

HALEY & ALDRICH, INC. 3131 Elliott Avenue Suite 600 Seattle, WA 98121 206.324.9530

9 September 2022 File No. 0202561-000

City of Tacoma Public Works Department, Engineering Division 747 Market Street, Room 544 Tacoma, WA 98402

- Attention: Darius Thompson Project Manager
- Subject: Thea Foss Waterway Esplanade Groundwater Monitoring Results, June 2022

Dear Mr. Thompson:

This letter transmits the results of the June 2022 groundwater monitoring event conducted for the Thea Foss Waterway Esplanade site (Figure 1). The sampling was performed in accordance with our proposal dated 8 January 2021, and involved collecting and analyzing groundwater samples from the following monitoring wells (Figure 2):

- MW-2 (MW-09-2);
- MW-5;
- P3-MW-01R;
- P3-MW-02;
- P3-MW-03; and
- Landau Well.

Samples were collected using low-flow techniques and were analyzed for dissolved arsenic, copper, lead, nickel, and zinc by the City of Tacoma Environmental Services Laboratory using Method 6020B. Samples from the Landau Well were also analyzed for gasoline using method NWTPH-Gx, diesel and heavy oil using method NWTPH-Dx, and benzene, toluene, ethylbenzene, and xylenes (BTEX) using method 8260D. All wells were sampled within approximately 6 hours of low tide in the adjacent Thea Foss Waterway, which occurred at 9:04 AM PST.

Table 1 presents the water levels measured in each well at the specified date and time in the table. Haley & Aldrich's field groundwater sampling data forms are included as Appendix A. The laboratory report, along with our data usability summary report, is included in Appendix B.

Table 2 summarizes the results of the chemical analyses and compares them to groundwater- and surface water-based cleanup levels. The groundwater sample collected from P3-MW-01R exceeded the

City of Tacoma 9 September 2022 Page 2

Model Toxics Control Act (MTCA) surface water standards for marine waters, aquatic life, chronic for copper (3.1 μ g/L) with a value of 3.82 μ g/L and exceeded the MTCA Method B groundwater cleanup level for drinking water for arsenic (0.058 μ g/L) with a value of 1.55 μ g/L, though this value is still below the MTCA Method A groundwater cleanup level (5 μ g/L). All other dissolved metals results were either non-detect or below regulatory levels.

Table 3 summarizes the historical results of the chemical analyses and compares them to groundwaterand surface water-based cleanup levels.

A petroleum-like odor was observed in the Landau Well, so samples from that well were analyzed for gasoline range organics (GRO) using method NWTPH-Gx, diesel range organics (DRO) and heavy oil range organics (ORO) using method NWTPH-Dx, and benzene, toluene, ethylbenzene, and xylenes (BTEX) using method 8260D. Results were all non-detect. We recommend no further testing for GRO, DRO, ORO, or BTEX at this time.

Please note that surface monuments in several of the monitoring wells are missing bolts or are damaged (see details in groundwater sampling field forms included in Appendix A). We recommend that these well monuments be repaired prior to or during the next sampling event, if possible.

We trust that this report meets your needs. Please contact us with any questions or if you would like to discuss further.

Sincerely yours, HALEY & ALDRICH, INC.

Becca Dozier Hydrogeologist

Mark Dagel, LHG Program Manager

Attachments: Table 1 – Water-Level Measurements Table 2 – Analytical Results Table 3 – Historical Results Figure 1 – Vicinity Map Figure 2 – Well Locations Appendix A – Groundwater Sampling Field Forms Appendix B – Data Quality Review and Laboratory Data Report

\\haleyaldrich.com\share\sea_projects\Notebooks\1764604_Thea_Foss_Waterway_Esplanade\Deliverables\Letters\2022 Report\2022_0909_HAI_GW_Monitoring_Results_F.docx

TABLES

TABLE 1 WATER-LEVEL MEASUREMENTS THEA FOSS WATERWAY ESPLANADE TACOMA, WASHINGTON

		Depth to Water
Well	Time	(feet)
MW-2	1:51 PM	11.86
MW-5	12:35 PM	9.67
P3-MW-01R	2:48 PM	8.69
P3-MW-02	11:25 AM	5.99
P3-MW-03	3:23 PM	9.82
Landau Well	10:01 AM	16.29

Notes:

Measurements taken on 24 June 2022. Depth to water measured from top of PVC well casings. All times are in Pacific Standard Time.

TABLE 2 ANALYTICAL RESULTS THEA FOSS WATERWAY ESPLANDE

	000			-0.	
TACON	IA. W	ASHIN	IGTON		

TACOMA, WASHINGTON												M														De suiteter	and anote	
									r			IVIONITO	ring Well				1									Regulator	y Leveis	
																									Le Cleanup Le	evels and Risk	Surface Wate for Marine Chapter 173	ne Waters,
Results in µg/L			/W-2				MW-5				MW-01R				-MW-02				-MW-03				lau Well		Method A	Method B, Drinking Water	Aquatic Life, Chronic	
	4/9/2019	1/27/2020	3/31/2021	6/24/2022	4/9/2019		3/31/2021	6/24/2022	4/9/2019	1/27/2020	3/31/2021	6/24/2022	4/9/2019	1/27/2020	3/31/2021	6/24/2022	4/9/2019	1/27/2020	3/31/2021	6/24/2022	4/9/2019	1/27/2020	3/31/2021	6/24/2022				
Depth to Water (feet)	11.81	10.72	11.9	11.86	9.46	8.64	9.85	9.67	8.55	7.12	8.52	8.69	5.43	5.43	5.89	5.99	8.73	7.94	9.07	9.82	12.03	11.98	12.35	16.29				
Dissolved Metals																												
Arsenic	1.23	0.5 L	J 2.5	U 1	U 1.03	0.615	2.5	U 1 U	1.58	1.56	2.5 L	J 1.55	2.52	4.33	2.5 l	J 1 U	10.8	1.76	6.2	1	U 5.73	0.68	2.63	5 L	5 ^a	0.058	36	10
Copper	0.318 T	0.5 L	J 2.5	U 1	U 2.41	0.5	U 2.5	U 1 U	3.09	1.51	2.65	3.82	0.249 T	0.5 U	J 2.5 L	J 1 L	J 4.97	1.6	2.5 L	J 1	U 0.529	0.5 L	1 2.5 L	J 5 L	-	640 ^b	3.1	-
Lead	0.5 U	0.5 L	J 2.5	U 1	U 0.5	U 0.5	U 2.5	U 1 L	0.0061 L	J 0.5	U 2.5 L	J 1 L	J 0.169 T	0.5 U	J 2.5 l	J 1 L	J 0.5 U	0.5 l	J 2.5 L	J 1	U 0.0061 l	J 0.5 L	1 2.5 L	J 5 L	15	-	8.1	-
Nickel	0.965	0.566	2.5	U 1	U 0.845	0.538	2.5	U 1 L	1.11	0.829	2.5 L	J 1.22	0.411 T	0.5 U	J 2.5 l	J 1 L	J 1.53	0.544	2.5 L	J 4.39	2.83	0.595	2.5 L	J 5 L	-	-	8.2	190
Zinc	17.6	1.78	2.5	U 2.01	3.25	0.58	2.5	U 2.83 J	2.77	1.26	4.45	4.42	1.85	0.5 U	J 2.5 U	J 1.21	2.07	0.5	9.01	3.36	2.41	0.81	2.62	5 L	-	4800 ^b	81	2900
NWTPH-Dx																												
Diesel	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100 L	J 100 L	500	-	50 ^{d,e}	-
Heavy Oil	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	190 L	J 200 L	500	-	-	-
NWTPH-Gx																												
Gasoline	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	250 L	800 / 1000 ^c	-	1700 ^d	-
Volatile Organic Compounds																												
Benzene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.5 L	5	0.8	23 ^d	1.6
Ethylbenzene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.5 L	700	800 ^b	21 ^d	270
Toluene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.5 L	1000	640 ^b	102 ^d	410
Xylenes	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5 L	1000	1600 ^b	106 ^d	-

Notes: Analyses performed by City of Tacoma Environmental Services Laboratory using method 6020B for dissolved metals, method NWTPH-Gx for gasoline, method NWTPH-Dx for diesel and heavy oil-range hydrocarbons, and method 8260D for benzene, toluene, ethylbenzene, and xylenes (BTEX).

U = Not detected at detection limit indicated. T = Value is between the MDL and RL. Monitoring well values represent dissolved metals concentrations (laboratory filtered). All concentrations in µg/L. Bolded values indicate concentration exceeds Method A groundwater cleanup level.

Italicized values indicate concentration exceeds Method B groundwater cleanup level.

Shaded values indicate concentration exceeds surface water standard.

- = not applicable or no results

^a Arsenic cleanup level based on background groundwater concentrations for state of Washington.

^b Groundwater Method B Non-cancer cleanup level.

^c 800 µg/L when benzene is present in groundwater; 1000 µg/L when benzene is not detected.

^d Aquatic life protective values

. ^e Unweathered

TABLE 3 HISTORICAL RESULTS THEA FOSS WATERWAY ESPLANADE TACOMA, WASHINGTON

	Regulatory				MW-16							MW-30			
Well ID	Level	0/5/00/40	40/00/0040	7/00/0044		40/45/0040	4/47/0044	40/00/0044	0/5/00/10	40/00/0040	7/00/00//		40/45/0040	4/47/0044	10/00/0011
Sampling Date		8/5/2010	12/29/2010	7/26/2011	3/1/2012	10/15/2013	4/17/2014	10/23/2014	8/5/2010	12/29/2010	7/26/2011	3/1/2012	10/15/2013	4/17/2014	10/23/2014
Depth to Water in Feet ^a		15.21	13.30	15.15	14.3	14.17	13.68	13.55	10.51	7.70	9.99	9.14	10.55	8.51	8.60
TPH in µg/L															
Diesel	500 [°]	80 U	100 U	70 U	70 U	100 U	100 U	30 UJ	80 U	100 T	70 T	70 U	100 U	100 U	50 J
Heavy oil	500 ^c	210 U	100 U	40 U	50 T	200 U	200 U	50 UJ	210 U	100 U	40 U	40 U	200 U	200 U	50 UJ
Gasoline	800 ^c	35 T	50 U	70	10 U	50 U	50 U	21.9 J	87	50 U	158	29.7	114	143	124 J
BTEX in µg/L															
Benzene	71 ^d	0.2 U	1 U	0.20	1.0 U	1.0 U	0.2 U	0.2 U	1.6	1.04	9.40	9.4	12	20	15
Toluene	200,000 ^d	0.2 U	1 U	0.20	1.0 U	1.0 U	0.2 U	0.2 U	0.2 U	1 U	0.20 T	0.20 U	1.0 U	0.2 U	0.2 U
Ethylbenzene	29,000 ^d	0.2 U	1 U	0.30 T	0.2 U	1.0 U	0.2 U	0.2 U	0.2 U	1 U	0.50 T	0.20 U	1.0 U	0.2 JT	0.2 U
Total xylene	1,600 ^e	0.6 U	2 U	0.70 T	0.6 U	2.0 U	0.4 U	0.4 U	0.6 U	2 U	1.00 T	0.60 U	0.7 T	0.9 JT	1.0 T
cPAHs in µg/L															
Benzo(a)anthracene	-	0.107	0.072	0.005 U	0.005 U	0.007 JT	0.010 UJ	0.005 U	0.048	0.006 U	0.005 U	0.005	0.010 UJ	0.010 UJ	0.005 UJ
Benzo(a)pyrene	-	0.117	0.078	0.009 U	0.009 U	0.01 UJ	0.010 UJ	0.005 U	0.052	0.004 U	0.009 U	0.009	0.010 UJ	0.010 UJ	0.005 UJ
Benzo(b,k)fluoranthenes	-	0.168	0.119	0.012 U	0.012 U	0.02 UJ	0.020 UJ	0.012 U	0.094	0.007 U	0.012 U	0.012	0.020 UJ	0.020 UJ	0.012 UJ
Chrysene	-	0.101	0.079	0.003 U	0.003 U	0.01 UJ	0.010 UJ	0.006 U	0.049	0.005 U	0.003 U	0.003	0.010 UJ	0.010 UJ	0.006 UJ
Dibenz(a,h)anthracene	-	0.014	0.027	0.005 U	0.007 T	0.01 UJ	0.010 UJ	0.004 U	0.009 U	0.008 T	0.005 U	0.005	0.010 UJ	0.010 UJ	0.004 UJ
Indeno(1,2,3-cd)pyrene	-	0.072	0.055	0.006 U	0.007 T	0.01 UJ	0.010 UJ	0.003 U	0.039	0.006 T	0.006 U	0.006 T	0.010 UJ	0.010 UJ	0.003 UJ
Total cPAHs ^b	0.031 ^{b,d}	0.154	0.106	0.006 U	0.007	0.008 J	0.008 UJ	0.004 U	0.071	0.004	0.006 U	0.012 J	0.008 UJ	0.008 UJ	0.004 UJ
Dissolved Metals in µg/L															
Arsenic	0.14 ^d	6.55	9.3	5.67	7.44	6.44	9.56	6.16	8.05	21.4	17.9	19.4	9.96	10.4	10.6
Copper	3.1 ^f	0.09 T	1.05 T	0.758	0.249	0.038 U	0.038 U	0.995	0.12 T	0.4 T	0.038 U	0.108 T	0.044 T	0.038 U	0.357
Lead	8.1 ^f	0.028 U	0.6 T	0.413	0.078 T	0.2 U	0.026 U	0.156 J	0.06 T	0.15 T	0.067 T	0.078 T	0.2 U	0.102 JT	0.026 U
Nickel	8.2 ^f	4.89	0.9 T	1.56	0.685	0.261	0.274	1.11	3.72	0.8 T	0.975	1.27	0.406	0.396	0.408 U
Zinc	81 ^f	16	4.3	3.06	0.688	0.79 U	0.66	2.17	15.4	2 T	0.983	1.93	0.898 U	1.97	1.05

