

Hecla Limited

Independent Remedial Action Report

Washington State Highway 20, Mile Marker 407, Ione, Washington

May 15, 2024

Independent Remedial Action Report

Washington State Highway 20, Mile Marker 407, Ione, Washington

May 15, 2024

Prepared By:

Arcadis U.S., Inc. 1420 5th Avenue, Suite 2400 Seattle, WA 98101 **United States**

Phone: 206 325 5254

Prepared For: Hecla Limited

Our Ref:

30216383

mishele orgin

Environmental Scientist

Michelle Nguyen

Joshua Lee

Project Manager

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Contents

1	Intro	oduction	1
	1.1	Site Description	1
2	Env	vironmental Investigation Summary	2
	2.1	Constituent of Concern	2
	2.2	Incident Response	2
	2.2.1	1 Cleanup Activities	2
	2.2.2	2 Background Sampling	3
	2.2.3	3 Characterization and Disposal	4
3	Con	nclusion	4
4	Ref	ferences	4

Tables

Table 1. Soil Sampling Analytical Results - Confirmation Samples

Table 2. Soil Sampling Analytical Results - Background Metals

Figures

Figure 1. Site Location Map

Figure 2. Soil Sample Locations and Results Map

Figure 3. Background Metals Soil Sample Locations

Appendices

Appendix A. Zinc Concentrate Safety Data Sheet

Appendix B. Regulatory Correspondence

Appendix C. Photograph Log

Appendix D. Laboratory Analytical Reports and Chain-of-Custody Documentation

Appendix E. Waste Disposal Documentation

Acronyms and Abbreviations

Arcadis U.S., Inc.

Chem Waste Chemical Waste Management of the Northwest

COC constituent of concern

CUL cleanup level

Ecology Washington State Department of Environmental Ecology

Eurofins TestAmerica Laboratory

Hecla Limited

mg/kg milligram per kilogram

MTCA Model Toxics Control Act

ppm parts per million

RCRA Resource Conservation and Recovery Act

ROW right-of-way

TAL Target Analyte List

TCLP Toxicity Characteristic Leaching Procedure

WAC Washington Administrative Code

XRF X-ray fluorescence

ZBI Zanetti Brothers, Inc.

iii

1 Introduction

This Independent Remedial Action Report describes cleanup actions undertaken by Hecla Limited (Hecla) in response to release of material to the ground surface along Washington State Highway 20 south of lone, Washington.

On February 16, 2024, a pup trailer transporting approximately 31,000 pounds of zinc concentrate from the Hecla Lucky Friday Mine in Mullan, Idaho overturned while traveling north on Washington State Highway 20 near Mile Marker 407, south of Ione, Washington (the Site), resulting in a release of the concentrate onto the ground surface. The extent of the concentrate release was limited to approximately 3,000 square feet of the highway right-of-way (ROW) and the Pend Oreille Valley Railroad (POVA) ROW. In response to the incident, Hecla notified Arcadis U.S., Inc. (Arcadis) to respond to the Site through implementation of its Incident Response and Recovery Plan (Hecla 2023) and mine-specific incident response and recovery procedures. Arcadis promptly notified the following entities on Hecla's behalf and case numbers were opened as shown:

- Washington Emergency Management State # 24-0700;
- Washington Department of Ecology (Ecology) Environmental Reports Tracking System (ERTS) Case # 728846;
- National Response Center Incident Report # 1391743; and
- POVA

This report was prepared to summarize cleanup actions undertaken by Arcadis in accordance with Model Toxics Control Act (MTCA) Cleanup Regulation Chapter 173-340-515 of the Washington Administrative Code (WAC). Cleanup activities were completed on April 1, 2024.

1.1 Site Description

The release Site is located near mile marker 407 on Washington State Highway 20, approximately 10 miles south of Ione, Washington (**Figure 1**), within the highway's eastbound ROW and the POVA west ROW. The remedial excavation area includes the highway east ROW leading down to a flat base of a ditch into the POVA railroad west ROW and ending at the railroad tracks. High voltage powerlines are present over the middle of the ditch aligned parallel with both ROWs. The ROW and adjacent properties in the vicinity of the incident are wooded. The nearest downgradient surface water feature to the Site the Pend Oreille River is approximately 0.1 mile to the east. Surrounding features are depicted on the aerial site map shown on **Figure 1**.

DRAFT Hecla IRR Ione Report Feb 2024

2 Environmental Investigation Summary

This section describes the zinc concentrate constituent of concern (COC) and associated cleanup levels, and the incident response actions completed to remove, confirm, characterize, and dispose impacted materials. Regulatory correspondence with Ecology is documented in **Appendix B**. Soil sample locations and analytical results are shown on **Figure 2**. A photograph log depicting images from the response and cleanup effort is included as **Appendix C**.

2.1 Constituent of Concern

Zinc concentrate is the primary Site COC. As indicated on the zinc concentrate safety data sheet (included as **Appendix A**), the concentrate is 50 to 65 percent zinc sulfide. Through collaboration with Hecla and Ecology, zinc was confirmed as the target COC for the purposes of field screening and confirmation soil sampling and the MTCA cleanup level (CUL)¹ for zinc of 120 milligrams per kilogram (mg/kg) was established as the cleanup criteria for Site soil. Ecology requested testing samples for Target Analyte List (TAL) metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc). Groundwater was not encountered during excavation activities.

2.2 Incident Response

Arcadis was notified by Hecla that a haul truck owned and operated by Zanetti Brothers, Inc. (ZBI) pulling a pup trailer containing zinc concentrate from the Lucky Friday Mine had its pup trailer overturn while in transit to Trail, British Columbia in Canada on February 16, 2024, at approximately 8:00 a.m. The trailer went off the roadway, causing the trailer to disconnect from the haul truck and overturn in the eastbound highway ROW; approximately 31,000 pounds of zinc concentrate were spilled between the roadway and railroad tracks. The truck remained on the roadway during the accident. The response team performed an inspection of the truck saddle tanks and confirmed the tanks were not damaged or ruptured; there was no evidence of leaking fuel or oil having spilled to the ground surface. The approximate location of the release is shown on **Figure 1**.

2.2.1 Cleanup Activities

Arcadis mobilized to the Site on February 16, 2024, and met with ZBI, Washington State Patrol, and Ecology. Initial cleanup activities were performed by ZBI on February 16, 2024, with oversight by Arcadis. ZBI provided traffic control assistance along Highway 20 and the wrecked pup trailer was removed from the ditch using a crane from Evergreen State Towing at approximately 1:00 p.m. ZBI delivered two excavators, haul trucks, and pup trailers to the Site and began spill cleanup activities immediately after the wrecked pup trailer was removed from the ditch.

ZBI scrapped soil and zinc concentrate material using excavators from an area approximately 152 feet north to south and 35 feet east to west within the highway ROW and railroad ROW. On February 16 and 17, 2024, ZBI removed from the Site a total of three haul trucks and two pup trailers of soil mixed with zinc concentrate material.

WWW.arcadis.com

DRAFT Heda IRR Ione Report Feb 2024

2

¹ Model Toxics Control Act Soil Protective of Groundwater to Surface Water Vadose @13 degrees C Freshwater cleanup level

Independent Remedial Action Report Washington State Highway 20, Mile Marker 407, Ione, Washington

Approximately 2 to 4 inches of soil were removed from the excavation area. ZBI delivered approximately 17 tons of ¾-inch gravel import material, which was placed in the highway ROW and compacted with the excavator. ZBI also used hand tools to sweep zinc concentrate from the roadway and from the railroad ballast adjacent to the rail.

Arcadis mapped the excavation area, collected a sample of zinc concentrate material for initial waste characterization, and collected a total of 11 confirmation soil samples from the base of the excavation area (**Figure 2**) in accordance with the 2023 Hecla Lucky Friday Incident Response and Recovery Plan (Hecla 2023). Samples were submitted on February 19, 2024, to Eurofins TestAmerica Laboratory (Eurofins) in Spokane Valley, Washington for analysis. The initial waste characterization sample was analyzed for Resource Conservation and Recovery Act (RCRA) Total Metals and RCRA Metals Toxicity Characteristic Leaching Procedure (TCLP); confirmation soil samples were analyzed for metals by method SW846 6010D. The initial waste characterization sample exceeded CULs for lead, cadmium, and mercury. Zinc concentrations in the confirmation samples ranged from 260 to 530,000 mg/kg and exceeded the CUL of 120 mg/kg.

Arcadis collected soil samples for background metal analysis (as described in the next section) as well as a second waste characterization sample on February 29, 2024. Arcadis and ZBI returned to the Site on April 1, 2024, and excavated approximately 3 to 4 inches of additional soil from the original excavation area. Field staff screened the soil using an X-ray fluorescence (XRF) instrument, and the sampled area readings ranged from 45 to 88 parts per million (ppm) zinc. Multiple background XRF shots from areas far outside the excavation area ranged from 80 to 150 ppm zinc. Eleven additional confirmation soil samples were collected from locations corresponding to the initial confirmation sample locations (**Figure 2**) and were submitted for Eurofins for analysis of TAL metals.

Analytical results for zinc in the confirmation soil samples collected April 1, 2024 were at or below the CUL of 120 mg/kg, ranging from 34 to 120 mg/kg. Copper, iron, and manganese concentrations in the confirmation samples exceeded their respective CULs; the background samples collected on February 29, 2024, exceeded CULs for these analytes, as well.

The second waste characterization sample collected on February 29, 2024, did not detect metals exceedances above RCRA hazardous waste levels; therefore, the waste profiled as non-hazardous. ZBI loaded four haul trucks and four pup trailers with soil for non-hazardous disposal at the Burke repository in Burke, Idaho. The POVA railroad inspected the excavation area and determined that further restoration was not required.

Confirmation soil analytical results are presented in **Table 1**. Background soil analytical results are presented in **Table 2**. Laboratory analytical reports and chain-of-custody documentation are included in **Appendix D**.

2.2.2 Background Sampling

Arcadis collected 10 soil samples from the Site on February 29, 2024, for background metals analysis. Five samples were collected to the north, and five samples were collected to the south of the excavation area at approximate 50-foot spacing along the railroad ROW, as shown on **Figure 3**. The samples were submitted to Eurofins for analysis of TAL metals.

Analytical results for zinc in the background soil samples collected February 29, 2024, ranged from 68 to 130 mg/kg zinc, with one exceedance of the CUL in sample Ione-BG-2-022924 (130 mg/kg), collected approximately 100 feet north of the remedial excavation. Copper, iron, and manganese concentrations exceeded

DRAFT Heda IRR lone Report Feb 2024

Independent Remedial Action Report Washington State Highway 20, Mile Marker 407, Ione, Washington

their respective CULs. Background soil analytical results are presented in **Table 2**. Laboratory analytical reports and chain-of-custody documentation are included in **Appendix D**.

2.2.3 Characterization and Disposal

ZBI transported excavated soils to its waste staging area in Osburn, Idaho for staging and characterization prior to disposal. Arcadis collected composite waste characterization samples on February 17 and 29, 2024. The waste generated from the initial cleanup on February 16 and 17, 2024 characterized as hazardous waste due to detected concentrations that exceeded the RCRA TCLP lead limit of 5.0 milligrams per liter, whereas the second waste sample was characterized as nonhazardous waste. Laboratory analytical reports for the waste characterization samples are included in **Appendix D**.

Approximately 56.15 tons of excavated material that classified as hazardous waste was transported on April 24, 2024 to Chemical Waste Management of the Northwest (Chem Waste) located in Arlington, Oregon for disposal. The non-hazardous waste generated from the excavation on April 1, 2024, is securely stockpiled at ZBI's yard in Osburn, Idaho and will be transported to the Burke repository in Burke, Idaho for disposal in May 2024. Waste disposal documentation is included in **Appendix E**.

3 Conclusion

Cleanup activities at the Site consisted of zinc concentrate recovery, soil removal, offsite disposal, and collection of confirmation soil samples and background samples. Through implementation of the Incident Response and Recovery Plan (Hecla 2023) and mine-specific incident response and recovery procedures, staff mobilized to the Site immediately following the incident and responded to the overturned trailer and release accordingly. Seven haul trucks and six pup trailers filled with soil mixed with zinc concentrate and debris were successfully removed during cleanup activities. ZBI transported and disposed of approximately 56.15 tons of hazardous waste at Chem Waste on April 24, 2024. Non-hazardous waste from the second excavation is stockpiled at ZBI's yard located in Osburn, Idaho and the waste will be transported to the Burke Repository in Burke, Idaho for disposal in May 2024.

Confirmation soil sampling results demonstrate the successful removal of zinc concentrate from the Site to below CULs. Based upon the results of this independent remedial action, no apparent threat to human health or the environment stemming from the February 16, 2024, release exists and no further action is warranted at this time. The independent remedial action was successful in remediating the Site and meeting the substantive requirements of WAC 173-340-515. On behalf of Hecla, Arcadis requests that Ecology issue a No Further Action Determination for the Site.

4 References

Hecla. 2023. Incident Response and Recovery Plan, Lucky Friday Mine, Mullan, Idaho. January.

4

Tables

			Location/Sample ID	IONE-1-021624	IONE-1A-040124	IONE-2-021624	IONE-2A-040124	IONE-3-021624	IONE-3A-040124	IONE-4-021624	IONE-4A-040124
Analyse		Soil Protective of Groundwater SW Vadose @	Date	2/16/2024	4/1/2024	2/16/2024	4/1/2024	2/16/2024	4/1/2024	2/16/2024	4/1/2024
Analyte	MTCA Method A CUL ¹	13 degrees Celcius Fresh Water	Depth Range (feet)	0-0.25	0.25-0.5	0-0.25	0.25-0.5	0-0.25	0.25-0.5	0-0.25	0.25-0.5
		(Eq. 747-1)	Units								
Metals (by SW846 6010D)											
Aluminum	NE	NE	mg/kg		13,000		13,000		17,000		14,000
Antimony	NE	5.1	mg/kg		<11 F1 F2 ^1+		<11 ^1+		<9.7 ^1+		<11 ^1+
Arsenic	20	2.9	mg/kg		2.7 J		2.2 J		4.3 J		4.3 J
Barium	NE	820	mg/kg		170		220		120		91
Beryllium	NE	4300	mg/kg		<5.4		<5.4		<4.8		<5.6
Cadmium	2	0.099	mg/kg		<4.3		<4.3		<3.9		<4.5
Calcuim	NE	NE	mg/kg		2,900 F1 F2		2,000		2,400		2,700
Chromium ²	2000	1500	mg/kg		13		13		21		17
Cobalt	NE	NE	mg/kg		7.6		6.4		11		9.5
Copper		4.9	mg/kg		7.2 J		6.2 J		14 J		22
Iron	NE	500	mg/kg		19,000		17,000		26,000		23,000
Lead	250	500	mg/kg		13		12 J		16		18
Magnesium	NE	NE	mg/kg		4,600 F1		4,100		6,000		5,200
Manganese	NE	65	mg/kg		520 F2		520		330		270
Nickel		68	mg/kg		14		13		20		21
Potassium	NE	NE	mg/kg		1,800 F1 F2		1,900		3,400		2,200
Selenium	NE	0.52	mg/kg		<21		<21		<19		<22
Silver		0.54	mg/kg		<5.4		<5.4		<4.8		<5.6
Sodium	NE	NE	mg/kg		220 F1 F2 B		180 B		160 B		140 B
Thallium	NE	0.32	mg/kg		<11 ^1+		<11 ^1+		<9.7 ^1+		<11 ^1+
Vanadium	NE	NE	mg/kg		21		18		29		31
Zinc		120	mg/kg	530,000 B	76	260 B	120	17,000 B	70	110,000 B	80
Metals (by SW846 7471B)											
Mercury	2000	0.013	μg/kg		15 J F2		14 J		23 J		23 J

1. Bolded and shaded values indicate the analyte was detected at a concentration at or above their respective cleanup levels.

2. Non-detect results are reported as "< Reporting Limit".

Footnotes

¹ The respective cleanup level is less than the laboratory reporting limit. However, the analyte was not detected at concentrations greater than laboratory reporting limits.

² Total chromium was analyzed and the cleanup level presented is for chromium III.

Data Qualifiers:

< = The analyte was analyzed for but not detected. The associated value is the analyte reporting limit.

B = Compound was found in the blank and sample.

F1 = Matrix spike (MS) and/or matrix spike duplicate (MSD) recovery exceeds control limits.

F2 = MS/MSD relative percent difference (RPD) exceeds control limits.

J = Result is less than the reporting limit (RL) but greater than or equal to the method detection limit (MDL) and the concentration is an approximate value.

^1+ = Initial Calibration Verification (ICV) is outside acceptance limits, high biased.

Acronyms and Abbreviations:

-- = Not analyzed/not available

μg/kg= microgram per kilogram

CUL = cleanup level

ID = identification

mg/kg = milligram per kilogram

MTCA = Model Toxics Control Act

NE = not established

SW846 = United States Environmental Protection Agency "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

			Location/Sample ID	IONE-5-021624	IONE-5A-040124	IONE-6-021724	IONE-6A-040124	IONE-7-021724	IONE-7A-040124	IONE-8-021724	IONE-8A-040124
Analyte		Soil Protective of Groundwater SW Vadose @	Date	2/16/2024	4/1/2024	2/17/2024	4/1/2024	2/17/2024	4/1/2024	2/17/2024	4/1/2024
Allalyte	MTCA Method A CUL ¹	13 degrees Celcius Fresh Water	Depth Range (feet)	0-0.25	0.25-0.5	0-0.25	0.25-0.5	0-0.25	0.25-0.5	0-0.25	0.25-0.5
		(Eq. 747-1)	Units								
Metals (by SW846 6010D)											
Aluminum	NE	NE	mg/kg		14,000		7,500		13,000		14,000
Antimony	NE	5.1	mg/kg		<10 ^1+		<9.9 ^1+		<11 ^1+		<10 ^1+
Arsenic	20	2.9	mg/kg		4.2 J		2.4 J		<5.5		2.7 J
Barium	NE	820	mg/kg		92		49		93		110
Beryllium	NE	4300	mg/kg		<5.2		<4.9		<5.5		<5.1
Cadmium	2	0.099	mg/kg		<4.2		<3.9		<4.4		<4.1
Calcuim	NE	NE	mg/kg		2,800		2,000		2,100		2,100
Chromium ²	2000	1500	mg/kg		15		8.0		10		10
Cobalt	NE	NE	mg/kg		8.2		4.2 J		5.7		6.5
Copper		4.9	mg/kg		19		6.2 J		8.3 J		13 J
Iron	NE	500	mg/kg		22,000		14,000		16,000		17,000
Lead	250	500	mg/kg		16		8.2 J		9.1 J		9.4 J
Magnesium	NE	NE	mg/kg		4,700		3,100		3,400		3,500
Manganese	NE	65	mg/kg		330		150		180		210
Nickel		68	mg/kg		18		8.1		12		14
Potassium	NE	NE	mg/kg		2,400		1,200		1,800		1,600
Selenium	NE	0.52	mg/kg		<21		<20		<22		<21
Silver		0.54	mg/kg		<5.2		<4.9		<5.5		<5.1
Sodium	NE	NE	mg/kg		180 B		110 B		180 B		160 B
Thallium	NE	0.32	mg/kg		<10 ^1+		<9.9 ^1+		<11 ^1+		<10 ^1+
Vanadium	NE	NE	mg/kg		27		16		16		16
Zinc		120	mg/kg	960 B	77	17,000 B	34	1,100 B	52	230,000 B	55
Metals (by SW846 7471B)											
Mercury	2000	0.013	μg/kg		23 J		<35		13 J		14 J

1. Bolded and shaded values indicate the analyte was detected at a concentration at or above their respective cleanup levels.

2. Non-detect results are reported as "< Reporting Limit".

Footnotes

¹ The respective cleanup level is less than the laboratory reporting limit. However, the analyte was not detected at concentrations greater than laboratory reporting limits.

² Total chromium was analyzed and the cleanup level presented is for chromium III.

Data Qualifiers:

- < = The analyte was analyzed for but not detected. The associated value is the analyte reporting limit.
- B = Compound was found in the blank and sample.
- F1 = Matrix spike (MS) and/or matrix spike duplicate (MSD) recovery exceeds control limits.
- F2 = MS/MSD relative percent difference (RPD) exceeds control limits.
- J = Result is less than the reporting limit (RL) but greater than or equal to the method detection limit (MDL) and the concentration is an approximate value.
- ^1+ = Initial Calibration Verification (ICV) is outside acceptance limits, high biased.

Acronyms and Abbreviations:

-- = Not analyzed/not available

µg/kg= microgram per kilogram

CUL = cleanup level

ID = identification

mg/kg = milligram per kilogram

MTCA = Model Toxics Control Act

NE = not established

SW846 = United States Environmental Protection Agency "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

			Location/Sample ID	IONE-9-021724	IONE-9A-040124	IONE-10-021724	IONE-10A-040124	IONE-11-021724	IONE-11A-040124
Analyte		Soil Protective of Groundwater SW Vadose @	Date	2/17/2024	4/1/2024	2/17/2024	4/1/2024	2/17/2024	4/1/2024
Allalyte	MTCA Method A CUL ¹	13 degrees Celcius	Depth Range (feet)	0-0.25	0.25-0.5	0-0.25	0.25-0.5	0-0.25	0.25-0.5
		Fresh Water (Eq. 747-1)	Units						
Metals (by SW846 6010D)									
Aluminum	NE	NE	mg/kg		18,000		11,000		13,000
Antimony	NE	5.1	mg/kg		<9.3 ^1+		<10 ^1+		<10 ^1+
Arsenic	20	2.9	mg/kg		9.2		<5.2		2.8 J
Barium	NE	820	mg/kg		87		140		130
Beryllium	NE	4300	mg/kg		<4.7		<5.2		<5.2
Cadmium	2	0.099	mg/kg		0.25 J		<4.2		<4.1
Calcuim	NE	NE	mg/kg		4,700		3,200		3,200
Chromium ²	2000	1500	mg/kg		24		9.6		12
Cobalt	NE	NE	mg/kg		13		5.3		7.3
Copper		4.9	mg/kg		41		6.0 J		10 J
Iron	NE	500	mg/kg		36,000		16,000		18,000
Lead	250	500	mg/kg		29		9.3 J		14
Magnesium	NE	NE	mg/kg		7,100		3,000		4,100
Manganese	NE	65	mg/kg		500		420		470
Nickel		68	mg/kg		34		12		14
Potassium	NE	NE	mg/kg		3,300		1,200		1,500
Selenium	NE	0.52	mg/kg		<19		<21		<21
Silver		0.54	mg/kg		<4.7		<5.2		<5.2
Sodium	NE	NE	mg/kg		240 B		210 B		260 B
Thallium	NE	0.32	mg/kg		<9.3 ^1+		<10 ^1+		<10 ^1+
Vanadium	NE	NE	mg/kg		44		14		19
Zinc		120	mg/kg	80,000 B	120	19,000 B	54	570 B	62
Metals (by SW846 7471B)									
Mercury	2000	0.013	μg/kg		42 J		13 J		11 J

1. Bolded and shaded values indicate the analyte was detected at a concentration at or above their respective cleanup levels.

2. Non-detect results are reported as "< Reporting Limit".

Footnotes

¹ The respective cleanup level is less than the laboratory reporting limit. However, the analyte was not detected at concentrations greater than laboratory reporting limits.

² Total chromium was analyzed and the cleanup level presented is for chromium III.

Data Qualifiers:

< = The analyte was analyzed for but not detected. The associated value is the analyte reporting limit.

B = Compound was found in the blank and sample.

F1 = Matrix spike (MS) and/or matrix spike duplicate (MSD) recovery exceeds control limits.

F2 = MS/MSD relative percent difference (RPD) exceeds control limits.

J = Result is less than the reporting limit (RL) but greater than or equal to the method detection limit (MDL) and the concentration is an approximate value.

^1+ = Initial Calibration Verification (ICV) is outside acceptance limits, high biased.

Acronyms and Abbreviations:

-- = Not analyzed/not available

µg/kg= microgram per kilogram

CUL = cleanup level

ID = identification

mg/kg = milligram per kilogram

MTCA = Model Toxics Control Act

NE = not established

SW846 = United States Environmental Protection Agency "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

			Location/Sample ID	IONE-BG-1-022924	IONE-BG-2-022924	IONE-BG-3-022924	IONE-BG-4-022924	IONE-BG-5-022924	IONE-BG-6-022924	IONE-BG-7-022924	IONE-BG-8-022924	IONE-BG-9-022924	IONE-BG-10-022924
Analyte	MTCA Method	Soil Protective of Groundwater SW Vadose @	Date	2/29/2024	2/29/2024	2/29/2024	2/29/2024	2/29/2024	2/29/2024	2/29/2024	2/29/2024	2/29/2024	2/29/2024
, mary to	A CUL ¹	13 degrees Celsius Fresh Water	Depth Range (feet)	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25
		(Eg. 747-1)	Units										
Metals (by SW846 6010D)													
Aluminum	NE	NE	mg/kg	12,000	18,000	9,800	12,000	9,200	15,000	16,000	13,000	14,000	13,000
Antimony	NE	5.10	mg/kg	<11	<13	<9.9 ^1+	<12 ^1+	<9.8 ^1+	<11	<9.4	<12 ^1+	<9.5 ^1+	<11 ^1+
Arsenic	20	2.9	mg/kg	4.8 J	4.5 J	5.1	5.6 J	7.0	3.8 J	4.6 J	4.9 J	5.0	4.0 J
Barium	NE	820	mg/kg	95	180	47	71	51	130	130	110	120	100
Beryllium	NE	4300	mg/kg	<5.5	<6.5	<5.0	<5.9	<4.9	<5.4	<4.7	<6.0	<4.7	<5.5
Cadmium	2	0.099	mg/kg	<4.4	0.39 J	<4.0	<4.7	0.28 J	0.43 J	0.27 J	0.31 J	0.31 J	<4.4
Calcuim	NE	NE	mg/kg	10,000 F1 F2	6,500	19,000 F2	27,000	16,000	5,800	9,600	30,000	19,000	14,000
Chromium ²	2000	1500	mg/kg	15	20	16	18	13	17	19	18	18	16
Cobalt	NE	NE	mg/kg	7.5	10	6.9	9.4	7.3	8.3	11	10	10	9.0
Copper		4.9	mg/kg	17 J	19 J	15 J	19	18	14 J	19	20	22	17 J
Iron	NE	500	mg/kg	18,000	23,000	18,000	22,000	19,000	21,000	25,000	23,000	23,000	21,000
Lead	250	500	mg/kg	75	36	16	21	43	28	27	24	19	29
Magnesium	NE	NE	mg/kg	6,100 F1	6,500	9,500 F1	14,000	8,100	5,400	7,100	8,700	7,900	7,300
Manganese	NE	65	mg/kg	430 ^1+	530 ^1+	310 ^1+	470 ^1+	420 ^1+	440 ^1+	680 ^1+	460 ^1+	560 ^1+	450 ^1+
Nickel		68	mg/kg	15	20	16	20	15	18	21	21	21	18
Potassium	NE	NE	mg/kg	2,200	3,500	1,300	1,900	1,500	2,300	2,600	2,200	2,000	1,900
Selenium	NE	0.52	mg/kg	<22	<26	<20	<24	<20	<22	<19	<24	<19	<22
Silver		0.54	mg/kg	<5.5	<6.5	<5.0	<5.9	<4.9	<5.4	<4.7	<6.0	<4.7	<5.5
Sodium	NE	NE	mg/kg	250 ^1+	260 ^1+	150	130	110	220 ^1+	180 ^1+	120	110	140
Thallium	NE	0.32	mg/kg	<11	<13	<9.9 ^1+	<12 ^1+	<9.8 ^1+	<11	<9.4	<12 ^1+	<9.5 ^1+	<11 ^1+
Vanadium	NE	NE	mg/kg	23	32	22	29	19	29	39	30	31	27
Zinc		120	mg/kg	95	130	68	84	96	110	96	87	85	94
Metals (by SW846 7471B)													
Mercury	2000	0.013	μg/kg	31 J	45 J	17 J F1	19 J	14 J	38 J	23 J	29 J	32 J	33 J

1. Bolded and shaded values indicate the analyte was detected at a concentration at or above their respective cleanup levels.

2. Non-detect results are reported as "< Reporting Limit".

¹ The respective cleanup level is less than the laboratory reporting limit. However, the analyte was not detected at concentrations greater than laboratory reporting limits.

² Total chromium was analyzed and the cleanup level presented is for chromium III.

- < = The analyte was analyzed for but not detected. The associated value is the analyte reporting limit.
- J = Result is less than the reporting limit (RL) but greater than or equal to the method detection limit (MDL) and the concentration is an approximate value.
- F1 = Matrix spike (MS) and/or matrix spike duplicate (MSD) recovery exceeds control limits.
 F2 = MS/MSD relative percent difference (RPD) exceeds control limits.

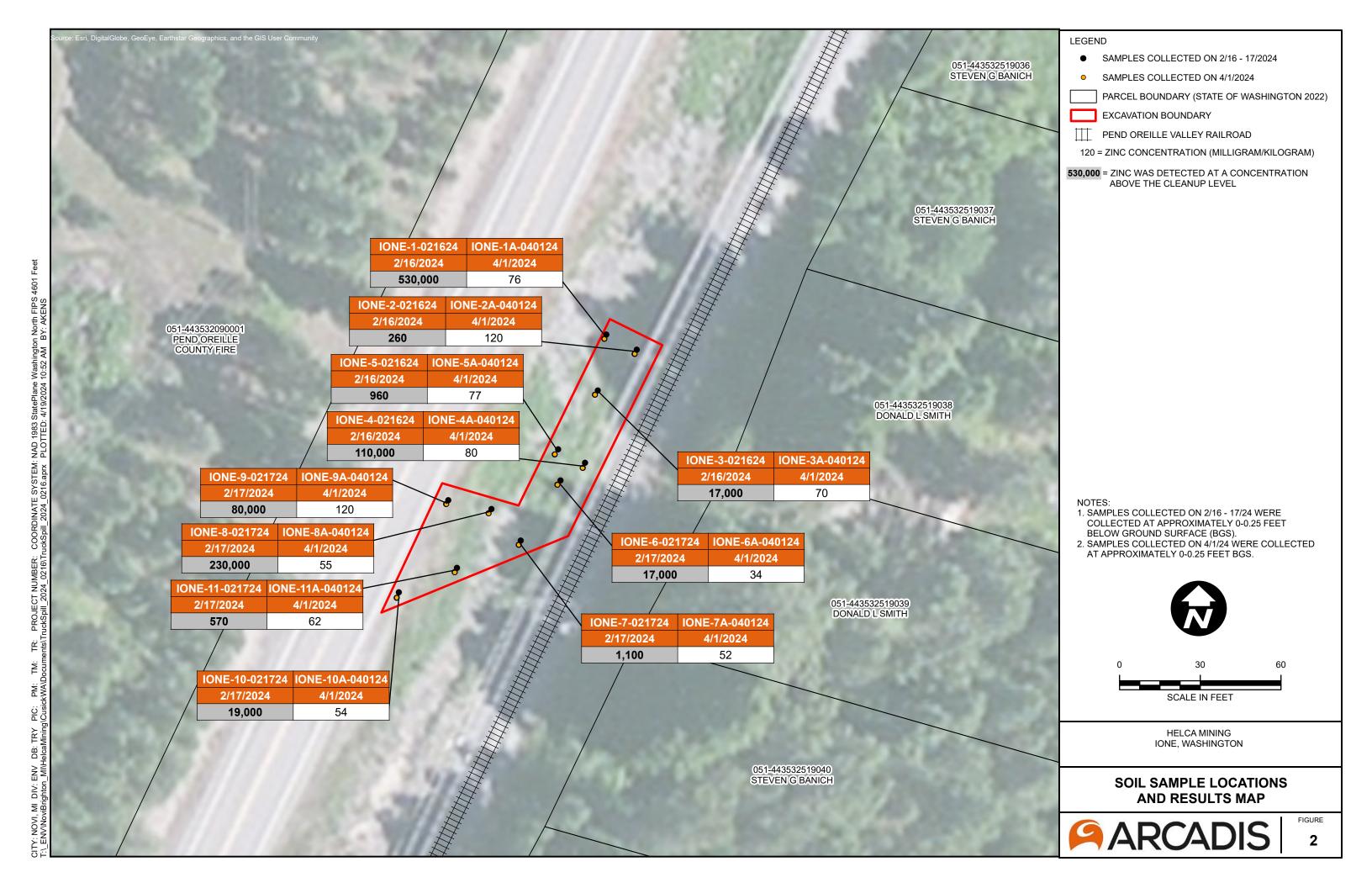
^1+ = Initial Calibration Verification (ICV) is outside acceptance limits, high biased.

