

Environment

Prepared for Port of Vancouver USA 3103 NW Lower River Road Vancouver, Washington 98660

Submitted to Washington Department of Ecology Submitted by 888 SW 5th Avenue Suite 600 Portland, Oregon 97204

60624310 March 2023

Groundwater Monitoring Letter Report – December 2022

Former Automotive Services, Inc. Site Port of Vancouver USA 2327 West Mill Plain Boulevard Vancouver, Washington

March 9, 2023

Mr. Panjini Balaraju
Washington Department of Ecology
Toxics Cleanup Program
Lacey, Washington
(PDF copy via email: PBAL461@ecy.wa.gov)

Re: Groundwater Monitoring Letter Report – December 2022

Former Automotive Services, Inc. Site Port of Vancouver USA 2327 West Mill Plain Boulevard Vancouver, Washington AECOM Job No. 60519969

Dear Mr. Balaraju:

AECOM has prepared this Groundwater Monitoring Letter Report (herein referred to as the report) on behalf of the Port of Vancouver USA (the Port). This report summarizes the results of the December 2022 groundwater monitoring event conducted at the Former Automotive Services, Inc. (ASI) Site (herein referred to as the Site).

1 Site Location and Background

The Site is located at 2327 West Mill Plain Boulevard in Vancouver, Washington (Figure 1). The Site consists of approximately 4.33 acres of nearly level concrete paved land. The current tax parcel number is 059115-068 and is owned by the Port (Ecology, 2014). The Port currently leases the Site to CalPortland, which operates an aggregate distribution plant (Figure 2).

The Site was historically an agricultural field before the ASI car wash facility was constructed in 1972 and 1973. ASI used hot water with kerosene to remove a Cosmoline-based protective coating from imported cars arriving at the Port's auto terminals. The Mill Plain Boulevard extension dissected the car wash facility in 1998. Residual contamination and former car wash areas are located at the Site as summarized below (Ecology, 2014).

- In 1980, due to a process malfunction in the facility's water treatment system, water with kerosene flowed onto the ground surface west of the car wash building resulting in petroleum soil contamination.
- In 1991, four underground storage tanks (USTs) (containing kerosene, gasoline, and diesel) at the car wash facility were removed; soil samples collected following the removal activities indicated residual petroleum contamination. During the UST removal activities, approximately 1,500 cubic yards of petroleum contaminated soil was excavated; however, an on-Site structure prevented complete removal and residual contaminated soil was left in place.
- In 1992, diesel-impacted soil was encountered on the west side of the Site near the adjacent Marathon aboveground storage tank farm. The source, based on field evidence, appeared to be from a surface spill in the 1960s prior to placement of Columbia River sand and silt dredge spoils over the area.

Between September 1999 and February 2001, cleanup activities included the on-Site bioremediation of dieseland kerosene-impacted soils from two soil excavation events described below (Ecology, 2014):

- In August 1999, during the initial excavation event, soils were excavated to approximately 16 feet below ground surface (bgs) where a change in lithology was observed, and groundwater was encountered. The excavation was halted because of the presence of groundwater, lack of available stockpile space, and constraints along the Marathon property boundary.
- In July 2000, diesel contamination remaining from the initial event was removed. Excavation depths ranged from 17 to 20 feet bgs, and the footprint of the excavation area was expanded to follow contamination in all directions, including the adjoining Marathon property. Soil sampling from the

sidewalls and bottom of the final excavation indicated approximately 389 cubic yards of diesel-impacted soil remained at the Site below 16 feet bgs. Groundwater impacts are limited to the center of the Site around well GL-2 (Figure 2).

As detailed in the 2014 No Further Action (NFA) letter from the Washington State Department of Ecology (Ecology), an Environmental Covenant 3407456 was filed with Clark County in 2012 and revised in September 2013 to address the remaining impacted areas (Ecology, 2014). To confirm the long-term effectiveness of the cleanup operations completed at the Site, confirmational groundwater monitoring is necessary; the data will be used by Ecology during periodic reviews. In the NFA, Ecology approved a monitoring plan for the Site's monitoring wells; the monitoring program is summarized in Section 3 below.

A total of seven monitoring wells have been installed at the Site: GL-1, GL-2 and GL-3 (formerly identified as MW-1, MW-2 and MW-3) in 1991 and GL-4, GL-5, GL-6 and GL-7 in 2002. All monitoring wells listed on Table 1 are constructed with screened intervals of 10 to 30 feet below top of casing (btoc).

2 Site Hydrogeology and Soils

The depth to groundwater seasonally ranges between 14 to 21 feet bgs (Ecology, 2014). The groundwater gradient is relatively flat ranging between northwest and south-southeast. Site soils are classified as Hillsboro loam with McBee silty clay loam across the center of the property trending from the northwest corner to southeast corner. The soils become sandy at approximately 10 to 15 feet bgs and the sand becomes coarser at 18 to 20 feet bgs (Ecology, 2014).

3 Groundwater Monitoring Program and Cleanup Levels

As part of Ecology's NFA, a site-specific monitoring plan was required. Long-term groundwater monitoring has been conducted at the Site in accordance with the following monitoring plans and revisions since 2009:

- Long-Term Confirmational Groundwater Monitoring Plan (CEC, 2007)
- Ecology approval email for use of low-flow sampling techniques (Ecology, 2009)
- Revised Long-Term Confirmational Groundwater Monitoring Plan for the ASI/Glacier Site (Kennedy/Jenks Consultants, 2010)
- The Revised Long-Term Monitoring Plan proposed a reduction in the number of wells sampled during each event and the decommissioning of monitoring wells GL-5 and GL-7. In 2010, Ecology agreed that the remaining wells were deemed sufficient to monitor the localized area of diesel impacts in groundwater near GL-2 (Ecology, 2014). AECOM decommissioned GL-7 in October 2019 and GL-5 in in April 2020 (AECOM, 2020a, 2020b).

Based on the *Revised Long-Term Confirmational Groundwater Monitoring Plan*, the current compliance monitoring plan (Table 1) includes the collection of depth-to-groundwater measurements and groundwater samples from the following five monitoring wells every 18 months:

- GL-1
- GL-2
- GL-3
- GL-4
- GL-6

The analyte list for groundwater samples collected includes the full list of volatile organic compounds (VOCs) and diesel- and oil-range total petroleum hydrocarbons (diesel and oil) at all monitoring wells.

In accordance with *Revised Long-Term Confirmational Groundwater Monitoring Plan*, the analytical results are compared to the Ecology Model Toxics Control Act (MTCA) Method A groundwater cleanup levels (CULs).

4 Activities Conducted During December 2022

AECOM completed the December 2022 groundwater monitoring event in accordance with the following three documents.

- Environmental Protection Agency (EPA) guidance document titled Low-Flow (Minimal Drawdown)
 Ground-Water Sampling Procedures (EPA, 1996)
- Revised Long-Term Confirmational Groundwater Monitoring Plan for the ASI/Glacier Site (Kennedy/Jenks Consultants, 2010)
- Ecology NFA letter (Ecology, 2014)

Groundwater monitoring included the following:

- Depth-to-groundwater measurements were collected from the five monitoring wells included in the current monitoring plan (see Section 3) using an electronic water level meter. The depth-to-groundwater was measured from the top of casing (TOC) at each well and recorded on the Monitoring Well Sampling Field Logs (Appendix A). Depth-to-groundwater measurements and calculated groundwater elevations are presented on Table 2.
- Groundwater samples were collected from the five monitoring wells included in the current monitoring plan (see Section 3). Each groundwater sample was collected following low-flow purging and stabilization of the following field parameters: temperature, pH, conductivity, dissolved oxygen (DO), and oxidation reduction potential (ORP). A peristaltic pump was used for purging the monitoring wells. The groundwater samples were collected at each monitoring well using a disposable double check valve bailer. The peristaltic pump tubing and disposable bailers were all lowered and retrieved gently and set at the center of the screen interval. Monitoring Well Sampling Field Logs for this monitoring event are included in Appendix A, and final field parameters are reported in Table 3.
- A field duplicate sample collected from monitoring well GL-2, a field blank, and a trip blank were also collected and submitted for analysis.
- Sample containers were stored in a cooler with ice from the time of sample collection until delivery to the laboratory.
- Groundwater samples were delivered to Apex Laboratories of Tigard, Oregon under strict chain-ofcustody procedures. The samples were submitted for the analyses listed below in accordance with Table 1.
 - Full list of VOCs by EPA Method 8260C
 - Diesel and oil by the NWTPH-Dx Method
- Chain-of-custody forms are included in Appendix B with the laboratory analytical reports. Purge and decontamination water was placed into a labeled, aboveground polyethylene tank, which is temporarily staged under the 26th Avenue overpass pending characterization and disposal. Disposable sampling equipment (including tubing and nitrile gloves) was managed as municipal solid waste.

5 Results of the December 2022 Monitoring Event

Depth-to-groundwater measurements and groundwater samples were collected from the five monitoring wells on December 29, 2022. Depth-to-groundwater measurements are listed on Table 2. Stabilized groundwater field parameters are provided in Table 3. Groundwater analytical results are summarized in Table 4. The laboratory analytical reports are included in Appendix B.

5.1 Groundwater Elevation Monitoring

Depth-to-groundwater measurements recorded were used to calculate groundwater elevations at each monitoring well. The groundwater elevations are presented in Table 2 in feet relative to the National Geodetic Vertical Datum based on the City of Vancouver Benchmark L-181. On December 29, 2022, the groundwater elevations ranged from 7.87 feet at GL-6 to 8.66 feet at GL-2 and GL-3.

Groundwater elevation contours and the inferred direction of groundwater flow from this event are shown on Figure 3. The hydraulic gradient was calculated to be 0.004 ft/ft to the west. This is generally consistent with previous sampling events.

5.2 Groundwater Analytical Results

The analytical results from the primary groundwater samples are presented on Table 4.a

- During this event, one VOC (tetrachloroethene [PCE]), diesel, and oil were detected in one or more groundwater samples; however, none of the detections exceeded their respective CULs (5 mg/L, 0.5 mg/L, and 0.5 mg/L). Below is a summary of the detections. PCE was detected in GL-2 (0.260 milligrams per liter [mg/L]) and GL-3 (0.184 mg/L). Both detections were below the quantification limit and were therefore reported with "J" flags.
- Diesel was detected in GL-1 (0.138 mg/L) and GL-2 (0.270 mg/L) only.
- Oil was detected in GL-3 (0.124 mg/L) and GL-4 (0.184 mg/L). The detection in GL-3 was below the quantification limit and was therefore reported with a "J" flag.

6 Data Quality and Management

Based on a review of the laboratory reports, the analyses and results conformed to quality assurance standards, and the analytical data are of acceptable quality for their intended use. A data quality review is included in Appendix C.

AECOM uploaded the data from this event into Ecology's Environmental Information Management (EIM) database in early February 2023.

7 Conclusions

AECOM completed groundwater monitoring at the Site on December 29, 2021.

- The detections in groundwater samples from monitoring wells GL-3 through GL-5 were consistent with the past monitoring events, with no CUL exceedances over the past 10 consecutive monitoring events.
- Diesel has not been detected above the CUL for four consecutive monitoring events in GL-1.
- Diesel was not detected above the CUL in GL-2 for the first time since 2016.

8 Recommendations and Future Sampling Activities

AECOM recommends the following modifications to the groundwater monitoring program.

- Reduction in the monitoring program: Discontinue sampling GL-3, GL-4, and GL-6 as there have been no CUL exceedances in the past 10 monitoring events
- Reduction in the analytical program:
 - Discontinue VOC analysis as no VOCs have been detected above the CULs over the past 10 events

^a Only the results for the historically detected VOCs (not the full list) are presented on Table 4.

- Report to the method reporting limit (MRL) instead of the method detection limit as the MRLs are adequate to meet their respective CULs
- Modification in the sampling procedure: Discontinue the step of using disposable double check ball bailer for sample collection as VOC analysis is being removed from the analytical program

Except for the above modifications, the groundwater monitoring will continue every 18 months in accordance with the *Revised Long-Term Confirmational Groundwater Monitoring Plan for the ASI/Glacier Site* (Kennedy/Jenks Consultants, 2010). The five monitoring wells will continue to be maintained for collection of depth-to-groundwater measurements. The next monitoring event is scheduled for June 2024.

9 References

- AECOM, 2020a. *Monitoring Well Decommissioning Summary Letter GL-7*. Former Automotive Services, Inc. Site. Port of Vancouver USA. April 2.
- AECOM, 2020b. *Monitoring Well Decommissioning Summary Letter GL-5*. Former Automotive Services, Inc. Site. Port of Vancouver USA. June 15.
- CEC, 2007. Long-Term Confirmational Groundwater Monitoring Plan for the ASI/Glacier Site. Port of Vancouver USA. March 9.
- Ecology, 2014. Letter from Washington State Department of Ecology to Port of Vancouver. *No Further Action for the Former Automotive Services Inc Site*. March 7.
- EPA, 1996. *Ground Water Issue. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures.* By Robert W. Puls and Michael J. Barcelona. EPA/540/S-95/504. April.
- Kennedy/Jenks, 2010. Letter from Kennedy/Jenks Consultants to the Washington State Department of Ecology. Subject: Automotive Services, Inc. – REVISED Long Term Groundwater Monitoring Plan, Former ASI/Glacier Site, Port of Vancouver USA. May 10.

10 Limitations

AECOM has prepared this report for use by the Port. Within the limitations of scope, schedule, and budget, our services have been executed in accordance with accepted environmental science practices in this area at the time this report was prepared. No other warranty or conditions, expressed or implied, should be understood.

