APPENDIX A Supplemental Sediment Investigation Report

Updated Supplemental Sediment Investigation Report

R.G. Haley International Site Bellingham, Washington

for City of Bellingham

December 28, 2023

Updated Supplemental Sediment Investigation Report

R.G. Haley International Site Bellingham, Washington

for City of Bellingham

December 28, 2023

Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206.728.2674

Updated Supplemental Sediment Investigation Report

R.G. Haley International Site Bellingham, Washington

File No. 0356-114-06

December 28, 2023

Prepared for:

City of Bellingham 210 Lottie Street Bellingham, Washington 98225

Attention: Amy Kraham

Prepared by:

GeoEngineers, Inc. Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206.728.2674

Neil F. Morton Senior Environmental Scientist

Vengerd

lain H. Wingard Principal

NAM:DLC:SCW:NFM:IHW:leh:ch

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRODUCTION	1
	Objectives Scope	
2.0	SEDIMENT SAMPLING ACTIVITIES	2
2.1.	Deviations from the Sampling and Analysis Plan	3
3.0	CHEMICAL AND BIOLOGICAL TESTING	4
	Initial and Follow-up Analytical Testing Toxicity Testing	
4.0	ANALYTICAL RESULTS	6
4.2. 4.2 4.2	SMS Chemicals Bioaccumulative Chemicals 2.1. Dioxins/Furans 2.2. Carcinogenic PAHs 2.3. Pentachlorophenol	7 7 8 9
5.0	DISCUSSION	9
6.0	LIMITATIONS 1	0
7.0	REFERENCES 1	0

LIST OF TABLES

- Table 1. Sample Locations
- Table 2. Summary of Analyses
- Table 3. 2013-2016 Sediment Analytical Results Compared to Screening Levels for Protection of Benthic Organisms
- Table 4. 2013-2016 Sediment Analytical Results Compared to Bioaccumulative Screening Levels for Protection of Human Health, Fish and Wildlife
- Table 5. Sediment Bioassay Summary Results

Table 6. Bioassay Results for the Amphipod Eohaustorius estuarius Test

- Table 7. Bioassay Results for the Polychaete Neanthes arenaceodentata Test
- Table 8. Bioassay Results for the Bivalve Larvae Mytilus galloprovincialis Test

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Preferred Cleanup Action Alternative from the Feasibility Study–Sediment Components
- Figure 3. 2013-2016 Sediment Sampling Locations
- Figure 4. SMS Evaluation—Surface Sediment Data
- Figure 5. Extent of SMS Benthic Criteria Exceedances in Surface Sediment
- Figure 6. SMS Evaluation—Subsurface Sediment Data
- Figure 7. Dioxin TEQ Concentrations in Surface Sediment
- Figure 8. Dioxin TEQ Concentrations in Subsurface Sediment
- Figure 9. cPAH TEQ Concentrations in Surface Sediment
- Figure 10. cPAH TEQ Concentrations in Subsurface Sediment

Figure 11. Pentachlorophenol Concentrations in Surface Sediment

Figure 12. Pentachlorophenol Concentrations in Subsurface Sediment

Figure 13. Interpolated Extent of Dioxin/Furan TEQ in Surface Sediment

Figure 14. Interpolated Extent of cPAH TEQ in Surface Sediment

Figure 15. Interpolated Extent of Pentachlorophenol in Surface Sediment

APPENDICES

Appendix A. Field Logs and Forms

A.1. Pine Street Beach Field Forms - 2013

A.2. Supplemental Site Investigation Field Forms – 2015

A.3. Supplemental Site Investigation Subsurface Logs - 2015

A.4. Pine Street Beach Field Forms - 2016

Appendix B. Photographs

B.1. Supplemental Sediment Investigation Surface – 2015

B.2. Supplemental Sediment Investigation Subsurface - 2015

B.3. Pine Street Beach Surface - 2016

Appendix C. Chemical Analytical Data

C.1. Data Validation Report – GeoEngineers, Inc.

C.2. Data Validation Report – EcoChem, Inc.

Appendix D. Updated RI Data Summary Statistics

Appendix E. Toxicity Testing Report

Appendix F. Historical Maps and Photos

Appendix G. PAH Profiles

1.0 INTRODUCTION

In January 2018 a Supplemental Sediment Investigation Report (GeoEngineers 2018) was completed describing the results of supplemental sediment investigations (SSIs) conducted on behalf of the City of Bellingham (City) to address data gaps identified in the Remedial Investigation Report (RI) and Feasibility Study (FS) Report (GeoEngineers 2016a,b) for the marine unit of the R.G. Haley International (Haley) Site (Figure 1). The marine unit includes contaminated intertidal and subtidal aquatic lands adjacent to the upland unit of the Site.)

The investigations were performed to resolve the following data gaps in the marine unit:

- The northern and southern extent of nearshore sediment that exceeds chemical and biological criteria based on benthic toxicity, and
- The bayward extent of dioxins/furans, carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and pentachlorophenol (PCP) in sediment that exceeds criteria based on bioaccumulative effects.

Three phases of sampling were conducted after completion of the RI sediment investigation in 2012 to address these data gaps at intertidal and subtidal locations. The scope and approach for each of these sampling events were documented in two work plans and a sampling and analysis plan (SAP) reviewed and approved by Washington State Department of Ecology (Ecology) (GeoEngineers 2013, 2015 and 2016c). In addition, surface sediment samples obtained and archived by the Port of Bellingham (Port) to support remedial design of the adjacent Cornwall Avenue Landfill site (Landau 2016) were submitted for analysis of dioxins/furans to augment the Haley RI data set.

Since completion of the 2018 Supplemental Sediment Investigation Report, a Cleanup Action Plan (CAP; Ecology 2018) and an Engineering Design Report (EDR; GeoEngineers 2022) have been completed. The CAP includes sediment cleanup levels (CULs) for indicator hazardous substances¹ (IHSs) and the EDR includes updated sediment CULs for dioxins/furans and cPAHs. This 2023 Supplemental Sediment Investigation Report updates the 2018 Supplemental Sediment Investigation Report to reflect these CULs in support of Ecology development of an updated CAP for the Haley Site.

1.1. Objectives

Components of the preferred sediment remedy as defined in the Haley FS (GeoEngineers 2016b) are illustrated in Figure 2. As indicated in the Haley RI/FS report (GeoEngineers 2016a,b), additional sediment data were needed to establish the limits of the marine unit and refine components of the sediment remedy throughout an expanded marine unit that was yet to be determined. Data collected during the SSIs were intended to fulfill these, and the following, more specific objectives:

- Confirm or refine the lateral extent of nearshore sediment removal and capping actions needed to address all sediment that exceeds chemical and/or biological criteria protective of the benthic community as defined in the Sediment Management Standards (SMS).
- Characterize the vertical extent of contamination in the same nearshore areas to support remedial design.

- Characterize the distribution of bioaccumulative compounds outside of the benthic toxicity exceedance area.
- Propose a marine unit boundary and expanded areas for remedy components in the marine unit.

Data and work products developed as part of the SSIs supported development of the CAP and subsequent EDR. This 2023 update to the Supplemental Sediment Investigation Report supports Ecology development of an updated CAP for the Haley Site.

1.2. Scope

The SSIs included the following activities:

- Collected and analyzed a total of seven intertidal surface (0 to 0.39 foot) sediment samples north and south of the benthic toxicity exceedance area identified in the FS (Figure 2). These samples included SSI-SS-01 through SSI-SS-03 to the south, and SSI-SS-04 through SSI-SS-07 to the north (Figure 3).
- Collected subsurface sediment samples from seven cores advanced to depths as great as 8 feet below mudline (bml) at approximately the same locations as the surface samples described above. The coring locations are identified as SSI-SC-01 through SSI-SC-07 (Figure 3). Initially analyzed the samples collected from the 0 to 2-foot and 2- to 4-foot depth intervals from each core and archived the remainder of the samples. Additional analyses were conducted at several locations from the 4- to 6-foot sample interval based on the initial results.
- Collected eight shallow (0- up to 2-feet bml) subsurface grab samples (COB-CC-C1, COB-CC-C2, PSB-SC-01 through PSB-SC-04) from the Pine Street Beach for analysis of bioaccumulative compounds. Two intervals (1- to 2- feet) at PSB-SC-01 and PSB-SC-04 were archived.
- Selected intertidal surface sediment samples for biological testing based on the initial chemical analytical results. Samples SSI-SS-03, SSI-SS-05 and SSI-SS-06 were submitted for this follow-up testing.
- Collected 11 subtidal surface (0 to 0.39 foot) sediment samples to evaluate the distribution of siterelated bioaccumulative compounds in deeper water surrounding the nearshore benthic toxicity exceedance area. These samples are identified as SSI-SS-08 through SSI-SS-18 (Figure 3).
- Coordinated with the Port of Bellingham to analyze dioxins/furans in surface sediment samples collected for the Cornwall Avenue Landfill site. These samples are identified as CL-SG-1, CL-SG-3 and CL-SG-4 (Figure 3) and analytical results are incorporated in the summary tables of this (SSI) report.
- Validated and incorporated the SSI and Cornwall data into the Haley RI/FS database and submitted the data to Ecology's Environmental Information Management (EIM) system.

The sediment samples described above are summarized in Table 1. In general, the analytical program for these samples, which is summarized in Table 2, was structured to assess risks to the benthic community in nearshore samples, and risks to human and ecological health from bioaccumulative compounds throughout the marine unit.

2.0 SEDIMENT SAMPLING ACTIVITIES

To meet the SSI objectives, both surface and subsurface samples were collected from the marine unit. Two surface sediment composite¹ samples (COB-CC-C1 and COB-CC-C2) were collected on August 17, 2013 from the Pine Street Beach; surface grab and subsurface core samples from SSI-SS/SC-01 through SSI-SS/SC-07 and surface samples from SSI-SS-08 through SSI-SS-18 (Figure 3) were obtained between October 12 and 15, 2015 from throughout the Site. Surface (0- to 1-foot) and shallow subsurface (1- to 2-foot) grab samples (PSB-SC-01 through PSB-SC-04) were collected on February 18, 2016 from the Pine Street Beach and analyzed separately to confirm the 2013 composite sample results.

Surface sample depths were defined based on the receptors of concern. The sampling depth for evaluation of benthic community risks was the top 0.39 feet (12 centimeters [cm]) of sediment and is based on the biologically active zone established for Bellingham Bay; this depth interval was also used to evaluate risks to higher trophic level aquatic receptors and net-fishers where bioaccumulative compounds are the primary IHSs in the marine unit. The sampling depth interval for evaluation of human health risks associated with recreational clamming or beach play in the intertidal zone was defined in the FS as 0 to 1.5 feet. For the SSI, this depth was represented by the 0- to 2-foot interval. Deeper subsurface sediment in the intertidal zone were collected to a target depth of 8 feet bml (where possible) to evaluate nature and extent and to support future remedial design. This depth was selected based on the depth of contamination in nearby sediment core samples that were collected during prior phases of the RI.

Surface and subsurface sampling locations were co-located to the extent practicable. Most of the SSI samples were collected from a shallow-draft vessel using a power grab (in the case of surface sediment) or a vibracore (in the case of subsurface sediment). Intertidal surface and shallow subsurface sediment samples SSI-SS-02, SSI-SS-04, PSB-SC-01 through PSB-SC-04, and the composite samples COB-CC-C1 and COB-CC-C2 were collected by hand during a low tide. All sample location information is reported relative to NAD83/98 as the horizontal reference and NAVD88 for the vertical reference.

Details regarding sampling and analytical procedures and rationale are provided in the work plans and SAP (GeoEngineers 2013, 2015 and 2016c). Field logs, including core logs, along with photographs taken during field activities are provided in Appendix A and B, respectively.

2.1. Deviations from the Sampling and Analysis Plan

Samples were collected and analyzed in general accordance with the approved work plans and SAP (GeoEngineers 2013, 2015 and 2016c) with the following exceptions:

- The core sample at SSI-SC-02 could not be collected due to the presence of large rock and debris at this location, despite multiple attempts.
- The penetration depth was less than 8 feet due to refusal at the following cores:
 - SSI-SC-01 (6 feet)
 - SSI-SC-04 (4 feet)
 - SSI-SC-06 (7 feet)

¹ The two 2013 samples were each composed of 0-to-1 foot sample intervals from three discrete locations from the Pine Street Beach. The sample material was collected by hand over an area 1-foot in diameter at each target location and then composited for analysis.

- The actual sampling location for SSI-SC-04 was offset from the target location by 7 meters (rather than 3 meters as identified in the work plan) due to multiple failed attempts at the target location because of the presence of large rock, concrete and debris.
- Due to the presence of boulders, large cobble and debris and general lack of fine-grained sediment (i.e., gravel or smaller), surface samples at SSI-SS-02 and SSI-SS-04 required hand-collection of sediment over an area approximately 5 feet in diameter to achieve the required sample volume.
- The surface sediment sample at SSI-SS-02 was analyzed for dioxins/furans to provide information at this location, since a core could not be collected.
- PCP was initially not detected in sample SSI-SS-09; however, the reported detection limit was elevated. Because data at this location were needed to confirm the bayward extent of PCP, the sample was reanalyzed by a different analytical method to achieve a lower detection limit.
- Minor deviations in test parameters for water temperature and salinity occurred during bioassay testing.

3.0 CHEMICAL AND BIOLOGICAL TESTING

The sampling and analytical testing program is summarized in Table 2. Chemical analyses were conducted by Ecology-certified laboratories. Analytical Resources Incorporated (ARI) in Tukwila, Washington analyzed the SMS suite of organic compounds and conventional parameters; dioxins/furans were analyzed by Frontier Analytical in El Dorado Hills, California. Ramboll Environ (Ramboll) conducted the bioassay testing. Samples were analyzed according to the work plans and SAP (GeoEngineers 2013, 2015 and 2016c) and followed the Puget Sound Estuary Program (PSEP; 1987, 1995 and 1997 with updates) protocol and Sediment Cleanup Users' Manual II (SCUM II) guidance (Ecology 2015).

3.1. Initial and Follow-up Analytical Testing

The analytical testing program was developed based on the study objectives (Section 1.1). Samples were analyzed for one or more of the following chemicals or chemical groups:

- SMS suite of semi-volatile organic compounds (SVOCs)
- Dioxins/furans
- cPAHs
- PCP
- Total petroleum hydrocarbons (TPH)
- Total organic carbon (TOC)
- Grain size
- Total solids

The analytical program for intertidal surface samples focused on evaluation of potential effects to the benthic invertebrate community by analyzing for the SMS suite of chemicals excluding metals, pesticides, and polychlorinated biphenyls, which were not site IHSs. Subtidal surface samples were analyzed for bioaccumulative IHSs to support the evaluation of human and ecological health risks. Subsurface samples

collected from the intertidal zone were analyzed for bioaccumulative and SMS chemicals for the evaluation of health risks and to support remedy design.

Chemical analyses occurred in two phases: initial testing according to the work plans or SAP, and follow-up testing based on the initial results where needed to further evaluate the lateral and/or vertical extent of IHSs. Analysis of archived samples was triggered by an exceedance of the RI screening levels based on the protection of the benthic invertebrate community or preliminary CULs for bioaccumulative IHSs from the FS.

Surface sediment samples from SSI-SS-01 through SSI-SS-12 were initially analyzed and samples from SSI-SS-13 to SSI-SS-18 were archived. Based on the analytical results, SSI-SS-14, SSI-SS-15, and SSI-SS-16 were submitted for follow-up testing to more clearly establish the bayward extent of dioxins/furans. Additionally, SSI-SS-09 was analyzed for PCP to confirm the bayward extent of this IHS.

Subsurface samples from 0- to 2-feet and 2- to 4- feet bml were initially analyzed at locations SSI-SC-01 and SSI-SC-03 through SSI-SC-07. Based on initial results, archived samples from 4 to 6 feet bml at SSI-SC-05, SSI-SC-06 and SSI-SC-07 were tested for dioxins/furans and polycyclic aromatic hydrocarbons (PAHs). Other archived sample analyses included the 4 to 6 feet bml sample at SSI-SC-05 (for TPH) and the 4 to 6 feet bml sample at SSI-SC-06 (for PCP). Follow-up analysis of archived sediment samples was not necessary after initial analysis of discrete samples collected from 0-to-1- foot bml at PSB-SC-01 through PSB-SC-04, and the samples from 1 to 2 feet bml at PSB-SC-02 and PSB-SC-03.

All chemical data were validated according to the United States Environmental Protection Agency's (EPA's) Contract Laboratory Program National Functional Guidelines (EPA 2008, 2009 and 2011) prior to inclusion in the RI/FS database. A summary of the validation results is provided in Appendix C; validation details are provided in the attachments (C-1 and C-2).

3.2. Toxicity Testing

In accordance with the 2015 work plan, initial chemical results for the intertidal surface samples were evaluated to determine if bioassay testing would be required.

Bioassays included:

- **10**-day adult amphipod (*Eohaustorius estuarius*) mortality test (acute toxicity),
- Sediment bivalve (*Mytilus galloprovincialis*) larval test (acute toxicity), and
- 20-day juvenile polychaete (*Neanthes arenaceodentata*) growth test (chronic toxicity).

Samples exceeding RI screening levels based on the protection of the benthic community were submitted for a suite of toxicity testing. Based on these criteria, SSI-SS-03 and SSI-SS-05 were submitted for toxicity testing. Although not exceeding screening levels, Ecology requested that sample SSI-SS-06 also be submitted for toxicity testing.

4.0 ANALYTICAL RESULTS

This section presents the analytical results organized according to the SSI objectives. Results related to delineation of the area of toxicity to the benthic community according to SMS regulation are presented first, followed by results that were used to establish the limit of SMS exceedances in subsurface sediment, and finally results used to determine the extent of bioaccumulative risks for people and higher-order aquatic receptors. Analytical results supporting the SMS benthic toxicity evaluation and subsurface extent of contamination are provided in Table 3; analytical results for bioaccumulative IHSs are presented in Table 4. Although not discussed in this report, summary statistics for the entire updated RI data set are provided in Appendix D.

4.1. SMS Chemicals

Benthic toxicity was initially evaluated by comparing chemical analytical results from the seven intertidal surface samples to the screening levels based on the promulgated SMS criteria or the equivalent Apparent Effects Thresholds (AETs; expressed on a dry-weight basis). The site-specific toxicity-based screening level for TPH was also used in this evaluation.

The results of the SMS chemical evaluation for intertidal surface sediment are shown in Figure 4; results are color-coded to indicate the greatest level of exceedance for each chemical group (low-molecular weight PAHs [LPAHs], high-molecular-weight PAHs [HPAHs], TPH, phenols, chlorinated benzenes, phthalates, and miscellaneous organic compounds). Only two surface samples exceeded benthic criteria: SSI-SS-03 exceeded for TPH and 2,4-dimethylphenol, and SSI-SS-05 exceeded for LPAHs, PCP and one chlorinated benzene. Sample SSI-SS-03 was located within the Cornwall Avenue Landfill Management Unit 2 (MU-2); sample SSI-SS-05 was north of the Haley benthic exceedance area identified in the RI/FS. The detection limits for several chlorinated benzenes were slightly greater than benthic criteria when normalized to TOC (SSI-SS-01, SSI-SS-02, SSI-SS-04, SSI-SS-05 and SSI-SS-07); however, no exceedances occurred when evaluated on a dry-weight basis (the original basis of the detection limit).

Three different bioassays (two acute and one chronic) were conducted on each of the three surface sediment samples and one reference sediment sample. Bioassay testing protocol requires a reference sediment with grain size matching that of the samples to be tested to factor out sediment grain-size effects on bioassay organisms. Reference sediment was collected by Ramboll from CR22 in Carr Inlet. Grain size was estimated in the field using a wet-sieve analysis of the reference sample to determine a match with the laboratory grain size results for the three samples from the Haley Site; reference sample grain size was later confirmed by laboratory analyses following PSEP protocol. Grain size characteristics (based on laboratory results) of the reference sample relative to the Site samples are provided below.

Sample	Percent Fines (%)
CR22 (Reference)	31
SSI-SS-03_0-12	26
SSI-SS-05_0-12	19
SSI-SS-06_0-12	28

SAMPLE AND REFERENCE GRAIN SIZE COMPARISON

Bioassay results are summarized in Table 5 and are shown on Figure 5; individual test results are provided

in Tables 6, 7 and 8. Ramboll's laboratory report is included as Appendix E. All results passed SMS biological effects criteria indicating that impacts to the benthic community from sediment contamination at the locations tested are unlikely. These results confirm the benthic toxicity exceedance area identified in the Haley RI/FS.

Subsurface data from intertidal sediment samples were also compared to benthic chemical criteria to support remedial design. The results are presented in Figure 6; color coding by chemical group is the same as in Figure 4. No benthic criteria were exceeded in the shallowest (0- to 2-foot) interval in three of the six cores sampled (SSI-SC-01, SSI-SC-06 and SSI-SC-07); PAHs and TPH concentrations exceeded benthic criteria in the three other cores (SSI-SC-03, SSI-SC-04 and SSI-SC-05). All the 2- to 4-foot core intervals had exceedances of PAHs, except for the two cores collected in the Cornwall Avenue Landfill MU-2. SSI-SC-05_2-4 sample also exceeded the TPH criterion. The two northern-most cores (SSI-SC-06 and SSI-SC-07) were the only cores with benthic criteria exceedances in the 4- to 6- foot bml samples; PAHs were the chemicals exceeding their respective criteria. These data are sufficient to support remedy design in the nearshore area to address risks to the benthic community.

4.2. Bioaccumulative Chemicals

Data collected as part of the SSIs are presented here to address the extent of dioxins/furans, cPAHs and PCP that was not resolved in the RI/FS. Table 4 presents the bioaccumulative IHS results for surface and subsurface samples.

4.2.1. Dioxins/Furans

Due to bay-wide elevated dioxin/furan concentrations with multiple sources, the footprint of the marine unit is defined by the extent of dioxin/furan concentrations exceeding the regional background concentration of 15 nanograms per kilogram (ng/kg) toxicity equivalent (TEQ), while the CUL of 13 ng/kg TEQ (GeoEngineers 2022) will be applied across the marine unit.

Dioxin/furan concentrations detected in the SSI surface sediment samples (Figure 7) ranged from 15.4 ng/kg TEQ (SSI-SS-08) to 52.2 ng/kg TEQ (CL-SG-04). SSI-SS-08 was collected west of the Pine Street Beach and CL-SG-04 was collected in Cornwall Avenue Landfill MU-2. Although all surface samples exceeded the regional background concentration of 15 ng/kg TEQ, the concentrations of dioxins/furans in subtidal surface sediment samples decreased in a southerly direction and in a westerly direction toward Whatcom Waterway. Dioxin/furan concentrations were less than the regional background concentration in samples previously collected by others from the Whatcom Waterway. The SSI data, combined with previously collected data, provide a sufficient basis to estimate the surface sediment area over which dioxin/furan concentrations exceed the regional background concentration.

Dioxin/furan concentrations in intertidal subsurface sediment samples (Figure 8) ranged from 2.9 ng/kg TEQ (SSI-SC-05_4-6) to 608 ng/kg TEQ (SSI-SC-06_2-4). Of the 23 subsurface samples analyzed from 12 locations, all but three exceeded the CUL (PSB-02_0-1 and PSB-03_0-1 from Pine Street Beach, and SSI-SC-05_4-6 south of Pine Street Beach). The majority of the 2015/2016 subsurface sediment dioxin/furan concentrations were less than three times the CUL. Samples collected from the upper intertidal area of the Pine Street Beach (PSB-SC-01 through PSB-SC-04, COB-CC-C1 and COB-CC-C2) had among the lowest dioxin/furan concentrations; the highest dioxin/furan concentrations, however, were detected in the lowest intertidal portion of Pine Street Beach (SSI-SC-06). Subsurface intertidal sediment

data are sufficient to support expansion of the nearshore remedy to address dioxins/furans in the Pine Street Beach area.

4.2.2. Carcinogenic PAHs

The SSI surface sediment cPAH concentrations (Figure 9) ranged from 13 micrograms per kilogram (μ g/kg) TEQ to 1,140 μ g/kg TEQ, with only three of the 11 post-RI samples exceeding the CUL of 229 μ g/kg TEQ (GeoEngineers 2022). Samples with concentrations exceeding the CUL were located within the nearshore area adjacent to the upland unit; cPAHs in offshore surface sediment samples collected to the south were less than the CUL of 229 μ g/kg TEQ.

Exceedances of the CUL in subsurface samples were more frequent. Subsurface cPAH TEQ concentrations (Figure 10) ranged from 4 μ g/kg TEQ to 1,000 μ g/kg TEQ with 11 of the 21 samples analyzed (from 10 locations) exceeding the CUL. The Pine Street Beach shallow subsurface sediment samples (PSB-SC-01 through PSB-SC-04) represented the lowest concentrations (4.4 μ g/kg TEQ to 38.3 μ g/kg TEQ) and all were less than the CUL. The highest concentration was detected at SSI-SC-05 in the 0- to 2-foot sample interval. Concentrations were also elevated in the 2- to 4-foot bml sample in several other cores (SSI-SC-05 through SSI-SC-07). All subsurface exceedances of cPAHs co-occurred with dioxins/furans exceedances of the CUL.

The previously collected RI data in concert with the SSI data identify the bayward extent of cPAH concentrations exceeding the CUL. Elevated concentrations of cPAHs are present in sediment in the nearshore area adjacent to the upland unit in the Pine Street Beach area and at a location further west along the shoreline (Figure 9). These areas coincide with the site of the former Sehome Dock and other historical features, including the Port's present-day barge dock associated with the Bellingham Shipping Terminal. The former Sehome Dock was a large over-water freight wharf that included rail and warehouse facilities operated by Bellingham Bay and British Columbia Railroad Company and other companies (Figures F-1 and F-2; Appendix F). Historic overwater features also existed along the present-day shoreline west of Pine Street Beach. These included the Pine Street Trestle and City Wharf (precursor to the Bellingham Shipping Terminal Figure F-3). Further development of the Bellingham Shipping Terminal occurred on filled land that produced the present-day upland between Pine Street Beach and Whatcom Waterway. A composite view of historical nearshore and over-water features is presented in Figure F-4. The outlines of these historical features are also shown in Figure 9 (and Figure 14). It is likely that the nearshore area from Pine Street Beach to Whatcom Waterway was impacted by these historical activities as well as the over-water structures that supported these activities since the late 1800s.

Sediment analytical data also suggest that PAHs along the shoreline west of Pine Street Beach originated from a non-Haley source (Appendix G). The PAH profile of Haley-related chemicals is reflected by analytical data from samples RI-1 through RI-5 (Figures G-1 through G-5), which were collected immediately adjacent to the former Haley facility in an area impacted by the release of wood treatment chemicals. The profile of PAHs in sediment west of Pine Street Beach (Port barge dock area) is reflected in samples 6B-01-SS, 6C-01-SS, and 6C-02-SS (Figures G-6 through G-8). PAH profiles are similar within each of these areas but differ between the areas. In general, lighter molecular weight PAHs (naphthalene through anthracene) are more prevalent in sediment adjacent to the Haley facility than west of Pine Street Beach. PAH ratios are commonly used to evaluate sources and the most common ratio is fluoranthene:pyrene (F/P). This ratio is commonly used because these PAHs are typically abundant, behave similarly in the environment and resist weathering. Differences in F/P ratios, therefore, are more apt to reflect different sources as opposed to the effects of environmental fate and transport. The F/P ratio in all samples adjacent to the former Haley facility are <1, as opposed to samples collected west of Pine Street Beach which are all >1. Another obvious

difference is the relative abundance of dibenzo(a,h)anthracene compared to indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene in samples from the two areas. Dibenzo(a,h)anthracene is less abundant than the other two compounds in the Haley samples, and more abundant than the other compounds in samples west of Pine Street Beach.

PAHs in samples COB-SS-04 and COB-SS-05 appear to represent mixed sources (Figures G-9 and G-10). These samples were collected at the location of the subtidal cPAH hot spot near Pine Street Beach (Figure 14). These samples exhibit some similarity to the Haley samples based on the relative abundance of light molecular weight PAHs; however, the F/P ratio in these samples resembles sediment in the Port barge dock area. Another diagnostic ratio used to evaluate PAH sources is anthracene:phenanthrene. The anthracene:phenanthrene ratio is considerably lower in the subtidal Pine Street Beach samples than either the Haley or Port barge dock samples.

The elevated cPAH concentrations in the Pine Street Beach area fall within the footprint of dioxins/furans that will be actively remediated as part of the Haley cleanup. The elevated cPAH concentration near the Bellingham Shipping Terminal barge dock is within the footprint of the proposed cap and armoring that will be constructed as part of the cleanup of Whatcom Waterway Phase 2 Areas. Concentrations of cPAHs between these locations are less than the CUL.

4.2.3. Pentachlorophenol

PCP concentrations in SSI surface sediment samples (Figure 11) ranged from non-detect (85U μ g/kg) to 580 μ g/kg. Three of the eight sediment samples exceeded the CUL of 100 μ g/kg (Ecology 2018). All surface sediment sample exceedances occurred in the intertidal area and fell within the footprint of dioxin/furan and cPAH exceedances.

Concentrations of PCP in subsurface sediment samples ranged from 12 μ g/kg to 250 μ g/kg (Figure 12); only four of the 19 samples analyzed exceeded the CUL. The Pine Street Beach samples represented the lowest concentrations (12 μ g/kg to 33 μ g/kg); all were below the CUL. The highest concentration occurred at SSI-SC-06 in the 2-to-4-foot bml sample interval (250 μ g/kg). All subsurface sediment sample exceedances occurred in the intertidal area and fell within the footprint of dioxin/furan and cPAH exceedances.

5.0 DISCUSSION

Data presented in this report provide the necessary information for Ecology development of an updated CAP for the Haley Site. The nearshore SSI chemical and biological data confirm that the benthic toxicity exceedance area does not extend further north or south than shown in the RI/FS. As a result, the nearshore sediment removal and capping components of the preferred remedy are expected to fully address risks to the benthic community.

The SSI data also adequately characterize the extent of bioaccumulative compounds. The spatial distribution of dioxins/furans, cPAHs and PCP in surface sediment were interpolated using an inversedistance weighted model (Figures 13, 14 and 15, respectively). For each constituent, the geographic information system (GIS)-based model displays data for four different concentration intervals. The upper limit of each interval is set at the following approximate concentrations: the CUL, about 3.5 times the CUL, about 8 times the CUL, and greater than 8 times the CUL. GIS interpolation models are affected by the density of the data and the magnitude of the known concentrations. The models interpolate data far beyond the last meaningful control point when data are sparse. For this reason, the outer boundary of the interpolated data was manually selected based on a practical interpretation of the data. For instance, the southern 15 ng/kg dioxin/furan concentration boundary was selected closer to samples CL-SG-1, SSI-SS-12, and SSI-SS-16 than the GIS model would otherwise indicate. Dioxin/furan concentrations in these samples are 15.5, 16.9 and 15.5 ng/kg, respectively. These values only very slightly exceed the regional background value of 15 ng/kg. However, given the wide spacing in data points, the true location of the 15 ng/kg boundary line may in some locations vary several hundred feet landward or seaward from its interpolated position.

The dioxin/furan footprint in surface sediment encompasses the cPAH and PCP footprints when compared to their respective CULs (Figures 13, 14 and 15). The distribution of dioxins/furans can therefore be used to establish the marine unit boundary.

The footprint of bioaccumulative compounds is considerably larger than the spatial extent of the preferred sediment remedy shown in the Haley FS. This was anticipated at the time the FS was prepared and s reflected in the cleanup documents generated since completion of the SSI's. The footprint of bioaccumulative compounds also overlaps with remedial action areas associated with the adjacent Whatcom Waterway and Cornwall Landfill cleanups.

6.0 LIMITATIONS

We have prepared this report for the City of Bellingham (City) for the R.G. Haley International Site as an addendum to the remedial investigation and feasibility study. The City may distribute copies of this report to regulatory agencies as may be required for the project.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices for environmental investigations in this area at the time this report was prepared.

Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

7.0 REFERENCES

- GeoEngineers. 2016a. Final Remedial Investigation/Feasibility Study. Volume 1: Remedial Investigation Report. Prepared for the City of the Bellingham. February 1, 2016.
- GeoEngineers. 2016b. Final Remedial Investigation/Feasibility Study. Volume 2: Feasibility Study Report. Prepared for the City of the Bellingham. February 1, 2016.
- GeoEngineers. 2016c. Memorandum to Amy Kraham, City of Bellingham. Work Plan for Supplemental Sampling at the Pine Street Beach (Cornwall Cove). February 8, 2016. (Approved by Ecology February 11, 2016).

- GeoEngineers. 2015. Final Work Plan, Supplement Sediment Investigation. Prepared for the City of Bellingham. August 21, 2015.
- GeoEngineers. 2013. Memo to Amy Kraham, City of Bellingham. Pocket Beach ("Cornwall Cove")–Beach Surface Sediment Sampling Plan for Dioxins/Furans. July 10, 2013.
- GeoEngineers. 2022. Final Engineering Design Report. Prepared by the City of Bellingham. May 13, 2022.
- Ecology. 2015. Sediment Cleanup Users Manual II (SCUM II), Ecology Publication No. 12-09-057, March 2015, <u>https://fortress.wa.gov/ecy/publications/documents/1209057.pdf</u>.
- Ecology. 2018. Cleanup Action Plan. R.G. Haley International Corporation Site, Bellingham, Washington. April 2018.
- Landau Associates. 2016. Agency Review Draft Engineering Design Report. Cornwall Avenue Landfill Site, Bellingham, WA. Prepared for: Port of Bellingham, Bellingham, WA. March 30, 2016.
- Puget Sound Estuary Protocol. 1986. Recommended Protocols for measuring conventional sediment variables in Puget Sound. Prepared by: PTI Environmental Services. Prepared for: U.S. Environmental Protection Agency, Seattle, WA and Puget Sound Water Quality Authority, Olympia, WA. March 1987; minor revision April 2003.
- Puget Sound Estuary Protocol. 1995. Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. Prepared by: PTI Environmental Services. Prepared for: U.S. Environmental Protection Agency, Seattle, WA and Puget Sound Water Quality Authority, Olympia, WA. Revised July 1995.
- Puget Sound Estuary Protocol. 1997. Recommended guidelines for measuring organic compounds in Puget Sound water, sediment and tissue samples. Prepared by: PTI Environmental Services. Prepared for: U.S. Environmental Protection Agency, Seattle, WA and Puget Sound Water Quality Authority, Olympia, WA. Revised April 1997.
- U.S. Environmental Protection Agency (EPA). 2008. Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. EPA-540-R-08-01. September 2008.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. EPA-540-R-08-005. January 2009.
- EPA. 2011. Contract Laboratory Program National Functional Guidelines for Chlorinated Dioxin/Furan Data Review. EPA-540-R-11-016. September 2011.

Table 1

Sample Locations R.G. Haley Site Bellingham, Washington

Sample	Sample	Date		oordinates ² e Planes (NAD83)	Water Surface Elevation	Depth of Water Column	Mudline Elevation	Sampling	Penetration Depth (ft below		le Interval / mud line)	Elevation at Top of Sample
Location ¹	Identification	Sampled	Easting	Northing	(ft NAVD88)	(ft)	(ft NAVD88)	Method	mudline)	Top (ft)	Bottom (ft)	(ft NAVD88)
SSI-SS-01	SSI-SS-01-0-12	10/15/2015	1239699.93	639393.98	4.31	9.50	-5.24	Power Grab	0.30	0	0.3	-5.24
	SSI-SS-DUP-03	10/15/2015	1239699.93	639393.98	4.31	9.50	-5.24			0	0.3	-5.24
SSI-SS-02	SSI-SS-02_0-12	10/15/2015	1239821.87	639346.08	3.51	0.00	3.51	Hand-collected	0.39	0	0.39	3.51
SSI-SS-03	SSI-SS-03_0-12	10/15/2015	1239771.03	639465.48	4.51	12.80	-8.29	Power Grab	0.69	0	0.39	-8.29
SSI-SS-04	SSI-SS-04_0-12	10/15/2015	1240507.51	639802.05	2.51	0.00	2.51	Hand-collected	0.39	0	0.39	2.51
SSI-SS-05	SSI-SS-05_0-12	10/12/2015	1240424.93	639823.96	2.91	7.80	-4.89	Power Grab	0.46	0	0.39	-4.89
SSI-SS-06	SSI-SS-06_0-12	10/12/2015	1240485.55	639964.27	3.21	8.70	-5.49	Power Grab	0.56	0	0.39	-5.49
SSI-SS-07	SSI-SS-07_0-12	10/12/2015	1240451.56	640149.78	3.71	7.40	-3.69	Power Grab	0.43	0	0.39	-3.69
SSI-SS-08	SSI-SS-08_0-12	10/12/2015	1240062.51	640265.96	4.51	26.50	-21.99	Power Grab	0.79	0	0.39	-21.99
SSI-SS-09	SSI-SS-09_0-12	10/12/2015	1239630.95	639725.00	4.61	21.50	-16.89	Power Grab	0.75	0	0.39	-16.89
SSI-SS-10	SSI-SS-10_0-12	10/12/2015	1239203.19	639263.41	5.31	28.80	-23.49	Power Grab	0.46	0	0.39	-23.49
SSI-SS-11	SSI-SS-11_0-12	10/12/2015	1238821.87	638767.28	7.41	30.10	-22.69	Power Grab	0.72	0	0.39	-22.69
SSI-SS-12	SSI-SS-12_0-12	10/12/2015	1238699.52	638349.08	4.51	29.60	-25.09	Power Grab	0.69	0	0.39	-25.09
SSI-SS-13	SSI-SS-13_0-12	10/12/2015	1239637.27	640607.96	7.01	33.30	-26.29	Power Grab	0.72	0	0.39	-26.29
331-33-13	SSI-SS-DUP-01	10/12/2015	1239637.27	640607.96	7.01	33.30	-26.29	Fower Grab	0.72	0	0.39	-26.29
SSI-SS-14	SSI-SS-14_0-12	10/13/2015	1239617.14	640203.43	6.01	27.40	-21.39	Power Grab	0.52	0	0.39	-21.39
SSI-SS-15	SSI-SS-15_0-12	10/13/2015	1239228.96	639802.28	5.71	29.40	-23.69	Power Grab	0.46	0	0.39	-23.69
SSI-SS-16	SSI-SS-16_0-12	10/13/2015	1238508.27	639067.91	4.81	30.40	-25.59	Power Grab	0.46	0	0.39	-25.59
SSI-SS-17	SSI-SS-17_0-12	10/13/2015	1239120.49	640318.04	4.51	32.30	-27.79	Power Grab	0.59	0	0.39	-27.79
SSI-SS-18	SSI-SS-18_0-12	10/13/2015	1238808.66	639768.38	3.61	28.10	-24.49	Dowor Crob	0.46	0	0.39	-24.49
221-22-10	SSI-SS-DUP-02	10/13/2015	1238808.66	639768.38	3.61	28.10	-24.49	Power Grab	0.46	0	0.39	-24.49
	SSI-SC-01_0-2	10/14/2015								0	2.0	-5.89
SSI-SC-01	SSI-SC-DUP-01	10/14/2015	1239695.34	620267.69	4.51	10.40	-5.89	Vibrosse	6.0	0	2.0	-5.89
551-50-01	SSI-SC-01_2-4	10/14/2015	1239695.34	639367.68	4.51	10.40	-5.69	Vibracore	6.0	2	4.0	-7.89
	SSI-SC-01_4-6	10/14/2015								4	6.0	-9.89
SSI-SC-02 ³	Abandoned	Abandoned	1239814.39 ³	639375.35 ³		-						
	SSI-SC-03_0-2	10/14/2015								0	2.0	-3.09
	SSI-SC-03_2-4	10/14/2015	1							2	4.0	-5.09
SSI-SC-03	SSI-SC-03_4-6	10/14/2015	1239788.45	639426.59	4.51	7.60	-3.09	Vibracore	8.0	4	6.0	-7.09
	SSI-SC-DUP-02	10/14/2015	1							0 0 0 2 4 0 2 2	6.0	-7.09
	SSI-SC-03_6-8	10/14/2015	1							6	8.0	-9.09

Sample Location ¹	Sample Identification	Date Sampled		oordinates ² e Planes (NAD83) Northing	Water Surface Elevation (ft NAVD88)	Depth of Water Column (ft)	Mudline Elevation (ft NAVD88)	Sampling Method	Penetration Depth (ft below mudline)	•	le Interval mud line) Bottom (ft)	Elevation at Top of Sample (ft NAVD88)
	SSI-SC-04_0-2	10/15/2015							,	0	2.0	0.41
SSI-SC-04	SSI-SC-DUP-03	10/15/2015	1240482.54	639785.46	7.31	6.90	0.41	Vibracore	4.0	0	2.0	0.41
	SSI-SC-04_2-4	10/15/2015	1							2	4.0	-1.59
	SSI-SC-05_0-2	10/13/2015								0	2.0	-3.49
00100.05	SSI-SC-05_2-4	10/13/2015	1010100.01	000004.40	0.04	0.50	0.40	N.//1		2	4.0	-5.49
SSI-SC-05	SSI-SC-05_4-6	10/13/2015	1240432.94	639831.19	6.01	9.50	-3.49	Vibracore	8.0	4	6.0	-7.49
	SSI-SC-05_6-8	10/13/2015								6	8.0	-9.49
	SSI-SC-06_0-2	10/13/2015								0	2.0	-2.79
	SSI-SC-06_2-4	10/13/2015	4040544.00	000004.40	4.04	c 00	0.70) (le un e e un	7.0	2	4.0	-4.79
SSI-SC-06	SSI-SC-06_4-6	10/13/2015	1240514.26	639964.40	4.01	6.80	-2.79	Vibracore	7.0	4	6.0	-6.79
	SSI-SC-06_6-7	10/13/2015								6	7.0	-8.79
	SSI-SC-07_0-2	10/13/2015								0	2.0	-3.29
	SSI-SC-DUP-04	10/13/2015								0	2.0	-3.29
SSI-SC-07	SSI-SC-07_2-4	10/13/2015	1240430.59	640152.61	4.91	8.20	-3.29	Vibracore	8.0	2	4.0	-5.29
	SSI-SC-07_4-6	10/13/2015								4	6.0	-7.29
	SSI-SC-07_6-8	10/13/2015								6	8.0	-9.29
PSB-SC-01	PSB-SC-01-0-1	2/18/2016	1240606.78	639879.16	4.33	0.00	4.33		2.0	0	1.0	4.33
PSB-5C-01	PSB-SC-01-1-2	2/18/2016	1240606.78	639879.16	4.33	0.00	4.33	Hand-collected	2.0	1	2.0	3.33
PSB-SC-02	PSB-SC-02-0-1	2/18/2016	1240583.96	639961.75	1.31	0.00	1.31		2.0	0	1.0	1.31
PSB-5C-02	PSB-SC-02-1-2	2/18/2016	1240583.96	039901.75	1.31	0.00	1.31	Hand-collected	2.0	1	2.0	0.31
PSB-SC-03	PSB-SC-03-0-1	2/18/2016	1240637.16	639963.99	6.11	0.00	6.11	Hand-collected	2.0	0	1.0	6.11
P3D-3C-03	PSB-SC-03-1-2	2/18/2016	1240037.10	639963.99	0.11	0.00	0.11	Hand-collected	2.0	1	2.0	5.11
PSB-SC-04	PSB-SC-04-0-1	2/18/2016	1240607.72	640040.70	4.71	0.00	4.71	Hand-collected	2.0	0	1.0	4.71
P3D-3C-04	PSB-SC-04-1-2	2/18/2016	1240607.72	640040.70	4.71	0.00	4.71	Hand-collected	2.0	1	2.0	3.71
CL-SG-1	CL-SG-1_0-10	6/10/2015	1239046.85	638088.18	4.61	13.90	-9.29	Power Grab	NR	0	0.33	-9.29
CL-SG-3	CL-SG-3_0-10	6/10/2015	1239171.17	638823.80	4.11	21.00	-16.89	Power Grab	NR	0	0.33	-16.89
CL-SG-4	CL-SG-4_0-10	6/10/2015	1239423.47	639210.89	3.21	20.00	-16.79	Power Grab	NR	0	0.33	-16.79
COB-CC-C1 ⁴	COB-CC-C1_0-1	8/17/2013	1240608.64	639939.70	-0.78 to 8.45	0.00	-0.78 to 8.45	Hand-collected	1.0	0	1.0	-0.78 to 8.45
COB-CC-C2 ⁴	COB-CC-C2_0-1	8/17/2013	1240602.86	640011.43	-0.75 to 8.83	0.00	-0.75 to 8.83	Hand-collected	1.0	0	1.0	-0.75 to 8.83

Notes:

 $^{1}\,\mbox{Sediment}$ sample locations shown on Figure 3.

² Obtained using a real time kinematic (RTK) - global positioning system (GPS) and/or hand-held Trimble GPS device.

³Sample location abandoned after multiple refusals. Coordinates are for proposed location.

⁴ Composite samples, reporting Easting and Northings centroid and elevations range.

ft = feet

NR = not reported

Table 2

Summary of Analyses R.G. Haley Site Bellingham, Washington

								Analysis				
Location	Sample	Sample Interval		Dioxins/ Furans	Total Organic Carbon	Total Solids	Grain Size	SVOCs	cPAHs	Chlorophenols	TPH (Diesel- and Heavy Oil-Range)	Bioassay
Description	Location	(depth below mud line in feet)	Sampling Method	EPA Method 1613 Mod	Plumb 1981, Standard Method 5310B or SW846 Method 9060	PSEP 1986	PSEP 1986 or ASTM D- 422 Mod	EPA 8270	EPA 8270 SIM low level	EPA 8041	NWTPH-Dx with acid/ silica gel cleanup	PSEP 1995 ¹
	SSI-SS-01	0-0.30	Power Grab		Х	Х	Х	Х	Х	Х	А	А
	SSI-SS-02	0-0.39	Hand-collected	Х	Х	Х	Х	Х	Х	Х	Х	А
	SSI-SS-03	0-0.39	Power Grab		Х	Х	Х	Х	Х	Х	Х	Х
	SSI-SS-04	0-0.39	Hand-collected		Х	Х	Х	Х	Х	Х	Х	А
	SSI-SS-05	0-0.39			Х	Х	Х	Х	Х	Х	Х	Х
	SSI-SS-06	0-0.39	Power Grab		X	Х	X	Х	X	X	A	Х
	SSI-SS-07	0-0.39			X	X	X	Х	X	X	A	A
	001.00.04	0-2		X	X	X	X		X	X ²	A	
	SSI-SC-01	2-4 4-6		X	X	X	X		X	X ²	A	
		4-6 0-2		A X	A X	A X	A X		A X	A X ²	A X	
		2-4		X	X	X	X		X	X ²	X	
	SSI-SC-03	4-6		A	A	A	A		A	A	A	
		6-8		A	A	A	A		A	A	A	
		0-2		X	X	X	X		X	X ²	X	
nt	SSI-SC-04	2-4		Х	Х	Х	Х		Х	X ²	х	
Intertidal Sediment		0-2		Х	Х	Х	Х		Х	X ²	Х	
dir		2-4	Vibracore	Х	Х	Х	Х		Х	X ²	Х	
Se	SSI-SC-05	4-6		Х	Х	Х	Х		Х	А	Х	
a		6-8		А	A	А	А		А	А	А	
tid		0-2		Х	Х	Х	Х		Х	X ²	A	
ter	SSI-SC-06	2-4		Х	Х	Х	Х		Х	X ²	A	
Ч		4-6		Х	Х	Х	Х		Х	X ²	A	
		6-7		A	A	A	А		A	A	A	
		0-2		Х	Х	Х	Х		Х	X ²	A	
	SSI-SC-07	2-4		X	X	Х	Х		Х	X ²	A	
		4-6		X	X	X	X		X	A	A	
		6-8		A X ³	A	A	A		A	A	A	
	PSB-SC-01 PSB-SC-01	0-1 1-2	Hand-collected Hand-collected		X ³	X ³	X ³		X A	X ²		
	PSB-SC-01 PSB-SC-02	0-1	Hand-collected	A X ³	A X ³	A X ³	A X ³		X	A X ²		
	PSB-SC-02 PSB-SC-02	1-2	Hand-collected	χ ³	X X ³	X X ³	X X ³		X	X X ²		
	PSB-SC-02	0-1	Hand-collected	 χ ³	 Х ³	х Х ³	л Х ³		X	X ²		
	PSB-SC-03	1-2	Hand-collected	х ³	X ³	X ³	х ³		X	X ²		
	PSB-SC-04	0-1	Hand-collected	X ³	X ³	X ³	X ³		X	X ²		
	PSB-SC-04	1-2	Hand-collected	A	A	A	A		A	A		
	COB-CC-C1	0-1	Hand-collected	Х	Х	Х	Х					
	COB-CC-C2	0-1	Hand-collected	Х	Х	Х	Х					
	SSI-SS-08	0-0.39		Х	Х	Х	Х		А			
	SSI-SS-09	0-0.39		Х	Х	Х	Х		Х	X ²		
	SSI-SS-10	0-0.39		Х	Х	Х	Х		Х			
int	SS-SSI-11	0-0.39		Х	Х	Х	Х		Х			
me	SSI-SS-12	0-0.39		Х	Х	Х	Х		Х			
ždii	SSI-SS-13	0-0.39		A	A	A	A		A			
Šé	SSI-SS-14	0-0.39	Power Grab	X	Х	Х	Х		A			
Subtidal Sediment	SSI-SS-15	0-0.39		X	X	Х	Х		A			
tic	SSI-SS-16	0-0.39		x	X	Х	Х		A			
jut	SSI-SS-17	0-0.39		A	A	A	A		A			
0)	SSI-SS-18	0-0.39		A	A	A	A		A			
	CL-SG-1	0-0.33		X								
	CL-SG-3	0-0.33		X								
	CL-SG-4	0-0.33		Х								

Notes:

¹Benthic PAH toxicity evaluated with exposure to ultraviolet (UV) light according to the SCUM II 2015 Appendix C.

²Pentachlorophenol analysis only.

³Confirmation analysis to address the effect of compositing on previously collected intertidal sediment samples from 2013.

A = archive

cPAH = carcinogenic polycyclic aromatic hydrocarbons

EPA = Environmental Protection Agency

ft = feet

PAH = polycyclic aromatic hydrocarbons

PSEP = Puget Sound Estuary Program

SMS = Sediment Management Standards

SVOCs = semivolatile organic compounds

TPH = total petroleum hydrocarbons

X = chemical or chemical group was analyzed

-- = not analyzed for this group

Table 3

2013-2016 Sediment Analytical Results Compared to Screening Levels for Protection of Benthic Organisms

R.G Haley Site Bellingham, Washington

		Sa	ample Location	PSB-01	PSB-02	PSB-02	PSB-03	PSB- 03	PSB-04	SSI-SS-01	SSI-SC-01	SSI-SC-01	SSI-SS-02
			Sample ID:	PSB-SC-01-0-1	PSB-SC-02-0-1	PSB-SC-02-1-2	PSB-SC-03-0-1	PSB-SC-03-1-2	PSB-SC-04-0-1	SSI-SS-01_0-0.39	SSI-SC-01_0-2	SSI-SC-01_2-4	SSI-SS-02_0-0.39
			Date Sampled:	2/18/2016	2/18/2016	2/18/2016	2/18/2016	2/18/2016	2/18/2016	10/15/2015	10/14/2015	10/14/2015	10/15/2015
		Depth Ir	nterval (ft bml):	0-1 ft	0-1 ft	1-2 ft	0-1 ft	1-2 ft	0-1 ft	0-0.39 ft	0-2 ft	2-4 ft	0-0.39 ft
	Elevation a	t Top of Samp	le (ft NADV88):	4.3	1.3	0.3	6.1	5.1	4.7	-5.2	-5.9	-7.9	-0.5
			Collected By			•	•	Geo	Engineers		•	-	
Parameter	Unit(s)	SCO/LAET ¹	-										
Total Organic Carbon	Percent	0.5	3.5	0.243	0.587	0.279	0.195	0.491	0.742	1.06	1.00	0.824 J	0.398
Total Solids	Percent	NE	NE	82.61	83.26	81.34	95.16	94.74	92.41	70.67	72.72	72.57	84.94
LPAHs (OC-Normalized)													
Sum of LPAHs	mg/kg OC	370	780	-		-		-	-	54	84	95	3.5
2-Methylnaphthalene	mg/kg OC	38	64	-		-	-	-	-	4.5	16	9.3	4.8 U
Acenaphthene	mg/kg OC	16	57	-	-	-	-		-	3.6	4.2	4.0	4.8 U
Acenaphthylene	mg/kg OC	66	66	-	-	-		-		3.6	5.0	4.4	4.8 U
Anthracene	mg/kg OC	220	1,200	1	-	-	-	-	-	6.4	12	13	4.8 U
Fluorene	mg/kg OC	23	79	-	_	-	-	-	-	4.2	6.8	7.8	4.8 U
Naphthalene	mg/kg OC	99	170	-	-	-	-	-	-	8	22	32	4.8 U
Phenanthrene	mg/kg OC	100	480	-		-	-	-	-	30	34	34	3.5
LPAHs (Dry Weight)													
Sum of LPAHs	µg/kg	5,200	5,200	-		-	-	-		570	840	780	14 J
2-Methylnaphthalene	µg/kg	670	670	_		-	-	-		48	160 J	77	19 U
Acenaphthene	µg/kg	500	500			-	-			38	42	33	19 U
Acenaphthylene	µg/kg	1,300	1,300			-				38	50 J	36	19 U
Anthracene	µg/kg	960	960			-				68	120	110	19 U
Fluorene	µg/kg	540	540	-		-				45	68	64	19 U
Naphthalene	µg/kg	2,100	2,100			_	-			80	220	260	19 U
Phenanthrene	µg/kg	1,500	1,500			-				300	340	280	14 J
HPAHs (OC-Normalized)													
Sum of HPAHs	mg/kg OC	960	5,300			-		-		120	210	220	29.6
Benzo(a)anthracene	mg/kg OC	110	270	3.2	1.7	9.3	3.4	0.8 J	1.1	10	16	18	2.8
Benzo(a)pyrene	mg/kg OC	99	210	3.5	1.5	10.0	2.9	0.5 J	1.0	14	22	22	3.5
Benzofluoranthenes (Total)	mg/kg OC	230	450	5.8	3.6	19.0	6.2	1.7	2.0	22	34	40	7
Benzo(g,h,i)perylene	mg/kg OC		78	-	_		—		-	8.2	13	10	3
Chrysene	mg/kg OC		460	3.8	3.1	14.0	4.4	1.1	1.6	13	20	21	4.3
Dibenzo(a,h)anthracene	mg/kg OC		33	1.9 U	0.8 J	2.0	2.5 U	1.0 U	0.6 U	2.4	3.2	2.7	1.3
Fluoranthene	mg/kg OC		1,200	_	_		_		_	21	41	45	4
Indeno(1,2,3-c,d)pyrene	mg/kg OC		88	2.3	1.2	5.4	2.5	0.7	0.8	7	11	10	4.8 U
Pyrene	mg/kg OC		1,400		_		_		_	25	53	55	4.3

		Sa	mple Location	PSB-01	PSB-02	PSB-02	PSB-03	PSB-03	PSB-04	SSI-SS-01	SSI-SC-01	SSI-SC-01	SSI-SS-02
			Sample ID:	PSB-SC-01-0-1	PSB-SC-02-0-1	PSB-SC-02-1-2	PSB-SC-03-0-1	PSB-SC-03-1-2	PSB-SC-04-0-1	SSI-SS-01_0-0.39	SSI-SC-01_0-2	SSI-SC-01_2-4	SSI-SS-02_0-0.39
			Date Sampled:	2/18/2016	2/18/2016	2/18/2016	2/18/2016	2/18/2016	2/18/2016	10/15/2015	10/14/2015	10/14/2015	10/15/2015
			nterval (ft bml):	0-1 ft	0-1 ft	1-2 ft	0-1 ft	1-2 ft	0-1 ft	0-0.39 ft	0-2 ft	2-4 ft	0-0.39 ft
	Elevation at	-	le (ft NADV88):	4.3	1.3	0.3	6.1	5.1	4.7	-5.2	-5.9	-7.9	-0.5
			Collected By			010	•		DEngineers	•			010
			,										
Parameter	Unit(s)	SCO/LAET ¹	CSL/2LAET ¹										
HPAHs (Dry Weight)													
Sum of HPAHs	µg/kg	12,000	17,000	-		-		-		1,300	2,100	1,800	120
Benzo(a)anthracene	μg/kg	1,300	1,600	7.7	9.8	26	6.6	3.8 J	7.9	110 J	160	150	11 J
Benzo(a)pyrene	μg/kg	1,600	1,600	8.5	9	28	5.6	2.6 J	7.3	150	220	180	14 J
Benzofluoranthenes (Total)	µg/kg	3,200	3,600	14	21	53	12	8.4	15	230 J	340	300	28 J
Benzo(g,h,i)perylene	μg/kg	670	720			-		-		87	130	100	10 J
Chrysene	μg/kg	1,400	2,800	9.2	18	39	8.6	5.6	12	140	200	170	17 J
Dibenzo(a,h)anthracene	μg/kg	230	230	4.7 U	4.5 J	5.5	4.8 U	4.9 U	4.8 U	25	32	22	5.3
Fluoranthene	μg/kg	1,700	2,500	-		-		-		220 J	410	370	16 J
Indeno(1,2,3-c,d)pyrene	μg/kg	600	690	5.6	7.1	15	4.9	3.3	5.8	74 J	110	83	19 U
Pyrene	μg/kg	2,600	3,300	-		-	-	-	-	260 J	530	450	13 8 17 J
Petroleum Hydrocarbons (Dry Weight)	με/ Νε	2,000	3,300							2003	500	400	115
Diesel Fuel	mg/kg	260	260	-				_		_			16
Motor Oil	mg/kg	260	260										140
Petroleum Hydrocarbons (Total)	mg/kg	260	260										156
Chlorinated Hydrocarbons (OC-Normalized)	iiig/ kg	200	200			_		-		_			130
1,2,4-Trichlorobenzene	mg/kg OC	0.81	1.8			_				1.8 U			4.8 U
1,2-Dichlorobenzene (o-Dichlorobenzene)	mg/kg OC	2.3	2.3							1.8 U			4.8 U
1,3-Dichlorobenzene (m-Dichlorobenzene)	mg/kg OC	NE	NE					-		1.8 U			4.8 U
1,4-Dichlorobenzene (p-Dichlorobenzene)		3.1	9					-		3			4.8 U
Hexachlorobenzene	mg/kg OC	0.38	2.3	-			_			0.44 U			4.8 U
Chlorinated Hydrocarbons (Dry Weight)	mg/kg OC	0.36	2.3	-		-	_		-	0.44 0		-	1.2 0
1,2,4-Trichlorobenzene	ug ///g	31	51							19 U			19 U
1,2-Dichlorobenzene (o-Dichlorobenzene)	µg/kg	35	51			-	-	-		19 U			19 U
	µg/kg			-		-		-			-		
1,3-Dichlorobenzene (m-Dichlorobenzene)	μg/kg	NE 110	NE 110	-		-		-		19 U 30			19 U 19 U
1,4-Dichlorobenzene (p-Dichlorobenzene)	µg/kg			_		-	-	-			-		
Hexachlorobenzene Phthalates (OC-Normalized)	µg/kg	22	70	-		-	-	-		4.7 U			4.7 U
Bis(2-Ethylhexyl) Phthalate	mg/kg 00	47	78							13			12 U
	mg/kg OC							-	-	1.8 U	-	-	4.8 U
Butyl benzyl Phthalate	mg/kg OC		64	-	_	-	-		-			-	
Dibutyl Phthalate	mg/kg OC		1,700	-	-	-	-		-	1.8 U		-	4.8 U
Diethyl Phthalate	mg/kg OC	61	110	-	-		-		-	3.1		-	30
Dimethyl Phthalate	mg/kg OC		53	-	-		-		-	1.8 U		-	4.8 U
Di-n-Octyl Phthalate	mg/kg OC	58	4,500	-	-	-	-		-	1.8 U		-	4.8 U
Phthalates (Dry Weight)	- 11 -	4 000	4 000							4.40			4 - 7 1 1
Bis(2-Ethylhexyl) Phthalate	µg/kg	1,300	1,900	_		-	-	-		140	-		47 U
Butyl Benzyl Phthalate	µg/kg	63	900	-		-		-		19 U	-		19 U
Dibutyl Phthalate	µg/kg	1,400	1,400	-		-	-	-		19 U	-		19 U
Diethyl Phthalate	µg/kg	200	200	-		-	-	-		33 U	_		100 U
Dimethyl Phthalate	µg/kg	71	160	-		_		-		19 U	_		19 U
Di-n-Octyl Phthalate	µg/kg	6,200	6,200	-	00000					19 U			19 U

		Sa	mple Location	PSB-01	PSB-02	PSB-02	PSB-03	PSB-03	PSB-04	SSI-SS-01	SSI-SC-01	SSI-SC-01	SSI-SS-02
			Sample ID:	PSB-SC-01-0-1	PSB-SC-02-0-1	PSB-SC-02-1-2	PSB-SC-03-0-1	PSB-SC-03-1-2	PSB-SC-04-0-1	SSI-SS-01_0-0.39	SSI-SC-01_0-2	SSI-SC-01_2-4	SSI-SS-02_0-0.39
			Date Sampled:	2/18/2016	2/18/2016	2/18/2016	2/18/2016	2/18/2016	2/18/2016	10/15/2015	10/14/2015	10/14/2015	10/15/2015
		Depth Ir	terval (ft bml):	0-1 ft	0-1 ft	1-2 ft	0-1 ft	1-2 ft	0-1 ft	0-0.39 ft	0-2 ft	2-4 ft	0-0.39 ft
	Elevation a	t Top of Samp	le (ft NADV88):	4.3	1.3	0.3	6.1	5.1	4.7	-5.2	-5.9	-7.9	-0.5
			Collected By					Geo	Engineers				
Parameter	Unit(s)	SCO/LAET ¹	CSL/2LAET ¹										
Phenols (Dry Weight)													
2,4-Dimethylphenol	µg/kg	29	29		-	-	-	-	-	24 U	-	-	23 U
2-Methylphenol (o-Cresol)	µg/kg	63	63	-	-	-	-	-	-	19 U	-	-	19 U
4-Methylphenol (p-Cresol)	µg/kg	670	670	-	-	-	-	-	-	64	-	-	19 U
Pentachlorophenol	µg/kg	360	690	18	12	26 NJ	19 NJ	20	33	94 U	52	160 NJ	93 U
Phenol	µg/kg	420	1,200	-		_		_		280 J	-		19 U
Miscellaneous Extractables (OC-Normalized)													
Dibenzofuran	mg/kg OC	15	58	_		_		_	-	4	_		4.8 U
Hexachlorobutadiene	mg/kg OC	3.9	6.2		_	_	-	_		0.44 U	_	-	1.2 U
n-Nitrosodiphenylamine (as diphenylamine)	mg/kg OC	11	11		_		_	-	-	1.8 U	-	-	4.8 U
Miscellaneous Extractables (Dry Weight)													
Dibenzofuran	µg/kg	540	540			_		_		42	-		19 U
Hexachlorobutadiene	µg/kg	11	120	_		_		_		4.7 U	-		4.7 U
n-Nitrosodiphenylamine (as diphenylamine)	µg/kg	28	40	_		_	_	_	_	19 U	-		19 U
Benzoic Acid	µg/kg	650	650	_		_	-	_		190 U	_		190 U
Benzyl Alcohol	µg/kg	57	730		_	-	-	_		19 UJ	_		19 UJ
Conventionals													
Gravel	Percent	NE	NE	34.0	42.8	43.8	51.5	50.9	60.5	26.0	14.0	16.7	63.2
Very coarse sand	Percent	NE	NE	13.5	11.8	11.4	8.1	9.2	11.1	4.1	6.1	6.3	12.8
Coarse sand	Percent	NE	NE	26.5	20.0	19.5	15.3	15.9	13.2	6.5	8.6	8.4	14.1
Medium sand	Percent	NE	NE	22.3	20.5	18.8	20.9	19.8	11.1	26.3	26.6	22.6	8.3
Fine sand	Percent	NE	NE	2.2	2.9	3.1	3.4	3.4	3.1	22.4	25.8	23.0	1.0
Very fine sand	Percent	NE	NE	0.4	0.2	0.3	0.1	0.2	0.2	4.5	8.5	8.2	0.2
Coarse silt	Percent	NE	NE	1.0 U	1.9 U	3.1 U	0.6 U	0.5 U	1.0 U	4.7	0.9	2.6	0.4 U
Medium silt	Percent	NE	NE	1.0 U	1.9 U	3.1 U	0.6 U	0.5 U	1.0 U	0.8	1.6	1.6	0.4 U
Fine silt	Percent	NE	NE	1.0 U	1.9 U	3.1 U	0.6 U	0.5 U	1.0 U	1.2	2.6	2.5	0.4 U
Very fine silt	Percent	NE	NE	1.0 U	1.9 U	3.1 U	0.6 U	0.5 U	1.0 U	0.7	1.3	1.8	0.4 U
Coarse clay	Percent	NE	NE	1.0 U	1.9 U	3.1 U	0.6 U	0.5 U	1.0 U	0.7	0.9	1.6	0.4 U
Medium clay	Percent	NE	NE	1.0 U	1.9 U	3.1 U	0.6 U	0.5 U	1.0 U	0.7	1.2	1.7	0.4 U
Particle/Grain size, Phi Scale >10	Percent	NE	NE	1.0 U	1.9 U	3.1 U	0.6 U	0.5 U	1.0 U	1.3	2.1	3.0	0.4 U
Total Fines	Percent	NE	NE	1.0	1.9	3.1	0.6	0.5	1.0	10.2	10.5	14.8	0.4

		6.	mple Location	SSI-SS-03	SSI-SC-03	SSI-SC-03	SSI-SS-04	SSI-SC-04	SSI-SC-04	SSI-SS-05	SSI-SC-05	SSI-SC-05	SSI-SC-05
			Sample ID:		SSI-SC-03_0-2			SSI-SC-04_0-2	SSI-SC-04_2-4	SSI-SS-05 SSI-SS-05_0-0.39	SSI-SC-05_0-2	SSI-SC-05_2-4	
			Date Sampled:	10/15/2015	10/14/2015	10/14/2015	10/15/2015	10/15/2015	10/15/2015	10/12/2015	10/13/2015	10/13/2015	10/13/2015
			nterval (ft bml):	0-0.39 ft	0-2 ft	2-4 ft	0-0.39 ft	0-2 ft	2-4 ft	0-0.39 ft	0-2 ft	2-4 ft	4-6 ft
	Flevation a	•	le (ft NADV88):	-8.3	-3.1	-5.1	-0.5	0.4	-1.6	-4.9	-3.5	-5.5	-7.5
	Liotation a		Collected By		012	012	010	GeoEngi			010	010	110
								l l l l l l l l l l l l l l l l l l l					
Parameter	Unit(s)	SCO/LAET ¹	CSL/2LAET ¹										
Total Organic Carbon	Percent	0.5	3.5	2.98	1.27	2.96	0.111	1.38	2.76	1.05	17.9	8.71	2.17
Total Solids	Percent	NE	NE	55.42	61.34	51.27	79.30	84.28	78.75	66.29	58.74	48.74	49.37
LPAHs (OC-Normalized)													
Sum of LPAHs	mg/kg OC	370	780	110	190	26	13	170	220	240	73	170	16
2-Methylnaphthalene	mg/kg OC	38	64	10	14	2	17 U	6.2	12	54	3.5	6.4	1.6
Acenaphthene	mg/kg OC		57	3.7	9.4	1.2	17 U	19	28	10	4.0	4.2	0.74
Acenaphthylene	mg/kg OC	66	66	6	9.4	1.5	17 U	4.1	5.4	10	2	6.3	0.69
Anthracene	mg/kg OC		1,200	10	14	2.4	17 U	20	24	20	6.7	10	1.3
Fluorene	mg/kg OC		79	4.7	17	2.2	17 U	20	25	13	6.1	11	1.2
Naphthalene	mg/kg OC	99	170	37	87	11	5	55	69	110	30	86	6.5
Phenanthrene	mg/kg OC	100	480	50	56	7.8	7.7	54	69	74	26	54	5.5
LPAHs (Dry Weight)													
Sum of LPAHs	µg/kg	5,200	5,200	3,400	2,400	770	14 J	2,400	6,100	2,500	13,000	15,000	350
2-Methylnaphthalene	µg/kg	670	670	300	180	59	19 U	86	340	570	620	560	35
Acenaphthene	µg/kg	500	500	110	120	36	19 U	260	780	110	800	370	16
Acenaphthylene	µg/kg	1,300	1,300	180	120	43	19 U	57	150	110	360	550	15
Anthracene	µg/kg	960	960	400	180	71	19 U	270	670	200	1,200	1,000	29
Fluorene	µg/kg	540	540	140	210	65	19 U	280	680	140	1,100	980	26
Naphthalene	µg/kg	2,100	2,100	1,100	1,100	320	5.6 J	760	1,900	1,200	5,000	7,500	140
Phenanthrene	µg/kg	1,500	1,500	1,500	710	230	8.5 J	740	1,900	780	4,700	4,700	120
HPAHs (OC-Normalized)													
Sum of HPAHs	mg/kg OC	960	5,300	300	190	30	40	180	220	320	82.5	115.5	16
Benzo(a)anthracene	mg/kg OC	110	270	29	13	2.5	17 U	12	16	24	5.1	5.5	1
Benzo(a)pyrene	mg/kg OC	99	210	28	13	2.6	17 U	9.4	13	23	4.1	6.0	1.2
Benzofluoranthenes (Total)	mg/kg OC	230	450	50	18	4.1	11	15	20	45	7.3	9.3	1.7
Benzo(g,h,i)perylene	mg/kg OC	31	78	13	8.7	2.2	17 U	7	7	17	2.3	4.2	1.1
Chrysene	mg/kg OC	110	460	37	20	2.5	6.8	16	18	34	6.1	6.4	1.3
Dibenzo(a,h)anthracene	mg/kg OC	12	33	4	1.4	0.44	2.6	1	1.6	3.6	0.61	0.62	0.29
Fluoranthene	mg/kg OC	160	1,200	64	53	8.4	9	60	70	77	29	41	4.5
Indeno(1,2,3-c,d)pyrene	mg/kg OC	34	88	10	5.9	1.5	17 U	5.3	6.5	14	2.1	3.3	1
Pyrene	mg/kg OC	1,000	1,400	60	60	9.1	11	53	65	82	26	39	3.6

		Sa	ample Location	SSI-SS-03	SSI-SC-03	SSI-SC-03	SSI-SS-04	SSI-SC-04	SSI-SC-04	SSI-SS-05	SSI-SC-05	SSI-SC-05	SSI-SC-05
			Sample ID:	SSI-SS-03_0-0.39	SSI-SC-03_0-2	SSI-SC-03_2-4	SSI-SS-04-0_0.39	SSI-SC-04_0-2		SSI-SS-05_0-0.39	SSI-SC-05_0-2	SSI-SC-05_2-4	SSI-SC-05_4-6
			Date Sampled:	10/15/2015	10/14/2015	10/14/2015	10/15/2015	10/15/2015	10/15/2015	10/12/2015	10/13/2015	10/13/2015	10/13/2015
			nterval (ft bml):	0-0.39 ft	0-2 ft	2-4 ft	0-0.39 ft	0-2 ft	2-4 ft	0-0.39 ft	0-2 ft	2-4 ft	4-6 ft
	Elevation at	-	le (ft NADV88):	-8.3	-3.1	-5.1	-0.5	0.4	-1.6	-4.9	-3.5	-5.5	-7.5
			Collected By					GeoEngi	neers				
			_										
Parameter	Unit(s)	SCO/LAET ¹	CSL/2LAET ¹										
HPAHs (Dry Weight)													
Sum of HPAHs	µg/kg	12,000	17,000	8,900	2,400	990	44	2,400	6,100	3,400	15,000	10,000	340
Benzo(a)anthracene	µg/kg	1,300	1,600	870	160	75	19 U	160	440	250	920	480	22
Benzo(a)pyrene	μg/kg	1,600	1,600	840	160	77	19 U	130	360	240	740	500	25
Benzofluoranthenes (Total)	μg/kg	3,200	3,600	1,500	230	120	12 J	210	560	470	1,300	810	36
Benzo(g,h,i)perylene	µg/kg	670	720	380	110	64	19 U	96	200	180	420	370	23
Chrysene	μg/kg	1,400	2,800	1,100	200	74	7.5 J	220	510	360	1,100	560	28
Dibenzo(a,h)anthracene	μg/kg	230	230	120	18	13 J	2.9 J	20	45	38	110	54	6.3
Fluoranthene	μg/kg	1,700	2,500	1,900	670	250	10 J	800	2,000	810	5,200	3,600	98
Indeno(1,2,3-c,d)pyrene	μg/kg	600	690	400	75	45	19 U	73	180	150	380	290	22
Pyrene	μg/kg	2,600	3,300	1,800	760	270	12 J	730	1,800	860	4,600	3,400	79
Petroleum Hydrocarbons (Dry Weight)		,	-,	/					<i>I</i>		/		-
Diesel Fuel	mg/kg	260	260	220	230	84	6.1 U	44 J	92	58	310	230	15
Motor Oil	mg/kg	260	260	430	370	140	12 U	68	140	120	550	340	24
Petroleum Hydrocarbons (Total)	mg/kg	260	260	650	600	224	12 U	112	232	178	860	570	39
Chlorinated Hydrocarbons (OC-Normalized)													
1,2,4-Trichlorobenzene	mg/kg OC	0.81	1.8	0.64 U		_	17 U		_	1.8 U		_	
1,2-Dichlorobenzene (o-Dichlorobenzene)	mg/kg OC	2.3	2.3	0.44		_	17 U		_	1.8 U		_	
1,3-Dichlorobenzene (m-Dichlorobenzene)	mg/kg OC		NE	0.64 U	-	_	17 U	-	-	1.8 U		_	
1,4-Dichlorobenzene (p-Dichlorobenzene)	mg/kg OC	3.1	9	3	_	_	17 U	-	_	3.5		_	
Hexachlorobenzene	mg/kg OC	0.38	2.3	0.16 U	_	-	4.2 U	-	-	0.46 U	-	-	-
Chlorinated Hydrocarbons (Dry Weight)	<u> </u>												
1,2,4-Trichlorobenzene	µg/kg	31	51	19 U		_	19 U			19 U	-		
1,2-Dichlorobenzene (o-Dichlorobenzene)	μg/kg	35	50	13 J	_		19 U			19 U	-		
1,3-Dichlorobenzene (m-Dichlorobenzene)	μg/kg	NE	NE	19 U	_	_	19 U		_	19 U		_	
1,4-Dichlorobenzene (p-Dichlorobenzene)	μg/kg	110	110	100		_	19 U		-	37		_	
Hexachlorobenzene	µg/kg	22	70	4.8 U	_	_	4.7 U			4.8 U		_	
Phthalates (OC-Normalized)													
Bis(2-Ethylhexyl) Phthalate	mg/kg OC	47	78	4.4	-		42 U		-	14		_	
Butyl benzyl Phthalate	mg/kg OC		64	2.4			17 U			1.8 U		_	
Dibutyl Phthalate	mg/kg OC		1,700	0.64 U	-		17 U	-		1.1			
Diethyl Phthalate	mg/kg OC		110	3	-		23	-		4.1			
Dimethyl Phthalate	mg/kg OC		53	0.64 U	_		17 U	-		7	-		-
Di-n-Octyl Phthalate	mg/kg OC		4,500	0.6	_		17 U	-		1.8 U	-		_
Phthalates (Dry Weight)													
Bis(2-Ethylhexyl) Phthalate	µg/kg	1,300	1,900	130	_		47 U	-		150	-		
Butyl Benzyl Phthalate	μg/kg	63	900	73	_		19 U			19 U	-		
Dibutyl Phthalate	μg/kg	1,400	1,400	19 U	_		19 U			12 J	-		
Diethyl Phthalate	μg/kg	200	200	100 U	_		25 U			43 U	-		
Dimethyl Phthalate	μg/kg	71	160	19 U			19 U			70			
Di-n-Octyl Phthalate	μg/kg	6,200	6,200	18 J	_	_	19 U		_	19 U		_	

		Sa	ample Location	SSI-SS-03	SSI-SC-03	SSI-SC-03	SSI-SS-04	SSI-SC-04	SSI-SC-04	SSI-SS-05	SSI-SC-05	SSI-SC-05	SSI-SC-05
			Sample ID:		SSI-SC-03_0-2	SSI-SC-03_2-4	SSI-SS-04-0_0.39	SSI-SC-04_0-2		SSI-SS-05_0-0.39	SSI-SC-05_0-2	SSI-SC-05_2-4	SSI-SC-05_4-6
			Date Sampled:	10/15/2015	10/14/2015	10/14/2015	10/15/2015	10/15/2015	10/15/2015	10/12/2015	10/13/2015	10/13/2015	10/13/2015
			nterval (ft bml):	0-0.39 ft	0-2 ft	2-4 ft	0-0.39 ft	0-2 ft	2-4 ft	0-0.39 ft	0-2 ft	2-4 ft	4-6 ft
	Elevation a	t Top of Samp	le (ft NADV88):	-8.3	-3.1	-5.1	-0.5	0.4	-1.6	-4.9	-3.5	-5.5	-7.5
			Collected By			•		GeoEngi	neers			1	
Parameter	Unit(s)	SCO/LAET ¹	CSL/2LAET ¹										
Phenols (Dry Weight)													
2,4-Dimethylphenol	µg/kg	29	29	47		-	24 U		_	19 J		-	
2-Methylphenol (o-Cresol)	µg/kg	63	63	47		-	19 U		-	26		-	-
4-Methylphenol (p-Cresol)	µg/kg	670	670	430	-	-	19 U			270		-	
Pentachlorophenol	µg/kg	360	690	170	150 NJ	46 NJ	94 U	23 NJ	54	580	140	59 NJ	
Phenol	µg/kg	420	1,200	410 J			19 U		-	120		-	
Miscellaneous Extractables (OC-Normalized)													
Dibenzofuran	mg/kg OC	15	58	5.4			17 U		-	14			
Hexachlorobutadiene	mg/kg OC	3.9	6.2	0.16 U	-	-	4.2 U	-	-	0.46 U		-	-
n-Nitrosodiphenylamine (as diphenylamine)	mg/kg OC	11	11	0.64 U	_	-	17 U	-	_	1.8 U	-		-
Miscellaneous Extractables (Dry Weight)													
Dibenzofuran	µg/kg	540	540	160	-		19 U			150	-	-	
Hexachlorobutadiene	µg/kg	11	120	4.8 U	-		4.7 U	-		4.8 U	-	-	-
n-Nitrosodiphenylamine (as diphenylamine)	µg/kg	28	40	19 U	-		19 U	-		19 U	-	-	-
Benzoic Acid	µg/kg	650	650	500	_		190 U	-		350	-	-	—
Benzyl Alcohol	µg/kg	57	730	50 J	_		19 UJ	-		78 J	-		_
Conventionals													
Gravel	Percent	NE	NE	3.4	11.7	9.9	17.4	25.1	39.9	4.6	7.0	3.9	0.5
Very coarse sand	Percent	NE	NE	5.7	7.1	7.2	5.5	7.3	5.8	4.1	5.9	6.4	0.9
Coarse sand	Percent	NE	NE	5.2	7.0	8.4	28.0	13.8	11.1	7.3	7.0	7.5	0.7
Medium sand	Percent	NE	NE	11.5	13.2	17.4	43.0	25.7	18.2	23.1	15.2	8.2	0.5
Fine sand	Percent	NE	NE	26.8	28.4	32.7	4.7	10.4	9.5	28.8	19.6	8.7	0.8
Very fine sand	Percent	NE	NE	21.8	18.1	16.5	0.5	3.8	5.8	13.2	11.2	9.0	5.0
Coarse silt	Percent	NE	NE	0.6	2.5	0.8	1.0 U	6.2	1.9	5.0	9.8	6.8	20.0
Medium silt	Percent	NE	NE	3.1	1.8	1.0	1.0 U	1.6	2.1	1.7	4.0	10.5	15.3
Fine silt	Percent	NE	NE	4.4	1.8	1.2	1.0 U	1.5	1.8	3.0	3.6	8.6	12.7
Very fine silt	Percent	NE	NE	4.4	1.9	1.1	1.0 U	1.2	1.6	2.1	4.0	8.1	10.9
Coarse clay	Percent	NE	NE	3.9	1.7	0.9	1.0 U	1.0	0.8	1.6	3.1	5.1	7.7
Medium clay	Percent	NE	NE	2.5	1.5	0.9	1.0 U	0.8	0.7	1.6	3.3	5.3	6.9
Particle/Grain size, Phi Scale >10	Percent	NE	NE	6.7	3.2	1.9	1.0 U	1.5	0.9	3.7	6.4	12.0	17.9
Total Fines	Percent	NE	NE	25.6	14.5	7.8	1.0	13.7	9.8	18.8	34.2	56.3	91.5

		52	mple Location	SSI-SS-06	SSI-SC-06	SSI-SC-06	SSI-SC-06	SSI-SS-07	SSI-SC-07	SSI-SC-07	SSI-SC-07	SSI-SS-08	SSI-SS-09
			Sample ID:	SSI-SS-00 SSI-SS-06_0-0.39	SSI-SC-06_0-2	SSI-SC-06_2-4	SSI-SC-06_4-6	SSI-SS-07_0-0.39		SSI-SC-07_2-4	SSI-SC-07_4-6		SSI-SS-09_0-0.39
			Date Sampled:	10/12/2015	10/13/2015	10/13/2015	10/13/2015	10/12/2015	10/13/2015		10/13/2015	10/12/2015	10/12/2015
			nterval (ft bml):	0-0.39 ft	0-2 ft	2-4 ft	4-6 ft	0-0.39 ft	0-2 ft	2-4 ft	4-6 ft	0-0.39 ft	0-0.39 ft
	Flevation a	-	le (ft NADV88):	-5.5	-2.8	-4.8	-6.8	-3.7	-3.3	-5.3	-7.3	-22.0	-16.9
	Liovation a		Collected By		2.0		010		gineers	010	110	2210	2010
									8				
Parameter	Unit(s)	SCO/LAET ¹	CSL/2LAET ¹										
Total Organic Carbon	Percent	0.5	3.5	3.10	1.18	4.35	7.44	0.955	0.904	27.7	33.8	2.64	3.15
Total Solids	Percent	NE	NE	61.17	71.54	53.86	62.62	73.89	73.69	28.56	37.67	31.75	37.43
LPAHs (OC-Normalized)													
Sum of LPAHs	mg/kg OC	370	780	200	200	320	90	27	58	83	56		-
2-Methylnaphthalene	mg/kg OC	38	64	21	20	25	7.0	3.4	3.0	0.43	0.77		-
Acenaphthene	mg/kg OC	16	57	7.7	14	20	5.8	1.7	4.5	13	8.0		-
Acenaphthylene	mg/kg OC	66	66	8.1	7.8	10	4.3	1.3	2.4	0.27	0.28		-
Anthracene	mg/kg OC	220	1,200	12	20	20	5.6	2.4	8.0	10	9.0		-
Fluorene	mg/kg OC	23	79	8.4	19	30	7.9	2.3	6.5	22	10		-
Naphthalene	mg/kg OC	99	170	74	72	140	43	12	18	1.7	3.8		-
Phenanthrene	mg/kg OC	100	480	52	73	83	30	8	19	35	23	-	_
LPAHs (Dry Weight)													
Sum of LPAHs	µg/kg	5,200	5,200	5,000	2,400	14,000	6,700	260 J	520	23,000	19,000	_	-
2-Methylnaphthalene	µg/kg	670	670	640	200	1,100	500	32	27	120	260	_	-
Acenaphthene	µg/kg	500	500	240	170	1,000	430	16 J	41	3,600	2,700	_	-
Acenaphthylene	µg/kg	1,300	1,300	250	92	600	320	12 J	22	76	95	-	_
Anthracene	µg/kg	960	960	360	240	1,000	420	23	70	3,000	3,000	_	_
Fluorene	µg/kg	540	540	260	230	1,300	590	22	59	6,100	4,000	_	-
Naphthalene	µg/kg	2,100	2,100	2,300	850	6,300	3,200	110	160	470	1,300	-	_
Phenanthrene	µg/kg	1,500	1,500	1,600	860	3,600	2,000	76	170	9,600	7,900	-	-
HPAHs (OC-Normalized)													
Sum of HPAHs	mg/kg OC	960	5,300	170	270	260	72	43	116	51.1	60	-	-
Benzo(a)anthracene	mg/kg OC	110	270	12	19	16	4.2	3.2	7.6	4.3	4.1	-	1.7
Benzo(a)pyrene	mg/kg OC	99	210	10	19	13	3.0	2.7	8.7	1.2	1.2		1.4
Benzofluoranthenes (Total)	mg/kg OC	230	450	20	32	20	6.2	6.2	19	3.0	3.0		3.1
Benzo(g,h,i)perylene	mg/kg OC	31	78	7.1	14	9.0	2.3	2	5.1	0.27	0.33		
Chrysene	mg/kg OC		460	16	24	20	5.8	4.8	11	5.4	4.7		2.4
Dibenzo(a,h)anthracene	mg/kg OC	12	33	1.5	2.8	1.7	0.35	0.42	1.3	0.17	0.12		0.3
Fluoranthene	mg/kg OC	160	1,200	45	81	94	26	9	29	24	28		-
Indeno(1,2,3-c,d)pyrene	mg/kg OC		88	6.1	10	6.7	1.5	1.5	4	0.3	0.33		0.92
Pyrene	mg/kg OC	1,000	1,400	48	72	76	23	13	30	13	18		-

		Sa	ample Location	SSI-SS-06	SSI-SC-06	SSI-SC-06	SSI-SC-06	SSI-SS-07	SSI-SC-07	SSI-SC-07	SSI-SC-07	SSI-SS-08	SSI-SS-09
				SSI-SS-06_0-0.39	SSI-SC-06_0-2		SSI-SC-06_4-6			SSI-SC-07_2-4	SSI-SC-07_4-6		SSI-SS-09_0-0.39
			Date Sampled:	10/12/2015	10/13/2015	10/13/2015	10/13/2015	10/12/2015	10/13/2015	10/13/2015	10/13/2015	10/12/2015	10/12/2015
			nterval (ft bml):	0-0.39 ft	0-2 ft	2-4 ft	4-6 ft	0-0.39 ft	0-2 ft	2-4 ft	4-6 ft	0-0.39 ft	0-0.39 ft
	Elevation at	t Top of Samp	le (ft NADV88):	-5.5	-2.8	-4.8	-6.8	-3.7	-3.3	-5.3	-7.3	-22.0	-16.9
			Collected By		1	1		GeoEn	gineers	1	1		
Parameter	Unit(s)	SCO/LAET ¹	CSL/2LAET ¹										
HPAHs (Dry Weight)													
Sum of HPAHs	µg/kg	12,000	17,000	5,200	3,200	11,000	5,300	410	1,100	14,000	20,000		-
Benzo(a)anthracene	µg/kg	1,300	1,600	370	220	680	310	31	69	1,200	1,400		55 J
Benzo(a)pyrene	µg/kg	1,600	1,600	320	230	550	220	26	79	320	390		44 J
Benzofluoranthenes (Total)	µg/kg	3,200	3,600	610	380	1,000	460	59	170	820	1,000		98 J
Benzo(g,h,i)perylene	µg/kg	670	720	220	160	400	170	19	46	74	110		000
Chrysene	µg/kg	1,400	2,800	490	280	900	430	46	99	1,500	1,600	-	76 J
Dibenzo(a,h)anthracene	µg/kg	230	230	47	33	76	26	4.0 J	12 J	47	39		10 J
Fluoranthene	µg/kg	1,700	2,500	1,400	950	4,100	1,900	90	260	6,600	9,400	-	-
Indeno(1,2,3-c,d)pyrene	µg/kg	600	690	190	120	290	110	14 J	40	90	110	_	29 J
Pyrene	µg/kg	2,600	3,300	1,500	850	3,300	1,700	120	270	3,500	6,100	-	_
Petroleum Hydrocarbons (Dry Weight)													
Diesel Fuel	mg/kg	260	260	-	_	-	_	-	-	_	-	-	_
Motor Oil	mg/kg	260	260	-	_	-	-	-	-	_	-	-	_
Petroleum Hydrocarbons (Total)	mg/kg	260	260	-	-	-	-	-	-	_	-	-	_
Chlorinated Hydrocarbons (OC-Normalized)													
1,2,4-Trichlorobenzene	mg/kg OC	0.81	1.8	0.61 U	-	-	-	2 U	-	-	-	-	-
1,2-Dichlorobenzene (o-Dichlorobenzene)	mg/kg OC	2.3	2.3	0.61 U	-	-		2 U	-	-	-	-	-
1,3-Dichlorobenzene (m-Dichlorobenzene)	mg/kg OC		NE	0.61 U	-	-	-	2 U	-	-	-	-	-
1,4-Dichlorobenzene (p-Dichlorobenzene)	mg/kg OC	3.1	9	1.2	-	-		2 U	-		-	-	-
Hexachlorobenzene	mg/kg OC	0.38	2.3	0.11		-		0.5 U	-		-	-	-
Chlorinated Hydrocarbons (Dry Weight)													
1,2,4-Trichlorobenzene	µg/kg	31	51	19 U		-		19 U	-		-		-
1,2-Dichlorobenzene (o-Dichlorobenzene)	µg/kg	35	50	19 U		-		19 U	-		-		-
1,3-Dichlorobenzene (m-Dichlorobenzene)	µg/kg	NE	NE	19 U		-	-	19 U			_		-
1,4-Dichlorobenzene (p-Dichlorobenzene)	µg/kg	110	110	37				19 U			-		
Hexachlorobenzene	µg/kg	22	70	3.4 J		_	-	4.8 U	-	-	_	-	-
Phthalates (OC-Normalized)													
Bis(2-Ethylhexyl) Phthalate	mg/kg OC		78	7.4	-	-	-	10	-	-	-	-	-
Butyl benzyl Phthalate	mg/kg OC	4.9	64	0.61 U	-			2 U	-				
Dibutyl Phthalate	mg/kg OC		1,700	0.61 U	-		-	2 U		-	-	-	
Diethyl Phthalate	mg/kg OC		110	1	_		-	3.4	-	-	-	-	-
Dimethyl Phthalate	mg/kg OC	53	53	0.61 U	-		-	28		-		-	-
Di-n-Octyl Phthalate	mg/kg OC	58	4,500	0.61 U	_		-	2 U	-	-		-	_
Phthalates (Dry Weight)													
Bis(2-Ethylhexyl) Phthalate	µg/kg	1,300	1,900	230	-		_	96		_		-	_
Butyl Benzyl Phthalate	µg/kg	63	900	19 U	-		_	19 U		-	-	-	-
Dibutyl Phthalate	µg/kg	1,400	1,400	19 U	-	-	-	19 U		-	-	-	_
Diethyl Phthalate	µg/kg	200	200	30 U		-		32 U		-		-	_
Dimethyl Phthalate	µg/kg	71	160	19 U		-		270		-	-	-	-
Di-n-Octyl Phthalate	µg/kg	6,200	6,200	19 U		-		19 U	-	-	—	-	-

		Sa	mple Location	SSI-SS-06	SSI-SC-06	SSI-SC-06	SSI-SC-06	SSI-SS-07	SSI-SC-07	SSI-SC-07	SSI-SC-07	SSI-SS-08	SSI-SS-09
			Sample ID:	SSI-SS-06_0-0.39	SSI-SC-06_0-2	SSI-SC-06_2-4	SSI-SC-06_4-6	SSI-SS-07_0-0.39	SSI-SC-07_0-2	SSI-SC-07_2-4	SSI-SC-07_4-6	SSI-SS-08_0-0.39	SSI-SS-09_0-0.39
			Date Sampled:	10/12/2015	10/13/2015	10/13/2015	10/13/2015	10/12/2015	10/13/2015	10/13/2015	10/13/2015	10/12/2015	10/12/2015
		Depth In	nterval (ft bml):	0-0.39 ft	0-2 ft	2-4 ft	4-6 ft	0-0.39 ft	0-2 ft	2-4 ft	4-6 ft	0-0.39 ft	0-0.39 ft
	Elevation at	t Top of Samp	le (ft NADV88):	-5.5	-2.8	-4.8	-6.8	-3.7	-3.3	-5.3	-7.3	-22.0	-16.9
			Collected By					GeoEn	gineers				
Parameter	Unit(s)	SCO/LAET ¹	CSL/2LAET ¹										
Phenols (Dry Weight)													
2,4-Dimethylphenol	µg/kg	29	29	19 J	1	1		24 U	1	-	-		
2-Methylphenol (o-Cresol)	µg/kg	63	63	24	-	-		19 U	1	-	-		
4-Methylphenol (p-Cresol)	µg/kg	670	670	450	-	-	-	42	-	-	-		
Pentachlorophenol	µg/kg	360	690	360	150	250	52	95 U	18	60	-		85 U
Phenol	µg/kg	420	1,200	170	-		-	170	-	-	-	-	-
Miscellaneous Extractables (OC-Normalized)													
Dibenzofuran	mg/kg OC	15	58	10	-		-	2.4	-	-		-	-
Hexachlorobutadiene	mg/kg OC	3.9	6.2	0.15 U	-		-	0.5 U	-	_		-	-
n-Nitrosodiphenylamine (as diphenylamine)	mg/kg OC	11	11	0.61 U	-		-	2 U	-	_		-	-
Miscellaneous Extractables (Dry Weight)													
Dibenzofuran	µg/kg	540	540	300	-		-	23		-		-	-
Hexachlorobutadiene	µg/kg	11	120	4.8 U	-	-	-	4.8 U		-		-	-
n-Nitrosodiphenylamine (as diphenylamine)	µg/kg	28	40	19 U	-	-	-	19 U		-	-	-	-
Benzoic Acid	µg/kg	650	650	390	_	_	-	110 J		-	-	-	-
Benzyl Alcohol	µg/kg	57	730	37 J	_		-	19 U		_	-	-	-
Conventionals													
Gravel	Percent	NE	NE	1.0	1.6	4.7	0.5	4.4	3.3	72.0	36.2	0.6	0.5
Very coarse sand	Percent	NE	NE	1.1	2.4	4.1	1.4	2.7	1.0	3.5	5.5	3.6	1.0
Coarse sand	Percent	NE	NE	2.0	4.0	5.3	2.2	2.5	1.5	3.8	6.2	2.9	1.5
Medium sand	Percent	NE	NE	3.8	8.8	6.1	3.6	21.1	8.8	4.4	6.9	1.6	1.3
Fine sand	Percent	NE	NE	20.5	22.9	6.4	11.4	37.5	28.2	3.6	5.9	1.5	1.2
Very fine sand	Percent	NE	NE	43.6	23.4	10.0	26.6	19.8	32.3	4.4	12.0	2.4	1.2
Coarse silt	Percent	NE	NE	12.7	10.5	11.9	16.5	3.7	11.5	8.3 U	9.9	4.0	2.7
Medium silt	Percent	NE	NE	3.1	6.1	11.3	9.8	1.5	3.3	8.3 U	4.3	31.0	22.9
Fine silt	Percent	NE	NE	3.2	4.6	9.7	6.1	2.0	2.0	8.3 U	2.5	22.6	28.1
Very fine silt	Percent	NE	NE	1.9	3.8	7.3	5.6	1.0	1.8	8.3 U	2.5	6.3	10.1
Coarse clay	Percent	NE	NE	1.6	2.9	6.7	5.1	0.8	1.6	8.3 U	1.8	4.9	6.5
Medium clay	Percent	NE	NE	1.4	2.7	5.6	3.3	0.9	1.4	8.3 U	1.5	5.1	7.9
Particle/Grain size, Phi Scale >10	Percent	NE	NE	4.2	6.3	11.1	7.9	2.0	3.3	8.3 U	4.8	13.7	15.1
Total Fines	Percent	NE	NE	28.0	37.0	63.5	54.2	12.0	24.9	8.3	27.3	87.6	93.4

		Sa	ample Location	SSI-SS-10	SSI-SS-11	SSI-SS-12	SSI-SS-14	SSI-SS-1 5	SSI-SS-16	CL-SG-1	CL-SG-3	CL-SG-4
			Sample ID:	SSI-SS-10_0-0.39	SSI-SS-11_0-0.39	SSI-SS-12_0-0.39	SSI-SS-14_0-0.39	SSI-SS-15_0-0.39	SSI-SS-16_0-0.39	CL-SG-1	CL-SG-3	CL-SG-4
			Date Sampled:	10/12/2015	10/12/2015	10/12/2015	10/13/2015	10/13/2015	10/13/2015	6/10/2015	6/10/2015	6/10/2015
		Depth Ir	nterval (ft bml):	0-0.39 ft	0-0.39 ft	0-0.33 ft	0-0.33 ft	0-0.33 ft				
	Elevation a	t Top of Samp	le (ft NADV88):	-23.5	-22.7	-25.1	-21.4	-23.7	-25.6	-9.3	-16.9	-16.8
			Collected By			GeoEn	gineers				Landau	
Parameter	Unit(s)	SCO/LAET ¹	CSL/2LAET ¹									
Total Organic Carbon	Percent	0.5	3.5	3.09	1.84	2.12	2.46	2.00	2.05			
Total Solids	Percent	NE	NE	29.13	40.90	42.77	32.27	42.12	30.63	41.69		
LPAHs (OC-Normalized)												
Sum of LPAHs	mg/kg OC	370	780	-	-	-	-	_	-	_	_	-
2-Methylnaphthalene	mg/kg OC	38	64	-	-		-	-	-		_	
Acenaphthene	mg/kg OC	16	57	-	-	-	-	-	-	-	-	
Acenaphthylene	mg/kg OC	66	66	-	-						-	
Anthracene	mg/kg OC	220	1,200	-	-		-	-	-		-	
Fluorene	mg/kg OC	23	79	-	-	-	-	-	-	—	-	
Naphthalene	mg/kg OC	99	170	-	-	-	-	-	-	—	-	-
Phenanthrene	mg/kg OC	100	480	-	-	-	-	-	-	—	-	-
LPAHs (Dry Weight)												
Sum of LPAHs	µg/kg	5,200	5,200	-	-	-	-	-	-	—		
2-Methylnaphthalene	µg/kg	670	670	-	-	-	-	-	_	_		
Acenaphthene	µg/kg	500	500	-	-	-	-	-	-	_		-
Acenaphthylene	µg/kg	1,300	1,300	-	-	-	-	-	-	-		
Anthracene	µg/kg	960	960	-	-	-	-	-	-	-		
Fluorene	µg/kg	540	540	-	-	-	-	-	-			
Naphthalene	µg/kg	2,100	2,100	-	-	-	-	-	-	-		-
Phenanthrene	µg/kg	1,500	1,500	-	-	-	-	-	-	_		-
HPAHs (OC-Normalized)												
Sum of HPAHs	mg/kg OC	960	5,300	-	-	-	-	-	-	-		-
Benzo(a)anthracene	mg/kg OC	110	270	0.94	2	1.5	-	-	-			-
Benzo(a)pyrene	mg/kg OC	99	210	0.91	1.9	1.5	-	-	-	-	-	-
Benzofluoranthenes (Total)	mg/kg OC	230	450	2.1	4	3.1	-	-	-		-	-
Benzo(g,h,i)perylene	mg/kg OC		78	-	-							-
Chrysene	mg/kg OC	110	460	1.5	2.9	2.1	-	-	-			-
Dibenzo(a,h)anthracene	mg/kg OC	12	33	0.45 U	0.41	0.39	-		-			-
Fluoranthene	mg/kg OC		1,200	-	-	-	-	-	-			-
Indeno(1,2,3-c,d)pyrene	mg/kg OC		88	0.58	1.3	0.99						-
Pyrene	mg/kg OC		1,400	-				-				-

		Sa	mple Location	SSI-SS-10	SSI-SS-11	SSI-SS-12	SSI-SS-14	SSI-SS-15	SSI-SS-16	CL-SG-1	CL-SG-3	CL-SG-4
			•	SSI-SS-10_0-0.39	SSI-SS-11_0-0.39	SSI-SS-12_0-0.39				CL-SG-1	CL-SG-3	CL-SG-4
			Date Sampled:	10/12/2015	10/12/2015	10/12/2015	10/13/2015	10/13/2015	10/13/2015	6/10/2015	6/10/2015	6/10/2015
			nterval (ft bml):	0-0.39 ft	0-0.39 ft	0-0.39 ft	0-0.39 ft	0-0.39 ft	0-0.39 ft	0-0.33 ft	0-0.33 ft	0-0.33 ft
	Elevation at		le (ft NADV88):	-23.5	-22.7	-25.1	-21.4	-23.7	-25.6	-9.3	-16.9	-16.8
			Collected By				gineers			010	Landau	
			, , , , , , , , , , , , , , , , , , ,									
Parameter	Unit(s)	SCO/LAET1	CSL/2LAET ¹									
HPAHs (Dry Weight)		,	,									
Sum of HPAHs	µg/kg	12,000	17,000		_	-		_	_		_	
Benzo(a)anthracene	µg/kg	1,300	1,600	29	37	32	_	_	_			
Benzo(a)pyrene	μg/kg	1,600	1,600	28	35	31	_	_	_			
Benzofluoranthenes (Total)	µg/kg	3,200	3,600	64	74	66						
Benzo(g,h,i)perylene	μg/kg	670	720									
Chrysene	μg/kg	1,400	2,800	45	53	44		-				
Dibenzo(a,h)anthracene	μg/kg	230	230	14 U	7.5 J	8.2 J				_		
Fluoranthene	μg/kg	1,700	2,500	-	-	-		-		_		
Indeno(1,2,3-c,d)pyrene	μg/kg	600	690	18	24	21				_		
Pyrene	μg/kg	2,600	3,300	4	-	die site	-	_	_	_		
Petroleum Hydrocarbons (Dry Weight)	με/ Με	2,000	3,300									
Diesel Fuel	mg/kg	260	260		-	_	_					
Motor Oil	mg/kg	260	260		_	_						
Petroleum Hydrocarbons (Total)	mg/kg	260	260									
Chlorinated Hydrocarbons (OC-Normalized)	iiig/ kg	200	200		-	_	-	-	-	_		_
1,2,4-Trichlorobenzene	mg/kg OC	0.81	1.8									
1,2-Dichlorobenzene (o-Dichlorobenzene)	mg/kg OC	2.3	2.3									
1,3-Dichlorobenzene (m-Dichlorobenzene)		NE	NE					-	-	-		
	mg/kg OC	3.1	9	_	-	-	-		-	-		-
1,4-Dichlorobenzene (p-Dichlorobenzene) Hexachlorobenzene	mg/kg OC	0.38	2.3	-	-	-	-		-			-
Chlorinated Hydrocarbons (Dry Weight)	mg/kg OC	0.38	2.3	-	-	-	-	-	-			-
		21										
1,2,4-Trichlorobenzene	µg/kg	31	51	-	-	-	-	-	-			-
1,2-Dichlorobenzene (o-Dichlorobenzene)	μg/kg	35	50	-	-	-	-	-	-			-
1,3-Dichlorobenzene (m-Dichlorobenzene)	µg/kg	NE 110	NE	-	-	-	-	-	-			_
1,4-Dichlorobenzene (p-Dichlorobenzene)	µg/kg	110	110	-	-	-	-	-	-			_
Hexachlorobenzene Phthalates (OC-Normalized)	µg/kg	22	70	-	-	-	-	-	-			-
	ma /lia 00	47	70									
Bis(2-Ethylhexyl) Phthalate	mg/kg OC		78	-	-	-			-			-
Butyl benzyl Phthalate	mg/kg OC	4.9	64	-	-	-	-	-	-			-
Dibutyl Phthalate	mg/kg OC		1,700	-	-	-	-					-
Diethyl Phthalate	mg/kg OC	61	110	-	-	-						-
Dimethyl Phthalate	mg/kg OC	53	53	-	-	-						-
Di-n-Octyl Phthalate	mg/kg OC	58	4,500	-	-	-	-				-	-
Phthalates (Dry Weight)		4.655	4.655									
Bis(2-Ethylhexyl) Phthalate	µg/kg	1,300	1,900	-	-	-		-	-		-	—
Butyl Benzyl Phthalate	µg/kg	63	900	-	-	-	-	-	-		_	
Dibutyl Phthalate	µg/kg	1,400	1,400		-	-	-	-	-		-	
Diethyl Phthalate	µg/kg	200	200		-	-	-	-	-		-	
Dimethyl Phthalate	µg/kg	71	160	-	-	-	-	-	-		_	
Di-n-Octyl Phthalate	µg/kg	6,200	6,200			-					_	60600

		Sa	mple Location	SSI-SS-10	SSI-SS-11	SSI-SS-12	SSI-SS-14	SSI-SS-15	SSI-SS-16	CL-SG-1	CL-SG-3	CL-SG-4
			Sample ID:	SSI-SS-10_0-0.39	SSI-SS-11_0-0.39	SSI-SS-12_0-0.39	SSI-SS-14_0-0.39	SSI-SS-15_0-0.39	SSI-SS-16_0-0.39	CL-SG-1	CL-SG-3	CL-SG-4
			Date Sampled:			 10/12/2015			 10/13/2015		6/10/2015	
			nterval (ft bml):		0-0.39 ft	0-0.33 ft	0-0.33 ft	0-0.33 ft				
	Elevation a	t Top of Samp	le (ft NADV88):	-23.5	-22.7	-25.1	-21.4	-23.7	-25.6	-9.3	-16.9	-16.8
			Collected By		I	GeoEn	gineers	1			Landau	
Parameter	Unit(s)	SCO/LAET ¹	CSL/2LAET ¹									
Phenols (Dry Weight)												
2,4-Dimethylphenol	µg/kg	29	29	-								
2-Methylphenol (o-Cresol)	µg/kg	63	63	_		-	-		-	_		
4-Methylphenol (p-Cresol)	µg/kg	670	670	_	_	-	_	_	-	_		-
Pentachlorophenol	µg/kg	360	690	-						_		
Phenol	µg/kg	420	1,200	-						_		
Miscellaneous Extractables (OC-Normalized)												
Dibenzofuran	mg/kg OC	15	58							_		
Hexachlorobutadiene	mg/kg OC	3.9	6.2	-	-	-	-	-	-	_		
n-Nitrosodiphenylamine (as diphenylamine)	mg/kg OC	11	11	-				-	-	_		
Miscellaneous Extractables (Dry Weight)												
Dibenzofuran	µg/kg	540	540				-			=	=	=
Hexachlorobutadiene	µg/kg	11	120	-		-		-	-		=	
n-Nitrosodiphenylamine (as diphenylamine)	µg/kg	28	40	-	-	-	-	-	-		=	=
Benzoic Acid	µg/kg	650	650	-	-	-	-	-	-		=	_
Benzyl Alcohol	µg/kg	57	730	-			-			-	=	=
Conventionals												
Gravel	Percent	NE	NE	0.7	1.1	1.2	0.4	1.7	0.6	4.5	0.4	
Very coarse sand	Percent	NE	NE	4.8	1.5	0.4	2.9	0.7	0.3	5.1	1.0	
Coarse sand	Percent	NE	NE	3.5	1.6	1.4	3.0	1.3	1.8	5.7	1.8	
Medium sand	Percent	NE	NE	1.5	1.2	1.0	1.4	0.8	1.4	5.7	1.5	
Fine sand	Percent	NE	NE	1.1	0.8	0.9	1.0	0.7	1.0	12.6	1.2	
Very fine sand	Percent	NE	NE	0.9	0.8	0.9	1.1	0.9	1.0	16.7	1.6	
Coarse silt	Percent	NE	NE	1.9	2.9	1.5	4.8	10.8	4.9	3.5	2.6	
Medium silt	Percent	NE	NE	34.8	27.1	28.2	44.4	14.9	41.7	6.8	10.3	
Fine silt	Percent	NE	NE	19.4	26.8	26.8	15.8	26.9	20.1	8.6	21.0	
Very fine silt	Percent	NE	NE	7.9	9.1	10.1	5.8	11.0	6.6	7.9	16.5	
Coarse clay	Percent	NE	NE	4.8	5.7	6.2	3.5	8.6	4.0	6.8	12.6	
Medium clay	Percent	NE	NE	5.5	6.8	7.1	4.6	6.2	4.0	5.5	10.4	
Particle/Grain size, Phi Scale >10	Percent	NE	NE	13.4	14.5	14.3	11.4	15.6	12.5	10.5	19.0	
Total Fines	Percent	NE	NE	87.5	92.9	94.2	90.1	94.0	93.7	49.8	92.4	

Notes:

¹ The screening levels provided are the Sediment Management Standards (SMS) Sediment Cleanup Objectives (SCO) and the Lowest Apparent Effects Threshold (LAET) and 2nd Lowest Apparent Effects Threshold (2LAET) values except for petroleum hydrocarbons. SMS criteria have not been established for petroleum hydrocarbons; the screening level is based on bioassay tests and chemical analyses performed as part of the RG Haley remedial investigation (GeoEngineers 2016). LAET and 2LAET values are provided for comparison to dry weight concentrations for LPAHs, HPAHs, chlorinated organics, phthalates, and miscellaneous extractables when the total organic carbon content for a specific sample is outside of the range (0.5 percent to 3.5 percent) recommended for TOC normalization.

