

Seattle Housing Anthority Mount Plans Release ID: 583079 Let Vop; NW 2220 SIT 2.3.2

The Benham Companies, LLC Souther Souther

November 30, 2010

Mr. Roger Nye Washington State Department of Ecology - Northwest Regional Office Toxics Cleanup Program 3190 160th Ave Southeast Bellevue, WA 98008-5452

Subject:

First 2010 Semiannual Groundwater Monitoring Report

Former Chevron Service Station No. 20-9335

1225 North 45th Street Seattle, Washington

Dear Mr. Nye:

The Benham Companies, LLC, an SAIC Company (SAIC-Benham), on behalf of Chevron Environmental Management Company (CEMC), prepared this letter summarizing the latest groundwater monitoring and sampling results from Former Chevron Service Station No. 20-9335 (the site) in Seattle, Washington. The second quarter 2010 groundwater monitoring and sampling event was conducted by Gettler-Ryan Inc. (Gettler-Ryan) on June 9, 2010.

Groundwater elevation and analytical data are presented along with field data sheets and a laboratory analytical report in the Gettler-Ryan groundwater monitoring and sampling report for the June 2010 event (Attachment A).

FIELD ACTIVITIES

Depth-to-groundwater measurements were collected from all five monitoring wells at the site. Each monitoring well was also checked for the presence of separate-phase hydrocarbons (SPH). SPH were detected in monitoring well MW-7 and confirmed by bailer; SPH thickness was determined to be 1.17 feet.

At the time of this monitoring event, groundwater elevations ranged from 170.34 feet above mean sea level (MSL) in monitoring well MW-6 to 169.81 feet above MSL in monitoring well MW-10. Groundwater elevations increased an average of 0.15 foot since the previous monitoring event performed on December 11, 2009. Groundwater flow at the time of this event was toward the southeast at a gradient of approximately 0.02 to 0.01 feet per foot. Figure 1 of Attachment A depicts groundwater elevations, well locations, and groundwater flow direction.

Groundwater samples were collected from four of the five monitoring wells at the site and submitted to Lancaster Laboratories, Inc. in Pennsylvania for the following analyses:

- Gasoline-range hydrocarbons by Washington State Department of Ecology (WDOE) Method NWTPH-Gx;
- Diesel-range and heavy oil-range hydrocarbons by WDOE Method NWTPH-Dx with silica-gel cleanup;
- Benzene, toluene, ethylbenzene, and total xylenes by United States Environmental Protection Agency (USEPA) Method 8021; and
- Total lead by Method USEPA 6020.

ANALYTICAL RESULTS

The following analytes were detected at concentrations exceeding their respective Model Toxics Control Act Method A cleanup levels (CULs).

- Total Lead in monitoring wells MW-8 and MW-9; and
- Gasoline-range hydrocarbons in monitoring well MW-6.

Groundwater analytical results are summarized in Table 1 of Attachment A.

SUMMARY

Groundwater elevations and flow direction were consistent with historical data from this site. SPH have not been bailed from MW-7 due to a lack of space for a product drum; therefore, it is not possible to determine if SPH thicknesses are increasing or decreasing. Small pockets of residual SPH and smear-zone soil contamination appear to still remain following the remedial excavation activities completed in 2005. Analytical results confirm the presence of petroleum constituents in the vicinity of wells MW-6, MW-7, and MW-8. Groundwater monitoring and sampling will continue to be performed on a semiannual basis, with the next sampling event planned for December 2010.

If you have any questions or comments about the information provided herein, please contact me at (425) 482-3319 or via email at langem@saic.com.

Sincerely,

The Benham Companies, LLC., an SAIC Company

Micheal Lange

Project Manager

Enclosures:

Attachment A: Gettler-Ryan Inc., Groundwater Monitoring and Sampling Report, Event of June 9, 2010, Former Chevron Service Station No. 20-9335, 1225 North 45th Street, Seattle, Washington

cc: Ms. Olivia Skance – CEMC 6001 Bollinger Canyon Road, Suite 3636, San Ramon, CA 94583

Mr. Larry Hard, Seattle Housing Authority

Ms. Veronica Redstone, Housing Resources Group 1651 Bellevue Avenue, Seattle, WA, 98122-2014

Project File

PLEASE NOTE: In an effort to adopt practices that reduce negative impacts on the environment, SAIC-Benham is in the process of transitioning to an electronic distribution of all Groundwater Monitoring Reports. Please contact me at (425) 482-3319 or via email at langem@saic.com if you would be willing to accept an electronic copy of this report in lieu of a hard copy; in the absence of a response we will continue to provide you a hard copy.

Attachment A: Gettler-Ryan Inc. – Groundwater Monitoring and Sampling Report Event of June 9, 2010 Former Chevron Service Station No. 20-9335 1225 North 45th Street, Seattle, Washington

GETTLER-RYAN INC.

TRANSMITTAL

July 15, 2010 G-R #386750

TO:

Mr. Peter H. Catterall

SAIC

18912 North Creek Parkway, Suite 101

Bothell, WA 98011

FROM:

Deanna L. Harding

Project Coordinator

Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 RE:

Former Chevron Service Station

#209335

1225 North 45th Street Seattle, Washington

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
, 5	July 1, 2010	Groundwater Monitoring and Sampling Report
		Event of June 9, 2010

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for <u>your</u> use and distribution to the following:

Ms. Olivia Skance, Chevron Environmental Management Company, 6111 Bollinger Canyon Rd., Room 3636, San Ramon, CA 94583

Mr. Roger Nye, Washington State Department of Ecology, Northwest Regional Office, Voluntary Cleanup Program, 3190 160th Avenue S.E., Bellevue, WA 98008-5452

Ms. Veronica Redstone, Housing Resources Group, 1651 Bellevue Avenue, Seattle, WA 98122-2014

Mr. Larry Hard, Seattle Housing Authority, 120 Sixth Avenue North, Seattle, WA 98109-5003

☑ Current Site Check List included.

Enclosure

trans/209335

		CHEVRON -	SITE CHE	ÇK LIST	-	
	Facility#:	Chevron #209335		Date: (0-9-10	
1	Address:	1225 N. 45Th Street			<u> </u>	
·¬	City/St.:	Seattle, WA				
	Status of Site:	APARTMENT GAR	AGE-			
DRUMS:	Please list belo	w ALL DRUMS @ site: i.e., d	rum description	. condition	. labeling, co	ontents
- !	location of drun	n:		,	,	J. 11.0711.0,
-	#	Description	Condition	Labeling	Contents	Location
		10				
					 	
		DRUMS			 	
SACTION OF						
	Please check the etc.:	ne condition of ALL WELLS @) site: i.e., well	box condit	ion, well plu	g, well lock,
1 1 	Well ID	Well Box	Bolts	Well Plug	Well Lock	Other
<i></i>	MW-6	OK	01/	05	or	
. //	MW-7		,	1		
· 💙	MW-8		·			
·	MW-9			d.		
i	MW-10				V	
ĺ		T	7	-		
						·
_						
,		 				
'						
ŀ		-				
-, 		······································				
-						
., †			_			
					 -	
. [- - -	
· [
 ,		nents/Observations:				

GETTLER-RYAN INC.

July 1, 2010 Job #386750

Ms. Olivia Skance Chevron Environmental Management Company 6111 Bollinger Canyon Road, Room 3636 San Ramon CA, 94583

RE: Event of June 9, 2010

Groundwater Monitoring & Sampling Report Former Chevron Service Station #209335 1225 North 45th Street Seattle, Washington

Dear Ms. Skance:

This report documents the most recent groundwater monitoring and sampling events performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were present in one well, (MW-7). Static water level data and groundwater elevations are presented in Table 1. Separate Phase Hydrocarbon Thickness/Removal Data is presented in Table 2. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are attached. The samples were analyzed by a certified laboratory. Analytical results are presented in Table 1. The chain of custody document and laboratory analytical reports are attached.

of Washing

censed Geolo

Douglas J. Lee

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely.

