December 16, 2019

Mr. Daniel Bretzke City of Seattle Department of Finance and Administrative Services 700 5th Avenue, Suite 5200 Seattle, Washington 98104

SUBJECT: PHASE II ENVIRONMENTAL SITE ASSESSMENT

> **UW Laundry Property** 2901 27th Avenue South Seattle, Washington Project Number: 0987-022

Dear Mr. Bretzke:

SoundEarth Strategies, Inc. (SoundEarth) has prepared this letter report to present the findings and results of the Phase II Environmental Site Assessment (ESA) conducted at the UW Laundry Property, located at 2901 27th Avenue South in Seattle, Washington (the Property). The purpose of the subsurface investigation was to assess the potential for subsurface environmental impacts that may have resulted from recognized environmental conditions (RECs) identified in the Phase I ESA conducted for the Property by SoundEarth in October 2019.

The subsurface investigation was conducted in general accordance with the proposal prepared by SoundEarth dated October 18, 2019. This letter report summarizes the Phase II ESA field activities and results and provides SoundEarth's conclusions regarding the nature and extent of soil and groundwater impacts at the Property.

PROPERTY CONDITION

The Property location is shown on Figure 1. Figure 2 depicts a plan view/layout of the Property. The Property consists of three tax parcels (King County Parcel Nos. 308500-2100, 713830-0015, and 713880-0025; Parcels A through C, respectively) that cover a total of approximately 179,092 square feet (4.11 acres) of land. Parcel A is currently occupied by a 1957-vintage, two-story building (Building 1) that encloses approximately 63,136 square feet of space on the northern portion of the parcel and a 1963vintage, two-story building (Building 2) that encloses approximately 15,397 square feet of space on the central portion of the parcel. Parcels B and C are occupied by asphalt-paved parking lots. Parcel B is also occupied by Sound Transit's elevated Link light rail. Additional improvements include a gravel road and an asphalt-paved parking lot on Parcel A, as shown on Figure 2. The remaining portions of the Property are undeveloped and forested.

BACKGROUND

According to information gathered during SoundEarth's Phase I ESA, the Property was initially developed by at least 1916 when a single-family residence and a vegetable garden were located on the northern portion of the Property. The residence appears to have been demolished by at least 1950. A bowling alley was constructed on the Property in 1957 and a commercial building was constructed on the central portion of the Property in 1963. The bowling alley was occupied by Rainier Lanes and the commercial building was occupied by A and P Food Stores until at least 1970. By 1969, the northern portion of the Property and the southeast portion of the Property were used as parking lots. In 1983, the bowling alley was converted into the University of Washington (UW) Consolidated Laundry Facility. Value Village occupied the commercial building from at least 1975 until at least 1996. By 2003, Grocery Outlet occupied the commercial building and by at least 2014, the UW occupied the commercial building and used it as Kings Hall, a space used for various events including dinners, dances, and wedding receptions. At the time of the Property visit, the 1957-vintage UW Laundry building was vacant and the 1963-vintage retail building was occupied by Kings Hall.

The following RECs were identified during the course of SoundEarth's Phase I ESA:

- The use and underground storage of petroleum products on the Property. A 4,000-gallon fuel oil underground storage tank (UST) was installed on the northern portion of Parcel A in 1983. The fill port and vent line for the UST were observed during the Property reconnaissance. Building records indicate that the UST was used to fuel two boilers located in the northern portion of Building 1. However, an interview with the manager of the building indicated that the UST was used to store fuel for a generator that is located off-site in the case of an emergency and that the boilers were fueled by natural gas.
- The former operation of a bowling alley on the Property. Rainier Lanes, a bowling alley, was constructed on the Property in 1957 and occupied Building 1 until at least 1980. During this time period, bowling alleys commonly used chlorinated solvents and petroleum-based solvents such as carbon tetrachloride and tetrachloroethene to clean the pins and other equipment utilized by the bowling alley. Records reviewed in the course of the investigation suggest that large quantities of solvents and other hazardous materials were removed from the Property for disposal more than 10 years after the bowling alley ceased operations.
- The former operation of a laundry facility on the Property. In approximately 1983, the bowling alley was converted into an industrial-sized laundry facility that operated until 2019. Interviews with UW employees associated with the facility indicated that the facility never used dry cleaning methods. However, records confirm that significant quantities of hazardous wastes were removed from the Property during the facility's period of operation. Although some of these materials may have been generated by the former bowling alley and allowed to remain on the Property for a period of more than 10 years, it is also possible that some of the materials were generated in the course of the laundry facility's operations.
- The presence of fill material beneath the Property. Building plan records indicate that 5,200 cubic yards of fill material was used for grading on the Property in approximately 1983. The source of the fill material was not included in the available records.
- The historical presence of a dry cleaner southeast of the Property. Washington State Department of Ecology (Ecology) records indicate that solvent contamination is present in soil and

groundwater beneath the property located at 3101 Martin Luther King Junior Way South, approximately 300 feet southeast (cross-gradient) of the Property. A Site Hazard Assessment completed in 2015 reports that Red, White, and Blue Cleaners, a dry cleaning business, operated on the property from 1956 until 1960.

PHASE II ESA FIELD WORK

In order to assess potential impacts to soil and groundwater from the RECs identified at the Property, SoundEarth conducted a Phase II ESA in October and November 2019. Elements of the investigation included a focused ground-penetrating radar (GPR) survey and the advancement of 18 soil borings in exterior portions of the Property (P01 though P18). Borings were advanced in locations selected to evaluate potential impacts originating from current and historical activities at the Property, including the former operation of a bowling alley and a laundry facility and the use and storage of petroleum products, as well as the presence of fill material beneath the Property and the historical operation of a dry cleaner southeast of the Property.

Prior to conducting the field activities, private and public utility locate services were used to identify the location of underground utilities. A more detailed discussion of field activities is presented below.

GPR Survey

On October 30, 2019, Applied Professional Services, under the observation of a SoundEarth geologist, conducted a focused GPR survey in the vicinity of the UST north of Building 1 to attempt to more accurate locate the UST prior to drilling in this area. However, the extent of the UST could not be definitively determined during the GPR survey.

Direct-Push Borings and Soil Sampling

On October 30 through November 1, 2019, Environmental Services Network Northwest, Inc. of Olympia, Washington, under the observation of a SoundEarth geologist, advanced 18 direct-push borings at the Property (P01 through P18). Soil borings were advanced to depths of 15 to 25 feet below ground surface (bgs) at the locations shown on Figure 2 using a truck-mounted GeoProbe drill rig.

Soil was sampled continuously in each direct-push boring in 3- to 5-foot intervals. Soil samples were described in general accordance with the Unified Soil Classification System (USCS) and were screened in the field for potential evidence of contamination using visual observations and notations of odor, and by conducting headspace analysis using a photoionization detector (PID) to detect the presence of volatile organic vapors. The USCS symbol, visual and olfactory notations for the samples, and PID readings were recorded on boring log forms, copies of which are provided as Attachment A.

Based on boring locations, screening results, sampling depths, and observed soil characteristics, selected soil samples were labeled with a unique sample ID, placed on ice in a cooler, and delivered to Friedman & Bruya, Inc. (F&B) of Seattle, Washington, under standard chain-of-custody protocols for laboratory analysis of one or more of the following:

Volatile organic compounds (VOCs) by US Environmental Protection Agency (EPA) Method 8260C

- Gasoline-range petroleum hydrocarbons (GRPH) by Northwest Total Petroleum Hydrocarbon (NWTPH) Method NWTPH-Gx
- Diesel-range petroleum hydrocarbons (DPRH) and oil-range petroleum hydrocarbons (ORPH) by Method NWTPH-Dx
- Washington State Model Toxics Control Act (MTCA) 5 metals using EPA Method 6020B
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270D

Soil cuttings generated during drilling were placed in a labeled 55-gallon drum, pending waste profiling and proper disposal.

Reconnaissance Groundwater Sample Collection

Groundwater was encountered during drilling in borings P01 through P03 and P09 through P16 at depths ranging from approximately 9.5 to 20 feet bgs. A temporary monitoring well consisting of 1-inch-diameter PVC casing with a 5-foot screened interval was installed in each of these borings. Approximately 1 to 2 gallons of water were purged from each boring until low turbidity was achieved, and a reconnaissance groundwater sample was collected from the temporary well using a peristaltic pump and dedicated polyethylene tubing. The well casing was removed after sample collection, and the borings were subsequently decommissioned by filling the boreholes with hydrated bentonite chips and sealing with concrete or asphalt to grade, in accordance with the procedures specified in the Minimum Standards for Construction and Maintenance of Wells (Washington Administrative Code 173-360). After collection, reconnaissance groundwater samples were labeled with unique sample IDs, placed on ice in a cooler, and delivered to F&B under standard chain-of-custody protocols for chemical analysis of one or more of the following:

- VOCs by EPA Method 8260C
- GRPH by Method NWTPH-Gx
- DRPH and ORPH by Method NWTPH-Dx

Purge and decontamination water generated during reconnaissance groundwater sampling was contained on the Property in a labeled 16-gallon drum, pending waste profiling and proper disposal.

Subsurface Conditions and Analytical Results

This section summarizes the results of the Phase II ESA. The analytical results for the soil and reconnaissance groundwater samples collected during the investigation at the Property are presented in Tables 1 through 6. Descriptive borings logs are included as Attachment A, and laboratory analytical reports for the samples collected during the investigation are included as Attachment B.

Based on observations presented in boring logs provided in Attachment A, shallow soil conditions on the Property consisted of silty sand or sandy silt with varying amounts of gravel to approximately 10 feet bgs, underlain by silt, sandy silt, or clay to the maximum depth of exploration of 25 feet bgs. In borings P14 through P16, located in the vicinity of the UST north of Building 1, pea gravel and silty sand were observed to depths of approximately 15 to 18 feet bgs. Anthropogenic fill material, including wood and brick fragments, was observed at depths between 5 and 17.5 feet bgs in borings P11, P13, and P16.

Field screening revealed no obvious visual or olfactory indications of petroleum hydrocarbon or chlorinated VOC (CVOC) contamination. PID readings greater than 0.0 parts per million by volume (ppmv) were not observed in samples collected from the majority of the borings, with the exception of samples collected between 8 and 15 feet in borings P11, P13, P14, P16, and P18, where PID readings of up to 6.1 ppmv were observed.

Groundwater was encountered in borings P01 through P03 and P09 through P16 at depths ranging from approximately 9.5 to 20 feet bgs at the time of drilling. Reconnaissance groundwater samples collected from each of these borings did not exhibit any apparent hydrocarbon or solvent odors or sheen.

Soil Results

Soil analytical results are summarized on Figures 3 and 4 and in Tables 1 through 4, and are discussed below. The laboratory analytical reports for the samples collected are provided in Attachment B.

- **CVOCs.** Concentrations of CVOCs were not detected above laboratory reporting limits in any of the soil samples submitted for analysis.
- GRPH. GRPH concentrations were not detected above the laboratory reporting limit in any of the soil samples submitted for analysis.
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX). Concentrations of BTEX constituents
 were not detected above the applicable laboratory reporting limits in any of the soil samples
 submitted for analysis.
- DRPH and ORPH. An ORPH concentration of 3,700 milligrams per kilogram (mg/kg), exceeding the applicable MTCA Method A cleanup level of 2,000 mg/kg, was detected in the soil sample collected from 10 feet bgs in boring P13. DRPH was detected in this sample at a concentration below the applicable cleanup level (840 mg/kg). A concentration of DRPH below the applicable cleanup level was detected in the sample collected from 15 feet bgs in boring P16, and an ORPH concentration below the applicable cleanup level was detected in the sample collected from 10 feet bgs in boring P14.
- MTCA 5 Metals. Concentrations of arsenic, chromium, and lead were detected in all samples submitted for analysis at concentrations below the applicable MTCA Method A cleanup levels. With the exception of slightly elevated lead concentrations detected in samples collected from 12 feet bgs in boring P11 (101 mg/kg) and 10 feet bgs in boring P13 (80.0 mg/kg), the detected arsenic, chromium, and lead concentrations were consistent with natural background levels for the Puget Sound area. Cadmium and mercury were not detected above laboratory reporting limits in any samples submitted for analysis.
- **cPAHs.** The calculated toxicity equivalent for each of the soil samples submitted for analysis was below the applicable MTCA Method A cleanup level. Detectable concentrations of benzo(a)pyrene and other cPAHs below the applicable cleanup level were present in samples collected from borings P13 at 10 feet bgs, P17 at 5 feet bgs, and P18 at 5 feet bgs.

Due to interference from oil present in the sample collected from P11 at 12 feet bgs, the sample was diluted by the laboratory prior to analysis. As a result, the detection limits were elevated to 0.5 mg/kg, which exceeds the MTCA Method A cleanup level of 0.1 mg/kg.

Reconnaissance Groundwater Results

Groundwater analytical results are summarized on Figure 5 and in Tables 5 and 6, and are discussed below. The laboratory analytical reports for the samples collected are provided in Attachment B.

- CVOCs. Concentrations of CVOCs were not detected above the laboratory reporting limit in any
 of the soil samples submitted for analysis.
- GRPH. GRPH concentrations were not detected above the laboratory reporting limit in any of the soil samples submitted for analysis.
- **BTEX.** Concentrations of BTEX constituents were not detected above the applicable laboratory reporting limits in any of the soil samples submitted for analysis.
- **DRPH and ORPH.** DRPH and ORPH were detected in the groundwater sample collected from boring P13 at concentrations exceeding the applicable MTCA Method A cleanup level of 500 micrograms per liter (μg/L; 910 and 520 μg/L, respectively). A DRPH concentration of 1,800 μg/L was detected in the groundwater sample collected from boring P16, exceeding the applicable cleanup level.

DRPH concentrations below the applicable cleanup level were detected in the groundwater samples collected from borings P11 and P14 (190 and 480 μ g/L, respectively), and an ORPH concentration below the applicable cleanup level was detected in the groundwater sample collected from boring P16 (290 μ g/L).

CONCLUSIONS AND RECOMMENDATIONS

The results of the Phase II investigation suggest that DRPH and ORPH are present in soil and groundwater beneath the north and northeastern portions of the Property at concentrations exceeding applicable MTCA Method A cleanup levels. CVOCs, GRPH, BTEX, MTCA 5 metals, and cPAHs were not detected at concentrations exceeding applicable cleanup levels and/or laboratory reporting limits in any of the analyzed soil or reconnaissance groundwater samples.

Soil beneath portions of the Property, including the areas to the north and east of the former laundry building on Parcel A and the parking lot on Parcel C, was observed to contain anthropogenic fill material consisting primarily of wood and brick fragments at depths between 5 and 17.5 feet bgs. Borings advanced in these areas, including P13 and P16 in the northern portion of the Property and P11 in the southeastern portion of the Property, contained elevated concentrations of DRPH and/or ORPH in groundwater and in soil at depths corresponding with the observed fill material. The limited vertical extent of impacts to soil in these borings and the absence of DRPH and ORPH in soil and groundwater in other borings at the Property indicate that these impacts are likely associated with the fill material placed at the Property in approximately 1983.

While DRPH and ORPH impacts in borings P11 and P13 do not appear to be the result of an on-Property petroleum release, boring P16 is located on the downgradient side of the 4,000-gallon UST located to the north of the building, and the DRPH concentration exceeding the applicable cleanup level in the reconnaissance groundwater sample collected from this boring may indicate that a release has occurred from the UST. However, reconnaissance groundwater samples tend to produce analytical results that are biased high due to the increased turbidity of the samples; analysis of groundwater samples collected from

properly developed wells installed in the same location may result in lower concentrations that are more representative of actual groundwater conditions. If a higher level of certainty regarding the actual groundwater conditions is desired, additional sampling of groundwater from properly developed monitoring wells may be warranted to assess whether the petroleum concentrations in groundwater exceed the MTCA Method A cleanup level.

Based on these results, the potential risk for impacts to the Property from former bowling alley and laundry activities on the Property and the historical operation of a dry cleaner to the southeast of the Property appears to be low, and no additional investigation of these RECs is warranted. However, it should be noted that the scope of this Phase II ESA was not exhaustive, and the potential exists for soil and groundwater impacts associated with the observed fill material to be present at other unexplored locations. As such, if future redevelopment activities are planned that will involve subsurface excavation activities, SoundEarth recommends that a soil management plan be prepared prior to Property redevelopment that would be used to address potential discoveries such as soil impacts and USTs.

LIMITATIONS

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, expressed or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report are derived, in part, from data gathered by others, and from conditions evaluated when services were performed, and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We do not warrant and are not responsible for the accuracy or validity of work performed by others, or for the impacts of changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the use of segregated portions of this report.

Respectfully, **SoundEarth Strategies, Inc.**

Clare Tochilin, LG Associate Geologist

Clan Fort

Attachments: Figure 1, Property Location Map

Figure 2, Exploration Location Plan

Figure 3, Soil Analytical Results for TPH and VOCs
Figure 4, Soil Analytical Results for Metals and cPAHs

Ryan Bixby, LG Managing Principal

Ryan K. Bixby

Figure 5, Reconnaissance Groundwater Analytical Results for TPH and VOCs

Table 1, Soil Analytical Results for Chlorinated VOCs

Table 2, Soil Analytical Results for TPH and BTEX

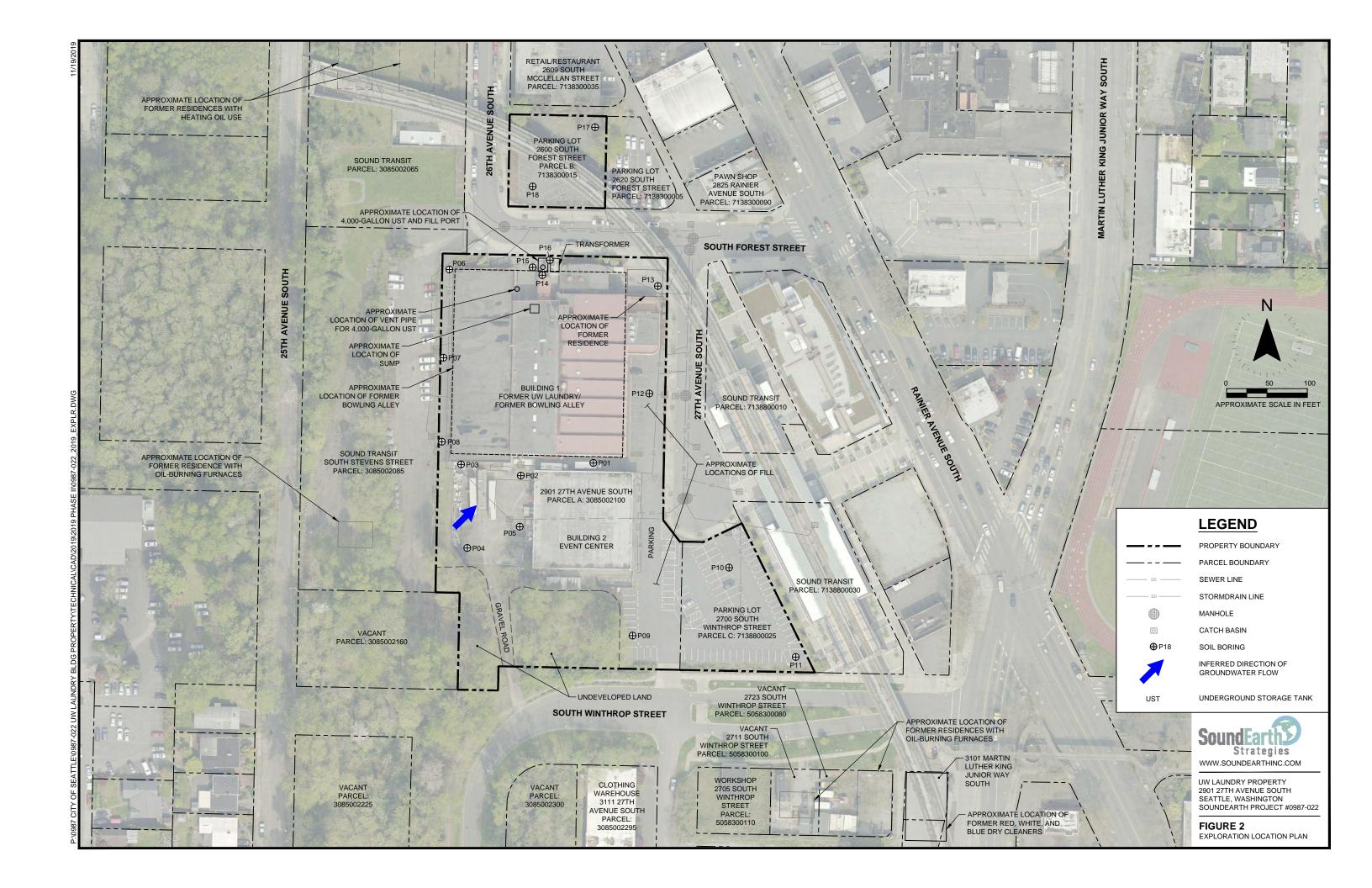
Table 3, Soil Analytical Results for MTCA 5 Metals

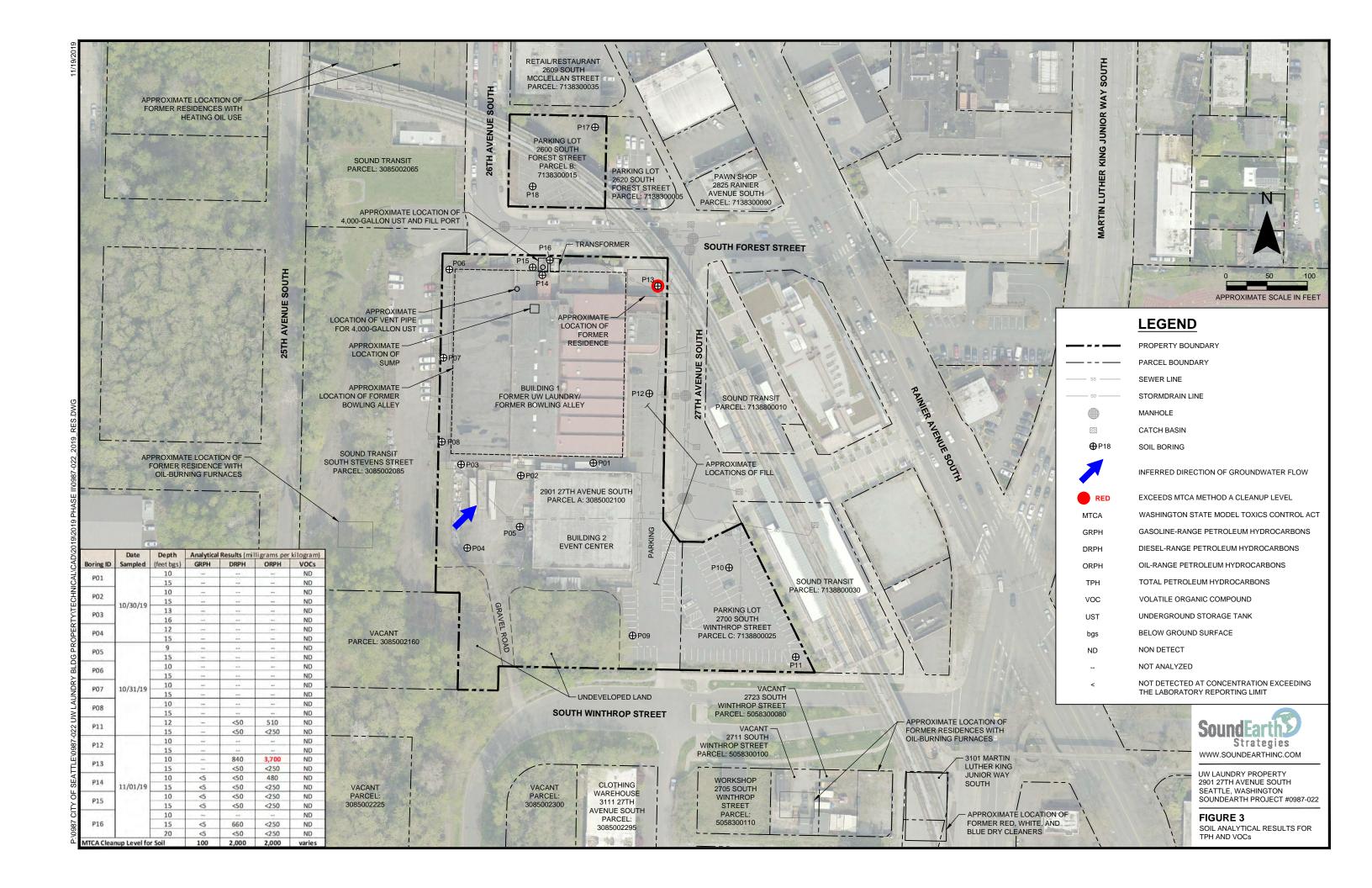
Table 4, Soil Analytical Results for cPAHs