We appreciate the opportunity to be of service to the Port on this project. Please call Nicky Moody at (503) 969-6310 with any questions regarding this or any other referenced submittals.

Sincerely,

AECOM

Nicky Moody Project Manager Eric Collins, LHG Hydrogeologist

Eric R. Collins

Washir

cc: Craig Rankine, RG, LHG, Cleanup Project Manager/Hydrogeologist, Washington Department of Ecology, Toxics Cleanup Program, Vancouver Field Office, 12121 NE 99th Street, Suite 2100, Vancouver, WA 98682, cran461@ECY.WA.GOV

Matt Graves, LG, Environmental Manager, Port of Vancouver USA, 3103 NW Lower River Road, Vancouver, WA 98660, mgraves@Portvanusa.com

Attachments

List of Figures

Figure 1 Vicinity Map Figure 2 Site Map

Figure 3 Groundwater Elevation, Contours, and Flow Direction – December 2022

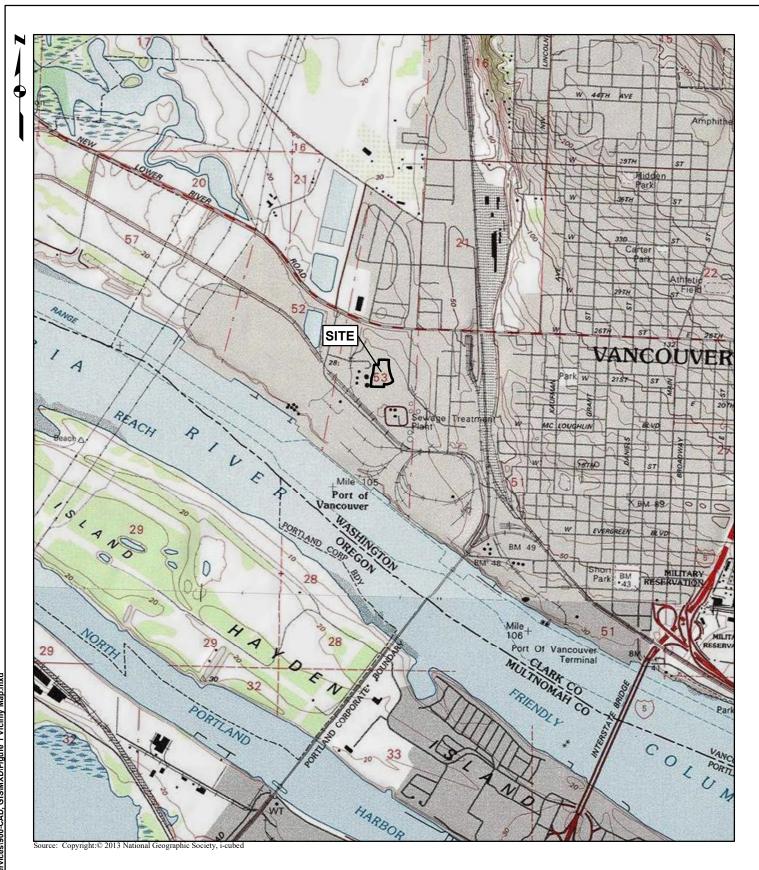
List of Tables

Table 1 Compliance Monitoring Plan
Table 2 Groundwater Elevation Results

Table 3 Groundwater Field Parameter Measurements

Table 4 Volatile Organic Compounds and Total Petroleum Hydrocarbons in Groundwater

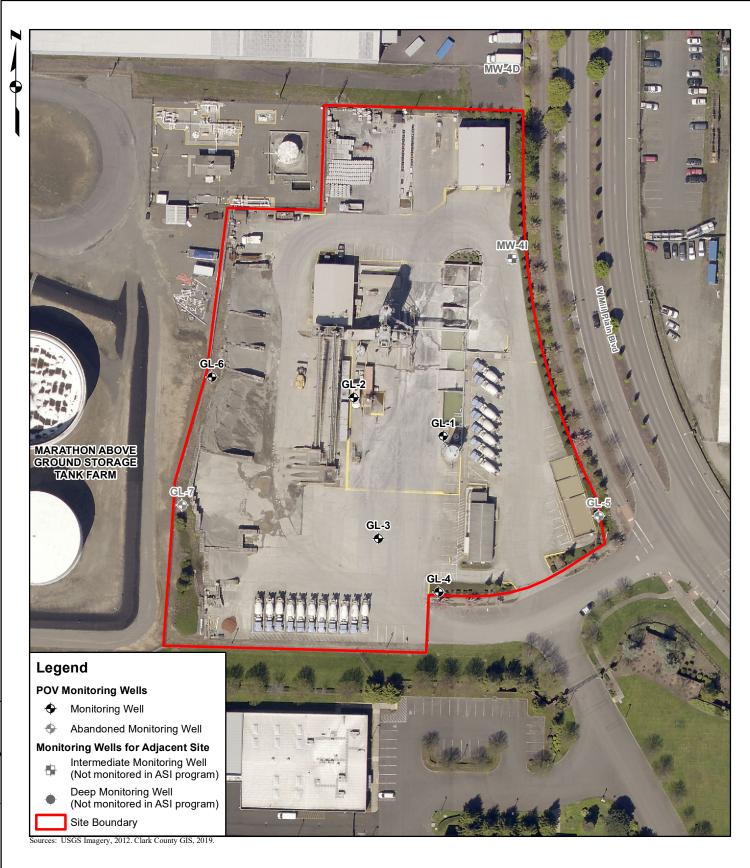
List of Appendices


Appendix A Field Forms

Appendix B Laboratory Reports and Chain-of-Custody Forms

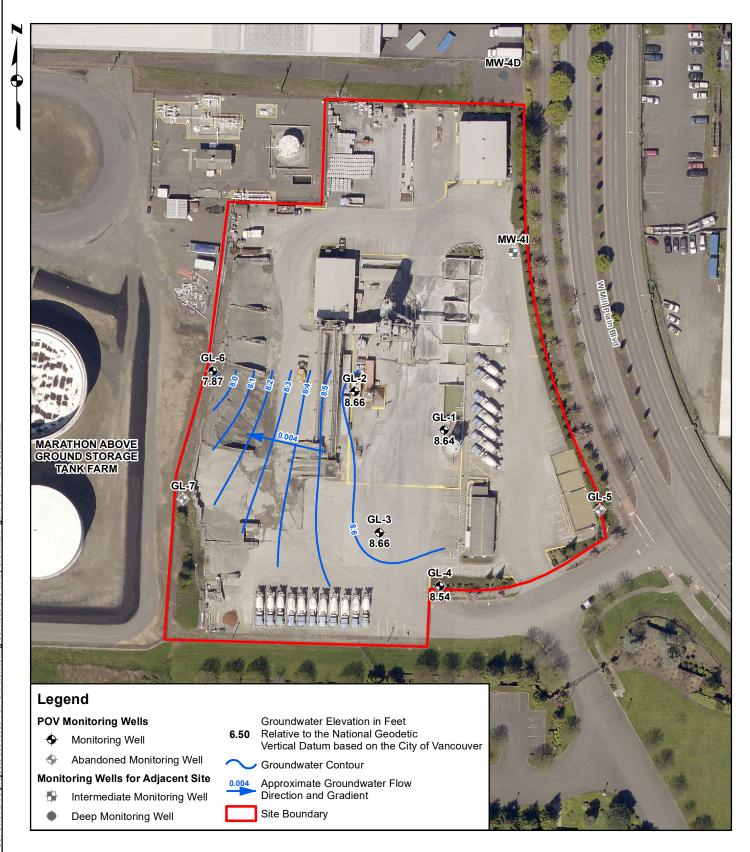
Appendix C Data Quality Review Report

Figures



VICINITY MAP

FORMER AUTOMOTIVE SERVICES, INC. SITE
PORT OF VANCOUVER USA
2327 WEST MILL PLAIN BOULEVARD, VANCOUVER, WA



SITE MAP

FORMER AUTOMOTIVE SERVICES, INC. SITE PORT OF VANCOUVER USA 2327 WEST MILL PLAIN BOULEVARD, VANCOUVER, WA

GROUNDWATER ELEVATION, CONTOURS, AND FLOW DIRECTION – DECEMBER 2022

FORMER AUTOMOTIVE SERVICES, INC. SITE
PORT OF VANCOUVER USA
2327 WEST MILL PLAIN BOULEVARD, VANCOUVER, WA

Tables

Table 1. Compliance Monitoring Plan

Former Automotive Services, Inc. Site

Current Well	Original Well	Well Log	Well Log Screen		Monument	Current	Compliance Monitor	ing Plan	
Identification	Identification	Total Depth	Interval	Diameter	Type	+18 months	onths Sampling Method Analyte		
	Units:	feet bgs	feet bgs	inches	1	-	-	-	
GL-1	MW-1	33.00	10-30	2.00	Flush	X	PP/Bailer	VOCs, Dx	
GL-2	MW-2	27.20	10-30	2.00	Flush	X	PP/Bailer	VOCs, Dx	
GL-3	MW-3	26.80	10-30	2.00	Flush	X	PP/Bailer	VOCs, Dx	
GL-4		30.40	10-30	2.00	Flush	X	PP/Bailer	VOCs, Dx	
GL-6		28.00	10-30	2.00	Flush	X	PP/Bailer	VOCs, Dx	
GL-5	Decommissione	d in April 2020							
GL-7	Decommissione	d in October 2	019						
MW-4D	Included only in	the adjacent C	adet Manufac	turing site in	nvestigation	tion			
MW-4I	Included only in	the adjacent C	adet Manufac	turing site in	nvestigation				

Acronyms and Abbreviations:

-- = not applicable or not included

18 mo = monitoring conducted every 18 months

BTOC = below top of well casing

D = Deep

I = intermediate

Dx = Diesel and oil-range total petroleum hydrocarbons

PP/Bailer = purging conducted using peristaltic pump and then sampling conducted using a double check ball disposable bailer

S = shallow

VOCs = volatile organic compounds

Table 2. Groundwater Elevation Results

Former Automotive Services, Inc. Site

Well Identification	Date	Top of Casing Elevation	Depth-to- Groundwater	Groundwater Elevation	Change in Groundwater Elevation
wen identification	Units:	feet (a)	feet below TOC	feet (a)	feet
GL-1	4/1/2009	27.42	21.03	6.39	
OL-1	12/16/2010	27.42	18.03	9.39	-3.00
	4/26/2012	27.42	13.79	13.63	-4.24
	10/17/2013	27.42	23.41	4.01	9.62
	4/29/2015	27.42	22.48	4.94	-0.93
	11/3/2016	27.42	20.70	6.72	-1.78
	6/10/2019	27.42	20.70	7.41	-0.69
	12/5/2019	27.42	23.20	4.22	3.19
	6/25/2021	27.42	20.68	6.74	-2.52
	12/29/2022	27.42	18.78	8.64	-1.90
GL-2	4/1/2009	27.82	21.41	6.41	-1.90
GL-2	12/16/2010	27.82	18.41	9.41	-3.00
	4/26/2012	27.82	14.23	13.59	-4.18
	10/17/2013	27.82	23.75	4.07	9.52
	4/29/2015	27.82	22.85	4.97	-0.90
	11/2/2016	27.82	21.62	6.20	-1.23
	6/10/2019	27.82	20.31	7.51	-1.31
	12/5/2019	27.82	23.47	4.35	3.16
	6/25/2021	27.82	21.00	6.82	-2.47
	12/29/2022	27.82	19.16	8.66	-1.84
GL-3	4/1/2009	27.17	20.79	6.38	
02.0	12/16/2010	27.17	17.75	9.42	-3.04
	4/26/2012	27.17	13.51	13.66	-4.24
	10/17/2013	27.17	23.08	4.09	9.57
	4/29/2015	27.17	22.48	4.69	-0.60
	11/2/2016	27.17	20.72	6.45	-1.76
	6/10/2019	27.17	19.69	7.48	-1.03
	12/5/2019	27.17	23.16	4.01	3.47
	6/25/2021	27.17	20.46	6.71	-2.70
	12/29/2022	27.17	18.51	8.66	-1.95
GL-4	4/1/2009	28.31	21.95	6.36	
	12/16/2010	28.31	18.87	9.44	-3.08
	4/26/2012	28.31	14.71	13.60	-4.16
	10/17/2013	28.31	24.28	4.03	9.57
	4/29/2015	28.31	23.31	5.00	-0.97
	11/1/2016	28.31	21.91	6.40	-1.40
	6/10/2019	28.31	20.91	7.40	-1.00
	12/5/2019	28.31	24.48	3.83	3.57
	6/25/2021	28.31	21.54	6.77	-2.94
	12/29/2022	28.31	19.77	8.54	-1.77

Table 2. Groundwater Elevation Results

Former Automotive Services, Inc. Site

Well Identification	Date	Top of Casing Elevation	Depth-to- Groundwater	Groundwater Elevation	Change in Groundwater Elevation
GL-6	4/1/2009	25.88	19.51	6.37	
	12/16/2010	25.88	16.53	9.35	-2.98
	4/26/2012	25.88	12.45	13.43	-4.08
	10/17/2013	25.88	21.85	4.03	9.40
	4/30/2015	25.88	22.90	2.98	1.05
	11/2/2016	25.88	19.17	6.71	-3.73
	6/11/2019	25.88	19.39	6.49	0.22
	12/5/2019	25.88	22.12	3.76	2.73
	6/25/2021	25.88	19.38	6.50	-2.74
	12/29/2022	25.88	18.01	7.87	-1.37

Acronyms and Abbreviations:

-- = not applicable

TOC = top of casing

Notes:

(a) = Elevation in feet relative to the National Geodetic Vertical Datum based on the City of Vancouver Benchmark L-181.