Acronyms and Abbreviations:

-- = Not analyzed/not available

μg/kg= microgram per kilogram

CUL = cleanup level ID = identification


mg/kg = milligram per kilogram MTCA = Model Toxics Control Act

NE = not established

SW846 = United States Environmental Protection Agency "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

5/14/2024 Page 4 of 41

Figures

Appendix A

Zinc Concentrate Safety Data Sheet

HECLA LUCKY FRIDAY ZINC CONCENTRATE SAFETY DATA SHEET

1. Product and company	identification
1.1. GHS Product identifier	Zinc sulfide concentrate
1.2. Other means of identification	Hecla Lucky Friday Zn concentrate
1.2. Recommended use of the chemical and restrictions on use	Zinc sulfide concentrates are used for smelter feedstock.
1.3. Details of the supplier of the safety data sheet	
Supplier:	Hecla Lucky Friday Mine, P.O. Box 31, Mullan, ID 83846 USA
Telephone:	(208) 744-1751
Telefax:	(208) 744-1317
E-mail:	bkucera@hecla-mining.com
1.4. Emergency telephone	(208) 661-5247 (LFM Env Mgr)
number	(800) 424-9300 (Transportational Emergencies - CHEMTREC)
2. Hazard identification	
2.1. GHS classification of the substance/mixture and any regional information.	
Aquatic toxicity (acute): category 4	H402: Harmful to aquatic life.
Aquatic toxicity (chronic): category 4	H413: May cause long lasting harmful affects to aquatic life.
Reproductive toxicity: category 1A	H360: May damage fertility or the unborn child. However, extent of specific effect on reproductivity is unknown. Inhalation and ingestion are suspected primary routes of exposure although not conclusively proven to satisfactory demonstration that no other routes of exposure cause hazards.
Specific target organ toxicity - repeated exposure: category 2	H373: May cause damage to organs through prolonged or repeated exposure. However, the extent of organs affected are not currently known due to prolonged or repeated exposure.
2.2. GHS label elements, including precautionary statements.	
Signal word	DANGER
4	

Symbols - pictograms	
Precautionary statements	
·	General
	P101: If medical advice is needed, have product container or label at hand.
	P102: Keep out of reach of children.
	Prevention
	P201 – Obtain special instructions before use.
	P202 – Do not handle until all safety precautions have been read and understood.
	P210 - Keep away from open flames. No Smoking.
	P260 – Do not breathe dust.
	P263: Avoid contact during pregnancy and nursing.
	P264: Wash affected areas of contact thoroughly after handling.
	P273 - Avoid release to the environment.
	P281 - Use personal protective equipment as required.
	Response P301: IF SWALLOWED: give water or milk and induce vomiting. Do not induce vomiting or give liquid
	to an unconscious person.
	P305+351+338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if
	present and easy to do – continue rinsing
	P308 + P313 - IF exposed or concerned: Get medical advice.
	P333+313: If skin irritation or a rash occurs: Get medical advice.
	P370+380: In case of fire: Evacuate area
	P391 - Collect spillage.
	Storage
	P401: Store on not water-permeable floor
	P405 - Store locked up.
	Disposal
	P501 - Dispose of contents to zinc refinery or waste treatment facility.
2.3. Other hazards which do not result in classification or are not	Dust may irritate eyes and respiratory but the zinc (iron-lead-cadmium) sulfide in the product has not been classified as risk causing.
overed by the GHS.	Metal sulfides, when heated, may release sulphur dioxide, which will irritate the upper respiratory tract.
	Conditions and work practices which generate dust and fume should be controlled or avoided. Primary routes of exposure are inhalation and ingestion.
	1-4% of mixture consists of ingredients of unknown hazards to the aquatic environment.
	The substance does not meet the criteria for a PBT or vPvB substance.

3. Composition/in-formation on ingredients

Hazardous ingredient	Approximate percent by weight	CAS Number	
Zinc sulfide	50 to 65 %	1314-98-3	
Iron sulfide	5 to 10 %	1317-37-9	
Lead sulfide	1 to 4 %	1314-87-0	
Copper	<0.1 %	1317-40-4	

Arsenic	0,1 to 0,3 %	7440-38-2
Cadmium sulfide	0,1 to 0,4%	1306-23-6
Silica	0,1 to 1 %	14808-60-7
	Chemical composition of min	%)
4. First-aid measures		
Inhalation	should begin artificial respira breathing is difficult. If the he	e area to fresh air immediately. If breathing has stopped, trained personnel tion. Medical oxygen may be administered by trained personnel, where eart has stopped, immediately start cardiopulmonary resuscitation (CPR), or tion (AED). Quickly transport victim to an emergency care facility.
Skin Contact	Wash thoroughly affected are advice/attention	eas with soap and water. If skin irritation or a rash occurs: Get medical
Eye contact.		or several minutes. Remove contact lenses if present and easy to do – tt as a foreign body. Treat as foreign body.
Ingestion	Have victim rinse mouth thor (60 – 240 ml) of water. If vom medical advice and bring a co vomiting and diarrhea.	h if victim is rapidly losing consciousness, or is unconscious or convulsing. oughly with water. DO NOT INDUCE VOMITING. Have victim drink 2 – 8 oz. niting occurs naturally, have victim rinse mouth with water again. Obtain upy of this SDS. May irritate the gastro-intestinal tract and may cause nause alwage. Chelation therapy has been shown to be effective with lead and m
5. Firefighting measure	25	
5.1. Suitable extinguishing	If product is burning, use DRY c	hemical, CO ₂ , water spray or foam to extinguish the fire. If material near
media.		ishing media appropriate for the situation. streams or extinguishers, which may spread burning concentrate.
5.2. Specific hazards arising	Ignition temperature: 700-800°	
from the chemical (e.g., nature of any hazardous combustion products).	is combustible. Product is not c strongly heated in a fire situatio containing metal oxides (PbOx	be combustable, however pure lead sulfide dust, at sufficient concentrations on sidered a fire or explosion hazard. However, concentrate will burn if on, releasing toxic and irritating sulphur dioxide gas (SO2) and harmful fumband ZnOx). enerate flammable and highly toxic hydrogen sulfide gas (H2S).
5.3. Special protective equipment and precautions for fire-fighters.	protective clothing. Hazardous metallic oxides. Mists and vapo	ve- pressure self-contained breathing apparatus (SCBA) and wear full combustion products include sulphurdioxide, cadmium oxide, zinc oxide a rs from the fire may be corrosive. regency services. Remain upwind and notify those downwind of hazard. es. Discoloration is evident. s and waterways, absorb runoff with sand or similar.

6.1. Personal precautions,	Avoid generating dust. In case an abundance of concentrate dust is in the air, a full cover mask with a
protective equipment and	minimum of class P2 dust filter, fresh air hood, or pressurized respiratory equipment is to be used. Danger
emergency procedures.	of dust explosion is to be taken into account. In hazardous situations safety glasses are to be worn.
	Protection gloves (e.g. PVC, Rubber, Nitrile) and other necessary protective clothing to be used when
	needed.
6.2. Environmental precautions.	Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform
	the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air).
	Water polluting material.
6.3. Methods and materials for	Prevent entry into sewers, water courses, basements or confined areas. Vacuum or sweep up material and
containment and cleaning up.	place in a designated, labelled waste container. Returned to the process cycle or dispose of via a licensed
	waste disposal contractor.
7. Handling and storage	
7.1. Precautions for safe handling.	In confined space, this concentrate may oxidize itself causing a lack of oxygen in the immediate
	environment and could cause asphyxia. Before entering a confined space check to see if there is sufficient
	oxygen, if not wear a self contained breathing apparatus (SCBA).
	Keep away from heat. Keep away from sources of ignition.
	Do not ingest. Do not breathe dust. Wear suitable protective clothing. Avoid use of contact lenses. Keep
	away from incompatibles such as strong oxidizing agents and concentrated acids.
	Employee work practices should include thorough hand washing before eating and drinking, smoking or
	using the toilet, showering at end of exposure and it is advisable to have separate street and work clothes.
	It is not advisable to eat, drink or smoke in an area where this product is in use or stored.
7.2. Conditions for safe storage,	Store in a manner that will prevent dusting and release to the environment.
including any incompatibilities.	Store away from all heat and possible ignition sources.
	Store away from incompatible substances. Strong oxidants and concentrated acids must be prevented to
	get in contact with this product unless intended in the process.
8. Exposure controls/pers	sonal protection
8.1. Control parameters (e.g.,	Zinc 8hr -TWA 10 (mg/m³) (zinc oxide dust)
occupational exposure limit	Iron 8hr -TWA 5 (mg/m³) (iron oxide fume)
values or biological limit values).	Lead 8 hr-TWA 0.15 (mg/m³) (inorganic dust and fumes)
	Cadmium 8 hr-TWA 0.025 (mg/m³) (cadmium and compounds)
	LEAD (7439-92-1)
	ES-TWA: 0.15 mg/m3 (Lead)
	WES-TWA: 0.1 mg/m3
	SILICA, CRYSTALLINE - QUARTZ (14808-60-7)
	ES-TWA: 0.1 mg/m3 (Silica Quartz, respirable, NOHSC)
	ES-TWA#: 0.1 mg/m3 (QLD); 0.15 mg/m3 (NSW)
	WES-TWA: 0.2 mg/m3
	CADMIUM (7440-43-9)
	ES-TWA: 0.01mg/m3 Cadmium
	WES-TWA: 0.01mg/m3
	IRON (7439-89-6)
	ES-TWA: 5 mg/m3 Iron oxide fume
8.2. Appropriate engineering	Avoid inhalation. Use in well ventilated areas. Where an inhalation risk exists, use local or extraction
controls.	ventilation at source. Maintain dust levels below the recommended exposure standard.
	1

8.3. Individual protection measures, such as personal protective equipment.

Coveralls or other work clothing and gloves (e.g. PVC, Rubber, Nitrile) are recommended to prevent prolonged or repeated direct skin contact. Work clothing should be removed immediately if it becomes heavily contaminated and should be changed daily and laundered before reuse if there is reasonable probability that the clothing may be contaminated.

Close-fitting safety goggles should be worn to prevent eye contact if excessive dust is generated or where any possibility exists that eye contact may occur.

Workers should wash immediately when skin becomes contaminated and at the end of each work shift. Where zinc concentrate dust is generated and cannot be controlled to within acceptable levels by engineering means and inhalation risk exists, wear a Class P2 - Particulate respirator (e.g. half face canister P2 or disposable P2).

Where vapours are generated, wear a Type BE (Inorganic and acid gas, Sulphur dioxide) respirator or Full-face Air-line respirator (in confined areas).

9. Physical and chemical properties

Appearance (physical state,	Brown to grey fine powder,
colour, etc.)	5.0 m. to 8.0 m. pondo.
Odour	Weak organic odour from entrained flotation agents can occur.
Odour threshold	Not applicable
рН	7,5 to 8,5
melting point/freezing point	not relevant
initial boiling point and boiling	> 1000°C
range	
flash point:	Not available
evaporation rate	Not applicable
flammability (solid, gas)	non flammable
upper/lower flammability or	Not applicable
explosive limits	
vapour pressure	Not applicable
vapour density	Not applicable
relative density:	4.0 - 4.3 (bulk density: 2.0 - 2.3)
solubility(ies)	low solubility
partition coefficient: n -	Not applicable
octanol/water	
auto-ignition temperature	Not available
decomposition temperature	700°C - 800°C

10. Stability and reactivity

10.1. Chemical stability.	Stable under recommended conditions of storage. Hazardous polymerization or runaway reactions will not
	occur.
10.2. Possibility of hazardous	Product decomposes only at elevated temperature (>700°C) in presence of oxygen with formation of
reactions.	metal oxides and suphur dioxide gas.
10.3. Conditions to avoid (e.g.,	Avoid high temperatures or direct flame in contact with the product
static discharge, shock or	
10.4. Incompatible materials,	Incompatible with strong acids (forming toxic and flammable hydrogen sulfide gas) and oxidising agents
	(eg. hypochlorites, peroxides).
10.5. Hazardous decomposition	May evolve toxic sulphur dioxide, hydrogen sulfide, cadmium and lead oxides when heated to
products.	decomposition. May also evolve iron oxides when heated to decomposition.

11. Toxicological information

11 - 10 b b d	
Health hazard summary	Moderate toxicity. Use safe work practices to avoid direct eye or skin contact and dust inhalation. Lead and cadmium are cumulative poisons. Crystalline silica and cadmium are classified as carcinogenic to humans (IARC Group 1). Inorganic lead compounds are classified as probably carcinogenic to humans (IARC Group 2A). Lead may cause reproductive effects, anaemia, kidney damage and nerve damage.
Acute toxicity	Inorganic lead compounds have generally been found to be of relatively low acute toxicity by ingestion, in contact with skin, and by inhalation. Use safe work practices to avoid eye contact and dust inhalation; Nevertheless current EU regulations require this substance to be classified as harmful by ingestion and inhalation. Toxicity data for lead monoxide: LD50 (oral, rat) > 2000 mg/kg LD50 (dermal, rat) > 2000mg/kg LC50 (4 hr inhalation, rat) > 5mg/L
Skin/eye	Irritant to skin. Prolonged and repeated contact may result in skin rash, dermatitis and skin discolouration. Eye contact with dust may cause local irritation, pain and redness but would not cause tissue damage.
Inhalation	Toxic - irritant. Dust inhalation may cause irritation with coughing. Chronic or high level dust or fume inhalation may cause lead and/or cadmium poisoning. These metals are cumulative toxins; avoid all exposure.
Ingestion	Moderate toxicity. Ingestion may result in irritation, nausea, constipation, diarrhea and vomiting. Lead and cadmium are cumulative poisons, and accidental ingestion of small quantities (eg through poor hygiene) may be significant.
Chronic	The chronic health effects of zinc concentrate (which also contains lead, cadmium, and arsenic in a mineral complex), have not been fully investigated. Prolonged exposure to zinc concentrate dust may be expected to produce many of the symptoms of short-term exposure and may also cause central nervous system damage, gastrointestinal disturbances, kidney dysfunction, anemia, and possible skin rashes or dermatitis. Reduced hemoglobin production has been associated with low lead exposures. Symptoms of central nervous system damage due to moderate exposure include fatigue, headaches, tremors and hypertension. Very high exposure can result in lead encephalopathy with symptoms of hallucinations, convulsions, and delirium. Kidney dysfunction and possible injury has also been associated with chronic lead and cadmium poisoning. Chronic over-exposure to lead has been implicated as a causative agent for the impairment of male and female reproductive capacity. Pregnant women should be protected from excessive exposure as lead can cross the placental barrier and unborn children may suffer neurological damage or developmental problems. Teratogenic and mutagenic effects from exposure to lead have been reported in some studies but not in others. The literature is inconsistent and no firm conclusions can be drawn at this time. Lead and lead compounds are listed as an A3 Carcinogen (Confirmed Animal Carcinogen with Unknown Relevance to Humans) by the ACGIH. IARC has listed lead compounds as Group 2A Carcinogens (Probably Carcinogenic to Humans) while lead metal is listed as Group 2B (Possibly Carcinogenic to Humans). The NTP has recently listed lead and lead compounds as Reasonably Anticipated to be a Human Carcinogen. OSHA and the EU do not currently list lead as a human carcinogen (Carcinogenic to Humans) while ACGIH classifies cadmium as a Suspected Human Carcinogen (A2). The NTP classifies cadmium as a Known Human Carcinogen and OSHA lists cadmium as a Carcinogen.

Mutagenicity	Arsenic and inorganic arsenic compounds are listed as an A1 Carcinogen (Confirmed Human Carcinogen) by the ACGIH and as a Group 1 Carcinogen (Carcinogenic to Humans) by IARC. The NTP and OSHA also identify arsenic and inorganic arsenic compounds as Known Human Carcinogens. The EU also considers some compounds of arsenic, including arsenic oxides, to be Carcinogenic. IARC has classified crystalline silica of respirable particle size as a Group 1 Carcinogen (Carcinogenic to Humans) while ACGIH classifies it as a Suspected Human Carcinogen (A2). The NTP recently reclassified silica as a Known Human Carcinogen. OSHA and the EU do not list silica as a carcinogen. The evidence for genotoxic effects of lead is contradictory, with numerous studies reporting both positive
	and negative effects. Responses appear to be induced by indirect mechanisms, mostly at very high concentrations that lack physiological relevance.
Carcinogenicity	An inhalation study of lead oxide in rats showed that it did not induce, initiate or promote tumours of the lung. However, there is evidence that lead compounds may have a carcinogenic effect, particularly on the stomach and kidneys. However, the mechanisms by which this effect occurs are still unclear. This has led to the classification by IARC that inorganic lead compounds are probably carcinogenic to humans (Group 2A). Crystalline silica, arsenic and cadmium are classified as carcinogenic to humans (IARC Group1).
Reproductive	Exposure to high levels of lead and its compounds may cause adverse effect on male and female fertility, including adverse effects on sperm quality. Prenatal exposure to lead and its compounds is also associated with adverse effects on neurobehavioral development in children.
STOT – single exposure	Zinc and inorganic lead compounds have generally been found to be of relatively low acute toxicity by ingestion, in contact with skin, and by inhalation, with no evidence of any local or systemic toxicity from such exposures.
STOT – repeated exposure	Lead is a cumulative poison and may be absorbed into the body through ingestion or inhalation. Lead has been documented in observational human studies to produce toxicity in multiple organ systems and body function including the haematopoietic (blood) system, kidney function, reproductive function and the central nervous system. Chronic exposure to crystalline silica may result in lung fibrosis (silicosis) with early symptoms; cough, wheezing and with progression, increasing shortness of breath.
12. Ecological information	
12.1. Ecotoxicity (aquatic and terrestrial, where available).	The environmental effects of this substance have been assessed using read-across from studies with similar composition. Toxicity will depend on the levels of free lead and free zinc ions in solution, which in turn is affected by pH, water hardness, salinity, etc. Lead toxicity is expected to be greater in softer waters. The aquatoxic classification of the zinc concentrate according UN-GHS 4th rev 2011, is acute 2, chronic 3
12.2. Persistence and	Lead compounds are potentially persistent in the aquatic environment.
12.3. Bioaccumulative potential	Dissolved lead compounds have the potential to bioaccumulate in plants and animals, both aquatic and terrestrial. In aquatic systems, zinc bioaccumulates in both plants and animals. Zinc also bioaccumulates in terrestrial plants, vertebrates, and mammals; plant uptake from soil depends upon the plant species, soil pH, and soil composition. In general, zinc does not biomagnify through food chains.
12.4. Mobility in soil	Lead may occur as sorbed ions or surface coatings on sediment mineral particles, or may be carried in colloidal particles in surface water. Most lead is strongly retained in soil, resulting in relatively low mobility. Lead may be immobilized by ion exchange with hydrous oxides or clays or by chelation with humic or fulvic acids in the soil.
12.5. Other adverse effects	The PBT and vPvB criteria in Annex XIII of the REACH Regulation do not apply to inorganic substances.

13. Disposal considerations

13.1. Description of waste residues and information on their safe handling and methods of disposal, including any contaminated packaging.

Spilled material should be swept up, placed in suitable containers and returned to the process cycle. Endeavour to separate cleanup materials from clean product. Wastes will be forwarded to be destroyed according to prevailing waste regulations. If material cannot be returned to process or salvage, dispose of only in accordance with applicable regulations. Do not dispose of product to landfill, sewage system or drains. Must be disposed as hazardous chemical waste. Do not allow product to reach sewage system.

European waste catalogue:

 $06\,03\,13^*$ solid salts and solutions containing heavy metals or

06 04 05* wastes containing other heavy metals

14. Transport information

14.1. UN number.	UN3077
14.2. UN Proper shipping name.	Environmentally Hazardous Substance, solid, n.o.s.
14.3. Transport Hazard class(es).	Class 9
14.4. Packing group, if applicable.	III
14.5. Marine pollutant (Y/N).	N
14.6. Special precautions which a user needs to be aware of or needs to comply with in connection with transport or conveyance either within or outside their premises.	Risks : This material may liquefy if shipped at moisture content in excess of its transportable moisture limit. 1-4% of mixture consists of ingredients of unknown hazards to the aquatic environment. 1-4% of mixture consists of ingredients of unknown toxicity.

15. Regulatory information

1120
H401 - Toxic to aquatic life
H412 - Harmful to aquatic life with long lasting effects
H360 - May damage fertility or the unborn child
H373 - May cause damage to organs through prolonged or repeated exposure through prolonged or repeated exposure
P101: If medical advice is needed, have product container or label at hand
P102: Keep out of reach of children
P201 – Obtain special instructions before use.
P202 – Do not handle until all safety precautions have been read and understood.
P210 - Keep away from open flames
P260 – Do not breathe dust/fume
P273 - Avoid release to the environment.
P281 - Use personal protective equipment as required.
P301: IF SWALLOWED: give water or milk and induce vomiting. Do not induce vomiting or give liquid to an unconscious person.
P305+351+338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do – continue rinsing

1	P308 + P313 - IF exposed or concerned: Get medical advice/attention.
	P333+313: If skin irritation or a rash occurs: Get medical advice/attention
	P370+380: In case of fire: Evacuate area
	P391 - Collect spillage.
	P401: Store on not water-permeable floor
	P405 - Store locked up.
	·
	P501 - Dispose of contents to proces or in accordance with relevant regulations.
16. Other information	
16.1. Created	20-Jun-14
16.2. Revised	
16.3. Addtional information	RESPIRATORS: In general the use of respirators should be limited and engineering controls employed to avoid exposure. If respiratory equipment must be worn ensure correct respirator selection and training is undertaken. Remember that some respirators may be extremely uncomfortable when used for long periods. The use of air powered or air supplied respirators should be considered where prolonged or repeated use is necessary.
	EXPOSURE STANDARDS - TIME WEIGHTED AVERAGE (TWA) or WES (WORKPLACE EXPOSURE STANDARD) (NZ): Exposure standards are established on the premise of an 8 hour work period of normal intensity, under normal climatic conditions and where a 16 hour break between shifts exists to enable the body to eliminate absorbed contaminants. In the following circumstances, exposure standards must be reduced: strenuous work conditions; hot, humid climates; high altitude conditions; extended shifts (which increase the exposure period and shorten the period of recuperation).
	PERSONAL PROTECTIVE EQUIPMENT GUIDELINES: The recommendation for protective equipment contained within this SDS is provided as a guide only. Factors such as method of application, working environment, quantity used, product concentration and the availability of engineering controls should be considered before final selection of personal protective equipment is made.
	HEALTH EFFECTS FROM EXPOSURE: It should be noted that the effects from exposure to this product will depend on several factors including: frequency and duration of use; quantity used; effectiveness of control measures; protective equipment used and method of application. Given that it is impractical to prepare an SDS which would encompass all possible scenarios, it is anticipated that users will assess the risks and apply control methods where appropriate.
16.3. Abbreviations and acronyms	mg/m3 - Milligrams per cubic metre ppm - Parts Per Million TWA - Time Weighted Average ES - Exposure Standard. pH - relates to hydrogen ion concentration - this value will relate to a scale of 0 - 14, where 0 is highly acidic and 14 is highly alkaline. CAS# - Chemical Abstract Service number - used to uniquely identify chemical compounds. M - moles per litre, a unit of concentration. IARC - International Agency for Research on Cancer. ACGIH - AMerican conference of industrial Hygienists PBT - Persistent, bio-accumulative and toxic vPvB - Very Persistent, Very bio-accumulative SDS - Safety Data Sheet STOT - Specific Target Organ Toxicity

16.4. Key literature reference	Globally Harmonized System of Classification and Labelling of Chemicals (GHS), Fourth revised Edition, Copyrighted United Nations, 2011.
16.5. Training advice	In addtion to health, safety and environmental training programs for their workers, companies must ensure that workers read, understand and apply the requirements of this SDS.
16.6. Disclaimer	The information is based on the latest chemical and toxicological research and is believed to represent the current state of knowledge as to the appropriate safety and handling precautions for the product at the time of issue. This document is not all-inclusive and does not represent any guarantee as to the properties of the product. Further clarification regarding any aspect of the product should be obtained directly from the manufacturer. While IZA has taken all due care to include accurate and up-to-date information in this document, it does not provide any warranty as to accuracy or completeness. As far as lawfully possible, IZA accepts no liability for any loss, injury or damage (including consequential loss) which may be suffered or incurred by any person as a consequence of their reliance on the information contained in this document.
16.7. Prepared by	Hecla Mining Company in consultation with: Internatiol Zinc Association (IZA) 168, Avenue de Tervueeren:Box4 B-1150 Brussels, Belgium Phone: +32 (0)2 776 0070 Phone: +32 (0)2 776 0089 E-mail: contact@zinc.org Web: www.zinc.org IZA information has been supplemented with basis of credible human experience supported by knowledge gained through environmental cleanups, after action investigations, Whole Effluent Toxicity Testing, and annual bioassessment of effluent receiving waters performed by mineral beneficiator and concentrating facility (Hecla Mining Company).

Appendix B

Regulatory Correspondence

Archived: Tuesday, May 14, 2024 2:29:04 PM

From: Fulton, Sara (ECY)

Sent: Wed, 20 Mar 2024 20:39:50 +0000ARC

To: Lee, Joshua

Cc: Loftenius, Christer (ECY)
Subject: RE: Zinc Con Release

Sensitivity: Normal

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

Hi Josh,

We tested the other six background samples and the zinc concentrations do not exceed Ecology's requested cleanup level of 120 mg/kg. Please see attached draft analytical tables and draft background sample locations figure. We have one sample (BG-2-022924) located about 100 feet north of the excavation that exceeds the 120 mg/kg cleanup level. Will this modify the requested cleanup level? No. 120 mg/kg is adequate for the cleanup level.

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047
sara.fulton@ecy.wa.gov

From: Lee, Joshua <Joshua.Lee@arcadis.com>
Sent: Tuesday, March 19, 2024 11:02 AM
To: Fulton, Sara (ECY) <SFUL461@ECY.WA.GOV>
Cc: Loftenius, Christer (ECY) <clof461@ECY.WA.GOV>

Subject: RE: Zinc Con Release

External Email

Hi Sara,

We tested the other six background samples and the zinc concentrations do not exceed Ecology's requested cleanup level of 120 mg/kg. Please see attached draft analytical tables and draft background sample locations figure. We have one sample (BG-2-022924) located about 100 feet north of the excavation that exceeds the 120 mg/kg cleanup level. Will this modify the requested cleanup level?

I am working to schedule the contractor for our next excavation at the site; hopefully, this follow-up excavation will be scheduled for next week or the following week. I will contact Ecology with the scheduled excavation date. We plan to screen soil using an XRF during this follow-up excavation.

Thanks, Josh

From: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Sent: Tuesday, March 5, 2024 2:03 PM **To:** Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>>

Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

Should we test the other six samples for TAL metals for a larger sample set? YES

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047

From: Lee, Joshua < Joshua. Lee@arcadis.com >

Sent: Tuesday, March 5, 2024 1:23 PM

To: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Cc: Loftenius, Christer (ECY) < clos 461@ECY.WA.GOV >; Acklam, Nicholas (ECY) < nack461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

sara.fulton@ecy.wa.gov

External Email

Hi Sara,

On February 29, 2024, Arcadis mobilized to the Ione spill site and collected 10 soil samples (five to the north and five to the south of the excavation at 50-foot spacing) along the railroad ROW for metals background analysis. The samples were submitted to Eurofins TestAmerica and four (4) samples (two to the north and two to the south of the excavation) were tested for analysis of Toxic Analyte List (TAL) metals (lab report attached). The other six samples are held at the lab. One background sample (Ione-BG-2-022924 collected approx. 100 feet north of the remedial excavation) exceeds Ecology's requested cleanup level of for zinc (120 mg/kg) with a concentration of 130 mg/kg. The four samples ranged from 96 to 130 mg/kg zinc. The other metals concentrations (arsenic, cadmium, chromium, lead, etc.) samples appear ok compared to MTCA Method A cleanup levels. We have some background levels that are at or near the proposed cleanup level for zinc, and one of the samples exceeds the requested cleanup level of 120 mg/kg for zinc. Should we test the other six samples for TAL metals for a larger sample set?

Thanks.

Josh

From: Lee, Joshua

Sent: Wednesday, February 28, 2024 12:41 PM **To:** Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >; Acklam, Nicholas (ECY) < nack461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

Hi Sara,

We are planning to head out to the lone, WA site tomorrow to collect ten soil samples from north and south of the remedial excavation (50-foot spacing between samples). We will start with submitting four of these samples for TAL metals analysis to check the background metals concentrations; the other six samples will be held at the lab.

The site location is 48.4852933, -117.2703799 and I have attached a draft figure of the excavation with initial confirmation sample locations. Our confirmation sample results were tested for Metals-Zn and ranged from 260 to 530,000 mg/kg zinc. We plan to use TAL metals analysis for confirmation sampling when we continue the remedial excavation. I will let you know when we have the remedial excavation scheduled.

Thanks,

Josh

From: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Sent: Tuesday, February 27, 2024 9:42 AM **To:** Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>>

Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >; Acklam, Nicholas (ECY) < nack461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

Hi Josh,

Take at least four samples along the railroad line away from the spill and use the results from this analysis to calculate a background (I would prefer 10 samples). Collect 10 samples along the railroad line away from the spill.

Refer to WAC 173-340-709.

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047

sara.fulton@ecy.wa.gov

From: Lee, Joshua <<u>Joshua.Lee@arcadis.com</u>>
Sent: Monday, February 26, 2024 5:08 PM
To: Fulton, Sara (ECY) <<u>SFUL461@ECY.WA.GOV</u>>

Subject: RE: Zinc Con Release

External Email

Hi Sara,

Thanks, I received the email. We are planning the next phase of the remedial excavation in Ione, WA. I have been discussing with our risk assessors and looking into background concentrations via the Natural Background Soil Metals Concentrations in Washington State 1994 document, but that document indicates zinc concentrations between 10-100 mg/kg for most of the state. We are concerned that the railroad ROW in this area has historically hauled zinc and lead concentrate so we might have higher background concentrations. What would Ecology require for us to investigate the background concentrations?

Josh

From: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Sent: Monday, February 26, 2024 4:57 PM **To:** Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>>

Subject: FW: Zinc Con Release

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

See email below.

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047
sara.fulton@ecy.wa.gov

From: Fulton, Sara (ECY)

Sent: Friday, February 23, 2024 12:06 PM **To:** Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>>

Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

Josh,

After reviewing the information provided by Ecology Spills, I would say to use the Soil Protective of Groundwater to Surface Water Vadose @13 degrees C Freshwater of 120 mg/kg. Also, should test for EPA's target analyte list of 23 metals (TAL) using the same Soil Protective of Groundwater to Surface Water Vadose.

Target Analyte List (TAL) Metals and Cyanide		
Aluminum	Magnesium	
Antimony	Manganese	
Arsenic	Mercury	
Barium	Nickel	
Beryllium	Potassium	
Cadmium	Selenium	
Calcium	Silver	
Chromium	Sodium	
Cobalt	Thallium	
Copper	Vanadium	
Iron	Zinc	
Lead	Cyanide	

If you have any additional information that might prove contrary to the use of these CULs, let me know and send it my way for review.

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047
sara.fulton@ecy.wa.gov

From: Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>>
Sent: Wednesday, February 21, 2024 8:00 AM
To: Fulton, Sara (ECY) < <u>SFUL461@ECY.WA.GOV</u>>

Subject: Fwd: Zinc Con SDS

External Email

Hi Sara,

See attached zinc concentrate SDS for the Ione, WA cleanup.

Thanks,

Josh

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you

have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

Archived: Tuesday, May 14, 2024 2:29:08 PM

From: To: Cc:

Subject: RE: Zinc Con Release (Analytical Results 4/10/2024)

Sensitivity: Normal **Attachments:**

J24019-1 UDS Level 2 Report Final Report.pdf

Hi Sara,

We received the attached lab report for confirmation samples collected at the Hecla - Ione, WA spill site. The contractor scraped another 3-4 inches from the entire excavation area and hauled four truck and pup trailers full of soil for disposal. Arcadis field screened with an XRF and collected 11 confirmation samples from the approximate locations of the original 11 confirmation samples. At first glance, I think we are ok with the zinc analytical results. The other metals results appear ok, but we need to tabulate these results and compare to respective cleanup levels. Two confirmation samples were right at the zinc cleanup level of 120 mg/kg, but these concentrations did not exceed the cleanup level. The POVA railroad inspected the site, and the excavation area will not require further restoration. Arcadis will finish up the spill response report and submit to Ecology for review.

Thanks,

Josh Lee, EIT I CPM I Environmental Engineer Arcadis U.S., Inc, 1219 E 32nd Avenue Spokane, Washington 99203 M. + 1 406.239.7810; O. +1 206.413.6537 www.arcadis.com

From: Fulton, Sara (ECY) <SFUL461@ECY.WA.GOV>

Sent: Friday, March 29, 2024 9:19 AM **To:** Lee, Joshua < Joshua. Lee@arcadis.com>

Cc: Loftenius, Christer (ECY) <clof461@ECY.WA.GOV> Subject: RE: Zinc Con Release (Remedial Ex 4/1/2024)

Thanks for the update.

