C/2 in	
-	pth of Water			1 1	15	Pur	e Water Dispos	al Method	: O/W	ÍS	
Purge De		staltic pum	-				ump Intake Dep	~		1. X.	
Begin Pur			(100	1						ġ.	8
Time:						E	nd Purge Time:	20 <u></u>	1130		
	Depth to Water (feet			Cum.			Specific			э	
Time	below MP)	Pump Setting	Purge Rate	Vol. Purged	Temp (°C)	DO (mg/L)	Conductivity (μS/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
15	1.18	2.9	300	3.0	15.2	6.43	838	7.08 -	-90.4	Y.15	
20 =	11,20	4	<u> </u>	3.5	15.1	0.37	639	7.04	-104.0	4.26	
25	11.19	<u>ес</u>	U	4.5	15.1	0.38	845	7.07		3.11	
130	11.20	L-		6.5	15.3	0.36	350	7.06	-tod'	64,30	
)	*		
						·					
						e					
					-					%	
						×					
					-	e					
	· · · · · ·					<u> </u>					
							_				
									<u> </u>		
						0				%	
						e					
						·					
					I	ē			<u> </u>	3	
										§	
					- <u> </u>	·			8	400/ 2 -5	
ampling (lata		Stabilizat	ion Criteria	3%	10% , or 3<0	.5 3%	± 0.1	± 10 mV	10% or 3 <5	NTO
				Thus Co	ll a sta al.	1120		Weath		/	76'5
Sample ID	-	_MW32-0823		Time Co					iei.	Surry,	Tas
Sample D	escription (C	olor, Turbid	ity, Odor, Oth	er):	V	sible -	turbilit	4			
Sample A	nalyses: c	is-1,2-DCE, vi	inyl chloride, tota		nganese				_	5	
Duplicate	Sample Coll	ected:	Yes 🔽	No	If yes, ID:						
MS/MSD	Collected:		Yes 🔽	No	×			3			
dditional	Information	/Comment	S	0							
			C	o-ldpit	adve	nnie ti	bing to	, 21,	51		
							5				

df:11

	0.: 553-1550 Organization:		ix	-	Sample	Date:	cois & S. Nguyen	· · · ·			
				.0-25.0				-in - (Diam	PV	C/2 in	
rge Dat		ned Interval		_				sing/Diam	0.0.0	2	
	pth of Water			11.32			ge Water Dispos			<u> </u>	
urge De		staltic pum	р			P	ump Intake Dep				
egin Pul ime:	rge	9	58			E	nd Purge Time:		025		
	Depth to Water (feet		mc/m	Cum.			Specific				
Time	below MP)	Pump Setting	Purge Rate	Vol. Purged	Temp (°C)	DO (mg/L)	Conductivity (μS/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
ime 05	11-34	'Z. 6	280	2.0	15.8	1.04	1369	7.00	-90.4	8.31	turbich
10	11.34		0	3.5	15.7	0.31	1361	7,00	-101.1	6.81	<i>p</i>
15	11,35	0	10 C	5.0	15.8	0.22	1347	7.00		4.81	44
20	C ¹		0	7.8	15.8	0-19	1332	7.01		3.16	prie orange
25				8.25	15.8	0.20	1321	7-01	- 194.3	2-21	
				ē							
										<u>.</u>	
		8									
					<u></u>						
							5				
										_	
											8
						-				<u></u>	
			Stabiliza	tion Criteria	3%	10% , or 3<0	.5 3%	± 0.1	± 10 mv	10% or 3 <	5 NTU
npling	Data										
ample I	D: SPL-GW	-MW33-0823		Time Co	llected:	1030		Weat	her:	Junn	70's
	Description (C		lity Odor Ot			turbody	17.	Rese	Hei		/
-				0-000	sible_	(00 0000	7			6	1
imple A	Analyses:	cis-1,2-DCE, v	inyl chloride, to	tal iron, total ma				~ >	110.		
uplicat	e Sample Coll	ected:	Yes	No	If yes, ID:	SPL-C	60-08WM-W60-08	323 📣	1100		
IS/MSD	Ocollected:	·	Yes	No							
ditiona	al Informatio	n/Comment	s	_							

PARAMETRIX

Water Level Measurement Field Report

	1/6/2023			JOB NO. 55	3-1550-067	2		
PROJECT	: South Park	Landfill		CLIENT: Se	attle Public Uti	lities		
LOCATION	i: Seattle, W	A						
	t ornizal		EMP 4°		° at ° at	682	(AM PM
	10:							
WELL NUMBER	OWING WA	S NOTED: Measu Depth Water from T or SG I	to (ft OC	Total Measured Well Depth (ft from TOC)	Measuring Point	Total Well Depth (ft bgs)	Screen Interval (ft bgs)	SU (ft)
MW-12	916	4.5	8		тос	15.3	10-15	1.52
MW-14	9-20	2.3	3		TOC	21.8	11.5-21.5	0.8
MW-29	934	8.52	-		TOC	30	20-30	-0.29
MW-18	901	15.09	9		TOC	40.4	30-40	1.25
MW-25	910	13.4	1		тос	27	22-27	2.79
MW-32	955	10.41			тос	24	19-24	-0.44
MW-33	948	10.50	1		тос	25	20-25	-0.47
MW-26	838	9.30		-	тос	25	15-25	2.39
MW-27	847	8.11			тос	20	10-20	2.04
MW-10	907	12.6	3		тос	45	35-45	1.65
MW-24	823	\$ 8.55			тос	45.3	35-45	1.56
MW-08	349	8.15			TOC	45.6	35.5 – 45.5	1.88
MW-30	0822	10.06			тос	13	8-13	-0.53
MW-31	0821	10.50			тос	23	35.5-45.5	-0.46

Comments:

TOC – top of PVC SG – staff gauge casing

SIGNED:

Sampling	Organizatio	n: Paramet	trix		Sampler	s; C. Bour	geois & R. Anderse	on	e		
Purge Da	ita Scre	ened Interva	l (ft bgs): _3	5.0-45.0			Well C	asing/Diar	P	VC/2 in	
Initial De	epth of Wate	r (Ft below 1	TOC):	0.25		Du					
Purge De		staltic					rge Water Dispo		-	VS	
Begin Pu	irge						oump Intake De	pth:	011		
Time:		1440				E	nd Purge Time:	1	155		
	Depth to Water		, ,								
	(feet	TST	mel/m	Cum.			6				
	below	Pump	Purge	Vol.	Temp	DO	Specific Conductivity	pН	OBD	Turkilla	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(μS/cm)	(units)	ORP (mv)	Turbidity (NTU)	Comments
440	8.25	20	225		12.8	0.28	0.67	6.79	-108.0		Ccent (m
450	3.25		"		12.9	0.26	0.65	6.77	-109.3	4.72	clear (no
455	8 25			-	12.9	0.23	0.61	4.76	-109.4		deer (no.
	6,25				12.9	021	0.67	676	-109 6	2.56	dear (no
					5	.0					
			-						_		
				·							
		-									
					=						
				\$							
			Stabilizatio	n Criteria	3% 10%	% , or 3<0.5	3%	± 0.1 ±	10 mv 1	0% or 3 <5 N	ITU
npling Da	ta		_								
mple ID:	SPL-GW_M	W08-1123		Time Collec	ted: /	500					
mple Desc	rintion (Cold	or, Turbidity,	Odan Othan			300		Weather	aer	rest;	so's F
											in all
mple Anal				on, total manga	inese						
plicate Sa	mple Collect	ed: 🛄 Ye	es 🔽 I	No If	yes, ID:						
/MSD Col	lected:	Ye	es 🔽 M	ło	120		×				
itional Inf	ormation/C	omments		14.00	r						
				1	Ч	ad i	ssue u	11.	di		(
				i i i				avsils.	discha	re lin	n tittings
					11	·· V	man Int	1.1.1.1			
				4.1	1.1		Curr	(1014)			

South	Park Landfill

Purge Da	ita Scre	ened Interv	al (ft bgs): 🚊	35.0-44.0			Well C	asing/Diar	neter: P	VC/2 in	
Initial D	epth of Wate	r (Ft below	TOC):	12.7	0	Pu	rge Water Dispo	_		NO	
Purge D	evice pe	ristaltic					Pump Intake De			VS	
Begin PL	irge	12.	-5				i drip intake De	ptn: <u>40.</u>	0 //		
Time:			1.4			Ē	End Purge Time:	1	106		
	Depth to Water										
	(feet		mbri	Cum.			Specific				
Time	below	Pump	Purge	Vol.	Temp	DO	Conductivity	pH	ORP	Table 1	
245	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(µS/cm)	(units)	(mv)	Turbidity (NTU)	Comment
250	12.69	2.5	248,44	· · · · · · · · · · · · · · · · · · ·	14:1	0.83	1.13	6.68	-119.2		clear
255	269	25	248-4		14.1	0.52	113	6.70	-1244		clear
300	12.69	2.5	24%		14-1-	0.40	1.14	6.74	-1312		cle
100	12.05	2.5			14.0	0.35	1.15	6.75	-134 3		de-
	16.0	7.5	243	6L	14.1	0.31	1.15	6.76	-125-3	1.51	dea-
					- C						
									-		
	Ç.									-	
									-		
					30				-		
						E -					
											1.
											1.1.1.
<u> </u>											
											15
	_		Stabilization	n Criteria	3% 10	0% , or 3<0.5	3%	±0.1 ±	10		dis.
ling Dat	а							10.1 I.	10 mv 10	% or 3 <5 N1	ΰ
ple ID:	SPL-GW-MW	/10-1123		Time Celler		1					
				Time Collec		205 13	310	Weather:	Rei	none -	4000
Die Desci	ription (Color	, Turbidity,	Odor, Other)	: Ye	llow	4					- 14 F
le Analy						- Jak					
			chloride, total ire	on, total manga	nese						
cate San	ple Collecte	d: 🖌 Ye	es 🔲 N	lo Ify	es, ID:	SPL-GW-MW	60-1123	1350			
	octad.							1530			
1SD Coll-	LLCU.	Ye Ye	s N	0							
ISD Colle	rmation/Co			-							

Sampling	Organizatior	: Parame	trix		Sample	rs: C. Bourg	eois & R. Anders	on			
Purge Da	ta Scree	ened Interva	(ft bgs): 10.	0-15.0	_		14/-II C		. P	VC/2 in	
				- 5 6	4.81			asing/Dia	meter:		
	epth of Wate		dder pump	Jey L	1.0		ge Water Dispo			NS	
Purge De Begin Pu				V 1		F	ump Intake De	pth: 12	2.5 ft		
Time:	nge -	ଟ	15			E	ind Purge Time		900		
	Depth to						and targe time.				
	Water		melmin								
	(feet below	Pump	Purge	Cum. Vol.	Tama	20	Specific				
Time	MP)	Setting	Rate	Purged	Temp (°C)	DO (mg/L)	Conductivity (µS/cm)	pH (units)	ORP (my)	Turbidity	Commonte
320	4.81	20'	250	11	14.2	3.25	0.301	6.51	(mv) 97,1	(NTU)	Comments
825	4.81	21	(1	11	14.4	1.88	0.277	6.42	911	4.08	aleer (most
830	4.82	te.	11	11	14.4	1.39	0.271	6.38	77.2	2.25	clea (most
835	4.82	- li	11	1	14.5	1.13	0.272	4.15	68.5		den (mos
3410	4.32	11	14.	()	14.5	1.02	0.273	6.33	64.1	1.55	
Bac	4.82	2	0	1.	14.5	0.93	0.274		60.2	1.20	alier (mo
650	4.82	10	11	e e	14.6	0.68	0.276		55.7	1.21	cher (no
855	4.82	/c	(r	A	14.A	0.93	0-277	6.73	52.4	1.21	elser (no
700	4.82	11	0	C *	14.6	0.001	0.278	6.33	48.9	1.06	eles me
	0										
						s					
										_	
)		
			Stabilization	Criteria	3% 1	0% , or 3<0.5	3%	± 0.1	+ 10 my	10% or 3 <5	NITH
mpling D	ata					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	370	± 0.1	T 10 IIIA	10/0 01 3 43	
ample ID:	SPL-GW	WW12-1123		Time Call		905					
			y, Odor, Other)	Time Coll	ected: 1 Cecer	() >		Weath	er: <u>Sà</u>	my;	70'S F
ample An			y, Odor, Other) /I chloride, total in								
	ample Collec		Yes Ves								
1S/MSD Co					lf yes, ID:						
	nformation/		Yes 🖌 N	0					_		
and und fi	nonnacion/	comments	,								

		: Paramet			Samp		eois & R. Anders							
Purge Dat	a Scree	ned Interval	(ft bgs): 11	.5-21.5			Well C	Casing/Diar	neter: P	VC/2 in				
Initial De	pth of Wate	r (Ft below T	OC):	t N/A	- see a		ge Water Dispe	/ osal Metho	d: O/	WS				
Purge De	vice dec	licated blac	lder pump				ump Intake De	epth: 16	.5 ft					
Begin Pur Time:	rge	13	00			F	nd Purge Time	. 12	5					
	Depth to				End Purge Time: 13 4 ら									
	Water		~ Clouin	ہ اس										
	(feet below	Pump	Purge	Cum. Vol.	Temp	DO	Specific Conductivity	pH	ORP	Turbidity				
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(µS/cm)	(units)	(mv)	(NTU)	Comments			
1305	NA	20'	2.45	1.	15.5		0.449	675	-41.3	10,2	dear (mos			
310	NA	11	11	11	15.6	0.27	0.447		-42.4	12.9	deer (mes			
315	NIA	*1		17	15.6	0.22	0.447	6.71	-44.2	11.8	aler most			
320	NA	11	"		15.6	0,18	0.446	6.71	-45.6	13.0	deco (most			
325	NIA	19 -	11	11	15.7	0.20	0.447		-47.3	9.45	dece (no.			
330	NIA	11			15.7	0.17	0.447		-48.7	6.05	der (no.			
335	NII	<u>II</u> _		10-10-	15.7	0.17	0.447	6.71	-49.9	4.71	cce- 1m			
340	NIN	11			15.7	0.17	0.447		- 50.6	3.40	chear (no			
345	~ M	**		11	15.2	0.16	0.446	6.71	- 51.4	3.25	de a ma			
100														
						_								
											(
						(
								·						
					<u> </u>									
			·											
2			_			S								
						/								
			_	·		· •								
			Stabilizatio	n Criteria	3%	10% , or 3<0.5	3%	± 0.1	± 10 mv	10% or 3 <5	NTU			
mpling Da	əta													
			-								- 60			
ample ID:	SPL-GW-M	/W14-1123		Time Col	lected:	1350		Weath	er: S	undyi	50'SF			
mple Des	scription (Co	lor. Turbidit	y, Odor, Othei	n L C	eer					21				
						_								
ample Ana	aryses: CIS	5-1,Z-DCE,	vinyl chlorid		on, total m	anganese								
uplicate S	ample Colle	cted:	Yes 🔽	No	lf yes, ID:									
<mark>S/MSD</mark> Co	ollected:		Yes 🔽	No										
ditional II	nformation/				_									
	_	- Wlaa							_					

11:11 **.** .

