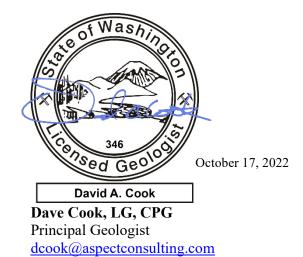


MEMORANDUM


Project No. 220264

October 17, 2022

To:Edwin Lindo, Estelita's Library
CC Ken Lederman, McCullough Hill Leary, LP

From:

Hannah Cohen, GIT Project Geologist hcohen@aspectconsulting.com

Ali Cochrane, LG Senior Geologist acochrane@aspectconsulting.com

Re:On-Property Groundwater InvestigationEstelita's Library Proposed Redevelopment, 2901 17th Ave S, Seattle, WA

Aspect Consulting, LLC (Aspect) prepared this report on behalf of Estelita's Library in support of the potential acquisition and redevelopment of the property at 2901 17th Ave S, Seattle, WA (Subject Property). The Subject Property is located in the Beacon Hill neighborhood -- a commercial and residential area – in Seattle (Figure 1).

The Subject Property has been in use as an auto refueling and service station or repair facility for at least 80 years. Those businesses are now closed and the property is vacant. Petroleum-contaminated soil and groundwater has been identified by earlier studies at the Subject Property. Those studies indicate that petroleum contamination has likely migrated off-property to the north, west, and east (Appendix A).

The purpose of the current on-property soil and groundwater investigation (summarized in this memo) is to evaluate the environmental condition of the property for Estelita's Library prior to their purchase and to better understand cleanup cost and regulatory and logistical implications prior to redevelopment. This 2022 investigation evaluates the groundwater flow direction and the soil and groundwater conditions at the southern property boundary (which has not been investigated previously), and confirms the magnitude and extent of petroleum contamination to soil and groundwater at the west and northeast property boundaries. The scope of the investigation was developed based on the data gaps identified by Aspect and summarized in the *Environmental Review and Overall Project Approach* letter prepared by Aspect in May 2022.¹

On-Property Soil and Groundwater Investigation

The scope of work for the field investigation consisted of drilling and soil sampling from three soil borings to further evaluate the source and extent of contaminated soil. The scope also included installation of 3 groundwater monitoring wells at the Subject Property in order to evaluate groundwater flow direction and quality beneath the Subject Property. The implemented scope of the investigation components is described in this section. Exploration and sample locations are shown on Figure 2.

Field Program

Holt Services of Edgewood, Washington, drilled 3 borings (AMW-1, AMW-2, and AMW-3) to 45 feet below ground surface (bgs) using hollow stem auger drilling methods between June 6, 7, and 8, 2022. Groundwater monitoring wells were installed in each boring as further described in the Sections below.

The soil types were classified by an Aspect field geologist or engineer according to the Unified Soil Classification System (USCS) and field screened using a photoionization detector (PID) to measure volatile organic vapors. Field screening of the soil samples also included observation of soil for visible staining, odors, and water sheen testing. Boring logs documenting the soil types, fill thicknesses, and results of the field screening are included as Appendix B.

Two or three soil samples were obtained from each boring (8 total samples) and selected for chemical analysis based on field screening results, proximity to known contaminated soil and groundwater areas, and depth relative to perched groundwater, and key lithologic changes. Samples were submitted to Friedman and Bruya, Inc. of Seattle, Washington, for one or more of the following contaminants of potential concern (COPCs):

- Gasoline-, diesel-, and oil-range total petroleum hydrocarbons (TPH using Northwest Methods NWTPH-Gx and NWTPH-Dx
- Benzene, toluene, ethylbenzene, and xylenes (collectively BTEX) by U.S. Environmental Protection Agency (EPA) Method 8020
- Volatile organic compounds (VOCs), including those associated with petroleum products and chlorinated solvents by EPA Method 8260C

In all three borings (AMW-1 to AMW-3), groundwater monitoring wells were constructed with 2-inch-diameter Schedule 40 PVC casings and 10 to 15 feet of 0.010-inch (10-slot) screens set across

¹ Aspect Consulting, Environmental Review and Overall Project Approach Letter, May 4, 2022,

the shallowest occurrence of groundwater. Well development consisted of surging and purging each well using a five-stage pump with a flow controller until approximately 10 casing volumes were removed and water was visibly clear. The groundwater monitoring well locations were surveyed by True North Land Surveying on June 21, 2022.

Groundwater samples were collected from newly installed wells AMW-1 to AMW-3 on June 13, 2022, using low-flow sampling methodology² following stabilization of field parameters (temperature, specific conductivity, dissolved oxygen, pH, oxidation reduction potential, and turbidity). Sample intake tubing was placed at the midpoint of the submerged portion of each well screen. On the sampling date, depth to groundwater measurements were collected from the newly installed wells. Each water level measurement was recorded to the nearest hundredth of a foot, relative to the top of the north side of the well casing.

Groundwater samples were submitted to Friedman and Bruya, Inc., of Seattle, Washington, for the following COPCs:

- Gasoline-, diesel-, and oil-range TPH using Northwest Methods NWTPH-Gx and NWTPH-Dx
- BTEX by EPA Method 8020
- VOCs using EPA Method 8260C

All soil cuttings, temporary well purge water and decontamination water generated by the investigation were placed into a labeled U.S. Department of Transportation-approved drums and temporarily stored at the Subject Properties as investigation-derived waste (IDW).

Investigation Results

Geology and Hydrogeology

Soils observed in the three borings at the Subject Property consisted of fill overlying till-like glacial deposits to the maximum depths explored (45 feet bgs). Fill soil generally consisted of brown to gray silty sand with occasional gravel from the ground surface to approximately 10 to 12 feet bgs. Glacial deposits consisted of dense to vary dense gray sand with varying amounts of silt and gravel to 35 feet bgs, and very hard dark gray silt with low to medium plasticity to the maximum depth drilled of 45 feet bgs.

Saturated or wet soils were observed in layers with higher sand content as shallow as 15 feet bgs, alternating with dry to moist layers with higher silt content. Soils were generally saturated at depths below 25 feet bgs. Petroleum-like odors in soil were identified during the field screening in borings AMW-01 from 10 to 20 feet bgs and from 10.5 to 15.5 ft bgs and from 20 to 34.5 feet bgs in AMW-02. The boring logs summarizing the field screening results and observed soil types are provided in Appendix B.

Groundwater was observed in monitoring well AMW-01 at 20.28 feet bgs (274.5 feet above mean sea level [amsl]), at 25.77 feet bgs (268.9 feet amsl) in AMW-02, and at 14.62 feet bgs (280.7 feet amsl) in AMW-03. The groundwater flow direction is to the northeast, with a gradient of

² https://www.epa.gov/remedytech/low-flow-minimal-drawdown-ground-water-sampling-procedures

approximately 0.12 based on the monitoring event completed on June 13, 2022. The groundwater flow direction is represented in Figure 3.

Analytical Results – Soil

The soil laboratory results are provided in Appendix C and summarized in Table 1 and shown on Figure 4. The data is compared to the Washington State Model Toxics Control Act (MTCA) Method A cleanup levels for unrestricted land use or, for COPCs without established Method A cleanup levels, MTCA Method B (collectively referred to as "cleanup levels").

COPCs were detected above the cleanup levels in AMW-01 and AMW-02, as follows:

- **Benzene** was detected in soil samples at concentrations above the MTCA Method A cleanup level of 0.03 milligrams per kilogram (mg/kg) in boring AMW-01 (0.066 mg/kg at 40 feet bgs) and in boring AMW-02 (1.2 mg/kg at 41.5 feet bgs) (Table 1).
- Ethylbenzene was detected at concentrations above the MTCA Method A cleanup level of 6 mg/kg in boring AMW-02 (8.9 mg/kg at 21 feet bgs).
- **Naphthalene** was detected in soil in AMW-01 at 20 feet bgs at a concentration of 13 mg/kg, which is above the MTCA Method A cleanup level of 5 mg/kg (Table 1).
- **Gasoline-range TPH** was detected in soil samples at concentrations of 320 mg/kg and 570 mg/kg in borings AMW-01 at 20 feet bgs and AMW-02 at 21 feet bgs, respectively, which are above the MTCA Method A cleanup level of 100 mg/kg (Table 1).

Analytical Results – Groundwater

The groundwater laboratory results are provided in Appendix C and summarized in Table 2 and shown on Figure 5. The data is compared to the MTCA Method A cleanup levels for unrestricted land use or, for COPCs without established Method A cleanup levels, MTCA Method B (collectively referred to as "cleanup levels").

COPCs were detected above the cleanup levels in AMW-01 and AMW-02, as follows:

- **Benzene** was detected in groundwater samples at concentrations above the MTCA Method A cleanup level of 5 micrograms per liter (ug/L) in AMW-01 and AMW-02 (2600 ug/L and 330 ug/L, respectively) (Table 2).
- Ethylbenzene was detected in AMW-02 at a concentration of 2000 ug/L, which also exceeds the MTCA Method A cleanup level of 700 ug/L (Table 2).
- **Total xylenes** were detected at concentrations above the MTCA Method A cleanup level of 1000 ug/L in AMW-01 and AMW-02 (1960 ug/L and 5900 ug/L, respectively) (Table 2).
- Naphthalene was detected in groundwater samples in AMW-02 at a concentration of 460 ug/L which exceeds the MTCA Method A cleanup level of 160 ug/L (Table 2).

- **Gasoline-range TPH** was detected in AMW-01 at a concentration of 27,000 ug/L and in AMW-02 at a concentration of 34,000 ug/L, both of which exceed the MTCA Method A cleanup level of 800 ug/L (Table 2).
- **Diesel-range TPH** was detected in AMW-01 at a concentration of 2,200 ug/L and in AMW-02 at a concentration of 2,600 ug/L, both of which exceed the MTCA Method A cleanup level of 500 ug/L (Table 2). The laboratory indicates that the sample chromatograph pattern does not resemble the fuel standard for that analysis.
- **1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene** were detected in AMW-01 and AMW-02 at concentrations ranging from 200 ug/L to 1,100 ug/L, greater than the MTCA Method B cleanup level of 80 ug/L (Table 2).

Findings and Evaluation

This investigation included the drilling of three soil borings and installing groundwater monitoring wells in each boring to supplement earlier soil sampling and testing data and to identify the groundwater flow direction, confirm the contaminant concentrations in groundwater, and identify the extent of petroleum-contaminated groundwater. The results indicate the following:

- 1. Petroleum-contaminated soil exceeding MTCA cleanup levels was identified near the refueling and petroleum USTs area extending to depths of 40 feet bgs near the west property boundary and 41.5 feet bgs near the northeast property corner, approximately 5 feet deeper than the maximum exploration depths of previous studies by others (see Appendix A for prior studies). The vertical bounds of the petroleum-contaminated soil at these areas have not been identified. Horizontally, petroleum-contaminated soil appears to extend beyond the Subject Property boundaries to the west, north, and east; however, petroleum-contaminated soil was not identified near the southern property boundary at AMW-3, indicating that the southern horizontal extent is located on property.
- 2. Groundwater is situated in on-property wells between 15 and 25 feet bgs (equivalent to elevations 269 to 280 feet NAVD88), shallower than the depths reported in previous studies by others. At the time of the sampling in June 2022, groundwater flow direction was toward the north-northeast.
- 3. Petroleum-contaminated groundwater appears to extend beyond the Subject Property boundaries to unknown extents to the west, north, and east, consistent with data collected in previous studies by others. Aspect's current study did not identify petroleum-contaminated groundwater in well AMW-3, near the southern property boundary, indicating that the southern (and upgradient) extent of petroleum-contaminated groundwater is situated on property, between AMW-3 and B-6.

Based on these findings, additional groundwater well installation and soil and groundwater sampling are needed in off-property locations (in City-owned rights-of-way or adjacent properties) to the north, east, and west, to fully characterize the environmental conditions of the Site and design a cleanup action that is in accordance with the MTCA regulation.

Limitations

Work for this project was performed for Estelita's Library (Client), and this memorandum was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This memorandum does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

Please refer to Appendix D titled "Report Limitations and Guidelines for Use" for additional information governing the use of this report.

Attachments:	Table 1 – Soil Data Summary
	Table 2 – Groundwater Data Summary
	Figure 1 – Site Vicinity Map
	Figure 2 – Site Plan
	Figure 3 – Groundwater Elevation Map
	Figure 4 – Analytical Soil Data
	Figure 5 – Analytical Groundwater Data
	Appendix A – Historical Investigation Data
	Appendix B – Boring Logs
	Appendix C – Laboratory Report
	Appendix D – Report Limitations and Guidelines for Use

V:\220264 Estelita's Library 2901 17th Ave S Env Rvw\Deliverables\2022-07 Groundwater Memo\On-Property Groundwater Investigation Memo_Oct 2022.docx

TABLES

Table 1. Soil Data SummaryProject No. 220264, Estelita's Library Proposed Redevelopment, Seattle, Washington

			Location Date Sample	AMW-01 06/06/2022 AMW-01-10	AMW-01 06/06/2022 AMW-01-20	AMW-01 06/06/2022 AMW-01-40	AMW-02 06/07/2022 AMW-02-21	AMW-02 06/07/2022 AMW-02-41.5	AMW-03 06/08/2022 AMW-03-05	AMW-03 06/08/2022 AMW-03-20	AMW-03 06/08/2022 AMW-03-35
			Depth	10 ft	20 ft	40 ft	21 ft	41.5 ft	5 ft	20 ft	35 ft
Analyte	Unit	MTCA Method A	MTCA Method B								
BTEX											
Benzene	mg/kg	0.03	18	< 0.03 U	< 0.03 U	0.066	< 0.03 U	1.2	< 0.03 U	< 0.03 U	< 0.03 U
Toluene	mg/kg	7	6400	< 0.05 U	0.56	< 0.05 U	0.085	0.18	< 0.05 U	< 0.05 U	< 0.05 U
Ethylbenzene	mg/kg	6	8000	< 0.05 U	0.65	< 0.05 U	8.9	0.36	< 0.05 U	< 0.05 U	< 0.05 U
Total Xylenes	mg/kg	9	16000	< 0.1 U	4.9	0.37	7.23	1.16	< 0.1 U	< 0.1 U	< 0.1 U
Other SVOCs	-		•		I	1	•			1	1
lexachlorobutadiene	mg/kg		13	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U				
PAHs	-		•			•	•			1	1
laphthalene	mg/kg	5	1600	< 0.05 U	13	0.15	3.6	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
TPHs	· ·		1 .			1				1	T
Gasoline Range Organics	mg/kg	30		< 5 U	320	< 5 U	570	13	< 5 U	< 5 U	< 5 U
Diesel Range Organics	mg/kg	2000		< 50 U	160 X	< 50 U	69 X	< 50 U	< 50 U	< 50 U	< 50 U
Notor Oil Range Organics	mg/kg	2000		< 250 U	< 250 U	< 250 U	< 250 U				
VOCs						-	-				
1,1,1,2-Tetrachloroethane	mg/kg		38	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,1,1-Trichloroethane	mg/kg	2	160000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,1,2,2-Tetrachloroethane	mg/kg		5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,1,2-Trichloroethane	mg/kg		18	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,1-Dichloroethane	mg/kg		180	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,1-Dichloroethene	mg/kg		4000	< 0.05 UJ	< 0.05 U	< 0.05 U	< 0.05 U				
1,1-Dichloropropene	mg/kg			< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,2,3-Trichlorobenzene	mg/kg			< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U				
1,2,3-Trichloropropane	mg/kg		0.0063	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,2,4-Trichlorobenzene	mg/kg		34	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U				
1,2,4-Trimethylbenzene	mg/kg		800	< 0.05 U	17	0.27	11	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,2-Dibromo-3-chloropropar	ne mg/kg		1.3	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U				
1,2-Dibromoethane (EDB)	mg/kg	0.005	0.5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,2-Dichlorobenzene	mg/kg		7200	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
I,2-Dichloroethane (EDC)	mg/kg		11	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
I,2-Dichloropropane	mg/kg		27	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
,3,5-Trimethylbenzene	mg/kg		800	< 0.05 U	4.8	< 0.05 U	1.4	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
I,3-Dichlorobenzene	mg/kg			< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,3-Dichloropropane	mg/kg			< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,4-Dichlorobenzene	mg/kg		190	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
2,2-Dichloropropane	mg/kg			< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
2-Butanone	mg/kg		48000	< 1 U	<1U	<1U	< 1 U	<1U	<1U	<1U	< 1 U
2-Chlorotoluene	mg/kg		1600	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
2-Hexanone	mg/kg		400	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U				
1-Chlorotoluene	mg/kg			< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1-Methyl-2-pentanone	mg/kg		6400	< 1 U	<1U	<1U	< 1 U	<1U	<1U	<1U	< 1 U
Acetone	mg/kg		72000	< 5 UJ	< 5 U	< 5 U	< 5 U				
Bromobenzene	mg/kg		640	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				

Table 1

On-Property Groundwater Investigation Memo Page 1 of 2

Table 1. Soil Data Summary

Project No. 220264, Estelita's Library Proposed Redevelopment, Seattle, Washington

			Location Date Sample	AMW-01 06/06/2022 AMW-01-10	AMW-01 06/06/2022 AMW-01-20	AMW-01 06/06/2022 AMW-01-40	AMW-02 06/07/2022 AMW-02-21	AMW-02 06/07/2022 AMW-02-41.5	AMW-03 06/08/2022 AMW-03-05	AMW-03 06/08/2022 AMW-03-20	AMW-03 06/08/2022 AMW-03-35
			Depth	10 ft	20 ft	40 ft	21 ft	41.5 ft	5 ft	20 ft	35 ft
Analyte	Unit	MTCA Method A	MTCA Method B								
Bromodichloromethane	mg/kg		16	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Bromoform	mg/kg		130	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Bromomethane	mg/kg		110	< 0.5 UJ	< 0.5 U	< 0.5 U	< 0.5 U				
Carbon Tetrachloride	mg/kg		14	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Chlorobenzene	mg/kg		1600	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Chloroethane	mg/kg			< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U				
Chloroform	mg/kg		32	< 0.05 U	< 0.05 U	< 0.05 U	0.2	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Chloromethane	mg/kg			< 0.5 UJ	< 0.5 U	< 0.5 U	< 0.5 U				
cis-1,2-Dichloroethene (cDCE	mg/kg		160	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
cis-1,3-Dichloropropene	mg/kg			< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Dibromochloromethane	mg/kg		12	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Dibromomethane	mg/kg		800	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Dichlorodifluoromethane	mg/kg		16000	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U				
Isopropylbenzene	mg/kg		8000	< 0.05 U	0.26	< 0.05 U	1.6	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
m,p-Xylenes	mg/kg		16000	< 0.1 U	3.2	0.37	6.9	0.84	< 0.1 U	< 0.1 U	< 0.1 U
Methyl tert-butyl ether (MTBE) mg/kg	0.1	560	< 0.05 UJ	< 0.05 U	< 0.05 U	< 0.05 U				
Methylene Chloride	mg/kg	0.02	94	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U				
n-Hexane	mg/kg		4800	< 0.25 U	< 0.25 U	< 0.25 U	14 E	< 0.25 U	< 0.25 U	< 0.25 U	< 0.25 U
n-Propylbenzene	mg/kg		8000	< 0.05 U	1.6	0.094	4.9	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
o-Xylene	mg/kg		16000	< 0.05 U	1.7	< 0.05 U	0.33	0.32	< 0.05 U	< 0.05 U	< 0.05 U
p-Isopropyltoluene	mg/kg			< 0.05 U	0.36	< 0.05 U	1.4	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
sec-Butylbenzene	mg/kg		8000	< 0.05 U	0.55	< 0.05 U	1.1	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Styrene	mg/kg		16000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
tert-Butylbenzene	mg/kg		8000	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Tetrachloroethene (PCE)	mg/kg		480	< 0.025 U	< 0.025 U	< 0.025 U	< 0.025 U				
trans-1,2-Dichloroethene	mg/kg		1600	< 0.05 UJ	< 0.05 U	< 0.05 U	< 0.05 U				
trans-1,3-Dichloropropene	mg/kg			< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Trichloroethene (TCE)	mg/kg	0.03	12	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U				
Trichlorofluoromethane	mg/kg		24000	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U				
Vinyl Chloride	mg/kg		0.67	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				

Notes

U - Analyte not detected at or above Reporting Limit (RL) shown

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

Bolded results indicate analyte detected above the Reporting Limit

Blue Shaded - Detected result exceeded MTCA Method A screening level

Table 2. Groundwater Data Summary

Project No. 220264, Estelia's Library Proposed Redevelopment, Seattle, Washington

	C		Location Date Sample elow ground surface)	AMW-01 06/13/2022 AMW-01-061322 20.28	AMW-02 06/13/2022 AMW-02-061322 25.77	AMW-03 06/13/2022 AMW-03-061322 14.62
			oove mean sea level)	295	295	296
Analyte BTEX	Unit	MTCA Method A	MTCA Method B			
Benzene	ug/L	5	0.8	2600	330	< 0.35 U
Toluene	ug/L	1000	640	960	970	< 1 U
Ethylbenzene	ug/L	700	800	520	2000	< 1 U
Total Xylenes	ug/L	1000	1600	1960	5900	< 2 U
Other SVOCs						
Hexachlorobutadiene	ug/L		0.56	< 50 U	< 50 U	< 0.5 U
PAHs					-	r
Naphthalene	ug/L	160	160	140	460	< 1 U
TPHs Gasoline Range Organics	ug/l	800		27000	24000	< 100 U
Diesel Range Organics	ug/L ug/L	500		27000 2200 X	34000 2600 X	69 X
Motor Oil Range Organics	ug/L	500		< 250 U	< 250 U	< 250 U
VOCs	ug/L	000		200 0	200 0	200 0
1,1,1,2-Tetrachloroethane	ug/L		1.7	< 100 U	< 100 U	< 1 U
1,1,1-Trichloroethane	ug/L	200	16000	< 100 U	< 100 U	< 1 U
1,1,2,2-Tetrachloroethane	ug/L		0.22	< 20 U	< 20 U	< 0.2 U
1,1,2-Trichloroethane	ug/L		0.77	< 50 U	< 50 U	< 0.5 U
1,1-Dichloroethane	ug/L		7.7	< 100 U	< 100 U	< 1 U
1,1-Dichloroethene	ug/L		400	< 100 U	< 100 U	< 1 U
1,1-Dichloropropene	ug/L			< 100 U	< 100 U	< 1 U
1,2,3-Trichlorobenzene	ug/L		0.00000	< 100 U	< 100 U	< 1 U
1,2,3-Trichloropropane	ug/L		0.00038	< 100 U	< 100 U	< 1 U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ug/L		1.5 80	< 100 U 1100	< 100 U 1100	< 1 U < 1 U
1,2,4-1 rimeinyidenzene 1,2-Dibromo-3-chloropropane	ug/L ug/L		0.055	1100 < 1000 U	1100 < 1000 U	< 10 U
1,2-Dibromoethane (EDB)	ug/L ug/L	0.01	0.033	< 1000 U	< 1000 U	< 10 0
1,2-Dichlorobenzene	ug/L	0.01	720	< 100 U	< 100 U	<10
1,2-Dichloroethane (EDC)	ug/L	5	0.48	< 20 U	< 20 U	< 0.2 U
1,2-Dichloropropane	ug/L	Ĵ	1.2	< 100 U	< 100 U	< 1 U
1,3,5-Trimethylbenzene	ug/L		80	330	200	< 1 U
1,3-Dichlorobenzene	ug/L			< 100 U	< 100 U	< 1 U
1,3-Dichloropropane	ug/L			< 100 U	< 100 U	< 1 U
1,4-Dichlorobenzene	ug/L		8.1	< 100 U	< 100 U	< 1 U
2,2-Dichloropropane	ug/L			< 100 U	< 100 U	< 1 U
2-Butanone	ug/L		4800	< 2000 U	< 2000 U	< 20 U
2-Chlorotoluene	ug/L		160	< 100 U	< 100 U	< 1 U
2-Hexanone	ug/L		40	< 1000 U	< 1000 U	< 10 U
4-Chlorotoluene	ug/L		640	< 100 U	< 100 U	< 1 U
4-Methyl-2-pentanone	ug/L		640 7200	< 1000 U < 5000 U	< 1000 U < 5000 U	< 10 U < 50 U
Acetone Bromobenzene	ug/L ug/L		64	< 100 U	< 100 U	< 50 0 < 1 U
Bromodichloromethane	ug/L		0.71	< 50 U	< 50 U	< 0.5 U
Bromoform	ug/L		5.5	< 500 U	< 500 U	< 5 U
Bromomethane	ug/L		11	< 500 U	< 500 U	< 5 U
Carbon Tetrachloride	ug/L		0.63	< 50 U	< 50 U	< 0.5 U
Chlorobenzene	ug/L		160	< 100 U	< 100 U	< 1 U
Chloroethane	ug/L			< 100 U	< 100 U	< 1 U
Chloroform	ug/L		1.4	< 100 U	< 100 U	< 1 U
Chloromethane	ug/L			< 1000 U	< 1000 U	< 10 U
cis-1,2-Dichloroethene (cDCE)	ug/L		16	< 100 U	< 100 U	< 1 U
cis-1,3-Dichloropropene	ug/L		0.50	< 40 U	< 40 U	< 0.4 U
Dibromochloromethane	ug/L		0.52	< 50 U	< 50 U	< 0.5 U
Dibromomethane Dichlorodifluoromethane	ug/L		80 1600	< 100 U < 100 U	< 100 U < 100 U	<1U <1U
Isopropylbenzene	ug/L ug/L		800	< 100 U	< 100 U < 100 U	<10 <1U
m,p-Xylenes	ug/L ug/L		1600	1800	4800	< 2 U
Methyl tert-butyl ether (MTBE)	ug/L	20	24	< 100 U	< 100 U	<10
Methylene Chloride	ug/L	5	5.8	< 500 U	< 500 U	< 5 U
n-Hexane	ug/L		480	< 500 U	< 500 U	< 5 U
n-Propylbenzene	ug/L		800	260	220	< 1 U
o-Xylene	ug/L		1600	160	1100	< 1 U
p-Isopropyltoluene	ug/L			< 100 U	< 100 U	< 1 U
sec-Butylbenzene	ug/L		800	< 100 U	< 100 U	< 1 U
Styrene	ug/L		1600	< 100 U	< 100 U	< 1 U
tert-Butylbenzene	ug/L		800	< 100 U	< 100 U	< 1 U
Tetrachloroethene (PCE)	ug/L	5	21	< 100 U	< 100 U	< 1 U
trans-1,2-Dichloroethene	ug/L		160	< 100 U	< 100 U	< 1 U
trans-1,3-Dichloropropene	ug/L		0.51	< 40 U	< 40 U	< 0.4 U
Trichloroethene (TCE)	ug/L	5	0.54	< 50 U	< 50 U	< 0.5 U
Trichlorofluoromethane	ug/L	0.0	2400	< 100 U	< 100 U	< 1 U
Vinyl Chloride	ug/L	0.2	0.029	< 2 U	< 2 U	< 0.02 U

