

Arcadis U.S., Inc.

1100 Olive Way

Washington 98101 Tel 206 325 5254 Fax 206 325 8218

Suite 800

Seattle

Kyle Weideman
ERTS Coordinator
Washington State Department of Ecology – Eastern Region
4601 N Monroe Street
Spokane, Washington 99205

Date: June 27, 2024

Our Ref: 30210357

Subject: 2024 UPRR Phase II Environmental Site Assessment Site Address: 450 W Missile Base Road, Rockford, Washington

Dear Mr. Weideman,

Arcadis, on behalf of UPRR, is submitting this revised Phase II Environmental Site Assessment report for the UPRR-owned property at the Cenex and Harvest States, Inc. (CHS) lease property located at 450 W. Missile Base Road in Rockford, Washington. to Washington State Department of Ecology. Thank you.

Sincerely,

Cody Johnson Certified Project Manager Arcadis U.S., Inc.

Email: cody.johnson@arcadis.com

Mobile: 406.565.7003

Enclosures:

2024 UPRR Rockford Phase II ESA Report

2024 PHASE II ENVIRONMENTAL SITE ASSESSMENT

CHS Grain Handling Facility, Rockford, Washington

June 27, 2024

2024 PHASE II ENVIRONMENTAL SITE ASSESSMENT

CHS Grain Handling Facility Rockford, Washington

Prepared for:

Kyle Weideman

ERTS Coordinator

Washington State Department of Ecology - Eastern Region

4601 N Monroe Street

Spokane

Washington 99205

Tel 509 329 3400

Prepared by:

Arcadis U.S., Inc.

1100 Olive Way

Suite 800

Seattle

Washington 98101

Tel 206 325 5254

Fax 206 325 8218

Our Ref.:

30210357

June 27, 2024

CONTENTS

1	Intro	duction	n	. 1
2	Bac	kgroun	d	. 1
3	Site	Chara	cterization Activities	. 1
	3.1	Utility	Clearance	. 2
	3.2	Soil a	nd Groundwater Investigation	. 2
		3.2.1	Drilling and Soil Sample Collection	. 2
		3.2.2	Temporary Well Installation and Sampling	. 3
		3.2.3	Sample Analytical Methods	. 4
		3.2.4	Investigation-Derived Waste	. 4
4	Inve	stigatio	on Results	. 4
	4.1	Soil S	ampling	. 5
			ndwater Sampling	
5	Sum	nmary .		. 6
6			3	

FIGURES

Figure 1 Facility Location

Figure 2 Facility and Surrounding Property Layout

Figure 3 Soil Borings and Temporary Monitoring Well Locations

TABLES

Table 1 Soil Sampling Analytical Results

Table 2 Groundwater Sampling Analytical Results

APPENDICES

Appendix A ROW Permit

Appendix B Boring Logs

Appendix C Field Forms

Appendix D Photographic Log

Appendix E Data Validation Report and Analytical Reports

arcadis.com iii

ACRONYMS AND ABBREVIATIONS

μg/L microgram per liter

Arcadis U.S., Inc.

bgs below ground surface

CHS Cenex and Harvest States, Inc.

CUL cleanup level

Ecology Washington Department of Ecology

FOIA Freedom of Information Act

PID photoionization detector

mg/kg milligram per kilogram

MTCA Model Toxics Control Act

ROW right-of-way

UPRR Union Pacific Railway Company

USEPA United States Environmental Protection Agency

WCED West Central Environmental Consultants

WSMCL Washington State Maximum Contaminant Level

arcadis.com iv

1 INTRODUCTION

This 2024 Phase II Environmental Site Assessment (ESA) has been prepared for Washington Department of Ecology (Ecology) for the Cenex and Harvest States, Inc. (CHS) lease property located at 450 W. Missile Base Road in Rockford, Washington (Facility). This document describes the Phase II ESA activities performed in the vicinity of the Facility on February 20 through 22, 2024 which included collection of soil and groundwaters samples to evaluate the nature and extent of impacts to soil and groundwater related to former operations at the Facility.

2 BACKGROUND

The Facility is located at 450 W. Missile Base Road in Rockford, Washington, and is situated north of West Emma Street and south of W. Missile Base Road. The location of the Facility is shown on **Figure 1**, and current site features and surrounding properties are shown on **Figure 2**. This Phase II ESA was conducted at the request of the Union Pacific Railroad (UPRR) environmental department.

A request under the Freedom of Information Act (FOIA) was submitted to Ecology by UPRR for historical documents associated with the Facility. These documents include the 1995 Environmental Remediation Investigation Report for Rockford Grain Growers Rock Facility (West Central Environmental Consultants (WCEC) 1995a), the 1995 Soil Remediation Report (WCEC 1995b), and the Quarterly Groundwater Monitoring Reports for 1996 (WCEC 1996) and 1997 (WCEC 1997). These investigations concluded that soil immediately around the former bulk plant contained elevated levels of petroleum hydrocarbons from the surface to a depth of 10 feet. Farther away from the former bulk plant, soil contamination was greatest in a relatively narrow band of soil occurring from 8 to 9 feet below grade. Based on review of the reports, the groundwater flows north from the Facility. Petroleum hydrocarbon groundwater impacts existed in a wide area extending northwest from the bulk plant (WCEC 1995a). Remediation activities were completed in September 1995, and approximately 2,500 cubic yards of impacted soil was removed for off-site bioremediation (WCEC 1995b). Groundwater monitoring was conducted between January 1995 and December 1996. Following the December 1996 sampling event, WCEC recommended closure for the site (WCEC 1997).

3 SITE CHARACTERIZATION ACTIVITIES

Based on a review of available data, additional investigation of the Facility was warranted to characterize and delineate the nature and extent of the impacts to soil and groundwater at the Facility, specifically for carbon tetrachloride and associated degradation compounds. The following field activities were completed to provide additional characterization of the Facility.

- Performed a utility investigation (by Utilities Plus, LLC) using ground penetrating radar and electromagnetic methods to locate any unknown utilities.
- Obtained a right-of-way (ROW) permit from the town of Rockford for the drilling locations in the public ROW along W. Missile Base Road in Rockford, Washington. A copy of the ROW permit is found in Appendix A.

- Advanced five soil borings to depths of 8.5 to 19.5 feet below ground surface (bgs) using a
 combination of hand auger and hollow-stem auger drilling methods. Borings were hand-cleared to 5
 feet bgs using a hand auger. Split spoon continuous sampling occurred every 18 inches from 5 feet
 bgs to the total depth. The investigation locations are shown on Figure 3 and were selected based on
 review of historical data.
- Collected soil samples to evaluate the vertical and horizontal distribution of impacts in soil. Soil was field screened using a photoionization detector (PID) at 6-inch intervals in the top 5 feet and 1-foot intervals thereafter to total depth. Boring logs are included as **Appendix B**.
- Installed temporary monitoring wells at the soil borings and collected groundwater and soil samples to
 evaluate presence, magnitude, and distribution of constituents in the soil and groundwater.
 Groundwater sampling field forms are included as Appendix C.
- Decontaminated down-hole equipment, including drill rods, augers, and sampling equipment, between use at each boring using a three-stage decontamination process.

These activities are described in more detail in the sections that follow.

3.1 Utility Clearance

Before beginning intrusive activities, Arcadis marked boring locations and notified the Washington 811 one-call public utility locate. Private utility clearance was conducted by Utilities Plus, LLC in approximately 40-foot by 40-foot grids at each proposed boring location using ground penetrating radar and electromagnetic methods to determine the presence and locations of utilities at the Facility where borings were to be completed. In addition, soft digging methods (hand auger) were used to clear from ground surface to at least 5 feet bgs.

3.2 Soil and Groundwater Investigation

Field activities were conducted by Arcadis on February 21 and 22, 2024. Field activities are summarized in the sections below.

3.2.1 Drilling and Soil Sample Collection

Five soil borings were advanced at the locations presented on **Figure 3**. Each boring was hand-cleared to at least 5 feet bgs or to 6 inches below the invert elevation of the deepest identified utility in the area. Clearance of the first 5 feet was completed using soft digging methods (i.e. shovel, hand auger) and removal intervals were tracked, and soil was segregated as necessary to allow for sample collection.

Following soft dig clearance, the borings were advanced using a hollow-stem auger to a maximum depth of approximately 19.5 feet bgs. The final depth of each boring was identified through field screening methods by the on-site geologist. Drilling activities were completed by Walston Drilling Solutions (WDS) and Arcadis provided oversight for all drilling activities. Soil was logged continuously during the advancement of each boring and screened with a photoionization detector. Copies of the field boring logs are included in **Appendix B**.

During utility clearance at B-2, a utility was identified, and the location was adjusted to avoid the utility. The location of B-5 was adjusted due to multiple utilities at the original location and refusal during soft dig utility clearance. In addition, B-5 required two drilling attempts before groundwater was encountered in the boring. Final soil boring and temporary well locations are presented on **Figure 3**. A total of five boring were completed at the Facility. Three borings were completed near the grain silos (B-1, B-2, and B-3) and were advanced to 19.5, 20.0, and 18.9 ft bgs, respectively. Two borings were completed north of the grain silos along W Missile Base Road (B-4, B-5) and were advanced to 8.5 ft bgs.

Geology observed at the site generally included silty gravel with sands overlying a clay layer with various colors and densities which was observed from 1.5 to 2.0 feet bgs to the bottom of each boring where weathered basalt bedrock was encountered. The weathered basalt bedrock was identified at about 19 ft bgs at B-1, B-2, and B-3; while the bedrock interface was observed at about 8 ft bgs at B-4 to B-5. Perched groundwater was generally observed entering the soil borings from the intervals above the clay; however, one location, B-3, exhibited groundwater infiltration from a layer overlying the bedrock but underlying the clay.

Soil samples were collected in laboratory-provided sampling containers from the following intervals: 6 inches above the soil/water interface to the soil/water interface, 6 inches above the bottom of the boring to the bottom of the boring and an interval centered about the halfway point between the soil/water interface and the bottom of the boring. Prior to homogenizing the intervals, a discrete sample was collected for analysis of volatile organic compounds (VOCs). After collection of the VOC sample, the interval was homogenized, and samples of non-volatile compounds were collected.

After sample collection, the samples were immediately placed on ice in preparation for shipment. Samples were submitted to Pace Analytical National Center for Testing & Innovation in Mount Joliet, Tennessee under standard chain-of-custody protocol.

Field screening at the boring locations did not indicate elevated PID readings. PID readings were generally less than 1 part per million (ppm) at all locations with the exception of the interval from ground surface to 6 inches bgs at B-2 which had a PID reading of 6.3 ppm.

Following completion of soil borings, temporary wells were installed at the boring locations shown on **Figure 3** to facilitate collection of groundwater samples.

A photographic log of soil boring locations is included as **Appendix D**.

3.2.2 Temporary Well Installation and Sampling

Five temporary wells were installed at the soil boring locations identified on **Figure 3** to facilitate collection of groundwater samples. The temporary wells were installed with either a 2-inch prepack filter and 10-foot screen length, or 5-foot of 10-slot (0.010-inch) screen backfilled with 10/20 Colorado silica sand.

Temporary wells installed at B-1 through B-5 were developed by WDS using surging and purging development techniques. The wells were developed until the purge water was visibly free from fine material, where feasible.

Groundwater samples were collected in laboratory-provided sampling containers from each location using low-flow sampling techniques where possible. The temporary wells at B-4 and B-5 did not have a

sufficient recharge rate to support low-flow sampling and grab groundwater samples were collected after the well recharged following a low-flow sampling attempt.

After sample collection, the samples were immediately placed on ice in preparation for shipment. Samples were submitted to Pace Analytical National Center for Testing & Innovation in Mount Joliet, Tennessee under standard chain-of-custody protocol.

Groundwater measurements were collected from each temporary well location following installation. Groundwater measurements at B-1, B-2 and B-3 were collected after allowing the temporary wells to equilibrate overnight. Static groundwater levels were 8.8, 9.5, and 9.55 ft bgs for B-1, B-2 and B-3, respectively. Groundwater measurements at B-4 and B-5 were collected approximately 4 hours after well development. Static groundwater measurements were 3.3 and 3.2 ft bgs at B-4 and B-5, respectively. During well development and groundwater sampling at B-4 and B-5, low groundwater recharge caused the wells to purge dry. Based on the topography of the area, depth to groundwater from gauging and information provided in the reports obtained from the FOIA request, the inferred groundwater flow direction is north from the Facility.

The temporary wells were abandoned by WDS in accordance with Washington Administrative Code (WAC) 173-160-381 after groundwater sampling was completed.

3.2.3 Sample Analytical Methods

Soil and groundwater samples were submitted to Pace Analytical National Center for Testing and Innovation in Mount Joliet, Tennessee for analysis.

Soil samples were analyzed for the following constituents:

 Carbon tetrachloride, chloroform, carbon disulfide, and dichloromethane by United States Environmental Protection Agency (USEPA) Method 8260.

Groundwater samples were analyzed for the following constituents:

- Carbon tetrachloride, chloroform, carbon disulfide and dichloromethane by USEPA Method 8260; and
- Herbicides/pesticides by USEPA Methods 8151A and 8081B (only analyzed at B-1, B-2, and B-3).

3.2.4 Investigation-Derived Waste

Investigation-derived waste (IDW) generated during field activities includes soil cuttings, purge water from wells, decontamination water, and disposable personal protective equipment. Liquid and solid IDW samples were collected and the IDW is temporarily stored at the Facility pending profile approval and disposal. The non-hazardous waste was disposed of at Waste Management's Graham Road Facility near Medical Lake, Washington after profile approval.

4 INVESTIGATION RESULTS

Soil and groundwater results are described in sections below.

4.1 Soil Sampling

Soil sample analytical results were compared to Washington Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method B Direct Contact Cancer cleanup level (CUL). Carbon disulfide was compared to the soil MTCA Method B Direct Contact Noncancer CUL. Soil sample analytical results are presented in **Table 1**.

Analytical detections occurred at B-1, B-3, the duplicate sample, and the equipment blank. Carbon tetrachloride was detected at a concentration greater than the MTCA Method B Direct Contact Cancer CUL. The detected analytes are listed below with the corresponding sampling locations:

- Carbon tetrachloride was detected at concentrations greater than the soil MTCA Method B Direct Contact Cancer CUL of 14 milligram per kilogram (mg/kg) at the duplicate sample collected from B-1 from 2.0 to 2.5 feet bgs (estimated at 54.2 mg/kg).
- Chloroform was not detected at concentrations greater than MTCA Method B Direct Contact Cancer CUL.
- Carbon disulfide was detected at a concentration greater than the method detection limit in one sample collected from boring B-3 at a depth of 3.5 to 4.0 feet. Carbon disulfide was not detected at concentrations greater than the soil MTCA Method B Noncancer CUL of 8,000 mg/kg.
- Dichloromethane (methylene chloride) was not detected at concentrations greater than the method detection limits. Samples collected from B-1(duplicate), B-4 and B-5 present method detection limits for dichloromethane that are greater than the MTCA Method B Cancer CUL (94 mg/kg).

Data validation reports and laboratory analytical reports are included in **Appendix E**.

4.2 Groundwater Sampling

Groundwater sample analytical results were compared to Washington State Maximum Contaminant Levels (WSMCLs) and MTCA Method B Cancer CULs. An MTCA Method B Noncancer CUL was used where an MTCA Method B Cancer CUL is not established. Groundwater sample analytical results are presented in **Table 2**.

Analytical detections occurred at B-1, B-2, B-3, the duplicate sample (B-1), and the equipment blank. Carbon tetrachloride was detected at a concentration exceeding the Ecology MTCA CUL. The detected analytes are listed below with the corresponding sampling locations:

- Carbon tetrachloride was detected at B-1 and the duplicate sample (collected at B-1) at estimated concentrations of 0.265 and 0.278 microgram per liter (μg/L), respectively. Carbon tetrachloride was detected at B-2 at a concentration of 1.41 μg/L, exceeding the groundwater MTCA Method B Cancer CUL of 0.630 μg/L. Carbon tetrachloride concentrations did not exceed the WSMCL of 5.00 μg/L in the groundwater samples collected.
- Chloroform was detected at B-1, B-2, B-3, the duplicate sample (collected at B-1), and the equipment blank. The detections ranged from an estimated 0.427 μg/L (TW-3) to 0.113 μg/L (equipment blank).
 Chloroform concentrations did not exceed the WSMCL of 80.0 μg/L or the MTCA Method B Cancer CUL of 1.40 μg/L in the groundwater samples collected.

Dicamba was detected at B-1 and the duplicate sample (collected at B-1) at estimated concentrations
of 0.373 and 0.397 μg/L, respectively. The detected dicamba concentrations did not exceed the
MTCA Method B Noncancer CUL of 480 μg/L. A WSMCL for dicamba is not established.

Data validation reports and laboratory analytical reports are included in Appendix E.

5 **SUMMARY**

Arcadis performed the Phase II Environmental Site Assessment at the CHS Grain Handling Facility property located at 450 W. Missile Base Road in Rockford, Washington, on February 20 through 22, 2024. This assessment included advancing five borings and collecting representative soil and groundwater samples. Field activities included private and public utility locates, right-of-way permitting for drilling locations, advancing five soil borings, collecting soil samples, installing temporary monitoring wells and groundwater sampling. Soil sample results indicated detections of volatile organic compounds (carbon tetrachloride) at concentrations greater than the MTCA Method B Direct Contact Cancer CUL from one soil boring (B-1) located at the CHS property.

Groundwater analytical results indicated a detection of carbon tetrachloride exceeding the applicable cleanup level, but below the WSMCL for drinking water of 5 ug/l from one temporary well installed at soil boring B-2. The City of Rockford has a municipal water system and there is no known use of groundwater in the area or relevant exposure pathway.

Soil and groundwater analytical results for samples collected downgradient of the grain silos indicate the low-level results observed near the silos are not migrating offsite. As such, the observed concentrations do not pose a risk to human health or the environment.

6 REFERENCES

Washington State Department of Ecology. 2024. Toxics Cleanup Program. Model Toxics Control Act (MTCA) Clarc Master Tables. February.

WCEC. 1995a. Environmental Remedial Investigation Report for Rockford Grain Growers Rock Facility. March 10.

WCEC. 1995b Soil Remediation Report for Contaminated soils at Rockford Grain Growers Facility. Rockford, WA. December 8.

WCEC. 1996. Quarterly Groundwater Report. Rockford Grain Growers Rockford Facility. September 24.

WCEC. 1997, Quarterly Groundwater Report. Rockford Grain Growers Rockford Facility. January 15.

TABLES

Table 1 Soil Sampling Analytical Results 2024 UPRR Phase II Environmental Site Assessment Cenex Harvest Lease Site Rockford, Washington

		Location/Sample ID	B-1	B-1	B-1	B-2	B-2	B-2	B-3	B-3	B-3	B-4	B-4	B-5	B-5
		Date	2/20/2024	2/20/2024	2/20/2024	2/20/2024	2/20/2024	2/20/2024	2/20/2024	2/20/2024	2/20/2024	2/21/2024	2/21/2024	2/21/2024	2/21/2024
Analyte	Soil - MTCA Method B Direct Contact Cancer CUL (mg/kg)	Depth (feet)	2.0-2.5	2.0-2.5	18.5-19.0	1.5-2.0	14.5-15.0	18.5-19.0	3.5-4.0	16.5-17.0	18.0-18.5	1.0-1.5	8.0-8.5	1.0-1.5	8.0-8.5
		Sample ID	B-1-2.0-2.5- 20240220	B-DUP- 20240220	B-1-18.5-19.0- 20240220	B-2-1.5-2.0- 20240220	B-2-14.5-15.0- 20240220	B-2-18.5-19.0- 20240220	B-3-3.5-4.0- 20240220	B-3-16.5-17.0- 20240220	B-3-18.0-18.5- 20240220	B-4-1.0-1.5- 20240221	B-4-8.0-8.5- 20240221	B-5-1.0-1.5- 20240221	B-5-8.0-8.5- 20240221
		Units													
Total solids		%	82.9	83.1	83.8	77.4	81.7	76.0	81.2	84.8	80.6	74.7	80.8	79.5	84.8
Volatile Organic Compounds (by USEPA 8	3260D)														
Carbon tetrachloride	14	mg/kg	13.5	54.2 J	<1.26	<11.6	<1.37	<2.20	<1.44	<1.23	<1.34	<15.1	<1.36	<14.0	<13.2
Chloroform	32	mg/kg	<1.49	20.7 J	<1.44	<13.3	<1.58	<2.54	<1.64	<1.41	<1.54	<17.3	<1.56	<16.0	<15.1
Carbon disulfide	8,000	mg/kg	<1.01	<10.1	<0.982	<9.01	<1.07	<1.72	6.48 J	<0.958	<1.04	<11.8	<1.06	<10.9	<10.3
Dichloromethane (methylene chloride)	94	mg/kg	<9.60	<96.2	<9.31	<85.4	<10.2	<16.3	<10.6	<9.09	<9.91	<112	<10.1	<103	<97.4

Notoc:

1. Non-detect results reported as "< Method Detection Limit".

2. Bold text indicates a detected concentration.

3. Outlined cells indicate a detected concentration exceeds the soil MTCA Method B Direct Contact Cancer CUL (mg/kg).

4. Carbon disulfide Method B Cancer CUL was not available in CLARC tables. The carbon disulfide CUL presented is MTCA Method B Direct Contact Noncancer.

5. The method detection limit for dichloromethane (methylene chloride) is greater than the MTCA Method B Cancer CUL (94 mg/kg) in some sample results. However, dichloromethane (methylene chloride) was not detected at concentrations greater than the method detection limit in the samples collected.

Acronyms and Abbreviations:

-- = not applicable/not analyzed

< = the analyte was analyzed for but not detected; the associated value is the analyte reporting limit

CUL = cleanup level

D = identification

J = the analyte was positively identified; however, the associated numerical value is an estimated concentration only

mg/kg = milligram per kilogram

MTCA = Model Toxics Control Act

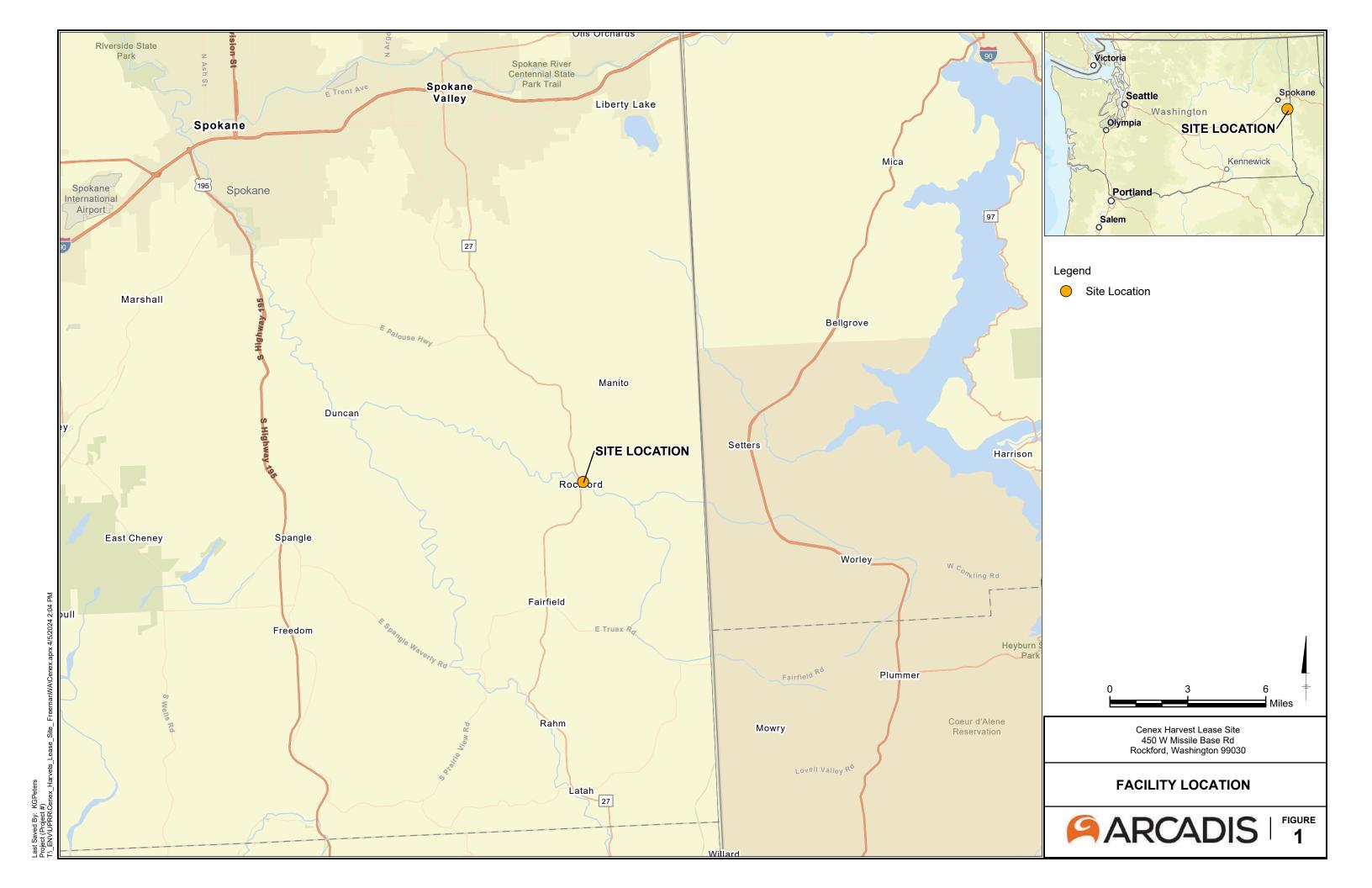
NE = not established

USEPA = United States Environmental Protection Agency

Table 2 **Groundwater Sampling Analytical Results** 2024 UPRR Phase II Environmental Site Assessment **Cenex Harvest Lease Site** Rockford, Washington