TABLE 3 HISTORICAL RESULTS THEA FOSS WATERWAY E TACOMA, WASHINGTON

Well ID		MW-9					P4-MW0	0				P10-M					P10-MW03F	5	
Sampling Date	10/15/2013	4/17/2014	10/23/2014	8/5/2010	12/30/2010	7/26/2011	2/29/2012	2 10/15/2013	4/17/2014	10/23/2014	10/14/1997	1/20/1998	8/10/2010	12/29/2010	7/29/2011	3/1/2012	10/15/2013	4/17/2014	10/23/2014
												1/20/1990							
Depth to Water in Feet ^a	13.83	14.62	14.45	8.54	9.10	9.61	9.49	9.51	9.65	9.27	-	-	7.93	6.10	8.02	7.37	8.18	7.52	7.05
TPH in µg/L																			
Diesel	1300	6400	4400 J	260	200	90 T	280	100 U	100 U	40 J	250 U	250 U	80 U	100 J	70	70 U	100 U	100 U	30 UJ
Heavy oil	410	3400	2000 J	210 U	200 T	40 U	360	200 U	200 U	50 UJ	500 U	500 U	210 U	200 T	60 T	40 U	200 U	200 U	50 UJ
Gasoline	1560	1930	634	160	50 U	89.7	31.2	447	76.7 U	79.2	100 U	100 U	46 T	50 U	60.1	10 U	50 U	50 U	24.1 J
BTEX in µg/L																			
Benzene	120	220	80	3.2	2.32	4.9	2.70	3.8	3.5	3.6	0.5 U	0.5 U	2.0 U	1 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U
Toluene	2.4	2.5 J	1.4 T	0.6 T	1 U	0.4 T	0.20 U	0.2 T	0.3 JT	0.3 T	0.5 U	0.5 U	2.0 U	1 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U
Ethylbenzene	29	36	9.8	1.3	1 U	0.6 T	0.30 T	0.3 T	0.3 JT	0.3 T	0.5 U	0.5 U	2.0 U	1 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U
Total xylene	16.2	12.2 J	5.3 T	1.7 T	2 U	1.3 T	0.60 T	1.2 T	1.7 JT	1.5 T	0.5 U	0.5 U	6.0 U	2 U	0.6 U	0.6 U	2.0 U	0.4 U	0.4 U
cPAHs in µg/L											•								
Benzo(a)anthracene	10.200 J	2.34 J	7.56 J	0.454	0.404	0.067	0.236	0.198 J	0.0630 J	0.1420	1.000 U	0.015	0.102	0.035	0.040	0.014	0.128 J	0.015 J	0.032 J
Benzo(a)pyrene	2.680 J	26.3 J	1.79 J	0.371	0.357	0.016	0.199	0.048 J	0.0270 J	0.0660	1.000 U	0.010 U	0.073	0.029	0.030	0.010	0.054 J	0.010 UJ	0.007 T
Benzo(b,k)fluoranthenes	6.030 J	6.96 J	3.54 J	0.490	0.521	0.024	0.265	0.091 J	0.0380 J	0.0950	1.000 U	0.010 U	0.098	0.035	0.044	0.012 T	0.192 J	0.020 UJ	0.015 T
Chrysene	10.300 J	52.9 J	6.2 J	0.385	0.430	0.055	0.239	0.177 J	0.0580 J	0.1330	1.000 U	0.012	0.120	0.046	0.049	0.013	0.153 J	0.012 J	0.025 J
Dibenz(a,h)anthracene	0.276 J	101 J	0.204 J	0.030	0.050	0.005 U	0.020	0.005 JT	0.0100 UJ	0.0040 U	1.000 U	0.010 U	0.009 U	0.006	0.005 T	0.005	0.086 J	0.010 UJ	0.004 UJ
Indeno(1,2,3-cd)pyrene	0.689 J	112 J	0.506 J	0.145	0.158	0.006 U	0.092	0.012 J	0.0100 J	0.0260	1.000 U	0.010 U	0.032	0.013 T	0.015	0.006 T	0.083 J	0.010 UJ	0.003 UJ
Total cPAHs⁵	4.503 J	49.059 J	3.033 J	0.487	0.475	0.026	0.263	0.080 J	0.039 J	0.094	0.705 ∪	0.008	0.098	0.038 J	0.041 J	0.014 J	0.104 J	0.009 J	0.012 J
Dissolved Metals in µg/L					-														
Arsenic	5 U	2.06	2.4	2.61	0.95 ⊤	0.836	0.843 ⊤	5 U	0.319	0.517	1.4 U	1.3 U	0.73	0.3 ⊤	0.374	0.316 J	5 U	0.276	0.278
Copper	0.2 U	0.038 U	0.225	0.14 T	0.6 T	0.038 U	1.69	0.041 T	0.038 U	0.356	3.9 U	4.5 U	1.37	0.5 T	0.058 T	1.54	0.2 U	0.2 U	0.266
Lead	0.2 U	0.026 U	0.026 U	0.05 JT	3.5	0.026 U	0.401	0.2 U	0.026 U	0.026 U	4 U	1.2 U	0.028 U	0.5 T	0.165 T	0.286	0.2 U	0.026 U	0.026 U
Nickel	0.642	0.316	0.368 UJ	6.81	0.4 T	0.886	2.82	0.08 J	0.101 JT	0.2 U	0.4 U	0.6 U	8.11	0.75 T	2.67	26.4	0.446	0.457	0.379 UJ
Zinc	0.695 U	5.4	0.98	20.5	2.75	0.239	4.19	0.333 U	2.38	2.07	1.9 U	1.4 U	68.5	1.8 T	0.965	10	0.541 U	2.0	0.84

TABLE 3 HISTORICAL RESULTS THEA FOSS WATERWAY E TACOMA, WASHINGTON

Well ID				P1	0-MW04				R21-MW01		R21-MW02			MW-2			MW-5	
Sampling Date	10/14/1997	1/20/1998	8/10/2010	12/29/2010	2/29/2012	10/15/2013	4/17/2014	10/23/2014	10/23/2014	10/15/2013	4/17/2014	10/23/2014	10/15/2013	4/17/2014	10/23/2014 ^g	10/15/2013	4/17/2014	10/23/2014
Depth to Water in Feet ^a	-	-	10.12	8.10	10.34	10.38	9.74	9.48	8.9	12.02	10.04	11.59	11.9	11.53	-	9.8	9.44	9.01
TPH in µg/L																		
Diesel	250 U	250 U	80 U	300	70	100 U	100 U	30 UJ	30 UJ	100 U	100 U	30 UJ	100 U	100 U	-	40 T	100 U	30 UJ
Heavy oil	500 U	500 U	210 U	1,300	40	70 T	200 U	50 J	50 UJ	200 U	200 U	50 UJ	200 U	200 U	-	200 U	200 U	50 UJ
Gasoline	100 U	100 U	18 T	50 U	151	50 U	50 U	16.7 J	18.3 J	50 U	50 U	19.8 J	50 U	50 U	-	50 U	50 U	24.7 J
BTEX in μg/L				-		-										-		
Benzene	0.5 U	0.5 U	0.2 U	1 U	2.5	1.0 U	0.2 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U	1.0 U	0.2 U	-	1.0 U	0.2 U	0.2 U
Toluene	0.5 U	0.5 U	0.2 U	1 U	14	1.0 U	0.2 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U	1.0 U	0.2 U	-	1.0 U	0.2 U	0.2 U
Ethylbenzene	0.5 U	0.5 U	0.2 U	1 U	2.8	1.0 U	0.2 U	0.2 U	0.2 U	1.0 U	0.2 U	2.0 U	1.0 U	0.2 U	-	1.0 U	0.2 U	0.2 U
Total xylene	0.5 U	0.5 U	0.6 U	2 U	13.9	2.0 U	0.4 U	0.4 U	0.4 U	2.0 U	0.4 U	0.4 U	2.0 U	0.4 U	-	2.0 U	0.4 U	0.4 U
cPAHs in µg/L				-		-										-		
Benzo(a)anthracene	1.000 U	0.035	0.015	1.010 J	0.005	0.115 J	0.010 UJ	0.013	0.015	0.079 J	0.010 UJ	0.005 UJ	0.026 J	0.010 UJ	-	0.036 J	0.010 UJ	0.014 J
Benzo(a)pyrene	1.000 U	0.010 U	0.014	1.130 J	0.009	0.072 J	0.010 UJ	0.005 U	0.005 U	0.049 J	0.010 UJ	0.005 UJ	0.009 JT	0.010 UJ	-	0.010 UJ	0.010 UJ	0.005 UJ
Benzo(b,k)fluoranthenes	1.000 U	0.010 U	0.020	1.710 J	0.012	0.119 J	0.020 UJ	0.012 U	0.012 U	0.075 J	0.020 UJ	0.012 UJ	0.017 JT	0.020 UJ	-	0.020 UJ	0.020 UJ	0.012 UJ
Chrysene	1.000 U	0.022	0.140	1.230 J	0.007 T	0.120 J	0.010 UJ	0.008 T	0.010	0.077 J	0.010 UJ	0.006 UJ	0.018 J	0.010 UJ	-	0.026 J	0.010 UJ	0.010 J
Dibenz(a,h)anthracene	1.000 U	0.010 U	0.009 U	0.207 J	0.005	0.014 J	0.010 UJ	0.004 U	0.004 U	0.010 J	0.010 UJ	0.004 UJ	0.010 UJ	0.010 UJ	-	0.010 UJ	0.010 UJ	0.004 UJ
Indeno(1,2,3-cd)pyrene	1.000 U	0.010 U	0.009 T	0.683 J	0.006 T	0.043 J	0.010 UJ	0.003 U	0.003 U	0.025 J	0.010 UJ	0.003 UJ	0.006 JT	0.010 UJ	-	0.010 UJ	0.010 UJ	0.003 UJ
Total cPAHs ^b	0.705 U	0.010	0.020 J	1.503 J	0.012 J	0.102 J	0.008 UJ	0.005 J	0.005	0.069 J	0.008 UJ	0.004 UJ	0.015 J	0.008 UJ	-	0.011 J	0.008 UJ	0.005 J
Dissolved Metals in µg/L																		
Arsenic	5.5	1.3 U	3.2	1.25 ⊤	2.71 ⊤	5 U	0.42	1.46	2.81	25 U	1.06	1.07	5 U	0.441	-	5 U	0.584	3.43
Copper	3.9 U	9.2 U	0.079 U	0.095 T	0.183 T	0.2 U	0.2 U	0.417	0.307	0.316 T	0.905	0.854 J	0.2 U	0.2 U	-	0.2 U	0.2 U	0.71
Lead	9.4 U	2.3 U	0.15 T	7	0.153 T	0.294 U	0.306	0.407	0.223	1 U	0.052 U	0.13 U	0.2 U	0.026 U	-	0.2 U	0.026 U	0.138 J
Nickel	0.4 U	0.6 U	7.17	1.9 T	6.21	0.798	0.795	2.24	0.270 UJ	0.988 T	0.976	1.830 UJ	0.202	0.162 JT	-	0.134 T	0.403	1.49
Zinc	1.9 U	1.8 U	3.22	6.3	0.756	0.594 U	2.52	76.4	1.83	2.26 U	3.42	3.39	0.66 U	1.99	-	0.852 U	3.86	77.9