Sampling	Organization	: Paramet	trix		Sampler	rs: C. Bourg	eois & R. Anderso	on							
Purge Da	ita Scree	ened Interva	l (ft bgs): <u>30</u>	.0-40.0	Well Casing/Diameter: PVC/2 in										
Initial De	epth of Wate			5.37		Pur	ge Water Dispo	sal Metho	d: O/	WS					
Purge D		licated blad	dder pump			Р	ump Intake De	pth: 35.	0 ft						
Begin Pu Time:	irge	11	00			End Purge Time: 1125									
	Depth to					È	nd Purge Time:								
Time	Water (feet below MP)	Pump Setting	Ne Yunin Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductivity (µS/cm)	pH (units)	ORP	Turbidity	<u>.</u>				
1100	15.33	So	250	11	14.7	/.68	0.51	6,85	(mv) -50.5	(NTU)	CCeor (hat)				
1105	15.33	21	11		14.7	0.88	0.50	6.83	-63.9	2.21	der (nort				
1110	15.53	**	11	<i>"</i> 1	14.7	0.51	0.50	6 002	-71.6	2.05	clear (most				
1115	15 33	ન	11	15	14.7	0.40	0,50	6.80	- 75.7	2.04	elen (nosi				
1120	15.33	11	¢.	10	14.8	0.34	0.50	6.79	- 78.6	129	decolaart				
1125	15.33	11	11	11	14.7	0.30	0 50		-80.9	1.40	dear (most.				
			Stabilizatio	n Criteria	3% 10	0% , or 3<0.5	3%	± 0.1	± 10 mv	10% or 3 <5	NTU				
ampling D	ata														
ample ID	2		y, Odor, Other	Time Coll		1130		Weathe	er: <u>کر</u>	nugi	so's P				
Sample An			/I chloride, total ii						-						
	Sample Collec		Yes 🔽		lf yes, ID:										
VI3/1VI3D C															

17

Sampling	Organizatior	n: Paramet	rix		Sampl	ers: C. Bourg	eois & R. Anderso	on			
Purge Da	ta Scree	ened Interval	(ft bgs): 35	.0-45.0			Well C	asing/Diam	eter: P	/C/2 in	
Initial De	pth of Wate	r (Ft below T	OC):	8.78		Pur	ge Water Dispo			VS	
Purge De	·	dicated blac					ump Intake De			· -	
Begin Pu	rge	1100	,					3			
Time:		2/ 0 -				E	nd Purge Time:		115		
	Depth to Water	PSI					-				
	(feet			Cum.	4		Specific	0			
Time	below MP)	Pump Setting	Purge Rate	Vol.	Temp (°C)	DO (ma(l))	Conductivity	pH	ORP	Turbidity	_
1100	8.78	bo	250	Purged	(2.1	(mg/L)	(μS/cm) 	(units)	(mv) -59.6	(NTU)	Comments
1105	3.78	60	250		12.1	0.44	0.75	6.53	- 69.0	6.08	clear
1110	8.78	15	11	N	12.1	0,32	0.75	6.53	574.6	4.68	dear
1135	8.78	11	11	11	12.1	0.29	0.75	6.54	- 78.1	.1.18	clew
			· · · · · · · · · · · · · · · · · · ·								
	· · · · · · · · · · · · · · · · · · ·							;			
15-65											
1972											
								·			
						1					
											121
			10. 14						,		
		1	1/								
		;				6					
			Stabilizatio	n Criteria	3%	10% , or 3<0.5	i 3%	± 0.1	+ 10 my	10% or 3 <5	NITEI
mpling D	ata										
									-		
Sample ID.		MW24-1123		Time Coll	-	1120		Weathe	r: 0e	ercast	SU'S F
ample De	escription (Co	olor, Turbidit	y, Odor, Othe	r):	C	lee/					
ample An	alyses: ci	s-1,2-DCE, vin	/l chloride, total	iron, total man	ganese						
uplicate S	Sample Colle	cted:	Yes 🔽	No I	lf yes, ID:						
IS/MSD C			Yes 🔽			-					
ditional I	nformation	Comments									
			_							-	

16:11 C auth D .

	Organization	_		7.0	Sampler	S: O. Bourg	eois & R. Anders	on	-					
Purge Dat		ned Interval	(10 085).	3.43		Well Casing/Diameter: PVC/2 in								
	pth of Water					ge Water Dispo		-	VS					
Purge Device dedicated bladder pump Begin Purge						P	ump Intake De	pth: 24.	5 ft					
Time:		1400	0		4	E	nd Purge Time:		1420	2				
	Depth to Water	751	ul /ml											
	(feet below	Pump	Purge	Cum. Vol.	Temp	DO	Specific Conductivity	рН	ORP	Truckistary				
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(µS/cm)	(units)	(mv)	Turbidity (NTU)	Comments			
100	13.43	18	500		14.0	1.41	0.94	6.59	-888		dean			
105	13.43		300		139	0.62	0.94	6.61	-100.5	4.01	eleir			
115	13.43		300		Wo	0.44	0.95		- 104.2		de-			
120	13.43		300		14.0	0.33	0.95	6-61-	1.0.8	2.81	clea-			
								0 01	110.0	1.88	clea			
								1			9			
·							100	Sala And		e				
							1	a. 100						
			4 5		- 1000		S				-			
			125-		-	a strange for	and the second s	34			_			
			1. 1. A. A. A. A.			le	<i>1</i> .							
	<u>8</u>		S. 1 19	1.1		-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~	·)=				
			· · · · · · · · · · · · · · · · · · ·	-			****		_					
			······································		- 11	2. 31		-						
							1.0	3						
		57	1.1	t.			1	-						
				1										
			14	2			1							
			A	12										
			Stabilization Cr	riteria	3%	10%	3%	±0.1 :	± 10 mv	10% or 3 <	5 NTU			
pling Da	ta		1			16				10/0 01 0 4	51110			
mple ID:	SPL-GW-M	W25-1123	т	ime Colle	vetadu u	4.30			0		-			
								Weathe	r: (undry =	YSDE			
			, Odor, Other):		clea	21								
nple Ana	· · · · ·		chloride, total iron,	total mang	janese									
plicate Sa	mple Collect	ied:	′es 🔽 No	If	^r yes, ID:									
/MSD Co	llected:	Γ] v	es 🖌 No											
itional In	formation/C	omments		_		4			-					
				_										

sampling	Organization	: Paramet	trix		Sample	ers: C. Bou	rgeois & R. Anders	กอา					
Purge Da	ta Scree	ned Interva	l (ft bgs): <u>15</u> .	0-25.0		Well Casing/Diameter: PVC/2 in Purge Water Disposal Method: O/WS							
Initial De	pth of Water	r (Ft below 1	roc): 9	48	ĸ								
Purge De	vice ded	licated blac	dder pump				Pump Intake De		0.0 ft				
Begin Pu	rge	115	5				,	1					
Time:	5, 3 4		,	End Purge Time: 12 2 5									
Time	Depth to Water (feet below MP)	PST Pump Setting	nul min Purge Rate	Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductivity (μS/cm)	рН (units)	ORP (mv)	Turbidity (NTU)	Comments		
1150	950	35	256	11	12.2	2.30	0.300	6.13	29.7	13.8	chear (most		
1155	9.50				12.2	1.04	0.309	6.08	30.5	16.3	dear (no		
1200	9.50			1.	12.2	0.71	0.311	6.05	29.3	12.3	clear (mos		
1205	9.50				12.1	0.49	0,312	6.04	27.9	9.67	clear (mo		
1210	950	11			12.1	0.41	0.314	6.03	26.7	6.76	clear (noi		
215	9.50	11			12.1	0.34	DIJIT	6:03	25.0	3.93	deco (mo.		
220	2:50			11	12.0	0,30	0.314	6-03	23.7	3.54	cloco / me		
225	9.50				120	0.28	0.314	6.02	15.5	2.90	dear (n		
			Stabilization	Criteria	3% 1	.0% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5	NTU		
impling Da	ita												
ample ID: ample Des	SPL-GW_N		/, Odor, Other):	Time Coll		12:3	0	Weath	er: ave	scort.	jo's F		
						41.							
ample Ana			I chloride, total irc		ganese								
uplicate Sa	ample Collec		Yes 🔽 N		f yes, ID:								
IS/IVISD CO	mectea:		Yes 🖌 N	0									
	formation/C												

Project No.: 553-1550-067 Sampling Organization: Parametrix						Date: Well ID: Samplers: C. Bourgeois & R. Anderson						
Purge Dat		ned Interval		0.0-20.0	Well Casing/Diameter: PVC/2 in							
	itial Depth of Water (Ft below TOC): 8.22								_	NO		
Purge De			dder pump	0.02			ge Water Dispo			WS		
Begin Pu		Tourou bide	addi pairip			P	ump Intake De	pth: 15	.0 ft			
Time:			1250			E	nd Purge Time:	1	325			
	Depth to Water	129	melmi	h								
	(feet			Cum.			Specific			\sim		
Time	below	Pump	Purge	Vol.	Temp	DO	Conductivity	pH	ORP	Turbidity		
2.55	MP)	Setting 3.0'	Rate 225	Purged	(°C) 13. भ	(mg/L) 3.66	(μS/cm)	(units)	(mv)	(NTU)	Comments	
1300	0.22	1	11					6.51	14.2	16.7	alec- (nest	
1305	3.22		- //	- 17	13.4	1,60	0.320	6.57	-1_1	12.1	olean (most h	
310	8.22	+1	11	10		0.92	0.317	6.53	-3.0	10.7	alar (most	
1315	8.22	61	**		13.4	8.60	0,315	6:50	-3.3	10.5	dear (nost	
1320	8 22	et			13.3	0.49	0.315	6.49	-5.0	10.4	clear (mostly	
1325		1.				0.36	0.315	6.47	-8.2	10.2	dea (most	
56)	8.22				133	0.32	0 316	6.47	<u>=111</u>	10.0	clean (most	
								·				
										5		
									·			
··												
									<u> </u>			
11												
									····			
			Stabilizatio	on Criteria	3% :	10% , or 3<0.5	3%	±0.1	± 10 mv	10% or 3 <5	NTU	
ampling D	ata											
ample ID:	SPL-GW-N	/W27-1123		Time Col	lected.	1330		Weath		104		
				-	-	17 70		Weatin	=r. <u> </u>	over (a)	t, minor drig	
ampie De	scription (Co	lor, Turbidit	y, Odor, Othe	er):								
ample An	alyses: cis	-1,2-DCE, vin	yl chloride, total	iron, total mar	iganese							
uplicate S	ample Colled	ted: 🔽	Yes	No	If yes, ID:	SPL-GW-M	W61-1123	21	510			
1S/MSD C	ollected:	~	Yes	No								
Iditional I	nformation/	Comments										

	Organization				Sampl	ers: C. Bourg	eois & R. Anderso	л 				
Purge Dat	a Scree	ned Interva	I (ft bgs): 20.0	0-30.0	Well Casing/Diameter: PVC/2 in							
Initial De	pth of Wate			.03		Pur	ge Water Dispo	sal Metho	d: O/V	VS		
Purge De	vice peri	staltic pur	np				ump Intake De	pth: 25.	0 ft			
Begin Pu Time:	ge	950	>			E	nd Purge Time:	19	715			
Time	Depth to Water (feet below MP)	Pump Setting	M(/ Min Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	, Specific Conductivity (μS/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments	
62	NA	2.5	275	<i>"</i>	14.5	1.07	0.420	6.70	-5.0	3.90	dear (nost-	
955	MA				12.3	0.63	0,428		-77.4	240	dear (most)-	
1000	<i></i>	11	17	89	12.8	0.40	0.437		-92.9	0.81	clear (mosti	
005	1): 	<u>^</u>	44	îr	12.8	0.33	0.444	6.78	-100.4	0.62	der mosti	
010	1.	15	10	11	12.8	0.28	0.451	6.80	-108.4	0.72	der pusti	
1015	11	11	1.	11	12.7	0.25	0.452	6.51	- 107.9	0.78	clear (vest	
	3		Stabilization	Criteria	3%	10% , or 3<0.5	3%	± 0.1	± 10 mv	10% or 3 <5	NTU	
ampling D	ata											
Sample ID:	SPL-GW_	MW29-1123		Time Coll	ected:	1020		Weathe	er: Ju	any '	su's F	
Sample De	scription (Co	lor, Turbidi	ty, Odor, Other)	:								
Sample An	alyses: ci	s-1,2-DCE,	vinyl chloride, t	total iron, te	otal manga	anese				1		
Junlicato (ample Colle	cted:	Yes 🔽	10	If yes, ID:						a	
Jupilitate 3												