		Groundwater		Sample ID	TW-B-1-14-20240221	TW-B-2-14-20240221	TW-B-3-14-20240221	TW-B-4-8-20240221	TW-B-5-4.4-20240221	TW-DUP-1-20240221	TW-EB-1-20240222
		Washington State	Groundwater MTCA Method B	Sample Date	2/21/2024	2/21/2024	2/21/2024	2/21/2024	2/21/2024	2/22/2024	2/22/2024
Analyte	cas_rn	Maximum Contaminant Level (μg/L)	Cancer CUL (Eq. 720-1) (μg/L)	Unit							
Volatile Organic Compounds (by SW8260)											
Carbon tetrachloride	56-23-5	5.00	0.6300	μg/L	0.265 J	1.41	<0.128	<0.128	<0.128	0.278 J	<0.128
Chloroform	67-66-3	80.0	1.40	μg/L	0.514 J	1.23 J	0.427 J	<0.111	<0.111	0.527 J	0.113
Carbon disulfide	75-15-0	NE	800 ^a	μg/L	<0.0962	<0.0962	<0.0962	<0.0962	<0.0962	<0.0962	<0.0962
Dichloromethane (methylene chloride)	75-09-2	5.00	5.8	μg/L	<0.430	<0.430	<0.430	<0.430	<0.430	<0.430	<0.430
Pesticides (by SW8011)				· -							
4,4-DDD	72-54-8	NE	0.360	μg/L	<0.0177	<0.0177	<0.0177			<0.0177	
4,4-DDE	72-55-9	NE	0.130	μg/L	<0.0154	<0.0154	<0.0154			<0.0154	
4,4-DDT	50-29-3	NE	0.260	μg/L	<0.0198	<0.0198	<0.0198			<0.0198	
Aldrin	309-00-2	NE	0.00260	μg/L	<0.0198	<0.0198	<0.0198			<0.0198	
Alpha BHC	319-84-6	NE	0.0140	μg/L	<0.0172	<0.0172	<0.0172			<0.0172	
Beta BHC	319-85-7	NE	0.0490	μg/L	<0.0208	<0.0208	<0.0208			<0.0208	
Chlordane	12789-03-6	2.00	0.130	μg/L	<0.0198	<0.0198	<0.0198			<0.0198	
Delta BHC	319-86-8	NE	NE	μg/L	<0.0150	<0.0150	<0.0150			<0.0150	
Dieldrin	60-57-1	NE	0.00550	μg/L	<0.0162	<0.0162	<0.0162			<0.0162	
Endosulfan I	959-98-8	NE	NE	μg/L	<0.0160	<0.0160	<0.0160			<0.0160	
Endosulfan II	33213-65-9	NE	NE	μg/L	<0.0164	<0.0164	<0.0164			<0.0164	
Endosulfan sulfate	1031-07-8	NE	96ª	μg/L	<0.0217	<0.0217	<0.0217			<0.0217	
Endrin	72-20-8	2.00	4.8 ^a	μg/L	<0.0161	<0.0161	<0.0161			<0.0161	
Endrin aldehyde	7421-93-4	NE	NE	μg/L	<0.0237	<0.0237	<0.0237			<0.0237	
Endrin ketone	53494-70-5	NE	NE	μg/L	<0.0219	<0.0219	<0.0219			<0.0219	
Gamma BHC	58-89-9	0.200	0.0800	μg/L	<0.0209	<0.0209	<0.0209			<0.0209	
Heptachlor	76-44-8	0.400	0.0097	μg/L	<0.0148	<0.0148	<0.0148			<0.0148	
Heptachlor epoxide	1024-57-3	0.200	0.00480	μg/L	<0.0183	<0.0183	<0.0183			<0.0183	
Hexachlorobenzene	118-74-1	1.00	0.0270	μg/L	<0.0176	<0.0176	<0.0176			<0.0176	
Methoxychlor	72-43-5	40.0	80ª	μg/L	<0.0193	<0.0193	<0.0193			<0.0193	
Toxaphene	8001-35-2	3.00	0.080	μg/L	<0.168	<0.168	<0.168			<0.168	
Herbicides (by SW8321)				· -							
Dalapon	75-99-0	200	480 ^a	μg/L	<0.344	<0.344	<0.344			<0.344	
2,4,5-T	93-76-5	NE	160ª	μg/L	<0.258	<0.258	<0.258			<0.258	
2,4,5-TP (Silvex)	93-72-1	50.0	130 ^a	μg/L	<0.335	<0.335	<0.335			<0.335	
2,4-D	94-75-7	70.0	160°	μg/L	<0.547	<0.547	<0.547			<0.547	
2,4-DB	94-82-6	NE	NE	μg/L	<0.302	<0.302	<0.302			<0.302	
MCPA	94-74-6	NE NE	8ª	μg/L	<13.1	<13.1	<13.1			<13.1	
MCPP	93-65-2	NE NE	16ª	μg/L	<66.0	<66.0	<66.0			<66.0	
					0.373 J	<0.245					
Dicamba	1918-00-9	NE NE	480 ^a	µg/L			<0.245			0.397 J	
Dichloroprop	120-36-5	NE 7.00	NE NE	μg/L	<1.04	<1.04	<1.04			<1.04	
Dinoseb	88-85-7	7.00	16ª	μg/L	<0.250	<0.250	<0.250			<0.250	
Pentachlorophenol	87-86-5	1.00	0.2	ug/l	<0.111	<0.111	<0.111			<0.111	

1. Non-detect results reported as "< Method Detection Limit".


2. Some laboratory reporting limits are greater than the respective groundwater MTCA Method B Cancer CULs.

3. Bold text indicates a detected concentration.

4. Shaded cells indicate a detected concentration exceeds the groundwater Washington State Maximum Contaminant Level (µg/L).

Softined cells indicate a detected concentration exceeds the groundwater MTCA Method B Cancer CUL (mg/kg).
 J = the analyte was positively identified; however, the associated numerical value is an estimated concentration only mg/kg = milligram per kilogram
 MTCA = Model Toxics Control Act
 NE = not established
 -- = not tested

FIGURES

Legend

Spokane County Parcel (Parcel Number)

-- Stream/River

Union Pacific Railroad Tracks

CHS = Cenex and Harvest States, Inc

Cenex Harvest Lease Site 450 W Missile Base Rd Rockford, Washington 99030

FACILITY AND SURROUNDING PROPERTY LAYOUT

Legend

- Soil Boring and Temporary Monitoring Well Location
- Monitoring Well Decomissioned by Geoengineers on February 2, 2024 (3)
- Spokane County Parcel (Parcel Number)
- --- Overhead Utilities

Note:

CHS = Cenex and Harvest States, Inc

100 200 Feet

Cenex Harvest Lease Site 450 W Missile Base Rd Rockford, Washington 99030

SOIL BORINGS AND TEMPORARY MONITORING WELL LOCATIONS

Project (Project #)
T:_ENV\UPRR\Cenex_Harvets_Lease_Site_Freeman\W

APPENDIX A

ROW Permit

Rockford

Town of Rockford

20 W. Emma St. - P.O. Box 49 - (509)291-4716 - Fax (509)291-5733

RIGHT OF WAY (ROW) PERMIT APPLICATION

APPROACH LI PAVEMENT CUT (SEE BELOW) LI SIDEWALK LI CURB & GUTTER LI
WORK THROUGH MANHOLE OTHER X ROAD OBSTRUCTION NO X YES (if yes, complete the following)
 % of street or # lanes that will be obstructed:0
 Length of time street will be obstructed:0
▶ If work closes more than 50% of a local access street, or closes any portion of an arterial street, then a TRAFFIC PLAN IS REQUIRED ☐ Pre-Approved TCP is attached.
Project Information PROJECT ADDRESS(ES): _450 W Missile Base Road, Rockford, Washington
PARCEL NUMBER(S):W Missile Base Road ROW near CHS facility
LOCATE TICKET#:TBD - We plan to mark boring locations and call in public locate on 2/12/2024
START DATE: _February 20, 2024_ ANTICIPATED COMPLETION DATE:February 23, 2024
PROJECT DESCRIPTION:Soil borings for a site investigation
General Information APPLICANT: _Arcadis on behalf of Union Pacific Railroad
MAILING ADDRESS: _8808 E Wellesley AvenueCITY:Spokane STATE: _WA_ ZIP: _9921
PHONE: _406-239-7810EMAIL: _Joshua.Lee@arcadis.comPOC: _Joshua Lee
Contractor Information NAME:Walston Drilling Solutions (WDS) CONTACT NAME: _Greg Walson
MAILING ADDRESS: _2934 W Monticello PICITY:SpokaneSTATE: _WA_ ZIP: _99205
PHONE: _812-598-5581 EMAIL: _greg@wdsnorthwest.com_POC: _Greg Walston
CONTRACTOR LICENSE #: _WALSTDS778PQ EXPIRES:12/30/2024
WA BUSINESS UBI#: 605235395

Town of Rockford

20 W. Emma St. - P.O. Box 49 - (509)291-4716 - Fax (509)291-5733

**** IF PAVEMENT CUT, COMPLETE THE FOLLOWING ****

NATURE OF WORK:
Communications □ Electric □ Water □ Sewer □ Cable □ Other X
TYPE OF CUT/REPAIR:
Asphalt ☐ Gravel ☐ Concrete ☐ Other X
SIZE OF CUT (width, length, and area in sq ft or miles):

DISCLAIMER: By accepting this permit and proceeding with the work, the applicant/permittee and owner acknowledges and agrees that: 1) If this permit is for construction of or on a dwelling, the dwelling is/will be served by potable water. 2) Ownership of this Town of Rockford permit inures to the property owner. 3) The applicant/permittee is the property owner or has full permission and authority to represent the property owner in this project and carry out the work specified in the permit. 4) All construction is to be done in full compliance with the Town of Rockford Ordinances and Design Standards. The applicable codes are available for review at Town Hall. 5) The applicant/permittee further declares that they are either: (A) a contractor currently registered and properly licensed in accordance with Chapter 18.27 RCW; (B) the registered or legal owner or authorized agent of the property for which I am applying for permit and not a licensed contractor; or (C) otherwise exempt from the requirements set forth in RCW 18.27.090 and will abide by all provisions and conditions of the exemption as stated. 6) The Town of Rockford permit is a permit to carry out the work as specified therein and is not a permit or approval for any violation of federal, state or local laws, codes or ordinances. 7) Compliance with all federal, state, and local laws shall be the sole responsibility of the applicant/permittee and property owner. 8) Plans or additional information may be required to be submitted and subsequently approved before this application can be processed. The Town is not responsible for any code violation through the issuance of this permit. 9) Failure to request and obtain the necessary inspections and inspection approvals may necessitate stoppage of work and/or removal of certain parts of the construction at the applicant's/permittee's or property owner's expense.

EXPIRATION: Right-of-way permits issued between April 1st and September 30th are valid for 30 days after the date of issuance, with a one-time 30-day extension available. Right-of-way permits issued between October 1st and March 31st are valid until the following April 30th.

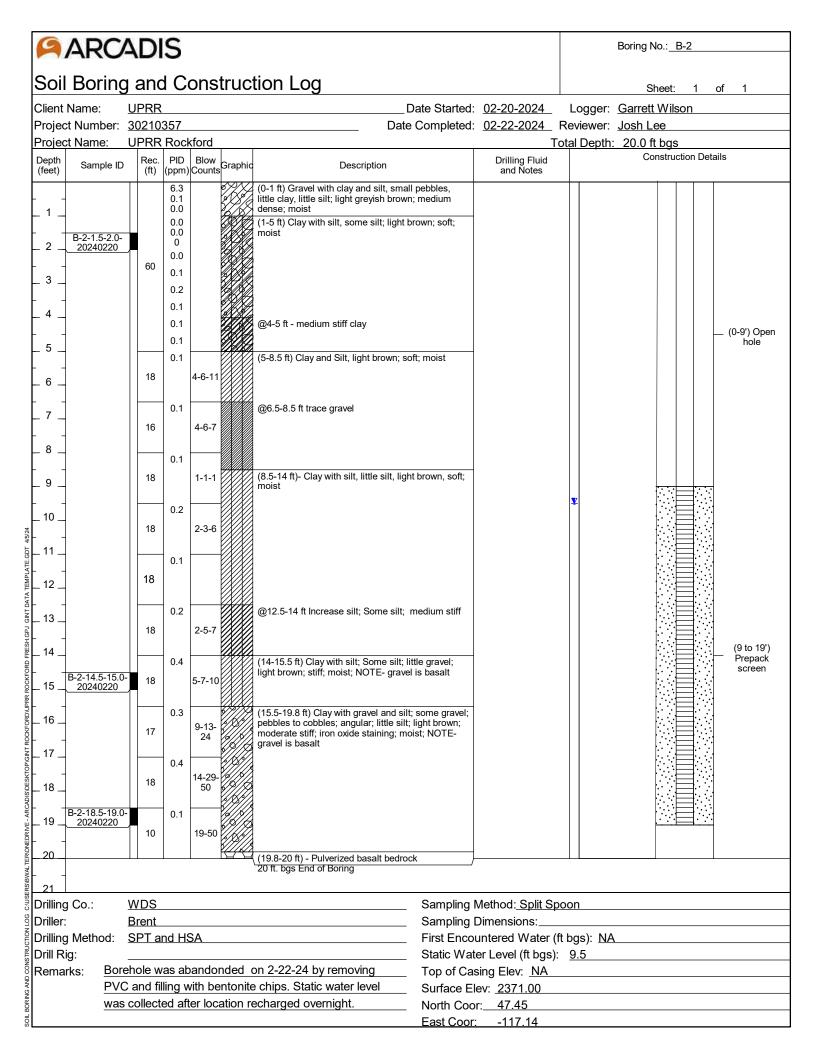
Town of Rockford

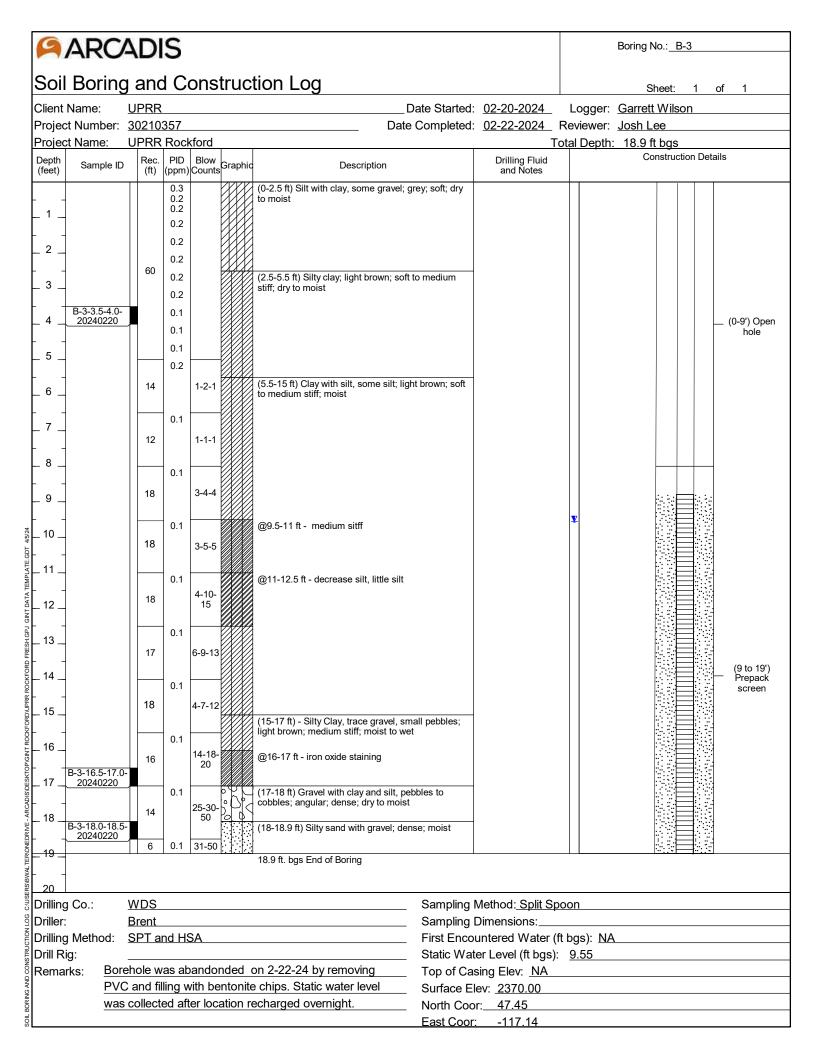
20 W. Emma St. - P.O. Box 49 - (509)291-4716 - Fax (509)291-5733

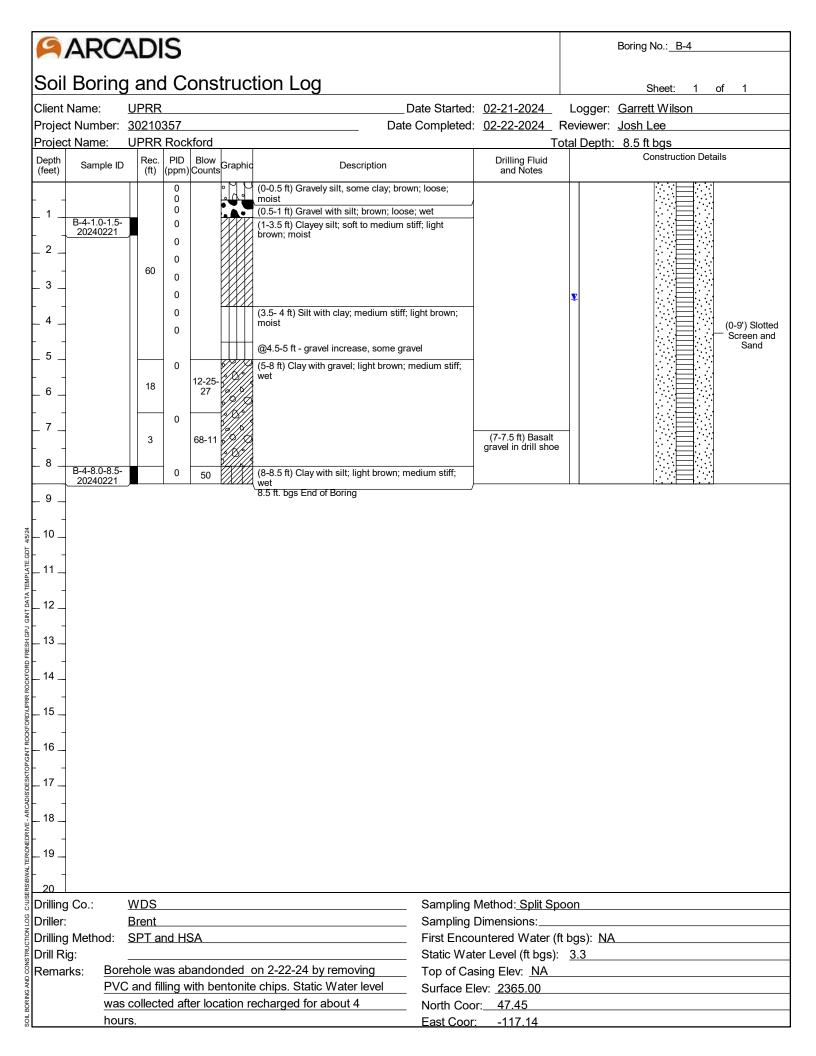
INDEMNIFICATION AND HOLD HARMLESS: By applying for and accepting this permit, Applicant agrees to the following: Applicant shall defend, indemnify, and hold the Town of Rockford, its officers, officials, employees and volunteers harmless from any and all claims, injuries, damages, losses or suits including attorney fees, arising out of or in connection with activities or operations performed by the Applicant or on the Applicant's behalf out of issuance of this Permit, including the procurement of adequate insurance as required by the Town, except for injuries and damages caused by the sole negligence of the Town. Should a court of competent jurisdiction determine that this Permit is subject to RCW 4.24.115, then, in the event of liability for damages arising out of bodily injury to persons or damages to property caused by or resulting from the concurrent negligence of the Applicant and the Town, its officers, officials, employees, and volunteers, the Applicant's liability hereunder shall be only to the extent of the Applicant's negligence. It is further specifically and expressly understood that the indemnification provided herein constitutes the Applicant's waiver of immunity under Industrial Insurance, Title 51 RCW, solely for the purposes of this indemnification. This waiver has been mutually negotiated by the parties. The provisions of this section shall survive the expiration or termination of this Permit. I have read and by accepting this permit hereby certify and agree that I will comply with the Town's Right of Way requirements and all applicable local regulations.

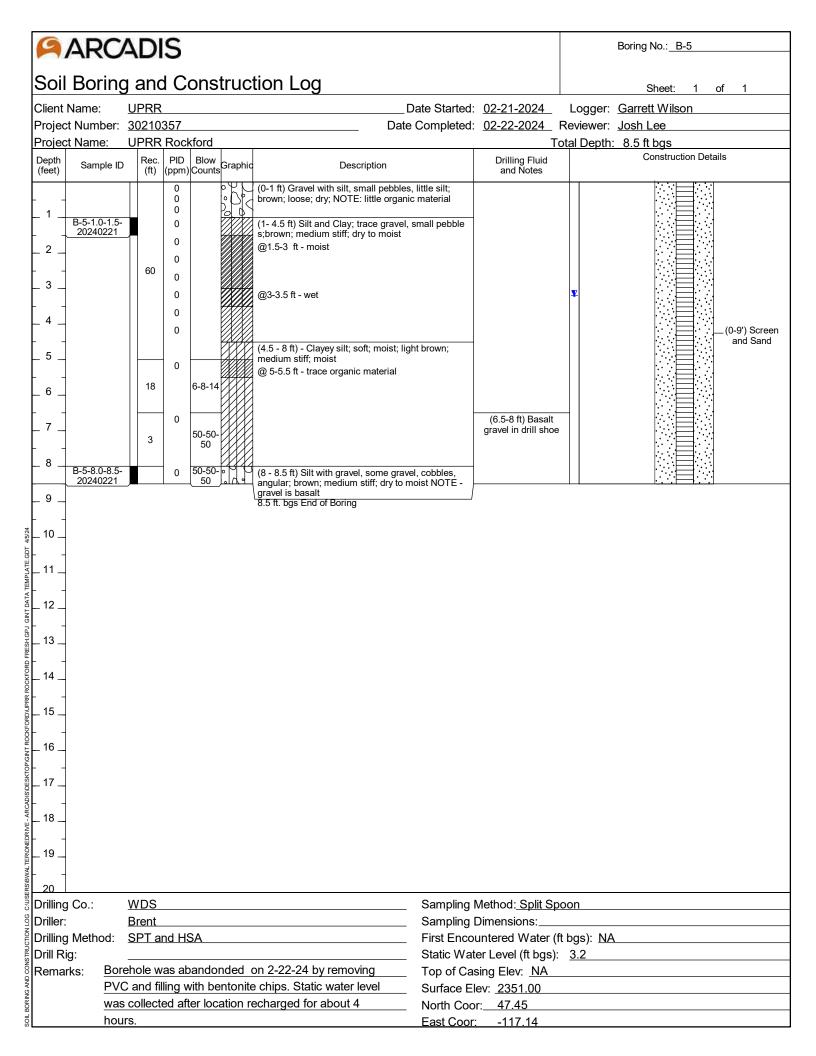
APPLICANT SIGNATURE: DATE:
TOWN OF ROCKFORD STAFF REVIEW
PAVEMENT CUT POLICY APPLIES: YES D NO
PUBLIC WORKS REVIEW NOTES:
FEE CALCULATIONS:
FEES PAID X DATE 2/20/24 METHOD (N/L 985

APPROVED BY: J-h Hage DATE: 3/20/2024


APPENDIX B


Boring Logs


9	AR	CA	DI	S							Boring No.: E	3-1		
Soil	Bor	ing	and	d C	ons	truc	tion Log				Sheet:	1	of	1
Client	Name:	U	PRR				Date Starte	d: <u>02-20-2024</u>		Logger:	Garrett Wils	on		
Projec	t Numb							ed: <u>02-22-2024</u>						
Projec	t Name	: U			kford				Γota	al Depth:	: 19.5 ft bgs			
Depth (feet)	Samp	le ID	Rec. (ft)	PID (ppm)	Blow Counts	Graphic	Description	Drilling Fluid and Notes			Construc	tion De	tails	
_ 1 2 3 4 5 6 7	B-1-2.0 202402		18	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3-5-5		(0-2.5 ft) Silty Gravel with sand; dark brown; medium dense; dry to moist (2.5-9.5 ft) Clay with silt, some silt; light brown; soft; wet @3.5-4.5 ft - medium stiff, moist @4.5 - 5ft - Brown to light brown @5.5-8 ft- Medium stiff	(0-2 ft)					(0-9') Open hole
_ 7 _ _ 8 _ _ 9 _ _ 10 _			14	0.1	2-3-6 9-13- 21 8-9-12		@8 -9.5 ft - Very stiff (9.5-12.5 ft) Clay with silt, little silt; light brown; soft; wet			Y			<u>.</u>	
_ 11 _ _ 12 _ _ 12 _ _ 13 _ 			18	0	5-10- 13 20-25- 41	8 000	(12.5 - 14') Clay with gravel, gravel is semi-angular, light brown; medium stiff; moist. NOTE: basalt gravel							(9 to 19')
14 15 16 17			18	0	20-38- 30 20-16- 25		(14-17 ft) Clay with silt, little gravel; light brown to grey; trace iron oxide; medium stiff; moist NOTE: gravel is basalt, trace black organics @15-15.5 ft - decrease clay, increase silt	(15-15.5 ft) HSA is grinding	s					Prepack screen
_ 18 _	B-1-18.5 202402		16 14.5	0	16-26- 20 69-10		(17-18.5 ft) Clay with silt, little gravel; grey; mediun stiff; little iron oxide; moist (18.5-19 ft) - Clay with silt; grey; medium stiff; little iron oxide; moist							
_ 20 _			1			<u>r_</u> ><_	(19- 19.5') Pulverized basalt bedrock 19.5 ft. bgs End of Boring							
Drilling	Co.:	V	/DS				Samplin	g Method: Split Sp	poc	on				
Driller:		В	rent					g Dimensions:						
Drilling		d: <u>S</u>	PT a	nd H	SA			countered Water (
Drill Ri	-	_ –						ater Level (ft bgs)						
Remar		•						Casing Elev: <u>NA</u>						
								Elev: <u>2372.00</u>						
1		vviu i D	CHIOL	iile Cl	iips. 5	กเสแบ W	ater level was collected North C	oor: <u>47.45</u>						


East Coor: -117.14

after location recharged overnight.

