Dixon Environmental Services LLC 4010 N 7th Street, Tacoma, WA 98406 Tel 253.380.4303 www.DixonES.com

REMEDIAL INVESTIGATION SUMMARY/ CLEANUP ACTION PLAN

Snohomish County Parcel #s 29050900300100 and 29050900200900 1871 Ross Avenue Everett, WA 98201

May 22, 2024

Prepared for:

Guntower Capital LLC 1421 34th Avenue, Suite 300 Seattle, WA 98122

Prepared by:

Dixon Environmental Services LLC $4010\ N\ 7^{th}$ Street Tacoma, WA 98406

Brian A. Dixon
President/Principal Environmental Scientist

ander Blake

Andrew Scott Blake

Andrew Blake, L.G. Licensed Geologist #2928

Table of Contents

1.0 Intro	oduction	4
1.1 Do	ocument Purpose	4
2.0 Back	ground	5
2.1 Pr	operty Location and Description	5
2.2 Hi	storical Land Use Summary	5
2.3 Er	nvironmental Investigations	6
2.2.1	Phase I Environmental Site Assessment – Apex, 2022	6
2.2.2	Direct Push Explorations – Apex, 2022	7
2.2.3	Well Installation and Analysis - Apex, 2022	9
2.2.4	Drainage Sediment Assessment - Apex, 2022	9
2.2.5	Remedial Investigation – Apex, 2023	10
2.2.6	Sediment Analysis – Apex, 2023	12
2.3 Ge	eology and Hydrogeology	13
2.3.1	Regional Geology	13
2.3.2	Regional Hydrogeology	13
2.3.3	Site Geology	13
2.3.4	Site Hydrogeology	13
3.0 Cond	ceptual Site Model	14
3.1 Co	ontaminants of Concern	14
3.1.1	Current AST Area	14
3.1.2	Maintenance Shop Area	14
3.1.3	Snohomish Marine	14
3.2 M	edia of Concern	14
3.3 Di	stribution of Contamination	14
3.3.1	Current AST Area	14
3.3.2	Distribution of Contamination – Maintenance Shop Area	15
3.3.3	Distribution of Contamination – Snohomish Marine Area	15
3.4 Ex	xposure Pathways	16
3.4.1	Soil Pathway	16
3.4.2	Groundwater Pathway	16
3.4.3	Vapor Pathway	16
3.5 Po	pints of Compliance	17
3.5.1	Point of Compliance for Soil	17

3	.5.2 Point of Compliance for Groundwater	17
3.6	Proposed Cleanup Levels	17
3.7	Terrestrial Ecological Evaluation	17
4.0	Cleanup Action Plan	18
4.1	Monitoring Well Decommissioning	18
4.2	Soil Excavation and Disposal	18
4.3	Construction Dewatering	18
4.4	Waste Profiling and Disposal	18
5.0	Compliance Monitoring	19
5.1	Protection Monitoring	19
5.2	Performance Monitoring	19
5.3	Confirmational Monitoring - Soil	20
5.4	Confirmational Monitoring - Groundwater	20
6.0	Closing	21
7.0	References	21

<u>Figures:</u>

- Figure 1: Topographic Map

- Figure 2: Site Plan

- Figure 3: AST Area

- Figure 4: Maintenance Shop

- Figure 5: Snohomish Marine

Appendix A: APEX RI Reference Documents

Appendix C: Terrestrial Ecological Evaluation

1.0 Introduction

On behalf of Guntower Capital LLC, Dixon Environmental Services (Dixon ES) has prepared this Remedial Investigation (RI) Summary / Cleanup Action Plan (CAP) for the petroleum releases that have been documented at the Dagmars Marina Property, addressed at 1871 Ross Avenue in Everett, Washington (the Property) (Figures 1 and 2). This report was prepared for submittal to the Washington State Department of Ecology (Ecology) and was developed to meet the general requirements of a CAP as defined by the Washington State Model Toxics Control Act (MTCA) Regulation in Chapters 173-340-350 through 173-340-410 of the Washington Administrative Code (WAC).

Based on the results of the investigations discussed within this report, it appears that releases of petroleum hydrocarbons have occurred on the Property associated with the historical Marina operations. As established in WAC 173-340-200, a "Site" is defined by the full lateral and vertical extent of contamination that has resulted from the release of hazardous substances; therefore, all areas impacted by the release(s) on the Property are referred to herein as the "Site".

1.1 Document Purpose

1.1.1 Remedial Investigation Summary

The purpose of an RI is to collect data necessary to adequately characterize the Site for the purposes of developing and evaluating remedial alternatives consistent with WAC 173-340-350(7).

A Remedial Investigation Report and Supplemental Remedial Investigation Report were previously completed for the Site by Apex Companies, LLC (Apex) (Apex 2023a and Apex 2023b), which include more detailed information regarding the RI process.

The RI components of this report are intended to be more succinct, which present historical information regarding the former use of the Property, briefly summarize the scope and findings of each environmental investigation that has been conducted at the Site, and present a Conceptual Site Model (CSM) for the contaminant release, transport, and potential exposure pathways at the Site.

1.1.2 Feasibility Study

The purpose of a feasibility study is to develop and evaluate remedial alternatives for the Site and to select the most appropriate alternative based on the criteria specified in MTCA 173-340-360(2). However, our proposed remedy of excavation and off-site disposal is considered by Ecology to be a permanent solution under MTCA and there a feasibility study and disproportionate cost analysis were not performed.

1.1.3 Cleanup Action Plan

As provided in WAC 173-340-360 and -380, the purpose of the CAP is to present the objectives of the cleanup action, the technical components of implementing the selected cleanup method, and the means and methods proposed for compliance monitoring activities.

2.0 Background

The following section provides a description of the Property, a summary of available environmental data for the Site, and a description of the physical characteristics for the vicinity.

2.1 Property Location and Description

The Property consists of a two Snohomish County Tax Parcels (#29050900300100 and 29050900200900), 81.58 acres in size, addressed at 1871 Ross Avenue in Everett, Washington (Figures 1 and 2).

The Property is currently utilized as a dry dock boat storage facility and marina, collectively known as Dagmars Marina. Portions of the property are rented to various entities, including: Snohomish Marine (boat maintenance), Boat Country (boat sales), Signal Trailer (trailer sales), and a residential occupant.

The current Property layout, allocated tenant areas, and structures are depicted on Figure 2.

2.2 Historical Land Use Summary

Based on a review of historical aerial photographs and County Assessor records, it appears the Property was utilized for residential and agricultural purposes prior to construction of the existing Marina in the late 1970's.

The aerial photographs taken between 1941 and 1973 depict several structures on the Property, likely residential in nature, and/or barns associated with the agricultural land that was apparent on the undeveloped portions of the Property. Log booms were noted adjacent to the west of the Property in the Snohomish River in the aerial photographs taken between 1954 and 1973, however it appears likely that these features were associated with the former paper mill on the west side of the Snohomish River, and were not likely associated with any timber operations on the Property itself.

The marina and associated boat storage was first evident in the 1979 aerial photograph and remained evident in all subsequent photographs.

Current permanent structures on the Property, general use, location, and construction date (as provided by Snohomish County) are summarized in the table below:

Construction Date	Description	Location
1961	1,952 square foot (sf) residential dwelling.	Southeast portion of parcel #29050900200900.
1961	1,430 sf dwelling converted to a commercial office for Boat County sales. Associated 1,176 sf detached garage utilized for Boat County service and parts.	Eastern side of Parcel #29050900200100.
1970	4,180 sf commercial garage, occupied and operated by Snohomish Marine.	Northwestern portion of Parcel #29050900200100.
1978	2,081 sf commercial maintenance shop operated by Dagmar's Marina.	Central portion of parcel #29050900200900.
1987	1,176 sf commercial office occupied and operated by Dagmar's Marina.	West central portion of Parcel #29050900200100.

2.3 Environmental Investigations

The following sections briefly summarize the release discovery and subsequent environmental investigations conducted at the Site. The types and locations of the historic explorations from the investigations are depicted on Figures 5 through 12 of Apex's RI Report, and Figures 4 through 7 of Apex's Supplemental RI Report. These figures and associated data tables from said reports are included as Appendix A.

2.2.1 Phase I Environmental Site Assessment – Apex, 2022

On November 21, 2022, Apex completed a Phase I Environmental Site Assessment (ESA) for the Property. Dixon ES was unable to obtain a copy of the Phase I ESA report, however the findings of the assessment were summarized within subsequent documents completed by Apex. According to these summaries, Apex identified the following Recognized Environmental Conditions (RECs) at the Property that warranted further evaluation:

- Two 20,000-gallon aboveground storage tanks (ASTs) were identified near the Dagmar's Marina Maintenance Shop. Evidence of leaks were noted from the AST piping and in the fueling area, outside of containment.
- One AST was historically present on the Property, which was of questionable structural integrity. According to a site inspection conducted by Ecology as part of a National Pollutant Discharge Elimination System (NPDES) permitting process in 2007, the tank was flagged as in need of immediate replacement.
- A limited area of soil staining was observed on the exterior gravel surface adjacent to the Dagmar's Marina Maintenance Shop, which houses a 500-gallon AST.

- Two apparent vaults were observed near an old barn, which were noted as possible relic petroleum underground storage tanks (USTs) or vaults related to former dairy operations.
- The Property was listed on Ecology's Confirmed and Suspected Contaminated Sites List (CSCSL) related to potential arsenic contamination in groundwater identified during a utility project in 2004.
- A maintenance operation was identified at the Snohomish Marine Building (formerly Mercer Marine). According to a compliance site inspection conducted by Ecology in 2007, this area presented a material threat to the environmental quality of the Property due to their storage and handling practices of hazardous materials.

2.2.2 Direct Push Explorations – Apex, 2022

In September of 2022, Apex oversaw the advancement of 14 borings using direct push drilling techniques. The borings were completed as follows:

- Borings AST-1 through AST-3 were completed to evaluate potential impacts associated with the two current 20,000-gallon ASTs. Soil samples collected from these borings were analyzed for gasoline-range petroleum hydrocarbons (GRPH), diesel-range petroleum hydrocarbons (DRPH), and oil-range petroleum hydrocarbons (ORPH).
- Borings SB-5 and SB-6 were completed to evaluate potential impacts associated with the former AST identified by Ecology in 1993. Soil samples collected from these borings were analyzed for GRPH, DRPH, and ORPH.
- Borings Shop-1 and Shop-2 were completed to evaluate potential impacts associated with the
 observed staining outside the Maintenance Shop. Soil samples collected from these borings
 were analyzed for DRPH and ORPH. One sample was also analyzed for polychlorinated
 biphenyls (PCBs).
- Borings Vault-1, Vault-2, and Barn-1 were completed to evaluate potential impacts in the
 vicinity of the relic vaults and an outflow pipe identified approximately 60 feet east of these
 site features. Soil samples collected from these borings were analyzed for DRPH, ORPH,
 organochlorine pesticides, organophosphate pesticides, and chlorinated acid herbicides.
- Borings SB-1 through SB-4 were completed to evaluate potential impacts associated with historical waste storage and outdoor marine maintenance in the vicinity of the Snohomish Marine Building. Soil samples collected from these borings were analyzed for GRPH, DRPH, ORPH, volatile organic compounds (VOCs), and select metals.

Groundwater sampling attempts from the majority of the direct push borings were reportedly unsuccessful due to tight soil conditions. It appears that only one boring produced sufficient groundwater for sampling, which was SB-4. A reconnaissance groundwater was collected from this boring, which was analyzed for GRPH, DRPH, ORPH, and VOCs.

Soil Analytical Results - Current AST Area

- The soil sample collected from boring AST-2 at a depth of 3 feet below ground surface (bgs) contained concentrations of GRPH in excess of its MTCA Method A Cleanup Level. This sample also contained concentrations of ORPH and DRPH, however the values were below their respective cleanup levels.
- The remaining soil samples reported no detectable concentrations of selected analytes, or contained concentrations below their respective MTCA Method A Cleanup Levels.

Soil Analytical Results - Former AST Area

• The soil samples collected from this area reported no detectable concentrations of selected analytes, or contained concentrations below their respective MTCA Method A Cleanup Levels.

Soil Analytical Results - Maintenance Shop Area

- The soil sample collected from boring Shop-2 at a depth of 2.5 feet bgs contained concentrations of DRPH and ORPH in excess of their respective MTCA Method A Cleanup Levels. This sample was also analyzed for PCBs, which were not detected above laboratory reporting limits.
- The remaining soil samples reported no detectable concentrations of selected analytes, or contained concentrations below their respective MTCA Method A Cleanup Levels.

Soil Analytical Results - Suspected Vault and Barn Area

• The soil samples collected from this area reported no detectable concentrations of selected analytes, or contained concentrations below their respective MTCA Cleanup Levels.

Soil Analytical Results - Snohomish Marine

• The soil samples collected from this area reported no detectable concentrations of selected analytes, or contained concentrations below their respective MTCA Cleanup Levels.

Groundwater Analytical Results - Snohomish Marine

• The groundwater sample collected from boring SB-4 (GW4) contained concentrations of DRPH, ORPH, and benzene above their respective MTCA Method A Cleanup Levels.

The results of this investigation indicated the following:

- A surface release of GRPH was identified to the north of the existing ASTs, extending to a depth of approximately 5 feet bgs.
- The presence of the former AST on the north side of the Property does not appear to have resulted in a significant release to the environment.

- A surface release of DRPH and ORPH was identified to the north of the Maintenance Shop, extending to a depth of approximately 5 feet bgs.
- The presence of the vaults does not appear to have resulted in a significant release to the environment.
- A petroleum release was identified near a catch basin down-gradient of the Snohomish Marine Building. Impacts were identified in groundwater, however the source had not been adequately defined.

2.2.3 Well Installation and Analysis – Apex, 2022

In September of 2022, Apex installed one groundwater monitoring well (MW-1) in the area where arsenic was previously detected during a utility project in 2004. The well was installed to a depth of approximately 15 feet bgs, screened from 5-15 feet.

One soil sample was collected during installation of the well, and one groundwater sample was collected after appropriate well development to minimize turbidity. The soil sample was analyzed for Resource Conservation and Recovery Act (RCRA) 8 metals, while the groundwater sample was only analyzed for arsenic.

Soil Analytical Results

• The soil sample collected from MW-1 contained detectable concentrations of select metals, however the values were below their respective MTCA Method A Cleanup Levels.

Groundwater Analytical Results

• The groundwater sample collected from MW-1 contained arsenic concentrations above its MTCA Method A Cleanup Level.

Apex concluded that the arsenic concentrations detected in groundwater appeared to be caused by naturally elevated background concentrations of arsenic in soil, but also indicated that further assessment was warranted.

<u>2.2.4 Drainage Sediment Assessment – Apex, 2022</u>

To evaluate the potential impacts of current and historical operations on Snohomish River sediments, Apex conducted a drainage sediment assessment in September of 2022.

Sixteen drainage sediment samples were collected from the stormwater outfall locations and the northern surface drainage system.

Samples were analyzed for one or more of the following contaminants of concern: DRPH, ORPH, polycyclic aromatic hydrocarbons (PAHs), select metals, organochlorine pesticides, organophosphate pesticides, chlorinated herbicides, PCBs, and/or chlorinated phenols.

The samples collected during this assessment reported no detectable concentrations of selected analytes, or contained concentrations below their respective Cleanup Screening Levels (CSL) (WAC 173-204 Sediment Cleanup Users Manual [SCUM] and WAC 173-204 Sediment Management Standards). As such, no further assessment appeared warranted.

2.2.5 Remedial Investigation – Apex, 2023

In 2023, Apex conducted a remedial investigation to further evaluate the nature and extent of contamination previously identified on the Property. The investigation scope was as follows:

- Nine soil borings (AST-4, AST-4A, AST-4B, AST-5, AST-6, AST-6A, AST-6B, AST-7, and AST-8) were completed in the vicinity of the active AST release. Samples from this area were analyzed for GRPH, DRPH, ORPH, VOCs, select metals, and/or PAHs.
- Five soil borings (Shop-3, Shop-4, Shop-4A, Shop-4B, and Shop-5) were completed in the vicinity of the Maintenance Shop release. One reconnaissance groundwater sample was collected from boring Shop-4 (Shop-4GW). Samples from this area were analyzed for GRPH, DRPH, ORPH, select metals, PCBs, and/or PAHs.
- Fourteen soil borings (SB-5 through SB-10, and SB-13 through SB-21) were completed in the vicinity of the Snohomish Marine catch basin release. One reconnaissance groundwater sample was collected from boring SB-7 (GW-7). Samples from this area were analyzed for GRPH, DRPH, ORPH, VOCs, select metals, and/or PAHs.
- Two soil borings (SB-11 and SB-12) were completed in the vicinity of an inactive septic tank identified near the Snohomish Marine building. Samples from this area were analyzed for GRPH, DRPH, and ORPH.
- Four soil borings (SB-22 through SB-25) were completed in the vicinity of a former UST potentially located to the west of the Snohomish Marine building. The presence of this former UST was disclosed to Apex during the RI and was not previously known. Samples from this area were analyzed for GRPH, DRPH, ORPH, and VOCs.
- Three soil borings (SB-15 through SB-17) were completed in the vicinity of a suspected UST identified during a geophysical survey, located near the southwest corner of the Snohomish Marine building. Samples from this area were analyzed for GRPH, DRPH, and ORPH.
- Three groundwater monitoring wells were installed (MW-2 through MW-4) in the vicinity of the Snohomish Marine building. Samples from this area were analyzed for GRPH, DRPH, ORPH, and VOCs.
- One groundwater monitoring well (MW-5) was installed in the vicinity of the Maintenance Shop. Samples from this area were analyzed for GRPH, DRPH, ORPH, and VOCs.
- Four soil borings (ARS-1 through ARS-4) were completed in the area where arsenic was previously detected in groundwater. Samples from this area were analyzed for select metals.

Soil Analytical Results - Current AST Area

- The soil samples collected from borings AST-4B and AST-6 at depths between 3 and 10 feet bgs, contained concentrations of GRPH in excess of its MTCA Method A Cleanup Level.
- The soil samples collected from boring AST-6 at depths of 3 and 10 feet bgs also contained concentrations of one or more petroleum related VOC (benzene, toluene, ethylbenzene, xylenes [BTEX], or naphthalene) in excess of their respective cleanup levels.
- The remaining soil samples reported no detectable concentrations of selected analytes, or contained concentrations below their respective MTCA Method A Cleanup Levels.

Soil Analytical Results - Maintenance Shop Area

- The soil samples collected from boring Shop-4 at depths of 3 and 5 feet bgs, contained concentrations of GRPH in excess of its MTCA Method A Cleanup Level.
- The remaining soil samples reported no detectable concentrations of selected analytes, or contained concentrations below their respective MTCA Method A Cleanup Levels.

<u>Groundwater Analytical Results - Maintenance Shop Area</u>

- The reconnaissance groundwater sample collected from boring Shop-4 contained concentrations of DRPH in excess of its MTCA Method A Cleanup Level.
- The groundwater sample collected from monitoring well MW-5 contained concentrations of DRPH below its MTCA Method A Cleanup Level.

Soil Analytical Results - Snohomish Marine Area

• The soil samples collected from this area reported no detectable concentrations of selected analytes, or contained concentrations below their respective MTCA Cleanup Levels. The soil borings advanced closest to the catch basin of interest exhibited the highest levels of detectable hydrocarbons. Specifically, the soil sample collected from MW-3, at a depth of 6-inches bgs, contained 1,860 mg/kg DRPH, which is only slightly below the MTCA Method A Cleanup Level of 2,000 mg/kg.

