AMENDED SUBSURFACE INVESTIGATION REPORT At

PORT OF PASCO BIG INDUSTRIAL PARK LAGOONS SE Road 36/East Ainsworth Avenue Pasco, Washington 99361 Cleanup Site ID: 15433 Fac. Site ID# 88749 VCP Project ID: EA0362

Amended May 30, 2024

Prepared for:

Mr. Ted Uecker ERO Toxics Cleanup Program State of Washington Department of Ecology Eastern Region Office 4601 North Monroe Street Spokane, WA 999205-1295

And

Mr. Randy Hayden Port of Pasco PO Box 769 Pasco, WA 99301

Prepared by:

Blue Mountain Environmental and Consulting Co., Inc. PO Box 545/125 Main St. Waitsburg, WA 99361 509-520-4416

TABLE OF CONTENTS

TABLE O	OF CONTENTS
1.0 INTRO	ODUCTION4
1.1	Site Information4
1.2	Site History
2.0 FIELD) METHODOLOGIES
3.0 LABO	RATORY ANALYTICAL RESULTS7
3.1	Soil and Sludge Sample Results8
3.2	Groundwater Sample Results9
	OGY AND HYDROGEOLOGY10
	STIGATION-DERIVED WASTE DISPOSAL11
6.0 MONI	TORING WELL SURVEY11
	LUSIONS11
8.0 RECO	MMENDATIONS
9.0 REFE	RENCES

FIGURES

- FIGURE 1 Site Vicinity Map
- FIGURE 2 Site Location Map
- FIGURE 3 Soil Boring and Monitoring Well Locations November 2023
- FIGURE 4 Groundwater Flow Direction December 4, 2023

TABLES

- TABLE 1 Soil and Sludge Sample Results Total Petroleum Hydrocarbons (mg/Kg)
- TABLE 2 Sludge Sample Results Volatile Organic Compounds (mg/Kg)
- TABLE 3 Soil Sample Results Total Metals (mg/Kg)
- TABLE 4 Soil Sample Results Dioxins/Furans (picograms/gram)
- TABLE 5 Sludge Sample Results Organic Compounds (nanograms/gram)

TABLE 6 - Soil Sample Results - Polybrominated Diphenyl Ethers (picograms/gram)

TABLE OF CONTENTS (CONT.)

- TABLE 7 Groundwater Sample Results Organic Compounds (nanograms/Liter)
- TABLE 8 Groundwater Sample Results Total Metals (µg/L)
- TABLE 9 Groundwater Sample Results HCID and VOCs (µg/L)
- TABLE 10 Monitoring Well Groundwater Surface Data and Well Installation Details

APPENDICES

- APPENDIX A Ecology Letters Dated January 6, 2023 and May 31, 2023
- APPENDIX B Photographs
- APPENDIX C Boring Logs
- APPENDIX D Groundwater Sampling Field Logs
- APPENDIX E Laboratory Analytical Results and Chain of Custody Documentation
- APPENDIX F Copy of the Monitoring Well Map Provided by the Licensed Land Surveyor

1.0 INTRODUCTION

This Subsurface Investigation (SI) report, prepared by Blue Mountain Environmental & Consulting Co., Inc. (BMEC) for Mr. Randy Hayden of the Port of Pasco (the Client), as well as the State of Washington Department of Ecology (Ecology), describes the field activities that BMEC performed between November 2023 and February 2024 at the property located at the Port of Pasco Big Industrial Park Lagoons at SE Road 36/East Ainsworth Avenue in Pasco, Washington 99301 (Site). The field activities performed during this SI were conducted per the requests made by Ecology via the January 6, 2023 *Further Action* Letter, the August 10, 2023 Opinion Letter titled *Re: Technical Assistance for the following contaminated Site.* A Site Vicinity Map is included as Figure 1. A Site Location Map is included as Figure 2. Copies of both Ecology letters dated January 6, 2023 and August 10, 2023, are included in Appendix A.

Per the aforementioned Ecology letters, BMEC performed the following SI field activities on November 28 - 29 and December 4, 2023:

- On November 28 and 29, 2023, supervise the advancement of 11 soil borings (SB1 SB8 and MW1 MW3) via Geoprobe® and hollow-stem auger (HSA) methodology. Three of the soil borings were completed as monitoring wells MW1, MW2, and MW3.
- Collect depth-to-groundwater measurements from below top of casings (btoc) on the three monitoring wells (MW1 MW3) to confirm the groundwater flow direction.
- Collection of five biosolids sludge samples and eight soil samples from the 11 soil borings and characterization of subsurface media (sludge and soil) at the Site for a combination of the following contaminants of concern (COCs): Resource Conservation and Recovery Act (RCRA) 8 Metals per EPA Method 6061D/6020B/7471B; dioxins and furans per EPA Method 1613; polybrominated diphenyl ethers (PDBEs) per EPA Method 1614; polyfluoroalkyl substances (PFAS) compounds using EPA Method 1633; volatile organic compounds (VOCs) using EPA Method 8260; and total petroleum hydrocarbons (TPH) using analytical methods NWTPH-Gx for gasoline-range (TPH-G) and NWTPH-Dx for diesel- (TPH-D) and heavy-oil range (TPH-O) petroleum hydrocarbons.
- Mobilize to the Site on December 4, 2023, to develop and sample monitoring wells MW1, MW2, and MW3. The groundwater samples collected from the three wells were analyzed for PFAs.
- Mobilize to the Site on February 15, 2024, to purge and sample monitoring wells MW1, MW2, and MW3. The groundwater samples collected from the three wells were analyzed for RCRA 8 Metals (total) using EPA Method EPA 200.8/7470A.

Additionally, BMEC was asked by Ecology to document all field activities and sample results in a report, including the percent dry weight of solids for the soil and sludge samples.

1.1 Site Information

The Site is located at the southeast intersection of East Ainsworth Street and SE Road 36 in Pasco, Washington 99301. The Site consists of two former wastewater treatment lagoons which no longer contain surface water, but have been backfilled, compacted and leveled, and are currently unused, but may be used for parking in the future. The north and south lagoons had an approximate sludge volume of 32,130 cubic feet and 62,400 cubic feet, respectively. Per depth-to-groundwater

obtained from the three monitoring wells on November 29, 2023, depth to groundwater below the lagoons ranged from 9.82 feet btoc in well MW3 to 11.20 feet btoc in MW2 and groundwater flow direction was calculated to be to the south-southeast toward the Columbia River which is less than ¹/₄-mile from the Site. Port of Pasco facility operations exist to the immediate northwest, west, southwest, and south. The Sacajawea State Park exists to the southeast and vacant land owned by the Port of Pasco exists to the northeast and north. The Site is located on Parcel 112420028, in the south half of Section 33, in Township 9 N., Range 30 E.W.M., and the northwest quarter of Section 3, in Township 8 N., and Range 30 E.W.M.

1.2 Site History

On January 12, 2021, BMEC personnel conducted sampling of biosolids in the two lagoons at the Site. Seven discrete sludge column samples were collected from each of the two lagoons and analyzed for fecal coliform. One composite sample was created from each lagoon and analyzed for organochlorine pesticides, RCRA 8 metals, nitrates, nitrogen, ammonia, dioxins, furans, PAHs, PCBs, and PBDEs. Cadmium exceeded the MTCA Method A soil cleanup level in the south lagoon sample, while the dioxin and furan toxicity equivalency (TEQ) exceeded the MTCA Method B soil cleanup level. The organochlorine DDE and PBDEs were detected in this same south lagoon sample below their respective soil cleanup levels. There was no detection of any COCs above cleanup screening levels in the North Lagoon. Soil below the lagoon sludge column has not been characterized to date.

For a detailed description of past environmental activities and results conducted at the Site, please refer to the following documents:

- Ecology, Environmental Covenant 1966700, September 26, 2022.
- Blue Mountain Environmental and Consulting Co., Inc., CSID No. 15433 Big Pasco.

Industrial Park Lagoons, Operation and Maintenance Plan, March 15, 2022.

- Coho Environmental, Terrestrial Ecological Evaluation, Port of Pasco, Big Pasco Industrial Center Lagoons, Pasco, WA, June 28, 2021.
- Blue Mountain Environmental and Consulting Co., Inc., Biosolids Sample Analysis Report at Big Pasco Industrial Center, Pasco, Washington, February 25, 2021.
- Blue Mountain Environmental and Consulting Co., Inc., Port of Pasco Big Industrial Park Lagoons, Sampling and Analysis Plan, December 11, 2020.
- GN Northern, Inc., Geotechnical Site Investigation Report, GNN Project No. 219-1119, May 20, 2020.

These documents are accessible in electronic form from the Site webpage. The complete records are stored in the Central Files of the Eastern Regional Office of Ecology (ERO) for review by appointment only.

2.0 FIELD METHODOLOGIES

On November 28 and 29, 2023, BMEC supervised Steadfast crews during the advancement of 11 soil borings (B1 through B8 and MW1 through MW3) total via Geoprobe® Model 7720DT. Photographs of the field activities are included in **Appendix B**. Three of the borings (B1 through B3) were advanced in the north lagoon and five of the borings (B4 through B8) were advanced in the south lagoon at the Site (**Figure 3**). The boring for well MW1 was advanced in the north lagoon while MW2 and MW3 were advanced on the exterior (south of) the south lagoon. A total of five sludge samples and eight soil samples were obtained for laboratory analysis from borings B1 through B8. **Table 1** lists the five sludge and eight soil samples collected from the Site with nomenclature such as *NL-B2-SO-30'* indicating the sample was collected from the north lagoon-from boring B2-soil-at a depth of 30 feet bgs; and nomenclature such as *SL-B6-SL-15'* indicating the sample was collected from the south lagoon-from boring B1 through B8 for analysis. No soil or sludge samples were obtained from borings B1 through B8 were obtained from borings B1 through B8 were advanced from boring B0-sludge-at a depth of 15 feet bgs. No groundwater samples were obtained from borings B1 through B8 for analysis. No soil or sludge samples were obtained from borings MW1 through MW3.

Soil and sludge from each of the eight borings (B1 through B8) were extracted from the subsurface via 5-foot-long acetate liners which were placed on the field geologist's sample table, cut open by the driller, and field screened via photo-ionization detector (PID) and visually. The PID readings and soil lithology are documented on each of the boring logs located in **Appendix C**. Soil and/or sludge samples were collected in three to five 4-ounce glass jars with sealable Teflon lids per sample. Soil and sludge removed from each of the eight borings were containerized in 55-gallon drums which were properly labeled and sealed, awaiting future disposal. Each of the eight soil borings were backfilled with bentonite pellets.

Soil and/or sludge samples were analyzed for the following analytes according to the August 10, 2023 Opinion Letter titled *Re: Technical Assistance for the following contaminated Site*, and an email from Ted Uecker dated November 29, 2023(*):

- 5 soil samples Dioxins and furans per EPA Method 1613
- *3 soil samples PDBEs per EPA Method 1614
- 5 biosolids sludge samples PFAS compounds per EPA Method 1633
- 3 groundwater, 8 soils, and 5 biosolids sludge samples VOCs per EPA Method 8260
- 3 groundwater, 8 soils, and 5 biosolids sludge samples for NWTPH-HCID
- 1 biosolids sludge sample for TPH-D and TPH-O per Northwest Method NWTPH-Dx
- 3 groundwater and 8 soils samples for RCRA 8 total metals per EPA Method 6010D/7471B

On November 29, 2023, borings MW1 through MW3 were over-drilled with a CME 75 drill rig via HSA methodology equipped with 6.5-inch outer diameter (OD) augers. Two-inch diameter, Schedule 40 polyvinyl chloride (PVC) monitoring wells were installed in the three borings and

completed as flush-mounted monitoring wells. The three monitoring wells were labeled MW1, MW2, and MW3, and were installed with 0.010-inch slotted screen from 5-25 feet below ground surface (bgs), 5-20 feet bgs, and 5-20 feet bgs, respectively.

On December 4, 2023, BMEC returned to the Site to develop each of the monitoring wells via submersible pump and dedicated tubing. Groundwater parameters (pH, temperature, conductivity, and turbidity) were measured and recorded groundwater sample field logs (**Appendix D**). Approximately 10 well volumes were purged from each of the three monitoring wells during the development process. Groundwater sampling for the following occurred immediately after well development was completed: PFAS compounds per EPA Method 1633.

Each of the sludge, soil, and groundwater samples were shipped overnight to OnSite Environmental in Redmond, Washington for analysis.

On February 15, 2024, BMEC returned to the Site to purge each of the three monitoring wells via submersible pump and dedicated tubing. Groundwater parameters (pH, temperature, conductivity, and turbidity) were measured and recorded groundwater sample field logs (**Appendix D**). Approximately three well volumes were purged from each of the three monitoring wells, prior to collection of groundwater samples. Each of the three groundwater samples were submitted to OnSite via overnight shipment for RCRA 8 Metals per EPA Method 6061D/6020B/7471B.

3.0 LABORATORY ANALYTICAL RESULTS

A total of 13 soil and/or sludge samples were collected and shipped to OnSite for a combination of the following analyses:

- 5 soil samples Dioxins and furans per EPA Method 1613
- *3 soil samples PDBEs per EPA Method 1614
- 5 biosolids sludge samples PFAS compounds per EPA Method 1633
- 3 groundwater, 8 soils, and 5 biosolids sludge samples VOCs per EPA Method 8260D
- 3 groundwater, 8 soils, and 5 biosolids sludge samples for NWTPH-HCID
- 1 biosolids sludge sample for TPH-D and TPH-O per Northwest Method NWTPH-Dx
- 3 groundwater and 8 soils samples for RCRA 8 total metals per EPA Method 6010D/7471B

The text contained in Section 3.1 discusses the results of the soil and sludge sample laboratory analyses.

A total of three groundwater samples were collected for laboratory analysis of organic compounds per EPA Method PFC/537M, as well as for RCRA 8 Metals (total) per EPA Method 200.8/7470A. One groundwater sample was collected from each of the newly installed and developed monitoring wells, MW-1 through MW-3. The text contained in Section 3.2 discusses the results of the organic compounds in groundwater, as well as the results of the RCRA 8 Metals (total) in groundwater.

3.1 Soil and Sludge Sample Results

A total of 13 samples were collected and analyzed for HCID: Five sludge and eight soil samples in total. TPH-G and THP-D were not identified above the laboratory PQL in any of the 13 samples. TPH-O was identified in only one sample (NL-B3-SL-20') and quantified at 140 mg/Kg TPH-O via Northwest Method NWTPH-Dx. The HCID and TPH results for the five sludge and eight soil samples are summarized in **Table 1**.

A total of four sludge samples were collected and analyzed for VOCs via EPA Method 8260. BTEX; 1,2,4-trimethylbenzene (124-TMB); 1,3,5-trimethylbenzene (135-TMB); MTBE; trichloroethene (TCE); and tetrachloroethene (PCE) were not detected in any of the four sludge samples at concentrations above the laboratory PQLs. Various VOCs (i.e., acetone, carbon disulfide, 2-butanone, and naphthalene) were detected above the laboratory PQLs, but not at concentrations exceeding applicable screening levels. The VOC results for the four sludge samples are summarized in **Table 2**.

A total of eight soil samples were collected and analyzed for total metals via EPA Method 6010D/7471B. Arsenic, cadmium, mercury, lead, selenium, and silver were not detected in any of the eight soil samples at concentrations above the laboratory PQLs. Barium was detected in all eight soil samples at concentrations ranging from 30 mg/Kg in sample SL-B8-SO-20' to 57 mg/Kg in sample NL-B1-SO-25'. An applicable MTCA Method A Cleanup Level does not currently exist for barium. Chromium was detected in all eight soil samples at concentrations ranging from 2.6 mg/Kg in sample SL-B5-SO-20' to 16 mg/Kg in sample SL-B6-SO-20'. None of the eight chromium detections exceeded the MTCA Method A Cleanup Level for chromium of 19 mg/Kg. The total metal results for the eight soil samples are summarized in **Table 3**.

A total of eight soil samples were collected and analyzed for dioxins and furans via EPA Method1613B. Six different analytes were detected in the eight soil samples, in particular, OCDD which was detected in all eight soil samples at concentrations ranging from 1.22 picograms per gram (pg/g) in sample NL-B1-SO-25' to 149 pg/g in sample SL-B6-SO-20. None of the analyte concentrations in any of the eight soil samples exceeded applicable screening levels. The dioxin and furan results for the eight soil samples are summarized in **Table 4**.

A total of five sludge samples were collected and analyzed for the following organic compounds: perfluoroalkyl sulfonic acids (PFSAs); perfluoroalkyl carboxylic acids (PFCAs); perfluoralkyl sulfonamido substances; fluortelomer sulfonic acids (FTSAs); and perfluoralkyl ether carbonic acids (PFECAs). PFSAs were detected above the laboratory PQLs in three of the five sludge samples, but not at concentrations exceeding applicable screening levels. Similarly, perfluoralkyl sulfonamido substances were detected above the laboratory PQLs in three of the five sludge samples, but not at concentrations exceeding applicable screening levels. The organic compound results for the five sludge samples are summarized in **Table 5**.

A total of three soil samples were collected and analyzed for PBDEs per EPA Method 1614. Various PBDEs were detected in all three soil samples, but none at concentrations exceeding applicable screening levels. The PBDE results for the three soil samples are summarized in **Table 6**.

A copy of the laboratory analytical report and accompanying chain-of-custody documentation for all five sludge samples and eight soil samples collected and analyzed is included in **Appendix E**.

3.2 Groundwater Sample Results

A total of three groundwater samples were collected on December 4, 2023 and submitted to OnSite for laboratory analysis of organic compounds per EPA Method PFC/537M. One groundwater sample was collected from each of the newly installed and developed monitoring wells, MW1 through MW3. PFECAs were not detected in groundwater samples collected from any of the three monitoring wells. PFSAs, PFCAs, perfluoralkyl sulfonamido substances, and FTSAs were detected in all three of the groundwater samples; however, at concentrations that do not exceed any applicable screening levels. The organic compound results for the three groundwater samples are summarized in **Table 7**.

A total of three groundwater samples were collected on February 15, 2024 and submitted to OnSite for laboratory analysis of RCRA 8 total metals per EPA Method 200.8/7470A. One groundwater sample was collected from each of the newly installed and developed monitoring wells, MW1 through MW3. Cadmium, mercury, selenium, and silver were not detected above the laboratory PQLs in any of the three groundwater samples. Barium was detected in all three groundwater samples at concentrations ranging from 110 µg/L in well MW3 to 490 µg/L in well MW1. Currently, no MTCA Method A Cleanup Level exists for barium. Chromium was detected in all three groundwater samples at concentrations ranging from 7.2 µg/L in well MW3 to 36 µg/L in well MW1. None of the three results for chromium exceed the MTCA Method A Cleanup Level of 50 µg/L. Lead was detected in all three groundwater samples at concentrations ranging from 2.6 μ g/L in well MW3 to 55 μ g/L in well MW1. The concentration of 55 μ g/L was the only one of the three results to exceed the MTCA Method A Cleanup Level of 15 µg/L for lead in groundwater. Arsenic was detected in all three groundwater samples at concentrations of 3.4 µg/L in well MW3; 6.2 µg/L in well MW2; and 19 µg/L in well MW1. The concentrations of 6.2 µg/L and 19 μ g/L exceed the MTCA Method A Cleanup Level of 5 μ g/L for arsenic in groundwater. The RCRA 8 Metals (total) results for the three groundwater samples are summarized in Table 8.

A total of three groundwater samples were collected on December 4, 2023 and submitted to OnSite for laboratory analysis of TPH-Gasoline, TPH-Diesel, and TPH-O via HCID, as well as VOCs per EPA Method 8260D. One groundwater sample was collected from each of the newly installed and developed monitoring wells, MW1 through MW3. HCID analysis did not detect any TPH (gasoline, diesel, or heavy oil) in any of the three groundwater samples. Furthermore, VOC analysis did not detect any volatile organic concentrations in any of the three groundwater samples. The HCID and VOC results for all three groundwater samples collected from monitoring wells MW1, MW2, and MW3 are summarized in **Table 9**.

A copy of the laboratory analytical report and accompanying chain-of-custody documentation for all three groundwater samples collected on both dates and analyzed is included in **Appendix E**.

4.0 GEOLOGY AND HYDROGEOLOGY

Per the drilling activities conducted on November 28 and 29, 2023, a sludge layer beneath the Site was encountered at the following locations (**Figure 3**):

Boring B1 (SW corner of north lagoon):	18 - 22.5' = black silty sludge, sewer odor, moist to wet
Boring B4 (south lagoon):	14 - 15' = black silty sludge, sewer odor, wet
Boring B6 (south lagoon):	14 - 15' = brown sludge transitioning to black sludge, very wet
Boring B7 (south lagoon):	13.5 – 15' = black silty sludge, trace gravel, very wet
Boring B8 (south lagoon):	13.5 – 15' = black silty sludge, trace gravel, very wet

Aside from the sludge layer (where encountered), soil lithology consisted of brown SAND above the sludge, coarsening to dark grey medium SAND(SW)/SAND & GRAVEL (SW/GW) below the sludge.

On November 29, 2023, depth-to-water (DTW) measurements in monitoring wells MW1 through MW3 were as follows:

- MW1: 9.82 feet below top of casing (btoc)
- MW2: 10.93 feet btoc
- MW3: 11.20 feet btoc

On December 4, 2023, DTW measurements in monitoring wells MW1 through MW3 were as follows:

- MW1: 9.81 feet btoc
- MW2: 10.79 feet btoc
- MW3: 10.54 feet btoc

Per the field data collected on December 4, 2023, the groundwater flow direction was to the southsoutheast with a hydraulic gradient of 0.001 feet per foot. **Table 10** summarizes the hydrogeological field data collected on December 4, 2023 and **Figure 4** illustrates the groundwater flow direction toward the Columbia River to the south-southeast and groundwater surface contours of the shallow aquifer beneath the Site on the same date.

5.0 INVESTIGATION-DERIVED WASTE DISPOSAL

All investigation-derived waste (IDW) was containerized in 55-gallon drums. The various waste streams of IDW anticipated included sludge and soil cuttings derived from the Geoprobe® and HSA drilling activities, all purged groundwater removed from the subsurface during monitoring well development and groundwater sampling activities, and decontamination water. The 55-gallon drums were properly staged on-site at a location preferred by the property owner. All standard waste (i.e., nitrile gloves, paper towels, rope, bailers, and peristaltic pump tubing) were placed in plastic trash bags and hauled offsite.

6.0 MONITORING WELL SURVEY

On February 12, 2024, a Professional Licensed Surveyor (PLS) was hired to survey the PVC top of casing for all of the newly installed monitoring wells (MW1 through MW3). The monitoring wells were surveyed per North American vertical datum1988 (NAVD88), in addition to northing and easting data. A copy of the monitoring well map provided to BMEC by the licensed land surveyor (PLSA) is included in **Appendix F**.

7.0 CONCLUSIONS

Via the field activities requested by Ecology and as implemented and supervised by BMEC in November 2023 through February 2024, the Site has been fully characterized for the analytes of concern as determined by Ecology. On November 28 and 29, 2023, eight soil and five sludge samples were collected then analyzed for a combination of the following analytes: Dioxins and furans; PDBEs; PFAS compounds; VOCs; TPH-G; TPH-D; TPH-O; and total metals. No applicable screening levels were exceeded in the eight soil and five sludge samples.

On December 4, 2023, and February 15, 2024, groundwater samples were collected from the Site via newly installed monitoring wells MW, MW2, and MW3. The three groundwater samples were analyzed for HCID, VOCs, organic compounds, and RCRA 8 Metals (total). Petroleum hydrocarbons (i.e., gasoline, diesel, and heavy oil) and VOCs were not detected in the three groundwater samples.

Organic compounds were detected in all three groundwater samples, but at concentrations not exceeding any applicable screening levels.

Cadmium, mercury, selenium, and silver were not detected above the laboratory PQLs in any of the three groundwater samples. Barium was detected in all three groundwater samples at concentrations ranging from 110 μ g/L in well MW3 to 490 μ g/L in well MW1. Currently, no MTCA Method A Cleanup Level exists for barium. Chromium was detected in all three groundwater samples at concentrations ranging from 7.2 μ g/L in well MW3 to 36 μ g/L in well MW1. None of the three results for chromium exceed the MTCA Method A Cleanup Level of 50

 μ g/L. Lead was detected in all three groundwater samples at concentrations ranging from 2.6 μ g/L in well MW3 to 55 μ g/L in well MW1. The concentration of 55 μ g/L was the only one of the three results to exceed the MTCA Method A Cleanup Level of 15 μ g/L for lead in groundwater. Arsenic was detected in all three groundwater samples at concentrations of 3.4 μ g/L in well MW3; 6.2 μ g/L in well MW2; and 19 μ g/L in well MW1. The concentrations of 6.2 μ g/L and 19 μ g/L exceed the MTCA Method A Cleanup Level of 5 μ g/L for arsenic in groundwater.

Per the drilling activities conducted on November 28 and 29, 2023, a sludge layer beneath the Site was encountered at the following locations:

Boring B1 (SW corner of north lagoon):	18 - 22.5' = black silty sludge, sewer odor, moist to
wet	

Boring B4 (south lagoon):	14 - 15' = black silty sludge, sewer odor, wet
Boring B6 (south lagoon):	14 - 15' = brown sludge transitioning to black sludge, very wet
Boring B7 (south lagoon):	13.5 - 15' = black silty sludge, trace gravel, very wet
Boring B8 (south lagoon):	13.5 - 15' = black silty sludge, trace gravel, very wet

Aside from the sludge layer (where encountered), soil lithology consisted of brown SAND above the sludge, coarsening to dark grey medium SAND(SW)/SAND & GRAVEL (SW/GW) below the sludge.

On November 29, 2023, depth-to-water (DTW) measurements in monitoring wells MW1 through MW3 were as follows:

- MW1: 9.82 feet btoc
- MW2: 10.93 feet btoc
- MW3: 11.20 feet btoc

On December 4, 2023, DTW measurements in monitoring wells MW1 through MW3 were as follows:

- MW1: 9.81 feet btoc
- MW2: 10.79 feet btoc
- MW3: 10.54 feet btoc

Per the field data collected on December 4, 2023, the groundwater flow direction was to the southsoutheast toward the Columbia River less than 0.5 miles away with a hydraulic gradient of 0.001 feet per foot.

It is the opinion of BMEC that the Site has been properly characterized according to Ecology's recommendations in August 10, 2023 Opinion Letter titled *Re: Technical Assistance for the following contaminated Site.*

8.0 RECOMMENDATIONS

Per email communication from Ted Uecker (Ecology) on May 29, 2024, additional groundwater sampling of the three existing monitoring wells (MW1, MW2, and MW3) shall be required moving forward. The three groundwater samples shall be collected and analyzed for total arsenic and total lead. Additionally, analysis of PFAs may be required and shall be addressed by Ecology in the forthcoming Opinion Letter. A minimum of four quarters of consecutive groundwater sampling events (GWSEs) shall begin in June 2024. Determination of groundwater flow direction per GWSE shall be determined and included in each accompanying quarterly report.

No additional soil or sludge sample collection and analysis is required.

If you have any questions regarding the content of this Amended Subsurface Investigation Report, please feel free to contact me at (503) 913-7870 or Mr. Yancy Meyer at (509) 520-4416.

as lydrogeologist 2267 nsed Geo Brent N. Bergeron Expires 1/3/25 Grand Brent N. Bergeron, LHG

9.0 REFERENCES

Blue Mountain Environmental Consulting & Company Inc., SUBSURFACE INVESTIGATION At PORT OF PASCO BIG INDUSTRIAL PARK LAGOONS, SE Road 36/East Ainsworth Avenue, Pasco, Washington 99361, Cleanup Site ID: 15433, Fac. Site ID# 88749, VCP Project ID: EA0362, March 5, 2024.

Blue Mountain Environmental Consulting & Company Inc., SCOPE OF WORK FOR SUBSURFACE INVESTIGATION At PORT OF PASCO BIG INDUSTRIAL PARK LAGOONS SE Road 36/East Ainsworth Avenue, Pasco, Washington 99361, Cleanup Site ID: 15433, Fac. Site ID# 88749, VCP Project ID: EA0362, April 24, 2023.

Blue Mountain Environmental Consulting & Company Inc., BIOSOLIDS SAMPLE ANALYSIS REPORT at Big Pasco Industrial Center Pasco, Washington, February 25, 2021.

Google Maps, 2023.

Washington State Department of Ecology, email, May 29,2024.

Washington State Department of Ecology, Modified Further Action Letter, August 10, 2023.

Washington State Department of Ecology, Modified Further Action Letter, May 31, 2023.

Washington State Department of Ecology, Further Action Letter, January 6, 2023.

Washington State Department of Ecology, Model Toxics Control Act Statute and Regulation, November 2007.

Cleanup Site ID: 15433 Facility/Site ID: 88749 VCP Project ID: EA0362

FIGURE 1 – SITE VICINITY MAP

Port of Pasco Big Industrial Park Lagoons SE Road 36/East Ainsworth Avenue Pasco, Washington 99301

Cleanup Site ID: 15433 Facility/Site ID: 88749 VCP Project ID: EA0362

FIGURE 3 SOIL BORINGS AND MONITORING WELLS NOVEMBER 2023 Port of Pasco Big Industrial Park Lagoons SE Road 36/East Ainsworth Avenue Pasco, Washington 99301

Cleanup Site ID: 15433 Facility/Site ID: 88749 VCP Project ID: EA0362 FIGURE 4 GROUNDWATER FLOW DIRECTION DECEMBER 4, 2023 Port of Pasco Big Industrial Park Lagoons SE Road 36/East Ainsworth Avenue Pasco, Washington 99301

TABLE 1 Soil Sample Results - Total Petroleum Hydrocarbons (mg/Kg) ¹ Big Industrial Park Lagoons SE Road 36/East Ainsworth Avenue Pasco, Washington 99301													
				TPH-Diesel and Heavy Oil b	y Northwest Method NWTPH-Dx								
Sample I.D.	Depth (ft bsg)	Date Collected	Hydrocarbon Identification (HCID)	TPH-D	трн-о	TPH-Gasoline by Northwest Metho NWTPH-Gx							
			SUBSURFACE INVESTIGATION	(BMEC) - NOVEMBER 2023									
NL-B1-SL-20'	20'	11/28/23	ND	< 61	< 120	< 25							
NL-B1-SO-25'	25'	11/28/23	ND	< 58	< 120	< 23							
NL-B2-SO-30'	30'	11/28/23	ND	< 54	< 110	< 22							
NL-B3-SL-20'	20'	11/28/23	DETECTED (TPH-O)	< 29	140	< 23							
NL-B3-SO-25'	25'	11/28/23	ND	< 61	< 120	< 25							
SL-B4-SL-15	15'	11/29/23	ND	< 60	< 120	< 24							
<u>SL-B4-SO-25'</u>	25'	11/29/23	ND	< 56	< 110	< 23							
<u>SL-B5-SO-20'</u>	20'	11/29/23	ND	< 56	< 110	< 22							
SL-B6-SL-15	15'	11/29/23	ND	< 61	< 120	< 25							
SL-B6-SO-20'	20'	11/29/23	ND	< 56	< 110	< 22							
SL-B7-SL-15'	15'	11/29/23	ND	< 64	< 130	< 26							
<u>SL-B7-SO-20'</u>	20'	11/29/23	ND	< 56	< 110	< 22							
<u>SL-B8-SO-20'</u>	20'	11/29/23	ND	< 54	< 110	< 22							
	Unrestricted Land U		/ MTCA Method A Soil Cleanup Lev	vels for Unrestricted Land Use (mg 2,000	/ Kg)	30/100 ¹							

¹ MTCA Method A Cleanup Level for Unrestricted Land Use for TPH-G is 30 ppm if benzene is detected in subsurface soils or groundwater. If benzene is not detected, Cleanup Level is 100 ppm.

MTCA = Model Toxics Control Act

NA= Not Analyzed

ND = Non-Detect

ft bsg = feet below surface grade

mg/Kg = milligrams per Kilogram or parts per million (ppm) BOLD = sample yielded detectable concentration of analyzed compound

	TABLE 2 Sludge Sample Results - Volatile Organic Compounds (mg/Kg)1 Big Industrial Park Lagoons SE Road 36/East Ainsworth Avenue Pasco, Washington 99301														
	Volatile Organic Compounds (VOCs) by EPA Method 8260D (mg/Kg)														
Sample I.D.	Depth (ft bsg)	Date Collected	Benzene	Toluene	Ethylbenzene	Total Xylenes	124-TMB	135-TMB	Acetone	Carbon Disulfide	2- Butanone	МТВЕ	Naphthalene	PCE	TCE
					SUBSU	IRFACE INVE	ESTIGATION	(BMEC) - NC	VEMBER 20)23			•	•	
<u>NL-B1-SL-20'</u>	20'	11/28/23	< 0.013	< 0.0063	< 0.013	< 0.038	< 0.013	< 0.013	0.24	0.0084	0.034	< 0.013	0.013	< 0.013	< 0.013
<u>NL-B3-SL-20'</u>	20'	11/28/23	< 0.00098	< 0.0049	< 0.00098	< 0.00298	< 0.00098	< 0.00098	< 0.049	< 0.0020	< 0.0049	< 0.00098	< 0.0049	< 0.00098	< 0.00098
<u>SL-B4-SL-15</u>	15'	11/29/23	< 0.0010	< 0.0050	< 0.0010	< 0.0030	< 0.0010	< 0.0010	< 0.050	0.0032	< 0.0050	< 0.0010	< 0.0050	< 0.0010	< 0.0010
<u>SL-B6-SL-15'</u>	15'	11/29/23	< 0.0013	< 0.0065	< 0.0013	< 0.0039	< 0.0013	< 0.0013	< 0.065	0.0040	< 0.0065	< 0.0013	< 0.0065	< 0.0013	< 0.0013
				Ecol	ogy MTCA Meth	nod A Soil C				and Use (mg	. ,	I	1	1	I
Unrestricte	ed Land L	lse	0.03	7	6	9	0.005	DNE	DNE	DNE	DNE	0.1	5	DNE	DNE
NA = Not Analyzed EDB = 1,2-Dibromoe EDC = 1,2-Dichloroe MTBE = Mehtyl tertie 124-TMB = 1,2,4-trin 135-TMB = 1,3,5-trin DNE = Does Not Exi ft bsg = feet below st mg/Kg = milligrams p	tes: CA = Model Toxics Control Act = Not Analyzed BB = 1,2-Dibromoethane IC = 1,2-Dichloroethane BE = Mehtyl tertiery-butyl ether 4-TMB = 1,2,4-trimethylbenzene 5-TMB = 1,3,5-trimethylbenzene														

			Ş	Big Ind SE Road 3	TABLE 3 Results - Total I dustrial Park Li 36/East Ainswo o, Washington	agoons rth Avenue	g)			
ė	(ɓsc	cted			Total	Metals via EPA	Methods 6010D	/7471B		
Sample I.D	Depth (ft bsg)	Date Collected	Arsenic	Barium	Cadmium	Chromium	Mercury	Lead	Selenium	Silver
				BMEC SUBSURF	ACE INVESTIGATION	- NOVEMBER 2023	3 3			
NL-B1-SO-25'	25'	11/28/23	< 12	57	< 0.58	6.4	< 0.29	< 5.8	< 12	< 1.2
NL-B2-SO-30'	30'	11/28/23	< 11	43	< 0.54	7.3	< 0.27	< 5.4	< 11	< 1.1
<u>NL-B3-SO-25'</u>	25'	11/28/23	< 12	46	< 0.61	7.4	< 0.31	< 6.1	< 12	< 1.2
<u>SL-B4-SO-25'</u>	25'	11/29/23	< 11	39	< 0.56	3.4	< 0.28	< 5.6	< 11	< 1.1
<u>SL-B5-SO-20'</u>	20'	11/29/23	< 11	34	< 0.56	2.6	< 0.28	< 5.6	< 11	< 1.1
SL-B6-SO-20'	20'	11/29/23	< 11	43	< 0.56	16	< 0.28	< 5.6	< 11	< 1.1
SL-B7-SO-20'	20'	11/29/23	< 11	31	< 0.56	4.0	< 0.28	< 5.6	< 11	< 1.1
SL-B8-SO-20'	20'	11/29/23	< 11	30	< 0.54	6.9	< 0.27	< 5.4	< 11	< 1.1
					I Cleanup Levels for					
	nrestricted Land Us	se	20	DNE	2	19	2	250	DNE	DNE
otes: MTCA Method A Clear Mercury analyzed via I ITCA = Model Toxics C A = Not Analyzed	EPA Method 7471A.	icted Land Use for Chron	nium VI. Cleanup Leve	el for Chromium III is 2	,000 mg/Kg.					

NA = Not Analyzed

DNE = Does Not Exist

ft bsg = feet below surface grade

mg/Kg = milligrams per Kilogram or parts per million (ppm)

BOLD = sample yielded detectable concentration of analyzed compound

TABLE 4

Soil Sample Results - Dioxins/Furans (picograms/gram) Big Industrial Park Lagoons SE Road 36/East Ainsworth Avenue Pasco, Washington 99301

	_	g		Dioxins/Furans via EPA Method 1613B																
Sample I.D.	Depth (ft bsg)	Date Collectec	2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	1,2,3,4,6,7,8-HxCDD	осрр	2,3,7,8-TCDF	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	OCDF	TEF
	BMEC SUBSURFACE INVESTIGATION - NOVEMBER 2023															<u>.</u>				
NL-B1-SO-25'	25'	11/28/23	< 0.119	< 0.189	< 0.381	< 0.415	< 0.417	< 0.409	1.22	< 0.0973	< 0.145	< 0.127	< 0.216	< 0.204	< 0.232	< 0.341	< 0.262	< 0.361	< 0.839	0.00037
NL-B2-SO-30'	30'	11/28/23	< 0.118	< 0.195	< 0.222	< 0.236	< 0.232	0.537	5.72	< 0.103	< 0.123	< 0.107	< 0.145	< 0.149	< 0.167	< 0.215	< 0.186	< 0.242	< 0.525	0.0071
NL-B3-SO-25'	25'	11/28/23	< 0.109	< 0.195	< 0.245	< 0.223	< 0.368	0.525	6.83	< 0.0973	< 0.134	< 0.100	< 0.115	< 0.110	< 0.144	< 0.354	< 0.188	< 0.205	< 0.433	0.0073
SL-B4-SO-25'	25'	11/29/23	< 0.102	< 0.180	< 0.242	< 0.253	< 0.238	< 0.307	1.83	< 0.119	< 0.137	< 0.111	< 0.171	< 0.172	< 0.194	< 0.240	< 0.174	< 0.250	< 0.415	0.00055
SL-B5-SO-20'	20'	11/29/23	< 0.0864	< 0.153	< 0.236	< 0.292	< 0.247	< 0.271	2.10	< 0.0921	< 0.148	< 0.120	< 0.149	< 0.131	< 0.148	< 0.158	< 0.171	< 0.279	< 0.382	0.00063
SL-B6-SO-20'	20'	11/29/23	< 0.121	< 0.187	< 0.695	0.497	< 1.20	11.7	149	0.144	< 0.134	< 0.143	< 0.142	< 0.162	< 0.466	< 0.642	2.43	< 0.184	11.1	0.253
SL-B7-SO-20'	20'	11/29/23	< 0.117	< 0.176	< 0.248	< 0.270	< 0.267	< 0.322	2.56	< 0.117	< 0.114	< 0.100	< 0.184	< 0.187	< 0.212	< 0.286	< 0.179	< 0.286	< 0.552	0.00077
SL-B8-SO-20'	20'	11/29/23	< 0.153	< 0.207	< 0.310	< 0.346	< 0.286	< 0.388	1.56	< 0.128	< 0.154	< 0.118	< 0.190	< 0.187	< 0.205	< 0.286	< 0.206	< 0.294	< 0.542	0.00047
								•		ng Levels =										<u> </u>
			93	TEF	TEF	TEF	TEF	TEF	TEF	TEF	TEF	TEF	TEF	TEF	TEF	TEF	TEF	TEF	TEF	93

MTCA = Model Toxics Control Act

TEF = Toxic Equivalency Factor according to Evaluating the Toxicity and Assessing the Carcinogenic Risk For Mixtures of Dioxins/Furans - Cleanup Levels and Risk Calculation (CLARC)

ft bsg = feet below surface grade

pg/g = picograms per gram or parts per trilion (ppt)

BOLD = sample yielded detectable concentration of analyzed compound

			-	TABLEults - Organic ComBig Industrial ParkRoad 36/East AinsyPasco, Washingto	pounds (nanograms Lagoons vorth Avenue	s/gram)	
	~	σ		Organic Con	npounds via EPA Meth	od PFC/537M	
Sample I.D.	Depth (ft bsg)	Date Collected	Perfluorooctane sulfonic acid (PFOS)	Perfluoroalkyl Carboxylic Acids (PFCAs)	Perfluoralkyl Sulfonamido Substances (NEtFOSAA)	Fluorotelomer Sulfonic Acids (FTSAs)	Perfluoroalkyl Ether Carboxylic Acids (PFECAs)
			BMEC S	UBSURFACE INVESTIGATI	ON - NOVEMBER 2023		1
<u>NL-B1-SL-20'</u>	20'	11/28/23	0.3	< 1.1	0.93	< 1.1	< 1.1
<u>NL-B3-SL-20'</u>	20'	11/28/23	0.16	< 0.93	< 0.99	< 0.99	< 0.99
<u>SL-B4-SL-15'</u>	15'	11/29/23	< 1.1	< 1.1	0.72	< 1.1	< 1.1
<u>SL-B6-SL-15'</u>	15'	11/29/23	0.21	< 1.1	< 1.1	< 1.1	< 1.1
<u>SL-B7-SL-15'</u>	15'	11/29/23	< 1.2	< 1.2	2.9	< 1.2	< 1.2
			040	Screening Level			
Notes: MTCA = Model Toxics	Control Act		240	NR NR	NR	NR	NR NR
NR = Not Researched							
NA = Not Analyzed							
DNE = Does Not Exist							
ft bsg = feet below surf	ace grade						
ng/g = nanograms per	gram or part	s per billion (ppb))				
BOLD = sample yield	ed detectabl	e concentration	of analyzed compound				

	TABLE 6 Soil Sample Results - PBDEs (picograms/gram) Big Industrial Park Lagoons SE Road 36/East Ainsworth Avenue Pasco, Washington 99301																														
.	Polybrominated Diphenyl Ethers (PBDEs) per EPA Method 1614																														
Sample I.D.	Depth (ft bsg	Date Collecte	BDE 7	BDE 8/11	BDE 12/13	BDE 15	BDE 32	BDE 17/25	BDE 28/33	BDE 35	BDE 51	BDE 49	BDE 47	BDE 66	BDE 100	BDE 99	BDE 85	BDE 155	BDE154	BDE 153	BDE 183	BDE 191	BDE 197	BDE 203	BDE 196	BDE 208	BDE 207	BDE 206	BDE 209	PBEB	НВВ
													BMEC	SUBSURF	CE INVEST	IGATION -	NOVEMBE	R 2023													
SL-B4-SO-25'	25'	11/29/23	< 0.016	< 0.011	< 0.0098	< 0.0083	< 0.022	< 0.028	< 0.026	< 0.018	< 0.029	< 0.043	0.170	< 0.049	0.050	0.220	< 0.028	< 0.018	< 0.020	< 0.068	< 0.056	< 0.087	< 0.078	< 0.11	< 0.093	< 0.15	< 0.14	< 0.16	< 7.5	< 0.017	0.28
SL-B6-SO-20'		11/29/23	0.0932	0.0469	0.0220	0.0313	0.049	0.250	0.140	0.480	0.087	1.36	8.160	0.211	2.95	13.1	0.365	0.082	1.05	1.45	0.57	0.94	0.529	0.94	0.86	0.83	1.9	2.3	39.9	0	0.382
SL-B7-SO-20'	20'	11/29/23	< 0.025	< 0.018	< 0.015	< 0.013	< 0.030	< 0.038	< 0.036	0.044	< 0.044	< 0.066	0.438	< 0.074	0.185	0.536	< 0.050	< 0.042	< 0.050	< 0.15	< 0.10	< 0.16	< 0.20	< 0.27	< 0.23	< 0.32	< 0.31	< 0.34	16.4	< 0.055	0.22
															Screening																
Notes:			NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	8 x 10^6	NR	NR	8 x 10^6	NR	NR	NR	16 x 10^6	NR	5.6 x 10^8	NR	NR							
MTCA = Model To	xics Cont	rol Act																													
NR = Not Researc																															
NA = Not Analyzer																															
DNE = Does Not E	xist																														
ft bsg = feet below	bsg = feet below surface grade																														
pg/g = picograms	g/g = picograms per gram or parts per trillion (ppt)																														
BOLD = sample	yielded d	etectable conc	entration of a	inalyzed com	pound																										

			TABL nple Results - Orga Big Industrial F SE Road 36/East A Pasco, Washin	nic Compounds (na Park Lagoons insworth Avenue	anograms/Liter)	
	g		Organic Com	pounds via EPA Meth	od PFC/537M	
Sample I.D.	Date Collected	Perfluorooctane sulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	N- Methylperfluorooc tane sulfonamide (MeFOSA)	Fluortelomer Sulfonic Acids (FTSAs)	Perfluoralkyl Ether Carbonic Acids (PFECAS)
		BME	C GROUNDWATER SAMPLI	NG EVENT - DECEMBER 202	23	
<u>MW1</u>	12/4/23	4.6	2.7	2.8	3.9	< 1.5
MW2	12/4/23	4.3	4.1	4.5	< 4.1	< 1.5
<u>MW3</u>	12/4/23	9.3	5	1.8	< 4.1	< 1.5
			MTCA Screeni	-		
Notes:		15	10	NR	NR	NR
NR = Not Researche MTCA = Model Toxic NA = Not Analyzed DNE = Does Not Exi ft bsg = feet below s ng/L = nanograms p	cs Control Act ist urface grade ier Liter or parts p	per trillion (ppt) concentration of analyzed con	npound			

	TABLE 8A Groundwater Sample Results - Total Metals (µg/L) Big Industrial Park Lagoons SE Road 36/East Ainsworth Avenue Pasco, Washington 99301														
ġ	val (ft bsg)	ected			Total	Metals via EPA	Methods 200.8	/7470A							
Sample I.D	Screened Interval (It bsg) Screened Interval Arsenic Selenium Mercury Silver Lead Lead Mercury Mercury Mercury Silver Selenium														
				BMEC SUBSURFA	CE INVESTIGATION	- FEBRUARY 2024									
<u>NL-B1-SO-25'</u>	25'	11/28/23	< 12	57	< 0.58	6.4	< 0.29	< 5.8	< 12	< 1.2					
<u>NL-B2-SO-30'</u>	30'	11/28/23	< 11	43	< 0.54	7.3	< 0.27	< 5.4	< 11	< 1.1					
<u>NL-B3-SO-25'</u>	25'	11/28/23	< 12	46	< 0.61	7.4	< 0.31	< 6.1	< 12	< 1.2					
<u>GWMW-1</u>	5 - 25'	2/15/24	19	490	< 4.4	36	< 0.50	55	< 5.6	< 11					
<u>GWMW-2</u>	5 - 20'	2/15/24	6.2	190	< 1.8	16	< 0.50	5.7	< 2.2	< 4.4					
<u>GWMW-3</u>	5 - 20'	2/15/24	3.4	110	< 1.8	7.2	< 0.50	2.6	< 2.2	< 4.4					
	Investriated Land Lla				I Cleanup Levels for			45	DNE						
L. L.	Inrestricted Land Us	ie	5	DNE	5	50	2	15	DNE	DNE					

Notes:

¹ MTCA Method A Cleanup Level for Unrestricted Land Use for Chromium VI; Cleanup Level for Chromium III is 100 µg/L

² Mercury analyzed via EPA Method 7471A.