TABLE 3 HISTORICAL RESULTS THEA FOSS WATERWAY E TACOMA, WASHINGTON

												22			
Well ID		MW7-1A		P3-M		P3-MW01R		P3-MW2			P3-MW			Landau We	
	10/15/2013	4/17/2014	10/23/2014			10/23/2014	10/15/2013	4/17/2014	10/23/2014	10/15/2013		10/23/2014	10/15/2013		10/23/2014
Depth to Water in Feet ^a	4.74	4.69	2.91	8.09	8.19	8.00	6.03	6.05	5.30	9.06	9.11	8.53	12.72	12.38	11.20
TPH in µg/L															
Diesel	40 T	100 U	30 UJ	50 U	100 U	30 UJ	30 T	100 U	30 UJ	30 T	100 U	30 UJ	80 T	100 U	70 J
Heavy oil	200 U	200 U	50 UJ	100 U	200 U	50 UJ	200 U	200 U	50 UJ	200 U	200 U	50 UJ	200 U	200 U	50 UJ
Gasoline	50 U	50 U	16.7 J	50 U	50 U	16.5 J	50 U	50 U	15.9 J	50 U	50 U	16.2 J	252	213	224 J
BTEX in µg/L															
Benzene	1.0 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U	0.7 T	0.3 JT	0.5 T
Toluene	1.0 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U	1.0	0.8 JT	1.2
Ethylbenzene	1.0 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U	1.0 U	0.2 U	0.2 U	0.2 T	0.2 U	0.2 U
Total xylene	2.0 U	0.4 U	0.4 U	2.0 U	0.4 U	0.4 U	2.0 U	0.4 U	0.4 U	2.0 U	0.4 U	0.4 U	1.5 T	1.5 JT	1.7 T
cPAHs in µg/L															
Benzo(a)anthracene	0.043 J	0.020 J	0.071 J	0.030 J	0.010 UJ	0.005 UJ	0.019 J	0.010 UJ	0.005 UJ	0.024 J	0.010 UJ	0.005 U	0.022 J	0.010 UJ	0.005 U
Benzo(a)pyrene	0.023 J	0.023 J	0.084 J	0.008 JT	0.010 UJ	0.005 UJ	0.010 UJ	0.010 UJ	0.005 UJ	0.010 UJ	0.010 UJ	0.005 U	0.007 JT	0.010 UJ	0.005 U
Benzo(b,k)fluoranthenes	0.060 J	0.060 J	0.242 J	0.018 JT	0.020 UJ	0.012 UJ	0.020 UJ	0.020 UJ	0.012 UJ	0.020 UJ	0.020 UJ	0.012 U	0.017 JT	0.020 UJ	0.012 U
Chrysene	0.040 J	0.024 J	0.087 J	0.024 J	0.010 UJ	0.006 UJ	0.017 J	0.010 UJ	0.006 UJ	0.018 J	0.010 UJ	0.006 U	0.020 J	0.010 UJ	0.006 U
Dibenz(a,h)anthracene	0.005 JT	0.010 UJ	0.004 UJ	0.010 UJ	0.010 UJ	0.004 UJ	0.010 UJ	0.010 UJ	0.004 UJ	0.010 UJ	0.010 UJ	0.004 U	0.010 UJ	0.010 UJ	0.004 U
Indeno(1,2,3-cd)pyrene	0.021 J	0.021 J	0.079 J	0.005 JT	0.010 UJ	0.003 UJ	0.010 UJ	0.010 UJ	0.003 UJ	0.010 UJ	0.010 UJ	0.003 U	0.006 JT	0.010 UJ	0.003 U
Total cPAHs ^b	0.036 J	0.034 J	0.124 J	0.014 J	0.008 UJ	0.004 UJ	0.009 J	0.008 UJ	0.004 UJ	0.010 J	0.008 UJ	0.004 U	0.012 J	0.008 UJ	0.004 U
Dissolved Metals in µg/L															
Arsenic	6.06	3.57	0.93	5 U	1.66	1.62	5 U	1.93	3.79	5 U	1.43	3.09	5 U	0.686	0.902
Copper	0.346	0.648	4.06	2.33	2.74	2.44	0.2 U	0.038 U	0.772	1.04	1.24	1.37	0.2 U	0.038 U	0.265
Lead	0.2 U	0.089 JT	0.469	0.2 U	0.026 U	0.161 J	0.2 U	0.026 U	0.0662 J	0.2 U	0.026 U	0.026 U	0.2 U	0.026 U	0.026 U
Nickel	0.556	0.791	0.377 UJ	1.16	0.788	1.29	0.125 T	0.191	0.2 U	0.591	0.483	1.12	0.36	0.314	0.52 UJ
Zinc	1.38 U	3.48	1.77	2.35 U	3.42	5.25	0.514 U	2.71	2.03	0.873 U	2.47	1.22	9.72	2.5	0.99

Notes:

Regulatory level = Consent Decree cleanup levels, which reflect the MCTA Amendments of February 2001.

Values in **BOLD** indicate detected concentrations exceed Consent Decree cleanup levels.

U = Not detected at the specified reporting limit.

T/JT = Estimated value between the method detection limit (MDL) and the reporting limit (RL).

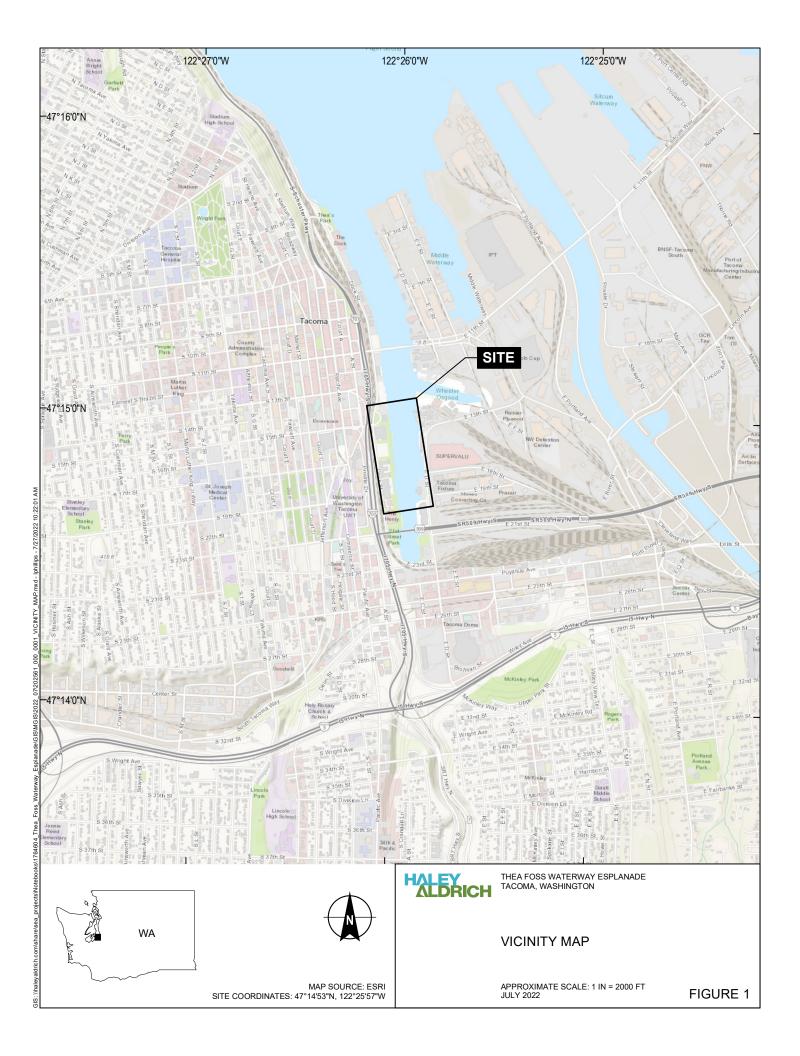
J = Estimated value.

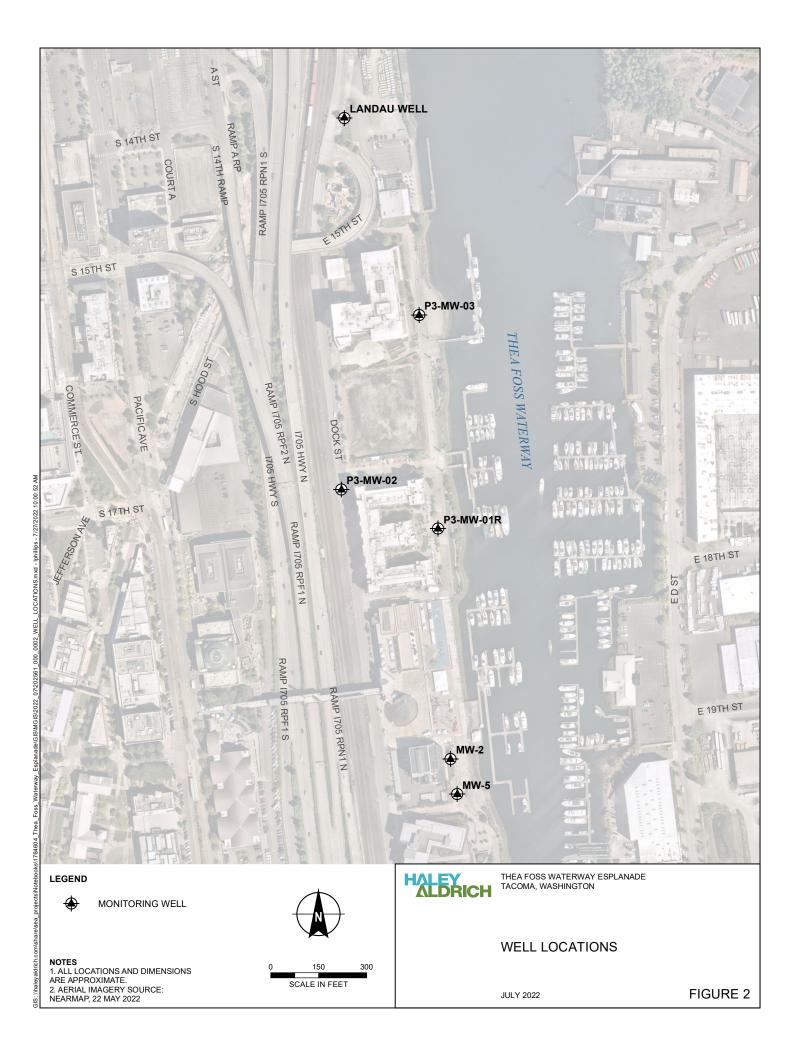
- = not applicable or no results

a. Depth to water measurements were collected from top of casing.

b. Total cPAHs calculated using the toxicity equivalency methodology (TEM) in WAC 173-340-708(8). Half detection limit was used for non-detects.

c. Cleanup standard based on MTCA Method A Groundwater Cleanup Level


d. Cleanup standard based on Federal National Toxics Rule Criteria (40 CFR 131) for human consumption of aquatic organisms.


e. Cleanup standard based on Method B Groundwater Cleanup Level.

f. Cleanup standard based on WAC 173-201A Marine Water Chronic.

g. Not sampled because the monument was flooded/under water.