² Preliminary cleanup levels (PCULs) are those identified in the Feasibility Study and are provided for reference.

Total organic carbon (TOC) concentration is less than 0.5 percent or greater than 3.5 percent.

Do not evaluate screening level exceedances on this basis.

Value is greater than SCO or LAET.

Value is greater than CSL or 2LAET.

Detection limit is greater than screening level.

Bold indicates that the analyte was detected.

bml = below mudline

mg/kg = milligrams per kilogram

mg/kg OC = milligrams per kilogram organic carbon

ng/kg = nanograms per kilogram

µg/kg = micrograms per kilogram

J = Estimated value

U = Not detected at or above identified detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

NJ = The analyte has been "tentatively identified" and the associated numerical value is the estimated concentration in the sample.

-- = Sample was not submitted for the identified chemical analysis

NE = A criterion has not been established for the identified analyte

SMS = Sediment Management Standards

SCO = SMS Sediment Cleanup Objective (Chapter 173-204-320)

CSL = SMS Cleanup Screening Level (Chapter 173-204-520)

LAET = Lowest Apparent Effects Threshold (LAET). The LAET (expressed on a dry-weight basis) is analogous to the SMS SCO value for samples and is used as the sediment screening level where the sample-specific total organic carbon concentration is less than 0.5 percent.

2LAET = Second Lowest Apparent Effects Threshold (2LAET). The 2LAET (expressed on a dry-weight basis) is analogous to the SMS CSL value and is used as the screening level for samples where the total organic carbon concentration is less than 0.5 percent or greater than 3.5 percent.

LPAH = Low molecular weight polycyclic aromatic hydrocarbons (PAHs)

HPAH = High molecular weight polycyclic aromatic hydrocarbons (PAHs)

Total LPAH is the sum of detected concentrations of naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene.

Total HPAH is the sum of detected concentrations of fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b+j+k)fluoranthenes, benzo(a)pyrene, indeno(1,2,3-c-d)pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)perylene.

The totals for LPAH and HPAH are the sum of all detected results. If no individual LPAHs or HPAHs were detected, the highest detection limit value is reported as the total.

Table 4

2013-2016 Sediment Analytical Results Compared to Bioaccumulative Screening Levels for Protection of Human Health, Fish and Wildlife

R.G Haley Site Bellingham, Washington

	Sample	Location	PSB-01	PSB-02	PSB-02	PSB-03	PSB-03	PSB-04	SSI-SS-01	SSI-SC-01	SSI-SC-01	SSI-SS-02	SSI-SS-03
	Sa	ample ID:	PSB-SC-01-0-1	PSB-SC-02-0-1	PSB-SC-02-1-2	PSB-SC-03-0-1	PSB-SC-03-1-2	PSB-SC-04-0-1	SSI-SS-01_0-0.39	SSI-SC-01_0-2	SSI-SC-01_2-4	SSI-SS-02_0-0.39	SSI-SS-03_0-0.39
	Date	Sampled:	2/18/2016	2/18/2016	2/18/2016	2/18/2016	2/18/2016	2/18/2016	10/15/2015	10/14/2015	10/14/2015	10/15/2015	10/15/2015
De	epth Interva	l (ft bml):	0-1 ft	0-1 ft	1-2 ft	0-1 ft	1-2 ft	0-1 ft	0-0.39 ft	0-2 ft	2-4 ft	0-0.39 ft	0-0.39 ft
Elevation at Top of	Sample (ft l	NADV88):	4.3	1.3	0.3	6.1	5.1	4.7	-5.2	-5.9	-7.9	-0.5	-8.3
	Coll	lected By	GeoEngineers										
Parameter	Unit(s)	CULs ¹											
Dioxin/Furans													
2,3,7,8-TCDD	ng/kg	NE	0.449 J	0.254 J	0.374 J	0.249 J	0.930 J	2.11	-	3.19	3.38	0.652 J	-
2,3,7,8-TCDF	ng/kg	NE	0.496 J	0.348 J	0.370 J	0.281 J	0.919 J	0.598 J	-	5.02	4.80	0.921 J	-
1,2,3,7,8-PeCDD	ng/kg	NE	2.06 J	1.51 J	4.71 J	0.947 J	2.53 J	4.11 J	-	12.7	13.9	2.60 J	-
1,2,3,7,8-PeCDF	ng/kg	NE	1.28 J	0.954 J	1.51 J	0.592 J	3.22 J	1.35 J		6.68	6.21	1.26 J	-
2,3,4,7,8-PeCDF	ng/kg	NE	2.07 J	1.89 J	1.70 J	1.19 J	3.11 J	2.60 J		5.96	5.56	1.24 J	-
1,2,3,4,7,8-HxCDD	ng/kg	NE	5.74	3.38 J	6.92	2.22 J	6.92	7.33	-	20.8	29.2	6.49	-
1,2,3,4,7,8-HxCDF	ng/kg	NE	11.7	5.16	5.17	3.25 J	21.1	7.85	-	35.5	28.5	5.37	-
1,2,3,6,7,8-HxCDD	ng/kg	NE	35.1	15.0	48.9	11.1	64.3	23.1	-	126	91.6	17.8	-
1,2,3,6,7,8-HxCDF	ng/kg	NE	3.74 J	1.75 J	2.33 J	1.25 J	5.62	2.97 J		10.5	9.87	2.21 J	-
1,2,3,7,8,9-HxCDD	ng/kg	NE	9.99	5.01	9.76	4.29 J	13.0	12.2	-	43.4	45.6	9.40	-
1,2,3,7,8,9-HxCDF	ng/kg	NE	3.63 J	1.96 J	3.12 J	1.98 J	7.86	2.71 J	-	9.45	9.17	1.77 J	-
2,3,4,6,7,8-HxCDF	ng/kg	NE	5.62	2.67 J	3.43 J	2.02 J	10.2	4.80 J	-	17.4	15.7	3.74 J	-
1,2,3,4,6,7,8-HpCDD	ng/kg	NE	1,260	386	539	334	2,410	625	-	6,000 J	2,220	429	-
1,2,3,4,6,7,8-HpCDF	ng/kg	NE	185	65.9	76.1	64.5	368	105	-	578 J	256	38.6	-
1,2,3,4,7,8,9-HpCDF	ng/kg	NE	13.2	4.44 J	5.39	4.15 J	21.7	6.67	-	29.2 J	15.9	2.95 J	-
OCDD	ng/kg	NE	23,500	4,330	4,090	3,880	38,600	5,630		68,000 J	20,100	4,310	-
OCDF	ng/kg	NE	826	265	276	298	1,750	333		3,050 J	642	92.5	-
Total Dioxin/Furan TEQ (ND=0.5DL) - Human/Mammal	ng/kg	13	32.6 J	11.8 J	21.2 J	9.49 J	57.6 J	22.4 J	-	132 J	73.7	14.5 J	-
cPAH (Dry Weight)													
Total cPAH TEQ (ND=0.5RL)	µg/kg	229	11.6	13.4 J	38.3	8.28	4.45 J	10.5	195 J	286	237	19.6 J	1,140
Phenols (Dry Weight)													
Pentachlorophenol	µg/kg	100	18	12	26 NJ	19 NJ	20	33	94 U	52	160 NJ	93 U	170

	Sample	Location	SSI-SC-03	SSI-SC-03	SSI-SS-04	SSI-SC-04	SSI-SC-04	SSI-SS-05	SSI-SC-05	SSI-SC-05	SSI-SC-05	SSI-SS-06	
	S	ample ID:	SSI-SC-03_0-2	SSI-SC-03_2-4	SSI-SS-04-0_12	SSI-SC-04_0-2	SSI-SC-04_2-4	SSI-SS-05_0-0.39	SSI-SC-05_0-2	SSI-SC-05_2-4	SSI-SC-05_4-6	SSI-SS-06_0-0.39	
	Date	Sampled:	10/14/2015	10/14/2015	10/15/2015	10/15/2015	10/15/2015	10/12/2015	10/13/2015	10/13/2015	10/13/2015	10/12/2015	
D	epth Interva	l (ft bml):	0-2 ft	2-4 ft	0-0.39 ft	0-2 ft	2-4 ft	0-0.39 ft	0-2 ft	2-4 ft	4-6 ft	0-0.39 ft	
Elevation at Top of	Sample (ft	NADV88):	-3.1	-5.1	-0.5	0.4	-1.6	-4.9	-3.5	-5.5	-7.5	-5.5	
	Col	lected By	GeoEngineers										
Parameter	Unit(s)	CULs ¹											
Dioxin/Furans													
2,3,7,8-TCDD	ng/kg	NE	2.23	1.33	-	0.748 J	0.821 J	-	5.16	1.60	0.145 U	I	
2,3,7,8-TCDF	ng/kg	NE	4.37	2.19	I	1.80	2.76	I	12.3	8.50	0.536 J	1	
1,2,3,7,8-PeCDD	ng/kg	NE	10.5	4.96	I	3.91 J	2.96 J	I	25.0	6.16	0.492 J	1	
1,2,3,7,8-PeCDF	ng/kg	NE	4.22 J	2.18 J	1	3.69 J	2.79 J	1	15.5	6.18	0.469 J	1	
2,3,4,7,8-PeCDF	ng/kg	NE	3.56 J	1.91 J	-	3.96 J	2.32 J	H	13.9	4.38 J	0.920 J	I	
1,2,3,4,7,8-HxCDD	ng/kg	NE	20.2	9.83	-	8.64	5.49	-	56.2	13.7	1.08 J	I	
1,2,3,4,7,8-HxCDF	ng/kg	NE	14.7	8.75	-	22.7	17.6	-	74.4	22.0	1.37 J	-	
1,2,3,6,7,8-HxCDD	ng/kg	NE	55.6	31.9	-	47.1	32.5	-	231	61.6	3.61 J	I	
1,2,3,6,7,8-HxCDF	ng/kg	NE	6.09	3.66 J	-	7.74	5.90	-	28.4	9.34	0.711 J	-	
1,2,3,7,8,9-HxCDD	ng/kg	NE	28.3	15.4	-	18.4	11.6	-	83.6	23.7	1.72 J	-	
1,2,3,7,8,9-HxCDF	ng/kg	NE	4.17 J	2.58 J	I	6.73	4.90 J	I	23.0	6.14	0.606 J	I	
2,3,4,6,7,8-HxCDF	ng/kg	NE	9.58	6.97	-	13.9	11.6	-	49.5	14.5	1.29 J	1	
1,2,3,4,6,7,8-HpCDD	ng/kg	NE	1,160	858	I	1,070	738	1	5,190	1,260	62.6	1	
1,2,3,4,6,7,8-HpCDF	ng/kg	NE	160.0	93.0	-	280.0	249	H	1,120	287	12.6	I	
1,2,3,4,7,8,9-HpCDF	ng/kg	NE	9.53	5.00	-	17.5	15.7	-	62.5	16.7	1.07 J	I	
OCDD	ng/kg	NE	10,400	7,390	-	9,040	5,770	-	42,400	10,300	482	-	
OCDF	ng/kg	NE	443	241	-	976	885	-	4,210	918	39.8		
Total Dioxin/Furan TEQ (ND=0.5DL) - Human/Mammal	ng/kg	13	44.8 J	26.9 J		35.3 J	25.8 J	-	168	44.2 J	2.87 J		
cPAH (Dry Weight)													
Total cPAH TEQ (ND=0.5RL)	µg/kg	229	210	103	13 J	179	488	334	1,022	669	34	447	
Phenols (Dry Weight)													
Pentachlorophenol	µg/kg	100	150 NJ	46 NJ	94 U	23 NJ	54	580	140	59 NJ	-	360	

GeoEngineers 💋

	Sample	Location	SSI-SC-06	SSI-SC-06	SSI-SC-06	SSI-SS-07	SSI-SC-07	SSI-SC-07	SSI-SC-07	SSI-SS-08	SSI-SS-09	SSI-SS-10	SSI-SS-11	
	Sa	ample ID:	SSI-SC-06_0-2	SSI-SC-06_2-4	SSI-SC-06_4-6	SSI-SS-07_0-0.39	SSI-SC-07_0-2	SSI-SC-07_2-4	SSI-SC-07_4-6	SSI-SS-08_0-0.39	SSI-SS-09_0-0.39	SSI-SS-10_0-0.39	SSI-SS-11_0-0.39	
	Date	Sampled:	10/13/2015	10/13/2015	10/13/2015	10/12/2015	10/13/2015	10/13/2015	10/13/2015	10/12/2015	10/12/2015	10/12/2015	10/12/2015	
De	pth Interva	l (ft bml):	0-2 ft	2-4 ft	4-6 ft	0-0.39 ft	0-2 ft	2-4 ft	4-6 ft	0-0.39 ft	0-0.39 ft	0-0.39 ft	0-0.39 ft	
Elevation at Top of	Sample (ft l	NADV88):	-2.8	-4.8	-6.8	-3.7	-3.3	-5.3	-7.3	-22.0	-16.9	-23.5	-22.7	
	Col	lected By		GeoEngineers										
Parameter	Parameter Unit(s) C													
Dioxin/Furans														
2,3,7,8-TCDD	ng/kg	NE	11.7	8.37	2.28	-	0.726 J	0.759 J	1.24	0.587 J	-	0.744 J	1.02	
2,3,7,8-TCDF	ng/kg	NE	16.6	15.6	9.97	-	4.80	6.49	11.5	4.12	-	9.57	17.6	
1,2,3,7,8-PeCDD	ng/kg	NE	66.8	61.7	8.12	-	3.08 J	3.54 J	6.90	2.17 J	-	3.38 J	4.46 J	
1,2,3,7,8-PeCDF	ng/kg	NE	36.5	12.7	5.92	-	4.75 J	9.90	16.3	1.50 J	-	1.92 J	2.38 J	
2,3,4,7,8-PeCDF	ng/kg	NE	40.3	13.2	6.22	-	3.66 J	8.64	10.8	2.02 J	-	1.53 J	2.57 J	
1,2,3,4,7,8-HxCDD	ng/kg	NE	159	144	13.2	-	6.44	6.32	13.2	5.47	-	10.3	16.6	
1,2,3,4,7,8-HxCDF	ng/kg	NE	184	140.0	17.9	-	16.8	36.9	61.4	7.08	-	6.12	5.92	
1,2,3,6,7,8-HxCDD	ng/kg	NE	504	847	73.6	-	37.6	56.1	108	20.1		23.9	31.0	
1,2,3,6,7,8-HxCDF	ng/kg	NE	74.9 U	62.6	10.9	-	5.36 J	9.56	20.1	2.54 J	-	2.66 J	2.89 U	
1,2,3,7,8,9-HxCDD	ng/kg	NE	244	256	24.7	-	12.4	14.5	29.8	8.03	-	12.3	18.3	
1,2,3,7,8,9-HxCDF	ng/kg	NE	60.6	14.4	3.78 J	-	4.71 J	9.40	17.1	2.53 J	-	2.18 J	1.94 J	
2,3,4,6,7,8-HxCDF	ng/kg	NE	120.0	140.0	19.3	-	8.32	12.8	23.4	3.81 J	-	4.21 J	3.99 J	
1,2,3,4,6,7,8-HpCDD	ng/kg	NE	12,100	22,600	1,200	-	755	1,230	2,050	471	-	442	436	
1,2,3,4,6,7,8-HpCDF	ng/kg	NE	3,310	8,310	532	-	140.0	213	400.0	61.6	-	64.0	68.2	
1,2,3,4,7,8,9-HpCDF	ng/kg	NE	170.0	307	31.8	-	7.81	12.2	28.7	4.58 J	-	4.23 J	4.53 J	
OCDD	ng/kg	NE	80,600 J	163,000 J	7,370	-	6,390	13,700	21,300	3,900	-	3,720	3,050	
OCDF	ng/kg	NE	11,000	33,800	1,670	-	329	466	1070	204	-	227	248	
Total Dioxin/Furan TEQ (ND=0.5DL) - Human/Mammal	ng/kg	13	411 J	608 J	50.1 J	-	25.7 J	41.2 J	71.8	15.4 J	-	18.1 J	22.2 J	
cPAH (Dry Weight)														
Total cPAH TEQ (ND=0.5RL)	µg/kg	229	308	764	315	37.3 J	109	551	661	-	64 J	40.3	49.8 J	
Phenols (Dry Weight)														
Pentachlorophenol	µg/kg	100	150	250	52	95 U	18	60	-	-	85 U	-	-	

	Sample	Location	SSI-SS-12	SSI-SS-14	SSI-SS-15	SSI-SS-16	CL-SG-1	CL-SG-3	CL-SG-4	COB-CC-C1	COB-CC-C2
	Sa	mple ID:	SSI-SS-12_0-0.39	SSI-SS-14_0-0.39	SSI-SS-15_0-0.39	SSI-SS-16_0-0.39	CL-SG-1	CL-SG-3	CL-SG-4	COB-CC-C1	COB-CC-C2
	Date S	Sampled:	10/12/2015	10/13/2015	10/13/2015	10/13/2015	6/10/2015	6/10/2015	6/10/2015	8/17/2013	8/17/2013
De	epth Interva	l (ft bml):	0-0.39 ft	0-0.39 ft	0-0.39 ft	0-0.39 ft	0-0.33 ft	0-0.33 ft	0-0.33 ft	0-1 ft	0-1 ft
Elevation at Top of	Sample (ft N	ADV88):	-25.1	-21.4	-23.7	-25.6	-9.3	-16.9	-16.8	composite sample	composite sample
	Coll	ected By		GeoEn	gineers			Landau		GeoEn	gineers
Parameter	Unit(s)	CULs ¹									
Dioxin/Furans											
2,3,7,8-TCDD	ng/kg	NE	0.965 J	1.02	0.946 J	0.759 J	1.81 U	1.10 U	2.28 U	1.83	1.83
2,3,7,8-TCDF	ng/kg	NE	12.3	13.9	10.5	13.4	8.48	13.0	16.2	1.00	1.16
1,2,3,7,8-PeCDD	ng/kg	NE	3.78 J	5.80	3.54 J	3.66 J	4.09	5.50	12.1	6.41	7.26
1,2,3,7,8-PeCDF	ng/kg	NE	1.70 J	3.33 J	2.90 J	2.12 J	1.84	2.26	4.51	2.18	2.49
2,3,4,7,8-PeCDF	ng/kg	NE	1.66 J	4.33 J	3.49 J	1.66 J	1.91	2.73	5.82	1.91	2.68
1,2,3,4,7,8-HxCDD	ng/kg	NE	11.8	13.9	12.1	11.6	5.60	11.9	19.7	12.4	12.6
1,2,3,4,7,8-HxCDF	ng/kg	NE	4.21 J	12.5	8.25	4.90 J	4.36 J	7.66	17.8	8.44	14.9
1,2,3,6,7,8-HxCDD	ng/kg	NE	21.6	33.5	26.1	20.3	19.4	30.8	59.8	28.2	43.4
1,2,3,6,7,8-HxCDF	ng/kg	NE	2.48 J	5.15	3.82 J	2.30 J	2.09 U	3.32	7.00	3.29	5.53
1,2,3,7,8,9-HxCDD	ng/kg	NE	13.0	18.0	13.4	11.5	8.40	16.8	29.3	12.9	19.2
1,2,3,7,8,9-HxCDF	ng/kg	NE	1.44 J	4.33 J	2.88 J	1.73 J	1.58	2.79	6.38	3.24	4.92
2,3,4,6,7,8-HxCDF	ng/kg	NE	2.83 J	6.92	5.18	3.42 J	1.59 UJ	2.59 U	9.62	5.42	8.75
1,2,3,4,6,7,8-HpCDD	ng/kg	NE	337	565	422	255	341	660	1,420	675	1,060
1,2,3,4,6,7,8-HpCDF	ng/kg	NE	45.2	104	79.4	43.9	58.2	103	189	110	225
1,2,3,4,7,8,9-HpCDF	ng/kg	NE	3.29 J	8.53	6.45	3.91 J	4.04 U	6.59	12.2	7.24	14.2
OCDD	ng/kg	NE	2,330	4,720	3,480	1,780	2,730	5,700 J	13,600 J	5,780 J	9,380 J
OCDF	ng/kg	NE	158	355	267	148	170	440	735	410	924
Total Dioxin/Furan TEQ (ND=0.5DL) - Human/Mammal	ng/kg	13	16.9 J	27.3 J	20.0 J	15.5 J	15.5 J	25.2 J	52.2 J	26.1 J	37.1 J
cPAH (Dry Weight)											
Total cPAH TEQ (ND=0.5RL)	µg/kg	229	44.2 J	-	-			-	-	-	
Phenols (Dry Weight)											
Pentachlorophenol	µg/kg	100	-	-	-	-		-	-	-	

GeoEngineers

Notes:

¹ Cleanup levels for dioxins/furans and carcinogenic PAHs are based on protection of human health and ecological receptors. Cleanup level for pentachlorophenol is based on the practical quantitation limit.

Value is greater than the cleanup level.

Bold indicates that the analyte was detected.

bml = below mudline

mg/kg = milligrams per kilogram

mg/kg OC = milligrams per kilogram organic carbon

ng/kg = nanograms per kilogram

µg/kg = micrograms per kilogram

J = Estimated value

U = Not detected at or above identified detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

NJ = The analyte has been "tentatively identified" and the associated numerical value is the estimated concentration in the sample.

-- = Sample was not submitted for the identified chemical analysis

NE = A criterion has not been established for the identified analyte

PCUL = Preliminary cleanup level

SMS = Sediment Management Standards

SCO = SMS Sediment Cleanup Objective (Chapter 173-204-320)

CSL = SMS Cleanup Screening Level (Chapter 173-204-520)

LAET = Lowest Apparent Effects Threshold (LAET). The LAET (expressed on a dry-weight basis) is analogous to the SMS SCO value for samples and is used as the sediment screening level where the sample-specific total organic carbon concentration is less than 0.5 percent or greater than 3.5 percent. 2LAET = Second Lowest Apparent Effects Threshold (2LAET). The 2LAET (expressed on a dry-weight basis) is analogous to the SMS CSL value and is used as the screening level for samples where the total organic carbon concentration is less than 0.5 percent or greater than 3.5 percent.

LPAH = Low molecular weight polycyclic aromatic hydrocarbons (PAHs)

HPAH = High molecular weight polycyclic aromatic hydrocarbons (PAHs)

Total LPAH is the sum of detected concentrations of naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene.

Total HPAH is the sum of detected concentrations of fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b+j+k)fluoranthenes, benzo(a)pyrene, indeno(1,2,3-c-d)pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)perylene.

The totals for LPAH and HPAH are the sum of all detected results. If no individual LPAHs or HPAHs were detected, the highest detection limit value is reported as the total.

Table 5

Sediment Bioassay Summary Results R.G. Haley Site Bellingham, Washington

		SCO Pass/Fail			CSL Pass/Fail	
Sample ID	Larval Toxicity Test (Mytilus galloprovincialis) ¹	Juvenile Polychaete 20-Day Toxicity Test (Neanthes arenaceodentata) ²	Amphipod 10-Day Toxicity Test (Eohaustorius estuarius) ³	Larval Toxicity Test (Mytilus galloprovincialis) ⁴	Juvenile Polychaete 20-Day Toxicity Test (Neanthes arenaceodentata) ⁵	Amphipod 10-Day Acute Toxicity Test (Eohaustorius estuarius) ⁶
SSI-SS-03	Pass	Pass	Pass	Pass	Pass	Pass
SSI-SS-05	Pass	Pass	Pass	Pass	Pass	Pass
SSI-SS-06	Pass	Pass	Pass	Pass	Pass	Pass

Notes:

¹ SCO failure - if the mean number of normal survivors in the test sediment is significantly less (1-tailed t-test at P≤0.10) than the mean number of normal survivors in the reference sediment and less than 85 percent of the number of normal survivors in the reference sediment.

² SCO failure - if the mean growth rate in the test sediment is significantly lower (1-tailed t-test at P<0.05) than that in the reference sediment and less than 70 percent of the mean reference sediment response.

³ SCO failure - if the test sediment mean amphipod mortality is significantly higher (1-tailed t-test at P<0.05) than the reference sediment mean amphipod mortality and the absolute mortality is greater than 25 percent. ⁴ CSL failure - (single-test criterion) if the mean number of normal survivors in the test sediment is significantly less (1-tailed t-test at P<0.10) than the mean number of normal survivors in the reference sediment and less than 70 percent of the mean number of normal survivors in the reference sediment.

⁵ CSL failure - (single-test criterion) if the mean individual growth rate in the test sediment is significantly lower (1-tailed t-test at P<0.05) than that in the reference sediment and less than 50 percent of the mean reference sediment response.

⁶ CSL failure - (single-test criterion) if the test sediment mean amphipod mortality is significantly higher (1-tailed t-test at P<0.05) than the reference sediment mean amphipod mortality and the absolute difference is greater than 30 percent.

SCO = Sediment Cleanup Objectives Chapter 173-204 Washington Administrative Code (WAC)

CSL = Cleanup Screening Level

Table 6

Bioassay Results for the Amphipod *Eohaustorius estuarius* Test

R.G. Haley Site Bellingham, Washington

Treatment	Replicate	Initial Number	Number Surviving	Percent Survival	Mean F	Percent	
					Survival	Mortality	
	1	20	20	100			
	2	20	20	100			
Control	3	20	20	100	100	0	
	4	20	20	100			
	5	20	20	100			
	1	20	19	95			
	2	20	19	95			
eference (CR22)	3	20	18	90	95	5	

Reference (CR22)	3	20	18	90	95	5	3.5
	4	20	20	100			
	5	20	19	95			
	1	20	20	100			
	2	20	20	100			
SSI-SS-03_0-12	3	20	20	100	99	1	2.2
	4	20	19	95			
	5	20	20	100			
	1	20	20	100			
	2	20	19	95			
SSI-SS-05_0-12	3	20	20	100	99	1	2.2
	4	20	20	100			
	5	20	20	100			
	1	20	19	95			
	2	20	20	100			
SSI-SS-06_0-12	3	20	20	100	99	1	2.2
	4	20	20	100			
	5	20	20	100			

Notes:

Please refer to laboratory report in Appendix D for additional details.

Standard

Deviation

0

Table 7Bioassay Results for the Polychaete Neanthes arenaceodentata TestR.G. Haley SiteBellingham, Washington

Treatment	Replicate	Initial Number	Number Surviving	Percent Survival		In	dividual Growt	h (mg⁄individual	l/day)	
			5		Dry Weight	Mean	Standard Deviation	Ash-free Dry Weight	Mean	Standard Deviaton
	1	5	5	100	0.785			0.485		
	2	5	5	100	0.853			0.626		
Control	3	5	5	100	0.859	0.902	0.1	0.489	0.577	0.083
	4	5	5	100	1.002			0.64		
	5	5	5	100	1.012			0.646		
	1	5	5	100	0.884			0.714		
	2	5	5	100	0.621			0.496		
Reference (CR22)	3	5	5	100	0.67	0.694	0.108	0.517	0.527	0.11
	4	5	5	100	0.63			0.483		
	5	5	5	100	0.665			0.427		
	1	5	5	100	0.698			0.585		
	2	5	5	100	0.909			0.703		
SSI-SS-03_0-12	3	5	5	100	0.86	0.843	0.116	0.688	0.687	0.115
	4	5	5	100	0.989			0.87		
	5	5	5	100	0.761			0.592		
	1	5	5	100	0.751			0.653		
	2	5	5	100	0.803			0.648		
SSI-SS-05_0-12	3	5	5	100	0.808	0.774	0.101	0.662	0.631	0.09
	4	5	5	100	0.89			0.715		
	5	5	5	100	0.617			0.477		
	1	5	5	100	0.668			0.569		
	2	5	5	100	0.626			0.537		
SSI-SS-06_0-12	3	5	5	100	0.738	0.679	0.064	0.61	0.567	0.044
	4	5	5	100	0.751			0.61		
	5	5	5	100	0.61			0.511		

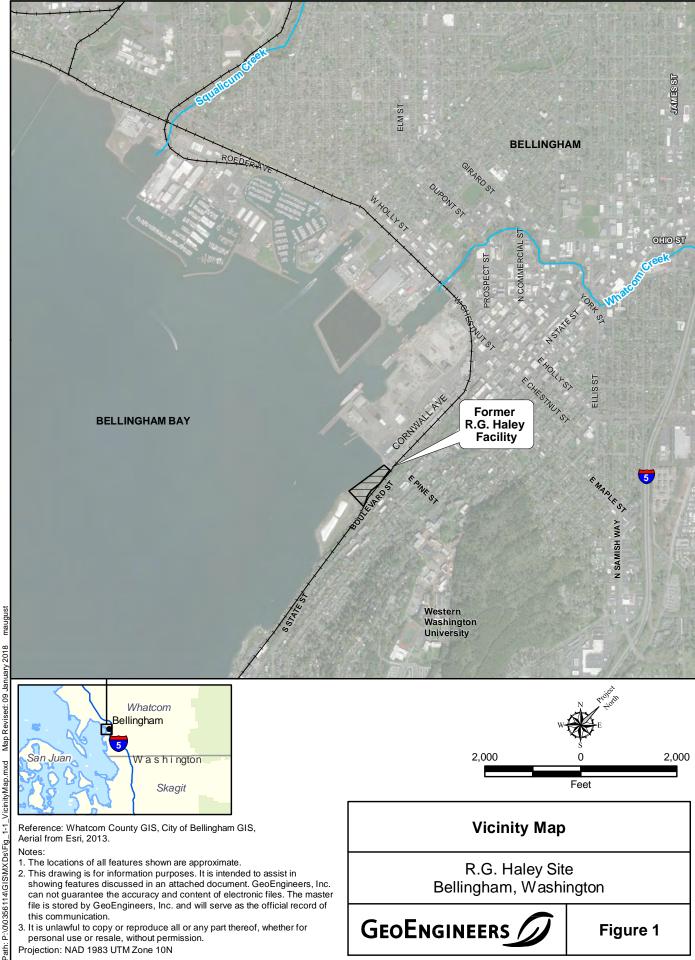
Notes:

Please refer to laboratory report in Appendix D for additional details. mg = milligrams

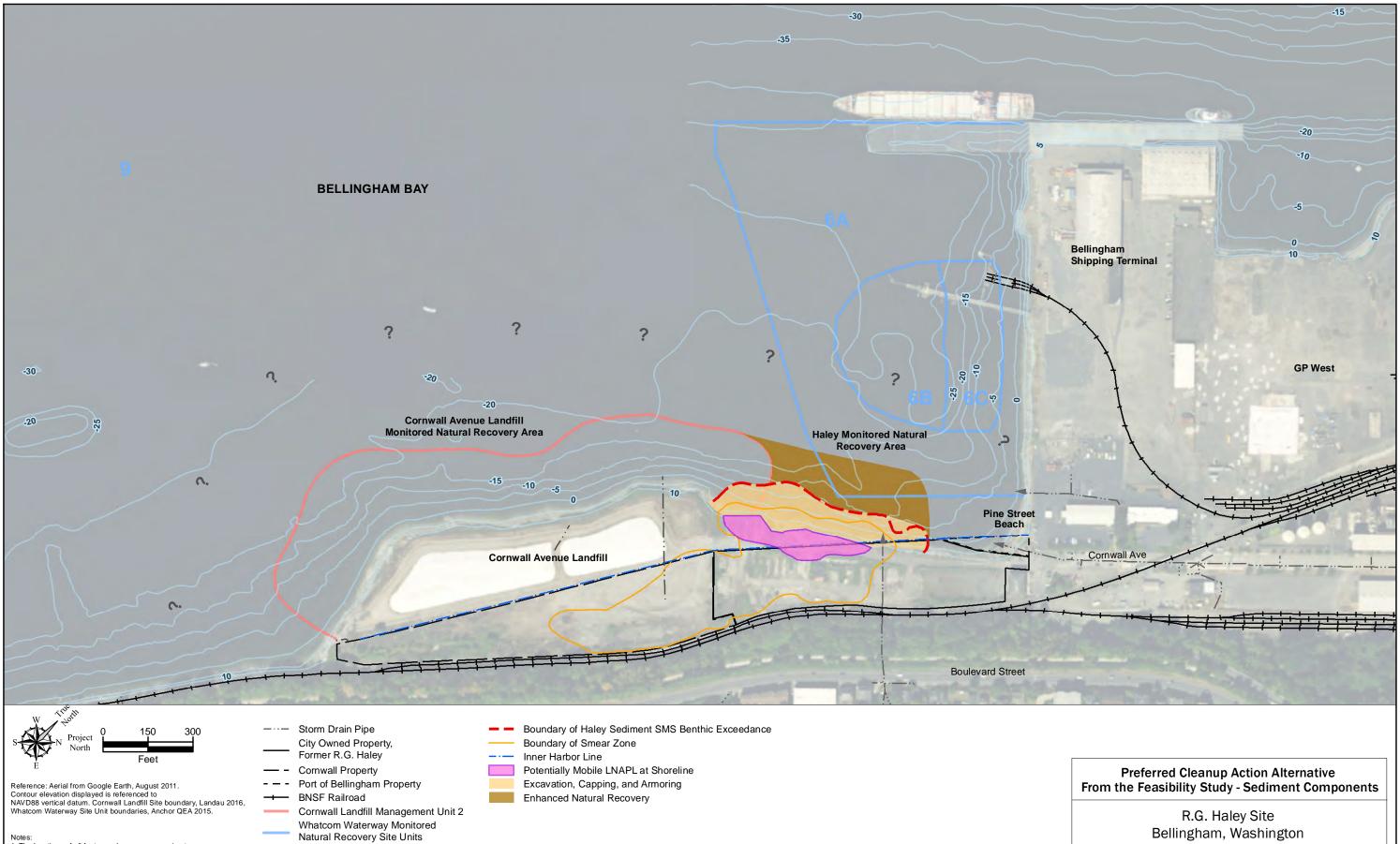
Table 8Bioassay Results for the Bivalve Larvae Mytilus galloprovincialis TestR.G. Haley SiteBellingham, Washington

Treatment	Replicate	Number Normal	Number Abnormal	Mean Number Normal (N)	Standard Deviation	Control Normal Survival N _c /I	Reference Normal Survival Relative to Control N _R /N _C	Performance Standard
	1	270	4					
	2	242	6					>70%; meets
Control	3		5	273.2	19.2	97.6		criterion
	4	277	6					
	5		8					
	1	206	4					
	2	256	6					>65%; meets
Reference (CR22)	3		2	238.8	32		87.4	criterion
	4	264	5					
	5		3					
	1	219	3					
	2	234	5	000.0				
SSI-SS-03_0-12	3	183	3	229.2	32.8			
	4	274	1					
	5	236	2					
	1	226 253	2					
SSI-SS-05_0-12	3		3	244.6	20.7			
331-33-03_0-12	4	233	2	244.0	20.1			
	5		2					
	1	246	0					
	2	240	2					
SSI-SS-06_0-12	3		5	254	24.5			
	4	200	3	_	-			
	5	269	1					

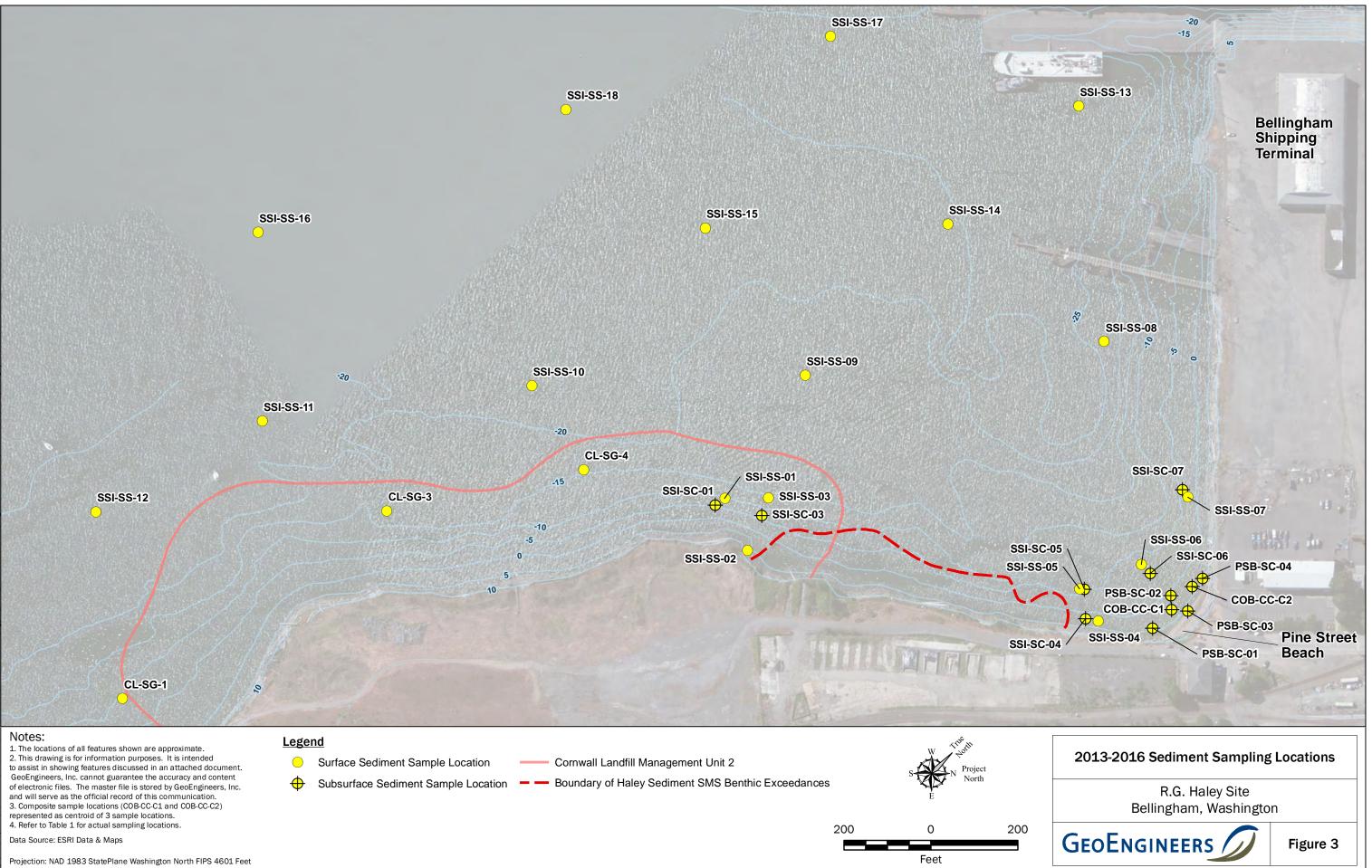
Notes:


I = Mean initial count (stocking density); 280 individuals

N_c = Mean Control Normal


 N_R = Mean Reference Normal

Please refer to laboratory report in Appendix D for additional details


:09 January 2018 Map Revised: V icinitvMap.mxd ÷ 114/GIS/MXDs/Fig P:\0\0356

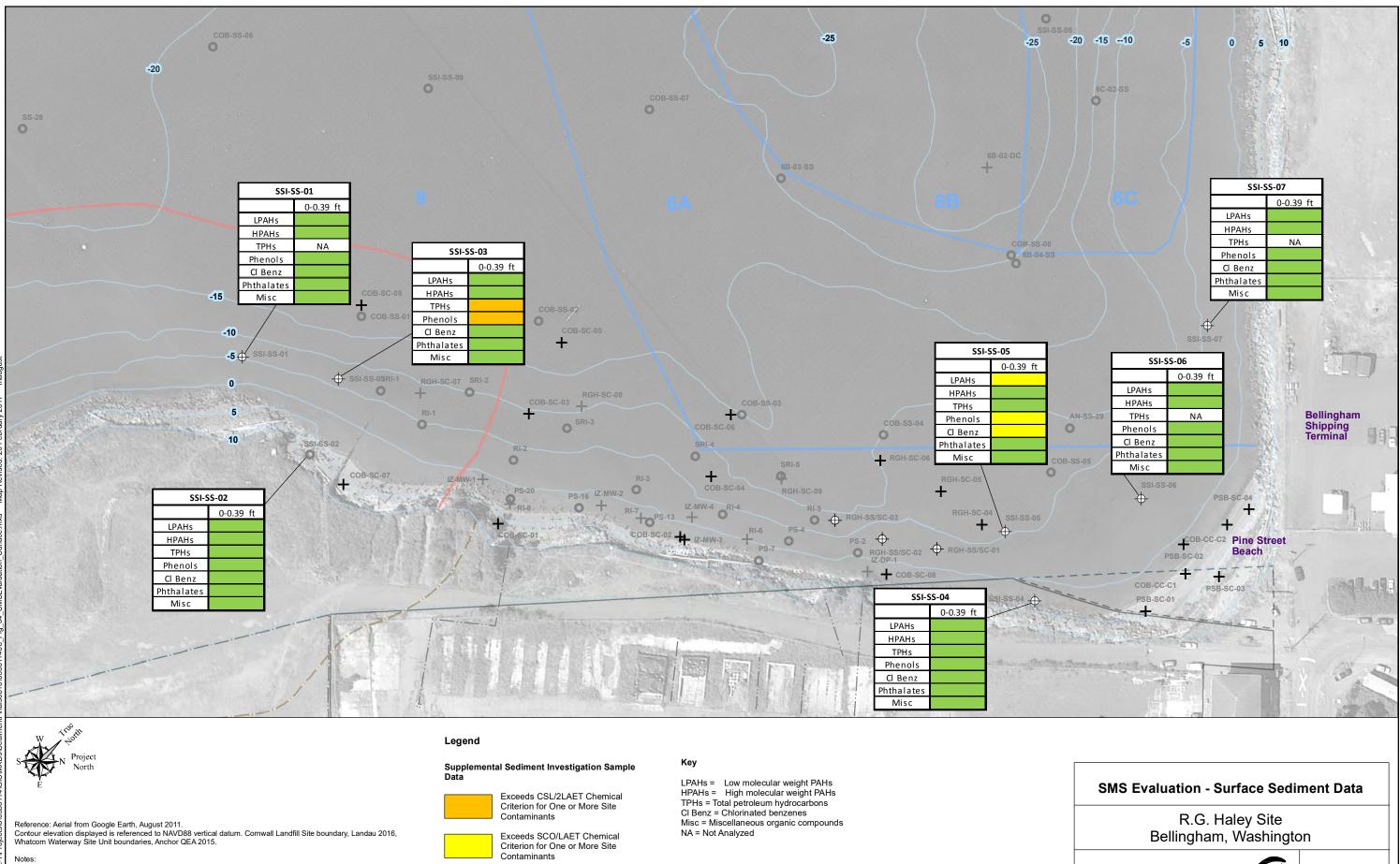
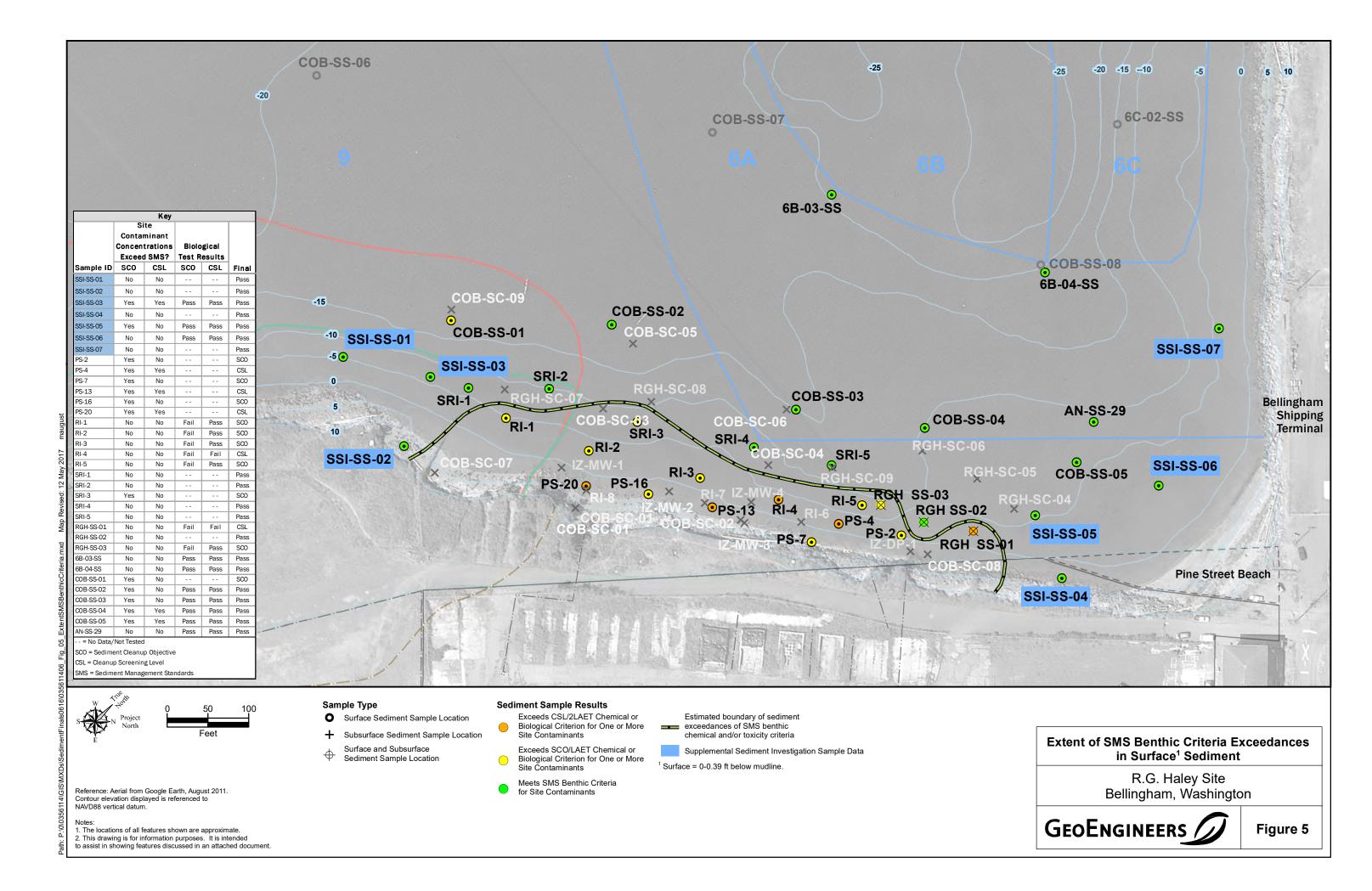
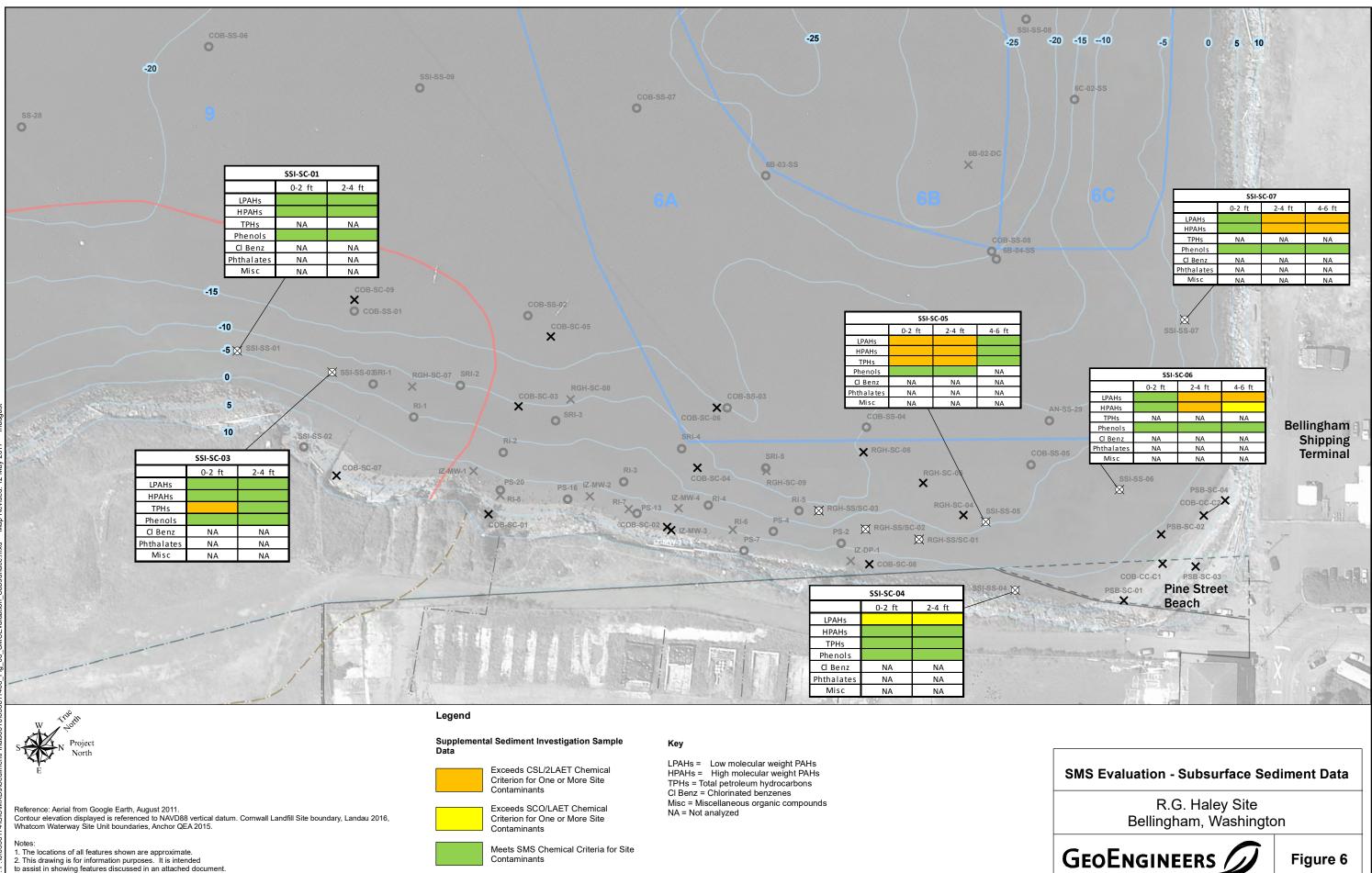

Notes: 1. The locations of all features shown are approximate. 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Figure 2

Projection: NAD 1983 StatePlane Washington North FIPS 4601 F	eet

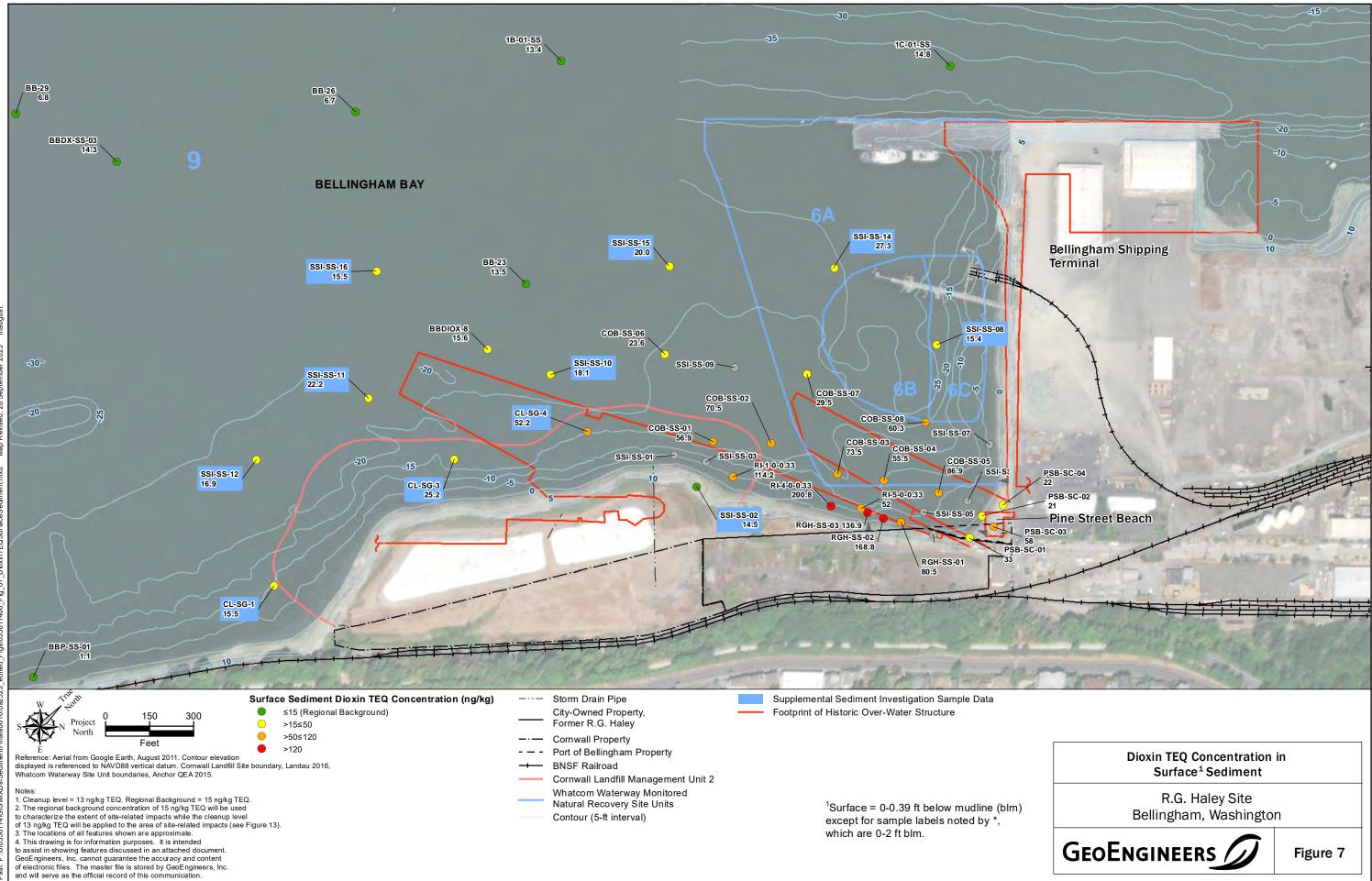

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document.
- 3. Sample location symbols are gray where not evaluated.

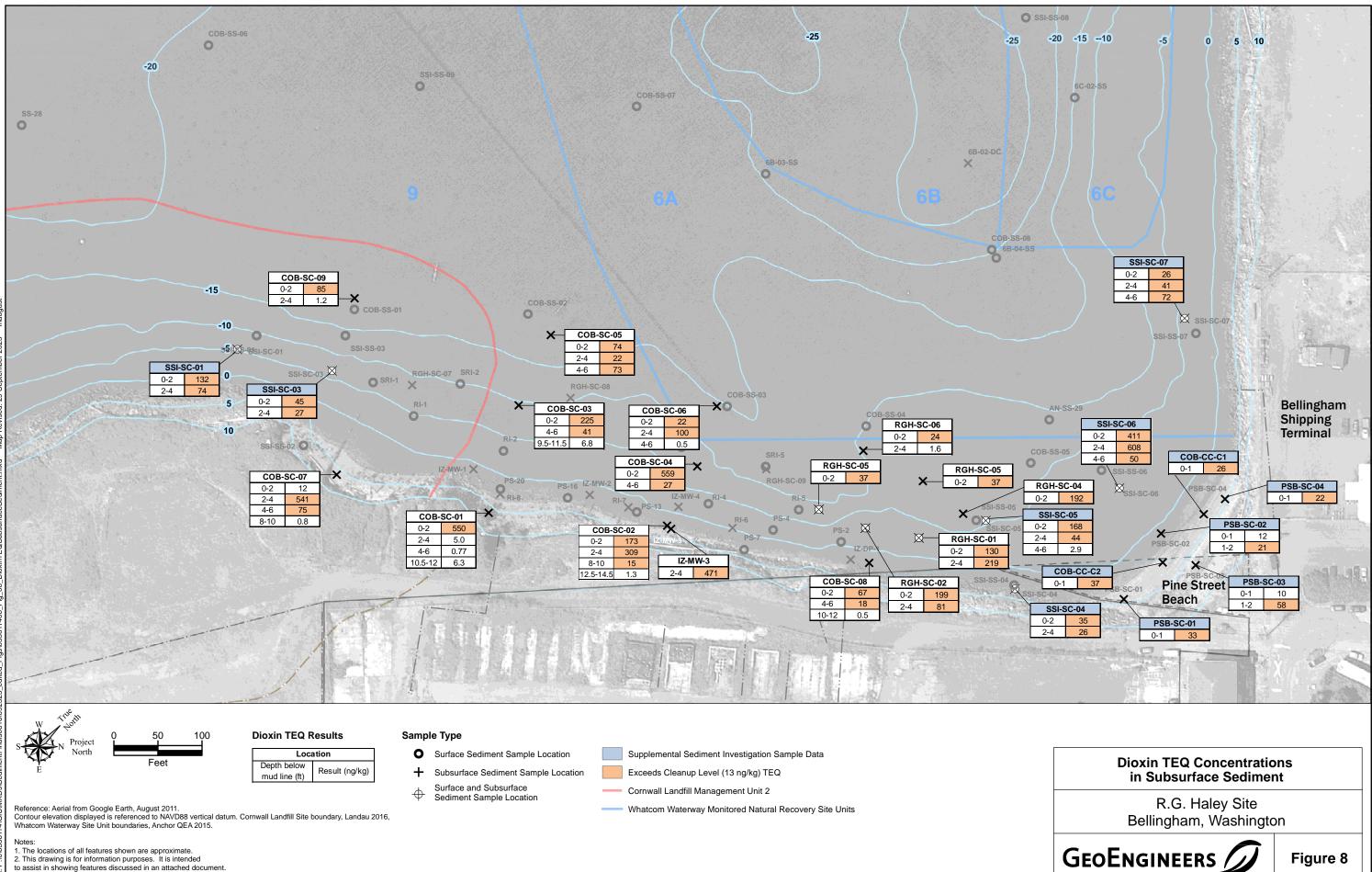


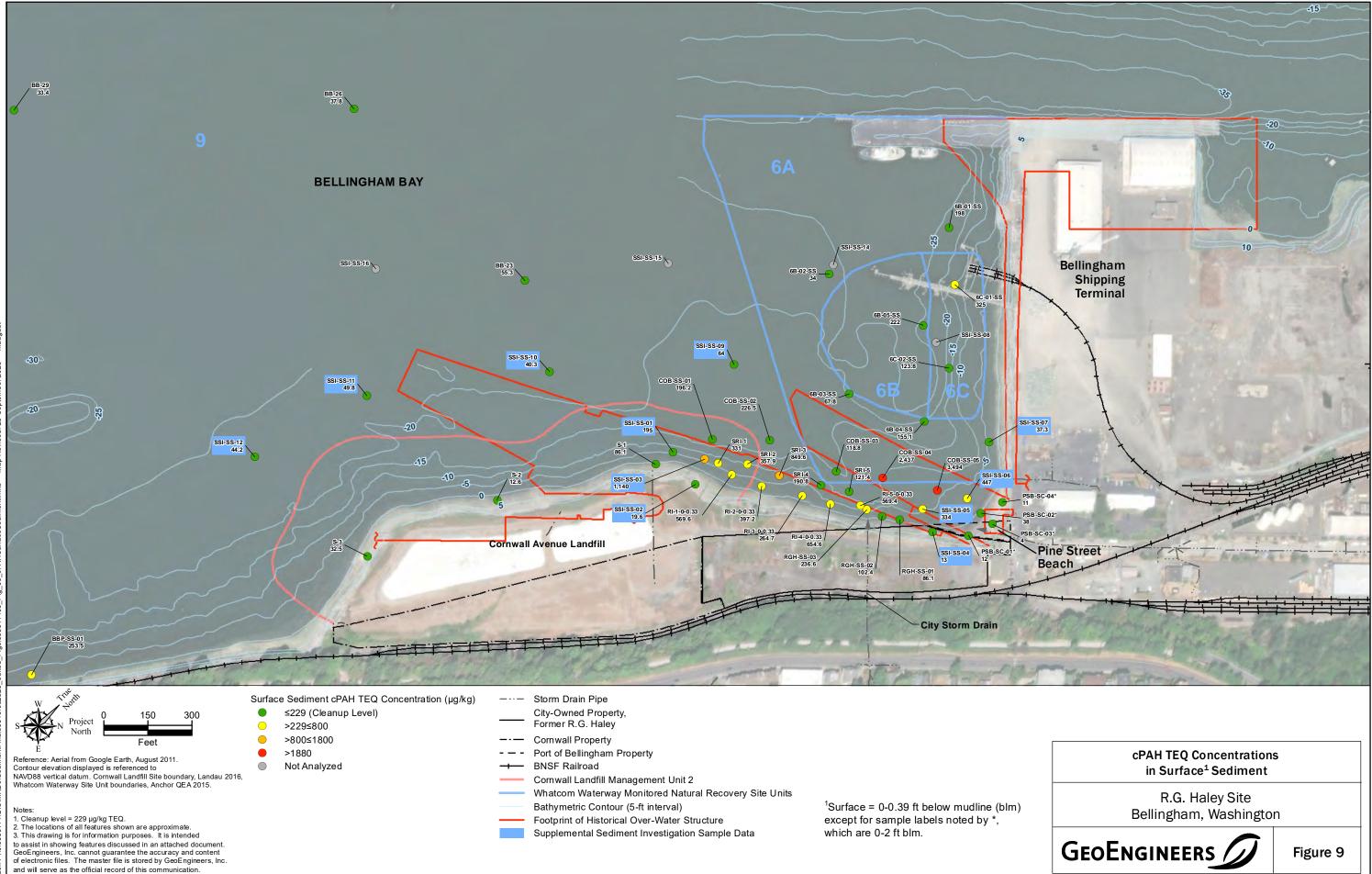
Meets SMS Chemical Criteria for Site Contaminants

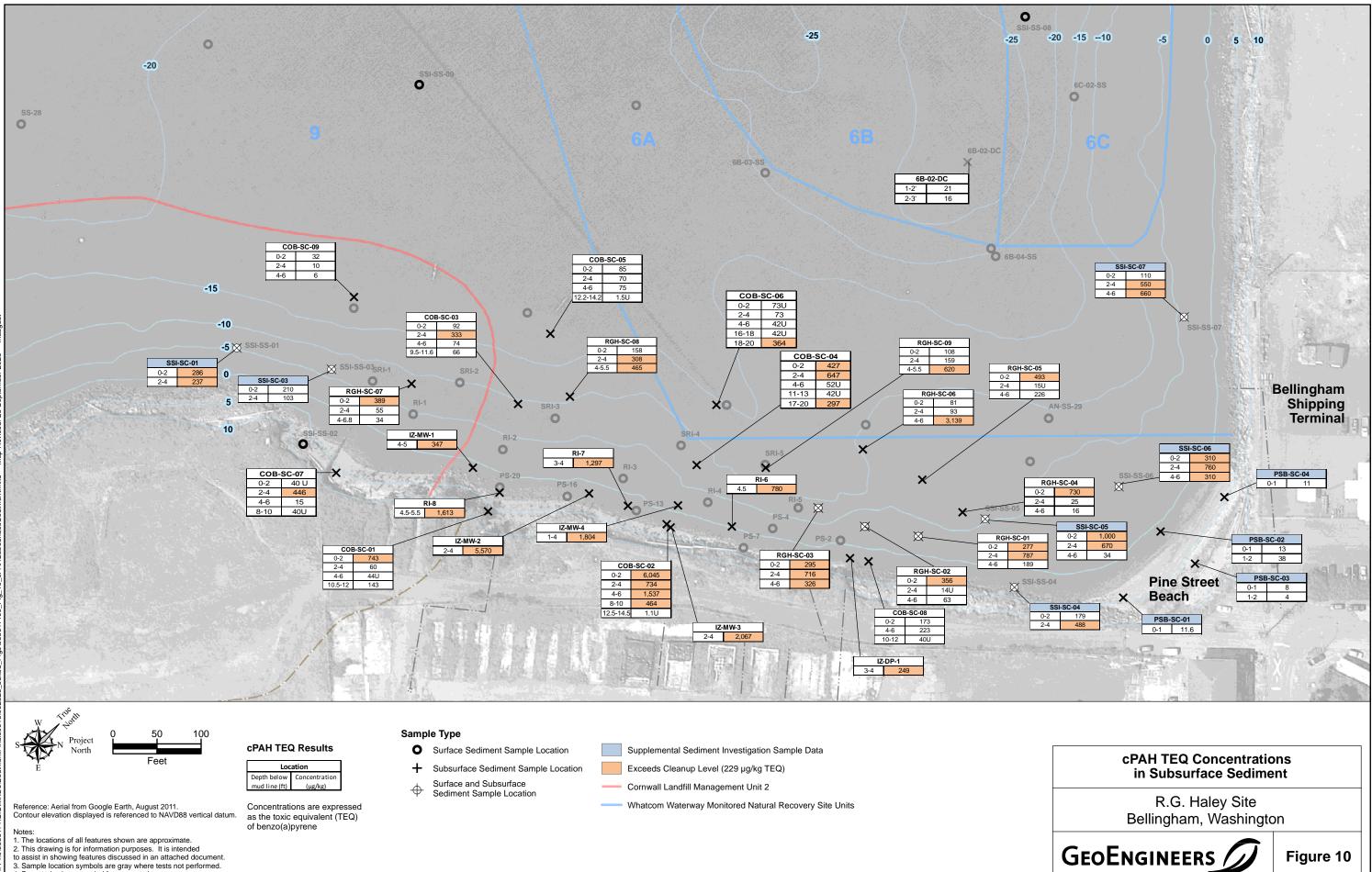
GEOENGINEERS

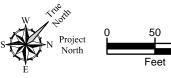
Figure 4

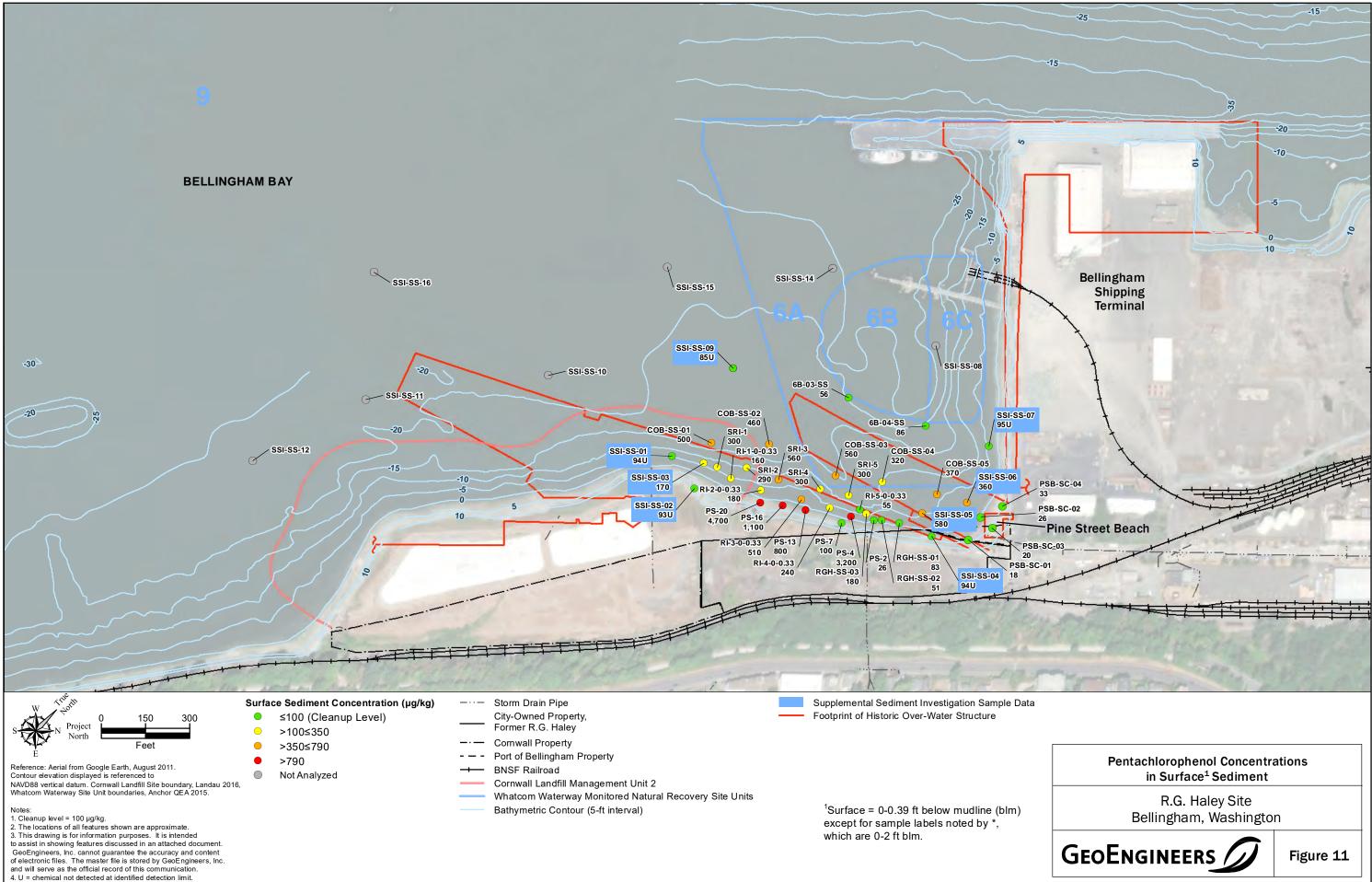

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document.

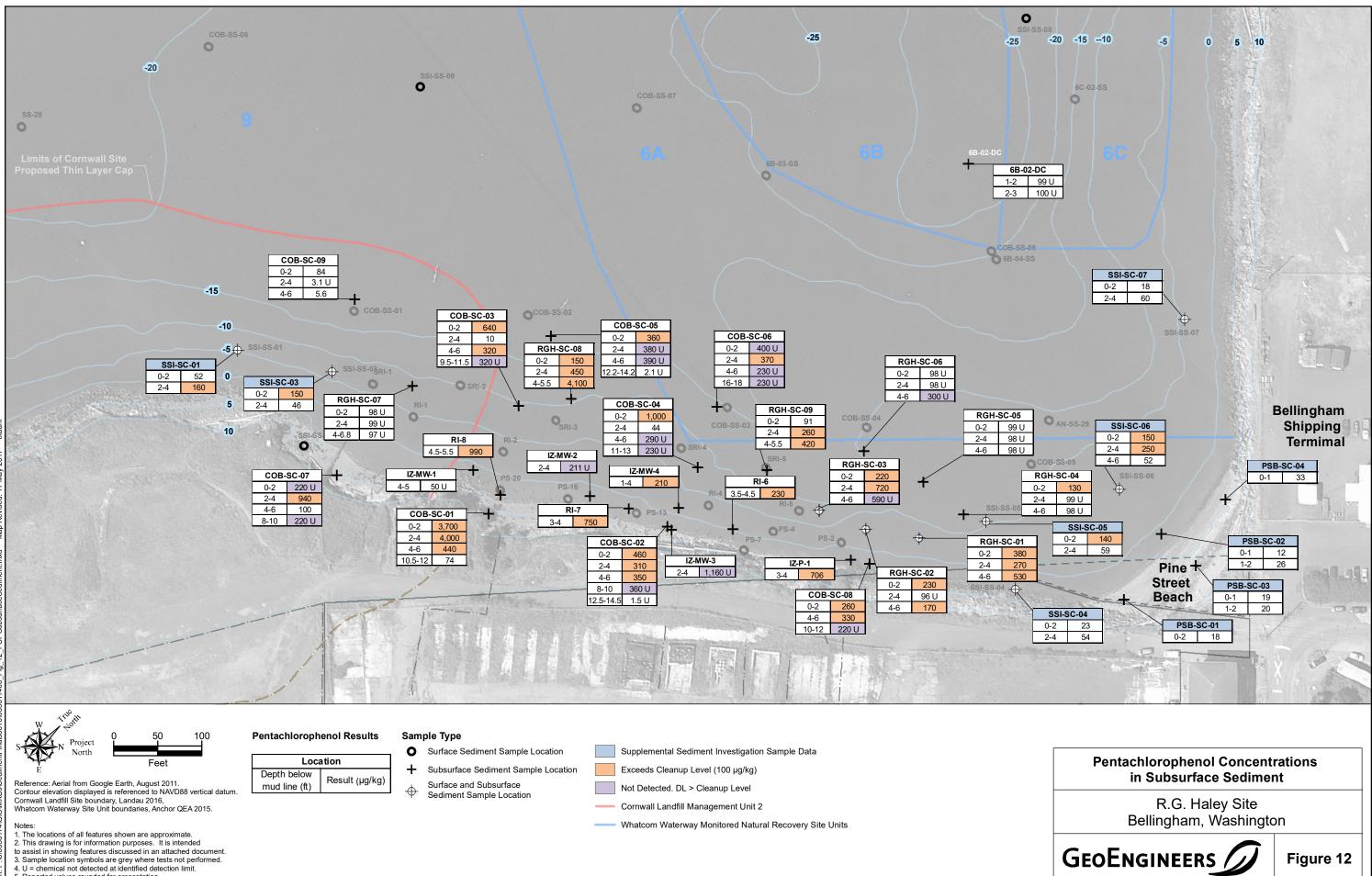

3. Sample location symbols are gray where not evaluated.



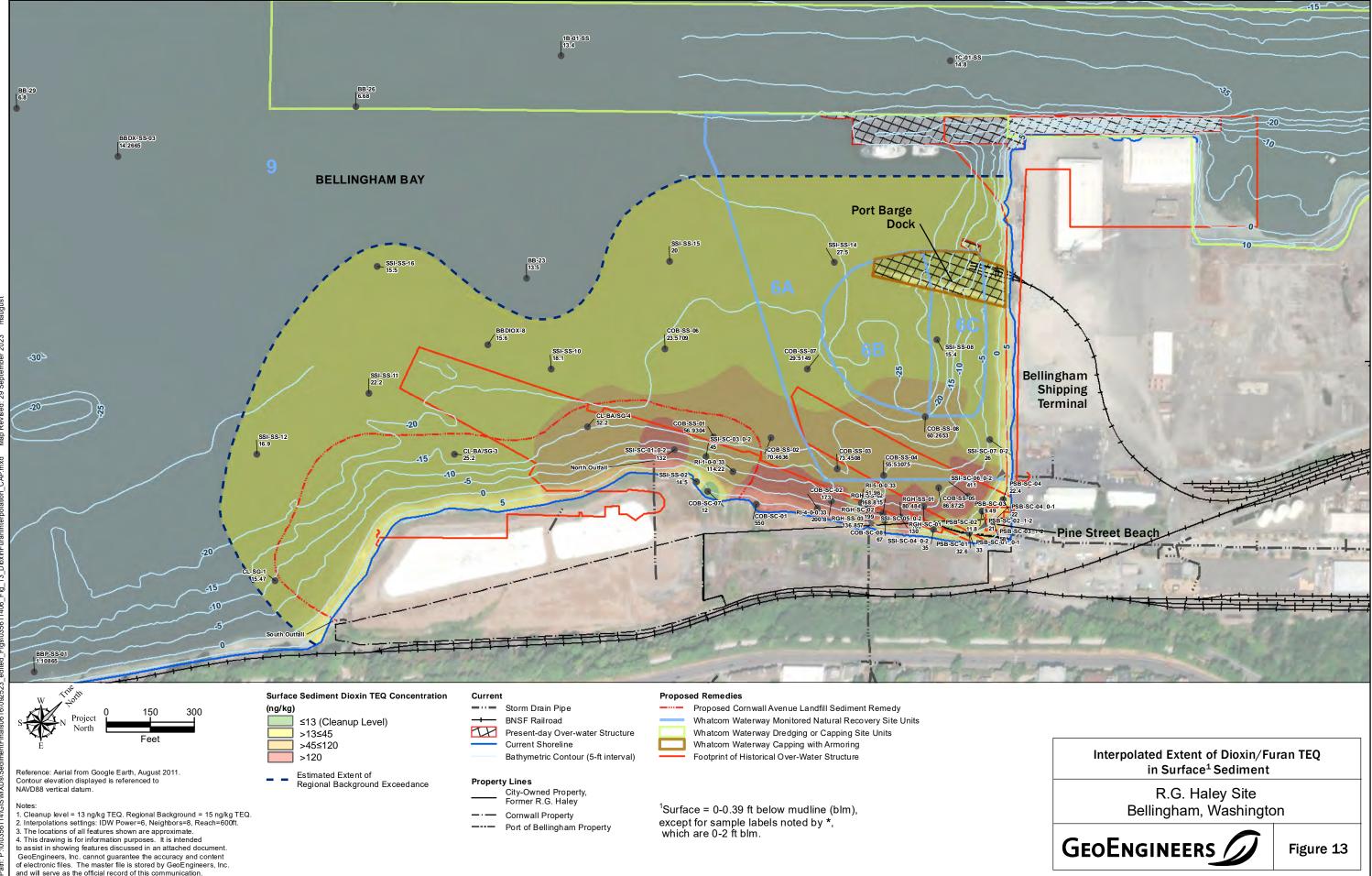

Meets SMS Chemical Criteria for Site Contaminants

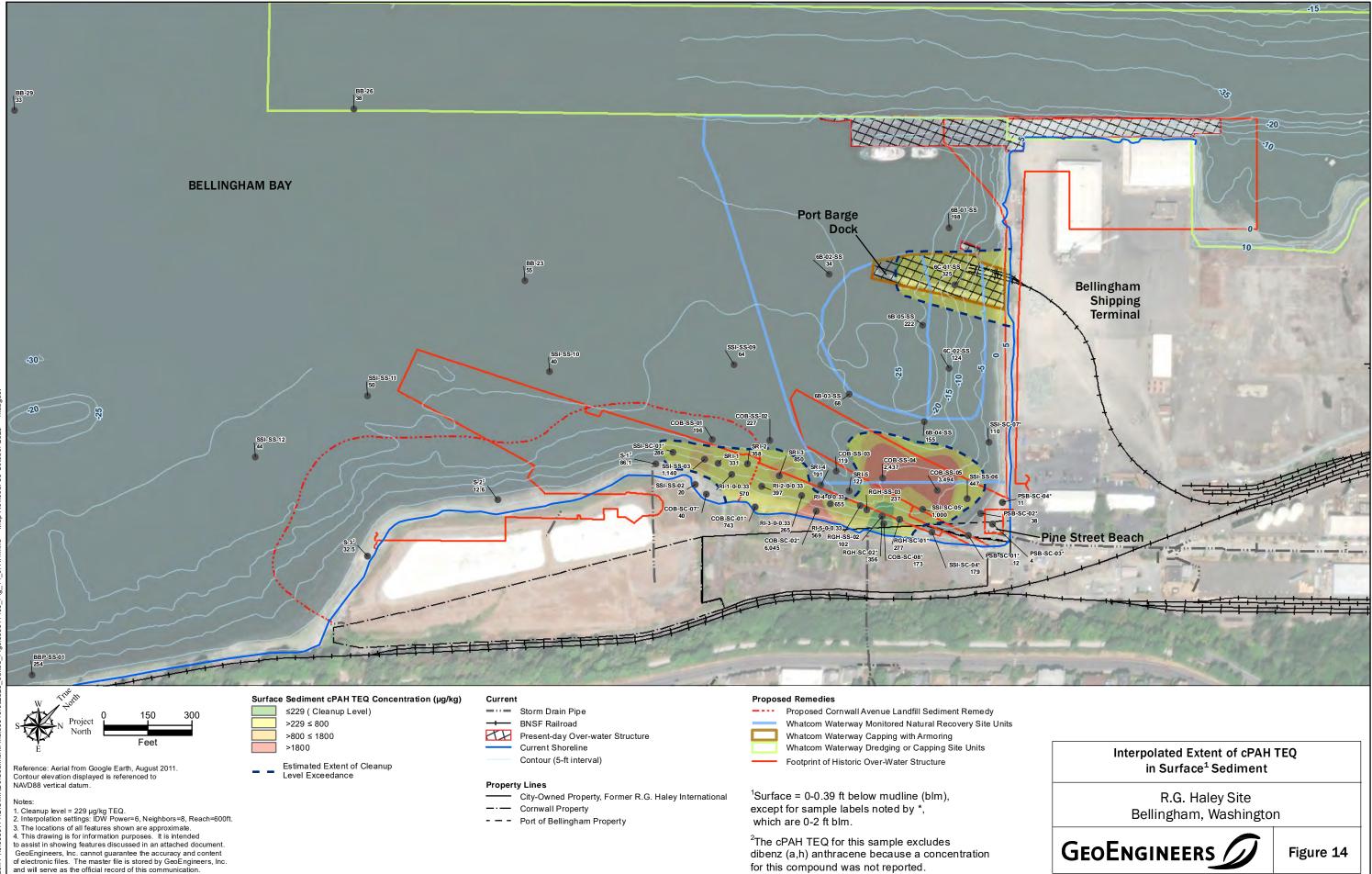


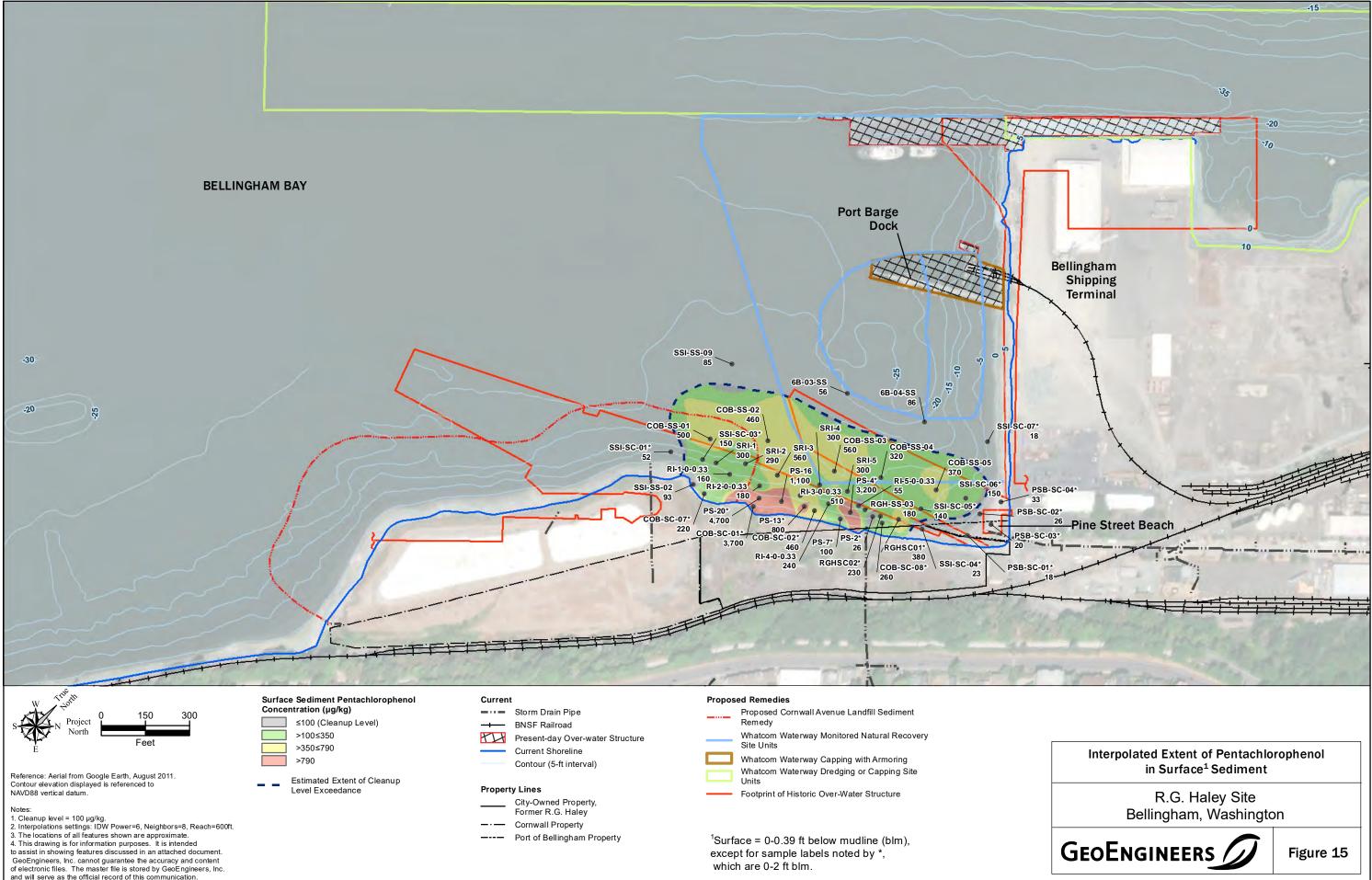

- to assist in showing features discussed in an attached document.
- 3. Sample location symbols are gray wherenot evaluated.






- to assist in showing features discussed in an attached document.
- 3. Sample location symbols are gray where tests not performed.
- 4. Reported values rounded for presentation.

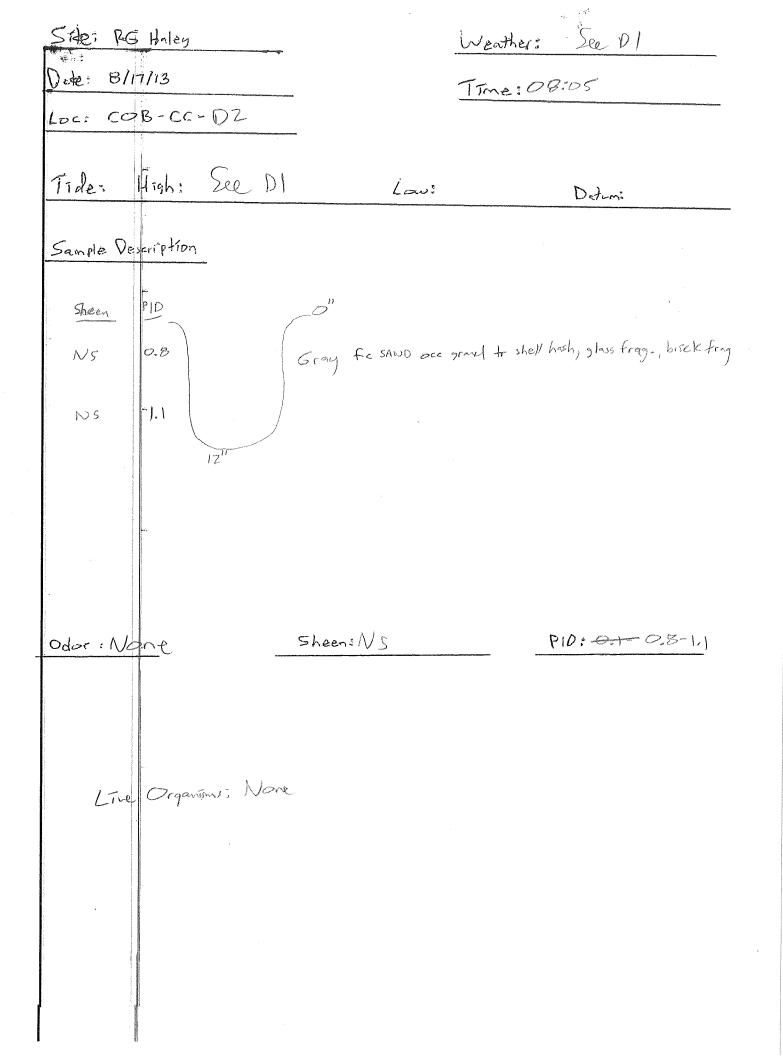




- Reported values rounded for presentation

APPENDIX A Field Logs and Forms

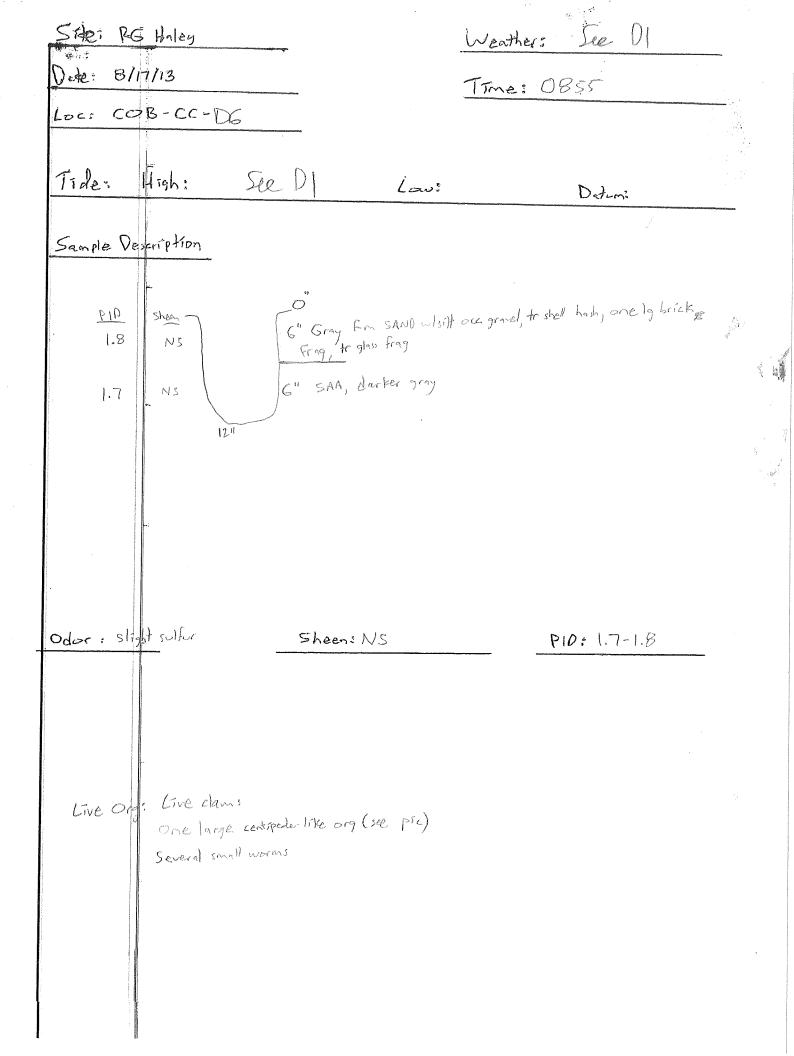
A.1 Pine Street Beach Field Forms - 2013


	6 Haley			Wenther: Cloudy, 60s
Dote B.	117/13			Time: 0740
Loca Co	B-CC-	DI		
Tide:	High: E	3,45 C2 17:44 mm	Low	-0.980 8:39 D.J. MUW, NOM
Sample V	Provident			Chaing Romet 10 9449424
	F	09 3" Light goy fie SAND (servered and sina	esce growned and 11 tow igs) them	hrickforn (shall housh, tr glase fragminics
.8	- 1	Gry for SAND and	gravel brish	all hash, break leng, glass Frag
.8	12"			
	Locs Co Tides Sample V	Loc: COB-CC- Tide: High: E Sample Description	Loc: COB-CC-DI Tide: High: Buils 1 @ 12:44 ann Sample Description (served and som Gray f-c SAND oce B	Loc: COB-CC-DI Tide: High: Buils' @ 17:11/1 and Law: Sample Description Sample Description (Servered and small twigs) the Gray file SAND are gravel and Gray file SAND are gravel to by

Odar : None

Sheen: NS

PID: 0.8-1.8


Live Organisms : None

See DI Weather: Side: RG Haley Dete: 8/17/13 Time: 0820 COB-CC-D3 Loci High: See DI Tide: Lau: Detumi Sample Description Dark gray F-c SAND w/silt, gravel, to shell hash, to glass Frag, brick Frag exhole 12" PID: 4.2 Odor : V slight sulfur Sheen: NS Liveo panisms: Nore

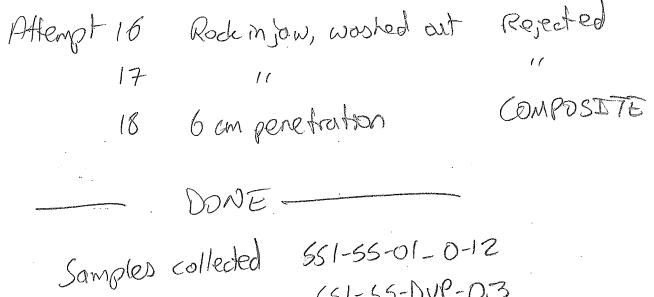
Weather: See D1 RG Haley Sthei 語言は Dute: 8/17/13 Time: 0945 COB-CC-D4 Loc: High: Tide: See DI Lau: Detuni Sample Description o" removed 2" wood /soil layer PID sheen Brown Fin SAND to shell hash, brack from, glass frong, org (to woody matil) (loose, maist) 1.0 NS 1.0 NS 14" 1.0 PID: Odor : None Sheen: NS Live organisms: None

See DI Weather: Sile; RG Haley 8/17/13 Dete: Time: 0925 Loc: COB-CC-D5 Tide: High: Sec D) Law: Detuni Sample Description \mathcal{O} Gray For SAND and shell hash, acc grad, to glass and brick NS 1.) frag, tr wood (tr sawdust, ~ 0.25" lans in N sidewall) 1.7 NS Becomes wet O12", one tive clam @4", one tive clam @ 12" 12" PID: 1-1-1.7 Sheen: NS Odor : None Live Org : 2 live clams

A.2 Supplemental Sediment Investigation Field Forms - 2015

SEDIMENT SAMPLING FORM-	SURFACE GF	RABS	
Project:R.G. Haley Supplemental Sediment	Investigation	Date: C	1.5/1.5
Project No.: 0356-114-06		Weather:Sun	iny, warm
Subcontractor: Gravity Environmental LLC		Vessel:T	ton
Sampling Crew: Mike, Chad, Paul, U	audres	Sampling Method:	Buer Grob
Sample Location: <u>SSI-SS-O</u>	1	Target D epth (ft):	12 cm
Target Coordinates:			
Long/Easting:		Lat/Northing:	
	Datum: Depth to Mudlii Tíme: 2 Mudline Elevati	ne: <u>8.31</u> 31 Son:	 Overlying water present Low turbidity in overlying water Grab not over-filled Sediment surface ~flat No winnowing/washout
	n Depth (cm):	Sample Accepted (circle): Yes No	Target penetration achieved Sample Type (circle): Discrete or Composite?
Fill out for accepted grab only— Sediment Type (circle): Cobble Grav Wood debris (by volume) (circle): Nor Shell hash (circle): Present Absent Vegetation/Biota (describe):	ie <25% 25-5		
Sediment Color (circle): Olive Light E Stratification/Layering (describe):	Brown Dark Bro	own Gray Black	See back for additional attempts
RPD depth (cm):			
Sediment Odor Type (circle): None F	etroleum H ₂ S		
Odor Strength (circle): Light Modera	te Strong Very	Strong	
Petroleum Sheen (circle): None Slig	ht Moderate	Heavy Product present	
Comments/Other Observations:			
Logged by:			
			page 10/2

Page Lat 2 10/15/15 351-35-01 Attempt 1 Brick, glass, rock + clam Attempt 2 low volume, brick, glass, glass tile 11 3 rock, brock 11 4. rock, clam, brick 5 two by rocks (4" dram") 11 rejected & two more big rocks (4" to b" dram) 17 7 brick, longe rock 11 11 8 brick, rocks, clam All rejected above Relocated Approx 10 feet


Attemp of gran of penetration. - COMPOSITE 10 insufficient volume, rocks in jours - rejected U --- COMPOSETE 11 6cm of penetrotion 11 elams, rocks, woohed out - rejected 12 11 - COMPOSITE 13 Bcm penetration 11 - rejected Tile back splash (8" long) 14 11 - LOMPOSITE ucm penetration 15 11

SEDIMENT SAMPLING FORM	-SURFACE GR	ABS	
Project:R.G. Haley Supplemental Sedime	nt Investigation	Date:/D/	15/15
Project No.: 0356-114-06		/	nnu, waam
Subcontractor: Gravity Environmental LLC		Vessel:7	
Sampling Crew:		1	POWER Grab
Sample Location:			12 cm
Target Coordinates:			
Long/Easting: (See navigation report for actual)		Lat/Northing:	
	Water Elevation	:	Acceptance Criteria:
	Datum:		Overlying water present
A	Depth to Mudlin	ne:9,5/	 Low turbidity in overlying water
	Time:/	1246	Grab not over-filled Sediment surface ~flat
	Mudline Elevati	on:	 Securite surface "nat No winnowing/washout
	Datum:		Target penetration achieved
Grab No.: Penetrat	ion Depth (cm):	Sample Accepted (circle):	Sample Type (circle):
99	cm	Yes No	Discrete or Composite?
Fill out for accepted grab only—			
Sediment Type (circle): Cobble Gr	avel Coarse Sand	Medium Sand Fine Sand	
Wood debris (by volume) (circle): /N	one) <25% 25-5	50% 50-75% >75%	41
Shell hash (circle): Present Absent	Chall for	approx /	rocks #13
Vegetation/Biota (describe):	whole si	holls	# 15
	1 10 10 0 0		#18
Other Debrie (describe):			#18 See aftempt #11 notes
Other Debris (describe):			See attempt
Glass			# 11 noto
Sediment Color (circle): Olive Light	t Brown Dark Bro	wn Gray Black	
Stratification/Layering (describe):			
None.			See notes on back
RPD depth (cm):)	notts on back
Sediment Odor Type (circle): None)	
Odor Strength (circle): Light Mode			
Petroleum Sheen (circle): None Sl	ight Moderate I	Heavy Product present	
Comments/Other Observations:			
PID = Dpom			
Logged by:			
			Page 10/2

Pg Zof Z

551-55-01

12/15/15

.

