

Phase II Subsurface Investigation Report

REPORT DATE: May 20, 2024

SITE INFORMATION 9944 US-2 Coulee City, Washington 99115

PROJECT INFORMATION AEI Project No. 491476 Client Reference No.: 24-000639-02

PREPARED FOR Aujla Enterprises, LLC 9944 US Highway 2 E Coulee City, Washington 99115

PREPARED BY AEI Consultants 2500 Camino Diablo Walnut Creek, California 94597 925.746.6000

> 1.800.801.3224 www.aeiconsultants.com

AEI Consultants 2500 Camino Diablo Walnut Creek, California 94597

May 20, 2024

Rajinderpal Singh Aujla Enterprises, LLC 9944 US Highway 2 E Coulee City, Washington 99115

Subject: Phase II Subsurface Investigation 9944 US-2 Coulee City, Washington 99115 AEI Project No. 491476 Client Reference No.: 24-000639-2

Dear Mr. Singh,

This report presents the results of the Phase II Subsurface Investigation conducted by AEI Consultants (AEI) at 9944 US-2, Coulee City, Washington ("the Site") to assess the recognized environmental conditions identified in *Phase I Environmental Site Assessment* by AEI report dated February 23, 2024. The investigation was performed in general accordance with the scope of services outlined in our proposal dated March 5, 2024 (AEI Proposal Number 95109), which was subsequently authorized on March 28, 2024.

AEI appreciates the opportunity to support this important project. If you have any questions, please do not hesitate to contact me.

Sincerely,

Karla Smith Executive Vice President 4514 Cole Ave, Suite 600 Dallas TX 75205 Phone: 469.500.4402 Email: ksmith@aeiconsultants.com

TABLE OF CONTENTS

1.0 PURPOSE	4
2.0 SITE DESCRIPTION AND BACKGROUND	4
2.1 Site Description.2.2 Background.2.3 Existing Environmental Covenant.	4
3.0 FIELD INVESTIGATION AND OBSERVATIONS	5
 3.1 Health and Safety Plan . 3.2 WDOE Work Scope Approval and Utility Clearance	6 7 8 8 9
4.0 FINDINGS1	0
 4.1 Subsurface Conditions 4.2 Analytical Results 4.2.1 Soil Sample Analytical Results 4.2.2 Well Water Sample Analytical Results 4.2.3 Soil Gas Sample Analytical Results 	11 11 11
5.0 SUMMARY AND CONCLUSIONS1	12
6.0 REFERENCES1	3
7.0 REPORT LIMITATIONS AND RELIANCE	13
8.0 SIGNATURES	14

FIGURES

Figure 1	Topographic Map
Figure 2	Sample Location Map

TABLES

Table 1Soil Sample Data SummaryTable 2Groundwater Sample Data SummaryTable 3Soil Gas Sample Data Summary

APPENDICES

- Appendix A WDOE Approval
- Appendix B Geophysical Survey Report
- Appendix C Boring Logs
- Appendix D Laboratory Analytical Reports
- Appendix E Waste Manifest

1.0 PURPOSE

This report presents the results of the Phase II Subsurface Investigation (Phase II) performed by AEI Consultants (AEI) at 9944 US-2, Coulee City, Washington ("the Site"). The investigation was conducted in general accordance with the scope of work presented in AEI's proposal number 95109 dated March 5, 2024, authorized by the Client on March 28, 2024

The general purpose of this Phase II was to evaluate whether the subsurface has been adversely impacted by the recognized environmental conditions (RECs) identified in the *Phase I Environmental Site Assessment* (Phase I ESA) prepared by AEI dated February 23, 2024. The Site descriptions, background, investigation procedures, findings, summary, and conclusions are presented in the following sections.

2.0 SITE DESCRIPTION AND BACKGROUND

Details on the Site description and background are presented below as referenced in February 23, 2024, Phase I ESA.

2.1 Site Description

The Site is located on the north side of US Highway 2 in Coulee City, Washington. The Site consists of approximately 2.51 acres of land that is improved with 76 and Pacific Pride gasoline station and Big Wally's convenience store. In addition to the Site building, the Site is improved with an aboveground storage tank (AST) nest, two fuel canopies with dispenser islands, and asphalt paved parking/driveways.

The Site appeared to be sloped to the west, with a topographic gradient toward the west and is situated at an elevation approximately 1,623 feet above mean sea level. Groundwater flow direction beneath the Site is inferred to follow the topographic gradient, and flow to the west. The Site location is shown on Figure 1 - Topographic Map.

Refer to Section 4.1 below for additional information on the Site subsurface conditions encountered during drilling.

2.2 Background

The Site is equipped with an AST nest, which houses three 6,000-gallon gasoline tanks and two, 4,000 and 10,000-gallon, diesel tanks. The AST nest is located in the western portion of the Site. Surficial staining was not observed in the AST secondary containment nest during the Phase I ESA inspection; however, the area of the Site was experiencing heavy snow fall at the time of the inspection. The ASTs are connected to underground fiberglass reinforced double wall piping which leads to the dispenser islands. Soil sampling was conducted in the vicinity of the AST nest in 2011 due to a release from damaged piping; however, the sampling was limited to the damaged area. Based on the age of the AST system and underground piping (34 years) and

limited nature of previous sampling activities, the underground piping at the Site represents a REC.

Prior to the current developments in 1990, the Site was developed with an apparent gasoline station in a slightly different configuration from at least 1955 until 1982. A commercial building was present on the eastern portion with dispenser islands and a likely tank cavity to the southeast of the building. No information regarding fuel tanks associated with the initial gasoline station was provided during this assessment, and it is unknown if they were above or belowground; however, it should be noted that no ASTs are visible in the aerial photographs reviewed between 1955 and 1982. Based on the lack of information regarding the removal/closure of former tanks at the Site and the limited nature of the previous sampling, the initial gasoline station and associated tank system at the Site represent a REC.

2.3 Existing Environmental Covenant

In March 2010, the gasoline station's leak detection system could not account for approximately 214 gallons of gasoline, and gasoline odors were noted in the office. An investigation discovered that damage to a fuel pipeline occurred during a paving job adjacent to the concrete AST containment system. The leak was approximately 15 inches below grade and about 28 inches from the outside of the concrete containment structure. On March 26, 2010, soil was excavated to 10 feet below ground surface (bgs) at the point of release. Five soil samples were collected from the base of the excavation. Sample results indicated concentrations of gasoline; benzene, toluene, ethylbenzene, and xylene (BTEX) exceeded cleanup levels. Further excavation in the direction of the AST system was not attempted due to the risk of jeopardizing the structural integrity of the containment structure. Based on the sample results, additional soil was excavated to bedrock at 12.5 feet bgs on April 3, 2010. Four soil samples were collected from the expanded excavation, and all results were non-detect or below cleanup levels for the contaminants of concern. Approximately 40 cubic yards of soil was removed from the Site.

The Washington Department of Ecology (WDOE) identified Big Wally's as a voluntary cleanup site (VOLCLNST) in 2013 (Cleanup Site ID 12069). As site structures risked damage by additional excavation, and no apparent threat to groundwater was identified, it was determined that the Site would be eligible for a No Further Action (NFA) determination, if institutional controls were implemented in the form of an environmental covenant (EC). An EC was recorded for the Site on June 24, 2013, and on July 11, 2013, the WDOE issued an NFA determination. According to the EC, activities that create a new exposure pathway or interfere with the protection of human health and the environmental are prohibited. The WDOE conducted a periodic review of the Site on 2019, in which it was determined that the restrictions in the covenant were being followed. Due to the NFA determination and EC in place, this release represents a controlled recognized environmental condition, and no further action for this concern appears warranted at this time.

3.0 FIELD INVESTIGATION AND OBSERVATIONS

Investigation efforts included completing a geophysical survey in the eastern portion of the Site, advancing four exploratory soil borings, installing two temporary soil gas probes at the

Site to collect soil and soil gas samples, and the collection of one water sample from the existing potable well at the Site, to evaluate the tank system, underground product piping and former gasoline station, primarily located on the eastern portion of the Site. The boring/sample and water well locations are shown on Figure 2 - Sample Location Map. The completed Site activities are summarized below.

3.1 Health and Safety Plan

A site-specific health and safety plan was prepared, reviewed by on-site personnel, and kept on the Site for the duration of the fieldwork.

3.2 WDOE Work Scope Approval and Utility Clearance

On April 1, 2024, prior to scheduling field work activities, AEI submitted a letter work plan for the proposed drilling activities to the WDOE as part of notification for the June 24, 2013 EC. The WDOE subsequently approved the work plan on April 1, 2024. The WDOE approval is included as Appendix A.

The public underground utility locator Washington Utilities Notification Center was notified who, in turn, notified subscribing utility companies of the planned investigation work for underground utility locations to be marked along the ground surface around the Site boundaries and proposed boring locations, where accessible. Private utility locating was conducted by Ground Penetrating Radar Systems (GPRS) of Seattle, Washington, under subcontract to AEI to further identify and locate underground utilities on the Site, and to shift boring locations, as appropriate.

3.3 Geophysical Survey

On April 4, 2024, in addition to the utility locating activities, a geophysical survey was conducted by GPRS of Seattle, Washington. The geophysical survey was conducted primarily in the eastern-southeastern portion of the Site. The purpose of the survey was to evaluate for the potential presence of underground structures, former USTs, associated piping, disturbed soils, and/or cavities. The geophysical survey was conducted using ground-penetrating radar (GPR), magnetometer, and other utility locating equipment.

During the scanning process, subsurface visibility was noted to be up to 2-3 feet bgs in most areas. The total area scanned was approximately 10,000-square feet. During geophysical scanning, the equipment and methods used did not detect reactions from potential UST(s); however, unknown piping and piping trenches were also identified near the existing Site building. The geophysical survey report or any pertinent information regarding the survey is presented in Appendix B.

The Client should be aware of the inherent limitations of geophysical surveying methods and that utilities and features whether above-ground or in the subsurface (i.e., automobiles, debris piles, tree roots, reinforced concrete, certain soil conditions, etc.), may decrease the effectiveness of the survey equipment. The Client should not conclude that such features are definitively non-existent, only that they were not detected. Conversely, should the survey

indicate that a subsurface obstruction may be present in a proposed boring location, the boring location will be adjusted accordingly.

3.4 Drilling and Soil Sample Collection

On April 4, 2024, four exploratory soil borings SB-1 through SB-4 were advanced at the Site at the locations shown on Figure 2. The borings were advanced by Holocene Drilling of Puyallup, Washington using a direct push (DP) truck-mounted drill rig to collect soil samples. The locations of the borings are listed below:

- Boring SB-1 was advanced to a total depth of 10 feet bgs using the DP drilling method south of the dispenser island on the western portion of the Site;
- Boring SB-2 was advanced to a total depth of 10 feet bgs using the DP drilling method east of the AST nest and the existing product piping;
- Borings SB-3 and SB-4 were advanced to total depths of 15 and 14 feet bgs, respectively using the DP drilling method on the south and southeast of the dispenser island in the eastern portion of the Site in an area that could have been where former USTs were located, based on aerial photographs and Site configuration.

The locations of the borings were chosen in part based on existing and former Site structures, aerial photographs, the results of the utility clearance, the geophysical survey, and anticipated groundwater flow direction.

The soil borings were evaluated throughout their entire depths for the purposes of lithologic logging, field screening (headspace testing), and laboratory analyses. The soil samples from borings were obtained using a single-walled coring system with approximately 2.25 inches in diameter and 5 feet long containing plastic liners. The coring system was connected to a 1.25-inch diameter, flush-jointed drill rod that was hydraulically driven (pushed) by the rig to each target sample depth. Upon retrieval from each sample depth interval, the coring system was opened, and the liners were removed and cut for visual inspection and lithologic logging purposes. Direct push refusal was encountered in boring SB-4 due to a cobble at the boring location at approximately 14 feet bgs. Recovered soil samples were examined for soil classification and described on detailed boring log in general conformance with the Unified Soil Classification System. The boring logs are presented in Appendix C.

Headspace screening was performed using a photoionization device (PID) equipped with an electrodeless 10.6 electron volt ultraviolet lamp for detecting the presence of organic vapors in the soil samples collected. The PID was calibrated by the rental company before use. To initiate the headspace testing procedure, soil samples were placed into labeled, plastic bags, and sealed prior to conducting the tests. After approximately 20-30 minutes had elapsed for organic vapor build-up inside the bags, each bag was punctured with the probe tip of the PID to allow for measurement of the organic vapors or headspace gases.

There was no visual or olfactory evidence (i.e., soil discoloration, odor) of potentially impacted soil observed in soils that were recovered during drilling activities. The maximum PID reading

was 0.4 parts per million (ppm), in boring SB-3 at depths of 4.5-5 feet bgs and 10 feet bgs. The resulting PID measurements were recorded in the boring logs that are presented in Appendix C.

Select soil samples from borings SB-1 and SB-2 were collected for potential laboratory analyses from the depth interval from 4-5 feet bgs, beneath the product piping. Soil samples from borings SB-3 and SB-4 were collected from the estimated invert depth of a potential UST (10-12 feet bgs) and from the bottom of each boring. Samples not used for measuring organic vapors are transferred from the plastic liners and placed into clean, laboratory-supplied containers with preservatives, as appropriate. After sealing, each sample was appropriately labeled and entered on the chain-of-custody documentation and placed into an insulated shipping container with ice for transportation to a State of Washington-certified laboratory for analyses. The following is a summary of the soil samples collected and analyzed:

- Sample SB-1 (4.5-5') was collected at 4.5-5 feet bgs, from an estimated depth beneath product piping;
- Sample SB-2 (4.5-5') was collected at 4.5-5 feet bgs, from an estimated depth beneath product piping;
- Samples SB-3 (12-12.5') and SB-4 (12-12.5 were collected at 12-12.5 feet bgs, from an estimated depth below potential former fueling system structures;
- Sample SB-3 (14.5-15') was collected at 14.5-15 feet bgs, from the bottom of the boring; and
- Sample SB-4 (13.5-14') was collected at 13.5-14 feet bgs, from the bottom of the boring.

3.5 Water Well Sample Collection

On April 4, 2024, AEI collected a well water sample (Well Water-1) from the spigot adjacent to the west of the Big Wally's convenience store. After approximately 5 minutes of well water running, well water sample was collected in laboratory-supplied containers with preservatives, as appropriate. After sealing, each sample was appropriately labeled and recorded on chain-of-custody documentation in preparation for transfer to a State of Washington-certified laboratory for analysis by placing them into an insulated shipping container with ice.

3.6 Soil Gas Probe Installation and Sample Collection

On April 4, 2024, AEI installed two temporary soil gas probes (SG-1-4.5' and SG-2-4.5') in general accordance with the WDOE Guidance for *Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*, Review Draft dated October 2009, Revised February 2016 and April 2018. The soil gas probes were constructed of a 1-inch-long stainless-steel implant fitting inserted into a length of 0.25-inch outer diameter Teflon[®] tubing. The tubing length is of sufficient length to set the implant fitting at a depth of 5 feet bgs, with sufficient working length above ground to attach sampling media. A 3-way or 2-way valve is attached to the tubing above the surface. The soil gas probes were installed at the following locations:

• Soil gas sample SG-1-4.5 was collected adjacent west of Big Wally's and north of the dispenser island; and

• Soil gas sample SG-2-4.5 was collected adjacent south of Big Wally's and north of the dispenser island.

Prior to placing each probe into the boring, approximately 6-inches of clean filter pack sand was introduced into the boring. The probe was then placed into the boring and an additional 6 inches of sand was added. The sample probes were sealed in place by introducing first a layer of dry granular bentonite followed by hydrated granular bentonite to grade to seal the boring and prevent short-circuiting. Following installation, the vapor probe was allowed to equilibrate for a minimum of two hours in accordance with WDOE Guidance for *Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*, Review Draft dated October 2009, Revised February 2016 and April 2018.

Prior to sample collection, a shut-in test was performed to confirm that there are no leaks in the above-ground sampling train. Approximately three volumes of air were then purged from the probe assembly using a 60-milliliter (mL) plastic syringe after which the valve is turned to the "closed" position. The purged air is transferred to Tedlar bags and subsequently screened with the PID and helium meter for the presence of volatile organic compounds (VOCs) and helium. A leak check was performed by utilizing a helium-filled shroud over the sample tubing/ground interface, and a helium detector to screen the subsurface implant tubing for the presence of helium to confirm that short-circuiting did not occur during sample collection.

Upon completion of the required field tests, the initial readings of the vacuum gauges were recorded, prior to sample collection. Soil gas samples were collected in laboratory-supplied Summa[®] canisters fitted with laboratory-calibrated, flow controllers equipped with vacuum gauges and particulate filters. The Summa[®] canisters were connected above ground to the sample tubing, and the samples were collected at flow rates between 150 and 200 mL per minute.

To begin sample collection, a weighted shroud was placed over the boring. Helium was introduced beneath the shroud and was periodically refreshed as needed throughout sample collection. The volume of helium was monitored using a calibrated helium meter. The flow-controller was opened to allow sample collection to begin. Sampling was completed with a slight vacuum remaining in each of the canisters. The final vacuum was recorded, and the flow controllers were closed.

Upon sample retrieval, the Summa[®] canisters were labeled with the appropriate project information, including the project name, project number, sample location and depth, date and time of sampling, sampler's name, canister identification number, and the initial and final canister vacuums. Chain-of-custody documentation was completed and accompanied the Summa[®] canisters to the analytical laboratory.

3.7 Boring Abandonment

Following completion of field activities, removal of probe construction material, and tooling, the boring locations were backfilled with bentonite chips as required by the WDOE and completed at the surface with asphalt and concrete to match the surrounding conditions.

3.8 Decontamination Procedures and Investigation-Derived Waste

AEI personnel wore disposable Nitrile gloves during sample collection, changing gloves between sample locations. Down-hole equipment including sampling tubes, samplers, and hand tools were decontaminated prior to drilling each boring or were dedicated to a single boring.

Investigation-derived waste requiring disposal or characterization was generated during the field activities and left on Site in one 55-gallon drum. Waste profile samples were collected on April 4, 2024 from the waste soil cuttings. Soil sample was analyzed for total Resource Conservation and Recovery Act 8 Metals using US EPA Testing Method 6010B/7471, total copper, nickel, and zinc using US EPA Testing Method 6020. Chain-of-custody documentation was prepared and accompanied the samples to the analytical laboratory, a copy of which is included in Appendix D.

AEI contracted Waste Express Environmental of Seattle, Washington to properly transport and dispose of the IDW. The drum was removed from the Site for disposal on May 10, 2024 and the manifest is provided herein, in Appendix E.

3.9 Laboratory Analyses

The soil and well water samples were labeled and placed into insulated coolers containing ice then transferred under appropriate chain-of-custody documentation to Pace Analytical, Inc. of Mount Juliet, Tennessee. Six soil samples were collected and analyzed for VOCs using United States Environmental Protection Agency (US EPA) Testing Method 8260, total petroleum hydrocarbons (TPH) as gasoline range organics (TPH-GRO) using Testing Method NWTPH-Gx, and diesel (TPH-DRO) and residual oil organics (TPH-RRO) using Testing Method NWTPH-Dx.

The two Summa[®] canisters containing the soil gas samples were placed into laboratory-supplied cartons with the flow controllers and submitted to the laboratory where they were analyzed for VOCs using US EPA Method TO-15 and helium as a leak check using Testing Method ASTM D 1946-90.

Laboratory analytical reports with chain-of-custody documentation are presented in Appendix D.

4.0 FINDINGS

The findings of this investigation are summarized below.

4.1 Subsurface Conditions

Subsurface conditions observed during the drilling activities of borings SB-1 through SB-4 indicated that soils underlaying the Site consisted primarily of gravelly silt and gravelly sand to a depth of 15 feet, the maximum depth explored as part of this investigation. Refusal was encountered at 14 feet bgs during drilling activities of boring SB-4. Groundwater was not

encountered in any of the borings advanced as part of this investigation; therefore, no groundwater samples were collected from the soil borings.

4.2 Analytical Results

For purposes of providing context to the data generated during this investigation, analytical results were compared to the WDOE MTCA Method A (unrestrictive land use) and Method B (common method for setting clean-up levels), *Cleanup Levels and Risk Calculation* (CLARC), as referenced in Ecology's CLARC Tables, revised February 2024. The presence of a chemical at concentrations below applicable cleanup levels can generally be assumed to not pose a significant threat to human health or the environment. The presence of a chemical at concentrations above the applicable cleanup levels may require further investigation or remediation.

4.2.1 Soil Sample Analytical Results

Table 1 presents a summary of the soil sample analytical results and comparison screening levels. One soil sample from borings SB-1 and SB-2 and two soil samples from borings SB-3 and SB-4 were collected and analyzed as summarized in Section 3.4 above. The "B" flag indicates that the same analyte is found in the associated blank. The "J" flag indicates that the detected concentration is an estimate between the method detection limit (MDL) and reported detection limit (RDL). The analytical results can be summarized as follows:

- TPH-GRO was detected in each of the six soil samples at a maximum concentration of 2.45 B J milligrams per kilogram (mg/kg). The detected concentrations are below the MTCA Method A screening level of 30 mg/kg.
- TPH-DRO was detected in soil samples SB-1 (4.5-5'), SB-3 (12-12.5') and SB-4 (12-12.5') at concentrations of 15.3 J, J6 mg/kg, 1.54 J mg/kg, and 1.77 J mg/kg. The detected concentrations are below the MTCA Method A screening level of 2,000 mg/kg.
- TPH-RRO was detected in soil samples SB-1 (4.5-5'), SB-3 (12-12.5') and SB-4 (12-12.5') at concentrations of 325 mg/kg, 3.63 J mg/kg, and 20.9 mg/kg. The detected concentrations are below the MTCA Method A screening level of 2,000 mg/kg.
- Ethylbenzene was detected in soil sample SB-1 (4.5-5') at a concentration of 0.000896 J mg/kg. The detected concentration is below the MTCA Method A screening level of 6.0 mg/kg.
- Total xylenes were detected in soil sample SB-1 (4.5-5') at a concentration of 0.00744 mg/kg. The detected concentration is below the MTCA Method A screening level of 9.0 mg/kg.
- No additional VOCs, including benzene and toluene, were detected above laboratory RDLs in the six soil samples collected and analyzed.

4.2.2 Well Water Sample Analytical Results

Table 2 presents a summary of the well water sample results and comparison screening levels. The analytical results can be summarized as follows:

- TPH-GRO, TPH-DRO, and TPH-RRO were not detected above the laboratory RDLs in the well water sample collected and analyzed.
- Benzene, toluene, ethylbenzene, and total xylenes (collectively "BTEX") were not detected above the laboratory RDLs in the well water sample collected and analyzed.
- Acetone was detected was detected in well water sample at a concentration of 1.12 C3 micrograms per liter (µg/L), below the MTCA Method B noncancer screening level and Method B potable cleanup goal of 7,200 µg/L.
- Chlorodibromomethane (dibromochloromethane) was detected in well water sample at a concentration of 0.196 μg/L, below the MTCA Method B cancer screening level of 0.52 μg/L and Method B potable cleanup of 5.2 μg/L.
- No additional VOCs were detected above laboratory RDLs in the well water samples collected and analyzed.

4.2.3 Soil Gas Sample Analytical Results

Table 3 presents a summary of the soil gas sample analytical results and comparison screening levels. The analytical results can be summarized as follows:

- Benzene was detected in soil gas samples SG-1-4.5 and SG-2-4.5 at concentrations of 19.8 micrograms per cubic meter (μ g/m³) and 3.58 μ g/m³, respectively. The detected concentration in sample SG-1-4.5, collected from the west side of the Site building near the known residual impacts left in place, is slightly above the MTCA Method B for cancer of 11 μ g/m³.
- 1,3-Butadiene was detected in soil gas sample SG-1-4.5 at a concentration of 8.01 µg/m³. The detected concentration is slightly above the MTCA Method B for cancer of 2.8 µg/m³; however, the emissions of 1,3-butidene may be attributed to the friction created heating up o-rings or other components during direct-push drilling though tight formations; and therefore, is not of environmental concern for the Site.
- Acetone was detected in soil gas samples SG-1-5 and SG-2-5 at concentrations of 29.0 μg/m³ and 39.7 μg/m³, respectively. The detected concentrations are below the MTCA Method B for cancer of 470,000 μg/m³.
- No additional VOCs were detected above laboratory RDLs in the two soil gas samples collected and analyzed.

5.0 SUMMARY AND CONCLUSIONS

AEI completed a Phase II at the Site to evaluate whether the subsurface has been adversely impacted by the underground product piping and former gasoline station in the eastern portion of the Site identified as RECs in the Phase I ESA. Investigation efforts included completing a geophysical survey in the eastern portion of the Site, advancing four exploratory soil borings and installing two temporary soil gas probes at the Site to collect soil and soil gas samples, and collecting one water well sample from the onsite potable well. The investigation results can be summarized as follows:

• The GPR equipment and methods did not detect reactions from potential UST(s) within the eastern portion of the Site in the area scanned.