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street

Spokane, Washington 99205

Cell #: 509-319-0047 sara.fulton@ecy.wa.gov

From: Lee, Joshua <<u>Joshua.Lee@arcadis.com</u>>
Sent: Thursday, March 28, 2024 11:45 AM
To: Fulton, Sara (ECY) <<u>SFUL461@ECY.WA.GOV</u>>
Cc: Loftenius, Christer (ECY) <<u>clof461@ECY.WA.GOV</u>>
Subject: RE: Zinc Con Release (Remedial Ex 4/1/2024)

External Email

Hi Sara,

We have rescheduled the next phase of remedial excavation at the Hecla Ione, WA site for Monday, April 1. This schedule will allow for better weather and the excavation area can dry out over the weekend. We plan to start at 0800 on Monday and begin loading trucks with soil at 10:00. I will be at the site to screen soil with an XRF and collect confirmation samples.

Thanks,

Josh

From: Lee, Joshua

Sent: Wednesday, March 20, 2024 1:44 PM **To:** Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV > **Cc:** Loftenius, Christer (ECY) < close <

Subject: RE: Zinc Con Release

Ooops...I meant next Friday, March 29.

Josh

From: Lee, Joshua

Sent: Wednesday, March 20, 2024 1:43 PM **To:** Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV > **Cc:** Loftenius, Christer (ECY) < close <

Subject: RE: Zinc Con Release

Hi Sara,

Ok, thank you for the response. We are tentatively scheduled for continuing excavation at the lone, WA site next Friday, March 22. This second phase of excavation is dependent on weather and contractor availability; I will let you know if the schedule changes.

Josh

From: Fulton, Sara (ECY) <<u>SFUL461@ECY.WA.GOV</u>>

Sent: Wednesday, March 20, 2024 1:40 PM

To: Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>>

Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

Hi Josh,

We tested the other six background samples and the zinc concentrations do not exceed Ecology's requested cleanup level of 120 mg/kg. Please see attached draft analytical tables and draft background sample locations figure. We have one sample (BG-2-022924) located about 100 feet north of the excavation that exceeds the 120 mg/kg cleanup level. Will this modify the requested cleanup level? No. 120 mg/kg is adequate for the cleanup level.

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047
sara.fulton@ecy.wa.gov

From: Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>> Sent: Tuesday, March 19, 2024 11:02 AM

To: Fulton, Sara (ECY) <<u>SFUL461@ECY.WA.GOV</u>>
Cc: Loftenius, Christer (ECY) <<u>clof461@ECY.WA.GOV</u>>

Subject: RE: Zinc Con Release

External Email

Hi Sara.

We tested the other six background samples and the zinc concentrations do not exceed Ecology's requested cleanup level of 120 mg/kg. Please see attached draft analytical tables and draft background sample locations figure. We have one sample (BG-2-022924) located about 100 feet north of the excavation that exceeds the 120 mg/kg cleanup level. Will this modify the requested cleanup level?

I am working to schedule the contractor for our next excavation at the site; hopefully, this follow-up excavation will be scheduled for next week or the following week. I will contact Ecology with the scheduled excavation date. We plan to screen soil using an XRF during this follow-up excavation.

Thanks, Josh

From: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Sent: Tuesday, March 5, 2024 2:03 PM **To:** Lee, Joshua < Joshua. Lee@arcadis.com>

Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

Should we test the other six samples for TAL metals for a larger sample set? YES

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047

From: Lee, Joshua < Joshua. Lee@arcadis.com >

Sent: Tuesday, March 5, 2024 1:23 PM

To: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Cc: Loftenius, Christer (ECY) <clof461@ECY.WA.GOV>; Acklam, Nicholas (ECY) <nack461@ECY.WA.GOV>

Subject: RE: Zinc Con Release

sara.fulton@ecy.wa.gov

External Email

Hi Sara,

On February 29, 2024, Arcadis mobilized to the Ione spill site and collected 10 soil samples (five to the north and five to the south of the excavation at 50-foot spacing) along the railroad ROW for metals background analysis. The samples were submitted to Eurofins TestAmerica and four (4) samples (two to the north and two to the south of the excavation) were tested for analysis of Toxic Analyte List (TAL) metals (lab report attached). The other six samples are held at the lab. One background sample (Ione-BG-2-022924 collected approx. 100 feet north of the remedial excavation) exceeds Ecology's requested cleanup level of for zinc (120 mg/kg) with a concentration of 130 mg/kg. The four samples ranged from 96 to 130 mg/kg zinc. The other metals concentrations (arsenic, cadmium, chromium, lead, etc.) samples appear ok compared to MTCA Method A cleanup levels. We have some background levels that are at or near the proposed cleanup level for zinc, and one of the samples exceeds the requested cleanup level of 120 mg/kg for zinc. Should we test the other six samples for TAL metals for a larger sample set?

Thanks,

Josh

From: Lee, Joshua

Sent: Wednesday, February 28, 2024 12:41 PM **To:** Fulton, Sara (ECY) < <u>SFUL461@ECY.WA.GOV</u>>

Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >; Acklam, Nicholas (ECY) < nack461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

Hi Sara,

We are planning to head out to the lone, WA site tomorrow to collect ten soil samples from north and south of the remedial excavation (50-foot spacing between samples). We will start with submitting four of these samples for TAL metals analysis to check the background metals concentrations; the other six samples will be held at the lab.

The site location is 48.4852933, -117.2703799 and I have attached a draft figure of the excavation with initial confirmation sample locations. Our confirmation sample results were tested for Metals-Zn and ranged from 260 to 530,000 mg/kg zinc. We plan to use TAL metals analysis for confirmation sampling when we continue the remedial excavation. I will let you know when we have the remedial excavation scheduled.

Thanks,

Josh

From: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Sent: Tuesday, February 27, 2024 9:42 AM **To:** Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>>

Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >; Acklam, Nicholas (ECY) < nack461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

Hi Josh,

Take at least four samples along the railroad line away from the spill and use the results from this analysis to calculate a background (I would prefer 10 samples). Collect 10 samples along the railroad line away from the spill.

Refer to WAC 173-340-709

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047
sara.fulton@ecy.wa.gov

From: Lee, Joshua <<u>Joshua.Lee@arcadis.com</u>>
Sent: Monday, February 26, 2024 5:08 PM
To: Fulton, Sara (ECY) <SFUL461@ECY.WA.GOV>

Subject: RE: Zinc Con Release

External Email

Thanks, I received the email. We are planning the next phase of the remedial excavation in Ione, WA. I have been discussing with our risk assessors and looking into background concentrations via the Natural Background Soil Metals Concentrations in Washington State 1994 document, but that document indicates zinc concentrations between 10-100 mg/kg for most of the state. We are concerned that the railroad ROW in this area has historically hauled zinc and lead concentrate so we might have higher background concentrations. What would Ecology require for us to investigate the background concentrations?

Josh

From: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Sent: Monday, February 26, 2024 4:57 PM **To:** Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>>

Subject: FW: Zinc Con Release

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

See email below.

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047

From: Fulton, Sara (ECY)

sara.fulton@ecy.wa.gov

Sent: Friday, February 23, 2024 12:06 PM **To:** Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>>

Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

Josh,

After reviewing the information provided by Ecology Spills, I would say to use the Soil Protective of Groundwater to Surface Water Vadose @13 degrees C Freshwater of 120 mg/kg. Also, should test for EPA's target analyte list of 23 metals (TAL) using the same Soil Protective of Groundwater to Surface Water Vadose.

Target Analyte List (TAL) Metals and Cyanide							
Aluminum	Magnesium						
Antimony	Manganese						
Arsenic	Mercury						
Barium	Nickel						
Beryllium	Potassium						
Cadmium	Selenium						
Calcium	Silver						
Chromium	Sodium						
Cobalt	Thallium						
Copper	Vanadium						
Iron	Zinc						
Lead	Cyanide						

If you have any additional information that might prove contrary to the use of these CULs, let me know and send it my way for review.

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047
sara.fulton@ecy.wa.gov

From: Lee, Joshua < Joshua.Lee@arcadis.com > Sent: Wednesday, February 21, 2024 8:00 AM
To: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Subject: Fwd: Zinc Con SDS

External Email

Hi Sara,

See attached zinc concentrate SDS for the Ione, WA cleanup.

Thanks,

Josh

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you

have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

Archived: Tuesday, May 14, 2024 2:29:12 PM

From: Fulton, Sara (ECY)

Sent: Fri, 29 Mar 2024 16:19:08 +0000ARC

To: Lee, Joshua

Cc: Loftenius, Christer (ECY)

Subject: RE: Zinc Con Release (Remedial Ex 4/1/2024)

Sensitivity: Normal

Thanks for the update.

sara.fulton@ecv.wa.gov

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047

From: Lee, Joshua < Joshua.Lee@arcadis.com>
Sent: Thursday, March 28, 2024 11:45 AM
To: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV>
Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV>
Subject: RE: Zinc Con Release (Remedial Ex 4/1/2024)

External Email

Hi Sara,

We have rescheduled the next phase of remedial excavation at the Hecla Ione, WA site for Monday, April 1. This schedule will allow for better weather and the excavation area can dry out over the weekend. We plan to start at 0800 on Monday and begin loading trucks with soil at 10:00. I will be at the site to screen soil with an XRF and collect confirmation samples.

Thanks,

Josh

From: Lee, Joshua

Sent: Wednesday, March 20, 2024 1:44 PM **To:** Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV > **Cc:** Loftenius, Christer (ECY) < close <

Subject: RE: Zinc Con Release

Ooops...I meant next Friday, March 29.

Josh

From: Lee, Joshua

Sent: Wednesday, March 20, 2024 1:43 PM **To:** Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV > **Cc:** Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

Hi Sara,

Ok, thank you for the response. We are tentatively scheduled for continuing excavation at the lone, WA site next Friday, March 22. This second phase of excavation is dependent on weather and contractor availability; I will let you know if the schedule changes.

Josh

From: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Sent: Wednesday, March 20, 2024 1:40 PM **To:** Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>>

Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

Hi Josh,

We tested the other six background samples and the zinc concentrations do not exceed Ecology's requested cleanup level of 120 mg/kg. Please see attached draft analytical tables and draft background sample locations figure. We have one sample (BG-2-022924) located about 100 feet north of the excavation that exceeds the 120 mg/kg cleanup level. Will this modify the requested cleanup level? No. 120 mg/kg is adequate for the cleanup level.

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047
sara.fulton@ecy.wa.gov

From: Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>> Sent: Tuesday, March 19, 2024 11:02 AM

To: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV > Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

Hi Sara.

We tested the other six background samples and the zinc concentrations do not exceed Ecology's requested cleanup level of 120 mg/kg. Please see attached draft analytical tables and draft background sample locations figure. We have one sample (BG-2-022924) located about 100 feet north of the excavation that exceeds the 120 mg/kg cleanup level. Will this modify the requested cleanup level?

I am working to schedule the contractor for our next excavation at the site; hopefully, this follow-up excavation will be scheduled for next week or the following week. I will contact Ecology with the scheduled excavation date. We plan to screen soil using an XRF during this follow-up excavation.

Thanks, Josh

From: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Sent: Tuesday, March 5, 2024 2:03 PM **To:** Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>>

Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

Should we test the other six samples for TAL metals for a larger sample set? YES

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047
sara.fulton@ecy.wa.gov

From: Lee, Joshua < Joshua.Lee@arcadis.com >

Sent: Tuesday, March 5, 2024 1:23 PM

To: Fulton, Sara (ECY) <SFUL461@ECY.WA.GOV>

Cc: Loftenius, Christer (ECY) < clos 461@ECY.WA.GOV >; Acklam, Nicholas (ECY) < nack461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

External Email

Hi Sara,

On February 29, 2024, Arcadis mobilized to the Ione spill site and collected 10 soil samples (five to the north and five to the south of the excavation at 50-foot spacing) along the railroad ROW for metals background analysis. The samples were submitted to Eurofins TestAmerica and four (4) samples (two to the north and two to the south of the excavation) were tested for analysis of Toxic Analyte List (TAL) metals (lab report attached). The other six samples are held at the lab. One background sample (Ione-BG-2-022924 collected approx. 100 feet north of the remedial excavation) exceeds Ecology's

requested cleanup level of for zinc (120 mg/kg) with a concentration of 130 mg/kg. The four samples ranged from 96 to 130 mg/kg zinc. The other metals concentrations (arsenic, cadmium, chromium, lead, etc.) samples appear ok compared to MTCA Method A cleanup levels. We have some background levels that are at or near the proposed cleanup level for zinc, and one of the samples exceeds the requested cleanup level of 120 mg/kg for zinc. Should we test the other six samples for TAL metals for a larger sample set?

Thanks,

Josh

From: Lee, Joshua

Sent: Wednesday, February 28, 2024 12:41 PM **To:** Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Cc: Loftenius, Christer (ECY) < close to Loftenius, Christer (ECY) < close to Loftenius, Christer (ECY) < nack461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

Hi Sara,

We are planning to head out to the lone, WA site tomorrow to collect ten soil samples from north and south of the remedial excavation (50-foot spacing between samples). We will start with submitting four of these samples for TAL metals analysis to check the background metals concentrations; the other six samples will be held at the lab.

The site location is 48.4852933, -117.2703799 and I have attached a draft figure of the excavation with initial confirmation sample locations. Our confirmation sample results were tested for Metals-Zn and ranged from 260 to 530,000 mg/kg zinc. We plan to use TAL metals analysis for confirmation sampling when we continue the remedial excavation. I will let you know when we have the remedial excavation scheduled.

Thanks,

Josh

From: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Sent: Tuesday, February 27, 2024 9:42 AM **To:** Lee, Joshua < <u>Joshua.Lee@arcadis.com</u> >

Cc: Loftenius, Christer (ECY) < clof461@ECY.WA.GOV >; Acklam, Nicholas (ECY) < nack461@ECY.WA.GOV >

Subject: RE: Zinc Con Release

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

Hi Josh,

Take at least four samples along the railroad line away from the spill and use the results from this analysis to calculate a background (I would prefer 10 samples). Collect 10 samples along the railroad line away from the spill.

Refer to WAC 173-340-709

Sara Fulton Initial Investigator Toxic Cleanup Program Washington Department of Ecology 4601 N. Monroe Street Spokane, Washington 99205 Cell #: 509-319-0047 sara.fulton@ecy.wa.gov

From: Lee, Joshua <<u>Joshua.Lee@arcadis.com</u>>
Sent: Monday, February 26, 2024 5:08 PM
To: Fulton, Sara (ECY) <<u>SFUL461@ECY.WA.GOV</u>>

Subject: RE: Zinc Con Release

External Email

Hi Sara,

Thanks, I received the email. We are planning the next phase of the remedial excavation in lone, WA. I have been discussing with our risk assessors and looking into background concentrations via the Natural Background Soil Metals Concentrations in Washington State 1994 document, but that document indicates zinc concentrations between 10-100 mg/kg for most of the state. We are concerned that the railroad ROW in this area has historically hauled zinc and lead concentrate so we might have higher background concentrations. What would Ecology require for us to investigate the background concentrations?

Josh

From: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV >

Sent: Monday, February 26, 2024 4:57 PM **To:** Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>>

Subject: FW: Zinc Con Release

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

See email below.

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047
sara.fulton@ecy.wa.gov

From: Fulton, Sara (ECY)

Sent: Friday, February 23, 2024 12:06 PM **To:** Lee, Joshua < <u>Joshua.Lee@arcadis.com</u>>

Cc: Loftenius, Christer (ECY) <clof461@ECY.WA.GOV>

Subject: RE: Zinc Con Release

Josh,

After reviewing the information provided by Ecology Spills, I would say to use the Soil Protective of Groundwater to Surface Water Vadose @13 degrees C Freshwater of 120 mg/kg. Also, should test for EPA's target analyte list of 23 metals (TAL) using the same Soil Protective of Groundwater to Surface Water Vadose.

Target Analyte List (TAL) Metals and Cyanide						
Aluminum	Magnesium					
Antimony	Manganese					
Arsenic	Mercury					
Barium	Nickel					
Beryllium	Potassium					
Cadmium	Selenium					
Calcium	Silver					
Chromium	Sodium					
Cobalt	Thallium					
Copper	Vanadium					
Iron	Zinc					
Lead	Cyanide					

If you have any additional information that might prove contrary to the use of these CULs, let me know and send it my way for review.

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047
sara.fulton@ecy.wa.gov

From: Lee, Joshua <<u>Joshua.Lee@arcadis.com</u>>
Sent: Wednesday, February 21, 2024 8:00 AM
To: Fulton, Sara (ECY) <<u>SFUL461@ECY.WA.GOV</u>>

Subject: Fwd: Zinc Con SDS

External Email

Hi Sara,

See attached zinc concentrate SDS for the Ione, WA cleanup.

Thanks,

Josh

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

Archived: Tuesday, May 14, 2024 2:29:15 PM

From: Fulton, Sara (ECY)

Sent: Fri, 23 Feb 2024 20:06:29 +0000ARC

To: Lee, Joshua

Cc: Loftenius, Christer (ECY)
Subject: RE: Zinc Con Release

Sensitivity: Normal

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

Josh,

After reviewing the information provided by Ecology Spills, I would say to use the Soil Protective of Groundwater to Surface Water Vadose @13 degrees C Freshwater of 120 mg/kg. Also, should test for EPA's target analyte list of 23 metals (TAL) using the same Soil Protective of Groundwater to Surface Water Vadose.

Target Analyte List (TAL) Metals and Cyanide						
Aluminum	Magnesium					
Antimony	Manganese					
Arsenic	Mercury					
Barium	Nickel					
Beryllium	Potassium					
Cadmium	Selenium					
Calcium	Silver					
Chromium	Sodium					
Cobalt	Thallium					
Copper	Vanadium					
Iron	Zinc					
Lead	Cyanide					

If you have any additional information that might prove contrary to the use of these CULs, let me know and send it my way for review.

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047
sara.fulton@ecy.wa.gov

From: Lee, Joshua < Joshua.Lee@arcadis.com>

Sent: Wednesday, February 21, 2024 8:00 AM **To:** Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV>

Subject: Fwd: Zinc Con SDS

		• •
- vtarna	ı⊢ma	11
External	ı Lılıa	11

Hi Sara,

See attached zinc concentrate SDS for the Ione, WA cleanup.

Thanks,

Josh

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

Archived: Tuesday, May 14, 2024 2:29:17 PM

From: Fulton, Sara (ECY)

Sent: Wed, 21 Feb 2024 17:03:49 +0000ARC

To: Lee, Joshua

Subject: RE: Zinc Con SDS

Sensitivity: Normal

You don't often get email from sful461@ecy.wa.gov. Learn why this is important

Hi Josh.

Thanks for the MSDS. I will try and get you my response either today or tomorrow.

Sara Fulton
Initial Investigator
Toxic Cleanup Program
Washington Department of Ecology
4601 N. Monroe Street
Spokane, Washington 99205
Cell #: 509-319-0047

From: Lee, Joshua < Joshua.Lee@arcadis.com>
Sent: Wednesday, February 21, 2024 8:00 AM
To: Fulton, Sara (ECY) < SFUL461@ECY.WA.GOV>

Subject: Fwd: Zinc Con SDS

sara.fulton@ecy.wa.gov

External Email

Hi Sara.

See attached zinc concentrate SDS for the Ione, WA cleanup.

Thanks,

Josh

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

Appendix C

Photograph Log

ARCADIS

Hecla Limited Incident Response February 16, 2024 Independent Remedial Action Report

Photograph: 1

Description:

Looking north at the wrecked haul truck pup

trailer.

Location:

State Route 20 MM 407

Photograph taken by:

Joshua Lee

Date: 2/16/2024

Photograph: 2

Description:

Looking east at the wrecked haul truck pup trailer in the ditch.

Location:

State Route 20 MM 407

Photograph taken by:

Joshua Lee

Date: 2/16/2024

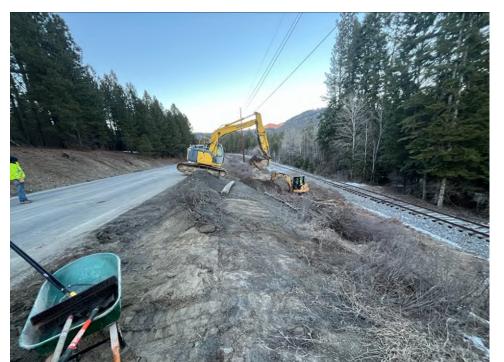
ARCADIS

Hecla Limited Incident Response February 16, 2024 Independent Remedial Action Report

Photograph: 3

Description:

Crane removing the wrecked haul truck pup trailer.


Location:

State Route 20 MM 407

Photograph taken by:

Joshua Lee

Date: 2/16/2024

Photograph: 4

Description:

Excavators scrapping soil and zinc concentrate material.

Location:

State Route 20 MM 407

Photograph taken by:

Joshua Lee

Date: 2/16/2024

ARCADIS

Hecla Limited Incident Response February 16, 2024 Independent Remedial Action Report

Photograph: 5

Description:

Looking south at excavation area.

Location:

State Route 20 MM 407

Photograph taken by:

Joshua Lee

Date: 2/16/2024

Photograph: 6

Description:

Looking south at excavation area on pre-

fill.

Location:

State Route 20 MM 407

Photograph taken by:

Garrett Wilson

Date: 2/17/2024

ARCADIS

Hecla Limited Incident Response February 16, 2024 Independent Remedial Action Report

Photograph: 7

Description:Looking south at excavation area after cleanup

Location: State Route 20 MM 407

Photograph taken by: Joshua Lee

Date: 2/17/2024

Photograph: 8

Description:Looking north at excavation area after cleanup

Location: State Route 20 MM 407

Photograph taken by: Garrett Wilson

Date: 2/17/2024

ARCADIS

Hecla Limited Incident Response February 16, 2024 Independent Remedial Action Report

Photograph: 9

Description:

Looking south at additional excavation.

Location:

State Route 20 MM 407

Photograph taken by:

Joshua Lee

Date: 4/1/2024

Photograph: 10

Description:

Excavated soil being loaded into haul trucks.

Location:

State Route 20 MM 407

Photograph taken by:

Joshua Lee

Date: 4/1/2024

ARCADIS

Hecla Limited Incident Response February 16, 2024 Independent Remedial Action Report

Photograph: 11

Description:Looking north after cleanup.

Location: State Route 20 MM 407

Photograph taken by: Joshua Lee

Date: 4/1/2024

ARCADIS

Hecla Limited Incident Response February 16, 2024 Independent Remedial Action Report

Photograph: 12

Description:

Looking south after

cleanup.

Location:

State Route 20 MM 407

Photograph taken by:

Joshua Lee

Date: 4/1/2024

Appendix D

Laboratory Analytical Reports and Chain-of-Custody Documentation

ANALYTICAL REPORT

PREPARED FOR

Attn: Josh Lee ARCADIS U.S., Inc 695 N. Legacy Ridge Drive Suite 200 Liberty Lake, Washington 99019 Generated 2/20/2024 5:45:06 PM

JOB DESCRIPTION

HECLA

JOB NUMBER

590-23297-1

Eurofins Spokane 11922 East 1st Ave Spokane WA 99206

Eurofins Spokane

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Generated 2/20/2024 5:45:06 PM

Authorized for release by Madison Vaughan, Analyst I Madison.Vaughan@et.eurofinsus.com Designee for Randee Arrington, Business Unit Manager Randee.Arrington@et.eurofinsus.com (509)924-9200

5

4

6

9

10

1 1

Client: ARCADIS U.S., Inc Project/Site: HECLA Laboratory Job ID: 590-23297-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Definitions	
Client Sample Results	7
QC Sample Results	9
Chronicle	10
Certification Summary	14
Method Summary	15
Chain of Custody	16
Receint Checklists	17

3

4

5

7

8

10

11

Case Narrative

Client: ARCADIS U.S., Inc

Project: HECLA

Job ID: 590-23297-1 **Eurofins Spokane**

Job Narrative 590-23297-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/19/2024 10:18 AM. Unless otherwise noted below, the samples arrived in good condition, and. where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3°C.

Metals

Method 6010D: The method blank for preparation batch 590-45895 and 590-45895 and analytical batch 590-45910 contained Zinc above the reporting limit (RL). Associated sample(s) were not re-extracted and/or re-analyzed because results were greater than 10X the value found in the method blank.

Method 6010D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 590-45895 and analytical batch 590-45910 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 6010D: The sample duplicate (DUP) precision for preparation batch 590-45895 and analytical batch 590-45910 was outside control limits. Sample matrix interference is suspected.

Method 6010D: The post digestion spike % recovery for Zinc associated with batch 590-45910 was outside of control limits. The associated sample is: (590-23297-A-1-A PDS ^1000).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Spokane

Page 4 of 17

Job ID: 590-23297-1

Sample Summary

Client: ARCADIS U.S., Inc
Project/Site: HECLA

Job ID: 590-23297-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received		
590-23297-1	IONE-1-021624	Solid	02/16/24 17:09	02/19/24 10:18		
590-23297-2	IONE-2-021624	Solid	02/16/24 17:20	02/19/24 10:18		
590-23297-3	IONE-3-021624	Solid	02/16/24 17:35	02/19/24 10:18		
590-23297-4	IONE-4-021624	Solid	02/16/24 17:49	02/19/24 10:18		
590-23297-5	IONE-5-021624	Solid	02/16/24 18:00	02/19/24 10:18		
590-23297-6	IONE-6-021724	Solid	02/17/24 09:50	02/19/24 10:18		
590-23297-7	IONE-7-021724	Solid	02/17/24 10:06	02/19/24 10:18		
590-23297-8	IONE-8-021724	Solid	02/17/24 10:35	02/19/24 10:18		
590-23297-9	IONE-9-021724	Solid	02/17/24 10:18	02/19/24 10:18		
590-23297-10	IONE-10-021724	Solid	02/17/24 10:25	02/19/24 10:18		
590-23297-11	IONE-11-021724	Solid	02/17/24 11:05	02/19/24 10:18		

g

Definitions/Glossary

Client: ARCADIS U.S., Inc Job ID: 590-23297-1 Project/Site: HECLA

Qualifiers

Metals

Qualifier **Qualifier Description** MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

В Compound was found in the blank and sample. F3 Duplicate RPD exceeds the control limit

Glossary

DL

Abbreviation	These commonly used abbreviations may or may not be present in this report.						
n	Listed under the "D" column to designate that the result is reported on a dry weight basis						
%R	Percent Recovery						
CFL	Contains Free Liquid						
CFU	Colony Forming Unit						
CNF	Contains No Free Liquid						
DER	Duplicate Error Ratio (normalized absolute difference)						
Dil Fac	Dilution Factor						

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC

Decision Level Concentration (Radiochemistry)

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Page 6 of 17

Job ID: 590-23297-1

Client: ARCADIS U.S., Inc Project/Site: HECLA

Lab Sample ID: 590-23297-1

D

Client Sample ID: IONE-1-021624 Date Collected: 02/16/24 17:09

Matrix: Solid Percent Solids: 78.1

Date Received: 02/19/24 10:18

Method: SW846 6010D - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit 3900 mg/Kg Zinc 25000 530000 B

Prepared Analyzed Dil Fac

Client Sample ID: IONE-2-021624

Lab Sample ID: 590-23297-2

02/19/24 14:57 02/20/24 12:28

Date Collected: 02/16/24 17:20 Date Received: 02/19/24 10:18

Matrix: Solid Percent Solids: 82.6

Method: SW846 6010D - Metals (ICP)

Result Qualifier RL **MDL** Unit Prepared Analyzed 6.5 mg/Kg Zinc 260 B 41 © 02/19/24 14:57 02/20/24 11:24

Client Sample ID: IONE-3-021624 Lab Sample ID: 590-23297-3

Date Collected: 02/16/24 17:35 Matrix: Solid Date Received: 02/19/24 10:18 Percent Solids: 75.2

Method: SW846 6010D - Metals (ICP)

Analyte Result Qualifier RI **MDL** Unit Dil Fac Prepared Analyzed 490 Zinc 17000 B 77 mg/Kg 02/19/24 14:57 02/20/24 13:01

Client Sample ID: IONE-4-021624 Lab Sample ID: 590-23297-4

Date Collected: 02/16/24 17:49 **Matrix: Solid** Date Received: 02/19/24 10:18 Percent Solids: 77.5

Method: SW846 6010D - Metals (ICP)

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Zinc 2500 390 mg/Kg 02/19/24 14:57 02/20/24 13:06 110000 B

Lab Sample ID: 590-23297-5 Client Sample ID: IONE-5-021624

Date Collected: 02/16/24 18:00 Date Received: 02/19/24 10:18

Matrix: Solid Percent Solids: 84.4

Lab Sample ID: 590-23297-6

Method: SW846 6010D - Metals (ICP)

RL Analyte Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac © 02/19/24 14:57 02/20/24 11:55 Zinc 960 B 43 6.8 mg/Kg

Client Sample ID: IONE-6-021724

Date Collected: 02/17/24 09:50 Date Received: 02/19/24 10:18 Percent Solids: 79.4

Method: SW846 6010D - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 390 02/19/24 14:57 02/20/24 13:10 Zinc 17000 B 62 mg/Kg

Lab Sample ID: 590-23297-7 Client Sample ID: IONE-7-021724

Date Collected: 02/17/24 10:06 **Matrix: Solid** Date Received: 02/19/24 10:18 Percent Solids: 77.1

Method: SW846 6010D - Metals (ICP)

MDL Unit Analyte Result Qualifier RI D Prepared Analyzed Dil Fac Zinc © 02/19/24 14:57 02/20/24 12:03 1100 B 48 mg/Kg

2/20/2024

5000

Matrix: Solid

Client Sample Results

Client: ARCADIS U.S., Inc Job ID: 590-23297-1

Project/Site: HECLA

Client Sample ID: IONE-8-021724 Lab Sample ID: 590-23297-8

Date Collected: 02/17/24 10:35 **Matrix: Solid**

Date Received: 02/19/24 10:18 Percent Solids: 84.8

Method: SW846 6010D - Metals (ICP) Analyte RL **MDL** Unit Result Qualifier D Prepared Analyzed

Dil Fac Zinc 4400 700 mg/Kg 02/19/24 14:57 02/20/24 13:14 230000 B 1000

Client Sample ID: IONE-9-021724 Lab Sample ID: 590-23297-9 Date Collected: 02/17/24 10:18 **Matrix: Solid**

Date Received: 02/19/24 10:18 Percent Solids: 88.0

Method: SW846 6010D - Metals (ICP)

Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac Zinc 80000 B 2000 320 mg/Kg 02/19/24 14:57 02/20/24 16:19 500

Client Sample ID: IONE-10-021724 Lab Sample ID: 590-23297-10

Date Collected: 02/17/24 10:25 Matrix: Solid

Date Received: 02/19/24 10:18 Percent Solids: 91.5

Method: SW846 6010D - Metals (ICP)

Analyte Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed 360 02/19/24 14:57 02/20/24 13:18 Zinc 19000 B 58 mg/Kg

Client Sample ID: IONE-11-021724 Lab Sample ID: 590-23297-11

Date Collected: 02/17/24 11:05 **Matrix: Solid** Date Received: 02/19/24 10:18 Percent Solids: 79.9

Method: SW846 6010D - Metals (ICP)

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Zinc 40 6.3 mg/Kg 02/19/24 14:57 02/20/24 12:20 570 B

2/20/2024

QC Sample Results

Client: ARCADIS U.S., Inc Job ID: 590-23297-1

Project/Site: HECLA

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-45895/2-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 45910

MB MB

160000 EB*+

160000 EB*+

Prep Type: Total/NA Prep Batch: 45895

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte **Prepared** 5.0 Zinc 02/19/24 14:57 02/20/24 10:54 16.4 0.79 mg/Kg

Lab Sample ID: LCS 590-45895/1-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Prep Batch: 45895 **Analysis Batch: 45910**

%Rec

Spike LCS LCS Added Result Qualifier Unit D %Rec Limits Analyte Zinc 50.0 56.9 80 - 120 mg/Kg 114

Client Sample ID: 590-23297-A-1-C MS ^1000

Lab Sample ID: 590-23297-A-1-C MS ^1000 **Matrix: Solid**

Prep Type: Total/NA Prep Batch: 45895

Analysis Batch: 45910 Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec

61.0

75 - 125 mg/Kg 61871

Lab Sample ID: 590-23297-A-1-D MSD ^1000 Client Sample ID: 590-23297-A-1-D MSD ^1000 **Matrix: Solid** Prep Type: Total/NA

535000 4

Zinc

Zinc

Analysis Batch: 45910 Prep Batch: 45895 Spike MSD MSD %Rec **RPD** Sample Sample

Added Limits Analyte Result Qualifier Result Qualifier Unit D %Rec RPD Limit Zinc 160000 EB*+ 61.6 528000 4 mg/Kg 60219 75 - 125

Lab Sample ID: 590-23297-A-1-B DU ^1000 Client Sample ID: 590-23297-A-1-B DU ^1000

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 45910** Prep Batch: 45895

DU DU Sample Sample **RPD** Result Qualifier RPD Analyte Result Qualifier Unit D Limit