551-55-DVP-03

SEDIMENT SAMPLING FORM-	SURFACE GRABS		
Project:R.G. Haley Supplemental Sediment	t Investigation D	Date:	15/15
Project No.: 0356-114-06	V	Neather: <u>50</u> 1	ny, warm
Subcontractor: Gravity Environmental LLC		/essel:	\cap .
Sampling Crew:		Sampling Method:	Power Grab
Sample Location: <u>551-55-0</u>	<u>/</u> т	arget Depth (ft):	12cm
Target Coordinates:			
Long/Easting: (See navigation report for actual)	L	.at/Northing:	·
			Acceptance Criteria:
	Water Elevation: Datum:		Overlying water present
	Depth to Mudline:		Low turbidity in overlying water
	Time: 12:59		Grab not over-filled
	Mudline Elevation:		 Sediment surface ~flat No winnowing/washout
111111111111111111111111111111111111111	Datum:		Target penetration achieved
		re Accepted (circle):	Sample Type (circle): Discrete or Composite?
Fill out for accepted grab only– $f_{1}h_{P}$	to med some	1 with free d	Dianess and
Sediment Type (circle): Cobble Gra	vel) Coarse Sand Medi	ium Sand Fine Sand	Silt/Clay
Wood debris (by volume) (circle) No	ne <25% 25-50% 50	0-75% >75%	L7 Grab # 9
Shell hash (circle): Present Absent)		+1) (
Vegetation/Biota (describe):			#13
Whole elam	 ろ		# 15
Other Debris (describe):			H IR
glass			
Sediment Color (circle): Olive Light	Brown Dark Brown Gra	ay Black	
Stratification/Layering (describe):		\bigcirc	
Non	L.		One composite
RPD depth (cm):			Sample
Sediment Odor Type (circle): None			551-55-01-0-12
Odor Strength (circle): Light Modera	te Strong Very Strong		and
Petroleum Sheen (circle): None Slig	ht Moderate Heavy I	Product present	351-55-DUP-03
Comments/Other Observations:	551-55-01_0-12	e 4 jors to A	RI + 1 buchet for bibassay 2-gal
PJD=Oppm	351-35-DUP-1	03 4 most	OARI
Logged by:			

SEDIMENT SAMPLING FORM—SURFACE GRABS

	nent Investigation	Date:/0/	13/13
ject No.: 0356-114-06		Weather: <u>San</u>	ny, warm
contractor: Gravity Environmental I	.LC	Vessel:7	
npling Crew:			Power Grab
nple Location: <u>651-55</u>	-0[Target Depth (ft):	2 cm
g <u>et Coordinates:</u> g/Easting: e navigation report for actual)		Lat/Northing:	
	Datum: Depth to Mudlin Time:1.3 Mudline Elevati	ne: 0 5 Von:	 Sediment surface ~flat
	ation Depth (cm): // D	Sample Accepted (circle): Yes No	Sample Type (circle): Discrete or Composite?
Fill out for accepted grab only—	fine to coor	se gravel wy for	ve to coarse sand and silf Silt/Clay
Sediment Type (circle): Cobble Wood debris (by volume) (circle): Shell hash (circle): Present Abso	None <25% 25-5		
Wood debris (by volume) (circle): Shell hash (circle): Present Abso Vegetation/Biota (describe):	None <25% 25-5		
Wood debris (by volume) (circle): Shell hash (circle): Present Abso	None <25% 25-5		
Wood debris (by volume) (circle): Shell hash (circle): Present Abso Vegetation/Biota (describe):	None <25% 25-5		
Wood debris (by volume) (circle): Shell hash (circle): Present Abso Vegetation/Biota (describe): Shell, w	None <25% 25-5		
Wood debris (by volume) (circle): Shell hash (circle): Present Abso Vegetation/Biota (describe): Shell b , W Other Debris (describe):	None <25% 25-5	50% 50-75% >75% (B)	
Wood debris (by volume) (circle): Shell hash (circle): Present Abso Vegetation/Biota (describe): Shell b, W Other Debris (describe): Color, (Sediment Color (circle): Olive Lig Stratification/Layering (describe)	None <25% 25-5 ent OMS ght Brown Dark Bro	50% 50-75% >75% (Соб	
Wood debris (by volume) (circle): Shell hash (circle): Present Absorved Vegetation/Biota (describe): Shell b, w Other Debris (describe): Games, Sediment Color (circle): Olive Lig Stratification/Layering (describe) W	None <25% 25.8 ent 25% 25.8 ght Brown Dark Bro <i>n.e, 100 c.c.</i>	50% 50-75% >75% (Соб	
Wood debris (by volume) (circle): Shell hash (circle): Present Abso Vegetation/Biota (describe): Shell b, W Other Debris (describe): GAWS, Sediment Color (circle): Olive Lig Stratification/Layering (describe): MO RPD depth (cm):	None $<25\%$ 25.8 ent 25% 25.8 0% $Sd%$ $Sd%$ $Brown Dark Brown Dark Brown Dark Brown Dark Brown Dark Brown Brow$	50% 50-75% >75% (65) own Gray Black) 0556	
Wood debris (by volume) (circle): Shell hash (circle): Present Abso Vegetation/Biota (describe): Shell b, W Other Debris (describe): GAWS, Sediment Color (circle): Olive Lig Stratification/Layering (describe) MD RPD depth (cm): Sediment Odor Type (circle): Non	None <25% 25-5 ent 25% 25-5 ght Brown Dark Bro A.C. 400 C Ct e Petroleum H ₂ S derate Strong Very	50% 50-75% >75% (65) own Gray Black 065C Strong (VA)	
Wood debris (by volume) (circle): Shell hash (circle): Present Absorved Vegetation/Biota (describe): Shell b, W Other Debris (describe): Games, Sediment Color (circle): Olive Lip Stratification/Layering (describe) M RPD depth (cm): Sediment Odor Type (circle): Non Odor Strength (circle): Light Mod	None <25% 25-5 ent 25% 25-5 ght Brown Dark Bro A.C. 400 C Ct e Petroleum H ₂ S derate Strong Very	50% 50-75% >75% (65) own Gray Black 065C Strong (VA)	

SEDIMENT SAMPLI	NG FORM—SURFACE GI	RABS		
ject:R.G. Haley Supplemer	ntal Sediment Investigation	Date:/0	listis	
oject No.: 0356-114-06		Weather:		
contractor: Gravity Enviro	nmental LLC	Vessel:	Vessel:	
npling Crew:		Sampling Method:		
nple Location:	- 55-01	Target Depth (ft):		
get Coordinates:				
g/Easting: e navigation report for act	ual)	Lat/Northing:		
	Water Elevation	n:	Acceptance Criteria:	
Datum:			Overlying water present	
		ne:9-51	• Low turbidity in overlying water	
	Time: <u> 3/</u>		 Grab not over-filled Sediment surface ~flat 	
ł	Mudline Elevat	ion:		
11/////////////////////////////////////	////// Datum:		 Target penetration achieved 	
	1			
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):	
15	14 cm	Yes No	Discrete of Composite?	
	b only— Cobble Gravel Coarse San) (circle): None <25% 25-8		to loorse sand and silt silt/Clay	
Shell hash (circle): Pres	ent Absent			
Vegetation/Biota (descri	ibe):			
Shells,	Clams			
Other Debris (describe):				
Glass				
Sediment Color (circle):	Olive Light Brown Dark Bro	own Gray Black		
Stratification/Layering (describe):	\bigcirc		
\sim	lone, too cao	R		
	00.0,			
RPD depth (cm):				
	cle): None Petroleum H ₂ S			
Sediment Odor Type (cire	·			
Sediment Odor Type (circ Odor Strength (circle): L	cle): None Petroleum H ₂ S	Strong AA		
Sediment Odor Type (circ Odor Strength (circle): L	cle): None Petroleum H ₂ S ight Moderate Strong Very): None Slight Moderate	Strong AA		
Sediment Odor Type (circ Odor Strength (circle): L Petroleum Sheen (circle)	cle): None Petroleum H ₂ S ight Moderate Strong Very): None Slight Moderate	Strong AA		

Project:R.G. Haley Supplemental Sedim	ent Investigation	Date:	15/15
Project No.: 0356-114-06			, warm
Subcontractor: Gravity Environmental Li	.C O.		eton
Sampling Crew:		Sampling Method:	Power Gras
Sample Location: <u>SSI-SS-</u> d	2	Target Depth (ft):	12 cm
Farget Coordinates:			
.ong/Easting: See navigation report for actual)		Lat/Northing:	
	Water Elevation Datum: Depth to Mudlin Time: Mudline Elevati	n: ne:9, 5' 3/5 ion:	 Low turbidity in overlying water Grab not over-filled Sediment surface ~flat No winnowing/washout
	tion Depth (cm):	Sample Accepted (circle):	Sample Type (circle): Discrete or Composite?
Fill out for accepted grab only– Sediment Type (circle): Cobble G Wood debris (by volume) (circle):(1 Shell hash (circle): Present Abser Vegetation/Biota (describe): Shelb, Ma Other Debris (describe):	None) <25% 25-5		to coorse sand (=> see silt/clay attempt 11 noted
Glass			
Sediment Color (circle): Olive Lig Stratification/Layering (describe):	nt Brown Dark Bro かん / わっ cの	\bigcirc	
Sediment Odor Type (circle): (None	Petroleum H ₂ S		
Odor Strength (circle): Light Mode	erate Strong Very	Strong (NA)	
Petroleum Sheen (circle): None	light Moderate	Heavy Product present	
Comments/Other Observations:			
ogged by:			

SEDIMENT SAMPLIN	IG FORM—SURFACE GF	RABS		
Project:R.G. Haley Supplemen	tal Sediment Investigation	Date: 10/12/15	Date: 10/12/15	
Project No.: 0356-114-06		Weather: H (g)n	, hi sos	
Subcontractor: Gravity Enviror	nmental LLC	Vessel: Tieton		
Sampling Crew: $f_{R,SL,CV}$		Sampling Method: P	wergrab	
Sample Location:5155	-01	Target Depth (ft):	2 cm	
Target Coordinates:				
Long/Easting: (See navigation report for actu		Lat/Northing:		
See navigation report for acti		n: <u>~ 3 </u>	Acceptance Criteria:	
		1: D3E		
		ne: <u>4.4</u> ′	 Low turbidity in overlying water 	
Î		1	Grab not over-filled	
		ion:	 Sediment surface ~flat No winnowing/washout 	
111111111111111111111111111111111111111		V DBB	Target penetration achieved	
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):	
	· • • • • • • • • • • • • • • • • • • •	Yes (No)	Discrete or Composite?	
Fill out for accepted grab) only—			
		d Medium Sand Fine Sand	Silt/Clav	
) (circle): None <25% 25-5			
Shell hash (circle): Prese				
Vegetation/Biota (descri				
Vegetation/ blota (descri	<i>be</i>).			
Other Debris (describe):	grace and coubles			
Sediment Color (circle):	Olive Light Brown Dark Bro	own Gray Black		
Stratification/Layering (c	lescribe):			
RPD depth (cm):				
Sediment Odor Type (circ	cle): None Petroleum H ₂ S			
Odor Strength (circle): Li	ght Moderate Strong Very	Strong		
Petroleum Sheen (circle)	: None Slight Moderate	Heavy Product present		
Comments/Other Observ	vations:			
Logged by: GRL				

 $\beta \hat{r}$

SEDIMENT SAMPLIN	NG FORM—SURFACE GF	RABS	
Project:R.G. Haley Supplemental Sediment Investigation		Date: _ フ) 1 ユ	
Project No.: 0356-114-06		Weather:	
Subcontractor: Gravity Enviro	nmental LLC	Vessel:	
Sampling Crew:		Sampling Method:	
Sample Location: 55-1-	551-55-01	Target Depth (ft):	
Target Coordinates:			
Long/Easting: (See navigation report for act		Lat/Northing:	
_ 1	Water Elevation	n:	Acceptance Criteria:
	Datum:		Overlying water present
1	Depth to Mudlin	ne:	 Low turbidity in overlying water Grab not over-filled
			 Sediment surface ~flat
ł		ion:	 No winnowing/washout
777777777777777777	////// Datum:		 Target penetration achieved
Que Maria	Devictorian Devite (cm)	Sample Accepted (circle):	Sample Type (circle):
Grab No.:	Penetration Depth (cm):	Yes No	Discrete or Composite?
Wood debris (by volume Shell hash (circle): Pres Vegetation/Biota (descri Other Debris (describe):	Cobble Gravel Coarse San) (circle): None <25% 25- ent Absent libe): cobble, muscels, Mo	oved as 1 offshore f	
	Olive Light Brown Dark Bro	own Gray Black	
Stratification/Layering (describe):		
RPD depth (cm):			
Sediment Odor Type (cir	cle): None Petroleum H ₂ S		
Odor Strength (circle): L	ight Moderate Strong Very	Strong	
Petroleum Sheen (circle): None Slight Moderate	Heavy Product present	
Comments/Other Obser	vations:		

Logged by: G p L

SEDIMENT SAMPLING	G FORM—SURFACE GR	RABS	
Project:R.G. Haley Supplementa	al Sediment Investigation	Date:/12	
Project No.: 0356-114-06		Weather:	
Subcontractor: Gravity Environ	nental LLC	Vessel:	
Sampling Crew:		Sampling Method:	
Sample Location: 55) - 55	- 01	Target Depth (ft):	
Target Coordinates:			
Long/Easting: (See navigation report for actua		Lat/Northing:	
	Datum: Depth to Mudlin Time: Mudline Elevati	n:	Acceptance Criteria: • Overlying water present • Low turbidity in overlying water • Grab not over-filled • Sediment surface ~flat • No winnowing/washout • Target penetration achieved
Grab No.: 3	Penetration Depth (cm):	Sample Accepted (circle): Yes No	Sample Type (circle): Discrete or Composite?
	obble Gravel Coarse Sand (circle): None <25% 25-5 nt Absent e):	d Medium Sand Fine Sand 50% 50-75% >75%	Silt/Clay
Stratification/Layering (de	live Light Brown Dark Bro escribe):	own Gray Black	
RPD depth (cm):			
Odor Strength (circle): Lig	e): None Petroleum H ₂ S (ht Moderate Strong Very None Slight Moderate		
Comments/Other Observa			

SEDIMENT SAMPLIN	NG FORM—SURFACE GF	RABS		
Project:R.G. Haley Supplemental Sediment Investigation		Date: 10/12	Date: 10/12	
Project No.: 0356-114-06	Project No.: 0356-114-06		Weather:	
Subcontractor: Gravity Enviror	nmental LLC	Vessel:	Vessel:	
Sampling Crew:		Sampling Method:		
Sample Location: <u>551 - 55</u>	- 0	Target Depth (ft):		
Target Coordinates:				
Long/Easting: (See navigation report for act	ual)	Lat/Northing:		
T	Mater Elevation	n:	Acceptance Criteria:	
	Datum:			
Ť	Depth to Mudlin	ne: <u>6.5</u> '	 Low turbidity in overlying water Grab not over-filled 	
			Sediment surface ~flat	
¥		lon:	 NO winnowing/ washout 	
111111111111111	////// Datum:		 Target penetration achieved 	
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):	
4		Yes Nø	Discrete or Composite?	
Fill out for accepted gra		d Madium Sand Eina Sand	Silt/Clay	
		d Medium Sand Fine Sand	Sity oray	
) (circle): None <25% 25-	50% 50-75% >75%		
Shell hash (circle): Pres				
Vegetation/Biota (descri	ibe):			
Other Debris (describe):	Contaíns one cobb	le in jaws		
Sediment Color (circle):	Olive Light Brown Dark Bro	own Gray Black		
Stratification/Layering (
RPD depth (cm):				
Sediment Odor Type (cir	cle): None Petroleum H_2S			
Odor Strength (circle): L	ight Moderate Strong Very	Strong		
Petroleum Sheen (circle): None Slight Moderate	Heavy Product present		
Comments/Other Obser	vations:			

SEDIMENT SAMPLI	NG FORM—SURFACE GF	RABS		
Project:R.G. Haley Suppleme	ntal Sediment Investigation	Date: 10/12		
Project No.: 0356-114-06	Project No.: 0356-114-06		Weather:	
Subcontractor: Gravity Enviro	onmental LLC	Vessel:		
Sampling Crew:		Sampling Method:		
Sample Location: <u>551-55</u>	-01	Target Depth (ft):		
Target Coordinates:				
Long/Easting: (See navigation report for ac	tual)	Lat/Northing:		
		1:	Acceptance Criteria:	
·	Depth to Mudline:		Overlying water present	
A			 Low turbidity in overlying water 	
	Time:		Grab not over-filled	
Ļ	Mudline Elevati	on:	 Sediment surface ~flat No winnowing/washout 	
11/////////////////////////////////////	////// Datum:		 Target penetration achieved 	
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):	
Grab No	Tenetiation Depth (cm).	Yes No	Discrete or Composite?	
Fill out for accepted gra	h only—		· · · · · · · · · · · · · · · · · · ·	
	-	d Madium Cand Fina Cand		
	Cobble Gravel Coarse Sand		Sit/ Clay	
	e) (circle): None <25% 25-5	50% 50-75% >75%		
Shell hash (circle): Pres	sent Absent			
Vegetation/Biota (desci	ribe):			
Other Debris (describe):	Cobbles, a few Ha	clams		
Sediment Color (circle):	Olive Light Brown Dark Bro	own Gray Black		
Stratification/Layering	(describe):			
RPD depth (cm):				
Sediment Odor Type (ci	rcle): None Petroleum H_2S			
Odor Strength (circle): 1	ight Moderate Strong Very	Strong		
Petroleum Sheen (circle	e): None Slight Moderate I	Heavy Product present		
Comments/Other Obser	rvations:			
Logged by:				

SEDIMENT SAMPLI	ING FORM—SURFACE G	RABS		
roject:R.G. Haley Supplemental Sediment Investigation		Date: 10/12	Date: 10/12	
roject No.: 0356-114-06		Weather:	Weather:	
bcontractor: Gravity Enviro	onmental LLC	Vessel:	Vessel:	
mpling Crew:	<u></u>	Sampling Method:		
mple Location:	55-01	Target Depth (ft):		
rget Coordinates:				
ng/Easting: ee navigation report for ac		Lat/Northing:		
L		n:	Acceptance Criteria:	
			Overlying water present	
ŕ	Depth to Mudline: _		Low turbidity in overlying water	
	Time:		 Grab not over-filled Sediment surface ~flat 	
Ŷ	Mudline Elevat	ion:		
1//////////////////////////////////////	/////// Datum:		Target penetration achieved	
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle): Yes No	Sample Type (circle): Discrete or Composite?	
	Cobble Gravel Coarse San e) (circle): None <25% 25- sent Absent		Silt/Clay	
Other Debris (describe):				
	Olive Light Brown Dark Bro	own Gray Black		
Stratification/Layering	(describe):			
RPD depth (cm):				
Sediment Odor Type (ci	rcle): None Petroleum H ₂ S			
Odor Strength (circle): I	Light Moderate Strong Very	Strong		
Petroleum Sheen (circle	e): None Slight Moderate	Heavy Product present		
Comments/Other Obse	rvations:			

ect:R.G. Haley Suppleme	ntal Sediment Investigation	Date: 10 (5/15
ect No.: 0356-114-06	-		(454 , 200)
contractor: Gravity Enviro			andied a boot to
npling Crew: ?~~			
			(vond, shoon
nple Location:55		Target Depth (ft):	4-5"
et Coordinates: ~] 2			8.74082
g/Easting: <u>+22_49</u> e navigation report for ac	tual)	Lat/Northing:	3421)
	Water Elevation:	at 4.0	Acceptance Criteria:
	1	mus	Overlying water present
*	Depth to Mudline:	0	· Low turbidity in overlying wate
		2230 2200	Grab not over-filled
ţ	Mudline Elevation	r	 Sediment surface -flat No winnowing/washout
7//////////////////////////////////////	////// Datum:		Target penetration achieved
Grab No.: 1	Penetration Depth (cm): S		mple Type (circle): crete or Composite?
Grab No.:	Penetration Depth (cm): S	Sample Accepted (circle): Sar	mple Type (circle):
1	12		
1 Fill out for accepted gra	1Z ab only-	Tes No Dis	w/s-mosite?
1 Fill out for accepted gra Sediment Type (circle):	12 ab only- Cobble Gravel Coarse Sand	Medium Sand Fine Sand Silt	w/s-mosite?
1 Fill out for accepted gra Sediment Type (circle): Wood debris (by volum	72 ab only- Cobble Gravel Coarse Sand ae) (circle: None 25% 25-50%	Medium Sand Fine Sand Silt	w/s-mosite?
1 Fill out for accepted gra Sediment Type (circle):	72 ab only- Cobble Gravel Coarse Sand ae) (circle: None 25% 25-50%	Medium Sand Fine Sand Silt	w/s-mosite?
1 Fill out for accepted gra Sediment Type (circle): Wood debris (by volum	72 ab only- Cobble Gravel Coarse Sand ne) (circle): None 25% 25-509 psent Absent	Medium Sand Fine Sand Silt	w/s-mosite?
1 Fill out for accepted gra Sediment Type (circle): Wood debris (by volum Shell hash (circle): Pre	72 ab only- Cobble Gravel Coarse Sand ne) (circle): None 25% 25-509 psent Absent	Medium Sand Fine Sand Silt	w/s-mosite?
1 Fill out for accepted gra Sediment Type (circle): Wood debris (by volum Shell hash (circle): Pre Vegetation/Biota (desc	12 ab only- Cobble Gravel Coarse Sand (circle): None 25% 25-50% (circle): None 25% 25-50% (circle): Kare	Medium Sand Fine Sand Silt % 50-75% >75%	w/s-mosite?
1 Fill out for accepted gra Sediment Type (circle): Wood debris (by volum Shell hash (circle): Pre Vegetation/Biota (desc	72 ab only- Cobble Gravel Coarse Sand ne) (circle): None 25% 25-509 psent Absent	Medium Sand Fine Sand Silt % 50-75% >75%	w/s-mosite?
1 Fill out for accepted gra Sediment Type (circle): Wood debris (by volum Shell hash (circle): Pre Vegetation/Biota (desc Other Debris (describe)	12 ab only- : Cobble Gravel Coarse Sand ne) (circle): None 25% 25-50% esent Absent cribe): Kare): glass , files , bru	Medium Sand Fine Sand Silt % 50-75% >75%	w/s-mosite?
1 Fill out for accepted gra Sediment Type (circle): Wood debris (by volum Shell hash (circle): Pre Vegetation/Biota (desc Other Debris (describe) Sediment Color (circle)	12 ab only- : Cobble Gravel Coarse Sand ne) (circle): None 25% 25-50% esent Absent cribe): Kare): glass , files , bru	Tes No Dis Medium Sand Fine Sand Silt % 50-75% >75%	w/s-mosite?
1 Fill out for accepted gra Sediment Type (circle): Wood debris (by volum Shell hash (circle): Pre Vegetation/Biota (desc Other Debris (describe) Sediment Color (circle)	12 ab only- : Cobble Gravel Coarse Sand ne) (circle): None 25% 25-50% esent Absent cribe): Kare): glass , files , bru	Tes No Dis Medium Sand Fine Sand Silt % 50-75% >75%	w/s-mosite?
1 Fill out for accepted gra Sediment Type (circle): Wood debris (by volum Shell hash (circle): Pre Vegetation/Biota (desc Other Debris (describe) Sediment Color (circle)	12 ab only- : Cobble Gravel Coarse Sand ne) (circle): None 25% 25-50% esent Absent cribe): Kare): glass , files , bre): glass , files , bre): Olive Light Brown Dark Brown : (describe): howe , she	Tes No Dis Medium Sand Fine Sand Silt % 50-75% >75%	w/s-mosite?
1 Fill out for accepted grade Sediment Type (circle): Wood debris (by volume Shell hash (circle): Prediment Color Other Debris (describe): Sediment Color (circle): Stratification/Layering RPD depth (cm):	12 ab only- : Cobble Gravel Coarse Sand ne) (circle): None 25% 25-50% sent Absent cribe): Kare): qlass , files , bru): qlass , files , bru): Olive Light Brown Dark Brown (describe): house , sha	Tes No Dis Medium Sand Fine Sand Silt % 50-75% >75% - E frequents n Gray Black et bestents 5 **	w/s-mosite?
1 Fill out for accepted grade Sediment Type (circle): Wood debris (by volume Shell hash (circle): Predent Type (circle): Vegetation/Blota (describe) Other Debris (describe) Sediment Color (circle) Stratification/Layering RPD depth (cm): D Sediment Odor Type (circle)	12 ab only- Cobble Gravel Coarse Sand (circle): None 25% 25-50% (circle): None 25% 25-50% (circle): None 25% 25-50% (circle): None 25% 25-50% (describe): Kare (describe): Kare (describe): howe , 5% (circle): None Petroleum (H2S)	Tes No Dis Medium Sand Fine Sand Silt % 50-75% >75% changements n Gray Black er bestents 5"	w/s-mosite?
1 Fill out for accepted grade Sediment Type (circle): Wood debris (by volume Shell hash (circle): Predent Type (circle): Vegetation/Blota (describe) Other Debris (describe) Sediment Color (circle) Stratification/Layering RPD depth (cm): Color Sediment Odor Type (color) Odor Strength (circle):	12 ab only- Cobble Gravel Coarse Sand (circle): None 25% 25-50% (circle): None 25% 25-50% (circle): None 25% 25-50% (describe): Kare Cobble Gravel Coarse Sand (circle): None 25% 25-50% (circle): None 25% 25% (circle): None 2	Tes No Dis Medium Sand Fine Sand Silt % 50-75% >75% ct frequents n Gray Black er bestents 5" shall to 5"	w/s-mosite?
1 Fill out for accepted grade Sediment Type (circle): Wood debris (by volume Shell hash (circle): Predent Type (circle): Vegetation/Blota (describe) Other Debris (describe) Sediment Color (circle) Stratification/Layering RPD depth (cm): Color Sediment Odor Type (color) Odor Strength (circle):	12 ab only- Cobble Gravel Coarse Sand (circle: None 25% 25-50% (circle: None 25% 25-50% (circle: None 25% 25-50% (circle): None 25% 25-50% (describe): Kare (describe): Kare (describe): howe 5% (circle): None Petroleum H ₂ S Circle): None Petroleum H ₂ S (circle): None Petroleum H ₂ S	Tes No Dis Medium Sand Fine Sand Silt % 50-75% >75% ct frequents n Gray Black er bestents 5" shall to 5"	w/s-mosite?

SEDIMENT SAMPLING FO	RM—SURFACE GI	RABS		
roject:R.G. Haley Supplemental Sed	iment Investigation	Date: 12/12/15	e	
roject No.: 0356-114-06 ubcontractor: Gravity Environmental LLC		Weather:	Weather:	
		Vessel:		
ampling Crew:		Sampling Method:		
ample Location: <u>551-55-03</u>	> >	Target Depth (ft):		
arget Coordinates:				
ong/Easting: See navigation report for actual)		Lat/Northing:		
	Datum: Depth to Mudlin Time:!: 46 Mudline Elevati	n: <u>3.6</u> ion:	 Low turbidity in overlying water Grab not over-filled Sediment surface ~flat No winnowing/washout 	
Grab No.: Pene	tration Depth (cm):	Sample Accepted (circle): Yes No	Sample Type (circle): Discrete or Composite?	
Fill out for accepted grab only— Sediment Type (circle): Cobble Wood debris (by volume) (circle Shell hash (circle): Present Ab Vegetation/Biota (describe): Other Debris (describe): ←-c): None <25% 25-{ sent		Silt/Clay	
Sediment Color (circle): Olive Stratification/Layering (describe	-	own Gray Black		
Sediment Odor Type (circle): No	one Petroleum H ₂ S			
Odor Strength (circle): Light M	oderate Strong Very	Strong		
Petroleum Sheen (circle): None	Slight Moderate	Heavy Product present		
Comments/Other Observations:				

SEDIMENT SAMPLING FORM—SURFACE GRABS Project:R.G. Haley Supplemental Sediment Investigation Date: 1<>/12/15 Project No.: 0356-114-06_____ Weather: ______ Subcontractor: Gravity Environmental LLC ______ Vessel: _______

Sampling Method: _____ Sampling Crew: ___ Sample Location: 551 - 55-03 Target Depth (ft): _____ Target Coordinates: Lat/Northing: _____ Long/Easting: (See navigation report for actual) Acceptance Criteria: Water Elevation: _____ Datum: Overlying water present Depth to Mudline: _____ Low turbidity in overlying water Grab not over-filled Time: ____ Sediment surface ~flat Mudline Elevation: _____ No winnowing/washout Datum:___ Target penetration achieved Grab No.: Penetration Depth (cm): Sample Accepted (circle): Sample Type (circle): 2 Yes No Discrete or Composite? Fill out for accepted grab only-Sediment Type (circle): Cobble Gravel Coarse Sand Medium Sand Fine Sand Silt/Clay Wood debris (by volume) (circle): None <25% 25-50% 50-75% >75% Shell hash (circle): Present Absent Vegetation/Biota (describe): Other Debris (describe): Cobble; slight sheen on water surface after grab. Dissipates after one minute, Sediment Color (circle): Olive Light Brown Dark Brown Gray Black Stratification/Layering (describe): RPD depth (cm):

Sediment Odor Type (circle): None Petroleum H₂S

Odor Strength (circle): Light Moderate Strong Very Strong

Petroleum Sheen (circle): None Slight Moderate Heavy Product present

Comments/Other Observations:

	G FORM—SURFACE GRA	ABS	
oject:R.G. Haley Supplemental Sediment Investigation		Date:0 12/15	-
oject No.: 0356-114-06		Weather:	
bcontractor: Gravity Environn	nental LLC	Vessel:	
mpling Crew:		Sampling Method:	
mple Location:	-03	Target Depth (ft):	
rget Coordinates:			
ng/Easting: ee navigation report for actua		Lat/Northing:	
	Water Elevation:	,	Acceptance Criteria:
Datum:			Overlying water present
·	Depth to Mudline	:	 Low turbidity in overlying water Grab not over-filled
	Time:		Grap not over-filled Sediment surface ~flat
4		n:	 No winnowing/washout
	///// Datum:		 Target penetration achieved
	only— obble Gravel Coarse Sand circle): None <25% 25-50 it Absent		Sample Type (circle): Discrete or Composite? Silt/Clay
	live Light Brown Dark Brow	vn Grav Black	
Sediment Color (circle): 0 Stratification/Layering (de RPD depth (cm):	scribe):	n any blan	
Stratification/Layering (de			
Stratification/Layering (de RPD depth (cm): Sediment Odor Type (circle			
Stratification/Layering (de RPD depth (cm): Sediment Odor Type (circle Odor Strength (circle): Lig	e): None Petroleum H ₂ S	rong	
Stratification/Layering (de RPD depth (cm): Sediment Odor Type (circle Odor Strength (circle): Lig	e): None Petroleum H2S ht Moderate Strong Very St None Slight Moderate He	rong	

			(
oject:R.G. Haley Supplement	al Sediment Investigation	Date: 0 /	13/15	
oject No.: 0356-114-06		Weather:	Weather:	
bcontractor: Gravity Environ			Vessel:	
mpling Crew: <u>IDR, GL</u>		Sampling Method:	Bue-Grab	
mple Location:	- 03	Target Depth (ft):/ _	2 cm	
rget Coordinates:				
ng/Easting: ee navigation report for actu	- 0	Lat/Northing:		
	Datum:∕ Depth to Mudlii Time:// C Mudline Elevati	1: <u>Approx 3, 5'</u> AVD 88 ne: <u>4.8'</u> 09 con: <u>NAUD 88 9</u> 3 -144	Acceptance Criteria: • Overlying water present • Low turbidity in overlying water • Grab not over-filled • Sediment surface ~flat • No winnowing/washout • Target penetration achieved	
Grab No.: 1 thru 7	Penetration Depth (cm):	Sample Accepted (circle): Yes No	Sample Type (circle): Discrete or Composite?	
Fill out for accepted grab	only—		Grab Rejected Attempts	
Sediment Type (circle): (Wood debris (by volume)	Cobble Gravel Coarse Sand (circle): None <25% 25-5	d Medium Sand Fine Sand 50% 50-75% >75%	2. Washaut	
Shell hash (circle): Prese Vegetation/Biota (describ			3. Debri, brich, glass 4. Brich + osphalt 5. Cossiles, glass, debri	
Other Debris (describe):			6. Cobbles, gloss, rade: 7. Worthant my gloss	
Stratification/Layering (d	Vlive Light Brown Dark Bro	wwn Gray Black		
RPD depth (cm):		<u> </u>		
Sediment Odor Type (circ	e): None Petroleum H ₂ S			
Odor Strength (circle): Lig	ht Moderate Strong Very	Strong		
Petroleum Sheen (circle):	None Slight Moderate I	Heavy Product present		
Comments/Other Observe	ations:			
gged by: (L)				

SEDIMENT SAMPLING FORM	-SURFACE GR			
ject:R.G. Haley Supplemental Sedime	nt Investigation	Date: 10	/15/15	
ject No.: 0356-114-06		Weather:	Weather: Survey, warm	
contractor: Gravity Environmental LL	c		Vessel:Tiefen	
npling Crew: M.Le, Clud, P.	and Chandise	Sampling Method:	power a tab	
nple Location: <u>551-55-53</u>	P		12 cm	
get Coordinates:				
g/Easting: e navigation report for actual)		Lat/Northing:		
	Water Elevation		Acceptance Criteria:	
· ·		ne: <u>9.01</u>		
	Time:	28	 Grab not over-filled Sediment surface ~flat 	
	Mudline Elevati	on:	 Sealment surface ~flat No winnowing/washout 	
	Datum:		 Target penetration achieved 	
	ion Depth (cm): 7 CM	Sample Accepted (circle):	Sample Type (circle): Discrete or Composite?	
Fill out for accepted grab only— Sediment Type (circle): Cobble Gr		insufficient recovery Medium Sand Fine Sand	Silt/Clay	
Wood debris (by volume) (circle): N Shell hash (circle): Present Absen		60% 50-75% >75%		
Vegetation/Biota (describe):				
Other Debris (describe):				
Sediment Color (circle): Olive Ligh	t Brown Dark Bro	wn Gray Black		
Stratification/Layering (describe):				
RPD depth (cm):				
Sediment Odor Type (circle): None	Petroleum H ₂ S			
Odor Strength (circle): Light Mode	rate Strong Very	Strong		
Petroleum Sheen (circle): None SI	ght Moderate H	leavy Product present		
Comments/Other Observations:				

SEDIMENT SAMPLING FOR	/I—SURFACE G	RABS	
roject:R.G. Haley Supplemental Sedim	ent Investigation	Date:/0	115/15
roject No.: 0356-114-06		Weather:	/15/15 , Warm
ubcontractor: Gravity Environmental L	LC	Vessel:	Q
ampling Crew: Mile, Chad, Paul,	Claudia	Sampling Method:	Power Gras
ample Location: <u>551-55-23</u>		Target Depth (ft):	12 cm
arget Coordinates:			
ong/Easting: See navigation report for actual)		Lat/Northing:	
See navigation report for actual)			
		n:	Acceptance Criteria:
		ine:9.0 ¹	 Overlying water present Low turbidity in overlying water
Î		129-1144	Grab not over-filled
\downarrow		tion:	 Sediment surface ~flat No winnowing/washout
	Datum:		Target penetration achieved
Grab No.: Penetra	tion Depth (cm):	Sample Accepted (circle):	Sample Type (circle):
2	1	Yes No	Discrete or Composite?
Fill out for accepted grab only—	L Rock N	n the jaw. Debei m	acob.
Sediment Type (circle): Cobble			
Wood debris (by volume) (circle):	None <25% 25-	50% 50-75% >75%	
Shell hash (circle): Present_Abse	nt		
Vegetation/Biota (describe):			
Other Debris (describe):			
other Debhs (describe).			
Sediment Color (circle): Olive Lig	ht Brown Dark Bro	own Gray Black	
Stratification/Layering (describe):			
RPD depth (cm):			
Sediment Odor Type (circle): None	Petroleum H ₂ S		
Odor Strength (circle): Light Mod	erate Strong Very	Strong	
Petroleum Sheen (circle): None	light Moderate	Heavy Product present	
Comments/Other Observations:			
ogged by:			

SEDIMENT SAMPLING F	ORM—SURFACE GR		,
Project:R.G. Haley Supplemental S	ediment Investigation		<u>slis</u>
Project No.: 0356-114-06		Weather: <u>Sdany</u>	worm
Subcontractor: Gravity Environmen		Vessel:	2
Sampling Crew: Mike, Chad, P	toul claudia	Sampling Method:	Power Goods
Sample Location:	-03	Target Depth (ft):	12 cm
Target Coordinates:			
Long/Easting: (See navigation report for actual)		Lat/Northing:	
	Water Elevation		Acceptance Criteria:
			 Overlying water present
1		ne: $\frac{9.01}{2.81}$	
		7	ے Grab not over-filled کرچ Sediment surface ~flat
¥		on:	No winnowing/washout
	/// Datum:		Target penetration achieved
3	netration Depth (cm): 21 cm	Sample Accepted (circle):	Sample Type (circle): Discrete or Composite?
Fill out for accepted grab only	<i> </i> —		
Sediment Type (circle): Cobb Wood debris (by volume) (circ	ble Gravel Coarse Sand Sle): None <25% 25-5	d Medium Sand Fine Sand	Silty fine to Med sand silty fine to Med sand my trace wood debri'
Shell hash (circle): Present	Absent) Shells t	- shell tragments	only acc. roots.
Vegetation/Biota (describe):		v	
Worms		(a)	n mud line-weathered
Other Debris (describe):			imber, (planks, construction
Rope			lumber)
Sediment Color (circle): Olive	Light Brown Dark Bro	wn Gray Black	
Stratification/Layering (descr			
RPD depth (cm):	2		
Sediment Odor Type (circle): Odor Strength (circle): Light		Strong	
Petroleum Sheen (circle): No	ne) Slight Moderate H	leavy Product present	nb sheen
Comments/Other Observation	is: Sample Utars to	2 @ 1205 ARI + 1 Binansay 6	buchet for to ARI
PID = Oppm			not enough volumes

Į.

ject:R.G. Haley Supplemental Sed	iment Investigation	Date: 10 /	15/15
			ereast, cool
contractor: Gravity Environmenta		Vessel N/A	sampled & low fide
npling Crow: Paul			by hand, spean
nple Location:	-04	Target Depth (ft):	1-5"
		Target Depth (rt):	
get Coordinates: ng/Easting: (ここ, 49 0月 e navigation report for actual)	6	Lat/Northing:	48.74211
e navigation report for actuary		s.3 4	Acceptance Criteria:
		WALLW	
	_	ine: D	a a same to construct the second
Ĩ		7230	 Grab not over-filled
Ļ		tion:	Sediment surface -flat No winnowing/washout
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Datum:		Target penetration achieved
) Fill out for accepted grab only-		Sample Accepted (circle): Yes No	Sample Type (circle): Discrete at Composite?
)	/Z Gravel Coarse Sar): None 25% 25	Yes No nd Medium Sand Line Sand 50% 50-75% >75%	Discrete at Composite?
) Fill out for accepted grab only- Sediment Type (circle): Cobble Wood debris (by volume) (circle Shell hash (circle): Present At	IZ Gravel Coarse Sar None 25% 25 sent	Yes No nd Medium Sand Line Sand 50% 50-75% >75%	Discrete at Composite?
) Fill out for accepted grab only- Sediment Type (circle): Cobble Wood debris (by volume) (circle Shell hash (circle): Present At Vegetation/Biota (describe): Other Debris (describe):	IZ Gravel Coarse Sar None 25% 25 sent sent sent sent sent sent sent sent	Yes No nd Medium Sand Eine Sand 50% 50-75% >75% 	Discrete at Composite?
) Fill out for accepted grab only- Sediment Type (circle): Cobble Wood debris (by volume) (circle Shell hash (circle): Present At Vegetation/Biota (describe): Other Debris (describe): Other Debris (describe): Sediment Color (circle): Olive Stratification/Layering (describe	12 Gravel Coarse San): None 25% 25 sent sent ss, 400+ ss, 400+ ss	Ves No nd Medium Sand Eine Sand 50% 50-75% >75% 	Discrete a Composite?
) Fill out for accepted grab only- Sediment Type (circle): Cobble Wood debris (by volume) (circle Shell hash (circle): Present At Vegetation/Biota (describe): Other Debris (describe): Other Debris (describe): Sediment Color (circle): Olive Stratification/Layering (describ brown F.M. RPD depth (cm):	12 Gravel Coarse San): None 25% 25 sent Solor 25% 25% 25% 25 sent Solor 25% 25% 25% 25% 25% 25% 25% 25% 25% 25%	Tes No No Medium Sand Fine Sand 50% 50-75% >75% -m5 rown Gray Black $-d=5^{\circ}$ are $-d=1$	Discrete a Composite?
) Fill out for accepted grab only- Sediment Type (circle): Cobble Wood debris (by volume) (circle Shell hash (circle): Present At Vegetation/Biota (describe): Other Debris (describe): Other Debris (describe): Sediment Color (circle): Olive Stratification/Layering (describe Maximum Ford of RPD depth (cm):	12 Gravel Coarse San Sent Solo (25%) 25 Sent Solo (25%) 25 Sent Solo (25%) 25 Sent Solo (25%) 25 Sent Solo (25%) 25 Solo (25%) 25%) 25% Solo (25%) 25%) 25% Solo (25%) 25%) 25% Solo (25%) 25%) 25%Solo (25%) 25%) 25% Solo (25%)	Ves No No Medium Sand Eine Sand 50% 50-75% >75% 	Discrete a Composite?

	•••••			
Project:R.G. Haley Supplemental Sedim	ent Investigation		Date: 10/12/15	
Project No.: 0356-114-06	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1	Weather: 17 rain,	Weather: 17 (ain, 50 s	
Subcontractor: Gravity Environmental L	LC	Vessel:		
Sampling Crew: <u>GL/CV/PR</u>		Sampling Method: <u></u>	ower Grab	
Sample Location: _ SS丨- SՏーンゔ		Target Depth (ft):	2 cm	
Target Coordinates:				
Long/Easting: (See navigation report for actual)		Lat/Northing:		
(See navigation report for actual)		1. J. 103		
		n: <u> </u>		
			 Verlying water present Low turbidity in overlying water 	
1		ne: 7,8	Durch much surger filled	
		~ ion: <u>- </u>	- Sediment surface ~flat	
*		lon:	No winnowing/washout	
	Datum: <u> </u>	ي الما الما الما الما الما الما الما الم	V_{\bullet} Target penetration achieved V_{\bullet}	
		T	1	
Grab No.: Penetra	ation Depth (cm):	Sample Accepted (circle):	Sample Type (circle):	
	14	(Yes No	Discrete or Composite?	
Sediment Type (circle): Cobble (Wood debris (by volume) (circle): Shell hash (circle): Present (Abso Vegetation/Biota (describe): tra long. Trace shelled	None <25% 25-	50% 50-75% >75% (tra	``````````````````````````````````````	
Other Debris (describe): 7	seeces of upod.		the Likely processed due to swern	
Sediment Color (circle): Olive Lig Stratification/Layering (describe):	sht Brown Dark Bro Top 2 cm is	own Gray Black otive colored, sed is b	lack below Zom	
RPD depth (cm): Z cm				
Sediment Odor Type (circle): Non	Petroleum H ₂ S			
Odor Strength (circle): Light Mod	lerate Strong Very	Strong		
Petroleum Sheen (circle): None	Slight Moderate	Heavy Product present		
	Up eelgrass ample $+True = 12$ D = 0 = 0	200		
Logged by: GU				

	Codiment la codication	P-4- 102/12/15	<i>v</i>	
roject:R.G. Haley Supplemental Sediment Investigation		Date: <u>ICILIA</u>	Date: 10/12/15 Weather: <u>Classy 505</u>	
roject No.: 0356-114-06		,		
Ibcontractor: Gravity Environme	ental LLC		c 1	
ampling Crew: <u>GL PR LV</u>			swer Grab	
ample Location: <u>SSI-SS-C</u>	H OL	Target Depth (ft):	2 cm	
rget Coordinates:				
ng/Easting: ee navigation report for actual))	Lat/Northing:		
		n:_~~~~{	Acceptance Criteria:	
	Datum: <u>NAV</u>		• Overlying water present	
		ne: <u>8.7'</u>	V Low turbidity in overlying water	
	Time: 12:3		Grab not over-filled	
		ion: <u>-4.7</u>	- Sediment surface ~flat	
		088	 ✓ No winnowing/washout ✓ Target penetration achieved 17 c 	
Grab No.: F	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):	
l (17	Yes No	Discrete or Composite?	
Wood debris (by volume) (ci	Absent Trace werms as in ~ 3 cm.	F, Ce	e wood: Twigs. Does not appear to be esset worm. Dead eelgrass. One tive clam,	
Sediment Color (circle): Oliv Stratification/Layering (des	cribe): ~0.5 cm のん			
BBD donth (am)	и			
RPD depth (cm): 0.5 cm	~			
Sediment Odor Type (circle):	: None Petroleum (H ₂ S			
Sediment Odor Type (circle) Odor Strength (circle)	: None Petroleum (H ₂ S) Moderate Strong Very	Strong		
Sediment Odor Type (circle) Odor Strength (circle) Light Petroleum Sheen (circle) N	: None Petroleum (H ₂ S) Moderate Strong Very lone Slight Moderate	Strong Heavy Product present		
Sediment Odor Type (circle) Odor Strength (circle) Light Petroleum Sheen (circle): N Comments/Other Observation	: None Petroleum (H2S) Moderate Strong Very lone Slight Moderate ons: Some calgi 155	Strong	estly dead.	
Sediment Odor Type (circle) Odor Strength (circle) Light Petroleum Sheen (circle) N Comments/Other Observation P1D 2 0	: None Petroleum (H2S) Moderate Strong Very lone Slight Moderate ons: Some calgi 155	Strong Heavy Product present	estly dead.	

Depth Time: Mudlin	r Elevation n: n to Mudlin 1 3 : 0 ine Elevati	Weather: Vessel: Sampling Method: Target Depth (ft):	 Low turbidity in overlying wate Grab not over-filled Sediment surface ~flat No winnowing/washout
contractor: Gravity Environmental LLC pling Crew: ple Location: <u>551-55-07</u> et Coordinates: (/Easting: navigation report for actual) Water Datum Depth Time: Mudlin Datum	r Elevation n: n to Mudlin 1 3 : 0 ine Elevati	Vessel: Sampling Method: Target Depth (ft): Lat/Northing: n: n:	Acceptance Criteria: • Overlying water present • Low turbidity in overlying water • Grab not over-filled • Sediment surface ~flat • No winnowing/washout
pling Crew: ple Location:	r Elevation n:NAVS n to Mudlin 13:00	Sampling Method:	Acceptance Criteria: • Overlying water present • Low turbidity in overlying water • Grab not over-filled • Sediment surface ~flat • No winnowing/washout
ple Location: <u>551-55-67</u> et Coordinates: (Easting:	r Elevation n:NAUS n to Mudlin 1 3 : 0 ine Elevati	Target Depth (ft): Lat/Northing: n: 3.53 DBB ne: 7.4 5 ion:	<u>Acceptance Criteria:</u> • Overlying water present • Low turbidity in overlying water • Grab not over-filled • Sediment surface ~flat • No winnowing/washout
et Coordinates: (/Easting:	r Elevation n: <u>NAUS</u> n to Mudlin 13:0 ne Elevati	Lat/Northing: n:	<u>Acceptance Criteria:</u> • Overlying water present • Low turbidity in overlying water • Grab not over-filled • Sediment surface ~flat • No winnowing/washout
VEasting: navigation report for actual) Water Datum Depth Time: Mudlin Datum	r Elevatior n: <u>NAVS</u> to Mudlli 13:0 ine Elevati	$\frac{3.5^{3}}{1.78}$ ne: 7.4 5 ion: -3.87	Acceptance Criteria: • Overlying water present • Low turbidity in overlying water • Grab not over-filled • Sediment surface ~flat • No winnowing/washout
Water Datum Depth Time: Mudlin Datum	r Elevatior n: <u>NAVS</u> to Mudlli 13:0 ine Elevati	$\frac{3.5^{3}}{1.78}$ ne: 7.4 5 ion: -3.87	Acceptance Criteria: • Overlying water present • Low turbidity in overlying water • Grab not over-filled • Sediment surface ~flat • No winnowing/washout
Water Datum Depth Time: Mudlin Datum	r Elevatior n: <u>NAVS</u> to Mudlli 13:0 ine Elevati	088 ne: 7.4 5 ion: -3.87	 Overlying water present Low turbidity in overlying water Grab not over-filled Sediment surface ~flat No winnowing/washout
Grah No · Penetration Dant			 Target penetration achieved
	th (cm):	Sample Accepted (circle): Yes No	Sample Type (circle): Discrete or Composite?
Sediment Type (circle): Cobble Gravel Co Wood debris (by volume) (circle): None <2 Shell hash (circle): Present Absent Vegetation/Biota (describe):			Silt/Clay
Other Debris (describe): Cobbles			
Sediment Color (circle): Olive Light Brown	Dark Bro	own Gray Black	
Stratification/Layering (describe):			
RPD depth (cm):			
Sediment Odor Type (circle): None Petrole	eum H ₂ S		
Odor Strength (circle): Light Moderate Str	rong Very	Strong	
Petroleum Sheen (circle): None Slight Mo	oderate	Heavy Product present	
Comments/Other Observations:			

Logged by:

L

SEDIMENT SAMPLI	NG FORM—SURFACE GI	RABS		
Project:R.G. Haley Supplemer	ntal Sediment Investigation	Date: 10/12/1	<u></u>	
roject No.: 0356-114-06		Weather:	Weather:	
Subcontractor: Gravity Enviro	nmental LLC	Vessel:	Vessel:	
Sampling Crew:		Sampling Method:		
Sample Location:	.07	Target Depth (ft):		
arget Coordinates:				
.ong/Easting: See navigation report for act	ual)	Lat/Northing:		
	Water Elevation	n:	Acceptance Criteria:	
	Datum:		Overlying water present	
1	Depth to Mudli	ne:	Low turbidity in overlying water Crob not ever filled	
	Time:		 Grab not over-filled Sediment surface ~flat 	
	Mudline Elevat	ion:	 No winnowing/washout 	
77777777777777777	////// Datum:		 Target penetration achieved 	
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):	
2		Yes No	Discrete or Composite?	
Fill out for accepted gral	b only—	· · ·	L	
Sediment Type (circle):	Cobble Gravel Coarse San	d Medium Sand Fine Sand	Silt/Clay	
Wood debris (by volume) (circle): None <25% 25-	50% 50-75% >75%		
Shell hash (circle): Pres				
Vegetation/Biota (descri				
	ioc).			
Other Debris (describe):	Cobbles			
Sediment Color (circle):	Olive Light Brown Dark Bro	own Gray Black		
Stratification/Layering (describe):			
RPD depth (cm):				
Sediment Odor Type (cire	cle): None Petroleum H ₂ S			
	ight Moderate Strong Very	Strong		
Petroleum Sheen (circle)): None Slight Moderate	Heavy Product present		
Comments/Other Obser	vations:			
·····				

	NG FORM—SURFACE GR	ABS			
oject:R.G. Haley Suppleme	ntal Sediment Investigation	Date: <u>וס</u> וובון Date: <u>וס</u> וובון			
oject No.: 0356-114-06		Weather:			
bcontractor: Gravity Enviro	nmental LLC	Vessel:	Vessel:		
mpling Crew:		Sampling Method:			
mple Location:	-07	Target Depth (ft):			
rget Coordinates:					
ng/Easting: ee navigation report for act		Lat/Northing:			
Water Elevation:			Acceptance Criteria:		
	Datum:		Overlying water present		
Ŷ	Depth to Mudlin	ıe:	 Low turbidity in overlying water Grab not over filled 		
	Time:		Grab not over-filled Sediment surface ~flat		
		on:	 No winnowing/washout 		
1111111111111	////// Datum:		 Target penetration achieved 		
	Cobble Gravel Coarse Sand e) (circle): None <25% 25-5 sent Absent ribe):		Sample Type (circle): Discrete or Composite? Silt/Clay		
Sediment Color (circle):	Olive Light Brown Dark Bro	own Gray Black			
Stratification/Layering (RPD depth (cm):	(describe):				
RPD depth (cm):	(describe): rcle): None Petroleum H ₂ S		<u> </u>		
RPD depth (cm): Sediment Odor Type (ci		Strong			
RPD depth (cm): Sediment Odor Type (cir Odor Strength (circle): 1	rcie): None Petroleum H ₂ S				
RPD depth (cm): Sediment Odor Type (cir Odor Strength (circle): 1	rcle): None Petroleum H2S Light Moderate Strong Very e): None Slight Moderate				

SEDIMENT SAMPLIN	NG FORM—SURFACE GF	RABS	
oject:R.G. Haley Supplemen	ntal Sediment Investigation	Date: 12/12/15	ly, 5Ds
oject No.: 0356-114-06		Weather:	4, 505
bcontractor: Gravity Enviror	nmental LLC	Vessel:	
mpling Crew:		Sampling Method:	
mple Location:	-07	Target Depth (ft):	
get Coordinates:			
ng/Easting: e navigation report for actu		Lat/Northing:	
Water Elevation: _			Acceptance Criteria:
	Datum:		
1		ne:	 Low turbidity in overlying water Grab not over-filled
		······································	- • Sediment surface ~flat
*		on:	 No winnowing/washout
	*///// Datum:		 Target penetration achieved
Grab No.: U	Penetration Depth (cm):	Sample Accepted (circle): Yes No	Sample Type (circle): Discrete or Composite?
Fill out for accepted grab) only—		1
Sediment Type (circle):	Cobble Gravel Coarse Sand	d Medium Sand Fine Sand	Silt/Clay
Wood debris (by volume)) (circle): None <25% 25-5	50% 50-75% >75%	
Shell hash (circle): Prese	ent Absent		
Vegetation/Biota (descri	be):		
Other Debris (describe):			
Sediment Color (circle):	Olive Light Brown Dark Bro	wn Gray Black	
Stratification/Layering (c	lescribe):		
RPD depth (cm):			
Sediment Odor Type (circ	cle): None Petroleum H ₂ S		
Odor Strength (circle): Li	ght Moderate Strong Very S	Strong	
	: None Slight Moderate	leavy Product present	
		Heavy Product present	

۰.

$ \begin{array}{c} \label{eq:construction} \\ \mbox{opect} R. G. Hatey Supplemental Sediment Investigation \\ \mbox{opect} R. G. Matey Supplemental Sediment Investigation \\ \mbox{opec} R. G. Matey Supplemental Sediment Surface \\ \mbox{opec} R. G. Supplemental Sediment Supplemental Sediment Surface $	SEDIMENT SAMPLING FORM	-SURFACE G	RABS			
oject No: 0356-114-06 Weether. $H carr, 523$ becontractor: Gravity Environmental LLC Sampling Method: $Percent 91 \text{ th}$ mpling Greve: Sampling Method: $Percent 91 \text{ th}$ Target Coordinates: mpling Greve: Sampling Method: $Percent 91 \text{ th}$ Multime Elevation: 7.4 Time: 132.857 Depth to Multime: 7.4 Time: 132.857 Multime Elevation: 7.47 Time: 132.857 Datum: $AA V D \oplus B$ Grab No: Peretration Depth (cm): Sampla Accopted (circle): Samplin Type (circle): Sampla Type (circle): Coorde Gravel Coarse Sand (Medium Sand Fine Sand) Sitt/Clay 4 cirl, 1459 cond Wood debts (by volume) (circle): None (255) 26.50% 50.75% >75% Trace used. Not practical, The H down rece of practical word (ircle): The H down one Sife. $n.5^{++}(1^+ \times 0.35^+ \text{ th} \text{ surface of the Abbra^{+})$ Statification/Layering (describe): The Sice of used on surface. $Posity$ pressed theorem Sife. RPD depth (cni): 3 cm Sediment Color (circle): Ught Brown Dark Brown Gray Black Stratification/Layering (describe): The Sice of Used Sing Practical Petroleum Sheen (circle): Light Moderate Heavy Product present Comments/Other Observations: $Sung Very Strong$ Petroleum Sheen (circle): Light Hoderate Heavy Product present Comments/Other Observations: $Sung Very Strong$	oject:R.G. Haley Supplemental Sedime	nt Investigation	Date: [D]12]	15		
mpling Crew:	oject No.: 0356-114-06					
mple Location: $SS1-S3-OP$ Target Dopth (M): $12 cm$ rget Coordinates: Intro the second	bcontractor: Gravity Environmental LL	· 				
rget Coordinates: mg/Easting: Lat/Northing: se navigation report for actual) Water Elevation: $\frac{7.53}{2.53}$ Acceptance Criteria: District: MAID 968 Dorthyle water present District: MAID 968 Dorthyle water present District: MAID 968 Dorthyle water present District: MAID 968 Dorthyle water organization (T.4) Time: 131.65 Multine Elevation: (-7.47) No Multine Elevation: (-7.47) No windowshould by no vorying water organization of the User of the User organization of the User of the User organization orga	mpling Crew:	Cower grab				
$\begin{tabular}{ c c c c c c c c c c c c c $	ample Location: <u>SSI-SS-D</u> Target Depth (ft): 12 cm					
Water Elevation: $\frac{2.53}{2}$ Acceptance Criteria:Datum: $\stackrel{NAJD}{} 285$ $\stackrel{Output}{} 13:25$ $\stackrel{Output}{} 13:25$ Depti to Mudline: $\frac{7.4}{1}$ $\stackrel{Output}{} 13:25$ $\stackrel{Output}{} 13:25$ Mudline Elevation: $\frac{2.57}{2.57}$ $\stackrel{Output}{} 13:25$ $\stackrel{Output}{} 13:25$ Multine Elevation: $\frac{2.57}{2.57}$ $\stackrel{Output}{} 13:25$ $\stackrel{Output}{} 13:25$ Multine Elevation: $\frac{2.57}{2.57}$ $\stackrel{Output}{} 13:25$ $\stackrel{Output}{} 13:25$ Multine Elevation: $\frac{2.57}{2.57}$ $\stackrel{Output}{} 13:25$ $\stackrel{Output}{} 13:25$ Grab No:Penetration Depth (cm):Sample Accepted (clrcle):Sample Type (clrcle): 5 Penetration Depth (cm):Sample Accepted (clrcle):Sample Accepted (clrcle): 5 Penetration Depth (cm):Sample Accepted Accepted (clrcle):Sample Accepted Accepted Accepted (clrcle): 5 Penetration Accepted Accepted Accepted Accepted Acce	rget Coordinates:					
Water Elevation: $\frac{2.53}{2}$ Acceptance Criteria:Datum: $\stackrel{NAJD}{} 285$ $\stackrel{Output}{} 13:25$ $\stackrel{Output}{} 13:25$ Depti to Mudline: $\frac{7.4}{1}$ $\stackrel{Output}{} 13:25$ $\stackrel{Output}{} 13:25$ Mudline Elevation: $\frac{2.57}{2.57}$ $\stackrel{Output}{} 13:25$ $\stackrel{Output}{} 13:25$ Multine Elevation: $\frac{2.57}{2.57}$ $\stackrel{Output}{} 13:25$ $\stackrel{Output}{} 13:25$ Multine Elevation: $\frac{2.57}{2.57}$ $\stackrel{Output}{} 13:25$ $\stackrel{Output}{} 13:25$ Multine Elevation: $\frac{2.57}{2.57}$ $\stackrel{Output}{} 13:25$ $\stackrel{Output}{} 13:25$ Grab No:Penetration Depth (cm):Sample Accepted (clrcle):Sample Type (clrcle): 5 Penetration Depth (cm):Sample Accepted (clrcle):Sample Accepted (clrcle): 5 Penetration Depth (cm):Sample Accepted Accepted (clrcle):Sample Accepted Accepted Accepted (clrcle): 5 Penetration Accepted Accepted Accepted Accepted Acce	ng/Easting:		Lat/Northing:			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ee navigation report for actual)		2 61			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Time: 13: PS Multime Elevation: 7:97 Datum: NA vDBB Grab No:: Penetration Depth (cm): S II Time: NA vDBB Grab No:: Penetration Depth (cm): S II Time: No Sediment Type (circle): Coarse Sand Modulum Sand Fine Sand) Sitt/Clay + sith, thg grad Wood debris (by volume) (circle): None (25%) Sediment Type (circle): No Sediment Type (circle): No Sediment Type (circle): None Vegotation/Biota (describe): Dne Sediment Color (circle): Dne Sediment Color (circle): One Sediment Color (circle): Tor file debgrais, 1 Sediment Color (cir						
Wudline Elevation: 3.51 Datum: NAVDBB Grab No.: Penetration Depth (cm): S I Yes No Distribution Distribution Grab No.: Penetration Depth (cm): S I Yes No Distribution Distribution S I Yes No Distribution Distribution S I Yes No Distribution Composite? Fill out for accepted grab only- Section Sediment Type (circle): Cobble Gravel Coarse Sand Medium Sand Fine Sand Silt/Clay + silt, Thig grad Wood debris (by volume) (circle): None (25%) 25-50% Shell hash (circle): (Present) Absent precessed word (see "other debris") Yegetation/Biota (describe): Dree prece of word on surface. Possivily processed word (see "other debris") Yegetation/Biota (describe): One prece of word on surface. Possivily processed bescare that on one side. Sediment Color (circle): Olive Light Brown Dark Brown Gray Elack Stratification/Layering (describe): Top 3 cm 75 Offee RPD depth (cm): 3 cm Sediment O	Î			Grab not over-filled		
Outum: NAVDER • Target penetration achieved lize of it (13) Grab No:: Penetration Depth (cm): Sample Accepted (circle): Sample Type (circle): S 11 reg No Discrete or Composite? Fill out for accepted grab only- Sediment Type (circle): Connect Sample Type (circle): Discrete or Composite? Sediment Type (circle): Cobie Gravel Coarse Sand Medium Sand Fine Sand Silt/Clay + silt, +th grad Wood debris (by volume) (circle): No Precessed wood (rec. *other debris") Then fd one precessed wood (rec. *other debris") Shell hash (circle): Present Absent Precessed wood (rec. *other debris") Precessed wood (rec. *other debris") Vegetation/Biota (describe): Dne prece of wood on surface. Possibly precessed because flat on one side. Other Debris (describe): One prece of wood on surface. Possibly precessed because flat on one side. Sediment Color (circle): Olive Light Brown Dark Brown Gray Black Stratification/Layering (describe): Top 3 cm is offset RPD depth (cm): 3 cm Sediment Odor Type (circle): None Petroleum Has Odor Strength (circle): None Slight Moderate Strong Very Strong Petroleum Sheen (circle): None Slight Moderate Heavy Pro	\downarrow	Mudline Elevat	ion: <u>- 3,87</u>			
Grab No:: Penetration Depth (cm): Sample Accepted (circle): Sample Type (circle): S II Yes No Discrete or Composite? Fill out for accepted grab only- Sediment Type (circle): Coarse Sand Medium Sand Fine Sand: Sit/Clay + s7it, thy grad Wood debris (by volume) (circle): None 2550 25-50% 50-75% Trace word, Net processed, Net processed, Then fill one precedent word (ree "other debrs") Shell hash (circle): Present Absent Precedent for dearray If we dearray Vegetation/Biota (describe): Dne precedent for dearray, precedent word (ree "other debrs") precedent word (ree "other debrs") Other Debris (describe): One precedent for dearray, possibly processed because that on: one sife: ass" x1" x 0.25". No evidence of word textmont. Sediment Color (circle): Olive Light Brown Dark Brown Gray Black Stratification/Layering (describe): Top 3 cm is office. RPD depth (cm): 3 cm Sediment Odor Type (circle): None Petroleum Has Odor Strength (circle): None Slight Moderate Heavy Product present Comments/Other Observations: Sample Accepted Proces		Datum:A	VDBB	_		
S I Yes No Discrete or Composite? Fill out for accepted grab only- Sediment Type (circle): Cobble Gravel Coarse Sand Medium Sand Fine Sand Silt/Clay + silt, thy grad Searce Wood debris (by volume) (circle): None (25%) 25:50% 50:75% 75% Trace wood, Net processed, Then fd one prece of processed wood (see "other debris") precessed wood (see "other debris") Shell hash (circle): (Present) Absent (25%) 25:50% 50:75% 75% Trace wood, Net processed, wood (see "other debris") Vegetation/Blota (describe): Dne prece of wood on surface, Possily processed based (see "other debris") Other Debris (describe): One prece of wood on surface, Possily processed because flat on one side. ass"x1" x 0.25". No evidence of wood treatment. Sediment Color (circle): Olive Light Brown Dark Brown Gray Black Stratification/Layering (describe): Top 3 cm is offer. RPD depth (cm): 3 cm Sediment Odor Type (circle): None Petroleum flas Odor Strength (circle): Light Moderate Strong Very Strong Petroleum Sheen (circle): None Slight Moderate Heavy Product present Comments/Other Observations: Sample from 13:05"				licm out of it (1)		
Fill out for accepted grab only- Sediment Type (circle): Cobble Gravel Coarse Sand (Medium Sand Fine Sand Silt/Clay + silt, the gravel Wood debris (by volume) (circle): None (25%) 25-50% 50-75% >75% Trace wood. Not processed. Then fd one prece of processed wood (ree "other dubris") precessed wood (ree "other dubris") yolewing Vegetation/Biota (describe): Dree prece free deligrass, 1 trive dam. I small smalt snait (41cm) Other Debris (describe): One prece of wood on surface. Possity processed teamse flat on one sife. as "x1" x 0.25". No evidence of wood treatment. Sediment Color (circle): Olive Light Brown Dark Brown Gray Black Stratification/Layering (describe): Top 3 cm is direc RPD depth (cm): 3 cm Sediment Odor Type (circle): None Petroleum (125) Odor Strength (circle): Light Moderate Strong Very Strong Petroleum Sheen (circle): None Slight Moderate Heavy Product present Comments/Other Observations: Sample front 13:05	Grab No.: Penetrat	ion Depth (cm):	Sample Accepted (circle):	Sample Type (circle):		
Sediment Type (circle): Cobble Gravel Coarse Sand Medium Sand Fine Sand Silt/Clay + silt, thy gravel Wood debris (by volume) (circle): None (25%) 25-50% 50-75% >75% Trace wood. Not processed. Then fd one prece of processed wood (ree "other debrs") Shell hash (circle): Present Absent Vegetation/Biota (describe): Dne prece free line delgrass, 1 live dam. I small	5 1		Yes No	Discrète or Composite?		
Sediment Color (circle): Olive Light Brown Dark Brown Gray Black Stratification/Layering (describe): Top 3 cm is office RPD depth (cm): 3 cm Sediment Odor Type (circle): None Petroleum H2S Odor Strength (circle): Light Moderate Strong Very Strong Petroleum Sheen (circle): None Slight Moderate Heavy Product present Comments/Other Observations: Sample +Tme 13:05	Sediment Type (circle): Cobble Gr Wood debris (by volume) (circle): N	one <25% 254	50% 50-75% >75% Trac pred	e wood. Not processed. Then fd one of processed wood (see "other debois")		
Stratification/Layering (describe): Top 3 cm is office RPD depth (cm): 3 cm Sediment Odor Type (circle): None Petroleum H2S Odor Strength (circle): Light Moderate Strong Very Strong Petroleum Sheen (circle): None Slight Moderate Heavy Product present Comments/Other Observations: Sample +Tme 13:05	Other Dehris (describe): One piece of wood on surface. Possibly processed because flat on one side.					
RPD depth (cm): 3 cm Sediment Odor Type (circle): None Petroleum H2S Odor Strength (circle): Light Moderate Strong Very Strong Petroleum Sheen (circle): None Slight Moderate Heavy Product present Comments/Other Observations: Sample +7me 13:05			- (
Sediment Odor Type (circle): None Petroleum H2S Odor Strength (circle): Light Moderate Strong Very Strong Petroleum Sheen (circle): None Slight Moderate Heavy Product present Comments/Other Observations: Sample H7me 13:05						
Odor Strength (circle): Light Moderate Strong Very Strong Petroleum Sheen (circle): None Slight Moderate Heavy Product present Comments/Other Observations: Sample Home 13:05	RPD depth (cm): $3 < \infty$					
Petroleum Sheen (circle): None Slight Moderate Heavy Product present Comments/Other Observations: Sample H7me 13:05	Sediment Odor Type (circle): None	Petroleum H ₂ S	\sum			
Comments/Other Observations: Sample +7me 13:05	Odor Strength (circle): Light Moder	ate Strong Very	Strong			
	Petroleum Sheen (circle): None Sli	ght Moderate	Heavy Product present			
P1D=0.6	Comments/Other Observations: 5	mple time	13:05			
	P	10=0.6				
	L					

SEDIMENT SAMPLING F	ORM-SURFACE G	RABS	
Project:R.G. Haley Supplemental Se	ediment Investigation	Date: 10/12/15	
Project No.: 0356-114-06		Weather: H (at	505
Subcontractor: Gravity Environmental LLC		Vessel:	
Sampling Crew:		Sampling Method:	over grad
		2 cm	
Farget Coordinates:			
Long/Easting: Lat/Northin (See navigation report for actual)		Lat/Northing:	· · · · · · · · · · · · · · · · · · ·
(See navigation report for actual)		7 57	
	Water Elevation		Acceptance Criteria:
		ne: <u>7-4</u>	 Overlying water present Low turbidity in overlying water
Î	Time: <u>13:0</u>		Grab not over-filled
		ion:	 Sediment surface ~flat No winnowing/washout
111111111111111111111111111111111111111	Datum:Av	088	 Target penetration achieved
			13 cm
Grab No.: Per	netration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):
6	13	Yes No	Discrete or Composite?
Fill out for accepted grab only			
Sediment Type (circle): Cobb Wood debris (by volume) (circ Shell hash (circle): Present	le): None <25% 25-		Coarse) Silt/Clay + silt, + ty gravel + 1 couble
Vegetation/Biota (describe): 1	Norms, one live	clam.	
Other Debris (describe): 1 d	ead clara shell.		
Sediment Color (circle): Olive	Light Brown Dark Bro	own Gray Black	
Stratification/Layering (descri	be): Tap 3 cm of	Tre	
RPD depth (cm): $3 cm$			
Sediment Odor Type (circle): 1	None Petroleum H ₂ S	7	
Odor Strength (circle): Light	Moderate Strong Very	Strong	
Petroleum Sheen (circle): Nor	e Slight Moderate	Heavy Product present	
	15: mole Finne 13:05 D=0.6		
Logged by:			

	lemental Sediment Investigation			
Project No.: 0356-114-06 ubcontractor: Gravity Environmental LLC ampling Crew: ample Location:SSI- 55 - 0岁		Weather: Clouds,	Weather: <u>Clouds</u> , 505 Vessel: Sampling Method: <u>Buer Grad</u> Target Depth (ff): <u>IZ cm</u>	
		Vessel:		
		Sampling Method: \underline{R}		
		Target Depth (ft):		
get Coordinates:				
g/Easting: e navigation report f		Lat/Northing:		
- ·	Water Elevation	n: <u>4.37</u>	Acceptance Criteria:	
	Datum: <u>AJAV</u>		• Overlying water present	
		ne: _26.5		
1	· ·	= 1350	Grab not over-filled	
ļ		ion: - 22.13	Sediment surface ~flat	
			No winnowing/washout	
			24cm	
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):	
Fill out for accepte		Yes No	Discrete or Composite? 75071. 571+	
Sediment Type (cir Wood debris (by vo Shell hash (circle):	ed grab only— rcle): Cobble Gravel Coarse Sand plume) (circle): None ² <25% 25-5	d Medium Sand (Fine Sand) 50% 50-75% >75%	7507, silt	
Sediment Type (cir Wood debris (by vo Shell hash (circle):	ed grab only- rcle): Cobble Gravel Coarse Sand blume) (circle): None <25% 25-5 Present Absent describe): Dead clam, mussel	d Medium Sand (Fine Sand) 50% 50-75% >75%	7507, sitt	
Sediment Type (cir Wood debris (by vo Shell hash (circle): Vegetation/Biota (Other Debris (desc Sediment Color (ci	ed grab only- rcle): Cobble Gravel Coarse Sand blume) (circle): None <25% 25-5 Present Absent describe): Dead clam, mussel	d Medium Sand Fine Sand 50% 50-75% >75% shells	7507, silt	
Sediment Type (cir Wood debris (by vo Shell hash (circle): Vegetation/Biota (Other Debris (desc Sediment Color (ci	ed grab only rcle): Cobble Gravel Coarse Sand plume) (circle): None <25% 25-8 Present Absent describe): Deal clam, mussel rribe): rcle): Olive Light Brown Dark Bro ering (describe):	d Medium Sand Fine Sand 50% 50-75% >75% shells	7507, silt	
Sediment Type (cir Wood debris (by vo Shell hash (circle): Vegetation/Biota (Other Debris (desc Sediment Color (ci Stratification/Laye RPD depth (cm):	ed grab only rcle): Cobble Gravel Coarse Sand plume) (circle): None <25% 25-8 Present Absent describe): Deal clam, mussel rribe): rcle): Olive Light Brown Dark Bro ering (describe):	d Medium Sand Fine Sand 50% 50-75% >75% shells	7507, silt	
Sediment Type (cir Wood debris (by vo Shell hash (circle): Vegetation/Biota (Other Debris (desc Sediment Color (ci Stratification/Laye RPD depth (cm):	ed grab only rcle): Cobble Gravel Coarse Sand olume) (circle): None <25% 25-8 Present Absent describe): Deal clam, mussel rribe): rcle): Olive Light Brown Dark Bro ering (describe):	d Medium Sand Fine Sand 50% 50-75% >75% shells	7507, sitt SIL/Clay (SUL Sad	
Sediment Type (cir Wood debris (by vo Shell hash (circle): Vegetation/Biota (Other Debris (desc Sediment Color (ci Stratification/Laye RPD depth (cm): Sediment Odor Typ Odor Strength (circ	ed grab only- rcle): Cobble Gravel Coarse Sand plume) (circle): None <25% 25-8 Present Absent describe): Deal clam, mussel ribe):	d Medium Sand Fine Sand 50% 50-75% >75% shells	7507, silt	
Sediment Type (cir Wood debris (by vo Shell hash (circle): Vegetation/Biota (Other Debris (desc Sediment Color (ci Stratification/Laye RPD depth (cm): Sediment Odor Typ Odor Strength (circ	ed grab only- rcle): Cobble Gravel Coarse Sand plume) (circle): None <25% 25-5 Present Absent describe): $Deal \ clam, muscl rcle): Olive Light Brown Dark Brown ering (describe):$	d Medium Sand Fine Sand 50% 50-75% >75% shells own Gray Black Strong Heavy Product present < 1 heavy Product present	7507, sitt SIL/Clay (SUL. Soul	
Sediment Type (cir Wood debris (by vo Shell hash (circle): Vegetation/Biota (Other Debris (desc Sediment Color (cir Stratification/Laye RPD depth (cm): Sediment Odor Typ Odor Strength (circ Petroleum Sheen (ed grab only- rcle): Cobble Gravel Coarse Sand plume) (circle): None <25% 25-5 Present Absent describe): Deal dam, missel rribe):	d Medium Sand Fine Sand 50% 50-75% >75% shells own Gray Black Strong Heavy Product present < 1 heavy Product present	7507, sitt SIL/Clay (SUL. Soul	

SEDIMENT SAMPL	ING FORM—SURFACE G	RABS		
Project:R.G. Haley Supplem	ental Sediment Investigation	Date: 10/12/15	······	
Project No.: 0356-114-06_		Weather: Clouds,	505	
ubcontractor: Gravity Environmental LLC		Vessel:		
ampling Crew:		Sampling Method:	Sampling Method:	
mple Location: 551-55-09 Target Depth (ft):				
arget Coordinates:				
ng/Easting: ee navigation report for actual)		Lat/Northing:	Lat/Northing:	
		<u>; 3.5</u>	Acceptance Criteria:	
	Datum: <u>NAVI</u>	0.88	Overlying water present	
ŕ	•	ne: _2(.5		
		5	(Sodimont surface ~flat)	
		ion: <u>-18</u>	No winnowing/washout	
•	/////// Datum: <u>\}</u>	ND88	ranget penetiation demoted	
		••••••••••••••••••••••••••••••••••••••	Sampler angled	
Grab No.:	Penetration Depth (cm):	Sample Accepted-(circle):	Sample Type (circle):	
1	CIZ cm	Yes No	Discrete or Composite?	
Fill out for accepted g	rab only—			
Sediment Type (circle)	: Cobble Gravel Coarse Sand	d Medium Sand Fine Sand	Silt/Clay	
Wood debris (by volun	ne) (circle): None <25% 25-5	50% 50-75% >75%		
Shell hash (circle): Pro	esent Absent			
Vegetation/Biota (des	cribe):			
Other Debris (describe	•):			
	, ,			
Sediment Color (circle): Olive Light Brown Dark Bro	own Grav Black		
Stratification/Layering		erey block		
RPD depth (cm):				
Sediment Odor Type (d	circle): None Petroleum H ₂ S			
Odor Strength (circle):	Light Moderate Strong Very	Strong		
Petroleum Sheen (circ	le): None Slight Moderate I	Heavy Product present		
Comments/Other Obs	ervations:			

SEDIMENT SAMPLING FORM-SURFACE GRABS	5		
Project:R.G. Haley Supplemental Sediment Investigation	Date: 10/12/15		
Project No.: 0356-114-06	Weather: <u>Clouds</u> 50s		
Subcontractor: Gravity Environmental LLC	Vessel:		
Sampling Crew:	Sampling Method: Grab		
Sample Location: $5s_1 - 5s_2 Oq$ Target Depth (ft):		2 cm	
Target Coordinates:			
Long/Easting:	Lat/Northing:		
(See navigation report for actual)	. 5	Acceptance Criteria:	
	s	• Overlying water present	
	21.5		
		Grab not over-filled	
Mudline Elevation:	-18	 Sediment surface ~flat No winnowing/washout 	
Datum: NAVDE	38	. V Target penetration achieved	
		23 cm	
Grab No.: Penetration Depth (cm): San	nple Accepted (circle):	Sample Type (circle): Discrete or Composite?	
Sediment Type (circle): Cobble Gravel Coarse Sand Ma Wood debris (by volume) (circle): None <25% 25-50% Shell hash (circle): Present Absent Vegetation/Biota (describe): $+_{r}$ shell $+_{ragments}$ Other Debris (describe): —	50-75% >75%	Silvolay	
Sediment Color (circle): Olive Light Brown Dark Brown Gray Black Stratification/Layering (describe):			
RPD depth (cm):			
Sediment Odor Type (circle): None Petroleum (H_2S)	×		
Odor Strength (circle): Light Moderate Strong Very Stron			
Petroleum Sheen (circle) None Slight Moderate Heavy			
Comments/Other Observations: 5 augle time = 1	14710		
PID=0.0			

SEDIMENT SAMPLING FORM	-SURFACE OF			
oject:R.G. Haley Supplemental Sedimer	nt Investigation			
oject No.: 0356-114-06		Weather:,	505	
ubcontractor: Gravity Environmental LLC ampling Crew: ample Location: S S (- SS -)の		Vessel:	Vessel: Sampling Method: Target Depth (ft):	
		Sampling Method:		
		Target Depth (ft):		
rget Coordinates:				
ng/Easting: ee navigation report for actual)		Lat/Northing:		
e navigation report for actual)				
		n: <u>~5</u>	Acceptance Criteria:	
		> 80	Overlying water present	
Ŷ	-	ne: <u>28.8</u>	Low turbidity in overlying wate	
		2-5	Grab not over-filled Sediment surface ~flat	
↓	Mudline Elevati	ion:	 No winnowing/washout 	
111111111111111111111111111111111111111	Datum: NAV	035		
	on Depth (cm): penetration	Sample Accepted (circle):	Sample Type (circle): Discrete or Composite?	
	· · · ·			
Fill out for accepted grab only-				
Sediment Type (circle): Cobble Gr	avel Coarse San	d Medium Sand Fine Sand	Silt/Clay	
Wood debris (by volume) (circle): No	one <25% 25-	50% 50-75% >75%		
Shell hash (circle): Present Absent				
Vegetation/Biota (describe):				
Other Database (describe)				
Other Debris (describe):				
Sediment Color (circle): Olive Light	Brown Dark Bro	own Gray Black		
Stratification/Layering (describe):				
RPD depth (cm):				
Sediment Odor Type (circle): None	Petroleum H ₂ S			
Odor Strength (circle): Light Mode	rate Strong Very	Strong		
Petroleum Sheen (circle): None Sli	ght Moderate	Heavy Product present		
Comments/Other Observations:				
i i i i i i i i i i i i i i i i i i i				

SEDIMENT SAMPLING FORM-SURFACE GRAB	S	
Project:R.G. Haley Supplemental Sediment Investigation	Date: 10/12/15	
Project No.: 0356-114-06	Weather: Clouds, 505	
Sampling Crew:		omer Grib
		Zan
Target Coordinates:	/	
Long/Easting: (See navigation report for actual)	Lat/Northing:	
• • • • • •		Assessment of the state
	<u>- 5</u> 2 10 -	,
Depth to Mudline:	Overlying water preser	
	~	
	- 23.B	Sediment surface ~flat
•	BB	No winnowing/washout
		14 cm
Departmention Dowth (cm)	male Accorted (circle);	Sample Type (circle):
Grab No.: Penetration Depth (cm): Sat	mple Accepted (circle):	Discrete or Composite?
Sediment Type (circle): Cobble Gravel Coarse Sand M Wood debris (by volume) (circle): None <25% 25-50% Shell hash (circle): Present Absent Vegetation/Biota (describe):		Silt/Clay tr fine sand
Vegetation blota (describe).		and the second
Other Debris (describe):		
Sediment Color (circle): Olive Light Brown Dark Brown Stratification/Layering (describe): Upper 9 cm is	Gray Black siltrer; lower 3	em becomes sandier.
RPD depth (cm):		
Sediment Odor Type (circle): None Petroleum H_2S		
Odor Strength (circle): Light Moderate Strong Very Strong	ng	
Petroleum Sheen (circle) None Slight Moderate Heav	y Product present	
Comments/Other Observations: Sample find = 10 P1P = 1.8		
Logged by:		

SEDIMENT SAMPLIN	NG FORM—SURFACE GI	RABS		
Project:R.G. Haley Supplemen	ntal Sediment Investigation	Date: 10/12/15		
Project No.: 0356-114-06		Weather: <u>Cloudy</u> ,	Weather: <u>Cloudy</u>	
Subcontractor: Gravity Environmental LLC		Vessel:	Vessel:	
Sampling Crew:		Sampling Method:	Sampling Method:	
Sample Location:SIS-1		Target Depth (ft):		
Target Coordinates:				
Long/Easting: (See navigation report for acti	ual)	Lat/Northing:		
	Water Elevation	n: <u>~~ 5,8</u>	Acceptance Criteria:	
	Datum: <u>NAv</u>		Overlying water present	
1		ne: <u>30.1</u>	 Low turbidity in overlying water Grab not over-filled 	
		ion:	Sediment surface ~flat	
*			No-winnowing/washout Target penetration achieved	
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle): Yes No	Sample Type (circle): Discrete or Composite?	
Fill out for accepted grat		d Medium Sand Fine Sand	Silt/Clay	
) (circle): None <25% 25-			
Shell hash (circle): Pres				
Vegetation/Biota (descri				
Other Debris (describe):				
Sediment Color (circle):	Olive Light Brown Dark Bro	own Gray Black		
Stratification/Layering (describe):			
RPD depth (cm):				
Sediment Odor Type (cir	cle): None Petroleum H_2S			
Odor Strength (circle): L	ight Moderate Strong Very	Strong		
Petroleum Sheen (circle): None Slight Moderate	Heavy Product present		
Comments/Other Obser	vations:			

SEDIMENT SAMPLING	FORM—SURFACE GF	RABS		
Project:R.G. Haley Supplemental	Sediment Investigation	Date: [0]いいう	er	
Project No.: 0356-114-06	·	Weather:		
Subcontractor: Gravity Environmental LLC		Vessel:		
Sampling Crew:		Sampling Method:	Sampling Method:	
Sample Location:5 5 - 11		Target Depth (ft):		
Target Coordinates:				
Long/Easting: (See navigation report for actual,)	Lat/Northing:		
- • •	Water Elevation	1:	Acceptance Criteria:	
	Datum:		Overlying water present	
<u> </u>	Depth to Mudlin	ne:	 Low turbidity in overlying water Grab not over-filled 	
	Time:		Sediment surface ~flat	
Ŷ		ion:	 No winnowing washout 	
	//// Datum:		 Target penetration achieved 	
		I		
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):	
2		Yes No	Discrete or Composite?	
Fill out for accepted grab of	nly—			
Sediment Type (circle): Co	bble Gravel Coarse San	d Medium Sand Fine Sand	Silt/Clay	
Wood debris (by volume) (c	ircle): None <25% 25-	50% 50-75% >75%		
Shell hash (circle): Present	Absent			
Vegetation/Biota (describe)):			
Other Debris (describe):				
Sediment Color (circle): Oli	ve Light Brown Dark Bro	own Gray Black		
Stratification/Layering (des		·		
RPD depth (cm):				
Sediment Odor Type (circle): None Petroleum H ₂ S			
Odor Strength (circle): Ligh	t Moderate Strong Very	Strong		
Petroleum Sheen (circle):	None Slight Moderate	Heavy Product present		
Comments/Other Observat	ions:			

Project:R.G. Haley Supplemental Sediment Investigation Project No.: 0356-114-06 ubcontractor: Gravity Environmental LLC ampling Crew:			Date: 10/12/15 Weather: Vessel: Sampling Method: Grab	
		· · · · · · · · · · · · · · · · · · ·		
		Sampling Method:		
nple Location: <u>551</u>	ion: <u>551-55-211</u> Target Depth (ff): <u>12cm</u>		- Z M	
get Coordinates:				
g/Easting:		Lat/Northing:		
navigation report for	Water Elevation Datum:A Depth to Mudlin Time:A Mudline Elevati	n: ~ 5.8 ND BB ne:	 Low turbidity in overlying water Grab not over-filled Sodiment surface stat 	
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle): Discrete or Composite?	
	le): Cobble Gravel Coarse Sand	d Medium Sand Fine Sand	Silt/Clay	
Fill out for accepted Sediment Type (circl	grab only— le): Cobble Gravel Coarse Sand ume) (circle): None <25% 25-5 Present Absent escribe):	d Medium Sand Fine Sand	Silt/Clay	
Fill out for accepted Sediment Type (circl Wood debris (by volu Shell hash (circle): F Vegetation/Biota (de Other Debris (descrif	grab only— le): Cobble Gravel Coarse Sand ume) (circle): None <25% 25-5 Present Absent escribe): be): — be): — cle): Olive Light Brown Dark Brown ing (describe): Upper 20 cm Wood angens p Largest picce ag	d Medium Sand Fine Sand		
Fill out for accepted Sediment Type (circl Wood debris (by volu Shell hash (circle): F Vegetation/Biota (de Other Debris (descrif Sediment Color (circ Stratification/Layeri RPD depth (cm): —	grab only— le): Cobble Gravel Coarse Sand ume) (circle): None <25% 25-5 Present Absent escribe): be): — be): — cle): Olive Light Brown Dark Brown ing (describe): Upper 20 cm Wood angens p Largest picce ag	d Medium Sand Fine Sand 50% 50-75% >75% No 50% So-75% So-75% So-75% So-75% So-75% No 50% So-75% So-75% So-75% So-75% So-75% So- 50% So-75% So-7	Silt/Clay one in sample intervil; wool@2	
Fill out for accepted Sediment Type (circl Wood debris (by volu Shell hash (circle): F Vegetation/Biota (de Other Debris (descrif Sediment Color (circ Stratification/Layeri RPD depth (cm): Sediment Odor Type	grab only- le): Cobble Gravel Coarse Sand ume) (circle): None <25% 25-5 Present Absent escribe): be): be): be): be): cle): Olive Light Brown Dark Brown ing (describe): Upper 20 cm Wood angens p Largest piece age e (circle): None Petroleum (H2S)	d Medium Sand Fine Sand 50% 50-75% >75% No 50% 50-75% No 50% 50-75% >75% No 50% 50-75% No 50% 50-75% No 50% 50-75% No 50% 50-75% No 50% 50-75% No 50% 50-75% No 50% 50% S0 50% 50% S0 50% S0 5	Silt/Clay one in sample intervil; wool@2	
Fill out for accepted Sediment Type (circl Wood debris (by volu Shell hash (circle): F Vegetation/Biota (de Other Debris (descrif Sediment Color (circ Stratification/Layeri RPD depth (cm): Sediment Odor Type Odor Strength (circle	grab only— le): Cobble Gravel Coarse Sand ume) (circle): None <25% 25-5 Present Absent escribe): be): — be): — cle): Olive Light Brown Dark Brown ing (describe): Upper 20 cm Wood angens p Largest piece ag e (circle): None Petroleum H2S e): Light Moderate Strong Very	d Medium Sand Fine Sand 50% 50-75% >75% No 50% 50-75% No 50% 50 50% S0 50% S	Silt/Clay one in sample intervil; wool@2	
Fill out for accepted Sediment Type (circl Wood debris (by volu Shell hash (circle): F Vegetation/Biota (de Other Debris (descrif Sediment Color (circ Stratification/Layeri RPD depth (cm): Sediment Odor Type Odor Strength (circle Petroleum Sheen (ci	grab only- le): Cobble Gravel Coarse Sand ume) (circle): None <25% 25-5 Present Absent escribe): be): be): be): be): cle): Olive Light Brown Dark Brown ing (describe): Upper 20 cm Wood angens p Largest piece age e (circle): None Petroleum (H2S)	d Medium Sand Fine Sand 50% 50-75% >75% No 50% 50-75% No 50% 50 50% 50-75% No 50% 50 50% 50% 50 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%	Silt/Clay one in sample intervil; wool@2	

SEDIMENT SAMPLING FORM-SI	JRFACE GI	RABS		
Project:R.G. Haley Supplemental Sediment Investigation		Date: 10/12/15	۵۶ 	
Project No.: 0356-114-06		Weather: It rain	505	
Subcontractor: Gravity Environmental LLC		Vessel:	Vessel:	
Sampling Crew:		Sampling Method:	Sampling Method: Power Grab	
		Target Depth (ft):	1200	
Target Coordinates:				
Long/Easting: (See navigation report for actual)		Lat/Northing:		
		~ ~ ~ ~	Assentance Cultoria	
		n: ~5.8 1068	<u>Acceptance Criteria:</u>	
		ne: 29.6	, , ,	
T	-	20	Grab not over-filled	
M M	udline Elevat	ion:3.8	 Sediment surface ~flat No winnowing/washout 	
Da	tum:	୵ୡୢଌ	 Target penetration achieved 	
			21 cm	
Grab No.: Penetration I	Depth (cm):	Sample Accepted (circle):	Sample Type (circle):	
1 21	,	Yes No	Discrete or Composite?	
Sediment Type (circle): Cobble Gravel Wood debris (by volume) (circle): None Shell hash (circle): Present Absent Vegetation/Biota (describe): Warms	<25% 25-	50% 50-75% >75%	(Silt∕Clay	
Other Debris (describe):			*	
	inae.	own Gray Black aminated: not obvious,	but faint lamination visitle: «Imm	
RPD depth (cm):				
Sediment Odor Type (circle): None Pet	roleum H ₂ S	>		
Odor Strength (circle): Light Moderate	Strong Very	Strong		
Petroleum Sheen (circle) None Slight	Moderate	Heavy Product present		
Comments/Other Observations: $\leq q_{v}$	yle time	= 1600		
	20.0			
Logged by:				

SEDIMENT SAMPLI	NG FORM—SURFACE GR	ABS		
Project:R.G. Haley Suppleme	ntal Sediment Investigation	Date:ろして)して	Date:こ)ししょう	
Project No.: 0356-114-06		Weather: <u>Clouds</u>	Weather: <u>Clauds</u> , SDS	
Subcontractor: Gravity Environmental LLC		Vessel:	Vessel:	
Sampling Crew:		Sampling Method:	Sampling Method: Power grab	
ample Location: <u>SS1-SS-13</u>		Target Depth (ft):	2 cm	
Target Coordinates:				
Long/Easting: (See navigation report for act	tual)	Lat/Northing:		
	Water Elevation	r_~6	Acceptance Criteria:	
) BB	, , ,	
1		ne: <u>33.3</u>	 Low turbidity in overlying water Grab not over-filled 	
	Time: <u>16 : </u>		Sediment surface ~flat	
*		on: <u>-27.3</u>	No winnowing/washout	
	////// Datum: <u>10100</u>	P 88	 Target penetration achieved 	
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):	
١		Yes No	Discrete or Composite?	
Fill out for accepted gra	b only—			
Sediment Type (circle):	Cobble Gravel Coarse Sand	d Medium Sand Fine Sand	Silt/Clay	
Wood debris (by volume	e) (circle): None <25% 25-5	50% 50-75% >75%		
Shell hash (circle): Pres	ent Absent			
Vegetation/Biota (descr	ibe):			
Other Debris (describe):	one ly prece wood l	(not processed)		
Sediment Color (circle):	Olive Light Brown Dark Bro	own Gray Black		
Stratification/Layering ((describe):			
			, ,	
RPD depth (cm):				
Sediment Odor Type (cir	rcle): None Petroleum H ₂ S			
Odor Strength (circle): I	ight Moderate Strong Very	Strong		
Petroleum Sheen (circle	e): None Slight Moderate	Heavy Product present		
Comments/Other Obser	rvations:			

SEDIMENT SAMPLIN	NG FORM-SURFACE G	RABS		
Project:R.G. Haley Supplemental Sediment Investigation		Date: <u>10/12/15</u>	Date: 10/12/15	
Project No.: 0356-114-06		Weather:	Weather:	
Subcontractor: Gravity Environmental LLC		Vessel:	Vessel:	
Sampling Crew:		Sampling Method:		
ample Location: 551 - 55 - 13 Target Depth (Target Depth (ft):		
arget Coordinates:				
Long/Easting: (See navigation report for acti	ong/Easting: See navigation report for actual)			
	Water Elevation	n:~6	Acceptance Criteria:	
		10 53	· · · · · · · · · · · · · · · · · · ·	
1		ine: <u>33.3</u>	 Low turbidity in overlying water Grab not over-filled 	
	Time:6:-	ion:	Sediment surface ~flat	
*		NVD BB	No winnowing/washout	
**********			 Target penetration achieved 	
Grab No.: Z	Penetration Depth (cm):	Sample Accepted (circle): Yes No	Sample Type (circle): Discrete or Composite?	
Fill out for accepted grat	o only—			
Sediment Type (circle):	Cobble Gravel Coarse San	d Medium Sand Fine Sand	Silt/Clay	
Wood debris (by volume)) (circle): None <25% 25-	50% 50-75% >75%		
Shell hash (circle): Prese	ent Absent			
Vegetation/Biota (descri	be):			
Other Debris (describe):				
Sediment Color (circle):	Olive Light Brown Dark Br	own Gray Black		
Stratification/Layering (c	lescribe):			
RPD depth (cm):				
Sediment Odor Type (circ	cle): None Petroleum H ₂ S			
Odor Strength (circle): Li	ght Moderate Strong Very	Strong		
Petroleum Sheen (circle)	: None Slight Moderate	Heavy Product present		
Comments/Other Observ	vations:			