Deanna L. Harding Project Coordinator

Douglas J. Lee

Senior Geologist, L.G. No. 2660

Figure 1: Table 1:

Potentiometric Map

Table 2: Attachments: Groundwater Monitoring Data and Analytical Results Separate Phase Hydrocarbon Thickness/Removal Data Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL N.D. TNTC IU umhos/cm C meq g ug ml	Reporting Limit none detected Too Numerous To Count International Units micromhos/cm degrees Celsius milliequivalents gram(s) microgram(s) milliliter(s)	BMQL MPN CP Units NTU ng F Ib. kg mg I	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units nanogram(s) degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Inorganic Qualifiers

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

	Organic Quanners		morganic Quanners
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
P	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: Chevron

Group Number: 1198265

Reported: 06/24/10 at 05:45 PM

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX Water Batch number: 10165B53A

	Trifluorotoluene-P	Trifluorotoluene-F
6003084	83	79
6003085	82	77
6003086	84	78
6003087	84	78
6003088	85	77
Blank	83	77
LCS	85	83
LCSD	85	91
MS	84	89
MSD	85	
Limita	58-146	63-135

Analysis Name: NWTPH-Dx water w/Si Gel

Batch number: 101650022A Orthoterphenyl

6003085	86
6003086	110
Blank	114
LCS	131
MS	112
MSD	110

Limits: 50-150

Analysis Name: NWTPH-Dx water w/Si Gel

Batch number: 101650026A Orthoterphenyl

6003087	112
6003088	115
Blank	108
LCS	127
LCSD	135

Limits: 50-150

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron

Group Number: 1198265

Reported: 06/24/10 at 05:45 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 10165B53A	Sample numbe	er(s): 600	3084-6003	088				
Benzene	N.D.	0.5	ug/l	105	105	80-120	0	30
Ethylbenzene	N.D.	0.5	ug/l	105	105	80-120	0	30
NWTPH-Gx water C7-C12	N.D.	50.	ug/1	100	109	75-135	9	30
Toluene	N.D.	0.5	ug/1	105	105	80-120	0	30
Total Xylenes	N.D.	1.5	ug/l	107	105	80-120	2	30
Batch number: 101650022A	Sample numbe	er(s): 600	3085-6003	086				
DRO C12-C24 w/Si Gel	N.D.	30.	ug/l	94		50-100		
HRO C24-C40 w/Si Gel	N.D.	70.	ug/l					
Batch number: 101650026A	Sample numbe	er(s): 600	3087-6003	088				
DRO C12-C24 w/Si Gel	N.D.	30.	ug/l	8.9	96	50-100	8	20
HRO C24-C40 w/Si Gel	N.D.	70.	ug/l					
Batch number: 101626050005A	Sample numbe	er(s): 600	3085-6003	088				
Lead	0.059	0.050	ug/l	98		90-115		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>A</u> :	nalysis <u>Name</u>	MS %REC	MSD <u>%REC</u>	MS/MSD Limits	RPD	RPD MAX	BKG Conc	DUP Conc	DU RF	_	Dup RPD Max
E N T	atch number: 10165B53A enzene thylbenzene WTPH-Gx water C7-C12 oluene	110 110 81 110	110 105 110	80-152 80-133 57-157 80-133	0 5 0	20 30 30	: 6003088,	P003710			
В	otal Xylenes atch number: 101650022A RO C12-C24 w/Si Gel	Sample r	108 number(s) 136*	80-148 : 6003085- 60-120	0 -600308 12	30 6 UNSPK 20	: P002527				
	atch number: 101626050005A	Sample r	umber(s) 103	: 6003085- 75-125	-600308 1	8 UNSPK 20	: P002531 B 0.097	KG: P002531 0.11		(1)	20

Surrogate Quality Control

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax:717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-10 Grab Water Sample

 LLI Sample # WW 6003088 LLI Group # 1198265

Project Name: 209335

Collected: 06/09/2010 12:05

by ML

Chevron

6001 Bollinger Canyon Road

Submitted: 06/10/2010 12:40

Reported: 06/24/2010 17:45

L4310

San Ramon CA 94583

Discard: 07/25/2010

45S10

CAT No.	Analysis Name			CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles	ECY	97-602	NWTPH-Gx	ug/l	ug/l	
08274	NWTPH-Gx water C7-C	12		n.a.	N.D.	50	1
GC Vo	latiles	SW-8	46 802	18	ug/l	ug/l	
05879	Benzene			71-43-2	N.D.	0.5	1
05879	Ethylbenzene			100-41-4	N.D.	0.5	1
05879	Toluene			108-88-3	N.D.	0.5	1
05879	Total Xylenes			1330-20-7	N.D.	1.5	1
GC Ex	tractable TPH	ECY	97-602	NWTPH-Dx	ug/l	ug/1	
w/Si (Gel	modi	fied				
02211	DRO C12-C24 w/Si Ge	1		n.a.	50	30	1
02211	HRO C24-C40 w/Si Ge			n.a.	88	69	· 1
Metal	g.	SW-8	46 602	0	ug/1	ug/l	
06035	Lead		,	7439-92-1	7.2	0.050	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	.me	Analyst	Dilution Factor
08274	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	- 1	10165B53A	06/15/2010	22:01	Katrina T Longenecker	1
05879	BTEX Water	SW-846 8021B	1	10165B53A	06/15/2010	22:01	Katrina T Longenecker	1
01146	GC VOA Water Prep	SW-846 5030B	1	10165B53A	06/15/2010	22:01	Katrina T Longenecker	1
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH- Dx modified	- 1	101650026A	06/21/2010	23:40	Melissa McDermott	1
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH- Dx 06/97	- 1	101650026A	06/15/2010	08:45	Kerrie A Freeburn	1
06035	Lead	SW-846 6020	1	101626050005A	06/24/2010	16:27	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A	1	101626050005	06/14/2010	10:13	Denise K Conners	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-9 Grab Water Sample

 LLI Sample # WW 6003087 LLI Group # 1198265 Account # 11260

Project Name: 209335

Collected: 06/09/2010 11:40

by ML Chevron

6001 Bollinger Canyon Road

Submitted: 06/10/2010 12:40

L0/2010 12:40 L4310

Reported: 06/24/2010 17:45 Discard: 07/25/2010 San Ramon CA 94583

45S09

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles	ECY 97-602	NWTPH-Gx	ug/1	ug/1	
08274	NWTPH-Gx water C7-	C12	n.a.	N.D.	50	1
GC Vo	latiles	SW-846 802	1B	ug/l	ug/l	
05879	Benzene		71-43-2	N.D.	0.5	1
05879	Ethylbenzene		100-41-4	N.D.	0.5	1
05879	Toluene		108-88-3	N.D.	0.5	1
05879	Total Xylenes		1330-20-7	N.D.	1.5	1
	tractable TPH	ECY 97-602	NWTPH-Dx	ug/l	ug/l	
w/Si (Gel .	modified				
02211	DRO C12-C24 w/Si Ge	∍1	n.a.	42	30	1
02211	HRO C24-C40 w/Si Ge	e1	n.a.	110	69	1
Metals	3	SW-846 602	0	ug/1	ug/l	
06035	Lead		7439-92-1	21.2	0.050	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
08274	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH Gx	- 1	10165B53A	06/16/2010	01:15	Katrina T Longenecker	1
05879	BTEX Water	SW-846 8021B	1	10165B53A	06/16/2010	01:15	Katrina T Longenecker	1
01146	GC VOA Water Prep	SW-846 5030B	1	10165B53A	06/16/2010	01:15	Katrina T Longenecker	1
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	101650026A	06/21/2010	23:18	Melissa McDermott	1
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH Dx 06/97	- 1	101650026A	06/15/2010	08:45	Kerrie A Freeburn	1
06035	Lead	SW-846 6020	1	101626050005A	06/24/2010	16:25	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	101626050005	06/14/2010	10:13	Denise K Conners	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-8 Grab Water Sample

 LLI Sample # WW 6003086 LLI Group # 1198265 Account # 11260

Project Name: 209335

Collected: 06/09/2010 10:55 by ML

Chevron

6001 Bollinger Canyon Road

Submitted: 06/10/2010 12:40

L4310

San Ramon CA 94583

Reported: 06/24/2010 17:45 Discard: 07/25/2010

45S08

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vol	latiles	ECY 97-602	NWTPH-Gx	ug/l	ug/1	
08274	NWTPH-Gx water C7-C	12	n.a.	350	50	1
GC Vol	latiles	SW-846 802	1B	ug/l	ug/l	
05879	Benzene		71-43-2	N.D.	o.5	1
05879	Ethylbenzene		100-41-4	N.D.	0.5	1
05879	Toluene		108-88-3	N.D.	0.5	1
05879	Total Xylenes		1330-20-7	N.D.	1.5	1
GC Ext		ECY 97-602 modified	NWTPH-Dx	ug/l	ug/l	
	DRO C12-C24 w/Si Ge:		n.a.	280	29	1
02211 02211	HRO C24-C40 w/Si Ge		n.a.	180	69	1
Metals	ł	SW-846 602	D	ug/l	ug/l	
06035	Lead		7439-92-1	16.5	0.050	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laborator	у Ба	mbie wusiAsi	s Record			
CAT No.	Analysis Name	Method Tr	rial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
08274	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	1	10165B53A	06/16/2010	00:50	Katrina T Longenecker	1
05879	BTEX Water	SW-846 8021B	1	10165B53A	06/16/2010	00:50	Katrina T Longenecker	1
01146	GC VOA Water Prep	SW-846 5030B	1	10165B53A	06/16/2010	00:50	Katrina T Longenecker	1
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH- Dx modified	1	101650022A	06/22/2010	15:40	Glorines Suarez- Rivera	1
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH- Dx 06/97	1	101650022A	06/15/2010	08:00	Karen R Rettew	1
06035	Lead	SW-846 6020	1	101626050005A	06/24/2010	16:23	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	101626050005	06/14/2010	10:13	Denise K Conners	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-6 Grab Water Sample