FIGURES

APPENDIX A Groundwater Sampling Field Forms

'	Gro	unawa	ater S	amp	ling Da	ata - V	veii I.I) .	<u>MW-2</u>
J F F	ield R	Manager eps.		020256 M. Dag B. Dozi	el er & Z. Mc	Intire		ireme	Date/Time Sampled 6/24/2022 351 Tidally Influenced Yes No Well Depth in Feet 566 Screened Interval in Feet ents Relative to Top of Casing (TOC)
C C	-	of Sedime of Water (DTW)		•	15.6 75. 11.7 12	6 6 6 7 7 7			Casing Volume in Gallons 2.25 [2" diameter = x 0.163 gal/ft] 6.75 Purge Volume in Gallons 2.5
SMPE	Time []] 9 [2.7 [35] [34] [35]	No. of Gallons Purged 0.5 1.5 2.0 2.5 ents	рН 6.67 6.52 6.41 6.36 6.35	Temp in °C 16.2 16.3 16.4 16.4	Conduct in mS/cm 0, 90 7 0, 778 0, 706 0, 759 0, 805	0.09		in mV -35 6 -60.4 -62.2 -64.2	Comments: Quality, Recovery Color, Odor, Sheen, Accumulated Silt/Sand Sulfur-libe Odlor, Cleur, NS, NO Sediment 61:ght Sulfur - 1. Ke odor, Cleur, NS, NO Sediment Slight Sulfur - 1. Ke odor, Cleur, NS, Minor Suspended Sed. Slight Sulfur - 1. Ke Odor, Cleur, NS, Minor Suspended Sed. Slight Sulfur - 1. Ke Odor, Cleur, NS, Minor Suspended Sed. Slight Sulfur - 1. Ke Odor, Cleur, NS, Minor Suspended Sed. Slight Sulfur - 1. Ke Odor, Cleur, NS, Minor Suspended Sed. Slight Sulfur - 1. Ke Odor, Cleur, NS, Minor Suspended Sed. Slight Sulfur - 1. Ke Odor, Cleur, NS, Minor Sed. 19-15
 Pu	ırge	Met	_		g Rate in SPM	Depi Equipmen	nt in Feet		Bails dry? Yes No

2) Sampling Data

Sample

Peristaltic

Bottle Type	No of Containers	Analyses	Perserv.	Filter
125 mL		Diss As, Cu, Pb,		Lab
poly	1	Ni, Zn	N	Filtered

((

3) Field Equipment

Pump Type/Tubing	Туре
Bailer Type	
Filter Type	

4) Well Conditions

Pet 1	stattic
Contraction of	Sensible Contract of the sense
ОК	Not OK

· LL·

Type/Brand/Serial No./Material/Units

Purge Water Disposal Method/Volume

Total Number of Bottles

Duplicate Sample I.D.

Rinseate Sample I.D.

Field Blank I.D.

Temp/pH/E.C./D.O	
Water Level Probe	L
Other	4

Explain

YSI DSS	
waterline	8
Analysis constant water water	

drum on sin

				ump		ala - V	Vell I.	υ.	MW-5		
I	Project		Thea F	oss Water	way Espl	anade		Date/Time Sampled	6/24/2022	1235	
,	Job No			020256				-	Tidally Influenced		X No
Project Manager							-	Well Depth in Feet	~20.	67	
I	Field R	eps.		B. Doz	ier & Z. Mo	Intire		-	Screened Interval in Fe	et	
	1) Purging Data/Fiel			Data/Field Measurements: All Measur					ents Relative to Top	of Casing (1	гос)
١	Well De	epth		~]	0.6=	7			Casing Volume in Gallo	ons 1	179
		of Sedime	ent (DTS) in Fee	t 20.	.67		-	[2" diameter = $\times 0.16$		
[Depth o	of Water	(DTW) in	Feet	9.6	Ŧ		-	Purge Volume in Gallo		5,38
((DTS -	DTW)			.00			_	Actual Purge in Gallon	s _	20
Г		No. of	r <u> </u>	Tomp		Diss		T			
	Time	Gallons Purged	рН	Temp in °C	Conduct in mS/cm	Oxygen in mg/L	Turbidity		Comments, Quality Reco	very Color, Odor	Sheen, Accumulated Silt/Sand
ſ	1214	.5	6.44	15.6	mAM	0.06	14.91	-12.8	NZN	K. als	if II turbid, by
ŀ							11.1	160	201101 11	The agoi	, Intrally cleased
┢	1220		1.20		6,522	0.01	11	74.0	Vic in	л	1
┝	1220	1,0	6.38	15.6			16.04	-742		e odor,	NS, Clear, gry solid
2	1228	1.5	6.34		0.578		11,90	-33,9	Sulfur-libe	odor, Wi	s, Clear *
APT, CO	235	2	6,34	19.7	0.595	-0,06	9.62	-40,0	Sulfur-line a	odor Ns	clear to
影											
											*
					ng Rate in		th of]	a:	 	
	-	Met	hod		GPM		th of nt in Feet]	Bails dry?	Yes	NoX
Ρι	urge	Met Peris		-10 -10	.09				Bails dry? At no. of Casing Volum		NoX
	urge mple		staltic	-10 -10	GPM		nt in Feet			es	No X
Sa	mple	Peris	staltic	-10 -10	.09		nt in Feet		At no. of Casing Volum	es	No X Som on site
Sa	mple 2) Sar e Type	Peris Peris	ataltic ataltic Data	ر حر ک	alyses		nt in Feet		At no. of Casing Volum Purge Water Disposal I	es	
Sa Bottl	mple 2) Sar	Peris Peris mpling	ataltic ataltic Data	Ann Diss As	орм 09 11	Equipme	nt in Feet		At no. of Casing Volum Purge Water Disposal I Total Num	es Method/Volume aber of Bottles	
Sa Bottl	mple 2) Sar e Type 5 mL	Peris Peris mpling	ataltic ataltic Data	Ann Diss As	alyses s, Cu, Pb,	Equipme	nt in Feet		At no. of Casing Volum Purge Water Disposal I Total Num Duplicate	es Method/Volume ober of Bottles Sample I.D.	
Sa Bottl	mple 2) Sar e Type 5 mL	Peris Peris mpling	ataltic ataltic Data	Ann Diss As	alyses s, Cu, Pb,	Equipme	nt in Feet		At no. of Casing Volum Purge Water Disposal I Total Num Duplicate Field Blan	es Method/Volume aber of Bottles Sample I.D. k I.D.	
Sa Bottl	mple 2) Sar e Type 5 mL	Peris Peris mpling	ataltic ataltic Data	Ann Diss As	alyses s, Cu, Pb,	Equipme	nt in Feet		At no. of Casing Volum Purge Water Disposal I Total Num Duplicate Field Blan	es Method/Volume ober of Bottles Sample I.D.	
Sa 30ttl 12: 	mple 2) Sar e Type 5 mL oly	Peris Peris mpling	taltic Data Intainers	Ann Diss As	alyses s, Cu, Pb,	Equipme	nt in Feet		At no. of Casing Volum Purge Water Disposal I Total Num Duplicate Field Blan Rinseate S	es Method/Volume Iber of Bottles Sample I.D. k I.D. Sample I.D.	L Dup L Qn
Sa 30ttl 12: 	mple 2) Sar e Type 5 mL oly	Peris Peris mpling No of Co	taltic Data Intainers	Ann Diss As	alyses s, Cu, Pb,	Equipme	nt in Feet		At no. of Casing Volum Purge Water Disposal I Total Num Duplicate Field Blan	es Method/Volume Iber of Bottles Sample I.D. k I.D. Sample I.D.	L Dup L Qn
Saturation Saturatio Saturation Saturation Saturation Saturation Saturation S	mple 2) Sar e Type 5 mL oly 3) Fiel	Peris Peris mpling No of Co	btaltic Data Intainers	Anni Diss As N	alyses s, Cu, Pb,	Equipme	nt in Feet		At no. of Casing Volum Purge Water Disposal I Total Num Duplicate Field Blan Rinseate S	es Method/Volume Iber of Bottles Sample I.D. k I.D. Sample I.D.	L Dup L Qn
Sattle 3ottle 125	mple 2) Sar e Type 5 mL oly 3) Fiel	Peris Peris mpling No of Co	btaltic Data Intainers	Anni Diss As N	alyses s, Cu, Pb,	Equipme	nt in Feet		At no. of Casing Volum Purge Water Disposal I Total Num Duplicate Field Blan Rinseate S	es Method/Volume Iber of Bottles Sample I.D. k I.D. Sample I.D.	L Dup L Qn

4) Well Conditions OK Not OK Explain Seal is * Variable density grey Solid (mutbe organic)

エ

C

Groundwater Sampling Data - Well I.D.

Project	Thea Foss Waterway Esplanade				
Job No.	0202561-000				
Project Manager	M. Dagel				
Field Reps.	B. Dozier & Z. McIntire				

P3-MW-01R

Thea Foss Waterway Esplanade	Date/Time Sampled	6/24/2022	1444
0202561-000	Tidally Influenced	Yes X	No
M. Dagel	Well Depth in Feet	410.64	
B. Dozier & Z. McIntire	Screened Interval in Fo	eet	

1) Purging Data/Field Measurements: All Measurements Relative to Top of Casing (TOC)

		of Sedime of Water			10.64 10.6 1.95	Ph.		•	Casing Volume in Gallons [2" diameter = x 0.163 gal/ft] Purge Volume in Gallons Actual Purge in Gallons	0.32
	Time	No. of Gallons Purged	рН	Temp in °C	Conduct in mS/cm	Diss Oxygen in mg/L	Turbidity in NTU	,	Comments: Quality, Recovery Color, O	dor, Sheen, Accumulated Silt/Sand
	1423	0.25	6.96	15:6	0.770	2.76	2111	16.Ĉ	JEGUT, NO, NS	
	1427	05	6.74	15.4	0.766	2.66	253	146.7	5 clear, NO, NS	
-	1441	1.0	6.75	160	0.55	2.69	-BD			100
Shyl	1446	1.0	6.76	16.2	0.765	2.62	2.68	43.	F CLEAR, NO, NS	
đ										
SAMPL	<u> </u>									
S)	, Comm	ents								

Bails dry?

	Method	Purging Rate in GPM	Depth of Equipment in Feet
Purge	Peristaltic	n 0.05	~9
Sample	Peristaltic		LL

2) Sampling Data

Bottle Type	No of Containers	Analyses	Perserv.	Filter
125 mL) YED	Diss As, Cu, Pb,		Lab
poly	0-12	Ni, Zn	<u>N</u>	Filtered
		·		

S

OK

3) Field Equipment

Pump Type/Tubing Type
Bailer Type
Filter Type

4) Well Conditions

2	<u>a</u>	Fistalfic	
	_		_

Not OK

Temp/pH/E.C./D.O Water Level Probe Other

Explain

O

At no. of Casing Volumes

Purge Water Disposal Method/Volume

Total Number of Bottles

Yes

Duplicate Sample I.D.

Field Blank I.D.

Rinseate Sample I.D.

Type/Brand/Serial No./Material/Units

Field R 1) Pui		Thea Foss Water 0202561-000			-	Date/Time Sampled 6/24/2022	
Field R 1) Pui	Manager					Fidally Influenced Yes X	No
1) Pui		M. Dagel				Well Depth in Feet	
-	eps.	B. Dozier & Z. Mc	Intire			Screened Interval in Feet	
	rging Data/Fi	eld Measureme	ents: Al	l Measu	ıreme	nts Relative to Top of Casing (TC	C)
Well De	epth	~14.16				Casing Volume in Gallons	33
	of Sediment (DTS	S) in Feet 14.1	6		-	[2" diameter = x 0.163 gal/ft]	0 -
Depth (of Water (DTW) i	n Feet <u>5.9</u>	9		_	Purge Volume in Gallons $\underline{\mathcal{S}}$. 99
(DTS -	DTW)	4.17			•	Actual Purge in Gallons	.D
	No. of Gallons	Temp Conduct	Diss Oxygen	Turbidity			
Time	Purged pH	in °C in mS/cm	in mg/L		<u> </u>	Comments: Quality, Recovery Color, Odor, Si	neen, Accumulated Silt/Sand
1102	0.575	14,50,316	0.12	13.47		Sinifielly turbed, NO	$\frac{1}{NS}$
1110	7,16	14.50.304	0.01	17.77	-99.	7 NO.NS, cheer	· · · · · · · · · · · · · · · · · · ·
11146	1.5 6.96	14.50.301	-0,03	16.06	-105	5 NO.NS. Clear	
) N/ al	1440.29-6		16.74	1	04 NO.NK clear	74K.
ke1125	0.0000			10.1 0	, 		
⊈							`````````````````````````````````
Comm	ents						
			1		Ъ		
	Mathad	Purging Rate in		th of		Bails dry? Yes	NoX
	Method	GPM	Equipme		1		
Purge	Peristaltic	0.09	211	is		At no. of Casing Volumes	and the second s
		11					drums one
Sample	Peristaltic]	Purge Water Disposal Method/Volume	QMUI SUIS
2) 50	malina Doto						
Bottle Type	mpling Data	Analyses	Perserv.	Filter	1	Total Number of Bottles	1 .
125 mL		Diss As, Cu, Pb,		Lab	1		
poly	\	Ni, Zn	N	Filtered	4	Duplicate Sample I.D.	
		+			-	Field Blank I.D.	
					1		
					4	Rinseate Sample I.D.	
				<u> </u>	-		27.
			<u> </u>	1	-4	Tuno/Brond/Covial No /Matavial	//Inite
3) FIE	eld Equipmen	14				Type/Brand/Serial No./Material	
Pump	Type/Tubing T	ype Peris	talt	IC	_	Temp/pH/E.C./D.O	<u>s </u>
Bailer	Туре					Water Level Probe Water	line
Filter ⁻						Other	
		,		•	-	1 - 1	2 1 1
4) We	ell Conditions	s OK		Not OK	LX_	Explain 112 Missing	+ balts

Groundwater Sampling Data - Well I.D.