SEDIMENT SAMPLIN	G FORM—SURFACE GF	RABS		
oject:R.G. Haley Supplement	al Sediment Investigation	Date: 10/12/15		
oject No.: 0356-114-06		Weather:	Weather: Clouds, SDS	
bcontractor: Gravity Environ	mental LLC	Vessel:	Vessel:	
mpling Crew:		Sampling Method: 🤳	Power Grad	
mple Location: <u>551-55</u>	- 13	Target Depth (ft):		
rget Coordinates:				
ng/Easting:		Lat/Northing:		
ee navigation report for actu		~t		
Datum: <u>NAVD@</u> Depth to Mudline: 3		n:	/	
		.2	Combined and filled	
	Time: Mudline Elevation:		- Sediment surface ~flat	
		088	No winnowing/washout	
			22 cm	
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):	
3	22	Yes No	Discrete or Composite?	
	(circle): None <25% 25-5 nt Absent	d Medium Sand Fine Sand 50% 50-75% >75%		
Other Debris (describe):				
Sediment Color (circle): C	Dive Light Brown Dark Bro	own Gray Black		
Stratification/Layering (de	escribe):			
RPD depth (cm):				
Sediment Odor Type (circl	e): None Petroleum (H_2S)	>		
Odor Strength (circle): Lig	sht Moderate Strong Very	Strong		
Petroleum Sheen (circle):	None Slight Moderate	Heavy Product present		
Comments/Other Observa	ations: $Sample$ fine P1P = 0, 0	430		
	1			
ged by:				

SEDIMENT SAMPLIN	NG FORM—SURFACE GF	RABS			
Project:R.G. Haley Supplemer	ntal Sediment Investigation	Date: 10/13/15			
Project No.: 0356-114-06		Weather:	Weather:		
Subcontractor: Gravity Enviro	nmental LLC	Vessel:			
Sampling Crew:	·····	Sampling Method:			
Sample Location:	5-14	Target Depth (ft):	Target Depth (ft):		
Target Coordinates:					
Long/Easting: (See navigation report for act	ual)	Lat/Northing:			
		ו:	Acceptance Criteria:		
	Datum: Depth to Mudline: _2		Overlying water present		
			Low turbidity in overlying water		
	Time:9 17	₽	 Grab not over-filled Sediment surface ~flat 		
\downarrow	Mudline Elevati	ion:	 No winnowing/washout 		
1111111111111	////// Datum:		Target penetration achieved		
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):		
		Yes No	Discrete or Composite?		
Fill out for accepted gra	b only—				
Sediment Type (circle):	Cobble Gravel Coarse San	d Medium Sand Fine Sand	Silt/Clay		
Wood debris (by volume	e) (circle): None <25% 25-	50% 50-75% >75%			
Shell hash (circle): Pres	ent Absent				
Vegetation/Biota (descr	ibe):				
	,				
Other Debris (describe):					
Sediment Color (circle):	Olive Light Brown Dark Bro	own Gray Black			
Stratification/Layering (describe):				
RPD depth (cm):					
	cle): None Petroleum H ₂ S				
	ight Moderate Strong Very				
Petroleum Sheen (circle): None Slight Moderate	Heavy Product present			
Comments/Other Obser	vations:				

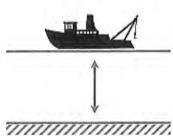
SEDIMENT SAMPLIN	G FORM—SURFACE GI	Λ.			
ject:R.G. Haley Supplement	al Sediment Investigation		5		
ject No.: 0356-114-06		Weather:	25t		
contractor: Gravity Environ	mental LLC	Vessel:	Vessel:		
npling Crew: <u>GL, CD</u>	, PDR	Sampling Method:	lower Coub		
nple Location:	5-14	Target Depth (ft):	2 cm		
get Coordinates:					
g/Easting:		Lat/Northing:			
e navigation report for actu	177	PRIOX			
	0	n: <u>~5'</u> HVD <i>88</i>			
Depth to Mudline:					
		ID	Grab not over-filled		
Ļ		ion: - 241			
		088			
			16 cm		
Grab No.: Z	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle): Discrete or Composite?		
Z Fill out for accepted grab	16 only-	Yes No	Discrete or Composite?		
Z Fill out for accepted grab Sediment Type (circle): 0	/6 only— Cobble Gravel Coarse San (circle): None <25% 25- nt Absent	Yes No nd Medium Sand Fine Sand			
Z Fill out for accepted grab Sediment Type (circle): 0 Wood debris (by volume) Shell hash (circle): Prese Vegetation/Biota (describ	16 only– Cobble Gravel Coarse San (circle): None <25% 25- nt Absent ne): NOne	Yes No nd Medium Sand Fine Sand 50% 50-75% >75%	Piscrete or Composite?		
Z Fill out for accepted grab Sediment Type (circle): 0 Wood debris (by volume) Shell hash (circle): Prese Vegetation/Biota (describ Other Debris (describe):	16 only– Cobble Gravel Coarse San (circle): None <25% 25- nt Absent ne): NOne	Yes No Id Medium Sand Fine Sand 50% 50-75% >75% boxh, red, flat in ne	Discrete or Composite?		
Z Fill out for accepted grab Sediment Type (circle): 0 Wood debris (by volume) Shell hash (circle): Prese Vegetation/Biota (describ Other Debris (describe):	16 only- Cobble Gravel Coarse San (circle): None <25% 25- nt Absent ne): Mone High Ne, One piece of p Dive Light Brown Dark Bro	Yes No Id Medium Sand Fine Sand 50% 50-75% >75% boxh, red, flat in ne	Discrete or Composite?		
Z Fill out for accepted grab Sediment Type (circle): 0 Wood debris (by volume) Shell hash (circle): Prese Vegetation/Biota (describ Other Debris (describe): Non Sediment Color (circle): 0	16 only- Cobble Gravel Coarse San (circle): (None <25% 25- nt Absent) ne): None High (ne): None High (ne): Dive Light Brown Dark Bro polive Light Brown Dark Bro	Yes No Id Medium Sand Fine Sand 50% 50-75% >75% boxh, red, flat in ne	Discrete or Composite?		
Z Fill out for accepted grab Sediment Type (circle): Wood debris (by volume) Shell hash (circle): Prese Vegetation/Biota (describe): Mon Sediment Color (circle): Stratification/Layering (describe): RPD depth (cm):	16 only- Cobble Gravel Coarse San (circle): (None <25% 25- nt Absent) ne): None High (ne): None High (ne): Dive Light Brown Dark Bro polive Light Brown Dark Bro	Yes No d Medium Sand Fine Sand 50% 50-75% >75% buch, ored, flat in ne own Gray Black	Discrete or Composite?		
Z Fill out for accepted grab Sediment Type (circle): Wood debris (by volume) Shell hash (circle): Prese Vegetation/Biota (describe): Non Sediment Color (circle): Stratification/Layering (describe): RPD depth (cm): Sediment Odor Type (circle):	16 only- Cobble Gravel Coarse San (circle): None <25% 25- nt Absent ne): None High I ne, One piec of Dive Light Brown Dark Bro escribe): <i>Bone</i>	Yes No Id Medium Sand Fine Sand 50% 50-75% >75% buch, red, flat in ne own Gray Black	Discrete or Composite?		
Z Fill out for accepted grab Sediment Type (circle): Wood debris (by volume) Shell hash (circle): Prese Vegetation/Biota (describe): Jon Sediment Color (circle): Stratification/Layering (describe): RPD depth (cm): Sediment Odor Type (circle): Odor Strength (circle):	16 only- Cobble Gravel Coarse San (circle): None <25% 25-	Yes No d Medium Sand Fine Sand 50% 50-75% >75% y weathered / degrad bork, red, flat inne own Gray Black Strong Heavy Product present	Discrete or Composite? I Silty Clay trace my fine sand led. ar section, patentialy processed		
Z Fill out for accepted grab Sediment Type (circle): Wood debris (by volume) Shell hash (circle): Prese Vegetation/Biota (describe): Jon Sediment Color (circle): Stratification/Layering (describe): RPD depth (cm): Sediment Odor Type (circle): Odor Strength (circle):	16 only- Cobble Gravel Coarse San (circle): None <25% 25-	Yes No d Medium Sand Fine Sand 50% 50-75% >75% y weathered / degrad borch, red, flat inne own Gray Black	Discrete or Composite? I Silt/Clay trace my fine sand led. ar section, patentialy processed		

SEDIMENT SAMPL	ING FORM—SURFACE GF	RABS		
Project:R.G. Haley Suppleme	ental Sediment Investigation	Date: 10/13/15		
Project No.: 0356-114-06	_	Weather: _C) pud	s, 50s	
Subcontractor: Gravity Enviro			7	
Sampling Crew:			ower Grab	
Sample Location: $(SS)^2 - SS^2$			Target Depth (ft): 12 cm	
Target Coordinates:				
Long/Easting:		Lat/Northing:		
(See navigation report for ac		,		
		n: ~ 5.8	Acceptance Criteria:	
	Depth to Mudline:		Overlying water present	
1			 Low turbidity in overlying water Grab not over-filled 	
		:30	Grab not over-niled Sediment surface ~flat	
¥		on:	No winnowing/washout	
77777777777777777	──────────────── Datum: <u>►</u> ▲	D	Target penetration achieved	
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):	
		Yes No	Discrete or Composite?	
Fill out for accepted gra	ab only—	I		
Sediment Type (circle):	Cobble Gravel Coarse Sand	d Medium Sand Fine Sand	Silt/Clay	
	e) (circle): None <25% 25-5			
Shell hash (circle): Pre				
Vegetation/Biota (desc	inde):			
Other Debris (describe)	:			
Sediment Color (circle):	: Olive Light Brown Dark Bro	own Gray Black		
Stratification/Layering	(describe):			
RPD depth (cm):				
Sediment Odor Type (ci	ircle): None Petroleum H ₂ S			
Odor Strength (circle):	Light Moderate Strong Very	Strong		
Petroleum Sheen (circl	e): None Slight Moderate I	Heavy Product present		
Comments/Other Obse	ervations: Depth inconsi Should be at 7	itent of Figure 5: 25' NAVD88.	Fig 5 indicated we	

SEDIMENT SAMPLIN	G FORM—SURFACE GF	RABS			
oject:R.G. Haley Supplement	tal Sediment Investigation	Date: 12/13/15			
oject No.: 0356-114-06	<u></u>	Weather:	Weather: Vessel:		
bcontractor: Gravity Environ	mental LLC	Vessel:			
mpling Crew:		Sampling Method:			
mple Location:	- 15	Target Depth (ft):	Target Depth (ft):		
rget Coordinates:		/			
ng/Easting: ee navigation report for actu	al)	Lat/Northing:			
1	Water Elevation	1:	Acceptance Criteria:		
Depth to Mudline:			Overlying water present		
		ne:	Low turbidity in overlying water		
			 Grab not over-filled Sediment surface ~flat 		
↓		ion:	 No winnowing/washout 		
111111111111111	////// Datum:		 Target penetration achieved 		
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):		
2	r eneration beptil (eni).	Yes No	Discrete or Composite?		
	Cobble Gravel Coarse Sand (circle): None <25% 25-5 nt Absent	d Medium Sand Fine Sand 50% 50-75% >75%	Silt/Clay		
Stratification/Layering (d	Dlive Light Brown Dark Bro escribe):	own Gray Black			
RPD depth (cm):					
Sediment Odor Type (circ	le): None Petroleum H ₂ S				
Odor Strength (circle): Lig	ght Moderate Strong Very	Strong			
Petroleum Sheen (circle):	None Slight Moderate I	Heavy Product present			
Comments/Other Observe	ations:				

rolect:R.G. Halev Supple	emental Sediment Investigation	Date: 10)13)15	Date: 10)13/15		
	6		Weather: <u>Clauds</u> , 573 Vessel: Sampling Method: <u>Pawer Grab</u> Target Depth (ff): <u>12 cm</u>		
-	vironmental LLC	*			
-					
ampling crew					
		Target Deptin (it).			
arget Coordinates:		lat/Northing			
Sing/ Easting: See navigation report fo	r actual)	Laty Northing:			
1	Water Elevatio	n:	Acceptance Criteria:		
	Datum:				
1	Depth to Mudli	ne:	 Low turbidity in overlying water Grab not over-filled 		
	Time:		- Sediment surface ~flat		
¥		ion:	✓● No winnowing/washout		
<i></i>	//////// Datum:		✓• Target penetration achieved		
			110~		
Grab No.:	Penetration Depth (cm):	Sample Accepted (circle):	Sample Type (circle):		
1		and the second s			
Fill out for accepted	cle): Cobble Gravel Coarse San	Yes No	Discrete of Composite?		
Fill out for accepted Sediment Type (circ Wood debris (by vol Shell hash (circle):	l grab only— cle): Cobble Gravel Coarse San	nd Medium Sand Fine Sand 50% 50-75% >75% fr wood			
Fill out for accepted Sediment Type (circ Wood debris (by vol Shell hash (circle): Vegetation/Biota (d Other Debris (descri	l grab only— cle): Cobble Gravel Coarse San lume) (circle): None <25% 25- Present Absent lescribe): V 5mall worms, a	nd Medium Sand Fine Sand 50% 50-75% >75% fr wood few shell fragments	Silt/Clay		
Fill out for accepted Sediment Type (circ Wood debris (by vol Shell hash (circle): Vegetation/Biota (d Other Debris (descri	l grab only— cle): Cobble Gravel Coarse San lume) (circle): None <25% 25- Present Absent lescribe): V 5mall worms, a ibe): —	nd Medium Sand Fine Sand 50% 50-75% >75% fr wood few shell fragments own Gray Black	Silt/Clay		
Fill out for accepted Sediment Type (circ Wood debris (by vol Shell hash (circle): Vegetation/Biota (d Other Debris (descri	l grab only— cle): Cobble Gravel Coarse San lume) (circle): None <25% 25- Present Absent lescribe): V 5mall worms, a	nd Medium Sand Fine Sand 50% 50-75% >75% fr wood few shell fragments own Gray Black	Silt/Clay		
Fill out for accepted Sediment Type (circ Wood debris (by vol Shell hash (circle): Vegetation/Biota (d Other Debris (descri	I grab only— cle): Cobble Gravel Coarse San lume) (circle): None <25% 25- Present Absent lescribe): V 5mall Worms, a ibe): — cle): Olive Light Brown Dark Br ring (describe): $1 \ge p^{-3}$ cm \square	nd Medium Sand Fine Sand 50% 50-75% >75% fr wood few shell fragments own Gray Black	Silt/Clay		
Fill out for accepted Sediment Type (circ Wood debris (by vol Shell hash (circle): Vegetation/Biota (d Other Debris (descri Sediment Color (circ Stratification/Layer RPD depth (cm):	I grab only— cle): Cobble Gravel Coarse San lume) (circle): None <25% 25- Present Absent lescribe): V 5mall Worms, a ibe): — cle): Olive Light Brown Dark Br ring (describe): $1 \ge p^{-3}$ cm \square	nd Medium Sand Fine Sand 50% 50-75% >75% fr wood few shell frigments own Gray Black The brown	Silt/Clay		
Fill out for accepted Sediment Type (circ Wood debris (by vol Shell hash (circle): Vegetation/Biota (d Other Debris (descri Sediment Color (circ Stratification/Layer RPD depth (cm):	I grab only— cle): Cobble Gravel Coarse San lume) (circle): None <25% 25- Present Absent lescribe): V small Worms, a ibe): — cle): Olive Light Brown Dark Br ring (describe): $1 \ge p = 3 \le n \ge 2$ 3 $\le m$	nd Medium Sand Fine Sand 50% 50-75% >75% fr wood few shell frigments own Gray Black The brown	Silt/Clay		
Fill out for accepted Sediment Type (circ Wood debris (by vol Shell hash (circle): Vegetation/Biota (d Other Debris (descri Sediment Color (circ Stratification/Layer RPD depth (cm):	a grab only— cle): Cobble Gravel Coarse San lume) (circle): None $<25\%$ 25- Present Absent lescribe): $\sqrt{5}$ small $\sqrt{25}$, $\sqrt{25}$ lescribe): $\sqrt{5}$ small $\sqrt{25}$, $\sqrt{25}$ lescribe): $\sqrt{5}$ small $\sqrt{25}$, $\sqrt{5}$ lescribe): $\sqrt{5}$ small $\sqrt{5}$ small $\sqrt{5}$ lescribe): $\sqrt{5}$ lescr	nd Medium Sand Fine Sand 50% 50-75% >75% fr wood few shell frigments own Gray Black The brown	Silt/Clay		
Fill out for accepted Sediment Type (circ Wood debris (by vol Shell hash (circle): Vegetation/Biota (d Other Debris (descri Sediment Color (circ Stratification/Layer RPD depth (cm): Sediment Odor Type Odor Strength (circl Petroleum Sheen (c	I grab only— cle): Cobble Gravel Coarse San lume) (circle): None $<25\%$ 25- Present Absent lescribe): $\lor small \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	nd Medium Sand Fine Sand 50% 50-75% >75% fr wood few shell frigments own Gray Black The brown	Silt/Clay		

roject:R.G. Haley Supplemental Sediment Investigation		Date:	Date: 0/13/15		
Project No.: 0356-114-	06		Weather:	Weather:	
Subcontractor: Gravity	Environmental LL	c	Vessel:	Vessel:	
Sampling Crew:	L, CD, PR	SR	Sampling Method:	Sampling Method: Phanes Gerib	
Sample Location:	<u>551-55-</u>	-16	Target Depth (ft):	Target Depth (ft): <u>2 c M</u>	
Target Coordinates:					
Long/Easting: (See navigation report	for actual)		Lat/Northing:		
(See navigation report		App Water Flowatio	n: <u>~~</u>	Acceptance Criteria:	
	Λ		1. <u>3.</u> 1. AJD 88		
	A		ine: <u>30,4</u> '	Low turbidity in overlying wa	
			37	 Grab not over-filled Sediment surface ~flat 	
	ł		tion: - 25'	- Ver Sediment surface ~flat	
11111111	///////////////////////////////////////	Datum: 🔥	AVD88	_ √ Target penetration achieved	
				14 cm	
				Sample Type (circle):	
Grab No.:	Penetrat	tion Depth (cm):	Sample Accepted (circle):	Sumple Type (circle).	
Fill out for accept Sediment Type (c	ed grab only— ircle): Cobble G	ravel Coarse San	Yes No	d (Silt) Clay frace fine sand	
Fill out for accept Sediment Type (c	ed grab only— ircle): Cobble G rolume) (circle): (r Present Absen	ravel Coarse San	Yes No	Discrete or Composite?	
Fill out for accept Sediment Type (c Wood debris (by v Shell hash (circle)	ed grab only— ircle): Cobble G rolume) (circle): (Present Absen (describe):	ravel Coarse San	Yes No	Discrete or Composite?	
Fill out for accept Sediment Type (c Wood debris (by v Shell hash (circle) Vegetation/Biota Other Debris (des Sediment Color (c	ed grab only— ircle): Cobble G rolume) (circle): (Present Absen (describe): None cribe): None cribe): None	ravel Coarse San Ione <25% 25- t	Yes No	Discrete or Composite?	
Fill out for accept Sediment Type (c Wood debris (by v Shell hash (circle) Vegetation/Biota Other Debris (des	ed grab only— ircle): Cobble G rolume) (circle): (Present Absen (describe): None cribe): None cribe): None cribe): Olive Ligh ering (describe):	ravel Coarse San lone <25% 25- t t t Brown Dark Br	Yes No nd Medium Sand Fine San 50% 50-75% >75%	Discrete or Composite?	
Fill out for accept Sediment Type (c Wood debris (by v Shell hash (circle) Vegetation/Biota Other Debris (des Sediment Color (c	ed grab only- ed grab only- ircle): Cobble G rolume) (circle): (Present Absen (describe): None cribe): None cribe): Olive Ligh ering (describe): None	ravel Coarse San lone <25% 25- t t t Brown Dark Br	Yes No nd Medium Sand Fine San 50% 50-75% >75%	Discrete or Composite?	
Fill out for accept Sediment Type (c Wood debris (by v Shell hash (circle) Vegetation/Biota Other Debris (des Sediment Color (c Stratification/Lay	ed grab only— ircle): Cobble G rolume) (circle): (Present Absen (describe): NOAQ cribe): NOAQ cribe): NOAQ cribe): NOAQ cribe): NOAQ	ravel Coarse San lone <25% 25- t t at Brown Dark Br	Yes No nd Medium Sand Fine San 50% 50-75% >75%	Discrete or Composite?	
Fill out for accept Sediment Type (c Wood debris (by v Shell hash (circle) Vegetation/Biota Other Debris (des Sediment Color (c Stratification/Lay RPD depth (cm):	ed grab only- ircle): Cobble G rolume) (circle): (A rolume) (circle): (A rolume) (circle): (A (describe): None cribe): None Sircle): Olive Light ering (describe): None (describe): None	ravel Coarse San Ione <25% 25- t t Brown Dark Br	Yes No nd Medium Sand Fine San 50% 50-75% >75%	Discrete or Composite?	
Fill out for accept Sediment Type (c Wood debris (by v Shell hash (circle) Vegetation/Biota Other Debris (des Sediment Color (c Stratification/Lay RPD depth (cm): Sediment Odor Ty Odor Strength (cir	ed grab only— ircle): Cobble G rolume) (circle): (A Present Absent (describe): None cribe): None cribe): Olive Light ering (describe): None (describe): None circle): Light Mode	ravel Coarse San Ione <25% 25- t t Brown Dark Br Petroleum H2S	Yes No nd Medium Sand Fine San 50% 50-75% >75%	Discrete or Composite?	


Project:R.G. Haley Supple	mental Sediment Investigation	Date:	113/15		
Project No.: 0356-114-06		- /	Weather: Overcast		
	vironmental LLC	Vessel:			
Sampling Crew:	CD, ADR	Sampling Method:	Power Grab		
	1-55-17		12 cm		
Target Coordinates:		/			
		Lat/Northing:			
(See navigation report for		APPROX			
113	A.	:: <u>~ 5,51</u> 1088			
		ne: <u>32.31</u>			
1		57	an Original states of fills of		
		on: 271	Sediment surface ~flat		
·/////////////////////////////////////	$\frac{\sqrt{1}}{\sqrt{1}}$ Datum: $\sqrt{1}$		No winnowing/washout		
	,		18 cm		
Grab No.:	Penetration Depth (cm):	Sample <u>A</u> ccepted (circle):	Sample Type (circle):		
		Yes No	Discrete or Composite?		
Fill out for accepted	grab only-	Yes No	Discrete or Composite?		
Fill out for accepted	grab only—	d Medium Sand Fine Sand	Discrete or Composite?		
Fill out for accepted Sediment Type (circl	grab only— e): Cobble Gravel Coarse Sand	d Medium Sand Fine Sand	Discrete or Composite?		
Fill out for accepted Sediment Type (circl Wood debris (by volu Shell hash (circle):	grab only— e): Cobble Gravel Coarse Sand me) (circle): None <25% 25-5 Present Alisent	d Medium Sand Fine Sand	Discrete or Composite? I Sijit/Clay Sticky plastic sitt.		
	grab only— e): Cobble Gravel Coarse Sand me) (circle): None <25% 25-5 Present Absent	d Medium Sand Fine Sand	Discrete or Composite? I Sift/Clay Sticky plastic sitt.		
Vegetation/Biota (de	grab only— e): Cobble Gravel Coarse Sand me) (circle): (None) <25% 25-5 Present Absent escribe):	(Yes) No d Medium Sand Fine Sand 50% 50-75% >75%	Discrete or Composite? I Sijit/Clay Stheky plastic sitt.		
Vegetation/Biota (de	grab only— e): Cobble Gravel Coarse Sand me) (circle): None <25% 25-8 Present Absent escribe): N, shell Lagments	(Yes) No d Medium Sand Fine Sand 50% 50-75% >75%	Discrete or Composite? I Sift/Clay Sticky plastic sitt.		
Vegetation/Biota (de OCC+ WOM Other Debris (descrit	grab only— e): Cobble Gravel Coarse Sand me) (circle): (None) <25% 25-8 Present Absent escribe): N, shell Layments pe):	(Yes) No d Medium Sand Fine Sand 50% 50-75% >75%	Discrete or Composite? I Silt/Clay Sticky plastic sitt.		
Vegetation/Biota (de	grab only— e): Cobble Gravel Coarse Sand me) (circle): (None) <25% 25-8 Present Absent escribe): N, shell Layments pe):	d Medium Sand Fine Sand	Discrete or Composite? I Silt/Clay Sticky plastic sitt.		
Vegetation/Biota (de <i>DCC + WOrn</i> Other Debris (descrit <i>MON</i> 6	grab only— e): Cobble Gravel Coarse Sand me) (circle): (None) <25% 25-8 Present Absent escribe): N, shell Layments pe):	d Medium Sand Fine Sand	Discrete or Composite? A Sign/Clay Stacky plastic sitt.		
Vegetation/Biota (de <i>DCC + WOrn</i> Other Debris (descrit <i>MON</i> 6	grab only— e): Cobble Gravel Coarse Sand me) (circle): None <25% 25-5 Present Absent escribe): N, shell Jagments pe): 2 le): Olive Light Brown Dark Bro ng (describe):	d Medium Sand Fine Sand 50% 50-75% >75% own Gray Black	shicky plastic sitt.		
Vegetation/Biota (de <i>DCC</i> + <i>WD</i> + Other Debris (descrit <i>MO</i> + Sediment Color (circl Stratification/Layerin	grab only— e): Cobble Gravel Coarse Sand me) (circle): None <25% 25-5 Present Absent escribe): N, shell Jagments pe): 2 le): Olive Light Brown Dark Bro	d Medium Sand Fine Sand 50% 50-75% >75% own Gray Black	shicky plastic sitt.		
Vegetation/Biota (de OCC + WOM Other Debris (descrit MON Sediment Color (circl Stratification/Layerin RPD depth (cm):	grab only— e): Cobble Gravel Coarse Sand me) (circle): None <25% 25-5 present Absent escribe): n, shell dragments pe): 2 fe): Olive Light Brown Dark Bro ng (describe): $O \neq_{0} 4 cm soft sed$	d Medium Sand Fine Sand 50% 50-75% >75% own Gray Black , <i>followed by s</i>	shicky plastic sitt.		
Vegetation/Biota (de OCC + WOM Other Debris (descrit MON Sediment Color (circl Stratification/Layerin RPD depth (cm):	grab only— e): Cobble Gravel Coarse Sand me) (circle): None <25% 25-5 Present Absent escribe): N, shell Jagments pe): 2 le): Olive Light Brown Dark Bro ng (describe):	d Medium Sand Fine Sand 50% 50-75% >75% own Gray Black , <i>followed by s</i>	shicky plastic sitt.		
Vegetation/Biota (de OCC + WOM Other Debris (descrit MON Sediment Color (circl Stratification/Layerin RPD depth (cm): (Sediment Odor Type	grab only— e): Cobble Gravel Coarse Sand me) (circle): None <25% 25-5 present Absent escribe): n, shell dragments pe): 2 fe): Olive Light Brown Dark Bro ng (describe): $O \neq_{0} 4 cm soft sed$	d Medium Sand Fine Sand 50% 50-75% >75% own Gray Black , <i>fol/owd d by s</i>	shicky plastic sitt.		
Vegetation/Biota (de OCC + WOM Other Debris (descrit MON Sediment Color (circl Stratification/Layerin RPD depth (cm): Sediment Odor Type Odor Strength (circle	grab only— e): Cobble Gravel Coarse Sand me) (circle): None <25% 25-5 Present Absent escribe): n, shell dragments be): 2 le): Olive Light Brown Dark Bro ng (describe): $O \neq_{0} 4 cm soft sed$ (circle): None Petroleum As	d Medium Sand Fine Sand 50% 50-75% >75% own Gray Black , <i>fol/owd by s</i> Strong	shicky plastic sitt.		
Vegetation/Biota (de Other Debris (descrite Mon (Sediment Color (circle Stratification/Layerin RPD depth (cm): Sediment Odor Type Odor Strength (circle	grab only— e): Cobble Gravel Coarse Sand me) (circle): None <25% 25-5 Present Absent escribe): n, shell dayments pe): 2 (e): Olive Light Brown Dark Bro ng (describe): $O \neq_{0} 4 cm soft sed$ (circle): None Petroleum f_{2S}): Light Moderate Strong Very rcle): None Slight Moderate	d Medium Sand Fine Sand 50% 50-75% >75% own Gray Black , <i>followd by s</i> Strong Heavy Product present	shicky plastic sitt.		

SEDIMENT SAMPLING FORM-SURFACE GRABS	•		
Project:R.G. Haley Supplemental Sediment Investigation	Date:/0	113/15	
Project No.: 0356-114-06	Weather:		
Subcontractor: Gravity Environmental LLC	Vessel:		
Sampling Crew: <u>GL, CD, PDR</u>	Sampling Method:		
Sample Location:	Target Depth (ft):	12cm	
Target Coordinates:	/		
Long/Easting: (See navigation report for actual)			
Water Elevation: Datum: Depth to Mudline: Time: Mudline Elevation: Datum:	28.1' m/ ang/. NAVD88	 Low turbidity in overlying water Grab not over-filled Sediment surface ~flat No winnowing/washout 	
Grab No.: Penetration Depth (cm): Sam	ple Accepted (circle): Yes No	Sample Type (circle): Discrete or Composite?	
Wood debris (by volume) (circle): None <25% 25-50% Shell hash (circle): Present Absent Vegetation/Biota (describe): green + brown Worms (moderate) amount- Other Debris (describe): Mark	50-75% >75%		
Sediment Color (circle): Olive Light Brown Dark Brown G	ray (Black		
Stratification/Layering (describe):			
RPD depth (cm): $/ cm$ (o/we)			
Sediment Odor Type (circle): None Petroleum (H ₂ S)			
Odor Strength (circle); Light Moderate Strong Very Strong			
Petroleum Sheen (circle): None Slight Moderate Heavy	Product present		
Comments/Other Observations: 551-55-18_0-12_Samp	ale 1025 an	d 0.551-55-OUP-02	
OID = OPPM ogged by: CD Collected Rinsale_	2 to ARI to Frentser		

SEDI	MENT SAN	APLING FORMCOF	RES				
Project: R.G	a. Haley Sup	plemental Sediment Inv	estigation	Date: <u>10 [14]15</u>			
Project No.:	: 0356-114-	06		Weather: <u>รบทา</u> เ	y, 605		
Subcontrac	tor: Gravity I	Environmental LLC		Vessel: Tieton			
ampling C	rew: <u>Han</u>	nah, Mike, Chad		Sampling Method: _			
ample Loc	ation: <u>SS 1</u>	-SC-01		Target Depth (ft):	<u>8 H</u>		
arget Cooi	rdinates:			Core Lined (circle):	"Second		
.ong/Eastiı	ng:			Lat/Northing:			
		Enter ir	nitial loc. info./upd	ate for final accepte	d core:		
	_	. Water	Elevation: 4,75		Accepta	nce criteria:	
۲	III	1	- 10111			penetration achie	
<u>+</u>	<u>`</u>	Depth t	to Mudline: <u>8.2</u>	10,4 +1610	10.8 • Core tu	ibe intact/ no obs	tructions
		Time:	1415 K	+1610	1800 · Vate	er	25%
	V	Mudlin	e Elevation:		- • • • • • • • • •	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		Datum:	· · · · · · · · · · · · · · · · · · ·				1
Run No.	Time	Actu Long/Easting	al Lat/Northing	Penetration Depth (ft)	Recovery Length (ft)	Compaction (%)	Accept?
	1420			4	6,5	(posstble slough in sampler)	
2	1455			6	6,5	(possible slowth in sampler)	AAY
3	1610			5	1, 5		N
04	1655			5	3, 5	White sufficiency -	N
5	1800			5.5	24	and constants	\mathcal{N}
							<i></i>
Comm	thents: $\#1$	recovered exass sue to choppines reset spuds fi Chal sets up r reposition again as suells, fail material core tube form pre	sediment. D is and more is better an new type, Hold ad attach fraw	Due only 4 ft ment of cores t chooling, shift to e out the the me. Refusal a	but recover ube while d ast. About a t 5 ft from	ived 6.6% Like inopping. Iff west of Wood, plastic, b	ly location. lair, brick,
Opens	e cleaned	shells, fail matterial.	vious run. #441	ut verBant at 5 ft	. Slight sheen w	inde pulliby out co	ne, Sid & lunax

Failed attempt. In company delois at SH. Disposed of core. Kept core from 1st run for tomerrow. 3" mangular detamate plate encountered at base of core tube. \$5

Project: R.G. Haley Supplemental Sediment Investigation	Date: 10/14/15
Project No.: 0356-114-06	Weather: partly sunny, 60's
Subcontractor: Gravity Environmental LLC	Vessel:
Sampling Crew: Paul, Hannah, Mike, Chad	Sampling Method:
Sample Location: <u>SSI-SC-02</u>	Target Depth (ft): 8 ′ ′
Target Coordinates:	Core Lined (circle): Yes No
Long/Easting:	Lat/Northing:

Water Elevation: 7.0 Datum: MLLW Depth to Mudline: 4.0

Depth to Mudline: <u>4.0</u> Time: <u>0925</u> Mudline Elevation:

Datum: ___

Acceptance criteria:

Target penetration achieved

Core tube intact/ no obstructions

・Calculated compaction < 25% 。Water

Run	110.01	Act	ual	Penetration	Recovery	Compaction	1.1.1.1	
No.	Time	Long/Easting	Lat/Northing	Depth (ft)	Length (ft)	(%)	Accept?	
1	0930	0 1 W V		0.5	0.5		N	
2	0 935			3	0.9		N	
3	0950			1.5	0.5		N	
4	1005			1.5	1.0	Ī	N	
Comm	Same Corre	tube as prev	ilders caused ious run el, glass, by t concrete		selow mudi see 1 addi close	ine. No fame back for tranal water	s ->	

SC-02 Page 2 From Hannah Mc Donough - email 10/19 12:39 pm 50-02, run 2 3 feet of penetration but only recorded sol feet of material Material was prown sound with self. gravel, glass, shell, concrate & brick. Observed glass was clear green or brown to ranging from 1 cm drameter to 5 cm drameter One piece was whely en ald power pale moulator Brock fragments were small - < ors inchean length (worth These observations were made any material prior to returning to point of semipling - no apportantly to view layering / stratification in core Photos uploaded to P-drive

Project: R.G. Haley Supplemental Sedi	ment Investigation	Date: 10/14/15					
Project No.: 0356-114-06		Weather: Sunny, 1,5					
Subcontractor: Gravity Environmental		Vessel: Tieton					
Sampling Crew: Laul, Hannah, H	Ko, Chad	Sampling Method:					
Sample Location: <u>SSI-SC- 03</u>		Target Depth (ft): {					
Target Coordinates:		Core Lined (circle): (Yes) No					
Long/Easting:		Lat/Northing:					
	Enter initial loc. info./up	date for final accepted core:					
* /	Water Elevation: <u>5.0</u>	Acceptance criteria:					
	Datum: MLLW	Target penetration achieved					
	Depth to Mudline: 7.6	• Core tube intact/ no obstructions					
	Time: 10	• Calculated compaction < 25%					

Mudline Elevation: _____ Datum: _____

Calculated compaction < 25% · Water

Run		Actu	ial	Penetration	Recovery	Compaction				
No.	Time	Long/Easting	Lat/Northing	Depth (ft)	Length (ft)	Compaction (%)	Accept?			
-	1055			7,5	5.0	Schellen angeweigten sowers	Ň			
2	1200			0.5	0.5		\mathcal{N}			
3	1220			8	F	0	Y			
Comm	Comments: #1 stop at 1/30 after 35 mins of coring. Down about 5 ft. Restard coring after rest @ 1135. No frame, 10 ft tube #12 reposition boat. Pivot off spud Recore with 8 ft tube. Save attempt #1. Stuck for 20 mins at ~ 0.5 ft. Pull up core. Bottom of tube is chemed #1. Stuck for 20 mins at ~ 0.5 ft. Pull up core. Bottom of tube is chemed up by wood, glass, brick fragments. Processed wood in core.									
	T 2	reposition boat. #1. Stuck for 2 up by wood, g	Pivot off sp 20 mins at ~ lass, bnick fragn	o.5 ft. Pull Ants. Processed	e with 8 ft - up core. Bath wood in core	when save a m of twhe is	ttempt chewed			

,

ject: R.C	G. Haley Supp	lemental Sediment Inv	-	ate:	<i>.</i>	5		
ject No.	: 0356-114-0	6	и	/eather: <u> </u>	yky , cor	~)	_	
		nvironmental LLC	V	Vessel:Tieton				
		, Hannah , West	E Charl Si	ampling Method: _	Nibra	USRU_		
nple Loo	cation: <u>5</u> 2	71-56-04	Ta	Target Depth (ft): 🔗				
	r <u>dinates</u> : ng:			ore Lined (circle): ٢ at/Northing:				
		Enter in	nitial loc. info./updat	e for final accepte	d core:			
	_	. Water	Elevation:	7,2	Acceptan	ce criteria:		
		Depth t Time: Mudlin	Elevation: : Mr_rr to Mudline:5 815 e Elevation:	,2				
	1							
Run No.	Time	Actu Long/Easting	Lat/Northing	Penetration Depth (ft)	Recovery Length (ft)	Compaction (%)	Accept?	
	Time				-	-	Accept?	
					-	-	Accept?	
No. E	0825			Depth (ft) 1.5 2.0	-	(%)	Accept?	
No. E DZ 3	0825 0837			Depth (ft) 1.5 2-D 3.D	Length (ft) 1.3 1.5	(%)	Accept?	
No. E DZ 3	0825 0837 0855			Depth (ft) 1.5 2-D 3.D	Length (ft) 1.3 1.5 2.5	(%)	Accept?	
No. E DZ 3	0825 0837 0855			Depth (ft) 1.5 2-D 3.D	Length (ft) 1.3 1.5 2.5	(%)	Accept?	
No. E DZ 3	0825 0837 0855			Depth (ft) 1.5 2-D 3.D	Length (ft) 1.3 1.5 2.5	(%)	Accept?	

#3 Samas #1

SEDIMENT SAMPLING FORM--CORES

Project: I	R.G. Haley Sup	plemental Sediment In	vestigation D	Date: 10/15/15 Weather: clear, cool						
oject N	lo.: 0356-114-	06	и							
		Environmental LLC	V	Vessel: Treten						
ampling	g Crew: Mil	e, Child, Paul.	Claudia S	Sampling Method: V. bracere						
ample L	Location:	isI-SC-4	Ta	Target Depth (ft): & Core Lined (circle): Yes No Lat/Northing:						
arget Co	oordinates:		Co							
		Enter	initial loc. info./updat	e for final accepte	d core:					
		∠l Datur	r Elevation: 7.8 n: to Mudline:(087:		TargetCore tuCalcula	n ce criteri a: penetration achie ibe intact/ no obs nted compaction •	tructions			
7777	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Mudli	ine Elevation: n:		• Wate	A				
Rui No	Time	Act Long/Easting	Lat/Northing	Penetration Depth (ft)	Recovery Length (ft)	Compaction (%)	Accept?			
1	833		7 meters from target coordinate	2.5	2-5		DTM= 6.9			
2	921		same location	5.0	4.B	·	P DTM=6.9'			
3	1014			2.0	2.0		N 57M=6.2			
Con	nments: A) same corte fr	te as previo	nice atteny	₽«f-					
		w/no frame (of w/no frame (of y no frame offer				2-2, 2-4 1 broke.				
gged b	v: 208/									

SEDIMENT SAMPLING FORM--CORES

Project: R.G. Haley Supplemental Sediment Investigation

Project No.: 0356-114-06____

	avity Environment	
Sampling Crew:	Paul, Mas	K, Chad
	45I-5C	

Target Coordinates:

Long/Easting: _

1111111111111111111111

Water Elevation:6/5.5+5.03Datum:MLLW/ NAVDBBDepth to Mudline:9.5Time:1537Mudline Elevation:47.47-3.5/-4Datum:NAVDBBMLW

Enter initial loc. info./update for final accepted core:

Acceptance criteria:

bracaRE

- Target penetration achieved
- Core tube intact/ no obstructions
- Calculated compaction < 25%
- = Water

10/13/15

cloudy -

Tiete

Date: ____

Weather: ____

Vessel: ____

Sampling Method: __

Target Depth (ft): ____

Lat/Northing: _____

Core Lined (circle): Yes) No

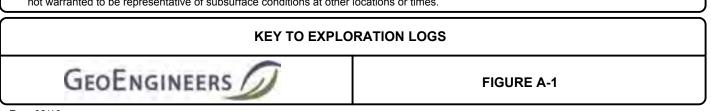
Dur		Actu	al	Penetration	Recovery	Compaction		
Run No.	Time	Long/Easting	Lat/Northing	Depth (ft)	Length (ft)	(%)	Accept?	
)	1540			8.0	6.2	22%	2	
Comm	nents:							

Logged by:_____

ľ

SEDIMENT SAMPLING FORM--CORES

SEDI				1 8	1 1				
oject: R.G	G. Haley Sup	plemental Sediment Inv	restigation D	Date:					
oject No.:	: 0356-114-	06							
bcontrac	tor: Gravity	Environmental LLC	V	Vessel: Tetor					
mpling C	Crew:	02, M.K., Cha 5I-5C-6	s s	Sampling Method: U, brucene					
nple Loc	cation: <u>5</u>	51-52-6	<i>T</i>	arget Depth (ft):	8'				
get Coor	rdinates:		C	ore Lined (circle):	Yes No				
ng/Eastir	ng:		L	at/Northing:			_		
	8		nitial loc. info./updat Elevation: :L2L to Mudline:(1.3.34			ice criteria:			
١	111	🔏 Datum	: MLLU	NAVDBE	B y • Target	penetration achie	ved		
8771 mart (* 1997) - 2007 - 2007	Ŷ	 Depth t	to Mudline:	0.8'	y • Core tu س • Calcula	pe intact/ no obs	tructions < 25%		
		Time: _	332 e Elevation:2	2	J . Water				
	+		e Elevation:2		l				
/////. 							1		
Run No.	Time	Long/Easting	al Lat/Northing	Penetration Depth (ft)	Recovery Length (ft)	Compaction (%)	Accept?		
١	1335			26	4'	33%	N		
.2	1350			7.0'	6.3'	10%	Y		
Comm	nents: _{CØ}	the trube Fe- aud Slushed	used from	n attemp	t l afte	t Sæliwe	int .		
ged by:_	A								


SEDI	MENT SAM	PLING FORMCOP	RES							
oject: R.G	i. Haley Suppl	emental Sediment Inv		Date:15/13 [15						
oject No.:	0356-114-06	6		Neather:	Wy 60°					
bcontrac	tor: Gravity Er	vironmental LLC		Vessel: Tieton						
		, Mite, Chad		Sampling Method:						
mple Loc	ation: <u>5</u> 5	I-56-7								
rget Coor	dinates:		C	core Line d (circle)	Yes No					
ng/Eastir	ng:		I	at/Northing:			_			
		Depth t Time: Mudlin	Elevation: : to Mudline: # e Elevation: :&&&&&	<u>B.Z'</u> 1 <u>9</u> 3.42	7 8 Acceptan אד האד אד אד אד האד האד האד האד האד האד האד האד האד האד האד האד האד האד האד האד	ce criteria: benetration achiev be intact/ no obst ted compaction < ⁄	tructions			
Run No.	Time	Actu Long/Easting		Penetration Depth (ft)	Recovery Length (ft)	Compaction (%)	Accept?			
1	1429			4.5'	3,7'	17%	N			
PZ	1445			8.0	7.4	7.51.	4			
				-						
Comm	ients: 1 3	ame core ta	where as prive	eriouse ri	un		L			
							ŭ			

Logged by:_____

A.3 Supplemental Sediment Investigation Subsurface Logs - 2015

	50	IL CLASSIF		CH	ARI	ADDII		MATERIAL SYMBOLS		
м		IONS	SYMBO GRAPH LE		TYPICAL DESCRIPTIONS		BOLS LETTER	TYPICAL DESCRIPTIONS		
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		AC	Asphalt Concrete		
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		сс	Cement Concrete		
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		CR	Crushed Rock/ Quarry Spalls		
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		тѕ	Topsoil/		
MORE THAN 50%	SAND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS		Ground	Forest Duff/Sod		
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	▼	Measure	d groundwater level in		
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	 	•	on, well, or piezometer d free product in well or		
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	<u> </u>	piezome	ter		
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY			<u>c Log Contact</u>		
FINE	SILTS AND	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS			contact between soil strata		
GRAINED SOILS	CLAYS		innin i	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		 Approximate contact between strata 			
MORE THAN 50% PASSING NO. 200 SIEVE				мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS		<u>Materia</u>	I Description Contact		
01EVE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		сн	INORGANIC CLAYS OF HIGH PLASTICITY		Contact	act between geologic units		
	obario -		huh	он	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY		Contact geologic	ct between soil of the same lic unit		
н	GHLY ORGANIC	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		Laborat	ory / Field Tests		
of blo dista and d A "P"	2.4 Sta She Pis Dire Bul Con count is reco pws required nce noted). indicates sa	mpler Symb -inch I.D. split ndard Penetra elby tube ton ect-Push k or grab ntinuous Corir orded for drive to advance sa See exploratio	barrel tion Test (S 9 n samplers 12 ir n log for ha	as th iches	e number (or r weight	%F %G CCS DS HAC DC PI PPM SA TCS NS SS SS	Consolida Direct she Hydrome Moisture Organic o Permeabi Plasticity Pocket po Parts per Sieve ana Triaxial c Unconfin Vane she Sheen (No Visibli Slight Sh	ravel limits analysis ry compaction test ation test ear ter analysis content content and dry density content lity or hydraulic conductiv index enetrometer million dysis ompression ed compression ar <u>Classification</u> e Sheen een		
drill r A "W	•	s sampler pus	hed using	the w	eight of	MS HS NT	Moderate Heavy Sh Not Teste	Sheen leen		

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Drille	d 10/	<u>Start</u> 14/20		<u>En</u> 10/14		5 Total	n (ft)	6		Logged ByGRL/HM Checked By Driller Gravity Environm LLC	ental,		Drilling Method Vibracore	
Mudlir Vertica			on (ft)		1	-5.89 NAVD88						Drilling Equipment		
Eastin Northi	ng (Y)				63	39695.34 39367.68				ystem NAD83 (feet) atum		idwate leasure	Depth to	
Notes	Notes: Water surface elevation 4.51 ft (NAVD88)													
				FIELD DATA										
Elevation (feet)	⊖ Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level		Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)		
	Ū		72			SSI-SC-01 0-2 SSI-SC-01 DUP-01			δM	Black silty fine to medium sand with pockets of silt from 0 to 6 feet (loose) Trace wood fibers from 0 to 2 feet	NS	8.9	Live clams at surface	
-	-									2- by 2-inch wood chunk Glass	_			
	-						-	NS	4.0	H ₂ S odor				
						2-4				Wood chunk	NS	202.7	Slight H ₂ S odor	
	-									– Glass	-			
<i>%</i> 0	_					SSI-SC-01				1- by 1-foot clear plastic	NS	20.6	H ₂ S odor	
_^`	5 —					4-6				Angular and rounded coarse gravel Glass and degraded tar paper — Multiple glass fragments	NS	24.6		
									GM	Glass Black silty coarse gravel (dense) (possible	NS	15.7	H ₂ S odor	
No	te: Ple	ase	see	Figure	• A-1	for explan	atior	of symb	pols	Shell fragment				
										Log of Boring SSI-SC-01				
C	BE	ol	EN	IG	IN	EER	S	Ø	Ĩ	Project:R.G. Haley SiteProject Location:Bellingham, WasProject Number:0356-114-06	shingto	n	Figure A-2 Sheet 1 of 1	

Vertica Eastin	ne Eler al Dati	um				-3.09 NAVD88 39788.45			Da			Drilling Equip	ment	Nr.
Northi	ng (Ý)				63	39426.59		0)	Da	rstem atum	NAD83 (feet)	Date M		Depth to
Notes	: wat	er s				4.51 ft (N		8)		1			1	1
et)				FIEL	_	ATA س	\mathbf{T}		_					
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Classificat Classificat		ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 —		96			SSI-SC-03 0-2			WD	Brown wood with tr. 100% wood conten lumber, some fi	(degraded, processed	SS	104.8	H ₂ S odor
જ	-					SSI-SC-03 2-4		[] []]) [][SM	Dark gray silty fine wood (loose) Trace wood fibers,	o medium sand with trace	NS	15.6	H ₂ S odor
	-								GP WD	Fine to coarse grav Tan wood (medium 100% wood conten 2-inches long)		ss	3.2	H ₂ S odor
	-					SSI-SC-03 4-6				_		SS	389.6	5 H₂S odor
	5 —					SSI-SC-03 DUP-02				_		SS	125.3	H₂S odor
	-					SSI-SC-03 6-8				-		NS	40.8	H ₂ S odor
6	-					<u>ь-я</u>				_		SS	90.6	H₂S odor
	_								SP	dense) (possible	ntent (sawdust, fragments	ss	115.5	; H ₂ S odor

Project:R.G. Haley SiteProject Location:Bellingham, WashingtonProject Number:0356-114-06

Figure A-3 Sheet 1 of 1

Drilled 10/	<u>Start</u> /15/2015	<u>End</u> 10/15/20 ⁻	Total 15 Depth	n (ft)	4	Logged ByCVD/PDR Checked By	Driller LLC	vity Environmen	tal,		Drilling Method Vibracore
Mudline Ele Vertical Dat	evation (ft tum)	0.41 NAVD88			Hammer Data			Drilling Equipr	nent	
Easting (X) Northing (Y Notes: Wa)	6	240482.54 39785.46 n 7.31 ft (N/)	System Datum	NAD83 (feet))	<u>Groun</u>		 Depth to
Elevation (feet) Depth (feet)	Interval Recovered (in)	Blows/foot Collected Sample	ATAC Sample Name Testing	Water Level Granhic Log	Group	M/ DES	ATERIAL CRIPTION	١	Sheen	Headspace Vapor (ppm)	REMARKS
-0 2			SSI-SC-04 0-2 SSI-SC-04 DUP-03 SSI-SC-04 2-4		SN SV	Black silty fine sand fragments, occa (soft) Black fine sand with Black fine to coarse occasional glas	isional glass fr	agments)	NS NS NS	<1 64.6 1.5	Shell fragments No wood, no biological material No wood, no biological material
	-				0 0 0 0	Gray silty fine to me <25% wood fibers Grades to black, lo <25% degraded wo >50% shell hash at	ose od chunks	ense)	NS NS NS SS	27.6 57.2 32.4 60.1	Moderate H ₂ S odor Slight H ₂ S odor Slight H ₂ S odor Moderate H ₂ S odor
								/			
Note: PI	ease see	Figure A-1	for explan	ation o	f symbo						
						Log of Bori	-				
GE	oEn	IGIN	EER	s /	J	Project: Project Locatio Project Numbe	n: Belling	laley Site gham, Washi 114-06	ingto	n	Figure A-4 Sheet 1 of 1

GEOENGINEERS

LOG OI y •04

Drilleo		<u>Start</u> 5/2015	<u>En</u> 10/18		Total Depth	(ft)	8		Logged ByGRL/PDR Checked By	Driller Gravity Enviror	nmental	,		Drilling Method Vibracore
Mudlir Vertica		/ation (f ım	t)		3.49 VD88				ammer ata			illing Juipn) nent	
Eastin Northi	ng (Y)	or curfa		639	0432.94 831.19 .01 ft (N/		28)		bystem Datum	NAD83 (feet)			dwate easure	Depth to
Notes	s. Wal					4000			1					
(t)		(FIEL	.D DA କ୍ଟ		\square								
Elevation (feet)	, Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	0 —	72		S	SI-SC-05 0-2			SM	Brown silty fine san <25% milled wood	d (medium dense) chunks				Trace shell fragments
-												SS	67.6	
	_								_					
_%								ML	Brown silt with woo <25% wood chips	d (soft)				Trace shell fragments
												SS	66.9	H ₂ S odor
	-			s:	SI-SC-05 2-4			WD	Brown wood with tra	voo oilt (ooft)		NS	94.8	H ₂ S odor
-								WD	>50% sawdust	ice sin (son)			04.0	Trace shell fragments
	_								_		_			
								ML	Gray silt with trace	vood (soft)				
-												SS	99.8	H ₂ S odor No vegetation, no biological material
	-				SI-SC-05				-		_			
					4-6							NS	32.8	H_2S odor
-														
	5 —								_		_			
-												NS	49.1	H₂S odor
	-			— s	SI-SC-05 6-8				_		_			
10				I								NS	147.2	H ₂ S odor
								WD	Brown wood with tra 100% wood content	ace silt (soft) at top of sample, grading	a to			
	-								_ 25% to 50%	1 1 / 0 0	_			
_							 ///	PEAT	Gray peat with sand	(medium stiff)		SS	77.7	H ₂ S odor
									Degrading wood wit	h barnacles				1 120 0001
No	- te: Ple	ase see	I Figure	A-1 fo	r explan	i li ation	of sy	mbols	1				L	1
									Log of Bori	ng SSI-SC-05				
1						2	1	1	Project:	R.G. Haley Site		ć		
C	3E(DEI	NG	INE	ER	5 /	2	/	Project Location Project Number		ashin	gtoi	n	Figure A-5 Sheet 1 of 1

Log of Boring SSI-SC-05

Project: R.G. Haley Site Project Location: Bellingham, Washington Figure A-5 Sheet 1 of 1 Project Number: 0356-114-06

Drille	d 10/	<u>Star</u> 13/2		<u>Er</u> 10/1:		5 Depth	n (ft)	7	7	Logged ByGRL/PDR Checked By	Driller Gravity Environ	nmental,		Drilling Method Vibracore		
Mudlir Vertic	ne Ele al Dati	vati um	on (ft)	Ν	-2.79 IAVD88				Hammer Data		Drillin Equip				
Eastin Northi	ng (X) ing (Y)					40514.26 39964.4	6			System Datum	NAD83 (feet)		ndwate Aeasure	Depth to		
Notes	s: Wat	er s	surfac	e elev	ation	4.01 ft (N/	٩VD	88)								
				FIEL	D D	ATA										
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	M. DES	ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS		
-	0 —		72			SSI-SC-06 0-2			SF	(loose) Trace fine roots	edium sand with trace silt			Live shellfish		
	-	-							ML	Gray sandy silt (me	dium stiff)		1.7			
-										Trace non-weather	ed wood, cut sides/faces	ss	126.9	H ₂ S odor		
Ś	-					SSI-SC-06 2-4				-		- ss	120.4	H ₂ S odor		
_										Becomes graded w inches thick) fro 25% to 50% wood o						
	-									-		_		Clam shell fragments		
												SS	92.0	H_2S odor		
-	-					SSI-SC-06 4-6				Becomes graded w <25% wood conten	t	- NS	54.0			
	5 —	-								1/2 cm sawdust lay	er	_				
-												NS	7.0	H ₂ S odor		
	-	-				SSI-SC-06 6-7				- Gray silt (soft)		- NS	1.2			
														No vegetation, no biological material		
No	- ote: Ple	ease	e see	Figure	e A-1	for explan	atior	n of s	ymbo	s		NS	<u>_ <1</u>	,		
										Log of Bori	ng SSI-SC-06					
C	GE	o	EN	G	IN	EER	S	0	J	Project: Project Locatio Project Numbe	-		on	Figure A-6 Sheet 1 of 1		

Log of Boring SSI-SC-06

Drilled		<u>Start</u> 3/2015	<u>End</u> 10/13/2	Total 015 Depth	(ft)	8	Logged ByGRL/PDR Checked By	Driller Gravity Environm	ental,		Drilling Method Vibracore
Mudline Vertical	e Elev I Datu	vation (ft im	:)	-3.29 NAVD88			lammer Data		Drilling Equipr	g ment	
Easting Northin Notes:	g (Y)	er surfac		1240430.59 640152.61 on 4.91 ft (N/		5	System Datum	NAD83 (feet)	<u>Groun</u> Date M		Depth to
				DATA							
Elevation (feet)	o Depth (feet) I	Interval Recovered (in)	Blows/foot Collected Samula		Water Level Graphic Log	Group Classification		ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-		86.5		SSI-SC-07 0-2 SSI-SC-07 DUP-04		SM	Gray silty fine sand >50% wood content milled wood	(loose) , top 3 inches with	NS	60.0	Trace shell fragments H ₂ S odor
<u>ھ_</u>				1					NS	101.6	5 H ₂ S odor
-	-			SSI-SC-07 2-4		WD	100% wood content Brown degraded wo		NS	274.3	H₂S odor
-	-			SSI-SC-07			-		- NS	140.5	5 H ₂ S odor
	5 —			4-6			Becomes graded wi >50% wood content _	ith silt	NS	93.0	H ₂ S odor
	_			SSI-SC-07 6-8		ML	Brown silt with wood <25% wood content	d (soft)	SS	71.5	H ₂ S odor
_0	_			6-8		SM	Gray silty fine sand dense) Trace wood	with trace wood (medium	NS	23.5	H ₂ S odor
				1					NS	6.9	H ₂ S odor
Note	e: Ple	ase see	Figure A	-1 for explan	ation of s	symbols					
							Log of Bori	ng SSI-SC-07			
							Proiect:	R.G. Halev Site			

GEOENGINEERS

Seattle: Date:5/1

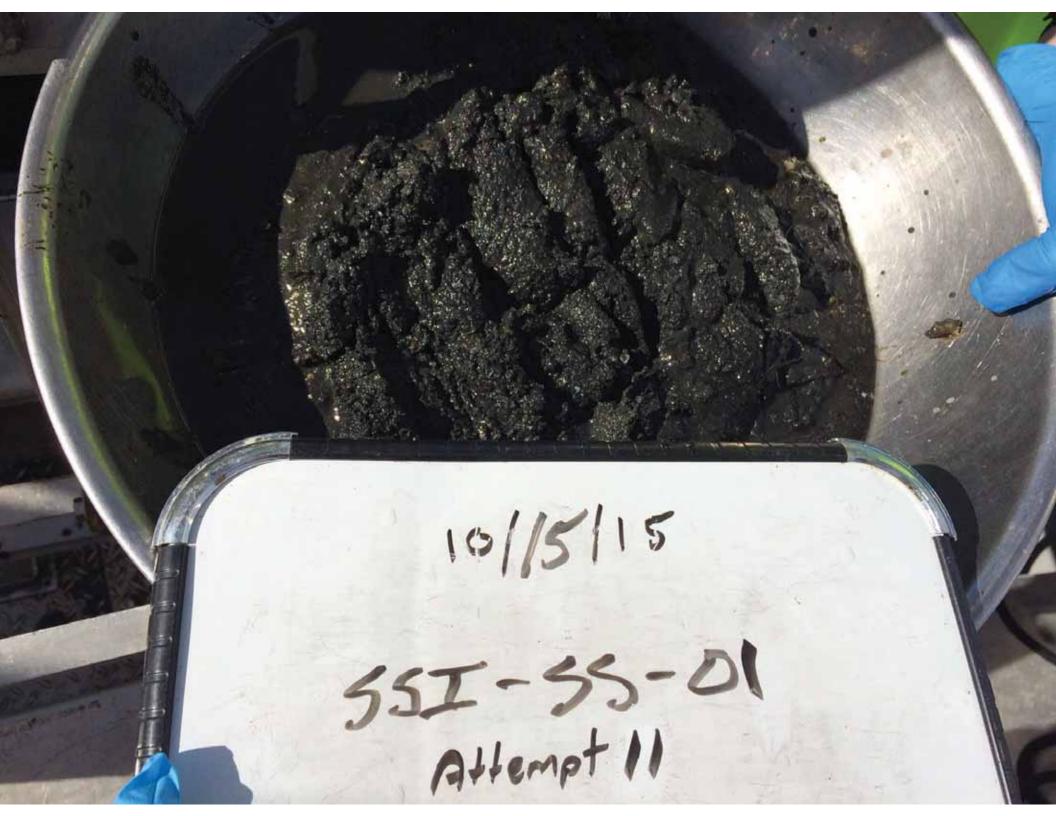
 Project:
 R.G. Haley Site

 Project Location:
 Bellingham, Washington

 Project Number:
 0356-114-06

A.4 Pine Street Beach Field Forms - 2016

Coordina	4-5	+	_	NA	Datum: US BB	Contractor!		Sample N GRI	to f			Sampling Equipm TROWEL	
			-	_	Dirtum:	Tube Length: Penetration Deptn:	2'BAL	OD/ID: Tube Met	NA Ioriali: /	VA-		Loggind by:	Checked by:
Depths of Lots Con	Cont	Internal Nacovery	Semple Interval (1)	Cheshcotter Cheshcotter		Matarini/Lithology erial type, grain size debria, et), stratification, d c.)		St slig	PID/She sining (n ht, mod heavy, /shee	erate,	Includa type (sa chips, chunks, i and amount o volume (none,	ologicei Material wdust, fibers, ba twigs, lumber, et f wood debris, b , <25%, 25-50% 50%)
1111		aller aller	0		trace trogmen (we)	to moi	(occ gr n glass nite Frag st)	ments.	-		No.	1-arhole no wood	clam.
1		05000	Suck a		and the second se	Grades In n in color			-	NS.	No.	no siota no wood	
2 7 1 1	1	1	1	7	END O	F EXPLOR	LATION		7	1	7	///	1
CI311111111111111						A low - ho Ben (zizy Belling hi ID 9449 Coordmal mable Three made Three			-				
TTTTTTTTTTT													
GEOI					7 Data:	2/18/16	Sample Sta			100		End Time: 2	105


SEDIMENT	COR	E LO	3:	P5B-	56-0	2			(Core L	ocatio	n)			
Mudline Elev: \mathcal{W} 0.34	ft		N	Datum: AN BB	Contractor:			Sample M	ethod:			Sampling E		nt: SPOBN
Coordinates:				Datum:	Tube Length: Penetration I	Depth: 2'E	3ML	0D/ID: Tube Mate	erial:			Logged by:		Checked by:
Depths to near Depth Core Interval	Interval Recovery	Sample Interval (ID)		(color, mat		ain size, strati pris, etc.)	fication, de		Sta	D/Shee ining (n nt, mode heavy)	one, erate,	include typ chips, chu and amo volume	be (saw inks, tw bunt of (none, >5(ogical Material– dust, fibers, bark, vigs, lumber, etc.) wood debris, by <25%, 25-50%, 0%)
- 68	3.560	2.0-1		Sher sher and t	t-c san hash prick et)	nd w/ glars tragm	grave Fragr ents	vents,	∠1	NS	ND	10 b 10 u	000	
-	33.51	.2		Black trace tragme		sand ash, k vet)	ocl	gravel	<1	N5 	50 A	10 k 10 c	0-QD	d
	0	/	7	END) OF i	EXPLD	RATU	ж) —	5	līgh /	+ oc /	lor, of ///	301 1	<i>bur.</i>
3			-											
4			- -											
			, , , , , , , , , , , , ,											
			-								· · · · · · · · · · · · · · · · · · ·			
6			- - -											
7			-											
8			-											
9			-								-			
GeoEi	NGIN	EER	s /	Proje	: <u>2// 8 /</u> ct: R.G. Haley	Supplement	al Sedime	tart Time		210		End Time	:2	2215
				Proje	ct Location: E	Bellingham, V	/A Proj	ect No: 03	56-114	-06				

idline E	Elev:				Datum:	SC-03 Contractor:		Sample Me		ocatio		Sampling Equipm	ent:	
<u>0.7</u> ordinat	34-	Ft		NY.	WO 88 Datum:	Tube Length:		OD/ID:				Logged by:	Checked by:	
orumat		_			2010	Penetration Depth: 2' B	ML	Tube Mate	rial:			CD		
Depth	core Interval	Interval Recovery	Sample Interval (ID)	Classification Symbol	-	Material/Lithology Description material type, grain size, stratification, density, debris, etc.)				D/Shee ning (n t, mode heavy)	one, erate,	Vegetation/Biological Material include type (sawdust, fibers, barl chips, chunks, twigs, lumber, etc. and amount of wood debris, by volume (none, <25%, 25-50%, >50%)		
' —			.0 ^A	•	Brow t	alors from	na w ents	2/	21	NS	NO	no bipto	·· · · · · · · · · · · · · · · · · · ·	
	058	-5 ^{(-D3}			bach f	ragments an	<u>d</u> shé	<u> </u>				<u> </u>	<u>9</u>	
					SAA									
			3						41	NS	NO	no biot		
	0	3.50	03 12	ļ								¥ 2,3		
	y		7	7	n.in i	<u>>>>0.00007</u>	TIGAL		1	7	1	11/		
	/	/	/	/	END	of Explorat	TON		-/-	1	6			
												······································		

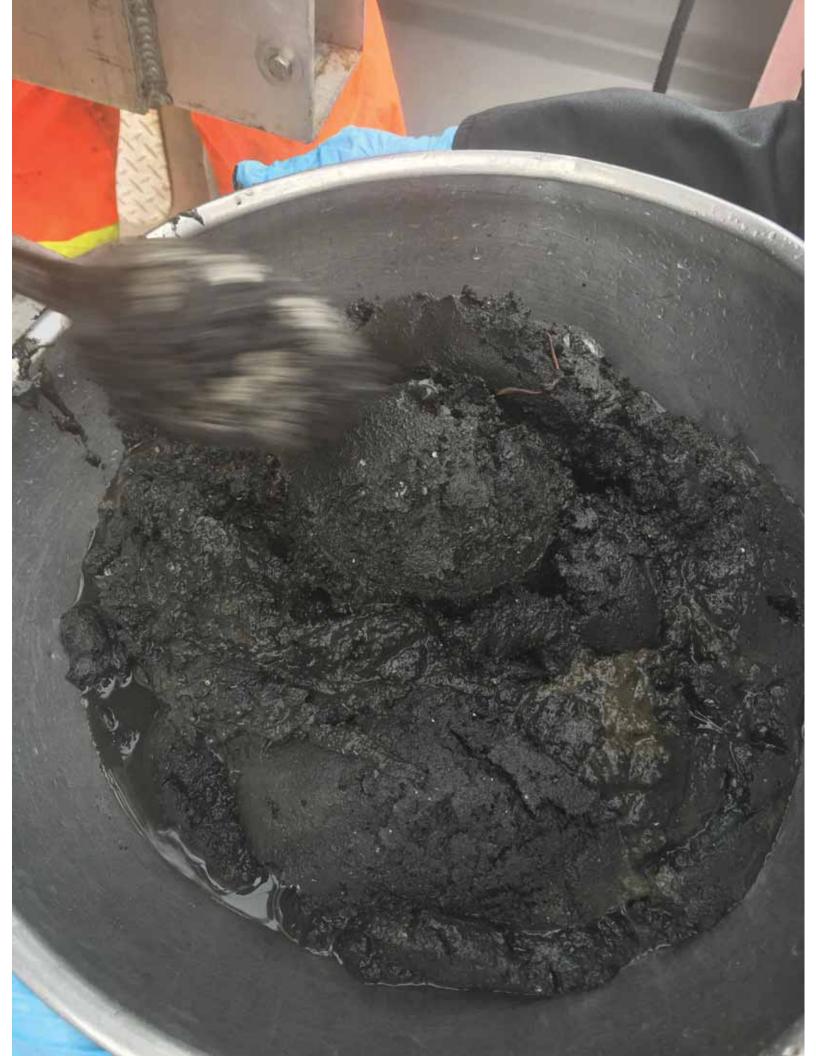
					- <u>1)</u>									
											<u> </u>			

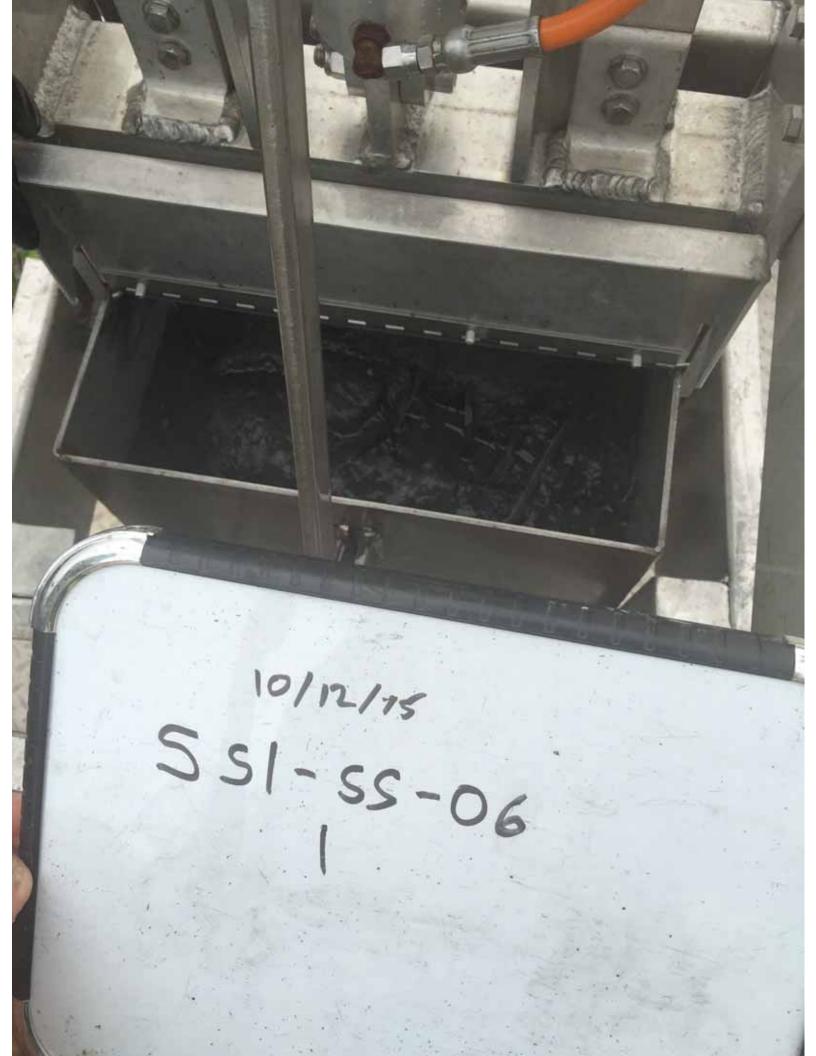
							\ \				<u> </u>			

Ge	οEi	VGIN	IEER	s /	Dat Dat	t e:/ 	Sample S			140		_ End Time: _	2145	

SEDIM Mudline I		CORI	E LO(G:(<u>PSB -</u> Datum:	SC-01	<u> </u>	Sample M		.ocatio	n)	Sampling Equip	ment:	
~ 0.	31	1-ft		N	ANDBB							TRONEL 2	ESPOON	
Coordina					Datum:	Tube Length: Penetration Depth	:	OD/ID: Tube Mate	erial: 2	" BA	12	Logged by: <i>こ</i> 心	Checked by:	
Total Core Depth Depth	Core Interval	م	ô	Classification Symbol	(color, mat	<u>Material/Litholog</u> terial type, grain si debris,	ize, stratification, o	ensity,	Sta	D/Shee ining (n nt, mode heavy)	one, erate,	Vegetation/Biological Material– include type (sawdust, fibers, bark, chips, chunks, twigs, lumber, etc.) and amount of wood debris, by volume (none, <25%, 25-50%, >50%)		
0	P	5B ^{,5U}	.04-0-1		Brown Sand Fragm and s	w/ grav w/ grav ents, br hell hast		menti	<i>∠</i> 1	NS	ND	no bic	ota Dod	
1			out t	2	SAA.									
2		15130	NN											
		/ /	1	1/	END	of Explo	RATION		/					
3														
4														
5 —														
	-													
6														
7													· · · · · · · · · · · · · · · · · · · ·	
8														
9				-		· · · · · · · · · · · · · · · · · · ·								
				•										
Ge	οEn	IGIN	EER	s /		e: <u>2/18//6</u> ect: R.G. Haley Suj	Sample Sample	Start Time ent Investig		2125	5	_ End Time: _	2120	

B.1 Supplemental Sediment Investigation Surface - 2015



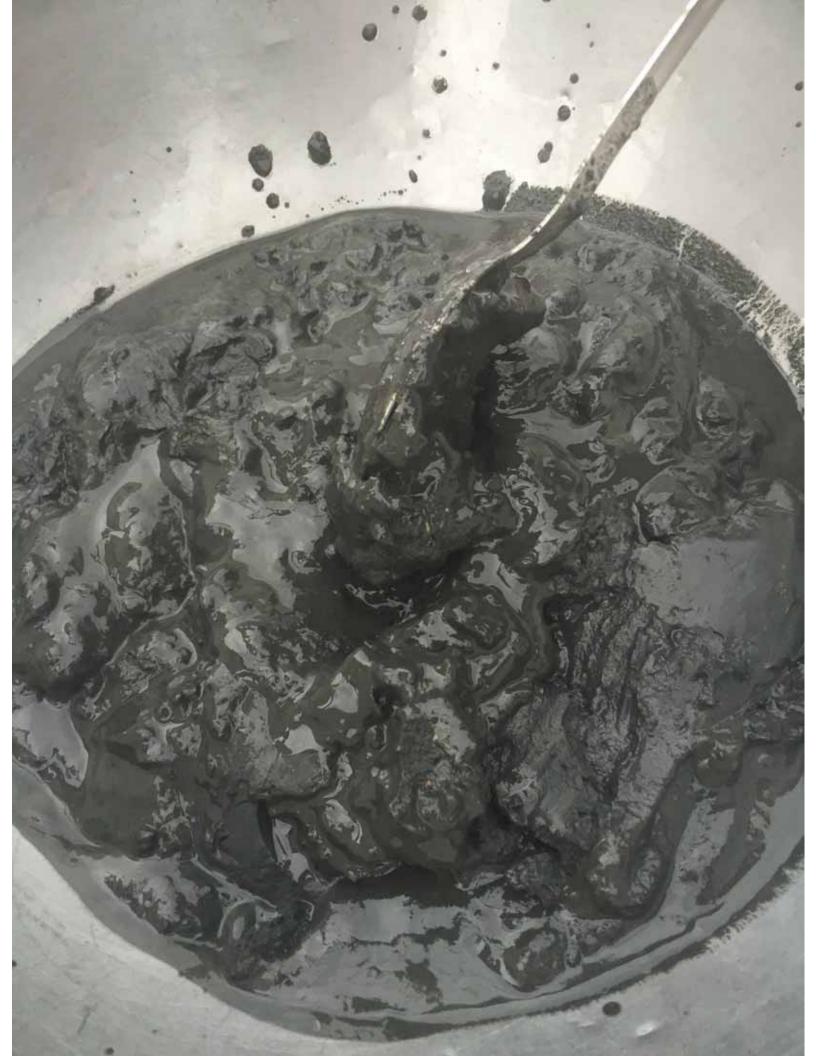

10/12/15 5 SI - SS - 05

9

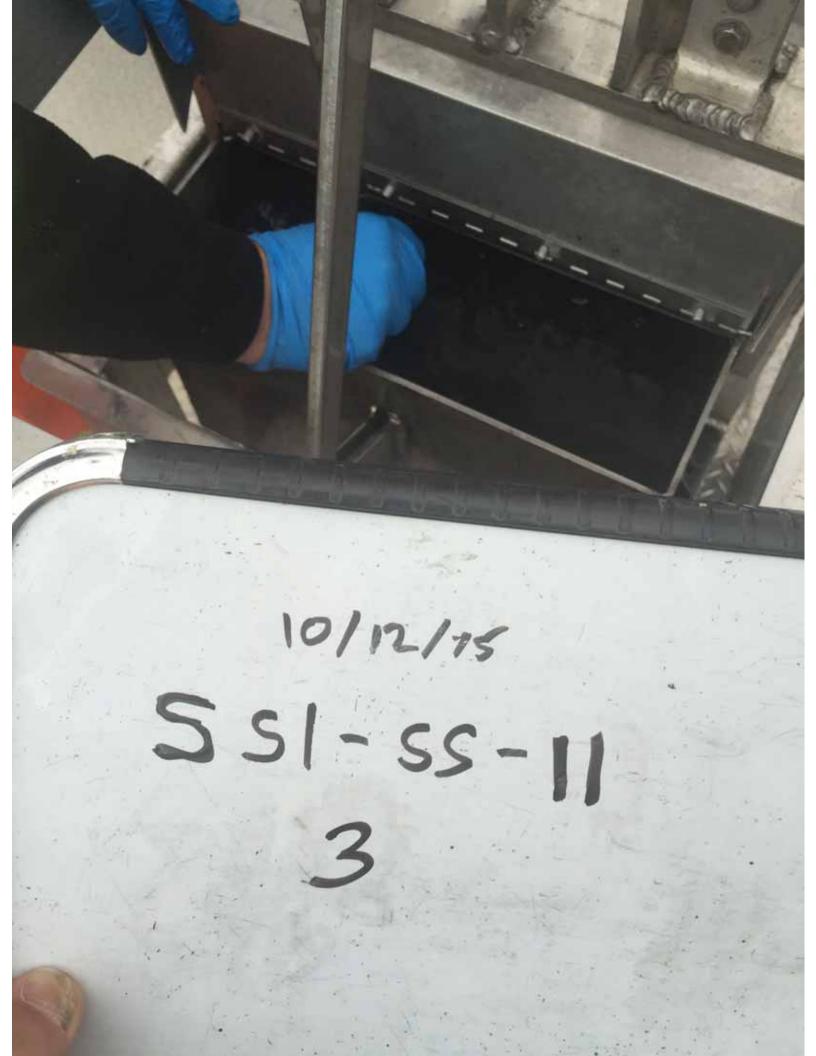
Do

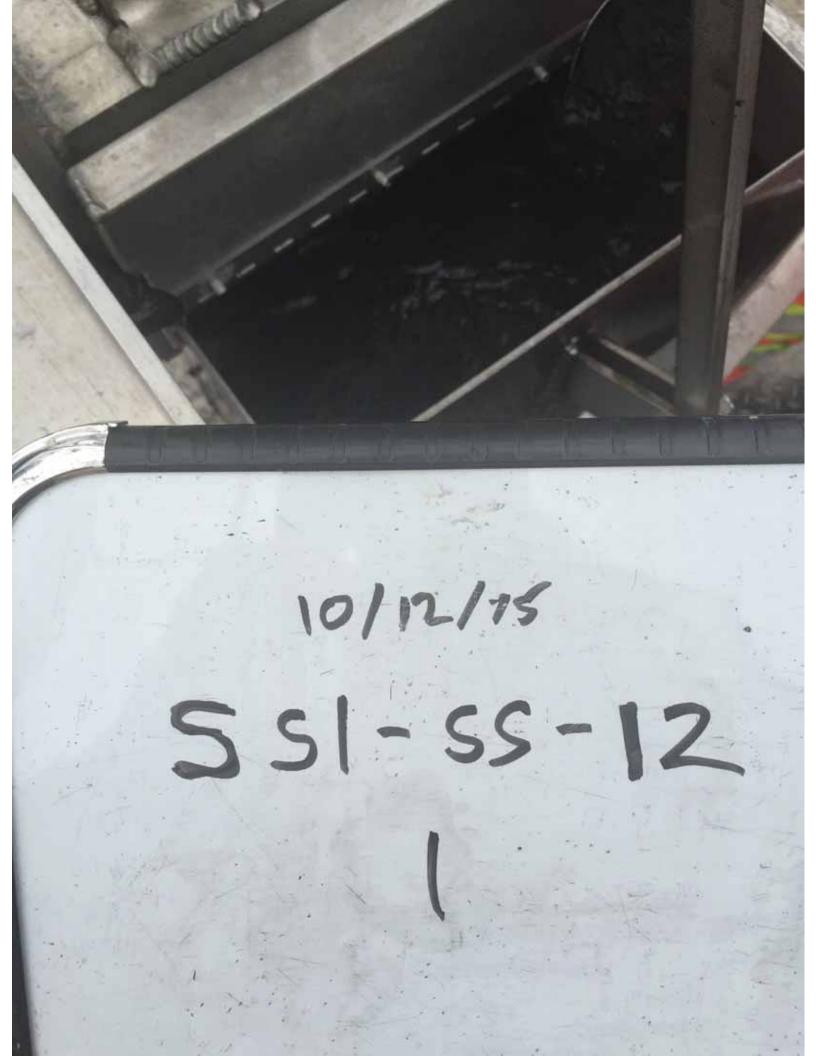
STER S



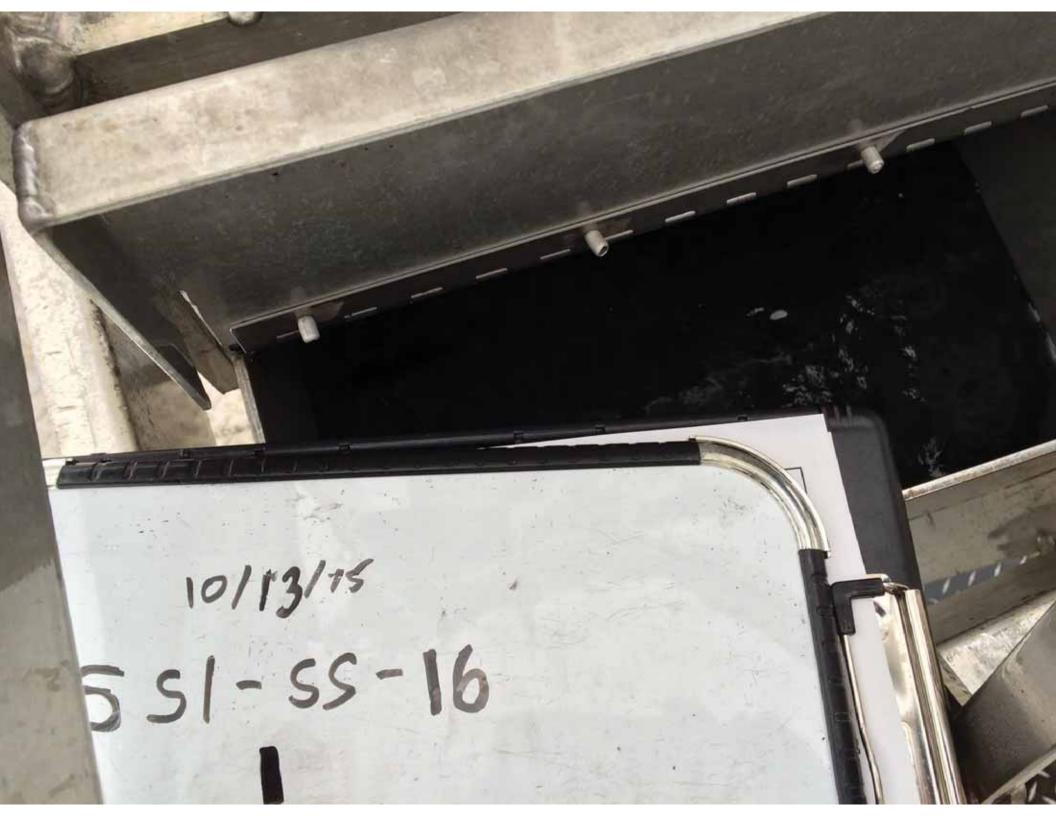


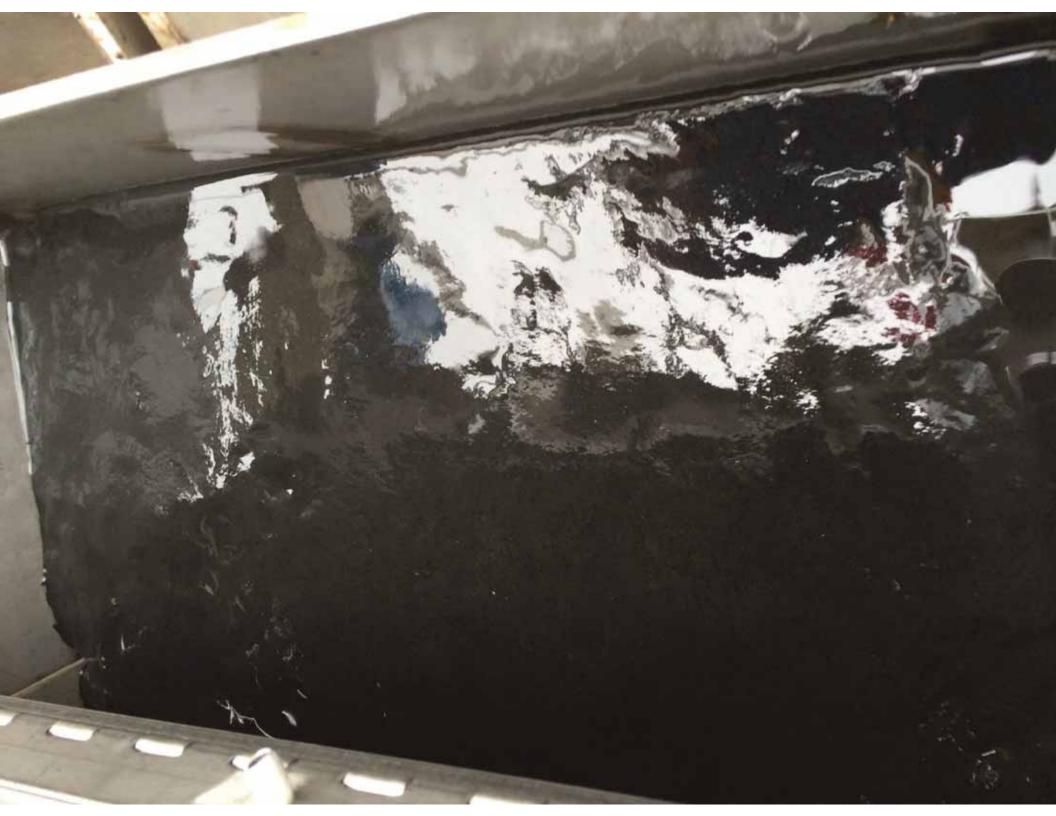
10/12/15 551-55-08





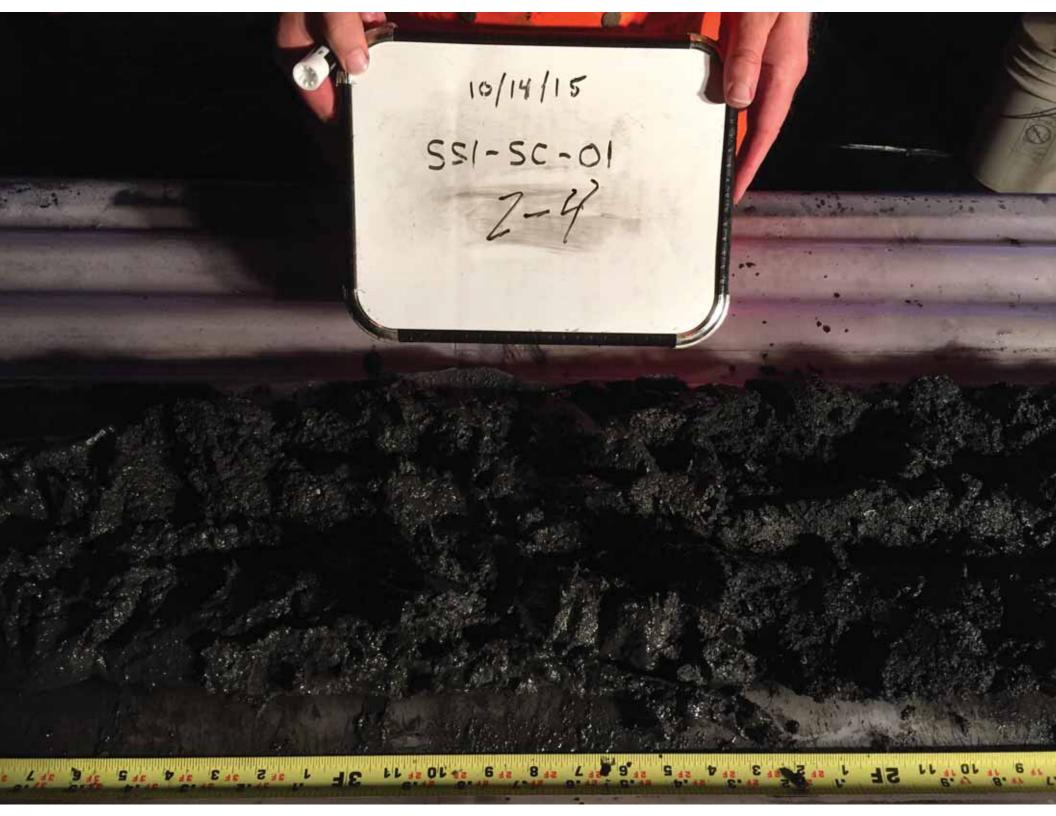
10/12/15 551-55-10 2





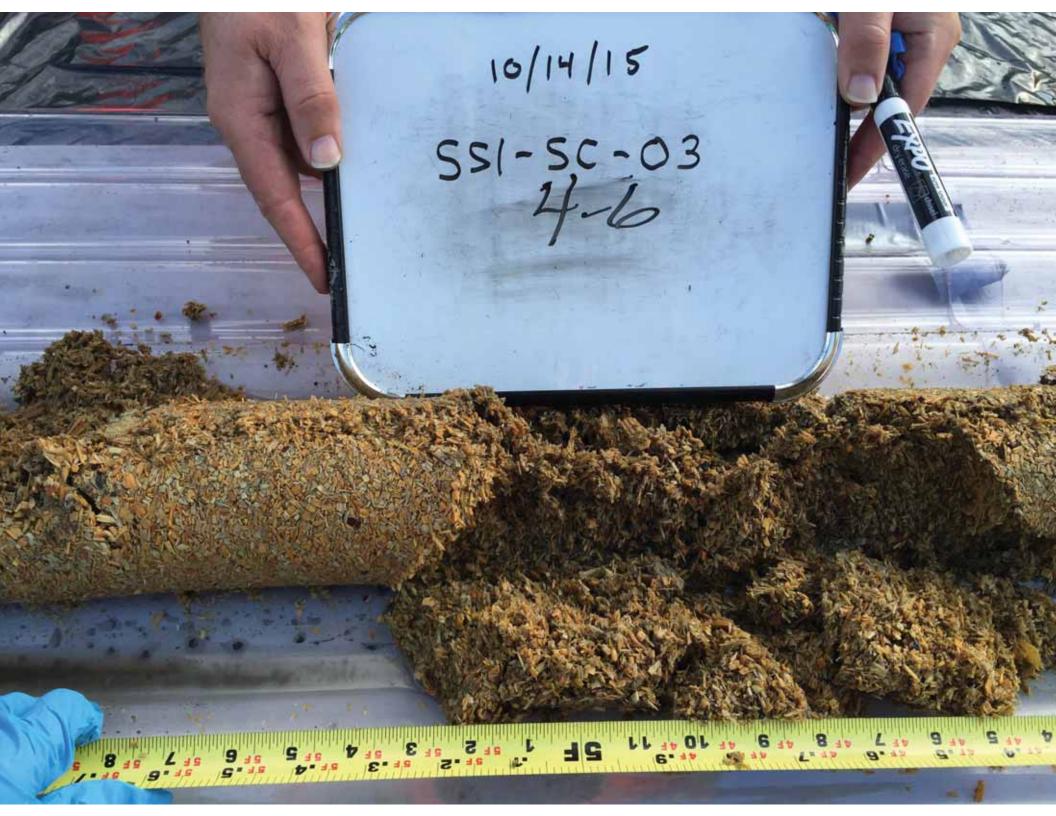


10/13/15 SSI-SS-15 3

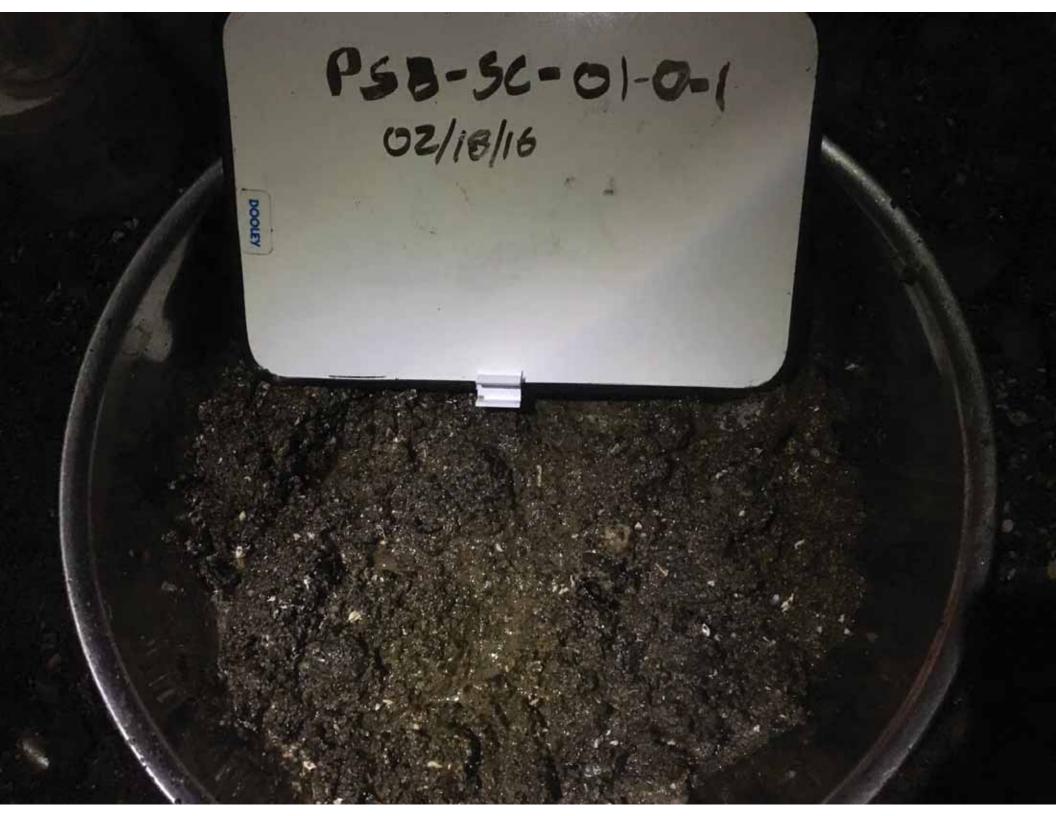


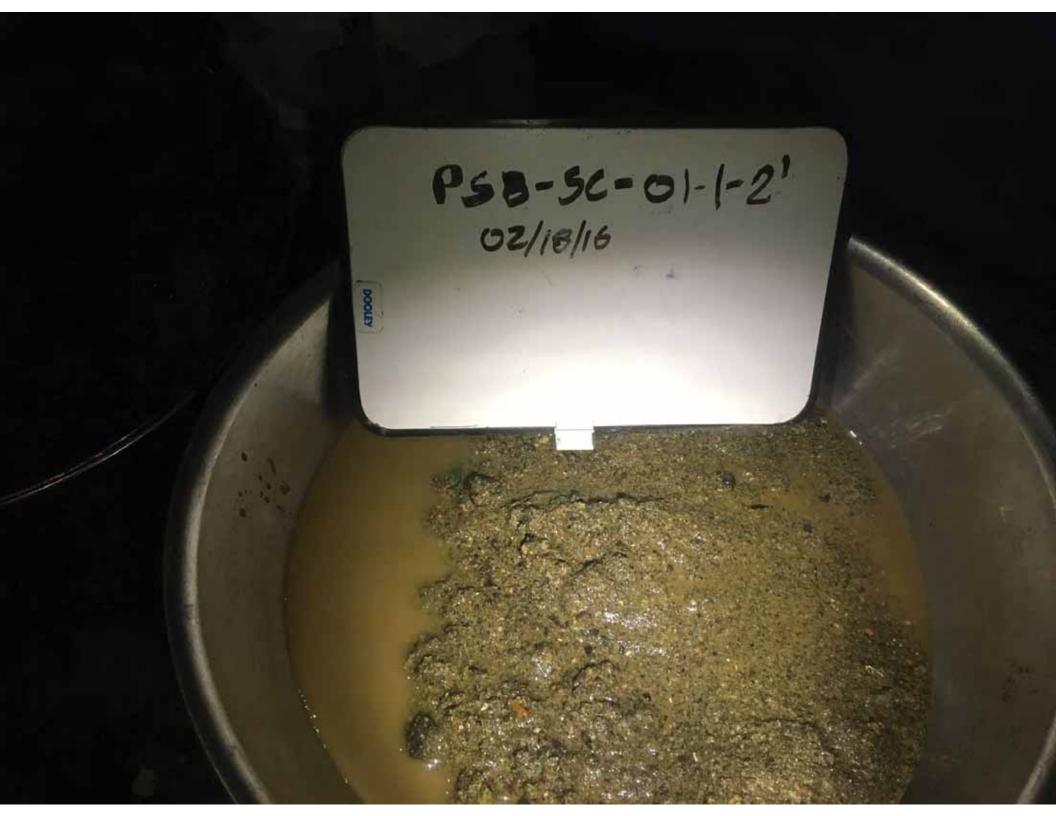
10/13/15 551-55-18

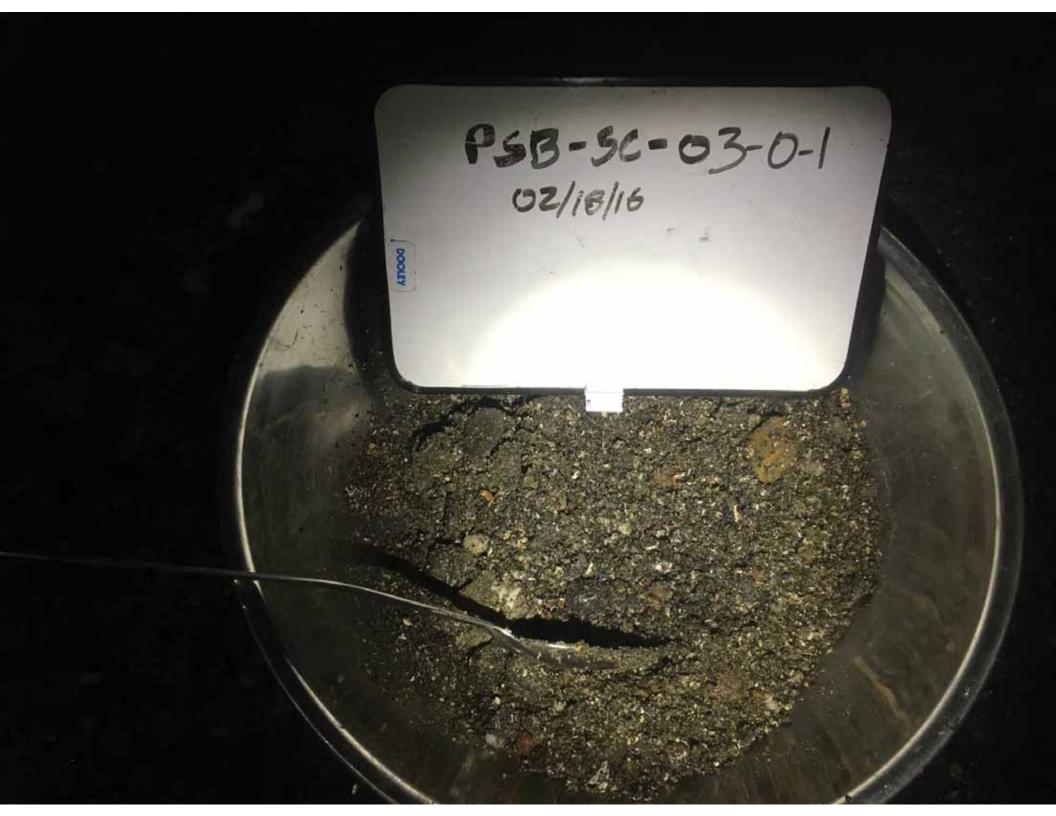
B.2 Supplemental Sediment Investigation Suburface - 2015

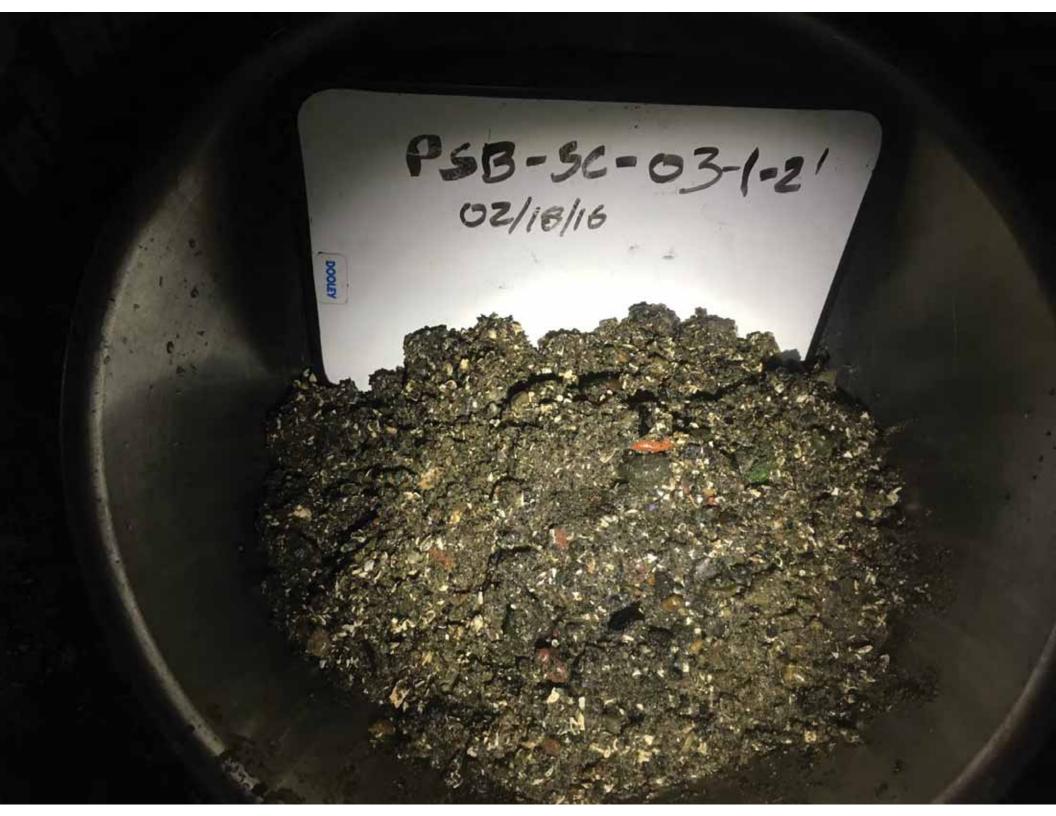


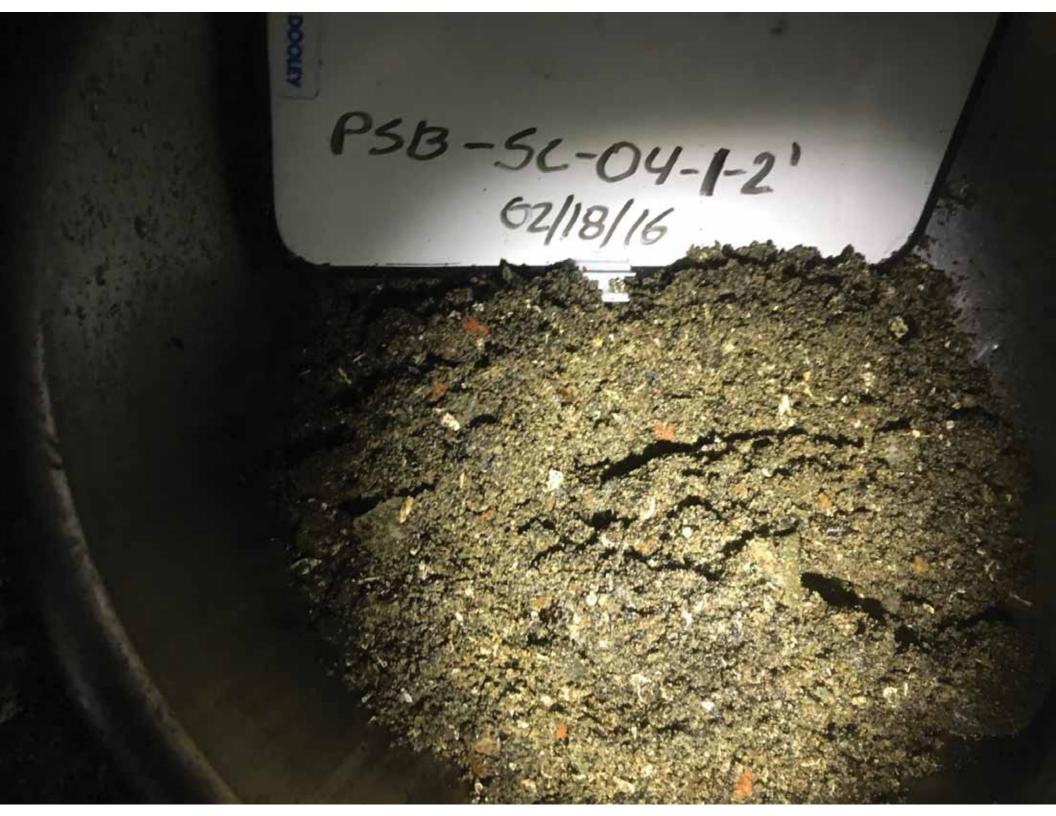







B.3 Pine Street Beach Surface - 2016





APPENDIX C Data Validation Reports

APPENDIX C DATA VALIDATION SUMMARY

Chemical

Data validation of all sediment data derived from the SSI was performed primarily by GeoEngineers, Inc. (GeoEngineers). However, a set of three sample delivery groups (SDGs) for dioxins/furans collect in 2015 were validated by EcoChem, Inc. Data validation was conducted on all data points originating from the laboratory analytical program activities. As prescribed by this program, the Data Quality Objectives (DQO) established in the SAP were used to assess precision, accuracy, representativeness, completeness, and comparability parameters. Accuracy for all SSI samples was acceptable, as demonstrated by the laboratory control sample and matrix spike and matrix spike duplicate (MS/MSD) percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD and laboratory duplicate relative percent difference (RPD) values, or absolute difference values when appropriate. Laboratory representativeness was acceptable as the correct laboratory methods and sample holding times were met. The laboratory completeness goal of 90 percent was fulfilled, as all of the data points were considered valid after the validation process. Comparability of sampling methods and laboratory methods for this data set relative to previously collected RI data were deemed acceptable and appropriate.

