FINAL Remedial Investigation/ Feasibility Study Report Small Arms Ranges (RAU 2A)

Camp Bonneville Military Reservation

23201 Northeast Pluss Road, Vancouver, WA 98682

> Prepared For: Washington State Department of Ecology

Prepared By: Bonneville Conservation, Restoration & Renewal Team

August 2007

FINAL REMEDIAL INVESTIGATION/FEASIBILITY STUDY REPORT SMALL ARMS RANGES (RAU 2A)

CAMP BONNEVILLE VANCOUVER, WASHINGTON

August 8, 2007

PREPARED FOR BONNEVILLE CONSERVATION RESTORATION AND RENEWAL TEAM

PREPARED BY:

BAKER

Revision 1, August, 2007 Table of Contents, Volume 1 Page 2 of 56

TABLE OF CONTENTS

1.0	INTE	ODUCTION	
	1.1	Site Background	
	1.2	Objectives of the RI/FS	
	1.3	General Site Information	
	1.4	Report Organization	
2.0	SITE	CONDITIONS	
	2.1	General Site Conditions	
	2.2	Geology and Hydrogeology	
		2.2.1 Regional Geology and H	Physiography13
			13
		2.2.3 Geology and Soils	
		2.2.4 Regional Hydrogeology	
		2.2.4.1 Groundwater Fl	ow16
		2.2.4.2 Groundwater Q	uality
	2.3	Air	
	2.4	Conceptual Site Model	
		2.4.1 Potential Release and T	ansport Mechanisms 18
		2.4.2 Potential Human Recep	tors
		2.4.3 Potential Ecological Red	ceptors 19
	2.5	Natural Resources and Ecology	
	2.6	Hazardous Substance Sources	
	2.7	Regulatory Classifications	
3.0	STU	Y AREA INVESTIGATIONS	
	3.1	Investigation at Small Arms Rar	1ges
			ges
			ist Zones
			es
	3.2	Ç 1	
	3.3	· ·	
		-	
		e	
		3.3.3 Background Samples	
	3.4	e 1	ent of Contamination
		3.4.1 Small Arms Ranges	
			mes at Small Arms Ranges
4.0	RISK	S TO HUMAN HEALTH AND	ECOLOGICAL RECEPTORS
5.0	CLE	NUP ACTION ORIECTIVES	

Revision 1, August, 2007 Table of Contents, Volume 1 Page 3 of 56

TABLE OF CONTENTS - Continued

EVA	LUATION AND SELECTION OF CLEANUP ACTIONS	40
7.1	Identification of Cleanup Action Alternatives	40
7.2	Procedure for Selection of Cleanup Actions	40
7.3	Detailed Evaluation of Cleanup Action Alternatives	41
	7.3.1 Alternative 1 – No Action	
	7.3.2 Alternative 2 – Institutional Controls	43
	7.3.3 Alternative 3 – Containment (Capping)	44
	7.3.4 Alternative 4 – Consolidation and Containment (Capping)	46
	7.3.5 Alternative 5 – Excavation and Off-Site Disposal or Recycling	
7.4	Permanence Evaluation	49
7.5	Summary and Recommendations	53

LIST OF APPENDICES

APPENDIX A	Site Investigation Report
APPENDIX B	MTCA Stat97 Reports for Small Arms Range Soils

LIST OF TABLES

Table 3-1	Number of Samples Collected at Small Arms Ranges	23
Table 3-2	Number of Sample Analyses	25
Table 3-3	Number of Samples Exceeding Lead Screening Levels	
Table 3-4	Number of Grids with Samples Exceeding Screening Levels	
Table 3-5	Areas of Impacted Grids	
Table 3-6	Volume of Impacted Grids	
Table 5-1	MTCA Ecological Indicator and Cleanup Levels for Lead in Soil	
Table 7-13	Revised Volume Estimates	

LIST OF FIGURES

- 1. Site Location Map
- 2. Small Arms Ranges
- 3. Topographic Map
- 4. Conceptual Site Model
- 5. Close Combat Range
- 6. 25 Meter M60 Range/Pistol Range
- 7. Sub Machine Gun Range
- 8. TF Range
- 9. Rifle Ranges 1 and 2
- 10. Field Fire Rifle Ranges 1 and 2

Revision 1, August, 2007 Table of Contents, Volume 1 Page 4 of 56

TABLE OF CONTENTS - Continued

LIST OF FIGURES – Continued

- 11. Infiltration Course North
- 12. Field Firing Range and Pistol Range, and Undocumented Pistol Range
- 13. 1,000 Foot Range, Machine Gun and Moving Target Range
- 14. Combat Pistol Range
- 15. Machine Gun Range North and South
- 16. M31 Sub-Caliber Ranges 1 and 2
- 17. 25 Meter and Machine Gun Range
- 18. Infiltration Course South
- 19. 25 M Record Fire Field/Field Firing Range
- 20. Background Soil Sample Locations
- 21. Rifle Ranges 1 and 2 Areas to be Removed
- 22. Field Fire Rifle Ranges 1 and 2 Areas to be Removed
- 23. Field Firing Range and Pistol Range Areas to be Removed
- 24. 1,000 Foot Range, 1,000-Foot Machine Gun Range Areas to be Removed
- 25. Combat Pistol Range Areas to be Removed
- 26. Machine Gun Range South
- 27. 25 Meter and Machine Gun Range
- 28. 25M Record Fire Field Range Areas to be Removed

Revision 0, December, 2006 List of Acronyms and Abbreviations, Volume 1 Page 5 of 56

LIST OF ACRONYMS AND ABBREVIATIONS

Army	Department of the Army
bgs	below ground surface
BCT	BRAC Cleanup Team
BRAC	BRAC Base Realignment and Closure
ca	carcinogen
CFR	Code of Federal Regulations
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
CLAP	contract laboratory program
COPC	chemical of potential concern
CRREL	U.S. Army Cold Regions Research and Engineering Laboratory
CSM	Conceptual Site Model
DQO	data quality objective
Ecology	Washington State Department of Ecology
EDF	electronic data format
EO	exploded ordnance
EPA	U.S. Environmental Protection Agency
FBI	Federal Bureau of Investigation
FSP	Field Sampling Plan
GIS	geographic information system
HASP	health and safety plan
HSO	health and safety officer
HE	high explosive
HMX	octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
ID	investigation-derived waste
ITR	Independent Technical Review
μg/L	micrograms per liter
MDL	method detection limit
MRL	method reporting limit
MTCA	Model Toxics Control Act
NC	nitrocellulose
NC	noncarcinogen
NG	nitroglycerine
NGVD	National Geodetic Vertical Datum
NQ OB	nitroguanadine
	open burning
OD	open detonation
PA	picric acid
PCBs	polychlorinated biphenyls
PE	performance evaluation
PETN	pentaerythitol tetranitrate
Pt	Troutdale formation
PVC	polyvinyl chloride
Qa	quaternary flood plain
QAPP	Quality Assurance Project Plan
QA/QC	quality assurance/quality control
Qls	quaternary landslide deposit

Revision 0, December, 2006 List of Acronyms and Abbreviations, Volume 1 Page 6 of 56

LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

hexahydro-1,3,5-trinitro-1,3,5-triazine
sampling and analysis plan
Supplemental Archive Search Report
Site Investigation
Statement of Work
semivolatile organic compound
To Be Determined
Time Critical Removal Action
2,4,6-trinitrotoluene
total petroleum hydrocarbons
volcanic bedrock
U.S. Army Corps of Engineers
Unified Soil Classification System
underground storage tank
URS Greiner Woodward Clyde
unexploded ordnance
volatile organic compound
Washington Administrative Code

Revision 1, August, 2007 Introduction, Volume 1 Page 7 of 56

1.0 INTRODUCTION

This document presents the results of a remedial investigation/feasibility study (RI/FS) of the Small Arms Ranges at the Camp Bonneville Military Reservation (Camp Bonneville). The Small Arms Ranges remedial investigation (RI) included the soil investigation of 17 Small Arms Ranges. The RI was conducted to characterize soils at these areas at Camp Bonneville in order to provide data upon which to base decisions for further actions. Based on the results of the RI, the feasibility study (FS) was conducted to identify and evaluate cleanup action alternatives and select a cleanup action for the Small Arms Ranges. This RI/FS was conducted by the Department of the Army (Army) in accordance with the requirements of the Washington Model Toxics Control Act (MTCA) regulations, which are contained in Chapter 173-340 of the Washington Administrative Code (WAC 173-340).

The original formation of this document was completed under a Department of the Army Fort Lewis, Washington GSA Contract Number GS-10F-0028J for the Washington Department of Ecology (WDOE) in March 2005. The original preparers were Calibre. The document has been modified slightly in order to reflect the changes in the ownership of the Camp Bonneville property and in the identities of the consultants and contractors conducting the work under this new ownership.

1.1 Site Background

Camp Bonneville is located in southwestern Washington and comprises approximately 3,840 acres (see **Figure 1**). Camp Bonneville is located approximately five miles east of the Vancouver City Limits in Clark County. The Army used Camp Bonneville for live fire of small arms, assault weapons, artillery, and field and air defense artillery between 1910 and 1995. In the early 1950s, the Defense Department arranged to lease an additional 840 acres from the State of Washington to expand training possibilities off the post. The facility has been used for weekend and summer training by the U.S. Army Reserve units in Southern Washington and Northern Oregon and is currently a sub-installation of Fort Lewis. Other Reserve and National Guard components, as well as the Federal Bureau of Investigation (FBI) and local law enforcement units, have also used the site.

Camp Bonneville is more particularly described in U.S. Public Land Survey terminology as follows:

- The site is located in Range 3 East relative to the Willamette Primary Meridian. It includes the following parcels in Township 2 North:
 - o Section $1 all (640 \pm acres) owned$
 - o Section $2 all (640 \pm acres) owned$
 - Section 3 all excepting two parcels along the western boundary of Section 3 $(618 \pm acres)$ owned;
 - \circ Section 10 North $\frac{1}{2}$ (320± acres) owned
 - Section 11 Northwest ¼ except the southeast triangular ½ of southeast ¼ of this ¼ and the northwest ¼ of northeast ¼ (200± acres) leased from Washington State Department of Natural Resources

Revision 1, August, 2007 Introduction, Volume 1 Page 8 of 56

- The following parcels are located in Township 3 North:
 - \circ Section 34 Southeast ¹/₄ (160± acres) owned
 - o Section $35 all (640 \pm acres) owned$
 - Section 36 all (640± acres) leased from Washington State Department of Natural Resources

In July of 1995, Camp Bonneville was selected for closure under the 1995 Base Realignment and Closure (BRAC) process. Since the camp was officially closed, investigations were conducted by the Army and its consultants in order to characterize the nature and extent of contamination at the site and to develop a plan for potentially transferring ownership. Clark County (County) expressed interest in the site and began the process for obtaining the property by developing a Reuse Plan. The reuse plan developed called for the majority of Camp Bonneville to be transferred to Clark County (County) for the public benefit – education, law enforcement, and parks, with no financial gain to the county.

In October 2006 the Army transferred ownership of the property to the County which subsequently and immediately transferred ownership to the Bonneville Conservation Restoration and Renewal Team, LLC (BCRRT). BCRRT will hold the deed of the property during investigation and clean-up activities at the site. After the property is cleaned to WWDOE standards, BCCRT will transfer the property back to the County. The County will then begin implementing the reuse plan.

This RI/FS report describes the findings of completion of a remedial investigation and feasibility study conducted on the Small Arms Ranges.

The Small Arms Ranges RI consisted of investigating two areas at the firing ranges as follows:

- Seventeen (17) areas that were used as small arms firing ranges, and
- Twelve (12) muzzle blast zones of firing ranges where the firing lines were known.

For administrative reasons, the Camp Bonneville site is divided into three Remedial Action Units. The Remedial Action Units established at Camp Bonneville include the following:

- Remedial Action Unit 1: The unit consists of 20 acres where hazardous substances (other than ammunitions) have been found.
- Remedial Action Unit 2: The unit is divided into three subunits, as follows:
 - Remedial Action Unit 2A consists of the small arms range areas.
 - Remedial Action Unit 2C consists of two demolition areas know as Demolition Area s 2 and 3.
 - Remedial Action Unit 2C is the site of a former combined landfill and demolition area know as Landfill 4 / Demolition Area 1.

• Remedial Action Unit 3: The area includes the entire site where ammunition residuals (including unexploded ordnance) may be found.

In addition to the investigation findings and cleanup actions proposed in this document, the Army is investigating and determining cleanup needs at other areas within Camp Bonneville that include other areas within Remedial Action Unit 2 and the other Remedial Action Units.

1.2 Objectives of the RI/FS

The following describes the objectives of the RI and the FS for the Small Arms Ranges.

The objectives of the RI were to:

- Provide data needed to determine whether actions are required because of soil contamination at the Small Arms Ranges; and
- If actions are required, to provide data needed to select these actions.

The objectives of the FS were to:

- Identify cleanup action alternatives that will meet cleanup action objectives for Small Arms Ranges; and
- To provide information needed to select preferred cleanup action alternatives for Small Arms Ranges that satisfy the requirements of WAC 173-340-360.

The Army implemented RI activities at the Small Arms Ranges in 2002 and 2003. The specific actions conducted to obtain the data required to meet the RI objectives and the results of the investigations are presented in **Section 3.0**, Field Investigations. The general investigative approach at each of the 17 Small Arms Ranges investigated was designed to collect the following data:

- The concentration of lead residues in the top 0-6 inches of soil at 307 sample areas (one-half acre grids) within firing ranges.
- The background concentrations of lead in 20 samples from the top 0-6 inches of soil at undisturbed/unused locations within Camp Bonneville.
- The concentrations of explosive residues in soil in 12 muzzle blast areas of the firing ranges where the firing location is known.

The specific sampling and analysis protocol used to collect the RI data at each of the 17 ranges, and the muzzle blast zones at 12 of these ranges, along with the number of samples collected, sample location, and analyses are presented in **Section 3.0**.

1.3 General Site Information

This section contains the following general facility information required by WAC 173-340-

350(7)(c)(i):

Project title: Remedial Investigation and Feasibility Study Report for Small Arms Ranges:

Project coordinators:	Name: Michael Gage
	Address: Bonneville Conservation Restoration and Renewal Team, LLC
	23201 Northeast Pluss Road
	Vancouver, WA 98682
	23201 Northeast Pluss Road

<u>Phone number:</u> (360)566-6990

<u>Facility location</u>: The Small Arms Ranges investigated are within the boundaries of Camp Bonneville that is located in southwestern Washington, approximately 5 miles east of the Vancouver City limits in Clark County (see **Figure 1**). Locations of the 17 Small Arms Ranges investigated are presented in **Figure 2**. Figures of each of the 17 Small Arms Ranges investigated are presented within this report. Camp Bonneville is located in Sections 34 and 35, Township 3 North, Range 3 East and Sections 1, 2, 3, and 10 Township 2 North, Range 3 East.

<u>Dimensions of facility</u>: Camp Bonneville encompasses approximately 3,840 acres. The numerous areas investigated during the RI, range in size from less than an acre to several acres in size. The dimensions of the area investigated at each of the specific areas are presented in the description of the sampling conducted in **Section 3.0**.

<u>Present owner and operator</u>: Camp Bonneville and the Small Arms Ranges investigated are owned and operated by the Bonneville Conservation Restoration and Renewal Team, LLC.

<u>Chronological listing of past owners and operators and operational history</u>: The Department of the Army owned and operated the Camp Bonneville site since the early 1900's through October 2006. In October 2006 the Army transferred ownership of the property to the County which subsequently transferred the land to the BCRRT. Camp Bonneville was used by the Army as firing range for small arms, artillery, and other munitions from the approximately 1910 through 1995. The BCRRT will hold the deed of the property during investigation and clean-up activities at the site. After the property is cleaned to Washington Department of Ecology (WDOE) standards the BCCRT will transfer the property back to the County

1.4 Report Organization

This section of the RI/FS report presented introductory information, including background on the activities leading up to this RI/FS, the purpose of the RI/FS, and general site information required by WAC 173-340-350(7)(c)(i). Section 2.0 presents information on site conditions required under WAC 173-340-350(7)(c)(iii). This information includes that developed during this RI, as well as information developed during previous investigations at Camp Bonneville. Field activities that were conducted during this RI are described in Section 3.0. Section 4.0 discusses the evaluation of human health and ecological risks. Section 5.0 presents conclusions with respect to on-site contamination and the need for cleanup actions, and presents remedial

objectives. Section 6.0 then identifies general response actions based on these conclusions and objectives. Specific cleanup technologies applicable to the site are identified in Section 7.0. Section 8.0 identifies cleanup action alternatives, evaluates these alternatives with respect to the requirements contained in WAC 173-340-360, and identifies the preferred cleanup actions for Small Arms Ranges. References are presented in Section 9.0.

2.0 SITE CONDITIONS

This section presents descriptions of site conditions relevant to the RI/FS. Section 2.1 presents the general facility conditions identified in WAC 173-340-350(7)(c). Sections 2.2 through 2.7 address the specific characteristics identified in WAC 173-340-350(7)(c)(ii) through (iii), respectively. Many of these conditions have been characterized by previous investigations at Camp Bonneville. As appropriate, the results of investigations at the sites are summarized in this section. Where required information was not available from previous investigations, additional data were obtained from RI activities, including the field investigations described in Section 3.0.

2.1 General Site Conditions

This section presents a summary of site conditions, including a site conditions map as required by WAC 173-340-350(7)(ii).

Camp Bonneville comprises approximately 3,840 acres and is located in southwestern Washington approximately 5 miles east of the Vancouver City limits in Clark County. Camp Bonneville was officially closed in 1995 and is currently owned by the BCRRT. The Army used Camp Bonneville for live fire of small arms, assault weapons, artillery, and field and air defense artillery between 1909 and 1995. A portion of the property (840 acres) is leased from the State of Washington. The facility has been used for weekend and summer training by the U.S. Army Reserve units in Southern Washington and Northern Oregon, other Reserve and National Guard components, FBI, and local law enforcement units. Camp Bonneville was included on the 1995 Base Realignment and Closure (BRAC) list.

Camp Bonneville is mostly undeveloped forested hillsides and creek side drainages. Former military barracks and training facilities are concentrated at Camp Killpack and Camp Bonneville cantonment areas, which cover approximately 30 acres. Other developed areas include firing ranges, a paved two-lane road connecting the main gate with the two containment areas, and a network of unpaved roads. The main gate to Camp Bonneville is located on the western boundary of the camp, approximately one mile north of Pluss Road.

Camp Bonneville site condition maps are shown on **Figures 2** and **3**. The known site conditions of the Small Arms Ranges investigated during the RI and the general sampling strategy are as follows:

Small Arms Ranges

The Small Arms Ranges have been used as firing ranges for a variety of weapons training. Approximately 25 potential ranges have been identified from maps dating back to 1958. The firing ranges were used for small arms, large-caliber machine guns, rifles, grenades, light antitank weapon rockets, and subcaliber weapons. Seventeen firing ranges were identified for investigation during the RI. Of the original 25 potential ranges, some had historically different names and were determined to be at the same location and double counted.

The RI at the Small Arms Ranges was designed to evaluate the potential for soil contamination.

The Small Arms Ranges site condition maps are shown on **Figures 2** and **3**. The soils at 17 Small Arms Ranges were sampled to identify/evaluate the presence of lead and/or explosives residues in shallow soil. Previous investigations at other ranges have detected lead and other metals in range soils (ITIR 2003). Soil samples were collected from half-acre grids across all the 17 Small Arms Ranges (307 half-acre grids were sampled). All range samples were analyzed for lead. Samples collected in the muzzle blast zones were analyzed for explosives. Areas excluded from this soil-sampling program are target areas/impact zones, and firing lines. These excluded areas will be covered separately by investigations and/or removal actions.

Background soil samples were collected as part of the Small Arms Ranges investigation. Soil samples from suitable background areas within Lacamas Valley were collected and analyzed for lead using EPA Method 6010. Twenty (20) background soil samples were collected and analyzed.

2.2 Geology and Hydrogeology

A detailed summary of existing information on the geology and hydrogeology of the Camp Bonneville area has been prepared in prior investigation reports. The following sections provide excerpts of the information previously prepared (URS 2001) and information collected during conduct of the RI at Camp Bonneville.

2.2.1 Regional Geology and Physiography

Camp Bonneville is situated on the margin of the western foothills of the southern Cascades in the transition zone between the Puget Trough and the Willamette Trough Provinces. The geology of this area generally consists of Eocene and Miocene volcanic and sedimentary rock types overlain by unconsolidated clays, silts, sands, and gravels of the Troutdale Formation (Phillips 1987).

The area surrounding Camp Bonneville is sparsely populated with scattered residences and is used primarily for agriculture and livestock grazing. The nearest town is Proebstel, an unincorporated community about 2.5 miles to the southwest of the western entrance to the camp. The two cantonments, Camp Killpack and Camp Bonneville, are located on the valley floor. The remainder of Camp Bonneville consists of moderately steep, heavily vegetated slopes that have been used primarily as firing ranges. The valley floor is a relatively narrow floodplain, which ranges from an elevation of about 290 feet National Geodetic Vertical Datum (NGVD) on the western end of Camp Bonneville to about 360 feet NGVD on the east. The adjoining slopes rise moderately steeply to elevations between approximately 1,000 and 1,500 feet NGVD along ridge tops within the property boundaries. The entire installation is heavily vegetated.

2.2.2 Surface Water and Sediments

The principal surface water feature in the vicinity of the investigation area is Lacamas Creek, which flows southward from the confluence of two branch streams in the north-central part of Camp Bonneville, exiting the installation at its southwest corner.

From the southwestern property boundary, Lacamas Creek flows southwestward to Proebstel, where it turns toward the southeast and continues to its confluence with the Columbia River at the town of Camas. Numerous minor tributaries, that drain adjacent uplands, flow into Lacamas Creek. Buck Creek and David Creek, the largest of these streams, drain the southeastern hills of Camp Bonneville.

Two artificial impoundments of Lacamas Creek, with a total surface area of less than 4,600 square feet, have been created to support a trout sports fishery. Recently, the impoundments have been drained. Sediments of concern at Camp Bonneville only include the sediments within the Popup Pond that are being investigated separately from this RI.

2.2.3 Geology and Soils

Camp Bonneville is situated along the structural and physiographic boundary between the western flank of the southern Cascade Mountains and the Portland-Vancouver Basin. The geology of the Camp Bonneville vicinity is known primarily from geologic mapping by Mundorff (1964) and Phillips (1987), a limited number of well logs available from the general area, and a Multi-Sites Investigation conducted by Shannon & Wilson (1999a).

The geology at Camp Bonneville can be divided into three general areas that correspond approximately to topographic divisions. The area west of Lacamas Creek is composed of a series of predominantly gravel and semi-consolidated conglomerate layers with scattered lenses and stringers of sand (Upper Troutdale Formation).

Underlying the Troutdale Formation and comprising the area to the north and east of Lacamas Creek are predominantly basalt flows and flow breccia, with some pyroclastic and andesitic rocks that are folded and faulted. The bottomland along Lacamas Creek is composed of unconsolidated silt, sand, and gravel valley fill, with some clay. Because of the thick soil and dense vegetation, faults have not been identified within Camp Bonneville (Environmental Science and Engineering, Inc. [ESE] 1983).

The Camp Bonneville soils are mainly low-permeability clays, which results in considerable runoff after storms and occasional minor flooding of Lacamas Creek. Upland soils have mainly developed from basalt and are generally gravelly or stony and fairly shallow. Bottomland soils along Lacamas Creek tend to be clayey (Geo Recon International 1981). Shannon & Wilson (1999a) described the four distinctive stratigraphic units that underlie Camp Bonneville:

- Quaternary floodplain and stream channel alluvium and lacustrine deposits, which mantle the Lacamas Creek valley floor (Qa).
- A Quaternary landslide deposit (Qls) of surface soils and bedrock displaced from the steep slope along David Creek.
- A thick sequence of Quaternary to Pliocene-age gravel, fine-grained sand, and sand with cobbles and boulders known as the Troutdale Formation (Pt), which underlies areas to the west of the Bonneville cantonment.

• Oligocene volcanic bedrock (Tv), which is exposed at the surface in the eastern part of Camp Bonneville.

Quaternary alluvium deposits comprise the shallow surface soils of the Lacamas Creek valley floor, which is composed of stream channel, floodplain, and alluvial fan sediments. These deposits are expected to consist of a thin layer of clay and silt, underlain by layers of sand/silt and clay. During drilling and excavation activities associated with the removal of an underground storage tank (UST) in Camp Killpack (Hart Crowser 1996), at least 25 feet of silty clay was encountered and interpreted to be older alluvium. Borings from the Multi-Sites Investigation (Shannon & Wilson 1999a) also encountered alluvial clays and silts overlying a relatively thick, silty clay deposit in the Camp Bonneville cantonment. These clayey soils probably originated as water borne sediments that were deposited on the valley floor in Quaternary time as a result of catastrophic flooding along the Columbia River (Shannon & Wilson 1999a).

The Troutdale Formation, which underlies the western-most portion of the camp, ranges from poorly consolidated sand and gravel to a well indurated conglomerate in its upper part. Based on regional boring logs, the Upper Troutdale Formation locally is about 150 feet thick and consists of cemented sand, gravel, sandy clay, and boulders. It is underlain by up to 150 feet of the Lower Troutdale Formation, which contains considerably more clay interspersed with sandy and gravelly layers. There is considerable variation in the lithology and thickness of the Troutdale Formation. In general, the formation thins eastward against the underlying bedrock, and the lower part of the formation reportedly is typically coarser grained toward the east (Mundorff 1964).

The bedrock that underlies the alluvial deposits and Troutdale Formation is exposed at the surface in the eastern part of Camp Bonneville. This bedrock consists of Oligocene-age andesite and basaltic andesite flows, minor flow breccias, tuffs, and volcaniclastic sandstones. According to the logs of borings from the Multi-Sites Investigation (Shannon & Wilson 1999a), the uppermost bedrock is severely weathered. This weathered bedrock tends to form surface soils that contain gravel of basalt lithology. During drilling for the Multi-Sites Investigation, bedrock was encountered in 10 soil borings at depths ranging from approximately 6 to 37 feet below ground surface (bgs).

2.2.4 Regional Hydrogeology

Limited information is available about the hydrogeology of Camp Bonneville. Most prior work throughout the Clark County area has focused on the Troutdale Formation (as described in Mundorff 1964). Camp Bonneville resides over the eastern edge of the Troutdale Formation where it is pinched out by the underlying bedrock. There are two drinking water wells at Camp Bonneville: a 385-foot-deep well at the Camp Bonneville cantonment, and a 193-foot-deep well at the Camp Killpack cantonment (ESE 1983). The latter well is apparently different from the 516-foot-deep well at the Camp Killpack cantonment described by Mundorff (1964). In addition, a well was drilled at the Federal Bureau of Investigation (FBI) range during 1998, which extends to a depth of 105 feet bgs (Shannon & Wilson 1999b). Several groundwater monitoring wells associated with

the sewage lagoons are located east of the Camp Bonneville cantonment. Based on regional information from Mundorff (1964) and the reported depths of the wells at the camp, water supply wells in the area generally extend into the Troutdale Formation or underlying bedrock. Most of the nearby wells apparently obtain groundwater from depths of 150 to as much as 500 feet bgs.

The water table is typically within a few feet of the surface in areas underlain by alluvium and appears to fluctuate seasonally by several feet. A rising water table occurs in the early fall through spring during the rainy season, and a declining water table occurs throughout the summer. The localized groundwater flow generally follows local topography toward tributaries and creeks.

Generally, groundwater flows from the uplands towards Lacamas Creek. The elevation of the water table in the alluvial valley areas of Camp Bonneville is expected to be fairly shallow (in the range of 5-20 feet bgs) based on the presence of shallow bedrock, multiple creeks, tributaries, and boggy areas.

Two monitoring wells were installed as part of the investigation of Landfill 4, an upland area of Camp Bonneville (Shannon & Wilson 1999b). The depths to water in the wells ranged from 10.4 feet bgs to 18.8 feet bgs. The limited groundwater elevation data suggested a groundwater flow direction towards the creek, which is consistent with the surface topography.

Previous upgradient investigations (Landfill 4) detected explosives and volatile organic compounds in groundwater samples collected from specific wells. Other upgradient land uses that could have contributed chemicals of potential concern (COPCs) include firing ranges, open burning and open detonation grounds, and one or more underground storage tanks that have been removed.

Specific geologic and hydrogeologic data obtained during recent groundwater investigations at Camp Bonneville are presented in the following sections.

2.2.4.1 Groundwater Flow

Groundwater within the shallow alluvium and Upper Troutdale Formation flows horizontally toward Lacamas Creek from upland areas within the Lacamas Creek valley, which encompasses most of Camp Bonneville. The general groundwater flow is to the southwest through the Lacamas Creek Valley and groundwater leaves Camp Bonneville where Lacamas Creek exits the western boundary of the camp. A small area north of the Lacamas watershed appears to drain west into another watershed.

Based on monitoring wells recently installed in the area where Lacamas Creek intercepts the western boundary, and upgradient wells installed at Demolition Areas 2 and 3, the following observations were made:

- A mild downward vertical gradient occurs in wells located along the western boundary where the Upper Troutdale Formation is exposed at the surface and is unconfined.
- Where the Upper Troutdale in confined by overlying alluvium (near Demolition Area 3) an upward gradient (artesian well) was observed.
- Depths to water are approximately 10 feet bgs at the boundary area wells, 12 feet bgs at DA3, and approximately 5 feet bgs at DA2.
- Horizontal groundwater flow within the Upper Troutdale and alluvium typically follows the topographic contours within the Lacamas watershed and exits Camp Bonneville near the Lacamas Creek boundary area.

2.2.4.2 Groundwater Quality

Previous investigations at Landfill 4 detected explosive residues (RDX and HMX), and volatile organic compounds (VOCs) in groundwater samples collected from specific wells. Eight monitoring wells recently installed and sampled (January 2003) near where Lacamas Creek exits the Camp Bonneville boundary, showed no signs of contamination above applicable standards for explosives, metals, VOCs, SVOCs, or TPH compounds. Monitoring wells were also installed near Demolition Area 2 and Demolition Area 3. Monitoring of these wells is currently being conducted and the results of the groundwater investigation are being reported separately.

2.3 Air

Hazardous substances at the Small Arms Ranges are not of concern with respect to impacts to air quality. As shown in the CSM, the contaminants of concern are present in soil. Because of the non-volatile nature of the contaminants in surface and subsurface soils, it is unlikely that contaminants would affect the air at the sites. The Clean Air Act under Section 112(b) 3 (7) excludes elemental lead as a hazardous air pollutant. Disturbance of the soil through wind and/or human disturbance could cause dust and release the fine grain soil particles into the air. Dust and potentially contaminated soil could be transported in the air to different locations. Therefore, during soil disturbing actions at Camp Bonneville, controls should be implemented to reduce the generation of dust.

2.4 Conceptual Site Model

A conceptual site model (CSM) identifying sources of hazardous substances, pathways for contaminant migration, and potential receptors are shown in **Figure 4**. The information used to develop this CSM, and conclusions drawn from this CSM, are presented in the following sections

The CSM is intended as a schematic representation of potential pathways by which receptors (humans or other ecological endpoint species) may be exposed to chemicals at or released from a

source. The purposes of the CSM are to provide a framework for problem definition, to identify exposure pathways that may result in adverse effects to human health or other ecological receptors, to aid in identifying data gaps, and, if necessary, to aid in identifying applicable cleanup measures targeted at significant contaminant sources and exposure pathways. The exposure pathways in the conceptual site model are shown in **Figure 4**.

An exposure pathway describes a specific environmental pathway by which chemicals may be transported to human or other ecological receptors. A complete exposure pathway requires each of the following six elements:

- Source of chemicals
- Mechanism of chemical release
- Environmental transport medium
- Exposure point
- Intake route
- Human or other ecological endpoints

If one of these elements is absent, the pathway is incomplete and exposure cannot occur. Incomplete pathways, as well as negligible pathways that would not contribute to overall risk estimates, are not expected to result in adverse effects to human health or the environment.

2.4.1 Potential Release and Transport Mechanisms

The potential sources of COPCs are the lead in bullets and explosive residues near the firing lines. Contaminants emanating from these potential soil sources may migrate from near the soil surface to deeper soils and have the potential to enter groundwater and surface water. In addition, the COPCs can bind to soil and be transported by fugitive dust. The main release mechanisms for COPCs to the environment include:

- Leaching from potentially contaminated soil into deeper soils,
- Infiltration to groundwater, and
- Stormwater runoff and wind releasing soils to down slope/downwind areas.

Elemental lead from bullet slugs and bullet fragments can be transported as a particulate by the action of surface water, groundwater, and wind. Precipitation runoff and wind could distribute lead particulates and lead contaminated soil particles down slope or along the prevailing wind direction.

When lead is exposed to the atmosphere and precipitation, elemental lead will tend to oxidize or corrode over time. Oxidation products consist primarily of lead hydroxide and lead carbonates. As solids, lead and these oxidized compounds are nearly insoluble. Lead compounds show the greatest solubility at very acidic or alkaline conditions.

The potential migration of the COPC at the Small Arms Ranges, lead, is minimized because lead tends to bind strongly to soil particles. Therefore, it is unlikely that lead would migrate through the soils at the ranges and impact groundwater. Stormwater

and/or erosion could transport contaminated soil particles to surface water bodies. Investigations of potential groundwater and surface water contamination at Camp Bonneville have been conducted. There is no evidence of lead impacting surface water or groundwater at Camp Bonneville (Hart Crowser 2000 [surface water] and various investigations at Landfill #1, Demolition Area 2 and 3, boundary area wells, and quarterly monitoring [groundwater]). Results of these studies are being reported in separate investigative reports.

2.4.2 Potential Human Receptors

Potential human receptors include current and future on-site workers, future users of the site for recreation and training, and current and future offsite residents downgradient of the firing ranges. Hypothetical future onsite visitors and workers that are assumed to have unrestricted access to soil are included in the CSM. The potential exposure mechanisms to COPCs in soil consist of dermal contact, ingestion, and inhalation of on site soil.

2.4.3 Potential Ecological Receptors

Camp Bonneville is a heavily wooded area with Douglas fir, western red cedar, western hemlock, and red alder as the dominant tree species. Depending primarily on moisture gradients, the understory is composed of salal, Oregon grape, vine maple, and sword fern (Larson 1980 and GeoRecon International 1981). Several species of small mammals and birds reside on the site including cottontail rabbits, ground squirrels, mice, and shrews. Large mammals such as deer, bears, and cougars are also present at Camp Bonneville. There are also several special-status species present at or near Camp Bonneville. Species confirmed at or near Camp Bonneville include:

- Plants
 - Hairy-stemmed checker-mallow (state endangered species)
 - Small-flowered trillium (state sensitive species)
- Amphibians
 - Northern red-legged frog (federal species of concern)
- Birds
 - Vaux's swift (state candidate species)
 - Pileated woodpecker (state candidate species)
- Mammals
 - Brush Prairie (Northern) pocket gopher (state candidate species)
- Fish
 - Coastal Cutthroat Trout: federal species of concern.

Potential primary receptors on site include terrestrial animals that may be exposed to COPCs in surface and subsurface soils (i.e. burrowing animals). Terrestrial plants and waterfowl could also be exposed to COPCs in soils. Terrestrial animals and plants, benthic invertebrates, aquatic plants, and fish could be exposed to COPCs in surface water and sediments. Potential offsite exposure would involve direct exposure to soil released into the air. The potential exposure mechanisms to COPCs in soil consist of dermal contact, ingestion, inhalation, and uptake (plants).

2.5 Natural Resources and Ecology

It is unlikely that archaeological significant items will be discovered during current or future activities at the Small Arms Ranges. In the unlikely event that human remains or other archaeological significant items are encountered during field activities, work will cease in the area of the find and all materials will be left intact. The Contractor Manager will notify the BCRRT Project Manager within four hours of the find. The BCRRT Project Manager will contact the Clark County Sheriff's Department to ascertain whether the items are of recent origin. Should the Sheriff's Department determine that the items are associated with Native American burial practices, the BCRRT Project Manager will also notify the appropriate Native American tribal contacts for consultation about the nature and disposition of the items discovered.

A number of plant and vertebrate animal species that are either federally or state-listed as endangered or threatened, or are candidates for such listing, have either been documented at Camp Bonneville or are likely to occur there. These species are described in **Section 2.4.3**. Therefore, care will be required to avoid disruption of such species should they be present. If future actions are required at the Small Arms Ranges, field personnel will be directed to minimize disruption to plant and animal species, regardless of their protected status. Upon discovery of potentially sensitive habitats that could be harmed by site activities, measures will be taken to protect plants and animals from harm.

2.6 Hazardous Substance Sources

As shown in the CSM, the source of the soil contaminants present at the Small Arms Ranges is the historical release of contaminants to soil. Contaminants such as lead and explosive residues released at the sites through firing range activities and the sources of these contaminants are discussed below.

Lead

Variable concentrations of lead are known to exist at Camp Bonneville within the surface and nearsurface soils at firing ranges. The source of this lead is bullets from the firing of small arms, assault weapons, artillery, and field and air defense artillery. Most of the lead bullet mass deposited in the impact area is in the form of intact bullets or large fragments; however small fragments are also present. The majority of lead bullets are likely to have impacted range berms; however, lead could be present between the firing line and the range berms. Over time elemental lead will corrode and form oxidized products consisting primarily of lead hydroxide and lead carbonates

(ITRC 2003). Due to the low mobility of lead in soil, the majority of the lead contamination is expected to have remained near the surface of the soil. The major risk posed by any metal residues arises from direct contact and ingestion of surface soil.

Explosives

The concentrations of explosive residues in the soil are expected to vary extensively throughout the Small Arms Ranges, but are most likely to be found (if detectable) in the muzzle blast area. Explosives are used as the propellant for shooting munitions forward. Propellants consist primarily of nitroglycerine and nitrocellulose. The source of the explosives is residue from barrel emissions during live fire of small arms, assault weapons, artillery, and field and air defense artillery. Explosives have a greater mobility in soils than lead.

2.7 Regulatory Classifications

Camp Bonneville and the Small Arms Ranges are located in air quality maintenance areas for ozone and carbon monoxide. As described in **Section 2.3**, hazardous substances present at the site are not volatile and generally not being released to the atmosphere, and there are currently no regulatory issues related to air quality. It is possible that future activities at the site could involve remedial actions that have the potential to emit hazardous substances to the air (e.g., dust from soil removal activities). Such activities would be regulated by the Clean Air Act and may require a permit.

The creeks and tributaries at Camp Bonneville are classed as Class A water bodies under WAC 173-201A-120 (6). These include Lacamas Creek, Buck Creek, David Creek, and tributary streams. Water quality of this class is designated as "excellent" and shall meet or exceed the requirements for all or substantially all uses. Class A water bodies must support a variety of uses, including fish and shellfish migration, rearing, spawning, and harvesting; recreation; and commerce and navigation. Cleanup standards developed for the Small Arms Ranges would be based on protecting water quality and supporting these uses.

Groundwater at the site is used to provide service to the two cantonment areas. There are two well sites, two reservoirs, and two independent water systems serving Camp Killpack and Camp Bonneville cantonment. The water quality from both of these systems is regulated under the local health department requirements. Groundwater investigations have been conducted at Camp Bonneville and are results of these investigations are being reported in other investigative reports.

3.0 STUDY AREA INVESTIGATIONS

This section describes the specific field activities undertaken during RI activities, and presents the results of the investigations at the Small Arms Ranges. The RI activities described below include the soil sampling conducted at the Small Arms Ranges in **Section 3.1**. **Section 3.2** describes the analyses and analytical methods for soil samples collected during the RI. The analytical results are presented in **Section 3.3** and a summary of the nature and extent of contamination is presented in **Section 3.4**.

Sampling was conducted by Atlanta Environmental Management, Inc. (AEM) during February and March 2003. Sampling and analyses were conducted in accordance with the approved Sampling and Analysis Plan and Quality Assurance Project Plan (AEM 2003a). Site activities were conducted in accordance with the Site Safety and Health Plan (AEM 2003a). There were minor sample location adjustments due to natural barriers such as streams, standing water, and boulders as described in **Appendix A**. Following is a summary of the RI sampling conducted. A detailed description of the RI sampling locations, methods, and procedures is presented in the Site Investigation Report (AEM 2003b) located in **Appendix A**.

3.1 Investigation at Small Arms Ranges

The RI at the Small Arms Ranges was designed to evaluate the potential for soil contamination from the firing lines of the ranges to the berms and/or potential impact areas. Previous investigations at other ranges have detected lead and explosives in the range soils. The soils at 17 Small Arms Ranges (see **Figures 5** through **21**) were sampled to identify and evaluate the presence of COPCs. The following section describes the sampling conducted at the 17 firing ranges (**Section 3.1.1**), the muzzle blast zones (**Section 3.1.2**), and the background soil sampling (**Section 3.1.3**).

3.1.1 Sampling of Firing Ranges

Soil samples were collected from half-acre grids across all the Small Arms Ranges (307 half-acre plots were sampled). All range samples were analyzed for lead. Areas excluded from this soil sampling program were range berms and backstops where bullets have accumulated. These excluded areas are being addressed separately by investigations and/or removal actions.

Characterization of each of the 307 half-acre grid in the firing ranges consisted of five grab soil samples collected from 0 - 6 inches in depth from each grid. The samples were screened to remove all clasts larger than 2 mm. The first sample was collected near the center of the sample grid. The remaining four grab samples were each collected at 40 feet from the center sample in each of the four compass directions from the center. Some sample grids were not square due to the proposed removal of target berms and backstops. In those cases, the distance to samples from the center of the grid varied.

The mapped locations and latitude/longitude for the center point of each of the half-acre grids within the firing ranges are included in **Appendix A**. The number of half-acre plots sampled, the number of muzzle blast zones sampled, and the QA/QC samples collected at each of the 17 locations are detailed in Table 3-1.

Table 3-1. Number of Samples Collected at Small Arms Ranges

Small Arms Range	Number of Half-Acre Grids Sampled	Number of Samples from each Range	Number of Muzzle Blast Zones Samples	QA/QC Samples (duplicates)	Total Number of Samples
Close Combat Range	24	120	-	11	131
25 Meter M60 Range/Pistol Range	4	20	6	1	27
Sub Machine Gun Range	7	35	-	3	38
TF Range	8	40	2	4	46
Rifle Ranges 1 & 2	32	160	7	14	181
Field Fire Rifle Ranges 1 & 2	22	110	2	10	122
Infiltration Course North	4	20	2	2	24
Field Firing Range & Pistol Range	14	70	6	16	92
Undocumented Pistol Range	1	5	5	0	10
1,000 Foot Range, Machine Gun & Moving Target Range	30	150	-	15	165
Combat Pistol Range	17	85	6	9	100
Machine Gun Range North	33	165	-	16	181
Machine Gun Range South	26	130	-	13	143
M31 Sub-Caliber Ranges 1 & 2	25	125	6	12	143
25 Meter and Machine Gun Range	13	65	10	7	82
Infiltration Course South	7	35	14	4	53
25 M Record Fire Field/Field Firing Range	40	200	2	20	222
Total	307	1,535	68	157	1,760

Small Arms Ranges investigated are presented in Table 3-1. At the 17 ranges, a total of 1,535 soil samples were collected and analyzed for lead. **Figures 5** through **19** show the grid locations sampled at each of the 17 firing ranges.

Revision 1, August, 2007 Study Area Investigations, Volume 1 Page 24 of 56

3.1.2 Sampling of Muzzle Blast Zones

For ranges where the firing line has been determined, a muzzle blast zone has been designated as a strip in front of and parallel to the firing line. Samples were collected along that strip at approximately 30-foot intervals within 10 feet of the firing line. A point at the end of the firing line was designated and sampled. A line was then run parallel to the firing line from that first sample and subsequent samples taken every 30 feet. The muzzle blast samples were grab samples of soil from 0 - 6 inches in depth. Samples collected in muzzle blast zones were analyzed in the laboratory for explosives (EPA Method 8330 Modified). The mapped locations and latitude/longitude for the sampling points in each of the muzzle blast zone samples included collection of 68 grab samples over 12 ranges where the firing line was known. The ranges and number of number of muzzle blast zone sampled are presented in **Table 3-1**. Locations of the muzzle blast zone samples are shown on **Figures 5** through **19** for those ranges where the firing line could be determined.

3.1.3 Background Soil Samples

Twenty (20) soil samples were collected to identify the background levels of lead in soil in the upper soil zone. The number of background samples (20) was selected as a reasonable number to provide an estimate of the range and distribution of lead in background soils. The soil samples collected from the 20 background locations were analyzed for lead using EPA Method 6010. Background soil sample locations were selected based on the following criteria:

- Within the boundary of Camp Bonneville;
- Within similar geology/geomorphology as range grid samples;
- Outside and upslope of the known boundaries of Small Arms Ranges;
- Upslope of known firing line areas; and
- Outside of known demolition, artillery firing points, and artillery impact areas.

Locations of the 20 background samples are shown on Figure 20.

3.2 Sample Analyses

Soil samples collected from all Small Arms Range grid locations were analyzed for lead. Results of the lead analyses are reported on a dry-weight basis. At 10 Small Arms Range grid locations, 10 samples were randomly selected from the range soils and analyzed for 9 Priority Pollutant Metals.

Samples collected from the Muzzle Blast Zones were analyzed for explosive residues, including

picric acid and pentaerythritol tetranitrate (PETN).

Background soil samples were analyzed for lead and two randomly selected background samples were also analyzed for Priority Pollutant Metals.

The analyses conducted on soil samples collected during the RI, along with the analytical methods, are summarized in **Table 3-2**. Quality Assurance and Quality Control for all analyses are described in **Section 4.0** of **Appendix A**.

Investigation Area and Sample Types and (Number of Samples)	Laboratory Analysis	Analytical Method (SW 846 or EPA approved)
FIRING RANGES		
Grid Soil Samples (1535) Grid Soil Samples (10)	Lead Metals ^a	EPA Method 7420 (dry-weight basis) EPA Method 6010B
MUZZLE BLAST ZONES Soil Samples (68) BACKGROUND	Explosives ^b (with Pitric acid and PETN ^c)	EPA Method 8330 Modified
Background Soil (20) Background Soil (2)	Lead Metals	EPA Method 7420 (dry-weight basis) EPA Method 6010B

Table 3-2	Summary	of Sample	Analyses

Notes:

^a Metal analyses included Priority Pollutant Metals: antimony, arsenic, barium, cadmium, chromium, copper, lead, nickel, and zinc.

^b Explosives included: HMX, RDX, 1,3,5-TNB, 1,3-DNB, Tetryl, NB, 2,4,6-TNT, 4-Am-2-Am-DNT, 2,4-DNT, 2,6-DNT, 2-NT, 3-NT, 4-NT, Picric Acid, and PETN.

^c PETN = pentaerythritol tetranitrate

3.3 Analytical Results

The laboratory analytical results for analyses conducted on samples collected during the RI are presented in this section. The results are summarized for each of the 17 firing range areas, the 12 muzzle blast zones, and the background samples. The following summary of analytical results

presents sample results that exceed screening levels, that is, 50 mg/kg lead in soils and explosive residues that exceed the EPA Region 9 Preliminary Remediation Goals (PRGs). Complete analytical results, including all sample results below screening levels and all sample and grid locations, are presented in **Appendix A**. Quality Assurance and Quality Control for all analyses are described in **Section 4.0** of **Appendix A**.

3.3.1 Small Arms Ranges

Tables A-1 through **A-17** (**Appendix A**) present the lead results for all samples collected at the Small Arms Range grid locations. A total of 1,535 samples, not including duplicate samples, were collected and analyzed for lead from 307 grids sampled. Five individual grab samples were collected from each grid.

The number of samples collected at each firing range and the number of samples with lead concentrations exceeding lead screening levels are summarized in **Table 3-3**. The lead concentrations are compared to ecological indicator concentrations and MTCA Method A cleanup levels. These concentrations are used for comparison only and are not intended to be the final cleanup levels or goals for the affected range areas. The concentrations are defined as follows:

- 50 mg/kg From MTCA Table 749-3, Ecological Soil Concentrations (mg/kg) for Protection of Terrestrial Plants and Animals, for protection of plants. Not a cleanup level
- 118 mg/kg From MTCA Table 749-3, Ecological Soil Concentrations (mg/kg) for Protection of Terrestrial Plants and Animals, for protection of wildlife. Not a cleanup level.
- 250 mg/kg From MTCA Table 740-1, Method A Soil Cleanup Levels for Unrestricted Land Uses. Lead cleanup level based on preventing unacceptable blood lead levels.
- 500 mg/kg Maximum lead concentration allowed for sites cleaned up to Unrestricted Land Use standards.
- 1,000 mg/kg From MTCA Table 745-1, Method A Soil Cleanup Levels for Industrial Properties. Cleanup level based on direct contact.

Concentrations of lead in Small Arms Range grid samples exceeded the lowest screening level (50 mg/kg) at 14 of the 17 ranges. Approximately 12 percent of the samples collected at the 17 firing ranges had concentrations above 50 mg/kg. The number of samples with lead concentrations exceeding 118 mg/kg was 78, or approximately 5 percent. The percent of samples exceeding 250 mg/kg, 500 mg/kg, and 1,000 mg/kg were approximately 2.5 percent, 1.7 percent, and 1 percent, respectively (see Table 3-3).

Ten samples from random range grid locations were also analyzed for metals. The results of these analyses are presented on Appendix A, **Table A-19**. No concentrations of metals were detected in the ten range grid samples at concentrations above MTCA Method A for unrestricted land use, or if no MTCA criteria were available, the EPA Region 9 Preliminary Remediation Goals (PRGs). The reporting limit on several samples was above the MTCA Method A cleanup level for arsenic. In addition, one sample from a muzzle blast zone was inadvertently analyzed by the laboratory for metals. The arsenic concentration in this sample was 22.9 mg/kg, slightly above the Method A cleanup level of 20 mg/kg. All arsenic concentrations were significantly below the natural background levels in Clark County based on EPA Method 6010, Inductively Coupled Plasma (ICP) Atomic Emission Spectroscopy (Ecology 1994).

3.3.2 Muzzle Blast Zones

The 12 ranges where the firing line could be determined were sampled along the muzzle blast zone. The ranges sampled and numbers of muzzle blast zone samples collected are summarized on **Table 3-1**. As presented in **Table 3-2**, samples collected from the Muzzle Blast Zones were analyzed for explosive residues, including picric acid and pentaerythritol tetranitrate (PETN). Results of the analyses are presented in **Appendix A** (**Tables A-23** through **A-34**) for the 12 ranges sampled.

Revision 1, August, 2007 Study Area Investigations, Volume 1 Page 28 of 56

Small Arms Range	Number of Samples from each Range	Number of Samples > 50 mg/kg	Number of Samples > 118 mg/kg	Number of Samples > 250 mg/kg	Number of Samples > 500 mg/kg	Number of Samples > 1,000 mg/kg
Close Combat Range	120	1	0	0	0	0
25 Meter M60 Range/Pistol Range	20	5	2	0	0	0
Sub Machine Gun Range	35	0	0	0	0	0
TF Range	40	0	0	0	0	0
Rifle Ranges 1 & 2	160	50	18	9	6	5
Field Fire Rifle Ranges 1 & 2	110	14	2	1	1	1
Infiltration Course North	20	0	0	0	0	0
Field Firing Ranges 1 & 2 & Pistol Range	70	10	8	4	2	1
Undocumented Pistol Range	5	2	1	0	0	0
1,000 Foot Range, Machine Gun & Moving Target Range	150	39	24	13	8	6
Combat Pistol Range	85	6	2	1	1	0
Machine Gun Range North	165	11	1	0	0	0
Machine Gun Range South	130	2	2	1	0	0
M31 Sub-Caliber Ranges 1 & 2	125	1	0	0	0	0
25 Meter and Machine Gun Range	65	20	11	7	6	4
Infiltration Course South	35	2	1	0	0	0
25 M Record Fire Field/Field Firing Range	200	16	6	3	2	1
Total	1,535	179	78	39	26	18
Percent of Samples Above Screening Level		12%	5%	2.5%	1.7%	1%

Table 3-3 Number of Samples Exceeding Lead Screening Levels

When compared to the Region 9 PRGs for explosive residues (no MTCA criteria are established), none of the 68 samples from the muzzle blast zones exceeded the screening criteria. The explosive residue 2,4-dinitrotoluene (2,4-DNT) was detected in 8 of 10 muzzle blast zone samples collected from the 25-Meter and Machine Gun Range. Concentrations of 2,4-DNT detected ranged from 4.9 to 20 mg/kg, significantly below the PRG value of 120 mg/kg for residential soil.

Explosive residue concentrations in all other samples collected from the muzzle blast zones were below method reporting limits. Therefore, there were no explosive residues concentrations detected from any of the 12 muzzle blast zones sampled that exceeded any PRG.

One sample from the muzzle blast zones at Rifle Range 1 and 2 was inadvertently analyzed for metals. The only metal detected at a concentration above MTCA Method A for unrestricted land use and/or Region 9 PRGs was arsenic at 22.9 mg/kg. This concentration is slightly above the Method A cleanup level of 20 mg/kg. As discussed in **Section 3.2.1**, this arsenic concentration is within the natural occurring background concentrations in Clark County based on ICP analytical methods.

3.3.3 Background Samples

Twenty background samples were collected and analyzed for lead (see **Table A-18**). Concentrations of lead detected ranged from 9.7 mg/kg to 80.8 mg/kg. The average lead concentration detected was 24.3 mg/kg, or below the most stringent MTCA or PRG value for lead. The 95th percentile upper confidence limit (UCL) on the mean lead background concentration is 33.6 mg/kg.

Two background samples were also analyzed for Priority Pollutant metals. These results are presented in **Appendix A** (**Table A-19**). Metals detected were within normal background ranges.

3.4 Summary of the Nature and Extent of Contamination

This section discusses the nature and extent of soil contamination at the Small Arms Ranges. The contaminants detected above screening levels and MTCA cleanup levels are described along with the location and estimated volume of impacted soil.

3.4.1 Small Arms Ranges

The majority of samples from the Small Arms Ranges with lead concentrations exceeding screening levels were clustered in specific sampling grids. Of the 307 grids sampled, only 75 grids contained samples with lead concentrations above 50 mg/kg. Grids with lead concentrations exceeding 118 mg/kg, 250 mg/kg, 500 mg/kg, and 1,000 mg/kg, were 38, 19, 14, and 10 grids, respectively (**see Table 3-4**).

Of the 307 half-acre grids sampled, only 10 grids, or 3 percent, had lead concentrations exceeding 1,000 mg/kg. The number of grids with samples exceeding 500 mg/kg lead was 14, or approximately 5 percent. Grids with samples exceeding 250 mg/kg totaled 19, or approximately 6 percent of the total grids sampled. A summary of the grid locations and number of grids with lead concentrations exceeding screening values is presented in

Table 3-4. Tables with results from all RI sampling are presented in **Appendix A** of the attached Site Investigation Report. Figures illustrating results from all RI sampling are also presented in **Appendix B** of the Site Investigation Report.

Table 3-4	Number o	of Grids with	Samples	Exceeding	Screening	Levels
Idole e	i tumber o		Samples	Lineccumg	Ser coming	

Small Arms Range	Number of Grids with Lead Concentrations					
Designation	> 50 mg/kg	> 118	> 250	> 500	> 1,000	
		mg/kg	mg/kg	mg/kg	mg/kg	
Close Combat Range	1	0	0	0	0	
25 Meter M60 /Pistol	3	1	0	0	0	
Range						
Sub Machine Gun Range	0	0	0	0	0	
TF Range	0	0	0	0	0	
Rifle Range 1 & 2	16	8	4	3	2	
Field Fire Rifle Ranges 1 & 2	10	2	1	1	1	
Infiltration Course North	0	0	0	0	0	
Field Firing Range & Pistol	4	3	2	1	1	
Undocumented Pistol	1	1	0	0	0	
Range						
1,000 ft Range, 1,000	11	8	5	3	3	
Machine						
Combat Pistol Range	4	2	1	1	0	
Machine Gun Range North	6	1	0	0	0	
Machine Gun Range South	2	2	1	0	0	
M31 Sub-Caliber Ranges	1	0	0	0	0	
1 & 2						
25 m & Machine Gun Range	7	6	3	3	2	
Infiltration Course South	2	1	0	0	0	
25M Record Fire Field	7	3	2	2	1	
Range/Field Fire Range						
Total Number of Grids	75	38	19	14	10	
Percent of Grids with Samples Above Screening Levels	24%	12%	6%	5%	3%	

3.4.1.1 Areas and Volumes at Small Arms Ranges

The areas and volumes of lead contaminated soils at the Small Arms Ranges was calculated based on the locations of the samples containing lead at concentrations

exceeding MTCA ecological indicator and cleanup levels. A summary of the areas of ranges affected is presented in **Table 3-5**. Estimated volumes of affected soils are presented in **Table 3-6**.

The areas and volumes of affected soil were calculated based on removing an area 40 by 40 feet by 6 inches deep at any "hot" soil location within a grid. Two 40 by 40 feet areas would be removed if two "hot" soil samples were located in the same grid. If three or more "hot" soils were located within a single grid, the entire grid would be removed.

	Area of Impacted Grids (square yards)					
Small Arms Range Designation	> 50 mg/kg	>118 mg/kg	> 250 mg/kg	> 500 mg/kg	> 1,000 mg/kg	
Close Combat Range	178	0 mg/kg	0	0	0	
25 Meter M60 /Pistol Range	2,910	312	0	0	0	
Sub Machine Gun Range	0	0	0	0	0	
TF Range	0	0	0	0	0	
Rifle Range 1 & 2	18,676	10,214	3,144	2,776	2,598	
Field Fire Rifle Ranges 1 & 2	2,225	356	180	178	178	
Infiltration Course North	0	0	0	0	0	
Field Firing Range & Pistol	5,196	2,760	2,604	356	178	
Undocumented Pistol Range	312	178	0	0	0	
1,000 ft Range, 1,000 Machine	19,850	12,768	7,632	5,196	5,196	
Combat Pistol Range	2,954	534	180	178	0	
Machine Gun Range North	1,603	178	0	0	0	
Machine Gun Range South	356	356	180	0	0	
M31 Sub-Caliber Ranges 1 & 2	178	0	0	0	0	
25 Meter Machine Gun Range	12,456	5,552	2,784	2,776	445	
Infiltration Course South	356	178	0	0	0	
25M Record Fire Field Range	7,972	5,018	540	356	178	
Total (square yards)	75,222	38,404	17,244	11,816	8,773	

Table 3-5 Areas of Impacted Grids

As summarized in **Table 3-5**, the areas of affected soil above MTCA cleanup levels ranges from approximately 9,000 square yards (based on 1,000 mg/kg cleanup level) to approximately 17,000 square yards (based on 250 mg/kg cleanup level). The number of impacted areas varies from 6 to 8 depending on the cleanup levels (250 mg/kg – 1,000 mg/kg).

Revision 1, August, 2007 Study Area Investigations, Volume 1 Page 32 of 56

Small Arms Range Designation	Volume of Impacted Grids (cubic yards)					
	> 50mg/kg	> 118 mg/kg	> 250 mg/kg	> 500 mg/kg	> 1,000 mg/kg	
Close Combat Range	30	0	0	0	0	
25 Meter M60 /Pistol Range	486	52	0	0	0	
Sub Machine Gun Range	0	0	0	0	0	
TF Range	0	0	0	0	0	
Rifle Range 1 & 2	3,119	1,706	524	464	434	
Field Fire Rifle Ranges 1 & 2	372	59	30	30	30	
Infiltration Course North	0	0	0	0	0	
Field Firing Ranges 1&2 &Pistol	868	461	434	59	30	
Undocumented Pistol Range	52	30	0	0	0	
1,000 ft Range, 1,000 Machine	3,315	2,132	1,272	868	868	
Combat Pistol Range	493	89	30	30	0	
Machine Gun Range North	268	30	0	0	0	
Machine Gun Range South	59	59	30	0	0	
M31 Sub-Caliber Ranges 1 & 2	30	0	0	0	0	
25 m & Machine Gun Range	2,080	927	464	464	74	
Infiltration Course South	59	30	0	0	0	
25M Record Fire Field Range	1,331	838	90	59	30	
Total (cubic yards)	12,562	6,413	2,874	1,974	1,466	

Table 3-6 Volume of Impacted Grids

Nine of the 17 Small Arms Ranges do not have any grid sample concentrations that exceed 250 mg/kg lead, the unrestricted land use cleanup level. Only 6 of the 17 ranges exceed the industrial lead cleanup level of 1,000 mg/kg. Therefore, the estimated volumes of affected soil above MTCA cleanup levels range from 2,874 cubic yards (based on 250 mg/kg cleanup level) to 1,466 cubic yards (based on 1,000 mg/kg lead cleanup level).

No other metals were a concern at the 17 Small Arms Ranges based on the 10 range samples analyzed for priority pollutant metals. All metals detected in these samples were detected at concentrations below MTCA Method A unrestricted land use cleanup levels. Therefore, the only contaminant of concern is the lead in soil at the Small Arms Ranges.

3.4.2 Muzzle Blast Zones

There were no concentrations of explosive residues detected in the 68 muzzle blast zone samples at concentrations above the conservative PRG screening levels. The one detection of arsenic in the muzzle blast zone was detected at near the reporting limit and is not considered significant. As discussed in **Section 3.3.2**, there are no contaminants of concern in the muzzle blast zones of the ranges where firing points were identified. Therefore, there are no contaminants of concern within the muzzle blast zones requiring further action.

4.0 RISKS TO HUMAN HEALTH AND ECOLOGICAL RECEPTORS

Selecting a cleanup action requires a determination that each of the requirements specified in WAC 173-340-360 is met, including the requirement that the cleanup action is protective of human health and the environment [(WAC 173-340-357(2)]. Cleaning up a site to MTCA Method A residential land use cleanup standards will provide protection of human health because they provide the most protective cleanup levels. A quantitative human health risk assessment is not required if a site is cleaned up to residential land use standards. The cleanup action proposed for the Small Arms Ranges will meet these criteria, as described in **Section 5.0**. Therefore, the cleanup action proposed for the ranges will be protective of human health if the ranges are cleaned up to residential use standards.

WAC 173-340-7490 specifies the terrestrial ecological evaluation procedures for sites where a release of a hazardous substance has occurred. Because of the prime ecological habitat at Camp Bonneville, the Small Arms Ranges do not qualify for exclusion or a simplified terrestrial ecological evaluation (WAC 173-340-7490). Therefore, a site-specific terrestrial ecological evaluation is required under WAC 173-340-7493.

The first step in conducting a terrestrial ecological evaluation is completing the "problem formulation step". The first problem formulation step is to determine the chemicals of ecological concern at the affected areas. This evaluation may eliminate hazardous substances from further consideration where the maximum or the upper ninety-five percent confidence limit (UCL) soil concentration found at the site does not exceed ecological indicator concentrations described in MTCA Table 749-3. The table specifies ecological indicator soil concentrations for lead as follows: Plants – 50 mg/kg; Soil Biota – 500 mg/kg, and Wildlife – 118 mg/kg.

MTCA specifies that chemicals of concern used in ecological evaluations may be eliminated from further consideration if "the maximum or the upper ninety-five percent confidence limit soil concentration found at the site does not exceed ecological indicator concentrations described in Table 749-3" [WAC 173-340-7493 (2)(a)(i)]. After the proposed cleanup action described later in this document is conducted, the 17 Small Arms Ranges will have a residual lead concentration of less than 30 mg/kg based on the average 95th percentile UCL of the mean. This UCL is based on grouping the 17 ranges into four data sets for calculating UCLs because the maximum number of data points for "MTCAstat97" is 500. Following remedial action, it is estimated that 2 of the 17 ranges will have range-specific UCLs that exceed the most conservative ecological indicator for plants, 50 mg/kg. The 95th percentile UCL on the mean at one of these ranges, the Undocumented Pistol Range, is skewed high because only five samples were collected at that range. The 25 Meter M60 Range is also skewed high because the data set is comprised of only 20 samples. The other range, the 25 meter and Machine Gun Range, will have a UCL of 54 mg/kg, slightly above the ecological indicator soil concentration for plants of 50 mg/kg.