Notes:

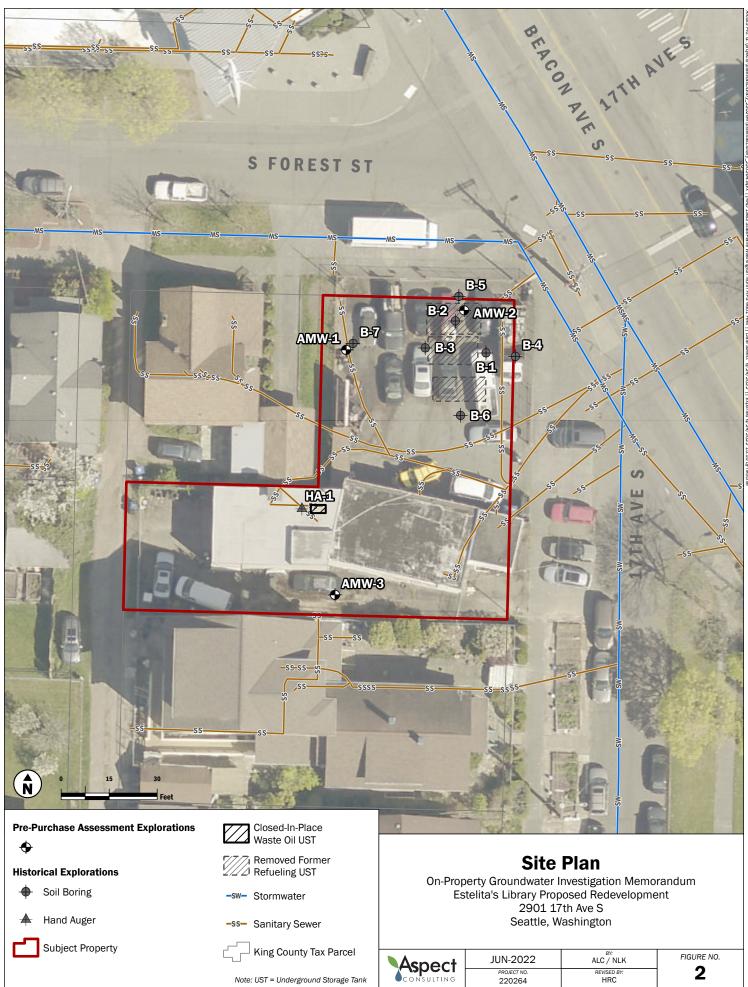
U - Analyte not detected at or above Reporting Limit (RL) shown

X - Chromatographic pattern does not match fuel standard used for quantitation

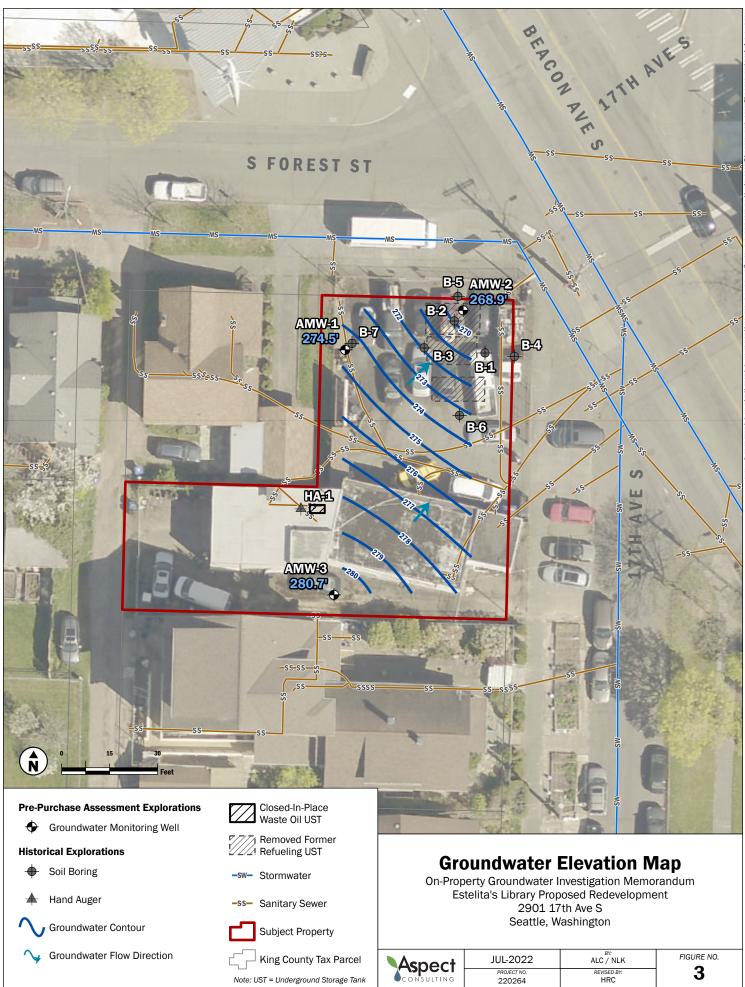
Bolded results indicate analyte detected above the Reporting Limit

Blue Shaded - Detected result exceeded MTCA Method A screening level

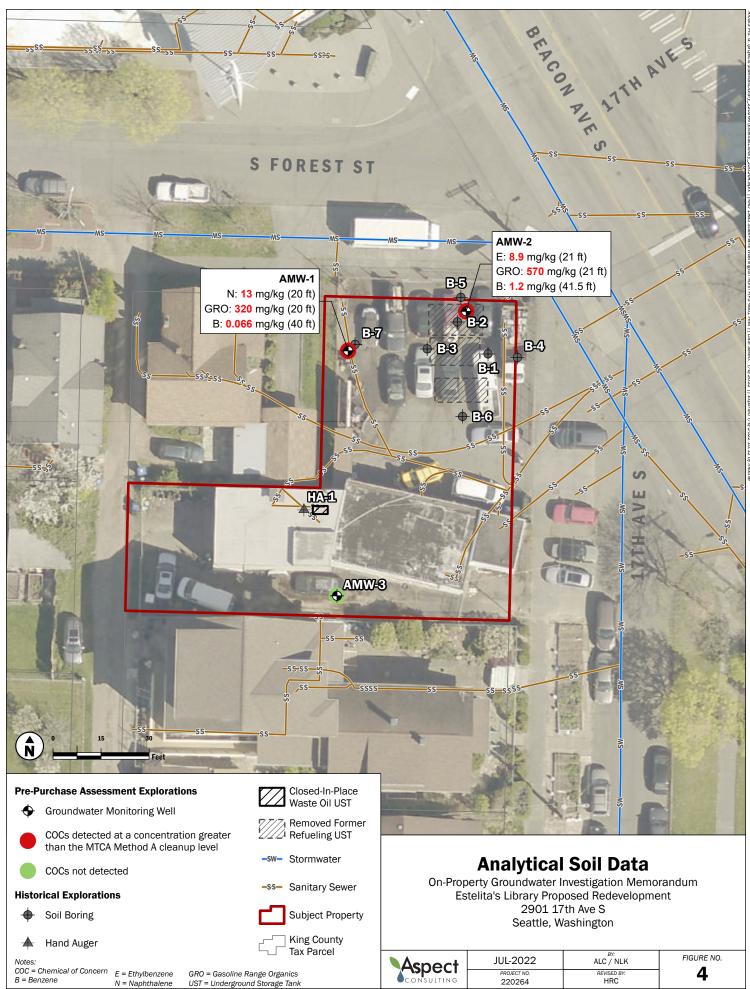
Red Text - Detected result exceeded MTCA Method B screening level

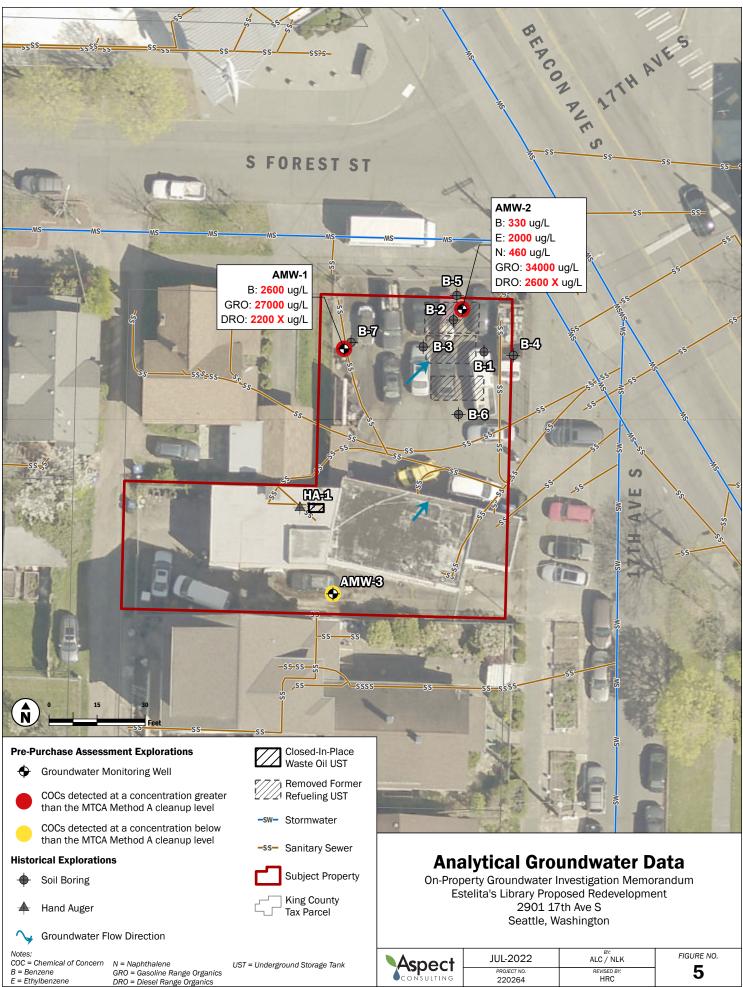

Aspect Consulting 10/13/2022 V:\220264 Estelita's Library 2901 17th Ave S Env Rvw\Deliverables\2022-07 Groundwater Memo\Tables\Table 2 - Groundwater Data Summary

On-Property Groundwater Investigation Memo Page 1 of 1


Table 2

FIGURES




Data source credits: None || Basemap Service Layer Credits: EagleView Technologies, Inc.

Data source credits: None || Basemap Service Layer Credits: EagleView Technologies, Inc.

Data source credits: None || Basemap Service Layer Credits: EagleView Technologies, Inc.

DRO = Diesel Range Organics Data source credits: None || Basemap Service Layer Credits: EagleView Techn

APPENDIX A

Historical Data

Adapt Consulting 615 – 8th Avenue South Seattle, Washington 98104

> Tel (206) 654-7045 Fax (206) 654-7048

October 2, 2020

Adapt Project No. WA20-18238-PH2

Frank Chin 2901 17th Avenue South Seattle, Washington 98144

Attention: Mr. Frank Chin

Subject: Additional Phase II Screen Former Gas Station 2901 17th Avenue South Seattle, Washington 98144

Dear Mr. Chin,

Adapt Consulting (Adapt) is pleased to provide you with the results of our Additional Phase II Screen for the above-referenced site. This report is provided for Frank Chin and his agents. If this report is to be reproduced and/or transmitted to a third party, it must be reproduced and/or transmitted in its entirety. Any exceptions will be made only with the written permission of Adapt. This work was authorized by Frank Chin in the form of a signed proposal (Adapt Proposal Number P-5368), dated August 5, 2020.

Adapt appreciates the opportunity to be of service to you on this project. Should you have any questions concerning this report, or if we can assist you in any way, please feel free to contact us at (206) 654-7045.

Respectfully Submitted,

Adapt Consulting

1. Bhen

John T. Bhend, L.G. Senior Project Manager

JTB/jtb

TABLE OF CONTENTS

1.0	INTRODUCTION1
1.1 1.2 1.3	SITE DESCRIPTION
2.0	ACTIVITIES
2.1 2.2 2.3 3.1 3.2 3.3 3.4	Hollow Stem Auger Borings and Soil Sampling. 2 GROUNDWATER SAMPLING. 2 ANALYTICAL TESTING 3 SUBSURFACE CONDITIONS - SOIL 3 SUBSURFACE CONDITIONS - GROUNDWATER 3 QUANTITATIVE ANALYSES SOIL 3 QUANTITATIVE ANALYSES GROUNDWATER 4
4.0	CONCLUSIONS
4.1 4.2 4.3 4.4	SOURCE AREAS
5.0	RECOMMENDATIONS
6.0	LIMITATIONS

Attachments:

- Appendix A Figures and Tables Appendix B Subsurface Exploration Procedures and Boring Logs Appendix B Laboratory Certification

1.0 INTRODUCTION

1.1 Site Description

The subject site (Site) is located at 2901 17th Avenue South in Seattle, King County, Washington (see Figure 1). According to the tax assessor's information, the Site is located on one tax parcel (parcel number 308600-3356) that encompasses approximately 0.19 acres (see Figure 2). The Site is located within an area of mixed commercial and residential development.

The Site is currently developed with one structure which was reportedly built in 1900. The Site building is a one story structure with an area of approximately 2,254 square feet which is occupied by Dragon Auto Repair and Transmission. The remainder of the Site is covered by asphalt and concrete paved parking lots and landscaping. Access to the Site is from 17th Avenue South to the east and from South Forest Street to the north.

1.2 Project Background

Phase I Environmental Site Assessment

Adapt previously completed a Phase I Environmental Site Assessment (ESA) report, dated March 14, 2013, for the Site (Adapt project number WA13-18238-PH1). The Phase I ESA documented that the Site had supported two historic gasoline stations (see Figure 2). Review of records held by the State of Washington Department of Ecology (Ecology) indicated that two 6,000-gallon and one 8,000-gallon gasoline underground storage tanks (USTs) were reportedly removed from the Site in 1990.

Limited Phase II ESA

Adapt previously completed a Limited Phase II ESA report, dated April 15, 2013, for the Site (Adapt project number WA13-18238-PH2). The Limited Phase II ESA was completed to assess for potential petroleum hydrocarbon impacts to soil and groundwater attendant to the historic operation of two gasoline stations at the Site. The findings of the Limited Phase II ESA documented petroleum hydrocarbon impacts to soil and groundwater from gasoline range TPH and BTEX in the vicinity of the former gasoline USTs and dispenser islands.

1.3 Scope of Work and Authorization

The purpose of the Additional Phase II Screen is to further assess the lateral extent of petroleum hydrocarbon impacts to soil and groundwater to the east, north, west, and south of the inferred location of the former gasoline USTs and dispenser islands associated with the two historic gasoline stations.

It should be understood that the scope of work for this Additional Phase II Screen may not include the work scope required to fully delineate the exact lateral and vertical extent in groundwater of possible contamination at the Site. In the event significant contamination is observed, additional subsurface assessment work may be needed to fully delineate the exact lateral and vertical extent of contamination.

2.0 ACTIVITIES

2.1 Hollow Stem Auger Borings and Soil Sampling

On August 19 & 20, 2020, four borings (B-4 through B-7) were completed through the use of hollow stem auger drilling methods to depths explored varying from approximately 35.5 feet to 36.5 feet bgs. Borings B-4, B-5, and B-7 were located as close as physically possible to the property line chain-link fence to the areas east, north, and west of the inferred location of the former USTs and fuel dispensers. The completed location of boring B-6 had to be moved further north than originally proposed to minimize the potential for damaging underground sanitary sewer lines that reportedly service the onsite buildings and the residence on the west-adjoining property. The boring locations are depicted on Figure 3.

The explorations were completed using a track-mounted limited access drill rig that was owned and operated by Holocene Drilling under subcontract to our firm. The borings were supervised, sampled, and logged by an Adapt licensed geologist. Soil samples were collected at 5-foot intervals from the site explorations through the use of a 2.5-inch outside diameter split-spoon sampler. All sampling equipment was thoroughly cleaned prior to and after each sampling episode. Subsurface exploration logs and soil sampling procedures are described in Appendix B.

Recovered discrete soil samples were collected from each exploration for description, screening, observation for field indications (visual and olfactory) of impact and quantitative laboratory analyses. Discrete soil samples for volatile compounds were collected in compliance with EPA Method 5035A. Samples were collected using a graduated soil core sampler syringe to collect an approximately 5-gram soil sample. The soil samples was then placed in an empty 40mL VOA vial with a polyethylene lid with septum. Discrete soil samples for non-volatile compounds were collected using a gloved hand and transferred to a clean 4-ounce glass jar with a Teflon® lined lid. The jars were filled minimizing headspace. A field split was then allowed to sit in a warm environment for approximately 5 to 10 minutes. The resulting headspace was screened by inserting a Photoionization detector (PID) probe into the sample container. The PID screen provided a qualitative assessment of total volatile organic constituent concentration in the sample headspace and provided a basis for selection of samples to be submitted for quantitative laboratory analyses. The samples were then stored at approximately 4 degrees C and transported as soon as possible to Friedman and Bruya's laboratory in Seattle, Washington for analytical testing under Adapt's chain-of-custody procedures.

2.2 Groundwater Sampling

A temporary monitoring well consisting of a 10-foot section of 2-inch diameter 0.010 slotted PVC well screen was placed in borings B-4 through B-7 at depths which intersected the observed perched groundwater level. Groundwater samples were collected from the temporary well screens installed in borings B-4 through B-7 using disposable polyethylene bailers.

Samples were collected in laboratory prepared glass containers with Teflon® lined lids. Then, as with the soil samples, the groundwater samples were stored at 4 degrees C, and transported as soon as possible to Friedman & Bruya's laboratory in Seattle, Washington for analytical testing under Adapt's chain-of-custody procedures.

2.3 Analytical Testing

The samples collected from the completed borings were analyzed for the following analyses:

- Gasoline range total petroleum hydrocarbons (TPH) by Ecology Method NW-TPH-Gx with benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B (soil and groundwater samples).
- Lead by EPA Method 200.8 (soil samples).

Analytical test results are summarized in Table 1 and the laboratory analytical data report is included in Appendix C.

3.0 RESULTS

3.1 Subsurface Conditions - Soil

The ground surface was observed to be covered by asphalt in the area where borings B-4 through B-7 were completed. Borings B-4, B-5, and B-7 generally disclosed dry to moist, gray silt/clay with trace to little sand and gravel from directly beneath the surface cover to a depth of approximately 8 to 15 feet bgs. Boring B-6 generally disclosed moist, light brown silty sand and gravelly sand from directly beneath the surface cover to a depth of approximately 10 feet bgs. The underlying soils at borings B-4 through B-7 were observed to generally consist of moist, brown to gray silty sand with variable amounts of small gravel to depths varying from approximately 28 to 35 feet bgs. Compact, moist, gray silt to silt/clay was generally observed at depths ranging from 35 to 36.5 feet bgs in boring B-4; 33 to 35.5 feet bgs in boring B-5; 28 to 34 feet bgs in boring B-6; and 35 to 35.5 feet bgs in boring B-7. Wet soils were generally observed starting at approximately 25 feet bgs in borings B-4 through B-7. Cross section diagrams depicting the observed subsurface conditions are presented on Figures 4a and 4b. Complete boring logs can be found in Appendix B.

All recovered soil samples were field screened using a MiniRae Photoionization Detector (PID). Samples collected from borings B-4 through B-7 exhibited signs of contaminant impacts such as petroleum hydrocarbon odors and elevated PID readings.

3.2 Subsurface Conditions - Groundwater

Saturated or wet soils were observed at a depth of approximately 25 feet bgs in borings B-4 through B-7. The saturated conditions are thought to be associated with a perched groundwater zone overlying the observed compact silt and silt/clay soils. Petroleum hydrocarbon odors were observed to the groundwater samples collected from borings B-4 throughB-7.

3.3 Quantitative Analyses - Soil

Selected soil samples collected from borings B-4 through B-7 were analyzed for gasoline range TPH, BTEX, and lead.

Petroleum Hydrocarbons

Gasoline range TPH was detected in soil samples B-4:20' [64 parts-per-million (ppm)], B-5:15' (980 ppm), and B-7:15' (1,300 ppm), all of which are above the State of Washington Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A Soil Cleanup Level (CUL) of 30 ppm¹.

Gasoline range TPH was detected in soil samples B-4:36' (19 ppm), B-5:25' (14 ppm), and B-6:20' (15 ppm), but the detected concentrations were below the MTCA Method A Soil CUL of 30 ppm. Gasoline range TPH was not detected at a concentration above the laboratory reporting limits in the remaining soil samples submitted for analytical testing from borings B-4 through B-7.

<u>BTEX</u>

Benzene was detected in soil samples B-4:25' (0.04 ppm), B-4:36' (0.31 ppm), B-5:35' (0.062 ppm), and B-6:20' (0.34 ppm), all of which are above the MTCA Method A Soil CUL of 0.03 ppm. Benzene was not detected at concentrations above the laboratory reporting limits in the remaining submitted soil samples collected from borings SP-4 through SP-7.

Toluene (36 ppm), ethylbenzene (20 ppm), and xylenes (120 ppm) were detected in soil sample B-7:15' at concentrations above their respective MTCA Method A Soil CULs. Xylenes (71 ppm) was detected in soil sample B-5:15' at a concentration above the MTCA Method A Soil CUL of 9 ppm. Toluene, ethylbenzene, and xylenes were generally detected in soil samples B-4:25', B-4:36', B-6:20', B-6:36', and B07:30', but the detected concentrations were below their respective MTCA Method A Soil CULs. Toluene, ethylbenzene, and xylenes were not detected at concentrations above the laboratory reporting limits in the remaining submitted soil samples collected from borings SP-4 through SP-7.

Lead

Lead was detected in samples B-5:17' (1.17 ppm) and B-7:5' (1.12 ppm), but the detected concentrations were below MTCA Method A Soil CUL of 250 ppm. Lead was not detected at concentrations above the laboratory reporting limits in soil samples B-4:15' and B-6:20'.

Soil analytical test results are summarized in Table 1. The analytical laboratory reports are included in Appendix B.

3.4 Quantitative Analyses - Groundwater

Groundwater samples collected from borings B-4 through B-7 were analyzed for gasoline range TPH and BTEX.

Petroleum Hydrocarbons

Gasoline range TPH was detected in groundwater samples B-4:GW [99,000 parts-per-billion (ppb)], B-5:GW (130,000 ppb), B-6:GW (140,000 ppb), and B-7:GW (69,000 ppb), all of which are above the MTCA Method A Groundwater CUL of 800 ppb².

¹ Value is 100 ppm for gasoline mixtures without benzene and a total of ethylbenzene, toluene, xylenes are less than 1% of the gasoline mixture; 30 ppm for all other gasoline mixtures

² Value is 1,000 ppb when benzene is not detected; 800 ppb when benzene is detected

<u>BTEX</u>

Benzene was detected in groundwater samples B-4:GW (3,500 ppb), B-5:GW (1,200 ppb), B-6:GW (4,500 ppb), and B-7:GW (1,300 ppb), all of which are above the MTCA Method A Groundwater CUL of 5 ppb.