526000 F3

mg/Kg

108

Job ID: 590-23297-1

Client: ARCADIS U.S., Inc Project/Site: HECLA

Client Sample ID: IONE-1-021624

Date Collected: 02/16/24 17:09 Date Received: 02/19/24 10:18

Lab Sample ID: 590-23297-1

Matrix: Solid

	E	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep T	уре Т	Гуре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/N	A A	Analysis	Moisture		1			45897	02/19/24 15:50	AMB	EET SPK

Client Sample ID: IONE-1-021624

Date Collected: 02/16/24 17:09 Date Received: 02/19/24 10:18

Lab Sample ID: 590-23297-1 **Matrix: Solid**

Lab Sample ID: 590-23297-3

Lab Sample ID: 590-23297-3

Lab Sample ID: 590-23297-4

Matrix: Solid

Percent Solids: 78.1

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.30 g	50 mL	45895	02/19/24 14:57	AMB	EET SPK
Total/NA	Analysis	6010D		5000	10 mL	10 mL	45910	02/20/24 12:28	AMB	EET SPK

Client Sample ID: IONE-2-021624

Date Received: 02/19/24 10:18

Lab Sample ID: 590-23297-2 Date Collected: 02/16/24 17:20 **Matrix: Solid**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			45897	02/19/24 15:50	AMB	EET SPK

IONE O COLOCA Client S

Date Co

Date Re

t Sample ID: IONE-2-021624	Lab Sample ID: 590-23297-2
Sollected: 02/16/24 17:20	Matrix: Solid
Received: 02/19/24 10:18	Percent Solids: 82.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.47 g	50 mL	45895	02/19/24 14:57	AMB	EET SPK
Total/NA	Analysis	6010D		10			45910	02/20/24 11:24	AMB	EET SPK

Client Sample ID: IONE-3-021624

Date Collected: 02/16/24 17:35

Date Received: 02/19/24 10:18

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			45897	02/19/24 15:50	AMB	EET SPK

Client Sample ID: IONE-3-021624

Date Collected: 02/16/24 17:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture	· <u></u>	1			45897	02/19/24 15:50	AMB	EET SPK

Matrix: Solid Date Received: 02/19/24 10:18 Percent Solids: 75.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.37 g	50 mL	45895	02/19/24 14:57	AMB	EET SPK
Total/NA	Analysis	6010D		100			45910	02/20/24 13:01	AMB	EET SPK

Client Sample ID: IONE-4-021624

Date Collected: 02/16/24 17:49

Date Received: 02/19/24 10:18

	_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
ı	Total/NA	Analysis	Moisture		1			45897	02/19/24 15:50	AMB	EET SPK

Eurofins Spokane

Matrix: Solid

Page 10 of 17

2/20/2024

2

Job ID: 590-23297-1

Client: ARCADIS U.S., Inc Project/Site: HECLA

Client Sample ID: IONE-4-021624

Date Collected: 02/16/24 17:49

Lab Sample ID: 590-23297-4

Matrix: Solid

Percent Solids: 77.5

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3050B			1.30 g	50 mL	45895	02/19/24 14:57	AMB	EET SPK
l	Total/NA	Analysis	6010D		500			45910	02/20/24 13:06	AMB	EET SPK

Client Sample ID: IONE-5-021624

Date Collected: 02/16/24 18:00 Date Received: 02/19/24 10:18

Date Received: 02/19/24 10:18

Lab Sample ID: 590-23297-5

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			45897	02/19/24 15:50	AMB	EET SPK

Client Sample ID: IONE-5-021624

Date Collected: 02/16/24 18:00 Date Received: 02/19/24 10:18 Lab Sample ID: 590-23297-5

Matrix: Solid Percent Solids: 84.4

Dil Batch Batch Batch Initial Final Prepared **Prep Type** Type Method Factor **Amount** Amount Number or Analyzed Analyst Run Lab Total/NA Prep 3050B 45895 02/19/24 14:57 AMB EET SPK 1.38 g 50 mL Total/NA Analysis 6010D 10 45910 02/20/24 11:55 AMB **EET SPK**

Client Sample ID: IONE-6-021724

Date Collected: 02/17/24 09:50

Date Received: 02/19/24 10:18

Lab Sample ID: 590-23297-6

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			45897	02/19/24 15:50	AMB	EET SPK

Client Sample ID: IONE-6-021724

Date Collected: 02/17/24 09:50

Date Received: 02/19/24 10:18

Lab Sample ID: 590-23297-6

Matrix: Solid

Lab Sample ID: 590-23297-7

Percent Solids: 79.4

Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Fieb Type	туре	Welliou	Kuii	Factor	Amount	Aillouit	Nullibei	Of Allalyzeu	Allalyst	Lau
Total/NA	Prep	3050B			1.61 g	50 mL	45895	02/19/24 14:57	AMB	EET SPK
Total/NA	Analysis	6010D		100			45910	02/20/24 13:10	AMB	EET SPK

Client Sample ID: IONE-7-021724

Date Collected: 02/17/24 10:06

Date Received: 02/19/24 10:18

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			45897	02/19/24 15:50	AMB	EET SPK

Eurofins Spokane

2

Job ID: 590-23297-1

Client: ARCADIS U.S., Inc Project/Site: HECLA

Client Sample ID: IONE-7-021724

Date Collected: 02/17/24 10:06 Date Received: 02/19/24 10:18 Lab Sample ID: 590-23297-7

Matrix: Solid

Percent Solids: 77.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.35 g	50 mL	45895	02/19/24 14:57	AMB	EET SPK
Total/NA	Analysis	6010D		10			45910	02/20/24 12:03	AMB	EET SPK

Client Sample ID: IONE-8-021724

Date Collected: 02/17/24 10:35 Date Received: 02/19/24 10:18 Lab Sample ID: 590-23297-8

Matrix: Solid

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
L	Total/NA	Analysis	Moisture		1			45897	02/19/24 15:50	AMB	EET SPK

Client Sample ID: IONE-8-021724

Date Collected: 02/17/24 10:35 Date Received: 02/19/24 10:18 Lab Sample ID: 590-23297-8

Matrix: Solid Percent Solids: 84.8

Prep Type Total/NA	Batch Type Prep	Batch Method 3050B	Run_	Dil Factor	Initial Amount 1.34 g	Final Amount 50 mL	Batch Number 45895	Prepared or Analyzed 02/19/24 14:57	Analyst AMB	Lab EET SPK
Total/NA	Analysis	6010D		1000			45910	02/20/24 13:14	AMB	EET SPK

Client Sample ID: IONE-9-021724

Date Collected: 02/17/24 10:18

Date Received: 02/19/24 10:18

Prep Type

Total/NA

Lab Sample	ID:	590-23297-9
_		Matrix: Solid

Batch		DII	initiai	Finai	Batch	Prepared		
Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Moisture		1			45897	02/19/24 15:50	AMB	EET SPK

Client Sample ID: IONE-9-021724

Batch

Type

Analysis

Date Collected: 02/17/24 10:18

Date Received: 02/19/24 10:18

Lab Sample ID: 590-23297-9

Matrix: Solid

Lab Sample ID: 590-23297-10

Percent Solids: 88.0

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.40 g	50 mL	45895	02/19/24 14:57	AMB	EET SPK
Total/NA	Analysis	6010D		500			45915	02/20/24 16:19	AMB	EET SPK

Client Sample ID: IONE-10-021724

Date Collected: 02/17/24 10:25

Date Received: 02/19/24 10:18

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture					45897	02/19/24 15:50	AMB	EET SPK

Eurofins Spokane

Lab Chronicle

Client: ARCADIS U.S., Inc Job ID: 590-23297-1

Project/Site: HECLA

Client Sample ID: IONE-10-021724 Lab Sample ID: 590-23297-10

Date Collected: 02/17/24 10:25

Date Received: 02/19/24 10:18

Matrix: Solid
Percent Solids: 91.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.50 g	50 mL	45895	02/19/24 14:57	AMB	EET SPK
Total/NA	Analysis	6010D		100			45910	02/20/24 13:18	AMB	EET SPK

Client Sample ID: IONE-11-021724 Lab Sample ID: 590-23297-11

Date Collected: 02/17/24 11:05 Date Received: 02/19/24 10:18

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type **Factor Amount Amount** Number or Analyzed Run Analyst Lab Total/NA Analysis Moisture 45897 02/19/24 15:50 AMB EET SPK

Client Sample ID: IONE-11-021724 Lab Sample ID: 590-23297-11

Date Collected: 02/17/24 11:05

Date Received: 02/19/24 10:18

Matrix: Solid
Percent Solids: 79.9

Batch Batch Dil Initial Final Batch Prepared Analyst **Prep Type** Туре Method Factor **Amount Amount** Number or Analyzed Run Lab Prep EET SPK Total/NA 3050B 45895 02/19/24 14:57 AMB 1.58 g 50 mL Total/NA Analysis 6010D 10 45910 02/20/24 12:20 AMB **EET SPK**

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

9

Λ

5

Matrix: Solid

8

10

11

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc
Project/Site: HECLA

Job ID: 590-23297-1

Laboratory: Eurofins Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	m	Identification Number	Expiration Date
/ashington	State		C569	01-07-25
The following analyte	s are included in this report	t. but the laboratorv is r	not certified by the governing author	itv. This list mav inc
0 ,	•	•	not certified by the governing author	ity. This list may inc
for which the agency	does not offer certification.	•	, , ,	ity. This list may inc
0 ,	•	•	not certified by the governing author Analyte	ity. This list may inc
for which the agency	does not offer certification.	•	, , ,	ity. This list may inc

0

7

9

10

11

Method Summary

Client: ARCADIS U.S., Inc
Project/Site: HECLA

Job ID: 590-23297-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SPK
Moisture	Percent Moisture	EPA	EET SPK
3050B	Preparation, Metals	SW846	EET SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

G

3

4

5

6

10

1 0

>> Select a Laboratory or Service Center <<

#N/A #N/A

Chain of Custody Record

	eurofins
--	----------

Environment Testing America

<u>၁</u>

#N/A	Damid	atawa Dua		J F																	
##			gram [J WO [NPDE	S T	F	RCRA		Other [,]											Eurofins Environment Testing America
	<u> </u>	anager Jo				_															COC No 1
Client Contact		ua lee@arc				-	e Co							ate							1 of1 COCs
Arcadis U.S. INC		06-239-781				Lai) Co	onta	ct				<u> </u> c	arrie	r·						TALS Project #
1420 5th Avenue, Suite 2400			urnaround			- 1															Sampler: Garrett Wilson
Seattle, WA 98101	CALEN			KING DAY		4	$ \bot $						1				Ì				For Lab Use Only
406-239-7810	1	erent from Be		hour rush			2														Walk-in Client:
(xxx) xxx-xxxx FAX Project Name Hecla-lone	┨ 🗒		weeks			Z	2														Lab Sampling:
Site: lone			week			ِځ		_				ΙI			1 1						
PO#			days			Sample (Y	5 3	اڅ				ΙI									Job / SDG No.
		<u> </u>	day Sample			ᇻ	٤Į	ŝ				ΙI									
Sample Identification	Sample Date	Sample Time	Type (C=Comp, G=Grab)	Matrix	# of Cont.	Filtered	Perform MS / MSD	Metals (Zn) (Y/N)													Sample Specific Notes.
IONE 1 001604	0/4 0/0004	1700	_			Ι.,	T,	,									,,,,,				
IONE 1-021624	2/16/2024	1709	G	S		N	4	+	-	\vdash		┝		-	╂			+	+	+	Hold additional sample containers for VOCs
IONE2-021624	2/16/24	1720	G	S		N	4	4							-			+	\bot	_	Hold additional sample containers for VOCs
IONE-3-021624	2/16/24	1735	G	S		N	4	/							Ш	\perp	4			_	Hold additional sample containers for VOCs
IONE-4-021624	2/16/24	1749	G	S		N	\	′							Ш						Hold additional sample containers for VOCs
IONE-5-021624	2/16/24	1800	G	S		N		<u>, </u>													Hold additional sample containers for VOCs
IONE-6-021724	2/17/24	0950	G	S		N	<u>l</u>	<u>, </u>													Hold additional sample containers for VOCs
IONE 7-021724	2/17/24	1006	G	S		N		,													Hold additional sample containers for VOCs
IONE-8-021724	2/17/24	1035	G	S		N		,													Hold additional sample containers for VOCs
IONE-9-021724	2/17/24	1018	G	S		N	ŀ	,													Hold additional sample containers for VOCs
IONE 10-021724	2/17/24	1025	G	S		N	Ī	,													Hold additional sample containers for VOCs
IONE 11-021724	2/17/24	1105	G	S		N	1	,													Hold additional sample containers for VOCs
Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3;	5≃NaOH; 6	i= Other_	ethemenenterestenend	<u> 18 januari</u> 18 januari	tapawanggangga dimendikedih (18	7.1540) (192 7		7				Complete Complete	24			1	PROPERTY SHOPE	WILLIAM CONT.	ASSESSMENT OF		1992 (1992)
Possible Hazard Identification Are any samples from a listed EPA Hazardous Waste? Pleas Comments Section if the lab is to dispose of the sample.	<u> </u>				ple in t		San	•	Dispo	•	A fee	·									onth)
Non-Hazard Flammable Skin Irritant Special Instructions/QC Requirements & Comments:	Polson	В	Unkno	own				R	eturn to	Client			Di	111							
opecial manuscronardo riequiremento d commento.														59	90-23	297 (Chair	n of	Cus	ody	
Custody Seals Intact.	Custody S	eal No.							Co	oler Te	mp. ((°C)	Obs'd	:_6			rr'd.	4	r /		Therm ID No 1600 CE
Relinquished by: Relinquished by: Relinquished by: Relinquished by: Relinquished by:	Company:	readi >		Date/Ti	me:0/	018	Rec	віу	ed by	1					Con	npany	2	æ	>		Date/Time 2/19/24 10:18
Relinquished by:	Company	_ = ==		Date/Ti			Rec	eive	ed by				.			npany					Date/Time ⁻
Relinquished by	Company [.]			Date/Ti	me:		Rec	eive	ed in La	aborat	ory by	r			Con	npany	<i>j</i> ·				Date/Time
												-									······································

Login Sample Receipt Checklist

Client: ARCADIS U.S., Inc Job Number: 590-23297-1

Login Number: 23297 List Source: Eurofins Spokane

List Number: 1

Creator: Morris, Mackenzie 1

Creator. Morris, Mackerizie i		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

8

10

11

PREPARED FOR

Attn: Josh Lee Arcadis U.S., Inc. 695 N. Legacy Ridge Drive Suite 200 Liberty Lake, Washington 99019

ANALYTICAL REPORT

JOB DESCRIPTION

Generated 4/9/2024 6:38:01 PM

HECLA-Ione, WA

JOB NUMBER

590-24019-1

Eurofins Spokane 11922 East 1st Ave Spokane WA 99206

Eurofins Spokane

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Generated 4/9/2024 6:38:01 PM

Authorized for release by Randee Arrington, Business Unit Manager Randee.Arrington@et.eurofinsus.com (509)924-9200

3

4

_

10

11

Client: Arcadis U.S., Inc. Project/Site: HECLA-Ione, WA Laboratory Job ID: 590-24019-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Definitions	6
Client Sample Results	7
QC Sample Results	15
Chronicle	19
Certification Summary	24
Method Summary	25
Chain of Custody	26
Receint Checklists	27

Case Narrative

Client: Arcadis U.S., Inc. Project: HECLA-Ione, WA

Job ID: 590-24019-1 Eurofins Spokane

Job Narrative 590-24019-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
 unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/1/2024 4:33 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 18.1°C.

Metals

Method 6010D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 590-46653 and analytical batch 590-46703 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 6010D: The low level initial calibration verification (ICVL) associated with batch 590-46703 recovered above the upper control limit for Antimony. The samples associated with this ICV were either 10x the spike amount or non-detects for the affected analytes; therefore, the data have been reported.

Method 6010D: The method blank for preparation batch 590-46653 and 590-46653 and analytical batch 590-46703 contained Sodium above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method 6010D: The low level initial calibration verification (ICVL) associated with batch 590-46674 recovered above the upper control limit for Thallium. The samples associated with this ICV were non-detects for the affected analytes; therefore, the data have been reported.

Method 6010D: The initial calibration verification (ICV) associated with batch 590-46674 recovered above the upper control limit for Thallium. The samples associated with this ICV were non-detects for the affected analytes; therefore, the data have been reported.

Method 7471B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 590-46652 and analytical batch 590-46680 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Spokane

4/9/2024

Page 4 of 27

2

Job ID: 590-24019-1

3

4

5

U

8

1 1

Sample Summary

Client: Arcadis U.S., Inc.

Project/Site: HECLA-lone, WA

Job ID: 590-24019-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-24019-1	Ione-1A-040124	Solid	04/01/24 08:40	04/01/24 16:33
590-24019-2	Ione-2A-040124	Solid	04/01/24 08:50	04/01/24 16:33
590-24019-3	Ione-3A-040124	Solid	04/01/24 09:00	04/01/24 16:33
590-24019-4	Ione-4A-040124	Solid	04/01/24 09:10	04/01/24 16:33
590-24019-5	Ione-5A-040124	Solid	04/01/24 09:20	04/01/24 16:33
590-24019-6	Ione-6A-040124	Solid	04/01/24 11:00	04/01/24 16:33
590-24019-7	Ione-7A-040124	Solid	04/01/24 11:10	04/01/24 16:33
590-24019-8	Ione-8A-040124	Solid	04/01/24 11:20	04/01/24 16:33
590-24019-9	Ione-9A-040124	Solid	04/01/24 13:30	04/01/24 16:33
590-24019-10	Ione-10A-040124	Solid	04/01/24 14:00	04/01/24 16:33
590-24019-11	Ione-11A-040124	Solid	04/01/24 14:10	04/01/24 16:33

J

Definitions/Glossary

Client: Arcadis U.S., Inc. Job ID: 590-24019-1 Project/Site: HECLA-Ione, WA

Qualifiers

Meta	ls
Qualif	ior

Qualifier	Qualifier Description
^1+	Initial Calibration Verification (ICV) is outside acceptance limits, high biased.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
F3	Duplicate RPD exceeds the control limit
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

LOQ	Elithic of Qualitication (DOD/DOL)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDI	Method Detection Limit

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit

NC	Not Calculated

ND	Not Detected at the reporting limit (or MDL or EDL if shown)

NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation L

PRES	Presumptive
QC	Quality Control

RER	Relative Error Ratio (Radiochemistry)
-----	---------------------------------------

RL	Reporting Limit or Requested Limit	(Radiochemistry)
----	------------------------------------	------------------

RPD	Relative Percent Difference,	a measure of the relative	difference between two points
-----	------------------------------	---------------------------	-------------------------------

Toxicity Equivalent Factor (Dioxin) TEF TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Spokane

Page 6 of 27

Client Sample Results

Client: Arcadis U.S., Inc.
Project/Site: HECLA-lone, WA

Client Sample ID: Ione-1A-040124

Date Collected: 04/01/24 08:40 Date Received: 04/01/24 16:33 Lab Sample ID: 590-24019-1

Matrix: Solid Percent Solids: 86.9

Job ID: 590-24019-1

6
R

0

11

12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	13000		210	66	mg/Kg	— <u></u>	04/08/24 10:06	04/08/24 14:18	5
Antimony	ND	F1 F2 ^1+	11	5.2	mg/Kg	₩	04/08/24 10:06	04/09/24 16:20	5
Arsenic	2.7	J	5.4	2.1	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Barium	170		5.4	1.4	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Beryllium	ND		5.4	0.87	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Cadmium	ND		4.3	0.25	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Calcium	2900	F1 F2	430	130	mg/Kg	₽	04/08/24 10:06	04/09/24 16:20	5
Chromium	13		5.4	0.76	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Cobalt	7.6		5.4	0.42	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Copper	7.2	J	17	3.3	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Iron	19000		430	190	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Lead	13		13	6.3	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Magnesium	4600	F1	210	38	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Manganese	520	F2	64	4.5	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Nickel	14		5.4	0.66	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Potassium	1800	F1 F2	110	54	mg/Kg	₽	04/08/24 10:06	04/09/24 16:20	5
Selenium	ND		21	13	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Silver	ND		5.4	1.2	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Sodium	220	F1 F2 B	110	45	mg/Kg	₽	04/08/24 10:06	04/09/24 16:20	5
Thallium	ND	^1+	11	1.5	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Vanadium	21		5.4	0.94	mg/Kg	₽	04/08/24 10:06	04/08/24 14:18	5
Zinc	76		21	3.4	mg/Kg	\$	04/08/24 10:06	04/08/24 14:18	5
- Method: SW846 7471B - M	lercury (CVAA)								
Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

46

15 J F2

11 ug/Kg

Client Sample ID: Ione-2A-040124

Date Collected: 04/01/24 08:50 Date Received: 04/01/24 16:33

Hg

Lab Sample ID: 590-24019-2
Matrix: Solid

04/08/24 17:21

04/08/24 10:03

Percent Solids: 83.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	13000		210	66	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
Antimony	ND	^1+	11	5.2	mg/Kg	₽	04/08/24 10:06	04/09/24 16:44	5
Arsenic	2.2	J	5.4	2.1	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
Barium	220		5.4	1.4	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
Beryllium	ND		5.4	0.87	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
Cadmium	ND		4.3	0.25	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
Calcium	2000		430	130	mg/Kg	₽	04/08/24 10:06	04/09/24 16:44	5
Chromium	13		5.4	0.76	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
Cobalt	6.4		5.4	0.42	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
Copper	6.2	J	17	3.3	mg/Kg	\$	04/08/24 10:06	04/08/24 14:42	5
Iron	17000		430	190	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
Lead	12	J	13	6.3	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
Magnesium	4100		210	38	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
Manganese	520		64	4.5	mg/Kg	₩	04/08/24 10:06	04/08/24 14:42	5
Nickel	13		5.4	0.66	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
Potassium	1900		110	54	mg/Kg	₽	04/08/24 10:06	04/09/24 16:44	5
Selenium	ND		21	13	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5

Eurofins Spokane

Client: Arcadis U.S., Inc. Project/Site: HECLA-Ione, WA

Client Sample ID: Ione-2A-040124

Lab Sample ID: 590-24019-2 Date Collected: 04/01/24 08:50 Date Received: 04/01/24 16:33

Matrix: Solid Percent Solids: 83.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		5.4	1.2	mg/Kg	₩	04/08/24 10:06	04/08/24 14:42	5
Sodium	180	В	110	45	mg/Kg	₽	04/08/24 10:06	04/09/24 16:44	5
Thallium	ND	^1+	11	1.5	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
Vanadium	18		5.4	0.94	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
Zinc	120		21	3.4	mg/Kg	₽	04/08/24 10:06	04/08/24 14:42	5
- Method: SW846 7471B -	Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg		J	47	12	ug/Kg	— <u></u>	04/08/24 10:03	04/08/24 17:31	1

Client Sample ID: Ione-3A-040124 Lab Sample ID: 590-24019-3

Date Collected: 04/01/24 09:00 **Matrix: Solid** Date Received: 04/01/24 16:33 Percent Solids: 86.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	17000		190	59	mg/Kg	*	04/08/24 10:06	04/08/24 14:46	- 5
Antimony	ND	^1+	9.7	4.7	mg/Kg	≎	04/08/24 10:06	04/09/24 16:48	5
Arsenic	4.3	J	4.8	1.9	mg/Kg	≎	04/08/24 10:06	04/08/24 14:46	5
Barium	120		4.8	1.3	mg/Kg	₽	04/08/24 10:06	04/08/24 14:46	5
Beryllium	ND		4.8	0.78	mg/Kg	≎	04/08/24 10:06	04/08/24 14:46	5
Cadmium	ND		3.9	0.23	mg/Kg	₽	04/08/24 10:06	04/08/24 14:46	5
Calcium	2400		390	120	mg/Kg	₽	04/08/24 10:06	04/09/24 16:48	5
Chromium	21		4.8	0.68	mg/Kg	≎	04/08/24 10:06	04/08/24 14:46	5
Cobalt	11		4.8	0.37	mg/Kg	₽	04/08/24 10:06	04/08/24 14:46	5
Copper	14	J	15	2.9	mg/Kg	₽	04/08/24 10:06	04/08/24 14:46	5
Iron	26000		390	170	mg/Kg	₽	04/08/24 10:06	04/08/24 14:46	5
Lead	16		12	5.7	mg/Kg	≎	04/08/24 10:06	04/08/24 14:46	5
Magnesium	6000		190	34	mg/Kg	₽	04/08/24 10:06	04/08/24 14:46	5
Manganese	330		58	4.0	mg/Kg	≎	04/08/24 10:06	04/08/24 14:46	5
Nickel	20		4.8	0.59	mg/Kg	≎	04/08/24 10:06	04/08/24 14:46	5
Potassium	3400		97	48	mg/Kg	₽	04/08/24 10:06	04/09/24 16:48	5
Selenium	ND		19	12	mg/Kg	₽	04/08/24 10:06	04/08/24 14:46	5
Silver	ND		4.8	1.1	mg/Kg	≎	04/08/24 10:06	04/08/24 14:46	5
Sodium	160	В	97	40	mg/Kg	₽	04/08/24 10:06	04/09/24 16:48	5
Thallium	ND	^1+	9.7	1.3	mg/Kg	₽	04/08/24 10:06	04/08/24 14:46	5
Vanadium	29		4.8	0.85	mg/Kg	☼	04/08/24 10:06	04/08/24 14:46	5
Zinc	70		19	3.1	mg/Kg	≎	04/08/24 10:06	04/08/24 14:46	5

Method: SW846 7471B - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	23	J	45	11	ug/Kg	<u></u>	04/08/24 10:03	04/08/24 17:34	1

Client Sample ID: Ione-4A-040124 Lab Sample ID: 590-24019-4

Date Collected: 04/01/24 09:10 **Matrix: Solid** Date Received: 04/01/24 16:33 Percent Solids: 84.6

Method: SW846 6010D - Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	14000		220	69	mg/Kg	*	04/08/24 10:06	04/08/24 15:03	5
Antimony	ND	^1+	11	5.4	mg/Kg	₩	04/08/24 10:06	04/09/24 17:05	5

Eurofins Spokane

Page 8 of 27 4/9/2024

Client Sample Results

Client: Arcadis U.S., Inc. Job ID: 590-24019-1 Project/Site: HECLA-Ione, WA

Client Sample ID: Ione-4A-040124

Lab Sample ID: 590-24019-4 Date Collected: 04/01/24 09:10 Matrix: Solid Date Received: 04/01/24 16:33 Percent Solids: 84.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.3	J	5.6	2.2	mg/Kg		04/08/24 10:06	04/08/24 15:03	5
Barium	91		5.6	1.5	mg/Kg	₩	04/08/24 10:06	04/08/24 15:03	5
Beryllium	ND		5.6	0.90	mg/Kg	₽	04/08/24 10:06	04/08/24 15:03	5
Cadmium	ND		4.5	0.26	mg/Kg	₽	04/08/24 10:06	04/08/24 15:03	5
Calcium	2700		450	130	mg/Kg	₽	04/08/24 10:06	04/09/24 17:05	5
Chromium	17		5.6	0.79	mg/Kg	₩	04/08/24 10:06	04/08/24 15:03	5
Cobalt	9.5		5.6	0.43	mg/Kg	₽	04/08/24 10:06	04/08/24 15:03	5
Copper	22		18	3.4	mg/Kg	₩	04/08/24 10:06	04/08/24 15:03	5
Iron	23000		450	190	mg/Kg	₽	04/08/24 10:06	04/08/24 15:03	5
Lead	18		13	6.6	mg/Kg	₽	04/08/24 10:06	04/08/24 15:03	5
Magnesium	5200		220	40	mg/Kg	₽	04/08/24 10:06	04/08/24 15:03	5
Manganese	270		67	4.7	mg/Kg	₩	04/08/24 10:06	04/08/24 15:03	5
Nickel	21		5.6	0.69	mg/Kg	₽	04/08/24 10:06	04/08/24 15:03	5
Potassium	2200		110	56	mg/Kg	₽	04/08/24 10:06	04/09/24 17:05	5
Selenium	ND		22	13	mg/Kg	₽	04/08/24 10:06	04/08/24 15:03	5
Silver	ND		5.6	1.3	mg/Kg	₽	04/08/24 10:06	04/08/24 15:03	5
Sodium	140	В	110	47	mg/Kg	₽	04/08/24 10:06	04/09/24 17:05	5
Thallium	ND	^1+	11	1.5	mg/Kg	₩	04/08/24 10:06	04/08/24 15:03	5
Vanadium	31		5.6	0.98	mg/Kg	₽	04/08/24 10:06	04/08/24 15:03	5
Zinc	80		22	3.6	mg/Kg	\$	04/08/24 10:06	04/08/24 15:03	5
Method: SW846 7471B - I	Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	23	J	40	10	ug/Kg	— <u></u>	04/08/24 10:03	04/08/24 17:36	1

Client Sample ID: Ione-5A-040124 Lab Sample ID: 590-24019-5

Date Collected: 04/01/24 09:20 **Matrix: Solid** Date Received: 04/01/24 16:33 Percent Solids: 86.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	14000		210	64	mg/Kg	₽	04/08/24 10:06	04/08/24 15:07	5
Antimony	ND	^1+	10	5.1	mg/Kg	₽	04/08/24 10:06	04/09/24 17:09	5
Arsenic	4.2	J	5.2	2.1	mg/Kg	₽	04/08/24 10:06	04/08/24 15:07	5
Barium	92		5.2	1.4	mg/Kg	☼	04/08/24 10:06	04/08/24 15:07	5
Beryllium	ND		5.2	0.84	mg/Kg	☼	04/08/24 10:06	04/08/24 15:07	5
Cadmium	ND		4.2	0.25	mg/Kg	☼	04/08/24 10:06	04/08/24 15:07	5
Calcium	2800		420	120	mg/Kg	☼	04/08/24 10:06	04/09/24 17:09	5
Chromium	15		5.2	0.74	mg/Kg	₽	04/08/24 10:06	04/08/24 15:07	5
Cobalt	8.2		5.2	0.40	mg/Kg	☼	04/08/24 10:06	04/08/24 15:07	5
Copper	19		17	3.2	mg/Kg	₩	04/08/24 10:06	04/08/24 15:07	5
Iron	22000		420	180	mg/Kg	☼	04/08/24 10:06	04/08/24 15:07	5
Lead	16		12	6.1	mg/Kg	₩	04/08/24 10:06	04/08/24 15:07	5
Magnesium	4700		210	37	mg/Kg	₽	04/08/24 10:06	04/08/24 15:07	5
Manganese	330		62	4.3	mg/Kg	☼	04/08/24 10:06	04/08/24 15:07	5
Nickel	18		5.2	0.64	mg/Kg	☼	04/08/24 10:06	04/08/24 15:07	5
Potassium	2400		100	52	mg/Kg	₩	04/08/24 10:06	04/09/24 17:09	5
Selenium	ND		21	13	mg/Kg	₩	04/08/24 10:06	04/08/24 15:07	5
Silver	ND		5.2	1.2	mg/Kg	₩	04/08/24 10:06	04/08/24 15:07	5
Sodium	180	В	100	43	mg/Kg	₽	04/08/24 10:06	04/09/24 17:09	5

Eurofins Spokane

4/9/2024

Page 9 of 27

Client: Arcadis U.S., Inc.