As stated previously, spent lead bullets will tend to oxidize primarily into the nearly insoluble lead hydroxide and lead carbonate (ITRC 2003). In addition, the phytotoxicity of lead is relatively low compared with other trace elements (Miles 1972). It should also be noted that the MTCA ecological

indicator concentrations for plants are based on benchmark values from various studies compiled by Oak Ridge National Laboratory (ORNL) [ORNL 1997]. The vast majority of the lead studies cited used significantly more soluble lead compounds (lead chloride) than the likely form of nearly insoluble lead (lead hydroxide and lead carbonates) at the Camp Bonneville ranges. Therefore, it is very likely that the MTCA ecological indication concentration for plants (50 mg/kg) from lead in soil may not be appropriate for the forms of lead in soils at Camp Bonneville ranges.

A site inspection of the most contaminated grids at the ranges was conducted on June 5, 2003 by Project Performance Corporation. No visual evidence of stressed vegetation was noted. The plant species observed and the health of the plants appeared the same on contaminated and background locations. Therefore, the residual lead concentrations after remediation of the ranges will be insignificant to plants and other ecological receptors and lead in soil will not be considered a chemical of ecological concern.

After reviewing the above "problem formulation step", no further site-specific terrestrial ecological evaluation is necessary because the cleanup action plan proposed for protection of human health (cleanup to Method A residential land use) will eliminate any significant risks to ecological receptors. In addition, following the proposed cleanup of the lead contaminated areas at the ranges, lead will not be considered a chemical of ecological concern and no further ecological assessment is required under WAC 173-340-7493.

5.0 CLEANUP ACTION OBJECTIVES

This section presents conclusions concerning the need for and objectives of cleanup actions at the Small Arms Ranges. Based on results of RI, the following conclusions are drawn with respect to contamination at the Small Arms Ranges:

- Lead is present in surface and near-surface soil at several Small Arms Ranges at concentrations above cleanup standards.
- Natural attenuation mechanisms do not constitute an effective mechanism to reduce lead contaminant concentrations in soil to cleanup standards.

If cleanup actions were implemented, this would increase the confidence that lead concentrations in soil would be reduced and potentially impacts to deeper soils and possibly groundwater would be reduced. Based on the above conclusions, identification and evaluation of cleanup actions for specific Small Arms Ranges is appropriate.

Cleanup actions at the Small Arms Ranges would have the following objectives:

Prevent the potential exposure of contaminants in soil to human and ecological receptors at concentrations greater than cleanup standards support the proposed re-use and/or redevelopment of the site.

Potential human receptors at the Small Arms Ranges include on-site workers, visitors to the site, and adjacent residents. Potential ecological receptors include plants and wildlife that may use affected areas.

As described previously, soil cleanup standards based on MTCA Method A unrestricted residential use have been determined appropriate for the Small Arms Ranges based on the potential future land use. The ecological indicator concentrations and cleanup levels applicable to soils at the Small Arms Ranges are shown on **Table 5-1**.

MTCA requires the soil cleanup levels be based on estimates of the reasonable maximum exposure expected under both current and future site use conditions. Historically, the site was a US Army military reservation with controlled access and used for short-term, small unit training exercises. Future uses proposed for the site may include development of a regional park and environmental preservation area. The proposed future land uses may include educational activities, law enforcement training, and public recreation. The possible public uses may involve short-term camping and group use of existing or new structures for overnight programs. Based on these potential future land use, the appropriate cleanup level is the MTCA Method A Soil Cleanup Level for Unrestricted Land Use for lead. Therefore, the proposed cleanup level for lead in soil at the Small Arms Ranges is 50 mg/kg. If future land use at Camp Bonneville differs from the proposed land use, the appropriate cleanup level should be reevaluated at that time.

	Ecological Indicator for Plants ¹	Ecological Indicator for Wildlife ²	Unrestricted Land Use ³	Industrial Properties ⁴
Lead Concentration (mg/kg)	50	118	250	1,000

Table 5-1. MTCA Ecological Indicator and Cleanup Levels for Lead in Soil

Notes:

1 From MTCA Table 749-3, Ecological Soil Concentrations (mg/kg) for Protection of Terrestrial Plants and Animals, a lead concentration of 50 mg/kg is specified for or protection of plants.

- 2 From MTCA Table 749-3, Ecological Soil Concentrations (mg/kg) for Protection of Terrestrial Plants and Animals, a lead concentration of 118 mg/kg is specified for protection of wildlife.
- 3 From MTCA Table 740-1, Method A Soil Cleanup Levels for Unrestricted Land Uses. The lead cleanup level is based on preventing unacceptable blood lead levels.
- 4 From MTCA Table 745-1, Method A Soil Cleanup Levels for Industrial Properties, the cleanup level is based on direct contact.

In developing Method A cleanup levels for unrestricted land use, MTCA [(WAC 173-340-740 (2)] requires that the cleanup level must be as stringent as the following:

- Concentrations in MTCA Table 740-1 and compliance with the corresponding footnotes (this table specifies a lead cleanup level of 250 mg/kg for unrestricted land use);
- Concentrations established under applicable state and federal laws;
- Concentrations that result in no significant adverse effects on the protection and propagation of terrestrial ecological receptors using the procedures specified in WAC 173-340-7490 through 7493 (tables in this section specify ecological indicator soil lead concentrations for plants, soil biota, and wildlife at 50, 500, and 118 mg/kg, respectively).
- Concentrations that are protective of groundwater [Method A cleanup levels were designed to be protective of groundwater, that is, lead concentrations in soil less than 3,000 mg/kg (Ecology 2001).

In addition, MTCA requires the following when determining compliance with cleanup levels:

- The upper one sided 95% confidence limit on the true mean soil concentration shall be less than the soil cleanup level [WAC 173-340-740(7)(d)(i)(a)];
- No single sample concentration shall be greater than two times the soil cleanup level [WAC 173-340-740(7)(e)(i)]; and
- At least 90% of the sample concentrations shall be less than the soil cleanup level [WAC 173-340-740(7)(e)(ii).

Based on these regulations, the approach for cleanup must comply with the following:

- The 95th percentile upper confidence limit (UCL) on the mean lead concentrations remaining after remediation from each small arms range must be less than 50 mg/kg;
- No lead sample concentrations after remediation can exceed 100 mg/kg; and
- At least 90% of the lead concentrations reported in confirmatory samples representing the soils remaining after remediation from each of the Small Arms Ranges must be less than 50 mg/kg.

6.0 IDENTIFICATION OF CLEANUP TECHNOLOGIES

This section identifies specific cleanup technologies that may be used to achieve the cleanup objectives and cleanup levels specified in **Section 5.0**. As noted in WAC 173-340-350(8)(b), in some cases it is necessary to perform an initial screening of alternatives to reduce the number for detailed evaluation. However, for the Small Arms Ranges, appropriate technologies can readily be identified and screening is not necessary. The following technologies have been considered for remediation of the Small Arms Ranges. The discussion for each technology contains a brief description of the technology, its expected effectiveness, and relevant operational concerns

No Action: The no action alternative assesses the consequences of leaving a site in its current state.

Institutional Controls: Institutional controls refer to a broad category of measures that can be used to limit or prevent contact with affected soils. These controls might include deed restrictions, permitting requirements, training programs, and use restrictions. Controls that may be applicable include signs, access restrictions (fences), land use restrictions, and runoff control.

Containment (Capping): Containment for soil refers to a vertical physical barrier (soil cap) intended to reduce infiltration of rainwater through contaminated soil and to restrict direct contact with the soil. Capping would involve placing clean soil cover over the contaminated soil and leaving the contaminated soil in place. An impermeable cap of asphalt, concrete, or geomembrane, also satisfies the basic requirements of physical barriers described above and would further reduce the potential for infiltration of rainwater.

Consolidation and Containment (Capping): Consolidation refers to excavation of contaminated soil above the action level and consolidating the soils into one or more on-site areas. The consolidated soils would then be contained (capped) as described above.

Excavation and Off-site Disposal or Recycling: This alternative refers to excavating soil with contaminant concentrations exceeding a specified action level and hauling the soil to an off-site facility for disposal or recycling. This alternative may also include physical sorting/screening to remove rocks and gravel and possibly larger metal fragments (lead bullets and shells). Soils would have to be tested using TCLP methods to determine if soils are characteristic hazardous wastes under RCRA and would require disposal at one or more RCRA-approved landfills.

7.0 EVALUATION AND SELECTION OF CLEANUP ACTIONS

This section identifies cleanup actions comprised of selected technologies described in Section 7.0, and presents an evaluation of these actions with respect to the selection criteria contained in WAC 173-340-360. This evaluation is designed to provide a basis from which a preferred cleanup action can be selected.

The criteria used for evaluating the alternatives included the requirements established under MTCA (WAC 173-340-360) for evaluation of remedial alternatives. The criteria include four threshold factors: protection of human health and the environment, compliance with cleanup standards, compliance with applicable state and federal laws, and provision for compliance monitoring. The other requirements for the selected alternative are: use permanent solutions to the maximum extent practicable, provide for a reasonable restoration time frame, and consider public concerns.

7.1 Identification of Cleanup Action Alternatives

Based on evaluation of the candidate technologies presented in Section 7.0, five alternative cleanup actions were identified for the Small Arms Ranges. These alternatives consist of the following:

- Alternative 1 No Action.
- Alternative 2 Institutional Controls.
- Alternative 3 Containment (Capping).
- Alternative 4 Consolidation and Containment (Capping)
- Alternative 5 Excavation and Off-site Disposal or Recycling

7.2 **Procedure for Selection of Cleanup Actions**

The MTCA Rules specify the procedure to be used to select the cleanup action from the identified alternatives at WAC 173-340-360. This rule specifies Minimum Requirements for Cleanup Actions at WAC 173-340-360 (2). The Minimum Requirements are further divided into two categories, as follows:

- Threshold requirements (WAC 173-340-360 (2) (a)
 - Protection human health and the environment
 - Compliance with applicable cleanup standards
 - Compliance with applicable state and federal laws
 - Provisions for compliance monitoring
- Other requirements (WAC 173-340-360 (2) (b)
 - Use permanent solutions to the maximum extent practical
 - Provide for a reasonable restoration time frame
 - o Consider public concerns

The MTCA Rules also set forth a specific procedure to determine whether a cleanup action uses

permanent solutions to the maximum extent possible. This procedure is found at WAC 173-340-

360 (3) and provides evaluation criteria to determine the permanence of the candidate cleanup action approaches: These seven evaluation criteria are as follows:

- Protectiveness
- Permanence
- Cost
- Effectiveness ver the long term
- Management of short-term risks
- Technical and administrative implementability
- Consideration of public concerns

It is noted that this RI/FS will be subjected to public notice and public comment procedures as specified at WAC 173-340-600. This procedure will provide a mechanism to identify and respond to public concerns that may arise which have not been identified to date for this site.

Also, it is noted that it does not appear necessary or appropriate to apply the Disproportionate Cost Analysis established at WAC 173-340-360 (e) to this RI/FS. The alternatives analysis provided below in this RI/FS does not raise the issue of disproportionate costs. Clearly, however, it is appropriate to conduct a qualitative evaluation of the permanence or the alternate remedial approaches following the procedure defined in the Rules.

The following subsections address these alternative evaluation procedures as follows:

- Section 7.3 provides a description of each alternative and discusses the evaluation of each in terms of the Threshold and Other Requirements with a general discussion of permanence.
- Section 7.4 provides a more detailed qualitative evaluation and ranking of each alternative using the Evaluation Criteria for the Permanence Requirement.
- Section 7.5 provides recommendations and conclusions.

7.3 Detailed Evaluation of Cleanup Action Alternatives

This section presents a detailed evaluation of the five cleanup action alternatives identified in Section 8.1. The following presents s description of each alternative and an evaluation of the alternative with respect to the requirements contained in WAC 173-34-360 (2) and (3).

7.3.1 Alternative 1 – No Action

Description of Alternative: The no action alternative is used to establish the risk levels and site conditions if no physical cleanup actions are implemented. Under the no action alternative, site conditions and risk levels would remain as they currently exist. No

physical changes or land use/access restrictions would be implemented that would affect activities at the site. No engineering or institutional controls would be established and no

remedial actions would be initiated to reduce hazard levels at the site. Land development, site maintenance, and site improvements would continue in accordance with prevailing practices.

Threshold Requirements:

Protection of Human Health and the Environment: Under the no action alternative, affected areas of the site would remain as they currently are with no reduction in toxicity, mobility, or volume of impacted soils. No additional protection would be afforded potential human and ecological receptors to reduce the opportunities for ingestion or dermal contact in affected areas. Without institutional controls and physical barriers or capping as safeguards against potential exposure, receptors may inadvertently face exposure to affected soil.

Compliance with Cleanup Standards: The no-action alternative will not meet MTCA cleanup standards because soils with lead concentrations above cleanup standards would remain on site.

Compliance with Applicable Laws: Implementation of this alternative would not involve compliance with laws and regulations related to wastewater discharges, air discharges, or dangerous waste management. Implementation of this alternative would result in compliance with these laws and regulations, but would not satisfy the requirements of MTCA.

Provision of Compliance Monitoring: The no-action alternative would not include compliance monitoring.

Other Requirements:

Permanent Solutions to the Maximum Extent Practicable: This cleanup action would not result in permanent reduction in the toxicity, mobility, or volume of hazardous substance at the site. Therefore, the no action alternative would not provide permanent solutions to the maximum extent practicable.

Attaining Cleanup in a Reasonable Time: The no action alternative does not attain cleanup of the site in a reasonable time. Due to the elemental nature of the contaminant, the no action alternative does not cleanup the site in a reasonable time period.

Public Concerns: Public concerns would be addressed after receipt of public comments on the proposed cleanup action. The no action alternative would not likely address the concerns of the community because no active remediation would be conducted.

7.3.2 Alternative 2 – Institutional Controls

Description of Alternative: The institutional controls alternative refers to establishing access restrictions, legal restrictions, and educational procedures and rules to reduce the potential for adverse impacts. For example, access restriction, such as fences, and education of site visitors would be implemented to limit human access to areas at the site exceeding cleanup levels. The potential exposure pathway would therefore be reduced. As with the no action alternative, this alternative would not treat or additionally contain affected soil and existing potential exposure routes for ecological receptors would remain.

This alternative would include minimum standards for fences and locating signs in affected areas to warn workers and/or visitors on site of the potential for exposure associated with contact with and/or disturbance of the soil. Other posted notices or bulletins would be located in high-visibility areas and periodic reminders would be provided to on-site workers and visitors.

Deed restrictions would be recorded to advise potential owners of the property of the hazards and use limitations associated with the specific affected areas. Grading or excavation in the affected areas would not be allowed without appropriate safety consideration. Zoning and other permit restriction would be implemented to limit site uses to avoid potential exposure. Surface water flow could transport soil in affected areas and control measures would have to be implemented to reduce the potential migration of affected soil. Periodic site inspections would be required to verify the condition of fences and signs and to evaluate the effectiveness of this alternative.

<u>Threshold Requirements</u>: The threshold requirements contained in WAC 173-340-360(2) consist of protection of human health and the environment, compliance with cleanup standards, compliance with applicable laws, and provision for compliance monitoring.

Protection of Human Health and the Environment: Under the institutional control alternative, affected areas of the site would remain as they currently are with no reduction in toxicity, mobility, or volume of impacted soils. Access restrictions and warning signs would reduce the potential opportunities for ingestion or dermal contact by human receptors in affected areas. Fences may limit large mammals from access to the affected areas; however, plants, birds, and small mammals would not be limited from the impacted areas.

Compliance with Cleanup Standards: The alternative will not meet MTCA cleanup standards because lead concentrations in soil above cleanup standards would be left on site.

Compliance with Applicable Laws: Implementation of this alternative would not involve compliance with laws and regulations related to wastewater discharges, air discharges, or dangerous waste management. Deed restrictions and zoning changes would have to be implemented in accordance with local, county, and state laws and regulations. Construction of fences and signs may require a permit and require construction to applicable standards.

Provision of Compliance Monitoring: The institutional controls alternative would include one of the three types of compliance monitoring, that is, conformation monitoring. Access restrictions, such as fences and signs, would be placed around the outside of affected areas and would not disturb areas of contamination above the cleanup levels. Confirmation monitoring of the condition of institutional controls would be required to confirm the condition and effectiveness of the control measures.

Other Requirements:

Permanent Solutions to the Maximum Extent Practicable: This cleanup action would not result in permanent reduction in the toxicity, mobility, or volume of hazardous substance at the site. Therefore, the institutional controls alternative would not provide permanent solutions to the maximum extent practicable. This alternative will not meet the requirements of MTCA because it relies primarily on institutional controls where it is possible to implement a more permanent cleanup action for all or a portion of the site.

Attaining Cleanup in a Reasonable Time: The institutional control alternative does not attain cleanup of the site in a reasonable time. Due to the elemental nature of the contaminant, the alternative does not cleanup the site in a reasonable time period.

Public Concerns: Public concerns would be addressed after receipt of public comments on the proposed cleanup action.

7.3.3 Alternative 3 – Containment (Capping)

Description of Alternative: The containment alternative refers to capping over areas where lead concentrations in soil exceed cleanup standards. The intent of the action would be to prevent dermal contact or ingestion of the affected soil by on-site workers and/or visitors. Depending on the material used for the cap, the action may also minimize chemical transport by rainwater infiltration. This alternative would contain the affected soil through placement of a cap over the affected areas. The cap would limit the potential exposure routes for human and ecological receptors. Some borrowing animals and plants with deep roots would remain potential receptors. Caps would be constructed of soil or more impermeable materials such as asphalt, concrete, or use of geomembranes.

This alternative would include minimum standards for construction of caps over contaminated soil. Capping would require clearing and grubbing of affected areas prior to placement of the cap. Deed restrictions would be recorded to advise potential owners of the property of the hazards and use limitations associated with the specific affected areas. Zoning and other permit restriction would be implemented to limit site uses to avoid potential exposure. Periodic site inspections would be required to verify the condition of caps and drainage features, and if required maintenance of the cap would be conducted.

Threshold Requirements:

Protection of Human Health and the Environment: Under the containment alternative, affected areas of the site would remain as they currently are with no reduction in toxicity or volume of impacted soils. The mobility of the contaminated soils would be reduced because the cap would act as a barrier for infiltration and also minimize the potential for dermal contact or ingestion.

Compliance with Cleanup Standards: The alternative may meet MTCA cleanup standards if all conditions in MTCA 340-740 (6)(f) are satisfied. Lead concentrations in soil above cleanup standards would be left on site; however, the soils would be contained to significantly reduce the potential for exposure. This alternative may not meet the requirement of being permanent to the maximum extent practicable.

Compliance with Applicable Laws: Implementation of this alternative would involve compliance with laws and regulations related to wastewater discharges, air discharges, or dangerous waste management. Deed restrictions and zoning changes would have to be implemented in accordance with local, county, and state laws and regulations.

Provision of Compliance Monitoring: The containment alternative would include protection monitoring during construction to confirm human health and the environment are adequately protected. Performance monitoring would be required during cap construction to confirm the cap meets design and construction specifications. Confirmation monitoring of the condition of the caps would be required to confirm their long-term condition and effectiveness.

Other Requirements:

Permanent Solutions to the Maximum Extent Practicable: This cleanup action would not result in permanent reduction in the toxicity or volume of hazardous substance at the site. Therefore, the containment alternative would not provide permanent solutions to the maximum extent practicable. This alternative will not meet the requirements of MTCA because it is possible to implement a more permanent cleanup action for all or a portion of the site.

Attaining Cleanup in a Reasonable Time: The containment alternative could reduce exposure to contaminated soil in a reasonable time; however, construction of a cap would not attain cleanup in a reasonable time period. The existing contamination would remain on site, but due to the elemental nature of the contaminant, the alternative does not cleanup the site in a reasonable time period.

Public Concerns: Public concerns would be addressed after receipt of public comments on the proposed cleanup action.

7.3.4 Alternative 4 – Consolidation and Containment (Capping)

Description of Alternative: The consolidation and containment alternative refers to consolidating affected soils in one or more areas on site and then constructing a cap over the contaminated soil. The intent of the action would be to prevent dermal contact or ingestion of the affected soil by on-site workers and/or visitors. Contaminated soils would be excavated and hauled to a suitable on-site location, compacted, and capped. Depending on the material used for the cap, the action may also minimize chemical transport by rainwater infiltration. This alternative would contain the affected soil through placement of a cap over the affected areas. The cap would limit the potential exposure routes for human and ecological receptors. Some borrowing animals and plants with deep roots would remain potential receptors. Caps would be constructed of soil or more impermeable materials such as asphalt, concrete, or use of geomembranes.

This alternative would include minimum standards for construction of caps over contaminated soil. Containment and capping would require clearing and grubbing of affected areas prior to excavation and consolidation of the contaminated soils. Deed restrictions would be recorded to advise potential owners of the property of the hazards and use limitations associated with the specific affected areas. Zoning and other permit restriction would be implemented to limit site uses to avoid potential exposure. Periodic site inspections would be required to verify the condition of caps and drainage features, and if required maintenance of the cap would be conducted.

Threshold Requirements:

Protection of Human Health and the Environment: Under the containment and capping alternative, affected areas of the site would remain as they currently are with no reduction in toxicity or volume of impacted soils. The mobility of the contaminated soils would be reduced because the cap would act as a barrier for infiltration and also minimize the potential for dermal contact or ingestion.

Compliance with Cleanup Standards: The alternative may meet MTCA cleanup standards if all conditions in MTCA 340-740 (6)(f) are satisfied. Lead concentrations in soil above cleanup standards would be left on site; however, the

soils would be contained to significantly reduce the potential for exposure. This alternative may not meet the requirement of being permanent to the maximum extent practicable.

Compliance with Applicable Laws: Implementation of this alternative would involve compliance with laws and regulations related to wastewater discharges, air discharges, or dangerous waste management. Deed restrictions and zoning changes would have to be implemented in accordance with local, county, and state laws and regulations.

Provision of Compliance Monitoring: The consolidation and containment alternative would include protection monitoring during construction to confirm human health and the environment are adequately protected. Performance monitoring would be required during cap construction to confirm the cap meets design and construction specifications. In addition, performance monitoring would be conducted at areas where soil was excavated to confirm soils remaining (not consolidated) meet cleanup standards. Confirmation monitoring of the condition of the caps would be required to confirm the long-term condition and effectiveness of the caps.

Other Requirements:

Permanent Solutions to the Maximum Extent Practicable: This cleanup action would not result in permanent reduction in the toxicity or volume of hazardous substance at the site. Therefore, the consolidation and containment alternative would not provide permanent solutions to the maximum extent practicable. This alternative will not meet the requirements of MTCA because it is possible to implement a more permanent cleanup action for all or a portion of the site.

Attaining Cleanup in a Reasonable Time: The consolidation and containment alternative could reduce exposure to contaminated soil in a reasonable time; however, construction of a cap would not attain cleanup in a reasonable time period. The existing contamination would be consolidated and remain on site, but due to the elemental nature of the contaminant, the alternative does not cleanup the site in a reasonable time period.

Public Concerns: Public concerns would be addressed after receipt of public comments on the proposed cleanup action.

7.3.5 Alternative 5 – Excavation and Off-Site Disposal or Recycling

Description of Alternative: The excavation and off-site disposal or recycling alternative includes excavation of all soils above cleanup standards and disposing or recycling of the

soils off site. The intent of the action would be to eliminate the potential for dermal contact or ingestion of the affected soil by on-site workers and/or visitors and to eliminate the potential exposure to ecological receptors. Contaminated soils would be excavated, mechanically screened to remove bullets, and soils above cleanup standards would be hauled off site for disposal or recycling.

Excavated soils from the ranges would be screened using vibrating screens to remove metal bullets, metal fragments, brass casings, rocks, and organic matter. The screened soils would be analyzed for lead concentrations and stockpiled on site. Screened soil will be disposed and/or recycled in accordance with legal requirements on the basis of the characterization results. The Army is evaluating recycling of the soil at other Army ranges and/or as using the soil in asphalt paving material. To the extent possible, recycling of non-hazardous soil would be conducted. All metal collected during soil sieving operations would be hauled off site for metal recycling. If recycling of lead and other metal fragments are not cost effective, the material would be sampled and profiled for proper disposal at an approved landfill.

This alternative would include minimum standards for excavation, screening, stockpiling, transporting, and disposal of contaminated soil with concentrations exceeding the cleanup standard. This alternative would require clearing and grubbing of affected areas prior to excavation. Screened soils would be sampled and analyzed to determine the appropriate disposition of the soil (hazardous or non-hazardous). Soils below cleanup standards would remain on site and be used as fill material in areas where excavations were conducted.

Threshold Requirements:

Protection of Human Health and the Environment: Under the excavation and off-site disposal or recycling alternative, affected areas of the site would be removed from the site. This cleanup action would result in permanent reduction in the toxicity, mobility, and volume of hazardous substance at the site. To the extent practicable, contaminated soil and lead removed from soil would be recycled. If excavated soils were determined to be hazardous, the soil would be stabilized prior to disposal in an RCRA approved landfill. Therefore, the excavation and off-site disposal or recycling alternative would provide the most permanent solution to the maximum extent practicable.

Compliance with Cleanup Standards: The alternative would meet MTCA cleanup standards because lead concentrations in soil above cleanup standards would be removed from the site.

Compliance with Applicable Laws: Implementation of this alternative would involve compliance with laws and regulations related to wastewater discharges, air discharges, or dangerous waste management. Lead screened from site soils is classified as scrap metal and is not regulated as solid waste or as hazardous waste when recycled. Under 40 CFR 261.6(a)(3)(ii), recycled scrap metal is classified

as a recyclable material that is not subject to the requirements for generators, transporters, and storage facilities of hazardous wastes. Therefore, the lead reclaimed from the range soils does not need to be regulated or manifested as a hazardous waste during generation or transport to a recycling facility. Under current regulations, soils that are recycled are exempt from RCRA regulations if the resulting product is for use by the general public, contains recyclable materials that have undergone a chemical reaction so as to become inseparable by physical means, and meets Land Disposal Restriction treatment standards [40 CFR 266.20 (b)].

Provision of Compliance Monitoring: The excavation and off-site disposal or recycling alternative would include protection monitoring during construction to confirm human health and the environment are adequately protected. Performance monitoring would be required during excavation to confirm soils remaining meet cleanup standards. Confirmation monitoring would be combined with performance monitoring to confirm the effectiveness of the removal action.

Other Requirements:

Permanent Solutions to the Maximum Extent Practicable: This cleanup action would result in permanent reduction in the toxicity, mobility, and volume of hazardous substance at the site. Therefore, the alternative would provide permanent solutions to the maximum extent practicable. This alternative meets the requirements of MTCA because it implements a more permanent cleanup action for all or a portion of the site.

Attaining Cleanup in a Reasonable Time: The alternative could attain cleanup standards in a reasonable time period. Implementation of the alternative would be most successful if the excavated and screened soil were dry so that mechanical screens do not become clogged with wet soil. Therefore, the alternative may be limited to the summer season, but still could be attained in a reasonable time.

Public Concerns: Public concerns would be addressed after receipt of public comments on the proposed cleanup action.

7.4 **Permanence Evaluation**

The Permanence evaluation specifies consideration and comparison of each candidate alternative using seven criteria specified in WAC 173-340-360 (3) (f). The following discussion provides these comparisons in narrative format.

 Protectiveness: Alternate 5 is clearly superior in protectiveness of both human health, the environment, and attainment of cleanup standards as this alternate involves the recycling of recoverable lead, the removal, treatment and proper disposal of any hazardous materials, and the removal to an appropriate offsite facility of soils exceeding the cleanup

standard for lead. Alternative 4 is less protective in that it involves consolidating the materials to one on-site location and providing a protective cover. Alternative 3 is still less protective in that the materials would be left in place with covers installed at each material location. Alternatives 1 and 2 are least protective in that they do not involve any physical action to remove, consolidate, treat, or cover the lead-containing soils.

- Permanence: Alternate 5 is clearly superior in permanence as this alternate involves the permanent actions in the form of recycling of recoverable lead, treatment and proper disposal of hazardous materials, and removal of soils exceeding the cleanup standard for lead. Alternative 3 and 4 are less permanent in that both involve maintenance of the protective cover(s). Alternatives 1 and 2 are least permanent in that they do not involve any physical action to remove, consolidate, treat, or cover the lead-containing soils.
- Cost: The five alternatives are ranked in numerical order from least to highest cost. However, Alternatives 3, 4, and 5 would be relatively comparable in overall cost when the long-term costs associated with cap maintenance are considered. As noted above, this RI/FS does not advance a disproportionate cost analysis.
- Effectiveness Over the Long Term: Alternative 5 is clearly superior over the long term since this is the only alternative that involves removal of soils with lead concentrations exceeding the cleanup standards. The long-term effectiveness of Alternatives 3 and 4 is clearly limited by the degree to which cap maintenance can be assured. The long-term effectiveness of Alternatives 1 and 2 is very low since these alternatives do not involve any physical remedial actions.
- Management of Short-Term Risks: Alternatives 3, 4, and 5 involve some short-term risk to workers implementing the removal, consolidation, and or capping; however, that risk will be mitigated by health and safety programs meeting OSHA and MTCA standards. Alternative 5 also involves some short-term risks associated with off-site transportation of recycled lead and lead containing soils; however transportation practices and emergency response mechanisms are in place to mitigate these risks. Alternatives 1 and 2 present no additional short-term risk since they do not involve any physical remedial action.
- Technical and Administrative Implementability: Alternative 5 ranks very high in terms of Implementability since it involves the application of proven technologies, the use or readily available personnel, equipment, and supplies, and the use of existing disposition facilities. Alternatives 3 and 4 are technically implementable for the same reasons; however there is a significant administrative issue arising from the requirement to leave

lead-containing materials on site. Alternatives 1 and 2 are technically implementable as they do not involve any physical actions; however they raise major administrative issues.

Consideration of Public Concerns: Alternative 5 is expected to address most public concerns since the lead and soils exceeding the cleanup standard will be removed from the site. Alternatives 1 through 4 all raise significant public concerns as they involve leaving these materials on-site in locations that will be in or near the proposed public recreation areas.

Small Arms Range Designation	Volume of Impacted Grids (cubic yards) > 50mg/kg	
Close Combat Range	30	
25 Meter M60 /Pistol Range	486	
Sub Machine Gun Range	0	
TF Range	0	
Rifle Range 1 & 2	3,119	
Field Fire Rifle Ranges 1 & 2	372	
Infiltration Course North	0	
Field Firing Ranges 1&2 & Pistol	868	
Undocumented Pistol Range	52	
1,000 ft Range, 1,000 Machine	3,315	
Combat Pistol Range	493	
Machine Gun Range North	268	
Machine Gun Range South	59	
M31 Sub-Caliber Ranges 1 & 2	30	
25 m & Machine Gun Range	2,080	
Infiltration Course South	59	
25M Record Fire Field Range	1,331	
Total (cubic yards)	12,562	

Table 7-1 Revised Volume Estimates

7.5 Summary and Recommendations

The evaluation of the five candidate alternative action is summarized as follows:

- Alternative 1 No Action does not meet the threshold requirements.
- Alternative 2 Institutional Controls partially meets the threshold requirements and is ranked very low in terms of permanence.
- Alternative 3 Containment and Alternative 4 Consolidation and Containment meet the threshold requirements except for consideration of public concerns and ranks lower in terms of permanence than Alternative 5.
- Alternative 5 Excavation and Off-site Disposal or Recycling meets the threshold requirements, addresses public concerns, and ranks highest in terms of permanence.

Therefore, the recommended alternative for remediation of site soils is excavation and removal of contaminated soil.

The selected cleanup alternative – Alternative 5 – provides the most permanent solution to the contaminated soil at the Small Arms Ranges. Metallic, particulate lead will be removed by post-excavation screening and recycled. Highly contaminated soils with lead concentrations exceeding TCLP criteria will be stabilized prior to disposal in an approved landfill. Less contaminated soils will be removed to an appropriate residual waste landfill. Due to the nature of the contaminated soil. Therefore, a disproportionate cost analysis specified in WAC 173-340-360 (3) is not appropriate since it is obvious that the selected alternative uses permanent solutions to the other alternatives more favorable satisfies the evaluation criteria: protectiveness, permanence, short and long term effectiveness, implementability, and public concerns.

It is proposed that the 11,300 cubic yards proposed for remediation be managed according to Alternate 5. Table 7-1 identifies these soil volumes by Small Arms Range location.

Due to concerns related to the potential presence of munitions and explosives of concern (MEC) at these Small Arms Ranges, this remedial action should be implemented in two stages, as follows:

• An Interim Cleanup Action consisting of brush removal and a MEC clearance.

 A Final Cleanup Action consisting of soil excavation, confirmatory testing to verify excavation completion, excavated soils screening, recovered lead recycling, excavated soils testing for disposal management, and excavated, categorized soils disposal at appropriate treatment and/or disposal facilities.

8.0 REFERENCES

AEM 2003a. Work Plan for Soil Sampling in Firing Ranges and Demolition Areas 2 and 3, Sampling and Analysis Plan – Soil, Quality Assurance Project Plan, Site Safety and Health Plan, Data Management Plan, and Waste Management and Minimization Plan. Prepared for U.S. Army Engineering District Norfolk, Norfolk, Virginia. Prepared by Atlanta Environmental Management. 17 February 2003.

AEM, 2003b. Draft Site Investigation Report, Small Arms Ranges and Demolition Areas 2 and 3. Camp Bonneville, Vancouver, Washington. Prepared for U.S. Army by Atlanta Environmental Management (AEM). April 18, 2003.

Ecology, 1994. Natural Background Soil Metals Concentrations in Washington State, Toxics Cleanup Program, Dept. of Ecology, Publication #94-115. Figure 51, page 12-10.

Ecology, 2001. Cleanup Levels and Risk Calculations under the Model Toxics Control Act Cleanup Regulations (CLARC). Version 3.1. Part II, Soil Cleanup Levels for Unrestricted Land Use, Table 2. Publication No. 94-145. November 2001.

Environmental Science and Engineering, Inc. 1983. Installation Assessment of the HQ, I Corps and Ft. Lewis, Washington and the Sub installation Yakima Firing Center, Camp Bonneville, and Vancouver Barracks.

Geo Recon International. 1981. Cultural Resources Survey, Forest Management Project, Ft. Lewis and Camp Bonneville, Washington, for U.S. Army, Ft. Lewis.

Hart Crowser. 1996. Petroleum Contaminated Soil Investigation, Former Tank no.7-CMBPN, Building no. 4475, Camp Bonneville Washington. Contract No. DACA67-93-D-1004. September 1996.

Hart Crowser. 2000. Final Project Completion Report Surface Water Investigation of Lacamas Creek. Camp Bonneville, Vancouver, Washington. Prepared for US Army Corp of Engineers, Seattle District. March 10, 2000.

Interstate Technology and Regulatory Council (ITRC). 2003. Technical and Regulatory Guidelines. Characterization and Remediation of Soils at Closed Small Arms Firing Ranges. Prepared by ITRC, Small Arms firing Range Team.

Larson, Lynn L. 1980. Cultural Resource Reconnaissance of Forest Management Tracts on Fort Lewis and Camp Bonneville. Office of Public Archaeology, Institute for Environmental Studies, University of Washington, Reconnaissance Report No. 34.

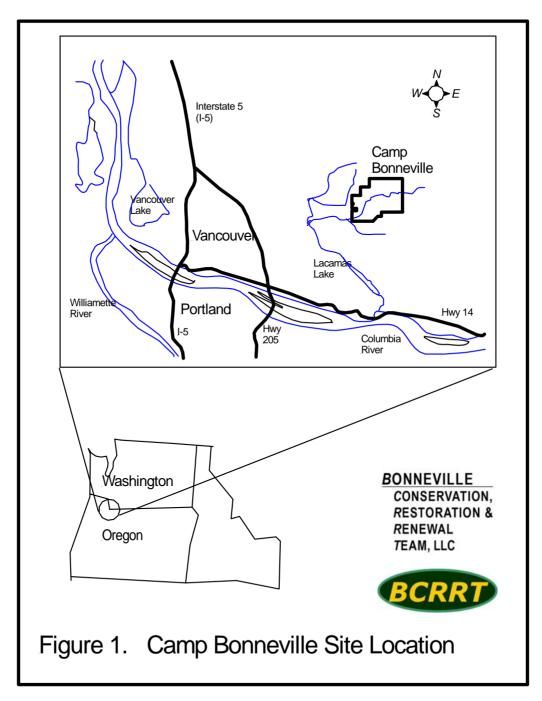
Miles 1972. Miles, C.D., et. al. Inhibition of Photosystem II in Isolated Chloroplasts by Lead. Plant Physiology 49:820-825.

Mundorff, MR. 1964. Geology and groundwater conditions of Clark County, Washington, with a description of major alluvial aquifer supply along the Columbia River: U.S. Geological Survey Water Supply Paper 1600, 268 p.

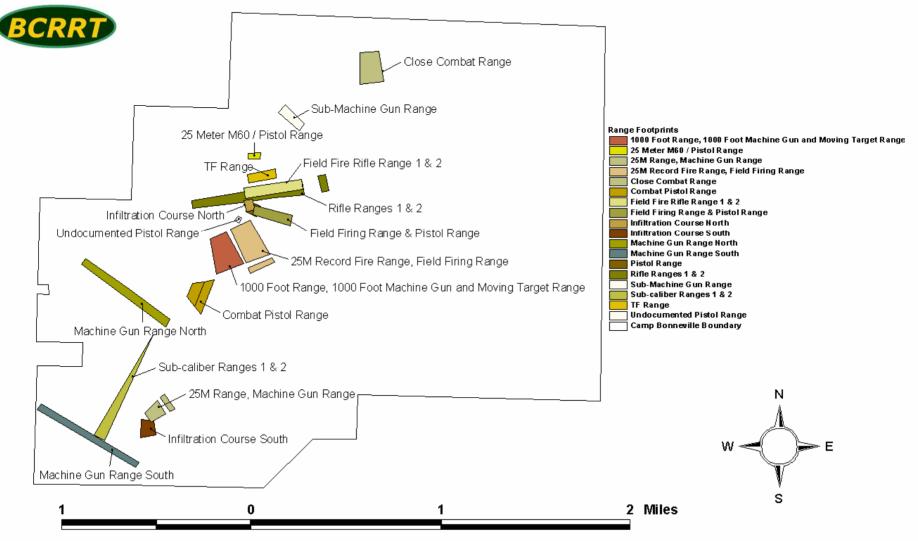
Oak Ridge National Laboratory (ORNL). 1997. Toxicological Benchmarks for Screening Potential Contaminants of concern for effects on Terrestrial Plants. 1997 Revision.

Phillips, WIMP. 1987. Geologic map of the Vancouver quadrangle, Washington and Oregon: Washington Division of Geology and Earth Resources Open File Report 87-10, scale 1:100,000.

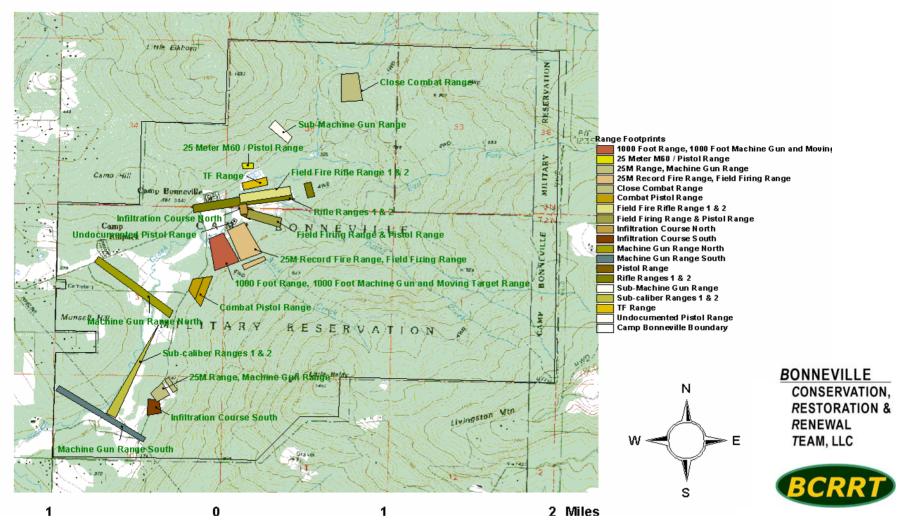
Project Performance Corporation. 2003. Work Plan for Interim Actions at Small Arms Range Berms and Fire Support Areas. Camp Bonneville, Vancouver, Washington. Draft. March 31, 2003.


Shannon & Wilson. 1999a. Final Report Volume 1 Multi-Sites Investigations, Camp Bonneville, Washington. Contract No. DACA 67-94-D-1014. July 1999.

Shannon & Wilson 1999b. Final Landfill 4 Investigation Report, Camp Bonneville, Washington. Contract DACA 67-94-D-1014. August 1999.


URS. 2001. Expanded Site Investigation, Landfill 4 Demolition Area 1, Camp Bonneville, Vancouver, Washington. May 2001.

Venkatakrishnan, R., Bond, J. G., and Kauffman, J.D., 1980. Geologic Linears of the Northern Part of the Cascade Range, Oregon. State of Oregon, Department of Geology and Mineral Industries. Special Paper 12.


FIGURES

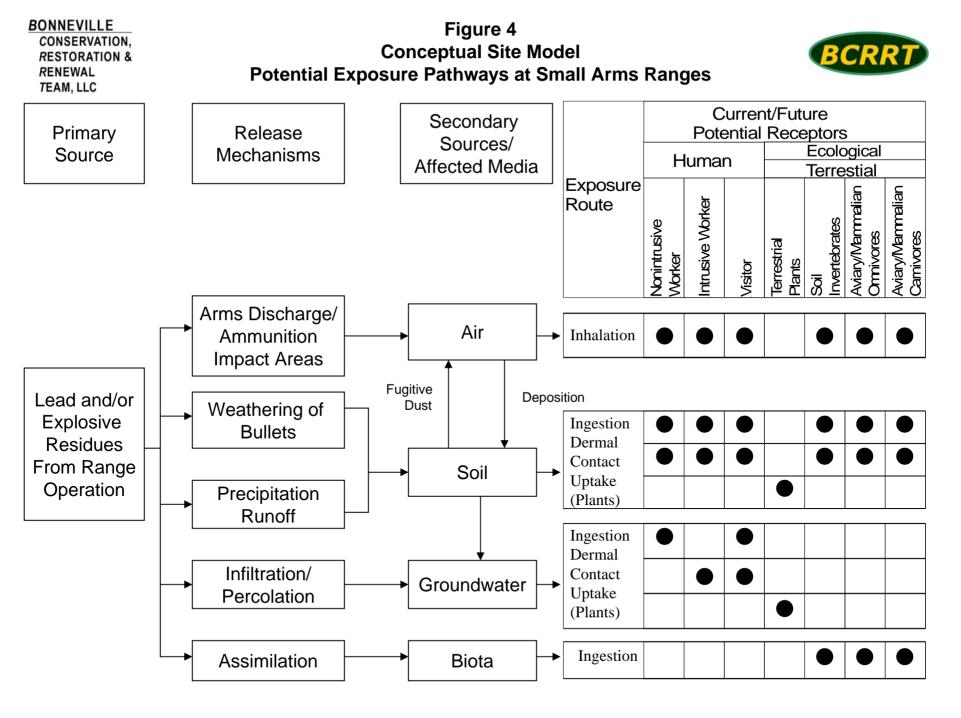


Figure 2 Small Arms Ranges

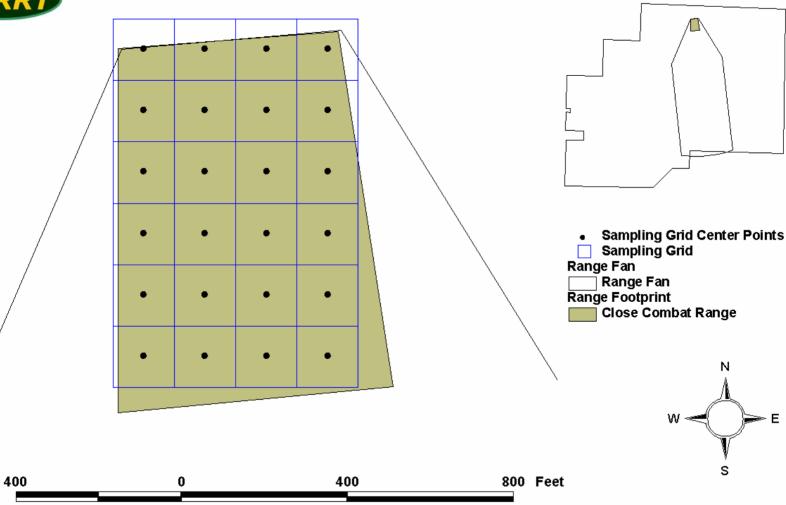
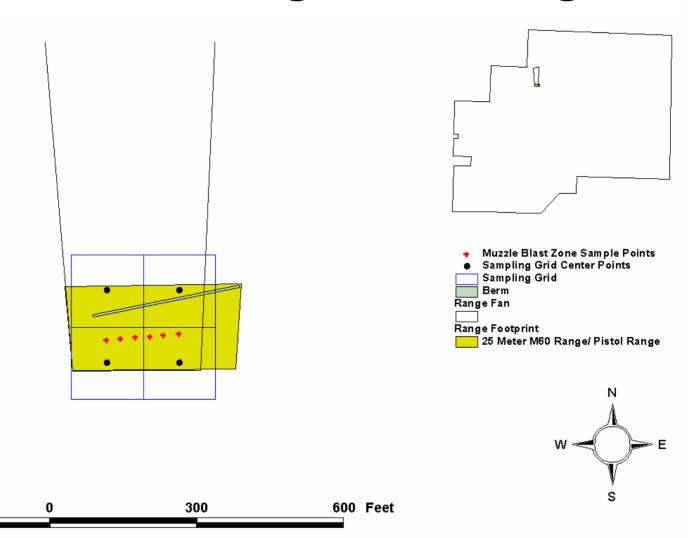
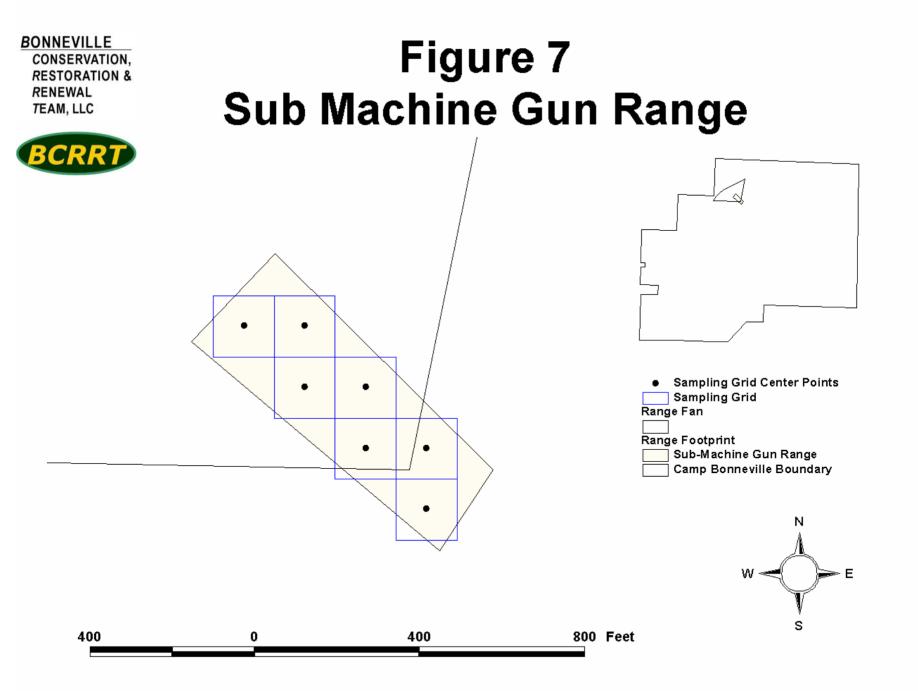
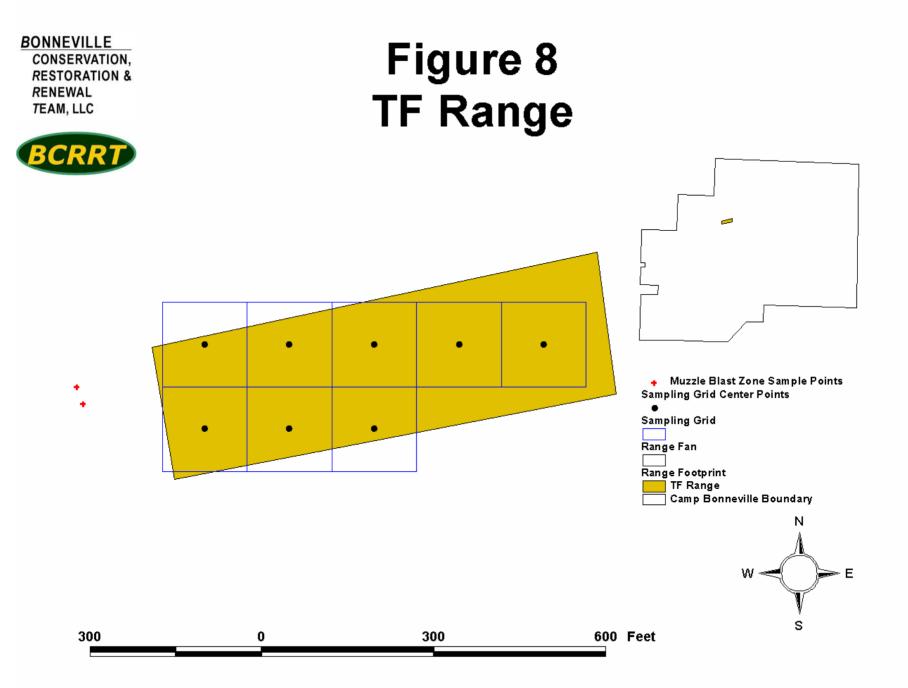
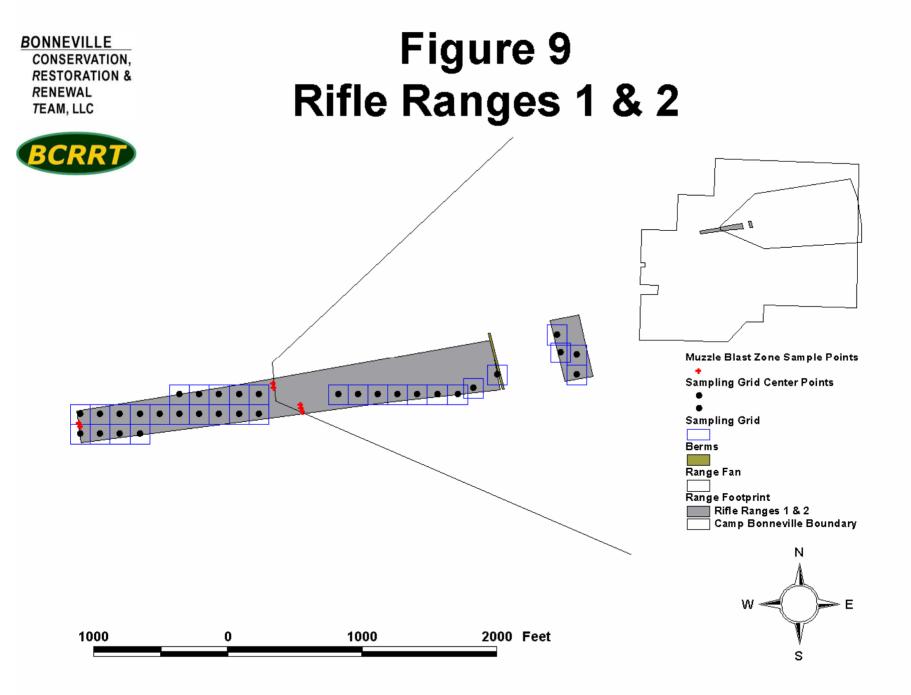

Figure 3 Camp Bonneville Topography

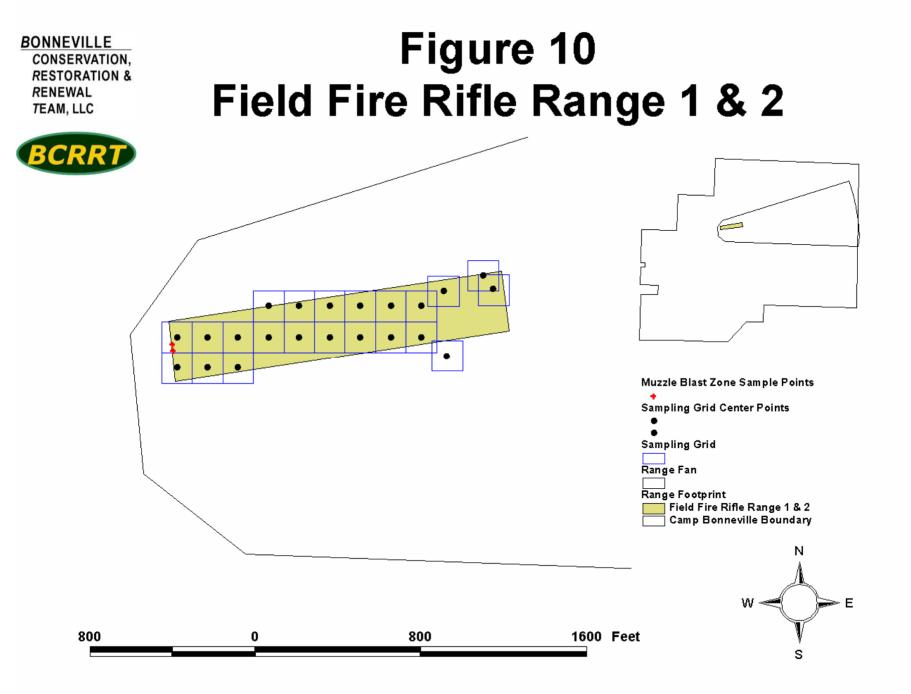
Figure 5 Close Combat Range

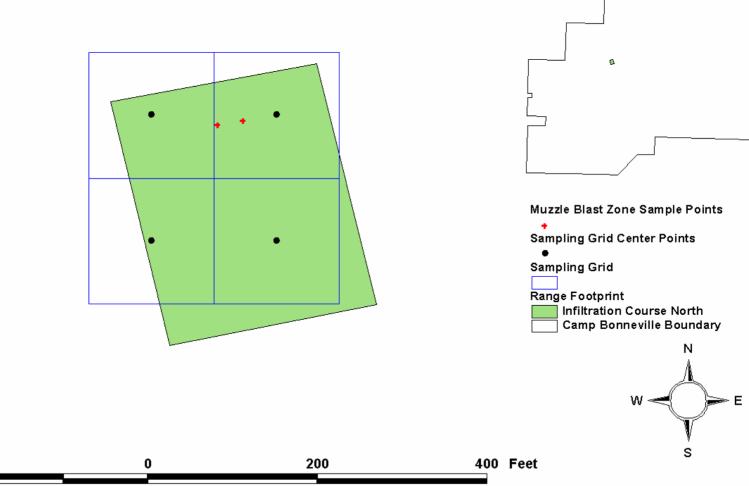


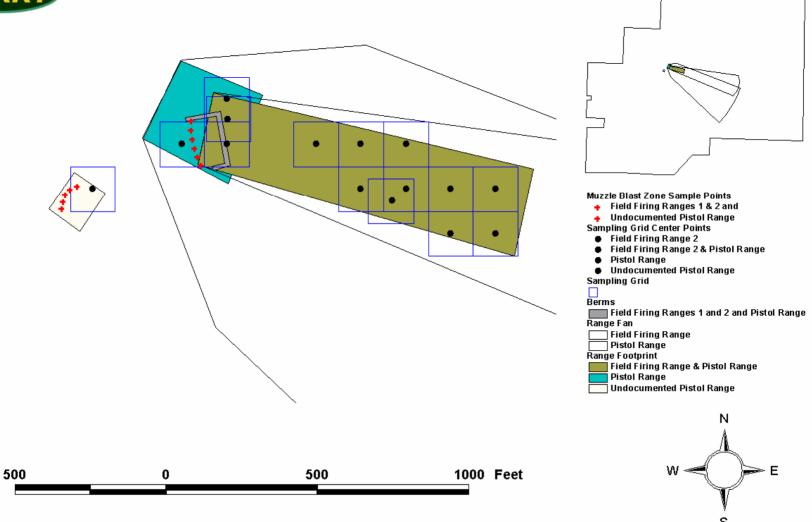



BONNEVILLE
CONSERVATION,
RESTORATION &
RENEWAL
TEAM, LLCFigure 625-m M60 Range/Pistol Range




300




200

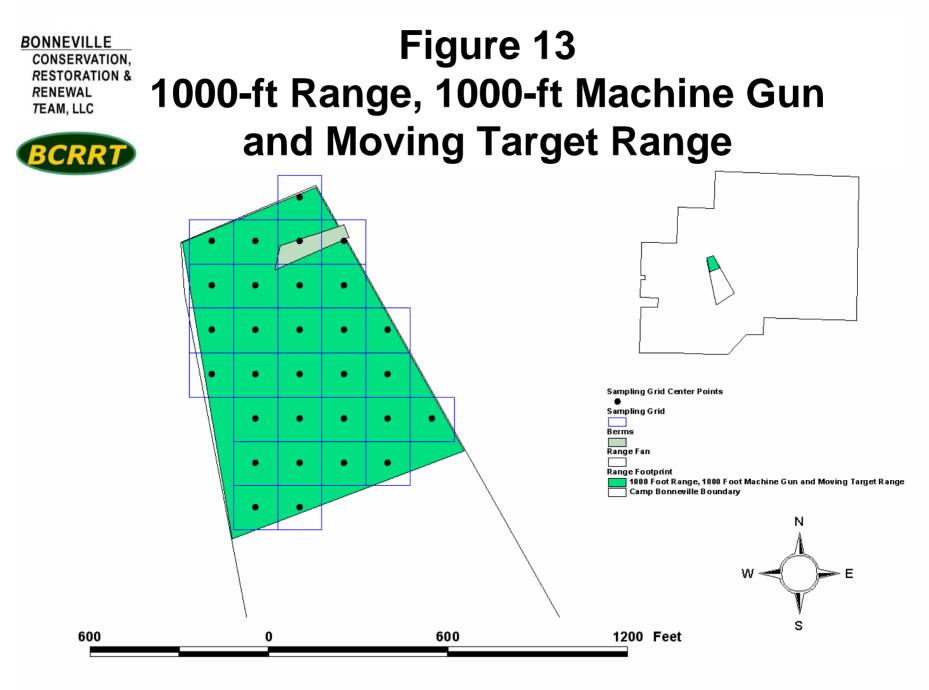
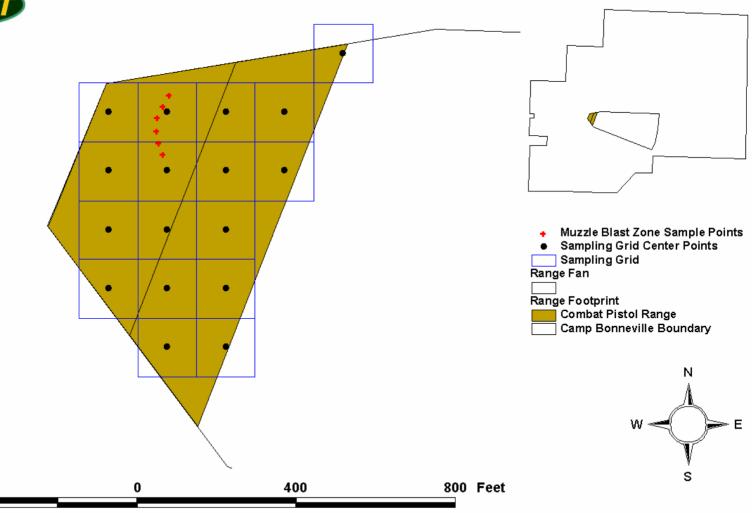
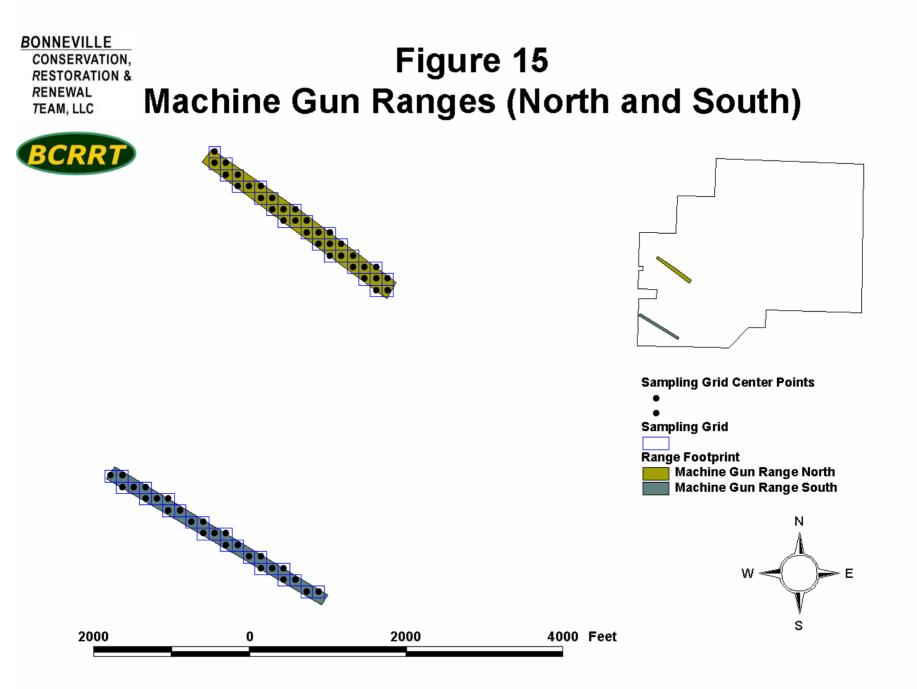
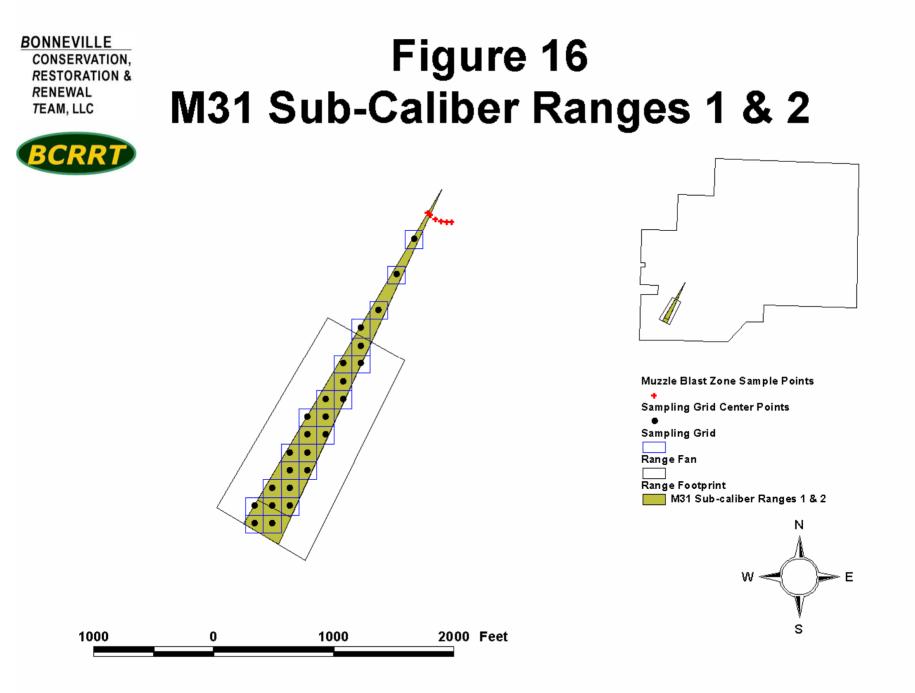