- There was no visual or olfactory evidence (i.e., soil discoloration, odor) of potentially impacted soil observed in soils that were recovered during drilling activities. The maximum PID reading was 0.4 ppm in boring SB-3 at depths of 4.5-5 feet bgs and 10 feet bgs.
- TPH-GRO, TPH-DRO, TPH-RRO, and VOCs were not detected above the laboratory reporting limits or applicable WDOE Methods A/B screening levels in the six soil samples and one well water sample collected and analyzed.
- 1,3-Butadiene was detected in soil gas sample SG-1-4.5 at a concentration of 8.01 µg/m³, slightly above the MTCA Method B for cancer of 2.8 µg/m³. However, the emissions of 1,3-butidene may be attributed to the friction created heating up o-rings or other components during direct-push drilling though tight formations, the detection of 1,3-butidene in sample SG-1-4.5 is not of environmental concern for the Site.
- Benzene was detected in soil gas samples SG-1-4.5 and SG-2-4.5 at a maximum concentration of 19.8 μ g/m³ in sample SG-1-4.5, collected from the west side of the Site building near the known residual impacts left in place, is slightly above the MTCA Method B for cancer of 11 μ g/m³.

Based on the results summarized above, evidence of a previously unidentified release from the historic fueling activities or current fueling areas station was not identified to soil, well water, and soil gas in the areas sampled. The slight exceedance of the MTCA Method B screening level of benzene identified in sample SG-1-4.5, collected from the west side of the Site building near the known residual impacts left in place, is likely attributed to the known residual impacts left in place under the June 24, 2013 EC for the Site. As the Site has a continued future use as a gasoline station, AEI recommends continuing to comply with the requirements set forth in the existing June 24, 2013 EC and submitting the results of this investigation to the WDOE for review.

6.0 REFERENCES

- AEI, 2024, Phase I Environmental Site Assessment, 9944 US-2 Coulee City, Grant County, Washington, (AEI Project No. 488911), dated February 23.
- Washington State Department of Ecology, 2024, Cleanup Levels and Risk Calculation (CLARC) website, CLARC Master Table.
- Washington Department of Ecology *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*, Review Draft, October 2009. Revised February 2016 and April 2018.

7.0 REPORT LIMITATIONS AND RELIANCE

This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide the requested information, subject to scope of work

for which AEI was retained and limitations inherent in this type of work, but it cannot be assumed that they are representative of areas not sampled. This report should not be regarded as a guarantee that no further contamination beyond that which could have been detected within the scope of this investigation is present beneath the Site. Undocumented, unauthorized releases of hazardous material, the remains of which are not readily identifiable by visual inspection and are of different chemical constituents, are difficult and often impossible to detect within the scope of a chemical specific investigation.

Any conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document. These services were performed in accordance with generally accepted practices, in the environmental engineering and construction field, which existed at the time and location of the work. No other warranty, either expressed or implied, has been made.

This investigation was prepared for the sole use and benefit of Aujla Enterprises, LLC. Both verbal and written, whether in draft or final, are for the benefit of Aujla Enterprises, LLC. This report has no other purpose and may not be relied upon by any other person or entity without the written consent of AEI. Either verbally or in writing, third parties may come into possession of this report or all or part of the information generated as a result of this work. In the absence of a written agreement with AEI granting such rights, no third parties shall have rights of recourse or recovery whatsoever under any course of action against AEI, its officers, employees, vendors, successors or assigns. Reliance is provided in accordance with AEI's Proposal and Standard Terms & Conditions executed by Aujla Enterprises, LLC. The limitation of liability defined in the Terms and Conditions is the aggregate limit of AEI's liability to the client and all relying parties.

8.0 SIGNATURES

FIGURES

TABLE

Table 1: SOIL SAMPLE DATA SUMMARY 9944 US-2, Coulee City, Washington AEI Project Number: 491476

Location ID	Date	Depth (feet bgs)	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	TPH-RRO (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Remaining VOCs (mg/kg)
SB-1 (4.5-5')	4/4/2024	4.5-5	2.01 B J	15.3 J J6	325	ND<0.00110	ND<0.00549	0.000896 J	0.00774	ND <rdl< td=""></rdl<>
SB-2 (4.5-5')	4/4/2024	4.5-5	2.09 B J	ND<14.5	ND<36.1	ND<0.00138	ND<0.00691	ND<0.00346	ND<0.00899	ND <rdl< td=""></rdl<>
SB-3 (12-12.5') SB-3 (14.5-15')	4/4/2024 4/4/2024	12-12.5 14.5-15	1.66 B J 2.45 B J	1.54 J ND<12.3	3.63 J ND<30.8	ND<0.00107 ND<0.00125	ND<0.00533 ND<0.00623	ND<0.00267 ND<0.00311	ND<0.00693 ND<0.00810	ND <rdl ND<rdl< td=""></rdl<></rdl
SB-4 (12-12.5') SB-4 (13.5-14')	4/4/2024 4/4/2024	12-12.5 13.5-14	1.93 B J 2.03 B J	1.77 J ND<4.14	20.9 ND<10.4	ND<0.00108 ND<0.0111	ND<0.00540 ND<0.00556	ND<0.00270 ND<0.00278	ND<0.00702 ND<0.00723	ND <rdl ND<rdl< td=""></rdl<></rdl
	C Method A unres		30.0 	2,000 	2,000 	0.03 320 18.0	7.0 6,400 	6.0 8,000 	9.0 16,000 	Various Various Various

Notes:

 mg/kg	milligrams per kilogram
ND <rdl< td=""><td>not detected (ND) above the laboratory reporting detection limit (RDL)</td></rdl<>	not detected (ND) above the laboratory reporting detection limit (RDL)
bgs	below ground surface
	no comparison value established
VOCs	volatile organic compounds
TPH-GRO	total petroleum hydrocarbons gasoline range organics
TPH-DRO	total petroleum hydrocarbons diesel range organics
TPH-RRO	total petroleum hydrocarbons residual range organics
В	The same analyte is found in the associated blank.
J	the identification of the analyte is acceptable; the reported value is an estimate
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

Comparison Values:

WDOE CLARC Washington Department of Ecology Cleanup Levels and Risk Calculation for cancer and noncancer risk drivers for individual chemicals (WDOE, February 2024).

Table 2: WELL WATER SAMPLE DATA SUMMARY 9944 US-2, Coulee City, Washington AEI Project Number: 491476

Location ID	Date	TPH-GRO (µg/L)	TPH-DRO (µg/L)	TPH-RRO (μg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	Chlorodi- bromomethane (µg/L)	Acetone (µg/L)	Remaining VOCs (µg/L)
Well Water-1	4/4/2024	ND<100	ND<200	ND<250	ND<0.0400	ND<0.200	ND<0.100	ND<0.260	0.196	1.12 C3	ND <rdl< td=""></rdl<>
Comparison Values: WDOE CLARC Method A unrest		800	500	500	5.0	1,000	700	1,000			Various
WDOE CLARC Method B non cancer WDOE CLARC Method B cancer WA or Federal Maximum Contaminant Limit (MCL)					32 0.8 5.0	640 1,000	800 700	1,600 10,000	160 0.52 60	7,200 	Various Various Various

Notes:

μg/L	micrograms per liter
ND <rdl< td=""><td>not detected above the laboratory reported detection limit</td></rdl<>	not detected above the laboratory reported detection limit
TPH-GRO	total petroleum hydrocarbons as gasoline
TPH-DRO	total petroleum hydrocarbons as diesel
TPH-RRO	total petroleum hydrocarbons as motor oil (residual range organics)
VOCs	volatile organic compounds
	no comparison value established
C3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.

Comparison Values: WDOE CLARC

Washington Department of Ecology Cleanup Levels and Risk Calculation for cancer and noncancer risk drivers for individual chemicals (WDOE, February 2024)

TABLE 3: SOIL GAS SAMPLE DATA SUMMARY 9944 US-2, Coulee City, Washington AEI Project Number: 491476

Location ID	n Date	Depth (feet bgs)	Benzene (µg/m³)	Toluene (µg/m³)	Ethylbenzene (µg/m³)	m&p-Xylene (µg/m³)	o-Xylene (µg/m³)	PCE (µg/m³)	Acetone (µg/m³)	1,3-Butadiene (µg/m³)	Carbon Disulfide (µg/m³)	Chloromethane (µg/m³)
SG-1-4.5 SG-2-4.5		4.5 4.5	19.8 3.58	27.8 20.0	34.2 34.3	142 188	65.5 93.6	2.51 ND<1.36	29.0 39.7	8.01 ND<4.43	5.70 6.10	0.504 0.572
Comparison V	<u>Values:</u> WDOE CLARC vi Meth WDOE CLARC vi M		460 11	76,000 	15,000 	1,500 	1,500 	610 320	470,000 	30 2.8	11,000 	1,400

Notes:

μg/m³Micrograms per cubic meterbgsBelow ground surfaceND<RDL</td>Not Detected (ND) above the laboratory reported detection limit--No comparison value establishedMEKMethyl Ethyl KetonePCETetrachloroethyleneVOCsVolatile organic compounds

Comparison Values:

WDOE CLARC Washington Department of Ecology Cleanup Levels and Risk Calculation vapor intrusion (vi) screening levels for cancer and noncancer risk drivers for individual chemicals which are (indoor) air cleanup level (Method B) (WDOE, 2024).

TABLE 3: SOIL GAS SAMPLE DATA SUMMARY 9944 US-2, Coulee City, Washington AEI Project Number: 491476

Location ID	Date	Depth (feet bgs)	Cyclohexane (µg/m³)	Ethanol (µg/m³)	4-Ethyltoluene (μg/m³)	Trichloro fluoromethane (µg/m³)	Dichloro difluoromethane (µg/m³)	Heptane (µg/m³)	n-Hexane (µg/m³)	Isopropyl - benzene (µg/m³)	Methylene Chloride (µg/m ³)
SG-1-4.5' SG-2-4.5'	4/4/2024 4/4/2024	4.5 4.5	2.43 0.954	44.7 111	2.83 2.58	1.79 1.76	2.33 2.32	14.0 3.16	9.52 ND<2.22	1.79 1.80	ND<0.694 0.889
Comparison Va V	<u>ilues:</u> VDOE CLARC vi Metho WDOE CLARC vi M		91,000 			11,000 	1,500 		11,000 		9,100 2,200

Notes:

µg/m³	Micrograms per cubic meter
bgs	Below ground surface
ND <rdl< td=""><td>Not Detected (ND) above the laboratory reported detection limit</td></rdl<>	Not Detected (ND) above the laboratory reported detection limit
	No comparison value established
MEK	Methyl Ethyl Ketone
PCE	Tetrachloroethylene
VOCs	Volatile organic compounds

Comparison Values:

WDOE CLARC Washington Department of Ecology Cleanup Levels and Risk Calculation vapor intrusion (vi) screening levels for cancer and noncancer risk drivers for (indoor) air cleanup level (Method B) (WDOE, 2024).

TABLE 3: SOIL GAS SAMPLE DATA SUMMARY 9944 US-2, Coulee City, Washington AEI Project Number: 491476

Location ID	Date	Depth (feet bgs)	2-Butanone (ΜΕΚ) (µg/m³)	2-Propanol (µg/m³)	1,2,4- Trimethylbenzene (µg/m³)	1,3,5- Trimethylbenzene (µg/m³)	1,1- Difluoroethane (µg/m³)	Remaining VOCs (µg/m³)	Helium Detected in Sample (%)	Field Helium Shroud (%)	Maximum Allowable Helium Detection in Sample (%)
SG-1-4.5'	4/4/2024	4.5	8.52	6.51	17.5	4.32	194	ND <rdl< td=""><td>ND<0.100</td><td>23.5</td><td>1.18%</td></rdl<>	ND<0.100	23.5	1.18%
SG-2-4.5'	4/4/2024	4.5	6.55	14.7	14.5	4.72	242	ND <rdl< td=""><td>ND<0.100</td><td>33.9</td><td>1.70%</td></rdl<>	ND<0.100	33.9	1.70%
<u>Comparison Va</u> V	<u>lues:</u> VDOE CLARC vi Metho WDOE CLARC vi M		76,000 		910 	910 	610,000 	Various Various			

Notes:

µg/m³ bgs	Micrograms per cubic meter Below ground surface
ND <rdl< td=""><td>Not Detected (ND) above the laboratory reported detection limit</td></rdl<>	Not Detected (ND) above the laboratory reported detection limit
	No comparison value established
MEK	Methyl Ethyl Ketone
PCE	Tetrachloroethylene
VOCs	Volatile organic compounds

Comparison Values: WDOE CLARC W

E CLARC Washington Department of Ecology Cleanup Levels and Risk Calculation vapor intrusion (vi) screening levels for cancer and noncancer risk drivers for (indoor) air cleanup level (Method B) (WDOE, 2024).

APPENDIX A WDOE APPROVAL

From:	Uecker, Ted (ECY)
To:	Jacqueline Day
Cc:	Karla Smith; Natasha Budimirovic
Subject:	RE: Coulee City, WA Phase II recommendation (AEI PN 491476)
Date:	Monday, April 1, 2024 12:11:21 PM
Attachments:	image001.png image002.png
	image003.png

Hi Jacqueline,

Thank you for submitting the work plan, I have no comments or concerns and you may proceed with the subsurface investigation. Please be aware of the separate notification requirements for transferring interest in properties with institutional controls. The property owner can reach out to me directly with any questions. Ecology is also conducting a 5-year periodic review of the site later this summer and would appreciate a copy of the Phase II report for use in the review.

Please let me know if you have any questions or need anything else. Best regards,

Ted Uecker, LHG

Toxics Cleanup Program Washington State Department of Ecology | Eastern Regional Office 4601 N Monroe St, Spokane, WA 99205 (509) 342-5564 | ted.uecker@ecy.wa.gov

From: Jacqueline Day <jday@aeiconsultants.com>
Sent: Monday, April 1, 2024 4:46 AM
To: Uecker, Ted (ECY) <TUEC461@ECY.WA.GOV>
Cc: Karla Smith <ksmith@aeiconsultants.com>; Natasha Budimirovic
<nbudimirovic@aeiconsultants.com>
Subject: Coulee City, WA Phase II recommendation (AEI PN 491476)

External Email

Good Morning Mr. Uecker,

AEI has been contracted to perform a Phase II Subsurface Investigation at the property located at 9944 US Highway 2 in Coulee City, Washington 99115. Attached is the work plan presenting the anticipated activities for the Phase II and a Site Map showing the proposed locations. Please let this work plan serve as the notification for the requirements of the Environmental Covenant at the Site. We look forward to your approval so we can move forward with activities to support the transaction on the property.

Should you have any questions or concerns, please contact me. Thank you for your time.

Jacqueline C. Day, P.G. in (19) Principal Geologist

AEI Consultants 4514 Cole Avenue, Suite 600, Dallas, TX 75205 & 2500 Camino Diablo, Walnut Creek, California 94597 **C:** 858.531.6297 E: jday@aeiconsultants.com

Professional Registrations: PG-AR 2094 / RG-AZ 54800 / PG-CA 8516 / PG-FL PG3176 / PG-IL 196-001476 / PG-LA 1179 / RG-MO 2018029456 / RG-OR G2377 / PG-TX 12495 / LG-WA 3011 / PG-WI 1407-13

"If you received this email in error, please notify AEI Consultants immediately by sending an e-mail or by calling"

APPENDIX B GEOPHYSICAL SURVEY REPORT

Summary of Scanning for Underground Storage Tanks (USTs)

Prepared For: AEI Consultants

Prepared By: Joshua Authorlee Joshua.Authorlee@gprsinc.com PROJECT MANAGER-PACNW (206)-247-2862 April 4, 2024

April 4, 2024

AEI Consultants Attn: Natasha Budimirovic Site: 9944 US-2, Coulee City, WA

We appreciate the opportunity to provide this report for our work completed on April 4, 2024.

PURPOSE

The purpose of this project was to search for any suspected underground storage tanks (USTs) or suspected UST-related piping/anomalies remaining on the property. The scope of work consisted of locations measuring approximately 5000 sqft. Our markings were placed onto the surface using spray paint.

EQUIPMENT

- Underground Scanning GPR Antenna. The antenna with frequencies ranging from 250 MHz-450 MHz is mounted in a stroller frame which rolls over the surface. The surface needs to be reasonably smooth and unobstructed in order to obtain readable scans. Obstructions such as curbs, landscaping, and vegetation will limit the feasibility of GPR. The data is displayed on a screen and marked in the field in real time. The total depth achieved can be as much as 8' or more with this antenna but can vary widely depending on the types of materials being scanned through. Some soil types such as clay may limit maximum depths to 3' or less. As depth increases, targets must be larger in order to be detected and non-metallic targets can be especially difficult to locate. Depths provided should always be treated as estimates as their accuracy can be affected by multiple factors. For more information, please visit: Link
- Electromagnetic Pipe Locator. The EM locator can passively detect the electromagnetic fields from live AC power or from radio signals travelling along some conductive utilities. It can also be used in conjunction with a transmitter to connect directly to accessible, metallic pipes or tracer wires. A current is sent through the pipe or tracer wire at a specific frequency and the resulting EM field can then be detected by the receiver. A utility's ability to be located depends on a variety of factors including access to the utility, conductivity, grounding, interference from other fields, and many others. Depths provided should always be treated as estimates as their accuracy can be affected by multiple factors. For more information, please visit: Link Magnetometer. The magnetometer detects the magnetic field of a ferromagnetic object. It responds to the difference in the magnetic field between two sensors. It is interpreted in the field by listening to changes in frequency as emitted by a speaker on the device. Larger metallic objects can be located at depths of up to 10' or more but total depths will depend on the size, type, shape, and orientation of objects along with the amount of interference from other objects. For more information, please visit: Link
- Magnetometer. The magnetometer detects the magnetic field of a ferromagnetic object. It responds to the difference in the magnetic field between two sensors. It is interpreted in the field by listening to changes in frequency as emitted by a speaker on the device. Larger metallic objects can be located at depths of up to 10' or more but total depths will depend on the size, type, shape, and orientation of objects along with the amount of interference from other objects. For more information, please visit: Link
- **GPS**. This handheld GPS unit offers accuracy down to 4 inches; however, the accuracy will depend on the satellite environment and obstructions and should not be considered to be survey-grade. Features can be collected as points, lines, or areas and then exported into Google Earth or overlaid on a CAD drawing. For more information, please visit: Link

PROCESS

Initial GPR scans were collected in order to evaluate the data and calibrate the equipment. Based on these findings, a scanning strategy is formed, consisting of scanning the entire area in a grid with 4 ft scan spacing in order to locate any potential UST's that may remain at the site. The GPR data is viewed in real time and anomalies in the data were located and marked on the surface along with their depths using spray paint. Relevant scan examples were saved and will be provided in this report.

The EM locator was used to sweep the areas for live power readings and radio frequency signals and to connect to and trace accessible, conductive utilities whenever possible.

LIMITATIONS

Please keep in mind that there are limitations to any subsurface investigation. The equipment may not achieve maximum effectiveness due to soil conditions, above ground obstructions, reinforced concrete, and a variety of other factors. No subsurface investigation or equipment can provide a complete image of what lies below. Our results should always be used in conjunction with as many methods as possible including consulting existing plans and drawings, exploratory excavation or potholing, visual inspection of above-ground features, and utilization of services such as One Call/811. Depths are dependent on the dielectric of the materials being scanned so depth accuracy can vary throughout a site. Relevant scan examples were saved and will be provided in this report.

FINDINGS

The subsurface conditions at the time of the scanning allowed for maximum GPR depth penetration of 2ft in most areas. Multiple utilities were observed during the scanning. The equipment and methods used did not detect reactions from potential UST's. The following pages will provide further explanation of the findings.

	Terms and Conditions GPRS does not provide land survey or civil engineering data collection or documentation. This is provided as a reference map of the field markings and is not survey-grade.	LEGEND					
Prepared for: AEI Consultants Prepared By: Joshua Authorlee Date of Scanning: April 4, 2024			ELECTRIC		SANITARY	Error! Reference source not found.	Prepared by:
			WATER		STORM		
			СОММ		UNKNOWN		
			GAS				

Orange arrow indicates direction of data collection.

GPR Data shot. Pink Dots indicate Possible Fuel Lines at 1-2 ft deep, which could not be traced to any USTs, or tank structures.

Orange arrow indicates direction of data collection.

GPR Data shot. No distinctive reactions to indicate USTs in area

Orange arrow indicates direction of data collection.

GPR Data shot. Red Brackets indicate Unidentified Multi line trench/line duct at 2ft-3ft

Prepare for: AEI Consultants Date: 4/4/2024

9944 US-2, Coulee City, WA

Orange arrow indicates direction of data collection.

GPR Data shot. No distinctive reactions to indicate USTs in area

Orange arrow indicates direction of data collection.

GPR Data shot. Pink dots indicate Possible Fuel Lines at 1-2 feet deep, which could not be traced to any USTs, or tank structures.

 Prepare for: AEI Consultants

 Date: 4/4/2024

CLOSING

GPRS, Inc. has been in business since 2001, specializing in underground storage tank location, concrete scanning, utility locating, and shallow void detection for projects throughout the United States. I encourage you to visit our website (<u>www.gprsinc.com</u>) and contact any of the numerous references listed.

EM field locator and GPR utility scanner used to search for potential USTs in approx. 5000 sqft area. Marked all detected lines and subsurface anomalies on ground surface in spray paint; Recommend avoiding all markings by minimum distance of 2ft. Onsite conditions allowed average GPR visibility range of 2ft. Apon conclusion of the GPR investigation there was no evidence of a UST found with GPR. This does not mean that there is no UST onsite, this means that it was not detectable with GPR and may be too deep to be visible with GPR. Scan boundaries indicated on site in white spray paint, and on attached map.

GPRS appreciates the opportunity to offer our services, and we look forward to continuing to work with you on future projects. Please feel free to contact us for additional information or with any questions you may have regarding this report.