APPENDIX C

Field Forms

Design & Consultancy
for natural and

	GROUND	WATE	RSAM	PLING LOG								Page (_ of _	2
	Project No.	3021	0357			Well ID	8-1			1	Date	2/2/24	_
	Project Name/			Rockford		***************************************	_10_1				Weather		F
	Measuring Pt. Description	ltigh	Point	Screen Setting (ft-bmp)	9-1	19	Casing Diameter (in.)	2	14		Weil Mate	-	
	Static Water Level (ft-bmp)	6.0	4	Total Depth (n.bm)	o) /	7	Water Colum Gallons in Wi	n/ / ×	,96			W/2°	pepu
	MP Elevation	-		Pump Intake (n-bn	np) 14 12	*	Purge Method	di parish	n/hc		Sample Method	low-flow	الم
	Pump On/Off	151	3	Volumes Purged				Submersib	e /		Meliloo	100 1.00	<u></u>
	Sample Time:	Label Start End	1650	Replicate/ Code No.	-		-+/-3%	Other	+/-10%	+/-3%	Sampled I	DYCOUNT Wib	<u>0°</u>
	Time	Minutes	200 mL/min- Rate	Depth to Water	Gallons	+/- 0.1 pH	Cond.	+/-10% Turbidity	Dissolved	Temp.	Redox	Appearance	
		Elapsed	(gpm) (mUmin)	(ft)	Purged		(mMhos) (mS/cm)	(NTU)	Oxygen (mg/L)	(F)	(mV)	Color Ode	or
	1514	5	150	6.30		6-03	1	4,046	9.10	1	211.3	Tutillan Man	_
	1521	3	100	6.43		6.04	1	4532	425	1	2084	Tay	-
	15:25	4	150	10.55		10.05	1	447	890	1	208.9	4	
1,000	1528	3	150	6.35		6.27	1	2930	8.92	1/	210.5	4	
7	1534	3	150	6.68		6.15	1	2973	8.77	1/	210	1 1/2	
15	61627	3	150	1065		012		4065	873	1	210		
	57505 UKO	3	150	60.60		610		4541	8/02	/	209.9		
ill	51543	3	150	6.63		6.09		4820	8.48		210.1		
1601	9.1044	3	150	6.76		6.09		4841	8.47		210.1		
W	1 1544	3	150	6.65		6.09		4893	8.45		210.		
16	14 1551	3	150	6.7		6.09		4897	8.42	11	2101		
16	7 1854	3	150	60.75		6.09		4903	8.4	11	218.1		
	20/1557	3	150	6.7		6.05		1542	8./8	1	211		
-	17 1600	3	150	6.6		6.04	1	1122	9.11	1	211.2		1/
16.	2716031	3	150	6.65		6.03	1	771	7.96		2119		V
	Constituents	Sampled	R-1-	14-20240	221(1	Container				Number	- 14	Preservative	_
	344.0 20	7	offly								_		
	DUP and		9/12										
	714-70		102:102										
	Tho	ther .						0 40 1					
			×	W8151		Bir	1L A	upse		2		nunt	
				V3260		40,	IL Am	her		3		HU	
				8081		100	mh A	MAL		2		none	
		olumes 1" = 0.04 1.25" = 0.0		5" = 0.09 = 0.16	2 5" = 0 26 3" = 0 37		.5" = 0.50 " = 0.65	6" = 1.47	Note	Con	eluchi	7/10	p
1	Well Informat	tion								1106	20 h	of wow	2
	Well Locat	tion:	614	S/ WIRE				Well	Locked at	Arrival:			2
	Condition of	Well:	Tem	Well well			1/2	-	cked at De			B / No	5
	Well Comple	etion:	F	ush Mount /	Stick	Up /	VIII	Ke	y Number	To Well:	NI	1	

	GROUND	WATE	RSAM	PLING LOG									of 2_
	Project No.	302	1035	7		Well ID	B-1				Date	3/22/2	14
	Desired Name	a ocation	021	RR Rock Fo	600						Weather	Breces	40°K
			point	Screen	9-	19	Casing Diameter (in.)	2			Well Mate	rial _/	PVC SS
	Static Water Level (ft-bmp)			Total Depth (R-bmp	p) /	9	Water Colum Gallons in We	n/	96				
	MP Elevation			Pump Intake (ft-bri			Purge Method				Sample	, ,	, .
	Pump On/Off		3	Volumes Purged		5		Submersib	ble		Method	Low-fl	0W
	Sample Time:	Label	1650	Replicate/				Other		-		0	1410
٠		Start	1650	Code No.			-				Sampled I	y Game	h wee
		End	17/5 200 mL/min	+ -0.3		+/- 0.1	+/-3%	+/-10%	+/-10%	+/-3%	+/-10mV	703	, -, -
	Time	Minutes Elapsed	Rate (gpm)	Depth to Water (ft)	Gallons Purged	pΗ	(mMhos) (mS/cm)	Turbidity (NTU)	Oxygen (mg/L)	Temp. (°C) (°F)	Redox (mV)	Appe	arance Odor
	1628	3	(mL/min) 150			6.03	1	699	7.94	1/	211.5		
	1631	3	150			6.03		696	794	1	211.6		
	1634	3	150	6.75	0.000	6.03		666	7.95	X	211.6		
	1637	3	150			6.03		601	284		211.7		
	1640	3	150	6.8		6,02		57/	7.82	1	211-8		
	16.43	3	150			402		567	7.82	1	217 0		
	1446	3	150	6.8	100	6.02	1	539	7.79	- 1	212	1	11/
1	1649	3	150	(0.85	5.5	6.02		465	7.79		2/2.2	V	V
											-		
									7				
							×						-
											1		
	Constituents	Sample	d		_	Containe				Number	-		
				0240221/165	(0	Jonamo				Number		Preserva	tive
			offler								-		12
	DUP CO	ollector)	2 1200	his								7-7-	
	TW-DU												
	7 t	softles.	in total										
		_		1815)	-		1 L	amber		2		1000	
		_		8260			40 ml	amber		3		-HCC	
				8081			100ml	ahler		5	-	_none	
	Well Casing Gallons/Foot	Volume 1" = 0 0- 1.25" = 0	4	1.5" = 0.09 2" = 0.16	2.6° = 0.2 3° = 0.37		3.5" = 0.50 4" = 0.65	6" = 1.47		100	1.150		
	Well Inform	nation											
	Well Los		EH.	STUPRR				W/el	Locked a	t Arrival:	Voc	7	ACTER
	Condition	of Well:		e well					cked at De	-	Yes Yes		(NO)
	Well Com	pletion:		Flush Mount /	Stic	kUp A)/A	100	y Number	-	NIA		

ject No.		UPRR	Rockford	٧	Vell ID	B-2				Date _	2/22/2	
easuring Pt		point	Screen Setting (ft-bmp)	9-19		Casing Diameter (in)	2	7		Well Mater	ial 🗸	
atic Water evel (ft-bmp) P Elevation ump On/Off ample Time.	Label Start		Total Depth (n-bmp) Pump Intake (n-bmg) Volumes Purged Replicate/ Code No.	111		Water Column Gallons in We Purge Method	12.9	& HIL		WICKING ,	low-flo	
	End	200 mL/mir		0.0.1	+/- 0.1	+/-3% Cond.	+/-10% Turbidity	+/-10% Dissolved	+/-3% Temp.	+/-10mV Redox	Appes	
ime	Elapsed		Depth to Water (ft)	Gallons Purged	.pH	(mMhos) (mS/cm)	(NTU)	Oxygen (mg/L)	(°C) (°F)	(mV)	Color	Odor
1030	5	150,	9.23		6.11	1	64.25	5.05	1	155.0	Stor dy	non-e
1033	3	150	9.25		6.10		62.52	5.09	/	155.8	3/	
1036	3	150			6.10		60.5	516	1/-	156.0	-	
103 4	1				6.16	V	71.30	5.17	1/	156.1		-
1042			9.40		6.10		72.02	5:39	W	156.4		++-
1045					609	1/1	78.26	5.45	V	156.6	_	1-1-
1044			9.43		6.10	1/	81.86	5.59		156.8	1	
1051					6.09	/ \	81.57	5.56	-	157.0		1
1054			9.58		6.09		88,20	5.54	-	157.2		1
1057					6.08		78.10	562	-	157.4	1	++
1000	+		9.59	-	6.08	1	71.08	_	1	157.6		++
1103			0 (0	-	4.08	1	6908	-	/\	157.8		1
1106		-	9-60		6.08	1	74.93	5.55	1	158.0	-1	1
1109		+	9.65		6.07		74. Cel	5.61	1	168.		+
1112			4.03		608	1	100.30	2 5.65	1	158.5		1
1115					1000		100.35	79.00		158-7	IA	V
,		8-2-14-	20240222JU	030)	Containe	эг			Number		Preserv	
			5 V 8151				amber	_	2		No	
			8051				l anber		2		MC	
Well Casing Gallons/Foot	1" = 0.0 1.25" =	14	1.5" = 0.09 2" = 0.16	2.5" = 0.37 3" = 0.37		3.5" = 0.50 4" = 0.65	6" = 1 47				-	1
		EH	2					ell Locked				
Weil Lo												

Project No.	2000	7357			Well ID	8-2				Date	2/221	-
			R Rockford							Weather	Occast	35
Measuring Pt		porl	Screen	9-10	7	Casing Diameter (in.)	2			Well Mate		PVC SS
Static Water Level (n-bmp)	9.11		Total Depth (fl-bm	o) 19		Water Column Gallons in We	12.					
MP Elevation			Pump Intake (ft-br	/1	1	Purge Method	Denste	altic		Sample Method	Low-f	10.
Pump On/Off	102	· ·	Volumes Purged	85	5		Submersib			Wickings		
Sample Time	Label	1030	Replicate/ Code No	_	-	-	Other		+1-3%	Sampled	b <u>y 6a me</u>	4 N
Time	Minutes	200 mL/min	Depth to Water	Gallons	+/- 0 1 pH	+/-3% Cond.	+/-10% Turbidity	+/-10% Dissolved	Temp.	Redox		arance
Talle	Elapsed	(gpm)	(ft)	Purged		(mMhos) (mS/cm)	(NTU)	Oxygen (mg/L)	(°C) (°F)	(mV)	Color	0
1118	3	(mL/min) 150	9.7		6.07	\ /	97.82	5.63	1	159.5		Non
1121					6.07		98.48	5.63	1/	1590		+
1124	.,.	+	9.73		4.07	1/	96.32		V	159.0	1	-
		3-2-14	1-2024 0222	(1030 - -	Contain	er			Numb	er	Preser	vative
			SVEIGI	-		1	Lant	per		2		none
			8081			100 m	it amb		_2			1CL one
	olumes 1° = 0.04 1.25° = 0.06		1 5° = 0 09 2° = 0 16	2 5° = 0 37 3° = 0 37		3 5" = 0 50 4" = 0.65	6" = 1 47					

N/A

Key Number To Well:

NIA

Stick Up

Flush Mount

Well Completion:

ROUNDY	VATE	R SAMI	PLING LOG								Page 1	. 2
and the same of th				Well ID	8-3				Date	2/22/2	- ⁰¹	
Project No. 30210357					Well ID	<u>15- 3</u>				Weather		
Project Name/L	ocation	UPRR	? Rockford								J. Market	PVC
Measuring Pt.		,	Screen	9-19	,	Casing Diameter (in.)	1			Well Mater	rial _7	_ SS
Description	High 1	point_	Setting (ft-bmp)	7-11								
Static Water	01		Total Depth (ft-bm)	p) 19		Water Colum Gallons in We	n/ ell	12.96				
			Pump Intake (ft-bmp) 14						Sample		,	
MP Elevation						Purge Method: Peristal ful Certifugal Submersible			Method 4	Low-fl	ow	
Pump On/Off	0835		Volumes Purged 5.5									
Sample Time:	Label	0835	Replicate/				Other				1	121175
	Start	0835	Code No.		THE P.					Sampled b	by Grand	NO 1 SC
		200 mL/min	n+ -0.3		+/- 0.1	+/-3%	+/-10%	+/-10%	+/-3%	+/-10mV		
Time	Minutes		Depth to Water	Gallons	+/- U. I	Cond.	Turbidity	Dissolved	Temp.	Redox	Appe	earance
0835_	Elapsed	(gpm) (mL/min)	(ft)	Purged		(mMhos) (mS/cm)	(NTU)	Oxygen (mg/L)	(°C) (°F)	(mV)	Color	Odor
0840	5	150	8.68		6.35		41.54	4.98	1: /	163.9	Close	None
0843	3	150	8.72		6.6	1	46 30	4.73		1640		
0846	3	150	8.7		6.38			4.97		164.0		
0849	3	150	C. Little		6.40		61.17	5.04		164.3		
0852	3	150			6.40	V	37.57	5.09		164.3		
0855	3	150	8.86		6.41		65.70	5.17		164.4		
0858	3	150			6.42		61.05	5.17		164.5		
0901	3	150			6.43		69.20	5.17		164.5		
0904	3	150	8.92		643		65.37		A	164.5		
0907	3	150			6.43		63.72	5.19	1	164.6		
0910	3	150			6.43		66.67			164.6		
0913	3	150		7	643		62.94	5.22		104.6		
0910	3	150			6.43		60.40		1	164.5		
0919	3	150	9.0		6.43		59.90			164.6		
0922	3	150	200		6.43		37.26	1	1	164.6		
0 925	3	150	9.05		6.43		62.01	5.05	,	164.6	N	14
		8-3-14.	-20240222	(0935) _	Containe	r			Number		Preserva	tive
TW-DUP	-3-3		hr5									
- 1	2 Bottles in total SUB151				16 amber				2	none		ပ
-	-		18260	-11		HomL	amper		3		HOL	
			8681			160ml	amber		2		none	
Well Casing Gallons/Foot	1" = 0.0- 1.25" = 1)4	1.5" = 0.09 2" = 0.16	2.5" = 0.2 3" = 0.37		3.5" = 0.50 4" = 0.65	6" = 1.47					
Well Inform		Cili										
Well Lo Condition		EHS					_	Locked at	-	Yes		NO
1000		-	Well Market	. 04:-		1-		cked at De	-	Yes		AND
Well Con	pienon.		Flush Mount	Stic	ck Up N	A	Key	Number 7	To Well:	NA		

GROOND	WAIE	RSAM	PLING LOG			07				Data	2/32/	of 2
Project No.	30210	357			Well ID	8.3				Date	Dune	V, 40%
Project Name	/Location	UPRE	Rattord							Weather Well Mater	Overces	1000
Measuring Pt. Description	1 tigh	pant	Screen Setting (fl-bmp)	9-19	i	Casing Diameter (in)	2			Well Mater	ial	_ss
Static Water Level (ft-bmp)	8.63		Total Depth (ft-bm		19	Water Colum Gallons in W	ell /	2.46				
MP Elevation			Pump Intake (ft-br	np) /*	4	Purge Metho	d: Mr. 3	te. /1. c		Sample Method	Low-d	Chr
Pump On/Off	08	35	Volumes Purged	_ 5.	5		Submersib Other	e				
Sample Time	Start	0835	Replicate/ Code No.	_	-		Other			Sampled I	y Gam	elt Wisc
	EIIU	200 mL/mir			+/- 0.1	+/-3%	+/-10%	+/-10%	+/-3%	+/-10mV		
Time	Minutes Elapsed	Rate (gpm) (mL/min)	Depth to Water (ft)	Gallons Purged	рН	(mMhos) (mS/cm)	Turbidity (NTU)	Oxygen (mg/L)	Temp. (°C) (°F)	Redox (mV)	App	earance Odor
6928	3	150	9.05		642		60.81	5.01	1	164.6	Clear	None
0931	1	1			6.43		74.18	5.12	1/	164.6	1	
0934	7	+			6.43		624	5.12	1/_	1646	4	4
M934/						1-1/			¥			
Ba 4/						Y			1	_		
0,43						1-A-			-			
6907												+ -
0990						+/-						
						1				and.		
										3/15		
		Sh							100			
Constituents	Sampler	1			Containe	r			Number		Droop	andi un
	-		0240222 043	()	OUNGING				· · · · · · · · · · · · · · · · · · ·		Preserv	auve /
	7 60ft									_		
		508	151			14	anbel		2		Non	K
		- 18				40ml	ambel		3		HC	
	щ.	80	81				amber		2		no	
Well Casing	Volumes											
Gallons/Foot	1" = 0.04 1.25" = 0.		1.5" = 0.09 2" = 0.16	2 5" = 0.20		3.5" = 0.50	6" = 1.47					
			2 -0 16	3" = 0.37		4" = 0.65						
Well Inform		ENE										
Well Loc		EHS						II Locked a			s /	No
Condition o					21.2	./	_ Well Lo	cked at D	eparture:	Ye	s /	No
Well Comp	netion:		Flush Mount /	Stick	(Up	ALA	Ke	y Number	To Well:			

Project No.		10357	20 60.00	-	Well ID	B-14				_	2/22/2	
Project Name	/Location	UPKA	? Rockford						A 100 100 100 100 100 100 100 100 100 10	Weather c	/	
Measuring Pt Description	High	Rain!	Screen Setting (n.bmp)	AX	4	Casing Diameter (in.)				Well Mater		SS
Static Water Level (ft-bmp)	8.8		Total Depth (ft-bm	p) 8	5	Water Colum Gallons in W	ell					
MP Elevation	_		Pump Intake (ft-br	np) 7		Purge Metho	Centrifuga	taltic	_	Sample Method	Low-flo	
Pump On/Off	133	0	Volumes Purged				Submersib					
Sample Time:	Label Start End	1430	Replicate/ Code No.	_			Other			Sampled b	y Game	est h
		200 mL/min		I O-llow I	+/- 0.1	+/-3%	+/-10%	+/-10% Dissolved	+/-3% Temp.	+/-10mV Redox		
ime #52	Minutes Elapsed		Depth to Water (ft)	Gallons Purged	pН	Cond. (mMhos) (mS/cm),	Turbidity (NTU)	Oxygen (mg/L)	(°C) (°F)	(mV)	Color	od
135\$	3	150	7'		7.60	11/	3904	8,7	11	150.6	Closely	Non
Well	ran	dry										
		/				11/						
						1						-
						+1				-		
						1/			-			+
												-
					-							
									1			
						11			1			
						1			1			
nstituents S	ampled				Containe	r	-		Numbe	Г	Preserva	ative
Sample I	D:TW	-13-4-8	5-20240222		-			21.				
	76	othes										
				. 4.				_		- 1		
										_	7	
								-9				
			851				L amb	_	_ 2	-		100
			081	-			Lambe		3	-		HCL
		8	081			100 1	1 umbe	_	_2	-		hon
	olumes 1" = 0.04 1.25" = 0.0		6" = 0.09 ' = 0.16	2.5" = 0.26 3" = 0.37		3.5" = 0.50 4" = 0.65	6" = 1.47					A ^C
	ion											
ell Informat Well Locat		5	115				Wel	I Locked a	at Arrival	: Ye	s /	N

		1035 T	PLING LOG		Well ID	8-5				Date	2/3/2"	
Project No.			0.102	*						Weather	Overces	1
		UNAL	Rockford Screen			Casing				Well Mate		PVC
Measuring Pt. Description	High-	point	Setting (fl-bmp)	9-1	9	Diameter (in.		-				SS
Static Water Level (ft-bmp)	3.2		Total Depth (ft-bm		_/	Water Colur Gallons in V	Vell	1 11				
MP Elevation			Pump Intake (fi-bi	np) 4.	3	Purge Metho	Centrifuga	ristatic		Sample Method	Lowf	100
Pump On/Off	12/	1	Volumes Purged				Submersib					
Sample Time.	Start End	1219	Replicate/ Code No.	_	-		Other				y Garre	++
Time	Minutes	200 mL/min- Rate	+ -0.3 Depth to Water	Gallons	+/- 0,1 pH	+/-3% Cond.	+/-10% Turbidity	+/-10% Dissolved	+/-3% Temp	+/-10mV Redox		
Time	Elapsed	(gpm)	P. Z	Purged	pri	(mMhos)	(NTU)	Oxygen	(°C) (°F)	(mV)	Appea	Od
1225	5	(mL/min) 150	19.2		7.02	(mS/cm)	86.72	(mg/L) /0.49	()	142.7	COIOI	- 00
1228	3	150	4.35		7.02	1	81.30		1	142.8		
		Well "										
						V						
							_					
						11						
									-H			
						1			-/\-			
					_				11			
						1 1			-			
							F					
onstituents S					Containe		-		Number		Preserval	d
emple ID:7	W-8-5-	4-202	40222 (35	0					· · · · · · · · · · · · · · · · · · ·		rreserval	ive
	bottle											
										-		
									_	-		
		A L	SV8151				L ambe			-		
		70	V8260			40	onl compo		3		100-	
			8081				me ambo			-	HCL	
ell Casing Vo	lumaa						Me Mwso		2	-	1000	
alions/Foot 1	" = 0.04	1.5	"= 0 09	2.5" = 0.26		.5" = 0.50	B" = 4 47					
	25" = 0.06			3" = 0.37		* = 0.65	6" = 1.47					
Vell Informati												
Vell Informati Well Locati	ion:	EH.	5								1 (No
Vell Informati	ion: Well:	EH.						Locked a				No No

APPENDIX D

Photographic Log

UPRR Phase II Environmental Site Assessment - CHS Grain Handling Facility, Rockford, Washington

Photograph/Map ID: 1

Description:

Soil boring B-1 location on CHS property

Location:

Soil boring B-1

Photograph taken by:

Josh Lee

Date: 2/20/2024

Photograph/Map ID: 2

Description:

Soil boring B-2 location on CHS property

Location:

Soil boring B-2

Photograph taken by:

Josh Lee

Date: 2/20/2024

UPRR Phase II Environmental Site Assessment - CHS Grain Handling Facility, Rockford, Washington

Photograph/Map ID: 3

Description:

Soil boring B-3 location on CHS property

Location:

Soil boring B-3

Photograph taken by:

Josh Lee

Date: 2/20/2024

Photograph/Map ID: 4

Description:

Soil boring B-4 location in W Missile Base Road Right-of-way

Location:

Soil boring B-4

Photograph taken by:

Josh Lee

Date: 6/8/2023

UPRR Phase II Environmental Site Assessment - CHS Grain Handling Facility, Rockford, Washington

Photograph/Map ID: 5

Description:

Soil boring B-5 location in W Missile Base Road Right-of-wa

Location:

Soil boring B-5

Photograph taken by:

Josh Lee

Date: 2/21/2024

Photograph/Map ID: 6

Description:

Standing water near soil boring B-4 location

Location:

B-4

Photograph taken by:

Josh Lee

Date: 2/21/2024

UPRR Phase II Environmental Site Assessment - CHS Grain Handling Facility, Rockford, Washington

Photograph/Map ID: 7

Description:

Temporary well installed at soil boring B-4 location

Location:

Temporary well at B-4 location

Photograph taken by:

Josh Lee

Date: 2/21/2024

Photograph/Map ID: 8

Description:

Temporary well installed at soil boring B-3 location

Location:

Temporary well at B-3 location

Photograph taken by:

Josh Lee

Date: 2/21/2024

APPENDIX E Data Validation Report and Analytical Reports

UPRR

Data Review Report

Rockford, Washington

Volatile Organic Compounds (VOCs), Organochlorine Pesticides and Herbicides Analyses SDG #L1708993

Analyses Performed By: Pace Analytical National Mt. Juliet, Tennessee

Report #53377R Review Level: Tier II Project: 30210357.3

Summary

This Data Review Report summarizes the review of Sample Delivery Group (SDG) #L1708993 for samples collected in association with the UPRR Rockford, Washington Site. The review was conducted as a Tier II evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Sample ID	Lab ID Matrix		Sample Collection	Parent	Analysis							
Sample 10	Labib	Wallix	Date	Sample 1		svoc	GAS	PEST	HERB	MET	MISC	
TW-DUP-1-20240221	L1708993-01	Water	2/21/2024	TW-B-1-14- 20240221	Х			Х	Х			
TW-B-1-14-20240221	L1708993-02	Water	2/21/2024		Х			Х	Х			
TW-B-2-14-20240222	L1708993-03	Water	2/22/2024		Х			Х	Х			
TW-B-3-14-20240222	L1708993-04	Water	2/22/2024		Х			Х	Х			
TW-B-4-8-202402222	L1708993-05	Water	2/22/2024		Х							
TW-B-5-4.4-20240222	L1708993-06	Water	2/22/2024		Х							
TW-EB-1-20240222	L1708993-07	Water	2/22/2024		Х							
TRIPLANK	L1708993-08	Water	2/22/2024		Х							

Notes:

1. A matrix spike (MS)/matrix spike duplicate (MSD) analysis was performed on sample location TW-B-4-8-202402222 for VOCs.

Analytical Data Package Documentation

The table below evaluates the data package completeness.

Items Reviewed	Rep	orted	Performance Acceptable		Not Required
	No	Yes	No	Yes	Requireu
Sample receipt condition		Х		X ¹	
2. Requested analyses and sample results		Х		Х	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed chain-of-custody form		Х		Х	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data package completeness and compliance		Х		Х	

Notes:

QA = quality assurance

1 - The Trip Blank was not documented on the COC.

Organic Analysis Introduction

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260B, 8081B and 8151A. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound is considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

The "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second

Data Review Report

fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Volatile Organic Compound (VOC) Analyses

1. Holding Times

The specified holding times for the following methods are presented in the table below.

Method	Matrix	Holding Time	Preservation
SW-846 8260B	Water	14 days from collection to analysis; 7 days from collection to analysis if unpreserved	Cool to <6 °C; preserved to a pH of less than 2 s.u.

Note:

s.u. = standard units

The analyses that exceeded the holding are presented in the following table.

Sample Locations	Analysis Completed	Criteria
TW-EB-1-20240222	20 days	14 Days

Sample results associated with sample locations analyzed by analytical method SW-846 8260 were qualified, as specified in the table below. All other holding times were met.

	Qualification			
Criteria	Detected Analytes	Non-detect Analytes		
Analysis completed less than two times holding time	J	UJ		
Analysis completed greater than two times holding time	J	R		

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method, rinse, and trip blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks and trip blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were

greater than the BAL resulted in the removal of the laboratory qualifier (B). Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
TW-DUP-1-20240221 TW-B-1-14-20240221 TW-B-3-14-20240222	Chloroform	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

5. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The RPDs between the LCS and LCSD results must be within the laboratory-established acceptance limits.

The LCS/LCSD analysis exhibited recoveries and RPDs within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 40% for water matrices is applied to the RPD between the parent sample and the field

duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water.

Results for duplicate samples are summarized in the following table.

Sample ID / Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
TW-B-1-14-20240221 / TW-DUP-1-20240221	Carbon tetrachloride	0.265 J	0.278 J	AC

Note:

AC = acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for VOCs

VOCs: SW-846 8260B	Rep	oorted	Performance Acceptable		Not Required	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC	:/MS)					
Tier II Validation						
Holding times		Х	Х			
Reporting limits (units)		Х		Х		
Blanks		ı		ı	ı	
A. Method blanks		Х		Х		
B. Equipment blanks		Х	Х			
C. Trip blanks		Х		Х		
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate (LCSD) %R		Х		Х		
LCS/LCSD Precision (RPD)		Х		Х		
Matrix Spike (MS) %R		Х		Х		
Matrix Spike Duplicate (MSD) %R		Х		Х		
MS/MSD Precision (RPD)		Х		X		
Field/Lab Duplicate (RPD)		X		Х		
Surrogate Spike Recoveries		X		Х		
Dilution Factor		X		Х		
Moisture Content	X				X	

Notes:

%R = percent recovery

RPD = relative percent difference

Organochlorine Pesticides Analyses

1. Holding Times

The specified holding times for the following methods are presented in the table below.

Method	Matrix	Holding Time	Preservation
Pesticides by SW-846 8081B	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Pesticides were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. Pesticide analysis requires that one of the two surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD analysis was not performed on a sample location within this SDG.

5. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The RPDs between the LCS and LCSD results must be within the laboratory-established acceptance limits.