Table 3. Groundwater Field Parameter Measurements

Former Automotive Services, Inc. Site

Well Identification	Sample Date	Temperature	рН	Conductivity	ORP	Dissolved Oxygen
identification	Units:	°C (a)	no units	mS/cm	mV	mg/l
GL-1	4/1/2009	55.69	6.53	0.369	NM	0.78
GL-1	12/16/2010	55.92	NM	0.537	NM	0.78
	4/26/2012	57.40	6.79	0.300	NM	2.97
	10/17/2013	57.30	6.61	0.890	NM	0.1
	4/29/2015	57.25	6.42	0.946	NM	0.1
	11/3/2016	54.91	6.64	0.514	NM	17.2
	6/10/2019	57.96	NM	0.794	NM	6.92
	12/5/2019	14.10	7.05	0.754	-113	0.0
	6/25/2021	18.02	6.61	0.981	-715 -75	0.0
	12/29/2022	13.66	6.55	0.571	-42	0.0
GL-2	4/1/2009	54.71	6.03	0.858	NM	1.38
OL-2	12/16/2010	55.26	NA	0.890	NM	1.00
	4/26/2012	55.40	6.92	0.715	NM	0.71
	10/17/2013	55.80	6.68	1.000	NM	0.08
	4/29/2015	56.91	6.7	0.946	NM	0.54
	11/2/2016	54.17	6.72	0.540	NM	1.91
	6/10/2019	57.61	6.59	0.845	NM	NM
	12/5/2019	12.97	6.85	1.030	37	0.00
	6/25/2021	15.82	6.56	1.030	299	0.00
	12/29/2022	12.39	6.7	0.599	10	0.00
GL-3	4/1/2009	55.77	6.20	0.363	NM	1.83
GL-3	12/16/2010	56.79	NA	0.375	NM	0.74
	4/26/2012	56.57	6.55	0.236	NM	0.95
	10/17/2013	58.80	6.02	0.468	NM	0.51
	4/29/2015	59.68	6.1	0.346	NM	0.48
	11/2/2016	56.48	5.93	0.238	NM	1.86
	6/10/2019	64.18	6.12	0.370	NM	NM
	12/5/2019	14.40	6.42	0.486	158	0.0
	6/25/2021	18.71	6.09	0.435	29	0.27
	12/29/2022	14.59	6.15	0.330	149	0.0
GL-4	4/1/2009	56.78	6.38	0.389	NM	1.42
) ·	12/16/2010	56.68	NA	0.593	NM	0.71
	4/26/2012	55.33	6.71	0.373	NM	1.37
	10/18/2013	57.60	6.23	0.293	NM	0.25
	4/29/2015	58.04	6.2	0.376	NM	0.49
	11/1/2016	55.24	5.82	0.184	NM	2.31
	6/10/2019	58.55	6.11	0.260	NM	NM
	12/5/2019	12.30	6.50	0.320	186	0.0
	6/25/2021	21.16	6.08	0.353	50	2.97
	12/29/2022	13.74	5.91	0.213	3.52	0.99

Table 3. Groundwater Field Parameter Measurements

Former Automotive Services, Inc. Site

Well Identification	Sample Date	Temperature	рН	Conductivity	ORP	Dissolved Oxygen
GL-6	4/1/2009	52.65	5.92	0.175	NM	3.50
	12/16/2010	54.00	NA	0.190	NM	4.93
	4/26/2012	52.23	6.19	0.089	NM	8.03
	10/18/2013	53.60	6.15	0.070	NM	7.50
	4/30/2015	56.62	5.79	0.070	NM	7.21
	11/2/2016	53.64	5.62	0.140	NM	7.07
	6/11/2019	55.20	6.17	0.125	NM	4.11
	12/5/2019	11.86	6.21	0.136	209	4.12
	6/25/2021	14.55	6.00	0.138	306	4.84
	12/29/2022	11.60	5.92	0.134	364	4.19

Acronyms and Abbreviations:

°C = Degrees Celsius

mg/l = milligrams per liter

mS/cm = millisiemens per centimeter

mV = millivolts

NM = Not measured or not available to AECOM for this report

ORP = Oxidation-reduction potential

Notes:

(a) = Temperature readings collected prior to December 2019 collected in °F = Degrees Fahrenheit

Table 4. Volatile Organic Compounds and Total Petroleum Hydrocarbons in Groundwater Former Automotive Services, Inc. Site

			Hist	torically Site	Detected VO	OCs		NWT	PH-Dx
Well Identification	Date	Acetone	sec-Butylbenzene	Isopropylbenzene	Naphthalene	n-Propylbenzene	PCE	Diesel	Oil
	Units:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L
Groundwater C		NE	NE	NE	160	NE	5	0.5	0.5
GL-1	4/1/2009	100	NA	NA	5.0 U	NA	1.0 U	0.29	0.40 U
GL-1	12/16/2010	5.0 U	NA	NA	1.0 U	NA	1.2	0.077	0.38 U
GL-1	4/26/2012	5.0 U	NA	NA	3.4	NA	1.0 U	0.49	0.38 U
GL-1	10/17/2013	25 U	NA	NA	2.0 U	NA	0.5 U	1.1	0.24 U
GL-1	4/29/2015	20 U	NA	NA	2.0 U	NA	0.5 U	1.4	0.38 U
GL-1	11/3/2016		NA	NA	2.0 U	NA		1.9	0.38 U
GL-1	6/10/2019	24.6	2.85	6.74	2.00 UJ	10.6	0.400 U	0.404	0.381 U
GL-1	12/5/2019	10.0 U	0.610 J	1.88	2.00 UJ	1.18	0.200 U	0.475	0.0755 U
GL-1	6/25/2021	10.0 U	0.500 U	0.5 U	4.00 UJ	0.25 U	0.200 U	0.715	0.0762 U
GL-1	12/29/2022	10.0 U	0.500 U	0.500 U	1.00 U	0.250 U	0.200 U	0.138	0.0800 U
GL-2	4/1/2009	20 U	NA	NA	5.0 U	NA	1.0 U	0.78	0.40 U
GL-2	12/16/2010	5.0 U	NA	NA	1.0 U	NA	1.0 U	0.8	0.40 U
GL-2	4/26/2012	5.0 U	NA	NA	1.0 U	NA	1.0 U	0.92	0.38 U
GL-2	10/17/2013	25 U	NA	NA	2.0 U	NA	0.5 U	1.2	0.24 U
GL-2	4/29/2015	20 U	NA	NA	2.0 U	NA	0.5 U	0.943	0.38 U
GL-2	11/2/2016		NA	NA	2.0 U	NA		0.189 U	0.38 U
GL-2	6/10/2019	20.0 U	1.00 U	1.00 U	2.00 UJ	0.500 U	0.400 U	0.659	0.381 U
GL-2	12/5/2019	10.0 U	0.500 U	0.500 U	2.00 UJ	0.250 U	0.200 U	0.647	0.0755 U
GL-2	6/25/2021	10.0 U	0.500 U	0.500 U	4.00 UJ	0.250 U	0.200 U	0.681	0.0755 U
GL-2	12/29/2022	10.0 U	0.500 U	0.500 U	1.00 U	0.250 U	0.210 J	0.270	0.0909 U
GL-3	4/1/2009	20 U	NA	NA	5.0 U	NA	1.0 U	0.084	0.42 U
GL-3	12/16/2010	5.0 U	NA	NA	1.0 U	NA	1.1	0.080 U	0.40 U
GL-3	4/26/2012	5.0 U	NA	NA	1.0 U	NA	1.0 U	0.077 U	0.38 U
GL-3	10/17/2013	25 U	NA	NA	2.0 U	NA	0.5 U	0.15	0.24 U
GL-3	4/29/2015	20 U	NA	NA	2.0 U	NA	0.5 U	0.19 U	0.38 U
GL-3	11/2/2016		NA	NA	2.0 U	NA		0.19 U	0.38 U
GL-3	6/10/2019	20.6	1.00 U	1.00 U	2.00 UJ	0.500 U	0.400 U	0.190 U	0.381 U
GL-3	12/5/2019	10.0 U	0.500 U	0.500 U	2.00 UJ	0.250 U	0.200 U	0.120	0.0792 U
GL-3	6/25/2021	10.0 U	0.500 U	0.500 U	4.00 UJ	0.250 U	0.200 U	0.0579 J	0.0755 U
GL-3	12/29/2022	20.0 U	0.500 U	0.500 U	1.00 U	0.250 U	0.260 J	0.0412 U	0.124 J

Table 4. Volatile Organic Compounds and Total Petroleum Hydrocarbons in Groundwater

Former Automotive Services, Inc. Site

			Hist	torically Site	Detected V	OCs		NWT	PH-Dx
Well Identification	Date	Acetone	sec-Butylbenzene	Isopropylbenzene	Naphthalene	n-Propylbenzene	PCE	Diesel	Oil
	Units:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L
Groundwater C	leanup Levels:	NE	NE	NE	160	NE	5	0.5	0.5
GL-4	4/1/2009	20 U	NA	NA	5.0 U	NA	1.0 U	0.19 U	0.41 U
GL-4	12/16/2010	5.0 U	NA	NA	1.0 U	NA	1.0 U	0.077	0.38 U
GL-4	4/26/2012	5.0 U	NA	NA	1.0 U	NA	1.0 U	0.28	0.38 U
GL-4	10/18/2013	25 U	NA	NA	2.0 U	NA	0.5 U	0.096 U	0.24 U
GL-4	4/29/2015	20 U	NA	NA	2.0 U	NA	0.5 U	0.19 U	0.38 U
GL-4	11/2/2016		NA	NA	2.0 U	NA		0.19 U	0.38 U
GL-4	6/10/2019	20.0 U	1.00 U	1.00 U	2.00 UJ	0.500 U	0.400 U	0.190 U	0.381 U
GL-4	12/5/2019	20.0 UJ	0.500 U	0.500 U	2.00 UJ	0.250 U	0.200 U	0.0629 J	0.0784 U
GL-4	6/25/2021	10.0 U	0.500 U	0.500 U	4.00 UJ	0.250 U	0.200 U	0.0377 U	0.0755 U
GL-4	12/29/2022	10.0 U	0.500 U	0.500 U	1.00 U	0.250 U	0.230 J	0.0455 U	0.184
GL-6	4/1/2009	20 U	NA	NA	5.0 U	NA	1.0 U	0.082 U	0.41 U
GL-6	12/16/2010	5.0 U	NA	NA	1.0 U	NA	1.0 U	0.34	0.38 U
GL-6	4/26/2012	5.0 U	NA	NA	1.0 U	NA	1.0 U	0.079 U	0.40 U
GL-6	10/18/2013	25 U	NA	NA	2.0 U	NA	0.5 U	0.096 U	0.24 U
GL-6	4/30/2015	20 U	NA	NA	2.0 U	NA	0.5 U	0.189 U	0.377 U
GL-6	11/2/2016		NA	NA	2.0 U	NA		0.189 U	0.381 U
GL-6	6/11/2019	20.0 U	1.00 U	1.00 U	2.00 UJ	0.500 U	0.400 U	0.190 U	0.381 U
GL-6	12/5/2019	20.0 UJ	0.500 U	0.500 U	2.00 UJ	0.250 U	0.200 U	0.0385 U	0.0769 U
GL-6	6/25/2021	20.0 U	0.500 U	0.500 U	4.00 UJ	0.250 U	0.200 U	0.0377 U	0.0755 U
GL-6	12/29/2022	10.0 U	0.500 U	0.500 U	1.00 U	0.250 U	0.200 U	0.0449 U	0.0899 U

Notes:

Values in **bold** were detected above the sample quantitation limit.

CULs are defined in the Revised Long-Term Confirmational Groundwater Monitoring Plan (see Section 3).

Shaded values exceed the CUL.

Acronyms and Abbreviations:

--- = Sample not analyzed for constituent

CUL = Groundwater Cleanup Level

J = Constituent was not positively identified; the associated value is estimated

mg/L = milligrams per liter

NE = Not established

NS = Not sampled because well was dry or for another unforseen reason

NWTPH-Dx = Diesel- and oil-range total petroleum hydrocarbons

PCE = Tetrachloroethene

U = Constituent not detected at or above noted sample quantitation limit

μg/L = micrograms per liter

UJ = Constituent not detected at or above noted sample quantitation limit limit. However, the reported sample quantitation limit is approximate.

VOCs = volatile organic compounds

Appendix AField Forms

Project Inform	ation											
Project Name:	Automotive S	ervices, Inc. (AS	1)				Fi	eld Team:	A.	MO	Legi	1
Project Number:	60519969	- 16	*					Date:	121	128	127	Page 1 of 1
Field Measure	ments and (Observations		100								
		Depth to		Assessment 12/29		Screen			Samplin	g Plar	pilos Pierr	
Well ID	Time	Water (feet BTOC)	• Status of e	each well oken lids, bolts, gaskets, caps, & locks	Aquiler	Interval (feet)	Collect Sample	Sampling Method	Analytes	QC	Cont	ainers
GL-6	922	19.77	1801	(5000	Shallow	10-30	х	PP/Bailer	VOCs, Dx		3 VOAs	2 Ambers
GL-4	828	19.77		(500d	Shallow	10-30	х	PP/Bailer	VOCs, Dx	,	3 VOAs	2 Ambers
GL-3	847	18.51		Good	Shallow	10-30	х	PP/Bailer	VOCs,	×	3 VOAs	2 Ambers
GL-2	904	19.16		Good	Shallow	10-30	х	PP/Bailer	VOCs,	FD**	3VOAs VOAs	2 Ambers 2 Ambers
GL-1	855	18.78		(500d	Shallow	10-30	х	PP/Bailer	VOCs,		3 VOAs	2 Ambers

Definitions:

FD = field duplicate

Dx = diesel and heavy oil range organics

PP/Bailer = purging conducted using peristaltic pump and then sampling conducted using a double check ball disposable bailer

QC = quality control samples

VOA = volatile organic analysis

VOC = volatile organic carbon

Sampling Schedule (18+ months):

December 2019

June 2021

December 2022

June 2024

Sampling Notes:

FD ** = Field duplicate - collect field duplicate on GL-2. If not accessible, collect the field duplicate on GL-1 or GL-3. Run duplicate for all analyses.