Toluene was detected in groundwater samples B-4:GW (4,200 ppb), B-5:GW (2,000 ppb), B-6:GW (5,000 ppb), and B-7:GW (7,100 ppb), all of which are above the MTCA Method A Groundwater CUL of 1,000 ppb.

Ethylbenzene was detected in groundwater samples B-4:GW (4,200 ppb), B-5:GW (4,000 ppb), B-6:GW (3,500 ppb), and B-7:GW (1,800 ppb), all of which are above the MTCA Method A Groundwater CUL of 700 ppb.

Xylenes were detected in groundwater samples B-4:GW (18,000 ppb), B-5:GW (16,000 ppb), B-6:GW (18,000 ppb), and B-7:GW (9,200 ppb), all of which are above the MTCA Method A Groundwater CUL of 1,000 ppb.

Groundwater analytical test results are summarized in Table 2 and analytical laboratory report is included in Appendix C.

4.0 CONCLUSIONS

4.1 Source Areas

A Phase I ESA previously completed by Adapt in 2013 documented that the Site had supported two historic gasoline stations; a Gilmore-branded facility from approximately 1939 to the mid-1950s and a Mobilgas-branded facility from approximately the mid-1950s to the 1980s. While Adapt was not able to find any records indicating the location of USTs associated with the Gilmore-branded gasoline station, the approximate location of the station building and canopy structure have been inferred based on review of historic aerial photographs. The location of the USTs and fuel dispensers for the Mobilgas-branded gasoline station were inferred based on review of archived construction plans sourced from the City of Seattle.

Review of the inferred locations of the historic gasoline station fuel storage and dispensing equipment (i.e., canopy structures, USTs, and fuel dispensers) and review of the available soil and groundwater sampling data, it appears that the source area of the gasoline associated contamination is located near the north-central portion of the Site as depicted on Figure 2.

In addition to the gasoline associated contamination, review of archived construction plans and available soil sampling data indicates a second smaller area of waste oil associated contamination is centered around a closed-in-place UST located beneath the western section of the onsite building as depicted on Figure 2.

4.2 Extent of Contamination in Soil

Gasoline Station Source Area

The available soil sampling data does not fully assess the lateral extent of gasoline associated contamination to soil at the Site as it appears that contaminant impacts likely extend beyond the property boundaries to the north, east, and west of the historic gasoline station source area. The soil sampling data at the location of boring B-6 suggests that the lateral extent of deeper

contaminant impacts to soil (i.e., contamination at depths 20 feet bgs and greater) has not been fully assessed to the area south of the gasoline station source area.

The available soil sampling data indicates the vertical extent of gasoline associated contamination to soil generally appears to be limited to a maximum depth of approximately 35 to 36 feet bgs, which corresponds to the approximately depth at which a relatively impermeable silt and silt/clay soil zone was documented during the drilling activities.

Waste Oil UST Source Area

Limited soil sampling has been completed in the area immediately surrounding the closed-inplace waste oil UST as access to this area for drilling operations is significantly limited by the existing building. However, based on Adapt's professional experience working on other sites with waste oil USTs, it has been our experience that contaminant impacts are usually fairly limited, as compared to gasoline station UST facilities. Adapt estimates that the contaminant impacts to soil are likely limited to an area measuring approximately 15 feet wide by 15 feet long by 15 feet deep at the location of the closed-in-place waste oil UST.

4.3 Extent of Contamination in Groundwater

Gasoline Station Source Area

The available soil sampling data does not fully assess the lateral extent of gasoline associated contamination to groundwater at the Site as it appears that contaminant impacts likely extend beyond the property boundaries to the north, east, and west of the historic gasoline station source area. The groundwater sampling data at the location of boring B-6 suggests that the lateral extent of contaminant impacts to groundwater has not been fully assessed to the area south of the gasoline station source area.

A review of the observed subsurface soil conditions and available field screening results made during the drilling activities suggests that the vertical extent of the observed gasoline associated contamination to the perched groundwater zone is likely limited to a maximum depth of approximately 35 to 36 feet bgs, which corresponds to the approximately depth at which a relatively impermeable silt and silt/clay soil zone was documented during the drilling activities.

Also, while these sampling results appear to indicate relatively high contaminant concentrations in the groundwater samples collected from borings B-1 and B-4 through B-7, it should be noted that the groundwater samples collected from the temporary well screens placed within open borings should only be considered to be a preliminary screening of contaminant levels as groundwater samples collected from open borings generally have higher reported contaminant concentrations due to increased turbidity levels of the sample³. It should also be noted that Ecology considers groundwater sampling results from open borings to be preliminary and will generally only use groundwater data for samples collected from monitoring wells to assess compliance with groundwater cleanup levels.

³ Higher turbidity results from additional suspended sediment present in samples collected from open borings tends to increase the detected contaminant levels as the laboratory instruments detect the contaminants that are adsorbed to the soil particles in addition to the contaminants dissolved in the groundwater.

Waste Oil UST Source Area

No groundwater sampling has been completed in the area immediately surrounding the closedin-place waste oil UST as access to this area for drilling operations is significantly limited by the existing building. However, based on Adapt's professional experience working on other sites with waste oil USTs, it has been our experience that contaminant impacts are usually fairly limited, as compared to gasoline station UST facilities. Adapt estimates that the contaminant impacts to soil are likely limited to a maximum depth of approximately 15 feet bgs in this area.

4.4 Potential Exposure Pathway and Receptor Assessment

An exposure pathway assessment is necessary for chemicals identified at the Site to pose a risk to potential receptors. A given exposure pathway is considered complete if each of the following criteria is met:

- A source of contamination is present;
- A mechanism for contaminant release and migration from the source exists;
- An exposure point where contact can occur exists; and
- A route by which chemical intake can occur exists.

Gasoline associated contaminant impacts to soil and groundwater have been documented in the northern portion of the Site and waste oil associated contaminant impacts to soil have been documented beneath the western section of the onsite building.

Potential human exposure pathways and receptors for the Site include the following:

Dermal Contact and Ingestion (Direct Contact) of Contaminated Soil

As stated in Section 9.1 of *Ecology's Guidance for Remediation of Petroleum Contaminated Sites*, Publication No. 10-09-057, revised June 2016, Ecology states the following: *for soil cleanup levels based on direct contact, the point of compliance is defined as throughout the site from the ground surface to 15 feet below the ground surface*. Currently the Site is completely paved by the asphalt surfaced parking lot and the concrete slab for the existing onsite building, both of which are currently preventing direct contact with any underlying contaminated soil that is present within 15 feet of the ground surface. If the Site is redeveloped in the future, source removal and engineering controls will likely be needed to eliminate the dermal contact pathway.

Exposure to Groundwater

There appear to be no public drinking water wells located within a 1-mile radius of the Site. Based on the observed depth to groundwater being at least 25 feet bgs and the lack of any drinking water wells in the area immediately surrounding the Site, there appears to be no significant exposure to groundwater.

Exposure to Surface Water

The nearest body of surface water is the western shore of Lake Washington is located approximately 1.3 miles east of the Site. Also, a shipping channel connected to Elliott Bay is located approximately1.5 miles west of the Site. Based on the separation distances to the nearest bodies of surface water, there appears to be no significant exposure to surface water.

5.0 **RECOMMENDATIONS**

The findings of the subsurface environmental assessment completed at the Site to date have documented gasoline associated contaminant impacts to soil and groundwater in the northern portion of the Site and waste oil associated contaminant impacts to soil beneath the western section of the onsite building. While the lateral extent of contaminant impacts has not been fully assessed, there appear to be no significant exposure risks to either human health or the environment at this time based on the existing development conditions (e.g., asphalt paved parking lot, concrete slab for the existing building, depth to contaminated groundwater).

If the Site is redeveloped in the future, contaminated soils will likely be encountered and need to be segregated and transported offsite for disposal at a properly licensed and permitted facility. Based on review of the current zoning status of the Site and surrounding properties, it is unlikely that potential future redevelopment of the Site would include excavation work that would extend to depths that would encounter the contaminated perched groundwater zone that has been documented beneath the northern portion of the Site, negating the requirement for excavation dewatering and disposal of contaminated groundwater.

Based on Adapt's professional experience, it is unlikely that Ecology would require the property owner or otherwise legally appointed potentially liable party (PLP) to actively clean up the documented contaminant impacts to soil and groundwater. It may be prudent to obtain the advice of a qualified environmental attorney regarding question of law pertaining to determination of PLPs for the documented contamination and whether or not it would be feasible to assign cleanup responsibility to the prior oil companies associated with the documented former onsite gasoline stations.

It is also Adapt's opinion that it would be prudent to obtain the advice of a qualified environmental attorney regarding questions of law pertaining to Washington State reporting requirements for the soil and groundwater revealed by the present Limited Phase II assessment. Establishing a responsible party for the contamination above MTCA Method A cleanup levels is a question of law that is beyond Adapt's expertise and best addressed by a qualified environmental attorney.

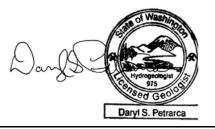
6.0 LIMITATIONS

Given that our assessment was limited and peripheral to the potential source areas, it is possible that a release may have occurred that was not discovered during our assessment. If future subsurface work encounters stained, odorous, or otherwise contaminated soil or groundwater, such soil or groundwater should be managed as contaminated material, which may include additional analytical testing and off-site treatment or disposal.

Information contained in this report is based upon site characterization, field observations, and the laboratory analyses completed for this study. Conclusions presented are professional opinions based upon our interpretation of the analytical laboratory test results, as well as our experience and observations during the field activities. The location and depth of the explorations, as well as the analytical scope were completed within the site and proposal constraints. Adapt's observations and the analytical data are limited to the vicinity of each test probe and do not necessarily reflect conditions across the site. No other warranty, express or implied is made. In the event that additional information regarding either the site or surrounding properties becomes known, or changes to existing conditions occurs, the conclusions in this

report should be reviewed, and if necessary, revised to reflect the updated information. Project specific limitations are presented in the appropriate sections of this report.

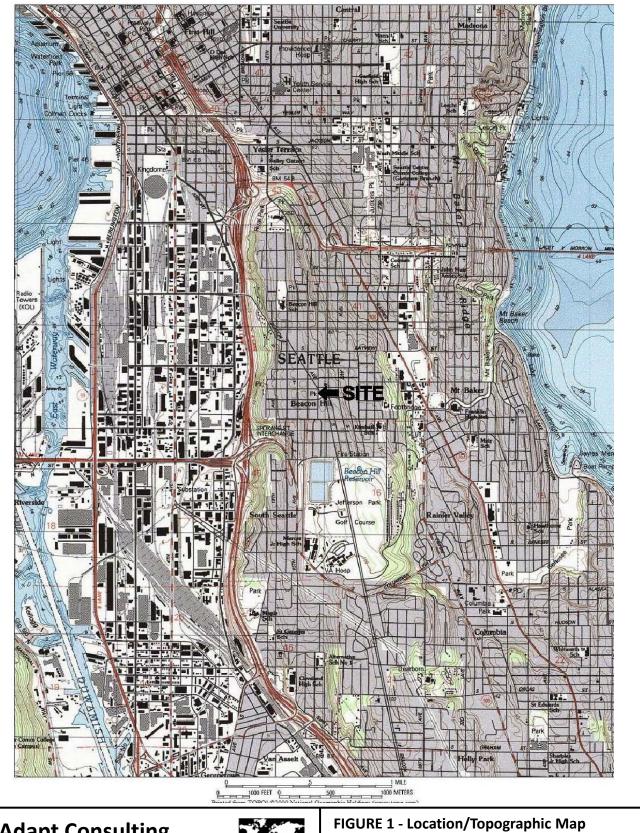
This report has been prepared for the exclusive use of Frank Chin and his agents for specific application to the project site. Use or reliance upon this report by a third is at their own risk. Adapt does not make any representation or warranty, express or implied, to such other parties as to the accuracy or completeness of this report or the suitability of its use by such other parties for any purpose whatever, known or unknown, to Adapt.


Adapt appreciates the opportunity to be of service to you on this project. Should you have any questions concerning this report, or if we can assist you in any way, please contact us at (206) 654-7045.

Respectfully Submitted,

Adapt Consulting

John T. Bhend, L. G. Senior Project Manager

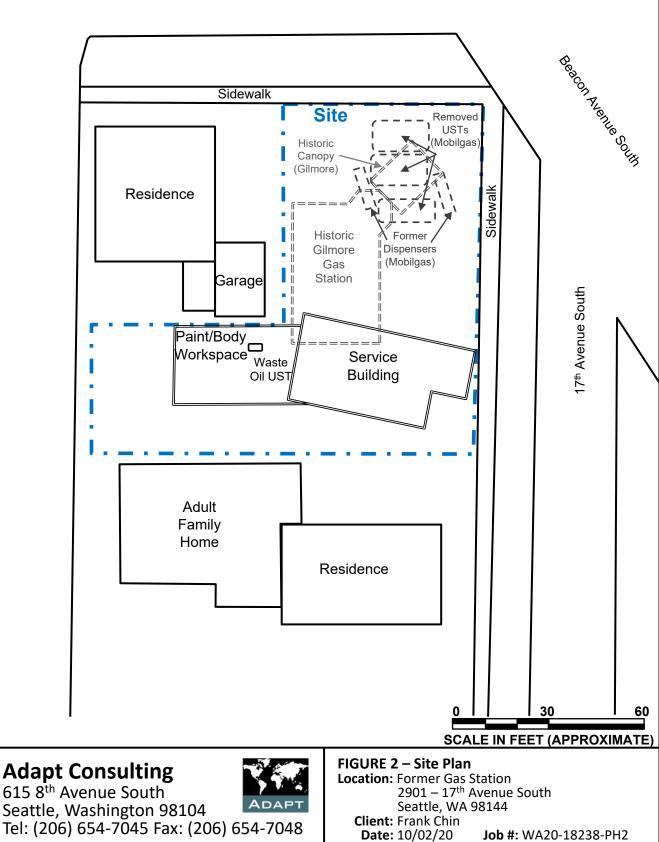


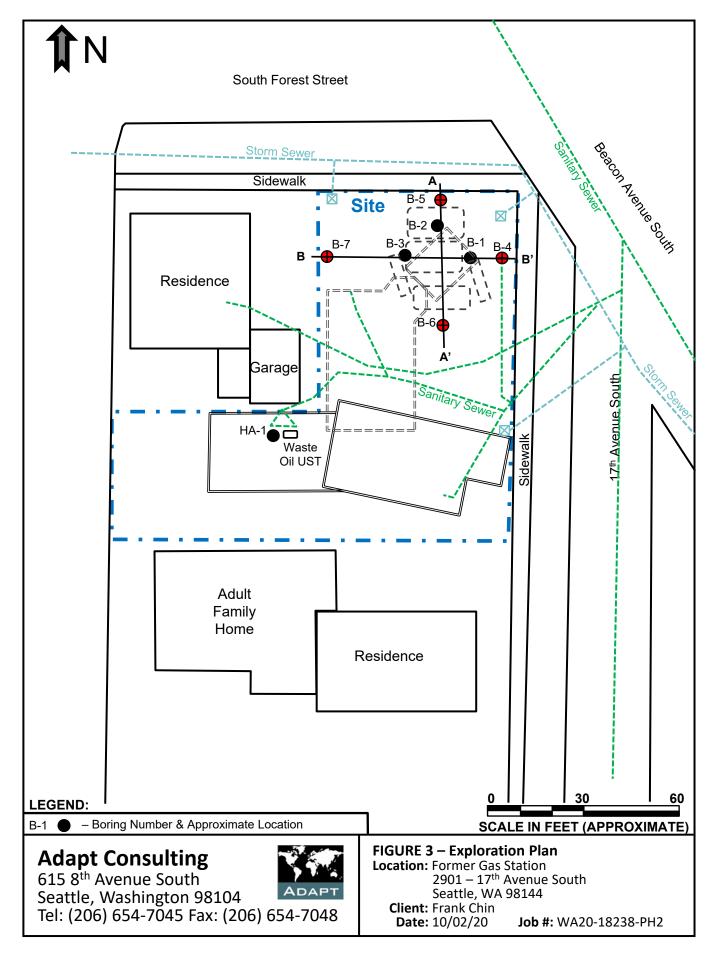
Daryl S. Petrarca, L.H.G. Senior Reviewer

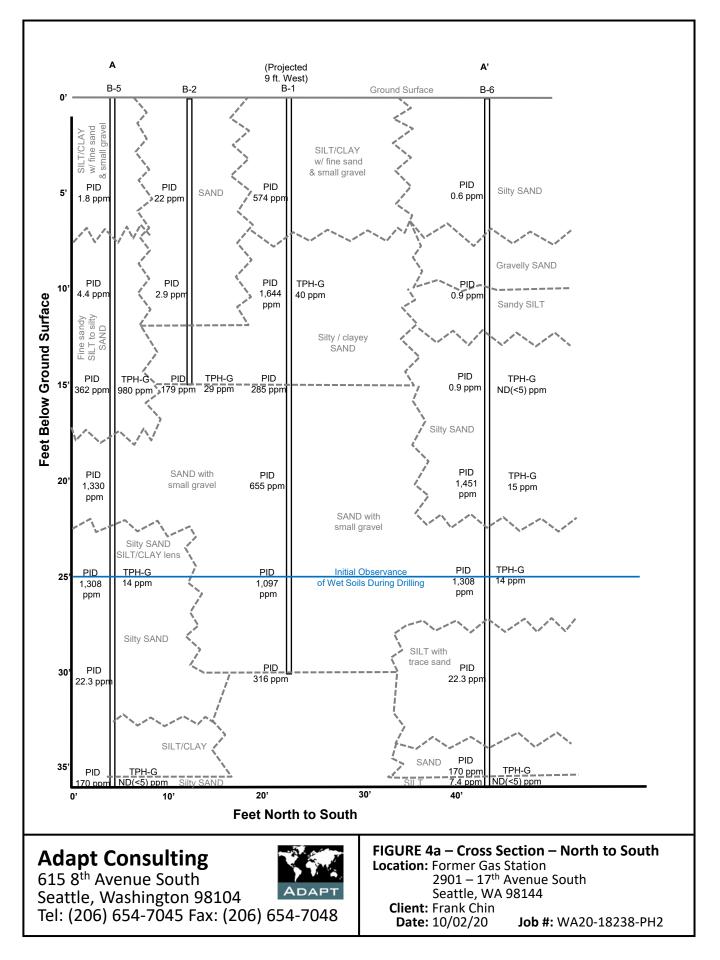
JTB/jtb

APPENDIX A

FIGURES AND TABLES




Adapt Consulting 615 8th Avenue South


Seattle, Washington 98104

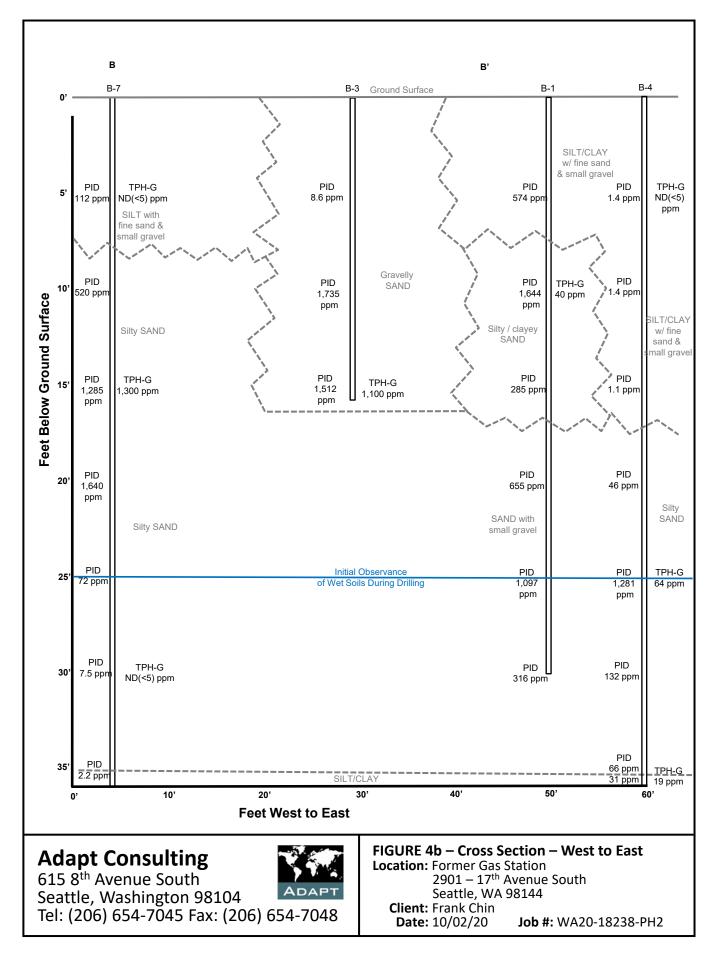


FIGURE 1 - Location/Topographic Map Location: Former Gas Station 2901 – 17th Avenue South Seattle, WA 98144 **Client:** Frank Chin Date: 10/02/20 **Job #:** WA20-18238-PH2 South Forest Street

Sample No.	Depth	Date	PID	TPH-D	TPH-MO	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes	Lead
B-1	10		1,644	-	-	40	ND(<0.2)	0.065	0.41	0.18	-
B-2	15	0/07/0040	179	-	-	29	ND(<0.2)	0.084	0.41	1.2	-
B-3	15	3/27/2013	1,512	-	-	1,100	ND(<0.2)	2.1	14	65	-
HA-1	2		388	3,300	15,000	400	0.35	4.9	3.2	23	1020
	5		1.1	-	-	-	-	-	-	-	-
	10		1.4	-	-	-	-	-	-	-	-
	15		1.1	-	-	ND(<5)	ND(<0.02)	ND(<0.02)	ND(<0.02)	ND(<0.06)	ND(<1)
B-4	20		46	-	-	-	-	-	-	-	-
	25		1,281	-	-	64	0.04	0.73	0.88	5.1	-
	30		132	-	-	-	-	-	-	-	-
	36	8/19/2020	31	-	-	19	0.31	0.25	0.58	3.1	-
	5	0/19/2020	1.8	-	-	-	-	-	-	-	-
	10		4.4	-	-	-	-	-	-	-	-
	15		362	-	-	980	ND(<0.4)	1.4	20	71	1.17
B-5	20		1,330	-	-	-	-	-	-	-	-
	25		1,308	-	-	14	ND(<0.02)	0.042	0.057	23 - 02) ND(<0.06)	-
	30		22.3	-	-	-	-	-	-		-
	35		170	-	-	ND(<5)	0.062	ND(<0.02)	0.093	0.34	-
	5		0.6	-	-	-	-	-	-	-	-
	10		0.9	-	-	-	-	-	-	-	-
	15		0.9	-	-	ND(<5)	ND(<0.02)	ND(<0.02)	ND(<0.02)	ND(<0.06)	ND(<1)
B-6	20		1,451	-	-	15	0.34	1.4	0.22	1.3	-
	25		495	-	-	-	-	-	-	-	-
	30		95	-	-	-	-	-	-	-	-
	36	8/20/2020	7.4	-	-	ND(<5)	ND(<0.02)	0.055	0.039	0.21	-
	5	0/20/2020	112	-	-	ND(<5)	ND(<0.02)	ND(<0.02)	ND(<0.02)	ND(<0.06)	1.12
	10] [520	-	-	-	-	-	-	-	-
	15		1,283	-	-	1,300	ND(<0.4)	36	20	1.2 65 23 - ND(<0.06) - 5.1 - 3.1 - 71 - 71 - 0.15 - 0.34 - ND(<0.06) 1.3 - ND(<0.06) 1.3 -	-
B-7	20] [1,640	-	-	-		-	-		-
	25] [72	-	-	-	-	-	-	-	-
	30] [7.5	-	-	ND(<5)	ND(<0.02)	0.074	ND(<0.02)	0.12	-
	35] [2.2	-	-	-	-	-	-	-	-
MTCA Me	ethod A Soil	CUL		2,000	2,000	30 / 100 (a)	0.03	7	6	9	250

Table 1: Summary of Soil Analytical Results

Shaded values indicates exceedance of the MTCA Method A Cleanup Level

All concentrations given in parts per million (ppm), which is equivalent to milligrams per kilogram

MTCA = Model Toxics Control Act (MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses shown)

(a) = Value is 100 ppm for gasoline mixtures without benzene and total of ethylbenzene, toluene and xylenes are less than 1% of the gasoline mixture; 30 ppm for all other gasoline mixtures

- = Not tested

TPH-G, D, MO = Total petroleum hydrocarbons – gasoline, diesel, motor oil

Sample No.	Date	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes
B-1:GW	3/27/2013	100,000	6,500	19,000	2,000	12,000
B-4:GW	8/19/2020	99,000	3,500	4,200	4,200	18,000
B-5:GW	0/19/2020	130,000	1,200	2,000	4,000	16,000
B-6:GW	8/20/2020	140,000	4,500	5,000	3,500	18,000
B-7:GW	0/20/2020	69,000	1,300	7,100	1,800	9,200
MTCA Method A Ground	800 / 1,000 (a)	5	1,000	700	1,000	

 Table 2: Summary of Groundwater Analytical Results

All samples are grab sample collected from an open borehole and the associated analytical testing result are only preliminary and for screening purposes

Shade values indicates exceedance of either the MTCA Method A Cleanup Level

All concentrations given in parts per billion (ppb), which is equivalent to micrograms per liter

MTCA = Model Toxics Control Act (MTCA Method A Cleanup Levels for Groundwater

(a) = Value is 1,000 ppb when benzene is not detected in groundwater; 800 ppb when benzene is detected in groundwater

TPH-G = Total petroleum hydrocarbons – gasoline

APPENDIX B

SUBSURFACE EXPLORATION PROCEDURES AND BORING LOGS

APPENDIX B

SUBSURFACE EXPLORATION PROCEDURES AND BORING LOGS

Hollow Stem Auger Borings

The field exploration work conducted for this limited subsurface environmental assessment consisted of the advancement of four hollow stem auger borings. The approximate locations for the completed borings are illustrated on Figure 3. This location was obtained through taping from known reference points (i.e., buildings and roads).