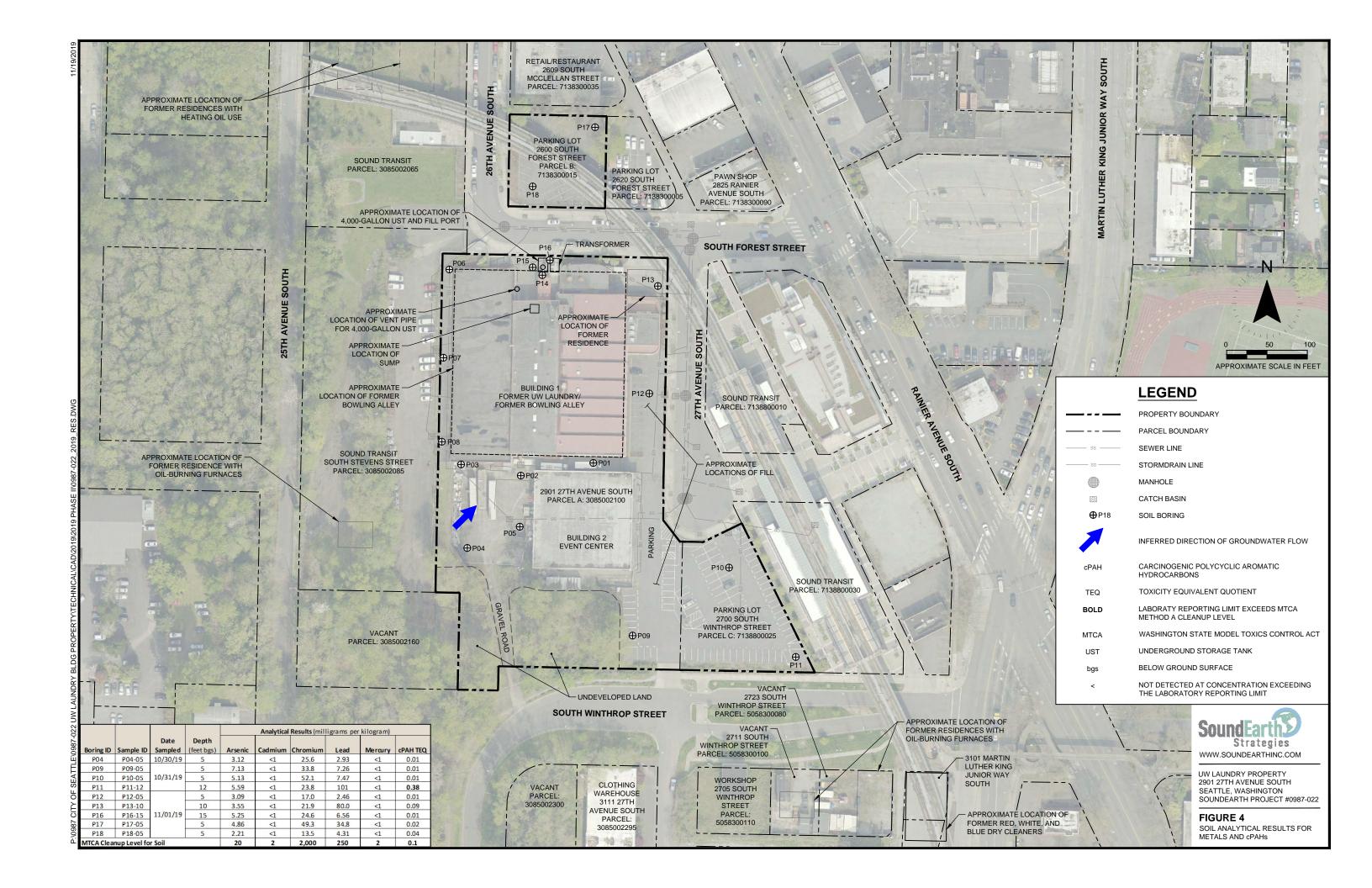
Table 5, Groundwater Analytical Results for Chlorinated VOCs

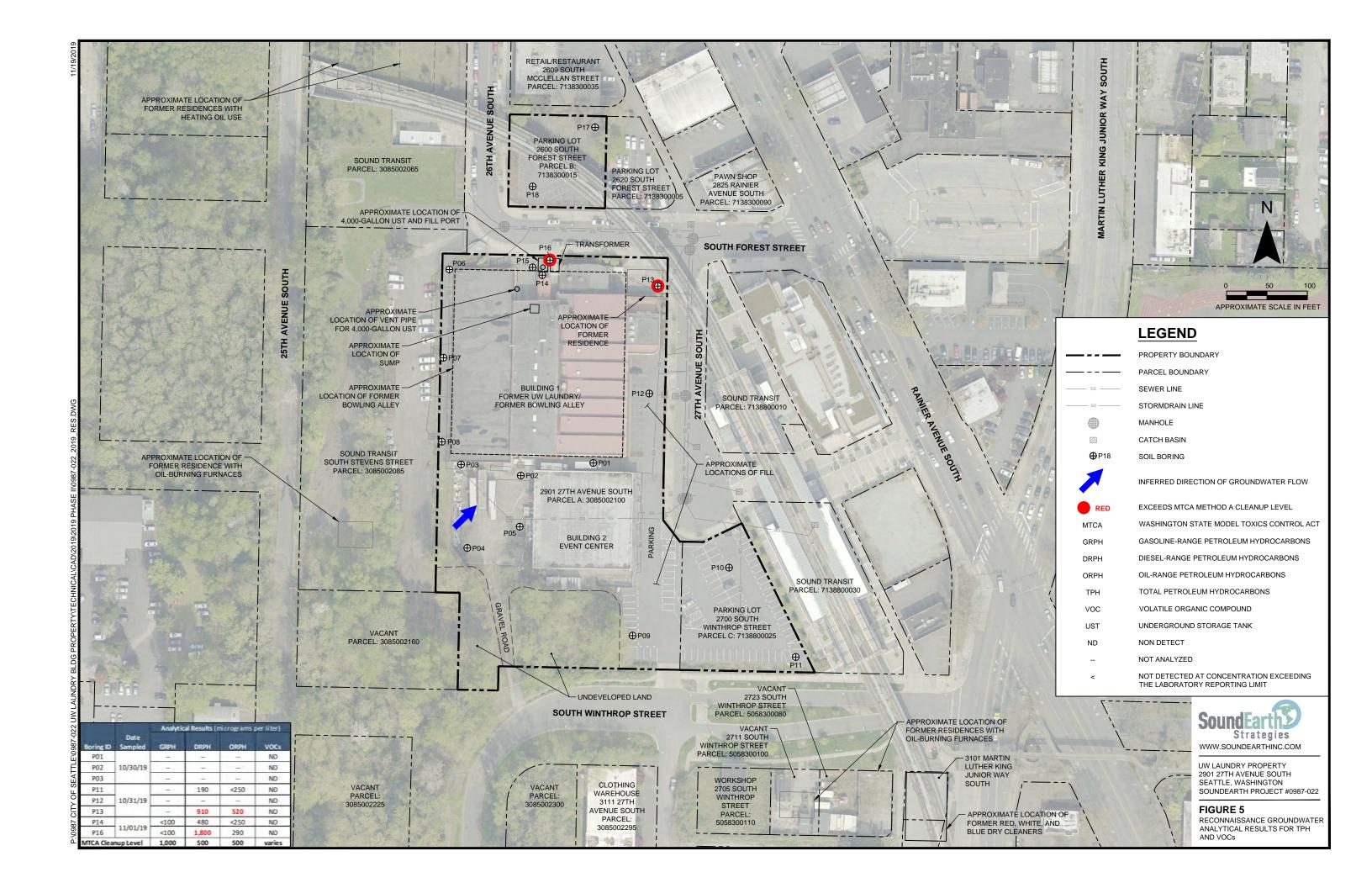
Table 6, Groundwater Analytical Results for TPH and BTEX


A, Boring Logs


B, Laboratory Analytical Reports


Friedman & Bruya, Inc. #910603


Friedman & Bruya, Inc. #911015 and additional Friedman & Bruya, Inc. #911016 and additional Friedman & Bruya, Inc. #911023 and additional Friedman & Bruya, Inc. #911030 and additional


CJT/RKB:rt

TABLES SoundEarth Strategies, Inc.

Table 1 Soil Analytical Results for Chlorinated VOCs UW Laundry Property 2901 27th Avenue South Seattle, Washington

						Ana	lytical Results ⁽¹⁾ (mi	lligrams per kilograr	m)	
Boring ID	Sample ID	Sampled By	Date Sampled	Depth (feet bgs)	Tetrachloroethene	Trichloroethene	Cis-1,2- Dichloroethene	Trans-1,2- Dichloroethene	1,1- Dichloroethene	Vinyl Chloride
	P01-10	-,	- Campion	10	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P01	P01-15	1		15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
	P02-10			10	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P02	P02-15			15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
	P03-13	1	10/30/19	13	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P03	P03-16			16	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
DO 4	P04-12			12	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P04	P04-15			15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P05	P05-09			9	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P05	P05-15			15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P06	P06-10			10	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P06	P06-15			15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P07	P07-10	SoundEarth	10/31/19	10	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P07	P07-15	SoundEarth		15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P08	P08-10			10	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
F06	P08-15			15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P11	P11-12			12	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P12	P12-10			10	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
112	P12-15			15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P13	P13-10			10	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
113	P13-15			15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P14	P14-10		11/01/19	10	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
. 17	P14-15			15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
	P16-10			10	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
P16	P16-15			15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
	P16-20			20	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05
MTCA Cleanup Lev	el for Soil				0.05 ⁽²⁾	0.03(2)	160 ⁽³⁾	1,600 ⁽³⁾	4,000 ⁽³⁾	0.67 ⁽⁴⁾

NOTES

Sample analyses conducted by Friedman & Bruya, Inc. of Seattle, Washington.

< = not detected at a concentration exceeding the laboratory reporting limit

bgs = below ground surface

CLARC = Cleanup Levels and Risk Calculations

EPA = US Environmental Protection Agency

MTCA = Washington State Model Toxics Control Act

SoundEarth = SoundEarth Strategies, Inc.

VOC = volatile organic compound

⁽¹⁾ Samples analyzed by EPA Method 8260C.

⁽²⁾ MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Cleanup Levels for Soil, Unrestricted Land Uses, revised November 2007.

⁽³⁾MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Soil, Method B, Noncancer, Direct Contact, CLARC Website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.

⁽⁴⁾ MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Soil, Method B, Cancer, Direct Contact, CLARC Website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.

Table 2 Soil Analytical Results for TPH and BTEX UW Laundry Property 2901 27th Avenue South Seattle, Washington

							Analytical R	esults (milligrar	ns per kilogram)	
Boring ID	Sample ID	Sampled By	Date Sampled	Depth (feet bgs)	GRPH ⁽¹⁾	DRPH ⁽²⁾	ORPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾
P11	P11-12		10/31/19	10		<50	510				
F 11	P11-15		10/31/19	15		<50	<250				
P13	P13-10			10		840	3,700				
F13	P13-15			15		<50	<250				
P14	P14-10	SoundEarth		10	<5	<50	480	<0.02	<0.02	<0.02	<0.06
F 14	P14-15	Journalaitii	11/01/19	15	<5	<50	<250	<0.02	<0.02	<0.02	<0.06
P15	P15-10		11/01/19	10	<5	<50	<250	<0.02	<0.02	<0.02	<0.06
P15	P15-15			15	<5	<50	<250	<0.02	<0.02	<0.02	<0.06
P16	P16-15			15	<5	660	<250	<0.02	<0.02	<0.02	<0.06
F10	P16-20	1		20	<5	<50	<250	<0.02	<0.02	<0.02	<0.06
MTCA Cleanup Le	vel for Soil ⁽⁴⁾				100	2,000	2,000	0.03	7	6	9

NOTES:

Red denotes concentration exceeds MTCA cleanup level for soil.

Sample analyses conducted by Friedman & Bruya, Inc. of Seattle, Washington.

(1)Analyzed by Method NWTPH-Gx.

(2)Analyzed by Method NWTPH-Dx.

(3)Analyzed by EPA Method 8021B.

(4) MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Cleanup Levels for Soil, Unrestricted Land Uses, revised November 2007.

-- = no data

 ${\mbox{\tt <=}}$ not detected at a concentration exceeding the laboratory reporting limit

bgs = below ground surface

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DRPH = diesel-range petroleum hydrocarbons

EPA = US Environmental Protection Agency

GRPH = gasoline-range petroleum hydrocarbons

MTCA = Washington State Model Toxics Control Act

NWTPH = Northwest Total Petroleum Hydrocarbon

ORPH = oil-range petroleum hydrocarbons

 ${\bf SoundEarth = SoundEarth \ Strategies, \ Inc.}$

TPH = total petroleum hydrocarbons WAC = Washington Administrative Code

1 of 1

Table 3 Soil Analytical Results for MTCA 5 Metals UW Laundry Property 2901 27th Avenue South Seattle, Washington

		Date	Donth	Analytical Results ⁽¹⁾ (milligrams per kilogram)								
Boring ID	Sample ID	Sampled	(feet bgs)	Arsenic	Cadmium	Chromium	Lead	Mercury				
P04	P04-05	10/30/19	5	3.12	<1	25.6	2.93	<1				
P09	P09-05		5	7.13	<1	33.8	7.26	<1				
P10	P10-05	10/31/19	5	5.13	<1	52.1	7.47	<1				
P11	P11-12		12	5.59	<1	23.8	101	<1				
P12	P12-05		5	3.09	<1	17.0	2.46	<1				
P13	P13-10		10	3.55	<1	21.9	80.0	<1				
P16	P16-15	11/01/19	15	5.25	<1	24.6	6.56	<1				
P17	P17-05		5	4.86	<1	49.3	34.8	<1				
P18	P18-05		5	2.21	<1	13.5	4.31	<1				
MTCA Cleanup Lev	vel for Soil			20 ⁽²⁾	2 ⁽²⁾	2,000 ⁽²⁾	250 ⁽²⁾	2 ⁽²⁾				

NOTES:

Sample analyses conducted by Friedman & Bruya, Inc. of Seattle, Washington.

< = not detected at a concentration exceeding the laboratory reporting limit

bgs = below ground surface

EPA = US Environmental Protection Agency

MTCA = Washington State Model Toxics Control Act

⁽¹⁾Samples analyzed by EPA Method 6020B.

⁽²⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Cleanup Levels for Soil, Unrestricted Land Uses, revised November 2007.

Table 4 Soil Analytical Results for cPAHs UW Laundry Property 2901 27th Avenue South Seattle, Washington

				cPAHs Toxicity Equivalency ⁽¹⁾ (milligrams per kilogram)												ram)
Boring ID	Sample ID	Date Sampled	Benzo(a)- anthracene	TEF: 0.1	Chrysene	TEF: 0.01	Benzo(a)pyrene	TEF: 1	Benzo(b)- fluoranthene	TEF: 0.1	Benzo(k)- fluoranthene	TEF: 0.1	Indeno(1,2,3-cd)- pyrene TEF: 0.1	Dibenz(a,h)- anthracene	TEF: 0.1	$\mathbf{TEQ}^{(1)}$ (milligrams per kilogram)
P04	P04-05	10/30/19	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	< 0.01	<	0.01	0.01
P09	P09-05		<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	< 0.01	<	0.01	0.01
P10	P10-05	10/31/19	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	< 0.01	<	0.01	0.01
P11	P11-12 ^d		<	0.5	~	0.5	٧	0.5	\	0.5	'	0.5	< 0.5	<	0.5	0.38
P12	P12-05		<	0.01	~	0.01	'	0.01	\	0.01	'	0.01	< 0.01	<	0.01	0.01
P13	P13-10			0.097		0.47		0.052 ^J		0.11 ^J		0.085 ^J	< 0.05 ^J	<	0.05 ^J	0.09
P16	P16-15	11/01/19	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01	< 0.01	<	0.01	0.01
P17	P17-05			0.013		0.015		0.012		0.016	<	0.01	< 0.01	<	0.01	0.02
P18	P18-05		<	0.05		0.18	<	0.05 ^J		0.052 ^J	<	0.05 ^J	< 0.05 ^J	<	0.05 ^J	0.04
MTCA Cleanup Leve	el for Soil		N	NE	ı	NE	0.	1 ⁽²⁾	ı	NE	ľ	IE	NE	ľ	NE	0.1 ⁽²⁾

NOTES:

Bold denotes reporting limit exceeds MTCA cleanup level for soil.

Sample analyses conducted by Friedman & Bruya, Inc. of Seattle, Washington.

Samples analyzed by GC/MS-SIM or EPA Method 8270D.

(1) Analytical result for each individual cPAH is multiplied by the TEF and all seven cPAH values are added. When analytical results are reported as less than the LRL, one-half of the LRL is multiplied by the TEF to calculate the TEQ.

(2) MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Cleanup Levels for Soil, Unrestricted Land Uses, revised November 2007.

Laboratory Notes:

^dThe sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

^JThe internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

< = not detected at a concentration exceeding the laboratory reporting limit

cPAH = carcinogenic polycyclic aromatic hydrocarbon

EPA = US Environmental Protection Agency

LRL = laboratory reporting limit

MTCA = Washington State Model Toxics Control Act

NE = not established

TEF = toxicity equivalency factor

TEQ = toxicity equivalent

Table 5 Groundwater Analytical Results for Chlorinated VOCs UW Laundry Property 2901 27th Avenue South Seattle, Washington

					Ar	nalytical Results ⁽¹⁾ (n	nicrograms per liter)	
Boring ID	Sample ID	Sampled By	Date Sampled	Tetrachloroethene	Trichloroethene	Cis-1,2- Dichloroethene	Trans-1,2- Dichloroethene	1,1- Dichloroethene	Vinyl Chloride
P01	P01-20191030			<1	<1	<1	<1	<1	<0.2
P02	P02-20191030		10/30/19	<1	<1	<1	<1	<1	<0.2
P03	P03-20191030			<1	<1	<1	<1	<1	<0.2
P11	P11-20191031	SoundEarth	10/31/19	<1	<1	<1	<1	<1	<0.2
P12	P12-20191101	SoundLartii		<1	<1	<1	<1	<1	<0.2
P13	P13-20191101		11/01/19	<1	<1	<1	<1	<1	<0.2
P14	P14-20191101		11/01/19	<1	<1	<1	<1	<1	<0.2
P16	P16-20191101			<1	<1	<1	<1	<1	<0.2
MTCA Cleanup Lev	el for Groundwater	ı		5 ⁽²⁾	5 ⁽²⁾	16 ⁽³⁾	160 ⁽³⁾	400 ⁽³⁾	0.2 ⁽²⁾

NOTES:

Sample analyses conducted by Friedman & Bruya, Inc. of Seattle, Washington.

⁽²⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Groundwater, revised November 2007.

(3) MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Groundwater, Method B Standard Formula, Non cancer, CLARC Website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.

< = not detected at a concentration exceeding the laboratory reporting limit

CLARC = Cleanup Levels and Risk Calculations

EPA = US Environmental Protection Agency

MTCA = Washington State Model Toxics Control Act

 $SoundEarth = SoundEarth \ Strategies, \ Inc.$

VOC = volatile organic compound

⁽¹⁾ Samples analyzed by EPA Method 8260C.

Table 6 Groundwater Analytical Results for TPH and BTEX UW Laundry Property 2901 27th Avenue South Seattle, Washington

				Analytical Results (micrograms per liter)								
Boring ID	Sample ID	Sampled By	Date Sampled	GRPH ⁽¹⁾	DRPH ⁽²⁾	ORPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾		
P11	P11-20191031		10/31/19		190 ^x	<250		1				
P13	P13-20191101	SoundEarth			910	520						
P14	P14-20191101	SoundEarth	11/01/19	<100	480 ^x	<250	<1	<1	<1	<3		
P16	P16-20191101			<100	1,800 ^x	290 ^x	<1	<1	<1	<3		
MTCA Cleanup Le	vel for Groundwater		1,000	500	500	5	1,000	700	1,000			

NOTES:

Red denotes concentration exceeds MTCA cleanup level for groundwater.

Sample analyses conducted by Friedman & Bruya, Inc. of Seattle, Washington.

Laboratory Note:

-- = no data

< = not detected at a concentration exceeding the laboratory reporting limit

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DRPH = diesel-range petroleum hydrocarbons

EPA = US Environmental Protection Agency

GRPH = gasoline-range petroleum hydrocarbons

MTCA = Washington State Model Toxics Control Act

NWTPH = Northwest Total Petroleum Hydrocarbon

ORPH = oil-range petroleum hydrocarbons

SoundEarth = SoundEarth Strategies, Inc.

TPH = total petroleum hydrocarbons

⁽¹⁾Analyzed by Method NWTPH-Gx.

⁽²⁾Analyzed by Method NWTPH-Dx.

⁽³⁾ Analyzed by EPA Method 8021B.

⁽⁴⁾ MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Groundwater, revised November 2007.

^xThe sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ATTACHMENT A BORING LOGS

Project Number: 0987-022 Logged by: KJL Date Started: 10/30/19 Surface Conditions: Asphalt

9' S of Building 1 SE corner Location N/S: Location E/W: 43' W of Building 1 SE corner

Reviewed by: CJT Date Completed:

BORING | P01 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

13 feet bgs

Water Depth

feet bas

		Date (Comple	ted:	30/19	After Completion	feet bgs
Depth (feet bgs) Interval Blow Count Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	(ASTM texture, consumption of supplemental descriptor supplemental descriptor field-estimated g	ologic Description density, color, odor, moisture, rs, estimated grain size distribution) grain size distribution by volume s - % Sand - % Gravel)	Well Detail/ Water Depth
50	0.0			SM	0.4-5.0 feet bgs: Silty	hes of asphalt at surface. SAND with gravel, brown, no ent odor, moist, fill (20-60-20).	
5	0.0	P01-05		SP		orly graded, medium SAND with grave nydrocarbon or solvent odor, moist, fi	
10	0.0	P01-10	X	SP ML	gravel, trace silt, brov moist (5-55-40).	oorly graded, medium SAND with wn, no hydrocarbon or solvent odor, LT with sand, gray, no hydrocarbon o 90-10-0).	
15 - 15 - 20	0.0	P01-15	X	GP	gray/brown, no hydro	oorly graded GRAVEL with sand, carbon or solvent odor, wet (0-10-90). 20 feet bgs. Collect reconnaissance P01-20191030. Boring backfilled	
Drilling Co./Driller: Drilling Equipment: Sampler Type: Hammer Type/Weight: Total Boring Depth:	ESN/M	ounted push p leeve			sed:	inches feet bgs inches Notes/Comments: bgs = below ground surf	ace
Total Bornig Depth: Total Well Depth: State Well ID No.:			et bgs et bgs	Annular Monume	:	Page:	1 of 1

Project Number: 0987-022 Logged by: KJL Date Started: 10/30/19 Surface Conditions: Concrete

24' S of Building 1 south wall Location N/S: Location E/W: 22' W of Building 2 NW corner

Reviewed by: CJT Date Completed: 10/30/19 BORING | P02 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

15 feet bgs

Water Depth After Completion

				Date (Comple	ted:	10/30/1	9 After Completion feet bgs
Depth (feet bgs) Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel) Well Detail/ Water Depth
0							$\times \times$	0.0-0.5 feet bgs: 6 inches of concrete at surface.
-		90	0.0			ML		0.5-5.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (70-30-0).
5		100	0.0	P02-05		SM		5.0-8.0 feet bgs: Silty fine SAND, trace fine gravel, brown, no hydrocarbon or solvent odor, moist (35-60-5).
10 -			0.0	P02-10	X	ML		8.0-15.0 feet bgs: Sandy SILT, trace gravel, gray, no hydrocarbon or solvent odor, moist (65-30-5).
-		100	0.0					
15 -			0.0	P02-15	X	SP ML		15.0-16.5 feet bgs: Poorly graded, medium SAND with silt, gray, no hydrocarbon or solvent odor, wet (10-90-0). 16.5-20.0 feet bgs: SILT, trace fine sand and gravel, gray, no hydrocarbon or solvent odor, moist (90-5-5).
20		100	0.0	P02-20				Boring terminated at 20 feet bgs. Collect reconnaissance groundwater sample P02-20191030. Boring backfilled with bentonite.
Drilling Co	./Driller	:	ESN/M	arty		Well/Aug	ger Diam	neter: inches Notes/Comments:
Drilling Eq				ounted push p	robe	1	eened In	nterval: feet bgs
Sampler Ty	-		Plastic s			Screen S	Slot Size	l bas = below ground surface
Hammer Ty	ype/Wei	ght:		lbs	;	Filter Pa	ck Used	: -
Total Borin	ng Depth	ո։	20	fee	et bgs	Surface	Seal:	-
Total Well	Depth:			fee	et bgs	Annular	Seal:	-
State Well	ID No.:					Monume	ent Type:	Page: 1 of 1
								1.51.1

Project Number: 0987-022 Logged by: KJL Date Started: 10/30/19 Surface Conditions: Asphalt

5.5' S of Building 1 south wall Location N/S: Location E/W: 15' E of retaining wall

Reviewed by: CJT Date Completed: 10/30/19 BORING | P03 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

18.5 feet bgs

Water Depth After Completion

feet bas

				Date (Comple	ted:	10/30/1	9 After Completion	feet bgs
Depth (feet bgs) Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	supplemental descriptors, estimated grain size distribution)	Vell Detail/ /ater Depth
0						ML		0.0-0.4 feet bgs: 3 inches of asphalt at surface.	
-		100	0.0			MIL		0.4-5.0 feet bgs: Sandy SILT with fine gravel, gray, no hydrocarbon or solvent odor, moist (55-35-10).	
5			0.0	P03-05		ML		5.0-10.0 feet bgs: Sandy SILT with fine gravel, gray, no hydrocarbon or solvent odor, moist (75-15-10).	
10		100	0.0	P03-10					
-		166				ML		10.0-13.0 feet bgs: Sandy SILT with fine gravel, gray, no hydrocarbon or solvent odor, moist (65-25-10).	
			0.0	P03-13	X	ML		13.0-19.0 feet bgs: Sandy SILT, trace gravel, gray, no hydrocarbon or solvent odor, wet at 18.5 feet bgs (70-25-5).	
15 —		166	0.0						
		166	0.0	P03-16	Х			Refusal at 19 feet bgs. Collect reconnaissance	_
			0.0	P03-19				groundwater sample P03-20191030. Boring backfilled with bentonite.	
20									
Drilling Co./ Drilling Equ Sampler Typ Hammer Typ Total Boring	ipment be: be/Wei	:: ght:	ESN / Ma Truck-ma Plastic s 19	ounted push p leeve lbs		Well/Aug Well Screen S Screen S Filter Pac Surface	eened In Slot Size ick Used	terval: feet bgs : inches bgs = below ground surface	
Total Well D State Well II	-			fee	et bgs	Annular Monume		Page: 1 o	f 1
								<u>'</u>	

Project Number: 0987-022 Logged by: KJL Date Started: 10/30/19 Surface Conditions: Asphalt

Location N/S: 103' S of Building 1 south wall Location E/W: 15.5' E of retaining wall

Reviewed by: CJT Date Completed: 10/30/19 BORING | P04 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

feet bgs

Water Depth After Completion

						•				_
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	supplemental descriptors, estimated grain size distribution)	/ell Detail/ ater Depth
0								NAMEDINA	0.0-0.4 feet bgs: 3 inches of asphalt at surface.	
-			100	0.0			SM		0.4-5.0 feet bgs: Silty SAND with gravel, gray, no hydrocarbon or solvent odor, moist (30-60-10).	
5			125	0.0	P04-05	X	ML		5.0-9.0 feet bgs: Sandy SILT with gravel, gray, no hydrocarbon or solvent odor, moist (45-15-40).	
10 —			166	0.0	P04-09		ML		9.0-12.0 feet bgs: Sandy SILT with gravel, gray, no hydrocarbon or solvent odor, moist (60-15-25).	
-			166	0.0		X	ML		12.0-15.0 feet bgs: Sandy SILT, trace gravel, gray, no hydrocarbon or solvent odor, moist (70-25-5).	
15			166	0.0	P04-15	X	ML		15.0-20.0 feet bgs: SILT with sand, trace gravel, gray, no hydrocarbon or solvent odor, moist (85-10-5).	
20			100	0.0	P04-18 P04-20				Refusal at 20 feet bgs. Boring backfilled with bentonite.	
Drilling	Co./	Driller:		ESN/M	arty		Well/Aug	ger Diam	neter: inches Notes/Comments:	
Drilling	j Equi	ipment	t:	Truck-m	ounted push p	robe	Well Scr	eened Ir	nterval: feet bgs bgs = below ground surface	
Sample	er Typ	e:		Plastic s	leeve		Screen S	Slot Size	e: inches bys - below ground surface	
Hamme	er Typ	oe/Wei	ght:		lbs	3	Filter Pa		l:	
Total B	_	_	n:	20	fee	et bgs	Surface	Seal:	-	
Total W		-			fee	et bgs	Annular		-	
State V	Vell IE	No.:					Monume	ent Type:	: Page: 1 of	1
									·	