The LCS/LCSD analysis exhibited recoveries and RPDs within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 40% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water.

Results for duplicate samples are summarized in the following table.

Sample ID / Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
TW-B-1-14-20240221 / TW-DUP-1-20240221	All Compounds	U	U	AC

Note:

AC = acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for Pesticides

PESTICIDES: SW-846 8081B	Rep	oorted		rmance eptable	Not Required	
	No	Yes	No	Yes	. Kequireu	
GAS CHROMATOGRAPHY/ELECTRON CAPTURE DE	TECTOR (GC/E	ECD)				
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks					I	
A. Method blanks		Х		Х		
B. Equipment blanks	Х				Х	
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate (LCSD) %R		Х		Х		
LCS/LCSD Precision (RPD)		Х		Х		
Matrix Spike (MS) %R	Х				Х	
Matrix Spike Duplicate (MSD) %R	Х				Х	
MS/MSD Precision (RPD)	Х				Х	
Field/Lab Duplicate (RPD)		Х		Х		
Surrogate Spike Recoveries		Х		X		
Dilution Factor		Х		X		
Moisture Content	X				Х	

Notes:

%R = percent recovery

RPD = relative percent difference

Herbicides Analyses

1. Holding Times

The specified holding times for the following methods are presented in the table below.

Method	Matrix	Holding Time	Preservation
Herbicides by SW-846 8151A	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Herbicides were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. Herbicide analysis requires that surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD analysis was not performed on a sample location within this SDG.

5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

The LCS analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 40% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water.

Results for duplicate samples are summarized in the following table.

Sample ID / Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
TW-B-1-14-20240221 / TW-DUP-1-20240221	Dicamba	0.373 J	0.397 J	AC

Note:

AC = acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for Herbicides

HERBICIDES: SW-846 8151A	Rep	oorted	Perfo Acce	Not		
	No	Yes	No Yes		Required	
GAS CHROMATOGRAPHY/ELECTRON CAPTURE DE	TECTOR (GC/E	CD)				
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks				1	I	
A. Method blanks		Х		Х		
B. Equipment blanks	X				Х	
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate (LCSD) %R	X				Х	
LCS/LCSD Precision (RPD)	Х				Х	
Matrix Spike (MS) %R	Х				Х	
Matrix Spike Duplicate (MSD) %R	X				Х	
MS/MSD Precision (RPD)	X				Х	
Field/Lab Duplicate (RPD)		Х		Х		
Surrogate Spike Recoveries		Х		X		
Dilution Factor		Х		X		
Moisture Content	X				X	

Notes:

%R = percent recovery

RPD = relative percent difference

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

DATE: March 24, 2024

PEER REVIEW: Andrew Korycinski

DATE: March 27, 2024

Chain of Custody and Corrected Sample Analysis Data Sheets

Collected date/time: 02/21/24 12:00

SAMPLE RESULTS - 01

1708993

Volatile Organic Compounds (GC/MS) by Method 8260B

<u> </u>		<u>'</u>							
		Result		Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte		ug/l			ug/l	ug/l		date / time	
Carbon disulfide		U			0.0962	1.00	1	02/29/2024 20:20	WG2236962
Carbon tetrachloride		0.278		<u>J</u>	0.128	1.00	1	02/29/2024 20:20	WG2236962
Chloroform	5.0	0.527	UB:		0.111	5.00	1	02/29/2024 20:20	WG2236962
Methylene Chloride		U			0.430	5.00	1	02/29/2024 20:20	WG2236962
(S) Toluene-d8		115				80.0-120		02/29/2024 20:20	WG2236962
(S) 4-Bromofluorobenz	rene	105				77.0-126		02/29/2024 20:20	WG2236962
(S) 1,2-Dichloroethane-	-d4	110				70.0-130		02/29/2024 20:20	WG2236962

¹Cp

⁵Sr

Chlorinated Acid Herbicides (GC) by Method 8151

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
2,4-D	U		0.547	2.00	1	02/28/2024 03:34	WG2232068
Dalapon	U		0.344	2.00	1	02/28/2024 03:34	WG2232068
2,4-DB	U		0.302	2.00	1	02/28/2024 03:34	WG2232068
Dicamba	0.397	<u>J</u>	0.245	2.00	1	02/28/2024 03:34	WG2232068
Dichloroprop	U		1.04	2.00	1	02/28/2024 03:34	WG2232068
Dinoseb	U		0.250	2.00	1	02/28/2024 03:34	WG2232068
MCPA	U		13.1	100	1	02/28/2024 03:34	WG2232068
MCPP	U		66.0	100	1	02/28/2024 03:34	WG2232068
2,4,5-T	U		0.258	2.00	1	02/28/2024 03:34	WG2232068
2,4,5-TP (Silvex)	U		0.335	2.00	1	02/28/2024 03:34	WG2232068
Pentachlorophenol	U		0.111	1.00	1	02/28/2024 03:34	WG2232068
(S) 2,4-Dichlorophenyl Acetic Acid	66.2			14.0-158		02/28/2024 03:34	<u>WG2232068</u>

⁶Qc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aldrin	U		0.0198	0.0500	1	02/28/2024 01:25	WG2233888
Alpha BHC	U		0.0172	0.0500	1	02/28/2024 01:25	WG2233888
Beta BHC	U		0.0208	0.0500	1	02/28/2024 01:25	WG2233888
Delta BHC	U		0.0150	0.0500	1	02/28/2024 01:25	WG2233888
Gamma BHC	U		0.0209	0.0500	1	02/28/2024 01:25	WG2233888
Chlordane	U		0.0198	5.00	1	02/28/2024 01:25	WG2233888
4,4-DDD	U		0.0177	0.0500	1	02/28/2024 01:25	WG2233888
4,4-DDE	U		0.0154	0.0500	1	02/28/2024 01:25	WG2233888
4,4-DDT	U		0.0198	0.0500	1	02/28/2024 01:25	WG2233888
Dieldrin	U		0.0162	0.0500	1	02/28/2024 01:25	WG2233888
Endosulfan I	U		0.0160	0.0500	1	02/28/2024 01:25	WG2233888
Endosulfan II	U		0.0164	0.0500	1	02/28/2024 01:25	WG2233888
Endosulfan sulfate	U		0.0217	0.0500	1	02/28/2024 01:25	WG2233888
Endrin	U		0.0161	0.0500	1	02/28/2024 01:25	WG2233888
Endrin aldehyde	U		0.0237	0.0500	1	02/28/2024 01:25	WG2233888
Endrin ketone	U		0.0219	0.0500	1	02/28/2024 01:25	WG2233888
Hexachlorobenzene	U		0.0176	0.0500	1	02/28/2024 01:25	WG2233888
Heptachlor	U		0.0148	0.0500	1	02/28/2024 01:25	WG2233888
Heptachlor epoxide	U		0.0183	0.0500	1	02/28/2024 01:25	WG2233888
Methoxychlor	U		0.0193	0.0500	1	02/28/2024 01:25	WG2233888
Toxaphene	U		0.168	0.500	1	02/28/2024 01:25	WG2233888
(S) Decachlorobiphenyl	28.7			10.0-128		02/28/2024 01:25	WG2233888
(S) Tetrachloro-m-xylene	56.0			10.0-127		02/28/2024 01:25	WG2233888

Collected date/time: 02/21/24 00:00

SAMPLE RESULTS - 02

1708993

Volatile Organic Compounds (GC/MS) by Method 8260B

			*	, ,				
		Result	Qualifi	<u>er</u> MDL	RDL	Dilution	Analysis	Batch
Analyte		ug/l		ug/l	ug/l		date / time	
Carbon disulfide		U		0.0962	1.00	1	02/29/2024 20:41	WG2236962
Carbon tetrachloride		0.265	<u>J</u>	0.128	1.00	1	02/29/2024 20:41	WG2236962
Chloroform	5.0	0.514	UB 	0.111	5.00	1	02/29/2024 20:41	WG2236962
Methylene Chloride		U		0.430	5.00	1	02/29/2024 20:41	WG2236962
(S) Toluene-d8		115			80.0-120		02/29/2024 20:41	WG2236962
(S) 4-Bromofluorobe	nzene	108			77.0-126		02/29/2024 20:41	WG2236962
(S) 1,2-Dichloroethar	ne-d4	111			70.0-130		02/29/2024 20:41	WG2236962

Chlorinated Acid Herbicides (GC) by Method 8151

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
2,4-D	U		0.547	2.00	1	02/28/2024 03:44	WG2232068
Dalapon	U		0.344	2.00	1	02/28/2024 03:44	WG2232068
2,4-DB	U		0.302	2.00	1	02/28/2024 03:44	WG2232068
Dicamba	0.373	<u>J</u>	0.245	2.00	1	02/28/2024 03:44	WG2232068
Dichloroprop	U		1.04	2.00	1	02/28/2024 03:44	WG2232068
Dinoseb	U		0.250	2.00	1	02/28/2024 03:44	WG2232068
MCPA	U		13.1	100	1	02/28/2024 03:44	WG2232068
MCPP	U		66.0	100	1	02/28/2024 03:44	WG2232068
2,4,5-T	U		0.258	2.00	1	02/28/2024 03:44	WG2232068
2,4,5-TP (Silvex)	U		0.335	2.00	1	02/28/2024 03:44	WG2232068
Pentachlorophenol	U		0.111	1.00	1	02/28/2024 03:44	WG2232068
(S) 2,4-Dichlorophenyl Acetic Acid	48.5			14.0-158		02/28/2024 03:44	<u>WG2232068</u>

⁶Qc

Analyte ug/l ug/l ug/l date / time Aldrin U 0.0198 0.0500 1 02/28/2024 01:35 WG2233888 Alpha BHC U 0.0172 0.0500 1 02/28/2024 01:35 WG2233888 Beta BHC U 0.0208 0.0500 1 02/28/2024 01:35 WG2233888 Delta BHC U 0.0150 0.0500 1 02/28/2024 01:35 WG2233888 Gamma BHC U 0.0209 0.0500 1 02/28/2024 01:35 WG2233888 Chlordane U 0.0198 5.00 1 02/28/2024 01:35 WG2233888 4,4-DDD U 0.0177 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDT U 0.0154 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan U 0.0162 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan II U 0.0164 0.0500 1 02/28/2024 01:35 WG223	
Alpha BHC U 0.0172 0.0500 1 02/28/2024 01:35 WG2233888 Beta BHC U 0.0208 0.0500 1 02/28/2024 01:35 WG2233888 Delta BHC U 0.0150 0.0500 1 02/28/2024 01:35 WG2233888 Gamma BHC U 0.0209 0.0500 1 02/28/2024 01:35 WG2233888 Chlordane U 0.0198 5.00 1 02/28/2024 01:35 WG2233888 4,4-DDD U 0.0177 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDE U 0.0154 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDT U 0.0198 0.0500 1 02/28/2024 01:35 WG2233888 Dieldrin U 0.0162 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan I U 0.0160 0.0500 1 02/28/2024 01:35 WG2233888 Endrin U 0.0217 0.0500 1	
Beta BHC U 0.0208 0.0500 1 02/28/2024 01:35 WG2233888 Delta BHC U 0.0150 0.0500 1 02/28/2024 01:35 WG2233888 Gamma BHC U 0.0209 0.0500 1 02/28/2024 01:35 WG2233888 Chlordane U 0.0198 5.00 1 02/28/2024 01:35 WG2233888 4,4-DDD U 0.0177 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDE U 0.0154 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDT U 0.0198 0.0500 1 02/28/2024 01:35 WG2233888 Dieldrin U 0.0162 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan I U 0.0160 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan sulfate U 0.0217 0.0500 1 02/28/2024 01:35 WG2233888 Endrin U 0.0161 0.0500	
Delta BHC U 0.0150 0.0500 1 02/28/2024 01:35 WG2233888 Gamma BHC U 0.0209 0.0500 1 02/28/2024 01:35 WG2233888 Chlordane U 0.0198 5.00 1 02/28/2024 01:35 WG2233888 4,4-DDD U 0.0177 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDE U 0.0154 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDT U 0.0198 0.0500 1 02/28/2024 01:35 WG2233888 Dieldrin U 0.0162 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan I U 0.0160 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan Sulfate U 0.0164 0.0500 1 02/28/2024 01:35 WG2233888 Endrin U 0.0217 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0237 0.0500	
Gamma BHC U 0.0209 0.0500 1 02/28/2024 01:35 WG2233888 Chlordane U 0.0198 5.00 1 02/28/2024 01:35 WG2233888 4,4-DDD U 0.0177 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDE U 0.0154 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDT U 0.0198 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan U 0.0162 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan II U 0.0164 0.0500 1 02/28/2024 01:35 WG2233888 Endrin U 0.0217 0.0500 1 02/28/2024 01:35 WG2233888 Endrin aldehyde U 0.0217 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0219 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0219 0.0500	
Chlordane U 0.0198 5.00 1 02/28/2024 01:35 WG2233888 4,4-DDD U 0.0177 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDE U 0.0154 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDT U 0.0198 0.0500 1 02/28/2024 01:35 WG2233888 Dieldrin U 0.0162 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan I U 0.0160 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan sulfate U 0.0164 0.0500 1 02/28/2024 01:35 WG2233888 Endrin U 0.0217 0.0500 1 02/28/2024 01:35 WG2233888 Endrin aldehyde U 0.0237 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0219 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0219 0.0500 <td></td>	
4,4-DDD U 0.0177 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDE U 0.0154 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDT U 0.0198 0.0500 1 02/28/2024 01:35 WG2233888 Dieldrin U 0.0162 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan I U 0.0160 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan sulfate U 0.0164 0.0500 1 02/28/2024 01:35 WG2233888 Endrin U 0.0161 0.0500 1 02/28/2024 01:35 WG2233888 Endrin aldehyde U 0.0237 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0219 0.0500 1 02/28/2024 01:35 WG2233888 Hexachlorobenzene U 0.0176 0.0500 1 02/28/2024 01:35 WG2233888	
4,4-DDE U 0.0154 0.0500 1 02/28/2024 01:35 WG2233888 4,4-DDT U 0.0198 0.0500 1 02/28/2024 01:35 WG2233888 Dieldrin U 0.0162 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan I U 0.0160 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan II U 0.0164 0.0500 1 02/28/2024 01:35 WG2233888 Endrins ulfate U 0.0217 0.0500 1 02/28/2024 01:35 WG2233888 Endrin aldehyde U 0.0161 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0219 0.0500 1 02/28/2024 01:35 WG2233888 Hexachlorobenzene U 0.0176 0.0500 1 02/28/2024 01:35 WG2233888	
4,4-DDT U 0.0198 0.0500 1 02/28/2024 01:35 WG2233888 Dieldrin U 0.0162 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan I U 0.0160 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan II U 0.0164 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan sulfate U 0.0217 0.0500 1 02/28/2024 01:35 WG2233888 Endrin U 0.0161 0.0500 1 02/28/2024 01:35 WG2233888 Endrin aldehyde U 0.0237 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0219 0.0500 1 02/28/2024 01:35 WG2233888 Hexachlorobenzene U 0.0176 0.0500 1 02/28/2024 01:35 WG2233888	
Dieldrin U 0.0162 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan I U 0.0160 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan II U 0.0164 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan sulfate U 0.0217 0.0500 1 02/28/2024 01:35 WG2233888 Endrin U 0.0161 0.0500 1 02/28/2024 01:35 WG2233888 Endrin aldehyde U 0.0237 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0219 0.0500 1 02/28/2024 01:35 WG2233888 Hexachlorobenzene U 0.0176 0.0500 1 02/28/2024 01:35 WG2233888	
Endosulfan I U 0.0160 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan II U 0.0164 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan sulfate U 0.0217 0.0500 1 02/28/2024 01:35 WG2233888 Endrin U 0.0161 0.0500 1 02/28/2024 01:35 WG2233888 Endrin aldehyde U 0.0237 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0219 0.0500 1 02/28/2024 01:35 WG2233888 Hexachlorobenzene U 0.0176 0.0500 1 02/28/2024 01:35 WG2233888	
Endosulfan II U 0.0164 0.0500 1 02/28/2024 01:35 WG2233888 Endosulfan sulfate U 0.0217 0.0500 1 02/28/2024 01:35 WG2233888 Endrin U 0.0161 0.0500 1 02/28/2024 01:35 WG2233888 Endrin aldehyde U 0.0237 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0219 0.0500 1 02/28/2024 01:35 WG2233888 Hexachlorobenzene U 0.0176 0.0500 1 02/28/2024 01:35 WG2233888	
Endosulfan sulfate U 0.0217 0.0500 1 02/28/2024 01:35 WG2233888 Endrin U 0.0161 0.0500 1 02/28/2024 01:35 WG2233888 Endrin aldehyde U 0.0237 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0219 0.0500 1 02/28/2024 01:35 WG2233888 Hexachlorobenzene U 0.0176 0.0500 1 02/28/2024 01:35 WG2233888	
Endrin U 0.0161 0.0500 1 02/28/2024 01:35 WG2233888 Endrin aldehyde U 0.0237 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0219 0.0500 1 02/28/2024 01:35 WG2233888 Hexachlorobenzene U 0.0176 0.0500 1 02/28/2024 01:35 WG2233888	
Endrin aldehyde U 0.0237 0.0500 1 02/28/2024 01:35 WG2233888 Endrin ketone U 0.0219 0.0500 1 02/28/2024 01:35 WG2233888 Hexachlorobenzene U 0.0176 0.0500 1 02/28/2024 01:35 WG2233888	
Endrin ketone U 0.0219 0.0500 1 02/28/2024 01:35 WG2233888 Hexachlorobenzene U 0.0176 0.0500 1 02/28/2024 01:35 WG2233888	
Hexachlorobenzene U 0.0176 0.0500 1 02/28/2024 01:35 WG2233888	
Heptachlor U 0.0148 0.0500 1 02/28/2024 01:35 <u>WG2233888</u>	
Heptachlor epoxide U 0.0183 0.0500 1 02/28/2024 01:35 <u>WG2233888</u>	
Methoxychlor U 0.0193 0.0500 1 02/28/2024 01:35 <u>WG2233888</u>	
Toxaphene U 0.168 0.500 1 02/28/2024 01:35 <u>WG2233888</u>	
(S) Decachlorobiphenyl 13.9 10.0-128 02/28/2024 01:35 <u>WG2233888</u>	
(S) Tetrachloro-m-xylene 41.9 10.0-127 02/28/2024 01:35 <u>WG2233888</u>	

1708993

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U		0.0962	1.00	1	02/29/2024 21:02	WG2236962
Carbon tetrachloride	1.41		0.128	1.00	1	02/29/2024 21:02	WG2236962
Chloroform	1.23	<u>J</u>	0.111	5.00	1	02/29/2024 21:02	WG2236962
Methylene Chloride	U		0.430	5.00	1	02/29/2024 21:02	WG2236962
(S) Toluene-d8	116			80.0-120		02/29/2024 21:02	WG2236962
(S) 4-Bromofluorobenzene	108			77.0-126		02/29/2024 21:02	WG2236962
(S) 1,2-Dichloroethane-d4	112			70.0-130		02/29/2024 21:02	<u>WG2236962</u>

⁵Sr

Chlorinated Acid Herbicides (GC) by Method 8151

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	444	ug/l	ug/l	2	date / time	<u> </u>
2,4-D	U		0.547	2.00	1	02/28/2024 07:48	WG2233607
Dalapon	U		0.344	2.00	1	02/28/2024 07:48	WG2233607
2,4-DB	U		0.302	2.00	1	02/28/2024 07:48	WG2233607
Dicamba	U		0.245	2.00	1	02/28/2024 07:48	WG2233607
Dichloroprop	U		1.04	2.00	1	02/28/2024 07:48	WG2233607
Dinoseb	U		0.250	2.00	1	02/28/2024 07:48	WG2233607
MCPA	U		13.1	100	1	02/28/2024 19:35	WG2233607
MCPP	U		66.0	100	1	02/28/2024 19:35	WG2233607
2,4,5-T	U		0.258	2.00	1	02/28/2024 07:48	WG2233607
2,4,5-TP (Silvex)	U		0.335	2.00	1	02/28/2024 07:48	WG2233607
Pentachlorophenol	U		0.111	1.00	1	02/28/2024 07:48	WG2233607
(S) 2,4-Dichlorophenyl Acetic Acid	95.0			14.0-158		02/28/2024 19:35	WG2233607
(S) 2,4-Dichlorophenyl Acetic Acid	97.6			14.0-158		02/28/2024 07:48	WG2233607

QC 7

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aldrin	U		0.0198	0.0500	1	02/28/2024 01:45	WG2233888
Alpha BHC	U		0.0172	0.0500	1	02/28/2024 01:45	WG2233888
Beta BHC	U		0.0208	0.0500	1	02/28/2024 01:45	WG2233888
Delta BHC	U		0.0150	0.0500	1	02/28/2024 01:45	WG2233888
Gamma BHC	U		0.0209	0.0500	1	02/28/2024 01:45	WG2233888
Chlordane	U		0.0198	5.00	1	02/28/2024 01:45	WG2233888
4,4-DDD	U		0.0177	0.0500	1	02/28/2024 01:45	WG2233888
4,4-DDE	U		0.0154	0.0500	1	02/28/2024 01:45	WG2233888
4,4-DDT	U		0.0198	0.0500	1	02/28/2024 01:45	WG2233888
Dieldrin	U		0.0162	0.0500	1	02/28/2024 01:45	WG2233888
Endosulfan I	U		0.0160	0.0500	1	02/28/2024 01:45	WG2233888
Endosulfan II	U		0.0164	0.0500	1	02/28/2024 01:45	WG2233888
Endosulfan sulfate	U		0.0217	0.0500	1	02/28/2024 01:45	WG2233888
Endrin	U		0.0161	0.0500	1	02/28/2024 01:45	WG2233888
Endrin aldehyde	U		0.0237	0.0500	1	02/28/2024 01:45	WG2233888
Endrin ketone	U		0.0219	0.0500	1	02/28/2024 01:45	WG2233888
Hexachlorobenzene	U		0.0176	0.0500	1	02/28/2024 01:45	WG2233888
Heptachlor	U		0.0148	0.0500	1	02/28/2024 01:45	WG2233888
Heptachlor epoxide	U		0.0183	0.0500	1	02/28/2024 01:45	WG2233888
Methoxychlor	U		0.0193	0.0500	1	02/28/2024 01:45	WG2233888
Toxaphene	U		0.168	0.500	1	02/28/2024 01:45	WG2233888
(S) Decachlorobiphenyl	36.2			10.0-128		02/28/2024 01:45	WG2233888
(S) Tetrachloro-m-xylene	64.6			10.0-127		02/28/2024 01:45	WG2233888

1708993

Volatile Organic Compounds (GC/MS) by Method 8260B

		Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte		ug/l		ug/l	ug/l		date / time	
Carbon disulfide		U		0.0962	1.00	1	02/29/2024 21:23	WG2236962
Carbon tetrachloride		U		0.128	1.00	1	02/29/2024 21:23	WG2236962
Chloroform	5.0	0.427	UB - <u></u>	0.111	5.00	1	02/29/2024 21:23	WG2236962
Methylene Chloride		U		0.430	5.00	1	02/29/2024 21:23	WG2236962
(S) Toluene-d8		119			80.0-120		02/29/2024 21:23	WG2236962
(S) 4-Bromofluorobenz	ene.	107			77.0-126		02/29/2024 21:23	WG2236962
(S) 1,2-Dichloroethane	-d4	110			70.0-130		02/29/2024 21:23	WG2236962

Chlorinated Acid Herbicides (GC) by Method 8151

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
2,4-D	U		0.547	2.00	1	02/28/2024 07:58	WG2233607
Dalapon	U		0.344	2.00	1	02/28/2024 07:58	WG2233607
2,4-DB	U		0.302	2.00	1	02/28/2024 07:58	WG2233607
Dicamba	U		0.245	2.00	1	02/28/2024 07:58	WG2233607
Dichloroprop	U		1.04	2.00	1	02/28/2024 07:58	WG2233607
Dinoseb	U		0.250	2.00	1	02/28/2024 07:58	WG2233607
MCPA	U		13.1	100	1	02/28/2024 19:45	WG2233607
MCPP	U		66.0	100	1	02/28/2024 19:45	WG2233607
2,4,5-T	U		0.258	2.00	1	02/28/2024 07:58	WG2233607
2,4,5-TP (Silvex)	U		0.335	2.00	1	02/28/2024 07:58	WG2233607
Pentachlorophenol	U		0.111	1.00	1	02/28/2024 07:58	WG2233607
(S) 2,4-Dichlorophenyl Acetic Acid	68.0			14.0-158		02/28/2024 19:45	<u>WG2233607</u>
(S) 2,4-Dichlorophenyl Acetic Acid	65.8			14.0-158		02/28/2024 07:58	WG2233607

⁶Qc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aldrin	U		0.0198	0.0500	1	02/28/2024 00:10	WG2233913
Alpha BHC	U		0.0172	0.0500	1	02/28/2024 00:10	WG2233913
Beta BHC	U		0.0208	0.0500	1	02/28/2024 00:10	WG2233913
Delta BHC	U		0.0150	0.0500	1	02/28/2024 00:10	WG2233913
Gamma BHC	U		0.0209	0.0500	1	02/28/2024 00:10	WG2233913
Chlordane	U		0.0198	5.00	1	02/28/2024 00:10	WG2233913
4,4-DDD	U		0.0177	0.0500	1	02/28/2024 00:10	WG2233913
4,4-DDE	U		0.0154	0.0500	1	02/28/2024 00:10	WG2233913
4,4-DDT	U		0.0198	0.0500	1	02/28/2024 00:10	WG2233913
Dieldrin	U		0.0162	0.0500	1	02/28/2024 00:10	WG2233913
Endosulfan I	U		0.0160	0.0500	1	02/28/2024 00:10	WG2233913
Endosulfan II	U		0.0164	0.0500	1	02/28/2024 00:10	WG2233913
Endosulfan sulfate	U		0.0217	0.0500	1	02/28/2024 00:10	WG2233913
Endrin	U		0.0161	0.0500	1	02/28/2024 00:10	WG2233913
Endrin aldehyde	U		0.0237	0.0500	1	02/28/2024 00:10	WG2233913
Endrin ketone	U		0.0219	0.0500	1	02/28/2024 00:10	WG2233913
Hexachlorobenzene	U		0.0176	0.0500	1	02/28/2024 00:10	WG2233913
Heptachlor	U		0.0148	0.0500	1	02/28/2024 00:10	WG2233913
Heptachlor epoxide	U		0.0183	0.0500	1	02/28/2024 00:10	WG2233913
Methoxychlor	U		0.0193	0.0500	1	02/28/2024 00:10	WG2233913
Toxaphene	U		0.168	0.500	1	02/28/2024 00:10	WG2233913
(S) Decachlorobiphenyl	54.2			10.0-128		02/28/2024 00:10	WG2233913
(S) Tetrachloro-m-xylene	79.7			10.0-127		02/28/2024 00:10	WG2233913