Signed

Joshua Authorlee PROJECT MANAGER—PACNW

Direct: (206)-247-2862 Joshua.Authorlee@gprsinc.com www.gprsinc.com

APPENDIX C BORING LOGS

UPUER FROJECT NAME FROJECT NAME Junited Phasell Subartize Investignon PROJECT NAME 4424 GROUND ELEVATION NOLE SIZE 2.25 DRILING CONTRACTOR Holdeste Dilling GROUND ALEVATION NOLE SIZE 2.25 DRILING CONTRACTOR CHECKED BY Logged DY Note Size AT THE OPAILING Note Size UGGED BY N. Budminotic CHECKED BY Day AT THE OPAILING Note Size VITE Hand auged to 12: refutal AT THE OPAILING Note size AT THE OPAILING VITE Hand auged to 12: refutal GROUND ELEVATION ASPHALT 0.0 ASPHALT CS GROUND ELEVATION ASPHALT 0.1 GROUND ELEVATION GROUND ELEVATION GROUND ELEVATION 0.2 GROUND ELEVATION GROUND ELEVATION GROUND ELEVATION 0.3 GROUND ELEVATION GROUND ELEVATION GROUND ELEVATION 0.4 GROUND ELEVATION GROUND ELEVATION GROUND ELEVATION 0.5 GROUND ELEVATION GROUND ELEVATION GROUND ELEVATION 0.6 GROUND ELEVATION GROUND ELEVATION GROUND ELEVATION 0.6 GROUND ELEVATION GROUND ELEVATION GROUND ELEVATION 0.6 GROUND ELEVATION GROUND ELEVATION<	AE	El			BORING NUMBER SB-1 PAGE 1 OF 1
Description Hold and Diffing GROUND ELEVATION HOLE SZE 2.25 DRULING CONTRACTOR Hold and Diffing GROUND WATER LEVELS: DRULING CONTRACTOR CHECKED BY J. Day AT END OF DRULING	CLIENT Rajinde	rpal Singh			PROJECT NAME Limited Phase II Subustface Investigation
DELLING CONTRACTOR Holdcore Drilling GROUND WATER LEVELS: A TTWE OF DRILLING No groundwater observed LOGGED BY J. Daw ATTWE OF DRILLING No groundwater observed NOTES Hand augerod to 12 - trifusal					
DELLING METHOD Description AT TIME OF DRILLING					
LGGGED BYN_Budmirodc CHECKED BYI_Day AT EN OF DRILLING NOTES Hand augered to (2" - refutaal ATER DRILLINGATER ORIGINATION Hand augered to (2" - refutaal ATER DRILLINGATER ORIGINATION Hand augered to (2" - refutaal GRAVELLY SILT (ML) with sand, dark brown (10VR 3/3), medium stiff, most, fine grained sand, coarse grained gravel, no odor Line Open					
Hard Hard Hard Hard Hard Hard Hard Hard					
ASPHALT O.5 PID = 0.1 CRAVELLY SILT (ML) with sand, dark brown (10YR 3/3), medium stiff, moist, fine grained sand, coarse grained gravel, no odor GRAVEL (GP) light gray (GLEY1 7N), dry, loose, coarse grained gravel, no odor CC 4.0 SANDY GRAVEL (GP) grayish brown (10YR 5/2), loose, dry, fine grained sand, coarse grained gravel, no odor ASPHALT GRAVEL (GP) light gray (GLEY1 7N), dry, loose, coarse grained gravel, no odor CC 4.0 SANDY GRAVEL (GP) grayish brown (10YR 5/2), loose, dry, fine grained sand, coarse grained gravel, no odor	NOTES Hand au	igered to 12	" - refusal		AFTER DRILLING No groundwater encountered
PID = 0.1	G DEPTH G (ft) SAMPLE TYPE NUMBER	Environmental Data	GRAPHIC LOG		MATERIAL DESCRIPTION
PID = 0.1 PID =				Г	
Image: Constraint of the second se		PID = 0.1	GR GR		, dark brown (10YR 3/3), medium stiff, moist, fine grained sand, coarse grained
	RAL BH / TP / WELL - GINT STD US. GDT - 4/16/24 15:24 - C:USERSINBUDIMIROVICUEESKTOP/COULEE CITY LOGS.GPJ - 16/24 - 2:USERSINBUDIMIROVICUEESKTOP/COULEE CITY LOGS.GPJ - 2002 -				
DATE STARTED	76 COMPLETED <u>4/4/24 Hololcene Drilling</u>	PROJECT LOCATION _9944 US-2, Coulee City, Washington GROUND ELEVATION HOLE SIZE _2.25 GROUND WATER LEVELS: AT TIME OF DRILLING No groundwater observed			
--	---	--			
o DEPTH (ft) (ft) SAMPLE TYPE NUMBER Environmental	GRAPHIC	MATERIAL DESCRIPTION			
PID = 0.1 PID = 0.1 PID = 0.1 2.5 2.5 3.0 3.	gravel, no odor	sand, dark brown (10YR 3/3), medium stiff, moist, fine grained sand, coarse grained			
GB SB-2 10.0 (9.5-10')					

	ΞΙ			BORING NUMBER SB-3 PAGE 1 OF 2
CLIENT Rajinde	erpal Singh			PROJECT NAME _Limited Phase II Subusrface Investigation
DATE STARTED	4/4/24		COMPLETED 4/4/24	GROUND ELEVATION HOLE SIZE _2.25
DRILLING CONT	RACTOR _	Hololcene D	illing	GROUND WATER LEVELS:
DRILLING METH	Direct	Push		AT TIME OF DRILLING No groundwater observed
LOGGED BY N	. Budimirovi	с	CHECKED BY J. Day	AT END OF DRILLING
NOTES Hand a	ugered to 12	2" - refusal		AFTER DRILLING No groundwater encountered
o DEPTH (ft) (ft) (ft) SAMPLE TYPE NUMBER	Environmental Data	GRAPHIC LOG		MATERIAL DESCRIPTION
		0.5	ASPHALT	
F 1	PID = 0.2		GRAVELLY SILT (ML), dark	k brown (10YR 3/3), medium stiff, moist, coarse grained gravel, no odor
2.5 2.5 5.0 5.0 GB SB-3 (4.5-5) (4.5-5) 7.5 7.5	PID = 0.4	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		LEY1 7N), dry, loose, coarse grained gravel, no odor sh brown (10YR 5/2), loose, dry, fine grained sand, coarse grained gravel, no odor
USER 1				
	PID = 0.4	0.0		
GBENERAL BH / TP / WELL - GINT STD US GDT - 4/16/24 15:24 - C./USERSNBUDINMROVICIDESKTOPIC 12.2 USERSNBUDINMROVICIDESKTOPIC 12.5 CINEERSAUBUDINMROVICIDESKTOPIC 12.5 CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDINMROVICIDESKTOPIC CINEERSAUBUDIN CINEER	PID = 0.2			
GB 15.0 SB-3	PID = 0.1	0. 0. 15.0		
	1			Bottom of borehole at 15.0 feet.

A	EI			BORING NUMBER SB- PAGE 1 OF
ROJECT NUM ATE STARTE RILLING CON RILLING MET	NG CONTRACTOR Holdcene Drilling NG METHOD Direct Push D BY N. Budimirovic CHECKED BY J. Day Hand augered to 12" - refusal Image: Display to the tot to the tot to the tot to the tot to tot to tot to tot to tot to tot to to	PROJECT LOCATION 9944 US-2, Coulee City, Washington GROUND ELEVATION HOLE SIZE 2.25 GROUND WATER LEVELS: AT TIME OF DRILLING No groundwater observed		
				AFTER DRILLING No groundwater encountered
G (ft) SAMPLE TYPE NUMBER	Environmental Data	GRAPHIC LOG		MATERIAL DESCRIPTION
5.0 🖾 SB-4	4 <u>5')/</u>		GRAVELLY SILT (ML), very o	dark brown (10YR 2/2), medium stiff, moist, coarse grained gravel, no odor EY1 7N), dry, loose, coarse grained gravel, no odor
<u>2.5</u> SB-4 (<u>12-12</u> - - 	4 . <u>5</u>))			
	 4') PID = 0.1		0 At 14 feet bgs rock refusal end	countered Bottom of borehole at 14.0 feet.

A	EI		BORING NUMBER SG-1 PAGE 1 OF 1
CLIENT Rajing	derpal Singh		PROJECT NAME Limited Phase II Subustface Investigation
			PROJECT LOCATION _9944 US-2, Coulee City, Washington
		Diolcene Drilling	GROUND ELEVATION HOLE SIZE 2.25
DRILLING MET			AT TIME OF DRILLING No groundwater observed
		CHECKED BY J. Day	
NOTES Hand	augered to 12" -	- refusal	AFTER DRILLING No groundwater encountered
o DEPTH (ft) SAMPLE TYPE NUMBER	Environmental Data	GRAPHIC LOG	MATERIAL DESCRIPTION
		ASPHALT	
		gravel, no odor	th sand, dark brown (10YR 3/3), medium stiff, moist, fine grained sand, coarse grained
GENERAL BH / TP / WELL - GINT STD US.GDT - 4/16/24 15:24 - C:/USERS/NBUDIMIROVIC/DESKTOP/C	PID = 0.3		Bottom of borehole at 5.0 feet.

	AEI			BORING NUMBER SG-2 PAGE 1 OF 1
	Rajinderpal Singh			PROJECT NAME Limited Phase II Subusrface Investigation
PROJECT	NUMBER _ 49147	76		PROJECT LOCATION _ 9944 US-2, Coulee City, Washington
DATE STA	ARTED <u>4/4/24</u>	c	OMPLETED 4/4/24	GROUND ELEVATION HOLE SIZE _2.25
DRILLING	CONTRACTOR _	Hololcene Dril	lling	GROUND WATER LEVELS:
DRILLING	METHOD Direct	Push		AT TIME OF DRILLING No groundwater observed
			HECKED BY J. Day	
NOTES	Hand augered to 12	2" - refusal		AFTER DRILLING No groundwater encountered
o DEPTH (ff)	SAMPLE 17PE NUMBER Environmental Data	GRAPHIC LOG		MATERIAL DESCRIPTION
	PID = 0.1	0.5		n sand, dark brown (10YR 3/3), medium stiff, moist, fine grained sand, coarse grained
GENERAL BH/ TP / WELL - GINT STD US.GDT - 4/16/24 15:24 - C:UJSERSINBUDIMIROVIC/DESKTOP/COULEE CITY LOGS.GPJ	PID = 0.1		GRAVELLY SILT (ML) with gravel, no odor	sand, dark brown (10YR 3/3), medium stiff, moist, fine grained sand, coarse grained
N = 0 5		5.0		Bottom of borehole at 5.0 feet.

APPENDIX D LABORATORY ANALYTICAL REPORTS

Pace Analytical® ANALYTICAL REPORT April 18, 2024

AEI Consultants - CA

Sample Delivery Group: Samples Received: Project Number: Description:

L1723273 04/06/2024 491476 9944 US-2, Coulee City, WA

Report To:

Natasha Budimirovic 2500 Camino Diablo Walnut Creek, CA 94597

Entire Report Reviewed By:

Brian Ford

Brian Ford Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: AEI Consultants - CA PROJECT: 491476

SDG: L1723273

DATE/TIME: 04/18/24 15:20

PAGE: 1 of 36

Тс Ss Cn Śr ʹQc Gl A Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SB-1 (4.5-5') L1723273-01	6
SB-2 (4.5-5') L1723273-03	8
SB-3 (12-12.5') L1723273-06	10
SB-3 (14.5-15') L1723273-07	12
SB-4 (12-12.5') L1723273-09	14
SB-4 (13.5-14') L1723273-10	16
WELL WATER-1 L1723273-11	18
Qc: Quality Control Summary	20
Total Solids by Method 2540 G-2011	20
Volatile Organic Compounds (GC) by Method NWTPHGX	21
Volatile Organic Compounds (GC/MS) by Method 8260D	23
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	31
GI: Glossary of Terms	33
Al: Accreditations & Locations	34
Sc: Sample Chain of Custody	35

SDG: L1723273

DATE/TIME: 04/18/24 15:20 PAGE: 2 of 36

SAMPLE SUMMARY

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

SB-1 (4.5-5') L1723273-01 Solid			Collected by Natasha Budimirovic	Collected date/time 04/04/24 14:40	Received da 04/06/24 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2262698	1	04/09/24 15:35	04/09/24 15:44	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2263420	25	04/04/24 14:40	04/09/24 18:31	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2262804	1	04/04/24 14:40	04/09/24 04:28	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG2265918	10	04/12/24 16:39	04/13/24 17:53	NH	Mt. Juliet, TN
SB-2 (4.5-5') L1723273-03 Solid			Collected by Natasha Budimirovic	Collected date/time 04/04/24 14:00	Received da 04/06/24 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG2262698	1	04/09/24 15:35	04/09/24 15:44	CMB	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method NWTPHGX	WG2263420	25	04/04/24 14:00	04/09/24 18:54	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG2262804	1	04/04/24 14:00	04/09/24 04:47	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG2265918	3.04	04/12/24 16:39	04/13/24 17:17	NH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SB-3 (12-12.5') L1723273-06 Solid			Natasha Budimirovic	04/04/24 15:35	04/06/24 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	0145	
Fotal Solids by Method 2540 G-2011	WG2262698	1	04/09/24 15:35	04/09/24 15:44	CMB	Mt. Juliet, TI
/olatile Organic Compounds (GC) by Method NWTPHGX	WG2263420	25	04/04/24 15:35	04/09/24 19:17	DWR	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG2262804 WG2265918	1 1	04/04/24 15:35 04/12/24 16:39	04/09/24 05:06 04/13/24 17:29	JAH NH	Mt. Juliet, TI Mt. Juliet, TI
					5	
SB-3 (14.5-15') L1723273-07 Solid			Collected by Natasha Budimirovic	Collected date/time 04/04/24 15:40	Received da 04/06/24 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG2262698	1	04/09/24 15:35	04/09/24 15:44	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2263420	25	04/04/24 15:40	04/09/24 19:40	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG2262804	1	04/04/24 15:40	04/09/24 05:24	JAH	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG2265918	2.76	04/12/24 16:39	04/13/24 16:15	NH	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
SB-4 (12-12.5') L1723273-09 Solid			Natasha Budimirovic	04/04/24 16:20	04/06/24 09	:00
Nethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2262698	1	04/09/24 15:35	04/09/24 15:44	CMB	Mt. Juliet, TI
/olatile Organic Compounds (GC) by Method NWTPHGX	WG2263420	25	04/04/24 16:20	04/09/24 20:03	DWR	Mt. Juliet, Tl
/olatile Organic Compounds (GC/MS) by Method 8260D	WG2262804	1	04/04/24 16:20	04/09/24 05:43	JAH	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG2265918	1	04/12/24 16:39	04/13/24 17:41	NH	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
SB-4 (13.5-14') L1723273-10 Solid			Natasha Budimirovic	04/04/24 16:25	04/06/24 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG2262698	1	04/09/24 15:35	04/09/24 15:44	СМВ	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2263420	26	04/04/24 16:25	04/09/24 20:26	DWR	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260D	WG2262804	1.04	04/04/24 16:25	04/09/24 06:02	JAH	Mt. Juliet, TI

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 AEI Consultants - CA
 491476
 L1723273
 04/18/24 15:20
 3 of 36

1

04/12/24 16:39

WG2265918

NH

Mt. Juliet, TN

04/13/24 16:15

SAMPLE SUMMARY

			Collected by	Collected date/time		
WELL WATER-1 L1723273-11 GW			Natasha Budimirov	vic 04/04/24 17:00	04/06/24 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG2266274	1	04/13/24 19:37	04/13/24 19:37	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG2267289	1	04/11/24 01:51	04/11/24 01:51	GLN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG2266295	1	04/13/24 10:41	04/13/24 16:46	DMG	Mt. Juliet, TN

Ср

DATE/TIME: 04/18/24 15:20

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

SDG: L1723273 DAT 04/18 PAGE: 5 of 36

SB-1 (4.5-5') Collected date/time: 04/04/24 14:40

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		ſ	2
Total Solids	95.4		1	04/09/2024 15:44	WG2262698		Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Gasoline Range Organics-NWTPH	2.01	<u>B J</u>	0.931	2.74	25	04/09/2024 18:31	WG2263420	
(S) a,a,a-Trifluorotoluene(FID)	90.3			77.0-120		04/09/2024 18:31	WG2263420	5

Volatile Organic Compounds (GC/MS) by Method 8260D

Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	Ŭ (
Acetone	U		0.0401	0.0549	1	04/09/2024 04:28	WG2262804	7
Acrylonitrile	U		0.00396	0.0137	1	04/09/2024 04:28	WG2262804	Ĺ
Benzene	U		0.000513	0.00110	1	04/09/2024 04:28	WG2262804	
Bromobenzene	U		0.000988	0.0137	1	04/09/2024 04:28	WG2262804	8
Bromodichloromethane	U		0.000796	0.00274	1	04/09/2024 04:28	WG2262804	
Bromoform	U		0.00128	0.0274	1	04/09/2024 04:28	WG2262804	9
Bromomethane	U		0.00216	0.0137	1	04/09/2024 04:28	WG2262804	
n-Butylbenzene	U		0.00576	0.0137	1	04/09/2024 04:28	WG2262804	
sec-Butylbenzene	U		0.00316	0.0137	1	04/09/2024 04:28	WG2262804	
tert-Butylbenzene	U		0.00214	0.00549	1	04/09/2024 04:28	WG2262804	
Carbon tetrachloride	U		0.000986	0.00549	1	04/09/2024 04:28	WG2262804	
Chlorobenzene	U		0.000231	0.00274	1	04/09/2024 04:28	WG2262804	
Chlorodibromomethane	U		0.000672	0.00274	1	04/09/2024 04:28	WG2262804	
Chloroethane	U		0.00187	0.00549	1	04/09/2024 04:28	WG2262804	
Chloroform	U		0.00113	0.00274	1	04/09/2024 04:28	WG2262804	
Chloromethane	U		0.00477	0.0137	1	04/09/2024 04:28	WG2262804	
2-Chlorotoluene	U		0.000949	0.00274	1	04/09/2024 04:28	WG2262804	
4-Chlorotoluene	U		0.000494	0.00549	1	04/09/2024 04:28	WG2262804	
1,2-Dibromo-3-Chloropropane	U		0.00428	0.0274	1	04/09/2024 04:28	WG2262804	
1,2-Dibromoethane	U		0.000711	0.00274	1	04/09/2024 04:28	WG2262804	
Dibromomethane	U		0.000823	0.00549	1	04/09/2024 04:28	WG2262804	
1,2-Dichlorobenzene	U		0.000467	0.00549	1	04/09/2024 04:28	WG2262804	
1,3-Dichlorobenzene	U		0.000659	0.00549	1	04/09/2024 04:28	WG2262804	
1,4-Dichlorobenzene	U		0.000768	0.00549	1	04/09/2024 04:28	WG2262804	
Dichlorodifluoromethane	U		0.00177	0.00549	1	04/09/2024 04:28	WG2262804	
1,1-Dichloroethane	U		0.000539	0.00274	1	04/09/2024 04:28	WG2262804	
1,2-Dichloroethane	U		0.000712	0.00274	1	04/09/2024 04:28	WG2262804	
1,1-Dichloroethene	U		0.000665	0.00274	1	04/09/2024 04:28	WG2262804	
cis-1,2-Dichloroethene	U		0.000806	0.00274	1	04/09/2024 04:28	WG2262804	
trans-1,2-Dichloroethene	U		0.00114	0.00549	1	04/09/2024 04:28	WG2262804	
1,2-Dichloropropane	U		0.00156	0.00549	1	04/09/2024 04:28	WG2262804	
1,1-Dichloropropene	U		0.000888	0.00274	1	04/09/2024 04:28	WG2262804	
1,3-Dichloropropane	U		0.000550	0.00549	1	04/09/2024 04:28	WG2262804	
cis-1,3-Dichloropropene	U		0.000831	0.00274	1	04/09/2024 04:28	WG2262804	
trans-1,3-Dichloropropene	U		0.00125	0.00549	1	04/09/2024 04:28	WG2262804	
2,2-Dichloropropane	U		0.00151	0.00274	1	04/09/2024 04:28	WG2262804	
Di-isopropyl ether	U		0.000450	0.00110	1	04/09/2024 04:28	WG2262804	
Ethylbenzene	0.000896	J	0.000809	0.00274	1	04/09/2024 04:28	WG2262804	
Hexachloro-1,3-butadiene	U	_	0.00659	0.0274	1	04/09/2024 04:28	WG2262804	
Isopropylbenzene	U		0.000467	0.00274	1	04/09/2024 04:28	WG2262804	
p-Isopropyltoluene	U		0.00280	0.00549	1	04/09/2024 04:28	WG2262804	
2-Butanone (MEK)	U		0.0697	0.110	1	04/09/2024 04:28	WG2262804	
Methylene Chloride	U		0.00729	0.0274	1	04/09/2024 04:28	WG2262804	
4-Methyl-2-pentanone (MIBK)	U		0.00250	0.0274	1	04/09/2024 04:28	WG2262804	
ACCOUN			PROJEC			O4/03/2024 04:20	DATE/TIME:	PÆ

AEI Consultants - CA

PROJECT: 491476

L1723273

³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

SB-1 (4.5-5') Collected date/time: 04/04/24 14:40

SAMPLE RESULTS - 01

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Methyl tert-butyl ether	U		0.000384	0.00110	1	04/09/2024 04:28	WG2262804	_
Naphthalene	U		0.00536	0.0137	1	04/09/2024 04:28	WG2262804	
n-Propylbenzene	U		0.00104	0.00549	1	04/09/2024 04:28	WG2262804	
Styrene	U		0.000251	0.0137	1	04/09/2024 04:28	WG2262804	
1,1,1,2-Tetrachloroethane	U		0.00104	0.00274	1	04/09/2024 04:28	WG2262804	
1,1,2,2-Tetrachloroethane	U		0.000763	0.00274	1	04/09/2024 04:28	WG2262804	
1,1,2-Trichlorotrifluoroethane	U		0.000828	0.00274	1	04/09/2024 04:28	WG2262804	
Tetrachloroethene	U		0.000984	0.00274	1	04/09/2024 04:28	WG2262804	
Toluene	U		0.00143	0.00549	1	04/09/2024 04:28	WG2262804	
1,2,3-Trichlorobenzene	U		0.00805	0.0137	1	04/09/2024 04:28	WG2262804	
1,2,4-Trichlorobenzene	U		0.00483	0.0137	1	04/09/2024 04:28	WG2262804	
1,1,1-Trichloroethane	U	<u>J4</u>	0.00101	0.00274	1	04/09/2024 04:28	WG2262804	
1,1,2-Trichloroethane	U		0.000655	0.00274	1	04/09/2024 04:28	WG2262804	
Trichloroethene	U		0.000641	0.00110	1	04/09/2024 04:28	WG2262804	
Trichlorofluoromethane	U		0.000908	0.00274	1	04/09/2024 04:28	WG2262804	
1,2,3-Trichloropropane	U		0.00178	0.0137	1	04/09/2024 04:28	WG2262804	
1,2,4-Trimethylbenzene	U		0.00173	0.00549	1	04/09/2024 04:28	WG2262804	
1,2,3-Trimethylbenzene	U		0.00173	0.00549	1	04/09/2024 04:28	WG2262804	
Vinyl chloride	U		0.00127	0.00274	1	04/09/2024 04:28	WG2262804	
1,3,5-Trimethylbenzene	U		0.00220	0.00549	1	04/09/2024 04:28	WG2262804	
Xylenes, Total	0.00774		0.000966	0.00713	1	04/09/2024 04:28	WG2262804	
(S) Toluene-d8	96.1			75.0-131		04/09/2024 04:28	WG2262804	
(S) 4-Bromofluorobenzene	98.9			67.0-138		04/09/2024 04:28	WG2262804	
(S) 1,2-Dichloroethane-d4	99.0			70.0-130		04/09/2024 04:28	WG2262804	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	15.3	<u>J J6</u>	13.9	41.9	10	04/13/2024 17:53	WG2265918
Residual Range Organics (RRO)	325		34.9	105	10	04/13/2024 17:53	WG2265918
(S) o-Terphenyl	69.0			18.0-148		04/13/2024 17:53	WG2265918

Sample Narrative:

L1723273-01 WG2265918: Dilution due to matrix.