Project Number: 0987-022 Logged by: KJL Date Started: 10/31/19 Surface Conditions: Concrete

Location N/S: 86' S of Building 1 central south wall

Location E/W: 23' E of Building 2 west wall

Reviewed by: CJT Date Completed: 10/31/19 BORING | P05 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

feet bgs

Water Depth After Completion

100										
NL	Depth (feet bgs) Interval	Blow Count	% Recovery	I		Sample Analyzed	Group Symbol	Graphic	(ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume	Well Detail/ Water Depth
Number N	0							XX.	0.0-0.5 feet bgs: 6 inches of concrete at surface.	
125			100	0.0			ML		0.5-3.0 feet bgs: Sandy SILT, trace fine gravel, brown, no hydrocarbon or solvent odor, moist (60-35-5).	
10	5			0.0	P05-05		ML			
ML 10- 166 0.0 P05-12 ML 12.0-15.0 feet bgs: Sandy SILT, trace fine gravel, gray, no hydrocarbon or solvent odor, moist (65-30-5). ML 12.0-15.0 feet bgs: Sandy SILT, trace fine gravel, gray, no hydrocarbon or solvent odor, moist (70-25-5). ML 15.0-18.0 feet bgs: Sandy SILT, trace fine gravel, gray, no hydrocarbon or solvent odor, moist (70-25-5). ML 15.0-18.0 feet bgs: Sandy SILT with gravel, gray, no hydrocarbon or solvent odor, moist (50-35-15). ML 18.0-20.0 feet bgs: Sandy SILT with gravel, gray, no hydrocarbon or solvent odor, moist (70-20-10). Refusal at 20 feet bgs. Boring backfilled with bentonite. Drilling Co/Driller: Drilling Equipment: Sampler Type: Plastic sleeve Plastic sleeve Plastic sleeve Hell/Auger Diameter: Well/Auger Diameter: Well/Auger Diameter: Well/Auger Diameter: Well/Auger Diameter: Well/Auger Diameter: Filter Pack Used: Surface Soal: Surface Soal: Surface Soal: Total Well Depth: Feet bgs Screen Slot Size: Surface Soal: Surface Soal: Annular Seal: Annular Seal: Annular Seal:			125							
ML 12.0-15.0 feet bgs: Sandy SILT, trace fine gravel, gray, no hydrocarbon or solvent odor, moist (70-25-5). 166	10 —		166		P05-09	X	ML			
166			166		P05-12		ML			
ML 18.0-20.0 feet bgs: Sandy SILT with gravel, gray, no hydrocarbon or solvent odor, moist (70-20-10). Refusal at 20 feet bgs. Boring backfilled with bentonite.	15		166	0.0	P05-15	X	ML			
Drilling Equipment: Truck-mounted push probe Sampler Type: Plastic sleeve Screen Slot Size: inches Hammer Type/Weight: lbs Filter Pack Used: Total Boring Depth: 20 feet bgs Total Well Depth: feet bgs Annular Seal:	20		100				ML		hydrocarbon or solvent odor, moist (70-20-10).	
Total Well Depth: feet bgs Annular Seal:	Drilling Equi _l Sampler Typ Hammer Typ	pment e: e/Wei	t: ght:	Truck-m Plastic s	ounted push p sleeve	5	Well Scr Screen S Filter Pa	reened Ir Slot Size Ick Used	nterval: feet bgs :: inches bgs = below ground sur	face
	_	-	1:			•			-	
		-			166	or ngo			: Page:	1 of 1

Project Number: 0987-022 Logged by: KJL Date Started: 10/31/19 Surface Conditions: Asphalt

Location N/S: 6' S of Building 1 NW corner Location E/W: 12' W of Building 1 NW corner

Reviewed by: CJT Date Completed: 10/31/19 BORING | P06 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

Water Depth After Completion

feet bgs

					Date (Comple	eted:	10/31/1	9 After Completion	feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)	Well Detail/ Water Depth
0									0.0-0.5 feet bgs: 6 inches of asphalt at surface.	
	\ /						GP		0.5-1.0 feet bgs: 1/2-inch-diameter GRAVEL (fill).	1
-			60	0.0			SP-SM		1.0-5.0 feet bgs: Fine to medium SAND with silt and fine gravel, brown, no hydrocarbon or solvent odor, moist, fill (10-70-20).	
5 - -			100	0.0	P06-05		ML		5.0-8.0 feet bgs: Sandy SILT, trace fine gravel, brown, no hydrocarbon or solvent odor, moist (55-40-5).	
10 —				0.0	P06-10	X	ML ML		8.0-10.0 feet bgs: Sandy SILT, trace fine gravel, gray, no hydrocarbon or solvent odor, moist (75-20-5). 10.0-15.0 feet bgs: Sandy SILT, gray, no hydrocarbon or	
- - -			100	0.0			WL		solvent odor, moist (80-20-0).	
15	/ \			0.0	P06-15	X			Boring terminated at 15 feet bgs. Boring backfilled with bentonite.	
20										
Drilling	Co./	Driller		ESN/M	arty		Well/Aug	ger Diam	neter: inches Notes/Comments:	
Drilling	g Equi	ipment	t:	Truck-m	ounted push p	robe	Well Scr	eened In	nterval: feet bgs bgs = below ground surfa	ıca
Sample	er Typ	e:		Plastic s	leeve		Screen S	Slot Size	: inches	100
Hamme			-		lbs		Filter Pa		:	
Total B			n:	15	fee	et bgs	Surface	Seal:		
Total W		-			fee	et bgs	Annular			
State V	Vell II	No.:					Monume	ent Type:	- Page: 1	of 1
							1		= 1	

Project Number: 0987-022 Logged by: KJL Date Started: 10/31/19 Surface Conditions: Asphalt

Location N/S: 114' S of Building 1 NW corner Location E/W: 12' W of Building 1 NW corner

Reviewed by: CJT Date Completed: 10/31/19 BORING | P07 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

feet bgs

Water Depth After Completion

					Date (Comple	ted:	10/31/1	19 After Completion	reet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)	Well Detail/ Water Depth
0									0.0-0.5 feet bgs: 6 inches of asphalt at surface.	
\							GP		0.5-1.0 feet bgs: 1/2-inch-diameter GRAVEL (fill).	
-			50	0.0			ML		1.0-5.0 feet bgs: Sandy SILT with gravel, brown, no hydrocarbon or solvent odor, moist (55-30-15).	
5				0.0	P07-05		ML		5.0-13.0 feet bgs: Fine to coarse sandy SILT with gravel, brown, no hydrocarbon or solvent odor, moist (55-30-15).	
			100	0.0						
10			100	0.0	P07-10	X				
	$/ \setminus $				DOZ 45	V	ML		13.0-15.0 feet bgs: Sandy SILT with fine gravel, brown, no hydrocarbon or solvent odor, moist (70-20-10).	
15				0.0	P07-15	X			Boring terminated at 15 feet bgs. Boring backfilled with bentonite.	
20	0-1	D-:!!		FON /M			W-WA	Diam.	neter: inches Notes/Comments:	
Drilling Drilling				ESN / M Truck-m	arty ounted push p	robe	Well/Aug		nterval· feet has	
Sample	-	-	.•	Plastic s		1000	Screen S		bas = below ground surface	ce
Hamme			ght:		lbs	;	Filter Pa			
Total B			_	15	fee	et bgs	Surface	Seal:	-	
Total W	ell D	epth:			fee	et bgs	Annular		-	
State W	/ell IC) No.:					Monume	ent Type	: Page: 1	of 1
									ı	

Project Number: 0987-022 Logged by: KJL Date Started: 10/31/19 Surface Conditions: Asphalt

Location N/S: 31' N of Building 1 SW corner Location E/W: 12.5' W of Building 1 SW corner

Reviewed by: CJT Date Completed: 10/31/19 BORING | P08 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

feet bgs

Water Depth After Completion

				Date	Comple	tea:	10/31/1	g	· ieet bys
Depth (feet bgs) Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)	Well Detail/ Water Depth
0	/							0.0-0.5 feet bgs: 6 inches of asphalt at surface.	
-\\ /						SM ML		0.5-1.0 feet bgs: Silty SAND with gravel, brown, no hydrocarbon or solvent odor, moist, fill (25-40-35).	
		60	0.0					1.0-5.0 feet bgs: Sandy SILT with fine gravel, gray, no hydrocarbon or solvent odor, moist (55-35-10).	
5			0.0	P08-05		ML		5.0-13.0 feet bgs: Sandy SILT, gray, no hydrocarbon or solvent odor, moist (60-40-0).	
		100	0.0						
10			0.0	P08-10	x				
		100	0.0			ML		13.0-15.0 feet bgs: Sandy SILT, gray, no hydrocarbon or	
			0.0	P08-15	X	WIL		solvent odor, moist (75-25-0).	
15 -								Boring terminated at 15 feet bgs. Boring backfilled with bentonite.	
20						,			
Drilling Co			ESN/M			Well/Aug			
Drilling Equation Sampler Ty		t:	Truck-m Plastic s	ounted push p leeve	robe	Well Scr Screen S		bas = below ground sur	face
Hammer Ty				lbs		Filter Pa		:	
Total Borin		1:	15		et bgs	Surface			
	Depth:			fee	et bgs	Annular	Seal:		
Total Well						Monume	nt Type	Page:	1 of 1

Project Number: 0987-022 Logged by: KJL Date Started: 10/31/19 Surface Conditions: Asphalt

Location N/S: 41' N of south parking lot curb Location E/W: 13.5' E of west parking lot curb

Reviewed by: CJT Date Completed: 10/31/19 BORING | P09 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

feet bgs 20

Water Depth After Completion

feet bas

			Date (Comple	ted:	10/31/1	9 After Completion	feet bgs
Depth (feet bgs) Interval Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)	Well Detail/ Water Depth
	100	0.0			SP ML		0.0-0.5 feet bgs: 6 inches of asphalt at surface. 0.5-1.0 feet bgs: SAND with gravel, trace silt, brown, no hydrocarbon or solvent odor, moist, fill (5-60-35). 1.0-5.0 feet bgs: Sandy SILT with gravel, gray/brown, no hydrocarbon or solvent odor, moist (60-30-10).	
5-	70	0.0	P09-05	X	ML		5.0-13.0 feet bgs: Sandy SILT with gravel, gray, no hydrocarbon or solvent odor (65-25-10).	
10	60	0.0	P09-10		ML		13.0-15.0 feet bgs: SILT, trace sand, brown, no hydrocarbon or solvent odor, moist (95-5-0).	
15 -	100	0.0	P09-15		ML		15.0-19.0 feet bgs: Sandy SILT, gray/brown, no hydrocarbon or solvent odor, moist (80-20-0).	
20 -		0.0	P09-20		ML		19.0-20.0 feet bgs: Sandy SILT, gray/brown, no hydrocarbon or solvent odor, wet (60-40-0). Boring terminated at 20 feet bgs. Reconnaissance groundwater sample P09-20191031 collected. Boring backfilled with bentonite.	abla
Drilling Co./Driller Drilling Equipment Sampler Type: Hammer Type/Wei Total Boring Depth Total Well Depth: State Well ID No.:	:: ght:	ESN / M. Truck-m. Plastic s 20	ounted push p leeve Ibs		Well/Aug Well Scr Screen S Filter Pa Surface Annular Monume	eened In Slot Size ck Used Seal: Seal:	terval: feet bgs bgs = below ground surfar	of 1

Project Number: 0987-022 Logged by: KJL Date Started: 10/31/19 Surface Conditions: Asphalt

Location N/S: 90' N of SE light post Location E/W: 43' W of east curb

Reviewed by: CJT Date Completed: 10/31/19 BORING | P10 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

feet bgs 10.7

Water Depth After Completion

				Duto (Joinpic	.ou.	10/31/		
Depth (feet bgs)	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)	Well Detail/ Water Depth
0								0.0-0.5 feet bgs: 6 inches of asphalt at surface.	
\ /						GP		0.5-1.0 feet bgs: 1/2-inch-diameter GRAVEL (fill).	1
		60	0.0			ML		1.0-5.0 feet bgs: Sandy SILT, gray, no hydrocarbon or solvent odor, moist (65-35-0).	
5-			0.0	P10-05	х	ML		5.0-8.0 feet bgs: Sandy SILT, trace gravel, gray, no hydrocarbon or solvent odor, moist (65-30-5).	_
-		100	0.0			ML		8.0-11.5 feet bgs: Sandy SILT, gray, no hydrocarbon or solvent odor, moist to wet at 10.7 feet bgs (75-25-0).	_
10			0.0	P10-10					\Box
-		100	0.0			ML		11.5-13.0 feet bgs: Sandy SILT with organics, brown, no hydrocarbon or solvent odor, moist (70-30-0).	
-						ML		13.0-15.0 feet bgs: Sandy SILT, gray, no hydrocarbon or solvent odor, moist (80-20-0).	
15 -			0.0	P10-15		ML		15.0-20.0 feet bgs: SILT with sand, gray, no hydrocarbon or solvent odor, wet (90-10-0).	
-		100	0.0	P10-20				Boring terminated at 20 feet bgs. Reconnaissance groundwater sample P10-20191031 collected. Boring backfilled with bentonite.	
20						T			
Drilling Co./Dri			ESN/M	•		Well/Aug			
Drilling Equipn				ounted push p	robe	Well Screen S		bas = below around surf	ace
Sampler Type: Hammer Type/		.	Plastic s	leeve lbs		Filter Pa		: incnes	
Total Boring D	_	٠.	20		et bgs	Surface			
Total Well Dep	-				et bgs	Annular		_	
State Well ID N				100	295	Monume		: Page: 1	of 1
								raye.	<u> </u>

Project Number: 0987-022 Logged by: KJL Date Started: 10/31/19 Surface Conditions: Asphalt Location N/S: 4.5' N of south curb

Location E/W: 23' W of SE parking lot corner

Reviewed by: CJT BORING | P11 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

11.4 feet bgs

Water Depth

					Date (Comple	ted:	10/31/	After Completion feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel) Well Detail/ Water Depth
0	\ /								0.0-0.5 feet bgs: 6 inches of asphalt at surface.
-			90	0.0			ML		0.5-5.0 feet bgs: Sandy SILT with gravel, gray/brown, no hydrocarbon or solvent odor, moist (70-20-10).
5— - -				0.0	P11-05		ML		5.0-11.5 feet bgs: Sandy SILT with gravel, gray, no hydrocarbon or solvent odor, moist to wet at 11.4 feet bgs (65-20-15).
- - 10	\bigwedge		100	0.0	P11-10				
-			100	0.1	P11-12	x	ML ML		11.5-12.5 feet bgs: Sandy SILT with gravel, organics and brick fragments, black/brown, no hydrocarbon or solvent odor, moist (50-35-15). 12.5-15.0 feet bgs: Sandy SILT, gray, no hydrocarbon or solvent odor, moist (70-30-0).
15 				0.0	P11-15		SM		15.0-16.5 feet bgs: Silty SAND, gray, no hydrocarbon or solvent odor, wet (35-65-0).
- - - 20			100	0.0	P11-20		ML		16.5-20.0 feet bgs: Sandy SILT, gray, no hydrocarbon or solvent odor, wet (65-35-0). Boring terminated at 20 feet bgs. Reconnaissance groundwater sample P11-20191031 collected. Boring backfilled with bentonite.
Drilling	Co./	Driller	<u></u>	ESN/M	arty	1	Well/Aug	ger Diar	neter: inches Notes/Comments:
Drilling	_				ounted push p	robe	Well Scr	-	nterval: feet bas
Sample		•		Plastic s		-	Screen S		bas = below around surface
Hamm			ght:		lbs	;	Filter Pa	ıck Use	
Total E			_	20	fee	et bgs	Surface	Seal:	-
Total V	Vell D	epth:			fee	et bgs	Annular	Seal:	-
State V	Vell IE	No.:					Monume	ent Type	Page: - 1 of 1
									j - 3

Project Number: 0987-022 Logged by: KJL Date Started: 11/01/19 Surface Conditions: Asphalt

48' S of Building 1 entrance Location N/S: Location E/W: 27' W of Building 1 east wall

Reviewed by: CJT Date Completed:

BORING | P12 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

12.0 feet bgs

Water Depth

feet bas

		Date (Complet	ted:	11/01/1	9 After Completion	feet bgs
Depth (feet bgs) Interval Blow Count %	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)	Well Detail/ Water Depth
70	0.0	P12-05	x	ML SM		0.0-0.5 feet bgs: 6 inches of asphalt at surface. 0.5-1.0 feet bgs: 1/2-inch-diameter gravel. 1.0-13.0 feet bgs: Silty, fine to medium SAND with fine gravel, brown, no hydrocarbon or solvent odor, moist (15-75-10).	
	0.0						
10 ————————————————————————————————————	0.0	P12-10	X	SM		13.0-15.0 feet bgs: Silty, fine SAND with gravel, brown/copper, no hydrocarbon or solvent odor, moist (30-40-30).	abla
15 - 100	0.0	P12-15	X	SM ML		15.0-17.0 feet bgs: Silty, fine to medium SAND with gravel, gray, no hydrocarbon or solvent odor, moist (30-45-25). 17.0-20.0 feet bgs: Sandy SILT, gray, no hydrocarbon or solvent odor, wet (85-15-0). Boring terminated at 20 feet bgs. Reconnaissance groundwater sample P12-20191101 collected. Boring	
Drilling Co./Driller: Drilling Equipment: Sampler Type: Hammer Type/Weight: Total Boring Depth: Total Well Depth:	0.0 ESN / Ma Truck-me Plastic si 20	ounted push p leeve Ibs			ger Diam reened In Slot Size ck Used: Seal:	eter: inches reer bgs inches inches bgs = below ground surfa	ice
State Well ID No.:				Monume		Page: 1	of 1

Project Number: 0987-022 Logged by: KJL Date Started: 11/01/19 Surface Conditions: Concrete

Location N/S: 17' N of Building 1 north wall Location E/W: 0' E of Building 1 east wall

Reviewed by: CJT Date Completed: 11/01/19

BORING | P13 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

12.7 feet bgs

Water Depth After Completion

				Date (Comple	ted:	11/01/1	9 After Completion	reet bgs
Depth (feet bgs)	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)	Well Detail/ Water Depth
		80	0.0			SM ML		0.0-0.4 feet bgs: 4 inches of concrete at surface. 0.4-3.0 feet bgs: Silty SAND with gravel, gray, no hydrocarbon or solvent odor, moist (25-40-35). 3.0-6.0 feet bgs: SILT with fine to coarse sand and gravel, gray, no hydrocarbon or solvent odor, moist (80-10-10).	
5		100	0.0	P13-05		SM ML		6.0-8.0 feet bgs: Silty SAND with gravel, gray, no hydrocarbon or solvent odor, moist (30-40-30). 8.0-10.0 feet bgs: Sandy SILT with gravel, wood and brick debris, black/gray, faint sweet odor, moist, fill (50-30-20).	
10 -		100	0.0	P13-10	x	SM ML		10.0-12.0 feet bgs: Silty SAND with gravel, gray/brown, no hydrocarbon or solvent odor, wet (30-45-25). 12.0-15.0 feet bgs: Sandy SILT, trace gravel, brown, no hydrocarbon or solvent odor, moist (75-20-5).	∇
15 -			0.0	P13-15	X			Boring terminated at 15 feet bgs. Reconnaissance groundwater sample P13-20191101 collected. Boring backfilled with bentonite.	
Drilling Co. Drilling Equ Sampler Ty Hammer Ty Total Boring	iipmen pe: pe/Wei g Depth Depth:	t: ght:	Plastic s 15	ounted push p leeve Ibs		Well/Aug Well Scr Screen S Filter Pa Surface Annular	eened In Slot Size ck Used Seal: Seal:	terval: feet bgs : inches :	
State Well I	ט NO.:					Monume	ent rype:	- Page: 1	of 1

Project Number: 0987-022 Logged by: KJL Date Started: 11/01/19 Surface Conditions: Concrete

10' N of container wall Location N/S: Location E/W: 20.5' W of Building 1 west wall

Reviewed by: CJT Date Completed:

BORING | P14 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

13.5 feet bgs

Water Depth

feet bas

		Date 0	Complet	ted:	11/01/1	9 After Completion	feet bgs
Depth (feet bgs) Interval Blow Count % Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)	Well Detail/ Water Depth
20				SM		0.0-0.5 feet bgs: 5 inches of concrete at surface. 0.5-5.0 feet bgs: Silty SAND with gravel, brown, no hydrocarbon or solvent odor, moist, fill (20-60-20).	
30	0.0	P14-05		GP		5.0-9.0 feet bgs: 1/4-inch-diameter GRAVEL, no hydrocarbon or solvent odor, moist, fill (0-0-100).	
10	0.0	P14-10	Х	SM GP	\$0.00000000000000000000000000000000000	9.0-10.0 feet bgs: Silty SAND with gravel, brown, no hydrocarbon or solvent odor, moist, fill (20-60-20). 10.0-13.5 feet bgs: 1/4-inch-diameter GRAVEL, no hydrocarbon or solvent odor, moist, fill (0-0-100).	
15 - 30	0.2	P14-15	х	SM ML		13.5-15.0 feet bgs: Silty SAND with gravel, gray, no hydrocarbon or solvent odor, wet (20-60-20). 15.0-20.0 feet bgs: Sandy SILT with fine gravel, brown, no hydrocarbon or solvent odor, wet (70-20-10).	
20	0.0	P14-20		144, 144		Boring terminated at 20 feet bgs. Reconnaissance groundwater sample P14-20191101 collected. Boring backfilled with bentonite.	
Drilling Co./Driller: Drilling Equipment: Sampler Type: Hammer Type/Weight: Total Boring Depth: Total Well Depth:	ESN / Ma Truck-mo Plastic si 20	ounted push poleeve Ibs		Well/Aug Well Screen S Screen S Filter Pac Surface S Annular	eened In Slot Size: ck Used: Seal:	terval: feet bgs : inches bgs = below ground surfa	ce
State Well ID No.:				Monume	ent Type:	Page: 1	of 1

Project Number: 0987-022 Logged by: KJL Date Started: 11/01/19 Surface Conditions: Concrete Location N/S:

15" N of container wall Location E/W: 18' E of Building 1 loading dock

Reviewed by: CJT Date Completed: 11/01/19 BORING | P15 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

9.5 feet bgs

Water Depth After Completion

Whater Deg Section Company Co						Date	Comple	tea:	11/01/1	g Alter completion	ieet bys
SM D.5-5.0 feet bgs: Silty, fine to medium SAND with gravel, brown, no hydrocarbon or solvent odor, moist (20-45-35). D.5-1.5 feet bgs: Silty, fine to medium SAND with gravel, brown, no hydrocarbon or solvent odor, moist to wet at 9.5 feet bgs (15-70-15). D.5-1.5 feet bgs: Silty, fine to medium SAND with gravel, brown, no hydrocarbon or solvent odor, moist to wet at 9.5 feet bgs (15-70-15). D.5-1.5 feet bgs: Silty, fine to medium SAND with gravel, brown, no hydrocarbon or solvent odor, moist to wet at 9.5 feet bgs (15-70-15). D.5-1.5 feet bgs: Silty, fine to medium SAND with gravel, brown, no hydrocarbon or solvent odor, wet at 9.5 feet bgs (15-70-15). D.5-1.5 feet bgs: Silty, fine to medium SAND with gravel, brown, no hydrocarbon or solvent odor, wet at 9.5 feet bgs: Silty, fine to coarse sand and roollets, gray, no hydrocarbon or solvent odor, wet (30-70-0). D.5-1.5 feet bgs: Silty, fine to medium SAND with gravel, brown, no hydrocarbon or solvent odor, wet (30-70-0). D.5-1.5 feet bgs: Silty, fine to medium SAND with gravel, brown, no hydrocarbon or solvent odor, wet (30-70-0). D.5-1.5 feet bgs: Silty, fine to medium SAND with gravel, brown, no hydrocarbon or solvent odor, wet (30-70-0). D.5-1.5 feet bgs: Silty, fine to coarse sand and roollets, gray, no hydrocarbon or solvent odor, wet (30-70-0). D.5-1.5 feet bgs: Silty with fine to coarse sand and roollets, gray, no hydrocarbon or solvent odor, wet (30-70-0). D.5-1.5 feet bgs: Silty with fine to coarse sand and roollets, gray, no hydrocarbon or solvent odor, wet (30-70-0). D.5-1.5 feet bgs: Silty with fine to coarse sand and roollets, gray, no hydrocarbon or solvent odor, wet (30-70-0). D.5-1.5 feet bgs: Silty with fine to coarse sand and roollets, gray, no hydrocarbon or solvent odor, wet (30-70-0). D.5-1.5 feet bgs: Silty with fine to coarse sand and roollets, gray, no hydrocarbon or solvent odor, wet (30-70-0). D.5-1.5 feet bgs: Silty with fine to coarse sand and roollets, gray, no hydrocarbon or solvent odor, wet (30-70-	Depth (feet bgs)	Interval	Blow Count	% Recovery		-	Sample Analyzed	Group Symbol	Graphic	(ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume	Well Detail/ Water Depth
Truck-mounted push probes SM	0							SM			
SM S.6-13.5 feet bgs: Silty, fine to medium SAND with gravel, related by the state of the state	-			40	0.0						
ML 13.5-15.0 feet bgs: SILT with fine to coarse sand and rootlets, gray, no hydrocarbon or solvent odor, wet (90-10-0). SM 15.0-18.0 feet bgs: Silty, fine to coarse SAND, brown, no hydrocarbon or solvent odor, wet (30-70-0). ML 18.0-20.0 feet bgs: SILT with sand, trace fine gravel and rootlets, gray, no hydrocarbon or solvent odor, wet (85-10-5). Boring terminated at 20 feet bgs. Reconnaissance groundwater sample P15-20191101 collected. Boring backfilled with bentonite. Drilling Co/Driller: ESN / Marty Truck-mounted push probe Sampler Type: Plastic sleeve Hammer Type/Weight: Total Boring Depth: 20 feet bgs Surface Seal: Surface Seal: Annular Seal: ML 13.5-15.0 feet bgs: SILT with fine to coarse sand and rootlets, gray, no hydrocarbon or solvent odor, wet (30-70-0). Well/Auger Diameter: inches Surface Seal: Surface Seal: Annular Seal:	5			60	0.0	P15-05		SM		brown, no hydrocarbon or solvent odor, moist to wet at 9.5	
P15-15 X SM Tooltets, gray, no hydrocarbon or solvent odor, wet (90-10-0).	10 -			100	0.0	P15-10	X	MI		13.5.15.0 foot bos: SII T with fine to coarse sand and	
100 0.0 ML 18.0-20.0 feet bgs: Silty, fine to coarse SAND, brown, no hydrocarbon or solvent odor, wet (30-70-0).								IVIL		rootlets, gray, no hydrocarbon or solvent odor, wet	
ML 18.0-20.0 feet bgs: SILT with sand, trace fine gravel and rootlets, gray, no hydrocarbon or solvent odor, wet (85-10-5). Boring terminated at 20 feet bgs. Reconnaissance groundwater sample P15-20191101 collected. Boring backfilled with bentonite. Drilling Co./Driller:	15			100	0.0	P15-15	X	SM		hydrocarbon or solvent odor, wet (30-70-0).	
Boring terminated at 20 feet bgs. Reconnaissance groundwater sample P15-20191101 collected. Boring backfilled with bentonite. Drilling Co./Driller: ESN / Marty Drilling Equipment: Truck-mounted push probe Sampler Type: Plastic sleeve Plastic sleeve Screen Slot Size: inches Hammer Type/Weight: Ibs Filter Pack Used: Total Boring Depth: 20 feet bgs Surface Seal: Total Well Depth: feet bgs Annular Seal:		/\ \			0.0	P15-20		ML		18.0-20.0 feet bgs: SILT with sand, trace fine gravel and rootlets, gray, no hydrocarbon or solvent odor, wet	
Drilling Equipment: Truck-mounted push probe Sampler Type: Plastic sleeve	-									groundwater sample P15-20191101 collected. Boring	
Drilling Equipment: Truck-mounted push probe Sampler Type: Plastic sleeve	Drillina (Co./I	Driller		ESN / M	artv		Well/Au	ger Diam	leter: inches Notes/Comments	
Hammer Type/Weight: lbs Filter Pack Used: Total Boring Depth: 20 feet bgs Surface Seal: Total Well Depth: feet bgs Annular Seal:	Drilling E	Equi	pment		Truck-m	ounted push p	robe	Well Scr	eened In	nterval: feet bgs bas = below ground surface	.
Total Boring Depth: 20 feet bgs Surface Seal: Total Well Depth: feet bgs Annular Seal:	-			aht.			<u>.</u>				
Total Well Depth: feet bgs Annular Seal:				_						·	
		_	-				•				
State Well ID No.: Monument Type: Page: 1 of 1			-				<u> </u>			Page: 1	of 1
State Well ID No.: Page: 1 of 1										raye.	UI I