Figure 11 Infiltration Course North

Figure 12 Field Firing Ranges, Pistol Range, and Undocumented Pistol Range







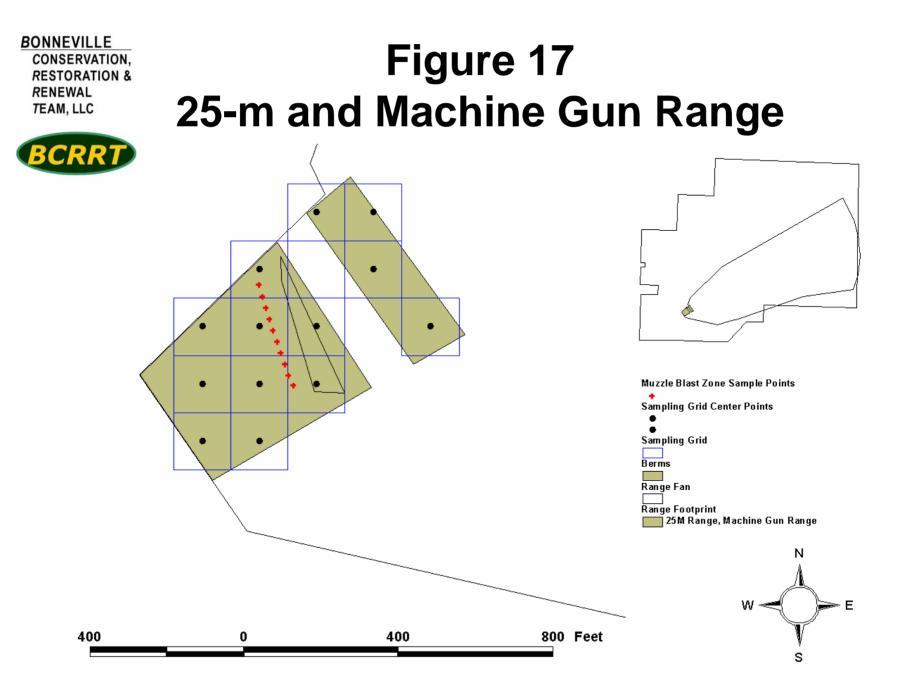
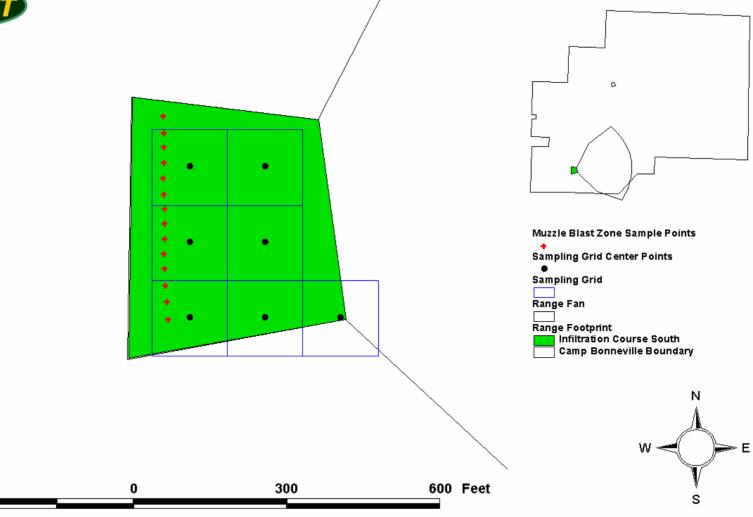
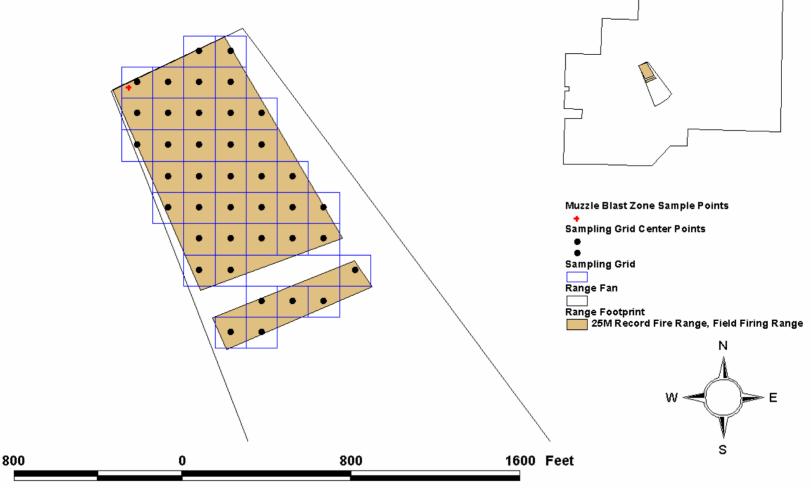

400

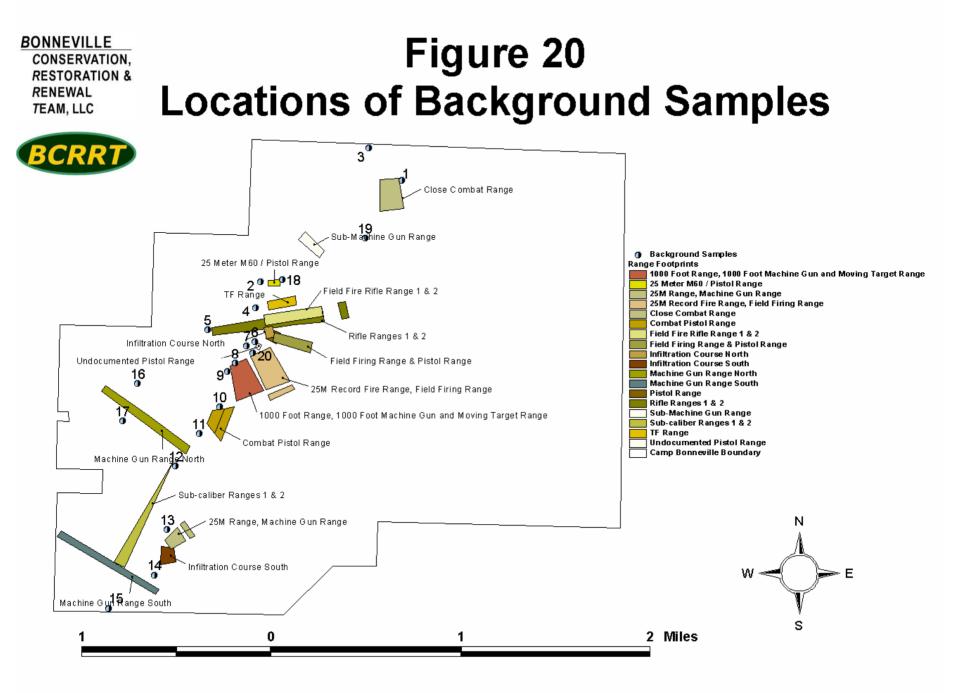
Figure 14 Combat Pistol Range

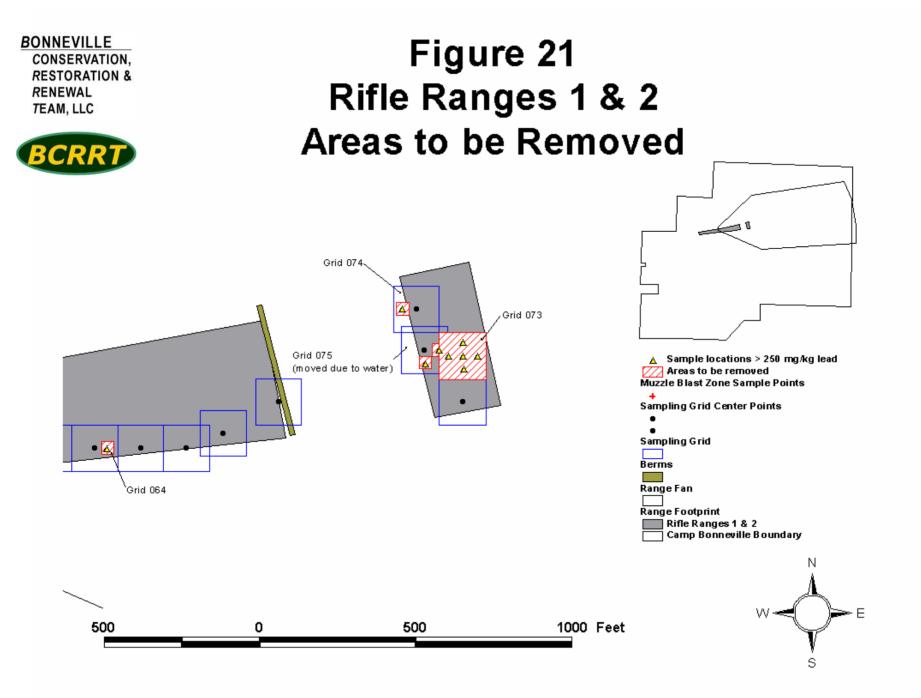


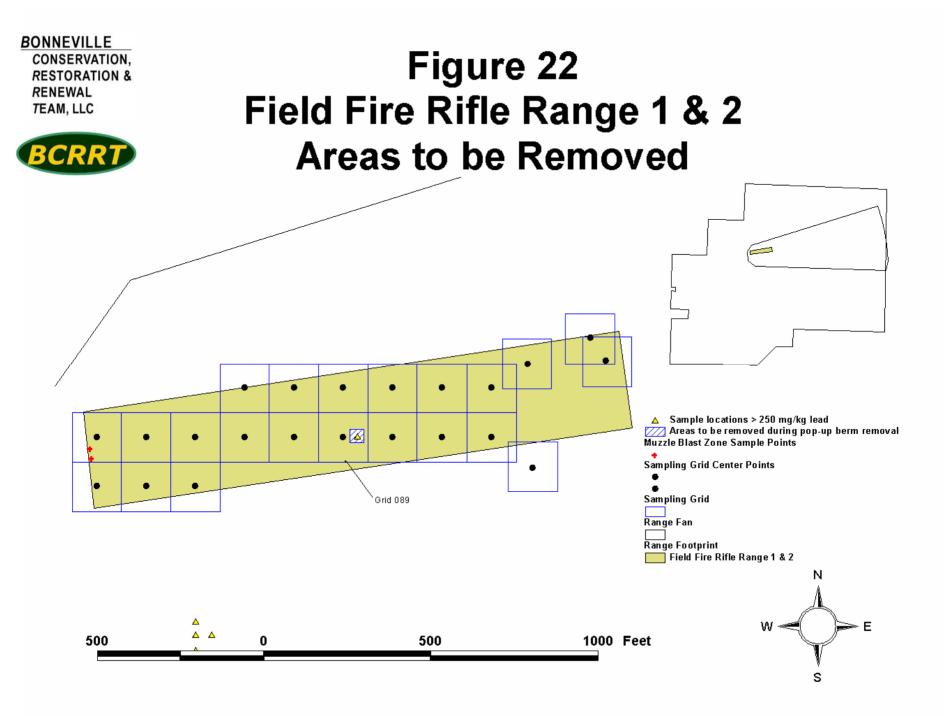
BONNEVILLE CONSERVATION, RESTORATION & RENEWAL TEAM, LLC

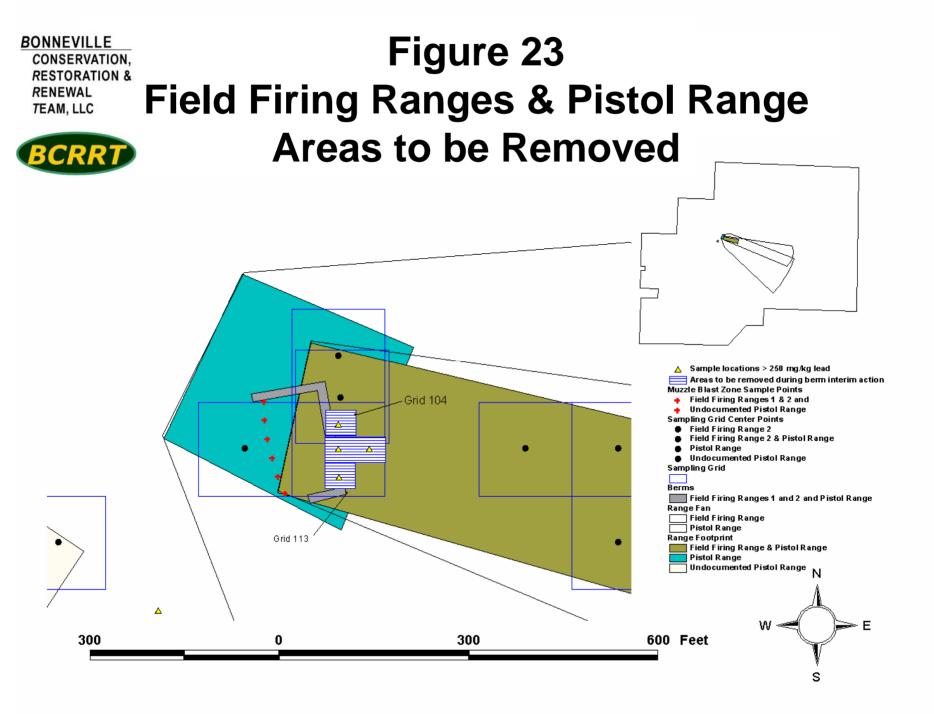
300

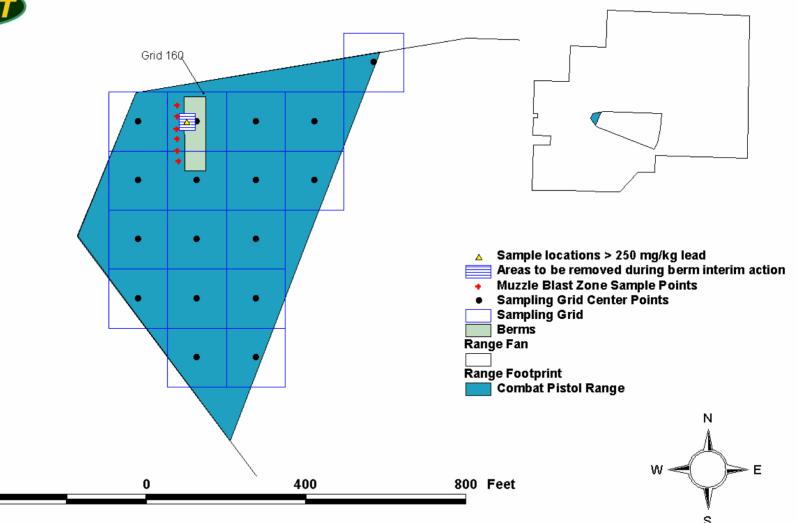

Figure 18 Infiltration Course South



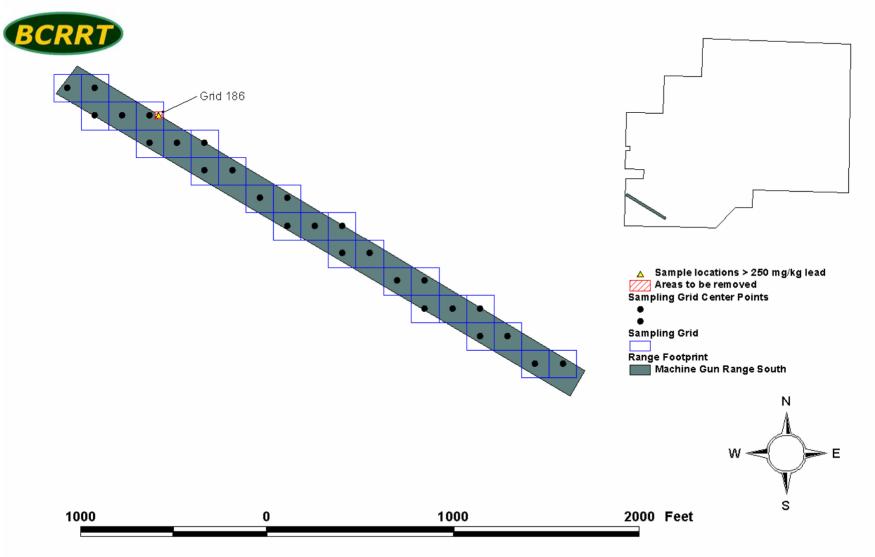

BONNEVILLE CONSERVATION, RESTORATION & RENEWAL TEAM, LLC




Figure 19 25M Record Fire Field Range, Field Firing Range


Figure 24 BONNEVILLE CONSERVATION. **RESTORATION &** 1000-ft Range, 1000-ft Machine Gun and RENEWAL TEAM. LLC **Moving Target Range Areas to be Removed** CRRT Sample locations > 250 mg/kg lead Δ. Areas within active FBI range berm (Grid 119 & 123) and in berm to be removed (Grid 143) Grid 143 Areas to be removed (NOTE: 1/2 of Grid 143 to be removed during berm removal) Sampling Grid Center Points Grid 141 . Sampling Grid • 🕅 . Ø Berms Range Fan . . • . Range Footprint Grid 142 1000 Foot Range, 1000 Foot Machine G un and Moving Target Range . . • . . . ÷ . . Grid 123 . . . $\Delta \Delta$ Grid 119 Δ A A . . N F 400 400 800 Feet Û

BONNEVILLE CONSERVATION, RESTORATION & RENEWAL TEAM, LLC


400

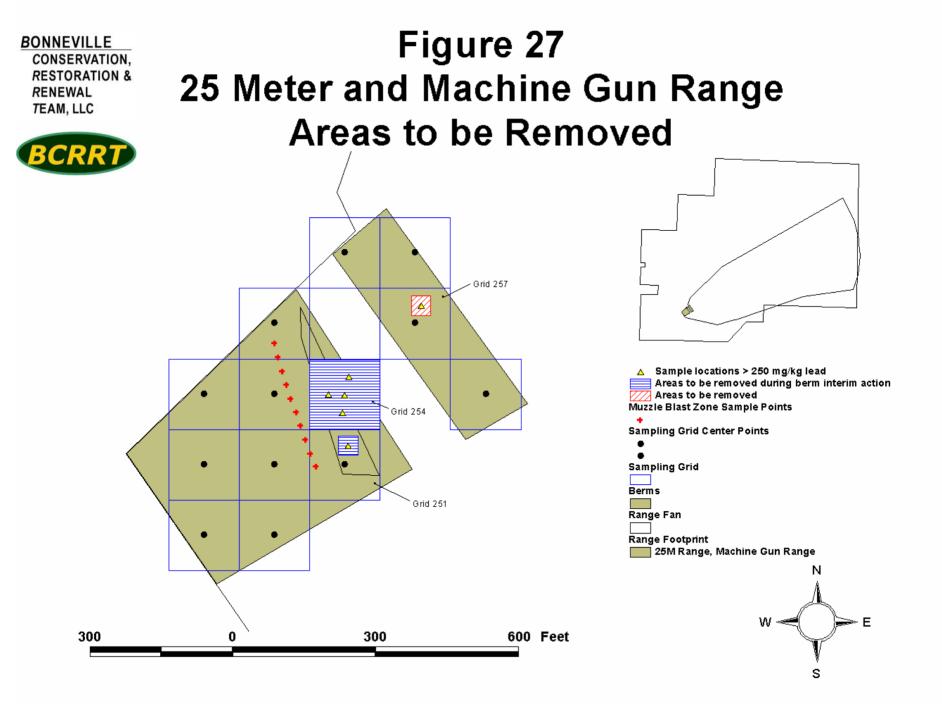
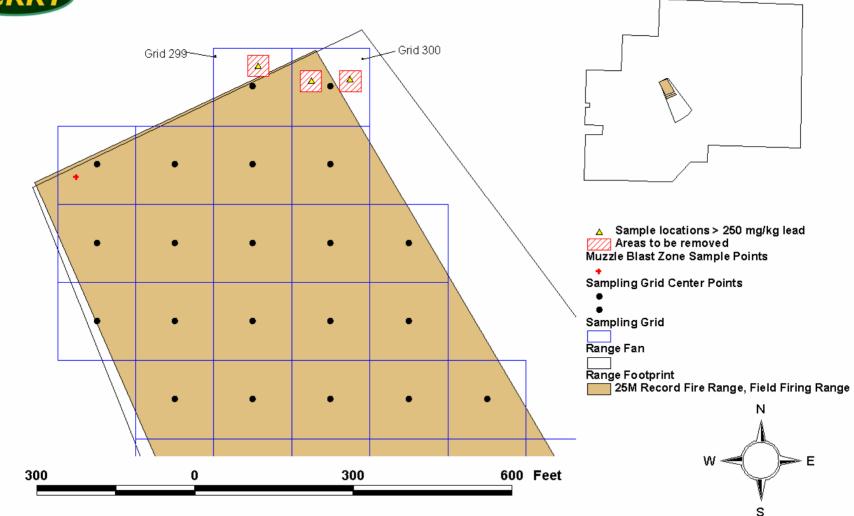

Figure 25 Combat Pistol Range Areas to be Removed

Figure 26 Machine Gun Range



BONNEVILLE CONSERVATION, RESTORATION & RENEWAL TEAM, LLC

Figure 28 25M Record Fire Field Range, Field Firing Range Areas to be Removed

APPENDIX A SITE INVESTIGATION REPORT

DRAFT FINAL Site Investigation Report

Small Arms Ranges and Demolition Areas 2 and 3

Camp Bonneville Vancouver, Washington

AEM Project No. 1160-01

September 25, 2003

Prepared For:

U.S. ARMY ENGINEERING DISTRICT NORFOLK CENAO-SS-C 803 Front Street Norfolk, Virginia 23510-1096

Prepared By:

ATLANTA ENVIRONMENTAL MANAGEMENT, INC.

Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta, Georgia 30345 Office (404) 329-9006 • Fax (404) 329-2057

LIST OF ACRONYMS

AEM	Atlanta Environmental Management, Inc.
bgs	Below Ground Surface
BMV	Benchmark Value
BRAC	Base Realignment and Closure
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
COC	Chain of Custody
DA	Demolition Area
DQO	Data Quality Objective
Ecology	Washington State Department of Ecology
FBI	Federal Bureau of Investigation
GPS	Global Positioning System
IDW	Investigation-Derived Waste
mg/kg	Milligrams per Kilogram
µg/L	Micrograms per Liter
MTCA	Model Toxics Control Act
NGVD	National Geodetic Vertical Datum
NS	Not Sampled
PDA	Personal Digital Assistant
PETN	Pentaerythritol Tetranitrate
PRG	Preliminary Remediation Goals
Pt	Troutdale Formation
Qa	Quaternary Flood Plain
QAPP	Quality Assurance Project Plan
QA/QC	Quality Assurance/Quality Control
Qls	Quaternary Landslide Deposit
RPD	Relative Percent Difference
SAP	Sampling and Analysis Plan
SI	Site Investigation
SSHP	Site Safety and Health Plan
Τv	Tertiary Volcanic Bedrock
U.S. EPA	United States Environmental Protection Agency
UST	Underground Storage Tank
UXO	Unexploded Ordnance

TABLE OF CONTENTS

1.0	Introduction					
	1.1	Purpose	e of the Site Investigation	1-1		
	1.2	Scope of	of the Site Investigation	1-1		
	1.3	Project	Planning Documents	1-2		
	1.4	Project	Timeline	1-3		
	1.5	Site Inv	estigation Report Contents and Presentation	1-4		
2.0	Site H	History a	nd Setting	2-1		
	2.1	History	of Camp Bonneville	2-1		
	2.2	Site Set	tting	2-1		
		2.2.1	Regional Geology and Physiography	2-1		
		2.2.2	Surface Water Hydrology	2-2		
		2.2.3	Site Geology and Soils	2-2		
		2.2.4	Hydrogeology	2-3		
3.0	Site I	nvestiga	tion Methods	3-1		
	3.1	Sample	Locations	3-1		
		3.1.1	Small Arms Ranges	3-1		
		3.1.2	Background Locations	3-5		
		3.1.3	Demolition Areas	3-6		
	3.2	Sample	Collection Methods	3-7		
	3.3	Sample	and Photograph Numbers	3-8		
	3.4	Sample	Analyses	3-9		
	3.5	Investig	ation-Derived Waste	3-9		

TABLE OF CONTENTS (CONTINUED)

4.0	Qua	Quality Assurance/Quality Control 4-				
	4.1	Data M	lanagement	4-1		
	4.2	Data R	Review	4-1		
		4.2.1	Precision	4-2		
		4.2.2	Accuracy	4-2		
		4.2.3	Surrogate Recovery	4-3		
		4.2.4	Completeness	4-3		
		4.2.5	Detection Limits	4-3		
		4.2.6	Blanks	4-4		
	4.3	QC Su	immary	4-4		
5.0	Com	parisons	s to Benchmark Values	5-1		
	5.1	Bench	mark Values	5-1		
	5.2	Lead a	at Small Arms Ranges	5-2		
	5.3	Backgi	round Concentrations of Lead	5-4		
	5.4	Explos	ive Residues	5-4		
	5.5	Priority Pollutant Metals				
6.0	Refe	rences		6-1		

LIST OF TABLES

TABLE

1-1	Project Milestones and Schedule
3-1	Small Arms Range Sampling Grids
3-2	Modified Sample Locations
3-3	Modified Sample Locations
3-4	Background Sample Locations
4-1	Comparison of Lead Concentrations in Duplicate Samples
4-2	Laboratory Duplicates Summary
4-3	Blank Sample Detections
5-1	MTCA and PRG Benchmark Values
5-2	Lead Concentrations Greater Than Benchmark Values
5-3	25-Meter M60 Range/Pistol Range – Lead Samples: Comparisons to MTCA and PRG Benchmark Values
5-4	Rifle Ranges 1 and 2 – Lead Samples: Comparisons to MTCA and PRG Benchmark Values
5-5	Field Fire Rifle Ranges 1 and 2 – Lead Samples: Comparisons to MTCA and PRG Benchmark Values
5-6	Field Firing Ranges 1 and 2 and Pistol Range – Lead Samples: Comparisons to MTCA and PRG Benchmark Values
5-7	Undocumented Pistol Range – Lead Samples: Comparisons to MTCA and PRG Benchmark Values
5-8	1,000-Foot Range, 1,000-Foot Machine Gun Range, and Moving Target Range – Lead Samples: Comparisons to MTCA and PRG Benchmark Values
5-9	Combat Pistol Range – Lead Samples: Comparisons to MTCA and PRG Benchmark Values
5-10	Machine Gun Range (South) – Lead Samples: Comparisons to MTCA and PRG Benchmark Values
5-11	Machine Gun Range (North) – Lead Samples: Comparisons to MTCA and PRG Benchmark Values
5-12	25-Meter and Machine Gun Range – Lead Samples: Comparisons to MTCA and PRG Benchmark Values
5-13	Infiltration Course South – Lead Samples: Comparisons to MTCA and PRG Benchmark Values
5-14	25M Record Fire Field Range, Field Firing Range – Lead Samples: Comparisons to MTCA and PRG Benchmark Values
5-15	Comparisons of Arsenic Concentrations to MTCA and PRG Benchmark Values
5-16	Comparisons of Barium Concentrations to MTCA and PRG Benchmark Values

LIST OF FIGURES

FIGURE

- 2-1 Site Vicinity and Location
- 2-2 Topography
- 3-1 Small Arms Ranges and Demolition Areas 2 and 3 within Camp Bonneville
- 3-2 Locations of Background Samples
- 5-1 25 Meter M60 Range/Pistol Range Lead Results Greater Than Benchmark Values (mg/Kg)
- 5-2 Rifle Ranges 1 & 2 Lead Results Greater Than Benchmark Values (mg/Kg)
- 5-3 Field Fire Rifle Ranges 1 & 2 Lead Results Greater Than Benchmark Values (mg/Kg)
- 5-4 Field Firing Ranges 1 & 2 and Undocumented Pistol Range Lead Results Greater Than Benchmark Values (mg/Kg)
- 5-5 1000 Ft. Range, 1000 Ft. Machine Gun, and Moving Target Range Lead Results Greater Than Benchmark Values (mg/Kg)
- 5-6 Combat Pistol Range Lead Results Greater Than Benchmark Values (mg/Kg)
- 5-7 Machine Gun North Lead Results Greater Than Benchmark Values (mg/Kg)
- 5-8 Machine Gun South Lead Results Greater Than Benchmark Values (mg/Kg)
- 5-9 25 Meter and Machine Gun Range Lead Results Greater Than Benchmark Values (mg/Kg)
- 5-10 Infiltration Course South Lead Results Greater Than Benchmark Values (mg/Kg)
- 5-11 25M Record Fire Field Range Field Firing Range Lead Results Greater Than Benchmark Values (mg/Kg)

LIST OF APPENDICES

APPENDIX

- A Tables of Sampling Results
- B Figures of Sampling Results
- C Summary Tables of Samples and Photographs (electronic format on Compact Disc)
- D Sample Photographs (electronic format on Compact Disc)
- E Laboratory Data Reports (electronic format on Compact Disc)
- F Manifests for Disposal of IDW

SECTION 1.0 INTRODUCTION

1.1 PURPOSE OF THE SITE INVESTIGATION

The Site Investigation (SI) conducted by Atlanta Environmental Management, Inc. (AEM) at Camp Bonneville in Vancouver, Washington, is part of the U.S. Army's ongoing Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) investigation of lead-contaminated ranges and Demolition Areas (DA) 2 and 3 at Camp Bonneville. This investigation is being conducted under a Washington State Department of Ecology Enforcement Order and in accordance with the Model Toxics Control Act (MTCA). The SI was conducted under Contract/Purchase Order GS-10F-0135M, Delivery Order No. DACA65-03-F-0002 titled "Site Investigation for Small Arms Ranges, Demolition Areas 2 and 3."

Variable concentrations of lead are known to exist at Camp Bonneville within the top 0 to 6 inches of soil as residue from the firing of small arms. Because of the low mobility of lead in soil, the majority of the lead residue is expected to have remained near the surface of the soil. Considering the expected future use of the installation for recreational activities, it has been determined that the major risk posed by any metal residues arises from direct contact and ingestion of the top 0 to 6 inches of soil.

The concentrations of explosive residues in the soil are expected to vary extensively throughout the SI area, but they are most likely to be found (if detectable) in muzzle blast areas, a result of barrel emissions during live fire of small arms. Explosive residues have a greater mobility in soils than lead, and some portion of the explosive residue may have migrated into the deeper soil horizons, potentially impacting groundwater. Sampling the top 0 to 6 inches of soil for explosive residue will indicate possible explosive residue within the soil column at that sample site.

Perchlorate is used in propellants and was detected in the monitoring wells at Demolition Area 1. Therefore, there is a potential for detectable concentrations of perchlorate in soil at DA 2 and DA 3. The source of the perchlorate is assumed to be residue from ammunition disposal. Perchlorate has a mobility in soils similar to that of explosive residues, and some portion of the perchlorate residue may have migrated into the deeper soil horizons, potentially impacting groundwater. Sampling of the top 0–6 inches of soil and of soil at depths of approximately 2.5 and 5 feet at DA 2, and the top 0–6 inches of soil and soil at a depth of approximately 2.5 feet at DA 3, should indicate possible perchlorate residue within the soil column.

1.2 SCOPE OF THE SITE INVESTIGATION

The scope of the SI was designed to meet the following objectives:

• Determine the concentration of lead residues in the top 0–6 inches of soil at 307 one-half acre grids within the firing ranges.

- Determine the background concentrations of lead in the top 0–6 inches of soil at 20 undisturbed/unused locations within Camp Bonneville.
- Determine the concentrations of explosive residues, including picric acid and pentaerythritol tetranitrate (PETN), in soil in the muzzle blast area of the firing ranges where the firing location is known. (The term "explosive residues" refers to the EPA Method 8330 compound list, modified to include picric acid and PETN. This group of constituents is hereinafter referred to as "explosive residues.")
- Determine the concentrations of explosive residues, perchlorate residues, and metals in soil samples from Demolition Areas 2 and 3. (When used in this report, "metals" refers to nine Priority Pollutant metals analyzed by EPA Method 6010: antimony, arsenic, barium, cadmium, chromium, copper, lead, nickel, and zinc.)

Results of the SI samples will be compared to the benchmark values in the Washington State Department of Ecology (Ecology) MTCA and to U.S. EPA Region 9 Preliminary Remediation Goals (PRG). While not part of the SI scope, these comparisons will be used to identify areas that exceed the benchmark and PRGs and quantify areas to be included in a future cleanup action, if required.

The scope of the SI did not include sampling from target areas/impact zones, fire lines, and backstops, as well as areas where shortfalls have accumulated. These excluded areas of firing ranges will be addressed under removal actions that will include separate confirmational sampling. Removal actions for excluded areas will be addressed in project planning documents separate from those developed for the SI reported herein.

1.3 PROJECT PLANNING DOCUMENTS

Implementation of the SI was governed by the following project planning documents:

- Work Plan for Soil Sampling in Firing Ranges and Demolition Areas 2 and 3
- Sampling and Analysis Plan Soil
- Quality Assurance Project Plan
- Site Safety and Health Plan
- Data Management Plan
- Waste Management and Minimization Plan

The SI was started after the project planning documents were approved by Ecology.

The Site Safety and Health Plan (SSHP) included specific procedures for avoidance of unexploded ordnance and escort of SI sampling crews in areas where UXO may be present. To meet requirements of the regulations at 29 CFR 1910.120d, the SSHP included the following site control measures for work zones where UXO may be present:

- A specific work area will be established and marked within each firing range sampling grid block. Work areas will extend for a distance of no less than 50 feet from the center grab sample location of each grid located using global positioning system (GPS) measurement of longitude and latitude. The grab sample location located 40 feet north, south, east, and west of the central location will be within the work area. The UXO Specialist will check for anomalies before sampling crews are allowed to enter a work area and will direct sampling crews away from possible anomalies.
- Paths between grid center locations will be marked after being traversed by the UXO Specialist. The centerline of each path will be marked and paths will extend for approximately 5 feet on each side of the centerline (i.e., total path width of approximately 10 feet).
- Movement into and out of small arms ranges will be done with escort by the UXO Specialist, or on marked paths. Movement within a range without escort by the UXO Specialist will be limited to the marked work areas and paths. There will be no movement outside marked work areas or paths, or without escort, even if such movement is the shortest distance to the intended location.
- At DA 2 and DA 3 the UXO Specialist will check for anomalies within and approximately 10 feet beyond the periphery of each demolition area before sampling crews are allowed to enter. The UXO Specialist will direct sampling crews away from possible anomalies.

1.4 **PROJECT TIMELINE**

The SI was implemented on the timeline summarized in Table 1-1.

	Task	Start	Duration	Completion
Number	Description	Date	(Weeks)	Date
1	Prepare Draft Work Plan	05 Dec 02	3	26 Dec 02
2	Regulatory Review	27 Dec 02	7	13 Feb 03
3	Finalize Work Plan	14 Feb 03	1	14 Feb 03
4	Start Soil Sampling	24 Feb 03	4	21 Mar 03
4.1	Laboratory Analyses	24 Feb 03	6	04 Apr 03
4.2	Results Evaluation	24 Feb 03	6	04 Apr 03
5.1	Draft SI Report	21 Mar 03	4	18 Apr 03
5.2	Army Review	28 Apr 03	3	16 May 03
5.3	Regulatory Review	19 May 03	6	27 Jun 03
5.4	Final SI Report	30 Jun 03	2	11 Jul 03

Table 1-1Project Milestones and Schedule

Tasks in the timeline are those included in Award Documents for Contract/Purchase Order GS-10F-0135M, Delivery Order No. DACA65-03-F-0002. Table 1-1 is taken from Table 8-1 in the approved Work Plan and includes anticipated dates for completion of tasks beyond the draft SI report.

1.5 SITE INVESTIGATION REPORT CONTENTS AND PRESENTATION

Results of the SI are presented in the following sections of this report:

- Section 2.0 presents information on the history and setting of Camp Bonneville.
- Section 3.0 describes the methods used to collect and manage samples during the SI. This section of the report includes a table summarizing sample locations that had to be modified because of the presence of immovable objects and standing or running water.
- Section 4.0 describes procedures for analyses of SI samples and for data management and summarizes quality control and quality assurance (QA/QC) procedures used during the SI. Section 4.0 presents tables with results of analyses of duplicate samples collected during implementation of the QA/QC procedures.
- Section 5.0 compares sampling results from the SI to MTCA and PRG benchmark values. This section of the report includes tables summarizing sample concentrations greater than the benchmark values, along with figures illustrating the locations of those samples with concentrations greater than the benchmark values.
- Appendix A presents tables with results from all samples collected during the SI (except duplicate samples, which are tabulated in Section 4.0).
- Appendix B presents figures illustrating results from all samples collected during the SI (except duplicate samples).
- Appendix C presents summary tables of sample locations, latitude and longitude coordinates of sampling grid centers, sample numbers, and corresponding photograph numbers. In the summary tables, sample numbers are hot-linked to the corresponding photograph. Appendix C is included in the report on Compact Disc in electronic format.
- Appendix D presents the sample photographs hot-linked from the summary tables in Appendix C. Appendix D is included in the report on Compact Disc in electronic format.
- Appendix E presents laboratory data reports for the SI samples. Appendix E is included in the report on Compact Disc in electronic format.
- Appendix F presents manifests for disposal of investigation derived waste (IDW).

Because of the large number of samples collected during the SI, and the corresponding large numbers of summary tables, photographs, and laboratory data reports, Appendices C, D, and E are in electronic format only.

SECTION 2.0 SITE HISTORY AND SETTING

2.1 HISTORY OF CAMP BONNEVILLE

Camp Bonneville comprises approximately 3,840 acres and is located in southwestern Washington, approximately 10 miles northeast of Vancouver, Washington (Figure 2-1). The Army used Camp Bonneville for live fire of small arms, assault weapons, artillery, and field and air defense artillery between 1910 and 1995. Since 1947, Camp Bonneville has also provided training for a variety of military and nonmilitary units from the National Guard, Reserves, U.S. Air Force, and federal, state, and local law enforcement agencies. In the early 1950s the Defense Department arranged to lease an additional 840 acres from the State of Washington Department of Natural Resources (DNR) to expand training possibilities of the post. The facility has been used for weekend and summer training by the U.S. Army Reserve units in southern Washington and northern Oregon and is currently a sub-installation of Fort Lewis.

In July of 1995, Camp Bonneville was selected for closure under the 1995 Base Realignment and Closure (BRAC) process. The majority of Camp Bonneville will be transferred to Clark County under a public benefit conveyance for education, law enforcement, and parks. The land currently leased from the Washington DNR will be returned to the State, or the lease will be renewed, or the property will be purchased and transferred to Clark County.

2.2 SITE SETTING

2.2.1 Regional Geology and Physiography

Camp Bonneville is situated on the margin of the western foothills of the southern Cascades in the transition zone between the Puget Trough and the Willamette Trough Provinces. The geology of this area generally consists of Eocene and Miocene volcanic and sedimentary rock types overlain by unconsolidated clays, silts, sands, and gravels of the Troutdale Formation (Phillips, 1987).

The area surrounding Camp Bonneville is sparsely populated with scattered residences and is used primarily for agriculture and livestock grazing. The nearest town is Proebstel, an unincorporated community about 2.5 miles to the southwest of the western entrance to the camp. The two cantonments, Camp Killpack and Camp Bonneville, are located on the valley floor. The remainder of Camp Bonneville consists of moderately steep, heavily vegetated slopes that have been used primarily as firing ranges. The valley floor is a relatively narrow floodplain, which ranges from an elevation of about 290 feet National Geodetic Vertical Datum (NGVD) on the western end of Camp Bonneville to about 360 feet NGVD on the east (Figure 2-2). The adjoining slopes rise moderately steeply to elevations between 1,000 and 1,500 feet NGVD along ridge tops within the property boundaries. The entire installation is heavily vegetated.

2.2.2 Surface Water Hydrology

The principal surface water feature in the vicinity of the investigation area is Lacamas Creek, which flows southward from the confluence of two branch streams in the north central part of Camp Bonneville, exiting the installation at its southwest corner. From the southwestern property boundary, Lacamas Creek flows southwestward to Proebstel, where it turns toward the southeast and continues to its confluence with the Columbia River at the town of Camas. Numerous minor tributaries that drain adjacent uplands flow into Lacamas Creek. Buck Creek and David Creek, the largest of these streams, drain the southeastern hills of Camp Bonneville.

Two artificial impoundments of Lacamas Creek, with a total surface area of less than 4,600 square feet, have been created to support a trout sports fishery. Recently, the impoundments have been drained.

2.2.3 Site Geology and Soils

Camp Bonneville is situated along the structural and physiographic boundary between the western flank of the southern Cascade Mountains and the Portland-Vancouver Basin. The geology of the Camp Bonneville vicinity is known primarily from geologic mapping by Mundorff (1964) and Phillips (1987), a limited number of well logs available from the general area, and a Multi-Sites Investigation conducted by Shannon & Wilson (1999a).

The geology at Camp Bonneville can be divided into three general areas that correspond approximately to topographic divisions. The area west of Lacamas Creek is composed of a series of predominantly gravel and semi-consolidated conglomerate layers with scattered lenses and stringers of sand (Upper Troutdale Formation).

Underlying the Troutdale Formation and comprising the area to the north and east of Lacamas Creek are predominantly basalt flows and flow breccia, with some pyroclastic and andesitic rocks that are folded and faulted. The bottomland along Lacamas Creek is composed of unconsolidated silt, sand, and gravel valley fill, with some clay. Because of the thick soil and dense vegetation, faults have not been identified within Camp Bonneville (Environmental Science and Engineering, Inc. [ESE], 1983).

The Camp Bonneville soils are mainly low-permeability clays, which result in considerable runoff after storms and occasional minor flooding of Lacamas Creek. Upland soils have mainly developed from basalt and are generally gravelly or stony and fairly shallow. Bottomland soils along Lacamas Creek tend to be clayey (Geo Recon International, 1981). Shannon & Wilson (1999a) described the four distinctive stratigraphic units that underlie Camp Bonneville:

- Quaternary floodplain and stream channel alluvium and lacustrine deposits, which mantle the Lacamas Creek valley floor (Qa).
- A Quaternary landslide deposit (Qls) of surface soils and bedrock displaced from the steep slope along David Creek.

- A thick sequence of Quaternary to Pliocene-age gravel, fine-grained sand, and cobbly and bouldery sand known as the Troutdale Formation (Pt), which underlies areas to the west of the Bonneville cantonment.
- Oligocene volcanic bedrock (Tv), which is exposed at the surface in the eastern part of Camp Bonneville.

Quaternary alluvium deposits constitute the shallow surface soils of the Lacamas Creek valley floor, which is composed of stream channel, floodplain, and alluvial fan sediments. These deposits are expected to consist of a thin layer of clay and silt, underlain by layers of sand/silt and clay. During drilling and excavation activities associated with the removal of an underground storage tank (UST) in Camp Killpack (Hart Crowser, 1996), at least 25 feet of silty clay was encountered and interpreted to be older alluvium. Borings from the Multi-Sites Investigation (Shannon & Wilson, 1999a) also encountered alluvial clays and silts overlying a relatively thick, silty clay deposit in the Camp Bonneville cantonment. These clayey soils probably originated as water-borne sediments that were deposited on the valley floor in Quaternary time as a result of catastrophic flooding along the Columbia River (Shannon & Wilson, 1999a).

The Troutdale Formation, which underlies the westernmost portion of the camp, ranges from a poorly consolidated sand and gravel to a well indurated conglomerate in its upper part. Based on regional boring logs, the Upper Troutdale Formation locally is about 150 feet thick and consists of cemented sand, gravel, sandy clay, and boulders. It is underlain by up to 150 feet of the Lower Troutdale Formation, which contains considerably more clay interspersed with sandy and gravelly layers. There is considerable variation in the lithology and thickness of the Troutdale Formation. In general, the formation thins eastward against the underlying bedrock, and the lower part of the formation reportedly is typically coarser-grained toward the east (Mundorff, 1964).

The bedrock that underlies the alluvial deposits and Troutdale Formation is exposed at the surface in the eastern part of Camp Bonneville. This bedrock consists of Oligocene-age andesite and basaltic andesite flows, minor flow breccias, tuffs, and volcaniclastic sandstones. According to the boring logs from the Multi-Sites Investigation (Shannon & Wilson, 1999a), the uppermost bedrock is severely weathered. This weathered bedrock tends to form surface soils that contain gravel of basalt lithology. During drilling for the Multi-Sites Investigation, bedrock was encountered in 10 soil borings at depths ranging from approximately 6 to 37 feet below ground surface (bgs).

2.2.4 Hydrogeology

Limited information is available about the hydrogeology of Camp Bonneville. Most prior work throughout the Clark County area has focused on the Troutdale Formation (as described in Mundorff, 1964). Camp Bonneville resides over the eastern edge of the Troutdale Formation where it is pinched out by the underlying bedrock. There are two drinking water wells at Camp Bonneville: a 385-foot-deep well at the Camp Bonneville cantonment and a 193-foot-deep well

at the Camp Killpack cantonment (ESE, 1993). The latter well is apparently different from the 516-foot-deep well at the Camp Killpack cantonment described by Mundorff (1964). In addition, a well was drilled at the Federal Bureau of Investigation (FBI) range during 1998, extending to a depth of 105 feet bgs (Shannon & Wilson, 1999b). Several groundwater monitoring wells associated with the sewage lagoon are located east of the Camp Bonneville cantonment and, to date, no groundwater samples have been collected from these wells. Based on regional information from Mundorff (1964) and the reported depths of the wells at the camp, water supply wells in the area generally extend into the Troutdale Formation or underlying bedrock. Most of the nearby wells apparently obtain groundwater from depths of 150 to as much as 500 feet bgs.

The water table is typically within a few feet of the surface in areas underlain by alluvium and appears to fluctuate seasonally by several feet. A rising water table occurs in the early fall through spring during the rainy season, and a declining water table occurs throughout the summer. The localized groundwater flow generally follows local topography toward tributaries and creeks.

Generally, groundwater flows southwest from the uplands and somewhat parallel to Lacamas Creek. The elevation of the water table in the alluvial valley areas of Camp Bonneville is expected to be fairly shallow (in the range of 5–20 feet bgs) based on the presence of shallow bedrock, multiple creeks, tributaries, and boggy areas.

Monitoring wells were installed as part of the investigation of Landfill 4, an upland area of Camp Bonneville (Shannon & Wilson, 1999b). The depths to water in these wells ranged from 10.4 feet bgs to 18.8 feet bgs. The limited groundwater elevation data suggested a groundwater flow direction toward the creek, which is consistent with the surface topography.

SECTION 3.0 SITE INVESTIGATION METHODS

3.1 SAMPLE LOCATIONS

3.1.1 Small Arms Ranges

Soil samples were collected from the small arms ranges at the locations indicated by latitude and longitude coordinates in Appendix A of the approved Sampling and Analysis Plan – Soil (SAP). Latitude and longitude were determined using a Garmin® GPS V Personal Navigator™ satellite-based global positioning system (GPS). In areas without excessive tree cover where adequate satellite reception could be achieved, this GPS unit was capable of identifying locations within the precision/detection limit of 23 to 34 feet given in Table 3-2 of the SAP. The precision/detection limit of the GPS unit was checked before the start of each day's fieldwork by measuring latitude and longitude at a U.S. Geological Survey (USGS) benchmark with known latitude and longitude. The USGS benchmark used for daily checks of the GPS precision/detection limit is designated RD2935, Airport (the airport is Evergreen Field in Vancouver), in Clark County, Washington, on the 1990 Mount Tabor USGS quadrangle map. Each daily measurement was within the precision/detection limit for the SI.

After specific locations were determined using GPS, the center point of each grid was marked using a metal "pin flag." The field team determined sample locations by measuring the distance from the pin flag. The center pin flag was left in place; however, these are considered temporary markers.

Locations of the small arms ranges at Camp Bonneville are shown on Figure 3-1. Soil samples were collected from firing ranges within 307 half-acre grids. The number of half-acre grids at each range is summarized in Table 3-1.

Small Arms Range	Number of
Designation	Sampling Grids
Close Combat Range	24
25 Meter M60 Range/Pistol Range	4
Sub Machine Gun Range	7
TF Range	8
Rifle Ranges 1 & 2	32
Field Fire Rifle Ranges 1 & 2	22
Infiltration Course North	4
Field Firing Ranges 1 & 2 and Pistol Range	14
Undocumented Pistol Range	1
1,000 Foot Range, 1,000 Foot Machine Gun and Moving	30
Target Range	50
Combat Pistol Range	17
Machine Gun Range – South	26
Machine Gun Range – North	33
M31 Sub-Caliber Ranges 1 & 2	25
25 Meter and Machine Gun Range	13
Infiltration Course South	7
25M Record Fire Field Range, Field Firing Range	40
Total Half-Acre Sampling Grids	307

Table 3-1 Small Arms Range Sampling Grids

Five (5) soil samples were collected from each grid: one (1) from the center of the grid, identified by latitude and longitude coordinates measured using the GPS unit described in the preceding section of this report, and one (1) each from locations approximately 40 feet north (magnetic), south, east, and west of the grid center. The array of five grab samples within each grid had approximate dimensions of 80 feet by 80 feet, covering an area of approximately 6,400 square feet (approximately 29 percent of the total area of a one-half-acre grid).

Characterization of each half-acre plot in the firing ranges using five grab samples taken from the top 0–6 inches of soil is consistent with the EPA sampling plan developed for residential areas of lead-contaminated sites in northern Idaho. This sampling scheme also provides data for statistical representation. It is necessary to take10 samples from any target area in order to calculate a 95 percent UCL. With five samples from each half-acre plot, there will be 10 samples per acre, sufficient for calculation of the 95 percent UCL on a per acre basis.

Every effort was made to locate grid centers and outlier sample locations as described in the preceding paragraph. However, some of the grid centers and outlier locations were obstructed by dense vegetation, immovable objects such as trees and boulders, and moving or standing water. Where locations of grid centers had to be modified, the latitude and longitude of the modified location was measured with the GPS unit. Where locations of outlier samples had to be modified, the compass direction and distance from the planned location was noted. A

summary of modified sample locations is presented in Table 3-2. Latitude and longitude coordinates for modified grid locations are included in the summary tables of sample locations presented in Appendix C of this report and are illustrated in the figures in Appendix B and Section 5.0.

Range	e Grid		Location Modification		
Designation	No.	Sample	Distance ¹	Reason	
TF Range	028	East	10 ft. North	Location in stream	
Ū.		South	40 ft. West	Location in stream	
	036	East	40 ft. North	Location in stream	
		West	5 ft. North	Move location from gravel road	
	037	South	40 ft. South	Location in stream	
	038	West	40 ft. North	Location in stream	
	043	South	15 ft. North	Location in stream	
	045	West	15 ft. North	Location in standing water	
Rifle Ranges 1 & 2	048	Center ²	10 ft. North	Location in roadway	
	051	South	5 ft. East	Location in stream	
	054	Center	25 ft. North	Location in standing water	
		South	30 ft. East	Location in standing water	
	055	North	10 ft. North	Location in dense vegetation	
	056	Center	10 ft. West	Location in stream	
		North	10 ft. North	Location in stream	
	057	South	15 ft. West	Move location from gravel road	
	058	East	15 ft. South	Moved away from metal	
				benches	
	061	West	35 ft. West	Location in stream	
	067	South	15 ft. East	Move location from gravel road	
	068	North	15 ft. North	Location in stream	
	070	Center	120 ft. Southwest	Location in standing water	
		North	15 ft. South	Location in standing water	
	075	Center	195 ft. Southeast	Location in standing water	
Field Fire Rifle Ranges	078	North	10 ft. West	Location in stream	
1&2	078	East	10 ft. South	Location in stream	
	093	Center	115 ft. Southwest	Location in standing water	
	093	North	6 ft. South	Location in standing water	
		South	9 ft. North	Location in standing water	
	095	Center	10 ft. North	Location in stream	
	096	Center	80 ft. North	Location in standing water	
		Center	130 ft. Northeast	Location in standing water	
	097	North	20 ft. South	Location in standing water	
		South	12 ft. North	Location in standing water	
Field Firing Ranges 1 & 2 and Pistol Range	104	Center	390 ft. Northwest	Location in standing water	
	105	North	10 ft. East	Location in standing water	
	105	West	20 ft. West	Location in standing water	

Table 3-2Modified Sample Locations

Range	Grid		Location Modification		
Designation	No.	Sample	Distance ¹	Reason	
Field Firing Ranges 1 & 2 and Pistol Range	109	Center	440 ft. Southeast	Location in standing water	
(continued)	110	South	20 ft. North	Location in standing water	
	113	East	10 ft. east	Location in standing water	
1,000 Foot Range, 1,000 Foot Machine Gun and Moving Target Range	119	West	10 ft. east	Location beneath concrete pavement	
Combat Pistol Range	148	North	10 ft. West	Location in stream	
_	140	East	10 ft. West	Location beneath fallen tree	
Machine Gun Range –	170	South	10 ft. South	Location in standing water	
South	170	West	15 ft. North	Location in standing water	
	174	North	10 ft. South	Location in dense vegetation	
	174	East	10 ft. west	Location in dense vegetation	
	177	South	30 ft. North	Location in standing water	
	182	South	5 ft. South	Location in standing water	
	102	East	10 ft. East	Location in standing water	
Machine Gun Range – North	205	South	27 ft. West	Location in stream	
M31 Sub-Caliber	232	West	5 ft. East	Location in stream	
Ranges 1 & 2	000	North	15 ft. South	Location in stream	
-	233	West	17 ft. East	Location in stream	
	236	West	28 ft. East	Location in stream	
	237	South	10 ft. East	Location in stream	
25 Meter and Machine Gun Range	253	North	8 ft. West	Move location from range shelter	
Infiltration Course South	660	MBZ ³	10 ft. East	Location in standing water	
25M Record Fire Field	271	North	5 ft. West	Location beneath boulders	
Range, Field Firing	272	North	5 ft. South	Location beneath boulders	
Range	290	West	10 ft. North	Location in standing water	

<u>Notes</u>

1 Approximate distance and direction (based on magnetic north) from intended sample location (i.e., grid center, or approximately 40 ft. north, south, east, or west of the grid center).

2 Modified grid centers are indicated on figures in Section 5.0 and Appendix B. Outlier sample locations are measured north (magnetic), south, east, and west of the modified grid center.

3 Sample from muzzle blast zone.

At ranges where the firing line could be located, samples were collected along the muzzle blast zones at intervals of approximately 30 feet, per the agreed upon conceptual site model. Muzzle blast zone samples were collected at the ranges summarized in Table 3-3.

Small Arms Range Designation	Number of Muzzle Blast Zone Samples
25 Meter M60 Range/Pistol Range	6
TF Range	2
Rifle Ranges 1 & 2	7
Field Fire Rifle Ranges 1 & 2	2
Infiltration Course North	2
Field Firing Ranges 1 & 2 and Pistol Range	6
Undocumented Pistol Range	5
Combat Pistol Range	6
M31 Sub-Caliber Ranges 1 & 2	6
25 Meter and Machine Gun Range	10
Infiltration Course South	14
25M Record Fire Field Range, Field Firing Range	2
Total Muzzle Blast Zone Samples	68

Table 3-3 Modified Sample Locations

3.1.2 Background Locations

Soil samples were collected from 20 background locations using the following criteria:

- Within the Camp Bonneville site boundary.
- Within similar geology/geomorphology as range grid samples.
- Not within small arms range as shown in Work Plan or Sampling and Analysis Plan

 Soil.
- Not within small arms range fan as shown on Plate 30 of July 1997 *Final Archives Search Report Report Plates.*
- Not downslope of range or fan; locate upslope of range or fan if possible.
- Not downrange of firing line. If the firing line is not indicated in the SAP, assume that the firing line was at the low-elevation end of the range and that the direction of fire was toward higher ground surface elevations.
- Not in demolition area.
- Not in artillery impact area (for UXO safety reasons).

Specific locations of background samples are illustrated in Figure 3-1 and summarized in Table 3-4.

Мар	Location
Designation	Description
1	Up slope from Close Combat Course
2	Up slope from 25 Meter M60/Pistol range
3	Side slope from Close Combat Course
4	Side slope of TF record Fire and behind firing line
5	Side slope from Rifle Range and behind firing line
6	Flat area on east side of creek in vicinity of Rifle Range, Infiltration Course, Field Firing Range, and Undocumented Pistol range
7	Same as S506YMMDDC on west side of creek
8	Flat area on south side of creek behind firing line of 1000 Foot Range, 1000 Foot Machine Gun and Moving Target Range
9	Side slope from 1000 Foot Range, 1000 Foot Machine Gun and Moving Target Range
10	Side slope from Combat Pistol Range
11	Side slope from Machine Gun Range and Combat Pistol Range
12	Side slope of Machine Gun Range, side slope from and behind firing line of Sub-caliber Artillery
13	Side slope from 25M Range, Machine Gun Range and up slope from Sub-caliber Artillery
14	Side slope from Infiltration Course, Machine Gun Range
15	Up slope from Machine Gun Range
16	Up slope from Machine Gun Range
17	Up slope from Machine Gun Range
18	Side slope from Sub-Machine Gun range
19	Side slope from Sub-Machine Gun range
20	Flat area on south side of creek behind firing line of 25M Range, Record Firing Range, Field Firing Range

Table 3-4Background Sample Locations

Latitude and longitude coordinates of the background samples are included in the summary tables of sample locations presented in Appendix C of this report.

3.1.3 Demolition Areas

DA 2 occupies approximately 1 to 1.5 acres. Unlike DA 3, it is not characterized by an identifiable depression or crater. For these reasons, the sampling scheme for DA 2 is different from the scheme for DA 3.

At DA 2, three (3) samples were collected, or were attempted, from locations in the approximate center of DA 2, and from four locations at distances of approximately 100 feet

north (magnetic), south, east, and west from the center point. Samples at each location were collected using decontaminated stainless steel hand augers, or were attempted, from successively deeper intervals: from the top 0–6 inches of soil and from depths of approximately 2.5 feet and 5 feet bgs (or at shallower depth if hand digging ceased to be productive). Locations were adjusted to remain within the apparent area of DA 2. Locations of the DA 2 samples are shown on Figure B-30 in Appendix B.

At the center, north, and west locations, rock and/or groundwater was encountered at depths not much below the sample interval of 2.5 feet. Therefore, samples deeper than 2.5 feet were not collected at these locations. At the east location, the deepest sample was collected at a depth of approximately 4 feet bgs; deeper samples could not be collected because of the presence of groundwater below a depth of 4 feet bgs. A sample was collected from a depth of approximately 5 feet bgs at the south location.

A berm is located at DA 2 adjacent to the road on the south side of the area. The berm is approximately 45 feet long and four feet high and has an arcuate shape that is concave toward the road. Three soil samples were collected from the berm: one from the center of the berm, one from a location approximately 15 feet northeast and upslope of the berm center, and one from a location approximately 15 feet southwest and downslope of the berm center. Each sample was collected from a depth of approximately 2 feet at the midpoint of the berm height.

Samples were collected at four compass locations on the depression/crater berm at DA 3. The samples were collected using decontaminated stainless steel hand augers from successively deeper intervals: from the top 0–6 inches of soil and from approximately 2.5 feet bgs. The presence of standing water in the depression/crater precluded collection of soil samples from the center of the depression/crater. Therefore, a sample of water standing in the depression/crater was collected in lieu of collecting soil samples.

3.2 SAMPLE COLLECTION METHODS

Soil samples were collected in accordance with procedures in the approved SAP:

- If sample is the center grab sample, record the location using a satellite-based GPS unit. Otherwise, record the magnetic heading and distance from the center grab sample.
- Prepare location ID label, and photograph the undisturbed sample location with ID label in view.
- Put on a new pair of sampling gloves.
- Remove surface vegetation and debris, using care to minimize mixing of the soil.
- Place a new sheet of foil on the ground (or on portable table).
- Using a disposable plastic scoop, remove approximately 500 grams of soil from the top 0 to 6 inches. If this site is designated for field QC, increase the amount of soil collected.

- Place the soil on the top of the foil, and remove large objects.
- Continue adding soil until the required volume of soil has been collected.
- Fill sample containers from the location.
- Decontaminate all sampling equipment that is non-disposable, and place the foil, wooden spatula, kim wipes, sample gloves, and plastic scoop into a waste container.
- Place removed vegetation back into hole.

A permanent record for each sample was documented on personal digital assistants (PDAs) in the format of the summary tables in Appendix C of this report. The contents of the summary tables in Appendix C are the records made during sample collection. Samples were packed for daily shipment to the laboratory in accordance with procedures in Appendix B of the SAP. Samples were packed on ice in rigid coolers and picked up at the site for delivery to the laboratory. Ice was kept on the samples in the coolers until the time they were picked up, which was usually within 24 hours of sample collection.

Samples from muzzle blast zones at the small arms ranges were collected using stainless steel scoops, and samples from the demolition areas were collected using stainless steel scoops and hand augers. This non-disposable equipment was decontaminated using procedures in the SAP:

- Physically remove visible contaminants from sampling equipment by first scraping with a disposable wooden spatula, then rinsing with clean potable water.
- If visible contaminants still remain, remove with a scrub brush, then rinse with clean potable water.
- Wash equipment with non-phosphate detergent solution such as Alconox©.
- Rinse with deionized, contaminant-free water.
- Collect all liquids generated in decontamination.

3.3 SAMPLE AND PHOTOGRAPH NUMBERS

Unique sample identification numbers were assigned in accordance with procedures in the SAP:

- One space: The sampling matrix was "S" for soil
- Three spaces: The sample grid number. Sample grid numbers were assigned as follows:
 - o Small arms range grids: 001 to 307
 - o Duplicate samples: 308 to 499
 - o Background samples: 501 to 520

- o Muzzle blast zone samples: 600s
- Demolition Area 2: 700s
- o Demolition Area 3: 800s
- Five spaces: The sample date information recorded as "YMMDD"
- One space: The letter designating the location of the sample within a grid:
 - o C − Center
 - o N − North
 - o S South
 - o E East
 - \circ W West

The photograph of each sampling location was uniquely identified in accordance with procedures in the SAP:

- Six spaces: The photograph date information recorded as "MMDDYY"
- Four spaces: Time in military format
- Four spaces: Photograph number starting at P001 and extending to Q999

The unique sample numbers and corresponding photograph numbers are listed in the summary tables of sample locations presented in Appendix C of this report.

3.4 SAMPLE ANALYSES

Each small arms range grid soil sample was screened to remove clasts larger than 2 mm and each sample was analyzed for lead using EPA Method 7420. Results of the analyses are presented on a dry-weight basis. At 10 locations randomly selected from the range grids, soil samples were analyzed for the nine Priority Pollutant metals. Samples collected from background locations were analyzed for lead using EPA Method 7420 and samples from two randomly selected background locations were analyzed for Priority Pollutant metals. Samples collected in muzzle blast zones at the small arms ranges were analyzed using a modified EPA Method 8330 for explosive residues, including picric acid and PETN. Samples collected at DA 2 and DA 3 were analyzed for explosive residues, including picric acid and PETN, perchlorate, and Priority Pollutant metals. Additional details on sample analyses are given in Section 4.0 of this report.