Project/Site: HECLA-Ione, WA

Client Sample ID: Ione-5A-040124

Date Collected: 04/01/24 09:20 Date Received: 04/01/24 16:33 Lab Sample ID: 590-24019-5

Matrix: Solid

Percent Solids: 86.4

Method: SW846 6010D - Meta	als (ICP) (Continue	d)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	ND	^1+	10	1.4	mg/Kg		04/08/24 10:06	04/08/24 15:07	5
Vanadium	27		5.2	0.92	mg/Kg	₽	04/08/24 10:06	04/08/24 15:07	5
Zinc	77		21	3.3	mg/Kg	₽	04/08/24 10:06	04/08/24 15:07	5

Method: SW846 7471B - Mercury (CVAA)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Hg	23 J	47	12 ug/Kg	<u></u>	04/08/24 10:03	04/08/24 17:39	1

Client Sample ID: Ione-6A-040124

Date Collected: 04/01/24 11:00

Lab Sample ID: 590-24019-6

Percent Solids: 93.2

Matrix: Solid Date Received: 04/01/24 16:33

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	7500		200	61	mg/Kg	-	04/08/24 10:06	04/08/24 15:11	5
Antimony	ND	^1+	9.9	4.8	mg/Kg	₽	04/08/24 10:06	04/09/24 17:13	5
Arsenic	2.4	J	4.9	2.0	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Barium	49		4.9	1.3	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Beryllium	ND		4.9	0.80	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Cadmium	ND		3.9	0.23	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Calcium	2000		390	120	mg/Kg	₽	04/08/24 10:06	04/09/24 17:13	5
Chromium	8.0		4.9	0.70	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Cobalt	4.2	J	4.9	0.38	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Copper	6.2	J	16	3.0	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Iron	14000		390	170	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Lead	8.2	J	12	5.8	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Magnesium	3100		200	35	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Manganese	150		59	4.1	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Nickel	8.1		4.9	0.61	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Potassium	1200		99	49	mg/Kg	₽	04/08/24 10:06	04/09/24 17:13	5
Selenium	ND		20	12	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Silver	ND		4.9	1.1	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Sodium	110	В	99	41	mg/Kg	₽	04/08/24 10:06	04/09/24 17:13	5
Thallium	ND	^1+	9.9	1.4	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Vanadium	16		4.9	0.87	mg/Kg	₽	04/08/24 10:06	04/08/24 15:11	5
Zinc	34		20	3.1	mg/Kg	₩	04/08/24 10:06	04/08/24 15:11	5

Method: SW846 7471B - Mercury (0	CVAA)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND	35	8.8	ug/Kg	-	04/08/24 10:03	04/08/24 17:46	1

Client Sample ID: Ione-7A-040124 Lab Sample ID: 590-24019-7

Date Collected: 04/01/24 11:10 **Matrix: Solid** Date Received: 04/01/24 16:33 Percent Solids: 87.4

Method: SW846 6010D - I	Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	13000		220	68	mg/Kg	*	04/08/24 10:06	04/08/24 15:15	5
Antimony	ND	^1+	11	5.3	mg/Kg	₩	04/08/24 10:06	04/09/24 17:17	5
Arsenic	ND		5.5	2.2	mg/Kg	₩	04/08/24 10:06	04/08/24 15:15	5
Barium	93		5.5	1.5	mg/Kg	₽	04/08/24 10:06	04/08/24 15:15	5

Eurofins Spokane

Page 10 of 27

4/9/2024

Client: Arcadis U.S., Inc. Project/Site: HECLA-Ione, WA

Analyte

Hg

Client Sample ID: Ione-7A-040124

Date Collected: 04/01/24 11:10 Date Received: 04/01/24 16:33

Lab Sample ID: 590-24019-7 Matrix: Solid

Percent Solids: 87.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	ND		5.5	0.89	mg/Kg		04/08/24 10:06	04/08/24 15:15	5
Cadmium	ND		4.4	0.26	mg/Kg	₽	04/08/24 10:06	04/08/24 15:15	5
Calcium	2100		440	130	mg/Kg	₽	04/08/24 10:06	04/09/24 17:17	5
Chromium	10		5.5	0.78	mg/Kg	₩	04/08/24 10:06	04/08/24 15:15	5
Cobalt	5.7		5.5	0.43	mg/Kg	₽	04/08/24 10:06	04/08/24 15:15	5
Copper	8.3	J	18	3.3	mg/Kg	₽	04/08/24 10:06	04/08/24 15:15	5
Iron	16000		440	190	mg/Kg	₩	04/08/24 10:06	04/08/24 15:15	5
Lead	9.1	J	13	6.5	mg/Kg	₽	04/08/24 10:06	04/08/24 15:15	5
Magnesium	3400		220	39	mg/Kg	₩	04/08/24 10:06	04/08/24 15:15	5
Manganese	180		66	4.6	mg/Kg	₽	04/08/24 10:06	04/08/24 15:15	5
Nickel	12		5.5	0.68	mg/Kg	₩	04/08/24 10:06	04/08/24 15:15	5
Potassium	1800		110	55	mg/Kg	₽	04/08/24 10:06	04/09/24 17:17	5
Selenium	ND		22	13	mg/Kg	₽	04/08/24 10:06	04/08/24 15:15	5
Silver	ND		5.5	1.3	mg/Kg	₽	04/08/24 10:06	04/08/24 15:15	5
Sodium	180	В	110	46	mg/Kg	₽	04/08/24 10:06	04/09/24 17:17	5
Thallium	ND	^1+	11	1.5	mg/Kg	₽	04/08/24 10:06	04/08/24 15:15	5
Vanadium	16		5.5	0.97	mg/Kg	₽	04/08/24 10:06	04/08/24 15:15	5
Zinc	52		22	3.5	mg/Kg	₽	04/08/24 10:06	04/08/24 15:15	5

Client Sample ID: Ione-8A-040124 Lab Sample ID: 590-24019-8

RL

44

MDL Unit

11 ug/Kg

Prepared

04/08/24 10:03 04/08/24 17:49

Result Qualifier

13 J

Date Collected: 04/01/24 11:20 **Matrix: Solid** Date Received: 04/01/24 16:33 Percent Solids: 86.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	14000		210	63	mg/Kg	<u></u>	04/08/24 10:06	04/08/24 15:19	
Antimony	ND	^1+	10	5.0	mg/Kg	₩	04/08/24 10:06	04/09/24 17:21	5
Arsenic	2.7	J	5.1	2.0	mg/Kg	₩	04/08/24 10:06	04/08/24 15:19	5
Barium	110		5.1	1.4	mg/Kg	₽	04/08/24 10:06	04/08/24 15:19	5
Beryllium	ND		5.1	0.83	mg/Kg	₩	04/08/24 10:06	04/08/24 15:19	5
Cadmium	ND		4.1	0.24	mg/Kg	₽	04/08/24 10:06	04/08/24 15:19	5
Calcium	2100		410	120	mg/Kg	₽	04/08/24 10:06	04/09/24 17:21	5
Chromium	10		5.1	0.73	mg/Kg	₩	04/08/24 10:06	04/08/24 15:19	5
Cobalt	6.5		5.1	0.40	mg/Kg	₩	04/08/24 10:06	04/08/24 15:19	5
Copper	13	J	16	3.1	mg/Kg	₩	04/08/24 10:06	04/08/24 15:19	5
Iron	17000		410	180	mg/Kg	₩	04/08/24 10:06	04/08/24 15:19	5
Lead	9.4	J	12	6.1	mg/Kg	₩	04/08/24 10:06	04/08/24 15:19	5
Magnesium	3500		210	36	mg/Kg	₽	04/08/24 10:06	04/08/24 15:19	5
Manganese	210		62	4.3	mg/Kg	₩	04/08/24 10:06	04/08/24 15:19	5
Nickel	14		5.1	0.63	mg/Kg	₩	04/08/24 10:06	04/08/24 15:19	5
Potassium	1600		100	51	mg/Kg	₽	04/08/24 10:06	04/09/24 17:21	5
Selenium	ND		21	12	mg/Kg	₩	04/08/24 10:06	04/08/24 15:19	5
Silver	ND		5.1	1.2	mg/Kg	₽	04/08/24 10:06	04/08/24 15:19	Ę
Sodium	160	В	100	43	mg/Kg	₽	04/08/24 10:06	04/09/24 17:21	5
Thallium	ND	^1+	10	1.4	mg/Kg	₽	04/08/24 10:06	04/08/24 15:19	Ę
Vanadium	16		5.1	0.91	mg/Kg	₽	04/08/24 10:06	04/08/24 15:19	5

Eurofins Spokane

Dil Fac

Analyzed

Client: Arcadis U.S., Inc. Project/Site: HECLA-Ione, WA

Lab Sample ID: 590-24019-8

Client Sample ID: Ione-8A-040124 Date Collected: 04/01/24 11:20

Date Received: 04/01/24 16:33

Matrix: Solid Percent Solids: 86.7

Job ID: 590-24019-1

Method: SW846 6010D -	Metals (ICP) (Continue	d)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	55		21	3.3	mg/Kg	*	04/08/24 10:06	04/08/24 15:19	5
- Method: SW846 7471B -	Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	14	J	40	9.9	ug/Kg	<u> </u>	04/08/24 10:03	04/08/24 17:52	1

Client Sample ID: Ione-9A-040124

Lab Sample ID: 590-24019-9 Matrix: Solid

Date Collected: 04/01/24 13:30 Date Received: 04/01/24 16:33

Percent Solids: 77.8

Method: SW846 6010D - Metals (ICP)

metriou.	011040	00100	- Wictais	(101	,
Analyte					

Welliou. 30046 60 10D - W	etais (ICF)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	18000		190	58	mg/Kg	*	04/08/24 10:06	04/08/24 15:23	5
Antimony	ND	^1+	9.3	4.5	mg/Kg	₽	04/08/24 10:06	04/09/24 17:25	5
Arsenic	9.2		4.7	1.9	mg/Kg	₽	04/08/24 10:06	04/08/24 15:23	5
Barium	87		4.7	1.3	mg/Kg	₽	04/08/24 10:06	04/08/24 15:23	5
Beryllium	ND		4.7	0.75	mg/Kg	₽	04/08/24 10:06	04/08/24 15:23	5
Cadmium	0.25	J	3.7	0.22	mg/Kg	₽	04/08/24 10:06	04/08/24 15:23	5
Calcium	4700		370	110	mg/Kg	₽	04/08/24 10:06	04/09/24 17:25	5
Chromium	24		4.7	0.66	mg/Kg	₽	04/08/24 10:06	04/08/24 15:23	5
Cobalt	13		4.7	0.36	mg/Kg	₽	04/08/24 10:06	04/08/24 15:23	5
Copper	41		15	2.8	mg/Kg	₽	04/08/24 10:06	04/08/24 15:23	5
Iron	36000		370	160	mg/Kg	₽	04/08/24 10:06	04/08/24 15:23	5
Lead	29		11	5.5	mg/Kg	₽	04/08/24 10:06	04/08/24 15:23	5
Magnesium	7100		190	33	mg/Kg	₽	04/08/24 10:06	04/08/24 15:23	5
Manganese	500		56	3.9	mg/Kg	₽	04/08/24 10:06	04/08/24 15:23	5
Nickel	34		4.7	0.58	mg/Kg	₽	04/08/24 10:06	04/08/24 15:23	5
Potassium	3300		93	47	mg/Kg	₽	04/08/24 10:06	04/09/24 17:25	5
Selenium	ND		19	11	mg/Kg	₽	04/08/24 10:06	04/08/24 15:23	5

Method: SW846 7471B - Mercury (CVAA)
Δnalvte

Result Qualifier Dil Fac RL MDL Unit D Prepared Analyzed 04/08/24 10:03 Hg 42 J 49 12 ug/Kg 04/08/24 17:54

4.7

93

9.3

4.7

19

1.1 mg/Kg

1.3 mg/Kg

0.82 mg/Kg

3.0 mg/Kg

mg/Kg

ND

240 B

44

120

ND ^1+

Client Sample ID: Ione-10A-040124

Lab Sample ID: 590-24019-10

04/08/24 15:23

04/09/24 17:25

04/08/24 15:23

04/08/24 15:23

04/08/24 15:23

5

5

5

5

04/08/24 10:06

04/08/24 10:06

04/08/24 10:06

04/08/24 10:06

04/08/24 10:06

Date Collected: 04/01/24 14:00 Date Received: 04/01/24 16:33

Silver

Zinc

Sodium

Thallium

Vanadium

Percent Solids: 87.2

Matrix: Solid

Dil Fac
27 5
29 5
27 5
27 5
27 5
27 5
2 2 2

Eurofins Spokane

Client Sample Results

Client: Arcadis U.S., Inc. Job ID: 590-24019-1

Project/Site: HECLA-Ione, WA

Hg

Client Sample ID: Ione-10A-040124

Lab Sample ID: 590-24019-10 Date Collected: 04/01/24 14:00 Matrix: Solid Date Received: 04/01/24 16:33 Percent Solids: 87.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	3200		420	130	mg/Kg		04/08/24 10:06	04/09/24 17:29	5
Chromium	9.6		5.2	0.74	mg/Kg	₽	04/08/24 10:06	04/08/24 15:27	5
Cobalt	5.3		5.2	0.41	mg/Kg	₩	04/08/24 10:06	04/08/24 15:27	5
Copper	6.0	J	17	3.2	mg/Kg	₽	04/08/24 10:06	04/08/24 15:27	5
Iron	16000		420	180	mg/Kg	₽	04/08/24 10:06	04/08/24 15:27	5
Lead	9.3	J	13	6.2	mg/Kg	₽	04/08/24 10:06	04/08/24 15:27	5
Magnesium	3000		210	37	mg/Kg	₽	04/08/24 10:06	04/08/24 15:27	5
Manganese	420		63	4.4	mg/Kg	₽	04/08/24 10:06	04/08/24 15:27	5
Nickel	12		5.2	0.64	mg/Kg	₽	04/08/24 10:06	04/08/24 15:27	5
Potassium	1200		100	52	mg/Kg	₽	04/08/24 10:06	04/09/24 17:29	5
Selenium	ND		21	13	mg/Kg	₽	04/08/24 10:06	04/08/24 15:27	5
Silver	ND		5.2	1.2	mg/Kg	₽	04/08/24 10:06	04/08/24 15:27	5
Sodium	210	В	100	44	mg/Kg	₽	04/08/24 10:06	04/09/24 17:29	5
Thallium	ND	^1+	10	1.4	mg/Kg	₽	04/08/24 10:06	04/08/24 15:27	5
Vanadium	14		5.2	0.92	mg/Kg	₽	04/08/24 10:06	04/08/24 15:27	5
Zinc	54		21	3.3	mg/Kg	\$	04/08/24 10:06	04/08/24 15:27	5
Method: SW846 7471B -	Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: Ione-11A-040124 Lab Sample ID: 590-24019-11

43

11 ug/Kg

13 J

Date Collected: 04/01/24 14:10 Matrix: Solid Date Received: 04/01/24 16:33 Percent Solids: 90.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	13000		210	64	mg/Kg	-	04/08/24 10:06	04/08/24 15:31	
Antimony	ND	^1+	10	5.0	mg/Kg	₽	04/08/24 10:06	04/09/24 17:34	5
Arsenic	2.8	J	5.2	2.1	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	
Barium	130		5.2	1.4	mg/Kg	*	04/08/24 10:06	04/08/24 15:31	
Beryllium	ND		5.2	0.84	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	
Cadmium	ND		4.1	0.24	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	5
Calcium	3200		410	120	mg/Kg	₽	04/08/24 10:06	04/09/24 17:34	
Chromium	12		5.2	0.73	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	5
Cobalt	7.3		5.2	0.40	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	5
Copper	10	J	17	3.2	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	
Iron	18000		410	180	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	
Lead	14		12	6.1	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	Ę
Magnesium	4100		210	37	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	
Manganese	470		62	4.3	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	5
Nickel	14		5.2	0.64	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	Ę
Potassium	1500		100	52	mg/Kg	*	04/08/24 10:06	04/09/24 17:34	
Selenium	ND		21	12	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	5
Silver	ND		5.2	1.2	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	Ę
Sodium	260	В	100	43	mg/Kg	₽	04/08/24 10:06	04/09/24 17:34	
Thallium	ND	^1+	10	1.4	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	į
Vanadium	19		5.2	0.91	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	į
Zinc	62		21	3.3	mg/Kg	₽	04/08/24 10:06	04/08/24 15:31	

Eurofins Spokane

04/08/24 10:03 04/08/24 17:57

Client Sample Results

Client: Arcadis U.S., Inc.

Job ID: 590-24019-1

Project/Site: HECLA-Ione, WA

Client Sample ID: Ione-11A-040124 Lab Sample ID: 590-24019-11

Date Collected: 04/01/24 14:10

Matrix: Solid
Date Received: 04/01/24 16:33

Matrix: Solid
Percent Solids: 90.6

Method: SW846 7471B - Mercury (CVAA)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	11	J	42	11	ug/Kg	<u></u>	04/08/24 10:03	04/08/24 17:59	1

5

5

6

8

9

44

4.6

Client: Arcadis U.S., Inc. Project/Site: HECLA-Ione, WA

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-46653/2-A

Matrix: Solid

Analysis Batch: 46674

	Client Sample ID: Method Blank
	Prep Type: Total/NA
	Prep Batch: 46653
MB MB	

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		50	15	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Arsenic	ND		1.3	0.50	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Barium	ND		1.3	0.34	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Beryllium	ND		1.3	0.20	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Cadmium	ND		1.0	0.059	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Chromium	ND		1.3	0.18	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Cobalt	ND		1.3	0.097	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Copper	ND		4.0	0.76	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Iron	ND		100	43	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Lead	ND		3.0	1.5	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Magnesium	ND		50	8.9	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Manganese	ND		15	1.0	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Nickel	ND		1.3	0.15	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Selenium	ND		5.0	3.0	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Silver	ND		1.3	0.29	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Thallium	ND	^1+	2.5	0.35	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Vanadium	ND		1.3	0.22	mg/Kg		04/08/24 10:05	04/08/24 14:14	1
Zinc	ND		5.0	0.79	mg/Kg		04/08/24 10:05	04/08/24 14:14	1

Lab Sample ID: MB 590-46653/2-A

Matrix: Solid

Analysis Batch: 46703

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 46653

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	^1+	2.5	1.2	mg/Kg		04/08/24 10:05	04/09/24 16:16	1
Calcium	ND		100	30	mg/Kg		04/08/24 10:05	04/09/24 16:16	1
Potassium	ND		25	13	mg/Kg		04/08/24 10:05	04/09/24 16:16	1
Sodium	17.8	J	25	10	ma/Ka		04/08/24 10:05	04/09/24 16:16	1

Lab Sample ID: LCS 590-46653/1-A

Matrix: Solid

Analysis Batch: 46674

Client Sample ID: Lab C	ontrol Sample
Prep '	Type: Total/NA
Prei	Batch: 46653

7								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	500	560		mg/Kg		112	80 - 120	
Arsenic	100	94.6		mg/Kg		95	80 - 120	
Barium	100	91.2		mg/Kg		91	80 - 120	
Beryllium	50.0	52.4		mg/Kg		105	80 - 120	
Cadmium	50.0	48.1		mg/Kg		96	80 - 120	
Chromium	50.0	47.0		mg/Kg		94	80 - 120	
Cobalt	50.0	50.1		mg/Kg		100	80 - 120	
Copper	50.0	48.4		mg/Kg		97	80 - 120	
Iron	500	590		mg/Kg		118	80 - 120	
Lead	50.0	51.0		mg/Kg		102	80 - 120	
Magnesium	2500	2860		mg/Kg		115	80 - 120	
Manganese	50.0	50.2		mg/Kg		100	80 - 120	
Nickel	50.0	50.5		mg/Kg		101	80 - 120	
Selenium	100	95.2		mg/Kg		95	80 - 120	
Silver	5.00	5.34		mg/Kg		107	80 - 120	

Eurofins Spokane

Page 15 of 27

2

3

4

6

8

10

11

Client: Arcadis U.S., Inc. Project/Site: HECLA-Ione, WA

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCS 590-46653/1-A

Matrix: Solid

Analysis Batch: 46674

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 46653

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 106 ^1+ Thallium 100 106 80 - 120 mg/Kg Vanadium 50.0 48.1 mg/Kg 96 80 - 120 Zinc 50.0 54.8 mg/Kg 80 - 120 110

Lab Sample ID: LCS 590-46653/1-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 46703

Prep Type: Total/NA

Prep Batch: 46653

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	50.0	60.1	^1+	mg/Kg		120	80 - 120	
Calcium	2500	3010		mg/Kg		120	80 - 120	
Potassium	2500	2950		mg/Kg		118	80 - 120	
Sodium	2500	2960		mg/Kg		118	80 - 120	

Lab Sample ID: 590-24019-1 MS

Matrix: Solid

Analysis Databy 40074

Client Sample ID: Ione-1A-040124

Prep Type: Total/NA

Pren Batch: 46653

Analysis Batch: 46674									Prep B	Batch: 46653
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	13000		569	17100	4	mg/Kg	#	697	75 - 125	
Arsenic	2.7	J	114	109		mg/Kg	₩	94	75 - 125	
Barium	170		114	277		mg/Kg	₽	94	75 - 125	
Beryllium	ND		56.9	59.7		mg/Kg	₽	105	75 - 125	
Cadmium	ND		56.9	54.6		mg/Kg	₩	96	75 - 125	
Chromium	13		56.9	67.9		mg/Kg	₽	97	75 - 125	
Cobalt	7.6		56.9	65.4		mg/Kg	₽	101	75 - 125	
Copper	7.2	J	56.9	62.9		mg/Kg	₩	98	75 - 125	
Iron	19000		569	21200	4	mg/Kg	₩	349	75 - 125	
Lead	13		56.9	71.0		mg/Kg	₽	101	75 - 125	
Magnesium	4600	F1	2850	8260	F1	mg/Kg	₩	128	75 - 125	
Manganese	520	F2	56.9	564	4	mg/Kg	₽	76	75 - 125	
Nickel	14		56.9	73.2		mg/Kg	₽	104	75 - 125	
Selenium	ND		114	110		mg/Kg	₩	97	75 - 125	
Silver	ND		5.69	6.28	J	mg/Kg	₩	110	75 - 125	
Thallium	ND	^1+	114	122	^1+	mg/Kg	₩	107	75 - 125	
Vanadium	21		56.9	77.6		mg/Kg	₩	99	75 - 125	
Zinc	76		56.9	144		mg/Kg	₩	120	75 - 125	
_										

Lab Sample ID: 590-24019-1 MS

Matrix: Solid

Analysis Batch: 46703

Client Sample ID: Ione-1A-040124

Prep Batch: 46653

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	ND	F1 F2 ^1+	56.9	67.4	^1+	mg/Kg	<u></u>	118	75 - 125	
Calcium	2900	F1 F2	2850	8940	F1	mg/Kg	₩	212	75 - 125	
Potassium	1800	F1 F2	2850	7560	F1	mg/Kg	₩	201	75 - 125	

Prep Type: Total/NA

Client: Arcadis U.S., Inc. Project/Site: HECLA-Ione, WA

Method: 6010D - Metals (ICP) (Continued)

Sample Sample

520 F2

14

ND

ND

ND

21

76

Lab Sample ID: 590-24019-1 MSD

Matrix: Solid

Analysis Batch: 46674

Client Sample ID: Ione-1A-040124 Prep Type: Total/NA

Prep Batch: 46653

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	13000		564	18100	4	mg/Kg	<u></u>	896	75 - 125	6	20
Arsenic	2.7	J	113	99.1		mg/Kg	☼	86	75 - 125	10	20
Barium	170		113	300		mg/Kg	☼	116	75 - 125	8	20
Beryllium	ND		56.4	54.2		mg/Kg	₩	96	75 - 125	10	20
Cadmium	ND		56.4	50.0		mg/Kg	☼	89	75 - 125	9	20
Chromium	13		56.4	65.7		mg/Kg	☼	94	75 - 125	3	20
Cobalt	7.6		56.4	66.1		mg/Kg	₽	104	75 - 125	1	20
Copper	7.2	J	56.4	59.7		mg/Kg	☼	93	75 - 125	5	20
Iron	19000		564	23200	4	mg/Kg	☼	715	75 - 125	9	20
Lead	13		56.4	68.6		mg/Kg	₽	98	75 - 125	3	20
Magnesium	4600	F1	2820	8230	F1	mg/Kg	₽	128	75 - 125	0	20

MSD MSD

802 4 F2

70.5

100

76.9

141

5.70 J

110 ^1+

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Spike

56.4

56.4

113

5.64

113

56.4

56.4

Lab Sample ID: 590-24019-1 MSD

Matrix: Solid

Manganese

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Analysis Batch: 46703

Client Sample ID: Ione-1A-040124

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

498

101

89

101

97

99

116

Ö

₩

₽

₽

₽

₩

Prep Type: Total/NA Prep Batch: 46653

35

4

10

10

11

2

Analysis Batom 40100										Dutoii.	40000
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND	F1 F2 ^1+	56.4	24.5	F1 F2 ^1+	mg/Kg	*	44	75 - 125	93	20
Calcium	2900	F1 F2	2820	3280	F1 F2	mg/Kg	₩	13	75 - 125	93	20
Potassium	1800	F1 F2	2820	2960	F1 F2	mg/Kg	₽	39	75 - 125	88	20

Lab Sample ID: 590-24019-1 DU

Matrix: Solid

Client Sample ID: Ione-1A-040124

Prep Type: Total/NA

Analysis Batch: 46674							Prep Batch:	46653
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Aluminum	13000		13900		mg/Kg	*		20
Arsenic	2.7	J	3.03	J	mg/Kg	₽	11	20
Barium	170		136	F3	mg/Kg	☼	22	20
Beryllium	ND		ND		mg/Kg	₽	NC	20
Cadmium	ND		ND		mg/Kg	☼	NC	20
Chromium	13		13.7		mg/Kg	☼	8	20
Cobalt	7.6		7.78		mg/Kg	₽	2	20
Copper	7.2	J	7.84	J	mg/Kg	☼	8	20
Iron	19000		20100		mg/Kg	₽	5	20
Lead	13		13.2		mg/Kg	₽	2	20
Magnesium	4600	F1	4840		mg/Kg	☼	5	20
Manganese	520	F2	312	F3	mg/Kg	₽	50	20
Nickel	14		14.9		mg/Kg	₽	8	20
Selenium	ND		ND		mg/Kg	₽	NC	20
Silver	ND		ND		mg/Kg	₽	NC	20
Thallium	ND	^1+	ND	^1+	mg/Kg	₽	NC	20

Eurofins Spokane

20

20

20

20

20

20

20

4/9/2024

77.3

mg/Kg

Job ID: 590-24019-1

Method: 6010D - Metals (ICP) (Continued)

76

Client: Arcadis U.S., Inc.

Zinc

Project/Site: HECLA-Ione, WA

Lab Sample ID: 590-24019-1 D	J					CI	ient Sample ID: Ione-1A-0	40124
Matrix: Solid							Prep Type: To	tal/NA
Analysis Batch: 46674							Prep Batch:	46653
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Vanadium	21		20.6		mg/Kg	₩		20

Lab Sample ID: 590-24019-1 DU Client Sample ID: Ione-1A-040124 **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 46703 Prep Batch: 46653 Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier Unit Limit ND F1 F2 ^1+ ND ^1+ 20 Antimony mg/Kg 23 Calcium 2900 F1 F2 3670 F3 mg/Kg ₩ 20 Potassium 1800 F1 F2 1950 mg/Kg 20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: LCS 590-46652/8-A

Lab Sample ID: MB 590-46652/9-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 46680	Prep Batch: 46652
MR MR	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND	50	12	ug/Kg		04/08/24 10:02	04/08/24 17:19	1

Matrix: Solid				Prep Type: Total/NA
Analysis Batch: 46680				Prep Batch: 46652
	Spike	LCS LCS		%Rec
Δnalyte	hahhΔ	Result Qualifier U	Init D %Rec	Limits

	Spike	LUS	LUS				/onec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hg	 200	199		ug/Kg		100	80 - 120	
_								

	Cample Cample	Cmiles	MC MC	9/ Pag
Analysis Batch: 46680				Prep Batch: 46652
Matrix: Solid				Prep Type: Total/NA
Lab Sample ID: 590-24019-1 MS				Client Sample ID: Ione-1A-040124

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hg	15	J F2	217	213		ug/Kg	₽	91	80 - 120	

 Lab Sample ID: 590-24019-1 MSD)						C	lient Sa	mple ID: lo	ne-1A-0	40124
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 46680									Prep	Batch:	46652
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hg	15	J F2	226	272	F2	ug/Kg	— <u>—</u>	114	80 - 120	24	20

Lab Sample ID: 590-24019-1 DU						CI	ient Sample ID: Ion	e-1A-0	40124
Matrix: Solid							Prep Ty	pe: To	tal/NA
Analysis Batch: 46680							Prep E	3atch:	46652
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Hg	15	J F2	17.7	J	ug/Kg	*		19	20

Eurofins Spokane

Client Sample ID: Lab Control Sample

Client: Arcadis U.S., Inc. Job ID: 590-24019-1 Project/Site: HECLA-Ione, WA

Client Sample ID: Ione-1A-040124

Lab Sample ID: 590-24019-1 Date Collected: 04/01/24 08:40

Matrix: Solid

Date Received: 04/01/24 16:33

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			46598	04/03/24 14:53	MRV	EET SPK

Client Sample ID: Ione-1A-040124

Lab Sample ID: 590-24019-1 Date Collected: 04/01/24 08:40 **Matrix: Solid**

Date Received: 04/01/24 16:33 Percent Solids: 86.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.34 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46674	04/08/24 14:18	AMB	EET SPK
Total/NA	Prep	3050B			1.34 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46703	04/09/24 16:20	AMB	EET SPK
Total/NA	Prep	7471B			0.63 g	50 mL	46652	04/08/24 10:03	AMB	EET SPK
Total/NA	Analysis	7471B		1			46680	04/08/24 17:21	AMB	EET SPK

Client Sample ID: Ione-2A-040124

Lab Sample ID: 590-24019-2

Date Collected: 04/01/24 08:50 **Matrix: Solid**

Date Received: 04/01/24 16:33

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			46598	04/03/24 14:53	MRV	EET SPK

Client Sample ID: Ione-2A-040124 Lab Sample ID: 590-24019-2

Date Collected: 04/01/24 08:50 **Matrix: Solid** Date Received: 04/01/24 16:33 Percent Solids: 83.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.40 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46674	04/08/24 14:42	AMB	EET SPK
Total/NA	Prep	3050B			1.40 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46703	04/09/24 16:44	AMB	EET SPK
Total/NA	Prep	7471B			0.64 g	50 mL	46652	04/08/24 10:03	AMB	EET SPK
Total/NA	Analysis	7471B		1			46680	04/08/24 17:31	AMB	EET SPK

Lab Sample ID: 590-24019-3 Client Sample ID: Ione-3A-040124

Date Collected: 04/01/24 09:00 Matrix: Solid Date Received: 04/01/24 16:33

Batch Dil Initial Final Batch Batch Prepared **Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis Moisture 46598 04/03/24 14:53 MRV EET SPK Client: Arcadis U.S., Inc. Project/Site: HECLA-Ione, WA

Client Sample ID: Ione-3A-040124

Date Collected: 04/01/24 09:00 Date Received: 04/01/24 16:33

Lab Sample ID: 590-24019-3

Matrix: Solid Percent Solids: 86.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.50 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46674	04/08/24 14:46	AMB	EET SPK
Total/NA	Prep	3050B			1.50 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46703	04/09/24 16:48	AMB	EET SPK
Total/NA	Prep	7471B			0.64 g	50 mL	46652	04/08/24 10:03	AMB	EET SPK
Total/NA	Analysis	7471B		1			46680	04/08/24 17:34	AMB	EET SPK

Client Sample ID: Ione-4A-040124

Date Collected: 04/01/24 09:10 Date Received: 04/01/24 16:33

Lab Sample ID: 590-24019-4

Matrix: Solid

Dil Batch Batch Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis Moisture 46598 04/03/24 14:53 MRV EET SPK

Client Sample ID: Ione-4A-040124

Date Collected: 04/01/24 09:10 Date Received: 04/01/24 16:33

Lab Sample ID: 590-24019-4

Matrix: Solid Percent Solids: 84.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.32 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46674	04/08/24 15:03	AMB	EET SPK
Total/NA	Prep	3050B			1.32 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46703	04/09/24 17:05	AMB	EET SPK
Total/NA	Prep	7471B			0.73 g	50 mL	46652	04/08/24 10:03	AMB	EET SPK
Total/NA	Analysis	7471B		1			46680	04/08/24 17:36	AMB	EET SPK

Client Sample ID: Ione-5A-040124

Date Collected: 04/01/24 09:20 Date Received: 04/01/24 16:33

Lab Sample ID: 590-24019-5

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			46598	04/03/24 14:53	MRV	EET SPK

Client Sample ID: Ione-5A-040124

Date Collected: 04/01/24 09:20

Date Received: 04/01/24 16:33

Lab Sample ID: 590-24019-5 **Matrix: Solid**

Percent Solids: 86.4

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.39 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46674	04/08/24 15:07	AMB	EET SPK
Total/NA	Prep	3050B			1.39 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46703	04/09/24 17:09	AMB	EET SPK
Total/NA	Prep	7471B			0.62 g	50 mL	46652	04/08/24 10:03	AMB	EET SPK
Total/NA	Analysis	7471B		1			46680	04/08/24 17:39	AMB	EET SPK

Eurofins Spokane

Client: Arcadis U.S., Inc. Job ID: 590-24019-1

Project/Site: HECLA-Ione, WA

Client Sample ID: Ione-6A-040124

Date Collected: 04/01/24 11:00 Date Received: 04/01/24 16:33 Lab Sample ID: 590-24019-6

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			46598	04/03/24 14:53	MRV	EET SPK

Client Sample ID: Ione-6A-040124

Date Collected: 04/01/24 11:00

Date Received: 04/01/24 16:33

Lab	Sample	ID:	590-24019-6	

Matrix: Solid Percent Solids: 93.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.36 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46674	04/08/24 15:11	AMB	EET SPK
Total/NA	Prep	3050B			1.36 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46703	04/09/24 17:13	AMB	EET SPK
Total/NA	Prep	7471B			0.76 g	50 mL	46652	04/08/24 10:03	AMB	EET SPK
Total/NA	Analysis	7471B		1			46680	04/08/24 17:46	AMB	EET SPK

Client Sample ID: Ione-7A-040124

Date Collected: 04/01/24 11:10

Date Received: 04/01/24 16:33

Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			46598	04/03/24 14:53	MRV	EET SPK

Client Sample ID: Ione-7A-040124

Date Collected: 04/01/24 11:10

Date Received: 04/01/24 16:33

ab Sample	ID: 590-24019-7
-----------	-----------------

Matrix: Solid Percent Solids: 87.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.30 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46674	04/08/24 15:15	AMB	EET SPK
Total/NA	Prep	3050B			1.30 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46703	04/09/24 17:17	AMB	EET SPK
Total/NA	Prep	7471B			0.65 g	50 mL	46652	04/08/24 10:03	AMB	EET SPK
Total/NA	Analysis	7471B		1			46680	04/08/24 17:49	AMB	EET SPK

Client Sample ID: Ione-8A-040124

Date Collected: 04/01/24 11:20

Date Received: 04/01/24 16:33

Lab Sample	ID: 590-24019-8
------------	-----------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture					46598	04/03/24 14:53	MRV	EET SPK	

Client: Arcadis U.S., Inc. Project/Site: HECLA-Ione, WA

Lab Sample ID: 590-24019-8

Matrix: Solid

Percent Solids: 86.7

Job ID: 590-24019-1

Client Sample ID: Ione-8A-040124

Date Collected: 04/01/24 11:20 Date Received: 04/01/24 16:33

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.40 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46674	04/08/24 15:19	AMB	EET SPK
Total/NA	Prep	3050B			1.40 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46703	04/09/24 17:21	AMB	EET SPK
Total/NA	Prep	7471B			0.72 g	50 mL	46652	04/08/24 10:03	AMB	EET SPK
Total/NA	Analysis	7471B		1			46680	04/08/24 17:52	AMB	EET SPK

Client Sample ID: Ione-9A-040124

Date Collected: 04/01/24 13:30 Date Received: 04/01/24 16:33

Lab Sample ID: 590-24019-9 Matrix: Solid

Dil Batch Batch Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Moisture Total/NA Analysis 46598 04/03/24 14:53 MRV EET SPK

Client Sample ID: Ione-9A-040124

Date Collected: 04/01/24 13:30 Date Received: 04/01/24 16:33

Lab Sample ID: 590-24019-9 **Matrix: Solid**

Percent Solids: 77.8

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.72 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46674	04/08/24 15:23	AMB	EET SPK
Total/NA	Prep	3050B			1.72 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46703	04/09/24 17:25	AMB	EET SPK
Total/NA	Prep	7471B			0.66 g	50 mL	46652	04/08/24 10:03	AMB	EET SPK
Total/NA	Analysis	7471B		1			46680	04/08/24 17:54	AMB	EET SPK

Client Sample ID: Ione-10A-040124

Date Collected: 04/01/24 14:00 Date Received: 04/01/24 16:33

Lab Sample ID: 590-24019-10 **Matrix: Solid**

Lab Sample ID: 590-24019-10

Dil Batch Batch Initial Final Batch Prepared Method Amount Prep Type Type Run Factor Amount Number or Analyzed Analyst Lab 46598 04/03/24 14:53 EET SPK Total/NA Analysis Moisture 1 MRV

Client Sample ID: Ione-10A-040124

Date Collected: 04/01/24 14:00

Matrix: Solid Date Received: 04/01/24 16:33 Percent Solids: 87.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.37 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46674	04/08/24 15:27	AMB	EET SPK
Total/NA	Prep	3050B			1.37 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46703	04/09/24 17:29	AMB	EET SPK
Total/NA	Prep	7471B			0.66 g	50 mL	46652	04/08/24 10:03	AMB	EET SPK
Total/NA	Analysis	7471B		1			46680	04/08/24 17:57	AMB	EET SPK

Eurofins Spokane

Lab Chronicle

Client: Arcadis U.S., Inc. Job ID: 590-24019-1

Project/Site: HECLA-Ione, WA

Client Sample ID: Ione-11A-040124

Lab Sample ID: 590-24019-11 Date Collected: 04/01/24 14:10

Matrix: Solid

Date Received: 04/01/24 16:33

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			46598	04/03/24 14:53	MRV	EET SPK

Client Sample ID: Ione-11A-040124

Lab Sample ID: 590-24019-11 Date Collected: 04/01/24 14:10 Matrix: Solid

Date Received: 04/01/24 16:33 Percent Solids: 90.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.33 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46674	04/08/24 15:31	AMB	EET SPK
Total/NA	Prep	3050B			1.33 g	50 mL	46653	04/08/24 10:06	AMB	EET SPK
Total/NA	Analysis	6010D		5			46703	04/09/24 17:34	AMB	EET SPK
Total/NA	Prep	7471B			0.65 g	50 mL	46652	04/08/24 10:03	AMB	EET SPK
Total/NA	Analysis	7471B		1			46680	04/08/24 17:59	AMB	EET SPK

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: Arcadis U.S., Inc.