L1708993

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U		0.0962	1.00	1	02/29/2024 21:44	WG2236962
Carbon tetrachloride	U		0.128	1.00	1	02/29/2024 21:44	WG2236962
Chloroform	U		0.111	5.00	1	02/29/2024 21:44	WG2236962
Methylene Chloride	U		0.430	5.00	1	02/29/2024 21:44	WG2236962
(S) Toluene-d8	115			80.0-120		02/29/2024 21:44	WG2236962
(S) 4-Bromofluorobenzene	108			77.0-126		02/29/2024 21:44	WG2236962
(S) 1,2-Dichloroethane-d4	113			70.0-130		02/29/2024 21:44	WG2236962

L1708993

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U		0.0962	1.00	1	02/29/2024 22:05	WG2236962
Carbon tetrachloride	U		0.128	1.00	1	02/29/2024 22:05	WG2236962
Chloroform	U		0.111	5.00	1	02/29/2024 22:05	WG2236962
Methylene Chloride	U		0.430	5.00	1	02/29/2024 22:05	WG2236962
(S) Toluene-d8	117			80.0-120		02/29/2024 22:05	WG2236962
(S) 4-Bromofluorobenzene	106			77.0-126		02/29/2024 22:05	WG2236962
(S) 1,2-Dichloroethane-d4	111			70.0-130		02/29/2024 22:05	WG2236962

TW-EB-1-20240222

Collected date/time: 02/22/24 15:48

SAMPLE RESULTS - 07

L1708993

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U	UJ <u>T8</u>	0.0962	1.00	1	03/13/2024 21:41	WG2245978
Carbon tetrachloride	U	UJ <u>T8</u>	0.128	1.00	1	03/13/2024 21:41	WG2245978
Chloroform	0.113	ე ე⊺8	0.111	5.00	1	03/13/2024 21:41	WG2245978
Methylene Chloride	U	UJ- <u>T8</u> -	0.430	5.00	1	03/13/2024 21:41	WG2245978
(S) Toluene-d8	107			80.0-120		03/13/2024 21:41	WG2245978
(S) 4-Bromofluorobenzene	88.8			77.0-126		03/13/2024 21:41	WG2245978
(S) 1,2-Dichloroethane-d4	111			70.0-130		03/13/2024 21:41	WG2245978

TRIPLANK

SAMPLE RESULTS - 08

Collected date/time: 02/22/24 00:00

L1708993

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U		0.0962	1.00	1	02/29/2024 16:08	WG2236962
Carbon tetrachloride	U		0.128	1.00	1	02/29/2024 16:08	WG2236962
Chloroform	U		0.111	5.00	1	02/29/2024 16:08	WG2236962
Methylene Chloride	U		0.430	5.00	1	02/29/2024 16:08	WG2236962
(S) Toluene-d8	116			80.0-120		02/29/2024 16:08	WG2236962
(S) 4-Bromofluorobenzene	107			77.0-126		02/29/2024 16:08	WG2236962
(S) 1,2-Dichloroethane-d4	108			70.0-130		02/29/2024 16:08	WG2236962

Company Name/Address.		Billing Info	rmation:		Analysis / Container / Preservative								Chain of Custody Page of			
UPRR - Arcadis		er	Pres													
8808 E Wellesley Ave Spokane, WA 99212				prague Ave Valley, WA	99212	Chk									PEOPLE	ACE* E ADVANGING SCIENCE
Report to:			Email To:												MT JU	ULIET, TN
Josh Lee		1	Joshua.Lee						100		Tu de		12065 Lebanon Rd Mo Submitting a sample via			
Project Description: UPRR - Rockford, WA		City/State Collected:	Rockfu	rd, NA	ircle: CT ET		- in the second							Pace Terms and Condit https://info.pacelabs.co terms.pdf	tions found at-	
Phone: 406-239-7810	Client Project	357		Lab Project #	-ROCKFORE		S								SDG#	(70")
Collected by (print):	Site/Facility			P.O. #			Nopre	o Pres	10						Acctnum: UPF	133
Collected by (signature): And A. Wille	Same ((Lab MUST Be	Day	Quote #			Amb-l	-Amb-No	40mlAmb+H						Template:T24 Prelogin: P10	6113
Immediately Packed on Ice N Y	Next D	ay5 Day Day10 Day	y (Rad Only) ay (Rad Only)	Std.	ılts Needed	No. of	100ml Amb-NoPres	111							PM: 829 - Britt PB: C	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	8081	SV815:	V8260						Shipped Via: F6	Sample # (lab only)
TW-DUP-1-20240221	G	GW		2/2/2024	1 1200	17	X	X	X							10-
TW-B-1-14-20240221	Ca	GW	14	2/21/2020		17	X	×	X							-02
TN-8-2-14-20240222	6	GW	14	2/22/207	41125	7	X	X	X							-03
TW-8-3-14-20240222	C	GW	TH	2/22/202		7	X	X	X							-04
TW-8-3-14-20240222 TW-B-7-20240222	G	GW	8	2/22/20		90			X				1		TEAL WA	105
74-8-5-9,4-20240222		GW	4.4	2/22/202	1 1200	% 7	H	H	X						volume on 1	56
TW-EB-1-20240222	C	GW		2/20/20	24 1548	7			X							-07
		GW														
		GW											1			
		GW														
* Matrix: Rei SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay		WR # C								рН	Tem	p	COC S:	eal Pro Lgned/	Accurate:	NP Y N
ww - WasteWater	-	-8-505	2220h		MS/NS	D		E-740	1	Flow_	Oth	er	Corre	t bott	ive intact: tles used. volume sent!	$= \frac{\mathcal{L}_{y}}{\mathcal{L}_{y}} = \frac{N}{N}$
343	ups V FedE	x Courier		Trac	king #	19									If Applicab	Y N
Relinquished by: (Signature)		7 2/2/2 (Time	Rec	eived by: (Signa	ture)				Trip Blank I	2	HCL/MeoH			n Correct/Ch <0.5 πP/hr:	ecked: Y N
Relinquished by : (Signature)		Date:	Time	e: Rec	eived by: (Signa	ture)				Temp:	°C Bot	ttles Received:	If press	ervation	required by Log	gin: Date/Time
Relinquished by : (Signature)		Date:	Time	Rec	eived for lab by	: (Signat	ure)	1/	[]	Date	Tir	ne:	Hold	5 17		Condition:

UPRR

Data Review Report

Rockford, Washington

Volatile Organic Compounds (VOCs), Organochlorine Pesticides and Herbicides Analyses SDG #L1709164

Analyses Performed By: Pace Analytical National Mt. Juliet, Tennessee

Report #53378R Review Level: Tier II Project: 30210357.3

Summary

This Data Review Report summarizes the review of Sample Delivery Group (SDG) #L1709164 for samples collected in association with the UPRR Rockford, Washington Site. The review was conducted as a Tier II evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Samula ID	Lob ID	Lab ID Matrix Collection Parent						Analysi	s		
Sample ID	Lab ID	Watrix	Date	Sample	voc	svoc	GAS	PEST	HERB	MET	MISC
B-1-2.0-2.5-20240220	L1709164-01	Soil	2/20/2024		Х						
B-1-18.5-19.0- 20240220	L1709164-02	Soil	2/20/2024		Х						
B-2-1.5-2.0-20240220	L1709164-03	Soil	2/20/2024		Х						
B-2-14.5-15.0- 20240220	L1709164-04	Soil	2/20/2024		х						
B-2-18.5-19.0- 20240220	L1709164-05	Soil	2/20/2024		х						
B-3-3.5-4.0-20240220	L1709164-06	Soil	2/20/2024		Х						
B-3-16.5-17.0- 20240220	L1709164-07	Soil	2/20/2024		Х						
B-3-18.0-18.5- 20240220	L1709164-08	Soil	2/20/2024		х						
B-4-1.0-1.5-20240221	L1709164-09	Soil	2/21/2024		Х						
B-4-8.0-8.5-20240221	L1709164-10	Soil	2/21/2024		Х						
B-5-1.0-1.5-20240221	L1709164-11	Soil	2/21/2024		Х						
B-5-8.0-8.5-20240221	L1709164-12	Soil	2/21/2024		Х						
B-DUP-20240220	L1709164-13	Soil	2/20/2024	B-1-2.0-2.5- 20240220	Х						
TRIPLANK	L1709164-14	Water	2/20/2024		Х						

Notes:

1. A matrix spike (MS)/matrix spike duplicate (MSD) analysis was performed on sample location B-4-8.0-8.5-20240221 for VOCs.

Analytical Data Package Documentation

The table below evaluates the data package completeness.

Items Reviewed	Rep	orted		mance ptable	Not Required
	No	Yes	No	Yes	Requireu
Sample receipt condition		Х		X ¹	
2. Requested analyses and sample results		Х		Х	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed chain-of-custody form		Х		Х	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data package completeness and compliance		Х		Х	

Notes:

QA = quality assurance

1- The Trip Blank was not documented on the COC.

Organic Analysis Introduction

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260B. Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound is considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

The "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second

Data Review Report

fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Volatile Organic Compound (VOC) Analyses

1. Holding Times

The specified holding times for the following methods are presented in the table below.

Method	Matrix	Holding Time	Preservation
SW-846 8260B	Water	14 days from collection to analysis; 7 days from collection to analysis if unpreserved	Cool to <6 °C; preserved to a pH of less than 2 s.u.
	Soil	14 days from collection to analysis	Cool to <6 °C

Note:

s.u. = standard units

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method, rinse, and trip blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks and trip blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

5. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The RPDs between the LCS and LCSD results must be within the laboratory-established acceptance limits.

The LCS/LCSD analysis exhibited recoveries and RPDs within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 40% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water.

Results for duplicate samples are summarized in the following table.

Sample ID / Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
B-1-2.0-2.5-20240220 / B-DUP-20240220	Carbon tetrachloride	13.5	54.2 J	NC
2 · 2.3 2.3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	Chloroform	3.61 U	20.7 J	NC

Note:

AC = acceptable NC = not compliant

The compounds Carbon tetrachloride and Chloroform associated with sample locations B-1-2.0-2.5-20240220 and B-DUP-20240220 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

7. System Performance and Overall Assessment

The laboratory noted that sample location B-DUP-20240220 had a foamy matrix that resulted in elevated reporting limits.

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for VOCs

VOCs: SW-846 8260B	Rep	oorted	Perfo Acce	Not Required	
	No	Yes	No	Yes	. Kequirea
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (C	GC/MS)				
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks				ı	
A. Method blanks		Х		Х	
B. Equipment blanks	Х				Х
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		X	X		
Surrogate Spike Recoveries		X		Х	
Dilution Factor		X		Х	
Moisture Content	X				Х

Notes:

%R = percent recovery

RPD = relative percent difference

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

DATE: March 24, 2024

PEER REVIEW: Andrew Korycinski

DATE: March 27, 2024

Chain of Custody and Corrected Sample Analysis Data Sheets

L1709164

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	82.9		1	02/27/2024 10:08	WG2234574

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		1.01	18.1	1	03/04/2024 23:09	WG2239349
Carbon tetrachloride	13.5	J	1.30	7.23	1	03/04/2024 23:09	WG2239349
Chloroform	U	UJ	1.49	3.61	1	03/04/2024 23:09	WG2239349
Methylene Chloride	U		9.60	36.1	1	03/04/2024 23:09	WG2239349
(S) Toluene-d8	103			<i>75.0-131</i>		03/04/2024 23:09	WG2239349
(S) 4-Bromofluorobenzene	97.2			67.0-138		03/04/2024 23:09	WG2239349
(S) 1,2-Dichloroethane-d4	93.7			70.0-130		03/04/2024 23:09	WG2239349

³Ss

SDG:

L1709164

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	83.8		1	02/27/2024 10:08	WG2234574

³Ss

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		0.982	17.5	1	03/04/2024 23:27	WG2239349
Carbon tetrachloride	U		1.26	7.01	1	03/04/2024 23:27	WG2239349
Chloroform	U		1.44	3.51	1	03/04/2024 23:27	WG2239349
Methylene Chloride	U		9.31	35.1	1	03/04/2024 23:27	WG2239349
(S) Toluene-d8	103			<i>75.0-131</i>		03/04/2024 23:27	WG2239349
(S) 4-Bromofluorobenzene	95.6			67.0-138		03/04/2024 23:27	WG2239349
(S) 1,2-Dichloroethane-d4	93.6			70.0-130		03/04/2024 23:27	WG2239349

SDG:

L1709164

DATE/TIME:

03/15/24 12:19

PAGE:

7 of 28

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	77.4		1	02/27/2024 10:08	WG2234574

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		9.01	161	8	03/05/2024 02:18	WG2239349
Carbon tetrachloride	U		11.6	64.4	8	03/05/2024 02:18	WG2239349
Chloroform	U		13.3	32.2	8	03/05/2024 02:18	WG2239349
Methylene Chloride	U		85.4	322	8	03/05/2024 02:18	WG2239349
(S) Toluene-d8	103			75.0-131		03/05/2024 02:18	WG2239349
(S) 4-Bromofluorobenzene	96.3			67.0-138		03/05/2024 02:18	WG2239349
(S) 1,2-Dichloroethane-d4	96.1			70.0-130		03/05/2024 02:18	WG2239349

Sample Narrative:

L1709164-03 WG2239349: Elevated RL due to foamy matrix.

PROJECT:

30210357

L1709164

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	81.7		1	02/27/2024 10:08	WG2234574

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		1.07	19.1	1	03/04/2024 23:46	WG2239349
Carbon tetrachloride	U		1.37	7.65	1	03/04/2024 23:46	WG2239349
Chloroform	U		1.58	3.82	1	03/04/2024 23:46	WG2239349
Methylene Chloride	U		10.2	38.2	1	03/04/2024 23:46	WG2239349
(S) Toluene-d8	103			75.0-131		03/04/2024 23:46	WG2239349
(S) 4-Bromofluorobenzene	95.6			67.0-138		03/04/2024 23:46	WG2239349
(S) 1,2-Dichloroethane-d4	92.4			70.0-130		03/04/2024 23:46	WG2239349

Ss

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	76.0		1	02/27/2024 10:08	WG2234574

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		1.72	30.8	1.63	03/05/2024 00:05	WG2239349
Carbon tetrachloride	U		2.20	12.3	1.63	03/05/2024 00:05	WG2239349
Chloroform	U		2.54	6.16	1.63	03/05/2024 00:05	WG2239349
Methylene Chloride	U		16.3	61.6	1.63	03/05/2024 00:05	WG2239349
(S) Toluene-d8	105			<i>75.0-131</i>		03/05/2024 00:05	WG2239349
(S) 4-Bromofluorobenzene	96.6			67.0-138		03/05/2024 00:05	WG2239349
(S) 1,2-Dichloroethane-d4	93.5			70.0-130		03/05/2024 00:05	WG2239349

³Ss

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	81.2		1	02/27/2024 10:08	WG2234574

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	6.48	<u>J</u>	1.12	20.0	1.11	03/05/2024 00:24	WG2239349
Carbon tetrachloride	U		1.44	8.00	1.11	03/05/2024 00:24	WG2239349
Chloroform	U		1.64	4.01	1.11	03/05/2024 00:24	WG2239349
Methylene Chloride	U		10.6	40.1	1.11	03/05/2024 00:24	WG2239349
(S) Toluene-d8	106			<i>75.0-131</i>		03/05/2024 00:24	WG2239349
(S) 4-Bromofluorobenzene	99.1			67.0-138		03/05/2024 00:24	WG2239349
(S) 1,2-Dichloroethane-d4	92.8			70.0-130		03/05/2024 00:24	WG2239349

³Ss

SDG:

L1709164

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	84.8		1	02/27/2024 10:08	WG2234574

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		0.958	17.1	1	03/05/2024 00:43	WG2239349
Carbon tetrachloride	U		1.23	6.84	1	03/05/2024 00:43	WG2239349
Chloroform	U		1.41	3.42	1	03/05/2024 00:43	WG2239349
Methylene Chloride	U		9.09	34.2	1	03/05/2024 00:43	WG2239349
(S) Toluene-d8	103			75.0-131		03/05/2024 00:43	WG2239349
(S) 4-Bromofluorobenzene	97.3			67.0-138		03/05/2024 00:43	WG2239349
(S) 1,2-Dichloroethane-d4	93.3			70.0-130		03/05/2024 00:43	WG2239349

Ss

SDG:

L1709164

DATE/TIME:

03/15/24 12:19

PAGE:

12 of 28

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	80.6		1	02/27/2024 10:08	WG2234574

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		1.04	18.7	1	03/05/2024 01:02	WG2239349
Carbon tetrachloride	U		1.34	7.46	1	03/05/2024 01:02	WG2239349
Chloroform	U		1.54	3.73	1	03/05/2024 01:02	WG2239349
Methylene Chloride	U		9.91	37.3	1	03/05/2024 01:02	WG2239349
(S) Toluene-d8	103			75.0-131		03/05/2024 01:02	WG2239349
(S) 4-Bromofluorobenzene	96.9			67.0-138		03/05/2024 01:02	WG2239349
(S) 1,2-Dichloroethane-d4	94.1			70.0-130		03/05/2024 01:02	WG2239349

³Ss

SDG:

L1709164

B-4-1.0-1.5-20240221 Collected date/time: 02/21/24 09:30

SAMPLE RESULTS - 09

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	74.7		1	02/27/2024 10:08	WG2234574	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		11.8	210	10	03/05/2024 02:37	WG2239349
Carbon tetrachloride	U		15.1	84.1	10	03/05/2024 02:37	WG2239349
Chloroform	U		17.3	42.0	10	03/05/2024 02:37	WG2239349
Methylene Chloride	U		112	420	10	03/05/2024 02:37	WG2239349
(S) Toluene-d8	102			75.0-131		03/05/2024 02:37	WG2239349
(S) 4-Bromofluorobenzene	101			67.0-138		03/05/2024 02:37	WG2239349
(S) 1.2-Dichloroethane-d4	95.3			70.0-130		03/05/2024 02:37	WG2239349

Ss

GI

Sample Narrative:

L1709164-09 WG2239349: Elevated RL due to foamy matrix.

L1709164

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	80.8		1	02/27/2024 09:48	WG2234576

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		1.06	18.9	1	03/05/2024 01:21	WG2239349
Carbon tetrachloride	U		1.36	7.57	1	03/05/2024 01:21	WG2239349
Chloroform	U		1.56	3.79	1	03/05/2024 01:21	WG2239349
Methylene Chloride	U		10.1	37.9	1	03/05/2024 01:21	WG2239349
(S) Toluene-d8	103			<i>75.0-131</i>		03/05/2024 01:21	WG2239349
(S) 4-Bromofluorobenzene	96.0			67.0-138		03/05/2024 01:21	WG2239349
(S) 1,2-Dichloroethane-d4	94.8			70.0-130		03/05/2024 01:21	WG2239349

Ss

SDG:

L1709164

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	79.6		1	02/27/2024 09:48	WG2234576

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		10.9	195	10	03/05/2024 02:56	WG2239349
Carbon tetrachloride	U		14.0	77.9	10	03/05/2024 02:56	WG2239349
Chloroform	U		16.0	38.9	10	03/05/2024 02:56	WG2239349
Methylene Chloride	U		103	389	10	03/05/2024 02:56	WG2239349
(S) Toluene-d8	105			75.0-131		03/05/2024 02:56	WG2239349
(S) 4-Bromofluorobenzene	97.0			67.0-138		03/05/2024 02:56	WG2239349
(S) 1,2-Dichloroethane-d4	95.1			70.0-130		03/05/2024 02:56	WG2239349

Ss

GI

Sample Narrative:

L1709164-11 WG2239349: Elevated RL due to foamy matrix.

SDG:

L1709164

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	84.8		1	02/27/2024 09:48	WG2234576

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		10.3	183	10.9	03/05/2024 03:15	WG2239349
Carbon tetrachloride	U		13.2	73.3	10.9	03/05/2024 03:15	WG2239349
Chloroform	U		15.1	36.7	10.9	03/05/2024 03:15	WG2239349
Methylene Chloride	U		97.4	367	10.9	03/05/2024 03:15	WG2239349
(S) Toluene-d8	102			75.0-131		03/05/2024 03:15	WG2239349
(S) 4-Bromofluorobenzene	99.2			67.0-138		03/05/2024 03:15	WG2239349
(S) 1,2-Dichloroethane-d4	95.3			70.0-130		03/05/2024 03:15	WG2239349

Ss

Sample Narrative:

L1709164-12 WG2239349: Elevated RL due to foamy matrix.

B-DUP-20240220

Collected date/time: 02/20/24 08:00

SAMPLE RESULTS - 13

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	83.1		1	02/27/2024 09:48	WG2234576

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		10.1	181	10	03/05/2024 03:34	WG2239349
Carbon tetrachloride	54.2	<u>J</u>	13.0	72.5	10	03/05/2024 03:34	WG2239349
Chloroform	20.7	<u>J</u>	14.9	36.2	10	03/05/2024 03:34	WG2239349
Methylene Chloride	U		96.2	362	10	03/05/2024 03:34	WG2239349
(S) Toluene-d8	102			75.0-131		03/05/2024 03:34	WG2239349
(S) 4-Bromofluorobenzene	95.9			67.0-138		03/05/2024 03:34	WG2239349
(S) 1,2-Dichloroethane-d4	95.3			70.0-130		03/05/2024 03:34	WG2239349

Ss

Sample Narrative:

L1709164-13 WG2239349: Elevated RL due to foamy matrix.

TRIPBLANK

SAMPLE RESULTS - 14

Collected date/time: 02/20/24 00:00

L1709164

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon tetrachloride	U		0.128	1.00	1	02/29/2024 22:12	WG2237224
Chloroform	U		0.111	5.00	1	02/29/2024 22:12	WG2237224
Methylene Chloride	U		0.430	5.00	1	02/29/2024 22:12	WG2237224
(S) Toluene-d8	95.8			80.0-120		02/29/2024 22:12	WG2237224
(S) 4-Bromofluorobenzene	96.4			77.0-126		02/29/2024 22:12	WG2237224
(S) 1,2-Dichloroethane-d4	121			70.0-130		02/29/2024 22:12	WG2237224

DATE/TIME:

03/15/24 12:19

PAGE:

19 of 28

Company Name/Address.			Billing Infor	mation:					Д	nalysis / Con	tainer / Preservative		Chain of Custody	Page of 2
UPRR - Arcadis			UPRR Pro	oject Manager		Pres								
8808 E Wellesley Ave Spokane, WA 99212			4315 E Sp	orague Ave Valley, WA 99	212	Chk							PEOPLE	RCE" advancing science
Report to:	-		Email To:									MT JULIE		
Josh Lee			Joshua.Lee	@arcadis.com;jan	ette.wilson@	Parcadi							12065 Lebanon Rd. Moi Submitting a sample via	
Project Description: UPRR - Rockford, WA	Colle	State ected: K	Pockford	WA	Please Ci					Syr			Pace Terms and Conditi	
Phone: 406-239-7810	302103	57		Lab Project # UPRRARCA-R	OCKFORD					eOH10ml/Syr			SDG #	709164
Collected by (print): Site Garret W. 1507	e/Facility ID #			P.O. #			oPres	Pres	Pres	Меон			Acctnum: UPF	204 RRARCA
Collected by (signature): June 1 June 2 Jun	Rush? (Lab MSame Day Next Day Two Day Three Day	Five D	(Rad Only)	Quote #	s Needed	No.	18 2ozClr-NoPres	L 4ozClr-NoPres	L 4ozClr-NoPres	40mlAmb/M			Prelogin: P10 PM: 829 - Britt PB: 0	52528 nie L Boyd ,
Sample ID Co	mp/Grab Ma	etrix *	Depth	Date	Time	Intrs	MRCRAS	SV8081	SV8151	V8260				Sample # (lab only)
B-1-20-25-20240220	G	SS	20.25	2/20/24	0840	3	-	S	S	Χ				-01
B-1-18.5-19.0-20240220		SS		1 .	1025	3				X				-02
B-2-1.5-2.0-20240220	G	SS		2/20/24	1149	13				X				-03
B-2-145-15.0-20240220	<i>C</i> :	55		2/20/24	14/12	7				X				-04
B-2-18,5-19,0-26240220	G	SS	185-19.0	2/20/24	1415	3				X				-05
B-3-35-4,0-20240220	G	SS		2/20/24	1500	3				X				-06
B-3-16.5-17.0-20240220	2	SS	16.5-17.0		1630	13				1				-01
B-3-18.0-18,5-L0240220		SS	130-182	77	1645	13				X				- a8
B-4-1.0-1.5-20240221	,, ,	SS		2/21/24	0430	13				X				709
3-4-8,0-85-20240211		SS		2,21/24	1030	15				X			MS/MS	10
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water Sample	11 10	itiona	JR# C	ple volter	ne for	55 F	المار	10	ית לי	рН Моw	TempOther	COC Sea COC Sig Bottles Correct Suffici	Sample Receipt Ct il Present/Intact ned/Accurate: arrive intact: bottles used: ent volume sent: If Applicab to Headspace:	NP JY N N N N N N N N N
Relinquished by : (Signature)	Date:	7	Time:		ed by: (Signa	ture)			- Contractor	Trip Blank Re	ceived: Yes / No HCL / Meo	RAD Scr	vation Correct/Ch reen <0.5 mR/hr:	ecked: Y _N
Relinquished by : (Signature)	Date:	7/74	Time.	Receiv	ed by: (Signa	ture)				Temp: TI A4	TBR Bottles Receive		vation required by Lo	gin: Date/Time
Relinquished by : (Signature)	Date:		Time:	Receiv	ed for lab by.	(Signat	ture)	rer	, 20	Date: 2 24	Time:	Hold:		Condition:

Company Name/Address:	Billing Information:								Δ	nalvsis /	Container / Preservative		Chain of Custody	Page Z of Z
UPRR - Arcadis	V ail			oject Managei prague Ave		Pres Chk							P	
8808 E Wellesley Ave), [Valley, WA 95	9212								- /-Pa	ace
Spokane, WA 99212			Oponane	tuncy, wars.									PEOPLE	ADVANCING SCIENCE
Report to: Josh Lee			Email To:	- Donardi '		9							11	JLIET, TN
			Joshua.Lee@arcadis.com;janette.wilson@a										12065 Lebanon Rd. Mo Submitting a sample vi	
Project Description: UPRR - Rockford, WA	1		Rockfur		Please C					Syr			Pace Terms and Condit	
Phone: 406-239-7810	Client Project			Lab Project # UPRRARCA-I	ROCKFORD)				10ml/			SDG#	709169
Collected by (print): Grant Wilson	Site/Facility II			P.O. #			Pres	res	res	V8260 40mlAmb/MeOH10ml/Syr			Table #	DADCA
Collected by (signature):	Rush?	Lab MUST Be	Notified)	Quote #			Z	107	Non	N/d			Template: T24	
Fruit 1. Wals	Same D	ay Five	Day	Date Result	o Noodod		ozclr	4ozClr-NoPres	4ozClr-NoPres	IAm			Prelogin: P10	52528
Immediately Packed on Ice N Y X	Two Da	y 10 D	ay (Rad Only)	Std.	is weeded	No.	A8 2		1 40	40m			PM: 829 - B ritt	anie L Boyd 2 10/24
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	MRCRA8 2ozClr-NoPres	SV8081	SV8151	/826(Shipped Via: F	Sample # (lab only)
13-5-10-15-20240221		SS	1.0-1.5	2/21/2024	1130	13			,	X				
B-5-20-8.5-20240221	G	SS	3,0-8,5	2/21/2024	1300	3				Y				-15
B-DUP-ZOZYOZZO	4	SS	2.0-2.5	2/20/2024	0080	3				X				1-13
		55												
		SS												
		SS												
		SS												
		SS												
		SS							16					
		55												
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	marks: W	7#0	4	1 0			ì			pH	Temp	COC Sign	ample Receipt Cl Present/Intact ed/Accurate: arrive intact:	necklist N
WW - WasteWater	old aelds	bowl 3	ionshe v	10th shales	policy	y Ca	raly	نق		Flow	Other	Correct	bottles used: nt volume sent:	N N
DW - Drinking Water OT - Other	mples returned UPS <u>FedEx</u>			Tracki	ing # 7 1	55	0-	315	507	0		VOA Zero	If Applicate Headspace:	_Y _N
Relinquished by : (Signature)	D	ate:	Time	Recei	ved by: (Signa	iture)					nk Received: Yes / No HCL / Meat	RAD Scre	tion Correct/Ch en <0.5 mR/hr:	TY N
Shrift the Waser		7/23/2	1 120	00							TBR			air. Data Hima
Relinquished by : (Signature)	D	ate:	Time	Recer	ved by: (Signa	ature)				Temp: T	149°C Bottles Received T-1.1 41	i: If preserva	ation required by Lo	gin: Date/Time
Relinquished by : (Signature)	D	ate:	Time		ved for lab by	: (Signa	ture)		2	Date:	Time:	Hold:		Condition:
				a	llya	W	vita	he	u	712	4124 091	0		1 0

Pace Analytical® ANALYTICAL REPORT

March 14, 2024

Revised Report

UPRR - Arcadis

L1708993 Sample Delivery Group:

Samples Received: 02/24/2024

Project Number:

Description: UPRR - Rockford, WA

Report To: Josh Lee

8808 E Wellesley Ave

Spokane, WA 99212

Entire Report Reviewed By:

Drittine Boyd

Brittnie L Boyd Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
TW-DUP-1-20240221 L1708993-01	6
TW-B-1-14-20240221 L1708993-02	7
TW-B-2-14-20240222 L1708993-03	8
TW-B-3-14-20240222 L1708993-04	9
TW-B-4-8-202402222 L1708993-05	10
TW-B-5-4.4-20240222 L1708993-06	11
TW-EB-1-20240222 L1708993-07	12
TRIPLANK L1708993-08	13
Qc: Quality Control Summary	14
Volatile Organic Compounds (GC/MS) by Method 8260B	14
Chlorinated Acid Herbicides (GC) by Method 8151	16
Pesticides (GC) by Method 8081	20
GI: Glossary of Terms	24
Al: Accreditations & Locations	25
Sc: Sample Chain of Custody	26

SAMPLE SUMMARY

	57 (IVII LL (0 0 1 1 1 1 1	,,, ,,, ,			
TW-DUP-1-20240221 L1708993-01 GW			Collected by	Collected date/time 02/21/24 12:00	Received da 02/24/24 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2236962	1	02/29/24 20:20	02/29/24 20:20	GLN	Mt. Juliet, TN
Chlorinated Acid Herbicides (GC) by Method 8151	WG2232068	1	02/25/24 09:10	02/28/24 03:34	LTB	Mt. Juliet, TN
Pesticides (GC) by Method 8081	WG2233888	1	02/26/24 05:36	02/28/24 01:25	NWH	Mt. Juliet, TN
TW D 4 44 20240224 14700002 02 CW			Collected by	Collected date/time 02/21/24 00:00	Received da 02/24/24 09	
TW-B-1-14-20240221 L1708993-02 GW				02/21/21 00:00	02/2 1/2 1 00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2236962	1	02/29/24 20:41	02/29/24 20:41	GLN	Mt. Juliet, TN
Chlorinated Acid Herbicides (GC) by Method 8151	WG2232068	1	02/25/24 09:10	02/28/24 03:44	LTB	Mt. Juliet, TN
Pesticides (GC) by Method 8081	WG2233888	1	02/26/24 05:36	02/28/24 01:35	NWH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
TW-B-2-14-20240222 L1708993-03 GW				02/22/24 11:25	02/24/24 09	0:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2236962	1	02/29/24 21:02	02/29/24 21:02	GLN	Mt. Juliet, TN
Chlorinated Acid Herbicides (GC) by Method 8151	WG2233607	1	02/26/24 15:17	02/28/24 07:48	LTB	Mt. Juliet, TN
Chlorinated Acid Herbicides (GC) by Method 8151	WG2233607	1	02/26/24 15:17	02/28/24 19:35	MEW	Mt. Juliet, TN
Pesticides (GC) by Method 8081	WG2233888	1	02/26/24 05:36	02/28/24 01:45	NWH	Mt. Juliet, TN
TW-B-3-14-20240222 L1708993-04 GW			Collected by	Collected date/time 02/22/24 09:35	Received da 02/24/24 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2236962	1	02/29/24 21:23	02/29/24 21:23	GLN	Mt. Juliet, TN
Chlorinated Acid Herbicides (GC) by Method 8151	WG2233607	1	02/26/24 15:17	02/28/24 07:58	LTB	Mt. Juliet, TN
Chlorinated Acid Herbicides (GC) by Method 8151	WG2233607	1	02/26/24 15:17	02/28/24 19:45	MEW	Mt. Juliet, TN
Pesticides (GC) by Method 8081	WG2233913	1	02/27/24 08:01	02/28/24 00:10	MEW	Mt. Juliet, TN
TW-B-4-8-202402222 L1708993-05 GW			Collected by	Collected date/time 02/22/24 13:55	Received da 02/24/24 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2236962	1	02/29/24 21:44	02/29/24 21:44	GLN	Mt. Juliet, TN
TW-B-5-4.4-20240222 L1708993-06 GW			Collected by	Collected date/time 02/22/24 12:50	Received da 02/24/24 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2236962	1	02/29/24 22:05	02/29/24 22:05	GLN	Mt. Juliet, TN
TW-EB-1-20240222 L1708993-07 GW			Collected by	Collected date/time 02/22/24 15:48	Received da 02/24/24 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2245978	1	03/13/24 21:41	03/13/24 21:41	ACG	Mt. Juliet, TN

SAMPLE SUMMARY

Dilution

1

Batch

WG2236962

TRIPLANK L1708993-08 GW

Volatile Organic Compounds (GC/MS) by Method 8260B

Method

Collected by

Preparation

02/29/24 16:08

date/time

Collected date/time Received date/time

Analysis

date/time

02/29/24 16:08

02/22/24 00:00

Analyst

GLN

02/24/24 09:00

Location

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Report Revision History

Brittine Boyd

Level II Report - Version 1: 03/12/24 12:55

Project Narrative

Reprint for EB and reduced compound list

Collected date/time: 02/21/24 12:00

SAMPLE RESULTS - 01

L1708993

Volatile Organic Compounds (GC/MS) by Method 8260B

	<u> </u>		,				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U		0.0962	1.00	1	02/29/2024 20:20	WG2236962
Carbon tetrachloride	0.278	<u>J</u>	0.128	1.00	1	02/29/2024 20:20	WG2236962
Chloroform	0.527	<u>J</u>	0.111	5.00	1	02/29/2024 20:20	WG2236962
Methylene Chloride	U		0.430	5.00	1	02/29/2024 20:20	WG2236962
(S) Toluene-d8	115			80.0-120		02/29/2024 20:20	WG2236962
(S) 4-Bromofluorobenzene	105			77.0-126		02/29/2024 20:20	WG2236962
(S) 1,2-Dichloroethane-d4	110			70.0-130		02/29/2024 20:20	WG2236962

[']Cp

⁵Sr

Chlorinated Acid Herbicides (GC) by Method 8151

	Desuit	Ouglifier	MDI	DDI	Dilution	Amalusis	Datah
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
2,4-D	U		0.547	2.00	1	02/28/2024 03:34	WG2232068
Dalapon	U		0.344	2.00	1	02/28/2024 03:34	WG2232068
2,4-DB	U		0.302	2.00	1	02/28/2024 03:34	WG2232068
Dicamba	0.397	J	0.245	2.00	1	02/28/2024 03:34	WG2232068
Dichloroprop	U		1.04	2.00	1	02/28/2024 03:34	WG2232068
Dinoseb	U		0.250	2.00	1	02/28/2024 03:34	WG2232068
MCPA	U		13.1	100	1	02/28/2024 03:34	WG2232068
MCPP	U		66.0	100	1	02/28/2024 03:34	WG2232068
2,4,5-T	U		0.258	2.00	1	02/28/2024 03:34	WG2232068
2,4,5-TP (Silvex)	U		0.335	2.00	1	02/28/2024 03:34	WG2232068
Pentachlorophenol	U		0.111	1.00	1	02/28/2024 03:34	WG2232068
(S) 2,4-Dichlorophenyl Acetic	66.2			14.0-158		02/28/2024 03:34	WG2232068

⁶Qc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aldrin	U		0.0198	0.0500	1	02/28/2024 01:25	WG2233888
Alpha BHC	U		0.0172	0.0500	1	02/28/2024 01:25	WG2233888
Beta BHC	U		0.0208	0.0500	1	02/28/2024 01:25	WG2233888
Delta BHC	U		0.0150	0.0500	1	02/28/2024 01:25	WG2233888
Gamma BHC	U		0.0209	0.0500	1	02/28/2024 01:25	WG2233888
Chlordane	U		0.0198	5.00	1	02/28/2024 01:25	WG2233888
4,4-DDD	U		0.0177	0.0500	1	02/28/2024 01:25	WG2233888
4,4-DDE	U		0.0154	0.0500	1	02/28/2024 01:25	WG2233888
4,4-DDT	U		0.0198	0.0500	1	02/28/2024 01:25	WG2233888
Dieldrin	U		0.0162	0.0500	1	02/28/2024 01:25	WG2233888
Endosulfan I	U		0.0160	0.0500	1	02/28/2024 01:25	WG2233888
Endosulfan II	U		0.0164	0.0500	1	02/28/2024 01:25	WG2233888
Endosulfan sulfate	U		0.0217	0.0500	1	02/28/2024 01:25	WG2233888
Endrin	U		0.0161	0.0500	1	02/28/2024 01:25	WG2233888
Endrin aldehyde	U		0.0237	0.0500	1	02/28/2024 01:25	WG2233888
Endrin ketone	U		0.0219	0.0500	1	02/28/2024 01:25	WG2233888
Hexachlorobenzene	U		0.0176	0.0500	1	02/28/2024 01:25	WG2233888
Heptachlor	U		0.0148	0.0500	1	02/28/2024 01:25	WG2233888
Heptachlor epoxide	U		0.0183	0.0500	1	02/28/2024 01:25	WG2233888
Methoxychlor	U		0.0193	0.0500	1	02/28/2024 01:25	WG2233888
Toxaphene	U		0.168	0.500	1	02/28/2024 01:25	WG2233888
(S) Decachlorobiphenyl	28.7			10.0-128		02/28/2024 01:25	WG2233888
(S) Tetrachloro-m-xylene	56.0			10.0-127		02/28/2024 01:25	WG2233888

TW-B-1-14-20240221

Collected date/time: 02/21/24 00:00

SAMPLE RESULTS - 02

L1708993

Volatile Organic Compounds (GC/MS) by Method 8260B

<u> </u>	1	,	,				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U		0.0962	1.00	1	02/29/2024 20:41	WG2236962
Carbon tetrachloride	0.265	<u>J</u>	0.128	1.00	1	02/29/2024 20:41	WG2236962
Chloroform	0.514	<u>J</u>	0.111	5.00	1	02/29/2024 20:41	WG2236962
Methylene Chloride	U		0.430	5.00	1	02/29/2024 20:41	WG2236962
(S) Toluene-d8	115			80.0-120		02/29/2024 20:41	WG2236962
(S) 4-Bromofluorobenzene	108			77.0-126		02/29/2024 20:41	WG2236962
(S) 1,2-Dichloroethane-d4	111			70.0-130		02/29/2024 20:41	WG2236962

⁵Sr

[°]Qc

Gl

Chlorinated Acid Herbicides (GC) by Method 8151

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
2,4-D	U		0.547	2.00	1	02/28/2024 03:44	WG2232068
Dalapon	U		0.344	2.00	1	02/28/2024 03:44	WG2232068
2,4-DB	U		0.302	2.00	1	02/28/2024 03:44	WG2232068
Dicamba	0.373	<u>J</u>	0.245	2.00	1	02/28/2024 03:44	WG2232068
Dichloroprop	U		1.04	2.00	1	02/28/2024 03:44	WG2232068
Dinoseb	U		0.250	2.00	1	02/28/2024 03:44	WG2232068
MCPA	U		13.1	100	1	02/28/2024 03:44	WG2232068
MCPP	U		66.0	100	1	02/28/2024 03:44	WG2232068
2,4,5-T	U		0.258	2.00	1	02/28/2024 03:44	WG2232068
2,4,5-TP (Silvex)	U		0.335	2.00	1	02/28/2024 03:44	WG2232068
Pentachlorophenol	U		0.111	1.00	1	02/28/2024 03:44	WG2232068
(S) 2,4-Dichlorophenyl Acetic Acid	48.5			14.0-158		02/28/2024 03:44	WG2232068

⁸ Al

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Aldrin	U		0.0198	0.0500	1	02/28/2024 01:35	WG2233888
Alpha BHC	U		0.0172	0.0500	1	02/28/2024 01:35	WG2233888
Beta BHC	U		0.0208	0.0500	1	02/28/2024 01:35	WG2233888
Delta BHC	U		0.0150	0.0500	1	02/28/2024 01:35	WG2233888
Gamma BHC	U		0.0209	0.0500	1	02/28/2024 01:35	WG2233888
Chlordane	U		0.0198	5.00	1	02/28/2024 01:35	WG2233888
4,4-DDD	U		0.0177	0.0500	1	02/28/2024 01:35	WG2233888
4,4-DDE	U		0.0154	0.0500	1	02/28/2024 01:35	WG2233888
4,4-DDT	U		0.0198	0.0500	1	02/28/2024 01:35	WG2233888
Dieldrin	U		0.0162	0.0500	1	02/28/2024 01:35	WG2233888
Endosulfan I	U		0.0160	0.0500	1	02/28/2024 01:35	WG2233888
Endosulfan II	U		0.0164	0.0500	1	02/28/2024 01:35	WG2233888
Endosulfan sulfate	U		0.0217	0.0500	1	02/28/2024 01:35	WG2233888
Endrin	U		0.0161	0.0500	1	02/28/2024 01:35	WG2233888
Endrin aldehyde	U		0.0237	0.0500	1	02/28/2024 01:35	WG2233888
Endrin ketone	U		0.0219	0.0500	1	02/28/2024 01:35	WG2233888
Hexachlorobenzene	U		0.0176	0.0500	1	02/28/2024 01:35	WG2233888
Heptachlor	U		0.0148	0.0500	1	02/28/2024 01:35	WG2233888
Heptachlor epoxide	U		0.0183	0.0500	1	02/28/2024 01:35	WG2233888
Methoxychlor	U		0.0193	0.0500	1	02/28/2024 01:35	WG2233888
Toxaphene	U		0.168	0.500	1	02/28/2024 01:35	WG2233888
(S) Decachlorobiphenyl	13.9			10.0-128		02/28/2024 01:35	WG2233888
(S) Tetrachloro-m-xylene	41.9			10.0-127		02/28/2024 01:35	WG2233888

1708993

Volatile Organic Compounds (GC/MS) by Method 8260B

	<u> </u>						
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U		0.0962	1.00	1	02/29/2024 21:02	WG2236962
Carbon tetrachloride	1.41		0.128	1.00	1	02/29/2024 21:02	WG2236962
Chloroform	1.23	<u>J</u>	0.111	5.00	1	02/29/2024 21:02	WG2236962
Methylene Chloride	U		0.430	5.00	1	02/29/2024 21:02	WG2236962
(S) Toluene-d8	116			80.0-120		02/29/2024 21:02	WG2236962
(S) 4-Bromofluorobenzene	108			77.0-126		02/29/2024 21:02	WG2236962
(S) 1,2-Dichloroethane-d4	112			70.0-130		02/29/2024 21:02	<u>WG2236962</u>

⁵Sr

Chlorinated Acid Herbicides (GC) by Method 8151

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	<u>quamer</u>	ug/l	ug/l	2	date / time	<u></u>
2,4-D	U		0.547	2.00	1	02/28/2024 07:48	WG2233607
Dalapon	U		0.344	2.00	1	02/28/2024 07:48	WG2233607
2,4-DB	U		0.302	2.00	1	02/28/2024 07:48	WG2233607
Dicamba	U		0.245	2.00	1	02/28/2024 07:48	WG2233607
Dichloroprop	U		1.04	2.00	1	02/28/2024 07:48	WG2233607
Dinoseb	U		0.250	2.00	1	02/28/2024 07:48	WG2233607
MCPA	U		13.1	100	1	02/28/2024 19:35	WG2233607
MCPP	U		66.0	100	1	02/28/2024 19:35	WG2233607
2,4,5-T	U		0.258	2.00	1	02/28/2024 07:48	WG2233607
2,4,5-TP (Silvex)	U		0.335	2.00	1	02/28/2024 07:48	WG2233607
Pentachlorophenol	U		0.111	1.00	1	02/28/2024 07:48	WG2233607
(S) 2,4-Dichlorophenyl Acetic Acid	95.0			14.0-158		02/28/2024 19:35	WG2233607
(S) 2,4-Dichlorophenyl Acetic Acid	97.6			14.0-158		02/28/2024 07:48	WG2233607

QC 7

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aldrin	U		0.0198	0.0500	1	02/28/2024 01:45	WG2233888
Alpha BHC	U		0.0172	0.0500	1	02/28/2024 01:45	WG2233888
Beta BHC	U		0.0208	0.0500	1	02/28/2024 01:45	WG2233888
Delta BHC	U		0.0150	0.0500	1	02/28/2024 01:45	WG2233888
Gamma BHC	U		0.0209	0.0500	1	02/28/2024 01:45	WG2233888
Chlordane	U		0.0198	5.00	1	02/28/2024 01:45	WG2233888
4,4-DDD	U		0.0177	0.0500	1	02/28/2024 01:45	WG2233888
4,4-DDE	U		0.0154	0.0500	1	02/28/2024 01:45	WG2233888
4,4-DDT	U		0.0198	0.0500	1	02/28/2024 01:45	WG2233888
Dieldrin	U		0.0162	0.0500	1	02/28/2024 01:45	WG2233888
Endosulfan I	U		0.0160	0.0500	1	02/28/2024 01:45	WG2233888
Endosulfan II	U		0.0164	0.0500	1	02/28/2024 01:45	WG2233888
Endosulfan sulfate	U		0.0217	0.0500	1	02/28/2024 01:45	WG2233888
Endrin	U		0.0161	0.0500	1	02/28/2024 01:45	WG2233888
Endrin aldehyde	U		0.0237	0.0500	1	02/28/2024 01:45	WG2233888
Endrin ketone	U		0.0219	0.0500	1	02/28/2024 01:45	WG2233888
Hexachlorobenzene	U		0.0176	0.0500	1	02/28/2024 01:45	WG2233888
Heptachlor	U		0.0148	0.0500	1	02/28/2024 01:45	WG2233888
Heptachlor epoxide	U		0.0183	0.0500	1	02/28/2024 01:45	WG2233888
Methoxychlor	U		0.0193	0.0500	1	02/28/2024 01:45	WG2233888
Toxaphene	U		0.168	0.500	1	02/28/2024 01:45	WG2233888
(S) Decachlorobiphenyl	36.2			10.0-128		02/28/2024 01:45	WG2233888
(S) Tetrachloro-m-xylene	64.6			10.0-127		02/28/2024 01:45	WG2233888

1708993

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U		0.0962	1.00	1	02/29/2024 21:23	WG2236962
Carbon tetrachloride	U		0.128	1.00	1	02/29/2024 21:23	WG2236962
Chloroform	0.427	<u>J</u>	0.111	5.00	1	02/29/2024 21:23	WG2236962
Methylene Chloride	U		0.430	5.00	1	02/29/2024 21:23	WG2236962
(S) Toluene-d8	119			80.0-120		02/29/2024 21:23	WG2236962
(S) 4-Bromofluorobenzene	107			77.0-126		02/29/2024 21:23	WG2236962
(S) 1,2-Dichloroethane-d4	110			70.0-130		02/29/2024 21:23	WG2236962

⁴ Cn

⁵Sr

Chlorinated Acid Herbicides (GC) by Method 8151

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
2,4-D	U		0.547	2.00	1	02/28/2024 07:58	WG2233607
Dalapon	U		0.344	2.00	1	02/28/2024 07:58	WG2233607
2,4-DB	U		0.302	2.00	1	02/28/2024 07:58	WG2233607
Dicamba	U		0.245	2.00	1	02/28/2024 07:58	WG2233607
Dichloroprop	U		1.04	2.00	1	02/28/2024 07:58	WG2233607
Dinoseb	U		0.250	2.00	1	02/28/2024 07:58	WG2233607
MCPA	U		13.1	100	1	02/28/2024 19:45	WG2233607
MCPP	U		66.0	100	1	02/28/2024 19:45	WG2233607
2,4,5-T	U		0.258	2.00	1	02/28/2024 07:58	WG2233607
2,4,5-TP (Silvex)	U		0.335	2.00	1	02/28/2024 07:58	WG2233607
Pentachlorophenol	U		0.111	1.00	1	02/28/2024 07:58	WG2233607
(S) 2,4-Dichlorophenyl Acetic Acid	68.0			14.0-158		02/28/2024 19:45	WG2233607
(S) 2,4-Dichlorophenyl Acetic Acid	65.8			14.0-158		02/28/2024 07:58	WG2233607

8

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Aldrin	U		0.0198	0.0500	1	02/28/2024 00:10	WG2233913
Alpha BHC	U		0.0172	0.0500	1	02/28/2024 00:10	WG2233913
Beta BHC	U		0.0208	0.0500	1	02/28/2024 00:10	WG2233913
Delta BHC	U		0.0150	0.0500	1	02/28/2024 00:10	WG2233913
Gamma BHC	U		0.0209	0.0500	1	02/28/2024 00:10	WG2233913
Chlordane	U		0.0198	5.00	1	02/28/2024 00:10	WG2233913
4,4-DDD	U		0.0177	0.0500	1	02/28/2024 00:10	WG2233913
4,4-DDE	U		0.0154	0.0500	1	02/28/2024 00:10	WG2233913
4,4-DDT	U		0.0198	0.0500	1	02/28/2024 00:10	WG2233913
Dieldrin	U		0.0162	0.0500	1	02/28/2024 00:10	WG2233913
Endosulfan I	U		0.0160	0.0500	1	02/28/2024 00:10	WG2233913
Endosulfan II	U		0.0164	0.0500	1	02/28/2024 00:10	WG2233913
Endosulfan sulfate	U		0.0217	0.0500	1	02/28/2024 00:10	WG2233913
Endrin	U		0.0161	0.0500	1	02/28/2024 00:10	WG2233913
Endrin aldehyde	U		0.0237	0.0500	1	02/28/2024 00:10	WG2233913
Endrin ketone	U		0.0219	0.0500	1	02/28/2024 00:10	WG2233913
Hexachlorobenzene	U		0.0176	0.0500	1	02/28/2024 00:10	WG2233913
Heptachlor	U		0.0148	0.0500	1	02/28/2024 00:10	WG2233913
Heptachlor epoxide	U		0.0183	0.0500	1	02/28/2024 00:10	WG2233913
Methoxychlor	U		0.0193	0.0500	1	02/28/2024 00:10	WG2233913
Toxaphene	U		0.168	0.500	1	02/28/2024 00:10	WG2233913
(S) Decachlorobiphenyl	54.2			10.0-128		02/28/2024 00:10	WG2233913
(S) Tetrachloro-m-xylene	79.7			10.0-127		02/28/2024 00:10	WG2233913

L1708993

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U		0.0962	1.00	1	02/29/2024 21:44	WG2236962
Carbon tetrachloride	U		0.128	1.00	1	02/29/2024 21:44	WG2236962
Chloroform	U		0.111	5.00	1	02/29/2024 21:44	WG2236962
Methylene Chloride	U		0.430	5.00	1	02/29/2024 21:44	WG2236962
(S) Toluene-d8	115			80.0-120		02/29/2024 21:44	WG2236962
(S) 4-Bromofluorobenzene	108			77.0-126		02/29/2024 21:44	WG2236962
(S) 1,2-Dichloroethane-d4	113			70.0-130		02/29/2024 21:44	WG2236962

L1708993

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U		0.0962	1.00	1	02/29/2024 22:05	WG2236962
Carbon tetrachloride	U		0.128	1.00	1	02/29/2024 22:05	WG2236962
Chloroform	U		0.111	5.00	1	02/29/2024 22:05	WG2236962
Methylene Chloride	U		0.430	5.00	1	02/29/2024 22:05	WG2236962
(S) Toluene-d8	117			80.0-120		02/29/2024 22:05	WG2236962
(S) 4-Bromofluorobenzene	106			77.0-126		02/29/2024 22:05	WG2236962
(S) 1,2-Dichloroethane-d4	111			70.0-130		02/29/2024 22:05	WG2236962

TW-EB-1-20240222

Collected date/time: 02/22/24 15:48

SAMPLE RESULTS - 07

L1708993

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U	<u>T8</u>	0.0962	1.00	1	03/13/2024 21:41	WG2245978
Carbon tetrachloride	U	<u>T8</u>	0.128	1.00	1	03/13/2024 21:41	WG2245978
Chloroform	0.113	<u>J T8</u>	0.111	5.00	1	03/13/2024 21:41	WG2245978
Methylene Chloride	U	<u>T8</u>	0.430	5.00	1	03/13/2024 21:41	WG2245978
(S) Toluene-d8	107			80.0-120		03/13/2024 21:41	WG2245978
(S) 4-Bromofluorobenzene	88.8			77.0-126		03/13/2024 21:41	WG2245978
(S) 1,2-Dichloroethane-d4	111			70.0-130		03/13/2024 21:41	WG2245978