MTCA = Model Toxics Control Act

NA = Not Analyzed

DNE = Does Not Exist

ft bsg = feet below surface grade

µg/L = micrograms per Liter or parts per billion (ppb)

BOLD = sample yielded detectable concentration of analyzed compound

							ABLE 9		<i>4</i> . \				
GROUNDWATER SAMPLE ANALYTICAL RESULTS - HCID and VOCs (µg/L)													
	Big Industrial Park Lagoons												
					SI		st Ainsworth Aven	ue					
Pasco, Washington 99301 TPH-Dx via HCID VOCs via EPA Method 8260D													
Sample ID	Date Collected	TPH-G via HCID	TPH-Dx TPH-D	VIA HCID TPH-O	Ponzono	Toluene	Ethyl-benzene	VOCs v Total Xylenes	Naphthalene	PCE	TCE	vc	All Other VOCs
Sample ID	Date Collected	TPH-G VIa HCID	IPH-D	IPH-0	Benzene		,	Total Aylelles	Napittiaiene	FCE	ICE	vc	All Other VOCS
MONITORING WELLS													
MW1	12/4/24	< 0.063	< 0.13	< 0.13	< 0.20	< 1.0	< 0.20	< 0.60	< 1.0	< 0.20	< 0.20	< 0.20	ND
MW2	12/4/24	< 0.065	< 0.13	< 0.13	< 0.20	< 1.0	< 0.20	< 0.60	< 1.0	< 0.20	< 0.20	< 0.20	ND
MW3	12/4/24	< 0.065	< 0.13	< 0.13	< 0.20	< 1.0	< 0.20	< 0.60	< 1.0	< 0.20	< 0.20	< 0.20	ND
	MTCA Method A Cleanup Level												
((µg/L)		0.5	0.5	5	1000	700	1000	160	5	5	0.20	-
Notes:													
MTCA = Model Toxi													
DNE = does not exist													
μg/L = micrograms per Liter or parts per billion (ppb)													
HCID = hydrocarbor													
	leum hydrocarbon - dies	0											
	leum hydrocarbon - hea	, ,											
TPH-G = total petroleum hydrocarbons - gasoline range													
PCE = tetrachloroethene													
TCE = trichloroethene													
VC = vinyl chloride													
< = not detected above laboratory practical quantitation limit (PQL)													
BOLD = detected at	concentration above PC	ΩL											
 all other volatile 	e organic compounds (V	OCs) analyzed via EPA N	1ethod 8260D v	vere not detecte	d above the labo	ratory PQL							
ND = not detected in the groundwater sample at a concentration above the laboratory PQL													

TABLE 10 Monitoring Well Groundwater Surface Data and Well Installation Details Port of Pasco Lagoons, Pasco, Washington									
Monitoring Well Number	Date Measured	Top of Casing Elevation (feet NAVD88)	Depth-To- Water Below Top of Casing (feet btoc)	Groundwater Elevation (feet NAVD88)	LNAPL Thickness (feet)	Volume of Groundwater Purged (gallons)	Screened Interval (feet bgs)	Sandpack Interval (feet bgs)	Bentonite Interval (feet bgs)
Monitoring Wells									
MW-1	12/4/23	351.98	9.81	342.17	0.00	25	5 - 25'	3 - 25'	1 - 3'
MW-2	12/4/23	352.15	10.79	341.36	0.00	16	5 - 20'	3 - 20'	1 - 3'
MW-3	12/4/23	351.96	10.54	341.42	0.00	16	5 - 20'	3 - 20'	1 - 3'
Notes:									
NAVD88 = North American Vertical Datum 1988									
btoc = below top of casing									

APPENDIX A

Ecology Opinion Letters

4601 North Monroe St., Spokane, WA 99205-1295 • 509-329-3400

January 6, 2023

Randy Hayden Port of Pasco PO Box 769 Pasco, WA 99301

Re: Further Action at the following Site:

Site Name:	Port of Pasco Big Industrial Park Lagoons
Site Address:	SE Road 36/ E Ainsworth St, Pasco
Cleanup Site ID:	15433
Facility/Site ID:	88749
VCP Project ID:	EA0362

Dear Randy Hayden:

The Washington State Department of Ecology (Ecology) received your request for an opinion on your independent cleanup of the Port of Pasco Big Industrial Park Lagoons facility (Site). This letter provides our opinion and analysis. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter 70A.305 RCW.

Issue Presented and Opinion

Is further remedial action necessary to clean up contamination at the Site?

YES. Ecology has determined that further remedial action is necessary to clean up contamination and meet all cleanup standards at the Site.

This opinion is based on an analysis of whether the remedial action meets the substantive requirements of MTCA, Chapter 70A.305 RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided as follows.

Description of the Site

This opinion applies only to the Site described below. The Site is defined by the nature and extent of contamination associated with the following releases:

Randy Hayden January 6, 2023 Page 2 of 6

 Heavy metals, dioxins, furans, and polybrominated diphenyl ethers (PDBEs) into the soil.

Enclosure A includes a detailed description and diagram of the Site, as currently known to Ecology.

Please note a parcel of real property can be affected by multiple sites. At this time, we have no information that the parcel(s) associated with this Site are affected by other sites.

Basis for the Opinion

This opinion is based on the information contained in the following documents:

- Ecology, Environmental Covenant 1966700, September 26, 2022.
- Blue Mountain Environmental and Consulting Co., Inc., CSID No. 15433 Big Pasco Industrial Park Lagoons, Operation and Maintenance Plan, March 15, 2022.
- Coho Environmental, Terrestrial Ecological Evaluation, Port of Pasco, Big Pasco Industrial Center Lagoons, Pasco, WA, June 28, 2021.
- Blue Mountain Environmental and Consulting Co., Inc., Biosolids Sample Analysis Report at Big Pasco Industrial Center, Pasco, Washington, February 25, 2021.
- Blue Mountain Environmental and Consulting Co., Inc., Port of Pasco Big Industrial Park Lagoons, Sampling and Analysis Plan, December 11, 2020.
- GN Northern, Inc., Geotechnical Site Investigation Report, GNN Project No. 219-1119, May 20, 2020.

These documents are accessible in electronic form from the <u>Site webpage</u>¹.The complete records are stored in the Central Files of the Eastern Regional Office of Ecology (ERO) for review by appointment only. Visit our <u>Public Records Request page</u>², to submit a public records request or get more information about the process. If you require assistance with this process, you may contact the Public Records Officer at <u>recordsofficer@ecy.wa.gov</u> or 360-407-6040.

This opinion is void if any of the information contained in those documents is materially false or misleading.

¹ <u>https://apps.ecology.wa.gov/gsp/CleanupSiteDocuments.aspx?csid=1543</u>3

² https://ecology.wa.gov/About-us/Accountability-transparency/Public-records-requests

Randy Hayden January 6, 2023 Page 3 of 6

Analysis of the Cleanup

Ecology has concluded that **further remedial action** is necessary to clean up contamination at the Site. That conclusion is based on the following analysis:

Characterization of the Site.

Ecology has determined your characterization of the Site is not sufficient to establish cleanup standards and select a cleanup action. The Site is described above and in **Enclosure A.**

The Site consists of two former wastewater treatment lagoons with approximately 1-2 feet of sludge below standing water. The north and south lagoons have an approximate sludge volume of 32,130 cubic feet and 62,400 cubic feet of sludge, respectively. Seven discrete sludge column samples were collected from each of the two lagoons and analyzed for fecal coliform. One composite sample was developed for each lagoon and analyzed for organochlorine pesticides, RCRA 8 metals, nitrates, nitrogen, ammonia, dioxins, furans, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PDBEs). Cadmium exceeded the MTCA Method A soil cleanup level in the south lagoon sample, while the dioxin and furan toxicity equivalency (TEQ) exceeded the MTCA Method B soil cleanup level. DDE and PBDEs were detected in the south lagoon sample below their respective soil cleanup levels. Soil below the lagoons has not been characterized. Depth to groundwater below the lagoons has not been determined and groundwater samples have not been collected or analyzed for potential contamination.

Establishment of cleanup standards.

Ecology has determined that further characterization of the Site is necessary to establish exposure pathways, cleanup levels, and points of compliance to meet the substantive requirements of MTCA.

For soil, MTCA Method A or Method B cleanup levels are appropriate for this Site. Standard soil formula cleanup level values presented in CLARC for Method B may not be appropriate because they are calculated to be protective of direct contact and not the soil leaching to groundwater pathway. If used, Method B cleanup levels have to be protective of the groundwater ingestion pathway unless further Site characterization demonstrates that soil contamination is not impacting groundwater and is unlikely to leach in the future. If further characterization indicates that groundwater is impacted, then the groundwater to surface water pathway must also be evaluated before appropriate cleanup levels are established.

The cleanup levels should be based on unrestricted land use unless it is demonstrated that the Site meets the definition of an industrial facility provided in Chapter 173-340-

Randy Hayden January 6, 2023 Page 4 of 6

745(1)(a)(i) WAC. Once the appropriate exposure pathways have been evaluated, a suitable point of compliance can be established where cleanup levels must be met.

Selection of cleanup action.

Ecology has determined the cleanup action you selected for the Site does not meet the substantive requirements of MTCA. The selected cleanup action is as follows:

- Engineering controls: backfilling and capping the lagoons with clean imported soil and gravel
- Institutional controls: recording an environmental covenant on the south lagoon to restrict land use

While these cleanup actions may be protective of the direct contact pathway, they may not be protective of other pathways including soil leaching to groundwater and groundwater to surface water. These pathways require further evaluation as described in the following section. At this time, Ecology considers the engineering and institutional controls implemented at the Site as interim cleanup actions, which may reduce the risk to human health and the environment but are not the final cleanup action.

Additional requirements.

To determine a path forward for the Site, the following data gaps in your Site characterization need to be addressed. Ecology will then evaluate if further remedial action is necessary at the Site. The purpose of a comprehensive Site characterization is to define the nature and extent of contamination in all media and develop a Conceptual Site Model (CSM) showing the impacted media and potential exposure pathways.

The sampling at the Site in 2021 included a single composite sample of lagoon sludge for each lagoon. Composite samples are usually implemented during waste characterization for offsite disposal and may not be representative of the true extent and concentration of contaminants within the sludge. Furthermore, multiple discrete soil samples should be collected below each sludge layer to determine whether contaminants in the lagoon sludge have migrated to deeper soils.

The actual depth to groundwater below the lagoons has not been determined. MTCA includes Method B soil cleanup levels protective of the groundwater leaching pathway in both the vadose and saturated subsurface zones. The soil to groundwater exposure pathway cannot be ruled out unless additional groundwater characterization demonstrates that residual contamination in the sludge and soil are not causing an exceedance in groundwater. Characterization of groundwater flow direction and gradient requires a minimum of three groundwater monitoring wells advanced into each saturated water-bearing zone. If groundwater impacts are observed, then further evaluation will be required to determine if the groundwater to surface water pathway is also a risk.

Randy Hayden January 6, 2023 Page 5 of 6

Limitations of the Opinion

Opinion does not settle liability with the state.

Liable persons are strictly liable, jointly, and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion does not:

- Resolve or alter a person's liability to the state.
- Protect liable persons from contribution claims by third parties.

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70A.305.040(4).

Opinion does not constitute a determination of substantial equivalence.

To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-supervised action. This opinion does not determine whether the action you proposed will be substantially equivalent. Courts make that determination. See RCW 70A.305.080 and WAC 173-340-545.

State is immune from liability.

The state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. *See* RCW 70A.305.180.

Contact Information

Thank you for choosing to clean up the Site under the VCP. As you conduct your cleanup, please do not hesitate to request additional services. We look forward to working with you.

For more information about the VCP and the cleanup process, please visit our webpage³. If you have any questions about this opinion, please contact me by phone at (509) 342-5564 or e-mail at ted.uecker@ecy.wa.gov.

Sincerely,

Ted M. Uecker ERO Toxics Cleanup Program

³ <u>https://www.ecy.wa.gov/vcp</u>

Randy Hayden January 6, 2023 Page 6 of 6

tmu;hg

Enclosures (1): A – Site Description and Diagram

cc: Tracy Friesz, Port of Pasco Yancy Meyer, Blue Mountain Environmental and Consulting Co. Kathleen Falconer, Ecology KLF Nick Acklam, Ecology

4601 North Monroe St., Spokane, WA 99205-1295 • 509-329-3400

May 31, 2023

Randy Hayden Port of Pasco PO Box 769 Pasco, WA 99301

Re: Technical Assistance for the following contaminated Site:

Site Name:	Port of Pasco Big Industrial Park Lagoons
Site Address:	SE Road 36/ E Ainsworth St, Pasco
Cleanup Site ID:	15433
Facility/Site ID:	88749
VCP Project ID:	EA0362

Dear Randy Hayden:

The Washington State Department of Ecology (Ecology) received your request for technical consultation pursuant to WAC 173-340-515(5) on your proposed additional characterization of the Port of Pasco Big Industrial Park Lagoons facility (Site) under the Voluntary Cleanup Program (VCP)¹. This letter provides our advice and assistance. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter $\underline{70A.305}^2$ RCW.

Issue Presented and Opinion

Ecology has determined that your proposed work plan meets the stated objectives to resolve data gaps at the Site. There are additional recommendations outlined in the analysis below.

This opinion is based on an analysis of whether the proposed actions meet the substantive requirements of MTCA, Chapter 70A.305 RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided as follows.

¹ https://ecology.wa.gov/Spills-Cleanup/Contamination-cleanup/Voluntary-Cleanup-Program

² https://app.leg.wa.gov/RCW/default.aspx?cite=70A.305

Randy Hayden May 31, 2023 Page 2 of 5

Site Description

This opinion applies to the only Site described as follows. The Site is defined by the nature and extent of contamination associated with the following release:

- Heavy metals into the soil.
- Dioxins into the soil.
- Furans into the soil.
- Polybrominated diphenyl ethers (PBDEs) into the soil.

Enclosure A includes a detailed description, history, and diagrams of the Site, as currently known to Ecology.

Please note a parcel of real property can be affected by multiple sites. At this time, we have no information that the parcel(s) associated with this Site are affected by other sites.

Basis for the Opinion

Ecology bases this opinion on information in the documents listed in **Enclosure B**. You can request these documents by filing a <u>records request</u>.³ For help making a request, contact the Public Records Officer at <u>publicrecordsofficer@ecy.wa.gov</u> or call (360) 407-6040. Before making a request, check whether the documents are available on the <u>Site</u> webpage⁴.

This opinion is void if any of the information contained in those documents is materially false or misleading.

Analysis and Opinion

Characterizing the Site

Ecology has concluded that, upon completion of the actions detailed in the Scope of Work for Subsurface Investigation (BMEC, 2023), the Site characterization will be sufficient to determine whether the cleanup actions to date are protective of human health and the environment or whether further remedial action is necessary. The Site is described above and in **Enclosure A**.

The Site consists of two former wastewater treatment lagoons with approximately 1-2 feet of sludge below standing water. The north and south lagoons have an approximate sludge volume of 32,130 cubic feet and 62,400 cubic feet of sludge, respectively. Seven discrete sludge column samples were collected from each of the two lagoons and analyzed for fecal coliform. One composite sample was developed for each lagoon and

³ <u>https://ecology.wa.gov/About-us/Accountability-transparency/Public-records-requests</u>

⁴ <u>https://apps.ecology.wa.gov/gsp/CleanupSiteDocuments.aspx?csid=15433</u>

Randy Hayden May 31, 2023 Page 3 of 5

analyzed for organochlorine pesticides, RCRA 8 metals, nitrates, nitrogen, ammonia, dioxins, furans, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Cadmium exceeded the MTCA Method A soil cleanup level in the south lagoon sample, while the dioxin and furan toxicity equivalency (TEQ) exceeded the MTCA Method B soil cleanup level. DDE and PBDEs were detected in the south lagoon sample below their respective soil cleanup levels. Soil below the lagoon sludge column has not been characterized. Depth to groundwater below the lagoons has not been determined and groundwater samples have not been collected or analyzed for potential contamination.

Proposed Remedial Actions

The following additional Site characterization actions have been proposed to address data gaps and assess whether further remedial action is necessary:

- Advance nine soil borings within the lateral extent of the south lagoon and collect discrete samples of both the lagoon sludge and underlying native soils, one sample of each medium per boring. The samples will be analyzed for RCRA 8 metals, dioxins, furans, and PDBEs.
- Install four groundwater monitoring wells around the perimeter of the south lagoon, one north and hydraulically upgradient of the lagoon and three south and hydraulically downgradient of the lagoon. Groundwater quality and flow parameters will be determined once the wells have equilibrated. Groundwater samples will be collected and analyzed for RCRA 8 metals, dioxins, furans, and PDBEs.

Further Recommendations

Ecology concurs that the proposed additional Site characterization will address data gaps identified in Ecology's January 6, 2023 opinion letter, with the following comments and recommendations:

- The lagoon sludge sampling in January 2021 indicated that the north lagoon samples did not exceed the cleanup levels established for the Site; however, the samples were composited and potentially not representative of the actual contaminant concentrations. To confirm that the lagoon sludge and underlying soil meets the cleanup levels, a minimum of four additional discrete samples of both media should be collected from within the north lagoon and analyzed for all contaminants of concern (COCs). Please include the percent dry weight of solids for the soil and sludge samples with your results.
- The proposed groundwater monitoring well locations will be sufficient to determine if groundwater exceeds MTCA cleanup levels.
- A minimum of four sludge samples from each lagoon (eight total samples) should also be analyzed for polyfluoroalkyl substances (PFAS) compounds using EPA Method 1633, volatile organic compounds (VOCs) using EPA Method 8260, and

Randy Hayden May 31, 2023 Page 4 of 5

> petroleum hydrocarbons using analytical methods NWTPH-Gx for gasoline-range and NWTPH-Dx for diesel- and heavy-oil range petroleum hydrocarbons. These compounds are known to be associated with either biosolids or dioxins and furans.

• If groundwater samples indicate the presence of any COC exceeding cleanup levels, additional groundwater monitoring wells may be necessary to delineate the extent of contaminated groundwater based on the hydraulic gradient.

Limitations of the Opinion

Opinion does not settle liability with the state

Liable persons are strictly liable, jointly and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion does not:

- Resolve or alter a person's liability to the state
- Protect liable persons from contribution claims by third parties.

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70A.305.040(4).

Opinion does not constitute a determination of substantial equivalence

To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-supervised action. This opinion does not determine whether the action you proposed will be substantially equivalent. Courts make that determination. See RCW 70A.305.080 and WAC 173-340-545.

Opinion is limited to proposed cleanup

This letter does not provide an opinion on whether further remedial action will actually be necessary at the Site upon completion of your proposed cleanup. To obtain such an opinion, you must submit a report to Ecology upon completion of your cleanup and request an opinion under the Voluntary Cleanup Program (VCP).

State is immune from liability

The state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. *See* RCW 70A.305.170.

Contact Information

Thank you for choosing to clean up the Site under the VCP. As you conduct your cleanup, please do not hesitate to request additional services. We look forward to working with you.

Randy Hayden May 31, 2023 Page 5 of 5

For more information about the VCP and the cleanup process, please visit our webpage ⁵. If you have any questions about this opinion, please contact me by phone at 509-342-5564 or e-mail at ted.uecker@ecy.wa.gov.

Sincerely,

Ted M. Uecker ERO Toxics Cleanup Program

tmu:hg

Enclosures (2): A – Site Description, History, and Diagrams B – Basis for Opinion: List of Site Documents

cc: Tracy Friesz, Port of Pasco Yancy Meyer, BMEC Brent Bergeron, BMEC Christer Loftenius, Ecology

⁵ <u>https://www.ecy.wa.gov/vcp</u>

Enclosure A

Site Description, History, and Diagrams

Site Description

The Site is part of the 370-acre Big Pasco Industrial Center, which is located along the Columbia River in Pasco, WA. The two former sewage lagoons are located at SE Road 36 and E Ainsworth Ave, approximately 650 and 920 feet from the river. The south lagoon has an average sludge depth of two feet, with approximately 62,400 cubic feet of sludge. The north lagoon has an average sludge depth of one foot, with approximately 32,130 cubic feet of sludge. Depth to groundwater at the Site is approximately 9-14 feet below ground surface (bgs). Groundwater flow direction is unknown but is inferred to flow south toward the river. Site soils generally consist of sands and silts to deeper sand and gravel to approximately 50 feet bgs, underlain by the competent silt of the Ringold Formation.

Site History

In January 2021, the two sewage lagoons were sampled to characterize the waste with the intent to decommission and develop the area into a gravel parking lot. Fourteen total sludge samples were collected, seven from each lagoon, and were considered representative of the entire vertical sludge column. The discrete samples were analyzed for fecal coliform, while composite samples were analyzed for organochlorine pesticides, RCRA 8 metals, nitrates, nitrogen, ammonia, dioxins, furans, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PDBEs). Analytical results for the south lagoon samples indicated that the dioxin and furan toxicity equivalency (TEQ) exceeded MTCA Method B cleanup levels for both direct contact and protection of groundwater. Cadmium exceeded the MTCA Method A cleanup level, and PDBEs and DDE were present below regulatory thresholds. Beginning in 2021, both lagoons were filled with clean imported soil and gravel to a minimum of 6 feet above the sludge surface and compacted. An environmental covenant was filed with Franklin County on September 26, 2022 under recording number 1966700. The covenant restricts the site to industrial land use and activities that would compromise the soil cap, and details instructions for operation and maintenance of the engineered controls.

In January 2023, Ecology issued a Further Action opinion requesting additional characterization of the biosolids, soil, and groundwater. In April 2023, Blue Mountain Environmental submitted a Site characterization work plan which included nine geoprobe soil borings within the lateral extent of the south lagoon with discrete samples of both the sludge and underlying native soils below the lagoon and installing four groundwater monitoring wells at approximately 25 feet bgs.

Site Diagrams

Enclosure B

Basis for Opinion: List of Site Documents

- Blue Mountain Environmental and Consulting Co, Inc., Scope of Work for Subsurface Investigation, April 24, 2023.
- Ecology, Further Action Opinion, January 6, 2023.
- Ecology, Environmental Covenant 1966700, September 26, 2022.
- Blue Mountain Environmental and Consulting Co., Inc., CSID No. 15433 Big Pasco Industrial Park Lagoons, Operation and Maintenance Plan, March 15, 2022.
- Coho Environmental, Terrestrial Ecological Evaluation, Port of Pasco, Big Pasco Industrial Center Lagoons, Pasco, WA, June 28, 2021.
- Blue Mountain Environmental and Consulting Co., Inc., Biosolids Sample Analysis Report at Big Pasco Industrial Center, Pasco, Washington, February 25, 2021.
- Blue Mountain Environmental and Consulting Co., Inc., Port of Pasco Big Industrial Park Lagoons, Sampling and Analysis Plan, December 11, 2020.
- GN Northern, Inc., Geotechnical Site Investigation Report, GNN Project No. 219-1119, May 20, 2020.

Enclosure A

Description and Diagram of the Site

Site Description

The Site is part of the 370-acre Big Pasco Industrial Center, which is located along the Columbia River in Pasco, WA. The two former sewage lagoons are located at SE Road 36 and E Ainsworth Ave, approximately 650 and 920 feet from the river. The south lagoon has an average sludge depth of two feet, with approximately 62,400 cubic feet of sludge. The north lagoon has an average sludge depth of one foot, with approximately 32,130 cubic feet of sludge. Depth to groundwater at the Site is approximately 9-14 feet below ground surface (bgs). Site soils generally consist of sands and silts to deeper sand and gravel to approximately 50 feet bgs, underlain by the competent silt of the Ringold Formation.

Site History

In January 2021, the two sewage lagoons were sampled to characterize the waste with the intent to decommission and develop the area into a gravel parking lot. Fourteen total sludge samples were collected, seven from each lagoon, and were considered representative of the entire vertical sludge column. The discrete samples were analyzed for fecal coliform, while composite samples were analyzed for organochlorine pesticides, RCRA 8 metals, nitrates, nitrogen, ammonia, dioxins, furans, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PDBEs). Analytical results for the south lagoon samples indicated that the dioxin and furan toxicity equivalency (TEQ) exceeded MTCA Method B cleanup levels for both direct contact and protection of groundwater. Cadmium exceeded the MTCA Method A cleanup level, and PDBEs and DDE were present below regulatory thresholds. Beginning in 2021, both lagoons were filled with clean imported soil and gravel to a minimum of 6 feet above the sludge surface and compacted. An environmental covenant was filed with Franklin County on September 26, 2022 under recording number 1966700. The covenant restricts the site to industrial land use and activities that would compromise the soil cap, and details instructions for operation and maintenance of the engineered controls.

Site Diagram

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

Eastern Region Office

4601 North Monroe St., Spokane, WA 99205-1295 • 509-329-3400

August 10, 2023

Randy Hayden Port of Pasco PO Box 769 Pasco, WA 99301

Re: Technical Assistance for the following contaminated Site:

Site Name:	Port of Pasco Big Industrial Park Lagoons
Site Address:	SE Road 36/ E Ainsworth St, Pasco
Cleanup Site ID:	15433
Facility/Site ID:	88749
VCP Project ID:	EA0362

Dear Randy Hayden:

The Washington State Department of Ecology (Ecology) received your request for technical consultation pursuant to WAC 173-340-515(5) on your proposed limited evaluation of the Port of Pasco Big Industrial Park Lagoons facility (Site) under the Voluntary Cleanup Program (VCP)¹. This letter provides our advice and assistance. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter $\underline{70A.305}^2$ RCW.

Issue Presented and Opinion

Ecology has determined the following sampling and analysis plan for soils, biosolids, and groundwater will be sufficient to resolve data gaps at the Site. These requirements take into consideration the previous biosolids characterization and current institutional and engineering controls implemented at the Site.

This opinion is based on an analysis of whether the proposed actions meet the substantive requirements of MTCA, Chapter 70A.305 RCW, and its implementing

¹ https://ecology.wa.gov/Spills-Cleanup/Contamination-cleanup/Voluntary-Cleanup-Program

² https://app.leg.wa.gov/RCW/default.aspx?cite=70A.305

Randy Hayden August 10, 2023 Page 2 of 4

regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided as follows.

Soil and biosolids sludge characterization

- A minimum of five soil borings should be installed in the south lagoon and three soil borings installed in the north lagoon. Discrete soil samples should be collected from below the lagoon biosolids in each boring (eight total soil samples). Three discrete biosolids samples should be collected from the south lagoon and two from the north lagoon (five total biosolids samples).
- Soil samples should be analyzed for the following contaminants of concern (COCs):
 - o RCRA 8 metals,
 - o Dioxins and furans
 - Total petroleum hydrocarbons (TPH). The NWTPH-HCID method may be used to determine if TPH is present, while the respective gasoline-, dieseland oil-range petroleum hydrocarbon analytical methods (NWTPH-Gx and NWTPH-Dx) should subsequently be used to quantify any TPH fractions if present.
 - The five soil samples from the south lagoon should also be analyzed for polybrominated diphenyl ethers (PBDEs).
- Biosolids samples should be analyzed for the following COCs:
 - o PFAS
 - o VOCs
 - o TPH
- Please include the percent dry weight of solids for the soil and sludge samples with your results.

Groundwater characterization

- Three groundwater monitoring wells should be installed with one upgradient and two downgradient of the south lagoon.
- Groundwater samples from all four monitoring wells should be analyzed for the following COCs:
 - RCRA 8 metals
 - o PFAS
 - o VOCs
 - o TPH

Randy Hayden August 10, 2023 Page 3 of 4

• If soil sample results indicate the presence of dioxins, furans, or PBDEs exceeding soil cleanup levels for groundwater protection, further groundwater sampling and analyses should be conducted for these analytes.

Limitations of the Opinion

Opinion does not settle liability with the state

Liable persons are strictly liable, jointly and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion does not:

- Resolve or alter a person's liability to the state
- Protect liable persons from contribution claims by third parties.

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70A.305.040(4).

Opinion does not constitute a determination of substantial equivalence

To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-supervised action. This opinion does not determine whether the action you proposed will be substantially equivalent. Courts make that determination. See RCW 70A.305.080 and WAC 173-340-545.

Opinion is limited to proposed cleanup

This letter does not provide an opinion on whether further remedial action will actually be necessary at the Site upon completion of your proposed cleanup. To obtain such an opinion, you must submit a report to Ecology upon completion of your cleanup and request an opinion under the Voluntary Cleanup Program (VCP).

State is immune from liability

The state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. *See* RCW 70A.305.170.

Contact Information

Thank you for choosing to clean up the Site under the VCP. As you conduct your cleanup, please do not hesitate to request additional services. We look forward to working with you.

Randy Hayden August 10, 2023 Page 4 of 4

For more information about the VCP and the cleanup process, please visit our webpage ³. If you have any questions about this opinion, please contact me by phone at 509-342-5564 or e-mail at ted.uecker@ecy.wa.gov.

Sincerely,

lakal

Ted M. Uecker ERO Toxics Cleanup Program

tmu:hg

cc: Tracy Friesz, Port of Pasco Yancy Meyer, BMEC Brent Bergeron, BMEC Christer Loftenius, Ecology

³ <u>https://www.ecy.wa.gov/vcp</u>

ymeyer@bmecww.com

From:	Uecker, Ted (ECY) <tuec461@ecy.wa.gov></tuec461@ecy.wa.gov>
Sent:	Wednesday, November 29, 2023 1:23 PM
То:	yancymeyer@gmail.com; 'Randy Hayden (Port of Pasco)'
Cc:	'Tracy S. Friesz'; 'BNB Environmental, PC (Brent N. Bergeron)'; Loftenius, Christer (ECY);
	Acklam, Nicholas (ECY)
Subject:	RE: Port of Pasco Industrial Park Lagoons- Technical Assistance

Hi Yancy,

Ecology is fine with 3 samples from the south lagoon analyzed for PBDEs. Thank you for the update, and please let us know if you have any more questions.

Best regards,

Ted Uecker, LG Toxics Cleanup Program | Eastern Region Office Washington State Department of Ecology ted.uecker@ecy.wa.gov | (509) 342-5564

From: yancymeyer@gmail.com <yancymeyer@gmail.com>
Sent: Wednesday, November 29, 2023 1:17 PM
To: Uecker, Ted (ECY) <TUEC461@ECY.WA.GOV>; 'Randy Hayden (Port of Pasco)' <rhayden@portofpasco.org>
Cc: 'Tracy S. Friesz' <tfriesz@portofpasco.org>; 'BNB Environmental, PC (Brent N. Bergeron)' <brentb@bnbenv.com>; Loftenius, Christer (ECY) <clof461@ECY.WA.GOV>; Acklam, Nicholas (ECY) <nack461@ECY.WA.GOV>
Subject: RE: Port of Pasco Industrial Park Lagoons- Technical Assistance

Ted, we're preparing to send the samples out, and I've been informed that the price for PBDE in soil has increased to \$1,215 EACH (was under \$700). Would you be OK with doing 3 soil samples from the south lagoons instead of 5 for PBDEs?

I look forward to your reply. Thanks

Yancy Meyer BMEC 509-520-4416

This e-mail message contains confidential or proprietary information of BMEC, Co Inc., and may be "Attorney-Client Privileged" and protected as "Work Product". If you are not the intended recipient, you may not use, copy or disclose the message or any information contained within. If you have received this message in error, please notify the sender by reply e-mail and delete it. Thank you.

From: Uecker, Ted (ECY) <<u>TUEC461@ECY.WA.GOV</u>>
Sent: Monday, August 14, 2023 8:49 AM
To: Randy Hayden (Port of Pasco) <<u>rhayden@portofpasco.org</u>>
Cc: Tracy S. Friesz <<u>tfriesz@portofpasco.org</u>>; 'ymeyer@bmecww.com' <<u>ymeyer@bmecww.com</u>>; 'BNB Environmental,
PC (Brent N. Bergeron)' <<u>brentb@bnbenv.com</u>>; Loftenius, Christer (ECY) <<u>clof461@ECY.WA.GOV</u>>; Acklam, Nicholas
(ECY) <<u>nack461@ECY.WA.GOV</u>>
Subject: Port of Pasco Industrial Park Lagoons- Technical Assistance

APPENDIX B

Photographs

Photograph 1 – Geoprobe[®] (via Steadfast Services NW) setting up at monitoring wells MW-2 on Tuesday, November 28, 2023 (facing west).

Photograph 2 – Geologist's table set up outside of (south) of the the fencing due south of the south lagoon on Tuesday, November 28, 2023 (facing north).

Photograph 3 – Surface water drainage ditch immediately south of Site (facing south).

Photograph 4 – Soil lithology (i.e., brown SILT near top and dark gray medium SAND near bottom) for boring MW-2 on Tuesday, November 28, 2023.

Photograph 5 – Hollow-stem auger methodology (Model 7720DT) being deployed by Steadfast on Tuesday, November 28, 2023 at the boring advanced for montirong well MW-2 (facing northeast).

Photograph 6 – Drilling continues at boring MW-2 on Tuesday, November 28, 2023 (facing east).

Photograph 7 – Steadfast personnel utilizing geoprobe[®] methodology at boring MW-3 on Tuesday, November 28, 2023 (facing southwest).

Photograph 8 – Geologist's table with soil core from 0 - 25' bgs in boring MW-3 on Tuesday, November 23, 2023 (facing north).

Photograph 9 – Using geoprobe[®] methodology to advance a boring in the south lagoon on Wednesday, November 29, 2023 (facing east).

Photograph 10 – Brown SILT with little gravel near top and dark grey, medium SAND & GRAVEL near bottom of boring B-6 on Wednesday, November 29, 2023.

Photograph 11 – CME 75 onsite to begin advancing hollow-stem augers into the subsurface at boring MW-1 on Wednesday, November 29, 2023 (facing southeast).

Photograph 12 – Geoprobe[®] methodology deployed in south lagoon at boring B-7 on Wednesday, November 29, 2023 (facing south).

Photograph 13 – Begin monitoring well installation at MW-1 in the north lagoon on Wednesday, November 29, 2023 (facing southeast).

Photograph 14 – BMEC personnel collecting soil samples on Wednesday, November 29, 2023 (facing east).

Photograph 15 – Soil lithology from boring B-4 on Wednesday, November 29, 2023.

Photograph 16 – Steadfast utilizing HSA methodology via CME 75 to advnace boring at MW-3 to 25' bgs on Wednesday, November 29, 2023 (facing north).

APPENDIX C

Boring Logs
Northagoon A BERM N South N

BORINGAVELL CONSTRUCTION LOG

und of C	g Meth Elevati Casing I	od M on M Elevatio	oprobe acroc	ore	Grout Type Reportenite		
ged hark	s B	, Ber	geron		Deptin to Water/Date Ground Water Elevation/Date Drilling Co. Steadfost Services NW		
Blow Counts	Recovery (%)	Sampling Method Sample	Depth (fl. BGL)	Graphic Log	Lithologic Description	Contact Depth	Well Diagram
	30						
	.		5		3.5-5': Brown, fine SAND, trace gravel, dan	5.0	3P4
	0	-			No Recovery		
			10			10.0	
	40		8		13-14: SAA, V. Wet		
sh-	86.5	1:15)	15		14-15: Brown SLUDGE transitioning to Black SLUDG 15-18: Brown, fine SAND, loose, V-Wet.	E15.0	wet, little gran
	100				18-20': Dark amu to - H. colored SANDR		
51-	86-5	as-c	20		GRAVEL, poorly-sorted, V, wet, fin TD = 20	20.0	
			25				
				1.1		25.0	
			30			30.0	

North	Lagoon
BER	MD
South	°BS

oject i catior	Name	Port	OZ3 of Ro	SCO	- Industrial Lagoons Date Drilled 11/21/23	All Cale and International	
illing (Method g Meth	Ge M	oprob	e	- 2.25" OD Screen Type/Slot NA		
ound	Elevati	on N Elevatio	A	DIE	Grout Type Bentenite		
gged	by P	Ber	geron	1	Depth to Water/Date Ground Water Elevation/Date		· · · · · · · · · · · · · · · · · · ·
mark	s	1 1			Drilling Co. Steadtast Services NW		
Blow Counts	Recovery (%)	Sampling Method Samria	Depth (ft. BGL)	Graphic Log	Lithologic Descripțion	Contact Depth	Well Diagram
	60		-		2-5: Brown, fine SAND, little argular gravel, loose, damp.		
			5		gravel, loose, donnp.		
	20						
			10		9-10: SAA	10,0	
	20						3.
			15		14-15: Brown, fine SAND, trace gravel, V. wet. 15-173: SAA	15.0	4
	100				17-19: Mult-colored, Sandy GRANEL, Subargular, Wet, firm		
B	5-sc	-20)	20		19-20: DK gray, fine to med SAND, little gravel, V, wet TD=20	20.0	
			_25			25.0	· · ·
	1			1 1			

0955 5L-B5-50-20

	6	P	rth (SERP th Lu	5	N BORINGAWELL CONSTRUCTION LOG		
Project I	Number	EZ	023	- 0	303 Boring/Well Number 84		
ocation	SF	00.	oproh		who happon Casing Type/Diameter		
Samplin	g Metho Elevatio	od M	acroc	core	Charles I don 1906 . NA		
op of C	asing E	levatio	geror		Grout Type Bentonite Depth to Water/Date		
Kemark	S	1			Ground Water Elevation/Date Drilling Co. Steadfast Services NW		
PID (ppm) Blow Counts	Recovery (%)	Sampling Method	Depth (ft. BGL)	U.S.C.S Graphic Log	Lithologic Descripțion	Contact Depth	Well Diagram
	40				3-5": Brown, fine SAND, little subangular gravel,	Jamp	
			5	-	· · ·	5.0	
1	20			1.			
	20		\vdash				
			10		9-10: SAA	10.0	
			\square				
	40		V		13-14.5: 5AA, wet-v. wet, loose		
I PIL	-5L-1	5	15				
10.	5.				145-15': Black SLUDGE (aka silt), Sewer odor, V. wet 15-16.5': Brown, fine SAND, V. wet, loose	15.0	
	100	ŀ			16.5-20' Dark gray SAND, some rounded grow		
					firm, V. Wet	с,	
			20	+	20-21.5: Slough = brown, fine SAND, v. wet	20.0	
	100				21.5-25: Dark gray SAND & GRAVEL, poorly-50	Not	
					V, wel,	100,	
il-B	4-50	0-25)	25			25.0	
					TD=25'	•	• •
			·				
.			30				
-	2		1 40 1			30.0	

.

0855 SL-84-5L-15

0910 51-B4-50-25

	10		BER	M			
		50	while	.6000	BORINGAWELL CONSTRUCTION LOG		
piect N	lumber	EF7	022	-7	202		· · · · ·
ject N	Vame	Port	1	ayacc	303 Boring/Well Number 00 - Industrial Layoons Date Drilled 11/28/23		
lling N		Ge	oprol	Nov	- 2125" OD Screen Tupe/Stat	ļ	÷
ound l	Elevati	N no		core	Gravel Pack Type Grout Type Bentonite		
ged I	by B	, Bei	-qero	n	Depih to Water/Date		
marks	3	- 1			Drilling Co. Steadtest Someron NV	,	
Blow Counts	Recovery (%)	Sampling Method	Depth (ft. BGL)	U.S.C.S Graphic Lon	Lithologic Descripțion	Contact Depth	Well Diagram
						+	
	02		-				
			-		2.5-S': Brown, gravelly SAND, firm, damp.		
			5				41.40
						5.0	+ 54
	110						
	40		-		8-10: SAA		
			-		0-10. 2144	1 1	1.1
			10			10.0	
	10		-				
			7		14.5-15'; SAA, V. wet @ 14.5'		
	1,		15	\vdash		15.0	6.)
	40				165-19': SAA, V. Wet		
	10		-				
-0	8-9	20	-		19-20: Brown, grovelly SAND, V. wet		
1.0	P	120	20	\square	20-21': Slough	20.0	
	100				21-24 SIDK OF SAND (
					21-24.5: DK gray SAND, fine-medium, trace gravel, V. wet		
			-		SILE STIDIC - CANDO COMO		
-B	7-50	-25	25	++-	24,5-25: DKgray SAND& GRAVEL IV. wet	25.0	140
	1				. TD=25'		
			-				
			-				
			-				
1.	1		30		16 .	30.0	

•

1645 NL-B3-56-25 12

	Sc	outh Lagoo	BORINGAWELL CONSTRUCTION LOG		
rojec	ct Number E	2023-0	D303 Boring/Well Number		i sur in
ocaŭ	of the local division of the local divisiono		N. Logon Casing Type/Diameter		
amp	ng Method (S) Ding Method Ind Elevation	Matrocom	Cravel Pack Type	<u>.</u>	
op of ogge	of Casing Eleva ed by B, Be	ition NA 2rgeron	Grout Type Bentonite Depith to Water/Date Ground Water Elevation/Date		
ema	arks	11 11	Drilling Co. Steadtast Services NW		
funded and	Blow Counts Recovery (%) Sempling Method	Sample Depth (ft. BGL) U.S.C.S	Lithologic Description	Contact Depth	Well Diagram
Contractor					
	50		2.5-5: Brown, Fine SAND, trace growel, loose, m	hiet	1
			I and the state of		
			· · · · · · · · · · · · · · · · · · ·	5.0	1.0
	40	H			
			8-10' SAA		
		10		10.0	
	0		N P		
	5		No Recovery .		
		15		15.0	*1
	50		<u>(</u>		
			17.5-20: Brown, SAND, little gravel, wet.		
		20		20.0	
	·		20-24 Brown, fine SAND, little silt, v. wet, v.		
	100				
		25	24-25: Brown-gray, fine SAND, trace gravel, v. wet		
			25-26; DK gray, well-sorted, fine SAND, v. wet	25.0	÷.
	100		26.30 : DK gray, SAND & GRAVEL, V. Wet,		
	1 1	11 11	firth.	1 1	

NL-82.50-30' 1605 TD=30'

•

	(So	which	00	001	BORINGAWELL CONSTRUCTION LOG		
	. \		~		-	· ·		9.202 a
oje	st Numl	Por	202	3 - Pas		303 Boring/Well Number 51 - Inclustrial Lagoons Date Drilled 11/28/23	-	
llin	ion Sh g Meth	od (-	eopre	obe	1.1	- <u>Lndustrial Lagoons</u> Date Drilled 11/28/23 - <u>Casing Type/Diameter</u> - <u>2.25"OD</u> Screen Type/Slot		
TIP	ling Me Id Elevi	thod	Makin	0.00	re	Gravel Pack Type Grout Type Bentonite		
ge	f Casin ad by	B. B	ation N 2rgen	an	-	Depth to Water/Date Ground Water Eevation/Date		
-	rks	1	11-	-	B	Drilling Co. Stead fast Services NW		-
	Recovery	Samplin Nathor	Depth Depth	U.S.C.S	Graphic Log	Lithologic Description	Contact Depth	Well Diagram
			-					
	20)			•			e.
	-		5	+	_	4-5: Brown SAND, Little silt, little angular gravel, lo	DSR . 5.0	
	1			-				
	10	1		-				
			10			9-10: Brown fine SAND, trace gravel, loose, damp.		•
	.					THE POWER HE OF THE , HOUSE , HOUSE, CHAMP	10.0	
	20	5						1.2
	ł		15	Ц		14-15: Gray-brown, SAND, little gravel, v. moist-wet.	15.0	
		•		-		15-18: Brown silly, fine SAND, trace gravel, V, wet,	15.0	τ. Έ
	10	2						
		1,				18-20: Black SLUDGE, Sewer odor, firm, moist.		
•	B1-5	- 20	X 20	\mathbb{H}	-	20-21': SAA	20.0	
	1					21.5-22.5: Black, silty/sludgy, fine SAND, Sewerodor,		
	10					22 E-25' Black () GAVE LILL	wet	
		1	25			22.5-25' Black, fine-medium, SAND, little coarse rounded gravel, v. wet.		
-1	31-50	125		\square		TD=25'	25.0) (S.
					-			
		1						
	1.							
	.]		30				30.0	

1515 NL-B1-50-25

SE R	150	uth Lagoo	BORINGAWELL CONSTRUCTION LOG		
	1. >_	Fence			iyaa a
oject	Number E Name Por	2023-0 t of Rasco	303 Boring/Well Number MW 3 - Industrial Lagoons Date Drilled 11/28/23		
	Method (-	eoprobe	Casing Type/Diameter	6	
round	Elevation	Matrocore	Gravel Pack Type Grout Type Bentonite		
ogged	by B, B	iion ergeron	Depin to Water/Date Ground Water Flevation/Date		
emark		TTTT	Drilling Co. Steadfast Services NV		*
Blow Counts	Recovery (%) Sampling	Sample Depth (ft. BGL) U.S.C.S Graphic Log	Lithologic Description	Contact Depth	Well Diagram
	10				
		5	4.5-5': Brown, fine SAND, little angular gravel, da	mp;lose	R.
	10				
			9.5-10: Brown, fine SAND, trace growel, damp.		
	10			10.0	
		15	14.5-15: Brown-gray, fine SAND, wet, little silt.		
				15.0	
	50		17.5-20 Brown, fine SAND, V. Wet		
		20	20-22.5: DK gray, fine-medium SAND, track gravel, v. wet gray, fine-medium SAND, track	20.0	
	70		22.5-23: Brown, Silty, fine SAND, trace gravel, V.We 23-25: DK gray SAND, little rounded gravel, 10000,	1 1	
		25	23-25: UK gray SAND, little rounded gravel, 10000, TD=25'	25.0	÷.,
			× • • • • • • • • • • • • • • • • • • •		
				30.0	

÷.

· *

Ň	N	South Lago	Section there would have how how		
	· · · · ·		₩W2	÷ε	· · · · · · ·
Project	Name Port	2023-0	Boring/Well Number		
Locatio Drilling	Method (Se	enorate	Casing Type/Diameter		
Sampli Ground	ing Method d Elevation	Matrocore	Gravel Pack Type		
Top of	Casing Elevat	tion	Grout Type Bentonite Depin to Water/Date		
Remark	ks	5	Ground Water Elevation/Date Drilling Co. Steadfast Services N	W	
PID (ppm) Blow Counts	Recovery (%) Sampling Method	Sample Depth (R. BGL) U.S.C.S Graphic Lon	Lithologic Descripțion	Contact Depth	Well Diagram
0	60		0-3: Brown SILT, firm, dry.	++	
			3. 5: Gray, coarse GRANEL, trace silt, dry.		
		5			· · ·
			5-10: Whitetobrown to gray, silly, coarse GRAVEL, dry, loose.	5.0	·
	70		GRAVEL, dry, loose.		
		10		10.0	•
]		10-13: SAA	- 10.0	
	70		· · ·		
			13-15: DK gray to dk brown, sandy, GRAVEL, pa	only	
11		15	Sorted, Wet, rounded		
	100		15-16.5: Slough = White to brown to gray, Silty GRAV	Eliday	
1	100		16.5-20 DKarow, SAND & GRAVEL, COORSE		
			16.5-20: DKgrow, SAND & GRAVEL, COarse, rounded, whet, poorly-sorled		
11.		20		10001	
			20-21': Slough = While to brown to gray, silty GRAVE	Ldry	
1	100		21-25: DK gray, SAND & GRAVEL, COarse, rounded, whet, poorly-sorted		
V			i - and a contract there is a sec		
		25	These'	25.0	
			ID=25'	1.1	
	· ·				
1	1 .	1 1	1.	1 1	

.

.

1 14	125	ence	BORING/WELL CONSTRUCTION L	DG
roject l		2023-0		يو مېږد
oject i scation	Name, Por	orner o	- Industrial Lagoons Date Drilled 11/28/	<u>N1</u> 23
illing I Implin	Method G	eoprabe	- 2.25" OD Screen Type/Slot	· _ · _ · _ · _ · _ · _ · _ · _
ound	Elevation Casing Eleva	NA	Grout Type Bentonik	2
gged	by B. Be	ergeron	Depth to Water/Date Ground Water Elevation/D	ate
unts	A BU	0 - In	Drilling Co. 5-tead tast	Services NW
Blow Counts	Recovery (%) Sampling Method	Sample Depth (ft. BGL) U.S.C.S	Lithologic Descripțion	방 등 중 전 ···································
			0-5: Brown SILT, mod firm, dry.	
	70			
ŀ				
	· · ·	5		5.0
			5-10: Brown to dk brown mottled gray, rounded GRAKEL, LOOSE, dry	silty, coarse
	60		in the second second	
		10	10-13: SAA	10.0
	80			
			13-15' iDK brown, sandy GRAVEL, angu	lar wet
		15	9	
	1		15-16 : Slough = Brown to de brown a	Silly coarse
	90		16-20: DK gray to black gravelly, m Welt Sorled poorly graded, w	adjum SAND
			well sorted poorly graded, w	vet
		20		
	90		20-21: Slough = DK gray, gravelly = 21-25: DK gray to black gravelly, 1	medium SAND
			-peor well-graded, wet, rou	nded
		25		
			TD=25	25.0
1		30		

· ÷

.

.

1	Nor	-th Lagoo			
	•B8	South Lago	N BORINGAVELL CONSTRUCTION LOG		
	Number E	2023-0			···· ·
Cation	West.	t of Pasco	Dut Logon Date Drilled 11/28/23	29/23	
mplin	g Method	Matrocore	- Con Stranger Time (D)		
o of C	Elevation asing Eleva	NA	Grout Type Bentonite Depth to Water/Date NA		
marks	3	ergeron	Ground Water Elevation/Date NA	JW	
Blow Counts	Recovery (%) Sampling	Depth Depth (fl. BGL) U.S.C.S	Lithologic Descripțion	Contact	Well Diagram
-					
-	40				
İ			3-5': Brown, fine SAND, trace gravel, loose, c	Jamp.	
	-	5	لي .	5.0	
	110				
	40				
			8-10: SAA		
		10		10.0	
-	50				
	30	V	12.5-13:5AA 13-13.5: Brown, V. Fine SAND, V. Wet 13.5-15: Black SLUDGE (akaSILT), V. Wet, trace		
		15	13.5-15: Black SLUDGE (akaSILT), V. Wet. trace	anavel	
			15-15,5 : DKgray, fine SAND, V. Wet 15.5-16 : DKgray, frounded, codrige GRAVEL, little gard, 1 16-16:5 : DKgray, medium SAND, trace gravel, V. W	J 15.0	
	100		16-16.5': DKgroup, medium SAND, trace gravel, V.W.	et.	
1			16.5-20: DK gray, SAND& GRAVEL, V. Wet	•	
.		20		20.0	
			TD=20'		
			· · · · · · · · · · · · · · · · · · ·		
		25		25.0	
	.				
			· · · ·		
1.		30		30.0	

•

× ?

.