Job ID: 590-24019-1

Project/Site: HECLA-lone, WA

Laboratory: Eurofins Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date	
Washington	State		C569	01-07-25	
The following analytes	are included in this report, but	t the laboratory is not certif	ied by the governing authority. This lis	t may include analyte	
	are moraded in the report, bu	t the laberatory to hot cortin	iod by the governing admently. This he	t may molade analyti	
,	oes not offer certification.	t the laboratory to het corum	iod by the governing additionty. This he	t may morade analyte	
,		Matrix	Analyte	t may molade analys	
for which the agency of	oes not offer certification.	•	, , ,	t may moude analyt	

-

4

6

2

9

11

Method Summary

Client: Arcadis U.S., Inc. Project/Site: HECLA-lone, WA Job ID: 590-24019-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SPK
7471B	Mercury (CVAA)	SW846	EET SPK
Moisture	Percent Moisture	EPA	EET SPK
3050B	Preparation, Metals	SW846	EET SPK
7471B	Preparation, Mercury	SW846	EET SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

-

-4

6

10

11

Chain of Custody Record

🥴 eu	rofins	Ì
------	--------	---

Environment Testing America

Spokane WA 99206-5302 Regulatory Program Dw NPDES **Eurofins Environment Testing America** RCRA Other phone 509.924.9200 fax 509.924.9290 COC No. Project Manager ,)65h COCs Joshua . Lele areadis con Site Contact: Date **Client Contact** Tel/Fax Lab Contact Carrier: TALS Project #: Arcadis Your Company Name here 8708 E Wellester Ave **Analysis Turnaround Time** Sampler For Lab Use Only City/State/Zip Solution. 91202 CALENDAR DAYS WORKING DAYS Walk-in Client: (xxx) xxx-xxxx 40L-Z39-7TIPhone TAT if different from Below Lab Sampling: (xxxx) xxxx-xxxxx FAX 2 weeks Project Name Hecla - Ione, WA 1 week Job / SDG No. Site: 2 days P O # 30216383 1 day Sample Type Sample Sample # of (C=Comp, G=Grab) Sample Specific Notes. Date Time Matrix Cont. Sample Identification Ione - 1A - 040124 0840 0850 Ione-ZA-040124 Ione -3A-040124 0900 one - 4A-040124 0190 me -5A-040124 0920 Lone - 6A-040124 11110 -7A-040124 IIID one - 8A -040124 1120 Ione - 9A -040124 1330 1400 Ione - 10A-040124 Ione - 11A - 040124 Preservation:Usedik14ii.com24/HQlin3#iH29Q4jq4=HNQ3jq5#NaQHil64jQthaii Possible Hazard (dentification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Archive for_ Non-Hazard Flammable Skin Irritant Poison B Unknown Return to Client Discosal by Lab Months Special Instructions/QC Requirements & Comments Cooler Temp. (°C): Obs'd: 16.0 _ Corr'd:_ 8.07 Therm ID No. 1200Q Custody Seal No. Custody Seals Intact: No Date/Time: /630 Relinguished by: Company: Received by: Company: Date/Time: 4/earlin Relinguished by Date/Time: Received by: Date/Time: Company: Company: Relinquished by Company: Date/Time: Received in Laboratory by:

Page 26 of 2

2

5

5

7

9

10

1/9/2024

Login Sample Receipt Checklist

Client: Arcadis U.S., Inc.

Job Number: 590-24019-1

Login Number: 24019 List Source: Eurofins Spokane

List Number: 1

Creator: Morris, Mackenzie 1

Creator: Morris, Mackenzie 1		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

5

4

6

0

9

11

11

PREPARED FOR

Attn: Josh Lee Arcadis U.S., Inc. 695 N. Legacy Ridge Drive Suite 200 Liberty Lake, Washington 99019

ANALYTICAL REPORT

Generated 3/11/2024 5:32:55 PM

JOB DESCRIPTION

HECLA

JOB NUMBER

590-23482-2

Eurofins Spokane 11922 East 1st Ave Spokane WA 99206

Eurofins Spokane

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Generated 3/11/2024 5:32:55 PM

Authorized for release by Randee Arrington, Business Unit Manager Randee.Arrington@et.eurofinsus.com (509)924-9200

Eurofins Spokane is a laboratory within Eurofins Environment Testing Northwest, LLC, a company within Eurofins Environment Testing Group of Companies

Client: Arcadis U.S., Inc. Project/Site: HECLA

Laboratory Job ID: 590-23482-2

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Definitions	
Client Sample Results	7
QC Sample Results	11
Chronicle	16
Certification Summary	19
Method Summary	20
Chain of Custody	21
Receint Checklists	22

4

R

9

Case Narrative

Client: Arcadis U.S., Inc.

Project: HECLA

Job ID: 590-23482-2 Eurofins Spokane

Job Narrative 590-23482-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
 unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/29/2024 4:13 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.0°C.

Receipt Exceptions

The following samples were activated by the client on 3/5/24: IONE-BG-3-022924 (590-23482-3), IONE-BG-4-022924 (590-23482-4), IONE-BG-5-022924 (590-23482-5), IONE-BG-8-022924 (590-23482-8), IONE-BG-9-022924 (590-23482-9) and IONE-BG-10-022924 (590-23482-10).

Metals

Method 6010D: The low level initial calibration verification (ICVL) associated with batch 590-46192 recovered above the upper control limit for Antimony, Manganese and Thallium. The samples associated with this ICV were either 10x the spike amount, have hits below the RL, or non-detects for the affected analytes; therefore, the data have been reported.

Method 6010D: The low level initial calibration verification (ICVL) associated with batch 590-46200 recovered above the upper control limit for Manganese. The samples associated with this ICV were non-detects for the affected analytes; therefore, the data have been reported.

Method 7471B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 590-46160 and analytical batch 590-46173 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Spokane

Page 4 of 22 3/11/2024

Job ID: 590-23482-2

J

5

7

8

4 4

Sample Summary

Client: Arcadis U.S., Inc.

Job ID: 590-23482-2

Project/Site: HECLA

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-23482-3	IONE-BG-3-022924	Solid	02/29/24 09:07	02/29/24 16:13
590-23482-4	IONE-BG-4-022924	Solid	02/29/24 09:14	02/29/24 16:13
590-23482-5	IONE-BG-5-022924	Solid	02/29/24 09:22	02/29/24 16:13
590-23482-8	IONE-BG-8-022924	Solid	02/29/24 09:48	02/29/24 16:13
590-23482-9	IONE-BG-9-022924	Solid	02/29/24 09:50	02/29/24 16:13
590-23482-10	IONE-BG-10-022924	Solid	02/29/24 10:04	02/29/24 16:13

2

4

_

7

10

11

Definitions/Glossary

Client: Arcadis U.S., Inc. Job ID: 590-23482-2 Project/Site: HECLA

Qualifiers

Metals	
Qualifier	Qualifier Description
^1+	Initial Calibration Verification (ICV) is outside acceptance limits, high biased.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are no applicable.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is < the upper reporting limits for both.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"

MPN MQL

MDA

MDC

MDL

Minimum Level (Dioxin) MLMost Probable Number Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry)

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit PQL

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

Method Detection Limit

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Spokane

Page 6 of 22 3/11/2024

Client Sample Results

Client: Arcadis U.S., Inc. Job ID: 590-23482-2 Project/Site: HECLA

Client Sample ID: IONE-BG-3-022924

Lab Sample ID: 590-23482-3 Date Collected: 02/29/24 09:07 **Matrix: Solid**

Percent Solids: 88.3 Date Received: 02/29/24 16:13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	9800		200	61	mg/Kg	<u></u>	03/07/24 11:07	03/08/24 11:04	5
Antimony	ND	^1+	9.9	4.8	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Arsenic	5.1		5.0	2.0	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Barium	47		5.0	1.3	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Beryllium	ND		5.0	0.80	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Cadmium	ND		4.0	0.23	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Calcium	19000	F2	400	120	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Chromium	16		5.0	0.70	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Cobalt	6.9		5.0	0.38	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Copper	15	J	16	3.0	mg/Kg	₽	03/07/24 11:07	03/08/24 11:04	5
Iron	18000		400	170	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Lead	16		12	5.8	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Magnesium	9500	F1	200	35	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Manganese	310	^1+	59	4.1	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Nickel	16		5.0	0.61	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Potassium	1300		99	50	mg/Kg	₩	03/07/24 11:07	03/08/24 15:46	5
Selenium	ND		20	12	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Silver	ND		5.0	1.1	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Sodium	150		99	41	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Thallium	ND	^1+	9.9	1.4	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Vanadium	22		5.0	0.87	mg/Kg	₩	03/07/24 11:07	03/08/24 11:04	5
Zinc	68		20	3.1	mg/Kg		03/07/24 11:07	03/08/24 11:04	5

Method: SW846 7471B - Mercury (CVAA)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	17	J F1	49	12	ug/Kg		03/07/24 11:05	03/07/24 16:39	1

Client Sample ID: IONE-BG-4-022924 Lab Sample ID: 590-23482-4 Date Collected: 02/29/24 09:14 **Matrix: Solid** Date Received: 02/29/24 16:13 Percent Solids: 83.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	12000		240	72	mg/Kg	— <u></u>	03/07/24 11:07	03/08/24 11:29	
Antimony	ND	^1+	12	5.7	mg/Kg	₽	03/07/24 11:07	03/08/24 11:29	į
Arsenic	5.6	J	5.9	2.3	mg/Kg	₩	03/07/24 11:07	03/08/24 11:29	
Barium	71		5.9	1.6	mg/Kg	₩	03/07/24 11:07	03/08/24 11:29	
Beryllium	ND		5.9	0.95	mg/Kg	₽	03/07/24 11:07	03/08/24 11:29	į
Cadmium	ND		4.7	0.28	mg/Kg	₩	03/07/24 11:07	03/08/24 11:29	
Calcium	27000		470	140	mg/Kg	₩	03/07/24 11:07	03/08/24 11:29	
Chromium	18		5.9	0.83	mg/Kg	₩	03/07/24 11:07	03/08/24 11:29	
Cobalt	9.4		5.9	0.46	mg/Kg	₽	03/07/24 11:07	03/08/24 11:29	į
Copper	19		19	3.6	mg/Kg	₩	03/07/24 11:07	03/08/24 11:29	
Iron	22000		470	200	mg/Kg	₩	03/07/24 11:07	03/08/24 11:29	
Lead	21		14	6.9	mg/Kg	₽	03/07/24 11:07	03/08/24 11:29	į
Magnesium	14000		240	42	mg/Kg	₩	03/07/24 11:07	03/08/24 11:29	
Manganese	470	^1+	71	4.9	mg/Kg	₩	03/07/24 11:07	03/08/24 11:29	į
Nickel	20		5.9	0.72	mg/Kg	₩	03/07/24 11:07	03/08/24 11:29	į
Potassium	1900		120	59	mg/Kg	₩	03/07/24 11:07	03/08/24 16:10	
Selenium	ND		24	14	mg/Kg	☆	03/07/24 11:07	03/08/24 11:29	į

Eurofins Spokane

Page 7 of 22 3/11/2024 Client: Arcadis U.S., Inc. Job ID: 590-23482-2 Project/Site: HECLA

Client Sample ID: IONE-BG-4-022924

Lab Sample ID: 590-23482-4 Date Collected: 02/29/24 09:14 **Matrix: Solid**

Date Received: 02/29/24 16:13 Percent Solids: 83.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		5.9	1.3	mg/Kg	— <u></u>	03/07/24 11:07	03/08/24 11:29	5
Sodium	130		120	49	mg/Kg	₩	03/07/24 11:07	03/08/24 11:29	5
Thallium	ND	^1+	12	1.6	mg/Kg	₩	03/07/24 11:07	03/08/24 11:29	5
Vanadium	29		5.9	1.0	mg/Kg	₽	03/07/24 11:07	03/08/24 11:29	5
Zinc	84		24	3.7	mg/Kg	≎	03/07/24 11:07	03/08/24 11:29	5

Method: SW846 7471B - Mercury (CVAA)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	19	J	42	10	ug/Kg	<u></u>	03/07/24 11:05	03/07/24 16:49	1

Client Sample ID: IONE-BG-5-022924 Lab Sample ID: 590-23482-5

Date Collected: 02/29/24 09:22 **Matrix: Solid** Date Received: 02/29/24 16:13 Percent Solids: 86.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	9200		200	60	mg/Kg	<u></u>	03/07/24 11:07	03/08/24 11:33	5
Antimony	ND	^1+	9.8	4.8	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Arsenic	7.0		4.9	1.9	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Barium	51		4.9	1.3	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Beryllium	ND		4.9	0.79	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Cadmium	0.28	J	3.9	0.23	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Calcium	16000		390	120	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Chromium	13		4.9	0.69	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Cobalt	7.3		4.9	0.38	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Copper	18		16	3.0	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Iron	19000		390	170	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Lead	43		12	5.8	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Magnesium	8100		200	35	mg/Kg	₽	03/07/24 11:07	03/08/24 11:33	5
Manganese	420	^1+	59	4.1	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Nickel	15		4.9	0.60	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Potassium	1500		98	49	mg/Kg	₩	03/07/24 11:07	03/08/24 16:15	5
Selenium	ND		20	12	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Silver	ND		4.9	1.1	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Sodium	110		98	41	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Thallium	ND	^1+	9.8	1.4	mg/Kg	☼	03/07/24 11:07	03/08/24 11:33	5
Vanadium	19		4.9	0.86	mg/Kg	₩	03/07/24 11:07	03/08/24 11:33	5
Zinc	96		20	3.1	mg/Kg	≎	03/07/24 11:07	03/08/24 11:33	5

Method: SW846 7471B - Mercury (CVAA)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	14	J	38	9.4	ug/Kg		03/07/24 11:05	03/07/24 16:51	1

Client Sample ID: IONE-BG-8-022924 Lab Sample ID: 590-23482-8

Date Collected: 02/29/24 09:48 **Matrix: Solid** Date Received: 02/29/24 16:13 Percent Solids: 77.9

Method: SW846 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	13000		240	74	mg/Kg	☼	03/07/24 11:07	03/08/24 11:49	5
Antimony	ND	^1+	12	5.8	mg/Kg	₽	03/07/24 11:07	03/08/24 11:49	5

Eurofins Spokane

Page 8 of 22 3/11/2024

Client Sample Results

Client: Arcadis U.S., Inc. Job ID: 590-23482-2 Project/Site: HECLA

Client Sample ID: IONE-BG-8-022924

Lab Sample ID: 590-23482-8 Date Collected: 02/29/24 09:48 **Matrix: Solid**

Date Received: 02/29/24 16:13 **Percent Solids: 77.9**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.9	J	6.0	2.4	mg/Kg	⊅	03/07/24 11:07	03/08/24 11:49	5
Barium	110		6.0	1.6	mg/Kg	⊅	03/07/24 11:07	03/08/24 11:49	5
Beryllium	ND		6.0	0.97	mg/Kg	₩	03/07/24 11:07	03/08/24 11:49	5
Cadmium	0.31	J	4.8	0.28	mg/Kg	₩	03/07/24 11:07	03/08/24 11:49	5
Calcium	30000		480	140	mg/Kg	₩	03/07/24 11:07	03/08/24 11:49	5
Chromium	18		6.0	0.85	mg/Kg	₩	03/07/24 11:07	03/08/24 11:49	5
Cobalt	10		6.0	0.46	mg/Kg	☼	03/07/24 11:07	03/08/24 11:49	5
Copper	20		19	3.6	mg/Kg	₩	03/07/24 11:07	03/08/24 11:49	5
Iron	23000		480	210	mg/Kg	☼	03/07/24 11:07	03/08/24 11:49	5
Lead	24		14	7.0	mg/Kg	☼	03/07/24 11:07	03/08/24 11:49	5
Magnesium	8700		240	42	mg/Kg	₩	03/07/24 11:07	03/08/24 11:49	5
Manganese	460	^1+	72	5.0	mg/Kg	☼	03/07/24 11:07	03/08/24 11:49	5
Nickel	21		6.0	0.74	mg/Kg	☼	03/07/24 11:07	03/08/24 11:49	5
Potassium	2200		120	60	mg/Kg	₩	03/07/24 11:07	03/08/24 16:31	5
Selenium	ND		24	14	mg/Kg	☼	03/07/24 11:07	03/08/24 11:49	5
Silver	ND		6.0	1.4	mg/Kg	☼	03/07/24 11:07	03/08/24 11:49	5
Sodium	120		120	50	mg/Kg	₩	03/07/24 11:07	03/08/24 11:49	5
Thallium	ND	^1+	12	1.7	mg/Kg	☼	03/07/24 11:07	03/08/24 11:49	5
Vanadium	30		6.0	1.1	mg/Kg	☼	03/07/24 11:07	03/08/24 11:49	5
Zinc	87		24	3.8	mg/Kg	₽	03/07/24 11:07	03/08/24 11:49	5
Method: SW846 7471B -	Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Hg 45 11 ug/Kg

Client Sample ID: IONE-BG-9-022924 Lab Sample ID: 590-23482-9 Date Collected: 02/29/24 09:50 **Matrix: Solid** Date Received: 02/29/24 16:13 **Percent Solids: 77.6**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	14000		190	58	mg/Kg	<u></u>	03/07/24 11:07	03/08/24 11:53	5
Antimony	ND	^1+	9.5	4.6	mg/Kg	☼	03/07/24 11:07	03/08/24 11:53	5
Arsenic	5.0		4.7	1.9	mg/Kg	☼	03/07/24 11:07	03/08/24 11:53	5
Barium	120		4.7	1.3	mg/Kg	☼	03/07/24 11:07	03/08/24 11:53	5
Beryllium	ND		4.7	0.77	mg/Kg	☼	03/07/24 11:07	03/08/24 11:53	5
Cadmium	0.31	J	3.8	0.22	mg/Kg	₩	03/07/24 11:07	03/08/24 11:53	5
Calcium	19000		380	110	mg/Kg	₩	03/07/24 11:07	03/08/24 11:53	5
Chromium	18		4.7	0.67	mg/Kg	☼	03/07/24 11:07	03/08/24 11:53	5
Cobalt	10		4.7	0.37	mg/Kg	₩	03/07/24 11:07	03/08/24 11:53	5
Copper	22		15	2.9	mg/Kg	₩	03/07/24 11:07	03/08/24 11:53	5
Iron	23000		380	160	mg/Kg	₩	03/07/24 11:07	03/08/24 11:53	5
Lead	19		11	5.6	mg/Kg	₩	03/07/24 11:07	03/08/24 11:53	5
Magnesium	7900		190	34	mg/Kg	₩	03/07/24 11:07	03/08/24 11:53	5
Manganese	560	^1+	57	3.9	mg/Kg	☼	03/07/24 11:07	03/08/24 11:53	5
Nickel	21		4.7	0.58	mg/Kg	☼	03/07/24 11:07	03/08/24 11:53	5
Potassium	2000		95	47	mg/Kg	₩	03/07/24 11:07	03/08/24 16:35	5
Selenium	ND		19	11	mg/Kg	☼	03/07/24 11:07	03/08/24 11:53	5
Silver	ND		4.7	1.1	mg/Kg	☼	03/07/24 11:07	03/08/24 11:53	5
Sodium	110		95	39	mg/Kg		03/07/24 11:07	03/08/24 11:53	5

Eurofins Spokane

Page 9 of 22 3/11/2024

Client Sample Results

Job ID: 590-23482-2 Client: Arcadis U.S., Inc.

Project/Site: HECLA

Client Sample ID: IONE-BG-9-022924

Date Collected: 02/29/24 09:50 Date Received: 02/29/24 16:13

Lab Sample ID: 590-23482-9

Matrix: Solid

Percent Solids: 77.6

Method: SW846 6010D	- Metals (ICP) (Co	ntinued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thallium	ND	^1+	9.5	1.3	mg/Kg	⊅	03/07/24 11:07	03/08/24 11:53	5
Vanadium	31		4.7	0.83	mg/Kg	☼	03/07/24 11:07	03/08/24 11:53	5
Zinc	85		19	3.0	mg/Kg	☼	03/07/24 11:07	03/08/24 11:53	5
	B - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	32	J	44	11	ug/Kg	☼	03/07/24 11:05	03/07/24 16:57	1

Client Sample ID: IONE-BG-10-022924

Date Collected: 02/29/24 10:04

Date Received: 02/29/24 16:13

Lab Sample ID: 590-23482-10

Matrix: Solid Percent Solids: 75.3

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Muminum	13000		220	68	mg/Kg	— <u></u>	03/07/24 11:07	03/08/24 11:57	5
antimony	ND	^1+	11	5.4	mg/Kg	≎	03/07/24 11:07	03/08/24 11:57	5
Arsenic	4.0	J	5.5	2.2	mg/Kg	≎	03/07/24 11:07	03/08/24 11:57	5
Barium	100		5.5	1.5	mg/Kg	₩	03/07/24 11:07	03/08/24 11:57	5
Beryllium	ND		5.5	0.89	mg/Kg	☆	03/07/24 11:07	03/08/24 11:57	5
Cadmium	ND		4.4	0.26	mg/Kg	≎	03/07/24 11:07	03/08/24 11:57	5
alcium	14000		440	130	mg/Kg	≎	03/07/24 11:07	03/08/24 11:57	5
Chromium	16		5.5	0.78	mg/Kg	☆	03/07/24 11:07	03/08/24 11:57	5
Cobalt	9.0		5.5	0.43	mg/Kg	☆	03/07/24 11:07	03/08/24 11:57	5
opper	17	J	18	3.4	mg/Kg	☆	03/07/24 11:07	03/08/24 11:57	5
ron	21000		440	190	mg/Kg	☆	03/07/24 11:07	03/08/24 11:57	5
.ead	29		13	6.5	mg/Kg	☆	03/07/24 11:07	03/08/24 11:57	5
/lagnesium	7300		220	39	mg/Kg	☆	03/07/24 11:07	03/08/24 11:57	5
Manganese	450	^1+	66	4.6	mg/Kg	☆	03/07/24 11:07	03/08/24 11:57	5
lickel	18		5.5	0.68	mg/Kg	₩	03/07/24 11:07	03/08/24 11:57	5
otassium	1900		110	55	mg/Kg	☆	03/07/24 11:07	03/08/24 16:39	5
Selenium	ND		22	13	mg/Kg	₩	03/07/24 11:07	03/08/24 11:57	5
ilver	ND		5.5	1.3	mg/Kg	≎	03/07/24 11:07	03/08/24 11:57	5
Sodium	140		110	46	mg/Kg	☆	03/07/24 11:07	03/08/24 11:57	5
hallium	ND	^1+	11	1.5	mg/Kg	₩	03/07/24 11:07	03/08/24 11:57	5
/anadium	27		5.5	0.97	mg/Kg	☆	03/07/24 11:07	03/08/24 11:57	5
linc	94		22	3.5	mg/Kg	₽	03/07/24 11:07	03/08/24 11:57	5

Method: SW846 7471B - Mercu	ıry (CVAA)								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	33	J	49	12	ug/Kg		03/07/24 11:05	03/07/24 17:04	1

Project/Site: HECLA

Matrix: Solid

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-46161/2-A

Analysis Batch: 46192

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 46161

,	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		50	15	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Antimony	ND	^1+	2.5	1.2	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Arsenic	ND		1.3	0.50	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Barium	ND		1.3	0.34	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Beryllium	ND		1.3	0.20	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Cadmium	ND		1.0	0.059	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Calcium	ND		100	30	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Chromium	ND		1.3	0.18	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Cobalt	ND		1.3	0.097	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Copper	ND		4.0	0.76	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Iron	ND		100	43	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Lead	ND		3.0	1.5	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Magnesium	ND		50	8.9	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Manganese	ND	^1+	15	1.0	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Nickel	ND		1.3	0.15	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Selenium	ND		5.0	3.0	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Silver	ND		1.3	0.29	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Sodium	ND		25	10	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Thallium	ND	^1+	2.5	0.35	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Vanadium	ND		1.3	0.22	mg/Kg		03/07/24 11:07	03/08/24 11:00	1
Zinc	ND		5.0	0.79	mg/Kg		03/07/24 11:07	03/08/24 11:00	1

Lab Sample ID: MB 590-46161/2-A

Matrix: Solid

Analysis Batch: 46200

Client Sample ID: Method Blank **Prep Type: Total/NA** Prep Batch: 46161

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	ND	^1+	15	1.0	mg/Kg		03/07/24 11:07	03/08/24 15:42	1
Potassium	ND		25	13	mg/Kg		03/07/24 11:07	03/08/24 15:42	1

Lab Sample ID: LCS 590-46161/1-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS				%Rec
Added			Unit	D	%Rec	Limits
500	480		mg/Kg		96	80 - 120
50.0	51.0	^1+	mg/Kg		102	80 - 120
100	92.5		mg/Kg		92	80 - 120
100	85.9		mg/Kg		86	80 - 120
50.0	49.7		mg/Kg		99	80 - 120
50.0	47.6		mg/Kg		95	80 - 120
2500	2430		mg/Kg		97	80 - 120
50.0	47.1		mg/Kg		94	80 - 120
50.0	49.6		mg/Kg		99	80 - 120
50.0	48.1		mg/Kg		96	80 - 120
500	478		mg/Kg		96	80 - 120
50.0	49.2		mg/Kg		98	80 - 120
2500	2460		mg/Kg		98	80 - 120
50.0	48.8	^1+	mg/Kg		98	80 - 120
	500 50.0 100 100 50.0 50.0 2500 50.0 50.0 50.0 50.0 50.0 2500	Added Result 500 480 50.0 51.0 100 92.5 100 85.9 50.0 49.7 50.0 2430 50.0 47.1 50.0 49.6 50.0 478 50.0 49.2 2500 2460	Added Result Qualifier 500 480 50.0 51.0 ^1+ 100 92.5	Added Result Qualifier Unit 500 480 mg/Kg 50.0 51.0 ^1+ mg/Kg 100 92.5 mg/Kg 100 85.9 mg/Kg 50.0 49.7 mg/Kg 50.0 47.6 mg/Kg 2500 2430 mg/Kg 50.0 47.1 mg/Kg 50.0 49.6 mg/Kg 50.0 48.1 mg/Kg 50.0 478 mg/Kg 50.0 49.2 mg/Kg 2500 2460 mg/Kg	Added Result Qualifier Unit D 500 480 mg/Kg mg/Kg 50.0 51.0 ^1+ mg/Kg 100 92.5 mg/Kg 100 85.9 mg/Kg 50.0 49.7 mg/Kg 50.0 47.6 mg/Kg 2500 2430 mg/Kg 50.0 47.1 mg/Kg 50.0 49.6 mg/Kg 50.0 48.1 mg/Kg 50.0 478 mg/Kg 50.0 49.2 mg/Kg 2500 2460 mg/Kg	Added Result Qualifier Unit D %Rec 500 480 mg/Kg 96 50.0 51.0 ^1+ mg/Kg 102 100 92.5 mg/Kg 92 100 85.9 mg/Kg 86 50.0 49.7 mg/Kg 99 50.0 47.6 mg/Kg 95 2500 2430 mg/Kg 97 50.0 47.1 mg/Kg 94 50.0 49.6 mg/Kg 96 50.0 48.1 mg/Kg 96 50.0 47.8 mg/Kg 96 50.0 49.2 mg/Kg 98 2500 2460 mg/Kg 98

Eurofins Spokane

Page 11 of 22

Project/Site: HECLA

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCS 590-46161/1-A

Analysis Batch: 46192

Matrix: Solid

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 46161

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nickel	50.0	49.2		mg/Kg		98	80 - 120	
Selenium	100	92.4		mg/Kg		92	80 - 120	
Silver	5.00	4.65		mg/Kg		93	80 - 120	
Sodium	2500	2430		mg/Kg		97	80 - 120	
Thallium	100	103	^1+	mg/Kg		103	80 - 120	
Vanadium	50.0	44.8		mg/Kg		90	80 - 120	
Zinc	50.0	49.5		mg/Kg		99	80 - 120	

Lab Sample ID: LCS 590-46161/1-A

Matrix: Solid

Analysis Batch: 46200

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 46161

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 47.8 ^1+ Manganese 50.0 mg/Kg 96 80 - 120 Potassium 2500 mg/Kg 93 2330 80 - 120

Lab Sample ID: 590-23482-3 MS

Matrix: Solid

Client Sample ID: IONE-BG-3-022924

Prep Type: Total/NA

Analysis Batch: 46192									Prep Batch: 46161
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	9800		561	10500	4	mg/Kg	₽	121	75 - 125
Antimony	ND	^1+	56.1	52.6	^1+	mg/Kg	☼	94	75 - 125
Arsenic	5.1		112	109		mg/Kg	☼	93	75 - 125
Barium	47		112	140		mg/Kg	₽	83	75 - 125
Beryllium	ND		56.1	56.3		mg/Kg	☼	100	75 - 125
Cadmium	ND		56.1	54.1		mg/Kg	☼	97	75 - 125
Calcium	19000	F2	2800	22400	4	mg/Kg	☼	104	75 - 125
Chromium	16		56.1	66.9		mg/Kg	₩	90	75 - 125
Cobalt	6.9		56.1	62.8		mg/Kg	₩	100	75 - 125
Copper	15	J	56.1	68.1		mg/Kg	☼	95	75 - 125
Iron	18000		561	16600	4	mg/Kg	₩	-326	75 - 125
Lead	16		56.1	72.1		mg/Kg	₩	99	75 - 125
Magnesium	9500	F1	2800	10500	F1	mg/Kg	₽	36	75 - 125
Manganese	310	^1+	56.1	351	^1+ 4	mg/Kg	₩	71	75 - 125
Nickel	16		56.1	70.8		mg/Kg	☼	97	75 - 125
Selenium	ND		112	104		mg/Kg		93	75 - 125
Silver	ND		5.61	5.63	J	mg/Kg	₩	100	75 - 125
Sodium	150		2800	2920		mg/Kg	₽	99	75 - 125
Thallium	ND	^1+	112	117	^1+	mg/Kg		104	75 - 125
Vanadium	22		56.1	68.2		mg/Kg	₩	83	75 - 125
Zinc	68		56.1	120		mg/Kg	₩	94	75 - 125
			00			9,9		٠.	