The hollow stem auger borings were advanced on August 19 & 20, 2020 by Holocene Drilling, a local exploration drilling company under subcontract to our firm. Each hollow stem auger boring consisted of advancing a 4-inch inside diameter hollow stem auger with a track-mounted drill rig. During the hollow stem auger drilling process, soil samples were collected at 5-foot intervals. The boring was observed and logged in the field by a geologist form our firm.

Prior to the start of drilling and between each boring location, the hollow stem auger flights were pressure-washed with hot water and sampling tools were scrubbed with a stiff brush and a solution of Liquinox (a phosphate free detergent) and water, and then rinsed with potable water and deionized water.

Characterization of Soil

Discrete soil samples were collected at 5-foot intervals by using the Standard Penetration Test Procedure, as described in ASTM: D-1586. This test and sampling method consists of driving a standard 2.5-inch outside diameter split-spoon sampler a distance of 18 inches in the soil with a 140-pound hammer free falling a distance of 30 inches. The number of blows for each 6-inch interval is recorded. The number of blows required to drive the sampler the final 12 inches is considered the Standard Penetration Resistance "N" or blow count. The blow counts are presented in the boring logs in this appendix. If a total of 50 blows are recorded within one 6-inch interval, the blow count is recorded as 50 blows for the actual number of inches of penetration. The blow count or "N" value, provides a measure of the relative density of granular soils or the relative consistency of cohesive soils.

All soil samples were field screened using a MiniRae 10.6eV Photoionization detector (PID). Field screen samples were collected from the remaining soil in the sampled interval. A representative soil sample was placed in a re-sealable plastic bag. The sample was allowed to volatilize for approximately 5 to 10 minutes prior to obtaining a reading. The PID tip was inserted in a small hole poked in the bag just prior to obtaining a reading. The highest PID reading observed was recorded on the boring log sheet, as were a subjective olfactory impression of the sample by the on-site geologist.

Borehole Abandonment

All four completed borings were backfilled with bentonite chips from a depth of approximately 1 foot bgs to the maximum depth explored and with concrete from the ground surface to a depth of approximately 1 foot bgs.

Adapt Consulting 615 8th Avenue South Seattle, Washington 98104 TEL:206.654.7045 FAX: 206.654.7048

PROJECT :Former Gas Station 2901 - 17th Avenue South Seattle, Washington 98144 Job Number: WA20-18238-PH2 Boring No.: Elevation Reference : Ground Surface Elevation : Well Completed : NA Casing Elevation : NA OBSERVATIONS							B-4			
			LA. LA.					OBSERVATIONS		TESTING
DEPTH (feet)		SAMPLE TYPE	SAMPLE NUMBER	BLOW COUNT	PID Reading	GROUND WATER				
- 0 -	Asphalt	SA	SAU	20	<u>1</u> 8	93				
		-	_			-	ł		ŀ	
			_			-	ŀ		ŀ	
		-	_			-	ŀ			
		-	_			-	-			
- 5 -	Dry to slightly moist, hard, light brown to		_	16		-	ŀ			
	gray SILT/CLAY with trace fine sand & small gravel		_		1.1 ppm	-	Ļ		-	
		+	_			-	Ļ		-	
		_	_			-	ļ			
		_	_			-	Ļ			
10-				50/5"		-				
			_	50/5"	1.4 ppm					
						_	Ī		Γ	
4-		-	_			-	Ť		ſ	
15 -			-	50/3"	1.4 ppm	-	t	B-4:15'	ľ	
		-	_			-	t		ľ	
		+	-			-	ŧ		ŀ	
			-			-	ł		ŀ	
		-	-			-	ł		ŀ	
-20-	Moist, brown, silty SAND (slight to moderat		-	50/4"		-	ł		ŀ	
	petroleum odor)	• +	_		ppm	-	ł		ŀ	
		+	_			-	ł		┝	
		+	_			-	ł		┝	
		-	_			-	-		┝	
25-	Becomes wet, gray, silty fine SAND (strong	╷╶┾┰┥	_	36	1281	-	┨	B-4:25'	┝	
	petroleum odor)	´ ++	_	50/6"	ppm	-			┝	
		+	_			-	¦₿		┝	
		+	_			-	ļΪ		╞	
		1	_			-	ļĦ		ļ	
LE	EGEND: 2-inch O.D. Split-Spoon Sample	tatic Water Level at	Drilling		P	3	Grab Sa	mple		
Ī	DATE	tatic Water Level			NTPH-0	0		Analytical Testing Used	,	Page:
X	Sample not Recovered	Perched Groundwater		0/40/0	AT		No Reco At Time	of Drilling	ogged B	1 of 2

Drilling Company: Holocene Drilling Drilling Method: Auger

Drilling Start Date: 08/19/20 Drilling Completion Date: 08/19/20

Adapt Consulting 615 8th Avenue South Seattle, Washington 98104 TEL:206.654.7045 FAX: 206.654.7048

Elevation Reference : Well Completed : NA							20-1	8238-PH2 Boring No.: B-4	l.
			N.A. N.A.					OBSERVATIONS	TESTING
EPTH eet)		SAMPLE TYPE	SAMPLE NUMBER	N ^T	ding	GROUND WATER			
(feet) (feet)		SAN	SAM	50/4"	PID Reading	GR			
	Wet, gray, silty SAND (moderate petroleum odor)	+	-		132 ppm	ATD.	∔ F		
		_	L		ppin	-	ĮΕ		
		_					18		
25								B-4: GW	
35		-		16 16	31		Γ_		
	Dry, gray, hard SILT	_	-	28	ppm	-	t	B-4:36'	
	Boring terminated at an approximate depth of	-	-			-	t		
	36.5-feet bgs.	+	-			-	ŧ		
	Static groundwater level measured at 30.5	_	-			-	ł		
40-	feet bgs at time of drilling.	—	-			-	ł		
	Temporary well screened from 25 to 35 feet	-	-			-	ł		
	bgs and removed after groundwater sampling.	_	-			-	$\frac{1}{2}$		
	Boring was backfilled with bentonite chips.	_	-			-	ł		
		_	_			-	ŀ		
45-		_	L			-	ļ		
		_				-	ļ		
		_				-	Ī		
-50		_	-			-	Ť		
		-	F			-	t		
		-	F				t		
		+	-			-	ŧ		
		_	-			-	ł		
55		_	-			-	ł		
		_	-			-	ł		
		_	-			-	ł		
		_	-				ł		
		+	╞			-	ł		
Ţ	2-inch O.D. Split-Spoon Sample Static Wa	ater Level at	t Drilling		P	2	Grab Sa	mple	
Ī	2-inch O.D. Split-Spoon Sample 2-inch O.D. Geoprobe 2-inch O.D. Geoprobe DATE Static Wa				NTPH0 801	0		Analytical Testing Used	Page:
<u>></u>	Sample not Recovered	Groundwate		0/4 0/5	AT		No Reco At Time	of Drilling	2 of 2
		ng Start I				20		Logged	ву: ЈТВ

Drilling Method: Auger

Drilling Completion Date: 08/19/20

Adapt Consulting 615 8th Avenue South Seattle, Washington 98104 TEL:206.654.7045 FAX: 206.654.7048

PROJECT : Former Gas Station 2901 - 17th Avenue South Seattle, Washington 98144

Job Number: WA20-18238-PH2 Boring No.: B-5

	on Reference : Well Com I Surface Elevation : Casing El		N.A. N.A.					OBSERVATIONS	TESTING
DEPTH (feet)		SAMPLE TYPE	SAMPLE NUMBER	BLOW COUNT	PID Reading	GROUND WATER			1
- 0 -	Asphalt	SAI	SAN		E e e	A GR			
	Азрнац	_	_				ł		
		_	_				Ļ		
		_	_				Ļ		
6									
- 5 -	Dry to slightly moist, hard, light brown to gray SILT/CLAY with trace fine sand &			7 18	1.8		T		
	small gravel		-	29	ppm		1		
		_	-				t		
		—	-				ł		
		_	-				÷		<u> </u>
-10-	Dry to slightly moist, hard, fine sandy SILT	┝┰╴	-	50/6"	4.4		ł		
	to silty SAND		╞		ppm		ł		
		_	_				ł		<u> </u>
			_				ł		<u> </u>
			_				Ļ		
-15 -				50/2"	262		Ļ		
	Moist, gray, silty SAND with trace gravel (moderate to strong petroleum odor)			50/2	362 ppm			B-5:15'	
							T		
			_				Ť		
		_	-				1		
-20-	l Moist, gray SAND with little silt and small	_	ŀ	50/6"	1330 ppm		ł		
	gravel (strong petroleum odor)	-	-		ppm		ł		<u> </u>
			-				+		<u> </u>
		_	-				-		<u> </u>
		_	-				ł		
25-	Becomes moist to wet, gray, silty SAND with	+	-	28	1308		+	B-5:25'	<u> </u>
	moist SILT/CLAY lens at 26-26.5' bgs (strong	+1	_	43 50/6"	ppm		ΗB	D-0.20	
	petroleum odor)	+					ĮΗ		
		_	_				ĮΗ		
							ΙH		
Ļ	GEND: 2-inch O.D. Split-Spoon Sample V Static Wa	ter Level at	Drilling		V	7	Grab Sa	mple	
	ATE DATE Static Wal		onning		WTPH-			Analytical Testing Used	Dege
2	DATE	Groundwate	r			۲	No Reco At Time	overy of Drilling	Page: 1 of 2
Drillii Drillii		g Start I g Comp			0			-	By: JTB

Adapt Consulting 615 8th Avenue South Seattle, Washington 98104 TEL:206.654.7045 FAX: 206.654.7048

PR	OJECT ·Former Gas Station 2901 - 17th Avenue South Seattle, Washington 98144											
		Well Completed Casing Elevation							OBSERVATIONS	TESTING		
EPTH feet)		NPLE	TYPE	SAMPLE NUMBER	W	PID Reading	GROUND WATER					
DEPTH (feet)	Maint areas aits CAND (alight to read age to		ž	SAN	50/3"	223	GR	\mathbf{H}				
	Moist, gray, silty SAND (slight to moderate petroleum odor)	; –	۶	-		ppm		ΗB				
		+		_				ĻΗ				
		_		_				ļμ				
				_				Į₿.				
35	Maint group OIL T/OL AV			_				ĮΒ	B-5: GW			
	Moist, gray SILT/CLAY Wet, gray, silty SAND				36 50/6"	170 ppm			B-5:35'			
	Boring terminated at an approximate deptl	h of						Τ				
	36.0-feet bgs.	Ť		_				Ť				
	Static groundwater level measured at 27 fo	eet T		-				Ť				
40-	bgs at time of drilling.	+		-				t				
	Temporary well screened from 25 to 35 fe			-				t				
	bgs and removed after groundwater samp	ling. +		-				ŧ				
	Boring was backfilled with bentonite chips.	. +		-				+				
		+		-				ł				
45		+		-				ł				
		+		-				-				
		-		-				ł				
		+		-				-				
		-		-				ł				
-50 -		_		_				-				
		_		_				ļ.				
		_		_				1				
				_				ļ				
				_				1				
-55-				_								
55												
		T						T				
				_				Ť				
		Ť		-				t				
Ļ	GEND: 2-inch O.D. Split-Spoon Sample			D.111			7	Grab Sa	mple			
L T	2-inch O.D. Geoprobe	Static Water Lev Static Water Lev		Uniling					Analytical Testing Used	Pager		
X	Sample not Recovered Sample not Recovered	erched Ground	water	r		NF	2	No Reco At Time	overy of Drilling	Page: 2 of 2		
	g Company: Holocene Drilling g Method: Auger	Drilling Sta Drilling Co					:0		Logg	ed By: JTB		

Adapt Consulting 615 8th Avenue South Seattle, Washington 98104 TEL:206.654.7045 FAX: 206.654.7048

PROJECT : Former Gas Station 2901 - 17th Avenue South Seattle, Washington 98144

Job Number: WA20-18238-PH2 Boring No.: B-6

		Well Completed : N Casing Elevation : N	I.A. I.A.					OBSERVATIONS	TESTING
DEPTH (feet)		SAMPLE TYPE	SAMPLE NUMBER	BLOW COUNT	PID Reading	GROUND WATER			
0-	Aanhalt	SAI	SAN	COR	PID Rec	8 B M			
	Asphalt	_	_			-	_		
						_			
			-			-	-		
		+	-			-	-		
- 5 -	Moist, light brown, silty SAND with fine	+++	-	0		-	-		
	small gravel	41	_	0 4 9	0.6 ppm	-	-		
			_			-	-		
		-	-			-	-		
10-	Wet grovelly SAND (fill meterial)	+	-	2 1	0.9	-	-		
	Wet gravelly SAND (fill_material) Moist, gray, sandy SILT		_	1 28	ppm	-	-		
						_			
			_			-			
		-	-			-	-		
15	Moist, gray, silty SAND with small gravel		-	50/6"	0.9	-	-	B-6:15'	
		-	_		ppm	-	-		
						-			
			_			-			
		-	-			-	-		
20-	(Otana a standaruma a da a)		-	50/6"	1451	-	-	B-6:20'	
	(Strong petroleum odor)		-		ppm	-	_		
		_	_			-			
		Ť				-	Ī		
		+	-			-	-		
25-	Becomes wet (strong petroleum odor)	┣┰┥	$\left \right $	42	495	-	IП		
			-		ppm	-	┟┟		
			_			-			
		Ť	_			-	F F I		
		+	-			-	t A		
	L EGEND:								
Ī	2-inch O.D. Split-Spoon Sample DATE	Static Water Level at	Drilling		Z	⊿	Grab Sa		
I	DATE	Static Water Level			NTPH-0	2		Analytical Testing Used	Page:
\rightarrow	Sample not Recovered	Perched Groundwate			NF AT		No Reco At Time	of Drilling	1 of 2
Drilliı Drilliı	ng Company: Holocene Drilling ng Method: Auger	Drilling Start E Drilling Comp				0		Logged	By: JTB

Adapt Consulting 615 8th Avenue South Seattle, Washington 98104 TEL:206.654.7045 FAX: 206.654.7048

PF	COJECT : Former Gas Station 2901 - 17th Avenue South Seattle, Washington 98144	J	ob N	lum	ber:	WA	20-1	8238-PH2 Boring No.: B-6	5
	on Reference : Well Com I Surface Elevation : Casing Ele	pleted : P evation : P	1.A. 1.A.					OBSERVATIONS	TESTING
DEPTH (feet)		SAMPLE TYPE	SAMPLE NUMBER	BLOW COUNT	PID Reading	GROUND WATER			1
30-	Dry to maint SILT with trace fine cond and	SA ₹	SAI	42	95	B ₩ Ø	\square		
	Dry to moist SILT with trace fine sand and small gravel		_	50/4"	ppm	ATD	ΗE		
		+	_			-	┟┟		
		-	_			-	╞╞		
		+	_			-	ļĦ	R 6. CW	
35	Wet, gray, fine SAND with trace silt		_	27		-	E	B-6: GW	
	Moist, gray SILT	┛	_	50/6"	7.4 ppm	-		B-6:35.5'	
		_	_		ppm	-	L		
	Boring terminated at an approximate depth of	1	_			-			
	36.0-feet bgs.								
40-	Static groundwater level measured at 30.5					_			
70	feet bgs at time of drilling.					_			
	Temporary well screened from 25 to 35 feet bgs and removed after groundwater sampling.								
		Τ							
	Boring was backfilled with bentonite chips.		_			_	Ī		
			_			-	Ť.		
45		Ť	-			-	†		
		Ť	-			-	ŀ		
		+	-			-	F		
		-	-			-	ŀ		
		+	-			-	ł		
50-		+	-			-	-		
		+	-			-	ł		
		-	-			-	-		
		+	-			-	-		
		-	-			-	-		
55-		+	-			-	-		
		+	-			-	ŀ		
		+	_			-	ŀ		
		+	_			-			
		+	_			-	ŀ		
Ţ	GEND: 2-inch O.D. Split-Spoon Sample Static Wat	er Level at	Drilling		P	2	Grab Sa	mple	
Ī	2-inch O.D. Split-Spoon Sample V Static Wat 2-inch O.D. Geoprobe V Static Wat 2-inch O.D. Geoprobe V Static Wat DATE V Perched G				NTPHO 0010	0		Analytical Testing Used	Page:
\succ	Sample not Recovered	iroundwate	r	0.000.00	NF AT		No Reco At Time	of Drilling	2 of 2

Drilling Start Date: 08/20/20 Drilling Completion Date: 08/20/20

Adapt Consulting 615 8th Avenue South Seattle, Washington 98104 TEL:206.654.7045 FAX: 206.654.7048

PF	ROJECT · Former Gas Station 2901 - 17th Avenue South Seattle, Washington 98144	Jo	ob N	lum	ber	WA	20-1	8238-PH2 Boring No.: B-7	7
	on Reference : Well Com d Surface Elevation : Casing El	pleted : h evation : h	I.A. I.A.					OBSERVATIONS	TESTING
DEPTH (feet)		SAMPLE TYPE	SAMPLE NUMBER	W INT	PID Reading	GROUND WATER			1
0	Acredit	SAN	SAN	BLOW	PID Reg	GR	-		
	Asphalt	_	_				Ļ		
			_				Ť		
		+	-				t		
- 5 -	Dry to moist, light brown to gray SILT with		-	12 19	112		ł	B-7:5'	
	fine sand and trace gravel (slight petroleum odor)		_	19 31	ppm		ł		
		-	_				ł		
							L .		
							T		
-10-	Dry to moist, gray, silty SAND (moderate		-	50/4"	520		t		
	petroleum odor)	-	-		ppm		t		
		+	-				ł		
		_	_				ł		
			_				L.		
-15 -									
-15-	Becomes moist to slightly wet (strong petro-			50/6"	1283 ppm		Ť	B-7:15'	
	leum odor)	+	-		pp		t		
		+	_				+		
		-	-				ł		
		_	_				Ļ		
-20-				50/0"	10.40				
20				50/6"	ppm				
		T	_				Ī		
		+	-				t		
		+	-				ł		
		+	-				ł		
25-	Pacamas wat (slight patroloum adar)	+		50/4"			<u> </u> п		
	Becomes wet (slight petroleum odor)			50/4"	72 ppm		Į₽		
							I FI		
		T					ΤĦ		
		+	-				t F		
		+	-				┼╞		
11	EGEND:						ΙH		
Ϊ	2-inch O.D. Split-Spoon Sample Static Wal	ter Level at	Drilling		P	2	Grab Sa	mple	
Ī	2-inch O.D. Split-Spoon Sample DATE Static Wat 2-inch O.D. Geoprobe DATE Static Wat	er Level			WTPH-	0		Analytical Testing Used	Page:
×	Sample not Recovered	Groundwate	r		NF A1		No Reco At Time	overy of Drilling	1 of 2

Drilling Company: Holocene Drilling Drilling Method: Auger Drilling Start Date: 08/20/20 Drilling Completion Date: 08/20/20

Adapt Consulting 615 8th Avenue South Seattle, Washington 98104 TEL:206.654.7045 FAX: 206.654.7048

PROJECT :Former Gas Station 2901 - 17th Avenue South Seattle, Washington 98144 Job Number: WA20-18238-PH2 Boring No.: B Elevation Reference : Ground Surface Elevation : Well Completed : NA OBSERVATIONS								,	
								OBSERVATIONS	TESTING
DEPTH (feet)		SAMPLE TYPE	SAMPLE NUMBER	BLOW COUNT	PID Reading	GROUND WATER			
-30-	Wet, gray, silty SAND (no petroleum odor)	SA	AS NU	32	7.5	19 X	\mathbf{H}	B-7:30'	
			-	50/6"	ppm	-			
	-	-	_			-	╞╞		
	-	-	-			-	ΗE		
		-	-			-		B-7: GW	
35	Moist, gray SILT/CLAY		-	50/6"	2.2	-	┟╘		
	-	_	_		ppm	-	-		
	- Boring terminated at an approximate depth of	-	-			-	-		
	35.5-feet bgs.	-	-			-	-		
	- Static groundwater level measured at 27.5		_			_	-		
40-	feet bgs at time of drilling.	-	-			-	-		
	Temporary well screened from 25 to 35 feet	-	-			-	-		
	bgs and removed after groundwater sampling	-	_			-	_		
	Boring was backfilled with bentonite chips.	-	-			-	-		
	-	-	-			-	-		
45	-	-	-			-	-		
	-	+	-			-	-		
	-	-	_			-	_		
	-	-	-			-	-		
	-	-	-			-	-		
-50 -	-	-	-			-	-		
	-	-	-			-	-		
	-	-	-			-	-		
	-	-	_			-	_		
	-		-			-	-		
55-	-	+	_			-	_		
	-	-	-			-	-		
	-	+	_			-	_		
	-	-	-			-	-		
	-		-			-	-		
LE	GEND:	1				7			
Ţ	2-inch O.D. Split-Spoon Sample 2-inch O.D. Geoprobe 2-inch O.D. Geoprobe DATE DATE DATE		Drilling		WTPHO	⊿ ⊨xt	Grab Sa	mple Analytical Testing Used	
L X	Sample not Recovered Sample not Recovered		r		NR AT	2	No Reco		Page: 2 of 2
Drillir	ng Company: Holocene Drilling Drilling Drilling	Start D	Date: 0	8/20/2				Logged	By: JTB

Drilling Method: Auger

Drilling Start Date: 08/20/20 Drilling Completion Date: 08/20/20

APPENDIX C

LABORATORY CERTIFICATION

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 31, 2020

John Bhend, Project Manager Adapt Engineering 615 8th Avenue South Seattle, WA 98104

Dear Mr Bhend:

Included are the results from the testing of material submitted on August 20, 2020 from the Former Gas Station PO WA20-18238-PH2, F&BI 008325 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures ADP0831R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 20, 2020 by Friedman & Bruya, Inc. from the Adapt Engineering Former Gas Station PO WA20-18238-PH2, F&BI 008325 project. Samples were logged in under the laboratory ID's listed below.