SDG: L1723273

SB-2 (4.5-5') Collected date/time: 04/04/24 14:00

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	84.3		1	04/09/2024 15:44	WG2262698	Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Gasoline Range Organics-NWTPH	2.09	<u>B J</u>	1.17	3.46	25	04/09/2024 18:54	WG2263420	
(S) a,a,a-Trifluorotoluene(FID)	91.1			77.0-120		04/09/2024 18:54	<u>WG2263420</u>	5

Volatile Organic Compounds (GC/MS) by Method 8260D

Analyte Accetone Accylonitrile Benzene Bromobenzene Bromodichloromethane Bromonethane Bromomethane Bromomethane Bromomethane Chlorobenzene Chlorobipromomethane Chloroothane Chloroothane	mg/kg U	mg/kg 0.0505 0.00499 0.00046 0.00124 0.00100 0.00162 0.00272 0.00726 0.00398 0.00270 0.00124 0.00290 0.000290 0.000846 0.00235	mg/kg 0.0691 0.0173 0.00138 0.0173 0.00346 0.0346 0.0173 0.0173 0.0173 0.0173 0.00691 0.00691 0.00346 0.00346	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47	WG2262804	
Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Bromomethane Brobutylbenzene C-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroform	U U U U U U U U U U U U U U U U U U U	0.00499 0.000646 0.00124 0.00100 0.00162 0.00272 0.00726 0.00398 0.00270 0.00124 0.000290 0.000846 0.00235	0.0173 0.00138 0.0173 0.00346 0.0346 0.0173 0.0173 0.0173 0.0173 0.00691 0.00691 0.00346	1 1 1 1 1 1 1 1 1 1 1 1	04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47	WG2262804 WG2262804	
Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Bromomethane Brobutylbenzene C-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroform	U U U U U U U U U U U U U U U U U U U	0.00124 0.00100 0.00162 0.00272 0.00726 0.00398 0.00270 0.00124 0.000290 0.000846 0.00235	0.0173 0.00346 0.0346 0.0173 0.0173 0.0173 0.0173 0.00691 0.00691 0.00346	1 1 1 1 1 1 1 1 1	04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47	WG2262804	
Bromodichloromethane Bromoform Bromomethane H-Butylbenzene ec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane Chloroform	U U U U U U U U U U U U U U U U U U U	0.00100 0.00162 0.00272 0.00726 0.00398 0.00270 0.00124 0.000290 0.000846 0.00235	0.00346 0.0346 0.0173 0.0173 0.0173 0.00691 0.00691 0.00346	1 1 1 1 1 1 1	04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47	WG2262804	
Bromoform Bromomethane I-Butylbenzene ec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroethane Chloroform	U U U U U U U U U U U U U U U U	0.00162 0.00272 0.00726 0.00398 0.00270 0.00124 0.000290 0.000846 0.00235	0.0346 0.0173 0.0173 0.0173 0.00691 0.00691 0.00346	1 1 1 1 1 1	04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47	WG2262804 WG2262804 WG2262804 WG2262804 WG2262804 WG2262804 WG2262804 WG2262804	
Rromomethane Butylbenzene ec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane Chloroform	U U U U U U U U U U U U U U U U	0.00272 0.00726 0.00398 0.00270 0.00124 0.000290 0.000846 0.00235	0.0173 0.0173 0.0173 0.00691 0.00691 0.00346	1 1 1 1 1	04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47	WG2262804 WG2262804 WG2262804 WG2262804 WG2262804 WG2262804 WG2262804 WG2262804	
-Butylbenzene ec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane Chloroform	U U U U U U U U U U U U	0.00726 0.00398 0.00270 0.00124 0.000290 0.000846 0.00235	0.0173 0.0173 0.0173 0.00691 0.00691 0.00346	1 1 1 1	04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47	WG2262804 WG2262804 WG2262804 WG2262804	
ec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane Chloroform	U U U U U U U	0.00398 0.00270 0.00124 0.000290 0.000846 0.00235	0.0173 0.00691 0.00691 0.00346	1 1 1	04/09/2024 04:47 04/09/2024 04:47 04/09/2024 04:47	WG2262804 WG2262804 WG2262804	
ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane Chloroform	U U U U U U	0.00270 0.00124 0.000290 0.000846 0.00235	0.00691 0.00691 0.00346	1 1	04/09/2024 04:47 04/09/2024 04:47	WG2262804 WG2262804	
Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane Chloroform	U U U U U	0.00124 0.000290 0.000846 0.00235	0.00691 0.00346	1	04/09/2024 04:47	WG2262804	
Chlorobenzene Chlorodibromomethane Chloroethane Chloroform	U U U U	0.000290 0.000846 0.00235	0.00346				
Chlorodibromomethane Chloroethane Chloroform	U U U	0.000846 0.00235		1	04/00/2000 1 0 1 17		
hloroethane hloroform	U U	0.00235	0.00346		04/09/2024 04:47	WG2262804	
hloroform	U			1	04/09/2024 04:47	WG2262804	
			0.00691	1	04/09/2024 04:47	WG2262804	
	U	0.00142	0.00346	1	04/09/2024 04:47	WG2262804	
hloromethane		0.00601	0.0173	1	04/09/2024 04:47	WG2262804	
-Chlorotoluene	U	0.00120	0.00346	1	04/09/2024 04:47	WG2262804	
-Chlorotoluene	U	0.000622	0.00691	1	04/09/2024 04:47	WG2262804	
2-Dibromo-3-Chloropropane	U	0.00539	0.0346	1	04/09/2024 04:47	WG2262804	
2-Dibromoethane	U	0.000896	0.00346	1	04/09/2024 04:47	WG2262804	
ibromomethane	U	0.00104	0.00691	1	04/09/2024 04:47	WG2262804	
2-Dichlorobenzene	U	0.000588	0.00691	1	04/09/2024 04:47	WG2262804	
3-Dichlorobenzene	U	0.000830	0.00691	1	04/09/2024 04:47	WG2262804	
4-Dichlorobenzene	U	0.000968	0.00691	1	04/09/2024 04:47	WG2262804	
ichlorodifluoromethane	U	0.00223	0.00691	1	04/09/2024 04:47	WG2262804	
1-Dichloroethane	U	0.000679	0.00346	1	04/09/2024 04:47	WG2262804	
2-Dichloroethane	U	0.000897	0.00346	1	04/09/2024 04:47	WG2262804	
1-Dichloroethene	U	0.000838	0.00346	1	04/09/2024 04:47	WG2262804	
s-1,2-Dichloroethene	U	0.00101	0.00346	1	04/09/2024 04:47	WG2262804	
ans-1,2-Dichloroethene	U	0.00144	0.00691	1	04/09/2024 04:47	WG2262804	
2-Dichloropropane	U	0.00196	0.00691	1	04/09/2024 04:47	WG2262804	
1-Dichloropropene	U	0.00112	0.00346	1	04/09/2024 04:47	WG2262804	
3-Dichloropropane	U	0.000693	0.00691	1	04/09/2024 04:47	WG2262804	
s-1,3-Dichloropropene	U	0.00105	0.00346	1	04/09/2024 04:47	WG2262804	
ans-1,3-Dichloropropene	U	0.00158	0.00691	1	04/09/2024 04:47	WG2262804	
,2-Dichloropropane	U	0.00191	0.00346	1	04/09/2024 04:47	WG2262804	
vi-isopropyl ether	U	0.000567	0.00138	1	04/09/2024 04:47	WG2262804	
hylbenzene	U	0.00102	0.00346	1	04/09/2024 04:47	WG2262804	
exachloro-1,3-butadiene	U	0.00830	0.0346	1	04/09/2024 04:47	WG2262804	
opropylbenzene	U	0.000588	0.00346	1	04/09/2024 04:47	WG2262804	
Isopropyltoluene	U	0.00353	0.00691	1	04/09/2024 04:47	WG2262804	
-Butanone (MEK)	U	0.0878	0.138	1	04/09/2024 04:47	WG2262804	
ethylene Chloride	U	0.00918	0.0346	1	04/09/2024 04:47	WG2262804	
-Methyl-2-pentanone (MIBK)	U	0.00315	0.0346	1	04/09/2024 04:47	WG2262804	

AEI Consultants - CA

491476

L1723273

³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

SB-2 (4.5-5') Collected date/time: 04/04/24 14:00

SAMPLE RESULTS - 03

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Methyl tert-butyl ether	U		0.000484	0.00138	1	04/09/2024 04:47	WG2262804	
Naphthalene	U		0.00675	0.0173	1	04/09/2024 04:47	WG2262804	
n-Propylbenzene	U		0.00131	0.00691	1	04/09/2024 04:47	WG2262804	
Styrene	U		0.000317	0.0173	1	04/09/2024 04:47	WG2262804	
1,1,1,2-Tetrachloroethane	U		0.00131	0.00346	1	04/09/2024 04:47	WG2262804	
1,1,2,2-Tetrachloroethane	U		0.000961	0.00346	1	04/09/2024 04:47	WG2262804	
1,1,2-Trichlorotrifluoroethane	U		0.00104	0.00346	1	04/09/2024 04:47	WG2262804	
Tetrachloroethene	U		0.00124	0.00346	1	04/09/2024 04:47	WG2262804	
Toluene	U		0.00180	0.00691	1	04/09/2024 04:47	WG2262804	
1,2,3-Trichlorobenzene	U		0.0101	0.0173	1	04/09/2024 04:47	WG2262804	
1,2,4-Trichlorobenzene	U		0.00608	0.0173	1	04/09/2024 04:47	WG2262804	
1,1,1-Trichloroethane	U	<u>J4</u>	0.00128	0.00346	1	04/09/2024 04:47	WG2262804	
1,1,2-Trichloroethane	U		0.000825	0.00346	1	04/09/2024 04:47	WG2262804	
Trichloroethene	U		0.000807	0.00138	1	04/09/2024 04:47	WG2262804	
Trichlorofluoromethane	U		0.00114	0.00346	1	04/09/2024 04:47	WG2262804	
1,2,3-Trichloropropane	U		0.00224	0.0173	1	04/09/2024 04:47	WG2262804	
1,2,4-Trimethylbenzene	U		0.00218	0.00691	1	04/09/2024 04:47	WG2262804	
1,2,3-Trimethylbenzene	U		0.00218	0.00691	1	04/09/2024 04:47	WG2262804	
Vinyl chloride	U		0.00160	0.00346	1	04/09/2024 04:47	WG2262804	
1,3,5-Trimethylbenzene	U		0.00277	0.00691	1	04/09/2024 04:47	WG2262804	
Xylenes, Total	U		0.00122	0.00899	1	04/09/2024 04:47	WG2262804	
(S) Toluene-d8	98.9			75.0-131		04/09/2024 04:47	WG2262804	
(S) 4-Bromofluorobenzene	101			67.0-138		04/09/2024 04:47	WG2262804	
(S) 1,2-Dichloroethane-d4	99.4			70.0-130		04/09/2024 04:47	WG2262804	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		4.79	14.5	3.04	04/13/2024 17:17	<u>WG2265918</u>
Residual Range Organics (RRO)	U		12.0	36.1	3.04	04/13/2024 17:17	WG2265918
(S) o-Terphenyl	72.3			18.0-148		04/13/2024 17:17	WG2265918

Sample Narrative:

L1723273-03 WG2265918: Dilution due to matrix impact during extraction procedure

SDG: L1723273

SB-3 (12-12.5') Collected date/time: 04/04/24 15:35

SAMPLE RESULTS - 06

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	2
Total Solids	97.0		1	04/09/2024 15:44	WG2262698		Тс

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Gasoline Range Organics-NWTPH	1.66	<u>B J</u>	0.904	2.67	25	04/09/2024 19:17	WG2263420	
(S) a,a,a-Trifluorotoluene(FID)	90.8			77.0-120		04/09/2024 19:17	WG2263420	5

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	Ŭ
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Acetone	U		0.0389	0.0533	1	04/09/2024 05:06	WG2262804	7
Acrylonitrile	U		0.00385	0.0133	1	04/09/2024 05:06	WG2262804	
Benzene	U		0.000498	0.00107	1	04/09/2024 05:06	WG2262804	8
Bromobenzene	U		0.000959	0.0133	1	04/09/2024 05:06	WG2262804	
Bromodichloromethane	U		0.000773	0.00267	1	04/09/2024 05:06	WG2262804	
Bromoform	U		0.00125	0.0267	1	04/09/2024 05:06	WG2262804	9
Bromomethane	U		0.00210	0.0133	1	04/09/2024 05:06	WG2262804	
n-Butylbenzene	U		0.00560	0.0133	1	04/09/2024 05:06	WG2262804	
sec-Butylbenzene	U		0.00307	0.0133	1	04/09/2024 05:06	WG2262804	
tert-Butylbenzene	U		0.00208	0.00533	1	04/09/2024 05:06	WG2262804	
Carbon tetrachloride	U		0.000957	0.00533	1	04/09/2024 05:06	WG2262804	
Chlorobenzene	U		0.000224	0.00267	1	04/09/2024 05:06	WG2262804	
Chlorodibromomethane	U		0.000652	0.00267	1	04/09/2024 05:06	WG2262804	
Chloroethane	U		0.00181	0.00533	1	04/09/2024 05:06	WG2262804	
Chloroform	U		0.00110	0.00267	1	04/09/2024 05:06	WG2262804	
Chloromethane	U		0.00464	0.0133	1	04/09/2024 05:06	WG2262804	
2-Chlorotoluene	U		0.000922	0.00267	1	04/09/2024 05:06	WG2262804	
4-Chlorotoluene	U		0.000480	0.00533	1	04/09/2024 05:06	WG2262804	
1,2-Dibromo-3-Chloropropane	U		0.00416	0.0267	1	04/09/2024 05:06	WG2262804	
l,2-Dibromoethane	U		0.000691	0.00267	1	04/09/2024 05:06	WG2262804	
Dibromomethane	U		0.000800	0.00533	1	04/09/2024 05:06	WG2262804	
1,2-Dichlorobenzene	U		0.000453	0.00533	1	04/09/2024 05:06	WG2262804	
1,3-Dichlorobenzene	U		0.000640	0.00533	1	04/09/2024 05:06	WG2262804	
1,4-Dichlorobenzene	U		0.000746	0.00533	1	04/09/2024 05:06	WG2262804	
Dichlorodifluoromethane	U		0.00172	0.00533	1	04/09/2024 05:06	WG2262804	
1,1-Dichloroethane	U		0.000523	0.00267	1	04/09/2024 05:06	WG2262804	
1,2-Dichloroethane	U		0.000692	0.00267	1	04/09/2024 05:06	WG2262804	
1,1-Dichloroethene	U		0.000646	0.00267	1	04/09/2024 05:06	WG2262804	
cis-1,2-Dichloroethene	U		0.000782	0.00267	1	04/09/2024 05:06	WG2262804	
trans-1,2-Dichloroethene	U		0.00111	0.00533	1	04/09/2024 05:06	WG2262804	
1,2-Dichloropropane	U		0.00151	0.00533	1	04/09/2024 05:06	WG2262804	
1,1-Dichloropropene	U		0.000862	0.00267	1	04/09/2024 05:06	WG2262804	
1,3-Dichloropropane	U		0.000534	0.00533	1	04/09/2024 05:06	WG2262804	
cis-1,3-Dichloropropene	U		0.000807	0.00267	1	04/09/2024 05:06	WG2262804	
trans-1,3-Dichloropropene	U		0.00122	0.00533	1	04/09/2024 05:06	WG2262804	
2,2-Dichloropropane	U		0.00147	0.00267	1	04/09/2024 05:06	WG2262804	
Di-isopropyl ether	U		0.000437	0.00107	1	04/09/2024 05:06	WG2262804	
Ethylbenzene	U		0.000786	0.00267	1	04/09/2024 05:06	WG2262804	
Hexachloro-1,3-butadiene	U		0.00640	0.0267	1	04/09/2024 05:06	WG2262804	
Isopropylbenzene	U		0.000453	0.00267	1	04/09/2024 05:06	WG2262804	
p-lsopropyltoluene	U		0.00272	0.00533	1	04/09/2024 05:06	WG2262804	
2-Butanone (MEK)	U		0.0677	0.107	1	04/09/2024 05:06	WG2262804	
Methylene Chloride	U		0.00708	0.0267	1	04/09/2024 05:06	WG2262804	
4-Methyl-2-pentanone (MIBK)	U		0.00243	0.0267	1	04/09/2024 05:06	WG2262804	

AEI Consultants - CA

491476

SDG: L1723273 ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

SB-3 (12-12.5') Collected date/time: 04/04/24 15:35

SAMPLE RESULTS - 06

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Methyl tert-butyl ether	U		0.000373	0.00107	1	04/09/2024 05:06	WG2262804	
Naphthalene	U		0.00520	0.0133	1	04/09/2024 05:06	WG2262804	
n-Propylbenzene	U		0.00101	0.00533	1	04/09/2024 05:06	WG2262804	
Styrene	U		0.000244	0.0133	1	04/09/2024 05:06	WG2262804	
1,1,1,2-Tetrachloroethane	U		0.00101	0.00267	1	04/09/2024 05:06	WG2262804	
1,1,2,2-Tetrachloroethane	U		0.000741	0.00267	1	04/09/2024 05:06	WG2262804	
1,1,2-Trichlorotrifluoroethane	U		0.000804	0.00267	1	04/09/2024 05:06	WG2262804	
Tetrachloroethene	U		0.000955	0.00267	1	04/09/2024 05:06	WG2262804	
Toluene	U		0.00139	0.00533	1	04/09/2024 05:06	WG2262804	
1,2,3-Trichlorobenzene	U		0.00781	0.0133	1	04/09/2024 05:06	WG2262804	
1,2,4-Trichlorobenzene	U		0.00469	0.0133	1	04/09/2024 05:06	WG2262804	
1,1,1-Trichloroethane	U	<u>J4</u>	0.000984	0.00267	1	04/09/2024 05:06	WG2262804	
1,1,2-Trichloroethane	U		0.000636	0.00267	1	04/09/2024 05:06	WG2262804	
Trichloroethene	U		0.000623	0.00107	1	04/09/2024 05:06	WG2262804	
Trichlorofluoromethane	U		0.000882	0.00267	1	04/09/2024 05:06	WG2262804	
1,2,3-Trichloropropane	U		0.00173	0.0133	1	04/09/2024 05:06	WG2262804	
1,2,4-Trimethylbenzene	U		0.00168	0.00533	1	04/09/2024 05:06	WG2262804	
1,2,3-Trimethylbenzene	U		0.00168	0.00533	1	04/09/2024 05:06	WG2262804	
Vinyl chloride	U		0.00124	0.00267	1	04/09/2024 05:06	WG2262804	
1,3,5-Trimethylbenzene	U		0.00213	0.00533	1	04/09/2024 05:06	WG2262804	
Xylenes, Total	U		0.000938	0.00693	1	04/09/2024 05:06	WG2262804	
(S) Toluene-d8	93.9			75.0-131		04/09/2024 05:06	WG2262804	
(S) 4-Bromofluorobenzene	101			67.0-138		04/09/2024 05:06	WG2262804	
(S) 1,2-Dichloroethane-d4	99.0			70.0-130		04/09/2024 05:06	WG2262804	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	1.54	J	1.37	4.12	1	04/13/2024 17:29	<u>WG2265918</u>
Residual Range Organics (RRO)	3.63	J	3.43	10.3	1	04/13/2024 17:29	WG2265918
(S) o-Terphenyl	92.6			18.0-148		04/13/2024 17:29	WG2265918

SDG: L1723273 DATE/TIME: 04/18/24 15:20

SB-3 (14.5-15') Collected date/time: 04/04/24 15:40

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Cr	S
Analyte	%			date / time		2	_
Total Solids	89.5		1	04/09/2024 15:44	WG2262698	ÉTc	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Gasoline Range Organics-NWTPH	2.45	<u>B J</u>	1.06	3.11	25	04/09/2024 19:40	WG2263420	
(S) a,a,a-Trifluorotoluene(FID)	91.7			77.0-120		04/09/2024 19:40	WG2263420	5

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	ualifier MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	mg/kg	mg/kg		date / time		
Acetone	U	0.0455	0.0623	1	04/09/2024 05:24	WG2262804	
Acrylonitrile	U	0.00450	0.0156	1	04/09/2024 05:24	WG2262804	
Benzene	U	0.000582	0.00125	1	04/09/2024 05:24	WG2262804	
Bromobenzene	U	0.00112	0.0156	1	04/09/2024 05:24	WG2262804	
Bromodichloromethane	U	0.000903	0.00311	1	04/09/2024 05:24	WG2262804	
Bromoform	U	0.00146	0.0311	1	04/09/2024 05:24	WG2262804	
Bromomethane	U	0.00245	0.0156	1	04/09/2024 05:24	WG2262804	
n-Butylbenzene	U	0.00654	0.0156	1	04/09/2024 05:24	WG2262804	
sec-Butylbenzene	U	0.00359	0.0156	1	04/09/2024 05:24	WG2262804	
ert-Butylbenzene	U	0.00243	0.00623	1	04/09/2024 05:24	WG2262804	
Carbon tetrachloride	U	0.00112	0.00623	1	04/09/2024 05:24	WG2262804	
Chlorobenzene	U	0.000262	0.00311	1	04/09/2024 05:24	WG2262804	
Chlorodibromomethane	U	0.000762	0.00311	1	04/09/2024 05:24	WG2262804	
Chloroethane	U	0.00212	0.00623	1	04/09/2024 05:24	WG2262804	
Chloroform	U	0.00128	0.00311	1	04/09/2024 05:24	WG2262804	
Chloromethane	U	0.00542	0.0156	1	04/09/2024 05:24	WG2262804	
2-Chlorotoluene	U	0.00108	0.00311	1	04/09/2024 05:24	WG2262804	
l-Chlorotoluene	U	0.000561	0.00623	1	04/09/2024 05:24	WG2262804	
,2-Dibromo-3-Chloropropane	U	0.00486	0.0311	1	04/09/2024 05:24	WG2262804	
,2-Dibromoethane	U	0.000807	0.00311	1	04/09/2024 05:24	WG2262804	
Dibromomethane	U	0.000934	0.00623	1	04/09/2024 05:24	WG2262804	
2-Dichlorobenzene	U	0.000529	0.00623	1	04/09/2024 05:24	WG2262804	
,3-Dichlorobenzene	U	0.000747	0.00623	1	04/09/2024 05:24	WG2262804	
4-Dichlorobenzene	U	0.000872	0.00623	1	04/09/2024 05:24	WG2262804	
Dichlorodifluoromethane	U	0.00201	0.00623	1	04/09/2024 05:24	WG2262804	
,1-Dichloroethane	U	0.000612	0.00311	1	04/09/2024 05:24	WG2262804	
,2-Dichloroethane	U	0.000808	0.00311	1	04/09/2024 05:24	WG2262804	
,1-Dichloroethene	U	0.000755	0.00311	1	04/09/2024 05:24	WG2262804	
is-1,2-Dichloroethene	U	0.000914	0.00311	1	04/09/2024 05:24	WG2262804	
rans-1,2-Dichloroethene	U	0.00130	0.00623	1	04/09/2024 05:24	WG2262804	
,2-Dichloropropane	U	0.00177	0.00623	1	04/09/2024 05:24	WG2262804	
,1-Dichloropropene	U	0.00101	0.00311	1	04/09/2024 05:24	WG2262804	
,3-Dichloropropane	U	0.000624	0.00623	1	04/09/2024 05:24	WG2262804	
is-1,3-Dichloropropene	U	0.000943	0.00311	1	04/09/2024 05:24	WG2262804	
rans-1,3-Dichloropropene	U	0.00142	0.00623	1	04/09/2024 05:24	WG2262804	
2,2-Dichloropropane	U	0.00172	0.00311	1	04/09/2024 05:24	WG2262804	
Di-isopropyl ether	U	0.000511	0.00125	1	04/09/2024 05:24	WG2262804	
thylbenzene	U	0.000918	0.00311	1	04/09/2024 05:24	WG2262804	
lexachloro-1,3-butadiene	U	0.00747	0.0311	1	04/09/2024 05:24	WG2262804	
sopropylbenzene	U	0.000529	0.00311	1	04/09/2024 05:24	WG2262804	
-Isopropyltoluene	U	0.00318	0.00623	1	04/09/2024 05:24	WG2262804	
P-Butanone (MEK)	U	0.0791	0.125	1	04/09/2024 05:24	WG2262804	
Methylene Chloride	U	0.00827	0.0311	1	04/09/2024 05:24	WG2262804	
I-Methyl-2-pentanone (MIBK)	U	0.00284	0.0311	1	04/09/2024 05:24	WG2262804	

AEI Consultants - CA

491476

L1723273

³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

SB-3 (14.5-15') Collected date/time: 04/04/24 15:40

SAMPLE RESULTS - 07

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Methyl tert-butyl ether	U		0.000436	0.00125	1	04/09/2024 05:24	WG2262804	
Naphthalene	U		0.00608	0.0156	1	04/09/2024 05:24	WG2262804	
n-Propylbenzene	U		0.00118	0.00623	1	04/09/2024 05:24	WG2262804	
Styrene	U		0.000285	0.0156	1	04/09/2024 05:24	WG2262804	
1,1,1,2-Tetrachloroethane	U		0.00118	0.00311	1	04/09/2024 05:24	WG2262804	
1,1,2,2-Tetrachloroethane	U		0.000866	0.00311	1	04/09/2024 05:24	WG2262804	
1,1,2-Trichlorotrifluoroethane	U		0.000939	0.00311	1	04/09/2024 05:24	WG2262804	
Tetrachloroethene	U		0.00112	0.00311	1	04/09/2024 05:24	WG2262804	
Toluene	U		0.00162	0.00623	1	04/09/2024 05:24	WG2262804	
1,2,3-Trichlorobenzene	U		0.00913	0.0156	1	04/09/2024 05:24	WG2262804	
1,2,4-Trichlorobenzene	U		0.00548	0.0156	1	04/09/2024 05:24	WG2262804	
1,1,1-Trichloroethane	U	<u>J4</u>	0.00115	0.00311	1	04/09/2024 05:24	WG2262804	
1,1,2-Trichloroethane	U		0.000744	0.00311	1	04/09/2024 05:24	WG2262804	
Trichloroethene	U		0.000728	0.00125	1	04/09/2024 05:24	WG2262804	
Trichlorofluoromethane	U		0.00103	0.00311	1	04/09/2024 05:24	WG2262804	
1,2,3-Trichloropropane	U		0.00202	0.0156	1	04/09/2024 05:24	WG2262804	
1,2,4-Trimethylbenzene	U		0.00197	0.00623	1	04/09/2024 05:24	WG2262804	
1,2,3-Trimethylbenzene	U		0.00197	0.00623	1	04/09/2024 05:24	WG2262804	
Vinyl chloride	U		0.00145	0.00311	1	04/09/2024 05:24	WG2262804	
1,3,5-Trimethylbenzene	U		0.00249	0.00623	1	04/09/2024 05:24	WG2262804	
Xylenes, Total	U		0.00110	0.00810	1	04/09/2024 05:24	WG2262804	
(S) Toluene-d8	97.9			75.0-131		04/09/2024 05:24	WG2262804	
(S) 4-Bromofluorobenzene	99.0			67.0-138		04/09/2024 05:24	WG2262804	
(S) 1,2-Dichloroethane-d4	97.2			70.0-130		04/09/2024 05:24	WG2262804	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		4.10	12.3	2.76	04/13/2024 16:15	<u>WG2265918</u>
Residual Range Organics (RRO)	U		10.3	30.8	2.76	04/13/2024 16:15	WG2265918
(S) o-Terphenyl	78.3			18.0-148		04/13/2024 16:15	WG2265918

Sample Narrative:

L1723273-07 WG2265918: Dilution due to matrix impact during extraction procedure

SDG: L1723273

SB-4 (12-12.5') Collected date/time: 04/04/24 16:20

SAMPLE RESULTS - 09 L1723273

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср)
Analyte	%			date / time		2	-
Total Solids	96.4		1	04/09/2024 15:44	WG2262698	Tc	

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Comp	ounds (GC) l	by Method	INWTPHG	iΧ				3
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Gasoline Range Organics-NWTPH	1.93	<u>B J</u>	0.916	2.70	25	04/09/2024 20:03	WG2263420	
(S) a,a,a-Trifluorotoluene(FID)	93.0			77.0-120		04/09/2024 20:03	WG2263420	5
Volatile Organic Comp	Result (dry)	(IS) by Met	MDL (dry)	D RDL (dry)	Dilution	Analysis	Patch	6
Analyta	mg/kg	Qualifier	mg/kg		Dilution	date / time	Batch	ľ
Analyte			0 0	mg/kg	4		WC22C2004	7
Acetone	U		0.0394	0.0540	I	04/09/2024 05:43	WG2262804	((
Acrylonitrile	U		0.00390	0.0135	1	04/09/2024 05:43	WG2262804	
Benzene	U		0.000504	0.00100				
- · ·	U		0.000504	0.00108	1	04/09/2024 05:43	WG2262804	8
Bromobenzene	U		0.000504	0.00108	1 1	04/09/2024 05:43 04/09/2024 05:43	WG2262804 WG2262804	8