Lab = Apex Labs

Drum purge water. Store drums under the 26th Ave Underpass until they are full enough for disposal.

Trip and Field Blank - VOCs only

Well Number: 6-1-1
Date: 12/29/22

					77	
et Information	Well Construc	tion Informa	ation			
Name: AS \	Stick-up o	or Flush	Well Diameter (in)	Total Depth (ft btoc)	Screen Interval (ft bgs or btoc)	
oject Number: 61519964	FLUS	(A)	2	77	11-30	
rmation		NAME OF TAXABLE PARTY.			10)	
mcLean	Monitoring In	formation			Duran Intoko	
MCLEAN OP LO FLO Model: Horiba V-52	Initial (ft bt			ed Screen t bgs or btoc)	Pump Intake Depth (ft btoc): (Mid Sat. Screen Inter	val)
1ethod: 13 q / 18	1 10	11)			745	
er: Model: You 54 0-52	/ 8,	18			0/10	~
Serial Number: U 109576 X	Sample Cont	ainers			Download	Filtered?
Disposition: On 5-6 Tym	Number	Туре	Pres	ervative	Analysis Required	Ē
	3	40 mL VOA		HCI	Gx / VOC	
MYST	2	1L Amber		HCI	Dx	
1 \$2.200 100		TE ATTION				
090009016						
	-					

Vell Purge D	ata								D 0	Comments	
Time	Volume Purged (L)	Purge Rate (L/min)	DTW (ft btoc)	Temp. (°C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity	D.O. (mg/L)	(i.e. odor, sediment, color)	
	Purged (L)	(<0.5 L/min)	Initial	±3%	±0.1	±10mv	±3%	± 10% (> 5) 3 values < 5	± 10% (> 0.5) 3 values < 0.5	<= Stabilization Criteria EPA 2017	
1103	62 5	0.1	18.78	1 \$250	6.60	9	0.610	161.3	006	1 4/1 00	
1168	1	01	10/0	15.53	6.51	-3	0 603	678.2	0.00	WLMmg	
1113	1.5		<u> </u>	13.54	6.55	-25	0.590	5/3	0.00		
1118	5	0.1	******	1371	G 57	-41	0,576	50.2	0,00)	
1170	75	0,1		13.48	658	-44	0.567	468	0.00	*	
1130	35	OVI		13.66	6.55	~42	0,57	49.5	000		
,		,		,		0			11	1	
	w				1	1			/ L	5	
							(The same of the sa	
							-			1	
		. 11	3							3~	
	Start Sampling				Sample ID: 0-1-1				Sample Time: (/ /) () () () () () () () ()		
	End Sampl	ing [/ˈ	40	QA/QC Samp	ole ID:			QAVQU Sai	npio mino.		

Note: bgs= below ground surface btoc=below top of casing DTW=depth to water Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

Well Number: 62-2
Date: 12/29/72

Project Information	Well Constr	uction Inforn	nation			
Project Name: POV AS P AECOM Project Number: 60519961		or Flush	Well Diameter (in)	Total Depth (ft btoc)	Screen Interval	
Sampling Information	FU	137	Z	27.2	10-30	
Field Team: A. MCLC90	Monitoring I	nformation			10 30	
Purge Method: Parge Method: Pa		DTW otoc)		ed Screen bgs or btoc)	Pump Intake Depth (ft btoc): (Mid Sat. Screen Inte	erval)
Water Quality Meter: Model: 口りんらく グーラミ	la	1.16			725	
Serial Number: U U G 4 326X	Sample Con	tainers				
Purge Water Disposition: 11-5, te Tank	Number	Туре	Prese	rvative	Analysis Required	Filtered?
Comments	3	40 mL VOA	Н	CI	Gx / VOC	
NC. DI ICATI	2	1L Amber	Н	CI	Dx	
DUPLICATE COLLEGED Whenever acquired PUTS, ns						
WI METER A CON de 1019						
f U13,15						
,						

Well Purge										
Time	Volume Purged (L)	Purge Rate (L/min) (<0.5 L/min)	DTW (ft btoc)	Temp. (°C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity	D.O. (mg/L)	Comments (i.e. odor, sediment
10/	Pump On	1202	19.16	±3%	±0.1	±10mv	±3%	± 10% (> 5) 3 values < 5	± 10% (> 0.5) 3 values < 0.5	color) <= Stabilization Criter EPA 2017
1005	0,2	0.(13.29	6.61	22	0.603	27.6	0,00	
17010	0.7			13.24	6.60	17	0.604	14.7	0,00	
1220	1.7	<u> </u>		13.12	0.67	213	0.607	HO	0.00	
11	1.7			12-14	6,64	10	0,600	4,1	0.08	
230	24			12.43	0.65	9	0,599	44	0,00	
1235	3.2			12.39	6.66	10	0.601	40	000	
	_			10.01	6.90	10	0.599	4.1	0.00	
)					\				
								'		
					1.		A			
			8	2/	1		,	,		*
		L.,		6	/			ni.	7	
		77								
						2		"		
	Start Sampling	174	0 5	D	1 - 7					
		1-90		Sample ID: G	1 0	7 1	S	Sample Time:	124	0
	End Sampling	105	-	QA/QC Sample I		10.01	JP G	QA/QC Sample	e Time:	241

Note: bgs= below ground surface bloc=below top of casing DTW=depth to water

Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

Well Number: 61-3
Date: 1729/22

Project Information			TO THE PARTY OF THE			
Project information	Well Constru	iction Inform	ation			
Project Name: PoV AS ASCOM Project Number: 60519969	Stick-up	or Flush	Well Diameter (in)	Total Depth (ft btoc)	Screen Interval (ft bgs or btoc)	
Sampling Information	FLU	1511	Z	26.80	10+27	-
Field Team: A MCLCGO	Monitoring In	nformation				
Purge Method: Pun P	Initial (ft b		No. 10 No	ed Screen bgs or btoc)	Pump Intake Depth (ft btoc): (Mid Sat. Screen Inte	rval)
Water Quality Meter: Model: \\\ \lambda \in \lambda \i	18.	51		7	₹3	
Serial Number: 000326X	Sample Cont	ainers				~
Purge Water Disposition: On Site Tank	Number	Туре	Prese	ervative	Analysis Required	Filtered?
Comments	3	40 mL VOA	ŀ	ICI	Gx / VOC	4
Wh meter dead	2	1L Amber	H	lCI	Dx	
dering purging		¥				
		l _a				
· · · · · · · · · · · · · · · · · · ·						>

Well Purge D	Data									
Time	Volume Purged (L)	Purge Rate (L/min) (<0.5 L/min)	DTW (ft btoc)	Temp. (°C)	pН	ORP (mV)	Conductivity (mS/cm)	Turbidity	D.O. (mg/L)	Comments (i.e. odor, sediment, color)
	Pump On	1333	miliai	±3%	±0.1	±10mv	±3%	± 10% (> 5) 3 values < 5	± 10% (> 0.5) 3 values < 0.5	<= Stabilization Criteria EPA 2017
1335	0.5	0.1		13.96	6.75	214	0.344	19.01	1.82	
1340	1	0.1		14.29	615	194	8343	745	6.57	
134	1,5		,	1442	6.14	170	0.378		0,00	
1350	2.0			14.52	6,15	157	0,350		0.00	
1351	2.5			14.53	6.13	152	0,352	8.5	0.00	
1400	3.0			14.56	6:15	150	0:350	1.5	0:00	
1465	7.5	1		14,59	6.15	149	0.350	1.9	0.00	
1410	A		,							
						_				
-(-1										
			10							
					\times					,
				4						
oi .		-		;		/ 2				
	_	140			21					_
	Start Samplin	9 19 6	1	Sample ID: GL-3				Sample Time: 114 20		
	End Sampling	142	1	QA/QC Sample	ID:	The state of		QA/QC Samp	le Time:	

Note: bgs= below ground surface btoc=below top of casing DTW=depth to water Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

Well Number: 64-4

Date: 12/29/22

Project Information	Well Constru	ction Inform	ation			
Project Name: $POVAS/$ AECOM Project Number: $605/9969$	Stick-up	or Flush	Well Diameter (in)	Total Depth (ft btoc)	Screen Interval (ft bgs or btoc)	
Sampling Information	FLU	SH	2	30.4	10-30	
Field Team: A, McLegn	Monitoring Ir	formation				
Field Team: A, McLe9 N Purge Method: P. PUMP Sampling Method: B9-78-7	Initial (ft bi			ed Screen bgs or btoc)	Pump Intake Depth (ft btoc): (Mid Sat. Screen Inter	val)
Water Quality Meter: Model: HORIBA USS	19.	77				
Serial Number:	Sample Cont	ainers				ćp
Purge Water Disposition: $V109326x$	Number	Туре	Prese	ervative	Analysis Required	Filtered?
Comments	3	40 mL VOA	ŀ	HCI	Gx / VOC	
	2	1L Amber	ŀ	HCI	Dx	
$\Delta^{\mathcal{M}}$						
(2130)	Z					
copy- of dings dest had						
copy- ofiginal destinary to read blo ofrain						
· · · · · · · · · · · · · · · · · · ·						
	<u></u>		•			

Well Purge D)ata		100							1000
Time	Volume Purged (L)	Purge Rate (L/min) (<0.5 L/min)	DTW (ft btoc)	Temp. (°C)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity	D.O. (mg/L)	Comments (i.e. odor, sediment, color)
	Pump On (942	Initial 1977	±3%	±0.1	±10mv	±3%	± 10% (> 5) 3 values < 5	± 10% (> 0.5) 3 values < 0.5	<= Stabilization Criteria EPA 2017
945	0.8	0.15	19.77	13.70	5.88	269	0.223	158	13.12	
950	1.3		1980	13.71	5.89	3.03	0.219	141	1.19	
955	1.8		19.80	13.73	5.91	\$ 3.17	0,217	190	0.94	
1000	2.3		19.83	13.75	5,91	3.30 M	0.215	21.1	1.00	
1005	2.8		19,83	13.67	5.91	3.41	0.713	10.3	0.98	
1010	7,0		19.83	13.75	5.91	J. 48	0.713	9-1	0.99	
1015	7.3	1	19,00	13.74	5.91	3.52	0.213	10.0	0.99	
-/	<i>[.)</i>									
)
	· · · · · · · · · · · · · · · · · · ·									1
			111							
						2				
				7 1						, 8
					0					•
	Start Sampling [0 2 0			Sample ID: (5 L- 6				Sample Time: UZV		
	End Sampling	102	.8	QA/QC Sample	ID:			QA/QC Samp	ole Time:	

Note: bgs= below ground surface btoc=below top of casing DTW=depth to water
Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

Well Number: 64-6
Date: 17/29/27

Project Information	Well Constru	ction Inform				
Project Name: POV AS I AECOM Project Number: 605 1 996 9	Stick-up	or Flush	Well Diameter (in)	Total Depth (ft btoc)/ こない	Screen Interval 12/39/2 (ft bgs or btoc)	
Sampling Information	FLUS	;H	2	30.4	10-30	シ
Field Team: A. McLeap	Monitoring Ir	formation				
Purge Method: P. PCMP Sampling Method: B 9.1PC	Initial (ft bi			ed Screen bgs or btoc)	Pump Intake Depth (ft btoc): (Mid Sat. Screen Inter	val)
Water Quality Meter: Model: H01-69 V-52	18	.01			23	
Serial Number: 0209326X	Sample Cont	ainers				¿þ;
Purge Water Disposition: 6/5 79n U	Number	Туре	Prese	ervative	Analysis Required	Filtered?
Comments	3	40 mL VOA	ŀ	HCI	Gx / VOC	
Wh meter Dead Soring purge	2	1L Amber	 	HCI	Dx	
SUNING PUIGE						
Scoly- Ols form descroyed						
[Coly-06 form descroyed by rain]						

Well Purge D)ata									
Time	Volume Purged (L)	Purge Rate (L/min) (<0.5 L/min)	DTW (ft btoc)	Temp. (ºC)	рН	ORP (mV)	Conductivity (mS/cm)	Turbidity	D.O. (mg/L)	Comments (i.e. odor, sediment, color)
	Pump On	455	Initial	±3%	±0.1	±10mv	±3%	± 10% (> 5) 3 values < 5	± 10% (> 0.5) 3 values < 0.5	<= Stabilization Criteria EPA 2017
1500	0.5	(C).		11.32	6.63	341	0.147	4.5	6.05	
1505)			11.78	6.17	348	0.141	0.0	4.81	
1510	1.5			11.84	602	351	0.138	0.0	4.77	······································
1515	2			11.73	5-92		0.134	0.0	4.49	
1520	7,5			11.64	5.93	362	0.13	.0	4.10	
1575	7			11.67	5,93	366	0.134	0.0	4.23	
1530	7.5			11.60	5.92	364	0.134	0.0	4.19	
	N				\					
\				1						
		(_	1/							
				<u> </u>						
		1 _ <							. ~ 3	
	Start Samplir	19 [5]		Sample ID:	(JL-1	1	Sample Time: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			5)
	End Samplin	g 15	39	QA/QC Sample	ID:			QA/QC Sam	ple Time:	