The U.S. Environmental Protection Agency (EPA) defines the requirements for various levels of validation. Validation was conducted in accordance with EPA's Contract Laboratory Program National Functional Guidelines for organics (EPA 2008) and dioxins/furans (EPA 2011). An EPA-defined Stage 2B validation was conducted on 100 percent of the data points. An EPA-defined Stage 4 level validation was conducted on the largest SDG, or 10 percent of the data points. No internal laboratory transcription errors were found through the validation process and all data points were deemed acceptable for their intended use. More detailed descriptions of the qualified data points are available in Attachments C-1 and C-2.

Biological

Bioassay test results were validated by reviewing protocol, test conditions and parameters, results of the reference toxicity test, control and reference performance, and checking endpoint calculations provided in Ramboll's bioassay report (Appendix E). Tests were performed according to protocol, with a few minor exceptions. Temperature and salinity were slightly elevated in the amphipod bioassay (the maximum test temperature was 16.5° versus a maximum 16° as called for in the protocol; a test salinity maximum was 30 parts per thousand (ppt) versus 29 ppt as an upper limit in the protocol). The polychaete bioassay also experienced salinities greater than the upper limit (29 ppt) specified in the protocol (salinity on one or more days was measured at 31 ppt or 32 ppt in all samples). These minor deviations did not adversely affect the performance of these two bioassays, as demonstrated by the control, reference and test responses.

Reference toxicity tests were within the ranges reported by the lab during prior tests, indicating that test organisms were of similar sensitivity as previously tested batches of organisms. Control and reference test results for all bioassays were within the limits required for use in endpoint calculations and evaluations. A subset (approximately 10 percent) of endpoints were recalculated; no errors were discovered. Bioassay results were suitable for site-specific decisions regarding risks to the benthic community and site cleanup.

C.1 Data Validation Report – GeoEngineers, Inc.

Data Validation Report

Plaza 600 Building, 600 Stewart Street, Suite 1700, Seattle, Washington 98101, Telephone: 206.728.2674, Fax: 206.728.2732 www.geoengineers.com

To:	RG Haley Supplemental Investigation and Revised RI
File:	00356-114-06
Date:	January 8, 2018

This report documents the results of a U.S. Environmental Protection Agency (EPA)-defined Stage 2B and Stage 4 data validation (EPA Document 540-R-08-005; EPA 2009) of analytical data from the analyses of sediment samples and the associated laboratory and field quality control (QC) samples collected as part of the 2015 RG Haley Supplemental Sediment Investigation sampling event, located in Bellingham Bay.

This sampling event involved taking sediment cores from Bellingham Bay and dividing each core into representative depths that would characterize the extent of contamination in the Bay. Each core depth was documented in a chain-of-custody (COC) and sent to a laboratory for storage and/or analysis in the form of labeled sample containers, along with the COC requesting specific analysis by the laboratory (First Round Analyses). Some samples were requested to be immediately archived, or stored at -20 degrees Celcius in a freezer, until further analytical requests could be made by GeoEngineers. These archived requests (Second and Third Round Analyses) would be based on site information to be obtained from the First Round Analyses data set.

The validation of the analytical suites that involve High Resolution/Mass Spectrometry (dioxins/furans by Method 1613B) in the First Round Analyses as the validation of this analytic method was performed by a third party validator. The findings of this validation are reported in a separate memo prepared by EcoChem, Inc. (Attachment C-2). However, any validation of Method 1613B of the Second and Third Round Analyses are included in this memo.

Also included in this memo are three sediment samples that were collected by Landau Associates (labeled in Table 1-A).

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2008), the National Functional Guidelines for Inorganic Superfund Data Review (EPA 2014), and the EPA Contract Laboratory Program National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (EPA, 2011) in order to determine if the laboratory analytical results meet the project specific objectives and are usable for their intended purpose. Data usability was assessed by evaluating if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the Quality Assurance Project Plan (Appendix B of the Final Work Plan, Supplemental Sediment Investigation; GeoEngineers, 2015), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method Blanks
- Laboratory Control Samples (LCS)
- Field Duplicates
- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Miscellaneous
- Reporting Limits

VALIDATED SAMPLE DELIVERY GROUPS

Data validation included review of the sample delivery groups (SDGs) listed below in Table 1-A.

TABLE 1-A: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Primary SDG	Samples Validated
AHU9	CL-SG-3_0-0.33 and CL-SG-4_0-0.33 (Samples were collected by Landau Associates for dioxins/furans only)
AKF6	CL-SG-1_0-0.33 (Samples were collected by Landau Associates for dioxins/furans only)
AOL1 (Level 4 validation)	SSI-SS-05_0-0.39, SSI-SS-06_0-0.39, SSI-SS-07_0-0.39, SSI-SS-08_0-0.39, SSI-SS-09_0-0.39, SSI-SS-10_0-0.39, SSI-SS-11_0-0.39, SSI-SS-12_0-0.39, Rinseate-151012
AOM9	SSI-SC-05_0-2, SSI-SC-05_2-4, SSI-SC-06_0-2, SSI-SC-06_2-4, SSI-SC-07_0-2, SSI-SC-DUP-04, SSI-SC-07_2-4, and Rinsate_151013
AOR4	SSI-SC-01_0-2, SSI-SC-DUP-01, SSI-SC-01_2-4, SSI-SC-03_0-2, SSI-SC-03_2-4, and Rinseate-151014
AOS3	SSI-SS-01_0-0.39, SSI-SS-DUP-03, SSI-SS-03_0-0.39, SSI-SC-04_0-2, SSI-SC-DUP-03, and SSI-SC-04_2-4
AOS6	SSI-SS-02_0-0.39 and SSI-SS-04_0-0.39
AUJ6	SSI-SC-05_4-6, SSI-SC-06_4-6, and SSI-SC-06_4-6
AWM5	SSI-SS-09_0-0.39 (Pentachlorophenol ONLY)

Page 2

Primary SDG	Samples Validated
AWJ5	PSB-SC-01_0-1, PSB-SC-02_0-1, PSB-SC-02_1-2, PSB-SC-03_0-1, PSB-SC-03_1-2, and PSB-SC-04_0-1
9350	SSI-SS-14_0-0.39, SSI-SS-15_0-0.39, and SSI-SS-16_0-0.39
9351 (Level 4 Validation)	SSI-SS-08_0-0.39, SSI-SS-10_0-0.39, SSI-SS-11_0-0.39, SSI-SS-12_0-0.39 (Validated by EcoChem)
9353	SSI-SC-05_4-6, SSI-SC-06_4-6, and SSI-SC-07_4-6 (Validated by GeoEngineers) SSI-SC-03_0-2, SSI-SC-03_2-4, SSI-SC-05_0-2, SSI-SC-05_2-4, SSI-SC-06_0-2, SSI-SC-06_2-4, SSI-SC-07_0-2, SSI-SC-07_2-4, and SSI-SC-DUP-04 (Validated by EcoChem)
9354	SSI-SC-01_0-2, SSI-SC-01_2-4, SSI-SC-04_0-2, SSI-SC-04_2-4, SSI-SC-DUP-01, SSI-SC-DUP-03 (Validated by EcoChem)
9571	SSI-SS-02_0-0.39
9648	PSB-SC-01_0-1, PSB-SC-02_0-1, PSB-SC-02_1-2, PSB-SC-03_0-1, PSB-SC-03_1-2, and PSB-SC-04_0-1

CHEMICAL ANALYSIS PERFORMED

Analytical Resources, Inc. (ARI), located in Tukwila, Washington, performed laboratory analysis on the sediment samples using one or more of the following methods:

- Total solids by Standard Method 2540G
- Total organic carbon by SW9060M
- Total petroleum hydrocarbons by NWTPH-Dx (Silica Gel treated)
- Semivolatile organic compounds (SVOCs) by Method SW8270D
- Polycyclic aromatic hydrocarbons (PAHs) and four other selected semivolatiles (PAHs) by Method SW8270-SIM
- Pentachlorophenol by Method SW8041 (SW8270-SIM with clean-up if matrix interference was encountered)
- Tetra through octa-chlorinated dioxins and furans by Method 1613B

Frontier Analytical Laboratory (Frontier) located in El Dorado Hills, California, performed laboratory analysis on the sediment samples using the following methods:

Tetra through octa-chlorinated dioxins and furans by Method 1613B

The following Sample Delivery Groups (SDGs) were validated by EcoChem, Inc. in Seattle, Washington. The validation report/memo is provided as an attachment to Appendix C of the data report.

Primary SDG	Samples Validated
9351	SSI-SS-08_0-0.39, SSI-SS-10_0-0.39, SSI-SS-11_0-0.39, and SSI-SS-12_0-0.39
9353	SSI-SC-03_0-2 , SSI-SC-03_2-4, SSI-SC-05_0-2 , SSI-SC-05_2-4, SSI-SC-06_0-2, SSI-SC-06_2-4, SSI-SC-07_0-2, SSI-SC-07_2-4, and SSI-SC-DUP-04
9354	SSI-SC-01_0-2, SSI-SC-01_2-4, SSI-SC-04_0-2, SSI-SC-04_2-4, SSI-SC-DUP-01, and SSI-SC-DUP-03

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

ARI provided the required deliverables for data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were originally filled out by GeoEngineers or Landau Associates and were provided with the laboratory analytical reports in the same data package along with pertinent email communications. The COCs were accurate, appropriately signed, and complete when submitted to the lab.

All samples were archived at the laboratory upon receipt.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all chemical analyses. The sample coolers arrived at the laboratory at the appropriate temperatures of between 2 and 6°C, with the exceptions below:

SDG AOM9: One out of six sample coolers was recieved by the laboratory with a temperature reading of 7.2°C. As the sample coolers were received on the same day as they were sent from GeoEngineers, no action was taken for this outlier.

Upon arrival at both laboratories, each sediment sample was stored in a freezer at -20°C in case any would be requested for analysis after a first-round assessment was completed by GeoEngineers and Ecology.

Surrogate/Labeled Compound Recoveries

A surrogate or a labeled compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of

each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. All surrogate percent recoveries for field samples were within the laboratory control limits, with the following exceptions:

SDG AOL1: (SIM-PAHs) The %R value for d10-2-methylnapthalene was less than the control limit in Sample SSI-SS-09_0-0.39. The positive results and reporting limits for all analytes in this sample were qualifited as estimated (J/UJ) in this sample.

SDG AOR4: (Pentachlorophenol) The %R value for 2,4,6-tribromophenol was greater than the control limit in Sample SSI-SC-DUP-01. The positive result for this analyte in this sample was qualified as estimated (J) in this sample.

SDG AUJ6: (SIM-PAHs) The %R values for d10-fluoranthene, d10-2-methylnephthalene, and d14-debenzo(a,h)anthracene were less than the control limits in the matrix spike sample SSI-SC-06_4-6. No action is required for individual QC samples unless the data indicates the presence of a systemic outlier.

Method and Equipment Rinsate Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in any of the method blanks.

SDG AHU9: (Dioxins/Furans) There was a positive result, which was greater than 3x the reporting limit, for OCDD in the method blank extracted on 6/18/15 (Lab Sample ID: MB-061815). The associated field samples exhibited positive results for this analyte. However, in each case the sample concentrations were greater than 10x the amount found in the blank. Also, there were positive results for 1,2,3,4,6,7,8-HPCDD, and 1,2,3,4,6,7,8-HPCDF (less than the reporting limit) in this same method blank. The associated field samples exhibited positive results for these analytes. However, in each case the sample concentrations were greater than 5x the amount found in the blank.

According to the guidelines above, no qualifications were required for these trace amounts in the blank.

SDG AKF6: (Dioxins/Furans) There was a positive result, which was less than 3x the reporting limit, for OCDD in the method blank extracted on 8/10/15 (Lab Sample ID: MB-081015). The associated field sample exhibited a positive result for this analyte. However, in this case the sample concentration was greater than 10x the amount found in the blank and greater than 3x the reporting limit. Also, there was a positive result for 1,2,3,4,7,8,9-HPCDF which was less than the reporting limit in this same method blank. The associated field sample exhibited a positive result for these analyte; however, the sample concentration was greater than 10x the amount found in the blank and greater than the reporting limit in this same method blank.

According to the guidelines above, no qualifications were required for these trace amounts in the blank.

SDG AOL1: (SVOCs) There was a positive result for diethylphthalate in the method blank extracted on 10/21/15 (Lab Sample ID: MB-102115). The associated field samples exhibited positive results which were less than 10x the amount found in the method blank. The positive results for diethylphthalate were qualified (U) as not-detected in the following samples: SSI-SS-05_0-0.39, SSI-SS-06_0-0.39, and SSI-SS-07_0-0.39.

SDG AOS3, AOS6: (SVOCs) There was a positive result for diethylphthalate in the method blank extracted on 10/23/15 (Lab Sample ID: MB-102315). The associated field samples exhibited positive results which were less than 10x the amount found in the method blank. The positive results for diethylphthalate were qualified (U) as not-detected in the following samples: SSI-SS-03_0-0.39, SSI-SS-01_0-0.39, SSI-SS-DUP-3, SSI-SS-02_0-0.39, and SSI-SS-04_0-0.39.

Equipment rinsate blanks were collected at the site in order to ensure that the equipment used in the sampling procedures do not cross contaminate other samples with concentrations of the analytes of interest. Equipment Rinsate blanks were collected at a frequency of once per day of field sampling.

There were four equipment rinsate blanks collected for this sampling event: Rinseate-151012, Rinsate-151013, Rinseate-151014, and Rinsate-151015. None of the analytes of interest were detected above the reporting limits in any of blanks, with the exceptions below:

(Dioxins/Furans): The four equipment blanks and the field samples were analyzed at two separate laboratories. The equipment blanks were analyzed at ARI, whereas the entire set of field samples (both surface and subsurface) were analyzed at Frontier Analytical. In the validation process, each equipment blank was first assessed for method blank contamination, in order to determine which potential contaminants were attributable to the laboratory, and which contaminants originated at the site. After this initial assessment was concluded, each only the equipment blank collected on October 14, 2015 (Rinsate-151015 above) was shown to contain trace amounts of Dioxin/Furan contamination generally below the reporting limits of the blank. As the associated field sample concentrations were higher than 10x the amount found in the equipment blank, no further qualifiers were applied.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery (%R) is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The %R control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic organic methods, the matrix spike is followed by a post-digestion spike sample if any element percent recoveries were outside the control limits in the matrix spike. The %R control limits for inorganic matrix spikes are 75 percent to 125 percent. The %R control limits for organic MS/MSD sample sets are the internal laboratory limits which are updated once per year.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the %R and RPD values were within the proper control limits, with the following exceptions:

SDG AOL1: (SVOCs) The laboratory performed an MS/MSD sample set on Sample SSI-SS-07_0-0.39. The MSD %R values for benzo(a)pyrene, Total benzofluoranthenes, chrysene, fluoranthene, and pyrene were greater than the control limits in this QC sample set. However, the corresponding MS %R values for each of these analytes were within the control limits. Therefore, no qualifiers were applied.

Page 6

Also, the RPD values for benzo(a)anthracene, benzo(a)pyrene, benzo(g,h,i)perylene, Total benzofluoranthenes, chrysene, fluoranthene, indeno(1,2,3-c,d)pyrene, phenanthrene, and pyrene exceeded the control limits in the same sample set. As the precision criteria for these analytes were within the control limits in all other QC paramters, no action was taken.

(SIM-SVOCs) The laboratory performed an MS/MSD sample set on Sample SSI-SS-07_0-0.39. The RPD value for dibenz(a,h)anthracene exceeded the control limit of 30 percent in the sample set. As the precision criteria for this analyte was within the control limits in all other QC paramters, no action was taken.

SDG AOM9: (TOC) The laboratory performed a matrix spike on Sample SSI-SC-07_2-4. The TOC MS %R value exceeded the control limit in this QC sample. However, the measurement is not considered meaningful as per the NFG documents because the parent sample concentration was greater than four times the amount spiked into the sample. No further action was taken.

(PAHs) The laboratory performed an MS/MSD sample set on Sample SSI-SC-07_2-4. There was no recovery for eight analytes in this QC sample set. However, it was noted that no less than six parent sample analyte concentrations exceeded their respective calibration ranges in the parent sample. The laboratory did not dilute the MS/MSD sample set. In this case, professional judgement was used in validation to determine that the instrumentation at this point could have been saturated by these target analtyes mentioned and left incapable of producing meaningful measurements of matrix accuracy and precision for other target analtyes. Therefore, no futher action was taken for any outliers in this MS/MSD sample set.

SDG AOR4: (TOC) The laboratory performed a matrix spike on Sample SSI-SC-01_2-4. The TOC MS %R value was less than the control limit in this QC sample. The positive result for TOC was qualified as estimated (J) in the parent sample.

(SIM-PAHs) The laboratory performed an MS/MSD sample set on Sample SSI-SC-01_2-4. The %R values for pyrene were both greater than the control limits. Also, the MSD %R values for seven target analytes were greater than the control limits; however, the corresponding MS %R values for each analyte were within their respective control limits. Also, the RPD values for six target analytes exceeded the control limits. As the precision criteria for these analytes were within the control limits in all other QC paramters, no action was taken.

(Chlorophenols) The laboratory performed an MS/MSD sample set on Sample SSI-SC-01_2-4. The MS/MSD %R values for pentachlorophenol were less than the control limits in this sample set. The positive result for pentachlorophenol was qualified as estimated (J) in the parent sample.

SDG AOS3: (SVOCs) The laboratory performed an MS/MSD sample set on Sample SSI-SS-01_0-0.39. The RPD value for benzyl alcohol exceeded the control limits in the sample set. There was no positive result for this analtye in the parent sample, therefore no further qualification was required.

SDG AUJ6: (SIM-PAHs) The laboratory performed an MS/MSD sample set on Sample SSI-SC-06_4-6. Several %R and RPD values were outside of the control limits because several target analyte concentrations exceeded the amount spiked into the sample, therefore no further qualification was required.

Laboratory Control Samples/Ongoing Precision and Recovery Samples

A laboratory control sample (LCS) or an Ongoing Precision and Recovery Sample (OPR) is a blank sample that is spiked with a known amount of analyte and then analyzed. These internal QC samples are similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/OPR control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/OPR analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery (%R) control limits for an LCS/OPR analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD or OPR analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the %R and RPD values were within the proper control limits.

SDG AOS3 & AOS6: (SVOCs) The %R value for benzyl alcohol was less than the control limits in the blank spike extracted on 10/23/15 (LCS-102315). The positive results for detected samples and the reporting limits for non-detected samples were qualified as estimated (J/UJ) in samples SSI-SS-01_0-0.39, SSI-SS-02_0-0.39, SSI-SS-04_0-0.39.

Field Duplicates

In order to assess precision, field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used as a performance metric instead of the RPD. The RPD control limit for sediment samples is 50 percent. The absolute difference control limit is 2 times the reporting limit.

SDG AOS3: One of two field duplicate sample pairs, SSI-SS-01_0-0.39/SSI-SS-DUP-03, was submitted with this sample delivery group.

(SVOC): The RPD/absolute difference values exceeded the control limits for phenol, fluoranthene, pyrene, benzo(a)anthracene, indeno(1,2,3-cd)pyrene, and Total benzofluoranthenes. The positive results and reporting limits for any of these analytes that were not-detected were qualified as estimated (J/UJ) in both samples.

SDG AOR4: One field duplicate sample pair, SSI-SC-01_0-2/SSI-SC-DUP-01, was submitted with this sample delivery group.

(SIM-PAHs) The RPD/absolute difference values exceeded the control limits for 2-methylnaphthalene and acenaphthylene. The positive results and reporting limits for any of these analytes that were not-detected were qualified as estimated (J/UJ) in both samples.

SDG AOM9: One field duplicate sample pair, SSI-SC-07_0-2/SSI-SC-Dup-04, was submitted with this sample delivery group.

SDG AOS3: One field duplicate sample pair, SSI-SC-04_0-2/SSI-SC-Dup-03, was submitted with this sample delivery group.

(NWTPH-Dx) The RPD/absolute difference value exceeded the control limit for Diesel range hydrocarbons. The positive result was qualified as estimated (J/UJ) in both samples.

Initial Calibrations (ICALs)

All initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, all percent recoveries were within the control limits of 90 percent and 110 percent. For organic analyses, all percent relative standard deviation (%RSD) and relative response factors (RRF) values were within the control limits stated in either the EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA, 2008) or the EPA Contract Laboratory Program National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (EPA 2011).

Continuing Calibrations (CCALs)

All continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, all percent recoveries were within the control limits of 90 percent and 110 percent. For organic analyses, all percent difference (%D) and relative response factors (RRF) values were within the control limits in either the EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 2008) or the EPA Contract Laboratory Program National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (EPA 2011).

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12 hour sample run. For organic analyses, the control limits for internal standard recoveries are 50 percent to 200 percent of the calibration standard. For inorganic analyses, the control limits for internal standard recoveries are 60 percent to 125 percent of the calibration standard. All internal standard recoveries were within the control limits.

Dilutions

(PAHs and SVOCs) There were several cases where target analytes exceeded the linear calibarion range of the analytical instrument. In these cases, the laboratory flagged these analytes with an "E", and re-analyzed these samples at various dilutions. In each case, both sets of data were reported by the laboratory. In order to avoid duplicate analytical reporting, the validation labeled all "E" flags with Do-Not-Report (DNR). Correspondingly, the validation labeled all other analytes in the dilutions with Do-Not-Report so that only one concise set of analytes per sample were to be used for this project.

Miscellaneous

SDG AHU9 and AKF6 (Dioxin/Furans): The positive results for several compounds were noted by the laboratory to represent the estimated maximum possible concentration (EMPC) for these analytes in Samples CL-SG-1_0-0.33, CL-SG-3_0-0.33 and CL-SG-4_0-0.33. This is typically due to the compounds exhibiting ion abundance ratios that are outside of the allowable control limits set forth in the the EPA method and the National Functional Guidelines. In each case the concentrations were qualified as not detected (U) at the elevated reporting limits.

Also, the laboratory noted that congeners 1,2,3,4,7,8-HxCDF and 2,3,4,6,7,8-HxCDF coeluted with Polybrominated diphenyl ethers (PBDE) in Sample CL-SG-1_0-0.33. In some cases, these congeners were already qualified as not detected above. However, in the case of 1,2,3,4,7,8-HxCDF, there was no additional EMPC qualification. This congener was qualified as estimated (J) in Sample CL-SG-1_0-0.33.

SDG AOL1 (SVOCs): The benzyl alcohol results were noted by the laboratory to be cases of low spectral mass spectrometer matches in Samples SSI-SS-05_0-0.39 and SSI-SS-06_0-0.39. The positive results for these analytes were qualified as estimated (J) in both samples.

SDG AOM9 (Pentachlorophenol): The column confirmation RPD value for pentachlorophenol was greater than 40 percent in Sample SSI-SC-05_2-4. The positive result for pentachlorophenol was qualified as (NJ) in this sample.

SDG AOR4 (Pentachlorophenol): The column confirmation RPD value for pentachlorophenol was greater than 40 percent in Samples SSI-SC-01_2-4, SSI-SC-03_0-2, and SSI-SC-03_2-4. The positive results for pentachlorophenol were qualified as (NJ) in these samples.

SDG AOS3 (SVOCs): The phenol and benzyl alcohol results were noted by the laboratory to be cases of low spectral mass spectrometer matches in Sample SSI-SS-03_0-0.39. The positive results for these analytes were qualified as estimated (J) in this sample.

Pentachlorophenol: The column confirmation RPD values for pentachlorophenol were greater than 40 percent in Samples SSI-SC-04_0-2 and SSI-SC-DUP-03. The positive results for pentachlorophenol were qualified as (NJ) in these samples.

SDG AWJ5 (Pentachlorophenol): The column confirmation RPD value for pentachlorophenol was greater than 40 percent in Sample PSB-SC-03-0-1. The positive result for pentachlorophenol was qualified as (NJ) in this sample.

SDG 9350 (Dioxin/Furans): The positive results for Total TCDF, Total PeCDF, and Total HxCDF were flagged as EMPCs in Sample SSI-SS-14_0-0.39. The positive result for Total PeCDD was flagged as an EMPC in Sample SSI-SS-15_0-0.39. Also, the positive results for Total TCDF and Total PeCDF were flagged as EMPCs in Sample SSI-SS-16_0-0.39. In each case the concentrations were qualified as not detected (U) at the elevated reporting limits.

SDG 9353 (Dioxin/Furans): The positive result for Total TCDF was flagged as an EMPC in Sample SSI-SC-05_4-6. The positive results for Total TCDF, Total PeCDF, and Total HxCDF were flagged as EMPCs in Sample SSI-SC-06_4-6. The positive results for Total TCDF, Total PeCDF, and Total HxCDF were flagged as EMPCs in Sample SSI-SC-07_4-6. In each case the concentrations were qualified as not detected (U) at the elevated reporting limits.

Also, the laboratory noted that Total TCDD coeluted with PBDE in Sample SSI-SC-07_4-6. In the case, there was no additional EMPC qualification. Therefore, this homologue group result was qualified as estimated (J) in Sample SSI-SC-07_4-6.

SDG 9648 (Dioxin/Furans): The positive results for Total HxCDF were flagged as an EMPC in Samples PSB-SC-01_1-0-1, PSB-SC-03_1-2, and PSB-SC-04_0-1. In each case the concentrations for HxCDF were qualified as not detected (U) at the elevated reporting limits.

Page 10

Also, the laboratory noted that Total TCDD coeluted with PBDE in samples PSB-SC-01_0-1, PSB-SC-02_0-1, and PSB-SC-02_1-2. In each case, there were no additional EMPC qualifications. These homologue group results were qualified as estimated (J) in all three samples.

Reporting Limits

In all sample analyses, the positive results for all target analytes were quantitated using instrument responses that were appropriately within the calibration curve used for that instrument. All data met the established criteria for this QC element with one exception below:

SDG AHU9 (Dioxins/Furans): The congener OCDD was reported to exceed the linear calibration range of the instrument in Samples CL-SG-3_0-0.33 and CL-SG-4_0-0.33. The positive results for these congeners were qualified as estimated (J) in these samples.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the labeled compounds and OPR sample %R values. Precision could not be assessed for this sampling event as there were no laboratory/field duplicates analyzed. All data are acceptable for the intended use, with the qualifications listed below.

Selected data were qualified as estimated (J/UJ) because of the following:

- Low spectral matches (mass spectrometer analysis)
- Matrix spike %R and RPD outliers
- Laboratory control sample %R outliers
- Surrogate %R outliers
- Field duplicate RPD outliers

Selected data were qualified as estimated (U) because of the following:

- Method blank contamination
- Estimated maximum possible concentrations (ion abundance ratio outliers)

Selected data were qualified as tentatively identified (NJ) because of the following:

Primary/secondary column confirmation %RSD outliers

REFERENCES

GeoEngineers, Inc. 2015. "Final Work Plan Supplemental Sediment Investigation", prepared for City of Bellingham, August 21, 2015

U.S. Environmental Protection Agency (EPA). 2008. "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. September 2008.

- U.S. Environmental Protection Agency (EPA). 2009. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (EPA). 2011. "Contract Laboratory Program National Functional Guidelines for Chlorinated Dioxin/Furan Data Review," EPA-540-R-11-016. September 2011.
- U.S. Environmental Protection Agency (EPA). 2014. "National Functional Guidelines for Inorganic Superfund Data Review," EPA-540-R-13-001. August 2014.

C.2. Data Validation Report – EcoChem, Inc.

DATA VALIDATION REPORT

SUPPLEMENTAL SEDIMENT INVESTIGATION R.G. HALEY SITE – BELLINGHAM, WA

Prepared for:

GeoEngineers 600 Stewart St. Suite 1420 Seattle, WA 98101

Prepared by:

EcoChem, Inc. 1011 Western Avenue, Suite 1006 Seattle, Washington 98104

EcoChem Project: C2208-01

December 7, 2015

Approved for Release:

Christine Ransom Senior Project Chemist **EcoChem, Inc.**

PROJECT NARRATIVE

Basis for the Data Validation

This report summarizes the results of summary and full validation (EPA Stage 2B, EPA Stage 4) performed on sediment and quality control sample data for the R.G. Haley Supplemental Sediment Investigation. A complete list of samples is provided in the **Sample Index**.

Samples were analyzed by Frontier Analytical Laboratory, El Dorado Hills, California. The analytical method and EcoChem project chemists are noted below:

Analysis	Method	PRIMARY REVIEW	SECONDARY REVIEW
Dioxin/Furan Compounds	1613B	E. Clayton	C. Ransom

The data were reviewed using guidance and quality control criteria documented in the analytical methods; *Supplemental Sediment Investigation, R.G. Haley Site, Bellingham Washington, Quality Assurance Project Plan (QAPP)* (GeoEngineers August 21, 2015) and *National Functional Guidelines for Chlorinated Dioxin/Furan Data Review* (USEPA 2011).

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as **APPENDIX A**. A Qualified Data Summary Table is included in **APPENDIX B**. Data Validation Worksheets and project associated communications will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) is also submitted with this report.

Sample Index

R.G. Haley Site - Supplemental Sediment Investigation

SDG	Sample ID	Laboratory ID	Dioxins
9351	SSI-SS-08_0-12	9351-001	\checkmark
9351	SSI-SS-10_0-12	9351-002	\checkmark
9351	SSI-SS-11_0-12	9351-003	\checkmark
9351	SSI-SS-12_0-12	9351-004	\checkmark
9353	SSI-SC-03_0-2	9353-014	\checkmark
9353	SSI-SC-03_2-4	9353-015	\checkmark
9353	SSI-SC-05_0-2	9353-010	\checkmark
9353	SSI-SC-05_2-4	9353-011	\checkmark
9353	SSI-SC-06_0-2	9353-001	\checkmark
9353	SSI-SC-06_2-4	9353-002	\checkmark
9353	SSI-SC-07_0-2	9353-005	\checkmark
9353	SSI-SC-07_2-4	9353-007	\checkmark
9353	SSI-SC-DUP-04	9353-006	\checkmark
9354	SSI-SC-01_0-2	9354-001	\checkmark
9354	SSI-SC-01_2-4	9354-002	\checkmark
9354	SSI-SC-04_0-2	9354-006	\checkmark
9354	SSI-SC-04_2-4	9354-007	\checkmark
9354	SSI-SC-DUP-01	9354-004	\checkmark
9354	SSI-SC-DUP-03	9354-005	\checkmark

DATA VALIDATION REPORT R.G. Haley Site – Supplemental Sediment Investigation Dioxin/Furan Compounds by Method 1613B

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Frontier Analytical Laboratory., El Dorado Hills, California. Refer to the **SAMPLE INDEX** for a complete list of samples.

SDG	NUMBER OF SAMPLES	VALIDATION LEVEL
9351	4 Sediment	EPA Stage 4
9353	9 Sediment	EPA Stage 2B
9354	6 Sediment	EPA Stage 2B

DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

SDG 9351: All client identifications (ID) on chain-of-custody (COC) were missing the final segment of "_0-12". Samples were logged in according the IDs on the sample containers.

EDD TO HARDCOPY VERIFICATION

Sample results and related quality control data were received as an electronic data deliverable (EDD) and laboratory report. The EDD was verified against the laboratory report (10%). No errors were noted.

TECHNICAL DATA VALIDATION

The quality control (QC) requirements reviewed are summarized in the following table:

\checkmark	Sample Receipt, Preservation, and Holding Times	\checkmark	Ongoing Precision and Recovery (OPR)
\checkmark	System Performance and Resolution Checks	2	Field Duplicates
\checkmark	Initial Calibration (ICAL)	\checkmark	Target Analyte List
\checkmark	Calibration Verification	2	Reported Results
\checkmark	Blanks (Laboratory and Field)	2	Compound Identification
\checkmark	Labeled Compound Recovery	1	Calculation Verification
1	Matrix Spike/Matrix Spike Duplicates (MS/MSD)		

✓ Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed. 1 Quality control results are discussed below, but no data were qualified.

2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Matrix Spike/Matrix Spike Duplicates

Samples were inadvertently marked for matrix spike/matrix spike duplicate (MS/MSD) analysis on the COCs, however MS/MSDs are not required by the analytical method or the quality assurance project plan (QAPP). The MS/MSD results were not used to evaluate laboratory precision or accuracy.

Field Duplicates

The field duplicate relative percent difference (RPD) control limit is 50% for concentrations greater than 5x the reporting limit (RL). For concentrations less than 5x the RL, the difference between the sample result and the duplicate result must be less than 2x the RL. Outlier results were estimated (J-9). Field duplicate samples and any outliers are noted below.

SDG 9353: One set of field duplicates was submitted: SSI-SC-07_0-2 and SSI-SC-DUP-04. The difference between the two results for 1,2,3,6,7,8-HxCDF was greater than the control limit.

SDG 9354: Two sets of field duplicates were submitted: SSI-SC-01_0-2 & SSI-SC-DUP-01 and SSI-SC-04_0-2 & SSI-SC-DUP-03.

For samples SSI-SC-01_0-2 and SSI-SC-DUP-01, the RPD values for OCDD, 1,2,3,4,6,7,8-HpCDD, Total HpCDD, Total HpCDF, Total HXCDF, OCDF, 1,2,3,4,7,8,9-HpCDF, and 1,2,3,4,6,7,8-HpCDF were greater than the control limit.

For samples SSI-SC-04_0-2 and SSI-SC-DUP-03, the RPD value for Total TCDD was greater than the control limit.

Reported Results

SDG 9353: The laboratory assigned an "E" flag to two OCDD results to indicate the concentrations exceeded the calibration range of the instrument. These results were estimated (J-20).

Compound Identification

The method requires the confirmation of 2,3,7,8-TCDF using an alternate GC column if the column that is typically used cannot fully separate 2,3,7,8-TCDF from closely eluting non-target TCDF isomers. The laboratory did performed a second column confirmation as necessary. Result reported from the confirmation column were flagged with an "F".

The laboratory assigned an "M" flag to one or more analytes to indicate that the ion ratio criterion for positive identification was not met. Since the ion abundance ratio is the primary identification criterion for high resolution mass spectroscopy, an outlier indicates that the reported result may be a false positive. These "M" flagged results were qualified as not detected (U-25) at the reported concentration. The laboratory also assigned "M" flags to total homolog groups. In these cases, the result for the group was estimated (J-25).

Diphenyl ether interferences were present in some samples. The laboratory assigned a "D" flag to the results affected by these interferences. These results were estimated (J-23) to indicate a potential high bias. No action was taken for results qualified as not-detected based on ion ratio outliers.

Calculation Verification

SDG 9351: Several results were verified by recalculation from the raw data. No calculation or transcription errors were found.

OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the labeled compound and OPR recoveries and precision was acceptable as demonstrated by the OPR and field duplicate RPD values.

Detection limits were elevated based on ion ratio outliers. Results were estimated because they exceeded the calibration range or due to diphenyl ether interference. Results for total homolog groups with "M" flags were also estimated.

All data, as qualified, are acceptable for use.

APPENDIX A

DATA QUALIFIER DEFINITIONS REASON CODES AND CRITERIA TABLES

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
The following is an EcoChem	qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

DATA QUALIFIER REASON CODES

Group	Code	Reason for Qualification
Sample Handling	1	Improper Sample Handling or Sample Preservation (i.e., headspace, cooler temperature, pH, summa canister pressure); Exceeded Holding Times
	24	Instrument Performance (i.e., tune, resolution, retention time window, endrin breakdown, lock-mass)
	5A	Initial Calibration (RF, %RSD, r ²)
Instrument Performance	5B	Calibration Verification (CCV, CCAL; RF, %D, %R) Use bias flags (H,L) ¹ where appropriate
	5C	Initial Calibration Verification (ICV %D, %R) Use bias flags (H,L) ¹ where appropriate
	6	Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.)
Blank Contamination	7	Lab Blank Contamination (i.e., method blank, instrument blank, etc.) Use low bias flag (L) ¹ for negative instrument blanks
	8	Matrix Spike (MS and/or MSD) Recoveries Use bias flags (H,L) ¹ where appropriate
	9	Precision (all replicates: LCS/LCSD, MS/MSD, Lab Replicate, Field Replicate)
Precision and Accuracy	10	Laboratory Control Sample Recoveries (a.k.a. Blank Spikes) Use bias flags (H,L) ¹ where appropriate
	12	Reference Material Use bias flags (H,L) ¹ where appropriate
	13	Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L) ¹ where appropriate
	16	ICP/ICP-MS Serial Dilution Percent Difference
	17	ICP/ICP-MS Interference Check Standard Recovery Use bias flags (H,L) ¹ where appropriate
Interferences	19	Internal Standard Performance (i.e., area, retention time, recovery)
	22	Elevated Detection Limit due to Interference (i.e., chemical and/or matrix)
	23	Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides)
	2	Chromatographic pattern in sample does not match pattern of calibration standard
Identification and	3	2 nd column confirmation (RPD or %D)
Identification and Quantitation	4	Tentatively Identified Compound (TIC) (associated with NJ only)
	20	Calibration Range or Linear Range Exceeded
	25	Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.)
Minneller	11	A more appropriate result is reported (multiple reported analyses i.e., dilutions, re- extractions, etc. Associated with "R" and "DNR" only)
Miscellaneous	14	Other (See DV report for details)
	26	Method QC information not provided

¹H = high bias indicated

L = low bias indicated

QC Element	Acceptance Criteria	Source of Criteria	Action for Non-Conformance	Reason Code	Discussion and Comments
Sample Handling					
Cooler/Storage Temperature Preservation	Tissues <-10°C & in the dark NFG ⁽²⁾ J(pos)/UJ(ND) i		J(pos)/R(ND) if thiosulfate not added if Cl ₂ present; J(pos)/UJ(ND) if pH not adjusted J(pos)/UJ(ND) if temp > 20°C	1	EcoChem PJ, see TM-05
Holding Time	If properly stored, 1 year or: Extraction (all matrices): 30 days from collection Analysis (all matrices): 45 days from extraction	NFG ⁽¹⁾ Method ⁽²⁾	If not properly stored or HT exceedance: J(pos)/UJ(ND)	1	EcoChem PJ, see TM-05 Gross exceedance = > 1 year 2011 NFG Note: Under CWA, SDWA, and RCRA the HT for H2O is 7 days.
Instrument Performa	nce				
Mass Resolution (Tuning)	PFK (Perfluorokerosene) ≥10,000 resolving power at m/z 304.9824. Exact mass of m/z 380.9760 w/in 5 ppm of theoretical value (380.97410 to 380.97790) . Analyzed prior to ICAL and at the start and end of each 12 hr. shift.	NFG ⁽¹⁾ Method ⁽²⁾	R(pos/ND) all analytes in all samples associated with the tune	24	Notify PM
Windows Defining Mix	Peaks for first and last eluters must be within established retention time windows for each selector group (chlorination level)	NFG ⁽¹⁾ Method ⁽²⁾	If peaks are not completely within windows (clipped): If natives are ok, J(pos)/UJ(ND) homologs (Totals) If natives are affected, R all results for that selector group	24	Notify PM
Column Performance Mix	Both mixes must be analyzed before ICAL and CCAL Valley < 25% (valley = (x/y)*100%) where x = ht. of TCDD (or TCDF) & y = baseline to bottom of valley For all isomers eluting near the 2378-TCDD (TCDF) peak (TCDD only for 8290)	NFG ⁽¹⁾ Method ⁽²⁾	J(pos) if valley > 25%	24	EcoChem PJ, see TM-05, Rev. 2; Note: TCDF is evaluated only if second column confirmation is performed
Initial Calibration Sensitivity	S/N ratio > 10 for all native and labeled compounds in CS1 std.	NFG ⁽¹⁾ Method ⁽²⁾	If <10, elevate Det. Limit or R(ND)	5A	
Initial Calibration Selectivity	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	NFG ⁽¹⁾ Method ⁽²⁾	If 2 or more ion ratios are out for one compound in ICAL, J(pos)	5A	EcoChem PJ, see TM-05, Rev. 2

QC Element	Acceptance Criteria	Source of Criteria	Action for Non-Conformance	Reason Code	Discussion and Comments
Instrument Performa	nce (continued)				
Initial Calibration (Minimum 5 stds.)	%RSD < 20% for native compounds %RSD <30% for labeled compounds (%RSD < 35% for labeled compounds under 1613b)	NFG ⁽¹⁾ Method ⁽²⁾	J(pos) natives if %RSD > 20%	5A	
Stability	Absolute RT of ¹³ C ₁₂ -1234-TCDD >25 min on DB5 & >15 min on DB-225	NFG ⁽¹⁾ Method ⁽²⁾	Narrate, no action		EcoChem PJ, see TM-05, Rev. 2
Continuing Calibration (Prior to each 12 hr. shift) Sensitivity	S/N ratio for CS3 standard > 10	NFG ⁽¹⁾ Method ⁽²⁾	If <10, elevate Det. Limit or R(ND)	5B	
Continuing Calibration (Prior to each 12 hr. shift) Selectivity	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	NFG ⁽¹⁾ Method ⁽²⁾	For congener with ion ratio outlier, J(pos) natives in all samples associated with CCAL. No action for labeled congener ion ratio outliers.	25	EcoChem PJ, see TM-05
Continuing Calibration (Prior to each 12 hr.	%D+/-20% for native compounds %D +/-30% for labeled compounds (Must meet limits in Table 6, Method 1613B) If %D in the closing CCAL are within 25%/35%, the mean RF from the two CCAL may be used to calculate samples (Section 8.3.2.4 of 8290).	NFG ⁽¹⁾ Method ⁽²⁾	Labeled compounds: Narrate, no action. Native compounds: 1613: J(pos)/UJ(ND)if %D is outside Table 6 limits J(pos)/R(ND) if %D is +/-75% of Table 6 limits 8290: J(pos)/UJ(ND) if %D = 20% - 75% J(pos)/R(ND) if %D > 75%	5B (H,L) ³	
shift) Stability	Absolute RT of ${}^{13}C_{12}$ -1234-TCDD and ${}^{13}C_{12}$ -123789-HxCDD should be ± 15 seconds of ICAL RRT for all other compounds must meet criteria listed in Table 2 Method 1316. NFG ⁽¹⁾ Method ⁽²⁾		Narrate, no action		EcoChem PJ, see TM-05
Blank Contamination					
Method Blank (MB)	MB: One per matrix per batch of (of ≤ 20 samples) No detected compounds > RL	NFG ⁽¹⁾ Method ⁽²⁾	U(pos) if result is < 5X action level.	7	Hierarchy of blank review: #1 - Review MB, qualify as needed
Field Blank (FB)	FB: frequency as per QAPP No detected compounds > RL	WELTOU	U(pos) if result is < 5X action level.	6	#2 - Review FB , qualify as needed

QC Element	Acceptance Criteria	Source of Criteria	Action for Non-Conformance	Reason Code	Discussion and Comments
Precision and Accura	cy				
MS/MSD (recovery)	MS/MSD not typically required for HRMS analyses. If lab analyzes MS/MSD then one set per matrix per batch (of \leq 20 samples)	EcoChem standard policy	J(pos) if both %R > UCL - high bias J(pos)/UJ(ND) if both %R < LCL - low bias J(pos)/R(ND) if both %R < 10% - very low bias		No action if only one spike %R is outside criteria. No action if parent concentration is >4x the amount spiked.
	Use most current laboratory control limits		J(pos)/UJ(ND) if one > UCL & one < LCL, with no bias PJ if only one %R outlier		Qualify parent sample only unless other QC indicates systematic problems.
MS/MSD (RPD)	MS/MSD not typically required for HRMS analyses. If lab analyzes MS/MSD then one set per matrix per batch (of ≤ 20 samples) Use most current laboratory control limits	EcoChem standard policy	J(pos) in parent sample if RPD > CL	9	Qualify parent sample only.
LCS (or OPR)	One per lab batch (of ≤ 20 samples) Use most current laboratory control limits or Limits from Table 6 of 1613B	NFG ⁽¹⁾ Method ⁽²⁾	J(pos) if %R > UCL - high bias J(pos)/UJ(ND) if %R < LCL - low bias J(pos)/R(ND) if %R < 10% - very low bias	10 (H,L) ³	No action if only one spike %R is outside criteria, when LCSD is analyzed. Qualify all associated samples.
LCS/LCSD (RPD)	LCSD not typically required for HRMS analyses. One set per matrix and batch of 20 samples RPD < 35%	Method ⁽²⁾ Ecochem standard policy	J(pos) assoc. compound in all samples if RPD > CL	9	Qualify all associated samples.
Lab Duplicate (RPD)	Lab Dup not typically required for HRMS analyses. One per lab batch (of ≤ 20 samples) Use most current laboratory control limits	One per lab batch (of ≤ 20 samples) EcoChem standard policy J(pos)/UJ(ND) if RPD > CL		9	
Labeled Compounds (Internal Standards)	R = 40% - 135% in all samples 8290		13 (H,L) ³		
Field Duplicates	Id Duplicates OR difference < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR difference < 1X RL (for results < 5X RL)		Narrate and qualify if required by project	9	Use professional judgment

QC Element	Acceptance Criteria	Source of Criteria	Action for Non-Conformance	Reason	Discussion and Comments
Compound ID and Ca	•			Code	
Quantitation/ Identification	All ions for each isomer must maximize within ± 2 seconds. S/N ratio >2.5 Ion ratios must meet criteria listed in Table 8 Method 8290, or Table 9 of 1613B; RRTs w/in limits in Table 2 of 1613B	conds. ratio > 2.5 NFG ⁽¹⁾ Narrate in report; qualify if necessary veria listed in Table 8 Method ⁽²⁾ NJ(pos) for retention time outliers. 8290, U(pos) for ion ratio outliers.		25	EcoChem PJ, see TM-05
EMPC (estimated maximum possible concentration)	If quantitation identification criteria are not met, laboratory should report an EMPC value.	NFG ⁽¹⁾ Method ⁽²⁾	If laboratory correctly reported an EMPC value, qualify the native compound U(pos) to indicate that the value is a detection limit and qualify total homolog groups J (pos)	25	Use professional judgment See TM-18
Interferences	Interferences from chlorodiphenyl ether compounds	NFG ⁽¹⁾ Method ⁽²⁾	J(pos)/UJ(ND) if present		See TM-16
Interferences	Lock masses must not deviate ± 20% from values in Table 8 of 1613B	Method (2)	J(pos)/UJ(ND) if present	24	See TM-17
Second Column Confirmation	All 2,3,7,8-TCDF hits must be confirmed on a DB-225 (or equiv) column. All QC criteria must also be met for the confirmation analysis.	Report the DB-225 value		3	DNR-11 DB5 result if both results from both columns are reported. EcoChem PJ, see TM-05
Calculation Check	Check 10% of field & QC sample results	EcoChem standard policy	Contact laboratory for resolution and/or corrective action	na	Full data validation only.
Electronic Data Delive	erable (EDD)				
Verification of EDD to hardcopy data	EcoChem verify @ 10% unless problems noted; then increase level up to 100% for next several packages.		Depending on scope of problem, correct at EcoChem (minor issues) to resubmittal by laboratory (major issues).	na	EcoChem Project Manager and/or Database Administrator will work with lab to provide long-term corrective action.
Dilutions, Re- extractions and/or Reanalyses	Report only one result per analyte	Standard reporting policy	Use "DNR" to flag results that will not be reported.	11	

(pos) - positive (detected) results; (ND) - not detected results

¹ National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) & Chlorinated Dibenzofurans (CDFs) Data Review, September 2011

² Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by High-Resolution Gas Chromatography/High-Resolution Mass Spectrometry (HRGC/HRMS), USEPA SW-846, Method 8290

² EPA Method 1613, Rev.B, Tetra-through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGS/HRMS, October 1994

³ NFG 2013 suggests using "+ / -" to indicate bias; EcoChem has chosen "H" = high bias indicated; "L" = low bias indicated.

APPENDIX B

QUALIFIED DATA SUMMARY TABLE

Qualified Data Summary Table R.G. Haley Site - Supplemental Sediment Investigation

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flag	DV Qualifier	DV Reason
9351	SSI-SS-08_0-12	9351-001	EPA1613B	Total HxCDF	129	pg/g	D,M	J	23,25
9351	SSI-SS-08_0-12	9351-001	EPA1613B	Total PeCDF	30.3	pg/g	D,M	J	23,25
9351	SSI-SS-08_0-12	9351-001	EPA1613B	Total TCDF	22.1	pg/g	D,M	J	23,25
9351	SSI-SS-10_0-12	9351-002	EPA1613B	Total HxCDF	116	pg/g	D,M	J	23,25
9351	SSI-SS-10_0-12	9351-002	EPA1613B	Total PeCDF	34.4	pg/g	D,M	J	23,25
9351	SSI-SS-10_0-12	9351-002	EPA1613B	Total TCDF	48.9	pg/g	D,M	J	23,25
9351	SSI-SS-11_0-12	9351-003	EPA1613B	1,2,3,6,7,8-HxCDF	2.89	pg/g	D,J,M	U	25
9351	SSI-SS-11_0-12	9351-003	EPA1613B	Total HxCDF	107	pg/g	D,M	J	23,25
9351	SSI-SS-11_0-12	9351-003	EPA1613B	Total PeCDF	39.9	pg/g	D,M	J	23,25
9351	SSI-SS-11_0-12	9351-003	EPA1613B	Total TCDF	77.4	pg/g	D,M	J	23,25
9351	SSI-SS-12_0-12	9351-004	EPA1613B	Total HxCDF	79.6	pg/g	D,M	J	23,25
9351	SSI-SS-12_0-12	9351-004	EPA1613B	Total PeCDF	30.2	pg/g	D,M	J	23,25
9351	SSI-SS-12_0-12	9351-004	EPA1613B	Total TCDF	56.9	pg/g	D,M	J	23,25
9353	SSI-SC-03_0-2	9353-014	EPA1613B	Total HxCDF	260.0	pg/g	D,M	J	23,25
9353	SSI-SC-03_0-2	9353-014	EPA1613B	Total PeCDF	94.1	pg/g	D,M	J	23,25
9353	SSI-SC-03_0-2	9353-014	EPA1613B	Total TCDF	86.9	pg/g	D,M	J	23,25
9353	SSI-SC-03_2-4	9353-015	EPA1613B	Total HxCDF	150.0	pg/g	D,M	J	23,25
9353	SSI-SC-03_2-4	9353-015	EPA1613B	Total PeCDF	46.2	pg/g	D,M	J	23,25
9353	SSI-SC-03_2-4	9353-015	EPA1613B	Total TCDF	33.3	pg/g	D,M	J	23,25
9353	SSI-SC-05_0-2	9353-010	EPA1613B	Total HxCDF	1710	pg/g	D,M	J	23,25
9353	SSI-SC-05_0-2	9353-010	EPA1613B	Total PeCDF	358	pg/g	D,M	J	23,25
9353	SSI-SC-05_0-2	9353-010	EPA1613B	Total TCDF	183	pg/g	D,M	J	23,25
9353	SSI-SC-05_2-4	9353-011	EPA1613B	Total HxCDF	475	pg/g	D,M	J	23,25
9353	SSI-SC-05_2-4	9353-011	EPA1613B	Total PeCDF	132	pg/g	D,M	J	23,25
9353	SSI-SC-05_2-4	9353-011	EPA1613B	Total TCDF	159	pg/g	D,M	J	23,25
9353	SSI-SC-06_0-2	9353-001	EPA1613B	1,2,3,6,7,8-HxCDF	74.9	pg/g	D,M	U	25
9353	SSI-SC-06_0-2	9353-001	EPA1613B	OCDD	80600	pg/g	E	J	20
9353	SSI-SC-06_0-2	9353-001	EPA1613B	Total HxCDF	5090	pg/g	D,M	J	23,25
9353	SSI-SC-06_0-2	9353-001	EPA1613B	Total PeCDF	1090	pg/g	D,M	J	23,25
9353	SSI-SC-06_0-2	9353-001	EPA1613B	Total TCDF	310.0	pg/g	D,M	J	23,25
9353	SSI-SC-06_2-4	9353-002	EPA1613B	OCDD	163000	pg/g	E	J	20

Qualified Data Summary Table R.G. Haley Site - Supplemental Sediment Investigation

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flag	DV Qualifier	DV Reason
9353	SSI-SC-06_2-4	9353-002	EPA1613B	Total HxCDF	6720	pg/g	D,M	J	23,25
9353	SSI-SC-06_2-4	9353-002	EPA1613B	Total PeCDF	911	pg/g	D,M	J	23,25
9353	SSI-SC-06_2-4	9353-002	EPA1613B	Total TCDF	442	pg/g	D,M	J	23,25
9353	SSI-SC-07_0-2	9353-005	EPA1613B	1,2,3,6,7,8-HxCDF	5.36	pg/g		J	9
9353	SSI-SC-07_0-2	9353-005	EPA1613B	Total HxCDF	246	pg/g	D,M	J	23,25
9353	SSI-SC-07_0-2	9353-005	EPA1613B	Total PeCDF	72.6	pg/g	D,M	J	23,25
9353	SSI-SC-07_0-2	9353-005	EPA1613B	Total TCDF	35.6	pg/g	D,M	J	23,25
9353	SSI-SC-07_2-4	9353-007	EPA1613B	Total HxCDF	439	pg/g	D,M	J	23,25
9353	SSI-SC-07_2-4	9353-007	EPA1613B	Total PeCDF	144	pg/g	D,M	J	23,25
9353	SSI-SC-07_2-4	9353-007	EPA1613B	Total TCDD	25.7	pg/g	М	J	25
9353	SSI-SC-07_2-4	9353-007	EPA1613B	Total TCDF	50.1	pg/g	D,M	J	23,25
9353	SSI-SC-DUP-04	9353-006	EPA1613B	1,2,3,6,7,8-HxCDF	10.8	pg/g		J	9
9353	SSI-SC-DUP-04	9353-006	EPA1613B	Total HxCDF	294	pg/g	D,M	J	23,25
9353	SSI-SC-DUP-04	9353-006	EPA1613B	Total PeCDF	83.6	pg/g	D,M	J	23,25
9353	SSI-SC-DUP-04	9353-006	EPA1613B	Total TCDF	38.6	pg/g	D,M	J	23,25
9354	SSI-SC-01_0-2	9354-001	EPA1613B	1,2,3,4,6,7,8-HpCDD	6000	pg/g		J	9
9354	SSI-SC-01_0-2	9354-001	EPA1613B	1,2,3,4,6,7,8-HpCDF	578	pg/g		J	9
9354	SSI-SC-01_0-2	9354-001	EPA1613B	1,2,3,4,7,8,9-HpCDF	29.2	pg/g		J	9
9354	SSI-SC-01_0-2	9354-001	EPA1613B	OCDD	68000	pg/g		J	9
9354	SSI-SC-01_0-2	9354-001	EPA1613B	OCDF	3050	pg/g		J	9
9354	SSI-SC-01_0-2	9354-001	EPA1613B	Total HpCDD	12000	pg/g		J	9
9354	SSI-SC-01_0-2	9354-001	EPA1613B	Total HpCDF	2910	pg/g		J	9
9354	SSI-SC-01_0-2	9354-001	EPA1613B	Total HxCDF	716	pg/g	D,M	J	9,23,25
9354	SSI-SC-01_0-2	9354-001	EPA1613B	Total PeCDF	133	pg/g	D,M	J	23,25
9354	SSI-SC-01_0-2	9354-001	EPA1613B	Total TCDF	71.5	pg/g	D,M	J	23,25
9354	SSI-SC-01_2-4	9354-002	EPA1613B	Total HxCDF	419	pg/g	D,M	J	23,25
9354	SSI-SC-01_2-4	9354-002	EPA1613B	Total TCDF	70.8	pg/g	D,M	J	23,25
9354	SSI-SC-04_0-2	9354-006	EPA1613B	Total TCDD	22.7	pg/g		J	9
9354	SSI-SC-04_0-2	9354-006	EPA1613B	Total TCDF	24.6	pg/g	М	J	25
9354	SSI-SC-04_2-4	9354-007	EPA1613B	Total HxCDF	366	pg/g	D,M	J	9,23,25
9354	SSI-SC-04_2-4	9354-007	EPA1613B	Total PeCDF	75.1	pg/g	D,M	J	23,25

Qualified Data Summary Table R.G. Haley Site - Supplemental Sediment Investigation

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flag	DV Qualifier	DV Reason
9354	SSI-SC-04_2-4	9354-007	EPA1613B	Total TCDF	60.4	pg/g	D,M	J	23,25
9354	SSI-SC-DUP-01	9354-004	EPA1613B	1,2,3,4,6,7,8-HpCDD	2190	pg/g		J	9
9354	SSI-SC-DUP-01	9354-004	EPA1613B	1,2,3,4,6,7,8-HpCDF	234	pg/g		J	9
9354	SSI-SC-DUP-01	9354-004	EPA1613B	1,2,3,4,7,8,9-HpCDF	13.8	pg/g		J	9
9354	SSI-SC-DUP-01	9354-004	EPA1613B	OCDD	22300	pg/g		J	9
9354	SSI-SC-DUP-01	9354-004	EPA1613B	OCDF	629	pg/g		J	9
9354	SSI-SC-DUP-01	9354-004	EPA1613B	Total HpCDD	4550	pg/g		J	9
9354	SSI-SC-DUP-01	9354-004	EPA1613B	Total HpCDF	821	pg/g		J	9
9354	SSI-SC-DUP-01	9354-004	EPA1613B	Total HxCDF	421	pg/g	D,M	J	23,25
9354	SSI-SC-DUP-01	9354-004	EPA1613B	Total PeCDF	126	pg/g	D,M	J	23,25
9354	SSI-SC-DUP-01	9354-004	EPA1613B	Total TCDF	67.2	pg/g	D,M	J	23,25
9354	SSI-SC-DUP-03	9354-005	EPA1613B	Total TCDD	41.0	pg/g		J	9

APPENDIX D Updated RI Data Summary Statistics

Table D-1

Updated Remedial Investigation Summary Statistics R.G. Haley Site Bellingham, Washington

Sediment Depth Zone	Analyte	Total Samples per Depth Zone	Frequency of Detection (%)	Minimum Detection Limit	Maximum Detection Limit	Minimum Dectected Concentration	Mean Dectected Concentration	Median Detected Concentration	Maximum Detected Concentration	Maximum Concentration - <u>TOC-Normalized</u>	Frequency of Exceedance - Detects Only (%)	Magnitude of Exceedance of Dry-weight Screening Levels	Magnitude of Exceedance of TOC- normalized Screening Levels	Dry-weight Sediment Screening Level	TOC-Normalized Screening Level
Surface	Diesel-range hydrocarbons	13	46.2	6.1	21	12	57.0	18.0	220	NA	Evaluated as part of TPH	Evaluated as part of TPH	NA	Evaluated as part of TPH	NA
Surface	Heavy Oil-Range Hydrocarbons	13	92.3	12	12	42	131.8	87.5	430	NA	Evaluated as part of TPH	Evaluated as part of TPH	NA	Evaluated as part of TPH	NA
Surface	Total Petroleum Hydrocarbons	13	92.3	12	12	54	160.8	89.5	650	NA	15.4	2.5	NA	260 mg/kg	NA
Surface	Total Dioxin/Furan TEQ (ND=0.5DL) - Human/Mammal	32	100	NA	NA	9.49	52.2	31.1	200.8	NA	100	13.4	NA	15 ng/kg	NA
Surface	1-Methylnaphthalene	5	60	20	20	15	22.0	25.0	26	NA	No screening level	No screening level	No screening level	No screening level	No screening level
Surface	Total cPAH TEQ (ND=0.5RL)	36	100	NA	NA	8.28	386.5	173.0	3494	NA	83.3	166	NA	21 µg/kg	NA
Surface	1,2,4-Trichlorobenzene	28	0	2	88	NA	NA	28.8	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
Surface	1,3-Dichlorobenzene (m-Dichlorobenzene)	28	0	2	88	NA	NA	29.8	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
Surface	Hexachloroethane	10	0	19	88	NA	NA	38.8	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
Surface	Hexachlorobutadiene	27	0	3.6	88	NA	NA	26.1	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
Surface	N-Nitrosodiphenylamine (as diphenylamine)	28	0	3.6	88	NA	NA	29.1	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
Surface	Benzoic Acid	28	14.3	190	1800	110	337.5	370.0	500	NA	0	<1	NA	650 µg/kg	NA
Surface	Benzyl Alcohol	28	10.7	19	130	37	55.0	50.0	78	NA	3.6	1.4	NA	57 μg/kg	NA
Surface	2,4-Dimethylphenol	28	17.9	4.2	440	19	41.8	42.0	82	NA	10.7	2.8	NA	29 µg/kg	NA
Surface	2.4-Dimethylphenol 2-methylphenol (o-Cresol)	28	14.8	4.2	88	24	35.5	35.5	47	NA	0	<1	NA		NA
Surface	2-methylphenol (o-Cresol) 4-methylphenol (p-Cresol)	27	35.7	4.2	88	24	35.5 207.1	35.5 176.0	47	NA	0	<1 <1	NA	63 µg/kg 670 µg/kg	NA
	, , , , , , , , , , , , , , , , , , ,										-				
Surface	Pentachlorophenol	33	69.7	93	510	12	240.6	180.0	580	NA	42.4	5.8	NA	100 µg/kg	NA
Surface	Phenol	28	32.1	15	270	30	168.0	170.0	410	NA	0	<1	NA	420 µg/kg	NA
Surface	Mercury	14	100	NA	NA	0.05	0.3	0.3	0.45	NA	7.1	1.1	NA	0.41 mg/kg	NA
Sub-surface	Diesel-range hydrocarbons	82	67.1	6.4	37	8.3	1224.4	130.0	37000	NA	Evaluated as part of TPH	Evaluated as part of TPH	NA	Evaluated as part of TPH	NA
Sub-surface	Heavy Oil-Range Hydrocarbons	82	80.5	13	44	22	1199.5	190.0	27000	NA	Evaluated as part of TPH	Evaluated as part of TPH	NA	Evaluated as part of TPH	NA
Sub-surface	Total Petroleum Hydrocarbons	82	84.1	13	44	8.3	2099.3	260.0	50000	NA	42.7	192	NA	260 mg/kg	NA
Sub-surface	Total Dioxin/Furan TEQ (ND=0.5DL) - Human/Mammal	57	100	NA	NA	0.468	130.2	50.1	608	NA	86	40	NA	15 ng/kg	NA
Sub-surface	1-Methylnaphthalene	35	68.6	19	150	9.5	260.3	46.5	4700	NA	No screening level	No screening level	No screening level	No screening level	No screening level
Sub-surface	Total cPAH TEQ (ND=0.5RL)	97	81.4	1.058	1613	4.45	680.9	290.0	12080	NA	74.2	575	NA	21 µg/kg	NA
Sub-surface	1,2,4-Trichlorobenzene	75	0	0.93	490	NA	NA	27.1	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
Sub-surface	1,2-Dichlorobenzene (o-Dichlorobenzene)	75	0	0.93	490	NA	NA	26.8	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
Sub-surface	1,3-Dichlorobenzene (m-Dichlorobenzene)	75	0	0.93	490	NA	NA	26.8	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
Sub-surface	Hexachlorobenzene	81	0	1.5	490	NA	NA	25.5	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
Sub-surface	Hexachloroethane	38	0	7.6	490	NA	NA	50.4	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
Sub-surface	Hexachlorobutadiene	73	0	1.5	490	NA	NA	27.4	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
Sub-surface	Benzoic Acid	74	2.7	31	9700	82	166.0	166.0	250	NA	0	<1	NA	650 µg/kg	NA
Sub-surface	Benzyl Alcohol	74	2.7	1.5	490	6.9	12.4	12.5	18	NA	0	<1	NA	57 µg/kg	NA
Sub-surface	2,4.5-Trichlorophenol	5	0	330	1390	NA	NA	703.8	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
Sub-surface	2,4.6-Trichlorophenol	5	0	330	1390	NA	NA	703.8	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
Sub-surface	2,4,0 metholphenol	75	24	1.5	2500	4.1	22.9	16.0	110	NA	5.3	3.8	NA	29 µg/kg	NA
Sub-surface	2-methylphenol (o-Cresol)	75	24	1.5	2500	4.1	18.2	8.8	59	NA	0	<1	NA	63 µg/kg	NA
Sub-surface	4-methylphenol (p-Cresol)	75	53.3	1.5	490	4.6	101.0	66.0	440	NA	0	<1	NA	670 μg/kg	NA
Sub-surface	Pentachlorophenol	95	63.2	1.9	490 1160	1.9 5.6	600.5	240.0	440	NA	45.3	47	NA		NA
Sub-surface	Pentachiorophenol	95 75	41.3	2.1	490	3.1		240.0		NA	45.3	1.1	NA	100 µg/kg	NA
			94.9				80.9		470	NA	-	1.1 28	NA	420 μg/kg	
Sub-surface	Mercury	39		0.09	0.2	0.05	0.9	0.4	11.3		46.2			0.41 mg/kg	NA
All Depth Intervals, Combined	Diesel-range hydrocarbons	95	64.2	6.1	37	8.3	1109.6	110.0	37000	NA	Evaluated as part of TPH		NA	Evaluated as part of TPH	NA
All Depth Intervals, Combined	Heavy Oil-Range Hydrocarbons	95	82.1	12	44	22	1035.3	160.0	27000	NA	Evaluated as part of TPH		NA	Evaluated as part of TPH	NA
All Depth Intervals, Combined	Total Petroleum Hydrocarbons	95	85.3	12	44	8.3	1812.1	220.0	50000	NA	38.9	192	NA	260 mg/kg	NA
All Depth Intervals, Combined	Total Dioxin/Furan TEQ (ND=0.5DL) - Human/Mammal	89	100	NA	NA	0.468	102.2	44.2	608	NA	91	40	NA	15 ng/kg	NA
All Depth Intervals, Combined	1-Methylnaphthalene	40	67.5	19	150	9.5	233.8	34.0	4700	NA	No screening level	No screening level	No screening level	No screening level	No screening level
All Depth Intervals, Combined	Total cPAH TEQ (ND=0.5RL)	133	86.5	1.058	1613	4.45	588.7	226.5	12080	NA	76.7	575	NA	21 µg/kg	NA
All Depth Intervals, Combined	1,2,4-Trichlorobenzene	103	0	0.93	490	NA	NA	27.6	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
All Depth Intervals, Combined	1,3-Dichlorobenzene (m-Dichlorobenzene)	103	0	0.93	490	NA	NA	27.6	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
All Depth Intervals, Combined	Hexachloroethane	48	0	7.6	490	NA	NA	47.9	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
All Depth Intervals, Combined	Hexachlorobutadiene	100	0	1.5	490	NA	NA	27.0	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
All Depth Intervals, Combined	Benzoic Acid	102	5.9	31	9700	82	280.3	300.0	500	NA	0	<1	NA	650 µg/kg	NA
All Depth Intervals, Combined	Benzyl Alcohol	102	4.9	1.5	490	6.9	38.0	37.0	78	NA	1	1.4	NA	57 µg/kg	NA
				330	1390	NA	NA	703.8			1	Not detected	1	Not a COC	Not a COC

Sediment Depth Zone	Analyte	Total Samples per Depth Zone	Frequency of Detection (%)	Minimum Detection Limit	Maximum Detection Limit	Minimum Dectected Concentration	Mean Dectected Concentration		Maximum Detected Concentration	Maximum Concentration - <u>TOC-Normalized</u>	Frequency of Exceedance - Detects Only (%)	Magnitude of Exceedance of Dry-weight Screening Levels	Magnitude of Exceedance of TOC- normalized Screening Levels	Dry-weight Sediment Screening Level	TOC-Normalized Screening Level
All Depth Intervals, Combined	2,4,6-Trichlorophenol	5	0	330	1390	NA	NA	703.8	Not detected	Not detected	Not detected	Not detected	Not detected	Not a COC	Not a COC
All Depth Intervals, Combined	2,4-Dimethylphenol	103	22.3	1.5	2500	4.1	27.0	19.0	110	NA	6.8	3.8	NA	29 µg/kg	NA
All Depth Intervals, Combined	2-methylphenol (o-Cresol)	102	19.6	1.5	2500	4.6	21.7	18.5	59	NA	0	<1	NA	63 µg/kg	NA
All Depth Intervals, Combined	4-methylphenol (p-Cresol)	103	48.5	1.9	490	1.9	122.2	73.5	450	NA	0	<1	NA	670 µg/kg	NA
All Depth Intervals, Combined	Pentachlorophenol	128	64.8	1.5	1160	5.6	500.8	230.0	4700	NA	44.5	47	NA	100 µg/kg	NA
All Depth Intervals, Combined	Phenol	103	38.8	2.1	490	3.1	100.5	31.5	470	NA	1.9	1.1	NA	420 µg/kg	NA
All Depth Intervals, Combined	Mercury	53	96.2	0.09	0.2	0.05	0.7	0.3	11.3	NA	35.8	28	NA	0.41 mg/kg	NA

Notes:

COC = contaminant of concern

cPAH = carcinogenic polycyclic aromatic hydrocarbons

DL = detection limit

HPAH = high molecular weight polycyclic aromatic hydrocarbons LPAH = low molecular weight polycyclic aromatic hydrocarbons

mg/kg = milligrams per kilogram

NA = not applicable

ND = not detected

ng/kg = nanograms per kilogram

OC = organic carbon

RL = reporting limit

TEQ = toxicity equivalent TOC = total organic carbon

TPH - total petroleum hydrocarbons

µg/kg = micrograms per kilogram

APPENDIX E Toxicity Testing Report

BIOLOGICAL TESTING RESULTS R. G. HALEY SEDIMENT CHARACTERIZATION BELLINGHAM, WA

Prepared for: GeoEngineers, Inc Redmond, WA

On behalf of: City of Bellingham Bellingham, WA

Prepared by: Ramboll Environ US Corporation 4770 NE View Dr. PO Box 216 Port Gamble, Washington 98364

Ramboll Environ Report ID: 122315.01

Submittal Date: February 3, 2015

CONTENTS

СС	ONTE	NTSI
TA	BLES	۶۱۱
1	ΙΝΊ	IRODUCTION 1
2	ME	THODS 1
	2.1 2.2 2.3 2.4 2.5 2.6	SAMPLE COLLECTION SAMPLE AND ANIMAL RECEIPT 1 SAMPLE GRAIN SIZE AND REFERENCE COMPARISON 1 ULTRA-VIOLET LIGHT EXPOSURE 2 10-DAY AMPHIPOD BIOASSAY 3 20-DAY JUVENILE POLYCHAETE BIOASSAY 4 LARVAL DEVELOPMENTAL BIOASSAY 5
	2.7	DATA ANALYSIS AND QA/QC6
3		DATA ANALYSIS AND QA/QC 6 SULTS 7
3		
3	RES 3.1 3.2 3.3	SULTS 7 10-day Amphipod Bioassay 7 20-day Juvenile Polychaete Bioassay 11
3	RES 3.1 3.2 3.3	SULTS710-DAY AMPHIPOD BIOASSAY
3	RES 3.1 3.2 3.3 DIS 4.1 4.2 4.3	SULTS710-DAY AMPHIPOD BIOASSAY720-DAY JUVENILE POLYCHAETE BIOASSAY11LARVAL DEVELOPMENT BIOASSAY16SCUSSION20AMPHIPOD TEST SUITABILITY DETERMINATION20JUVENILE POLYCHAETE TEST SUITABILITY DETERMINATION21

TABLES

Table 2-1. Sample and Reference Grain Size Comparison	2
Table 3-1. Test Results for Eohaustorius estuarius.	8
Table 3-2. Water Quality Summary for <i>Eohaustorius estuarius</i>	
Table 3-3. Ammonia Summary for Eohaustorius estuarius	9
Table 3-4. Sulfide Summary for Eohaustorius estuarius.	9
Table 3-5. Test Condition Summary for Eohaustorius estuarius.	
Table 3-6. Test Results for Neanthes arenaceodentata.	
Table 3-7. Water Quality Summary for Neanthes arenaceodentata	
Table 3-8. Ammonia Summary for Neanthes arenaceodentata.	13
Table 3-9. Sulfide Summary for Neanthes arenaceodentata	
Table 3-10. Test Condition Summary for Neanthes arenaceodentata.	
Table 3-11. Test Results for <i>Mytilus galloprovincialis</i>	
Table 3-12. Water Quality Summary for Mytilus galloprovincialis	17
Table 3-13. Ammonia and Sulfide Summary for Mytilus galloprovincialis.	
Table 3-14. Test Condition Summary for Mytilus galloprovincialis.	19
Table 3-15. SMS Comparison for <i>Eohaustorius estuarius</i>	
Table 3-16. SMS Comparison for Neanthes arenaceodentata	
Table 3-17. SMS Comparison for Mytilus galloprovincialis	
Table 3-18. Summary of SMS Evaluation	23

ACRONYMS AND ABBREVIATIONS

AFDW:	Ash-free dry weight
ARI:	Analytical Resources, Inc., Tukwila, WA
cm:	Centimeter
CSL:	Cleanup Screening Level
°C:	Degrees Celsius
EC ₅₀ :	Effective Concentration that results in a 50% reduction in a sub-lethal endpoint
g:	Grams
LC ₅₀ :	Lethal Concentration that results in a 50% reduction in survival
L:	Liter
µm:	Micrometer
mg:	Milligram
mg/L:	Milligrams per liter
mL:	Milliliter
mm:	Millimeter
NELAP:	National Environmental Laboratory Accreditation Program
NOEC:	No Observed Effect Concentration
ppt:	parts per thousand
PSEP:	Puget Sound Estuary Protocols (PSEP 1995)
SCO:	Sediment Cleanup Objective
SMS:	Sediment Management Standards
SOP:	Standard operation procedure
SSAPA:	Sediment Sampling and Analysis Plan Appendix (SSAPA; WDOE 2008)
SMARM:	Sediment Management Annual Review Meeting
UIA:	Un-ionized ammonia
USACE:	United States Army Corps of Engineers
USEPA:	United States Environmental Protection Agency
WA:	Washington State
WAC:	Washington Administrative Code
WDOE:	Washington (State) Department of Ecology

All testing reported herein was performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Ramboll Environ is not responsible for use of less than the complete report. The test results summarized in this report apply only to the sample(s) evaluated.

Brian Hester

Brian Hester Laboratory Director

Authors: Jay Word – Program Coordinator Bridget Gregg – Quality Assurance Brian Hester - Laboratory Director

1 INTRODUCTION

Ramboll Environ conducted biological toxicity testing with sediment samples collected by GeoEngineers, Inc. as part of a pre-design investigation being performed at the R. G. Haley Site in Bellingham, Washington. Sediments were evaluated for biological effects following guidance provided by the Washington State Department of Ecology (WDOE) Sediment Management Standards (SMS) under the Washington Administrative Code (WAC) 173-204-315. This report presents the results of the toxicity testing portion of the R. G. Haley sediment investigation.

2 METHODS

This section summarizes the test methods followed for this biological characterization. Test methods followed guidance provided by the Puget Sound Estuary Program (PSEP 1995), the Sediment Cleanup User's Manual II (SCUM II; WDOE 2015), and the various updates presented during the Sediment Management Annual Review Meeting (SMARM). Sediment toxicity was evaluated using three standard PSEP bioassays; the 10-day amphipod test, the 20-day juvenile polychaete survival and growth test, and the 48-hour benthic larval development test.

2.1 Sample Collection Sample and Animal Receipt

Test sediments were collected on October 12, 2015 and three were received at Ramboll Environ on November 30 and December 4, 2015. Reference sediment from Carr Inlet, WA was collected by Ramboll Environ on December 4, 2015 and received on the same day. Sediment samples were stored in a walk-in cold room at $4 \pm 2^{\circ}$ C in the dark. The test sediment was not sieved prior to testing. All tests were conducted within the eight week holding time.

Amphipods (*Eohaustorius estuarius*) were supplied by Northwestern Aquatic Sciences in Newport, Oregon. Animals were held in native sediment at 15°C prior to test initiation. Juvenile polychaete worms (*Neanthes arenaceodentata*) were obtained from Aquatic Toxicology Support in Bremerton, Washington. Juvenile polychaetes were held in seawater at 20°C (Neanthes were cultured in water-only and were not held in sediment prior to testing). *Mytilus galloprovincialis* (mussel) broodstock were provided by Taylor Shellfish in Shelton, WA. Broodstock were held in unfiltered seawater at 16°C prior to spawning.

Native *Eohaustorius* sediment from Yaquina Bay, Oregon was also provided by Northwest Aquatic Sciences for use as control sediment treatments for the amphipod and juvenile polychaete tests.

2.2 Sample Grain Size and Reference Comparison

Sediment grain size is one of the characteristics used in selecting the appropriate reference sediment(s) to compare the chemical and biological responses of project sediments. The percent fines value is defined as the amount of sediment that passes through a 62.5- μ m sieve, expressed as a percentage of the total sample analyzed. This is also the sum of the silt and clay fraction of sediment. Wet-sieve grain size results for the reference sample was conducted in the field (at the time of collection) by Ramboll Environ. The percent-fines determination of the project sediments are summarized in Table 2-1.

Treatment	Percent Fines ¹	Treatment Compared To:
CR22 (Reference)	24%	
SS1-SS-03_0-12	26%	CR22
SS1-SS-05_0-12	19%	CR22
SS1-SS-06_0-12	28%	CR22

Table 2-1. Sample and Reference Grain Size Comparison.

¹ Wet sieve results

All project samples were compared to the reference CR22.

2.3 Ultra-Violet Light Exposure

Test sediment samples were exposed to ultra-violet (UV) light during the entire test exposure. The UV light regime followed guidance provided by Appendix C of SCUM II (WDOE 2015). UV light was provided by fluorescent light ballast containing one Duro-Test Vita-Lite® (40W, 5500°K, 91 CRI) fluorescent bulb and one standard fluorescent bulb (Phillips F40CW). The UV bulbs were placed within 12" above the sediment surface. All test chambers in the UV exposures were left uncovered to prevent any UV loss. Tests were conducted on water-tables to ensure that the additional lighting did not alter water temperatures in the test chambers. In all other respects, the methods followed the standard testing protocols are summarized below.

2.4 10-day Amphipod Bioassay

The 10-day acute toxicity test with *E. estuarius* was initiated on December 7, 2015. To prepare the test exposures, approximately 175 mL of sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 775 mL of 0.45- μ m filtered seawater at 28 ppt. The control and reference sediment were tested concurrently with the test treatment. Five replicates were used to evaluate sediment toxicity while the remaining two replicates were designated as sacrificial surrogate chambers. One surrogate chamber was sacrificed at test initiation to measure porewater and overlying ammonia and sulfides. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as porewater and overlying ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/2800 Spectrophotometer.

Test chambers were placed in randomly assigned positions in a 15°C water bath and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured in the surrogate chamber for each treatment. Dissolved oxygen (DO), temperature, pH, and salinity were then monitored in the surrogate chambers daily until test termination. Target test parameters were:

Dissolved Oxygen:	≥5.1 mg/L
pH:	7 - 9 units
Temperature:	15 ± 1°C
Salinity:	28 ± 1ppt

The tests were initiated by randomly allocating 20 *E. estuarius* into each test chamber, ensuring that each of the amphipods successfully buried into the sediment. Amphipods that did not bury within approximately one hour were replaced with healthy amphipods. The 10-day amphipod bioassay was conducted as a static test with no feeding during the exposure period. At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered amphipods transferred into a Petri dish. The number of surviving and dead amphipods was then determined under a dissecting microscope.

A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity to any ammonia concentrations that might be present in the sediments.

2.5 20-day Juvenile Polychaete Bioassay

The 20-day chronic toxicity test with *N. arenaceodentata* was initiated on December 4, 2015. Test exposures were prepared with approximately 175 mL of sediment placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 775 mL of 0.45- μ m filtered seawater at 28 ppt. The control and reference sediment were tested concurrently with the test treatment. Five replicates were used to evaluate sediment toxicity while the remaining two replicates were designated as sacrificial surrogate chambers. One surrogate chamber was sacrificed at test initiation to measure overlying and interstitial ammonia and sulfides. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as overlying and interstitial ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/2800 Spectrophotometer.

Test chambers were placed in randomly assigned positions in a water bath at 20°C and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured. Dissolved oxygen, temperature, pH, and salinity were then monitored in the surrogates daily until test termination. Target test parameters were:

Dissolved Oxygen:	≥4.6 mg/L
pH:	7 - 9 units
Temperature:	20 ± 1°C
Salinity:	28 ± 2 ppt

The juvenile polychaete test was initiated by randomly allocating five *N. arenaceodentata* into each test chamber, and observing whether each of the worms successfully buried into the sediment. Worms that did not bury within approximately one hour were replaced with healthy worms. The 20-day test was conducted as a static-renewal test, with exchanges of 300 mL of water occurring every third day. *N. arenaceodentata* were fed every other day with 40 mg of TetraMarin® (approximately 8 mg dry weight per worm). At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered worms transferred into a Petri dish. The number of surviving and dead worms was determined. All surviving worms were then transferred to pre-weighed, aluminum foil weigh-boats, and dried in a drying oven at 60°C for approximately 24 hours. Each weigh-boat was removed, cooled in a dessicator, and then weighed on a microbalance to 0.01 mg. Each of the weigh boats was then heated to 550°C for 2 hours in order to determine the ashed weight. Ash-free dry weights (AFDW) were calculated to correct for the influence of sediment grain size differences between treatments. The ashed boats were weighed to 0.01 mg and the ashed weight was subtracted from the dry weight to calculate the AFDW. Both dry weight and AFDW were used to determine individual worm weight and growth rates.

A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity to any ammonia concentrations that might be present in the sediments.

2.6 Larval Developmental Bioassay

Test sediment was evaluated using the larval benthic toxicity test with the mussel, *M. galloprovincialis*. The mussel larval test was initiated on December 7, 2015. The control and reference sediment were tested with the test treatments. To prepare the test exposures, 18 g (\pm 1 g) of test sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled to 900 mL with 0.45-µm filtered seawater. Six replicate chambers were prepared for the test treatment, reference sediment, and the native sediment control treatment. Five of the replicates were used to evaluate the test; the sixth replicate was used as a water quality surrogate. Each chamber was shaken for 10 seconds and then placed in predetermined randomly-assigned positions in a water bath at 16°C.

To collect gametes for each test, mussels were placed in clean seawater and acclimated at 16°C for approximately 20 minutes. The water bath temperature was then increased over a period of 15 minutes to 20°C. Mussels were held at 20°C and monitored for spawning individuals. Spawning females and males were removed from the water bath and placed in individual containers with seawater. These individuals were allowed to spawn until sufficient gametes were available to initiate the test. After the spawning period, eggs are transferred to fresh seawater and filtered through a 0.5 mm Nitex® mesh screen to remove large debris, feces, and excess gonadal matter. A composite was made of the sperm and diluted with fresh seawater. The fertilization process was initiated by adding sperm to the isolated egg containers. Egg-sperm solutions were periodically homogenized with a perforated plunger during the fertilization process and sub-samples observed under the microscope for egg and sperm viability. Approximately one to one and a half hours after fertilization, embryo solutions were checked for fertilization rate. Only those embryo stocks with >90% fertilization were used to initiate the tests. Embryo solutions were rinsed free of excess sperm and then combined to create one embryo stock solution. Density of the embryo stock solution was determined by counting the number of embryos in a subsample of homogenized stock solution. This was used to determine the volume of embryo stock solution to deliver approximately 20,000 to 40,000 embryos to each test chamber.

Dissolved oxygen, temperature, pH, and salinity were monitored in water quality surrogates to prevent loss or transfer of larvae by adhesion to water-quality probes. Ammonia and sulfides in the overlying water were measured on Day 0 and Day 2 (test termination). Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S⁻² were monitored using a HACH DR/2800V Spectrophotometer. Target test parameters were as follows:

Dissolved Oxygen:	≥4.8 mg/L
pH:	7 - 9 units
Temperature:	16 ± 1°C
Salinity:	28 ± 1ppt

The development test was conducted as a static test without aeration. The protocol calls for test termination when 95% of the embryos in the control have reached the prodissoconch I stage (approximately 48-60 hours). At termination, the overlying seawater was decanted into a clean 1-L jar and mixed with a perforated plunger. From this container, a 10 mL subsample was transferred to a scintillation vial and preserved in 5% buffered formalin. Larvae were subsequently stained with a dilute solution of Rose Bengal in 70% alcohol to help visualization of larvae. The number of normal and abnormal larvae was enumerated on an inverted microscope. Normal larvae included all D-shaped prodissoconch I stage larvae. Abnormal larvae included abnormally shaped prodissoconch I larvae and all early stage larvae.

A water-only reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity to ammonia concentrations that would possibly be present in the sediments.

2.7 Data Analysis and QA/QC

All water quality and endpoint data were entered into Excel spreadsheets. Water quality parameters were summarized by calculating the mean, minimum, and maximum values for each test treatment. Endpoint data were calculated for each replicate and the mean values and standard deviations were determined for each test treatment.

All hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting were reviewed for errors. Review counts were conducted on any apparent outliers.

For the larval test, the percent of normal larvae when compared to the reference was the endpoint used to evaluate the test sediment. This was based on the number of normal larvae in each treatment divided by the number normal in the reference sample, as defined in the SCUM II guidance document (WDOE 2015).

For SMS suitability determinations, comparisons were made according SCUM II (WDOE 2015) and Fox et al. (1998). Data reported as percent mortality or survival were transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Wilk-Shapiro test and equality of variance using Levene's test. Determinations of statistical significance were based on one-tailed Student's t-tests with an alpha of 0.05. A comparison of the larval endpoint relative to the reference was made using an alpha level of 0.10. For samples failing to meet assumptions of normality, a Mann-Whitney test was conducted to determine significance. For those samples failing to meet the assumptions of normality and equality of variance, a t-test on rankits was used.

3 RESULTS

The results of the sediment testing, including a summary of test results and water quality observations are presented in this section. Data for each of the replicates, as well as laboratory bench sheets are provided Appendix A and statistical analyses are provided in Appendix B.

3.1 10-day Amphipod Bioassay

The bioassay test with *E. estuarius* was validated with 0% mortality in the native sediment control, which met the performance criterion of $\leq 10\%$ mortality for SMS evaluations. This result indicates that the test conditions were suitable for adequate amphipod survival. Mean mortality in the reference treatment CR22 was 5% which met the performance criteria ($\leq 25\%$ mortality) and indicated that the reference sediment was acceptable for suitability determination. Mean mortality in the three project samples was 1%. All endpoint results are summarized in Table 3-1.

Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Table 3-2, Table 3-3, Table 3-4, and Table 3-5.

All water quality parameters were within the acceptable limits throughout the duration of the test, with the exception of minor deviations in temperature and salinity. Temperature was recorded slightly above the targeted range of $15\pm1^{\circ}C$ (Max value $16.5^{\circ}C$). The temperature control system was adjusted upon discovery and temperatures returned to the targeted range for the duration of the test. These deviations would not be expected to affect the significance of the test results.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The LC_{50} value was well within control chart limits (±2 standard deviations from the laboratory historical mean). This result indicates that the test organisms used in this study were of similar sensitivity to those previously tested at Ramboll Environ.

Ammonia concentrations observed in the *E. estuarius* test were below the No Observed Effect Concentration (NOEC) value derived from the concurrent ammonia reference-toxicant test (Table 3-3; compare to NOEC of 138 mg/L). Values were also below the published threshold concentration of 15 mg/L total ammonia (Barton 2002). Therefore ammonia concentrations within the sediment samples should not have been a contributor to any adverse biological effects observed in the test treatments. Initial sulfide concentrations in interstitial water were below 0.3 mg/L in all samples except for the reference. Due to the high survival observed in the reference treatment this value was not be expected affect the outcome of the testing.

Treatment	Replicate	Number	Number	Percentage	Mean Pe	ercentage	Standard	
meatment	Initiated Surviving		Survival	Survival Mortalit		Deviation		
	1	20	20	100				
	2	20	20	100				
Control	3	20	20	100	100	0	0.0	
	4	20	20	100				
	5	20	20	100				
	1	20	19	95				
6022	2	20	19	95				
CR22 (Reference)	3	20	18	90	95	95 5	3.5	
(Reference)	4	20	20	100				
	5	20	19	95				
	1	20	20	100				
	2	20	20	100		1	l	
SS1-SS-03_0-12	3	20	20	100	99		2.2	
	4	20	19	95				
	5	20	20	100				
	1	20	20	100				
	2	20	19	95				
SS1-SS-05_0-12	3	20	20	100	99	1	2.2	
	4	20	20	100				
	5	20	20	100				
	1	20	19	95				
	2	20	20	100				
SS1-SS-06_0-12	3	20	20	100	99	1	2.2	
	4	20	20	100]			
	5	20	20	100				

Table 3-1. Test Results for *Eohaustorius estuarius*.

Table 3-2. Water Quality Summary for *Eohaustorius estuarius*.

Treatment	Dissol (ved O [mg/L]		Ten	nperat (°C)	ure	Sali	nity (p	opt)	рН	(unit	s)
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Мах
Control	8.2	7.7	8.5	15.8	15.6	16.5	28	28	29	8.1	8.0	8.2
CR22 (Reference)	8.2	7.8	8.7	16.0	15.7	16.3	28	28	29	8.1	8.0	8.3
SS1-SS-03_0-12	8.1	7.6	8.5	15.8	15.5	16.2	29	28	30	8.3	8.1	8.5
SS1-SS-05_0-12	8.1	7.5	8.6	15.9	15.7	16.2	28	28	29	8.2	8.0	8.5
SS1-SS-06_0-12	8.1	7.5	8.6	15.8	15.6	16.4	29	28	29	8.3	8.1	8.6

Treatment	Overlying (mg/L			l Ammonia Total)
	Day 0	Day 10	Day 0	Day 10
Control	0.00	0.00	0.00	0.00
CR22 (Reference)	0.00	0.00	1.83	1.43
SS1-SS-03_0-12	0.342	0.00	5.39	1.73
SS1-SS-05_0-12	0.872	0.00	8.79	4.35
SS1-SS-06_0-12	1.53	0.00	12.3	4.78

Table 3-3. Ammonia Summary for <i>Eohaustorius estuarius</i> .
--

NOEC (concurrent reference-toxicant test derived) = 138 mg/L

Treatment	Overlying (mg	g Sulfides g/L)	Interstitia (mç	al Sulfides ŋ/L)
	Day 0	Day 10	Day 0	Day 10
Control	0.000	0.000	ND	0.270
CR22 (Reference)	0.024	0.005	1.16	0.310
SS1-SS-03_0-12	0.041	0.000	0.119	0.168
SS1-SS-05_0-12	0.027	0.005	0.142	0.148
SS1-SS-06_0-12	0.002	0.007	0.126	0.154

ND – no data; insufficient volume for analysis.

Test (Conditions: PSEP E. estuarius	;			
Sample Identification	Control, CR22, SS1-SS-0	03_0-12, SS1-SS-05_0-12,			
Sample Identification	SS1-SS-06_0-12				
Date sampled	October	12, 2015			
Date received	November 30 and	l December 4, 2015			
Test dates	December 7 – D	ecember 17, 2015			
Sample storage conditions	4°C	, dark			
Days of holding	56	Days			
Recommended: ≤8 weeks (56 days)	50				
Source of control sediment	Yaquina	a Bay, OR			
Test Species	E. es	tuarius			
Supplier	Northwestern Aquatic	Sciences, Newport, OR			
Date acquired	Decemb	er 4, 2015			
Age class	Mature ad	ult, 3-5 mm			
Test Procedures	PSEP 1995 with	SMARM revisions			
Test location	Ramboll Environ Po	rt Gamble Laboratory			
Test type/duration	10-Day static				
Control water	North Hood Canal seawater, 0.45µm filtered				
Test dissolved oxygen	Recommended: > 5.1 mg/L	Observed: 7.5 – 8.7 mg/L			
Test temperature	Recommended: 15 \pm 1 °C	Observed: 15.5 – 16.5°C			
Test Salinity	Recommended: 28 ± 1 ppt	Observed: 28 - 30 ppt			
Test pH	Recommended: 7 - 9	Observed: 8.0 - 8.6			
Control Performance Standard	Recommended:	Observed: 00/ mentality: Dage			
SMS	Control \leq 10% mortality	Observed: 0% mortality; Pass			
Reference Performance Standard	Recommended:	Observed mortality: 5%; Pass			
SMS	Reference \leq 25% mortality	Observed mortality: 570, 1 ass			
Reference Toxicant LC ₅₀	$\int C_{50} = 1$	80.1 mg/L			
(total ammonia)					
Mean; Acceptable Range	142.1: 35.3	– 248.8 mg/L			
(total ammonia)	,				
NOEC (total ammonia)		mg/L			
NOEC (unionized ammonia)		mg /L			
Test Lighting		pectrum lighting per			
		Appendix C			
Test chamber		ass Chamber			
Replicates/treatment	5 + 2 surrogates (one used for WQ measurements throughout test)				
Organisms/replicate		20			
Exposure volume	175 mL sedime	nt/ 775 mL water			
Feeding	N	one			
Water renewal	N	None			
Deviations from Test Protocol	Temperatur	e and Salinity			

Table 3-5.Test Condition Summary for Echaustorius estuarius.

3.2 20-day Juvenile Polychaete Bioassay

No mortality was observed in the *N. arenaceodentata* control sediment and mean individual growth (MIG) in the control sediment was 0.902 mg/ind/day (dry weight) and 0.577 mg/ind/day (AFDW). These values fall within the test acceptability criteria of <10% mean mortality and \geq 0.38 mg/ind/day (WDOE 2015; Kendall 1996) and \leq 10% mean mortality and \geq 0.38 mg/ind/day mean individual growth (USACE 2015), indicating that the test conditions were suitable for adequate polychaete survival and growth. A summary of the test results for all samples is shown in Table 3-6. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Table 3-7, Table 3-8, Table 3-9, and Table 3-10.

Mean mortality in the reference treatment CR22 was 0%, meeting the reference performance standard of \leq 10% (WDOE 2015; USACE 2015). Mean individual growth for the reference treatment was 0.694 mg/ind/day (dry weight) and 0.527 mg/ind/day (AFDW). When compared to the control, MIG expressed as AFDW was 91%, which met the reference performance standard of \geq 80% (WDOE 2015; USACE 2015).

Mortality in all project sediments was 0%. Mean individual growth (as dry weight) in the test treatments ranged from 0.679 to 0.843 mg/ind/day. Mean individual growth in the AFDW assessment, which removes variability caused by gut contents, ranged from 0.567 to 0.687 mg/ind/day as AFDW. The observed mean growth in the project sediments was greater than or similar to the respective endpoints for the reference treatments in all cases.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The LC_{50} value was within control chart limits (±2 standard deviations from the laboratory historical mean). This result indicates that the test organisms used in this study were of similar sensitivity to those previously tested at Ramboll Environ.