<u>Groundwater Analytical Results - Snohomish Marine Area</u>

- The reconnaissance groundwater sample collected from boring SB-07 (GW07) contained concentrations of DRPH in excess of its MTCA Method A Cleanup Level.
- The groundwater sample collected from monitoring well MW-3 contained concentrations of DRPH slightly exceeding its MTCA Method A Cleanup Level.
- The groundwater samples collected from monitoring wells MW-2 and MW-4 contained detectable concentrations of DRPH, however the values were below its MTCA Method A Cleanup Level.

Soil Analytical Results - Arsenic Area

• None of the soil samples collected in this area contained concentrations of metals of concern in excess of their MTCA Method A Cleanup Levels. This appears to verify Apex's previous conclusion that the arsenic detected in groundwater was caused by naturally elevated background concentrations in soil and not from an industrial source on the Property.

2.2.6 Sediment Analysis – Apex, 2023

Per the request of Ecology, Apex performed a sediment characterization sampling event in August of 2023 to verify that in-water sediment impacts are not present on the Property. Specifically, Ecology requested that samples be collected near the boat ramp, marina pilings, historical pilings, and the stormwater outfall.

Sixteen surface sediment samples and seven subsurface vibracore borings were completed during this investigation and samples were analyzed for one or more of the following potential contaminants of concern: DRPH, ORPH, PAHs, semi-volatile organic compounds (sVOCs), select metals, total organic carbon, total volatile solids, ammonia/sulfides, and organometallics.

PCBs were not included as potential contaminants of concern, which appears appropriate based on our review of historical operations and site features which would not indicate the use of storage of PCB containing materials at the Property. Additionally, during the initial drainage sediment analysis, PCBs were not detected in any of the samples collected (Section 2.2.3)

Sediment Analytical Results

- Select metals were detected in all of the sediment samples, however the concentrations were below appropriate screening levels and appeared to be attributed to natural background conditions.
- None of the sediment samples contained concentrations of DRPH, ORPH, sVOCs or PAHs above their appropriate screening levels.
- Sulfides were detected in one of the samples at a concentrations exceeding its appropriate screening levels, however this was determined to be due to natural processes, not from industrial activity, and did not warrant remedial action.

Based on the results of the sediment analysis, it appears that no further action is warranted associated with this media.

2.3 Geology and Hydrogeology

2.3.1 Regional Geology

The Site is located in the Puget Lowlands geologic region, an elongated topographic and structural depression filled with complex sequences of glacial and non-glacial sediments that overlie bedrock. Continental ice sheets up to 3,000 feet thick covered portions of the Puget Lowland several times during the Quaternary period. Retreating ice carved new landscapes, rechanneled rivers, drained or formed lakes, and deposited glacial drift including till and outwash (WA DNR, 2002).

According to the United States Geologic Survey (USGS) Natural Resources Conservation Service (NRCS), the primary soil type in the area is Puget Silty Clay Loam. This soil type is characterized by slow infiltration rates with layers impeding downward movement of water, or soils with moderately fine or fine textures.

2.3.2 Regional Hydrogeology

The primary aquifers in the Puget Sound region are typically overlain by relatively impermeable glacial till deposits that are present at or near the ground surface. Within these till deposits are localized areas or lenses of water-bearing sands and gravels that may result in a shallow, perched water table. Lateral and vertical migration of shallow groundwater may be impeded by the relatively impermeable nature of the till and by the sometimes-discontinuous nature of the perched water-bearing sands and gravel. Perched and discontinuous zones of shallow groundwater may be seasonally or perennially present, depending on site-specific conditions. Shallow groundwater flow directions fluctuate and tend to follow topographic gradient but are also affected by seasonal highwater tables, variable soil characteristics, as well as utility corridors.

The nearest surface water body is the Snohomish River, bordering the western portion of the Property.

2.3.3 Site Geology

Previous environmental investigations conducted by Apex have shown the Site to be underlain with primarily surface fill underlain by unconsolidated fine-grained alluvium.

2.3.4 Site Hydrogeology

Groundwater encountered during previous investigations conducted by Apex was generally present between approximately 2.5 and 5 feet bgs.

3.0 Conceptual Site Model

This section provides a summary of the conceptual site model, which includes a discussion of the contaminants of concern (COCs), the media of concern, the distribution of contamination, and the potential exposure pathways for the Site.

3.1 Contaminants of Concern

Based upon the results of previous investigations, the primary COCs for the 3 release locations on the Site include:

3.1.1 Current AST Area

- DRPH;
- ORPH;
- GRPH;
- BTEX; and,
- Naphthalene

3.1.2 Maintenance Shop Area

- DRPH;
- ORPH; and,
- GRPH

3.1.3 Snohomish Marine

- DRPH; and,
- ORPH

3.2 Media of Concern

Based upon the results of previous investigations, soil and groundwater are the only media of concern for the Site. Sediment does not appear to have been impacted by the isolated petroleum releases on the upland portions of the Property.

3.3 Distribution of Contamination

3.3.1 Current AST Area

The lateral extent of soil impacts appears limited to an area of approximately 400 square feet, on the north side of the AST fueling canopy. The northern extent of impacts are defined by the samples

collected from borings AST-5, AST-6A, AST-6B, and AST-7; the eastern extent of impacts are defined by the samples collected from boring AST-8; the southern extent of impacts are defined by the samples collected from borings AST-3 and AST-8; and the western extent of impacts are defined by the samples collected from borings AST-1, AST-4, and AST-4A.

The depth of soil impacts appears to extend between approximately 2 and 11 feet bgs. The vertical bound to contamination is best represented by sample results from borings AST-4B and AST-6, which are located in the area of the release.

Groundwater does not appear to have been encountered during investigations in this area.

3.3.2 Distribution of Contamination – Maintenance Shop Area

The lateral extent of soil impacts appears limited to an area of approximately 250 square feet, on the north side of the maintenance shop. The northern extent of impacts are defined by the samples collected from borings Shop-3 and Shop-4B; the eastern extent of impacts are defined by the samples collected from boring Shop-5; the southern extent of impacts are defined by the samples collected from boring Shop-1; and the western extent of impacts are defined by the samples collected from boring Shop-4A.

The depth of soil impacts appears to extend between approximately 2 and 6 feet bgs. The vertical bound to contamination is best represented by sample results from borings Shop-2 and Shop-4, which are located in the area of the release.

Groundwater collected from a reconnaissance sample in this area contained concentrations of DRPH in excess of its MTCA Method A Cleanup Level, however groundwater sampling using direct push sampling methods tends to bias results high. A follow up sample collected from a properly installed and developed resource protection well contained DRPH concentrations below its MTCA Method A Cleanup Level.

3.3.3 Distribution of Contamination – Snohomish Marine Area

The lateral extent of soil impacts appears limited to an area directly surrounding a catch basin, located on the southeast side of the Snohomish Marine building. Soil analytical results have thus far not detected petroleum contamination at concentrations exceeding MTCA Method A Cleanup Levels, however petroleum related contaminants were detected in groundwater at concentrations exceeding their respective cleanup levels, indicating a source is present in this area.

3.4 Exposure Pathways

The following section discusses the confirmed and potential human and ecological exposure pathways at the Site.

3.4.1 Soil Pathway

Potential exposure pathways for soil contamination include direct dermal contact or ingestion. Until such time the existing soil contamination is removed, or controls are in place to prevent direct contact with this material, the soil pathway will be considered complete.

3.4.2 Groundwater Pathway

Potential exposure pathways for groundwater contamination include direct dermal contact or ingestion by construction workers encountering shallow perched zones during remediation activities or construction work. This exposure pathway will be considered complete until the contamination is remediated or controls are in place to prevent direct contact.

Dixon ES has reviewed Ecology's database for water supply wells in the area and has found that none appear to exist within a 1-mile radius of the Property. Therefore, while adverse impacts to shallow groundwater beneath the Property is confirmed, the potential for adverse impacts to a regional drinking water source is low.

3.4.3 Vapor Pathway

The air-filled pore space between soil grains in the unsaturated zone is referred to as soil vapor or soil gas. Soil vapor can become contaminated from the volatilization of contaminants adsorbed to soil mineral surfaces and/or dissolved in groundwater.

Based on the results of previous investigations, it appears unlikely that the existing contamination would present a vapor encroachment condition to existing on-Property structures. Only one groundwater sample (GW4) contained contaminant concentrations exceeding appropriate vapor intrusion (VI) screening levels, which was collected from a temporary well, located over 50 feet from any occupied structure. The permanent monitoring well (MW-3) installed adjacent to this previous sample location contained contaminant concentrations below applicable VI screening levels.

3.5 Points of Compliance

The point compliance is the location where the enforcement limits will be measured and cannot be exceeded.

3.5.1 Point of Compliance for Soil

The point of compliance for direct contact is throughout the Site, from ground surface to 15 feet bgs. This is the depth at which one would reasonably assume workers could encounter contaminated soil during construction or development activities.

3.5.2 Point of Compliance for Groundwater

The standard point of compliance for groundwater is from the uppermost saturated zone extending vertically to the lowest most depth which could potentially be affected by the release at the Property.

3.6 Proposed Cleanup Levels

The proposed cleanup levels for the Site are based on the MTCA Method A Levels for Unrestricted Land Use. Proposed cleanup levels for COCs in soil and groundwater at the Site are presented in the table below:

MTCA Method-A Cleanup Levels for Soil and Groundwater (MTCA Cleanup Regulation 173-340-900: Tables 720-1 and 740-1)					
Contaminant of Concern (COC) Soil Cleanup Levels (mg/kg) Groundwater Cleanup Levels (µg/L)					
GRPH	301	8001			
DRPH	2,000	500			
ORPH	2,000	500			
Benzene	0.03	5			
Toluene	7	1,000			
Ethylbenzene	6	700			
Xylenes	9	1,000			
Naphthalene	5	160			

 $^{^1}$ Gasoline Range Organics: Gasoline mixtures without benzene and the total of ethylbenzene, toluene and xylene are less than 1% of the gasoline mixture has a soil CUL = 100 mg/kg. All other gasoline mixtures have a soil CUL = 30 mg/kg. For groundwater, the CUL is 1,000 ug/l for gasoline mixtures without benzene and 800 ug/l for all other gasoline mixtures.

3.7 Terrestrial Ecological Evaluation

A terrestrial ecological evaluation (TEE) form was completed for the Site, which indicates that the Site qualifies for an exclusion from further evaluation using the criteria in WAC 173-340-7491 (Appendix B). Specifically, at the conclusion of the cleanup action, all soil contamination will be removed within the upper 15 feet.

4.0 Cleanup Action Plan

The proposed remedial alternative for the Site is excavation and disposal of petroleum contaminated soil and subsequent attenuation of petroleum impacts to groundwater by virtue of source removal. The main components of the cleanup action are discussed below.

4.1 Monitoring Well Decommissioning

Monitoring wells located within the proposed excavation footprints (MW-3 and MW-5) be abandoned in accordance with the requirements of the Ecology Water Well Construction Act (1971), RCW 18.104 (WAC 173-160-460).

4.2 Soil Excavation and Disposal

At each release location, soil will be removed using conventional excavation methods. Subsurface conditions will be field screened by a Dixon ES environmental scientist or geologist for the presence of contaminants using a photoionization detector (PID) as well as visual and olfactory observations to direct the advancement of the remedial excavation.

Conceptual depictions of each remedial excavation area are presented on Figures 3 through 5; however, the full extents of excavation will be dependent on field conditions.

4.3 Construction Dewatering

Based on the results of previous investigations, we anticipate that shallow groundwater seepage may enter the excavation when at design depths of greater than 4 feet bgs.

It is expected that this seepage can be handled by digging interceptor trenches in the excavation and pumping from sumps into a holding tank on the Property.

The holding tank will be emptied as needed by a vacuum truck service for proper disposal.

4.4 Waste Profiling and Disposal

Contaminated soil generated during excavation activities will be properly profiled prior to remediation using the analytical data collected during previous investigations. As such, the contaminated soil can be loaded directly into trucks and trailers and hauled off Property. Specific documentation requirements must be met for transportation and disposal of the contaminated soil. This documentation includes: analytical data, waste profiles, waste manifests, and bills of lading.

Unless otherwise approved by Dixon ES and the Property owner, the contaminated soil will be taken to:

Sno River Delta Soils 17 East Marine View Drive Everett, WA 98213

5.0 Compliance Monitoring

There are three types of compliance monitoring identified for remedial cleanup actions performed under MTCA (WAC 173-340-410): protection, performance, and confirmational monitoring. A paraphrased definition for each is presented below (WAC 173-340-410[1]):

- Protection Monitoring To evaluate whether human health and the environment are adequately protected during construction and the operation and maintenance period of a cleanup action.
- Performance Monitoring To document that the cleanup action has attained cleanup standards.
- Confirmational Monitoring To evaluate the long-term effectiveness of the cleanup action once cleanup standards or other performance standards have been attained.

5.1 Protection Monitoring

A Health and Safety Plan (HASP) will be prepared that identifies the known physical, chemical, and biological hazards associated with the remedial activities at the Site, as well as the hazard monitoring and prevention procedures.

5.2 Performance Monitoring

Performance monitoring for soil will be conducted during remedial excavation activities and will be used to direct advancement of the excavation. Soil samples will be collected directly from the sidewalls and/or bottom of the remedial excavation using either stainless steel or plastic sampling tools. Soil samples collected at depths of less than 4 feet bgs will be collected manually. Samples collected at depths below 4 feet bgs will be collected with the backhoe bucket unless engineering controls are in place that allow for manual sample collection at depths greater than 4 feet bgs. Non-dedicated sampling equipment will be decontaminated between uses. The analytical results will be used to assess when the points of compliance for soil have been achieved.

5.3 Confirmational Monitoring - Soil

Confirmational monitoring for soil will be conducted after completion of the excavation to assess the concentrations of COCs in subsurface soil, to verify compliance with applicable cleanup standards, and to confirm the long-term effectiveness of the cleanup action.

Soil samples will be collected from the bottom and the sidewalls of the excavation to an estimated depth of 11 feet bgs. At a minimum, a sample will be taken every 5 vertical feet and 20 linear feet of sidewall, with a bottom sample for every 100 square feet of excavation floor.

Soil samples collected from each excavation area will be analyzed by an Ecology accredited laboratory for their respective COCs listed in Section 3.1.

5.4 Confirmational Monitoring - Groundwater

Upon completion of the source removal effort, groundwater monitoring wells will be utilized to monitor the effectiveness of the remedial action.

Two wells are proposed in the vicinity of the existing AST housing, two well are proposed in the maintenance shop area, and one well is proposed at the Snohomish Marine building, which is supplemental to monitoring wells MW-2 and MW-4 which will remain during and after excavation activities.

Groundwater samples will be collected quarterly from these monitoring wells until either four consecutive quarters show concentrations of COCs below their respective cleanup levels, or two consecutive quarters with no detectable concentrations of Site specific COCs.

Groundwater sampling protocol will be in accordance with American Society of Testing and Materials (ASTM) Guideline D6771-02 "Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Ground-Water Quality Investigations".

Dixon ES will follow the procedures described below when collecting groundwater samples:

- The caps from the monitoring wells will be removed and the groundwater level will be allowed to equilibrate to atmospheric pressure for a minimum of 20 minutes.
- The depth to groundwater in the monitoring wells will be measured relative to the top of the well casings using an electronic water-level meter.
- Each monitoring well will be purged at a low-flow rate (100 to 300 milliliters per minute) using a peristaltic pump and dedicated polyethylene tubing. Temperature, pH, DO, turbidity, and specific conductivity will be monitored during purging using a water quality meter to determine when these parameters stabilize.

- Samples will be collected in new laboratory-provided analyte-specific sample containers and assigned a unique sample ID. The samples will be placed in a climate-controlled container and maintained at or below 4° Celsius until they are delivered to an Ecology Accredited Laboratory under industry standard chain of custody protocol.
- Samples collected from each area of concern will be analyzed for their respective COCs listed in Section 3.1.

6.0 Closing

Dixon ES has completed this Remedial Investigation Summary / Cleanup Action Plan pursuant to WAC 173-340 for the petroleum releases that have been documented at the Dagmars Marina Property. Given the current understanding of the conceptual site model, full source removal and attenuation of residual contamination in groundwater appears to be the most appropriate and permanent remedial alternative for the Site.

As discussed in Section 1, this report was prepared for submittal to Ecology under the Expedited Voluntary Cleanup Program. Within this program, we are requesting an opinion on the proposed cleanup action, with the eventual goal of receiving a Determination of No Further Action.

7.0 References

Apex. 2023a. Remedial Investigation Report, Dagmars Marina. March 17.

Apex. 2023b. Supplemental Remedial Investigation Report, Dagmars Marina. November 1.

SUBJECT PROPERTY

TOPOGRAPHIC MAP

PROJECT ADDRESS:

1871 Ross Avenue Everett, WA 98201 PAGE:

- · - PROPERTY BOUNDARY

SITE PLAN

PROJECT ADDRESS:

1871 Ross Avenue Everett, WA 98201 PAGE:

SOIL BORING

APPROXIMATE AREA
OF PETROLEUM
CONTAMINATED SOIL

AST AREA

PROJECT ADDRESS:

1871 Ross Avenue Everett, WA 98201 PAGE:

♦ SOIL BORING

APPROXIMATE AREA
OF PETROLEUM
CONTAMINATED SOIL

MAINTENANCE SHOP

PROJECT ADDRESS:

1871 Ross Avenue Everett, WA 98201 PAGE:

♦ SOIL BORING

→ MONITORING WELL

APPROXIMATE AREA
OF PETROLEUM
CONTAMINATED SOIL

SNOHOMISH MARINE

PROJECT ADDRESS:

1871 Ross Avenue Everett, WA 98201 PAGE:

Appendix A: Apex RI Reference Documents

Marysville, Washington

United States Geological Survey 7.5 Minute Series Topographic Map Contour Interval: 20 feet

Scale: 1 inch = 24,000 feet

Date: 2020

WASHINGTON

Site Location Map

Remedial Investigation Dagmars Marina Facility - 1871 Ross Avenue Everett, Washington

Project Number:	Drawn:	Approved:	Figure
32-22012832	JP	AU	
March	า 202	3	1

NOTE: Base map prepared from Microsoft Bing imagery (2022). Parcel information from Snohomish County (ftp://ftp.snoco.org/assessor).

Site Vicinity Plan

Remedial Investigation
Dagmars Marina Facility - 1871 Ross Avenue Everett, Washington

Project Number: 32-22012832	Drawn: JP	Approved: AU	Figure
March	า 202	3	2

- Soil Boring Location (Remedial Investigation)
- **Drainage Sediment Location**

NOTE: Base map prepared from Microsoft Bing imagery (2022). Parcel information from Snohomish County (ftp://ftp.snoco.org/assessor).

Site Layout (North Side)

Remedial Investigation Dagmars Marina Facility - 1871 Ross Avenue Everett, Washington

Apex Companies, LLC	Р
801 NW 42nd Street, #204	
APEX Seattle, Washington 98107	

Project Number: 32-22012832	Drawn: JP	Approved: AU		
March 2023				

Figure 4

Milligrams per Kilogram (mg/kg) 30/100¹ 2,000 2,000

The MTCA Method A Cleanup Level for TPH as gasoline-range organics is 30 mg/kg when benzene is detected, and 100 mg/kg when benzene is not detected.

Groundwater MTCA Method A Cleanup Level in Micrograms per Liter (µg/L)

I	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
GRO Gasoline-Range Organics 800/1,000					
DRO	Diesel-Range Organics	500			
RRO	Residual-Range Organics	500			

¹ The MTCA Method A Cleanup Level for TPH as gasoline-range organics is 800 µg/L when benzene is detected, and 1.000 µg/L when benzene is not detected.