٦

Sampling	g Organizatio	n: Parame	etrix		Samp	olers: C. Bour	geois & R. Anders	on			
Purge Da	ita Scre	ened Interva	al (ft bgs): <u>8</u> .	0-13.0			Well C	asing/Diar	Peter: P	VC/2 in	
Initial D	epth of Wate	er (Ft below	TOC):	10.02		Pu	rge Water Dispo		_	MS	
Purge D		ristaltic pur					Pump Intake De		.5 ft	//3	
Begin Pu	urge	0.0-	-				rump mtake De	ptn: 10.	.0 11	_	
Time:		92:	+				End Purge Time:		102	0	
Time	Depth to Water (feet below MP)	Pump Setting	wl/m.h Purge Rate	Litre Cum. Vol. Purged	S Temp (°C)	DO (mg/L)	Specific Conductivity (µS/cm)	pH (units)	ORP (mv)	Turbidity	
930	10.18	2.5	240		14.9	0.36	0.55	6.35	- 28,3	(NTU)	Comments
935	10.18	~	U		17.9	0.28	0.54	6.35	-26.8	7.94	torbiolity
940	10,18	£ Nr	<i>6</i> 5		14.9	0.76	0.5Z	6.35	-27.0	4.12	Lesstubid
975	10.18		<i>U</i>		14.7	0.51	0.786	6.37	-21.7	2.17	i i
150	10.18	17			14.9	0.61	0.459	635	-184	248	
1000	10.18		<u></u>		14.9	0.63	0,451	6.32	-15.8	1.05	clear (mart
1000	10.18				14.9	0.69	0.740	6.32	-17.0	0.76	
665 VIG	10.15				15.0	0.75	0.437	6.30	-11.8	0.97	ч
	10.12				15.0	0.82	0.730	6.30	-9.8	1.77	e
015	10.18	11			15.0	0.85	0.430	6.30		1.41	8
0.00	10,18				15.0	0.89	0.425	6.30	-6.6	1.49	1a
							<i>.</i>				
ampling Da	ata		Stabilizatio	n Criteria	3%	10% , or 3<0.5	3%	±0.1 :	± 10 mv 1	10% or 3 <5	NTU
ample ID:	SPL-GW_N	dW30-1123		Time Coll	ected:	10:25		Weathe	· · · · · · · · · · · · · · · · · · ·		5 '5
ample De	scription (Co	or, Turbidity	y, Odor, Other		ght	odor		weatile		ever ast	5 ° 5
ample Ana			vinyl chloride,				-				
ouplicate S	ample Collec		Yes 🔽		If yes, ID:						
1S/MSD Co	ollected:		Yes 🖌	No							
Iditional Ir	nformation/	Comments									

GROUNDWATER SAMPLE COLLECTION FORM

	Organization		10	3.0-23.0	Sample	C. Bourgeois & R. Anderson Well Casing/Diameter: PVC/2 in						
Purge Da		ened Interva	in (inc logs).		-							
	epth of Wate		/		.73	Pur	ge Water Dispo	sal Metho	od: O/	VS		
Purge Device <u>peristallie pump</u> <i>folkululur</i> Begin Purge					F	omp Intake De	pth: 20	.5ft				
Begin Pu Time:	Irge		820			_			~ ~	-		
	Depth to					E	ind Purge Time:		915			
	Water		,					•				
	(feet	Irç	mynin				Specific	-		×		
Time	below	Pump	Purge	Vol.	Temp	DO	Conductivity	pН	ORP	Turbidity		
Time 825	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(µS/cm)	(units)	(mv)	(NTU)	Comments	
	10.73	30	300		14.1	1.17	0.408	6.56	- 55.1	25.1	slightly di	
630	10.73	30	300		1.4.2	0.60	0.416	6.53 -	62.7	200	1 phanting of	
375	10.73	70	300		14.2	0.44	0.419	6.49		15.6	clear (m	
340	(0.73	30	700		14.2	0.34	0.419	6.47	. 67.8	13.4	clear (na	
545	10.73	30	700		14.3	0.30	0.421	6.46	-64.7	10.9	clear (no	
025	10.73		700		14.2	0.27	154.0	6.46-	71.2	9.60	dear / no.	
255	10.73	70	200		14.3	0.27	0421	6.46	- 72.8	8.01	ilce (mo	
200	(0.73	30	300		. 4.3	0.26	0.422		-73.5	6.92	clear (mas	
905	10.73	30	300	_	14.3	0.26	0.422	6.45	74.5	6.30	class (nos	
115	10 73			2	14.3	0.23	0.422	6.44	-75,2	5-89	eleci (mes	
1.1.1	10.73	30	700 .	3.5 gel	143	0.22	0.422	6.44	761	5.81	dear (nos	
		× .	Stabilizatio	n Criteria	3% 1	0% , or 3<0.5	3%	± 0.1	± 10 mv :	10% or 3 <5	NTU	
ampling D	ata											
Sample ID:	SPL-GW_N	/W31-1123		Time Coll	ected:	120		Weathe	r: oce	rast	304408	
ample De	scription (Col	or, Turbidit	y, Odor, Other	·):	visible		(<u></u>			
ample An			vinyl chloride,	-			>					
	ample Collec					ese						
- apricate d	unple collec				f yes, ID:							
AS/MSD C	- 11		Yes 🖌									

1 of 1

Parametrix

Sampling	Organization	: Parame	etrix		Sample	ers: C. Bourg	geois & R. Anderso	on			
Purge Da	ita Scree	ened Interva	al (ft bgs): 19.		Well Casing/Diameter: PVC/2 in						
Initial D	epth of Wate	r (Ft below	TOC): LE	5,41		Pue			_	NO	
Purge D		istaltic pur					rge Water Dispo		-	113	
Begin Pu						I	Pump Intake De	pth: 21.	511		
Time:	-		10	>13		E	End Purge Time:		1040		
	Depth to										
	Water		ml/min	_	2					~	
	(feet below	Pump	Purge	Cum. Vol.	Toma		Specific				
Time	MP)	Setting	Rate	Purged	Temp (°C)	DO (mg/L)	Conductivity (µS/cm)	pH (unita)	ORP	Turbidity	_
1015	10.41	2.5	250	~ 0	13.9	1.90	0.62	(units)	(mv)	(NTU)	Comments
1020	10.45				13.9	0.24	0.67		-102.	51-38	clear
025	10.515				13.9	0.53	0.66			7 (158	clear
1030	10.45				13.8	0.42	0.65	6.81		3.93	clear
1035	10.51				13.9	0.36	0.62				clean
1040	10.50				13.8	0.31	0.62			1.80	alcon
								6-00-	121.1	1.16	clear
							1				
			4	0			10				
						·					
					· · · · · ·						
				1 9	a man				-		
				de la	1.30						
-		-									
			0 162				14 C	137.5		-	
		· · · · · ·					1 2 24	······································	3	-	- VAL
									-	14 - 73	
								-			al
											6
				<u></u>							
						4		<u>-</u>		d d	
			Stabilization	Critoria	201			22	1		-
11			Stabilization	Criteria	3% _1	0% , or 3<0.5	3%	±0.1 ±	10 mv 1	10% or 3 <5 M	NTU
mpling Da	ata										
ample ID:	SPL-GW_M	W32-1123		Time Colle	ected:	0:45		Weather	. 1		Fals
ample Des	cription (Cold	or Turbidite	, Odor, Other):						: du	nzelc,	50's
					(car	w/ re	1 flee	hr		S. S. Same	
ample Ana	lyses: cis-	1,2-DCE, viny	l chloride, total iroi	n, total manç	ganese						
uplicate Sa	ample Collect	ed:	Yes No)	f yes, ID:			-	1		
					, ,, i. . .				1	inter .	
S/MSD Co			res 🖌 No	>					1	See. See	
ditional In	formation/C	omments								Street and	the second se
								_	10 miles	Start Sector	The second s
										100	

GROUNDWATER SAMPLE COLLECTION FORM

Sampling	Organizatio	n: Parame			Sam	plers: C. Bour	geois & R. Anderso	n			
Purge Da	ta Scre	ened Interva	l (ft bgs): 2	0.0-25.0			Well Ci	asing/Dian	neter: P	VC/2 in	
Initial De	pth of Wate	er (Ft below	тос):	10.60		Pur	ge Water Dispo		-	VS	
Purge De	vice per	ristaltic pur	np				oump Intake De				
Begin Pu	rge										
Time:		11:30		_		{	ind Purge Time:		1155		
	Depth to Water (feet			Cum.			Specific	0			
	below	Pump	Purge	Vol.	Temp	DO	Conductivity	рН	ORP	Turbidity	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(µS/cm)	(units)	(mv)	(NTU)	Comments
135		2.5	24521	m	15.1	6.23	151.0	695	47.7	268	dlar
145					15.0	0,87	0.55	6.93	75.4	1.65	dem
1150					1.5.1		1.04	6.76		the second se	decer
155		5	h	2.5	151	0.33	106		-113.4	1.01	clean
		·	0	1921.	15 1	0.30	1.07	6.74	-116. 9	1.23	der
				1/2							
0					·	-					
				3							
								·			
			-		-						
						-					3
											X.
						-					
·											
				-							~. Y
									n=		
	'G										
										2	
				<u> </u>							
								21			
			Stabilizatio	n Criteria	3%	10% , or 3<0.5	3%	±0.1 ±	10 mv 1	.0% or 3 <5 M	UTV
npling Da	ta										
mple ID:	SPL-GW-M	W33-1123		Time Coll	octody	12:00-					
						12:00 2		Weather	: <u></u>	noly, dr	-i+=1-c
			, Odor, Othe		pale	yellow !	hur				
mple Anal	yses: cis-	1,2-DCE, viny	l chloride, total	ron, total man	ganese	6					ίΫ.
plicate Sa	mple Collec	ted:	les 🔽	No	If yes, ID:						t
S/MSD Col	lected:		′es 🔽		,,						
	ormation/C							_			_
and the second se											

Parametrix

Appendix D4

Laboratory Reports (contained in Volume II)

Appendix D5

Data Validation Memoranda

First Quarter 2023 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

In Association with

CITATION

Parametrix and HWA GeoSciences, Inc., 2022. First Quarter 2023 Groundwater Sampling Event South Park Landfill Data Validation Report. Prepared by Parametrix, Seattle, Washington. March 2023.

TABLE OF CONTENTS

1.	PROJ	IECT NARRATIVE	1-1
	1.1	Overview of Data Validation	1-1
2.	DATA	A VALIDATION REPORT SELECT VOCS BY EPA METHOD SW8260D	2-1
	2.1	Data Package Completeness	2-1
	2.2	Technical Data Validation	2-1
	2.3	Overall Assessment	2-1
3.	DATA	A VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM	3-1
	3.1	Data Package Completeness	3-1
	3.2	Technical Data Validation	3-1
	3.3	Overall Assessment	3-1
4.	DATA	A VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B	4-1
	4.1	Data Package Completeness	4-1
	4.2	Technical Data Validation	4-1
		4.2.1 Blank Contamination	4-1
		4.2.2 Matrix Spike	4-1
	4.3	Overall Assessment	4-2
5.	REFE	RENCES	5-1

APPENDICES

А	Data Qu	alifier	Definitions	and	Criteria	Tables
---	---------	---------	-------------	-----	----------	--------

- B Field Duplicate Analysis
- C Qualified Data Summary Table

ACRONYMS AND ABBREVIATIONS

CRQL	Contract Reporting Quantitation Limit
EPA	U.S. Environmental Protection Agency
LCS	Laboratory control standard
LCSD	Laboratory control standard duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
VOC	Volatile organic compound

1. PROJECT NARRATIVE

1.1 Overview of Data Validation

This report summarizes the results of the Compliance Screening performed on the groundwater and field quality control (QC) sample data for the South Park Landfill First Quarter 2023 Groundwater Monitoring Event. A complete list of samples is provided below.

		Sample				6020B Dissolved
Sample ID	Lab ID	Location	8260D	8260D-SIM	Mn	As
SPL-GW-MW29-0223	23B0111-01	MW-29	Х	Х	Х	
SPL-GW-MW18-0223	23B0111-02	MW-18	Х	Х	Х	
SPL-GW-MW18-0223	23B0111-03	MW-18				Х
SPL-GW-MW32-0223	23B0111-04	MW-32	Х	х	Х	
SPL-GW-MW32-0223	23B0111-05	MW-32				Х
SPL-GW-MW33-0223	23B0111-06	MW-33	Х	Х	Х	
SPL-GW-MW33-0223	23B0111-07	MW-33				Х
SPL-GW-MW10-0223	23B0111-08	MW-10	Х	Х	Х	
SPL-GW-MW10-0223	23B0111-09	MW-10				Х
SPL-GW-MW60-0223	23B0111-10	MW-18 DUP	Х	Х	Х	
SPL-GW-MW60-0223	23B0111-11	MW-18 DUP				Х
SPL-GW-MW80-0223	23B0111-12	TRIP BLANK	Х	Х		
SPL-GW-MW25-0223	23B0111-13	MW-25	Х	х	Х	
SPL-GW-MW25-0223	23B0111-14	MW-25				Х
SPL-GW-MW30-0223	23B0160-01	MW-30	Х	х	Х	
SPL-GW-MW31-0223	23B0160-02	MW-31	Х	Х	Х	
SPL-GW-MW24-0223	23B0160-03	MW-24	х	х	х	
SPL-GW-MW24-0223	23B0160-04	MW-24				Х
SPL-GW-MW26-0223	23B0160-05	MW-26	Х	х	Х	
SPL-GW-MW26-0223	23B0160-06	MW-26				х
SPL-GW-MW08-0223	23B0160-07	MW-08	х	х	х	
SPL-GW-MW08-0223	23B0160-08	MW-08				Х
SPL-GW-MW27-0223	23B0160-09	MW-27	х	х	х	
SPL-GW-MW27-0223	23B0160-10	MW-27				Х
SPL-GW-MW61-0223	23B0160-11	MW-24 DUP	х	Х	х	
SPL-GW-MW61-0223	23B0160-12	MW-24 DUP				Х
SPL-GW-MW12-0223	23B0182-01	MW-12	Х	Х	х	
SPL-GW-MW12-0223	23B0182-02	MW-12				Х
SPL-GW-MW14-0223	23B0182-03	MW-14	Х	Х	Х	
SPL-GW-MW81-0223	23B0183-01	TRIP BLANK	Х	Х		

Project Sample Index

Groundwater samples were collected on February 6, 7, and 8, 2023 and submitted to Analytical Resources, Inc. (ARI) located in Tukwila, Washington for chemical analyses. The chemical analyses were performed under ARI Work Orders 23B0111, 23B0160, 23B0182, and 23B0183. The analytical methods include the following:

- Select volatile organic compounds (VOCs)—U.S. Environmental Protection Agency (EPA) Method SW8260D
- Vinyl chloride—EPA Method 8260D-SIM
- Select metals (total iron and manganese, and dissolved arsenic) EPA Method 6020B

The data were reviewed using guidance and QC criteria documented in the analytical methods, U.S. Environmental Protection Agency (EPA) *National Functional Guidelines for Inorganic Data Review* (EPA 2020a), *National Functional Guidelines for Organic Data Review* (EPA 2020b), EPA *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), and the *South Park Landfill Operations, Maintenance and Monitoring Plan* (OMMP; Appendix A of the South Park Landfill Cleanup Action Plan [Ecology 2021]).