All water quality parameters were within the acceptable limits throughout the duration of the test, with the exception of minor deviations in salinity. This deviations would not be expected to affect the significance of the test results.

Ammonia concentrations observed in the *N. arenaceodentata* test were below the No Observed Effect Concentration (NOEC) value derived from the concurrent ammonia reference-toxicant test (Table 3-8; compare to NOEC of 146 mg/L). Initial sulfide concentrations in interstitial water were below the NOEC (3.4 mg/L; Kendall and Barton 2004) for all samples.

		Number		Mean urvivors Mortality		Individual Growth (mg/ind/				
Treatment	Rep	Initiated	Survivors	Mortality (%)	Dry Weight	Mean	Std Dev	AFDW	Mean	Std Dev
	1	5	5		0.785			0.485		
	2	5	5		0.853			0.626		
Control	3	5	5	0	0.859	0.902	0.100	0.489	0.577	0.083
	4	5	5		1.002			0.640		
	5	5	5		1.012			0.646		
	1	5	5	0	0.884			0.714		
CR22	2	5	5		0.621	0.694	0.108	0.496	0.527	0.110
(Reference)	3	5	5		0.670			0.517		
(Reference)	4	5	5		0.630			0.483		
	5	5	5		0.665			0.427		
	1	5	5		0.698	0.843		0.585	0.687	0.115
CC1 CC 03 0	2	5	5		0.909			0.703		
SS1-SS-03_0- 12	3	5	5	0	0.860		0.116	0.688		
12	4	5	5		0.989			0.870		
	5	5	5		0.761			0.592		
	1	5	5		0.751			0.653		
SS1-SS-05_0-	2	5	5		0.803			0.648		
12	3	5	5	0	0.808	0.774	0.101	0.662	0.631	0.090
12	4	5	5		0.890			0.715		
	5	5	5		0.617			0.477		
	1	5	5		0.668			0.569	0.567	
	2	5	5		0.626			0.537		
SS1-SS-06_0- 12	3	5	5	0	0.738	0.679	0.064	0.610		0.044
12	4	5	5		0.751			0.610		
	5	5	5		0.610			0.511		

Table 3-6.	. Test Results for	r Neanthes arenaceodentata.	

Table 3-7. Water Quality Summary for Neanthes arenaceodentata.

Treatment		ved O (mg/L)	xygen)	Temp	erature	e (°C)	Sal	linity (p	pt)	р	H (units	5)
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.2	6.4	7.7	19.9	19.6	20.3	30	28	31	7.9	7.6	8.2
CR22 (Reference)	7.5	6.9	8.1	19.9	19.6	20.2	29	28	31	8.1	7.7	8.6
SS1-SS-03_0-12	7.3	6.8	7.7	19.8	19.5	20.2	30	27	32	8.3	7.9	8.6
SS1-SS-05_0-12	7.4	6.9	8.0	19.9	19.6	20.2	30	28	31	8.4	7.8	8.7
SS1-SS-06_0-12	7.2	6.3	7.8	19.9	19.6	20.2	30	28	31	8.2	7.7	8.6

Treatment	Overlying (mg/L	Ammonia Total)	Interstitia (mg/L	
	Day 0	Day 20	Day 0	Day 20
Control	0.126	3.98	0.638	5.77
CR22 (Reference)	0.000	0.000	1.37	0.760
SS1-SS-03_0-12	0.000	0.000	8.13	0.000
SS1-SS-05_0-12	1.82	0.000	9.64	0.000
SS1-SS-06_0-12	1.84	0.000	12.3	1.11

Table 3-8. Ammonia Summary f	for Neanthes arenaceodentata.
------------------------------	-------------------------------

BOLD= Exceeds NOEC (concurrent reference-toxicant test derived) of 146 mg/L

Treatment	Overlying (mg/L		Interstitial Sulfides (mg/L Total)		
	Day 0	Day 20	Day 0	Day 20	
Control	0.000	0.018	0.200	0.085	
CR22 (Reference)	0.006	0.069	0.055	0.305	
SS1-SS-03_0-12	0.015	0.020	0.000	0.115	
SS1-SS-05_0-12	0.007	0.063	0.170	0.115	
SS1-SS-06_0-12	0.002	0.015	0.155	0.225	

Test Cor	nditions: PSEP N. arenaceodentata				
Sample Identification	Control, CR22, SS1-SS-03_0-12, SS1-SS-05_0-12, SS1-SS-06_0-12				
Date sampled	October 12, 2015				
Date received	November 30 and De	ecember 4, 2015			
Test dates	December 4 – Dece	mber 24, 2015			
Sample storage conditions	4°C, da	ırk			
Days of holding Recommended: ≤8 weeks (56 days)	53 Day	/S			
Source of control sediment	Yaquina Ba	ay, OR			
Test Species	N. arenaceo				
Supplier	Aquatic Toxicolo	ay Support			
Date acquired	December 4				
Age class	Juvenile; 21 – 26 Days				
Test Procedures	PSEP 1995 with SM				
Test location	Ramboll Environ Port G				
Test type/duration	20-Day static	,			
Control water	North Hood Canal seawa				
		Observed: 6.3 – 8.1 mg/L			
Test dissolved oxygen Test temperature	Recommended: > 4.6 mg/L Recommended: 20 ± 1 °C	Observed: 19.5 – 20.3 °C			
I					
Test Salinity	Recommended: $28 \pm 2 \text{ ppt}$	Observed: 27 - 32 ppt			
Test pH	Recommended: 7 - 9	Observed: 7.6 – 8.7			
Initial biomass	Recommended: 0.5 - 1.0 mg Minimum: 0.25 mg	0.331 mg; Acceptable			
Control Performance Standard	Recommended: Control <u><</u> 10% mortality	Observed: 0% Pass			
	Recommended: ≥ 0.72 mg/ind/day Minimum: ≥ 0.38 mg/ind/day (as Dry Weight)	Observed: 0.902 mg/ind/day; Pass			
Reference performance standard (SMS)	Recommended: Mortality ≤20% MIG _{Reference} /MIG _{Control} (AFDW) ≥ 80%	CR22: 0%; Pass CR22: 91.3%; Pass			
Reference Toxicant LC₅₀ (total ammonia)	EC ₅₀ = 169.	2 mg/L			
Mean; Acceptable Range (total ammonia)	143.4; 59.8 - 2	27.1 mg/L			
NOEC (total ammonia)	146 mg	J/L			
NOEC (unionized ammonia)	1.473 m	g /L			
Test Lighting	16L:8D with full spectrum lighting per SCUM II Appendix C				
Test chamber	1-Liter Glass Chamber				
Replicates/treatment	5 + 2 surrogates (one used for WQ measurements throughout the test)				
Organisms/replicate	5				
Exposure volume	175 mL sediment/	775 mL water			
Feeding	40 mg/jar every other day (8				
Water renewal	Water renewed every third day (1/3				
Deviations from Test Protocol	Salinit				

Table 3-10. Test Condition Summary for Neanthes arenaceodentata.

3.3 Larval Development Bioassay

The larval development test with *M. galloprovincialis* was validated by 97.6% normal survivorship, defined as the mean number of normal larvae within the control divided by the stocking density. This value was within both the SMS acceptability criteria of >70%. A summary of the test results for all samples is shown in Table 3-11. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Table 3-12, Table 3-13, and Table 3-14.

Mean normal survival of the reference sediment CR22 was 87.4%, which met both the SMS reference acceptability criteria of \geq 65%. This is defined as the number of normal larvae in the reference sample divided by the number of normal larvae in the control. The test mean chamber stocking density (measured at test initiation) was 28.0 embryos/mL.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The LC_{50} value was within control chart limits (±2 standard deviations from the laboratory historical mean). Therefore the test organisms used in this study were of similar sensitivity to those previously tested at Ramboll Environ.

All water quality parameters were within the acceptable limits throughout the duration of the test.

Ammonia concentrations observed in the *M. galloprovincialis* test were below the No Observed Effect Concentration (NOEC) value derived from the concurrent ammonia reference-toxicant test (Table 3-13; compare to NOEC of 8.03 mg/L). This indicates that ammonia concentrations within the sediment samples should not have been a contributor to any adverse biological effects observed in the test treatments.

Table 3-11. Test		-				Control	Reference Normal		
Treatment	Rep	Number Normal	Number	Mean # Normal (N)	Std. Dev.	Normal Survival	Survival Relative to Control	Performance Standard	
		Normai	ADHOLMAI		Dev.	Nc/I		Stanuaru	
	1	270	4						
	2	242	6					>0.70;	
Control	3	291	5	273.2	19.2	97.6		Meets	
	4	277	6					Criterion	
	5	286	8						
	1	206	4						
CR22	2	256	6					≥0.65;	
(Reference)	3	266	2	238.8	32.0		87.4	Meets	
(Reference)	4	264	5	-				Criterion	
	5	202	3						
	1	219	3						
	2	234	5						
SS1-SS-03_0-12	3	183	3	229.2	32.8				
	4	274	1						
	5	236	2						
	1	226	2						
	2	253	3			See Section	on 4.3 for Larval Te	est Suitability	
SS1-SS-05_0-12	3	233	1	244.6			Determination		
	4	234	2						
	5	277	2						
	1	246	0						
	2	226	2						
SS1-SS-06_0-12	3	288	5	254.0	24.5				
	4	241	3						
	5	269	1						

Table 3-11.	Test Results	for Mytilus	galloprovincialis.
			ganopiernienanei

I = Mean Initial count (Stocking density); 280.0 $N_{c} = Mean Control Normal$ $N_{R} = Mean Reference Normal$

Table 3-12. Water Quality Summary for *Mytilus galloprovincialis*.

Treatment	Dissolved Oxygen (mg/L)		Temperature (°C)		Salinity (ppt)		pH (units)					
	Mean	Min	Мах	Mean	Min	Мах	Mean	Min	Мах	Mean	Min	Max
Control	7.6	7.3	7.8	16.5	16.4	16.6	28	28	28	7.8	7.7	8.0
CR22 (Reference)	6.7	6.0	7.4	16.6	16.3	16.8	28	28	28	7.8	7.7	7.9
SS1-SS-03_0-12	6.2	5.6	6.9	16.5	16.3	16.9	28	28	28	7.9	7.8	7.9
SS1-SS-05_0-12	6.5	5.6	7.6	16.7	16.6	16.7	28	28	28	7.9	7.8	8.0
SS1-SS-06_0-12	6.4	5.6	7.5	16.7	16.4	16.9	28	28	28	7.9	7.8	8.0

Treatment	Overlying (mg/L		Overlying Sulfides (mg/L Total)		
	Day 0	Final (Day 2)	Day 0	Final (Day 2)	
Control	0.000	0.000	0.000	0.000	
CR22 (Reference)	0.000	0.000	0.134	0.005	
SS1-SS-03_0-12	0.000	0.000	0.098	0.000	
SS1-SS-05_0-12	0.000	0.139	0.072	0.000	
SS1-SS-06_0-12	0.000	0.412	0.050	0.000	

NOEC (concurrent reference-toxicant test derived) = 8.03 mg/L

Sample IdentificationControl, CR22, SS1-SS-03_0-12, SS1-SS-06_0-12Date sampledOctober 12, 201Date receivedNovember 30 and DecemberTest datesDecember 7 - DecemberSample storage conditions4°C, darkHolding time Recommended: < 8 weeks (56 days)56 DaysTest SpeciesM. galloprovincialSupplierTaylor Shellfish, SheltoDate acquiredDecember 4, 201Age class<3-h old embryoTest locationRamboll Environ Port GamblTest type/duration48-60 Hour static test (Actual Control waterNorth Hood Canal sea water, ONorth Hood Canal sea water, O	2 5 per 4, 2015 r 9, 2015 ////////////////////////////////////			
Date sampledDecember 12, 201Date receivedNovember 30 and DecemberTest datesDecember 7 - DecemberSample storage conditions4°C, darkHolding time56 DaysRecommended: < 8 weeks (56 days)	5 per 4, 2015 r 9, 2015 <i>lis</i> on, Wa 15 ps revisions			
Date receivedNovember 30 and DecemberTest datesDecember 7 - DecemberSample storage conditions4°C, darkHolding time56 DaysRecommended: < 8 weeks (56 days)	ber 4, 2015 r 9, 2015 <i>lis</i> on, Wa L5 os revisions			
Test datesDecember 7 - DecemberSample storage conditions4°C, darkHolding time56 DaysRecommended: < 8 weeks (56 days)	r 9, 2015 <i>lis</i> on, Wa 15 os revisions			
Test datesDecember 7 - DecemberSample storage conditions4°C, darkHolding time56 DaysRecommended: < 8 weeks (56 days)	r 9, 2015 <i>lis</i> on, Wa 15 os revisions			
Holding time Recommended: < 8 weeks (56 days)56 DaysTest SpeciesM. galloprovincialSupplierTaylor Shellfish, ShelteDate acquiredDecember 4, 201Age class<3-h old embryo	on, Wa 15 os revisions			
Recommended: < 8 weeks (56 days)56 DaysTest SpeciesM. galloprovincialSupplierTaylor Shellfish, SheltDate acquiredDecember 4, 201Age class<3-h old embryo	on, Wa 15 os revisions			
Test Species <i>M. galloprovincial</i> SupplierTaylor Shellfish, ShelteDate acquiredDecember 4, 201Age class<3-h old embryo	on, Wa 15 os revisions			
SupplierTaylor Shellfish, SheltDate acquiredDecember 4, 201Age class<3-h old embryo	on, Wa 15 os revisions			
Date acquiredDecember 4, 201Age class<3-h old embryo	15 os revisions			
Age class<3-h old embryoTest ProceduresPSEP 1995 with SMARMTest locationRamboll Environ Port GambleTest type/duration48-60 Hour static test (Actual	os revisions			
Test ProceduresPSEP 1995 with SMARMTest locationRamboll Environ Port GambleTest type/duration48-60 Hour static test (Actual	revisions			
Test locationRamboll Environ Port GamblTest type/duration48-60 Hour static test (Actual				
Test type/duration 48-60 Hour static test (Actua	le Laboratory			
	al 19 hours)			
LODIFOLWALEE I NOFIN HOOD LADAI SEA WALEE I	,			
	ved: 5.6 - 7.8 mg/L			
	ved: 16.3 – 16.9 °C			
	ved: 28 – 28 ppt			
	ved: 7.7 – 8.0			
Stocking Density Recommended: 20 – 40 embryos/mL Observ	ved: 28.0 embryos/mL			
Control performance standard Recommended:	ved: 97.6%; Pass			
(SMS) Control normal survival <u>></u> 70%	veu. 97.070, Pass			
Reference performance standard (SMS) Recommended: Observent Reference normal survival relative to control $\geq 65\%$ Observent	ved: 87.4%; Pass			
Reference Toxicant LC ₅₀ (total ammonia) LC ₅₀ = 10.3 mg/	L			
Mean; Acceptable Range (total ammonia) 5.4; 0.22 – 10.5 m	ıg/L			
NOEC Combined proportion normal (total ammonia) 8.03 mg/L				
NOEC Combined proportion normal (unionized ammonia) 0.155 mg/L				
Test Lighting 16L:8D with full spectrum SCUM II Appendix				
Test chamber 1-Liter Glass Cham	iber			
Replicates/treatment 5 + 1 surrogate (used for WQ measure test)	ements throughout the			
Exposure volume 18 g sediment/ 900 ml	L water			
Feeding None				
Water renewal None				
Deviations from Test Protocol None				

4 **DISCUSSION**

Sediments were evaluated based on Sediment Management Standards (SMS) criteria. The biological criteria are based on both statistical significance (a statistical comparison) and the degree of biological response (a numerical comparison). The SMS criteria are derived from the Washington Department of Ecology's Sediment Cleanup User's Manual II (SCUM II; WDOE 2015). Comparisons were made for each treatment against the reference sample. Two numerical comparisons were made under SMS, the Sediment Cleanup Objective (SCO) and the Cleanup Screening Level (CSL).

4.1 Amphipod Test Suitability Determination

Under the SMS program, a treatment will fail SCO if mean mortality in the test sediment is >25% and the difference between mean mortality in the treatment compared to mean mortality in the reference is statistically significant ($p \le 0.05$). Treatments fail the CSL if mean mortality in the test treatment >30% relative to the reference sediment and the difference is statistically significant.

Project sediments from the R. G. Haley Site do not fail the SCO and CSL criteria for the amphipod test as shown in Table 3-15.

Treatment	Mean Mortality (%)	Compared To:	Statistically Different than Reference? (P=0.05)	Mortality Comparison to Reference M⊤.M _R (%)	Fails SCO? ¹ > 25 %	Fails CSL? ² > 30 %
Control	0.0					
CR22	5.0					
SS1-SS-03_0-12	1.0	CR22	No	-4	No	No
SS1-SS-05_0-12	1.0	CR22	No	-4	No	No
SS1-SS-06_0-12	1.0	CR22	No	-4	No	No

Table 3-15. SMS Comparison for	Eohaustorius estuarius.
--------------------------------	-------------------------

¹SCO: Statistical Significance and MT >25%

²CSL: Statistical Significance and MT-MR >30%

 M_T = Treatment Mortality

 M_R = Reference Mortality

4.2 Juvenile Polychaete Test Suitability Determination

Suitability determinations for the juvenile polychaete test were based on mean individual growth (MIG). A test treatment fails SCO criteria if MIG is statistically lower in the test treatment, relative to the reference, and the ratio of the MIG in the test treatment is <0.70 that of the reference. The treatments will fail CSL criteria if the MIG is significantly lower than the reference treatment and the ratio between the MIG of the treatment and the MIG of the reference is <0.50.

Project sediments from the R. G. Haley Site do not fail the SCO and CSL criteria when evaluated on the dry weight and AFDW basis (Table 3-16).

Treatment	MIG (mg/ind/day)	Comparison To:	Statistically Less than Reference? (p=0.05)	MIG Relative to Reference MIGT/MIGR	Fails SCO? ¹ < 0.70	Fails CSL? ² < 0.50
		Dry	Weight			
Control	0.902					
CR22	0.694					
SS1-SS-03_0-12	0.843	CR22	No	1.21	No	No
SS1-SS-05_0-12	0.774	CR22	No	1.12	No	No
SS1-SS-06_0-12	0.679	CR22	No	0.98	No	No
		Ash-Free	e Dry Weight			
Control	0.577					
CR22	0.527					
SS1-SS-03_0-12	0.687	CR22	No	1.30	No	No
SS1-SS-05_0-12	0.631	CR22	No	1.20	No	No
SS1-SS-06_0-12	0.567	CR22	No	1.08	No	No

Table 3-16. SMS Comparison for Neanthes arenaceodentata.

 $^1SCO:$ Statistical Significance and MIGT/MIGR <70%

²CSL: Statistical Significance and MIG_T/MIG_R <50%

MIG_T = Treatment Mean Individual Growth

MIG_R = Reference Mean Individual Growth

4.3 Larval Test Suitability Determination

Larval test treatments fail SCO criteria if the number of normal larvae in the test treatment is significantly lower than that of the reference and if the ratio between the normal larval development in the test treatment is less than 0.85 of the normal development in the reference. Treatments fail CSL criteria if the number of normal larvae in the test treatment is significantly lower than that of the reference and if the ratio between the normal larval development in the test treatment is less than 0.70 of the normal development in the reference after normalizing to the control.

Project sediments from the R. G. Haley Site do not fail the SCO and CSL criteria for larval development (Table 3-17).

Treatment	Mean Normal Survival (%) ¹	Mean Number Normal	Compared To:	Statistically Less than Reference? (p=0.10)	Fails SCO? ² <0.85	Fails CSL? ³ <0.70
Control	96.4	273				
CR22	87.4	239				
SS1-SS-03_0-12	83.8	229	CR22	No	No	No
SS1-SS-05_0-12	89.3	245	CR22	No	No	No
SS1-SS-06_0-12	91.9	254	CR22	No	No	No

Table 3-17. SMS Comparison for *Mytilus galloprovincialis*.

¹ Control data is normalized to the stocking density; reference and project treatments are normalized to the control

 2 SCO: Statistical Significance and (N_R-N_T) <0.85

 3 CSL: Statistical Significance and (N_R-N_T) <0.70

 N_T =Treatment Mean Number Normal

 N_R =Reference Mean Number Normal

N_C =Control Mean Number Normal

5 SUMMARY

A summary of the biological tests conducted on the R. G. Haley Site sediments evaluated under the SMS sediment quality criteria (Table 3-18) are provided below.

All project samples pass the SCO and CSL performance criteria for all tests performed on the R. G. Haley Site sediments.

Treatment	Sedimen	t Cleanup Ol	ojectives	Cleanu	p Screening Le	evels
freatment	Amphipod	Polychaete	Larval	Amphipod	Polychaete	Larval
SS1-SS-03_0-12	Pass	Pass	Pass	Pass	Pass	Pass
SS1-SS-05_0-12	Pass	Pass	Pass	Pass	Pass	Pass
SS1-SS-06_0-12	Pass	Pass	Pass	Pass	Pass	Pass

Table 3-18. Summary of SMS Evaluation.

6 REFERENCES

- Barton, J, 2002. DMMP/SMS Clarification Paper: Ammonia and Amphipod Toxicity Testing. Presented at the 14th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- CETIS. 2012. CETIS[™] Comprehensive Environmental Toxicity Information System User's Guide. Tidepool Scientific Software. McKinleyville, CA.
- Ecology 2005. DMMP/SMS Clarification Paper: Interpreting Sediment Toxicity Tests: Consistency between Regulatory Programs. Presented at the 17th Annual Sediment Management Annual Review Meeting by Tom Gries, Toxics Cleanup Program/Sediment Management Unit, Washington Department of Ecology, Olympia, Washington.
- Ecology 2015. Sediment Cleanup Users Manual II (SCUM II). Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards, Chapter 173-204 WAC. Toxics Cleanup Program. Washington State Department of Ecology. Olympia, Washington. Publication No. 12-09-057. March 2015
- Fox, D, DA Gustafson, and TC Shaw. 1998. Biostat Software for the Analysis of DMP/SMS. Presented at the 10th Annual Sediment Management Annual Review Meeting.
- Kendall, D, 1996. DMMP/SMS Clarification Paper: *Neanthes* 20-Day Growth Bioassay Further Clarification on Negative Control Growth Standard, Initial Size and Feeding Protocol. Presented at the 9th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Kendall, D, and Barton, J, 2004. DMMP/SMS Clarification Paper: Ammonia and Sulfide Guidance Relative to *Neanthes* Growth Bioassay. Presented at the 16th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Lee, D.R. 1980. Reference toxicants in quality control of aquatic bioassays: Aquatic invertebrate bioassays. In Buikema AL Jr, Cairns J Jr, eds, Proceedings, 2nd Annual Symposium on Aquatic Toxicology. STP 715. American Society for Testing and Materials, Philadelphia, PA, pp 188–199.
- PSEP 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Puget Sound Water Quality Authority, Olympia, Washington.
- PSEP. 1995. Puget Sound Protocols and Guidelines. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- PSEP.1997. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- USACE 2015. Dredged Material Evaluation and Disposal Procedures (Users' Manual), Dredged Material Management Program (DMMP). US Army Corps of Engineers-Seattle District; US Environmental Protection Agency (Region 10); Washington State Department of Ecology, and Washington State Department of Natural Resources.
- USEPA/USACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S: -Testing Manual. EPA 823-B-98-004. February 1998.PSEP. 1997. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound. Puget Sound Estuary Program. Sampling Chapter. April 1997.

APPENDICES A. LABORATORY DOCUMENTS B. STATISTICAL COMPARISONS C. CHAIN-OF-CUSTODY FORMS

Ramboll Environ Report#122315.01

APPENDIX A

LABORATORY DOCUMENTS

Eohaustorius estuarius Amphipod Bioassay:

Laboratory Data Sheets... A.1.1

Reference Toxicant Test... A.1.2

Neanthes arenaceodentata Juvenile Polychaete Bioassay:

Laboratory Data Sheets... A.2.1

Reference Toxicant Test... A.2.2

Mytilus galloprovincialis Benthic Larval Bioassay:

Laboratory Data Sheets... A.3.1

Reference Toxicant Test... A.3.2

APPENDIX A.1.1

Eohaustorius estuarius Amphipod Bioassay Laboratory Data Sheets

CLIENT GeoEngineers JOB NUMBER	<u> </u>		PROJECT RG Haley	MANAGER		SPECIES Eohaustor	ius estuarius		LABORAT Port Gamb			PROTOC PSEP 199	DL	7
			B. Hester	MANAGER		TEST STAI 7-Dec-15	RT DATE		TEST END				<u> </u>	
I = Normal E = Emergence M ≈ Mortality or Moits	Initial								17-Dec-15					
i = Growth	Organ	Isms	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Dave		<u> </u>	_	
ungal, bacterial, or algal) = No Air Flow (DO?) = Floating on Surface			Date	Date	Date	Date	Date	Date	Date	Day 8	Day 9 Date	Day 10		
C = Too Cloudy		20	H1713	12/09	12/10	12/11	12/12	12/13	12/14	ANS	12/16	Date	Alive	covered (if
Sample ID	Rep	Jar#	Tech.	Tech. Btel	Tech.	Tech.	Tech.	Tech.	Tech.	Tech	Tech	Tech.	Number Alive	Number Dead Recovered (if any) / Comments
			Ŵ		J.			<u> </u>			<u> </u>	1-10-	2	a a
			N 1		N	N	N		N	N	N	N	20	
	2			N		I						T	20	
Control	3			N									20	+
	4			\wedge										
	5			N		i				-+			20	╂────
	1			N		6	6			<u> </u>	4	<u> </u>	20	ļ
	2				1		<u> </u>	-6	9	9	-4-	G	19	ļ
CR22	3									-+			19	
									-+-+	_			18	
													20	
	5						¥					V	19	
					_	N	N		8			G	20	
	2					L							20	
SS1-SS-03-0-12	3		\mathcal{V}			IF			-				20	
	4	18(2)	\ <u>{</u>		V	N							19	
	5		N		11-	11		+						
	1				N			-+-+					20	<u> </u>
	2		- 1		1-+			-+-+				6	20	
SS1-SS-05-0-12	3												19	
						-++							20	
	-4		-5+							/_			20	
) Wrong	5			<u> </u>	\underline{V}	C. HE		7	<u> </u>	4	Ŀ	1	20	

CLIENT GeoEngineers JOB NUMBER 0			PROJECT RG Haley PROJECT M B. Hester	MANAGER		SPECIES Eohaustori TEST STAR 7-Dec-15	<u>us estuarius</u> RT DATE		LABORATO Port Gamb TEST END 17-Dec-15	e Bath 7		PROTOCOL PSEP 1995	-]
N = Normai #E = Emergence	Initial #					ENDPOINT D	ATA AND OF	BSERVATIO					-	
#M = Mortality or Molts G = Growth	Organi		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	1	
(fungal, bacterial, or algal) D = No Air Flow (DO?) F = Floating on Surface			Date o	Date	Date	Date	Date	Date	Date	Date	Date	Date		j. g
TC = Too Cloudy		20	12/7/15	12/09	12110	12/11	12/12	12/13	12/14	12115	12(16	12 17	r Alive	nber Dead Recovered (if any) / Comments
			Tech.	Tech.	Tech.	Tech.	Tech.	Tech.	Tech.	Tech	Tech	Tech.	Numbe) / Coi
Sample ID	Rep	Jar #	th	JU	Ker	5	JU	JL	14	×ι.	K	MK	NU	Vumber I any
	1		N	2	\mathbb{N}	2	2	6	6	6	Cر ک	6	19	
	2								t		(20	
SS1-SS-06-0-12	3	L	J										20	
	4	N/C	14				L						20	
	5	L X	\checkmark	IF		l	IF	L	J	$\mathbf{\hat{v}}$	1	J	20	

OWD. HE 12/08/15 OWC. HE 12/08/15

CLIENT			PROJECT				SPECIES			Laboratory			PROTOCOL
GeoEngineers			RG Haley			4	Eohaustorius estuar		TIME	Port Gambi			PSEP 1995 TIME
JOB NUMBER			B. Hester	ANAGER			TEST START DATE 7-Dec-15		тіме 1520	17-Dec-15			CAUC
									WATER QUALIT				
		T	est Conditions		DO (mg/L) >5.1 mg/L	Te	emperature (°C) 15±1		Salinity (ppt) 28±1	T	рН 7 - 9	Tech	Date
Project ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
Control	0	wq	22	8	7.9	8	15.9	8	28	8	8.0	25	12/7/15
CR22	0	wq	3		7.9		16.2		28		8.0	le	12/7/15
SS1-SS-03-0-12	0	WQ	16		8.2		15.8		28		8.1	le	(2/7/19
SS1-SS-05-0-12	0	wa	1		8.1		15.8		28		8.0	RE	12/7/15
SS1-SS-06-0-12	0	wq	8	8	8.1	2	15.9	4	28		8.1	le	12/7/15
Control	1	wa	22	8	8.0	8	16.5	S.	28	Ý.	80	BE	12/8/15
CR22	1	wa	3	8	8.0	8	16.3	£	28	Ś	8.0	B€	1218/15
SS1-SS-03-0-12	1	WQ	16	8	078.1	8	16.2	Ý.	28	50	81	BE	12/8/15
SS1-SS-05-0-12	1	WQ	1	8	7.8	8	16.2	Ģ	28	9	8.1	BE	12/8/15
SS1-SS-06-0-12	1	wq	8	8	7.8	Z	16.4	- Ş	28		81	BE	12/8/15
Control	2	WQ	22	9	81	9	15.8	9	28	0	8.1	して	12/09/15
CR22	2	wa	3		B,0		15.9		28		8.0		
SS1-SS-03-0-12	2	wa	16		8.0		15.6		28		8.1		
SS1-SS-05-0-12	2	wa	1		7.8		15.9		28		8.1		
SS1-SS-06-0-12	2	wa	8	d	8.0	1	15.7	ļ	28	L	8.2		L .
Control	3	wa	22	91	07.57.7	Û	15.6	9	28	9	2 g . 28.1	/ HA	12/10/15
CR22	3	wa	3	1	7.8		15.8	1	28		8.0		<u> </u>
SS1-SS-03-0-12	3	wa	16		7.6		15.7		28	Therefore in the	8.1		
SS1-SS-05-0-12	3	wa	1		1.7		15.7		28		8.		
SS1-SS-06-0-12	3	wa	8	Ċ	7.5	Y	15.6	\lor	28	Ŀ	8.1	V	L
	()												
/15	(IJ)	WC	the		12/10/15	PSEF	P 10-DAY Eohs.x	lsx					Page 1

••

CLIENT GeoEngineers			PROJECT RG Haley				SPECIES Eohaustorius estuar	ius		Port Gamb			PROTOCOL PSEP 1995
			PROJECT M	ANAGE	؟		TEST START DATE 7-Dec-15		TIME 1520	TEST END	DATE		time C 900
					······	,	· · · · · · · · · · · · · · · · · · ·		WATER QUALI	TY DATA			
			st Conditions		DO (mg/L) >5.1 mg/L		emperature (°C) 15±1		Salinity (ppt) 28±1		рН 7 - 9	Tech	Date
Project ID	Day	Rep	Jar#	meter		meter	deg C	meter	ppt	meter	unit		
Control	4	wq	22	9	8.1	9	15.6	9	28	9	8.1	UL	12/11/1
CR22	4	wa	3		7.9		15.8		28		8.1		
SS1-SS-03-0-12	4	wa	16		0.0		15.5		29		8.2		
SS1-SS-05-0-12	4	wq	1		7.5		15.8		28		8.1		
SS1-SS-06-0-12	4	wq	8	J	8.0	l	15,6		28		8.3		
Control	5	wq	22	a	8.1	٩	15.6	9	28	9	8.2	Ĵ.	12/12
CR22	5	wq	3		8.0		15.7		28		8.2		1
SS1-SS-03-0-12	5	wq	16		79850		15.7		29		8.3		
SS1-SS-05-0-12	5	wq	1		8.0		157		2.8		8.2		
SS1-SS-06-0-12	5	wo	8	U	79	J	15.7	J	28	Į Į	8.3		
Control	6	wq	22	B	8.3	8	(6.0	8	29	8	8.2	JL	12/13
CR22	6	WQ	3		8.3		16.0		28		8.2		
SS1-SS-03-0-12	6	wq	16		8.2		15.9		29		8.3		
SS1-SS-05-0-12	6	wq	1		8.2		15.9		28		8.3		
SS1-SS-06-0-12	6	WQ	8	L	82		15.8	L	29		8.4		
Control	7	WQ	22	8	0 9-284	\$	15.8	G	29	80	2 B. 08.1	1 the	1214
CR22	7	WQ	3	1	8.2	i	15.8	Ť	29		8.0		
SS1-SS-03-0-12	7	wq	16		8.4	1	15.7		29		B-Z		
SS1-SS-05-0-12	7	wq	1		8.3		15.9		29		0.J 8.J		
SS1-SS-06-0-12	7	wa	8	U		U	15.0		29		8.4	-	
			12/12/	 	τ w		12/14	~	_ ~_				<u> </u>

CLIENT	PROJECT	SPECIES		Laboratory / Location	PROTOCOL
GeoEngineers	RG Haley	Eohaustorius estuarius			PSEP 1995
JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEOTEUR	TIME
0	B. Hester	7-Dec-15	1520	17-Dec-15	EXICO

									WATER QUALIT	Υ ΟΑΤΑ			
		Те	st Conditions	5	DO (mg/L) >5.1 mg/L	Te	emperature (°C) 15±1		Salinity (ppt) 28±1		рН 7 - 9	Teeb	
Project ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit	Tech	Date
Control	8	WQ	22	8	4.5	8	15.9	8	29	8	8-28.12	HE	12/15
CR22	8	wq	3		8.7		16.0		29		8.2.8.2		
<u>SS1-SS-03-</u> 0-12	8	WQ	16		8.5		15.9		30		8.4		
SS1-SS-05-0-12	8	wq	1		8.5		16.0		29		8.3		
SS1-SS-06-0-12	8	wq	8	J	8.6	V	15.9		29	I I	8.5		∇
Control	9	wq	22	8	8.4	5	16.03	8	28	8	8.1	142	12/16
CR22	9	WQ	3		8.7		16.2		28	1	8.3	1	1
SS1-SS-03-0-12	9	WQ	16		6.4		16.2		29		8.4		
\$\$1-\$\$-05-0-12	9	wq	1		8.5		16.1		28		8.4		
SS1-SS-06-0-12	9	wq	8	U	8.6		15.9 V	\downarrow	29	J	8.5	L	
Control	10	WQ	22	8	8.2	8	15.6	8	29	8	8.1	J.	12/17
CR22	10	WQ	3		<u> </u>		15.8		28	ſ	8.3	(
SS1-SS-03-0-12	10	WQ	. 16		83		15,8		29		8.5		
SS1-SS-05-0-12	10	WQ	1		8.6		16.0		28		8.5		
SS1-SS-06-0-12	10	wq	8		8,3	L	15.7	V	29		8.6		t
Illegitle .	H2	121	15 (D	we he	1211	5 (3) B	ath	temp !	0.30	the	12/16	

		roject:	RG Italey	_	Organis とし				Test	Duration ((days):	- 200 Br 41	
	PŔ	ETEST	/ NITLAR	FINAL	/ OTH	ER (circle one) circle one) / Com	ments:			· · · · ·	DAY of TI	EST: <u></u>	2
	• • •		Calibr Date:	ation Standa	rds Tem	perature Temperat	ure:				e should be with		
			#121711	5		19.2			standar		ire at time and		lysis.
Sample Descrip		Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf. (mg/L)
& p		SULL	HE 1217	0.00	18.2	12/7/15 Re	۰N	7.5	02026.1	6-			>
CR-22	pw			1.83	18.7	1217115 RE	<u> </u>	7.7	28	Clai	0.116	10	1.16
3 pw 5 pi				5.39	19.1	1217115 RE		7.7	29	070	0.119	040-	
5 pri				8.79	18.9	12/7/15 RE		7.9	29	10	0.142		
6 7W)			12.3	19.7	12/7/15 RE	Ļ	7.9	29		0.126		
0-0	<u>v</u>	surr		0.00	19.0	12171,5 42	N				0.00		
(R-22	i			0.00			ſ				0.024		
3 00				0.312							0.041		
500				0.872		· · ·				 	0.027		
60)	$\overline{\mathbf{V}}$		1.53						J.	0.00 z		
			· · · · · · · · · · · · · · · · · · ·										
						· · · · · · · · · · · · · · · · · · ·							
Dia 91	- Inla	15 67	TG IA-	1212/10	- 12) in sufficient	D		4-	I	l	<u> </u>	

ENVIRON Ammonia and Sulfide Analysis Record

Page _____ of ____

	Client/Pr Geo En	roject: giveero	PG Hale I INITIAL		Organis	Echaustori	vs estu	arius	Test l	Duration (10		
	OVE		$\frac{1}{G(OV)} / \frac{P(OV)}{P(OV)} / \frac{P(OV)}{P(OV)$	P FINAL DREWATEI	7 OTH R (PW) (4	ER (circle one) circle one) / Con	nments:				DAY of TH	EST:	0
			Calibra Date: 12/13	ation Standa /15	urds Tem	perature Temperat	ure: 18	.9°C			should be with re at time and o		
-	le ID or ription	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf. (mg/L
)√.	Ø	Surv.	12/17/15 22	ð.0()	17.9	12/12/15 12	N			10	0.000	NA	NA NA
	CR-22 3			0.60	<u> </u>						0.005		1
	5			0.00					<u></u>		0.000		
	S			0.00	±						0.005		
+				0.00						Ł	0.007	<u>J</u>	ί
J	Ø		12/17/15 24	0.00	17.9	12/17/1504	N	7.6	30	L	0.027	10	0.270
	CR-22			1.43				7.7	29 30	2	0.173	S	0.865
<u> </u>	3			1.73				7.7	30	5 5 5	0.084	2	0.168
	<u> </u>	E		4.35				7.9	2.B 30	5	0.074	2	0.14
													- 15
	① Pe	neuswe	ed w/blank,	1-mc Sam	ple .)	ozi × multi	ylier (10) = 0	0.310	1/ 12	12/15		

ORGANISM RECEIPT LOG

Date:	04/15	Ti I	me: 2,5	50	Ba	atch No. NAS	4744	
Organism		1				11.5		
	Eo	hs/	R6 th	iley				
Source / S	upplier:					-		
	Nov	hwest	ern 2	tquat	ic S	liences		
No. Ordere	ed:	No	. Receive		So	urce Batch:		
	850		97	35			atch date, etc.): $12/02/1$	
Condition	of Organis	sms:		Approx (Days fro	imate Si	ze or Age: ife stage, size		
	E	food				5 mm	uass, etc.):	
Shipper:	Fed	Ex.			Tracking	1 No.) 541 474	1	
Condition	of Contain	er:		Receive		511 479	9	_
	•				,.	K		
Container	D.O. (mg/L)	Temp. (°C)	Cond. Sal. (Includ Units)	e (pH Units)	# Dead	% Dead*	Tech. (Initials)
1*	-	7.3	22 p	pt				JL
				_				
					-			
IF >10% 000 100	t lab manager	1			-	-	1.1	P

Northwestern Aquatic Sciences 3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365 Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com

SOLD TO: Ramboll Envi	ron		Brian Hester/Collin
Ray 4729 NE View P.O. Box 216 Port Gamble W FedEx# 5507-1	/A 98364		360.297.6044 Mary Bacon 360.297.6058
DATE OF SHIPMENT: 1			
	ANI	MAL HISTORY	
Species		Age/Size	Number Shipped
Eohaustorius estuarius		3-5mm	850 + 10%
	WATER QUALIT	LAT TIME OF SHIPMENT	
Temperature (°C): 14.3	рН: 8.0	Salinity (ppt): 2200	D.O. (mg/L): 8.7
Other:	Y. Natabah		
PACKAGED BY: FIELD COLLECTION/C		DATE:	12-3-15
Collected 12-2-15 from Yaq	C, Salinity 16.0 ppt : sali		
Held at 15°C in aerated wate	er.	mity adjusted up ~5 ppt.	
Held at 15°C in aerated wate	ar.	mity adjusted up ~5 ppt.	

If you have any questions, Please call Gary Buhler or Gerald Irissarri at (541) 265-7225. Thank You.

APPENDIX A.1.2

Eohaustorius estuarius Amphipod Bioassay Reference Toxicant Test

Reference Toxicant 96-h Acute Survival	Гest		All Matching Labs
Test Type: Survival	Organism: Eohaustorius estuarius (Amphipod)	Material:	Total Ammonia
Protocol: EPA/600/R-94/025 (1994)	Endpoint: Proportion Survived	Source:	Reference Toxicant-REF

Report Date:

16 Dec-15 16:11 (1 of 1)

Reference Toxicant 96-h Acute Survival Test 300 250-+25 200-+15 EC50-mg/L Total Ammonia 150 Mean 100--15 50--2s 0 05 Aug-11 10 Apr-12 08 May-12 08 Jun-12 22 Feb-13 23 Jul-13 27 Aug-13 01 Nov-13--04 Apr-14--27 Feb-15---26 Jun-15--10 May-13 12 Nov-13 25 Apr-14 30 May-14 26 Aug-14 06 Nov-15 14 Nov-14 10 Dec-14 15 Sep-14 07 Dec-15--

			ean: gma:	142.1 53.39		Count: CV:	20 37.60%	-1s Warn +1s Warn			-2s Action Lim +2s Action Lim	
Qualit	ty Con	trol Data	a									
Point	Year	Month	Day	Time	QC Data	a Delta	Sigma	Warning	Action	Ťest ID	Analysis ID	Laboratory
1	2011	Aug	5	14:35	144.9	2.759	0.05168	-		05-3970-3796	17-5474-7748	NewFields
2	2012	Apr	10	15:10	34.72	-107.4	-2.011	(-)	(-)	02-5902-8958	20-3951-0452	NewFields
3		May	8	14:30	61.87	-80.23	-1.503	(-)		20-1853-8108	14-9890-9529	NewFields
4		Jun	8	15:30	166.5	24.39	0.4567			03-4756-9479	07-8270-3224	NewFields
5	2013	Feb	22	11:40	152.2	10.12	0.1895			09-9358-3146	14-0757-4516	NewFields
6		May	10	14:20	130.8	-11.34	-0.2125			01-9831-6628	02-4493-3987	NewFields
7		Jul	23	15:10	167.1	25.04	0.469			15-9850-7427	05-2897-2730	NewFields
8		Aug	27	12:10	140.4	-1.707	-0.03197			20-8540-9997	05-1258-2331	NewFields
9		Nov	1	13:30	215	72.91	1.366	(+)		15-9765-5224	08-6656-9431	NewFields
10			12	13:45	91.52	-50.58	-0.9475			⁻ 2-4327-2465	06-0504-8497	NewFields
11	2014	Apr	4	19:15	173.9	31.75	0.5947			13-5617-0473	14-6315-5154	Port Gamble Environment
12			25	13:00	65.78	-76.32	-1.43	(-)		⁻ 1-2394-9115	16-6351-0798	Port Gamble Environment
13		May	30	15:30	193.9	51.82	0.9706			11-1744-7543	02-6036-0984	ENVIRON
14		Aug	26	15:45	113.3	-28.78	-0.539			15-5557-5937	00-0529-4993	ENVIRON
15		Sep	15	15:10	106.3	-35.76	-0.6697			07-1282-2061	01-5984-9612	ENVIRON
16		Νον	14	14:25	168	25.9	0.485			09-0717-5355	19-7840-9499	ENVIRON
17		Dec	10	15:50	168.3	26.21	0.4908			19-3485-9112	05-9978-3434	ENVIRON
18	2015	Feb	27	12:35	108.8	-33.3	-0.6237			19-3876-5860	21-0291-4043	ENVIRON
19		Jun	26	13:20	197.1	54.99	1.03	(+)		00-5720-1886	11-7391-9309	ENVIRON
20		Nov	6	15:30	240.8	98.72	1.849	(+)		07-0462-4762	05-5994-4603	ENVIRON
21		Dec	7	15:58	180.1	37.98	0.7114			18-5380-2632	01-5604-1684	ENVIRON

Test Type: Protocol:	Survival EPA/600/R-94/025 (1994)		Eohaustorius estuarius (Amphipod) Proportion Survived	Material: Source:	Total Ammonia Reference Toxicant-REF
		Refere	ence Toxicant 96-h Acute Survival Test	:	
NOEL-mg/L Total Ammonia	180- 160- 140- 120- 100- 80- 60- 11-50P 50 11-50P 50 11-5	22 Feb-13 10 May-13 23 Jul-13 -	Z7 Aug-13- 01 Nov-13- 12 Nov-13 04 Apr-14- 05 Apr-14 30 May-14 25 Aug-14- 26 Aug-14-	15 Sep-14 14 Nov-14	10 Dec-14 27 Feb-15 26 Jun-15 26 Jun-15 -15 -25 07 Dec-15 -25

Report Date:	16 Dec-15 16:11 (1 of	1)

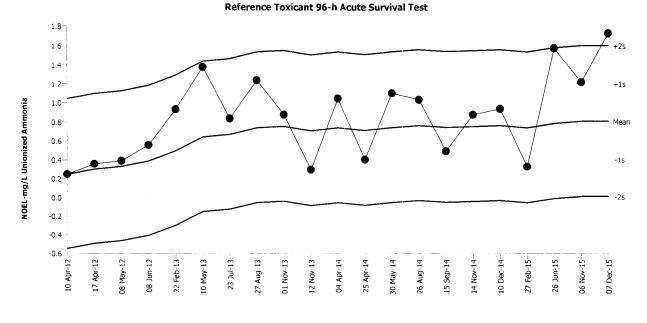
All Matching Labs

			ean: gma:	78.8 42.07		ount: V:	20 53.40%	-1s Warn +1s Warn	•		-2s Action Lim +2s Action Lim		
Quality Control Data Point Year Month Day Time QC Data Delta Sigma Warning Action Test ID Analysis ID Laboratory													
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory	
1	2011	Aug	5	14:35	49.6	-29.2	-0.6941			05-3970-3796	20-5970-4725	NewFields	
2	2012	Apr	10	15:10	13	-65.8	-1.564	(-)		02-5902-8958	03-7154-8292	NewFields	
3		May	8	14:30	42.6	-36.2	-0.8605			20-1853-8108	20-5519-2940	NewFields	
4		Jun	8	15:30	66.4	-12.4	-0.2947			03-4756-9479	03-6674-9041	NewFields	
5	2013	Feb	22	11:40	85.6	6.8	0.1616			09-9358-3146	06-2817-6220	NewFields	
6		May	10	14:20	88	9.2	0.2187			01-9831-6628	03-9560-5903	NewFields	
7		Jul	23	15:10	68.3	-10.5	-0.2496			15-9850-7427	18-8212-0119	NewFields	
8		Aug	27	12:10	86.4	7.6	0.1807			20-8540-9997	03-1133-2124	NewFields	
9		Nov	1	13:30	96.4	17.6	0.4184			15-9765-5224	03-3609-7670	NewFields	
10			12	13:45	39.3	-39.5	-0.9389			12-4327-2465	09-6874-0351	NewFields	
11	2014	Apr	4	19:15	147	68.2	1.621	(+)		13-5617-0473	16-0396-5073	Port Gamble Environment	
12			25	13:00	27	-51.8	-1.231	(-)		11-2394-9115	19-2434-9439	Port Gamble Environment	
13		May	30	15:30	126	47.2	1.122	(+)		11-1744-7543	06-3985-7474	ENVIRON	
14		Aug	26	15:45	90.1	11.3	0.2686			15-5557-5937	08-3094-4388	ENVIRON	
15		Sep	15	15:10	50.5	-28.3	-0.6727			07-1282-2061	16-3885-0935	ENVIRON	
16		Nov	14	14:25	114	35.2	0.8367			09-0717-5355	07-0500-8008	ENVIRON	
17		Dec	10	15:50	59.4	-19.4	-0.4611			19-3485-9112	07-0579-1018	ENVIRON	
18	2015	Feb	27	12:35	29.3	-49.5	-1.177	(-)		19-3876-5860	19-7961-3594	ENVIRON	
19		Jun	26	13:20	132	53.2	1.265	(+)		00-5720-1886	15-3704-4199	ENVIRON	
20		Νον	6	15:30	165	86.2	2.049	(+)	(+)	07-0462-4762	19-7906-3673	ENVIRON	
21		Dec	7	15:58	138	59.2	1.407	(+)		18-5380-2632	00-7335-5231	ENVIRON	

CETIS QC Plot

Reference Toxicant 96-h Acute Survival Test

CETIS QC Plot


Reference Toxicant 96-h Acute Survival	Test		All Matching Labs
Test Type: Survival	Organism: Eohaustorius estuarius (Amphipod)	Material:	Unionized Ammonia
Protocol: EPA/600/R-94/025 (1994)	Endpoint: Proportion Survived	Source:	Reference Toxicant-REF

Reference Toxicant 96-h Acute Survival Test 3.0--2.5 2.0 +2s EC50-mg/L Unionized Ammonia 1.5-+1s Mean 1.0--1s 0.5 -25 0.0 -0.5 4ug-11 25 Apr-14--30 May-14 --26 Aug-14 -10 Apr-12-17 Apr-12 27 Feb-15 -07 Dec-15 08 May-12 06 Nov-15--08 Jun-12 10 May-13 23 Jul-13 27 Aug-13 01 Nov-13 12 Nov-13 10 Dec-14 22 Feb-13 04 Apr-14 15 Sep-14 14 Nov-14

			ean: gma:	1.101 0.427		Count : 20 CV : 38	.80%	-1s Warn +1s Warn			-2s Action Lim +2s Action Lim	
Qualit	y Con	trol Data	3									
Point	Year	Month	Day	Time	QC Data	a Delta	Sigma	Warnirıg	Action	Test ID	Analysis ID	Laboratory
1	2011	Aug	5	14:35	1.76	0.6592	1.543	(+)		17-9542-0646	06-2792-7024	NewFields
2	2012	Apr	10	15:10	0.4636	-0.6374	-1.492	(-)		18-7283-5013	07-7471-6807	NewFields
3			17	15:45	0.5982	-0.5028	-1.177	(-)		18-5229-3668	10-4921-5938	NewFields
4		May	8	14:30	0.5509	-0.5501	-1.288	(-)		15-4565-2403	06-1396-7211	NewFields
5		Jun	8	15:30	1.024	-0.07673	-0.1796			03-7901-3036	07-6844-7156	NewFields
6	2013	Feb	22	11:40	1.364	0.2632	0.616			10-3861-9695	21-2507-0831	NewFields
7		May	10	14:20	1.578	0.4768	1.116	(+)		05-8857-3753	18-2954-4563	NewFields
8		Jul	23	15:10	1.126	0.02489	0.05826			08-8059-3744	12-6137-6954	NewFields
9		Aug	27	12:10	1.689	0.5883	1.377	(+)		18-3860-3992	18-0374-3993	NewFields
10		Nov	1	13:30	1.339	0.2376	0.5561			01-7225-6737	09-1642-9045	NewFields
11			12	13:45	0.4715	-0.6295	-1.473	(-)		15-7445-3893	06-3812-4989	NewFields
12	2014	Apr	4	19:15	1.072	-0.02935	-0.06871			02-4910-1045	07-9486-3041	NewFields
13			25	13:00	0.6871	-0.4139	-0.9688			05-3931-3196	11-2528-6540	Port Gamble Environmen
14		May	30	15:30	1.517	0.4156	0.9728			03-2348-8477	19-6287-3473	ENVIRON
15		Aug	26	15:45	1.087	-0.01396	-0.03268			16-9917-4183	13-7453-5343	ENVIRON
16		Sep	15	15:10	0.6543	-0.4467	-1.046	(-)		04-2286-3837	03-1229-8693	ENVIRON
17		Nov	14	14:25	1.119	0.01813	0.04244			07-5753-6828	00-1415-6148	ENVIRON
18		Dec	10	15:50	1.441	0.3396	0.7949			04-0714-3304	08-0742-5225	ENVIRON
19	2015	Feb	27	12:35	0.8668	-0.2342	-0.5481			10-1977-7129	06-3048-0232	ENVIRON
20		Nov	6	15:30	1.605	0.5043	1.181	(+)		14-1974-2437	14-7486-0204	ENVIRON
21		Dec	7	15:58	1.807	0.7056	1.652	(+)		12-1918-7694	00-1085-2209	ENVIRON

ル Analyst:

Reference Toxicant 96-h Acute Survival	Test		All Matching Labs
Test Type: Survival	Organism: Eohaustorius estuarius (Amphipod)	Material:	Unionized Ammonia
Protocol: EPA/600/R-94/025 (1994)	Endpoint: Proportion Survived	Source:	Reference Toxicant-REF

		M	ean:	0.809	98 C	ount:	20		-1s Warn	ing Limi	t: 0.412	-2s Action Lim	iit: 0.0142
		Si	gma:	0.397	'8 C	V:	49.1	0%	+1s Warn	ing Limi	t: 1.208	+2s Action Lim	i t: 1.605
Qualit	ty Con	trol Data	a										
Point	Year	Month	Day	Time	QC Data	Delta	1	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2012	Apr	10	15:10	0.249	-0.56	08	-1.41	(-)		18-7283-5013	17-8032-8770	NewFields
2			17	15:45	0.36	-0.44	98	-1.131	(-)		18-5229-3668	21-3980-0168	NewFields
3		May	8	14:30	0.393	-0.41	68	-1.048	(-)		15-4565-2403	07-1675-0393	NewFields
4		Jun	8	15:30	0.56	-0.24	98	-0.628			03-7901-3036	09-3097-7160	NewFields
5	2013	Feb	22	11:40	0.935	0.125	52	0.3147			10-3861-9695	14-6175-2687	NewFields
6		May	10	14:20	1.38	0.570	02	1.433	(+)		05-8857-3753	12-0577-0060	NewFields
7		Jul	23	15:10	0.839	0.029	92	0.0734			08-8059-3744	14-8468-9199	NewFields
8		Aug	27	12:10	1.242	0.432	22	1.086	(+)		18-3860-3992	13-4279-2307	NewFields
9		Nov	1	13:30	0.882	0.072	22	0.1815			01-7225-6737	17-4499-2761	NewFields
10			12	13:45	0.302	-0.50	78	-1.277	(-)		15-7445-3893	14-8429-9092	NewFields
11	2014	Apr	4	19:15	1.05	0.240)2	0.6038			02-4910-1045	18-6624-7464	NewFields
12			25	13:00	0.409	-0.40	08	-1.008	(-)		05-3931-3196	00-2785-8568	Port Gamble Environment
13		May	30	15:30	1.105	0.295	52	0.7421			03-2348-8477	17-7984-3461	ENVIRON
14		Aug	26	15:45	1.037	0.227	72	0.5711			16-9917-4183	01-4278-7622	ENVIRON
15		Sep	15	15:10	0.497	-0.31	28	-0.7863			04-2286-3837	01-4675-9354	ENVIRON
16		Nov	14	14:25	0.881	0.071	12	0.179			07-5753-6828	01-5478-5022	ENVIRON
17		Dec	10	15:50	0.943	0.133	32	0.3348			04-0714-3304	12-5251-7122	ENVIRON
18	2015	Feb	27	12:35	0.334	-0.47	58	-1.196	(-)		10-1977-7129	04-0485-4050	ENVIRON
19		Jun	26	13:20	1.578	0.768	32	1.931	(+)		13-7504-6588	11-4090-1553	ENVIRON
20		Nov	6	15:30	1.22	0.410	02	1.031	(+)		14-1974-2437	10-4251-0205	ENVIRON
21		Dec	7	15:58	1.733	0.923	32	2.321	(+)	(+)	12-1918-7694	05-5204-9536	ENVIRON

CETIS QC Plot

16 Dec-15 16:16 (1 of 1)

Report Date:

Reference To:	xicant 96-h Acu	te Survi	ival Test											ENVIRON
Batch ID: Start Date: Ending Date: Duration:	15-6483-7423 07 Dec-15 15:5 11 Dec-15 14:3 95h	58 35	Test Type: Protocol: Species: Source:	EPA/600/R-94/025 (1994) Eohaustorius estuarius						Analyst: Diluent: Laboratory Sea Brine: Not Applicable Age:			water	
								44	-					
Sample ID:	04-1097-4320		Code:		7EF870				Clien					
Sample Date: Receive Date:	-		Material:		al Ammonia	+			Proje	ct: +	Referen	ice Toxic	cant	
Sample Age:	,		Source: Station:		Reference Toxicant 140505.221									
			Station:		+0505.221									
Comparison S	Summary													
Analysis ID	Endpoint		NOEI	_	LOEL	TOEL	PMSD	TU		Metho	d			
00-7335-5231	Proportion Sun	vived	138		243	183.1	8.44%			Dunne	ett Multi	ple Com	parison Tes	st
Point Estimat	e Summary												_	
Analysis ID	Endpoint		Leve	I	mg/L	95% LCL	95% UCL	τu		Metho	bd			
01-5604-1684	Proportion Sur	vived	EC50)	180.1	168.6	192.4			Trimm	Kärb e r			
Proportion Su	urvived Summa	ry												
C-mg/L	Control Type	Coun	t Mear	ı	95% LCL	95% UCL	Min	Max	ĸ	Std Er	rr S	td Dev	CV%	%Effec
0	Dilution Water	3	1		1	1	1	1	-	0	0		0.0%	0.0%
20.5		3	0.966	67	0.8232	1	0.9	1		0.0333	33 0.	05774	5.97%	3.33%
37.4		3	1		1	1	1	1		0	0		0.0%	0.0%
74.2		3	1		1	1	1	1		0	0		0.0%	0.0%
138		3	0.933	33	0.7899	1	0.9	1		0.0333	33 0.	05774	6.19%	6.67%
243		3	0.033	333	0	0.1768	0	0.1		0.0333	33 0	05774	173.2%	96.67%
Proportion Su	urvived Detail											-		
C-mg/L	Control Type	Rep 1	Rep	2	Rep 3									
0	Dilution Water	1	1		1									-
20.5		1	1		0.9									
37.4		1	1		1									
74.2		1	1		1									
138		1	0.9		0.9									
243		0	0.1		0									
Proportion Su	urvived Binomia	als												
C-mg/L	Control Type	Rep 1	Rep	2	Rep 3									
0	Dilution Water	10/10			10/10									
20.5		10/10	10/10)	9/10									
37.4		10/10			10/10									
74.2		10/10	-		10/10									
100														

Analyst:

QA:_

138

243

10/10

0/10

9/10

1/10

9/10

0/10

 Report Date:
 16 Dec-15 16:10 (p 1 of 1)

 Test Code:
 18-5380-2632/6E7EC888

Reference To	xican	it 96-h	Acute	Survival Te	st		ENVIRON
Start Date: End Date: Sample Date	11 [Dec-18	5 15:58 5 14:35 4	•	I: EPA/600/R-94/025 (1994)	Sample Code: Sample Source: Sample Station:	187EF870 Reference Toxicant p140505.221
C-mg/L	Code	Rep	Pos	# Exposed	# Survived	Notes	
0	D	1	1	10	10		
0	D	2	2	10	10		
0	D	3	3	10	10		
20.5		1	4	10	10		
20.5		2	5	10	10		
20.5		3	6	10	9		
37.4		1	7	10	10		
37.4	• • • 	2	8	10	10		
37.4	+ - ;	3	9	10	10	and a second a second as	
74.2		1	10	10	10		
74.2	 	2	11	10	10		
74.2	•	3	12	10	10		
138		1	13	10	10		
138		2	14	10	9	· · · · · · · · · · · · · · · · · · ·	

3 15

CETIS Sum	nmary Repo	rt						Report Date: Test Code:		Dec-15 16:1 \B53EE 12	
Reference Tox	kicant 96-h Acut	e Surv	ival Test					est coue.			ENVIRON
Batch ID:	13-8402-0771		Test Type:	Survival			4	Analyst:			
Start Date:	07 Dec-15 15:5		Protocol:	EPA/600/R-94/	025 (1994)		0	Diluent: L	aboratory Sea	water	
Ending Date:	11 Dec-15 14:3	5	Species:	Eohaustorius e	stuarius		E		ot Applicable		
Duration:	95h		Source:	Northwestern A	Aquatic Scier	nce, OR	1	Age:			
Sample ID:	21-0513-7019		Code:	7D79D77B			(Client: Ir	iternal Lab		
Sample Date:	05 May-14		Material:	Unionized Amr	nonia		F	Project: R	eference Toxi	cant	
Receive Date:	05 May-14		Source:	Reference Tox	icant						
Sample Age:	581d 16h		Station:	p140505.221							
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	тυ	Metho	Ł		
05-5204-9536	Proportion Surv	vived	1.733	1.906	1.817	8.44%		Dunnet	t Multiple Com	parison Tes	st
Point Estimate	e Summary										
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	тυ	Metho	ł		
00-1085-2209	Proportion Surv	vived	EC50	1.807	1.757	1.857		Trimme	d Spearman-	Kärber	
Proportion Su	urvived Summar	у									
C-mg/L	Control Type	Cour	nt Mean	95% LCL	95% UCL	Min	Max	Std Er	Std Dev	CV%	%Effect
0	Dilution Water	3	1	1	1	1	1	0	0	0.0%	0.0%
0.399		3	0.966	0.8232	1	0.9	1	0.0333		5.97%	3.33%
0.734		3	1	1	1	1	1	0	0	0.0%	0.0%
1.161		3	1	1	1	1	1	0	0	0.0%	0.0%
1.733		3	0.933	3 0.7899	1	0.9	1	0.0333	3 0.05774	6.19%	6.67%
1.906		3	0.033	33 0	0.1768	0	0.1	0.0333	3 0.05774	173.2%	96.67%
Proportion Su	rvived Detail										
C-mg/L	Control Type	Rep	1 Rep 2	2 Rep 3							
0	Dilution Water	1	1	1							
0.399		1	1	0.9							
0.734		1	1	1							
1.161		1	1	1							
1.733		1	0.9	0.9							
1.906		0	0.1	0							
Proportion Su	urvived Binomia	ls									
C-mg/L	Control Type	Rep	1 Rep 2	2 Rep 3							
0	Dilution Water	10/10) 10/10	10/10							

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	10/10	10/10	10/10
0.399		10/10	10/10	9/10
0.734		10/10	10/10	10/10
1.161		10/10	10/10	10/10
1.733		10/10	9/10	9/10
1.906		0/10	1/10	0/10

Reference To	oxicar	nt 96-h	n Acute	e Survival Tes	t		ENVIRO
Start Date: End Date: Sample Date	11	Dec-1	5 15:58 5 14:35 4		Eohaustorius estuarius EPA/600/R-94/025 (1994) Unionized Ammonia	Sample Code: 7D79D77B Sample Source: Reference Toxicant Sample Station: p140505.221	
C-mg/L	Code	Rep	Pos	#Exposed #	^t Survived	Notes	
0	D	1	1	10	10		
0	D	2	2	10	10		
0	D	3	3	10	10		
0.399		ື 1	4	10	10		
0.399		2	5	10	10		
0.399		3	6	10	9		
0.734		1	7	10	10		
0.734	+	2	8	10	10		
0.734		3	9	10	10		
1.161	+	1	10	10	10		
1.161	-	2	11	10	10		
1.161	ja 1	3	12	10	10		
1.733		1	13	10	10		
1.733		2	14	10	9		
1.733		3	15	10	9		- 1999 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995
1.906		1	16	10	0		
1.906		2	17	10	1		
1.906	1	3	18	10	0		

CLIENT:	GeoEngineers	Date of Test:	07-Dec-15
PROJECT:	RG Haley	Test Type:	Eoh RT
COMMENTE	D4 40505 004		

COMMENTS: P140505.221
To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

Intege	r: I-factor
1	9.26
2	9.27
3	9.28
4	9.29
5	9.30
6	9.32
7	9.33
	9.34
9 36 4 9 34 9 35 9 32 9 36 9 36 9 36 9 36 9 36 9 36 9 36 9 36	CORSUL 4 STOLEN 4 3 NO.
- 25 L	4 5 6 7 8

Sample	Mod N		salinity (ppt)	pН	temp (C)	temp (K)	i-factor	Mod NH3U (mg/
Target / Sample Name		Actual	22.9	8.0	24.1	297.26	9.3053	#VALUE!
Example 3.5		2.000	10.0	7.5	5.0	278.16	9.2750	0.008
15		20.5	28	7.9	16.1	289.26	9.3187	0.399
30		37.4	28	7.9	16.2	289.36	9.3187	0.734
60		74.2	28	7.8	16.2	289.36	9.3187	1.161
120		138	28	7.7	16.3	289.46	9.3187	1.733
240		243	28	7.5	16.1	289.26	9.3187	1.906
					L			
· · · · · · · · · · · · · · · · · · ·								
	-					<u></u>		
			l					· · · · · · · · · · · · · · · · · · ·
	+							+
······ · · · · · · · · · · · · · · · ·								
	-							
			· · · ·					
					<u> </u>			
								1
	1					·····		
	1							
	ļ				L			
	ļ				<u> </u>			
	ļ		ļ		<u> </u>			
			l		ļ			
	ļ							
	 						1	
					<u> </u>			
					<u> </u>			
			·		<u> </u>			
			·		<u> </u>			
	 	······	l					· · · ·
	+				┢────			
	1				┝────	L		
	+				<u> </u>			
-			I		<u> </u>	l		

Ammonia Reference Toxicant Test Water Quality Data Sheet

CLIENT		PROJECT												Labor	atory			PROTOC	OL
GeoEngineers			F	RG Hale	∋у				E	ohausto	orius e	stuarius	S		Port	Gamble	Э.	PSE	P 1995
TEST ID		LOT #:					1	TEST START	DATE			TIME	4-DA	I Y END	DATE			ТІМЕ	
P140505.221		3	294	c 53	5			,	07 1004	- Dec15		l	1558		0 <u>08</u> 0	ec15		14	35
CHAMBER SIZE/TYPE		EXPOSUR	EVOLUME																
glass pint ja	Л		25	0 m	L		<u>.</u>												
							WA.	TER QI	JALI	TY DA	ТА								
7507.0					DO	(mg/L)	TE	EMP(C)	SA	L (ppt)		рН	TECHNICIAN		AMMO	AIA			
TEST C	ONDIT	IUNS			>	5.1	1	5 <u>+</u> 1	2	8 <u>+</u> 2	7	'9							
	CONCEN	TRATION	DAY	REP		D.O.		TEMP.	s/			рН	- WQ TECH/ DATE	An	MMONIA	Tech			
SAMPLE ID	value	units	DAT	KEP	meter	mg/L	meter	°c	meter	ppt	meter	unit		METER	mg/L	Teen			
Ref.Toxammonia	0	mg/L	0	Stock	8	7.9	8	016.2 16.4	8	28	8	8.0	RE 12/7/15	3	0.00				
		ing/L	4	1	9	7.4	9	15.6	9	28	9	7.9	JL 17/11						
	45		0	Stock	8	8.0	8	016.1 10.5	8	78	8	7.9	RE 12/7/15	3	20.5				
Ref.Toxammonia	15	mg/L	4	1	9	75	9	15.3	9	28	9	8.0	JL 12/4						
Ref.Toxammonia	30	mg/L	0	Stock	ઝ	Z.O	8	916.2 16.5	8	ə 8	Ő	7.9	RE 12/7/15	3	37.4				
Ner. TOXaminoma	50	шу́с	4	1	9	7.5	9		_	28	9	8.0	JL12/11						
Ref.Toxammonia	60	mg/L	0	Stock	8	8.0	8	016.2 16.0	8	28	8	7.8	RE 12/7/15	3	74.2				
	00	ing/ L	4	1	9	7,6		15,2	9	28	9	7.9	JL 12/11						
Ref.Toxammonia	120	mg/L	0	Stock	8	8.0	8	016.3 17.T	8	28	8	7.7	RE 12/7/15	3	138				
	120	, ng, E	4	1	9	7.4	-	15.2	-		-		J- 1411						
Ref.Toxammonia	240	mg/L	0	Stock	8	7.9	8	96.1 17.0	8	28	8	7.5	RE 12/7/15	3	243				
Nel TOX.ªaminoma	240	τι <u></u> γμ	4	1	9	7.5	9	15.3	9	28	9	7.9	JL 12/11						

() 16. JL 12/00/15 () 15 RE 1217115

05/11/15

Ammonia Re nce Toxicant Test Water Quality Data Sheet

								SPECIES		Eohau	istoriu	is esti	iarius		
		PRO.	IECT						T MANA	GER	LABOR	ATORY		PROTO	OL
GeoEngineers				RG					Heste	r	Por	t Gan	nble .	PSEF	1995
			SUR	VIVAL & BEHAVI		/IOR						•	B 4 1 4		
OBSERVA N = Normal					DAY 1			DAY 2			DAY 3		DATE	DAY 4	
LOE = Loss of equili Q = Quinscent DC = Discoloration				DATE (21	8/15)	date 12	109		DATE		ŕ		2/11	
NB = No body F = Floating on surfa			. # OF NISMS		SIAN	/				TECHNIC			TECHNIC	ian A	/
SAMPLE ID	CONC. value units	REP	INITIAL NUMBER	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS
		1		0)	O	35	ုပ	Ó	3F	10	ø	IF	10	<i>p</i> j	lF
Ref.Tox Ammonia	0 mg/L	2		10	Ø	N	10	0	γ	10	Ø	j. ³	10	Ø	И
		3		lŋ -	O	UP	GJ	Ø	3ŕ	10	Ø	2F	10	Ø	ZF
		1		0]	O	24	10	0	41-	ίQ	Ó	2F	10	Ø	1F
Ref.Tox Ammonia	15 mg/L	2		(D	O	25-	10	め	ĪF	{D	Ø	IF	10	0	2F
		3		10	Ò	3F	10	ĸ	35	٥J	ଷ	2F	9	l	3F
		1	-	10	0	k	10	Ø	IF	0)	Ø	ZF	ίO	Ø	N
Ref.Tox Ammonia	30 mg/L	2		10	0	35	(O	F)	31=	0]	Ø	3F	٥١	Q	١F
		3		10	0	N	10	Ø	IF	10	в	IF	()	Ø	lF
		1		10	Ø	35	10	Ø	3F	(0	Ø	IF	٥)	Ø	Ν
Ref.Tox Ammonia	60 mg/L	2		١D	Ď	ጓድ	10	0	4F	(D	Ø	SF	(D	Ø	ZF
		3		10	O	36	10	0	2F	(D	Ø	2ŕ	٥)	0	2F
		1		IJ	Ъ	z≮	ĮO	Ø	2F	[D	Ő.	2F	10	Ø	2F
Ref.Tox Ammonia	120 mg/L	2		١Û	Ø	38	10		γ	10	Ø	۲	9	(と
		3		[]	0	4F	(D	0	4 F	61	Ь	4F	7	l	2F
		1		10	0	3F;Q	6	4	θ	4	2	0	Ö	4	0
Ref.Tox Ammonia	240 mg/L	2		10	0	4F, Q	6	4	Q	5	ι		l	4	
		3		10	0	ZFA	7	3	0	4	3	l	Ø	4	ļ

ENVIRON	Ammonia Reference Toxicant
	Spiking Worksheet

Reference Toxicant ID:	P140505.221	
Date Prepared:	12/7/15	
Technician Initials:	HE	

Amp/Eoh NH₃ RT

Assumptions in Model Stock ammonia concentration is 10,000 mg/L = 10 mg/mL Date: 12/7/2015 Measurement: 9286.6

Test	Solutions		Volumo of etc	akta raash daalrad				
Measured Concentration	Desired Concentration	Volume	Volume of stock to reach desired concentration					
mg/L	mg/L	mL	mL. sto	ck to increase				
				SALT WATER				
243 3200 9	240	750		29.074				
138	120	750		14.537				
74.2	60	750		7.269				
37.4	30	750		3.634				
20.5	15	750		1.817				
	0	750		0.000				
		-						

OTE # 1217-

Biological Testing Results for R. G. Haley

APPENDIX A.2.1

Neanthes arenaceodentata Juvenile Polychaete Bioassay Laboratory Data Sheets

NUMBERVIEW ENVIRON

Contragence		PBQ	HET	-	wy .		000	×4.	к.		PROS		A real			LARD	RATOR POL				1000				PROM	
2 - Name	-	1	1.	-	1.12	1	1.1		0	-	(NOP	_	-	_	AJIDOR:	-		_	-		4		_	Agentics		
C - Der preim Die Anstatig - Oracio fregel Austratio, er Bigkl - Flansky for Biblion - Ther David Pfilanne Ang		ben und protect	12/05 JL	12/06 1	12	10	16 10/21	Nor and	NO IVE	12/12 JU	12/13 26	A sec	2102	12/15 20	12 41/21	100 40	2/19/2	12/20 10	* *	12/22 12.	VIII NE	up the	and the second s	Ĩ	anna (14)	No. 1
	-	ALC: NO	-	4					*		-		÷	.0	=	-	5	-	4		1	-	1	Ŧ	Number of Street	221.93
	11		N	N	N	H	2	N	N	2	N	N	U	N	N	N	N	N	M	N	4	6	S	191.54		236.04
-	Ľ+		1ŀ	H	4	11-		1			+	52	5	9	G	9	6	6	9	6	1	1	5	212.92	1.1.1	236.09
Decs/	Ĥ		H		4	4	1		H	4	-		2	1	1	1	1	1	1	1	÷.	1	5	\$ 203.89	291.47	241.38
	11	-	H	H	H	1)				6	1	1	1		1	-1	11	H			1	+	5	1212.09	31393	748.68
_	11	-	H	+	+	v	-	4	1	6	1	4	5		-	-	++	+		1		4	5	\$ 205.64		242.67
	1t		H			5	6	5	4	1	6	5	9	1			11	H		1	14	5	5	\$195.85		213.34
CR22/	3			t		5		1		$^{+}$	Ħ	H	ĩ	$\left \right $		-	H	H	+		1	-	55	111.50	11 Jul 1	212.35
	b†		Ħ	T		5		1	H	Ħ	†	ti	H			1	H	H	$\left \right $		łł	H	5	C10. 10	185.09	232.21
	5		t	T		5	J	J	l	Ħ	Ħ	1	1			1	11	t	H	H	11	1	S	10194.93	26485	215,35
	24				T	N	N	N	6	Ħ	t	1	1	Ħ	T	t	t	t	H	H	1	G	5	"184.30		196.04
						4	T	r	6	П		11	11	П	T	Ħ	11	T		Ħ	11	ň	S		29032	218.85
551-55-03-0-12/	X	1.0				N	11		G			11	11	П	1	11	11	T	1.1	Ħ	11	11	5	13206.63		224.35
	٠.				J	1			6			1				1.	11			11	U	11	5	14 168.73	269.29	181.06
-	x		1	1	2	4	4	4	9	L	•	Y	4	U	1		L	6	U	11	2	2	3	15187.87		205.15
- 69	-	1	in the second	0	Cry III	10	ors	0											-	-	-					
and Research 1	+		-	_	52.		22	96																		
	-	-					51.	I																		
Owe \$	10	-	21				21.	24																		

γ.

IR A M B (C +) ENVIRON

and an and a second sec	n.	-	-	65 may		-	-		-	ENG.	PODAT	B- Las		Austroit	1.		Cientor		12	the second		_		Dectal I	1
A + Encounts IN-Encounty SEncount Service A - Service - Service I + Statutes (SER) I + Statutes (SER) I + Statutes (SER) V - You Grady Witness (Service)	-	Date and fulless	15/05 JL	2/04 11	74 4/2/	A 8121		0/10 The	sta A	10 2/21	18	Ser. Me	a all	2/19-01		1 1/21	12/2010	N. 18	170 1	1 11	Sec. 8		(her seense	amont inc.	Ĩ
		10	-	•	•	•		• •	1		1	=	2	1	1	1	*	2	-	=	8	1	1	261.00	1.1
	1		N	N	12	N		96	19	6	6	5	6	16	4	6	6	4	4	6	6	5	10184.26	7.1	194.53
551-35-05-0-12)	1	-	4		H	11	11	NG	1	H	1	IÌ	1	1	I.	1	1	4	6	1	1	5	17 173.51	255.46	189.47
001 30 (0 1 1 1 1	1		H	11	H	H	11	6		4	4	H	Ц	1		11	1	1		2	4	5	18191.83	274.29	
				11	U	Ħ	11	16		÷	ł	H	H	H	H	44	H	H	14	-	-11	5	204.14	294:75	0222446
1.2			11	1	1	Ħ	11	11	H	t	1	H	H	++	-	H	+		H	2	8	5	20232.20		211665
	2				11	1t	ťľ	6			fi i	1	H	t l		H	t			1£	5	5	22201.75	2741.44	216.32
\$\$1-\$5-06-0-17 (4	1				4	Ħ.	16	T	I	t	t		th	T	Ť		1		6	11		23211.75		211.11
1 mar	•		1	11	1	2	6	G	П	1	1	1	1		T	Ħ	T	11	11	Y	İİ	5	24		2 24.98
	1		+	e k	1	N	11	16	1	1	1	X	U	2	4	1	L		V	\$	1	5	25201.31	263.99	711.71
() we H	K.	121	13																			3	26256.32		1.50 11
																							7242.33		
																							\$71000		

28219.89

GeoEngineers			PIRO	JECT.	ILG Haley		START TIME/ EN	ND TIME				20315.01	PROTOCOL PSEP 19	995	TEST START DAT
IOB MUMBER			PRG	JECT)	HANAGER B. Hester		LABORATORY / Port Gar	mble / 1	3ath	DRGANIS		ATCH 110515	TEST SPECIES	un motoria la	TEST END DATE
TEST CONDITIONS	-	-	1.5		DQ (mg/L)	1	WATER QUA TEMP (C)		ATA	opt)	-	pH		_	
Longital Sp	-	-		maker	> 4.5 0.0. mg/L	-	20 ± 1 TEMP *C	5 [mmrr]	28 ± 2 SALINIT	-	_	8.0±1.0 pH	WATER	Feeding	TECH/DATE
Control /	Ø	Sur	28	8	7.7	8	200	8	28		8	7.9	SENEWAL	JL	J 12/14
Control /	1	Ser	1	3	7.1	18		8	2			7.67.70	-	100	1
Control /	2	Sur	1	8	7.7	8	20.3	8	2		8	8.0	-	N	UL 12/01
Control /	3	Sur		8	7.2	8	-201	8	2		8	7.8	GH	-	HE 12/7
Control /	4	Sur			26.963	-	esoa	8		-	8	7763	-	KE	BE17.19
Control /	5	Sur		9	7.1	9	19.8	9	2	01	9	7.7		IN	Ju 12/00
Control /	6	Sarr		9	4.8	9	19.8	9	2		9	7.8	JL	HE	JL 12/0
Control /	2	Sur		9	6.4	9	19.8	9	2	_	9	9.3			UL 12/11
Control /	8	Su7		9	73	9	19.8	9	30	-	9	8.0		a	J 12/1
Control /	9	Sur		8	7.0	8	19.9	8	3	_	8	7.8	JU		h 14
Control /	10	507		6	7.4	8	19.9	8	30	-	Ť	9.0		He !	- 171
Contrai /	11	Sar	\square	8	7.3	8	19.9	8	30			8.0		A	HE 12/15
Control /	12	Sutt		8	7.5	8	19.9	8	30	,	9	80	He	Je,	At 1214
Control /	13	Sunt		8	7.4	g	19.9	8	31		8	7.9	Ne	ME	JL 12/1
Control /	14	sur		6	7.3	8	C () C ()	81	31		8	8.0		M	# 12/18
Control /	15	Sar		8	6.8	8	19.9	B	3	(B	7.9	r	ax.	ch 12/1
Control /	16	Şurr		8	7.5	8	20.0	8	3		8	8.2	00	U	UL 12/2
Control /	17	Sar	4-1	5	6.7	9	19.8	9	3	_	9	8.1			1/2 12/21
Control /	18	Ser	-	9	7.0	9	19.7	9	3	2 0		8.0	恢	34	NG 12/12
Centrel /	19	Suri	14	1	11	9		91	ĩ	9 0	9	7.9	- Che	m	1/1 12/23
Control /	20	Surr	LF	il		9		à	30	0	1	8.0			# 12194

GeoEngineers			FXC	DECT	RG Haley		ISDS .	ND TIM				ATEN BATCH 20315.01	PROTOCOL PSEP 1	995	4-Dec-2015
ICA NUMBER			PRO	DJECT	ö. Hester		LABORATORY / Port Ga		Rolly	ORGAN		ATCH 5110515	TEST SPECIES		TEST END DATE
	_	_	_	_		-	WATER QUA			-	-			-	
TEST CONDITIONS			-	-	DO (mg/L)		TEMP (C) 20 ± 1	SA	28 ± 2		1	pH	1	-	
MANU D	-	10	-		0.0,	-	TEMP	1	SALINIT		-	8.0±1.0 pM	WATER	In an	
CR22 /	0	Sar	7	0	mg/L	a	-	0	25	_			RENEWAL	Feeding	
CR22 /	1-	Sar	1	8	7.5	8	19.6	8	2		3	7.9	-	VL	JL 12/01
	-	-	++-	8	7.3	8	20.1	8	2	_	8	7.7		-	UL 12/0
CR22 /	2	-	11	8	-1.4	8	20.2	8	2	8	8	8.1		JUL	JL 12/0
CR22 /	3	Sur	1	8	7.2	8	20.2	8	28	-	18	7.9	OM	1	第 12/3
CR22 /	4	Sarr	1	8	1.0	8	20.0	181	3	0	81	7.9		te	BE 12/8
CR22 /	5	Surr		89	6.9	189	200	9		9	9	79		1	11 12/09
CR22 /	6	507		9	7.4	9	19.9	9	2	9	9	8.1	Ju	31%	UL 12/10
CR22 /	7	Sur		9	75	9	19.8	9	_	9	9	8.1	-	1.1.2	UL 14/1
CR22 /	8	Sur		9	7.7	9	198	9	7	19	9	8.5		N	JL 12/12
CR22 /	9	Surr		8	7.8	8	20.1	8		30	8	8.4	Ju	00	Ju 12/13
CR22 /	10	Surr		8	8.1	8	19.7	5		0	8	8.3		the	
CR22 /	11	Sur		8	00,777	8	19.9	8		50	8	8.2	-	ne	Lix
C822 /	12	Sar	T	8	1.6	8	20.0	8	30	_	81	8.2	Na	y,	HE 12/15
CR22 /	13	Surr		8	7.6	8	19.9	8		10	8	8.2	the	N.C.	JC 12/16
CR22 /	14	Sur	11	B	7.3	8		8	30		8	8.2		M	1
CR22 /	15	Surr		8	7.4	8	20.0	8	31		B	8.2	JL.	X.	1 12/
CR22 /	16	Surr	11	8	7.7	8	20.1	8	3		8	8.3	Ve	1	
CR22 /	17	Sar	T	9	71	9	in d	9		_	9	01		UL	J- 12/2,
CR22 /	18	Surr		GI	14	6	19.6	9	30		5	8.1	ate	BE	
CR22 /	19	Sar	-	al	7.4	al	19.7	91	20			8.1	que		1 12/22 C
CR22 /	20	Sur			10 200	àl	19.7	9	3		-	\$032			\$ 1723 \$ 12/21

CLIENT			PRO	JECT	05151		START TIME/ EN	ID TI	et onur		ATER BATCH	PROTOCOL		TEST START DATE
GeoEngineers og konnes	-	-	000	_	IRG Haley	-	LABORATORY /	10.04		-	20315.01	PSEP 19	195	4-Dec-2015
0		1	-		5. Hester		Port Gar		Rath	ATS	110515	TEST SPECIES	exclentate	24-Dec-2015
		-	-	_			WATER QUA					-	_	
TEST CONDITIONS			-	-	> 4.5		TEM# (C) 20 ± 1	5	28 = 2	1	pH 8.0±1.0	-		
Mana IP	247				8.0.		TEMP	-	SALINITY		pit	WATER	Fooding	TECH/DATE
SS1-SS-03-0-12 /	10	Sur	21	0	Hg/L	0		D	ppt	D		RENEWAL		N DI
	0		2	8	7.6	8	195	8		8	7.9		Ju	UL 14/04
551-55-03-0-12 /	1	Surr	1	8	32	8	201	8	28	8	79	-	1	A 12/05
SS1-SS-03-0-12 /	2	Sorr		8	7.6	8	20.1	8	27	8	82		A	U- 12/0
SS1-SS-03-0-12 /	3	Surr		9	7.2	8	702	2	29	8	4.1	124/	1.2.81	黄 12/7
SS1-SS-03-0-12 /	4	San		8	7.2	8	20.0	8	29	8	81		1×	8E 12/8
SS1-SS-03-0-12 /	5	Sirr		9	71	9	198	9	29	9	8.2		1ª	JL 12/0
\$\$1-\$\$-03-0-12/	6	Suit		9	6.9	9	19.8	9		9	8.3	Ju	72	a 12/1
SS1-SS-03-0-12 /	1	Surr		9	71	9	19.6	9	30	9	8.2			U- 12/1
SS1-SS-03-0-12 /		Sur		9	7.3	9	19.6	9	30	9	8.4		Ju	J 12/12
SS1-SS-03-0-12 /	9	Surr		8	7.4	8	19.9	8	31	8	8.4	Ju		UL 12/13
\$51-\$\$-03-0-12 /	10	5)/07		8	7.6	8	19.7	4	31300	8			HE	17 12/1
SS1-SS-03-0-12 /	11	Sar	1	8	2.7	89	219 ghz	8		8	8.4	-		A Izlis
SS1-SS-03-0-12 /	12	Surr	1	8	7.6	8	19.8	8	32	8	8.4	He	长	Se 12/1
SS1-SS-03-0-12 /	13	Serr	1	8	7.5	8	19.8	8	31	8	8.3			JL 12/
SS1-SS-03-0-12 /	14	Sum		8	7.3	8	706	8	31	8	8-3		V	A 12/18
\$\$1-\$\$-03-0-12 /	15	Surr	1	8	7.4	B	20.0	8	31	8	8.3	J.		J- 12/10
551-55-03-0-12 /	16	Sar		B	7.6	8	19.9	8	30 249	28	8.4		u.	J-12/2
\$\$1-\$\$-03-0-12 /	17	Sarr		9	68	9	19.7	9	30	9	8.6		-	17/21
SS1-SS-03-0-12 /	18	Surr		9	7.0	9	19.6	9	31	9	8.4	能	12	the Inter
SS1-SS-03-0-12 /	19	Skitt	1	9	7.0	9	19.6	9	30	9	28		1	12/B
SS1-SS-03-0-12 /	20	Sur		9	7.0	9	196	q	20	0	8.3			AF 12.124

GeoEngineers			PROJ	IECT	RG Haley		START TIME/ B	IND TIM	onLur		20315.01	PROTOCOL PSEP 1	995	TEST START DATE 4-Dec-2015
OB NUMBER			PROJ	ECT	8. Hester		LABORATORY / Port Ga		BATH OREA	ATS	ATCH 110515	TEST SPECIES	0003110202	TEST END DATE
		_		_		_	WATER QUA	ALITY D	ATA			-		1
TEST CONDITIONS			1	_ 1	D0 (mg/L)	1	TEMP (C)	54	LINITY (ppt)	1	pH.	-		
AMERAL DF	LAN	1	-	-	> 4.6	-	20 ± 1 TEMP	-	25 ± 2 SALENITY	-	8.0±1.0 pH	WATER	1	1
	-	-	444	-	mg/L	IN CONT	°C	Instate	ppt	inter	linu	REWEWAL	Feeding	TECH/DATE
SS1-SS-05-0-12 /	0	Sim	14	B	7.6	18	20.0	8	28	8	8.0		h.	JL 12/04
SS1-SS-05-0-12 /	1	501	1	8	7.4	8	20.2	8	2.8	8	7.8		1	JL 12/0
\$\$1-\$\$-05-0-12 /	2	Sur	1	8	7.5	8	20.7	8	2.8	8	8.2		UL	UL 12/06
SS1-5S-05-0-12 /	3	Sim		8	1.2	8		8	29	8	8.2	Bh	1	12101
SS1-SS-05-0-12 /	4	Sat	. 11	8	7.1	8	202	18	29	18	8.2		100	BE 12/8
SS1-SS-05-0-12 /	5	Sum		9	69	9	19.9	9	29	9	8.1		TRE	JL 12/00
551-SS-05-0-12/	6	Sim		9	9.1	9	128	9	.30	9	8.3	J.	The	1 12/
SS1-SS-05-0-12 /	7	Ser		9	7.2	19	197	9	30	9	8.3		110	JE 12/11
SS1-SS-05-0-12 /	8	Sarr		9	7.5	9	19.7	9	30	19	8.6		UL	VL 12/12
SS1-SS-05-0-12 /	9	Surr		8	7.6	8	200	8	30	8	8.6	JU	-	JU 12/13
SS1-SS-05-0-12/	10	San		5	7.9	8	19.2	8	31	8	8.5		NE	# 12/14
S\$1-55-05-0-12 /	11	5am		8	7.6	8	19.8	8	31	8	8.4		1	He Izlis
551-55-05-0-12 /	12	Sull		8	7.6	8	19.9	8	31	8	8.4	the	4	# 12/15
SS1-SS-05-0-12 /	13	Surr		8	2.4	8	19.8	8	31	8	8.3	4-	14	UL 12/17
SS1-SS-05-0-12 /	14	Sar		8	13	8	10.0	8	31	8	8.4		SW	H# 12/18
551-55-05-0-12 /	15	Sarr		8	7.5	8	20.0	8	31	B	8.5	h		or 12/19
SS1-SS-05-0-12 /	16	Surr	11	8	8.0	8	20,0	8	30	8	86		a	d apo
551-55-05-0-12 /	17	San	110	1	74	2	19.8	9	30	9	8.1		1	121212
SS1-SS-05-0-12 /	18	Surr	10	1	7.4	9	19.7	9	30	9	8.5	1×	B2	18 17/22
SS1-SS-05-0-12 /	19	Shee		9	15	9	197	9	30	9,	8.4			12/23
SS1-SS-05-0-12 /	20	Sur	110	11	リオラフト	9	19.6	9	30	51	2010			1/5/2101

GeoEngineers			PRO	UECT	RG Haley		START TIME/ E		e.	1		198 BATCH	PROTOCOL PSEP 1	995	4-Dec-2015
D D		Ĩ	PRO	DECT	Bi Hester		LABORATORY / Port Ga	mble /	Bioh	ORGAN	ATS:	TCH 10515	TEST SPECIES	cessenciala	TEST END DATE
TEST CONDITIONS	-	_	1	1	D0 (mg/L)	1	WATER QUA TEMP (C)		ATA	(post)	-	pft	1		
TEST COMPTITIONS	-	-	=		> 4.6 0.0.	-	20 ± 1	1	28 =	2	1	8.0±1.0	-	-	
manut to	447	-	1	inte		-	TEMP	meter	SALINI	pt	mater	pH Unit	WATER: RENEWAL	Feeding	TECH/DATE
SS1-SS-06-0-12 /	0	Sie	19	8	7.6	8	20.0	8		8	B	81		Ju	Ju 12/0.
SS1-SS-06-0-12 /	1	San	1	8	3.1	8	20.2	8		8	8	7.7	-	00	UL 12/0
SS1-SS-06-0-12 /	2	Sun	T.	B	6.8	8	202	8		8	8	8.0	-	JU	UL 140
SS1-SS-06-0-12 /	3	Sun		8	13	8	20.2	8	29		8	8.1	CH		1
SS1-SS-06-0-12 /	4	Sun	Ħ	8	71	8	20.2	8		9	8	8.2	1	KE	80 12/8
SS1-SS-05-0-12 /	5	Sun	11	9	6.6	9	20.0	9		19	9	8.1		-14	UL 12/0
SS1-SS-06-0-12/	6	Ser	11	9	6.9	9	19.9	9		30	9	8.4	JL.	12	J- 12/1
SS1-5S-06-0-12 /	7.	5.00	T	9	7.0	9	19.7	9		30	9	83		112	11- 12/4
551-55-06-0-12 /		Sun	Ħ	9	7.4	9	19.7	9		30	9	86		UL	Un
SS1-SS-06-0-12 /	9	SUT		8	7.6	8	20.0	8	-	30	8	8.5	Ju		JL 12/
SS1-SS-06-0-12 /	10	Sar		8	7.8	8	19.7	8		30	C	8.5		HE	HE 12
SS1-SS-06-0-12 /	11	Ser	11	8	1.1	4	19.9	4		0	8	8.4		the	1 171
SS1-SS-06-0-12 /	12	Spri	T	8	7.6	8	19.9	8		31	8	8.9	#2	14	HE 1216
SS1-SS-06-0-12 /	13	Sur		8	7.4	8	19.8	8	3	-	8	8.3	na	Te	11 12/1
SS1-SS-06-0-12 /	14	Ser	1	8	13	8	20.0	8	2		8	4.3		W	12/18
\$\$1-\$\$-06-0-12 /	15	Sar	1	B	7.0	8	20.0	B	1	31	8	8.2	L	4	JE 17/1
SS1-SS-06-0-12 /	16	Sum		8	76	8	20.0	9		30	8	8.4		10	J 12/2
SS1-SS-06-0-12 /	17	Ser	1	9	6.7	9	14.8	9		30	0	8.5			17 17.12
\$\$1-\$\$-06-0-12 /	18	Sun		9		9	19.7	9	30	-	9	8.2	gk.	B4_	ff 12/22
SS1-SS-06-0-12 /	19	Sar		9	10	ġ	19.9	9	29		9	8.1		1 C	4/2 12/23
S\$1-55-06-0-12 /	20	Sur	5	9	6.3	9	19.6	9	5	D	a	7.9			the rang

RAMBOLL ENVIRON

Ammonia and Sulfide Analysis Record

Page _____ of___

	Client/Pr GeoEv	gine	ers	14	5 thaler	1		Jeanne		enau	eod	entata	Test l	Duration		20	
		ETE:		G (OV)	ITIAL PO	FINAL FINAL	/ OTH R (PW) (14	ER (circl eircle one	le one) e) / Con	nment	s:				DAY of TI	EST:	<u> </u>
				Date:		ation Standa /15	ards Tem		mperat	ure:	19.0	0°C			should be with re at time and		
De	ple ID or scription	Cor or R		Samp	ate of bling and itials	Ammonia Value (mg/L)	Temp °C	Date Readir Initi	ng and	Sam Prese (Y/	rved	рН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf. (mg/L
V	Control	SU	vv.	12/04	115 JL	0.126	19.0	12/04/1	SN	N	1	1		10	0.00	NA	NA
-	CR-22			1		0.06	1			1				1	0.006	1	
-	3	-		-		0.00	-				_		-	_	0.015		
	5			-		1.82			-	-					0.007		
	v				-	1.04	•						1	*	0.002	q	d.
N	Control					0.638	19.6	-				7.5	27	2	0.040	S	0.20
1	CR-22					1.37	1					7.7		Ĩ	0.011	Ĩ	0.05
	3		1			8.13						7.8	29 30		0.00		().00
	5	-+				9.64						7.9	29		0.034		0.12
	6	L		1		12.3	<u></u>	,			V	8.0	29	Ł	0.031	- t	0.15
										-							

RAMBULL ENVIRON

Ammonia and Sulfide Analysis Record

Page of

	Client/P Cheven	roject:		n Hale		Organis	Veanthes			Test	Duration	20		
		ERLYIN		/ P	OREWATE	BZPW) (c	ER (circle one) circle one) / Con	nments;	_	_		DAY of T	EST: Z	0
F				Calibr	ation Standa	rds Tem	perature		-	1				_
-			Date:	-			Temperat	ture;		Sample	temperature	should be with	hin±1°C o	1
-			17/2	41.5			17.5			Siendar	us temperati	ire at time and	date of ana	lysis,
Desc	le ID or ription	Conc. or Rep	Sampl Ini	te of ling and tials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calculated Sulf. (mg/L
	\$ \$.22	Soll	ME	2/24	3.98	17.5	12/14/202	N		/	10	0.018	1	1.00
1 0	-			-	0.00	1	1		-	/	1	0.069	/	
1	3		-	-	0.00	-			-	1	1	0.020	/	-
t	6			1	0.00		-		/			0.063	-	1
2 3	82	SULL	#9	12/24	5.77	16.5	12/24 12	N	7.6	70	5	0.015	-	- No
6	222	1	13.4	1	0.760	1	Teleg pro	1	7.1	29	1	0.017	5	0.083
-	2	1.			0.00	- 1 - 1			7.3	30		0.023		0.11
_	5	_			0.00	-			7.0	30		0023	1	0.11
1	6	1	4	V	1.41	2	V	1	6.6	29	L	0.045	V	0.22
_									-					-
_	_							-						
				-				-	-	-	-			
				-									-	
_			-										-	-

ENVIRON ENVIRON

ORGANISM RECEIPT LOG

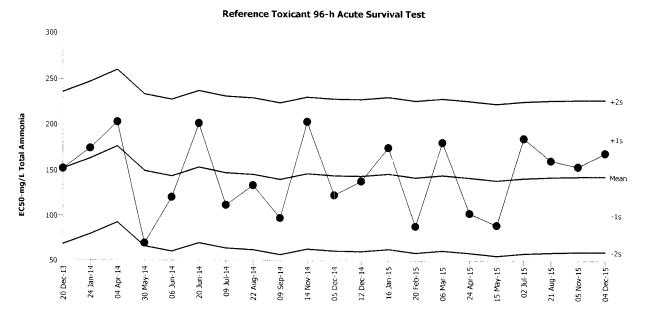
Date:	04/15	Tim	1420		Batch No.	120415	
Organism	and the second sec		11-		113	120710	
		mes	1 26	Haley			
Source / Si			L	0	9)		
	Aq	uatic	TOX.	Suppor	ŧ		
No. Ordere	d:	No.	Received:		ource Batch:	and all	
	360		396		collection date, hi Emerged	and the second second second	
Condition of	of Organis	ms:	A	pproximate	Size or Age: n, life stage, size		
	6000	Į			- 26 d	and the second second second second second second second second second second second second second second second	
Shipper:			B	of L (Tracki		10	
	Courie	n		N			
Condition o	of Contain	er:	Re	eceived By:			
	60	od			JL		
Container	D.O. (mg/L)	Temp. (°C)	Cond. or Sal. (Include Units)) pH (Units)	# Dead	% Dead*	Tech. (Initials)
1	11.5	13,5	29pp	t 7.5	- 1		N
_				-		17.2.7	
					-		
if >10% contac	t lab manager			-	-		
Notes:	1×						

Page <u></u>of <u></u>

Aquatic Toxicology Support 1849 Charleston Beach Road West Bremerton, Washington 98312 (360) 813-1202

Order Summary

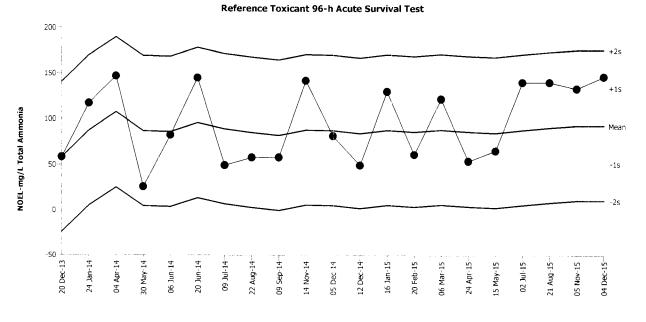
Species: Neanthes arenaceodentata*	Emerge Date:
lumber Ordered: 360	13-18 Nov'15 Number Shipped:
Date Shipped: 4 Dec 15	Salinity (nnt): 360 + 10%
*Smith 1964. CSU Long Beach strain. Feed u	