TRIPLANK

SAMPLE RESULTS - 08

Collected date/time: 02/22/24 00:00

L1708993

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U		0.0962	1.00	1	02/29/2024 16:08	WG2236962
Carbon tetrachloride	U		0.128	1.00	1	02/29/2024 16:08	WG2236962
Chloroform	U		0.111	5.00	1	02/29/2024 16:08	WG2236962
Methylene Chloride	U		0.430	5.00	1	02/29/2024 16:08	WG2236962
(S) Toluene-d8	116			80.0-120		02/29/2024 16:08	WG2236962
(S) 4-Bromofluorobenzene	107			77.0-126		02/29/2024 16:08	WG2236962
(S) 1,2-Dichloroethane-d4	108			70.0-130		02/29/2024 16:08	WG2236962

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1708993-01,02,03,04,05,06,08

Method Blank (MB)

(MB) R4039976-2 02/29/2	24 12:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Carbon disulfide	U		0.0962	1.00
Carbon tetrachloride	U		0.128	1.00
Chloroform	U		0.111	5.00
Methylene Chloride	U		0.430	5.00
(S) Toluene-d8	117			80.0-120
(S) 4-Bromofluorobenzene	106			77.0-126
(S) 1,2-Dichloroethane-d4	110			70.0-130

Laboratory Control Sample (LCS)

(LCS) R4039976-1 02/29/	/24 12:08				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Carbon disulfide	5.00	3.74	74.8	61.0-128	
Carbon tetrachloride	5.00	4.76	95.2	68.0-126	
Chloroform	5.00	4.39	87.8	73.0-120	
Methylene Chloride	5.00	4.26	85.2	67.0-120	
(S) Toluene-d8			118	80.0-120	
(S) 4-Bromofluorobenzene			106	77.0-126	
(S) 1 2-Dichloroethane-d4			112	70 0-130	

L1708993-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1708993-05 02/29	/24 21:44 • (MS)	R4039976-3	02/29/24 23:2	8 • (MSD) R403	39976-4 02/29	9/24 23:49						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Carbon disulfide	5.00	U	4.03	4.59	80.6	91.8	1	10.0-156			13.0	28
Carbon tetrachloride	5.00	U	5.34	5.97	107	119	1	23.0-159			11.1	28
Chloroform	5.00	U	4.58	5.35	91.6	107	1	29.0-154			15.5	28
Methylene Chloride	5.00	U	4.29	4.99	85.8	99.8	1	23.0-144			15.1	28
(S) Toluene-d8					115	115		80.0-120				
(S) 4-Bromofluorobenzene					105	109		77.0-126				
(S) 1,2-Dichloroethane-d4					110	111		70.0-130				

PAGE:

14 of 27

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1708993-07

Method Blank (MB)

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

(MB) R4045389-3 03/13/2					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Carbon disulfide	U		0.0962	1.00	
Carbon tetrachloride	U		0.128	1.00	
Chloroform	U		0.111	5.00	
Methylene Chloride	U		0.430	5.00	
(S) Toluene-d8	106			80.0-120	
(S) 4-Bromofluorobenzene	84.7			77.0-126	
(S) 1,2-Dichloroethane-d4	113			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

86.7

113

87.0

111

(LCS) R4045389-1 03/1	13/24 16:37 • (LCSE	D) R4045389-	-2 03/13/24 16:5	56							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Carbon disulfide	5.00	4.90	5.34	98.0	107	61.0-128			8.59	20	
Carbon tetrachloride	5.00	5.33	5.65	107	113	68.0-126			5.83	20	
Chloroform	5.00	4.53	4.63	90.6	92.6	73.0-120			2.18	20	
Methylene Chloride	5.00	4.66	4.93	93.2	98.6	67.0-120			5.63	20	
(S) Toluene-d8				103	104	80.0-120					

77.0-126

70.0-130

*Sc

QUALITY CONTROL SUMMARY

Chlorinated Acid Herbicides (GC) by Method 8151

L1708993-01,02

Method Blank (MB)

(MB) R4039384-1 02/27/2	4 22:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
2,4-D	U		0.547	2.00
Dalapon	U		0.344	2.00
2,4-DB	U		0.302	2.00
Dicamba	U		0.245	2.00
Dichloroprop	U		1.04	2.00
Dinoseb	U		0.250	2.00
MCPA	U		13.1	100
MCPP	U		66.0	100
2,4,5-T	U		0.258	2.00
2,4,5-TP (Silvex)	U		0.335	2.00
Pentachlorophenol	U		0.111	1.00
(S) 2,4-Dichlorophenyl Acetic Acid	89.0			14.0-158

Laboratory Control Sample (LCS)

(LCS) R4039384-2 02	2/27/24 22:50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
2,4-D	5.00	5.33	107	50.0-120	<u>E</u>
Dalapon	5.00	4.68	93.6	32.0-120	
2,4-DB	5.00	5.15	103	53.0-140	<u>E</u>
Dicamba	5.00	4.98	99.6	51.0-120	
Dichloroprop	5.00	5.28	106	55.0-127	<u>E</u>
Dinoseb	5.00	5.70	114	36.0-134	E State of the st
МСРА	500	504	101	10.0-160	<u> </u>
MCPP	500	445	89.0	10.0-160	
2,4,5-T	5.00	5.06	101	54.0-120	<u>E</u>
2,4,5-TP (Silvex)	5.00	5.51	110	50.0-125	
Pentachlorophenol	1.00	0.888	88.8	41.0-120	
(S) 2,4-Dichlorophenyl A Acid	Acetic		84.4	14.0-158	

Sc

L1708692-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1708692-02 02/28/	24 00:32 • (MS) R4039384-3	02/28/24 00:4	12 • (MSD) R40	39384-4 02/2	8/24 00:52						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
2,4-D	5.00	U	9.73	13.3	195	279	1	50.0-120	<u>E J5 P</u>	E J3 J5 P	31.0	20
Dalapon	5.00	U	4.19	4.04	83.8	84.9	1	32.0-120			3.65	20

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 UPRR - Arcadis
 L1708993
 03/14/24 15:11
 16 of 27

QUALITY CONTROL SUMMARY

Chlorinated Acid Herbicides (GC) by Method 8151

L1708993-01,02

L1708692-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1708692-02 02/28/24 00:32 • (MS) R4039384-3 02/28/24 00:42 • (MSD) R4039384-4 02/28/24 00:52

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
2,4-DB	5.00	U	11.3	22.0	226	462	1	53.0-140	<u>E J5</u>	E J3 J5 P	64.3	20
Dicamba	5.00	U	5.10	4.66	102	97.9	1	51.0-120	<u>E</u>		9.02	20
Dichloroprop	5.00	U	5.36	5.22	107	110	1	55.0-127	<u>E</u>	<u>E</u>	2.65	20
Dinoseb	5.00	U	8.60	17.4	172	366	1	36.0-134	<u>E J5</u>	E J3 J5 P	67.7	20
MCPA	500	U	564	593	113	125	1	10.0-160	<u>E</u>	<u>E</u>	5.01	40
MCPP	500	U	550	535	110	112	1	10.0-160	<u>E</u>	<u>E</u>	2.76	23
2,4,5-T	5.00	U	5.12	4.66	102	97.9	1	54.0-120	<u>E</u>		9.41	20
2,4,5-TP (Silvex)	5.00	U	6.09	6.41	122	135	1	50.0-125	<u>E</u>	<u>E J5</u>	5.12	20
Pentachlorophenol	1.00	U	0.989	1.05	98.9	110	1	41.0-120			5.98	20
(S) 2,4-Dichlorophenyl A Acid	cetic				92.6	86.1		14.0-158				

QUALITY CONTROL SUMMARY

Chlorinated Acid Herbicides (GC) by Method 8151

L1708993-03,04

Method Blank (MB)

(MB) R4039385-1 02/27/2	4 22:40				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
2,4-D	U		0.547	2.00	
Dalapon	U		0.344	2.00	
2,4-DB	U		0.302	2.00	
Dicamba	U		0.245	2.00	
Dichloroprop	U		1.04	2.00	
Dinoseb	U		0.250	2.00	
MCPA	U		13.1	100	
MCPP	U		66.0	100	
2,4,5-T	U		0.258	2.00	
2,4,5-TP (Silvex)	U		0.335	2.00	
Pentachlorophenol	U		0.111	1.00	
(S) 2,4-Dichlorophenyl Acetic Acid	94.8			14.0-158	

Laboratory Control Sample (LCS)

(LCS) R4039385-2 02/27/	24 23:00							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	ug/l	ug/l	%	%				
2,4-D	5.00	5.69	114	50.0-120	<u>E</u>			
Dalapon	5.00	5.11	102	32.0-120	<u>E</u>			
2,4-DB	5.00	5.61	112	53.0-140	<u>E</u>			
Dicamba	5.00	5.44	109	51.0-120	<u>E</u>			
Dichloroprop	5.00	5.44	109	55.0-127	<u>E</u>			
Dinoseb	5.00	6.16	123	36.0-134	<u>E</u>			
MCPA	500	534	107	10.0-160	<u>E</u>			
MCPP	500	487	97.4	10.0-160				
2,4,5-T	5.00	5.53	111	54.0-120	<u>E</u>			
2,4,5-TP (Silvex)	5.00	6.00	120	50.0-125	<u>E</u>			
Pentachlorophenol	1.00	0.977	97.7	41.0-120				
(S) 2,4-Dichlorophenyl Acetic Acid			98.8	14.0-158				

Sc

L1709016-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1709016-04 02/28/24 05:05 • (MS) R4039385-3 02/28/24 05:16 • (MSD) R4039385-4 02/28/24 05:26												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
2,4-D	4.76	U	5.38	5.79	113	122	1	50.0-120	<u>E</u>	<u>E J5</u>	7.34	20
Dalapon	4.76	U	4.14	4.63	87.0	97.3	1	32.0-120			11.2	20

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 UPRR - Arcadis
 L1708993
 03/14/24 15:11
 18 of 27

QUALITY CONTROL SUMMARY

Chlorinated Acid Herbicides (GC) by Method 8151

L1708993-03,04

L1709016-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1709016-04 02/28/24 05:05 • (MS) R4039385-3 02/28/24 05:16 • (MSD) R4039385-4 02/28/24 05:26

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
2,4-DB	4.76	U	5.43	5.76	114	121	1	53.0-140	<u>E</u>	<u>E</u>	5.90	20
Dicamba	4.76	U	5.05	5.43	106	114	1	51.0-120	<u>E</u>	<u>E</u>	7.25	20
Dichloroprop	4.76	U	5.40	5.82	113	122	1	55.0-127	<u>E</u>	<u>E</u>	7.49	20
Dinoseb	4.76	U	5.99	6.41	126	135	1	36.0-134	<u>E</u>	<u>E J5</u>	6.77	20
MCPA	476	U	503	543	106	114	1	10.0-160	<u>E</u>	<u>E</u>	7.65	40
MCPP	476	U	468	490	98.3	103	1	10.0-160		<u>E</u>	4.59	23
2,4,5-T	4.76	U	5.19	5.55	109	117	1	54.0-120	<u>E</u>	<u>E</u>	6.70	20
2,4,5-TP (Silvex)	4.76	U	5.64	6.00	118	126	1	50.0-125	<u>E</u>	<u>E J5</u>	6.19	20
Pentachlorophenol	0.952	U	0.904	0.973	95.0	102	1	41.0-120			7.35	20
(S) 2,4-Dichlorophenyl A Acid	Acetic				89.7	97.5		14.0-158				

(S) Tetrachloro-m-xylene

79.0

QUALITY CONTROL SUMMARY

L1708993-01,02,03

Pesticides (GC) by Method 8081 Method Blank (MB)

(MB) R4039017-1 02/26/	24 19:44				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Aldrin	U		0.0198	0.0500	
Alpha BHC	U		0.0172	0.0500	
Beta BHC	U		0.0208	0.0500	
Delta BHC	U		0.0150	0.0500	
Gamma BHC	U		0.0209	0.0500	
Chlordane	U		0.0198	5.00	
4,4-DDD	U		0.0177	0.0500	
4,4-DDE	U		0.0154	0.0500	
4,4-DDT	U		0.0198	0.0500	
Dieldrin	U		0.0162	0.0500	
Endosulfan I	U		0.0160	0.0500	
Endosulfan II	U		0.0164	0.0500	
Endosulfan sulfate	U		0.0217	0.0500	
Endrin	U		0.0161	0.0500	
Endrin aldehyde	U		0.0237	0.0500	
Endrin ketone	U		0.0219	0.0500	
Hexachlorobenzene	U		0.0176	0.0500	
Heptachlor	U		0.0148	0.0500	
Heptachlor epoxide	U		0.0183	0.0500	
Methoxychlor	U		0.0193	0.0500	
Toxaphene	U		0.168	0.500	
(S) Decachlorobiphenyl	68.8			10.0-128	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

10.0-127

.CS) R4039017-2 02/26/24 19:54 • (LCSD) R4039017-3 02/26/24 20:05										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Aldrin	1.00	0.746	0.838	74.6	83.8	22.0-124			11.6	34
Alpha BHC	1.00	0.839	0.894	83.9	89.4	54.0-130			6.35	23
Beta BHC	1.00	0.838	0.883	83.8	88.3	53.0-136			5.23	20
Delta BHC	1.00	0.843	0.886	84.3	88.6	54.0-133			4.97	20
Gamma BHC	1.00	0.825	0.878	82.5	87.8	55.0-129			6.22	20
4,4-DDD	1.00	0.842	0.946	84.2	94.6	56.0-140			11.6	22
4,4-DDE	1.00	0.866	1.01	86.6	101	52.0-128			15.4	22
4,4-DDT	1.00	0.802	0.935	80.2	93.5	50.0-141			15.3	23
Dieldrin	1.00	0.800	0.873	80.0	87.3	59.0-133			8.73	20
Endosulfan I	1.00	0.797	0.867	79.7	86.7	57.0-131			8.41	20

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:

 UPRR - Arcadis
 L1708993
 03/14/24 15:11

PAGE:

20 of 27

QUALITY CONTROL SUMMARY

L1708993-01,02,03

Pesticides (GC) by Method 8081

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4039017-2 02/26/24 19:54 • (LCSD) R4039017-3 02/26/24 20:05

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Endosulfan II	1.00	0.843	0.918	84.3	91.8	58.0-133			8.52	20
Endosulfan sulfate	1.00	0.839	0.893	83.9	89.3	58.0-133			6.24	21
Endrin	1.00	0.833	0.912	83.3	91.2	57.0-134			9.05	21
Endrin aldehyde	1.00	0.863	0.922	86.3	92.2	53.0-129			6.61	20
Endrin ketone	1.00	0.854	0.908	85.4	90.8	60.0-145			6.13	20
Hexachlorobenzene	1.00	0.877	0.944	87.7	94.4	30.0-114			7.36	30
Heptachlor	1.00	0.802	0.890	80.2	89.0	27.0-132			10.4	31
Heptachlor epoxide	1.00	0.832	0.903	83.2	90.3	57.0-130			8.18	20
Methoxychlor	1.00	0.840	0.946	84.0	94.6	54.0-155			11.9	24
(S) Decachlorobiphenyl				11.8	65.1	10.0-128				
(S) Tetrachloro-m-xylene				<i>75.2</i>	81.1	10.0-127				

QUALITY CONTROL SUMMARY

L1708993-04

Method Blank (MB)

Pesticides (GC) by Method 8081

(MB) R4040783-1 02/27/	/24 21:37				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Aldrin	U		0.0198	0.0500	
Alpha BHC	U		0.0172	0.0500	
Beta BHC	U		0.0208	0.0500	
Delta BHC	U		0.0150	0.0500	
Gamma BHC	U		0.0209	0.0500	
Chlordane	U		0.0198	5.00	
4,4-DDD	U		0.0177	0.0500	
4,4-DDE	U		0.0154	0.0500	
4,4-DDT	U		0.0198	0.0500	
Dieldrin	U		0.0162	0.0500	
Endosulfan I	U		0.0160	0.0500	
Endosulfan II	U		0.0164	0.0500	
Endosulfan sulfate	U		0.0217	0.0500	
Endrin	U		0.0161	0.0500	
Endrin aldehyde	U		0.0237	0.0500	
Endrin ketone	U		0.0219	0.0500	
Hexachlorobenzene	U		0.0176	0.0500	
Heptachlor	U		0.0148	0.0500	
Heptachlor epoxide	U		0.0183	0.0500	
Methoxychlor	U		0.0193	0.0500	
Toxaphene	U		0.168	0.500	
(S) Decachlorobiphenyl	5.65	<u>J2</u>		10.0-128	

Laboratory Control Sample (LCS)

54.3

(S) Tetrachloro-m-xylene

LCS) R4040783-5 02/27/24 21:47								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	ug/l	ug/l	%	%				
Aldrin	1.00	0.757	75.7	22.0-124				
Alpha BHC	1.00	0.829	82.9	54.0-130				
Beta BHC	1.00	0.840	84.0	53.0-136				
Delta BHC	1.00	0.874	87.4	54.0-133				
Gamma BHC	1.00	0.837	83.7	55.0-129				
4,4-DDD	1.00	0.942	94.2	56.0-140				
4,4-DDE	1.00	0.873	87.3	52.0-128				
4,4-DDT	1.00	1.24	124	50.0-141				
Dieldrin	1.00	0.745	74.5	59.0-133				
Endosulfan I	1.00	0.776	77.6	57.0-131				

10.0-127

QUALITY CONTROL SUMMARY

L1708993-04

Pesticides (GC) by Method 8081

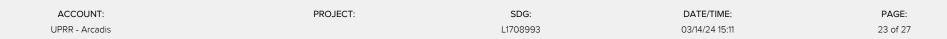
Laboratory Control Sample (LCS)

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Endosulfan II	1.00	0.821	82.1	58.0-133	
Endosulfan sulfate	1.00	0.803	80.3	58.0-133	
Endrin	1.00	0.829	82.9	57.0-134	
Endrin aldehyde	1.00	0.722	72.2	53.0-129	
Endrin ketone	1.00	0.849	84.9	60.0-145	
Hexachlorobenzene	1.00	0.980	98.0	30.0-114	
Heptachlor	1.00	1.12	112	27.0-132	
Heptachlor epoxide	1.00	0.811	81.1	57.0-130	
Methoxychlor	1.00	1.24	124	54.0-155	
(S) Decachlorobiphenyl			47.4	10.0-128	
(S) Tetrachloro-m-xylene			60.7	10.0-127	

L1708982-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1708982-07 02/27/24 22:08 • (MS) R4040783-6 02/27/24 22:18 • (MSD) R4040783-7 02/27/24 22:28

· /	,	,		, ,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aldrin	0.952	U	0.848	0.757	89.1	79.5	1	10.0-141			11.3	40
Alpha BHC	0.952	U	0.911	0.778	95.7	81.7	1	10.0-145			15.7	40
Beta BHC	0.952	U	0.984	0.893	103	93.8	1	14.0-146			9.70	35
Delta BHC	0.952	U	0.923	0.841	97.0	88.3	1	17.0-143			9.30	38
Gamma BHC	0.952	U	0.890	0.783	93.5	82.2	1	14.0-141			12.8	40
4,4-DDD	0.952	U	0.935	0.862	98.2	90.5	1	10.0-160			8.12	38
4,4-DDE	0.952	U	0.892	0.864	93.7	90.8	1	10.0-159			3.19	35
4,4-DDT	0.952	U	0.952	0.888	100	93.3	1	10.0-160			6.96	38
Dieldrin	0.952	U	0.964	0.899	101	94.4	1	10.0-158			6.98	38
Endosulfan I	0.952	U	0.919	0.843	96.5	88.6	1	10.0-153			8.63	36
Endosulfan II	0.952	U	0.953	0.860	100	90.3	1	10.0-159			10.3	39
Endosulfan sulfate	0.952	U	0.881	0.827	92.5	86.9	1	23.0-147			6.32	35
Endrin	0.952	U	0.936	0.855	98.3	89.8	1	10.0-160			9.05	39
Endrin aldehyde	0.952	U	0.871	0.798	91.5	83.8	1	10.0-148			8.75	38
Endrin ketone	0.952	U	0.977	0.881	103	92.5	1	10.0-160			10.3	40
Hexachlorobenzene	0.952	U	0.857	0.745	90.0	78.3	1	10.0-130			14.0	40
Heptachlor	0.952	U	0.937	0.831	98.4	87.3	1	16.0-136			12.0	40
Heptachlor epoxide	0.952	U	0.873	0.819	91.7	86.0	1	10.0-160			6.38	36
Methoxychlor	0.952	U	0.923	0.874	97.0	91.8	1	10.0-160			5.45	34
(S) Decachlorobiphenyl					80.3	84.9		10.0-128				
(S) Tetrachloro-m-xylene					83.9	70.6		10.0-127				



GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

1451	Maria Davida da da
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description

Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
P	RPD between the primary and confirmatory analysis exceeded 40%.
T8	Sample(s) received past/too close to holding time expiration.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address.			Billing Info	rmation:	- 4					Analysis / C	ontainer / P	reservative			Chain of Custod	y Page of
UPRR - Arcadis			UPRR Pr	oject Manag	er	Pres										
8808 E Wellesley Ave Spokane, WA 99212				prague Ave Valley, WA	99212	Chk									PEOPLE	RCE* E ADVANGING SCIENCE
Report to:			Email To:								1				MT JU	JLIET, TN
Josh Lee		,		@arcadis.com;	16		100				100				12065 Lebanon Rd Mo Submitting a sample vi	
Project Description: UPRR - Rockford, WA		City/State Collected:	Rockfu	rd, NA	Please C	Circle:		- in the second							Pace Terms and Condit https://info.pacelabs.c terms.pdf	tone found at-
Phone: 406-239-7810	Client Project	357		Lab Project # UPRRARCA	-ROCKFORE		S							,	SDG#	(70")
Collected by (print): Coursely Wilson	Site/Facility			P.O. #			NoPre	o Pres	101						Acctnum: UPF	133
Collected by (signature): Line A. Will	Same (Lab MUST Be	Day	Quote #			Amb	-Amb-No	40mlAmb+H						Template:T24	6113
Immediately Packed on Ice N Y X	Next D	ay5 Day Day10 Day	y (Rad Only) ay (Rad Only)	Stal.	ilts Needed	No.	100ml Amb-NoPres	111							PM: 829 - Britt	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	8081	SV815:	V8260						Shipped Via: Fo	Sample # (lab only)
TW-DUP-1-20240221	G	GW		2/2/2024	1 1200	7	X	X	X							-21
TW-B-1-14-20240221	Ca	GW	14	2/21/2029		17	X	X	X							-02
TW-8-2-14-20240222	6	GW	14	2/22/207	4 1125	7	X	X	X							-03
TW-8-3-14-20240222	C	GW	TH	2/22/202	4 0435	7	X	X	X							-04
TW-8-3-14-20240222 TW-B-7-20240222	G	GW	8	2/22/20	-	90			X						TEAL YA	105
74-8-5-9,4-20240222		GW	4.4	2/22/202	1 1200	% 7	H	H	X						Volume on 1	56
TW-EB-1-20240222	C	GW		2/20/20	24 1548	7			X					3		-07
		GW												1		
		GW											1			
		GW														
* Matrix: Rer SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay		WRHO								рН	Tem	p	COC S:	eal Pringled/	Accurate:	necklist Y N
ww - WasteWater		-8-505	2220h		MS/NS	D		E TAIL	5	Flow	Oth	er	Corre	ct bot	ive intact: tles used. volume sent!	N - N - N
341	uples rejurned UPS N FedE	x Courier		Trac	king #	100									If Applicab adspace:	YN
Relinquished by: (Signature)		7 2 3 2 C	Time	Reco	eived by: (Signa	iture)				Trip Blank f	2'	HCL/MeoH			n Correct/Ch <0.5 mR/hr:	ecked: Y N
Relinquished by : (Signature)		Date:	Time	Reco	eived by: (Signa	iture)				Temp:	°C Bot	tles Received:	If press	ervation	required by Lo	gin: Date/Time
Relinquished by : (Signature)	- 1	Date:	Time		eived for lab by	r: (Signat	ure)	. 4	N	Date:	Tir	ne:	Hold	3 H		Condition:

Tracking Numbers		<u>Temperature</u>
7155 0315 5081	24-41	2.3 to=2.3
7155 0315 5107		1.8 to=18
7155 0315 5092		4.4 to=4.4
		•
	4 1.	

allxa	nother	2
	Name	

2/24/24 Date

Pace Analytical® ANALYTICAL REPORT

March 28, 2024

Revised Report

UPRR - Arcadis

L1709164 Sample Delivery Group:

Samples Received: 02/24/2024

Project Number: 30210357

Description: UPRR - Rockford, WA

Report To: Josh Lee

8808 E Wellesley Ave

Spokane, WA 99212

Entire Report Reviewed By:

Drittine Boyd

Brittnie L Boyd Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
B-1-2.0-2.5-20240220 L1709164-01	6
B-1-18.5-19.0-20240220 L1709164-02	7
B-2-1.5-2.0-20240220 L1709164-03	8
B-2-14.5-15.0-20240220 L1709164-04	9
B-2-18.5-19.0-20240220 L1709164-05	10
B-3-3.5-4.0-20240220 L1709164-06	11
B-3-16.5-17.0-20240220 L1709164-07	12
B-3-18.0-18.5-20240220 L1709164-08	13
B-4-1.0-1.5-20240221 L1709164-09	14
B-4-8.0-8.5-20240221 L1709164-10	15
B-5-1.0-1.5-20240221 L1709164-11	16
B-5-8.0-8.5-20240221 L1709164-12	17
B-DUP-20240220 L1709164-13	18
TRIPBLANK L1709164-14	19
Qc: Quality Control Summary	20
Total Solids by Method 2540 G-2011	20
Volatile Organic Compounds (GC/MS) by Method 8260B	22
GI: Glossary of Terms	25
Al: Accreditations & Locations	26

Sc: Sample Chain of Custody

27

SAMPLE SUMMARY

B-1-2.0-2.5-20240220 L1709164-01 Solid			Collected by Garrett Wilson	Collected date/time 02/20/24 08:40	Received da 02/24/24 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2234574	1	02/27/24 09:50	02/27/24 10:08	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2239349	1	02/20/24 08:40	03/04/24 23:09	GLN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
B-1-18.5-19.0-20240220 L1709164-02 Solid			Garrett Wilson	02/20/24 10:25	02/24/24 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2234574	1	02/27/24 09:50	02/27/24 10:08	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2239349	1	02/20/24 10:25	03/04/24 23:27	GLN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
B-2-1.5-2.0-20240220 L1709164-03 Solid			Garrett Wilson	02/20/24 11:49	02/24/24 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2234574	1	02/27/24 09:50	02/27/24 10:08	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2239349	8	02/20/24 11:49	03/05/24 02:18	GLN	Mt. Juliet, TN
B-2-14.5-15.0-20240220 L1709164-04 Solid			Collected by Garrett Wilson	Collected date/time 02/20/24 14:10	Received da 02/24/24 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2234574	1	02/27/24 09:50	02/27/24 10:08	CMB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-2-18.5-19.0-20240220 L1709164-05 Solid			Garrett Wilson	02/20/24 14:15	02/24/24 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2234574	1	02/27/24 09:50	02/27/24 10:08	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2239349	1.63	02/20/24 14:15	03/05/24 00:05	GLN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
B-3-3.5-4.0-20240220 L1709164-06 Solid			Garrett Wilson	02/20/24 15:00	02/24/24 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2234574	1	02/27/24 09:50	02/27/24 10:08	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2239349	1.11	02/20/24 15:00	03/05/24 00:24	GLN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
B-3-16.5-17.0-20240220 L1709164-07 Solid			Garrett Wilson	02/20/24 16:30	02/24/24 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2234574	1	02/27/24 09:50	02/27/24 10:08	CMB	Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B

WG2239349

1

02/20/24 16:30

03/05/24 00:43

GLN

Mt. Juliet, TN

SAMPLE SUMMARY

B-3-18.0-18.5-20240220 L1709164-08 Solid			Collected by Garrett Wilson	Collected date/time 02/20/24 16:45	Received da 02/24/24 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2234574	1	02/27/24 09:50	02/27/24 10:08	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2239349	1	02/20/24 16:45	03/05/24 01:02	GLN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
B-4-1.0-1.5-20240221 L1709164-09 Solid			Garrett Wilson	02/21/24 09:30	02/24/24 09	.00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2234574	1	02/27/24 09:50	02/27/24 10:08	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2239349	10	02/21/24 09:30	03/05/24 02:37	GLN	Mt. Juliet, TN
B-4-8.0-8.5-20240221 L1709164-10 Solid			Collected by Garrett Wilson	Collected date/time 02/21/24 10:30	Received da 02/24/24 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2234576	1	02/27/24 09:35	02/27/24 09:48	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2239349	1	02/21/24 10:30	03/05/24 01:21	GLN	Mt. Juliet, TN
B-5-1.0-1.5-20240221 L1709164-11 Solid			Collected by Garrett Wilson	Collected date/time 02/21/24 11:30	Received da 02/24/24 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2234576	1	02/27/24 09:35	02/27/24 09:48	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2239349	10	02/21/24 11:30	03/05/24 02:56	GLN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
B-5-8.0-8.5-20240221 L1709164-12 Solid			Garrett Wilson	02/21/24 13:00	02/24/24 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2234576	1	02/27/24 09:35	02/27/24 09:48	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2239349	10.9	02/21/24 13:00	03/05/24 03:15	GLN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
B-DUP-20240220 L1709164-13 Solid			Garrett Wilson	02/20/24 08:00	02/24/24 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2234576	1	02/27/24 09:35	02/27/24 09:48	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2239349	10	02/20/24 08:00	03/05/24 03:34	GLN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
TRIPBLANK L1709164-14 GW			Garrett Wilson	02/20/24 00:00	02/24/24 09	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

Volatile Organic Compounds (GC/MS) by Method 8260B

WG2237224

02/29/24 22:12

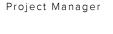
02/29/24 22:12

GLN

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.