Lab Sample ID: 590-23482-3 MS

Matrix: Solid

Manganese

Analysis Batch: 46200

Client Sample ID: IONE-BG-3-022924

75 - 125

75

mg/Kg

Prep Type: Total/NA

Prep Batch: 46161

%Rec Sample Sample Spike MS MS Analyte **Result Qualifier** Added Result Qualifier Unit %Rec Limits 347 ^1+ 4

56.1

310 ^1+

Page 12 of 22

Eurofins Spokane

Project/Site: HECLA

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 590-23482-3 MS

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 46200** Prep Batch: 46161 MS MS Sample Sample Spike %Rec

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Potassium 1300 2800 4030 mg/Kg 96 75 - 125

Lab Sample ID: 590-23482-3 MSD Client Sample ID: IONE-BG-3-022924

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 46192** Prep Batch: 46161 Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte 9800 534 8950 4 75 - 125 Aluminum mg/Kg ₩ -158 16 20 ND ^1+ 53.4 90 20 Antimony 48.0 ^1+ mg/Kg Ö 75 - 125 9 5.1 107 100 89 20 Arsenic mg/Kg ť 75 - 125 8 47 107 78 75 - 125 20 Barium 130 mg/Kg ₿

Beryllium ND 53 4 51.7 mg/Kg Ö 97 75 - 125 8 20 Cadmium ND 53.4 49.6 mg/Kg ₩ 93 75 - 125 9 20 Calcium 19000 F2 2670 17500 4 F2 ÷Ċ÷ -71 75 - 125 20 mg/Kg 24 Chromium 16 53.4 61.9 mg/Kg 85 75 - 125 8 20 Cobalt 53.4 96 75 - 125 7 20 6.9 58 4 mg/Kg Ö Copper 15 53.4 64.2 mg/Kg ₩ 92 75 - 125 6 20 Iron 18000 534 16400 4 -389 75 - 125 20 mg/Kg ₩ Lead 16 53.4 67.3 mg/Kg Ö 95 75 - 125 20 Magnesium 9500 F1 2670 9950 F1 mg/Kg ₩ 16 75 - 125 20 75 - 125 20 Manganese 310 53.4 365 ^1+4 mg/Kg ₩ 100 93 75 - 125 20 Nickel 16 53.4 65.8 mg/Kg Ö ND 89 75 - 125 20 Selenium 107 95.5 Ö mg/Kg Silver ND 5.34 92 75 - 125 20 4.90 J mg/Kg 75 - 125 Sodium 2670 2700 150 mg/Kg 95 8 20 ₩ ^1+ Thallium ND 107 108 ^1+ mg/Kg ₩ 101 75 - 125 20

Lab Sample ID: 590-23482-3 MSD

22

68

19000 F2

Matrix: Solid

Vanadium

Zinc

Analysis Batch: 46200 Prep Batch: 46161 Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier D %Rec Limits **RPD** Limit Analyte Unit Manganese 310 ^1+ 53.4 359 [^]1+ 4 ₩ 101 75 - 125 20 mg/Kg Potassium 1300 2670 3600 75 - 125 mg/Kg 85 11 20

64.8

112

mg/Kg

mg/Kg

mg/Kg

÷Ċ÷

80

83

75 - 125

75 - 125

Client Sample ID: IONE-BG-3-022924

Client Sample ID: IONE-BG-3-022924

5

Prep Type: Total/NA

Prep Type: Total/NA

20

20

53.4

53.4

Lab Sample ID: 590-23482-3 DU

Matrix: Solid

Calcium

Analysis Batch: 46192 Prep Batch: 46161 Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit D RPD Limit 9800 9250 ₩ 20 Aluminum mg/Kg 6 Antimony ND ND mg/Kg ₩ NC 20 5.1 3.92 JF5 mg/Kg ₩ 27 20 Arsenic Barium 47 20 44.1 mg/Kg ₩ 6 ND Beryllium ND mg/Kg ₿ NC 20 Cadmium ND ND mg/Kg NC 20

23800

Eurofins Spokane

Client Sample ID: IONE-BG-3-022924

20

20

Project/Site: HECLA

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 590-23482-3 DU		Client Sample ID: IONE-BG-3-022924
Matrix: Solid		Prep Type: Total/NA
Analysis Batch: 46192		Prep Batch: 46161
Samnia Samnia	ווח ווח	RPN

•	Sample	Sample	DU	DU			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Chromium	16		14.2		mg/Kg	<u> </u>	14	20
Cobalt	6.9		6.90		mg/Kg	\$	0.3	20
Copper	15	J	14.2	J	mg/Kg		6	20
Iron	18000		17400		mg/Kg	☆	6	20
Lead	16		15.0		mg/Kg	\$	9	20
Magnesium	9500	F1	8620		mg/Kg		10	20
Manganese	310	^1+	347	^1+	mg/Kg	\$	11	20
Nickel	16		16.2		mg/Kg	☆	0.2	20
Selenium	ND		ND		mg/Kg	₩	NC	20
Silver	ND		ND		mg/Kg	\$	NC	20
Sodium	150		144		mg/Kg	☆	7	20
Thallium	ND	^1+	ND	^1+	mg/Kg	\$	NC	20
Vanadium	22		20.8		mg/Kg	☆	5	20
Zinc	68		67.7		mg/Kg	☆	0.06	20

Lab Sample ID: 590-23482-3 DU Client Sample ID: IONE-BG-3-022924

Matrix: Solid

Analysis Batch: 46200

Prep Type: Total/NA

Prep Batch: 46161

Prep Batch: 46160

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Manganese	310	^1+	344	^1+	mg/Kg	—	 12	20
Potassium	1300		1220		mg/Kg	₩	9	20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 590-46160/9-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 46173

мв мв

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND	50	12	ug/Kg		03/07/24 11:05	03/07/24 16:36	1

Lab Sample ID: LCS 590-46160/8-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 46173 Prep Batch: 46160 Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits 200 80 - 120

Lab Sample ID: 590-23482-3 MS Client Sample ID: IONE-BG-3-022924 Prep Type: Total/NA

198

ug/Kg

Matrix: Solid

Hg

Analysis Batch: 46173 Prep Batch: 46160 Sample Sample %Rec Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 17 J F1 206 227 ug/Kg 102 80 - 120 Hg

Eurofins Spokane

QC Sample Results

Client: Arcadis U.S., Inc.

Project/Site: HECLA

Job ID: 590-23482-2

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: 590-23482	-3 MSD					CI	ient Sa	ample I	D: IONE-E	3G-3-02	22924
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 46173									Prep E	atch: 4	46160
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hg	17	J F1	195	270	F1	ug/Kg	<u></u>	130	80 - 120	17	20

Lab Sample ID: 590	-23482-3 DU				Cli	ent Samp	ole ID: IONE-BG-3-0	22924
Matrix: Solid							Prep Type: Tot	tal/NA
Analysis Batch: 461	173						Prep Batch:	46160
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
На	17	J F1	17.6	ī	ua/Ka	<u> </u>		20

6

7

ŏ

11

Job ID: 590-23482-2

Client: Arcadis U.S., Inc. Project/Site: HECLA

Client Sample ID: IONE-BG-3-022924

Date Collected: 02/29/24 09:07 Date Received: 02/29/24 16:13

Lab Sample ID: 590-23482-3

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			46137	03/06/24 10:34	JSP	EET SPK

Client Sample ID: IONE-BG-3-022924

Date Collected: 02/29/24 09:07 Date Received: 02/29/24 16:13

Lab Sample ID: 590-23482-3

Matrix: Solid Percent Solids: 88.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.43 g	50 mL	46161	03/07/24 11:07	AMB	EET SPK
Total/NA	Analysis	6010D		5			46192	03/08/24 11:04	AMB	EET SPK
Total/NA	Prep	3050B			1.43 g	50 mL	46161	03/07/24 11:07	AMB	EET SPK
Total/NA	Analysis	6010D		5			46200	03/08/24 15:46	AMB	EET SPK
Total/NA	Prep	7471B			0.58 g	50 mL	46160	03/07/24 11:05	AMB	EET SPK
Total/NA	Analysis	7471B		1			46173	03/07/24 16:39	AMB	EET SPK

Client Sample ID: IONE-BG-4-022924

Date Collected: 02/29/24 09:14

Date Received: 02/29/24 16:13

Lab Sample ID: 590-23482-4

Lab Sample ID: 590-23482-4

Lab Sample ID: 590-23482-5

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			46137	03/06/24 10:34	JSP	EET SPK

Client Sample ID: IONE-BG-4-022924

Date Collected: 02/29/24 09:14 Date Received: 02/29/24 16:13

Matrix: Solid Percent Solids: 83.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.27 g	50 mL	46161	03/07/24 11:07	AMB	EET SPK
Total/NA	Analysis	6010D		5			46192	03/08/24 11:29	AMB	EET SPK
Total/NA	Prep	3050B			1.27 g	50 mL	46161	03/07/24 11:07	AMB	EET SPK
Total/NA	Analysis	6010D		5			46200	03/08/24 16:10	AMB	EET SPK
Total/NA	Prep	7471B			0.71 g	50 mL	46160	03/07/24 11:05	AMB	EET SPK
Total/NA	Analysis	7471B		1			46173	03/07/24 16:49	AMB	EET SPK

Client Sample ID: IONE-BG-5-022924

Date Collected: 02/29/24 09:22

Date Received: 02/29/24 16:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			46137	03/06/24 10:34	JSP	EET SPK

Eurofins Spokane

Matrix: Solid

Job ID: 590-23482-2

Client: Arcadis U.S., Inc. Project/Site: HECLA

Total/NA

Total/NA

Date Collected: 02/29/24 09:22

Client Sample ID: IONE-BG-5-022924

7471B

7471B

Lab Sample ID: 590-23482-5

Matrix: Solid

Percent Solids: 86.0

EET SPK

EET SPK

Date Received: 02/29/24 16:13 Batch Batch Dil Initial Batch Final Prepared Method Factor Number or Analyzed **Prep Type** Type Run **Amount** Amount Analyst Lab Total/NA 3050B 46161 03/07/24 11:07 AMB EET SPK Prep 1.48 g 50 mL Total/NA 6010D 5 46192 Analysis 03/08/24 11:33 AMB **EET SPK** Total/NA Prep 3050B 1.48 g 50 mL 46161 03/07/24 11:07 AMB **EET SPK** Total/NA Analysis 6010D 5 46200 03/08/24 16:15 AMB **EET SPK**

1

Lab Sample ID: 590-23482-8

03/07/24 11:05 AMB

03/07/24 16:51 AMB

46160

46173

50 mL

Matrix: Solid

Date Collected: 02/29/24 09:48 Date Received: 02/29/24 16:13

Prep

Analysis

Client Sample ID: IONE-BG-8-022924

Batch Batch Dil Initial Final Batch Prepared Method Factor **Prep Type** Type Run **Amount Amount** Number or Analyzed **Analyst** Lab Total/NA Analysis Moisture 46137 03/06/24 10:34 JSP EET SPK

0.77 g

Client Sample ID: IONE-BG-8-022924 Lab Sample ID: 590-23482-8 Date Collected: 02/29/24 09:48

Matrix: Solid Date Received: 02/29/24 16:13 Percent Solids: 77.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.34 g	50 mL	46161	03/07/24 11:07	AMB	EET SPK
Total/NA	Analysis	6010D		5			46192	03/08/24 11:49	AMB	EET SPK
Total/NA	Prep	3050B			1.34 g	50 mL	46161	03/07/24 11:07	AMB	EET SPK
Total/NA	Analysis	6010D		5			46200	03/08/24 16:31	AMB	EET SPK
Total/NA	Prep	7471B			0.71 g	50 mL	46160	03/07/24 11:05	AMB	EET SPK
Total/NA	Analysis	7471B		1			46173	03/07/24 16:54	AMB	EET SPK

Client Sample ID: IONE-BG-9-022924 Lab Sample ID: 590-23482-9

Date Collected: 02/29/24 09:50 **Matrix: Solid** Date Received: 02/29/24 16:13

Dil Initial Final Batch Batch Batch **Prepared Prep Type** Method Amount Amount Number or Analyzed Type Run **Factor** Analyst Lab Total/NA Analysis Moisture 46137 03/06/24 10:34 JSP EET SPK

Lab Sample ID: 590-23482-9 Client Sample ID: IONE-BG-9-022924

Date Collected: 02/29/24 09:50 Matrix: Solid Date Received: 02/29/24 16:13 Percent Solids: 77.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.70 g	50 mL	46161	03/07/24 11:07	AMB	EET SPK
Total/NA	Analysis	6010D		5			46192	03/08/24 11:53	AMB	EET SPK
Total/NA	Prep	3050B			1.70 g	50 mL	46161	03/07/24 11:07	AMB	EET SPK
Total/NA	Analysis	6010D		5			46200	03/08/24 16:35	AMB	EET SPK
Total/NA	Prep	7471B			0.74 g	50 mL	46160	03/07/24 11:05	AMB	EET SPK
Total/NA	Analysis	7471B		1			46173	03/07/24 16:57	AMB	EET SPK

Eurofins Spokane

Page 17 of 22

Lab Chronicle

Client: Arcadis U.S., Inc. Job ID: 590-23482-2

Project/Site: HECLA

Client Sample ID: IONE-BG-10-022924 Lab Sample ID: 590-23482-10

Date Collected: 02/29/24 10:04 **Matrix: Solid** Date Received: 02/29/24 16:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			46137	03/06/24 10:34	JSP	EET SPK

Client Sample ID: IONE-BG-10-022924

Lab Sample ID: 590-23482-10 Date Collected: 02/29/24 10:04 **Matrix: Solid** Date Received: 02/29/24 16:13 Percent Solids: 75.3

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.50 g	50 mL	46161	03/07/24 11:07	AMB	EET SPK
Total/NA	Analysis	6010D		5			46192	03/08/24 11:57	AMB	EET SPK
Total/NA	Prep	3050B			1.50 g	50 mL	46161	03/07/24 11:07	AMB	EET SPK
Total/NA	Analysis	6010D		5			46200	03/08/24 16:39	AMB	EET SPK
Total/NA	Prep	7471B			0.68 g	50 mL	46160	03/07/24 11:05	AMB	EET SPK
Total/NA	Analysis	7471B		1			46173	03/07/24 17:04	AMB	EET SPK

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: Arcadis U.S., Inc.

Job ID: 590-23482-2

Project/Site: HECLA

Laboratory: Eurofins Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority Prog		am	Identification Number	Expiration Date	
Washington	shington State		C569	01-07-25	
The fellowing a second de-	and the standard to the standard and the	4. 1. 4.41 1.1		Sec. 70. Sec. 19. April 20. April 20	
0 ,	s are included in this repol does not offer certification	•	not certified by the governing authori	ty. This list may include analyt	
,	•	•	not certified by the governing authori Analyte	ty. This list may include analyt	
for which the agency	does not offer certification	•	, с с	ty. This list may include analyt	

4.0

Method Summary

Client: Arcadis U.S., Inc.

Job ID: 590-23482-2

Project/Site: HECLA

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SPK
7471B	Mercury (CVAA)	SW846	EET SPK
Moisture	Percent Moisture	EPA	EET SPK
3050B	Preparation, Metals	SW846	EET SPK
7471B	Preparation, Mercury	SW846	EET SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

5

7

8

3

10

11

Chain of Custody Record

	eu	rof	้าท	S	ì
0.0	VИ	101		.,,	i

Environment Testing

America

#N/A																		America
#N/A			_		_													
##	Regu	latory Pro	gram [DW [NPDE	s [RC	CRA		her•								urofins Environment Testing America
	Project M	anager: Jo	oshua Lee														С	OC No: 1
Client Contact	Email jost	nua.lee@arc	adis.com			Site	Cor	ntact				Dat	e:					1_ of1 COCs
Arcadis U.S. INC	Tel/Fax: 4	06-239-78	10			Lab	Cor	ntact	3			Car	rier				T,	ALS Project #
1420 5th Avenue, Suite 2400		Analysis T	urnaround	Time		П	Т										S	ampler: Garrett Wilson
Seallle, WA 98101	☐ CALEN	IDAR DAYS		RKING DAY	'S		_											or Lab Use Only·
406-239-7810	TAT if dif	ferent from Be	low24	-hour rush		=	z	į									W	/alk-in Client.
(xxx) xxx-xxxx FAX		2	2 weeks			2	-	١.									La	ab Sampling.
Project Name: Hecla-lone		1	week			$ \mathcal{E} $	اد	13										
Site: lone		2	2 days				훒	1/2									Jo	ob / SDG No.
PO#	7	1	l day			֓֞֞֞֞֞֞֞֞֞֞֞֞֞֓֓֓֓֓֓֓֞֓֞֓֓֓֓֓֓֡֡֡֡֡֡֡֡	ط ادِ	Metal									L	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Filtered Sample (Y/N)	Periorm MS	746/										Sample Specific Notes.
IONE-BG-1-022924	2/29/2024	0846	G	s	١	N	V	X										24-hour rush tat
IONE-BG-2-022924	2/29/24	0955	G	s	}	N	V	X										24-hour rush tat
IONE-BG-3-022924	2/29/24	0907	G	s		N	Ŋ											Hold at lab
IONE-BG-4-022924	2/29/24	0914	G	s		N	N											Hold at lab
IONE-BG-5-022924	2/29/24	0922	G	s		N	ł											Hold at lab
IONE-BG-6-022924	2/29/24	0933	G	s		N	1	X										24-hour rush tat
IONE-BG-7-022924	2/29/24	0936	G	s		N	A	X										24-hour rush tat
IONE-BG-8-022924	2/29/24	0948	G	s		N	╠											Hold at lab
IONE-BG-9-022924	2/29/24	0950	G	s		N	H	_										Hold at lab
IONE-BG-10-022924	2/29/24	1004	G	s	*	N	1						}					Hold at lab
Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3;																		
Possible Hazard Identification. Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample.			Codes for	the samp	ple in ti		Sam	ple D	l l ispos	al (A f	ee may	590	-2348	2 Cha	n of Cu	ıstody		month)
Non-Hazard Flammable Skin Irritant	Poisor	n B	Unkn	own				Retu	n to Cli	ent		Disposa	l by Lat)		Archive fo	or	Months
Non-Hezard Flammable Skin Irritant Special Instructions/QC Requirements & Comments	-ush	TAT	on E	36 /	,2,	(g }	e i	7,						•				
Custody Seals Intact: 🔲 Yes 📗 No	Custody S	Seal No.							Coole	er Tem	p. (°C). ()bsˈd:_	3 - T	c	orr'd:_/	10		nerm ID No.: LEOGO
Relinquished by Ganeth Wilson	Company	dread \	·	Date/Ti	me: <i>I (Ce</i>	13	P	lyed	وسبون			>			y 56		D	ate/Time: 2129/24 16:13
Tremiquished by	Company	•		Date/Ti	me:			ived						mpan				ate/Time;
Relinquished by	Company	•		Date/Ti	me:	F	Зесе	ived	in Lab	oratory	by.		C	mpan	у .		D	ate/Time:

Client: Arcadis U.S., Inc.

List Source: Eurofins Spokane

Job Number: 590-23482-2

Login Number: 23482 List Number: 1

Creator: Morris, Mackenzie 1

Creator: Morris, Mackenzie 1		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

6

10

1

ANALYTICAL REPORT

PREPARED FOR

Attn: Josh Lee ARCADIS U.S., Inc 695 N. Legacy Ridge Drive Suite 200 Liberty Lake, Washington 99019 Generated 2/22/2024 7:49:48 PM

JOB DESCRIPTION

HECLA

JOB NUMBER

590-23298-1

Eurofins Spokane 11922 East 1st Ave Spokane WA 99206

Eurofins Spokane

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Generated 2/22/2024 7:49:48 PM

Authorized for release by Madison Vaughan, Analyst I Madison.Vaughan@et.eurofinsus.com Designee for

Randee Arrington, Business Unit Manager Randee.Arrington@et.eurofinsus.com (509)924-9200

Client: ARCADIS U.S., Inc Project/Site: HECLA Laboratory Job ID: 590-23298-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Definitions	6
Client Sample Results	7
QC Sample Results	8
Chronicle	10
Certification Summary	11
Method Summary	12
Chain of Custody	13
Receipt Checklists	14

9

10

11

Case Narrative

Client: ARCADIS U.S., Inc

Project: HECLA

Job ID: 590-23298-1 Eurofins Spokane

Job Narrative 590-23298-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
 unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 2/19/2024 10:18 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3°C.

Metals

Method 6010D: The following sample was diluted due to the abundance of non-target analytes: WASTE-1-021624 (590-23298-1). Elevated reporting limits (RLs) are provided.

Method 6010D: In order to meet the client requested TAT, the sample was reported before the DU/MS/MSD were finished being analyzed. WASTE-1-021624 (590-23298-1)

Method 6010D - TCLP: The method blank for preparation batch 590-45898 and 590-45938 and analytical batch 590-45940 contained Barium above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method 7471B: For the following samples, the DU\MS\MSD were not reported to meet client TAT. QC will be ready next day WASTE-1-021624 (590-23298-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Spokane

Job ID: 590-23298-1

Page 4 of 14 2/22/2024

Sample Summary

Client: ARCADIS U.S., Inc Project/Site: HECLA

Job ID: 590-23298-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-23298-1	WASTE-1-021624	Solid	02/16/24 14:00	02/19/24 10:18

3

4

E

6

8

9

10

11

Definitions/Glossary

Client: ARCADIS U.S., Inc

Job ID: 590-23298-1

Project/Site: HECLA

Qualifiers

Metals

Qualifier Qualifier Description

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

_

U

Я

9

4 4

Eurofins Spokane

Client Sample Results

Client: ARCADIS U.S., Inc Job ID: 590-23298-1

Project/Site: HECLA

Client Sample ID: WASTE-1-021624

Lab Sample ID: 590-23298-1 Date Collected: 02/16/24 14:00

Matrix: Solid Date Received: 02/19/24 10:18

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.025	0.010	mg/L		02/21/24 09:47	02/21/24 17:42	1
Barium	0.62	В	0.025	0.0014	mg/L		02/21/24 09:47	02/21/24 17:42	1
Cadmium	0.14		0.025	0.0012	mg/L		02/21/24 09:47	02/21/24 17:42	1
Chromium	0.011	J	0.025	0.0017	mg/L		02/21/24 09:47	02/21/24 17:42	1
Lead	120		3.0	0.26	mg/L		02/21/24 09:47	02/21/24 18:16	50
Selenium	ND		0.10	0.049	mg/L		02/21/24 09:47	02/21/24 17:42	1
Silver	ND		0.025	0.0025	mg/L		02/21/24 09:47	02/21/24 17:42	1

Method: SW846 7470A - Mercu	ıry (CVAA) - TCL	LP						
Analyte	Result Quali	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND	0.20	0.090	ug/L		02/21/24 09:50	02/22/24 11:42	1

Lab Sample ID: 590-23298-1 Client Sample ID: WASTE-1-021624

Date Collected: 02/16/24 14:00 **Matrix: Solid** Date Received: 02/19/24 10:18 Percent Solids: 94.9

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	ND ND	890	350	mg/Kg	☆	02/22/24 11:53	02/22/24 14:49	1000
Barium	ND	890	240	mg/Kg	≎	02/22/24 11:53	02/22/24 14:49	1000
Cadmium	2300	710	42	mg/Kg	≎	02/22/24 11:53	02/22/24 14:49	1000
Chromium	ND	890	130	mg/Kg	₩	02/22/24 11:53	02/22/24 14:49	1000
Lead	33000	2100	1000	mg/Kg	≎	02/22/24 11:53	02/22/24 14:49	1000
Selenium	ND	3600	2100	mg/Kg	≎	02/22/24 11:53	02/22/24 14:49	1000
Silver	ND	890	200	mg/Kg		02/22/24 11:53	02/22/24 14:49	100

Wethod: 5446467471B - Wercu	iry (CVAA)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Hg	280000	21000	5300 ug/Kg	☆	02/22/24 11:55	02/22/24 16:21	500

Client: ARCADIS U.S., Inc Job ID: 590-23298-1

Project/Site: HECLA

Method: 6010D - Metals (ICP)

Lab Sample ID: LCS 590-45938/1-A

Analysis Batch: 45940

Matrix: Solid

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 45938

Alialysis Dalcii. 45340							Frep Batt	JII. 45930
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	1.00	0.914		mg/L		91	80 - 120	
Barium	1.00	0.829		mg/L		83	80 - 120	
Cadmium	0.500	0.472		mg/L		94	80 - 120	
Chromium	0.500	0.460		mg/L		92	80 - 120	
Lead	0.500	0.497		mg/L		99	80 - 120	
Selenium	1.00	0.933		mg/L		93	80 - 120	
Silver	0.0500	0.0446		mg/L		89	80 - 120	

Lab Sample ID: MB 590-45947/2-A

Matrix: Solid

Analysis Batch: 45953

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 45947

	MB MB							
Analyte	Result Qualif	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND ND	1.3	0.50	mg/Kg		02/22/24 11:53	02/22/24 14:16	1
Barium	ND	1.3	0.34	mg/Kg		02/22/24 11:53	02/22/24 14:16	1
Cadmium	ND	1.0	0.059	mg/Kg		02/22/24 11:53	02/22/24 14:16	1
Chromium	ND	1.3	0.18	mg/Kg		02/22/24 11:53	02/22/24 14:16	1
Lead	ND	3.0	1.5	mg/Kg		02/22/24 11:53	02/22/24 14:16	1
Selenium	ND	5.0	3.0	mg/Kg		02/22/24 11:53	02/22/24 14:16	1
Silver	ND	1.3	0.29	mg/Kg		02/22/24 11:53	02/22/24 14:16	1

Lab Sample ID: LCS 590-45947/1-A

Matrix: Solid

Analysis Batch: 45953

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 45947

7								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	50.0	49.4		mg/Kg		99	80 - 120	
Barium	50.0	45.4		mg/Kg		91	80 - 120	
Cadmium	25.0	25.1		mg/Kg		101	80 - 120	
Chromium	25.0	25.2		mg/Kg		101	80 - 120	
Lead	25.0	26.4		mg/Kg		106	80 - 120	
Selenium	50.0	48.9		mg/Kg		98	80 - 120	
Silver	2.50	2.35		mg/Kg		94	80 - 120	

Lab Sample ID: LB 590-45898/1-B

Matrix: Solid

Analysis Batch: 45940

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 45938

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.025	0.010	mg/L		02/21/24 09:47	02/21/24 13:38	1
Barium	0.00464	J	0.025	0.0014	mg/L		02/21/24 09:47	02/21/24 13:38	1
Cadmium	ND		0.025	0.0012	mg/L		02/21/24 09:47	02/21/24 13:38	1
Chromium	ND		0.025	0.0017	mg/L		02/21/24 09:47	02/21/24 13:38	1
Lead	ND		0.060	0.0051	mg/L		02/21/24 09:47	02/21/24 13:38	1
Selenium	ND		0.10	0.049	mg/L		02/21/24 09:47	02/21/24 13:38	1
Silver	ND		0.025	0.0025	mg/L		02/21/24 09:47	02/21/24 13:38	1

Page 8 of 14

QC Sample Results

Client: ARCADIS U.S., Inc Job ID: 590-23298-1

Project/Site: HECLA

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 590-45948/9-A **Client Sample ID: Method Blank**

Matrix: Solid

Prep Type: Total/NA Prep Batch: 45948 **Analysis Batch: 45956** MB MB

RL MDL Unit Dil Fac Analyte Result Qualifier Prepared Analyzed 50 02/22/24 11:55 02/22/24 16:29 Hg ND 12 ug/Kg

Lab Sample ID: LCS 590-45948/8-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 45956 Prep Batch: 45948 LCS LCS %Rec Spike

Analyte Added Result Qualifier Unit D %Rec Limits 200 200 100 80 - 120 Hg ug/Kg

Lab Chronicle

Client: ARCADIS U.S., Inc Job ID: 590-23298-1

Project/Site: HECLA

Client Sample ID: WASTE-1-021624 Lab Sample ID: 590-23298-1

Date Collected: 02/16/24 14:00 Matrix: Solid
Date Received: 02/19/24 10:18

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.97 g	2000.08 mL	45898	02/19/24 16:14	AMB	EET SPK
TCLP	Prep	3010A			50 mL	50 mL	45938	02/21/24 09:47	AMB	EET SPK
TCLP	Analysis	6010D		1			45944	02/21/24 17:42	AMB	EET SPK
TCLP	Leach	1311			100.97 g	2000.08 mL	45898	02/19/24 16:14	AMB	EET SPK
TCLP	Prep	3010A			50 mL	50 mL	45938	02/21/24 09:47	AMB	EET SPK
TCLP	Analysis	6010D		50			45944	02/21/24 18:16	AMB	EET SPK
TCLP	Leach	1311			100.97 g	2000.08 mL	45898	02/19/24 16:14	AMB	EET SPK
TCLP	Prep	7470A			50 mL	50 mL	45939	02/21/24 09:50	AMB	EET SPK
TCLP	Analysis	7470A		1			45945	02/22/24 11:42	AMB	EET SPK
Total/NA	Analysis	Moisture		1			45897	02/19/24 15:50	AMB	EET SPK

Client Sample ID: WASTE-1-021624 Lab Sample ID: 590-23298-1

Date Collected: 02/16/24 14:00 Matrix: Solid
Date Received: 02/19/24 10:18 Percent Solids: 94.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.48 g	50 mL	45947	02/22/24 11:53	AMB	EET SPK
Total/NA	Analysis	6010D		1000			45953	02/22/24 14:49	AMB	EET SPK
Total/NA	Prep	7471B			0.62 g	50 mL	45948	02/22/24 11:55	AMB	EET SPK
Total/NA	Analysis	7471B		500			45956	02/22/24 16:21	AMB	EET SPK

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Eurofins Spokane

Accreditation/Certification Summary

Client: ARCADIS U.S., Inc
Project/Site: HECLA
Job ID: 590-23298-1

Laboratory: Eurofins Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	am	Identification Number	Expiration Date		
Vashington	State		C569	01-07-25		
0 ,	s are included in this repo does not offer certification	,	not certified by the governing authori	ity. This list may inc		
0 ,	•	,	Analyte	ity. This list may ind		
for which the agency	does not offer certification	•	, , ,	ity. This list may inc		

3

4

5

7

0

10

11

Method Summary

Client: ARCADIS U.S., Inc
Project/Site: HECLA

Job ID: 590-23298-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SPK
7470A	Mercury (CVAA)	SW846	EET SPK
7471B	Mercury (CVAA)	SW846	EET SPK
Moisture	Percent Moisture	EPA	EET SPK
1311	TCLP Extraction	SW846	EET SPK
3010A	Preparation, Total Metals	SW846	EET SPK
3050B	Preparation, Metals	SW846	EET SPK
7470A	Preparation, Mercury	SW846	EET SPK
7471B	Preparation, Mercury	SW846	EET SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