1	Bł	ERM Sou Lago			
	lumber E	2023 - C	303 Boring/Well Number 3.1		
ing N	North	- Central Deoprabe Macrocore	- 2.25" OD Screen Type/Siot		
of C	Elevation asing Elev	NA	Gravel Pack Type NA Grout Type Bentonite Depth to Water/Date	· · · · ·	
narks		ergeron	Ground Water Elevation/Date	-	
Blow Counts	Recovery (%) Sampling	Method Sample Depth (1. BGL) U.S.C.S	Lithologic Descripțion	Contact Depth	Well Diagram
					· · · · · · · · · · · · · · · · · · ·
	10				
	-	5	4.5-5' Brown, fine SAND, some coarse Groupel, do	UB8 .	
	40		O IN' R		
		10	8-10': Brown, fine SAND, little gravel, damp,	10.0	÷
	60		12-13.5; Brown, fine SAND, damp; fining dow to brown SILT, wet 13.5-15; Black SLUDGE (aka SILT), trace growel @	nward	104
		15	13.5-15: Block SLYDGE (aka SILT), trace grovel @ 15. V. Wet 15-16,5: DK brown; Fine SAND, V wet, loose	15.0	
	100		16.5-20: DK OTTING AND little OTTING CONTEND	20	
	100		16.5-20: DK gray SAND, little gravel coarsen down ward to SAND & GRAVEL, V.V	iet	
		20	TD =20'	20.0	
		25		25.0	•
			*		
1					

1110

APPENDIX D

Groundwater Sampling Field Data Sheets

DAY/DATE		3				SHE	EET 1 d	f
PROJECT N	AME: POP	1 ALBONIS			PROJEC		E2023/	
PROJECT L	OCATION:	ROZE/EA		1-mm-ul	TROJEC	1 140	Elecs	105
		DFog DRain D	ISnow	Wir		CIT inht		
Temp.: □<0	0 🗆 0-32 🖄 33	3-54			id from: DN DNE		DModera	te Strong
Humidity %:	□<25 □26-49	Contraction of the second s	>75	Pred	cip.: XNone IMi	st DI .ioh	t DModerat	
				100.000		or abigit	t Liviouciat	c Lileavy
WELL NO. (or Boring, Locat	tion): Mid-1		SAMPL	E NUMBER:	Mil-	I RD	6956
Well depth:	25 Sc	reen length:	2	Laborat		1-1-4	I DF	12220
Well install date: 11-29-23					d/or RFA Num	ber:		
Pre-purge SV	VL: 9.51				diameter: 2"			
Time Sampl	e Collected: 4	0845			sample time:	Q QI		
Sample Turb	idity:	- y - i 2	-		Conductance:	4124		
Sample Colo				Sample				
Sample Temp	perature:			Sample				
Field Data				Dampie	0001.			
Time (24 HR)	Temp	Cond		рН	Pump Rate or Bail No.	Tur	bidity	Other
0800	123.Le	784.9	Jal	17	Ban No.	513.	9	
0810	20.1	822.0		15		over	1,000	
0815	23.7	812.9		24	•	11	11	
0825	23. U	825.9	17.	70		11	11	
0835	12.2	796.8	1	lile		1	11	
6845	Cl.3		1-0	69		24.	22	
□ of stagnant wai the casing until the □ by hand bailing Samples were col ☑ by setting a pr conductivity and p □ by setting a pu conductivity and p □ with disposable Sample Shipment Water samples we	ter in the casing an above the middle of ter in the casing and e temperature, cond until temperature, lected: ump, or tubing attac bH stabilized. mp, or tubing attac H stabilized. bailers until the ter t: re placed in approp s were filled to pre	nd filter by slowly s until the until the ter d filter by slowly se luctivity and pH stat conductivity and pH ached to a pump, v shed to a pump, at a mperature, conductiv priate containers suit	mperatur etting a p bilized. (I stabiliz within th opproxim wity and table for	e, conductiv nump or intal DR, ned. a approximately netely pH stabilized analyses rec	ity and pH stabilize ke tubing at approxi ate middle of the s feet above the both d.	d. OR, imately creened in om of the	feet abov terval until t casing until t	the bottom of the temperature, the temperature,
		aboratory proto	(sloo					
□ NWTPH-HC	CID; D NWTPH	I-Gx; 🗆 NWTP	H-Dx:	NWTP	H-Gx/BTEX:	VOC: F	HVOC	
□ SemiVOC; [□ PAH; □ PCB	;	(□8, □	110, □13)	Metals; TCL	P: 0 MI	TBE:	
□ OTHER:								
<u>SIGNATURE:</u> _	ASI	y MEVE						

DAY/DATE: 12-4-23			SHEET 1 of						
PROJECT NAME: POP LALOONS			PROJECT NO .: E2073/1103						
PROJECT LO	OCATION: R	226/E		150/000	TH	CUL	1105		
Weather: DFa	ir Dvercast	DFog DRain D	Snow	Win		Light DModer	ate Strong		
Temp.: □<0	D0-32 133-	-54 🗆 55-79 🛛]>80		Wind from: IN INE IE ISE IS ISW IW INW				
Humidity %:	□<25 □26-49	⊠\$50-74 □>7		Prec	ip.: None DMi	st 🗆 Light 🗆 Modera	ate DHeavy		
			Bi	PIL 857	2				
	or Boring, Locati		-	SAMPL	E NUMBER:	MU-2			
Well depth:		een length:		Laborato	ory:	1.			
Well install date:				COC an	d/or RFA Num	ber:			
Pre-purge SWL: (0.79'				Casing c	liameter:				
Time Sample Collected: 1A 15				SWL at	sample time:	10,80'			
Sample Turbi	dity:				Conductance:	10100			
Sample Color	1			Sample					
Sample Temp	perature:			Sample					
Field Data				<u></u>					
Time (24 HR)	Temp	Cond		pН	Pump Rate or Bail No.	Turbidity	Other		
0945	24.5	757.1		46		423.2			
0950	2013 15.8	719.9	-	17		41000			
0959	19.9	748.2	931	04		21000			
1003	18.9	749.1	4	11		6.87			
1015	9.2	8.43745. 738.9	100	43		2.29 11000	(
The monitor well of stagnant was interval or slightly of stagnant was the casing until the by hand bailing Samples were col by setting a pur conductivity and p onductivity and p with disposable Sample Shipment Water samples we	ter in the casing and above the middle u er in the casing and temperature, condu- until temperature, co lected: ump, or tubing attach H stabilized. mp, or tubing attach H stabilized. bailers until the tem tre placed in appropris s were filled to prev	d filter by slowly sel ntil the until the temp filter by slowly sett uctivity and pH stabil conductivity and pH s ched to a pump, wi ned to a pump, at app operature, conductivi riate containers suita	peratur ing a p lized. (stabiliz thin the proxim ty and ble for	re, conductivi pump or intal OR, zed. ne approxima nately pH stabilized r analyses red	ity and pH stabilized to tubing at approxi- ate middle of the so- feet above the botto d. quested. As necessar	he approximate middl d. OR, mately feet about creened interval until om of the casing until ry, the containers were uest at approximately o	the temperature, the temperature, the temperature,		
and the second se		boratory protoc	(slo						
				NWTP	H-Gx/BTEX:	VOC; □ HVOC;			
		Desticides; (
□ OTHER:						,,			
SIGNATURE:	HA !!	ly ME							
	ulc 40 PVC casing = 0	163 gallons per fact 6	"Hole	= 1 469 gallon	s per foot				

DAY/DATE:	1-24-2					SHEET 1	of,	
PROJECT NA	ME: POP	LALOONK			PROJECT	NO .: F702		
PROJECT LC	CATION:	Ra ZOLE	AINS	Sile		ELEL	spine J	
Weather: DFair	r Bovercast	DFog DRain D	Snow	Wind: Calm Light Moderate Stron				
Temp.: □<0								
Humidity %: [□<25 □26-49	▲50-74 □>			o.: ∕∕⊆None □Mis	st 🗆 Light 🗆 Modera	ate DHeavy	
		1. 1. 10	BPKS					
WELL NO. (or					NUMBER:			
Well depth: Screen length:				porator				
Well install da					/or RFA Num	ber:		
Pre-purge SW					ameter:			
Time Sample	Collected:	1:30	SW	/L at s	ample time:	10.57		
Sample Turbic	dity:		Sar	nple C	onductance:			
Sample Color:			Sar	nple p	H:			
Sample Temp	erature:			nple C				
Field Data								
Time (24 HR)	Temp	Cond	pН		Pump Rate or Bail No.	Turbidity	Other	
1101	16.2	164.6	0,25	ć		269.5		
1106	19.6	698.1	8.2	5		41000		
1112	19.0	+21.1	42:30	2		10000		
1123	19.0	722.5	8,43	5		/ 1244		
1130	18.2	731.3	03.5	1		41000		
interval or slightly of stagnant wate the casing until the by hand bailing Samples were coll by setting a pun conductivity and pl by setting a pun conductivity and pl with disposable Sample Shipment: Water samples wer ab. The containers	er in the casing an above the middle is ar in the casing and temperature, cond until temperature, ected: mp, or tubing attact H stabilized. bailers until the tents c placed in approp- were filled to pre-	until the until the terr d filter by slowly set luctivity and pH stab conductivity and pH ached to a pump, w hed to a pump, at ap mperature, conductiv priate containers suit	aperature, con tring a pump ilized. OR, stabilized. within the app oproximately vity and pH st able for analy	nductivit, or intake proximate f abilized. yses requ	y and pH stabilized tubing at approxi e middle of the so eet above the botto nested. As necessar	he approximate middle d. OR, mately feet ab creened interval until com of the casing until ry, the containers wer uest at approximately	the temperature the temperature the temperature	
for transport to the				_				
		aboratory protoc					Sec. 1	
						VOC; HVOC;		
	」РАН; ⊔ РСЕ	s; □ Pesticides; ($\Box 8, \Box 10,$	⊔13) I	Metals; \Box TCL	$P; \Box MTBE;$		
OTHER:	1	1.						
SIGNATURE:	MXI	5		4				
PRINT NAME:	VAN	CY MEXA	El	1				

Notes: 2-inch, Schedule 40 PVC casing = 0.163 gallons per foot; 6" Hole = 1.469 gallons per foot

ŧ

0811GeoPro

10-

DAY/DATE: Z-15-23 THURSDAY	SHEET 1 of
PROJECT NAME: PORT OF PASCO LAC	EDN'S PROJECT NO .: EZOZ3/1103
PROJECT LOCATION: ROZG/E. ANSWOR	
Weather: □Fair ⊠Overcast □Fog □Rain □Snow Temp.: □<0	Wind: Calm Light Moderate Strong Wind from: N NE CE SE S SW W NW Precip.: None Mist Light Moderate Heavy

WELL NO. (or Boring, Location): MU		SAMPL	SAMPLE NUMBER: GUMIN -1 3PK956					
Well depth: 7	25 Sci	reen length: 15	Laborate	Laboratory:				
Well install date: 11-29-23			COC an	d/or RFA Numb	per:			
Pre-purge SWL: 9,66			Casing	liameter: 2"		-		
Time Sample Collected: 1215			SWL at	sample time:	9.66			
Sample Turbidity: LICHT			Sample	Conductance:	798.2			
Sample Color: -				Sample pH: 7.64				
Sample Temperature: 209				Sample Odor: —				
Field Data	100 C 20	1 Te 4 TO		100.00				
Time (24 HR)	Temp	Cond	pН	Pump Rate or Bail No.	Turbidity	Other		
1133	22,3	7,85,3	7.08		10,2			
1(4)	21,3	791,1	7.51		652.1			
1156	211	797.2	7.62		238.0	_		
1205	21.1	796.3	7.64		100.2			
1215	20.9	798.2	7.64		15.3	1		
			and the second sec					

Sample Collection Method:

The monitor well was purged:

S of stagnant water in the casing and filter by slowly setting a pump or intake tubing within the approximate middle of the screened interval or slightly above the middle until the until the temperature, conductivity and pH stabilized. OR,

□ of stagnant water in the casing and filter by slowly setting a pump or intake tubing at approximately ______ feet above the bottom of the casing until the temperature, conductivity and pH stabilized. OR,

□ by hand bailing until temperature, conductivity and pH stabilized.

Samples were collected:

By setting a pump, or tubing attached to a pump, within the approximate middle of the screened interval until the temperature, conductivity and pH stabilized.

□ by setting a pump, or tubing attached to a pump, at approximately _____ feet above the bottom of the casing until the temperature, conductivity and pH stabilized.

□ with disposable bailers until the temperature, conductivity and pH stabilized.

Sample Shipment:

Water samples were placed in appropriate containers suitable for analyses requested. As necessary, the containers were prepared by the lab. The containers were filled to prevent air-entrapment, sealed, labeled, and placed in an ice chest at approximately 4°C (e.g. blu-ice) for transport to the laboratory.

Analysis Requested: (per laboratory protocols)

□ NWTPH-HCID; □ NWTPH-Gx; □ NWTPH-Dx; □ NWTPH-Gx/BTEX; □ VOC; □ HVOC;	
□ SemiVOC; □ PAH; □ PCB; □ Pesticides; (□8, □10, □13) Metals; □ TCLP; □ MTBE;	
□ OTHER:	_
SIGNATURE: HANGY MEYER	

Notes: 2-inch, Schedule 40 PVC casing = 0.163 gallons per foot: 6" Hole = 1.469 gallons per foot

0811GeoPro

DAY/DATE: 2-15-23 THURSDAY	SHEET 1 of
PROJECT NAME: PORT OF PASCO LAG	EDN'S PROJECT NO .: E2023/1103
PROJECT LOCATION: POZG/E. ANSWOR	
Weather: IFair Overcast IFog Rain ISnow Temp.: I <0	Wind: Calm ZLight OModerate Strong Wind from: NONE DE DSE SSW WONW Precip.: ZNone Mist Light Moderate Heavy

WELL NO. (or Boring, Location): MW-Z			SAMPL	SAMPLE NUMBER: GUMU-2 BPK-85				
Well depth: 2	Well depth: 25 Screen length: 15			Laboratory:				
Well install date: 11.29.23			COC an	d/or RFA Numb	er:			
Pre-purge SWL: 10,63			Casing	liameter: Z"				
Time Sample Collected: 1300			SWL at	sample time:	10.63			
Sample Turbidity: LIGHT			Sample	Conductance:				
Sample Color:			Sample	Sample pH: 8,02				
Sample Temperature: 19.5			Sample	Sample Odor:				
Field Data								
Time (24 HR)	Temp	Cond	pН	Pump Rate or Bail No.	Turbidity	Other		
1225	22,8	7611	7,53		8,6			
1232	240	752.0	7.89	1	302.2			
1245	19.7	740.1	7.98	1	109.8			
1253	19.5	739.7	8.01		19.3			
13.00	19,5	739.3	5.02		12.1			

Sample Collection Method:

The monitor well was purged:

S of stagnant water in the casing and filter by slowly setting a pump or intake tubing within the approximate middle of the screened interval or slightly above the middle until the until the temperature, conductivity and pH stabilized. OR,

□ of stagnant water in the casing and filter by slowly setting a pump or intake tubing at approximately _____ feet above the bottom of the casing until the temperature, conductivity and pH stabilized. OR,

by hand bailing until temperature, conductivity and pH stabilized.

Samples were collected:

B by setting a pump, or tubing attached to a pump, within the approximate middle of the screened interval until the temperature, conductivity and pH stabilized.

by setting a pump, or tubing attached to a pump, at approximately _____ feet above the bottom of the casing until the temperature, conductivity and pH stabilized.

□ with disposable bailers until the temperature, conductivity and pH stabilized.

Sample Shipment:

Water samples were placed in appropriate containers suitable for analyses requested. As necessary, the containers were prepared by the lab. The containers were filled to prevent air-entrapment, sealed, labeled, and placed in an ice chest at approximately 4°C (e.g. blu-ice) for transport to the laboratory.

Analysis Requested: (per laboratory protocols)

□ NWTPH-HCID; □ NWTPH-Gx; □ NWTPH-Dx; □ NWTPH-Gx/BTEX; □ VOC; □ HVOC;	
□ SemiVOC; □ PAH; □ PCB; □ Pesticides; (□8, □10, □13) Metals; □ TCLP; □ MTBE;	
□ OTHER:	_
SIGNATURE: HXH	

ŧ

PRINT NAME: YANEY MEYER Notes: 2-inch, Schedule 40 PVC casing = 0.163 gallons per foot, 6" Hole = 1.469 gallons per foot

DAY/DATE: 2-15-23 THURSDAY	SHEET 1 of
PROJECT NAME: PORT OF PASCO 440	PROJECT NO .: EZOZ3/1103
PROJECT LOCATION: POZG/E. ANSWER	ан. -
Weather: □Fair ♥Overcast □Fog □Rain □Snow Temp.: □<0	Wind: Calm ALight Conderate Stro Wind from: NONE CE SE SSW WOW NW Precip.: SNone Mist Clight Moderate Cheavy

WELL NO. (or Boring, Location): Mul-3		SAMPLE NUMBER: Cerel M 14-3			
Well depth: 25	Screen length: 15	Laboratory:			
Well install date: 11,29.23		COC and/or RFA Number:			
Pre-purge SWL: 10,39		Casing diameter: 2"			
Time Sample Collected: 1340		SWL at sample time: 10,40			
Sample Turbidity: L	GHT	Sample Conductance: 743.8			
Sample Color: -		Sample pH: 8.48			
Sample Temperature:	18.1	Sample Odor: —			

Triald These

Time (24 HR)	Temp	Cond	pH	Pump Rate or Bail No.	Turbidity	Other
1310	18,1	7621	8.20		6.21	
1318	19.3	751.2	835		303.2	
1326	18:3	244,1	8.41	•	89.9	
1335	1811	740:2	8.46		10,21	
1340	18.1	743.8	8.48		5,89	2

Sample Collection Method:

The monitor well was purged:

S of stagnant water in the casing and filter by slowly setting a pump or intake tubing within the approximate middle of the screened interval or slightly above the middle until the until the temperature, conductivity and pH stabilized. OR,

□ of stagnant water in the casing and filter by slowly setting a pump or intake tubing at approximately _ feet above the bottom of the casing until the temperature, conductivity and pH stabilized. OR,

by hand bailing until temperature, conductivity and pH stabilized.

Samples were collected:

B by setting a pump, or tubing attached to a pump, within the approximate middle of the screened interval until the temperature, conductivity and pH stabilized.

by setting a pump, or tubing attached to a pump, at approximately _____ feet above the bottom of the casing until the temperature, conductivity and pH stabilized.

with disposable bailers until the temperature, conductivity and pH stabilized.

Sample Shipment:

Water samples were placed in appropriate containers suitable for analyses requested. As necessary, the containers were prepared by the lab. The containers were filled to prevent air-entrapment, sealed, labeled, and placed in an ice chest at approximately 4°C (e.g. blu-ice) for transport to the laboratory.

Analysis Requested: (per laboratory protocols)

□ NWTPH-HCID; □ NWTPH-Gx; □ NWTPH-Dx; □ NWTPH-Gx/BTEX; □ VOC; □ HVOC;	
□ SemiVOC; □ PAH; □ PCB; □ Pesticides; (□8, □10, □13) Metals; □ TCLP; □ MTBE;	
□ OTHER:	
SIGNATURE: HANCY MEYER	

Notes: 2-inch, Schedule 40 PVC casing = 0.163 gallons per foot; 6" Hole = 1.469 gallons per to

0811GeoPro

APPENDIX E

Laboratory Analytical Report and Chain of Custody Documentation

December 21, 2023

Yancy Meyer Blue Mountain Environmental, Inc. 90 Baldwin Road Walla Walla, WA 99362

Re: Analytical Data for Project E2023/1103; Port of Pasco Lagoons Laboratory Reference No. 2312-008

Dear Yancy:

Enclosed are the analytical results and associated quality control data for samples submitted on December 1, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: December 21, 2023 Samples Submitted: December 1, 2023 Laboratory Reference: 2312-008 Project: E2023/1103; Port of Pasco Lagoons

Case Narrative

Samples were collected on November 28 and 29, 2023 and received by the laboratory on December 1, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

The percent recovery for Acetone and Dibromomethane is outside the control limits in the Spike Blank. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

The RPD for Dibromomethane is outside the control limits for the Spike Blank/Spike Blank Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Sodium Bisulfate preservation has been proven to increase the frequency of detection and the concentration of Acetone and 2-Butanone due in part to chemical reactions in the sample. If Acetone is a potential site contaminant, Sodium Bisulfate should not be used.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

HYDROCARBON IDENTIFICATION NWTPH-HCID

Matrix: Soil Units: mg/Kg (ppm)

• • • ·		501	.	Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NL-B1-SL-20'					
Laboratory ID:	12-008-01					
Gasoline Range Organics	ND	25	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	61	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil Range Organics	ND	120	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	NL-B1-SO-25'					
Laboratory ID:	12-008-02					
Gasoline Range Organics	ND	23	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	58	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil Range Organics	ND	120	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits		12-4-20	12-4-20	
o-Terphenyl	95	50-150				
0-Terphenyi	90	50-750				
Client ID:	NL-B2-SO-30'					
Laboratory ID:	12-008-03					
Gasoline Range Organics	ND	22	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	54	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil Range Organics	ND	110	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
Client ID:	NL-B3-SL-20'					
Laboratory ID:	12-008-04					
Gasoline Range Organics	ND	23	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	58	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil	Detected	120	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	NL-B3-SO-25'					
Laboratory ID:	12-008-05					
Gasoline Range Organics	ND	25	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	61	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil Range Organics	ND	120	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
· •						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

HYDROCARBON IDENTIFICATION NWTPH-HCID

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	SL-B4-SL-15'				/	1.0.90
Laboratory ID:	12-008-06					
Gasoline Range Organics	ND	24	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	60	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil Range Organics	ND	120	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	SL-B4-SO-25'					
Laboratory ID:	12-008-07					
Gasoline Range Organics	ND	23	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	56	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil Range Organics	ND	110	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	SL-B5-SO-20'					
Laboratory ID:	12-008-08					
Gasoline Range Organics	ND	22	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	56	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil Range Organics	ND	110	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				
Client ID:	SL-B6-SL-15'					
Laboratory ID:	12-008-09					
Gasoline Range Organics	ND	25	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	61	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil Range Organics	ND	120	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits		12 1 20	12 1 20	
o-Terphenyl	99	50-150				
o reiphenyi		00 100				
Client ID:	SL-B6-SO-20'					
Laboratory ID:	12-008-10					
Gasoline Range Organics	ND	22	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	56	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil Range Organics	ND	110	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
, ,						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HYDROCARBON IDENTIFICATION NWTPH-HCID

Matrix: Soil Units: mg/Kg (ppm)

onits. hig/tyg (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SL-B7-SL-15'			•		
Laboratory ID:	12-008-11					
Gasoline Range Organics	ND	26	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	64	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil Range Organics	ND	130	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	SL-B7-SO-20'					
Laboratory ID:	12-008-12					
Gasoline Range Organics	ND	22	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	56	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil Range Organics	ND	110	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	SL-B8-SO-20'					
Laboratory ID:	12-008-13					
Gasoline Range Organics	ND	22	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	54	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil Range Organics	ND	110	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

HYDROCARBON IDENTIFICATION NWTPH-HCID QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1204S2					
Gasoline Range Organics	ND	20	NWTPH-HCID	12-4-23	12-4-23	
Diesel Range Organics	ND	50	NWTPH-HCID	12-4-23	12-4-23	
Lube Oil Range Organics	ND	100	NWTPH-HCID	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				

6

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NL-B1-SL-20'					
Laboratory ID:	12-008-01					
Dichlorodifluoromethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Chloromethane	ND	0.0063	EPA 8260D	12-4-23	12-4-23	
Vinyl Chloride	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Bromomethane	ND	0.0063	EPA 8260D	12-4-23	12-4-23	
Chloroethane	ND	0.0063	EPA 8260D	12-4-23	12-4-23	
Trichlorofluoromethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloroethene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Acetone	0.24	0.063	EPA 8260D	12-4-23	12-4-23	Y
Iodomethane	ND	0.0063	EPA 8260D	12-4-23	12-4-23	
Carbon Disulfide	0.0084	0.0025	EPA 8260D	12-4-23	12-4-23	
Methylene Chloride	ND	0.0063	EPA 8260D	12-4-23	12-4-23	
(trans) 1,2-Dichloroethene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Methyl t-Butyl Ether	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloroethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Vinyl Acetate	ND	0.0063	EPA 8260D	12-4-23	12-4-23	
2,2-Dichloropropane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
(cis) 1,2-Dichloroethene	ND	0.013	EPA 8260D	12-4-23	12-4-23	
2-Butanone	0.034	0.0063	EPA 8260D	12-4-23	12-4-23	Y
Bromochloromethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Chloroform	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Carbon Tetrachloride	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloropropene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Benzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,2-Dichloroethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Trichloroethene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,2-Dichloropropane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Dibromomethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Bromodichloromethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
2-Chloroethyl Vinyl Ether	ND	0.0084	EPA 8260D	12-4-23	12-4-23	
(cis) 1,3-Dichloropropene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Methyl Isobutyl Ketone	ND	0.0063	EPA 8260D	12-4-23	12-4-23	
Toluene	ND	0.0063	EPA 8260D	12-4-23	12-4-23	

VOLATILE ORGANICS EPA 8260D page 2 of 2

• • • •				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NL-B1-SL-20'					
Laboratory ID:	12-008-01					
(trans) 1,3-Dichloropropene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,1,2-Trichloroethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Tetrachloroethene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,3-Dichloropropane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
2-Hexanone	ND	0.0063	EPA 8260D	12-4-23	12-4-23	
Dibromochloromethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,2-Dibromoethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Chlorobenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Ethylbenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
m,p-Xylene	ND	0.0025	EPA 8260D	12-4-23	12-4-23	
o-Xylene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Styrene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Bromoform	ND	0.0063	EPA 8260D	12-4-23	12-4-23	
sopropylbenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Bromobenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
n-Propylbenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
2-Chlorotoluene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
4-Chlorotoluene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,3,5-Trimethylbenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
ert-Butylbenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,2,4-Trimethylbenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
sec-Butylbenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
o-Isopropyltoluene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
n-Butylbenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,2-Dibromo-3-chloropropane	ND	0.0063	EPA 8260D	12-4-23	12-4-23	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Hexachlorobutadiene	ND	0.0063	EPA 8260D	12-4-23	12-4-23	
Naphthalene	0.013	0.0063	EPA 8260D	12-4-23	12-4-23	
1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
, ,	Percent Recovery	Control Limits				
Dibromofluoromethane	101	75-130				
Toluene-d8	96	78-128				
4-Bromofluorobenzene	90 101	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NL-B3-SL-20'					
Laboratory ID:	12-008-04					
Dichlorodifluoromethane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Chloromethane	ND	0.0049	EPA 8260D	12-4-23	12-4-23	
Vinyl Chloride	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Bromomethane	ND	0.0049	EPA 8260D	12-4-23	12-4-23	
Chloroethane	ND	0.0049	EPA 8260D	12-4-23	12-4-23	
Trichlorofluoromethane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloroethene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Acetone	ND	0.049	EPA 8260D	12-4-23	12-4-23	
lodomethane	ND	0.0049	EPA 8260D	12-4-23	12-4-23	
Carbon Disulfide	ND	0.0020	EPA 8260D	12-4-23	12-4-23	
Methylene Chloride	ND	0.0049	EPA 8260D	12-4-23	12-4-23	
(trans) 1,2-Dichloroethene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Methyl t-Butyl Ether	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloroethane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
√inyl Acetate	ND	0.0049	EPA 8260D	12-4-23	12-4-23	
2,2-Dichloropropane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
(cis) 1,2-Dichloroethene	ND	0.0098	EPA 8260D	12-4-23	12-4-23	
2-Butanone	ND	0.0049	EPA 8260D	12-4-23	12-4-23	
Bromochloromethane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Chloroform	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,1,1-Trichloroethane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Carbon Tetrachloride	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloropropene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Benzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,2-Dichloroethane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Trichloroethene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,2-Dichloropropane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Dibromomethane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Bromodichloromethane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
2-Chloroethyl Vinyl Ether	ND	0.0065	EPA 8260D	12-4-23	12-4-23	
(cis) 1,3-Dichloropropene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Methyl Isobutyl Ketone	ND	0.0049	EPA 8260D	12-4-23	12-4-23	
Toluene	ND	0.0049	EPA 8260D	12-4-23	12-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NL-B3-SL-20'					
Laboratory ID:	12-008-04					
(trans) 1,3-Dichloropropene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,1,2-Trichloroethane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Tetrachloroethene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,3-Dichloropropane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
2-Hexanone	ND	0.0049	EPA 8260D	12-4-23	12-4-23	
Dibromochloromethane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,2-Dibromoethane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Chlorobenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,1,1,2-Tetrachloroethane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Ethylbenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
m,p-Xylene	ND	0.0020	EPA 8260D	12-4-23	12-4-23	
o-Xylene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Styrene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Bromoform	ND	0.0049	EPA 8260D	12-4-23	12-4-23	
Isopropylbenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Bromobenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,1,2,2-Tetrachloroethane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,2,3-Trichloropropane	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
n-Propylbenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
2-Chlorotoluene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
4-Chlorotoluene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,3,5-Trimethylbenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
tert-Butylbenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,2,4-Trimethylbenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
sec-Butylbenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,3-Dichlorobenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
p-Isopropyltoluene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,4-Dichlorobenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,2-Dichlorobenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
n-Butylbenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
1,2-Dibromo-3-chloropropane	ND	0.0049	EPA 8260D	12-4-23	12-4-23	
1,2,4-Trichlorobenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
Hexachlorobutadiene	ND	0.0049	EPA 8260D	12-4-23	12-4-23	
Naphthalene	ND	0.0049	EPA 8260D	12-4-23	12-4-23	
1,2,3-Trichlorobenzene	ND	0.00098	EPA 8260D	12-4-23	12-4-23	
	Percent Recovery	Control Limits		-	-	
Dibromofluoromethane	97	75-130				
Toluene-d8	100	78-128				
4-Bromofluorobenzene	97	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

10

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SL-B4-SL-15'					
Laboratory ID:	12-008-06					
Dichlorodifluoromethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Chloromethane	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Vinyl Chloride	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Bromomethane	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Chloroethane	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Trichlorofluoromethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloroethene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Acetone	ND	0.050	EPA 8260D	12-4-23	12-4-23	
odomethane	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Carbon Disulfide	0.0032	0.0020	EPA 8260D	12-4-23	12-4-23	
Methylene Chloride	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
I,1-Dichloroethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
/inyl Acetate	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
2,2-Dichloropropane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
cis) 1,2-Dichloroethene	ND	0.010	EPA 8260D	12-4-23	12-4-23	
2-Butanone	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Bromochloromethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Chloroform	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
I,1,1-Trichloroethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Carbon Tetrachloride	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloropropene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Benzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
,2-Dichloroethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Frichloroethene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,2-Dichloropropane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Dibromomethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Bromodichloromethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
2-Chloroethyl Vinyl Ether	ND	0.0067	EPA 8260D	12-4-23	12-4-23	
cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Foluene	ND	0.0050	EPA 8260D	12-4-23	12-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SL-B4-SL-15'					
Laboratory ID:	12-008-06					
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,1,2-Trichloroethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Tetrachloroethene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,3-Dichloropropane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
2-Hexanone	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Dibromochloromethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Chlorobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Ethylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
m,p-Xylene	ND	0.0020	EPA 8260D	12-4-23	12-4-23	
o-Xylene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Styrene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Bromoform	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
sopropylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Bromobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
n-Propylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
2-Chlorotoluene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
4-Chlorotoluene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
ert-Butylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
sec-Butylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
o-Isopropyltoluene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
n-Butylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Hexachlorobutadiene	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Naphthalene	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	75-130				
Toluene-d8	97	78-128				
	102	10 120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

12

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SL-B6-SL-15'					
Laboratory ID:	12-008-09					
Dichlorodifluoromethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Chloromethane	ND	0.0065	EPA 8260D	12-4-23	12-4-23	
Vinyl Chloride	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Bromomethane	ND	0.0065	EPA 8260D	12-4-23	12-4-23	
Chloroethane	ND	0.0065	EPA 8260D	12-4-23	12-4-23	
Trichlorofluoromethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloroethene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Acetone	ND	0.065	EPA 8260D	12-4-23	12-4-23	
lodomethane	ND	0.0065	EPA 8260D	12-4-23	12-4-23	
Carbon Disulfide	0.0040	0.0026	EPA 8260D	12-4-23	12-4-23	
Vethylene Chloride	ND	0.0065	EPA 8260D	12-4-23	12-4-23	
trans) 1,2-Dichloroethene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Methyl t-Butyl Ether	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloroethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
/inyl Acetate	ND	0.0065	EPA 8260D	12-4-23	12-4-23	
2,2-Dichloropropane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
cis) 1,2-Dichloroethene	ND	0.013	EPA 8260D	12-4-23	12-4-23	
2-Butanone	ND	0.0065	EPA 8260D	12-4-23	12-4-23	
Bromochloromethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Chloroform	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Carbon Tetrachloride	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloropropene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Benzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,2-Dichloroethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Frichloroethene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,2-Dichloropropane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Dibromomethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Bromodichloromethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
2-Chloroethyl Vinyl Ether	ND	0.0087	EPA 8260D	12-4-23	12-4-23	
cis) 1,3-Dichloropropene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Methyl Isobutyl Ketone	ND	0.0065	EPA 8260D	12-4-23	12-4-23	
Foluene	ND	0.0065	EPA 8260D	12-4-23	12-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

13

VOLATILE ORGANICS EPA 8260D page 2 of 2

Analyte Result PQL Method Prepared Analyzed I Client ID: SL-B6-SL-15' 12-08-09 12-423 124-23 124-23 (trans) 1,3-Dichloropropene ND 0.0013 EPA 8260D 12-4-23 124-23 1,1,2-Trichloroethane ND 0.0013 EPA 8260D 12-4-23 124-23 1,3-Dichloropropane ND 0.0013 EPA 8260D 12-4-23 124-23 2-Hexanone ND 0.0013 EPA 8260D 12-4-23 124-23 1,2-Dibromoethane ND 0.0013 EPA 8260D 12-4-23 124-23 1,1,12-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 124-23 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 124-23 Ethylbenzene ND 0.0013 EPA 8260D 12-4-23 124-23 Ethylbenzene ND 0.0013 EPA 8260D 12-4-23 124-23 Ethylbenzene ND 0.0013 EPA 8260D<					Date	Date	
Laboratory ID: 12-008-09 (trans) 1,3-Dichloropropene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1,2-Trichloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 2-Hexanone ND 0.0013 EPA 8260D 12-4-23 12-4-23 Dibromochloromethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dibromocethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 Chlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Ethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Ethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Isprophylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Isprophylbenze	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Itrans) 1,3-Dichloropropene ND 0.0013 EPA 8260D 12-4-23 124-23 1,1,2-Trichloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 Tetrachloroethene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 2-Hexanone ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dibromoethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 cXylene ND 0.0013 EPA 8260D 12-4-23 12-4-23 sprophylenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 lsprophylbenzene ND 0.0013 E	Client ID:	SL-B6-SL-15'					
1,1,2-Trichloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 Tetrachloroethene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 2-Hexanone ND 0.0013 EPA 8260D 12-4-23 12-4-23 Dibromochloromethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1.2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1.1,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 Ethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Ethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Styrene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Styrene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Isorooprijbenzene ND 0.0013 EPA 8260D 12-4-2							
Tetrachloroethene ND 0.0013 EPA 8260D 12-4-23 124-23 1,3-Dichloropropane ND 0.0013 EPA 8260D 12-4-23 124-23 2-Hexanone ND 0.0013 EPA 8260D 12-4-23 124-23 12-Dibromochloromethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1-Dibromoethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 Chiorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Ethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 o-Xylene ND 0.0026 EPA 8260D 12-4-23 12-4-23 Styrene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromoform ND 0.0013 EPA 8260D 12-4-23 12-4-23 Isopropylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Isopropylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23	(trans) 1,3-Dichloropropene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,3-Dichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 2-Hexanone ND 0.0005 EPA 8260D 12-4-23 12-4-23 Dibromochloromethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 Chlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Chlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Chlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Ethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 o-Xylene ND 0.0013 EPA 8260D 12-4-23 12-4-23 o-Xylene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Styrene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromoform ND 0.0013 EPA 8260D 12-4-23 12-4-23 Isopropylenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichloropethane ND 0.0013 EPA 8260D 12-4-23	1,1,2-Trichloroethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
2-Hexanone ND 0.0065 EPA 8260D 12-4-23 12-4-23 Dibromochloromethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dibromoethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 Chlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Ethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 extylene ND 0.0013 EPA 8260D 12-4-23 12-4-23 o-Xylene ND 0.0013 EPA 8260D 12-4-23 12-4-23 syrene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromoform ND 0.0013 EPA 8260D 12-4-23 12-4-23 Isopropylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Isopropylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23	Tetrachloroethene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Dibromochloromethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dibromoethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 Chlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Ethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 m,p-Xylene ND 0.0013 EPA 8260D 12-4-23 12-4-23 o-Xylene ND 0.0013 EPA 8260D 12-4-23 12-4-23 o-Xylene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromoform ND 0.0013 EPA 8260D 12-4-23 12-4-23 Isopropylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Isopropylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 I_2,3-Trichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1_2,3-Trinethylbenzene ND 0.0013 EPA 8260D 12-4-23 <t< td=""><td>1,3-Dichloropropane</td><td>ND</td><td>0.0013</td><td>EPA 8260D</td><td>12-4-23</td><td>12-4-23</td><td></td></t<>	1,3-Dichloropropane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,2-Dibromoethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 Chlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 I,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 Ethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 o-Xylene ND 0.0013 EPA 8260D 12-4-23 12-4-23 o-Xylene ND 0.0013 EPA 8260D 12-4-23 12-4-23 sopropylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Isopropylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromoberzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trinkloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Chlorotoluene ND 0.0013	2-Hexanone	ND	0.0065	EPA 8260D	12-4-23	12-4-23	
Chlorobenzene ND 0.0013 EPA 8260D 12.4-23 12.4-23 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260D 12.4-23 12.4-23 Ethylbenzene ND 0.0013 EPA 8260D 12.4-23 12.4-23 m,p-Xylene ND 0.0013 EPA 8260D 12.4-23 12.4-23 oxJylene ND 0.0013 EPA 8260D 12.4-23 12.4-23 Styrene ND 0.0013 EPA 8260D 12.4-23 12.4-23 Bromoform ND 0.0013 EPA 8260D 12.4-23 12.4-23 Isopropylbenzene ND 0.0013 EPA 8260D 12.4-23 12.4-23 Isopropylbenzene ND 0.0013 EPA 8260D 12.4-23 12.4-23 1,2,2-Tetrachloroethane ND 0.0013 EPA 8260D 12.4-23 12.4-23 1,2,3-Trichloropropane ND 0.0013 EPA 8260D 12.4-23 12.4-23 1,2,4-Trimethylbenzene ND 0.0013 EPA 8260D 12.4-23	Dibromochloromethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260D 12.4-23 12.4-23 Ethylbenzene ND 0.0013 EPA 8260D 12.4-23 12.4-23 m,p-Xylene ND 0.0013 EPA 8260D 12.4-23 12.4-23 o-Xylene ND 0.0013 EPA 8260D 12.4-23 12.4-23 Bromoform ND 0.0013 EPA 8260D 12.4-23 12.4-23 Isopropylbenzene ND 0.0013 EPA 8260D 12.4-23 12.4-23 Bromobenzene ND 0.0013 EPA 8260D 12.4-23 12.4-23 1,1,2,2-Tetrachloroethane ND 0.0013 EPA 8260D 12.4-23 12.4-23 1,2,3-Trichloropopane ND 0.0013 EPA 8260D 12.4-23 12.4-23 2-Chlorotoluene ND 0.0013 EPA 8260D 12.4-23 12.4-23 1,3.5-Trimethylbenzene ND 0.0013 EPA 8260D 12.4-23 12.4-23 1,2.4-Timethylbenzene ND 0.0013 EPA 8260D 12.4-23 12.4-23 1,2.4-Timethylbenzene ND 0.0013	1,2-Dibromoethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Ethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 m,p-Xylene ND 0.0026 EPA 8260D 12-4-23 12-4-23 o-Xylene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Styrene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromoform ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1,2,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 2-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-5-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-5-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23	Chlorobenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
m.pXylene ND 0.0026 EPA 8260D 12-4-23 12-4-23 o-Xylene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Styrene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromoform ND 0.0013 EPA 8260D 12-4-23 12-4-23 Isopropylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1,2,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 2-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 2-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-5-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-5-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23	1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
o-Xylene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Styrene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromoform ND 0.0065 EPA 8260D 12-4-23 12-4-23 Isopropylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1,2,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 2-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-5-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23	Ethylbenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Styrene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromoform ND 0.0065 EPA 8260D 12-4-23 12-4-23 Isopropylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1,2,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichloroppane ND 0.0013 EPA 8260D 12-4-23 12-4-23 2-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 4-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3,5-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3,4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D	m,p-Xylene	ND	0.0026	EPA 8260D	12-4-23	12-4-23	
BromoformND0.0065EPA 8260D12-4-2312-4-23IsopropylbenzeneND0.0013EPA 8260D12-4-2312-4-23BromobenzeneND0.0013EPA 8260D12-4-2312-4-231,2,2-TetrachloroethaneND0.0013EPA 8260D12-4-2312-4-231,2,3-TrichloropropaneND0.0013EPA 8260D12-4-2312-4-232-ChlorotolueneND0.0013EPA 8260D12-4-2312-4-232-ChlorotolueneND0.0013EPA 8260D12-4-2312-4-234-ChlorotolueneND0.0013EPA 8260D12-4-2312-4-231,3,5-TrimethylbenzeneND0.0013EPA 8260D12-4-2312-4-231,2,4-TrimethylbenzeneND0.0013EPA 8260D12-4-2312-4-231,2,4-TrimethylbenzeneND0.0013EPA 8260D12-4-2312-4-231,3-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,3-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,4-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-Dichloro	o-Xylene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Isopropylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Bromobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1,2,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 2-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 4-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-5-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013	Styrene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
Bromobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,1,2,2-Tetrachloroethane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 2-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 4-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3,5-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dichorobenzene ND 0.0013	Bromoform	ND	0.0065	EPA 8260D	12-4-23	12-4-23	
1,1,2,2-TetrachloroethaneND0.0013EPA 8260D12-4-2312-4-231,2,3-TrichloropropaneND0.0013EPA 8260D12-4-2312-4-23n-PropylbenzeneND0.0013EPA 8260D12-4-2312-4-232-ChlorotolueneND0.0013EPA 8260D12-4-2312-4-234-ChlorotolueneND0.0013EPA 8260D12-4-2312-4-231,3,5-TrimethylbenzeneND0.0013EPA 8260D12-4-2312-4-231,2,4-TrimethylbenzeneND0.0013EPA 8260D12-4-2312-4-231,2,4-TrimethylbenzeneND0.0013EPA 8260D12-4-2312-4-231,3-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,3-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,4-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-Dibromo-3-chloropropaneND0.0013EPA 8260D12-4-2312-4-231,2,4-TrichlorobenzeneND0.0065EPA 8260D12-4-2312-4-231,2,4-TrichlorobenzeneND0.0065EPA 8260D12-4-2312-4-231,2,4-TrichlorobenzeneND0.0065EPA 8260D12-4-2312-4-231,2,4-TrichlorobenzeneND0.0065EPA 8260D12-4-23 <td>Isopropylbenzene</td> <td>ND</td> <td>0.0013</td> <td>EPA 8260D</td> <td>12-4-23</td> <td>12-4-23</td> <td></td>	Isopropylbenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,2,3-Trichloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 n-Propylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 2-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 4-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3,5-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,4-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dibromo-3-chloropropane	Bromobenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
n-Propylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 2-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 4-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3,5-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 tert-Butylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,4-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Diblromo-3-chloropropane ND 0.0013 <td>1,1,2,2-Tetrachloroethane</td> <td>ND</td> <td>0.0013</td> <td>EPA 8260D</td> <td>12-4-23</td> <td>12-4-23</td> <td></td>	1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
2-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 4-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3,5-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3,5-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,4-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dibloromo-3-chloropropane ND <td< td=""><td>1,2,3-Trichloropropane</td><td>ND</td><td>0.0013</td><td>EPA 8260D</td><td>12-4-23</td><td>12-4-23</td><td></td></td<>	1,2,3-Trichloropropane	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
4-Chlorotoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3,5-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 tert-Butylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trimethylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 sec-Butylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,4-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dibromo-3-chloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trichlorobenzene	n-Propylbenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,3,5-TrimethylbenzeneND0.0013EPA 8260D12-4-2312-4-23tert-ButylbenzeneND0.0013EPA 8260D12-4-2312-4-231,2,4-TrimethylbenzeneND0.0013EPA 8260D12-4-2312-4-23sec-ButylbenzeneND0.0013EPA 8260D12-4-2312-4-231,3-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,3-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,4-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-Dibromo-3-chloropropaneND0.0065EPA 8260D12-4-2312-4-231,2,4-TrichlorobenzeneND0.0065EPA 8260D12-4-2312-4-231,2,3-TrichlorobenzeneND0.0065EPA 8260D12-4-2312-4-23NaphthaleneND0.0013EPA 8260D12-4-2312-4-231,2,3-TrichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2,3-TrichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2,3-TrichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2,3-TrichlorobenzeneND0.0013EPA 8260D12-4-2312		ND	0.0013	EPA 8260D	12-4-23	12-4-23	
tert-ButylbenzeneND0.0013EPA 8260D12-4-2312-4-231,2,4-TrimethylbenzeneND0.0013EPA 8260D12-4-2312-4-23sec-ButylbenzeneND0.0013EPA 8260D12-4-2312-4-231,3-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-23p-IsopropyltolueneND0.0013EPA 8260D12-4-2312-4-231,4-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-Dibromo-3-chloropropaneND0.0065EPA 8260D12-4-2312-4-231,2,4-TrichlorobenzeneND0.0065EPA 8260D12-4-2312-4-23HexachlorobutadieneND0.0065EPA 8260D12-4-2312-4-23NaphthaleneND0.0065EPA 8260D12-4-2312-4-231,2,3-TrichlorobenzeneND0.0013EPA 8260D12-4-2312-4-23Surrogate:Percent RecoveryControl Limits	4-Chlorotoluene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
tert-ButylbenzeneND0.0013EPA 8260D12-4-2312-4-231,2,4-TrimethylbenzeneND0.0013EPA 8260D12-4-2312-4-23sec-ButylbenzeneND0.0013EPA 8260D12-4-2312-4-231,3-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-23p-IsopropyltolueneND0.0013EPA 8260D12-4-2312-4-231,4-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-Dibrono-3-chloropropaneND0.0065EPA 8260D12-4-2312-4-231,2,4-TrichlorobenzeneND0.0065EPA 8260D12-4-2312-4-23HexachlorobutadieneND0.0065EPA 8260D12-4-2312-4-23NaphthaleneND0.0065EPA 8260D12-4-2312-4-231,2,3-TrichlorobenzeneND0.0013EPA 8260D12-4-2312-4-23Surrogate:Percent RecoveryControl Limits	1,3,5-Trimethylbenzene	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,2,4-TrimethylbenzeneND0.0013EPA 8260D12-4-2312-4-23sec-ButylbenzeneND0.0013EPA 8260D12-4-2312-4-231,3-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-23p-IsopropyltolueneND0.0013EPA 8260D12-4-2312-4-231,4-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-DichlorobenzeneND0.0013EPA 8260D12-4-2312-4-231,2-Dibromo-3-chloropropaneND0.0065EPA 8260D12-4-2312-4-231,2,4-TrichlorobenzeneND0.0065EPA 8260D12-4-2312-4-23HexachlorobutadieneND0.0065EPA 8260D12-4-2312-4-23NaphthaleneND0.0013EPA 8260D12-4-2312-4-231,2,3-TrichlorobenzeneND0.0013EPA 8260D12-4-2312-4-23Surrogate:Percent RecoveryControl Limits		ND	0.0013	EPA 8260D	12-4-23	12-4-23	
sec-Butylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 p-lsopropyltoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,4-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 n-Butylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dibromo-3-chloropropane ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trichlorobenzene ND 0.0065 EPA 8260D 12-4-23 12-4-23 Hexachlorobutadiene ND 0.0065 EPA 8260D 12-4-23 12-4-23 Naphthalene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichlorobenzene ND 0.0013 <t< td=""><td></td><td>ND</td><td>0.0013</td><td>EPA 8260D</td><td>12-4-23</td><td>12-4-23</td><td></td></t<>		ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,3-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 p-Isopropyltoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,4-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 n-Butylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dibromo-3-chloropropane ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,4-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trichlorobenzene ND 0.0065 EPA 8260D 12-4-23 12-4-23 Hexachlorobutadiene ND 0.0065 EPA 8260D 12-4-23 12-4-23 Naphthalene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Surrogate: Percen	-	ND	0.0013	EPA 8260D	12-4-23	12-4-23	
p-Isopropyltoluene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,4-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 n-Butylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dibromo-3-chloropropane ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,4-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trichlorobenzene ND 0.0065 EPA 8260D 12-4-23 12-4-23 Hexachlorobutadiene ND 0.0065 EPA 8260D 12-4-23 12-4-23 Naphthalene ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Surrogate: Percent Recovery Control Limits Surrogate Surrogate Surrogate Surrogate Surrog		ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,4-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 n-Butylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dibromo-3-chloropropane ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,4-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Hexachlorobutadiene ND 0.0065 EPA 8260D 12-4-23 12-4-23 Naphthalene ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Surrogate: Percent Recovery Control Limits 12-4-23 12-4-23		ND	0.0013	EPA 8260D	12-4-23	12-4-23	
1,2-Dichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 n-Butylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dibromo-3-chloropropane ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,4-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2,4-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Hexachlorobutadiene ND 0.0065 EPA 8260D 12-4-23 12-4-23 Naphthalene ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 <i>Surrogate:</i> Percent Recovery Control Limits V V V V		ND	0.0013	EPA 8260D	12-4-23	12-4-23	
n-Butylbenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 1,2-Dibromo-3-chloropropane ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,4-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Hexachlorobutadiene ND 0.0065 EPA 8260D 12-4-23 12-4-23 Naphthalene ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Surrogate: Percent Recovery Control Limits VE VE VE		ND			12-4-23		
1,2-Dibromo-3-chloropropane ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,4-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Hexachlorobutadiene ND 0.0065 EPA 8260D 12-4-23 12-4-23 Naphthalene ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Surrogate: Percent Recovery Control Limits Vertex Vertex Vertex					12-4-23		
1,2,4-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Hexachlorobutadiene ND 0.0065 EPA 8260D 12-4-23 12-4-23 Naphthalene ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Surrogate: Percent Recovery Control Limits V V V	-						
Hexachlorobutadiene ND 0.0065 EPA 8260D 12-4-23 12-4-23 Naphthalene ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Surrogate: Percent Recovery Control Limits V V V							
Naphthalene ND 0.0065 EPA 8260D 12-4-23 12-4-23 1,2,3-Trichlorobenzene ND 0.0013 EPA 8260D 12-4-23 12-4-23 Surrogate: Percent Recovery Control Limits V V V							
1,2,3-TrichlorobenzeneND0.0013EPA 8260D12-4-2312-4-23Surrogate:Percent RecoveryControl Limits							
Surrogate: Percent Recovery Control Limits							
•							
		-					
Toluene-d8 98 78-128							
4-Bromofluorobenzene 105 71-130							