 LLI Group # 1198265 Account # 11260

LLI Sample # WW 6003085

1225 N. 45th Street - Beattr

Project Name: 209335

Collected: 06/09/2010 10:35

by ML Chevron

6001 Bollinger Canyon Road

Submitted: 06/10/2010 12:40 L4310

Reported: 06/24/2010 17:45 San Ramon CA 94583

Discard: 07/25/2010

45S06

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles	ECY 97-602	NWTPH-Gx	ug/1	ug/1	
08274	NWTPH-Gx water C7-C	12	n.a.	5,900	250	5
GC Vo	latiles	SW-846 802	1B	ug/l	ug/l	
05879	Benzene		71-43-2	N.D.	0.5	1
05879	Ethylbenzene		100-41-4	N.D.	0.5	1
05879	Toluene		108-88-3	N.D.	0.5	1
05879	Total Xylenes		1330-20-7	350	1.5	1
		ECY 97-602	NWTPH-Dx	ug/l	ug/l	
w/Si (Gel	modified				
02211	DRO C12-C24 w/Si Gel		n.a.	360	150	5
02211			n.a.	N.D.	340	5
Due the	to the nature of the analysis. The report	sample extracting limits we:	t matrix, a di re raised acco	ilution was used for ordingly.		
Metals	5	SW-846 602	0	ug/l	ug/l	
06035	Lead		7439-92-1	13.2	0.050	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method Tr	rial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor		
08274	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	1	10165B53A	06/16/2010	10:35	Katrina T Longenecker	5		
05879	BTEX Water	SW-846 8021B	1	10165B53A	06/15/2010	23:38	Katrina T Longenecker	1		
01146	GC VOA Water Prep	SW-846 5030B	1	10165B53A	06/15/2010	23:38	Katrina T Longenecker	1		
01146	GC VOA Water Prep	SW-846 5030B	2	10165B53A	06/16/2010	10:35	Katrina T Longenecker	5		
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH- Dx modified	1	101650022A	06/22/2010	17:02	Melissa McDermott	5		
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH- Dx 06/97	1	101650022A	06/15/2010	08:00	Karen R Rettew	1		
06035	Lead	SW-846 6020	1	101626050005A	06/24/2010	16:21	Choon Y Tian	1		
	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	101626050005	06/14/2010	10:13	Denise K Conners	1		

Longenecker

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 * 717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description: QA Water Sample

 LLI Sample # WW 6003084 LLI Group # 1198265 Account # 11260

Project Name: 209335

Collected: 06/09/2010

Chevron

6001 Bollinger Canyon Road

Submitted: 06/10/2010 12:40 L4310

Reported: 06/24/2010 17:45 San Ramon CA 94583

Discard: 07/25/2010

45SQA

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vol	atiles	ECY 97-	602 NWTPH-Gx	ug/l	ug/l	
08274	NWTPH-Gx water	C7-C12	n.a.	N.D.	50	1
GC Vol	atiles	SW-846	8021B	ug/l	ug/l	
05879	Benzene		71-43-2	N.D.	0.5	1
05879	Ethylbenzene		100-41-4	N.D.	0.5	1
05879 ·	Toluene		108-88-3	N.D.	0.5	1
05879	Total Xylenes		1330-20-7	N.D.	1.5	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laboratory Sample Analysis Record												
CAT No.	Analysis Name	Method Tr	ial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor						
08274	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	1	10165B53A	06/15/2010	20:00	Katrina T Longenecker	1						
05879	BTEX Water	SW-846 8021B	1	10165B53A	06/15/2010	20:00	Katrina T Longenecker	1						
01146	GC VOA Water Prep	SW-846 5030B	1	10165B53A	06/15/2010	20:00	Katrina T	1						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 -717-656-2300 Fox;717-656-2681 - www.lancesterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300 Ext. 1241

Respectfully Submitted,

Robert Strocko Jr.
Manager

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2661 • www.lancasterlabs.com

RECEIVED

ANALYTICAL RESULTS 2 5 2010

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 GETLER-RYAN INC.
GENERAL CONTR CHEVION Road
L4310

San Ramon CA 94583

June 24, 2010

Project: 209335

Submittal Date: 06/10/2010 Group Number: 1198265 PO Number: 0015061199 Release Number: SKANCE State of Sample Origin: WA

Client Sample Description	Lancaster Labs (LLI) #
QA Water Sample	6003084
MW-6 Grab Water Sample	6003085
MW-8 Grab Water Sample	6003086
MW-9 Grab Water Sample	6003087
MW-10 Grab Water Sample	6003088

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO

SAIC c/o Gettler-Ryan

Attn: Cheryl Hansen

Chevron Northwest Region Analysis Request/Chain of Custody

43	Lancaster Laboratories Where quality is a science.
787	Where quality is a science.

<u>Lali Kaster Laboratories</u> Where quality is a science.					Acc	zt. #: _ <u>/</u>	11/2	30	0	Sa	mple	#:(2		36	384	1-8		only	SCR#:		
							ſ						ses						G# 1198	a65	
Facility #: SS#209335-OML G-R#386	750			ħ	latrix	,	寸						rvat	on (Code	8			Preserva	tive Code	s
Site Address: 1225 N. 45th Street, SEAT							ŀ	H	-	\dashv	H	H	M		+		-	\vdash	H = HCI N = HNO3	T = Thios B = NaOl	
Chevron PM: OS Lead	Consultant,	AICPC				Π.	<u>"</u>	툡	- }		- {		S S		- 1		1	1		O = Other	
Consultant/Office: G-R, Inc., 6747 Sierra Co	urt, Suite J, C	Dublin, CA	94568	4	Potable NPDES			Z				. g	7		ҕ				☐ J value report	_	
Consultant Prj. Mgr.: Deanna L. Harding (de	anna@grinc.	com)			<u> </u>			8021 💢 8260 🗀 Naphth				ded Ring Gel Cker	Method		quantification				☐ Must meet lov possible for 8		
Consultant Phone # 925-551-7555	Fax #:	925-551-78	99				5	Ž,				Sijes G	s l		룕	1			8021 MTBE Cor	· ifirmation	
Sampler: Mike Lombar	<u></u>			1			ية ا	L .		Oxygenates	×						1	1	Confirm MTB		
	on SAR:		osit			∏ Āi	5	\$	Scal)xyger	PHG	F.	Total XO	포	울			1	☐ Confirm highe ☐ Confirm all hit		60
Sample Identification	Date Collected	Time Collected	Grab Composite	Sol	Water		Total Number of Containers	BTEX +	8260 full scan	Ĭ	$\chi_{ m DHG}\chi_{ m M}$	1/1/1	Lead T	VPH/EPH	NWTPH H HCID				Run oxy		
- QA	6-9-10		X		X		2	X		Ì	X					\top	1	†	Comments / F		
MW-6		1035	X		X		6	X			X	X	X						1		
MW-8		1055	X X	Ш	X	1	6	X			X	X	X]		
MW-9			<u> </u>	lacksquare	X,		9	Ž,			X	X	X,			\bot	\perp	1	1		
MW-10	 •	1205	4	╁┤	χ_	╀╌┼	6	~			X	X	X	\vdash	_		+	4_	[
	┼			+		1	\dashv			-i	\vdash		-		\vdash		╀	+	1		
	 		\dashv	H		H		_	Н		Н	<u> </u>	├-	-	-	+	+-	+	 		
			<u> </u>	+		† †	\neg				\vdash	┢──	\dagger		\vdash	┰	十	+-	1		
							_ :									\dashv	\top	_	1 .		
																	\perp]		1
	, r				 	$\downarrow \downarrow$						<u> </u>	 			_	\perp]		
	<u> </u>	Relinquis	bod bu		<u> </u>	Щ	_	_		┰	Date		Time	<u> </u>	Щ		_Ļ				
Transcript Time Requested (TAT) (please circ	(ek				وسد	2	_			د ا	- 4 1		6 a		(ecei	ed by	:			Date	Time
STD. TAY 72 hour 48 hou 24 hour 4 day 5 day		Relinquis	filed by:	Z						-чи-	Date		Time		Recei	ed by	:			Date	Time
Data Package Options (please circle if required)	EDF/EDI	D Relinquis	hed by:							1	Date		Time	才	Recei	red by	:			Date	Time
QC Summary Type I - Full		Relinquis	shed by	Comr	nercia	l Carri	ier:	_	—		-	!_		7,	Recei	d by	 -			Date	Time
Type VI (Raw Data) Disk / EDD WIP (RWQCB) Standard Format		UPS		dE		Oth										V	~	\sim		die	iro
Other,		Tempera	ture Uo	on Re	ceipt	716	<u> イン</u>	1 (30					1	311510	du Sas	de le	toot?	(Van \ 1/2		·