Adapt Engineering
B-4:15'
B-4:25'
B-4:36'
B-4:GW
B-5:15'
B-5:25'
B-5:35'
B-5:GW
B-6:15'
B-6:20'
B-6:35.5'
B-6:GW
B-7:5'
B-7:15'
B-7:30'
B-7:GW

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/31/20 Date Received: 08/20/20 Project: Former Gas Station PO WA20-18238-PH2, F&BI 008325 Date Extracted: 08/24/20 Date Analyzed: 08/25/20, 08/26/20, and 08/27/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
B-4:15' 008325-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	90
B-4:25' 008325-02	0.04	0.73	0.88	5.1	64	96
B-4:36' 008325-03	0.31	0.25	0.58	3.1	19	92
B-5:15' 008325-05 1/20	<0.4	1.4	20	71	980	97
B-5:25' 008325-06	< 0.02	0.042	0.057	0.15	14	93
B-5:35' 008325-07	0.062	< 0.02	0.093	0.34	<5	91
B-6:15' 008325-09	< 0.02	< 0.02	< 0.02	< 0.06	<5	77
B-6:20' 008325-10	0.34	1.4	0.22	1.3	15	90
B-6:35.5' 008325-11	< 0.02	0.055	0.039	0.21	<5	89
B-7:5' 008325-13	< 0.02	< 0.02	< 0.02	< 0.06	<5	90

ENVIRONMENTAL CHEMISTS

Date of Report: 08/31/20 Date Received: 08/20/20 Project: Former Gas Station PO WA20-18238-PH2, F&BI 008325 Date Extracted: 08/24/20 Date Analyzed: 08/25/20, 08/26/20, and 08/27/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
B-7:15' 008325-14 1/20	<0.4	36	20	120	1,300	96
B-7:30' 008325-15	< 0.02	0.074	< 0.02	0.12	<5	76
Method Blank 00-1802 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	93

ENVIRONMENTAL CHEMISTS

Date of Report: 08/31/20 Date Received: 08/20/20 Project: Former Gas Station PO WA20-18238-PH2, F&BI 008325 Date Extracted: 08/27/20 Date Analyzed: 08/27/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
B-4:GW 008325-04 1/80	3,500	4,200	4,200	18,000	99,000	85
B-5:GW 008325-08 1/400	1,200	2,000	4,000	16,000	130,000	79
B-6:GW 008325-12 1/400	4,500	5,000	3,500	18,000	140,000	80
B-7:GW 008325-16 1/80	1,300	7,100	1,800	9,200	69,000	83
Method Blank 00-1807 MB	<1	<1	<1	<3	<100	76

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	B-4:15' 08/20/20	Client: Project:	Adapt Engineering Former Gas Station
Date Extracted:	08/21/20	Lab ID:	008325-01
Date Analyzed:	08/21/20	Data File:	008325 - 01.079
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed:	B-5:15' 08/20/20 08/21/20 08/21/20	Client: Project: Lab ID: Data File:	Adapt Engineering Former Gas Station 008325-05 008325-05.082
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Lead	1.17		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	B-6:15' 08/20/20	Client: Project:	Adapt Engineering Former Gas Station
Date Extracted:	08/21/20	Lab ID:	008325-09
Date Analyzed:	08/21/20	Data File:	008325-09.083
Matrix: Units:	Soil mg/kg (ppm) Dry Weight	Instrument: Operator:	ICPMS2 SP
Onits.		Operator.	51
Analyte:	Concentration mg/kg (ppm)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B-7:15'	Client:	Adapt Engineering
Date Received:	08/20/20	Project:	Former Gas Station
Date Extracted:	08/21/20	Lab ID:	008325-14
Date Analyzed:	08/21/20	Data File:	008325-14.084
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Lead

1.12

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received:	Method Blank NA	Client: Project:	Adapt Engineering Former Gas Station
Date Extracted:	08/21/20	Lab ID:	I0-486 mb2
Date Analyzed:	08/21/20	Data File:	I0-486 mb2.069
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/31/20 Date Received: 08/20/20 Project: Former Gas Station PO WA20-18238-PH2, F&BI 008325

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 008345-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	84	69-120
Toluene	mg/kg (ppm)	0.5	84	70-117
Ethylbenzene	mg/kg (ppm)	0.5	86	65 - 123
Xylenes	mg/kg (ppm)	1.5	87	66-120
Gasoline	mg/kg (ppm)	20	95	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 08/31/20 Date Received: 08/20/20 Project: Former Gas Station PO WA20-18238-PH2, F&BI 008325

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 008415-04 (Duplicate) Reporting Sample Duplicate RPD Units Result Result (Limit 20) Analyte Benzene ug/L (ppb) <1 <1 nm Toluene ug/L (ppb) <1 <1 nm Ethylbenzene ug/L (ppb) <1 <1 nm Xylenes <3 <3 ug/L (ppb) nm Gasoline ug/L (ppb) <100 <100 nm

Laboratory Code: Laboratory Control Sample

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	ug/L (ppb)	50	107	65-118		
Toluene	ug/L (ppb)	50	112	72 - 122		
Ethylbenzene	ug/L (ppb)	50	111	73 - 126		
Xylenes	ug/L (ppb)	150	109	74-118		
Gasoline	ug/L (ppb)	1,000	109	69-134		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/31/20 Date Received: 08/20/20 Project: Former Gas Station PO WA20-18238-PH2, F&BI 008325

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 008266-100 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	1.19	94	95	75 - 125	1

Laboratory Code: Laboratory Control Sample

Laboratory Co	Jue. Laboratory Com	and Sample	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	95	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

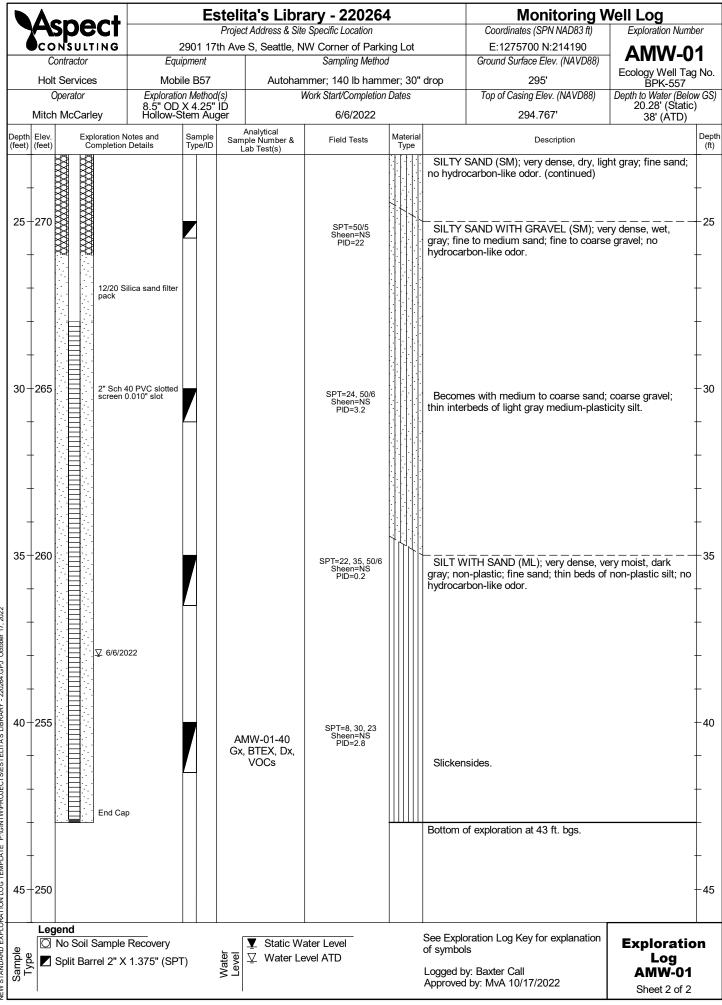
x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	Samples received at	amples r	TO											Received by:		Ph. (206) 285-8282
			Q				2	June 1	4	Ul Anber	thin Ul		tel N	Relinquished by:		Seattle, WA 98119-2029
14.3	8-26-20		16	Add				- The	Cher	n a 196.	10.0		h Blar	Received by	- <u></u> -	2012 16th Anonno Wost
TIME	DATE	YN	COMPANY					NAME	<u>NA</u>	PRINT			SIGNATURE	SIG Relinnished hv		Twodman & Dr
					-			L C	<u> </u>	and the sec	~	0955	<i>\</i>	10 A-D	30'	8-6:2
			X							Ŵ	Seil .	09.50	8-20-20	3-4 PO	15'	B-6 : 12
		·							<u> </u>	.	water	a 26h [2-# 80	S	5.5 : GW
-					-	1		no Internet, 1666-1666		un dingen	Gernin	15. 0	90 Maanaa 99 maa 90 ma	1 40	V t	6-5 : 35'
					-	-		-	 	are from		1340		66 A-D		6-3:25
			×		1					¢₁	5 2 2	252	10 23256 ¹¹³ 6629	05 AE	×	8.5. K
					1		-	25 0000 000 CH20000		Ŵ	12:21	130 6	NN 2000-she'syk i gereg	OH A-C	¢.	8-4. EW
					+					-L		5 ec		03		8-4:36
									<u> </u>	-C.		70 20	n	02 A-D		B-4: 25'
			×				×			V)	\$ 65	020	8-K-20	OIA-E		6-4: 15'
les les	Notes		Lead	PCBs EPA 8082	PAHs EPA 8270	VOCs EPA 8260	BTEX EPA 8021 NWTPH-HCID	NWTPH-Gx	NWTPH-Dx	# of Jars	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID	Samp
		TED	ANALYSES REQUESTED	JES R	ALYS	AN	$\left \right $	$\left \right $			-					
: 30 da	□ Other Default, Dispose after 30 days	Defaults							s //No	·Ye	cific RLs	Project spe	ad-steast is	Email John & here ad read from Project specific RLs? - Yes		Phone Day 154. 7045
SAL	SAMPLE DISPOSAL	SAMPLE DI		INVOICE TO	OIC	INV					20	REMARKS		101815 V	P Sandle wh	City, State, ZIP_
d by:	Rush charges authorized by:	Rush char		WA26-18238-PH2	280	1 R	SCAU	5.00		Station	Gr Str	Former (Sauth	T Sth Ave	61
	j¥Standard turnaround □ RUSH	Standau		44	PO #				·	Ś	NAME	PROJECT NAME			Adapt	Company A
TME	$\frac{Page \# 1' \text{ of } 1 > 1}{TURNAROUND TIME}$	Page #			8		2 h	B.	Lan	ure)	tS (signat	SAMPLERS (signature)			John Bhend	Report To
51/_VW2	VSS/BI	0	-07	- 00 00	١Ċ	đ	YC	IOI	SD(OF(HAIN	SAMPLE CHAIN OF CUSTODY	70		വ	008325

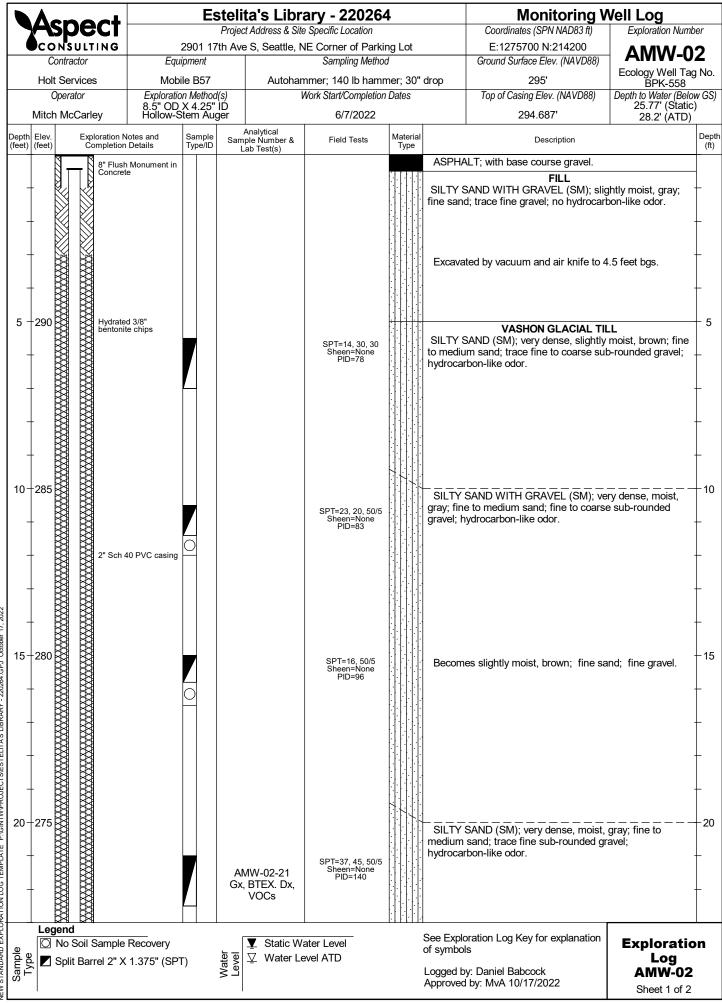
D° ↓	Samples received at	mples re	Sa												Received by:	Recei	Ph. (206) 285-8282
			Ø	F.			ľ	华	Dwit	E.m.shan	Solor	thin Welsber		1 mm	Relinquished by:		Seattle, WA 98119-2029
141	8-25-20		100	t a					Shend	2	51	324	The second secon	Sul 2	Reneived by:	ر ن	Priedman & Bruya, Inc. 2019 16th Avenue West
TIME	DATE	YN	COMPANY	8				E	PRINT NAME	NTN	PRII			SIGNATURE	DIS		- - - - -
-																	
										<u> </u>							
				<u> </u>		<u> </u>	<u> </u>	4	6		Ś	water	Shey	4	16 A-C	ξωστημ.	B-7: 6w
						<u> </u>				1	7	4	1155		15A-D		6-7:30
						<u> </u>					n		130		14 A-E		8-7:15
				ļ	<u> </u>		<u> </u>			1	-5	Soil	120		13 A-D		8-7:5
						<u> </u>	ļ				W	eato	1045		12 A-C	.	B-6: GW
								\times	×		L	Sex]	1020	8-20-20	11 A-D	5.	6-6:35:5
ß	Notes	· · · · · · · · · · · · · · · · · · ·	Lead	PCBs EPA 8082	PAHs EPA 8270	VOCs EPA 8260	NWTPH-HCID	BTEX EPA 8021	NWTPH-Gx	NWTPH-Dx	# of Jars	Sample Type	Time Sampled	Date Sampled	Lab ID		Sample ID
		TED	ANALYSES REQUESTED	3 REO	YSES	NAL	A			┢╾┥							
30 days	□ Other Default-Dispose after 30 days	Default:	, 					`	No	Yes /	s? - Y	pecific RL	cchipter of Project specific RLs? -		Email john Chende		Phone <u>)-6-654-7245</u>
3AL.	SAMPLE DISPOSAL hive samples	SAMPLE DI		ľo	INVOICE TO	IOAN	ņ					KS	- REMARKS	64	19186 VM	Seattle,	City, State, ZIP
d by:	Rush charges authorized by:	Rush char		- <i>PH</i>	LHU-REERI-ONY	18	20	R A		fran	Station	e- 645	tarner		South	Aire	Address 615 84
	AStandard turnaround	C RUSH_			PO#	P				•		PROJECT NAME	PROJE(10	Company Adapt
IME W	Page # <u>of</u> <u>r</u> TURNAROUND TIME	Page #					h,	" Sh	22	1.	uture)	SAMPLERS (signature)	SAMPL		Bhend		Report To John
BI	, 122 , 122	08-20-70	201				2 m	YQC	DLS.	CU	IOF	CHAIN	SAMPLE CHAIN OF CUSTODY				008372
)															

APPENDIX B

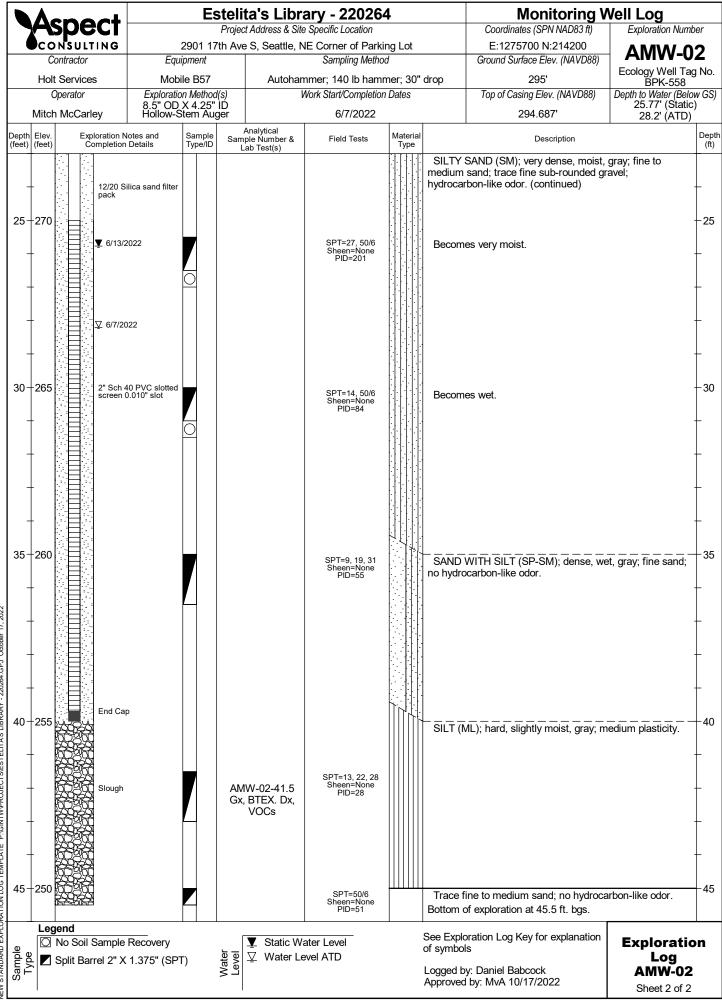
Aspect Boring Logs

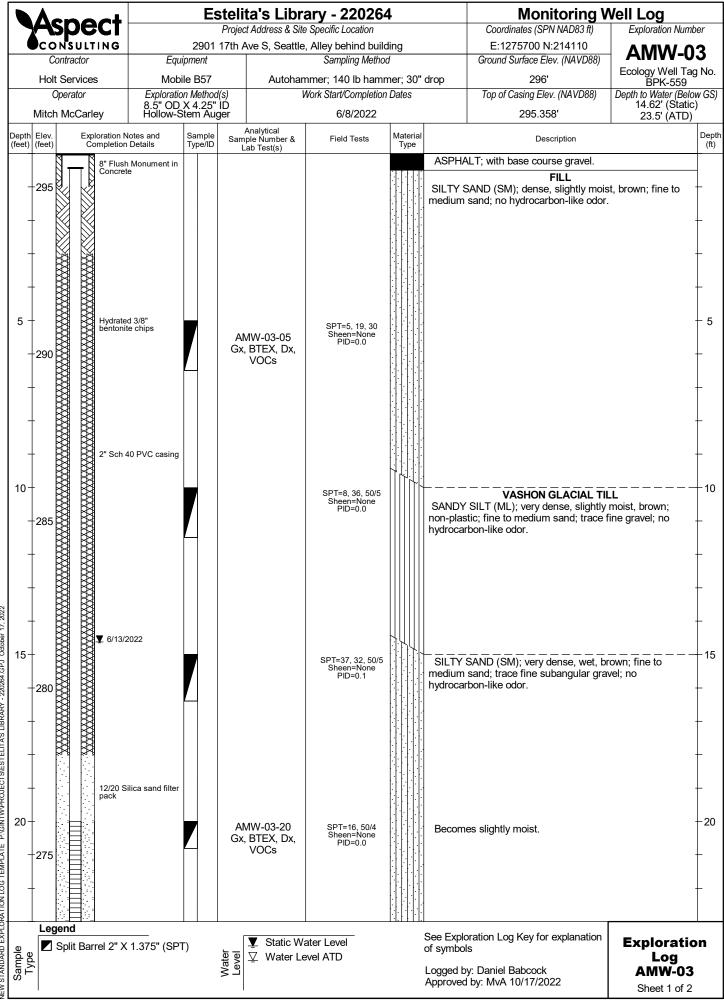

No. 200 Sieve	Gravels - More than $50\%^4$ of Coarse Fraction Retained on No. 4 Sieve	S% F 0000000 0000000000000000000000000000	a	Well-graded GRAVEL Well-graded GRAVEL WITH SAND Poorly-graded GRAVEL Poorly-graded GRAVEL WITH SAND	MC=Natural Moisture Content PSGEOTECHNICAL LAB TESTSPS=Particle Size Distribution FC=Fines Content (% < 0.075 mm)GH=Hydrometer Test AL=Atterberg Limits CAL=Atterberg Limits C=Consolidation TestStr=Strength Test OC=Organic Content (% Loss by Ignition) CompComp=Proctor Test K=Hydraulic Conductivity Test SGSG=Specific Gravity Test					
ained on	More than 50% ¹ (Retained on No.	% Fines	GM	SILTY GRAVEL SILTY GRAVEL WITH SAND	Organic Chemicals CHEMICAL LAB TESTS BTEX = Benzene, Toluene, Ethylbenzene, Xylenes					
50%1 Retained on No.	Gravels -	≥15%	GC	CLAYEY GRAVEL CLAYEY GRAVEL WITH SAND	TPH-Dx=Diesel and Oil-Range Petroleum HydrocarbonsTPH-G=Gasoline-Range Petroleum HydrocarbonsVOCs=Volatile Organic CompoundsSVOCs=Semi-Volatile Organic Compounds					
. More than	of Coarse Fraction 4 Sieve	Fines	sw	Well-graded SAND Well-graded SAND WITH GRAVEL	PAHs = Polycyclic Aromatic Hydrocarbon Compounds PCBs = Polychlorinated Biphenyls <u>Metals</u> RCRA8 = As, Ba, Cd, Cr, Pb, Hg, Se, Ag, (d = dissolved, t = total)					
ed Soils -	of Coarse 4 Sieve	≤5%	SP	Poorly-graded SAND Poorly-graded SAND WITH GRAVEL	MTCA5 = As, Cd, Cr, Hg, Pb (d = dissolved, t = total) PP-13 = Ag, As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, Tl, Zn (d=dissolved, t=total)					
Coarse-Grained Soils - More than	- 50% ¹ or More Passes No.	Fines	SM	SILTY SAND SILTY SAND WITH GRAVEL	PID=Photoionization DetectorFIELD TESTSSheen=Oil Sheen TestSPT2SPT2=Standard Penetration TestNSPT=Non-Standard Penetration TestDCPT=Dynamic Cone Penetration Test					
	Sands - 5	≥15%	SC	CLAYEY SAND CLAYEY SAND WITH GRAVEL	Descriptive Term BouldersSize Range and Sieve Number Larger than 12 inchesCOMPONENT DEFINITIONSCobbles=3 inches to 12 inchesDEFINITIONS					
Sieve	ys Jan 50%		ML	SILT SANDY or GRAVELLY SILT SILT WITH SAND SILT WITH GRAVEL	Coarse Gravel = 3 inches to 3/4 inches Fine Gravel = 3/4 inches to No. 4 (4.75 mm) Coarse Sand = No. 4 (4.75 mm) to No. 10 (2.00 mm) Medium Sand = No. 10 (2.00 mm) to No. 40 (0.425 mm) Fine Sand = No. 40 (0.425 mm) to No. 200 (0.075 mm)					
s No. 200	Silts and Clays		CL	LEAN CLAY SANDY or GRAVELLY LEAN CLAY LEAN CLAY WITH SAND LEAN CLAY WITH GRAVEL	Silt and Clay=Smaller than No. 200 (0.075 mm) $\frac{\% \ by \ Weight}{<1}$ $\frac{Modifier}{Subtrace}$ $\frac{\% \ by \ Weight}{15 \ to \ 25}$ $\frac{Modifier}{Little}$ ESTIMATED ¹ PERCENTAGE					
ore Passes No.	Sili I ionid Lir		OL	ORGANIC SILT SANDY or GRAVELLY ORGANIC SILT ORGANIC SILT WITH SAND	1 to <5 = Trace 30 to 45 = Some 5 to 10 = Few >50 = Mostly					
- 50%1 or M	S r More		Мн	ORGANIC SILT WITH GRAVEL ELASTIC SILT SANDY OF GRAVELLY ELASTIC SILT ELASTIC SILT WITH SAND ELASTIC SILT WITH GRAVEL	Dry=Absence of moisture, dusty, dry to the touchMOISTURESlightly Moist=Perceptible moistureCONTENTMoist=Damp but no visible waterCONTENTVery Moist=Water visible but not free drainingVetWet=Visible free water, usually from below water table					
Fine-Grained Soils	Silts and Clays		сн	FAT CLAY SANDY or GRAVELLY FAT CLAY FAT CLAY WITH SAND FAT CLAY WITH GRAVEL	Non-Cohesive or Coarse-Grained SoilsRELATIVE DENSITYDensity3SPT2 Blows/Foot $Very Loose$ Penetration with 1/2" Diameter RodVery Loose= 0 to 4 $= 5 to 10$ $\geq 2'$ $1' to 2'$					
Fine-(Si		ОН	ORGANIC CLAY SANDY or GRAVELLY ORGANIC CLAY ORGANIC CLAY WITH SAND ORGANIC CLAY WITH GRAVEL	Loose = 5 to 10 1' to 2' Medium Dense = 11 to 30 3" to 1' Dense = 31 to 50 1" to 3" Very Dense = > 50 < 1"					
Highly	Organic Soils		PT	PEAT and other mostly organic soils	Cohesive or Fine-Grained SoilsCONSISTENCYConsistency3SPT2 Blows/FootManual TestVery Soft $= 0$ to 1Penetrated >1" easily by thumb. Extrudes between thumb & fingers.Soft $= 2$ to 4Penetrated 1/4" to 1" easily by thumb. Easily molded.Medium Stiff $= 5$ to 8Penetrated >1/4" with effort by thumb. Molded with strong pressure.					
name; e.g. GRAVEL" r gravel. • "	., SP-SM • ' means 15 t Well-gradee	'SILTY" or "C o 30% sand d" means ap	LAYEY" m and grave proximate	% silt and clay, denoted by a "-" in the group eans >15% silt and clay • "WITH SAND" or "WITH I. • "SANDY" or "GRAVELLY" means >30% sand and ly equal amounts of fine to coarse grain sizes • "Poorly izes • Group names separated by /" means soil	Stiff= 9 to 15Indented $\sim 1/4"$ with effort by thumb.Very Stiff= 16 to 30Indented easily by thumbnail.Hard= > 30Indented with difficulty by thumbnail.					
contains la Soils were	ayers of the	e two soil typ and identifie	es; e.g., Sf d in the fi	M/ML.	GEOLOGIC CONTACTS Observed and Distinct Observed and Gradual Inferred					
				bils were classified using ASTM D2487 or other report accompanying these exploration logs for details.						