3.5 INVESTIGATION-DERIVED WASTE

Investigation-derived waste (IDW) generated during implementation of the SI included disposable personal protective gear, disposable sampling equipment (i.e., plastic scoops), foil used in the sampling procedure, and liquids generated during decontamination of nondisposable sampling equipment (i.e., stainless steel scoops and hand augers). Solid and liquid

IDW (plastic scoops/foil, decontamination liquids, respectively) were placed into separate sealed steel drums. IDW was properly transported to an approved treatment, storage, and disposal facility for disposal. Manifests for disposal of IDW are in Appendix F of this report.

SECTION 4.0 QUALITY ASSURANCE/QUALITY CONTROL

4.1 DATA MANAGEMENT

An Access® database was set up in Atlanta, Georgia, that contained a framework for all the samples to be collected during the field investigation. An Excel® workbook was also prepared that contained the same information as in the database and was organized according to the ranges and grids. The Excel spreadsheet was transferred to a PDA that was used in the field. The sample date and time were entered into the PDA for each sample collected.

Each day during the field investigation, the workbook was transferred back to Atlanta, with each workbook maintained as a separate file in order to document the daily receipt of field data. The project manager and system administrator verified the field data as to sample ID format and dates. The workbook data were then transferred to the Access database on a daily basis. The field data were again verified for consistency and format as they were transferred to the Access database.

The photo number, date, and time were also entered into the Excel workbook. In addition, the photograph files were also transmitted back to the Atlanta office. Each photograph was viewed in order to verify the sample location, and the photo ID was created. The photograph files were renamed with the photo ID.

The laboratory data were received in both electronic format (COELT 1.2a) and hard copy. The received electronic files are maintained separately to provide a log of the incorporated data files. No manual laboratory data entry into the database was performed. As the laboratory data were received in electronic format, the sample IDs were verified, and discrepancies were noted between the field data, COCs, and the laboratory recording of the sample ID from the chain-of-custody. All discrepancies were corrected by a review of the COC, laboratory receipt form, and field workbook.

A summation of the laboratory data was prepared as the data were received and communicated to the U.S. Army. After all data were received, the data were transferred electronically to Excel spreadsheets for summation. In addition, the data were electronically transferred to figures for data presentation. These Excel spreadsheets and figures were then verified against the laboratory data hard copy. No data discrepancies were found.

4.2 DATA REVIEW

The Data Quality Objectives (DQOs) for the Camp Bonneville sampling effort were specified in Table 8-1 of the QAPP. The applicable analyses and their DQOs are excerpted and presented as follows:

Measurement	EPA Method	Precision (RPD)	Accuracy (% REC)	Surrogate Recovery (%)	Completeness (%)
Metals (total)	6010B	+/-40	80–120	NA	95
Perchlorate	314	+/-20	NA	NA	95
Explosives	8330 Modified	+/-25	75–140 (tetryl 40– 150)	60–130	95
Lead (Soil)	7420	+/-50	80–120	NA	90

Notes:

* = based on laboratory control sample

NA = not performed for this method

RPD = relative percent deviation

The measurement and achievement of the DQOs and other analytical QC issues are discussed below.

4.2.1 Precision

Precision is measured by the performance of laboratory duplicates and field duplicates. A summary of the laboratory duplicates is presented in Table 4-1. This table displays the number of detected duplicates, the number criteria for exceedances and the average RPD for each analyte. The only average exceedance of the precision criteria was for arsenic. There were only two detections in the laboratory duplicates, indicating that the precision may be poor at the lower limit of the detection range.

The field duplicate data are presented in Table 4-2. The average RPD is 25 percent over a total of 151 duplicates, which is 10 percent of the EPA Method 7420 analyses. The number of duplicates exceeding the RPD limit of 50 percent was 16. This indicates a reasonable degree of precision given the heterogeneous nature of the soil samples.

4.2.2 Accuracy

Two sets of spikes were analyzed for this project. One consisted of soil laboratory blank spikes for the lead analyses. These are especially prepared soil blanks, which have been verified as to their lead content. The number of blank spikes for the Method 7420 analyses was 276 and there were no exceedances of the laboratory control limits. There were 128 analyses of the blank spikes for lead by Method 6010B and there were two exceedances at a percent recovery of 124 percent with an upper control limit for these spikes of 123 percent.

The other spike samples that were analyzed were soil matrix spike samples. There were 69 spiked samples analyzed by Method 7420 and there were no exceedances of the control limits. There were 5 spiked samples analyzed by Method 6010B and there were no

exceedances. There were 8 spiked samples analyzed for Method 8330 (modified) and there were no exceedances.

Therefore the project DQO for accuracy were met.

4.2.3 Surrogate Recovery

A surrogate, 3-chloronitrobenzene, was included in all of the Method 8330 (modified) analyses. The surrogate percent recovery for all analyses was within the control limits.

Therefore, the DQO for surrogate recovery was met.

4.2.4 Completeness

The planned analyses for all collected samples, including the Method 7420, 6010B, 8330 (modified), and perchlorate analyses, were completed satisfactorily. There were no rejected results. Only one planned sample was missed and that was a duplicate sample. However, the 10 percent rate for duplicate samples was still met.

Therefore, the completeness rate for each method of analyses was 100 percent, which exceeds the project DQO.

4.2.5 Detection Limits

The Camp Bonneville QAPP presents two sets of reporting limits. They are the Project Reporting Limit and the Quantitation Limit. The Project Reporting Limit is equivalent to the Estimated Quantitation Limit as described in Chapter 1 of the SW-846 Procedures Manual. It is the lowest concentration that can be reliably achieved during routine laboratory conditions. It is generally 5 to 10 times the SW-846 Method Detection Limit. The individual sample quantitation/ detection limit is the Project Reporting Limit adjusted for percent moisture and sample weight.

The Quantitation Limit as described in the QAPP is equivalent to the SW-846 Method Detection Limit. The Method Detection Limit is defined as the minimum concentration that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. Each laboratory will determine the Method Detection Limit for each analyte on a matrix-specific basis.

The analytical reports used a different nomenclature for the reporting limits and the detection limits. The following table presents the three terms in perspective.

QAPP Name	SW-846 Name	Laboratory Name	Description
Project Detection Limit	Estimated Quantitation Limit	Method Reporting Limit	The lowest concentration that can be reasonably achieved for all samples for the project.
Quantitation Limit	Method Detection Limit	Method Quantitation Limit	The minimum concentration that can be detected under good conditions.

The project detection limits or method reporting limits vary from sample to sample for the soil samples as noted above. This is because the soil sample results are expressed on a dry weight basis. In addition, the weight of the soil samples prepared for extraction can also vary. Because the soil samples had high moisture content, the laboratory weighed out approximately 25 percent more of the sample for the grid lead sample analyses to compensate for weight content of solids. The average percent solids for the samples collected from all areas was 67 percent with a minimum value of 21 percent and a maximum value of 92 percent. For example, if a sample had a percent solids of 21 percent, a lead concentration of 5 mg/kg expressed as wet weight would be 23 mg/kg (concentration/percent solids).

All calculated Method Reporting Limits were less than the respective benchmarks. All data were reported as compared to the respective Method Reporting Limits. An analyte was not considered detected in the data summary tables unless the concentration was greater than the Method Reporting Limit. Values between the Method Reporting Limits and the Method Quantitation Limits are reported as being qualified with a "J" (as estimated) in the laboratory data sheets.

4.2.6 Blanks

Method blanks were analyzed for each laboratory batch. The detections and the blank concentrations in the blank samples are found in Table 4-3. The blank concentrations did not exceed the method reporting limit for any analyte. A "B" flag was placed in the LNOTE field of the database for the samples potentially affected by the blanks.

4.3 QC SUMMARY

All DQOs for the project were met and no data were rejected because of a QC deviation. The data were maintained according to the procedures presented in the project Data Management Plan.

SECTION 5.0 COMPARISONS TO BENCHMARK VALUES

5.1 BENCHMARK VALUES

Laboratory results for the SI samples were compared to the Ecology MTCA and U.S. EPA Region 9 PRG benchmark values summarized in Table 5-1.

		Ecology MTCA		EPA Regi	ion 9 PRG
-	Unrestricted	Industrial	Ecological	Residential	Industrial
Constituent	Land Uses ¹	Properties ²	Indicator ⁸	Soil	Soil
		Inorganic Co	onstituents		
Antimony	NV^3	NV	NV	31	820
Arsenic	20	20	132 ⁹	22 ⁵	440 ⁵
Barium	NV	NV	102	5,400	100,000
Cadmium	2	2	14	37	810
Chromium⁴	2,000	2,000	67 ¹⁰	100,000	100,000
Copper	NV	NV	217	2,900	76,400
Lead	250	1,000	118	400	750
Nickel	NV	NV	980	1,600 ⁶	41,000 ⁶
Zinc	NV	NV	360	23,000	100,000
		Organic Cor	nstituents ⁷		
HNX	NV	NV	NV	3,100	44,000
RDX	NV	NV	NV	4.4	22
1,3,5-TNB	NV	NV	NV	1,800	26,000
1,3-DNB	NV	NV	NV	6.1	88
Tetryl	NV	NV	NV	610	8,800
NB	NV	NV	NV	20	110
2,4,6-TNT	NV	NV	NV	16	82
4-Am-DNT	NV	NV	NV	NV	NV
2-Am-DNT	NV	NV	NV	NV	NV
2,4-DNT	NV	NV	NV	120	1,800
2,6-DNT	NV	NV	NV	61	880
2-NT	NV	NV	NV	370	1,000
3-NT	NV	NV	NV	370	1,000
4-NT	NV	NV	NV	370	1,000
Picric Acid	NV	NV	NV	NV	NV
PETN	NV	NV	NV	NV	NV
Perchlorate	NV	NV	NV	39	1,000

Table 5-1 MTCA and PRG Benchmark Values (mg/kg)

<u>Notes</u>

- 1 From Table 740-1, Method A Soil Cleanup Levels for Unrestricted Land Uses
- 2 From Table 745-1, Method A Soil Cleanup Levels for Industrial Properties
- 3 No benchmark value available
- 4 Chromium (III)
- 5 Benchmark value for non-cancer endpoint
- 6 Soluble salts

- 7 U.S. EPA Method 8330 compound list, modified to include picric acid and PETN, and perchlorate
- 8 From Table 749-3, Ecological Indicator Soil Concentrations for Wildlife for Future Industrial/
- Commercial Use
- 9 Arsenic (V)
- 10 Total chromium

Tables with results from all samples collected during the SI (except duplicate samples) are presented in Appendix A of this report, and figures illustrating results from all samples collected during the SI (except duplicate samples) are presented in Appendix B.

5.2 LEAD AT SMALL ARMS RANGES

Concentrations of lead were larger than at least one of the benchmark values (BMV) at 12 of the 17 small arms ranges sampled during the SI. The numbers of samples at each range with lead concentrations greater than a benchmark value are summarized in Table 5-2.

Small Arms Range		Lead San	nples
Designation	Total	> BMV	% > BMV
Close Combat Range	120	0	0%
25 Meter M60 Range/Pistol Range	20	2	10.0%
Sub Machine Gun Range	35	0	0%
TF Range	40	0	0%
Rifle Ranges 1 & 2	160	18	11.3%
Field Fire Rifle Ranges 1 & 2	110	2	1.8%
Infiltration Course North	20	0	0%
Field Firing Ranges 1 & 2 and Pistol Range	70	8	11.4%
Undocumented Pistol Range	5	1	20.0%
1,000 Foot Range, 1,000 Foot Machine Gun	150	23	15.3%
and Moving Target Range			
Combat Pistol Range	85	2	2.4%
Machine Gun Range – South	130	2	1.5%
Machine Gun Range – North	165	1	0.6%
M31 Sub-Caliber Ranges 1 & 2	125	0	0%
25 Meter and Machine Gun Range	65	11	16.9%
Infiltration Course South	35	1	2.9%
25M Record Fire Field Range, Field Firing	200	6	3.0%
Range	200		
Totals	1,535	77	5.0%

Table 5-2 Lead Concentrations Greater Than Benchmark Values

Arrays of samples with lead concentrations greater than benchmark values at each small arms range are presented in Tables 5-2 to 5-14. Locations of samples with lead concentrations greater than benchmark values are illustrated in Figures 5-1 to 5-11.

Only five percent of the total samples had lead concentrations greater than any benchmark value, and 11 of the 17 ranges had either no samples with lead concentrations greater than a benchmark value, or fewer than five percent of the samples with lead concentrations greater than a benchmark value.

Of the 77 samples with lead concentrations greater than any benchmark value, 38 were greater than only the lowest value, the MTCA ecological indicator of 118 mg/kg. In another 9 samples lead concentrations were also greater than the MTCA value for unrestricted land uses (250 mg/kg), in another 9 samples concentrations were greater than the PRG value for residential soil (400 mg/kg), in another 3 samples concentrations were greater than the PRG value for value for industrial soil (750 mg/kg), and in another 18 samples lead concentrations were also greater than the MTCA value for industrial properties (1,000 mg/kg).

Samples with lead concentrations greater than 1,000 mg/kg were collected from the following ranges:

Rifle Ranges 1 & 2	5 samples
 Field Fire Rifle Ranges 1 & 2 	1 sample
 Field Firing Ranges 1 & 2/Pistol Range 	1 sample
• 1,000-Foot/Machine Gun/Moving Target Range	6 samples
 25-Meter and Machine Gun Range 	4 samples
 25M Record Fire/Field Firing Range 	1 sample

Most of the samples from Rifle Ranges 1 & 2, the 1,000-Foot/Machine Gun/Moving Target Range, and the 25-Meter and Machine Gun Range were clustered in specific sampling grids. At Rifle Ranges 1 & 2, four of the five samples were collected from grid 073 (sample point RIFLE_RANGE-30 in the SAP) located at the eastern end of the range. The fifth sample was collected from grid 074 (RIFLE_RANGE-31) adjacent to grid 073.

Three of the six samples from the 1,000-Foot/Machine Gun/Moving Target Range were collected from grid 119 (1000FT-4) in the southern portion of the range. The grids adjacent to the eastern, western, and southern sides of grid 119, and the grid at the southwestern corner of grid 119 (there was no sampling grid at the southeastern corner of grid 119) yielded no samples with lead concentrations greater than any benchmark value. One sample from grid 123 (1000FT-8), adjacent to the northern side of grid 119, contained lead at a concentration greater than 1,000 mg/kg. Two samples with lead concentrations greater than 1,000 mg/kg were collected from grid 143 (1000FT-28) at the range berm.

Three of the four samples from the 25-Meter and Machine Gun Range were collected from grid 254 (25M_MG-8) located on the eastern side of the berm. The fourth sample was collected from grid 251 (25M_MG-5), also on the berm and adjacent to the southern side of grid 254. Of the 20 samples collected from the four grids located within the drop zone east of the berm, only two samples contained lead at a concentration greater than a benchmark value (120 mg/kg and 708 mg/kg), and no soil samples contained lead at a concentration greater than 1,000 mg/kg.

5.3 BACKGROUND CONCENTRATIONS OF LEAD

Concentrations of lead in samples from background locations ranged from 9.7 mg/kg to 80.8 mg/kg. The average concentration of the 20 background samples was 24.3 mg/kg (calculated using one half the detection limit of 10.2 mg/kg, or 5.1 mg/kg, for background sample number S50130224C). The highest lead concentration detected in a background sample is less than the lowest MTCA or PRG benchmark value (i.e., 118 mg/kg).

5.4 EXPLOSIVE RESIDUES

The explosive residue 2,4-dinitrotoluene (2,4-DNT) was detected in samples collected from the muzzle blast zone at the 25-Meter and Machine Gun Range. Concentrations of 2,4-DNT in the samples ranged from 4.9 mg/kg to 20 mg/kg, much less than the PRG benchmark values of 120 mg/kg for residential soil and 1,800 mg/kg for industrial soil.

Concentrations of explosive residues in all other samples collected from the muzzle blast zones at the small arms ranges were below method reporting limits, and therefore none of the muzzle blast zone samples had concentrations of explosive residues greater than benchmark values. None of the samples collected from DA 2 and DA 3 had detectable concentrations of explosive residues or perchlorate, and therefore none of these samples had concentrations of explosive residues or perchlorate greater than PRG benchmark values.

5.5 PRIORITY POLLUTANT METALS

Surface soil samples for analyses of nine Priority Pollutant metals analyzed by EPA Method 6010 (antimony, arsenic, barium, cadmium, chromium, copper, lead, nickel, and zinc) were collected from 10 locations randomly selected from the range grids, from two randomly selected background locations, and from DA 2 and DA 3.

Neither antimony nor cadmium was detected in any of the surface soil samples. Chromium, copper, lead, nickel, and zinc were detected in samples (including those from background locations), but at concentrations less than the lowest benchmark value. The only metals detected at concentrations greater than a benchmark value were arsenic and barium.

Concentrations of arsenic greater than a benchmark value were detected in one surface soil sample from Rifle Ranges 1 & 2, and in one surface soil sample from DA 2. Arsenic concentrations were greater than a benchmark value in four soil samples collected from depths of approximately 2.5 ft. to 5 ft. at DA 2, and in one sample from the DA 2 berm. The exceeded benchmark values were the MTCA values for unrestricted land use and industrial property (20 mg/kg) and the PRG value for residential soil (22 mg/kg). Arrays of samples with arsenic concentrations greater than benchmark values are presented in Table 5-15.

Concentrations of barium were greater than a benchmark value in each of the surface soil samples collected from the range grid, and in each of the soil samples collected at DA 2 and DA 3. Concentrations of barium in surface soil samples from background locations were 92.4 mg/kg and 156.0 mg/kg, the latter of which is greater than the MTCA ecological indicator of 102 mg/kg. Samples with barium concentrations greater than benchmark values are presented in

Table 5-16. A sample is included on the table only if the barium concentration was also greater than the average concentration of 124.2 mg/kg for the two background samples.

SECTION 6.0 REFERENCES

- Environmental Science and Engineering, Inc. 1983. Installation Assessment of the HQ, I Corps and Ft. Lewis, Washington and the Sub Installation Yakima Firing Center, Camp Bonneville, and Vancouver Barracks.
- Geo Recon International. 1981. Cultural Resources Survey, Forest Management Project, Ft. Lewis and Camp Bonneville, Washington, for U.S. Army, Ft. Lewis.
- Hart Crowser. 1996. Petroleum Contaminated Soil Investigation, Former Tank No. 7-CMBPN, Building No. 4475, Camp Bonneville Washington. Contract No. DACA 67-93-D-1004. September 1996.
- Mundorff, MR. 1964. *Geology and Groundwater Conditions of Clark County, Washington, with a Description of Major Alluvial Aquifer Supply along the Columbia River.* U.S. Geological Survey Water Supply Paper 1600, 268 p.
- Phillips, WIMP. 1987. Geologic Map of the Vancouver Quadrangle, Washington and Oregon. Washington Division of Geology and Earth Resources Open File Report 87-10, scale 1:100,000.
- Shannon & Wilson. 1999a. *Final Report Volume 1 Multi-Sites Investigations, Camp Bonneville, Washington.* Contract No. DACA 67-94-D-1014. July 1999.
- Shannon & Wilson. 1999b. *Final Landfill 4 Investigation Report, Camp Bonneville, Washington.* Contract DACA 67-94-D-1014. August 1999.

TABLES

	Durlisste Osmale	Original	Duplicate	
Original Sample	Duplicate Sample	Concentration	Concentration	Relative Percent
ID	ID	(mg/kg)	(mg/kg)	Deviation (%a)
S02330303S S02630304C	S31930303S	16.1	12.7	23.61
	S32030304C	21.8	10.9	66.67
S03030303E	S32330303E	6.9	9.5	-31.71
S03230303W	S32430303W	6.8	7.8	-13.70
S03430303N	S32530303N	10.4	5.2	66.67
S03630307W	S32630307W	9.4	10.5	-11.06
S03830310N	S32730310N	20.1	19.4	3.54
S04030310S	S32830310S	16.4	16.3	0.61
S04330307S	S32930307S	9.3	8.3	11.36
S04430225S	S33030225S	11.4	10.9	4.48
S04630225E	S33130225E	15.6	22.9	-37.92
S00130305S	S30830305S	7.2	13	-57.43
S00330304E	S30930304E	17.2	9.9	53.87
S00530305N	S31030305N	9	13.5	-40.00
S00930305W	S31230305W	16.5	45.3	-93.20
S01130304S	S31330304S	12.8	8.2	43.81
S01330305E	S31430305E	16	22.4	-33.33
S01530304N	S31530304N	9.4	8.5	10.06
S01730305C	S31630305C	10.7	15.1	-34.11
S01930304E	S31730304E	7.9	8	-1.26
S02130303W	S31830303W	19.1	11.7	48.05
S04830225N	S33230225N	22.5	24	-6.45
S05030225C	S33330225C	17	14.4	16.56
S05230225W	S33430225W	18.7	20.9	-11.11
S05430225S	S33530225S	49.3	18.8	89.57
S05630226E	S33630226E	7.9	11.6	-37.95
S05830225N	S33730225N	108	99.1	8.59
S06030226C	S33830226C	17	16.1	5.44
S06230226E	S33930226E	14.4	16.9	-15.97
S06430226W	S34030226W	14	13.1	6.64
S06630226S	S34130226S	19.1	24.1	-23.15
S06830226S	S34230226S	212	119	56.19
S07030226E	S34330226E	21.6	27	-22.22
S07830228E	S34730228E	13.5	19.4	-35.87
S08030228N	S34830228N	7.4	7.3	1.36
S08230228C	S34930228C	18.7	21.3	-13.00
S08430228W	S35030228W	10.2	14.1	-32.10
S08630228S	S35130228S	61	64.5	-5.58
S08830228E	S35230228E	5.4	13.1	-83.24
S09030228L	S35330228L	9.1	10.8	-17.09
S09030228N	S35330228N	32.3	38.1	-16.48
S09230228C S09430228E	S35430228C S35530228E	32.3 149	140	6.23
S09630301W	S35630301W	24.7	24.6	0.41
S09930301C	S35730301C	4.9	3.9	22.73
S10030301E	S35830301E	10.9	15.3	-33.59
S10430317E	S36030317E	154	77.1	66.55
S10630312N	S36130312N	9.2	11.6	-23.08
S10830312C	S36230312C	9.2	7.9	15.20

		Original	Duplicate	
Original Sample	Duplicate Sample	Concentration	Concentration	Relative Percent
ID	ID	(mg/kg)	(mg/kg)	Deviation (%a)
S11030312W	S36330312W	19.6	19.2	2.06
S11230312S	S36430312S	20.4	26.9	-27.48
S11430312E	S36530312E	24.6 23.4		5.00
S11630314S	S36730314S	3.4	2.6	26.67
S11830314E	S36830314E	7.8	9.2	-16.47
S12030314N	S36930314N	14.8	13.8	6.99
S12230314C	S37030314C	21.5	12.9	50.00
S12430314W	S37130314W	17.4	23.7	-30.66
S12630314S	S37230314S	11.4	10.7	6.33
S12830310E	S37330310E	18.6	21.6	-14.93
S13030310N	S37430310N	11.9	13	-8.84
S13230310C	S37530310C	17	17	0.00
S13430310E	S37630310E	11.7	12.7	-8.20
S13630310W	S37730310W	13.8	10.8	24.39
S13830310S	S37830310S	15.2	8.7	54.39
S14030310S	S37930310S	13.4	14	-4.38
S14230310E	S38030310E	68.5	75.7	-9.99
S14430310N	S38130310N	15.1	20.8	-31.75
S14630313S	S38230313S	23.3	27.4	-16.17
S14830313E	S38330313E	43	10.9	119.11
S15030313N	S38430313N	17.2	38.4	-76.26
S15230312C	S38530312C	19.8	16.7	16.99
S15430313W	S38630313W	8.7	31.7	-113.86
S15630313S	S38730313S	15.2	15	1.32
S15830313E	S38830313E	35.5	41.2	-14.86
S16030313N	S38930313N	12	13.4	-11.02
S16230313C	S39030313C	12.3	20.5	-50.00
S16330317S	S39030313C	8	20.5 9	-11.76
S16530317E	S392303175	13.5	9 12.7	6.11
S16730317E	S39230317E			
		12.3	11.9	3.31
S16930317C S17130318W	S39430317C	8.9 12.6	8.3 12.6	6.98
	S39530318W	13.6	13.6	0.00
S17330318S	S39630318S	11.9	10.5	12.50
S17530318E	S39730318E	12.1	12.9	-6.40
S17730318N	S39830318N	11.5	10.6	8.14
S17930318C	S39930318C	13.4	13.1	2.26
S18130318E	S40030318E	12.7	14.1	-10.45
S18330318W	S40130318W	18.8	19.1	-1.58
S18530318S	S40230318S	15	16.5	-9.52
S18730318S	S40330318S	18.5	18.2	1.63
S18930311S	S40430311S	26.5	21.3	21.76
S19130311E	S40530311E	17.8	14.3	21.81
S19330311N	S40630311N	17.1	14.5	16.46
S19530307C	S40730307C	18	22.1	-20.45
S19730311W	S40830311W	18.7	16.5	12.50
S19930307S	S40930307S	18.4	24.7	-29.23
S20130307E	S41030307E	7	7.9	-12.08
S20330307N	S41130307N	20	34.8	-54.01

Original Sample	Duplicate Sample	Original Concentration	Duplicate Concentration	Relative Percent
ID	ID	(mg/kg)	(mg/kg)	Deviation (%a)
S20530311C	S41230311C	13.4	4.2	104.55
S20730311E	S41330311E	34.9	32.4	7.43
S20930311W	S41430311W	22.5	20.7	8.33
S21130311S	S41530311S	13.5	15.2	-11.85
S21330311S	S41630311S	18.1	18.2	-0.55
S21530311E	S41730311E	18.9	20.1	-6.15
S21730311N	S41830311N	16.8	3.8	126.21
S21930311C	S41930311C	38.3	8.7	125.96
S22230319S	S42030319S	8.4	10.4	-21.28
S22430319E	S42130319E	51.3	58.8	-13.62
S22630319N	S42230319N	15.5	13.3	15.28
S22830320C	S42330320C	11.9	12.1	-1.67
S23030320W	S42430320W	8.2	8.8	-7.06
S23230320S	S42530320S	12.6	14	-10.53
S23430319E	S42630319E	14.3	15.3	-6.76
S23630319N	S42730319N	11.2	12.4	-10.17
S23830319C	S42830319C	11.5	12.6	-9.13
S24030319E	S42930319E	8	8.3	-3.68
S24230319W	S43030319W	8.5	11.2	-27.41
S24430319S	S43130319S	13.8	14.3	-3.56
S24730306S	S43330306S	13.7	13.4	2.21
S24930306E	S43430306E	17.2	14.1	19.81
S25130306N	S43530306N	2180	1950	11.14
S25330306C	S43630306C	45.4	26.9	51.18
S25530306W	S43730306W	10.8	8.8	20.41
S25730306S	S43830306S	13	7.8	50.00
S25930306E	S43930306E	11	8	31.58
S26030306S	S44130306S	15.8	16.4	-3.73
S26230306E	S44230306E	11	12.7	-14.35
S26430306N	S44330306N	12.9	16.3	-23.29
S26630306C	S44430306C	17.1	13.4	24.26
S26730317S	S44630317S	9.7	10	-3.05
S26930317E	S44730317E	10.5	11.3	-7.34
S27130317N	S44830317N	21	19.9	5.38
S27330317C	S44930317C	13	15.3	-16.25
S27530315W	S45030315W	11.2	11	1.80
S27730315S	S45130315S	9	9.9	-9.52
S27930315E	S45230315E	12.1	9.4	25.12
S28130315N	S45330315N	19.9	16.4	19.28
S28330315C	S45430315C	12.7	8.2	43.06
S28530315E	S45530315E	90.3	28.3	104.55
S28730315W	S45630315W	23.6	18.3	25.30
S28930315S	S45730315S	14	10.5	28.57
S29130315S	S45830315S	24.3	18	29.79
S29330315E	S45930315E	11.9	8.9	28.85
S29530314N	S46030314N	18.5	19.8	-6.79
S29730314C	S46130314C	31.7	28.8	9.59
S29830314S	S46230314S	16.2	9.8	49.23

Original Sample ID	Duplicate Sample ID	Original Concentration (mg/kg)	Duplicate Concentration (mg/kg)	Relative Percent Deviation (%a)
S30030314E	S46330314E	296	175	51.38
S30230317N	S46430317N	10	10.6	-5.83
S30430317C	S46530317C	8.7	9.5	-8.79
S80830227C	S46730227C	3.8	5.7	-40.00
S80830227C	S46730227C	10.3	5.7	57.50
S80830227C	S46730227C	3.8	3.9	-2.60
S80830227C	S46730227C	10.3	3.9	90.14
	25.29 16.00			

Method	Analyte	RPD Limit	Number of Exceedances	Number of Duplicates	Average RPD
SW6010B	SB	40	1	4	36
SW6010B	AS	40	1	2	51
SW6010B	BA	40	0	7	4
SW6010B	CD	40	1	5	33
SW6010B	CR	40	0	7	5
SW6010B	CU	40	0	7	8
SW6010B	NI	40	0	7	6
SW6010B	PB	40	0	12	5
SW6010B	ZN	40	0	7	5
SW7420	PB	40	6	218	8
SW8330	НМХ	40	0	8	14
SW8330	RDX	40	0	9	17
SW8330	TNB135	40	0	8	10
SW8330	DNB13	40	0	8	13
SW8330	TETRYL	40	0	8	13
SW8330	NO2BZ	40	0	8	21
SW8330	TNT	40	0	8	13
SW8330	A4DNT26	40	0	8	18
SW8330	A2DNT46	40	0	8	13
SW8330	DNT24	40	0	8	13
SW8330	DNT26	40	0	8	16
SW8330	NBZME2	40	0	8	13
SW8330	NBZME3	40	0	8	22
SW8330	NBZME4	40	0	8	17
SW8330	PICRICACID	40	1	8	21
SW8330	PETN	40	0	8	13

Table 4-2 Laboratory Duplicates Summary Camp Bonneville

Table 4-3 Blank Sample Detections Camp Bonneville

Analytical		Blank
•	Analyte	Concentration
		0.1
		0.5
	-	0.1
		1.1
		1.1
		0.4
		0.4
		0.4
		0.87
		0.87
		1.5
		1.3
		1.2
		1.2
		1.3
		1.5
		2.2
		0.8
		0.8
		1.2
		0.8
		0.8
		0.8
		0.8
		1
		1.2
		0.11
	DNT26	0.11
		0.11
		0.14
		0.14
SW8330	HMX	0.14
	Analytical Method SW6010B SW7420 SW8330 SW8330 SW8330 SW8330 SW8330	Method Analyte SW6010B CD SW6010B CD SW6010B CD SW6010B CU SW6010B CU SW6010B CU SW6010B NI SW6010B NI SW6010B ZN SW6010B ZN SW6010B ZN SW6010B ZN SW6010B ZN SW6010B ZN SW7420 PB SW7420 PB

Table 5-325-Meter M60 Range/Pistol Range - Lead SamplesComparisons to MTCA and PRG Benchmark Values

Sampling Results		Concentration Greater than Benchmark Value					
Sample	Sample	Lead	MTCA Ecological	MTCA Unrestricted	PRG Residential	PRG Industrial	MTCA Industrial
Point ID	Number	(mg/Kg)	Indicator (118 mg/Kg)	Land Use (250 mg/Kg)	Soil (400mg/kg)	Soil (750 mg/Kg)	Property (1,000 mg/Kg)
25M_M60-3	S02730304N	136	X				
	S02730304E	219	X				

Table 5-4Rifle Ranges 1 and 2 - Lead SamplesComparisons to MTCA and PRG Benchmark Values

Samp	ling Results			Concentrat	ion Greater than Bench	mark Value		
Sample	Sample	Lead	MTCA Ecological	MTCA Unrestricted	PRG Residential	PRG Industrial	MTCA Industrial	
Point ID	Number	(mg/Kg)	Indicator (118 mg/Kg) Land Use (250 mg/		Soil (400mg/kg)	Soil (750 mg/Kg)	Property (1,000 mg/Kg)	
RIFLE_RANGE-21	S06430226E	290	Х	X				
RIFLE_RANGE-23	S06630226E	130	X					
RIFLE_RANGE-24	S06730226W	132	X					
RIFLE_RANGE-25	S06830226N	145	X					
	S06830226S	212	X					
	S06830226E	172	X					
RIFLE_RANGE-29	S07230226N	137	X					
RIFLE_RANGE-30	S07330226C	273	X	X				
	S07330226N	1,690	X	X	X	X	X	
	S07330226S	1,750	X	X	X	X	X	
	S07330226E	1850	X	X	X	X	X	
	S07330226W	4330	X	X	X	X	X	
RIFLE_RANGE-31	S07430226C	199	X					
	S07430226E	180	X					
	S07430226W	1770	X	X	X	X	X	
RIFLE_RANGE-32	S07530226S	417	X	X	X			
	S07530226E	670	X	X	X			
	S07530226W	220	X					

Table 5-5Field Fire Rifle Ranges 1 and 2 - Lead SamplesComparisons to MTCA and PRG Benchmark Values

Sampli	ng Results		Concentration Greater than Benchmark Value						
Sample Sample Lead		MTCA Ecological	MTCA Unrestricted	PRG Residential	PRG Industrial	MTCA Industrial			
Point ID	Number	(mg/Kg)	Indicator (118 mg/Kg)	Land Use (250 mg/Kg)	Soil (400mg/kg)	Soil (750 mg/Kg)	Property (1,000 mg/Kg)		
FIELD_FIRING_RIFLE-14	S08930228E	2300	X	X	Х	Х	X		
FIELD_FIRING_RIFLE-19	S09430228E	149	X						

Table 5-6Field Firing Ranges 1 and 2 and Pistol Range - Lead SamplesComparisons to MTCA and PRG Benchmark Values

Samp	ling Results		Concentration Greater than Benchmark Value							
Sample	Sample	Lead	MTCA Ecological	MTCA Unrestricted	PRG Residential	PRG Industrial	MTCA Industrial			
Point ID	Number	(mg/Kg)	Indicator (118 mg/Kg)	Land Use (250 mg/Kg)	Soil (400mg/kg)	Soil (750 mg/Kg)	Property (1,000 mg/Kg)			
FIELD_FIRING-3	S10430317S	259	X	X						
	S10430317E	154	X							
FIELD_FIRING-9	S11030312E	136	X							
FIELD_FIRING-12	S11330312C	7150	X	X	X	X	X			
	S11330312N	125	X							
	S11330312S	267	X	X						
	S11330312E	728	X	X	X					
	S11330312W	187	X							

Table 5-7Undocumented Pistol Range - Lead SamplesComparisons to MTCA and PRG Benchmark Values

Samp	ling Results			Concentration Greater than Benchmark Value					
Sample	Sample	Lead	MTCA Ecological	MTCA Unrestricted	PRG Residential	PRG Industrial	MTCA Industrial		
Point ID	Number	(mg/Kg)	Indicator (118 mg/Kg)	Land Use (250 mg/Kg)	Soil (400mg/kg)	Soil (750 mg/Kg)	Property (1,000 mg/Kg)		
UNDOC_PISTOL-1	S30730301E	154	X						

Table 5-81,000-Foot Range, 1,000-Foot Machine Gun Range, and Moving Target Range - Lead SamplesComparisons to MTCA and PRG Benchmark Values

San	pling Results			Concentrati	ion Greater than Bench	mark Value	
Sample Point ID	Sample Number	Lead (mg/Kg)	MTCA Ecological Indicator (118 mg/Kg)	MTCA Unrestricted Land Use (250 mg/Kg)	PRG Residential Soil (400mg/kg)	PRG Industrial Soil (750 mg/Kg)	MTCA Industrial Property (1,000 mg/Kg)
1000FT-4	S11930314C	3450	Х	Х	Х	Х	Х
	S11930314N	10200	X	X	X	X	X
	S11930314S	438	X	X	X		
	S11930314W	2350	X	X	X	X	X
1000FT-8	S12330314C	871	Х	Х	Х	Х	
	S12330314S	4560	X		X	X	X
	S12330314E	198	X				
	S12330314W	566	X	X	Χ		
1000FT-24	S13930310N	128	Х				
	S13930310W	146	X				
1000FT-26	S14130310E	282	Х	Х			
	S14130310W	172	X				
1000FT-27	S14230310C	241	Х				
	S14230310S	346	X	X			
	S14230310W	136	X				
1000FT-28	S14330310C	334	Х	Х			
	S14330310N	279	X	X			
	S14330310S	7610	X	X	X	X	X
	S14330310E	2350	X	X	Χ	X	X
	S14330310W	210	X				
1000FT-29	S14430310E	216	Х				
1000FT-30	S14530310C	120	Х				
	S14530310E	170	X				

Table 5-9Combat Pistol Range - Lead SamplesComparisons to MTCA and PRG Benchmark Values

Sampling Results Concentration Greater than Benchmark Value							
Sample	Sample	Lead	MTCA Ecological	MTCA Unrestricted	PRG Residential	PRG Industrial	MTCA Industrial
Point ID	Number	(mg/Kg)	Indicator (118 mg/Kg)	Land Use (250 mg/Kg)	Soil (400mg/kg)	Soil (750 mg/Kg)	Property (1,000 mg/Kg)
COMB_PISTOL-4	S14930312E	165	X				
COMB_PISTOL-15	S16030313W	785	X	X	X	X	

Table 5-10Machine Gun Range (South) - Lead SamplesComparisons to MTCA and PRG Benchmark Values

Sampling Results Concentration Greater than Benchmark Value							
Sample	Sample	Lead	MTCA Ecological MTCA Unrestricted		PRG Residential	PRG Industrial	MTCA Industrial
Point ID	Number	(mg/Kg)	Indicator (118 mg/Kg)	Land Use (250 mg/Kg)	Soil (400mg/kg)	Soil (750 mg/Kg)	Property (1,000 mg/Kg)
MG_NORTH-5	S16730317E	135	X				
MG_NORTH-24	S18630318E	423	X	X	X		

Table 5-11Machine Gun Range (North) - Lead SamplesComparisons to MTCA and PRG Benchmark Values

Samp	ling Results		Concentration Greater than Benchmark Value					
Sample	Sample	Lead	MTCA Ecological	MTCA Unrestricted	PRG Residential	PRG Industrial	MTCA Industrial	
Point ID	Number	(mg/Kg)	Indicator (118 mg/Kg)	Land Use (250 mg/Kg)	Soil (400mg/kg)	Soil (750 mg/Kg)	Property (1,000 mg/Kg)	
MG_SOUTH-8	S19630311C	158	X					

Table 5-1225-Meter and Machine Gun Range - Lead SamplesComparisons to MTCA and PRG Benchmark Values

Sam	pling Results			Concentration Greater than Benchmark Value							
Sample	Sample	Lead	MTCA Ecological	MTCA Unrestricted	PRG Residential	PRG Industrial	MTCA Industrial				
Point ID	Number	(mg/Kg)	Indicator (118 mg/Kg)	Land Use (250 mg/Kg)	Soil (400mg/kg)	Soil (750 mg/Kg)	Property (1,000 mg/Kg)				
25M_MG-5	S25130306C	214	Х								
	S25130306N	2180	X	X	X	X	X				
25M_MG-7	S25330306S	126	X								
25M_MG-8	S25430306C	26300	X	Х	X	Х	X				
	S25430306N	1330	X	X	X	X	X				
	S25430306S	964	X	X	X	X					
	S25430306E	429	X	X	X						
	S25430306W	4550	X	X	X	X	X				
25M_MG-9	S25530306C	204	Х								
25M_MG-10	S25630306C	120	X								
25M_MG-11	S25730306N	708	X	X	X						

Table 5-13Infiltration Course South - Lead SamplesComparisons to MTCA and PRG Benchmark Values

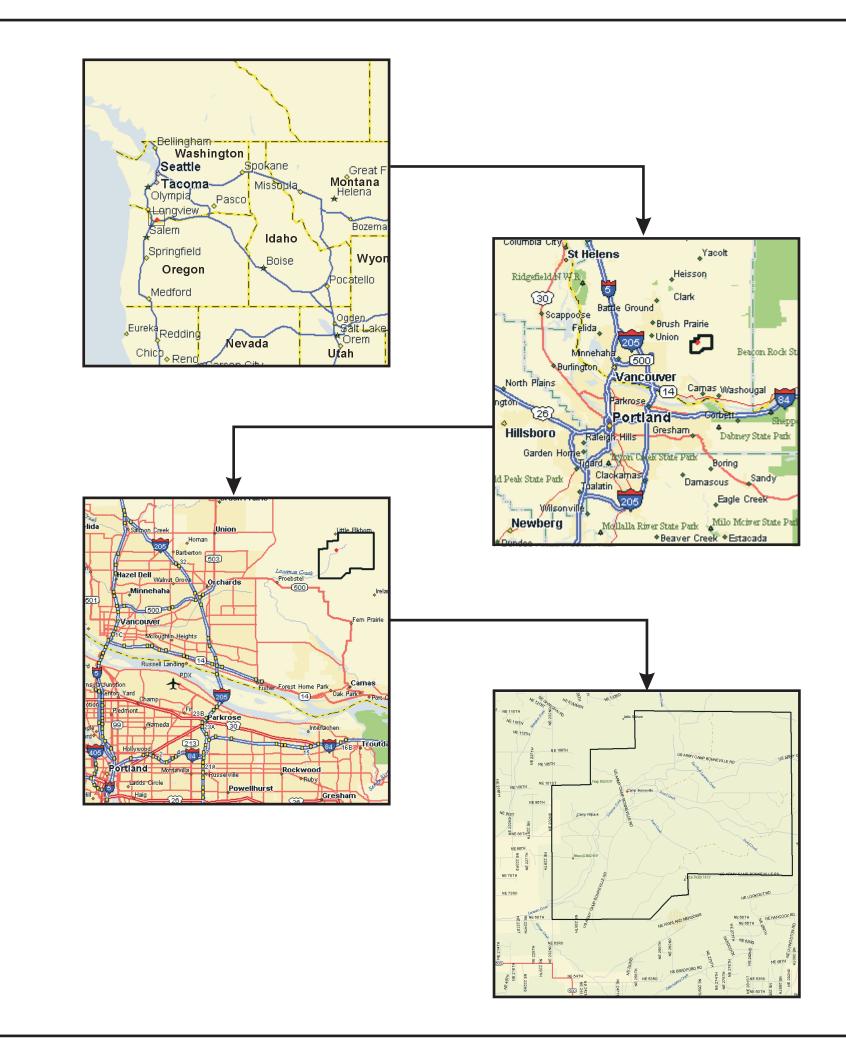
Sampling Results Concentration					ion Greater than Benchmark Value		
Sample	Sample	Lead	MTCA Ecological	MTCA Unrestricted	PRG Residential	PRG Industrial	MTCA Industrial
Point ID	Number	(mg/Kg)	Indicator (118 mg/Kg)	Land Use (250 mg/Kg)	Soil (400mg/kg)	Soil (750 mg/Kg)	Property (1,000 mg/Kg)
INFIL_SOUTH-1	S26030306W	151	X				

Table 5-1425M Record Fire Field Range, Field Firing Range - Lead SamplesComparisons to MTCA and PRG Benchmark Values

Samp	ling Results		Concentration Greater than Benchmark Value						
Sample	Sample Sample Lead		MTCA Ecological	MTCA Unrestricted	PRG Residential	PRG Industrial	MTCA Industrial		
Point ID	Number	(mg/Kg)	Indicator (118 mg/Kg)	Land Use (250 mg/Kg)	Soil (400mg/kg)	Soil (750 mg/Kg)	Property (1,000 mg/Kg)		
25M_RECORD-30	S29630314C	163	X						
25M_RECORD-33	S29930314N	647	X	X	Х				
25M_RECORD-34	S30030314C	150	X						
	S30030314S	238	X						
	S30030314E	296	X	X					
	S30030314W	8880	X	X	X	X	X		

Table 5-15 Comparisons of Arsenic Concentrations to MTCA and PRG Benchmark Values

Sampling Re	sults		Concentration Greater than Benchmark Value						
Sample	Sample	Arsenic	MTCA Unrestricted	MTCA Industrial	PRG Residential	MTCA Ecological	PRG Industrial		
Location	Number	(mg/Kg)	Land Use (20 mg/Kg)	Property (20 mg/Kg)	Soil (22mg/kg)	Indicator (132 mg/Kg)	Soil (440 mg/Kg)		
Rifle Ranges 1&2	S46830227C	22.9	X	X	X				
DA 2 - 100 ft. South of Center - 5 ft.	S70930227C	28.5	X	x	x				
DA 2 - 100 ft. East of Center - 2.5 ft.	S71130227C	29.4	X	x	x				
DA 2 - 100 ft. East of Center - 4 ft.	S71230227C	23.6	X	x	x				
DA 2 - 100 ft. West of Center - Surface	S71330227C	30.1	X	x	x				
DA 2 - 100 ft. West of Center - 2.5 ft.	S71430227C	29.7	Х	х	x				
DA 2 - Berm - Northeast - 2 ft.	S71830227C	29.3	X	Х	Х				


Table 5-16Comparisons of Barium Concentrations toMTCA and PRG Benchmark Values

Sample	Sample	Barium	MTCA Ecological	PRG Residential	PRG Industrial
Location	Number	(mg/Kg)	Indicator (102 mg/Kg)	Soil (5,400 mg/kg)	Soil (100,000 mg/Kg)
1,000 Foot Range	S13830310C	137.0	Х		
Close Combat Range	S01930304C	227.0	Х		
Close Combat Range	S02130303C	145.0	Х		
Field Fire Rifle Ranges 1&2	S07930228C	146.0	Х		
Field Fire Rifle Ranges 1&2	S09030228C	194.0	Х		
Machine Gun Range (South)	S18030318	192.0	Х		
Machine Gun Range (North)	S20330307C	178.0	Х		
Machine Gun Range (North)	S20630311C	200.0	Х		
Rifle Ranges 1&2	S03530303C	202.0	Х		
Sub Machine Gun Range	S03530303C	133.0	Х		
TF Range	S04030307C	163.0	Х		
DA 2 - Center of Area - Surface	S70130227C	152.0	Х		
DA 2 - Center of Area - 2.5 ft.	S70230227C	121.0	Х		
DA 2 - 100 ft. North of center - Surface	S70430227C	208.0	Х		
DA 2 - 100 ft. North of center - 2.5 ft.	S70530227C	215.0	Х		
DA 2 - 100 ft. South of Center - Surface	S70730227C	166.0	Х		
DA 2 - 100 ft. South of Center - 2.5 ft.	S70830227C	180.0	Х		
DA 2 - 100 ft. South of Center - 5 ft.	S70930227C	123.0	Х		
DA 2 - 100 ft. East of Center - Surface	S71030227C	228.0	Х		
DA 2 - 100 ft. East of Center - 2.5 ft.	S71130227C	262.0	Х		
DA 2 - 100 ft. East of Center - 4 ft.	S71230227C	454.0	Х		
DA 2 - 100 ft. West of Center - Surface	S71330227C	181.0	Х		
DA 2 - 100 ft. West of Center - 2.5 ft.	S71430227C	130.0	Х		
DA 2 - Berm - Southwest - 2 ft.	S71630227C	264.0	Х		
DA 2 - Berm - Center - 2 ft.	S71730227C	246.0	Х		
DA 2 - Berm - Northeast - 2 ft.	S71830227C	313.0	Х		
Background Location	S51730320C	156.0	Х		l

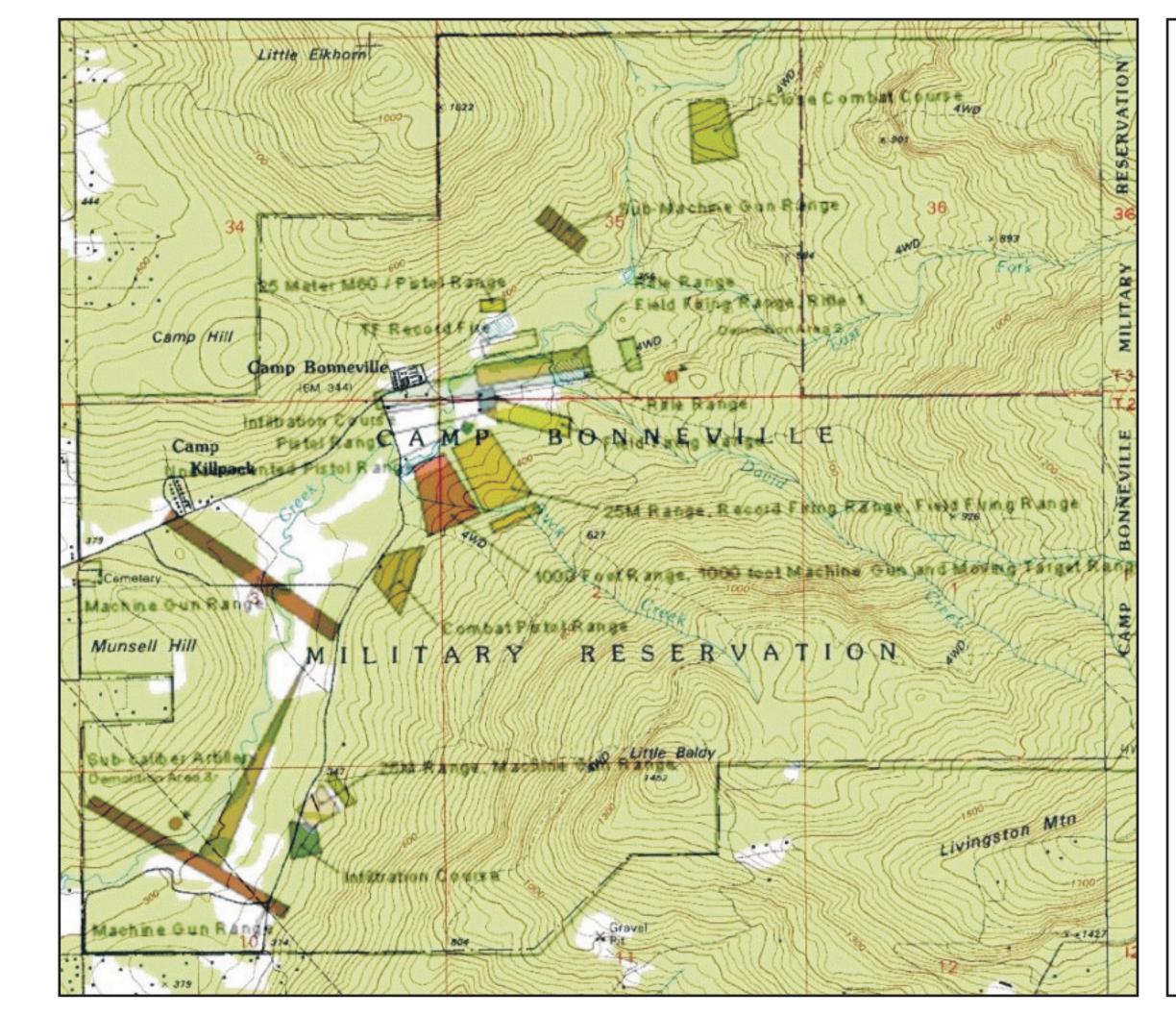
Note: There were no values for the MCTA Unrestricted and Industrial Properties Land Uses

FIGURES



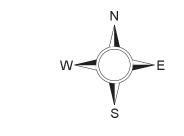
Figure 2-1

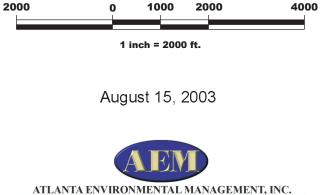
Camp Bonneville


Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

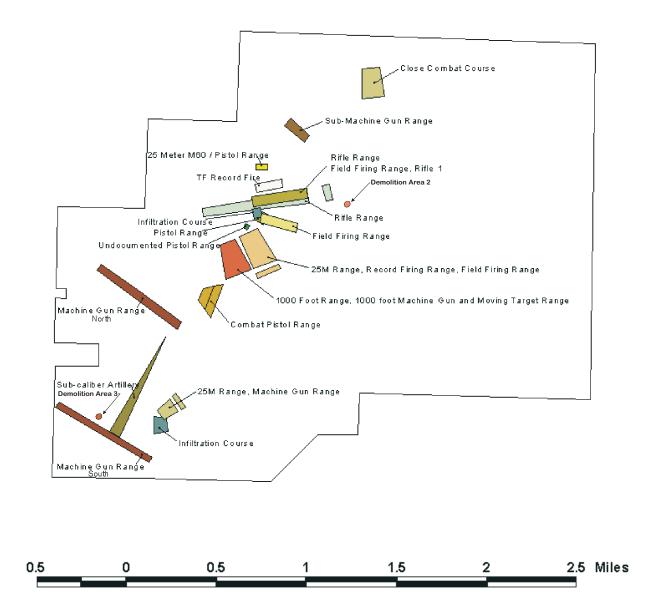
Site Vicinity and Location

August 15, 2003



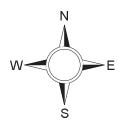

Figure 2-2

Camp Bonneville


Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

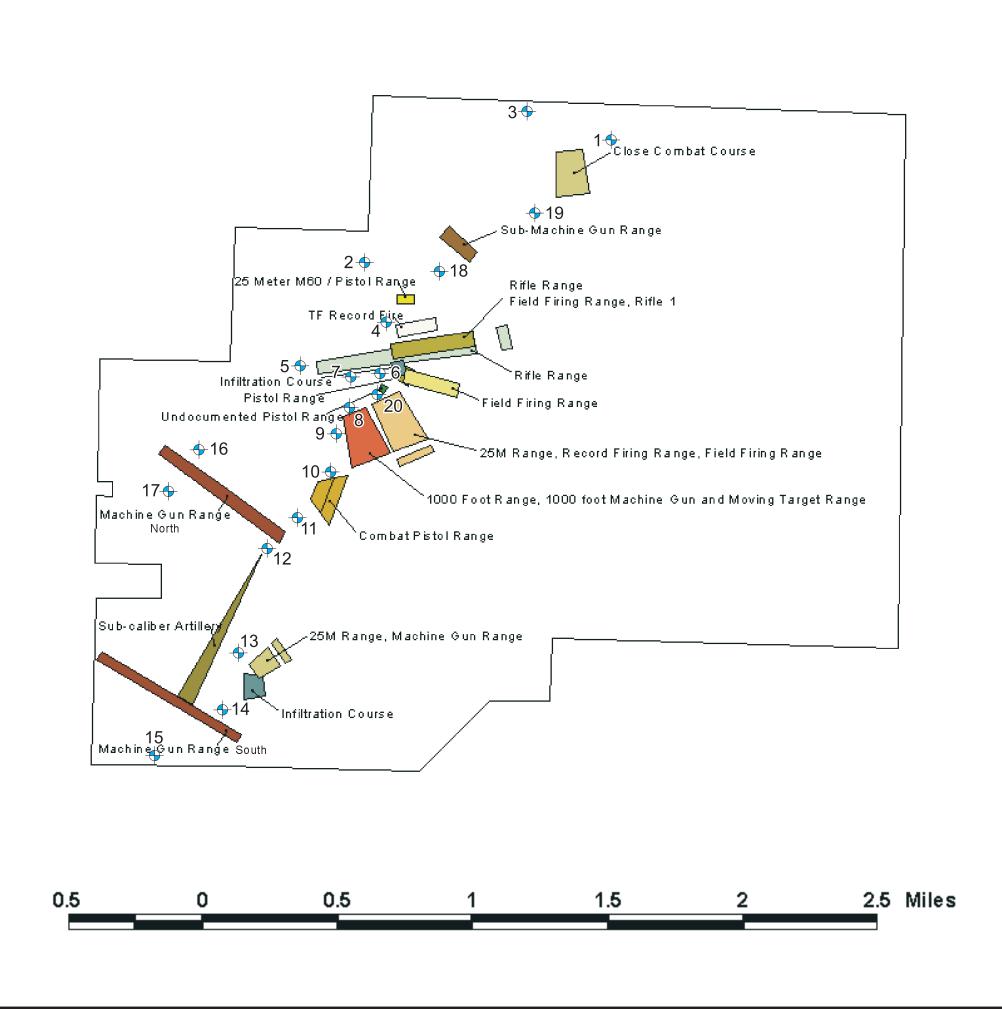
Topography

Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta, Georgia 30345 Office (404) 329-9006 • Fax (404) 329-2057

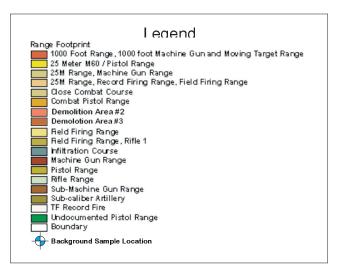

Figure 3-1

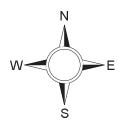
Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M


Small Arms Ranges and Demolition Areas 2 and 3 within Camp Bonneville

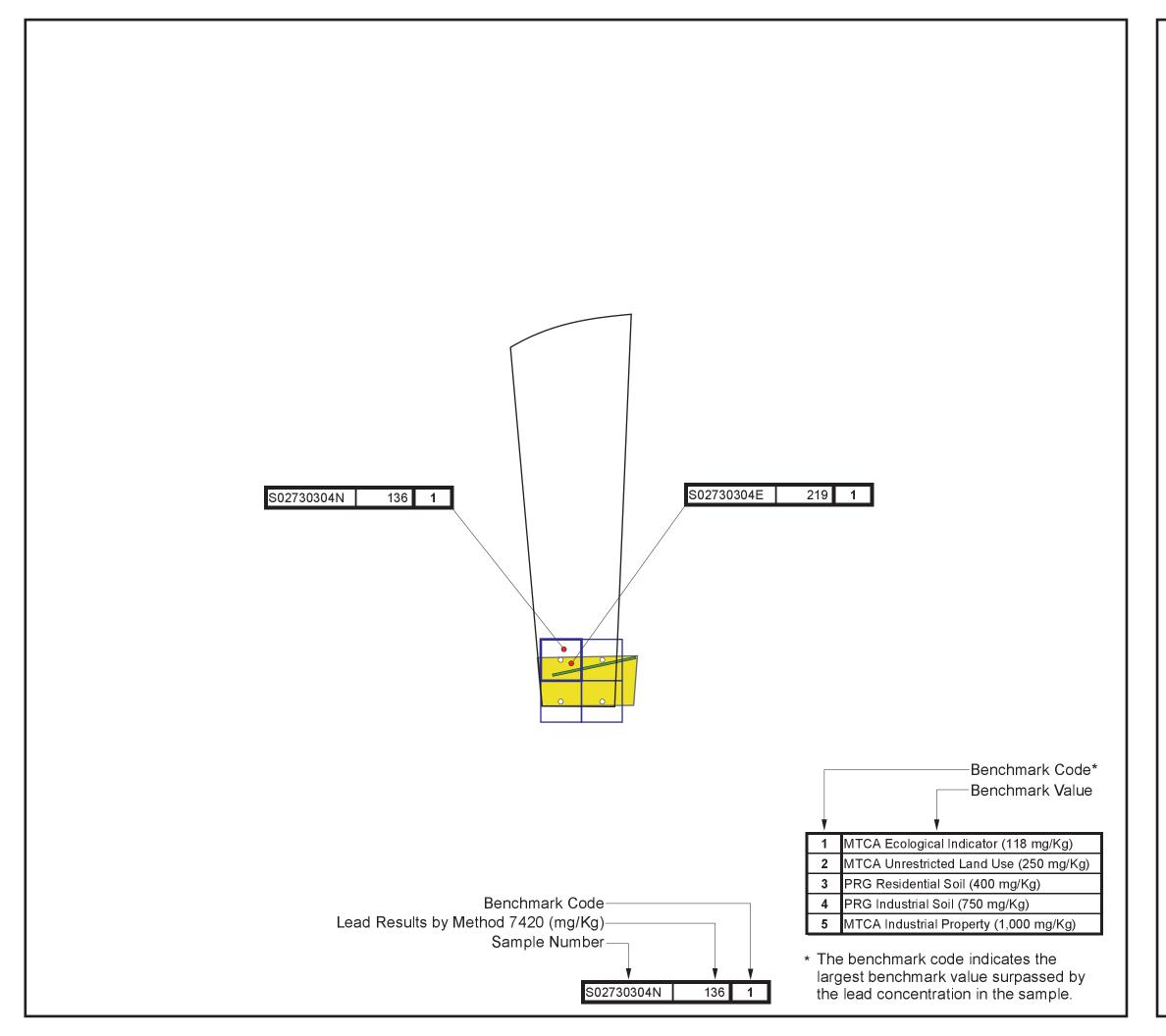
August 15, 2003



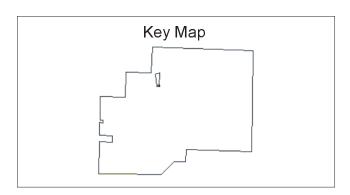

Figure 3-2

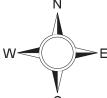
Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M


Locations of Background Samples

August 15, 2003



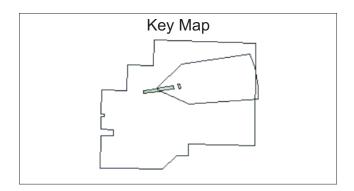

Camp Bonneville

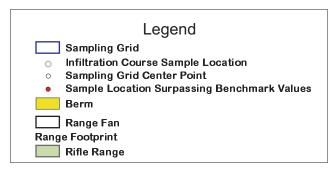
Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

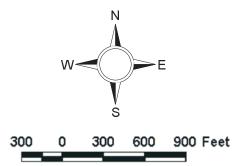
25 Meter M60 Range/Pistol Range Lead Results Greater than Benchmark Values (mg/Kg)