Client/Facility#: Site Address: City:	Chevron #209335 1225 N. 45Th Stree Seattle, WA	et .	Job Number Event Date: Sampler:	386750 6-9-10 ~L	(inclusive)
Well ID Well Diameter Total Depth Depth to Water Depth to Water	MW-10 2 in. 38.16 ft. 37.48 ft. xvF_	Volun Facto Check if water colum	r (VF) 4"= 0. in is less then 0.5 x3 case volume	.02 1"= 0.04 2"= 0.17 3"= .66 . 5"= 1.02 6"= 1.50 12"=	= 0.38 = 5.80 gal.
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:		Sampling Equipment: Disposable Bailer Pressure Bailer Discrete Bailer Peristaltic Pump QED Bladder Pump Other:		Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Descri Skimmer / Absorbant Sock Amt Removed from Skimm Amt Removed from Well: Water Removed: Product Transferred to:	(2400 hrs)ftftft ption: (circle one) lee:galgal
Start Time (purge) Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.)	e: 1205 / 6-9-7 e:gpm.	Sediment De ne:Volur Conductivity (µmhos/cm - µS)	scription: ne: Temperature (C / F)	Odor: Y / O	37,4 8
SAMPLE ID MW-/6	(#) CONTAINER REFRIG 3 x voa vial YES 2 x 1 liter ambers YES (x 500ml poly YES	HCL HCL HNO3	LANCASTER LANCASTER LANCASTER LANCASTER	ANALYSES NWTPH-Gx/BTEX(8021) NWTPH-Dx w/sgc TOTAL LEAD (ICP/MS 6020)	
Add/Replaced Lo	ock: Add	d/Replaced Plug:		Add/Replaced Bolt:	

Client/Facility#:	Chevron #20933	5	Job Number	: 386750	
Site Address:	1225 N. 45Th St	reet	Event Date:	6-9-10	(inclusive)
City:	Seattle, WA		Sampler:	ML	(
Well ID	MW-9		Date Monitored	: 6-9-10	<u> </u>
Well Diameter	2 in.	Vo	lume 3/4"= 0.		= 0.38
Total Depth	4/,5 ft.	Fa	ctor (VF) 4"= 0.		= 5.80
Depth to Water	38/17 tt.	Check if water col		-	
Depth to Water v	xVF v/ 80% Recharge [(Hei	tht of Water Column x 0.2	x3 case volume 0) + DTW]:	= Estimated Purge Volume:	gal.
Purge Equipment:				Time Started: Time Completed:	(2400 hrs)
Disposable Bailer		Sampling Equipme	nt:	Depth to Product:	(2400 fits)
Stainless Steel Bailer		Disposable Bailer Pressure Bailer		Depth to Water:	ft
Stack Pump		Discrete Bailer		Hydrocarbon Thickness: Visual Confirmation/Descri	
Suction Pump		Peristaltic Pump		Í	•
Grundfos		QED Bladder Pump		Skimmer / Absorbant Sock	(circle one)
Peristaltic Pump		Other:		Amt Removed from Skimm Amt Removed from Well:_	ier:gal
QED Bladder Pump				Water Removed:	yai
Other:				Product Transferred to:	
Start Time (purge) Sample Time/Date Approx. Flow Rate Did well de-water Time (2400 hr.)	e: 140 / 6 - 9 e:gpm.	Sediment I	Description: Under the control of t	Odor: Y / O	8.17
SAMPLE ID	(#) CONTAINER REF			ANALYSES	
MW- 4	x voa vial YE		LANCASTER	NWTPH-Gx/BTEX(8021)	
	2 x 1 liter ambers YE		LANCASTER	NWTPH-Dx w/sgc	
	/ x 500ml poly YE	S HNO3	LANCASTER	TOTAL LEAD (ICP/MS 6020)	
COMMENTS:	NO PUR	GE SAMPL	E TAKEN	V	
Add/Replaced Lo	ck:	Add/Replaced Plug: _		Add/Replaced Bolt:	

Client/Facility#:		 .	Job Number:		_
Site Address:	1225 N. 45Th Street	<u> </u>	Event Date:	6-9-10	_(inclusive)
City:	Seattle, WA		Sampler:	ML	
Well ID	MW- 8	·	Date Monitored:	6-9-10	
Well Diameter	2 in.	Volum			<u>-</u>
Total Depth	41.100 ft.		r (VF) 4"= 0.6		- 1
Depth to Water	27.2(ft.]	Check if water colum	in is less then 0.5	0 ft.	
				- Cation at all B	gal.
Depth to Water v	v/ 80% Recharge [(Height of	Water Column x 0.20)	+ DTWJ:	- and a sign of the sign of th	yai.
	4	·	· 	Time Started:	(2400 hrs)
Purge Equipment:		Sampling Equipment:	1/	Time Completed: Depth to Product:	(2400 hrs)
Disposable Bailer		Disposable Bailer	X	Depth to Water:	π ft
Stainless Steel Bailer		Pressure Bailer		Hydrocarbon Thickness:	ft
Stack Pump Suction Pump		Discrete Bailer		Visual Confirmation/Description	:
Grundfos		Peristaltic Pump		Skimmer / Absorbant Sock (circ	No one)
Peristaltic Pump		QED Bladder Pump		Amt Removed from Skimmer:	oal
QED Bladder Pump	· · · · · · · · · · · · · · · · · · ·	Other:		Amt Removed from Well:	gal
Other:				Water Removed: Product Transferred to:	
	- , -			Troduct Transierred to	
Start Time (purge) Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.)	e: 1055 / 6-9-10 e:gpm. ?lf yes, Time Volume (gal.) pH	Sediment De	scription: ne: Temperature (C / F)	PAIN Odor: Y / (1) gal. DTW @ Sampling:	7.21
SAMPLE ID	(#) CONTAINER REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES	
MW- 9	3 x voa vial YES	HCL		NWTPH-Gx/BTEX(8021)	
	2 x 1 liter ambers YES	HCL		NWTPH-Dx w/sgc	
	x 500ml poly YES	HNO3	LANCASTER	TOTAL LEAD (ICP/MS 6020)	
		 			
	_				———
			<u> </u>		———
COMMENTS: _/	NO PURGE S	Ample 1	AKEN		
Add/Replaced Lo	ck: Add/	Replaced Plug:		Add/Replaced Bolt:	

Client/Facility#:	Chevron #2	09335		Job	Number:	386750		
Site Address:	1225 N. 45T	h Street		Eve	ent Date:	6-9.	16	 (inclusive)
City:	Seattle, WA				npler:			
Well ID	MW- 7	<u></u>		Date N	fonitored:	6-9	-10	
Well Diameter		<u>n.</u>		Volume	3/4"= 0.0	2 1"= 0.04	2"= 0.17	3"= 0.38
Total Depth	41.62 f	<u>t.</u>		Factor (VF)	4"= 0.6		6"= 1.50	12" = 5.80
Depth to Water	28,20 f		Check if water					 -
Depth to Water w	// 80% Recharg	_xVF e [(Height of	Water Column x	0.20) + DTW]	se volume =			gal.
Purge Equipment:		!	Sampling Equip	mont.		Time S Time C	tarted: ompleted:	(2400 hrs) (2400 hrs)
Disposable Bailer	/		Disposable Bailer		1	Depth t	o Product: Z	7.03 ft
Stainless Steel Bailer			Pressure Bailer		/-	Depth t	o Water:	8.20 ft
Stack Pump		Į	Discrete Bailer		-/	Visual (arbon Thickne Confirmation/D	SS:ft
Suction Pump		F	Peristaltic Pump	<u> </u>	/	Gol	AY	•
Grundfos			QED Bladder Pun			Skimm	r / Absorbant	Sock (circle one)
Peristaltic Pump		C	Other:	/		Amt Re	noved from S noved from W	kimmer:gal /ell:gal
QED Bladder Pump				,		Water F	emoved:	
Other:	/					Product	Transferred to	D:
Start Time (purge):			10/2-46-2					
Sample Time/Date		_/	1	er Conditions Color:		Odor: Y /	<u> </u>	
Approx. Flow Rate		gpm.		nt Description		Odor: Y /	·	
Did well de-water?		yes, Time		-		- DTM @		
		, , , , , , , , , , , , , , , , , , ,	.——	volume	9	pal. DTW @	Sampling:	
Time (2400 hr.)	Volume (gal.)	рΗ	Conductivity		erature	D.O.		RP /
(2400 111.)	(gai.)		(μmhos/cm - μ	is) (C	/ F)	(mg/L)	(m	1V)
	/				<u> </u>			
				- /				
				_/				
	 -							
SAMPLEID	(#) CONTAINER	REFRIG.	LABORATOR PRESERV. T		ATION RATORY		ANALYS	re
MW-	x voa vial	YES	HCL			VWTPH-Gx/BT		
	x 1 liter ambers	YES	HCL			WTPH-Dx w/s		
	x 500ml poly	YES	HNO3/	LANG	CASTER T	OTAL LEAD (CP/MS 6020)	
/		-\-	<u> </u>					
/	 -				$\overline{}$	/		
				_				
COMMENTS:	Skimm	ER J	NWE	11	Spr			
				/				
				<u>-</u>				
Add/Replaced Loc	sk:	Add/f	Replaced Plug	g:	#	Add/Replace	d Bolt:	