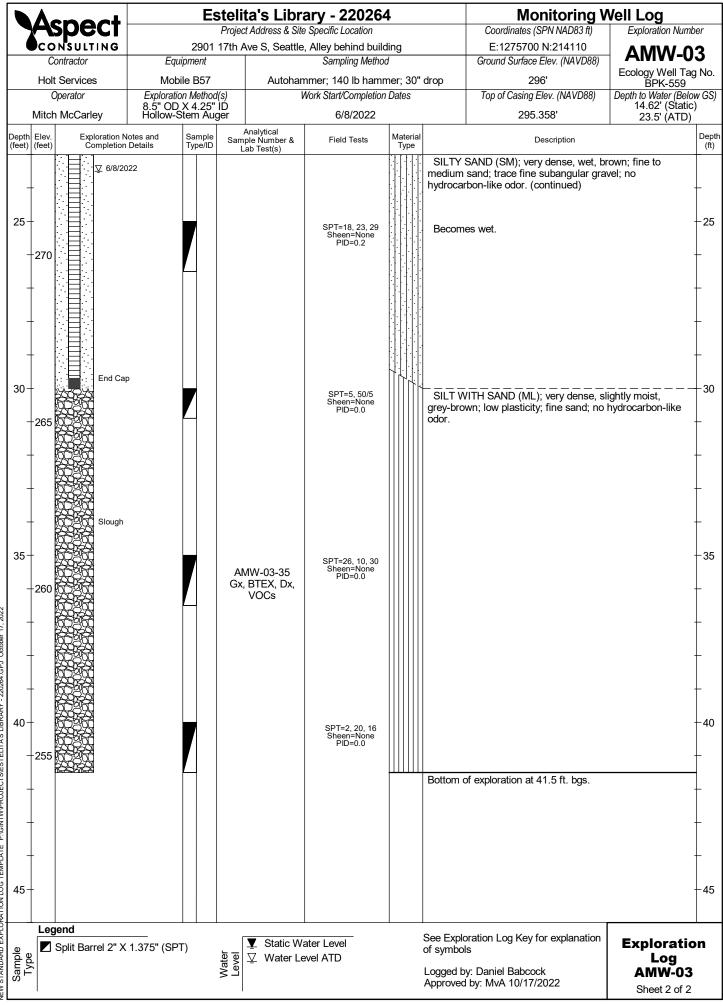
Aspect


Estimated or measured percentage by dry weight
 (SPT) Standard Penetration Test (ASTM D1586)
 Determined by SPT, DCPT (ASTM STP399) or other field methods. See report text for details.

Exploration Log Key


		ler		~+		E	steli	ta's Libr	ary - 22026	4				,
	C					2901 1			e Specific Location W Corner of Park	ring Lot		Coordinates (SPN NAD83 ft) E:1275700 N:214190	Exploration Num	
		Contra		NG		ipment	7 tri Ave		Sampling Metho			Ground Surface Elev. (NAVD88)	AMW-0)1
			rvices			ile B57	,	Autohan	nmer; 140 lb ham		' dron	295'	Ecology Well Ta	ag No.
		Oper			Exploration				Nork Start/Completion	,	uiop	Top of Casing Elev. (NAVD88)	BPK-557 Depth to Water (Bel	ow GS)
	Mite		cCarley	/	8.5" OD Hollow-S	X 4.25 Stem A	5" ÌĎ uger		6/6/2022		1	294.767'	20.28' (Statio 38' (ATD)	c)
Depth (feet)			Explo Corr	ration No	otes and Details	Sampl Type/II	e Sam	Analytical ple Number & .ab Test(s)	Field Tests	Materia Type		Description		Dept (ft)
		×.		3" Flush Concrete	Monument in						ASPHA	ALT; with base course gravel		
				Hydratec	1 3/8" e chips				Sheen=NS PID=0.0		Excava auger fro	FILL SAND (SM); slightly moist, brown barse gravel; no hydrocarbon-like ted by vacuum and air knife to 4 om 4.5 to 5 feet. VASHON GLACIAL TIL SAND (SM); slightly moist, gray; ace fine gravel; no hydrocarbon-l	e odor. .5 feet and hand .L fine to medium	+ + - - 5
- - 10- -	-28			2" Sch 4	0 PVC casing			/W-01-10 BTEX, Dx, VOCs	SPT=30, 150/5 Sheen=NS PID=83.0		Becom	es very dense; slight hydrocarbo	n-like odor	- - - 10 -
- 15- - -	-28					0			SPT=11, 33, 50/5 Sheen=MS PID=607.0			WITH SILT (SP-SM); very dense edium to coarse sand; strong hyc		
- 20- -	-27	25 25 25 25 25 25 25 25 25 25 25 25 25 2		<u>7</u> 6/13/2	022	<u>o</u>		/W-01-20 BTEX, Dx, VOCs	SPT=40, 50/4 Sheen=SS PID=810			SAND (SM); very dense, dry, lig carbon-like odor.	ht gray; fine sand;	
Sample Tvne	C		d Soil Sa		Recovery 1.375" (SP	T)	Water Level	⊻ Static Wa ⊻ Water Le	ater Level evel ATD	<u></u>	of symbol Logged b	oration Log Key for explanation ls y: Baxter Call l by: MvA 10/17/2022	Exploration Log AMW-01 Sheet 1 of 2	I


VEW STANDARD EXPLORATION LOG TEMPLATE P:\GINTW\PROJECT\$\ESTELITA'S LIBRARY - 220264.GPJ October 17, 2022


VEW STANDARD EXPLORATION LOG TEMPLATE P:\GINTW\PROJECTS\ESTELITA'S LIBRARY - 220264.GPJ October 17, 2022

VEW STANDARD EXPLORATION LOG TEMPLATE P:\GINTW\PROJECTS\ESTELITA'S LIBRARY - 220264.GPJ October 17, 2022

VEW STANDARD EXPLORATION LOG TEMPLATE P:\GINTW\PROJECTS\ESTELITA'S LIBRARY - 220264.GPJ October 17, 2022

VEW STANDARD EXPLORATION LOG TEMPLATE P:/GINTW/PROJECTS/ESTELITA'S LIBRARY - 220264.GPJ October 17, 2022

APPENDIX C

Laboratory Report

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 20, 2022

Hannah Cohen, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Cohen:

Included are the results from the testing of material submitted on June 8, 2022 from the Estelita's Library 220267, F&BI 206121 project. There are 15 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data, Ali Cochrane ASP0620R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 8, 2022 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Estelita's Library 220267, F&BI 206121 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
206121 -01	AMW-02-03
206121 -02	AMW-01-05
206121 -03	AMW-01-10
206121 -04	AMW-01-15
206121 -05	AMW-01-20
206121 -06	AMW-01-25
206121 -07	AMW-01-30
206121 -08	AMW-01-35
206121 -09	AMW-01-40
206121 -10	AMW-02-5.5
206121 -11	AMW-02-10.5
206121 -12	AMW-02-15
206121 -13	AMW-02-21
206121 -14	AMW-02-25.5
206121 -15	AMW-02-30
206121 -16	AMW-02-35
206121 -17	AMW-02-41.5
206121 -18	AMW-02-45

The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The affected compounds were flagged accordingly.

The 8260D laboratory control sample was outside of control limits for several compounds. The data were qualified accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/20/22 Date Received: 06/08/22 Project: Estelita's Library 220267, F&BI 206121 Date Extracted: 06/13/22 Date Analyzed: 06/13/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
AMW-01-10 206121-03	<5	64
AMW-01-20 206121-05 1/20	320	84
AMW-01-40 206121-09	<5	82
AMW-02-21 206121-13 1/50	570	81
AMW-02-41.5 206121-17	13	75
Method Blank 02-1153 MB	<5	84

ENVIRONMENTAL CHEMISTS

Date of Report: 06/20/22 Date Received: 06/08/22 Project: Estelita's Library 220267, F&BI 206121 Date Extracted: 06/10/22 Date Analyzed: 06/10/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sumorato

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 48-168)
AMW-01-10 206121-03	<50	<250	105
AMW-01-20 206121-05	160 x	<250	107
AMW-01-40 206121-09	<50	<250	105
AMW-02-21 206121-13	69 x	<250	106
AMW-02-41.5 206121-17	<50	<250	104
Method Blank 02-1397 MB	<50	<250	105

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-01-1 06/08/22 06/10/22 06/10/22 Soil mg/kg (ppr	0 n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Estelita's Library 22(206121-03 061033.D GCMS11 RF	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 96 91 96	Lower Limit: 79 84 84	Upper Limit: 128 121 116	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropropan Toluene trans-1,3-Dichloropropan	hane er (MTBE) thene e ene (EDC) ne e le hane pene	$\begin{array}{c} < 0.5 \\ < 0.5 \ jl \\ < 0.05 \\ < 0.5 \ jl \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ jl \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\$	1,3-Dich Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr	loropropane oroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene cetrachloroethane ene cetrachloroethane imethylbenzene cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene otoluene ylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane orobutadiene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$
1,1,2-Trichloroetha 2-Hexanone	ne	<0.05 <0.5	1,2,3-Tr	ichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-01-2 06/08/22 06/10/22 06/10/22 Soil mg/kg (ppr	0 n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Estelita's Library 22(206121-05 061034.D GCMS11 RF	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 113 97 102	Lower Limit: 79 84 84	Upper Limit: 128 121 116	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentano cis-1,3-Dichloroprop Toluene trans-1,3-Dichloroprop	hane rr (MTBE) thene e ene (EDC) ne e le hane pone pene	$\begin{array}{c} < 0.5 \\ < 0.5 \ \mathrm{jl} \\ < 0.05 \\ < 0.5 \ \mathrm{jl} \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \ \mathrm{jl} \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr: 1,1,2,2-T 1,2,3-Tr: 2-Chloro 4-Chloro tert-But 1,2,4-Tr: sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr:	nzene 'etrachloroethane ene '' 'lbenzene '' 'lbenzene enzene imethylbenzene 'etrachloroethane ichloropropane toluene ylbenzene imethylbenzene 'ylbenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 0.65 \\ < 0.05 \\ 3.2 \\ 1.7 \\ < 0.05 \\ 0.26 \\ < 0.05 \\ 1.6 \\ < 0.05 \\ 1.6 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ 13 \end{array}$
1,1,2-Trichloroetha 2-Hexanone		<0.05 <0.05 <0.5	-	alene ichlorobenzene	13 <0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-01-20 06/08/22 06/10/22 06/16/22 Soil mg/kg (ppn	0 n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Estelita's Library 22(206121-05 1/10 061606.D GCMS4 RF	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 104 102 100	Lower Limit: 90 89 84	Upper Limit: 109 112 115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,2-Dichloropropan Carbon tetrachlorio Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene ene (EDC) ine ie de hane one		Tetrach Dibromo 1,2-Dibr Chlorob Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr	nzene Petrachloroethane ene ev Vlbenzene orm lbenzene enzene imethylbenzene Petrachloroethane ichloropropane otoluene	$\begin{array}{c} < 0.5 \\ < 0.25 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ 0.98 \\ < 0.5 \\ 4.5 \\ 2.2 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0$
Toluene trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone	-	1.0 < 0.5 < 0.5 < 5	Naphtha	orobutadiene alene ichlorobenzene	<2.5 12 <2.5

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-01-40 06/08/22 06/10/22 06/16/22 Soil mg/kg (ppm) n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Estelita's Library 22(206121-09 061607.D GCMS4 RF	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 99 97	Lower Limit: 90 89 84	Upper Limit: 109 112 115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropthane 2,2-Dichloropthane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 4-Methyl-2-pentane cis-1,3-Dichloroptop Toluene	hane er (MTBE) thene e ene (EDC) ne e le hane pene	$\begin{array}{c} < 0.5 \\ < 0.5 \ \mathrm{jl} \\ < 0.05 \\ < 0.5 \ \mathrm{jl} \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \ \mathrm{jl} \\ < 0.25 \\ < 0.05 \ \mathrm{jl} \\ < 0.05 \ \mathrm{jl} \\ < 0.05 \ \mathrm{jl} \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$	Tetrach Dibromo 1,2-Dibr Chlorob Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromob 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexach	nzene Cetrachloroethane ene dibenzene m imethylbenzene cetrachloroethane inethylbenzene cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene dibenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.$
trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	-	<0.05 <0.05 <0.5	Naphtha 1,2,3-Tr	alene ichlorobenzene	0.15 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-02-22 06/08/22 06/10/22 06/10/22 Soil mg/kg (ppn	l n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, Li Estelita's Library 220 206121-13 061036.D GCMS11 RF	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 94 99 99	Lower Limit: 79 84 84	Upper Limit: 128 121 116	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropropan	hane er (MTBE) othene eene (EDC) ne e de nane pene	$\begin{array}{c} < 0.5 \\ < 0.5 \ \mathrm{jl} \\ < 0.05 \\ < 0.5 \ \mathrm{jl} \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 5 \ \mathrm{jl} \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.$	Tetrach Dibromo 1,2-Dibr Chlorob Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromob 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr Hexach	nzene 'etrachloroethane ene '' 'lbenzene frm lbenzene enzene imethylbenzene 'etrachloroethane ichloropropane toluene ylbenzene jylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	< 0.05 < < 0.025 < < 0.05 < < 0.05 < < 0.05 < < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & < 0.05 & & & & & & & & & & & & & & & & & & &
trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone		<0.05 <0.05 <0.5	Naphtha 1,2,3-Tr	alene ichlorobenzene	3.6 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-02-4 06/08/22 06/10/22 06/10/22 Soil mg/kg (ppr	1.5 n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Estelita's Library 22(206121-17 061037.D GCMS11 RF	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 97 105	Lower Limit: 79 84 84	Upper Limit: 128 121 116	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropropan Toluene trans-1,3-Dichloropropan	hane er (MTBE) thene e ene (EDC) ne e le hane pene	$\begin{array}{c} < 0.5 \\ < 0.5 \ jl \\ < 0.05 \\ < 0.5 \ jl \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ jl \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\$	1,3-Dich Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr	loropropane oroethene ochloromethane omoethane (EDB) enzene nzene "cetrachloroethane ene "cetrachloroethane ene "cetrachloroethane ence "cetrachloroethane inethylbenzene "cetrachloroethane ichloropropane otoluene ylbenzene pylbenzene imethylbenzene "ylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane orobutadiene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 0.36 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$
1,1,2-Trichloroetha 2-Hexanone		<0.05 <0.5	_	ichlorobenzene	<0.25

ENVIRONMENTAL CHEMISTS

Not Applica 06/09/22 06/10/22 Soil	able	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Estelita's Library 220 02-1359 mb 061013.D GCMS11 RF	
	% Recovery: 99 99 100	Lower Limit: 79 84 84	Upper Limit: 128 121 116	
	Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
hane er (MTBE) thene e ene (EDC) ne e le hane pene	$\begin{array}{c} < 0.5 \\ < 0.5 \ jl \\ < 0.05 \\ < 0.5 \ jl \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \ jl \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$	1,3-Dich Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xylen o-Xylene Styrene Isopropy Bromofo n-Propy Bromobo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexachl	loropropane loroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene otoluene ylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane orobutadiene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$
	<0.05 <0.05 <0.5	-		<0.05 <0.25
	Not Applica 06/09/22 06/10/22 Soil	$\begin{array}{cccccc} 06/10/22 \\ Soil \\ mg/kg (ppm) Dry Weight \\ & & & & & & & & & & & & & & & & & & $	Not Applicable Project: Lab ID: 06/10/22 Data File: Instrument: mg/kg (ppm) Dry Weight Dependent M Recovery: Limit: Limit: Lower	Not ApplicableProject:Estelita's Library 220 $06/09/22$ Lab ID: 02.1359 mb $06/10/22$ Data File: $061013.D$ SoilInstrument:GCMS11mg/kg (ppm) Dry WeightOperator:RF 99 79 128 99 84 121 ene 100 84 116 mg/kg (ppm)Compounds: $(0.5 j)$ Tetrachloropthene $< 0.5 j$ $1,3$ -Dichloropropane $< 0.5 j$ Tetrachloroethene < 0.05 Dibromochloromethane $< 0.5 j$ $1,2$ -Dibromoethane (EDB) < 0.5 Ethylbenzene $< 0.5 j$ $1,1,1,2$ -Tetrachloroethane $< 0.05 j$ m.p-Xylene $< 0.05 j$ m.p-Xylene $< 0.05 j$ Isopropylbenzene $< 0.05 j$ Isopropylbenzene $< 0.05 j$ $1,2,2$ -Titrachloroethane $< 0.05 j$ $1,2,2$ -Tetrachloroethane $< 0.05 j$ $1,3,5$ -Trimethylbenzene $< 0.05 i$ $1,2,3$ -Trichloropropane $< 0.05 i$ $1,2,3$ -Trichloropthane $< 0.05 i$ $1,2,4$ -Trimethylbenzene $< 0.05 i$ $1,2,4$ -Trimethylbenzene $< 0.05 i$ $1,2,1$ -Titrenchloroethane $< 0.05 i$ $1,2,1$ -Titrenchloroeth

ENVIRONMENTAL CHEMISTS

Date of Report: 06/20/22 Date Received: 06/08/22 Project: Estelita's Library 220267, F&BI 206121

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 205405-01 (Duplicate)						
		Samp	le Du	iplicate		
	Reporting	Resu	lt I	Result	RPD	
Analyte	Units	(Wet V	Vt) (W	/et Wt)	(Limit 20)	
Gasoline	mg/kg (ppm)	<5		<5	nm	
Laboratory Code: Laboratory Control Sample Percent						
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria	_	
Gasoline	mg/kg (ppm)	20	105	71-131		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/20/22 Date Received: 06/08/22 Project: Estelita's Library 220267, F&BI 206121

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	206181-01 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	98	98	73-135	0
Laboratory Code:	Laboratory Contr	ol Sampl	e				
			Percent				
	Reporting	Spike	Recovery	Acceptar	nce		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	96	74-139)		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/20/22 Date Received: 06/08/22 Project: Estelita's Library 220267, F&BI 206121

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 206168-01 (Matrix Spike)

Laboratory Code: 206168-01	(Matrix Spike)		C 1		D (
	_		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	< 0.5	24	13	10-142	59 vo
Chloromethane	mg/kg (ppm)	1	< 0.5	28	19	10-126	38 vo
Vinyl chloride Bromomethane	mg/kg (ppm)	1 1	<0.05 <0.5	36 59	23 35	10-138 10-163	44 vo 51 vo
Chloroethane	mg/kg (ppm) mg/kg (ppm)	1	<0.5 <0.5	59 44	30 31	10-163	35 vo
Trichlorofluoromethane	mg/kg (ppm)	1	<0.5	55	35	10-176	44 vo
Acetone	mg/kg (ppm)	5	<5	70	46	10-163	41 vo
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	63	42	10-160	40 vo
Hexane	mg/kg (ppm)	1	< 0.25	59	42	10-137	34 vo
Methylene chloride	mg/kg (ppm)	1	< 0.5	90	57	10-156	45 vo
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	97	67	21-145	37 vo
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	90	62	14-137	37 vo
1,1-Dichloroethane	mg/kg (ppm)	1 1	<0.05 <0.05	89	$65 \\ 156$	19-140 10-158	31 vo
2,2-Dichloropropane cis-1.2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	$140 \\ 102$	126	25-135	11 19
Chloroform	mg/kg (ppm)	1	<0.05	102	120	21-145	16
2-Butanone (MEK)	mg/kg (ppm)	5	<1	84	120	19-147	35 vo
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	116	123	12-160	6
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	119	127	10-156	7
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	102	120	17-140	16
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	115	124	9-164	8
Benzene	mg/kg (ppm)	1	< 0.03	101	120	29-129	17
Trichloroethene	mg/kg (ppm)	1	< 0.02	172 vo	118	21-139	37 vo
1,2-Dichloropropane	mg/kg (ppm)	1 1	< 0.05	189 vo	121 121	30-135	44 vo
Bromodichloromethane Dibromomethane	mg/kg (ppm) mg/kg (ppm)	1	<0.05 <0.05	189 vo 197 vo	121 125	23-155 23-145	44 vo 45 vo
4-Methyl-2-pentanone	mg/kg (ppm)	5	<0.05	197 vo	125	24-155	43 vo 43 vo
cis-1,3-Dichloropropene	mg/kg (ppm)	1	<0.05	194 vo	127	28-144	43 vo 42 vo
Toluene	mg/kg (ppm)	1	< 0.05	111	126	35-130	13
trans-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	116	129	26-149	11
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	109	120	10-205	10
2-Hexanone	mg/kg (ppm)	5	< 0.5	104	116	15-166	11
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	107	119	31-137	11
Tetrachloroethene	mg/kg (ppm)	1	27	0 b	0 b	20-133	nm b
Dibromochloromethane 1,2-Dibromoethane (EDB)	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 <0.05	122 109	137 124	28-150 28-142	12 13
Chlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	< 0.05	109	124 120	28-142 32-129	13
Ethylbenzene	mg/kg (ppm)	1	<0.05	105	120	32-125	9
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	111	126	31-143	13
m,p-Xylene	mg/kg (ppm)	2	< 0.1	111	123	34-136	10
o-Xylene	mg/kg (ppm)	1	< 0.05	113	126	33-134	11
Styrene	mg/kg (ppm)	1	< 0.05	109	121	35-137	10
Isopropylbenzene	mg/kg (ppm)	1	< 0.05	112	121	31-142	8
Bromoform	mg/kg (ppm)	1	< 0.05	116	130	21-156	11
n-Propylbenzene Bromobenzene	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 <0.05	108 106	116 115	23-146 34-130	7 8
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	<0.05	112	120	18-149	7
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	<0.05	112	119	28-140	8
1,2,3-Trichloropropane	mg/kg (ppm)	1	< 0.05	104	112	25-144	7
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	110	117	31-134	6
4-Chlorotoluene	mg/kg (ppm)	1	< 0.05	108	117	31-136	8
tert-Butylbenzene	mg/kg (ppm)	1	< 0.05	113	119	30-137	5
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	114	122	10-182	7
sec-Butylbenzene	mg/kg (ppm)	1	< 0.05	113	120	23-145	6
p-Isopropyltoluene	mg/kg (ppm)	1	<0.05	117	125	21-149	7
1,3-Dichlorobenzene	mg/kg (ppm)	1	<0.05	113 112	120 121	30-131 29-129	6
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 0.051	112 115	121 120	29-129 31-132	8 4
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	<0.5	109	120	11-161	4 10
1.2.4-Trichlorobenzene	mg/kg (ppm)	1	<0.25	105	120	22-142	8
Hexachlorobutadiene	mg/kg (ppm)	1	<0.25	125	132	10-142	5
Naphthalene	mg/kg (ppm)	1	< 0.05	116	122	14-157	5
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	116	122	20-144	5

ENVIRONMENTAL CHEMISTS

Date of Report: 06/20/22 Date Received: 06/08/22 Project: Estelita's Library 220267, F&BI 206121

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	I I I I I I I I I		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	23	10-146
Chloromethane	mg/kg (ppm)	1	21 vo	27-133
Vinyl chloride	mg/kg (ppm)	1	27	22-139
Bromomethane	mg/kg (ppm)	1	36 vo	38-114
Chloroethane	mg/kg (ppm)	1	27	9-163
Trichlorofluoromethane	mg/kg (ppm)	1	38	10-196
Acetone	mg/kg (ppm)	5	36 vo	52-141
1,1-Dichloroethene	mg/kg (ppm)	1	38 vo	47-128
Hexane Methylene chloride	mg/kg (ppm)	1 1	82 33	43-142
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	1	59 vo	10-184 60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	1	57 vo	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	97	68-115
2.2-Dichloropropane	mg/kg (ppm)	1	135	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	105	72-127
Chloroform	mg/kg (ppm)	1	102	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	101	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	101	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	109	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	103	69-128
Carbon tetrachloride	mg/kg (ppm)	1	105	60-139
Benzene	mg/kg (ppm)	1	102	71-118
Trichloroethene	mg/kg (ppm)	1	99	63-121
1,2-Dichloropropane	mg/kg (ppm)	1	102	72-127
Bromodichloromethane	mg/kg (ppm)	1	101	57 - 126
Dibromomethane	mg/kg (ppm)	1	102	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	104	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	107	67-122
Toluene	mg/kg (ppm)	1	106	66-126
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	1 1	110 103	72-132 64-115
2-Hexanone	mg/kg (ppm)	5	98	33-152
1,3-Dichloropropane	mg/kg (ppm)	1	101	72-130
Tetrachloroethene	mg/kg (ppm)	1	101	72-114
Dibromochloromethane	mg/kg (ppm)	1	115	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	103	74-132
Chlorobenzene	mg/kg (ppm)	1	102	76-111
Ethylbenzene	mg/kg (ppm)	1	105	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	105	64-121
m,p-Xylene	mg/kg (ppm)	2	105	78-122
o-Xylene	mg/kg (ppm)	1	109	77-124
Styrene	mg/kg (ppm)	1	101	74-126
Isopropylbenzene	mg/kg (ppm)	1	106	76-127
Bromoform	mg/kg (ppm)	1	108	56-132
n-Propylbenzene	mg/kg (ppm)	1	98	74-124
Bromobenzene	mg/kg (ppm)	1 1	98 102	72-122 76-126
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	102	
1,1,2,2-1 etrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	1	92	56-143 61-137
2-Chlorotoluene	mg/kg (ppm)	1	99	74-121
4-Chlorotoluene	mg/kg (ppm)	1	97	75-122
tert-Butylbenzene	mg/kg (ppm)	1	103	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	105	76-125
sec-Butylbenzene	mg/kg (ppm)	1	103	71-130
p-Isopropyltoluene	mg/kg (ppm)	1	105	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	1	102	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	1	102	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	1	103	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	103	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	108	64-135
Hexachlorobutadiene	mg/kg (ppm)	1	111	50-153
Naphthalene	mg/kg (ppm)	1	103	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	104	63-138