In accordance with the OMMP, to generate data of sufficient quality, the following approach for groundwater samples will be followed:

- Field and laboratory QC samples (field replicates, trip blanks, and temperature blanks) will be used for assessing data quality.
- Laboratory QA will be implemented and maintained as described in the accredited laboratory's Quality Assurance Plan (ARI 2020a) and Standard Operating Procedures (ARI 2016, 2017, 2020b, 2020c) and in Table 3 (from OMMP and presented in Appendix B).
- Data summary packages will be generated, and the documentation provided will be sufficient to perform a Level I data quality review.

The goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

The data were evaluated in accordance with EPA guidance (EPA 2020a, 2020 b, and 2009) at a Stage 2A level. Data qualifier definitions, reasons, and validation criteria are included as Appendix A. Analysis of field duplicates are presented in Appendix B. Qualified data are summarized in Appendix C.

Field Duplicates

Two field duplicate samples were analyzed. Sample SPL-GW-MW60-0223 is a duplicate of SPL-GW-MW18-0223. Sample SPL-GW-MW61-0223 is a duplicate of SPL-GW-MW24-0223.

Appendix B presents the calculated Relative Percent Differences (RPDs) for field duplicate samples. RPDs = difference / average = $((X1-X2) / (X1+X2)/2) \times 100$, where X1 is the sample and X2 is the duplicate sample concentration. RPD is a measure of analytical precision. Precision is a measure of the variability in the results of replicate measurements due to random error.

Trip Blanks

Two trip blanks were analyzed for selected VOCs (SPL-GW-MW80-0223 and SPL-GW-MW81-0223) in ARI Work Orders 23B0111 and 23B0183.

Sample Temperature

Although no temperature blanks were prepared, the laboratory measured the cooler interior temperatures on receipt. Temperatures for the three batches were 4.9, 2.6, and 5.8 degrees C, indicating adequate temperature control for sample preservation for all batches. No data were therefore qualified based on temperature issues.

Hold times

All method-defined hold times for all samples were met prior to extraction and analysis.

VOC Sample Integrity

The laboratory reported that all VOA vials were free of air bubbles. Therefore, no data were qualified based on VOC integrity issues.

2. DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD SW8260D

This section documents the review of VOC analytical data for groundwater and field QC samples and the associated laboratory QC samples.

2.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination	Reporting limits and reported results
Laboratory control sample (LCS) and LCS duplicate (LCSD)	Field Duplicate
MS/MSD	

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

2.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

3. DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM

This section documents the review of vinyl chloride analytical data for groundwater and field QC samples and the associated laboratory QC samples.

3.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

3.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination (method and trip)	Reporting limits and reported results
LCS and LCSD	Field duplicates
MS/MSD	

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

3.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

4. DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B

This section documents the review of metals (total iron and manganese, and dissolved arsenic) analytical data for groundwater and field QC samples and the associated laboratory QC samples.

4.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

4.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation ¹	Lab Control Sample
Extraction and analysis holding times	Laboratory Duplicate
Blank contamination (method) ¹	Target analyte list
Matrix Spike (MS)	Reporting limits and reported results
	Field duplicates

QC Requirements

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

Some of the metals data were the result of a dilution and were flagged with "D" qualifier by the laboratory. The "D" qualifiers were removed from the final data table.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

4.2.1 Blank Contamination

In ARI Work Order 23B0182, the manganese samples were flagged "B" by the laboratory, indicating laboratory blank contamination. However, the lab provided the following narrative: *The method blank(s) were clean at the reporting limits. Manganese was detected between 1/2 the reporting limit and the reporting limit. As the samples are reported to the reporting limit, the method blank result is reported as a non-detect at the reporting limit. The sample concentrations are greater than 10X the blank detection and therefore the method blank detection is considered insignificant. All samples which contain analyte have been flagged with a "B" qualifier. The associated samples were SPL-GW-MW-12-0223 and SPL-GW-MW-14-0223. In SPL-GW-MW-12-0223, manganese was not detected above the RL and in SPL-GW-MW-14-0223, manganese was detected at a concentration of 0.851 mg/L, more than 10 times the RL of 0.00500 mg/L. Therefore, none of the manganese results were qualified.*

4.2.2 Matrix Spike

Sample specific QC was performed in association with samples 23B0111-03 (SPL-GW-MW-18-0223) in Total Metals batch BLB0481 and 23B0160-03 (SPL-GW-MW24-0223) in Total Metals batch BLB0482. The duplicate and MS/MSD RPDs were within control limits; however, the percent recoveries for Total Iron and Total Manganese were outside of control limits low for the matrix spike.

For Total Iron in sample 23B0111-03, the percent recovery was less than 75% and the results for 23B0111-03 have been flagged J-. For Total Manganese in 23B0111-03, the lab noted that the natural concentration of the spiked analyte is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible. The sample concentration exceeded four times the spike concentration; therefore, the Total Manganese result for 23B0111-03 was not qualified.

In sample 23B0160-03, the sample recoveries for Total Iron and Total Manganese exceeded four times the spike concentration, so the data were not qualified.

4.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS percent recovery values. Precision was acceptable, as demonstrated by the LCS/laboratory duplicate RPDs.

All data, as reported by the laboratory, are acceptable for use.

5. REFERENCES

- ARI. 2016. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS, SOP 545S, Version 001, Revision Date 2/8/16.
- ARI (Analytical Resources Inc.). 2017. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS with Universal Cell Technology, SOP 543S, Version 003.3, Revision Date 2/23/17.
- ARI. 2020a. Quality Assurance Plan. Revision 17.0. 6/11/2020.
- ARI. 2020b. Standard Operating Procedure, Volatile Organic Analysis SOP 700S, Version 022, Revision Date 2/12/2020.
- ARI. 2020c. Standard Operating Procedure, Volatile Organic Analysis Selected Ion Mass Spectrometry, SOP 703S, Version 13, Revision Date 2/12/2020.
- Ecology. 2021. Draft South Park Landfill Final Cleanup Action Plan: Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan, Amended 2021. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical data for Superfund Use. EPA 540-R-08-005. January 13, 2009.
- EPA. 2020a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001. November.
- EPA. 2020b. National Functional Guidelines for Organic Superfund Data Review. EPA 542-R-20-006. November.

Appendix A

Data Qualifier Definitions and Criteria Tables

DATA VALIDATION QUALIFIER CODES

National Functional Guidelines (EPA 2020)

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value represents the approximate concentration (for organics).
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	Cooler temperature: ≤ 6°C HCl to pH ≤ 2	lf >6 deg. C but = 10 deg. C, use professional<br judgement J/UJ if greater than 10 deg. C
Hold Time	14 days preserved	Detects: J; Non-detects: J if hold times exceeded
	7 Days: unpreserved (for aromatics)	Detects. J, Non-detects. J II noid times exceeded
Method Blank	One per batch <crql< td=""><td>If blank <crql: If sample result <crql, qualify="" report<br="" u="">at CRQL If sample result >/= CRQL, use professional judgement</crql,></crql: </td></crql<>	If blank <crql: If sample result <crql, qualify="" report<br="" u="">at CRQL If sample result >/= CRQL, use professional judgement</crql,></crql:
		 If blank >/= CRQL: If sample result <crql, and="" at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= but < blank result, qualify U and report at sample result If sample result >/= CRQL and >/= 2x blank results, report sample result and J+ qualify or no qualification </crql,>
Trip Blank	Frequency as per project QAPP <crql< td=""><td>Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned</td></crql<>	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned
MS/MSD (recovery)	One per batch Use method acceptance criteria	Qualify original sample only unless other QC indicates systematic problems: For detects: J if %R <20%, or 20%<%R <lower limit,="" or<br="">%R or RPD >Upper limit For non-detects: R if %R<20%, UJ if 20%<%R<lower limit<="" td=""></lower></lower>
MS/MSD (RPD)	One per batch Use method acceptance criteria	For detects: J in original sample if RPD >Upper limit
LCS	One per lab batch	If not performed at specified frequency or concentration or % R not specified: use professional judgment For detects: • %R < Lower Limit, qualify J-+; %R> Upper Limit, qualify J+- For non-detects: • %R<, qualify results R; If %R >/= No qualification
LCS/LCSD (if required)	One set per batch of 20 samples RPD < 30%	Qualify sample results J/UJ

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a)

Validation QC Element	Acceptance Criteria	Action	
Surrogates	Added to all samples Within method control limits	Not added or not at specified concentration, use professional judgement. For detects: • %R <expanded (10%),<br="" limit="" lower="">qualify results J-</expanded>	
		 Expanded Lower Limit <!--=%R < specified<br-->Lower Limit, qualify results J- %R > specified Upper Limit, qualify results J+ 	
		For non-detects:	
		 %R < Expanded lower limit (10%), qualify results R 	
		• Expanded Lower Limit =%R <specified<br Lower Limit, qualify results UJ	
Field Duplicates	QAPP limits RPD <35%	J/UJ in original only	
	OR in the project-specific SOP. Limits may not apply when sample and dup concentrations are less than 5x QL or limit in the QAPP	If no guidance available, qualify associated samples for contaminants found in field blanks based on the criteria for Method Blanks	

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a), continued

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: ≤ 6°C Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled	For detects: samples received with pH>/=2 and pH not adjusted, or technical holding >180 days, qualify J- For non-detects: pH>/= 2 and pH not adjusted, or technical holding >180 days, qualify R
Method Blank	One per batch <crql< td=""><td>If blank <crql: Sample Detect <ql: and<br="" at="" ql="" report="">qualify U Sample >/= QL: J+ or no qualification If blank result <\= (-MDL) but > (-QL): Sample Detect: qualify J- or no qualification Sample Non-detect: qualify UJ If blank result >/= CRQL: Sample Detect < CRQL: Report at QL and qualify U Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R >/=10x Blank results, no qualification If blank result <!--= (-QL):<br-->Sample Detect < CRQL or >/= CRQL but <10x CRQL, qualify J- Sample Non-detect qualify UJ Sample result >/= 10x QL, no qualification</ql:></crql: </td></crql<>	If blank <crql: Sample Detect <ql: and<br="" at="" ql="" report="">qualify U Sample >/= QL: J+ or no qualification If blank result <\= (-MDL) but > (-QL): Sample Detect: qualify J- or no qualification Sample Non-detect: qualify UJ If blank result >/= CRQL: Sample Detect < CRQL: Report at QL and qualify U Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R >/=10x Blank results, no qualification If blank result <!--= (-QL):<br-->Sample Detect < CRQL or >/= CRQL but <10x CRQL, qualify J- Sample Non-detect qualify UJ Sample result >/= 10x QL, no qualification</ql:></crql:
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 70%-130%	For detects: If %R < 40% or 40-69%, J- If %R 70-130%, no qualification If %R 131-151%, J+ If %R >150%, R For non-detects: If %R<40%, R If %R 40-69%, UJ If %R>70%, no qualification

Validation Guidelines for Metals Analysis by ICP-MS (Based on EPA 2020a; ARI 2020a)

Validation QC Element	Acceptance Criteria	Action
Matrix Spike	One per matrix per batch %R 75-125% for samples where results do not exceed 4x spike level. If >/= 4x the spike added, report unqualified.	For detects: • J- if %R <30 to 74% • J+ if %R>125% • No qualification if %R 75-125% For Non-detects: • R if %R<30%, • UJ if %R <75% or • No qualification if %R 75 to >125
Laboratory Duplicate	One per matrix per batch RPD <20% for samples >/= 5x CRQL OR CQRL if sample results <5x CRQL	If results >/= 5x CRQL and RPD>20% OR if results <5x CRQL and absolute difference >CRQL, J if detect, UJ if non-detect
Field Duplicate	For results > 5x RL: RPD < 20% For results < 5x RL: Diff < RL	J/UJ in original sample only

Validation Guidelines for Metals Analysis by GC/MS (Based on EPA 2020a; ARI 2020a), continued

Appendix B

Field Duplicate Analysis

Data Validation			South Park	Landfill					
QA/QC completed by	: Lisa Gilbert		3/16/2023	3					
ARI Work Order		23B0111							
Sample numbers:		SPL-GW-N	1W18-0223;	SPL-GW-MW6	60-0223				
Sample Date:		2/6/23							
Groundwater		sample	duplicate	avg	diff	rpd	=/<35%	RL	w/in RL?
units = ug/L		MW-18	MW-60						
cis-1,2-DCE	ug/L	<0.20	<0.20	#DIV/0!	#VALUE!	#VALUE!		0.20	У
Vinyl chloride	ug/L	0.0264	0.0253	0.02585	0.00	4	у	0.0200	
Benzene	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!	NA	NA	NA
Groundwater		sample	sample	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	mg/L	14.1	15.9	15	-1.80	12	у	0.720	
Manganese	mg/L	1.27	1.20	1.235	0.07	6	у	0.0100	
Arsenic	ug/L	<0.200	<0.200	#DIV/0!	#VALUE!	#VALUE!		0.200	У
Comments:									
Calculated duplicate	sample RPD = differe	nce / average = ((X1	-X2) / (X1+X	(2)/2)*100					

Data Validation			South Park	Landfill					
QA/QC completed by	: Lisa Gilbert			3/16/2023					
ARI Work Order		23B0160							
			111/24 0222		02222				
Sample numbers:			10024-0223,	3PL-GW-1010001	-02223				
Sample Date:		2/7/23							
Groundwater		sample	duplicate	avg	diff	rpd	=/<35%	RL	w/in RL?
units = ug/L		MW-24	MW-61						
cis-1,2-DCE	ug/L	<0.20	<0.20	#DIV/0!	#VALUE!	#VALUE!		0.20	У
Vinyl chloride	ug/L	0.0484	0.0482	0.0483	0.0002	0	у	0.0200	
Benzene	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!	NA	NA	NA
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	mg/L	22.2	26.8	24.5	-4.60	19	у	0.0720	
Manganese	mg/L	1.76	1.77	1.765	-0.010	1	У	0.0100	
Arsenic	ug/L	<0.200	<0.200	#DIV/0!	#VALUE!	#VALUE!		0.200	у
Comments:									
Calculated duplicate	sample RPD = differen	ce / average = ((X1	-X2) / (X1+X	2)/2)*100					

Appendix C

Qualified Data Summary Table

Table C.1 Qualified Data Summary Table First Quarter 2023 Groundwater Sampling Event

Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifier	Final Qualifier
SPL-GW-MW18-0223	23B0160-03	EPA 6010B	Total Iron	14.1	mg/L	*, D	J-	J-

Qualifiers:

D The result is from a dilution.