Client/Facility#:			Job Number		_
Site Address:	1225 N. 45Th Stree	<u>et</u>	Event Date:	6-9-10	_(inclusive)
City:	Seattle, WA		Sampler:	ML	_
Well ID	MW-6		Date Monitored	: 6-9-10	
Well Diameter	2 in.	Vojun	ne 3/4"= 0		
Total Depth	38,37 ft.	I	r (VF) 4"= 0	= 0.11 0 = 0.0	-
Depth to Water	26 84 ft.	Check if water colum	nn is less then 0.	50 ft.	_
Depth to Water w	xVF		x3 case volume	= Estimated Purge Volume:	_gal.
Deptil to Water W	// 80% Recharge [(Height	of Water Column x 0.20)	+ DTW]:	Time Started:	(2400 hrs)
Purge Equipment:		Sampling Equipment:	/ /	Time Completed:	(2400 hrs)
Disposable Bailer		Disposable Bailer	$\boldsymbol{\chi}$	Depth to Product:	ft
Stainless Steel Bailer		Pressure Bailer		Depth to Water: Hydrocarbon Thickness:	ft ft
Stack Pump		Discrete Bailer		Visual Confirmation/Description	π n:
Suction Pump		Peristaltic Pump		<u> </u>	
Grundfos	/	QED Bladder Pump		Skimmer / Absorbant Sock (circ Amt Removed from Skimmer:_	de one)
Peristaltic Pump QED Bladder Pump		Other:		Amt Removed from Well:	gal
Other:				Water Removed:	
<u> </u>	- · · · · · · · · · · · · · · · · · · ·			Product Transferred to:	
Start Time (purge): Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.)	e: 1035 / 6-9-1 e:gpm.	Weather Cor Water Color: Sediment De ie: Volur Conductivity (µmhos/cm - µS)	scription:	Odor: Y / (1) MONU gal. DTW @ Sampling: 26. D.O. ORP (mg/L) (mV)	84
		LABORATORY	50011171011		
SAMPLE ID	(#) CONTAINER REFRIG	LABORATORY IN	LABORATORY	ANALYSES	 -
MW- 10		HCL	LANCASTER	NWTPH-Gx/BTEX(8021)	
2	x 1 liter ambers YES	HCL	LANCASTER	NWTPH-Dx w/sgc	
	x 500ml poly YES	HNO3	LANCASTER	TOTAL LEAD (ICP/MS 6020)	
		 	<u> </u>		
COMMENTS:	NO PURGE	34mple	TAKEN		
Add/Replaced Loc	ck: Add	//Replaced Plug:	·	Add/Replaced Bolt:	

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

Table 2

Separate Phase Hydrocarbon Thickness/Removal Data

Former Chevron Service Station #209335 1225 North 45th Street Seattle, Washington

EXPLANATIONS:

DTP = Depth to Product

DTW = Depth to Water

(ft.) = Feet

SPH = Separate Phase Hydrocarbons

-- = Not Measured/Not Analyzed

Note: Historical data has been altered to correct error in original reporting of depth to product as depth to water.

- Interface probe could not detect this type of LNAPL, unable to gauge hydrocarbon thickness. From visual confirmation estimate thickness to be approximately 1.5 feet.
- Interface probe could not detect this type of LNAPL, unable to gauge hydrocarbon thickness. From visual confirmation estimate thickness to be approximately 2.25 feet.

200225-1-W28/750 10 As a \$0.6/00/10

Table 2
Separate Phase Hydrocarbon Thickness/Removal Data
Former Chevron Service Station #209335

1225 North 45th Street Seattle, Washington

WELL ID	DATE	DTP (fk)	DTW (fl.)	SPH THICKNESS (ft.)	AMOUNT BAILED (SPH + WATER) (gallons)
MW-4 (cont)	11/22/04		36.81	0.00	0.00
	01/04/05		38.11	0.00	0.00
	01/14/05		37.58	0.00	0.00
	ABANDONED				
MW-5	09/24/01	38.40	38.44	0.04	0.00
	12/13/01	38.55	38.59	0.04	0.00
	03/08/02	37.96	38.46	0.50	2.00
	05/29/02	37.60	38.05	0.45	2.00
	08/07/02	37.73	38.12	0.39	2.00
	09/16/02	38.00	38.39	0.39	2.00
	10/15/02	38.09	38.47	0.38	2.00
	11/22/02	37.84	38.26	0.42	2.00
	12/05/02	38.42	38.78	0.36	2.00
	01/28/03	37.88	38.24	0.36	2.00
	02/13/03	38.33	38.68	0.35	2.00
	03/04/03	37.54	37.89	0.35	2.00
	04/21/03	37.96	38.29	0.33	2.00
	05/08/03	38.50	38.82	0.32	2.00
	06/03/03	37.42	37.76	0.34	2.00
	07/06/03	37.77	38.11	0.34	2.00
	08/18/03	38.54	38.86	0.32	2.00
	10/27/03	WELL DRY/OBSTRUCTED			
	11/17/03	37.87	38.17	0.30	2.00
	12/31/03	WELL DRY/OBSTRUCTED			
	02/09/04	WELL DRY/OBSTRUCTED			
	03/04/04	WELL DRY/OBSTRUCTED			
	03/31/04	WELL DRY/OBSTRUCTED			
	06/28/04	WELL DRY/OBSTRUCTED			
	09/11/04	WELL DRY/OBSTRUCTED			
	09/29/04	WELL DRY/OBSTRUCTED			
	11/22/04	WELL DRY/OBSTRUCTED			
	01/04/05	WELL DRY/OBSTRUCTED			
	01/14/05 ABANDONED	WELL DRY/OBSTRUCTED			

Table 2
Separate Phase Hydrocarbon Thickness/Removal Data

Former Chevron Service Station #209335 1225 North 45th Street Seattle, Washington

WELL ID	DATE	DTP	DTW	SPH THICKNESS	AMOUNT BAILED (SPH+WATER)
		(fi.)	(ft.)	(fi.)	(gallons)
MW-7	06/16/09	INACCESSIBLE			
	07/01/09	27.39	1	1 .	0.00
	12/11/09	27.50	2	2	0.00
	06/09/10	27.03	28.20	1.17	
MW-2	03/08/02	37.24	38.00	0.76	2.00
	05/29/02	36.81	37.54	0.73	2.00
	09/16/02	37.19	37.61	0.42	2.00
	10/15/02	37.24	37.68	0.44	2.00
	11/22/02	37.12	37.63	0.51	2.00
	12/05/02	37.51	38.10	0.59	2.00
	01/28/03	36.77	37.33	0.56	2.00
	02/13/03	37.44	38.02	0.58	2.00
	03/04/03	INACCESSIBLE - VEH			
	04/21/03	37.21	37.78	0.57	2.00
	05/08/03	37.43	37.94	0.51	2.00
	06/03/03	37.37	37.91	0.54	2.00
	07/06/03	36.96	37.51	0.55	2.00
	08/18/03	37.49	38.02	0.53	2.00
	10/27/03	37.54	39.98	2.44	2.00
	11/17/03	37.10	37.58	0.48	2.00
	12/31/03	36.18	38.19	2.01	2.00
	02/09/04	37.00	37.49	0.49	2.00
	03/04/04	35.85	37.06	1.21	2.00
	03/31/04	37.32	39.05	1.73	0.00
	06/28/04	37.32	39.05	1.73	2.00
	09/11/04	37.65	39.10	1.45	0.00
	09/29/04	37.71	39.39	1.68	2.00
	11/22/04	36.89	38.16	1.27	2.00
	01/04/05	37.88	39.80	1.92	2.00
	01/14/05	37.49	39.02	1.53	2.00
	ABANDONED	37.49	37.02	1.55	2.00
MW-4	03/04/03	36.68	36.71	0.03	0.33
	06/03/03	36.59	36.63	0.04	0.33
	07/06/03	36.90	36.93	0.03	0.33
	08/18/03	36.76	36.80	0.04	0.33
	10/27/03		37.96	0.00	0.00
	11/17/03	36.34	36.37	0.03	0.33
	12/31/03		36.88	0.00	0.00
	02/09/04	36.14	36.17	0.03	0.33
	03/04/04		36.74	0.00	0.00
	03/31/04		37.59	0.00	0.00
	06/28/04		37.54	0.00	0.00
	09/11/04	37.78	37.81	0.03	0.00
	09/29/04	,	37.86	0.00	0.00

00000E --t- #100/#60

* CACION!