	_	SHOP-4A	1/4/2023
(mg/kg)	SHOP-4A	9.5-10'	
	Ĕ	GRO	<7.28
	Soil	DRO	<63.3
ı	0)	RRO	<127

1871 Ross Ave\Remedial Investigation\ALT021-0313032-22008149 02-12 (Site Plans RI).dwg

- Monitoring Well Location
- Soil Boring Location (Phase II)
- Soil Boring Location (Remedial Investigation)

				∠ Date Sampled
Sample —	<u>(E</u>	SHOP-4	1/3/2022	Bato campion
Identification	××	31101-4	2.5-3'—	—Depth of Samp
Daniel Tema	(mg/kg)	GRO	475	(Soil Results O
Result Type/	<u>=</u>	DRO	141 <	
Analyte/	S	RRO	481	Detected Conc
				(Bold Indicates
Sampled				Detection Limit
				(Highlight - Cla

Sample ilts Only)

Concentration in µg/L cates Result Above Limit) (Highlight = Cleanup Level Exceedance)

NOTE: Base map prepared from Microsoft Bing imagery (2022). Parcel information from Snohomish County (ftp://ftp.snoco.org/assessor).

Soil (mg/kg) 1/6/2023 SHOP-4B 13-14" 19-20" <70.5 <63.6 DRO **RRO** <141 <127

1)	SHOP-3 GRO	1/3/2023
3/kg		9.5-10'
Ĕ)	GRO	<9.56
Soil	DRO	<74.1
0)	RRO	203

Catch Basin

(Approximate)

Soil (mg/kg)

SHOP-1

DRO **RRO**

9/15/2022 Soil (mg/kg) SHOP-2 2.5' 5' 2,720 DRO 2.41 4,380 **RRO** < 5.03

2.5'

3.56

8.49

9/15/2022

5'

2.26

<5.23

Soli (mg/kg)	SHOP-4	1/3/2023				
	SHUP-4	2.5-3'	5-6'	9.5-10'		
	GRO	475	176	<10.4		
	DRO	141	<61.9	<80.0		
	RRO	481	712	<160		

I	_	SHOP-4GW*	1/3/2023
	ate)	DRO	1,730
	g/L	RRO	<98.4
	Grour (µ	*SHOP-4GW sample was collected via temporary well from soil boring SHOP-4.	
		collected via temporary well	
		from soil boring	SHOP-4.

ē	MW-5	1/26/2023
gwai 3/L)	GRO	<50.0
	DRO	345
פ	RRO	<94.1

40 Scale in Feet

Soil and Groundwater Results (Maintenance Shop) Remedial Investigation

Dagmars Marina Facility - 1871 Ross Avenue Everett, Washington

Apex Companies, LLC 801 NW 42nd Street. #204 APEX Seattle, Washington 98107

Project Number:	Drawn:	Approved:	ı	
32-22012832	JP	AU		
March 2023				

Figure

Approximate Drain Line and Direction Approximate Storm Drain Line Approximate Water Line

Area of Contamination over MTCA

Method A Cleanup Levels

Table 1 - Drainage Sediment Results: TPH, PCBs, and PAHs Dagmar Marina Facility - 1871 Ross Avenue Everett, Washington

Sample Location ID:	OUTFALL-1	OUTFALL-2	OUTFALL-3	OUTFALL-4	OUTFALL-5	OUTFALL-6	OUTFALL-7	OUTFALL-8	OUTFALL-9		ment Management s (Benthic)
Date:	09/14/2022	09/14/2022	09/14/2022	09/14/2022	09/14/2022	09/27/2022	09/27/2022	09/27/2022	09/14/2022	Cleanup Screening Level	Sediment Cleanup Objective
Total Petroleum Hydrocarbons (T.	PH) by NWTPH	in mg/kg									
Diesel Range Organics	<2.62	<2.41	<3.04	<3.09	<2.36	5.79	16.9	16.5	21.7	510	340
Residual Range Organics	12.0 J	<6.03	<7.61	19.9 J	< 5.92	16.7	125	105	95.8	4,400	3,600
Polychlorinated Biphenyls (PCBs)) by EPA Metho	nd 8082A in mg	/kg								
Aroclor 1016	< 0.0233	< 0.0214	< 0.0270	< 0.0274	< 0.0210	< 0.0160	< 0.0121	< 0.0170	< 0.0173		
Aroclor 1221	< 0.0233	< 0.0214	< 0.0270	< 0.0274	< 0.0210	< 0.0160	< 0.0121	< 0.0170	< 0.0173		
Aroclor 1232	< 0.0233	< 0.0214	< 0.0270	< 0.0274	< 0.0210	< 0.0160	< 0.0121	< 0.0170	< 0.0173		
Aroclor 1242	< 0.0233	< 0.0214	< 0.0270	< 0.0274	< 0.0210	< 0.0160	< 0.0121	< 0.0170	< 0.0173		
Aroclor 1248	< 0.0146	< 0.0134	< 0.0169	< 0.0172	< 0.0131	< 0.0100	< 0.00757	< 0.0107	<0.0108		
Aroclor 1254	< 0.0146	< 0.0134	< 0.0169	< 0.0172	< 0.0131	< 0.0100	< 0.00757	< 0.0107	<0.0108		
Aroclor 1260	< 0.0146	< 0.0134	< 0.0169	< 0.0172	< 0.0131	< 0.0100	< 0.00757	< 0.0107	<0.0108		
Total PCBs	< 0.0233	< 0.0214	< 0.0270	< 0.0274	< 0.0210	< 0.0160	< 0.0121	< 0.0170	< 0.0173	2.5	0.11
Polycyclic Aromatic Hydrocarbon	s (PAHs) by EF	PA Method 8270	DE-SIM in mg/kg	7						•	
Anthracene	< 0.00454	< 0.00416	< 0.00526	< 0.00535	< 0.00409	< 0.00312	< 0.00236	< 0.00332	0.00495 J		
Acenaphthene	< 0.00412	< 0.00378	< 0.00478	< 0.00486	< 0.00372	< 0.00284	< 0.00215	< 0.00302	0.0141		
Acenaphthylene	< 0.00426	< 0.00391	< 0.00494	< 0.00502	< 0.00384	< 0.00293	< 0.00222	< 0.00312	0.0219		
Benzo(a)anthracene	< 0.00341	< 0.00313	< 0.00396	< 0.00402	< 0.00308	< 0.00235	0.00262 J	< 0.00250	0.0133		
Benzo(a)pyrene	< 0.00353	< 0.00324	< 0.00409	< 0.00416	< 0.00318	< 0.00243	0.00341 J	< 0.00259	0.0236		
Benzo(b)fluoranthene	< 0.00302	< 0.00277	< 0.00350	< 0.00356	< 0.00272	<0.00208	0.0057 J	0.00615 J	0.0335		
Benzo(g,h,i)perylene	< 0.00349	< 0.00320	< 0.00405	< 0.00412	< 0.00315	< 0.00240	0.00413 J	0.00422 J	0.0349		
Benzo(k)fluoranthene	< 0.00424	< 0.00389	< 0.00492	< 0.00500	< 0.00382	< 0.00292	< 0.00221	< 0.00311	0.00666 J		
Chrysene	< 0.00458	< 0.00420	< 0.00530	< 0.00540	< 0.00412	< 0.00315	0.00335 J	0.00404 J	0.0175		
Dibenz(a,h)anthracene	< 0.00339	< 0.00311	< 0.00393	< 0.00400	< 0.00306	< 0.00233	< 0.00177	< 0.00248	0.0091		
Fluoranthene	< 0.00448	< 0.00411	< 0.00519	< 0.00528	< 0.00404	<0.00308	0.00604 J	0.0126	0.0338		
Fluorene	< 0.00404	< 0.00371	< 0.00469	< 0.00477	< 0.00364	< 0.00278	< 0.00210	< 0.00296	0.0188		
Indeno(1,2,3-cd)pyrene	< 0.00357	< 0.00328	< 0.00414	< 0.00421	< 0.00322	< 0.00246	0.0032 J	0.00371 J	0.0157		
Naphthalene	< 0.00805	< 0.00738	< 0.00933	< 0.00949	< 0.00725	< 0.00553	< 0.00419	0.0108 J	0.0358 J+		
Phenanthrene	< 0.00456	< 0.00418	<0.00528	< 0.00537	< 0.00411	< 0.00313	0.00301 J	0.0127	0.0213 J+		
Pyrene	< 0.00395	< 0.00362	< 0.00457	< 0.00465	< 0.00356	< 0.00271	0.00569 J	0.00628 J	0.0401		
1-Methylnaphthalene	<0.00886	< 0.00812	< 0.0103	< 0.0104	< 0.00798	<0.00609	< 0.00461	< 0.00648	0.0348		
2-Methylnaphthalene	< 0.00842	< 0.00773	< 0.00976	< 0.00993	< 0.00759	< 0.00579	< 0.00438	< 0.00617	< 0.00627		
2-Chloronaphthalene	< 0.00919	< 0.00843	< 0.0107	<0.0108	<0.00828	< 0.00632	< 0.00478	< 0.00673	<0.00684		
Total PAHs	<0.00886	< 0.00812	< 0.0103	< 0.0104	< 0.00798	< 0.00609	0.0372 J	0.0605	0.345	30	17

See Notes at the End of Table

Table 1 - Drainage Sediment Results: TPH, PCBs, and PAHs

Dagmar Marina Facility - 1871 Ross Avenue

Everett, Washington

Sample Location ID:	OUTFALL-11	OUTFALL-12	OUTFALL-13	SLOUGH-1	SLOUGH-2	SLOUGH-3	SLOUGH-4		ment Management s (Benthic)
Date:	09/14/2022	09/14/2022	09/14/2022	09/14/2022	09/14/2022	09/14/2022	09/14/2022	Cleanup Screening Level	Sediment Cleanup Objective
Total Petroleum Hydrocarbons (T.	PH) by NWTPH	in mg/kg							
Diesel Range Organics	<1.97	<2.04	12.5	7.79 J	8.31 J	7.64 J	6.37 J	510	340
Residual Range Organics	<4.92	<5.11	82.0	20.7 J	24.7 J	25.9	21.1 J	4,400	3,600
Polychlorinated Biphenyls (PCBs)		nd 8082A in mg							
Aroclor 1016	< 0.0174	< 0.0181	< 0.0329	< 0.0270	< 0.0299	<0.0288	<0.0271		
Aroclor 1221	< 0.0174	< 0.0181	< 0.0329	< 0.0270	< 0.0299	<0.0288	< 0.0271		
Aroclor 1232	< 0.0174	< 0.0181	< 0.0329	< 0.0270	< 0.0299	<0.0288	< 0.0271		
Aroclor 1242	< 0.0174	< 0.0181	< 0.0329	< 0.0270	< 0.0299	<0.0288	< 0.0271		
Aroclor 1248	< 0.0109	< 0.0113	< 0.0206	< 0.0169	< 0.0187	< 0.0180	< 0.0170		
Aroclor 1254	< 0.0109	< 0.0113	< 0.0206	< 0.0169	< 0.0187	<0.0180	< 0.0170		
Aroclor 1260	< 0.0109	< 0.0113	< 0.0206	< 0.0169	< 0.0187	< 0.0180	< 0.0170		
Total PCBs	< 0.0174	< 0.0181	< 0.0329	< 0.0270	< 0.0299	<0.0288	< 0.0271	2.5	0.11
Polycyclic Aromatic Hydrocarbon	s (PAHs) by EF	PA Method 8270	E-SIM in mg/kg	7					
Anthracene	< 0.00340	< 0.00353	< 0.00642	< 0.00527	< 0.00582	< 0.00562	< 0.00529		
Acenaphthene	< 0.00309	< 0.00321	< 0.00583	< 0.00479	< 0.00529	< 0.00510	< 0.00480		
Acenaphthylene	< 0.00319	< 0.00332	< 0.00603	< 0.00495	< 0.00547	< 0.00527	< 0.00496		
Benzo(a)anthracene	< 0.00256	< 0.00266	< 0.00483	< 0.00397	< 0.00438	< 0.00422	< 0.00398		
Benzo(a)pyrene	< 0.00265	< 0.00275	< 0.00499	< 0.00410	< 0.00453	< 0.00437	0.00430 J		
Benzo(b)fluoranthene	< 0.00226	< 0.00235	< 0.00427	< 0.00351	< 0.00387	< 0.00374	< 0.00352		
Benzo(g,h,i)perylene	< 0.00262	< 0.00272	< 0.00494	< 0.00406	< 0.00448	< 0.00432	< 0.00407		
Benzo(k)fluoranthene	< 0.00318	< 0.00330	< 0.00600	< 0.00493	< 0.00544	< 0.00525	< 0.00494		
Chrysene	< 0.00343	< 0.00356	< 0.00647	< 0.00532	< 0.00588	< 0.00566	< 0.00533		
Dibenz(a,h)anthracene	< 0.00254	< 0.00264	< 0.00480	< 0.00394	< 0.00436	< 0.00420	< 0.00395		
Fluoranthene	< 0.00336	< 0.00349	< 0.00633	< 0.00520	< 0.00575	< 0.00554	0.00747 J		
Fluorene	< 0.00303	< 0.00315	< 0.00572	< 0.00470	< 0.00519	< 0.00501	< 0.00471		
Indeno(1,2,3-cd)pyrene	< 0.00268	< 0.00278	< 0.00505	< 0.00415	< 0.00458	< 0.00442	< 0.00416		
Naphthalene	< 0.00603	< 0.00627	< 0.0114	0.0201 J	0.0135 J	0.0184 J	0.0138 J		
Phenanthrene	< 0.00341	< 0.00355	< 0.00644	0.00568 J	< 0.00585	< 0.00564	0.00692 J		
Pyrene	< 0.00296	< 0.00307	< 0.00558	0.00477 J	< 0.00506	<0.00488	0.00802 J		
1-Methylnaphthalene	< 0.00664	< 0.00690	< 0.0125	< 0.0103	< 0.0114	< 0.0110	< 0.0103		
2-Methylnaphthalene	< 0.00631	< 0.00656	< 0.0119	< 0.00979	< 0.0108	< 0.0104	<0.00981		
2-Chloronaphthalene	< 0.00689	< 0.00716	< 0.0130	< 0.0107	< 0.0118	< 0.0114	< 0.0107		
Total PAHs	< 0.00664	< 0.00690	< 0.0125	0.0306 J	0.0135 J	0.0184 J	0.0330 J	30	17

- 1. mg/kg = Milligrams per kilogram.
- Bold values indicate the compound was detected above method detection limits.
- s = Analyte was not detected above the detection limit shown.
 Sediment Management Standards from WAC 173-204 and Washington Ecology's Sediment Cleanup User's Manual (December 2019 update).
- 5. -- = Value not available.
- 6. J = Result is estimated.
- 7. J+ = Result is estimated and may be biased high.

Table 2 - Drainage Sediment Results: Metals Dagmar Marina Facility - 1871 Ross Avenue Everett, Washington

Sample Location ID:	OUTFALL-1	OUTFALL-2	OUTFALL-3	OUTFALL-4	OUTFALL-5	OUTFALL-6	OUTFALL-7	OUTFALL-8	OUTFALL-9	OUTFALL-11	OUTFALL-12	OUTFALL-13	SLOUGH-1	SLOUGH-2	SLOUGH-3	SLOUGH-4	Puget Sound Natural Background		ment Management s (Benthic)
Date:	09/14/2022	09/14/2022	09/14/2022	09/14/2022	09/14/2022	09/27/2022	09/27/2022	09/27/2022	09/14/2022	09/14/2022	09/14/2022	09/14/2022	09/14/2022	09/14/2022	09/14/2022	09/14/2022	Concentrations	Cleanup Screening Level	Sediment Cleanup Objective
Metals by EPA Method 6020B and	d 7471B in mg/l	kg																	
Arsenic	10.6	18.1	11.5	21.6	13.2	13.7	5.94	18.0	18.8	6.06	12.7	13.6	21.7	22.9	19.5	15.9	11	120	14
Barium	35.0	54.1	66.5	51.5	52.3	57.3	32.3	61.5	41.0	15.3	32.0	37.7	51.4	54.9	45.3	49.6			
Cadmium	< 0.169	<0.155	0.254 J	< 0.199	< 0.152	0.120 J	0.129 J	0.208 J	0.232 J	<0.126	<0.131	<0.238	0.307 J	0.334 J	0.322 J	0.358	0.8	5.4	2.1
Chromium	47.8	68.3	78.4	65.3	55.8	57.9	23.0	64.6	26.8	17.2	42.5	44.4	43.3	48.0	39.3	53.7	62	88	72
Copper	41.1	49.4	60.9	49.9	47.6	36.2	17.6	41.2	38.2	16.8	39.6	39.5	73.4	81.4	66.9	74.6	45	1200	400
Lead	6.41	8.28	9.44	7.57	7.03	10.4	27.6	22.6	8.98	2.62 J	6.58	10.2	20.0	22.0	20.3	21.5	21	1,300	360
Nickel	45.5	62.5	65.2	60.3	49.8	40.0	23.9	42.4	31.4	17.8	40.7	38.4	48.4	56.2	47.6	58.5	50	110	26
Selenium	0.479 J	0.953 J	0.872 J	0.619 J	0.613 J	0.570 J	< 0.185	0.831 J	0.304 J	<0.266	0.626 J	0.732 J	0.780 J	0.932 J	0.710 J	0.686		20	11
Silver	< 0.171	<0.157	<0.198	< 0.201	< 0.154	< 0.117	<0.0888	< 0.125	< 0.127	<0.128	< 0.133	<0.241	0.213 J	0.244 J	<0.211	0.220	0.24	1.7	0.57
Zinc	61.6	84.8	91.1	75.3	74.7	85.1	181	74.2	95.0	24.1 J	57.9	68.1 J	86.7	102	90.8	108	93	4,200	3200
Mercury	0.0664 J	<0.0326	<0.0412	0.0740 J	0.130	0.0693	0.0189 J	0.0859	< 0.0264	0.0809	0.0361 J	0.0592 J	0.154	0.132	0.123	0.119	0.2	0.8	0.66

- mg/kg = Milligrams per kilogram.
 Bold values indicate the compound was detected above method detection limits
 < = Analyte was not detected above the detection limit shown

- Shaded results exceed the Cleanup Screening Level and the natural background concentration.
 Natural Background Concentrations and Sediment Management Standards from WAC 173-204 and Washington Ecology's Sediment Cleanup User's Manual (December 2019 update).
 -- = Value not available.
- 7. J = Result is estimated.