Project Number: 0987-022 Logged by: KJL Date Started: 11/01/19 Surface Conditions: Concrete

Location N/S: 22.5' N of north container wall Location E/W: 20.5' W of west loading dock wall

Reviewed by: CJT Date Completed: 11/01/19 BORING | P16 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

feet bgs

Water Depth After Completion

					Date	Comple	ieu.	11/01/1	9 After Completion	reet bgs
Depth (feet bgs)	ınterval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)	Well Detail/ Water Depth
0								XX	0.0-0.5 feet bgs: 6 inches of concrete at surface.	
-			60	0.0			SM		0.5-5.0 feet bgs: Silty, fine to medium SAND with gravel, brown, no hydrocarbon or solvent odor, moist, fill (20-50-30).	
5				0.0	P16-05		GP		5.0-6.0 feet bgs: 1/4-inch-diameter GRAVEL, no hydrocarbon or solvent odor, moist, fill (0-0-100).	
			40	0.0			SM		6.0-10.0 feet bgs: Silty, fine to medium SAND with fine gravel and wood fragments, brown, no hydrocarbon or solvent odor, moist, fill (20-70-10).	
10				0.0	P16-10	x	SM		10.0-15.0 feet bgs: Silty, fine SAND with gravel, wood debris, gray, faint sweet odor, wet at 11 feet bgs, fill (20-70-10).	∇
15			60	6.1	P16-15	X	SM		15.0-17.5 feet bgs: Silty, fine to medium SAND with gravel and wood fragments, gray, no hydrocarbon or solvent odor, wet, fill (20-45-35).	
-			100	0.1			ML		17.5-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (85-15-0).	
20				0.0	P16-20	x				
20 -									Boring terminated at 20 feet bgs. Reconnaissance groundwater sample P16-20191101 collected. Boring backfilled with bentonite.	
Drilling C	Co./D	riller:		ESN/M	arty		Well/Aug	ger Diam	eter: inches Notes/Comments:	
Drilling E					ounted push p	robe	Well Scr		terval: feet has	
Sampler 1	Туре	e :		Plastic s	leeve		Screen S	Slot Size	bgs = below ground surface	
Hammer 1	Туре	e/Weig	ght:		lbs	;	Filter Pa	ck Used:		
Total Bori	ing	Depth):	20	fee	et bgs	Surface	Seal:	-	
		41			for	et bgs	Annular	Seal:		
Total Well		-			100	n bgs	Monume			

Project Number: 0987-022 Logged by: KJL Date Started: 11/01/19 Surface Conditions: Asphalt

Location N/S: 17' S of parking lot north boundary Location E/W: 18' W of parking lot east boundary

Reviewed by: CJT Date Completed: 11/01/19 BORING | P17 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

feet bgs

Water Depth After Completion

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel) Well Detail/ Water Depth
0								ююююю	0.0-0.5 feet bgs: 6 inches of asphalt at surface.
-			90	0.0			SM		0.5-7.0 feet bgs: Silty, fine SAND with gravel, brown, no hydrocarbon or solvent odor, moist (35-55-10).
5-				0.0	P17-05	x			
-	$\left\langle \right\rangle$		100	0.0			SM		7.0-12.0 feet bgs: Silty, fine SAND with fine gravel and rootlets, brown, no hydrocarbon or solvent odor, moist (15-70-15).
10 —				0.0	P17-10		ML		12.0-17.5 feet bgs: Sandy SILT with fine gravel and rootlets,
- 15 —			100	0.0	P17-15				gray/brown, no hydrocarbon or solvent odor, moist (70-20-10).
-			100	0.0			ML		17.5-20.0 feet bgs: SILT with sand and rootlets, gray, no hydrocarbon or solvent odor, moist (90-10-0).
20	$/\setminus$			0.0	P17-20		ı		
Drilling	_			ESN / Ma	=		Well/Aug	-	
Drilling		•	:		ounted push p	robe	Well Scr		bas = below ground surface
Sample				Plastic s			Screen S		: incnes
Hamm Total F			_	 25	lbs		Filter Pa		
Total E	_	-	١.	25		et bgs	Surface		-
Total V		-			tee	et bgs	Annular		
State V	veli IL	. NO.:					Monume	ит гуре	Page: 1 of 2

Project Number: 0987-022 Logged by: KJL Date Started: 11/01/19 Surface Conditions: Asphalt

Location N/S: 17' S of parking lot north boundary Location E/W: 18' W of parking lot east boundary

Reviewed by: CJT Date Completed: 11/01/19 BORING | P17 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

feet bgs

Water Depth After Completion

					Date (Comple	ted:	11/01/1	9 After Completion	feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)	Well Detail/ Water Depth
-			100	0.0			CL		20.0-25.0 feet bgs: CLAY, blue/gray, no hydrocarbon or solvent odor, moist (100-0-0).	
	$/ \setminus$			0.0	P17-25					
25 —				0.0					Boring terminated at 25 feet bgs. Boring backfilled with bentonite.	
30 —										
35 —										
	Drilling Co./Driller: ESN / Marty We		Well/Aug	ıer Diam	eter: inches Notes/Comments:					
Drilling					arty ounted push p	robe	Well/Aug		terval: feet has	
Sample				Plastic s			Screen S		bas = below ground surfa	ace
Hamm			ght:		lbs	i	Filter Pa	ck Used:	: -	
Total E):	25	fee	et bgs	Surface	Seal:		
Total V					fee	et bgs	Annular			
State V	Nell II	No.:					Monume	nt Type:	Page: 2	of 2
							-		ı	

Project Number: 0987-022 Logged by: KJL Date Started: 11/01/19 Surface Conditions: Asphalt

Location N/S: 22' N of parking lot south boundary Location E/W: 28' E of parking lot west boundary

Reviewed by: CJT Date Completed: 11/01/19 BORING | P18 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

feet bgs

Water Depth After Completion

Comparison Control C					Date (Comple	ted:	11/01/1	g After Completion feet bgs
10	Depth (feet bgs)	Blow Count	% Recovery			Sample Analyzed	Group	Graphic	(ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume Well Detail/ Water Depth
100	0								0.0-0.5 feet bgs: 6 inches of asphalt at surface.
100 0.1 ML 7.0-12.5 feet bgs: Sandy SILT with gravel, brown, no hydrocarbon or solvent odor, moist (65-20-15). 100 0.0 P18-10 ML 12.5-17.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (70-30-0). ML 17.0-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (70-30-0). ML 17.0-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (85-15-0). ML 17.0-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (85-15-0). ML 17.0-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (85-15-0). ML 18.0-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (85-15-0). ML 18.0-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (85-15-0). ML 19.0-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (85-15-0). ML 19.0-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (85-15-0). ML 19.0-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (85-15-0). ML 19.0-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (85-15-0). ML 19.0-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (85-15-0).			10				ML		0.5-7.0 feet bgs: Sandy SILT with gravel, gray, no
100 0.0 P18-10 100 0.0 P18-15 100 0.0 P18-15 100 0.0 P18-20 ML 17.0-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (70-30-0). Drilling Co/Driller: Drilling Equipment: Sampler Type: Hammer Type/Weight: Total Boring Depth: 24 feet bgs Total Weil Depth: 24 feet bgs Surface Seal: Total Weil Depth: 3 Notes/Comments: Well Screened Interval: Surface Seal: Filter Pack Used: Surface Seal: Total Weil Depth: 3 Notes/Comments: bgs = below ground surface Surface Seal: S	5		100		P18-05	X	ML		
ML 12.5-17.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (70-30-0). ML 17.0-20.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (85-15-0). Drilling Co./Driller: ESN / Mary Truck-mounted push probe Plastic sleeve Plastic sleeve Hammer Type/Weight: lbs Total Boring Depth: 24 feet bgs Total Well Depth: feet bgs Surface Seal: Annular Seal: Seal: Annular Seal:	10		100		P18-10				nydrocarbon or solvent odor, moist (65-20-15).
Drilling Co/Driller: Drilling Equipment: Sampler Type: Hammer Type/Weight: Total Boring Depth: Total Well Depth: Truck	-		100	0.0			ML		
Drilling Co./Driller: ESN / Marty Drilling Equipment: Truck-mounted push probe Sampler Type: Plastic sleeve Hammer Type/Weight: Ibs Total Boring Depth: 24 feet bgs Total Well Depth: feet bgs Annular Seal: Solvent odor, moist (85-15-0). Well/Auger Diameter: inches Well/Auger Diameter: inches bgs = below ground surface Well/Auger Diameter: inches feet bgs Screened Interval: feet bgs Screen Slot Size: inches bgs = below ground surface	15			0.0	P18-15				
Drilling Co./Driller: ESN / Marty Drilling Equipment: Truck-mounted push probe Sampler Type: Plastic sleeve Hammer Type/Weight: lbs Total Boring Depth: 24 feet bgs Total Well Depth: feet bgs Annular Seal: inches Well/Auger Diameter: inches bgs = below ground surface	20		100		P18-20		ML		
Drilling Equipment: Truck-mounted push probe Sampler Type: Plastic sleeve Screen Slot Size: inches Hammer Type/Weight: lbs Filter Pack Used: Total Boring Depth: 24 feet bgs Total Well Depth: feet bgs Annular Seal:		o./Drille	r:	ESN/M	artv		Well/Aug	er Diam	eter: inches Notes/Comments:
Sampler Type: Plastic sleeve Screen Slot Size: inches Hammer Type/Weight: lbs Filter Pack Used: Total Boring Depth: 24 feet bgs Surface Seal: Total Well Depth: feet bgs Annular Seal:					•	robe			terval: feet bos
Hammer Type/Weight: lbs Filter Pack Used: Total Boring Depth: 24 feet bgs Surface Seal: Total Well Depth: feet bgs Annular Seal:	_								bas = below ground surface
Total Boring Depth: 24 feet bgs Surface Seal: Total Well Depth: feet bgs Annular Seal:			ight:			3			
Total Well Depth: feet bgs Annular Seal:			_	24					
						_	Annular	Seal:	-
1 490.						-	Monume	nt Type:	Page: 1 of 2
							1		i ago. I di Z

Project Number: 0987-022 Logged by: KJL Date Started: 11/01/19 Surface Conditions: Asphalt

Location N/S: 22' N of parking lot south boundary Location E/W: 28' E of parking lot west boundary

Reviewed by: CJT Date Completed: 11/01/19 BORING | P18 LOG

Site Address: 2901 27th Avenue South

Seattle, Washington

Water Depth At Time of Drilling

feet bgs

Water Depth After Completion

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Description (ASTM texture, density, color, odor, moisture, supplemental descriptors, estimated grain size distribution) Field-estimated grain size distribution by volume (% Fines - % Sand - % Gravel)	Well Detail/ Water Depth
_							ML		20.0-22.0 feet bgs: Sandy SILT, brown, no hydrocarbon or solvent odor, moist (85-15-0).	
_	\bigwedge		125	0.0	P18-24		ML		22.0-24.0 feet bgs: SILT with fine to coarse sand, trace fine gravel, brown, no hydrocarbon or solvent odor, moist (85-10-5).	
25 —	/ \								Boring terminated at 24 feet bgs. Boring backfilled with bentonite.	
_										
-										
30 —										
-										
- 35 —										
-										
-										
40										
Drilling	_			ESN / Ma	=		_	Well/Auger Diameter: inches Notes/Comments:		
Drilling Sample			:	Truck-mo	ounted push p	robe	Well Screen S		bas = below ground surfa	ace
Hamm			ght:		lbs	;	Filter Pag		1 11	
Total E	Boring	Depth		24	fee	et bgs	Surface S		-	
Total V					fee	et bgs	Annular S		-	
State V	veil IL	NO.:					Monume	nt rype	· Page: 2	of 2

ATTACHMENT B LABORATORY ANALYTICAL REPORTS

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 13, 2019

Clare Tochilin, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Tochilin:

Included are the results from the testing of material submitted on October 30, 2019 from the SOU_0987-022_ 20191030, F&BI 910603 project. There are 26 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SOU1113R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 30, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0987-022_ 20191030, F&BI 910603 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
910603 -01	P01-05
910603 -02	P01-10
910603 -03	P01-15
910603 -04	P02-05
910603 -05	P02-10
910603 -06	P02-15
910603 -07	P02-20
910603 -08	P03-05
910603 -09	P03-10
910603 -10	P03-13
910603 -11	P01-20191030
910603 -12	P02-20191030
910603 -13	P03-20191030
910603 -14	P03-16
910603 -15	P03-19
910603 -16	P04-05
910603 -17	P04-09
910603 -18	P04-12
910603 -19	P04-15
910603 -20	P04-18
910603 -21	P04-20

A 6020B internal standard failed the acceptance criteria for sample P04-05. The sample was diluted and reanalyzed with acceptable results. Both data sets were reported.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 11/06/19
 Lab ID:
 910603-16

 Date Analyzed:
 11/06/19
 Data File:
 910603-16.078

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 3.12

 Cadmium
 <1</td>

 Chromium
 23.4 J

 Lead
 2.93

 Mercury
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 11/06/19
 Lab ID:
 910603-16 x5

 Date Analyzed:
 11/06/19
 Data File:
 910603-16 x5.171

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 25.6

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0987-022_ 20191030

Date Extracted: 11/06/19 Lab ID: I9-708 mb2
Date Analyzed: 11/06/19 Data File: I9-708 mb2.076
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 <1</td>

 Cadmium
 <1</td>

 Chromium
 <1</td>

 Lead
 <1</td>

 Mercury
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: P04-05 Client: SoundEarth Strategies
Date Received: 10/30/19 Project: SOU_0987-022_20191030
Date Februaria 11/07/10 Lab ID: 010003-16-1/7

Date Extracted: 11/05/19 Lab ID: 910603-16 1/5 Date Analyzed: 11/06/19 Data File: 110617.DSoil Instrument: GCMS6 Matrix: Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 83 31 163
Benzo(a)anthracene-d12 83 24 168

Anthracene-d10 83 31
Benzo(a)anthracene-d12 83 24

Concentration
Compounds: mg/kg (ppm)

Benz(a)anthracene <0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0987-022_ 20191030

Date Extracted: 11/05/19 Lab ID: 09-2714 mb 1/5 Date Analyzed: 11/06/19 Data File: 110607.DMatrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 163 Surrogates: % Recovery: Limit: Anthracene-d10 31 Benzo(a)anthracene-d12 92 $\overline{24}$ 168

< 0.01

Concentration Compounds: mg/kg (ppm) Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P01-10 Client: SoundEarth Strategies
Date Received: 10/30/19 Project: SOU_0987-022_20191030

Lab ID: 910603-02 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110628.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	62	145
Toluene-d8	93	55	145
4-Bromofluorobenzene	94	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P01-15 Client: SoundEarth Strategies
Date Received: 10/30/19 Project: SOU_0987-022_20191030
Date February 11/06/19 Lab ID: 010603-03

Lab ID: 910603-03 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110629.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	62	145
Toluene-d8	91	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P02-10 Client: SoundEarth Strategies
Date Received: 10/30/19 Project: SOU_0987-022_20191030

Lab ID: 910603-05 Date Extracted: 11/11/19 Date Analyzed: 11/11/19 Data File: 111109.D Matrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	62	145
Toluene-d8	102	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P02-15 Client: SoundEarth Strategies
Date Received: 10/30/19 Project: SOU_0987-022_20191030

Lab ID: 910603-06 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110630.DGCMS4Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	62	145
Toluene-d8	92	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P03-13 Client: SoundEarth Strategies
Date Received: 10/30/19 Project: SOU_0987-022_20191030

Lab ID: 910603-10 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110631.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	62	145
Toluene-d8	89	55	145
4-Bromofluorobenzene	92	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P03-16 Client: SoundEarth Strategies
Date Received: 10/30/19 Project: SOU_0987-022_20191030

Lab ID: 910603-14 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110632.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	62	145
Toluene-d8	89	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P04-12 Client: SoundEarth Strategies
Date Received: 10/30/19 Project: SOU_0987-022_20191030

Lab ID: 910603-18 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110633.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	62	145
Toluene-d8	89	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P04-15 Client: SoundEarth Strategies
Date Received: 10/30/19 Project: SOU_0987-022_20191030

Lab ID: 910603-19 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110634.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	62	145
Toluene-d8	89	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0987-022_ 20191030

11/06/19 Lab ID: 09-2683 mbDate Extracted: Date Analyzed: 11/06/19 Data File: 110608.DSoil Matrix: Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	62	145
Toluene-d8	112	55	145
4-Bromofluorobenzene	87	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0987-022_ 20191030

Lab ID: 09-2754 mbDate Extracted: 11/11/19 Date Analyzed: 11/11/19 Data File: 111108.D GCMS4 Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	101	55	145
4-Bromofluorobenzene	100	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method $8260\mathrm{C}$

Client Sample ID:	P01-20191030	Client:	SoundEarth Strategies
Date Received:	10/30/19	Project:	SOU_0987-022_ 20191030
Date Extracted:	11/05/19	Lab ID:	910603-11
Date Analyzed:	11/05/19	Data File:	110537.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	57	121
Toluene-d8	115	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	P02-20191030	Client:	SoundEarth Strategies
Date Received:	10/30/19	Project:	SOU_0987-022_ 20191030
Date Extracted:	11/11/19	Lab ID:	910603-12
Date Analyzed:	11/11/19	Data File:	111112.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	P03-20191030	Client:	SoundEarth Strategies
Date Received:	10/30/19	Project:	SOU_0987-022_ 20191030
Date Extracted:	11/05/19	Lab ID:	910603-13
Date Analyzed:	11/05/19	Data File:	110539.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	57	121
Toluene-d8	115	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0987-022_ 20191030
Date Extracted:	11/05/19	Lab ID:	09-2682 mb
Date Analyzed:	11/05/19	Data File:	110509.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	57	121
Toluene-d8	108	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 10/30/19

Project: SOU_0987-022_ 20191030, F&BI 910603

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 910613-113 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<1 ca	87	86	75-125	1
Cadmium	mg/kg (ppm)	5	<1	95	93	75 - 125	2
Chromium	mg/kg (ppm)	20	11.3	84 b	74 b	75 - 125	13 b
Lead	mg/kg (ppm)	10	4.27	85	78	75 - 125	9
Mercury	mg/kg (ppm	5	<1 ca	86	87	75 - 125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	98	80-120
Cadmium	mg/kg (ppm)	5	97	80-120
Chromium	mg/kg (ppm)	20	107	80-120
Lead	mg/kg (ppm)	10	97	80-120
Mercury	mg/kg (ppm)	5	84	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 10/30/19

Project: SOU_0987-022_ 20191030, F&BI 910603

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: 911064-02 1/5 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	81	23-144
Chrysene	mg/kg (ppm)	0.17	< 0.01	83	32-149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	66	23 - 176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	71	42-139
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	66	21-163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	69	23-170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	69	31-146

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benz(a)anthracene	mg/kg (ppm)	0.17	86	88	51-115	2
Chrysene	mg/kg (ppm)	0.17	90	92	55 - 129	2
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	75	72	56 - 123	4
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	75	78	54 - 131	4
Benzo(a)pyrene	mg/kg (ppm)	0.17	67	69	51-118	3
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	67	68	49-148	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	66	71	50 - 141	7

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 10/30/19

Project: SOU_0987-022_ 20191030, F&BI 910603

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 911016-11 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	39	41	10-138	5
Chloroethane	mg/kg (ppm)	2.5	< 0.5	50	52	10-176	4
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	53	58	10-160	9
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	59	63	10-156	7
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	57	61	14 - 137	7
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	62	65	19-140	5
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	66	70	25 - 135	6
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	70	72	12-160	3
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	63	65	10-156	3
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	69	72	21-139	4
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	80	84	20-133	5

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	90	22-139
Chloroethane	mg/kg (ppm)	2.5	96	9-163
1,1-Dichloroethene	mg/kg (ppm)	2.5	99	47 - 128
Methylene chloride	mg/kg (ppm)	2.5	92	42-132
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	96	67-129
1,1-Dichloroethane	mg/kg (ppm)	2.5	94	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	97	72 - 127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	88	56 - 135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	96	62-131
Trichloroethene	mg/kg (ppm)	2.5	84	64 - 117
Tetrachloroethene	mg/kg (ppm)	2.5	83	72 - 114

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 10/30/19

Project: SOU_0987-022_ 20191030, F&BI 910603

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 911115-04 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	62	52	10-138	18
Chloroethane	mg/kg (ppm)	2.5	< 0.5	79	68	10-176	15
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	80	72	10-160	11
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	101	92	10-156	9
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	88	79	14 - 137	11
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	95	86	19-140	10
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	96	86	25 - 135	11
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	107	97	12-160	10
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	101	91	10-156	10
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	112	104	21-139	7
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	99	90	20-133	10

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	77	22-139
Chloroethane	mg/kg (ppm)	2.5	87	9-163
1,1-Dichloroethene	mg/kg (ppm)	2.5	85	47-128
Methylene chloride	mg/kg (ppm)	2.5	93	42-132
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	86	67 - 129
1,1-Dichloroethane	mg/kg (ppm)	2.5	91	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	91	72 - 127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	99	56 - 135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	95	62-131
Trichloroethene	mg/kg (ppm)	2.5	97	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	98	72 - 114

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 10/30/19

Project: SOU_0987-022_ 20191030, F&BI 910603

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 911010-01 (Matrix Spike)

			Percent	
Reporting	Spike	Sample	Recovery	Acceptance
Units	Level	Result	MS	Criteria
ug/L (ppb)	50	10	122	36-166
ug/L (ppb)	50	<1	124	46-160
ug/L (ppb)	50	<1	122	60-136
ug/L (ppb)	50	<5	119	67-132
ug/L (ppb)	50	<1	115	72 - 129
ug/L (ppb)	50	<1	120	70-128
ug/L (ppb)	50	27	120 b	71 - 127
ug/L (ppb)	50	<1	124	48-149
ug/L (ppb)	50	<1	118	60-146
ug/L (ppb)	50	1.5	116	66-135
ug/L (ppb)	50	<1	87	10-226
	Units ug/L (ppb)	Units Level ug/L (ppb) 50 ug/L (ppb) 50	Units Level Result ug/L (ppb) 50 10 ug/L (ppb) 50 <1	Reporting Units Spike Level Result Recovery MS ug/L (ppb) 50 10 122 ug/L (ppb) 50 <1

		Percent	Percent		
Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Units	Level	LCS	LCSD	Criteria	(Limit 20)
ug/L (ppb)	50	112	103	50 - 154	8
ug/L (ppb)	50	117	109	58-146	7
ug/L (ppb)	50	116	110	67-136	5
ug/L (ppb)	50	108	102	39-148	6
ug/L (ppb)	50	108	103	68-128	5
ug/L (ppb)	50	108	104	79 - 121	4
ug/L (ppb)	50	110	106	80-123	4
ug/L (ppb)	50	101	98	73 - 132	3
ug/L (ppb)	50	106	100	81 - 125	6
ug/L (ppb)	50	95	94	79-113	1
ug/L (ppb)	50	93	91	76-121	2
	Units ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 50 ug/L (ppb) 50	Reporting Units Spike Level Recovery LCS ug/L (ppb) 50 112 ug/L (ppb) 50 117 ug/L (ppb) 50 116 ug/L (ppb) 50 108 ug/L (ppb) 50 108 ug/L (ppb) 50 108 ug/L (ppb) 50 110 ug/L (ppb) 50 101 ug/L (ppb) 50 106 ug/L (ppb) 50 95	Reporting Units Spike Level Recovery LCS Recovery LCSD ug/L (ppb) 50 112 103 ug/L (ppb) 50 117 109 ug/L (ppb) 50 116 110 ug/L (ppb) 50 108 102 ug/L (ppb) 50 108 103 ug/L (ppb) 50 108 104 ug/L (ppb) 50 110 106 ug/L (ppb) 50 101 98 ug/L (ppb) 50 106 100 ug/L (ppb) 50 95 94	Reporting Units Spike Level Recovery LCS Recovery LCSD Acceptance Criteria ug/L (ppb) 50 112 103 50-154 ug/L (ppb) 50 117 109 58-146 ug/L (ppb) 50 116 110 67-136 ug/L (ppb) 50 108 102 39-148 ug/L (ppb) 50 108 103 68-128 ug/L (ppb) 50 108 104 79-121 ug/L (ppb) 50 110 106 80-123 ug/L (ppb) 50 101 98 73-132 ug/L (ppb) 50 106 100 81-125 ug/L (ppb) 50 95 94 79-113

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAT OF CUSTODY ME 10/30/ SAMPLERS (signature) 910603 TURNAROUND TIME Send Report to _Clare Tochilin Standard (2 Weeks) PO# PROJECT NAME/NO RUSH Rush charges authorized by: SoundEarth Strategies, Inc. 0987-022 Company_ **UW Laundry Property** 2811 Fairview Avenue E, Suite 2000 SAMPLE DISPOSAL Address REMARKS Dispose after 30 days City, State, ZIP Seattle, Washington 98102 Return samples Will call with instructions

		Τ							1		AN	IALYSE	SREQU	JESTED		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	#.of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	C VOCs by 8260	SVOCs by 8270		ν.	`	Notes X - parcT
0-1-05	Pot	5	01	10/30/19	0948	Soil	5									X-parct 11/4/19 ME
01-05 01-10	POI	10	02	l .	8950		5				X			}		
301-15	POI	15	63		1000		5				×					
02-05	102	5	04		1140		5		ļ							
02-10	P82	LÓ	05		N55	 	5				×					
002-15	P02	15	do		1200		5		-						 	1.1
62-20	P02	20	07		1210	1	12	<u> </u>		-			S	ample	s rece	ived at
03-05	POB	5	08		1310		5_					 		-	-	
3-10	P63	10	09		1320		15				×	-				
262 - 13	POB	13	10	1	1330	V	5				×		<u> </u>			

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044

V	1 11 1 10 1				
		PRINT NAME	COMPANY	DATE	TIME
c.	SIGNATURE	PRINT NAME	Ser	103019	1750
	Relinquished by:	Mile Earn's	723	+ /	12.50
•	Received by:	Isaac lessia	P(3)	10/20/19	17:01
9	Some Dy	13000	—— —		
	Relinquished by:				
	Received by:				

FORMS\COC\COC.DOC

Send Report to _Clare Tochilin Company_ Address_

910603

SoundEarth Strategies, Inc.