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

14

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SL-B7-SL-15'					
Laboratory ID:	12-008-11					
Dichlorodifluoromethane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Chloromethane	ND	0.0055	EPA 8260D	12-4-23	12-4-23	
Vinyl Chloride	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Bromomethane	ND	0.0055	EPA 8260D	12-4-23	12-4-23	
Chloroethane	ND	0.0055	EPA 8260D	12-4-23	12-4-23	
Trichlorofluoromethane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloroethene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Acetone	ND	0.055	EPA 8260D	12-4-23	12-4-23	
lodomethane	ND	0.0055	EPA 8260D	12-4-23	12-4-23	
Carbon Disulfide	0.0033	0.0022	EPA 8260D	12-4-23	12-4-23	
Methylene Chloride	ND	0.0055	EPA 8260D	12-4-23	12-4-23	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Nethyl t-Butyl Ether	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloroethane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
√inyl Acetate	ND	0.0055	EPA 8260D	12-4-23	12-4-23	
2,2-Dichloropropane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
(cis) 1,2-Dichloroethene	ND	0.011	EPA 8260D	12-4-23	12-4-23	
2-Butanone	ND	0.0055	EPA 8260D	12-4-23	12-4-23	
Bromochloromethane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Chloroform	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Carbon Tetrachloride	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloropropene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Benzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,2-Dichloroethane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Trichloroethene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,2-Dichloropropane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Dibromomethane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Bromodichloromethane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
2-Chloroethyl Vinyl Ether	ND	0.0073	EPA 8260D	12-4-23	12-4-23	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Methyl Isobutyl Ketone	ND	0.0055	EPA 8260D	12-4-23	12-4-23	
Toluene	ND	0.0055	EPA 8260D	12-4-23	12-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

15

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SL-B7-SL-15'					
Laboratory ID:	12-008-11					
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,1,2-Trichloroethane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Tetrachloroethene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,3-Dichloropropane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
2-Hexanone	ND	0.0055	EPA 8260D	12-4-23	12-4-23	
Dibromochloromethane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,2-Dibromoethane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Chlorobenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Ethylbenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
m,p-Xylene	ND	0.0022	EPA 8260D	12-4-23	12-4-23	
o-Xylene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Styrene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Bromoform	ND	0.0055	EPA 8260D	12-4-23	12-4-23	
Isopropylbenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Bromobenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
n-Propylbenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
2-Chlorotoluene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
4-Chlorotoluene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
tert-Butylbenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
sec-Butylbenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
p-Isopropyltoluene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
n-Butylbenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
1,2-Dibromo-3-chloropropane	ND	0.0055	EPA 8260D	12-4-23	12-4-23	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Hexachlorobutadiene	ND	0.0055	EPA 8260D	12-4-23	12-4-23	
Naphthalene	ND	0.0055	EPA 8260D	12-4-23	12-4-23	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260D	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	75-130				
Toluene-d8	99	78-128				
4-Bromofluorobenzene	104	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

Units. mg/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1204S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Chloromethane	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Vinyl Chloride	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Bromomethane	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Chloroethane	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Trichlorofluoromethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloroethene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Acetone	ND	0.050	EPA 8260D	12-4-23	12-4-23	
lodomethane	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Carbon Disulfide	ND	0.0020	EPA 8260D	12-4-23	12-4-23	
Methylene Chloride	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloroethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Vinyl Acetate	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
2,2-Dichloropropane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
(cis) 1,2-Dichloroethene	ND	0.010	EPA 8260D	12-4-23	12-4-23	
2-Butanone	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Bromochloromethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Chloroform	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Carbon Tetrachloride	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,1-Dichloropropene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Benzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Trichloroethene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,2-Dichloropropane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Dibromomethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Bromodichloromethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
2-Chloroethyl Vinyl Ether	ND	0.0067	EPA 8260D	12-4-23	12-4-23	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Toluene	ND	0.0050	EPA 8260D	12-4-23	12-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

17
VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1204S1					
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,1,2-Trichloroethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Tetrachloroethene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,3-Dichloropropane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
2-Hexanone	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Dibromochloromethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Chlorobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Ethylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
m,p-Xylene	ND	0.0020	EPA 8260D	12-4-23	12-4-23	
o-Xylene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Styrene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Bromoform	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Isopropylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Bromobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
n-Propylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
2-Chlorotoluene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
4-Chlorotoluene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
tert-Butylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
sec-Butylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
p-Isopropyltoluene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
n-Butylbenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Hexachlorobutadiene	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
Naphthalene	ND	0.0050	EPA 8260D	12-4-23	12-4-23	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260D	12-4-23	12-4-23	
Surrogate:	Percent Recovery	Control Limits		v		
Dibromofluoromethane	97	75-130				
Toluene-d8	98	78-128				
4-Bromofluorobenzene	100	71-130				
+-DI UITIUIIUUI UDEI IZEITE	100	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

18

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

Units: mg/kg					Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike	Level		overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB12	04S1								
	SB	SBD	SB	SBD	SB	SBD				
Dichlorodifluoromethane	0.0610	0.0582	0.0500	0.0500	122	116	30-160	5	26	
Chloromethane	0.0590	0.0542	0.0500	0.0500	118	108	59-131	8	26	
Vinyl Chloride	0.0556	0.0538	0.0500	0.0500	111	108	68-136	3	23	
Bromomethane	0.0486	0.0495	0.0500	0.0500	97	99	48-155	2	32	
Chloroethane	0.0507	0.0523	0.0500	0.0500	101	105	67-141	3	16	
Trichlorofluoromethane	0.0545	0.0539	0.0500	0.0500	109	108	76-127	1	19	
1,1-Dichloroethene	0.0561	0.0564	0.0500	0.0500	112	113	75-129	1	19	
Acetone	0.0813	0.0609	0.0500	0.0500	163	122	49-158	29	37	I
lodomethane	0.0463	0.0453	0.0500	0.0500	93	91	37-140	2	27	
Carbon Disulfide	0.0400	0.0384	0.0500	0.0500	80	77	41-143	4	19	
Methylene Chloride	0.0517	0.0514	0.0500	0.0500	103	103	60-124	1	18	
(trans) 1,2-Dichloroethene	0.0531	0.0541	0.0500	0.0500	106	108	79-133	2	15	
Methyl t-Butyl Ether	0.0551	0.0535	0.0500	0.0500	110	107	73-125	3	17	
1,1-Dichloroethane	0.0527	0.0534	0.0500	0.0500	105	107	79-125	1	17	
Vinyl Acetate	0.0621	0.0566	0.0500	0.0500	124	113	51-145	9	41	
2,2-Dichloropropane	0.0562	0.0566	0.0500	0.0500	112	113	79-126	1	18	
(cis) 1,2-Dichloroethene	0.0577	0.0580	0.0500	0.0500	115	116	75-131	1	15	
2-Butanone	0.0711	0.0574	0.0500	0.0500	142	115	54-145	21	32	
Bromochloromethane	0.0578	0.0578	0.0500	0.0500	116	116	80-126	0	15	
Chloroform	0.0524	0.0524	0.0500	0.0500	105	105	80-123	0	15	
1,1,1-Trichloroethane	0.0509	0.0515	0.0500	0.0500	102	103	78-124	1	21	
Carbon Tetrachloride	0.0505	0.0509	0.0500	0.0500	101	102	74-127	1	18	
1,1-Dichloropropene	0.0517	0.0500	0.0500	0.0500	103	100	80-123	3	15	
Benzene	0.0513	0.0506	0.0500	0.0500	103	101	80-122	1	18	
1,2-Dichloroethane	0.0550	0.0516	0.0500	0.0500	110	103	75-124	6	15	
Trichloroethene	0.0515	0.0516	0.0500	0.0500	103	103	80-129	0	18	
1,2-Dichloropropane	0.0556	0.0552	0.0500	0.0500	111	110	80-123	1	15	
Dibromomethane	0.0742	0.0442	0.0500	0.0500	148	88	80-123	51	15	I,L
Bromodichloromethane	0.0563	0.0570	0.0500	0.0500	113	114	80-129	1	15	
(cis) 1,3-Dichloropropene	0.0499	0.0487	0.0500	0.0500	100	97	80-130	2	15	
Methyl Isobutyl Ketone	0.0677	0.0567	0.0500	0.0500	135	113	63-137	18	27	
Toluene	0.0505	0.0519	0.0500	0.0500	101	104	80-120	3	18	
(trans) 1,3-Dichloropropene	0.0469	0.0453	0.0500	0.0500	94	91	80-124	3	15	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS									
Laboratory ID:	SB12	04S1							
	SB	SBD	SB SBD	SB	SBD				
1,1,2-Trichloroethane	0.0506	0.0479	0.0500 0.0500	101	96	80-120	5	15	
Tetrachloroethene	0.0510	0.0516	0.0500 0.0500	102	103	77-126	1	15	
1,3-Dichloropropane	0.0563	0.0527	0.0500 0.0500	113	105	77-123	7	15	
2-Hexanone	0.0638	0.0491	0.0500 0.0500	128	98	53-137	26	29	
Dibromochloromethane	0.0486	0.0461	0.0500 0.0500	97	92	80-128	5	16	
1,2-Dibromoethane	0.0571	0.0522	0.0500 0.0500	114	104	80-122	9	20	
Chlorobenzene	0.0498	0.0509	0.0500 0.0500	100	102	80-120	2	18	
1,1,1,2-Tetrachloroethane	0.0537	0.0534	0.0500 0.0500	107	107	80-120	1	15	
Ethylbenzene	0.0459	0.0463	0.0500 0.0500	92	93	80-120	1	15	
m,p-Xylene	0.0973	0.0977	0.100 0.100	97	98	80-120	0	15	
o-Xylene	0.0456	0.0460	0.0500 0.0500	91	92	80-120	1	15	
Styrene	0.0525	0.0529	0.0500 0.0500	105	106	80-122	1	15	
Bromoform	0.0533	0.0491	0.0500 0.0500	107	98	78-126	8	15	
Isopropylbenzene	0.0507	0.0502	0.0500 0.0500	101	100	80-125	1	15	
Bromobenzene	0.0490	0.0477	0.0500 0.0500	98	95	79-124	3	15	
1,1,2,2-Tetrachloroethane	0.0566	0.0512	0.0500 0.0500	113	102	75-122	10	17	
1,2,3-Trichloropropane	0.0536	0.0486	0.0500 0.0500	107	97	72-125	10	20	
n-Propylbenzene	0.0484	0.0485	0.0500 0.0500	97	97	77-126	0	16	
2-Chlorotoluene	0.0490	0.0489	0.0500 0.0500	98	98	75-128	0	15	
4-Chlorotoluene	0.0469	0.0477	0.0500 0.0500	94	95	78-127	2	16	
1,3,5-Trimethylbenzene	0.0484	0.0483	0.0500 0.0500	97	97	77-128	0	15	
tert-Butylbenzene	0.0460	0.0474	0.0500 0.0500	92	95	73-130	3	20	
1,2,4-Trimethylbenzene	0.0476	0.0476	0.0500 0.0500	95	95	77-125	0	16	
sec-Butylbenzene	0.0460	0.0483	0.0500 0.0500	92	97	75-130	5	17	
1,3-Dichlorobenzene	0.0486	0.0505	0.0500 0.0500	97	101	78-123	4	17	
p-Isopropyltoluene	0.0480	0.0497	0.0500 0.0500	96	99	75-130	3	18	
1,4-Dichlorobenzene	0.0481	0.0494	0.0500 0.0500	96	99	77-121	3	17	
1,2-Dichlorobenzene	0.0502	0.0503	0.0500 0.0500	100	101	80-120	0	15	
n-Butylbenzene	0.0503	0.0514	0.0500 0.0500	101	103	76-131	2	20	
1,2-Dibromo-3-chloropropane		0.0530	0.0500 0.0500	125	106	61-137	16	28	
1,2,4-Trichlorobenzene	0.0500	0.0539	0.0500 0.0500	100	108	77-127	8	17	
Hexachlorobutadiene	0.0487	0.0516	0.0500 0.0500	97	103	77-125	6	22	
Naphthalene	0.0554	0.0532	0.0500 0.0500	111	106	68-129	4	19	
1,2,3-Trichlorobenzene	0.0501	0.0532	0.0500 0.0500	100	106	77-124	6	19	
Surrogate:							-		
Dibromofluoromethane				101	97	75-130			
Toluene-d8				98	98	78-128			
4-Bromofluorobenzene				30 105	102	70-120 71-130			
				100	102	11100			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NL-B1-SO-25'					
Laboratory ID:	12-008-02					
Arsenic	ND	12	EPA 6010D	12-4-23	12-4-23	
Barium	57	2.9	EPA 6010D	12-4-23	12-4-23	
Cadmium	ND	0.58	EPA 6010D	12-4-23	12-4-23	
Chromium	6.4	0.58	EPA 6010D	12-4-23	12-4-23	
Lead	ND	5.8	EPA 6010D	12-4-23	12-4-23	
Mercury	ND	0.29	EPA 7471B	12-4-23	12-4-23	
Selenium	ND	12	EPA 6010D	12-4-23	12-4-23	
Silver	ND	1.2	EPA 6010D	12-4-23	12-4-23	

Client ID:	NL-B2-SO-30'					
Laboratory ID:	12-008-03					
Arsenic	ND	11	EPA 6010D	12-4-23	12-4-23	
Barium	43	2.7	EPA 6010D	12-4-23	12-4-23	
Cadmium	ND	0.54	EPA 6010D	12-4-23	12-4-23	
Chromium	7.3	0.54	EPA 6010D	12-4-23	12-4-23	
Lead	ND	5.4	EPA 6010D	12-4-23	12-4-23	
Mercury	ND	0.27	EPA 7471B	12-4-23	12-4-23	
Selenium	ND	11	EPA 6010D	12-4-23	12-4-23	
Silver	ND	1.1	EPA 6010D	12-4-23	12-4-23	

Client ID:	NL-B3-SO-25'					
Laboratory ID:	12-008-05					
Arsenic	ND	12	EPA 6010D	12-4-23	12-4-23	
Barium	46	3.1	EPA 6010D	12-4-23	12-4-23	
Cadmium	ND	0.61	EPA 6010D	12-4-23	12-4-23	
Chromium	7.4	0.61	EPA 6010D	12-4-23	12-4-23	
Lead	ND	6.1	EPA 6010D	12-4-23	12-4-23	
Mercury	ND	0.31	EPA 7471B	12-4-23	12-4-23	
Selenium	ND	12	EPA 6010D	12-4-23	12-4-23	
Silver	ND	1.2	EPA 6010D	12-4-23	12-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SL-B4-SO-25'					
Laboratory ID:	12-008-07					
Arsenic	ND	11	EPA 6010D	12-4-23	12-4-23	
Barium	39	2.8	EPA 6010D	12-4-23	12-4-23	
Cadmium	ND	0.56	EPA 6010D	12-4-23	12-4-23	
Chromium	3.4	0.56	EPA 6010D	12-4-23	12-4-23	
Lead	ND	5.6	EPA 6010D	12-4-23	12-4-23	
Mercury	ND	0.28	EPA 7471B	12-4-23	12-4-23	
Selenium	ND	11	EPA 6010D	12-4-23	12-4-23	
Silver	ND	1.1	EPA 6010D	12-4-23	12-4-23	

Client ID:	SL-B5-SO-20'					
Laboratory ID:	12-008-08					
Arsenic	ND	11	EPA 6010D	12-4-23	12-4-23	
Barium	34	2.8	EPA 6010D	12-4-23	12-4-23	
Cadmium	ND	0.56	EPA 6010D	12-4-23	12-4-23	
Chromium	2.6	0.56	EPA 6010D	12-4-23	12-4-23	
Lead	ND	5.6	EPA 6010D	12-4-23	12-4-23	
Mercury	ND	0.28	EPA 7471B	12-4-23	12-4-23	
Selenium	ND	11	EPA 6010D	12-4-23	12-4-23	
Silver	ND	1.1	EPA 6010D	12-4-23	12-4-23	

Client ID:	SL-B6-SO-20'					
Laboratory ID:	12-008-10					
Arsenic	ND	11	EPA 6010D	12-4-23	12-4-23	
Barium	43	2.8	EPA 6010D	12-4-23	12-4-23	
Cadmium	ND	0.56	EPA 6010D	12-4-23	12-4-23	
Chromium	16	0.56	EPA 6010D	12-4-23	12-4-23	
Lead	ND	5.6	EPA 6010D	12-4-23	12-4-23	
Mercury	ND	0.28	EPA 7471B	12-4-23	12-4-23	
Selenium	ND	11	EPA 6010D	12-4-23	12-4-23	
Silver	ND	1.1	EPA 6010D	12-4-23	12-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

22

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SL-B7-SO-20'					
Laboratory ID:	12-008-12					
Arsenic	ND	11	EPA 6010D	12-4-23	12-4-23	
Barium	31	2.8	EPA 6010D	12-4-23	12-4-23	
Cadmium	ND	0.56	EPA 6010D	12-4-23	12-4-23	
Chromium	4.0	0.56	EPA 6010D	12-4-23	12-4-23	
Lead	ND	5.6	EPA 6010D	12-4-23	12-4-23	
Mercury	ND	0.28	EPA 7471B	12-4-23	12-4-23	
Selenium	ND	11	EPA 6010D	12-4-23	12-4-23	
Silver	ND	1.1	EPA 6010D	12-4-23	12-4-23	

Client ID:	SL-B8-SO-20'					
Laboratory ID:	12-008-13					
Arsenic	ND	11	EPA 6010D	12-4-23	12-4-23	
Barium	30	2.7	EPA 6010D	12-4-23	12-4-23	
Cadmium	ND	0.54	EPA 6010D	12-4-23	12-4-23	
Chromium	6.9	0.54	EPA 6010D	12-4-23	12-4-23	
Lead	ND	5.4	EPA 6010D	12-4-23	12-4-23	
Mercury	ND	0.27	EPA 7471B	12-4-23	12-4-23	
Selenium	ND	11	EPA 6010D	12-4-23	12-4-23	
Silver	ND	1.1	EPA 6010D	12-4-23	12-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

oo				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1204SM1					
Arsenic	ND	10	EPA 6010D	12-4-23	12-4-23	
Barium	ND	2.5	EPA 6010D	12-4-23	12-4-23	
Cadmium	ND	0.50	EPA 6010D	12-4-23	12-4-23	
Chromium	ND	0.50	EPA 6010D	12-4-23	12-4-23	
Lead	ND	5.0	EPA 6010D	12-4-23	12-4-23	
Selenium	ND	10	EPA 6010D	12-4-23	12-4-23	
Silver	ND	1.0	EPA 6010D	12-4-23	12-4-23	
Laboratory ID:	MB1204S1					
Mercury	ND	0.25	EPA 7471B	12-4-23	12-4-23	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-0	06-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	٨٨	NA	NA	20	
Barium	79.7	75.4	NA	NA		1	٨٨	NA	6	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	31.7	26.9	NA	NA		1	NA	NA	16	20	
Lead	68.4	60.8	NA	NA		1	NA	NA	12	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	12-0	09-11									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
•											
MATRIX SPIKES											
Laboratory ID:	12-0	06-02									
-	MS	MSD	MS	MSD		MS	MSD				
Arsenic	94.3	96.8	100	100	ND	94	97	75-125	3	20	
Barium	157	170	100	100	79.7	78	90	75-125	7	20	
Cadmium	49.1	49.6	50.0	50.0	ND	98	99	75-125	1	20	
Chromium	118	121	100	100	31.7	87	89	75-125	2	20	
Lead	313	315	250	250	68.4	98	99	75-125	1	20	
Selenium	94.8	94.7	100	100	ND	95	95	75-125	0	20	
Silver	23.6	23.8	25.0	25.0	ND	94	95	75-125	1	20	
	12.0	09-11									
Laboratory ID:	12-0										

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	NL-B3-SL-20'					
Laboratory ID:	12-008-04					
Diesel Range Organics	ND	29	NWTPH-Dx	12-6-23	12-6-23	
Lube Oil	140	58	NWTPH-Dx	12-6-23	12-6-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				

Date of Report: December 21, 2023 Samples Submitted: December 1, 2023 Laboratory Reference: 2312-008 Project: E2023/1103; Port of Pasco Lagoons

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB1206S1					
ND	25	NWTPH-Dx	12-6-23	12-6-23	
ND	50	NWTPH-Dx	12-6-23	12-6-23	
Percent Recovery	Control Limits				
81	50-150				
	MB1206S1 ND ND Percent Recovery	MB1206S1 ND 25 ND 50 Percent Recovery Control Limits	MB1206S1ND25ND50NWTPH-DxPercent RecoveryControl Limits	ResultPQLMethodPreparedMB1206S1	Result PQL Method Prepared Analyzed MB1206S1

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-06	64-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N	A	NA	NA	40	
Lube Oil	92.0	ND	NA	NA		N	A	NA	NA	40	
Surrogate:											
o-Terphenyl						76	72	50-150			

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
NL-B1-SL-20'	12-008-01	18	12-4-23
NL-B1-SO-25'	12-008-02	13	12-4-23
NL-B2-SO-30'	12-008-03	8	12-4-23
NL-B3-SL-20'	12-008-04	14	12-4-23
NL-B3-SO-25'	12-008-05	18	12-4-23
SL-B4-SL-15'	12-008-06	16	12-4-23
SL-B4-SO-25'	12-008-07	11	12-4-23
SL-B5-SO-20'	12-008-08	10	12-4-23
SL-B6-SL-15'	12-008-09	19	12-4-23
SL-B6-SO-20'	12-008-10	10	12-4-23
SL-B7-SL-15'	12-008-11	22	12-4-23
SL-B7-SO-20'	12-008-12	10	12-4-23
SL-B8-SO-20'	12-008-13	7	12-4-23

27

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

December 20, 2023

Enthalpy Analytical - El Dorado Hills Work Order No. 2312036

Mr. David Baumeister OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052

Dear Mr. Baumeister,

Enclosed are the results for the sample set received at Enthalpy Analytical - EDH on December 05, 2023 under your Project Name 'E2023/1103 Port of Pasco Lagoons'.

Enthalpy Analytical - EDH is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at kathy.zipp@enthalpy.com.

Thank you for choosing Enthalpy Analytical - EDH as part of your analytical support team.

Sincerely,

Kathy Zipp Project Manager

Enthalpy Analytical - EDH certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Enthalpy Analytical - EDH.

Enthalpy Analytical - EDH Work Order No. 2312036 Case Narrative

Sample Condition on Receipt:

Eight soil samples were received and stored securely in accordance with Enthalpy Analytical - EDH standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements. The samples were received in clear glass jars. Authorization to proceed with the analyses was received by email on December 7, 2023.

Analytical Notes:

EPA Method 1613B

The samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

1,2,3,6,7,8-HxCDF were below 84% in the OPR. The reported sample results for these analytes may be biased low. The recoveries of all other analytes were within the acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	16
Certifications	17
Sample Receipt	18

Sample Inventory Report

Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2312036-01	NL-B1-SO-25'	28-Nov-23 15:15	05-Dec-23 11:52	Clear Glass Jar, 120mL
2312036-02	NL-B2-SO-30'	28-Nov-23 16:05	05-Dec-23 11:52	Clear Glass Jar, 120mL
2312036-03	NL-B3-SO-25'	28-Nov-23 16:50	05-Dec-23 11:52	Clear Glass Jar, 120mL
2312036-04	SL-B4-SO-25'	29-Nov-23 09:10	05-Dec-23 11:52	Clear Glass Jar, 120mL
2312036-05	SL-B5-SO-20'	29-Nov-23 09:55	05-Dec-23 11:52	Clear Glass Jar, 120mL
2312036-06	SL-B6-SO-20'	29-Nov-23 10:40	05-Dec-23 11:52	Clear Glass Jar, 120mL
2312036-07	SL-B7-SO-20'	29-Nov-23 11:10	05-Dec-23 11:52	Clear Glass Jar, 120mL
2312036-08	SL-B8-SO-20'	29-Nov-23 11:50	05-Dec-23 11:52	Clear Glass Jar, 120mL

ANALYTICAL RESULTS

Sample ID: Method Blank

EPA Method 1613B

	ite Environmental Inc. 23/1103 Port of Pasco Lagoons 1	5	Laboratory Da Lab Sample: QC Batch: Sample Size:	ta B23L108-BLK1 B23L108 10.0 g	Date Extracted: Column:	13-Dec-23 ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.105				15-Dec-23 15:55	1
1,2,3,7,8-PeCDD	ND	0.187				15-Dec-23 15:55	1
1,2,3,4,7,8-HxCDD	ND	0.392				15-Dec-23 15:55	
1,2,3,6,7,8-HxCDD	ND	0.447				15-Dec-23 15:55	
1,2,3,7,8,9-HxCDD	ND	0.340				15-Dec-23 15:55	
1,2,3,4,6,7,8-HpCDD	ND	0.461				15-Dec-23 15:55	
OCDD	ND	0.687				15-Dec-23 15:55	
2,3,7,8-TCDF	ND	0.112				15-Dec-23 15:55	
1,2,3,7,8-PeCDF	ND	0.148				15-Dec-23 15:55	
2,3,4,7,8-PeCDF	ND	0.135				15-Dec-23 15:55	
1,2,3,4,7,8-HxCDF	ND	0.191				15-Dec-23 15:55	
1,2,3,6,7,8-HxCDF	ND	0.187				15-Dec-23 15:55	
2,3,4,6,7,8-HxCDF	ND	0.232				15-Dec-23 15:55	
1,2,3,7,8,9-HxCDF	ND	0.281				15-Dec-23 15:55	
1,2,3,4,6,7,8-HpCDF	ND	0.212 0.338				15-Dec-23 15:55	
1,2,3,4,7,8,9-HpCDF OCDF	ND	0.338				15-Dec-23 15:55	
	ND	0.504				15-Dec-23 15:55	1
Toxic Equivalent	. 0.00						
TEQMinWHO2005Dio	kin 0.00						
Totals		0.105					
Total TCDD	ND	0.105					
Total PeCDD	ND	0.187					
Total HxCDD	ND	0.447					
Total HpCDD	ND	0.461					
Total TCDF	ND	0.112					
Total PeCDF	ND	0.148					
Total HxCDF	ND	0.281					
Total HpCDF	ND	0.338					
Labeled Standards	Туре	% Recover	'y	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	116	-	25 - 164		15-Dec-23 15:55	5 1
13C-1,2,3,7,8-PeCDD	IS	97.5		25 - 181		15-Dec-23 15:55	
13C-1,2,3,4,7,8-HxCDD		98.2		32 - 141		15-Dec-23 15:55	
13C-1,2,3,6,7,8-HxCDD		95.3		28 - 130		15-Dec-23 15:55	
13C-1,2,3,7,8,9-HxCDD		120		32 - 141		15-Dec-23 15:55	
13С-1,2,3,4,6,7,8-НрСЕ		90.3				15 Dec-23 15:55	
13C-OCDD	IS IS	89.7		23 - 140		15-Dec-23 15:55	
13C-2,3,7,8-TCDF	IS	101		17 - 157			
				24 - 169		15-Dec-23 15:55	
13C-1,2,3,7,8-PeCDF	IS	90.7		24 - 185		15-Dec-23 15:55	
13C-2,3,4,7,8-PeCDF	IS	89.1		21 - 178		15-Dec-23 15:55	
13C-1,2,3,4,7,8-HxCDF		91.3		26 - 152		15-Dec-23 15:55	
13C-1,2,3,6,7,8-HxCDF		90.8		26 - 123		15-Dec-23 15:55	
13C-2,3,4,6,7,8-HxCDF		89.7		28 - 136		15-Dec-23 15:55	
13C-1,2,3,7,8,9-HxCDF		94.0		29 - 147		15-Dec-23 15:55	5 1
13С-1,2,3,4,6,7,8-НрСЕ	DF IS	88.2		28 - 143		15-Dec-23 15:55	5 1
13С-1,2,3,4,7,8,9-НрСС	DF IS	88.6		26 - 138		15-Dec-23 15:55	5 1
13C-OCDF	IS	78.5		17 - 157		15-Dec-23 15:55	5 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: OPR

EPA Method 1613B

	e Environmental Inc. 3/1103 Port of Pasco Lagoon	S	Laboratory Data Lab Sample: QC Batch: Sample Size:	B23L108-BS1 B23L108 10.0 g	Date Extracted: Column:	13-Dec-23 07:34 ZB-DIOXIN	
Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	16.8	20.0	84.0	67-158		15-Dec-23 12:49	1
1,2,3,7,8-PeCDD	89.3	100	89.3	70-142		15-Dec-23 12:49	1
1,2,3,4,7,8-HxCDD	81.6	100	81.6	70-164		15-Dec-23 12:49	1
1,2,3,6,7,8-HxCDD	84.5	100	84.5	76-134		15-Dec-23 12:49	1
1,2,3,7,8,9-HxCDD	85.1	100	85.1	64-162		15-Dec-23 12:49	1
1,2,3,4,6,7,8-HpCDD	81.7	100	81.7	70-140		15-Dec-23 12:49	1
OCDD	176	200	87.9	78-144		15-Dec-23 12:49	1
2,3,7,8-TCDF	15.2	20.0	76.2	75-158		15-Dec-23 12:49	1
1,2,3,7,8-PeCDF	82.8	100	82.8	80-134		15-Dec-23 12:49	1
2,3,4,7,8-PeCDF	87.4	100	87.4	68-160		15-Dec-23 12:49	
1,2,3,4,7,8-HxCDF	85.8	100	85.8	72-134		15-Dec-23 12:49	1
1,2,3,6,7,8-HxCDF	83.9	100	83.9	84-130	Н	15-Dec-23 12:49	
2,3,4,6,7,8-HxCDF	83.9	100	83.9 85.1	70-156 78-130		15-Dec-23 12:49	
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	85.1 85.1	100	85.1	82-122		15-Dec-23 12:49 15-Dec-23 12:49	1
1,2,3,4,7,8,9-HpCDF	88.5	100 100	88.5	78-138		15-Dec-23 12:49	1
OCDF	171	200	85.5	63-170		15-Dec-23 12:49	1
Labeled Standards	Туре	200	% Recovery	Limits	Qualifiers		¹ Dilution
13C-2,3,7,8-TCDD	IS		108	20-175		15-Dec-23 12:49	1
13C-1,2,3,7,8-PeCDD	IS		92.9	21 - 227		15-Dec-23 12:49	1
13C-1,2,3,4,7,8-HxCDD	IS		101	21-193		15-Dec-23 12:49	1
13C-1,2,3,6,7,8-HxCDD	IS		98.6	25-163		15-Dec-23 12:49	
13C-1,2,3,7,8,9-HxCDD	IS		108	21-193		15-Dec-23 12:49	
13C-1,2,3,4,6,7,8-HpCDI			83.7	26-166		15-Dec-23 12:49	
13C-OCDD	IS		81.0	13-199		15-Dec-23 12:49	
13C-2,3,7,8-TCDF	IS		102	22-152		15-Dec-23 12:49	
13C-1,2,3,7,8-PeCDF	IS		95.6	21 - 192		15-Dec-23 12:49	
13C-2,3,4,7,8-PeCDF	IS		94.5	13 - 328		15-Dec-23 12:49	
13C-1,2,3,4,7,8-HxCDF	IS		94.2	19-202		15-Dec-23 12:49	
13C-1,2,3,6,7,8-HxCDF	IS		91.8	21-159		15-Dec-23 12:49	
13C-2,3,4,6,7,8-HxCDF	IS		92.6	22-176		15-Dec-23 12:49	
13C-1,2,3,7,8,9-HxCDF	IS		90.3	17-205		15-Dec-23 12:49	
13C-1,2,3,4,6,7,8-HpCDI	F IS		76.7	21-158		15-Dec-23 12:49	1
13C-1,2,3,4,7,8,9-HpCDI	F IS		77.1	20-186		15-Dec-23 12:49	1
13C-OCDF	IS		70.4	13 - 199		15-Dec-23 12:49	1
37Cl-2,3,7,8-TCDD	CRS		96.4	31 - 191		15-Dec-23 12:49	1

Sample ID: NL-B1-SO-25'

EPA Method 1613B

Client Data			Laboratory Da	ata			
	InSite Environmental Inc.		Lab Sample:	2312036-01	Date Received:	05-Dec-23 11	1:52
	E2023/1103 Port of Pasco Lag	oons	QC Batch:	B23L108	Date Extracted:	13-Dec-23	
•	oil		Sample Size:	12.3 g	Column:	ZB-DIOXIN	
	8-Nov-23 15:15		% Solids:	85.9		2D DIOMIN	
Analyte	Conc. (pg/g)	EDL	EMPO	0	Qualifiers	Analyzed	Dilutior
2,3,7,8-TCDD	ND	0.119				19-Dec-23 11:45	1
1,2,3,7,8-PeCDD	ND	0.189				19-Dec-23 11:45	1
1,2,3,4,7,8-HxCDD	ND	0.381				19-Dec-23 11:45	1
1,2,3,6,7,8-HxCDD	ND	0.415				19-Dec-23 11:45	1
1,2,3,7,8,9-HxCDD	ND	0.417				19-Dec-23 11:45	1
1,2,3,4,6,7,8-HpCDI		0.409				19-Dec-23 11:45	1
OCDD	1.22				J	19-Dec-23 11:45	1
2,3,7,8-TCDF	ND	0.0973				19-Dec-23 11:45	1
1,2,3,7,8-PeCDF	ND	0.145				19-Dec-23 11:45	1
2,3,4,7,8-PeCDF	ND	0.127				19-Dec-23 11:45	1
1,2,3,4,7,8-HxCDF	ND	0.216				19-Dec-23 11:45	1
1,2,3,6,7,8-HxCDF	ND	0.204				19-Dec-23 11:45	1
2,3,4,6,7,8-HxCDF	ND	0.232				19-Dec-23 11:45	1
1,2,3,7,8,9-HxCDF	ND	0.341 0.262				19-Dec-23 11:45 19-Dec-23 11:45	1
1,2,3,4,6,7,8-HpCDF		0.262				19-Dec-23 11:45	1
1,2,3,4,7,8,9-HpCDF OCDF	ND ND	0.839				19-Dec-23 11:45 19-Dec-23 11:45	1
Toxic Equivalent	ND	0.839				19-Dec-25 11:45	1
TEQMinWHO2005I	Dioxin 0.000366						
Totals	0.000000						
Total TCDD	ND	0.119					
Total PeCDD	ND	0.189					
Total HxCDD	ND	0.417					
Total HpCDD	ND	0.409					
Total TCDF	ND	0.0973					
Total PeCDF	ND	0.145					
Total HxCDF	ND	0.341					
Total HpCDF	ND	0.361					
Labeled Standards	Туре		covery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS			25 - 164	Quanners	19-Dec-23 11:45	
13C-1,2,3,7,8-PeCD		11		25 - 181		19-Dec-23 11:45	
13C-1,2,3,4,7,8-HxC		81		32 - 141		19-Dec-23 11:45	
13C-1,2,3,6,7,8-HxC		78		28 - 130		19-Dec-23 11:45	
13C-1,2,3,7,8,9-HxC		90		32 - 141		19-Dec-23 11:45	
13C-1,2,3,4,6,7,8-Hj		83		23 - 140		19-Dec-23 11:45	
13C-OCDD	IS	66		17 - 157		19-Dec-23 11:45	
13C-2,3,7,8-TCDF	IS IS	96		24 - 169		19-Dec-23 11:45	
13C-1,2,3,7,8-PeCD		86		24 - 185		19-Dec-23 11:45	
13C-2,3,4,7,8-PeCD		86		21 - 178		19-Dec-23 11:45	
13C-1,2,3,4,7,8-HxC		91		26 - 152		19-Dec-23 11:45	
13C-1,2,3,6,7,8-HxC		92		26 - 123		19-Dec-23 11:45	
13C-2,3,4,6,7,8-HxC		93		28 - 136		19-Dec-23 11:45	
13C-1,2,3,7,8,9-HxC		85		29 - 147		19-Dec-23 11:45	
13С-1,2,3,4,6,7,8-Н		86		28 - 143		19-Dec-23 11:45	
13С-1,2,3,4,7,8,9-Н		93		26 - 138		19-Dec-23 11:45	
13C-OCDF	IS	72	.9	17 - 157		19-Dec-23 11:45	
37Cl-2,3,7,8-TCDD	CRS	11		35 - 197		19-Dec-23 11:45	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: NL-B2-SO-30'

EPA Method 1613B

Client Data				Laboratory Da	ita			
Name:	OnSite Enviror	nmental Inc		Lab Sample:	2312036-02	Date Received:	05-Dec-23 11	:52
Project:		ort of Pasco Lagoor	26	QC Batch:	B23L108	Date Extracted:	13-Dec-23	
Matrix:	Soil	on of Fasco Lagoo	115	Sample Size:	11.2 g	Column:		
Date Collected:	28-Nov-23 16:	05		% Solids:	91.8	Column.	ZB-DIOXIN	
Analyte		Conc. (pg/g)	EDL	EMPO	2	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.118				16-Dec-23 14:34	1
1,2,3,7,8-PeCDD		ND	0.195				16-Dec-23 14:34	1
1,2,3,4,7,8-HxCDI	D	ND	0.222				16-Dec-23 14:34	1
1,2,3,6,7,8-HxCDI		ND	0.236				16-Dec-23 14:34	
1,2,3,7,8,9-HxCDI		ND	0.232				16-Dec-23 14:34	1
1,2,3,4,6,7,8-HpCI	DD	0.537				J	16-Dec-23 14:34	
OCDD		5.72					16-Dec-23 14:34	
2,3,7,8-TCDF		ND	0.103				16-Dec-23 14:34	
1,2,3,7,8-PeCDF		ND	0.123				16-Dec-23 14:34	1
2,3,4,7,8-PeCDF	-	ND	0.107				16-Dec-23 14:34	1
1,2,3,4,7,8-HxCDF		ND	0.145				16-Dec-23 14:34	1
1,2,3,6,7,8-HxCDF		ND	0.149				16-Dec-23 14:34	1
2,3,4,6,7,8-HxCDF		ND	0.167				16-Dec-23 14:34	1
1,2,3,7,8,9-HxCDF		ND	0.215				16-Dec-23 14:34	
1,2,3,4,6,7,8-HpCI		ND	0.186				16-Dec-23 14:34	1
1,2,3,4,7,8,9-HpCI	DF	ND	0.242				16-Dec-23 14:34	1
OCDF Toxic Equivalent		ND	0.525				16-Dec-23 14:34	1
TEQMinWHO200	5Diovin	0.00709						
Totals	ISDIOXIII	0.00709						
Total TCDD		ND	0.118					
Total PeCDD		ND	0.195					
Total HxCDD		ND	0.236					
Total HpCDD		1.05	0.230			J		
-			0.103			J		
Total TCDF		ND						
Total PeCDF		ND	0.123					
Total HxCDF		ND	0.215					
Total HpCDF	_	ND	0.242					
Labeled Standard		Туре		covery	Limits	Qualifiers	v	Dilution
13C-2,3,7,8-TCDE		IS	10		25 - 164		16-Dec-23 14:34	
13C-1,2,3,7,8-PeC		IS	92	2.0	25 - 181		16-Dec-23 14:34	
13C-1,2,3,4,7,8-Hz		IS	10)6	32 - 141		16-Dec-23 14:34	
13C-1,2,3,6,7,8-Hz		IS	10)1	28 - 130		16-Dec-23 14:34	1
13С-1,2,3,7,8,9-Нх	xCDD	IS	10)9	32 - 141		16-Dec-23 14:34	1
13C-1,2,3,4,6,7,8-1	HpCDD	IS	84	.4	23 - 140		16-Dec-23 14:34	1
13C-OCDD		IS	72	9	17 - 157		16-Dec-23 14:34	1
13C-2,3,7,8-TCDF	7	IS	10)8	24 - 169		16-Dec-23 14:34	1
13C-1,2,3,7,8-PeC	DF	IS	93	.5	24 - 185		16-Dec-23 14:34	1
13C-2,3,4,7,8-PeC		IS	97		21 - 178		16-Dec-23 14:34	
13С-1,2,3,4,7,8-Нх		IS	98		26 - 152		16-Dec-23 14:34	
13С-1,2,3,6,7,8-Нх		IS		.6	26 - 123		16-Dec-23 14:34	
13С-2,3,4,6,7,8-Нх		IS	93		28 - 136		16-Dec-23 14:34	
13С-1,2,3,7,8,9-Ни		IS	92		29 - 147		16-Dec-23 14:34	
13C-1,2,3,4,6,7,8-1		IS	77		28 - 147		16-Dec-23 14:34	
13C-1,2,3,4,7,8,9-1	-	IS	82		26 - 143		16-Dec-23 14:34	
13C-1,2,3,4,7,8,9-1 13C-OCDF	inpedi	IS	68				16-Dec-23 14:34	
	D	CRS			17 - 157			
37Cl-2,3,7,8-TCD	ע	CV2	90	.0	35 - 197		16-Dec-23 14:34	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Sample ID: NL-B3-SO-25'

EPA Method 1613B

Client Data				Laboratory Da	ta 2312036-03		05 D 22 11	50
Name:	OnSite Enviro			Lab Sample:		Date Received:	05-Dec-23 11	:52
Project:		Port of Pasco Lagoon	ns	QC Batch:	B23L108	Date Extracted:	13-Dec-23	
Matrix: Date Collected:	Soil 28-Nov-23 16	5:50		Sample Size: % Solids:	12.9 g 82.2	Column:	ZB-DIOXIN	
Analyte		Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.109				16-Dec-23 15:20	1
1,2,3,7,8-PeCDD		ND	0.195				16-Dec-23 15:20	1
1,2,3,4,7,8-HxCDI)	ND	0.245				16-Dec-23 15:20	1
1,2,3,6,7,8-HxCDI)	ND	0.223				16-Dec-23 15:20	1
1,2,3,7,8,9-HxCDI		ND	0.368				16-Dec-23 15:20	1
1,2,3,4,6,7,8-HpCI	DD	0.525				J	16-Dec-23 15:20	1
OCDD		6.83					16-Dec-23 15:20	1
2,3,7,8-TCDF		ND	0.0973				16-Dec-23 15:20	1
1,2,3,7,8-PeCDF		ND	0.134				16-Dec-23 15:20	1
2,3,4,7,8-PeCDF		ND	0.100				16-Dec-23 15:20	1
1,2,3,4,7,8-HxCDF		ND	0.115				16-Dec-23 15:20	1
1,2,3,6,7,8-HxCDF		ND	0.110				16-Dec-23 15:20	1
2,3,4,6,7,8-HxCDF		ND	0.144				16-Dec-23 15:20	1
1,2,3,7,8,9-HxCDF		ND	0.354				16-Dec-23 15:20	1
1,2,3,4,6,7,8-HpCI		ND	0.188				16-Dec-23 15:20	1
1,2,3,4,7,8,9-HpCI	DF	ND	0.205				16-Dec-23 15:20	1
OCDF		ND	0.433				16-Dec-23 15:20	1
Toxic Equivalent	(D) · ·	0.00720						
TEQMinWHO200	5Dioxin	0.00730						
Totals		ND	0.100					
Total TCDD		ND	0.109	1.10				
Total PeCDD		ND		1.40				
Total HxCDD		ND	0.368					
Total HpCDD		1.33				J		
Total TCDF		ND	0.0973					
Total PeCDF		ND		0.503				
Total HxCDF		ND	0.354					
Total HpCDF		0.327				J		
Labeled Standard	ls	Туре	% R	ecovery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDE		IS		02	25 - 164		16-Dec-23 15:20	
13C-1,2,3,7,8-PeC	DD	IS	9	4.5	25 - 181		16-Dec-23 15:20	1
13С-1,2,3,4,7,8-Ну	xCDD	IS	8	5.3	32 - 141		16-Dec-23 15:20	1
13С-1,2,3,6,7,8-Нх	xCDD	IS	9	5.6	28 - 130		16-Dec-23 15:20	1
13С-1,2,3,7,8,9-Нх	KCDD	IS	6	2.0	32 - 141		16-Dec-23 15:20	1
13C-1,2,3,4,6,7,8-I	HpCDD	IS	7	0.3	23 - 140		16-Dec-23 15:20	1
13C-OCDD	•	IS	6	4.8	17 - 157		16-Dec-23 15:20	1
13C-2,3,7,8-TCDF	7	IS		16	24 - 169		16-Dec-23 15:20	
13C-1,2,3,7,8-PeC		IS		4.2	24 - 185		16-Dec-23 15:20	
13C-2,3,4,7,8-PeC		IS		18	21 - 178		16-Dec-23 15:20	
13С-1,2,3,4,7,8-Нх		IS		0.2	26 - 152		16-Dec-23 15:20	
13С-1,2,3,6,7,8-Нх		IS		1.0	26 - 123		16 Dec-23 15:20	
13С-2,3,4,6,7,8-Нх		IS		2.4	28 - 136		16-Dec-23 15:20	
13С-1,2,3,7,8,9-Ну		IS		8.5	28 - 136 29 - 147		16-Dec-23 15:20	
13C-1,2,3,4,6,7,8-I		IS		6. <i>3</i> 4.9			16-Dec-23 15:20	
	-	IS		4.9 7.6	28 - 143		16-Dec-23 15:20 16-Dec-23 15:20	
13C-1,2,3,4,7,8,9-I	прерг				26 - 138			
13C-OCDF	D	IS		1.6	17 - 157		16-Dec-23 15:20	
37Cl-2,3,7,8-TCDI	ע	CRS	8	8.6	35 - 197		16-Dec-23 15:20	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Sample ID: SL-B4-SO-25'

EPA Method 1613B

Client Data Name: Project: Matrix: Date Collected:	OnSite Enviro E2023/1103 P Soil 29-Nov-23 09:	ort of Pasco Lagoon	s	Laboratory Dat Lab Sample: QC Batch: Sample Size: % Solids:	ta 2312036-04 B23L108 11.8 g 90.6	Date Received: Date Extracted: Column:	05-Dec-23 1 13-Dec-23 ZB-DIOXIN	1:52
Analyte		Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.102				16-Dec-23 16:07	1
1,2,3,7,8-PeCDD		ND	0.180				16-Dec-23 16:07	1
1,2,3,4,7,8-HxCDI	D	ND	0.242				16-Dec-23 16:07	
1,2,3,6,7,8-HxCDI		ND	0.253				16-Dec-23 16:07	
1,2,3,7,8,9-HxCDI		ND	0.238				16-Dec-23 16:07	
1,2,3,4,6,7,8-HpCI	DD	ND	0.307				16-Dec-23 16:07	
OCDD		1.83				J	16-Dec-23 16:07	
2,3,7,8-TCDF		ND	0.119				16-Dec-23 16:07	
1,2,3,7,8-PeCDF		ND	0.137				16-Dec-23 16:07	
2,3,4,7,8-PeCDF	F	ND	0.111				16-Dec-23 16:07	
1,2,3,4,7,8-HxCDI		ND	0.171				16-Dec-23 16:07	
1,2,3,6,7,8-HxCDI		ND	0.172				16-Dec-23 16:07	
2,3,4,6,7,8-HxCDI 1,2,3,7,8,9-HxCDI		ND ND	0.194 0.240				16-Dec-23 16:07 16-Dec-23 16:07	
		ND	0.240				16-Dec-23 16:07	
1,2,3,4,6,7,8-HpCI 1,2,3,4,7,8,9-HpCI		ND	0.174				16-Dec-23 16:07	
OCDF	DI	ND	0.230				16-Dec-23 16:07	1
Toxic Equivalent		ND	0.415				10-Dec-23 10.07	1
TEQMinWHO200		0.000549						
Tequini w HO200	JJDIOXIII	0.000349						
Total TCDD		ND	0.102					
Total PeCDD		ND	0.102					
Total HxCDD		ND	0.253					
Total HpCDD		ND	0.307					
Total TCDF		ND	0.119					
Total PeCDF		ND	0.137					
Total HxCDF		ND	0.240					
Total HpCDF		ND	0.250					
Labeled Standard		Туре		covery	Limits	Qualifiers	·	Dilution
13C-2,3,7,8-TCDI		IS	10		25 - 164		16-Dec-23 16:07	
13C-1,2,3,7,8-PeC		IS	95	.4	25 - 181		16-Dec-23 16:07	
13C-1,2,3,4,7,8-Hz	xCDD	IS	10		32 - 141		16-Dec-23 16:07	
13С-1,2,3,6,7,8-На	xCDD	IS	99	.1	28 - 130		16-Dec-23 16:07	1
13С-1,2,3,7,8,9-На	xCDD	IS	11	.0	32 - 141		16-Dec-23 16:07	1
13C-1,2,3,4,6,7,8-	HpCDD	IS	82	.4	23 - 140		16-Dec-23 16:07	1
13C-OCDD		IS	91	.2	17 - 157		16-Dec-23 16:07	1
13C-2,3,7,8-TCDF	F	IS	96	.4	24 - 169		16-Dec-23 16:07	1
13C-1,2,3,7,8-PeC	CDF	IS	89	.4	24 - 185		16-Dec-23 16:07	1
13C-2,3,4,7,8-PeC	CDF	IS	93	.8	21 - 178		16-Dec-23 16:07	1
13C-1,2,3,4,7,8-H	xCDF	IS	90	.5	26 - 152		16-Dec-23 16:07	1
13C-1,2,3,6,7,8-Hz	xCDF	IS	88	.5	26 - 123		16-Dec-23 16:07	1
13C-2,3,4,6,7,8-Hz	xCDF	IS	91	.0	28 - 136		16-Dec-23 16:07	1
13C-1,2,3,7,8,9-H	xCDF	IS	92	.9	29 - 147		16-Dec-23 16:07	1
		IS	79	.1	28 - 143		16-Dec-23 16:07	1
13C-1,2,3,4,6,7,8-1	предг	15	17		20 110			
	-	IS	72				16-Dec-23 16:07	1
13C-1,2,3,4,6,7,8-1 13C-1,2,3,4,7,8,9-1 13C-OCDF	-			.8	26 - 138 17 - 157			