Table 3 - Drainage Sediment Results: Organochlorine Pesticides Dagmar Marina Facility - 1871 Ross Avenue Everett, Washington

Sample Location ID:	Slough 1-4	Barn 2	Outfall 8		nent Management 6 (Benthic)	MTCA Method B
Date:	9/14/2022	10/6/2022	10/6/2022	Cleanup Screening Level	Sediment Cleanup Objective	Cleanup Level
Organochlorine Pesticides by EPA Method 800	R1R in ua/ka					
Aldrin	<4.79	<2.58	<2.66 UJ			59
alpha-BHC	<4.79	<2.58	<2.66			160
beta-BHC	<10.3	<2.58	<2.66 UJ	11	7.2	560
delta-BHC	<5.99	<2.58	<2.66			
gamma-BHC (Lindane)	<4.79	<2.58	<2.66 UJ			910
cis-Chlordane	<4.79	<2.58	<2.66			40,000
trans-Chlordane	<4.79	<2.58	<2.66			40,000
4,4'-DDD	<4.79	<2.84	<2.66	860	310	2,400
4,4'-DDE	<4.79	4.83	<2.66	33	21	2,900
4,4'-DDT	<4.79	4.38 J	<2.66	8,100	100	2,900
Dieldrin	<4.79	<2.58	<2.66	9.3	4.9	63
Endosulfan I	<4.79	<2.58	<2.66			
Endosulfan II	<4.79	<2.58	<2.66			
Endosulfan sulfate	<4.79	<2.58	<2.66 UJ			480,000
Endrin	<4.79	<2.58	<2.66			24,000
Endrin Aldehyde	<4.79	<2.58	<2.66			
Endrin ketone	<4.79	<2.58	<2.66	>8.5	8.50	
Heptachlor	<4.79	<2.58	<2.66 UJ			220
Heptachlor epoxide	<4.79	<2.58	<2.66			110
Methoxychlor	<14.4	<7.75	<7.97			400,000
Chlordane (Technical)	<144	<77.5	<79.7			2,900
Toxaphene (Total)	<144	<77.5	<79.7			910

- 1. μ g/kg = Micrograms per kilogram.
- 2. Bold values indicate the compound was detected above minimum reporting limits.
- 3. < = Analyte was not detected above the reporting limit shown.
- 4. Soil cleanup levels from the MTCA Method B 173-340 WAC (July 2022 update).
- 5. Sediment Management Standards from WAC 173-204 and Washington Ecology's Sediment Cleanup User's Manual (December 2019 update).
- -- = Value not available.
- 7. J = Result is estimated.
- 8. UJ = The not detected result is estimated.

Table 4 - Drainage Sediment Results: Organophosphorus Pesticides Dagmar Marina Facility - 1871 Ross Avenue Everett, Washington

Sample Location ID:	Slough 1-4	Barn 2	Outfall 8	MTCA Method B
Date:	9/14/2022	10/6/2022	10/6/2022	Cleanup Level
Organophosphorus Pesticides by EPA Method	l 8270E in µg/kg	7		
Azinphos methyl (Guthion)	<1180	<66.2	<63.5	
Chlorpyrifos	<118	<66.2	<63.5	80,000
Coumaphos	<118	<66.2	<137	
Demeton O	<118	<66.2	<63.5 UJ	
Demeton S	<118	<66.2	<63.5	
Diazinon	<118	<66.2	<63.5	56,000
Dichlorvos	<118	<66.2	<63.5	3,400
Dimethoate	<118	<66.2	<63.5	180,000
Disulfoton	<118	<66.2	<63.5	3,200
EPN	<118	<66.2	<63.5	800
Ethoprop	<118	<66.2	<63.5	
Fensulfothion	<118	<66.2	<63.5	
Fenthion	<118	<66.2	<63.5	
Malathion	<118	<66.2	<63.5	1,600,000
Merphos	<175	<176	<268	2,400
Methyl parathion	<118	<66.2	<76.2	20,000
Mevinphos (Phosdrin)	<118	<66.2	<63.5	
Monocrotophos	<118	<66.2	<63.5	
Naled (Dibrom)	<118	<66.2	<63.5 UJ	160,000
Parathion, ethyl	<187	<66.2	<63.5	480,000
Phorate	<118	<66.2	<63.5	16,000
Ronnel (Fenchlorphos)	<118	<66.2	<63.5	4,000,000
Sulfotep	<118	<66.2	<63.5	40,000
Sulprofos (Bolstar)	<118	<66.2	<63.5	
TEPP	<473	<265	<254	
Tetrachlorvinphos (Rabon)	<118	<66.2	<63.5	42,000
Tokuthion (Prothiofos)	<118	<66.2	<63.5	
Trichloronate	<118	<66.2	<63.5	

- 1. μ g/kg = Micrograms per kilogram.
- 2. < = Analyte was not detected above the reporting limit shown.
- 3. Soil cleanup levels from the MTCA Method B 173-340 WAC (July 2022 update).
- 4. -- = Value not available.
- 5. UJ = The not detected result is estimated.

Table 5 - Drainage Sediment Results: Herbicides Dagmar Marina Facility - 1871 Ross Avenue Everett, Washington

Sample Location ID:	Slough 1-4	Barn 2	Outfall 8	MTCA Method B
Date:	9/14/2022	10/6/2022	10/6/2022	Cleanup Level
Herbicides by EPA Method 8151A in μg/kg				
2,4,5-T	<20	<4.7	< 5.3	800,000
2,4,5-TP (Silvex)	<40	< 9.6	<11	640,000
2,4-D	<260	<62	<69	800,000
2,4-DB	< 540	<130	<140	
Dicamba	<25	<6.0	<6.7	2,400,000
Dichlorprop	<260	<63	<70	
Dinoseb	<320	<75	<84	80,000
MCPA	<26000	<6200	<6900	40,000
Dalapon	<390	<93	<100	2,400,000
MCPP	<35000	<8400	<9400	80,000

- μg/kg = Micrograms per kilogram.
- 2. < = Analyte was not detected above the detection limit shown.
- 3. Soil cleanup levels from the MTCA Method B 173-340 WAC (July 2022 update).
- 4. -- = Value not available.

Table 6 - Soil Results: TPH Dagmar Marina Facility - 1871 Ross Avenue Everett, Washington

			Total Patrala	um Hudraaarbana (TDI I) by NIMTDI
			Gasoline Range	Diesel Range	
Sample Location ID	Depth (feet bgs)	Date	Organics	Organics Concentrations in mg	Residual Range Organics
		A Cleanup Level	30/100 ⁷	2,000	2,000
AST-1-5'	5	09/15/2022	<1.72 <1.66	6.73 3.57 J	18.9 23.9
AST-1-10' AST-2-3'	10 3	09/15/2022 09/15/2022	163	173	109
AST-2-10'	10	09/15/2022	6.83	5.34 J	17.9
AST-3-5' AST-3-10'	5 10	09/15/2022 09/15/2022	<1.64 <2.79	5.43 J 5.51 J	17.2 35.7
AST-4 (2.5-3)	3	01/03/2023	< 6.07	<60.3	178
AST-4 (14-15) AST-4A (4-4.5)	15 4	01/03/2023 01/03/2023	38.1 28.6	<63.6 <56.9	<127 469
AST-4A (9.5-10)	10	01/03/2023	<7.12	<77.6	160
AST-4B (5-5.5) AST-4B (9.5-10)	5 10	01/06/2023 01/06/2023	171 <10.3	762 <72.2	<127 <144
AST-5 (3-4)	3	01/03/2023	< 5.16	<52.4	134
AST-5 (9.5-10) AST-6 (2.5-3)	10 3	01/03/2023 01/03/2023	<7.53 414	<79.4 <53.5	167 <107
AST-6 (10-11)	10	01/03/2023	713	<46.7	<93.4
AST-6 (14.5-15) AST-6A (10-11)	15 10	01/03/2023 01/03/2023	<7.31 9.73	<62.7 <68.6	<125 175
AST-6A (14.5-15)	15	01/03/2023	<7.66	<72.4	<145
AST-6B (9.5-10) AST-7 (9.5-10)	10 10	01/03/2023 01/03/2023	<13.2 <8.53	<94.3 <78.6	491 <157
AST-8 (9.5-10)	10	01/03/2023	<11.9	<87.1	<174
BARN-1-3.5' MW-3 (4-6")	3.5 .5	09/15/2022 01/05/2023	2.76	7.39 J <52.8	51.4 1860
SB-01 (9.5-10)	.5 10	09/28/2022	<1.62	2.68 J	11.6 J
SB-01 (14.5-15)	15	09/28/2022	5.97 25.3	<1.66 25.1	4.83 J 144
SB-02 (4.5-5) SB-02 (14.5-15)	5 15	09/28/2022 09/28/2022	<1.44	2.50 J	11.5 J
SB-03 (4.5-5)	5	09/28/2022	<1.60 <1.96	10.3 4.57 J	58.4 49.4
SB-03 (13-13.5) SB-04 (4.5-5)	13 5	09/28/2022 09/28/2022	<1.47	<1.82	49.4 11.7 J
SB-04 (9.5-10)	10	09/28/2022	<2.50 <2.34	<2.41	8.73 J
SB-04 (13-14) SB-05 (4.5-5)	13 5	09/28/2022 09/28/2022	1.33 J	4.20 J <1.60	46.4 4.94 J
SB-05 (9-10)	10	09/28/2022	<1.99 <9.24	<2.21 <80.7	17.1
SB-05 (14.5-15) SB-06 (4.5-5)	15 5	01/04/2023 09/28/2022	3.72 J	5.95	<161 19.8
SB-06 (9-10)	10	09/28/2022	<1.96 <7.73	<2.20	<5.51 <138
SB-06 (14.5-15) SB-07 (12.5-13)	15 13	01/04/2023 01/04/2023	<7.73 <9.92	<69 <79.4	<150 <159
SB-07 (24.5-25)	25	01/04/2023	<6.46 <11.1	<65.2 <89.6	<130 <179
SB-08 (13.5-14) SB-08 (24.5-25)	14 25	01/04/2023 01/04/2023	<6.08	<64.5	<129
SB-08 A (14.5-15)	15	01/05/2023	<10.9 <8.31	<87.9 <69.2	<176 <138
SB-09 (13-13.5) SB-09 (24.5-25)	13 25	01/04/2023 01/04/2023	<5.74	<62.7	<125
SB-10 (12.5-13)	13	01/05/2023	<11.8 <5.94	<78.6 <59.4	<157 <119
SB-11 (14-14.5) SB-12 (14-14.5)	14 14	01/05/2023 01/05/2023	< 9.05	<63.5	<127
SB-13(13-13.5)	13	01/09/2023	<13.8 <5.71	<99.9 <60.9	<200 <122
SB-13 (24.5-25) SB-14 (14-14.5)	25 14	01/09/2023 01/09/2023	<14.7	<93.5	<187
SB-14 (24.5-25)	25	01/09/2023	<6.69 <13.2	<64.3 <111	<129 <222
SB-14A (14-14.5) SB-15 (12.5-13)	14 13	01/09/2023 01/09/2023	<6.69	<68.9	<138
SB-16 (14.5-15) SB-17 (14.5-15)	15 15	01/09/2023 01/10/2023	<5.23 <8.24	<59.4 <76.4	<119 <153
SB-18 (14.5-15)	15	01/10/2023	<8.19	<65.8	<132
SB-19 (13-13.5)	13 15	01/10/2023 01/10/2023	<13.7 <16.9	<98.6 <95.2	<197 <190
SB-20 (14.5-15) SB-20 (20-24.5)	20	01/10/2023	<7.47	<64.8	<130
SB-21 (14-14.5) SB-21 (19.5-20)	14 20	01/10/2023 01/10/2023	<10.9 <6.29	<98.2 <65.7	<196 <131
SB-22-17	17	01/25/2023	<6.56	<62.5	<125
SB-23-12 SB-24-11	12 11	01/25/2023 01/25/2023	<6.18 <6.23	<57.5 <59.6	<115 <119
SB-25-6	6	01/25/2023	<6.1	<56.6	<113
SHOP-1-2.5' SHOP-1-5'	2.5 5	09/15/2022 09/15/2022	-	3.56 J 2.26 J	8.49 J <5.23
SHOP-2-2.5'	2.5	09/15/2022		2,720 J	4,380 J
SHOP-2-5' SHOP-3 (9.5-10)	5 10	09/15/2022 01/03/2023	<9.56	2.41 J <74.1	<5.03 203
SHOP-4 (2.5-3)	3	01/05/2023	475	141	481
SHOP-4 (5-6) SHOP-4 (9.5-10)	5 10	01/03/2023 01/03/2023	176 <10.4	<61.9 <80	712 <160
SHOP-4A (9.5-10)	10	01/04/2023	<7.28	<63.3	<127
SHOP-4B (13-14) SHOP-4B (19-20)	13 20	01/06/2023 01/06/2023		<70.5 <63.6	<141 <127
SHOP-5 (9.5-10)	10	01/04/2023	<8.62	<69.1	<138
VAULT-1-7' VAULT-1-15'	7 15	09/15/2022 09/15/2022	-	5.03 J 2.82 J	60.6 16.9
VAULT-2-7'	7	09/15/2022		3.57 J	20.9
VAULT-2-15'	15	09/15/2022		2.79 J	35.6

- Notes:

 1. mg/kg = Milligrams per kilogram
 2. Bold values indicate the compound was detected above method detection limits
 3. <= Analyte was not detected above the reporting limit shown
 4. Shaded results exceed the Model Toxics Control Act (MTCA) Method A soil cleanup level for unrestricted land use.
 5. Soil cleanup levels from the MTCA Method A 173-340 WAC (July 2022 update)
 6. -- = Value not available.

- -- = Value not available.
 The MTCA Method A Cleanup Level for TPH as gasoline range organics is 30 mg/kg when benzene is detected, and 100 mg/kg when benzene is not detected.

 8. bgs = Below ground surface.

 9. J = Result is estimated

Table 7 - Soil Results: VOCs Dagmar Marina Facility - 1871 Ross Avenue Everett, Washington

3 10 3/2023 01/03	10-11) SB-04 (4				SB-07	SB-08	SB-22-17	SB-23-12	SB-24-11	SB-25-6		OP-4	
		.5-5) SB-0	04 (9.5-10)	SB-04 (13-14)	SB-07 (12.5-	SB-08 (13.5- 14)	SB-22-17	SB-23-12	SB-24-11	SB-25-6	SHOP-4 (2.5-	SHOP-4 (5-6)	MTCA Method
		-	10	14	13)	14)	17	12	11	6	3)	5	Cleanup Lev
	2023 09/28/2	022 09/	9/28/2022	09/28/2022	01/04/2023	01/04/2023	01/25/2023	01/25/2023	01/25/2023	01/25/2023	01/05/2023	01/03/2023	
EPA Method 82	60D in mg/kg												
.237 <0.	9 <0.06		<0.108 0.0107	<0.101	<0.496	<0.557	<0.328	<0.309	<0.311	<0.305	<0.294	<0.326	
.373 1.			00138	<0.00998	< 0.0347	< 0.039	< 0.023	<0.0216	<0.0218	<0.0213	<0.0206	<0.0228	0.03
118 <0.009			00265	< 0.00249	< 0.0248	<0.0278	< 0.0164	< 0.0154	< 0.0156	< 0.0152	< 0.0147	< 0.0163	
.019 <0.02			00214	< 0.00200	< 0.0496	< 0.0557	< 0.0328	< 0.0309	< 0.0311	< 0.0305	< 0.0294	< 0.0326	
				< 0.00539	<0.0298	< 0.0334	< 0.0197	<0.0185	<0.0187	< 0.0183	< 0.0176	< 0.0196	
				<0.00248	< 0.0496	< 0.0557	<0.0328	< 0.0309	<0.0311	< 0.0305	< 0.0294	< 0.0326	
				< 0.00285	< 0.0347	< 0.039	< 0.023	< 0.0216	< 0.0218	<0.0213	< 0.0206	<0.0228	
474 <0.0	< 0.007	3 UJ <0	0.0128 UJ	<0.0120 UJ	< 0.0992	<0.111	< 0.0656	< 0.0618	< 0.0623	< 0.061	< 0.0588	< 0.0652	
				< 0.00239	< 0.0327	< 0.0367	<0.0216	< 0.0207	<0.0206	< 0.0201	< 0.0194	< 0.0215	
													0.005
				< 0.00177	< 0.0248	<0.0223	< 0.0164	< 0.0124	< 0.0125	< 0.0152	< 0.0118	< 0.013	0.005
.019 <0.01	< 0.0007	< 0.0	00126	< 0.00117	< 0.0397	< 0.0445	< 0.0262	< 0.0247	< 0.0249	< 0.0244	< 0.0235	< 0.0261	
				<0.00166	< 0.0397	<0.0445	<0.0262	<0.0247	< 0.0249	< 0.0244	< 0.0235	<0.0261	
				< 0.00179	< 0.0397	< 0.0445							
948 < 0.07	(0.001)	< 0.0		<0.00168	< 0.198	< 0.223	< 0.131	< 0.124	< 0.125	< 0.122	< 0.118	< 0.13	
1142 <0.01	4 <0.001	< 0.0	00223	< 0.00209	< 0.0298	< 0.0334	< 0.0197	< 0.0185	< 0.0187	< 0.0183	< 0.0176	< 0.0196	
						**							
2 67 10					<0.0496	<0.0557		<0.0309	<0.0311	<0.0305	<0.0294	<0.0326	6
				< 0.0166	< 0.0794	< 0.089	< 0.0525	< 0.0494	< 0.0498	<0.0488	< 0.0471	<0.0522	
	< 0.0007	< 0.0	00126	< 0.00117	< 0.0298	< 0.0334	< 0.0197	< 0.0185	< 0.0187	< 0.0183	< 0.0176	< 0.0196	
				< 0.00705	< 0.397	< 0.445	< 0.262	<0.247	< 0.249	< 0.244	< 0.235	<0.261	
													0.02
													0.02
					< 0.0397			< 0.0247			< 0.0700		0.1
	< 0.008	5 <0		< 0.0135	<31.2	<36	< 0.131	<0.124	< 0.125	< 0.122	<0.118	<24.3	5
				< 0.00208	<0.377		V0.202	NO.247	NO.247		10.233	0.407	
1142 <0.01				< 0.00248	< 0.0298	< 0.0334	< 0.0197	< 0.0185	< 0.0187	< 0.0183	< 0.0176	< 0.0196	0.05
				0.00918 J	< 0.0595	<0.0668	<0.0394	< 0.0371	< 0.0374	< 0.0366	< 0.0353	<0.0391	7
													2
				< 0.00255	< 0.0248	<0.0278	< 0.0164	< 0.0154	< 0.0156	< 0.0152	< 0.0147	< 0.0163	-
1142 <0.01	4 < 0.001	< 0.0	00172	< 0.00161	< 0.0298	< 0.0334	< 0.0197	< 0.0185	< 0.0187	< 0.0183	< 0.0176	< 0.0196	0.03
				<0.00229	< 0.0397	<0.0445	<0.0262	<0.0247	< 0.0249	< 0.0244	< 0.0235	<0.0261	
14.0 22	<0.002 <0.002		00465	<0.00437	<0.0298	<0.0334	<0.019/	<0.0185	<0.0187	<0.0183	<0.01/6	<0.0196	
4.26 6.			00590	< 0.00437	<0.0298	< 0.0334	<0.0197	<0.0185	< 0.0187	< 0.0183	<0.0176	<0.0196	
237 <0.0			00343	< 0.00321	< 0.0496	< 0.0557	<0.0328	< 0.0309	< 0.0311	< 0.0305	< 0.0294	< 0.0326	
2.77	7 <0.001!	< 0.0	00260	<0.00243	<0.1488 <0.124	<0.1667 <0.139	<0.0984 <0.082	<0.0927 <0.0772	<0.0934 <0.0779	<0.0915 <0.0762	<0.0882 1.5	<0.0978 <0.0815	9
01 30 00 00 00 00 00 00 00 00 00 00 00 00	237	237	237 -0.019 -0.00341 UJ -0.00361 -0.	237 -0.019 -0.00341 U -0.00580 U -0.0555 -0.0049 -0.00556 -0.00557 -0.0049 -0.00557 -0.0049 -0.00557 -0.0049 -0.00557 -0.0049 -0.00557 -0.0049 -0.00557 -0.0049 -0.00557 -0.0049 -0.00557 -0.0057 -0.0057 -0.00557 -0.0057 -0.00557 -0.00557 -0.00557 -0.00557 -0.00557 -0.00557 -0.00557 -0.00557 -0.00557 -0.00567 -0.0057	237 -0.019 -0.0034 U	237 (-) -0.019 (-) -0.00580 UJ -0.00576 UJ -0.00397 -0.00597 -0.00597 -0.00597 -0.00598 -0.00796 UJ -0.00550 UJ -0.00550 UJ -0.00598 -0.00798 UJ -0.00598 -0.00798 UJ -0.00598	237 0.019 0.0034 U	237 0.019	237 -0.019 -0.00341 U	237 -0.019	237 0.019	237 -0.019	237 -0.019