Volatile Organic Compounds (GC/MS) by Method 8260D

Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	
Acetone	U		0.0394	0.0540	1	04/09/2024 05:43	WG2262804	7
Acrylonitrile	U		0.00390	0.0135	1	04/09/2024 05:43	WG2262804	
Benzene	U		0.000504	0.00108	1	04/09/2024 05:43	WG2262804	
Bromobenzene	U		0.000972	0.0135	1	04/09/2024 05:43	WG2262804	
Bromodichloromethane	U		0.000783	0.00270	1	04/09/2024 05:43	WG2262804	L
Bromoform	U		0.00126	0.0270	1	04/09/2024 05:43	WG2262804	ç
Bromomethane	U		0.00213	0.0135	1	04/09/2024 05:43	WG2262804	
n-Butylbenzene	U		0.00567	0.0135	1	04/09/2024 05:43	WG2262804	
ec-Butylbenzene	U		0.00311	0.0135	1	04/09/2024 05:43	WG2262804	
ert-Butylbenzene	U		0.00211	0.00540	1	04/09/2024 05:43	WG2262804	
Carbon tetrachloride	U		0.000970	0.00540	1	04/09/2024 05:43	WG2262804	
Chlorobenzene	U		0.000227	0.00270	1	04/09/2024 05:43	WG2262804	
Chlorodibromomethane	U		0.000661	0.00270	1	04/09/2024 05:43	WG2262804	
Chloroethane	U		0.00184	0.00540	1	04/09/2024 05:43	WG2262804	
Chloroform	U		0.00111	0.00270	1	04/09/2024 05:43	WG2262804	
Chloromethane	U		0.00470	0.0135	1	04/09/2024 05:43	WG2262804	
-Chlorotoluene	U		0.000934	0.00270	1	04/09/2024 05:43	WG2262804	
-Chlorotoluene	U		0.000486	0.00540	1	04/09/2024 05:43	WG2262804	
2-Dibromo-3-Chloropropane	U		0.00421	0.0270	1	04/09/2024 05:43	WG2262804	
2-Dibromoethane	U		0.000700	0.00270	1	04/09/2024 05:43	WG2262804	
ibromomethane	U		0.000810	0.00540	1	04/09/2024 05:43	WG2262804	
2-Dichlorobenzene	U		0.000459	0.00540	1	04/09/2024 05:43	WG2262804	
3-Dichlorobenzene	U		0.000648	0.00540	1	04/09/2024 05:43	WG2262804	
4-Dichlorobenzene	U		0.000756	0.00540	1	04/09/2024 05:43	WG2262804	
ichlorodifluoromethane	U		0.00174	0.00540	1	04/09/2024 05:43	WG2262804	
1-Dichloroethane	U		0.000530	0.00270	1	04/09/2024 05:43	WG2262804	
,2-Dichloroethane	U		0.000701	0.00270	1	04/09/2024 05:43	WG2262804	
1-Dichloroethene	U		0.000655	0.00270	1	04/09/2024 05:43	WG2262804	
is-1,2-Dichloroethene	U		0.000793	0.00270	1	04/09/2024 05:43	WG2262804	
ans-1,2-Dichloroethene	U		0.00112	0.00540	1	04/09/2024 05:43	WG2262804	
2-Dichloropropane	U		0.00153	0.00540	1	04/09/2024 05:43	WG2262804	
1-Dichloropropene	U		0.000874	0.00270	1	04/09/2024 05:43	WG2262804	
3-Dichloropropane	U		0.000541	0.00540	1	04/09/2024 05:43	WG2262804	
s-1,3-Dichloropropene	U		0.000818	0.00270	1	04/09/2024 05:43	WG2262804	
ans-1,3-Dichloropropene	U		0.00123	0.00540	1	04/09/2024 05:43	WG2262804	
,2-Dichloropropane	U		0.00149	0.00270	1	04/09/2024 05:43	WG2262804	
i-isopropyl ether	U		0.000443	0.00108	1	04/09/2024 05:43	WG2262804	
thylbenzene	U		0.000796	0.00270	1	04/09/2024 05:43	WG2262804	
lexachloro-1,3-butadiene	U		0.00648	0.0270	1	04/09/2024 05:43	WG2262804	
opropylbenzene	U		0.000459	0.00270	1	04/09/2024 05:43	WG2262804	
-Isopropyltoluene	U		0.00275	0.00540	1	04/09/2024 05:43	WG2262804	
-Butanone (MEK)	U		0.0686	0.108	1	04/09/2024 05:43	WG2262804	
1ethylene Chloride	U		0.00717	0.0270	1	04/09/2024 05:43	WG2262804	
I-Methyl-2-pentanone (MIBK)	U		0.00246	0.0270	1	04/09/2024 05:43	WG2262804	

AEI Consultants - CA

491476

L1723273

14 of 36

SB-4 (12-12.5') Collected date/time: 04/04/24 16:20

SAMPLE RESULTS - 09

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Methyl tert-butyl ether	U		0.000378	0.00108	1	04/09/2024 05:43	WG2262804	
Naphthalene	U		0.00527	0.0135	1	04/09/2024 05:43	WG2262804	
n-Propylbenzene	U		0.00103	0.00540	1	04/09/2024 05:43	WG2262804	
Styrene	U		0.000247	0.0135	1	04/09/2024 05:43	WG2262804	
1,1,1,2-Tetrachloroethane	U		0.00102	0.00270	1	04/09/2024 05:43	WG2262804	
1,1,2,2-Tetrachloroethane	U		0.000751	0.00270	1	04/09/2024 05:43	WG2262804	
1,1,2-Trichlorotrifluoroethane	U		0.000814	0.00270	1	04/09/2024 05:43	WG2262804	
Tetrachloroethene	U		0.000968	0.00270	1	04/09/2024 05:43	WG2262804	
Toluene	U		0.00140	0.00540	1	04/09/2024 05:43	WG2262804	
1,2,3-Trichlorobenzene	U		0.00792	0.0135	1	04/09/2024 05:43	WG2262804	
1,2,4-Trichlorobenzene	U		0.00475	0.0135	1	04/09/2024 05:43	WG2262804	
1,1,1-Trichloroethane	U	J4	0.000997	0.00270	1	04/09/2024 05:43	WG2262804	
1,1,2-Trichloroethane	U		0.000645	0.00270	1	04/09/2024 05:43	WG2262804	
Trichloroethene	U		0.000631	0.00108	1	04/09/2024 05:43	WG2262804	
Trichlorofluoromethane	U		0.000893	0.00270	1	04/09/2024 05:43	WG2262804	
1,2,3-Trichloropropane	U		0.00175	0.0135	1	04/09/2024 05:43	WG2262804	
1,2,4-Trimethylbenzene	U		0.00171	0.00540	1	04/09/2024 05:43	WG2262804	
1,2,3-Trimethylbenzene	U		0.00171	0.00540	1	04/09/2024 05:43	WG2262804	
Vinyl chloride	U		0.00125	0.00270	1	04/09/2024 05:43	WG2262804	
1,3,5-Trimethylbenzene	U		0.00216	0.00540	1	04/09/2024 05:43	WG2262804	
Xylenes, Total	U		0.000951	0.00702	1	04/09/2024 05:43	WG2262804	
(S) Toluene-d8	98.8			75.0-131		04/09/2024 05:43	WG2262804	
(S) 4-Bromofluorobenzene	96.9			67.0-138		04/09/2024 05:43	WG2262804	
(S) 1,2-Dichloroethane-d4	99.3			70.0-130		04/09/2024 05:43	WG2262804	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	1.77	Ţ	1.38	4.15	1	04/13/2024 17:41	<u>WG2265918</u>
Residual Range Organics (RRO)	20.9		3.45	10.4	1	04/13/2024 17:41	<u>WG2265918</u>
(S) o-Terphenyl	82.6			18.0-148		04/13/2024 17:41	WG2265918

Sample Narrative:

L1723273-09 WG2265918: Sample does not resemble laboratory standards.

SDG: L1723273

SB-4 (13.5-14') Collected date/time: 04/04/24 16:25

SAMPLE RESULTS - 10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	>
Total Solids	96.6		1	04/09/2024 15:44	WG2262698		Тс

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cr
Gasoline Range Organics-NWTPH	2.03	<u>B J</u>	0.942	2.78	26	04/09/2024 20:26	WG2263420	
(S) a,a,a-Trifluorotoluene(FID)	91.0			77.0-120		04/09/2024 20:26	WG2263420	5

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Acetone	U		0.0406	0.0556	1.04	04/09/2024 06:02	WG2262804	′c
Acrylonitrile	U		0.00401	0.0139	1.04	04/09/2024 06:02	WG2262804	
Benzene	U		0.000520	0.00111	1.04	04/09/2024 06:02	WG2262804	8
Bromobenzene	U		0.00100	0.0139	1.04	04/09/2024 06:02	WG2262804	A
Bromodichloromethane	U		0.000806	0.00278	1.04	04/09/2024 06:02	WG2262804	
Bromoform	U		0.00130	0.0278	1.04	04/09/2024 06:02	WG2262804	9
Bromomethane	U		0.00219	0.0139	1.04	04/09/2024 06:02	WG2262804	
n-Butylbenzene	U		0.00584	0.0139	1.04	04/09/2024 06:02	WG2262804	
sec-Butylbenzene	U		0.00321	0.0139	1.04	04/09/2024 06:02	WG2262804	
tert-Butylbenzene	U		0.00217	0.00556	1.04	04/09/2024 06:02	WG2262804	
Carbon tetrachloride	U		0.000999	0.00556	1.04	04/09/2024 06:02	WG2262804	
Chlorobenzene	U		0.000233	0.00278	1.04	04/09/2024 06:02	WG2262804	
Chlorodibromomethane	U		0.000680	0.00278	1.04	04/09/2024 06:02	WG2262804	
Chloroethane	U		0.00189	0.00556	1.04	04/09/2024 06:02	WG2262804	
Chloroform	U		0.00114	0.00278	1.04	04/09/2024 06:02	WG2262804	
Chloromethane	U		0.00483	0.0139	1.04	04/09/2024 06:02	WG2262804	
2-Chlorotoluene	U		0.000962	0.00278	1.04	04/09/2024 06:02	WG2262804	
4-Chlorotoluene	U		0.000500	0.00556	1.04	04/09/2024 06:02	WG2262804	
1,2-Dibromo-3-Chloropropane	U		0.00434	0.0278	1.04	04/09/2024 06:02	WG2262804	
1,2-Dibromoethane	U		0.000721	0.00278	1.04	04/09/2024 06:02	WG2262804	
Dibromomethane	U		0.000834	0.00556	1.04	04/09/2024 06:02	WG2262804	
1,2-Dichlorobenzene	U		0.000473	0.00556	1.04	04/09/2024 06:02	WG2262804	
1,3-Dichlorobenzene	U		0.000667	0.00556	1.04	04/09/2024 06:02	WG2262804	
1,4-Dichlorobenzene	U		0.000779	0.00556	1.04	04/09/2024 06:02	WG2262804	
Dichlorodifluoromethane	U		0.00179	0.00556	1.04	04/09/2024 06:02	WG2262804	
1,1-Dichloroethane	U		0.000546	0.00278	1.04	04/09/2024 06:02	WG2262804	
1,2-Dichloroethane	U		0.000722	0.00278	1.04	04/09/2024 06:02	WG2262804	
1,1-Dichloroethene	U		0.000674	0.00278	1.04	04/09/2024 06:02	WG2262804	
cis-1,2-Dichloroethene	U		0.000816	0.00278	1.04	04/09/2024 06:02	WG2262804	
trans-1,2-Dichloroethene	U		0.00115	0.00556	1.04	04/09/2024 06:02	WG2262804	
1,2-Dichloropropane	U		0.00158	0.00556	1.04	04/09/2024 06:02	WG2262804	
1,1-Dichloropropene	U		0.000899	0.00278	1.04	04/09/2024 06:02	WG2262804	
1,3-Dichloropropane	U		0.000557	0.00556	1.04	04/09/2024 06:02	WG2262804	
cis-1,3-Dichloropropene	U		0.000842	0.00278	1.04	04/09/2024 06:02	WG2262804	
trans-1,3-Dichloropropene	U		0.00127	0.00556	1.04	04/09/2024 06:02	WG2262804	
2,2-Dichloropropane	U		0.00154	0.00278	1.04	04/09/2024 06:02	WG2262804	
Di-isopropyl ether	U		0.000456	0.00111	1.04	04/09/2024 06:02	WG2262804	
Ethylbenzene	U		0.000819	0.00278	1.04	04/09/2024 06:02	WG2262804	
Hexachloro-1,3-butadiene	U		0.00667	0.0278	1.04	04/09/2024 06:02	WG2262804	
Isopropylbenzene	U		0.000473	0.00278	1.04	04/09/2024 06:02	WG2262804	
p-lsopropyltoluene	U		0.00283	0.00556	1.04	04/09/2024 06:02	WG2262804	
2-Butanone (MEK)	U		0.0706	0.111	1.04	04/09/2024 06:02	WG2262804	
Methylene Chloride	U		0.00739	0.0278	1.04	04/09/2024 06:02	WG2262804	
4-Methyl-2-pentanone (MIBK)	U		0.00253	0.0278	1.04	04/09/2024 06:02	WG2262804	

AEI Consultants - CA

491476

L1723273

16 of 36

³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

SB-4 (13.5-14') Collected date/time: 04/04/24 16:25

SAMPLE RESULTS - 10

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Methyl tert-butyl ether	U		0.000389	0.00111	1.04	04/09/2024 06:02	WG2262804	
Naphthalene	U		0.00543	0.0139	1.04	04/09/2024 06:02	WG2262804	
n-Propylbenzene	U		0.00106	0.00556	1.04	04/09/2024 06:02	WG2262804	
Styrene	U		0.000255	0.0139	1.04	04/09/2024 06:02	WG2262804	
1,1,1,2-Tetrachloroethane	U		0.00105	0.00278	1.04	04/09/2024 06:02	WG2262804	
1,1,2,2-Tetrachloroethane	U		0.000773	0.00278	1.04	04/09/2024 06:02	WG2262804	
1,1,2-Trichlorotrifluoroethane	U		0.000838	0.00278	1.04	04/09/2024 06:02	WG2262804	
Tetrachloroethene	U		0.000997	0.00278	1.04	04/09/2024 06:02	WG2262804	
Toluene	U		0.00144	0.00556	1.04	04/09/2024 06:02	WG2262804	
1,2,3-Trichlorobenzene	U		0.00815	0.0139	1.04	04/09/2024 06:02	WG2262804	
1,2,4-Trichlorobenzene	U		0.00490	0.0139	1.04	04/09/2024 06:02	WG2262804	
1,1,1-Trichloroethane	U	<u>J4</u>	0.00103	0.00278	1.04	04/09/2024 06:02	WG2262804	
1,1,2-Trichloroethane	U		0.000664	0.00278	1.04	04/09/2024 06:02	WG2262804	
Trichloroethene	U		0.000649	0.00111	1.04	04/09/2024 06:02	WG2262804	
Trichlorofluoromethane	U		0.000920	0.00278	1.04	04/09/2024 06:02	WG2262804	
1,2,3-Trichloropropane	U		0.00180	0.0139	1.04	04/09/2024 06:02	WG2262804	
1,2,4-Trimethylbenzene	U		0.00175	0.00556	1.04	04/09/2024 06:02	WG2262804	
1,2,3-Trimethylbenzene	U		0.00175	0.00556	1.04	04/09/2024 06:02	WG2262804	
Vinyl chloride	U		0.00129	0.00278	1.04	04/09/2024 06:02	WG2262804	
1,3,5-Trimethylbenzene	U		0.00222	0.00556	1.04	04/09/2024 06:02	WG2262804	
Xylenes, Total	U		0.000979	0.00723	1.04	04/09/2024 06:02	WG2262804	
(S) Toluene-d8	95.8			75.0-131		04/09/2024 06:02	WG2262804	
(S) 4-Bromofluorobenzene	96.1			67.0-138		04/09/2024 06:02	WG2262804	
(S) 1,2-Dichloroethane-d4	96.8			70.0-130		04/09/2024 06:02	WG2262804	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.38	4.14	1	04/13/2024 16:15	<u>WG2265918</u>
Residual Range Organics (RRO)	U		3.45	10.4	1	04/13/2024 16:15	WG2265918
(S) o-Terphenyl	75.0			18.0-148		04/13/2024 16:15	WG2265918

SDG: L1723273 DATE/TIME: 04/18/24 15:20

WELL WATER-1 Collected date/time: 04/04/24 17:00

SAMPLE RESULTS - 11 L1723273

Volatile Organic Compounds (GC) by Method NWTPHGX

-								1 Cn
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l	ug/l		date / time		2
Gasoline Range Organics-NWTPH	U		31.6	100	1	04/13/2024 19:37	WG2266274	Tc
(S) a,a,a-Trifluorotoluene(FID)	101			78.0-120		04/13/2024 19:37	WG2266274	³ Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Cr
Analyte	ug/l		ug/l	ug/l		date / time		⁵ Sr
Acetone	1.12	<u>C3</u>	0.548	1.00	1	04/11/2024 01:51	<u>WG2267289</u>	
Acrylonitrile	U		0.0760	0.500	1	04/11/2024 01:51	WG2267289	6
Acrolein	U		0.758	50.0	1	04/11/2024 01:51	WG2267289	ĬQ
Benzene	U		0.0160	0.0400	1	04/11/2024 01:51	WG2267289	
Bromobenzene	U		0.0420	0.500	1	04/11/2024 01:51	WG2267289	⁷ Gl
Bromodichloromethane	U		0.0315	0.100	1	04/11/2024 01:51	WG2267289	G
Bromoform	U		0.239	1.00	1	04/11/2024 01:51	WG2267289	•
Bromomethane	U		0.148	0.500	1	04/11/2024 01:51	<u>WG2267289</u>	Å
n-Butylbenzene	U		0.153	0.500	1	04/11/2024 01:51	WG2267289	
sec-Butylbenzene	U		0.101	0.500	1	04/11/2024 01:51	<u>WG2267289</u>	[°] Sc
tert-Butylbenzene	U		0.0620	0.200	1	04/11/2024 01:51	WG2267289	50
Carbon tetrachloride	U	<u>J4</u>	0.0432	0.200	1	04/11/2024 01:51	<u>WG2267289</u>	
Chlorobenzene	U		0.0229	0.100	1	04/11/2024 01:51	<u>WG2267289</u>	
Chlorodibromomethane	0.196		0.0180	0.100	1	04/11/2024 01:51	<u>WG2267289</u>	
Chloroethane	U		0.0432	0.200	1	04/11/2024 01:51	WG2267289	
Chloroform	U		0.0166	0.100	1	04/11/2024 01:51	WG2267289	
Chloromethane	U		0.0556	0.500	1	04/11/2024 01:51	WG2267289	
2-Chlorotoluene	U		0.0368	0.100	1	04/11/2024 01:51	WG2267289	
4-Chlorotoluene	U		0.0452	0.200	1	04/11/2024 01:51	WG2267289	
1,2-Dibromo-3-Chloropropane	U		0.204	1.00	1	04/11/2024 01:51	WG2267289	
l,2-Dibromoethane	U		0.0210	0.100	1	04/11/2024 01:51	WG2267289	
Dibromomethane	U		0.0400	0.200	1	04/11/2024 01:51	WG2267289	
,2-Dichlorobenzene	U		0.0580	0.200	1	04/11/2024 01:51	WG2267289	
I,3-Dichlorobenzene	U		0.0680	0.200	1	04/11/2024 01:51	WG2267289	
1,4-Dichlorobenzene	U		0.0788	0.200	1	04/11/2024 01:51	WG2267289	
Dichlorodifluoromethane	U		0.0327	0.200	1	04/11/2024 01:51	WG2267289	
I,1-Dichloroethane	U		0.0230	0.100	1	04/11/2024 01:51	WG2267289	
1,2-Dichloroethane	U		0.0190	0.100	1	04/11/2024 01:51	WG2267289	
1,1-Dichloroethene	U		0.0200	0.100	1	04/11/2024 01:51	WG2267289	
cis-1,2-Dichloroethene	U		0.0276	0.100	1	04/11/2024 01:51	WG2267289	
trans-1,2-Dichloroethene	U		0.0572	0.200	1	04/11/2024 01:51	WG2267289	
1,2-Dichloropropane	U		0.0508	0.200	1	04/11/2024 01:51	WG2267289	
I,1-Dichloropropene	U		0.0280	0.100	1	04/11/2024 01:51	WG2267289	
I,3-Dichloropropane	U		0.0280	0.200	1	04/11/2024 01:51	WG2267289	
cis-1,3-Dichloropropene	U		0.0271	0.200	1	04/11/2024 01:51	WG2267289	
trans-1,3-Dichloropropene	U		0.0271	0.200	1	04/11/2024 01:51	WG2267289	
2,2-Dichloropropane	U		0.0317	0.200	1	04/11/2024 01:51	WG2267289	
Di-isopropyl ether	U		0.0317	0.0400	1	04/11/2024 01:51	WG2267289	
Ethylbenzene	U		0.0212	0.0400	1	04/11/2024 01:51	WG2267289	
	U		0.508	1.00	1			
Hexachloro-1,3-butadiene						04/11/2024 01:51	WG2267289	
Isopropylbenzene	U		0.0345	0.100	1	04/11/2024 01:51	WG2267289	
o-Isopropyltoluene	U		0.0932	0.200	1	04/11/2024 01:51	WG2267289	
2-Butanone (MEK)	U		0.500	1.00	1	04/11/2024 01:51	WG2267289	
Methylene Chloride	U		0.265	1.00	1	04/11/2024 01:51	WG2267289	
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	1	04/11/2024 01:51	WG2267289	
Methyl tert-butyl ether	U		0.0118	0.0400	1	04/11/2024 01:51	WG2267289	
Naphthalene	U		0.124	0.500	1	04/11/2024 01:51	WG2267289	
n-Propylbenzene	U		0.0472	0.200	1	04/11/2024 01:51	<u>WG2267289</u>	
ACCO	DUNT:			PROJECT:		SDG:	DATE/TIME:	PAGE:
AEI Consu	ıltants - CA			491476		L1723273	04/18/24 15:20	18 of 36

⁴Cn ⁵Sr

WELL WATER-1 Collected date/time: 04/04/24 17:00

SAMPLE RESULTS - 11

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	(
Analyte	ug/l		ug/l	ug/l		date / time		L
Styrene	U		0.109	0.500	1	04/11/2024 01:51	<u>WG2267289</u>	2_
1,1,1,2-Tetrachloroethane	U		0.0200	0.100	1	04/11/2024 01:51	<u>WG2267289</u>	
1,1,2,2-Tetrachloroethane	U		0.0156	0.100	1	04/11/2024 01:51	<u>WG2267289</u>	3
1,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	1	04/11/2024 01:51	<u>WG2267289</u>	
Tetrachloroethene	U		0.0280	0.100	1	04/11/2024 01:51	<u>WG2267289</u>	
Toluene	U		0.0500	0.200	1	04/11/2024 01:51	<u>WG2267289</u>	4
I,2,3-Trichlorobenzene	U		0.0250	0.500	1	04/11/2024 01:51	WG2267289	
I,2,4-Trichlorobenzene	U		0.193	0.500	1	04/11/2024 01:51	WG2267289	5
,1,1-Trichloroethane	U		0.0110	0.100	1	04/11/2024 01:51	WG2267289	5
1,1,2-Trichloroethane	U		0.0353	0.100	1	04/11/2024 01:51	<u>WG2267289</u>	
Trichloroethene	U		0.0160	0.0400	1	04/11/2024 01:51	<u>WG2267289</u>	6
Trichlorofluoromethane	U		0.0200	0.100	1	04/11/2024 01:51	<u>WG2267289</u>	
1,2,3-Trichloropropane	U		0.204	0.500	1	04/11/2024 01:51	<u>WG2267289</u>	7
1,2,4-Trimethylbenzene	U		0.0464	0.200	1	04/11/2024 01:51	<u>WG2267289</u>	Í (
1,2,3-Trimethylbenzene	U		0.0460	0.200	1	04/11/2024 01:51	<u>WG2267289</u>	
,3,5-Trimethylbenzene	U		0.0432	0.200	1	04/11/2024 01:51	<u>WG2267289</u>	8
/inyl chloride	U		0.0273	0.100	1	04/11/2024 01:51	<u>WG2267289</u>	(
Kylenes, Total	U		0.191	0.260	1	04/11/2024 01:51	WG2267289	9
(S) Toluene-d8	96.6			75.0-131		04/11/2024 01:51	<u>WG2267289</u>	90
(S) 4-Bromofluorobenzene	99.5			67.0-138		04/11/2024 01:51	WG2267289	
(S) 1,2-Dichloroethane-d4	112			70.0-130		04/11/2024 01:51	WG2267289	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	04/13/2024 16:46	WG2266295
Residual Range Organics (RRO)	U		83.3	250	1	04/13/2024 16:46	<u>WG2266295</u>
(S) o-Terphenyl	78.9			52.0-156		04/13/2024 16:46	WG2266295