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: SL-B5-SO-20'

EPA Method 1613B

Client Data				Laboratory Da	ta			
Name:	OnSite Enviro	onmental Inc		Lab Sample:	2312036-05	Date Received:	05-Dec-23 1	1:52
Project:		Port of Pasco Lagoo	ne	QC Batch:	B23L108	Date Extracted:	13-Dec-23	
Matrix:	Soil	on of i aseo Lagoo	115	Sample Size:	12.9 g	Column:		
Date Collected:	29-Nov-23 09	9:55		% Solids:	88.5	Column.	ZB-DIOXIN	
Analyte		Conc. (pg/g)	EDL	EMPC	2	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.0864				16-Dec-23 16:53	1
1,2,3,7,8-PeCDD		ND	0.153				16-Dec-23 16:53	1
1,2,3,4,7,8-HxCD	D	ND	0.236				16-Dec-23 16:53	1
1,2,3,6,7,8-HxCD	D	ND	0.292				16-Dec-23 16:53	1
1,2,3,7,8,9-HxCD	D	ND	0.247				16-Dec-23 16:53	1
1,2,3,4,6,7,8-HpC	CDD	ND	0.271				16-Dec-23 16:53	1
OCDD		2.10				J	16-Dec-23 16:53	1
2,3,7,8-TCDF		ND	0.0921				16-Dec-23 16:53	1
1,2,3,7,8-PeCDF		ND	0.148				16-Dec-23 16:53	1
2,3,4,7,8-PeCDF		ND	0.120				16-Dec-23 16:53	1
1,2,3,4,7,8-HxCD		ND	0.149				16-Dec-23 16:53	
1,2,3,6,7,8-HxCD		ND	0.131				16-Dec-23 16:53	
2,3,4,6,7,8-HxCD		ND	0.148				16-Dec-23 16:53	
1,2,3,7,8,9-HxCD		ND	0.158				16-Dec-23 16:53	
1,2,3,4,6,7,8-HpC		ND	0.171				16-Dec-23 16:53	
1,2,3,4,7,8,9-HpC	CDF	ND	0.279				16-Dec-23 16:53	
OCDF		ND	0.382				16-Dec-23 16:53	1
Toxic Equivalent								
TEQMinWHO20	05Dioxin	0.000630						
Totals								
Total TCDD		ND	0.0864					
Total PeCDD		ND	0.153					
Total HxCDD		ND	0.292					
Total HpCDD		ND	0.271					
Total TCDF		ND	0.0921					
Total PeCDF		ND	0.148					
Total HxCDF		ND	0.158					
Total HpCDF		ND	0.279					
Labeled Standar	rds	Туре	% Re	covery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCD	D	IS	11	9	25 - 164		16-Dec-23 16:53	3 1
13C-1,2,3,7,8-Pe	CDD	IS	10)4	25 - 181		16-Dec-23 16:53	3 1
13C-1,2,3,4,7,8-H	IxCDD	IS	11	17	32 - 141		16-Dec-23 16:53	3 1
13C-1,2,3,6,7,8-H	łxCDD	IS	10	00	28 - 130		16-Dec-23 16:53	3 1
13C-1,2,3,7,8,9-H		IS	12		32 - 141		16-Dec-23 16:53	3 1
13C-1,2,3,4,6,7,8		IS	87		23 - 140		16-Dec-23 16:53	
13C-OCDD		IS	90		17 - 157		16-Dec-23 16:53	
13C-2,3,7,8-TCD	0F	IS	10		24 - 169		16-Dec-23 16:53	
13C-1,2,3,7,8-Pe		IS	92		24 - 185		16-Dec-23 16:53	
13C-2,3,4,7,8-Pe		IS	98		24 - 183		16-Dec-23 16:53	
13C-1,2,3,4,7,8-H		IS	94		26 - 152		16-Dec-23 16:53	
13C-1,2,3,4,7,8-E		IS					16-Dec-23 16:53	
			1(26 - 123			
13C-2,3,4,6,7,8-H		IS	11		28 - 136		16-Dec-23 16:53	
13C-1,2,3,7,8,9-H		IS	12		29 - 147		16-Dec-23 16:53	
13C-1,2,3,4,6,7,8	-	IS	86		28 - 143		16-Dec-23 16:53	
13C-1,2,3,4,7,8,9	-HpCDF	IS	82		26 - 138		16-Dec-23 16:53	
13C-OCDF		IS	75		17 - 157		16-Dec-23 16:53	
37Cl-2,3,7,8-TCL	212	CRS	10	M	35 - 197		16-Dec-23 16:53	, 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: SL-B6-SO-20'

EPA Method 1613B

	OnSite Enviro E2023/1103 P Soil 29-Nov-23 10	ort of Pasco Lagoon		Laboratory Day Lab Sample: QC Batch: Sample Size: % Solids:	2312036-06 B23L108 10.8 g 93.2	Date Received: Date Extracted: Column:	05-Dec-23 1 13-Dec-23 ZB-DIOXIN	
Analyte		Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.121				16-Dec-23 17:39	1
1,2,3,7,8-PeCDD		ND	0.187				16-Dec-23 17:39	1
1,2,3,4,7,8-HxCDI)	ND	0.695				16-Dec-23 17:39	1
1,2,3,6,7,8-HxCDI		0.497				J	16-Dec-23 17:39	
1,2,3,7,8,9-HxCDI		ND	1.20				16-Dec-23 17:39	
1,2,3,4,6,7,8-HpCI	DD	11.7					16-Dec-23 17:39	
OCDD		149					16-Dec-23 17:39	
2,3,7,8-TCDF		0.144				J	16-Dec-23 17:39	
1,2,3,7,8-PeCDF		ND	0.134				16-Dec-23 17:39	
2,3,4,7,8-PeCDF	-	ND		0.143			16-Dec-23 17:39	
1,2,3,4,7,8-HxCDF		ND	0.142				16-Dec-23 17:39	
1,2,3,6,7,8-HxCDF		ND	0.162				16-Dec-23 17:39	
2,3,4,6,7,8-HxCDF		ND	0.466				16-Dec-23 17:39	
1,2,3,7,8,9-HxCDF		ND	0.642				16-Dec-23 17:39	
1,2,3,4,6,7,8-HpCI		2.43	0.104			J	16-Dec-23 17:39	
1,2,3,4,7,8,9-HpCI)F	ND	0.184				16-Dec-23 17:39	
OCDF		11.1					16-Dec-23 17:39	1
Toxic Equivalent								
TEQMinWHO200	5Dioxin	0.253						
Totals								
Total TCDD		ND	0.121					
Total PeCDD		ND	0.187					
Total HxCDD		2.04		3.64		J		
Total HpCDD		27.2						
Total TCDF		0.585		0.702				
Total PeCDF		1.63		1.77		J		
Total HxCDF		4.17						
Total HpCDF		10.3						
Labeled Standard	ls	Туре	% Re	covery	Limits	Oualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDE		IS	12		25 - 164	Z	16-Dec-23 17:39	
13C-1,2,3,7,8-PeC		IS	11		25 - 104		16-Dec-23 17:39	
13С-1,2,3,4,7,8-Нх		IS	51				16-Dec-23 17:39	
		IS	1(32 - 141 28 - 130			
13C-1,2,3,6,7,8-Hz							16-Dec-23 17:39	
13C-1,2,3,7,8,9-Hz		IS	32		32 - 141		16-Dec-23 17:39	
13C-1,2,3,4,6,7,8-I	прСЛЛ	IS	90		23 - 140		16-Dec-23 17:39	
13C-OCDD	,	IS	79		17 - 157		16-Dec-23 17:39	
13C-2,3,7,8-TCDF		IS	11		24 - 169		16-Dec-23 17:39	
13C-1,2,3,7,8-PeC		IS	10		24 - 185		16-Dec-23 17:39	
13C-2,3,4,7,8-PeC		IS	13		21 - 178		16-Dec-23 17:39	
13C-1,2,3,4,7,8-Hz		IS	11		26 - 152		16-Dec-23 17:39	
13С-1,2,3,6,7,8-Нх		IS	89	.5	26 - 123		16-Dec-23 17:39) 1
13С-2,3,4,6,7,8-Ну	KCDF	IS	41	.8	28 - 136		16-Dec-23 17:39) 1
13С-1,2,3,7,8,9-Ну	xCDF	IS	36	.1	29 - 147		16-Dec-23 17:39) 1
13C-1,2,3,4,6,7,8-I	HpCDF	IS	65	.3	28 - 143		16-Dec-23 17:39) 1
	-	IS	99	.7	26 - 138		16-Dec-23 17:39	
13C-1,2,3,4,7,8,9-I								
13C-1,2,3,4,7,8,9-I 13C-OCDF		IS	68		17 - 157		16-Dec-23 17:39) 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: SL-B7-SO-20'

EPA Method 1613B

Client Data Name: Project: Matrix: Date Collected:	OnSite Environ E2023/1103 Po Soil 29-Nov-23 11:1	rt of Pasco Lagooi 0			Laboratory Dat Lab Sample: QC Batch: Sample Size: % Solids:	2312036-07 B23L108 10.8 g 93.9	Date Received: Date Extracted: Column:	05-Dec-23 11 13-Dec-23 ZB-DIOXIN	
Analyte		Conc. (pg/g)	EDL		EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.117					16-Dec-23 18:26	1
1,2,3,7,8-PeCDD		ND	0.176					16-Dec-23 18:26	1
1,2,3,4,7,8-HxCDI	C	ND	0.248					16-Dec-23 18:26	1
1,2,3,6,7,8-HxCDI)	ND	0.270					16-Dec-23 18:26	
1,2,3,7,8,9-HxCDI	0	ND	0.267					16-Dec-23 18:26	1
1,2,3,4,6,7,8-HpCI	DD	ND	0.322					16-Dec-23 18:26	
OCDD		2.56					J	16-Dec-23 18:26	
2,3,7,8-TCDF		ND	0.117					16-Dec-23 18:26	
1,2,3,7,8-PeCDF		ND	0.114					16-Dec-23 18:26	
2,3,4,7,8-PeCDF	-	ND	0.100					16-Dec-23 18:26	
1,2,3,4,7,8-HxCDH		ND	0.184					16-Dec-23 18:26	
1,2,3,6,7,8-HxCDF		ND	0.187					16-Dec-23 18:26	
2,3,4,6,7,8-HxCDH		ND	0.212					16-Dec-23 18:26	
1,2,3,7,8,9-HxCDF		ND	0.286					16-Dec-23 18:26	
1,2,3,4,6,7,8-HpCI		ND	0.179					16-Dec-23 18:26	
1,2,3,4,7,8,9-HpCI	DF	ND ND	0.286					16-Dec-23 18:26	
OCDF Toxic Equivalent		ND	0.552					16-Dec-23 18:26	1
	۲D' '	0.0007(0							
TEQMinWHO200 Totals	SDioxin	0.000768							
		ND	0.117						
Total TCDD		ND	0.117						
Total PeCDD		ND	0.176						
Total HxCDD		ND	0.270						
Total HpCDD		ND	0.322						
Total TCDF		ND	0.117						
Total PeCDF		ND	0.114						
Total HxCDF		ND	0.286						
Total HpCDF		ND	0.286						
Labeled Standard	ds	Туре	%	Recover	у	Limits	Qualifiers	ĩ	Dilution
13C-2,3,7,8-TCDI		IS		113		25 - 164		16-Dec-23 18:26	
13C-1,2,3,7,8-PeC	DD	IS		104		25 - 181		16-Dec-23 18:26	1
13С-1,2,3,4,7,8-На	xCDD	IS		101		32 - 141		16-Dec-23 18:26	1
13С-1,2,3,6,7,8-На	xCDD	IS		98.0		28 - 130		16-Dec-23 18:26	1
13С-1,2,3,7,8,9-На	xCDD	IS		107		32 - 141		16-Dec-23 18:26	1
13C-1,2,3,4,6,7,8-	HpCDD	IS		85.3		23 - 140		16-Dec-23 18:26	1
13C-OCDD		IS		86.7		17 - 157		16-Dec-23 18:26	1
13C-2,3,7,8-TCDF	7	IS		104		24 - 169		16-Dec-23 18:26	1
13C-1,2,3,7,8-PeC	DF	IS		97.7		24 - 185		16-Dec-23 18:26	1
13C-2,3,4,7,8-PeC	DF	IS		98.9		21 - 178		16-Dec-23 18:26	
13C-1,2,3,4,7,8-Hz	xCDF	IS		90.5		26 - 152		16-Dec-23 18:26	
13C-1,2,3,6,7,8-Hz		IS		88.0		26 - 123		16-Dec-23 18:26	
13C-2,3,4,6,7,8-Hz		IS		90.0		28 - 136		16-Dec-23 18:26	
13С-1,2,3,7,8,9-На		IS		87.7		29 - 147		16-Dec-23 18:26	
13C-1,2,3,4,6,7,8-1		IS		87.6		28 - 143		16-Dec-23 18:26	
	-	IS		76.6		26 - 138		16-Dec-23 18:26	
13C-1.2.3.4.7.8 9-1									-
13C-1,2,3,4,7,8,9-1 13C-OCDF		IS		68.3		17 - 157		16-Dec-23 18:26	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Sample ID: SL-B8-SO-20'

EPA Method 1613B

Client Data Name: Project: Matrix: Date Collected:		ironmental Inc. 3 Port of Pasco Lagoon 11:50	15	Laboratory Da Lab Sample: QC Batch: Sample Size: % Solids:	nta 2312036-08 B23L108 11.1 g 92.7	Date Received: Date Extracted: Column:	05-Dec-23 1 13-Dec-23 ZB-DIOXIN	
Analyte		Conc. (pg/g)	EDL	EMPC	2	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.153				16-Dec-23 19:12	1
1,2,3,7,8-PeCDD		ND	0.207				16-Dec-23 19:12	1
1,2,3,4,7,8-HxCD	D	ND	0.310				16-Dec-23 19:12	1
1,2,3,6,7,8-HxCD		ND	0.346				16-Dec-23 19:12	1
1,2,3,7,8,9-HxCD		ND	0.286				16-Dec-23 19:12	1
1,2,3,4,6,7,8-HpC	DD	ND	0.388				16-Dec-23 19:12	
OCDD		1.56				J	16-Dec-23 19:12	
2,3,7,8-TCDF		ND	0.128				16-Dec-23 19:12	
1,2,3,7,8-PeCDF		ND	0.154				16-Dec-23 19:12	
2,3,4,7,8-PeCDF		ND	0.118				16-Dec-23 19:12	
1,2,3,4,7,8-HxCD		ND	0.190				16-Dec-23 19:12	
1,2,3,6,7,8-HxCD		ND	0.187				16-Dec-23 19:12	
2,3,4,6,7,8-HxCD		ND	0.205				16-Dec-23 19:12	
1,2,3,7,8,9-HxCD		ND	0.286				16-Dec-23 19:12	
1,2,3,4,6,7,8-HpC		ND	0.206				16-Dec-23 19:12	
1,2,3,4,7,8,9-HpC	DF	ND	0.294				16-Dec-23 19:12	
OCDF		ND	0.542				16-Dec-23 19:12	1
Toxic Equivalent								
TEQMinWHO200	05Dioxin	0.000468						
Totals								
Total TCDD		ND	0.153					
Total PeCDD		ND	0.207					
Total HxCDD		ND	0.346					
Total HpCDD		ND	0.388					
Total TCDF		ND	0.128					
Total PeCDF		ND	0.154					
Total HxCDF		ND	0.286					
Total HpCDF		ND	0.294					
Labeled Standar	ds	Туре	% Rec	coverv	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCD	D	IS	12	•	25 - 164		16-Dec-23 19:12	2 1
13C-1,2,3,7,8-PeC		IS	10		25 - 181		16-Dec-23 19:12	
13С-1,2,3,4,7,8-Н		IS	10		32 - 141		16-Dec-23 19:12	
13С-1,2,3,6,7,8-Н		IS	10		28 - 130		16 Dec-23 19:12	
13С-1,2,3,7,8,9-Н		IS	10		32 - 141		16-Dec-23 19:12	
			87.				16-Dec-23 19:12	
13C-1,2,3,4,6,7,8-	прево	IS			23 - 140			
13C-OCDD	E	IS	98.		17 - 157		16-Dec-23 19:12	
13C-2,3,7,8-TCD		IS	10		24 - 169		16-Dec-23 19:12	
13C-1,2,3,7,8-PeC		IS	96.		24 - 185		16-Dec-23 19:12	
13C-2,3,4,7,8-PeC		IS	10		21 - 178		16-Dec-23 19:12	
13С-1,2,3,4,7,8-Н		IS	97.		26 - 152		16-Dec-23 19:12	
13С-1,2,3,6,7,8-Н		IS	96.		26 - 123		16-Dec-23 19:12	
13С-2,3,4,6,7,8-Н	IxCDF	IS	97.		28 - 136		16-Dec-23 19:12	
150 2,5,1,0,7,0 11	IvCDF	IS	94.	.1	29 - 147		16-Dec-23 19:12	. 1
13С-1,2,3,7,8,9-Н	плерг							1
		IS	80.	.8	28 - 143		16-Dec-23 19:12	. 1
13C-1,2,3,7,8,9-Н 13C-1,2,3,4,6,7,8-	-HpCDF		80. 79.		28 - 143 26 - 138		16-Dec-23 19:12 16-Dec-23 19:12	
13С-1,2,3,7,8,9-Н	-HpCDF	IS		.1				. 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection Limit
E	The associated compound concentration exceeded the calibration range of the instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
М	Estimated Maximum Possible Concentration (CA Region 2 projects only)
MDL	Method Detection Limit
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
Р	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
RL	For 537.1, the reported RLs are the MRLs.
TEQ	Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the sample concentrations.
TEQMax	TEQ calculation that uses the detection limit as the concentration for non-detects
TEQMin	TEQ calculation that uses zero as the concentration for non-detects
TEQRisk	TEQ calculation that uses $\frac{1}{2}$ the detection limit as the concentration for non-
	detects
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
Nevada Division of Environmental Protection	CA00413
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Enthalpy Analytical - EDH Certifications

Current certificates and lists of licensed parameters can be found at Enthalpy.com/Resources/Accreditations.

Page 1 of 1

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881
Laboratory: Enthalpy Analytical - El Dorado Hills
Attention: Jennifer Miller
Address: 1104 Windfield Way, El Dorado Hills, CA 95762
Phone Number: (916) 673-1520

Turna	around Rec	quest	
1 Day	2 Day	3 Day	
	Standard		
Other:			

Laboratory Reference #:	12-008
Project Manager:	David Baumeister
email:	dbaumeister@onsite-env.com
Project Number:	E2023/1103; Port of Pasco Lagoons
Project Name:	

Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.	Requested Analyses
	NL-B1-SO-25'	11/28/23	15:15	S	1	Dioxins/Furans
5.00	NL-B2-SO-30'	11/28/23	16:05	S	1	Dioxins/Furans
	NL-B3-SO-25'	11/28/23	16:50	S	1	Dioxins/Furans
	SL-B4-SO-25'	11/29/23	9:10	S	1	Dioxins/Furans
	SL-B5-SO-20'	11/29/23	9:55	S	1	Dioxins/Furans
	SL-B6-SO-20'	11/29/23	10:40	S	1	Dioxins/Furans
	SL-B7-SO-20'	11/29/23	11:10	S	1	Dioxins/Furans
	SL-B8-SO-20'	11/29/23	11:50	S	1	Dioxins/Furans
a.com	Signature		pany	- Here	Date	Time Comments/Special Instructions
Relinqu	ished by	OSE			12/4/2	1520
Receive	d by:		UPS			
Relinqu	Relinquished by: Received by: Xwwy.W E		Entledry EDIt			IN EIM
Receive						-Hi-2-
Relinqu	ished by:	. 0		-		1/2111-57120
Receive	d by:					

Sample Log-In Checklist

32	EN	1	H	A	1.1	Ŷ
	10.4	0	00	10		1.1

and a lot	Date/Tim	ne		Initials:		ation:	W12-2					
Samples Arrival:		5/23 11	1:52	K2		Shelf/Rack:						
Delivered By:	FedEx	UPS	On Tra	c GLS		Hand Deliver		Oth	ner			
Preservation:	eservation: Ice Blue Ice Techni Ice Dr									None		
Temp °C: 2.5 Temp °C: 2.5			Probe use	ed: 🕜 N	-	The	rmome	ter ID:	Dr.	5		
		na ananana				hirmidda		YES	NO	NA		
Shipping Contai	ner(s) Intac	ct?						1		1		
Shipping Custor	ly Seals Int	act?			_				1	-		
Airbill	Trk	# 126	84 EI	was 98	1785	5042	-	~				
Shipping Docum								1				
Shipping Contai	ner	Er	nthalpy	Client	R	etain	Re	turn	Disp	oose		
Chain of Custod	y / Sample	Documer	ntation Pre	esent?				/				
Chain of Custod	y / Sample	Documer	ntation Co	mplete?				1				
Holding Time Ad	ceptable?							1				
Logged In:	wR	-2										

COC Anomaly/Sample Acceptance Form completed?

12/06/07

11:58

Comments:

16

Shelf/Rack:

ð.

CoC/Label Reconciliation Report WO# 2312036

LabNumber CoC Sample ID	SampleA	lias Date/Time	Container	BaseMatrix	Sample Comments
2312036-01 A NL-B1-SO-25	0	28-Nov-23 15:15 DA	Clear Glass Jar, 120mL	Solid	
2312036-02 A NL-B2-SO-30		28-Nov-23 16:05	Clear Glass Jar, 120mL	Solid	
2312036-03 A NL-B3-SO-25'	d d	28-Nov-23 16:50	Clear Glass Jar, 120mL	Solid	
2312036-04 A SL-B4-SO-25'		29-Nov-23 09:10	Clear Glass Jar, 120mL	Solid	
2312036-05 A SL-B5-SO-20		29-Nov-23 09:55	Clear Glass Jar, 120mL	Solid	
2312036-06 A SL-B6-SO-20	□©	29-Nov-23 10:40	Clear Glass Jar, 120mL	Solid	
2312036-07 A SL-B7-SO-20'		29-Nov-23 11:10	Clear Glass Jar, 120mL	Solid	
2312036-08 A SL-B8-SO-20	J	29-Nov-23 11:50	Clear Glass Jar, 120mL	Solid	

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

Sample Container Intact?	J	 10.00	Ť.
		1.00	
Sample Custody Seals Intact?		1	t
Adequate Sample Volume?	J		
Container Type Appropriate for Analysis(es)			

Verifed by/Date: JT 12 04 23

^{nments:} Date not listed on sample label. ^(B)Sample label ID:NL-BI-SO-25 ^(C)Sample label ID:SL-BL-SO-20 ^(D)Sample received in clear glass jar. Rev. No: 2

ANOMALY FORM

/Date	The following checked issues were noted during sample receipt and login:
-	1. The samples were received out of temperature at (WI-PHT): Was ice present: Yes No Melted Blue ice
	2. The Chain-of-Custody (CoC) was not relinquished properly.
	3. The CoC did not include collection time(s). 00:00 will be used unless notified otherwise.
	4. The sample(s) did not include a sample collection time. All or Sample Name:
	5. A sample ID discrepancy was found. See the Reconciliation report. The CoC Sample ID will be used unless notified otherwise.
	6. A sample date and/or time discrepancy was found. See the Reconciliation report. The CoC Sample date/time will be used unless notified otherwise.
_	7. The CoC did not include a sample matrix. The following sample matrix will be used:
	8. Insufficent volume received for analysis. All or Sample Name:
	9. The backup bottle was received broken. Sample Name:
	10. CoC not received, illegible or destroyed.
	11. The sample(s) were received out of holding time. All or Sample Name:
_	12. The CoC did not include an analysis. All or Sample Name:
	13. Sample(s) received without collection date. All or Sample Name:
	14. Sample(s) not received. All or Sample Name:
_	15. Sample(s) received broken. All or Sample Name:
26/27	16. An incorrect container-type was used. (II) or Sample Name:
-	17. The Field Reagent Blank (FRB) preservative was from a different lot than the field samples. Will proceed with analysis and narrate unless notified otherwise.
	18. Other:

 Bolded items require sign-off

 Client Contacted:
 David Baumeister

 Date of Contact:
 12/07/2023

 Lab Project Manager:
 Kathy Zipp

Resolution:

Notified of anomaly - proceed.

Page: 1 of 1

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	10 SL- B6-50-20'	9 SL-B6-SL-15'	8 56-35-20-20	7 51-34-50-25'	4 SL- B4-SL- 15'	5 NL- 33- 50 - 25'	4 NL-B3-5L-20'	3 NL- B2- 50 -20' 30' YM	2 NL-BI-50.25'	1 NL-B1-SL-20	Lab ID Sample Identification	Sampled by: MELECY DUFELLEVEN	VMENEO/	Programe: Poor & Pasce Laceons	E2023/1103	Project Number		Analytical Laboratory Testing Services 14648 NE 95th Street - Redmond, WA 98052	Environmental Inc.
Reviewed/Date				000	320	BMEC	Company	V 1040 V	1035	0955	0190	11-20230855	V 1650	1645	1605	1515	11-28:23 1510 Soic	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain (
				en cation	1.192	11-30-23 1400	Date Time	3 X **	5 X X	3 × *	3 **	5 X X	3 X & *	5 X OX	3 X * *	· 3 X **	SX X	Numt NWTF NWTF NWTF NWTF Volati	er of Com PH-HCID PH-Gx/BTI PH-Gx PH-Dx (SG Hes 8260 enated Vo	EX (802 3 Clean	21[] 8 I-up []	_)		Laboratory Num	Chain of Custody
Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs) 🗌	Data Package: Standard 🛛 Level III 🗍 Level IV 🗍	O Added Izlidis Be STA	(X) Added 12/4/23 NB (STA)	AILY UX IX HE WILL	, j	00 + FOLLOW POSITIVE HC	Comments/Special Instructions	×		X	×		×		×	X		EDB E Semiv (with 1 PAHs PCBs Organ Organ Chlori Total 1 Total 1 TCLP HEM	EPA 8011 volatiles 82 ow-level F 8270/SłM	(Waters 270/SIN PAHs) 1 (low-le Pestici orus Pe d Herbi tals tals	s Only/ M evel) ides 8 esticides icides	081 95 8270 8151			umber: 1 2 -0 0 8	Page 1 of 2
₃s (EDDs) 🗌					3	D		×	×	×	X	×	X	X	X	X	×	% Mo	isture					-		ŗ

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished					+		13	12 5	11 5	Lab ID	ouriprod og -	Sampled by	Project Manager		Company:		N
0					NHEWWORKEN	AN MA	Signature						SL- B8- S0-20'	1-37-50-20	SL-87-56-15'	Sample Identification	Y. MEVEL	HEVER B. BEREREN	OF PASCO LALIOENS	2023/1103	BMEC	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
					?		00						*	-	1282	Date Time Sampled yesampled			Stand	2 Days	Same Day	(in	8
Reviewed/Date					OSE	BME	Company						1150	1110	50/165	Time	(other)		Standard (7 Days)	σ Π		(in working days)	Cha
te					Ø	r							4		SOIL	Matrix				3 Days	1 Day	(s)	Chain of Custody
													es	es	5	-		Contain	ers		_		fC
ł	-	-		-	-			-	-			-	X	\times	X		PH-HC		8021 8	3260 [])		Laboratory N	Sh
				-	121	T	Date		-	+		-	*	*		NWTF						ora	đ
				1	23	00							×	*	-	NWTF	PH-Dx	(SG Cle	an-up 🗌)		top	b
ł	-		-			1000	Time		-		-	-		-1	×	Volati	les 826	0					
					130	1400	ne		-		-		-		~	Halog	enated	Volatile	s 8260	_		umber:	
					~	ð	-		1000				11.1		-	EDB E	EPA 80	11 (Wat	ers Only)		Per	
9	Data	_		-	-		C		1						-			s 8270/s				diamo	
roma	ita Pa			F	-	*	Buuuc		-				1					SIM (low		-	-	N	
togra	Package:			* * * *		15	nts/S		11.1							PCBs	8082			_			
ms w				51	Ľ	Ĕ	pecia									Organ	ochlor	ine Pes	ticides 8	081		0	
Chromatograms with final report	Standard			5	2	8	Comments/Special Instructions		1	-	1.11					Organ	ophos	phorus	Pesticid	es 8270	/SIM	00	10
al rep	rd 🗆			2	L	G	uction									Chlori	nated	Acid He	rbicides	8151			
ort	Level			5	5	5	SL		1 - 1				X	\times		Total F	RCRA	Metals					
	=			>	č	F		_								1.1		Metals					Pa
ctroni				2	LITEL (1/ DU AS	K			177				-	-		1.1.1	Metals						Page_
c Data	Level IV											1					_	grease					N
Electronic Data Deliverables (EDDs)					NEEDER	Held							\otimes	Ø		q	IOX	INS	5/Fi	1241	45		of 2
Ds)				(5		-		-				×	×	×	% Moi	sture	-	_				

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 +1 360 577 7222 +1 360 636 1068

r

r

R

K2313619

January 11, 2024

David Baumeister Onsite Environmental Incorporated 14648 Northeast 95th Street Redmond, WA 98052

R r

Dear David,

Enclosed are the results of the sample(s) submitted to our laboratory December 05, 2023 For your reference, these analyses have been assigned our service request number

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

R

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at Mark.Harris@alsglobal.com.

r

Respectfully submitted,

r rd

noe D. Dan

Mark Harris Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 +1 360 577 7222 +1 360 636 1068

Table of Contents

Acronyms Qualifiers State Certifications, Accreditations, And Licenses Case Narrative Chain of Custody Total Solids Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS Subcontract Lab Results
Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 4 of 67

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com_ to our laboratory's NELAP-approved quality assurance program. A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 67

Client: Onsite Environmental Incorporated

Project: Port of Pasco Lagoons

Service Request: K2313619 Date Received: 12/05/2023

Sample Matrix: Soil, Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Eleven soil, water samples were received for analysis at ALS Environmental on 12/05/2023. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Subcontracted Analytical Parameters:

PDBE

This analysis was performed at ALS Burlington, Ontario Laboratory. The data for this analysis is included in the corresponding section of this report.

Organic LC:

Method PFC/537M, 12/19/2023: The detection limit was elevated for all analytes in samples MW1, MW2 and MW3. The samples contained significant levels of sediment on the bottom of the bottles. The initial volume was reduced in order to facilitate loading and eluting the Solid Phase Extraction (SPE) cartridge. The reporting limits were elevated to reflect the reduced initial volume.

The control criteria were exceeded for D9-EtFOSE in Continuing Calibration Verification (CCV) KQ2322231-02. The recovery of the associated native analyte was within control criteria, which indicated the analysis was in control. No further corrective action was appropriate.

Method PFC/537M, 12/19/2023: The upper control criterion was exceeded for 1H, 1H, 2H, 2H-Perfluorododecanesulfonic acid (10:2 FTS) in Continuing Calibration Verification (CCV) KQ2322231-02. The field samples analyzed in this sequence did not contain the analyte in question. Since the apparent problem indicated a potential high bias, the data quality was not affected. No further corrective action was required.

noe D. Oan

Approved by

Date 01/11/2024

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 8 of 67

A	.	IN 1931 NOMES ON O	41 68 371	**		Cł	IAI	N O	FC	US	TODY	001, 00)2	S	SR#	
							11	27	48		1				C Setof	
								-	• ••		· •			CC)C#	
(ALS) Enuiro	intrest de l	1317 Sout	h 13th	Ave, K	(elso, l	WA 98			(360) ! isglob:		222 / 800-695-7222 / n	FAX (360			Pa	ge 1 of 1
Project Name Pasco LALDEN	5 Project Number: 52023/1103		14D	0000	2					T					13019 Pa	-
Decised Managers 1	L. BERGERON			ġ	0 0								11	72	17001	
Company BMEC		ERS											¥	\overline{v}		
Addrose City State	1AIN ST. WAITSBURG 14				A	64							ť			
Phone # 509 - 520-4446			SAS	, TS		9										
Sampler Signature	Sampler Printed Name		dd / V	Sified	õ	ω										
LAX15	Bot VAINEY	NUMBER	FC/537M / PFAS	60.3 Modified / TS	Ione / Misc Out 1	PBDE										
	MEYE	<u>Q</u>	E E	160	DON N	1 	~	<u>_</u>			Remarks					
CLIENT SAMPLE ID	SAMPLING N LABID Date Time State	Natrix 2														
1. NL-BI-5L-20'	11.28 1510 WA 3		\mathbf{X}	X						Ť						
2.NL-B3-SL-20'	11:28 1645 WA 5		X	X												
3. SL- B4-SL-15'	11-29 0955 VA 5		X	X			1									
4. 54- B6-51-15'	11.29 1035 VA 3		X	X			1			1						
5. SL- B7-5L-15'		501(X	X												
6. 54- 84-50-25	11-29 0910 WA 5			<u>X</u>		ΧŢ		1								
7. 54-37-50-20'	11-29-1110 14 5			X		X										
8. MWI	12-4 0845 VA 1		Х													
9. MW2	12-4 1015 141		\mathbb{X}		T	T	T									
10. MW3	12-4 1130 112 1		X													
Report Requirements	Invoice Information	iom.	eci	NC	0	300	ail	100	m	a .	Circle	which m	netals are to be analyzed			
I. Routine Report: Method Blank, Surrogate, as	P.O.# E2023/1103															
required	Bill TO: BMEC PC: Bex 545/125 MAINS												i Fe Pb Mg Mn Mo Ni K	-	-	
II. Report Dup., MS, MSD	VIALTSBURG, WA 9936	1							Sb	Ba			Cu Fe Pb Mg Mn Mo Ni F			lg
as required	Turnaround Requirements	- DEPCIA	i Insti	ructic	ons/C	comn	nents	5:			*Indicate S	tate Hy	drocarbon Procedure: AK C	A WI No	orthwest Other(Ci	ircle One)
(no raw data)	24 hr48 hr.															
	5 Day Standard															
X V. EDD																
Relinquished By:	Requested Report Date Received By:	Re	ling	uish	ed E			1		R	eceived By:		Relinguished By	<i>r</i> :	Received B	v:
			-								,					
Signature	Naomi kallen	Signature							inatu				Signature		Signature	
Printed Name V ZANCY MEVER	Printed Name	Printed Na	me					Pri	nted	Nar	ne		Printed Name		Printed Name	
Firm BMEL, INC.	Film 1215123 1000	Firm						Fin	m				Firm		Fim	
Date/Time 12-4-13		Date/Time	;					Da	ite/Ti	ime			Date/Time		Date/Time	

			Cooler Receipt	and F	resei	vatio	n Form			РМ	MH
Client RA	NEC						ice Request	K23	3619		
Received: 17	1517.3	Opened:	1715123	By:	1 8	ア …	Unloaded:	1215	123By:	1P	
1. Samples w	ere received via?	USPS		1							
•	ere received in: (cir		fea Ex	UPS E	D. tvelope	HL	PDX Other	Couri		NA NA	
-	dy seals on coolers?	· ('	NA Y N	If yes, h	-	u and u				INA	
	vere custody seals in					-	med and dated	 17	Y	- N	
			I IV	n presen	it, weie				•		
					Out o	ftemp	PM Notifi				
Temp Blank	Sample Temp	IR Gun	Cooler #/COC ID / N	A	indicate				Tracking Numb	er NA	Filed
5.	•	real	134802			مەممىيەتەرىيەت _ي			<u>78745120</u>	599:	3
	·	*									
4. Was a Temp	erature Blank prese	nt in cooler?	NAYN	If yes, n	otate th	e tempe	rature in the a	ppropriate	e column above:		I
If no, take t	he temperature of a	representativ	e sample bottle contain	ned withi	in the co	oler; no	otate in the col	lumn "San	nple Temp":	•••	
5. Were sample	es received within the	he method spe	cified temperature ran	ges?					NA Y) м	
If no, were t	they received on ice	and same day	y as collected? If not, i	notate the	e cooler	# above	e and notify th	e PM.	NA Y	N	
If applicable, ti	ssue samples were	received:	Frozen Partially T	hawed	Thawe	ed			"Backgood and all the "		
6. Packing m	aterial: Inserts A	Baggles) Bu	bble Wrap Gel Pack	ts Wet	Ice D	rv Ice	Sleeves B	OXES			
-	dy papers properly		Contract of the second s	And and a second second		· • · · · · · · · · · · · · · · · · · ·		,	NA TY) N	
	les received in good	·							NA Y	N	
9. Were all sa	mple labels comple	te (ie, analysi	s, preservation, etc.)?						NA (Y	N	
10. Did all sam	ple labels and tags	agree with cu	stody papers?						NA Y	N	
11. Were appro	opriate bottles/conta	ainers and volu	umes received for the 1	ests indi	cated?				NA (Y)) N	
12. Were the p	H-preserved bottles	s (see SMO GI	EN SOP) received at th	e approp	oriate pł	1? India	cate in the tab	le below	NA Y	N	
13. Were VOA	vials received with	hout headspac	e? Indicate in the tabl	e below.					NA Y	N	
14. Was C12/F	les negative?								NA Y	N	
15. Were samp	les received within	the method sp	pecified time limit? If	not, nota	te the er	tor belo	ow and notify	the PM	NA Y	N	
16. Were 100n	nl sterile microbiolo	ogy bottles fill	ed exactly to the 100n	nl mark?	N	Â	Y N		Underfilled	Overfille	:d
6	ample ID on Bott	No	Semal	e ID on	000				Identified by:		······································
		96	- Sampi		000				identitied by;		
									·····		
L							I				
	- · · ·	,	Bottle Count	Head-		· · · · ·	· · · · · · · · · · · · · · · · · · ·	Volume	Reagent Lot		
	Sample ID		Bottle Type		Broke	pH	Reagent	added	Number	Initials	Time
									·····		
				1							

Notes, Discrepancies, Resolutions:

G:\SMO\2022 Forms

1 -

SOP: SMO-GEN

Reviewed: 12/9/2022

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 11 of 67

Analytical Report

Client:	Onsite Environmental Incorporated
Project:	Port of Pasco Lagoons/E2023/1103
Sample Matrix:	Soil
Analysis Method: Prep Method:	160.3 Modified None

Service Request: K2313619 Date Collected: 11/28/23 - 11/29/23 Date Received: 12/5/23

Units: Percent Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
NL-B1-SL-20'	K2313619-001	75.4	-	-	1	12/06/23 14:26	
NL-B3-SL-20'	K2313619-002	83.1	-	-	1	12/06/23 14:26	
SL-B4-SL-15'	K2313619-003	74.1	-	-	1	12/06/23 14:26	
SL-B6-SL-15'	K2313619-004	82.6	-	-	1	12/06/23 14:26	
SL-B7-SL-15'	K2313619-005	63.5	-	-	1	12/06/23 14:26	
SL-B4-50-25-'	K2313619-006	66.9	-	-	1	12/06/23 14:26	
SL-B6-50-20'	K2313619-007	19.6	-	-	1	12/06/23 14:26	
SL-B7-50-20'	K2313619-008	22.0	-	-	1	12/06/23 14:26	

Per and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 13 of 67

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 14 of 67

Organic Compounds by HPLC/MS/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 15 of 67

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected: 11/28/23 15:10
Sample Matrix:	Soil	Date Received: 12/05/23 10:00
Sample Name:	NL-B1-SL-20'	Units: ng/g
Lab Code:	K2313619-001	Basis: Dry

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted Q
Perfluoroalkyl Sulfonic Acids (PFSAs)						
Perfluorobutane sulfonic acid (PFBS)	ND U	1.1	0.12	1	12/11/23 13:32	12/8/23
Perfluoropentane sulfonic acid (PFPeS)	ND U	1.1	0.23	1	12/11/23 13:32	12/8/23
Perfluorohexane sulfonic acid (PFHxS)	ND U	1.1	0.46	1	12/11/23 13:32	12/8/23
Perfluoroheptane sulfonic acid (PFHpS)	ND U	1.1	0.12	1	12/11/23 13:32	12/8/23
Perfluorooctane sulfonic acid (PFOS)	0.30 J	1.1	0.12	1	12/11/23 13:32	12/8/23
Perfluorononane sulfonic acid (PFNS)	ND U	1.1	0.46	1	12/11/23 13:32	12/8/23
Perfluorodecane sulfonic acid (PFDS)	ND U	1.1	0.23	1	12/11/23 13:32	12/8/23
Perfluoroalkyl Carboxylic Acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ND U	1.1	0.12	1	12/11/23 13:32	12/8/23
Perfluoropentanoic acid (PFPeA)	ND U	1.1	0.23	1	12/11/23 13:32	12/8/23
Perfluorohexanoic acid (PFHxA)	ND U	1.1	0.23	1	12/11/23 13:32	12/8/23
Perfluoroheptanoic acid (PFHpA)	ND U	1.1	0.23	1	12/11/23 13:32	12/8/23
Perfluorooctanoic acid (PFOA)	ND U	1.1	0.23	1	12/11/23 13:32	12/8/23
Perfluorononanoic acid (PFNA)	ND U	1.1	0.46	1	12/11/23 13:32	12/8/23
Perfluorodecanoic acid (PFDA)	ND U	1.1	0.23	1	12/11/23 13:32	12/8/23
Perfluoroundecanoic acid (PFUnDA)	ND U	1.1	0.23	1	12/11/23 13:32	12/8/23
Perfluorododecanoic acid (PFDOA)	ND U	1.1	0.23	1	12/11/23 13:32	12/8/23
Perfluorotridecanoic acid (PFTrDA)	ND U	1.1	0.12	1	12/11/23 13:32	12/8/23
Perfluorotetradecanoic acid (PFTDA)	ND U	1.1	0.12	1	12/11/23 13:32	12/8/23
Perfluoroalkyl Sulfonamido Substances						
Perfluorooctane sulfonamide (PFOSAm)	ND U	1.1	0.12	1	12/11/23 13:32	12/8/23
N-Methylperfluorooctane sulfonamide	ND U	1.1	0.12	1	12/11/23 13:32	12/8/23
(MeFOSA)						
N-Ethylperfluorooctane sulfonamide (EtFOSAm)	ND U	1.1	0.23	1	12/11/23 13:32	12/8/23
N-Methylperfluorooctane sulfonamido	ND U	1.1	0.12	1	12/11/23 13:32	12/8/23
ethanol (MeFOSE)			0.10	1	10/11/02 12:20	10/0/02
N-Ethylperfluorooctane sulfonamido ethanol (EtFOSE)	ND U	1.1	0.12	1	12/11/23 13:32	12/8/23
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	ND U	2.3	1.2	1	12/11/23 13:32	12/8/23
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	0.93 J	1.1	0.46	1	12/11/23 13:32	12/8/23

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected: 11/28/23 15:10
Sample Matrix:	Soil	Date Received: 12/05/23 10:00
Sample Name: Lab Code:	NL-B1-SL-20' K2313619-001	Units: ng/g Basis: Dry

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted (2
Fluorotelomer Sulfonic Acids (FTSAs)							
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	1.1	0.23	1	12/11/23 13:32	12/8/23	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	1.1	0.23	1	12/11/23 13:32	12/8/23	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	1.1	0.12	1	12/11/23 13:32	12/8/23	
1H, 1H, 2H, 2H-perfluorododecane sulfonic acid (10:2 FTS)	ND U	1.1	0.12	1	12/11/23 13:32	12/8/23	
Perfluoroalkyl Ether Carboxylic Acids (PFE	CAs)						
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	1.1	0.12	1	12/11/23 13:32	12/8/23	

Surrogate Name	% Rec	Control Limits	Date Analyzed Q	
13C3-PFBS	69	33 - 109	12/11/23 13:32	
18O2-PFHxS	59	36 - 120	12/11/23 13:32	
13C4-PFOS	65	32 - 130	12/11/23 13:32	
13C4-PFBA	64	34 - 116	12/11/23 13:32	
13C5-PFPeA	70	39 - 133	12/11/23 13:32	
13C2-PFHxA	70	32 - 136	12/11/23 13:32	
13C4-PFHpA	82	36 - 133	12/11/23 13:32	
13C4-PFOA	77	31 - 134	12/11/23 13:32	
13C5-PFNA	77	27 - 133	12/11/23 13:32	
13C2-PFDA	80	30 - 137	12/11/23 13:32	
13C2-PFUnDA	79	32 - 146	12/11/23 13:32	
13C2-PFDoDA	80	36 - 136	12/11/23 13:32	
13C2-PFTeDA	91	39 - 138	12/11/23 13:32	
13C8-FOSA	73	40 - 132	12/11/23 13:32	
D3-MeFOSA	71	51 - 132	12/11/23 13:32	
D5-EtFOSA	68	49 - 123	12/11/23 13:32	
D7-MeFOSE	67	53 - 125	12/11/23 13:32	
D9-EtFOSE	70	45 - 121	12/11/23 13:32	
D3-MeFOSAA	100	20 - 154	12/11/23 13:32	
D5-EtFOSAA	110	29 - 153	12/11/23 13:32	
13C2-4:2 FTS	98	18 - 127	12/11/23 13:32	
13C2-6:2 FTS	93	30 - 140	12/11/23 13:32	
13C2-8:2 FTS	111	9 - 171	12/11/23 13:32	
13C3-HFPO-DA	66	33 - 130	12/11/23 13:32	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected: 11/28/23 16:45
Sample Matrix:	Soil	Date Received: 12/05/23 10:00
Sample Name:	NL-B3-SL-20'	Units: ng/g
Lab Code:	K2313619-002	Basis: Dry

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted	Q
Perfluoroalkyl Sulfonic Acids (PFSAs)							
Perfluorobutane sulfonic acid (PFBS)	ND U	0.99	0.10	1	12/11/23 14:03	12/8/23	
Perfluoropentane sulfonic acid (PFPeS)	ND U	0.99	0.20	1	12/11/23 14:03	12/8/23	
Perfluorohexane sulfonic acid (PFHxS)	ND U	0.99	0.40	1	12/11/23 14:03	12/8/23	
Perfluoroheptane sulfonic acid (PFHpS)	ND U	0.99	0.10	1	12/11/23 14:03	12/8/23	
Perfluorooctane sulfonic acid (PFOS)	0.16 J	0.99	0.10	1	12/11/23 14:03	12/8/23	
Perfluorononane sulfonic acid (PFNS)	ND U	0.99	0.40	1	12/11/23 14:03	12/8/23	
Perfluorodecane sulfonic acid (PFDS)	ND U	0.99	0.20	1	12/11/23 14:03	12/8/23	
Perfluoroalkyl Carboxylic Acids (PFCAs)							
Perfluorobutanoic acid (PFBA)	ND U	0.99	0.10	1	12/11/23 14:03	12/8/23	
Perfluoropentanoic acid (PFPeA)	ND U	0.99	0.20	1	12/11/23 14:03	12/8/23	
Perfluorohexanoic acid (PFHxA)	ND U	0.99	0.20	1	12/11/23 14:03	12/8/23	
Perfluoroheptanoic acid (PFHpA)	ND U	0.99	0.20	1	12/11/23 14:03	12/8/23	
Perfluorooctanoic acid (PFOA)	ND U	0.99	0.20	1	12/11/23 14:03	12/8/23	
Perfluorononanoic acid (PFNA)	ND U	0.99	0.40	1	12/11/23 14:03	12/8/23	
Perfluorodecanoic acid (PFDA)	ND U	0.99	0.20	1	12/11/23 14:03	12/8/23	
Perfluoroundecanoic acid (PFUnDA)	ND U	0.99	0.20	1	12/11/23 14:03	12/8/23	
Perfluorododecanoic acid (PFDOA)	ND U	0.99	0.20	1	12/11/23 14:03	12/8/23	
Perfluorotridecanoic acid (PFTrDA)	ND U	0.99	0.10	1	12/11/23 14:03	12/8/23	
Perfluorotetradecanoic acid (PFTDA)	ND U	0.99	0.10	1	12/11/23 14:03	12/8/23	
Perfluoroalkyl Sulfonamido Substances							
Perfluorooctane sulfonamide (PFOSAm)	ND U	0.99	0.10	1	12/11/23 14:03	12/8/23	
N-Methylperfluorooctane sulfonamide	ND U	0.99	0.10	1	12/11/23 14:03	12/8/23	
(MeFOSA)							
N-Ethylperfluorooctane sulfonamide	ND U	0.99	0.20	1	12/11/23 14:03	12/8/23	
(EtFOSAm)		0.00	0.10	1	10/11/02 14:02	10/0/02	
N-Methylperfluorooctane sulfonamido ethanol (MeFOSE)	ND U	0.99	0.10	1	12/11/23 14:03	12/8/23	
N-Ethylperfluorooctane sulfonamido	ND U	0.99	0.10	1	12/11/23 14:03	12/8/23	
ethanol (EtFOSE)							
N-Methylperfluorooctane sulfonamido	ND U	2.0	1.0	1	12/11/23 14:03	12/8/23	
acetic acid (NMeFOSAA) N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	ND U	0.99	0.40	1	12/11/23 14:03	12/8/23	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K2313619	
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected: 11/28/23 16:4	45
Sample Matrix:	Soil	Date Received: 12/05/23 10:0	00
Sample Name: Lab Code:	NL-B3-SL-20' K2313619-002	Units: ng/g Basis: Dry	