Table 8 - Soil Results: Metals Dagmar Marina Facility - 1871 Ross Avenue Everett, Washington

Boring ID:	AR	S-1			ARS-2				AR	S-3		ARS-4	AR	-4B	AST-6	MW-1	MW-3	SB	-01	SB-04	SB-07	SB-08		OP-4		OP-4B	Puget Sound	
Sample Location ID:	ARS-1 (0-3)	ARS-1 (3-6)	ARS-2 (0-5)	ARS-2 (5.5- 12)	ARS-2 (12-15)	ARS-2 (15-17)	ARS-2 (17-20)	ARS-3 (0-4)	ARS-3 (4-9)	ARS-3 (9-14)	ARS-3 (14-20)	ARS-4 (10-15)	ARS-4B (5- 5.5)	ARS-4B (9.5- 10	AST-6 (10-11)	MW-1-10'	MW-3 (4-6')	10)	SB-01 (14.5- 15)	10)	13)	14)	SHOP-4 (2.5- 3)	SHOP-4 (5-6)	SHOP-4B (13- 14)	SHOP-4B (19- 20)	Natural Background	MTCA Method Cleanup Leve
Sample Depth (feet bgs):	3	6	5	12	15	17	20	4	9	14	20	5	5	10	10-11	10	.5	9.5-10	14.5-15	9.5-10	12.5-13	12.5-13	3	5	14	20	Concentrations	Cleanup Leve
	01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/06/2023	01/10/2023	01/06/2023	01/06/2023	01/03/2023	09/15/2022	01/05/2023	09/28/2022	09/28/2022	09/28/2022	01/04/2023	01/04/2023	01/05/2023	01/03/2023	01/06/2023	01/06/2023	Concensations	
letals by EPA Method 6020B and																												
rsenic	4.03	8.89	4.49	5.93	10.3	9.53	11.4	2.33	10.2	9.23	7.5	<10.5	13.0	13.9	21.5	19.1	2.71	14.6	5.26	11.2	12.9	14.3	5.74	5.39	9.71	6.08	7	20
arium	31.5	36.5	20.4	28.2	24.7	25.2	29.4	40.0	26.0	15.1	22.7		40.2	38.2	32.7	46.0	30.2	54.0	31.5	60.0	28.0	34.5	23.7	24.2	36.0	23.9	-	
admium	0.0484	0.139	0.0471	0.0665	0.0732	0.118	0.0759	0.0511	0.045	0.0986	0.0925		0.193	0.059	0.521	0.169 J	0.518	0.218 J	< 0.107	< 0.155	0.102	0.114	0.0495	0.163	0.121	0.0675	1	2
hromium	19.6	19.3	17.1	19.9	27.7	33.2	34.4	19.3	30.8	20.8	26.4		35.6	46.8	8.88	33.4	16.9	52.7	22.6	72.9	38.5	44.4	19.2	20.4	40.7	25	48	2000
opper	13.2	17.6	11.1	14.2	22	28.2	27.4	9.8	20.5	20.0	22.7		30.3	32.9	24	26.8	679	49.8	15.3	35.9	27.8	29.7	12.6	23.5	33.7	18.8	36	
ead	3.62	12.4	3.06	4.01	6.69	4.45	6.07	2.43	5.6	2.96	3.97		12.9	6.81	21.8	12.9	16.2	9.71	3.58	8.27	5.97	6.27	7.38	16	6.1	3.19	24	250
ickel	25	20.5	16.8	20.7	21.5	21.8	31	26.1	20.4	21.4	24.7		27.4	36.4	8.18	28.4	15.4	49.6	24.7	54.1	39	43.2	20	20.7	33.7	23.1	48	
elenium	<0.905 0.0244	<1.22 0.0324	<0.833 <0.0167	<0.964 0.0231	<1.13 0.058	<1.25 0.0686	<1.09 0.0655	<0.859 0.0266	<1.18 0.0355	<1.31 0.0451	<1.12 0.0578		<1.03 0.0827	<1.18 0.0749	<0.864 0.107	<0.310 <0.149	<0.803 0.0622	0.490 J <0.125	<0.225 <0.108	0.656 J <0.157	<1.22 0.0629	<1.4 0.0699	<0.868 0.0208	<0.976 0.0229	<1.14 0.103	<0.957 0.0388	-	
ilver	31.2	64.3		37.5	37.4	34.8	49.3	23.8	34.1	25.9	39.5		0.0827	62.8	107	<u.149 85.7</u.149 	78.5	<0.125 69.5	<0.108 37.4	<0.157 75.0	50.7	57.7	34.4		61.2	38.7		
inc	31.2	64.3	32.4 <0.218	37.5	< 0.261	34.8	49.3	23.8	34.1	25.9	39.5		0.242	-0.200	107	0.0333	<0.214	0.0623 J	< 0.0225	0.0546 J	<0.299	-0.247	<0.224	41.8	-0.273	38.7	85	
otal Organic Carbon by EPA Met	<0.21 bod 0040	<0.311	<0.210	<0.235	<0.261	<0.306	<0.28	<0.222	<0.301	<0.324	<0.263	-	<0.242	<0.209	<0.2	0.0333)	<0.214	0.0623 J	<0.0225	U.U046 J	<0.299	<0.367	<0.224	<0.229	<0.273	<0.236	0.07	
otal Organic Carbon	0.214	174	<0.15	0.259	1 35	3 10	3 25	0.279	2.65	7.25	1.44	c4.73	1 20	1 20			_					-						
Intes:	0.214	1.70	V0.13	0.237	1.33	3.17	3.23	0.217	2.03	1.23	1.44	(4.73	1.30	1.30							l	1				1		
mg/kg = Milligrams per kilogram	1																											
Bold values indicate the compo		led above metho	d detection limi	ts.																								
< = Analyte was not detected at	have the detect	tion limit shown																										
Shaded results exceed the Mod			Method A Soil C	leanup Level fo	or unrestricted lar	nd use and/or th	ne Natural Back	around Soil Con	centrations.																			
Soil cleanup levels from the MT	CA Method A 1	173-340 WAC (J	uly 2022 update	e).																								
= Value not available.			-																									
bgs = Below ground surface.																												
J = Result is estimated.																												

Table 9 - Soil Results: PCBs

Dagmar Marina Facility - 1871 Ross Avenue

Everett, Washington

Boring ID:	SHOP-2	SHOP-4	
Sample Location ID:	SHOP-2-2.5'	SHOP-4 (5-6)	MTCA Method A Cleanup Level
Sample Depth (feet bgs):	2.5	5	
Date:	09/15/2022	01/03/2023	
Polychlorinated Biphenyls (PCBs)	by EPA Method	8082A in mg/kg	
Aroclor 1016	< 0.0143	<0.0224	
Aroclor 1221	< 0.0143	<0.0224	
Aroclor 1232	< 0.0143	<0.0224	
Aroclor 1242	< 0.0143	<0.0224	
Aroclor 1248	< 0.00893	<0.0224	
Aroclor 1254	< 0.00893	<0.0224	
Aroclor 1260	< 0.00893	<0.0224	
Aroclor 1262		<0.0224	
Aroclor 1268		<0.0224	
Total PCBs	< 0.0143	<0.0224	1

- 1. mg/kg = Milligrams per kilogram.
- 2. < = Analyte was not detected above the detection limit shown.
- 3. Soil cleanup levels from the MTCA Method A 173-340 WAC (July 2022 update).
- 4. -- = Value not available.
- 5. bgs = Below ground surface.

Table 10 - Soil Results: PAHs

Dagmar Marina Facility - 1871 Ross Avenue

Everett, Washington

Boring ID:	AST-6	SB-07	SB-08	SHO)P-4	
Sample Location ID:	AST-6 (10-11)	SB-07 (12.5- 13)	SB-08 (13.5- 14)	SHOP-4 (2.5- 3)	SHOP-4 (5-6)	MTCA Method A Cleanup Level
Sample Depth (feet bgs):	11	13	14	3	5	Clearlup Level
Date:	01/03/2023	01/04/2023	01/04/2023	01/05/2023	01/03/2023	
Polycyclic Aromatic Hydrocarbor	is (PAHs) by Ei	PA Method 827	0 SIM in mg/kg	1		
Acenaphthene	<20.5	<31.2	<36	<20.6	<24.3	
Acenaphthylene	<20.5	<31.2	<36	<20.6	<24.3	
Anthracene	<20.5	<31.2	<36	<20.6	<24.3	
Benzo(a)anthracene	<20.5	<31.2	<36	<20.6	<24.3	
Benzo(a)pyrene	<30.8	<46.8	<54	<30.8	<36.5	2
Benzo(b)fluoranthene	<25.6	<39	<45	<25.7	<30.4	
Benzo(g,h,i)perylene	<51.3	<78	<90	<51.4	<60.9	
Benzo(k)fluoranthene	<25.6	<39	<45	<25.7	<30.4	
Chrysene	<20.5	<31.2	<36	<20.6	<24.3	
Dibenzo(a,h)anthracene	<51.3	<78	<90	<51.4	<60.9	
Fluoranthene	<20.5	<31.2	<36	<20.6	<24.3	
Fluorene	<20.5	<31.2	<36	<20.6	<24.3	
Indeno(1,2,3-cd)pyrene	<41	<62.4	<72	<41.1	<48.7	
1-Methylnaphthalene	418	<31.2	<36	<20.6	<24.3	
2-Methylnaphthalene	790	<31.2	<36	<20.6	<24.3	
Naphthalene	2.63	<0.198	<0.223	<0.118	< 0.13	5
Phenanthrene	<20.5	<31.2	<36	<20.6	<24.3	
Pyrene	<41	<62.4	<72	<41.1	<48.7	

- 1. mg/kg = Milligrams per kilogram.
- 2. Bold values indicate the compound was detected above method detection limits.
- 3. < = Analyte was not detected above the detection limit shown.
- 5. Soil cleanup levels from the MTCA Method A 173-340 WAC (July 2022 update).
- 6. -- = Value not available.
- 7. bgs = Below ground surface.

Table 11 - Groundwater Results: TPH and VOCs Dagmar Marina Facility - 1871 Ross Avenue Everett, Washington

Everett, Washington	Direct Pu	ısh Sample Co	llection	Мс	nitoring Well S	ample Collecti	on		
Sample Location ID:	GW4	GW-7	SHOP-4	MW-2	MW-3	MW-4	MW-5	MTCA Method A Cleanup Level	
Date:		01/04/2023	01/03/2023	01/27/2023	01/26/2023	01/26/2023	01/26/2023	Cleanup Level	
Total Petroleum Hydrocarbons (T Gasoline Range Organics	180	-x in μg/L <50	<50	<50.0	<50.0	<50.0	<50.0	800/1000 7	
Diesel Range Organics	15,400 J	1,100	1,730	191	573	465	345	500	
Residual Range Organics	74,100 J	<94.4	<98.4	<93.9	<95.5	<93.0	<94.1	500	
Volatile Organic Compounds (VO			g/L					1	
Acetone Acrylonitrile	114 <0.0760	6.61	-	266	19.7	32.4	15.3		
Benzene	32.3	<0.44	_	<0.440	<0.440	<0.440	<0.4400	5	
Bromobenzene	<0.0420	<0.5	-	<0.500	<0.500	<0.500	<0.500		
Bromodichloromethane	0.194	< 0.25	-	<0.250	<0.250	<0.250	<0.250		
Bromoform	<0.239	< 0.300	-	< 0.300	< 0.300	< 0.300	<0.300	-	
Bromomethane	<0.148	<3.00	-	<3.00	<3.00	<3.00	<3.00	-	
n-Butylbenzene sec-Butylbenzene	<0.153 <0.101	<0.500 <0.500		<0.500 <0.500	<0.500 <0.500	<0.500 <0.500	<0.500 <0.500		
tert-Butylbenzene	<0.0620	<0.500		<0.500	<0.500	<0.500	<0.500	_	
Carbon Tetrachloride	<0.0432	< 0.300	-	< 0.300	< 0.300	<0.300	<0.300		
Chlorobenzene	< 0.0229	<0.500	-	<0.500	< 0.500	<0.500	<0.500		
Chlorodibromomethane	<0.0180	<0.300		<0.300	<0.300	<0.300	<0.300		
Chloroethane Chloroform	<0.0432	<1.00 <0.500	-	<1.00 <0.500	<1.00 <0.500	<1.00 <0.500	<1.00 <0.500	-	
Chloromethane	2.54 <0.0556 UJ	<0.500		<0.750	< 0.750	<0.750	<0.750	-	
2-Chlorotoluene	<0.0368	<0.500		<0.500	<0.500	<0.500	<0.500		
4-Chlorotoluene	<0.0452	<0.500		<0.500	<0.500	<0.500	<0.500		
1,2-Dibromo-3-Chloropropane	<0.204 UJ	<1.00	-	<1.00	<1.00	<1.00	<1.00		
1,2-Dibromoethane	<0.0210	<0.200	-	<0.200	<0.200	<0.200	<0.200	0.01	
Dibromomethane	<0.0400	<0.250	-	<0.250	<0.250	<0.250	<0.250		
1,2-Dichlorobenzene 1,3-Dichlorobenzene	<0.0580 <0.0680	<0.500 <0.500		<0.500 <0.500	<0.500 <0.500	<0.500 <0.500	<0.500 <0.500		
1,4-Dichlorobenzene	<0.0788	<0.500		<0.500	<0.500	<0.500	<0.500		
Dichlorodifluoromethane	<0.0327	<0.500	-	<0.500	<0.500	<0.500	<0.500		
1,1-Dichloroethane	< 0.0230	<0.500	-	<0.500	<0.500	<0.500	<0.500		
1,2-Dichloroethane	<0.0190	<0.500	-	<0.500	< 0.500	<0.500	<0.500	5	
1,1-Dichloroethene	<0.0200	<0.500	-	<0.500	<0.500	<0.500	<0.500		
cis-1,2-Dichloroethene	<0.0276 <0.0572	<0.500 <0.350	-	<0.500 <0.350	<0.500 <0.350	<0.500 <0.350	<0.500 <0.350		
trans-1,2-Dichloroethene 1,2-Dichloropropane	<0.0572	<0.300	_	<0.300	< 0.300	<0.300	<0.300		
1,1-Dichloropropene	<0.0280	<0.500	-	<0.500	<0.500	<0.500	<0.500		
1,3-Dichloropropane	< 0.0700	< 0.300	-	< 0.300	< 0.300	< 0.300	< 0.300		
cis-1,3-Dichloropropene	<0.0271 <0.0612		< 0.350	-	< 0.350	< 0.350	< 0.350	< 0.350	
trans-1,3-Dichloropropene		<0.500	-	<0.500	<0.500	<0.500	<0.500		
2,2-Dichloropropane	<0.0317		-		-		-		
Di-Isopropyl Ether Ethylbenzene	<0.0140 3.44	<0.200	_	<0.400	<0.400	<0.400	<0.400	700	
Hexachloro-1,3-Butadiene	< 0.508	<0.500	_	<0.500	<0.500	<0.500	<0.500		
Isopropylbenzene	0.118	<0.500	-	<0.500	<0.500	<0.500	<0.500		
p-Isopropyltoluene	0.250	< 0.500	-	< 0.500	< 0.500	<0.500	<0.500		
2-Butanone (MEK)	10.8	<1.50	-	<1.50	3.67	3.23	3.96	-	
Methylene Chloride	<0.265	<0.750	-	<0.750	<0.750	<0.750	<0.750	5	
Please see notes at end of table. 4-Methyl-2-Pentanone (MIBK)	<0.400	<1.00		<1.00	<1.00	<1.00	<1.00	1	
Methyl tert-Butyl Ether	<0.0118	<0.350	_	<0.350	<0.350	<0.350	<0.350	20	
Naphthalene	13.8	0.277		<1.25	<1.25	<1.25	<1.25	160	
n-Propylbenzene	0.279	<0.500	-	<0.500	<0.500	<0.500	<0.500		
Styrene	2.10	<0.500	-	<0.500	<0.500	<0.500	<0.500	-	
1,1,1,2-Tetrachloroethane	<0.0200	<0.300	-	<0.300	<0.300	<0.300	<0.300	I -	
1,1,2,2-Tetrachloroethane 1.1.2-Trichlorotrifluoroethane	<0.0156 <0.0270	<0.200	_	<0.200	<0.200	<0.200	<0.200		
Tetrachloroethene	<0.0270	< 0.350	_	< 0.350	< 0.350	<0.350	<0.350	5	
Toluene	37.2	<1.00	_	<1.00	<1.00	<1.00	<1.00	1000	
1,2,3-Trichlorobenzene	< 0.0250	<0.700	-	<0.700	<0.700	<0.700	<0.700		
1,2,4-Trichlorobenzene	<0.193	<0.750	-	<0.750	<0.750	<0.750	<0.750		
1,1,1-Trichloroethane	<0.0110 UJ	<0.300	-	<0.300	<0.300	<0.300	<0.300	200	
1,1,2-Trichloroethane Trichloroethene	<0.0353 <0.0160	<0.250 <0.400	_	<0.250 <0.400	<0.250 <0.400	<0.250 <0.400	<0.250 <0.400	5	
Trichlorofluoromethane	<0.0200	<0.400	_	<0.300	< 0.400	<0.400	<0.300		
1,2,3-Trichloropropane	<0.204 UJ	<0.400	_	<0.400	<0.400	<0.400	<0.400	_	
1,2,4-Trimethylbenzene	4.17	<0.500	-	<0.500	<0.500	<0.500	0.619	-	
1,2,3-Trimethylbenzene	5.22		-					-	
1,3,5-Trimethylbenzene	0.962	<0.500	-	<0.500	<0.500	<0.500	<0.500		
Vinyl Chloride	<0.0273	<0.200	-	<0.200	<0.200	<0.200	<0.200	0.2	
Xylenes, Total Bromochloromethane	22.8 <0.0452	<1.50	-	<1.50	<1.50	<1.50	<1.50	1000	
Carbon Disulfide	0.435 J	_	_	_	-	_	_		
trans-1,4-Dichloro-2-Butene	< 0.0560	_	_	-	_	_	_		
2-Hexanone	<0.400	-	-	<1.25	<1.25	<1.25	<1.25	-	
n-Hexane	<0.0424	-	-		-	-	-		
lodomethane	<0.242 UJ <0.141	-	-	-	-	-	-	-	
Vinyl Acetate									

- Notes:

 1. µg/L = Micrograms per liter.

 2. Bold values indicate the compound was detected above method detection limits.

 3. <= Analyte was not detected above the detection limit shown.

 4. Shaded results exceed the Model Toxics Control Act (MTCA) Method A groundwater cleanup level.

 5. Groundwater cleanup levels from the MTCA Method A 173-340 WAC (July 2022 update).

 6. —= Value not available.

- The MTCA Method A Cleanup Level for TPH as gasoline range organics is 800 μg/L when benzene is detected, and 1,000 μg/L when benzene is not detected.
 J = Result is estimated.
 UJ = The not detected result is estimated.