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

			Friedman & Bruya, Inc.	Alan - Cu 2.2	22-22	- 0	8MW -01 - 35	AMW -01-30	AMM-01 - 25	AMM - 01 - 20	SI-10-MWY	AMM - 01 - 10	AMU -01-05	AMW-03-03	Sample ID		PhoneEmail	City, State, ZIP Scuttle	Address TO Ant A	pecy	Ę		
Received by:	Relinquished by:	Received by:	SIC Relinquisher by:			8	8	97	610	R	94	63	9	01 A-E	Lab ID		j	IE, WA,	Ave, Ste S			» AN Cochrane	
			SIGNATURE	017100	617100	4								6/6/22	Date Sampled			98104	005			n n n n n n n n n n n n n n n n n n n	
					102 22 Qi	Эн Р С	004	1340	1330	124S	1225	QI BID	0430	55 00	Time Sampled		- Project s	- KEMAKKS		Este	PROJEC	SAMPLE	SAMPLE CHAIN OF CUSTOD
	(<									So: 1	Sample Type		Project specific RLs? -	Ď		Estelijas	PROJECT NAME	SAMPLERS (signature)	CHAIN
			PR		Ļ									- 0	# of Jars		? - Yes		/	ζ		'ure)	OF (
		Dh A h	Grand MA		4	•						•		\times	NWTPH-Dx		-						SUC
		\$ 5	AME		<u> </u>	•					<u> </u>	•	+	$ \times$	NWTPH-Gx		No						TOI
												-			BTEX EPA 8021	-				• •			Y
					<u> </u>						,			$\frac{1}{\times}$	NWTPH-HCID VOCs EPA 8260	ANA		\searrow		6			06
							-						1		PAHs EPA 8270	ANALYSES		AN	TNIVIOTOE TO	Jaca67	PO#		06-08-22
70	-	TI	N N												PCBs EPA 8082	ES RI		÷.	3	7-1			201
) and	ī	_ ۲۹	Nspect													I DB B							2
ples			pect													REQUESTED		00		হৰ ত	×		•
rece	*											_					efauli	□ Archiv □ Other	s	⊔ k∪sn Rush cha	Stand	Pa TT	
Samples received at											_		_			_	:: Dis	□ Archive samples □ Other	SAMPLE DISPOSAL	Kush charges authorized by:	K_Standard turnaround	Page # 1 of TURNAROUND TIME	
2	1 · T	6/8	6/8/22											E	• -analyze Per Acc ME 6/10/7L huld the rest		oose s	aples	EDIS	autho	urnaro	ROUN	8
7		\sim			K		_				*****	_	+		-analyte Prace Notes E 6/10/72		uter .	>	Sport	rized	und	D TI	Grash/hog
Ô		560	5540	AMM										$ \Psi $	• -analyte Per Ac ME 6/10/76- huld the rest		Default: Dispose after 30 days	-	L	by:	•	MB	5
		3															NS VS	 			 		

SAMPLE CHAIN OF CUSTODY Ob-00-22 SAMPLE CHAIN OF CUSTODY Ob-00-22 Conserti-rag Conserti-rag ESNEET NAME ESNEET NAME ESNEET NAME ESNEET NAME ESNEET NAME ESNEET NAME BENARKS Main ESNEET NAME ESNEET NAME BENARKS ESNEET NAME BENARKS ESNEET NAME AP ESNEET NAME BENARKS Infinite semple Sample Time Sample Benarie Time Sample Benarie Time Sample Benarie Sample Benarie Benarie Time Sample Benarie Sample Benarie Benarie Time Sample Benarie Sample Benarie Nones Benarie Benarie Nones Signarie Benarie Nones Benarie Benarie Be	Rec		<i>Friedman & Bruya, Inc.</i> Rel <i>Ph. (206) 285-8282</i>				8MM - 62 - 415	AMM - 02 - 411.5	AMW-02-35	AMW-02-30	AMW-02-25.5	AMW -02 - 21	AMW-02-15	AMW-02-16.5	Sample ID		PhoneEmail	City, State, ZIP Scw 24	Address 710 2nd	Company Aspect C	206121 Report To Flannah
SAMPLE CHAIN OF CUSTODY $(C_0 - 0 - 2)$ Negative Project specific RLs ² . Ves / No Project specific RLs ² . Ves / No Number of the specific RLs ² . Ves / No Number of the specific RLs ² . Ves / No Number of the specific RLs ² . Ves / No Number of the specific RLs ² . Ves / No Number of the specific RLs ² . Ves / No ANILY SIZE REQUISE TO ANILY NAME Note Note Sample differ RLs ² . Ves / No ANILY NAME Note Note Sample differ RLs ² . Ves / No ANILY NAME Note ANILY NAME Note ANIL Size Requires antionized turnareound ANILY NATE ANIL Size Requires antionized turnareound ANIL Size Requires antionized turnareound ANIL Size Requires antionized turnareound ANIL Size	eived by:	inquished by:	H Andrew Manu		A A A A A A A A A A A A A A A A A A A			F	6	ন	<u> </u>	$\overline{\Sigma}$	7	1175	Lab ID			, wA,		onsultino	Cohen, Al
AMPLE CHAIN OF CUSTODY $\mathcal{O}_{G} - \mathcal{O}_{G} - \mathcal{O}_{G} - \mathcal{O}_{G}$ Page # \mathcal{O}_{eq} SAMPLED8 (Segreture) PO # Po # Page # \mathcal{O}_{eq} PROJECT NAME PO # $\mathcal{O}_{G} - \mathcal{O}_{G} - \mathcal{O}_{G}$ Po # Po # Page # \mathcal{O}_{eq} REMARKS Project specific RLs? Yes / No A A Po # Standard turnaround Project specific RLs? Yes / No A A Po # Standard turnaround SISS Soci 1 S X NWTPH-GX A Po Bes EPA 8082 Po Has SISS Soci 1 S X B NWTPH-HCID Note Note SISS Soci 1 S X B NWTPH-HCID Note SISS Soci 1 S X B NWTPH-HCID Note SISS Soci 1 S X B NWTPH-HCID Note SISS Soci 1 S X B Note Note SISS Soci 1 S X B Note Note SISS Soci 1 S Note Note Note Sisso Soci 1 Soci 1 Soci 1 Not				NATURE		na juu vuodin mara Panno ar a Namilly ("Anno anti angana angana marana At	~							Ee/2/9	Date Sampled			101			
NWTPH-HCID AQC 26 4 Page # A off INVOICE TO A P TURNAROUND TI A P Number of the service samples Contraction of the service samples A P PAHs EPA 8270 Contraction of the service samples PAHs EPA 8082 PCBs EPA 8082 Default: Dispose after A Source of the service samples Archive samples Archive samples COMPANY PCBs EPA 8082 HOC Note A Source of the service samples HOC HOC Note		2	Contractive And		Ø	and a second	1450	1430)HIO	1325	SHS S	133S	1320	Desley	Time Sampled		Project s	REMAR	, 27 7	PROJEC	
NWTPH-HCID AQC 26 4 Page # A off INVOICE TO A P TURNAROUND TI A P Number of the service samples Contraction of the service samples A P PAHs EPA 8270 Contraction of the service samples PAHs EPA 8082 PCBs EPA 8082 Default: Dispose after A Source of the service samples Archive samples Archive samples COMPANY PCBs EPA 8082 HOC Note A Source of the service samples HOC HOC Note		NAN	Lillian			no na	4	Managa I Managara ya Ku					^س وروید دیندر رو	Sei 1			pecific RLs	KS	0141) Cintas	T NAME	CHAIN
NWTPH-HCID AQC 26 4 Page # A off INVOICE TO A P TURNAROUND TI A P Number of the service samples Contraction of the service samples A P PAHs EPA 8270 Contraction of the service samples PAHs EPA 8082 PCBs EPA 8082 Default: Dispose after A Source of the service samples Archive samples Archive samples COMPANY PCBs EPA 8082 HOC Note A Source of the service samples HOC HOC Note			S'a	PRIN	6		\leftarrow							Ν	# of Jars				~ ~		Vure)
NWTPH-HCID AQC 26 4 Page # A off INVOICE TO A P TURNAROUND TI A P Number of the service samples Contraction of the service samples A P PAHs EPA 8270 Contraction of the service samples PAHs EPA 8082 PCBs EPA 8082 Default: Dispose after A Source of the service samples Archive samples Archive samples COMPANY PCBs EPA 8082 HOC Note A Source of the service samples HOC HOC Note		5		TNA	187	5		-0-		erat meriadosia dass		•		 			~				S D C
NWTPH-HCID AQC 26 4 Page # A off INVOICE TO A P TURNAROUND TI A P Number of the service samples Contraction of the service samples A P PAHs EPA 8270 Contraction of the service samples PAHs EPA 8082 PCBs EPA 8082 Default: Dispose after A Source of the service samples Archive samples Archive samples COMPANY PCBs EPA 8082 HOC Note A Source of the service samples HOC HOC Note		5	M	ME	1	5	~	•	9499493			•					10				IOI
O PCBs EPA 8082 O PCBs EPA 8082 O PCBs EPA 8082 O PCBs EPA 8082 O REQUESTED REQUESTED COMPANY COMP		-													F			⊢ {	دو		X
O PCBs EPA 8082 O PCBs EPA 8082 O PCBs EPA 8082 O PCBs EPA 8082 O REQUESTED REQUESTED COMPANY COMP								•				•		\geq	VOCs EPA 8260	ANAL		P NVOI	20 00	Pc	8
Product Page # Boy of action 0 TURNAROUND TI Standard turnaround Standard turnaround 0 RUSH Bush charges authorized Other Default: Dispose after Sprct B.T B.T <t< td=""><td></td><td>+7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>YSES</td><td></td><td>CET</td><td>Р 96 Г</td><td>)#</td><td>6</td></t<>		+7														YSES		CET	Р 96 Г)#	6
Page # A long w TURNAROUND TI tandard turnaround tUSH sh charges authorized SAMPLE DISPOS wrchive samples ther fault: Dispose after fault: Dispose after b/ 8/22 b/ 8/22	Sat	14	12050	CON											PCBs EPA 8082	REQ		0		- - -	0
Page # A long w TURNAROUND TI tandard turnaround tUSH sh charges authorized SAMPLE DISPOS wrchive samples ther fault: Dispose after fault: Dispose after b/ 8/22 b/ 8/22	nple	a) -1	t	MPAN						·						UEST					
Note Note Note	s rec	-		<u>Ar</u>		\mathbf{f}										ED	⊖ Otr <u>Defa</u>	Are	Rush	Sta RU	anti ang s Libuta
Note Note Note	eive			_		¥~											ult: D	SAM hive s	charg	ndard SH	Page #
	i i		618/22	DATE										ОH	No	×	ispose afte	PLE DISPO amples	es authorize	turnaround	AROL
	Ô	2540	S to	TIME	\langle	nçe::::::::::::::::::::::::::::::::::::		M* *********************						0	tes		r 30 days	SAL	3d by:	ىلىر	TIME 2

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 20, 2022

Hannah Cohen, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Cohen:

Included are the results from the testing of material submitted on June 8, 2022 from the Estelita's Library 220264, F&BI 206140 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data, Ali Cochrane ASP0620R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 8, 2022 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Estelita's Library 220264, F&BI 206140 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Aspect Consulting, LLC</u>
206140 -01	AMW-03-05
206140 -02	AMW-03-10
206140 -03	AMW-03-15
206140 -04	AMW-03-20
206140 -05	AMW-03-25
206140 -06	AMW-03-30
206140 -07	AMW-03-35
206140 -08	AMW-03-40

The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/20/22 Date Received: 06/08/22 Project: Estelita's Library 220264, F&BI 206140 Date Extracted: 06/15/22 Date Analyzed: 06/15/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
AMW-03-05 206140-01	<5	71
AMW-03-20 206140-04	<5	106
AMW-03-35 206140-07	<5	82
Method Blank 02-1158 MB	<5	91

ENVIRONMENTAL CHEMISTS

Date of Report: 06/20/22 Date Received: 06/08/22 Project: Estelita's Library 220264, F&BI 206140 Date Extracted: 06/10/22 Date Analyzed: 06/10/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
AMW-03-05 206140-01	<50	<250	119
AMW-03-20 206140-04	<50	<250	106
AMW-03-35 206140-07	<50	<250	107
Method Blank ^{02-1398 MB}	<50	<250	103

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-03-0 06/08/22 06/13/22 06/16/22 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Estelita's Library 220 206140-01 061550.D GCMS11 RF	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 93 95 99	Lower Limit: 79 84 84	Upper Limit: 128 121 116	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichloromet Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ne e de nane one pene oropene	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrach Dibromo 1,2-Dibr Chlorob Ethylbe 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr Hexachl Naphtha	nzene Cetrachloroethane ene willenzene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene julbenzene pyltoluene lorobenzene lorobenzene lorobenzene ichloropropane ichloropropane	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.05 \end{array}$
	-		Naphtha		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-03-20 06/08/22 06/13/22 06/16/22 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Estelita's Library 22(206140-04 061551.D GCMS11 RF	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 106 104 95	Lower Limit: 79 84 84	Upper Limit: 128 121 116	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometh Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1-Dichloropethane 1,1-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,3-Dichloropethane 4-Methyl-2-pentane cis-1,3-Dichloropethane trans-1,3-Dichloropethane	hane rr (MTBE) thene e ene (EDC) ne e le hane pone pene	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobe 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexachl	nzene 'etrachloroethane ene '' 'lbenzene frm lbenzene enzene imethylbenzene 'etrachloroethane ichloropropane toluene ylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichloropropane ichloropropane	< 0.05 < 0.025 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
1,1,2-Trichloroetha 2-Hexanone	-	<0.05 <0.05 <0.5	Naphtha 1,2,3-Tri	ichlorobenzene	<0.05 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	AMW-03-35 06/08/22 06/13/22 06/16/22 Soil mg/kg (ppm	5) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, Li Estelita's Library 220 206140-07 061552.D GCMS11 RF	
Surrogates: 1,2-Dichloroethane- Toluene-d8 4-Bromofluorobenze		% Recovery: 100 95 94	Lower Limit: 79 84 84	Upper Limit: 128 121 116	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluoromet Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometh Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether trans-1,2-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,2-Dichloropropane Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropane Bromodichlorometh Dibromomethane 4-Methyl-2-pentano cis-1,3-Dichloropropane	ane (MTBE) chene e ne (EDC) ne e ane ane	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr: 1,1,2,2-T 1,2,3-Tr: 2-Chloro 4-Chloro tert-But 1,2,4-Tr: sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr:	nzene Cetrachloroethane ene dbenzene rm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene	< 0.05 < < 0.025 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.05 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 < < 0.25 <
trans-1,3-Dichlorop 1,1,2-Trichloroethar 2-Hexanone	-	<0.05 <0.05 <0.5	Naphtha 1,2,3-Tri	alene ichlorobenzene	<0.05 <0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bl Not Applic 06/13/22 06/13/22 Soil mg/kg (ppr		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Estelita's Library 220 02-1378 mb 061310.D GCMS4 RF	
C .		07 D	Lower	Upper	
Surrogates:	d 4	% Recovery: 105	Limit: 90	Limit: 109	
1,2-Dichloroethane Toluene-d8	-04	97	90 89	109	
4-Bromofluorobenz	ene	97	84	112 115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		<0.5		omoethane (EDB)	< 0.05
Chloroethane	1	<0.5	Chlorobe		< 0.05
Trichlorofluoromet Acetone	nane	<0.5 <5	Ethylber	retrachloroethane	<0.05 <0.05
1,1-Dichloroethene		<5 <0.05	m,p-Xyle		<0.05
Hexane		<0.25	o-Xylene		<0.1
Methylene chloride	•	< 0.5	Styrene	-	< 0.05
Methyl t-butyl ethe		< 0.05	-	lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane 1,1,1-Trichloroetha		< 0.05 < 0.05	2-Chloro 4-Chloro		<0.05 <0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorio		<0.05		imethylbenzene	<0.05
Benzene	ac	< 0.03		vlbenzene	< 0.05
Trichloroethene		< 0.02		pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05		lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop		< 0.05	Naphtha	<0.05	
1,1,2-Trichloroetha 2-Hexanone	.ne	<0.05 <0.5	1,2,3-Tr	ichlorobenzene	< 0.25
2-mexamone		~0.0			

ENVIRONMENTAL CHEMISTS

Date of Report: 06/20/22 Date Received: 06/08/22 Project: Estelita's Library 220264, F&BI 206140

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 206140-01 (Duplicate)										
	Samp	le Du	plicate							
Reporting	Resu	lt R	esult	RPD						
Units	(Wet V	Vt) (W	et Wt)	(Limit 20)						
mg/kg (ppm)	<5		<5	nm						
boratory Contro	ol Sample									
	a .1	-								
Reporting	Spike		Acceptance							
Units	Level	LCS	Criteria	_						
mg/kg (ppm)	20	105	71-131							
	Reporting Units mg/kg (ppm) boratory Contro Reporting Units	Samp Reporting Resu <u>Units (Wet V</u> mg/kg (ppm) <5 boratory Control Sample Reporting Spike <u>Units Level</u>	SampleDuReportingResultRUnits(Wet Wt)(Wmg/kg (ppm)<5	SampleDuplicateReportingResultResultUnits(Wet Wt)(Wet Wt)mg/kg (ppm)<5						

ENVIRONMENTAL CHEMISTS

Date of Report: 06/20/22 Date Received: 06/08/22 Project: Estelita's Library 220264, F&BI 206140

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 206132-01 (Matrix Spike)

Laboratory Code:	206132-01 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	100	106	73-135	6
Laboratory Code:	Laboratory Contr	ol Sampl	e				
			Percent				
	Reporting	Spike	Recovery	Acceptar	nce		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	100	74-139			

ENVIRONMENTAL CHEMISTS

Date of Report: 06/20/22 Date Received: 06/08/22 Project: Estelita's Library 220264, F&BI 206140

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 206221-01 (Matrix Spike)

Laboratory Code: 206221-01	(Matrix Spike)		Sample	Percent	Percent		
		a .1				A 1	חחח
	Reporting	Spike	Result			Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	<0.5	17	19	10-142	11
Chloromethane Vinyl chloride	mg/kg (ppm) mg/kg (ppm)	1 1	<0.5 <0.05	41 47	36 37	10-126 10-138	13 24 vo
Bromomethane	mg/kg (ppm)	1	<0.05	47 53	63	10-163	24 00
Chloroethane	mg/kg (ppm)	1	<0.5	112	74	10-176	41 vo
Trichlorofluoromethane	mg/kg (ppm)	1	< 0.5	70	52	10-176	30 vo
Acetone	mg/kg (ppm)	5	<5	87	77	10-163	12
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	59	63	10-160	7
Hexane	mg/kg (ppm)	1	<0.25	42	48	10-137	13
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	1 1	<0.5 <0.05	75 79	77 87	10-156 21-145	3 10
trans-1.2-Dichloroethene	mg/kg (ppm)	1	<0.05	79 71	74	14-137	4
1,1-Dichloroethane	mg/kg (ppm)	1	<0.05	78	82	19-140	5
2,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	75	79	10-158	5
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	75	80	25 - 135	6
Chloroform	mg/kg (ppm)	1	< 0.05	75	78	21-145	4
2-Butanone (MEK)	mg/kg (ppm)	5	<1	83	83	19-147	0
1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane	mg/kg (ppm)	1	<0.05 <0.05	77 77	86 82	12-160 10-156	11 6
1,1,1-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	73	82 78	10-156 17-140	6
Carbon tetrachloride	mg/kg (ppm)	1	<0.05	73	76	9-164	4
Benzene	mg/kg (ppm)	1	< 0.03	81	82	29-129	1
Trichloroethene	mg/kg (ppm)	1	< 0.02	78	84	21-139	7
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	79	86	30-135	8
Bromodichloromethane	mg/kg (ppm)	1	< 0.05	82	85	23 - 155	4
Dibromomethane	mg/kg (ppm)	1	< 0.05	81	87	23-145	7
4-Methyl-2-pentanone cis-1,3-Dichloropropene	mg/kg (ppm)	5 1	<1 <0.05	82 84	90 88	24-155 28-144	9 5
Toluene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	80	87	35-130	8
trans-1,3-Dichloropropene	mg/kg (ppm)	1	<0.05	80	91	26-149	13
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	77	86	10-205	11
2-Hexanone	mg/kg (ppm)	5	< 0.5	82	89	15-166	8
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	81	92	31-137	13
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	79	83	20-133	5
Dibromochloromethane	mg/kg (ppm)	1	<0.05 <0.05	78 79	81 84	28-150 28-142	4
1,2-Dibromoethane (EDB) Chlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	79 82	84 91	28-142 32-129	10
Ethylbenzene	mg/kg (ppm)	1	<0.05	80	86	32-125	7
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	83	90	31-143	8
m,p-Xylene	mg/kg (ppm)	2	< 0.1	81	90	34-136	11
o-Xylene	mg/kg (ppm)	1	< 0.05	79	88	33-134	11
Styrene	mg/kg (ppm)	1	< 0.05	83	91	35-137	9
Isopropylbenzene Bromoform	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 <0.05	80 74	90 79	31-142 21-156	$\frac{12}{7}$
n-Propylbenzene	mg/kg (ppm)	1	<0.05	74 78	79 84	23-146	7
Bromobenzene	mg/kg (ppm)	1	<0.05	78	82	34-130	5
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	77	81	18-149	5
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	82	89	28-140	8
1,2,3-Trichloropropane	mg/kg (ppm)	1	< 0.05	75	83	25 - 144	10
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	78	85	31-134	9
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 <0.05	77 77	84 81	31-136 30-137	9 5
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	<0.05	78	85	10-182	9
sec-Butylbenzene	mg/kg (ppm)	1	< 0.05	80	84	23-145	5
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	79	83	21-149	5
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	76	82	30-131	8
1,4-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	78	83	29-129	6
1,2-Dichlorobenzene	mg/kg (ppm)	1	<0.05	77	83	31-132	7
1,2-Dibromo-3-chloropropane 1.2.4-Trichlorobenzene	mg/kg (ppm)	1	<0.5 <0.25	81 77	81 81	11-161 22-142	0 5
1,2,4-1richlorobenzene Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	1	<0.25 <0.25	77 78	81 79	22-142 10-142	5 1
Naphthalene	mg/kg (ppm)	1	<0.25	79	83	14-157	5
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	75	84	20-144	11
	/						

ENVIRONMENTAL CHEMISTS

Date of Report: 06/20/22 Date Received: 06/08/22 Project: Estelita's Library 220264, F&BI 206140

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laborate	v i		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	94	10-146
Chloromethane	mg/kg (ppm)	1	83	27-133
Vinyl chloride	mg/kg (ppm)	1	85	22-139
Bromomethane	mg/kg (ppm)	1	105	38-114
Chloroethane	mg/kg (ppm)	1	97	9-163
Trichlorofluoromethane	mg/kg (ppm)	1	101	10-196
Acetone 1,1-Dichloroethene	mg/kg (ppm)	5 1	61 108	52-141
Hexane	mg/kg (ppm)	1	108	47-128 43-142
Methylene chloride	mg/kg (ppm) mg/kg (ppm)	1	96	43-142 10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	101	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	1	101	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	103	68-115
2,2-Dichloropropane	mg/kg (ppm)	1	152	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	100	72-127
Chloroform	mg/kg (ppm)	1	100	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	97	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	95	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	103	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	100	69-128
Carbon tetrachloride	mg/kg (ppm)	1	114	60-139
Benzene	mg/kg (ppm)	1	94	71-118
Trichloroethene	mg/kg (ppm)	1	92	63-121
1,2-Dichloropropane	mg/kg (ppm)	1	93	72-127
Bromodichloromethane	mg/kg (ppm)	1	101	57-126
Dibromomethane	mg/kg (ppm)	1	97	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	98	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	98	67-122
Toluene	mg/kg (ppm)	1	98	66-126
trans-1,3-Dichloropropene 1.1.2-Trichloroethane	mg/kg (ppm)	1 1	101 98	72-132 64-115
2-Hexanone	mg/kg (ppm)	5	98 98	
1.3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	1	98 95	33-152 72-130
Tetrachloroethene	mg/kg (ppm)	1	97	72-130
Dibromochloromethane	mg/kg (ppm)	1	112	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	98	74-132
Chlorobenzene	mg/kg (ppm)	1	97	76-111
Ethylbenzene	mg/kg (ppm)	1	98	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	105	64-121
m,p-Xylene	mg/kg (ppm)	2	99	78-122
o-Xylene	mg/kg (ppm)	1	101	77-124
Styrene	mg/kg (ppm)	1	99	74-126
Isopropylbenzene	mg/kg (ppm)	1	101	76-127
Bromoform	mg/kg (ppm)	1	116	56-132
n-Propylbenzene	mg/kg (ppm)	1	96	74-124
Bromobenzene	mg/kg (ppm)	1	92	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	97	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	103	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	1	95	61-137
2-Chlorotoluene	mg/kg (ppm)	1	95	74-121
4-Chlorotoluene	mg/kg (ppm)	1	95	75-122
tert-Butylbenzene	mg/kg (ppm)	1	97 97	73-130
1,2,4-Trimethylbenzene sec-Butylbenzene	mg/kg (ppm)	1 1	97 97	76-125 71-130
p-Isopropyltoluene	mg/kg (ppm) mg/kg (ppm)	1	97 97	71-130 70-132
1.3-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	97 99	70-132 75-121
1.4-Dichlorobenzene	mg/kg (ppm)	1	99 95	73-121 74-117
1,4-Dichlorobenzene	mg/kg (ppm)	1	95 97	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	104	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	104	64-135
Hexachlorobutadiene	mg/kg (ppm)	1	101	50-153
Naphthalene	mg/kg (ppm)	1	95	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	96	63-138
-,_,				00 100