Note: bgs= below ground surface btoc=below top of casing DTW=depth to water

Clarity: VC=very cloudy Cl=cloudy SC=slightly cloudy AC=almost clear C=clear CC=crystal clear

Appendix BLaboratory Report and Chain-of-Custody Form

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Monday, January 16, 2023 Nicky Moody AECOM 888 SW 5th Ave, Suite 600 Portland, OR 97204

RE: A2L1089 - POVASI - 60519699

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2L1089, which was received by the laboratory on 12/30/2022 at 12:15:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>DAuvil@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

	Cooler Receip	ot Information		
	(See Cooler Receip	ot Form for details)		
Cooler #1	2.8 degC	Cooler #2	5.1 degC	

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMATION										
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received							
GL-1	A2L1089-01	Water	12/29/22 11:35	12/30/22 12:15							
GL-2	A2L1089-02	Water	12/29/22 12:40	12/30/22 12:15							
GL-2-Dup	A2L1089-03	Water	12/29/22 12:40	12/30/22 12:15							
GL-3	A2L1089-04	Water	12/29/22 14:20	12/30/22 12:15							
GL-4	A2L1089-05	Water	12/29/22 10:20	12/30/22 12:15							
GL-6	A2L1089-06	Water	12/29/22 15:35	12/30/22 12:15							
Field Blank	A2L1089-07	Water	12/29/22 16:00	12/30/22 12:15							
Trip Blank	A2L1089-08	Water	12/29/22 00:00	12/30/22 12:15							

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOMProject:POV ASI888 SW 5th Ave, Suite 600Project Number:60519699Portland, OR 97204Project Manager:Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or Oi	I Hydrocar	bons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GL-1 (A2L1089-01)				Matrix: Wate	er		23A0356	
Diesel	0.138	0.0400	0.0800	mg/L	1	01/11/23 22:28	NWTPH-Dx LL	F-11
Oil	ND	0.0800	0.160	mg/L	1	01/11/23 22:28	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recov	very: 95 %	Limits: 50-150 %	6 1	01/11/23 22:28	NWTPH-Dx LL	
GL-2 (A2L1089-02)				Matrix: Wate	er	Batch	23A0356	
Diesel	0.270	0.0455	0.0909	mg/L	1	01/11/23 22:51	NWTPH-Dx LL	F-11
Oil	ND	0.0909	0.182	mg/L	1	01/11/23 22:51	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recov	very: 89 %	Limits: 50-150 %	6 I	01/11/23 22:51	NWTPH-Dx LL	
GL-2-Dup (A2L1089-03)				Matrix: Wate	er	Batch	23A0356	
Diesel	0.282	0.0400	0.0800	mg/L	1	01/11/23 23:14	NWTPH-Dx LL	F-11
Oil	ND	0.0800	0.160	mg/L	1	01/11/23 23:14	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recov	very: 82 %	Limits: 50-150 %	6 I	01/11/23 23:14	NWTPH-Dx LL	
GL-3 (A2L1089-04)				Matrix: Wate	er	Batch	23A0356	
Diesel	ND	0.0412	0.0825	mg/L	1	01/11/23 23:37	NWTPH-Dx LL	
Oil	0.124	0.0825	0.165	mg/L	1	01/11/23 23:37	NWTPH-Dx LL	J
Surrogate: o-Terphenyl (Surr)		Recov	very: 81 %	Limits: 50-150 %	6 I	01/11/23 23:37	NWTPH-Dx LL	
GL-4 (A2L1089-05)				Matrix: Wate	er	Batch	23A0356	
Diesel	ND	0.0455	0.0909	mg/L	1	01/12/23 00:00	NWTPH-Dx LL	
Oil	0.184	0.0909	0.182	mg/L	1	01/12/23 00:00	NWTPH-Dx LL	F-13
Surrogate: o-Terphenyl (Surr)		Recov	very: 88 %	Limits: 50-150 %	6 I	01/12/23 00:00	NWTPH-Dx LL	
GL-6 (A2L1089-06)				Matrix: Wate	er	Batch	23A0356	
Diesel	ND	0.0449	0.0899	mg/L	1	01/12/23 00:24	NWTPH-Dx LL	
Oil	ND	0.0899	0.180	mg/L	1	01/12/23 00:24	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recov	very: 91 %	Limits: 50-150 %	6 I	01/12/23 00:24	NWTPH-Dx LL	<u> </u>

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

		olatile Organ	ic Compound	us by EPA 8	∠60D			1
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GL-1 (A2L1089-01)				Matrix: Wa	ater	Batch:	23A0019	
Acetone	ND	10.0	20.0	ug/L	1	01/03/23 17:37	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/03/23 17:37	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	01/03/23 17:37	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	01/03/23 17:37	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	01/03/23 17:37	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/03/23 17:37	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/03/23 17:37	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 17:37	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/03/23 17:37	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/03/23 17:37	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/03/23 17:37	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/03/23 17:37	EPA 8260D	
Dibromomethane (222)	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 17:37	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 17:37	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 17:37	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L ug/L	1	01/03/23 17:37	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L ug/L	1	01/03/23 17:37	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L ug/L	1	01/03/23 17:37	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L ug/L	1	01/03/23 17:37	EPA 8260D	
trans-1,2-Dichloroethene	ND ND	0.200	0.400	ug/L ug/L	1	01/03/23 17:37	EPA 8260D	
1,2-Dichloropropane	ND ND	0.250	0.500	ug/L ug/L	1	01/03/23 17:37	EPA 8260D	
1,3-Dichloropropane	ND ND	0.500	1.00	ug/L ug/L	1	01/03/23 17:37	EPA 8260D	
2,2-Dichloropropane	ND ND	0.500	1.00	ug/L ug/L	1	01/03/23 17:37	EPA 8260D	
, 1 1	ND ND		1.00	-	1	01/03/23 17:37	EPA 8260D EPA 8260D	
1,1-Dichloropropene		0.500		ug/L				
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GL-1 (A2L1089-01)				Matrix: Wate	r	Batch: 2	23A0019	
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/03/23 17:37	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	01/03/23 17:37	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/03/23 17:37	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/03/23 17:37	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/03/23 17:37	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	01/03/23 17:37	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	01/03/23 17:37	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/03/23 17:37	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/03/23 17:37	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	01/03/23 17:37	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	01/03/23 17:37	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	01/03/23 17:37	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	01/03/23 17:37	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/03/23 17:37	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/03/23 17:37	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/03/23 17:37	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	01/03/23 17:37	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/03/23 17:37	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	01/03/23 17:37	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %		01/03/23 17:37	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %		01/03/23 17:37	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	01/03/23 17:37	EPA 8260D	
GL-2 (A2L1089-02)				Matrix: Wate	r	Batch: 2	23A0019	
Acetone	ND	10.0	20.0	ug/L	1	01/03/23 18:32	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/03/23 18:32	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	01/03/23 18:32	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	01/03/23 18:32	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GL-2 (A2L1089-02)				Matrix: Wa	ater	Batch:	23A0019	
Bromoform	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	01/03/23 18:32	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/03/23 18:32	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/03/23 18:32	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 18:32	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/03/23 18:32	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/03/23 18:32	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/03/23 18:32	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/03/23 18:32	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 18:32	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 18:32	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 18:32	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/03/23 18:32	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/03/23 18:32	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 18:32	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 18:32	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 18:32	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/03/23 18:32	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D	
Ethylbenzene Ethylbenzene	ND	0.250	0.500	ug/L	1	01/03/23 18:32	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	01/03/23 18:32	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/03/23 18:32	EPA 8260D	
Isopropylbenzene	ND ND	0.500	1.00	ug/L ug/L	1	01/03/23 18:32	EPA 8260D	
4-Isopropyltoluene	ND ND	0.500	1.00	ug/L ug/L	1	01/03/23 18:32	EPA 8260D	
					*	01/03/23 18:32	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/05/25 18:32	EPA 8200D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 AECOM
 Project:
 POV ASI

 888 SW 5th Ave, Suite 600
 Project Number:
 60519699

 Portland, OR 97204
 Project Manager:
 Nicky Moody

ND

0.500

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D										
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
GL-2 (A2L1089-02)				Matrix: Water		Batch: 23A0019				
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/03/23 18:32	EPA 8260D			
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D			
Naphthalene	ND	1.00	2.00	ug/L	1	01/03/23 18:32	EPA 8260D			
n-Propylbenzene	ND	0.250	0.500	ug/L	1	01/03/23 18:32	EPA 8260D			
Styrene	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D			
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/03/23 18:32	EPA 8260D			
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/03/23 18:32	EPA 8260D			
Tetrachloroethene (PCE)	0.210	0.200	0.400	ug/L	1	01/03/23 18:32	EPA 8260D	J		
Toluene	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D			
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	01/03/23 18:32	EPA 8260D			
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	01/03/23 18:32	EPA 8260D			
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	01/03/23 18:32	EPA 8260D			
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/03/23 18:32	EPA 8260D			
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/03/23 18:32	EPA 8260D			
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/03/23 18:32	EPA 8260D			
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D			
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D			
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D			
Vinyl chloride	ND	0.200	0.400	ug/L	1	01/03/23 18:32	EPA 8260D			
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/03/23 18:32	EPA 8260D			
o-Xylene	ND	0.250	0.500	ug/L	1	01/03/23 18:32	EPA 8260D			
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %	1	01/03/23 18:32	EPA 8260D			
Toluene-d8 (Surr)			101 %	80-120 %	1	01/03/23 18:32	EPA 8260D			
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	01/03/23 18:32	EPA 8260D			
GL-2-Dup (A2L1089-03)			Matrix: Water		Batch: 23A0019					
Acetone	ND	10.0	20.0	ug/L	1	01/03/23 19:00	EPA 8260D			
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/03/23 19:00	EPA 8260D			
Benzene	ND	0.100	0.200	ug/L	1	01/03/23 19:00	EPA 8260D			
Bromobenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:00	EPA 8260D			
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D			
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D			
Bromoform	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D			
Bromomethane	ND	5.00	5.00	ug/L	1	01/03/23 19:00	EPA 8260D			
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/03/23 19:00	EPA 8260D			
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D			
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D			
	112	0.500	1.00	4.6/ L			v= v			

1.00

ug/L

Apex Laboratories

tert-Butylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

01/03/23 19:00

EPA 8260D

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

			Donoutino	-		D-4-		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
•	result	2	2					11010
GL-2-Dup (A2L1089-03)				Matrix: W	ater		23A0019	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/03/23 19:00	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:00	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/03/23 19:00	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/03/23 19:00	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/03/23 19:00	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/03/23 19:00	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:00	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:00	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:00	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/03/23 19:00	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/03/23 19:00	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 19:00	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 19:00	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 19:00	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/03/23 19:00	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:00	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	01/03/23 19:00	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/03/23 19:00	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/03/23 19:00	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/03/23 19:00	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L ug/L	1	01/03/23 19:00	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L ug/L	1	01/03/23 19:00	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L ug/L	1	01/03/23 19:00	EPA 8260D	
,1,1,2-Tetrachloroethane	ND ND	0.200	0.400	ug/L ug/L	1	01/03/23 19:00	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOMProject:POV ASI888 SW 5th Ave, Suite 600Project Number:60519699Portland, OR 97204Project Manager:Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date	<u></u>		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note	
GL-2-Dup (A2L1089-03)				Matrix: Water		Batch: 23A0019			
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/03/23 19:00	EPA 8260D		
Tetrachloroethene (PCE)	0.230	0.200	0.400	ug/L	1	01/03/23 19:00	EPA 8260D	J	
Toluene	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D		
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	01/03/23 19:00	EPA 8260D		
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	01/03/23 19:00	EPA 8260D		
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	01/03/23 19:00	EPA 8260D		
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/03/23 19:00	EPA 8260D		
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/03/23 19:00	EPA 8260D		
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/03/23 19:00	EPA 8260D		
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D		
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D		
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D		
Vinyl chloride	ND	0.200	0.400	ug/L	1	01/03/23 19:00	EPA 8260D		
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/03/23 19:00	EPA 8260D		
o-Xylene	ND	0.250	0.500	ug/L	1	01/03/23 19:00	EPA 8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 103 %	Limits: 80-120 %	1	01/03/23 19:00	EPA 8260D		
Toluene-d8 (Surr)			102 %	80-120 %	1	01/03/23 19:00	EPA 8260D		
4-Bromofluorobenzene (Surr)			102 %	80-120 %	I	01/03/23 19:00	EPA 8260D		
GL-3 (A2L1089-04)				Matrix: Wate	er	Batch:	Batch: 23A0019		
Acetone	ND	20.0	20.0	ug/L	1	01/03/23 19:27	EPA 8260D		
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/03/23 19:27	EPA 8260D		
Benzene	ND	0.100	0.200	ug/L	1	01/03/23 19:27	EPA 8260D		
Bromobenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:27	EPA 8260D		
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D		
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D		
Bromoform	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D		
Bromomethane	ND	5.00	5.00	ug/L	1	01/03/23 19:27	EPA 8260D		
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/03/23 19:27	EPA 8260D		
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D		
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D		
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D		
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/03/23 19:27	EPA 8260D		
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D		
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:27	EPA 8260D		
Chloroethane	ND	5.00	5.00	ug/L	1	01/03/23 19:27	EPA 8260D		
Chloroform	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D		
Chloromethane	ND	2.50	5.00	ug/L	1	01/03/23 19:27	EPA 8260D		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