Table 12 - Groundwater Results: PAHs Dagmar Marina Facility - 1871 Ross Avenue Everett, Washington

erett, washington	
	Direct Push
	Sample Collection

Boring ID:	GW-07 ⁵	
Sample Location ID:	GW-07-0123	MTCA Method A Cleanup Level
Date:	01/04/2023	
Polycyclic Aromatic Hydrocarbons	s (PAH) by 8270 SIM	in μg/L
Acenaphthene	< 0.0995	
Acenaphthylene	< 0.0995	
Anthracene	< 0.0995	
Benzo(a)anthracene	< 0.0995	
Benzo(a)pyrene	< 0.0995	0.1
Benzo(b)fluoranthene	< 0.0995	
Benzo(g,h,i)perylene	< 0.0995	
Benzo(k)fluoranthene	<0.0995	
Chrysene	<0.0995	
Dibenzo(a,h)anthracene	< 0.0995	
Fluoranthene	<0.0995	
Fluorene	< 0.0995	
Indeno(1,2,3-cd)pyrene	<0.0995	
1-Methylnaphthalene	<0.0995	
2-Methylnaphthalene	<0.0995	
Phenanthrene	<0.0995	
Pyrene	<0.199	

- 1. mg/kg = Milligrams per kilogram.
- 2. < = Analyte was not detected above the detection limit shown.
- 3. Soil cleanup levels from the MTCA Method A 173-340 WAC (July 2022 update).
- 4. -- = Value not available.

Table 13 - Groundwater Results: Metals Dagmar Marina Facility - 1871 Ross Avenue

Everett, Washington

	_	Well Sample ection	Direct Push Sample Collection	
Sample Location ID:	MW-1-UF	MW-1-F	GW-7	MTCA Method A
Date:	10/06/2022	10/06/2022	01/04/2023	Cleanup Level
Metals by EPA Method 6020B	in μg/L			
Arsenic	14.7	20.4	41.8	5
Barium			157	
Cadmium			<0.500	5
Chromium			24.0	50
Copper				
Lead			2.66	15
Nickel				
Selenium			<1.25	
Silver			<1.00	
Zinc				
Mercury			<0.100	2

- 1. µg/L = Micrograms per liter.
- 2. Bold values indicate the compound was detected above method detection limits.
- 3. < = Analyte was not detected above the detection limit shown.
- 4. Shaded results exceed the Model Toxics Control Act (MTCA) Method A groundwater cleanup level.
- 5. Groundwater cleanup levels from the MTCA Method A 173-340 WAC (July 2022 update).
- 6. -- = Value not available.

Marysville, Washington

United States Geological Survey 7.5 Minute Series Topographic Map Contour Interval: 20 feet Scale: 1 inch = 24,000 feet

Date: 2020

WASHINGTON

Site Location Map

Supplemental Remedial Investigation Dagmars Marina Property - 1871 Ross Avenue Everett, Washington

Project Number: 32-22012832	Drawn: JP	Approved: AU
Novemb	er 20	23

Figure 1

Modified 11/1/2023 by JPoore :\Client\Alterra Property Group LLC\32-22012832 1871 Ross Ave\Sediment Characterization\32-22012832 01 (Site Location Map SC).dwg

Site Vicinity Plan

Supplemental Remedial Investigation Dagmars Marina Property - 1871 Ross Avenue Everett, Washington

Project Number: 32-22012832	Drawn: JP	Approved: AU
Novemb	er 20	23

Table 1 - Final Sample Station Coordinates Dagmars Marina - 1871 Ross Avenue Everett, Washington

Sample Location	Final X	Final Y	Local Latitude	Local Longitude	WGS84 Latitude	WGS84 Longitude	Depth (feet)	Time	Date
BL-1-SS-1	1311077.19	371981.5	48.01187736 N	122.17894392 W	48.01187736 N	122.17894392 W	8.4	12:37:08	8/28/2023
BL-1_SB1	1311076.68	371986.97	48.01189234 N	122.1789464 W	48.01189234 N	122.1789464 W	4.8	9:54:21	8/29/2023
BL-2_SS1	1311057.51	372041.25	48.01204019 N	122.17902858 W	48.01204019 N	122.17902858 W	9	13:07:40	8/28/2023
BL-3_SS1	1311014.1	371952.81	48.01179569 N	122.17919961 W	48.01179569 N	122.17919961 W	13.1	12:54:12	8/28/2023
BL-4_SS1	1310999.15	372022.99	48.01198736 N	122.17926567 W	48.01198736 N	122.17926567 W	14.1	13:27:47	8/28/2023
HP-1_SS1			48.0105253 N	122.1781223 W	48.0105253 N	122.1781223 W	0	10:41:00	8/30/2023
HP-2_SS1			48.0107902 N	122.1782272 W	48.0107902 N	122.1782272 W	0	10:30:00	8/30/2023
HP-5_SS1	1311253.19	371421.31	48.01035033 N	122.17818498 W	48.01035033 N	122.17818498 W	17.1	15:59:35	8/28/2023
HP-5_SS2	1311254.16	371425.37	48.01036151 N	122.17818131 W	48.01036151 N	122.17818131 W	16.8	16:03:04	8/28/2023
HP-5_SS3	1311244.02	371413.25	48.0103278 N	122.17822186 W	48.0103278 N	122.17822186 W	17.7	16:06:23	8/28/2023
HP-5_SB1	1311256.54	371421.12	48.01034997 N	122.17817128 W	48.01034997 N	122.17817128 W	8.5	12:56:25	8/29/2023
HP-5_SB2	1311251.04	371414.76	48.01033228 N	122.17819329 W	48.01033228 N	122.17819329 W	11	13:08:13	8/29/2023
HP-5_SB3	1311244.73	371415.05	48.01033277 N	122.17821909 W	48.01033277 N	122.17821909 W	12	13:21:05	8/29/2023
HP-6_SS1	1311408.94	370938.51	48.00903445 N	122.17751432 W	48.00903445 N	122.17751432 W	10.9	16:53:47	8/28/2023
HP-6_SB1	1311403.83	370931.01	48.00901364 N	122.17753465 W	48.00901364 N	122.17753465 W	5.5	13:37:06	8/29/2023
HP-7_SS1	1311468.33	370438.95	48.007668 N	122.17723609 W	48.007668 N	122.17723609 W	10.7	17:07:05	8/28/2023
HP-7_SB1	1311472.94	370438.9	48.00766809 N	122.17721725 W	48.00766809 N	122.17721725 W	4.9	14:29:57	8/29/2023
HP-7_SB2	1311478.27	370437.9	48.0076656 N	122.17719541 W	48.0076656 N	122.17719541 W	4.9	14:41:22	8/29/2023
HP-8_SB1	1311296.11	371412.59	48.01032849 N	122.17800904 W	48.01032849 N	122.17800904 W	5	15:02:07	8/30/2023
HP-8_SB2	1311296.7	371413.25	48.01033032 N	122.17800667 W	48.01033032 N	122.17800667 W	5	15:14:34	8/30/2023
HP-8_SB3	1311302.84	371417.76	48.01034298 N	122.17798191 W	48.01034298 N	122.17798191 W	5	15:47:11	8/30/2023
MP-2_S1	1311224	371470.72	48.01048437 N	122.17830774 W	48.01048437 N	122.17830774 W	19.1	15:50:40	8/28/2023
MP-3_SS1	1311163.94	371612.2	48.01086928 N	122.17856318 W	48.01086928 N	122.17856318 W	18.2	15:40:18	8/28/2023
MP-4_SS1	1310960.32	372161.6	48.01236542 N	122.17943422 W	48.01236542 N	122.17943422 W	14.2	14:06:15	8/28/2023
MP-4_SS2	1310987.6	372131.56	48.01228439 N	122.17932061 W	48.01228439 N	122.17932061 W	17	14:16:57	8/28/2023
MP-4_SS3	1310987.13	372132.01	48.01228558 N	122.17932256 W	48.01228558 N	122.17932256 W	17.1	14:19:42	8/28/2023
MP-4_SS4	1310984.82	372136.02	48.01229647 N	122.17933228 W	48.01229647 N	122.17933228 W	18	14:25:11	8/28/2023
MP-4_SS5	1310952.21	372162.01	48.01236615 N	122.17946736 W	48.01236615 N	122.17946736 W	19.1	15:33:33	8/28/2023
MP-5_SS1	1310851.69	372413.85	48.01305162 N	122.17989599 W	48.01305162 N	122.17989599 W	17	15:06:08	8/28/2023
MP-5_SS2	1310851.2	372408.99	48.01303827 N	122.17989764 W	48.01303827 N	122.17989764 W	18	15:09:46	8/28/2023
MP-5_SS3	1310833.81	372412.78	48.01304783 N	122.17996895 W	48.01304783 N	122.17996895 W	19.1	15:12:54	8/28/2023
MP-5_SB2	1310854.34	372417.76	48.01306246 N	122.17988544 W	48.01306246 N	122.17988544 W	0	10:48:31	8/29/2023
MP-5_SB3	1310838.19	372407.65	48.01303398 N	122.17995069 W	48.01303398 N	122.17995069 W	9	11:25:58	8/29/2023
MP-6_SS1	1310770.49	372670.33	48.01375072 N	122.18024603 W	48.01375072 N	122.18024603 W	7.6	14:36:31	8/28/2023
MP-6_SB1	1310770.93	372663.7	48.01373258 N	122.18024376 W	48.01373258 N	122.18024376 W	4	9:01:10	8/30/2023
OF-1_SS1			48.0103638 N	122.1779395 W	48.0103638 N	122.1779395 W	0	10:48:00	8/30/2023
OF-1_SB1	1311318.84	371432.9	48.01038525 N	122.17791764 W	48.01038525 N	122.17791764 W	7	16:24:24	8/30/2023
RB-1_SS1	1310665.59	372617.35	48.01360048 N	122.18067077 W	48.01360048 N	122.18067077 W	17.4	14:53:26	8/28/2023
RB-2 SS1	1311184.5	371392.04	48.01026681 N	122.17846348 W	48.01026681 N	122.17846348 W	17.8	16:22:21	8/28/2023

- 1. SS = surface sediment sample
- 2. SB = subsurface sediment sample
- 3. Number at the end of sample ID is the attempt number per sample station. Example: MP-5-SB2 = Second subsurface sample attempt at sample station MP-5

Table 2 - Sediment Results: TPH and PAHs Dagmars Marina - 1871 Ross Avenue Everett, Washington

	BL-1-SS	BL-2-SS	BL-3-SS	BL-4-SS	RB-1-SS	RB-2-SS	MP-2-SS	MP-3-SS	MP-5-SS	MP-6-SS	HP-5-SS	HP-6-SS	HP-7-SS	BL-1-SB-4'	MP-5-SB-2'	HP-6-SB-3'	MP-6-SB-2'	HP-1-SS	HP-2-SS	OF-1-SS		gement Standards		agement Standards creening Levels
Sample Location ID:																							5.55ap 5.	
Date:	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/29/23	8/29/23	8/29/23	8/30/23	8/30/23	8/30/23	8/30/23	Freshwater	Marine	Freshwater	Marine
Total Petroleum Hydrocarbons (T	PH) by NWTPH	in mg/kg																						
Diesel Range Organics	<49.8	<50	<60.5	<49.7	<61.2	<61.6	<58.6	<57.5	<49.8	<49.8	<56	<49.9	<49.9	<49.9	<59.6	<49.8	<49.9	<49.8	<50	<50.2	340	-	510	
Heavy Oil	<99.6	<100	<121	<99.4	<122	<123	<117	<115	<99.6	<99.5	<112	<99.7	<99.9	<99.7	<119	<99.5	<99.8	<99.5	<100	<100	3600		4400	
Polycyclic Aromatic Hydrocarbon	s (PAHs) by EF	PA Method 8270	E-SIM in mg/kg	1																				
Anthracene	<0.0199	<0.0200	<0.0248	<0.0199	<0.0251	0.0371	<0.0238	<0.0239	<0.0199	<0.0200	<0.0221	<0.0199	<0.0200	<0.0200	<0.0240	<0.0200	<0.0199	<0.0200	<0.0200	<0.0195 UJ		220		1200
Acenaphthene	< 0.0199	< 0.0200	<0.0248	< 0.0199	< 0.0251	0.0492	<0.0238	< 0.0239	< 0.0199	<0.0200	< 0.0221	< 0.0199	<0.0200	<0.0200	<0.0240	<0.0200	<0.0199	<0.0200	<0.0200	<0.0195 UJ		16		57
Acenaphthylene	< 0.0199	<0.0200	<0.0248	<0.0199	<0.0251	0.0352	<0.0238	< 0.0239	<0.0199	<0.0200	< 0.0221	< 0.0199	<0.0200	<0.0200	<0.0240	<0.0200	<0.0199	<0.0200	<0.0200	<0.0195 UJ		66		66
Benzo(a)anthracene	0.0256	< 0.0200	<0.0248	< 0.0199	< 0.0627	0.0487	<0.0238	< 0.0239	<0.0498	<0.0200	< 0.0221	< 0.0199	<0.0200	<0.0200	<0.0240	<0.0200	<0.0199	<0.0200	0.0893	0.0211 J-		110		270
Benzo(a)pyrene	<0.0299	< 0.0300	< 0.0372	<0.0299	< 0.0376	0.0450	< 0.0357	<0.0358	<0.0299	<0.0299	< 0.0332	< 0.0299	< 0.0300	< 0.0300	< 0.0359	< 0.0300	<0.0299	< 0.0299	0.076	<0.0292 UJ		99		210
Benzo(b)fluoranthene	0.0254	< 0.0250	<0.0310	< 0.0249	< 0.0314	0.0527	<0.0298	<0.0298	< 0.0249	< 0.0250	< 0.0276	< 0.0249	< 0.0300	< 0.0250	<0.0299	< 0.0250	<0.0249	< 0.0250	0.159	<0.0244 UJ				
Benzo(g,h,i)perylene	<0.0498	<0.0500	<0.0620	<0.0499	<0.0627	< 0.0615	<0.0595	< 0.0596	<0.0498	<0.0499	< 0.0553	<0.0498	< 0.0501	< 0.0500	< 0.0599	< 0.0500	<0.0498	<0.0500	< 0.0500	<0.0487 UJ		31		78
Benzo(k)fluoranthene	<0.0249	< 0.0250	<0.0310	< 0.0249	< 0.0314	0.0427	<0.0238	<0.0298	< 0.0249	< 0.0250	< 0.0276	< 0.0199	< 0.0250	< 0.0250	<0.0299	< 0.0250	< 0.0199	< 0.0250	0.0482	<0.0244 UJ				
Chrysene	0.0265	<0.0200	<0.0248	< 0.0199	<0.0251	0.0534	<0.0238	< 0.0239	< 0.0199	<0.0200	< 0.0221	< 0.0199	< 0.0200	<0.0200	< 0.0240	< 0.0200	<0.0199	< 0.0200	0.139	0.0700 J-		110		460
Dibenz(a,h)anthracene	<0.0498	<0.0500	<0.0620	< 0.0499	<0.0627	< 0.0615	< 0.0595	< 0.0596	<0.0498	< 0.0499	< 0.0553	< 0.0199	< 0.0501	< 0.0500	< 0.0599	< 0.0500	< 0.0199	< 0.0499	< 0.0500	<0.0487 UJ		12		33
Fluoranthene	0.0248	< 0.0200	<0.0248	<0.0199	< 0.0251	0.0437	<0.0238	< 0.0357	<0.0199	<0.0200	< 0.0221	< 0.0199	< 0.0200	< 0.0200	< 0.0240	< 0.0200	< 0.0199	< 0.0200	0.162	0.0271 J-		160		1200
Fluorene	<0.0199	<0.0200	<0.0248	< 0.0199	<0.0251	0.0470	<0.0238	< 0.0239	< 0.0199	<0.0200	< 0.0221	< 0.0199	<0.0200	<0.0200	< 0.0240	< 0.0200	< 0.0199	< 0.0200	<0.0200	<0.0195 UJ		23		79
Indeno(1,2,3-cd)pyrene	<0.0398	<0.0400	<0.0496	< 0.0399	<0.0502	0.0519	< 0.0476	< 0.0477	< 0.0399	< 0.0399	< 0.0442	<0.0398	< 0.0401	< 0.0400	< 0.0479	<0.0400	<0.0398	< 0.0399	<0.0400	<0.0390 UJ		34		88
Naphthalene	<0.0199	<0.0200	<0.0248	<0.0199	<0.0251	0.0359	<0.0238	< 0.0239	<0.0199	<0.0200	<0.0221	< 0.0199	<0.0200	<0.0200	<0.0240	<0.0200	<0.0199	<0.0200	<0.0200	<0.0195 UJ		99		170
Phenanthrene	<0.0199	<0.0200	<0.0248	< 0.0199	<0.0251	0.0501	<0.0238	< 0.0239	< 0.0199	<0.0200	< 0.0221	< 0.0199	<0.0200	<0.0200	< 0.0240	< 0.0200	< 0.0199	< 0.0200	<0.0200	<0.0195 UJ		100		480
Pyrene	<0.0398	<0.0400	<0.0496	< 0.0399	<0.0502	< 0.0492	< 0.0476	< 0.0477	< 0.0399	< 0.0399	< 0.0442	<0.0398	< 0.0401	< 0.0400	< 0.0479	< 0.0400	<0.0398	< 0.0399	0.0638	<0.0390 UJ		1000		1400
1-Methylnaphthalene	<0.0199	<0.0200	<0.0248	< 0.0199	<0.0251	0.0380	<0.0238	< 0.0239	< 0.0199	<0.0200	<0.0221	< 0.0199	<0.0200	< 0.0200	< 0.0240	<0.0200	< 0.0199	< 0.0200	<0.0200	<0.0195 UJ				
2-Methylnaphthalene	<0.0199	<0.0200	<0.0248	<0.0199	<0.0251	0.0386	<0.0238	< 0.0239	< 0.0199	<0.0200	<0.0221	< 0.0199	<0.0200	<0.0200	<0.0240	<0.0200	< 0.0199	<0.0200	<0.0200	<0.0195 UJ		38		64
Total PAHs	0.1023	0.0000	0.0000	0.0000	0.0000	0.6692	0.0000	0.0000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.7373	0.1182 J-	17		30	

- 6. J = Result is estimated.
 7. J+ = Result is estimated and may be biased high.