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted	Q
Fluorotelomer Sulfonic Acids (FTSAs)							
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	0.99	0.20	1	12/11/23 14:03	12/8/23	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	0.99	0.20	1	12/11/23 14:03	12/8/23	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	0.99	0.10	1	12/11/23 14:03	12/8/23	
1H, 1H, 2H, 2H-perfluorododecane sulfonic acid (10:2 FTS)	ND U	0.99	0.10	1	12/11/23 14:03	12/8/23	
Perfluoroalkyl Ether Carboxylic Acids (PFECAs)							
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	0.99	0.10	1	12/11/23 14:03	12/8/23	

Surrogate Name	% Rec	Control Limits	Date Analyzed Q
13C3-PFBS	66	33 - 109	12/11/23 14:03
18O2-PFHxS	70	36 - 120	12/11/23 14:03
13C4-PFOS	61	32 - 130	12/11/23 14:03
13C4-PFBA	63	34 - 116	12/11/23 14:03
13C5-PFPeA	69	39 - 133	12/11/23 14:03
13C2-PFHxA	87	32 - 136	12/11/23 14:03
13C4-PFHpA	65	36 - 133	12/11/23 14:03
13C4-PFOA	70	31 - 134	12/11/23 14:03
13C5-PFNA	76	27 - 133	12/11/23 14:03
13C2-PFDA	86	30 - 137	12/11/23 14:03
13C2-PFUnDA	84	32 - 146	12/11/23 14:03
13C2-PFDoDA	78	36 - 136	12/11/23 14:03
13C2-PFTeDA	85	39 - 138	12/11/23 14:03
13C8-FOSA	71	40 - 132	12/11/23 14:03
D3-MeFOSA	60	51 - 132	12/11/23 14:03
D5-EtFOSA	60	49 - 123	12/11/23 14:03
D7-MeFOSE	72	53 - 125	12/11/23 14:03
D9-EtFOSE	71	45 - 121	12/11/23 14:03
D3-MeFOSAA	97	20 - 154	12/11/23 14:03
D5-EtFOSAA	110	29 - 153	12/11/23 14:03
13C2-4:2 FTS	86	18 - 127	12/11/23 14:03
13C2-6:2 FTS	78	30 - 140	12/11/23 14:03
13C2-8:2 FTS	128	9 - 171	12/11/23 14:03
13C3-HFPO-DA	66	33 - 130	12/11/23 14:03

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected: 11/29/23 08:55
Sample Matrix:	Soil	Date Received: 12/05/23 10:00
Sample Name:	SL-B4-SL-15'	Units: ng/g
Lab Code:	K2313619-003	Basis: Dry

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted	Q
Perfluoroalkyl Sulfonic Acids (PFSAs)							
Perfluorobutane sulfonic acid (PFBS)	ND U	1.1	0.12	1	12/11/23 14:14	12/8/23	
Perfluoropentane sulfonic acid (PFPeS)	ND U	1.1	0.23	1	12/11/23 14:14	12/8/23	
Perfluorohexane sulfonic acid (PFHxS)	ND U	1.1	0.45	1	12/11/23 14:14	12/8/23	
Perfluoroheptane sulfonic acid (PFHpS)	ND U	1.1	0.12	1	12/11/23 14:14	12/8/23	
Perfluorooctane sulfonic acid (PFOS)	ND U	1.1	0.12	1	12/11/23 14:14	12/8/23	
Perfluorononane sulfonic acid (PFNS)	ND U	1.1	0.45	1	12/11/23 14:14	12/8/23	
Perfluorodecane sulfonic acid (PFDS)	ND U	1.1	0.23	1	12/11/23 14:14	12/8/23	
Perfluoroalkyl Carboxylic Acids (PFCAs)							
Perfluorobutanoic acid (PFBA)	ND U	1.1	0.12	1	12/11/23 14:14	12/8/23	
Perfluoropentanoic acid (PFPeA)	ND U	1.1	0.23	1	12/11/23 14:14	12/8/23	
Perfluorohexanoic acid (PFHxA)	ND U	1.1	0.23	1	12/11/23 14:14	12/8/23	
Perfluoroheptanoic acid (PFHpA)	ND U	1.1	0.23	1	12/11/23 14:14	12/8/23	
Perfluorooctanoic acid (PFOA)	ND U	1.1	0.23	1	12/11/23 14:14	12/8/23	
Perfluorononanoic acid (PFNA)	ND U	1.1	0.45	1	12/11/23 14:14	12/8/23	
Perfluorodecanoic acid (PFDA)	ND U	1.1	0.23	1	12/11/23 14:14	12/8/23	
Perfluoroundecanoic acid (PFUnDA)	ND U	1.1	0.23	1	12/11/23 14:14	12/8/23	
Perfluorododecanoic acid (PFDOA)	ND U	1.1	0.23	1	12/11/23 14:14	12/8/23	
Perfluorotridecanoic acid (PFTrDA)	ND U	1.1	0.12	1	12/11/23 14:14	12/8/23	
Perfluorotetradecanoic acid (PFTDA)	ND U	1.1	0.12	1	12/11/23 14:14	12/8/23	
Perfluoroalkyl Sulfonamido Substances							
Perfluorooctane sulfonamide (PFOSAm)	ND U	1.1	0.12	1	12/11/23 14:14	12/8/23	
N-Methylperfluorooctane sulfonamide	ND U	1.1	0.12	1	12/11/23 14:14	12/8/23	
(MeFOSA)							
N-Ethylperfluorooctane sulfonamide (EtFOSAm)	ND U	1.1	0.23	1	12/11/23 14:14	12/8/23	
N-Methylperfluorooctane sulfonamido	ND U	1.1	0.12	1	12/11/23 14:14	12/8/23	
ethanol (MeFOSE)							
N-Ethylperfluorooctane sulfonamido ethanol (EtFOSE)	ND U	1.1	0.12	1	12/11/23 14:14	12/8/23	
N-Methylperfluorooctane sulfonamido	ND U	2.2	1.2	1	12/11/23 14:14	12/8/23	
acetic acid (NMeFOSAA) N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	0.72 J	1.1	0.45	1	12/11/23 14:14	12/8/23	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request:	K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected:	11/29/23 08:55
Sample Matrix:	Soil	Date Received:	12/05/23 10:00
Sample Name: Lab Code:	SL-B4-SL-15' K2313619-003	Units: Basis:	00

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted Q	2
Fluorotelomer Sulfonic Acids (FTSAs)							
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	1.1	0.23	1	12/11/23 14:14	12/8/23	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	1.1	0.23	1	12/11/23 14:14	12/8/23	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	1.1	0.12	1	12/11/23 14:14	12/8/23	
1H, 1H, 2H, 2H-perfluorododecane sulfonic acid (10:2 FTS)	ND U	1.1	0.12	1	12/11/23 14:14	12/8/23	
Perfluoroalkyl Ether Carboxylic Acids (PFEC	CAs)						
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	1.1	0.12	1	12/11/23 14:14	12/8/23	

Surrogate Name	% Rec	Control Limits	Date Analyzed Q	
13C3-PFBS	70	33 - 109	12/11/23 14:14	
18O2-PFHxS	68	36 - 120	12/11/23 14:14	
13C4-PFOS	69	32 - 130	12/11/23 14:14	
13C4-PFBA	66	34 - 116	12/11/23 14:14	
13C5-PFPeA	70	39 - 133	12/11/23 14:14	
13C2-PFHxA	74	32 - 136	12/11/23 14:14	
13C4-PFHpA	81	36 - 133	12/11/23 14:14	
13C4-PFOA	69	31 - 134	12/11/23 14:14	
13C5-PFNA	77	27 - 133	12/11/23 14:14	
13C2-PFDA	89	30 - 137	12/11/23 14:14	
13C2-PFUnDA	82	32 - 146	12/11/23 14:14	
13C2-PFDoDA	85	36 - 136	12/11/23 14:14	
13C2-PFTeDA	89	39 - 138	12/11/23 14:14	
13C8-FOSA	72	40 - 132	12/11/23 14:14	
D3-MeFOSA	66	51 - 132	12/11/23 14:14	
D5-EtFOSA	65	49 - 123	12/11/23 14:14	
D7-MeFOSE	67	53 - 125	12/11/23 14:14	
D9-EtFOSE	77	45 - 121	12/11/23 14:14	
D3-MeFOSAA	95	20 - 154	12/11/23 14:14	
D5-EtFOSAA	101	29 - 153	12/11/23 14:14	
13C2-4:2 FTS	77	18 - 127	12/11/23 14:14	
13C2-6:2 FTS	65	30 - 140	12/11/23 14:14	
13C2-8:2 FTS	98	9 - 171	12/11/23 14:14	
13C3-HFPO-DA	64	33 - 130	12/11/23 14:14	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected: 11/29/23 10:35
Sample Matrix:	Soil	Date Received: 12/05/23 10:00
Sample Name:	SL-B6-SL-15'	Units: ng/g
Lab Code:	K2313619-004	Basis: Dry

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted Q	2
Perfluoroalkyl Sulfonic Acids (PFSAs)							
Perfluorobutane sulfonic acid (PFBS)	ND U	1.1	0.11	1	12/11/23 14:24	12/8/23	
Perfluoropentane sulfonic acid (PFPeS)	ND U	1.1	0.22	1	12/11/23 14:24	12/8/23	
Perfluorohexane sulfonic acid (PFHxS)	ND U	1.1	0.44	1	12/11/23 14:24	12/8/23	
Perfluoroheptane sulfonic acid (PFHpS)	ND U	1.1	0.11	1	12/11/23 14:24	12/8/23	
Perfluorooctane sulfonic acid (PFOS)	0.21 J	1.1	0.11	1	12/11/23 14:24	12/8/23	
Perfluorononane sulfonic acid (PFNS)	ND U	1.1	0.44	1	12/11/23 14:24	12/8/23	
Perfluorodecane sulfonic acid (PFDS)	ND U	1.1	0.22	1	12/11/23 14:24	12/8/23	
Perfluoroalkyl Carboxylic Acids (PFCAs)							
Perfluorobutanoic acid (PFBA)	ND U	1.1	0.11	1	12/11/23 14:24	12/8/23	
Perfluoropentanoic acid (PFPeA)	ND U	1.1	0.22	1	12/11/23 14:24	12/8/23	
Perfluorohexanoic acid (PFHxA)	ND U	1.1	0.22	1	12/11/23 14:24	12/8/23	
Perfluoroheptanoic acid (PFHpA)	ND U	1.1	0.22	1	12/11/23 14:24	12/8/23	
Perfluorooctanoic acid (PFOA)	ND U	1.1	0.22	1	12/11/23 14:24	12/8/23	
Perfluorononanoic acid (PFNA)	ND U	1.1	0.44	1	12/11/23 14:24	12/8/23	
Perfluorodecanoic acid (PFDA)	ND U	1.1	0.22	1	12/11/23 14:24	12/8/23	
Perfluoroundecanoic acid (PFUnDA)	ND U	1.1	0.22	1	12/11/23 14:24	12/8/23	
Perfluorododecanoic acid (PFDOA)	ND U	1.1	0.22	1	12/11/23 14:24	12/8/23	
Perfluorotridecanoic acid (PFTrDA)	ND U	1.1	0.11	1	12/11/23 14:24	12/8/23	
Perfluorotetradecanoic acid (PFTDA)	ND U	1.1	0.11	1	12/11/23 14:24	12/8/23	
Perfluoroalkyl Sulfonamido Substances							
Perfluorooctane sulfonamide (PFOSAm)	ND U	1.1	0.11	1	12/11/23 14:24	12/8/23	
N-Methylperfluorooctane sulfonamide	ND U	1.1	0.11	1	12/11/23 14:24	12/8/23	
(MeFOSA)							
N-Ethylperfluorooctane sulfonamide (EtFOSAm)	ND U	1.1	0.22	1	12/11/23 14:24	12/8/23	
N-Methylperfluorooctane sulfonamido	ND U	1.1	0.11	1	12/11/23 14:24	12/8/23	
ethanol (MeFOSE)							
N-Ethylperfluorooctane sulfonamido ethanol (EtFOSE)	ND U	1.1	0.11	1	12/11/23 14:24	12/8/23	
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	ND U	2.2	1.1	1	12/11/23 14:24	12/8/23	
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	ND U	1.1	0.44	1	12/11/23 14:24	12/8/23	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected: 11/29/23 10:35
Sample Matrix:	Soil	Date Received: 12/05/23 10:00
Sample Name: Lab Code:	SL-B6-SL-15' K2313619-004	Units: ng/g Basis: Dry

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted	Q
Fluorotelomer Sulfonic Acids (FTSAs)							
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	1.1	0.22	1	12/11/23 14:24	12/8/23	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	1.1	0.22	1	12/11/23 14:24	12/8/23	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	1.1	0.11	1	12/11/23 14:24	12/8/23	
1H, 1H, 2H, 2H-perfluorododecane sulfonic acid (10:2 FTS)	ND U	1.1	0.11	1	12/11/23 14:24	12/8/23	
Perfluoroalkyl Ether Carboxylic Acids (PFEC	CAs)						
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	1.1	0.11	1	12/11/23 14:24	12/8/23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C3-PFBS	73	33 - 109	12/11/23 14:24	
18O2-PFHxS	79	36 - 120	12/11/23 14:24	
13C4-PFOS	66	32 - 130	12/11/23 14:24	
13C4-PFBA	67	34 - 116	12/11/23 14:24	
13C5-PFPeA	72	39 - 133	12/11/23 14:24	
13C2-PFHxA	88	32 - 136	12/11/23 14:24	
13C4-PFHpA	72	36 - 133	12/11/23 14:24	
13C4-PFOA	73	31 - 134	12/11/23 14:24	
13C5-PFNA	77	27 - 133	12/11/23 14:24	
13C2-PFDA	86	30 - 137	12/11/23 14:24	
13C2-PFUnDA	84	32 - 146	12/11/23 14:24	
13C2-PFDoDA	81	36 - 136	12/11/23 14:24	
13C2-PFTeDA	92	39 - 138	12/11/23 14:24	
13C8-FOSA	76	40 - 132	12/11/23 14:24	
D3-MeFOSA	70	51 - 132	12/11/23 14:24	
D5-EtFOSA	68	49 - 123	12/11/23 14:24	
D7-MeFOSE	74	53 - 125	12/11/23 14:24	
D9-EtFOSE	81	45 - 121	12/11/23 14:24	
D3-MeFOSAA	92	20 - 154	12/11/23 14:24	
D5-EtFOSAA	111	29 - 153	12/11/23 14:24	
13C2-4:2 FTS	91	18 - 127	12/11/23 14:24	
13C2-6:2 FTS	71	30 - 140	12/11/23 14:24	
13C2-8:2 FTS	98	9 - 171	12/11/23 14:24	
13C3-HFPO-DA	69	33 - 130	12/11/23 14:24	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected: 11/29/23 11:05
Sample Matrix:	Soil	Date Received: 12/05/23 10:00
Sample Name:	SL-B7-SL-15'	Units: ng/g
Lab Code:	K2313619-005	Basis: Dry

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted Q	
Perfluoroalkyl Sulfonic Acids (PFSAs)							
Perfluorobutane sulfonic acid (PFBS)	ND U	1.2	0.13	1	12/11/23 14:35	12/8/23	
Perfluoropentane sulfonic acid (PFPeS)	ND U	1.2	0.25	1	12/11/23 14:35	12/8/23	
Perfluorohexane sulfonic acid (PFHxS)	ND U	1.2	0.50	1	12/11/23 14:35	12/8/23	
Perfluoroheptane sulfonic acid (PFHpS)	ND U	1.2	0.13	1	12/11/23 14:35	12/8/23	
Perfluorooctane sulfonic acid (PFOS)	ND U	1.2	0.13	1	12/11/23 14:35	12/8/23	
Perfluorononane sulfonic acid (PFNS)	ND U	1.2	0.50	1	12/11/23 14:35	12/8/23	
Perfluorodecane sulfonic acid (PFDS)	ND U	1.2	0.25	1	12/11/23 14:35	12/8/23	
Perfluoroalkyl Carboxylic Acids (PFCAs)							
Perfluorobutanoic acid (PFBA)	ND U	1.2	0.13	1	12/11/23 14:35	12/8/23	
Perfluoropentanoic acid (PFPeA)	ND U	1.2	0.25	1	12/11/23 14:35	12/8/23	
Perfluorohexanoic acid (PFHxA)	ND U	1.2	0.25	1	12/11/23 14:35	12/8/23	
Perfluoroheptanoic acid (PFHpA)	ND U	1.2	0.25	1	12/11/23 14:35	12/8/23	
Perfluorooctanoic acid (PFOA)	ND U	1.2	0.25	1	12/11/23 14:35	12/8/23	
Perfluorononanoic acid (PFNA)	ND U	1.2	0.50	1	12/11/23 14:35	12/8/23	
Perfluorodecanoic acid (PFDA)	ND U	1.2	0.25	1	12/11/23 14:35	12/8/23	
Perfluoroundecanoic acid (PFUnDA)	ND U	1.2	0.25	1	12/11/23 14:35	12/8/23	
Perfluorododecanoic acid (PFDOA)	ND U	1.2	0.25	1	12/11/23 14:35	12/8/23	
Perfluorotridecanoic acid (PFTrDA)	ND U	1.2	0.13	1	12/11/23 14:35	12/8/23	
Perfluorotetradecanoic acid (PFTDA)	ND U	1.2	0.13	1	12/11/23 14:35	12/8/23	
Perfluoroalkyl Sulfonamido Substances							
Perfluorooctane sulfonamide (PFOSAm)	ND U	1.2	0.13	1	12/11/23 14:35	12/8/23	
N-Methylperfluorooctane sulfonamide	ND U	1.2	0.13	1	12/11/23 14:35	12/8/23	
(MeFOSA)							
N-Ethylperfluorooctane sulfonamide (EtFOSAm)	ND U	1.2	0.25	1	12/11/23 14:35	12/8/23	
N-Methylperfluorooctane sulfonamido	ND U	1.2	0.13	1	12/11/23 14:35	12/8/23	
ethanol (MeFOSE)							
N-Ethylperfluorooctane sulfonamido ethanol (EtFOSE)	ND U	1.2	0.13	1	12/11/23 14:35	12/8/23	
N-Methylperfluorooctane sulfonamido	ND U	2.5	1.3	1	12/11/23 14:35	12/8/23	
acetic acid (NMeFOSAA) N-Ethylperfluorooctane sulfonamido acetic	2.9	1.2	0.50	1	12/11/23 14:35	12/8/23	
acid (NEtFOSAA)	2.7	1.2	0.30	1	12/11/23 17.33	12/0/23	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected: 11/29/23 11:05
Sample Matrix:	Soil	Date Received: 12/05/23 10:00
Sample Name: Lab Code:	SL-B7-SL-15' K2313619-005	Units: ng/g Basis: Dry

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted	Q
Fluorotelomer Sulfonic Acids (FTSAs)							
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	1.2	0.25	1	12/11/23 14:35	12/8/23	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	1.2	0.25	1	12/11/23 14:35	12/8/23	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	1.2	0.13	1	12/11/23 14:35	12/8/23	
1H, 1H, 2H, 2H-perfluorododecane sulfonic acid (10:2 FTS)	ND U	1.2	0.13	1	12/11/23 14:35	12/8/23	
Perfluoroalkyl Ether Carboxylic Acids (PFE	CAs)						
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	1.2	0.13	1	12/11/23 14:35	12/8/23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C3-PFBS	61	33 - 109	12/11/23 14:35	
18O2-PFHxS	63	36 - 120	12/11/23 14:35	
13C4-PFOS	58	32 - 130	12/11/23 14:35	
13C4-PFBA	55	34 - 116	12/11/23 14:35	
13C5-PFPeA	62	39 - 133	12/11/23 14:35	
13C2-PFHxA	67	32 - 136	12/11/23 14:35	
13C4-PFHpA	68	36 - 133	12/11/23 14:35	
13C4-PFOA	62	31 - 134	12/11/23 14:35	
13C5-PFNA	66	27 - 133	12/11/23 14:35	
13C2-PFDA	76	30 - 137	12/11/23 14:35	
13C2-PFUnDA	78	32 - 146	12/11/23 14:35	
13C2-PFDoDA	73	36 - 136	12/11/23 14:35	
13C2-PFTeDA	81	39 - 138	12/11/23 14:35	
13C8-FOSA	69	40 - 132	12/11/23 14:35	
D3-MeFOSA	60	51 - 132	12/11/23 14:35	
D5-EtFOSA	65	49 - 123	12/11/23 14:35	
D7-MeFOSE	65	53 - 125	12/11/23 14:35	
D9-EtFOSE	71	45 - 121	12/11/23 14:35	
D3-MeFOSAA	82	20 - 154	12/11/23 14:35	
D5-EtFOSAA	93	29 - 153	12/11/23 14:35	
13C2-4:2 FTS	78	18 - 127	12/11/23 14:35	
13C2-6:2 FTS	71	30 - 140	12/11/23 14:35	
13C2-8:2 FTS	107	9 - 171	12/11/23 14:35	
13C3-HFPO-DA	59	33 - 130	12/11/23 14:35	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request:	K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected:	12/04/23 08:45
Sample Matrix:	Water	Date Received:	12/05/23 10:00
Sample Name:	MW1	Units:	ng/L
Lab Code:	K2313619-009	Basis:	NA

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	Date Extracted	Q
Perfluoroalkyl Sulfonic Acids (PFSAs)							
Perfluorobutane sulfonic acid (PFBS)	ND U	25	1.4	1	12/19/23 20:19	12/18/23	
Perfluoropentane sulfonic acid (PFPeS)	ND U	25	8.0	1	12/19/23 20:19	12/18/23	
Perfluorohexane sulfonic acid (PFHxS)	ND U	25	6.5	1	12/19/23 20:19	12/18/23	
Perfluoroheptane sulfonic acid (PFHpS)	ND U	25	2.2	1	12/19/23 20:19	12/18/23	
Perfluorooctane sulfonic acid (PFOS)	4.6 J	25	2.2	1	12/19/23 20:19	12/18/23	
Perfluorononane sulfonic acid (PFNS)	ND U	25	3.0	1	12/19/23 20:19	12/18/23	
Perfluorodecane sulfonic acid (PFDS)	ND U	25	1.5	1	12/19/23 20:19	12/18/23	
Perfluoroalkyl Carboxylic Acids (PFCAs)							
Perfluorobutanoic acid (PFBA)	ND U	25	2.0	1	12/19/23 20:19	12/18/23	
Perfluoropentanoic acid (PFPeA)	ND U	25	8.5	1	12/19/23 20:19	12/18/23	
Perfluorohexanoic acid (PFHxA)	ND U	50	44	1	12/19/23 20:19	12/18/23	
Perfluoroheptanoic acid (PFHpA)	ND U	25	3.2	1	12/19/23 20:19	12/18/23	
Perfluorooctanoic acid (PFOA)	2.7 J	10	1.8	1	12/19/23 20:19	12/18/23	
Perfluorononanoic acid (PFNA)	ND U	25	5.5	1	12/19/23 20:19	12/18/23	
Perfluorodecanoic acid (PFDA)	ND U	25	6.0	1	12/19/23 20:19	12/18/23	
Perfluoroundecanoic acid (PFUnDA)	ND U	25	7.5	1	12/19/23 20:19	12/18/23	
Perfluorododecanoic acid (PFDOA)	ND U	25	6.5	1	12/19/23 20:19	12/18/23	
Perfluorotridecanoic acid (PFTrDA)	ND U	25	6.5	1	12/19/23 20:19	12/18/23	
Perfluorotetradecanoic acid (PFTDA)	ND U	25	10	1	12/19/23 20:19	12/18/23	
Perfluoroalkyl Sulfonamido Substances							
Perfluorooctane sulfonamide (PFOSAm)	ND U	25	2.6	1	12/19/23 20:19	12/18/23	
N-Methylperfluorooctane sulfonamide	2.8 J	25	2.3	1	12/19/23 20:19	12/18/23	
(MeFOSA)						10/10/20	
N-Ethylperfluorooctane sulfonamide (EtFOSAm)	ND U	25	1.4	1	12/19/23 20:19	12/18/23	
N-Methylperfluorooctane sulfonamido	ND U	25	1.5	1	12/19/23 20:19	12/18/23	
ethanol (MeFOSE)		25	0.65	1	12/10/22 20.10	10/10/02	
N-Ethylperfluorooctane sulfonamido ethanol (EtFOSE)	ND U	25	0.65	1	12/19/23 20:19	12/18/23	
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	ND U	25	7.0	1	12/19/23 20:19	12/18/23	
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	ND U	25	2.5	1	12/19/23 20:19	12/18/23	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected: 12/04/23 08:45
Sample Matrix:	Water	Date Received: 12/05/23 10:00
Sample Name: Lab Code:	MW1 K2313619-009	Units: ng/L Basis: NA

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed E	Date Extracted	Q
Fluorotelomer Sulfonic Acids (FTSAs)							
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	25	4.1	1	12/19/23 20:19	12/18/23	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	3.9 J	25	2.8	1	12/19/23 20:19	12/18/23	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	25	0.75	1	12/19/23 20:19	12/18/23	
1H, 1H, 2H, 2H-perfluorododecane sulfonic acid (10:2 FTS)	ND U	25	1.8	1	12/19/23 20:19	12/18/23	*
Perfluoroalkyl Ether Carboxylic Acids (PFf Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ECAs) ND U	25	1.5	1	12/19/23 20:19	12/18/23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C3-PFBS	71	20 - 109	12/19/23 20:19	
18O2-PFHxS	85	26 - 122	12/19/23 20:19	
13C4-PFOS	69	25 - 121	12/19/23 20:19	
13C4-PFBA	76	27 - 124	12/19/23 20:19	
13C5-PFPeA	71	27 - 138	12/19/23 20:19	
13C2-PFHxA	90	28 - 132	12/19/23 20:19	
13C4-PFHpA	70	19 - 139	12/19/23 20:19	
13C4-PFOA	69	22 - 130	12/19/23 20:19	
13C5-PFNA	81	20 - 127	12/19/23 20:19	
13C2-PFDA	65	24 - 125	12/19/23 20:19	
13C2-PFUnDA	76	22 - 125	12/19/23 20:19	
13C2-PFDoDA	71	19 - 122	12/19/23 20:19	
13C2-PFTeDA	67	13 - 124	12/19/23 20:19	
13C8-FOSA	65	18 - 109	12/19/23 20:19	
D3-MeFOSA	58	15 - 153	12/19/23 20:19	
D5-EtFOSA	55	25 - 107	12/19/23 20:19	
D7-MeFOSE	58	24 - 112	12/19/23 20:19	
D9-EtFOSE	55	19 - 109	12/19/23 20:19	
D3-MeFOSAA	69	9 - 123	12/19/23 20:19	
D5-EtFOSAA	61	12 - 126	12/19/23 20:19	
13C2-4:2 FTS	72	10 - 197	12/19/23 20:19	
13C2-6:2 FTS	67	10 - 226	12/19/23 20:19	
13C2-8:2 FTS	100	10 - 202	12/19/23 20:19	
13C3-HFPO-DA	63	22 - 135	12/19/23 20:19	

Superset Reference:23-0000682853 rev 00

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected: 12/04/23 10:15
Sample Matrix:	Water	Date Received: 12/05/23 10:00
Sample Name:	MW2	Units: ng/L
Lab Code:	K2313619-010	Basis: NA

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Perfluorolutane sulfonic acid (PFBS) ND U 25 1.4 1 12/19/23 20:51 12/18/23 Perfluorobexane sulfonic acid (PFBS) ND U 25 8.0 1 12/19/23 20:51 12/18/23 Perfluorobexane sulfonic acid (PFHS) ND U 25 8.0 1 12/19/23 20:51 12/18/23 Perfluorobexane sulfonic acid (PFHS) ND U 25 2.2 1 12/19/23 20:51 12/18/23 Perfluorotane sulfonic acid (PFDS) A3 J 25 2.2 1 12/19/23 20:51 12/18/23 Perfluorotane sulfonic acid (PFDS) ND U 25 3.0 1 12/19/23 20:51 12/18/23 Perfluorobutanoic acid (PFDA) ND U 25 8.5 1 12/19/23 20:51 12/18/23 Perfluorobutanoic acid (PFBA) ND U 25 8.5 1 12/19/23 20:51 12/18/23 Perfluorobeptanoic acid (PFBA) ND U 25 8.5 1 12/19/23 20:51 12/18/23 Perfluorobeptanoic acid (PFBA) ND U 25 5.5 1 12/18/23 12/18/23 Perfluorobeptanoic acid (PFDA)	Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	Date Extracted	Q
Perfluoropentane sulfonic acid (PFPcS) ND U 25 8.0 1 12/19/23 20:51 12/18/23 Perfluorohexane sulfonic acid (PFHSS) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorohexane sulfonic acid (PFNS) ND U 25 2.2 1 12/19/23 20:51 12/18/23 Perfluorohexane sulfonic acid (PFNS) ND U 25 3.0 1 12/19/23 20:51 12/18/23 Perfluorodakyl Carboxylic Acids (PFCAS) ND U 25 3.0 1 12/19/23 20:51 12/18/23 Perfluorohexanoic acid (PFBA) ND U 25 2.0 1 12/19/23 20:51 12/18/23 Perfluorohexanoic acid (PFBA) ND U 25 8.5 1 12/19/23 20:51 12/18/23 Perfluorohexanoic acid (PFHA) ND U 25 3.2 1 12/19/23 20:51 12/18/23 Perfluorohexanoic acid (PFNA) ND U 25 5.5 1 12/19/23 20:51 12/18/23 Perfluorohexanoic acid (PFNA) ND U 25 5.5 1 12/19/23 20:51 12/18/23 Perfluorononanoic acid (PFNA) ND U	Perfluoroalkyl Sulfonic Acids (PFSAs)							
Perfluorohexane sulfonic acid (PFHxS) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorocate sulfonic acid (PFOS) 4.3 J 25 2.2 1 12/19/23 20:51 12/18/23 Perfluorocatene sulfonic acid (PFOS) ND U 25 3.0 1 12/19/23 20:51 12/18/23 Perfluoroducane sulfonic acid (PFOS) ND U 25 3.0 1 12/19/23 20:51 12/18/23 Perfluorobutanoic acid (PFDA) ND U 25 8.5 1 12/19/23 20:51 12/18/23 Perfluorobutanoic acid (PFPA) ND U 25 8.5 1 12/19/23 20:51 12/18/23 Perfluorobutanoic acid (PFPA) ND U 25 8.5 1 12/19/23 20:51 12/18/23 Perfluorobutanoic acid (PFDA) ND U 25 3.2 1 12/19/23 20:51 12/18/23 Perfluorobucanoic acid (PFDA) ND U 25 5.5 1 12/19/23 20:51 12/18/23 Perfluoroducanoic acid (PFDA) ND U 25 6.5 1	Perfluorobutane sulfonic acid (PFBS)	ND U	25	1.4	1	12/19/23 20:51	12/18/23	
Perfluoroheptane sulfonic acid (PFHpS)NDU252.2112/19/23 20:5112/18/23Perfluoronotane sulfonic acid (PFOS)4.3J252.2112/19/23 20:5112/18/23Perfluoronane sulfonic acid (PFDS)NDU253.0112/19/23 20:5112/18/23Perfluoronane sulfonic acid (PFDS)NDU251.5112/19/23 20:5112/18/23Perfluoropentanoic acid (PFBA)NDU258.5112/19/23 20:5112/18/23Perfluoropentanoic acid (PFBA)NDU258.5112/19/23 20:5112/18/23Perfluoropentanoic acid (PFBA)NDU253.2112/19/23 20:5112/18/23Perfluorobexanoic acid (PFDA)NDU253.2112/19/23 20:5112/18/23Perfluoronotanoic acid (PFDA)NDU255.5112/19/23 20:5112/18/23Perfluorodecanoic acid (PFDA)NDU255.5112/19/23 20:5112/18/23Perfluorodecanoic acid (PFDA)NDU256.5112/19/23 20:5112/18/23Perfluorodecanoic acid (PFDA)NDU256.5112/19/23 20:5112/18/23Perfluorodecanoic acid (PFDA)NDU256.5112/19/23 20:5112/18/23Perfluorodecanoic acid (PFDA)NDU256.5112/19/23 20:5112/18/23Perfluorodicancia acid (P	Perfluoropentane sulfonic acid (PFPeS)	ND U	25	8.0	1	12/19/23 20:51		
Perfluorooctane sulfonic acid (PFOS) 4.3 J 25 2.2 1 $12/19/23$ 20:51 $12/18/23$ Perfluorononane sulfonic acid (PFDS) ND U 25 3.0 1 $12/19/23$ 20:51 $12/18/23$ Perfluoroalkyl Carboxylic Acids (PFCAs) Perfluoroalkyl Carboxylic Acids (PFCAs) Perfluoropentanoic acid (PFBA) ND U 25 2.0 1 $12/19/23$ 20:51 $12/18/23$ Perfluoropentanoic acid (PFBA) ND U 25 2.0 1 $12/19/23$ 20:51 $12/18/23$ Perfluoroheptanoic acid (PFBA) ND U 25 8.5 1 $12/19/23$ 20:51 $12/18/23$ Perfluoroheptanoic acid (PFHA) ND U 25 3.2 1 $12/19/23$ 20:51 $12/18/23$ Perfluoroheptanoic acid (PFDA) ND U 25 5.5 1 $12/19/23$ 20:51 $12/18/23$ Perfluorodecanoic acid (PFNA) ND U 25 6.0 1 $12/19/23$ 20:51 $12/18/23$ Perfluorodecanoic acid (PFDA) ND U 25 6.5 1 $12/19/23$ 20:51 $12/18/23$	Perfluorohexane sulfonic acid (PFHxS)	ND U	25	6.5				
Perfluoronanae sulfonic acid (PFNS) ND U 25 3.0 1 12/19/23 12/18/23 Perfluorodkçane sulfonic acid (PFDS) ND U 25 1.5 1 12/19/23 20:51 12/18/23 Perfluorolkyl Carboxylic Acids (PFCAs) 1 12/19/23 20:51 12/18/23 Perfluoropentanoic acid (PFBA) ND U 25 8.5 1 12/19/23 20:51 12/18/23 Perfluoropentanoic acid (PFHAA) ND U 25 8.5 1 12/19/23 20:51 12/18/23 Perfluoroctanoic acid (PFHAA) ND U 25 3.2 1 12/19/23 20:51 12/18/23 Perfluoroctanoic acid (PFDA) ND U 25 5.5 1 12/19/23 20:51 12/18/23 Perfluorodceanoic acid (PFDA) ND U 25 6.0 1 12/19/23 20:51 12/18/23 Perfluorodceanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorodceanoic acid (PFDA)	Perfluoroheptane sulfonic acid (PFHpS)	ND U						
Perfluorodecane sulfonic acid (PFDS) ND U 25 1.5 1 12/19/23 20:51 12/18/23 Perfluorobltanoic acid (PFDA) ND U 25 2.0 1 12/19/23 20:51 12/18/23 Perfluorobltanoic acid (PFPA) ND U 25 8.5 1 12/19/23 20:51 12/18/23 Perfluorobexanoic acid (PFHA) ND U 50 44 1 12/19/23 20:51 12/18/23 Perfluorobeptanoic acid (PFDA) ND U 25 3.2 1 12/19/23 20:51 12/18/23 Perfluoronanoic acid (PFDA) ND U 25 5.5 1 12/19/23 20:51 12/18/23 Perfluoronanoic acid (PFDA) ND U 25 5.5 1 12/19/23 20:51 12/18/23 Perfluorodecanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorodecanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorodecanoic acid (PFDA) ND U 25 10 1 12/19/23 20:51 12/18/	Perfluorooctane sulfonic acid (PFOS)	4.3 J		2.2				
Perfluoroalkyl Carboxylic Acids (PFCAs) Perfluoropantanoic acid (PFBA) ND U 25 2.0 1 12/19/23 20:51 12/18/23 Perfluoropentanoic acid (PFPAA) ND U 25 8.5 1 12/19/23 20:51 12/18/23 Perfluorohexanoic acid (PFPAA) ND U 50 44 1 12/19/23 20:51 12/18/23 Perfluorohexanoic acid (PFDA) ND U 25 3.2 1 12/19/23 20:51 12/18/23 Perfluorononanoic acid (PFOA) 4.1 J 10 1.8 1 12/19/23 20:51 12/18/23 Perfluorononanoic acid (PFDA) ND U 25 5.5 1 12/19/23 20:51 12/18/23 Perfluoroundecanoic acid (PFDA) ND U 25 7.5 1 12/19/23 20:51 12/18/23 Perfluorotidecanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotidecanoic acid (PFTDA) ND U 25 10 1 12/19/23 20:51 12/18/23 Perfluorotidecanoic acid (PFTDA) ND U								
Perfluorobutanoic acid (PFBA) ND U 25 2.0 1 12/19/23 20:51 12/18/23 Perfluoropentanoic acid (PFPA) ND U 25 8.5 1 12/19/23 20:51 12/18/23 Perfluoroheptanoic acid (PFPA) ND U 50 44 1 12/19/23 20:51 12/18/23 Perfluoroheptanoic acid (PFDA) ND U 25 3.2 1 12/19/23 20:51 12/18/23 Perfluorononanoic acid (PFOA) 4.1 J 10 1.8 1 12/19/23 20:51 12/18/23 Perfluorononanoic acid (PFDA) ND U 25 5.5 1 12/19/23 20:51 12/18/23 Perfluorodecanoic acid (PFDA) ND U 25 6.0 1 12/19/23 20:51 12/18/23 Perfluorodecanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotidecanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotidecanoic acid (PFDA) ND U 25 0.6 1 12/19/23 20:51 12/18/23 Perfluorotidecanoic acid (PFTDA) ND U 25 <td>Perfluorodecane sulfonic acid (PFDS)</td> <td>ND U</td> <td>25</td> <td>1.5</td> <td>1</td> <td>12/19/23 20:51</td> <td>12/18/23</td> <td></td>	Perfluorodecane sulfonic acid (PFDS)	ND U	25	1.5	1	12/19/23 20:51	12/18/23	
Perfluoropentanoic acid (PFPA)ND U258.5112/19/23 20:5112/18/23Perfluorohexanoic acid (PFHxA)ND U5044112/19/23 20:5112/18/23Perfluoroheptanoic acid (PFHpA)ND U253.2112/19/23 20:5112/18/23Perfluorononanoic acid (PFDA)4.1 J101.8112/19/23 20:5112/18/23Perfluorononanoic acid (PFDA)ND U255.5112/19/23 20:5112/18/23Perfluorondecanoic acid (PFDA)ND U256.0112/19/23 20:5112/18/23Perfluorodecanoic acid (PFDA)ND U256.5112/19/23 20:5112/18/23Perfluorodecanoic acid (PFDA)ND U256.5112/19/23 20:5112/18/23Perfluorotridecanoic acid (PFDA)ND U256.5112/19/23 20:5112/18/23Perfluorotetradecanoic acid (PFDA)ND U256.5112/19/23 20:5112/18/23Perfluorotetradecanoic acid (PFDA)ND U2510112/19/23 20:5112/18/23Perfluorotetradecanoic acid (PFDA)ND U252.6112/19/23 20:5112/18/23Perfluoroctane sulfonamide2.8 J2.52.3112/19/23 20:5112/18/23N-Methylperfluorooctane sulfonamideND U251.5112/19/23 20:5112/18/23N-Methylperfluorooctane sulfonamidoND U250.65112/19/23 20:5112/18/23	Perfluoroalkyl Carboxylic Acids (PFCAs)							
Perfluorohexanoic acid (PFHxA) ND U 50 44 1 12/19/23 20:51 12/18/23 Perfluoroheptanoic acid (PFDA) ND U 25 3.2 1 12/19/23 20:51 12/18/23 Perfluoroctanoic acid (PFOA) 4.1 J 10 1.8 1 12/19/23 20:51 12/18/23 Perfluorodcanoic acid (PFOA) ND U 25 5.5 1 12/19/23 20:51 12/18/23 Perfluorodcanoic acid (PFDA) ND U 25 6.0 1 12/19/23 20:51 12/18/23 Perfluorodcanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotidecanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotidecanoic acid (PFTDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotare sulfonamido Substances Perfluorooctane sulfonamido Substances 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamide 2.8 J 25 2.6 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido 1.7	Perfluorobutanoic acid (PFBA)	ND U	25	2.0				
Perfluoroheptanoic acid (PFHpA) ND U 25 3.2 1 12/19/23 20:51 12/18/23 Perfluoronocanoic acid (PFOA) 4.1 J 10 1.8 1 12/19/23 20:51 12/18/23 Perfluorononanoic acid (PFNA) ND U 25 5.5 1 12/19/23 20:51 12/18/23 Perfluoroundecanoic acid (PFDA) ND U 25 6.0 1 12/19/23 20:51 12/18/23 Perfluoroundecanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluoroundecanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluoroundecanoic acid (PFTDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluoroalkyl Sulfonamido Substances ND U 25 2.6 1 12/19/23 20:51 12/18/23 Perfluorooctane sulfonamide (PFOSAm) ND U 25 2.6 1 12/19/23 20:51 12/18/23 McFOSA) ND 25 1.4 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido 1.7 J 25 <td>Perfluoropentanoic acid (PFPeA)</td> <td>ND U</td> <td>25</td> <td>8.5</td> <td></td> <td></td> <td></td> <td></td>	Perfluoropentanoic acid (PFPeA)	ND U	25	8.5				
Perfluorooctanoic acid (PFOA)4.1 J101.81 $12/19/23$ 20:51 $12/18/23$ Perfluorootanoic acid (PFNA)ND U255.51 $12/19/23$ 20:51 $12/18/23$ Perfluorodecanoic acid (PFDA)ND U256.01 $12/19/23$ 20:51 $12/18/23$ Perfluoroudecanoic acid (PFUnDA)ND U256.51 $12/19/23$ 20:51 $12/18/23$ Perfluorotidecanoic acid (PFTDA)ND U256.51 $12/19/23$ 20:51 $12/18/23$ Perfluorotidecanoic acid (PFTDA)ND U256.51 $12/19/23$ 20:51 $12/18/23$ Perfluorotetradecanoic acid (PFTDA)ND U256.51 $12/19/23$ 20:51 $12/18/23$ Perfluorooctane sulfonamide SubstancesPerfluorooctane sulfonamide (PFOSAm)ND U252.61 $12/19/23$ 20:51 $12/18/23$ N-Methylperfluorooctane sulfonamide2.8 J252.31 $12/19/23$ 20:51 $12/18/23$ MeFOSA)ND U251.41 $12/19/23$ 20:51 $12/18/23$ N-Methylperfluorooctane sulfonamide1.7 J251.51 $12/19/23$ 20:51 $12/18/23$ ethanol (MeFOSE)ND U250.651 $12/19/23$ 20:51 $12/18/23$ N-Methylperfluorooctane sulfonamidoND U250.651 $12/19/23$ 20:51 $12/18/23$ N-Methylperfluorooctane sulfonamidoND U257.01 $12/19/23$ 20:51 $12/18/23$ N-Methylperfluorooctane sulfonamido	Perfluorohexanoic acid (PFHxA)	ND U	50	44	1	12/19/23 20:51	12/18/23	
Perfluorononanoic acid (PFNA) ND U 25 5.5 1 12/19/23 20:51 12/18/23 Perfluorodecanoic acid (PFDA) ND U 25 6.0 1 12/19/23 20:51 12/18/23 Perfluorodecanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorodecanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorodecanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotridecanoic acid (PFTDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluoroalkyl Sulfonamido Substances Perfluorooctane sulfonamide (PFOSAm) ND U 25 2.6 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamide 2.8 J 2.5 2.3 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamide ND U 25 1.4 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamido ND U 25 1.5 1 12/19/23 20:51 12/18/23 ethanol (MeFO	Perfluoroheptanoic acid (PFHpA)	ND U	25	3.2				
Perfluorodecanoic acid (PFDA) ND U 25 6.0 1 12/19/23 20:51 12/18/23 Perfluoroundecanoic acid (PFUnDA) ND U 25 7.5 1 12/19/23 20:51 12/18/23 Perfluoroddecanoic acid (PFDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotridecanoic acid (PFTDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotetradecanoic acid (PFTDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotetradecanoic acid (PFTDA) ND U 25 10 1 12/19/23 20:51 12/18/23 Perfluoroalkyl Sulfonamido Substances 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamide 2.8 J 2.5 2.3 1 12/19/23 20:51 12/18/23 (EtFOSAm) ND U 25 1.4 1 12/19/23 20:51 12/18/23 N-Bethylperfluorooctane sulfonamido 1.7 J 25 1.5 1 12/19/23 20:51 12/18/23 ethanol (MeFOSE) ND<	Perfluorooctanoic acid (PFOA)	4.1 J	10	1.8				
Perfluoroundecanoic acid (PFUnDA) ND U 25 7.5 1 12/19/23 20:51 12/18/23 Perfluorododecanoic acid (PFDOA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotridecanoic acid (PFTDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotetradecanoic acid (PFTDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotetradecanoic acid (PFTDA) ND U 25 10 1 12/19/23 20:51 12/18/23 Perfluoroalkyl Sulfonamido Substances 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamide 2.8 J 25 2.6 1 12/19/23 20:51 12/18/23 (MeFOSA) ND U 25 1.4 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido 1.7 J 25 1.5 1 12/19/23 20:51 12/18/23 ethanol (MeFOSE) ND U 25 0.65 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonami	Perfluorononanoic acid (PFNA)	ND U	25	5.5	1			
Perfluorododecanoic acid (PFDOA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotridecanoic acid (PFTDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotetradecanoic acid (PFTDA) ND U 25 10 1 12/19/23 20:51 12/18/23 Perfluorotetradecanoic acid (PFTDA) ND U 25 10 1 12/19/23 20:51 12/18/23 Perfluoroalkyl Sulfonamido Substances Perfluorooctane sulfonamide (PFOSAm) ND U 25 2.6 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamide 2.8 J 25 2.3 1 12/19/23 20:51 12/18/23 (MeFOSA) ND U 25 1.4 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido 1.7 J 25 1.5 1 12/19/23 20:51 12/18/23 ethanol (MeFOSE) ND U 25 0.65 1 12/19/23 20:51 12/18/23 whethylperfluorooctane sulfonamido ND U 25 7.0 1 12/19/23 20:51 12/18/23 acetic acid (NMeFOSA)	Perfluorodecanoic acid (PFDA)	ND U	25	6.0		12/19/23 20:51		
Perfluorotridecanoic acid (PFTrDA) ND U 25 6.5 1 12/19/23 20:51 12/18/23 Perfluorotetradecanoic acid (PFTDA) ND U 25 10 1 12/19/23 20:51 12/18/23 Perfluorotetradecanoic acid (PFTDA) ND U 25 10 1 12/19/23 20:51 12/18/23 Perfluoroalkyl Sulfonamido Substances Perfluoroctane sulfonamide (PFOSAm) ND U 25 2.6 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamide 2.8 J 25 2.6 1 12/19/23 20:51 12/18/23 M-Methylperfluorooctane sulfonamide 2.8 J 25 1.4 1 12/19/23 20:51 12/18/23 M-Ethylperfluorooctane sulfonamide ND U 25 1.4 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido 1.7 J 25 1.5 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamido ND U 25 7.0 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido ND U 25 7.0 1 12/19/23 20:	Perfluoroundecanoic acid (PFUnDA)	ND U	25	7.5				
Perfluorotetradecanoic acid (PFTDA) ND U 25 10 1 12/19/23 20:51 12/18/23 Perfluoroalkyl Sulfonamido Substances Perfluorooctane sulfonamide (PFOSAm) ND U 25 2.6 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamide 2.8 J 25 2.3 1 12/19/23 20:51 12/18/23 (MeFOSA) ND U 25 1.4 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamide ND U 25 1.4 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamide ND U 25 1.4 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido 1.7 J 25 1.5 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamido ND U 25 0.65 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido ND U 25 7.0 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido ND U 25 7.0 1 12/19/23 20:51 12/18/23 N-Ethylp	Perfluorododecanoic acid (PFDOA)	ND U	25	6.5				
Perfluoroalkyl Sulfonamido Substances Perfluorooctane sulfonamide (PFOSAm) ND U 25 2.6 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamide 2.8 J 25 2.3 1 12/19/23 20:51 12/18/23 (MeFOSA) ND U 25 1.4 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamide ND U 25 1.4 1 12/19/23 20:51 12/18/23 (EtFOSAm) N-Methylperfluorooctane sulfonamido 1.7 J 25 1.5 1 12/19/23 20:51 12/18/23 ethanol (MeFOSE) ND U 25 0.65 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido ND U 25 0.65 1 12/19/23 20:51 12/18/23 ethanol (EtFOSE) ND U 25 7.0 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido ND U 25 7.0 1 12/19/23 20:51 12/18/23 acetic acid (NMeFOSAA) ND U 25 2.5 1 12/19/23 20:51 12/18/23	Perfluorotridecanoic acid (PFTrDA)	ND U	25	6.5	1			
Perfluorooctane sulfonamide (PFOSAm) ND U 25 2.6 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamide 2.8 J 25 2.3 1 12/19/23 20:51 12/18/23 (MeFOSA) N-Ethylperfluorooctane sulfonamide ND U 25 1.4 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamide ND U 25 1.4 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido 1.7 J 25 1.5 1 12/19/23 20:51 12/18/23 ethanol (MeFOSE) ND U 25 0.65 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido ND U 25 0.65 1 12/19/23 20:51 12/18/23 ethanol (EtFOSE) ND U 25 7.0 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido acetic ND U 25 7.0 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamido acetic ND U 25 2.5 1 12/19/23 20:51 12/18/23	Perfluorotetradecanoic acid (PFTDA)	ND U	25	10	1	12/19/23 20:51	12/18/23	
N-Methylperfluorooctane sulfonamide 2.8 J 25 2.3 1 12/19/23 20:51 12/18/23 (MeFOSA) N-Ethylperfluorooctane sulfonamide ND U 25 1.4 1 12/19/23 20:51 12/18/23 (EtFOSAm) N-Methylperfluorooctane sulfonamido 1.7 J 25 1.5 1 12/19/23 20:51 12/18/23 ethanol (MeFOSE) ND U 25 0.65 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamido ND U 25 0.65 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido ND U 25 7.0 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido ND U 25 7.0 1 12/19/23 20:51 12/18/23 acetic acid (NMeFOSAA) ND U 25 2.5 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamido acetic ND U 25 2.5 1 12/19/23 20:51 12/18/23	Perfluoroalkyl Sulfonamido Substances							
(MeFOSA) N-Ethylperfluorooctane sulfonamide ND U 25 1.4 1 12/19/23 20:51 12/18/23 (EtFOSAm) N-Methylperfluorooctane sulfonamido 1.7 J 25 1.5 1 12/19/23 20:51 12/18/23 ethanol (MeFOSE) ND U 25 0.65 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamido ND U 25 0.65 1 12/19/23 20:51 12/18/23 ethanol (EtFOSE) ND U 25 7.0 1 12/19/23 20:51 12/18/23 octic acid (NMeFOSAA) ND U 25 7.0 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamido acetic ND U 25 2.5 1 12/19/23 20:51 12/18/23	Perfluorooctane sulfonamide (PFOSAm)	ND U	25	2.6				
N-Ethylperfluorooctane sulfonamide ND U 25 1.4 1 12/19/23 20:51 12/18/23 (EtFOSAm) N-Methylperfluorooctane sulfonamido 1.7 J 25 1.5 1 12/19/23 20:51 12/18/23 ethanol (MeFOSE) ND U 25 0.65 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamido ND U 25 0.65 1 12/19/23 20:51 12/18/23 ethanol (EtFOSE) ND U 25 7.0 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido ND U 25 7.0 1 12/19/23 20:51 12/18/23 acetic acid (NMeFOSAA) ND U 25 2.5 1 12/19/23 20:51 12/18/23		2.8 J	25	2.3	1	12/19/23 20:51	12/18/23	
(EtFOSAm)N-Methylperfluorooctane sulfonamido1.7 J251.5112/19/23 20:5112/18/23ethanol (MeFOSE)N-Ethylperfluorooctane sulfonamidoND U250.65112/19/23 20:5112/18/23ethanol (EtFOSE)N-Methylperfluorooctane sulfonamidoND U257.0112/19/23 20:5112/18/23N-Methylperfluorooctane sulfonamidoND U257.0112/19/23 20:5112/18/23N-Methylperfluorooctane sulfonamido aceticND U252.5112/19/23 20:5112/18/23					1	12/10/22 20.51	10/10/02	
N-Methylperfluorooctane sulfonamido 1.7 J 25 1.5 1 12/19/23 20:51 12/18/23 ethanol (MeFOSE) ND U 25 0.65 1 12/19/23 20:51 12/18/23 ethanol (EtFOSE) ND U 25 0.65 1 12/19/23 20:51 12/18/23 N-Methylperfluorooctane sulfonamido ND U 25 7.0 1 12/19/23 20:51 12/18/23 acetic acid (NMeFOSAA) ND U 25 2.5 1 12/19/23 20:51 12/18/23 N-Ethylperfluorooctane sulfonamido acetic ND U 25 2.5 1 12/19/23 20:51 12/18/23		ND U	25	1.4	1	12/19/23 20:51	12/18/23	
N-Ethylperfluorooctane sulfonamidoND U250.65112/19/23 20:5112/18/23ethanol (EtFOSE)ND U257.0112/19/23 20:5112/18/23N-Methylperfluorooctane sulfonamidoND U257.0112/19/23 20:5112/18/23acetic acid (NMeFOSAA)ND U252.5112/19/23 20:5112/18/23		1.7 J	25	1.5	1	12/19/23 20:51	12/18/23	
ethanol (EtFOSE)ND U257.0112/19/23 20:5112/18/23N-Methylperfluorooctane sulfonamido aceticND U252.5112/19/23 20:5112/18/23	ethanol (MeFOSE)							
N-Methylperfluorooctane sulfonamidoND U257.0112/19/23 20:5112/18/23acetic acid (NMeFOSAA)ND U252.5112/19/23 20:5112/18/23N-Ethylperfluorooctane sulfonamido aceticND U252.5112/19/23 20:5112/18/23		ND U	25	0.65	1	12/19/23 20:51	12/18/23	
N-Ethylperfluorooctane sulfonamido acetic ND U 25 2.5 1 12/19/23 20:51 12/18/23	N-Methylperfluorooctane sulfonamido	ND U	25	7.0	1	12/19/23 20:51	12/18/23	
acid (NEtFOSAA)		ND U	25	2.5	1	12/19/23 20:51	12/18/23	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request: K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected: 12/04/23 10:15
Sample Matrix:	Water	Date Received: 12/05/23 10:00
Sample Name:	MW2	Units: ng/L
Lab Code:	K2313619-010	Basis: NA