100 0 100 200 300 Feet

August 15, 2003

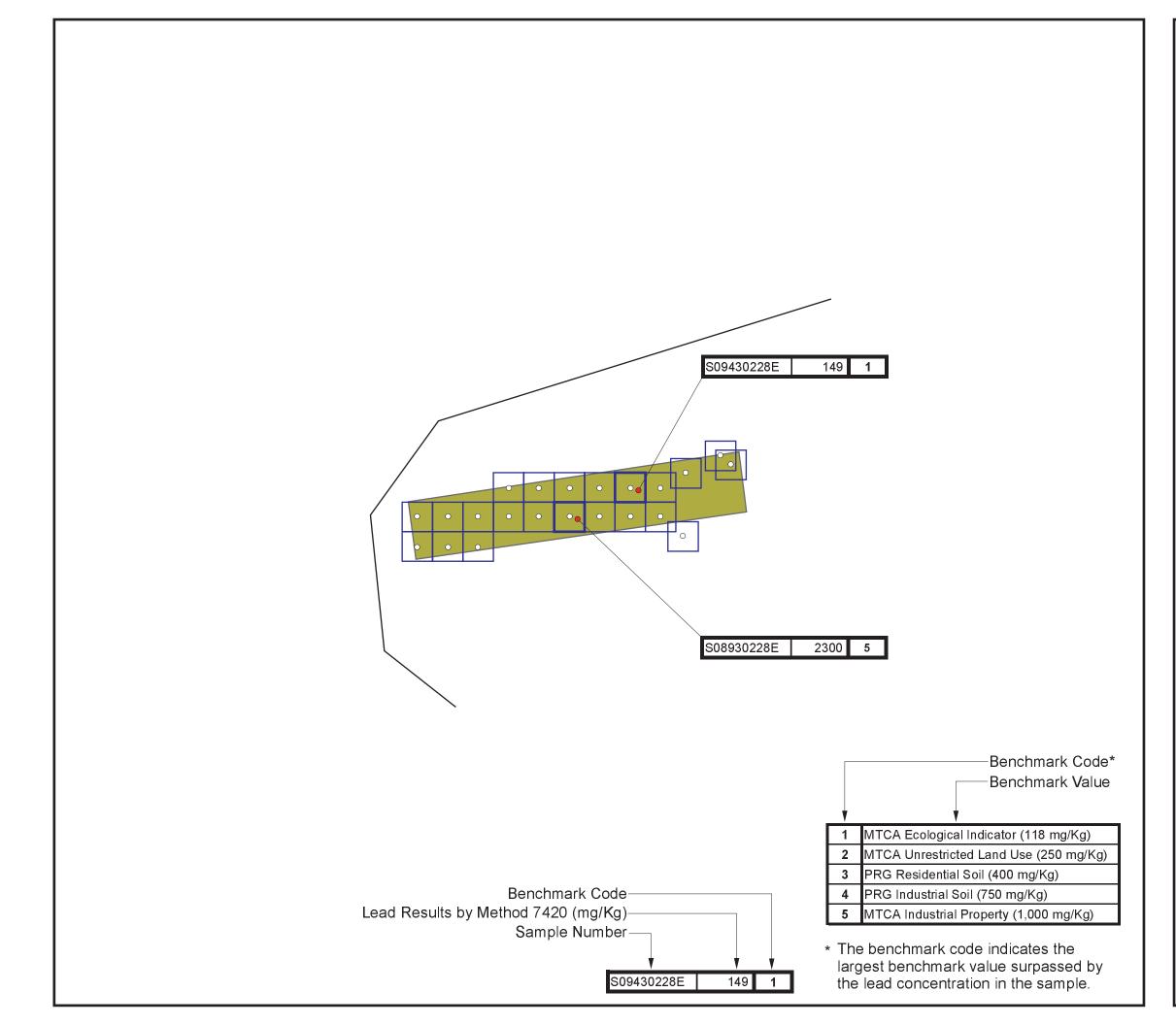


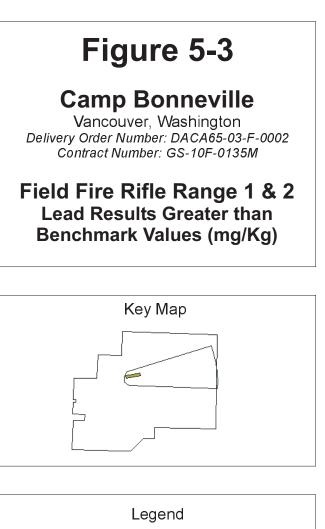


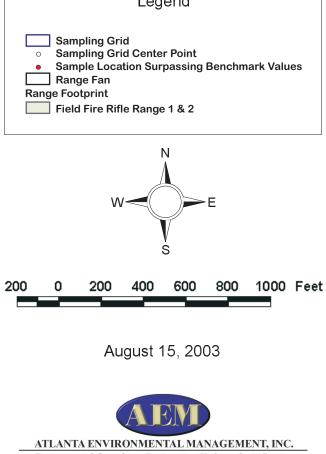

Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

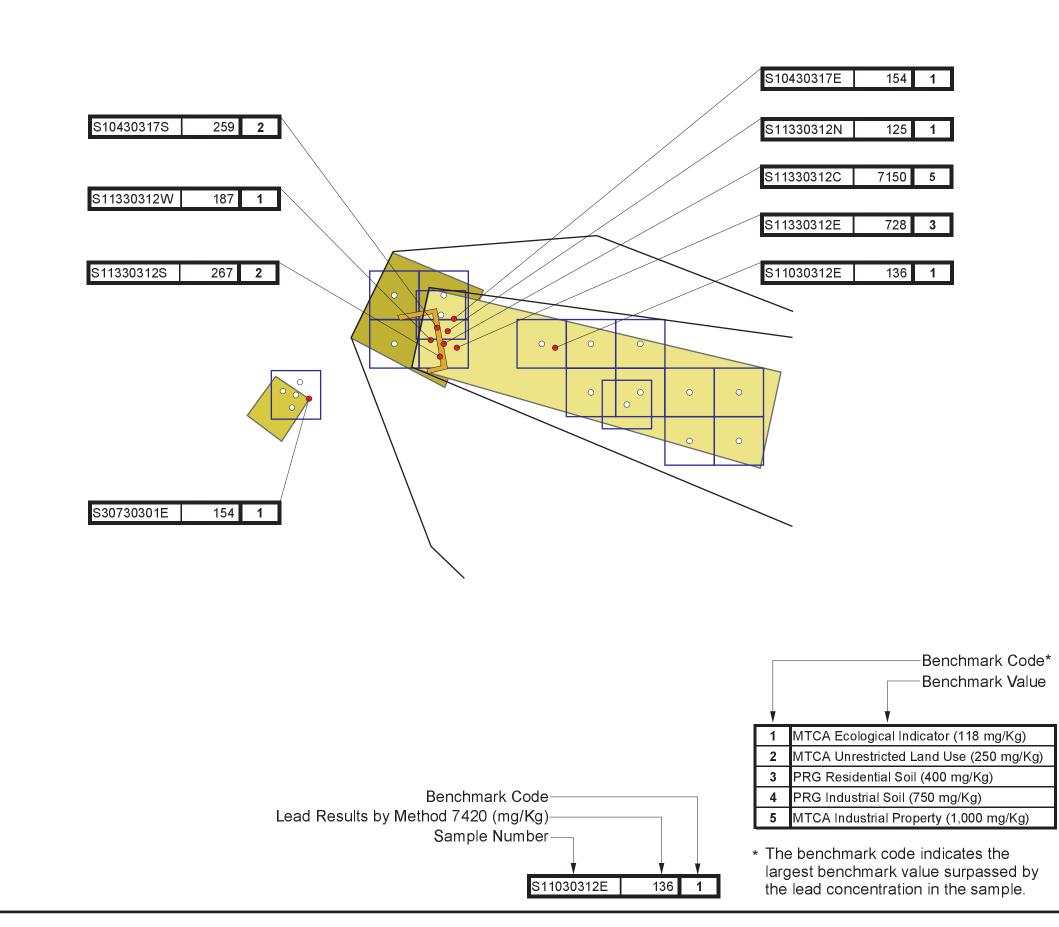
Rifle Ranges 1&2 Lead Results Greater than Benchmark Values (mg/Kg)

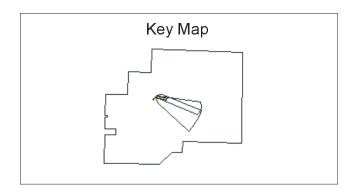


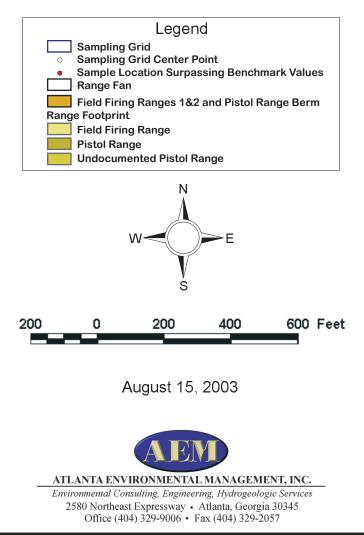


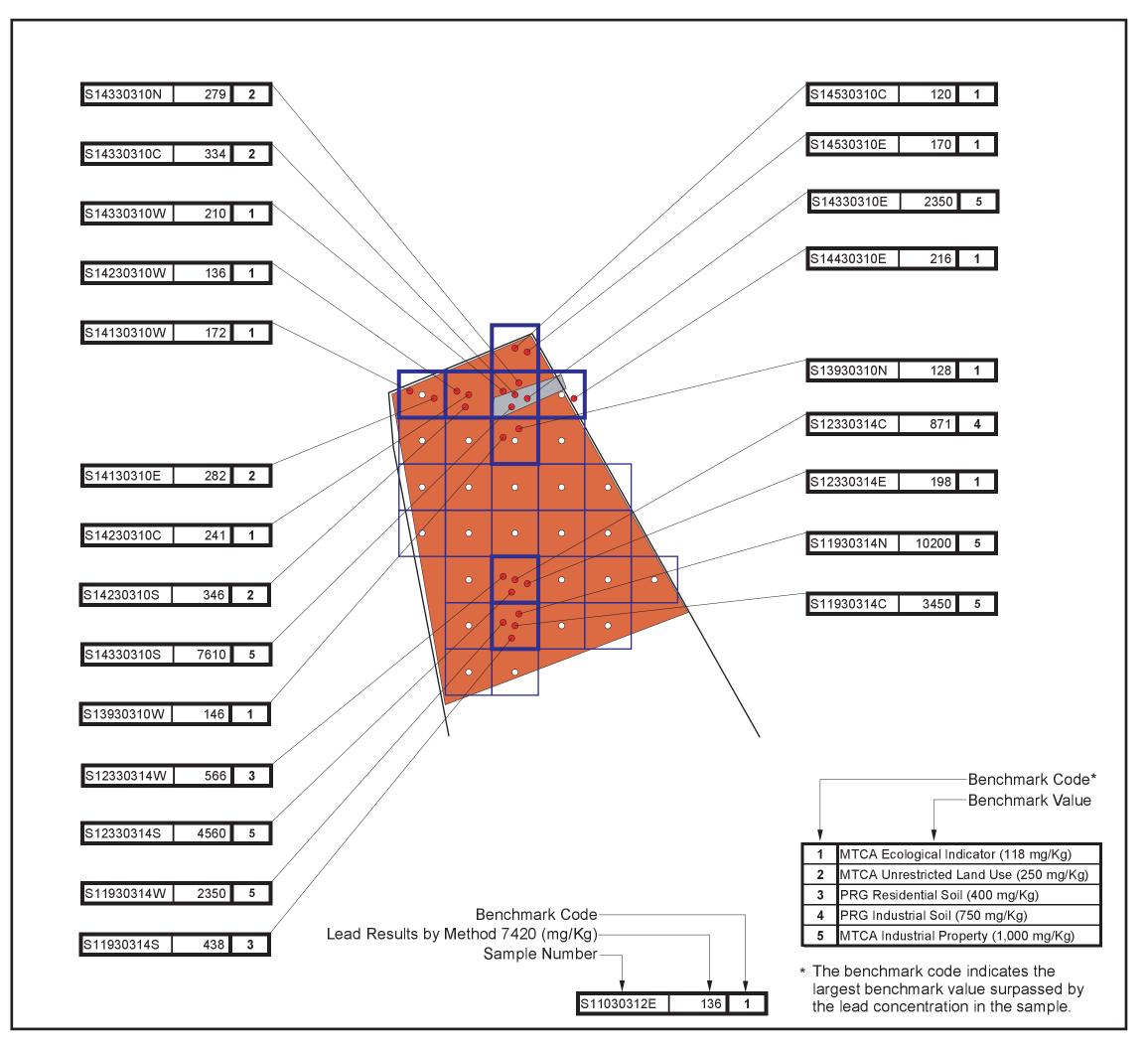


August 15, 2003



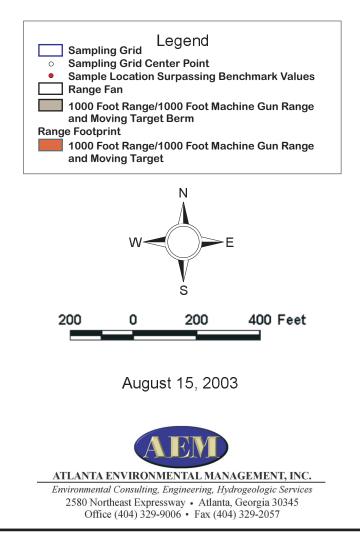

Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta, Georgia 30345 Office (404) 329-9006 • Fax (404) 329-2057

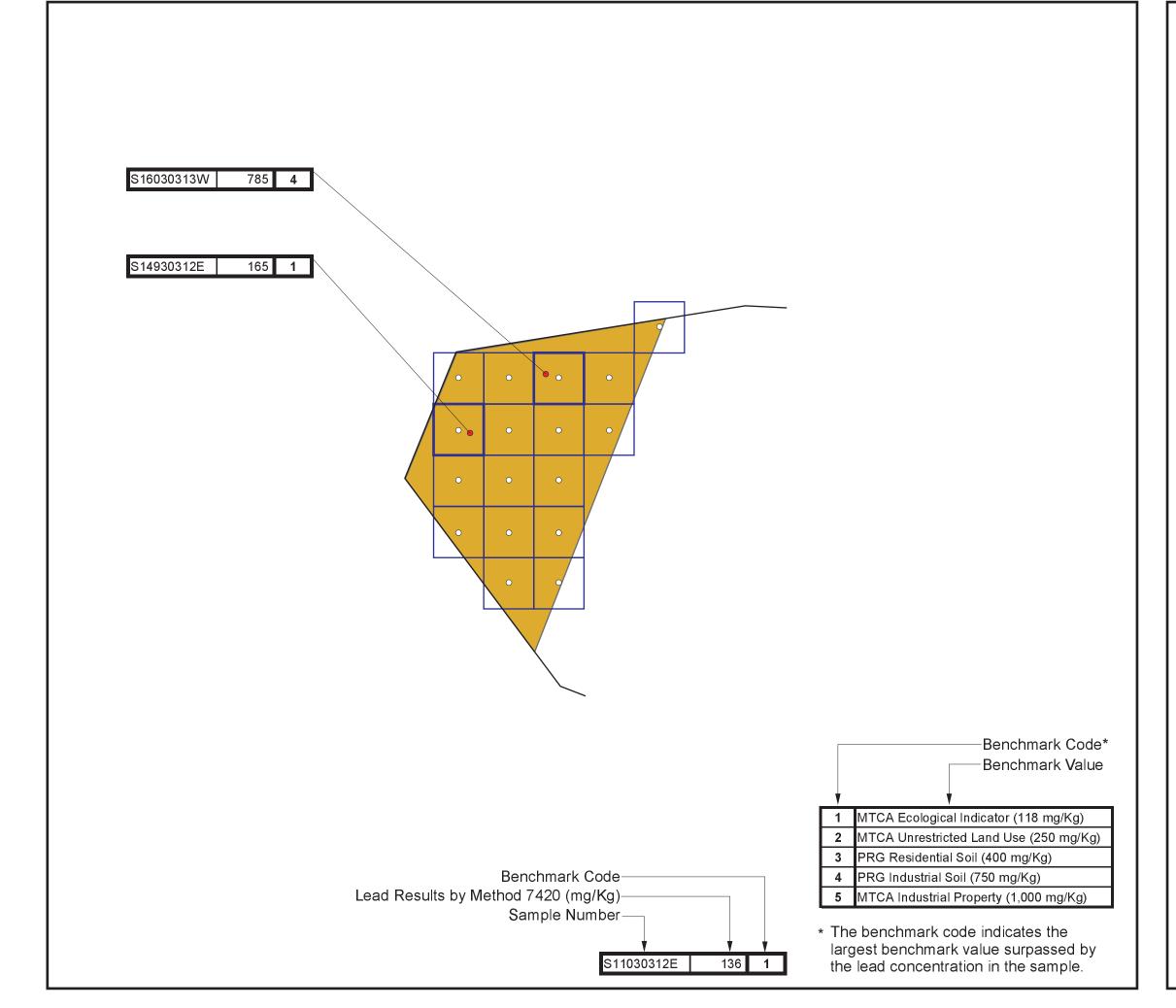



Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

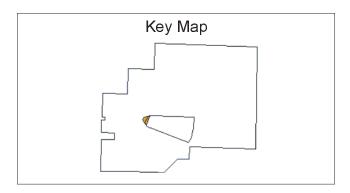
Field Firing Ranges 1 & 2 and Undocumented Pistol Range Lead Results Greater than Benchmark Values (mg/Kg)

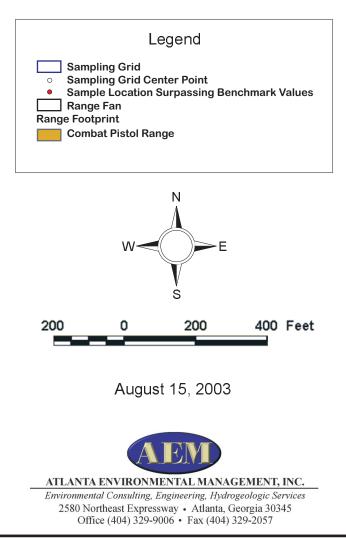


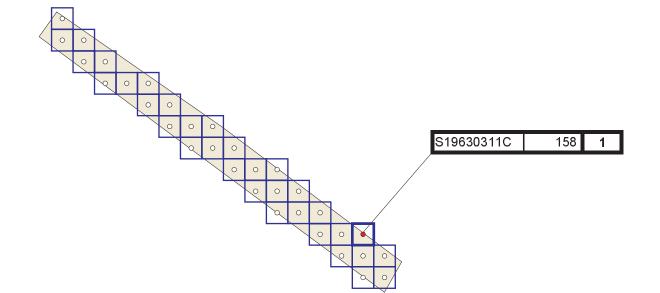

Camp Bonneville

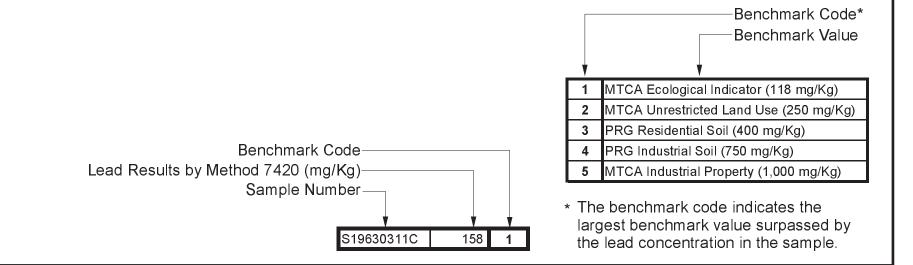
Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

1000 Ft. Range, 1000 Ft. Machine Gun, and Moving Target Range Lead Results Greater than Benchmark Values (mg/Kg)

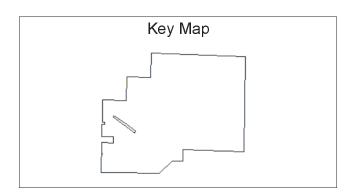


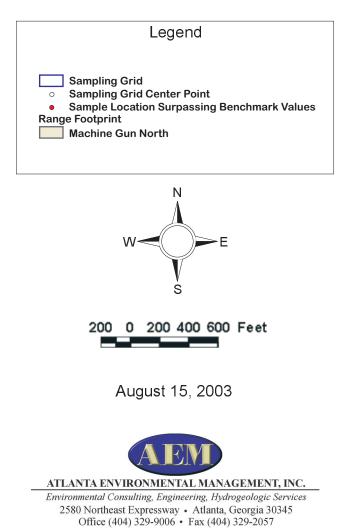


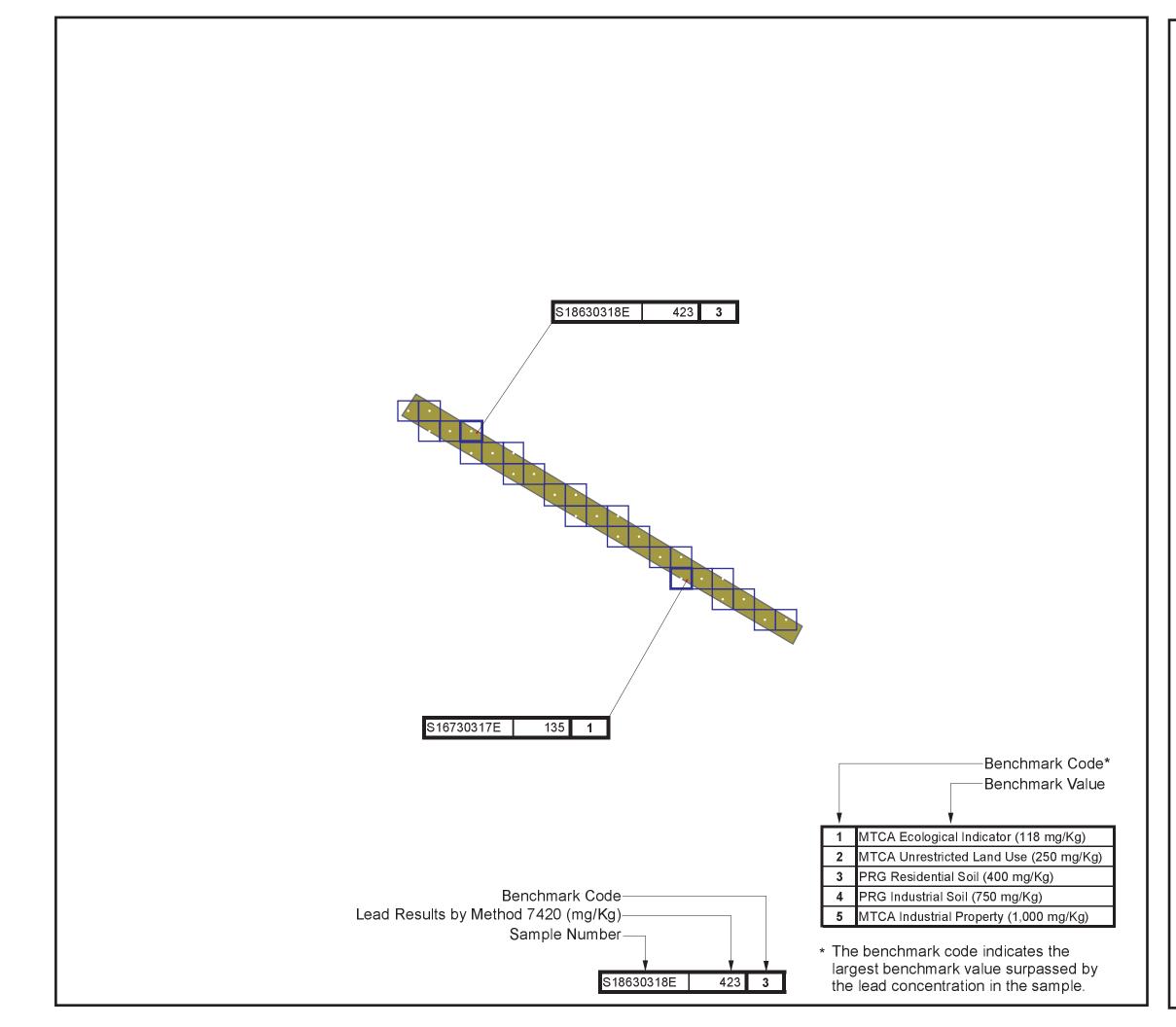

Camp Bonneville


Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Combat Pistol Range Lead Results Greater than Benchmark Values (mg/Kg)

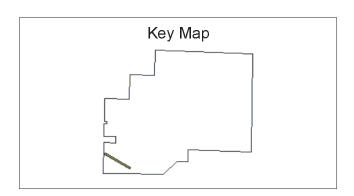


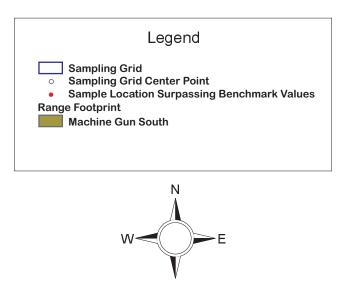



Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Machine Gun North Lead Results Greater than Benchmark Values (mg/Kg)

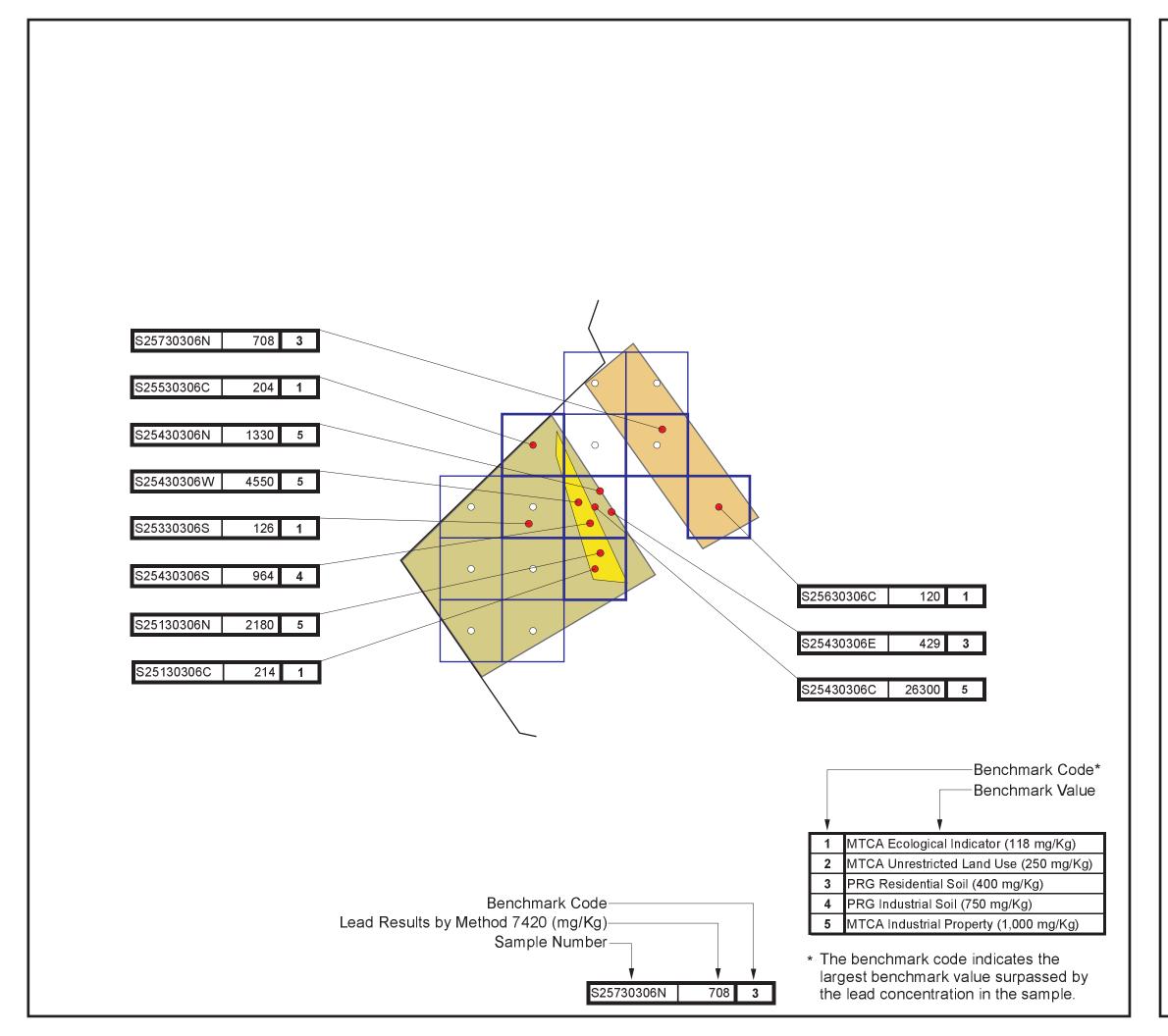




Camp Bonneville

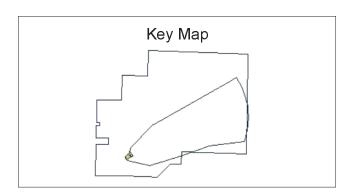
Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

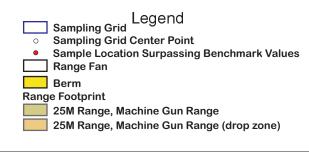
Machine Gun South Lead Results Greater than Benchmark Values (mg/Kg)

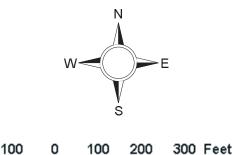


200 0 200 400 600 Feet

August 15, 2003

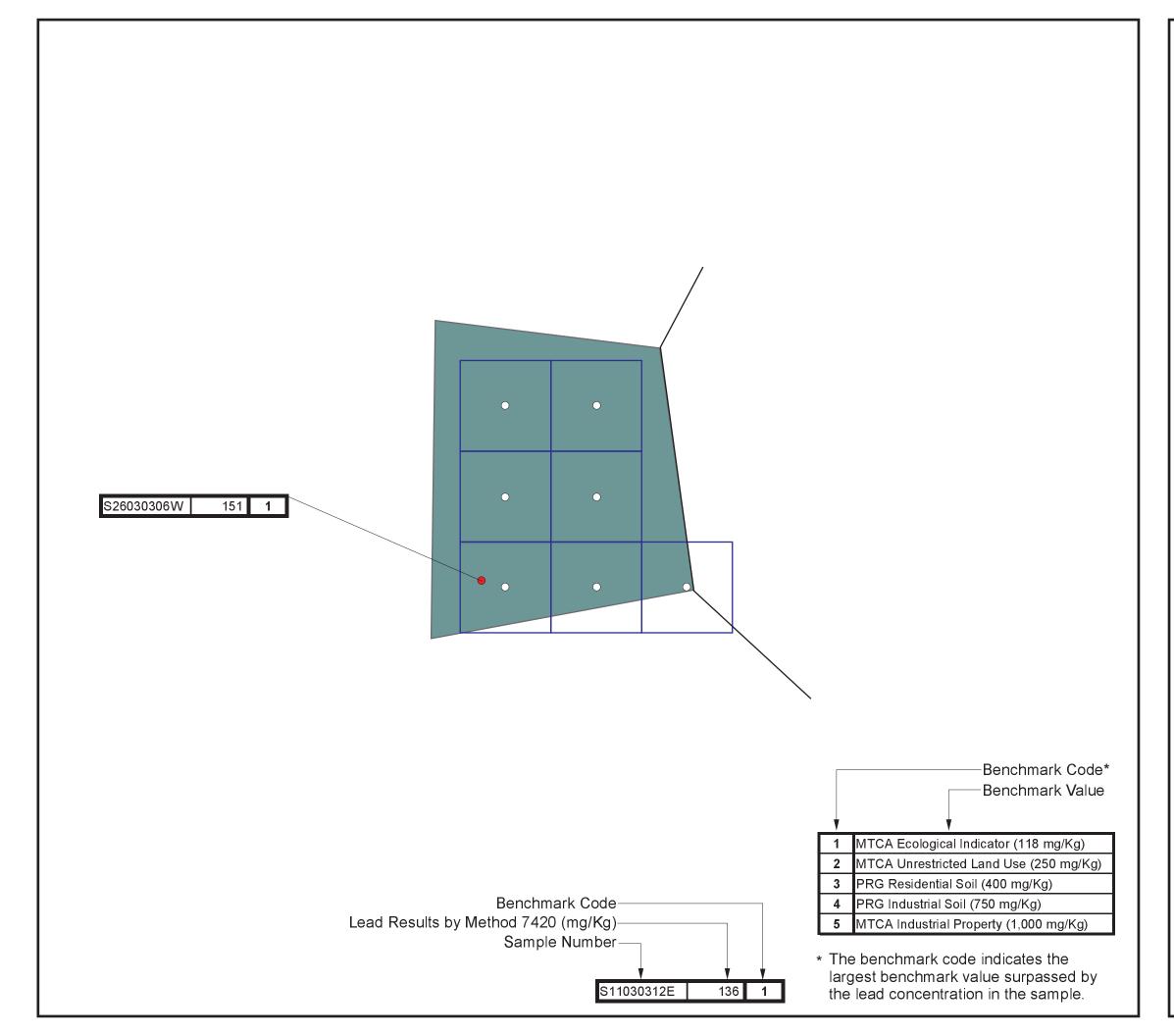




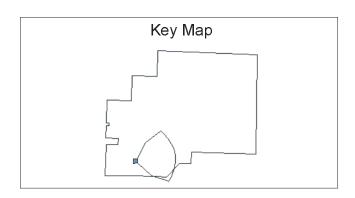

Camp Bonneville

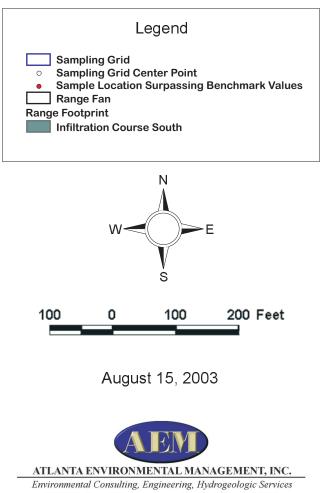
Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

25 Meter and Machine Gun Range Lead Results Greater than Benchmark Values (mg/Kg)

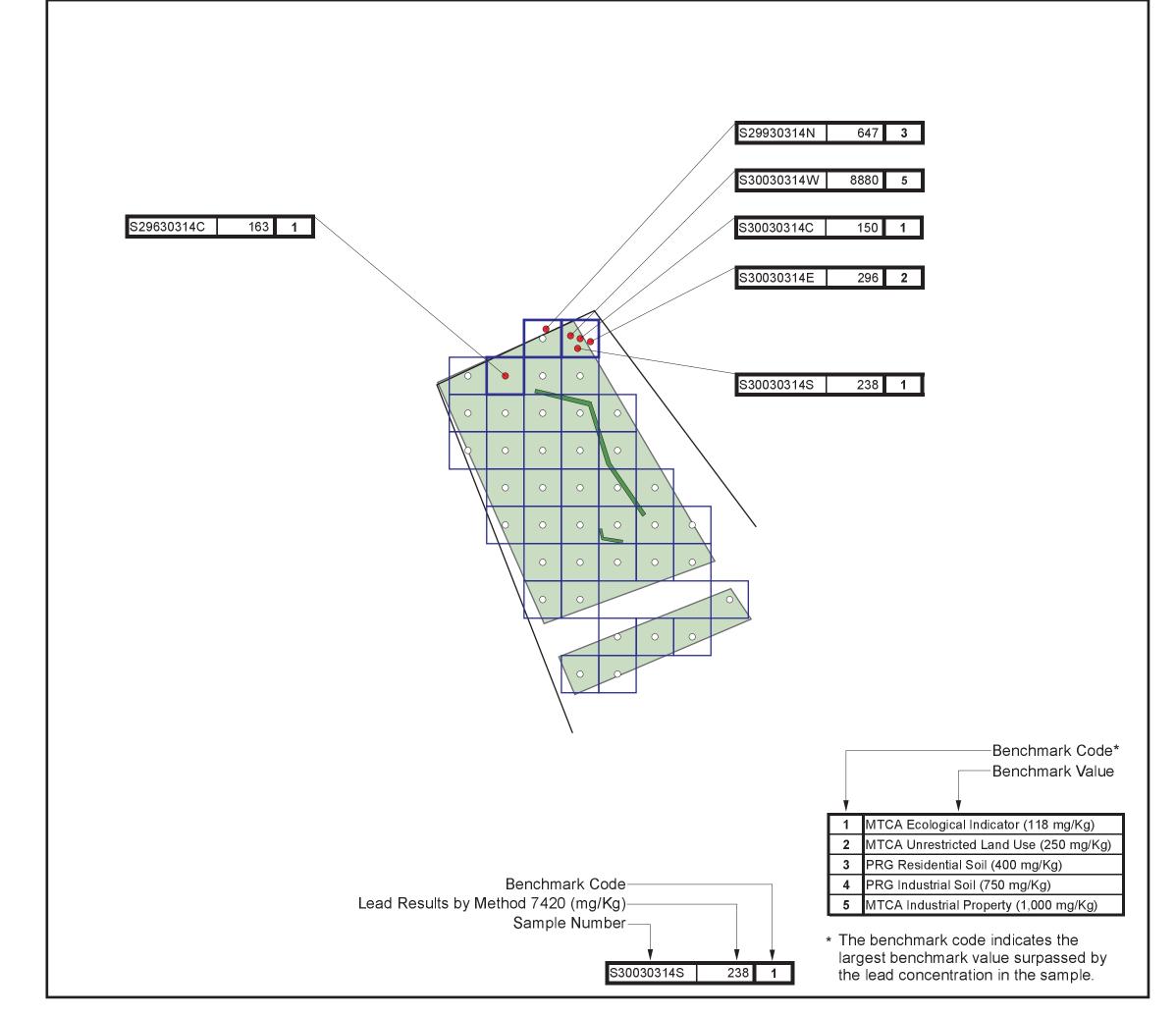


August 15, 2003

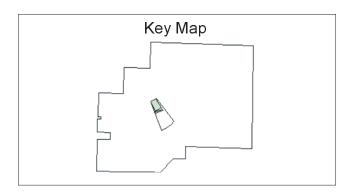


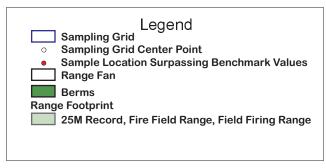


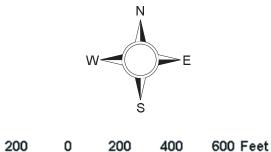
Camp Bonneville


Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Infiltration Course South Lead Results Greater than Benchmark Values (mg/Kg)


2580 Northeast Expressway • Atlanta, Georgia 30345 Office (404) 329-9006 • Fax (404) 329-2057




Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

25M Record Fire Field Range Field Firing Range Lead Results Greater than Benchmark Values (mg/Kg)

August 15, 2003

APPENDIX A

Tables of Sampling Results

Site Investigation Report Small Arms Ranges and Demolition Areas 2 and 3 Camp Bonneville, Vancouver, Washington DRAFT FINAL – September 25, 2003

INDEX TO APPENDIX A

TABLE

A-1	Close Combat Range – Lead Samples
A-2	25-Meter M60 Range/Pistol Range – Lead Samples
A-3	Sub Machine Gun Range – Lead Samples
A-4	TF Range – Lead Samples
A-5	Rifle Ranges 1 and 2 – Lead Samples
A-6	Field Fire Rifle Ranges 1 and 2 – Lead Samples
A-7	Infiltration Course North – Lead Samples
A-8	Field Firing Ranges 1 and 2 and Pistol Range – Lead Samples
A-9	1,000-Foot Range, 1,000-Foot Machine Gun Range and Moving Target Range – Lead Samples
A-10	Combat Pistol Range – Lead Samples
A-11	Machine Gun Range (South) – Lead Samples
A-12	Machine Gun Range (North) – Lead Samples
A-13	M31 Sub-Caliber Ranges 1 and 2 – Lead Samples
A-14	25-Meter and Machine Gun Range – Lead Samples
A-15	Infiltration Course South – Lead Samples
A-16	25M Record Fire Field Range, Field Firing Range – Lead Samples
A-17	Undocumented Pistol Range – Lead Samples
A-18	Background Samples - Lead
A-19	Randomly Selected Firing Range Grid and Background Samples – Priority Pollutant Metals by Method 6010
A-20	Demolition Area 2 Samples – Priority Pollutant Metals by Method 6010
A-21	Demolition Area 3 Samples – Priority Pollutant Metals by Method 6010
A-22	Demolition Area 3 Samples – Water Priority Pollutant Metals by Method 6010
A-23	25-Meter M60 Range/Pistol Range – Muzzle Blast Zone Samples
A-24	TF Range – Muzzle Blast Zone Samples
A-25	Rifle Ranges 1 and 2 – Muzzle Blast Zone Samples
A-26	Field Fire Rifle Range 1 and 2 – Muzzle Blast Zone Samples
A-27	Infiltration Course North – Muzzle Blast Zone Samples

Site Investigation Report Small Arms Ranges and Demolition Areas 2 and 3 Camp Bonneville, Vancouver, Washington DRAFT FINAL – September 25, 2003

INDEX TO APPENDIX A (CONTINUED)

TABLE

- A-29 Combat Pistol Range Muzzle Blast Zone Samples
- A-30 M31 Sub-Caliber Ranges 1 and 2 Muzzle Blast Zone Samples
- A-31 25-Meter and Machine Gun Range Muzzle Blast Zone Samples
- A-32 Infiltration Course South Muzzle Blast Zone Samples
- A-33 25M Record Fire Field Range, Field Firing Range Muzzle Blast Zone Samples
- A-34 Undocumented Pistol Range Muzzle Blast Zone Samples
- A-35 Demolition Area 2 Samples
- A-36 Demolition Area 3 Samples
- A-37 Demolition Area 3 Samples Water

Sample	Sample	Lead	Sample	Sample	Lead	Sample	Sample	Lead
Point ID	Number	(mg/Kg)	Point ID	Number	(mg/Kg)	Point ID	Number	(mg/Kg)
	S00130305C	<5.2		S00930305C	9.8	CLOSE COMB-17	S01730305C	10.7
	S00130305N	6.2		S00930305N	7.1		S01730305N	23.9
CLOSE_COMB-1	S00130305S	7.2	CLOSE_COMB-9	S00930305S	10.3		S01730305S	11.7
	S00130305E	10.7		S00930305E	11.6		S01730305E	14.2
	S00130305W	9.0		S00930305W	16.5		S01730305W	14.1
	S00230305C	7.5		S01030305C	9.4		S01830305C	14.9
	S00230305N	8.7		S01030305N	10.5		S01830305N	9.4
CLOSE_COMB-2	S00230305S	7.8	CLOSE_COMB-10	S01030305S	10.5	CLOSE_COMB-18	S01830305S	16.5
	S00230305E	9.2		S01030305E	8.3		S01830305E	15.9
	S00230305W	19		S01030305W	11.6		S01830305W	16.3
	S00330304C	16.9		S01130304C	9.2		S01930304C	8.5
	S00330304N	19.8		S01130304N	9.9		S01930304N	< 5
CLOSE_COMB-3	S00330304S	15	CLOSE_COMB-11	S01130304S	12.8	CLOSE_COMB-19	S01930304S	7.9
	S00330304E	17.2		S01130304E	11.6	-	S01930304E	7.9
	S00330304W	23.7		S01130304W	8.7		S01930304W	< 5.2
	S00430304C	15.7		S01230304C	21.7	CLOSE_COMB-20	S02030304C	14.4
	S00430304N	19.4	CLOSE_COMB-12	S01230304N	10.2		S02030304N	19.2
CLOSE_COMB-4	S00430304S	16.3		S01230304S	16.3		S02030304S	17.6
	S00430304E	17.7		S01230304E	15.7		S02030304E	18.7
	S00430304W	18		S01230304W	16.4		S02030304W	17.6
	S00530305C	10.9		S01330305C	12.1		S02130303C	15.5
	S00530305N	9.0		S01330305N	5.9		S02130303N	12.9
CLOSE_COMB-5	S00530305S	10.4	CLOSE_COMB-13	S01330305S	< 5.3	CLOSE_COMB-21	S02130303S	12.1
_	S00530305E	11.3		S01330305E	16		S02130303E	18.8
	S00530305W	9.8		S01330305W	10.8		S02130303W	19.1
	S00630305C	8.9		S01430305C	7.1		S02230303C	21.7
	S00630305N	6.9		S01430305N	88.3		S02230303N	14.5
CLOSE_COMB-6	S00630305S	9.1	CLOSE_COMB-14	S01430305S	8.3	CLOSE_COMB-22	S02230303S	18.6
	S00630305E	14.6		S01430305E	12.6		S02230303E	22.2
	S00630305W	9.7		S01430305W	10.6		S02230303W	15.1
	S00730304C	19.7		S01530304C	9.4		S02330303C	15.4
	S00730304N	16.8		S01530304N	9.4		S02330303N	18.4
CLOSE_COMB-7	S00730304S	20.4	CLOSE_COMB-15	S01530304S	9.6	CLOSE_COMB-23	S02330303S	16.1
—	S00730304E	12.7		S01530304E	7.8		S02330303E	19.8
	S00730304W	9.0		S01530304W	< 5.4		S02330303W	16.7
	S00830304C	13.4		S01630304C	12		S02430303C	14
	S00830304N	11.7		S01630304N	16		S02430303N	12.6
CLOSE_COMB-8	S00830304S	11.1	CLOSE_COMB-16	S01630304S	14.5	CLOSE_COMB-24	S02430303S	17.2
_	S00830304E	19.5		S01630304E	16.7	1 –	S02430303E	15.3
	S00830304W	12.3		S01630304W	13.7	1	S02430303W	21.4

Table A-1Close Combat Range - Lead Samples

Table A-225-Meter M60 Range/Pistol Range - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)
	S02530304C	29.9
	S02530304N	108
25M_M60-1	S02530304S	21.9
_	S02530304E	64.6
	S02530304W	21.1
	S02630304C	21.8
	S02630304N	21.1
25M_M60-2	S02630304S	22.2
	S02630304E	11.8
	S02630304W	24.8
	S02730304C	37.2
	S02730304N	136
25M_M60-3	S02730304S	34.6
	S02730304E	219
	S02730304W	35.3
	S02830304C	68.3
	S02830304N	13.8
25M_M60-4	S02830304S	44.9
	S02830304E	8.7
	S02830304W	33.7

Table A-3Sub Machine Gun Range - Lead Samples

Sample	Sample	Lead
Point ID	Number	(mg/Kg)
	S02930303C	9.2
	S02930303N	12.5
SUB_MACHINE-1	S02930303S	12.2
	S02930303E	9.1
	S02930303W	6.8
	S03030303C	7.0
	S03030303N	8.9
SUB_MACHINE-2	S03030303S	18.4
	S03030303E	6.9
	S03030303W	10.0
	S03130303C	10.9
	S03130303N	< 4.4
SUB_MACHINE-3	S03130303S	10.3
	S03130303E	10.9
	S03130303W	10.0
	S03230303C	9.2
	S03230303N	10.9
SUB_MACHINE-4	S03230303S	11.6
	S03230303E	9.0
	S03230303W	6.8
	S03330303C	15.4
	S03330303N	7.0
SUB_MACHINE-5	S03330303S	12.5
	S03330303E	9.4
	S03330303W	11.4
	S03430303C	13.1
	S03430303N	10.4
SUB_MACHINE-6	S03430303S	11.2
	S03430303E	10.3
	S03430303W	10.0
	S03530303C	6.3
	S03530303N	8.8
SUB_MACHINE-7	S03530303S	8.7
	S03530303E	9.3
	S03530303W	9.3

Table A-4					
TF Range - Lead Samples					

Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)
	S03630307C	18.2		S04030307C	16.0
	S03630307N	15.4	1	S04030307N	13.8
TF-1	S03630307S	30.2	TF-5	S04030310S	16.4
	S03630307E	17.5		S04030307E	12.4
	S03630307W	9.4		S04030307W	18.3
	S03730307C	10.2		S04130307C	12.9
	S03730307N	12.5		S04130307N	23.4
TF-2	S03730307S	< 5.5	TF-6	S04130307S	23.4
	S03730307E	10.2		S04130307E	10.6
	S03730307W	9.5		S04130307W	19.6
	S03830307C	11.5		S04230307C	15.2
	S03830310N	20.1		S04230307N	12.2
TF-3	S03830307S	11.7	TF-7	S04230307S	13.7
	S03830307E	12.0		S04230307E	13.7
	S03830307W	10.9		S04230307W	11.7
	S03930307C	12.3		S04330307C	10.9
	S03930307N	11.9		S04330307N	8.7
TF-4	S03930307S	18.2	TF-8	S04330307S	9.3
	S03930307E	14.2		S04330307E	12.9
	S03930307W	12.9		S04330307W	12.4

Table A-5Rifle Ranges 1 and 2 - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)
	S04430225C	< 10.5		S05130225C	11.3		S05830225C	67.0
	S04430225N	< 10.1		S05130225N	25.5		S05830225N	108
RIFLE_RANGE-1	S04430225S	11.4	RIFLE_RANGE-8	S05130225S	10.5	RIFLE_RANGE-15	S05830225S	25.4
	S04430225E	10.7		S05130225E	52.8		S05830225E	24.6
	S04430225W	11.8		S05130225W	24.2		S05830225W	41.8
	S04530225C	25.9		S05230225C	37.3		S05930225C	< 3.9
	S04530225N	19.2		S05230225N	35.4		S05930225N	25.0
RIFLE_RANGE-2	S04530225S	18.4	RIFLE_RANGE-9	S05230225S	19.5	RIFLE_RANGE-16	S05930225S	12.5
	S04530225E	16.2		S05230225E	51.6		S05930225E	< 3.7
	S04530225W	21.9		S05230225W	18.7		S05930225W	5.8
	S04630225C	17.5		S05330225C	16.1		S06030226C	17.0
	S04630225N	17.3		S05330225N	15.5		S06030226N	21.3
RIFLE_RANGE-3	S04630225S	15.5	RIFLE_RANGE-10	S05330225S	0225S 80.7 RIFLE_RAM	RIFLE_RANGE-17	S06030226S	19.3
	S04630225E	15.6		S05330225E	13.6	-	S06030226E	18.9
	S04630225W	6.8		S05330225W	22.7		S06030226W	69.9
	S04730225C	10.7		S05430225C	15.6	RIFLE_RANGE-18	S06130226C	8.1
	S04730225N	15.6		S05430225N	10.5		S06130226N	11.1
RIFLE_RANGE-4	S04730225S	11.2	RIFLE_RANGE-11	S05430225S	49.3		S06130226S	15.1
	S04730225E	13.2		S05430225E	26.0		S06130226E	12.0
	S04730225W	11.2		S05430225W	16.2		S06130226W	< 5.9
	S04830225C	32.9		S05530225C	16.4		S06230226C	17.2
	S04830225N	22.5		S05530225N	32.8		S06230226N	52.1
RIFLE_RANGE-5	S04830225S	55.8	RIFLE_RANGE-12	S05530225S	15.3	RIFLE_RANGE-19	S06230226S	19.2
	S04830225E	34.4		S05530225E	6.9		S06230226E	14.4
	S04830225W	21.3		S05530225W	14.2		S06230226W	14.2
	S04930225C	27.9		S05630226C	8.7		S06330226C	12.5
	S04930225N	31.8		S05630226N	5.3		S06330226N	14.2
RIFLE_RANGE-6	S04930225S	17.1	RIFLE_RANGE-13	S05630226S	10.3	RIFLE_RANGE-20	S06330226S	6.5
	S04930225E	21.6		S05630226E	7.9		S06330226E	6.4
	S04930225W	39.4		S05630226W	14.5		S06330226W	34.8
	S05030225C	17.0		S05730226C	9.0		S06430226C	21.1
	S05030225N	24.4		S05730226N	19.3	RIFLE RANGE-21	S06430226N	5.8
RIFLE_RANGE-7	S05030225S	16.3	RIFLE_RANGE-14	S05730226S	14.0		S06430226S	17.4
	S05030225E	31.4		S05730226E	18.9		S06430226E	290
	S05030225W	29.6		S05730226W	11.0		S06430226W	14.0

Table A-5Rifle Ranges 1 and 2 - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)
	S06530226C	< 5.0	-	S06930226C	22.4		S07330226C	273
	S06530226N	17.8		S06930226N	3.6		S07330226N	1690
RIFLE_RANGE-22	S06530226S	4.9	RIFLE_RANGE-26	S06930226S	21.2	RIFLE_RANGE-30	S07330226S	1750
	S06530226E	6.7		S06930226E	9.5		S07330226E	1850
	S06530226W	5.6		S06930226W	< 4.5		S07330226W	4330
	S06630226C	11.7		S07030226C	7.4		S07430226C	199
	S06630226N	11.2		S07030226N	11.3		S07430226N	94.5
RIFLE_RANGE-23	S06630226S	19.1	RIFLE_RANGE-27	S07030226S	29.2	RIFLE_RANGE-31	S07430226S	96.8
	S06630226E	130		S07030226E	21.6		S07430226E	180
	S06630226W	12.2		S07030226W	8.3		S07430226W	1770
	S06730226C	92.3		S07130226C	9.3	RIFLE_RANGE-32	S07530226C	82.4
	S06730226N	9.6		S07130226N	87.6		S07530226N	59.1
RIFLE_RANGE-24	S06730226S	36.0	RIFLE_RANGE-28	S07130226S	< 4.7		S07530226S	417
	S06730226E	108		S07130226E	95.8		S07530226E	670
	S06730226W	132		S07130226W	5.6		S07530226W	220
	S06830226C	51.3		S07230226C	65.0			
	S06830226N	145		S07230226N	137			
RIFLE_RANGE-25	S06830226S	212	RIFLE_RANGE-29	S07230226S	23.0			
	S06830226E	172		S07230226E	23.0			
	S06830226W	15.2		S07230226W	74.8			

Table A-6Field Fire Rifle Ranges 1 and 2 - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)
	S07630228C	6.4		S08230228C	18.7		S08830228C	17.1
	S07630228N	< 5		S08230228N	15.2		S08830228N	8.2
FIELD_FIRING_RIFLE-1	S07630228S	7.4	FIELD_FIRING_RIFLE-7	S08230228S	20.8	FIELD_FIRING_RIFLE-13	S08830228S	28.2
	S07630228E	11.2		S08230228E	19.6		S08830228E	5.4
	S07630228W	8.6		S08230228W	12.3		S08830228W	38.8
	S07730301C	23.6		S08330228C	10.7		S08930228C	8
	S07730301N	14.2		S08330228N	11.1		S08930228N	10.8
FIELD_FIRING_RIFLE-2	S07730301S	17.5	FIELD_FIRING_RIFLE-8	S08330228S	11.5	FIELD_FIRING_RIFLE-14	S08930228S	7.9
	S07730301E	23.6		S08330228E	8.9		S08930228E	2300
	S07730301W	7.4		S08330228W	6.1		S08930228W	9.3
	S07830228C	48.8		S08430228C	26.2		S09030228C	8.4
	S07830228N	16.8		S08430228N	19.0		S09030228N	9.1
FIELD_FIRING_RIFLE-3	S07830228S	14.6	FIELD_FIRING_RIFLE-9	S08430228S	5.1	FIELD_FIRING_RIFLE-15	S09030228S	20.6
	S07830228E	13.5		S08430228E	9.4		S09030228E	44.4
	S07830228W	11.2		S08430228W	10.2		S09030228W	7.4
	S07930228C	11.0		S08530228C	< 4.6		S09130228C	59.1
	S07930228N	9.4		S08530228N	10.7		S09130228N	23.1
FIELD_FIRING_RIFLE-4	S07930228S	15.4	FIELD_FIRING_RIFLE-10	S08530228S	6	FIELD_FIRING_RIFLE-16	S09130228S	95.4
	S07930228E	16.2		S08530228E	7.7		S09130228E	17.7
	S07930228W	< 5.2		S08530228W	8.5		S09130228W	8.5
	S08030228C	97		S08630228C	13.4		S09230228C	32.3
	S08030228N	7.4		S08630228N	10.1		S09230228N	< 4.4
FIELD_FIRING_RIFLE-5	S08030228S	23.7	FIELD_FIRING_RIFLE-11	S08630228S	61	FIELD_FIRING_RIFLE-17	S09230228S	37
	S08030228E	69.9		S08630228E	6.9		S09230228E	53.3
	S08030228W	11.2		S08630228W	7.5		S09230228W	69.3
	S08130301C	62.4		S08730228C	6.8		S09330301C	35.6
FIELD_FIRING_RIFLE-6	S08130301N	15.2]	S08730228N	11.7		S09330301N	23.6
	S08130301S	7.4	FIELD_FIRING_RIFLE-12	S08730228S	19.1	FIELD_FIRING_RIFLE-18	S09330301S	47.4
	S08130301E	6.1]	S08730228E	7.6		S09330301E	22.5
	S08130301W	29.4		S08730228W	18.7		S09330301W	78.5

Table A-6Field Fire Rifle Ranges 1 and 2 - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)
	S09430228C	114
	S09430228N	29.3
FIELD_FIRING_RIFLE-19	S09430228S	15
	S09430228E	149
	S09430228W	14.9
	S09530228C	25.9
	S09530228N	17.7
FIELD_FIRING_RIFLE-20	S09530228S	9.4
	S09530228E	8.1
	S09530228W	29.8
	S09630301C	52.3
	S09630301N	23.8
FIELD_FIRING_RIFLE-21	S09630301S	13.9
	S09630301E	11.2
	S09630301W	24.7
	S09730301C	5.8
	S09730301N	47.3
FIELD_FIRING_RIFLE-22	S09730301S	8.2
	S09730301E	9
	S09730301W	52.6

Table A-7
Infiltration Course North - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)
	S09830301C	15.3
	S09830301N	12.1
INFIL_NORTH-1	S09830301S	12.1
	S09830301E	21.8
	S09830301W	12.9
	S09930301C	4.9
	S09930301N	14.2
INFIL_NORTH-2	S09930301S	10.2
	S09930301E	44.1
	S09930301W	18.5
	S10030301C	22.4
	S10030301N	9.0
INFIL_NORTH-3	S10030301S	15.4
	S10030301E	10.9
	S10030301W	< 3.7
	S10130301C	19.4
	S10130301N	20.1
INFIL_NORTH-4	S10130301S	< 3.8
	S10130301E	14.3
	S10130301W	24.6

Sample	Sample	Lead	Sample	Sample	Lead
Point ID	Number	(mg/Kg)	Point ID	Number	(mg/Kg)
	S10230312C	9.6		S10930317C	21
	S10230312N	8.8		S10930317N	16
FIELD_FIRING-1	S10230312S	11.2	FIELD_FIRING-8	S10930317S	25.9
	S10230312E	9.9		S10930317E	12.7
	S10230312W	10.1		S10930317W	13.5
	S10330312C	8.6		S11030312C	13.1
	S10330312N	6.9		S11030312N	11.8
FIELD_FIRING-2	S10330312S	9.9	FIELD_FIRING-9	S11030312S	17.2
	S10330312E	8.1		S11030312E	136
	S10330312W	13.8		S11030312W	19.6
	S10430317C	68.1		S11130312C	13.9
	S10430317N	17.1		S11130312N	13.7
FIELD_FIRING-3	S10430317S	259	FIELD_FIRING-10	S11130312S	20.3
	S10430317E	154	_	S11130312E	18.7
	S10430317W	10.4		S11130312W	20.3
	S10530312C	11.5		S11230312C	10.6
	S10530312N	11.9		S11230312N	11.7
FIELD_FIRING-4	S10530312S	15.2	FIELD_FIRING-11	S11230312S	20.4
	S10530312E	13.6		S11230312E	14.8
	S10530312W	13		S11230312W	13.8
	S10630312C	8.8		S11330312C	7150
	S10630312N	9.2		S11330312N	125
FIELD_FIRING-5	S10630312S	13.6	FIELD_FIRING-12	S11330312S	267
	S10630312E	11.7		S11330312E	728
	S10630312W	10.6		S11330312W	187
	S10730312C	17.7		S11430312C	15.8
	S10730312N	58.5		S11430312N	49
FIELD_FIRING-6	S10730312S	9.2	FIELD_FIRING-13	S11430312S	13.1
	S10730312E	13.9		S11430312E	24.6
	S10730312W	11.9		S11430312W	16
	S10830312C	9.2		S11530312C	10
	S10830312N	8.1		S11530312N	11.4
FIELD_FIRING-7	S10830312S	8.2	FIELD_FIRING-14	S11530312S	10.7
	S10830312E	5.8		S11530312E	10.5
	S10830312W	10.7		S11530312W	10.4

Table A-8Field Firing Ranges 1 and 2 and Pistol Range - Lead Samples

Table A-91,000-Foot Range, 1,000-Foot Machine Gun Range and Moving Target Range - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)
	S11630314C	6.3		S12330314C	871		S13030310C	9.3
	S11630314N	15.3		S12330314N	55.8		S13030310N	11.9
1000FT-1	S11630314S	< 4.9	1000FT-8	S12330314S	4560	1000FT-15	S13030310S	13.5
	S11630314E	14.5		S12330314E	198		S13030310E	12.2
	S11630314W	16.5		S12330314W	566		S13030310W	17.4
	S11730314C	16.4		S12430314C	16		S13130310C	12.6
	S11730314N	16.6		S12430314N	25.3		S13130310N	22.1
1000FT-2	S11730314S	15.5	1000FT-9	S12430314S	24.8	1000FT-16	S13130310S	14.3
	S11730314E	16.7		S12430314E	14.2		S13130310E	7.4
	S11730314W	13.8		S12430314W	17.4		S13130310W	13.3
	S11830314C	10		S12530314C	15.5		S13230310C	17
	S11830314N	9.3		S12530314N	10		S13230310N	63.3
1000FT-3	S11830314S	22.6	1000FT-10	S12530314S	25	1000FT-17	S13230310S	13.7
	S11830314E	7.8		S12530314E	12.6		S13230310E	9.7
	S11830314W	9.1		S12530314W	11.6	-	S13230310W	13.6
	S11930314C	3450	1000FT-11	S12630314C	< 4.8		S13330310C	7.5
	S11930314N	10200		S12630314N	8.8	1000FT-18	S13330310N	14.3
1000FT-4	S11930314S	438		S12630314S	11.4		S13330310S	15.2
	S11930314E	49.6		S12630314E	10.9		S13330310E	10.4
	S11930314W	2350		S12630314W	16		S13330310W	11.4
	S12030314C	58		S12730310C	30.1		S13430310C	9.9
	S12030314N	14.8		S12730310N	10.8		S13430310N	22.8
1000FT-5	S12030314S	12.5	1000FT-12	S12730310S	19.6	1000FT-19	S13430310S	15
	S12030314E	12.7		S12730310E	12.4		S13430310E	11.7
	S12030314W	17.2		S12730310W	15.5		S13430310W	6.2
	S12130314C	10.1		S12830310C	32.2		S13530310C	16.6
	S12130314N	11.7		S12830310N	11.5		S13530310N	11.3
1000FT-6	S12130314S	12.3	1000FT-13	S12830310S	19.8	1000FT-20	S13530310S	11.9
	S12130314E	11.5		S12830310E	18.6		S13530310E	12.4
	S12130314W	9.9		S12830310W	39.6		S13530310W	22.9
	S12230314C	21.5		S12930310C	15.3		S13630310C	12.1
	S12230314N	56.7		S12930310N	14.8		S13630310N	10
1000FT-7	S12230314S	4.7	1000FT-14	S12930310S	15.2	1000FT-21	S13630310S	9.4
	S12230314E	63.7		S12930310E	13.1		S13630310E	10.4
	S12230314W	10.1		S12930310W	7.5		S13030310C S13030310N S13030310E S13030310E S13030310E S13030310E S13030310E S13030310E S13030310E S13130310C S13130310C S13130310E S13130310E S13130310E S13230310C S13230310C S13230310C S13230310E S13230310E S13230310E S13330310C S13330310C S13330310E S13330310E S13330310E S13330310E S13430310C S13430310C S13430310E S13430310E S13430310E S13430310C S13530310C S13530310C S13530310C S13530310C S13530310E S13530310E S13530310E S13630310C S13630310C S13630310C S13630310C S1	13.8

Table A-91,000-Foot Range, 1,000-Foot Machine Gun Range and Moving Target Range - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)
	S13730310C	29.8		S14030310C	10		S14330310C	334
	S13730310N	39.1		S14030310N	48.3		S14330310N	279
1000FT-22	S13730310S	25.5	1000FT-25	S14030310S	13.4	1000FT-28	S14330310S	7610
	S13730310E	14.9		S14030310E	13.9		S14330310E	2350
	S13730310W	26.6		S14030310W	28.1		S14330310W	210
	S13830310C	22.8		S14130310C	63.4		S14430310C	51.9
	S13830310N	20.6	1000FT-26	S14130310N	115	1000FT-29	S14430310N	15.1
1000FT-23	S13830310S	15.2		S14130310S	98.4		S14430310S	19.2
	S13830310E	45		S14130310E	282		S14430310E	216
	S13830310W	20.1		S14130310W	172		S14330310E S14330310W S14430310C S14430310N S14430310S S14430310E S14430310W S14430310C S14430310C S14430310E S14430310W S14430310W S14430310W S14430310W S14430310W S14430310W S14530310C S14530310N	109
	S13930310C	90.7		S14230310C	241		S14530310C	120
	S13930310N	128		S14230310N	91.7		S14530310N	115
1000FT-24	S13930310S	28.2	1000FT-27	S14230310S	346	1000FT-30	S14530310S	96.4
	S13930310E	21.2		S14230310E	68.5		S14530310E	170
	S13930310W	146		S14230310W	136		S14530310W	106