SDG: L1723273 DATE/TIME: 04/18/24 15:20

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1723273-01,03,06,07,09,10

Method Blank (MB)

Method Blank	< (IVIB)				1 Cp
(MB) R4055816-1	04/09/24 15:44				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.00100				
					³ Ss

L1723239-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1723239-07 04/09	9/24 15:44 • (DUI	P) R4055816-3	04/09/24	1 15:44		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	85.2	85.3	1	0.204		10

Laboratory Control Sample (LCS)

(LCS) R4055816-2 04/0	09/24 15:44				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	90.0-110	

SDG: L1723273

DATE/TIME: 04/18/24 15:20

PAGE: 20 of 36 Cn

Sr

[°]Qc

GI

Â

Sc

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R4056928-3 04/09	/24 11:33				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Gasoline Range Organics-NWTPH	1.99	Ţ	0.848	2.50	
(S) a,a,a-Trifluorotoluene(FID)	91.0			77.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4056928-1 04/09)/24 10:00 • (LCS	SD) R4056928	3-2 04/09/24 1	0:24						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Gasoline Range Organics-NWTPH	5.00	4.60	4.99	92.0	99.8	71.0-124			8.13	20
(S) a,a,a-Trifluorotoluene(FID)				100	101	77.0-120				

L1723273-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1723273-10 04/09/24 20:26 • (MS) R4056928-4 04/09/24 20:49 • (MSD) R4056928-5 04/09/24 21:18 Spike Amount Original Result (dry) (dry) MSD Result MS Result (dry) MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD **RPD** Limits (dry) Analyte mg/kg mg/kg mg/kg % % % % % mg/kg Gasoline Range Organics-NWTPH 139 126 126 0.000 27 2.03 89.3 89.3 26 50.0-150 (S) a,a,a-Trifluorotoluene(FID) 102 102 77.0-120

Sc

SDG: L1723273 DATE/TIME: 04/18/24 15:20 PAGE: 21 of 36

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY

Method Blank (MB)

MB) R4057671-3 04/13/2	4 11:45			
	MB Result	MB Qualifier	MB MDL	MB RDL
alyte	ug/l		ug/l	ug/l
soline Range Janics-NWTPH	37.8	Ţ	31.6	100
-Trifluorotoluene(FID)	102			78.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4057671-1 04/13/2	(LCS) R4057671-1 04/13/24 10:40 • (LCSD) R4057671-2 04/13/24 11:02												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%			
Gasoline Range Organics-NWTPH	5000	4410	4630	88.2	92.6	70.0-124			4.87	20			
(S) a,a,a-Trifluorotoluene(FID)				101	103	78.0-120							

ACCOUNT:
AEI Consultants - CA

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY L1723273-01,03,06,07,09,10

Method Blank (MB)

Method Blank (ME	3)							¹ Cp
(MB) R4055465-3 04/08	3/24 23:32	-						СР
	MB Result	MB Qualifier	MB MDL	MB RDL				2
Analyte	mg/kg		mg/kg	mg/kg				Tc
Acetone	U		0.0365	0.0500				
Acrylonitrile	U		0.00361	0.0125				³ Ss
Benzene	U		0.000467	0.00100				
Bromobenzene	U		0.000900	0.0125				4
Bromodichloromethane	U		0.000725	0.00250				Cn
Bromoform	U		0.00117	0.0250				
Bromomethane	U		0.00197	0.0125				⁵Sr
n-Butylbenzene	U		0.00525	0.0125				<u> </u>
sec-Butylbenzene	U		0.00288	0.0125				6
tert-Butylbenzene	U		0.00195	0.00500				ଁQc
Carbon tetrachloride	U		0.000898	0.00500				
Chlorobenzene	U		0.000210	0.00250				⁷ Gl
Chlorodibromomethane	U		0.000612	0.00250				
Chloroethane	U		0.00170	0.00500				8
Chloroform	U		0.00103	0.00250				ٌAI
Chloromethane	U		0.00435	0.0125				
2-Chlorotoluene	U		0.000865	0.00250				⁹ Sc
4-Chlorotoluene	U		0.000450	0.00500				50
1,2-Dibromo-3-Chloropropane	ie U		0.00390	0.0250				
1,2-Dibromoethane	U		0.000648	0.00250				
Dibromomethane	U		0.000750	0.00500				
1,2-Dichlorobenzene	U		0.000425	0.00500				
1,3-Dichlorobenzene	U		0.000600	0.00500				
1,4-Dichlorobenzene	U		0.000700	0.00500				
Dichlorodifluoromethane	U		0.00161	0.00500				
1,1-Dichloroethane	U		0.000491	0.00250				
1,2-Dichloroethane	U		0.000649	0.00250				
1,1-Dichloroethene	U		0.000606	0.00250				
cis-1,2-Dichloroethene	U		0.000734	0.00250				
trans-1,2-Dichloroethene	U		0.00104	0.00500				
1,2-Dichloropropane	U		0.00142	0.00500				
1,1-Dichloropropene	U		0.000809	0.00250				
1,3-Dichloropropane	U		0.000501	0.00500				
cis-1,3-Dichloropropene	U		0.000757	0.00250				
trans-1,3-Dichloropropene	U		0.00114	0.00500				
2,2-Dichloropropane	U		0.00138	0.00250				
Di-isopropyl ether	U		0.000410	0.00100				
Ethylbenzene	U		0.000737	0.00250				
Hexachloro-1,3-butadiene	U		0.00600	0.0250				
Isopropylbenzene	U		0.000425	0.00250				
	ACCOUNT:			PROJECT:	SDG:	DATE/TIME:	PAGE:	

AEI Consultants - CA

491476

L1723273

04/18/24 15:20

23 of 36

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY L1723273-01,03,06,07,09,10

Method Blank (MB)

Method Blank (MB)					-
(MB) R4055465-3 04/08/					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
p-Isopropyltoluene	U		0.00255	0.00500	
2-Butanone (MEK)	U		0.0635	0.100	
Methylene Chloride	U		0.00664	0.0250	
4-Methyl-2-pentanone (MIBK)	U		0.00228	0.0250	
Methyl tert-butyl ether	U		0.000350	0.00100	
Naphthalene	U		0.00488	0.0125	
n-Propylbenzene	U		0.000950	0.00500	
Styrene	U		0.000229	0.0125	
1,1,1,2-Tetrachloroethane	U		0.000948	0.00250	
1,1,2,2-Tetrachloroethane	U		0.000695	0.00250	
1,1,2-Trichlorotrifluoroethane	U		0.000754	0.00250	
Tetrachloroethene	U		0.000896	0.00250	
Toluene	U		0.00130	0.00500	
1,2,3-Trichlorobenzene	U		0.00733	0.0125	
1,2,4-Trichlorobenzene	U		0.00440	0.0125	
1,1,1-Trichloroethane	U		0.000923	0.00250	
1,1,2-Trichloroethane	U		0.000597	0.00250	
Trichloroethene	U		0.000584	0.00100	
Trichlorofluoromethane	U		0.000827	0.00250	
1,2,3-Trichloropropane	U		0.00162	0.0125	
1,2,4-Trimethylbenzene	U		0.00158	0.00500	
1,2,3-Trimethylbenzene	U		0.00158	0.00500	
Vinyl chloride	U		0.00116	0.00250	
1,3,5-Trimethylbenzene	U		0.00200	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	96.6			75.0-131	
(S) 4-Bromofluorobenzene	98.2			67.0-138	
(S) 1,2-Dichloroethane-d4	113			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4055465-1 04/0)8/24 21:38 • (LCS	D) R4055465	5-2 04/08/24 2	3:13							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Acetone	0.625	0.596	0.651	95.4	104	10.0-160			8.82	31	
Acrylonitrile	0.625	0.670	0.699	107	112	45.0-153			4.24	22	
Benzene	0.125	0.123	0.131	98.4	105	70.0-123			6.30	20	
Bromobenzene	0.125	0.110	0.117	88.0	93.6	73.0-121			6.17	20	
Bromodichloromethane	0.125	0.141	0.150	113	120	73.0-121			6.19	20	
	ACCOUNT:			DD	OJECT:		SDG:			DATE/TIME:	PAGE:

AEI Consultants - CA

491476

SDG: L1723273 24 of 36

04/18/24 15:20

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

A

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4055465-1 04/08/24 21:38 • (LCSD) R4055465-2 04/08/24 23:13

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Bromoform	0.125	0.116	0.123	92.8	98.4	64.0-132			5.86	20	
Bromomethane	0.125	0.126	0.138	101	110	56.0-147			9.09	20	
n-Butylbenzene	0.125	0.117	0.122	93.6	97.6	68.0-135			4.18	20	
sec-Butylbenzene	0.125	0.114	0.121	91.2	96.8	74.0-130			5.96	20	
tert-Butylbenzene	0.125	0.113	0.122	90.4	97.6	75.0-127			7.66	20	
Carbon tetrachloride	0.125	0.143	0.157	114	126	66.0-128			9.33	20	
Chlorobenzene	0.125	0.108	0.114	86.4	91.2	76.0-128			5.41	20	
Chlorodibromomethane	0.125	0.118	0.133	94.4	106	74.0-127			12.0	20	
Chloroethane	0.125	0.134	0.138	107	110	61.0-134			2.94	20	
Chloroform	0.125	0.133	0.140	106	112	72.0-123			5.13	20	
Chloromethane	0.125	0.119	0.133	95.2	106	51.0-138			11.1	20	
2-Chlorotoluene	0.125	0.110	0.115	88.0	92.0	75.0-124			4.44	20	
4-Chlorotoluene	0.125	0.113	0.123	90.4	98.4	75.0-124			8.47	20	
1,2-Dibromo-3-Chloropropane	0.125	0.118	0.114	94.4	91.2	59.0-130			3.45	20	
1,2-Dibromoethane	0.125	0.115	0.120	92.0	96.0	74.0-128			4.26	20	
Dibromomethane	0.125	0.135	0.143	108	114	75.0-122			5.76	20	
1,2-Dichlorobenzene	0.125	0.119	0.117	95.2	93.6	76.0-124			1.69	20	
1,3-Dichlorobenzene	0.125	0.120	0.126	96.0	101	76.0-125			4.88	20	
1,4-Dichlorobenzene	0.125	0.115	0.120	92.0	96.0	77.0-121			4.26	20	
Dichlorodifluoromethane	0.125	0.142	0.161	114	129	43.0-156			12.5	20	
1,1-Dichloroethane	0.125	0.129	0.140	103	112	70.0-127			8.18	20	
1,2-Dichloroethane	0.125	0.144	0.154	115	123	65.0-131			6.71	20	
1,1-Dichloroethene	0.125	0.133	0.151	106	121	65.0-131			12.7	20	
cis-1,2-Dichloroethene	0.125	0.119	0.127	95.2	102	73.0-125			6.50	20	
trans-1,2-Dichloroethene	0.125	0.119	0.135	95.2	108	71.0-125			12.6	20	
1,2-Dichloropropane	0.125	0.126	0.133	101	106	74.0-125			5.41	20	
1,1-Dichloropropene	0.125	0.128	0.137	102	110	73.0-125			6.79	20	
1,3-Dichloropropane	0.125	0.111	0.115	88.8	92.0	80.0-125			3.54	20	
cis-1,3-Dichloropropene	0.125	0.132	0.141	106	113	76.0-127			6.59	20	
trans-1,3-Dichloropropene	0.125	0.120	0.127	96.0	102	73.0-127			5.67	20	
2,2-Dichloropropane	0.125	0.146	0.164	117	131	59.0-135			11.6	20	
Di-isopropyl ether	0.125	0.135	0.142	108	114	60.0-136			5.05	20	
Ethylbenzene	0.125	0.111	0.120	88.8	96.0	74.0-126			7.79	20	
Hexachloro-1,3-butadiene	0.125	0.133	0.137	106	110	57.0-150			2.96	20	
Isopropylbenzene	0.125	0.121	0.124	96.8	99.2	72.0-127			2.45	20	
p-lsopropyltoluene	0.125	0.121	0.128	96.8	102	72.0-133			5.62	20	
2-Butanone (MEK)	0.625	0.731	0.737	117	118	30.0-160			0.817	24	
Methylene Chloride	0.125	0.117	0.121	93.6	96.8	68.0-123			3.36	20	
4-Methyl-2-pentanone (MIBK)	0.625	0.655	0.688	105	110	56.0-143			4.91	20	
Methyl tert-butyl ether	0.125	0.141	0.147	113	118	66.0-132			4.17	20	
	CCOUNT:				DJECT:		SDG:	20		DATE/TIME:	PAGE:
AEI Co	onsultants - CA			49	91476		L172327	3		04/18/24 15:20	25 of 36

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4055465-1 04/08/24 21:38 • (LCSD) R4055465-2 04/08/24 23:13

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Naphthalene	0.125	0.119	0.111	95.2	88.8	59.0-130			6.96	20	
n-Propylbenzene	0.125	0.117	0.129	93.6	103	74.0-126			9.76	20	
Styrene	0.125	0.112	0.116	89.6	92.8	72.0-127			3.51	20	
1,1,1,2-Tetrachloroethane	0.125	0.119	0.132	95.2	106	74.0-129			10.4	20	
1,1,2,2-Tetrachloroethane	0.125	0.105	0.108	84.0	86.4	68.0-128			2.82	20	
1,1,2-Trichlorotrifluoroethane	0.125	0.118	0.123	94.4	98.4	61.0-139			4.15	20	
Tetrachloroethene	0.125	0.111	0.122	88.8	97.6	70.0-136			9.44	20	
Toluene	0.125	0.107	0.116	85.6	92.8	75.0-121			8.07	20	
1,2,3-Trichlorobenzene	0.125	0.128	0.122	102	97.6	59.0-139			4.80	20	
1,2,4-Trichlorobenzene	0.125	0.130	0.120	104	96.0	62.0-137			8.00	20	
1,1,1-Trichloroethane	0.125	0.149	0.166	119	133	69.0-126		<u>J4</u>	10.8	20	
1,1,2-Trichloroethane	0.125	0.107	0.112	85.6	89.6	78.0-123			4.57	20	
Trichloroethene	0.125	0.128	0.138	102	110	76.0-126			7.52	20	
Trichlorofluoromethane	0.125	0.145	0.159	116	127	61.0-142			9.21	20	
1,2,3-Trichloropropane	0.125	0.123	0.135	98.4	108	67.0-129			9.30	20	
1,2,4-Trimethylbenzene	0.125	0.115	0.123	92.0	98.4	70.0-126			6.72	20	
1,2,3-Trimethylbenzene	0.125	0.117	0.126	93.6	101	74.0-124			7.41	20	
Vinyl chloride	0.125	0.137	0.144	110	115	63.0-134			4.98	20	
1,3,5-Trimethylbenzene	0.125	0.114	0.126	91.2	101	73.0-127			10.0	20	
Xylenes, Total	0.375	0.340	0.360	90.7	96.0	72.0-127			5.71	20	
(S) Toluene-d8				90.7	91.8	75.0-131					
(S) 4-Bromofluorobenzene				102	101	67.0-138					
(S) 1,2-Dichloroethane-d4				118	119	70.0-130					

SDG: L1723273 DATE/TIME: 04/18/24 15:20 PAGE: 26 of 36

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY L1723273-11

Method Blank (MB)

(MB) R4057720-3 04/10/2					
Analyte	MB Result ug/l	MB Qualifier	MB MDL ug/l	MB RDL ug/l	2
Acetone	U		0.548	1.00	
Acrylonitrile	U		0.0760	0.500	3
Acrolein	U		0.758	50.0	
Benzene	U		0.0160	0.0400	
Bromobenzene	U		0.0420	0.500	4
Bromodichloromethane	U		0.0315	0.100	
Bromoform	U		0.239	1.00	5
Bromomethane	U		0.148	0.500	^o
n-Butylbenzene	U		0.153	0.500	
sec-Butylbenzene	U		0.101	0.500	6
tert-Butylbenzene	U		0.0620	0.200	
Carbon tetrachloride	U		0.0432	0.200	7
Chlorobenzene	U		0.0229	0.100	Í
Chlorodibromomethane	U		0.0223	0.100	
Chloroethane	U		0.0432	0.200	8
Chloroform	0.0210	1	0.0432	0.100	Ľ
Chloromethane	U.0210	2	0.0556	0.500	9
2-Chlorotoluene	U		0.0368	0.100	9
4-Chlorotoluene	U		0.0308	0.200	
1,2-Dibromo-3-Chloropropane			0.204	1.00	
1,2-Dibromoethane	U		0.0210	0.100	
Dibromomethane	U		0.0210	0.200	
1,2-Dichlorobenzene	U		0.0580	0.200	
1,3-Dichlorobenzene	U		0.0680	0.200	
1,4-Dichlorobenzene	U		0.0788	0.200	
Dichlorodifluoromethane	U		0.0327	0.200	
1,1-Dichloroethane	U		0.0230	0.100	
1,2-Dichloroethane	U		0.0230	0.100	
1,1-Dichloroethene			0.0190		
cis-1,2-Dichloroethene	U		0.0200	0.100 0.100	
	U				
trans-1,2-Dichloroethene	U		0.0572 0.0508	0.200 0.200	
1,2-Dichloropropane	UU		0.0508	0.100	
1,1-Dichloropropene 1,3-Dichloropropane	U		0.0280	0.200	
cis-1,3-Dichloropropene	U		0.0700	0.100	
trans-1,3-Dichloropropene	U		0.0612 0.0317	0.200 0.100	
2,2-Dichloropropane	UU		0.0317	0.0400	
Di-isopropyl ether Ethylbenzene			0.0140	0.100	
Hexachloro-1,3-butadiene	UU		0.508	1.00	

ACCOUNT: AEI Consultants - CA PROJECT: 491476

SDG: L1723273

DATE/TIME: 04/18/24 15:20

PAGE: 27 of 36

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Тс

Ss

⁴Cn

Sr

GI

Al

°Sc

Method Blank (MB)

(MB) R4057720-3 04/10/2	24 22:15				_
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Isopropylbenzene	U		0.0345	0.100	
p-Isopropyltoluene	U		0.0932	0.200	
2-Butanone (MEK)	U		0.500	1.00	
Methylene Chloride	U		0.265	1.00	
4-Methyl-2-pentanone (MIBK)	U		0.400	1.00	
Methyl tert-butyl ether	U		0.0118	0.0400	
Naphthalene	U		0.124	0.500	
n-Propylbenzene	U		0.0472	0.200	
Styrene	U		0.109	0.500	
1,1,1,2-Tetrachloroethane	U		0.0200	0.100	
1,1,2,2-Tetrachloroethane	U		0.0156	0.100	
1,1,2-Trichlorotrifluoroethane	U		0.0270	0.100	
Tetrachloroethene	U		0.0280	0.100	
Toluene	U		0.0500	0.200	
1,2,3-Trichlorobenzene	U		0.0250	0.500	
1,2,4-Trichlorobenzene	U		0.193	0.500	
1,1,1-Trichloroethane	U		0.0110	0.100	
1,1,2-Trichloroethane	U		0.0353	0.100	
Trichloroethene	U		0.0160	0.0400	
Trichlorofluoromethane	U		0.0200	0.100	
1,2,3-Trichloropropane	U		0.204	0.500	
1,2,4-Trimethylbenzene	U		0.0464	0.200	
1,2,3-Trimethylbenzene	U		0.0460	0.200	
1,3,5-Trimethylbenzene	U		0.0432	0.200	
Vinyl chloride	U		0.0273	0.100	
Xylenes, Total	U		0.191	0.260	
(S) Toluene-d8	97.6			75.0-131	
(S) 4-Bromofluorobenzene	100			67.0-138	
(S) 1,2-Dichloroethane-d4	112			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Acetone	25.0	18.6	18.2	74.4	72.8	10.0-160			2.17	31
Acrylonitrile	25.0	25.7	23.6	103	94.4	45.0-153			8.52	22
Acrolein	25.0	28.3	30.9	113	124	10.0-160			8.78	31
Benzene	5.00	5.19	4.79	104	95.8	70.0-123			8.02	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
AEI Consultants - CA	491476	L1723273	04/18/24 15:20	28 of 36

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4057720-1 04/10/24 20:57 • (LCSD) R4057720-2 04/10/24 21:16

(LCS) R4057720-1 04/10/2	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Bromobenzene	5.00	4.86	4.34	97.2	86.8	73.0-121			11.3	20	
Bromodichloromethane	5.00	5.64	5.30	113	106	73.0-121			6.22	20	
Bromoform	5.00	5.59	5.10	112	102	64.0-132			9.17	20	
Bromomethane	5.00	5.35	4.80	107	96.0	56.0-147			10.8	20	
n-Butylbenzene	5.00	4.63	4.23	92.6	84.6	68.0-135			9.03	20	
sec-Butylbenzene	5.00	4.65	4.37	93.0	87.4	74.0-130			6.21	20	
tert-Butylbenzene	5.00	4.74	4.38	94.8	87.6	75.0-127			7.89	20	
Carbon tetrachloride	5.00	6.80	6.34	136	127	66.0-128	<u>J4</u>		7.00	20	
Chlorobenzene	5.00	5.07	4.79	101	95.8	76.0-128			5.68	20	
Chlorodibromomethane	5.00	5.67	5.56	113	111	74.0-127			1.96	20	
Chloroethane	5.00	5.48	4.99	110	99.8	61.0-134			9.36	20	
Chloroform	5.00	5.43	5.01	109	100	72.0-123			8.05	20	
Chloromethane	5.00	4.85	4.56	97.0	91.2	51.0-138			6.16	20	
2-Chlorotoluene	5.00	4.73	4.36	94.6	87.2	75.0-124			8.14	20	
4-Chlorotoluene	5.00	4.68	4.21	93.6	84.2	75.0-124			10.6	20	
1,2-Dibromo-3-Chloropropane	5.00	4.86	4.59	97.2	91.8	59.0-130			5.71	20	
1,2-Dibromoethane	5.00	5.51	5.01	110	100	74.0-128			9.51	20	
Dibromomethane	5.00	5.42	4.84	108	96.8	75.0-122			11.3	20	
1,2-Dichlorobenzene	5.00	4.65	4.28	93.0	85.6	76.0-124			8.29	20	
1,3-Dichlorobenzene	5.00	4.60	4.24	92.0	84.8	76.0-125			8.14	20	
1,4-Dichlorobenzene	5.00	4.80	4.41	96.0	88.2	77.0-121			8.47	20	
Dichlorodifluoromethane	5.00	6.12	5.89	122	118	43.0-156			3.83	20	
1,1-Dichloroethane	5.00	5.20	4.77	104	95.4	70.0-127			8.63	20	
1,2-Dichloroethane	5.00	5.84	5.30	117	106	65.0-131			9.69	20	
1,1-Dichloroethene	5.00	5.64	5.02	113	100	65.0-131			11.6	20	
cis-1,2-Dichloroethene	5.00	5.47	4.77	109	95.4	73.0-125			13.7	20	
trans-1,2-Dichloroethene	5.00	5.43	4.81	109	96.2	71.0-125			12.1	20	
1,2-Dichloropropane	5.00	4.66	4.58	93.2	91.6	74.0-125			1.73	20	
1,1-Dichloropropene	5.00	5.56	5.27	111	105	73.0-125			5.36	20	
1,3-Dichloropropane	5.00	5.27	4.93	105	98.6	80.0-125			6.67	20	
cis-1,3-Dichloropropene	5.00	5.62	5.34	112	107	76.0-127			5.11	20	
trans-1,3-Dichloropropene	5.00	5.63	5.31	113	106	73.0-127			5.85	20	
2,2-Dichloropropane	5.00	6.19	5.92	124	118	59.0-135			4.46	20	
Di-isopropyl ether	5.00	4.92	4.60	98.4	92.0	60.0-136			6.72	20	
Ethylbenzene	5.00	5.27	4.83	105	96.6	74.0-126			8.71	20	
Hexachloro-1,3-butadiene	5.00	4.75	4.72	95.0	94.4	57.0-150			0.634	20	
Isopropylbenzene	5.00	5.35	4.90	107	98.0	72.0-127			8.78	20	
p-Isopropyltoluene	5.00	4.44	4.42	88.8	88.4	72.0-133			0.451	20	
2-Butanone (MEK)	25.0	24.2	22.6	96.8	90.4	30.0-160			6.84	24	
Methylene Chloride	5.00	5.06	4.66	101	93.2	68.0-123			8.23	20	
٨	CCOUNT:			DD/	DJECT:		SDG:			DATE/TIME:	PAGE:
	nsultants - CA				91476		L172327			04/18/24 15:20	29 of 36
AEI Co	nsultants - CA			49	0/4/0		L1/232/	3		04/10/24 13.20	29 01 36