<u> </u>		olatile Organi		S DY EPA 0	-2000			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GL-3 (A2L1089-04)				Matrix: Wa	ater	Batch:	23A0019	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/03/23 19:27	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/03/23 19:27	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:27	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:27	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:27	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/03/23 19:27	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/03/23 19:27	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 19:27	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 19:27	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 19:27	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/03/23 19:27	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:27	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	01/03/23 19:27	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/03/23 19:27	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/03/23 19:27	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/03/23 19:27	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L ug/L	1	01/03/23 19:27	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L ug/L	1	01/03/23 19:27	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L ug/L	1	01/03/23 19:27	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/03/23 19:27	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L ug/L	1	01/03/23 19:27	EPA 8260D	
Tetrachloroethene (PCE)	0.260	0.200	0.400	ug/L ug/L	1	01/03/23 19:27	EPA 8260D	J
Toluene	0.200 ND	0.500	1.00	ug/L ug/L	1	01/03/23 19:27	EPA 8260D	•
1,2,3-Trichlorobenzene	ND ND	1.00	2.00	ug/L ug/L	1	01/03/23 19:27	EPA 8260D	
1,2,4-Trichlorobenzene	ND ND	1.00	2.00	ug/L ug/L	1	01/03/23 19:27	EPA 8260D	
1,2,4-1richlorobenzene 1,1,1-Trichloroethane	ND ND	0.200	0.400	ug/L ug/L	1	01/03/23 19:27	EPA 8260D	
1,1,1-1ficilioroetnane	ND	0.200	0.400	ug/L	1	01/03/23 19:27	LTA 0200D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

				nds by EPA 826	-			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
GL-3 (A2L1089-04)				Matrix: Wate	r	Batch:	23A0019	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/03/23 19:27	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/03/23 19:27	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/03/23 19:27	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	01/03/23 19:27	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/03/23 19:27	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	01/03/23 19:27	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	102 %	Limits: 80-120 %	1	01/03/23 19:27	EPA 8260D	
Toluene-d8 (Surr)		•	102 %	80-120 %	1	01/03/23 19:27	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	01/03/23 19:27	EPA 8260D	
GL-4 (A2L1089-05)				Matrix: Wate	r	Batch:	23A0019	
Acetone	ND	10.0	20.0	ug/L	1	01/03/23 19:55	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/03/23 19:55	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	01/03/23 19:55	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:55	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 19:55	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/03/23 19:55	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	01/03/23 19:55	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	01/03/23 19:55	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/03/23 19:55	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:55	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:55	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 19:55	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/03/23 19:55	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/03/23 19:55	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:55	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/03/23 19:55	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/03/23 19:55	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/03/23 19:55	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 19:55	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 19:55	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 19:55	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/03/23 19:55	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/03/23 19:55	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/03/23 19:55	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

Si.4 (AZL1089-05) Si.4 (AZL1089-05) Si.2			olatile Organi	ic Compound	us by EPA 8	עטטט_			
Si.4 (AZL1089-05) Si.4 (AZL1089-05) Si.2				1 0					
1,2-Dichlorobenzane	Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
A-Dichlorobenzene	GL-4 (A2L1089-05)				Matrix: W	ater	Batch:	23A0019	
A-Dichlorobenzene	1,2-Dichlorobenzene	ND	0.250	0.500		1	01/03/23 19:55	EPA 8260D	
A-Dichlorochence	1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 19:55	EPA 8260D	
Dichlorodifluoromethane ND	1,4-Dichlorobenzene	ND	0.250	0.500		1	01/03/23 19:55	EPA 8260D	
	Dichlorodifluoromethane	ND	0.500	1.00		1	01/03/23 19:55	EPA 8260D	
	1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/03/23 19:55	EPA 8260D	
	1,2-Dichloroethane (EDC)	ND	0.200	0.400		1	01/03/23 19:55	EPA 8260D	
Common	1,1-Dichloroethene	ND		0.400	_	1	01/03/23 19:55	EPA 8260D	
rams-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 010323 19:55 EPA 8260D	cis-1,2-Dichloroethene				-	1	01/03/23 19:55	EPA 8260D	
	trans-1,2-Dichloroethene	ND				1	01/03/23 19:55	EPA 8260D	
1,3-Dichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2-Dichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1,1-Dichloropropene ND 0.500 0.400 ug/L 1 01/03/23 19:55	1,2-Dichloropropane				-	1	01/03/23 19:55	EPA 8260D	
2,2-Dichloropropane	1,3-Dichloropropane				-		01/03/23 19:55	EPA 8260D	
	2,2-Dichloropropane				-	1	01/03/23 19:55	EPA 8260D	
Sis-1,3-Dichloropropene ND	1,1-Dichloropropene	ND	0.500	1.00		1	01/03/23 19:55	EPA 8260D	
rans-1,3-Dichloropropene	cis-1,3-Dichloropropene					1	01/03/23 19:55	EPA 8260D	
Ethylbenzene	trans-1,3-Dichloropropene					1	01/03/23 19:55	EPA 8260D	
Per	Ethylbenzene								
Part	Hexachlorobutadiene					1	01/03/23 19:55	EPA 8260D	
Sopropylbenzene ND	2-Hexanone				-		01/03/23 19:55	EPA 8260D	
Less ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Methylene chloride ND 5.00 10.0 ug/L 1 01/03/23 19:55 EPA 8260D Less Les	Isopropylbenzene				_	1	01/03/23 19:55	EPA 8260D	
Methylene chloride ND 5.00 10.0 ug/L 1 01/03/23 19:55 EPA 8260D 1-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 01/03/23 19:55 EPA 8260D 1-Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naph	4-Isopropyltoluene						01/03/23 19:55	EPA 8260D	
H-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 01/03/23 19:55 EPA 8260D Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 0.500 1.00	Methylene chloride				-		01/03/23 19:55	EPA 8260D	
Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D Naphthalene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D n-Propylbenzene ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Styrene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,1,2-Tetrachloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,3-Trichlorobenzene (PCE) 0.230 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,1-Trich	4-Methyl-2-pentanone (MiBK)								
ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.0	Methyl tert-butyl ether (MTBE)								
ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.1,1,2-Tetrachloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1.1,2,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1.1,2,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1.1,2,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1.1,2,2-Tetrachloroethene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2,4-Trichloroethane ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.1,1-Trichloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1.1,2-Trichloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1.1,2-Trichloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1.1,2-Trichloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2-Trichloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2-Trichloroethane ND 0.500 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1.2,2-Trichloropropane ND 0.500 1.00 u	Naphthalene (MTZZ)				-				
ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2-Tetrachloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,2-Tetrachloroethane PCE) 0.230 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2-Trichloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2-Trichloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,3-Trichloropthane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,3-Trichloroptopane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,3-Trichloroptopane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L	n-Propylbenzene				-				
1,1,2-Tetrachloroethane	Styrene				-				
1,1,2,2-Tetrachloroethane	1,1,1,2-Tetrachloroethane					_			
Tetrachloroethene (PCE)	1,1,2,2-Tetrachloroethane								
Toluene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Prichloroethene (TCE) ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Prichlorofluoromethane ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D	Tetrachloroethene (PCE)				-	_			J
1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2-Trichloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2-Trichlorofluoromethane ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D	Toluene								
1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D 17richloroethene (TCE) ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D	1,2,3-Trichlorobenzene								
1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 01/03/23 19:55 EPA 8260D Frichloroethene (TCE) ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Frichlorofluoromethane ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D	1,2,4-Trichlorobenzene								
1,1,2-Trichloroethane	1,1,1-Trichloroethane					_			
Frichloroethene (TCE) ND 0.200 0.400 ug/L 1 01/03/23 19:55 EPA 8260D Frichlorofluoromethane ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D	1,1,2-Trichloroethane					_			
Friehlorofluoromethane ND 1.00 2.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D	Trichloroethene (TCE)								
1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D	` /				-				
1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 01/03/23 19:55 EPA 8260D					-				
					-				
1.3.2-Trimethy/inenzene NII (1.500) / 00	1,3,5-Trimethylbenzene	ND ND	0.500	1.00	ug/L ug/L	1	01/03/23 19:55	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

	٧	olatile Organic	Compou	nds by EPA 826	0D			
Apolyto	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date	Method Ref.	NT-4:
Analyte	Resuit	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GL-4 (A2L1089-05)				Matrix: Wate	er	Batch:	23A0019	
Vinyl chloride	ND	0.200	0.400	ug/L	1	01/03/23 19:55	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/03/23 19:55	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	01/03/23 19:55	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	: 103 %	Limits: 80-120 %	1	01/03/23 19:55	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	01/03/23 19:55	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	01/03/23 19:55	EPA 8260D	
GL-6 (A2L1089-06)				Matrix: Wate	er	Batch:	23A0019	
Acetone	ND	10.0	20.0	ug/L	1	01/03/23 20:22	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/03/23 20:22	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	01/03/23 20:22	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	01/03/23 20:22	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	01/03/23 20:22	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/03/23 20:22	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/03/23 20:22	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 20:22	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/03/23 20:22	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/03/23 20:22	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/03/23 20:22	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/03/23 20:22	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 20:22	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 20:22	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 20:22	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/03/23 20:22	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/03/23 20:22	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

			· ·	ds by EPA 826				
Analyta	Sample	Detection Limit	Reporting Limit	Unita	Dilution	Date	Mathad Daf	Nat-
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GL-6 (A2L1089-06)				Matrix: Wate	er	Batch:	23A0019	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 20:22	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 20:22	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 20:22	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/03/23 20:22	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/03/23 20:22	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	01/03/23 20:22	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/03/23 20:22	EPA 8260D	
Sopropylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
1-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/03/23 20:22	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/03/23 20:22	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	01/03/23 20:22	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	01/03/23 20:22	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/03/23 20:22	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L ug/L	1	01/03/23 20:22	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	01/03/23 20:22	EPA 8260D	
Foluene	ND	0.500	1.00	ug/L ug/L	1	01/03/23 20:22	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L ug/L	1	01/03/23 20:22	EPA 8260D	
1,2,4-Trichlorobenzene	ND ND	1.00	2.00	ug/L	1	01/03/23 20:22	EPA 8260D	
1,1,1-Trichloroethane	ND ND	0.200	0.400	ug/L ug/L	1	01/03/23 20:22	EPA 8260D	
<i>,</i> ,	ND ND	0.250		C	1	01/03/23 20:22	EPA 8260D	
1,1,2-Trichloroethane			0.500	ug/L	1	01/03/23 20:22	EPA 8260D EPA 8260D	
Frichloroethene (TCE)	ND	0.200	0.400	ug/L				
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/03/23 20:22	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	01/03/23 20:22	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L	1	01/03/23 20:22	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	01/03/23 20:22	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 104 %	Limits: 80-120 %		01/03/23 20:22	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	01/03/23 20:22	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GL-6 (A2L1089-06)				Matrix: Wate	er	Batch:	23A0019	
Surrogate: 4-Bromofluorobenzene (Surr)		Recov	ery: 102 %	Limits: 80-120 %	6 I	01/03/23 20:22	EPA 8260D	
Field Blank (A2L1089-07)				Matrix: Wate	er	Batch:	23A0019	
Acetone	ND	10.0	20.0	ug/L	1	01/03/23 13:57	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/03/23 13:57	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	01/03/23 13:57	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	01/03/23 13:57	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	01/03/23 13:57	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/03/23 13:57	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/03/23 13:57	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 13:57	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/03/23 13:57	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/03/23 13:57	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/03/23 13:57	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/03/23 13:57	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 13:57	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 13:57	EPA 8260D	
1.4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 13:57	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/03/23 13:57	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/03/23 13:57	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 13:57	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 13:57	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 13:57	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/03/23 13:57	EPA 8260D	
1,3-Dichloropropane	ND ND	0.230	1.00		1	01/03/23 13:57	EPA 8260D	
2,2-Dichloropropane	ND ND	0.500	1.00	ug/L ug/L	1	01/03/23 13:57	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
Field Blank (A2L1089-07)				Matrix: Wate	er	Batch:	23A0019	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/03/23 13:57	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	01/03/23 13:57	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/03/23 13:57	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/03/23 13:57	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/03/23 13:57	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	01/03/23 13:57	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	01/03/23 13:57	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/03/23 13:57	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/03/23 13:57	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	01/03/23 13:57	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	01/03/23 13:57	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	01/03/23 13:57	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	01/03/23 13:57	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/03/23 13:57	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/03/23 13:57	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/03/23 13:57	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	01/03/23 13:57	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/03/23 13:57	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	01/03/23 13:57	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 102 %	Limits: 80-120 %	1	01/03/23 13:57	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	01/03/23 13:57	EPA 8260D	
4-Bromofluorobenzene (Surr)			104 %	80-120 %		01/03/23 13:57	EPA 8260D	
Trip Blank (A2L1089-08)				Matrix: Wate	er	Batch:	23A0019	
Acetone	ND	10.0	20.0	ug/L	1	01/03/23 14:24	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/03/23 14:24	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	01/03/23 14:24	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

		olatile Organi		as sy Li A 0				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Trip Blank (A2L1089-08)				Matrix: Wa	ater	Batch:	23A0019	
Bromobenzene	ND	0.250	0.500	ug/L	1	01/03/23 14:24	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	01/03/23 14:24	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/03/23 14:24	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/03/23 14:24	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 14:24	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/03/23 14:24	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/03/23 14:24	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/03/23 14:24	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/03/23 14:24	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 14:24	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 14:24	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/03/23 14:24	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/03/23 14:24	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/03/23 14:24	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 14:24	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 14:24	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/03/23 14:24	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/03/23 14:24	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L ug/L	1	01/03/23 14:24	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L ug/L	1	01/03/23 14:24	EPA 8260D	
Ethylbenzene	ND ND	0.250	0.500	ug/L ug/L	1	01/03/23 14:24	EPA 8260D	
Hexachlorobutadiene	ND ND	2.50	5.00	ug/L ug/L	1	01/03/23 14:24	EPA 8260D	
Hexachioroduladiene 2-Hexanone	ND ND	5.00	10.0	ug/L ug/L	1	01/03/23 14:24	EPA 8260D EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Trip Blank (A2L1089-08)				Matrix: Wate	er	Batch:	23A0019	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/03/23 14:24	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/03/23 14:24	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	01/03/23 14:24	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	01/03/23 14:24	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/03/23 14:24	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/03/23 14:24	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	01/03/23 14:24	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	01/03/23 14:24	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	01/03/23 14:24	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	01/03/23 14:24	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/03/23 14:24	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/03/23 14:24	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/03/23 14:24	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	01/03/23 14:24	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/03/23 14:24	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	01/03/23 14:24	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 102 %	Limits: 80-120 %	5 1	01/03/23 14:24	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	5 1	01/03/23 14:24	EPA 8260D	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	5 1	01/03/23 14:24	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