Project	Thea Foss Waterway Esplanade			
Job No.	0202561-000			
Project Manager	M. Dagel			
Field Reps.	B. Dozier & Z. McIntire			

P3-MW-03

roject	Thea Foss Waterway Esplanade	Date/Time Sampled	6/24/2022	1523	-
ob No.	0202561-000	Tidally influenced	Yes X	No	
roject Manager	M. Dagel	Well Depth in Feet	10.46		
eld Reps.	B. Dozier & Z. McIntire	Screened Interval in Feet			-
) Purging Data	/Field Measurements: All Measur	rements Relative to Top o	f Casing (TOC)		
all Dooth	UDYL		DA	4BD DI	

1) Purging Data/Field Measurements:	All Measurements	Relative to	Top of	Casing	(TOC)
-------------------------------------	------------------	-------------	--------	--------	-------

		of Sedime of Water (DTW)	ent (DTS)		46 10.4 9.4 46 0	<u>)</u> 200	.64		Casing Volume in GallonsD.64480 O.1[2" diameter = x 0.163 gal/ft]Purge Volume in GallonsActual Purge in Gallons
	Time	No. of Gallons Purged	pН	Temp in ⁰C	Conduct in mS/cm	Diss Oxygen in mg/L	Turbidity in NTU		Comments: Quality, Recovery Color, Odor, Sheen, Accumulated Silt/Sand
	1512	0.1	6.93	17.7	6.116	0.56	4.06	110.7	initially dear, NO,NS
	1517	0.5	6.60	17.2	5.719	0.20	3.46	99.6	clear NO, NS
Shr	1522	0.75	6.52	.17.1	5,658	0,01	454	91.1	clear, NO, NS
Š									
私									

Bails dry?

At no. of Casing Volumes

Purge Water Disposal Method/Volume

Total Number of Bottles

Duplicate Sample I.D.

Rinseate Sample I.D.

Field Blank I.D.

Comments

÷	Method	Purging Rate in GPM	Depth of Equipment in Feet
Purge	Peristaltic		~10.2
Sample	Peristaltic	21	χ

2) Sampling Data

Bottle Type	No of Containers	Analyses	Perserv.	Filter
125 mL	1	Diss As, Cu, Pb,		Lab
poly	1	Ni, Zn	N	Filtered
	÷	· _		
				×

3) Field Equipment

Pump Type/Tubing	Туре
Bailer Type	
Filter Type	

4) Well Conditions

eristaltic	
and the second sec	_
Constanting and the second	_

OK

Temp/pH/E.C./D.O Water Level Probe Other

Explain

Type/Brand/Serial	No./Mater	ial/Units	
Temp/pH/E.C./D.O	YSI	D55	

No

from on si

0 1Dec (C) 417

Yes

Not OK

Grou	ndwater S	Sampling D	ata - Well I.E).	Landau Well (we	ell in t	Dad, N-bound Dack
Project		Thea Foss Water	way Esplanade		Date/Time Sampled	6/24/2022	1001 5+)
Job No.		0202561-000			Tidally Influenced		X No
Project N	Manager	M. Dagel			Well Depth in Feet	130.16	3
Field Re	ps.	B. Dozier & Z. Mo	Intire		Screened Interval in Fe	et	
1) Purg	ging Data/Fie	eld Measureme	ents: All Measu	reme	ents Relative to Top	o of Casing (T	OC)
Well Dep	oth	~30.16			Casing Volume in Galle	ons	2.26
Depth of	Sediment (DTS	·		2	[2" diameter = x 0,16	3 gal/ft]	
	Water (DTW) ir	Feet	29	4	Purge Volume in Gallo	ns <u>G</u>	Sta
(DTS - D	TW)	_13.6+	mstum		Actual Purge in Gallon	s	2.5
	No. of Gallons Purged pH	Temp Conduct- in °C in mS/em	Diss Oxygen Turbidity (Comments: Quality, Reco	very Color, Odor,	Sheen, Accumulated Silt/Sand
79.276	0.56.76	14.734696	0.056	-121.	s strong pet	ro-like a	it NS, dear
0934	1064	14,7 27,914		-12	0.9 Petro-1/14	1	X Last
- n	1.0 6.Ft					<u>~ 0000, 1</u>	S, clear
0993	1.5 6760	14.7 27.9-87	×	-14		he ador, 1	5, clear
7951	2.06.42	14.9 26143	0.01 24,40	-14	59 Slight Pe	HTD-like a	det, NS, clear
1001 SMPL	2.5 6.84	14.9328.190	-0.01 11.33	150).4 Stight pr	etro-like	odor, NS, clear
Comme	ents						, , , , , , , , , , , , , , , , , , , ,
•••••••							· · · · · · · · · · · · · · · · · · ·
							~~
	Method	Purging Rate in GPM	Depth of Equipment in Feet		Bails dry?	Yes	NoX
Purge	Peristaltic	~0.06	25'		At no. of Casing Volum	ies	and the second
Sample	Peristaltic	L L			Purge Water Disposal	Method/Volume	drims on site
2) Sam	pling Data						
	No of Containers	Analyses	Perserv. Filter		Total Nun	nber of Bottles	
125 mL poly	1	Diss As, Cu, Pb, Ni, Zn	N Filtered		Dunlicate	Sample I.D.	
1Lamber	2						
voa	6		2 -		Field Blan	ık I.D.	
					Rinseate	Sample I.D.	Man Annual Control of the State Stat
3) Field	d Equipment				Type/Brand/Seria	l No./Materia	l/Units
Pump T	ype/Tubing Ty	pe Peri-	stattic		Temp/pH/E.C./D.O	YSI D	55
Bailer T	vpe				Water Level Probe	unte	rline
Filter Ty					Other		v 1 18
-	l Conditions	ОК	Not OK	X		ing 3	bolts, lidtwon
maus	ured OTw	from north	side of m	e/1	iscre	acked	oren ,

APPENDIX B Data Quality Review and Laboratory Data Report

Haley & Aldrich, Inc. 600 South Meyer Ave Suite 100 Tucson, AZ 85701 520.289.8621

Data Usability Summary Report

Project Name: Foss Upland Esplanade Project Description: Groundwater Samples Sample Date(s): 24 June 2022 Analytical Laboratory: City of Tacoma – Environmental Services Lab Validation Performed by: Santa McKenna Validation Reviewed by: Katherine Miller Validation Date: 25 July 2022

Haley & Aldrich, Inc. prepared this Data Usability Summary Report (DUSR) to summarize the review and validation of the analytical results for Sample Delivery Group (SDG) listed. This DUSR is organized into the following sections:

- 1. Sample Delivery Group Number 2206055
- 2. Explanations
- 3. Glossary
- 4. Abbreviations
- 5. Qualifiers

References

This data validation and usability assessment was performed per the guidance and requirements established by the United States Environmental Protection Agency (USEPA) using the following reference materials:

- National Functional Guidelines (NFG) for Inorganic Data Review.
- National Functional Guidelines (NFG) for Organic Data Review.
- Analysis of Volatile Organic Compounds (VOCs) in Air Contained in Canisters by Method TO-15.
- The project-specific Quality Assurance Project Plan (QAPP), herein referred to as the specified limits (see references section). Written in 1997, the QAPP referenced the NFG written at the time. Data in this report has been reviewed against the most recent NFG.

Data reported in this sampling event were reported to the practical quantitation limit (PQL).

Sample data were qualified in accordance with the laboratory's standard operating procedures (SOP). The results presented in each laboratory report were found to be compliant with the data quality objectives for the project and therefore usable; any exceptions are noted in the following pages.

1. Sample Delivery Group Number 2206055

1.1 SAMPLE MANAGEMENT

This DUSR summarizes the review of SDG number 2206055, dated 14 July 2022. Samples were collected, preserved, and shipped following standard chain of custody (COC) protocol. Samples were also received appropriately, identified correctly, and analyzed according to the COC.

Sample ID	Sample Type	Lab ID	Sample Date	Matrix	Methods
MW-5 HC#7	N	2206055-01	6/24/2022	Groundwater	А
MW-2 HC#7	N	2206055-02	6/24/2022	Groundwater	А
P3-MW-01R HC#7	N	2206055-03	6/24/2022	Groundwater	А
P3-MW-02 HC#7	N	2206055-04	6/24/2022	Groundwater	А
P3-MW-03 HC#7	N	2206055-05	6/24/2022	Groundwater	А
Landau Well HC#7	N	2206055-06	6/24/2022	Groundwater	A, B, C, D
DUP1-MW-5 HC#7	FD	2206055-07	6/24/2022	Groundwater	A
DUP2-P3-MW- 01R HC#7	FD	2206055-08	6/24/2022	Groundwater	A
IA-15-1-G	ТВ	2206055-09	6/24/2022	Water Quality	В

Analyses were performed on the following samples:

Meth	Method Holding Times							
Α.	USEPA 6020B	Dissolved Metals	7 days unpreserved; 14 days preserved					
В.	USEPA 82690B	VOCs	7 days unpreserved; 14 days preserved					
C.	NWTPH-DX	Total Extractable Hydrocarbons Diesel	7 days unpreserved; 14 days preserved					
D.	NWTPH-GX	Total Extractable Hydrocarbons Gasoline	7 days unpreserved; 14 days preserved					
****		adiantas tha halding time is the days far automatica a	and the same and distances if the dense from some shorts					

*# days/# days notation indicates the holding time is # days for extraction and then an additional # days for analysis.

1.2 HOLDING TIMES/PRESERVATION

The samples arrived at the laboratory at the proper temperature and were prepared and analyzed within the holding time and preservation criteria specified per method protocol.

1.3 REPORTING LIMITS AND SAMPLE DILUTIONS

The PQLs for the samples within this SDG met or were below the minimum requirements specified by the project specific QAPP with the following exceptions:

Sample ID	Lab ID	Analyte/ Method	Issue/Explanation
Landau Well HC#7	Landau Well HC#7 2206055-06		PQL above minimum requirements specified by QAPP (5.0 vs 3.1 ug/L)

1.4 SURROGATE RECOVERY COMPLIANCE

<u>Refer to section E 1.2.</u> The percent recovery (%R) for each surrogate compound added to each project sample were determined to be within the laboratory specified quality control (QC) limits.

1.5 LABORATORY CONTROL SAMPLES

<u>Refer to section E 1.3</u>. Compounds associated with the laboratory control samples (LCS) analyses exhibited recoveries and relative percent differences (RPDs) within the specified limits.

1.6 MATRIX SPIKE SAMPLES

Refer to section E 1.4. No client samples were used for matrix spike/matrix spike duplicate (MS/MSD).

1.7 BLANK SAMPLE ANALYSIS

<u>Refer to section E 1.5.</u> Method blank samples had no detections, indicating that no contamination from laboratory activities occurred.

The analysis of the blank samples for trip blank was free of target compounds.

1.8 DUPLICATE SAMPLE ANALYSIS

<u>Refer to section E 1.6.</u> No client samples were used for laboratory duplicate analysis.

The following sample(s) were used for field duplicate analysis. The RPD comparison for detections in either the parent or duplicate sample(s) is shown below. RPDs were all below 35 percent for water (or the absolute difference rule was satisfied if detects were less than 5 times the RL). Any exceptions are noted below and qualified.

Primary Sample ID	Duplicate Sample ID	Method(s)
MW-5 HC#7	DUP1-MW-5 HC#7	USEPA6020B
P3-MW-01R HC#7	DUP2-P3-MW-01R HC#7	USEPA 6020B

Field Duplicate RPD Calculations:

Method(s): USEPA 6020B					
Analyte	Primary Sample ID	Duplicate Sample ID			
(µg/L)	MW-5 HC#7	DUP1-MW-5 HC#7			
Zinc	2.83	1.0 U	NA	J/UJ, Abs Diff > RL	

1.9 PRECISION AND ACCURACY

<u>Refer to section E 1.7.</u> Where required by the method, some measurement of analytical accuracy and precision was reported for each method with the site samples.

1.10 SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

The results presented in this report were found to comply with the data quality objectives for the project and the guidelines specified by the analytical method. Based on the review of this report, the data are useable and acceptable as no data was rejected. The qualifiers applied to this data set are summarized in the table below.