2811 Fairview Avenue E, Suite 2000

City, State, ZIP Seattle, Washington 98102

206-306-1907 Fax #__ Phone # 206-306-1900

SAMPLERS (signature) PO# PROJECT NAME/NO. UW Laundry Property 0987-022 REMARKS

Rush charges authorized by: SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

TURNAROUND TIME

RUSH_

Standard (2 Weeks)

	T	Τ									Al	VALYSE	S REQU	ESTED		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	∠ VOCs by 8260	SVOCs by 8270				Notes
OL-20141030	PUI		11	10/30/19	1030	1/20	7				*					
m -2 114 (030)	P02	-	12		1540		<u> </u>				L×_					
901-20191030 902-20191030 903-20191030	P03	<u></u>	13	1	1610	V	V				<i>></i>					
						201	Le	30/	7/1				San	ples	receiv	ed at + o
					<u>.</u> 4.											

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

	•			
	PRINT NAME	COMPANY	DATE	TIME
SIGNATURE	PRINT NAME		1/2/2010	17(1)
Relinquished by:	Mahr Courn	<u> </u>	120109	150
Received by:	Saac Lessia	E/SI	10/39/19	17:50
July 17	(suc vising			
Relinquished by:				
Received by:				
10001704 03.				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 12, 2019

Clare Tochilin, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Tochilin:

Included are the results from the testing of material submitted on November 1, 2019 from the SOU_0987-022_ 20191101, F&BI 911015 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SOU1112R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 1, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0987-022_ 20191101, F&BI 911015 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
911015 -01	P09-20191031
911015 -02	P10-20191031
911015 -03	P11-20191031

Several 8260C compounds failed below the acceptance criteria in the matrix spike sample. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	P11-20191031	Client:	SoundEarth Strategies
Date Received:	11/01/19	Project:	SOU_0987-022_ 20191101
Date Extracted:	11/06/19	Lab ID:	911015-03
Date Analyzed:	11/07/19	Data File:	110649.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	89	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0987-022_ 20191101
Date Extracted:	11/06/19	Lab ID:	09-2748 mb
Date Analyzed:	11/06/19	Data File:	110609.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	109	57	121
Toluene-d8	114	63	127
4-Bromofluorobenzene	90	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911015

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 911041-01 (Matrix Spike)

		Percent						
	Reporting	Spike	Sample	Recovery	Acceptance			
Analyte	Units	Level	Result	MS	Criteria			
Vinyl chloride	ug/L (ppb)	50	< 0.2	74	36-166			
Chloroethane	ug/L (ppb)	50	<1	77	46-160			
1,1-Dichloroethene	ug/L (ppb)	50	<1	57 vo	60-136			
Methylene chloride	ug/L (ppb)	50	<5	71	67 - 132			
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	46 vo	72 - 129			
1,1-Dichloroethane	ug/L (ppb)	50	<1	68 vo	70 - 128			
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	61 vo	71 - 127			
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	72	48-149			
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	51 vo	60-146			
Trichloroethene	ug/L (ppb)	50	<1	26 vo	66 - 135			
Tetrachloroethene	ug/L (ppb)	50	<1	12	10-226			

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	108	103	50 - 154	5
Chloroethane	ug/L (ppb)	50	109	107	58-146	2
1,1-Dichloroethene	ug/L (ppb)	50	105	105	67-136	0
Methylene chloride	ug/L (ppb)	50	94	94	39-148	0
trans-1,2-Dichloroethene	ug/L (ppb)	50	99	100	68-128	1
1,1-Dichloroethane	ug/L (ppb)	50	101	101	79-121	0
cis-1,2-Dichloroethene	ug/L (ppb)	50	102	103	80-123	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	102	102	73 - 132	0
1,1,1-Trichloroethane	ug/L (ppb)	50	101	100	81-125	1
Trichloroethene	ug/L (ppb)	50	96	97	79-113	1
Tetrachloroethene	ug/L (ppb)	50	97	98	76-121	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

911015 Send Report to Clare Tochilin SoundEarth Strategies, Inc. Company_

City, State, ZIP Seattle, Washington 98102

206-306-1900

2811 Fairview Avenue E, Suite 2000

Fax#

206-306-1907

Address

Phone #

ME 11-01-19 SAMPLERS (signature) PROJECT NAME/NO. PO# **UW Laundry Property** 0987-022 REMARKS

Page # TURNAROUND TIME (Standard (2 Weeks) RUSH Rush charges authorized by: SAMPLE DISPOSAL

Dispose after 30 days Return samples Will call with instructions

							_				Al	VALYSE	SREQU	JESTED)	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	√ VOCs by 8260	SVOCs by 8270	,			Notes
109-2019/031	P09		011-6	10/31/19	1425	H20	7									x-per CT
P09-20191031 P10-20191031	PIO		02 T	10/3/19	1550	HZO	7									(1/4/19
PII - 2019/1031	PIL		031	10/31/19	1710	HzO	7				×					ME
					6	7) i	٠,									
						,	1/19									
													Sam	ples r	eceiv	ed at 4°C

SAMPLE CHAIN OF CUSTODY

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282 Fax (206) 283-5044

FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Clare Tachila	SoundEarth	11/19	0900
Received by:	Darrell Herzog	FedexSA	1//1/19	12:57
Relinquished by:				
Received by:	64 b C)	FXBI	11-1-19	14.00

Send Report to _Clare Tochilin	91060	5 3	SAMI	CHA CHA	nature) /	TOD'	7,		/30 PO#	//9	Standard (AROUND TIME ,
Company SoundEarth S	trategies, Inc.		PROJECT NAME/NO.						RUSHRush charges authorized by:			
Address 2811 Fairview Avenue E, Suite 2000 REMARKS										SAMPLE DISPOSAL Dispose after 30 days		
City, State, ZIP Seattle, Wash Phone # 206-306-1900 F		06-1907	-	3	Ho	P					Return sai Will call w	mples rith instructions
Phone # 206-306-1900 F	1 200 0.	70 2007	- <u>L</u>	T 1				Aì	NALYSE	S REQU	JESTED	
Sample	Sample Lat	Date	Time	Matrix k	of Hd	PH-Gx	oy 8021B	by 8260	by 8270	£	S MITIS	Notes

			ι	·		<u> </u>	1				Al	NALYSE	S REQU	ESTED		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	C VOCs by 8260	SVOCs by 8270	CPAHS	MTCAS MUTIS		Notes
P03-16	P63	16	14	10/3019	1340	Soil	5				×					
803-19	P03	19	15	1	1350		1									
804-05	PUY	5	16		1435								×	×		
PO4 - 69	P04	9	17		1440											
P04-12	poy		18		1455		-				×					
PO4-15	poy	15	19		1500						×		MF.			. 17 .00
204-18	Pay	18	30		1516						ļ	Sa	mples	recei	ved a	t · C
PO4-20	POU	20	21	V	1525	4	9								· .	
											1000	2 .				
									-	7	10/2	Pon	7_			

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

,				
CV CVV MITDE	PRINT NAME	COMPANY	DATE	TIME
SIGNATURE Relinquished by: 21 2011	Kyle Cours	565	rosday	1750
Received by:	Saac lessia	FBI	10/30/19	17:50
Relinquished by:	020000 = 32.0.			
Received by:				
		L		

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 18, 2019

Clare Tochilin, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Tochilin:

Included are the additional results from the testing of material submitted on November 1, 2019 from the SOU_0987-022_ 20191101, F&BI 911015 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SOU1118R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 1, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0987-022_ 20191101, F&BI 911015 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
911015 -01	P09-20191031
911015 -02	P10-20191031
911015 -03	P11-20191031

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911015

Date Extracted: 11/14/19 Date Analyzed: 11/14/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

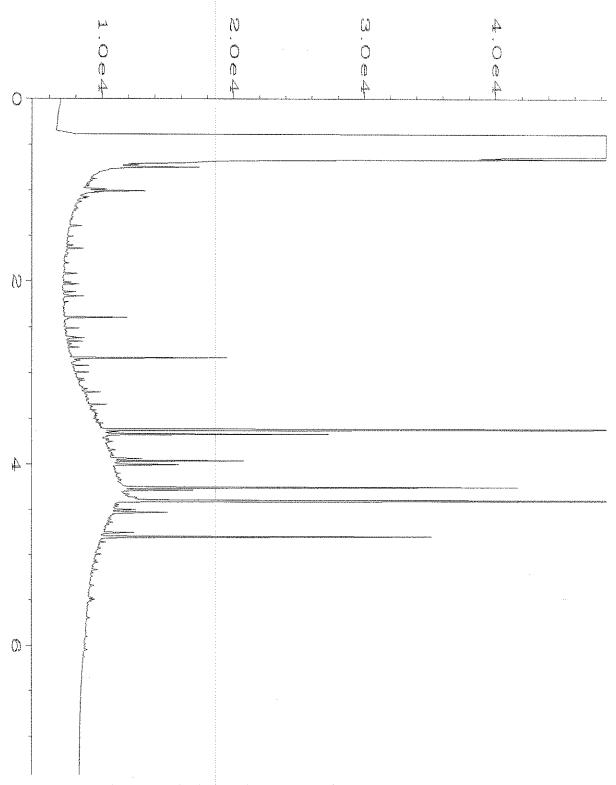
Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 41-152)
P11-20191031 911015-03	190 x	<250	114
Method Blank 09-2808 MB	<50	<250	117

ENVIRONMENTAL CHEMISTS

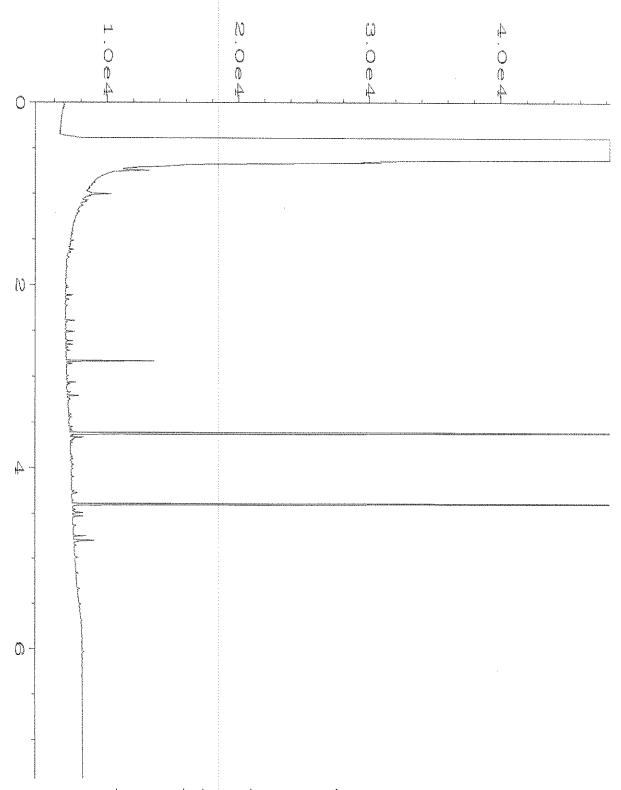
Date of Report: 11/18/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911015

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

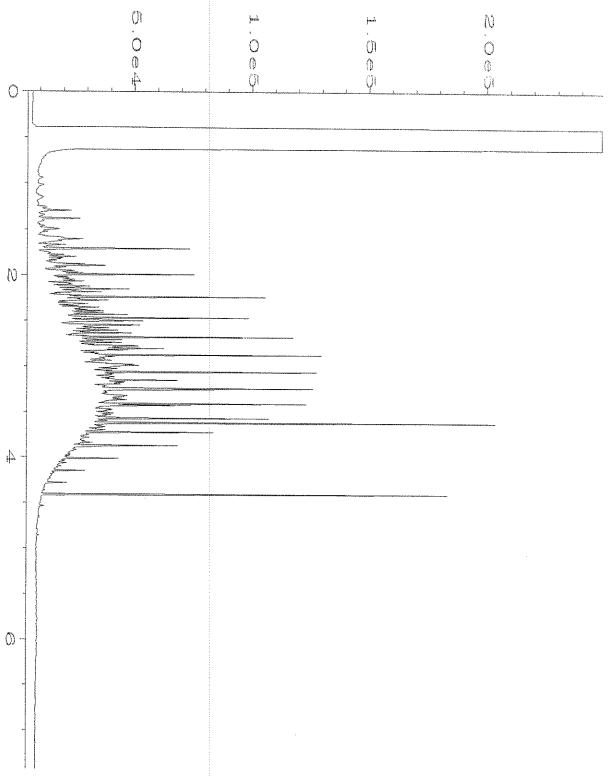

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	124	108	63-142	14


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.




```
Data File Name
               : C:\HPCHEM\1\DATA\11-14-19\027F0301.D
Operator
                : TL
                                              Page Number
                                              Vial Number
Instrument
                : GC1
                : 911015-03
                                              Injection Number: 1
Sample Name
Run Time Bar Code:
                                              Sequence Line : 3
                                              Instrument Method: DX.MTH
Acquired on : 14 Nov 19 12:53 PM
Report Created on: 14 Nov 19 01:09 PM
                                              Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\1\DATA\11-14-19\024F0301.D
Data File Name
                 : TL
Operator
                                                 Page Number
                                                 Vial Number
Instrument
                 : GC1
                                                                 : 24
                                                 Injection Number: 1
Sequence Line: 3
Sample Name
                 : 09-2808 mb
Run Time Bar Code:
                                                 Instrument Method: DX.MTH
Acquired on : 14 Nov 19 12:18 PM
```

Report Created on: 14 Nov 19 01:10 PM Analysis Method : DEFAULT.MTH


```
: C:\HPCHEM\1\DATA\11-14-19\003F0201.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                                              Vial Number
                : GC1
Sample Name
                : 500 Dx 58-146B
                                              Injection Number : 1
Run Time Bar Code:
                                              Sequence Line : 2
Acquired on : 14 Nov 19 05:53 AM
                                              Instrument Method: DX.MTH
Report Created on: 14 Nov 19 01:10 PM
                                              Analysis Method : DEFAULT.MTH
```

911015 SAI	MPLE CHAIN OF CUSTODY A	ME 11-01-1	9 AOYI VW2,
Send Report to _Clare Tochilin	SAMPLERS (signature)	ersi	Page #ot
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	Standard (2 Weeks) RUSH
Address2811 Fairview Avenue E, Suite 2000	UW Laundry Property	0987-022	Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	REMARKS HOLD		SAMPLE DISPOSAL Dispose after 30 days Return samples
Phone # 206-306-1900 Fax # 206-306-1907			Will call with instructions

											A	NALYS	ES REQUE	STED	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWT'PH-Gx	BTEX by 8021B	< VOCs by 8260	SVOCs by 8270			Notes
P09-20191031	P09		011-6	10/31/19	1425	H20	7								x-per CT
PO-26191031	PIO		02 T	10/3/19	1550	H20	7								11/4/19
P11-20191031	PIL		031	10/31/19	1710	HzO	7	\otimes			×				ME
															(S-pect
															11/13/19 24 LTAT
						3]	11/19								nE
							1/10								
						_							Sampl	es recei	ved at 4°C

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

11. (200) 200-0202

Fax (206) 283-5044 FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Clare Tochilm	SoundKarte	11/10:	0900
Received by:	Darrell Herzog	Fedex SA	1//1/19	12:57
Relinquished by:				
Received by:	D d D	FOBT	11-1-19	14.0

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 13, 2019

Clare Tochilin, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Tochilin:

Included are the results from the testing of material submitted on November 1, 2019 from the SOU_0987-022_ 20191101, F&BI 911016 project. There are 26 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SOU1113R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 1, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0987-022_ 20191101, F&BI 911016 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
911016 -01	P05-05
911016 -02	P05-09
911016 -02	P05-12
911016 -04	P05-15
911016 -05	P05-18
911016 -06	P05-20
911016 -07	P06-05
911016 -08	P06-10
911016 -09	P06-15
911016 -10	P07-05
911016 -11	P07-10
911016 -12	P07-15
911016 -13	P08-05
911016 -14	P08-10
911016 -15	P08-15
911016 -16	P09-05
911016 -17	P09-10
911016 -18	P09-15
911016 -19	P09-20
911016 -20	P10-05
911016 -21	P10-10
911016 -22	P10-15
911016 -23	P10-20
911016 -24	P11-05
911016 -25	P11-10
911016 -26	P11-12
911016 -27	P11-15
911016 -28	P11-20
311010 -20	1 11-20

A 6020B internal standard failed the acceptance. The samples were diluted and reanalyzed with acceptable results. Both data sets were reported.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P09-05 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911016-16

 Date Analyzed:
 11/06/19
 Data File:
 911016-16.079

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 7.13

 Cadmium
 <1</td>

 Chromium
 28.7 J

 Lead
 7.26

 Mercury
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P09-05 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911016-16 x5

 Date Analyzed:
 11/06/19
 Data File:
 911016-16 x5.172

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 33.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P10-05 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911016-20

 Date Analyzed:
 11/06/19
 Data File:
 911016-20.080

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 5.13

 Cadmium
 <1</td>

 Chromium
 41.9 J

 Lead
 7.47

 Mercury
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P10-05 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911016-20 x5

 Date Analyzed:
 11/06/19
 Data File:
 911016-20 x5.173

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 52.1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P11-12 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911016-26

 Date Analyzed:
 11/06/19
 Data File:
 911016-26.081

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 5.59

 Cadmium
 <1</td>

 Chromium
 23.7 J

 Lead
 101

 Mercury
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P11-12 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911016-26 x5

 Date Analyzed:
 11/06/19
 Data File:
 911016-26 x5.174

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 23.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0987-022_20191101

Date Extracted: 11/06/19 Lab ID: I9-708 mb2
Date Analyzed: 11/06/19 Data File: I9-708 mb2.076
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic <1
Cadmium <1
Chromium <1
Lead <1
Mercury <1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: P09-05 Client: SoundEarth Strategies

Date Received: 11/01/19 Project: SOU_0987-022_20191101

Date Extracted: 11/05/19 Lab ID: 911016-16-1/5

Date Extracted: 11/05/19 Lab ID: 911016-16 1/5 Date Analyzed: 11/06/19 Data File: 110618.DSoil Instrument: GCMS6 Matrix: Units: mg/kg (ppm) Dry Weight Operator: VM

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: P10-05 Client: SoundEarth Strategies

Date Received: 11/01/19 Project: SOU_0987-022_20191101

Date Februaria de 11/05/10 Lab ID: 011016_20_1/5

Date Extracted: 11/05/19 Lab ID: 911016-20 1/5 Date Analyzed: 11/06/19 Data File: 110619.DSoil Instrument: GCMS6 Matrix: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower Upper Surrogates: % Recovery: Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 78 31 163
Benzo(a)anthracene-d12 83 24 168

< 0.01

Concentration
Compounds: mg/kg (ppm)

Benz(a)anthracene <0.01
Chrysene <0.01
Benzo(a)pyrene <0.01
Benzo(b)fluoranthene <0.01
Benzo(k)fluoranthene <0.01
Indeno(1,2,3-cd)pyrene <0.01

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

 Date Extracted:
 11/05/19
 Lab ID:
 911016-26 1/250

 Date Analyzed:
 11/06/19
 Data File:
 110620.D

 Matrix:
 Soil
 Instrument:
 GCMS6

Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Anthracene-d10	156 d	31	163
Benzo(a)anthracene-d12	104 d	24	168

Benzo(a)anthracene-d12	104 d	$\frac{31}{24}$	
Compounds:	Concentration mg/kg (ppm)		
Benz(a)anthracene	< 0.5		
Chrysene	< 0.5		
Benzo(a)pyrene	< 0.5		
Benzo(b)fluoranthene	< 0.5		
Benzo(k)fluoranthene	< 0.5		
Indeno(1,2,3-cd)pyrene	< 0.5		
Dibenz(a,h)anthracene	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0987-022_20191101

Date Extracted: 11/05/19 Lab ID: 09-2714 mb 1/5 Date Analyzed: 11/06/19 Data File: 110607.DSoil Instrument: GCMS6 Matrix: Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: Lower Upper Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 89 31 163
Benzo(a)anthracene-d12 92 24 168

< 0.01

< 0.01

Concentration
Compounds: mg/kg (ppm)

Benz(a)anthracene <0.01
Chrysene <0.01
Benzo(a)pyrene <0.01
Benzo(b)fluoranthene <0.01
Benzo(k)fluoranthene <0.01

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P05-09 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911016-02 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110611.D Matrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	108	62	145
Toluene-d8	114	55	145
4-Bromofluorobenzene	92	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P05-15 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911016-04 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110612.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	62	145
Toluene-d8	112	55	145
4-Bromofluorobenzene	92	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P06-10 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911016-08 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110613.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	62	145
Toluene-d8	108	55	145
4-Bromofluorobenzene	90	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P06-15 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101
Date Future tod: 11/06/10 Leb ID: 011016-00

Lab ID: 911016-09 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110614.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	62	145
Toluene-d8	113	55	145
4-Bromofluorobenzene	100	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P07-10 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911016-11 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110615.DGCMS4Matrix: Soil Instrument: Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	62	145
Toluene-d8	110	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P07-15 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911016-12 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110616.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	62	145
Toluene-d8	107	55	145
4-Bromofluorobenzene	99	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P08-10 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911016-14 Date Extracted: 11/06/19 Date Analyzed: 11/11/19 Data File: 111110.D Matrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	102	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P08-15 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911016-15 Date Extracted: 11/06/19 Date Analyzed: 11/11/19 Data File: 111111.D Matrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	62	145
Toluene-d8	103	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P11-12 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101
Date Februariad: 11/06/10 Leb ID: 011016-26

Lab ID: 911016-26 Date Extracted: 11/06/19 Date Analyzed: 11/06/19 Data File: 110627.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	62	145
Toluene-d8	93	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0987-022_20191101

11/06/19 Lab ID: 09-2683 mb Date Extracted: Date Analyzed: 11/06/19 Data File: 110608.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	62	145
Toluene-d8	112	55	145
4-Bromofluorobenzene	87	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911016

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 910613-113 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<1 ca	87	86	75-125	1
Cadmium	mg/kg (ppm)	5	<1	95	93	75 - 125	2
Chromium	mg/kg (ppm)	20	11.3	84 b	74 b	75 - 125	13 b
Lead	mg/kg (ppm)	10	4.27	85	78	75 - 125	9
Mercury	mg/kg (ppm	5	<1 ca	86	87	75 - 125	1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	98	80-120
Cadmium	mg/kg (ppm)	5	97	80-120
Chromium	mg/kg (ppm)	20	107	80-120
Lead	mg/kg (ppm)	10	97	80-120
Mercury	mg/kg (ppm)	5	84	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911016

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: 911064-02 1/5 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	81	23-144
Chrysene	mg/kg (ppm)	0.17	< 0.01	83	32-149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	66	23 - 176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	71	42-139
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	66	21-163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	69	23 - 170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	69	31-146

Laboratory Code: Laboratory Control Sample 1/5

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benz(a)anthracene	mg/kg (ppm)	0.17	86	88	51-115	2
Chrysene	mg/kg (ppm)	0.17	90	92	55 - 129	2
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	75	72	56 - 123	4
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	75	78	54-131	4
Benzo(a)pyrene	mg/kg (ppm)	0.17	67	69	51-118	3
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	67	68	49-148	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	66	71	50-141	7

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911016

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 911016-11 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	39	41	10-138	5
Chloroethane	mg/kg (ppm)	2.5	< 0.5	50	52	10-176	4
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	53	58	10-160	9
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	59	63	10-156	7
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	57	61	14 - 137	7
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	62	65	19-140	5
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	66	70	25 - 135	6
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	70	72	12-160	3
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	63	65	10-156	3
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	69	72	21-139	4
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	80	84	20-133	5

Laboratory Code: Laboratory Control Sample

·	, 1		_	
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	90	22-139
Chloroethane	mg/kg (ppm)	2.5	96	9-163
1,1-Dichloroethene	mg/kg (ppm)	2.5	99	47-128
Methylene chloride	mg/kg (ppm)	2.5	92	42-132
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	96	67-129
1,1-Dichloroethane	mg/kg (ppm)	2.5	94	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	97	72 - 127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	88	56 - 135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	96	62-131
Trichloroethene	mg/kg (ppm)	2.5	84	64-117
Tetrachloroethene	mg/kg (ppm)	2.5	83	72 - 114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- ${\rm d}$ The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