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	Date Extracted	Q
Fluorotelomer Sulfonic Acids (FTSAs)							
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	25	4.1	1	12/19/23 20:51	12/18/23	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	25	2.8	1	12/19/23 20:51	12/18/23	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	25	0.75	1	12/19/23 20:51	12/18/23	
1H, 1H, 2H, 2H-perfluorododecane sulfonic acid (10:2 FTS)	ND U	25	1.8	1	12/19/23 20:51	12/18/23	*
Perfluoroalkyl Ether Carboxylic Acids (PFE) Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	CAs) ND U	25	1.5	1	12/19/23 20:51	12/18/23	

Surrogate Name	% Rec	Control Limits	Date Analyzed Q	
13C3-PFBS	75	20 - 109	12/19/23 20:51	
18O2-PFHxS	78	26 - 122	12/19/23 20:51	
13C4-PFOS	68	25 - 121	12/19/23 20:51	
13C4-PFBA	77	27 - 124	12/19/23 20:51	
13C5-PFPeA	71	27 - 138	12/19/23 20:51	
13C2-PFHxA	77	28 - 132	12/19/23 20:51	
13C4-PFHpA	78	19 - 139	12/19/23 20:51	
13C4-PFOA	70	22 - 130	12/19/23 20:51	
13C5-PFNA	79	20 - 127	12/19/23 20:51	
13C2-PFDA	69	24 - 125	12/19/23 20:51	
13C2-PFUnDA	75	22 - 125	12/19/23 20:51	
13C2-PFDoDA	67	19 - 122	12/19/23 20:51	
13C2-PFTeDA	75	13 - 124	12/19/23 20:51	
13C8-FOSA	65	18 - 109	12/19/23 20:51	
D3-MeFOSA	57	15 - 153	12/19/23 20:51	
D5-EtFOSA	58	25 - 107	12/19/23 20:51	
D7-MeFOSE	65	24 - 112	12/19/23 20:51	
D9-EtFOSE	65	19 - 109	12/19/23 20:51	
D3-MeFOSAA	62	9 - 123	12/19/23 20:51	
D5-EtFOSAA	66	12 - 126	12/19/23 20:51	
13C2-4:2 FTS	74	10 - 197	12/19/23 20:51	
13C2-6:2 FTS	69	10 - 226	12/19/23 20:51	
13C2-8:2 FTS	75	10 - 202	12/19/23 20:51	
13C3-HFPO-DA	67	22 - 135	12/19/23 20:51	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request:	K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected:	12/04/23 11:30
Sample Matrix:	Water	Date Received:	12/05/23 10:00
Sample Name:	MW3	Units:	ng/L
Lab Code:	K2313619-011	Basis:	NA

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	Date Extracted	Q
Perfluoroalkyl Sulfonic Acids (PFSAs)							
Perfluorobutane sulfonic acid (PFBS)	ND U	25	1.4	1	12/19/23 21:22	12/18/23	
Perfluoropentane sulfonic acid (PFPeS)	ND U	25	8.0	1	12/19/23 21:22	12/18/23	
Perfluorohexane sulfonic acid (PFHxS)	ND U	25	6.5	1	12/19/23 21:22	12/18/23	
Perfluoroheptane sulfonic acid (PFHpS)	ND U	25	2.2	1	12/19/23 21:22	12/18/23	
Perfluorooctane sulfonic acid (PFOS)	3.2 J	25	2.2	1	12/19/23 21:22	12/18/23	
Perfluorononane sulfonic acid (PFNS)	ND U	25	3.0	1	12/19/23 21:22	12/18/23	
Perfluorodecane sulfonic acid (PFDS)	6.1 J	25	1.5	1	12/19/23 21:22	12/18/23	
Perfluoroalkyl Carboxylic Acids (PFCAs)							
Perfluorobutanoic acid (PFBA)	ND U	25	2.0	1	12/19/23 21:22	12/18/23	
Perfluoropentanoic acid (PFPeA)	ND U	25	8.5	1	12/19/23 21:22	12/18/23	
Perfluorohexanoic acid (PFHxA)	ND U	50	44	1	12/19/23 21:22	12/18/23	
Perfluoroheptanoic acid (PFHpA)	ND U	25	3.2	1	12/19/23 21:22	12/18/23	
Perfluorooctanoic acid (PFOA)	5.0 J	10	1.8	1	12/19/23 21:22	12/18/23	
Perfluorononanoic acid (PFNA)	ND U	25	5.5	1	12/19/23 21:22	12/18/23	
Perfluorodecanoic acid (PFDA)	ND U	25	6.0	1	12/19/23 21:22	12/18/23	
Perfluoroundecanoic acid (PFUnDA)	ND U	25	7.5	1	12/19/23 21:22	12/18/23	
Perfluorododecanoic acid (PFDOA)	ND U	25	6.5	1	12/19/23 21:22	12/18/23	
Perfluorotridecanoic acid (PFTrDA)	ND U	25	6.5	1	12/19/23 21:22	12/18/23	
Perfluorotetradecanoic acid (PFTDA)	ND U	25	10	1	12/19/23 21:22	12/18/23	
Perfluoroalkyl Sulfonamido Substances							
Perfluorooctane sulfonamide (PFOSAm)	ND U	25	2.6	1	12/19/23 21:22	12/18/23	
N-Methylperfluorooctane sulfonamide	ND U	25	2.3	1	12/19/23 21:22	12/18/23	
(MeFOSA) N-Ethylperfluorooctane sulfonamide	ND U	25	1.4	1	12/19/23 21:22	12/18/23	
(EtFOSAm)	112 0						
N-Methylperfluorooctane sulfonamido ethanol (MeFOSE)	ND U	25	1.5	1	12/19/23 21:22	12/18/23	
N-Ethylperfluorooctane sulfonamido ethanol (EtFOSE)	1.8 J	25	0.65	1	12/19/23 21:22	12/18/23	
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	ND U	25	7.0	1	12/19/23 21:22	12/18/23	
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	ND U	25	2.5	1	12/19/23 21:22	12/18/23	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request:	K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected:	12/04/23 11:30
Sample Matrix:	Water	Date Received:	12/05/23 10:00
Sample Name:	MW3	Units:	ng/L
Lab Code:	K2313619-011	Basis:	NA

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted	Q
Fluorotelomer Sulfonic Acids (FTSAs)							
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	25	4.1	1	12/19/23 21:22	12/18/23	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	25	2.8	1	12/19/23 21:22	12/18/23	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	25	0.75	1	12/19/23 21:22	12/18/23	
1H, 1H, 2H, 2H-perfluorododecane sulfonic acid (10:2 FTS)	ND U	25	1.8	1	12/19/23 21:22	12/18/23	*
Perfluoroalkyl Ether Carboxylic Acids (PFE) Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	CAs) ND U	25	1.5	1	12/19/23 21:22	12/18/23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C3-PFBS	69	20 - 109	12/19/23 21:22	
18O2-PFHxS	76	26 - 122	12/19/23 21:22	
13C4-PFOS	66	25 - 121	12/19/23 21:22	
13C4-PFBA	76	27 - 124	12/19/23 21:22	
13C5-PFPeA	68	27 - 138	12/19/23 21:22	
13C2-PFHxA	73	28 - 132	12/19/23 21:22	
13C4-PFHpA	75	19 - 139	12/19/23 21:22	
13C4-PFOA	66	22 - 130	12/19/23 21:22	
13C5-PFNA	77	20 - 127	12/19/23 21:22	
13C2-PFDA	74	24 - 125	12/19/23 21:22	
13C2-PFUnDA	79	22 - 125	12/19/23 21:22	
13C2-PFDoDA	76	19 - 122	12/19/23 21:22	
13C2-PFTeDA	77	13 - 124	12/19/23 21:22	
13C8-FOSA	65	18 - 109	12/19/23 21:22	
D3-MeFOSA	58	15 - 153	12/19/23 21:22	
D5-EtFOSA	55	25 - 107	12/19/23 21:22	
D7-MeFOSE	63	24 - 112	12/19/23 21:22	
D9-EtFOSE	66	19 - 109	12/19/23 21:22	
D3-MeFOSAA	62	9 - 123	12/19/23 21:22	
D5-EtFOSAA	58	12 - 126	12/19/23 21:22	
13C2-4:2 FTS	70	10 - 197	12/19/23 21:22	
13C2-6:2 FTS	65	10 - 226	12/19/23 21:22	
13C2-8:2 FTS	74	10 - 202	12/19/23 21:22	
13C3-HFPO-DA	63	22 - 135	12/19/23 21:22	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 32 of 67

Organic Compounds by HPLC/MS/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 33 of 67

QA/QC Report

Client:	Onsite Environmental Incorporated
Project:	Port of Pasco Lagoons/E2023/1103
Sample Matrix:	Soil

Service Request: K2313619

SURROGATE RECOVERY SUMMARY

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS

Analysis Method:	PFC/537M
Extraction Method:	ALS SOP

		NL-B1-SL-20'	NL-B3-SL-20'	SL-B4-SL-15'
Surrogate	Control Limits	K2313619-001	K2313619-002	K2313619-003
13C3-PFBS	33-109	69	66	70
18O2-PFHxS	36-120	59	70	68
13C4-PFOS	32-130	65	61	69
13C4-PFBA	34-116	64	63	66
13C5-PFPeA	39-133	70	69	70
13C2-PFHxA	32-136	70	87	74
13C4-PFHpA	36-133	82	65	81
13C4-PFOA	31-134	77	70	69
13C5-PFNA	27-133	77	76	77
13C2-PFDA	30-137	80	86	89
13C2-PFUnDA	32-146	79	84	82
13C2-PFDoDA	36-136	80	78	85
13C2-PFTeDA	39-138	91	85	89
13C8-FOSA	40-132	73	71	72
D3-MeFOSA	51-132	71	60	66
D5-EtFOSA	49-123	68	60	65
D7-MeFOSE	53-125	67	72	67
D9-EtFOSE	45-121	70	71	77
D3-MeFOSAA	20-154	100	97	95
D5-EtFOSAA	29-153	110	110	101
13C2-4:2 FTS	18-127	98	86	77
13C2-6:2 FTS	30-140	93	78	65
13C2-8:2 FTS	9-171	111	128	98
13C3-HFPO-DA	33-130	66	66	64

QA/QC Report

Client:	Onsite Environmental Incorporated
Project:	Port of Pasco Lagoons/E2023/1103
Sample Matrix:	Soil

Service Request: K2313619

SURROGATE RECOVERY SUMMARY

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS

Analysis Method:	PFC/537M
Extraction Method:	ALS SOP

		SL-B6-SL-15'	SL-B7-SL-15'	MW1
Surrogate	Control Limits	K2313619-004	K2313619-005	K2313619-009
13C3-PFBS	33-109	73	61	
18O2-PFHxS	36-120	79	63	
13C4-PFOS	32-130	66	58	
13C4-PFBA	34-116	67	55	
13C5-PFPeA	39-133	72	62	
13C2-PFHxA	32-136	88	67	
13C4-PFHpA	36-133	72	68	
13C4-PFOA	31-134	73	62	
13C5-PFNA	27-133	77	66	
13C2-PFDA	30-137	86	76	
13C2-PFUnDA	32-146	84	78	
13C2-PFDoDA	36-136	81	73	
13C2-PFTeDA	39-138	92	81	
13C8-FOSA	40-132	76	69	
D3-MeFOSA	51-132	70	60	
D5-EtFOSA	49-123	68	65	
D7-MeFOSE	53-125	74	65	
D9-EtFOSE	45-121	81	71	
D3-MeFOSAA	20-154	92	82	
D5-EtFOSAA	29-153	111	93	
13C2-4:2 FTS	18-127	91	78	
13C2-6:2 FTS	30-140	71	71	
13C2-8:2 FTS	9-171	98	107	
13C3-HFPO-DA	33-130	69	59	

QA/QC Report

Client:	Onsite Environmental Incorporated
Project:	Port of Pasco Lagoons/E2023/1103
Sample Matrix:	Soil

Service Request: K2313619

SURROGATE RECOVERY SUMMARY

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS

Analysis Method:	PFC/537M
Extraction Method:	ALS SOP

		MW2	MW3	Method Blank
Surrogate	Control Limits	K2313619-010	K2313619-011	KQ2321390-04
13C3-PFBS	33-109			74
18O2-PFHxS	36-120			84
13C4-PFOS	32-130			70
13C4-PFBA	34-116			67
13C5-PFPeA	39-133			73
13C2-PFHxA	32-136			91
13C4-PFHpA	36-133			72
13C4-PFOA	31-134			75
13C5-PFNA	27-133			73
13C2-PFDA	30-137			85
13C2-PFUnDA	32-146			77
13C2-PFDoDA	36-136			75
13C2-PFTeDA	39-138			89
13C8-FOSA	40-132			76
D3-MeFOSA	51-132			77
D5-EtFOSA	49-123			76
D7-MeFOSE	53-125			75
D9-EtFOSE	45-121			80
D3-MeFOSAA	20-154			101
D5-EtFOSAA	29-153			103
13C2-4:2 FTS	18-127			80
13C2-6:2 FTS	30-140			65
13C2-8:2 FTS	9-171			82
13C3-HFPO-DA	33-130			74

QA/QC Report

Client:	Onsite Environmental Incorporated
Project:	Port of Pasco Lagoons/E2023/1103
Sample Matrix:	Soil

SURROGATE RECOVERY SUMMARY

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS

Analysis Method:	PFC/537M
Extraction Method:	ALS SOP

		Method Blank	Lab Control Sample	Lab Control Sample
Surrogate	Control Limits	KQ2321945-03	KQ2321945-03 KQ2321390-03	
13C3-PFBS	33-109		77	
18O2-PFHxS	36-120		79	
13C4-PFOS	32-130		68	
13C4-PFBA	34-116		66	
13C5-PFPeA	39-133		76	
13C2-PFHxA	32-136		84	
13C4-PFHpA	36-133		75	
13C4-PFOA	31-134		72	
13C5-PFNA	27-133		76	
13C2-PFDA	30-137		81	
13C2-PFUnDA	32-146		79	
13C2-PFDoDA	36-136		82	
13C2-PFTeDA	39-138		92	
13C8-FOSA	40-132		76	
D3-MeFOSA	51-132		75	
D5-EtFOSA	49-123		76	
D7-MeFOSE	53-125		69	
D9-EtFOSE	45-121		78	
D3-MeFOSAA	20-154		99	
D5-EtFOSAA	29-153		108	
13C2-4:2 FTS	18-127		80	
13C2-6:2 FTS	30-140		66	
13C2-8:2 FTS	9-171		94	
13C3-HFPO-DA	33-130		74	

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with an pound (#) indicate the control criteria is not acceptable. Service Request: K2313619

QA/QC Report

Client:Onsite Environmental IncorporatedProject:Port of Pasco Lagoons/E2023/1103Sample Matrix:Soil

Service Request: K2313619

SURROGATE RECOVERY SUMMARY

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS

Analysis Method:	PFC/537M
Extraction Method:	ALS SOP

Surrogate	Control Limits	Duplicate Lab Control Sample KQ2321945-02	NL-B1-SL-20' KQ2321390-01	NL-B1-SL-20' KQ2321390-02
18O2-PFHxS	36-120		61	74
13C4-PFOS	32-130		60	61
13C4-PFBA	34-116		58	58
13C5-PFPeA	39-133		63	62
13C2-PFHxA	32-136		69	78
13C4-PFHpA	36-133		66	65
13C4-PFOA	31-134		70	69
13C5-PFNA	27-133		71	71
13C2-PFDA	30-137		79	83
13C2-PFUnDA	32-146		76	79
13C2-PFDoDA	36-136		82	77
13C2-PFTeDA	39-138		85	81
13C8-FOSA	40-132		67	67
D3-MeFOSA	51-132		62	60
D5-EtFOSA	49-123		63	62
D7-MeFOSE	53-125		63	65
D9-EtFOSE	45-121		66	68
D3-MeFOSAA	20-154		89	90
D5-EtFOSAA	29-153		96	102
13C2-4:2 FTS	18-127		94	87
13C2-6:2 FTS	30-140		84	83
13C2-8:2 FTS	9-171		116	116
13C3-HFPO-DA	33-130		61	62
QA/QC Report

Client:	Onsite Environmental Incorporated
Project:	Port of Pasco Lagoons/E2023/1103
Sample Matrix:	Water

Service Request: K2313619

SURROGATE RECOVERY SUMMARY

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS

Analysis Method:	PFC/537M
Extraction Method:	ALS SOP

		SL-B6-SL-15'	SL-B7-SL-15'	MW1
Surrogate	Control Limits	K2313619-004	K2313619-005	K2313619-009
13C3-PFBS	20-109			71
18O2-PFHxS	26-122			85
13C4-PFOS	25-121			69
13C4-PFBA	27-124			76
13C5-PFPeA	27-138			71
13C2-PFHxA	28-132			90
13C4-PFHpA	19-139			70
13C4-PFOA	22-130			69
13C5-PFNA	20-127			81
13C2-PFDA	24-125			65
13C2-PFUnDA	22-125			76
13C2-PFDoDA	19-122			71
13C2-PFTeDA	13-124			67
13C8-FOSA	18-109			65
D3-MeFOSA	15-153			58
D5-EtFOSA	25-107			55
D7-MeFOSE	24-112			58
D9-EtFOSE	19-109			55
D3-MeFOSAA	9-123			69
D5-EtFOSAA	12-126			61
13C2-4:2 FTS	10-197			72
13C2-6:2 FTS	10-226			67
13C2-8:2 FTS	10-202			100
13C3-HFPO-DA	22-135			63

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with an pound (#) indicate the control criteria is not acceptable.

QA/QC Report

Client:Onsite Environmental IncorporatedProject:Port of Pasco Lagoons/E2023/1103Sample Matrix:Water

Service Request: K2313619

SURROGATE RECOVERY SUMMARY

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS

Analysis Method:	PFC/537M
Extraction Method:	ALS SOP

		MW2	MW3	Method Blank
Surrogate	Control Limits	K2313619-010	K2313619-011	KQ2321390-04
13C3-PFBS	20-109	75	69	
18O2-PFHxS	26-122	78	76	
13C4-PFOS	25-121	68	66	
13C4-PFBA	27-124	77	76	
13C5-PFPeA	27-138	71	68	
13C2-PFHxA	28-132	77	73	
13C4-PFHpA	19-139	78	75	
13C4-PFOA	22-130	70	66	
13C5-PFNA	20-127	79	77	
13C2-PFDA	24-125	69	74	
13C2-PFUnDA	22-125	75	79	
13C2-PFDoDA	19-122	67	76	
13C2-PFTeDA	13-124	75	77	
13C8-FOSA	18-109	65	65	
D3-MeFOSA	15-153	57	58	
D5-EtFOSA	25-107	58	55	
D7-MeFOSE	24-112	65	63	
D9-EtFOSE	19-109	65	66	
D3-MeFOSAA	9-123	62	62	
D5-EtFOSAA	12-126	66	58	
13C2-4:2 FTS	10-197	74	70	
13C2-6:2 FTS	10-226	69	65	
13C2-8:2 FTS	10-202	75	74	
13C3-HFPO-DA	22-135	67	63	

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with an pound (#) indicate the control criteria is not acceptable.

QA/QC Report

Client:Onsite Environmental IncorporatedProject:Port of Pasco Lagoons/E2023/1103Sample Matrix:Water

SURROGATE RECOVERY SUMMARY

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS

Analysis Method:	PFC/537M
Extraction Method:	ALS SOP

		Method Blank	Lab Control Sample	Lab Control Sample
Surrogate	Control Limits	KQ2321945-03	KQ2321390-03	KQ2321945-01
13C3-PFBS	20-109	62		66
18O2-PFHxS	26-122	69		66
13C4-PFOS	25-121	64		65
13C4-PFBA	27-124	69		74
13C5-PFPeA	27-138	64		67
13C2-PFHxA	28-132	86		79
13C4-PFHpA	19-139	74		79
13C4-PFOA	22-130	68		69
13C5-PFNA	20-127	76		81
13C2-PFDA	24-125	71		83
13C2-PFUnDA	22-125	87		91
13C2-PFDoDA	19-122	82		79
13C2-PFTeDA	13-124	74		77
13C8-FOSA	18-109	66		67
D3-MeFOSA	15-153	56		58
D5-EtFOSA	25-107	56		61
D7-MeFOSE	24-112	56		62
D9-EtFOSE	19-109	54		61
D3-MeFOSAA	9-123	71		76
D5-EtFOSAA	12-126	77		80
13C2-4:2 FTS	10-197	90		88
13C2-6:2 FTS	10-226	69		72
13C2-8:2 FTS	10-202	114		122
13C3-HFPO-DA	22-135	60		59

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with an pound (#) indicate the control criteria is not acceptable. Service Request: K2313619

QA/QC Report

Client:Onsite Environmental IncorporatedProject:Port of Pasco Lagoons/E2023/1103Sample Matrix:Water

SURROGATE RECOVERY SUMMARY

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS

Analysis Method:	PFC/537M
Extraction Method:	ALS SOP

Surrogate Control Limits KQ2321945-02 KQ2321390-01 KQ2321390-02 13C3-PFBS 20-109 68 13024			Duplicate Lab Control Sample	NL-B1-SL-20'	NL-B1-SL-20'
1802-PFHxS 26-122 67 13C4-PFOS 25-121 66 13C4-PFBA 27-124 73 13C5-PFPeA 27-138 69 13C2-PFHxA 28-132 78 13C4-PFOA 27-138 69 13C4-PFHpA 19-139 86 13C2-PFHxA 22-130 71 13C4-PFOA 22-130 71 13C4-PFDA 20-127 83 13C2-PFDA 24-125 86 13C2-PFDA 24-125 86 13C2-PFDaDA 19-122 81 13C2-PFDaDA 13-124 75 13C2-PFTeDA 13-124 75 13C2-PFTeDA 13-124 75 13C2-PFTeDA 13-124 75 13C3-PFOSA 15-153 55 D5-EEFOSA 25-107 55 D7-MeFOSE 24-112 55 D9-EIFOSE 19-109 61 D3-MeFOSAA 9-123 76 D5-EEFOSA 12-126 73 13C2-4:2 FTS 10-197 96	Surrogate	Control Limits		KQ2321390-01	KQ2321390-02
13C4-PFOS25-1216613C4-PFBA27-1247313C5-PFPeA27-1386913C2-PFHxA28-1327813C4-PFDA19-1398613C4-PFOA22-1307113C5-PFNA20-1278313C2-PFDA24-1258613C2-PFDA22-1258613C2-PFDA19-1228113C2-PFDA13-1247513C2-PFTeDA13-1247513C3-PFOSA15-15355D5-EtFOSA25-10755D5-EtFOSE19-10961D3-MeFOSAA9-12376D5-EtFOSAA12-1267313C2-4:2 FTS10-1979613C2-8:2 FTS10-202148	13C3-PFBS	20-109	68		
13C4-PFBA27-1247313C5-PFPeA27-1386913C2-PFHxA28-1327813C4-PFHpA19-1398613C4-PFOA22-1307113C5-PFNA20-1278313C2-PFDA24-1258613C2-PFDA24-1258613C2-PFDaDA22-1258613C2-PFDaDA19-1228113C2-PFDaDA13-1247513C8-FOSA18-10973D3-MeFOSA25-10755D5-EtFOSE19-10961D3-MeFOSAA9-12376D5-EtFOSAA12-1267313C2-4:2 FTS10-1979613C2-8:2 FTS10-202148	18O2-PFHxS	26-122	67		
13C5-PFPeA27-1386913C2-PFHxA28-1327813C4-PFHpA19-1398613C4-PFOA22-1307113C5-PFNA20-1278313C2-PFDA24-1258613C2-PFUnDA22-1258613C2-PFUnDA19-1228113C2-PFDoDA19-1228113C2-PFEDA13-1247513C8-FOSA18-10973D3-MeFOSA25-10755D5-EtFOSA25-10755D9-EtFOSE19-10961D3-MeFOSAA9-12376D5-EtFOSAA12-1267313C2-4:2 FTS10-1979613C2-8:2 FTS10-202148	13C4-PFOS	25-121	66		
13C2-PFHxA28-1327813C4-PFHpA19-1398613C4-PFOA22-1307113C5-PFNA20-1278313C2-PFDA24-1258613C2-PFUnDA22-1258613C2-PFDoDA19-1228113C2-PFteDA13-1247513C8-FOSA18-10973D3-MeFOSA25-10755D7-MeFOSE24-11255D9-EtFOSE19-10961D3-MeFOSAA9-12376D5-EtFOSAA12-1267313C2-4:2 FTS10-1979613C2-8:2 FTS10-202148	13C4-PFBA	27-124	73		
13C4-PFHpA19-1398613C4-PFOA22-1307113C5-PFNA20-1278313C2-PFDA24-1258613C2-PFDaDA22-1258613C2-PFDaDA19-1228113C2-PFTeDA13-1247513C8-FOSA18-10973D5-EtFOSA25-10755D5-EtFOSE19-10961D3-MeFOSAA9-12376D5-EtFOSAA12-1267313C2-PTS10-1979613C2-FTS10-202148	13C5-PFPeA	27-138	69		
13C4-PFOA22-1307113C5-PFNA20-1278313C2-PFDA24-1258613C2-PFUnDA22-1258613C2-PFDoDA19-1228113C2-PFTeDA13-1247513C8-FOSA18-10973D3-MeFOSA15-15355D5-EtFOSA25-10755D7-MeFOSE24-11255D9-EtFOSE19-10961D3-MeFOSAA9-12376D5-EtFOSAA12-1267313C2-4:2 FTS10-1979613C2-6:2 FTS10-202148	13C2-PFHxA	28-132	78		
13C5-PFNA20-1278313C2-PFDA24-1258613C2-PFUnDA22-1258613C2-PFDoDA19-1228113C2-PFTeDA13-1247513C8-FOSA18-10973D3-MeFOSA15-15355D5-EtFOSA25-10755D7-MeFOSE24-11255D3-MeFOSAA9-12376D3-MeFOSAA12-1267313C2-4:2 FTS10-1979613C2-6:2 FTS10-202148	13C4-PFHpA	19-139	86		
13C2-PFDA24-1258613C2-PFUnDA22-1258613C2-PFDoDA19-1228113C2-PFTeDA13-1247513C8-FOSA18-10973D3-MeFOSA15-15355D5-EtFOSA25-10755D7-MeFOSE24-11255D9-EtFOSE19-10961D3-MeFOSAA9-12376D5-EtFOSAA12-1267313C2-4:2 FTS10-1979613C2-6:2 FTS10-202148	13C4-PFOA	22-130	71		
13C2-PFUnDA 22-125 86 13C2-PFDoDA 19-122 81 13C2-PFTeDA 13-124 75 13C8-FOSA 18-109 73 D3-MeFOSA 15-153 55 D5-EtFOSA 25-107 55 D7-MeFOSE 24-112 55 D9-EtFOSE 19-109 61 D3-MeFOSAA 12-126 73 13C2-4:2 FTS 10-197 96 13C2-6:2 FTS 10-202 148	13C5-PFNA	20-127	83		
13C2-PFDoDA19-1228113C2-PFTeDA13-1247513C8-FOSA18-10973D3-MeFOSA15-15355D5-EtFOSA25-10755D7-MeFOSE24-11255D9-EtFOSE19-10961D3-MeFOSAA9-12376D5-EtFOSAA12-1267313C2-4:2 FTS10-1979613C2-6:2 FTS10-202148	13C2-PFDA	24-125	86		
13C2-PFTeDA13-1247513C8-FOSA18-10973D3-MeFOSA15-15355D5-EtFOSA25-10755D7-MeFOSE24-11255D9-EtFOSE19-10961D3-MeFOSAA9-12376D5-EtFOSAA12-1267313C2-4:2 FTS10-1979613C2-6:2 FTS10-202148	13C2-PFUnDA	22-125	86		
13C8-FOSA18-10973D3-MeFOSA15-15355D5-EtFOSA25-10755D7-MeFOSE24-11255D9-EtFOSE19-10961D3-MeFOSAA9-12376D5-EtFOSAA12-1267313C2-4:2 FTS10-1979613C2-6:2 FTS10-2267513C2-8:2 FTS10-202148	13C2-PFDoDA	19-122	81		
D3-MeFOSA 15-153 55 D5-EtFOSA 25-107 55 D7-MeFOSE 24-112 55 D9-EtFOSE 19-109 61 D3-MeFOSAA 9-123 76 D5-EtFOSAA 12-126 73 13C2-4:2 FTS 10-197 96 13C2-6:2 FTS 10-226 75 13C2-8:2 FTS 10-202 148	13C2-PFTeDA	13-124	75		
D5-EtFOSA 25-107 55 D7-MeFOSE 24-112 55 D9-EtFOSE 19-109 61 D3-MeFOSAA 9-123 76 D5-EtFOSAA 12-126 73 13C2-4:2 FTS 10-197 96 13C2-6:2 FTS 10-226 75 13C2-8:2 FTS 10-202 148	13C8-FOSA	18-109	73		
D7-MeFOSE24-11255D9-EtFOSE19-10961D3-MeFOSAA9-12376D5-EtFOSAA12-1267313C2-4:2 FTS10-1979613C2-6:2 FTS10-2267513C2-8:2 FTS10-202148	D3-MeFOSA	15-153	55		
D9-EtFOSE 19-109 61 D3-MeFOSAA 9-123 76 D5-EtFOSAA 12-126 73 13C2-4:2 FTS 10-197 96 13C2-6:2 FTS 10-226 75 13C2-8:2 FTS 10-202 148	D5-EtFOSA	25-107	55		
D3-MeFOSAA 9-123 76 D5-EtFOSAA 12-126 73 13C2-4:2 FTS 10-197 96 13C2-6:2 FTS 10-226 75 13C2-8:2 FTS 10-202 148	D7-MeFOSE	24-112	55		
D5-EtFOSAA 12-126 73 13C2-4:2 FTS 10-197 96 13C2-6:2 FTS 10-226 75 13C2-8:2 FTS 10-202 148	D9-EtFOSE	19-109	61		
13C2-4:2 FTS10-1979613C2-6:2 FTS10-2267513C2-8:2 FTS10-202148	D3-MeFOSAA	9-123	76		
13C2-6:2 FTS10-2267513C2-8:2 FTS10-202148	D5-EtFOSAA	12-126	73		
13C2-8:2 FTS 10-202 148	13C2-4:2 FTS	10-197	96		
	13C2-6:2 FTS	10-226	75		
2C3 HERO DA 22 135 61	13C2-8:2 FTS	10-202	148		
22-155 01	13C3-HFPO-DA	22-135	61		

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with an pound (#) indicate the control criteria is not acceptable. Service Request: K2313619

QA/QC Report

Client:	Onsite Environmental Incorporated					Service Request:			K2313	619	
Project:	Port of Pasco Lagoons/E2023/1103					Date Collected:			11/28/2	23	
Sample Matrix:	Soil					Date Received:			12/05/23		
r			Date Analyzed:					12/11/23			
							-				
							Date Extra	ictea:	12/8/2	3	
			Duplicate	Matrix Sp	ike Sumr	nary					
	P	er- and Po	lyfluoroalk	xyl Substan	ces (PFA	S) by LC/	/MS/MS				
Sample Name:	NL-B1-SL-20'						τ	J nits:	ng/g		
Lab Code:	K2313619-001						I	Basis:	Dry		
Analysis Method:	PFC/537M								5		
Prep Method:	ALS SOP										
Trep Methou.	ALS SOI										
			Matrix	-		-	te Matrix S	-			
			KQ2321	390-01		KQ	2321390-02				
		Sample		Spike			Spike		% Rec		RPD
Analyte Name		Result	Result	Amount	% Rec	Result	Amount	% Rec		RPD	Limit
Perfluorobutane sulfo		ND U	8.23	8.43	98	7.49	7.94	94	74-143	9	50
Perfluoropentane sulf		ND U	9.54	8.94	107	9.85	8.42	117	48-195	3	50
Perfluorohexane sulfo	· · /	ND U	9.87	8.67	114	7.87	8.17	96	65-154	23	50
Perfluoroheptane sulf		ND U	8.13	9.06	90	6.07	8.53	71	55-166	29	50
Perfluorooctane sulfo		0.30 J	11.5	8.83	127	9.41	8.31	110	77-140	20	50
Perfluorononane sulfo	· · · ·	ND U	11.3	9.13	123	8.84	8.60	103	64-161	24	50
Perfluorodecane sulfo		ND U ND U	13.2 10.8	9.16 9.50	144 114	9.82 9.08	8.63 8.95	114 101	69-154 81-148	29 17	50 50
Perfluorobutanoic aci Perfluoropentanoic ac		ND U ND U	9.85	9.50 9.50	104	9.08 8.95	8.95 8.95	101	76-141	10	50 50
Perfluorohexanoic aci		ND U ND U	9.60	9.50 9.50	104	8.93 8.61	8.95	96	70-141 78-140	10	50 50
Perfluoroheptanoic ac	· /	ND U	10.2	9.50	101	8.98	8.95	100	71-133	13	50
Perfluorooctanoic aci		ND U	10.2	9.50	113	8.80	8.95	98	76-140	20	50
Perfluorononanoic act		ND U	11.3	9.50	119	9.71	8.95	108	80-141	16	50
Perfluorodecanoic aci		ND U	9.53	9.50	100	8.54	8.95	95	80-142	11	50
Perfluoroundecanoic		ND U	10.1	9.50	106	8.93	8.95	100	75-147	12	50
Perfluorododecanoic a		ND U	8.85	9.50	93	8.22	8.95	92	68-147	7	50
Perfluorotridecanoic a	acid (PFTrDA)	ND U	9.10	9.50	96	8.72	8.95	98	51-153	4	50
Perfluorotetradecanoi	c acid (PFTDA)	ND U	9.20	9.50	97	8.77	8.95	98	59-144	5	50
Perfluorooctane sulfo	namide	ND U	10.8	9.50	114	9.52	8.95	106	70-143	12	50
(PFOSAm)											
N-Methylperfluorooc	tane sulfonamide	ND U	9.81	9.50	103	8.76	8.95	98	72-152	11	50
(MeFOSA)	10 11			0.50	105			100	7 0 116		
N-Ethylperfluoroocta (EtFOSAm)	ne sulfonamide	ND U	9.93	9.50	105	9.70	8.95	108	73-146	2	50
N-Methylperfluorooc ethanol (MeFOSE)	tane sulfonamido	ND U	11.7	9.50	124	9.16	8.95	102	56-158	25	50
N-Ethylperfluoroocta	ne sulfonamido	ND U	9.96	9.50	105	8.62	8.95	96	52-156	14	50
ethanol (EtFOSE)	Sunonunnuo	1.20	2.20	2.20	100	0.02	0.75	20	22 100		20
N-Methylperfluorooc		ND U	10.8	9.50	114	10.4	8.95	116	70-150	4	50
acetic acid (NMeFOS		0.02.1	12.5	0.70	100	0.02	0.05	00	70 151	24	50
N-Ethylperfluoroocta acetic acid (NEtFOSA		0.93 J	12.5	9.50	122	9.83	8.95	99	70-151	24	50
	/										

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Project: Sample Matrix:	Onsite Environme Port of Pasco Lag Soil	-					Service Re Date Colle Date Recei Date Analy Date Extra	cted: ved: vzed:	K2313 11/28/2 12/05/2 12/11/2 12/8/22	23 23 23	
			Duplicate	Matrix Sp	ike Sumr	narv					
	I	Per- and Pol	-	-		-	/MS/MS				
Sample Name: Lab Code: Analysis Method: Prep Method:	NL-B1-SL-20' K2313619-001 PFC/537M ALS SOP		-				τ	Jnits: Basis:	ng/g Dry		
			Matrix	Spike		Duplica	te Matrix S	pike			
			KQ2321	390-01		KQ	2321390-02	_			
Analyte Name		Sample Result	KQ2321 Result	390-01 Spike Amount	% Rec	KQ Result	2321390-02 Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
1H, 1H, 2H, 2H-		-	-	Spike	% Rec 119		Spike			RPD 27	
1H, 1H, 2H, 2H- Perfluorohexanesulfo 1H, 1H, 2H, 2H-		Result	Result	Spike Amount		Result	Spike Amount	% Rec	Limits		Limit
1H, 1H, 2H, 2H- Perfluorohexanesulfo 1H, 1H, 2H, 2H- Perfluorooctanesulfo 1H, 1H, 2H, 2H-	nic acid (6:2 FTS)	Result ND U	Result 10.6	Spike Amount 8.90	119	Result 8.07	Spike Amount 8.38	<u>% Rec</u> 96	Limits 75-157	27	Limit 50
1H, 1H, 2H, 2H- Perfluorohexanesulfo 1H, 1H, 2H, 2H- Perfluorooctanesulfo	nic acid (6:2 FTS) nic acid (8:2 FTS) uorododecane TS)	Result ND U ND U	Result 10.6 10.3	Spike <u>Amount</u> 8.90 9.03	119 114	Result 8.07 8.57	Spike <u>Amount</u> 8.38 8.51	% Rec 96 101	Limits 75-157 77-147	27 18	Limit 50 50

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request:	K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name:	Method Blank	Units:	ng/g
Lab Code:	KQ2321390-04	Basis:	Dry

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed Date Extracted		Q
Perfluoroalkyl Sulfonic Acids (PFSAs)							
Perfluorobutane sulfonic acid (PFBS)	ND U	1.0	0.10	1	12/11/23 13:11	12/8/23	
Perfluoropentane sulfonic acid (PFPeS)	ND U	1.0	0.20	1	12/11/23 13:11	12/8/23	
Perfluorohexane sulfonic acid (PFHxS)	ND U	1.0	0.40	1	12/11/23 13:11	12/8/23	
Perfluoroheptane sulfonic acid (PFHpS)	ND U	1.0	0.10	1	12/11/23 13:11	12/8/23	
Perfluorooctane sulfonic acid (PFOS)	ND U	1.0	0.10	1	12/11/23 13:11	12/8/23	
Perfluorononane sulfonic acid (PFNS)	ND U	1.0	0.40	1	12/11/23 13:11	12/8/23	
Perfluorodecane sulfonic acid (PFDS)	ND U	1.0	0.20	1	12/11/23 13:11	12/8/23	
Perfluoroalkyl Carboxylic Acids (PFCAs)							
Perfluorobutanoic acid (PFBA)	ND U	1.0	0.10	1	12/11/23 13:11	12/8/23	
Perfluoropentanoic acid (PFPeA)	ND U	1.0	0.20	1	12/11/23 13:11	12/8/23	
Perfluorohexanoic acid (PFHxA)	ND U	1.0	0.20	1	12/11/23 13:11	12/8/23	
Perfluoroheptanoic acid (PFHpA)	0.22 J	1.0	0.20	1	12/11/23 13:11	12/8/23	
Perfluorooctanoic acid (PFOA)	ND U	1.0	0.20	1	12/11/23 13:11	12/8/23	
Perfluorononanoic acid (PFNA)	ND U	1.0	0.40	1	12/11/23 13:11	12/8/23	
Perfluorodecanoic acid (PFDA)	ND U	1.0	0.20	1	12/11/23 13:11	12/8/23	
Perfluoroundecanoic acid (PFUnDA)	ND U	1.0	0.20	1	12/11/23 13:11	12/8/23	
Perfluorododecanoic acid (PFDOA)	ND U	1.0	0.20	1	12/11/23 13:11	12/8/23	
Perfluorotridecanoic acid (PFTrDA)	ND U	1.0	0.10	1	12/11/23 13:11	12/8/23	
Perfluorotetradecanoic acid (PFTDA)	ND U	1.0	0.10	1	12/11/23 13:11	12/8/23	
Perfluoroalkyl Sulfonamido Substances							
Perfluorooctane sulfonamide (PFOSAm)	ND U	1.0	0.10	1	12/11/23 13:11	12/8/23	
N-Methylperfluorooctane sulfonamide	ND U	1.0	0.10	1	12/11/23 13:11	12/8/23	
(MeFOSA)							
N-Ethylperfluorooctane sulfonamide	ND U	1.0	0.20	1	12/11/23 13:11	12/8/23	
(EtFOSAm) N-Methylperfluorooctane sulfonamido	ND U	1.0	0.10	1	12/11/23 13:11	12/8/23	
ethanol (MeFOSE)	ND 0	1.0	0.10	1			
N-Ethylperfluorooctane sulfonamido	ND U	1.0	0.10	1	12/11/23 13:11	12/8/23	
ethanol (EtFOSE) N-Methylperfluorooctane sulfonamido	ND U	2.0	1.0	1	12/11/23 13:11	12/8/23	
acetic acid (NMeFOSAA)			a :-		10/11/00 10 11	10/0/02	
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	ND U	1.0	0.40	1	12/11/23 13:11	12/8/23	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request:	K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA
Sample Name: Lab Code:	Method Blank KQ2321390-04	Units: Basis:	00

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted	Q
Fluorotelomer Sulfonic Acids (FTSAs)							
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	1.0	0.20	1	12/11/23 13:11	12/8/23	
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	1.0	0.20	1	12/11/23 13:11	12/8/23	
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	1.0	0.10	1	12/11/23 13:11	12/8/23	
1H, 1H, 2H, 2H-perfluorododecane sulfonic acid (10:2 FTS)	ND U	1.0	0.10	1	12/11/23 13:11	12/8/23	
Perfluoroalkyl Ether Carboxylic Acids (PFEC	CAs)						
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	1.0	0.10	1	12/11/23 13:11	12/8/23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C3-PFBS	74	33 - 109	12/11/23 13:11	
18O2-PFHxS	84	36 - 120	12/11/23 13:11	
13C4-PFOS	70	32 - 130	12/11/23 13:11	
13C4-PFBA	67	34 - 116	12/11/23 13:11	
13C5-PFPeA	73	39 - 133	12/11/23 13:11	
13C2-PFHxA	91	32 - 136	12/11/23 13:11	
13C4-PFHpA	72	36 - 133	12/11/23 13:11	
13C4-PFOA	75	31 - 134	12/11/23 13:11	
13C5-PFNA	73	27 - 133	12/11/23 13:11	
13C2-PFDA	85	30 - 137	12/11/23 13:11	
13C2-PFUnDA	77	32 - 146	12/11/23 13:11	
13C2-PFDoDA	75	36 - 136	12/11/23 13:11	
13C2-PFTeDA	89	39 - 138	12/11/23 13:11	
13C8-FOSA	76	40 - 132	12/11/23 13:11	
D3-MeFOSA	77	51 - 132	12/11/23 13:11	
D5-EtFOSA	76	49 - 123	12/11/23 13:11	
D7-MeFOSE	75	53 - 125	12/11/23 13:11	
D9-EtFOSE	80	45 - 121	12/11/23 13:11	
D3-MeFOSAA	101	20 - 154	12/11/23 13:11	
D5-EtFOSAA	103	29 - 153	12/11/23 13:11	
13C2-4:2 FTS	80	18 - 127	12/11/23 13:11	
13C2-6:2 FTS	65	30 - 140	12/11/23 13:11	
13C2-8:2 FTS	82	9 - 171	12/11/23 13:11	
13C3-HFPO-DA	74	33 - 130	12/11/23 13:11	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request:	K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Units: Bosis	U
Lab Code:	KQ2321945-03	Basis:	NA