4

5

6

8

9

10

11

>> Select a Laboratory or Service Center <<

#N/A

Chain of Custody Record

Environment Testing America

#N/A ##	Regul	atory Pro	ogram [l wd∟	□ NPDE	s ſ	∏₽	RCRA	□ o	ther.										,	Eurofins Environmen	nt Testing	America
•		anager Jo		, , , ,		j `	·-		<u> </u>											_	COC No:		
Client Contact	 	ua.lee@arc				Site	Co	ontac	:t:				Dε	ıte:						1	1 of1_	COC	s
Arcadis U.S. INC	4	06-239-781				Lab	Ca	ontac	t:				_	rrier						7	TALS Project #		
1420 5th Avenue, Suite 2400			urnaround	Time		T	Т	Т	\top			\Box	\top	\Box	Т	\top	T			٤	Sampler [.]		
Seattle, WA 98101	☐ CALEND	DAR DAYS	✓ WOF	RKING DAY	rs	1	ء	_		- 1											For Lab Use Only		
406)- 239-7810 Phone	TAT if diff	erent from Be	elow24 ho	our rush] ;	2 Ş	ءاځ	$ \cdot $												Walk-in Client		
xxx) xxx-xxxx FAX		2	2 weeks			z ;	٤١٤	उं ई												L	Lab Sampling:		
Project Name: Hecla-lone		t	1 week			> 7	ălf	<u> </u>							.			1		L			
Site, lone		7	2 days			<u>.</u>	<u> </u>	불 [2						1 1	.		İ			Į	Job / SDG No		
PO#		1	1 day				3	절 뚩] [.	1				L			
			Sample			ĮŠĮ.	<u> ا</u>	호 홀							.								
Sample Identification	Sample Date	Sample Time		Matrix	# of Cont.	Fittered Sample (Y/N)	Perror	RCRA RCRA													Sample Spec	cific Notes	s:
	to internessantineessatuseessateleessa	e orestantementamentalisestestores.	or seministrativitation emperences	ni veresennimenter	**************************************	1 1	ı	- 1		KANDAN MICHAE		AMMERICA POPE PROCESS	estern territorio	and Americal Schooling &	,manusco (1000)	Memorine nameros	latos sektionotesio		erstessi hebess cup		41 printer	Woomlessy	mannenmediaesus
WASTE 1-021624	2/16/2024	1400	G	S	<u></u>	N!	ᄣ	YY	4		\bot	$\vdash \vdash$	+	1	,			╨	₩	\dashv			
		1 '		'		11									ı			1					
	1	,		,		П	T																
	 			+		$\dag \uparrow$	+	十	++	_	+	\vdash	+	+	\sqcap	+	-	+	\vdash	十			-
		 	-	 '	 	++	+	+	++	+	+-	\vdash	+	++	\vdash	+	+	₩	\vdash	-			-
	<u> </u>	<u> </u>	<u> </u>	<u> </u> '	<u> </u>	$\downarrow \downarrow$	1	\bot	$\bot \bot$	\bot	_	\sqcup	\bot	$\perp \downarrow$	\dashv	\bot	\bot	<u> </u>	\sqcup	\dashv			
	<u> </u>	<u> </u>		'		Ш																	
		['											-										
						T	T	\top	11		1	\sqcap		\prod	П		1		П	丁			
			 			$\dagger \dagger$	十	+	+++	\neg		\vdash	_	++	\vdash	_ '	ı	'	1 .	•			
	ļ	 '	ļ	 '	_	++	+	+	+			 -		+	\vdash	1	1111111		4111111			1	
		<u> </u> '	l	<u> </u>																		1	
				1		П	T	T								}						l l	
			 	 		$\dagger \dagger$	十	+	11	\dashv	+	\vdash	+	1	一十	•		7220	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	in (of Custody	ı i	
Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3;	ESNOOHAL	Ciber		20,00,000			╁	7/6 2				1	330 26	S 8 5	E 98	100 m	59U-2	2323	47 4	* 50E	J Ouelous		
Preservation Used: 1= ice, 2= HCl; 3= H2SU4; 4=HNU3; Possible Hazard Identification	3=!X&U//I; U	= Olusi	20 station desired	<u> </u>	ur-stad filleda	and the	San		Dieno	-al (/	A 600	mau	<u> </u>	<u>la d</u>	24 K	eam	<u>alae</u>	270	Lessie Tetoir		longer than 1 mont		<u>ummutallitemeised</u>
rossible nazard identification Are any samples from a listed EPA Hazardous Waste? Pleas	e List any F	EPA Waste	Codes for	the sam	ole in t)ali	ihie	nisho	Sai (i	4 100	Biay i	Je as	5629	eu n	Sam	hies	8101	/etam	leu i	toudet man i mom	111)	
Comments Section if the lab is to dispose of the sample.					Ja																		
Non-Hazard Flammable Skin Irritant	Polson	ı B	Unkno	own		コ		Ret	um to C	lient			l <u>Olspo</u>	sal by I	Lab			Arch	nive for		Months		
Special Instructions/QC Requirements & Comments.																							
											· · <u>· · · · · · · · · · · · · · · · · </u>												
Custody Seals Intact: Yes No	Custody Se									ler Te	mp. ((°C) ()bs'd:	11					_		Therm ID No	OLE	
Relinquished by:	Company Arcado	<u> </u>	_	Date/Ti	ime: 2400 //) 	Rec	evec	by.		Z	- -z	>		Com	pany	، ڏ	- S(ව	_ [[Date/Time: 2/1/24	10:4	
Relinquished by	Company			Date/Ti			Rec	eivec	i by·							pany					Date/Time:	- 1V -	
Relinquished by	Company			Date/Ti	ime.	-	Rec	eivec	d in Lal	borate	ory by	<i>y</i> .		\dashv	Com	pany	,-			1	Date/Time.		
	1			1										,	4					- 1			,

Client: ARCADIS U.S., Inc

Job Number: 590-23298-1

Login Number: 23298 List Source: Eurofins Spokane

List Number: 1

Creator: Morris, Mackenzie 1

Grouter: merrie, mackerizie i		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

PREPARED FOR

Attn: Josh Lee Arcadis U.S., Inc. 695 N. Legacy Ridge Drive Suite 200 Liberty Lake, Washington 99019

ANALYTICAL REPORT

Generated 3/6/2024 7:26:21 PM

JOB DESCRIPTION

HECLA

JOB NUMBER

590-23483-1

Eurofins Spokane 11922 East 1st Ave Spokane WA 99206

Eurofins Spokane

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Generated 3/6/2024 7:26:21 PM

Authorized for release by Randee Arrington, Business Unit Manager Randee.Arrington@et.eurofinsus.com (509)924-9200 Client: Arcadis U.S., Inc. Project/Site: HECLA

Laboratory Job ID: 590-23483-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Definitions	6
Client Sample Results	7
QC Sample Results	8
Chronicle	10
Certification Summary	11
Method Summary	12
Chain of Custody	13
Receint Checklists	14

Case Narrative

Client: Arcadis U.S., Inc.

Job ID: 590-23483-1

Project: HECLA

Job Narrative 590-23483-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
 unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 2/29/2024 4:13 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.0°C.

Metals

Method 6010D - TCLP: The method blank for preparation batch 590-46130 and 590-46135 and analytical batch 590-46151 contained Barium and Chromium above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method 7470A - TCLP: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 590-46130 and 590-46136 and analytical batch 590-46154 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Spokane

3/6/2024

Job ID: 590-23483-1

Eurofins Spokane

Sample Summary

Client: Arcadis U.S., Inc. Project/Site: HECLA

Job ID: 590-23483-1

Lab Sample ID Client Sample ID Matrix Collected Received 590-23483-1 WASTE-2-022924 Solid 02/29/24 12:07 02/29/24 16:13

Definitions/Glossary

Client: Arcadis U.S., Inc. Job ID: 590-23483-1 Project/Site: HECLA

Qualifiers

Metals

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
F1	MS and/or MSD recovery exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

MDC MDL ML MPN

MCL

MDA

Minimum Detectable Concentration (Radiochemistry) Method Detection Limit Minimum Level (Dioxin) Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Activity (Radiochemistry)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Client Sample Results

Client: Arcadis U.S., Inc. Job ID: 590-23483-1

Project/Site: HECLA

Client Sample ID: WASTE-2-022924

Lab Sample ID: 590-23483-1 Date Collected: 02/29/24 12:07 Matrix: Solid

Oate Received: 02/29/24 16 -								Percent Soli	
Method: SW846 6010D - I Analyte	· /	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	ND	Qualifier	1.1	0.44	mg/Kg	— "	03/04/24 10:34	03/04/24 15:59	Dii Fa
Barium	ND ND		1.1	0.44	mg/Kg	₩	03/04/24 10:34	03/04/24 15:59	
Cadmium	ND ND		0.89	0.30	0 0		03/04/24 10:34	03/04/24 15:59	
					mg/Kg	.			
Chromium	ND		1.1		mg/Kg	₽	03/04/24 10:34	03/04/24 15:59	
Lead	ND		2.7	1.3	mg/Kg	₩	03/04/24 10:34	03/04/24 15:59	
Selenium	ND		4.5	2.7	mg/Kg		03/04/24 10:34	03/04/24 15:59	
Silver	ND		1.1	0.26	mg/Kg	₩	03/04/24 10:34	03/04/24 15:59	
Method: SW846 6010D - I									
Analyte		Qualifier	RL _	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	ND		0.025	0.010	mg/L		03/05/24 10:56	03/06/24 12:11	
Barium	0.79	В	0.025	0.0014	mg/L		03/05/24 10:56	03/06/24 12:11	
Cadmium	ND		0.025	0.0012	mg/L		03/05/24 10:56	03/06/24 12:11	
Chromium	0.0027	JB	0.025	0.0017	mg/L		03/05/24 10:56	03/06/24 12:11	
Lead	0.086		0.060	0.0051	mg/L		03/05/24 10:56	03/06/24 12:11	
Selenium	ND		0.10	0.049	mg/L		03/05/24 10:56	03/06/24 12:11	
Silver	ND		0.025	0.0025	mg/L		03/05/24 10:56	03/06/24 12:11	
- Method: SW846 7470A - I	Mercury (CVAA) - TCLF								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Hg	ND	F1	0.20	0.090	ug/L		03/05/24 10:38	03/06/24 13:35	
Method: SW846 7471B - I	Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Hg	70		46	12	ug/Kg	<u></u>	03/04/24 10:32	03/04/24 16:08	

Client: Arcadis U.S., Inc. Job ID: 590-23483-1

Project/Site: HECLA

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-46099/2-A

Analysis Batch: 46110

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 46099

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.3	0.50	mg/Kg		03/04/24 10:34	03/04/24 14:33	1
Barium	ND		1.3	0.34	mg/Kg		03/04/24 10:34	03/04/24 14:33	1
Cadmium	ND		1.0	0.059	mg/Kg		03/04/24 10:34	03/04/24 14:33	1
Chromium	ND		1.3	0.18	mg/Kg		03/04/24 10:34	03/04/24 14:33	1
Lead	ND		3.0	1.5	mg/Kg		03/04/24 10:34	03/04/24 14:33	1
Selenium	ND		5.0	3.0	mg/Kg		03/04/24 10:34	03/04/24 14:33	1
Silver	ND		1.3	0.29	mg/Kg		03/04/24 10:34	03/04/24 14:33	1
_									

Lab Sample ID: LCS 590-46099/1-A

Matrix: Solid

Analysis Batch: 46110

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 46099

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	100	96.5		mg/Kg		97	80 - 120	
Barium	100	86.0		mg/Kg		86	80 - 120	
Cadmium	50.0	49.0		mg/Kg		98	80 - 120	
Chromium	50.0	47.7		mg/Kg		95	80 - 120	
Lead	50.0	50.8		mg/Kg		102	80 - 120	
Selenium	100	96.3		mg/Kg		96	80 - 120	
Silver	5.00	4.91		mg/Kg		98	80 - 120	

Lab Sample ID: LCS 590-46135/1-A

Matrix: Solid

Analysis Batch: 46151

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 46135

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	2.00	1.95		mg/L		97	80 - 120
Barium	2.00	1.74		mg/L		87	80 - 120
Cadmium	1.00	1.00		mg/L		100	80 - 120
Chromium	1.00	0.989		mg/L		99	80 - 120
Lead	1.00	1.04		mg/L		104	80 - 120
Selenium	2.00	1.94		mg/L		97	80 - 120
Silver	0.100	0.102		ma/L		102	80 - 120

Lab Sample ID: LB 590-46130/1-B

Matrix: Solid

Analysis Batch: 46151

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 46135

LB LB

MD MD

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.025	0.010	mg/L		03/05/24 10:56	03/06/24 11:36	1
Barium	0.00449	J	0.025	0.0014	mg/L		03/05/24 10:56	03/06/24 11:36	1
Cadmium	ND		0.025	0.0012	mg/L		03/05/24 10:56	03/06/24 11:36	1
Chromium	0.00177	J	0.025	0.0017	mg/L		03/05/24 10:56	03/06/24 11:36	1
Lead	ND		0.060	0.0051	mg/L		03/05/24 10:56	03/06/24 11:36	1
Selenium	ND		0.10	0.049	mg/L		03/05/24 10:56	03/06/24 11:36	1
Silver	ND		0.025	0.0025	mg/L		03/05/24 10:56	03/06/24 11:36	1

Eurofins Spokane

Page 8 of 14

3/6/2024

Spike

babbA

LB LB Result Qualifier

ND

Sample Sample

ND F1

Sample Sample

ND F1

Sample Sample

ND F1

Result Qualifier

MR MR Result

ND

Qualifier

Result Qualifier

Result Qualifier

2.00

Spike

Added

2.00

Spike

Added

2.00

RL

0.20

LCS LCS

1.82

Result Qualifier

MDL Unit

0.090 ug/L

MS MS

1.55 F1

MSD MSD

DU DU

ND

Result Qualifier

1.76

Result Qualifier

Result Qualifier

Unit

ug/L

Unit

ug/L

Unit

ug/L

Unit

ug/L

D

Client: Arcadis U.S., Inc. Project/Site: HECLA

Job ID: 590-23483-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: LCS 590-46136/8-A

Matrix: Solid

Analysis Batch: 46154

Hg

Hg

Hg

Hg

Analyte

Lab Sample ID: LB 590-46130/1-C

Analysis Batch: 46154

Matrix: Solid

Analyte

Lab Sample ID: 590-23483-1 MS

Matrix: Solid Analysis Batch: 46154

Hg

Lab Sample ID: 590-23483-1 MSD **Matrix: Solid**

Analysis Batch: 46154

Analyte

Lab Sample ID: 590-23483-1 DU

Matrix: Solid

Analysis Batch: 46154

Analyte

Hg

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 590-46098/9-A **Matrix: Solid**

Analysis Batch: 46111

Analyte

Lab Sample ID: LCS 590-46098/8-A

Matrix: Solid

Analysis Batch: 46111

Analyte Hg

200

Spike

Added

RL

50

191

LCS LCS

MDL Unit

ug/Kg

12

Result Qualifier Unit ug/Kg

%Rec

Prepared

03/04/24 10:32

Limits 80 - 120

Prep Batch: 46136 Limits

Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 46136

Dil Fac

Client Sample ID: WASTE-2-022924

Analyzed

03/06/24 13:33

Client Sample ID: Lab Control Sample

80 - 120

%Rec

Prepared

03/05/24 10:38

91

Prep Type: TCLP

Prep Batch: 46136 %Rec

%Rec Limits 80 - 120

Client Sample ID: WASTE-2-022924

Prep Type: TCLP

Prep Batch: 46136

%Rec RPD

Limit %Rec Limits 80 - 120 13

Client Sample ID: WASTE-2-022924 **Prep Type: TCLP**

Prep Batch: 46136

RPD

Limit

20

Client Sample ID: Method Blank Prep Type: Total/NA

03/04/24 15:29

Prep Batch: 46098

Dil Fac Analyzed

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 46098

%Rec

Eurofins Spokane

Lab Chronicle

Client: Arcadis U.S., Inc. Job ID: 590-23483-1

Project/Site: HECLA

Client Sample ID: WASTE-2-022924

Date Collected: 02/29/24 12:07 Date Received: 02/29/24 16:13

Lab Sample ID: 590-23483-1

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 1311 46130 TCLP Leach 100.52 g 2000.73 mL 03/04/24 15:10 AMB **EET SPK** Prep TCLP 3010A 50 mL 50 mL 46135 03/05/24 10:56 AMB **EET SPK TCLP** Analysis 6010D 46151 03/06/24 12:11 AMB EET SPK TCLP Leach 1311 100.52 g 2000.73 mL 46130 03/04/24 15:10 AMB EET SPK TCLP Prep 7470A 50 mL 50 mL 46136 03/05/24 10:38 AMB **EET SPK** TCLP 46154 Analysis 7470A 1 03/06/24 13:35 AMB EET SPK Total/NA Analysis 1 46103 03/04/24 11:24 M1M **EET SPK** Moisture

Client Sample ID: WASTE-2-022924 Lab Sample ID: 590-23483-1

Date Collected: 02/29/24 12:07 Date Received: 02/29/24 16:13

Matrix: Solid Percent Solids: 79.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.41 g	50 mL	46099	03/04/24 10:34	AMB	EET SPK
Total/NA	Analysis	6010D		1			46114	03/04/24 15:59	AMB	EET SPK
Total/NA	Prep	7471B			0.68 g	50 mL	46098	03/04/24 10:32	AMB	EET SPK
Total/NA	Analysis	7471B		1			46111	03/04/24 16:08	AMB	EET SPK

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: Arcadis U.S., Inc.

Project/Site: HECLA

Job ID: 590-23483-1

Laboratory: Eurofins Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date 01-07-25	
Washington	State		C569		
The following analytes	are included in this report by	it the leberatory is not cortif	ied by the governing authority. This lis	t may include analyte	
THE IDIOWING ANALYTES	are incidued in this report. Di	ii iile laboratory is not certii		t may include analyte	
• •	pes not offer certification.	it the laboratory is not certif	led by the governing authority. This is	t may include analyte	
• .	•	Matrix	Analyte	t may include analyte	
for which the agency do	pes not offer certification.	•	, , , , , , , , , , , , , , , , , , , ,	t may molude analyte	

4

J

4

0

9

11

4.6

Method Summary

Client: Arcadis U.S., Inc.

Project/Site: HECLA

Job ID: 590-23483-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SPK
7470A	Mercury (CVAA)	SW846	EET SPK
7471B	Mercury (CVAA)	SW846	EET SPK
Moisture	Percent Moisture	EPA	EET SPK
1311	TCLP Extraction	SW846	EET SPK
3010A	Preparation, Total Metals	SW846	EET SPK
3050B	Preparation, Metals	SW846	EET SPK
7470A	Preparation, Mercury	SW846	EET SPK
7471B	Preparation, Mercury	SW846	EET SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

5

7

10

A A

12

>> Select a Laboratory or Service Center <<

Client Contact

#N/A

#N/A #N/A

##

Arcadis U.S. INC

1420 5th Avenue, Suite 2400

Chain of Custody Record

RCRA Other

Site Contact

Lab Contact

Date

Carrier ·

Regulatory Program DW NPDES

Analysis Turnaround Time

Project Manager: Josh Lee

Tel/Fax:406-239-7810

Email joshua.lee@arcadis.com

€ €.	r.	
	eurofins	1
	~ • • • • • • • • • • • • • • • • • • •	-1

COC No: 1

Sampler:

TALS Project #

_1__ of ___i_

Environment Testing America

COCs

Eurofins Environment Testing America

,	

	0	
	0	

П	
П	
ш	

eattle, WA 98101	☐ CALEN	DAR DAYS	∐ WOI	RKING DAY		1_						ĺ								1	For Lab Use				
314)969-6999 Phone	TA	T if different fo	om Below			Z									1 1						Walk-in Clien	t:			_
(XX) XXX-XXXX FAX		;	2 weeks			≥ا≻											ĺ		- 1	1	Lab Sampling	i:			
roject Name Hecla-Ione		:	l week		,	۵[۲	1	<u>0</u>	ا ځ	1						li		İ							_
ite: lone		;	2 days			<u>چ</u> ا چ		를 를	፤	1											Job / SDG No	<i></i>			_
O#		;	l day			Fittered Sample (Y/N) Perform MS/MSD (Y/N)		RCRA Total Metals	2																
			Sample			2 2	[5]	غ ق	를																_
	Sample	Sample	Туре				Metals (Zn)	≱ ₹	3																
Sample Identification	Date	Time	(C=Comp, G=Grab)	Matrix	# of Cont.	٩	ĕ	מֶן מֶ	֡֡֓֞֝֡֓֓֡֡֡֡֡֡֓֓֡֓֓֡֜֜֡֡֡				1								Samo	e Spec	ific No	tes	
	· · · · · · · · · · · · · · · · · · ·		EUMANIO-ED-P-REISONIEUMONIO			*****	ONLY PARTICULARIES DA	MINOCOLOGY MELLON		NG ANTRO		NAMES AND DESCRIPTIONS	MATERIAL PROPERTY.	00 14000000000			*********					<u> </u>	William Co.	1001	2000
WASTE-2-022924	2/29/2024	1207	С	s		N	<u> </u>	х х													3-day TAT				
						Т	П	ı		Т		\top	1				T			Т					
	1	-				+	+	-		1	\vdash				-	\vdash			-						
						١	1		ı	1															
				1		1	11							 			_	\top		1					
		ļ					1		_	4_		_			\bot			_							
																		ı							
	<u> </u>			1		+	1-1							-	\vdash	-		\dashv	\pm	+				***************************************	
	<u> </u>							_																	
										<u> </u>															
										T		\top					ı		J	1	ŧ				
							\Box					e e 1 E l 1 1	t 11 61 81 1	14 (111)	mut	1111111									
			:	1		\dagger	\Box	\top	1	1	Ì									M	 	•			
						+	lacksquare	+	+	+	-									M			***		
									1			IIIII							in the	1111					
						T			1		†	590	.2348	3 Cl	hain	of C	usto	dy							
							100000000000000000000000000000000000000		N#4 8866	ea material	-			10000000	in terrorisco		esSélectes es	Sistema in	o-Parisa Pilar			ere en le company			
reservation Used: 1= Ice, 2= HGI; 3= H2SO4; 4=HNO3;	5=NaOH;	6= Other_						22							100	99 j.;;; 3121.3	29					<u>estilinestennistestestes</u>		California de la como	mî
ossible Hazard identification re any samples from a listed EPA Hazardous Waste? Pleas	a Lint any I	"DA Mosto	Codes for	tha aam	ala ia dha	S	ample	Dis	posa	ıl (A	fee n	nay I	oe as	sess	sed i	f sai	mple	s ar	re ret	aine	d longer than	l mont	h)		
omments Section if the lab is to dispose of the sample	e List ally i	EFA Wasie	Codes for	me sam	pie iii (iie																				
Non-Hazard Flammable Skin Irritant	Polso	n A	Unkn	กเขก		\dashv	ГПъ	eturn t	to Clia	nt			Dispos		. 1				uchive	for	Month				
pecial Instructions/QC Requirements & Comments	1 7 01301	10	Onk	OWN				etani t	LO CHE	111			DISDO	SAL DA	Lap			1.17	acinve	101	Pione				-
3-Say TAT																									
of Day was																									
																			,				C-31 2		
Custody Seals Intact. Yes No	Custody S			.,						r Ter	np. (°	C) C)bs'd.	_3	.9		orr'd	: 4	10		Therm ID No.	100	20 4		_
elinquished by	Company			Date/T	me: 24 / 6 43	, IR	W	ad by	ير خ			$\overline{}$			Cô	npar	¥ 5	388	<u> </u>		Date Time: 2/24/24	Į.	161	13	
iz:gdf-W,/sun lelinguished by	Company			#(29/) Date/T	41600	45	eceive										·	70 (Date/Time:		VV.	<u>اب</u>	_
omiquation by	Company			Date/1	iiiiG.	ľ	10001V	su by							100	npar	· y				Date/ Illie:				
elinquished by	Company	•		Date/T	ime:	R	eceive	ed in	Labo	rato	A pA.		••••		Cor	npar					Date/Time:				
•					<u> </u>											•	_								
- 1 100000 100000	-			ח	age 13	C t	1.4																2	/6/202	<u>-</u>
					aye 13	OI.	14																J	/U/ZUZ4	+

Job Number: 590-23483-1

Client: Arcadis U.S., Inc.

Login Number: 23483 List Source: Eurofins Spokane

List Number: 1

Creator: Morris, Mackenzie 1

oreator: morris, mackerizie i		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Appendix E

Waste Disposal Documentation

Form Approved, OMB No. 2050-0039 1. Generator ID Number AZARDOUS 2, Page 1 of 3, Emergency Response Phone 4. Manifest Tracking Number ∠ MANIFEST erator's Name and Mailing Address Generator's Site Address (if different than mailing address) Generator's Phone: (100)744-1578 6. Transporter 1 Company Name U.S. EPA ID Number 7. Transporter 2 Company Name U.S. EPA ID Number 8. Designated Facility Name and Site Address U,S. EPA ID Number different by a sign of the sign Facility's Phone: 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12. Unit and Packing Group (if any)) 13. Waste Codes HM Quantity Wt./Vol. No. Type BASE, F-2 MELLOTIS WAS IN MOTHER HIGH SHOULD GENERATOR 14. Special Handling Instructions and Additional Information CHEMINE CAL CALZE IT! 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name Month Day Year 16. International Shipments Import to U.S. Export from U.S. Port of entry/exit: Transporter signature (for exports only): Date leaving U.S.: TRANSPORTER 17, Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Signature Day Year Transporter 2 Printed/Typed Name Month Day Year 18. Discrepancy 18a, Discrepancy Indication Space Quantity Residue __ Partial Rejection Full Rejection Manifest Reference Number: 18b. Alternate Facility (or Generator) FACILITY U.S. EPA ID Number DESIGNATED 18c. Signature of Alternate Facility (or Generator) Month Year Day 19, Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Signature Month Day Year

Chemical Waste Management Of The Northwest

17629 Cedar Springs Lane

	WASTE MANAGEMENT 17629 Cedar Springs Lane						Form/	Approved, OMB No.	2050-0039
	Arlington, Oregon 97812 541-454-2643	Page 1 of		gency Response		4. Manifest	Tracking Nur		FLE
	EPA I.D.# ORDO89452353		Generator	r's Site Address	(if different th	an mailing addre	ss)		
1.0	OAD NO.								
	SAD NO.	- Consection							
		* 1878				IIS EPAID	Number		
M	ANIFEST DOC. NO.		54 m				BU A		
		100	-			U.S. EPA ID			
						1			
						U.S. EPA ID	Number		
						20	10 10 10	U at 1955 7	W 16 B
						i			
	INBOUND	1.75-1							
	T/D: 11:34:37 2024-04-25		-	10. Contair	r —	11. Total Quantity	12. Unit Wt./Vol.	13. Waste Code	es
	ID: 59 TRK ID: 506489 99840 lb G	\$10	-	No.	Type	Quantity	VVC/ VOI.		
	44900 TH P	100		76		× .	97	776	
		3050	244						
		-					+-+		
	DEPROVAD								
	OUTBOUND T/D: 12:36:38 2024-04-25		F/ F4 F4 T	as in Free Ves	Dall a fun	12g-10	50.5		
	TD: 59 TRK ID: 506409		** 30.74 1 1			1.00			
	99840 lb 6								
	43260 lb PT				7 1 1				
	56580 1b N	ding to applic	are fully an cable interr	nd accurately de: national and nati	scribed above onal governm	e by the proper s ental regulations	nipping name, If export ship	and are classified, pack ment and I am the Prim	kaged, nary
	HER GO OF TONO	EPA Acknowle	edgment o						
	NET 28.29 TOMS		nature	D) (III alii a Silia	ii quantity gei	lerator) is true.		Month Day	Year
		1						1 1	I
		Export from U	18	Port of ent	try/exit:				
		CAPOTE HOITI O	,0,	Date leavi					
		Sign	nature			177		Month Day	Year
GE	NERATOR	Sign	nature					Month Day	Year
		i Oigi	aturo					I I	1
903-	ARLINGTON, OR] _B		To-t-ID-	to sate o	Full Re	lastian
				_i Residue		Partial Re	gection	La Full Re	jection
			Mar	nifest Reference	Number:				
Ľ.	18b. Alternate Facility (or Generator)					U.S. EPA ID	Number		
등						1			
DESIGNATED FACILITY	Facility's Phone: 18c. Signature of Alternate Facility (or Generator)							Month Da	y Year
ATE	roc. Signature of Alternate Facility (of Generator)							I WOTH Da	, 1001
S	 Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste trea 	itment dienoed	and recov	cling evetome)					
ESI	Hazardous waste Report Management Method Codes (i.e., codes for nazardous waste trea	arment, disposar	, and recy	omig systems)		4.5			
٦,									
	20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials cover	ed by the manif	est except	t as noted in Iten	18a				
	Printed/Typed Name	Sigr	nature					Month Day	y Year

Form Approved, OMB No. 2050-0039 4. Manifest Tracking Number 2. Page 1 of 3. Emergency Response Phone ... wailing Address Generator's Site Address (if different than mailing address) Generator's Phone: 6. Transporter 1 Company Name U.S. EPA ID Number 7. Transporter 2 Company Name U.S. EPA ID Number 8. Designated Facility Name and Site Address U.S. EPA ID Number Cility Name and Sile Address Facility's Phone: 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 9a. 10. Containers 11. Total 12. Unit 13. Waste Codes and Packing Group (if any)) НМ Quantity Wt./Vol. No. Type THE SUIT HAZ ARDOUS VSASTE, SOUD, NO S., NO GENERATOR 14. Special Handling Instructions and Additional Information SHEM RESEARCH 2017 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262,27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name Month Day Year 16. International Shipments Import to U.S. Export from U.S. Port of entry/exit: Transporter signature (for exports only): Date leaving U.S.: 17. Transporter Acknowledgment of Receipt of Materials TRANSPORTER Transporter 1 Printed/Typed Name Signature Day Month Year Transporter 2 Printed/Typed Name Sionature Month Day Year 18. Discrepancy Discrepancy Indication Space ___ Type ___ Residue Quantity Partial Rejection __ Full Rejection Manifest Reference Number: DESIGNATED FACILITY 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: 18c. Signature of Alternate Facility (or Generator) Month Day Year 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Signature Month Day Year

GENERATOR'S INITIAL COPY

EPA Form 8700-22 (Rev. 12-17) Previous editions are obsolete.

Notical Waste Management Of The Northwest

17629 Cedar Springs Lane

17629 Cedar Springs Lane	Form Approved. OMB No. 2050-0039 Page 1 of 3. Emergency Response Phone 4. Manifest Tracking Number										
Arlington, Oregori 97012		1000	- 1/2/20			mber					
EPA I.D.# ORDO89452353	G	ienerator's Site Addres	ss (if different t	nan mailing addr	ess)						
OAD NO.											
	(in/)			U.S. EPA IC	Number	1 1 1 1					
ANIFEST DOC. NO.	17.1			ILE COVID	Walter						
				0.5, EPAID	Mulliper						
				U.S. EPAID	Number						
					常直色	18/5/2					
INDOUND 2026-04-25	3/4	10. Cont	ainers	11 Total	12 Hoit						
T/D: 11:30:36 TRY 10: 506485		No.	Туре	Quantily	Wt./Vol.	13. Waste Codes					
29140 th 6	9615	U)	1.47		419	5041					
			+		1 1						
					-						
	1, 4		-								
Lawrence ISTN	17.3										
T/D: 13:04:25 2024-04-25											
ID: 17 IRK ID: 506485	K	Little EE, [F(1) = 1.	1, 194-10	Lifey						
99160 to u	* = 1 5					1-					
55720 Lb N-	tare	fully and accurately d	escribed above	by the proper s	hinning name	ard are classified, packaged					
NET 27-86 TONS	licab wled	le international and na gment of Consent.	itional governn	ental regulations	s. If export ship	ment and I am the Primary					
			1.7			Month Day Y					
	Is	Port of a	ntry/evit								
	atu	ire				Month Day Ye					
ATOD.						A 2= 5					
GENERATOR	att	ire				Month Day Y					
AND INCTON OR		Residue		Partial Re	iection	Full Rejection					
U.S. EPALD Number U.S. EPALD Nu											
b. Alternate Facility (or Generator)		Manifest Reference	e Number:	U.S. EPA ID I	Number						
allia de Di				N)							
						Month Day V					
9 °											
		d recycling systems)									
2	3.			4.							
Designated Facility Owner or Operator: Certification of receipt of hazardous materials co	vered by the manifest	except as noted in Iter	n 18a			Α					
nted/Typed Name						Month Day Ye					

EPA Form 8700-22 (Rev. 12-17) Previous editions are obsolete.

→ TRANSPORTER LINT"

DESIGNATED FACILITY

Arcadis U.S., Inc. 1420 5th Avenue, Suite 2400 Seattle, WA 98101 United States

Phone: 206 325 5254 www.arcadis.com