J- The result is an estimated quantity, but the result may be biased low.

Second Quarter 2023 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

In Association with

CITATION

Parametrix and HWA GeoSciences, Inc., 2023. Second Quarter 2023 Groundwater Sampling Event South Park Landfill - Data Validation Report. Prepared by Parametrix, Seattle, Washington. June 2023.

TABLE OF CONTENTS

1.	PROJ	IECT NARRATIVE	1-1
	1.1	Overview of Data Validation	1-1
2.	DATA	A VALIDATION REPORT SELECT VOCS BY EPA METHOD SW8260D	2-1
	2.1	Data Package Completeness	2-1
	2.2	Technical Data Validation	2-1
	2.3	Matrix Spike/Matrix Spike Duplicate	2-1
	2.4	Overall Assessment	2-1
3.	DATA	A VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM	3-1
	3.1	Data Package Completeness	3-1
	3.2	Technical Data Validation	3-1
	3.3	Overall Assessment	3-1
4.	DATA	A VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B	4-1
	4.1	Data Package Completeness	4-1
	4.2	Technical Data Validation	4-1
	4.3	Overall Assessment	4-1
5.	REFE	RENCES	5-1

APPENDICES

A Data Qualifier Definitions and Criteria	Tables
---	--------

- B Field Duplicate Analysis
- C Qualified Data Summary Table

ACRONYMS AND ABBREVIATIONS

CRQL	Contract Reporting Quantitation Limit
EPA	U.S. Environmental Protection Agency
LCS	Laboratory control standard
LCSD	Laboratory control standard duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
VOC	Volatile organic compound

1. PROJECT NARRATIVE

1.1 Overview of Data Validation

This report summarizes the results of the Compliance Screening performed on the groundwater and field quality control (QC) sample data for the South Park Landfill Second Quarter 2023 Groundwater Monitoring Event. A complete list of samples is provided below.

Sample ID	Lab ID	Sample Location	8260D	8260D-SIM	6020B Total Fe, Mn
SPL-GW-MW32-0523	23E0018-01	MW-32	Х	Х	Х
SPL-GW-MW33-0523	23E0018-02	MW-33	х	х	Х
SPL-GW-MW10-0523	23E0018-03	MW-10	х	х	х
SPL-GW-MW60-0523	23E0018-04	MW-32 DUP	х	х	Х
SPL-GW-MW80-0523	23E0018-05	TRIP BLANK	Х	х	
SPL-GW-MW25-0523	23E0018-06	MW-25	х	х	х
SPL-GW-MW12-0523	23E0077-01	MW-12	х	х	х
SPL-GW-MW14-0523	23E0077-02	MW-14	х	х	х
SPL-GW-MW29-0523	23E0077-03	MW-29	Х	Х	Х
SPL-GW-MW18-0523	23E0077-04	MW-18	х	х	Х
SPL-GW-MW30-0523	23E0077-05	MW-30	х	х	Х
SPL-GW-MW31-0523	23E0077-06	MW-31	х	х	Х
SPL-GW-MW24-0523	23E0077-07	MW-24	х	х	Х
SPL-GW-MW26-0523	23E0077-08	MW-26	х	х	Х
SPL-GW-MW08-0523	23E0077-09	MW-08	х	х	Х
SPL-GW-MW27-0523	23E0077-10	MW-27	х	х	х
SPL-GW-MW61-0523	23E0077-11	MW-26 DUP	х	х	х
SPL-GW-MW81-0523	23E0077-12	TRIP BLANK	Х	х	

Project Sample Index

Groundwater samples were collected on May 1, 2, and 3, 2023 and submitted to Analytical Resources, Inc. (ARI) located in Tukwila, Washington for chemical analyses. The chemical analyses were performed under ARI Work Orders 23E0018 and 23E0077. The analytical methods include the following:

- Select volatile organic compounds (VOCs)—U.S. Environmental Protection Agency (EPA) Method SW8260D
- Vinyl chloride—EPA Method 8260D-SIM
- Select metals (total iron and manganese) EPA Method 6020B

The data were reviewed using guidance and QC criteria documented in the analytical methods, U.S. Environmental Protection Agency (EPA) *National Functional Guidelines for Inorganic Data Review* (EPA 2020a), *National Functional Guidelines for Organic Data Review* (EPA 2020b), EPA *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), and the *South Park Landfill Operations, Maintenance and Monitoring Plan* (OMMP; Appendix A of the South Park Landfill Cleanup Action Plan [Ecology 2021]).

In accordance with the OMMP, to generate data of sufficient quality, the following approach for groundwater samples will be followed:

- Field and laboratory QC samples (field replicates, trip blanks, and temperature blanks) will be used for assessing data quality.
- Laboratory QA will be implemented and maintained as described in the accredited laboratory's Quality Assurance Plan (ARI 2020a) and Standard Operating Procedures (ARI 2016, 2017, 2020b, 2020c) and in Table 3 (from OMMP and presented in Appendix B).
- Data summary packages will be generated, and the documentation provided will be sufficient to perform a Level I data quality review.

The goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

The data were evaluated in accordance with EPA guidance (EPA 2020a, 2020b, and 2009) at a Stage 2A level. Data qualifier definitions, reasons, and validation criteria are included as Appendix A. Analysis of field duplicates are presented in Appendix B. Qualified data are summarized in Appendix C.

Field Duplicates

Two field duplicate samples were analyzed. Sample SPL-GW-MW60-0523 is a duplicate of SPL-GW-MW32-0523. Sample SPL-GW-MW61-0523 is a duplicate of SPL-GW-MW26-0523.

Appendix B presents the calculated Relative Percent Differences (RPDs) for field duplicate samples. RPDs = difference / average = $((X1-X2) / (X1+X2)/2) \times 100$, where X1 is the sample and X2 is the duplicate sample concentration. RPD is a measure of analytical precision. Precision is a measure of the variability in the results of replicate measurements due to random error.

Trip Blanks

Two trip blanks were analyzed for selected VOCs (SPL-GW-MW80-0523 and SPL-GW-MW81-0523) in ARI Work Orders 23E0018 and 23E0077.

Sample Temperature

Although no temperature blanks were prepared, the laboratory measured the cooler interior temperatures on receipt. Temperatures for the two batches were 4.0 and 8.0 degrees C, indicating adequate temperature control for sample preservation for batch 23E0018, and slightly elevated temperature for batch 23E0077, i.e., above the recommended 6 degrees C, but below 10 degrees C, in which case professional judgement may be used per EPA guidance. No data were therefore qualified based on temperature issues.

Hold times

All method-defined hold times for all samples were met prior to extraction and analysis.

VOC Sample Integrity

The laboratory reported that all VOA vials were free of air bubbles, except for one vial for sample SPL-GW-MW26-0523 and one vial for sample SPL-GW81-0523, a trip blank vial provided by the laboratory. There were enough other vials to complete the analyses, so no data were qualified based on VOC integrity issues.

The cooler receipt form associated with ARI work order 23E0018 indicated that not all VOA vials were free of air bubbles; however, no VOA vials were identified as having bubbles in the preservation confirmation section. The laboratory did not indicate that there was insufficient sample for any VOC analysis, therefore no data were qualified based on VOC integrity issues.

2. DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD SW8260D

This section documents the review of VOC analytical data for groundwater and field QC samples and the associated laboratory QC samples.

2.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination	Reporting limits and reported results
Laboratory control sample (LCS) and LCS duplicate (LCSD)	Field Duplicate
MS/MSD ¹	

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

2.3 Matrix Spike/Matrix Spike Duplicate

Sample specific QC was performed in association with sample 23E0018-01 (SPL-GW-MW32-0523) in Volatile Organic Compounds batch BLE0087. The MS percent recoveries were out of control low for cis-1,2-Dichloroethene and Benzene; additionally, the MSD percent recovery for cis-1,2-Dichloroethene was out of control low. The cis-1,2-Dichloroethene result for sample 23E0018-01 has been flagged J. No benzene results were flagged, because benzene is not a monitored contaminant for the respective well (MW-32).

2.4 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

3. DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM

This section documents the review of vinyl chloride analytical data for groundwater and field QC samples and the associated laboratory QC samples.

3.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

3.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination (method and trip)	Reporting limits and reported results
LCS and LCSD	Field duplicates
MS/MSD	

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

Results for samples with vinyl chloride detections in ARI Work Order 22E0077 were qualified "M" as an estimated value for a GC/MS analyte detected and confirmed by an analyst but with low spectral match parameters. Based on discussions with the laboratory, Vinyl Chloride was identified with the correct spectral peaks and with relative response times within the specified windows. The lab indicated the low spectral matches likely had little effect on the quantitation, but made the identifications less definitive. Vinyl chloride has historically been detected in all of the wells with M-qualified Vinyl Chloride results, at concentrations similar to those reported; therefore no data were qualified and the "M" qualifiers were removed from the final table.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

3.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

4. DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B

This section documents the review of metals (total iron and manganese) analytical data for groundwater and field QC samples and the associated laboratory QC samples.

4.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

4.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Lab Control Sample
Extraction and analysis holding times	Laboratory Duplicate
Blank contamination (method)	Target analyte list
Matrix Spike (MS)	Reporting limits and reported results
	Field duplicates

QC Requirements

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

Some of the metals data were the result of a dilution and were flagged with "D" qualifier by the laboratory. The "D" qualifiers were removed from the final data table.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

4.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS percent recovery values. Precision was acceptable, as demonstrated by the LCS/laboratory duplicate RPDs.

5. REFERENCES

- ARI. 2016. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS, SOP 545S, Version 001, Revision Date 2/8/16.
- ARI (Analytical Resources Inc.). 2017. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS with Universal Cell Technology, SOP 543S, Version 003.3, Revision Date 2/23/17.
- ARI. 2020a. Quality Assurance Plan. Revision 17.0. 6/11/2020.
- ARI. 2020b. Standard Operating Procedure, Volatile Organic Analysis SOP 700S, Version 022, Revision Date 2/12/2020.
- ARI. 2020c. Standard Operating Procedure, Volatile Organic Analysis Selected Ion Mass Spectrometry, SOP 703S, Version 13, Revision Date 2/12/2020.
- Ecology. 2021. Draft South Park Landfill Final Cleanup Action Plan: Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan, Amended 2021. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical data for Superfund Use. EPA 540-R-08-005. January 13, 2009.
- EPA. 2020a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001. November.
- EPA. 2020b. National Functional Guidelines for Organic Superfund Data Review. EPA 542-R-20-006. November.

Appendix A

Data Qualifier Definitions and Criteria Tables

DATA VALIDATION QUALIFIER CODES

National Functional Guidelines (EPA 2020)

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value represents the approximate concentration (for organics).
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	Cooler temperature: ≤ 6°C HCl to pH ≤ 2	lf >6 deg. C but = 10 deg. C, use professional<br judgement J/UJ if greater than 10 deg. C
u a lat a tas a		
Hold Time	14 days preserved 7 Days: unpreserved (for aromatics)	Detects: J; Non-detects: J if hold times exceeded
Method Blank	One per batch <crql< td=""><td>If blank <crql: <ul=""> If sample result <crql, at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= CRQL, use professional judgement If blank >/= CRQL: If sample result <crql, and="" at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= but < blank result, qualify U and report at sample result If sample result >/= CRQL and >/= 2x blank results, report sample result and </crql,></crql,></crql:></td></crql<>	If blank <crql: <ul=""> If sample result <crql, at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= CRQL, use professional judgement If blank >/= CRQL: If sample result <crql, and="" at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= but < blank result, qualify U and report at sample result If sample result >/= CRQL and >/= 2x blank results, report sample result and </crql,></crql,></crql:>
Trip Blank	Frequency as per project QAPP <crql< td=""><td>J+ qualify or no qualification Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned</td></crql<>	J+ qualify or no qualification Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned
MS/MSD (recovery) One per batch Use method acceptance criteria		Qualify original sample only unless other QC indicates systematic problems: For detects: • J if %R <20%, or 20%<%R <lower limit,="" o<br="">%R or RPD >Upper limit For non-detects: • R if %R<20%, UJ if 20%<%R<lower limit<="" td=""></lower></lower>
MS/MSD (RPD)	One per batch Use method acceptance criteria	For detects: J in original sample if RPD >Upper limit
LCS	One per lab batch	If not performed at specified frequency or concentration or % R not specified: use professional judgment For detects: • %R < Lower Limit, qualify J-+; %R> Upper Limit, qualify J+- For non-detects: • %R<, qualify results R; If %R >/= No qualification
LCS/LCSD (if required)	One set per batch of 20 samples RPD < 30%	Qualify sample results J/UJ

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a)

Validation QC Element	Acceptance Criteria	Action
Surrogates	Added to all samples Within method control limits	Not added or not at specified concentration, use professional judgement. For detects: • %R <expanded (10%),<br="" limit="" lower="">qualify results J-</expanded>
		 Expanded Lower Limit <!--=%R < specified<br-->Lower Limit, qualify results J- %R > specified Upper Limit, qualify results J+
		 For non-detects: %R < Expanded lower limit (10%), qualify results R Expanded Lower Limit <!--=%R <specified<br-->Lower Limit, qualify results UJ
Field Duplicates	QAPP limits RPD <35% OR in the project-specific SOP. Limits may not apply when sample and dup concentrations are less than 5x QL or limit in the QAPP	J/UJ in original only If no guidance available, qualify associated samples for contaminants found in field blanks based on the criteria for Method Blanks