,	SAMPLE CHAIN OF CUSTODI	ME	to/01/19
Send Report to _Clare Tochilin 911016	SAMPLERS (signature)	76	TURNAROUND TIME
	PROJECT NAME/NO.	PO#	Standard (2 Weeks) RUSH
	UW Laundry Property	0987-022	Rush charges authorized by:
Address 2811 Fairview Avenue E, Suite 2000 City, State, ZIP Seattle, Washington 98102	REMARKS Heild		SAMPLE DISPOSAL Dispose after 30 days Return samples
Phone # 206-306-1900 Fax # 206-306-1907			Will call with instructions

								ANALYSES REQUESTED								
Sample ID	Sample Location	Sample Depth	ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	∠ VOCs by 8260	SVOCs by 8270				Notes
P05-05	P05	5	Ol E	16/31/19	0900	50%	5						_			X-percT
P05-05 P05-09 P05-12 P05-15 P05-18	İ	9	02		0910						X					11/4/19
POS-12		12	03		0920			_								ME
P05-15		15	04		0925						×					
P05-18		18	05		0935											
P05-20	1	20	06		0945	And the second										
PUS-20 PUL-05	POG	5	07	iju k	1030											
P06-10		10	08		1040						×					
P06-15		15	og		1050	Towns Property and Addition					*					
P07-05	P47	5	10	_	1120	1						San	ples	receiv	ed at	4 °C

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by lat les &	Clare Tochilin	Sandjath	11/1/14	0900
Received by:	Darrell Rerzog	Fed Ex SA	11/1/19	12:57
Relinquished by.			,	
Received by:	DA VO	FEBT	11-1-19	14,00

SAMPLE CHAIN OF CUSTODY ME 11/01/19 SAMPLERS (signature) Send Report to _Clare Tochilin 911016 PROJECT NAME/NO. Company SoundEarth Strategies, Inc. **UW Laundry Property** 0987-022 2811 Fairview Avenue E, Suite 2000 Address

206-306-1907

Page# TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by:

PO#

REMARKS

SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

								ANALYSES REQUESTED									
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	C VOCs by 8260	SVOCs by 8270	CAHS	MTCAS		N	otes
P07-10	P0.7	lo	11 E	10/31/19	1130	Soil	5				×						
P07-10 P07-15 P08-05		15	12		1140						×						
P08-05	Pop	5	13		1215												
P08-10		10	14		1220						×						
P08-15		15	15		1230						*		·				
P09-05	Pog	5	16		1325								X	×			
P09-10		10	17		1340		a de consequencia										
P09-15		15	18		1350		de Constitution of the Con										
P09-28 P10-05		20	14		1400												
P10-05	PIU	5	au V		1435	<u></u>	1					į	Samp	le š re	ceive	lat	_°C

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

City, State, ZIP Seattle, Washington 98102

Fax#

206-306-1900

Ph. (206) 285-8282

Fax (206) 283-5044

SJGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by	Clare Tochilin	SoundEath	11/1/19	0900
Received by:	Darrell Herzog	FedEx SDC	11/1/19	12:57
Relinquished by:				
Received by:	DA VO	FASI	11-1-19	14.00

FORMS\COC\COC.DOC

Phone #_

SAMPLE CHAIN OF CUSTODY ME 11/01/19 SAMPLERS (signature) Send Report to _Clare Tochilin 911016 TURNAROUND TIME PROJECT NAME/NO. PO# Standard (2 Woeks) SoundEarth Strategies, Inc. Company RUSH **UW Laundry Property** Rush charges authorized by: 0987-022 2811 Fairview Avenue E, Suite 2000 Address REMARKS SAMPLE DISPOSAL City, State, ZIP Seattle, Washington 98102 Dispose after 30 days Return samples Phone # 206-306-1900 Fax# 206-306-1907 Will call with instructions

									1		A.	NALYSI	ES REQU	JESTEI)	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	← VOCs by 8260	SVOCs by 8270	C PATS	MICAS MCALL		Notes
P10-10 P10-15 P10-20 P11-05	P10	lb	RIE	10/31/19	1505	Soil	5									
P10-15		15	22	1	1510	1										
P10-20		20	23		1520											
P11-05	PIL	5	24		1615											
P11-10		10	25		1625											
P11-12 P11-15		12	26		1635						Х		*	×		
P11-15		15	27		1630											
P11-20		20	28/	ユー	1655											
						T	1 .1 7	2					Samp	les r	eceive	dat <u>4</u> °C
							V1/	Ī								

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Clare Tochilm	SandEath	11/1/19	0900
Received by:	Darrell Herzog	FredEx SDC	11/1/19	12:57
Relinquished b				
Received by:	Dd vo	FOBI	11-1-19	14.00

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 18, 2019

Clare Tochilin, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Tochilin:

Included are the additional results from the testing of material submitted on November 1, 2019 from the SOU_0987-022_ 20191101, F&BI 911016 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SOU1118R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 1, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0987-022_ 20191101, F&BI 911016 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
911016 -01	P05-05
911016 -02	P05-09
911016 -02	P05-12
911016 -04	P05-15
911016 -05	P05-18
911016 -06	P05-20
911016 -07	P06-05
911016 -08	P06-10
911016 -09	P06-15
911016 -10	P07-05
911016 -11	P07-10
911016 -12	P07-15
911016 -13	P08-05
911016 -14	P08-10
911016 -15	P08-15
911016 -16	P09-05
911016 -17	P09-10
911016 -18	P09-15
911016 -19	P09-20
911016 -20	P10-05
911016 -21	P10-10
911016 -22	P10-15
911016 -23	P10-20
911016 -24	P11-05
911016 -25	P11-10
911016 -26	P11-12
911016 -27	P11-15
911016 -28	P11-20
311010 -20	1 11-20

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911016

Date Extracted: 11/13/19 Date Analyzed: 11/13/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{\text{(C}_{25}\text{-C}_{36}\text{)}}$	Surrogate (% Recovery) (Limit 53-144)
P11-12 911016-26	<50	510	90
P11-15 911016-27	<50	<250	107
Method Blank 09-2804 MB	<50	<250	101

ENVIRONMENTAL CHEMISTS

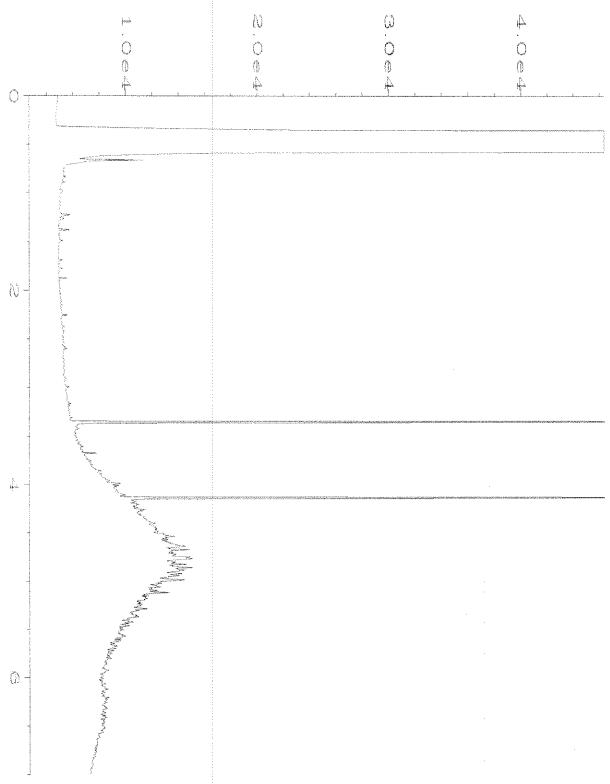
Date of Report: 11/18/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911016

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

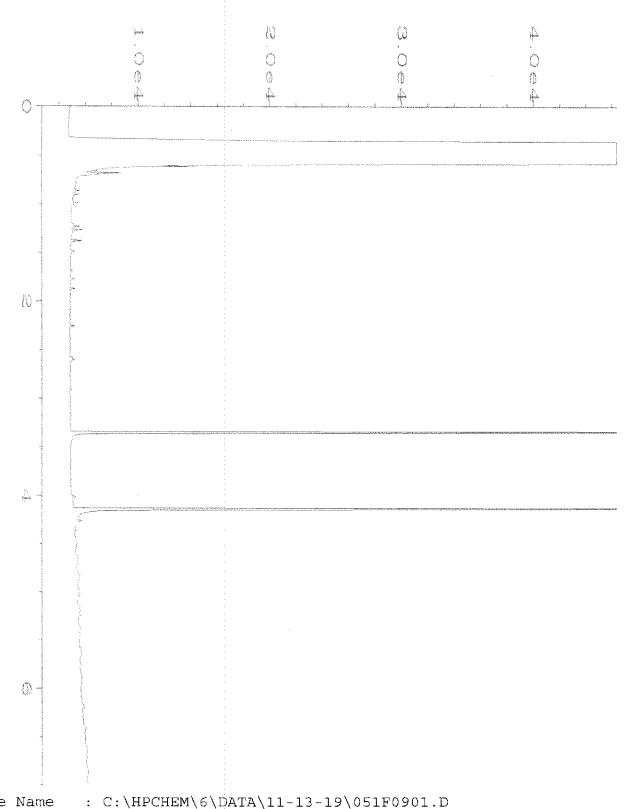
Laboratory Code: 911176-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	18,000	90 b	207 b	64-133	79 b

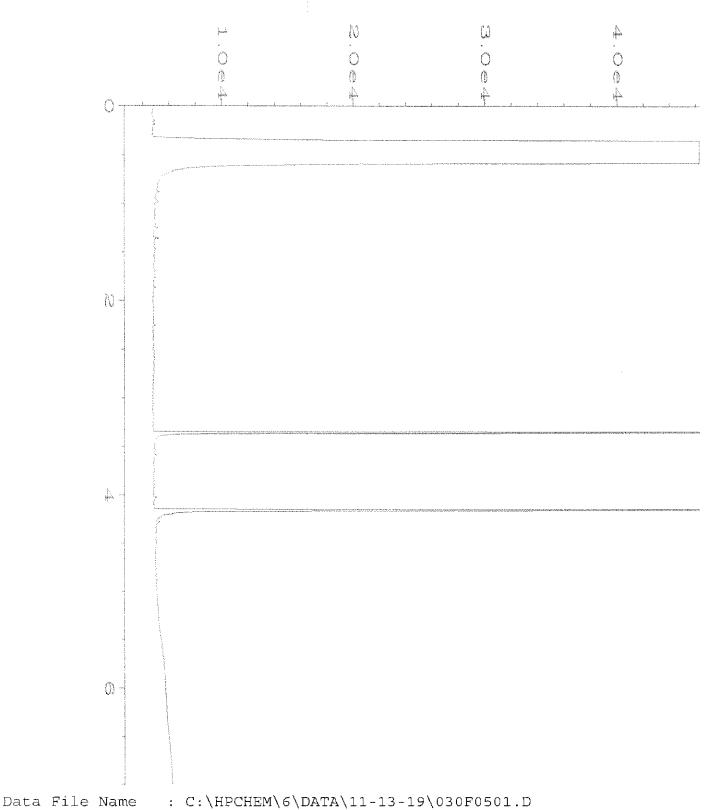

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	98	58-147

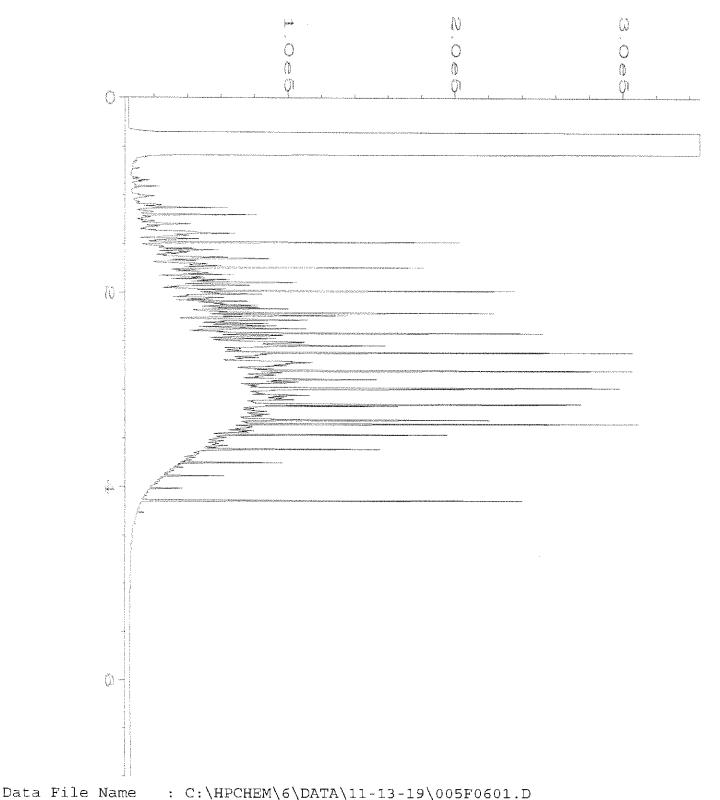
ENVIRONMENTAL CHEMISTS


Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.




```
Data File Name
                : C:\HPCHEM\6\DATA\11-13-19\050F0901.D
                                               Page Number
Operator
                : TL
                                               Vial Number
Instrument
                : GC6
                                                                : 50
                                               Injection Number: 1
Sample Name
                : 911016-26
Run Time Bar Code:
                                               Sequence Line
                                                             : 9
                                               Instrument Method: DX.MTH
Acquired on : 13 Nov 19 06:57 PM
```


Report Created on: 14 Nov 19 07:15 AM Analysis Method: DEFAULT.MTH


```
Data File Name
Operator
                : TL
                                              Page Number
                                                              ; 1
Instrument
                : GC6
                                              Vial Number
                                                              : 51
Sample Name
                : 911016-27
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 9
Acquired on : 13 Nov 19 07:08 PM
                                              Instrument Method: DX.MTH
Report Created on: 14 Nov 19 07:16 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Operator
                                              Page Number
                : TL
Instrument
                : GC6
                                              Vial Number
                                                              : 30
Sample Name
                : 09-2804 mb
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
                                                            : 5
Acquired on : 13 Nov 19 02:05 PM
                                              Instrument Method: DX.MTH
Report Created on: 14 Nov 19 07:15 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Operator
                : TL
                                               Page Number
Instrument
                : GC6
                                               Vial Number
                                                               : 5
Sample Name
                : 1000 Dx 58-146C
                                              Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 6
Acquired on : 13 Nov 19 03:08 PM
                                               Instrument Method: DX.MTH
Report Created on: 14 Nov 19 07:14 AM
                                              Analysis Method : DEFAULT.MTH
```

SAI	MPLE CHAIN OF CUSTODY	ME	40/01/19 ; VSS/AOS
Send Report to _Clare Tochilin 911016	SAMPLERS (signature)	3/6	Page # of
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	Standard (2 Weeks) RUSH
Address 2811 Fairview Avenue E, Suite 2000	UW Laundry Property	0987-022	Rush charges authorized by:
Ch. Chat. ZVD. Ch. at 1 W. d. at 1 control	REMARKS		SAMPLE DISPOSAL
City, State, ZIP Seattle, Washington 98102	How		Dispose after 30 days Return samples
Phone # 206-306-1900 Fax # 206-306-1907			Will call with instructions

	T			T	T					ANALYSES REQUESTED									
Sample ID		mple cation	Sample Depth	Lab ID	The second of th	pled	Time Sampled	Matrix	# of Jars		NWTPH-Gx	***************************************	BTEX by 8021B	4 VOCs by 8260	SVOCs by 8270			And the second s	Notes
P05-05 P05-09 P05-12 P05-15 P05-18 P05-20 P06-05 P06-10	Pi	55	5	Ol E	lt/31	/19	0900	Sol	5										X-percT
P05-09			9	02			0910	2	,					Х					11/4/19
POS-12			12	03			0920												MC
P05-15			15	04	,		0925							X					
P05-18			18	05	Andreas de la constante de la		0935												
POS-20		~	20	06	Uther		0945												
PO6-05	Po	i Q	5	07	Ar coa & p		1030		3										
PO6-10	1		10	08			1040	***						X					
P06-15			15	oy			1050							*					
P07-05	12	H	5	10		-	1120	ユ	ــــــــــــــــــــــــــــــــــــــ						San	ples	receiv	ed at	<u>4</u> •c

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044
FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by late for so	Clare Tochilin	Sandjath	11/1/19	0900
Received by:	Danell Herzog	Fed Ex SA	11/1/19	12:57
Relinquished by.				
Received by:	DA VO	FEBT	11-1-19	14.0

Will call with instructions

									T	T	A	NALYSE	S REQU	JESTE)	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH.Dx	NWTPH-Gx	BTEX by 8021B	€ VOCs by 8260	SVOCs by 8270	CMHS	MTCAS		Notes
P07-10	P0.7	lo	II E	10/31/19	1130	501	5				×					
P07-15 P08-05 P08-10		15	12		1140	ĺ					X					
P08-05	Pop	5	13		1215											
P08-10		10	14		1220					1 11	Х					
P08-15		15	15	À	1236						Ж					
P09-05	Pog	5	16		1325								X	×		
P09-10		(O	17		1340											
P09-15		15	18		1350											
P09-28		20	19		1400		Ī									
P09-25 P10-05	PIU	5	20 P	4	1435	_	4					\$	Sampl	e š re	ceive	lat <u> </u>

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

City, State, ZIP Seattle, Washington 98102

Fax #

206-306-1907

206-306-1900

Phone #___

Ph. (206) 285-8282

Fax (206) 283-5044
FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by	Clare Tochilin	SoudEath	11/1/19	0900
Received by:	Darrell Herzog	FedEx SOC	11/1/19	12:57
Relinquished by:				
Received by:	DA VO	FASE	11-1-19	14.0

SAMPLE CHAIN OF CUSTODY ME 11 (0/19 Send Report to _Clare Tochilin SAMPLERS (signature) 911016 Page # TURNAROUND TIME PROJECT NAME/NO. PO# Standard (2 Weeks) Company SoundEarth Strategies, Inc. RUSH UW Laundry Property 0987-022 Rush charges authorized by: Address 2811 Fairview Avenue E, Suite 2000 REMARKS SAMPLE DISPOSAL City, State, ZIP Seattle, Washington 98102 Dispose after 30 days Phone #___ 206-306-1900 Return samples Fax# 206-306-1907 Will call with instructions

					T			—		·,·	A	ŅALYSI	ES REQU	UESTEI)	
Sample ID	Sample Location	Sample Depth	ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	►VOCs by 8260	SVOCs by 8270	C PATS	MICA S MUHLY		Notes
P10-10	PIO	İb	RIF	10/31/19	1505	Soil	45									
P10-15 P10-20		15	22		1510	1										
P10-20	<u> </u>	20	23		1520											
P11-05	PIL	5	24		1615											
P11-10	***	10	25		1625											
P11-12 P11-15		12	26		1635			Ø			×		*	×		N
P11-15		15	27		1630			$\langle \rangle$						/-		11/21/2 AT
P11-20		20	28/	1	1655			9								DI pact 11/13/19 EMETAT ME
						7	 trij	2			-	1	Samp	les re	ceive	lat 4 °C
							6 (1/									

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Clare Tochilm	SandPara	11/1/19	0900
Relinquished by	Danell Herzog	Folk SDC	11/1/19	12:5-
Received by:				
120	1 Dd 1/0	FOBI	11-1-19	14.00

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 13, 2019

Clare Tochilin, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Tochilin:

Included are the results from the testing of material submitted on November 1, 2019 from the SOU_0987-022_ 20191101, F&BI 911023 project. There are 38 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SOU1113R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 1, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0987-022_ 20191101, F&BI 911023 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
911023 -01	P12-05
911023 -02	P12-10
911023 -03	P12-15
911023 -04	P12-20
911023 -05	P13-05
911023 -06	P13-10
911023 -07	P13-15
911023 -08	P14-05
911023 -09	P14-10
911023 -10	P14-15
911023 -11	P14-20
911023 -12	P15-05
911023 -13	P15-10
911023 -14	P15-15
911023 -15	P15-20
911023 -16	P16-05
911023 -17	P16-10
911023 -18	P16-15
911023 -19	P16-20
911023 -20	P17-05
911023 -21	P17-10
911023 -22	P17-15
911023 -23	P17-20
911023 -24	P17-25
911023 -25	P18-05
911023 -26	P18-10
911023 -27	P18-15
911023 -28	P18-20
911023 -29	P18-24

A 6020B internal standard failed the acceptance. The samples were diluted and reanalyzed with acceptable results. Both data sets were reported.

Methylene chlorde in the 8260C laboratory control sample and matrix spike and matrix spike duplicate relativer percent difference exceeded the acceptance criteria. The analyte was not detected in the sample, therefore the data were acceptable.

An 8270D internal standard failed the acceptance criteria for samples P13-10 and P18-05. The samples were diluted and reanalyzed with acceptable results. Both data sets were reported.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911023

Date Extracted: 11/05/19 Date Analyzed: 11/06/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
P14-10 911023-09	< 0.02	< 0.02	< 0.02	< 0.06	<5	84
P14-15 911023-10	< 0.02	< 0.02	< 0.02	< 0.06	<5	84
P15-10 911023-13	< 0.02	< 0.02	< 0.02	<0.06	<5	84
P15-15 911023-14	< 0.02	< 0.02	< 0.02	< 0.06	<5	84
P16-15 911023-18	< 0.02	< 0.02	< 0.02	< 0.06	<5	85
P16-20 911023-19	< 0.02	< 0.02	< 0.02	<0.06	<5	85
Method Blank _{09-2716 MB}	<0.02	<0.02	< 0.02	< 0.06	<5	85

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911023

Date Extracted: 11/05/19 Date Analyzed: 11/05/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 56-165)
P14-10 911023-09	<50	480	102
P14-15 911023-10	<50	<250	104
P15-10 911023-13	<50	<250	102
P15-15 911023-14	<50	<250	102
P16-15 911023-18	660	<250	106
P16-20 911023-19	<50	<250	102
Method Blank 09-2713 MB	<50	<250	100

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P12-05 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911023-01

 Date Analyzed:
 11/06/19
 Data File:
 911023-01.082

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 3.09

 Cadmium
 <1</td>

 Chromium
 15.9 J

 Lead
 2.46

 Mercury
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P12-05 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911023-01 x5

 Date Analyzed:
 11/06/19
 Data File:
 911023-01 x5.175

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 17.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P13-10 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911023-06

 Date Analyzed:
 11/06/19
 Data File:
 911023-06.083

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 3.55

 Cadmium
 <1</td>

 Chromium
 21.1 J

 Lead
 80.0

 Mercury
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P13-10 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911023-06 x5

 Date Analyzed:
 11/06/19
 Data File:
 911023-06 x5.176

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 21.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P16-15 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911023-18

 Date Analyzed:
 11/06/19
 Data File:
 911023-18.084

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 5.25

 Cadmium
 <1</td>

 Chromium
 24.7 J

 Lead
 6.56

 Mercury
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P16-15 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911023-18 x5

 Date Analyzed:
 11/06/19
 Data File:
 911023-18 x5.180

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 24.6

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P17-05 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911023-20

 Date Analyzed:
 11/06/19
 Data File:
 911023-20.085

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 4.86

 Cadmium
 <1</td>

 Chromium
 41.3 J

 Lead
 34.8

 Mercury
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P17-05 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Date Extracted: 11/06/19 Lab ID: 911023-20 x5
Date Analyzed: 11/06/19 Data File: 911023-20 x5.181

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 49.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P18-05 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911023-25

 Date Analyzed:
 11/06/19
 Data File:
 911023-25.134

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 2.21

 Cadmium
 <1</td>

 Chromium
 13.1 J

 Lead
 4.31

 Mercury
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: P18-05 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 911023-25 x5

 Date Analyzed:
 11/06/19
 Data File:
 911023-25 x5.182

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 13.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: SoundEarth Strategies
Date Received: NA Project: SOU_0987-022_20191101

 Date Extracted:
 11/06/19
 Lab ID:
 19-708 mb2

 Date Analyzed:
 11/06/19
 Data File:
 19-708 mb2.076

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 <1</td>

 Cadmium
 <1</td>

 Chromium
 <1</td>

 Lead
 <1</td>

 Mercury
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P12-10 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911023-02 Date Extracted: 11/05/19 Date Analyzed: 11/05/19 Data File: 110512.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	62	145
Toluene-d8	106	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P12-15 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911023-03 Date Extracted: 11/05/19 Date Analyzed: 11/05/19 Data File: 110518.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	62	145
Toluene-d8	107	55	145
4-Bromofluorobenzene	91	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P13-10 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911023-06 Date Extracted: 11/05/19 Date Analyzed: 11/05/19 Data File: 110519.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	62	145
Toluene-d8	110	55	145
4-Bromofluorobenzene	94	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P13-15 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911023-07 Date Extracted: 11/05/19 Date Analyzed: 11/05/19 Data File: 110520.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	62	145
Toluene-d8	109	55	145
4-Bromofluorobenzene	93	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P14-10 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911023-09 Date Extracted: 11/05/19 Date Analyzed: 11/05/19 Data File: 110521.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	62	145
Toluene-d8	112	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P14-15 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911023-10 Date Extracted: 11/05/19 Date Analyzed: 11/05/19 Data File: 110522.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	62	145
Toluene-d8	112	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P16-10 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101
Date February 11/07/10

Lab ID: 911023-17 Date Extracted: 11/05/19 Date Analyzed: 11/05/19 Data File: 110523.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	108	62	145
Toluene-d8	113	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P16-15 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: 911023-18 Date Extracted: 11/05/19 Date Analyzed: 11/05/19 Data File: 110524.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	62	145
Toluene-d8	113	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P16-20 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Lab ID: Date Extracted: 11/05/19 911023-19 Date Analyzed: 11/05/19 Data File: 110525.DMatrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 105 62 145 Toluene-d8 113 55 145 4-Bromofluorobenzene 96 65 139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0987-022_20191101

11/05/19 Lab ID: 09-2681 mb2Date Extracted: Date Analyzed: 11/05/19 Data File: 110510.DMatrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 104 62 145 Toluene-d8 105 55 145 4-Bromofluorobenzene 94 65 139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: P12-05 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

Date Extracted: 11/05/19 Lab ID: 911023-01 1/5 Date Analyzed: 11/08/19 Data File: 110815.DSoil Instrument: GCMS6 Matrix: Units: mg/kg (ppm) Dry Weight Operator: VM

Benzo(a)anthracene-d12 91 $\overline{24}$ Concentration Compounds: mg/kg (ppm) < 0.01 Benz(a)anthracene Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: P13-10 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/05/19
 Lab ID:
 911023-06 1/25

 Date Analyzed:
 11/09/19
 Data File:
 110835.D

 Matrix:
 Soil
 Instrument:
 GCMS6

Units: mg/kg (ppm) Dry Weight Operator: ya

<0.05 J

Concentration
mg/kg (ppm)