QUALITY CONTROL (QC) SAMPLE RESULTS

		Di	esel and/o	r Oil Hyd	rocarbor	s by NW7	PH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0356 - EPA 3510C	(Fuels/Acid	l Ext.)					Wat	er				
Blank (23A0356-BLK1)		Prepared:	01/11/23 12:2	29 Analyz	ed: 01/11/2	3 21:19						
NWTPH-Dx LL												
Diesel	ND	0.0400	0.0800	mg/L	1							
Oil	ND	0.0800	0.160	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	very: 81 %	Limits: 50	1-150 %	Dilı	ution: 1x					
LCS (23A0356-BS1)		Prepared:	01/11/23 12:2	29 Analyz	ed: 01/11/2	3 21:42						
NWTPH-Dx LL												
Diesel	0.321	0.0400	0.0800	mg/L	1	0.500		64	36 - 132%			
Surr: o-Terphenyl (Surr)		Reco	very: 94 %	Limits: 50	1-150 %	Dilı	ution: 1x					
LCS Dup (23A0356-BSD1)		Prepared:	01/11/23 12:2	29 Analyz	ed: 01/11/2	3 22:05						Q-1
NWTPH-Dx LL												
Diesel	0.304	0.0400	0.0800	mg/L	1	0.500		61	36 - 132%	5	30%	
Surr: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50	150 %	Dilı	ıtion: 1x					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

QUALITY CONTROL (QC) SAMPLE RESULTS

		•	Volatile Org	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0019 - EPA 5030C							Wate	er				
Blank (23A0019-BLK1)		Prepared:	01/03/23 10:5	56 Analyz	ed: 01/03/23	3 13:29						
EPA 8260D												
Acetone	ND	10.0	20.0	ug/L	1							
Acrylonitrile	ND	1.00	2.00	ug/L	1							
Benzene	ND	0.100	0.200	ug/L	1							
Bromobenzene	ND	0.250	0.500	ug/L	1							
Bromochloromethane	ND	0.500	1.00	ug/L	1							
Bromodichloromethane	ND	0.500	1.00	ug/L	1							
Bromoform	ND	0.500	1.00	ug/L	1							
Bromomethane	ND	5.00	5.00	ug/L	1							
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1							
n-Butylbenzene	ND	0.500	1.00	ug/L	1							
ec-Butylbenzene	ND	0.500	1.00	ug/L	1							
ert-Butylbenzene	ND	0.500	1.00	ug/L	1							
Carbon disulfide	ND	5.00	10.0	ug/L	1							
Carbon tetrachloride	ND	0.500	1.00	ug/L	1							
Chlorobenzene	ND	0.250	0.500	ug/L	1							
Chloroethane	ND	5.00	5.00	ug/L	1							
Chloroform	ND	0.500	1.00	ug/L	1							
Chloromethane	ND	2.50	5.00	ug/L	1							
2-Chlorotoluene	ND	0.500	1.00	ug/L	1							
-Chlorotoluene	ND	0.500	1.00	ug/L	1							
Dibromochloromethane	ND	0.500	1.00	ug/L	1							
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1							
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1							
Dibromomethane	ND	0.500	1.00	ug/L	1							
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1							
,1-Dichloroethane	ND	0.200	0.400	ug/L	1							
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1							
,1-Dichloroethene	ND	0.200	0.400	ug/L	1							
ris-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1							
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1							

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 AECOM
 Project:
 POV ASI

 888 SW 5th Ave, Suite 600
 Project Number:
 60519699

 Portland, OR 97204
 Project Manager:
 Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Org	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0019 - EPA 5030C							Wat	er				
Blank (23A0019-BLK1)		Prepared:	01/03/23 10:5	56 Analyz	ed: 01/03/2	3 13:29						
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
sis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
sopropylbenzene	ND	0.500	1.00	ug/L	1							
-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
l-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	1.00	2.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L ug/L	1							
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
,1,2-Trichloroethane	ND ND	0.250	0.500	ug/L ug/L	1							
Crichloroethene (TCE)	ND ND	0.200	0.400	ug/L ug/L	1							
Crichlorofluoromethane	ND ND	1.00	2.00	ug/L ug/L	1							
,2,3-Trichloropropane	ND ND	0.500	1.00	ug/L ug/L	1							
		0.500	1.00	_	1							
,2,4-Trimethylbenzene	ND			ug/L								
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L	1							
m,p-Xylene	ND	0.500	1.00	ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Comment of fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REG	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0019 - EPA 5030C							Wat	er				
Blank (23A0019-BLK1)		Prepared:	01/03/23 10::	56 Analyz	ed: 01/03/2	3 13:29						
Surr: Toluene-d8 (Surr)		Recor	very: 102 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
4-Bromofluorobenzene (Surr)			104 %	80)-120 %		"					
LCS (23A0019-BS1)		Prepared:	01/03/23 10::	56 Analyz	ed: 01/03/2	3 12:26						
EPA 8260D				-								
Acetone	39.4	10.0	20.0	ug/L	1	40.0		98	80 - 120%			ICV-01
Acrylonitrile	20.3	1.00	2.00	ug/L	1	20.0		101	80 - 120%			
Benzene	18.7	0.100	0.200	ug/L	1	20.0		94	80 - 120%			
Bromobenzene	18.3	0.250	0.500	ug/L	1	20.0		91	80 - 120%			
Bromochloromethane	20.8	0.500	1.00	ug/L	1	20.0		104	80 - 120%			
Bromodichloromethane	19.9	0.500	1.00	ug/L	1	20.0		100	80 - 120%			
Bromoform	17.5	0.500	1.00	ug/L	1	20.0		88	80 - 120%			
Bromomethane	16.0	5.00	5.00	ug/L	1	20.0		80	80 - 120%			
2-Butanone (MEK)	41.4	5.00	10.0	ug/L	1	40.0		103	80 - 120%			ICV-01
-Butylbenzene	21.1	0.500	1.00	ug/L	1	20.0		106	80 - 120%			
ec-Butylbenzene	20.4	0.500	1.00	ug/L	1	20.0		102	80 - 120%			
ert-Butylbenzene	18.7	0.500	1.00	ug/L	1	20.0		94	80 - 120%			
Carbon disulfide	18.8	5.00	10.0	ug/L	1	20.0		94	80 - 120%			
Carbon tetrachloride	19.8	0.500	1.00	ug/L	1	20.0		99	80 - 120%			
Chlorobenzene	19.3	0.250	0.500	ug/L	1	20.0		96	80 - 120%			
Chloroethane	19.2	5.00	5.00	ug/L	1	20.0		96	80 - 120%			ICV-01
Chloroform	19.1	0.500	1.00	ug/L	1	20.0		96	80 - 120%			
Chloromethane	20.7	2.50	5.00	ug/L	1	20.0		103	80 - 120%			
2-Chlorotoluene	18.4	0.500	1.00	ug/L	1	20.0		92	80 - 120%			
-Chlorotoluene	19.0	0.500	1.00	ug/L	1	20.0		95	80 - 120%			
Dibromochloromethane	22.2	0.500	1.00	ug/L	1	20.0		111	80 - 120%			
,2-Dibromo-3-chloropropane	17.3	2.50	5.00	ug/L	1	20.0		86	80 - 120%			
,2-Dibromoethane (EDB)	19.6	0.250	0.500	ug/L	1	20.0		98	80 - 120%			
Dibromomethane	19.6	0.500	1.00	ug/L	1	20.0		98	80 - 120%			
,2-Dichlorobenzene	19.0	0.250	0.500	ug/L	1	20.0		95	80 - 120%			
,3-Dichlorobenzene	19.0	0.250	0.500	ug/L	1	20.0		95	80 - 120%			
,4-Dichlorobenzene	18.5	0.250	0.500	ug/L	1	20.0		93	80 - 120%			
Dichlorodifluoromethane	18.1	0.500	1.00	ug/L	1	20.0		90	80 - 120%			
,1-Dichloroethane	19.7	0.200	0.400	ug/L	1	20.0		99	80 - 120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

QUALITY CONTROL (QC) SAMPLE RESULTS

		•	Volatile Orç	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0019 - EPA 5030C							Wate	ər				
LCS (23A0019-BS1)		Prepared:	01/03/23 10::	56 Analyz	ed: 01/03/2	3 12:26						
,2-Dichloroethane (EDC)	19.6	0.200	0.400	ug/L	1	20.0		98	80 - 120%			
,1-Dichloroethene	19.7	0.200	0.400	ug/L	1	20.0		98	80 - 120%			
cis-1,2-Dichloroethene	19.2	0.200	0.400	ug/L	1	20.0		96	80 - 120%			
rans-1,2-Dichloroethene	19.3	0.200	0.400	ug/L	1	20.0		97	80 - 120%			
,2-Dichloropropane	19.4	0.250	0.500	ug/L	1	20.0		97	80 - 120%			
,3-Dichloropropane	19.9	0.500	1.00	ug/L	1	20.0		100	80 - 120%			
2,2-Dichloropropane	19.7	0.500	1.00	ug/L	1	20.0		99	80 - 120%			
,1-Dichloropropene	18.8	0.500	1.00	ug/L	1	20.0		94	80 - 120%			
eis-1,3-Dichloropropene	20.2	0.500	1.00	ug/L	1	20.0		101	80 - 120%			
rans-1,3-Dichloropropene	21.0	0.500	1.00	ug/L	1	20.0		105	80 - 120%			
Ethylbenzene	19.3	0.250	0.500	ug/L	1	20.0		96	80 - 120%			
Hexachlorobutadiene	20.2	2.50	5.00	ug/L	1	20.0		101	80 - 120%			
2-Hexanone	42.7	5.00	10.0	ug/L	1	40.0		107	80 - 120%			
sopropylbenzene	19.1	0.500	1.00	ug/L	1	20.0		96	80 - 120%			
l-Isopropyltoluene	20.7	0.500	1.00	ug/L	1	20.0		104	80 - 120%			
Methylene chloride	19.7	5.00	10.0	ug/L	1	20.0		98	80 - 120%			
l-Methyl-2-pentanone (MiBK)	43.2	5.00	10.0	ug/L	1	40.0		108	80 - 120%			
Methyl tert-butyl ether (MTBE)	18.1	0.500	1.00	ug/L	1	20.0		91	80 - 120%			
Naphthalene	16.6	1.00	2.00	ug/L	1	20.0		83	80 - 120%			
n-Propylbenzene	19.3	0.250	0.500	ug/L	1	20.0		97	80 - 120%			
Styrene	19.9	0.500	1.00	ug/L	1	20.0		99	80 - 120%			
,1,1,2-Tetrachloroethane	19.7	0.200	0.400	ug/L	1	20.0		99	80 - 120%			
,1,2,2-Tetrachloroethane	20.9	0.250	0.500	ug/L	1	20.0		104	80 - 120%			
Tetrachloroethene (PCE)	18.4	0.200	0.400	ug/L	1	20.0		92	80 - 120%			
Toluene	18.0	0.500	1.00	ug/L	1	20.0		90	80 - 120%			
,2,3-Trichlorobenzene	16.2	1.00	2.00	ug/L	1	20.0		81	80 - 120%			
,2,4-Trichlorobenzene	16.7	1.00	2.00	ug/L	1	20.0			80 - 120%			
,1,1-Trichloroethane	19.0	0.200	0.400	ug/L	1	20.0		95	80 - 120%			
,1,2-Trichloroethane	19.4	0.250	0.500	ug/L	1	20.0		97	80 - 120%			
Trichloroethene (TCE)	17.8	0.200	0.400	ug/L	1	20.0		89	80 - 120%			
Frichlorofluoromethane	20.6	1.00	2.00	ug/L	1	20.0			80 - 120%			
,2,3-Trichloropropane	19.6	0.500	1.00	ug/L	1	20.0			80 - 120%			
,2,4-Trimethylbenzene	20.4	0.500	1.00	ug/L	1	20.0			80 - 120%			
,3,5-Trimethylbenzene	20.5	0.500	1.00	ug/L	1	20.0			80 - 120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOMProject:POV ASI888 SW 5th Ave, Suite 600Project Number:60519699Portland, OR 97204Project Manager:Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0019 - EPA 5030C							Wat	er				
LCS (23A0019-BS1)		Prepared	01/03/23 10:	56 Analyz	ed: 01/03/2	3 12:26						
Vinyl chloride	19.8	0.200	0.400	ug/L	1	20.0		99	80 - 120%			
n,p-Xylene	38.7	0.500	1.00	ug/L	1	40.0		97	80 - 120%			
o-Xylene	18.6	0.250	0.500	ug/L	1	20.0		93	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			93 %	80	-120 %		"					
Duplicate (23A0019-DUP1)		Prepared:	01/03/23 10:	56 Analyz	ed: 01/03/2	3 18:05						
QC Source Sample: GL-1 (A2L10	<u>189-01)</u>											
EPA 8260D												
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Org	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0019 - EPA 5030C							Wat	er				
Duplicate (23A0019-DUP1)		Prepared:	01/03/23 10:5	56 Analyz	zed: 01/03/2	3 18:05						
QC Source Sample: GL-1 (A2L10	89-01)											
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1		ND				30%	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1		ND				30%	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
eis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1		ND				30%	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
is-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
Ethylbenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1		ND				30%	
2-Hexanone	ND	5.00	10.0	ug/L	1		ND				30%	
sopropylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
l-Isopropyltoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Methylene chloride	ND	5.00	10.0	ug/L	1		ND				30%	
I-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1		ND				30%	
Naphthalene	ND	1.00	2.00	ug/L	1		ND				30%	
-Propylbenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Styrene	ND	0.500	1.00	ug/L	1		ND				30%	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Cetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Toluene	ND	0.500	1.00	ug/L	1		ND				30%	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by Ef												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0019 - EPA 5030C							Wat	er				
Duplicate (23A0019-DUP1)		Prepared:	01/03/23 10:	56 Analyz	ed: 01/03/2	3 18:05						
QC Source Sample: GL-1 (A2L10	<u>89-01)</u>											
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
m,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 102 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