Brittnie L Boyd

Report Revision History

Brittine Boyd

Level II Report - Version 1: 03/12/24 13:06 Level II Report - Version 2: 03/15/24 12:19

Project Narrative

Recaptured to specified compounds per client -SC

SAMPLE RESULTS - 01 L1709164

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	82.9		1	02/27/2024 10:08	WG2234574

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		1.01	18.1	1	03/04/2024 23:09	WG2239349
Carbon tetrachloride	13.5		1.30	7.23	1	03/04/2024 23:09	WG2239349
Chloroform	U		1.49	3.61	1	03/04/2024 23:09	WG2239349
Methylene Chloride	U		9.60	36.1	1	03/04/2024 23:09	WG2239349
(S) Toluene-d8	103			<i>75.0-131</i>		03/04/2024 23:09	WG2239349
(S) 4-Bromofluorobenzene	97.2			67.0-138		03/04/2024 23:09	WG2239349
(S) 1,2-Dichloroethane-d4	93.7			70.0-130		03/04/2024 23:09	WG2239349

Ss

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	83.8		1	02/27/2024 10:08	WG2234574

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		0.982	17.5	1	03/04/2024 23:27	WG2239349
Carbon tetrachloride	U		1.26	7.01	1	03/04/2024 23:27	WG2239349
Chloroform	U		1.44	3.51	1	03/04/2024 23:27	WG2239349
Methylene Chloride	U		9.31	35.1	1	03/04/2024 23:27	WG2239349
(S) Toluene-d8	103			<i>75.0-131</i>		03/04/2024 23:27	WG2239349
(S) 4-Bromofluorobenzene	95.6			67.0-138		03/04/2024 23:27	WG2239349
(S) 1,2-Dichloroethane-d4	93.6			70.0-130		03/04/2024 23:27	WG2239349

Ss

SDG:

L1709164

1709164

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	77.4		1	02/27/2024 10:08	WG2234574

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		9.01	161	8	03/05/2024 02:18	WG2239349
Carbon tetrachloride	U		11.6	64.4	8	03/05/2024 02:18	WG2239349
Chloroform	U		13.3	32.2	8	03/05/2024 02:18	WG2239349
Methylene Chloride	U		85.4	322	8	03/05/2024 02:18	WG2239349
(S) Toluene-d8	103			75.0-131		03/05/2024 02:18	WG2239349
(S) 4-Bromofluorobenzene	96.3			67.0-138		03/05/2024 02:18	WG2239349
(S) 1,2-Dichloroethane-d4	96.1			70.0-130		03/05/2024 02:18	WG2239349

Ss

L1709164-03 WG2239349: Elevated RL due to foamy matrix.

B-2-14.5-15.0-20240220 Collected date/time: 02/20/24 14:10

SAMPLE RESULTS - 04

L1709164

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	81.7		1	02/27/2024 10:08	WG2234574

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	76.0		1	02/27/2024 10:08	WG2234574

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		1.72	30.8	1.63	03/05/2024 00:05	WG2239349
Carbon tetrachloride	U		2.20	12.3	1.63	03/05/2024 00:05	WG2239349
Chloroform	U		2.54	6.16	1.63	03/05/2024 00:05	WG2239349
Methylene Chloride	U		16.3	61.6	1.63	03/05/2024 00:05	WG2239349
(S) Toluene-d8	105			<i>75.0-131</i>		03/05/2024 00:05	WG2239349
(S) 4-Bromofluorobenzene	96.6			67.0-138		03/05/2024 00:05	WG2239349
(S) 1,2-Dichloroethane-d4	93.5			70.0-130		03/05/2024 00:05	WG2239349

Ss

SDG:

L1709164

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	81.2		1	02/27/2024 10:08	WG2234574

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	6.48	J	1.12	20.0	1.11	03/05/2024 00:24	WG2239349
Carbon tetrachloride	U		1.44	8.00	1.11	03/05/2024 00:24	WG2239349
Chloroform	U		1.64	4.01	1.11	03/05/2024 00:24	WG2239349
Methylene Chloride	U		10.6	40.1	1.11	03/05/2024 00:24	WG2239349
(S) Toluene-d8	106			75.0-131		03/05/2024 00:24	WG2239349
(S) 4-Bromofluorobenzene	99.1			67.0-138		03/05/2024 00:24	WG2239349
(S) 1,2-Dichloroethane-d4	92.8			70.0-130		03/05/2024 00:24	WG2239349

Ss

SDG:

L1709164

DATE/TIME:

03/28/24 13:48

PAGE:

11 of 28

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	84.8		1	02/27/2024 10:08	WG2234574

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		0.958	17.1	1	03/05/2024 00:43	WG2239349
Carbon tetrachloride	U		1.23	6.84	1	03/05/2024 00:43	WG2239349
Chloroform	U		1.41	3.42	1	03/05/2024 00:43	WG2239349
Methylene Chloride	U		9.09	34.2	1	03/05/2024 00:43	WG2239349
(S) Toluene-d8	103			75.0-131		03/05/2024 00:43	WG2239349
(S) 4-Bromofluorobenzene	97.3			67.0-138		03/05/2024 00:43	WG2239349
(S) 1,2-Dichloroethane-d4	93.3			70.0-130		03/05/2024 00:43	WG2239349

³Ss

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	80.6		1	02/27/2024 10:08	WG2234574

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		1.04	18.7	1	03/05/2024 01:02	WG2239349
Carbon tetrachloride	U		1.34	7.46	1	03/05/2024 01:02	WG2239349
Chloroform	U		1.54	3.73	1	03/05/2024 01:02	WG2239349
Methylene Chloride	U		9.91	37.3	1	03/05/2024 01:02	WG2239349
(S) Toluene-d8	103			75.0-131		03/05/2024 01:02	WG2239349
(S) 4-Bromofluorobenzene	96.9			67.0-138		03/05/2024 01:02	WG2239349
(S) 1,2-Dichloroethane-d4	94.1			70.0-130		03/05/2024 01:02	WG2239349

³Ss

SDG:

L1709164

B-4-1.0-1.5-20240221 Collected date/time: 02/21/24 09:30

SAMPLE RESULTS - 09

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	74.7		1	02/27/2024 10:08	WG2234574

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		11.8	210	10	03/05/2024 02:37	WG2239349
Carbon tetrachloride	U		15.1	84.1	10	03/05/2024 02:37	WG2239349
Chloroform	U		17.3	42.0	10	03/05/2024 02:37	WG2239349
Methylene Chloride	U		112	420	10	03/05/2024 02:37	WG2239349
(S) Toluene-d8	102			<i>75.0-131</i>		03/05/2024 02:37	WG2239349
(S) 4-Bromofluorobenzene	101			67.0-138		03/05/2024 02:37	WG2239349
(S) 1,2-Dichloroethane-d4	95.3			70.0-130		03/05/2024 02:37	WG2239349

Ss

Sample Narrative:

L1709164-09 WG2239349: Elevated RL due to foamy matrix.

L1709164

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	80.8		1	02/27/2024 09:48	WG2234576

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		1.06	18.9	1	03/05/2024 01:21	WG2239349
Carbon tetrachloride	U		1.36	7.57	1	03/05/2024 01:21	WG2239349
Chloroform	U		1.56	3.79	1	03/05/2024 01:21	WG2239349
Methylene Chloride	U		10.1	37.9	1	03/05/2024 01:21	WG2239349
(S) Toluene-d8	103			75.0-131		03/05/2024 01:21	WG2239349
(S) 4-Bromofluorobenzene	96.0			67.0-138		03/05/2024 01:21	WG2239349
(S) 1,2-Dichloroethane-d4	94.8			70.0-130		03/05/2024 01:21	WG2239349

Ss

Αl

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	79.6		1	02/27/2024 09:48	WG2234576

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		10.9	195	10	03/05/2024 02:56	WG2239349
Carbon tetrachloride	U		14.0	77.9	10	03/05/2024 02:56	WG2239349
Chloroform	U		16.0	38.9	10	03/05/2024 02:56	WG2239349
Methylene Chloride	U		103	389	10	03/05/2024 02:56	WG2239349
(S) Toluene-d8	105			<i>75.0-131</i>		03/05/2024 02:56	WG2239349
(S) 4-Bromofluorobenzene	97.0			67.0-138		03/05/2024 02:56	WG2239349
(S) 1,2-Dichloroethane-d4	95.1			70.0-130		03/05/2024 02:56	WG2239349

Ss

Sc

Sample Narrative:

L1709164-11 WG2239349: Elevated RL due to foamy matrix.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	84.8		1	02/27/2024 09:48	WG2234576

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		10.3	183	10.9	03/05/2024 03:15	WG2239349
Carbon tetrachloride	U		13.2	73.3	10.9	03/05/2024 03:15	WG2239349
Chloroform	U		15.1	36.7	10.9	03/05/2024 03:15	WG2239349
Methylene Chloride	U		97.4	367	10.9	03/05/2024 03:15	WG2239349
(S) Toluene-d8	102			75.0-131		03/05/2024 03:15	WG2239349
(S) 4-Bromofluorobenzene	99.2			67.0-138		03/05/2024 03:15	WG2239349
(S) 1,2-Dichloroethane-d4	95.3			70.0-130		03/05/2024 03:15	WG2239349

Sample Narrative:

L1709164-12 WG2239349: Elevated RL due to foamy matrix.

B-DUP-20240220

Collected date/time: 02/20/24 08:00

SAMPLE RESULTS - 13

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	83.1		1	02/27/2024 09:48	WG2234576

4 (,	
Cn	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg	ug/kg		date / time	
Carbon disulfide	U		10.1	181	10	03/05/2024 03:34	WG2239349
Carbon tetrachloride	54.2	<u>J</u>	13.0	72.5	10	03/05/2024 03:34	WG2239349
Chloroform	20.7	<u>J</u>	14.9	36.2	10	03/05/2024 03:34	WG2239349
Methylene Chloride	U		96.2	362	10	03/05/2024 03:34	WG2239349
(S) Toluene-d8	102			75.0-131		03/05/2024 03:34	WG2239349
(S) 4-Bromofluorobenzene	95.9			67.0-138		03/05/2024 03:34	WG2239349
(S) 1,2-Dichloroethane-d4	95.3			70.0-130		03/05/2024 03:34	WG2239349

Sample Narrative:

L1709164-13 WG2239349: Elevated RL due to foamy matrix.

TRIPBLANK

SAMPLE RESULTS - 14

Collected date/time: 02/20/24 00:00

L1709164

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Carbon disulfide	U		0.0962	1.00	1	02/29/2024 22:12	WG2237224
Carbon tetrachloride	U		0.128	1.00	1	02/29/2024 22:12	WG2237224
Chloroform	U		0.111	5.00	1	02/29/2024 22:12	WG2237224
Methylene Chloride	U		0.430	5.00	1	02/29/2024 22:12	WG2237224
(S) Toluene-d8	95.8			80.0-120		02/29/2024 22:12	WG2237224
(S) 4-Bromofluorobenzene	96.4			77.0-126		02/29/2024 22:12	WG2237224
(S) 1,2-Dichloroethane-d4	121			70.0-130		02/29/2024 22:12	WG2237224

SDG:

L1709164

DATE/TIME:

03/28/24 13:48

PAGE:

19 of 28

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1709164-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R403911/-1 02/	2//24 10:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

²Tc

L1709164-01 Original Sample (OS) • Duplicate (DUP)

(05)	11709164-01	02/27/24 10:08 •	(DLID	D//039117_3	02/27/24 10:08
(US)	1 1 1 0 9 10 4 - 0 1	02/2//24 10.00 •	(DOF)) K4U3311/-3	02/2//24 10.00

. ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	82.9	83.0	1	0.142		10

Laboratory Control Sample (LCS)

(LCS) R4039117-2 02/27/24 10:08

(LC3) R4039117-2 02/27/2	Spike Amount LCS R	LCS Result LCS	.CS Rec. Rec. Limits
Analyte	% %	% %	%
Total Solids	50.0 50.0	50.0 99.	99.9 90.0-110

QUALITY CONTROL SUMMARY

L1709164-10,11,12,13

Total Solids by Method 2540 G-2011

Method Blank (MB)

Total Solids

(MB) R4039116-1 02/27/24	09:48			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%

L1709164-10 Original Sample (OS) • Duplicate (DUP)

0.00200

(OS) L1709164-10 02/27/24 09:48 • (DUP) R4039116-3 02/27/24 09:48

,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	80.8	80.4	1	0.526		10

Ss

Laboratory Control Sample (LCS)

(LCS) R4039116-2 02/27/24 09:48

(200) 11 1000 110 2 102/27/2		LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	90.0-110

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1709164-14

Method Blank (MB)

(MB) R4040230-3 02/29/	24 17:22				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Carbon disulfide	U		0.0962	1.00	
Carbon tetrachloride	U		0.128	1.00	
Chloroform	U		0.111	5.00	
Methylene Chloride	U		0.430	5.00	
(S) Toluene-d8	99.3			80.0-120	
(S) 4-Bromofluorobenzene	96.8			77.0-126	
(S) 1,2-Dichloroethane-d4	121			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

040230-1 02/29/24 16:21 • (LCSD) R4040230-2 02/29/24 16

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
nalyte	ug/l	ug/l	ug/l	%	%	%			%	%	
arbon disulfide	5.00	5.23	5.57	105	111	61.0-128			6.30	20	
arbon tetrachloride	5.00	5.57	5.68	111	114	68.0-126			1.96	20	
nloroform	5.00	5.53	5.62	111	112	73.0-120			1.61	20	
ethylene Chloride	5.00	5.36	5.60	107	112	67.0-120			4.38	20	
(S) Toluene-d8				95.4	96.1	80.0-120					
(S) 4-Bromofluorobenzene	è			95.9	96.3	77.0-126					
(S) 1,2-Dichloroethane-d4				122	125	70.0-130					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1709164-01,02,03,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R4041666-3 03/04/2	:4 21:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/kg		ug/kg	ug/kg
Carbon disulfide	U		0.0962	1.00
Carbon tetrachloride	U		0.128	1.00
Chloroform	U		1.03	2.50
Methylene Chloride	U		6.64	25.0
(S) Toluene-d8	106			75.0-131
(S) 4-Bromofluorobenzene	96.9			67.0-138
(S) 1,2-Dichloroethane-d4	95.9			70.0-130

²Tc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4041666-1 03/04/24 19:46 • (LCSD) R4041666-2 03/04/24 20:05

,	`	,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/kg	ug/kg	ug/kg	%	%	%			%	%	
Carbon disulfide	125	116	116	92.8	92.8	56.0-133			0.000	20	
Carbon tetrachloride	125	134	130	107	104	66.0-128			3.03	20	
Chloroform	125	122	115	97.6	92.0	72.0-123			5.91	20	
Methylene Chloride	125	115	113	92.0	90.4	68.0-123			1.75	20	
(S) Toluene-d8				100	101	75.0-131					
(S) 4-Bromofluorobenzene				96.8	99.9	67.0-138					
(S) 1,2-Dichloroethane-d4				101	99.5	70.0-130					

⁷Gl

⁹Sc

L1709164-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1709164-10 03/05/24 01:21 • (MS) R4041666-4 03/05/24 03:52 • (MSD) R4041666-5 03/05/24 04:11

	Spike Amount (dry)	Original Result (dry)		MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/kg	ug/kg	ug/kg	ug/kg	%	%		%			%	%
Carbon disulfide	162	U	144	131	88.8	81.1	1	10.0-145			9.02	39
Carbon tetrachloride	162	U	209	183	129	113	1	10.0-145			13.1	37
Chloroform	162	U	174	156	107	96.3	1	10.0-146			11.0	37
Methylene Chloride	162	U	173	154	107	95.3	1	10.0-141			11.1	37
(S) Toluene-d8					101	101		75.0-131				
(S) 4-Bromofluorobenzene					94.4	97.4		67.0-138				
(S) 1,2-Dichloroethane-d4					96.3	94.6		70.0-130				

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1709164-01,02,03,05,06,07,08,09,10,11,12,13

L1711433-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1711433-04 03/04/24 22;31 • (MS) R4041666-6 03/05/24 04;30 • (MSD) R4041666-7 03/05/24 04;49

(100) 211 1100 0 1 0 1010 112 1 2200 (110) 1110 1100 0 00100 2 1 0 110												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/kg		ug/kg	ug/kg	%	%		%			%	%
Carbon disulfide	985		817	720	85.8	75.5	8	10.0-145			12.7	39
Carbon tetrachloride	985	U	1170	1050	123	110	8	10.0-145			11.2	37
Chloroform	985	U	1000	891	105	93.5	8	10.0-146			11.7	37
Methylene Chloride	985	U	955	864	100	90.7	8	10.0-141			10.0	37
(S) Toluene-d8					101	101		75.0-131				
(S) 4-Bromofluorobenzene					96.9	97.6		67.0-138				
(S) 1,2-Dichloroethane-d4					95.6	93.8		70.0-130				

³Ss

Sample Narrative:

OS: Lowest possible dilution due to sample foaming.

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations an	d Delinitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

DATE/TIME:

PAGE:

26 of 28

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address.			Billing Infor	mation:					Д	nalysis / Con	tainer / Preservative		Chain of Custody	Page of _2
UPRR - Arcadis			UPRR Pro	oject Manager		Pres								
8808 E Wellesley Ave Spokane, WA 99212			4315 E Sp	orague Ave Valley, WA 99	Chk							PEOPLE	RCE" ADVANCING SCIENCE	
Report to:		Email To:											JLIET, TN	
Josh Lee			Joshua.Lee	@arcadis.com;jan	ette.wilson@	Parcadi							12065 Lebanon Rd. Moi Submitting a sample via	
Project Description: UPRR - Rockford, WA	Colle	/State ected: K	Pockford	WA	Please Ci					Syr			Pace Terms and Conditi	
Phone: 406-239-7810	202103	57		Lab Project # UPRRARCA-R	OCKFORD					eOH10ml/Syr			SDG #	709164
Collected by (print): Site Garret W. 1507	e/Facility ID #			P.O. #			oPres	Pres	Pres	Меон			Acctnum: UPF	204 RRARCA
/ 14 6 / 37/ 46 - 14/- 1/		Five D	(Rad Only)	Quote #	s Needed	No.	8 2ozClr-NoPres	4	L 4ozClr-NoPres	40mlAmb/M			Prelogin: P10 PM: 829 - Britt PB: 0	52528 nie L Boyd ,
Sample ID Co	mp/Grab Ma	atrix *	Depth	Date	Time	Intrs	MRCRAS	SV8081	SV8151	V8260				Sample # (lab only)
B-1-20-25-20240220	G	SS	20.25	2/20/24	0840	3	=	S	S	χ				-01
B-1-18.5-19.0-20240220	3	SS	185-190	2/20/24	1025	3				X				-02
B-2-1.5-2.0-20240220	G	SS		2/20/24	1149	13				X				-03
B-2-145-15.0-20240220	G	55	14.5-15.0	2/20/24	1410	13				X				-04
B-2-18,5-19,0-20240220	G	SS	185-19.0	2/20/24	1415	3				X				-05
B-3-35-4,0-20240220	G	SS		2/20/24	1500	3				X				-06
B-3-16.5-17.0-20240220	0	SS	16.5-17.0		1630	13				1				-01
B-3-18.0-18,5-L0240220		SS	130-182	77	1645	13				X				- a8
B-4-1.0-1.5-20240221	,, t	SS		2/21/24	0430	13				X				709
3-4-8,0-85-20240211		SS		2,21/24	1030	15				X			MS/MS	10
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water Sample	11 10	itiona	JR4 C	ple volter	ne for	55 F	المار	10	יונין ביין	рН Моw	TempOther	COC Sea COC Sig Bottles Correct Suffici	Sample Receipt Ct il Present/Intact ned/Accurate: arrive intact: bottles used: ent volume sent: If Applicab to Headspace:	NP JY N N N N N N N N N
Relinquished by : (Signature)	Date:	j.	Time:		ed by: (Signa	ture)			- Contractor	Trip Blank Re	ceived: Yes / No HCL / Meo	RAD Scr	vation Correct/Ch reen <0.5 mR/hr:	ecked:
Relinquished by : (Signature)	Date:	7/74	Time.	Receiv	ed by: (Signa	ture)				Temp: TI A4	TBR Bottles Receive		vation required by Lo	gin: Date/Time
Relinquished by : (Signature)	Date:		Time:	Receiv	ed for lab by:	(Signat	ture)	rer	, 20	Date: 2 24	Time:	Hold:		Condition:

Company Name/Address:			Billing Info	rmation:					Δ	Inalysis /	Chain of Custod	Page Z of Z				
			UPRR Pr	Pres Chk							1 Par					
8808 E Wellesley Ave), l			Valley, WA 95	9212								- /-Pa	ace		
Spokane, WA 99212			Oponane	tuncy, wars.								/ PEOPLE	ADVANCING SCIENCE			
Report to: Josh Lee			Email To:	- Donardi '	9								JLIET, TN			
			A 1	@arcadis.com;jai	parcadi							12065 Lebanon Rd. Mc Submitting a sample vi				
Project Description: UPRR - Rockford, WA	lati		Rockfur		Please C					Syr			Pace Terms and Condit			
Phone: 406-239-7810	Client Project			Lab Project # UPRRARCA-I	ROCKFORD					10ml/			SDG#	709169		
Collected by (print): Grant Wilson	Site/Facility II			P.O. #			Pres	res	res	V8260 40mlAmb/MeOH10ml/Syr			Table # Acctnum: UPI	DADCA		
Collected by (signature):	Rush?	Lab MUST Be	Notified)		2	TOP	40M	b/A			Template:T24					
Fruit 1. Wals	Same D	ay Five	Day	Quote #		ozclr	4ozClr-NoPres	4ozClr-NoPres	IAm			Prelogin: P10	52528			
Immediately Packed on Ice N Y X	Two Da	y 10 D	ay (Rad Only)	y (Rad Only) Date Results Needed Str.			A8 2	1 403	1 40	40m			PM: 829 - Britt	anie L Boyd 2 10/24		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	MRCRA8 2ozClr-NoPres	SV8081	SV8151	78260			Shipped Via: F	Sample # (lab only)		
13-5-10-15-20240221		SS	1.0-1.5	2/21/2024	1130	13			7,	X						
B-5-20-8.5-20240221	G	SS	3,0-8,5	2/21/2024	1300	3				Y				-15		
B-DUP-ZOZYOZZO	4	SS	2.0-2.5	2/20/2024	0080	3				X				1-13		
		55														
		SS														
		SS														
		SS														
		SS														
		SS														
		55														
	marks: V	2#0	17187	1 0		,	,			рН	Temp	COC Sign	ample Receipt C Present/Intact ed/Accurate:	necklist N		
GW - Groundwater B - Bioassay WW - WasteWater	old aeldi	homb 3	ionph v	rol wulet	polenho	1 CN	raly	ند		Flow	Other	Correct	arrive intact: bottles used:	N N		
DW - Drinking Water OT - Other	mples returned UPS FedEx			Tracki	ing# 7	55	0	315	507	10		VOA Zero	nt volume sent: If Applicate Headspace:	_Y _N		
Relinquished by : (Signature)	D	ate:	Time	: Recei	ved by: (Signa	iture)					k Received: Yes / No	RAD Scre	tion Correct/Ch en <0.5 mR/hr:	ecked X _N		
Shouth Hold		7/23/2	1 120	00							HCL/Medi TBR					
Relinquished by : (Signature)	D	ate:	Time		ved by: (Signa	iture)				Temp: T	TO=1.1 41	d: If preserva	ation required by Lo	gin: Date/Time		
Relinquished by : (Signature)	D	ate:	Time		ved for lab by	: (Signa	ture)		2	Date:	Time:	Hold:		Condition:		
				a	llya	W	vita	he	u	712	4124 091	0	l N			

Arcadis U.S., Inc.

1100 Olive Way

Suite 800

Seattle, Washington 98101

Tel 206 325 5254

Fax 206 325 8218

www.arcadis.com