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a), continued

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: ≤ 6°C Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled	For detects: samples received with pH>/=2 and pH not adjusted, or technical holding >180 days, qualify J- For non-detects: pH>/= 2 and pH not adjusted, or technical holding >180 days, qualify R
Method Blank	One per batch <crql< td=""><td>If blank <crql: <ql:="" and<br="" at="" detect="" ql="" report="" sample="">qualify U Sample >/= QL: J+ or no qualification If blank result <\= (-MDL) but > (-QL): Sample Detect: qualify J- or no qualification Sample Non-detect: qualify UJ If blank result >/= CRQL: Sample Detect < CRQL: Report at QL and qualify U Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R >/=10x Blank results, no qualification If blank result <!--= (-QL): Sample Detect < CRQL or -->/= CRQL but <10x CRQL, qualify J- Sample Non-detect qualify UJ Sample result >/= 10x QL, no qualification</crql:></td></crql<>	If blank <crql: <ql:="" and<br="" at="" detect="" ql="" report="" sample="">qualify U Sample >/= QL: J+ or no qualification If blank result <\= (-MDL) but > (-QL): Sample Detect: qualify J- or no qualification Sample Non-detect: qualify UJ If blank result >/= CRQL: Sample Detect < CRQL: Report at QL and qualify U Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R >/=10x Blank results, no qualification If blank result <!--= (-QL): Sample Detect < CRQL or -->/= CRQL but <10x CRQL, qualify J- Sample Non-detect qualify UJ Sample result >/= 10x QL, no qualification</crql:>
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 70%-130%	For detects: If %R < 40% or 40-69%, J- If %R 70-130%, no qualification If %R 131-151%, J+ If %R >150%, R For non-detects: If %R<40%, R If %R 40-69%, UJ If %R>70%, no qualification

Validation Guidelines for Metals Analysis by ICP-MS (Based on EPA 2020a; ARI 2020a)

Validation QC Element	Acceptance Criteria	Action		
Matrix Spike	One per matrix per batch %R 75-125% for samples where results do not exceed 4x spike level. If >/= 4x the spike added, report unqualified.	For detects: • J- if %R <30 to 74% • J+ if %R>125% • No qualification if %R 75-125% For Non-detects: • R if %R<30%, • UJ if %R <75% or • No qualification if %R 75 to >125		
Laboratory Duplicate	One per matrix per batch RPD <20% for samples >/= 5x CRQL OR CQRL if sample results <5x CRQL	If results >/= 5x CRQL and RPD>20% OR if results <5x CRQL and absolute difference >CRQL, J if detect, UJ if non-detect		
Field Duplicate	For results > 5x RL: RPD < 20% For results < 5x RL: Diff < RL	J/UJ in original sample only		

Validation Guidelines for Metals Analysis by GC/MS (Based on EPA 2020a; ARI 2020a), continued

Appendix B

Field Duplicate Analysis

Data Validation		South Park Landfill							
QA/QC completed by:	Chris Bourgeois		6/18/2023	3					
ARI Work Order		23E0018							
Sample numbers:		SPL-GW-N	/W32-0523;	SPL-GW-MW6	60-0523				
Sample Date:		5/1/23							
Groundwater		sample	duplicate	avg	diff	rpd	=/<35%	RL	w/in RL?
units = ug/L		MW-32	MW-60						
cis-1,2-DCE	ug/L	0.48	0.49	0.485	-0.01	2	у	0.20	
Vinyl chloride	ug/L	0.339	0.348	0.3435	-0.01	3	у	0.0200	
Benzene	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!	NA	NA	NA
Groundwater		sample	sample	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	mg/L	14.0	13.9	13.95	0.10	1	у	1.80	
Manganese	mg/L	1.39	1.38	1.385	0.01	1	У	0.0250	
Comments:									
Calculated duplicate s	ample RPD = differenc	e / average = ((X1	-X2) / (X1+X	(2)/2)*100					

Data Validation		South Park Landfill							
QA/QC completed by:	Chris Bourgeois			6/18/2023					
ARI Work Order		23E0077							
Sample numbers:		SPL-GW-N	/W26-0523;	SPL-GW-MW61	-0523				
Sample Date:		5/2/23							
Groundwater		sample	duplicate	avg	diff	rpd	=/<35%	RL	w/in RL?
units = ug/L		MW-26	MW-61						
cis-1,2-DCE	ug/L	0.34	0.33	0.335	0.01	3	у	0.20	
Vinyl chloride	ug/L	0.0219	0.0224	0.02215	-0.0005	2	У	0.0200	
Benzene	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!	NA	NA	NA
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	mg/L	9.40	9.30	9.4	0.10	1	У	0.180	
Manganese	mg/L	0.117	0.109	0.113	0.008	7	У	0.0250	
Comments:									
Calculated duplicate s	ample RPD = differenc	e / average = ((X1	-X2) / (X1+X	(2)/2)*100					

Appendix C

Qualified Data Summary Table

Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifier	Final Qualifier
SPL-GW-MW32-0523	23E0018-01	EPA 8260D	cis-1,2-Dichloroethene	0.48	ug/L		J	J
SPL-GW-MW18-0523	23E0077-04	EPA 8260D-SIM	Vinyl chloride	0.0268	ug/L	М		
SPL-GW-MW30-0523	23E0077-05	EPA 8260D-SIM	Vinyl chloride	0.0667	ug/L	М		
SPL-GW-MW31-0523	23E0077-06	EPA 8260D-SIM	Vinyl chloride	0.576	ug/L	М		
SPL-GW-MW24-0523	23E0077-07	EPA 8260D-SIM	Vinyl chloride	0.0425	ug/L	М		
SPL-GW-MW26-0523	23E0077-08	EPA 8260D-SIM	Vinyl chloride	0.0219	ug/L	М		
SPL-GW-MW08-0523	23E0077-09	EPA 8260D-SIM	Vinyl chloride	0.0850	ug/L	М		
SPL-GW-MW27-0523	23E0077-10	EPA 8260D-SIM	Vinyl chloride	0.155	ug/L	М		
SPL-GW-MW61-0523	23E0077-11	EPA 8260D-SIM	Vinyl chloride	0.0224	ug/L	М		

 Table C.1

 Qualified Data Summary Table Second Quarter 2023 Groundwater Sampling Event

Qualifiers:

J The result is an estimated quantity.

M Estimated value for a GC/MS analyte detected and confirmed by an analyst but with low spectral match parameters.

Third Quarter 2023 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

In Association with

CITATION

Parametrix and HWA GeoSciences, Inc., 2023. Third Quarter 2023 Groundwater Sampling Event South Park Landfill - Data Validation Report. Prepared by Parametrix, Seattle, Washington. September 2023.

TABLE OF CONTENTS

1.	PROJ	ECT NARRATIVE	1-1
	1.1	Overview of Data Validation	1-1
2.	DATA	A VALIDATION REPORT CIS-1,2-DCE BY EPA METHOD SW8260D	2-1
	2.1	Data Package Completeness	2-1
	2.2	Technical Data Validation	2-1
	2.3	Overall Assessment	2-1
3.	DATA	A VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM	3-1
	3.1	Data Package Completeness	
	3.2	Technical Data Validation	3-1
	3.3	Overall Assessment	3-1
4.	DATA	A VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B	4-1
	4.1	Data Package Completeness	
	4.2	Technical Data Validation	4-1
		4.2.1 Matrix Spike	4-1
	4.3	Overall Assessment	4-1
5.	REFE	RENCES	5-1

APPENDICES

- A Data Qualifier Definitions and Criteria Tables
- B Field Duplicate Analysis
- C Qualified Data Summary Table

ACRONYMS AND ABBREVIATIONS

CRQL	Contract Reporting Quantitation Limit
EPA	U.S. Environmental Protection Agency
LCS	Laboratory control standard
LCSD	Laboratory control standard duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
VOC	Volatile organic compound

1. PROJECT NARRATIVE

1.1 Overview of Data Validation

This report summarizes the results of the Compliance Screening performed on the groundwater and field quality control (QC) sample data for the South Park Landfill Third Quarter 2023 Groundwater Monitoring Event. A complete list of samples is provided below.

Sample ID	Lab ID	Sample Location	8260D-SIM	6020B Total Fe, Mn	
SPL-GW-MW30-0823	23H0010-01	MW-30	Х	х	Х
SPL-GW-MW31-0823	23H0010-02	MW-31	х	х	Х
SPL-GW-MW24-0823	23H0010-03	MW-24	Х	х	Х
SPL-GW-MW26-0823	23H0010-04	MW-26	х	х	Х
SPL-GW-MW81-0823	23H0010-05	TRIP BLANK	Х	х	
SPL-GW-MW12-0823	23H0102-01	MW-12 X		х	Х
SPL-GW-MW14-0823	23H0102-02	MW-14	х	х	Х
SPL-GW-MW29-0823	23H0102-03	MW-29	х	х	х
SPL-GW-MW18-0823	23H0102-04	MW-18	х	х	х
SPL-GW-MW32-0823	23H0102-05	MW-32	х	х	х
SPL-GW-MW33-0823	23H0102-06	MW-33	х	х	х
SPL-GW-MW10-0823	23H0102-07	MW-10	х	х	х
SPL-GW-MW60-0823	23H0102-08	MW-33 DUP	х	х	х
SPL-GW-MW80-0823	23H0102-09	TRIP BLANK	х	х	
SPL-GW-MW25-0823	23H0102-10	MW-25	Х	Х	Х
SPL-GW-MW08-0823	23H0102-11	MW-08	Х	Х	Х
SPL-GW-MW27-0823	23H0102-12	MW-27	х	х	х
SPL-GW-MW61-0823	23H0102-13	MW-08 DUP	Х	Х	Х

Project Sample Index

Groundwater samples were collected on July 31, August 1, and August 2, 2023 and submitted to Analytical Resources, LLC (ARI) located in Tukwila, Washington for chemical analyses. The chemical analyses were performed under ARI Work Orders 23H0010 and 23H0102. The analytical methods include the following:

- Cis-1,2-DCE—U.S. Environmental Protection Agency (EPA) Method SW8260D
- Vinyl chloride—EPA Method 8260D-SIM
- Select metals (total iron and manganese) EPA Method 6020B

The data were reviewed using guidance and QC criteria documented in the analytical methods, U.S. Environmental Protection Agency (EPA) *National Functional Guidelines for Inorganic Data Review* (EPA 2020a), *National Functional Guidelines for Organic Data Review* (EPA 2020b), EPA *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), and the *South Park Landfill Operations, Maintenance and Monitoring Plan* (OMMP; Appendix A of the South Park Landfill Cleanup Action Plan [Ecology 2021]).

In accordance with the OMMP, to generate data of sufficient quality, the following approach for groundwater samples will be followed:

- Field and laboratory QC samples (field replicates, trip blanks, and temperature blanks) will be used for assessing data quality.
- Laboratory QA will be implemented and maintained as described in the accredited laboratory's Quality Assurance Plan (ARI 2020a) and Standard Operating Procedures (ARI 2016, 2017, 2020b, 2020c) and in Table 3 (from OMMP and presented in Appendix B).
- Data summary packages will be generated, and the documentation provided will be sufficient to perform a Level I data quality review.

The goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

The data were evaluated in accordance with EPA guidance (EPA 2020a, 2020b, and 2009) at a Stage 2A level. Data qualifier definitions, reasons, and validation criteria are included as Appendix A. Analysis of field duplicates are presented in Appendix B. Qualified data are summarized in Appendix C.

Field Duplicates

Two field duplicate samples were analyzed. Sample SPL-GW-MW60-0823 is a duplicate of SPL-GW-MW33-0823. Sample SPL-GW-MW61-0823 is a duplicate of SPL-GW-MW08-0823.

Appendix B presents the calculated Relative Percent Differences (RPDs) for field duplicate samples. RPDs = difference / average = $((X1-X2) / (X1+X2)/2) \times 100$, where X1 is the sample and X2 is the duplicate sample concentration. RPD is a measure of analytical precision. Precision is a measure of the variability in the results of replicate measurements due to random error.

Trip Blanks

Two trip blanks were analyzed for selected VOCs (SPL-GW-MW80-0823 and SPL-GW-MW81-0823) in ARI Work Orders 23H0102 and 23H0010.

Sample Temperature

Although no temperature blanks were prepared, the laboratory measured the cooler interior temperatures on receipt. Temperatures for the two batches were 9.1 degrees C for batch 23H0010 and 2.1 and 0.3 degrees C for batch 23H0102, indicating adequate temperature control for sample preservation for batch 23H0102, and slightly elevated temperature for batch 23H0010, i.e., above the recommended 6 degrees C, but below 10 degrees C, in which case professional judgement may be used per EPA guidance. Additionally, the laboratory did not report any frozen samples, therefore no data were qualified as a result of container temperatures below 2.0 degrees C. No data were therefore qualified based on temperature issues.

Hold Times

All method-defined hold times for all samples were met prior to extraction and analysis.

VOC Sample Integrity

The laboratory reported that all VOA vials associated with ARI work order 23H0010 were free of air bubbles. The cooler receipt form associated with ARI work order 23H0102 indicated that not all VOA vials were free of air bubbles; however, no VOA vials were identified as having bubbles in the preservation confirmation section. The laboratory did not indicate that there was insufficient sample for any VOC analysis, therefore no data were qualified based on VOC integrity issues.

Additional Discrepancies

Additional discrepancies were noted in the Cooler Receipt form associated with ARI work order 23H0010. The COC entry for SPL-GW-MW26-0823 was crossed out prior to submittal to the laboratory. However, the entry contained the correct sample date, time, and number of bottles that were included in the submitted cooler.

2. DATA VALIDATION REPORT CIS-1,2-DCE BY EPA METHOD SW8260D

This section documents the review of VOC analytical data for groundwater and field QC samples and the associated laboratory QC samples.

2.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination (method and trip)	Reporting limits and reported results
Laboratory control sample (LCS) and LCS duplicate (LCSD)	Field Duplicates
Matrix Spike (MS) and Matrix Spike Duplicate (MSD)	

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

2.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

3. DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM

This section documents the review of vinyl chloride analytical data for groundwater and field QC samples and the associated laboratory QC samples.

3.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

3.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination (method and trip)	Reporting limits and reported results
Laboratory control sample (LCS) and LCS duplicate (LCSD)	Field duplicates
Matrix Spike (MS) and Matrix Spike Duplicate (MSD)	

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

3.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

4. DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B

This section documents the review of metals (total iron and manganese) analytical data for groundwater and field QC samples and the associated laboratory QC samples.