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4057720-1 04/10/24 20:57 • (LCSD) R4057720-2 04/10/24 21:16

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	E F
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
4-Methyl-2-pentanone (MIBK)	25.0	24.2	23.4	96.8	93.6	56.0-143			3.36	20	1
Methyl tert-butyl ether	5.00	5.70	5.11	114	102	66.0-132			10.9	20	
Naphthalene	5.00	4.07	3.91	81.4	78.2	59.0-130			4.01	20	_
n-Propylbenzene	5.00	4.75	4.32	95.0	86.4	74.0-126			9.48	20	
Styrene	5.00	5.59	4.92	112	98.4	72.0-127			12.7	20	-
1,1,1,2-Tetrachloroethane	5.00	5.67	5.06	113	101	74.0-129			11.4	20	
1,1,2,2-Tetrachloroethane	5.00	4.75	4.48	95.0	89.6	68.0-128			5.85	20	_
1,1,2-Trichlorotrifluoroethane	5.00	4.95	4.69	99.0	93.8	61.0-139			5.39	20	
Tetrachloroethene	5.00	5.53	5.12	111	102	70.0-136			7.70	20	
Toluene	5.00	5.24	4.68	105	93.6	75.0-121			11.3	20	
1,2,3-Trichlorobenzene	5.00	4.30	4.41	86.0	88.2	59.0-139			2.53	20	
1,2,4-Trichlorobenzene	5.00	4.42	4.41	88.4	88.2	62.0-137			0.227	20	
1,1,1-Trichloroethane	5.00	6.12	5.35	122	107	69.0-126			13.4	20	_
1,1,2-Trichloroethane	5.00	5.30	4.81	106	96.2	78.0-123			9.69	20	
Trichloroethene	5.00	5.72	5.08	114	102	76.0-126			11.9	20	
Trichlorofluoromethane	5.00	5.67	5.20	113	104	61.0-142			8.65	20	
1,2,3-Trichloropropane	5.00	5.43	4.86	109	97.2	67.0-129			11.1	20	_
1,2,4-Trimethylbenzene	5.00	4.86	4.36	97.2	87.2	70.0-126			10.8	20	
1,2,3-Trimethylbenzene	5.00	4.87	4.48	97.4	89.6	74.0-124			8.34	20	
1,3,5-Trimethylbenzene	5.00	4.84	4.46	96.8	89.2	73.0-127			8.17	20	
Vinyl chloride	5.00	5.82	5.08	116	102	63.0-134			13.6	20	
Xylenes, Total	15.0	15.6	14.4	104	96.0	72.0-127			8.00	20	
(S) Toluene-d8				99.1	99.0	75.0-131					
(S) 4-Bromofluorobenzene				106	107	67.0-138					
(S) 1,2-Dichloroethane-d4				109	109	70.0-130					

SDG: L1723273 DATE/TIME: 04/18/24 15:20

PAGE: 30 of 36

Ср
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

QUALITY CONTROL SUMMARY

L1723273-01,03,06,07,09,10

Method Blank (MB)

(MB) R4057435-1 04/13/24	15:51				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Diesel Range Organics (DRO)	U		1.33	4.00	
Residual Range Organics (RRO)	U		3.33	10.0	
(S) o-Terphenyl	79.9			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R4057435-2 04/13/2	24 16:03				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	33.5	67.0	50.0-150	
(S) o-Terphenyl			68.2	18.0-148	

L1723273-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1723273-01 04/13/24 17:53 • (MS) R4057435-3 04/13/24 18:06 • (MSD) R4057435-4 04/13/24 18:18													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Diesel Range Organics (DRO)	52.4	15.3	45.6	38.7	57.8	44.6	10	50.0-150		<u>J6</u>	16.4	20	
(S) o-Terphenyl					77.2	66.7		18.0-148					

Sample Narrative:

OS: Dilution due to matrix.

ACCOUNT:
AEI Consultants - CA

PROJECT: 491476 SDG: L1723273 DATE/TIME: 04/18/24 15:20

PAGE: 31 of 36

⁺Cn

GI

Â

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Method Blank (MB)

(MB) R4057433-1 04/13/24	15:26			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	79.0			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4057433-2 04/13/24 15:46 • (LCSD) R4057433-3 04/13/24 16:06													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%			
Diesel Range Organics (DRO)	1500	1560	1550	104	103	50.0-150			0.643	20			
(S) o-Terphenyl				81.0	81.5	52.0-156							

-	¹ Cp
_	² Tc
	³ Ss
	⁴ Cn
-	⁵Sr
1	⁶ Qc
	⁷ Gl
	⁸ Al
	9
	Sc

DATE/TIME: 04/18/24 15:20 PAGE: 32 of 36

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
С3	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J4	The associated batch QC was outside the established quality control range for accuracy.
Je	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1723273 DATE/TIME: 04/18/24 15:20 PAGE: 34 of 36

¹Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

AEI Consultants - CA			Billing Info			1011	-		and a state of the state of the	ANAIVSIS	/ Lonia	INPL/PI	reservative		Chain of Custod	V Dage
	El Consultants - CA			Accounts Payable- Jeremy Smith											Chain of Custod	y Page of
				nino Diablo	emy Smith	Pres Chk	1				100				-	,
2500 Camino Diablo				Creek, CA 945	97	<u> </u>					1.2.2.1				- (Pa	ace [.]
Walnut Creek, CA 94597				JICCR, CA 343		4									PEOPLI	E ADVANCING SCIENCE
Report to: Natasha Budimirovic 1 2, Doug				ail To: nbudimirovic@aeiconsultants.com					-						IL TM	ULIET, TN
			laayea	iday pariconsultants. ca				isy i	Isy	BT					12065 Lebanon Rd Mo Submitting a sample vi	ount Juliet, TN 37122 a this chain of custody
Project Description: 9944 US-2, Coulee City, WA		City/State Collected:	coulee city, Den MT CT				res	0ml/	0ml	HCI-					constitutes acknowled Pace Terms and Condit	gment and acceptance of the
1Phone: 323-740-0000	Client Project # 491476		Lab Project # AEICONWCCA-491476			(jhe	4ozClr-NoPres	40mlAmb/MeOH10ml/Syr	VOCs 8260 40mlAmb/MeOH10ml/Syr	40mlAmb-HCI-BT	a	40mlAmb-HCl			SDG #	72327
Collected by (print): Sit	te/Facility ID	#		P.O. #		No.	ozc	N/C	N/C	-Om	PH	Arr			B1	73
NATTASHA BUDIMIROVIC				143641				Amt	Amk	SGT 4	Am	Oml				
Collected by (signature):	Rush? (La			Quote #			o sGT	Im	Im		Omi				Acctnum: AEI Template:T25	
	Same Day Next Day	Five 5 Day	Day / (Rad Only)	Date Result		(nc		0 4(Xn	X 4	Inos	0		Prelogin: P10		
Immediately Y	Two Day Three Day	10 Da	ay (Rad Only)	Date Result	s Needed	No. of	NWTPHDX no	NWTPHGX	s 826	NWTPHDX no	NWTPHGX 40miAmb HCl	VOCs 8260ULL	5		PM: 110 - Brian PB: 4/1	Ford
Sample ID Co	omp/Grab	Matrix *	Depth	Date	Time	Cntrs	NWNS	LMNS	s voc	WN W	W NW	W VOC	FC			Sample # (lab only)
5B-1 (4,5-5') 9	undb	SS	4,5-51	4-4-24	1440	2	X	X	X	>	>	5				I-AI
SB-1 (9,5-10)		SS	915-101	1	1450	2	1		1				X			1-02
SB-2(4,5-5')		SS	4.5-5'		1400	2	X	X	X							-03
SB-2(9,5-101)		SS	9.5-101		1410	2		-					X			-04
3B-3(4,5-51)		SS	4.55'		1530	2						100	X			- 05
SB-3 (12-12,5")		SS	12-12.31		1535	2	X	X	X							- 06
SB-3 (14,5-15')		SS	14,5-151		1540	2	X	X	X							-07
SB-4 (4,5-51)		SS	4.5-51		1615	2	1		~				X			-08
3B-4(12-12.5')		SS	12-12.5'		1620	2	X	X	X							-09
SB-4 (13,5-14)		SS	13:5-14		1625	2	X	X	X							-10)
* Matrix: Remark	ks:					1			1			т.		Samp	le Receipt Che	ecklist /
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay						1				pH _		Temp		COC Seal Pr COC Signed/	resent/Intact: Accurate:	_NP Y_N
WW - WasteWater		ANT CONTRACT				Sperie				Flow		Othe	·		ive intact:	N N
	es returned vi			Trackir	1g# 77	41	1	171	11	201	0				volume sent: If Applicabl	N N
Relinquished by : (Signature)	FedEx				14		-		1	LI	60	1.5	101	VOA Zero He Preservatio		Y N
Incliniquisticu by . (Signature)	Date		Time:		ed by: (Signatu	ire)	7	-	1	rip Blan	K Receiv		es / No HCL / MeoH		<0.5 mR/hr:	
Relinquished by : (Signature)	Relinquished by (Signature) Date:			1045 Shipped			n te	aex	-	100	17 01		rBR es Received:	If preservation	n required by Logi	n: Date/Time
	Dute			Time: Received by: (Signature						Temp. 1.1 °C Bottles R			28	In preservation	required by LOgi	n. Date/ fille
Relinquished by : (Signature)	Date):	Time:	Receiv	ed for lab by: I	Signatu	ure)			Date;	10 1	Time	2	Hold:		Condition:
					T	~			(+16	IN	1	100			NCF / OK

Company Name/Address:			Billing Info	ormation:		1		1	4	Analysis	/ Conta	iner / Pr	eservative		(Chain of Custody	Page 2 of 2
AEI Consultants - CA 2500 Camino Diablo Walnut Creek, CA 94597			2500 Ca	s Payable- Je mino Diablo Creek, CA 94		Pres Chk						1				Pa	
Wallut Cleek, CA 94597																I PEOPLE	ADVANGING SCIENCE
Report to: Natasha Budimirovic			Email To: r	nbudimirovic@a	:om		Syr	Syr	BT						MT JL 2065 Lebanon Rd Mor ubmitting a sample via		
Project Description: 9944 US-2, Coulee City, WA	· · · · · · · · · · · · · · · · · · ·			Please Circ PT MT CT				/Im0	/Im0	HCI-					Ci P h	onstitutes acknowledg ace Terms and Conditi https://info.pacelabs.co	ment and acceptance of the
Phone: 925-746-6000	Client Project 491476	ct #		Lab Project # AEICONWCCA-49			SGT 4ozClr-NoPres	AeOH1	AeOH1	ulAmb	q	40mlAmb-HCl				SDG #)7	232.73
Collected by (print):	Site/Facility ID #			P.O. # 143641			T 4oz(Amb/N	Amb/A	GT 40n	Amb F	OmlAn				Table # 5	13
Collected by (signature):		(Lab MUST Be Day Five		Quote #		no SG	40ml	40ml	no S(40m				т	emplate: T25	0152	
Immediately Packed on Ice N Y	Next Day 5 Day (Rad Or Two Day 10 Day (Rad O Three Day			Date Resu	lts Needed	No. of	NWTPHDX no	NWTPHDX no SG1 4ozClr-NoPres NWTPHGX 40mlAmb/MeOH10ml/Syr	s VOCs 8260 40mlAmb/MeOH10ml/Syr	w NWTPHDX no SGT 40mlAmb-HCl-BT	NWTPHGX 40mlAmb HCl	CS 8260ULL			P	relogin: P10 M: 110 - Brian B: 41 1 1	Ford
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	S NW	SNW	VOC	VNV V	W NW	w VOCs			SI	hipped Via: Fe Remarks	dEX Priority Sample # (lab only)
Well Mater-1	grab	GW/55	-	4-4-24	1700	8				X	X	×					-11
		GW				1-											
		GW															
		GW															
		GW															
		GW															
						j											
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:									pH Flow		_ Temp Othe		COC Sea COC Sig Bottles	al Pres gned/Ac s arriv	Receipt Che ent/Intact: curate: e intact:	<u>ecklist</u> NPYN N
WW - WasteWater DW - Drinking Water OT - Other	Samples returne UPS FedE			Trac	king #]]	41	C	11	111		60)		Suffic: VOA Zer	ient vo <u>I</u> ro Head		Y N
Relinquished by : (Signature)	C	Date: 4-5-2	Time	Rece	ived by: (Signa	ture)	ia=	Fall	3	Trip Blar	nk Recei		HCL/MeoH			Correct/Che .5 mR/hr:	cked: _Y_N
Relinquished by : (Signature)	C	Date:	Time	e: Rece	ived by: (Signa	ture)	-1			TempDi 1.1+0		C Bott	les Received:	If preser	vation re	equired by Log	in: Date/Time
Relinquished by : (Signature)	C	Date:	Time	e: Rece	ived for lab by	: (Signat	ure)			Date: 4/6	124	Tim	e: 100	Hold:			Condition: NCF / OK

Pace Analytical® ANALYTICAL REPORT April 10, 2024

AEI Consultants - CA

Sample Delivery Group: Samples Received: Project Number: Description:

L1723347 04/08/2024 491476 9944 US-2, Coulee City, WA

Report To:

Natasha Budimirovic 2500 Camino Diablo Walnut Creek, CA 94597

Entire Report Reviewed By:

Brian Ford

Brian Ford Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: AEI Consultants - CA PROJECT: 491476

SDG: L1723347

DATE/TIME: 04/10/24 12:56 PAGE: 1 of 16

Тс Ss Cn Śr ʹQc Gl A Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SG-1-4.5 L1723347-01	5
SG-2-4.5 L1723347-02	7
Qc: Quality Control Summary	9
Volatile Organic Compounds (MS) by Method TO-15	9
Organic Compounds (GC) by Method ASTM 1946	13
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

Ср

Ss

°Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

SG-1-4.5 L1723347-01 Air			Collected by	Collected date/time 04/04/24 18:05	Received da 04/08/24 10:		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Volatile Organic Compounds (MS) by Method TO-15	WG2263171	1	04/09/24 17:27	04/09/24 17:27	MNP	Mt. Juliet, TN	
Organic Compounds (GC) by Method ASTM 1946	WG2262955	1	04/09/24 11:13	04/09/24 11:13	OK	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da		
SG-2-4.5 L1723347-02 Air				04/04/24 18:36	04/08/24 10:	30	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Volatile Organic Compounds (MS) by Method TO-15	WG2263171	1	04/09/24 18:00	04/09/24 18:00	MNP	Mt. Juliet, TN	
Organic Compounds (GC) by Method ASTM 1946	WG2262955	1	04/09/24 11:17	04/09/24 11:17	OK	Mt. Juliet, TN	

Ср

²Tc

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

SDG: L1723347 DAT 04/10

SAMPLE RESULTS - 01 L1723347

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
Analyte			ppbv	ug/m3	ppbv	ug/m3				2
Acetone	67-64-1	58.10	1.25	2.97	12.2	29.0		1	WG2263171	Тс
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2263171	
Benzene	71-43-2	78.10	0.200	0.639	6.21	19.8		1	WG2263171	³ Ss
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2263171	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2263171	4
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2263171	Cr
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2263171	
1,3-Butadiene	106-99-0	54.10	2.00	4.43	3.62	8.01		1	WG2263171	⁵ Sr
Carbon disulfide	75-15-0	76.10	0.200	0.622	1.83	5.70		1	WG2263171	
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2263171	6
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2263171	ĨQ
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2263171	
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG2263171	⁷ Gl
Chloromethane	74-87-3	50.50	0.200	0.413	0.244	0.504		1	WG2263171	G
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2263171	0
Cyclohexane	110-82-7	84.20	0.200	0.689	0.705	2.43		1	WG2263171	Å
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2263171	
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2263171	9
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2263171	Šc
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2263171	
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2263171	
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2263171	
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2263171	
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2263171	
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2263171	
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2263171	
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2263171	
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.924	ND	ND		1	WG2263171	
trans-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2263171	
1,4-Dioxane	123-91-1	88.10	0.630	2.27	ND	ND		1	WG2263171	
	64-17-5	46.10	2.50	4.71	23.7	44.7		1		
Ethanol Ethylbenzene	100-41-4	106	0.200	0.867	7.89	34.2		1	WG2263171	
									WG2263171	
4-Ethyltoluene	622-96-8	120	0.200	0.982	0.576	2.83		1	WG2263171	
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.319	1.79		1	WG2263171	
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.471	2.33		1	WG2263171	
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2263171	
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2263171	
Heptane	142-82-5	100	0.200	0.818	3.43	14.0		1	WG2263171	
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2263171	
n-Hexane	110-54-3	86.20	0.630	2.22	2.70	9.52		1	WG2263171	
Isopropylbenzene	98-82-8	120.20	0.200	0.983	0.364	1.79		1	WG2263171	
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG2263171	
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2263171	
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	2.89	8.52		1	WG2263171	
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2263171	
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2263171	
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2263171	
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2263171	
2-Propanol	67-63-0	60.10	1.25	3.07	2.65	6.51		1	WG2263171	
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2263171	
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2263171	
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2263171	
Tetrachloroethylene	127-18-4	166	0.200	1.36	0.370	2.51		1	WG2263171	
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2263171	
Toluene	108-88-3	92.10	0.500	1.88	7.38	27.8		1	WG2263171	
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2263171	
۵۰۵	OUNT:			PROJECT:		SDG:		DATE	TIME:	PAGE:

AEI Consultants - CA

PROJECT: 491476

SDG: L1723347

DATE/TIME: 04/10/24 12:56

SAMPLE RESULTS - 01

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
Analyte			ppbv	ug/m3	ppbv	ug/m3				
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2263171	
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2263171	
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2263171	
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	3.56	17.5		1	WG2263171	
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	0.880	4.32		1	WG2263171	
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2263171	
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2263171	
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2263171	
Vinyl acetate	108-05-4	86.10	0.630	2.22	ND	ND		1	WG2263171	
m&p-Xylene	179601-23-1	106	0.400	1.73	32.7	142		1	WG2263171	
o-Xylene	95-47-6	106	0.200	0.867	15.1	65.5		1	WG2263171	
1,1-Difluoroethane	75-37-6	66.05	5.00	13.5	71.8	194		1	WG2263171	
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		102				WG2263171	
Organic Compound	ds (GC) by	Methoc	I ASTM 19	46						
	CAC #	Mal W/	וחח	Desult	0	Dilution Datab				

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch	A
Analyte			%	%				
Helium	7440-59-7		0.100	ND		1	WG2262955	°Sc

-

SAMPLE RESULTS - 02

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
Analyte			ppbv	ug/m3	ppbv	ug/m3				2
Acetone	67-64-1	58.10	1.25	2.97	16.7	39.7		1	WG2263171	
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2263171	
Benzene	71-43-2	78.10	0.200	0.639	1.12	3.58		1	WG2263171	3
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2263171	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2263171	4
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2263171	(
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2263171	
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2263171	5
Carbon disulfide	75-15-0	76.10	0.200	0.622	1.96	6.10		1	WG2263171	
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2263171	6
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2263171	(
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2263171	
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG2263171	7
Chloromethane	74-87-3	50.50	0.200	0.413	0.277	0.572		1	WG2263171	
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2263171	8
Cyclohexane	110-82-7	84.20	0.200	0.689	0.277	0.954		1	WG2263171	A
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2263171	
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2263171	9
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2263171	Ĺ
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2263171	
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2263171	
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2263171	
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2263171	
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2263171	
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2263171	
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2263171	
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2263171	
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2263171	
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2263171	
1,4-Dioxane	123-91-1	88.10	0.630	2.27	ND	ND		1	WG2263171	
Ethanol	64-17-5	46.10	2.50	4.71	59.0	111		1	WG2263171	
Ethylbenzene	100-41-4	106	0.200	0.867	7.92	34.3		1	WG2263171	
4-Ethyltoluene	622-96-8	120	0.200	0.982	0.525	2.58		1	WG2263171	
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.313	1.76		1	WG2263171	
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.469	2.32		1	WG2263171	
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2263171	
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2263171	
Heptane	142-82-5	100	0.200	0.818	0.772	3.16		1	WG2263171	
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2263171	
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2263171	
Isopropylbenzene	98-82-8	120.20	0.200	0.983	0.367	1.80		1	WG2263171	
Methylene Chloride	75-09-2	84.90	0.200	0.694	0.256	0.889		1	WG2263171	
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2263171	
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	2.22	6.55		1	WG2263171	
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.03	ND	ND		1	WG2263171	
Methyl methacrylate	80-62-6	100.10	0.200	0.819	ND	ND		1	WG2263171 WG2263171	
MTBE	1634-04-4	88.10	0.200	0.819				1		
	91-20-3	128	0.200	3.30	ND ND	ND ND			WG2263171	
Naphthalene								1	WG2263171	
2-Propanol	67-63-0	60.10	1.25	3.07	5.98	14.7		1	WG2263171	
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2263171	
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2263171	
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2263171	
Tetrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG2263171	
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2263171	
Toluene	108-88-3	92.10	0.500	1.88	5.32	20.0		1	WG2263171	
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2263171	

AEI Consultants - CA

PROJECT: 491476

SDG: L1723347 DATE/TIME: 04/10/24 12:56

7 of 16

SAMPLE RESULTS - 02

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
Analyte			ppbv	ug/m3	ppbv	ug/m3				
,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2263171	
,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2263171	
Frichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2263171	
,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	2.96	14.5		1	WG2263171	
,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	0.962	4.72		1	WG2263171	
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2263171	
/inyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2263171	
/inyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2263171	
/inyl acetate	108-05-4	86.10	0.630	2.22	ND	ND		1	WG2263171	
n&p-Xylene	179601-23-1	106	0.400	1.73	43.3	188		1	WG2263171	
o-Xylene	95-47-6	106	0.200	0.867	21.6	93.6		1	WG2263171	
,1-Difluoroethane	75-37-6	66.05	5.00	13.5	89.5	242		1	WG2263171	
,		175	60.0-140		99.4				WG2263171	

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch	Ă	
Analyte			%	%					1
Helium	7440-59-7		0.100	ND		1	WG2262955	°Sc	

-

E.