Sample ID	Analyte	Reported Result	Validated Result	Reason for Qualifier
MW-5 HC#7	Dissolved zinc	2.83	2.83 J	Field duplicate calculations
DUP1-MW-5 HC#7	Dissolved zinc	1.0 U	1.0 UJ	Field duplicate calculations

2. Explanations

The following explanations include more detailed information regarding each of the sections in the DUSR above. Not all sections in the Explanations are represented:

- E 1.2 Surrogate Recovery Compliance
 - Surrogates, also known as system monitoring compounds, are compounds added to each sample prior to sample preparation to determining the efficiency of the extraction procedure by evaluating the percent recovery (%R) of the compounds.
- E 1.3 Laboratory Control Samples
 - The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) analyses are used to assess the precision and accuracy of the analytical method independent of matrix interferences.
- E 1.4 Matrix Spike Samples
 - Matrix spike/matrix spike duplicate (MS/MSD) data are used to assess the precision and accuracy of the analytical method and evaluate the effects of the sample matrix on the sample preparation procedures and measurement methodologies.
 - For inorganic methods, when a matrix spike recovery falls outside of the control limits and the sample result is less than four times the spike added, a post digestion spike (PDS) is performed.
- E 1.5 Blank Sample Analysis
 - Method blanks are prepared by the analytical laboratory and analyzed concurrently with the project samples to assess possible laboratory contamination.
 - Field blanks are prepared to identify contamination that may have been introduced during field activity. Equipment blanks are prepared to identify contamination that may have been introduced while decontaminating sampling equipment. Trip blanks are prepared when volatile analysis is requested to identify contamination that may have been introduced during transport.
- E 1.6 Laboratory and Field Duplicate Sample Analysis
 - The laboratory duplicate sample analysis is used by the laboratory at the time of the analysis to demonstrate acceptable method precision. The RPD or absolute difference was evaluated for each duplicate sample pair to monitor the reproducibility of the data.
 - The field duplicate sample analysis is used to assess the precision of the field sampling
 procedures and analytical method. The relative percent difference (RPD) or absolute
 difference was evaluated for each duplicate sample pair to monitor the reproducibility
 of the data.
- E 1.7 Precision and Accuracy
 - Precision measures the reproducibility of repetitive measurements. In a laboratory environment, this will be measured by determining the relative percent difference (%RPD) found between a primary and a duplicate sample. This can be an LCS/LCSD pair, a MS/MSD pair, a laboratory duplicate performed on a site sample, or a field duplicate collected and analyzed concurrently with a site sample.

 Accuracy is a statistical measurement of the correctness of a measured value and includes components of random error (variability caused by imprecision) and systematic error. In a laboratory environment, this will be measured by determining the percent recovery (%Rec) of certain spiked compounds. This can be assessed using LCS, BS, MS, and/or surrogate recoveries.

3. Glossary

Not all of the following symbols, acronyms, or qualifiers occur in this document.

- Sample Types:
 - EB Equipment Blank Sample
 - FB Field Blank Sample
 - FD Field Duplicate Sample
 - N Primary Sample
 - TB Trip Blank Sample
- Units:
 - μg/kg
 microgram per kilogram
 - μg/L microgram per liter
 - μg/m3 microgram per cubic meter
 - mg/kg
 milligram per kilogram
 - mg/L milligram per liter
 - ppb v/v parts per billion volume/volume
 - pCi/L picocuries per liter
 - pg/g picograms per gram
- Matrices:
 - AA Ambient Air
 - GS Soil Gas
 - GW/WG Groundwater
 - QW Water Quality
 - IA Indoor Air
 - SE Sediment
 - SO Soil
 - WQ Water Quality control matrix
 - WS Surface Water
- Table Footnotes:
 - NA Not applicable
 - ND Non-detect
 - NR Not reported
- Common Symbols:
 - % percent
 - < less than
 - ≤ less than or equal to
 - > greater than
 - \geq greater than or equal to
 - = equal
 - °C degrees Celsius
 - ± plus or minus
 - ~ approximately
 - x times (multiplier)

4. Abbreviations

%D	Percent Difference	MS/MSD	Matrix Spike/Matrix Spike Duplicate
%R	Percent Recovery	NA	not applicable
%RSD	Percent Relative Standard Deviation	ND	Non-Detect
%v/v	Percent volume by volume	NFG	National Functional Guidelines
μg/L	micrograms per liter	NH ₃	Ammonia
με/ L 2s	2 sigma	NYSDEC	New York State Department of
23 4,4-DDT	4 4-dichlorodiphenyltrichloroethane	NISDLC	Environmental Conservation
Abs Diff	Absolute Difference	РАН	polycyclic aromatic hydrocarbon
BPJ	Best Professional Judgement	PCB	Polychlorinated Biphenyl
BS	Blank Spike	PDS	Post Digestion Spike
CCB	Continuing Calibration Blank	PEM	Performance Evaluation Mixture
CCV	Continuing Calibration Verification	PEN	Per- and Polyfluoroalkyl Substances
CCVL		PFBA	Perfluorbutanoic Acid
	Continuing Calibration Verification Low	PFD	Perfluorodecalin
COC			
COC	Chain of Custody	PFOA	Perfluorooctanoic Acid Perfluorooctanoic Acid
COM	Combined Isotope Calculation	PFOS PFPeA	
Cr (VI)	Hexavalent Chromium		nonafluorovaleric acid
CRI	Collision Reaction Interface	QAPP	Quality Assurance Project Plan
DoD	Department of Defense	QC	Quality Control
DUSR	Data Usability Summary Report	QSM	Quality Systems Manual
EMPC	Estimated Maximum Possible	R ²	R-squared value
501/	Concentration	Ra-226	Radium-226
FBK	Field Blank Contamination	Ra-228	Radium-228
FDP	Field Duplicate	RESC	Resolution Check Measure
GC	Gas Chromatograph	RL	Laboratory Reporting Limit
GC/MS	Gas Chromatography/Mass	RPD	Relative Percent Difference
	Spectrometry	RRF	Relative Response Factors
GPC	Gel Permeation Chromatography	RT	Retention Time
H2	Hydrogen gas	SAP	sampling analysis plan
HCI	Hydrochloric Acid	SDG	Sample Delivery Group
ICAL	Initial Calibration	SIM	Selected ion monitoring
ICB	Initial Calibration Blank	SOP	Laboratory Standard Operating
ICP/MS	Inductively Coupled Plasma/ Mass		Procedures
	Spectrometry	SPE	Solid Phase Extraction
ICV	Initial Calibration Verification	SVOC	Semi-Volatile Organic Compounds
ICVL	Initial Calibration Verification Low	TIC	Tentatively Identified Compound
IPA	Isopropyl Alcohol	TKN	Total Kjeldahl Nitrogen
LC	Laboratory Control	ТРН	Total Petroleum Hydrocarbon
LCS/LCSD	Laboratory Control Sample/Laboratory	TPU	Total Propagated Uncertainty
	Control Sample Duplicate	u	atomic mass unit
МВК	Method Blank Contamination	USEPA	U.S. Environmental Protection Agency
MDC	Minimum Detectable Concentration	VOC	Volatile Organic Compounds
MDL	Laboratory Method Detection Limit	WP	Work Plan
mg/kg	milligrams per kilogram		

5. Qualifiers

The qualifiers below are from the USEPA National Functional Guidelines and the data in the DUSR may contain these qualifiers:

- Concentration (C) Qualifiers:
 - U The compound was analyzed for but not detected. The associated value is either the compound quantitation limit if not detected by the analytical instrument or could be the reported or blank concentration if qualified by blank contamination. This can also be displayed as less than the associated compound quantitation limit (<RL or <MDL), or "ND".
 - B The compound was found in the sample and its associated blank. Its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers:
 - E The compound was quantitated above the calibration range.
 - D The concentration is based on a diluted sample analysis.
- Validation Qualifiers:
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - J/UJ as listed in exception tables J applies to detected data and UJ applies to non-detected data as reported by the laboratory.
 - UJ The compound was not detected above the reported sample quantitation limit; however, the reported limit is estimated and may or may not represent the actual limit of quantitation.
 - NJ The analysis indicated the presence of a compound for which there is presumptive evidence to make a tentative identification; the associated numerical value is an estimated concentration only.
 - R The sample results were rejected as unusable; the compound may or may not be present in the sample.
 - S Result is suspect. See DUSR for details.

References

- 1. United States Environmental Protection Agency, 2020a. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA-542-R-20-006. November 2020.
- 2. United States Environmental Protection Agency, 2020b. National Functional Guidelines for Organic Superfund Methods Data Review. EPA-540-R-20-005. November 2020.
- 3. Thea Foss Waterway Esplanade Quality Assurance Project Plan. Hart Crowser. 1997.

14 July 2022

Darius Thompson PW Engineering 747 Market Street, Rm 744 Tacoma, WA 98402

Subject: Foss Upland Esplanade

Enclosed are the analytical results for samples collected between 06/23/2022 and 06/24/2022.

Quality Control Data are included with the sample results for your review.

If you have any questions concerning this report, call me at (253)502-2130. Please note that remaining samples associated with this report will be discarded **3 months** from the date of this report unless we are notified otherwise.

Sincerely,

-DocuSigned by: Stuart Magoon

Stuart Magoon Assistant Division Manager Environmental Services Laboratory

cc.

326 East D Street | Tacoma, Washington 98421-1801 | (253) 591-5588

PW Engineering	Project: Foss Upland Esplanade	
747 Market Street, Rm 744	Project Number: 662319	Reported:
Tacoma WA, 98402	Project Manager: Darius Thompson	14-Jul-22 09:35

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled
MW-5 HC#7	2206055-01	Water	24-Jun-22 12:35
MW-2 HC#7	2206055-02	Water	24-Jun-22 13:51
P3-MW-01R HC#7	2206055-03	Water	24-Jun-22 14:48
P3-MW-02 HC#7	2206055-04	Water	24-Jun-22 11:25
P3-MW-03 HC#7	2206055-05	Water	24-Jun-22 15:23
Landau Well HC#7	2206055-06	Water	24-Jun-22 10:01
DUP1-MW-5 HC#7	2206055-07	Water	24-Jun-22 12:36
DUP2-P3-MW-01R HC#7	2206055-08	Water	24-Jun-22 14:49
Trip Blank HC#7	2206055-09	Water	23-Jun-22 16:00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All analytes are reported to the Practical Quantitation Limit (PQL) which is below or no greater than the Minimum Project Reporting Limit.

MINIMUM REPORTING LIMITS

BLANKS

Blanks were analyzed at the required frequencies of the methods. Analytes were not detected in the blanks, sample concentrations were greater than 10 times the blank values, or the analytes detected in the blanks were not detected in associated samples.

SURROGATE COMPOUNDS

Surrogate compounds were added to the NWTPH-Dx sample to monitor system performance: surrogate recoveries were within laboratory limits, except for 2-Fluorobiphenyl that recovered outside lower control limit of 50% in BFF0352-BLK2 (48%), BFF0352-BS4 (48.9%) and BFF0352-DUP2 (34.1%), 2-Fluorobiphenyl is within limits on sample 2206055-06. Data has been reported without qualifications.

LABORATORY CONTROL SAMPLES

Laboratory Control Samples were analyzed with these samples. The recoveries were within the laboratory limits.

DUPLICATE SAMPLE ANALYSIS

Duplicate analysis was performed with these samples. The Duplicate Relative Percent Differences (RPD) were within the project limits for analytes with concentrations greater than 5 times the reporting limit.

City of Tacoma - Environmental Services Lab

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

PW Engineering 747 Market Street, Rm 744 Tacoma WA, 98402

Project Manager: Darius Thompson

CHAIN OF CUSTODY, SAMPLE RECEIPT, PRESERVATION AND STORAGE

Project: Foss Upland Esplanade

The samples were received under appropriate Chain of Custody procedures.

Washington Department of Ecology NWTPH-Gx, 1997 for Gasoline Analysis Washington Department of Ecology NWTPH-Dx, 1997 for Diesel Analysis

f Our to do man a doma

Project Number: 662319

HOLDING TIMES

All analyses were performed within the required holding times.

The samples were analyzed by the following methods:

EPA Method 6020B for Dissolved Metals Analysis

METHODS

PW Engineering	Project: Foss Upland Esplanade	
747 Market Street, Rm 744	Project Number: 662319	Reported:
Tacoma WA, 98402	Project Manager: Darius Thompson	14-Jul-22 09:35

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE ANALYSIS

Matrix Spike (MS) and/or Matrix Spike Duplicate (MSD) analysis was performed with these samples. The recoveries were within the laboratory limits except for BETX compounds that exceeds the upper QC limits in both the MS and MSD. Sample has not detection for BETX. No data has been qualified. Results are shown in the data pages.