Table 1

Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station # 209335 1225 North 45th Street Seattle, Washington

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to December 16, 2000, were compiled from reports prepared by Delta Environmental Consultants Inc. Groundwater monitoring data and laboratory analytical results for February 9, 2006, and May 3, 2007, events were compiled from reports prepared by SAIC.

TOC = Top of Casing	DRO = Diesel Range Organics	T. Lead = Total Lead
(ft.) = Feet	HRO = Heavy Range Organics	ND = Not Detected
DTP = Depth to Product	GRO = Gasoline Range Organics	NP = No Purge
DTW = Depth to Water	B = Benzene	= Not Measured/Not Analyzed
GWE = Groundwater Elevation	T = Toluene	QA = Quality Assurance/Trip Blank
SPH = Separate Phase Hydrocarbon	E = Ethylbenzene	MTCA = Model Toxics Control Act Cleanup Regulations
SPHT = Separate Phase Hydrocarbon Thickness	X = Xylenes	
TDH T-4-1D (1 YY)		[WAC 173-340-720(2)(a)(I), as amended 02/01]

TPH = Total Petroleum Hydrocarbons MTBE = Methyl Tertiary Butyl Ether

- * TOC elevations provided by SAIC. TOC elevations are referenced to mean sea level.

 TOC elevations have been provided by Delta Environmental Consultants, Inc. referenced to an assumed datum in feet.
- ** GWE has been corrected for the presence of SPH; correction factor = [(TOC DTW) + (SPHT x 0.80)]
- *** GWE has been corrected for the presence of SPH; correction factor = [(TOC DTP SPHT) + (SPHT x 0.80)]; Historical data has been altered to correct error in original reporting of depth to product as depth to water.
- Data provided by Delta Environmental Consultants, Inc.
- Detection limit raised. Refer to analytical reports.
- Analyzed with silica-gel cleanup.
- Filtered at the laboratory.
- Laboratory report indicates results in the diesel organics range are primarily due to overlap from a gasoline range product.
- ⁶ MTBE by EPA Method 8260.
- Laboratory report indicates the sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- Laboratory report indicates the sample was prepared outside of the method established holding time.
- 9 Skimmer in well.
- Interface probe could not detect LNAPL/Groundwater Interface, unable to gauge hydrocarbon thickness and calculate corrected GWE. From visual confirmation estimate thickness to be approximately 1.5 feet.
- Interface probe could not detect LNAPL/Groundwater Interface, unable to gauge hydrocarbon thickness and calculate corrected GWE. From visual confirmation estimate thickness to be approximately 2.25 feet.
- Laboratory report indicates due to the nature of the sample extract matrix, a dilution was used for the analysis. The reporting limits were raised accordingly.
- Laboratory confirmed result.

7

Table 1

Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station # 209335 1225 North 45th Street Seattle, Washington

VELL ID/ ATE	TOC*	DTP (fl.)	DTW (fi.)	SPHT (ft.)	GWE (fl.)	TPH-DRO	TPH-HRO (μg/L)	TPH-GRO (µg/L)	Β (μg/L)	T (µg/L)	E	X	MTBE	T. Lead
IW-5 (cont)				0.9	······································	·.···(#8/#/	· · · · · · · · · · · · · · · · · · ·	·····(PE/A)	(#8/£)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
1/22/04	99.42	WELL DRY	//ODCTDI	CTED			•							
1/04/05	99.42	WELL DRY										-		
1/14/05	99.42	WELL DRY												
BANDONED	33.42	WELL DK	t/OBSTRU	CIED										
BANDONED														
'RIP BLANK									•					
2/16/00								ND	ND	ND	ND	ND	ND	
3/26/01								ND	ND	ND	ND	ND	ND	
6/25/01								<50.0	< 0.500	< 0.500	<0.500	<1.00		
9/24/01								<50.0	< 0.500	<0.500	< 0.500	<1.00	<u></u>	
2/13/01								<80.0	< 0.500	< 0.500	<0.500	<1.00		
3/08/02								<50	< 0.50	< 0.50	< 0.50	<1.5		
5/29/02								<50	< 0.50	< 0.50	< 0.50	<1.5		
9/16/02								< 50	< 0.50	<0.50	< 0.50	<1.5		
2/05/02								<50	< 0.50	< 0.50	< 0.50	<1.5		
3/04/03								<50	< 0.50	< 0.50	< 0.50	<1.5		
0/27/03								<50	<0.5	< 0.5	< 0.5	<1.5		
)A														
3/31/04								<50	<0.5	< 0.5	< 0.5	<1.5		
6/28/04								<50	<0.5	< 0.5	< 0.5	<1.5		
9/29/04								<50	<0.5	<0.5	< 0.5	<1.5		
1/04/05								<50	< 0.5	< 0.5	< 0.5	<1.5		
6/16/09								<50	<0.5	< 0.5	< 0.5	<1.5		
7/01/09								<50	<0.5	< 0.5	< 0.5	<1.5		
2/11/09								<50	<0.5	< 0.5	< 0.5	<1.5		
6/09/10								<50	<0.5	<0.5	<0.5	<1.5		

	TPH-DRO	TPH-HRO	TPH-GRO	В	T	E	X	MTBE	D. Lead
Standard Laboratory Reporting Limits:	-	-	50	0.5	0.5	0.5	1.5		0.00100
MTCA Method A Cleanup Levels:	500	500	800/1,000	5	1,000	700	1,000	20	
Current Method:	NWTPH-Dx	x + Extended		N	WTPH-Gx and	EPA 8021			EPA 6020

Table 1 Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station # 209335

1225 North 45th Street Seattle, Washington

Seattle, washington														
WELL ID/	TOC*	DTP	DTW	SPHT	GWE	TPH-DRO	TPH-HRO	TPH-GRO	В	Ţ	E	X	MTBE	T. Lead
DATE	(ft.)	(fi)	(fL)	(fi.)	(ft.)	(μg/L)	(µg/L)	(μg/ L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/ L)	(µg/L)
VIW-4 (cont)												<u> </u>	····(s. 67	
11/22/04	98.52		36.81	0.00	61.71									
)1/04/05 NP	98.52		38.11	0.00	60.41	$1,600^3$	<250 ³	1,600	10	13	60	 110		
)1/14/05	98.52		37.58	0.00	60.94					13		110		
ABANDONED														
VIW-5														
10/11/001	99.42	'	34.50		64.92									
12/16/00	99.42		37.18	0.00	62.24	5,080 ³	ND^3	146,000	ND^2	15,100	4,160	24,100	ND^2	0.0200^4
)3/26/01	99.42		37.91	0.00	61.51	$77,900^{3,5}$	ND^3	149,000	256	10,600	4,000	24,200	2ND/ND6	0.0200
)6/25/01	99.42		38.14	0.00	61.28	109,000 ³	$<18,100^3$	127,000	210	9,580	3,730	21,500		
)9/24/01	99.42	38.40	38.44	0.04	61.01***	NOT SAMPL	ED DUE TO	THE PRESENC	E OF SPH		- -	,500		
12/13/01	99.42	38.55	38.59	0.04	60.86***			THE PRESENC						
)3/08/02	99.42	37.96	38.46	0.50	61.36***			THE PRESENC						
)5/29/02	99.42	37.60	38.05	0.45	61.73***			THE PRESENC						
)8/07/02	99.42	37.73	38.12	0.39	61.61***									
)9/16/02	99.42	38.00	38.39	0.39	61.34***	NOT SAMPL	ED DUE TO	THE PRESENC	E OF SPH					
10/15/02	99.42	38.09	38.47	0.38	61.25***									
1/22/02	99.42	37.84	38.26	0.42	61.50***									
12/05/02	99.42	38.42	38.78	0.36	60.93***	NOT SAMPL	ED DUE TO	THE PRESENC	E OF SPH					
)1/28/03	99.42	37.88	38.24	0.36	61.47***									
)2/13/03	99.42	38.33	38.68	0.35	61.02***						~=			
)3/04/03	99.42	37.54	37.89	0.35	61.81***	NOT SAMPL	ED DUE TO	THE PRESENC	E OF SPH					
)4/21/03	99.42	37.96	38.29	0.33	61.39***									
)5/08/03	99.42	38.50	38.82	0.32	60.86***									
)6/03/03	99.42	37.42	37.76	0.34	61.93***	NOT SAMPL	ED DUE TO	THE PRESENC	E OF SPH					
)7/06/03	99.42	37.77	38.11	0.34	61.58***	 .								
)8/18/03	99.42	38.54	38.86	0.32	60.82***									
10/27/03	99.42	WELL DRY	Y/OBSTRU	CTED										
1/17/03	99.42	37.87	38.17	0.30	61.49**									
12/31/03	99.42	WELL DRY	Y/OBSTRU	CTED										
)2/09/04	99.42	WELL DRY	Y/OBSTRU	CTED										
)3/04/04	99.42	WELL DRY	Y/OBSTRU	CTED										
)3/31/04	99.42	WELL DRY	Y/OBSTRU	CTED										
)6/28/04	99.42	WELL DRY												
)9/11/04	99.42	WELL DRY												
)9/29/04	99.42	WELL DRY	Y/OBSTRU	CTED										