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Friedman & Bruya, Inc. Ph. (206) 285-8282		, e y (a a a a a a a a a a a a a a a a a a	AMW-03-40	AMW-03-35	AMW-03-30	AMW-03-25	AMW-03-20	AMW-03-15	AMW-03-10	MW-03-05	Sample ID		Phone_ <u>3 (5 · 6 4.07</u> H Email	City, State, ZIP <u>Seattle</u>	Company Aspect	Report To HOMAWA C	&_{{	しんこう
SIC Relinguy and by: Received by: Relinguished by: Received by:		assurger with and constrained on the state of the state o	5	4	90	20	ç	<i>c</i> y	02	01 A-E	Lab ID		ail	, WA,	Consulting Ave, Ste 550	Monnan Conen, Al, Cochrane) 	
SIGNATURE	A	×	4							618122	Date Sampled			48104	SSC	ochrane	~	
RE. Uadden		ra de la constante de la const	1130	ō	Э С С	1050	1040 040	9601	055	000	Time Sampled		Project s	- REMARKS	Este			SAMPLE CHAIN OF CUSTODY
Lillian		Kalad	4						annersaugute 7	Soil	Sample Type		Project specific RLs? -	KS	ta's		SAMPLERS (signature)	CHAIN
PRIN C		And the statement of the statement of the	\leftarrow							(n	# of Jars		? - Yes		Cibrer		ture)	OF
PRINT NAME Graham Maddenn			÷				•			•	NWTPH-Dx		_		\leq	V		Sno
ME				`			•		***********	•	NWTPH-Gx		No			-		TOL
											BTEX EPA 8021 NWTPH-HCID				a		1	
			<				•				VOCs EPA 8260	ANALYS		INVOICE TO	10 8 0 8 8	4	- 1 F	5
T.B.											PAHs EPA 8270	LYSE		\mathcal{P}	96	10.11		8/2
Nopect Pry 182											PCBs EPA 8082	SRE		TO	7			2
	-								<u></u>			ES REQUESTED						
NNY -											-	STED	De		Rus].	
		\leq											fault:	SA Archiv	RUSH Rush cha	ŢIJ	Page #	
PANY DAT	1	iliitioinen arn								T	······		Disp	SAMPLE DI Archive samples	Scandard turnaround RUSH Rush charges authorize	RNAR	#	
			\leftarrow							HOLD HOLD	E Re		ose af) DISI ples	uthor	NDO	-	500
										\sim	analyze per ac 6/10th Notes MC Hild the ast		<u>ter 3(</u>	SAMPLE DISPOSAL hive samples	 RUSH Rush charges authorized by 	TURNAROUND TIME	of	M-8 51/509
TIME 1600 1602											analyze pe ac 6/10thz Notes Mc Hud the est		Default: Dispose after <u>30 days</u>	b . * 1		स		50

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 22, 2022

Hannah Cohen, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Cohen:

Included are the results from the testing of material submitted on June 13, 2022 from the Estelita's Library 220264, F&BI 206236 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data, Ali Cochrane ASP0622R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 13, 2022 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Estelita's Library 220264, F&BI 206236 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
206236 -01	AMW-01-061322
206236 -02	AMW-02-061322
206236 -03	AMW-03-061322
206236 -04	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/22/22 Date Received: 06/13/22 Project: Estelita's Library 220264, F&BI 206236 Date Extracted: 06/16/22 Date Analyzed: 06/16/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery)</u> (Limit 51-134)
AMW-01-061322 206236-01 1/5	27,000	86
AMW-02-061322 206236-02 1/5	34,000	104
AMW-03-061322 206236-03	<100	60
Method Blank 02-1159 MB	<100	95

ENVIRONMENTAL CHEMISTS

Date of Report: 06/22/22 Date Received: 06/13/22 Project: Estelita's Library 220264, F&BI 206236 Date Extracted: 06/14/22 Date Analyzed: 06/14/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
AMW-01-061322 206236-01	2,200 x	<250	130
AMW-02-061322 206236-02	2,600 x	<250	114
AMW-03-061322 206236-03	69 x	<250	121
Method Blank 02-1410 MB	<50	<250	141

ENVIRONMENTAL CHEMISTS

Client Sample ID: AMW Date Received: 06/13/ Date Extracted: 06/16/ Date Analyzed: 06/16/ Matrix: Water Units: ug/L (22 22	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, Ll Estelita's Library 220 206236-01 1/100 061618.D GCMS13 WE	
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	% Recovery: 102 99 101	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds:	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether (MTH trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethene Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane 4-Methyl-2-pentanone cis-1,3-Dichloropropene Toluene	$<100 \\<100 \\<100 \\<100 \\<100 \\<200 \\<20 \\<100 \\<50 \\2,600 \\<50 \\2,600 \\<50 \\<100 \\<50 \\<100 \\<1,000 \\<40 \\960 $	Tetrach Dibromo 1,2-Dibr Chlorob Ethylbe 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofe n-Propy Bromob 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chlore 4-Chlore tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexach	nzene Cetrachloroethane ene ene ene m lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene otoluene ylbenzene imethylbenzene vlbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichloropropane	$\begin{array}{c} <100\\ <100\\ <50\\ <100\\ <100\\ 520\\ <100\\ 1,800\\ 160\\ <100\\ <100\\ <100\\ <500\\ 260\\ <100\\ <500\\ 260\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <10$
trans-1,3-Dichloropropene 1,1,2-Trichloroethane 2-Hexanone	<40 <50 <1,000	Naphtha 1,2,3-Tr	alene ichlorobenzene	140 <100

ENVIRONMENTAL CHEMISTS

Date Received:00Date Extracted:00Date Analyzed:00Matrix:W	MW-02-061322 6/13/22 6/16/22 6/16/22 Vater g/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LI Estelita's Library 220 206236-02 1/100 061619.D GCMS13 WE	
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	97	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds:	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorometha Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethan Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether (trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (E 1,1,1-Trichloroethane 1,1-Dichloropethane (E 1,1,1-Trichloroethane 1,2-Dichloropethane 1,2-Dichloropethane Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropethane 4-Methyl-2-pentanone cis-1,3-Dichloroproper Toluene	$\begin{array}{cccc} <1,000 \\ <2 \\ <500 \\ <100 \\ ne \\ <100 \\ <500 \\ <100 \\ <500 \\ <100 \\ <500 \\ MTBE) \\ <100 \\ <100 \\ <100 \\ <100 \\ <2,000 \\ DC) \\ <20 \\ <100 \\ <20 \\ <100 \\ <50 \\ \\330 \\ <50 \\ \\330 \\ <50 \\ \\330 \\ <50 \\ \\330 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 \\ <100 $	Tetrach Dibromo 1,2-Dibr Chlorob Ethylbe 1,1,1,2-T m,p-Xylene Styrene Isopropy Bromofe n-Propy Bromob 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chlore tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexach	nzene Cetrachloroethane ene ene ene m lbenzene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene otoluene ylbenzene imethylbenzene vlbenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	$\begin{array}{c} <100\\ <100\\ <50\\ <100\\ 2,000\\ <100\\ 2,000\\ <100\\ 4,800\\ 1,100\\ <100\\ <100\\ <500\\ 220\\ <100\\ 200\\ <20\\ <20\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ <100\\ $
trans-1,3-Dichloroproj 1,1,2-Trichloroethane 2-Hexanone	pene <40 <50 <1,000	Naphtha 1,2,3-Tr	alene ichlorobenzene	460 <100

ENVIRONMENTAL CHEMISTS

Client Sample ID: AMW Date Received: 06/13 Date Extracted: 06/16 Date Analyzed: 06/16 Matrix: Wate Units: ug/L	/22 /22 r	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Estelita's Library 220 206236-03 061617.D GCMS13 WE	
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	% Recovery: 96 94 99	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds:	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether (MTI) trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethene Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane 4-Methyl-2-pentanone cis-1,3-Dichloropropene Toluene	$<1 \\<1 \\<1 \\<1 \\<1 \\<20 \\<0.2 \\<1 \\<1 \\<0.5 \\<0.35 \\<0.5 \\<1 \\<10 \\<0.4 \\<1$	Tetrach Dibromo 1,2-Dibr Chlorob Ethylbe 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofe n.Propy Bromob 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chlore 4-Chlore tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexach	nzene Cetrachloroethane ene ene vilbenzene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene otoluene otoluene otoluene pylbenzene imethylbenzene pyltoluene ilorobenzene ilorobenzene ilorobenzene omo-3-chloropropane orobutadiene	$<1 \\ <1 \\ <0.5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
trans-1,3-Dichloropropene 1,1,2-Trichloroethane 2-Hexanone	e < <0.4 < <0.5 < <10	Naphtha 1,2,3-Tr	alene ichlorobenzene	<1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Trip Blank Date Received: 06/13/22 Date Extracted: 06/16/22 Date Analyzed: 06/16/22 Matrix: Water Units: ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Estelita's Library 220 206236-04 061616.D GCMS13 WE	
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	% Recovery: 109 98 102	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds:	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethene Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane 4-Methyl-2-pentanone cis-1,3-Dichloropropene Toluene	$<1 \\ <10 \\ <0.02 \\ <5 \\ <1 \\ <1 \\ <50 \\ <1 \\ <5 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	Tetrach Dibromo 1,2-Dibr Chlorob Ethylbe 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromob 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexach	nzene Cetrachloroethane ene ene vilbenzene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene otoluene otoluene otoluene pylbenzene imethylbenzene pyltoluene ilorobenzene ilorobenzene ilorobenzene omo-3-chloropropane orobutadiene	
trans-1,3-Dichloropropene 1,1,2-Trichloroethane 2-Hexanone	<0.4 <0.5 <10	Naphtha 1,2,3-Tr	alene ichlorobenzene	<1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 06/16/22 06/16/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Estelita's Library 22(02-1391 mb 061607.D GCMS13 WE	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 111 96 110	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropropan	hane er (MTBE) ethene ene (EDC) ne e de hane one	$<1 \\ <10 \\ <0.02 \\ <5 \\ <1 \\ <1 \\ <50 \\ <1 \\ <5 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	Tetrach Dibromo 1,2-Dibr Chlorob Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromob 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr	nzene Fetrachloroethane ene e Vlbenzene orm lbenzene enzene imethylbenzene Fetrachloroethane ichloropropane otoluene	
trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	-	<0.4 <0.5 <10	Naphtha		<1 <1

ENVIRONMENTAL CHEMISTS

Date of Report: 06/22/22 Date Received: 06/13/22 Project: Estelita's Library 220264, F&BI 206236

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 206	264-01 (Duplic	ate)			
	Reporting	Samp	le Du	plicate	RPD
Analyte	Units	Resul	lt R	esult	(Limit 20)
Gasoline	ug/L (ppb)	<100) <	:100	nm
Laboratory Code: Lab	oratory Contro	l Sample	Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	95	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 06/22/22 Date Received: 06/13/22 Project: Estelita's Library 220264, F&BI 206236

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	112	63-142	7

ENVIRONMENTAL CHEMISTS

Date of Report: 06/22/22 Date Received: 06/13/22 Project: Estelita's Library 220264, F&BI 206236

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 206216-01 (Matrix Spike)

Laboratory Code. 200210-01 (Ma	(IIIX OPIKE)			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	95	50-150
Chloromethane	ug/L (ppb)	10	<10	86	50 - 150
Vinyl chloride	ug/L (ppb)	10	0.038	103	16-176
Bromomethane	ug/L (ppb)	10	<5	91	10-193
Chloroethane	ug/L (ppb)	10	<1	91	50-150
Trichlorofluoromethane	ug/L (ppb)	10 50	<1	87	50-150
Acetone 1,1-Dichloroethene	ug/L (ppb)	50 10	<50 <1	100 93	15-179 50-150
Hexane	ug/L (ppb)	10	<1 <5	93	49-161
Methylene chloride	ug/L (ppb) ug/L (ppb)	10	<0 5.7	68 b	49-161 40-143
Methylene chloride Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	10	<1	94	50-150
trans-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	10	<1	94 96	50-150
1,1-Dichloroethane	ug/L (ppb)	10	<1	95	50-150
2,2-Dichloropropane	ug/L (ppb)	10	<1	104	10-335
cis-1.2-Dichloroethene	ug/L (ppb)	10	<1	97	50-150
Chloroform	ug/L (ppb)	10	<1	95	50-150
2-Butanone (MEK)	ug/L (ppb)	50	<20	88	34-168
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<0.2	97	50-150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	96	50-150
1,1-Dichloropropene	ug/L (ppb)	10	<1	96	50-150
Carbon tetrachloride	ug/L (ppb)	10	< 0.5	98	50-150
Benzene	ug/L (ppb)	10	< 0.35	95	50-150
Trichloroethene	ug/L (ppb)	10	3.5	90 b	43-133
1,2-Dichloropropane	ug/L (ppb)	10	<1	96	50-150
Bromodichloromethane	ug/L (ppb)	10	< 0.5	100	50-150
Dibromomethane	ug/L (ppb)	10	<1	90	50-150
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	95	50-150
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	95	48-145
Toluene	ug/L (ppb)	10	<1	96	50 - 150
trans-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	96	37 - 152
1,1,2-Trichloroethane	ug/L (ppb)	10	< 0.5	98	50 - 150
2-Hexanone	ug/L (ppb)	50	<10	97	50 - 150
1,3-Dichloropropane	ug/L (ppb)	10	<1	96	50-150
Tetrachloroethene	ug/L (ppb)	10	<1	100	50 - 150
Dibromochloromethane	ug/L (ppb)	10	< 0.5	94	33-164
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1	96	50-150
Chlorobenzene	ug/L (ppb)	10	<1	97	50-150
Ethylbenzene	ug/L (ppb)	10	<1	97	50-150
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	95	50-150
m,p-Xylene	ug/L (ppb)	20	<2	98	50-150
o-Xylene	ug/L (ppb)	10	<1	98	50-150
Styrene	ug/L (ppb)	10	<1 <1	93	50-150
Isopropylbenzene	ug/L (ppb)	10 10	<1 <5	92 91	50-150
Bromoform	ug/L (ppb)	10	<0 <1		23-161
n-Propylbenzene Bromobenzene	ug/L (ppb) ug/L (ppb)	10	<1	93 98	50-150 50-150
1,3,5-Trimethylbenzene		10	<1	98 92	50-150
1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10	<0.2	92 99	10-235
1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	10	<0.2	99 96	33-151
2-Chlorotoluene	ug/L (ppb)	10	<1	98	50-150
4-Chlorotoluene	ug/L (ppb)	10	<1	94	50-150
tert-Butylbenzene	ug/L (ppb)	10	<1	87	50-150
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	95	50-150
sec-Butylbenzene	ug/L (ppb)	10	<1	93	46-139
p-Isopropyltoluene	ug/L (ppb)	10	<1	93	46-140
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	94	50-150
1.4-Dichlorobenzene	ug/L (ppb)	10	<1	98	50-150
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	98	50-150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	111	50-150
1.2.4-Trichlorobenzene	ug/L (ppb)	10	<1	88	50-150
Hexachlorobutadiene	ug/L (ppb)	10	<0.5	80	42-150
Naphthalene	ug/L (ppb)	10	<1	86	50-150
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	91	44-155
	8 UT-/	-		-	

ENVIRONMENTAL CHEMISTS

Date of Report: 06/22/22 Date Received: 06/13/22 Project: Estelita's Library 220264, F&BI 206236

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

-			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	87	91	70-130	4
Chloromethane	ug/L (ppb)	10	88	90	70-130	2
Vinyl chloride	ug/L (ppb)	10	97	98	70-130	1
Bromomethane	ug/L (ppb)	10	90	89	28-182	1
Chloroethane	ug/L (ppb)	10	90	91	70-130	1
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	10 50	97 99	90 104	70-130 42-155	7 5
1,1-Dichloroethene	ug/L (ppb)	10	99 95	96	42-135 70-130	1
Hexane	ug/L (ppb)	10	91	98 98	50-161	7
Methylene chloride	ug/L (ppb)	10	106	105	29-192	1
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	94	94	70-130	0
trans-1,2-Dichloroethene	ug/L (ppb)	10	94	95	70-130	1
1,1-Dichloroethane	ug/L (ppb)	10	93	93	70-130	0
2,2-Dichloropropane	ug/L (ppb)	10	115	118	70-130	3
cis-1,2-Dichloroethene	ug/L (ppb)	10	96	92	70-130	4
Chloroform	ug/L (ppb)	10	90	104	70-130	14
2-Butanone (MEK)	ug/L (ppb)	50	93	93	50 - 157	0
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	98	97	70-130	1
1,1,1-Trichloroethane	ug/L (ppb)	10	95	96	70-130	1
1,1-Dichloropropene	ug/L (ppb)	10	89	92	70-130	3
Carbon tetrachloride	ug/L (ppb)	10	95	95	70-130	0
Benzene	ug/L (ppb)	10	94	93	70-130	1
Trichloroethene 1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	10 10	92 97	92 93	70-130 70-130	0 4
Bromodichloromethane	ug/L (ppb) ug/L (ppb)	10	97 98	93 94	70-130	4 4
Dibromomethane	ug/L (ppb)	10	96 96	94 92	70-130	4
4-Methyl-2-pentanone	ug/L (ppb)	50	93	87	70-130	4 7
cis-1,3-Dichloropropene	ug/L (ppb)	10	88	98	70-130	11
Toluene	ug/L (ppb)	10	98	99	70-130	1
trans-1,3-Dichloropropene	ug/L (ppb)	10	91	93	70-130	2
1,1,2-Trichloroethane	ug/L (ppb)	10	98	99	70-130	1
2-Hexanone	ug/L (ppb)	50	93	93	69-130	0
1,3-Dichloropropane	ug/L (ppb)	10	93	91	70-130	2
Tetrachloroethene	ug/L (ppb)	10	97	100	70-130	3
Dibromochloromethane	ug/L (ppb)	10	83	85	63-142	2
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	95	97	70-130	2
Chlorobenzene	ug/L (ppb)	10	93	93	70-130	0
Ethylbenzene	ug/L (ppb)	10	95	96	70-130	1
1,1,1,2-Tetrachloroethane m,p-Xylene	ug/L (ppb)	10 20	95 96	93 96	70-130 70-130	$\frac{2}{0}$
o-Xylene	ug/L (ppb) ug/L (ppb)	10	96 94	96 95	70-130	1
Styrene	ug/L (ppb) ug/L (ppb)	10	94 90	93 92	70-130	2
Isopropylbenzene	ug/L (ppb)	10	90 90	92 92	70-130	2
Bromoform	ug/L (ppb)	10	96	90	50-157	6
n-Propylbenzene	ug/L (ppb)	10	91	93	70-130	2
Bromobenzene	ug/L (ppb)	10	95	96	70-130	1
1,3,5-Trimethylbenzene	ug/L (ppb)	10	91	89	52 - 150	2
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	100	101	70-130	1
1,2,3-Trichloropropane	ug/L (ppb)	10	92	95	70-130	3
2-Chlorotoluene	ug/L (ppb)	10	99	96	70-130	3
4-Chlorotoluene	ug/L (ppb)	10	94	90	70-130	4
tert-Butylbenzene	ug/L (ppb)	10	91	92	70-130	1
1,2,4-Trimethylbenzene	ug/L (ppb)	10	92	89	70-130	3
sec-Butylbenzene	ug/L (ppb)	10	96	95	70-130	1
p-Isopropyltoluene 1.3-Dichlorobenzene	ug/L (ppb)	10 10	94 100	93 99	70-130 70-130	1 1
1,3-Dichlorobenzene 1.4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	100	99 98	70-130	1 2
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	100	98 94	70-130	2 6
1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	10	100	94 108	70-130	7
1.2.4-Trichlorobenzene	ug/L (ppb)	10	89	90	70-130	1
Hexachlorobutadiene	ug/L (ppb)	10	94	97	70-130	3
Naphthalene	ug/L (ppb)	10	82	80	70-130	2
1,2,3-Trichlorobenzene	ug/L (ppb)	10	87	92	69-143	6
	8 (F.)					

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

BTEX EPA 8021	Image: Samplex regulation BTEX EPA 8021 Image: Samplex regulation NWTPH-HCID Image: Samplex regulation Image: Samplex regulation	Received by:	rn. (200) 200-0202 Received by: 1000 HONG	, Inc. Relinguisted by:	SIGNATURE PRINT NAME				Trip Blank 04 06/13/22 1500 - 1	AMW-03-061322 03 \$ 06/13/22 14 35 GW 8 x	AMW-02-061322 02 06/13/22 1300 GW 8 X	AMW-01-061322 21 A.1 66/13/22 1030 GW 8 X	Sample ID Lab ID Date Time Sample # of H-D X		Phone 5 16 617.01 Email acounder aspect Project specific RLs? - Yes 1	217 + 449	City State 710 Salle WA 98104 REMARKS	10 2 22		Report To Hanneh Chen, HI: Cochrine My To
	Sampler COMPANIE COMP		Gunter .	an	ME				×				BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260	ANALYSE		A X	INVOICE	220264	PO#	

APPENDIX D

Report Limitations and Guidelines for Use

REPORT LIMITATIONS AND USE GUIDELINES

Reliance Conditions for Third Parties

This report was prepared for the exclusive use of the Client. No other party may rely on this report or the product of our services without the express written consent of Aspect Consulting, LLC (Aspect). This limitation is to provide our firm with reasonable protection against liability claims by third parties with whom there would otherwise be no contractual conditions or limitations and guidelines governing their use of the report. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and recognized standards of professionals in the same locality and involving similar conditions.

Services for Specific Purposes, Persons and Projects

Aspect has performed the services in general accordance with the scope and limitations of our Agreement. This report has been prepared for the exclusive use of the Client and their authorized third parties, approved in writing by Aspect. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

This report is not, and should not, be construed as a warranty or guarantee regarding the presence or absence of hazardous substances or petroleum products that may affect the subject property. The report is not intended to make any representation concerning title or ownership to the subject property. If real property records were reviewed, they were reviewed for the sole purpose of determining the subject property's historical uses. All findings, conclusions, and recommendations stated in this report are based on the data and information provided to Aspect, current use of the subject property, and observations and conditions that existed on the date and time of the report.

Aspect structures its services to meet the specific needs of our clients. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and subject property. This report should not be applied for any purpose or project except the purpose described in the Agreement.

This Report Is Project-Specific

Aspect considered a number of unique, project-specific factors when establishing the Scope of Work for this project and report. You should not rely on this report if it was:

- Not prepared for you
- Not prepared for the specific purpose identified in the Agreement
- Not prepared for the specific real property assessed
- Completed before important changes occurred concerning the subject property, project or governmental regulatory actions

If changes are made to the project or subject property after the date of this report, Aspect should be retained to assess the impact of the changes with respect to the conclusions contained in the report.

Geoscience Interpretations

The geoscience practices (geotechnical engineering, geology, and environmental science) require interpretation of spatial information that can make them less exact than other engineering and natural science disciplines. It is important to recognize this limitation in evaluating the content of the report. If you are unclear how these "Report Limitations and Use Guidelines" apply to your project or site, you should contact Aspect.

Discipline-Specific Reports Are Not Interchangeable

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually address any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding the subject property.

Environmental Regulations Are Not Static

Some hazardous substances or petroleum products may be present near the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or petroleum products or do not otherwise present potential liability. Changes may occur in the standards for appropriate inquiry or regulatory definitions of hazardous substance and petroleum products; therefore, this report has a limited useful life.

Property Conditions Change Over Time

This report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time (for example, Phase I ESA reports are applicable for 180 days), by events such as a change in property use or occupancy, or by natural events, such as floods, earthquakes, slope failure or groundwater fluctuations. If more than six months have passed since issuance of our report, or if any of the described events may have occurred following the issuance of the report, you should contact Aspect so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.