INTERNAL STANDARDS

Internal Standards were added to these samples to monitor instrument performance related to calibration drift of matrix interference in the analysis by ICP-MS. The Internal Standards met the method criteria.

DATA AVAILABILITY

All data associated with the samples referenced in this report are archived at the Environmental Services Laboratory and are available upon request.

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan and project QAPP.

DocuSigned by: Monica Herbert 9E03038E4A0C412..

Reviewed By

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

W Engineering		Project: Foss I	Jpland Esplanade		
747 Market Street, Rm 744	Projec	ct Number: 66231	9		Reported:
Tacoma WA, 98402	Projec	Project Manager: Darius Thompson			14-Jul-22 09:35
	Environ	mental Services	Laboratory		
		MW-5 HC#	7		
		2206055-01 (Wa	iter)		
		24-Jun-22 12:	35		
Analyte		Result		PQL	Units
letals					
EPA 6020B_(7/14)	Prepared: 27-Jun-22	Analyzed:	27-Jun-22		
Arsenic, Dissolved		1.00	U	1.00	ug/L
Copper, Dissolved		1.00	U	1.00	ug/L
Lead, Dissolved		1.00	U	1.00	ug/L
		1.00	U	1.00	ug/L
Nickel, Dissolved		1.00	0	1.00	ug/L

W Engineering		Project: Foss	Upland Esplanade			
747 Market Street, Rm 744	Project Number: 662319				Reported:	
Tacoma WA, 98402	Projec	Project Manager: Darius Thompson			14-Jul-22 09:35	
		MW-2 HC#	7			
		2206055-02 (Wa	nter)			
		24-Jun-22 13:	51			
Analyte		Result		PQL	Units	
letals						
ictais						
EPA 6020B_(7/14)	Prepared: 27-Jun-22	Analyzed:	27-Jun-22			
	Prepared: 27-Jun-22	Analyzed:	27-Jun-22 U	1.00	ug/L	
EPA 6020B_(7/14)	Prepared: 27-Jun-22	-		1.00 1.00	ug/L ug/L	
EPA 6020B_(7/14) Arsenic, Dissolved	Prepared: 27-Jun-22	1.00	U		-	
EPA 6020B_(7/14) Arsenic, Dissolved Copper, Dissolved	Prepared: 27-Jun-22	1.00 1.00	U U	1.00	ug/L	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

V Engineering		Project: Foss Upland Esplanade					
747 Market Street, Rm 744	Street, Rm 744 Project Number: 662319						
Гасота WA, 98402	A, 98402 Project Manager: Darius Thompson						
]	P3-MW-01R HC#7					
		2206055-03 (Water)					
		24-Jun-22 14:48					
		D k	PQL	Units			
Analyte		Result	IQL				
Ietals		Kesult	TQL				
-	Prepared: 27-Jun-22	Analyzed: 27-Jun-22					
letals	Prepared: 27-Jun-22		1.00	ug/L			
EPA 6020B_(7/14)	Prepared: 27-Jun-22	Analyzed: 27-Jun-22					
Ietals EPA 6020B_(7/14) Arsenic, Dissolved	Prepared: 27-Jun-22	Analyzed: 27-Jun-22 1.55	1.00	ug/L			
Ietals EPA 6020B_(7/14) Arsenic, Dissolved Copper, Dissolved	Prepared: 27-Jun-22	Analyzed: 27-Jun-22 1.55 3.82	1.00 1.00	ug/L ug/L			

W Engineering		Project: Foss Upland Esplanade						
747 Market Street, Rm 744	Market Street, Rm 744 Project Number: 662319							
Tacoma WA, 98402	Projec	14-Jul-22 09:35						
		P3-MW-02 HC#7						
		2206055-04 (Water)						
		24-Jun-22 11:25						
Analyte		Result	PQL	Units				
-		Result	PQL	Units				
	Prepared: 27-Jun-22	Result Analyzed: 27-Jun-22	PQL	Units				
letals	Prepared: 27-Jun-22		PQL 1.00	Units ug/L				
EPA 6020B_(7/14)	Prepared: 27-Jun-22	Analyzed: 27-Jun-22						
Arsenic, Dissolved	Prepared: 27-Jun-22	Analyzed: 27-Jun-22 1.00 U	1.00	ug/L				
Tetals EPA 6020B_(7/14) Arsenic, Dissolved Copper, Dissolved	Prepared: 27-Jun-22	Analyzed: 27-Jun-22 1.00 U 1.00 U	1.00 1.00	ug/L ug/L				

W Engineering		Project: Foss Up	land Esplanade					
747 Market Street, Rm 744	Market Street, Rm 744 Project Number: 662319							
Tacoma WA, 98402	Projec	14-Jul-22 09:35						
		P3-MW-03 HC	ŧ7					
		2206055-05 (Wate	r)					
		24-Jun-22 15:23						
Analyte		Result		PQL	Units			
e								
letals								
EPA 6020B_(7/14)	Prepared: 27-Jun-22	Analyzed: 27	Jun-22					
EPA 6020B_(7/14) Arsenic, Dissolved	Prepared: 27-Jun-22		Jun-22 U	1.00	ug/L			
EPA 6020B_(7/14)	Prepared: 27-Jun-22	1.00		1.00 1.00	ug/L ug/L			
EPA 6020B_(7/14) Arsenic, Dissolved	Prepared: 27-Jun-22	1.00 1.00	U		-			
EPA 6020B_(7/14) Arsenic, Dissolved Copper, Dissolved	Prepared: 27-Jun-22	1.00 1.00	U U	1.00	ug/L			

PW Engineering 47 Market Street, Rm 744	Proje	Reported: 14-Jul-22 09:35				
Гасота WA, 98402	Projec	14-Jul-22 09:35				
]	Landau Well H	IC#7			
		2206055-06 (Wa	-			
		24-Jun-22 10:	01			
nalyte		Result			PQL	Units
etals						
EPA 6020B_(7/14)	Prepared: 27-Jun-22	Analyzed:	27-Jun-2	22		
Arsenic, Dissolved		5.00	U		5.00	ug/L
Copper, Dissolved		5.00	U		5.00	ug/L
Lead, Dissolved		5.00	U		5.00	ug/L
Nickel, Dissolved		5.00	U		5.00	ug/L
Zinc, Dissolved		5.00	U		5.00	ug/L
0A						
EPA 8260D_4_(6/18)	Prepared: 27-Jun-22	Analyzed:	27-Jun-2	22		
Benzene		2.5	U		2.5	ug/L
Ethylbenzene		2.5	U		2.5	ug/L
m,p-Xylene		5.0	U		5.0	ug/L
o-Xylene		2.5	U		2.5	ug/L
Toluene		2.5	U		2.5	ug/L
Surrogate: 1,2-Dichloroethane-d4				100 %	26-175	
Surrogate: 4-Bromofluorobenzene				97 %	81-130	
Surrogate: Fluorobenzene				101 %	82-127	
Surrogate: Toluene-d8				104 %	86-126	
WDOE NWTPH-Gx_(1997)	Prepared: 27-Jun-22	Analyzed:	27-Jun-2	22		
NWTPH-Gasoline		250	U		250	ug/L
Surrogate: 4-Bromofluorobenzene				97.2 %	50-150	

W Engineering 7 Market Street, Rm 744	Proje	Project: Foss l ect Number: 66231	U <mark>pland Esplanade</mark> 9		Reported:				
Facoma WA, 98402	•	Project Manager: Darius Thompson							
]	Landau Well H	IC#7						
	22	206055-06RE1 (V	Water)						
		24-Jun-22 10:							
Analyte		Result		PQL	Units				
emi-VOA									
WDOE NWTPH-Dx_(1997)	Prepared: 29-Jun-22	Analyzed:	13-Jul-22						
	Prepared: 29-Jun-22	Analyzed: 0.10	13-Jul-22 U	0.10	mg/L				
WDOE NWTPH-Dx_(1997)	Prepared: 29-Jun-22	-		0.10 0.20	mg/L mg/L				
WDOE NWTPH-Dx_(1997) NWTPH-Diesel	Prepared: 29-Jun-22	0.10	U		-				
WDOE NWTPH-Dx_(1997) NWTPH-Diesel NWTPH-Heavy Oil	Prepared: 29-Jun-22	0.10	U U	0.20	-				

V Engineering		Project: Foss	Upland Esplanade				
747 Market Street, Rm 744		Reported:					
Tacoma WA, 98402	98402 Project Manager: Darius Thompson						
	I	DUP1-MW-5 H	IC#7				
		2206055-07 (Wa	ater)				
		24-Jun-22 12:	36				
Analyte		Result		PQL	Units		
-		Result		PQL	Units		
	Prepared: 27-Jun-22	Result Analyzed:	27-Jun-22	PQL	Units		
letals	Prepared: 27-Jun-22		27-Jun-22 U	PQL 1.00	Units ug/L		
Ietals EPA 6020B_(7/14)	Prepared: 27-Jun-22	Analyzed:					
fetals EPA 6020B_(7/14) Arsenic, Dissolved	Prepared: 27-Jun-22	Analyzed: 1.00	U	1.00	ug/L		
Tetals EPA 6020B_(7/14) Arsenic, Dissolved Copper, Dissolved	Prepared: 27-Jun-22	Analyzed: 1.00 1.00	U U	1.00 1.00	ug/L ug/L		

W Engineering							
747 Market Street, Rm 744	7 Market Street, Rm 744 Project Number: 662319						
Гасота WA, 98402	WA, 98402 Project Manager: Darius Thompson						
	DUI	P2-P3-MW-01R HC#7					
		2206055-08 (Water)					
		24-Jun-22 14:49					
Analyte		Result	PQL	Units			
Analyte Ietals		Result	PQL	Units			
	Prepared: 27-Jun-22	Result Analyzed: 27-Jun-22	PQL	Units			
letals	Prepared: 27-Jun-22		PQL 1.00	Units ug/L			
EPA 6020B_(7/14)	Prepared: 27-Jun-22	Analyzed: 27-Jun-22					
Ietals EPA 6020B_(7/14) Arsenic, Dissolved	Prepared: 27-Jun-22	Analyzed: 27-Jun-22 1.55	1.00	ug/L			
Ietals EPA 6020B_(7/14) Arsenic, Dissolved Copper, Dissolved	Prepared: 27-Jun-22	Analyzed: 27-Jun-22 1.55 3.39	1.00 1.00	ug/L ug/L			

V Engineering		Project: Foss	Upland	Esplanade					
47 Market Street, Rm 744	Rm 744 Project Number: 662319								
acoma WA, 98402	Projec	14-Jul-22 09:35							
		Trip Blank H	C#7						
		2206055-09 (Wa	ater)						
		23-Jun-22 16:	00						
nalyte		Result			PQL	Units			
DA									
EPA 8260D_4_(6/18)	Prepared: 27-Jun-22	Analyzed:	27-Jun-2	22					
Benzene		0.5	U		0.5	ug/L			
Ethylbenzene		0.5	U		0.5	ug/L			
m,p-Xylene		1.0	U		1.0	ug/L			
o-Xylene		0.5	U		0.5	ug/L			
Toluene		0.5	U		0.5	ug/L			
Surrogate: 1,2-Dichloroethane-d4				100 %	26-175				
Surrogate: 4-Bromofluorobenzene				97 %	81-130				
				103 %	82-127				
Surrogate: Fluorobenzene				105 /0	02-12/				