Table 3 - Sediment Results: SVOCs Dagmars Marina - 1871 Ross Avenue Everett, Washington

Complete and to 15	BL-1-SS	BL-2-SS	BL-3-SS	BL-4-SS	RB-1-SS	RB-2-SS	MP-2-SS	MP-3-SS	MP-5-SS	MP-6-SS	HP-5-SS	HP-6-SS	HP-7-SS	Sediment Manage		Sediment Manag	•
Sample Location ID: Date:	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	Sediment Clean Freshwater			eening Levels Marine
emivolatile Organic Compounds b			8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	Freshwater	Marine	Freshwater	Marine
henol	<0.0299	<0.0300	< 0.0372	<0.0299	< 0.0376	< 0.0369	< 0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300	0.120	0.42	0.21	1.20
lis(2-chloroethyl) ether	<0.0299	<0.0500	<0.0620	<0.0233	<0.0627	<0.0505	<0.0595	<0.0596	<0.0233	<0.0233	<0.0552	<0.0233	<0.0501	0.120	0.42	0.21	1.20
!-Chlorophenol	< 0.0200	<0.0400	< 0.0496	< 0.0399	<0.0502	<0.0492	<0.0476	<0.0477	< 0.0399	< 0.0399	<0.0442	<0.0398	<0.0401		_		
,3-Dichlorobenzene	<0.0398	<0.0400	< 0.0496	< 0.0399	<0.0502	< 0.0492	< 0.0476	<0.0477	< 0.0399	< 0.0399	<0.0442	<0.0398	<0.0401		_		
1,4-Dichlorobenzene	<0.0299	<0.0300	< 0.0372	<0.0299	<0.0376	< 0.0369	< 0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300		3.1	-	9.0
,2-Dichlorobenzene	< 0.0398	< 0.0400	< 0.0496	< 0.0399	< 0.0502	< 0.0492	< 0.0476	< 0.0477	< 0.0399	< 0.0399	< 0.0442	<0.0398	< 0.0401		2.3	-	2.3
Benzyl alcohol	<0.149	< 0.150	<0.186	<0.150	<0.188	< 0.184	< 0.179	<0.179	<0.149	<0.150	<0.166	< 0.149	< 0.150		0.057	-	0.073
2-Methylphenol (o-cresol)	<0.0398	< 0.0400	< 0.0496	< 0.0399	< 0.0502	< 0.0492	< 0.0476	<0.0477	< 0.0399	< 0.0399	< 0.0442	<0.0398	<0.0401		0.063	-	0.063
Hexachloroethane	<0.0398	< 0.0400	< 0.0496	< 0.0399	< 0.0502	< 0.0492	< 0.0476	<0.0477	< 0.0399	< 0.0399	<0.0442	<0.0398	<0.0401		-	-	-
N-Nitrosodi-n-propylamine	<0.0797	<0.0800	< 0.0992	<0.0798	<0.100	< 0.0983	< 0.0952	<0.0954	<0.0797	< 0.0799	<0.0884	<0.0797	<0.0801		-	-	0.011
8&4-Methylphenol (m, p-cresol)	0.0466	< 0.0300	< 0.0372	<0.0299	< 0.0376	< 0.0369	< 0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300	0.260	0.67	2.0	0.67
Nitrobenzene	<0.0498	<0.0500	< 0.0620	<0.0499	<0.0627	<0.0615	< 0.0595	<0.0596	<0.0498	<0.0499	<0.0553	<0.0498	<0.0501		-		
sophorone	<0.0398	<0.0400	<0.0496	<0.0299	< 0.0502	<0.0492	<0.0476	<0.0477	<0.0399	< 0.0399	<0.0442	<0.0398	<0.0401	-	-	-	-
2-Nitrophenol	<0.0299	<0.0300	< 0.0372	<0.0299	<0.0376	<0.0369	< 0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300		-		
2,4-Dimethylphenol	<0.0299	<0.0300	<0.0372	<0.0299	<0.0376	<0.0369	<0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300		0.029		0.029
Bis(2-chloroethoxy)methane	<0.0299	<0.0300	< 0.0372	<0.0299	<0.0376	<0.0369	< 0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300		-		
2,4-Dichlorophenol	<0.0299	<0.0300	<0.0372	<0.0299	<0.0376	<0.0369	<0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300		-	-	-
1,2,4-Trichlorobenzene	<0.0299	<0.0300	<0.0372	<0.0299	<0.0376	<0.0369	< 0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300		0.81	-	1.80
Naphthalene	<0.0398	<0.0400	<0.0496	<0.0399	<0.0502	<0.0492	<0.0476	<0.0477	<0.0399	<0.0399	<0.0442	<0.0398	<0.0401	-	99	-	170
1-Chloroaniline	<0.0299	<0.0300	<0.0372	<0.0299	<0.0376	<0.0369	<0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300	-		-	
Hexachlorobutadiene	<0.0299 <0.0299	<0.0300 <0.0300	<0.0372 <0.0372	<0.0299 <0.0299	<0.0376 <0.0376	<0.0369 <0.0369	<0.0357 <0.0357	<0.0358 <0.0358	<0.0299 <0.0299	<0.0299 <0.0299	<0.0332 <0.0332	<0.0299 <0.0299	<0.0300 <0.0300	-	3.9		6.2
4-Chloro-3-methylphenol 2-Methylnaphthalene	<0.0299	<0.0300	<0.0372	<0.0299	<0.0376	0.0372	<0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300	-	38		64
1-Methylnaphthalene	<0.0299	<0.0300	<0.0372	<0.0299	<0.0376	< 0.0372	<0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300	-	30		04
Hexachlorocyclopentadiene	<0.0299	<0.100	<0.0372	<0.0299	<0.125	<0.0303	<0.0337	<0.0336	<0.0299	<0.0299	<0.0332	<0.0299	<0.100		-		-
2,4,6-Trichlorophenol	<0.0330	<0.0300	<0.0372	<0.0337	<0.0376	<0.0369	<0.0357	<0.0358	<0.0330	<0.0330	<0.0332	<0.0330	<0.0300	_	_		-
2,4,5-Trichlorophenol	<0.0299	<0.0300	<0.0372	<0.0299	<0.0376	<0.0369	<0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300	_	_		
2-Chloronaphthalene	<0.0299	<0.0300	< 0.0372	<0.0299	< 0.0376	< 0.0369	< 0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300		_		
2-Nitroaniline	<0.0498	<0.0500	<0.0620	< 0.0499	<0.0627	< 0.0615	<0.0595	< 0.0596	<0.0498	< 0.0499	< 0.0553	<0.0498	<0.0501	_			
Acenaphthene	<0.0299	<0.0300	< 0.0372	<0.0299	< 0.0376	0.0396	< 0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300		16		57
Dimethylphthalate	<3.49	<3.50	<4.34	<3.49	<4.39	<4.30	<4.17	<4.17	<3.49	<3.49	<3.87	<3.49	<3.50	_	53		53
2,6-Dinitrotoluene	<0.0398	<0.0400	<0.0496	< 0.0399	<0.0502	<0.0492	<0.0476	<0.0477	< 0.0399	< 0.0399	<0.0442	<0.0398	<0.0401	_			
Acenaphthylene	<0.0299	<0.0300	< 0.0372	<0.0299	< 0.0376	< 0.0369	< 0.0357	<0.0358	<0.0299	<0.0299	<0.0332	<0.0299	<0.0300		66		66
2,4-Dinitrophenol	<0.299	< 0.300	< 0.372	< 0.299	< 0.376	< 0.369	< 0.357	< 0.358	<0.299	< 0.299	< 0.332	<0.299	< 0.300	_			
Dibenzofuran	< 0.0299	< 0.0300	< 0.0372	< 0.0299	< 0.0376	0.0401	< 0.0357	<0.0358	< 0.0299	< 0.0299	< 0.0332	< 0.0299	< 0.0300	0.20	15	0.68	58
2,4-Dinitrotoluene	<0.0598	< 0.0600	< 0.0744	< 0.0598	< 0.0753	< 0.0738	< 0.0714	< 0.0716	<0.0598	< 0.0599	< 0.0663	< 0.0597	< 0.0601	_			
1-Nitrophenol	<0.199	<0.200	<0.248	< 0.199	<0.251	< 0.246	<0.238	< 0.239	<0.199	<0.200	<0.221	<0.199	<0.200	_			
luorene	< 0.0299	< 0.0300	< 0.0372	< 0.0299	< 0.0376	< 0.0369	< 0.0357	< 0.0358	< 0.0299	< 0.0299	< 0.0332	< 0.0299	< 0.0300		23		79
1-Chlorophenyl phenyl ether	< 0.0299	< 0.0300	< 0.0372	< 0.0299	< 0.0376	0.0424	< 0.0357	<0.0358	< 0.0299	< 0.0299	< 0.0332	< 0.0299	< 0.0300	_	_	_	
Diethylphthalate	< 0.747	< 0.750	< 0.930	<0.748	< 0.941	< 0.922	< 0.893	< 0.895	<0.747	< 0.749	< 0.829	<0.747	< 0.751	_	61	_	110
1,6-Dinitro-2-methylphenol	< 0.249	< 0.250	< 0.310	< 0.249	< 0.314	< 0.307	<0.298	<0.298	<0.249	< 0.250	<0.276	<0.249	< 0.250		-		
1-Bromophenyl phenyl ether	<0.0299	< 0.0300	< 0.0372	< 0.0299	< 0.0376	< 0.0369	< 0.0357	<0.0358	< 0.0299	< 0.0299	< 0.0332	< 0.0299	< 0.0300	_	_	_	
Hexachlorobenzene	< 0.0299	< 0.0300	< 0.0372	< 0.0299	< 0.0376	0.0404	< 0.0357	<0.0358	< 0.0299	< 0.0299	< 0.0332	< 0.0299	< 0.0300	_	0.38	_	2.3
Pentachlorophenol	<0.199	< 0.200	<0.248	< 0.199	< 0.251	< 0.246	<0.238	< 0.239	<0.199	<0.200	< 0.221	< 0.199	< 0.200	1.2	360	>1.2	690
Phenanthrene	<0.0299	< 0.0300	< 0.0372	< 0.0299	< 0.0376	0.0423	< 0.0357	< 0.0358	< 0.0299	< 0.0299	< 0.0332	< 0.0299	< 0.0300	_	100	_	480
Anthracene	<0.0299	< 0.0300	< 0.0372	< 0.0299	< 0.0376	< 0.0369	< 0.0357	<0.0358	< 0.0299	< 0.0299	< 0.0332	< 0.0299	< 0.0300		220	_	1200
Carbazole	<0.0299	< 0.0300	< 0.0372	< 0.0299	< 0.0376	< 0.0369	< 0.0357	<0.0358	< 0.0299	< 0.0299	< 0.0332	< 0.0299	< 0.0300	-	_	1.1	
Di-n-butylphthalate	<0.0299	< 0.0300	< 0.0372	< 0.0299	< 0.0376	0.0375	< 0.0357	< 0.0358	< 0.0299	< 0.0299	< 0.0332	< 0.0299	< 0.0300	0.38	220	1.0	1700
Fluoranthene	<0.0299	< 0.0300	< 0.0372	< 0.0299	< 0.0376	< 0.0369	< 0.0357	< 0.0358	< 0.0299	< 0.0299	< 0.0332	< 0.0299	< 0.0300		160		1200
Pyrene	<0.149	< 0.150	<0.186	<0.150	<0.188	< 0.184	<0.179	<0.179	<0.149	<0.150	<0.166	< 0.149	< 0.150		1000		1400
Butyl Benzylphthalate	<0.0498	< 0.0500	< 0.0620	< 0.0499	< 0.0627	< 0.0615	< 0.0595	< 0.0596	<0.0498	< 0.0499	< 0.0553	< 0.0498	< 0.0501	_	4.9	_	64
pis(2-Ethylhexyl)adipate	<0.199	< 0.200	<0.248	<0.199	< 0.251	< 0.246	<0.238	< 0.239	<0.199	<0.200	< 0.221	< 0.199	< 0.200		_		
Benz(a)anthracene	<0.0299	< 0.0300	< 0.0372	< 0.0299	< 0.0376	< 0.0369	< 0.0357	< 0.0358	< 0.0299	< 0.0299	< 0.0332	< 0.0299	< 0.0300		110		270
Chrysene	<0.0498	< 0.0500	< 0.0620	< 0.0499	< 0.0627	< 0.0615	< 0.0595	< 0.0596	<0.0498	< 0.0499	< 0.0553	<0.0498	< 0.0501		110		460
pis (2-Ethylhexyl) phthalate	0.137	0.235	< 0.0496	< 0.0399	<0.0502	< 0.0492	< 0.0476	< 0.0477	< 0.0399	0.102	<0.0442	<0.0398	0.100	0.50	47	22	78
Di-n-octyl phthalate	< 0.0747	< 0.0750	< 0.0930	<0.0748	< 0.0941	<0.0922	< 0.0893	< 0.0895	< 0.0747	< 0.0749	< 0.0829	< 0.0747	< 0.0751	0.039	58	>1.1	4500
Benzo(b)fluoranthene	<0.0996	<0.100	<0.124	< 0.0997	<0.125	<0.123	<0.119	<0.119	< 0.0996	<0.0998	<0.111	< 0.0996	<0.100		-		
Benzo(k)fluoranthene	< 0.0299	< 0.0300	< 0.0372	< 0.0299	< 0.0376	0.0370	< 0.0357	< 0.0358	< 0.0299	< 0.0299	< 0.0332	<0.0299	< 0.0300	_	230	_	-
Benzo(a)pyrene	<0.0398	< 0.0400	< 0.0496	< 0.0399	<0.0502	< 0.0492	< 0.0476	< 0.0477	< 0.0399	< 0.0399	<0.0442	< 0.0398	<0.0401	_	99	_	210
ndeno(1,2,3-cd)pyrene	<0.199	<0.200	<0.248	<0.199	<0.251	<0.246	<0.238	< 0.239	<0.199	<0.200	<0.221	<0.199	<0.200	_	34	_	88
							<0.119	<0.119	<0.0996	<0.0998	<0.111	<0.0996	<0.100	Ì			33
Dibenz(a,h)anthracene	< 0.0996	<0.100	< 0.124	< 0.0997	< 0.125	<0.123	<0.119	<0.119	~ 0.0550	~ 0.0990	~ 0.111	<0.0990	~ 0.100	-	12		

See notes at the end of table

Supplemental Remedial Investigation Report 1871 Ross Avenue 32-22012832 Page 3 of 8

Table 3 - Sediment Results: SVOCs Dagmars Marina - 1871 Ross Avenue Everett, Washington

	1	ı		1		1	1	1	Г	Sediment Manage	ment Standards	Sediment Mon	agement Standards
Sample Location ID:	BL-1-SB-4'	MP-5-SB-2'	HP-6-SB-3'	MP-6-SB-2'	HP-1-SS	HP-2-SS	OF-1-SS	HP-7-SB-3'	OF-1-SB-4'	Sediment Clear			creening Levels
Date:	8/29/23	8/29/23	8/29/23	8/30/23	8/30/23	8/30/23	8/30/23	8/29/23	8/30/23	Freshwater	Marine	Freshwater	Marine
Semivolatile Organic Compounds													
Phenol	<0.0300	< 0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299	0.12	0.42	0.21	1.20
Bis(2-chloroethyl) ether	<0.0500	<0.0599	<0.0500	<0.0497	<0.0499	<0.0494	<0.0487	<0.0498	<0.0499	-	-	-	-
2-Chlorophenol	<0.0400	<0.0479	<0.0400	<0.0398	<0.0399	<0.0396	<0.0390	<0.0398	<0.0399	-	-	-	
1,3-Dichlorobenzene	<0.0400	<0.0479	<0.0400	<0.0398	<0.0399	<0.0396	<0.0390	<0.0398	<0.0399	-	-	-	
1,4-Dichlorobenzene	<0.0300	<0.0359	<0.0300 <0.0400	<0.0298 <0.0398	<0.0299 <0.0399	<0.0297 <0.0396	<0.0292 <0.0390	<0.0299	<0.0299 <0.0399	-	3.1		9.0
1,2-Dichlorobenzene Benzyl alcohol	<0.0400 <0.150	<0.0479 <0.180	<0.0400	<0.0398	<0.0399	<0.0396	<0.0390	<0.0398 <0.149	<0.0399	-	2.3 0.057	_	2.3 0.073
2-Methylphenol (o-cresol)	<0.0400	<0.100	<0.0400	<0.0398	<0.0399	<0.0396	<0.0390	<0.0398	<0.0399	_	0.057	-	0.063
Hexachloroethane	<0.0400	< 0.0479	<0.0400	<0.0398	< 0.0399	< 0.0396	<0.0390	<0.0398	< 0.0399	_	-		-
N-Nitrosodi-n-propylamine	<0.0801	<0.0958	<0.0800	<0.0796	<0.0798	<0.0791	<0.0780	<0.0797	<0.0798	_	-		0.011
3&4-Methylphenol (m, p-cresol)	< 0.0300	< 0.0359	< 0.0300	<0.0298	< 0.0299	< 0.0297	<0.0292	< 0.0299	< 0.0299	0.26	0.67	2.0	0.67
Nitrobenzene	< 0.0500	< 0.0599	< 0.0500	< 0.0497	< 0.0499	<0.0494	<0.0487	<0.0498	<0.0499	-	-	-	
Isophorone	<0.0400	<0.0479	<0.0400	<0.0398	< 0.0399	<0.0396	<0.0390	<0.0398	<0.0399	-	-	-	-
2-Nitrophenol	<0.0300	< 0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299	=	-	-	
2,4-Dimethylphenol	<0.0300	<0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299	-	0.029	-	0.029
Bis(2-chloroethoxy)methane	<0.0300	<0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299	-	-	-	-
2,4-Dichlorophenol 1.2.4-Trichlorobenzene	<0.0300 <0.0300	<0.0359 <0.0359	<0.0300 <0.0300	<0.0298 <0.0298	<0.0299 <0.0299	<0.0297 <0.0297	<0.0292 <0.0292	<0.0299 <0.0299	<0.0299 <0.0299	_	0.81	-	1.80
Naphthalene	<0.0300	<0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299	_	99	_	170
4-Chloroaniline	<0.0300	<0.0359	<0.0300	<0.0230	<0.0333	<0.0330	<0.0330	<0.0390	<0.0333			_	
Hexachlorobutadiene	<0.0300	<0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	< 0.0299	<0.0299		3.9		6.2
4-Chloro-3-methylphenol	<0.0300	< 0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299	-		-	
2-Methylnaphthalene	< 0.0300	< 0.0359	< 0.0300	<0.0298	< 0.0299	< 0.0297	<0.0292	< 0.0299	<0.0299	-	38	-	64
1-Methylnaphthalene	< 0.0300	< 0.0359	<0.0300	<0.0298	< 0.0299	<0.0297	<0.0292	<0.0299	<0.0299	-	-	-	-
Hexachlorocyclopentadiene	<0.100	<0.120	<0.100	<0.0994	<0.0998	<0.0989	<0.0975	<0.0996	<0.0997				
2,4,6-Trichlorophenol	<0.0300	< 0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299	-		-	
2,4,5-Trichlorophenol	<0.0300	<0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299	-		-	
2-Chloronaphthalene	<0.0300	<0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299	-	-	-	
2-Nitroaniline	<0.0500	<0.0359	<0.0500	<0.0497	<0.0499	<0.0494	<0.0487	<0.0498	<0.0499	-		-	
Acenaphthene Dimethylphthalate	<0.0300 <3.50	<0.0359 <4.19	<0.0300 <3.50	<0.0298 <3.48	<0.0299 <3.49	<0.0297 <3.46	<0.0292 <3.41	<0.0299 <3.49	<0.0299 <3.49	-	16	-	57
2,6-Dinitrotoluene	<0.0400	<0.0479	<0.0400	<0.0398	<0.0399	<0.0396	<0.0390	<0.0398	<0.0399	-	53	-	53
Acenaphthylene	<0.0300	<0.0479	<0.0400	<0.0398	<0.0399	<0.0390	<0.0390	<0.0398	<0.0399	-	66	_	66
2,4-Dinitrophenol	<0.300	< 0.359	<0.300	<0.298	<0.299	<0.297	<0.292	<0.299	<0.299			_	
Dibenzofuran	<0.0300	< 0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299	0.20	15	0.68	58
2,4-Dinitrotoluene	<0.0601	< 0.0719	<0.0600	< 0.0597	< 0.0599	<0.0593	<0.0585	<0.0598	<0.0598				
4-Nitrophenol	<0.200	< 0.240	<0.200	< 0.199	<0.200	<0.198	<0.195	< 0.199	<0.199		_	_	_
Fluorene	< 0.0300	< 0.0359	< 0.0300	<0.0298	< 0.0299	< 0.0297	<0.0292	< 0.0299	<0.0299	-	23	-	79
4-Chlorophenyl phenyl ether	< 0.0300	< 0.0359	< 0.0300	<0.0298	<0.0299	< 0.0297	<0.0292	< 0.0299	<0.0299			-	_
Diethylphthalate	<0.751	<0.898	<0.750	< 0.746	< 0.749	<0.742	< 0.731	< 0.747	<0.748	-	61	-	110
4,6-Dinitro-2-methylphenol	< 0.250	<0.299	<0.250	<0.249	< 0.250	<0.247	<0.244	<0.249	<0.249	-	-	-	-
4-Bromophenyl phenyl ether	< 0.0300	< 0.0359	< 0.0300	<0.0298	< 0.0299	<0.0297	<0.0292	<0.0299	<0.0299	-		-	
Hexachlorobenzene	< 0.0300	< 0.0359	< 0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299		0.38		2.3
Pentachlorophenol	<0.200	<0.240	<0.200	<0.199	<0.200	<0.198	<0.195	<0.199	<0.199	-	360	>1.2	690
Phenanthrene	<0.0300	<0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299	-	100	-	480
Anthracene	<0.0300	<0.0359	<0.0300	<0.0298	<0.0299	0.0341	<0.0292	<0.0299	<0.0299	-	220	-	1200
Carbazole	<0.0300	<0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299	-	-	1.1	-
Di-n-butylphthalate	<0.0300	<0.0359	<0.0300	<0.0298	<0.0299	<0.0297	<0.0292	<0.0299	<0.0299	0.38	220	1.0	1700
Fluoranthene Pyrene	<0.0300 <0.150	<0.0359 <0.180	<0.0300 <0.150	<0.0298 <0.149	0.0302 <0.150	0.351 <0.148	0.0651 <0.146	<0.0299 <0.149	<0.0299 <0.150	-	160	-	1200
Butyl Benzylphthalate	0.0516	<0.0599	<0.0500	<0.0497	<0.0499	<0.0494	<0.0487	<0.0498	<0.0499	-	1000	-	1400
bis(2-Ethylhexyl)adipate	< 0.200	<0.0599	<0.200	<0.199	<0.200	<0.0494	<0.195	<0.199	<0.199		4.9		64
Benz(a)anthracene	<0.0300	<0.0359	<0.0300	<0.0298	<0.0299	0.130	0.0513	<0.0299	<0.0299	-	110	_	270
Chrysene	<0.0500	<0.0599	<0.0500	<0.0290	<0.0499	0.211	0.0313	<0.0299	<0.0299	_	110		460
bis (2-Ethylhexyl) phthalate	0.695	<0.0333	<0.0300	0.0588	<0.0399	< 0.0396	<0.0390	<0.0398	<0.0399	0.050	47	22	78
Di-n-octyl phthalate	<0.0751	<0.0898	<0.0750	< 0.0746	< 0.0749	<0.0742	<0.0731	<0.0747	<0.0748	0.039	58	>1.1	4500
Benzo(b)fluoranthene	<0.100	<0.120	<0.100	<0.0994	<0.0998	0.291	<0.0975	<0.0996	<0.0997	-	-	_	
Benzo(k)fluoranthene	<0.0300	< 0.0359	<0.0300	<0.0298	< 0.0299	0.0958	<0.0292	< 0.0299	< 0.0299	_	230	-	
Benzo(a)pyrene	<0.0400	< 0.0479	<0.0400	<0.0398	< 0.0399	0.158	< 0.0390	<0.0398	< 0.0399		99	-	210
Indeno(1,2,3-cd)pyrene	<0.200	<0.240	<0.200	<0.199	<0.200	<0.198	<0.195	<0.199	<0.199	-	34	-	88
Dibenz(a,h)anthracene	<0.100	<0.120	<0.100	<0.0994	<0.0998	<0.0989	<0.0975	<0.0996	<0.0997	-	12	-	33
Benzo(g,h,i)perylene	<0.100	<0.120	<0.100	<0.0994	<0.0998	<0.0989	<0.0975	<0.0996	<0.0997	-	31	-	78
Notes:													-