Benz(a)anthracene
Chrysene
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Indeno(1,2,3-cd)pyrene

Concentration
mg/kg (ppm)

0.097
0.47
0.052 J
0.11 J
0.085 J
0.085 J

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	P13-10	Client:	SoundEarth Strategies
Date Received:	11/01/19	Project:	SOU_0987-022_ 20191101
Date Extracted:	11/05/19	Lab ID:	911023-06 1/250
To	4 4 10 0 14 0	D . D11	440004 D

Date Analyzed: 11/06/19 Data File: 110621.D Matrix: Soil Instrument: GCMS6

mg/kg (ppm) Dry Weight Units: Operator: VM

_		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	191 d	31	163
Benzo(a)anthracene-d12	129 d	24	168

Surrogates: Anthracene-d10 Benzo(a)anthracene-d12	% Recovery: 191 d 129 d	Limit: 31 24	Limit: 163 168
Compounds:	Concentration mg/kg (ppm)		
Benz(a)anthracene	< 0.5		
Chrysene	< 0.5		
Benzo(a)pyrene	< 0.5		
Benzo(b)fluoranthene	< 0.5		
Benzo(k)fluoranthene	< 0.5		
Indeno(1,2,3-cd)pyrene	< 0.5		
Dibenz(a,h)anthracene	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: P16-15 Client: SoundEarth Strategies Date Received: 11/01/19 Project: $SOU_0987-022_20191101$

Date Extracted: 11/05/19 Lab ID: 911023-18 1/5 Date Analyzed: 11/08/19 Data File: 110816.DSoil Instrument: GCMS6 Matrix: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: 163 Lower Surrogates: % Recovery: Limit:

Anthracene-d10 89 31 Benzo(a)anthracene-d12 93 $\overline{24}$ 168

Concentration Compounds: mg/kg (ppm) < 0.01 Benz(a)anthracene Chrysene < 0.01 Benzo(a)pyrene < 0.01

Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: P17-05 Client: SoundEarth Strategies

Date Received: 11/01/19 Project: SOU_0987-022_20191101

Date Extracted: 11/05/19 Leb ID: 911023_20_1/5

Date Extracted: 11/05/19 Lab ID: 911023-20 1/5 Date Analyzed: 11/08/19 Data File: 110817.D Soil Instrument: GCMS6 Matrix: Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates: % Recovery: Limit: Limit: Anthracene-d10 93 31 163
Benzo(a)anthracene-d12 93 24 168

Benzo(a)anthracene-d12 93 $\overline{24}$ Concentration Compounds: mg/kg (ppm) Benz(a)anthracene 0.013 Chrysene 0.015 Benzo(a)pyrene 0.012 Benzo(b)fluoranthene 0.016 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: P18-05 Client: SoundEarth Strategies
Date Received: 11/01/19 Project: SOU_0987-022_20191101

 Date Extracted:
 11/05/19
 Lab ID:
 911023-25 1/25

 Date Analyzed:
 11/09/19
 Data File:
 110836.D

 Matrix:
 Soil
 Instrument:
 GCMS6

Units: mg/kg (ppm) Dry Weight Operator: ya

<0.05 J

Concentration
mg/kg (ppm)

Benz(a)anthracene
Chrysene
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Indeno(1,2,3-cd)pyrene

Concentration
mg/kg (ppm)

<0.05

0.18

0.05 J

0.052 J

0.052 J

0.053 J

0.053 J

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	P18-05	Client:	SoundEarth Strategies
Date Received:	11/01/19	Project:	SOU_0987-022_ 20191101
Date Extracted:	11/05/19	Lab ID:	911023-25 1/250

Date Analyzed: 11/07/19 Data File: 110715.DMatrix: Soil Instrument: GCMS6

mg/kg (ppm) Dry Weight Units: VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	160 d	31	163
Benzo(a)anthracene-d12	90 d	24	168

Surrogates: Anthracene-d10 Benzo(a)anthracene-d12	% Recovery: 160 d 90 d	Limit: 31 24	Limit: 163 168	
0 1	Concentration			
Compounds:	mg/kg (ppm)			
Benz(a)anthracene	< 0.5			
Chrysene	< 0.5			
Benzo(a)pyrene	< 0.5			
Benzo(b)fluoranthene	< 0.5			
Benzo(k)fluoranthene	< 0.5			
Indeno(1,2,3-cd)pyrene	< 0.5			
Dibenz(a,h)anthracene	< 0.5			

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank Client: SoundEarth Strategies
Date Received: Not Applicable Project: SOU_0987-022_ 20191101

11/05/19 Date Extracted: Lab ID: 09-2714 mb 1/5 Date Analyzed: 11/06/19 Data File: 110607.DMatrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Dry Weight VMOperator:

Lower

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Anthracene-d10	89	31	163
Benzo(a)anthracene-d12	92	24	168

< 0.01

Concentration
Compounds:

Benz(a)anthracene
Chrysene
Senzo(a)pyrene
Senzo(b)fluoranthene
Senzo(k)fluoranthene
Indeno(1,2,3-cd)pyrene
Concentration
mg/kg (ppm)

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 911023-09 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	0.051	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	0.076	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	101	69-120
Toluene	mg/kg (ppm)	0.5	99	70 - 117
Ethylbenzene	mg/kg (ppm)	0.5	97	65 - 123
Xylenes	mg/kg (ppm)	1.5	100	66-120
Gasoline	mg/kg (ppm)	20	115	71 - 131

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911023

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 911045-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	120	120	63-146	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	120	79-144

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 910613-113 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<1 ca	87	86	75-125	1
Cadmium	mg/kg (ppm)	5	<1	95	93	75 - 125	2
Chromium	mg/kg (ppm)	20	11.3	84 b	74 b	75 - 125	13 b
Lead	mg/kg (ppm)	10	4.27	85	78	75 - 125	9
Mercury	mg/kg (ppm	5	<1 ca	86	87	75 - 125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	98	80-120
Cadmium	mg/kg (ppm)	5	97	80-120
Chromium	mg/kg (ppm)	20	107	80-120
Lead	mg/kg (ppm)	10	97	80-120
Mercury	mg/kg (ppm)	5	84	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 911006-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	68	63	10-91	8
Chloroethane	mg/kg (ppm)	2.5	< 0.5	83	77	10-101	7
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	93	82	22 - 107	13
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	93	73	14-128	24 vo
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	97	90	13-112	7
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	89	83	23 - 115	7
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	97	90	25-120	7
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	87	83	22 - 124	5
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	97	89	27 - 112	9
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	88	85	30-112	3
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	97	94	25 - 114	3

J				
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	83	42-107
Chloroethane	mg/kg (ppm)	2.5	94	47 - 115
1,1-Dichloroethene	mg/kg (ppm)	2.5	97	65-110
Methylene chloride	mg/kg (ppm)	2.5	219 vo	50 - 127
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	102	71-113
1,1-Dichloroethane	mg/kg (ppm)	2.5	90	74 - 109
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	100	73-110
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	82	73 - 111
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	96	72 - 116
Trichloroethene	mg/kg (ppm)	2.5	83	72 - 107
Tetrachloroethene	mg/kg (ppm)	2.5	93	73-111

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: 911064-02 1/5 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	81	23-144
Chrysene	mg/kg (ppm)	0.17	< 0.01	83	32-149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	66	23 - 176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	71	42-139
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	66	21-163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	69	23-170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	69	31-146

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benz(a)anthracene	mg/kg (ppm)	0.17	86	88	51-115	2
Chrysene	mg/kg (ppm)	0.17	90	92	55-129	2
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	75	72	56 - 123	4
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	75	78	54 - 131	4
Benzo(a)pyrene	mg/kg (ppm)	0.17	67	69	51-118	3
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	67	68	49-148	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	66	71	50-141	7

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- ${\rm d}$ The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Send Report to Clare Tochilin

SAMPLE CHAT OF CUSTODY ME 11-01-14

SAMPLERS (signature)

PROJECT NAME/NO.

PO #

UW Laundry Property

0987-022

REMARKS

Page # _____ of _____

TURNAROUND TIME
Standard (2 Weeks)
RUSH
Rush charges authorized by:

SAMPLE DISPOSAL
Dispose after 30 days
Return samples

Will call with instructions

Phone # 206-306-1900 Fax # 206-306-1907

City, State, ZIP Seattle, Washington 98102

SoundEarth Strategies, Inc.

2811 Fairview Avenue E, Suite 2000

									,		A	NALYSI	ES REQU	JESTEI)]
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	C VOCs by 8260	SVOCs by 8270	- DAH,	MTCAS MAYS		Notes Y-percT	
P12-05 P12-10 P12-15 P12-20	P12	5	01 F	11/01/19	0745	Sail	5						*	×		X-percT 11/4/19 ME	
P12-10		10	02		0755	Ì					×					, ,	
P12-15		15	03		0800						×						
P12-20		20	04		08/0												
P13-05	P13	5	05		0905												
P13-10		10	06		0415						×		×	×	1		
P13-15		1	07		0440						×				11/04	VOA label P13	20
114-05	P14	5	Og		1025										/ '		
P14-10		10	04		1035			×	×	×	*						
P14-15		15	10/		1045	4	ψ	×	×	×	×						

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

[SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
	Relinquished by: Wals Jawes	Holy Lowsky	SES	11/01/19	1755
	Received by:	BISRAT TAXISE	481	1/101/11	1755
	Relinquished by:	•		300	
	Received by:		Samples received	atC	

FORMS\COC\COC.DOC

Company_

Address

SAMPLE CHA OF CUSTODY ME 1/0/-19

US3/AUS

Send Report to _Clare Tochilin

Company SoundEarth Strategies, Inc.

Address 2811 Fairview Avenue E, Suite 2000

City, State, ZIP Seattle, Washington 98102

Phone # 206-306-1900 Fax # 206-306-1907

SAMPLERS (signature) high Downs

PROJECT NAME/NO. PO#

UW Laundry Property 0987-022

REMARKS

11010

SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

											A	ŅALYSE	ES REQ	UESTED	
Sample ID	Sample Location	Sample Depth	ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	C VOCs by 8260	SVOCs by 8270	CPAHS	MTCAS NAHLY	Notes
P14-20 P15-05	P14	20	11 E	11/01/14	1055	Soil	5								
	P15	5	12		1205		1								
P15-10		10	13		1215			X	×	×					
P15-15		15	14		220			×	×	×					
P15-20	1	20	IS		125										
P16-05	P16	5	16		1315										
PL6-10		t 0	17		1320						×				
P16-15		15	18		1330			×	×	×	×		×	×	
P16-20	4	20	19		1350			*	×	×	×				
P17-05	P 17	5	ao V		1430	\bigvee	\underline{V}						×	×	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: The Downs	Kiela Lowery	SES	Molle	1755
Received by:	BISIRAT PAPES	FBI	11/01/12	17-55
Relinquished by:			7	
Received by:		Samples receive	ed atG	

FORMS\COC\COC.DOC

SAMPLE CHA OF CUSTODY ME 11-01-19 VS3/AUS

Send Report to _Clare Tochilin

Company SoundEarth Strategies, Inc.

Address 2811 Fairview Avenue E, Suite 2000

City, State, ZIP Seattle, Washington 98102

206-306-1900 Phone #_ _Fax #___ 206-306-1907

SAMPLERS (signature) PROJECT NAME/NO. PO# **UW** Laundry Property 0987-022 REMARKS

Page# TURNAROUND TIME Standard (2 Weeks) RUSH_ Rush charges authorized by:

SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

								ANALYSES REQUESTED								
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sample	ed Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	CPAHS	MTCAS MLHIS		Notes
P17-10	P17	10	31 E	1/01/	19 1440	Soil	5									
P17-10 P17-15		1	સ્ર		1445		j									
P17-20		20	23		1455											
P17-25	V	25	24		1505											
P18-05	P18	ς	25		1515								X	×		
P18-10		10	26		1325											
P18-15		15	27		1530											
P18-20		20	28		1545											
P18-24	J	24	agl	1	1615											
												1	07	10	127	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Kalu Lowyns	SES	WOIM	1755
Received by:	BISPAT TADESSE	+181	1/01/19	1755
Relinquished by: T	•		30	
Received by:		Samples rec	eived at	C

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 18, 2019

Clare Tochilin, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Tochilin:

Included are the additional results from the testing of material submitted on November 1, 2019 from the SOU_0987-022_ 20191101, F&BI 911023 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SOU1118R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 1, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0987-022_ 20191101, F&BI 911023 project. Samples were logged in under the laboratory ID's listed below.

I I / ID	G 1E 41 G4 4 :
<u>Laboratory ID</u>	SoundEarth Strategies D10.07
911023 -01	P12-05
911023 -02	P12-10
911023 -03	P12-15
911023 -04	P12-20
911023 -05	P13-05
911023 -06	P13-10
911023 -07	P13-15
911023 -08	P14-05
911023 -09	P14-10
911023 -10	P14-15
911023 -11	P14-20
911023 -12	P15-05
911023 -13	P15-10
911023 -14	P15-15
911023 -15	P15-20
911023 -16	P16-05
911023 -17	P16-10
911023 -18	P16-15
911023 -19	P16-20
911023 -20	P17-05
911023 -21	P17-10
911023 -22	P17-15
911023 -23	P17-20
911023 -24	P17-25
911023 -25	P18-05
911023 -26	P18-10
911023 -27	P18-15
911023 -28	P18-20
911023 -29	P18-24
	-

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911023

Date Extracted: 11/13/19 Date Analyzed: 11/13/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
P13-10 911023-06	840	3,700	100
P13-15 911023-07	<50	<250	95
Method Blank 09-2804 MB	<50	<250	101

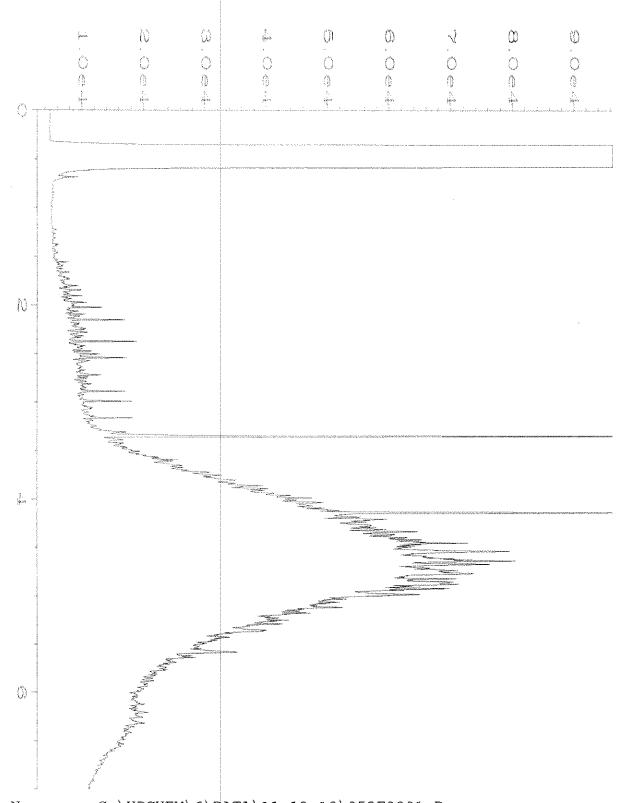
ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911023

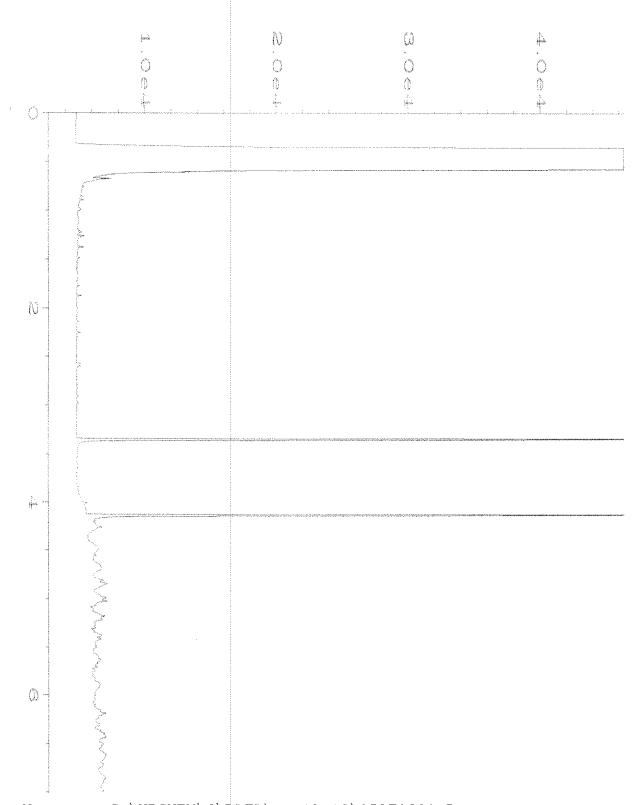
QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 911176-01 (Matrix Spike)

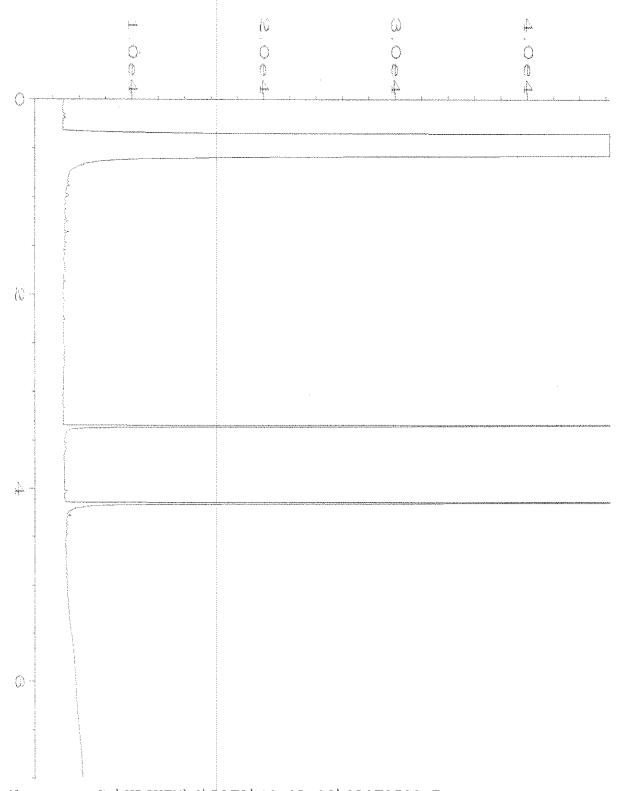

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	18,000	90 b	207 b	64-133	79 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	98	58-147

ENVIRONMENTAL CHEMISTS

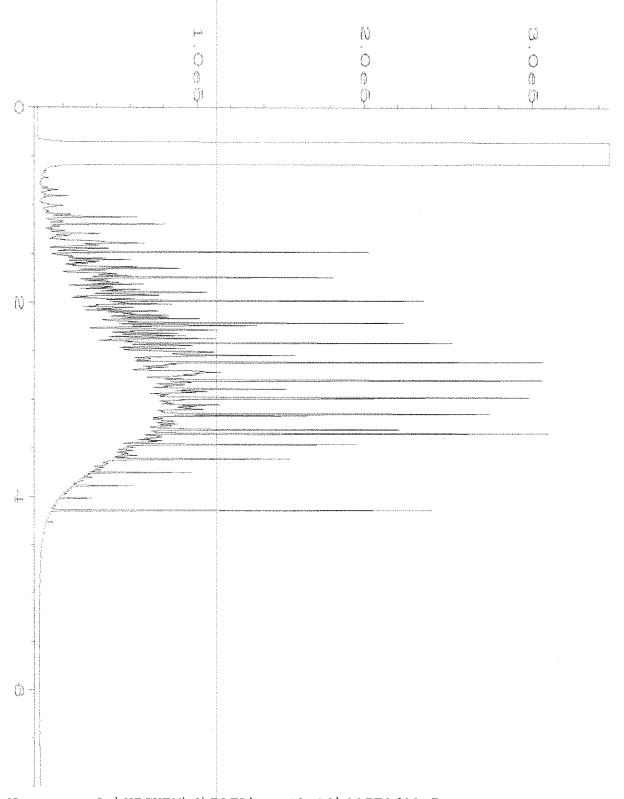

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.




```
Data File Name
               : C:\HPCHEM\6\DATA\11-13-19\052F0901.D
                                              Page Number
                : TL
Operator
                : GC6
Instrument
                                              Vial Number
                                                               : 52
                                              Injection Number: 1
Sample Name
                : 911023-06
Run Time Bar Code:
                                              Sequence Line
                                                            : 9
                                              Instrument Method: DX.MTH
Acquired on : 13 Nov 19 07:18 PM
```

Report Created on: 14 Nov 19 07:16 AM Analysis Method : DEFAULT.MTH


Acquired on : 13 Nov 19 07:29 PM Instrument Method: DX.MTH
Report Created on: 14 Nov 19 07:16 AM Analysis Method : DEFAULT.MTH


```
Data File Name
              : C:\HPCHEM\6\DATA\11-13-19\030F0501.D
                                              Page Number
Operator
                : TL
Instrument
                                              Vial Number
                                                               : 30
                : GC6
Sample Name
                : 09-2804 mb
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
                                                              : 5
Acquired on : 13 Nov 19 02:05 PM
```

Instrument Method: DX.MTH

Report Created on: 14 Nov 19 07:15 AM Analysis Method : DEFAULT.MTH

Report Created on: 14 Nov 19 07:14 AM Analysis Method : DEFAULT.MTH

Weigh		ter- Fo	m	fime\	W (λľ	Water		50	250	250	250	50	50	50	250)	PP-N-Shirted Albert ex
	Gel	ed			S	} *	Soil	(Change limits for ~	> 50	50	250	250	50	50	50	500) 	
		<u> </u>						low level soils)							1			
·····	Silic	Filte Rp	t		Typ	Samp	Final Di	Sample	Diesel	Diesel Ext	Motor Oil	Heavy Oil/C	riC12-24	Stoddard	Kerosene	C24-38	Surrogate	eVial#
Solid					<u>.i</u> ,	Vol	Volume	Name	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Terpheny	луI
	·							The second secon					The second secon			To the state of th	Recovery	y
1.00	e e management and a		11	-(3-19 14:57		1		1000 MO 59-19C	72	131	828	152	220	1	64	11		
1.00			.,,	-13-19 15:06		1	1.0	1000 Dx 58-146C	1035	1003	16	432	624	789	1005	-11	120	· · · · · · · · · · · · · · · · · · ·
0.78			muziw.	-13-19 15-68	S	2	10	911177-01	<50	<50	<250	<250	<50	<50	<50	<500	96	£10-2-1-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
0.78		free common and a real common case of	····	-13-19 16:03	s	2		911177-02	<50	<50	<250	<250	<50	<50	<50	<500	94	ģ, , , , , , , , , , , , , , , , ,
0.78		*** *** *** *** *** *** *** *** *** **	na makar na	-13-19-16:14	S	2	<u> </u>	911177-03	<50	<50	<250	<250	<50	<50	<50	<500	103	3
กลก		karana marajan		14 18 12	¢	,	10	011177.01	5974	14204	<250	នុក្ស	1171	4970	4850	<500	01	3
0.77		a the harde of the stage of the company of	naranjaran	-13-19 16:36	s	2	10	911177-05	4261	4114	<250	1804	2609	2901	3879	<500	86	3.
0.82		i na na misa ni munimini na Mgamini na ni nina ina	·**··· (- 18.*A	13-19 18:47	S	2	10	911177-06	<50	<50	<250	<250	<50	<50	<50	<500	85	41
0.80	v.= srom	141 totale a	and the second second	-13-19 16:57	S	2	10	911177-07	<50	<50	<250	<250	<50	<50	<50	<500	98	4
0.84		terrocomo anticológico a conserva-	.,	13-19 17:08	S	2	10	911177-08	6343	6127	<250	2814	4069	4186	5759	<500	105	4'
0.74		THE STATE OF THE PARTY AND THE		43-15-17-15	\$	2	10	911177-09	<50	<50	<250	<250	<50	<50	<50	<500	99	4.
0.83		and the same of the surface of the same of	mar de la company	13-19 17:30	S	2	10	911177-10	11450	11076	<250	4622	6684	8449	10782	<500	88	4.
0.81			2 11.	13-19 17:41	S	2	10	911177-11	<50	<50	<250	<250	<50	<50	<50	<500	93	45
0.74	W7.74.00W 77170.000		2	13-19 17:52	S	2	10	911177-12	132	129	<250	<250	95	90	126	<500	101	46
0.89			marije and	13-19 18.03	S	2	10	911177-13	<50	<50	<250	<250	<50	<50	<50	<500	94	47
0.91			2	13-19 18:13	S	2	10	911177-14	<50	<50	<250	<250	<50	<50	<50	<500	99	48
0.91	-		2 14	13-19 10:24	S	2	10	911177-15	<50	<50	<250	<250	<50	<50	<50	<500	106	40
1.00	4		1124	13-19 (8:36		4	1.0	500 MO 59-19B	35	58	434	68	98	0	31	-9	96	· · · · · · · · · · · · · · · · · · ·
1.00			\$1.	13-10 18:46		A	1.0	500 Dx 58-146B	530	513	6	219	317	404	514	-11	115	9
0.87	3) 11-1	13-18 18:57	S	2	10	911016-26	<50	401	510	466	674	<50	<50	<500	90	50
0.80)	13-19 19.03	S	2	10	911016-27	<50	<50	<250	<250	<50	<50	<50	<500	107	51
0.92		Ş) ,,,,	13-19 19:18	S	2	10	911023-06	839	3346	3702	3730	5395	151	742	<500	100	52
0.71)	13-19 15:29	S	2	10	911023-07	<50	<50	<250	<250	77	<50	<50	<500	95	53
1.00		Aug.	11-1	13-18 10:40	- Area -	1	1.0	1000 MO 59-19C	222	795	847	923	1335	1	196	,41	94	4
1.00			15-1	3-19 18:51	-	1	1.0	1000 Dx 58-146C	942	913	13	390	564	721	916	-10	105	5

Calculated by: In Analyzed on:

011023

SAMPLE CHAT OF CUSTODY ME 11-01-14

	US5/7
1	/ _{pa}

77/11/07		
1)	ستو
Page #		of

Standard (2 Weeks)

Rush charges authorized by:

Will call with instructions

TURNAROUND TIME

Sand	Ronart .	+	$\alpha_{-\alpha}$	Tochilin
DELLIU	Trebote	LU	Ulai U	TOCHIHI

Company SoundEarth Strategies, Inc.