PW Engineering 747 Market Street, Rm 744 Tacoma WA, 98402		Project Nu	mber: 66	ss Upland E 2319 urius Thomps					Reporte 14-Jul-22	
		Metals	- Qualit	ty Control						
Environmental Services Laboratory										
Sample ID Analyte	Result	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BFF0314 - EPA 6020B_(7/14)										
Blank BFF0314-BLK1				Prepared &	z Analyzed:	27-Jun-22				
Arsenic, Dissolved	0.500 U	0.050	ug/L							
Copper, Dissolved	0.500 U	0.022	ug/L							
Lead, Dissolved	0.500 U	0.0061	ug/L							
Nickel, Dissolved	0.500 U	0.012	ug/L							
Zinc, Dissolved	0.50 U	0.22	ug/L							
Duplicate BFF0314-DUP1	Sourc	e: 2206055-0	01	Prepared &	Analyzed:	27-Jun-22				
Arsenic, Dissolved	0.410	0.100	ug/L		0.408			0.6	20	
Copper, Dissolved	0.552	0.044	ug/L		0.433			24	20	
Lead, Dissolved	0.0958	0.0122	ug/L		0.0990			3	20	
Vickel, Dissolved	0.317	0.024	ug/L		0.347			9	20	
Zinc, Dissolved	3.27	0.44	ug/L		2.83			14	20	
LCS BFF0314-BS1				Prepared &	Analyzed:	27-Jun-22				
Arsenic, Dissolved	49.7	0.050	ug/L	50.0		99	80-120		200	
Copper, Dissolved	125	0.022	ug/L	125		100	80-120		200	
Lead, Dissolved	15.1	0.0061	ug/L	15.0		101	80-120		200	
Vickel, Dissolved	199	0.012	ug/L	200		100	80-120		200	
Zinc, Dissolved	100	0.22	ug/L	100		100	80-120		200	
Matrix Spike	Sourc	e: 2206055-(01	Prepared &	Analyzed:	27-Jun-22				
BFF0314-MS1	Sourc			1 topulou o		_,				
Arsenic, Dissolved	94.8		ug/L	100	0.204	95	70-130		20	
Copper, Dissolved	92.9		ug/L	100	0.216	93	70-130		20	
Lead, Dissolved	93.0		ug/L	100	0.0495	93	70-130		20	
Nickel, Dissolved	91.1		ug/L	100	0.174	91	70-130		20	
Zinc, Dissolved	93.4		ug/L	100	1.42	92	70-130		200	

747 Market Street, Rm 744 Tacoma WA, 98402		Project Nu Project Ma		2319 rius Thomps	on				Reporte 14-Jul-22	
		VOA -	Quality	Control						
	Env	ironment	al Servi	ices Labo	ratory					
Sample ID Analyte	Result	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BFF0310 - EPA 8260D_4_(6/18)										
Blank				Prepared &	z Analyzed:	27-Jun-22				
BFF0310-BLK1										
Benzene	0.5 U	0.2	ug/L							
NWTPH-Gasoline	50.0 U	4.68	ug/L							
Toluene	0.5 U	0.2	ug/L							
Ethylbenzene	0.5 U	0.2	ug/L							
m,p-Xylene	1.0 U	0.4	ug/L							
o-Xylene	0.5 U	0.2	ug/L							
Surrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene	10.3 10		ug/L ug/L	10.0 10.0		103 103	81-130 50-150			
Surrogate: 1,2-Dichloroethane-d4	9.16		ug/L	10.0		92	26-175			
Surrogate: Fluorobenzene	10.1		ug/L	10.0		101	82-127			
Surrogate: Toluene-d8	10.6		ug/L	10.0		106	86-126			
Duplicate	Sourc	e: 2206055-0	06	Prepared &	Analyzed:	27-Jun-22				
BFF0310-DUP1										
Benzene	2.5 U	1.0	ug/L		2.5 U				200	
NWTPH-Gasoline	250 U	23.4	ug/L		250 U				20	
Toluene	2.5 U	1.0	ug/L		2.5 U				200	
Ethylbenzene	2.5 U	1.0	ug/L		2.5 U				200	
n,p-Xylene	5.0 U	2.0	ug/L		5.0 U				20	
p-Xylene	2.5 U	1.0	ug/L		2.5 U				200	
Surrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene	9.9 9.86		ug/L ug/L	10.0 10.0		98.6 99	50-150 81-130			
Surrogate: 1,2-Dichloroethane-d4	9.49		ug/L	10.0		95	26-175			
Surrogate: Fluorobenzene	10.4		ug/L	10.0		104	82-127			
Surrogate: Toluene-d8	10.2		ug/L	10.0		102	86-126			
LCS				Prepared &	z Analyzed:	27-Jun-22				
BFF0310-BS1					-					
Benzene	5.4		ug/L	5.00		108	60.6-136		20	
Toluene	5.5		ug/L	5.00		111	62.8-131		20	
Ethylbenzene	5.4		ug/L	5.00		107	64.6-128		20	

Project: Foss Upland Esplanade

City of Tacoma - Environmental Services Lab

PW Engineering

PW Engineering 747 Market Street, Rm 744 Tacoma WA, 98402	Project: Foss Upland Esplanade Project Number: 662319 Project Manager: Darius Thompson								ed: 09:35
		VOA - Qualit	y Control						
	Env	ronmental Serv	vices Labo	oratory					
Sample ID Analyte	Result	MDL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BFF0310 - EPA 8260D_4_(6/18)									
m,p-Xylene	10.5	ug/L	10.0		105	61.1-135		20	
o-Xylene	5.0	ug/L	5.00		100	63.9-129		20	
Surrogate: 4-Bromofluorobenzene	9.90	ug/L	10.0		99	81-130			
Surrogate: 1,2-Dichloroethane-d4	9.77	ug/L	10.0		98	26-175			
Surrogate: Fluorobenzene	10.1	ug/L	10.0		101	82-127			
Surrogate: Toluene-d8	10.5	ug/L	10.0		105	86-126			
BFF0310-BS2 NWTPH-Gasoline	70.0	ug/L	100		70.0	50-150		200	
Surrogate: 4-Bromofluorobenzene	9.9	ug/L	10.0		98.8	50-150			
Matrix Spike BFF0310-MS1	Sourc	e: 2206055-06	Prepared &	& Analyzed	: 27-Jun-22				
Benzene	6.6	ug/L	5.00	0.0	132	76.2-116		20	
Toluene	6.3	ug/L	5.00	0.0	126	78.3-112		20	
Ethylbenzene	6.1	ug/L	5.00	0.0	122	78.8-110		20	
m,p-Xylene	12.4	ug/L	10.0	0.0	124	75.9-110		20	
o-Xylene	6.0	ug/L	5.00	0.0	121	78.4-110		20	
Surrogate: 4-Bromofluorobenzene	9.82	ug/L	10.0		98	81-130			
Surrogate: 1,2-Dichloroethane-d4	9.04	ug/L	10.0		90	26-175			
Surrogate: Fluorobenzene	9.61	ug/L	10.0		96	82-127			
Surrogate: Toluene-d8	9.32	ug/L	10.0		93	86-126			
Matrix Spike Dup BFF0310-MSD1	Sourc	e: 2206055-06	Prepared &	& Analyzed	: 27-Jun-22				
Benzene	6.9	ug/L	5.00	0.0	138	76.2-116	5	20	
Toluene	6.9	ug/L	5.00	0.0	138	78.3-112	10	20	
Ethylbenzene	6.9	ug/L	5.00	0.0	139	78.8-110	13	20	
m,p-Xylene	13.5	ug/L	10.0	0.0	135	75.9-110	9	20	
o-Xylene	6.6	ug/L	5.00	0.0	133	78.4-110	9	20	
Surrogate: 4-Bromofluorobenzene	10.2	ug/L	10.0		102	81-130			
Surrogate: 1,2-Dichloroethane-d4	10.0	ug/L	10.0		100	26-175			
Surrogate: Fluorobenzene	10.0	ug/L	10.0		100	82-127			
Surrogate: Toluene-d8	9.71	ug/L	10.0		97	86-126			

Г

PW Engineering	Project: Foss Upland Esplanade	
747 Market Street, Rm 744	Project Number: 662319	Reported:
Tacoma WA, 98402	Project Manager: Darius Thompson	14-Jul-22 09:35

Semi-VOA - Quality Control

Environmental Services Laboratory

Sample ID Analyte	Result	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Anaiyw	result	MDL	Units	Level	Kesun	/0KEU	Linits	KI D	Linn	110105
Batch BFF0352 - WDOE NWTPH-Dx_(1997)										
Blank				Prepared: 2	9-Jun-22 A	nalyzed: 13	-Jul-22			
BFF0352-BLK2										
NWTPH-Diesel	0.10 U	0.10	mg/L							
NWTPH-Heavy Oil	0.20 U	0.20	mg/L							
Surrogate: 2-Fluorobiphenyl	0.024		mg/L	0.0500		48.0	50-150			
Surrogate: Terphenyl-d14	0.033		mg/L	0.0500		66.8	50-150			
Surrogate: Pentacosane	0.035		mg/L	0.0500		70.7	50-150			
Duplicate	Source: 2206055-06RE1			Prepared: 2	9-Jun-22 A	nalyzed: 13				
BFF0352-DUP2										
NWTPH-Diesel	0.10 U	0.10	mg/L		0.10 U				50	
NWTPH-Heavy Oil	0.19 U	0.19	mg/L		0.19 U				50	
Surrogate: 2-Fluorobiphenyl	0.017		mg/L	0.0487		34.1	50-150			
Surrogate: Terphenyl-d14	0.036		mg/L	0.0487		74.3	50-150			
Surrogate: Pentacosane	0.038		mg/L	0.0487		78.4	50-150			
LCS				Prepared: 2	9-Jun-22 A	nalyzed: 13	-Jul-22			
BFF0352-BS4										
NWTPH-Diesel	0.30	0.10	mg/L	0.500		60.3	50-150		200	
NWTPH-Heavy Oil	0.71	0.20	mg/L	1.00		71.1	50-150		200	
Surrogate: 2-Fluorobiphenyl	0.024		mg/L	0.0500		48.9	50-150			
Surrogate: Terphenyl-d14	0.037		mg/L	0.0500		73.1	50-150			
Surrogate: Pentacosane	0.038		mg/L	0.0500		76.4	50-150			

PW Engi	neering	Project: Foss Upland Esplanade								
747 Mark	et Street, Rm 744	Project Number: 662319	Reported:							
Tacoma W	VA, 98402	Project Manager: Darius Thompson	14-Jul-22 09:35							
		Notes and Definitions								
U	Analyte Not Detected at or above the associated va	lue								
UJ	Analyte Not Detected at or above the associated estimated value									
J	The analyte was positively identified. The associated value is an estimate. For BOD Analysis: The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least 2 mg/l dissolved oxygen depletion. Therefore the reported BOD result is estimated biased high									
ND	Analyte NOT DETECTED at or above the reporting limit									
Е	Analyte was determined above the upper quantitation range of the method. The associated value is an estimate.									
NJ	There is evidence the analyte is present. The association	ciated value is an estimate.								
NR	Not Reported									
dry	Sample results reported on a dry weight basis									
RPD	Relative Percent Difference									
Н	The sample dilutions set up for the BOD analysis is actual concentration is likely greater than the report	ailed to meet the criteria of a residual dissolved oxygen of at least ted result.	t 1 mg/l. Therefore							

Г

326 East D Street Tacoma WA, 98421-1801

phone (253) 502-2130 fax (253) 502-2170

Page 1 of 1

Lab Work Order Number

2206055

Client Name	Project Name		Requested Turn Aroun		
PW Engineering	Foss Upland Esplanade				
Client Contact	Project Number	1			Rush requests subject t
Darius Thompson	662319	s up			additional charge
Address	Project Description	Beege			Rush requests subject to
747 Market Street, Rm 744		6 6 2 6 6			approval
City	PO Number	BT 60 Diss			
Tacoma	61000073538	260 260			
State/Zip	Sampler Signatures	60 Elea			Example of American
WA, 98402		VoA			Standard (days)
Phone Fax		x 02 50	ă		
(253) 591-5395 / (253) 594-7941		Pozo II	<u></u>		Expedited (days)
Sampler O Dara		nic, Ibe Ibe IPH TPH	흔		<u>e</u>
K. Dozier		rsenic issolv 0208: issolv VWTP	3		E Due Date
1. 0-01			Z.		Sa

					Preservation Code												
ample Name or Field ID	Sampled Date	Sampled Time	Sample Type	Matrix Code	Container Count											Sample	Commen
MW-5	6/24/22	1235	G	W	1	1									1		
MW-2	1	135	G	W	1	1									4.		
P3-MW-01R		1448	G	W	1	1											
P3-MW-02		1125	G	W	1	1											
P3-MW-03		1523	G	w	11	1											
Landau Well		1001	G	w	9	1	6	2								Containers for Dup provided	Dx/Gx
DUP1 - MW-5		1226	G	W	1	1											
DUP2 - P3- HW-		1997	G	W	1	1											
Trip Blank			G	W	3		3										
		2															
singuisting by the Decker	,	Received By	1			Date/Time 4/24/22 16:02			Comments	201	5			1			
linguished By		Received By				Date/Time				11.8°C							
elinquished By		Received By			Date/Time			1									
ooler Numbers and Temperatures etault Cooler										1							
atrix Codes:	W=Ground Water			_		Cont. Codes		-175 ml M/M		iter =40 ml V/					6/27/		_

Cont. Codes

Tilfany Ryan 6127122