Table 1 Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station # 209335 1225 North 45th Street Seattle, Washington

Seattle, wasnington															
WELL ID		TOC*	DTP	DTW	SPHT	GWE	TPH-DRO	TPH-HRO	TPH-GRO	В	T	E	***** X *****	MTBE	T. Lead
DATE		(ft.)	(fi.)	(ft)	(ft)	(fi.)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/ L)	(μg/L)	(µg/L)	(μg/L)
MW-3 (coi	nt)											7	11 14 BE 1 21 1 1	(r-a/,	
12/05/02	•	98.76		37.58	0.00	61.18	SAMPLED S	EMI-ANNUA	LLV						
03/04/03	NP	98.76		37.79	0.00	60.97	<250 ³	<250 ³	<50 ·	<0.50	<0.50	<0.50	 -1.5		
06/03/03		98.76		37.68	0.00	61.08		EMI-ANNUA	- -	~0.50			<1.5		
10/27/03	NP	98.76		38.00	0.00	60.76	<250 ³	$<250^3$	<50	<0,5	 <0.5				
03/31/04	NP	98.76	·	37.65	0.00	61.11	$< 800^3$	$<1,000^3$	<50 <50	<0.5	<0.5	<0.5	<1.5		
06/28/04		98.76		37.68	0.00	61.08		EMI-ANNUA				<0.5	<1.5		
09/29/04	NP	98.76		38.01	0.00	60.75	<250 ³	<250 ³	<50	<0.5	<0.5	 -0.5			
01/04/05		98.76		38.19	0.00	60.57		EMI-ANNUA				<0.5	<1.5		
ABANDO	NED	70.70		50.15	0.00	00.57	OAMI LED B	EMI-AMINOA	TL I						
125111201	122						,								
MW-4															
10/11/00 ¹		98.52		35.00		63.52									
12/16/00		98.52		36.35	0.00	62.17	$ND^{2,3}$	$ND^{2,3}$	58,200	326	5,520	1,430	8,520	ND^2	0.01234
03/26/01		98.52		37.00	0.00	61.52	266 ^{3,5}	ND^3	27,200	178	2,160	785	4,160	² ND/ND ⁶	0.0123
06/25/01		98.52		37.25	0.00	61.27	$<250^{3}$	<750 ³	12,300	69.0	654	416	1,910		
09/24/01		98.52		37.60	0.00	60.92	<250 ^{3,8}	<500 ^{3,8}	4,130	30.1	154	197	684		
12/13/01		98.52		37.72	0.00	60.80	<250 ³	<500 ³	5,490	30.3	175	177	679		
03/08/02	NP	98.52		38.36	0.00	60.16	<250 ³	<750 ³	9,000	<50	150	170	710		
05/29/02	NP	98.52		36.86	0.00	61.66	<250 ³	<750 ³	6,700	22	150	190	780		
08/07/02		98.52		36.92	0.00	61.60							700		
09/16/02	NP	98.52		37.16	0.00	61.36	<250 ³	<250 ³	7,500	46	230	240	630		
12/05/02	NP	98.52		37.53	0.00	60.99	<250 ³	<250 ³	14,000	73	400	540	1,500		
03/04/03		98.52	36.68	36.71	0.03	61.83***	NOT SAMPI	ED DUE TO	THE PRESENC						
06/03/03		98.52	36.59	36.63	0.04	61.92***			THE PRESENC						
07/06/03		98.52	36.90	36.93	0.03	61.61***			~ ~						
08/18/03		98.52	36.76	36.80	0.04	61.75***									
10/27/03	NP	98.52		37.96	0.00	60.56	<400 ³	<500 ³	2,200	16	55	76	170		
11/17/03		98.52	36.34	36.37	0.03	62.17**			_,						
12/31/03		98.52		36.88	0.00	61.64									
02/09/04		98.52	36.14	36.17	0.03	62.37**									
03/04/04		98.52		36.74	0.00	61.78									
03/31/04	NP	98.52		37.59	0.00	60.93	<250 ³	<250 ³	3,900	14	96	110	340		
06/28/04	NP	98.52		37.54	0.00	60.98	<250 ³	<250 ³	1,600	8.5	15	59	110		
09/11/04		98.52	37.78	37.81	0.03	60.73**									
09/29/04	NP	98.52		37.86	0.00	60.66	<250 ³	<250 ³	1,500	18	40	76	170		
									,		.0	, 0	1/0		

Table 1

Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station # 209335 1225 North 45th Street Seattle, Washington

Scattle, washington															
WELL ID		TOC*	DTP	DTW	SPHT	GWE	TPH-DRO	TPH-HRO	TPH-GRO	В	T	E	X	MTBE	T. Lead
DATE		(ft.)	(ft.)	(ft.)	(11.)	(fi.)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2 (co	nt)							·				, , , , , , , , , , , , , , , , , , , ,	<u> </u>	·····	3 · 4 · 6 · 1 · 2 · · · · · · ·
09/16/02	·	98.70	37.19	37.61	0.42	61.43***	NOT SAMPI	ED DUE TO	THE PRESEN	CE OF SPH					
10/15/02		98.70	37.24	37.68	0.44	61.37***	<u></u>								
11/22/02		98.70	37.12	37.63	0.51	61.48***									
12/05/02		98.70	37.51	38.10	0.59	61.07***	NOT SAMPI	ED DUE TO	THE PRESEN						
01/28/03		98.70	36.77	37.33	0.56	61.82***									
02/13/03		98.70	37.44	38.02	0.58	61.14***									
03/04/03		98.70	INACCES	SIBLE - VE	HICLE PAI	RKED OVER	R WELL								
04/21/03		98.70	37.21	37.78	0.57	61.38***									
05/08/03		98.70	37.43	37.94	0.51	61.17***									
06/03/03		98.70	37.37	37.91	0.54	61.22***	NOT SAMPI	ED DUE TO	THE PRESEN	CE OF SPH				·	
07/06/03		98.70	36.96	37.51	0.55	61.63***									
08/18/03		98.70	37.49	38.02	0.53	61.10***									
10/27/03		98.70	37.54	39.98	2.44	60.67**	NOT SAMPI	ED DUE TO	THE PRESEN	CE OF SPH				 	
11/17/03		98.70	37.10	37.58	0.48	61.50**									
12/31/03		98.70	36.18	38.19	2.01	62.12**									
02/09/04		98.70	37.00	37.49	0.49	61.60**									
03/04/04		98.70	35.85	37.06	1.21	62.61**									
03/31/04		98.70	37.32	39.05	1.73	61.03**	NOT SAMPI	ED DUE TO	THE PRESEN	CE OF SPH					
06/28/04		98.70	37.32	39.05	1.73	61.03**			THE PRESEN						
09/11/04		98.70	37.65	39.10	1.45	60.76**									
09/29/04		98.70	37.71	39.39	1.68	60.65**	NOT SAMPI	ED DUE TO	THE PRESEN	CE OF SPH	•				
11/22/04		98.70	36.89	38.16	1.27	61.56**									
01/04/05		98.70	37.88	39.80	1.92	60.44**	NOT SAMPI	ED DUE TO	THE PRESEN	CE OF SPH					
01/14/05		98.70	37.49	39.02	1.53	60.90**									
ABANDO1	NED														
MW-3															
10/11/00 ¹		98.76		34.00		64.76									
12/16/00		98.76		36.39	0.00	62.37	ND^3	ND^3	ND	ND	0.612	ND	1.95	ND	ND⁴
03/26/01		98.76		37.05	0.00	61.71	ND^3	ND^3	ND	ND	ND	ND	ND	ND	
06/25/01		98.76		37.29	0.00	61.47	<250 ³	<750 ³	<50.0	< 0.500	< 0.500	< 0.500	<1.00		
09/24/01		98.76		37.64	0.00	61.12	<250 ^{3,8}	<500 ^{3,8}	<50.0	< 0.500	< 0.500	< 0.500	<1.00		
12/13/01		98.76		37.78	0.00	60.98	<250 ³	<500 ³	<80.0	< 0.500	< 0.500	< 0.500	<1.00	<u></u>	
03/08/02	NP	98.76		37.28	0.00	61.48	<250 ³	<750 ³	320	< 0.50	0.64	2.1	15		
05/29/02		98.76		36.92	0.00	61.84		EMI-ANNUA	LLY						
09/16/02	NP	98.76		37.21	0.00	61.55	$<250^3$	<250 ³	<50	< 0.50	< 0.50	< 0.50	<1.5		
1															

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron Service Station # 209335