- Notes:

 1. mg/kg = Milligrams per kilogram

 2. Bold values indicate the compound was detected above method detection limits

 3. <= Analyte was not detected above the detection limit shown

 4. Sediment Management Standards from WAC 173-204 and Washington Ecology'sSediment Cleanup User's Manual (December 2019 update).

 5. -= Value not available.

 6. J = Result is estimated

 7. J+ = Result is estimated

 8. Shading indicates analyte exceeds atleast one sediment cleanup levels

Supplemental Remedial Inv 1	871 Ross Avenu 32-2201283
	Page 4 of

Table 4 - Sediment Results: Metals Dagmars Marina - 1871 Ross Avenue Everett, Washington

Sample Location ID:	BL-1-SS	BL-2-SS	BL-3-SS	BL-4-SS	RB-1-SS	RB-2-SS	MP-2-SS	MP-3-SS	MP-5-SS	HP-5-SS	HP-6-SS	HP-7-SS	BL-1-SB-4"	MP-5-SB-2'	HP-6-SB-3'	MP-6-SB-2'	HP-1-SS	HP-2-SS	0F-1-SS	HP-7-SB-3'	OF-1-SB-4'	HP-8-SB-2	HP-8-SB-2 DUP-	Puget Sound Natural Background Concentrations for	Sediment Manage Sediment Clear		Sediment Ma Standards Screening	Cleanup
Date:	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/29/23	8/29/23	8/29/23	8/30/23	8/30/23	8/30/23	8/30/23	8/29/23	8/30/23	8/30/23	8/30/23	Marine Sediment	Freshwater	Marine	Freshwater	Marine
Metals by EPA Method 6020B and 7	7471B in mg/kg																											
Arsenic	7.26	6.68	5.84	5.43	5.43	5.31	5.13	5.65	5.65	5.77	7.42	7.64	8.16	5.01	9.53	7.55	11.4	7.95	12	11.5	10.4	11.4	8.03	11	14	57	120	93
Barium	21.3	21.4	15.9	16	16	14.9	16.6	17.1	17.8	18.1	22.6	22.2	26.7	17.5	30.5	32.1	33.6	22.7	27.5	33.8	31.9	38	25.5					
Cadmium	0.0838	0.0675	0.042	0.0464	0.0464	0.0431	0.0430	0.053	0.0548	0.0475	0.0659	0.0629	0.105	0.0364	0.084	0.0985	0.101	0.0660	0.0901	0.0801	0.0730	0.1220	0.0510	0.8	2.1	5.1	5.4	6.7
Chromium	24.5	21.9	16.8	16.8	16.8	16.4	16.9	18.3	18	20.1	27.7	25.2	27.5	15.2	31.7	28.4	35	25	26.6	34.4	43.5	45.6	35.5	62	72	260	88	270
Copper	22.1	19.7	12.4	12.7	12.7	11.7	11.2	13.9	16.7	13	20.4	19.8	21.3	11.6	23.3	26	31.7	21.6	25.9	23.2	24.9	34.7	20.7	45	400	390	1200	390
Lead	5.59	4.69	3.16	3.17	3.17	2.92	2.88	3.2	3.28	2.95	5.82	5.35	5.72	2.65	4.61	5.87	8.29	5.74	6.01	5.66	6.52	7.24	5.19	21	360	450	>1300	530
Nickel	26	24.4	20.1	19.4	19.4	19.5	18	20.6	21.6	20.4	28	26.6	25.1	16.5	29.7	31.3	34.7	26.8	28.1	31	39.4	40.6	30.7	50	26		110	
Selenium	< 0.742	< 0.689	< 0.534	< 0.602	< 0.602	< 0.546	< 0.531	< 0.0991	<1.01	< 0.923	<1.17	<1.05	<1.01	< 0.985	<1.13	<1.21	<1.18	<1.50	<1.58	< 0.262	<1.24	< 0.969	<1.12		11		>20	
Silver	0.0541	0.0403	0.0115	0.0132	0.0132	< 0.0109	< 0.0106	0.0243	< 0.0201	<0.0185	0.0233	<0.0210	0.0408	< 0.0197	0.0369	0.032	0.059	< 0.0300	0.035	0.035	0.026	0.076	< 0.0224	0.24	0.57	6.1	1.7	6.1
Zinc	48.3	45.1	37.2	37	2.11	36.1	34.3	38.2	41	38	50.4	46.6	46.5	34.7	47.4	52.2	0.0594	26.8	52.3	53.8	59.2	69	47.3	93	3200	410	>4200	960
Mercury	<0.148	<0.138	<0.107	<0.120	<0.120	<0.109	<0.106	<0.198	<0.201	<0.185	<0.233	<0.210	<0.201	< 0.197	<0.227	<0.242	< 0.235	< 0.300	< 0.316	<0.209	<0.247	< 0.194	<0.224	0.2	0.66	0.41	0.8	0.59

- mg/kg = Milligrams per kilogram.
 Bold values indicate the compound was detected above method detection limits.
 <= Analyte was not detected above the detection limit shown.

- 5. S- Radialy was not elected adverse under elected and with a control of the control of the Control of Washington Ecology's Sediment Cleanup User's Manual (December 2019 update). Puget Sound Natural Background Concentrations from Chapter 10, Table 10-1 of Washington Ecology's Sediment Cleanup Users Manual 6. -- = Value not available.

 7. J = Result is estimated.

Table 5 - Sediment Results: Conventional Parameters

Dagmars Marina - 1871 Ross Avenue

Everett, Washington

Sample Location ID:	BL-1-SS	BL-2-SS	BL-3-SS	BL-4-SS	RB-1-SS	RB-2-SS	MP-2-SS	MP-3-SS	MP-5-SS	MP-6-SS	HP-5-SS	HP-6-SS	HP-7-SS		gement Standards anup Objectives	Sediment Manag Cleanup Scre	ement Standards eening Levels
Date:	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	8/28/23	Freshwater	Marine	Freshwater	Marine
Sample Moisture (Percent Moisture	e) %																
Percent Moisture	41.1	36.9	19.7	27.5	20.6	20.4	16.3	17.3	26.3	37.9	11.9	34	37.2				
Total Organic Carbon by EPA 9060) (%)													-	-		
Total Organic Carbon	0.773	0.479	<0.150	<0.150	<0.150	<0.150	<0.150	<0.150	<0.150	0.345	<0.150	0.357	-		-		
Ammonia by SM 4500 NH3 E (mg/k	rg)														-	-	
Ammonia	18.4	9.67	<1.24	<1.37	<1.26	<1.25	<1.18	<1.20	<1.34	9.66	<1.12	8.60	7.74	230	-	300	
Total Volatile Solids by SM 2540 (%	6)													-	-		
Total Solids	59.6	63	78.5	73.3	78.1	78	82.3	80.4	75.3	64	85.5	72	67.8	-	-	-	
Total Volatile Solids	3.34	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	-	-		
Sulfides (mg/kg)															-	-	
Sulfides	<1.45 U	61.9	<1.19 U	<1.24 U	<1.14 U	<1.14 U	<1.28 UJ	<1.16 UJ	<1.26 UJ	<1.32 UJ	<1.13 UJ	<1.25 UJ	<1.20 UJ	39		61	

See notes at the end of table

Table 5 - Sediment Results: Conventional Parameters

Dagmars Marina - 1871 Ross Avenue

Everett, Washington

Sample Location ID:	BL-1-\$B-4'	MP-5-SB-2'	HP-6-SB-3'	MP-6-SB-2'	HP-1-SS	HP-2-SS	OF-1-SS	HP-7-SB-3'	OF-1-SB-4'	HP-8-SB-2	DUP-1	Sediment Manage Sediment Clear		Sediment Ma Standards Clear Leve	nup Screening
Date:	8/29/23	8/29/23	8/29/23	8/30/23	8/30/23	8/30/23	8/30/23	8/29/23	8/30/23	8/30/23	8/30/23	Freshwater	Marine	Freshwater	Marine
Sample Moisture (Percent Moisture) %															
Percent Moisture	29.1	18.8	26.5	35.3	40.1	48.30	50.2	28.2	33.2	26.3	29.2				
Total Organic Carbon by EPA 9060 (%)															
Total Organic Carbon	-	-	-			-	-	-							
Ammonia by SM 4500 NH3 E (mg/kg)															
Ammonia	12.6	2.54	16.9	9.37	19.8	16.4	20.5	7.36	26.8	17.3	29.2	230		300	
Total Volatile Solids by SM 2540 (%	6)														
Total Solids	72.2	83.2	72.4	66.1	57.9	60.8	54.8	72	64.2	72.4	63.6		-		
Total Volatile Solids	3.27	<3.0	3.43	<3.0	4.22	3.42	4.33	3.54	5.02	4.32	5.02				
Sulfides (mg/kg)															
Sulfides	219	1.15 U	54.9	763	1.64 U	1.35 U	27.5	15.5	5.45	99.7	-	39		61	

- mg/kg = Milligrams per kilogram.
- 2. Bold values indicate the compound was detected above method detection limits.
- <= Analyte was not detected above the detection limit shown.
- Shaded results exceed the Freshwater or Marine Sediment Cleanup Screening Level.
 Sediment Management Standards from WAC 173-204 and Washington Ecology's Sediment Cleanup User's Manual (December 2019 update).
- -- = Value not available.
- J = Result is estimated.
- 7. J+ = Result is estimated and may be biased high.
 11. UJ = The not detected result is estimated.

Table 6 - Sediment Results: Organometallics Dagmars Marina - 1871 Ross Avenue

Everett, Washington

Sample Location ID:	BL-1-SS	BL-2-SS	BL-3-SS	BL-4-SS	BL-1-\$B-4	OF-1-SS	OF-1-SB-4	Sediment Management Standards Sediment Cleanup Objectives		Sediment Management Standards Cleanup Screening Levels	
Date:	8/28/23	8/28/23	8/28/23	8/28/23	8/29/23	8/30/23	8/30/23	Freshwater	Marine	Freshwater	Marine
Butyl Tin(s) - EPA Method SW8270E-SIM in μg/kg											
Tributyltin Ion	<0.449 U	<0.450 U	<0.446 U	<0.449 U	4.03 J-	<3.85 UJ	<0.450 U	47	320	0.32	
Dibutyltin Ion	<1.72 U	<1.73 U	<1.71 U	<1.73 U	<2.29 UJ	<5.77 UJ	<1.73 U	910	130,000	130	
Butyltin Ion	<1.82 U	<1.89 U	<1.87 U	6.14 J-	<2.50 UJ	3.44 J-	<1.89 U	540	>4,800	>4.8	
Tetrabutyltin Ion	<4.98 U	<5.00 U	<4.95 U	<4.99 U	<6.62 UJ	<4.99 UJ	<5.00 U	97	>97	>0.097	

- 1. μg/kg = micrograms per kilogram.
- 2. Bold values indicate the compound was detected above method detection limits.
- 3. < = Analyte was not detected above the detection limit shown.
- 4. Shaded results exceed the Cleanup Screening Level and the natural background concentration.
- Natural Background Concentrations and Sediment Management Standards from WAC 173-204 and Washington Ecology's Sediment Cleanup User's Manual (December 2019 update).
- 6. -- = Value not available.
- 7. J = Result is estimated.
- 8. J+ = Result is estimated and may be biased high.
- 11. UJ = The not detected result is estimated.

Appendix B: Terrestrial Ecological Evaluation

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation.

Step 1: IDENTIFY HAZARDOUS WASTE SITE					
Please identify below the hazardous waste site for which you are documenting an evaluation.					
Facility/Site Name: Dagmars Marina					
Facility/Site Address: 1871 Ross Avenue, Everett, WA					
Facility/Site No: 8070274	VCP Project No.: XN0039				

Step 2: IDENTIFY EVALUATOR							
Please identify below the person who conducted the evaluation and their contact information.							
Name: Brian Dixon		Title: President					
Organization: Dixon Environmental Services							
Mailing address: 4010 N 7th Street							
City: Tacoma	State: WA	Zip code: 98406					
Phone: 253-380-4303 Fax:	E-mail: Bri	an@DixonES.com					

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS A. Exclusion from further evaluation. 1. Does the Site qualify for an exclusion from further evaluation? If you answered "YES," then answer Question 2. X Yes No or If you answered "NO" or "UNKNOWN," then skip to Step 3B of this form. Unknown 2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form. Point of Compliance: WAC 173-340-7491(1)(a) X All soil contamination is, or will be,* at least 15 feet below the surface. All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination. Barriers to Exposure: WAC 173-340-7491(1)(b) All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination. Undeveloped Land: WAC 173-340-7491(1)(c) There is less than 0.25 acres of contiguous# undeveloped* land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene. For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous# undeveloped± land on or within 500 feet of any area of the Site. Background Concentrations: WAC 173-340-7491(1)(d) Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709. * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. # "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. # "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of

highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area

by wildlife.

В.	Simplified e	valuation.							
1.	Does the Site qualify for a simplified evaluation?								
	☐ Yes	If you answered "YES," then answer Question 2 below.							
	☐ No Unknov	If you answered "NO" or "UNKNOWN," then skip to Step 3C of this form.							
2.	Did you con	you conduct a simplified evaluation?							
	☐ Yes	If you answered "YES," then answer Question 3 below.							
	☐ No	If you answered "NO," then skip to Step 3C of this form.							
3.	Was further	evaluation necessary?							
	☐ Yes	If you answered "YES," then answer Question 4 below.							
	☐ No	If you answered "NO," then answer Question 5 below.							
4.	If further eva	aluation was necessary, what did you do?							
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.							
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.							
5.		evaluation was necessary, what was the reason? Check all that apply. Then skip							
	to Step 4 of this form. Exposure Analysis: WAC 173-340-7492(2)(a)								
	· <u> </u>	Area of soil contamination at the Site is not more than 350 square feet.							
	_	Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.							
		alysis: WAC 173-340-7492(2)(b) No potential exposure pathways from soil contamination to ecological receptors.							
		: Analysis: WAC 173-340-7492(2)(c)							
	_	No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.							
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.							
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.							
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.							

C.	C. Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. See WAC 173-340-7493(1)(c).								
1.	Was there a pro	oblem? Se	e WAC 173-340-7493(2).						
	☐ Yes	If you ans	wered "YES," then answer Question 2 below.						
	☐ No	If you ansi below:	wered "NO," then identify the reason here and then skip to Question 5						
			No issues were identified during the problem formulation step.						
			While issues were identified, those issues were addressed by the cleanup actions for protecting human health.						
2.	What did you d	lo to resolv	e the problem? See WAC 173-340-7493(3).						
		ed the conce estion 5 be	entrations listed in Table 749-3 as cleanup levels. If so, then skip to low.						
			ore of the methods listed in WAC 173-340-7493(3) to evaluate and entified problem. <i>If so, then answer Questions 3 and 4 below.</i>						
3.	If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3).								
	Lite	erature surve	eys.						
	Soi	Soil bioassays.							
	Wil	Wildlife exposure model.							
	Bio	Biomarkers.							
	Site	Site-specific field studies.							
	☐ We	Weight of evidence.							
	Oth	ner methods	approved by Ecology. If so, please specify:						
4.	4. What was the result of those evaluations?								
	Co	nfirmed ther	e was no problem.						
	Col	nfirmed ther	e was a problem and established site-specific cleanup levels.						
5.	5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?								
	☐ Yes	If so, pleas	se identify the Ecology staff who approved those steps:						
	☐ No								

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region: Attn: VCP Coordinator 3190 160th Ave. SE Bellevue, WA 98008-5452

Southwest Region: Attn: VCP Coordinator P.O. Box 47775 Olympia, WA 98504-7775 Central Region:
Attn: VCP Coordinator

1250 West Alder St. Union Gap, WA 98903-0009

Eastern Region: Attn: VCP Coordinator N. 4601 Monroe Spokane WA 99205-1295