Biological Testing Results for R. G. Haley

APPENDIX A.2.2

Neanthes arenaceodentata Juvenile Polychaete Bioassay Reference Toxicant Test

CETIS QC Plot

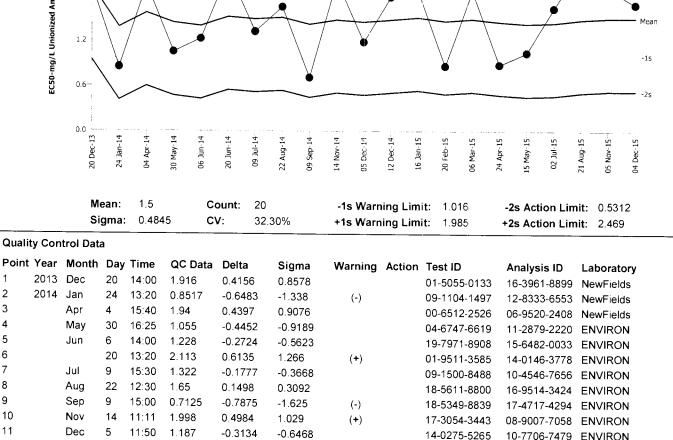

Reference Toxicant 96-h Acute Sur	vival Test		All Matching Labs
Test Type: Survival	Organism: Neanthes arenaceodentata (Polycha	Material:	Total Ammonia
Protocol: PSEP (1995)	Endpoint: Proportion Survived	Source:	Reference Toxicant-REF

			ean: gma:	143.4 41.83		Count: CV:	20 29.20%	-1s Warning L +1s Warning L		101.6 1 85 .3	-2s Action Lim +2s Action Lim	
Quali	ty Con	trol Data	3				- ·					tions in the second
Point	Year	Month	Day	Time	QC Data	a Delta	Sigma	Warning Acti	ion Te	st ID	Analysis ID	Laboratory
1	2013	Dec	20	14:00	152.2	8.771	0.2097		08	-9922-1254	05-5343-6267	NewFields
2	2014	Jan	24	13:20	174.5	31.12	0.7441		20	-9603-7883	05-6245-5381	NewFields
3		Apr	4	15:40	202.9	59.48	1.422	(+)	09	-1443-8374	04-8864-2138	ENVIRON
4		May	30	16:25	69.43	-73.97	′ -1.768	(-)	18	-4751-2702	06-4812-5268	ENVIRON
5		Jun	6	14:00	120.6	-22.83	-0.5457		02	-4901-6395	02-6665-3375	ENVIRON
6			20	13:20	201.3	57.95	1.385	(+)	04	-8899-1061	18-6388-8462	ENVIRON
7		Jul	9	15:30	112	-31.38	-0.7501		00	-3047-6484	19-8550-4064	ENVIRON
3		Aug	22	12:30	133.9	-9.533	-0.2279		19	-3698-7324	19-8424-2994	ENVIRON
9		Sep	9	15:00	97.87	-45.53	-1.089	(-)	04	-0379-7898	08-6657-8417	ENVIRON
10		Νον	14	11:11	203.3	59.88	1.431	(+)	09	-0815-7159	21-3147-5839	ENVIRON
11		Dec	5	11:50	123.1	-20.31	-0.4855		14	-5288-4655	12-0797-2995	ENVIRON
12			12	11:45	138.4	-4.956	-0.1185		04	-7774-5498	11-0912-6539	ENVIRON
13	2015	Jan	16	11:15	175.3	31.89	0.7623		03	-9642-9379	19-1724-7286	ENVIRON
14		Feb	20	14:50	88.65	-54.75	5 -1.309	(-)	12	-3560-9864	07-2965-5219	ENVIRON
15		Mar	6	11:50	181.2	37.76	0.9026		09	-2159-7453	09-1672-5355	ENVIRON
16		Apr	24	12:50	103.1	-40.32	-0.9639		01	-6315-9057	02-6990-5019	ENVIRON
17		May	15	14:00	89.83	-53.57	′ -1.281	(-)	15	-1184-2734	08-8902-1629	ENVIRON
18		Jul	2	14:15	185.6	42.18	1.008	(+)	18	-8075-0902	16-6019-0259	ENVIRON
19		Aug	21	16:33	161	17.58	0.4204		18	-5704-8732	08-2852-0434	ENVIRON
20		Nov	5	16:00	154.3	10.94	0.2614		15	-0871-2744	12-3779-6972	ENVIRON
21		Dec	4	15:55	169.2	25.82	0.6173		15	-8650-5167	03-4063-5051	ENVIRON

Analyst:____U

Reference To:	kicant 96-h Acute Su		All Matching		
Test Type: Su	urvival	Organism:	Neanthes arenaceodentata (Polycha	Material:	Total Ammonia
Protocol: PS	SEP (1995)	Endpoint:	Proportion Survived	Source:	Reference Toxicant-REF

			lean: igma:	93.07 41.18		Count: CV:	20 44.20%	-1s Warn +1s Warn			-2s Action Lim +2s Action Lim	
Qualit	ty Con	trol Da	ta									
Point	Year	Month	n Day	Time	QC Data	a Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2013	Dec	20	14:00	58.3	-34.77	-0.8443	_		08-9922-1254	11-2068-6689	NewFields
2	2014	Jan	24	13:20	117	23.93	0.5811			20-9603-7883	15-6685-9407	NewFields
3		Apr	4	15:40	147	53.93	1.31	(+)		09-1443-8374	10-8829-6450	ENVIRON
4		May	30	16:25	25.7	-67.37	·1.636	(-)		18-4751-2702	12-3702-5556	ENVIRON
5		Jun	6	14:00	82.6	-10.47	-0.2542			02-4901-6395	20-5404-5146	ENVIRON
6			20	13:20	145	51.93	1.261	(+)		04-8899-1061	10-6019-5810	ENVIRON
7		Jul	9	15:30	49.5	-43.57	′ -1.058	(-)		00-3047-6484	08-3152-1432	ENVIRON
8		Aug	22	12:30	58.1	-34.97	-0.8492			19-3698-7324	16-9806-3196	ENVIRON
9		Sep	9	15:00	58.3	-34.77	-0.8443			04-0379-7898	19-3535-3112	ENVIRON
10		Nov	14	11:11	142	48.93	1.188	(+)		09-0815-7159	10-8173-5203	ENVIRON
11		Dec	5	11:50	81.9	-11.17	-0.2712			14-5288-4655	20-6606-9579	ENVIRON
12			12	11:45	49.7	-43.37	-1.053	(-)		04-7774-5498	10-4327-6265	ENVIRON
13	2015	Jan	16	11:15	130	36.93	0.8968			03-9642-9379	02-7191-1789	ENVIRON
14		Feb	20	14:50	61. 4	-31.67	-0.7691			12-3560-9864	14-9510-1611	ENVIRON
15		Mar	6	11:50	122	28.93	0.7025			09-2159-7453	06-6960-4147	ENVIRON
16		Apr	24	12:50	54.3	-38.77	-0.9415			01-6315-9057	00-4642-5370	ENVIRON
17		May	15	14:00	65.6	-27.47	-0.6671			15-1184-2734	09-3943-6020	ENVIRON
18		Jul	2	14:15	140	46.93	1.14	(+)		18-8075-0902	00-0324-0641	ENVIRON
19		Aug	21	16:33	140	46.93	1.14	(+)		18-5704-8732	12-5806-5521	ENVIRON
20		Nov	5	16:00	133	39.93	0.9696			15-0871-2744	05-8415-3689	ENVIRON
21		Dec	4	15:55	146	52.93	1.285	(+)		15-8650-5167	03-6544-2607	ENVIRON


QA:_

000-173-187-1

ig Labs

		Reference	Toxicant 96-h Acute	Survival Test		
EC50-mg/L Unionized Ammonia	3.0 2.4 1.8 1.2 0.6-					+2s +1s Mean -1s -2s
	20 Dec-13 24 Jan-14 04 Apr-14 - 30 May-14	06 Jun-14 20 Jun-14 09 Jul-14- 22 Aug-14	09 Sep-14- 14 Nov-14 05 Dec-11 12 Dec-14-	16 Jan-15 20 Feb-15 06 Mar-15 24 Apr-15	15 May -15 02 Jul -15 21 Aug - 15 05 Nov -15	04 Dec-15

Reference Toxicant 96-h Acute Su	rvival Test		All Matching Labs
Test Type: Survival	Organism: Neanthes arenaceodentata (Polycha	Material:	Unionized Ammonia
Protocol: PSEP (1995)	Endpoint: Proportion Survived	Source:	Reference Toxicant-REF

04-5967-6225

18-9719-6747

15-6687-7653

11-3697-1780

01-0867-6874

09-1275-9559

12-0891-3679

12-1645-6634

13-9158-6969

05-0232-3049

10-7706-7479 ENVIRON

06-1786-3304 ENVIRON

15-5803-7088 ENVIRON

15-3894-5718 ENVIRON

11-9165-3524 ENVIRON

09-2102-1717 ENVIRON

04-5482-9783 ENVIRON

17-4166-4421 ENVIRON

12-9319-1772 ENVIRON

00-1680-9936 ENVIRON

Analyst:

ENVIRON

07-1814-7730

(-)

(-)

(+)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2015 Jan

Feb

Mar

Apr

May

Jul

Aug

Nov

Dec

12

16

20

6

24

15

2

21

5

4

11:45

11:15

14:50

11:50

12:50

14:00

14:15

16:33

16:00

15:55

1.782

1.864

0.866

1.861

0.8832

1.043

1.633

2.206

1.894

1.68

0.2824

0.364

-0.634

0.3613

-0.6168

-0.4573

0.1325

0.7056

0.3937

0.1796

0.583

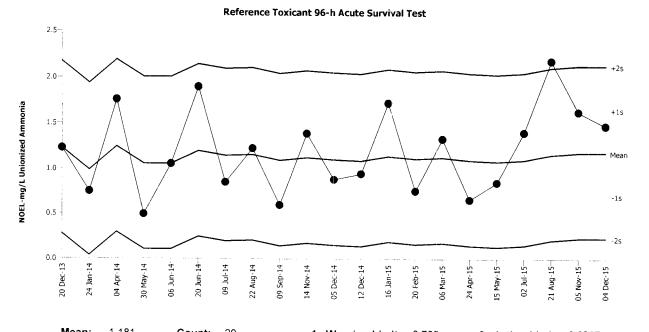
0.7513

-1.309

0.7457

-1.273

-0.9439


0.2736

1.456

0.8126

0.3708

Reference Toxicant 96-h Acute Survival T	est		All Matching Labs
Test Type: Survival Protocol: PSEP (1995)	Organism: Neanthes arenaceodentata (Polycha Endpoint: Proportion Survived	Material: Source:	

			ean: igma:	1.181 0.475		Count: CV:	20 40.20%	-1s Warn +1s Warn	ing Limit ing Limit		-2s Action Lim +2s Action Lim	
Qualit	ty Con	trol Dat	а									
Point	Year	Month	Day	Time	QC Data	a Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2013	Dec	20	14:00	1.228	0.047	0.09891			01-5055-0133	05-3710-3857	NewFields
2	2014	Jan	24	13:20	0.75	-0.431	-0.907			09-1104-1497	11-9980-1624	NewFields
3		Apr	4	15:40	1.759	0.578	1.216	(+)		00-6512-2526	16-4646-7758	NewFields
4		May	30	16:25	0.494	-0.687	-1.446	(-)		04-6747-6619	20-5692-2184	ENVIRON
5		Jun	6	14:00	1.056	-0.125	-0.263			19-7971-8908	15-9945-9119	ENVIRON
6			20	13:20	1.898	0.717	1.509	(+)		01-9511-3585	21-4292-7262	ENVIRON
7		Jul	9	15:30	0.853	-0.328	-0.6902			09-1500-8488	15-2291-7760	ENVIRON
8		Aug	22	12:30	1.227	0.046	0.0968			18-5611-8800	02-5634-5468	ENVIRON
9		Sep	9	15:00	0.599	-0.582	-1.225	(-)		18-5349-8839	09-1071-5088	ENVIRON
10		Nov	14	11:11	1.391	0.21	0.4419			17-3054-3443	03-6925-5177	ENVIRON
11		Dec	5	11:50	0.885	-0.296	-0.6229			14-0275-5265	10-6284-3142	ENVIRON
12			12	11:45	0.949	-0.232	-0.4882			04-5967-6225	18-7114-9710	ENVIRON
13	2015	Jan	16	11:15	1.723	0.542	1.141	(+)		18-9719-6747	13-2446-7374	ENVIRON
14		Feb	20	14:50	0.756	-0.425	-0.8944			15-6687-7653	19-8246-2320	ENVIRON
15		Mar	6	11:50	1.333	0.152	0.3199			11-3697-1780	05-2303-0535	ENVIRON
16		Apr	24	12:50	0.659	-0.522	-1.098	(-)		01-0867-6874	18-8094-8803	ENVIRON
17		May	15	14:00	0.85	-0.331	-0.6965			09-1275-9559	12-8836-8785	ENVIRON
18		Jul	2	14:15	1.402	0.221	0.4651			12-0891-3679	17-1059-5211	ENVIRON
19		Aug	21	16:33	2.184	1.003	2.111	(+)	(+)	12-1645-6634	17-2823-4932	ENVIRON
20		Nov	5	16:00	1.627	0.446	0.9386	,		13-9158-6969	18-5085-3785	ENVIRON
21		Dec	4	15:55	1.473	0.292	0.6145			05-0232-3049	09-1115-6716	ENVIRON

QA:

CETIS Sun	nmary Repo	ort						Report Date Test Code:		09 Dec-15 14: 5E9025CF 1	
Reference To:	xicant 96-h Acu	te Sur	vival Test				·				ENVIRON
Batch ID: Start Date: Ending Date: Duration:	08-6334-4077 04 Dec-15 15: 08 Dec-15 16: 4d 0h		Test Type: Protocol: Species: Source:	Survival PSEP (1995) Neanthes aren Aquatic Toxico	-			Brine:	Laboratory S Not Applicat		
						·		Age:			
Sample ID:	07-5789-2667		Code:	2D2C863B					Internal Lab		
Sample Date: Receive Date:	-		Material:	Total Ammonia				Project:	Reference T	oxicant	
Sample Age:	2		Source: Station:	Reference Tox P140505.222	Icant						
Comparison S											
Analysis ID	Endpoint		NOEL	- LOEL	TOEL	PMSD	τυ	Metho	od		
03-6544-2607	Proportion Sur	vived	146	185	164.3	NA	10		r Exact Test		
Point Estimate	e Summarv									<u> </u>	
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	ти	Metho	bc		
03-4063-5051	Proportion Sur	vived	EC50		163.9	174.7			man-Kärber		
Proportion Su	Irvived Summa	ry									
C-mg/L	Control Type	Cou	nt Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std De	ev CV%	%Effect
0	Dilution Water	3	1	1	1	1	1	0	0	0.0%	0.0%
85.5		3	1	1	1	1	1	0	0	0.0%	0.0%
146		3	1	1	1	1	1	0	0	0.0%	0.0%
185		3	0.1	0	0.3484	0	0.2	0.057	74 0.1	100.0%	90.0%
262		3	0	0	0	0	0	0	0		100.0%
325		3	0	0	0	0	0	0	0		100.0%
Proportion Su	rvived Detail										
C-mg/L	Control Type	Rep	1 Rep 2	Rep 3							
	Dilution Water	1	1	1							
85.5		1	1	1							
146		1	1	1							
185		0.2	0	0.1							
262		0	0	0							
325		0	0	0							
Proportion Su	rvived Binomia	als									
	Control Type	Rep	1 Rep 2	Rep 3							
0	Dilution Water	10/10	0 10/10	10/10		-					
85.5		10/10	0 10/10	10/10							
146		10/10		10/10							
185		2/10	0/10	1/10							
202											

262

325

0/10

0/10

0/10

0/10

0/10

0/10

 Report Date:
 09 Dec-15 14:23 (p 1 of 1)

 Test Code:
 15-8650-5167/5E9025CF

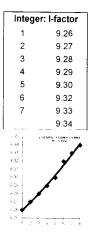
Reference To	xican	t 96-h	Acute	Survival Test			ENVIRO
Start Date: End Date: Sample Date:	04 Dec-15 15:55 08 Dec-15 16:00 : 05 May-14			Protocol:	Neanthes arenaceodentata PSEP (1995) Total Ammonia	Sample Code: Sample Source: Sample Station:	2D2C863B Reference Toxicant P140505.222
C-mg/L	Code	Rep	Pos	#Exposed #	Survived	Notes	
0	D	1	12	10	10		
0	D	2	2	10	10		
0	D	3	10	10	10		
85.5		1	9	10	10	· · · · · · · · · · · · · · · · · · ·	
85.5		2	6	10	10	· · · · · · · · · · · · · · · · · · ·	
85.5		3	18	10	10	· · · · · · · · · · · · · · · · · · ·	
146		1	7	10	10		
146		2	17	10	10		
146		3	11	10	10		
185		1	14	10	2		
185		2	4	10	0		
185		3	5	10	1		
262		1	3	10	0		
262		2	16	10	0		
262		3	13	10	0	· ····· · <u>·</u> · · · · · · ·	
325		1	15	10	0		
325		2	1	10	0		
325		3	8	10	0		

CETIS Sum	nmary Repo	ort						Report Date		09 Dec-15 14:	
								Test Code:		1DF0D769 0	5-0232-304
Reference To:	kicant 96-h Acu	te Surv	vival Test								ENVIRO
Batch ID:	04-3678-3581		Test Type:	Survival	······································			Analyst:			
Start Date:	04 Dec-15 15:	55	Protocol:	PSEP (1995)				Diluent:	Laboratory S	eawater	
Ending Date:	08 Dec-15 16:0	00	Species:	Neanthes aren	aceodentata			Brine:	Not Applicab	le	
Duration:	4d Oh		Source:	Aquatic Toxicology Support			Age:				
Sample ID:	05-6447-2130		Code:	21A52942			Client:	Internal Lab			
Sample Date:	05 May-14		Material:	Material: Unionized Ammonia				Project:	Reference T	oxicant	
Receive Date:	05 May-14		Source:	Reference Tox	icant						
Sample Age:	578d 16h		Station:	P140505.222							
Comparison S	ummary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	τυ	Metho	bd		
09-1115-6716	Proportion Sur	vived	1.473	1.852	1.652	NA		Fisher	Exact Test		
Point Estimate	e Summary										
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	τu	Metho	bd		
00-1680-9936	Proportion Sur	vived	EC50		1.649	1.711		Spear	man-Kärber		
Proportion Su	rvived Summa	ry	·		· · · · · · · · · · · · · · · · · · ·						
	Control Type	Cour	nt Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std De	v CV%	%Effec
	Dilution Water	3	1	1	1	1	1	0	0	0.0%	0.0%
1.357		3	1	1	1	1	1	0	0	0.0%	0.0%
1.473		3	1	1	1	1	1	0	0	0.0%	0.0%
1.852		3	0.1	0	0.3484	0	0.2	0.057	74 0.1	100.0%	90.0%
2.061		3	0	0	0	0	0	0	0		100.0%
2.104		3	0	0	0	0	0	0	0		100.0%
Proportion Su	rvived Detail										
	Control Type	Rep 1									
	Dilution Water	1	1	1							
1.357 1.473		1	1	1							
1.473		1	1	1							
		0.2	0	0.1							
2.061		0	0	0							
2.104		0	0	0			·				
	rvived Binomia										
	Control Type	Rep 1									
	Dilution Water	10/10		10/10							
1.357		10/10		10/10							
1.473		10/10		10/10							
1.852		2/10	0/10	1/10							
2.061		0/10	0/10	0/10							

2.104

0/10

0/10


0/10

Г

Reference To	xican	t 96-h	Acut	e Survival To	st	ENVIRON
Start Date: End Date: Sample Date:	04 Dec-15 15:55 08 Dec-15 16:00 : 05 May-14				I: PSEP (1995)	Sample Code: 21A52942 Sample Source: Reference Toxicant Sample Station: P140505.222
C-mg/L	Code	Rep	Pos	# Exposed	# Survived	Notes
0	D	1	10	10	10	
0	D	2	8	10	10	
0	D	3	5	10	10	
1.357		1	1	10	10	
1.357		2	2	10	10	
1.357		3	4	10	10	
1.473		1	11	10	10	
1.473		2	6	10	10	
1.473		3	18	10	10	
1.852		1	13	10	2	
1.852		2	7	10	0	
1.852		3	12	10	1	
2.061		1	17	10	0	
2.061		2	9	10	0	
2.061		3	15	10	0	
2.104		1	3	10	0	
2.104		2	14	10	0	
2.104		3	16	10	0	

CLIENT:	GeoEngineers	Date of Test:	04-Dec-15
PROJECT:	RG Haley	Test Type:	Neanthes RT
COMMENITS	D140505 222		

COMMENTS: P140505.222 To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

Sample	Mod NH3T (mg/	L) salinity (ppt)	pН	temp (C)	temp (K)	i-factor	Mod NH3U (mg/L
Target / Sample Name	Actual	22.9	8.0	24.1	297.26	9.3053	#VALUE!
Example 3.5	2.000	10.0	7.5	5.0	278.16	9.2750	0.008
			L				
60	85.5	27	7.7	19.4		0.0400	4 257
100	146	28	7.5	19.4	292.56 292.66	9.3160 9.3187	1.357 1.473
140	185	28	7.5	19.4	292.56	9.3187	1.852
180	262	28	7.4	19.5	292.66	9.3187	2.104
220	325	28	7.3	19.4	292.56	9.3187	2.061
						-	
				<u> </u>			
·····	· · · · ·			<u> </u>			ļ
			<u> </u>				
			<u></u>				T
	,						-
				1			
				+			
				+			
				+			
				+			
				+			
				1 1			
				1			
	-						
				+			
				<u>↓</u>			

CLIENT	PROJECT	SPECIES	LABORATORY		PROTOCOL
GeoEngineers	RG Haley	Neanthes arenaceodentata		Port Gamble	PSEP 1995
JOB NUMBER	PROJECT MANAGER	TEST START DATE:	TIME	TEST END DATE	TIME
0	B. Hester	04Dec15	555	08Dec15	1600
rest ID \$140505, 222	LOT #: 32946535				

WATER QUALITY DATA

DILTIN.WA	Т.ВАТСН		TEM	P REC#				REFERE	NCE TOX. MATERI	AL			REFERENCE	TOXICANT		
FSW120	315.01							amr	nonium chloride			1	ammonia	- TAN		
	TEST C		ŌNS				DO (mg/L)		TEMP(C)		SAL (ppt)		рН			
							> 4.6		20 <u>+</u> 1		28 <u>+</u> 2	1	7 - 9	- TECHNICIAN		
CLIENT/ EN	CLIENT/ ENVIRON ID				TRATION	DAY	REP		D.O.		TEMP.		SALINITY		рН	
			units	57.1		meter	mg/L	meter	°C	meter	ppt	meter	unit	- WQ TECH		
Ref.Tox ammonia -	Target:	0	mg/L	0	Stock	8	8.1	00	19.4	g	27	8	7.9	JL 12/04		
TAN	Actual:			4	Rep į	8	7.4	8	20.0	8	28	8	7.8	BE 12/8		
Ref.Tox ammonia -	Target:	60	mg/L	0	Stock	8	8.1	8	19.4	8	27	8	7.7	UL 12/04		
TAN	Actual:			4	Rep (Š	7.4	8	20.1	8	28	8	7.9	BE1218		
Ref.Tox ammonia -	Target:	100	mg/L	0	Stock	8	8.2	Ø	19.5	8	28	8	7.5	Ji 12/04		
TAN	Actual:		g/L	4	Rep	J	7.2	8	20.1	8	28	5	7.9	BE ILLS		
Ref.Tox ammonia -	Target:	140	mg/L	0	Stock	8	8.2	в	19.4	g	28	8	7.5	JL 12/04		
TAN	Actual:		, ng/ L	4	Rep	Х	7.1	8	20.0	8	28	8	7.8	BE 1218		
Ref.Tox ammonia -	Target:	180	mg/L	0	Stock	3	8.2	3	19.5	8	28	8	7.4	JL 12/04		
TAN	Actual:			4	Rep [8	6.7	8	20.0	8	29	8	4	BE 1218		
Ref.Tox ammonia -	Target:	220	mg/L	0	Stock	8	8.2	9	19.4	8	28	B		JL 12/04		
TAN	Actual:		mg/L		Rep	8	7.1	8	201	8	29	8	7.8	SE 12/8		

05/14/15 () IE. J. 1409/15.

GeoEngineers			1	RG Ha	JOB NUMBER					T MANAGE Hester	R	LABOR	renacec ^{ATORY} rt Gaml		PROTOC	
					SURV							n Gam	PSEP 1995			
DBSERVATIONS KEY		INITIA	# OF		DATE	DAY 1		I	DAY 2			DAY 3			DAY 4	
V : quiescent I : Fiscolored F = Ploating on	surface	ORGA	ANISMS O		1		/15	'	2/06	7	l ,	217	~	IZ1815		
CLIENT/ ENVIRON ID	CC	NC. units	REP	INITIAL #	TECHNIC	`						TIAN A			Bert	Je .
	Value	units	1	if differs	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS		#DEAD	117	#ALIVE	#DEAD	ОВ
Ref.Tox	0				10	Ø	N	lo	Ð	N	10	0	<u>IN</u>	10	0	N
ammonia - TAN	0	mg/L	2		10	0		10	0		10	0		10	0	
		·	3		D	Ø	ł	lo	Ø		10	0		10	0	L
Ref.Tox	60	0 mg/L	1		10	Ø	ρ	10	0	2	10	0	N	10	0	\mathcal{N}
ammonia - TAN			2		10	Ø		10	ত		10	0		10	0	
			3		0	ତ		10	0		IJ	0		10	Ò	J
Ref.Tox	100		1		10	Ø	Я	0]	Ø	Ø	10	0	Q	10	0	Q
immonia - TAN		mg/L	2		10	Ø		10	0		IJ	0		10	a	
			3		ĺO	Ø	Ŀ	D	0		10	0	U	10	0	$\overline{1}$
Defe	140) mg/L	1		0	6	ΰ	D	0	0	10	0	Q	74	8	Q
Ref.Tox mmonia - TAN			2		10	Ø		10	0	{	10	G		0	10	
	-		3		10	Ö		()	Q		10	0			9	t
			1		10	Ø	S.	١D	Ø	θ	10	O	R	\mathcal{O}	10	- m.,
Ref.Tox mmonia - TAN	180	mg/L	2		10	0		10	6		6	4	1	0	6	_
			3		10	D	t	10	Ø	U	5	5	J.	0	5	1
			1		10	Ø	0	10	0	θ	4	6	Q	0	ye	- /
Ref.Tox mmonia - TAN	220	mg/L	2		10	0		0	0	Ť	0	10				/
			3		10	<u>र</u> रु		10			0					
OIZ	HE	17	16	I	Ð		<u> </u>	ble-	U Z		k	10				

ENVIRON Ammonia Reference Toxicant Spiking Worksheet

Reference Toxicant ID:	P140505, 218 222
Date Prepared:	12/04/15
Technician Initials:	<u>i</u>

Neanthes NH₃ RT

Assumptions in Model Stock ammonia concentration is 10,000 mg/L = 10 mg/mL

Date:11/18/2015Measurement:8443.3

	st Solutions								
Measured Concentration	Desired Concentration	Volume	Volume of stock to reach desired concentration						
mg/L	mg/L	mL	mL stock to increase						
0.00	0		SALT WATER (mL						
35.5	60	750	7.99						
146	100	750	13.32						
85	140	750	18.65						
262	180	750	23.98						
325	220	750	29.31						

01E. JL 12/09/15.

Biological Testing Results for R. G. Haley

APPENDIX A.3.1

Mytilus galloprovincialis Benthic Larval Bioassay Laboratory Data Sheets

ENVIRON

			s	PECIES Mytilu:	s aall	oprovin	cialís		
GeoEngineers	PROJECT RG Hale	JOB NUMBER	0 F	ROJECT MA	NAGER		LAB / LOCA	Gamble /	PROTOCOL PSEP (1995)
ORGANISM BATCH		TEST ST	ART DATE:	TIME			TEST END (DATE: TIME	
			DEC. 15 OBSERVATIO		_	19	09 DC	<i>x.</i> U	1550
CLIENT/ ID	REP	NUMBER				ATE	TECHNICI		COMMENTS
· · · · · · · · · · · · · · · · · · ·		NORMAL	210						
			265		1/1	7/15	MARI	1	·····
	2		281						
STOCKING DENSITY	3		268						
	4		297						
	5		230	1					
	1	270	4						
	2	242	6						
Control /	3	291	5						
	4	277	6						
	5	286	8						
	1	206	4						
	2	256	6						
CR22 /	3	266	2						
	4	264	S						
	5	202	3						
	1	219	3						
	2	234	S						
SS1-SS-03-0-12 /	3	183	3						
	4	274	1						
	5	236	2		J				

ENVIRON

CLIENT					ytilus ga	lloprovi	ncialis				
GeoEngineers	PROJECT RG Ha		NUMBER 0		PROJECT MANAGER B. Hester			ATION Gamble /	PROTOCOL		
	~		TEST START DATE:				TEST END				
TS 12041)		OF Dec.		17	49	09 P	1550			
			RVAL OBSER		ATA						
CLIENT/ ID	REP			NUMBER	[DATE	TECHNIC	IAN	COMMENTS		
	1	226		2	12/1	7/15	MAR	H			
	2	253		3							
SS1-SS-05-0-12 /	3	233		1							
	4	234		2							
	5	277		2							
	1	241	0	Ø							
	2	224	>	2							
SS1-SS-06-0-12 /	3	288	3	5							
	4	24		3							
	5	269		l				1			

CLIENT			PROJECT			s	PECIES						LAB / LOCAT	ION		P	ROTOCOL
GeoEngin	eers			RG Ha	ıley			Myti	lus gallopr	ovinc	ialis		Po	ort Ga	mble /	F	PSEP (1995
JOB NUMBER			PROJECT MAN	AGER		TI	TEST START DATE						TEST END DA			т	IME
0				B. Hes		07Dec15 1749					9		09De	ec15		1550	
* Day 3&4 observations needed on		ent endpoint not me	et by day 2	_		TER QU	ALIT										
cc	TEST			D	D (mg/L) >5.0	ד	emp (°C) 16 ± 1		Sal (ppt) 28 ± 1		рН 7 - 9	ľ '	Ammonia NA		Sulfide NA	г	ш
SAMPLE ID	DAY	Random #	REP		D.O.		TEMP.		SALINITY		рН	Ļ			SULFIDE	тесн	DATE
		rtandom #		meter	mg/L	meter	°c	meter	ppt	meter	unit	Techn.	mg/L (total)	Techn.	mg/L (Total)		
Control /	0		WQ Surr	ч	7.8	8	16.6	g	28	8	7.8	He	0.00	K	0.0	RE	1217/15
Control /	1		WQ Surr	8	7.7	Ł	16.5	8	28	В	7.7					BE	12/8/19
Control /	2		WQ Surr	9	7.3	9	16.4	9	28	9	8.0	JL	0.00	JU	0.00	ょ	12/09
Control /	3		WQ Surr														
Control /	4		WQ Surr														
CR22 /	0		WQ Surr	8	7.4	8	16.8	8	28	8	7.9	HE	0.00	K	0.134	28	12/7/15
CR22 /	1		WQ Surr		6.6	8	16.7	Z	28	S	7.7					ßE	12/8/15
CR22 /	2		WQ Surr	9	6.0	9	16.3	9	28	9	7.8	K	0.00	ル	0.005	x	12/09
CR22 /	3		WQ Surr														
CR22 /	4		WQ Surr														
SS1-SS-03-0-12 /	0		WQ Surr	x	6.9	8	is I	8	28	8	7.9	t	0.00	Xi	0.092	RE	12/7/15
SS1-SS-03-0-12 /	1		WQ Surr	S	5.6	8	16.3	Z	28	8	7.9						12/8/15
SS1-SS-03-0-12 /	2		WQ Surr	9	6.1	9	16.4	9	28	9	7,3	r	0,00	Ju	0.00	JL	12/09
SS1-SS-03-0-12 /	3		WQ Surr														
SS1-SS-03-0-12 /	4		WQ Surr														

CLIENT			PROJECT			si	PECIES						LAB / LOCAT	ION		Р	ROTOCOL
GeoEngine	eers		f	RG Ha	iley			Myti	lus gallopr	rovinc	ialis		Po Po	ort Ga	mble /	PSEP (1995)	
JOB NUMBER O			PROJECT MAN	^{ager} B. Hes	ster	т	EST START DA	ιτε 07De	ec15		TIME 174	9	TEST END DA	^{TE} 09De	ec15	TIME	
* Day 3&4 observations needed only	y if developme	nt endpoint not m	et by day 2			WA	TER QU	ALIT	Y DATA				Å				
	TEST NDITIONS			D	D (mg/L) >5.0	Т	emp (°C) 16 ± 1		Sal (ppt) 28 ± 1		рН 7 - 9	ĺ	Ammonia NA		Sulfide NA	۲.	Ш
SAMPLE ID	DAY	Random #	REP		D.O.		TEMP.		SALINITY	1	рН т	I	MMONIA			TECH	DATE
	1			meter	mg/L	meter	°C	meter	ppt	meter	unit	Techn.	mg/L (total)	Techn.			
SS1-SS-05-0-12 /	0		WQ Surr	ક	7.6	8	16.7	8	28	8	8.0	H2	0.00	HE.	0.072	RE	12/7/15
SS1-SS-05-0-12 /	1		WQ Surr	8	6.3	G	16.6	8	28	8	7.9					BÉ	12/8/15
SS1-SS-05-0-12 /	2		WQ Surr	9	5.6	9	16.7	9	28	9	7.8	JL	0.139	JL	0.00	s	12/09
SS1-SS-05-0-12 /	3		WQ Surr														
SS1-SS-05-0-12 /	4		WQ Surr														
SS1-SS-06-0-12 /	0		WQ Surr	8	7.5	8	16.8	8	78	8	8.0	H¥	0,00	K	0.0D	RE	12/7/15
SS1-SS-06-0-12 /	1		WQ Surr	G	5.6	8	16.9	8	28	8	7.9					BE	
SS1-SS-06-0-12 /	2		WQ Surr	9	ų.2	9	16.4	9	28	٩	7.8	JL	0.412	Ji	0.00	U	12/09
SS1-SS-06-0-12 /	3		WQ Surr														
SS1-SS-06-0-12 /	4		WQ Surr														

ENVIROI	N							
LIENT	PROJECT	JOE NUMBER	PROJECT	ANAGER	LABORATORY	PROTOCOL		
GeoEngineers	RG Haley	0	B. He	ester	Port Gamble	PSEP (1995)		
	TES			DATA				
ECIES				SAMPLE STORAGE	E			
Mytilus galloprovincialis				4 Degrees	s Celsius - dark			
JPPLIER TALLA				SEDIMENT TREATI	MENT			
Thy la sle		TS120415		none				
ate received time r 17.04.15		TE USED		TEST CHAMBERS				
•	SPAWNING TIME	12, 7.15		1 L Masor				
PAWNING METHOD Feed heat Shock	1435	1500			 eawater / 18g Sedir	nent		
ALES FEMALES SPERM	VIABILITY	G CONDITION		TIME OF SHAKE	~			
> >		bood			12			
	$\frac{1}{2}$	710% de	-		249			
1,700		/10/. W						
		SPECIAL	CONDITIONS					
UV LIGHT EX	(POSURE (YES/NO)		AERA	TION FROM	TEST INITIATION (Y	ES/NO)		
	Yes			$\mathcal{N}_{\mathcal{U}}$	<i>Ò</i>			
SCREEN TU	BE TEST (YES/NO)		OTHER (EXPLAIN)					
	NU							
EMBRYO DENSITY CA								
			K	Γ				
27+100=	2700			• • • •				
			0	$\frac{1}{2}$	0.36			
28000 -	3.7) delver	-	75	$\frac{100}{00} = 0$				
28020 =	S.T)E							
				OOnl	- 0.36 36- 64- 50 delice- 0.1	l ess k		
						1		
					61~	. L		
					24			
				(deliler n.1	$()()_{m} _{-}$		

 $\left[\mathbb{R}^{(A)} \mathbb{M}^{(a)} (\hat{\sigma}) \right] = \left[\mathsf{ENVIRON} \right]$

ORGANISM RECEIPT LOG

	104/15		ime: [42	0	Ba	tch No.	20415				
Organisn	n / Project					1512	20415				
	m	ytilus,	126	Haley	ł						
Source / S	Supplier:										
	1	aylor	Shell.	fish							
No. Order	ed:	V	. Receive		Som	rco Ratah					
	2.15 16			. [5] b							
Condition	of Organi	sms:		Approxima	te Size	or Ane.		-			
	600	d		(Days from ha	atch, life	e stage, size	e class, etc.);				
	500	IA		7	Adu	It					
Shipper:	<i>C</i>	1	200	B of L (Tracking No.)							
	Conv				NA						
Condition	of Contain	er:		Received B	1 1						
	6	vod			J	U					
Container	D.O. (mg/L)	Temp. (°C)	Cond. c Sal. (Include Units)	pH		# Dead	% Dead*	Tech. (Initials)			
*-				_				JL			
		_									
				-							
>10% contact	lab manager										
	The second second second second second second second second second second second second second second second s										

~	Taylor Shellfish Farms 130 SE Lynch Rd Shelton WA 98584 WA Cert.# 0046 SP	INVOICE D	UE	
-	BRIAN HESTER	SHIP DATE 12/4/15	Name of Carrier	
*	Descript 12.15 LB UNPROCESSED MU STYRO	tion of product being ship	60.1 5.78 0	
Total	Thank	- You Balance		

Time:_____ Date:_____Temp_____

Biological Testing Results for R. G. Haley

APPENDIX A.3.2

Mytilus galloprovincialis Benthic Larval Bioassay Reference Toxicant Test

Mussel Sh	ell Development Test			AII	Matching Labs
Test Type: Protocol:	Development-Survival EPA/600/R-95/136 (1995)	Organism: Mytilus galloprovincialis (Bay Mussel Endpoint: Combined Proportion Normal	Material: Source:	Total Ammonia Reference Toxicant-F	
	14-	Mussel Shell Development Test			
	12-				
D		\wedge		•	+2s
ECS0-mg/L Total Ammonia	6-		×		+1s
-mg/L Tot	4		•	••	- Mean
ECSO	2				-1s -2s
	Jan-14	2, 2, 2, 2, 2, 2, 4, 1, 1, 2, 2, 2,	νί νί κ. 		1
	22 Jan-14 25 Jan-14 14 Feb-14 05 Mar-14	04 Apr.14 06 Jun-14 20 Aug-14- 25 Aug-14- 19 Nov-14 04 Dec-14 05 Mar-15 25 Mar-15 15 Apr-15	30 Apr-15 20 May-15 07 Jun-15	15 Jul-15- 13 Aug-15- 28 Sep-15	ST-290 /0

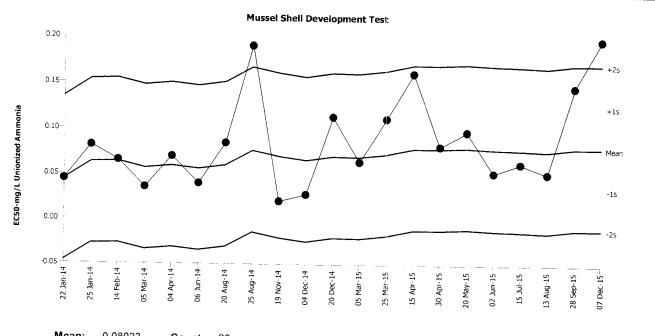
			ean: gma:	5.348 2.565		Count: CV:	20 48.00%	-1s Warn +1s Warn			-2s Action Lin +2s Action Lin	
Quali	ty Con	trol Dat	а									
Point	Year	Month	Day	Time	QC Data	a Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2014	Jan	22	18:47	5.072	-0.275	59 -0.1076	5		13-2808-9359	13-2338-2483	NewFields
2			25	20:20	9.018	3.67	1.431	(+)		14-2680-8854	01-2301-1257	NewFields
3		Feb	14	15:45	6.063	0.715	0.2788	()		00-9581-0604	10-3047-2486	NewFields
4		Mar	5	19:35	4.03	-1.318	-0.5138			00-1473-4954	06-0848-4308	NewFields
5		Apr	4	19:30	3.594	-1.754	-0.6838			00-0374-9463	01-3815-4471	Port Gamble Environment
6		Jun	6	18:15	2.465	-2.883		(-)		06-9491-1560	12-3152-8677	ENVIRON
7		Aug	20	18:55	4.595	-0.752	7 -0.2934	()		03-3666-4351	12-9663-9075	ENVIRON
8			25	19:45	9.954	4.606	1.796	(+)		18-5120-4553	05-8275-9550	ENVIRON
9		Nov	19	17:40	1.863	-3.485	-1.359	(-)		16-6497-0143	19-4546-4847	ENVIRON
10		Dec	4	17:10	2.911	-2.437	-0.95	~ / /		16-3776-3251	02-2399-5582	ENVIRON
11			20	14:48	9.463	4.115	1.604	(+)		18-9022-1075	07-2923-3003	
	2015	Mar	5	17:00	2.844	-2.504	-0.9762			19-9854-1539	03-8736-8673	ENVIRON ENVIRON
13			25	17:44	8.428	3.08	1.201	(+)		14-7108-3803	03-4995-0478	
14		Apr	15	19:10	5.993	0.6452		(*)		13-8932-4228		ENVIRON
15			30	18:04	3.781	-1.567	-0.611			20-6119-4159	19-6133-3160	ENVIRON
16		May	20	17:25	6.135	0.7868				09-2578-9028	02-4196-3961	ENVIRON
17		Jun	2	17:40	3.4	-1.948	-0.7595			17-1514-2545	09-4770-1274	ENVIRON
18		Jul	15	17:28	3.896	-1.452	-0.5659			03-2854-6295	13-6694-9114	ENVIRON
19		Aug	13	17:12	4.263	-1.085	-0.423			11-0008-2350	19-5139-2675	ENVIRON
20		Sep	28	19:46	9.184	3.836	1.495	(+)		13-4113-2133		ENVIRON
21		Dec	7	18:00	10.31	4.964	1.935	(+)		08-2168-6467	05-9076-7384 19-8560-0099	ENVIRON ENVIRON

CETIS QC Plot

CETIS™ v1.8.7.16

Mussel Sh	ell Development Test			A	Il Matching Lab
lest Type: Protocol:	Development-Survival EPA/600/R-95/136 (1995)	Organism: Mytilus galloprovincialis (Bay Mussel Endpoint: Combined Proportion Normal	Material: Source:	Total Ammonia Reference Toxicar	
	9-5	Mussel Shell Development Test:			
	8-				•
nmonia	6-				+2s +1s
NOEL-mg/L Total Ammonia	3				Mean
NOEL-r	0				-1s -2s
	-1			- · · · · · · · · · · · · · · · · · · ·	ک
	22 Jan-14 25 Jan-14 14 Feb-14 05 Mar-14-	06 Jun-14- 06 Jun-14- 20 Aug-14 19 Nov-14 19 Nov-14 04 Dec-14- 05 Mar-15 25 Mar-15 15 Apr-15	30 Apr-15- 20 May-15- 02 115	c1-nul_2u 15 Jul-15 13 Aug-15- 28 Sep-15	07 Dec-15

			ean: gma:	3.079 1.572		Count: CV:	20 51.10%	-1s Warr +1s Warr			-2s Action Lin +2s Action Lin	
Quali	ty Con	trol Dat	а								·····	
Point		Month	Day	Time	QC Data	a Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2014	Jan	22	18:47	4.16	1.081	0.6877	•		13-2808-9359	09-9457-8825	NewFields
2			25	20:20	4.99	1.911	1.216	(+)		14-2680-8854	19-4144-0794	NewFields
3		Feb	14	15:45	3.5	0.421	0.2678			00-9581-0604	14-2175-7836	NewFields
4		Mar	5	19:35	2.27	-0.809	-0.5146			00-1473-4954	06-9188-5839	NewFields
5		Apr	4	19:30	2.22	-0.859	-0.5464			00-0374-9463	13-5593-8276	Port Gamble Environment
6		Jun	6	18:15	1.93	-1.149	-0.7309			06-9491-1560	15-1591-7876	ENVIRON
7		Aug	20	18:55	2.62	-0.459	-0.292			03-3666-4351	02-5771-3266	ENVIRON
8			25	19:45	3.48	0.401	0.2551			18-5120-4553	02-0328-1110	ENVIRON
9		Nov	19	17:40	1.3	-1.779	-1.132	(-)		16-6497-0143	01-0463-0999	ENVIRON
10		Dec	4	17:10	1.17	-1.909	-1.214	(-)		16-3776-3251	12-6094-6851	ENVIRON
11			20	14:48	7.74	4.661	2.965	(+)	(+)	18-9022-1075	16-5805-5458	ENVIRON
12	2015	Mar	5	17:00	1.48	-1.599	-1.017	(-)		19-9854-1539	01-8753-6379	ENVIRON
13			25	17:44	3.32	0.241	0.1533			14-7108-3803	13-7995-1182	ENVIRON
14		Apr	15	19:10	4.59	1.511	0.9612			13-8932-4228	17-9791-4217	ENVIRON
15			30	18:04	2.94	-0.139	-0.08842			20-6119-4159	17-0732-0588	ENVIRON
16		May	20	17:25	4.51	1.431	0.9103			09-2578-9028	13-7558-2393	ENVIRON
17		Jun	2	17:40	1.83	-1.249	-0.7945			17-1514-2545	16-3284-8954	ENVIRON
18		Jul	15	17:28	2.77	-0.309	-0.1966			03-2854-6295	02-6331-6633	ENVIRON
19		Aug	13	17:12	3	-0.079	-0.05025			11-0008-2350	11-0317-1423	ENVIRON
20		Sep	28	19:46	1.77	-1.309	-0.8327			13-4113-2133	01-4448-6063	ENVIRON
21		Dec	7	18:00	8.03	4.951	3.149	(+)	(+)	08-2168-6467		ENVIRON


CETIS QC Plot

Analyst:_____QA:_____

000-173-187-1

Report Date:	20 Dec-15 18:23 (1 of 1)
	All Matching Labs

			7th Matering	, Lav
	Mytilus galloprovincialis (Bay Mussel Combined Proportion Normal	-	Unionized Ammonia Reference Toxicant-REF	

			ean: gma:	0.08 0.04	-	ount: 20 V: 56	60%	-1s Warn +1s Warn			-2s Action Lin +2s Action Lin	
Qualit	ty Cor	trol Dat	а									
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	
1	2014	Jan	22	18:47	0.04434	-0.03589	-0.7909			15-7285-0453	02-5494-3481	Laboratory
2			25	20:20	0.08179	0.001555	0.03427			04-0859-3739	02-5494-548	NewFields
3		Feb	14	15:45	0.0653	-0.01493	-0.329			15-0233-5150		
4		Mar	5	19:35	0.03552	-0.04471	-0.9851			02-2074-6026	16-5673-1462	NewFields
5		Apr	4	19:30	0.06967	-0.01056	-0.2326				13-5083-6151	NewFields
6		Jun	6	18:15	0.03982	-0.04041	-0.8904			08-9987-7352	06-2075-5011	Port Gamble Environment
7		Aug	20	18:55	0.08475	0.004517	0.09953			20-1079-3686	12-0135-9289	ENVIRON
8		0	25	19:45	0.1905	0.1103	2.43	(1)	()	14-9751-1227	04-1532-7472	
9		Nov	19	17:40	0.0203	-0.05993		(+)	(+)	00-8792-7550	08-9753-5531	ENVIRON
10		Dec	4	17:10	0.0203	-0.05235	-1.321	(-)		06-3984-9090	13-7269-9515	ENVIRON
11		200	20	14:48	0.02788		-1.154	(-)		12-3986-2462	11-3972-7037	ENVIRON
	2015	Mar	5	17:00	0.06436	0.03323	0.7323			09-9287-5419	07-6460-4486	ENVIRON
13	2010	Wiai	25	17:44		-0.01587	-0.3496			13-3685-7547	03-1524-4615	ENVIRON
14		Apr	25 15	19:10	0.1116	0.03133	0.6904			08-9075-8262	10-9676-7365	ENVIRON
15		Λþi			0.1609	0.08065	1.777	(+)		16-8535-8797	10-1479-4973	ENVIRON
16		Mari	30	18:04	0.08192	0.001686	0.03715			03-9240-3383	09-4512-5047	ENVIRON
17		May		17:25	0.09802	0.01779	0.3919			02-2718-1762	05-2499-4463	ENVIRON
18		Jun		17:40	0.05293	-0.0273	-0.6015			05-0395-8879	02-8689-2030	ENVIRON
		Jul		17:28	0.06313	-0.0171	-0.3768			00-2296-0969	17-0196-9853	ENVIRON
19		Aug		17:12	0.05202	-0.02821	-0.6217			20-0843-4308	07-3272-8799	ENVIRON
20		Sep		19:46	0.1464	0.06613	1.457	(+)		14-0799-9245	10-1527-0979	ENVIRON
21		Dec	7	18:00	0.1977	0.1175	2.59	(+)	(+)	14-1153-0185	08-9940-5879	ENVIRON

 \dot{v} Analyst:

QA:_

Mussel Shell Development Test

wussel She	ell Development Test		All Matching Lab
Test Type: Protocol:	Development-Survival EPA/600/R-95/136 (1995)	Organism: Mytilus galloprovincialis (Bay Mussel Material: Unionized / Endpoint: Combined Proportion Normal Source: Reference	
		Mussel Shell Development Test	
	0.16		_
	0.14		•
	0.12	\checkmark	
	0.10		
NOEL-mg/L Unionized Ammonia	0.08		
ed Am	0.06		+15
ionize	0.04		
'/r nu	0.02		Mean
EL-mg			-1s
NO	0.00		
	-0.02		-2s
	-0.04		
	22 Jan-14 25 Jan-14 14 Feb-14 05 Mar-14	06 Jun-14 20 Aug-14- 25 Aug-14- 19 Nov-14: 04 Dec-14 05 Mar-15 20 Dec-14 30 Apr-15 30 Apr-15 30 Apr-15 15 Apr-15 15 Apr-15 15 Apr-15 15 Aut-15 15 Jun-15- 13 Aug-15- 13 Aug-15-	28 Sep-15 07 Dec-15
		13 15 20 04 15 25 20 04 15 15 15 15 15 15 15 15 15 15 15 15 15	28 07

			ean: igma:	0.04	-		20 52.00%	-1s Warr +1s Warr			-2s Action Lin +2s Action Lin	
Qual	ity Cor	ntrol Dat	a								<u> </u>	
Point		Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2014	Jan	22	18:47	0.037	-0.0100				15-7285-0453	12-0010-0113	NewFields
2			25	20:20	0.045	-0.0020	5 -0.07025			04-0859-3739	20-3446-9116	NewFields
3		Feb	14	15:45	0.037	-0.0100	5 -0.3444			15-0233-5150	19-2470-0896	NewFields
4		Mar	5	19:35	0.02	-0.0270				02-2074-6026	10-8335-1484	NewFields
5		Apr	4	19:30	0.043	-0.0040	5 -0.1388			08-9987-7352	01-2582-7818	
6		Jun	6	18:15	0.031	-0.0160	5 -0.55			20-1079-3686	02-2339-8824	Port Gamble Environment
7		Aug	20	18:55	0.054	0.00695	0.2382			14-9751-1227	13-4768-2245	
8			25	19:45	0.065	0.01795				00-8792-7550	14-4895-9621	ENVIRON
9		Nov	19	17:40	0.014	-0.0330	5 -1.133	(-)		06-3984-9090	04-2355-4660	ENVIRON
10		Dec	4	17:10	0.01	-0.03705		(-)		12-3986-2462	15-5042-0469	ENVIRON
11			20	14:48	0.093	0.04595		(+)		09-9287-5419	18-5647-4199	ENVIRON
12	2015	Mar	5	17:00	0.034	-0.01305		(.)		13-3685-7547		ENVIRON
13			25	17:44	0.044	-0.00305				08-9075-8262	15-2807-2719	ENVIRON
14		Apr	15	19:10	0.134	0.08695		(+)	(+)	16-8535-8797	05-7869-3859	ENVIRON
15			30	18:04	0.063	0.01595		(.)	(')	03-9240-3383	14-3122-1198	ENVIRON
16		May	20	17:25	0.081	0.03395		(+)		02-2718-1762	00-2807-5882	ENVIRON
17		Jun	2	17:40	0.028	-0.01905		(•)			04-5934-5151	ENVIRON
18		Jul	15	17:28	0.045	-0.00205				05-0395-8879 00-2296-0969	14-7577-7111	ENVIRON
19		Aug	13	17:12	0.035	-0.01205					19-0657-0188	ENVIRON
20		Sep		19:46	0.028	-0.01905				20-0843-4308		ENVIRON
21		Dec		18:00	0.155	0.108	3.699	(1)	(.)	14-0799-9245	09-3291-9362	ENVIRON
					0.100	0.100	5.055	(+)	(+)	14-1153-0185	11-3892-1501	ENVIRON

CETIS QC Plot

Analyst: JL QA:____

	nmary Report						Report Date: Test Code:	20 Dec-15 18:18 (p 1 30F9F0C3 08-2168-
Mussel Shell	Development Test							ENVIR
Batch ID: Start Date: Ending Date: Duration:	07 Dec-15 18:00 09 Dec-15 16:00	Test Type: Protocol: Species: Source:	Development EPA/600/R-99 Mytilus gallop Taylor Shellfis	5/136 (1995) rovincialis				aboratory Seawater ot Applicable
Sample ID: Sample Date: Receive Date: Sample Age:	05 May-14 05 May-14	Code: Material: Source: Station:	7FA87333 Total Ammoni Reference To p140505.220					ternal Lab eference Toxicant
Comparison S	ummary							
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	тυ	Method	
11-6893-5917	Combined Proportion N	orm 8.03	14.1	10.64	NA			xact Test
18-8425-2751	Proportion Normal	2.38	8.03	4.372	NA			xact Test
20-9567-7795	Proportion Survived	21	>21	NA	NA			xact Test
Point Estimate	e Summary					_		
Analysis ID	Endpoint	Level	mg/L	95% LCL	95% UCL	тц	Method	
19-8560-0099	Combined Proportion N	orm EC50	10.31	10.19	10.43			an-Kärber
	Proportion Normal	EC50	10.45	10.36	10.54			an-Kärber
13-9333-1985	Proportion Survived	EC5	>21	N/A	N/A			terpolation (ICPIN)
		EC10	>21	N/A	N/A		Linear m	
		EC15	>21	N/A	N/A			
		EC20	>21	N/A	N/A			
		EC25	>21	N/A	N/A			
		EC40	>21	N/A	N/A			
		EC50	>21	N/A	N/A			
Test Acceptabi	ility							
Analysis ID	Endpoint	Attribu	ite	Test Stat	TAC Limit	s	Overlap	Decision
01-4207-7317	Proportion Normal	Contro	Resp	0.9826	0.9 - NL		Yes	Passes Acceptability Criteria
-	Proportion Normal	Contro	Resp	0.9826	0.9 - NL		Yes	
18-8425-2751	, .	00110		0.0020	0.0 - 14L		103	Passes Accentability Criteria
18-8425-2751 13-9333-1985	Proportion Survived Proportion Survived	Contro		1	0.5 - NL		Yes	Passes Acceptability Criteria Passes Acceptability Criteria

Analyst: _____ QA:_____

CETIS Summary Report

Mussel Shell Development Test

20 Dec-15 1	8:18 (p 2 of 4)
30F9F0C3	08-2168-6467

Report Date:

Test Code:

ENVIRON

Combined Proportion Normal Summary

C-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	3	1	1	1	1	1	0	0	0.0%	0.0%
0.583		3	1	1	1	1	1	0	0	0.0%	0.0%
1.53		3	0.9587	0.7809	1	0.8761	1	0.04131	0.07155	7.46%	4.13%
2.38		3	1	1	1	1	1	0	0	0.0%	0.0%
8.03		3	1	1	1	1	1	0	0	0.0%	0.0%
14.1		3	0	0	0	0	0	0	0	,.	100.0%
21		3	0	0	0	0	0	0	0		100.0%

Proportion Normal Summary

C-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	3	0.9826	0.9603	1	0.9746	0.9924	0.005199	0.009005	0.92%	0.0%
0.583		3	0.9766	0.9547	0.9984	0.9686	0.986	0.005074	0.008788	0.9%	0.62%
1.53		3	0.9759	0.9431	1	0.9624	0.9888	0.007615	0.01319	1.35%	0.69%
2.38		3	0.9945	0.9881	1	0.9916	0.9962	0.001494	0.002588	0.26%	-1.21%
8.03		3	0.9631	0.9426	0.9835	0.9539	0.9698	0.004752	0.008231	0.85%	1.99%
14.1		3	0	0	0	0	0	0	0		100.0%
21		3	0	0	0	0	0	0	0		100.0%

Proportion Survived Summary

C-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	3	1	1	1	1	1	0	0	0.0%	0.0%
0.583		3	1	1	1	1	1	0	0	0.0%	0.0%
1.53		3	0.9701	0.8414	1	0.9103	1	0.02991	0.05181	5.34%	2.99%
2.38		3	1	1	1	1	1	0	0	0.0%	0.0%
8.03		3	1	1	1	1	1	0	0	0.0%	0.0%
14.1		3	1	1	1	1	1	0	0	0.0%	0.0%
21		3	1	1	1	1	1	0	0	0.0%	0.0%

Analyst: _____ QA:_____

Mussel Shell Development Test

Combined	Proportion Norma	I Detail		
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	1	1	1
0.583		1	1	1
1.53		1	1	0.8761
2.38		1	1	1
8.03		1	1	1
14.1		0	0	0
21		0	0	0

Report Date:

Test Code:

20 Dec-15 18:18 (p 3 of 4)

30F9F0C3 | 08-2168-6467

ENVIRON

Proportion Normal Detail

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	0.9746	0.9924	0.9809
0.583		0.9751	0.9686	0.986
1.53		0.9888	0.9764	0.9624
2.38		0.9958	0.9916	0.9962
8.03		0.9655	0.9698	0.9539
14.1		0	0	0
21		0	0	0

Proportion Survived Detail

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	1	1	1
0.583		1	1	1
1.53		1	1	0.9103
2.38		1	1	1
8.03		1	1	1
14.1		1	1	1
21		1	1	1

Mussel Shell Development Test

Combined	Proportion Norma	al Binomial	s			 	
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3			
0	Dilution Water	269/269	261/261	257/257	 	 	
0.583		274/274	247/247	282/282			
1.53		265/265	248/248	205/234			
2.38		238/238	235/235	265/265			
8.03		252/252	257/257	269/269			
14.1		0/234	0/234	0/234			
21		0/234	0/234	0/234			

Proportion Normal Binomials

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	269/276	261/263	257/262
0.583		274/281	247/255	282/286
1.53		265/268	248/254	205/213
2.38		238/239	235/237	265/266
8.03		252/261	257/265	269/282
14.1		0/264	0/266	0/269
21		0/288	0/240	0/276

Proportion Survived Binomials

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	234/234	234/234	234/234
0.583		234/234	234/234	234/234
1.53		234/234	234/234	213/234
2.38		234/234	234/234	234/234
8.03		234/234	234/234	234/234
14.1		234/234	234/234	234/234
21		234/234	234/234	234/234

Report Date: Test Code:

ENVIRON

 Report Date:
 20 Dec-15 18:17 (p 1 of 1)

 Test Code:
 08-2168-6467/30F9F0C3

								Test Code:	08-2168-6467/30F9F0 C
Mussel Shell	Deve	lopm	ent Tes	t					ENVIRON
Start Date: End Date: Sample Date	09 I	Dec-1	5 18:00 5 16:00 4	Species: Protocol: Material:	Mytilus galloprov EPA/600/R-95/13 Total Ammonia			Sample Code: Sample Source: Sample Station:	7FA87333 Reference Toxicant
C-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes
0	D	1	1	234	276	276	269	··· ··· ··· ··· ···	
0	D	2	2	234	263	263	261		
0	D	3	3	234	262	262	257		
0.583		1	4	234	281	281	274		
0.583		2	5	234	255	255	247		
0.583		3	6	234	286	286	282	······	
1.53		1	7	234	268	268	265		
1.53		2	8	234	254	254	248		
1.53		3	9	234	213	213	205		
2.38		1	10	234	239	239	238		
2.38		2	11	234	237	237	235		
2.38		3	12	234	266	266	265		
8.03		1	13	234	261	261	252		
8.03		2	14	234	265	265	257		
8.03		3	15	234	282	282	269		
14.1		1	16	234	264	264	0		
14.1		2	17	234	266	266	0		
14.1		3	18	234	269	269	0		
21		1	19	234	288	288	0		
21		2	20	234	240	240	0		
21		3	21	234	276	276	· · · · · · · · · · · · ·		

	nmary Report						Report Date Test Code:	:	20 Dec-15 18 54223DC9	
Mussel Shell	Development Test					- /				ENVIRO
Batch ID: Start Date: Ending Date: Duration:	07 Dec-15 18:00 09 Dec-15 16:00	Test Type: Protocol: Species: Source:	Development EPA/600/R-9 Mytilus gallop Taylor Shellfi	5/136 (1995) provincialis	<u> </u>			Laboratory Not Applica		
Sample ID: Sample Date: Receive Date: Sample Age:	05 May-14 05 May-14	Code: Material: Source: Station:	68B87A99 Unionized Am Reference To p140505.220					Internal Lal Reference	-	
Comparison S	Summary									
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	τυ	Metho	.d		
11-3892-1501	Combined Proportion N	lorm 0.155	0.267	0.2034	NA			Exact Tes	+	
07-7760-7002	Proportion Normal	0.058	0.155	0.09482	NA			Exact Tes	•	
10-4690-5686	Proportion Survived	0.397	>0.397	NA	NA			Exact Tes	-	
Point Estimate	e Summary									
Analysis ID	Endpoint	Level	mg/L	95% LCL	95% UCL	тп	Metho	ч		
08-9940-5879	Combined Proportion N	lorm EC50	0.1977	0.1957	0.1998			nan-Kärbe		
11-4665-5338	Proportion Normal	EC50	0.2003	0.1988	0.2018			nan-Karbe		
15-9190-5272	Proportion Survived	EC5	>0.397	N/A	N/A		· · · · · · · · · · · · · · · · · · ·	Interpolatio		
		EC10	>0.397	N/A	N/A		Enear	merpolatic		
		EC15	>0.397	N/A	N/A					
		EC20	>0.397	N/A	N/A					
		EC25	>0.397	N/A	N/A					
		EC40	>0.397	N/A	N/A					
		EC50	>0.397	N/A	N/A					
Test Acceptab	ility									
Analysis ID	Endpoint	Attribu	ite	Test Stat	TAC Limit	s	Overla	p Decis	ion	
07-7760-7002	Proportion Normal	Contro	Resp	0.9826	0.9 - NL		Yes		s Acceptability	Critoria
	Proportion Normal	Contro	l Resp	0.9826	0.9 - NL		Yes		s Acceptability	
	Proportion Survived	Contro	Resp	1	0.5 - NL		Yes		s Acceptability	
15-9190-5272	Proportion Survived	Control	Resp	1	0.5 - NL		Yes		s Acceptability	

CETIS™ v1.8.7.16

Analyst: _____ QA:_____

CETIS Summary Report

Mussel Shell Development Test

20 Dec-15 18:23 (p 2 of 4)
54223DC9 14-1153-0185

Report Date: Test Code:

ENVIRON

Combined Proportion Normal Summary

C-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Мах	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	3	1	1	1	1	1				
0.014		2				1	I	U	0	0.0%	0.0%
		3	1	1	1	1	1	0	0	0.0%	0.0%
0.037		3	0.9587	0.7809	1	0.8761	1	0.04131	0.07455		
0.058		3	4			0.0701	I	0.04131	0.07155	7.46%	4 .13%
		3	I	1	1	1	1	0	0	0.0%	0.0%
0.155		3	1	1	1	1	1	0	0		
0.267		2	•		-	1	1	0	0	0.0%	0.0%
		3	0	0	0	0	0	0	0		100.0%
0.397		3	0	0	0	0	0	0	-		
				0	0	0	0	0	0		100.0%

Proportion Normal Summary

C-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	3	0.9826	0.9603	1	0.9746	0.9924	0.005199	0.009005		
0.014		3	0.9766	0.9547	0.9984	-				0.92%	0.0%
0.037		2			0.9964	0.9686	0.986	0.005074	0.008788	0.9%	0.62%
		3	0.9759	0.9431	1	0.9624	0.9888	0.007615	0.01319	1.35%	0.69%
0.058		3	0.9945	0.9881	1	0.9916	0.9962	0.001494	0.002588	0.26%	-1.21%
0.155		3	0.9631	0.9426	0.9835	0.9539	0.9698	0.004752			
0.267		з	0	0	0.0000	0.0000	0.9098	0.004752	0.008231	0.85%	1.99%
0.397		0	0	0	U	U	0	0	0		100.0%
		ა	0	0	0	0	0	0	0		100.0%

Proportion Survived Summary

C-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	3	1	1	1	1	1	0			
0.014		3	1	1	1	1	1	0	0	0.0%	0.0%
0.037		3	0.9701	0.0444	1	1		U	0	0.0%	0.0%
0.058		2	0.9701	0.8414	1	0.9103	1	0.02991	0.05181	5.34%	2.99%
		3	1	1	1	1	1	0	0	0.0%	0.0%
0.155		3	1	1	1	1	1	0	0	0.0%	0.0%
0.267		3	1	1	1	1	1	0	0	0.0%	
0.397		3	1	1	1	1	1	-			0.0%
			-	•	1	1	1	0	0	0.0%	0.0%

CETIS Summary Report

ell Development I	est			ENVIRON
Proportion Norma	l Detail			
Control Type	Rep 1	Rep 2	Rep 3	
Dilution Water	1	1	1	
	1	1	1	
	1	1	0.8761	
	1	1	1	
	1	1	1	
	0	0	0	
	0	0	-	
	Proportion Norma Control Type	Dilution Water 1 1 1 1 1 0	Proportion Normal DetailControl TypeRep 1Rep 2Dilution Water1111111111111100	Control Type Rep 1 Rep 2 Rep 3 Dilution Water 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

Proportion Normal Detail

_C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	0.9746	0.9924	0.9809
0.014		0.9751	0.9686	0.986
0.037		0.9888	0.9764	0.9624
0.058		0.9958	0.9916	0.9962
0.155		0.9655	0.9698	0.9539
0.267		0	0	0
0.397		0	0	0

Proportion Survived Detail

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	1	1	1
0.014		1	1	1
0.037		1	1	0.9103
0.058		1	1	1
0.155		1	1	1
0.267		1	1	1
0.397		1	1	1

Report Date:

Test Code:

Mussel Shell Development Test

Combined	Proportion Norma	al Binomials	5	
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	269/269	261/261	257/257
0.014		274/274	247/247	282/282
0.037		265/265	248/248	205/234
0.058		238/238	235/235	265/265
0.155		252/252	257/257	269/269
0.267		0/234	0/234	0/234
0.397		0/234	0/234	0/234

Proportion Normal Binomials

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	269/276	261/263	257/262
0.014		274/281	247/255	282/286
0.037		265/268	248/254	205/213
0.058		238/239	235/237	265/266
0.155		252/261	257/265	269/282
0.267		0/264	0/266	0/269
0.397		0/288	0/240	0/276

Proportion Survived Binomials

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	234/234	234/234	234/234
0.014		234/234	234/234	234/234
0.037		234/234	234/234	213/234
0.058		234/234	234/234	234/234
0.155		234/234	234/234	234/234
0.267		234/234	234/234	234/234
0.397		234/234	234/234	234/234

ENVIRON

Report Date:

Test Code:

20 Dec-15 18:22 (p 1 of 1) 14-1153-0185/54223DC9

Report Date:

Test Code:

								Test Code:	14-1153-0185/54223DC9
Mussel Shell	Deve	lopm	ent Tes	t					ENVIRON
Start Date: End Date: Sample Date:	09 05	Dec-1 May-1		Species: Protocol: Material:	Mytilus galloprov EPA/600/R-95/13 Unionized Ammo	36 (1995)		Sample Code: Sample Source: Sample Station:	68B87A99 Reference Toxicant p140505.220
C-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes
0	D	1	1	234	276	276	269		NOLES
0	D	2	2	234	263	263	261		
0	D	3	3	234	262	262	257		
0.014		1	4	234	281	281	274		
0.014		2	5	234	255	255	247		
0.014		3	6	234	286	286	282		
0.037		1	7	234	268	268	265		
0.037		2	8	234	254	254	248		
0.037		3	9	234	213	213	205	· · · · · · · · · · · · · · · · · · ·	
0.058		1	10	234	239	239	238	···· ·· ·- · · · · · ·	
0.058		2	11	234	237	237	235		
0.058		3	12	234	266	266	265		
0.155		1	13	234	261	261	252		
0.155		2	14	234	265	265	257		
0.155		3	15	234	282	282	269		
0.267		1	16	234	264	264	0		
0.267		2	17	234	266	266			
0.267		3	18	234	269	269			
0.397		1	19	234	288	288			
0.397		2	20	234	240	240	0		
0.397		3	21	234	276	276	0		

CLIENT:	GeoEngineers	Date of Test:	07-Dec-15
PROJECT:	RG Haley	Test Type:	Mytilus RT
COMMENTS:	P140505.220		

Inte	ger: I-factor
1	9.26
2	9.27
3	9.28
4	9.29
5	9.30
6	9.32
7	9.33
	9.34
5 35 9 34 9 35 9 35 9 35 9 35 9 35 9 35 9 35 9 35	A CONTRACTOR OF A CONTRACTOR O
J 20 🗸	

975 - 2 3 4 5 6 7 g

Sample	Mod		salinity (ppt)	pН	temp (C)	temp (K)	i-factor	Mod	NH3U (mg/L
Target / Sample Name		Actual	22.9	8.0	24.1	297.26	9.3053	1	#VALUE!
Example 3.5		2.000	10.0	7.5	5.0	278.16	9.2750		0.008
								1	
0.75		0.583	28						
1.5		1.53	28	8.0 8.0	16.2	289.36	9.3187		0.014
3		2.38	28	8.0	16.0	289.16	9.3187	L	0.037
6		8.03	28	7.9	16.1	289.26	9.3187		0.058
12		14.1	28	7.9	16.0	289.16	9.3187		0.155
18		21.0	28	7.9	15.7 15.7	288.86	9.3187	<u> </u>	0.267
			20	1.5	15.7	288.86	9.3187		0.397
		-							
					+				
					+				
					+				
					<u>+</u>		-		
					++				
					+				
					+				
	_								
					+				
			-		++				
					t				
								_	
		_							
					t				
	. <u> </u>								
								_	
				-					

ENVIRON					
GLIENT	PROJECT	SPECIES	LAB / LOCATIO	DN	PROTOCOL
GeoEngineers	RG Haley	Mytilus galloprovincialis	Port G	amble / Incubator	PSEP (1995)
JOB NUMBER	PROJECT MANAGER	TEST START DATE:	TINE	TEST END DATE	TIME
0	B. Hester	07Dec15	1890	09 Dec. 15	1600
TEST ID	LOT #:	-			
P140505.220	32496535				

WATER QUALITY DATA

DILTIN.WAT.BA	атсн		ORG	ANISM E	ЗАТСН	REFERI	ENCE TOX. MATE	RIAL		REFER	ENCE TOXICAN	Ī	
FSW120715.	01					Ammonium chloride				Ammonia - TAN			
					DO (mg/L)		TEMP(C)		SAL (ppt)		рН	I	
					>5.0		16 <u>+</u> 1		28 ± 1		7 - 9	ECH.	DATE
CLIENT/ ID	CONCENTRATION	DAY	REP		D.O.		TEMP.		SALINITY		рН	Ĕ	DA
	value units			meter	mg/L	meter	°C	meter	ppt	meter	unit		
	Target:	0	Stock	8	7.9	8	16.5	B	28	8	8.0	121	12.7
	0 mg/L	1	Stock	8	7.5	8	16.5	8	Z8	8	7.9	₿Ł	12/8
Ref.ToxAmmonia - TAN	Actual:	2	Stock	9	7.4	9	16.8	9	28	9	79	JL	12/00
		3	Stock										
		4	Stock										
	Target:	0	Stock	8	80	8	16.2	8	28	8	8.0	KI	127
	0.75 mg/L	1	Stock	Å	78	8	16.5	8	2.8	8	50	BE	12/8
Ref.ToxAmmonia - TAN	Actual:	2	Stock	9	7.6	9	16.7	9	28	9	8.0	JL.	12/09
		3	Stock	` _		<u> </u>		<u>`</u>		<u> `-</u>		<u>v-</u>	
		4	Stock							1		1	
•	Target:	0	Stock	8	8.0	6	16.0	8	28	8	8.0	M	127
	1.5 mg/L	1	Stock	8	8.0	5	16.1	8	28	8	80	BE	1219
Ref.ToxAmmonia -	Actual:	2	Stock	a	7.7	0	16.6	9	28	9	8.0	Nr.	12/00
TAN		3	Stock		1.1			·	20	,	0.0		1-20-1
		4	Stock					·				-	
	Target:	0	Stock	Ċ	8.1	8	16.1	Ø	28	9	8.0	KU	127
	3 mg/L	1	Stock	D	<u>8</u> .0	8		বি	28	8	8.0	BT	12/1%
Ref.ToxAmmonia -	Actual:	2	Stock	- D 9	78	9	16.0	a	28	0	6.0	1	12/00
TAN		3	Stock	}	1.0		160		<i>L</i> U	-1	0.0	VL	(0)00
		4	Stock									ł —	
	Target:	0	Stock	8	8. l	8	16.0	8	28	8	7.9		171
	6 mg/L	1	Stock	Ч Ч		8			28	R R		M	127
Ref.ToxAmmonia -	Actual:	2	Stock	9	8.0	<u> </u>	16.2	8		8		BE	12/09
TAN		3	Stock	-1	7.8	-1	16.1	9	2B	51	8.0	しし	1209
		4	Stock										
	Target:	4	Stock	B	0.	8	152		76	0	- a	A	17 1
	12 mg/L	1	Stock	R R	8.1		15.7	B	28	Ø	7.9	M	12.7
Ref.ToxAmmonia -	Actual:	1 2	<u> </u>		80	8	15.9	8	-	0	7.9	BE	12/3
TAN			Stock	9	7.8	9	16.1	9	28	9	7.9	Vr	12/00
		3	Stock									 	
-	Target:	4	Stock	7			1100	<u> </u>			1 -		~~
		0	Stock	0	8.1	8	15.9	8	38	1 Å	7.9	<u>an</u>	127
Ref.ToxAmmonia -	18 mg/L	1	Stock	8	7,9	Š	158	8	28	۲X	7.9	BE	12/8
TAN	Actual:	2	Stock	9	7.7	9	15.5	9	28	9	79	レレ	12/00
		3	Stock			L		.				ļ	
		4	Stock										

	RON							
					Mytilus gallop	provincialis		
GeoEngineers			JOB NUM		PROJECT MANAGER		CATION	PROTOCOL
STID	RG Hale		TEST	0 T START DATE:	B. Hester		amble / Incubator	PSEP (1995
PTS P140505.220	TS12	0415		of Dec	~		Dec.15	1600
		LAF	RVAL	OBSERVA	TION DATA			
CLIENT/ ID	CONC. value units	VIAL NUMBER	REP	NUMBER NORMAL	NUMBER ABNORMAL	DATE	TECHNICIAN	COMMENTS
	mg/		1	269	7	12/17/15	MARY	
ef.Tox Ammonia - TAN			2	261	2			
			3	257	5			
	n 75 mg/		1	274	7			
ef.Tox Ammonia - TAN	0.75 ^{mg/}		2	247	8			
			3	282	4			
ef.Tox Ammonia - TAN	1.5 ^{mg/}		1	265	3			
	1.5 L		2	248	6			
			3	205	8			
ef.Tox Ammonia - TAN	3 mg/		1	238				
	Ϋ́L		2	235	2			
			1	<u>265</u> 252	9			
ef.Tox Ammonia - TAN	6 ^{mg/}		2	$\frac{252}{257}$	8			,
	L		3	269	13			
			1	Ø	264			
ef.⊺ox Ammonia - TAN	12 ^{mg/}	·	2	<u> </u>	266			······.
	-		3	Ø	269			
			1	Ø	288			
f.Tox Ammonia - TAN	18 ^{mg/}		2	- V D	240			<u>. </u>
			3	0	276			
			1		245			
STOCKING DENSIT	Υ		2		267			
			3		189			

ENVIRON Ammonia Reference Toxicant Spiking Worksheet

Reference Toxicant ID:	P140505.220	
Date Prepared:	12/7/15	
Technician Initials:	+1 E	

Biv / Echino NH₃ RT

Assumptions in Model Stock ammonia concentration is 9,000 mg/L = 9 mg/mL

Date: Measurement: 12/7/2015 9286.6

Test	t Solutions	Values of st			
Measured Concentration	Desired Concentration	Volume	Volume of stock to reach desired concentration		
mg/L	mg/L	mL	mL sto	ck to increase	
				SALT WATER	
0.583	0.75	250		0.030	
.53 2.04 ()	1.5	250		0.061	
2.38	3	250		0.121	
8.03	6	250		0.242	
14.1	12	250		0.485	
21.0	18	250		0.727	
				· · · · · · · · · · · · · · · · · · ·	
				····	

OFE # 12/7-

Biological Testing Results for R. G. Haley

APPENDIX B

STATISTICAL COMPARISONS

Ramboll Environ Report#122315.01

Project Name: R. G. Haley - E. estuarius 10 day - Survival

Sample:	x1	Γ	Ref Samp:	x2
Samp ID:	SS1-SS-03-0-12		Ref ID:	CR22
Alias:	Sample		Alias:	Reference
Replicates:	5		Replicates:	5
Mean:	99		Mean:	95
SD:	2.236		SD:	3.536
Tr Mean:	107.089		Tr Mean:	83.479
Trans SD:	16.776		Trans SD:	17.556

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean: (0	Test Residual Mean:	12.004	Statistic: Student's t
Residual SD: 1	11.142	Test Residual SD:	10.066	Balanced Design: Yes
SS: 2	2358.564	Ref. Residual Mean:	12.445	Transformation: ArcSin
K: 5	5	Ref. Residual SD:	10.705	
b: 4	46.701	Deg. of Freedom:	8	
		Ũ		Experimental Hypothesis
Alpha Level: (0.05	Alpha Level:	0.1	Null: $x1 \ge x2$
Calculated Value: (Calculated Value:		Alternate: x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860	
Normally		Variances		Degrees of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha Level: 0.05
		5		Calculated Value: -2.1742
Override Option:	N/A			Critical Value: >= 1.860
·				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	100	114.592	95	77.079	7.503	6.4			-30.01
2	100	114.592	95	77.079	7.503	6.4			-11.914
3	100	114.592	90	71.565	7.503	11.914			-6.4
4	95	77.079	100	114.592	30.01	31.113			-6.4
5	100	114.592	95	77.079	7.503	6.4			-6.4
6									7.503
7									7.503
8									7.503
9									7.503
10									31.113
ļ									

Project Name: R. G. Haley - E. estuarius 10 day - Survival

Sample:	x1	R	Ref Samp:	x2
Samp ID:	SS1-SS-05-0-12		Ref ID:	CR22
Alias:	Sample		Alias:	Reference
Replicates:	5	Re	eplicates:	5
Mean:	99		Mean:	95
SD:	2.236		SD:	3.536
Tr Mean:	107.089		Tr Mean:	83.479
Trans SD:	16.776	Т	Frans SD:	17.556

hapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean: 0	0	Test Residual Mean:	12.004	Statistic: Student's t
Residual SD: 1	11.142	Test Residual SD:	10.066	Balanced Design: Yes
SS: 2	2358.564	Ref. Residual Mean:	12.445	Transformation: ArcSin
K: 5	5	Ref. Residual SD:	10.705	
b: 4	46.701	Deg. of Freedom:	8	
		Ű,		Experimental Hypothesis
Alpha Level: 0	0.05	Alpha Level:	0.1	Null: $x_1 \ge x_2$
Calculated Value: 0		Calculated Value:	0.0671	Alternate: x1 < x2
Critical Value: <	<= 0.842	Critical Value:	>= 1.860	
Normally		Variances		Degrees of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha Level: 0.05
		5		Calculated Value: -2.1742
Override Option: N	N/A			Critical Value: >= 1.86
				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	100	114.592	95	77.079	7.503	6.4			-30.01
2	95	77.079	95	77.079	30.01	6.4			-11.914
3	100	114.592	90	71.565	7.503	11.914			-6.4
4	100	114.592	100	114.592	7.503	31.113			-6.4
5	100	114.592	95	77.079	7.503	6.4			-6.4
6									7.503
7									7.503
8									7.503
9									7.503
10									31.113

Project Name: R. G. Haley - E. estuarius 10 day - Survival

Sample:	x1	F	Ref Samp:	x2
Samp ID:	SS1-SS-06-0-12		Ref ID:	CR22
Alias:	Sample		Alias:	Reference
Replicates:	5	R	Replicates:	5
Mean:	99		Mean:	95
SD:	2.236		SD:	3.536
Tr Mean:	107.089		Tr Mean:	83.479
Trans SD:	16.776		Trans SD:	17.556

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	12.004	Statistic: Student's t
Residual SD:	11.142	Test Residual SD:	10.066	Balanced Design: Yes
SS:	2358.564	Ref. Residual Mean:	12.445	Transformation: ArcSin
K:	5	Ref. Residual SD:	10.705	
b:	46.701	Deg. of Freedom:	8	
		Ū.		Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: $x1 \ge x2$
Calculated Value:		Calculated Value:		Alternate: x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860	
Normally		Variances		Degrees of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha Level: 0.05
				Calculated Value: -2.1742
Override Option:	N/A			Critical Value: >= 1.860
				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	95	77.079	95	77.079	30.01	6.4			-30.01
2	100	114.592	95	77.079	7.503	6.4			-11.914
3	100	114.592	90	71.565	7.503	11.914			-6.4
4	100	114.592	100	114.592	7.503	31.113			-6.4
5	100	114.592	95	77.079	7.503	6.4			-6.4
6									7.503
7									7.503
8									7.503
9									7.503
10									31.113
,									

Project Name: R. G. Haley - N. arenaceodentata 20 day - MIG AFDW

Sample:	x1	Ref Samp:	x2
Samp ID:	SS1-SS-03-0-12	Ref ID:	CR22
Alias:	Sample	Alias:	Reference
Replicates:	5	Replicates:	5
Mean:	0.688	Mean	0.527
SD:	0.115	SD:	0.11
Tr Mean:	N/A	Tr Mean:	N/A
Trans SD:	N/A	Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	0.079	Statistic: Mann-Whitney
Residual SD:	0.073	Test Residual SD:	0.074	Balanced Design: Yes
SS:	0.101	Ref. Residual Mean:	0.075	Transformation: rank-order
K:	5	Ref. Residual SD:	0.071	
b:	0.289	Deg. of Freedom:	8	
		-		Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: $x_1 \ge x_2$
Calculated Value:	0.8265	Calculated Value:	0.1014	Alternate: x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860	
				Mann-Whitney N1: 5
				Mann-Whitney N2: 5
Normally		Variances		Degrees of Freedom:
Distributed:	No	Homogeneous:	Yes	Experimental Alpha Level: 0.05
		_		Calculated Value: 4
Override Option:	Not Invoked			Critical Value: >= 21.000
				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.585	5	0.714	9	0.103	0.187	1		-0.103
2	0.703	8	0.496	3	0.015	0.031	2		-0.1
3	0.688	7	0.517	4	0	0.01	3		-0.096
4	0.87	10	0.483	2	0.182	0.044	4		-0.044
5	0.592	6	0.427	1	0.096	0.1	5		-0.031
6							6		-0.01
7							7		0
8							8		0.015
9							9		0.182
10							10		0.187

Project Name: R. G. Haley - N. arenaceodentata 20 day - MIG DW

Sample:	x1	Ref Sam	b: x2
Samp ID:	SS1-SS-03-0-12	Ref II): CR22
Alias:	Sample	Alia	s: Reference
Replicates:	5	Replicate	s: 5
Mean:	0.843	Mea	n: 0.694
SD:	0.117	SI	0: 0.108
Tr Mean:	0.843	Tr Mea	n: 0.694
Trans SD:	0.117	Trans SI	D: 0.108

hapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	0.092	Statistic: Student's	t
Residual SD:	0.073	Test Residual SD:	0.056	Balanced Design: Yes	
SS:	0.101	Ref. Residual Mean:	0.076	Transformation: No Transfo	ormation
K:	5	Ref. Residual SD:	0.067		
b:	0.308	Deg. of Freedom:	8		
		3		Experimental Hypothe	sis
Alpha Level:	0.05	Alpha Level:	0.1	Null: $x1 \ge x2$	
Calculated Value:		Calculated Value:		Alternate: x1 < x2	
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees of Freedor	n: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha Leve	
		C C		Calculated Valu	
Override Option:	N/A			Critical Valu	e: >= 1.860
				Accept Null Hypothesi	s: Yes
				Powe	er:
				Min. Difference for Powe	er:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.696	0.696	0.884	0.884	0.147	0.19			-0.147
2	0.909	0.909	0.621	0.621	0.066	0.073			-0.082
3	0.86	0.86	0.67	0.67	0.017	0.024			-0.073
4	0.989	0.989	0.63	0.63	0.146	0.064			-0.064
5	0.761	0.761	0.665	0.665	0.082	0.029			-0.029
6									-0.024
7									0.017
8									0.066
9									0.146
10									0.19

Project Name: R. G. Haley - N. arenaceodentata 20 day - survival

Sample:	x1	Ref	Samp:	x2
Samp ID:	SS1-SS-03-0-12		Ref ID:	CR22
Alias:	Sample		Alias:	Reference
Replicates:	5	Repl	licates:	5
Mean:	100		Mean:	100
SD:	0		SD:	0
Tr Mean:	114.592	Tr	Mean:	114.592
Trans SD:	0	Tra	ns SD:	0

Shapiro-Wilk Results:	Levene's Results:		Test Results:	
Residual Mean:	N/A Test Residua	al Mean: 0	Statistic: 1	Sample t-Test
Residual SD:	N/A Test Resid	dual SD: 0	Balanced Design: Y	es
SS:	0 Ref. Residua	al Mean: 0	Transformation: A	rcSin
K: (0 Ref. Resid	dual SD: 0		
b:	0 Deg. of Fr	reedom: 0		
			Experimental	Hypothesis
Alpha Level:	N/A Alpha	a Level: N/A	Null: x	1 >= x2
Calculated Value:	N/A Calculated	d Value: N/A	Alternate: x	1 < x2
Critical Value:	N/A Critica	al Value: N/A		
Normally	Varian	ces	Degrees o	f Freedom: 4
Distributed:	N/A Homoge	eneous: N/A	Experimental A	lpha Level: 0.05
	N//A			ated Value: 0
Override Option:	N/A			tical Value: <= -2.132
			Accept Null F	lypothesis: Yes
				Power:
			Min. Difference	for Power:

Replicate Number	Test Data	Trans. Test Data	Reference Data	Trans. Reference Data	Levene's Test Residuals	Levene's Reference Residuals	Mann- Whitney Ranks	Rankits	Shipiro- Wilk Residual
1	100	114.592	100	114.592					
2	100	114.592	100	114.592					
3	100	114.592	100	114.592					
4	100	114.592	100	114.592					
5	100	114.592	100	114.592					
6									
7									
8									
9									
10									

Project Name: R. G. Haley - N. arenaceodentata 20 day - MIG AFDW

Sample:	x1	Ref Samp:	x2
Samp ID:	SS1-SS-05-0-12	Ref ID:	CR22
Alias:	Sample	Alias:	Reference
Replicates:	5	Replicates:	5
Mean:	0.631	Mean:	0.527
SD:	0.09	SD:	0.11
Tr Mean:	0.631	Tr Mean:	0.527
Trans SD:	0.09	Trans SD:	0.11

hapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	0.062	Statistic: Student's t
Residual SD:	0.065	Test Residual SD:	0.058	Balanced Design: Yes
SS:	0.08	Ref. Residual Mean:	0.075	Transformation: No Transformation
K:	5	Ref. Residual SD:	0.071	
b:	0.28	Deg. of Freedom:	8	
				Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: $x_1 \ge x_2$
Calculated Value:	0.9738	Calculated Value:	0.3179	Alternate: x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860	
Normally		Variances		Degrees of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha Level: 0.05
		C C		Calculated Value: -1.6333
Override Option:	N/A			Critical Value: >= 1.860
				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.653	0.653	0.714	0.714	0.022	0.187			-0.154
2	0.648	0.648	0.496	0.496	0.017	0.031			-0.1
3	0.662	0.662	0.517	0.517	0.031	0.01			-0.044
4	0.715	0.715	0.483	0.483	0.084	0.044			-0.031
5	0.477	0.477	0.427	0.427	0.154	0.1			-0.01
6									0.017
7									0.022
8									0.031
9									0.084
10									0.187

Project Name: R. G. Haley - N. arenaceodentata 20 day - MIG DW

Sample:	x1	Ref Sa	np: x2
Samp ID:	SS1-SS-05-0-12	Ref	ID: CR22
Alias:	Sample	AI	as: Reference
Replicates:	5	Replica	es: 5
Mean:	0.774	Me	an: 0.694
SD:	0.101		SD: 0.108
Tr Mean:	0.774	Tr Me	an: 0.694
Trans SD:	0.101	Trans	SD: 0.108

hapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	0.072	Statistic: Student's t
Residual SD:	0.068	Test Residual SD:	0.061	Balanced Design: Yes
SS:	0.088	Ref. Residual Mean:	0.076	Transformation: No Transformation
K:	5	Ref. Residual SD:	0.067	
b:	0.289	Deg. of Freedom:	8	
				Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: $x1 \ge x2$
Calculated Value:		Calculated Value:		Alternate: x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860	
Normally		Variances		Degrees of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha Level: 0.05 Calculated Value: -1.206
Override Option:	N/A			Critical Value: >= 1.860
				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.751	0.751	0.884	0.884	0.023	0.19			-0.157
2	0.803	0.803	0.621	0.621	0.029	0.073			-0.073
3	0.808	0.808	0.67	0.67	0.034	0.024			-0.064
4	0.89	0.89	0.63	0.63	0.116	0.064			-0.029
5	0.617	0.617	0.665	0.665	0.157	0.029			-0.024
6									-0.023
7									0.029
8									0.034
9									0.116
10									0.19
<u>)</u>									

Project Name: R. G. Haley - N. arenaceodentata 20 day - survival

Sample:	x1	ſ	Ref Samp:	x2
Samp ID:	SS1-SS-05-0-12		Ref ID:	CR22
Alias:	Sample		Alias:	Reference
Replicates:	5		Replicates:	5
Mean:	100		Mean:	100
SD:	0		SD:	0
Tr Mean:	114.592		Tr Mean:	114.592
Trans SD:	0		Trans SD:	0

Shapiro-Wilk Results:	Levene's Results:		Test Results:	
Residual Mean:	N/A Test Residua	al Mean: 0	Statistic: 1	Sample t-Test
Residual SD:	N/A Test Resid	dual SD: 0	Balanced Design: Y	es
SS:	0 Ref. Residua	al Mean: 0	Transformation: A	rcSin
K: (0 Ref. Resid	dual SD: 0		
b:	0 Deg. of Fr	reedom: 0		
			Experimental	Hypothesis
Alpha Level:	N/A Alpha	a Level: N/A	Null: x	1 >= x2
Calculated Value:	N/A Calculated	d Value: N/A	Alternate: x	1 < x2
Critical Value:	N/A Critica	al Value: N/A		
Normally	Variano	ces	Degrees o	f Freedom: 4
Distributed:	N/A Homoge	eneous: N/A	Experimental A	lpha Level: 0.05
	N//A			ated Value: 0
Override Option:	N/A			tical Value: <= -2.132
			Accept Null F	lypothesis: Yes
				Power:
			Min. Difference	for Power:

Replicate Number	Test Data	Trans. Test Data	Reference Data	Trans. Reference Data	Levene's Test Residuals	Levene's Reference Residuals	Mann- Whitney Ranks	Rankits	Shipiro- Wilk Residual
1	100	114.592	100	114.592					
2	100	114.592	100	114.592					
3	100	114.592	100	114.592					
4	100	114.592	100	114.592					
5	100	114.592	100	114.592					
6									
7									
8									
9									
10									

Project Name: R. G. Haley - N. arenaceodentata 20 day - MIG AFDW

Sample:	x1	Ref Samp:	x2
Samp ID:	SS1-SS-06-0-12	Ref ID:	CR22
Alias:	Sample	Alias:	Reference
Replicates:	5	Replicates:	5
Mean:	0.567	Mean:	0.527
SD:	0.044	SD:	0.11
Tr Mean:	0.567	Tr Mean:	0.527
Trans SD:	0.044	Trans SD:	0.11

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	0.035	Statistic: Student's t
Residual SD:	0.054	Test Residual SD:	0.021	Balanced Design: Yes
SS:	0.056	Ref. Residual Mean:	0.075	Transformation: No Transformation
K:	5	Ref. Residual SD:	0.071	
b:	0.221	Deg. of Freedom:	8	
		-		Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: $x_1 \ge x_2$
Calculated Value:	0.8749	Calculated Value:		Alternate: x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860	
Normally		Variances		Degrees of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha Level: 0.05
		-		Calculated Value: -0.7579
Override Option:	N/A			Critical Value: >= 1.860
				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.569	0.569	0.714	0.714	0.002	0.187			-0.1
2	0.537	0.537	0.496	0.496	0.03	0.031			-0.056
3	0.61	0.61	0.517	0.517	0.043	0.01			-0.044
4	0.61	0.61	0.483	0.483	0.043	0.044			-0.031
5	0.511	0.511	0.427	0.427	0.056	0.1			-0.03
6									-0.01
7									0.002
8									0.043
9									0.043
10									0.187

Project Name: R. G. Haley - N. arenaceodentata 20 day - MIG DW

Sample:	x1	Ref Samp:	x2
Samp ID:	SS1-SS-06-0-12	Ref ID:	CR22
Alias:	Sample	Alias:	Reference
Replicates:	5	Replicates:	5
Mean:	0.679	Mean:	0.694
SD:	0.064	SD:	0.108
Tr Mean:	N/A	Tr Mean:	N/A
Trans SD:	N/A	Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	0.053	Statistic: Mann-Whitney
Residual SD:	0.058	Test Residual SD:	0.025	Balanced Design: Yes
SS:	0.063	Ref. Residual Mean:	0.076	Transformation: rank-order
K:	5	Ref. Residual SD:	0.067	
b:	0.229	Deg. of Freedom:	8	
		-		Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: $x1 \ge x2$
Calculated Value:	0.8292	Calculated Value:	0.7268	Alternate: x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860	
				Mann-Whitney N1: 5
				Mann-Whitney N2: 5
Normally		Variances		Degrees of Freedom:
Distributed:	No	Homogeneous:	Yes	Experimental Alpha Level: 0.05
		_		Calculated Value: 13
Override Option:	Not Invoked			Critical Value: >= 21.000
				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.668	6	0.884	10	0.011	0.19	1		-0.073
2	0.626	3	0.621	2	0.053	0.073	2		-0.069
3	0.738	8	0.67	7	0.059	0.024	3		-0.064
4	0.751	9	0.63	4	0.072	0.064	4		-0.053
5	0.61	1	0.665	5	0.069	0.029	5		-0.029
6							6		-0.024
7							7		-0.011
8							8		0.059
9							9		0.072
10							10		0.19

Project Name: R. G. Haley - N. arenaceodentata 20 day - survival

Sample:	x1	Ref	Samp:	x2
Samp ID:	SS1-SS-06-0-12	1	Ref ID:	CR22
Alias:	Sample		Alias:	Reference
Replicates:	5	Repl	licates:	5
Mean:	100		Mean:	100
SD:	0		SD:	0
Tr Mean:	114.592	Tr	Mean:	114.592
Trans SD:	0	Tra	ns SD:	0

Shapiro-Wilk Results:	Levene's Results:		Test Results:	
Residual Mean:	N/A Test Residua	al Mean: 0	Statistic: 1	Sample t-Test
Residual SD:	N/A Test Resid	dual SD: 0	Balanced Design: Y	es
SS:	0 Ref. Residua	al Mean: 0	Transformation: A	rcSin
K:	0 Ref. Resid	dual SD: 0		
b:	0 Deg. of Fr	reedom: 0		
			Experimental	Hypothesis
Alpha Level:	N/A Alpha	a Level: N/A	Null: x	1 >= x2
Calculated Value:	N/A Calculated	d Value: N/A	Alternate: x	1 < x2
Critical Value:	N/A Critica	al Value: N/A		
Normally	Varian	ces	Degrees o	f Freedom: 4
Distributed:	N/A Homoge	eneous: N/A	Experimental A	lpha Level: 0.05
	N1/A			ated Value: 0
Override Option:	N/A			tical Value: <= -2.132
			Accept Null F	lypothesis: Yes
				Power:
			Min. Difference	for Power:

Replicate Number	Test Data	Trans. Test Data	Reference Data	Trans. Reference Data	Levene's Test Residuals	Levene's Reference Residuals	Mann- Whitney Ranks	Rankits	Shipiro- Wilk Residual
1	100	114.592	100	114.592					
2	100	114.592	100	114.592					
3	100	114.592	100	114.592					
4	100	114.592	100	114.592					
5	100	114.592	100	114.592					
6									
7									
8									
9									
10									

Sample:	x1	Ref Samp:	x2
Samp ID:	SS1-SS-03-0-12	Ref ID:	CR22
Alias:	Sample	Alias:	Reference
Replicates:	5	Replicates:	5
Mean:	83.8	Mean:	87.4
SD:	11.925	SD:	11.845
Tr Mean:	73.804	Tr Mean:	71.043
Trans SD:	23.419	Trans SD:	10.524

Shapiro-Wilk Results:	Levene's Results:		Test Results:
Residual Mean: 0	Test Residual Mean	: 16.315	Statistic: Student's t
Residual SD: 11	.781 Test Residual SD	: 14.687	Balanced Design: Yes
SS: 26	36.85 Ref. Residual Mean	: 9.097	Transformation: ArcSin
K: 5	Ref. Residual SD	: 2.704	
b: 47	7.183 Deg. of Freedom	: 8	
	, i i i i i i i i i i i i i i i i i i i		Experimental Hypothesis
Alpha Level: 0.0	05 Alpha Level	: 0.1	Null: $x_1 \ge x_2$
Calculated Value: 0.8		: 1.0807	Alternate: x1 < x2
Critical Value: <=	= 0.842 Critical Value	: >= 1.860	
Normally	Variances		Degrees of Freedom: 8
Distributed: Ye	es Homogeneous	: Yes	Experimental Alpha Level: 0.1
	Ŭ		Calculated Value: -0.2404
Override Option: N/	'A		Critical Value: >= 1.397
			Accept Null Hypothesis: Yes
			Power:
			Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	80	63.435	75	60	10.369	11.043			-18.865
2	86	68.027	94	75.821	5.777	4.778			-11.7
3	67	54.938	97	80.026	18.865	8.983			-11.043
4	100	114.592	97	80.026	40.788	8.983			-10.369
5	86	68.027	74	59.343	5.777	11.7			-5.777
6									-5.777
7									4.778
8									8.983
9									8.983
10									40.788

Sample:	x1	Ref Samp:	x2
Samp ID:	SS1-SS-03-0-12	Ref ID:	CR22
Alias:	Sample	Alias:	Reference
Replicates:	5	Replicates:	5
Mean:	98.8	Mean:	98.4
SD:	0.837	SD:	0.548
Tr Mean:	98.8	Tr Mean:	98.4
Trans SD:	0.837	Trans SD:	0.548

napiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean: (0	Test Residual Mean:	0.64	Statistic: Student's t	
Residual SD: (0.459	Test Residual SD:	0.434	Balanced Design: Yes	
SS: 4	4	Ref. Residual Mean:	0.48	Transformation: No Transforma	ation
K: 5	5	Ref. Residual SD:	0.11		
b: 1	1.92	Deg. of Freedom:	8		
				Experimental Hypothesis	
Alpha Level: (0.05	Alpha Level:	0.1	Null: $x_1 \ge x_2$	
Calculated Value: (0.9216	Calculated Value:	0.8	Alternate: x1 < x2	
Critical Value: <	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees of Freedom: 8	3
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha Level: (D.1
				Calculated Value: -	0.8944
Override Option: 1	N/A			Critical Value: >	>= 1.397
				Accept Null Hypothesis:	Yes
				Power:	
				Min. Difference for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	99	99	98	98	0.2	0.4			-0.8
2	98	98	98	98	0.8	0.4			-0.8
3	98	98	99	99	0.8	0.6			-0.4
4	100	100	98	98	1.2	0.4			-0.4
5	99	99	99	99	0.2	0.6			-0.4
6									0.2
7									0.2
8									0.6
9									0.6
10									1.2

Sample:	x1	Re	ef Samp:	x2
Samp ID:	SS1-SS-05-0-12		Ref ID:	CR22
Alias:	Sample		Alias:	Reference
Replicates:	5	Re	plicates:	5
Mean:	89.4		Mean:	87.4
SD:	7.021		SD:	11.845
Tr Mean:	N/A		Tr Mean:	N/A
Trans SD:	N/A	Ті	rans SD:	N/A
	Samp ID: Alias: eplicates: Mean: SD: Tr Mean:	Sample: x1 Samp ID: SS1-SS-05-0-12 Alias: Sample Replicates: 5 Mean: 89.4 SD: 7.021 Tr Mean: N/A Trans SD: N/A	Samp ID: SS1-SS-05-0-12 Alias: Sample teplicates: 5 Mean: 89.4 SD: 7.021 Tr Mean: N/A	Samp ID:SS1-SS-05-0-12Ref ID:Alias:SampleAlias:teplicates:5Replicates:Mean:89.4Mean:SD:7.021SD:Tr Mean:N/ATr Mean:

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	14.625	Statistic: Mann-Whitney
Residual SD:	10.666	Test Residual SD:	12.737	Balanced Design: Yes
SS:	2161.49	Ref. Residual Mean:	9.097	Transformation: rank-order
K:	5	Ref. Residual SD:	2.704	
b:	41.355	Deg. of Freedom:	8	
		, i i i i i i i i i i i i i i i i i i i		Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: $x1 \ge x2$
Calculated Value:	0.7912	Calculated Value:	0.9493	Alternate: x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860	
				Mann-Whitney N1: 5
				Mann-Whitney N2: 5
Normally		Variances		Degrees of Freedom:
Distributed:	No	Homogeneous:	Yes	Experimental Alpha Level: 0.1
		-		Calculated Value: 12
Override Option:	Not Invoked			Critical Value: >= 20.000
				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	83	3	75	2	12.378	11.043	1		-12.378
2	93	6	94	7	3.37	4.778	2		-11.7
3	85	4	97	8.5	10.815	8.983	3		-11.043
4	86	5	97	8.5	10.001	8.983	4		-10.815
5	100	10	74	1	36.563	11.7	5		-10.001
6							6		-3.37
7							7		4.778
8							8.5		8.983
9							8.5		8.983
10							10		36.563

Sample:	x1	Γ	Ref Samp:	x2
Samp ID:	SS1-SS-05-0-12		Ref ID:	CR22
Alias:	Sample		Alias:	Reference
Replicates:	5		Replicates:	5
Mean:	99.2		Mean:	98.4
SD:	0.447		SD:	0.548
Tr Mean:	N/A		Tr Mean:	N/A
Trans SD:	N/A		Trans SD:	N/A

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	0.32	Statistic: Mann-Whitney
Residual SD:	0.324	Test Residual SD:	0.268	Balanced Design: Yes
SS:	2	Ref. Residual Mean:	0.48	Transformation: rank-order
K:	5	Ref. Residual SD:	0.11	
b:	1.232	Deg. of Freedom:	8	
		-		Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: $x1 \ge x2$
Calculated Value:	0.7588	Calculated Value:	1.2344	Alternate: x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860	
				Mann-Whitney N1: 5
				Mann-Whitney N2: 5
Normally		Variances		Degrees of Freedom:
Distributed:	No	Homogeneous:	Yes	Experimental Alpha Level: 0.1
		_		Calculated Value: 4
Override Option:	Not Invoked			Critical Value: >= 20.000
				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	99	6.5	98	2	0.2	0.4	2		-0.4
2	99	6.5	98	2	0.2	0.4	2		-0.4
3	100	10	99	6.5	0.8	0.6	2		-0.4
4	99	6.5	98	2	0.2	0.4	6.5		-0.2
5	99	6.5	99	6.5	0.2	0.6	6.5		-0.2
6							6.5		-0.2
7							6.5		-0.2
8							6.5		0.6
9							6.5		0.6
10							10		0.8

Sample:	x1	Γ	Ref Samp:	x2
Samp ID:	SS1-SS-06-0-12		Ref ID:	CR22
Alias:	Sample		Alias:	Reference
Replicates:	5		Replicates:	5
Mean:	99.2		Mean:	98.4
SD:	0.837		SD:	0.548
Tr Mean:	95.915		Tr Mean:	82.826
Trans SD:	17.077		Trans SD:	1.31

hapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	14.941	Statistic: Approximate t
Residual SD:	7.859	Test Residual SD:	3.547	Balanced Design: Yes
SS:	1173.392	Ref. Residual Mean:	1.148	Transformation: ArcSin
K: 5	5	Ref. Residual SD:	0.262	
b: 3	31.856	Deg. of Freedom:	8	
		Ŭ		Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: $x_1 \ge x_2$
Calculated Value:		Calculated Value:		Alternate: x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860	
Normally		Variances		Degrees of Freedom: 4
Distributed:	Yes	Homogeneous:	No	Experimental Alpha Level: 0.1
		5		Calculated Value: -1.7088
Override Option:	N/A			Critical Value: >= 1.533
				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	100	114.592	98	81.87	18.677	0.956			-14.045
2	99	84.261	98	81.87	11.654	0.956			-11.654
3	98	81.87	99	84.261	14.045	1.435			-11.654
4	99	84.261	98	81.87	11.654	0.956			-0.956
5	100	114.592	99	84.261	18.677	1.435			-0.956
6									-0.956
7									1.435
8									1.435
9									18.677
10									18.677
B									

Sample:	x1	Ref Samp:	x2
Samp ID:	SS1-SS-06-0-12	Ref ID:	CR22
Alias:	Sample	Alias:	Reference
Replicates:	5	Replicates:	5
Mean:	91.8	Mean:	87.4
SD:	7.085	SD:	11.845
Tr Mean:	80.682	Tr Mean:	71.043
Trans SD:	19.876	Trans SD:	10.524

Shapiro-Wilk Results:		Levene's Results:		Test Results:
Residual Mean:	0	Test Residual Mean:	14.039	Statistic: Student's t
Residual SD:	10.319	Test Residual SD:	12.194	Balanced Design: Yes
SS:	2023.308	Ref. Residual Mean:	9.097	Transformation: ArcSin
K:	5	Ref. Residual SD:	2.704	
b:	41.518	Deg. of Freedom:	8	
		Ū.		Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: $x_1 \ge x_2$
Calculated Value:	0.8519	Calculated Value:	0.8847	Alternate: x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860	
Normally		Variances		Degrees of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha Level: 0.1
		5		Calculated Value: -0.9583
Override Option:	N/A			Critical Value: >= 1.397
				Accept Null Hypothesis: Yes
				Power:
				Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	90	71.565	75	60	9.117	11.043			-15.032
2	83	65.65	94	75.821	15.032	4.778			-11.7
3	100	114.592	97	80.026	33.91	8.983			-11.043
4	88	69.732	97	80.026	10.95	8.983			-10.95
5	98	81.87	74	59.343	1.188	11.7			-9.117
6									1.188
7									4.778
8									8.983
9									8.983
10									33.91

Project Name: R. G. Haley - M. gallo 48 hr percent normal

Sample:	x1	Re	ef Samp:	x2
Samp ID:	SS1-SS-03-0-12		Ref ID:	CR22
Alias:	Sample		Alias:	Reference
Replicates:	5	Re	plicates:	5
Mean:	229.2		Mean:	238.8
SD:	32.844		SD:	32.019
Tr Mean:	229.2	-	Tr Mean:	238.8
Trans SD:	32.844	Т	rans SD:	32.019

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	22.56	Statistic:	Student's t
Residual SD:	21.046	Test Residual SD:	21.036	Balanced Design:	Yes
SS:	8415.6	Ref. Residual Mean:	27.84	Transformation:	No Transformation
K:	5	Ref. Residual SD:	7.508		
b:	89.139	Deg. of Freedom:	8		
		Ŭ,		Experiment	al Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.9442	Calculated Value:	0.5286	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees	of Freedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental	Alpha Level: 0.05
		, i i i i i i i i i i i i i i i i i i i		Calcu	ulated Value: 0.468
Override Option:	N/A			C	critical Value: >= 1.860
				Accept Nul	Hypothesis: Yes
					Power:
				Min. Difference	ce for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	219	219	206	206	10.2	32.8			-46.2
2	234	234	256	256	4.8	17.2			-36.8
3	183	183	266	266	46.2	27.2			-32.8
4	274	274	264	264	44.8	25.2			-10.2
5	236	236	202	202	6.8	36.8			4.8
6									6.8
7									17.2
8									25.2
9									27.2
10									44.8

Project Name: R. G. Haley - M. gallo 48 hr percent normal

Sample:	x1	Γ	Ref Samp:	x2
Samp ID:	SS1-SS-05-0-12		Ref ID:	CR22
Alias:	Sample		Alias:	Reference
Replicates:	5		Replicates:	5
Mean:	244.6		Mean:	238.8
SD:	20.695		SD:	32.019
Tr Mean:	244.6		Tr Mean:	238.8
Trans SD:	20.695		Trans SD:	32.019

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	16.32	Statistic: Approximate	t
Residual SD:	17.493	Test Residual SD:	9.766	Balanced Design: Yes	
SS:	5814	Ref. Residual Mean:	27.84	Transformation: No Transform	nation
K:	5	Ref. Residual SD:	7.508		
b:	73.121	Deg. of Freedom:	8		
		°,		Experimental Hypothesis	
Alpha Level:	0.05	Alpha Level:	0.1	Null: $x1 \ge x2$	
Calculated Value:	0.9196	Calculated Value:	2.0912	Alternate: x1 < x2	
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees of Freedom:	7
Distributed:	Yes	Homogeneous:	No	Experimental Alpha Level:	0.05
				Calculated Value:	-0.3402
Override Option:	N/A			Critical Value:	>= 1.895
				Accept Null Hypothesis:	Yes
				Power:	
				Min. Difference for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	226	226	206	206	18.6	32.8			-36.8
2	253	253	256	256	8.4	17.2			-32.8
3	233	233	266	266	11.6	27.2			-18.6
4	234	234	264	264	10.6	25.2			-11.6
5	277	277	202	202	32.4	36.8			-10.6
6									8.4
7									17.2
8									25.2
9									27.2
10									32.4

Project Name: R. G. Haley - M. gallo 48 hr percent normal

Sample:	x1	Γ	Ref Samp:	x2
Samp ID:	SS1-SS-06-0-12		Ref ID:	CR22
Alias:	Sample		Alias:	Reference
Replicates:	5		Replicates:	5
Mean:	254		Mean:	238.8
SD:	24.485		SD:	32.019
Tr Mean:	254		Tr Mean:	238.8
Trans SD:	24.485		Trans SD:	32.019

napiro-Wilk Results:		Levene's Results:		Test Results:	
Residual Mean:	0	Test Residual Mean:	19.6	Statistic: Stude	ent's t
Residual SD:	18.494	Test Residual SD:	10.922	Balanced Design: Yes	
SS:	6498.8	Ref. Residual Mean:	27.84	Transformation: No Tr	ansformation
K:	5	Ref. Residual SD:	7.508		
b:	76.382	Deg. of Freedom:	8		
		J J		Experimental Hyp	othesis
Alpha Level:	0.05	Alpha Level:	0.1	Null: x1 >=	: x2
Calculated Value:	0.8977	Calculated Value:	1.3902	Alternate: x1 < x	x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally		Variances		Degrees of Fre	eedom: 8
Distributed:	Yes	Homogeneous:	Yes	Experimental Alpha	
		Ū.		Calculated	Value: -0.8432
Override Option:	N/A			Critical	Value: >= 1.860
				Accept Null Hypo	othesis: Yes
					Power:
				Min. Difference for	Power:

Shipiro-		Mann-	Levene's	Levene's	Trans.				
Wilk		Whitney	Reference	Test	Reference	Reference	Trans.	Test	Replicate
Residuals	Rankits	Ranks	Residuals	Residuals	Data	Data	Test Data	Data	Number
-36.8			32.8	8	206	206	246	246	1
-32.8			17.2	28	256	256	226	226	2
-28			27.2	34	266	266	288	288	3
-13			25.2	13	264	264	241	241	4
-8			36.8	15	202	202	269	269	5
15									6
17.2									7
25.2									8
27.2									
34									
									9 10

Biological Testing Results for R. G. Haley

APPENDIX C

CHAIN-OF-CUSTODY FORMS

Ramboll Environ Report#122315.01

CUSTODY . RANSFER Printed: 12/03/15 ARI Job No: AOS3

ANALYTICAL C

4611 South 134th Place, Suite ...0 Tukwila WA 98168 INCORPORATED 205-695-6200 205-69

ARI Project Manager:	1	INCORPORATED			
Cheronne Oreiro	Client Contact: Dana Carlisle	Sampling Event:		206-695-6200 206-695-6201 (fix)	
	Client:	0356-114-06		Samples Received:	
	GeoEngineers, Inc.	Project:		10/16/15	
	eccessigned s, IDC.	R.G. Haley		Sample Site: NA	

ARI ID	CLIENTID	MATRIX	a constraint and	ANALYTICAL REQUEST	ANALYTICAL REQUEST		
15-19351			# CONTAINERS		in the second second	ANALYTICAL REQUEST	
NOS3A	SSI-SS-03_0-12	Sofiment	1	2		-	COMMENTS

12832 695 03552915AT

instantion instantos	Kellenpulsed Br	(teringly) a D A	1	
	monthis Atwee	un minuter Julia Leveng	Reliepated By	Received by: (Signified)
	Company Din 1	Concer Famboll	Dad renal Name	Primut Name-
		20 Dantine 12/04/15 1515	L POINTS.	Dequer:
	16-0 13 10	1051	Dentifiere	Dom Time

CUSTODY . RANSFER Printed: 11/30/15 ARI Job No: AOL1

Ant Martines

ANALYTICAL RESOURCES INCORPORATED

4611 South 134th Place, Snite 100 Tukwila WA 98168 206-695-6200 206-695-6201 (fax)

Aki Project Matager: Cheronne Oveiro	Client Contact: Dana Carlisle	Sampling Event: 0356-114-06	Samples Received: 10/13/15	ì
	Client: GeoEngineers, Inc.	Project:	Sample Site:	+
		R. G. Haley	NA	3

LOGNUM				ANNUL STICKL REQUEST	T and the second second		
ARI ID	CLIENT ID	MATRIX	# CONTAINERS	TALE OF STREET	NULLYTICAL INCOURT	ARALYTICAL ADDAEST	1
15-18939				1			COMMENTS
AOLIA	SSI-3S-05_0-12	Schiment	1	Dura			
15-18940 AOL10	SSI-SS-96 0-12	Sediment	1	Biogssay			

Given to Environ per Nancy musgrove

and the special Bring Cleary	Edingsted By: ()	Eminthe /		and the second se
	Print to the state	(Signature)	Relequited By:	Retaived by (Signate)
	mours Emily Lithan	Brian Hester	Princip Name	Printed Name
	TEI	Fankall	Commercial Contraction	Corpos
	W3D/15 1000	Dente 11.30.15 1000	Door Two:	Oger Ting
	1/30/15 1000	Destre 11.30.15 1000	Thing Thong	

CUSTODY IRANSFER Printed: 11/30/15 ARLJob No: AOS3

ANALYTICAL RESOURCES INCORPORATED

4611 South 134th Place, Suite 100 Tukwila WA 98168 206-695-6200 206-695-6201 (fax)

ARI Project Manager:	Law		206-695-6200 206-695-6201 (lax)
Cheroane Oreiro	Client Contact: Dana Carlisle	Sampling Event: 0356-114-06	Samples Received: 10/16/15
	Client: GeoEngineers, Inc.	Project: R.G. Haley	Sample Site:
		inter same	NA

ARLID	CLIENT ID	MATRIX	-	ANALYTICAL REQUEST	ANALYTICAL REQUEST	AND STREET AND	1
15-19351	POATEEA	# CONTAINERS			ANALYTICAL REQUEST	COMMENTS	
N063A	SSI-85-03_0-12	Sodienat	1	Broassau			CONTRACT/15

Given to Environ per Nancy Musgrove

Consecutive Longing	Relignated By: UN Received by		
		Relinquiled By:	Removed by- (Xeptilized)
	Commy KR MULLYUHUM Commy Ramboll	Printed Name	Pulsian Rame:
	Durting wild a vice income Kamboll	Congress	Cargony.
	1/30/15 (000 Danmy1. 30.15 1000	DanTes:	DanYiar

CHAIN JF CUSTODY

ENVIRON

Shipping: 4770 NE View Dr. Mail. , P.O. Box 216 Port Gamble, WA. 98364 Tel: (360) 297-6045, Fax: (360) 297-6901

Deserver Ranboll Deserver Conse Bria Hoste Deserver 12.4.15			a Drokutor (Digental	= Ranbo	11 .	Report Res	win To:		Phane. Fas			
			ON WHO COLLECTED	SHOPLE Bria	nHote	Centres 6a	and. '					
			95	-	-	Address:			Emili			
Tun Aro	ind-Time:								-			
Project N	TOI Halan	Phone	Phane: Fac:			Anal	yses;	envoicing Tec				
	R6 Haley	Pac				1		Convenits or Spin	Comments or Special Instructions.			
Carintell		Ę-en/		1.00	R.							
No.	Sample ID	Matrix	Volume & Type of Container	Date & Time	E			Preservation	Sample Temp Upon Receipt	LABID		
+	CR-22	Sed	35411/bas	12.4.15	X	-		4.6	-			
1	CNIDA	XU	Sullas	12.7-15		-	-	10				
2	-	-				-	-		1			
3	29% fines	-	-			-						
4	a lo fine)	-			+ +	-						
-		1				-						
e		-			+ +	-						
7									1 1			
-		-	-			-			1 1			
-		-				-						
10		-	-			-						
15	a fe	1	-			-						
12		-										
12		-				-						
		-		-		-						
15		1										
16		1.				-		1.				
17		1										
						-						
15		1				1						
-	Relinquished by:		Recieved	by:		Reliequi	shed by:		Recieved by:	Mateix Codes		
Print Nat	Brian Hester	Print Name	Jew W.	red	Print Name:			Print Name:		For - Preside Winter		
			table ///			-		Signature:	Signature			
19400	Ranboll	Attivitor	11 10	ind	AffEidos:	-		Afflator		53 - Set & Brickler Water		
Auto Terr	=12.415 1400	Oste/Time	1 fam		DataTine	_		Date/Tirot:		SS = Sol & Sotrem.		
	12.415 1400		12/4/15	1400	1			_				

Assigned Number:	Turn-around	Requested:	Page	- 1	of	î.		Analytical Resources, Incorporated Analytical Chemists and Consultant						
ARI Client Company:	Date	in list	lce Pres	ent?		4611 South 134th Place, Suite 100 Tukwila, WA 98168								
Client Contact: Denn Cou	No. o Coolers		Coole	er os:		206-695-6200 206-695-6201 (fax) www.arilabs.com								
Client Project Name:		_	_	Analysis	Requested	1	_		Notes Comments					
Client Project #: 0356-114-02		SL/FRICV					104.401		Res		57.0			
Sample ID	Date	Time	Matrix	No. Containers	TOL	S1	Dx de	17cl V2	Cinit's	/ IHV	Hold Fo potentra	DIF		
551-55-05	10/12/15	12:00	Sed	15	×	×	×	X	×					
55]-51-06	100/12/15	12:36		5	×	×	No	X	X				Hold for potential	
55[-35-07	10/17/15	13:05		5	×	X	×	X					Dx	
55J-33-08	10/12/15	13:50		2	×	X			X		1			
551-55-09	10/12/15	14:19		3	×	×	1		\times	×				
551-55-10	10/12/15	(4135		3	X	X			X					
551-55-11	10/1245	15:410		3	×	×			X	×				
55I-55-12	13/12/15	16:00		3	X	X			X	X				
551-55-13	10/12/15	井:30	1	2							\times			
RToute - 131012 Comments/Special Instructions	10/12/15 10/12/15 Reinquished by:	1720	sed	2 HG Received by:			\times				2	~		
(Signature)			(Signature)	ist			Relinquished by: (Signature)				Received by (Signature)			
Churchin De fin Via.				YARED LISHNEWARE				Printed Name	E			Printed Nam	e:	
				YL#	328	_	UNE	Company:				Company:		
	Date & Time: 13/13/15	8:10	AN	Date & Time:								Date & Time:		

of Custody Record & Laboratory Analysis Request

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

.ody Record					-										
Number:	Turn-around	Bequested:	d	Page:	1	of	1			1-	Analytical Resources, Incorporated Analytical Chemists and Consultants 4611 South 134th Place, Suite 100				
Client Company:	Date:	5/15	Ice Prese	nt?			1	Tukwila, WA 98168 _ 206-695-6200_206-695-6201 (fax)							
Client Contact:	aroste.	2000	231-3		No. of Coolers:		Coole	f 5:		-		www.arilabs.com			
Client Project Name:	/	_					_	Analysis F	Requested	0			Notes/Comments		
Client Project #:	Samplers:	_			Te P	26	Bar	000	H	has	FUND	5		7-	
0356-114-06	PRD	/ CVD.	*	_	tot	2	2	12 12	94	P/8	TE	R			
Sample ID	Date	Time	Matrix	No. Containers	Toc	Grain	Dx w	5M5 +5M	SIM	PCF	Darwn	Bibas		1.	
551-55-03-0-12	10/15	1205	500	5	X	\times	×	X				×	1		
551-55-01-0-12	1	1315	T I	5	X	X		X				\times	TPH for		
651-55-DUR-03	V	1	V	4	×	X		×					TPH for auchore		
Ring/12-15/015	10/15	1535	white	6		1	X	\times		1	\times				
551-56-04-0-2	i	1455	50d	4	×	\times	>		×	×					
651-56-04-2-4	- L-1	1500	1	5	×	×	×		\times	×					
551-56-NP-03	Y	-	1	4	\times	\times	×		×	X			1-1	. +	
	11.	-						1							
	1			-			1-1								
	1														
Comments/Special Instructions Reinquisted by: (Signature) (Signature)					his	111	~	Relinquished (Signature)	iby:			Received by: (Signature)		kr.	
Printed Name: Printed Name.						ian Warren Printed Name:						Printed Name	Printed Name:		
Company:						Company:						Company:	rpany:		
Date & Terre: Date & Terre: 10/16/2015 8AM 10/16/						Date & Tirrie:						Dute & Time:	& Time:		
	(15. 0800						-								

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sconer than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless afternate retention schedules have been established by work-order or contract.

Assigned Number:	Turn-around	Requested:	Page	- 1	of	î.		Analytical Resources, Incorporated Analytical Chemists and Consultant						
ARI Client Company:	Date	in list	lce Pres	ent?		4611 South 134th Place, Suite 100 Tukwila, WA 98168								
Client Contact: Denn Cou	No. o Coolers		Coole	er os:		206-695-6200 206-695-6201 (fax) www.arilabs.com								
Client Project Name:		_	_	Analysis	Requested	1	_		Notes Comments					
Client Project #: 0356-114-02		SL/FRICV					104.401		Res		57.0			
Sample ID	Date	Time	Matrix	No. Containers	TOL	51	Dx de	17cl V2	Cinit's	/ IHV	Hold Fo potentra	DIF		
551-55-05	10/12/15	12:00	Sed	15	×	×	×	X	×					
55]-51-06	100/12/15	12:36		5	×	×	No	X	X				Hold for potential	
55[-35-07	10/17/15	13:05		5	×	X	×	X					Dx	
55J-33-08	10/12/15	13:50		2	×	X			X		1			
551-55-09	10/12/15	14:19		3	×	×	1		\times	×				
551-55-10	10/12/15	(4735		3	X	X			X					
551-55-11	10/1245	15:410		3	×	×			X	×				
55I-55-12	13/12/15	16:00		3	X	X			X	X				
551-55-13	10/12/15	井:30	1	2							\times			
RToute - 131012 Comments/Special Instructions	10/12/15 10/12/15 Reinquished by:	1720	sed	2 HG Received by:			\times				2	~		
(Signature)			(Signature)	ist			Relinquished by: (Signature)				Received by (Signature)			
Churchin De fin Via.				YARED LISHNEWARE				Printed Name	E			Printed Nam	e:	
				YL#	328	_	UNE	Company:				Company:		
	Date & Time: 13/13/15	8:10	AN	Date & Time:								Date & Time:		

of Custody Record & Laboratory Analysis Request

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

.ody Record					-										
Number:	Turn-around	Bequested:	d	Page:	1-	of	1			1-	Analytical Resources, Incorporated Analytical Chemists and Consultants 4611 South 134th Place, Suite 100				
Client Company:	Date:	5/15	Ice Prese	nt?			1	Tukwila, WA 98168 _ 206-695-6200_206-695-6201 (fax)							
Client Contact:	ALCONE.		231-3		No. of Coolers:		Coole	f 5:		-		www.arilabs.com			
Client Project Name:	/	_					_	Analysis F	Requested	0			Notes/Comments		
Client Project #:	Samplers:	_			Te P	26	Bar	000	H	has	FUND	5		7-	
0356-114-06	PRD	/ CVD.	*	_	tot	2	2	12 12	94	P/8	TE	R			
Sample ID	Date	Time	Matrix	No. Containers	Toc	Grain	Dx w	5M5 +5M	SIM	PCF	Darwn	Bibas		1.	
551-55-03-0-12	10/15	1205	500	5	X	\times	×	X				×	1		
551-55-01-0-12	1	1315	T I	5	X	X		X				\times	TPH for		
651-55-DUR-03	V	1	V	4	×	X		×					TPH for auchore		
Ring/12-15/015	10/15	1535	white	6		1	X	\times		1	\times				
551-56-04-0-2	i	1455	50d	4	×	\times	>		×	×					
651-56-04-2-4	- L-1	1500	1	5	×	×	×	1	\times	×					
551-56-NP-03	Y	-	1	4	\times	\times	×		×	X			1-1	. +	
	11.	-						1							
	1			-			1-1								
	1											1			
Comments/Special Instructions Reinquisted by: (Signature) (Signature)					his	111	~	Relinquished (Signature)	iby:			Received by: (Signature)		kr.	
Printed Name: Printed Name.						ian Warren Printed Name:						Printed Name	Printed Name:		
Company:						Company:						Company:	rpany:		
Date & Terre: Date & Terre: 10/16/2015 8AM 10/16/						Date & Tirrie:						Dute & Time:	& Time:		
	(15. 0800						-								

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sconer than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless afternate retention schedules have been established by work-order or contract.

From:Nancy A. MusgroveTo:Brian HesterSubject:RE: RG Haley bioassaysDate:Wednesday, December 30, 2015 1:11:12 PMAttachments:image001.png

Hi there

SS-03 = 25.6% fines SS-05 = 18.8 % SS-06 = 28.0 %

Thanks!!

Nancy A. Musgrove Environmental Scientist | GeoEngineers, Inc.

Telephone: 206.239.3221 Fax: 206.728.2732 Mobile: 206.818.8646 Email: <u>nmusgrove@geoengineers.com</u>

From: Brian Hester [mailto:BHester@ramboll.com]
Sent: Wednesday, December 30, 2015 12:59 PM
To: Nancy A. Musgrove <nmusgrove@geoengineers.com>
Cc: Jay Word <JDWord@ramboll.com>
Subject: RE: RG Haley bioassays

Nancy,

I hope you had a good Holiday.

All tests for RG Haley are complete. The three samples do not appear to exceed SMS or DMMP criteria. We are working through a draft report now.

We had a quick question on the grain sizes for the samples. Do the %fines you provided earlier (email below) correspond to samples 3, 5, and 6, respectively. If not, what % fines correspond to which samples.

Thanks,

Brian

Brian Hester Laboratory Director

D +1 360 297 6045 M +1 360 461 5784 BHester@ramboll.com Ramboll Environ: Port Gamble Environmental Laboratory 4770 NE View Drive PO Box 216 Port Gamble, WA 98364 USA www.ramboll-environ.com

RAMBOLL ENVIRON

From: Nancy A. Musgrove [mailto:nmusgrove@geoengineers.com]
Sent: Wednesday, November 25, 2015 8:55 AM
To: Brian Hester
Subject: RG Haley bioassays

Hi Brian

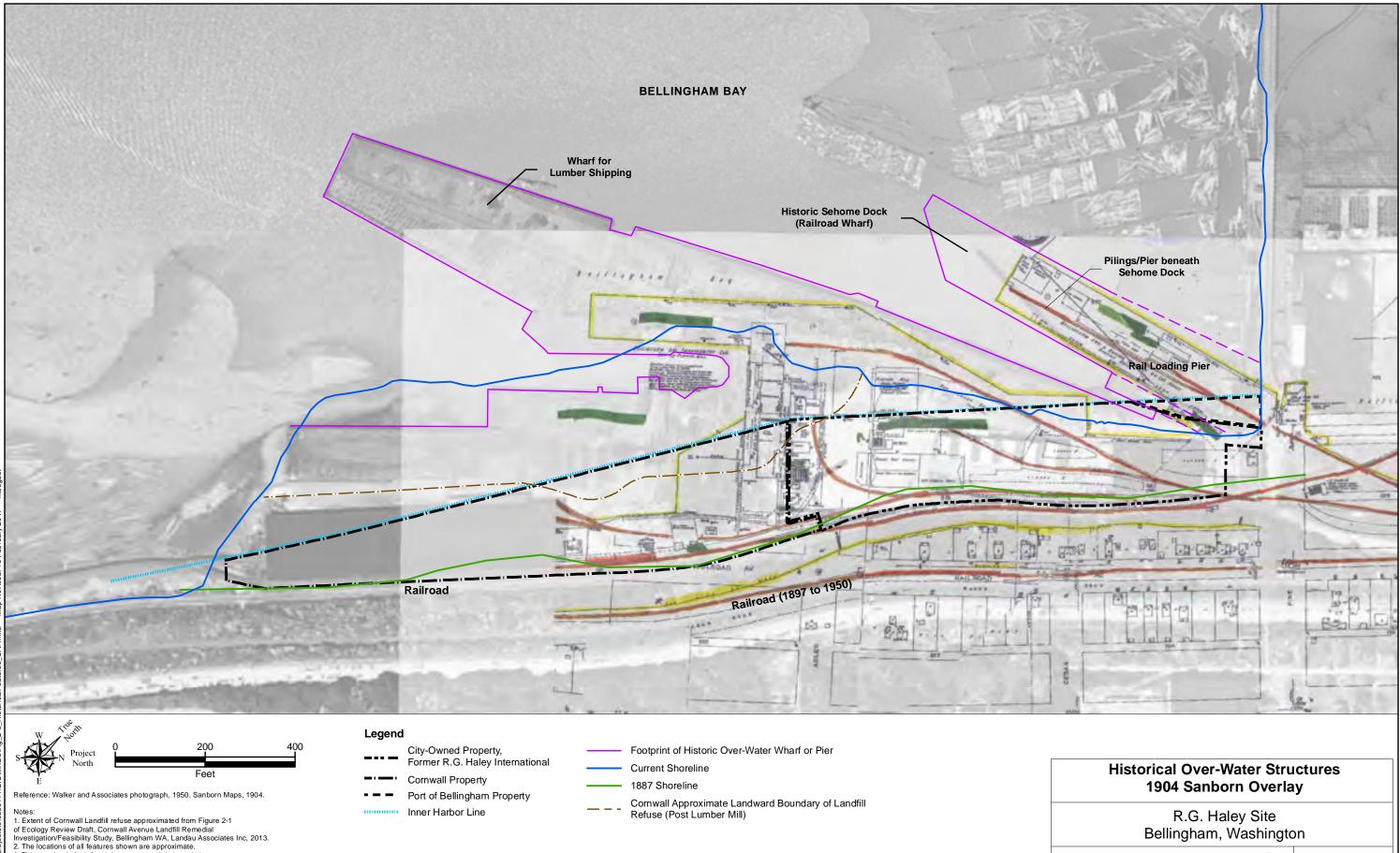
We finally got approval/input from Ecology on what samples they want tested for toxicity at the RG Haley site. We will be sending you three sediment samples to be tested using UV protocol; I will arrange for shipment with Cheronne today. Please let me know when you would be able to accept a shipment (I am assuming the lab is closed tomorrow). With respect to a reference sample—grain sizes for the three samples are 18.8%, 25.6%, and 28% fines. Give me a buzz if you have any questions.

Regards

--NAM Nancy A. Musgrove Environmental Scientist | GeoEngineers, Inc. Telephone: 206.239.3221 Fax: 206.728.2732 Mobile: 206.818.8646 Email: <u>nmusgrove@geoengineers.com</u>

600 Stewart Street, Suite 1700 Seattle, WA 98101 www.geoengineers.com

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

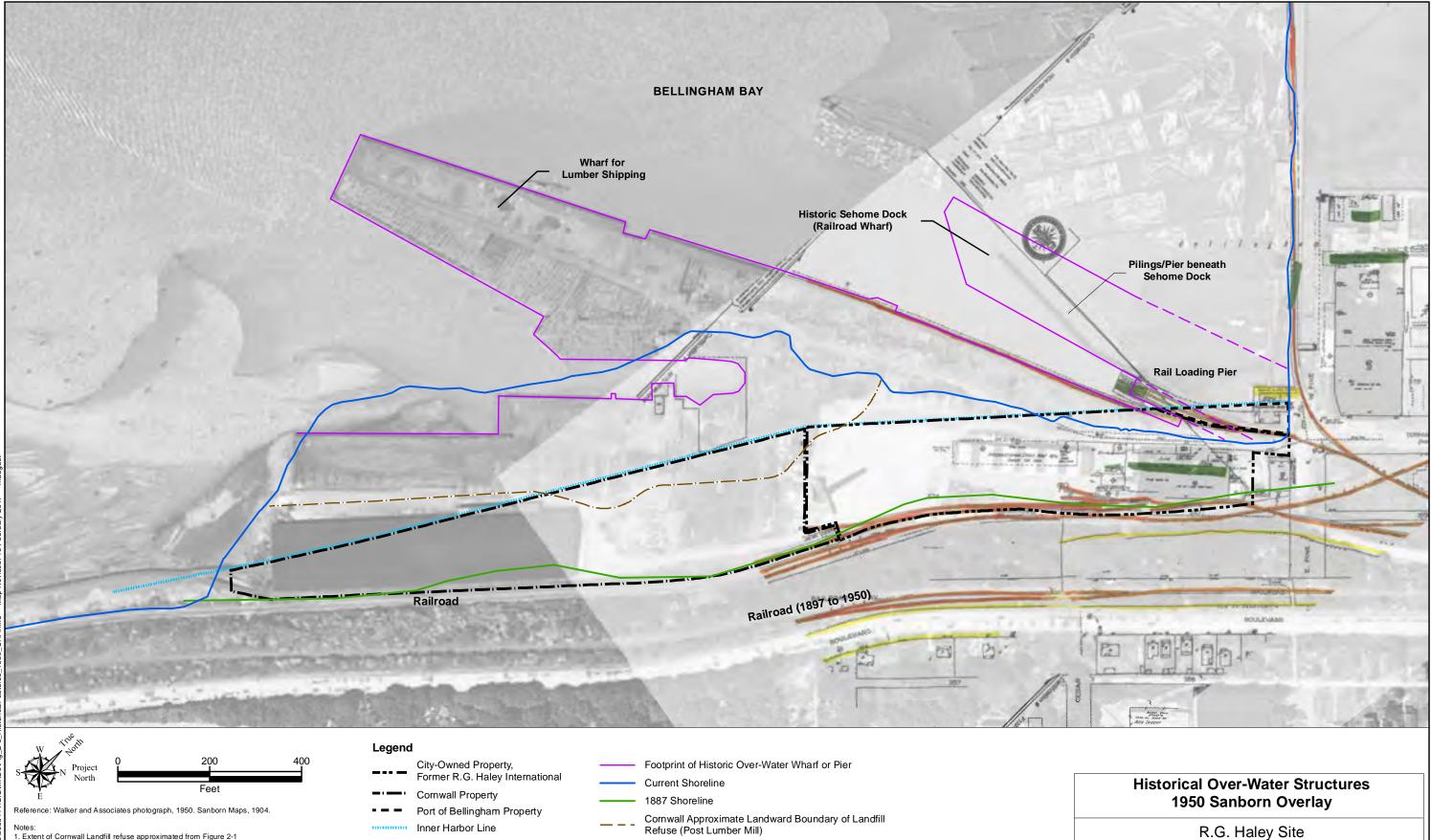

Confidentiality: This message is confidential and intended solely for use of the individual or entity to whom it is addressed. If you are not the person for whom this message is intended, please delete it and notify me immediately, and please do not copy or send this message to anyone else.

This message contains information that may be confidential, privileged or otherwise protected

by law from disclosure. It is intended for the exclusive use of the Addressee(s). Unless you are the addressee or authorized agent of the addressee, you may not review, copy, distribute or disclose to anyone the message or any information contained within. If you have received this message in error, please contact the sender by electronic reply to <u>email@ramboll.com</u> and immediately delete all copies of the message.

Confidentiality: This message is confidential and intended solely for use of the individual or entity to whom it is addressed. If you are not the person for whom this message is intended, please delete it and notify me immediately, and please do not copy or send this message to anyone else.

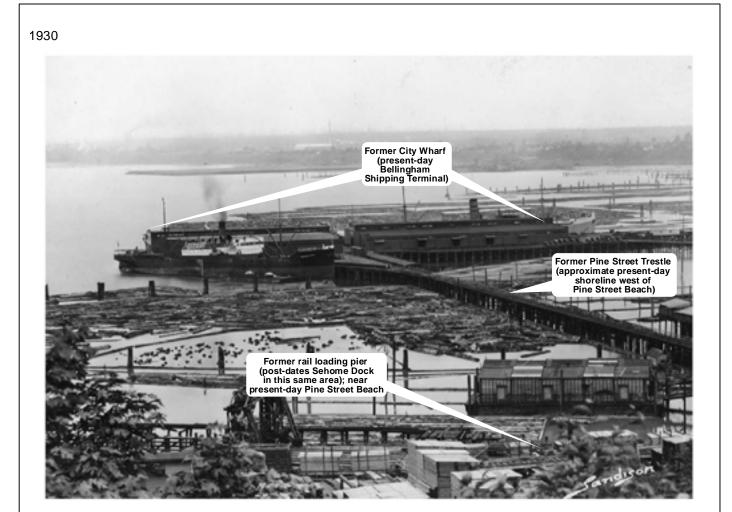
APPENDIX F Historical Maps and Photos



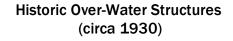
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content
- of electronic files. The master file is stored by GeoEngineers, Inc.
- and will serve as the official record of this communication.

GEOENGINEERS

Figure F-1


- Notes: 1. Extent of Cornwall Landfill refuse approximated from Figure 2-1 of Ecology Review Draft, Cornwall Avenue Landfill Remedial Investigation/Feasibility Study, Bellingham WA, Landau Associates Inc, 2013. 2. The locations of all features shown are approximate.

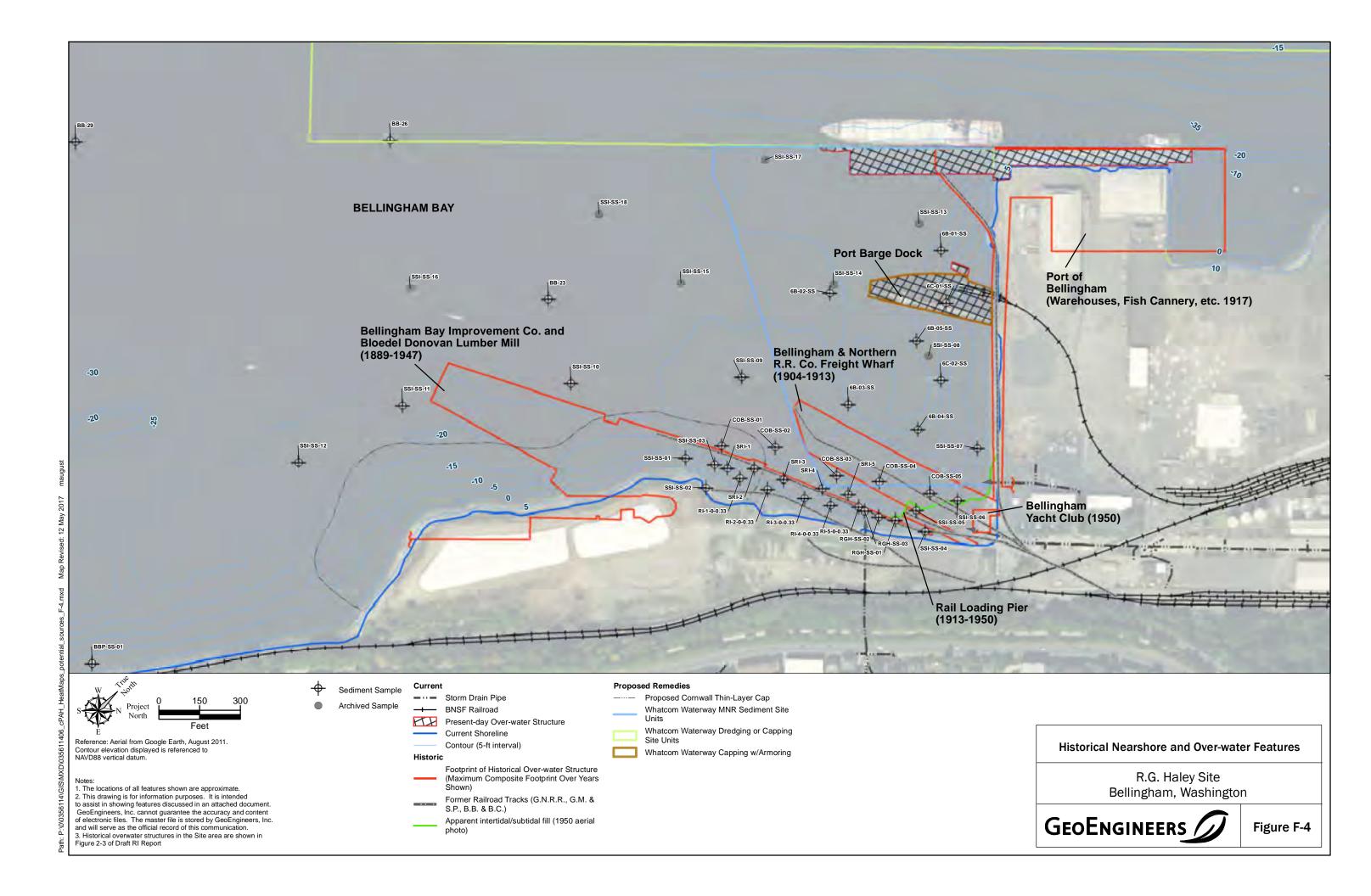
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content
- of electronic files. The master file is stored by GeoEngineers, Inc.
- and will serve as the official record of this communication.


Bellingham, Washington

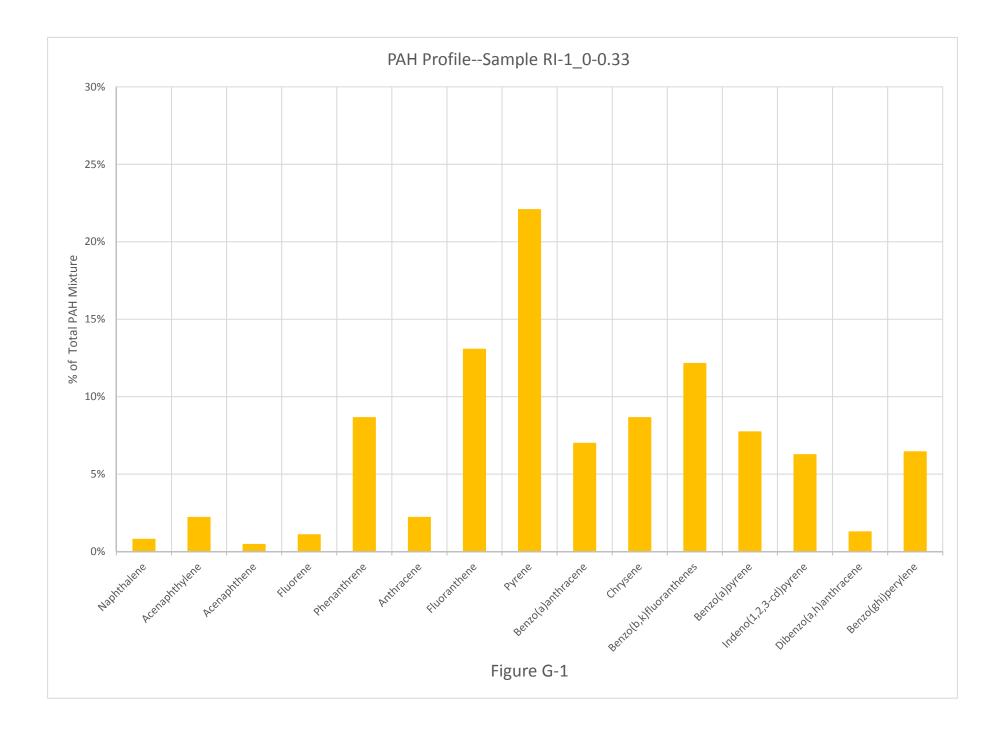
GEOENGINEERS

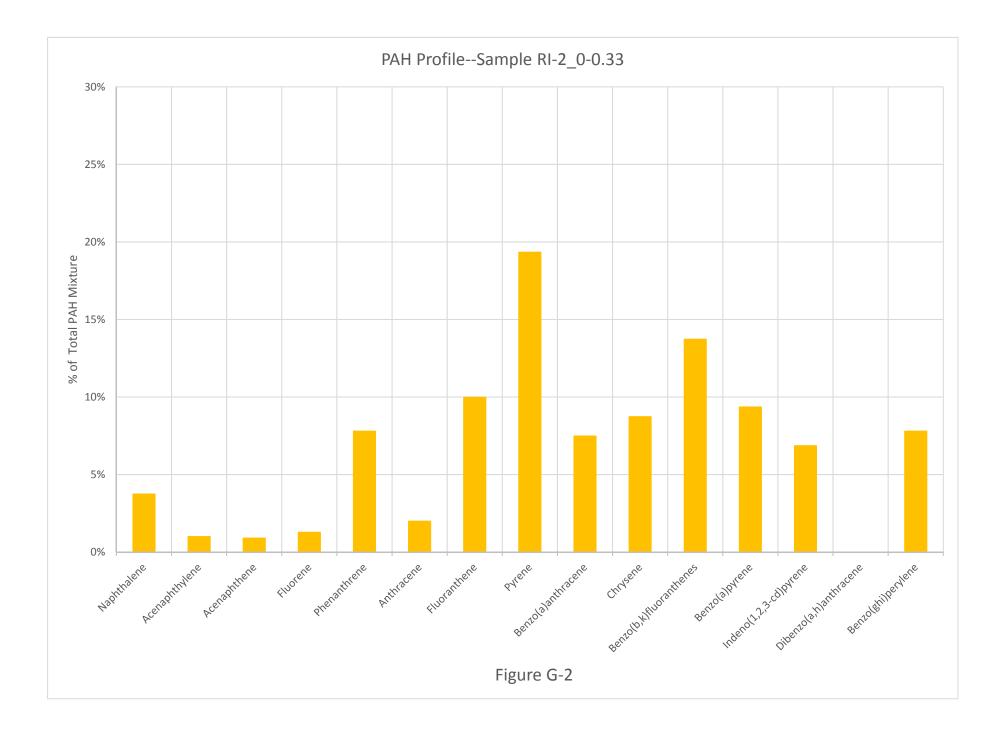
Figure F-2

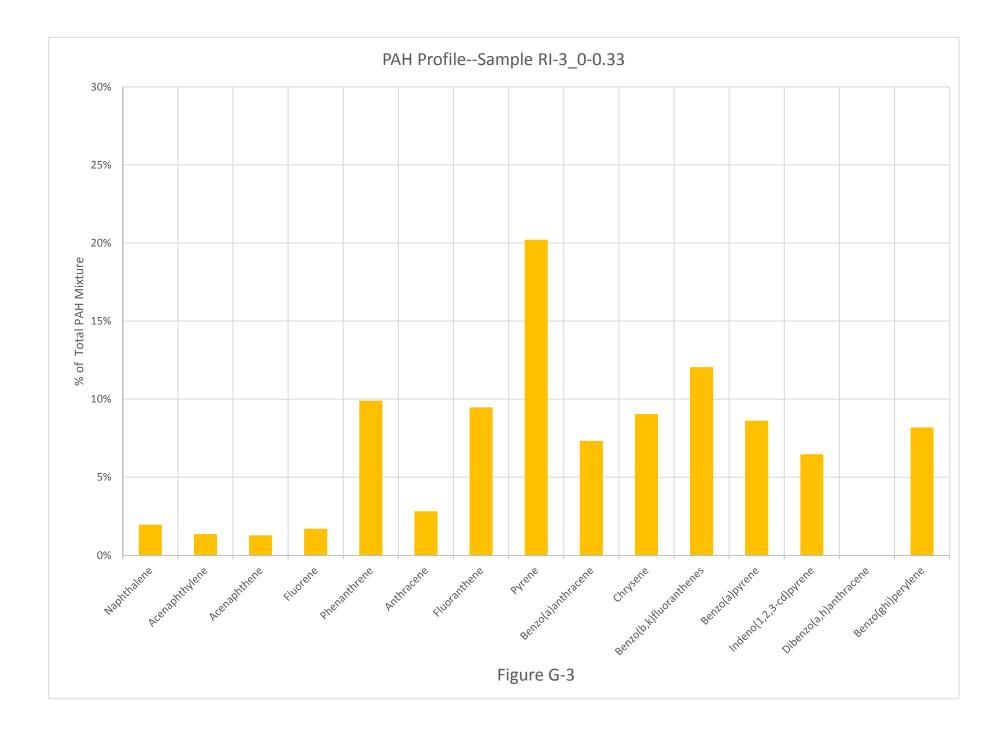
Data Source: Western Washington University - Center for Pacific NW Studies (Galen Biery Collection #1196). Port of Bellingham (P-BBN-0353)

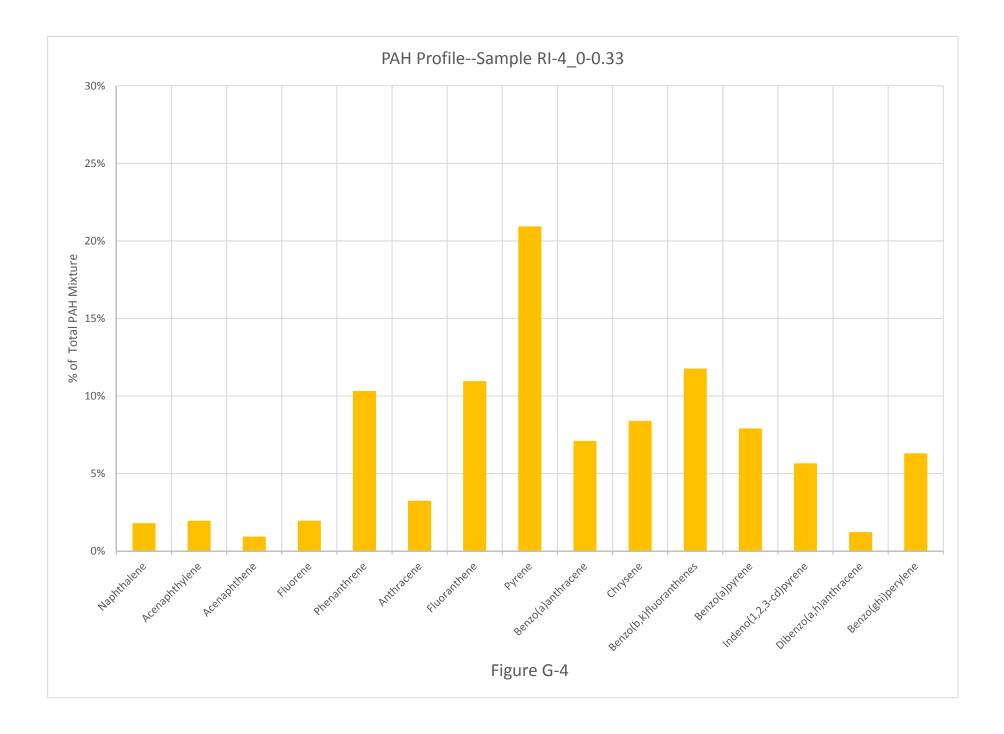


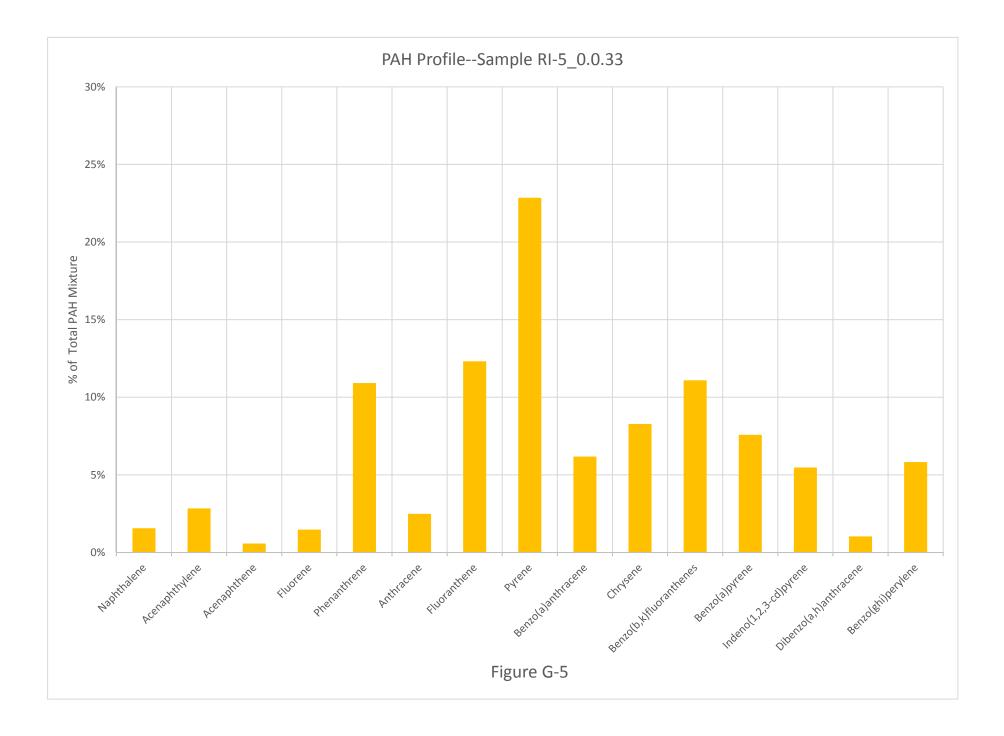
R.G. Haley Site Bellingham, Washington

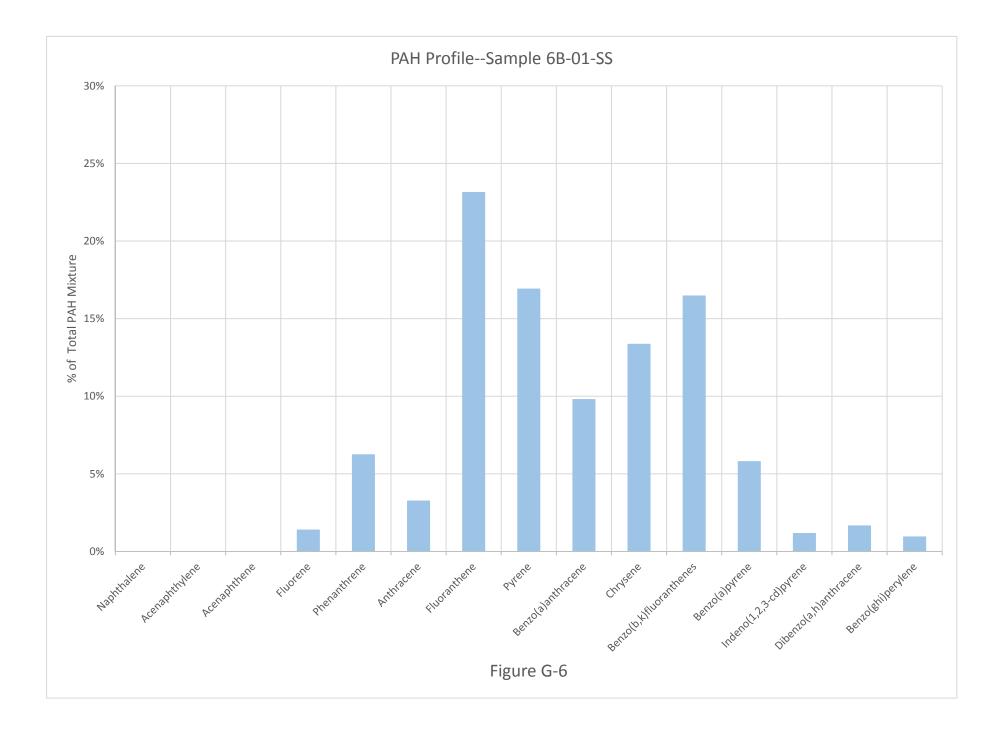

Figure F-3

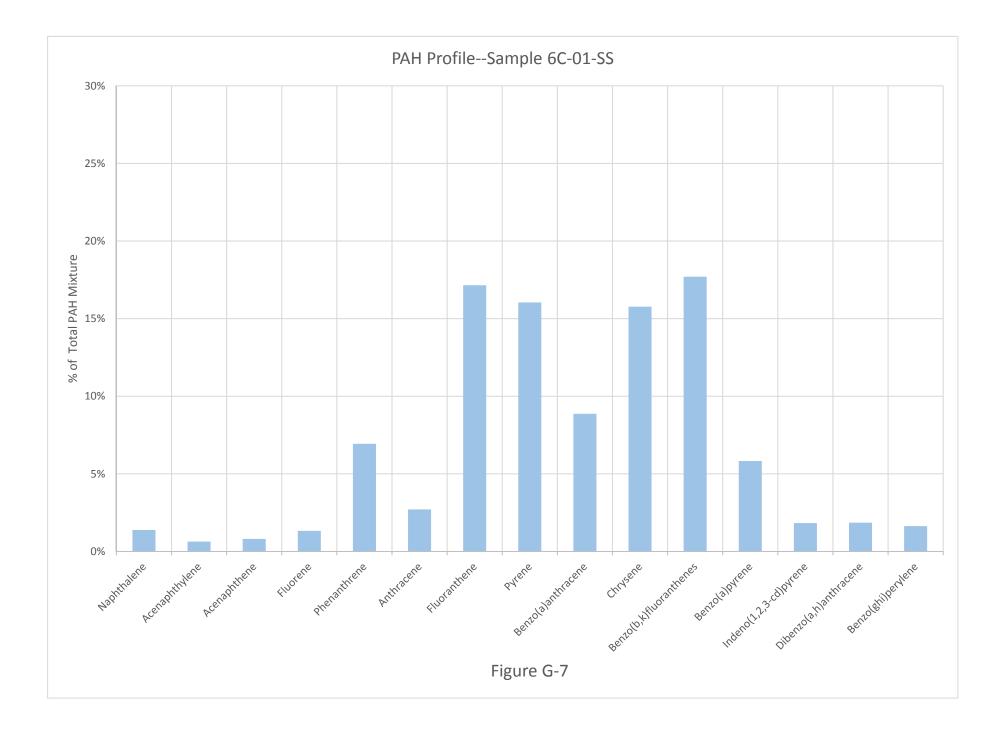

GEOENGINEERS /

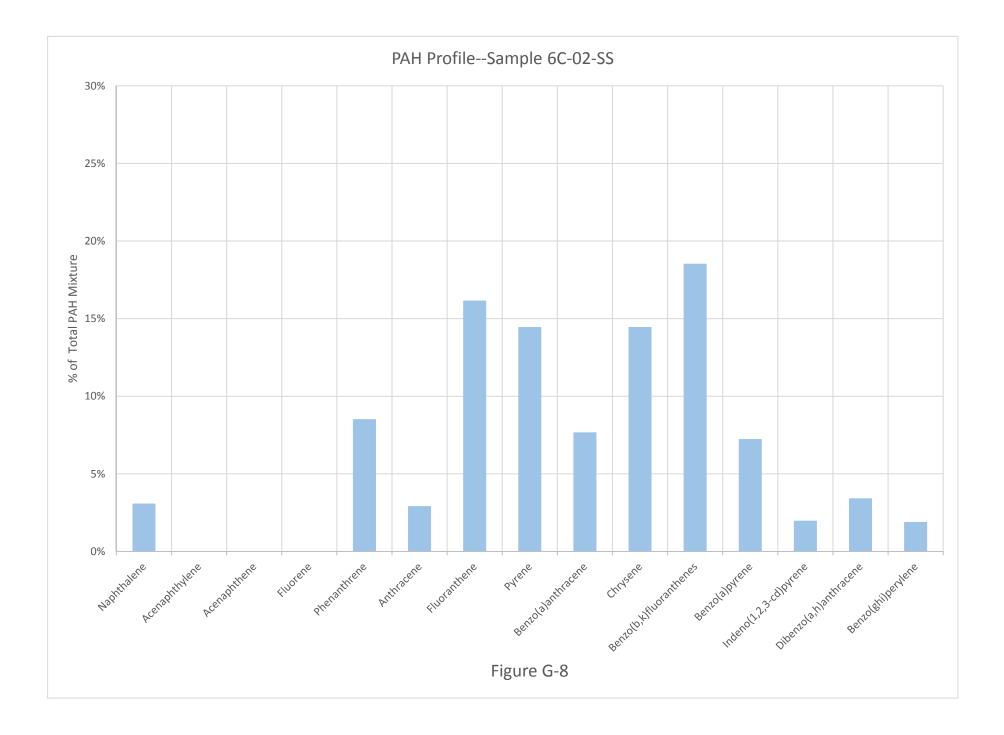


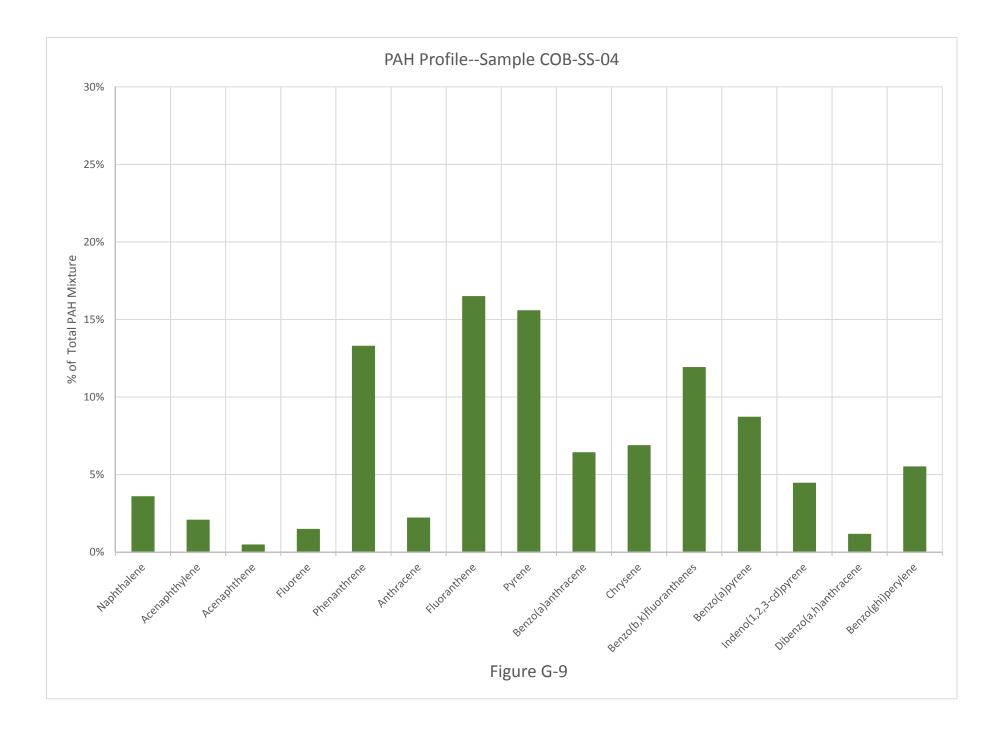


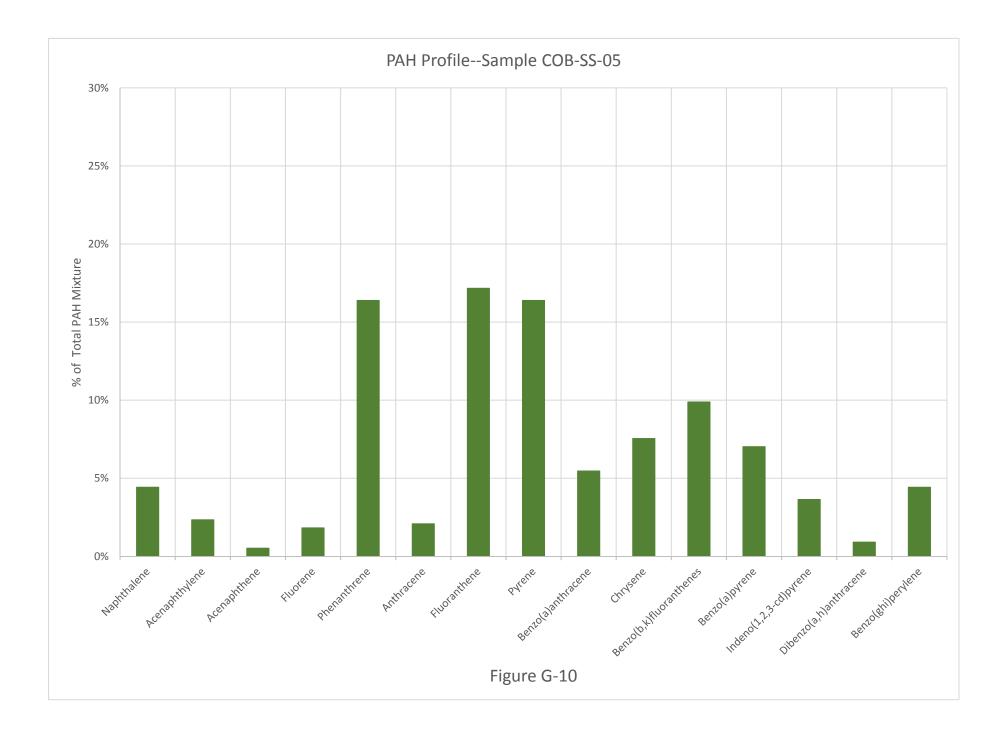












APPENDIX B

Marine Unit Recontamination Evaluation and Updated Cleanup Level for Dioxins and Furans

(Originally prepared and provided as Appendix I of the Final R.G. Haley International Corporation Site Engineering Design Report, May 13, 2022)

APPENDIX I R.G. HALEY MARINE UNIT RECONTAMINATION EVALUATION AND UPDATED CLEANUP LEVEL FOR DIOXINS AND FURANS

Introduction

The R.G. Haley Site (Haley Site or Site) is located on the northeastern shore of Bellingham Bay, Bellingham, WA (Figure 1). The Haley Site is comprised of an Upland Unit and a Marine Unit, and is currently undergoing cleanup planning and design according to the Model Toxic Control Act (MTCA; Chapter 173-340 WAC) and the Sediment Management Standards (SMS; Chapter 173-204 WAC) for contaminated upland soil, groundwater, air and sediment. Following completion of a remedial investigation and feasibility study, a cleanup action plan (CAP) was published by the Washington State Department of Ecology in April 2018. The CAP specified the cleanup standards (both the cleanup levels and points of compliance) for each medium along with areas requiring cleanup, what the cleanup action will be and how the cleanup will be implemented.

For dioxins and furans, the CAP set the sediment cleanup level (SCL) for the Marine Unit at the regional background-based Cleanup Screening Level (CSL) of 15 nanograms per kilogram (ng/kg), expressed as the toxic equivalent of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TEQ), without a recontamination evaluation to provide the rationale for adjusting the SCL up from the PQL-based Sediment Cleanup Objective (SCO) of 5 ng/kg TEQ. As part of Ecology's review of the Engineering Design Report (EDR), they requested a recontamination evaluation for dioxins and furans to attain consistency with the SMS.

This appendix presents the recontamination evaluation and an updated SCL for dioxins and furans based on the results of the evaluation. The following sections describe the regulatory framework for adjusting the SCL, how Ecology established regional background in Bellingham Bay and the lines of evidence that indicate post-construction recontamination of the Marine Unit. Additionally, the following sections describe the basis for adjusting the dioxin and furan SCL up from the SCO and the updated dioxin and furan SCL.

Regulatory Framework

According to SMS, the SCO is the sediment quality goal, but the SCL may be adjusted up to, but not higher than, the CSL based on an evaluation of technical possibility and net adverse environmental impact (WAC 173-204-560[2][a][ii]). SCUM (Chapter 7, Section 7.2.3.2) states that "technically possible" includes being implemented in a reliable and effective manner that is dependent on site-specific factors such as the ability to maintain the SCO after construction. SCUM (Chapter 7, Section 7.2.3.2) also states that, recontamination from diffuse sources not under the authority or responsibility of the PLP should be considered to determine if the SCO can be maintained.

Bellingham Bay Regional Background

Ecology established regional background concentrations for dioxins and furans (15 ng/kg TEQ) and several other contaminants in Bellingham Bay in 2015 in support of the Bellingham Bay Demonstration Pilot, a program addressing the comprehensive cleanup of the bay and involving eight sediment cleanup sites. Surface sediment samples were collected in the regional background Area of Interest (AOI) determined to be outside of the direct influence of known sources including cleanup sites, active or historical sources or dredge material disposal sites (Figure 2). Intertidal areas or those areas representative of natural

background concentrations were also excluded from the AOI. The resulting data underwent data quality evaluations and statistical analysis prior to calculating a background value according to Ecology procedures. Details of the derivation of regional background for Bellingham Bay are provided in Ecology's report (2015).

Lines of Evidence

There are multiple lines of evidence that establish the potential for recontamination at the Marine Unit including the potential for sediment erosion or resuspension from the regional background AOI outside of the Marine Unit boundary and transport to the Marine Unit by currents within Bellingham Bay. In addition, there is recent empirical evidence of recontamination in the vicinity of the Marine Unit.

Sediment Erosion, Resuspension and Transport

There are several natural forces that can erode or resuspend and transport sediment to the Marine Unit. Storm-generated waves are responsible for eroding shorelines and sediment in Bellingham Bay and causing transport of eroded materials. Both breaking waves and the orbital velocities from storm waves have sufficient energy to resuspend and move sediment. Both deep and shallow currents transport sediment either as suspended particles or bed load. Fine-grained sediment is frequently transported as suspended particles in currents where coarse-grained sediments are often moved by those same currents along the bottom.

Bottom currents in Bellingham Bay are relatively consistent throughout the year and velocities within the bay range from 4 to 18 centimeters per second (cm/sec) with a maximum velocity of 40 cm/sec (Colyer 1998 [In] RETEC 2006). A velocity of 20 to 30 cm/sec is generally required to erode fine-grained (i.e., clay, silts and fine sands) sediment particles (Downing 1983). Based on the regional background study, sediment in the AOI is predominantly in the clay and silt range¹ and susceptible to erosion and transport. Therefore, sediment present in the regional background AOI can be resuspended by bottom currents. See the Resuspension and Sedimentation section below for further discussion of resuspension.

Once fine-grained sediment particles are suspended, the particles can be transported by weaker currents. Transport distances are a function of the size of the particles and the strength and direction of the current.

Typical shallow surface currents in the inner bay are much slower ranging from 2 cm/sec to 10 cm/sec with a maximum of 16 cm/sec (Colyer 1998 [In] RETEC 2006). The typical, slower shallow surface currents within the inner bay allow deposition and accumulation of fine-grained sediment in this portion of the bay including the Marine Unit. The results from hydrodynamic modeling conducted by Coast & Harbors Engineers Division of Mott/McDonald (CHE) (EDR Appendix E) suggest that tidal currents in the Marine Unit do not exceed 6 cm/sec.

The forces created by storm-generated waves are primarily responsible for shoreline and nearshore erosion in Bellingham Bay. Winds from the prevailing storms typically originate from the south/southwest, creating waves up to three meters in height near the shore. Shoreline erosion from storm waves is evidenced by the

¹Thirty out of 34 surface sediment samples were characterized by greater than 90 percent fines.

historical migration of shorelines in Bellingham Bay and the need for shoreline armoring throughout the inner bay.

CHE conducted wave analysis and numerical modeling to support cap design for the Marine Unit (EDR Appendix E). The results of the modeling show that erosion and transport of sediment from storm-generated waves could occur up to the depths evaluated (approximately -20 feet NAVD88). CHE also evaluated changes in sea floor bathymetry at the Cornwall Landfill and Haley sediment units to support remedial design (CHE 2019). The results of the evaluation provide evidence of sediment transport along the bottom to depths greater than -20 feet NAVD88 (Figure 3). Elongated wave-like forms both parallel and perpendicular to the shoreline are evident in Figure 3 and are likely from bottom currents and storm-generated waves periodically moving sediment along the bottom. The evaluation also identified areas of accretion and erosion over an 8-year period between 2007 and 2015. Sediment appears to be accumulating over much of the area evaluated with limited areas of erosion.

The information pertaining to currents in Bellingham Bay and from wave modeling and sediment accretion in the vicinity of the Cornwall and Haley sediment units identifies that sediment erosion and transport are occurring. The regional background AOI is adjacent to the Marine Unit and extends into the inner bay. Because the AOI adjacent to the Marine Unit experiences similar hydrodynamic conditions and exposure to storms, sediment erosion and transport from the AOI to the Marine Unit is highly likely.

Resuspension and Sedimentation

There is additional evidence of sediment erosion, resuspension and transport based on the sedimentation and resuspension evaluation conducted as part of the 2000 RI/FS for Whatcom Waterway (Anchor and Hart Crowser 2000). Several sediment traps (HC-ST-100 and HC-ST-101) were deployed in the inner bay within the regional background AOI (Figure 4) for three, four-month periods to evaluate gross sedimentation rates under various conditions. Gross sedimentation ranged from 7.85 centimeters per year (cm/yr) to 21.8 cm/yr and averaged 13.8 cm/yr².

Two cores (HC-NR-100 and HC-NR-101), which were co-located with the sediment traps, were used to measure net sedimentation. Rates of sediment accumulation over time were based on decay rates of two radioisotopes (lead-210 and cesium-137). Mercury depth profiles and depth to native sediment in historical dredging prisms were two other lines of evidence evaluated to determine rates of accumulation. Results among the first three methods (two radioisotope dating methods and chemical profiling) to measure net sedimentation had reasonable agreement so results were averaged. Net sedimentation estimates ranged from 1.1 cm/yr to 3.4 cm/yr; the overall average was 1.6 cm/yr.

Resuspension rates (as a percent) were calculated using both gross sedimentation rates and net sediment accumulation over time measured at the co-located traps and cores (gross - net/gross = percent resuspension). Resuspension rates ranged from 81 to 93 percent with an average of 88 percent. These results confirm that bottom sediments in the regional background AOI are highly likely to be resuspended and transported to other locations including the Marine Unit.

² Based on five data points.

Current Patterns and Transport

The current direction in Bellingham Bay, both shallow and deep, is variable. Tidal exchanges³; wind direction, duration, magnitude and fetch; riverine discharges, water depth and shoreline configuration all influence the complex circulation of water in Bellingham Bay. Deep flow generally oscillates from inbound to outbound based on tide and nearshore currents flow in both clockwise and counterclockwise directions following shorelines depending on winds and river flows.

The dominant current direction has been reported to be an oscillating north-south longshore flow (USACE 1997) but has also been reported to be a dominant clockwise flow (Colyer 1998). Eddies have been reported to form, particularly in the inner bay, depending on wind speed and direction, freshwater input, and strength of the tidal exchange (Colyer 1998).

Modeling by CHE indicates current reversals with ebb and flood tides in the vicinity of the Marine Unit (Figure 2 of EDR Appendix E). The modeling by CHE indicates that a component of the current in and adjacent to the Marine Unit oscillates in a north-south longshore flow as a result of tides. Winds from the south and southwest entrain water at and near the surface, pushing it to the north/northeast towards the inner bay causing return flows that typically flow counterclockwise. Winds from the west and northwest cause surface currents to flow clockwise along the eastern shoreline (Shea et al 1981 [In] RETEC 2006). As a result of the oscillating current directions observed in Bellingham Bay, sediment transported to the Marine Unit is highly likely to originate from regional background AOI.

Sediment Conditions in Bellingham Bay

Dioxins and furans have been evaluated as part of various sediment investigations in Bellingham Bay over the last 20 years. More recently, Ecology conducted a sediment investigation in 2014 to establish regional background levels of dioxins and furans along with several other chemicals of concern in Bellingham Bay. Surface sediment samples were collected and analyzed for dioxins and furans from 23 locations (BB-08 through BB-30) that were outside the influence of known dioxin and furan sources as part of the investigation (Figure 4). Dioxin and furan concentrations ranged from 2.2 nanogram/kilogram (ng/kg) to 14.4 (average dioxin TEQ at BB-24) ng/kg TEQ. The data were evaluated to determine the representativeness of regional conditions and ultimately a value of 15 ng/kg TEQ was statistically derived (90/90 upper tolerance limit or UTL) from the data to represent regional background in Bellingham Bay (Ecology 2015).

Since that time, other samples have been collected as part of the long-term monitoring for the Whatcom Waterway cleanup (Anchor QEA 2019 and 2020). Five locations (MNR-03 through MNR-05, MNR-07 and MNR-09) in and adjacent to the regional background AOI that were designated monitored natural recovery (MNR) stations (Figure 4) have been sampled twice (2017 and 2019). Dioxin and furan concentrations at these locations were similar for both sampling years and to the regional background data set, ranging from 5.1 ng/kg TEQ to 14.5 ng/kg TEQ as summarized in the following table. The recent MNR data suggest some stability in prevailing conditions in Bellingham Bay in the regional background area.

³The tidal range (the difference in elevation between the highest high tide and lowest low tide) in Bellingham Bay is approximately 12 feet.

Location	Year 1	Year 3
MNR-03	6.1	6.6° (8.1, 5.1)
MNR-04	5.1° (6.9, 3.3)	9.3
MNR-05	10.2	10.6
MNR-07	14.5	12.1
MNR-09	11.6	13.6

WHATCOM WATERWAY DIOXIN TEQ DATA AT MNR LOCATIONS FOR YEARS 1 AND 3

Note:

a. Value is an average of two field replicates

Sediment Conditions in the AOI Adjacent to the Marine Unit

Based on the lines of evidence discussed above, the regional background AOI⁴ adjacent to the Marine Unit represents the most likely source of resuspended sediment that may recontaminate surface sediment following remediation. The adjacent AOI area identified as the Recontamination Evaluation Area on Figure 5, was evaluated to determine the level of recontamination that may occur within the Marine Unit from the AOI. The area selected as the source of recontamination accounts for proximity of the Marine Unit to the AOI, current and storm wave resuspension in the shallower portion of the AOI adjacent to the Marine Unit, and transport vectors (i.e., from the southwest to the northeast) from the AOI to the Marine Unit based on current oscillation within the Bay adjacent to the Marine Unit.

A dioxin and furan surface-area weighted average concentration (SWAC) was calculated for the Recontamination Evaluation Area. The SWAC was prepared using GIS interpolation⁵ of dioxin and furan TEQ concentrations in Bellingham Bay. The data used are shown on Figure 4, and were compiled from Ecology's Environmental Information Management (EIM) database and published reports. The data consist of the most recent surface sediment (0 to 12 cm) data for each of the areas shown in Figure 4. The data set and study area boundaries are consistent with the data used for evaluation of dioxin and furans for the Whatcom Waterway Site. The entire data set underwent GIS interpolation which resulted in a dioxin and furan TEQ concentration being assigned to each square foot of area encompassed by the data set. Then the concentration values for each square foot comprising the Recontamination Evaluation Area shown in Figure 5 were "clipped" from the larger interpolation and used to calculate the SWAC for the Recontamination Evaluation Area. The resulting dioxin SWAC is 13.1 ng/kg TEQ and represents the most likely level to which surface sediment within the Marine Unit will be recontaminated by sediment from the Recontamination Evaluation Area.

Empirical Evidence of Recontamination

There is empirical evidence of recent recontamination based on the monitoring of a dredged and capped area in the Whatcom Waterway Site (Anchor QEA 2018, 2019 and 2020). Site Unit 1C near the mouth of the waterway and adjacent to the regional background AOI (Figure 5) was dredged to remove

⁵ Interpolation was conducted using an inverse-distance weighted geospatial model, with a power of 5, maximum number of neighbors of 4, minimum number of neighbors of 2, four sectors rotated 45 degrees and a 500-foot diameter search area (reach).

⁴ The regional background AOI overlaps with the outermost portion of the Marine Unit. The overlap area was not included in the recontamination evaluation area.

contamination. As with all dredging, a thin layer of contaminated dredge residuals settled on top of the clean dredged surface upon completion of dredging. The dioxin and furan concentrations in the dredged residuals ranged from 2.1 ng/kg to 26.2 ng/kg TEQ so a cap was placed over the dredged area to cover the residuals. Confirmation samples collected from the cap placed over the dredge residuals showed that the new surface was below natural background (5 ng/kg TEQ) at five of the six sampling locations with one location being slightly above regional background (16.3 ng/kg TEQ versus 15 ng/kg TEQ). Monitoring in the first (2017) and third (2019) years following dredging and placement of the residual cap measured concentrations of 13.2 ng/kg TEQ and 13.8 ng/kg TEQ at monitoring location P1CM-02 located near the center of the previously dredged area at the mouth of the waterway (Figure 5). Concentrations measured in Site Unit 1C are very similar to the upper values reported in the regional background data set and suggest that recontamination is occurring to levels similar to the regional background concentration at Site Unit 1C located adjacent to the regional background area.

Regional and Local Sources of Dioxins and Furans

The persistence and relative stability of dioxin and furan concentrations in surface sediment in the Bellingham Bay regional background area is likely due to the presence of uncontrolled or unknown sources within the surrounding area. The eastern and northern portions of the bay are within urban and industrial areas of the City. As with other urban and industrial areas, there are current and historical sources of dioxin and furans.

In Bellingham, current and/or historical sources include burning of wood (residential heating, hog fuel, forest fires), vehicle emissions, incineration of waste, pulp manufacturing, wood-treating operations, cement kilns, and other sources. Except for identified cleanup sites where dioxins and furans are a contaminant of concern, other current point sources are unknown. The existence of ubiquitous sources remains challenging for control of dioxins and furans in Bellingham Bay and throughout the Puget Sound region.

As a result of current and historical releases, dioxins and furans are a ubiquitous contaminant in soil in urban environments. A study of residential soil in Bellingham as part of the Oeser Site cleanup (START 2002) reported concentrations ranging from 2.7 ng/kg to 34.8 ng/kg TEQ in areas considered background. These concentrations fall within the range (7.5 ng/kg to 36 ng/kg) of dioxin and furan TEQs reported in residential soil from Seattle neighborhoods (Ecology 2011).

A historical investigation of the Little Squalicum Creek watershed that had been impacted by the Oeser Site suggests that riparian and wetland soils as well as stream sediment in the urban areas are a potential source of contamination to the bay. Background samples in the Little Squalicum stream corridor had dioxin and furan TEQ concentrations of 12.6 ng/kg and 14.0 ng/kg (data from EIM; accessed 4/29/21).

Numerous sources of dioxins and furans exist that are not under the control of the City including air emissions, surface water, non-municipal stormwater runoff and erosion of soil. Dioxin and furan emissions and transport from non-City sources likely represents a long-term source to the bay and contribution to dioxin and furan concentrations in regional background.

Updated Dioxin and Furan Cleanup Level for the Marine Unit

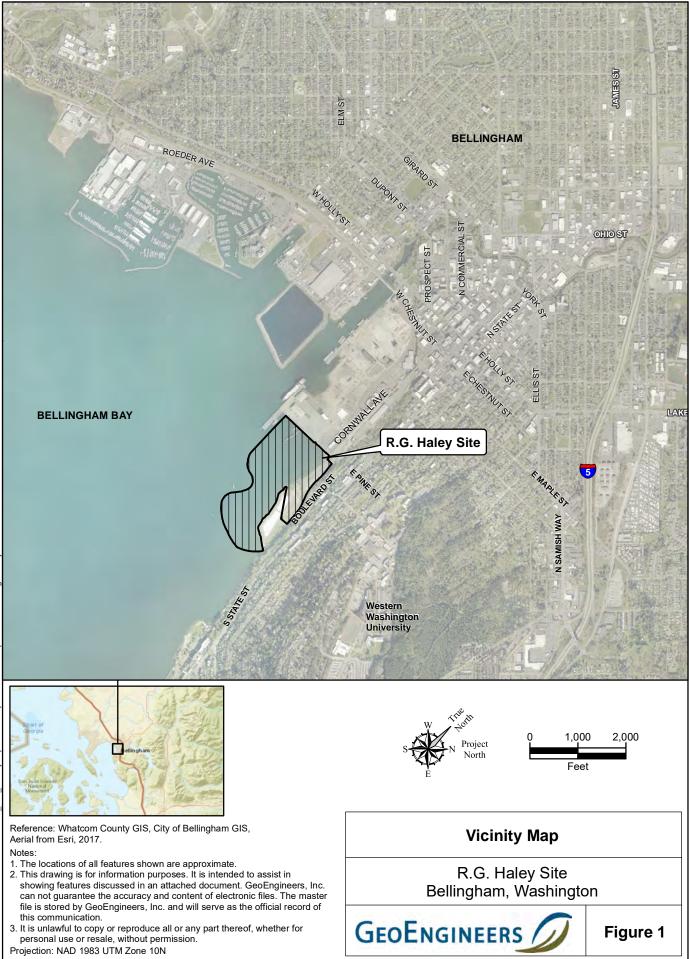
The evaluation of recontamination identifies that waves and currents within Bellingham Bay are sufficient to cause resuspension and transport of sediment to the Marine Unit from the Recontamination Evaluation

Area. The dioxin and furan concentrations in the regional background AOI adjacent to the Marine Unit range between approximately 6 ng/kg TEQ and 15 ng/kg TEQ based on recent data. Data from sediment samples collected in 2017 and 2019 suggest there is some temporal stability in the sediment quality conditions in the AOI when compared to the 2014 regional background study conducted by Ecology. Evaluation of the recontamination lines of evidence suggests that the regional background value established by Ecology continues to be reasonable upper bound concentration representing surface sediment conditions in the bay.

The resuspension and transport of sediment from the Recontamination Evaluation Area is sufficient to recontaminate sediment at the Marine Unit following remediation. The more detailed evaluation of the Recontamination Evaluation Area, which would contribute to recontamination of the Haley site, concludes that a value of 13 ng/kg TEQ represents a likely recontamination level from this portion of the AOI. Based on the results of the recontamination evaluation, the dioxin and furan PQL-based SCO of 5 ng/kg TEQ cannot be maintained following construction. Therefore, in accordance with the SMS and SCUM, the SCL for the Marine Unit is adjusted up to 13 ng/kg TEQ, slightly lower than the regional background-based SCL of 15 ng/kg TEQ previously identified in the CAP. There is uncertainty in any estimate of future concentrations in surface sediment at the Haley Site. The timing and duration of remediation of other sites in the bay will affect what can be maintained over time. Long-term monitoring will document compliance of the long-term goal for Bellingham Bay. The SCO remains the long-term goal to be attained through pollution prevention and toxics reduction initiatives over a longer timeframe than is applied to the cleanup of the Haley Site.

References

- Anchor QEA. 2020. Whatcom Waterway Cleanup in Phase 1 Areas. Year 3 Compliance Monitoring Report. Prepared for the Port of Bellingham. June.
- Anchor QEA. 2019. Whatcom Waterway Cleanup in Phase 1 Areas. Year 1 Compliance Monitoring Report. Prepared for the Port of Bellingham. April 2019.
- Anchor QEA. 2018. Final As-Built Report. Whatcom Waterway Cleanup in Phase 1 Areas. Prepared for the Port of Bellingham. September 2018.
- Anchor Environmental, LLC and Hart Crowser. 2000. Remedial Investigation and Feasibility Study for the Whatcom Waterway Site. Prepared for Georgia-Pacific Corporation. July 25, 2000.
- Colyer. 1998. Current Patterns and Suspended Sediment Transport through the Inner Harbor of Bellingham Bay. Master Thesis by Troy Colyer, Western Washington University, 1998. [In] RETEC 2006.
- Downing, J. 1983. The Coast of Puget Sound: Its Processes and Development. Washington State Sea Grant Publication; University of Washington Press, Seattle, WA.
- Ecology 2019. Sediment Cleanup User's Manual (SCUM). Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards, Chapter 173-204 WAC. Publication No. 12-09-057. Second Revision December 2019.


- Ecology 2015. Bellingham Bay Regional Background Sediment Characterization, Bellingham WA. Final Data Evaluation and Summary Report. Publication No. 15-09-044. February 27, 2015.
- Ecology 2011. Urban Seattle Area Soil Dioxin and PAH Concentrations: Initial Summary Report Publication No. 11-09-049. September 2011.
- RETEC. 2006. Supplemental Remedial Investigation & Feasibility Study Whatcom Waterway Site. Prepared for the Port of Bellingham. October 10, 2006.
- Shea, G.B., C.C. Ebbesmeyer, Q.J. Stober, K. Pazera, J.M. Cox, S. Hemingway, J.M. Helseth, and L.R. Hinchey.
 1981. History and effect of pulp mill effluent discharges, Bellingham, Washington. Final Report to
 U.S. Department of Justice and U.S. Environmental Protection Agency. Northwest Environmental
 Consultants, Seattle, Washington.
- Superfund Technical Assessment and Response Team (START). 2002. The Oeser Company Superfund Site, Remedial Investigation Report, Bellingham, WA. Prepared for U.S. Environmental Protection Agency, Region 10 under Contract 68-S0-01-01. June 2002.

Attachments:

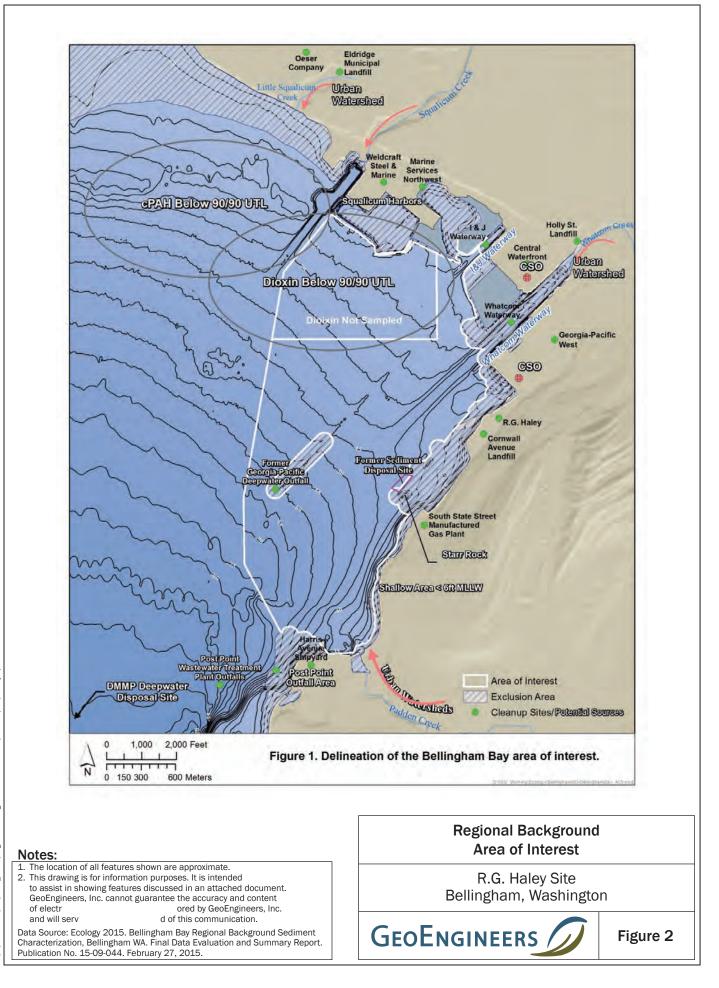
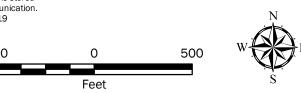

- Figure 1. Vicinity Map
- Figure 2. Regional Background Area of Interest
- Figure 3. Sediment Accretion 2007 to 2015
- Figure 4. Recent Dioxin/Furan Data Used in Recontamination Evaluation

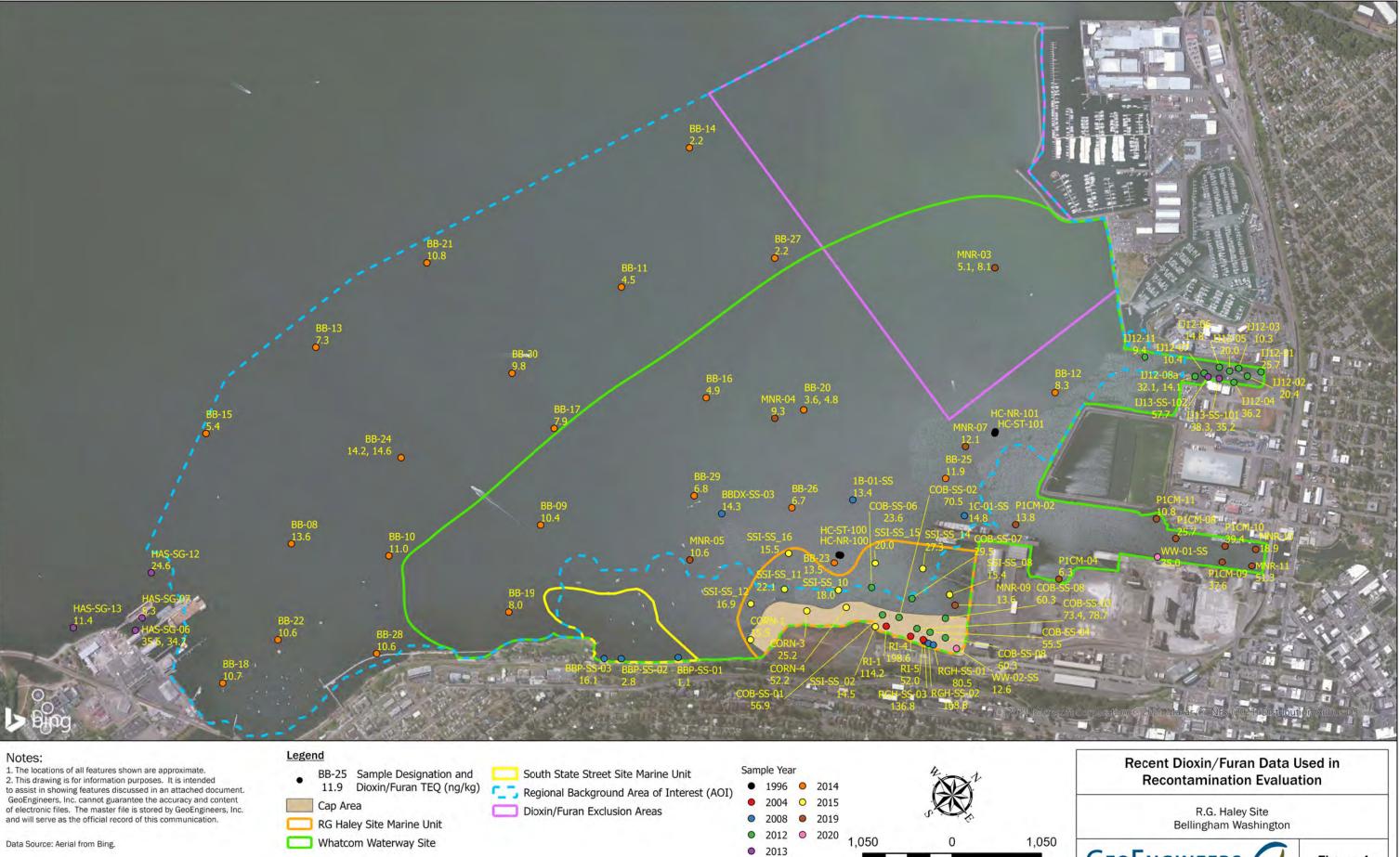
Figure 5. Recontamination Evaluation Area

24 September 2021 Map Revised: Path: P:\0\0356114\GIS\MXDs\035611408_F01_VicinityMap.mxd

P:\0\0356114\GIS\MXDs\2018_EDRFigures\Fig_1-09_SedimentAccretion2007_2015.mxd Date Exported: 08/20/20 by glohrmeyer

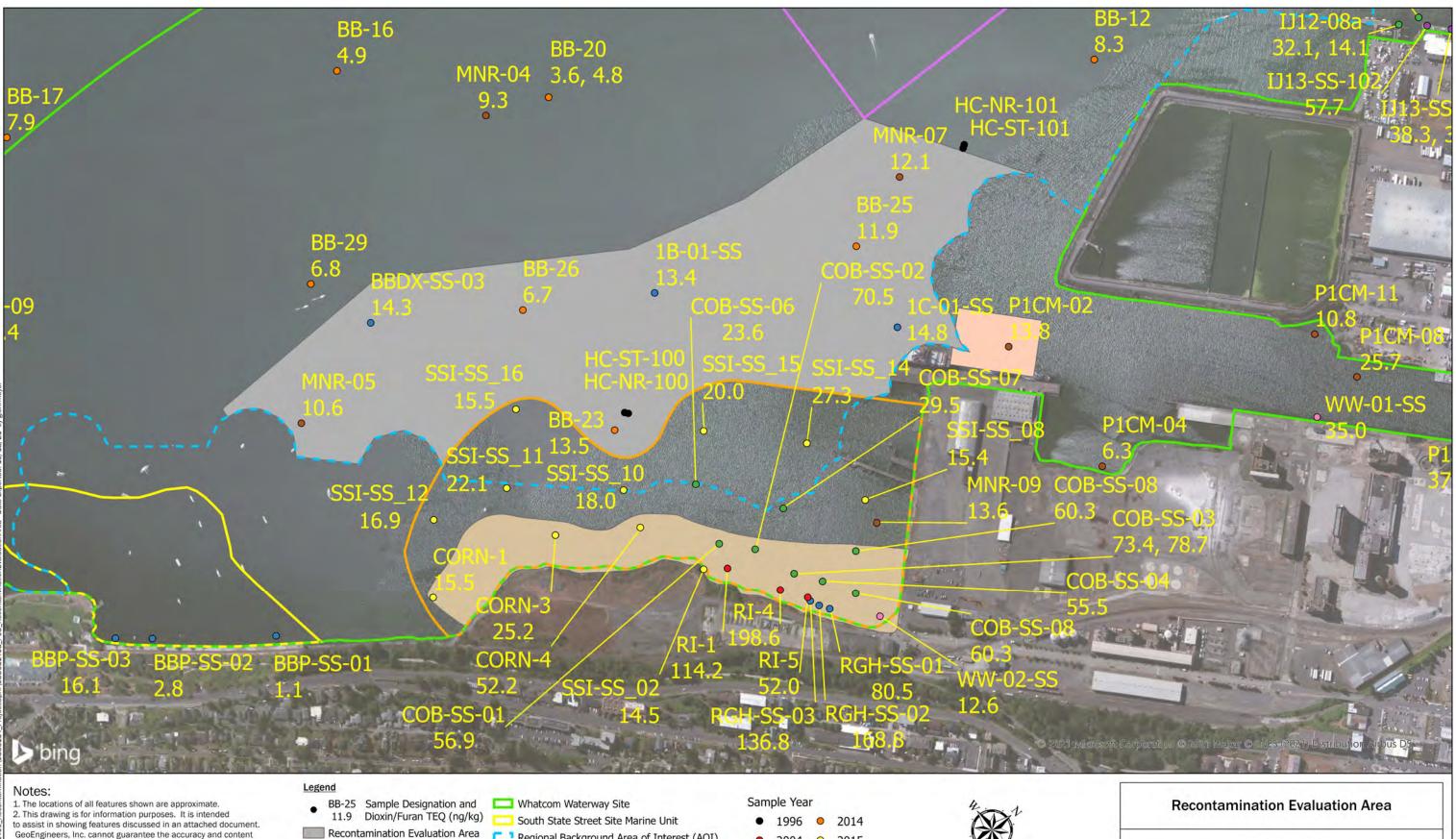

Notes:

1. The locations of all features shown are approximate. 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. 3. Modified from Mott MacDonald figure presented during April 10, 2019 coordination meeting with the City and the Port. Accretion determined by Mott MacDonald by subtracting 2007 depths to seafloor from 2015 depths. Haley Cleanup Area Boundary added for reference.


Projection: NAD 1983 StatePlane Oregon North FIPS 3601 Feet

<u>Legend</u>

----- Haley Cleanup Area Boundary



Feet

Figure 4

GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Bing.

Legend						
BB-25 Sample Designation and	Whatcom Waterway Site	Sample Year				
11.9 Dioxin/Furan TEQ (ng/kg)	South State Street Site Marine Unit	•	1996	0	2014	
Cap Area Cap Area RG Haley Site Marine Unit	Regional Background Area of Interest (AOI)	•	2004	0	2015	
	 Dioxin/Furan Exclusion Areas Site Unit 1C Dredge and Cap Area 	•	2008	•	2019	
		•	2012	•	2020	500

• 2013

Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet

R.G. Haley Site Bellingham Washington

500

Feet

Figure 5