Table A-10Combat Pistol Range - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)
	S14630313C	17.2		S15230312C	19.8		S15830313C	21.4
	S14630313N	15.5		S15230312N	14.2		S15830313N	25.3
COMB_PISTOL-1	S14630313S	23.3	COMB_PISTOL-7	S15230312S	27.6	COMB_PISTOL-13	S15830313S	24.2
_	S14630313E	16.7		S15230312E	20.3		S15830313E	35.5
	S14630313W	33.3		S15230312W	12.5		S15830313W	116
	S14730312C	16.0		S15330313C	12		S15930313C	18.1
	S14730312N	39.5	l l	S15330313N	12.6		S15930313N	54
COMB_PISTOL-2	S14730312S	16.3	COMB_PISTOL-8	S15330313S	10.1	COMB_PISTOL-14	S15930313S	22.2
	S14730312E	24.1		S15330313E	12.7		S15930313E	16.9
	S14730312W	31.7		S15330313W	11.2		S15930313W	11.3
	S14830313C	16.2		S15430313C	11		S16030313C	11.5
	S14830313N	15.9		S15430313N	17.7	COMB_PISTOL-15 S1	S16030313N	12
COMB_PISTOL-3	S14830313S	15.7	COMB_PISTOL-9	S15430313S	10.2		S16030313S	19.5
	S14830313E	43		S15430313E	12.3		S16030313E	17
	S14830313W	15.9		S15430313W	8.7		S16030313S S16030313E S16030313W S16130313C S16130313N	785
	S14930312C	29.6		S15530313C	16.4		S16130313C	11.5
	S14930312N	15.5		S15530313N	12.2		S16130313N	39.3
COMB_PISTOL-4	S14930312S	81.8	COMB_PISTOL-10	S15530313S	20.5	COMB_PISTOL-16	S16130313S	9.5
	S14930312E	165		S15530313E	13.5		S16130313E	11.4
	S14930312W	58.5		S15530313W	15.3		S15830313C S15830313N S15830313S S15830313E S15830313W S15830313W S15930313C S15930313N S15930313S S15930313S S15930313E S15930313E S15930313W S16030313C S16030313S S16030313S S16030313S S16030313S S16030313S S16030313S S16030313C S16030313S S16130313C S16130313N S16130313N	11.3
	S15030313C	46.1		S15630313C	13.1		S16230313C	12.3
	S15030313N	17.2		S15630313N	14.3		S16230313N	9.2
COMB_PISTOL-5	S15030313S	16.8	COMB_PISTOL-11	S15630313S	15.2	COMB_PISTOL-17	S16230313S	12.2
	S15030313E	29.5		S15630313E	14.1		S16230313E	9.3
	S15030313W	33.1		S15630313W	15.9		S16230313W	12.8
	S15130312C	14.4		S15730313C	23.8			
	S15130312N	14.9		S15730313N	27.6			
COMB_PISTOL-6	S15130312S	23.2	COMB_PISTOL-12	S15730313S	14.4			
	S15130312E	13.4		S15730313E	20.5			
	S15130312W	22.9		S15730313W	35.5			

Table A-11Machine Gun Range (South) - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)
S16330317N	S16330317C	8		S16930317C	8.9		S17530318C	18.1
	S16330317N	19.5		S16930317N	9.9		S17530318N	12.7
	S16330317S	8	MG_NORTH-7	S16930317S	14	MG_NORTH-13	S17530318S	12.9
	S16330317E	8.8		S16930317E	10.3		S17530318E	12.1
	S16330317W	8.5		S16930317W	22		S17530318W	11.8
	S16430317C	21.2		S17030318C	16.3		S17630318C	10.3
	S16430317N	12		S17030318N	12.9		S17630318N	12
MG_NORTH-2	S16430317S	14.5	MG_NORTH-8	S17030318S	12.4	MG_NORTH-14	S17630318S	10.3
	S16430317E	13.1		S17030318E	14.9		S17630318E	11.7
	S16430317W	10.7		S17030318W	19.1		S17630318W	12
	S16530317C	14.4		S17130318C	12.9		S17730318C	11.5
	S16530317N	10.7		S17130318N	12.9		S17730318N	11.5
MG_NORTH-3	S16530317S	17.7	MG_NORTH-9	S17130318S	16.9	MG_NORTH-15	S17730318S	10.0
	S16530317E	13.5		S17130318E	14.9		S17730318E	11.5
	S16530317W	14.2		S17130318W	13.6		S17730318W	10.7
	S16630317C	6.9		S17230318C	11.4		S17830318C	10.6
	S16630317N	9.8		S17230318N	11.4		S17830318N	9.1
MG_NORTH-4	S16630317S	12.9	MG_NORTH-10	S17230318S	10.6	MG_NORTH-16	S17830318S	5.2
	S16630317E	7.4		S17230318E	11.9		S17830318E	6.9
	S16630317W	6.9		S17230318W	12		S17830318W	14.5
	S16730317C	21.8		S17330318C	10.9		S17930318C	13.4
	S16730317N	12.3		S17330318N	14.6		S17930318N	9.8
MG_NORTH-5	S16730317S	17.2	MG_NORTH-11	S17330318S	11.9	MG_NORTH-17	S17930318S	12.1
	S16730317E	135		S17330318E	9.8		S17930318E	14.5
	S16730317W	16.1		S17330318W	7.7		S17930318W	18.6
	S16830317C	24.1		S17430318C	10.7		S18030318C	13.1
	S16830317N	16.5		S17430318N	14.4	MG_NORTH-18	S18030318N	14.3
MG_NORTH-6	S16830317S	31.5	MG_NORTH-12	S17430318S	28.8		S18030318S	17.8
	S16830317E	27		S17430318E	19.2		S18030318E	15
	S16830317W	18.8		S17430318W	10.3		S18030318W	21.1

Table A-11Machine Gun Range (South) - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)
	S18130318C	13.1	- MG_NORTH-22	S18430318C	19.5		S18730318C	13.4
	S18130318N	27.8		S18430318N	15.2		S18730318N	18.9
MG_NORTH-19	S18130318S	15.6		S18430318S	24.1	MG_NORTH-25	S18730318S	18.5
	S18130318E	12.7		S18430318E	20.4		S18730318E	19.9
	S18130318W	15.9		S18430318W	13.1		S18730318W	16.4
	S18230318C	13.1		S18530318C	20.9	MG_NORTH-26	S18830318C	19
	S18230318N	14.1	MG_NORTH-23	S18530318N	18.2		S18830318N	19.6
MG_NORTH-20	S18230318S	11.6		S18530318S	15		S18830318S	13.5
	S18230318E	16.9		S18530318E	14.2		S18830318E	16.4
	S18230318W	20.9		S18530318W	14		S18830318W	14.8
	S18330318C	17		S18630318C	20.1			
	S18330318N	81		S18630318N	14.6			
MG_NORTH-21	S18330318S	18.1	MG_NORTH-24	S18630318S	18.1			
	S18330318E	13.8		S18630318E	423			
	S18330318W	18.8		S18630318W	19.4			

Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)
	S18930311C	63.4		S19630311C	158		S20330307C	16.5
	S18930311N	37.8		S19630311N	31.8		S20330307N	20
MG_SOUTH-1	S18930311S	26.5	MG_SOUTH-8	S19630311S	14.4	MG_SOUTH-15	S20330307S	12.3
	S18930311E	59.1		S19630311E	18.7		S20330307E	30.3
	S18930311W	26.6		S19630311W	50.2		S20330307W	15.3
	S19030311C	25.5		S19730311C	6.7		S20430307C	12.9
	S19030311N	20.2		S19730311N	10.4		S20430307N	22.9
MG_SOUTH-2	S19030311S	18.1	MG_SOUTH-9	S19730311S	12.9	MG_SOUTH-16	S20430307S	12.1
	S19030311E	22.7		S19730311E	6.1		S20430307E	10.3
	S19030311W	18.8		S19730311W	18.7		S20430307W	16.1
	S19130311C	54.7		S19830307C	13.9		S20530311C	13.4
	S19130311N	25.7		S19830307N	12.5		S20530311N	7.6
MG_SOUTH-3	S19130311S	19.3	MG_SOUTH-10	S19830307S	10.2	MG_SOUTH-17	S20530311S	62.8
	S19130311E	17.8		S19830307E	10.8		S20530311E	19.5
	S19130311W	17.8		S19830307W	27.5		S20530311W	52.2
	S19230311C	14.4		S19930307C	17.5		S20630311C	19.6
	S19230311N	23.3	MG_SOUTH-11	S19930307N	24.4	 MG_SOUTH-18	S20630311N	26.7
MG_SOUTH-4	S19230311S	14.2		S19930307S	18.4		S20630311S	17.8
	S19230311E	15.5		S19930307E	17.8		S20630311E	20
	S19230311W	25.9		S19930307W	13.7		S20630311W	18.9
	S19330311C	11.9		S20030307C	14.2		S20730311C	15.9
	S19330311N	17.1		S20030307N	12.2		S20730311N	13.4
MG_SOUTH-5	S19330311S	16.8	MG_SOUTH-12	S20030307S	10.5	MG_SOUTH-19	S20730311S	22.5
	S19330311E	20.7		S20030307E	13.2		S20730311E	34.9
	S19330311W	22.1		S20030307W	15.6		S20730311W	22
	S19430307C	16.1		S20130307C	23		S20830307C	13.2
	S19430307N	21.5		S20130307N	13.6		S20830307N	12.8
MG_SOUTH-6	S19430307S	11.5	MG_SOUTH-13	S20130307S	9.6	MG_SOUTH-20	S20830307S	12
	S19430307E	24.6		S20130307E	7		S20830307E	12
	S19430307W	14.7		S20130307W	< 5.7		S20830307W	11.7
	S19530307C	18		S20230307C	13.8		S20930311C	22.8
	S19530307N	44.6		S20230307N	10.4		S20930311N	23.6
MG_SOUTH-7	S19530307S	31	MG_SOUTH-14	S20230307S	11.6	MG_SOUTH-21	S20930311S	23.6
	S19530307E	13.6		S20230307E	20.8		S20930311E	14.1
	S19530307W	25.9		S20230307W	11.9		Number S20330307C S20330307S S20330307E S20330307E S20330307E S20330307E S20330307C S20330307C S20430307C S20530311C S20530311E S20630311C S20630311C S20630311C S20630311C S20630311C S20630311E S20630311C S20630311C S20630311C S20630311C S20730311E S20730311E S20730311N S20730311E S20730311E S20730311E S20830307C S20830307C S20830307S S20830307W S20830307W S20930311C S20930	22.5

Table A-12Machine Gun Range (North) - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)
	S21030311C	18.8		S21430311C	18.8		S21830311C	15.1
	S21030311N	17.5		S21430311N	17.5		S21830311N	25.2
MG_SOUTH-22	S21030311S	20.5	MG_SOUTH-26	S21430311S	20.5	MG_SOUTH-30	S21830311S	26.4
	S21030311E	21		S21430311E	21		S21830311E	23.6
	S21030311W	17.6		S21430311W	17.6		S21830311W	15.6
	S21130311C	15.3		S21530311C	15.3		S21930311C	38.3
	S21130311N	23.2		S21530311N	23.2		S21930311N	30.5
MG_SOUTH-23	S21130311S	13.5	MG_SOUTH-27	S21530311S	13.5	MG_SOUTH-31	S21930311S	107
	S21130311E	19.8		S21530311E	19.8		S21930311E	39.2
	S21130311W	16.6		S21530311W	16.6		S21930311N S21930311S S21930311E S21930311E S21930311W S22030311C S22030311N	53.2
	S21230311C	21.2		S21630311C	21.2		S22030311C	39.6
	S21230311N	20.8		S21630311N	20.8		S22030311N	19.6
MG_SOUTH-24	S21230311S	20.1	MG_SOUTH-28	S21630311S	20.1	MG_SOUTH-32	S22030311S	42.4
	S21230311E	22.9		S21630311E	22.9		S22030311E	21.2
	S21230311W	15.7		S21630311W	15.7		S22030311W	40.9
	S21330311C	19.8		S21730311C	19.8		S22130311C	72.8
	S21330311N	16	MG_SOUTH-29	S21730311N	16	MG_SOUTH-33	S22130311N	36.4
MG_SOUTH-25	S21330311S	18.1		S21730311S	18.1		S22130311S	22
	S21330311E	19		S21730311E	19		S22130311E	38.3
	S21330311W	23.7		S21730311W	23.7		S22130311W	86.2

Table A-12Machine Gun Range (North) - Lead Samples

Table A-13M31 Sub-Caliber Ranges 1 and 2 - Lead Samples

Sample Point ID	Sample Number	Lead (mg/kg)	Sample Point ID	Sample Number	Lead (mg/kg)	Sample Point ID	Sample Number	Lead (mg/kg)
	S22230319C	11.6		S22830320C	11.9		S23430319C	12.4
	S22230319N	14.1		S22830320N	12.3		S23430319N	15.4
SUB_CAL-1	S22230319S	8.4	SUB_CAL-7	S22830320S	11.6	SUB_CAL-13	S23430319S	17.7
	S22230319E	10.3		S22830320E	11.3		S23430319E	14.3
	S22230319W	20.5		S22830320W	10		S23430319W	14.5
	S22330319C	18.3		S22930320C	10.1		S23530320C	10.3
	S22330319N	8.5		S22930320N	12.7		S23530320N	13.3
SUB_CAL-2	S22330319S	9.5	SUB_CAL-8	S22930320S	18.2	SUB_CAL-14	S23530320S	9.1
	S22330319E	8.1		S22930320E	16.6		S23530320E	< 5
	S22330319W	5.5		S22930320W	14.2		S23530320W	9.6
	S22430319C	11.9		S23030320C	16.2		S23630319C	20.5
	S22430319N	12.4		S23030320N	11.1		S23630319N	11.2
SUB_CAL-3	S22430319S	14.1	SUB_CAL-9	S23030320S	13.3	SUB_CAL-15	S23630319S	14.6
	S22430319E	51.3		S23030320E	10.3		S23630319E	11.5
	S22430319W	12.8		S23030320W	8.2		S23630319W	14.0
	S22530319C	17		S23130320C	12.5		S23730319C	< 5.4
	S22530319N	14.5		S23130320N	12		S23730319N	12.1
SUB_CAL-4	S22530319S	10.1	SUB_CAL-10	S23130320S	11.6	SUB_CAL-16	S23730319S	< 4.9
	S22530319E	15.5		S23130320E	11.3		S23730319E	18.5
	S22530319W	9.5		S23130320W	10.5		S23730319W	< 5.9
	S22630319C	18.9		S23230320C	12.5		S23830319C	11.5
	S22630319N	15.5		S23230320N	11.2		S23830319N	12.4
SUB_CAL-5	S22630319S	13.8	SUB_CAL-11	S23230320S	12.6	SUB_CAL-17	S23830319S	10.3
	S22630319E	16.8		S23230320E	12.1		S23830319E	12.6
	S22630319W	17.8		S23230320W	8.8		S23830319W	10.2
	S22730319C	11.9		S23330320C	11.3		S23930319C	11
	S22730319N	11.2		S23330320N	6.6	SUB_CAL-18	S23930319N	13.6
SUB_CAL-6	S22730319S	7.8	SUB_CAL-12	S23330320S	16.6		S23930319S	9.9
	S22730319E	11.7		S23330320E	20.3		S23930319E	12.1
	S22730319W	8.8		S23330320W	< 4.7		S23430319E S23430319W S23530320C S23530320N S23530320S S23530320E S23530320E S23530320E S23530320E S23530320E S23530320W S23530320W S23530320W S23630319C S23630319N S23630319S S23630319W S23630319W S23730319C S23730319S S23730319S S23730319E S23730319E S23730319E S23730319E S23830319C S23830319S S23830319S S23830319E S23930319C S2	10.9

Table A-13M31 Sub-Caliber Ranges 1 and 2 - Lead Samples

Sample Point ID	Sample Number	Lead (mg/kg)	Sample Point ID	Sample Number	Lead (mg/kg)	Sample Point ID	Sample Number	Lead (mg/kg)	
	S24030319C	10.4		S24330319C	7.5		S24530319C	7.5	
	S24030319N	5.4		S24330319N	10.7		S24530319N	7.9	
SUB_CAL-19	S24030319S	8.8	SUB_CAL-22	S24330319S	11.4	SUB_CAL-24	S24530319S	10.7	
	S24030319E	8.0		S24330319E	< 5.2	-		S24530319E	11.4
	S24030319W	8.9		S24330319W	10.3		S24530319W	11.9	
	S24130319C	9.9		S24430319C	11.9	_	S24630318C	15.4	
	S24130319N	8.1		S24430319N	13.6		S24630318N	10.5	
SUB_CAL-20	S24130319S	9.1	SUB_CAL-23	S24430319S	13.8	SUB_CAL-25	S24630318S	8.2	
	S24130319E	13		S24430319E	13.3		S24630318E	16.9	
	S24130319W	8		S24430319W	13.5		S24630318W	8.9	
	S24230319C	9.7							
	S24230319N	13.8							
SUB_CAL-21	S24230319S	15.1							
	S24230319E	11.3							

S24230319W

8.5

Sample Point ID	Sample Number	Lead (mg/kg)	Sample Point ID	Sample Number	Lead (mg/kg)
TOILTD	S24730306C	(iiig/kg) 12	1 onit ib	S25430306C	
		12			26300
25M MG-1	S24730306N S24730306S	10.9	25M MG-8	S25430306N S25430306S	1330 964
25IM_ING-1			25IVI_IVIG-0		
	S24730306E	14.6 116		S25430306E	429
	S24730306W			S25430306W	4550
	S24830306C	16.2		S25530306C	204
	S24830306N	19	2514 140 0	S25530306N	64.3
25M_MG-2	S24830306S	43.6	25M_MG-9	S25530306S	62.1
	S24830306E	22.7		S25530306E	24.7
	S24830306W	9.6		S25530306W	10.8
	S24930306C	31.1		S25630306C	120
	S24930306N	19.1		S25630306N	75.3
25M_MG-3	S24930306S	29.3	25M_MG-10	S25630306S	40.4
	S24930306E	17.2		S25630306E	105
	S24930306W	18.2		S25630306W	64
	S25030306C	27.0		S25730306C	38.2
	S25030306N	17.2		S25730306N	708
25M_MG-4	S25030306S	25.2	25M_MG-11	S25730306S	13.0
	S25030306E	31.7		S25730306E	37.6
	S25030306W	12.2		S25730306W	114
	S25130306C	214		S25830306C	13.8
	S25130306N	2180		S25830306N	10.6
25M_MG-5	S25130306S	49.1	25M_MG-12	S25830306S	25
	S25130306E	61		S25830306E	6.1
	S25130306W	66.6		S25830306W	9.8
	S25230306C	85.9		S25930306C	7.6
	S25230306N	42.7		S25930306N	25.5
25M_MG-6	S25230306S	25.1	25M_MG-13	S25930306S	33.8
	S25230306E	28.5		S25930306E	11
	S25230306W	37.6		S25930306W	5.5
	S25330306C	45.4			
	S25330306N	31.6			
25M_MG-7	S25330306S	126			
	S25330306E	5.7			
	S25330306W	11.4			

Table A-1425-Meter and Machine Gun Range - Lead Samples

Table A-15Infiltration Course South - Lead Samples

Sample Point ID	Sample Number	Lead (mg/kg)
	S26030306C	14.7
	S26030306N	16.1
INFIL_SOUTH-1	S26030306S	15.8
	S26030306E	11.1
	S26030306W	151
	S26130306C	23.6
	S26130306N	17.5
INFIL_SOUTH-2	S26130306S	15.6
	S26130306E	14.6
	S26130306W	14.5
	S26230306C	15.4
	S26230306N	47.6
INFIL_SOUTH-3	S26230306S	18.2
	S26230306E	11.0
	S26230306W	16.1
	S26330306C	5.6
	S26330306N	9.4
INFIL_SOUTH-4	S26330306S	10.4
	S26330306E	105
	S26330306W	17.9
	S26430306C	10.0
	S26430306N	12.9
INFIL_SOUTH-5	S26430306S	19.1
	S26430306E	10.5
	S26430306W	10.0
	S26530306C	14.1
	S26530306N	13.4
INFIL_SOUTH-6	S26530306S	13.8
	S26530306E	14.8
	S26530306W	13.4
	S26630306C	17.1
	S26630306N	15.9
INFIL_SOUTH-7	S26630306S	23.9
	S26630306E	20.7
	S26630306W	15.7

Table A-1625M Record Fire Field Range, Field Firing Range - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)
	S26730317C	11.9		S27430315C	14.3		S28130315C	13.8
	S26730317N	8.3		S27430315N	9.1		S28130315N	19.9
25M_RECORD-1	S26730317S	9.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	25M_RECORD-15	S28130315S	15.7		
	S26730317E	8.9		S27430315E	12.9		S28130315E	10.3
	S26730317W	7.7		S27430315W	9.3		S28130315W	13.8
	S26830317C	11.8		S27530315C	9.6		S28230315C	5.9
	S26830317N	7.7		S27530315N	6.6		S28230315N	12.4
25M_RECORD-2	S26830317S	9.1	25M_RECORD-9	S27530315S	13.9	25M_RECORD-16	S28230315S	9.3
	S26830317E	11		S27530315E	55.2		S28230315E	6.7
	S26830317W	8.8		S27530315W	11.2		S28230315W	5.4
	S26930317C	7.6		S27630315C	8.8		S28330315C	12.7
	S26930317N	13.2		S27630315N	12		S28330315N	12.5
25M_RECORD-3	25M_RECORD-3 S26930317S	10.3	25M_RECORD-10	S27630315S	8.8	25M_RECORD-17	S28330315S	11.7
	S26930317E	10.5				S28330315E	9	
	S26930317W	8.2		S27630315W	9.8		S28330315W	11.4
	S27030317C	14.2		S27730315C	20.8		S28430315C	11.8
25M_RECORD-4	S27030317N	10.2	25M_RECORD-11	S27730315N	11.3	25M_RECORD-18	S28430315N	12
	S27030317S	12.2		S27730315S	9		S28430315S	9.3
	S27030317E	8.7		S27730315E	6.8		S28430315E	8.9
	S27030317W	10.5		S27730315W	8		S28430315W	10.9
	S27130317C	12.9		S27830315C	< 4.8		S28530315C	13.2
	S27130317N	21		S27830315N	10.6		S28530315N	77.5
25M_RECORD-5	S27130317S	15.9	25M_RECORD-12	S27830315S	10.4	25M_RECORD-19	S28530315S	44.9
	S27130317E	11.9		S27830315E	25.3		S28530315E	90.3
	S27130317W	7.4		S27830315W	< 5.2		S28530315W	84.5
	S27230317C	8.1		S27930315C	12.1		S28630315C	13.6
	S27230317N	12.7		S27930315N	7.6		S28630315N	22.7
25M_RECORD-6	S27230317S	10.4	25M_RECORD-13	S27930315S	21.5	25M_RECORD-20	S28630315S	17.5
	S27230317E	10.9		S27930315E	12.1		S28630315E	31.7
	S27230317W	11.5		S27930315W	12.4		S28630315W	25.9
	S27330317C	13		S28030315C	11.9		S28730315C	18.2
	S27330317N	9.5		S28030315N	15.2		S28730315N	18.6
25M_RECORD-7	S27330317S	10.5	25M_RECORD-14	S28030315S	22.9	25M_RECORD-21	S28730315S	10
	S27330317E	9.3		S28030315E	11.5		S28730315E	12.9
	S27330317W	10.5		S28020315W	#N/A		D-20 S28630315N S28630315S S28630315E S28630315E S28630315W S28730315C S28730315N D-21 S28730315S	23.6

Table A-1625M Record Fire Field Range, Field Firing Range - Lead Samples

Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)	Sample Point ID	Sample Number	Lead (mg/Kg)
1 on the			1 on the			i olitetib		12.9
Point ID Number (mg/Kg) Point ID Number (mg/Kg) 25M_RECORD-22 \$28830315C 11.5 \$29530314C 21.0 25M_RECORD-22 \$28830315S 12.0 \$29530314S 26.0 \$28830315E 15.2 \$29530314S 26.0 \$29530314E 32.8 \$28830315E 15.2 \$29530314E 32.8 \$29530314E 32.8 \$28830315W 12.3 \$29530314E 32.8 \$29530314E 32.8 \$28830315W 12.3 \$29530314E 32.8 \$29530314E 32.8 \$28930315D 11.6 \$29530314E 32.8 \$29530314E 163 \$28930315D 11.6 \$29630314E 33.9 \$29630314E 33.9 \$28930315D 13.6 \$29630314E 33.9 \$29630314E 33.9 \$28930315D 12.3 \$29030315D 23.2 \$29730314E 33.6 \$29030315D 23.4 \$2930315D 23.4 \$29730314E 33.06 \$29030315D 23.5 </td <td></td> <td></td> <td>12.3</td>			12.3					
25M RECORD-22	Point ID Number (mg/Kg) Point ID Number (mg/Kg) S28830315C 11.5 S28830315N 13.2 S28530314N 18.5 S28830315S 12.0 S28530314N 18.5 S29530314S 26.0 S28830315S 12.0 S28530314K 32.8 S29530314S 26.0 S28830315C 11.5 S29530314K 32.8 S29530314K 32.8 S28930315C 11 S29630314K 11.4 S29630314K 163 S28930315S 14 S29630314K 76.5 S29630314K 33.9 S28930315K 13.6 S29630314K 33.9 S29630314K 33.9 S28930315K 13.6 S29730314K 31.7 S29630314K 31.7 S29030315K 22.8 S29730314K 23.8 S29730314K 23.8 S29030315K 23.8 S29730314K 23.8 S29730314K 23.8 S29030315K 13.5 S2930315K 14.3 S29830314K 10.5 S	25M RECORD-35		16.3				
								13.7
								8.5
							S30130317C S30130317N S30130317N S30130317N S30130317E S30130317W S30230317C S30230317C S30230317C S30230317C S30230317E S30230317W S30230317E S30330317C S30330317C S30330317C S30330317C S30330317E S30330317E S30430317C S30430317C S30430317C S30430317C S30430317C S30430317C S30430317C S30530317C S30530317C S30530317C S30530317C S30530317C S30530317C S30530317C S30630317C S3	8
								10
25M RECORD-23			25M RECORD-30	S29630314S		25M RECORD-36		12.9
_	S28930315E	13.6	-	S29630314E	33.9			12.6
	S28930315W	10.7		S29630314W	51		S30230317W	8.7
	S29030315C	26.3		S29730314C	31.7		S30330317C	12.8
S29	S29030315N	23.2		S29730314N	24.8		S30330317N	12.6
25M_RECORD-24	S29030315S	22.8	25M_RECORD-31	S29730314S	30.6	25M_RECORD-37	S30330317S	7.5
	S29030315E	13.5		S29730314E	23		S30330317E	10.3
	S29030315W	88.2		S29730314W	19.5		S30330317W	10.2
	S29130315C	44.3		S29830314C	10.5	25M_RECORD-38	S30430317C	8.7
	S29130315N	14.1		S29830314N	20.5		S30430317N	7.2
25M_RECORD-25	S29130315S	24.3	25M_RECORD-32	S29830314S	16.2		S30430317S	7.2
	S29130315E	25.5		S29530314N 18.5 25M_RECORD-29 S29530314S 26.0 25M_RECORD-35 S3 5M_RECORD-29 S29530314E 32.8 25M_RECORD-35 S3 S29530314W 11.4 S3 53 5M_RECORD-30 S29630314C 163 53 S29630314E 33.9 25M_RECORD-36 53 S29630314E 33.9 53 53 S29630314E 33.9 53 53 S29630314E 33.9 53 53 S29630314W 51 53 53 S29730314C 31.7 53 53 S29730314E 23 53 53 S29730314E 23 53 53 S29830314C 10.5 53 53 S29830314E 13.6 53 53 S29930314E 13.6 53 53 S29930314E 13.6 53 53 S29930314E 19.9 53 53 S29930314E	S30430317E	19		
	S29130315W	33.7		S29830314W	23.8		S30430317W	8.5
	S29230315C	9.7		S29930314C	94.9		S30530317C	12.8
	S29230315N	14.4		S29930314N	647	6.0 25M_RECORD-35 S3013031 2.8 S3013031 1.4 S3013031 63 S3023031 6.5 S3023031 7.3 25M_RECORD-36 S3023031 3.9 S3023031 51 S3023031 1.7 S3033031 4.8 S3033031 0.6 25M_RECORD-37 S3033031 9.5 S3033031 0.5 S3043031 0.5 S3043031 0.5 S3043031 0.5 S3043031 3.6 S3043031 3.6 S3043031 3.6 S3043031 3.6 S3043031 3.6 S3043031 3.7 S3053031 4.9 S3053031 4.9 S3053031 9.9 S3053031 0.7 S3063031 5.3 S3063031 3.6 S3063031 5.3 S3063031 9.9 <	S30530317N	10.1
25M_RECORD-23 25M_RECORD-24	S29230315S	78.4	25M_RECORD-33	S29930314S	34.6		S30530317S	10.9
	S29230315E	18.5		S29930314E	19.9		S30530317E	11.6
	S29230315W	13.2		S29930314W	107		S30530317W	41.5
	S29330315C	10.7		S30030314C	150		S30630317C	8.5
	S29330315N	14.1		S30030314N	45.3		S30630317N	9.9
25M_RECORD-27	S29330315S	14.8	25M_RECORD-34	S30030314S	238	25M_RECORD-40	S30630317S	7.4
-	S29330315E	11.9		S30030314E	296		S30630317E	9.1
	S29330315W	9.7		S30030314W	8880			11.1
	S29430315C	11.2						
25M_RECORD-24 25M_RECORD-25 25M_RECORD-26 25M_RECORD-27	S29430315N	19.2						
	S29430315S	13.8						
	S29430315E	11.5						
	S29430315W	12.5						

Table A-17
Undocumented Pistol Range - Lead Samples

Sample	Sample	Lead
Point ID	Number	(mg/kg)
	S30730301C	34.6
	S30730301N	86
UNDOC-PISTOL-1	S30730301S	27
	S30730301E	154
	S30730301W	22.6

Table A-17
Undocumented Pistol Range - Lead Samples

Sample	Sample	Lead
Point ID	Number	(mg/kg)
	S30730301C	34.6
	S30730301N	86
UNDOC-PISTOL-1	S30730301S	27
	S30730301E	154
	S30730301W	22.6

Table A-18Background Samples - Lead

Sample	Lead
Number	(mg/kg)
S50130224C	< 10.2
S50230304C	14.5
S50330303C	11.5
S50430224C	23.1
S50530224C	70.0
S50630320C	12.4
S50730320C	12.3
S50830310C	69.4
S50930320C	12.3
S51030320C	12.4
S51130320C	13.9
S51230303C	14.8
S51330303C	21.9
S51430303C	9.7
S51530303C	20.5
S51630320C	16.4
S51730320C	26.2
S51830224C	24.7
S51930224C	14.5
S52030314C	80.8

Table A-19Randomly Selected Firing Range Grid and Background SamplesPriority Pollutant Metals by Method 6010

Range	1,000 Foot	Close Combat	Close Combat	Field Fire Rifle	Field Fire Rifle	Machine Gun-North	Machine Gun-North
Sample Point ID	1000FT-23	CLOSE_COMB-19	CLOSE_COMB-21	FIELD_FIRING_RIFLE-4	FIELD_FIRING_RIFLE-15	MG_SOUTH-15	MG_SOUTH-18
Sample Number	S13830310C	S01930304C	S02130303C	S07930228C	S09030228C	S20330307C	S20630311C
Priority Pollutant Metal			C	Concentration (mg/K	g)		
Antimony	<11.6	<11.0	<11.1	<11.0	<10.6	<9.7	<11.1
Arsenic	<23.2	<22.0	<22.1	<22.0	<21.1	<19.3	<22.1
Barium	137.0	227.0	145.0	146.0	194.0	178.0	200.0
Cadmium	<1.16	<1.1	<1.11	<1.1	<1.06	<.97	<1.11
Chromium	28.2	28.1	33.3	23.4	33.0	23.9	26.0
Copper	69.5	90.8	82.6	81.3	115.0	41.5	88.2
Lead	19.7	13.0	12.4	12.5	17.7	15.8	15.0
Nickel	28.1	<22.0	<22.1	<22.0	<21.1	20.8	29.0
Zinc	62.9	78.8	58.1	74.9	73.7	89.0	81.1
Range	Machine Gun-South	Rifle Ranges 1&2	Sub Machine Gun	TF	Background	d Location	
Sample Point ID	MG_NORTH-18	RIFLE_RANGE-FP4 DUP	SUB_MACHINE-7	TF-5	None	None	
Sample Number	S18030318C	S46830227C	S03530303C	S04030307C	S51030320C	S51730320C	
Priority Pollutant Metal			Concentrat	tion (mg/Kg)			
Antimony	<11.7	<11.2	<11.7	<11.6	<11.7	<10.6	
Arsenic	<23.4	22.9	<23.3	<23.2	<23.5	<21.2	
Barium	192.0	202.0	133.0	163.0	92.4	156.0	
Cadmium	<1.17	<1.1	<1.17	<1.16	<1.17	<1.06	
Chromium	16.8	25.8	33.7	34.5	23.2	31.4	
Copper	33.3	97.2	148.0	98.5	36.5	122.0	
Lead	10.4	12.7	13.9	19.1	10.0	12.3	
Nickel	<23.4	<22.5	<23.3	<23.2	<23.5	23.1	
Zinc	65.2	129.0	75.9	68.3	55.4	77.2	

Table A-20Demolition Area 2 Samples - Priority Pollutant Metals by Method 6010

Sample Location		Center of Area		10	0 ft. North of Cer	ter	100 ft. South of Center			
Sample Depth	Surface	2.5 ft.	5 ft.	Surface	2.5 ft.	5 ft.	Surface	2.5 ft.	5 ft.	
Sample Number	S70130227C	S70230227C	S70330227C	S70430227C	S70530227C	S70630227C	S70730227C	S70830227C	S70930227C	
Priority Pollutant Metal				Conc	entration (m	g/Kg)				
Antimony	<10.9	<10.9	NS	<10.7	<11.9	NS	<11.3	<11.5	<10.9	
Arsenic	<21.8	<21.8	NS	<21.3	<23.7	NS	<22.6	<23.0	28.5	
Barium	152.0	121.0	NS	208.0	215.0	NS	166.0	180.0	123.0	
Cadmium	<1.1	<1.1	NS	<1.1	<1.2	NS	<1.1	<1.2	<1.1	
Chromium	43.0	42.3	NS	25.3	36.7	NS	33.3	33.6	43.6	
Copper	87.7	82.4	NS	70.7	127.0	NS	96.2	90.6	105.0	
Lead	17.8	16.6	NS	17.6	23.9	NS	16.4	16.6	28.2	
Nickel	<21.8	<21.8	NS	<21.3	<23.7	NS	<22.6	<23.0	<21.8	
Zinc	101.0	52.6	NS	66.8	75.5	NS	61.1	76.2	73.7	
Sample Location	10	0 ft. East of Cen	ter	100 ft. West of Center			Berm-SW	Berm-Center	Berm-NE	
Sample Depth	Surface	2.5 ft.	4 ft.	Surface	2.5 ft.	5 ft.	2 ft.	2 ft.	2 ft.	
Sample Number	S71030227C	S71130227C	S71230227C	S71330227C	S71430227C	S71530227C	S71630227C	S71730227C	S71830227C	
Priority Pollutant Metal				Conc	entration (m	g/Kg)				
Antimony	<11.7	<11.4	<11.6	<10.5	<11.1	NS	<10.4	<11.6	<11.8	
Arsenic	<23.4	29.4	23.6	30.1	29.7	NS	<20.7	<23.3	29.3	
Barium	228.0	262.0	454.0	181.0	130.0	NS	264.0	246.0	313.0	
Cadmium	<1.2	<1.1	<1.2	<1.1	<1.1	NS	<1.0	<1.2	<1.2	
Chromium	36.8	39.0	34.9	30.1	31.2	NS	30.3	34.2	37.1	
Copper	117.0	120.0	160.0	77.4	63.8	NS	92.6	94.9	104.0	
Lead	27.2	27.8	28.5	21.6	15.0	NS	16.8	22.3	24.9	
Nickel	<23.4	<22.9	<23.1	<21.0	<22.1	NS	36.5	<23.3	<23.6	
Zinc	84.7	66.2	81.2	69.4	50.0	NS	74.6	68.1	75.5	

Table A-21					
Demolition Area 3 Samples - Priority Pollutant Metals by Method 6010					

Sample Location	Periphe	ery-North Per		ry-South	Periphery-East		Periphe	ry-West
Sample Depth	Surface	2.5 ft.	Surface	2.5 ft.	Surface	2.5 ft.	Surface	2.5 ft.
Sample Number	S80330227C	S80430227C	S80530227C	S80630227C	S80730227C	S80830227C	S80930227C	S81030227C
Priority Pollutant Metal				Concentrat	ion (mg/Kg)			
Antimony	<11.0	<10.5	<10.5	<10.7	<11.1	<10.5	<11.2	<10.6
Arsenic	<22.1	<21.1	<20.9	<21.3	<22.1	<21.0	<22.5	<21.2
Barium	198.0	116.0	143.0	109.0	221.0	108.0	206.0	116.0
Cadmium	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1
Chromium	17.6	15.8	13.2	21.4	14.9	18.5	19.0	18.0
Copper	140.0	40.0	55.8	42.7	79.7	50.4	113.0	44.4
Lead	11.6	8.6	10.4	11.7	13.3	11.8	18.7	9.3
Nickel	<22.1	<21.1	<20.9	<21.3	<22.1	<21.0	<22.5	<21.2
Zinc	69.1	56.0	56.1	44.3	55.5	54.4	73.2	53.7

Table A-22Demolition Area 3 Samples - WaterPriority Pollutant Metals by Method 6010

Sample Location	Water Standing in Crater
Sample Number	WDA230321P
Priority Pollutant Metal	Concentration (ug/L)
Antimony	<50
Arsenic	<100
Barium	<5.0
Cadmium	<5.0
Chromium	<5.0
Copper	<10.0
Lead	<50
Nickel	<20
Zinc	<10.0

Table A-23					
25-Meter M60 Range/Pistol Range - Muzzle Blast Zone Samples					

Sample Point ID	25M_M60-FP1	25M_M60-FP2	25M_M60-FP3	25M_M60-FP4	25M_M60-FP5	25M_M60-FP6
Sample Number	S60130304C	S60230304C	S60330304C	S60430304C	S60530304C	S60630304C
Constituent		Concentration (mg/Kg)				
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
1,3-Dinitrobenzene (1,3-DNB)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
Nitrobenzene (NB)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
2,4-Dinitrotoluene (2,4-DNT)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
2,6-Dinitrotoluene (2,6-DNT)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
2-Nitrotoluene (2-NT)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
3-Nitrotoluene (3-NT)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
4-Nitrotoluene (4-NT)	< 2.7	< 2.5	< 2.6	< 3.2	< 2.8	< 3
Picric Acid	< 10	< 10	< 10	< 10	< 10	< 10
Pentaerythritol Tetranitrate (PETN)	< 14	< 13	< 13	< 16	< 14	< 15

Table A-24					
TF Range - Muzzle Blast Zone Samples					

Sample Point ID	TF-FP1	TF-FP2
Sample Number	S60730307C	S60830307C
Constituent	Concentrat	ion (mg/Kg)
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 2.6	< 3
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 2.6	< 3
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 2.6	< 3
1,3-Dinitrobenzene (1,3-DNB)	< 2.6	< 3
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 2.6	< 3
Nitrobenzene (NB)	< 2.6	< 3
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 2.6	< 3
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 2.6	< 3
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 2.6	< 3
2,4-Dinitrotoluene (2,4-DNT)	< 2.6	< 3
2,6-Dinitrotoluene (2,6-DNT)	< 2.6	< 3
2-Nitrotoluene (2-NT)	< 2.6	< 3
3-Nitrotoluene (3-NT)	< 2.6	< 3
4-Nitrotoluene (4-NT)	< 2.6	< 3
Picric Acid	< 10	< 10
Pentaerythritol Tetranitrate (PETN)	< 13	< 15

Table A-25Rifle Ranges 1 and 2 - Muzzle Blast Zone Samples

Sample Point ID	RIFLE_RANGE-FP1	RIFLE_RANGE-FP2	RIFLE_RANGE-FP3	RIFLE_RANGE-FP4	RIFLE_RANGE-FP5	RIFLE_RANGE-FP6	RIFLE_RANGE-FP7	
Sample Number	S60930228C	S61030228C	S61130227C	S61230227C	S61330227C	S61430227C	S61530227C	
Constituent		Concentration (mg/Kg)						
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
1,3-Dinitrobenzene (1,3-DNB)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
Nitrobenzene (NB)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
2,4-Dinitrotoluene (2,4-DNT)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
2,6-Dinitrotoluene (2,6-DNT)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
2-Nitrotoluene (2-NT)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
3-Nitrotoluene (3-NT)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
4-Nitrotoluene (4-NT)	< 2.7	< 3.1	< 2.9	< 3	< 2.6	< 2.6	< 2.6	
Picric Acid	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Pentaerythritol Tetranitrate (PETN)	< 14	< 16	< 15	< 15	< 13	< 13	< 13	

Sample Point ID	FIELD_FIRING_RIFLE-FP1	FIELD_FIRING_RIFLE-FP2
Sample Number	S61630228C	S61730228C
Constituent	Concentrat	ion (mg/Kg)
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 2.9	< 3
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 2.9	< 3
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 2.9	< 3
1,3-Dinitrobenzene (1,3-DNB)	< 2.9	< 3
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 2.9	< 3
Nitrobenzene (NB)	< 2.9	< 3
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 2.9	< 3
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 2.9	< 3
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 2.9	< 3
2,4-Dinitrotoluene (2,4-DNT)	< 2.9	< 3
2,6-Dinitrotoluene (2,6-DNT)	< 2.9	< 3
2-Nitrotoluene (2-NT)	< 2.9	< 3
3-Nitrotoluene (3-NT)	< 2.9	< 3
4-Nitrotoluene (4-NT)	< 2.9	< 3
Picric Acid	< 10	< 10
Pentaerythritol Tetranitrate (PETN)	< 15	< 15

Table A-26Field Fire Rifle Range 1 and 2 - Muzzle Blast Zone Samples

Table A-27Infiltration Course North - Muzzle Blast Zone Samples

Sample Point ID	INFIL_NORTH-FP1	INFIL_NORTH-FP2
Sample Number	S61830301C	S61930301C
Constituent	Concentrat	ion (mg/Kg)
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 3	< 2.4
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 3	< 2.4
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 3	< 2.4
1,3-Dinitrobenzene (1,3-DNB)	< 3	< 2.4
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 3	< 2.4
Nitrobenzene (NB)	< 3	< 2.4
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 3	< 2.4
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 3	< 2.4
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 3	< 2.4
2,4-Dinitrotoluene (2,4-DNT)	< 3	< 2.4
2,6-Dinitrotoluene (2,6-DNT)	< 3	< 2.4
2-Nitrotoluene (2-NT)	< 3	< 2.4
3-Nitrotoluene (3-NT)	< 3	< 2.4
4-Nitrotoluene (4-NT)	< 3	< 2.4
Picric Acid	< 10	< 10
Pentaerythritol Tetranitrate (PETN)	< 15	< 12

Table A-28
Field Firing Range 1 and 2 and Pistol Range - Muzzle Blast Zone Samples

Sample Point ID	FFR-1	FFR-2	FFR-3	FFR-4	FFR-5	FFR-6
Sample Number	S62030317C	S62130317C	S62230317C	S62330317C	S62430317C	S62530317C
Constituent		Concentration (mg/Kg)				
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
1,3-Dinitrobenzene (1,3-DNB)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
Nitrobenzene (NB)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
2,4-Dinitrotoluene (2,4-DNT)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
2,6-Dinitrotoluene (2,6-DNT)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
2-Nitrotoluene (2-NT)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
3-Nitrotoluene (3-NT)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
4-Nitrotoluene (4-NT)	< 2.7	< 2.5	< 2.7	< 2.7	< 2.6	< 2.7
Picric Acid	< 10	< 10	< 10	< 10	< 10	< 10
Pentaerythritol Tetranitrate (PETN)	< 14	< 13	< 14	< 14	< 13	< 14

Table A-29
Combat Pistol Range - Muzzle Blast Zone Samples

Sample Point ID	COMB_PISTOL-FP1	COMB_PISTOL-FP2	COMB_PISTOL-FP3	COMB_PISTOL-FP4	COMB_PISTOL-FP5	COMB_PISTOL-FP6				
Sample Number	S62630313C	S62730313C	S62830313C	S62930313C	S63030313C	S63130313C				
Constituent		Concentration (mg/Kg)								
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
1,3-Dinitrobenzene (1,3-DNB)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
Nitrobenzene (NB)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
2,4-Dinitrotoluene (2,4-DNT)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
2,6-Dinitrotoluene (2,6-DNT)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
2-Nitrotoluene (2-NT)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
3-Nitrotoluene (3-NT)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
4-Nitrotoluene (4-NT)	< 2.4	< 2.8	< 2.6	< 2.6	< 2.5	< 2.8				
Picric Acid	< 10	< 10	< 10	< 10	< 10	< 10				
Pentaerythritol Tetranitrate (PETN)	< 12	< 14	< 13	< 13	< 13	< 14				

Sample Point ID	SUB_CAL-FP1	SUB_CAL-FP2	SUB_CAL-FP3	SUB_CAL-FP4	SUB_CAL-FP5	SUB_CAL-FP6
Sample Number	S63330318C	S63430318C	S63530318C	S63630318C	S63730318C	S63830318C
Constituent			Concentrat	ion (mg/Kg)		
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
1,3-Dinitrobenzene (1,3-DNB)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
Nitrobenzene (NB)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
2,4-Dinitrotoluene (2,4-DNT)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
2,6-Dinitrotoluene (2,6-DNT)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
2-Nitrotoluene (2-NT)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
3-Nitrotoluene (3-NT)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
4-Nitrotoluene (4-NT)	< 2.4	< 2.3	< 2.5	< 2.3	< 2.3	< 2.4
Picric Acid	< 10	< 10	< 10	< 10	< 10	< 10
Pentaerythritol Tetranitrate (PETN)	< 12	< 12	< 13	< 12	< 12	< 12

Table A-30M31 Sub-Caliber Ranges 1 and 2 - Muzzle Blast Zone Samples

Table A-31
25-Meter and Machine Gun Range - Muzzle Blast Zone Samples

Sample Point ID	25M_MG-FP1	25M_MG-FP2	25M_MG-FP3	25M_MG-FP4	25M_MG-FP5	25M_MG-FP6	25M_MG-FP7	25M_MG-FP8	25M_MG-FP9	25M_MG-FP1
Sample Number	S63930306C	S64030306C	S64130306C	S64230306C	S64330306C	S64430306C	S64530306C	S64630306C	S64730306C	S64830306C
Constituent		Concentration (mg/Kg)								
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 2.5	< 2.7	< 3.3	< 3	< 2.9	< 2.4	< 2.9	< 2.9	< 2.9	< 2.8
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 2.5	< 2.7	< 3.3	< 3	< 2.9	< 2.4	< 2.9	< 2.9	< 2.9	< 2.8
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 2.5	< 2.7	< 3.3	< 3	< 2.9	< 2.4	< 2.9	< 2.9	< 2.9	< 2.8
1,3-Dinitrobenzene (1,3-DNB)	< 2.5	< 2.7	< 3.3	< 3	< 2.9	< 2.4	< 2.9	< 2.9	< 2.9	< 2.8
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 2.5	< 2.7	< 3.3	< 3	< 2.9	< 2.4	< 2.9	< 2.9	< 2.9	< 2.8
Nitrobenzene (NB)	< 2.5	< 2.7	< 3.3	< 3	< 2.9	< 2.4	< 2.9	< 2.9	< 2.9	< 2.8
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 2.5	< 2.7	< 3.3	< 3	< 2.9	< 2.4	< 2.9	< 2.9	< 2.9	< 2.8
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 2.5	< 2.7	< 3.3	< 3	< 2.9	< 2.4	< 2.9	< 2.9	< 2.9	< 2.8
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 2.5	< 2.7	< 3.3	< 3	< 2.9	< 2.4	< 2.9	< 2.9	< 2.9	< 2.8
2,4-Dinitrotoluene (2,4-DNT)	< 2.5	< 2.7	12	12	17	5.4	20	14	10	4.9
2,6-Dinitrotoluene (2,6-DNT)	< 2.5	< 2.7	< 3.3	< 3	< 2.9	< 2.4	< 2.9	< 2.9	< 2.9	< 2.8
2-Nitrotoluene (2-NT)	< 2.5	< 2.7	< 3.3	< 3	< 2.9	< 2.4	< 2.9	< 2.9	< 2.9	< 2.8
3-Nitrotoluene (3-NT)	< 2.5	< 2.7	< 3.3	< 3	< 2.9	< 2.4	< 2.9	< 2.9	< 2.9	< 2.8
4-Nitrotoluene (4-NT)	< 2.5	< 2.7	< 3.3	< 3	< 2.9	< 2.4	< 2.9	< 2.9	< 2.9	< 2.8
Picric Acid	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Pentaerythritol Tetranitrate (PETN)	< 13	< 14	< 17	< 15	< 15	< 12	< 15	< 15	< 15	< 14

Table A-32
Infiltration Course South - Muzzle Blast Zone Samples

Sample Point ID	INFIL_SOUTH-FP1	INFIL_SOUTH-FP2	INFIL_SOUTH-FP3	INFIL_SOUTH-FP4	INFIL_SOUTH-FP5	INFIL_SOUTH-FP6	INFIL_SOUTH-FP7
Sample Number	S64930306C	S65030306C	S65130306C	S65230306C	S65330306C	S65430306C	S65530306C
Constituent			Co	oncentration (mg/l	〈 g)		
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
1,3-Dinitrobenzene (1,3-DNB)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
Nitrobenzene (NB)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
2,4-Dinitrotoluene (2,4-DNT)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
2,6-Dinitrotoluene (2,6-DNT)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
2-Nitrotoluene (2-NT)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
3-Nitrotoluene (3-NT)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
4-Nitrotoluene (4-NT)	< 2.9	< 2.7	< 2.8	< 3	< 2.9	< 3	< 3
Picric Acid	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Pentaerythritol Tetranitrate (PETN)	< 15	< 14	< 14	< 15	< 15	< 15	< 15

Table A-32
Infiltration Course South - Muzzle Blast Zone Samples

Sample Point ID	INFIL_SOUTH-FP8	INFIL_SOUTH-FP9	INFIL_SOUTH-FP10	INFIL_SOUTH-FP11	INFIL_SOUTH-FP12	INFIL_SOUTH-FP13	INFIL_SOUTH-FP14
Sample Number	S65630306C	S65730306C	S65830306C	S65930306C	S66030306C	S66130306C	S66230306C
Constituent			Co	oncentration (mg/	Kg)		
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
1,3-Dinitrobenzene (1,3-DNB)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
Nitrobenzene (NB)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
2,4-Dinitrotoluene (2,4-DNT)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
2,6-Dinitrotoluene (2,6-DNT)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
2-Nitrotoluene (2-NT)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
3-Nitrotoluene (3-NT)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
4-Nitrotoluene (4-NT)	< 3.0	< 3.2	< 2.8	< 2.5	< 2.3	< 2.6	< 2.7
Picric Acid	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Pentaerythritol Tetranitrate (PETN)	< 15	< 16	< 14	< 13	< 12	< 14	< 14

Table A-3325M Record Fire Field Range, Field Firing Range - Muzzle Blast Zone Samples

Sample Point ID	25M_RECORD-FP1	25M_RECORD-FP1
Sample Number	S66330314C	S66430314C
Constituent	Concentrat	ion (mg/Kg)
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 2.9	< 2.7
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 2.9	< 2.7
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 2.9	< 2.7
1,3-Dinitrobenzene (1,3-DNB)	< 2.9	< 2.7
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 2.9	< 2.7
Nitrobenzene (NB)	< 2.9	< 2.7
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 2.9	< 2.7
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 2.9	< 2.7
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 2.9	< 2.7
2,4-Dinitrotoluene (2,4-DNT)	< 2.9	< 2.7
2,6-Dinitrotoluene (2,6-DNT)	< 2.9	< 2.7
2-Nitrotoluene (2-NT)	< 2.9	< 2.7
3-Nitrotoluene (3-NT)	< 2.9	< 2.7
4-Nitrotoluene (4-NT)	< 2.9	< 2.7
Picric Acid	< 10	< 10
Pentaerythritol Tetranitrate (PETN)	< 15	< 14

Table A-34Undocumented Pistol Range - Muzzle Blast Zone Samples

Sample Point ID	UNDOC_PISTOL-FP1	UNDOC_PISTOL-FP2	UNDOC_PISTOL-FP3	UNDOC_PISTOL-FP4	UNDOC_PISTOL-FP5				
Sample Number	S66530301C	S66630301C	S66730301C	S66830301C	S66930301C				
Constituent	Concentration (mg/Kg)								
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 3.1	< 3	< 2.7	< 3	< 2.8				
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 3.1	< 3	< 2.7	< 3	< 2.8				
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 3.1	< 3	< 2.7	< 3	< 2.8				
1,3-Dinitrobenzene (1,3-DNB)	< 3.1	< 3	< 2.7	< 3	< 2.8				
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 3.1	< 3	< 2.7	< 3	< 2.8				
Nitrobenzene (NB)	< 3.1	< 3	< 2.7	< 3	< 2.8				
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 3.1	< 3	< 2.7	< 3	< 2.8				
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 3.1	< 3	< 2.7	< 3	< 2.8				
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 3.1	< 3	< 2.7	< 3	< 2.8				
2,4-Dinitrotoluene (2,4-DNT)	< 3.1	< 3	< 2.7	< 3	< 2.8				
2,6-Dinitrotoluene (2,6-DNT)	< 3.1	< 3	< 2.7	< 3	< 2.8				
2-Nitrotoluene (2-NT)	< 3.1	< 3	< 2.7	< 3	< 2.8				
3-Nitrotoluene (3-NT)	< 3.1	< 3	< 2.7	< 3	< 2.8				
4-Nitrotoluene (4-NT)	< 3.1	< 3	< 2.7	< 3	< 2.8				
Picric Acid	< 10	< 10	< 10	< 10	< 10				
Pentaerythritol Tetranitrate (PETN)	< 16	< 15	< 14	< 15	< 14				

Table A-35Demolition Area 2 Samples

Sample Location		Center of Area		10	0 ft. North of Cer	iter	100 ft. South of Center		
Sample Depth	Surface	2.5 ft.	5 ft.	Surface	2.5 ft.	5 ft.	Surface	2.5 ft.	5 ft.
Sample Number	S70130227C	S70230227C	S70330227C	S70430227C	S70530227C	S70630227C	S70730227C	S70830227C	S70930227C
Constituent									
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
1,3-Dinitrobenzene (1,3-DNB)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
Nitrobenzene (NB)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
2,4-Dinitrotoluene (2,4-DNT)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
2,6-Dinitrotoluene (2,6-DNT)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
2-Nitrotoluene (2-NT)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
3-Nitrotoluene (3-NT)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
4-Nitrotoluene (4-NT)	< 2.8	< 2.6	NS	< 2.7	< 2.8	NS	< 2.5	< 2.7	< 3
Picric Acid	< 10	< 10	NS	< 10	< 10	NS	< 10	< 10	< 10
Pentaerythritol Tetranitrate (PETN)	< 14	< 13	NS	< 14	< 14	NS	< 13	< 14	< 15
Perchlorate	< .033	< .033	NS	< .033	< .033	NS	< .033	< .033	< .033

Table A-35Demolition Area 2 Samples

Sample Location	100 ft. East of Center			100 ft. West of Center			Berm-SW	Berm-Center	Berm-NE
Sample Depth	Surface	2.5 ft.	4 ft.	Surface	2.5 ft.	5 ft.	2 ft.	2 ft.	2 ft.
Sample Number	S71030227C	S71130227C	S71230227C	S71330227C	S71430227C	S71530227C	S71630227C	S71730227C	S71830227C
Constituent				Conc	entration (m	g/Kg)			
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
1,3-Dinitrobenzene (1,3-DNB)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
Nitrobenzene (NB)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
2,4-Dinitrotoluene (2,4-DNT)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
2,6-Dinitrotoluene (2,6-DNT)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
2-Nitrotoluene (2-NT)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
3-Nitrotoluene (3-NT)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
4-Nitrotoluene (4-NT)	< 3.1	< 2.7	< 3.2	< 2.9	< 2.5	NS	< 2.8	< 2.7	< 2.5
Picric Acid	< 10	< 10	< 10	< 10	< 10	NS	< 10	< 10	< 10
Pentaerythritol Tetranitrate (PETN)	< 16	< 14	< 16	< 15	< 13	NS	< 14	< 4	< 13
Perchlorate	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	NS	< 0.033	< 0.033	< 0.033

Table A-36Demolition Area 3 Samples

Sample Location	Periphery-North		Periphery-South		Periphery-East		Periphery-West	
Sample Depth	Surface	2.5 ft.	Surface	2.5 ft.	Surface	2.5 ft.	Surface	2.5 ft.
Sample Number	S80330227C	S80430227C	S80530227C	S80630227C	S80730227C	S80830227C	S80930227C	S81030227C
Constituent				Concentrat	ion (mg/Kg)			
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
1,3,5-Trinitrobenzene (1,3,5-TNB)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
1,3-Dinitrobenzene (1,3-DNB)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
Nitrobenzene (NB)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
2,4,6-Trinitrotoluene (2,4,6-TNT)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
2,4-Dinitrotoluene (2,4-DNT)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
2,6-Dinitrotoluene (2,6-DNT)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
2-Nitrotoluene (2-NT)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
3-Nitrotoluene (3-NT)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
4-Nitrotoluene (4-NT)	< 2.8	< 2.5	< 3	< 2.6	< 2.5	< 2.5	< 2.7	< 2.5
Picric Acid	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Pentaerythritol Tetranitrate (PETN)	< 14	< 13	< 15	< 13	< 13	< 13	< 14	< 13
Perchlorate	< .33	< .033	< .033	< .33	< .33	< .33	< .33	< .33

Table A-37
Demolition Area 3 Samples - Water

Sample Location	Water Standing in Crater
Sample Number	WDA230321P
Constituent	Concentration (ug/L)
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	<3
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	<3
1,3,5-Trinitrobenzene (1,3,5-TNB)	<3
1,3-Dinitrobenzene (1,3-DNB)	<3
Methyl-2,4,6-trinitrophenylnitramine (Tetryl)	<3
Nitrobenzene (NB)	<3
2,4,6-Trinitrotoluene (2,4,6-TNT)	<3
4-Amino-2,6-dinitrotoluene (4-Am-DNT)	<3
2-Amino-4,6-dinitrotoluene (2-Am-DNT)	<3
2,4-Dinitrotoluene (2,4-DNT)	<3
2,6-Dinitrotoluene (2,6-DNT)	<3
2-Nitrotoluene (2-NT)	<3
3-Nitrotoluene (3-NT)	<3
4-Nitrotoluene (4-NT)	<3
Picric Acid	<3
Pentaerythritol Tetranitrate (PETN)	<3
Perchlorate	<3

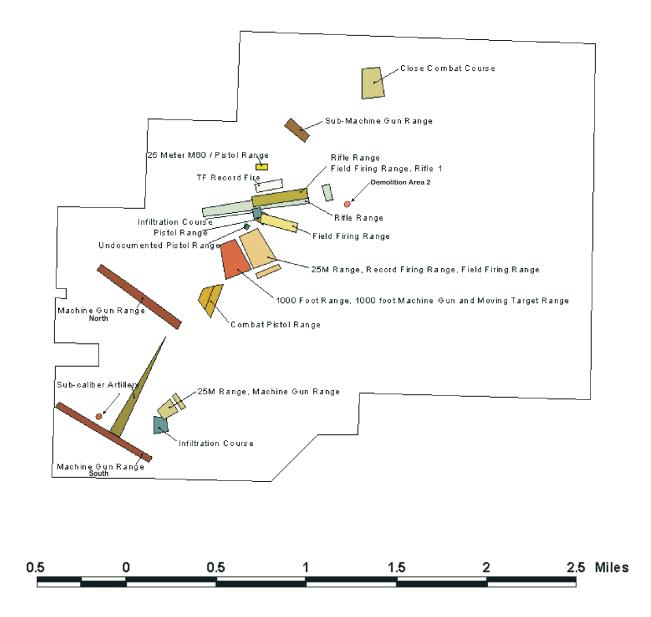
APPENDIX B

Figures of Sampling Results

Site Investigation Report Small Arms Ranges and Demolition Areas 2 and 3 Camp Bonneville, Vancouver, Washington DRAFT FINAL – September 25, 2003

INDEX TO APPENDIX B

FIGURE

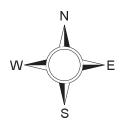

B-1	Site Map
B-2	Close Combat Range – Lead Results by Method 7420 (mg/Kg)
B-3	25 Meter M60 Range/Pistol Range – Lead Results by Method 7420 (mg/Kg)
B-4	Sub Machine Gun Range – Lead Results by Method 7420 (mg/Kg)
B-5	TF Range – Lead Results by Method 7420 (mg/Kg)
B-6a	Rifle Ranges 1 and 2 – Lead Results by Method 7420 (mg/Kg)
B-6b	Rifle Ranges 1 and 2 – Lead Results by Method 7420 (mg/Kg)
B-7	Field Fire Rifle Range 1 & 2 – Lead Results by Method 7420 (mg/Kg)
B-8	Infiltration Course North – Lead Results by Method 7420 (mg/Kg)
B-9	Field Firing Ranges 1 & 2 and Undocumented Pistol Range – Lead Results by Method 7420 (mg/Kg)
B-10	1000 Ft. Range, 1000 Ft. Machine Gun, and Moving Target Range – Lead Results by Method 7420 (mg/Kg)
B-11	Combat Pistol Range – Lead Results by Method 7420 (mg/Kg)
B-12	Machine Gun South – Lead Results by Method 7420 (mg/Kg)
B-13	Machine Gun North – Lead Results by Method 7420 (mg/Kg)
B-14	M31 Sub-Caliber Ranges 1 & 2 – Lead Results by Method 7420 (mg/Kg)
B-15	25 Meter and Machine Gun Range – Lead Results by Method 7420 (mg/Kg)
B-16	Infiltration Course South – Lead Results by Method 7420 (mg/Kg)
B-17a	25M Record Fire Field Range – Field Firing Range – Lead Results by Method 7420 (mg/Kg)
B-17b	25M Record Fire Field Range – Field Firing Range – Lead Results by Method 7420 (mg/Kg)
B-18	Background Lead Results by Method 7420 (mg/Kg)
B-19	25 Meter M60 Range/Pistol Range – Muzzle Blast Zone Sample Results (mg/Kg)
B-20	TF Range – Muzzle Blast Zone Sample Results (mg/Kg)
B-21	Rifle Ranges 1 and 2 – Muzzle Blast Zone Samples (mg/Kg)
B-22	Field Fire Rifle Range 1 & 2 – Muzzle Blast Zone Samples (mg/Kg)
B-23	Infiltration Course North – Muzzle Blast Zone Samples (mg/Kg)
B-24	Field Firing Ranges 1 & 2 and Undocumented Pistol Range – Muzzle Blast Zone Samples (mg/Kg)

Site Investigation Report Small Arms Ranges and Demolition Areas 2 and 3 Camp Bonneville, Vancouver, Washington DRAFT FINAL – September 25, 2003

INDEX TO APPENDIX B (CONTINUED)