Former Chevron Service Station # 20933 1225 North 45th Street Seattle, Washington

Harry Yrv															
WELL ID		TOC*	DTP	DTW	SPHT	GWE	TPH-DRO	TPH-HRO	TPH-GRO	В	T	Ē	X	MTBE	T. Lead
DATE		(ft.)	(fi.)	(fi.)	(ft.)	(ft.)	(μg/ L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-10															
05/03/07		207.29		36.74	0.00	170.55	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
06/16/09		207.29	INACCES	SIBLE										 	
07/01/09	NP	207.29		38.72	0.00	168.57	$<30^{3}$	<69 ³	<50	< 0.5	<0.5	<0.5	<1.5		10.9
12/11/09	NP	207.29		35.91	0.00	171.38	49³	<69 ³	<50	<0.5	<0.5	<0.5	<1.5		
06/09/10	NP	207.29		37.48	0.00	169.81	50 ³	88 ³	<50	<0.5	<0.5	< 0.5	<1.5 <1.5		13.4
								-		-0.2	10.5	~0. 5	~1.5		7.2
MW-1															
10/11/00 ¹		97.95		34.50		63.45									
12/16/00		97.95		35.91	0.00	62.04	$ND^{2,3}$	$ND^{2,3}$	74.4	ND	ND	ND	 ND	 ND	 ND⁴
03/26/01		97.95		36.54	0.00	61.41	ND^3	ND^3	ND	ND	ND	ND	ND ND	ND ND	
06/25/01		97.95		36.78	0.00	61.17	<281 ³	<842 ³	<50.0	< 0.500	< 0.500	< 0.500	<1.00		
09/24/01		97.95		37.14	0.00	60.81	$<250^{3,8}$	<500 ^{3,8}	<50.0	< 0.500	< 0.500	<0.500	<1.00		
12/13/01		97.95		37.25	0.00	60.70	<250 ³	<500 ³	<80.0	< 0.500	< 0.500	<0.500	<1.00		<u></u>
03/08/02	NP	97.95		36.79	0.00	61.16	<250 ³	<750 ³	<50	<0.50	<0.50	<0.50	<1.00		
05/29/02		97.95		36.44	0.00	61.51	SAMPLED S					~0.50 			
09/16/02	NP	97.95		36.71	0.00	61.24	<250 ³	<250 ³	<50	< 0.50	< 0.50	<0.50	<1.5		
12/05/02		97.95		37.09	0.00	60.86	SAMPLED S				~0.50 	~0.50 			
03/04/03	NP	97.95		37.26	0.00	60.69	<250 ³	<250 ³	100	<0.50	< 0.50	< 0.50	 -2.0		* -
06/03/03		97.95		37.09	0.00	60.86	SAMPLED S						<3.0		
10/27/03		97.95		37.42	0.00	60.53			INSUFFICIEN						
03/31/04	NP	97.95		37.12	0.00	60.83	<800 ³	$<1,000^3$	<50	<0.5	<0.5	 -0.5			
06/28/04		97.95		37.14	0.00	60.81	SAMPLED S	•		~0.J		<0.5	<1.5		
09/29/04		97.95		37.50	0.00	60.45			INSUFFICIEN						
01/04/05		97.95		37.61	0.00	60.34		EMI-ANNUA							
ABANDON	JED			57.01	0.00	00.54	Or HAIT LELD O	LMI-AINOA							
MW-2															
10/11/00 ¹		98.70		34.50		64.20									•
12/16/00		98.70		36.46	0.00	62.24	1,000 ³	ND ³	28,100	283	2.500		4.000	ND^2	
03/26/01		98.70		37.12	0.00	61.58	1,180 ^{3,5}	ND ³	17,000	143	2,560	693	4,020		0.00194 ⁴
)6/25/01		98.70		37.37	0.00	61.33	418 ^{3,5}	$<750^{3}$	17,000	92.3	1,450 547	378	2,180	² ND/ND ⁶	
)9/24/01		98.70		37.72	0.00	60.98	4,840 ^{3,7,8}	<557 ^{3,8}	22,100	120	1,380	181 658	1,010		
12/13/01		98.70		37.89	0.00	60.81	5,540 ^{3,5}	<500 ³	84,000	185	1,380 3,960		4,100		
)3/08/02		98.70	37.24	38.00	0.76	61.31***	•		THE PRESEN(1,590	9,950		
)5/29/02		98.70	36.81	37.54	0.73	61.74***			THE PRESENC						
			2 3.01	U 7 . U T	0.75	01.7°T	TOT DAME L	201 10	TITE TICEOEIN	OF OLDER					

Table 1

Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station # 209335 1225 North 45th Street Seattle, Washington

WELL-ID/ TOC* DTP DTW SPHT CWF TRU DEC TOF HEAD TOTAL OF COMPANY O														
<i>!</i>	TOC*	DTP	DTW	SPHT	GWE	TPH-DRO	TPH-HRO	TPH-GRO	В		33.00.00 m 0.00.00	000000	· `** ት/ተነነጋ ነው · ` ` `	T. Lead
	(ft.)	(fi.)	(fi)	(fi)	(ft.)	(µg/L)	(μg/L)			********				
					_					<u></u>	res.	IPE LJ	(MS/L)	(µg/L)
	197.18		36.74	0.00	160 44	680	0.6	1500	-0.5					
		INACCES								1	4	30		- -
NP														
NP												<1.5		22.9
												<1.5		0.76
	2220		20.04	0.00	1/0.34	300	340 ·	5,900-	<0.5	<0.5	<0.5	350 ¹³	– .	13.2
	197.42	37.87	38.17	0.30	159.49**									
	197.42	26.55												
	197.42	INACCES												
	197.42	27.39	10	10		NOT SAMPI	FD DIE TO	THE DDECENI	CE OF CDIA					
	197.42	27.50	11	11		NOT SAMPLED DUE TO THE PRESENCE OF SPH								
	197.42	27.03	28.20	1.17										,
							DEE TO	THE TREASE	MCE OF SPH				_	
	197.35		36.74	0.00	160.61	280	<96	440	<0.5	1.1	2.2	2.0		
	197.35		36.74											
	197.35 INACCESSIBLE													
NP	197.35			0.00	169.51	390 ³								
NP	197.35													3.5
NP	197.35													7.3
				0.00	2,012	200	100	330	<0.5	<0.5	<0.5	<1.5		16.5
	208 11		36 74	በ በለ	171 27	~400	ZE00							
											4	18		
NP									<0.5	<0.5	<0.5	<1.5		19.3
											<0.5	<1.5		14.5
111	200.XX		30.17	0.00	109.94	42	110	<50	<0.5	<0.5	<0.5	<1.5		21.2
	NP NP NP	197.18 197.18 197.18 197.18 NP 197.18 NP 197.18 NP 197.18 NP 197.42 197.42 197.42 197.42 197.42 197.42 197.35 197.35 NP 197.35	197.18 197.18 INACCES NP 197.18 INACCES NP 197.18 197.18 NP 197.18 197.42 37.87 197.42 26.55 197.42 INACCES 197.42 27.39 197.42 27.39 197.42 27.50 197.42 27.03 197.35 197.35 INACCES NP 197.35 197.35 INACCES NP 197.35 197.35 INACCES NP 197.35 197.35 INACCES NP 197.35 197.35 197.35 197.35 INACCES NP 197.35 197	197.18 36.74 197.18 INACCESSIBLE NP 197.18 INACCESSIBLE NP 197.18 27.46 NP 197.18 27.55 NP 197.18 26.84 197.42 37.87 38.17 197.42 26.55 27.80 197.42 INACCESSIBLE 197.42 27.39 10 197.42 27.50 11 197.42 27.03 28.20 197.35 36.74 197.35 INACCESSIBLE NP 197.35 36.74 197.35 36.74 197.35 27.84 NP 197.35 27.84 NP 197.35 27.91 NP 197.35 27.21 208.11 36.74 208.11 38.72 NP 208.11 38.72 NP 208.11 38.86	197.18 36.74 0.00 197.18 INACCESSIBLE NP 197.18 27.46 0.00 NP 197.18 27.55 0.00 NP 197.18 26.84 0.00 197.42 37.87 38.17 0.30 197.42 26.55 27.80 0.00 197.42 INACCESSIBLE 197.42 27.39 10 197.42 27.39 11 197.42 27.03 28.20 1.17 197.35 36.74 0.00 197.35 INACCESSIBLE NP 197.35 36.74 0.00 197.35 INACCESSIBLE NP 197.35 27.84 0.00 NP 197.35 27.84 0.00 NP 197.35 27.91 0.00 NP 197.35 27.91 0.00 NP 197.35 27.21 0.00 208.11 36.74 0.00 208.11 38.72 0.00 NP 208.11 38.72 0.00 NP 208.11 38.03 0.00 NP 208.11 38.86 0.00	197.18	197.18	197.18	197.18	197.18	197.18	197.18	197.18	197.18