SAMPLE PREPARATION INFORMATION

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx										
Prep: EPA 3510C	(Fuels/Acid Ext.)	1			Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 23A0356											
A2L1089-01	Water	NWTPH-Dx LL	12/29/22 11:35	01/11/23 12:29	1000mL/2mL	1000mL/2mL	1.00				
A2L1089-02	Water	NWTPH-Dx LL	12/29/22 12:40	01/11/23 12:29	880mL/2mL	1000mL/2mL	1.14				
A2L1089-03	Water	NWTPH-Dx LL	12/29/22 12:40	01/11/23 12:29	1000 mL/2 mL	1000mL/2mL	1.00				
A2L1089-04	Water	NWTPH-Dx LL	12/29/22 14:20	01/11/23 12:29	970mL/2mL	1000mL/2mL	1.03				
A2L1089-05	Water	NWTPH-Dx LL	12/29/22 10:20	01/11/23 12:29	880mL/2mL	1000mL/2mL	1.14				
A2L1089-06	Water	NWTPH-Dx LL	12/29/22 15:35	01/11/23 12:29	890mL/2mL	1000mL/2mL	1.12				

Volatile Organic Compounds by EPA 8260D											
Prep: EPA 5030C					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 23A0019											
A2L1089-01	Water	EPA 8260D	12/29/22 11:35	01/03/23 10:56	5mL/5mL	5mL/5mL	1.00				
A2L1089-02	Water	EPA 8260D	12/29/22 12:40	01/03/23 10:56	5mL/5mL	5mL/5mL	1.00				
A2L1089-03	Water	EPA 8260D	12/29/22 12:40	01/03/23 10:56	5mL/5mL	5mL/5mL	1.00				
A2L1089-04	Water	EPA 8260D	12/29/22 14:20	01/03/23 10:56	5mL/5mL	5mL/5mL	1.00				
A2L1089-05	Water	EPA 8260D	12/29/22 10:20	01/03/23 10:56	5mL/5mL	5mL/5mL	1.00				
A2L1089-06	Water	EPA 8260D	12/29/22 15:35	01/03/23 10:56	5mL/5mL	5mL/5mL	1.00				
A2L1089-07	Water	EPA 8260D	12/29/22 16:00	01/03/23 10:56	5mL/5mL	5mL/5mL	1.00				
A2L1089-08	Water	EPA 8260D	12/29/22 00:00	01/03/23 10:56	5mL/5mL	5mL/5mL	1.00				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

F-11 The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.

F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation

ICV-01 Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.

J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.

Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for

analysis.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 AECOM
 Project:
 POV ASI

 888 SW 5th Ave, Suite 600
 Project Number:
 60519699
 Report ID:

 Portland, OR 97204
 Project Manager:
 Nicky Moody
 A2L1089 - 01 16 23 1608

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Anex	Labora	atories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

a Jumel la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOMProject:POV ASI888 SW 5th Ave, Suite 600Project Number:60519699Portland, OR 97204Project Manager:Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI
888 SW 5th Ave, Suite 600 Project Number: 60519699
Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

much la final

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AECOM Project: POV ASI

 888 SW 5th Ave, Suite 600
 Project Number: 60519699
 Report ID:

 Portland, OR 97204
 Project Manager: Nicky Moody
 A2L1089 - 01 16 23 1608

Princed Nat Comp. Vols Full List Email:	1 1 1 1 1 1 1 1 1 1		÷1000	I L S S I D D D D		SPECIAL INSTRUCTIONS:		RELINQUISHED BY: Signature: Signature: Date: Printed Name: Time:
---	---------------------------------------	--	-------	-------------------	--	-----------------------	--	--

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 AECOM
 Project:
 POV ASI

 888 SW 5th Ave, Suite 600
 Project Number:
 60519699

Portland, OR 97204 Project Manager: Nicky Moody

Report ID: A2L1089 - 01 16 23 1608

Client: Allom	
to a conversion pro-	CONTRACTOR OF AN
Project/Project #:	POV-ASI /605/9699
Delivery Info:	14
	30/n @ 1215 By: M
Delivered by: Apex	Client KESS FedEx UPS Swift Senvoy SDS Other
Cooler Inspection Da	tte/time inspected: 12/30/w@ 12/5 By:
Chain of Custody include	ed? Yes No Custody seals? Yes No
Signed/dated by client?	Yes No
Signed/dated by Apex?	Yes No
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	2.8 5.1
Received on ice? (Y/N)	<u> </u>
Temp. blanks? (Y/N)	<u> </u>
Ice type: (Gel/Real/Other	0 / 0 /
Condition (In/Out):	In In
	te/time inspected: 1335 By: 5-35 Y No Comments:
Bottle labels/COCs agree	2? Yes / No Comments: Tak smerred off from most continuer.
Hatilad L Alber	continues prinaged together. Time on Field Blank rends 1600, but no time
MALL DE DIEL	
COC/container discrepan	icios form initiatod: Tes No
COC/container discrepan	ived appropriate for analysis? Yes \geq No Comments:
COC/container discrepan Containers/volumes recei	ived appropriate for analysis? Yes <u>></u> No Comments:
COC/container discrepan Containers/volumes recei Do VOA vials have visib	ived appropriate for analysis? Yes <u>>> No Comments:</u> ele headspace? Yes <u>>< No NA</u>
COC/container discrepan Containers/volumes recei Do VOA vials have visib Comments 6/1/2 = 2/	ived appropriate for analysis? Yes \nearrow No Comments:
COC/container discrepan Containers/volumes recei Do VOA vials have visib Comments (01.2 = 2/ Water samples: pH check	le headspace? Yes × No NA NA No NA No NA NA NO NA PH appropriate? Yes × No NA
COC/container discrepan Containers/volumes recei Do VOA vials have visib Comments (01.2 = 2/ Water samples: pH check	ived appropriate for analysis? Yes \times No Comments:
COC/container discrepan Containers/volumes recei Do VOA vials have visib Comments (2002 = 2/ Water samples: pH check Comments:	le headspace? Yes × No NA NA No NA No NA NA NO NA PH appropriate? Yes × No NA
COC/container discrepan Containers/volumes recei Do VOA vials have visib Comments (2002 = 2/ Water samples: pH check Comments:	tived appropriate for analysis? Yes \succeq No Comments:
COC/container discrepan Containers/volumes recei Do VOA vials have visib Comments (01.2 = 2/ Water samples: pH check Comments: Additional information:	ived appropriate for analysis? Yes \succeq No Comments:
COC/container discrepan Containers/volumes recei Do VOA vials have visib Comments (2002 = 2/ Water samples: pH check Comments:	tived appropriate for analysis? Yes \succeq No Comments:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Commell by fraid

Appendix CData Quality Review Report

AECOM 888 SW 5th Ave Suite 600 Portland, OR 97204 www.aecom.com 1.971.323.6262 tel

Data Quality Review Report

Laboratory & Report No.	Apex Laboratories, Incorporated #A2L1089
Report Date	January 30, 2023
Sampling Event	December 29, 2022
Site Location	Port of Vancouver, ASI
AECOM Project No.	60624310 Task 4
Project Name	December 2022 Groundwater Monitoring

This document summarizes the data quality review of the five primary groundwater samples, one field duplicate groundwater sample, one field blank sample, and one trip blank sample collected on December 29, 2022, collected at the former Automotive Services, Incorporated (ASI) site located at the Port of Vancouver in Vancouver, Washington. Samples submitted to Apex Laboratories (Apex) of Tigard, Oregon and were analyzed for the following:

- Volatile organic compounds (VOCs) by US Environmental Protection Agency (EPA) Method 8260D
- Diesel-range and oil-range hydrocarbons by NWTPH-Dx

Analytical data results and associated quality assurance (QA) and quality control (QC) data for all samples are presented in Apex report A2L1089. Data was reviewed based on the *National Functional Guidelines for Organic Superfund Methods Data Review, November 2020.* Chain-of-custody (COC) records, holding times, field/method/trip blanks, surrogate recoveries, matrix spike/matrix spike duplicate recoveries, laboratory and/or field duplicate results, blank spike recoveries (laboratory control samples), and reporting limits were reviewed to assess compliance with applicable methods. If data qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in the EPA document specified above.

Qualifiers assigned as a result of this review are included in Table 1. The following criteria were evaluated during the review:

- COC Records Acceptable
- Temperature Acceptable
- Preservation Acceptable except as noted below:

<u>VOCs by EPA Method 8260D</u> – The laboratory noted that one or more of the vials received for VOC analysis on GL-2, GL-2 Dup, GL-6, and the trip blank were received with headspace. VOC analysis for these samples was performed on vials without headspace or the headspace was less than 6 millimeters; therefore, data were not qualified based on vial headspace.

- Holding Times Acceptable
- Field/Trip Blanks Acceptable
- Method Blanks Acceptable

AECOM 888 SW 5th Ave Suite 600 Portland, OR 97204 www.aecom.com 1.971.323.6262 tel

- Surrogates Acceptable
- <u>Laboratory Control Samples (LCS)</u> Acceptable
- Matrix Spike (MS) MSs were not performed in association with these analyses. Accuracy was accessed using the LCS and/or LCSD results.
- <u>Laboratory Duplicates</u> Acceptable

<u>VOCs by EPA Method 8260D</u> – A laboratory duplicate was performed using sample GL-1. Results were comparable.

<u>Diesel and Oil-range Hydrocarbons by NWTPH-Dx</u> – A laboratory duplicate was not performed in association with this analysis. Precision was assessed using LCS/LCSD and field duplicate results.

Field Duplicate – Acceptable

A field duplicate was submitted for GL-2 and identified GL-2-DUP. Results were comparable.

Reporting Limits – Acceptable

<u>General</u> – The results for oil-range hydrocarbons in GL-3 and tetrachloroethene in GL-2, GL-2 DUP, GL-3, and GL-4 were flagged 'J' by the laboratory to indicate that the sample concentrations were less than the laboratory reporting limits but above the method detection limits. As there is a greater level of uncertainty with these results, laboratory J-flagged results are considered estimated.

Other Items of Note

<u>Diesel and Oil-range Hydrocarbons by NWTPH-Dx</u> – The laboratory noted that the diesel-range hydrocarbon patterns in GL-1, GL-2, and GL-2-DUP indicated possible weathered diesel, mineral oil, or a contribution from a related component. The diesel-range hydrocarbon pattern in CL-4 did not resemble the fuel standard used for quantitation. No data qualifiers were assigned based on these qualitative observations by the laboratory.

<u>VOCs by EPA Method 8260D</u> – The laboratory noted that the percent deviation (%D) for acetone, 2-butanone, and chloroethane in the initial calibration verification (ICV) was above than the method control limit of \pm 20%. Acetone, 2-butanone, and chloroethane were not detect in the associated samples; therefore, data were not qualified based on these ICV results.

Overall Assessment of Data

The completeness of the analytical report for this groundwater monitoring event is 100%. The usefulness of the data is based on the EPA guidance documents referenced in the introduction of this report. Upon consideration of the information presented above, the data are usable for meeting project objectives. The data qualifiers assigned by the laboratory are shown on the laboratory reports.

Data Qualifier Definitions

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

AECOM 888 SW 5th Ave Suite 600 Portland, OR 97204 <u>www.aecom.com</u> 1.971.323.6262 tel

- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria.
- DNR Do Not Report. Another result is available that is more reliable.

References

EPA, 2020. EPA National Functional Guidelines for Organic Superfund Methods Data Review. EPA-540-R-20-005. November.

Table 1. Sample Qualification Summary

Field Sample ID	Laboratory Sample ID	Analyte	Qualifier	Rationale
No Data Qua	lifiers Were Assigned	d to the Results Reported in A2L10	089 Based on Th	nis Data Review.

About AFCOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With approximately 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$6 billion.

More information on AECOM and its services can be found at www.aecom.com.