Analysis Method:	PFC/537M		
Prep Method:	ALS SOP		

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed Date Extracted		Q
Perfluoroalkyl Sulfonic Acids (PFSAs)							
Perfluorobutane sulfonic acid (PFBS)	ND U	5.0	0.28	1	12/19/23 19:37	12/18/23	
Perfluoropentane sulfonic acid (PFPeS)	ND U	5.0	1.6	1	12/19/23 19:37	12/18/23	
Perfluorohexane sulfonic acid (PFHxS)	ND U	5.0	1.3	1	12/19/23 19:37	12/18/23	
Perfluoroheptane sulfonic acid (PFHpS)	ND U	5.0	0.44	1	12/19/23 19:37	12/18/23	
Perfluorooctane sulfonic acid (PFOS)	ND U	5.0	0.44	1	12/19/23 19:37	12/18/23	
Perfluorononane sulfonic acid (PFNS)	ND U	5.0	0.59	1	12/19/23 19:37	12/18/23	
Perfluorodecane sulfonic acid (PFDS)	ND U	5.0	0.30	1	12/19/23 19:37	12/18/23	
Perfluoroalkyl Carboxylic Acids (PFCAs)							
Perfluorobutanoic acid (PFBA)	ND U	5.0	0.40	1	12/19/23 19:37	12/18/23	
Perfluoropentanoic acid (PFPeA)	ND U	5.0	1.7	1	12/19/23 19:37	12/18/23	
Perfluorohexanoic acid (PFHxA)	ND U	10	8.8	1	12/19/23 19:37	12/18/23	
Perfluoroheptanoic acid (PFHpA)	ND U	5.0	0.63	1	12/19/23 19:37	12/18/23	
Perfluorooctanoic acid (PFOA)	ND U	2.0	0.35	1	12/19/23 19:37	12/18/23	
Perfluorononanoic acid (PFNA)	ND U	5.0	1.1	1	12/19/23 19:37	12/18/23	
Perfluorodecanoic acid (PFDA)	ND U	5.0	1.2	1	12/19/23 19:37	12/18/23	
Perfluoroundecanoic acid (PFUnDA)	ND U	5.0	1.5	1	12/19/23 19:37	12/18/23	
Perfluorododecanoic acid (PFDOA)	ND U	5.0	1.3	1	12/19/23 19:37	12/18/23	
Perfluorotridecanoic acid (PFTrDA)	ND U	5.0	1.3	1	12/19/23 19:37	12/18/23	
Perfluorotetradecanoic acid (PFTDA)	ND U	5.0	2.0	1	12/19/23 19:37	12/18/23	
Perfluoroalkyl Sulfonamido Substances							
Perfluorooctane sulfonamide (PFOSAm)	ND U	5.0	0.52	1	12/19/23 19:37	12/18/23	
N-Methylperfluorooctane sulfonamide	ND U	5.0	0.46	1	12/19/23 19:37	12/18/23	
(MeFOSA)							
N-Ethylperfluorooctane sulfonamide (EtFOSAm)	ND U	5.0	0.27	1	12/19/23 19:37	12/18/23	
N-Methylperfluorooctane sulfonamido ethanol (MeFOSE)	ND U	5.0	0.30	1	12/19/23 19:37	12/18/23	
N-Ethylperfluorooctane sulfonamido	0.36 J	5.0	0.13	1	12/19/23 19:37	12/18/23	
ethanol (EtFOSE) N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	ND U	5.0	1.4	1	12/19/23 19:37	12/18/23	
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	ND U	5.0	0.50	1	12/19/23 19:37	12/18/23	

Analytical Report

Client:	Onsite Environmental Incorporated	Service Request:	K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank KQ2321945-03	Units: Basis:	U

Analysis Method:	PFC/537M
Prep Method:	ALS SOP

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed D	ate Extracted Q
Fluorotelomer Sulfonic Acids (FTSAs)						
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2 FTS)	ND U	5.0	0.81	1	12/19/23 19:37	12/18/23
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2 FTS)	ND U	5.0	0.55	1	12/19/23 19:37	12/18/23
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2 FTS)	ND U	5.0	0.15	1	12/19/23 19:37	12/18/23
1H, 1H, 2H, 2H-perfluorododecane sulfonic acid (10:2 FTS)	ND U	5.0	0.35	1	12/19/23 19:37	12/18/23
Perfluoroalkyl Ether Carboxylic Acids (PFE)	CAs)					
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	ND U	5.0	0.29	1	12/19/23 19:37	12/18/23

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C3-PFBS	62	20 - 109	12/19/23 19:37	
18O2-PFHxS	69	26 - 122	12/19/23 19:37	
13C4-PFOS	64	25 - 121	12/19/23 19:37	
13C4-PFBA	69	27 - 124	12/19/23 19:37	
13C5-PFPeA	64	27 - 138	12/19/23 19:37	
13C2-PFHxA	86	28 - 132	12/19/23 19:37	
13C4-PFHpA	74	19 - 139	12/19/23 19:37	
13C4-PFOA	68	22 - 130	12/19/23 19:37	
13C5-PFNA	76	20 - 127	12/19/23 19:37	
13C2-PFDA	71	24 - 125	12/19/23 19:37	
13C2-PFUnDA	87	22 - 125	12/19/23 19:37	
13C2-PFDoDA	82	19 - 122	12/19/23 19:37	
13C2-PFTeDA	74	13 - 124	12/19/23 19:37	
13C8-FOSA	66	18 - 109	12/19/23 19:37	
D3-MeFOSA	56	15 - 153	12/19/23 19:37	
D5-EtFOSA	56	25 - 107	12/19/23 19:37	
D7-MeFOSE	56	24 - 112	12/19/23 19:37	
D9-EtFOSE	54	19 - 109	12/19/23 19:37	
D3-MeFOSAA	71	9 - 123	12/19/23 19:37	
D5-EtFOSAA	77	12 - 126	12/19/23 19:37	
13C2-4:2 FTS	90	10 - 197	12/19/23 19:37	
13C2-6:2 FTS	69	10 - 226	12/19/23 19:37	
13C2-8:2 FTS	114	10 - 202	12/19/23 19:37	
13C3-HFPO-DA	60	22 - 135	12/19/23 19:37	

QA/QC Report

Client:	Onsite Environmental Incorporated	Service Request:	K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Analyzed:	12/11/23
Sample Matrix:	Soil	Date Extracted:	12/08/23

Lab Control Sample Summary

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS

Analysis Method:	PFC/537M	Units:	ng/g
Prep Method:	ALS SOP	Basis:	Dry
		Analysis Lot:	827129

Lab Control Sample KQ2321390-03

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
1H, 1H, 2H, 2H-Perfluorodecanesulfonic acid (8:2	7.53	7.68	98	72-155
FTS)				
1H, 1H, 2H, 2H-perfluorododecane sulfonic acid	11.8	7.73	152	47-194
(10:2 FTS)				
1H, 1H, 2H, 2H-Perfluorohexanesulfonic acid (4:2	9.05	7.50	121	75-157
FTS)				
1H, 1H, 2H, 2H-Perfluorooctanesulfonic acid (6:2	8.58	7.61	113	77-147
FTS)				
Hexafluoropropyleneoxide dimer acid (HFPO-DA)	6.91	8.00	86	65-150
(GenX)				
N-Ethylperfluorooctane sulfonamide (EtFOSAm)	7.88	8.00	98	73-146
N-Ethylperfluorooctane sulfonamido acetic acid	8.90	8.00	111	70-151
(NEtFOSAA)				
N-Ethylperfluorooctane sulfonamido ethanol	8.69	8.00	109	52-156
(EtFOSE)				/
N-Methylperfluorooctane sulfonamide (MeFOSA)	8.11	8.00	101	72-152
N-Methylperfluorooctane sulfonamido acetic acid	9.04	8.00	113	70-150
(NMeFOSAA)	0.00	0.00	100	
N-Methylperfluorooctane sulfonamido ethanol	9.88	8.00	123	56-158
(MeFOSE)	c 17	7 10	01	54.140
Perfluorobutane sulfonic acid (PFBS)	6.47	7.10	91	74-143
Perfluorobutanoic acid (PFBA)	9.29	8.00	116	81-148
Perfluorodecane sulfonic acid (PFDS)	10.4	7.72	135	69-154
Perfluorodecanoic acid (PFDA)	8.59	8.00	107	80-142
Perfluorododecanoic acid (PFDOA)	8.65	8.00	108	68-147
Perfluoroheptane sulfonic acid (PFHpS)	6.26	7.63	82	55-166
Perfluoroheptanoic acid (PFHpA)	8.12	8.00	101	71-133
Perfluorohexane sulfonic acid (PFHxS)	9.03	7.30	124	65-154
Perfluorohexanoic acid (PFHxA)	<u>9.58</u> 8.70	<u>8.00</u> 7.69	120 113	78-140 64-161
Perfluorononane sulfonic acid (PFNS) Perfluorononanoic acid (PFNA)	8.70 9.06	8.00	113	80-141
	9.06 8.37	8.00	105	70-143
Perfluorooctane sulfonamide (PFOSAm)	8.37 8.89			70-143 77-140
Perfluorooctane sulfonic acid (PFOS)		7.43 8.00	120 112	76-140
Perfluorooctanoic acid (PFOA)	8.98 7.84	7.53	112	48-195
Perfluoropentane sulfonic acid (PFPeS)				
Perfluoropentanoic acid (PFPeA)	8.21 7.93	8.00 8.00	103 99	76-141 59-144
Perfluorotetradecanoic acid (PFTDA)			99 95	59-144 51-153
Perfluorotridecanoic acid (PFTrDA)	7.61	8.00	95 112	
Perfluoroundecanoic acid (PFUnDA)	8.95	8.00	112	75-147

QA/QC Report

Client:	Onsite Environmental Incorporated	Service Request:	K2313619
Project:	Port of Pasco Lagoons/E2023/1103	Date Analyzed:	12/19/23
Sample Matrix:	Water	Date Extracted:	12/18/23

Duplicate Lab Control Sample Summary

Per- and Polyfluoroalkyl Substances (PFAS) by LC/MS/MS

Analysis Method:	PFC/537M	Units:	ng/L
Prep Method:	ALS SOP	Basis:	NA
		Analysis Lot:	827748

		Control Sam Q2321945-01	-	Dup	licate Lab Co KQ23219		nple		
		Spike			Spike		% Rec		RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1H, 1H, 2H, 2H-Perfluorodecanesulfonic	29.2	30.7	95	29.5	30.7	96	65-166	<1	30
acid (8:2 FTS)		20.0		a 1 o	20.0		25 101	• •	20
1H, 1H, 2H, 2H-perfluorododecane	27.7	30.9	90	21.9	30.9	71	37-194	23	30
sulfonic acid (10:2 FTS)	21.2	20.0	104	20.2	20.0	101	00 154	4	20
1H, 1H, 2H, 2H-Perfluorohexanesulfonic	31.3	30.0	104	30.2	30.0	101	80-154	4	30
acid (4:2 FTS)	20.0	20.4	99	21.0	20.4	102	77 150	2	30
1H, 1H, 2H, 2H-Perfluorooctanesulfonic	30.0	30.4	99	31.0	30.4	102	77-150	3	50
acid (6:2 FTS)	20.2	22.0	91	20.2	22.0	91	66-146	~1	30
Hexafluoropropyleneoxide dimer acid (HFPO-DA) (GenX)	29.2	32.0	91	29.3	32.0	91	00-140	<1	50
N-Ethylperfluorooctane sulfonamide	31.8	32.0	99	32.6	32.0	102	73-145	2	30
(EtFOSAm)	51.0	52.0	77	52.0	52.0	102	75-145	2	30
N-Ethylperfluorooctane sulfonamido	31.6	32.0	99	42.0	32.0	131	68-149	28	30
acetic acid (NEtFOSAA)	51.0	52.0		72.0	52.0	151	00-147	20	50
N-Ethylperfluorooctane sulfonamido	30.8	32.0	96	30.9	32.0	97	37-172	<1	30
ethanol (EtFOSE)	50.0	52.0	70	50.7	52.0)	57 172	< <u>1</u>	50
N-Methylperfluorooctane sulfonamide	32.4	32.0	101	32.3	32.0	101	66-142	<1	30
(MeFOSA)	52.1	52.0	101	52.5	52.0	101	00112	\1	50
N-Methylperfluorooctane sulfonamido	34.0	32.0	106	31.7	32.0	99	66-162	7	30
acetic acid (NMeFOSAA)	0	0210	100	0111	0210		00 10		20
N-Methylperfluorooctane sulfonamido	31.2	32.0	98	35.0	32.0	109	38-163	11	30
ethanol (MeFOSE)						- • /			
Perfluorobutane sulfonic acid (PFBS)	24.9	28.4	88	25.3	28.4	89	67-145	2	30
Perfluorobutanoic acid (PFBA)	31.2	32.0	97	31.6	32.0	99	81-139	1	30
Perfluorodecane sulfonic acid (PFDS)	34.3	30.9	111	35.0	30.9	113	60-129	2	30
Perfluorodecanoic acid (PFDA)	28.4	32.0	89	30.4	32.0	95	68-152	7	30
Perfluorododecanoic acid (PFDOA)	28.7	32.0	90	26.8	32.0	84	66-142	7	30
Perfluoroheptane sulfonic acid (PFHpS)	25.7	30.5	84	27.1	30.5	89	60-162	5	30
Perfluoroheptanoic acid (PFHpA)	29.9	32.0	94	29.8	32.0	93	64-147	<1	30
Perfluorohexane sulfonic acid (PFHxS)	25.5	29.2	87	28.1	29.2	96	65-148	9	30
Perfluorohexanoic acid (PFHxA)	28.6	32.0	89	29.1	32.0	91	65-149	2	30
Perfluorononane sulfonic acid (PFNS)	29.2	30.8	95	30.8	30.8	100	67-136	5	30
Perfluorononanoic acid (PFNA)	30.5	32.0	95	30.5	32.0	95	72-145	<1	30
Perfluorooctane sulfonamide (PFOSAm)	31.9	32.0	100	33.0	32.0	103	71-134	4	30
Perfluorooctane sulfonic acid (PFOS)	30.5	29.7	103	31.4	29.7	106	67-135	3	30
Perfluorooctanoic acid (PFOA)	30.0	32.0	94	30.8	32.0	96	59-147	3	30
Perfluoropentane sulfonic acid (PFPeS)	28.1	30.1	93	29.9	30.1	99	42-202	6	30
Perfluoropentanoic acid (PFPeA)	32.0	32.0	100	31.5	32.0	98	66-159	2	30
Perfluorotetradecanoic acid (PFTDA)	29.9	32.0	94	30.8	32.0	96	61-148	3	30
Perfluorotridecanoic acid (PFTrDA)	29.9	32.0	93	31.9	32.0	100	64-153	6	30
Perfluoroundecanoic acid (PFUnDA)	29.1	32.0	91	31.2	32.0	98	68-145	7	30

Printed 12/21/2023 4:18:22 PM

Superset Reference:23-0000682853 rev 00

Subcontract Lab Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 51 of 67

ALS Environmental - Kelso ATTN: Mark Harris 1317 South 13th Avenue Kelso WA 98626 Date Received: 08-DEC-23 Report Date: 10-JAN-24 11:36 (MT) Version: FINAL

Client Phone: 360-577-7222

Certificate of Analysis

Lab Work Order #: L2753951 Project P.O. #: 51K2313619 Job Reference: K2313619 C of C Numbers: Legal Site Desc:

Claire Kocharakkal, B.Sc. Project Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1435 Norjohn Court, Unit 1, Burlington, ON, L7L 0E6 Canada | Phone: +1 905 331 3111 | Fax: +1 905 331 4567 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Page 52 of 67

Sample Details/P	arameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
_2753951-1 \$	SL-B4-50-25'							
	Client on 29-NOV-23 @ 09:10							
	Sediment							
Miscellaneous								
% Moisture		12.2		0.10	%	22-DEC-23	28-DEC-23	R5973476
	A 4644	12.2		0.10	/0	22-DEC-23	20-020-23	K0973470
PBDEs by EP BDE 10	A 1614	<0.017	[U]	0.017	na/a	22-DEC-23	05-JAN-24	R5974016
BDE 7		<0.017	[U]	0.017	pg/g pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 8/11		<0.010	[U]	0.010	pg/g	22-DEC-23	05-JAN-24	R5974010
BDE 12/13		<0.0098	[U]	0.0098	pg/g	22-DEC-23	05-JAN-24	R5974010
BDE 12/13 BDE 15		<0.0098	[U]	0.0098		22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016
BDE 30		<0.0003	[U]	0.0003	pg/g	22-DEC-23	05-JAN-24	R5974010
BDE 32		<0.022	[U]	0.031	pg/g	22-DEC-23	05-JAN-24	R5974010
BDE 32 BDE 17/25		<0.022	[U]	0.022	pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R597401
BDE 17/23 BDE 28/33			[U]		pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	
BDE 20/33 BDE 35		< 0.026		0.026	pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R597401
BDE 35 BDE 37		<0.018	[U] [U]	0.018	pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R597401
BDE 37 BDE 75		<0.018		0.018	pg/g			R597401
BDE 75 BDE 51		< 0.034	[U]	0.034	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 51 BDE 49		< 0.029	[U]	0.029	pg/g	22-DEC-23 22-DEC-23	05-JAN-24	R597401
-		< 0.043	[U]	0.043	pg/g		05-JAN-24	R597401
BDE 71		< 0.045	[U]	0.045	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 47		0.170	J,R	0.033	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 79		<0.028	[U]	0.028	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 83		<0.039	[U]	0.039	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 66		<0.049	[U]	0.049	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 77		<0.029	[U]	0.029	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 100		0.050	M,J,R	0.014	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 119/120		<0.028	[U]	0.028	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 99		0.220	J,R	0.019	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 116		<0.045	[U]	0.045	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 118		<0.033	[U]	0.033	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 85		<0.028	[U]	0.028	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 126		<0.019	[U]	0.019	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 105		<0.035	[U]	0.035	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 155		<0.018	[U]	0.018	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 154		<0.020	[U]	0.020	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 153		<0.068	[U]	0.068	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 140		<0.050	[U]	0.050	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 138/166		<0.086	[U]	0.086	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 156		<0.13	[U]	0.13	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 128		<0.11	[U]	0.11	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 184		<0.038	[U]	0.038	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 183		<0.056	[U]	0.056	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 191		<0.087	[U]	0.087	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 181		<0.081	[U]	0.081	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 190		<0.12	[U]	0.12	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 197		<0.078	[U]	0.078	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 203		<0.11	[U]	0.11	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 196		<0.093	[U]	0.093	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 208		<0.15	[U]	0.15	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 207		<0.14	[U]	0.14	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 206		<0.16	[U]	0.16	pg/g	22-DEC-23	05-JAN-24	R597401
BDE 209		<7.5	[U]	7.5	pg/g	22-DEC-23	05-JAN-24	R597401
PBEB		<0.017	[U]	0.017	pg/g	22-DEC-23	05-JAN-24	R597401
		0.280	J,B	0.029	pg/g pg/g	22-DEC-23	05-JAN-24	R597401

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2753951-1 SL-B4-50-25'							
Sampled By: Client on 29-NOV-23 @ 09:10							
Matrix: Sediment							
PBDEs by EPA 1614							
Surrogate: 13C12 BDE 15	64.0		20-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 28	62.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 47	59.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 77	62.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 100	48.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 99	55.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 126	54.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 154	68.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 153	58.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 183	61.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 197	76.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 207	70.0		20-200	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 209	10.0	G	20-200	%	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016 R5974016
Surrogate: 13C6 HBB	58.0		20-200 25-150	%	22-DEC-23 22-DEC-23	05-JAN-24	R5974016 R5974016
Surrogate: 13C12 BDE 138 Cleanup	72.0		30-135	%	22-DEC-23	05-JAN-24	R5974016
Note: Sample is outside method recovery criteria for labelled BDE 209, native results are quantified using isotope dilution and are inherently recovery corrected.	12.0		00 100			00 07 11 24	10074010
L2753951-2 SL-B6-50-20'							
Sampled By: Client on 29-NOV-23 @ 16:40							
Matrix: Sediment							
Miscellaneous Parameters							
% Moisture	13.9		0.10	%	22-DEC-23	28-DEC-23	DE072476
	13.9		0.10	70	22-DEC-23	20-DEC-23	R5973476
PBDEs by EPA 1614 BDE 10	<0.0098	[U]	0.0098	na/a	22-DEC-23	05-JAN-24	R5974016
BDE 7	0.0932	[U] M,J	0.0098	pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	
BDE 8/11	0.0932	M,J	0.0091	pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016 R5974016
BDE 12/13	0.0489	M,J,R	0.0055	pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	
BDE 12/13 BDE 15		M,J		pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016
BDE 15 BDE 30	0.0313		0.0046	pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016
	<0.025	[U] M,J,R	0.025	pg/g		05-JAN-24 05-JAN-24	R5974016
BDE 32	0.049		0.018	pg/g	22-DEC-23		R5974016
BDE 17/25	0.250	J,R	0.022	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 28/33	0.140	J,R	0.022	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 35	0.480	J,R	0.015	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 37	<0.015	[U]	0.015	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 75	<0.028	[U]	0.028	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 51	0.087	M,J	0.024	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 49	1.36	[J]	0.036	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 71	<0.037	[U]	0.037	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 47	8.16		0.025	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 79	<0.023	[U]	0.023	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 83	<0.054	[U]	0.054	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 66	0.211	[J]	0.040	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 77	<0.026	[U]	0.026	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 100	2.95	[J]	0.020	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 119/120	<0.039	[U]	0.039	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 99	13.1		0.026	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 116	<0.062	[U]	0.062	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 118	<0.045	[U]	0.045	pg/g	22-DEC-23	05-JAN-24	R5974016
	0.365	[J]	0.038	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 85	0.305	[[0]	0.000	P9/9	22 020 25	000,4121	110001 1010

 * Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2753951-2 SL-B6-50-20'							
Sampled By: Client on 29-NOV-23 @ 16:40							
Matrix: Sediment							
PBDEs by EPA 1614							
BDE 105	<0.048	[U]	0.048	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 155	0.082	M,J	0.040	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 154	1.05	[J]	0.014	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 153	1.45	[J]	0.063	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 140	<0.051	[U]	0.051	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 138/166	<0.087	[U]	0.087	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 156	<0.13	[U]	0.13	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 128	<0.13	[U]	0.13	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 184	<0.027	[U]	0.027	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 183	0.570	J,R	0.027	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 191	0.094	M,J,R	0.040	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 181	<0.058	[U]	0.058	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 190	< 0.058	[U]	0.038	pg/g pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016 R5974016
BDE 190	0.529	[J]	0.087	pg/g pg/g	22-DEC-23 22-DEC-23	05-JAN-24	R5974016
BDE 203	0.940	J,R	0.038	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 200	0.940	[J]	0.081		22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016 R5974016
BDE 208	0.83	[J]	0.12	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 207	1.90	J,R	0.12	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 200	2.30	[J]	0.11	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 200	39.9	[0]	0.76	pg/g	22-DEC-23	05-JAN-24	R5974010
PBEB	0.040	M,J		pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016 R5974016
HBB	0.382	J,B	0.013 0.017	pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016 R5974016
Surrogate: 13C12 BDE 15	76.0	0,0	20-150	pg/g %	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 28	78.0		20-150 25-150	%	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016 R5974016
Surrogate: 13C12 BDE 47	71.0		25-150 25-150	%	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016 R5974016
Surrogate: 13C12 BDE 47 Surrogate: 13C12 BDE 77	71.0		25-150 25-150	%	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016
Surrogate: 13C12 BDE 100	59.0		25-150 25-150	%	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016
Surrogate: 13C12 BDE 99	67.0		25-150 25-150	%	22-DEC-23 22-DEC-23	05-JAN-24	
Surrogate: 13C12 BDE 126	68.0		25-150 25-150	%	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016 R5974016
Surrogate: 13C12 BDE 154	76.0		25-150 25-150	%	22-DEC-23 22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 153				%	22-DEC-23	05-JAN-24	
-	72.0		25-150				R5974016
Surrogate: 13C12 BDE 183 Surrogate: 13C12 BDE 197	71.0		25-150 25-150	% %	22-DEC-23 22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 197 Surrogate: 13C12 BDE 207	96.0		25-150	%	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016 R5974016
Surrogate: 13C12 BDE 209	74.0		20-200	%	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	
Surrogate: 13C6 HBB	42.0		20-200		22-DEC-23 22-DEC-23		R5974016
-	85.0		25-150	%		05-JAN-24	R5974016
Surrogate: 13C12 BDE 138 Cleanup	89.0		30-135	%	22-DEC-23	05-JAN-24	R5974016
.2753951-3 SL-B7-50-20'							
Sampled By: Client on 29-NOV-23 @ 11:10							
Matrix: Sediment							
Miscellaneous Parameters							
% Moisture	15.2		0.10	%	22-DEC-23	28-DEC-23	R5973476
PBDEs by EPA 1614							
BDE 10	<0.027	[U]	0.027	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 7	<0.025	[U]	0.025	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 8/11	<0.018	[U]	0.018	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 12/13	<0.015	[U]	0.015	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 15	<0.013	[U]	0.013	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 30	<0.042	[U]	0.042	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 32	< 0.030	[U]	0.030	pg/g	22-DEC-23	05-JAN-24	R5974016
			-			1	

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2753951-3 SL-B7-50-20'							
Sampled By: Client on 29-NOV-23 @ 11:10							
Matrix: Sediment							
PBDEs by EPA 1614							
BDE 28/33	<0.036	[U]	0.036	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 35	0.044	M,J,R	0.025	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 37	<0.025	[U]	0.025	pg/g pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 75	<0.023	[U]	0.023	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 51	<0.052	[U]	0.032		22-DEC-23	05-JAN-24	R5974016
BDE 49	<0.044	[U]	0.044	pg/g pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 71	<0.069	[U]	0.069	pg/g pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 47	0.438	J,B	0.009		22-DEC-23	05-JAN-24	R5974010
BDE 79	<0.042	[U]	0.043	pg/g	22-DEC-23	05-JAN-24	R5974010
BDE 83	<0.042	[U]	0.042	pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016
BDE 66	<0.070	[U]	0.070	pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	R5974016
BDE 77		[U]		pg/g	22-DEC-23 22-DEC-23	05-JAN-24 05-JAN-24	
BDE 100	< 0.051	[U] M,J	0.051	pg/g	22-DEC-23 22-DEC-23		R5974016
BDE 100 BDE 119/120	0.185		0.025	pg/g		05-JAN-24	R5974016
BDE 119/120 BDE 99	< 0.051	[U]	0.051	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 99 BDE 116	0.536	[J]	0.033	pg/g	22-DEC-23	05-JAN-24	R5974016
	<0.082	[U]	0.082	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 118	<0.059	[U]	0.059	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 85	<0.050	[U]	0.050	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 126	<0.034	[U]	0.034	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 105	<0.063	[U]	0.063	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 155	<0.042	[U]	0.042	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 154	<0.050	[U]	0.050	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 153	<0.15	[U]	0.15	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 140	<0.11	[U]	0.11	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 138/166	<0.19	[U]	0.19	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 156	<0.29	[U]	0.29	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 128	<0.24	[U]	0.24	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 184	<0.068	[U]	0.068	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 183	<0.10	[U]	0.10	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 191	<0.16	[U]	0.16	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 181	<0.15	[U]	0.15	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 190	<0.22	[U]	0.22	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 197	<0.20	[U]	0.20	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 203	<0.27	[U]	0.27	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 196	<0.23	[U]	0.23	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 208	<0.32	[U]	0.32	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 207	<0.31	[U]	0.31	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 206	<0.34	[U]	0.34	pg/g	22-DEC-23	05-JAN-24	R5974016
BDE 209	16.4	М	5.3	pg/g	22-DEC-23	05-JAN-24	R5974016
PBEB	<0.055	[U]	0.055	pg/g	22-DEC-23	05-JAN-24	R5974016
HBB	0.220	M,J,B	0.086	pg/g	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 15	67.0		20-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 28	65.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 47	54.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 77	55.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 100	45.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 99	51.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 126	47.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 154	59.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 153	49.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 183	49.0		25-150 25-150	%	22-DEC-23	05-JAN-24	R5974016
	40.0		20 100	/0		00 0/111-2-4	

 * Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
_2753951-3 SL-B7-50-20'							
Sampled By: Client on 29-NOV-23 @ 11:10							
Matrix: Sediment							
PBDEs by EPA 1614							
Surrogate: 13C12 BDE 197	61.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 207	42.0		20-200	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 209	17.0	G	20-200	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C6 HBB	54.0		25-150	%	22-DEC-23	05-JAN-24	R5974016
Surrogate: 13C12 BDE 138 Cleanup	59.0		30-135	%	22-DEC-23	05-JAN-24	R5974016
Note: Sample is outside method recovery criteria for labelled BDE 209, native results are							
quantified using isotope dilution and are							
inherently recovery corrected							

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

Sample Parameter Qualifier Key:

Qualifier	Description
G	QC result did not meet ALS DQO. Refer to narrative comments for further information.
J,B	The analyte was detected below the calibrated range but above the EDL, and was detected in the Method Blank at >10% of the sample concentration.
J,R	The analyte was detected below the calibrated range but above the EDL, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.
Μ	A peak has been manually integrated.
M,J	A peak has been manually integrated, and the analyte was detected below the calibrated range but above the EDL.
M,J,B	A peak has been manually integrated. Target analyte was detected below the calibrated range but above the EDL. Compound was detected in the method blank at >10% of the sample concentration.
M,J,R	A peak has been manually integrated, the analyte was detected below the calibrated range but above the EDL, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.
[J]	The analyte was detected below the calibrated range but above the EDL.
[U]	The analyte was not detected above the EDL.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
MOISTURE-BU	Soil	% Moisture	CCME PHC in Soil - Tier 1 (mod)

This method is used to determine the percent moisture in a sample. Samples are homogenized, moisture is removed by heating at 105°C until constant mass is achieved. The residues are measured gravimetrically and the difference in weight between the wet sample and the dried sample is used to determine the moisture content. This percent moisture can be used, in conjunction with analytical results, to report data on a dry weight basis.

PBDEs by EPA 1614 **USEPA 1614** PBDE-1614-HRMS-BU Solid

Samples are Dean-Stark Soxhlet extracted with toluene. Extracts are prepared by column chromatography, reduced in volume and analyzed by isotopedilution GC/HRMS

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
BU	ALS ENVIRONMENTAL - BURLINGTON, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L2753951	R	eport Date:	10-JAN-24	Pa	ige 1 of 7
Client:	1317 Sou Kelso W	ironmental - Kelso uth 13th Avenue /A 98626							
Contact:	Mark Har								
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-BU		Soil							
Batch I	R5973476								
WG3787902-3 % Moisture	B DUP		L2753951-1 12.2	14.2		%	16	20	28-DEC-23
WG3787902-2 % Moisture	2 LCS			100.5		%		90-110	28-DEC-23
WG3787902-1 % Moisture	МВ			<0.10		%		0.3	28-DEC-23
PBDE-1614-HRN		Solid		10110		70		0.0	20 020 23
	R5974016	30110							
WG3787901-4			L2753951-1						
BDE 10			<0.017	<0.029	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 7			<0.016	<0.027	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 8/11			<0.011	<0.019	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 12/13			<0.0098	<0.016	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 15			<0.0083	<0.014	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 30			<0.031	<0.050	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 32			<0.022	<0.035	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 17/25			<0.028	<0.045	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 28/33			<0.026	<0.043	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 35			<0.018	<0.030	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 37			<0.018	<0.029	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 75			<0.034	<0.034	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 51			<0.029	<0.029	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 49			<0.043	<0.042	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 71			<0.045	<0.044	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 47			0.170	0.238		pg/g	33	50	05-JAN-24
BDE 79			<0.028	<0.027	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 83			<0.039	<0.049	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 66			<0.049	<0.048	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 77			<0.029	<0.030	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 100			0.050	0.052		pg/g	3.9	50	05-JAN-24
BDE 119/120			<0.028	<0.035	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 99			0.220	0.250		pg/g	13	50	05-JAN-24
BDE 116			<0.045	<0.057	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 118			<0.033	<0.041	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 85			<0.028	<0.035	RPD-NA	pg/g	N/A	50	05-JAN-24

								-
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BDE-1614-HRMS-BU	Solid							
Batch R59740	16							
WG3787901-4 DU	Ρ	L2753951-1			,			
BDE 126		<0.019	<0.023	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 105		<0.035	<0.044	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 155		<0.018	<0.025	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 154		<0.020	0.033	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 153		<0.068	<0.079	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 140		<0.050	<0.059	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 138/166		<0.086	<0.10	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 156		<0.13	<0.15	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 128		<0.11	<0.13	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 184		<0.038	<0.041	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 183		<0.056	<0.061	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 191		<0.087	<0.094	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 181		<0.081	<0.089	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 190		<0.12	<0.13	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 197		<0.078	<0.077	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 203		<0.11	<0.11	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 196		<0.093	<0.092	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 208		<0.15	<0.19	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 207		<0.14	<0.18	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 206		<0.16	<0.20	RPD-NA	pg/g	N/A	50	05-JAN-24
BDE 209		<7.5	<6.4	RPD-NA	pg/g	N/A	50	05-JAN-24
PBEB		<0.017	<0.016	RPD-NA	pg/g	N/A	50	05-JAN-24
HBB		0.280	0.240		pg/g	15	50	05-JAN-24
recovery correcte	d	nethod recovery crit	teria for labelle	ed BDE 209, nativ	e results are qu	antified using iso	otope dilution	and are inherer
WG3787901-2 LC: BDE 10	5		32.0		%		5-130	05-JAN-24
BDE 7			63.0		%		5-130	05-JAN-24
BDE 8/11			85.0		%		20-150	05-JAN-24
BDE 12/13			88.0		%		5-130	05-JAN-24
BDE 15			94.0		%		50-150	05-JAN-24
BDE 30			86.0		%		5-130	05-JAN-24
BDE 32			109.0		%		50-150	05-JAN-24
BDE 17/25			110.0		%		00-100	00 0/11-24

COMMENTS: Sample is outside method recovery criteria for labelled BDE 209, native results are quantified using isotope dilution and are inherently

		Workorder:	L275395	51	Report Date: 10	0-JAN-24	Pa	age 3 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PBDE-1614-HRMS-BU	Solid							
Batch R5974016								
WG3787901-2 LCS BDE 28/33			108.0		%		50-150	05-JAN-24
BDE 35			123.0		%		50-150	05-JAN-24
BDE 37			131.0		%		50-150	05-JAN-24
BDE 75			100.0		%		50-150	05-JAN-24
BDE 51			104.0		%		50-150	05-JAN-24
BDE 49			97.0		%		50-150	05-JAN-24
BDE 71			117.0		%		50-150	05-JAN-24
BDE 47			109.0		%		50-150	05-JAN-24
BDE 79			119.0		%		50-150	05-JAN-24
BDE 83			107.0		%		60-140	05-JAN-24
BDE 66			107.0		%		50-150	05-JAN-24
BDE 77			107.0		%		50-150	05-JAN-24
BDE 100			106.0		%		50-150	05-JAN-24
BDE 119/120			105.0		%		50-150	05-JAN-24
BDE 99			112.0		%		50-150	05-JAN-24
BDE 116			87.0		%		40-140	05-JAN-24
BDE 118			111.0		%		50-150	05-JAN-24
BDE 85			111.0		%		50-150	05-JAN-24
BDE 126			109.0		%		50-150	05-JAN-24
BDE 105			112.0		%		50-150	05-JAN-24
BDE 155			85.0		%		50-150	05-JAN-24
BDE 154			94.0		%		50-150	05-JAN-24
BDE 153			111.0		%		50-150	05-JAN-24
BDE 140			108.0		%		50-150	05-JAN-24
BDE 138/166			112.0		%		50-150	05-JAN-24
BDE 156			107.0		%		50-150	05-JAN-24
BDE 128			102.0		%		50-150	05-JAN-24
BDE 184			88.0		%		50-150	05-JAN-24
BDE 183			92.0		%		50-150	05-JAN-24
BDE 191			102.0		%		50-150	05-JAN-24
BDE 181			75.0		%		50-150	05-JAN-24
BDE 190			75.0		%		50-150	05-JAN-24
BDE 197			95.0		%		50-150	05-JAN-24
BDE 203			85.0		%		50-150	05-JAN-24

		Workorder	: L275395	1	Report Date: 1	0-JAN-24	Pa	ige 4 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BDE-1614-HRMS-BU	Solid							
Batch R5974016	i							
WG3787901-2 LCS BDE 196			97.0		%		50-150	05-JAN-24
BDE 208			113.0		%		50-200	05-JAN-24
BDE 207			106.0		%		50-200	05-JAN-24
BDE 206			101.0		%		50-200	05-JAN-24
BDE 209			129.0		%		50-200	05-JAN-24
PBEB			156.0	G	%		50-150	05-JAN-24
НВВ			94.0		%		50-150	05-JAN-24
COMMENTS: Samp recovery corrected WG3787901-1 MB BDE 10		2	<0.021	[U]	pg/g	Ű	2.6	05-JAN-24
BDE 7			<0.021	[U]	pg/g		2.6	05-JAN-24 05-JAN-24
BDE 8/11			<0.020	[U]	pg/g		5.3	05-JAN-24
BDE 12/13			<0.014	[U]	pg/g		5.3 5.3	05-JAN-24 05-JAN-24
BDE 15			<0.012	[U]	pg/g		2.6	05-JAN-24
BDE 30			<0.032	[U]	pg/g		2.6	05-JAN-24
BDE 32			<0.022	[U]	pg/g		2.6	05-JAN-24
BDE 17/25			<0.022	[U]	pg/g		5.3	05-JAN-24
BDE 28/33			<0.028	[U]	pg/g		5.3	05-JAN-24
BDE 35			< 0.019	[U]	pg/g		2.6	05-JAN-24
BDE 37			<0.019	[U]	pg/g		2.6	05-JAN-24
BDE 75			< 0.030	[U]	pg/g		2.6	05-JAN-24
BDE 51			<0.026	[U]	pg/g		2.6	05-JAN-24
BDE 49			<0.038	[U]	pg/g		2.6	05-JAN-24
BDE 71			<0.039	[U]	pg/g		2.6	05-JAN-24
BDE 47			0.133	M,J	pg/g		2.6	05-JAN-24
BDE 79			<0.024	[U]	pg/g		2.6	05-JAN-24
BDE 83			<0.049	[U]	pg/g		8	05-JAN-24
BDE 66			<0.043	[U]	pg/g		2.6	05-JAN-24
BDE 77			<0.027	[U]	pg/g		2.6	05-JAN-24
BDE 100			0.021	M,J,R	pg/g		4	05-JAN-24
BDE 119/120			<0.035	[U]	pg/g		4	05-JAN-24
BDE 99			0.100	M,J,R	pg/g		4	05-JAN-24

COMMENTS: Sample is outside method recovery criteria for labelled BDE 209, native results are quantified using isotope dilution and are inherently

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PBDE-1614-HRMS-BU	Solid							
Batch R5974016								
WG3787901-1 MB			0.044					
BDE 118			<0.041	[U]	pg/g		4	05-JAN-24
BDE 85			<0.034	[U]	pg/g		4	05-JAN-24
BDE 126			<0.023	[U]	pg/g		4	05-JAN-24
BDE 105			<0.043	[U]	pg/g		4	05-JAN-24
BDE 155			<0.028	[U]	pg/g		5.3	05-JAN-24
BDE 154			<0.033	[U]	pg/g		5.3	05-JAN-24
BDE 153			<0.060	[U]	pg/g		5.3	05-JAN-24
BDE 140			<0.046	[U]	pg/g		5.3	05-JAN-24
BDE 138/166			<0.079	[U]	pg/g		11	05-JAN-24
BDE 156			<0.12	[U]	pg/g		5.3	05-JAN-24
BDE 128			<0.097	[U]	pg/g		5.3	05-JAN-24
BDE 184			<0.040	[U]	pg/g		6.6	05-JAN-24
BDE 183			<0.060	[U]	pg/g		6.6	05-JAN-24
BDE 191			<0.092	[U]	pg/g		6.6	05-JAN-24
BDE 181			<0.087	[U]	pg/g		6.6	05-JAN-24
BDE 190			<0.13	[U]	pg/g		6.6	05-JAN-24
BDE 197			<0.093	[U]	pg/g		6.6	05-JAN-24
BDE 203			<0.13	[U]	pg/g		6.6	05-JAN-24
BDE 196			<0.11	[U]	pg/g		6.6	05-JAN-24
BDE 208			<0.22	[U]	pg/g		13	05-JAN-24
BDE 207			<0.20	[U]	pg/g		13	05-JAN-24
BDE 206			<0.23	[U]	pg/g		13	05-JAN-24
BDE 209			<10	[U]	pg/g		13	05-JAN-24
PBEB			<0.014	[U]	pg/g		2.6	05-JAN-24
HBB			0.276	[J]	pg/g		2.6	05-JAN-24
Surrogate: 13C12 BDE 15	5		79.0		%		20-150	05-JAN-24
Surrogate: 13C12 BDE 28			73.0		%		25-150	05-JAN-24
Surrogate: 13C12 BDE 47			68.0		%		25-150	05-JAN-24
Surrogate: 13C12 BDE 77			72.0		%		25-150	05-JAN-24
Surrogate: 13C12 BDE 10			51.0		%		25-150	05-JAN-24
Surrogate: 13C12 BDE 99			58.0		%		25-150	05-JAN-24
Surrogate: 13C12 BDE 12			59.0		%		25-150	05-JAN-24
Surrogate: 13C12 BDE 15			73.0		%		25-150	05-JAN-24
Surrogate: 13C12 BDE 15			66.0		%		25-150	05-JAN-24

	Workorde	er: L27539	51	Report Date:	10-JAN-24	Pa	age 6 of 7
Test Matr	ix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PBDE-1614-HRMS-BU Soli	d						
Batch R5974016 WG3787901-1 MB		70.0		0/		05.450	
Surrogate: 13C12 BDE 183 Surrogate: 13C12 BDE 197		70.0 85.0		%		25-150 25-150	05-JAN-24 05-JAN-24
Surrogate: 13C12 BDE 207		85.0		%		20-200	05-JAN-24
Surrogate: 13C12 BDE 209		10.0	G	%		20-200	05-JAN-24
Surrogate: 13C6 HBB Surrogate: 13C12 BDE 138 Cle	eanup	76.0 75.0		%		25-150 30-135	05-JAN-24 05-JAN-24

COMMENTS: Sample is outside method recovery criteria for labelled BDE 209, native results are quantified using isotope dilution and are inherently recovery corrected

Workorder: L2753951

Report Date: 10-JAN-24

Legend:

_		
	Limit	ALS Control Limit (Data Quality Objectives)
	DUP	Duplicate
	RPD	Relative Percent Difference
	N/A	Not Available
	LCS	Laboratory Control Sample
	SRM	Standard Reference Material
	MS	Matrix Spike
	MSD	Matrix Spike Duplicate
	ADE	Average Desorption Efficiency
	MB	Method Blank
	IRM	Internal Reference Material
	CRM	Certified Reference Material
	CCV	Continuing Calibration Verification
	CVS	Calibration Verification Standard
	LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
G	QC result did not meet ALS DQO. Refer to narrative comments for further information.
M,J	A peak has been manually integrated, and the analyte was detected below the calibrated range but above the EDL.
M,J,R RPD-NA	A peak has been manually integrated, the analyte was detected below the calibrated range but above the EDL, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum. Relative Percent Difference Not Available due to result(s) being less than detection limit.
[J]	The analyte was detected below the calibrated range but above the EDL.
[U]	The analyte was not detected above the EDL.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS Environmental Chain of Custody 1317 South 13th Avenue · Kelso, WA 98626 · 1-360-577-7222 · FAX 1-360-636-1068

Project Number: Project Manager: QAP:	K2313619 Mark Harris LAB QAP						Misc Out 1 None
Lab Code	Sample ID	# of Cont.	Matrix	Samı Date	ole Time	Lab ID	×
K2313619-006	SL-B4-50-25-'	V	Soil	11/29/23	0910	Burlington ALS	x
K2313619-007	SL-B6-50-20'	\	Soil	11/29/23	1640	Burlington ALS	x
K2313619-008	SL-B7-50-20'	1	Soil	11/29/23	1110	Burlington ALS	x

Test Comments

Misc Out 1 - None

K2313619-006,7,8

1614-PBDEs

Special Instructions/Comments Please provide the electronic (PDF and EDD) report to the following e-mail address: ALKLS Data@alsglobal.com.	Turnaround RequirementsRUSH (Surcharges Apply)	Report RequirementsI. Results OnlyII. Results + QC Summaries	Invoice Information
	PLEASE CIRCLE WORK DAYS 1 2 3 4 5 STANDARD	III. Results + QC and Calibration Summaries IV. Data Validation Report with Raw Data	PO# 51K2313619
H - Test is On Hold P - Test is Authorized for Prep Only	Requested FAX Date: Requested Report Date: <u>12/26/23</u>	PQL/MDL/J <u>Y</u> EDD <u>N</u>	Bill to

it hit AARON BUNTON Relinquished By: 12/7/23 Received By: Airbill Number: Page 66 ditare Zors 14:00 4.00

PURCHASE ORDER

FOR SUBCONTRACTED ANALYSES

Bill To: ALS Environmental

Phone: 1-360-577-7222

Date: 12/6/2023 Contact: Mark Harris Email: Mark.Harris@alsglobal.com

> 1317 South 13th Avenue Kelso WA, 98626

Service Request: K2313619

Company: ALS Environmental - Canada Address: 1435 Norjohn Court, Unit 1 Burlington ON, L7L 0E6 Phone: 905-331-3111

Ship To: ALS Environmental ALKLS.Data@alsglobal.com

Phone: 360-577-7222

Item/Description	Quantity	Unit Price
None/Misc Out 1	3	911.25

Comments:

ALS Group USA, Corp. www.alsglobal.com An ALS Limited Company

Page 67 of 67

February 26, 2024

Yancy Meyer Blue Mountain Environmental, Inc. 90 Baldwin Road Walla Walla, WA 99362

Re: Analytical Data for Project E2023/1103; Port of Pasco Lagoons Laboratory Reference No. 2402-238

Dear Yancy:

Enclosed are the analytical results and associated quality control data for samples submitted on February 20, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: February 26, 2024 Samples Submitted: February 20, 2024 Laboratory Reference: 2402-238 Project: E2023/1103; Port of Pasco Lagoons

Case Narrative

Samples were collected on February 15, 2024 and received by the laboratory on February 20, 2024. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

ernite: ug/2 (pp2)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GWMW-1					
Laboratory ID:	02-238-01					
Arsenic	19	3.3	EPA 200.8	2-26-24	2-26-24	
Barium	490	28	EPA 200.8	2-26-24	2-26-24	
Cadmium	ND	4.4	EPA 200.8	2-26-24	2-26-24	
Chromium	36	11	EPA 200.8	2-26-24	2-26-24	
Lead	55	1.1	EPA 200.8	2-26-24	2-26-24	
Mercury	ND	0.50	EPA 7470A	2-21-24	2-21-24	
Selenium	ND	5.6	EPA 200.8	2-26-24	2-26-24	
Silver	ND	11	EPA 200.8	2-26-24	2-26-24	

Client ID:	GWMW-2					
Laboratory ID:	02-238-02					
Arsenic	6.2	1.3	EPA 200.8	2-26-24	2-26-24	
Barium	190	11	EPA 200.8	2-26-24	2-26-24	
Cadmium	ND	1.8	EPA 200.8	2-26-24	2-26-24	
Chromium	16	4.4	EPA 200.8	2-26-24	2-26-24	
Lead	5.7	0.44	EPA 200.8	2-26-24	2-26-24	
Mercury	ND	0.50	EPA 7470A	2-21-24	2-21-24	
Selenium	ND	2.2	EPA 200.8	2-26-24	2-26-24	
Silver	ND	4.4	EPA 200.8	2-26-24	2-26-24	

Client ID:	GWMW-3					
Laboratory ID:	02-238-03					
Arsenic	3.4	1.3	EPA 200.8	2-26-24	2-26-24	
Barium	110	11	EPA 200.8	2-26-24	2-26-24	
Cadmium	ND	1.8	EPA 200.8	2-26-24	2-26-24	
Chromium	7.2	4.4	EPA 200.8	2-26-24	2-26-24	
Lead	2.6	0.44	EPA 200.8	2-26-24	2-26-24	
Mercury	ND	0.50	EPA 7470A	2-21-24	2-21-24	
Selenium	ND	2.2	EPA 200.8	2-26-24	2-26-24	
Silver	ND	4.4	EPA 200.8	2-26-24	2-26-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Date	
Analyzed	Flags
2-26-24	
2-26-24	
2-26-24	
2-26-24	
2-26-24	
2-26-24	
2-26-24	
2-21-24	
_	2-26-24 2-26-24

					Source	Per	rcent	Recovery		RPD	
Analyte	Re	sult	Spike Level		Result	Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	01-06	67-08									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
Barium	ND	ND	NA	NA		1	NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	NA	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	02-23	38-01									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	01-06	67-08									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	113	112	111	111	ND	102	101	75-125	1	20	
Barium	124	123	111	111	14.8	99	98	75-125	1	20	
Cadmium	111	109	111	111	ND	100	98	75-125	2	20	
Chromium	112	111	111	111	ND	101	100	75-125	1	20	
Lead	109	109	111	111	ND	99	98	75-125	0	20	
Selenium	113	112	111	111	ND	102	101	75-125	1	20	
Silver	96.9	95.3	111	111	ND	87 86		75-125	2	20	
Laboratory ID:	02-23	38-01									
Mercury	12.7	12.9	12.5	12.5	ND	102	103	75-125	2	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

4

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished				3 (214	2 61		Lab ID	Sampled by:	Project Manager:	Project Number: E2023	Company: BXC	1.4	Enviro
					Nichalut Bilmi	AN MA	Signature			WMW-3	GWMW-2	SWMW-1	Sample Identification	In T	PASED LALIDONS	/1103	C	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
Deviewed/Date					350	BME	Company			1340	1300	2-15-23 1215	Date Time Sampled Sampled	(other)	Standard (7 Days)	_	Same Day	(in working days) (Check One)	Cha
						1,				4		420 1	-	er of Co PH-HCID	ntainers	3 Days	X 1 Day		Chain of Custody
	ľ			ľ	2/20/24	2-19-24	Date						NWTP	PH-Gx	FEX (8021			Laboratory N	istody
Ī					1000	1000	Time						Halog		olatiles 8260 (Waters Only	0		umber:	
	Data Package: Standard						Comments/Special Instructions						(with I PAHs PCBs Organ Organ	ow-level 8270/SIN 8082 ochlorine ophosph	2270/SIM PAHs) M (low-level) e Pesticides 8 norus Pesticid id Herbicides	es 8270/	SIM	02-238	
	Level III Level IV						ions			*		×	Total N	1.00	-				Page
	N 🗆												% Moi:	sture				-	of

APPENDIX F: Monitoring Well Map Provided by the Licensed Land Surveyor