FIGURE

B-25	Combat Pistol Range – Muzzle Blast Zone Samples (mg/Kg)
B-26	M31 Sub-Caliber Ranges 1 & 2 – Muzzle Blast Zone Samples (mg/Kg)
B-27	25 Meter and Machine Gun Range – Muzzle Blast Zone Samples (mg/Kg)
B-28	Infiltration Course South – Muzzle Blast Zone Samples (mg/Kg)
B-29	25M Record Fire Field Range – Field Firing Range – Muzzle Blast Zone Samples (mg/Kg)
B-30	Demolition Area 2 – Explosive Residuals and Perchlorate (mg/Kg)
B-30a	Demolition Area 2 – Priority Pollutant Metal Results by Method 6010 (mg/Kg)
B-31	Demolition Area 3 – Explosive Residuals and Perchlorate (mg/Kg)
B-31a	Demolition Area 3 – Priority Pollutant Metal Results by Method 6010 (mg/Kg)

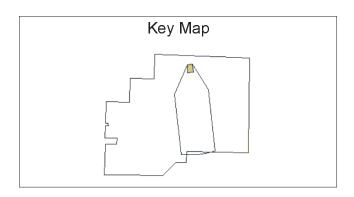


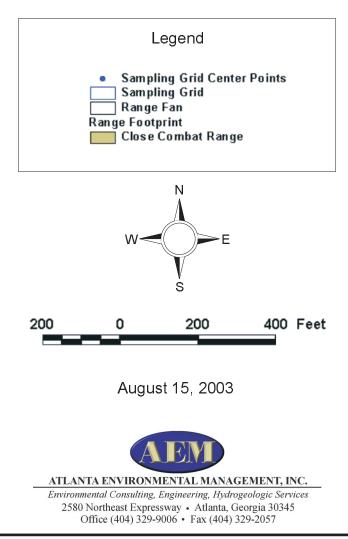
Camp Bonneville

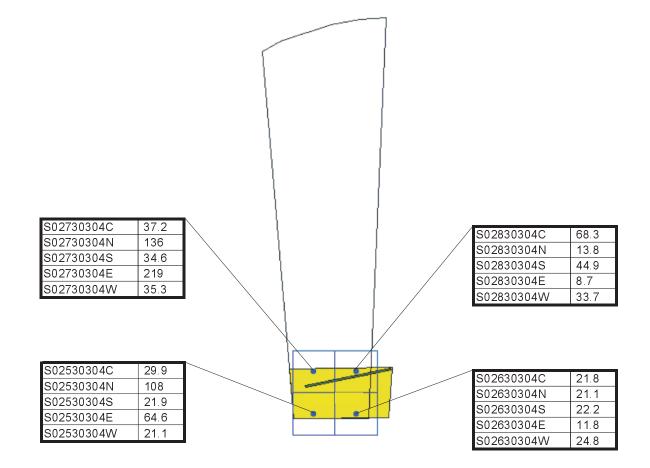
Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Site Map

August 15, 2003

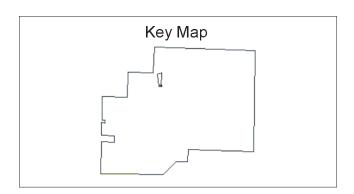


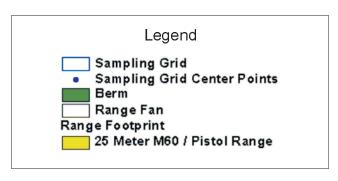

ATLANTA ENVIRONMENTAL MANAGEMENT, INC. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta, Georgia 30345 Office (404) 329-9006 • Fax (404) 329-2057

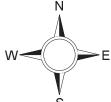

	S02130303C15.5S02230303C21.7S02130303N12.9S02230303N14.5S02130303S12.1S02230303S18.6S02130303E18.8S02230303E22.2S02130303W19.1S02230303W15.1	\$02330303C15.4\$02430303C14.0\$02330303N18.4\$02430303N12.6\$02330303S16.1\$02430303S17.2\$02330303E19.8\$02430303E15.3\$02330303W16.7\$02430303W21.4	
S01830305C14.9S01830305N9.4S01830305S16.5S01830305E15.9S01830305W16.3			S01930304C8.5S01930304N< 5.0
S01730305C 10.7 S01730305N 23.9 S01730305S 11.7 S01730305E 14.2 S01730305W 14.1			S02030304C14.4S02030304N19.2S02030304S17.6S02030304E18.7S02030304W17.6
S01430305C 7.1 S01430305N 88.3 S01430305S 8.3 S01430305E 12.6 S01430305W 10.6			S01530304C9.4S01530304N9.4S01530304S9.6S01530304E7.8S01530304W< 5.4
S01330305C12.1S01330305N5.9S01330305S< 5.3	•••	• •	S01630304C12.0S01630304N16.0S01630304S14.5S01630304E16.7S01630304W13.7
S00930305C 9.8 S00930305N 7.1 S00930305S 10.3 S00930305E 11.6 S00930305W 16.5			S01230304C21.7S01230304N10.2S01230304S16.3S01230304E15.7S01230304W16.4
S01030305C 9.4 S01030305N 10.5 S01030305S 10.5 S01030305E 8.3 S01030305W 11.6			S01130304C9.2S01130304N9.9S01130304S12.8S01130304E11.6S01130304W8.7
S00530305C 10.9 S00530305N 9.0 S00530305S 10.4 S00530305E 11.3 S00530305W 9.8			S00830304C 13.4 S00830304N 11.7 S00830304S 11.1 S00830304E 19.5 S00830304W 12.3
S00630305C 8.9 S00630305N 6.9 S00630305S 9.1 S00630305E 14.6 S00630305W 9.7			S00730304C19.7S00730304N16.8S00730304S20.4S00730304E12.7S00730304W9.0
	S00130305C< 5.2S00230305C7.5S00130305N6.2S00230305N8.7S00130305S7.2S00230305S7.8S00130305E10.7S00230305E9.2S00130305W9.0S00230305W19.0	S00330304C16.9S00430304C15.7S00330304N19.8S00430304N19.4S00330304S15.0S00430304S16.3S00330304E17.2S00430304E17.7S00330304W23.7S00430304W18.0	

Camp Bonneville Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Close Combat Range Lead Results by Method 7420 (mg/Kg)

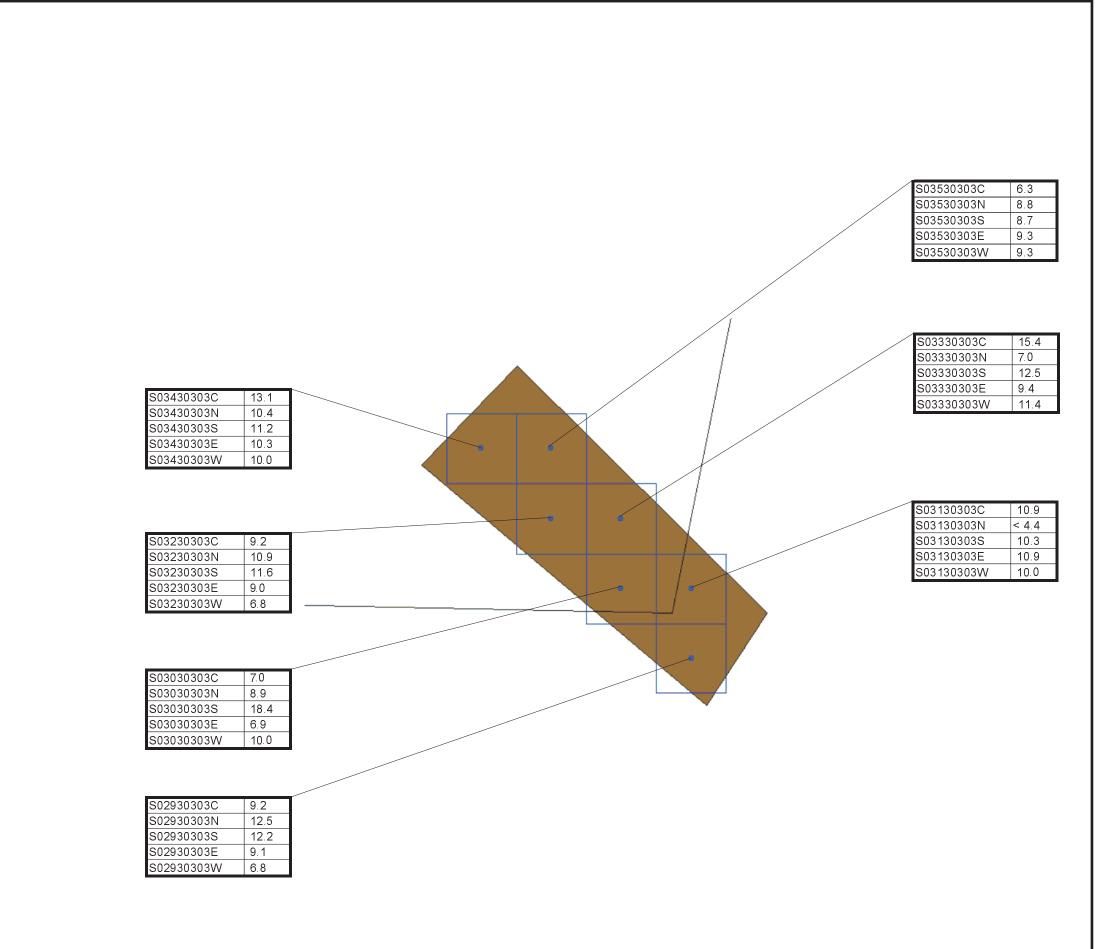





Camp Bonneville

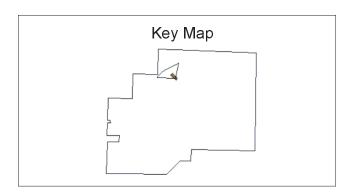
Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

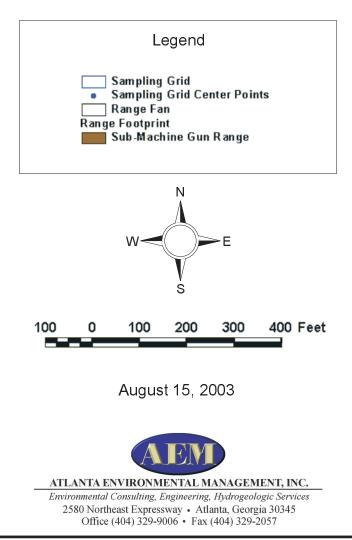
25 Meter M60 Range/Pistol Range Lead Results by Method 7420 (mg/Kg)

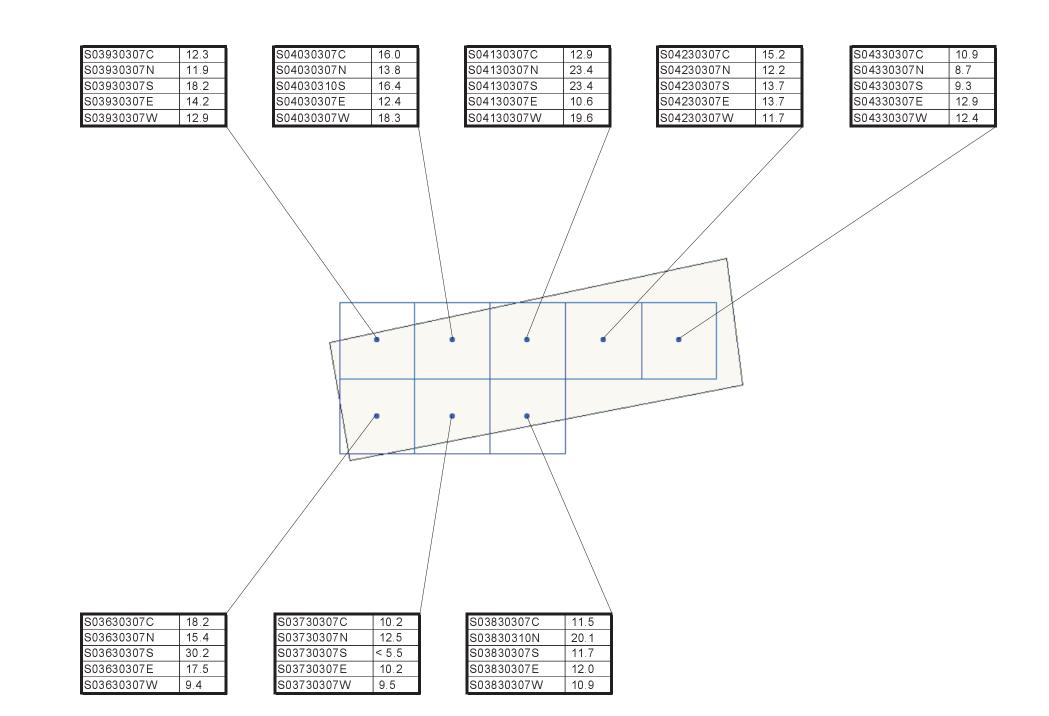


100 0 100 200 300 Feet

August 15, 2003


ATLANTA ENVIRONMENTAL MANAGEMENT, INC. Environmental Consulting, Engineering, Hydrogeologic Services 2580 Northeast Expressway • Atlanta, Georgia 30345 Office (404) 329-9006 • Fax (404) 329-2057



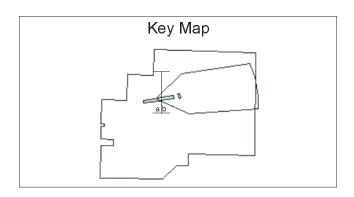

Camp Bonneville

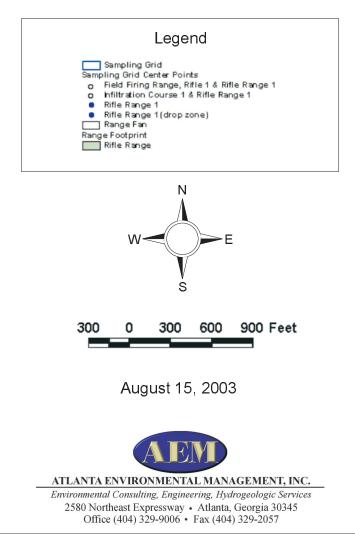
Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

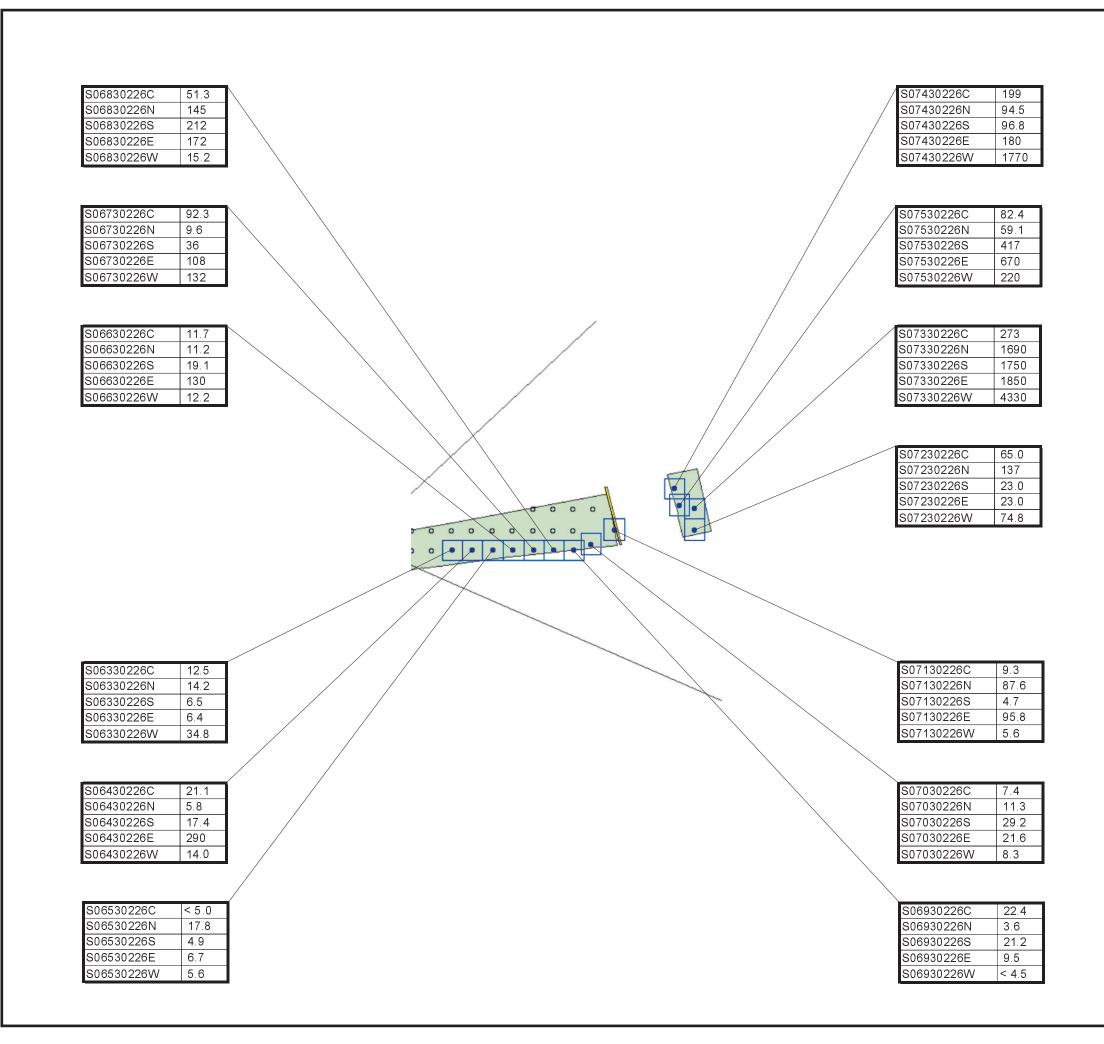
Sub Machine Gun Range Lead Results by Method 7420 (mg/Kg)

Figure B-5 **Camp Bonneville** Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M TF Range Lead Results by Method 7420 (mg/Kg) Key Map Legend Sampling Grid Sampling Grid Center Points **Range Footprint** TF Record Fire Ŵ 0 100 200 300 400 Feet 100 August 15, 2003

AEM

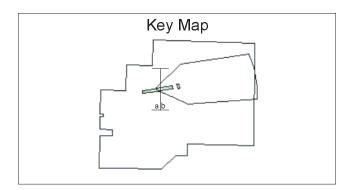

50520228N 35 4 50520228C 19 5 50520228C 19 6 50520228C 19 7 50510228C 10 5 50510228C 10 5 50510228C 22 8 50510228C 22 8 50510228C 24 2 50510228C 10 5 50510228C 10 5 5050228C 10 5 5050228C 11 3 5050228C 11 4 5050228C 11 6 5050228C 11 6 50630228C 10 6 50630228C					
502302226 516 50230225 516 505302250 167 505302250 165 505302250 165 505302250 165 505302250 165 505302250 165 505302250 165 505302250 164 505302250 165 505302250 165 505302250 165 505302250 165 505302250 170 505302250 171 504302250 171 504302250 171 504302250 171 504302250 171 504302250 173 504302250 174 504302250 174 504302250 174 504302250 174 504302250 174 504302250 174 504302250 174 504302250 174 504302250 175 504302250 176 504302250 176 504302250 176 504302250 176 504302250 176 504302250 176 504302250 176	S05230225C	37.3			
S05220228E 51 6 S05220229W 16 7 S05130228C 10 6 S05130228C 10 6 S05130228C 10 6 S05130228C 10 6 S05030228W 24 2 S05030228W 24 4 S05030228W 29 4 S05030228W 29 4 S04303228C 27 9 S04303228C 21 8 S04303228W 29 4 S04303228W 39 4 S04303228W 39 4 S04303228W 39 4 S04303228W 39 4 S04303228W 21 8 S04430228W 11 8 S04430228W 19 2	S05230225N	35.4			
80520225W 16 7 805102225C 113 805102225C 10 5 80510225C 10 5 80500225C 10 5 80500225C 10 5 80480225C 10 5 80480225C 10 6 80480225C 10 6 80480225C 10 6 80480225C 10 7 80440225C 10 7 80440225C <td>S05230225S</td> <td>19.5</td> <td></td> <td></td> <td></td>	S05230225S	19.5			
S06130228C 133 S06130228C 286 S06130228C 286 S06130228C 286 S06130228C 286 S05130228C 286 S0530228C 244 S0530228C 244 S0530228C 244 S0530228C 244 S0530228C 114 S05030228C 214 S0530228C 214 S0530228C 114 S0430228C 216 S0430228C 226 S1430228C 226 S1430228C 226 S1430228C 113 S0430228C 226 S1430228C 226 S1430228C 226 S1430228C 113 S0430228C 113 S0430228C 113 S0430228C 114 S0430228C 113 S0430228C 113 S0430228C 113 S0430228C 114 S04430228C 114 <	S05230225E	51.6			
S06130228 28 6 S06130228 52 8 S05130228 52 8 S05130228 52 8 S0530228 70 S0530228 71 0 S0530228 71 1 S0430228 71 1	S05230225W	18.7			
S06130228 28 6 S06130228 52 8 S05130228 52 8 S05130228 52 8 S0530228 70 S0530228 71 0 S0530228 71 1 S0430228 71 1					
S05130225 10 5 S05130225 22 8 S05130225 22 4 S05130225 24 4 S05030225 24 2 S05030225 24 4 S05030225 24 4 S05030225 24 4 S05030225 24 4 S05030225 11 4 S05030225 24 4 S05030225 24 4 S05030225 11 4 S05030225 21 5 S05030226 11 1 S0430225 22 5 S0430225 21 3 S0430225 21 3 S0430225 11 1 S0430225 11 1 S0430225 12 5 S0430225 11 1 S0430225 11 2 S0430225 11 2 S0430225 11 2	S05130225C	11.3		S05830225C	67.0
S081902226 528 S08190225W 24 2 S0800225C 17.0 S0800225C 17.0 S0800225C 12.5 S0800225C 12.6 S0800225C 12.6 S0800225C 12.6 S08130225C 12.7 S08130225C 12.6 S08130225C 12.6 S08130225C 12.6 S08130225C 12.6 S08130225C 12.6 <td< td=""><td>S05130225N</td><td>25.5</td><td></td><td>S05830225N</td><td>108</td></td<>	S05130225N	25.5		S05830225N	108
S0B130226W 24 2 S0B30225C 17 0 S0D5030225C 424 S0D5030225C 16 3 S0D5030225C 16 3 S0D5030225C 17 1 S0D5030225C 17 1 S0D5030225C 17 1 S0D430225C 17 1 S0D430225C 17 1 S0D430225C 17 1 S0D430225C 18 9 S0D430225C 18 9 S0D430225C 18 9 S0D430225C 18 9 S0D430225C 11 1 S0D430225C 11 1 S0D430225C 12 0 S0D430225C 11 1 S0D430225C 11 1 S0D430225C 11 1 S0D430225C 10 7	S05130225S	10.5		S05830225S	25.4
S05030225C 170 S05030225S 114 S05030225S 114 S05030225S 114 S05030225S 114 S05030225S 114 S05030225S 114 S0430225C 216 S0430225S 111 S0430225S 114 S0430225S 118 S0430225S 118 S0430225S 118	S05130225E	52.8		S05830225E	24.6
SA65030225K 24 4 S05030225E 31 4 S05030225E 31 4 S05030225C 27 9 S04930225C 27 1 S04930225C 27 9 S04930225C 27 9 S04930225C 27 9 S04930225C 27 9 S04930225C 11 1 S04930225C 10 1 S04830225C 10 1 S04430225C 10 1 S04430225C 10 1 S04430225C 10 1 S04430225C 10 7 S04430225C 10 7 S04430225C 10 7 S04430225C 10 7 S04430225C 11 8 S0430225C 10 7 S04430225C 10 7 S04430225C 10 7 S04430225C 10 7 S04430225C 16 8	S05130225W	24.2		S05830225W	41.8
SA65030225K 24 4 S05030225E 31 4 S05030225E 31 4 S05030225C 27 9 S04930225C 27 1 S04930225C 27 9 S04930225C 27 9 S04930225C 27 9 S04930225C 27 9 S04930225C 11 1 S04930225C 10 1 S04830225C 10 1 S04430225C 10 1 S04430225C 10 1 S04430225C 10 1 S04430225C 10 7 S04430225C 10 7 S04430225C 10 7 S04430225C 10 7 S04430225C 11 8 S0430225C 10 7 S04430225C 10 7 S04430225C 10 7 S04430225C 10 7 S04430225C 16 8					-
5050302255 16.3 5050302255 31.4 505030225W 28.6 50430225W 28.6 50430225W 28.6 50430225W 28.6 50430225W 31.8 50430225W 31.8 50430225W 31.8 50430225C 27.9 50430225C 27.8 50430225C 27.8 50430225C 21.6 50430225C 22.6 50430225C 22.8 50430225C 22.8 50430225C 21.3 50430225C 11.1 50430225C 11.1 50430225C 11.1 50430225C 11.1 50430225C 11.1 50430225C 11.1 50430225C 11.4 50430225C 11.	S05030225C	17.0		S05930225C	< 3.9
905030225C 31.4 S05030225W 29.6 S0430225W 29.6 S0430225C 27.9 S0530225C 27.1 S0530225C 27.4 S0430225C 27.9 S0530225C 27.8 S0430225C 27.1 S0430225C 27.8 S0430225C 22.6 S0430225C 22.6 S0430225C 22.8 S0430225C 22.8 S0430225C 22.8 S0430225C 11.4 S0630225W 21.3 S0430225C 11.4 S0430225C 11.2 S0430225C 11.2	S05030225N	24.4		S05930225N	25.0
S05030225W 29 6 S04930225C 27 9 S04930225C 17 0 S04930225E 21 6 S04930225E 21 6 S04930225E 21 6 S04930225C 32 8 S04930225C 22 5 S04930225C 31 8 S04930225C 22 5 S04930225C 32 8 S04930225C 34 4 S04930225C 34 4 S04930225C 11 1 S04930225C 11 1 S04930225C 11 2 S04930225C 11 4 S04930225C 11 4 S04930225C 11 4 S04930225C 11 4 S0430225C 11 8 S0430225C 11 8 S0430225C 11 8 S0430225C 11 8 S0430225C </td <td>S05030225S</td> <td>16.3</td> <td></td> <td>S05930225S</td> <td>12.5</td>	S05030225S	16.3		S05930225S	12.5
S04930225C 27.9 S04930225N 31.8 S04930225N 31.8 S04930225N 31.8 S04930225N 31.8 S04930225N 39.4 S04930225N 39.4 S04930225N 39.4 S04930225N 39.4 S04930225N 39.4 S04930225C 32.9 S04830225N 32.4 S04830225N 22.5 S04830225N 21.6 S04430225N 11.1 S04430225N 10.1 S04430225N 10.1 S04430225N 11.4 S04430225N 11.4 S04430225N 11.4 S04430225N 11.4 S04430225N 11.4 S04430225N 19.2 S04530225C 16.6	S05030225E	31.4		S05930225E	< 3.7
S04930225C 27.9 S04930225N 31.8 S04930225N 31.8 S04930225N 31.8 S04930225N 31.8 S04930225N 39.4 S04930225N 39.4 S04930225N 39.4 S04930225N 39.4 S04930225N 39.4 S04930225C 32.9 S04930225C 32.9 S04930225C 55.8 S04930225C 51.8 S04930225C 11.1 S0430225C 10.5 S04430225N 11.1 S04430225N 11.1 S04430225N 11.4 S04430225N 11.4 S04430225N 11.4 S04430225N 11.4 S04430225N 18.2 S0430225C 16.8 S0430225N 18.2 S04	S05030225W	29.6		S05930225W	5.8
S0480225N 11.8 S0490225E 21.6 S0490225E 21.6 S0490225E 21.6 S0490225E 21.6 S0490225C 32.9 S0480225E 34.4 S0480225E 55.8 S0480225E 54.4 S0480225E 54.4 S0480225E 54.4 S0480225E 54.4 S0480225E 10.1 S04430225C 10.1 S04430225N 10.1 S04430225N 10.1 S04430225N 10.1 S04430225N 10.1 S04430225N 10.7 S04430225N 10.7 S04430225N 10.7 S04430225N 10.7 S04430225N 10.7 S0430225N 19.2 S04430225N 19.2 S04430225N 19.2 S04430225N 19.2 S04430225N 19.2 S04430225N 19.3 S0430225N 19.3 S0430225N 15.6 S04430225N					
S0480225N 11.8 S0490225E 21.6 S0490225E 21.6 S0490225E 21.6 S0490225E 21.6 S0490225C 32.9 S0480225E 34.4 S0480225E 55.8 S0480225E 54.4 S0480225E 54.4 S0480225E 54.4 S0480225E 54.4 S0480225E 10.1 S04430225C 10.1 S04430225N 10.1 S04430225N 10.1 S04430225N 10.1 S04430225N 10.1 S04430225N 10.7 S04430225N 10.7 S04430225N 10.7 S04430225N 10.7 S04430225N 10.7 S0430225N 19.2 S04430225N 19.2 S04430225N 19.2 S04430225N 19.2 S04430225N 19.2 S04430225N 19.3 S0430225N 19.3 S0430225N 15.6 S04430225N	S04930225C	27.9		S06030226C	17.0
S04430225 11 S0430225 21 S0430225 21 S0430225 39 S0430225 32 S0430225 58 S0430225 34 S0430225 34 S0430225 34 S0430225 11 S0430225 10 S0430225 10 S0430225 10.1 S0430225 10.1 S0430225 10.7 S0430225 10.7 S0430225 10.7 S0430225 10.7 S0430225 10.7 S0430225 19.2					
S04930225E 21.6 S04930225W 39.4 S04930225N 39.4 S04930225S 55.6 S04930225C 22.5 S04930225C 10.5 S0430225N 44.4 S0430225N 10.5 S04430225E 11.1 S0430225C 11.4 S0430225C 11.4 S0430225N 10.1 S04430225N 11.1 S0430225E 11.4 S0430225N 11.4 S0430225N 11.1 S0430225N 11.2 S0430225N 11.8 S0430225N 11.8 S0430225N 11.9 S0430225N 15.6 S0430225N 15.6 S0430225N <t< td=""><td>S04930225S</td><td></td><td></td><td></td><td></td></t<>	S04930225S				
S04930225W 39.4 S04930225N 32.9 S04830225C 32.9 S04830225S 55.8 S04830225C 34.4 S04830225C 34.4 S04830225N 22.5 S04430225C 34.4 S04830225N 21.3 S04830225N 21.3 S04430225C <10.5					
S04830225C 32.9 S04830225N 22.5 S04830225N 22.5 S04830225W 21.3 S04830225W 21.3 S04430225N 10.5 S04430225N 11.4 S04430225N 11.4 S04430225N 11.4 S04430225N 11.1 S04430225N 11.1 S04430225N 11.1 S04430225N 11.4 S04430225N 11.4 S04430225N 11.4 S04430225N 11.4 S04430225N 11.4 S0430225N 19.2 S04430225N 19.2 S04530225C 17.5 S04530225C 17.5 S04630225C 17.5 S04630225C 17.5 S04630225C 17.7 S04630225C 10.7 S04630225C 10.7 S04630225C 10.7 S04630225C 10.7 S0430225C 10.7 S0430225C 10.7 S0430225C 10.7 S043	S04930225W				
S04830225N 22.5 S04830225S 56.8 S04830225C 34.4 S04830225N 21.3 S04430225N 21.3 S04430225N 10.1 S04430225N 10.1 S04430225N 10.1 S04430225N 10.1 S04430225N 10.1 S04430225N 10.7 S04430225N 10.7 S04430225N 11.4 S04430225N 11.4 S0430225C 10.7 S0430225C 10.7 S0430225N 19.2 S0430225N 19.3 S0430225N 17.5 S0430225N 17.5 S0430225N 17.3 S0430225N 15.6 S0430225N 15.6 S0430225N 15.6 S0430225N 15.6 S0430225N					
S04830225N 22.5 S04830225S 56.8 S04830225C 34.4 S04830225N 21.3 S04430225N 21.3 S04430225N 10.1 S04430225N 10.1 S04430225N 10.1 S04430225N 10.1 S04430225N 10.1 S04430225N 10.7 S04430225N 10.7 S04430225N 11.4 S04430225N 11.4 S0430225C 10.7 S0430225C 10.7 S0430225N 19.2 S0430225N 19.3 S0430225N 17.5 S0430225N 17.5 S0430225N 17.3 S0430225N 15.6 S0430225N 15.6 S0430225N 15.6 S0430225N 15.6 S0430225N	S04830225C	32.9		S06130226C	8 1
S048302255 55.8 S04830225C 34.4 S0430225W 21.3 S04430225W 21.3 S04430225C 10.5 S04430225C 10.1 S04430225E 10.7 S04430225E 10.7 S0430225C 25.9 S0430225C 10.7 S0430225E 10.7 S0430225E 10.7 S0430225E 10.7 S0430225C 25.9 S0430225E 16.2 S0430225E 16.2 S0430225E 16.2 S0430225E 15.5 S0430225E 15.6 S0430225E 13.2 S04730225E 13.2 S04730225E 13.2 S04730225E 13.2 S0430225C 16.4 S0530225C 16.4 S0530225C					
S04830225E 34.4 S04830225W 21.3 S04430225W 21.3 S04430225N <10.5					
804830225W 213 \$04430225C 10.5 \$04430225S 11.4 \$04430225W 11.4 \$04430225W 11.8 \$04430225W 11.8 \$04430225W 11.8 \$04430225E 10.7 \$04430225W 11.8 \$04430225W 11.8 \$04430225W 11.8 \$04530225W 19.2 \$04530225W 19.2 \$04530225W 19.2 \$04530225W 19.2 \$04530225E 16.2 \$04630225E 15.5 \$04630225C 17.5 \$04630225E 15.6 \$04630225E 15.6 \$04630225E 15.6 \$04730225C 10.7 \$04630225E 15.6 \$04730225E 13.2 \$04730225C 10.7 \$05630225E 15.3 \$04730225C 10.7 \$05630225E 15.3 \$04730225C 10.7 \$05630225E 15.3 \$04730225C 10.7 \$					
S04430225C < 10.5					
804430225N <10.1	00100022011	21.0		00010022000	10.0
804430225N <10.1	S04430225C	< 10.5		S06230226C	17.2
804430225S 11.4 \$04430225E 10.7 \$04430225E 10.7 \$04430225C 25.9 \$04530225N 19.2 \$04530225N 19.2 \$04530225N 19.2 \$04530225N 19.2 \$04530225C 25.9 \$04530225N 19.2 \$04530225C 16.2 \$04530225N 19.2 \$04530225N 19.2 \$04530225N 19.2 \$04530225N 19.2 \$04530225C 16.2 \$04630225C 17.5 \$04630225S 15.5 \$04630225S 15.5 \$04630225S 15.6 \$04630225S 11.2 \$04730225C 10.7 \$04330225S 11.2 \$04730225C 10.7 \$04730225C 10.7 \$04730225S 11.2 \$04730225C 10.7 \$04730225C 10.7 \$04730225C 10.7 \$04730225C 11.2 \$04730225C 11.2					
804430225E 10.7 \$04430225W 11.8 \$0430225C 25.9 \$04530225C 25.9 \$04530225C 19.2 \$04530225E 16.2 \$04530225C 17.5 \$04630225C 17.5 \$04630225C 17.5 \$04630225C 17.5 \$04630225C 17.5 \$04630225C 17.3 \$04630225C 17.3 \$04630225C 15.5 \$04630225C 16.6 \$04730225C 10.7 \$04730225C 10.7 \$04730225C 10.7 \$04730225C 11.2 \$05530225C 16.4 \$05530225C 16.9 \$	S04430225S			-	
804430225W 11.8 S04530225C 25.9 S04530225N 19.2 S04530225S 18.4 S04530225E 16.2 S04530225C 17.5 S04630225C 17.5 S04630225C 17.5 S04630225C 17.5 S04630225C 17.5 S04630225C 17.5 S04630225C 17.6 S04630225C 17.7 S04630225C 15.6 S04630225C 10.7 S04630225C 10.7 S04730225C 10.7 S04730225C 10.7 S04730225C 10.7 S04730225C 10.1 S04730225C 10.1 S04730225C 10.1 S0530225C 16.4 S0530225C 16.4 S0530225C 16.1 S0530225C 16.1 S0530225C 16.1 S0530225C 16.1 S0530225S 10.5 S0530225S 10.5 S0530225S 10.5 S05430225	S04430225E	10.7		S06230226E	
S04530225C 25.9 S04530225N 19.2 S04530225N 19.2 S04530225N 18.4 S04530225W 21.9 S04530225W 21.9 S04630225C 17.5 S04630225C 17.5 S04630225C 17.5 S04630225E 15.6 S04630225E 15.6 S04630225E 15.6 S04630225E 15.6 S04630225E 11.2 S04730225C 10.7 S04730225S 11.2 S04730225S 11.2 S05330225N 15.5 S05330225N 15.5 S05330225N 15.5 S05330225N 15.5 S05330225N 15.5 S05330225N 15.6 S05330225N 15.6 S05330225N 15.6	S04430225W	11.8			14.2
S04530225N 19.2 S04530225S 18.4 S04530225E 16.2 S04530225C 17.5 S04630225C 17.5 S04630225C 17.3 S04630225E 15.5 S04630225C 17.3 S04630225C 17.3 S04630225E 15.6 S04630225C 10.7 S04630225C 10.7 S04730225C 10.7 S04730225C 10.7 S04730225C 10.7 S04730225C 10.2 S05330225C 16.4 S0530225C 16.1 S05330225C 16.1 S05330225C 16.1 S05330225C 15.5 S05330225S 80.7 S05330225E					
S04530225N 19.2 S04530225E 16.2 S04530225E 16.2 S04530225C 17.5 S04630225C 17.5 S04630225C 17.3 S04630225E 15.5 S04630225E 15.6 S04630225C 17.7.3 S04630225E 15.6 S04630225E 15.6 S04730225C 10.7 S04730225E 13.6 S04730225C 10.7 S04730225C 10.7 S04730225E 13.2 S04730225C 10.1 S05330225C 16.1 S05330225S 80.7 S05330225E 13.6	S04530225C	25.9		S05730226C	9.0
S04530225S 18.4 S04530225E 16.2 S04530225W 21.9 S04630225C 17.5 S04630225C 17.5 S04630225S 15.5 S04630225E 15.6 S04630225C 16.6 S04630225E 15.6 S04630225E 15.6 S04630225C 10.7 S04630225C 10.7 S04730225C 10.7 S04730225C 10.7 S04730225E 13.6 S05330225C 16.4 S05330225C 16.1 S05330225C 15.5 S05330225C 15.6 S05330225S 80.7 S05330225E 13.6	S04530225N				
S04530225E 16.2 S04530225W 21.9 S04630225C 17.5 S04630225N 17.3 S04630225S 15.5 S04630225E 15.6 S04630225C 10.7 S04630225S 15.6 S04730225C 10.7 S04730225S 11.2 S04730225E 13.6 S05330225C 16.1 S05330225C 16.1 S05330225C 16.1 S05330225S 80.7 S05330225S 13.6	S04530225S				14.0
S04530225W 21.9 S04630225C 17.5 S04630225N 17.3 S04630225S 15.5 S04630225E 15.6 S04630225W 6.8 S04630225C 10.7 S04630225N 17.3 S04630225E 15.6 S04630225W 6.8 S04730225C 10.7 S04730225C 10.7 S04730225E 13.2 S04730225E 13.2 S04730225C 16.1 S05330225C 16.1 S05330225C 16.1 S05330225C 16.1 S05330225S 80.7 S05330225S 80.7 S05330225E 13.6	S04530225E			S05730226E	18.9
S04630225N 17.3 S04630225S 15.5 S04630225E 15.6 S04630225W 6.8 S04730225C 10.7 S04730225N 15.6 S04730225E 13.2 S04730225W 11.2 S05330225C 16.1 S05330225N 15.5 S05330225N 15.5 S05330225S 80.7 S05330225E 13.6	S04530225W	21.9		S05730226W	11.0
S04630225N 17.3 S04630225S 15.5 S04630225E 15.6 S04630225W 6.8 S04730225C 10.7 S04730225N 15.6 S04730225E 13.2 S04730225W 11.2 S05330225C 16.1 S05330225N 15.5 S05330225N 15.5 S05330225S 80.7 S05330225E 13.6					
S04630225N 17.3 S04630225S 15.5 S04630225E 15.6 S04630225W 6.8 S04730225C 10.7 S04730225N 15.6 S04730225E 13.2 S04730225W 11.2 S05330225C 16.1 S05330225N 15.5 S05330225N 15.5 S05330225S 80.7 S05330225E 13.6	S04630225C	17.5		S05630226C	8.7
S04630225S 15.5 S04630225E 15.6 S04630225W 6.8 S04730225C 10.7 S04730225S 11.2 S04730225E 13.2 S04730225W 11.2 S04730225W 11.2 S04730225W 11.2 S04730225W 11.2 S04730225W 11.2 S05330225C 16.1 S05330225N 15.5 S05330225N 15.5 S05330225S 80.7 S05330225E 13.6	S04630225N	17.3			5.3
S04630225E 15.6 S04630225W 6.8 S04730225C 10.7 S04730225N 15.6 S04730225S 11.2 S04730225E 13.2 S04730225W 11.2 S04730225W 11.2 S05330225C 16.1 S05330225C 16.1 S05330225S 15.5 S05330225S 15.5 S05330225S 15.5 S05330225S 80.7 S05330225E 13.6	S04630225S				
S04730225C 10.7 S04730225N 15.6 S04730225S 11.2 S04730225E 13.2 S04730225W 11.2 S05330225C 16.1 S05330225N 15.5 S05330225N 15.6 S05330225N 15.5 S05430225N 10.5 S05330225E 13.6	S04630225E	15.6			7.9
S04730225N 15.6 S04730225S 11.2 S04730225E 13.2 S04730225W 11.2 S05330225W 11.2 S05330225C 16.1 S05330225N 15.5 S05330225N 15.5 S05330225S 80.7 S05330225E 13.6	S04630225W	6.8		S05630226W	14.5
S04730225N 15.6 S04730225S 11.2 S04730225E 13.2 S04730225W 11.2 S05330225W 11.2 S05330225C 16.1 S05330225N 15.5 S05330225N 15.5 S05330225S 80.7 S05330225E 13.6				\	
S04730225S 11.2 S04730225E 13.2 S04730225W 11.2 S05330225W 11.2 S05330225C 16.1 S05330225N 15.5 S05330225S 80.7 S05330225E 13.6	S04730225C	10.7		S05530225C	16.4
S04730225E 13.2 S04730225W 11.2 S05330225C 16.1 S05330225N 15.5 S05330225S 80.7 S05330225E 13.6	S04730225N	15.6		S05530225N	32.8
S04730225W 11.2 S05330225C 16.1 S05330225N 15.5 S05330225S 80.7 S05330225E 13.6	S04730225S	11.2		S05530225S	15.3
S05330225C 16.1 S05330225N 15.5 S05330225S 80.7 S05330225E 13.6	S04730225E	13.2		S05530225E	6.9
\$05330225N15.5\$05430225N10.5\$05330225S\$0.7\$05430225S49.3\$05330225E13.6\$05430225E26.0	S04730225W	11.2		S05530225W	14.2
\$05330225N15.5\$05430225N10.5\$05330225S\$0.7\$05430225S49.3\$05330225E13.6\$05430225E26.0			\	\	
S05330225N 15.5 S05430225N 10.5 S05330225S 80.7 S05430225S 49.3 S05330225E 13.6 S05430225E 26.0	S05330225C	16.1		S05430225C	15.6
S05330225S 80.7 S05330225E 13.6	S05330225N	15.5			10.5
S05330225E 13.6 S05430225E 26.0	S05330225S	80.7			49.3
	S05330225E	13.6			
	S05330225W				

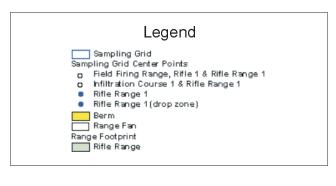

Figure B-6a

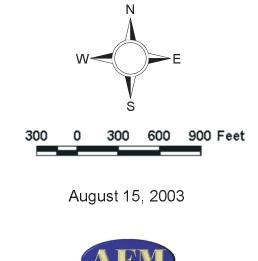

Camp Bonneville

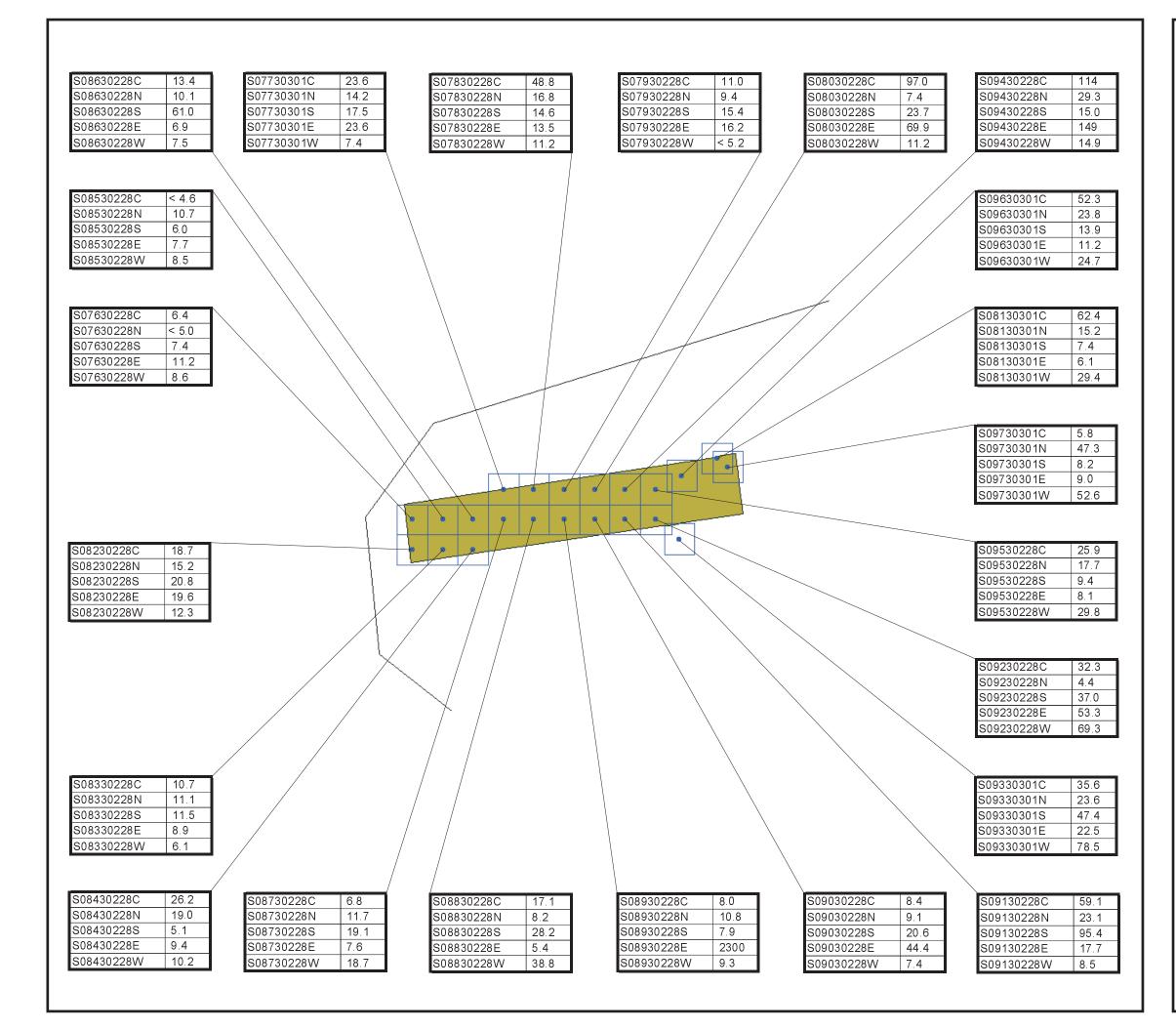
Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

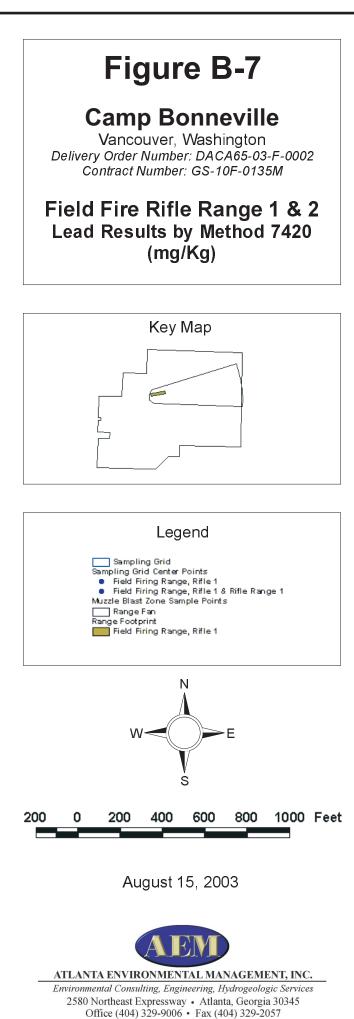
Rifle Ranges 1 and 2 Lead Results by Method 7420 (mg/Kg)

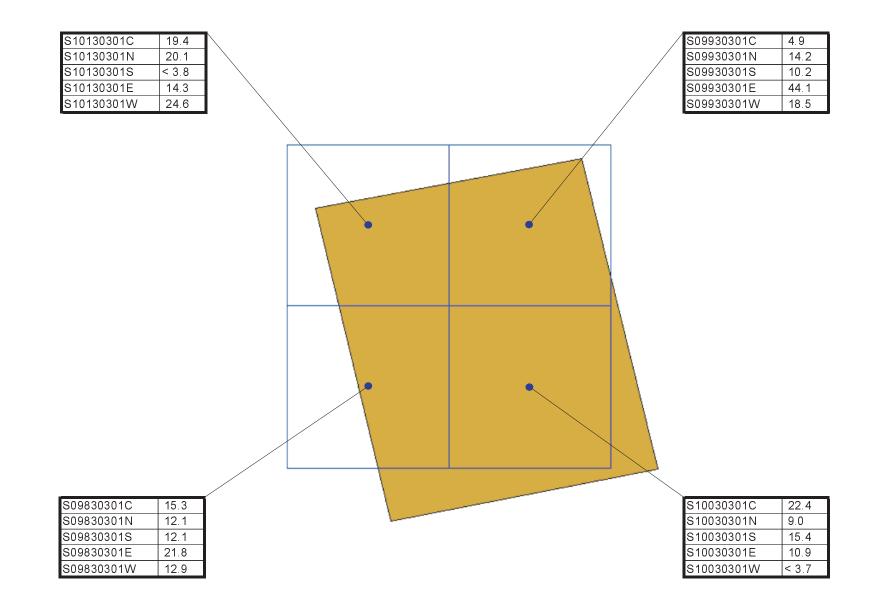


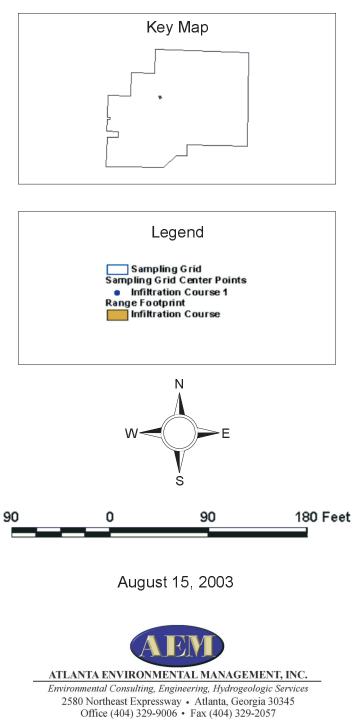

Figure B-6b


Camp Bonneville


Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M


Rifle Ranges 1 and 2 Lead Results by Method 7420 (mg/Kg)

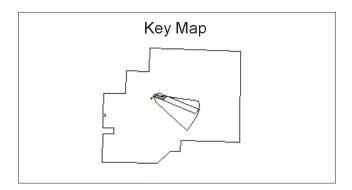


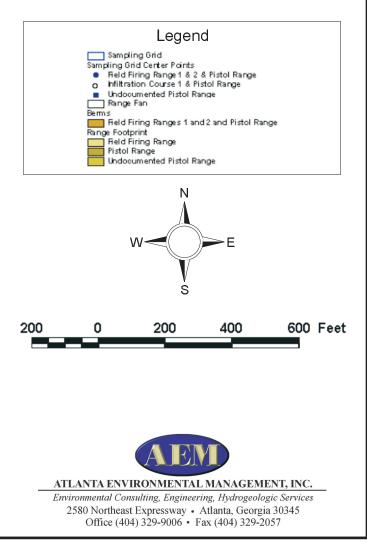


Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Infiltration Course North Lead Results by Method 7420 (mg/Kg)

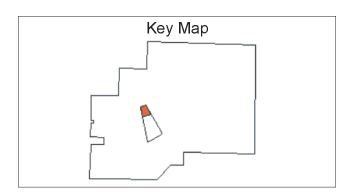


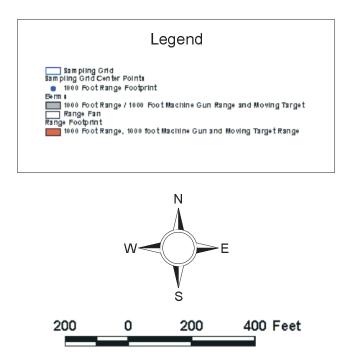


Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Field Firing Ranges 1 & 2 and Undocumented Pistol Range Lead Results by Method 7420 (mg/Kg)

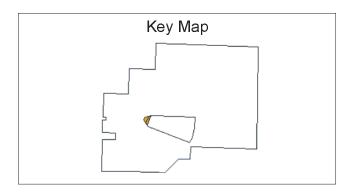


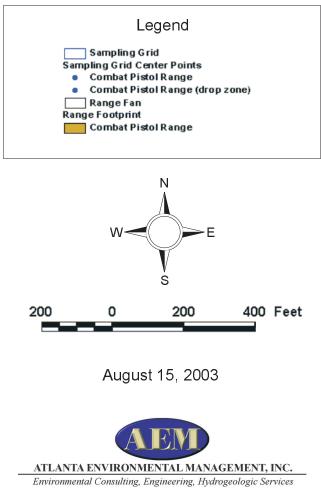


S14130310C63.4S13830310C22.8S14230310C241S14130310N115S13830310N20.6S14230310N91.7S14130310S98.4S13830310S15.2S14230310S346S14130310E282S13830310E45.0S14230310E68.5S14130310W172S13830310W20.1S14230310W136	\$14530310C120\$14330310C334\$14430310C51.9\$14530310N115\$14330310N279\$14430310N15.1\$14530310S96.4\$14330310S7610\$14430310S19.2\$14530310E170\$14330310E2350\$14430310E216\$14530310W106\$14330310W210\$14430310W109	\$13930310C90.7\$13930310N128\$13930310S28.2\$13930310E21.2\$13930310W146
S13730310C 29.8 S13730310N 39.1 S13730310S 25.5 S13730310E 14.9 S13730310W 26.6		\$14030310C10.0\$14030310N48.3\$14030310S13.4\$14030310E13.9\$14030310W28.1
\$13330310C 7.5 \$13330310N 14.3 \$13330310S 15.2 \$13330310E 10.4 \$13330310W 11.4		\$13430310C9.9\$13430310N22.8\$13430310S15.0\$13430310E11.7\$13430310W6.2
S13230310C 17.0 S13230310N 63.3 S13230310S 13.7 S13230310E 9.7 S13230310W 13.6		S13530310C16.6S13530310N11.3S13530310S11.9S13530310E12.4S13530310W22.9
S12830310C 32.2 S12830310N 11.5 S12830310S 19.8 S12830310E 18.6 S12830310W 39.6		S13630310C12.1S13630310N10.0S13630310S9.4S13630310E10.4S13630310W13.8
\$12730310C 30.1 \$12730310N 10.8 \$12730310S 19.6 \$12730310E 12.4 \$12730310W 15.5		\$13130310C12.6\$13130310N22.1\$13130310S14.3\$13130310E7.4\$13130310W13.3
\$12230314C 21.5 \$12230314N 56.7 \$12230314S 4.7 \$12230314E 63.7 \$12230314W 10.1		\$13030310C9.3\$13030310N11.9\$13030310S13.5\$13030310E12.2\$13030310W17.4
S12330314C 871 S12330314N 55.8 S12330314S 4560 S12330314E 198 S12330314W 566		S12630314C4.8S12630314N8.8S12630314S11.4S12630314E10.9S12630314W16.0
S11830314C 10.0 S11830314N 9.3 S11830314S 22.6 S11830314E 7.8 S11830314W 9.1		\$12530314C15.5\$12530314N10.0\$12530314S25.0\$12530314E12.6\$12530314W11.6
S11630314C6.3S11630314N15.3S11630314N15.3S11630314S< 4.9	S12930310C15.3S12030314C58.0S12930310N14.8S12030314N14.8S12930310S15.2S12030314S12.5S12930310E13.1S12030314E12.7S12930310W7.5S12030314W17.2	S12130314C10.1S12130314N11.7S12130314S12.3S12130314E11.5S12130314W9.9

Camp Bonneville Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

1000 Ft. Range, 1000 Ft. Machine Gun, and Moving Target Range Lead Results by Method 7420 (mg/Kg)

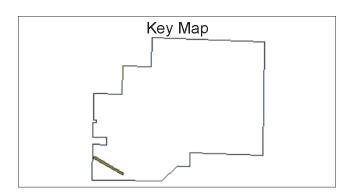

August 15, 2003

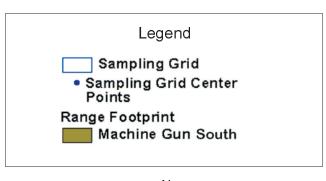


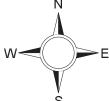
S15230312C 19.8 S15230312N 14.2 S15230312S 27.6 S15230312E 20.3 S15230312W 12.5	
S15130312C 14.4 S15130312N 14.9 S15130312S 23.2 S15130312E 13.4 S15130312W 22.9	\$16230313C 12.3 \$16230313N 9.2 \$16230313S 12.2 \$16230313E 9.3 \$16230313W 12.8
S15030313C 46.1 S15030313N 17.2 S15030313S 16.8 S15030313E 29.5 S15030313W 33.1	\$16030313C 11.5 \$16030313N 12.0 \$16030313S 19.5 \$16030313E 17.0 \$16030313W 785
S14930312C 29.6 S14930312N 15.5 S14930312S 81.8 S14930312E 165 S14930312W 58.5	\$16130313C 11.5 \$16130313N 39.3 \$16130313S 9.5 \$16130313E 11.4 \$16130313W 11.3
\$14730312C 16.0 \$14730312N 39.5 \$14730312S 16.3 \$14730312E 24.1 \$14730312W 31.7	\$15930313C 18.1 \$15930313N 54.0 \$15930313S 22.2 \$15930313E 16.9 \$15930313W 11.3
\$14830313C 16.2 \$14830313N 15.9 \$14830313S 15.7 \$14830313E 43.0 \$14830313W 15.9	S15830313C 21.4 S15830313N 25.3 S15830313S 24.2 S15830313E 35.5 S15830313W 116
\$14630313C 17.2 \$14630313N 15.5 \$14630313S 23.3 \$14630313E 16.7 \$14630313W 33.3	\$15730313C 23.8 \$15730313N 27.6 \$15730313S 14.4 \$15730313E 20.5 \$15730313W 35.5
S15530313C 16.4 S15530313N 12.2 S15530313S 20.5 S15530313E 13.5 S15530313W 15.3	\$15630313C 13.1 \$15630313N 14.3 \$15630313S 15.2 \$15630313E 14.1 \$15630313W 15.9
S15330313C 12.0 S15330313N 12.6 S15330313S 10.1 S15330313E 12.7 S15330313W 11.2	\$15430313C11.0\$15430313N17.7\$15430313S10.2\$15430313E12.3\$15430313W8.7

Camp Bonneville Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Combat Pistol Range Lead Results by Method 7420 (mg/Kg)

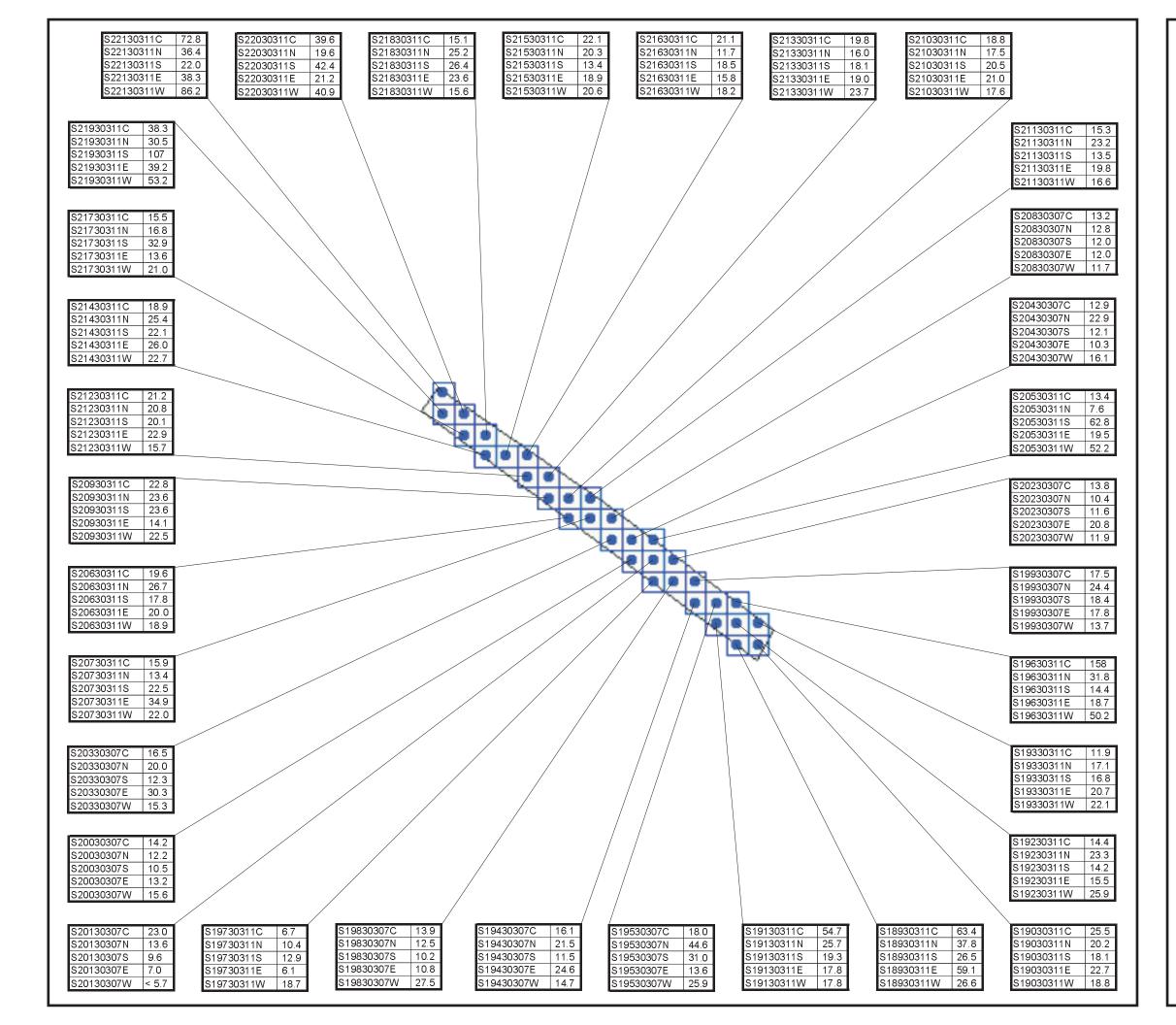



2580 Northeast Expressway • Atlanta, Georgia 30345 Office (404) 329-9006 • Fax (404) 329-2057


	S18530318C 20.9	S18630318C 20.1	S18330318C 17.0	S18030318C 13.1	S17830318C 10.6
	S18530318N 18.2	S18630318N 14.6	S18330318N 81.0	S18030318N 14.3	S17830318N 9.1
	S18530318S 15.0	S18630318S 18.1	S18330318S 18.1	S18030318S 17.8	S17830318S 5.2
	S18530318E 14.2	S18630318E 423	S18330318E 13.8	S18030318E 15.0	S17830318E 6.9
	S18530318W 14.0	S18630318W 19.4	S18330318W 18.8	S18030318W 21.1	S17830318W 14.5
			/		
					S17630318C 10.3
	\setminus				S17630318N 12.0
	\backslash	\	/		S17630318S 10.3
		\backslash			S17630318E 11.7
					S17630318W 12.0
0.4000.00.400					
S18830318C	19.0		/		S17330318C 10.9
S18830318N S18830318S	19.6				S17330318N 14.6 S17330318S 11.9
S18830318E					S17330318E 9.8
S18830318W					S17330318W 7.7
01000001011	14.0				
S18730318C	13.4				S17030318C 16.3
S18730318N		\setminus			S17030318N 12.9
S18730318S	18.5				S17030318S 12.4
S18730318E	19.9				S17030318E 14.9
S18730318W	16.4	\sim			S17030318W 19.1
S18430318C	19.5				S17130318C 12.9
S18430318N	15.2				S17130318N 12.9
S18430318S	24.1	39.01			S17130318S 16.9
S18430318E	20.4				S17130318E 14.9
S18430318W	13.1				S17130318W 13.6
S18130318C	13.1				S16930317C 8.9
S18130318N	27.8				S16930317N 9.9
S18130318S	15.6				S16930317S 14.0
S18130318E	12.7				S16930317E 10.3
S18130318W	15.9				S16930317W 22.0
S18230318C	13.1				S16630317C 6.9
S18230318C					S16630317N 9.8
S18230318N					S16630317S 12.9
S18230318E	16.9				S16630317E 7.4
S18230318W	20.9		/ / /		S16630317W 6.9
S17930318C	13.4		/		S16430317C 21.2
S17930318N	9.8		/		S16430317N 12.0
S17930318S	12.1		/		S16430317S 14.5
S17930318E	14.5	/ /			S16430317E 13.1
S17930318W	18.6				S16430317W 10.7
	/	/	/ /		
S17730318C	11.5	/			S16330317C 8.0
S17730318N	11.5	/	/		S16330317N 19.5
S17730318S	10.0		/		S16330317S 8.0
S17730318E			/ /		S16330317E 8.8
S17730318W	10.7	/			S16330317W 8.5
S17430318C	10.7 S17530318C 18	.1 S17230318C	11.4 S16730317C	21.8 S16830317C 24.1	S16530317C 14.4
S17430318N	14.4 S17530318N 12		11.4 S16730317N	12.3 S16830317N 16.5	S16530317N 10.7
S17430318S	28.8 S17530318S 12	.9 S17230318S	10.6 S16730317S	17.2 S16830317S 31.5	S16530317S 17.7
S17430318E	19.2 S17530318E 12		11.9 S16730317E	135 S16830317E 27.0	S16530317E 13.5
S17430318W	10.3 S17530318W 11	.8 S17230318W	12.0 S16730317W	16.1 S16830317W 18.8	S16530317W 14.2
					-