Address 2811 Fairview Avenue E, Suite 2000

City, State, ZIP Seattle, Washington 98102

Phone # 206-306-1900 Fax # 206-306-1907

SAMPLERS (signature)	2-
PROJECT NAME/NO.	PO#
UW Laundry Property	0987-022
REMARKS	

SAMPLE DISPOSAL
Dispose after 30 days
Return samples

RUSH

			1								A	NALYSI	S REQU	JESTEL)		J
Sample ID	Sample Location	Sample Depth	ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	∠ VOCs by 8260	SVOCs by 8270	- PAH,	MTCAS ALTI	ANY YORK WITH THE TAXABLE WAS ARRESTED BY THE WAS ARRESTED BY THE TAXABLE WAS ARRESTED BY THE WAS ARRESTED BY THE WAS ARRESTED BY THE WAS ARRE	(x) pect 11/13/19 Notes 24/11 NE X-perct	TAT
P12-05 P12-10	P12	5	OF	11/01/19	0745	Sail	5						×	×		11/4/19 ME	7
P12-10		10	<i>0</i> 2		0755	-	1				×						
P12-15		15	03		0800						×						1
P12-20		20	ОЧ		0810												
P13-05	P13	5	05		0905			·								***************************************	
P13-10		10	06		0415			8			×		×	×	-1		1
P13-15	1		07		0940			(x)			×				11/04	VDA label P13	20
114-05	114	5	Og		1025												A-1000000000000000000000000000000000000
P14-10		i 0	04		1035			×	×	×	×		-				
P14-15		15	101	V	1045	4	ψ	×	×	χ٠	$\times \bot$						

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044 FORMS\COC\COC.DOC

SIGNATURE	PRIN'T NAME	COMPANY	DATE	TIME
Relinquished by: Wals Zouth	Halu Lows My	SES	11/0/129	1755
Received by:	BISRAT TAKESE	781	1/101/1	17-55
Relinquished by:			300	
Received by:	`	Samples received a	°C	

SAMPLE CHA OF CUSTODY ME 1/0/-19

Send Report to _Clare Tochilin							
Company	SoundEarth Strategies, Inc.						
Address	2811 Fairview Avenue E. Suite 2000						

2811 Fairview Avenue E, Suite 2000

City, State, ZIP Seattle, Washington 98102

Phone # 206-306-1900 _Fax#_ 206-306-1907

SAMPLERS (signature) July 2011	ins
PROJECT NAME/NO.	PO#
UW Laundry Property	0987-022
REMARKS	

Standard (2 Weeks) $RUSH_{-}$ Rush charges authorized by: SAMPLE DISPOSAL

Dispose after 30 days Return samples Will call with instructions

											A	NALYSI	S REQ	UESTEI)	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	C VOCs by 8260	SVOCs by 8270	CPAHS	MTCAS MATL	Andrews - The Control of the Control	Notes
P14-20 P15-05	P14	20	11 E	110114	1055	Soil	5									
P15-05	P15	5	Q		1205		1									
P15-10		10	13		1215			X	×	×						
P15-15		15	14		1220			×	*	×						
P15-20	1	20	isl		255											
P16-05	P16	5	16	1 1	1315											
PL6-10		τ0	17		1320						×					
P16-15		15	18		1370			×	×	×	×		×	×		
P16-20	4	20	19		1350			*	×	×	×					
P17-05	P 17	5	do /	$\sqrt{}$	1430	\bigvee	V						×	×		

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: The Dawy	Kiele Louring	SES	110/14	1755
Received by:	BISRAT PAPES	TB1	11/01/17	1755
Relinquished by:			3 00	
Received by:		Samples received	at o	

FORMS\COC\COC.DOC

911023

SAMPLE CHA OF CUSTODY ME 1/01-19

VS3/AUS

Send Report to _Clare Tochilin

Company SoundEarth Strategies, Inc.

Address 2811 Fairview Avenue E, Suite 2000

City, State, ZIP Seattle, Washington 98102

Phone # 206-306-1900 Fax # 206-306-1907

SAMPLERS (signature) /high rous	2
PROJECT NAME/NO.	PO#
UW Laundry Property	0987-022
REMARKS	

4060

SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

]		Ţ				ANALYSES REQUESTED						
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled		Matrix	# of Jars	NWTPH.Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	CPAHS	MTCAS MUHIS		Notes
P17-10 P17-15 P17-20	PIT	10	21 E	WOW	1 1440	Sail	5									
P17-15			ગ્ર		1445	Ì	Ì									
P17-20		20	23		1455											
117-25	1	25	24		1505											
P18-05	P18	S	25		1515								X	×		
P18-10		10	26		1325											
P18-15		15	27		1530											
P18-20		٤0 أ	38		1545											
P18-24	1	24	24/	1	1615											
												4	07	101	25	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044
FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Kylu Louyns	SES	MOINT	1755
Received by:	BISBAT TADESSE	+b1	1/01/19	1755
Relinquished by:			3	~
Received by:		Samples rec	eived at	C -

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 12, 2019

Clare Tochilin, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Tochilin:

Included are the results from the testing of material submitted on November 1, 2019 from the SOU_0987-022_ 20191101, F&BI 911030 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SOU1112R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 1, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0987-022_ 20191101, F&BI 911030 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
911030 -01	P12-20191101
911030 -02	P13-20191101
911030 -03	P14-20191101
911030 -04	P15-20191101
911030 -05	P16-20191101

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911030

Date Extracted: 11/06/19 Date Analyzed: 11/06/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
P14-20191101 911030-03	<1	<1	<1	<3	<100	80
P16-20191101 911030-05	<1	<1	<1	<3	<100	79
Method Blank 09-2625 MB	<1	<1	<1	<3	<100	79

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911030

Date Extracted: 11/05/19 Date Analyzed: 11/05/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
P14-20191101 911030-03	480 x	<250	118
P16-20191101 911030-05	1,800 x	290 x	108
Method Blank 09-2707 MB	<100	<250	123

ENVIRONMENTAL CHEMISTS

Client Sample ID:	P12-20191101	Client:	SoundEarth Strategies
Date Received:	11/01/19	Project:	SOU_0987-022_ 20191101
Date Extracted:	11/05/19	Lab ID:	911030-01
Date Analyzed:	11/05/19	Data File:	110533.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	57	121
Toluene-d8	114	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	P13-20191101	Client:	SoundEarth Strategies
Date Received:	11/01/19	Project:	SOU_0987-022_ 20191101
Date Extracted:	11/05/19	Lab ID:	911030-02
Date Analyzed:	11/05/19	Data File:	110534.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	108	57	121
Toluene-d8	115	63	127
4-Bromofluorobenzene	94	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	P14-20191101	Client:	SoundEarth Strategies
Date Received:	11/01/19	Project:	SOU_0987-022_ 20191101
Date Extracted:	11/05/19	Lab ID:	911030-03
Date Analyzed:	11/05/19	Data File:	110535.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	110	57	121
Toluene-d8	115	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	P16-20191101	Client:	SoundEarth Strategies
Date Received:	11/01/19	Project:	SOU_0987-022_ 20191101
Date Extracted:	11/05/19	Lab ID:	911030-05
Date Analyzed:	11/05/19	Data File:	110536.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	108	57	121
Toluene-d8	116	63	127
4-Bromofluorobenzene	100	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	SoundEarth Strategies
Date Received:	Not Applicable	Project:	SOU_0987-022_ 20191101
Date Extracted:	11/05/19	Lab ID:	09-2682 mb
Date Analyzed:	11/05/19	Data File:	110509.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	57	121
Toluene-d8	108	63	127
4-Bromofluorobenzene	98	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911030

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 911030-03 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	100	65-118
Toluene	ug/L (ppb)	50	102	72 - 122
Ethylbenzene	ug/L (ppb)	50	103	73 - 126
Xylenes	ug/L (ppb)	150	97	74-118
Gasoline	ug/L (ppb)	1,000	104	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/19 Date Received: 11/01/19

Project: SOU_0987-022_ 20191101, F&BI 911030

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	112	112	61-133	0

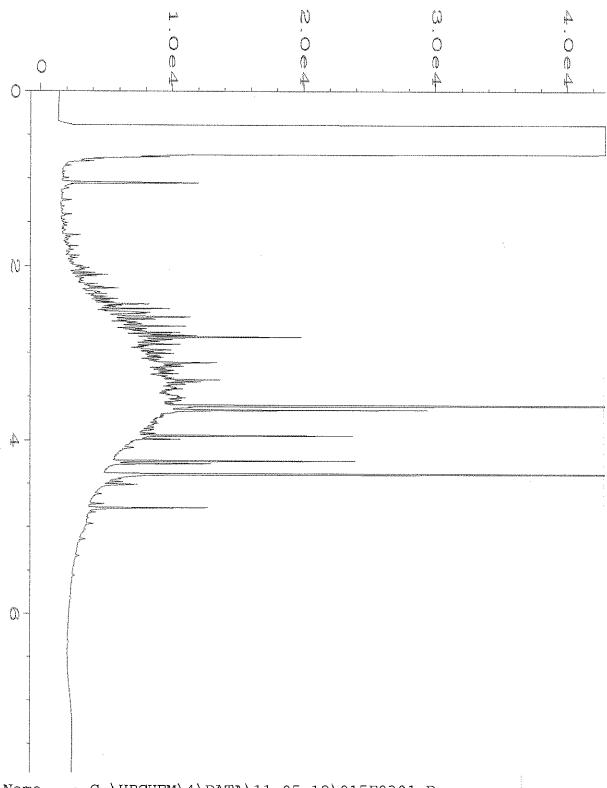
ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/19 Date Received: 11/01/19

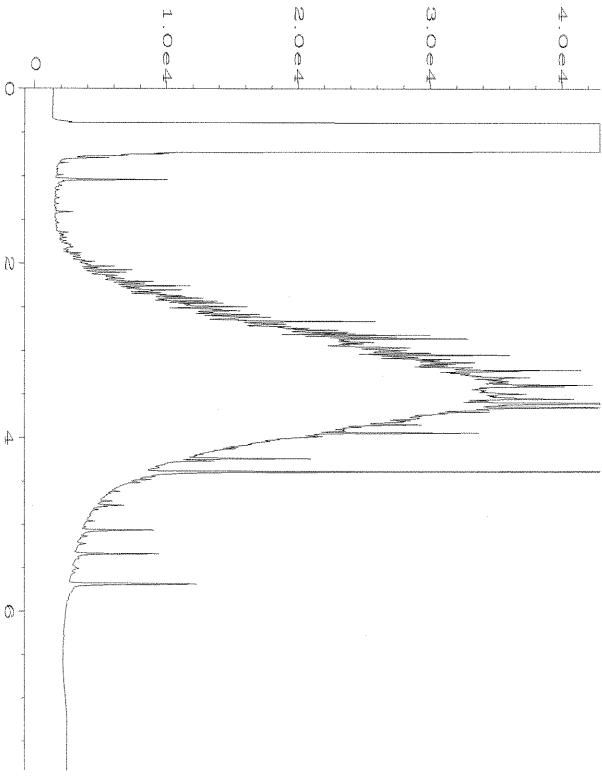
Project: SOU_0987-022_ 20191101, F&BI 911030

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

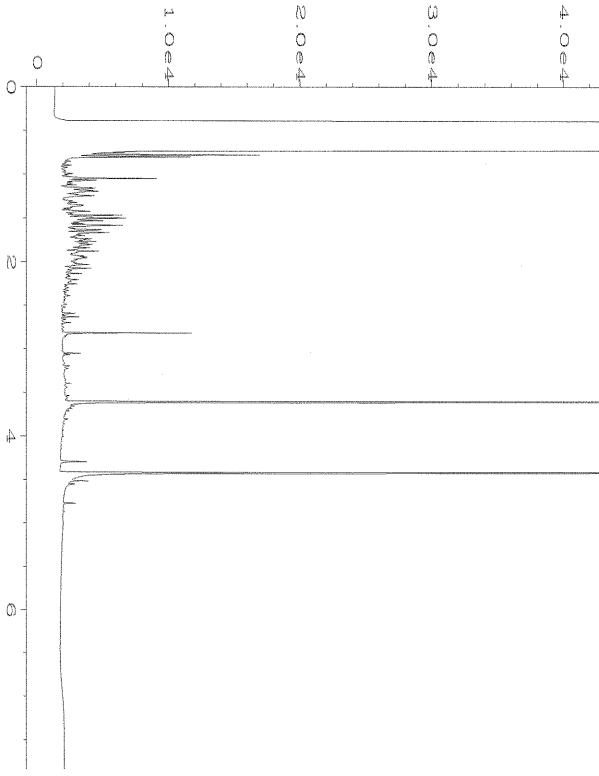
Laboratory Code: 911010-01 (Matrix Spike)

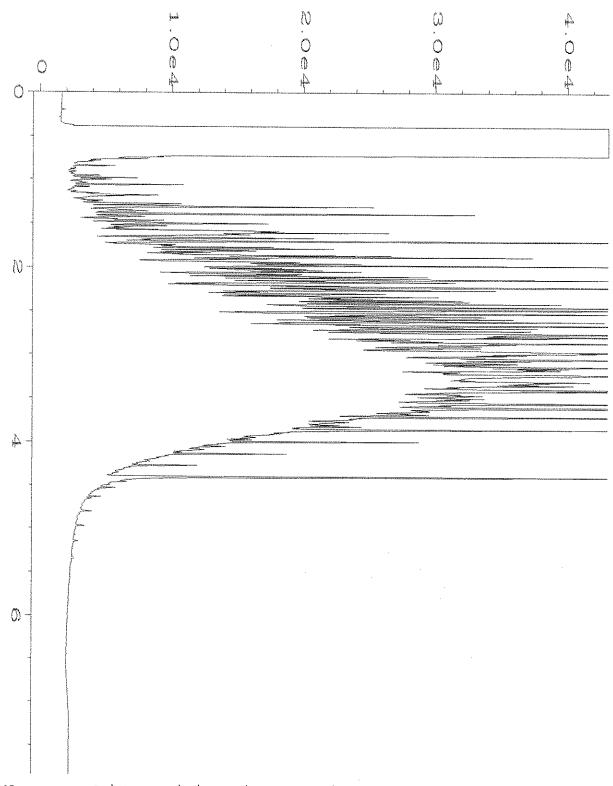

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	10	122	36-166
Chloroethane	ug/L (ppb)	50	<1	124	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	122	60-136
Methylene chloride	ug/L (ppb)	50	<5	119	67 - 132
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	115	72 - 129
1,1-Dichloroethane	ug/L (ppb)	50	<1	120	70 - 128
cis-1,2-Dichloroethene	ug/L (ppb)	50	27	120 b	71 - 127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	124	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	118	60-146
Trichloroethene	ug/L (ppb)	50	1.5	116	66 - 135
Tetrachloroethene	ug/L (ppb)	50	<1	87	10-226

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	112	103	50 - 154	8
Chloroethane	ug/L (ppb)	50	117	109	58-146	7
1,1-Dichloroethene	ug/L (ppb)	50	116	110	67-136	5
Methylene chloride	ug/L (ppb)	50	108	102	39-148	6
trans-1,2-Dichloroethene	ug/L (ppb)	50	108	103	68-128	5
1,1-Dichloroethane	ug/L (ppb)	50	108	104	79 - 121	4
cis-1,2-Dichloroethene	ug/L (ppb)	50	110	106	80-123	4
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	101	98	73 - 132	3
1,1,1-Trichloroethane	ug/L (ppb)	50	106	100	81-125	6
Trichloroethene	ug/L (ppb)	50	95	94	79-113	1
Tetrachloroethene	ug/L (ppb)	50	93	91	76-121	2


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
: C:\HPCHEM\4\DATA\11-05-19\015F0301.D
Data File Name
Operator
                 : TL
                                               Page Number
                                                                : 1
                                               Vial Number
Instrument
                 : GC#4
Sample Name
                : 911030-03
                                               Injection Number: 1
                                               Sequence Line : 3
Run Time Bar Code:
Acquired on
                : 05 Nov 19 02:52 PM
                                               Instrument Method: DX.MTH
Report Created on: 06 Nov 19 03:09 PM
                                               Analysis Method : DX.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\11-05-19\016F0301.D
                                                Page Number : 1
Vial Number : 16
Operator
                 : TL
Instrument
                 : GC#4
                                                Injection Number: 1
Sample Name
                 : 911030-05
                                                Sequence Line : 3
Run Time Bar Code:
                                                Instrument Method: DX.MTH
Acquired on
             : 05 Nov 19 03:04 PM
Report Created on: 06 Nov 19 03:10 PM
                                                Analysis Method : DX.MTH
```



```
: C:\HPCHEM\4\DATA\11-05-19\006F0301.D
Data File Name
Operator
                                             Page Number
                : TL
Instrument
                                             Vial Number : 6
                : GC#4
                                             Injection Number: 1
Sample Name
               : 09-2707 mb
                                             Sequence Line : 3
Run Time Bar Code:
                                             Instrument Method: DX.MTH
Acquired on
            : 05 Nov 19 01:05 PM
Report Created on: 06 Nov 19 03:09 PM
                                             Analysis Method : DX.MTH
```



```
Data File Name : C:\HPCHEM\4\DATA\11-05-19\003F0201.D

Operator : TL Page Number : 1

Instrument : GC#4 Vial Number : 3

Sample Name : 500 Dx 58-146B Injection Number : 1

Run Time Bar Code: Sequence Line : 2

Acquired on : 05 Nov 19 05:47 AM Instrument Method: DX.MTH

Report Created on: 06 Nov 19 03:10 PM Analysis Method : DX.MTH
```

Send Report to Clare Tochilin Company SoundEarth Strategies, Inc.

City, State, ZIP Seattle, Washington 98102

206-306-1900

2811 Fairview Avenue E, Suite 2000

Fax#

206-306-1907

SAMPLERS (signature) PROJECT NAME/NO.

SAMPLE CHAT OF CUSTODY

ME 11-01-19

Page# TURNAROUND TIME

Standard (2 Weeks)

PO# **UW Laundry Property** 0987-022

RUSH Rush charges authorized by:

REMARKS

SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

											Al	NALYSE	ES REQU	JESTEI)	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	∠ VOCs by 8260	SVOCs by 8270				Notes
P 12-2014HUI	P/2		01 G	11/01/19	0830	1/20	7				X					X-per CT
P13-20141101	P13		02		0945						×					11/4/19
P14-20191101	P14	_	03		1/30			×	*	×	×					ME
P15-20141101	P15	_	oy		1310											
P16-20194101	Plb	-	05 Y	\bigvee	1400	1		×	×	×	×					
																`
	- 100															
						2/						s	ample	recei	ved at	<i>3</i> ∘ _C
						ZZ	11	01/	9							
							,,,									

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: Kiffle hours	Kihi Cowyn	955	MOINT	1755
Received by:	BISBAT TADES	F\$1	11/01/19	1753
Relinquished by.				
Received by:			~	

Address

Phone #_

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 18, 2019

Clare Tochilin, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Ms Tochilin:

Included are the additional results from the testing of material submitted on November 1, 2019 from the SOU_ 0987-022_ 20191101, F&BI 911030 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SOU1118R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 1, 2019 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_ 0987-022_ 20191101, F&BI 911030 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
911030 -01	P12-20191101
911030 -02	P13-20191101
911030 -03	P14-20191101
911030 -04	P15-20191101
911030 -05	P16-20191101

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/19 Date Received: 11/01/19

Project: SOU_0987-022_20191101, F&BI 911030

Date Extracted: 11/14/19 Date Analyzed: 11/14/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

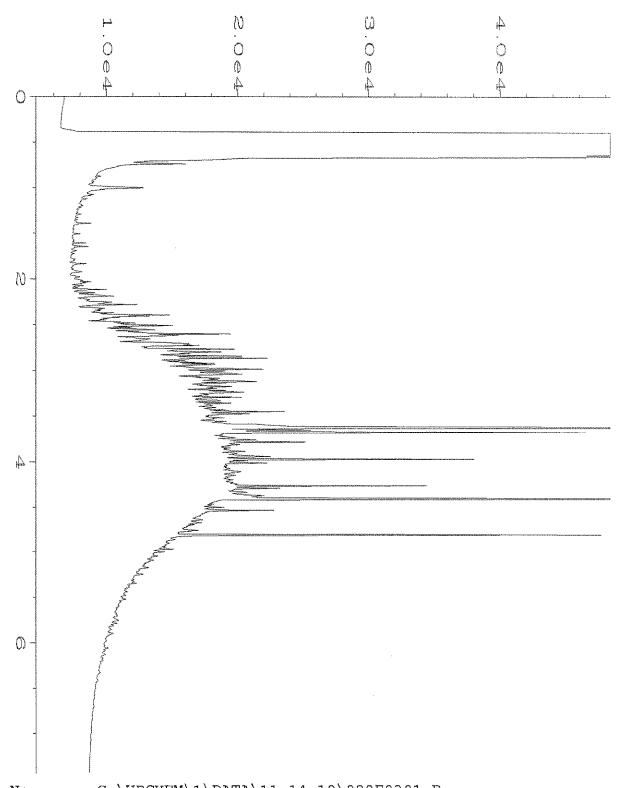
Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 41-152)
P13-20191101 911030-02	910	520	124
Method Blank 09-2808 MB	<50	<250	117

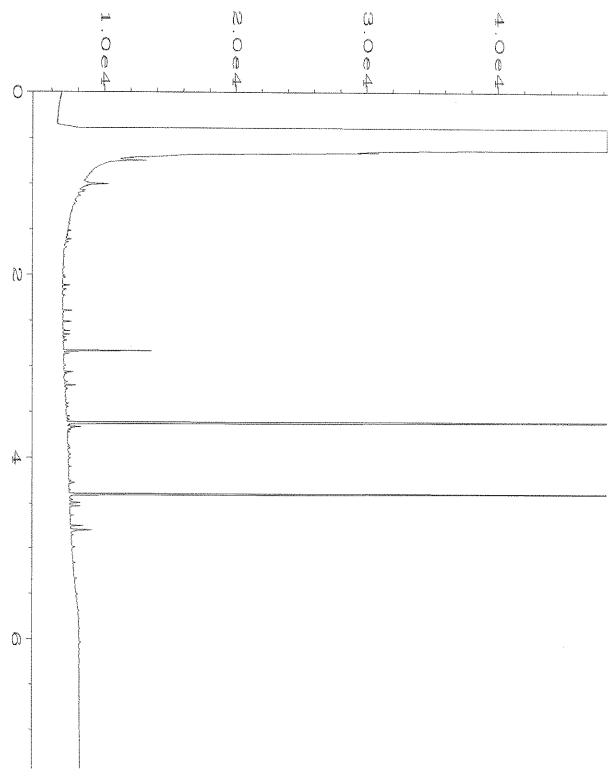
ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/19 Date Received: 11/01/19

Project: SOU_0987-022_20191101, F&BI 911030

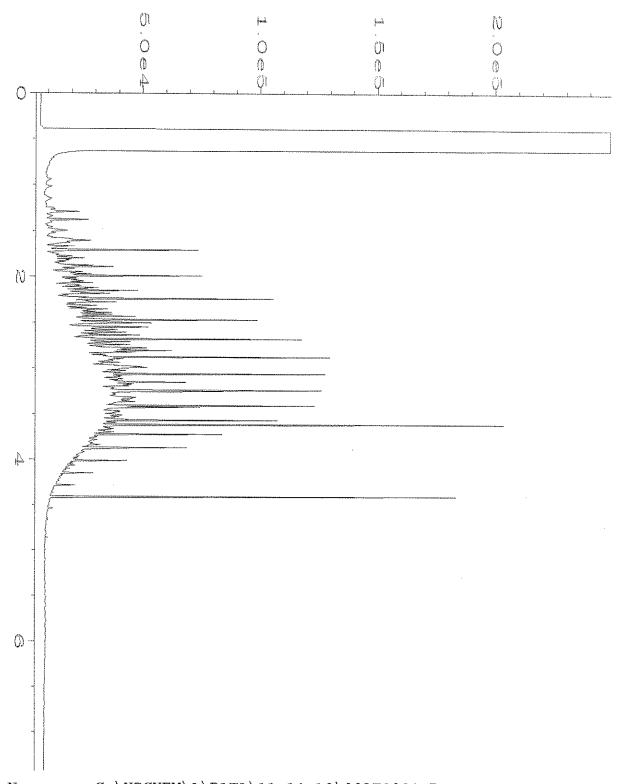

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	124	108	63-142	14


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.




```
: C:\HPCHEM\1\DATA\11-14-19\028F0301.D
Data File Name
                                                Page Number
Vial Number
Operator
                 : TL
Instrument
                 : GC1
Sample Name
                 : 911030-02
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 3
                 : 14 Nov 19 01:04 PM
                                                Instrument Method: DX.MTH
Acquired on
Report Created on: 14 Nov 19 01:22 PM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
              : C:\HPCHEM\1\DATA\11-14-19\024F0301.D
Operator
                : TL
                                             Page Number
                                            Vial Number
Instrument
                : GC1
Sample Name : 09-2808 mb
                                             Injection Number: 1
Run Time Bar Code:
                                            Sequence Line : 3
Acquired on : 14 Nov 19 12:18 PM
                                             Instrument Method: DX.MTH
```

Report Created on: 14 Nov 19 01:10 PM Analysis Method : DEFAULT.MTH

	MPLE CHATOF CUSTODY	1E 11-01-19	ows fam
Send Report to _Clare Tochilin	SAMPLERS (signature) This Zong		Page # of
	mya sour	· f	TURNAROUND TIME
Company SoundEarth Strategies, Inc.	PROJECT NAME/NO.	PO#	Standard (2 Weeks) RUSH
Address 2811 Fairview Avenue E, Suite 2000	UW Laundry Property	0987-022	Rush charges authorized by:
City, State, ZIP Seattle, Washington 98102	REMARKS		SAMPLE DISPOSAL Dispose after 30 days
Phone # 206-306-1900 Fax # 206-306-1907	HOLD		Return samples Will call with instructions

											A	ŅALYSI	S REQU	JESTED]
Sample ID	Sample Location	Sample Depth	ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	€ VOCs by 8260	SVOCs by 8270	· ·			Notes	
P12-20141111	11/2	_	01 G	11/01/19	0830	1/20	7			-	×					X-per CT	
P13-2014401	P13		02		0945			(8)			×					11/4/19	
P14-20191601	P14		03		1/30			×	*	×	X					ME	
P15-2014NO1	PIS	~	04		1310							*				(D-prcT	
P16-20194101	Plb		05 /	$ \psi $	1400	\downarrow	V	×	×	×	×					11/13/19 244	TA F
																ME	
												S	amples	receive	ed at	3 °C	
						ZZ	-11	011	9								
							- 7,-										

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044

				-
SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: Kill muy	Kuhi Cowyns	3#S	1/101/11	1755
Received by:	BISRAT TADESS	FB1	1401/19	17-55
Relinquished by:				
necesived by:			***	

FORMS\COC\COC.DOC