WG2263171

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R4055817-3 04/09/2	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Acetone	U		0.584	1.25
Allyl chloride	U		0.114	0.200
Benzene	U		0.0715	0.200
Benzyl Chloride	U		0.0598	0.200
Bromodichloromethane	U		0.0702	0.200
Bromoform	U		0.0732	0.600
Bromomethane	U		0.0982	0.200
1,3-Butadiene	U		0.104	2.00
Carbon disulfide	U		0.102	0.200
Carbon tetrachloride	U		0.0732	0.200
Chlorobenzene	U		0.0832	0.200
Chloroethane	U		0.0996	0.200
Chloroform	U		0.0717	0.200
Chloromethane	U		0.103	0.200
2-Chlorotoluene	U		0.0828	0.200
Cyclohexane	U		0.0753	0.200
Dibromochloromethane	U		0.0727	0.200
1,2-Dibromoethane	U		0.0721	0.200
1,2-Dichlorobenzene	U		0.128	0.200
1,3-Dichlorobenzene	U		0.182	0.200
1,4-Dichlorobenzene	U		0.0557	0.200
1,2-Dichloroethane	U		0.0700	0.200
1,1-Dichloroethane	U		0.0723	0.200
1,1-Dichloroethene	U		0.0762	0.200
cis-1,2-Dichloroethene	U		0.0784	0.200
trans-1,2-Dichloroethene	U		0.0673	0.200
1,2-Dichloropropane	U		0.0760	0.200
cis-1,3-Dichloropropene	U		0.0689	0.200
trans-1,3-Dichloropropene	U		0.0728	0.200
1,4-Dioxane	U		0.0833	0.630
Ethanol	0.981	J	0.265	2.50
Ethylbenzene	U	-	0.0835	0.200
4-Ethyltoluene	U		0.0783	0.200
Trichlorofluoromethane	U		0.0819	0.200
Dichlorodifluoromethane	U		0.137	0.200
1,1,2-Trichlorotrifluoroethane	U		0.0793	0.200
1,2-Dichlorotetrafluoroethane	U		0.0890	0.200
Heptane	U		0.104	0.200
Hexachloro-1,3-butadiene	U		0.105	0.630
n-Hexane	U		0.206	0.630

Sc

ACCOUNT: AEl Consultants - CA PROJECT: 491476 SDG: L1723347 DATE/TIME: 04/10/24 12:56

PAGE: 9 of 16

WG2263171

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R4055817-3 04/09/2	4 10:27				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	pbv	
Isopropylbenzene	U		0.0777	0.200	
Methylene Chloride	U		0.0979	0.200	
Methyl Butyl Ketone	U		0.133	1.25	
2-Butanone (MEK)	U		0.0814	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.0765	1.25	
Methyl methacrylate	U		0.0876	0.200	
MTBE	U		0.0647	0.200	
Naphthalene	U		0.350	0.630	
2-Propanol	U		0.264	1.25	
Propene	U		0.0932	1.25	
Styrene	U		0.0788	0.200	
,1,2,2-Tetrachloroethane	U		0.0743	0.200	
letrachloroethylene	U		0.0814	0.200	
letrahydrofuran	U		0.0734	0.200	
Foluene	U		0.0870	0.500	
l,2,4-Trichlorobenzene	U		0.148	0.630	
,1,1-Trichloroethane	U		0.0736	0.200	
,1,2-Trichloroethane	U		0.0775	0.200	
richloroethylene	U		0.0680	0.200	
,2,4-Trimethylbenzene	U		0.0764	0.200	
,3,5-Trimethylbenzene	U		0.0779	0.200	
2,2,4-Trimethylpentane	U		0.133	0.200	
/inyl chloride	U		0.0949	0.200	
/inyl Bromide	U		0.0852	0.200	
/inyl acetate	U		0.116	0.630	
n&p-Xylene	U		0.135	0.400	
o-Xylene	U		0.0828	0.200	
,1-Difluoroethane	1.20	<u>J</u>	0.129	5.00	
(S) 1,4-Bromofluorobenzene	95.9			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Acetone	3.75	3.29	3.23	87.7	86.1	70.0-130			1.84	25
Allyl chloride	3.75	3.40	3.39	90.7	90.4	70.0-130			0.295	25
Benzene	3.75	4.06	4.07	108	109	70.0-130			0.246	25
Benzyl Chloride	3.75	4.05	3.95	108	105	70.0-152			2.50	25

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 AEI Consultants - CA
 491476
 L1723347
 04/10/24 12:56
 10 of 16

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4055817-1 04/09/24 09:17 • (LCSD) R4055817-2 04/09/24 09:53

	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Bromodichloromethane	3.75	3.99	3.97	106	106	70.0-130			0.503	25	
Bromoform	3.75	4.05	3.88	108	103	70.0-130			4.29	25	
Bromomethane	3.75	4.12	4.05	110	108	70.0-130			1.71	25	
1,3-Butadiene	3.75	3.98	3.86	106	103	70.0-130			3.06	25	
Carbon disulfide	3.75	3.38	3.22	90.1	85.9	70.0-130			4.85	25	
Carbon tetrachloride	3.75	3.97	3.89	106	104	70.0-130			2.04	25	
Chlorobenzene	3.75	4.27	4.26	114	114	70.0-130			0.234	25	
Chloroethane	3.75	4.23	4.22	113	113	70.0-130			0.237	25	
Chloroform	3.75	4.07	3.95	109	105	70.0-130			2.99	25	
Chloromethane	3.75	3.78	3.73	101	99.5	70.0-130			1.33	25	
2-Chlorotoluene	3.75	4.34	4.24	116	113	70.0-130			2.33	25	
Cyclohexane	3.75	4.03	3.94	107	105	70.0-130			2.26	25	
Dibromochloromethane	3.75	4.04	4.11	108	110	70.0-130			1.72	25	
1,2-Dibromoethane	3.75	4.04	4.05	108	108	70.0-130			0.247	25	
1,2-Dichlorobenzene	3.75	4.09	4.02	109	107	70.0-130			1.73	25	
1,3-Dichlorobenzene	3.75	4.21	4.12	112	110	70.0-130			2.16	25	
1,4-Dichlorobenzene	3.75	4.19	4.26	112	114	70.0-130			1.66	25	
1,2-Dichloroethane	3.75	3.97	4.10	106	109	70.0-130			3.22	25	
1,1-Dichloroethane	3.75	3.98	3.86	106	103	70.0-130			3.06	25	
1,1-Dichloroethene	3.75	3.74	3.60	99.7	96.0	70.0-130			3.81	25	
cis-1,2-Dichloroethene	3.75	3.72	3.67	99.2	97.9	70.0-130			1.35	25	
trans-1,2-Dichloroethene	3.75	3.85	3.77	103	101	70.0-130			2.10	25	
1,2-Dichloropropane	3.75	3.92	4.04	105	108	70.0-130			3.02	25	
cis-1,3-Dichloropropene	3.75	4.00	3.97	107	106	70.0-130			0.753	25	
trans-1,3-Dichloropropene	3.75	4.00	3.95	107	105	70.0-130			1.26	25	
1,4-Dioxane	3.75	3.84	3.84	102	102	70.0-140			0.000	25	
Ethanol	3.75	3.41	3.49	90.9	93.1	55.0-148			2.32	25	
Ethylbenzene	3.75	4.16	4.08	111	109	70.0-130			1.94	25	
4-Ethyltoluene	3.75	4.23	4.12	113	110	70.0-130			2.63	25	
Trichlorofluoromethane	3.75	4.04	3.93	108	105	70.0-130			2.76	25	
Dichlorodifluoromethane	3.75	4.09	3.97	109	106	64.0-139			2.98	25	
1,1,2-Trichlorotrifluoroethane	3.75	3.89	3.74	104	99.7	70.0-130			3.93	25	
1,2-Dichlorotetrafluoroethane	3.75	3.96	3.80	106	101	70.0-130			4.12	25	
Heptane	3.75	4.20	4.34	112	116	70.0-130			3.28	25	
Hexachloro-1,3-butadiene	3.75	4.14	4.07	110	109	70.0-151			1.71	25	
n-Hexane	3.75	4.04	3.90	108	104	70.0-130			3.53	25	
Isopropylbenzene	3.75	4.14	4.09	110	109	70.0-130			1.22	25	
Methylene Chloride	3.75	3.33	3.56	88.8	94.9	70.0-130			6.68	25	
Methyl Butyl Ketone	3.75	3.86	3.90	103	104	70.0-149			1.03	25	
2-Butanone (MEK)	3.75	3.90	3.75	104	100	70.0-130			3.92	25	
	CCOUNT:				OJECT:		SDG:			DATE/TIME: PAG	GE:
AEI Co	onsultants - CA			4	91476		L172334	17		04/10/24 12:56 11 o	f 16

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4055817-1 04/09/24 09:17 • (LCSD) R4055817-2 04/09/24 09:53

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
4-Methyl-2-pentanone (MIBK)	3.75	3.98	4.03	106	107	70.0-139			1.25	25	
Methyl methacrylate	3.75	3.80	3.87	101	103	70.0-130			1.83	25	
MTBE	3.75	3.85	3.80	103	101	70.0-130			1.31	25	
Naphthalene	3.75	4.24	4.17	113	111	70.0-159			1.66	25	
2-Propanol	3.75	3.54	3.43	94.4	91.5	70.0-139			3.16	25	
Propene	3.75	3.74	3.66	99.7	97.6	64.0-144			2.16	25	
Styrene	3.75	4.22	4.11	113	110	70.0-130			2.64	25	
1,1,2,2-Tetrachloroethane	3.75	3.99	3.83	106	102	70.0-130			4.09	25	
Tetrachloroethylene	3.75	4.17	4.19	111	112	70.0-130			0.478	25	
Tetrahydrofuran	3.75	3.77	3.80	101	101	70.0-137			0.793	25	
Toluene	3.75	4.20	4.20	112	112	70.0-130			0.000	25	
1,2,4-Trichlorobenzene	3.75	4.20	4.01	112	107	70.0-160			4.63	25	
1,1,1-Trichloroethane	3.75	3.97	3.87	106	103	70.0-130			2.55	25	
1,1,2-Trichloroethane	3.75	4.10	4.03	109	107	70.0-130			1.72	25	
Trichloroethylene	3.75	4.00	3.93	107	105	70.0-130			1.77	25	
1,2,4-Trimethylbenzene	3.75	4.19	4.08	112	109	70.0-130			2.66	25	
1,3,5-Trimethylbenzene	3.75	4.19	4.15	112	111	70.0-130			0.959	25	
2,2,4-Trimethylpentane	3.75	4.22	4.09	113	109	70.0-130			3.13	25	
Vinyl chloride	3.75	3.91	3.86	104	103	70.0-130			1.29	25	
Vinyl Bromide	3.75	4.18	3.95	111	105	70.0-130			5.66	25	
Vinyl acetate	3.75	3.96	3.84	106	102	70.0-130			3.08	25	
m&p-Xylene	7.50	8.53	8.23	114	110	70.0-130			3.58	25	
o-Xylene	3.75	4.11	3.98	110	106	70.0-130			3.21	25	
1,1-Difluoroethane	3.75	3.92	3.86	105	103	70.0-130			1.54	25	
(S) 1,4-Bromofluorobenzene				97.6	96.8	60.0-140					

SDG: L1723347 DATE/TIME: 04/10/24 12:56 PAGE: 12 of 16 Ср

WG2262955

Organic Compounds (GC) by Method ASTM 1946

QUALITY CONTROL SUMMARY

Method Blank (MB)

	X 7			
(MB) R4055415-3	04/09/24 11:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Helium	U		0.0259	0.100

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4055415-1 04/09/2	4 11:02 • (LCSD) R4055415-2	04/09/24 11:07							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	%	%	%	%	%	%			%	%
Helium	2.50	2.31	2.16	92.4	86.4	70.0-130			6.71	25

¹Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

DATE/TIME: 04/10/24 12:56

PAGE: 13 of 16

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L1723347 DATE/TIME: 04/10/24 12:56 Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee ^{1 4}	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1723347

							(<u>(</u>)										
Pace* Location Requested (City/State):	P	Chain-of-Cust	F-CUSTOD tody is a LEGAL								LAB US	ie only- Affix	Workord	ier/Login	Label Here		
Company Name: AEI Consultants - CA		Contact/Report	^{To:} Natasi	na Budin	nirovic		{					Sample	Rece:	ipt Ch	ecklist Airs		
Street Address:		Phone #: 92	25-746-60	00					COC S	eal Prese	nt/Inta urate:	Ct: AY	N :	Size:	1L	6	L1.4L
2500 Camino Diablo Walnut Creek, CA 94597		E-Mail: nbuc							Bottl Corre	es arrive ct bottle	intact es used:	$=$ $\frac{1}{2}$	NN	Tage (Tubing	Color: G	hunt_	L1.4L FB
City, State Zip:		Cc E-Mail:	laypon	elious	selfo,	itsil	on	-									
Customer Project #: 491476			J		~~~									T/P#:			
Project Name: 9944 US-2, Coulee City, WA	2	Invoice E-Mail:											An	alyses f	Requested	4	11/2474
Site Collection Info/Facility ID (as applicable):		Purchase Orde	er # (if applicab	le): 1436	41				Field I	nformation						P	Proj. Manager:
AEICONWCCA-491476		Quote #:		8					Tiera	mormation		-				1	110 - Brian Ford
Time Zone Collected: [] AK [PT [] MT [] CT [] ET		State origin of	sample(s):														AcctNum / Client D:
Data Deliverables:	Regulatory Prog applicable:	gram (CAA, RCRA	, etc.) as					Car	nister			.0		ma			AEICONWCCA
[]Level II []Level III []Level IV	Rush (Pre-appro 2 Day 3 day 5			Permit # as	applicable			Pressure	/ Vacuum		UF / FILTE	.n		Summa		I Out	Table #:
	Date Results			Units for Reporting:	ug/m ³ PI	3V mg/m ³	PPMV						Summa	2		n de l	Profile / Template: T250153
[] Other * Matrix Codes (Insert in Matrix box below): Ambient (A), Indoor (I)	Requested:	ther (O)		inc porting.				Start	End Pressure		Flow	Total		T0-1		F	Prelog / Bottle Ord. ID: P1066598
	T		Flow	1				Pressure /	/	Duration	Rate	Volume	Helium	S.			Drd. ID: P1000390
Customer Sample ID	Matrix *	Summa	Controller	Begin Co	ollection	End Co	ollection	Vacuum	Vacuum		3	Sampled	elic	VOCs			
		Canister ID	ID	Date	Time	Date	Time	(in Hg)	(in Hg)	(minutes)	m ³ /min or L/min	m ³ or L	Ĭ	×			Sample Comment
56-1-4.5'	SV	13137	22432	4-4-2	1/200	4-4-24	1805	-	-5	5			X	X			6172 3347-21
<u>96-1-4,5'</u> SG-2-4,5'	SV SV	2/756	21762	4-4-24	1832	1-4-2	1 1840	-26	-5	4			X	X			n
1							1.500								~		
								1		1							
				1													
							(
							1										
							<u> </u>										
							$\sum_{i=1}^{n}$										
Customer Remarks / Special Conditions / Possible Hazards:				Collected By: Printed Nan	and the second		and the second			Additional	Instructio	ns from Pac	e®:	ł			
				Signature:						# Coolers:		Thermometer	ID:		Correction	c	Dbs. Temp. (°C): Corrected Temp. (°C):
Relinquishgen (Signature)	Т	0.1.17					-								Factor (*C):		
UP per consult	auti	Date/Time: 4-5-24	1045	Received by/	IPDE	OUN	BYE	de		Date/Time:					Trac	king Numb	er:
Relinquished by/Company: (Signature)		Date/Time:	/	Received by/	111	/	1		1	Date/Time:					Deliv	vered by:	In- Person Courier
Relinquished by/Company: (Signature)		Date/Time:		Received by/	100	JAA	h			Date/Time:	14 10	170				Fe	dEX UPS Other
Relinquished by/Company: (Signature)		Date/Time:		Received bý/	Company: (S	ignature)				Date/Time:	CON	4-2	A	is			Page: of:

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace* Terms and Conditions found at https://www.pacelabs.com/resource-library/resource/pace-terms-and-conditions/

Pace Analytical® ANALYTICAL REPORT April 29, 2024

AEI Consultants - CA

Sample Delivery Group: Samples Received: Project Number: Description:

L1723256 04/06/2024 491476 9944 US-2, Coulee City, WA

Report To:

Natasha Budimirovic 2500 Camino Diablo Walnut Creek, CA 94597

Entire Report Reviewed By:

Brian Ford

Brian Ford Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: AEI Consultants - CA PROJECT: 491476

SDG: L1723256

DATE/TIME: 04/29/24 13:38 PAGE: 1 of 12

Тс Ss Cn Śr ʹQc Gl A Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
IDW-SOIL L1723256-01	5
Qc: Quality Control Summary	6
Total Solids by Method 2540 G-2011	6
Mercury by Method 7471B	7
Metals (ICPMS) by Method 6020B	8
GI: Glossary of Terms	10
Al: Accreditations & Locations	11
Sc: Sample Chain of Custody	12

SDG: L1723256 Ср

Ss

°Cn

Sr

Qc

GI

A

SAMPLE SUMMARY

IDW-SOIL L1723256-01 Solid			Collected by NB	Collected date/time 04/04/24 17:35	Received da 04/06/24 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2274916	1	04/26/24 14:44	04/26/24 14:56	CMB	Mt. Juliet, TN
Mercury by Method 7471B Metals (ICPMS) by Method 6020B	WG2273800 WG2274167	1 5	04/25/24 09:40 04/25/24 14:54	04/26/24 10:00 04/28/24 18:52	LAS LD	Mt. Juliet, TN Mt. Juliet, TN

PROJECT: 491476 SDG: L1723256 DATE/TIME: 04/29/24 13:38

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

SDG: L1723256

DATE/TIME: 04/29/24 13:38 PAGE: 4 of 12

IDW-SOIL Collected date/time: 04/04/24 17:35

SAMPLE RESULTS - 01 L1723256

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	87.2		1	04/26/2024 14:56	WG2274916	ЪС

Mercury by Method 7471B

Mercury by Method	7471B							³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Mercury	U		0.0207	0.0459	1	04/26/2024 10:00	WG2273800	

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Arsenic	8.64		0.115	1.15	5	04/28/2024 18:52	WG2274167	
Barium	72.3		0.174	2.87	5	04/28/2024 18:52	WG2274167	
Cadmium	0.0982	<u>J</u>	0.0981	1.15	5	04/28/2024 18:52	WG2274167	
Chromium	5.38	J	0.340	5.74	5	04/28/2024 18:52	WG2274167	
Copper	10.1		0.151	5.74	5	04/28/2024 18:52	WG2274167	
Lead	16.8		0.114	2.29	5	04/28/2024 18:52	WG2274167	
Nickel	4.95		0.226	2.87	5	04/28/2024 18:52	WG2274167	
Selenium	0.207	J	0.207	2.87	5	04/28/2024 18:52	WG2274167	
Silver	U		0.0992	0.574	5	04/28/2024 18:52	WG2274167	
Zinc	24.4	J	0.849	28.7	5	04/28/2024 18:52	WG2274167	

WG2274916

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1723256-01

Method Blank (MB)

(MB) R4062833-1 04/2	6/24 14:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00400			

L1722972-16 Original Sample (OS) • Duplicate (DUP)

L1722972-16 Origi	nal Sample	(OS) • Du	olicate (DUP)		
(OS) L1722972-16 04/26/	/24 14:56 • (DUI	P) R4062833-3	3 04/26/24	4 14:56		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	72.8	72.6	1	0.259		10

Laboratory Control Sample (LCS)

(LCS) R4062833-2 04/2	(LCS) R4062833-2 04/26/24 14:56							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	%	%	%	%				
Total Solids	50.0	50.0	100	90.0-110				

SDG: L1723256

DATE/TIME: 04/29/24 13:38 Тс

Ss

Qc

GI

Â

WG2273800

Mercury by Method 7471B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R4062602-1 04/26/24 09:46						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
Mercury	U		0.0180	0.0400		

Laboratory Control Sample (LCS)

(LCS) R4062602-2 04/2	_CS) R4062602-2 04/26/24 09:48							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Mercury	0.500	0.464	92.7	80.0-120				

L1728383-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1728383-02 04/26/24 09:51 • (MS) R4062602-4 04/26/24 09:55 • (MSD) R4062602-5 04/26/24 09:58												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Mercury	0.591	U	0.510	0.475	86.3	80.4	1	75.0-125			7.11	20

Тс

Ss

Cn

Sr

Qc

GI

Â

Metals (ICPMS) by Method 6020B

QUALITY CONTROL SUMMARY L1723256-01

Method Blank (MB)

(MB) R4063106-1 04/28/24 18:29

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Arsenic	U		0.100	1.00
Barium	U		0.152	2.50
Cadmium	U		0.0855	1.00
Chromium	U		0.297	5.00
Copper	0.155	J	0.133	5.00
Lead	U		0.0990	2.00
Nickel	U		0.197	2.50
Selenium	U		0.180	2.50
Silver	U		0.0865	0.500
Zinc	U		0.740	25.0

Laboratory Control Sample (LCS)

(LCS) R4063106-2 04/28/24 18:32

(200) 10000100 2 04/20					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Arsenic	100	96.1	96.1	80.0-120	
Barium	100	95.3	95.3	80.0-120	
Cadmium	100	98.6	98.6	80.0-120	
Chromium	100	96.2	96.2	80.0-120	
Copper	100	101	101	80.0-120	
Lead	100	99.8	99.8	80.0-120	
Nickel	100	99.1	99.1	80.0-120	
Selenium	100	96.4	96.4	80.0-120	
Silver	20.0	19.9	99.4	80.0-120	
Zinc	100	93.0	93.0	80.0-120	

L1722972-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1722972-16 04/28/24 18:35 • (MS) R4063106-5 04/28/24 18:45 • (MSD) R4063106-6 04/28/24 18:48

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	137	5.91	133	129	92.7	89.6	5	75.0-125			3.30	20
Barium	137	708	871	717	119	6.04	5	75.0-125		V	19.5	20
Cadmium	137	0.118	137	132	99.7	96.2	5	75.0-125			3.60	20
Chromium	137	29.7	148	145	86.2	83.9	5	75.0-125			2.15	20
Copper	137	11.6	150	139	101	92.4	5	75.0-125			7.85	20
Lead	137	17.6	169	146	111	93.5	5	75.0-125			14.8	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
AEI Consultants - CA	491476	L1723256	04/29/24 13:38	8 of 12

Metals (ICPMS) by Method 6020B

QUALITY CONTROL SUMMARY

L1722972-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1722972-16 04/28/24 18:35 • (MS) R4063106-5 04/28/24 18:45 • (MSD) R4063106-6 04/28/24 18:48

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Nickel	137	24.7	155	150	94.6	91.2	5	75.0-125			3.09	20
Selenium	137	0.447	127	124	92.0	90.2	5	75.0-125			1.97	20
Silver	27.5	U	27.0	26.2	98.3	95.4	5	75.0-125			3.03	20
Zinc	137	52.9	167	161	82.9	78.5	5	75.0-125			3.74	20

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

SDG: L1723256 DATE/TIME: 04/29/24 13:38 PAGE: 9 of 12

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

J	The identification of the analyte is acceptable; the reported value is an estimate.
Qualifier	Description
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
U	Not detected at the Reporting Limit (or MDL where applicable).
SDG	Sample Delivery Group.
RPD	Relative Percent Difference.
Rec.	Recovery.
RDL (dry)	Reported Detection Limit.
RDL	Reported Detection Limit.
MDL (dry)	Method Detection Limit.
MDL	Method Detection Limit.

•	
\vee	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1723256 Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1723256 ² Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

Company Name/Address:	and the second second		Billing Inf	ormation:		1					10-1					and the second	
AEI Consultants - CA			Accounts Payable- Jeremy Smith 2500 Camino Diablo		Pres Chk				nalvsis	Conta	iner / Pre	servative			Chain of Custo	dy Page of 7	
2500 Camino Diablo Walnut Creek, CA 94597			Walnut	Creek, CA 945	97											PEOP	ACCE*
Report to: Natasha Budimirovic	щ		Email To: daya	nbudimirovic@ae	iconsultants.	com		3		jnes					1	2065 Lebanon Rd N	Ount Juliet, TN 37122
Project Description: 9944 US-2, Coulee City, WA		City/State Collected:	coulee	city, un	Please (PT)MT	Circle: CT ET	s	NH							C P	onstitutes acknowle ace Terms and Cond	via this chain of custody dgment and acceptance of the litions found at: .com/hubfs/pas-standard-
Phone: 925-746-6000	Client Project 491476	:t #		Lab Project # AEICONWCC			NoPre	250mlHDPE-HN03								erms.pdf	123256 213
Collected by (print): N & BUD 1 M (ROU C	Site/Facility	ility ID #		P.O. # 143641												track and an end of the second se	
Collected by (signature):	Same I	(Lab MUST Be Day Five	Day	Quote #				w RCRA8+Cu,Ni,Zn	A		and the second				Т	emplate:T25	and a state of the
Immediatel	Next D Two Da Three	ay 10 D	y (Rad Only) Day (Rad Only)	Date Result	s Needed	No. of	RCRA8+Cu,Ni,Zn	A8+CL	0			N.			PI	relogin: P10 M: 110 - Bria B: 4 - 1	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	s RCR	w RCR	I							discourse and the second second second	edEX Priority Sample # (lab only)
DW-Soil	grab	SS	-	4-4-24	1735	2			X								-6(
	2	SS						 1. 15 mil									
		GW			and the second			1									
			2.2	an and the second s	1												
					procee per rec				•			13					
	-							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1									
		1		2 		-											
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	emarks:									pH . Flow		Temp		COC S: Bottle	the second s	intact:	
DW - Drinking Water DT - Other	Samples returned UPSFedEx			Trackir	ng# 72	50	1 1	150	12	5	93	ð	~	Suffic	cient vol	ume sent: Applicab	
Relinquished by : (Signature)		ate: 1+5-24	Time	101	ed by: (Signat		a Fo	dE		ip Blan	k Receiv	ed: Yes HC TE	L/MeoH	Prese		orrect/Che	cked: Y N
Relinquished by : (Signature)	D	ate:	Time		ed by: (Signat	tūre)			Те	Same and	FA7°C	Bottles	Received:	If prese	ervation rec	quired by Log	in: Date/Time
Relinquished by : (Signature)	D	ate:	Time	Receiv	ed for tab by:	(Signatu	ire)	_	the second s	16	120	Time	100	Hold:			Condition: NCF OK

APPENDIX E WASTE MANIFEST

0

+

ER INT'I	Transporter orginature (for exports ority).	Expo	ort from U.S. Port of entry/exit: Date leaving U.S.		
TRANSPORTE	Transporter 1 Printed/Typed Name		Signature Signature	us	Month Day Year 5 10 24 Month Day Year
	17. Discrepancy 17a. Discrepancy Indication Space Quantity	П Туре	Residue	Partial Rejection	Full Rejection
	17b. Alternate Facility (or Generator) Facility's Phone: 17c. Signature of Alternate Facility (or Generator)		Manifest Reference Number:	U.S. EPA ID Number	Month Day Yea
	2 Designated Formits a		et excent as noted in Item 17a		
Pr	 Besignated Facility Owner or Operator: Certification of receipt of material states of the second stat	iterials covered by the manife	Signature		Month Day Ye
Pr	Inted in USA by GC Labels 1-800-997-6966 DES	SIGNATED FAC	ILITY TO GENERATOR	Reorder Park	
and and					