4.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

4.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Laboratory Duplicate
Extraction and analysis holding times	Target analyte list
Blank contamination (method)	Reporting limits and reported results
Matrix Spike (MS) ¹ and Matrix Spike Duplicate (MSD)	Field duplicates
Laboratory Control Sample (LCS)	

QC Requirements

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

Some of the metals data were the result of a dilution and were flagged with "D" qualifier by the laboratory. The "D" qualifiers were removed from the final data table.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

4.2.1 Matrix Spike

Sample specific QC was performed in association with samples 23H0102-06 and 23H0102-11 (SPL-GW-MW33-0823 and SPL-GW-MW08-0823) in Total Metals batch BLH0390. The duplicate and MS/MSD RPDs were within control limits. However, the lab noted that for manganese, the natural concentration of the spiked analyte was so much greater than the concentration spiked that an accurate determination of spike recovery is not possible. No data were qualified because the spike was less than 25 percent of the sample value.

4.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS percent recovery values. Precision was acceptable, as demonstrated by the LCS/laboratory duplicate RPDs.

5. REFERENCES

- ARI. 2016. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS, SOP 545S, Version 001, Revision Date 2/8/16.
- ARI (Analytical Resources Inc.). 2017. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS with Universal Cell Technology, SOP 543S, Version 003.3, Revision Date 2/23/17.
- ARI. 2020a. Quality Assurance Plan. Revision 17.0. 6/11/2020.
- ARI. 2020b. Standard Operating Procedure, Volatile Organic Analysis SOP 700S, Version 022, Revision Date 2/12/2020.
- ARI. 2020c. Standard Operating Procedure, Volatile Organic Analysis Selected Ion Mass Spectrometry, SOP 703S, Version 13, Revision Date 2/12/2020.
- Ecology. 2021. Draft South Park Landfill Final Cleanup Action Plan: Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan, Amended 2021. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical data for Superfund Use. EPA 540-R-08-005. January 13, 2009.
- EPA. 2020a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001. November.
- EPA. 2020b. National Functional Guidelines for Organic Superfund Data Review. EPA 542-R-20-006. November.

Appendix A

Data Qualifier Definitions and Criteria Tables

DATA VALIDATION QUALIFIER CODES

National Functional Guidelines (EPA 2020)

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value represents the approximate concentration (for organics).
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	Cooler temperature: ≤ 6°C HCl to pH ≤ 2	If >6 deg. C but = 10 deg. C, use professional<br judgement
11 - 14 - 1-1		J/UJ if greater than 10 deg. C
Hold Time	14 days preserved 7 Days: unpreserved (for aromatics)	Detects: J; Non-detects: J if hold times exceeded
Method Blank	One per batch	If blank <crql:< td=""></crql:<>
	<crql< td=""><td> If sample result <crql, qualify="" report<br="" u="">at CRQL</crql,> If sample result >/= CRQL, use professional judgement </td></crql<>	 If sample result <crql, qualify="" report<br="" u="">at CRQL</crql,> If sample result >/= CRQL, use professional judgement
		If blank >/= CRQL:
		 If sample result <crql, and<br="" qualify="" u="">report at CRQL</crql,>
		 If sample result >/= but < blank result, qualify U and report at sample result
		 If sample result >/= CRQL and >/= 2x blank results, report sample result and J+ qualify or no qualification
Trip Blank	Frequency as per project QAPP <crql< td=""><td>Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned</td></crql<>	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned
MS/MSD (recovery)	One per batch Use method acceptance criteria	Qualify original sample only unless other QC indicates systematic problems: For detects:
		 J if %R <20%, or 20%<%R<lower limit,="" or<br="">%R or RPD >Upper limit</lower>
		For non-detects:
		• R if %R<20%, UJ if 20%<%R <lower limit<="" td=""></lower>
MS/MSD (RPD)	One per batch Use method acceptance criteria	For detects: J in original sample if RPD >Upper limit
LCS	One per lab batch	If not performed at specified frequency or concentration or % R not specified: use professional judgment
		For detects:
		 %R < Lower Limit, qualify J-+; %R> Upper Limit, qualify J+-
		For non-detects:
		 %R<, qualify results R; If %R >/= No qualification
LCS/LCSD	One set per batch of 20 samples	Qualify sample results J/UJ
(if required)	RPD < 30%	

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a)

Validation QC Element	Acceptance Criteria	Action		
Surrogates	Added to all samples Within method control limits	Not added or not at specified concentration, use professional judgement. For detects:		
		 %R <expanded (10%),<br="" limit="" lower="">qualify results J-</expanded> 		
		• Expanded Lower Limit =%R < specified<br Lower Limit, qualify results J-		
		 %R > specified Upper Limit, qualify results J+ 		
		For non-detects:		
		 %R < Expanded lower limit (10%), qualify results R 		
		• Expanded Lower Limit =%R <specified<br Lower Limit, qualify results UJ		
Field Duplicates	QAPP limits RPD <35%	J/UJ in original only		
	OR in the project-specific SOP. Limits may not apply when sample and dup concentrations are less than 5x QL or limit in the QAPP	If no guidance available, qualify associated samples for contaminants found in field blanks based on the criteria for Method Blanks		

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a), continued

Validation QC Element	Acceptance Criteria	Action			
Cooler Temperature and Preservation	Cooler temperature: ≤ 6°C Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met			
Holding Time	180 days from date sampled	For detects: samples received with pH>/=2 and pH not adjusted, or technical holding >180 days, qualify J- For non-detects: pH>/= 2 and pH not adjusted, or technical holding >180 days, qualify R			
Method Blank	One per batch <crql< td=""><td>If blank <crql: Sample Detect <ql: and<br="" at="" ql="" report="">qualify U Sample >/= QL: J+ or no qualification If blank result <\= (-MDL) but > (-QL): Sample Detect: qualify J- or no qualification Sample Non-detect: qualify UJ If blank result >/= CRQL: Sample Detect < CRQL: Report at QL and qualify U Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R >/=10x Blank results, no qualification If blank result <!--= (-QL):<br-->Sample Detect < CRQL or >/= CRQL but <10x CRQL, qualify J- Sample Non-detect qualify UJ Sample result >/= 10x QL, no qualification</ql:></crql: </td></crql<>	If blank <crql: Sample Detect <ql: and<br="" at="" ql="" report="">qualify U Sample >/= QL: J+ or no qualification If blank result <\= (-MDL) but > (-QL): Sample Detect: qualify J- or no qualification Sample Non-detect: qualify UJ If blank result >/= CRQL: Sample Detect < CRQL: Report at QL and qualify U Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R >/=10x Blank results, no qualification If blank result <!--= (-QL):<br-->Sample Detect < CRQL or >/= CRQL but <10x CRQL, qualify J- Sample Non-detect qualify UJ Sample result >/= 10x QL, no qualification</ql:></crql: 			
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 70%-130%	For detects: If %R < 40% or 40-69%, J- If %R 70-130%, no qualification If %R 131-151%, J+ If %R >150%, R For non-detects: If %R<40%, R If %R 40-69%, UJ If %R>70%, no qualification			

Validation Guidelines for Metals Analysis by ICP-MS (Based on EPA 2020a; ARI 2020a)

Validation QC Element	Acceptance Criteria	Action
Matrix Spike	One per matrix per batch %R 75-125% for samples where results do not exceed 4x spike level. If >/= 4x the spike added, report unqualified.	For detects: • J- if %R <30 to 74% • J+ if %R>125% • No qualification if %R 75-125% For Non-detects: • R if %R<30%, • UJ if %R <75% or • No qualification if %R 75 to >125
Laboratory Duplicate	One per matrix per batch RPD <20% for samples >/= 5x CRQL OR CQRL if sample results <5x CRQL	If results >/= 5x CRQL and RPD>20% OR if results <5x CRQL and absolute difference >CRQL, J if detect, UJ if non-detect
Field Duplicate	For results > 5x RL: RPD < 20% For results < 5x RL: Diff < RL	J/UJ in original sample only

Validation Guidelines for Metals Analysis by GC/MS (Based on EPA 2020a; ARI 2020a), continued

Appendix B

Field Duplicate Analysis

Data Validation			South Park	Landfill					
QA/QC completed by:	: Chris Bourgeois		8/26/2023	3					
ARI Work Order		23H0102							
Sample numbers:		SPL-GW-N	/W33-0823;	SPL-GW-MW6	60-0823				
Sample Date:		8/2/23							
Groundwater		sample	duplicate	avg	diff	rpd	=/<35%	RL	w/in RL?
units = ug/L		MW-33	MW-60						
cis-1,2-DCE	ug/L	<0.20	<0.20	#DIV/0!	#VALUE!	#VALUE!		0.20	У
Vinyl chloride	ug/L	0.168	0.164	0.166	0.00	2	у	0.0200	
Groundwater		sample	sample	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	mg/L	20.8	19.5	20.15	1.30	6	У	1.80	
Manganese	mg/L	1.98	1.92	1.95	0.06	3	у	0.0250	
Comments:									
Calculated duplicate s	sample RPD = differenc	e / average = ((X1	-X2) / (X1+X	(2)/2)*100					
< = Analyte not detect	ted at laboratory's repor	ting limit							

Data Validation			South Park	Landfill					
QA/QC completed by	: Chris Bourgeois			8/26/2023					
ARI Work Order		23H0102							
Sample numbers:		SPL-GW-N	MW08-0823;	SPL-GW-MW61	-0823				
Sample Date:		8/1/23							
Groundwater		sample	duplicate	avg	diff	rpd	=/<35%	RL	w/in RL?
units = ug/L		MW-08	MW-61						
cis-1,2-DCE	ug/L	<0.20	<0.20	#DIV/0!	#VALUE!	#VALUE!		0.20	У
Vinyl chloride	ug/L	0.0721	0.0704	0.07125	0.0017	2	У	0.0200	
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	mg/L	17.1	16.1	16.6	1.00	6	у	0.720	
Manganese	mg/L	0.979	0.934	0.9565	0.045	5	У	0.0100	
Comments:									
Calculated duplicate s	sample RPD = difference	e / average = ((X1	I-X2) / (X1+X	(2)/2)*100					
< = Analyte not detect	ted at laboratory's repor	ting limit							

Appendix C

Qualified Data Summary Table

Qualified	Data Summary Ta	Table C.1 able Third Quarter 20	23 Grou	ndwate	er Samplin	g Event	
Lab ID	Method	Analyte	Result	Units	Lab Oualifier	DV Qualifier	

Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifier	Final Qualifier
N/A*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Qualifiers:

*No data were qualified this Quarter.

Fourth Quarter 2023 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

In Association with

CITATION

Parametrix and HWA GeoSciences, Inc., 2023. Fourth Quarter 2023 Groundwater Sampling Event South Park Landfill - Data Validation Report. Prepared by Parametrix, Seattle, Washington. December 2023.

TABLE OF CONTENTS

1.	PROJ	ECT NARRATIVE	1-1
	1.1	Overview of Data Validation	1-1
2.	DATA	A VALIDATION REPORT CIS-1,2-DCE BY EPA METHOD SW8260D	2-1
	2.1	Data Package Completeness	2-1
	2.2	Technical Data Validation	2-1
	2.3	Laboratory Control Sample Duplicate	2-1
	2.4	Overall Assessment	2-1
3.	DATA	A VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM	3-1
	3.1	Data Package Completeness	3-1
	3.2	Technical Data Validation	3-1
	3.3	Overall Assessment	3-1
4.	DATA	A VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B	4-1
	4.1	Data Package Completeness	4-1
	4.2	Technical Data Validation	4-1
		4.2.1 Matrix Spike and Matrix Spike Duplicate	4-1
	4.3	Overall Assessment	4-1
5.	REFE	RENCES	5-1

APPENDICES

A	Data	Qualifier	Definitions	and	Criteria	Tables
---	------	-----------	-------------	-----	----------	--------

- B Field Duplicate Analysis
- C Qualified Data Summary Table

ACRONYMS AND ABBREVIATIONS

CRQL	Contract Reporting Quantitation Limit
EPA	U.S. Environmental Protection Agency
LCS	Laboratory control standard
LCSD	Laboratory control standard duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
VOC	Volatile organic compound

1. PROJECT NARRATIVE

1.1 Overview of Data Validation

This report summarizes the results of the Compliance Screening performed on the groundwater and field quality control (QC) sample data for the South Park Landfill Fourth Quarter 2023 Groundwater Monitoring Event. A complete list of samples is provided below.

Sample ID	Lab ID	Sample Location	8260D	8260D-SIM	6020B Total Fe, Mn
SPL-GW-MW32-1123	23K0184-01	MW-32	Х	Х	Х
SPL-GW-MW33-1123	23K0184-02	MW-33	Х	х	Х
SPL-GW-MW10-1123	23K0184-03	MW-10	Х	х	х
SPL-GW-MW60-1123	23K0184-04	MW-10 DUP	х	х	Х
SPL-GW-MW80-1123	23K0184-05	TRIP BLANK	Х	х	
SPL-GW-MW25-1123	23K0184-06	MW-25	Х	х	х
SPL-GW-MW12-1123	23K0260-01	MW-12	Х	х	х
SPL-GW-MW14-1123	23K0260-02	MW-14	Х	х	х
SPL-GW-MW29-1123	23K0260-03	MW-29	Х	х	Х
SPL-GW-MW18-1123	23K0260-04	MW-18	х	х	Х
SPL-GW-MW30-1123	23K0260-05	MW-30	х	х	Х
SPL-GW-MW31-1123	23K0260-06	MW-31	х	х	Х
SPL-GW-MW24-1123	23K0260-07	MW-24	х	х	Х
SPL-GW-MW26-1123	23K0260-08	MW-26	х	Х	Х
SPL-GW-MW08-1123	23K0260-09	MW-08	х	Х	Х
SPL-GW-MW27-1123	23K0260-10	MW-27	Х	х	х
SPL-GW-MW61-1123	23K0260-11	MW-27 DUP	Х	Х	Х
SPL-GW-MW81-1123	23K0260-12	TRIP BLANK	Х	Х	

Project Sample Index

Groundwater samples were collected on November 6, 7, and 8, 2023 and submitted to Analytical Resources, LLC (ARI) located in Tukwila, Washington for chemical analyses. The chemical analyses were performed under ARI Work Orders 23K0184 and 23K0260. The analytical methods include the following:

- Cis-1,2-DCE—U.S. Environmental Protection Agency (EPA) Method SW8260D
- Vinyl chloride—EPA Method 8260D-SIM
- Select metals (total iron and manganese) EPA Method 6020B

The data were reviewed using guidance and QC criteria documented in the analytical methods, U.S. Environmental Protection Agency (EPA) *National Functional Guidelines for Inorganic Data Review* (EPA 2020a), *National Functional Guidelines for Organic Data Review* (EPA 2020b), EPA *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), and the *South Park Landfill Operations, Maintenance and Monitoring Plan* (OMMP; Appendix A of the South Park Landfill Cleanup Action Plan [Ecology 2021]).

In accordance with the OMMP, to generate data of sufficient quality, the following approach for groundwater samples will be followed:

- Field and laboratory QC samples (field replicates, trip blanks, and temperature blanks) will be used for assessing data quality.
- Laboratory QA will be implemented and maintained as described in the accredited laboratory's Quality Assurance Plan (ARI 2020a) and Standard Operating Procedures (ARI 2016, 2017, 2020b, 2020c) and in Table 3 (from OMMP and presented in Appendix B).
- Data summary packages will be generated, and the documentation provided will be sufficient to perform a Level I data quality review.

The goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

The data were evaluated in accordance with EPA guidance (EPA 2020a, 2020b, and 2009) at a Stage 2A level. Data qualifier definitions, reasons, and validation criteria are included as Appendix A. Analysis of field duplicates are presented in Appendix B. Qualified data are summarized in Appendix C.

Field Duplicates

Two field duplicate samples were analyzed. Sample SPL-GW-MW60-1123 is a duplicate of SPL-GW-MW10-1123. Sample SPL-GW-MW61-1123 is a duplicate of SPL-GW-MW27-1123.

Appendix B presents the calculated Relative Percent Differences (RPDs) for field duplicate samples. RPDs = difference / average = $((X1-X2) / (X1+X2)/2) \times 100$, where X1 is the sample and X2 is the duplicate sample concentration. RPD is a measure of analytical precision. Precision is a measure of the variability in the results of replicate measurements due to random error.

Trip Blanks

Two trip blanks were analyzed for selected VOCs (SPL-GW-MW80-1123 and SPL-GW-MW81-1123) in ARI Work Orders 23K0184 and 23K0260.

Sample Temperature

Although no temperature blanks were prepared, the laboratory measured the cooler interior temperatures on receipt. Temperatures for the two batches were 4.1 degrees C for batch 23K0184 and 1.6 and 1.3 degrees C for batch 23K0260, indicating adequate temperature control for sample preservation. The laboratory did not report any frozen samples, therefore no data were qualified as a result of container temperatures below 2.0 degrees C. No data were therefore qualified based on temperature issues.

Hold Times

All method-defined hold times for all samples were met prior to extraction and analysis.

VOC Sample Integrity

The laboratory reported that all VOA vials associated with ARI work order 23K0260 were free of air bubbles. The cooler receipt form associated with ARI work order 23K0184 indicated that not all VOA vials were free of air bubbles; however, no VOA vials were identified as having bubbles in the preservation confirmation section. The laboratory did not indicate that there was insufficient sample for any VOC analysis, therefore no data were qualified based on VOC integrity issues.

2. DATA VALIDATION REPORT CIS-1,2-DCE BY EPA METHOD SW8260D

This section documents the review of VOC analytical data for groundwater and field QC samples and the associated laboratory QC samples.

2.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination (method and trip)	Reporting limits and reported results
Laboratory control sample (LCS) and LCS duplicate (LCSD) ¹	Field Duplicates
Matrix Spike (MS) and Matrix Spike Duplicate (MSD)	

QC Requirements

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

2.3 Laboratory Control Sample Duplicate

The laboratory control sample and laboratory control sample duplicate (LCSD) spike recoveries and relative percent difference (RPD) were within control limits, except for the spike recovery for cis-1,2-dichloroethene in the LCSD for batch BLK0236, which was out of control high. Spike recovery for the laboratory control sample (LCS) and the LCS/LCSD RPD were within control limits, therefore no data were qualified.

2.4 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

3. DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM

This section documents the review of vinyl chloride analytical data for groundwater and field QC samples and the associated laboratory QC samples.

3.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

3.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination (method and trip)	Reporting limits and reported results
Laboratory control sample (LCS) and LCS duplicate (LCSD)	Field duplicates
Matrix Spike (MS) and Matrix Spike Duplicate (MSD)	

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

3.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

4. DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B

This section documents the review of metals (total iron and manganese) analytical data for groundwater and field QC samples and the associated laboratory QC samples.

4.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

4.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Laboratory Duplicate
Extraction and analysis holding times	Target analyte list
Blank contamination (method)	Reporting limits and reported results
Matrix Spike (MS) and Matrix Spike Duplicate (MSD) ¹	Field duplicates
Laboratory Control Sample (LCS)	

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

Some of the metals data were the result of a dilution and were flagged with "D" qualifier by the laboratory. The "D" qualifiers were removed from the final data table.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

4.2.1 Matrix Spike and Matrix Spike Duplicate

Sample specific QC was performed in association with samples 23K0184-03 and 23K0260-10 (SPL-GW-MW10-1123 and SPL-GW-MW27-1123) in total metals batches BLK0517 and BLK0518, respectively. The duplicate and MS/MSD RPDs were within control limits. However, the lab noted that for iron in batch BLK0517 and manganese in both batches, the natural concentration of the spiked analyte was so much greater than the concentration spiked that an accurate determination of spike recovery is not possible. No data were qualified because in all cases the spike was less than 25 percent of the sample value.

4.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS percent recovery values. Precision was acceptable, as demonstrated by the LCS/laboratory duplicate RPDs.

All data, as reported by the laboratory, are acceptable for use.

5. REFERENCES

- ARI. 2016. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS, SOP 545S, Version 001, Revision Date 2/8/2016.
- ARI (Analytical Resources Inc.). 2017. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS with Universal Cell Technology, SOP 543S, Version 003.3, Revision Date 2/23/2017.
- ARI. 2020a. Quality Assurance Plan. Revision 17.0. 6/11/2020.
- ARI. 2020b. Standard Operating Procedure, Volatile Organic Analysis SOP 700S, Version 022, Revision Date 2/12/2020.
- ARI. 2020c. Standard Operating Procedure, Volatile Organic Analysis Selected Ion Mass Spectrometry, SOP 703S, Version 13, Revision Date 2/12/2020.
- Ecology. 2021. Draft South Park Landfill Final Cleanup Action Plan: Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan, Amended 2021. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical data for Superfund Use. EPA 540-R-08-005. January 13, 2009.
- EPA. 2020a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001. November.
- EPA. 2020b. National Functional Guidelines for Organic Superfund Data Review. EPA 542-R-20-006. November.

Appendix A

Data Qualifier Definitions and Criteria Tables

DATA VALIDATION QUALIFIER CODES

National Functional Guidelines (EPA 2020)

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value represents the approximate concentration (for organics).
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	Cooler temperature: ≤ 6°C HCl to pH ≤ 2	If >6 deg. C but = 10 deg. C, use professional<br judgement
		J/UJ if greater than 10 deg. C
Hold Time	14 days preserved	Detects: J; Non-detects: J if hold times exceeded
	7 Days: unpreserved (for aromatics)	
Method Blank	One per batch <crql< td=""><td> If blank <crql:< li=""> If sample result <crql, at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= CRQL, use professional judgement </crql,></crql:<></td></crql<>	 If blank <crql:< li=""> If sample result <crql, at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= CRQL, use professional judgement </crql,></crql:<>
		If blank >/= CRQL:
		 If sample result <crql, and<br="" qualify="" u="">report at CRQL</crql,>
		 If sample result >/= but < blank result, qualify U and report at sample result
		 If sample result >/= CRQL and >/= 2x blank results, report sample result and J+ qualify or no qualification
Trip Blank	Frequency as per project QAPP <crql< td=""><td>Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned</td></crql<>	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned
MS/MSD (recovery)	One per batch Use method acceptance criteria	Qualify original sample only unless other QC indicates systematic problems: For detects:
		 J if %R <20%, or 20%<%R<lower limit,="" or<br="">%R or RPD >Upper limit</lower>
		For non-detects:
		• R if %R<20%, UJ if 20%<%R <lower limit<="" td=""></lower>
MS/MSD (RPD)	One per batch Use method acceptance criteria	For detects: J in original sample if RPD >Upper limit
LCS	One per lab batch	If not performed at specified frequency or concentration or % R not specified: use professional judgment
		For detects:
		 %R < Lower Limit, qualify J-+; %R> Upper Limit, qualify J+-
		For non-detects:
		 %R<, qualify results R; If %R >/= No qualification
LCS/LCSD	One set per batch of 20 samples	Qualify sample results J/UJ
(if required)	RPD < 30%	

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a)

Validation QC Element	Acceptance Criteria	Action
Surrogates	Added to all samples Within method control limits	 Not added or not at specified concentration, use professional judgement. For detects: %R <expanded (10%),="" j-<="" li="" limit="" lower="" qualify="" results=""> Expanded Lower Limit <!--=%R < specified Lower Limit, qualify results J-</li--> %R > specified Upper Limit, qualify </expanded>
		 %R > specified Opper Limit, quality results J+ For non-detects: %R < Expanded lower limit (10%), qualify results R
		• Expanded Lower Limit =%R <specified<br Lower Limit, qualify results UJ
Field Duplicates	QAPP limits RPD <35% OR in the project-specific SOP. Limits may not apply when sample and dup concentrations are less than 5x QL or limit in the QAPP	J/UJ in original only If no guidance available, qualify associated samples for contaminants found in field blanks based on the criteria for Method Blanks

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a), continued

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: ≤ 6°C Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled	For detects: samples received with pH>/=2 and pH not adjusted, or technical holding >180 days, qualify J- For non-detects: pH>/= 2 and pH not adjusted, or technical holding >180 days, qualify R
Method Blank	One per batch <crql< td=""><td>If blank <crql: Sample Detect <ql: and<br="" at="" ql="" report="">qualify U Sample >/= QL: J+ or no qualification If blank result <\= (-MDL) but > (-QL): Sample Detect: qualify J- or no qualification Sample Non-detect: qualify UJ If blank result >/= CRQL: Sample Detect < CRQL: Report at QL and qualify U Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R >/=10x Blank results, no qualification If blank result <!--= (-QL):<br-->Sample Detect < CRQL or >/= CRQL but <10x CRQL, qualify J- Sample Non-detect qualify UJ Sample result >/= 10x QL, no qualification</ql:></crql: </td></crql<>	If blank <crql: Sample Detect <ql: and<br="" at="" ql="" report="">qualify U Sample >/= QL: J+ or no qualification If blank result <\= (-MDL) but > (-QL): Sample Detect: qualify J- or no qualification Sample Non-detect: qualify UJ If blank result >/= CRQL: Sample Detect < CRQL: Report at QL and qualify U Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R >/=10x Blank results, no qualification If blank result <!--= (-QL):<br-->Sample Detect < CRQL or >/= CRQL but <10x CRQL, qualify J- Sample Non-detect qualify UJ Sample result >/= 10x QL, no qualification</ql:></crql:
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 70%-130%	For detects: If %R < 40% or 40-69%, J- If %R 70-130%, no qualification If %R 131-151%, J+ If %R >150%, R For non-detects: If %R<40%, R If %R<40%, R If %R 80-69%, UJ If %R>70%, no qualification

Validation Guidelines for Metals Analysis by ICP-MS (Based on EPA 2020a; ARI 2020a)

Validation QC Element	Acceptance Criteria	Action
Matrix Spike	One per matrix per batch %R 75-125% for samples where results do not exceed 4x spike level. If >/= 4x the spike added, report unqualified.	For detects: • J- if %R <30 to 74% • J+ if %R>125% • No qualification if %R 75-125% For Non-detects: • R if %R<30%, • UJ if %R <75% or • No qualification if %R 75 to >125
Laboratory Duplicate	One per matrix per batch RPD <20% for samples >/= 5x CRQL OR CQRL if sample results <5x CRQL	If results >/= 5x CRQL and RPD>20% OR if results <5x CRQL and absolute difference >CRQL, J if detect, UJ if non-detect
Field Duplicate	For results > 5x RL: RPD < 20% For results < 5x RL: Diff < RL	J/UJ in original sample only

Validation Guidelines for Metals Analysis by GC/MS (Based on EPA 2020a; ARI 2020a), continued

Appendix B

Field Duplicate Analysis

Data Validation			South Park	Landfill					
QA/QC completed by: Chris Bourgeois			12/17/2023						
ARI Work Order		23K0184							
Sample numbers:		SPL-GW-N	/W10-1123;	SPL-GW-MW6					
Sample Date:		11/6/23	11/6/23						
Groundwater		sample	duplicate	avg	diff	rpd	=/<35%	RL	w/in RL?
units = ug/L		MW-10	MW-60						
cis-1,2-DCE	ug/L	0.76	0.75	0.755	0.01	1	У	0.20	
Vinyl chloride	ug/L	0.0877	0.0850	0.08635	0.00	3	У	0.0200	
Groundwater		sample	sample	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	mg/L	43.9	44.5	44.2	-0.60	1	У	1.80	
Manganese	mg/L	2.51	2.63	2.57	-0.12	5	У	0.0250	
Comments:									
Calculated duplicate s	sample RPD = differenc	e / average = ((X1	I-X2) / (X1+X	2)/2)*100					
< = Analyte not detect	ted at laboratory's repor	ting limit							

Data Validation			South Park	Landfill					
QA/QC completed by: Chris Bourgeois			12/17/2023	3					
ARI Work Order		23K0260							
Sample numbers:		SPL-GW-M	1W27-1123;	SPL-GW-MW6	1-1123				
Sample Date:		11/7/23							
Groundwater		sample	duplicate	avg	diff	rpd	=/<35%	RL	w/in RL?
units = ug/L		MW-27	MW-61						
cis-1,2-DCE	ug/L	<0.20	<0.20	#DIV/0!	#VALUE!	#VALUE!		0.20	у
Vinyl chloride	ug/L	<0.0200	<0.0200	#DIV/0!	#VALUE!	#VALUE!		0.0200	у
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	mg/L	10.4	10.5	10.5	-0.10	1	у	0.360	
Manganese	mg/L	0.393	0.397	0.395	-0.004	1	У	0.00500	
Comments:									
Calculated duplicate s	sample RPD = difference	e / average = ((X1	-X2) / (X1+X	2)/2)*100					
< = Analyte not detect	ted at laboratory's report	ting limit							

Appendix C

Qualified Data Summary Table

Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifier	Final Qualifier
N/A*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

 Table C.1

 Qualified Data Summary Table Fourth Quarter 2023 Groundwater Sampling Event

Qualifiers:

*No data were qualified this Quarter.