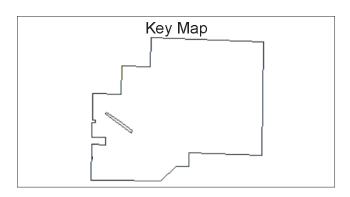
Camp Bonneville Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

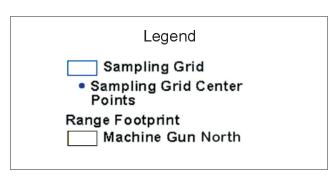
Machine Gun South Lead Results by Method 7420 (mg/Kg)

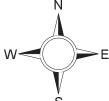


200 0 200 400 600 Feet

August 15, 2003



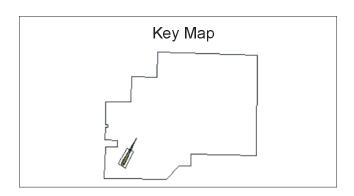


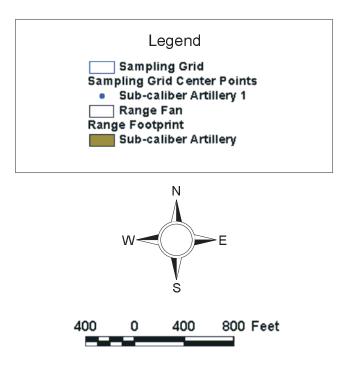

Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Machine Gun North Lead Results by Method 7420 (mg/Kg)

200 0 200 400 600 Feet

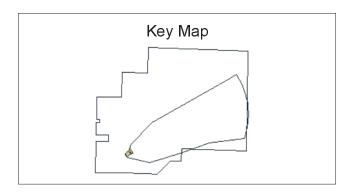

August 15, 2003

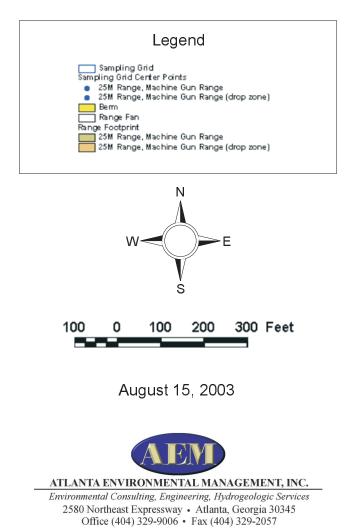


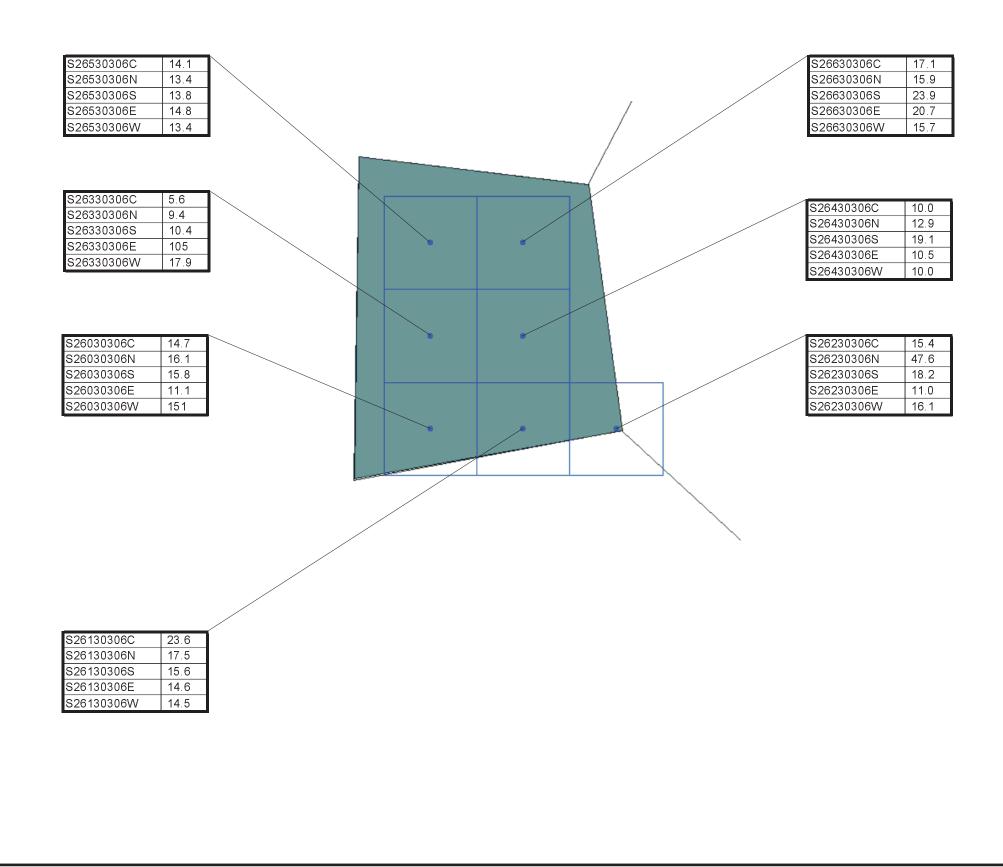
S24530319C 7.5 S24530319N 7.9 S24530319S 10.7 S24530310E 11.4	S24630318C 15.4 S24630318N 10.5 S24630318S 8.2 S24630318E 16.9	S24430319 S24430319	N 13.6 S 13.8
S24530319E 11.4 S24530319W 11.9	S24630318E 16.9 S24630318W 8.9	S24430319	
S24330319C 7.5 S24330319N 10.7		S24230319 S24230319 S24230319	N 13.8
S24330319S11.4S24330319E< 5.2		\$242303193 \$24230319 \$24230319	E 11.3
S24030319C 10.4 S24030319N 5.4		S241303190 S241303190	
S24030319N 5.4 S24030319S 8.8 S24030319E 8.0		S241303193 S241303193	S 9.1
S24030319W 8.9		S24130319	W 8.0
S23930319C 11.0 S23930319N 13.6		S23830319 S23830319	N 12.4
S23930319S 9.9 S23930319E 12.1		S23830319 S23830319 S23830319	E 12.6
S23930319W 10.9		S23630319	
S23730319C < 5.4 S23730319N 12.1 S23730319S < 4.9		S23630319 S23630319	N 11.2
S23730319E 18.5 S23730319W < 5.9		S23630319 S23630319	E 11.5
S23530320C 10.3		S234303190	
S23530320N 13.3 S23530320S 9.1		\$23430319 \$23430319 \$23430319 \$23430319	S 17.7
S23530320E < 5.0 S23530320W 9.6		S23430319	
S23330320C 11.3 S23330320N 6.6		S23230320 S23230320	N 11.2
S23330320S 16.6 S23330320E 20.3		\$23230320 \$23230320 \$23230320	E 12.1
S23330320W < 4.7		S23230320 S23030320	
S23130320C 12.5 S23130320N 12.0 S23130320S 11.6		S23030320 S23030320	N 11.1
S23130320E 11.3 S23130320W 10.5		\$23030320 \$23030320	
S22730319C 11.9 S22730319N 11.2		S22930320 S22930320	
S22730319S 7.8 S22730319E 11.7		S229303203 S229303200	E 16.6
S22730319W 8.8		S22930320	
S22430319C 11.9 S22430319N 12.4 S22430319N 14.4	S22230319C 11.6 S2230319C 18.3 S22230319N 14.1 S22330319N 8.5 S22230210S 0.4 S22320210S 0.5	S22530319C 17.0 S22630319C 18.9 S228303200 S22530319N 14.5 S22630319N 15.5 S228303200 S22530319N 14.5 S22630319N 15.5 S228303200	N 12.3
S22430319S 14.1 S22430319E 51.3 S22430319W 12.8	S22230319S8.4S2230319S9.5S22230319E10.3S22330319E8.1S22230319W20.5S22330319W5.5	S22530319S 10.1 S22630319S 13.8 S228303203 S22530319E 15.5 S22630319E 16.8 S228303203 S22530319W 9.5 S22630319W 17.8 S228303203	E 11.3
022-1000-1000 12.0	0220001000 0.0	02200001011 17.0	10.0

Camp Bonneville Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

M31 Sub-Caliber Ranges 1&2 Lead Results by Method 7420 (mg/Kg)

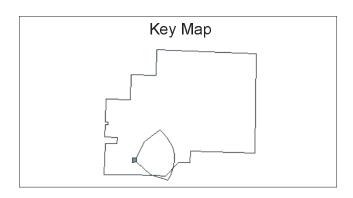

August 15, 2003

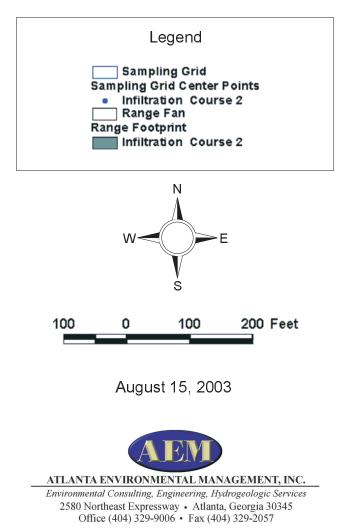



S25230306S 25.1 S25230306E 28.5 S25230306W 37.6 S25230306W 37.6 S24930306C 31.1 S24930306C 29.3 S24930306E 17.2 S24930306W 18.2 S25030306W 18.2 S25030306S 29.3 S24930306E 17.2 S24930306W 18.2 S25030306N 17.2 S25030306S 25.2 S25130306S 45.0 S25130306S 45.0					
525830306N 10.6 525830306C 25.0 525830306C 26.0 525830306C 20.4 525530306C 20.4 525530306C 22.4 525530306C 22.4 525530306C 22.4 525530306C 22.4 525530306C 22.4 525530306C 24.1 525330306C 10.8 525330306C 10.8 525330306C 10.8 525330306C 12.6 52530306C 12.6 52530306C 12.7 52530306C 12.7 52530306C 12.7 52530306C 12.7 52530306C 12.7 52530306C 12.7 525230306N 1	S25830306C	13.8			
S28833095 25.0 S28833096 6.1 S25330306C 204 S25330306C 204 S25330306C 204 S25330306C 204 S25330306C 24.7 S25330306C 45.4 S2530306C 45.4 S2530306C 45.4 S2530306C 45.4 S2530306C 45.4 S2530306C 45.4 S2530306C 13.0 S2530306C 45.4 S2530306C 14.2 S2530306C 14.2 S2530306C 12.6 S2530306C 13.0 S25230306C 14.2 S2680306C 12.6					
S25830306C 6.1 S25530306C 204 S25530306C 204 S25530306C 247 S25530306C 247 S25530306C 247 S25330306N 31.6 S25330306C 10.8 S25330306C 11.0 S25330306C 120 S25330306C 120 S25330306C 120 S25330306C 11.4 S25330306C 120 S25330306C 120 S25330306C 11.4 S25330306C 120 S25330306C 120 S25330306C 11.4 S25230306C 120 S25330306C 120 S25330306C 120 S2530306C 121 S25230306C 121					
\$25830306W 9.8 \$25530306C 204 \$25530306N 64.3 \$25530306E 24.7 \$25530306E 24.7 \$25530306V 10.8 \$25330306N 31.6 \$25330306E 24.7 \$25330306N 31.6 \$25330306V 10.8 \$25330306V 11.4 \$25330306E 24.7 \$25330306C 35.6 \$25330306V 11.4 \$25330306C 12.6 \$25330306C 25.1 \$25330306C 25.1 \$25230306C 25.1 \$25230306C 25.1 \$25230306C 25.5 \$25230306C 25.1 \$25230306C 25.1 \$25230306C 28.5 \$25230306C 28.5 \$25230306C 28.5 \$25230306C 28.5 \$25230306C 28.5 \$25230306C 37.6 \$25430306C 12.0 \$25430306C					
S25530306C 204 S25530306N 64.3 S25530306N 62.1 S25530306C 247 S25530306C 45.4 S25330306C 45.4 S25330306C 5.7 S25330306C 5.7 S25330306C 5.7 S25330306C 5.7 S25330306C 5.7 S25330306C 5.7 S25330306C 76.8 S25330306C 77.6 S25330306C 77.6 S25330306C 77.6 S25330306C 76.7 S25330306C 76.7 S25330306C 76.7 S25330306C 76.7 S25330306C 76.7 S25330306C 76.7 S25330306C 77.6 S25330306C 75.3 S2530306C 28.6 S25230306C 28.6 S25230306C 28.6 S25230306C 28.6 S25230306C 28.6 S254303006 28.	S25830306W				
S25530306N 64.3 S25530306C 22.1 S25530306C 24.7 S25530306C 24.7 S25330306N 31.6 S25330306C 57 S2530306E 25 S25230306E 25 S25230306E 26 S2530306E 28 S2530306E 28 S25230306E 28 S2530306E 21 S2530306E 28 S2530306E 28 S2530306E 28 S2530306E 28 S2530306E 28 S25430					
S25530306N 64 3 S25530306C 22 1 S25530306C 24 7 S25530306C 24 7 S25530306C 24 7 S25330306C 45 4 S25330306C 45 4 S25330306C 45 4 S25330306C 126 S25330306C 126 S25330306C 57 S2530306E 57 S2530306E 57 S2530306E 57 S2530306E 57 S2530306E 57 S25230306E 57 S25230306E 57 S25230306E 25 S25230306E 28 5 S25230306E 28 5 S25230306E 28 5 S25230306E 29 3 S25430306E 10 5 S25430306E 17 2 S2630306E 17 2					
S25530306N 64.3 S25530306C 24.7 S25530306C 24.7 S25530306C 24.7 S25530306C 24.7 S25330306C 45.4 S25330306C 45.4 S25330306C 10.8 S25330306C 12.6 S25330306C 12.6 S25330306C 12.6 S25330306C 12.6 S25330306C 12.6 S2530306C 12.6 S2530306C 12.6 S25230306C 12.6 S25230306C 25.1 S25230306C 12.6 S25230306C 12.6 S25230306C 12.6 S25230306C 25.1 S25230306C 12.7 S2530306C 12.7 S2530306C 12.7 S2530306C 12.7 S2530306C 12.7 S2530306C 12.7 S2530306C 12.7 S25430306C 12.7 S25430306C 12					
S2550306C 62:1 S2550306C 24:7 S25530306C 44:7 S2530306C 10.8 S25330306C 45:5 S25330306C 16 S25330306C 16 S25330306C 16 S25330306C 11.0 S25330306C 16 S25330306C 16 S25330306C 17.6 S25330306C 17.6 S25330306C 17.6 S25330306C 17.6 S25330306C 17.6 S25330306C 17.0 S25330306C 17.0 S25330306C 17.0 S25330306C 17.0 S25330306C 17.0 S25230306C 28.1 S25230306C 28.1 S25230306C 28.1 S25230306C 17.0 S2530306C 17.0 S2530306C 17.0 S2530306C 17.0 S2530306C 17.0 S25430306C 17.0 S25430306C 17.2 S25430306C	S25530306C			S25930306C	
S25530306E 24 7 S25330306C 45 4 S25330306C 45 4 S25330306N 31 6 S25330306E 5 7 S25230306E 5 7 S25230306E 28 5 S25330306E 19 5 S25330306E 28 5 S25330306E 28 5 S25330306E 28 5 S25330306E 28 5 S25330306E 17 2 S25330306E 27 0 S25303006E					
S25530306W 10.8 S25330306C 45.4 S25330306C 45.4 S25330306C 126 S25330306C 5.7 S25330306C 5.7 S25330306C 85.9 S25330306C 25.1 S25230306C 25.1 S2530306C 25.1 S2530306C 25.1 S25330306C 27.0 S2530306C 17.2 S2530306C 27.0 S2530306C 27.0 S2530306C 27.0 S2530306C 27.0 S2530306C 27.0 S25303006C 27.0<					
S25330306C 45.4 S25330306N 31.6 S25330306N 126 S25330306N 5.7 S25330306N 11.4 S25330306N 11.4 S25330306N 11.4 S25330306N 126 S25330306N 12.6 S25330306N 11.4 S25230306N 12.7 S25230306N 12.7 S25230306N 22.6 S25230306N 22.6 S25230306N 22.6 S25230306N 19.1 S25230306N 37.6 S25230306N 28.5 S25230306N 37.6 S25330306N 19.1 S24930306C 31.1 S24930306C 17.2 S24930306N 19.2 S24930306N 18.2 S24930306C 27.0 S25303006N 17.2 S24930306N 17.2 S24930306N 17.2 S25030306N 17.2 S25030306N <					
S25330306N 31.6 S25330306S 126 S25330306E 5.7 S25330306C 5.7 S25330306C 85.9 S25330306N 42.7 S25330306 28.5 S25330306 28.5 S25330306 28.5 S25330306 28.5 S25230306 105 S25230306 105 S25230306 105 S25330306 105 S2530306 105 S2530306 105 S2530306 105 S25430306 105	S25530306W	10.8		S25930306V	/ 5.5
S25330306N 31.6 S25330306E 126 S25330306E 5.7 S25330306E 5.7 S25330306C 85.9 S25330306C 85.9 S25230306C 28.5 S25330306E 28.5 S25330306C 28.7 S25330306C 85.9 S25230306C 28.5 S25230306E 28.5 S25230306E 28.5 S25230306C 31.1 S25230306C 31.1 S24930306C 31.1 S24930306C 17.2 S24930306E 17.2 S25030306E 17.2 S25			\sim /		
S25330306N 31.6 S25330306E 126 S25330306E 5.7 S25330306E 5.7 S25330306C 5.7 S25330306C 5.7 S25330306C 5.7 S25330306C 5.7 S25330306C 5.7 S25330306C 5.7 S25230306C 5.7 S25230306C 5.7 S25230306C 25.1 S25230306 28.5 S25230306C 28.5 S25230306C 28.5 S25230306C 31.1 S24930306C 31.1 S24930306C 31.1 S24930306C 17.2 S24930306C 17.2 S25030306N 18.2 S25030306N 18.2 S25030306N 18.2 S25030306N 17.2 S25030306N 17.2 S25030306N 17.2 S25030306N 17.2 S25030306N 17.2 S25030300E 17.2 S25030300E 17.2 S25030300E </td <td></td> <td></td> <td>$\langle \langle \rangle$</td> <td></td> <td></td>			$\langle \langle \rangle$		
S25330306N 31.6 S25330306E 126 S25330306E 5.7 S25330306E 5.7 S25330306C 85.9 S25330306C 85.9 S25230306C 28.5 S25330306E 28.5 S25330306C 28.7 S25330306C 85.9 S25230306C 28.5 S25230306E 28.5 S25230306E 28.5 S25230306C 31.1 S25230306C 31.1 S24930306C 31.1 S24930306C 17.2 S24930306E 17.2 S25030306E 17.2 S25	8252202060	45.4		S25720206C	20.2
S25330306S 126 S25330306E 5.7 S25330306W 11.4 S25330306K 11.4 S25330306K 120 S25330306K 42.7 S25330306E 28.5 S25230306E 28.5 S25230306K 28.5 S25230306K 37.6 S25230306K 28.5 S25230306K 37.6 S25230306K 37.6 S2530306K 37.6 S24930306K 19.1 S24930306K 19.1 S24930306K 17.2 S24930306K 17.2 S2530306K 27.0 S25030306K 17.2 S25030306K 25.2 S25130306K 25.2 S25130306K 25.2 S2513					
S25330306E 5.7 S25330306W 11.4 S25330306C 85.9 S25230306N 42.7 S25230306E 28.5 S25230306E 28.5 S25230306C 31.1 S25230306C 31.1 S24930306C 31.1 S24930306E 17.2 S24930306E 17.2 S24930306C 17.2 S2530306N 17.2 S2530306N 17.2 S25030306N 17.2 S25030306S 25.2 S25					
S2530306W 114 S25230306C 85.9 S25230306C 85.9 S25230306C 28.5 S25230306C 28.5 S25230306C 31.1 S24930306C 31.1 S24930306C 11.2 S24930306C 28.3 S24930306C 11.1 S24930306C 11.1 S24930306C 11.1 S24930306C 11.1 S24930306C 11.1 S24930306C 11.1 S24930306C 11.2 S24930306C 11.2 S24930306C 11.2 S24930306C 11.2 S2430306C 11.2 S2430306C 11.2 S2430306C 11.2 S2430306C 11.2 S2530306C 11.2 S2530306C 11.2 S2530306C 11.2 S2530306C 11.2 S2530306C 11.2 S2530306C 12.2 S2530306C 12.2 S253030306N 12.2 S253030306N<					
S25230306C 85.9 S25230306N 42.7 S25230306E 25.1 S25230306E 28.5 S25230306W 37.6 S25230306C 105 S25230306K 105 S25230306K 105 S25230306K 105 S25230306K 105 S25630306C 203 S25430306C 29.3 S24930306E 17.2 S24930306K 17.2 S25030306K 17.2 S25130306K 25.2 S25130306K					
S25230306N 42.7 S25230306S 25.1 S25230306E 28.5 S25230306W 37.6 S25230306N 19.1 S24930306C 29.3 S24930306E 17.2 S24930306E 17.2 S24930306C 27.0 S25030306N 17.2 S25030306N 17.2 S25030306N 17.2 S25030306N 17.2 S25030306S 25.2	32333030000	11.4		3237 303000	V 114
S25230306N 42.7 S25230306S 25.1 S25230306E 28.5 S25230306W 37.6 S25230306W 37.6 S24930306C 31.1 S24930306N 19.1 S24930306E 17.2 S24930306E 17.2 S24930306C 27.0 S25030306N 17.2 S25030306N 17.2 S25030306N 17.2 S25030306C 27.0 S25030306S 25.2					
S25230306N 42.7 S25230306S 25.1 S25230306E 28.5 S25230306W 37.6 S25230306N 19.1 S24930306C 29.3 S24930306E 17.2 S24930306E 17.2 S24930306C 27.0 S25030306N 17.2 S25030306N 17.2 S25030306N 17.2 S25030306N 17.2 S25030306S 25.2					
S25230306S 25.1 S25230306E 28.5 S25230306W 37.6 S25230306W 37.6 S24930306C 31.1 S24930306C 31.1 S24930306S 29.3 S24930306E 17.2 S24930306E 17.2 S24930306K 18.2 S25030306K 17.2 S25030306K 17.2 S25030306S 25.2	S25230306C	85.9		S25630306C	120
S25230306E 28.5 S25230306W 37.6 S25230306W 37.6 S24930306C 31.1 S24930306N 19.1 S24930306S 29.3 S24930306E 17.2 S24930306N 18.2 S25030306N 17.2 S25030306N 17.2 S25030306S 25.2 S25030306S 25.2 S25030306S 25.2 S25030306S 25.2 S25030306E 31.7 S25030306E 31.7 S25030306E 31.7	S25230306N				
S25230306W 37.6 S24930306C 31.1 S24930306N 19.1 S24930306S 29.3 S24930306E 17.2 S24930306W 18.2 S25030306N 17.2 S25030306N 17.2 S25030306S 25.2 S25130306S 49.1 S25130306S 49.1 S25130306S 49.1 S25130306E 61.0					
S24930306C 31.1 S24930306N 19.1 S24930306S 29.3 S24930306E 17.2 S24930306W 18.2 S25030306N 17.2 S25130306N 2180 S25130306S 25.2 S25130306S 49.1 S25130306E 41.0 S25130306E 61.0					
S24930306C 31.1 S24930306N 19.1 S24930306S 29.3 S24930306E 17.2 S24930306W 18.2 S25030306N 17.2 S25130306N 2180 S25130306S 25.2 S25130306S 49.1 S25130306E 41.0 S25130306E 61.0	S25230306W	37.6		S25630306V	/ 64.0
S24930306N 19.1 S24930306S 29.3 S24930306E 17.2 S24930306W 18.2 S25030306C 27.0 S25030306S 25.2 S25030306S 25.2 S25030306E 31.7 S25030306E 31.7 S25030306E 31.7 S25030306E 31.7					
S24930306N 19.1 S24930306S 29.3 S24930306E 17.2 S24930306W 18.2 S25030306C 27.0 S25030306S 25.2 S25030306S 25.2 S25030306E 17.2 S25030306S 25.2 S25030306E 17.2 S25030306S 25.2 S25030306E 25.2 S25030306E 21.80 S25030306E 21.90 S25130306E 49.1 S25130306E 61.0					
S24930306N 19.1 S24930306S 29.3 S24930306E 17.2 S24930306W 18.2 S25030306C 27.0 S25030306S 25.2 S25030306S 25.2 S25030306E 31.7 S25030306E 31.7 S25030306E 31.7 S25030306E 31.7					
S24930306S 29.3 S24930306E 17.2 S24930306W 18.2 S24930306C 27.0 S25030306N 17.2 S25030306S 25.2 S25030306S 25.2 S25030306E 31.7 S25030306E 31.7 S25030306E 31.7					
S24930306E 17.2 S24930306W 18.2 S25030306C 27.0 S25030306N 17.2 S25030306S 25.2 S25030306E 31.7 S25030306E 31.7 S25030306E 31.7 S25030306E 61.0					
S24930306W 18.2 S25030306C 27.0 S25030306N 17.2 S25030306S 25.2 S25030306E 31.7 S25030306E 31.7 S25030306E 61.0					
S25030306C 27.0 S25030306N 17.2 S25030306S 25.2 S25030306E 31.7 S25030306E 31.7					
S25030306N 17.2 S25130306N 214 S25030306S 25.2 S25130306S 49.1 S25030306E 31.7 S25130306E 61.0	S24930306W	18.2		S25430306V	4550
S25030306N 17.2 S25130306N 214 S25030306S 25.2 S25130306S 49.1 S25030306E 31.7 S25130306E 61.0					
S25030306N 17.2 S25130306N 214 S25030306S 25.2 S25130306S 49.1 S25030306E 31.7 S25130306E 61.0					
S25030306N 17.2 S25130306N 2180 S25030306S 25.2 S25130306S 49.1 S25030306E 31.7 S25130306E 61.0	S25030306C	27.0		S251303060	214
S25030306S 25.2 S25030306E 31.7 S25130306E 61.0	S25030306N	17.2	\backslash		
S25030306E 31.7 S25130306E 61.0	S25030306S	25.2	<u></u>		
	S25030306E	31.7			
S2505050000 12.2 S25130306W 166.6	S25030306W	12.2		S25130306V	
	S24730306C			S24830306C	
	S24730306N			S24830306N	
	S24730306S			S24830306S	
	S24730306E				
S24730306W 116 S24830306W 9.6		116		S24820206V	

Camp Bonneville Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

25 Meter and Machine Gun Range Lead Results by Method 7420 (mg/Kg)

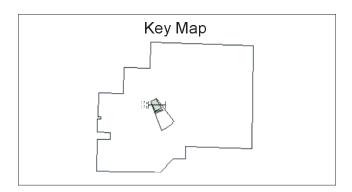




Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Infiltration Course South Lead Results by Method 7420 (mg/Kg)



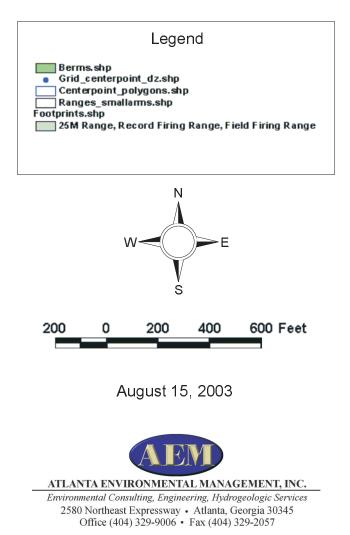
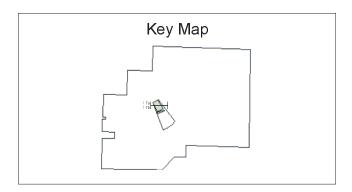
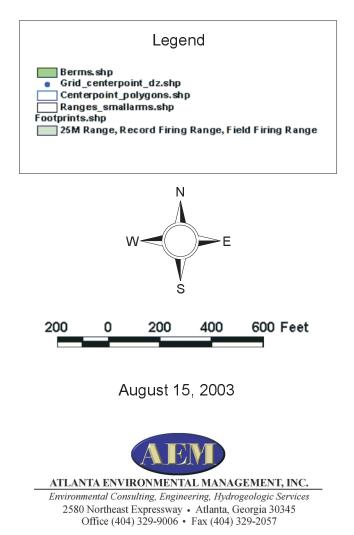

10.5 20.5 16.2 13.6 23.8 9.7 14.4 78.4 18.5 13.2 10.7 14.1 14.8 11.9 9.7
20.5 16.2 13.6 23.8 9.7 14.4 78.4 18.5 13.2 10.7 14.1 14.8 11.9
16.2 13.6 23.8 9.7 14.4 78.4 18.5 13.2 10.7 14.1 14.8 11.9
13.6 23.8 9.7 14.4 78.4 18.5 13.2 10.7 14.1 14.8 11.9
23.8 9.7 14.4 78.4 18.5 13.2 10.7 14.1 14.8 11.9
9.7 14.4 78.4 18.5 13.2 10.7 14.1 14.8 11.9
14.4 78.4 18.5 13.2 10.7 14.1 14.8 11.9
14.4 78.4 18.5 13.2 10.7 14.1 14.8 11.9
14.4 78.4 18.5 13.2 10.7 14.1 14.8 11.9
78.4 18.5 13.2 10.7 14.1 14.8 11.9
18.5 13.2 10.7 14.1 14.8 11.9
13.2 10.7 14.1 14.8 11.9
10.7 14.1 14.8 11.9
14.1 14.8 11.9
14.1 14.8 11.9
14.1 14.8 11.9
14.8 11.9
11.9
9.7
11.2
19.2
13.8
11.5
12.5
11.0
11.6
14.0
13.6
10.7
11.8
12.0
9.3
8.9
10.9
V ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

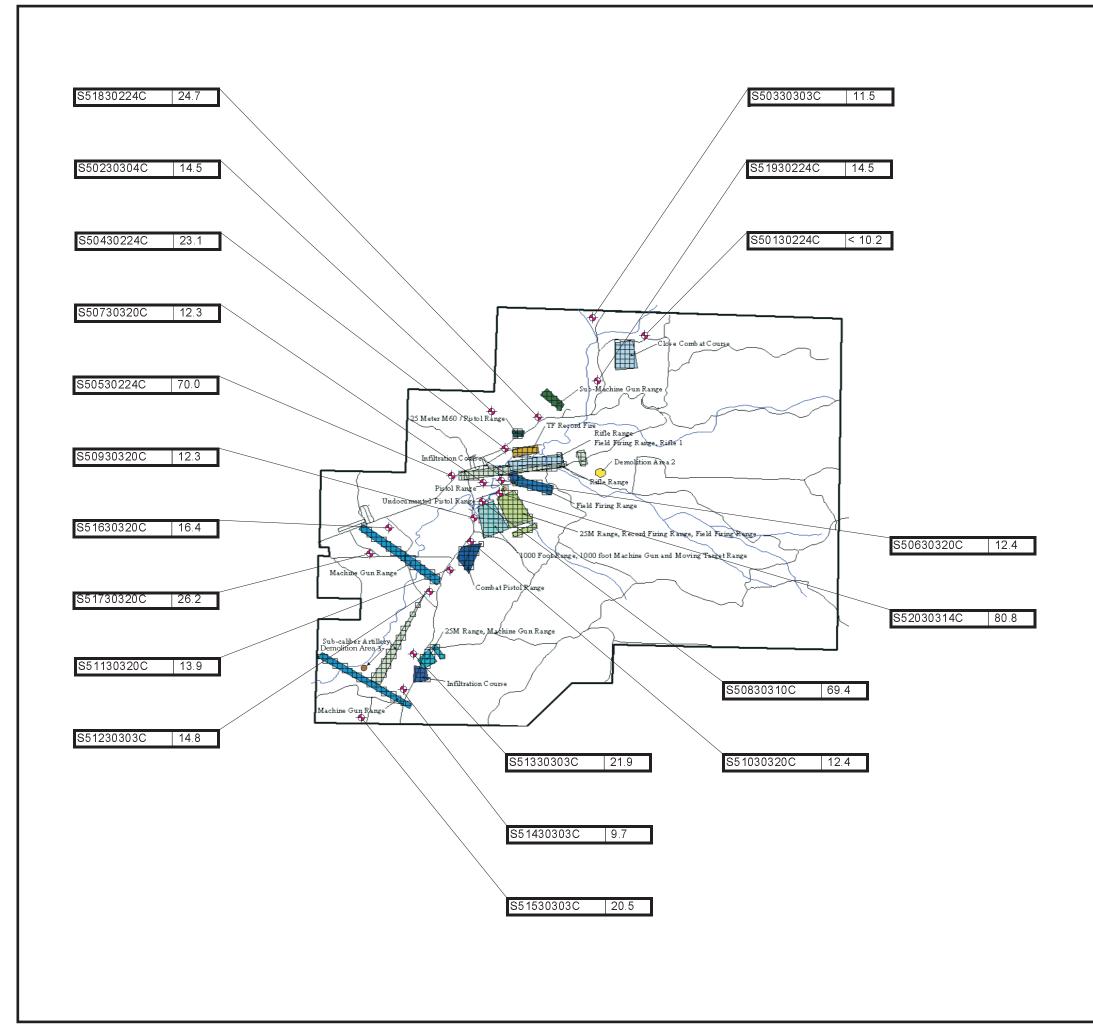
Figure B-17a

Camp Bonneville Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

25M Record Fire Field Range Field Firing Range Lead Results by Method 7420 (mg/Kg)

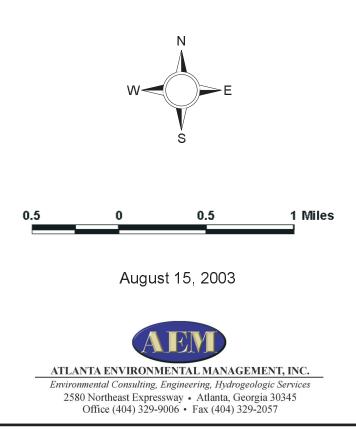



S27430315C 14.3	S27530315C 9.6	S27630315C 8.8	S27730315C 20.8	S27830315C < 4.8	S27930315C	12.1
S27430315N 9.1	S27530315N 6.6	S27630315N 12.0	S27730315N 11.3	S27830315N 10.6	S27930315N	7.6
S27430315S 19.3	S27530315S 13.9	S27630315S 8.8	S27730315S 9.0	S27830315S 10.4	S27930315S	21.5
S27430315E 12.9	S27530315E 55.2	S27630315E 8.5	S27730315E 6.8	S27830315E 25.3	S27930315E	12.1
S27430315W 9.3	S27530315W 11.2	S27630315W 9.8	S27730315W 8.0	S27830315W 5.2	S27930315W	12.4
			/			
					/	
			/			
		\backslash				
		\backslash				
	$\langle \rangle$					
		\backslash	/			
		\backslash				
		$\langle \rangle$	/			
					S27230317C	8.1
					S27230317N	12.7
					S27230317S	10.4
					S27230317E	10.9
	Ň				S27230317W	11.5
					007000170	12.0
					S27330317C S27330317N	13.0 9.5
					S27330317S	10.5
					S27330317E	9.3
					S27330317W	10.5
26930317C 7.6					S30630317C	8.5
26930317N 13.2					S30630317N	9.9
26930317S 10.3					S30630317S	7.4
26930317E 10.5					S30630317E	9.1
26930317W 8.2					S30630317W	11.1
27030317C 14.2					S30530317C	12.8
27030317N 10.2 27030317S 12.2					S30530317N S30530317S	10.1 10.9
270303175 12.2 27030317E 8.7					S30530317S	11.6
27030317W 10.5					S30530317W	41.5
				\langle		11.0
26730317C 11.9					S30430317C	8.7
26730317N 8.3					S30430317N	7.2
26730317S 9.7			\backslash		S30430317S	7.2
26730317E 8.9			\backslash		S30430317E	19.0
26730317W 7.7	/ /				S30430317W	8.5
		S30130317C 12.9		S30330317C 12.8		
		S30130317N 12.3		S30330317N 12.6		
		S30130317S 16.3		S30330317S 7.5		
26830317E 11.0	S27130317E 11.9	S30130317E 13.7	S30230317E 12.6 S	S30330317E 10.3		
		S30130317W 8.5		S30330317W 10.2		


Figure B-17b

Camp Bonneville Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

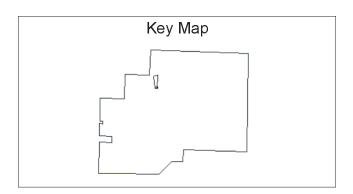
25M Record Fire Field Range Field Firing Range Lead Results by Method 7420 (mg/Kg)

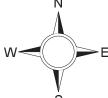


Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Background Lead Results by Method 7420 (mg/Kg)




S60330304C		S60430304C
HMX < 2.6		HMX < 3.2
RDX < 2.6		RDX < 3.2
1,3,5-TNB < 2.6		1,3,5-TNB < 3.2
1,3-DNB < 2.6		1,3-DNB < 3.2
2,4,6-TNT < 2.6		Tetry < 3.2
NB < 2.6		NB < 3.2
2,4,6-TNT < 2.6		2,4,6-TNT < 3.2
4-Am-DNT < 2.6		4-Am-DNT < 3.2
2-Am-DNT < 2.6		2-Am-DNT < 3.2
2,4-DNT < 2.6		2,4-DNT < 3.2
2,6-DNT < 2.6		2,6-DNT < 3.2
2-NT < 2.6		2-NT < 3.2
3-NT < 2.6		3-NT < 3.2 4-NT < 3.2
4-NT < 2.6		4-NT< 3.2Picric Acid< 10
Picric Acid < 10 PETN < 13		PETN < 16
FEIN SIS		
	\setminus \land \land \land \land \land	
<u>S60230304C</u>		S60530304C
HMX < 2.5		HMX < 2.8
RDX < 2.5		RDX < 2.8
1,3,5-TNB < 2.5		1,3,5-TNB < 2.8
1,3-DNB < 2.5		1,3-DNB < 2.8
Tetryl < 2.5		Tetry < 2.8
NB < 2.5		NB < 2.8
2,4,6-TNT < 2.5		2,4,6-TNT < 2.8
4-Am-DNT < 2.5		4-Am-DNT < 2.8
2-Am-DNT < 2.5		2-Am-DNT < 2.8
2,4-DNT < 2.5		2,4-DNT < 2.8
2,6-DNT < 2.5		2,6-DNT < 2.8
2-NT < 2.5		2-NT < 2.8
3-NT < 2.5		3-NT < 2.8
4-NT < 2.5 Picric Acid < 10		4-NT < 2.8 Picric Acid < 10
PETN < 13		PETN < 14
FEIN 15		FEIN 14
<u>S60130304C</u>		S60630304C
HMX < 2.7		HMX < 3.0
RDX < 2.7		RDX < 3.0
1,3,5-TNB < 2.7		1,3,5-TNB < 3.0
1,3-DNB < 2.7		1.3-DNB < 3.0
Tetry < 2.7		Tetryl < 3.0
NB < 2.7		NB < 3.0
2,4,6-TNT < 2.7		2,4,6-TNT < 3.0
4-Am-DNT < 2.7		4-Am-DNT < 3.0
2-Am-DNT < 2.7		2-Am-DNT < 3.0
2,4-DNT < 2.7		2,4-DNT < 3.0
2,6-DNT < 2.7		2,6-DNT < 3.0
2-NT < 2.7 3-NT < 2.7		2-NT < 3.0
4-NT < 2.7		3-NT < 3.0 4-NT < 3.0
$\frac{4-101}{10} < \frac{2.7}{10}$		Picric Acid < 10
PETN < 14		PETN < 15
Charles 1. Contraction of the second se		

Camp Bonneville Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

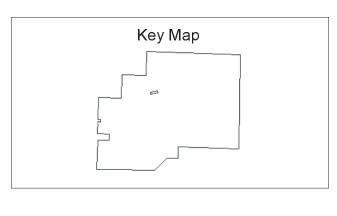
25 Meter M60 Range/ **Pistol Range** Muzzle Blast Zone Samples (mg/Kg)

100 0 100 200 300 Feet ••••

August 15, 2003

S60	730307C					
НМХ	< 2.6					
RDX	< 2.6					
1,3,5-TNB	< 2.6					
1,3-DNB	< 2.6					
Tetry	< 2.6					
NB	< 2.6					
2,4,6-TNT	< 2.6					
4-Am-DNT	< 2.6					
2-Am-DNT	< 2.6					
2,4-DNT	< 2.6					
2,6-DNT	< 2.6					
2-NT	< 2.6					
3-NT	< 2.6					
4-NT	< 2.6					
Picric Acid	< 10					
PETN	< 13					
		*	•	•	•	•
				,		

•


	S608	303	070
•	2000	202	010

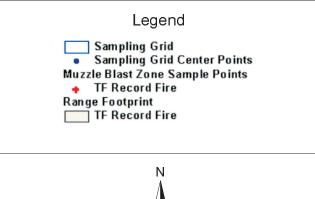
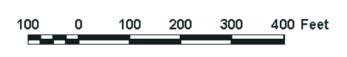
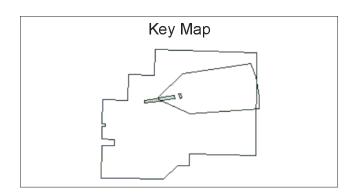

HMX	< 3.0
RDX	< 3.0
1,3,5-TNB	< 3.0
1,3-DNB	< 3.0
Tetry	< 3.0
NB	< 3.0
2,4,6-TNT	< 3.0
4-Am-DNT	< 3.0
2-Am-DNT	< 3.0
2,4-DNT	< 3.0
2,6-DNT	< 3.0
2-NT	< 3.0
3-NT	< 3.0
4-NT	< 3.0
Picric Acid	< 10
PETN	< 15

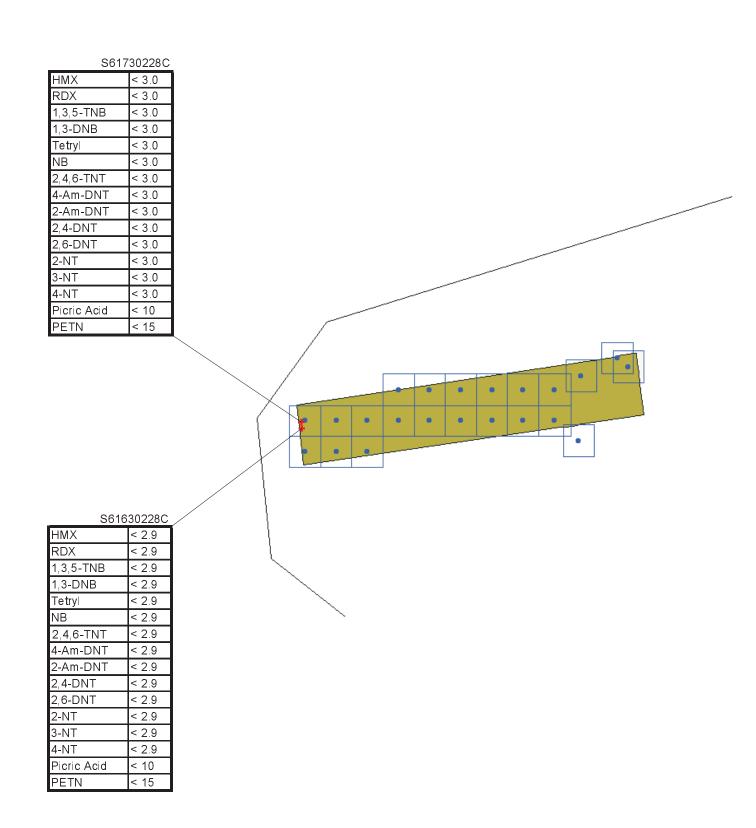
Figure B-20


Camp Bonneville Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

TF Range Muzzle Blast Zone Samples (mg/Kg)

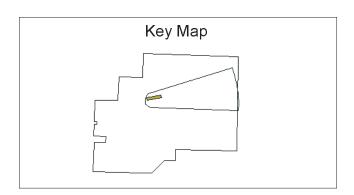

August 15, 2003

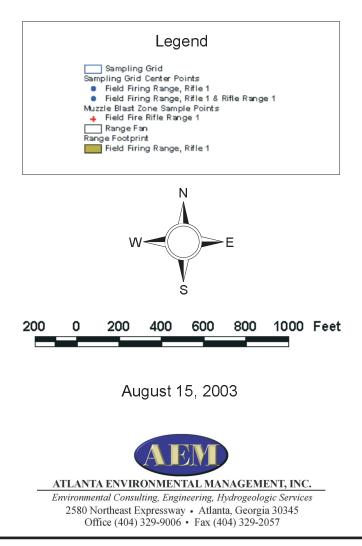



SHI 1002270 SU 11002270 SU 1202270 HXX 2 2 7 13.5 \n N = 2 7 13.5 \n N = 2 7 13.5 \n N = 2 7 13.5 \n N = 2 7 13.5 \n N = 2 7 13.5 \n N = 2 7 13.5 \n N = 2 7 13.5 \n N = 2 7 13.5 \n N = 2 7 13.5 \n N = 2 7 13.5 \n N = 2 7 13.5 \n N = 2 7 2.4 \n N \n 1 < 2 7 2.4 \n N \n 1 < 2 7 2.4 \n N \n 1 < 2 7 2.4 \n N \n 1 < 2 7 2.4 \n N \n 1 < 2 7 2.4 \n N \n 2 7 2.4 \n N \n 1 < 2 7 2.4 \n N \n 1 < 2 7 2.4 \n N \n 2 7 2.4 \n N \n 2 8 2.4 \n N \n 2 7 2.4 \n 1 \n 2 8 2.4 \n 1 \n 2 7 2.4 \n 1 \n 2 8 2.4 \n 1 \n 2 7 2.4 \n 1 \n 2 8 2.4 \n 1 \n 2 7 2.4 \n 1 \n 2 8 2.4 \n 1 \n 2 7 2.4 \n 1 \n 2 8 2.4 \n 1 \n 2 7 2.4 \n 1 \n 2 8 2.4 \n 1 \n 2 7 2.4 \n 1 \n 2 8 2.4 \n 1 \n 2 8 2.4 \n 1 \n 2 8 2.4 \n 1 \n 2 8 2.4 \n 1 \n 2 8 2.4 \n 1 \n 2 8 2.4 \n 1 \n 2 8 2.4 \n 1 \n 2 8 2.4 \n 1									
RDX 2.27 RDX 2.28 13.57108 2.27 13.57108 2.20 13.57108 2.27 13.57108 2.20 13.5717 2.27 13.5717 2.29 13.5717 2.27 2.4.5717 2.29 13.5717 2.27 2.4.5717 2.20 2.4.5717 2.27 2.4.5717 2.29 2.4.5717 2.27 2.4.5717 2.29 2.4.5717 2.27 2.4.5717 2.20 2.4.5717 2.27 2.4.5717 2.29 2.4.5717 2.27 2.4.5717 2.29 2.4.5717 2.27 2.4.5717 2.20 2.4.5717 2.27 2.4.5717 2.29 2.4.5717 2.27 2.4.5717 2.20 2.4.5717 2.20 2.4.5717 2.20 2.4.5717 2.27 2.4.5717 2.20 2.4.5717 2.21 2.4.5717 2.20 2.4.5717 2.21 2.4.5717 2.20 2.4.5717 2.57 2.5717 2.57 <t< th=""><th></th><th>S609</th><th>30228C</th><th>S61</th><th>130227C</th><th>:</th><th>S61330227C</th><th></th><th></th></t<>		S609	30228C	S61	130227C	:	S61330227C		
135 ETMB 2.27 130 NB 2.28 24 drNT 2.77 24 drNT 2.72 24 drNT 2.72 24 drNT 2.72 24 drNT 2.80 24 drNT 2.72 24 drNT 2.80 24 drNT 2.72 24 drNT 2.80 34 rr<		НМХ	< 2.7	HMX	< 2.9	HMX	< 2.6		
13:0N8 2.27 13:0N8 2.27 13:0N8 2.27 13:0N8 2.29 14:0N1 2.27 14:0N1 2.27 14:0N1 2.27 14:0N1 2.27 24:0N1 2.28 14:0N1 2.7 24:0N1 2.28 24:0N1 2.26 24:0N1 2.26 24:0N1 2.26 10:0A:04 10 Piet Act 6 10 Piet Act 6 10 Piet Act 6 10 Piet Act 7 2.6 11:1 11:1 11:1 11:1 11:1 11:1 11:1 11:1 11						_			
Ety 2.2 N N N 2.2 N									
NB C 20 24 24 Ann. DNT 22 4Ann. DNT 24 4Ann. DNT <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source Set to source S									
2 Am DVT 2 2 2 Am DVT 2 2 2 AD NT 2 3 1 3.5 NB 2 3 2 AD NT 2 3 2 AD NT </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th>1</th> <th></th>						_		1	
24-DNT 22 23-DNT 22 24-DNT 23 24-DNT 24 24-DNT 25 24-DNT 26 24-DNT 28 24-DNT 28 <t< th=""><th></th><th>4-Am-DNT</th><th>< 2.7</th><th>4-Am-DNT</th><th>< 2.9</th><th>4-Am-DN</th><th>NT < 2.6</th><th>1</th><th></th></t<>		4-Am-DNT	< 2.7	4-Am-DNT	< 2.9	4-Am-DN	NT < 2.6	1	
2 0-DNT 2 27 2-HT 2 27 2-HT 2 27 1-NT 2 20						-			
Set Set <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
Set Set <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		-							
Ann 27 Piero Acid 10				-					
Peric Acid 10 Peric Acid 10 PETN < 13 PETN < 15 PETN < 13 PETN < 15 PETN < 15 PETN < 13 V < 10 V V V V						-		1	
S6 1030228C S6 1230227C S6 1230227C S6 1230227C S6 133027C MMX < 3.1		Picric Acid	< 10		< 10	Picric Ac	oid < 10	1	
S61030228C S61230227C S61430227C S61530227C HMX < 3.1		PETN	< 14	PETN	< 15	PETN	< 13	, i i i i i i i i i i i i i i i i i i i	
S61030228C S61230227C S61430227C S61530227C HMX < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 2.6 1.3.5-TNB < 3.0 1.3.5-TNB < 2.6 1.3-DNB < 3.0 1.3-DNB< < 2.6 1.3-DND < 3.0 2.4 6-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
S61030228C S61230227C S61430227C S61530227C HMX < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 2.6 1.3.5-TNB < 3.0 1.3.5-TNB < 2.6 1.3-DNB < 3.0 1.3-DNB< < 2.6 1.3-DND < 3.0 2.4 6-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>/</th> <th></th>								/	
S61030228C S61230227C S61430227C S61530227C HMX < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 2.6 1.3.5-TNB < 3.0 1.3.5-TNB < 2.6 1.3-DNB < 3.0 1.3-DNB< < 2.6 1.3-DND < 3.0 2.4 6-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>/</th> <th></th> <th></th>							/		
S61030228C S61230227C S61430227C S61530227C HMX < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 2.6 1.3.5-TNB < 3.0 1.3.5-TNB < 2.6 1.3-DNB < 3.0 1.3-DNB< < 2.6 1.3-DND < 3.0 2.4 6-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
S61030228C S61230227C S61430227C S61530227C HMX < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 2.6 1.3.5-TNB < 3.0 1.3.5-TNB < 2.6 1.3-DNB < 3.0 1.3-DNB< < 2.6 1.3-DND < 3.0 2.4 6-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 </th <th></th> <th>\backslash</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		\backslash							
S61030228C S61230227C S61430227C S61530227C HMX < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 2.6 1.3.5-TNB < 3.0 1.3.5-TNB < 2.6 1.3-DNB < 3.0 1.3-DNB< < 2.6 1.3-DND < 3.0 2.4 6-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>/</th> <th></th> <th></th>							/		
S61030228C S61230227C S61430227C S61530227C HMX < 3.1									
S61030228C S61230227C S61430227C S61530227C HMX < 3.1					\backslash				
S61030228C S61230227C S61430227C S61530227C HMX < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 3.0 1.3.5-TNB < 3.1 1.3.5-TNB < 2.6 1.3.5-TNB < 3.0 1.3.5-TNB < 2.6 1.3-DNB < 3.0 1.3-DNB< < 2.6 1.3-DND < 3.0 2.4 6-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT< < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 2.4.0-TNT < 3.0 2.4.0-TNT< < 2.6 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-I</th> <th></th>								-I	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		\backslash	,					0 0 0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			\backslash			0 0 0	0 0 0	。。	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
S61030228C S61230227C S61430227C S61530227C HMX < 3.0									
HMX <3.1									
HMX <3.1		/							
HMX <3.1									
HMX <3.1									
HMX <3.1			,	/ /					
HMX <3.1	/								
RDX 3.1 RDX 3.0 RDX 2.6 1,3,5-TNB 3.1 1,3,5-TNB 3.0 1,3,5-TNB 2.6 1,3-DNB 3.1 1,3-DNB 3.0 1,3-DNB 2.6 1,3-DNB 3.1 1,3-DNB 3.0 1,3-DNB 2.6 Tetryl 3.1 1,2,4,6-TNT 3.0 1,3-DNB 2.6 2,4,6-TNT 3.1 2,4,6-TNT 2.0 1,3-DNB 2.6 2,4,6-TNT 3.1 2,4,6-TNT 2.0 1,3-DNT 2.6 2,4,6-TNT 3.1 2,4,6-TNT 2.0 2,4,6-TNT 2.6 2,4-DNT 3.1 2,4-DNT 3.0 $2.4-m-DNT2.62,4-DNT3.12,4-DNT2.02.4-m-DNT2.62,4-DNT3.12.4-DNT2.02.4-DNT2.62,6-DNT3.12.6-DNT2.62.4-DNT2.62,6-DNT3.12.6-DNT2.62.4-DNT2.62,6-DNT3.12.6-DNT2.62.4-DNT2.62.6-DNT3.12.7-T3.02.7-T2.62.NT3.13-NT3.03-NT2.63-NT3.13-NT3.03-NT2.64-NT3.13-NT3.03-NT2.64-NT2.63-NT2.63-NT2.62-NT2.63-NT2.63-NT2.62-NT3.03-$									
1.3.5-TNB < 3.1									
1,2,0 HNB1,2,0 HNB <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Tetryl < 3.1 Tetryl < 3.0 Tetryl < 2.6 NB < 2.6 NB < 3.1									
2,4,6-TNT < 3.1				Tetry	< 2.6				
11.10 11.10 11.10 11.10 11.10 11.10 11.10 11.10 4-Am-DNT < 3.1 4-Am-DNT < 3.0 2-Am-DNT < 2.6 4-Am-DNT < 2.6 2-Am-DNT < 3.1 2-Am-DNT < 3.0 2-Am-DNT < 2.6 2-Am-DNT < 2.6 2,4-DNT < 3.1 2,4-DNT < 3.0 2,4-DNT < 2.6 2,4-DNT < 2.6 2,6-DNT < 3.1 2,6-DNT < 3.0 2,6-DNT < 2.6 2,6-DNT < 2.6 2-NT < 3.1 3-NT < 3.0 2-NT < 2.6 2.0 < 2.6 3-NT < 3.1 3-NT < 3.0 2-NT < 2.6 2.0 < 2.6 3-NT < 3.1 3-NT < 3.0 3-NT < 2.6 3-NT < 2.6 4-NT < 3.1 4-NT < 3.0 4-NT < 2.6 3-NT < 2.6 4-NT < 3.1 4-NT < 3.0 4-NT < 2.6 3-NT < 2.6 Picric Acid <10 Picric Acid<<10 Picric Acid<<10 Picric Acid<<10 <th>NB < 3.1</th> <th>NB</th> <th>< 3.0</th> <th></th> <th></th> <th></th> <th>NB</th> <th>< 2.6</th> <th></th>	NB < 3.1	NB	< 3.0				NB	< 2.6	
2-Am-DNT < 3.1 2-Am-DNT < 3.0 2-Am-DNT < 2.6 2,4-DNT < 3.1 2,4-DNT < 3.0 2,4-DNT < 2.6 2,4-DNT < 2.6 2,6-DNT < 3.1 2,6-DNT < 3.0 2,6-DNT < 2.6 2,6-DNT < 2.6 2-NT < 3.1 2-NT < 3.0 2-NT < 2.6 2,6-DNT < 2.6 3-NT < 3.1 3-NT < 3.0 3-NT < 2.6 2-NT < 2.6 4-NT < 3.1 3-NT < 3.0 3-NT < 2.6 3-NT < 2.6 Picric Acid < 10 Picric Acid < 10 Picric Acid < 10 Picric Acid < 10									
2,4-DNT < 3.1									
2,6-DNT < 3.1									
2-NT < 3.1									
3-NT < 3.1									
Picric Acid < 10									
PEIN SID PEIN SID									
	METIN < 16	PEIN	5 10		× 13		FEIN	< 13	

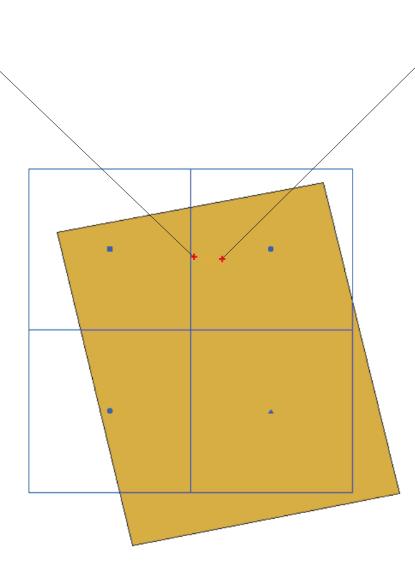
Camp Bonneville Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Rifle Ranges 1 and 2 Muzzle Blast Zone Samples (mg/Kg)





Camp Bonneville


Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Field Fire Rifle Range 1 & 2 Muzzle Blast Zone Samples (mg/Kg)

0010	1000010	·
HMX	< 3.0	\setminus
RDX	< 3.0	
1,3,5-TNB	< 3.0	
1,3-DNB	< 3.0	
Tetryl	< 3.0	
NB	< 3.0	
2,4,6-TNT	< 3.0	
4-Am-DNT	< 3.0	
2-Am-DNT	< 3.0	
2,4-DNT	< 3.0	
2,6-DNT	< 3.0	
2-NT	< 3.0	
3-NT	< 3.0	
4-NT	< 3.0	
Picric Acid	< 10	
PETN	< 15	

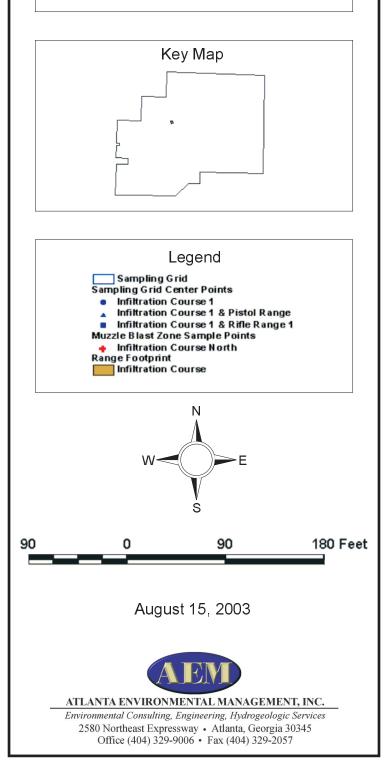
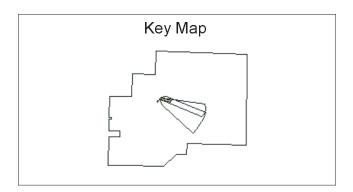

S61930301C HMX < 2.4 RDX < 2.4 1,3,5-TNB < 2.4 1.3-DNB < 2.4 < 2.4 Tetry NB < 2.4 2,4,6-TNT < 2.4 4-Am-DNT < 2.4 2-Am-DNT < 2.4 2,4-DNT < 2.4 2,6-DNT < 2.4 < 2.4 2-NT 3-NT < 2.4 4-NT < 2.4 Picric Acid < 10 PETN < 12

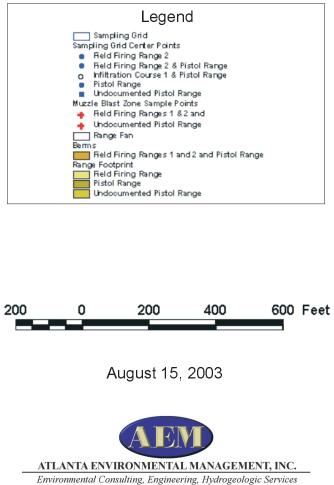
Figure B-23

Camp Bonneville

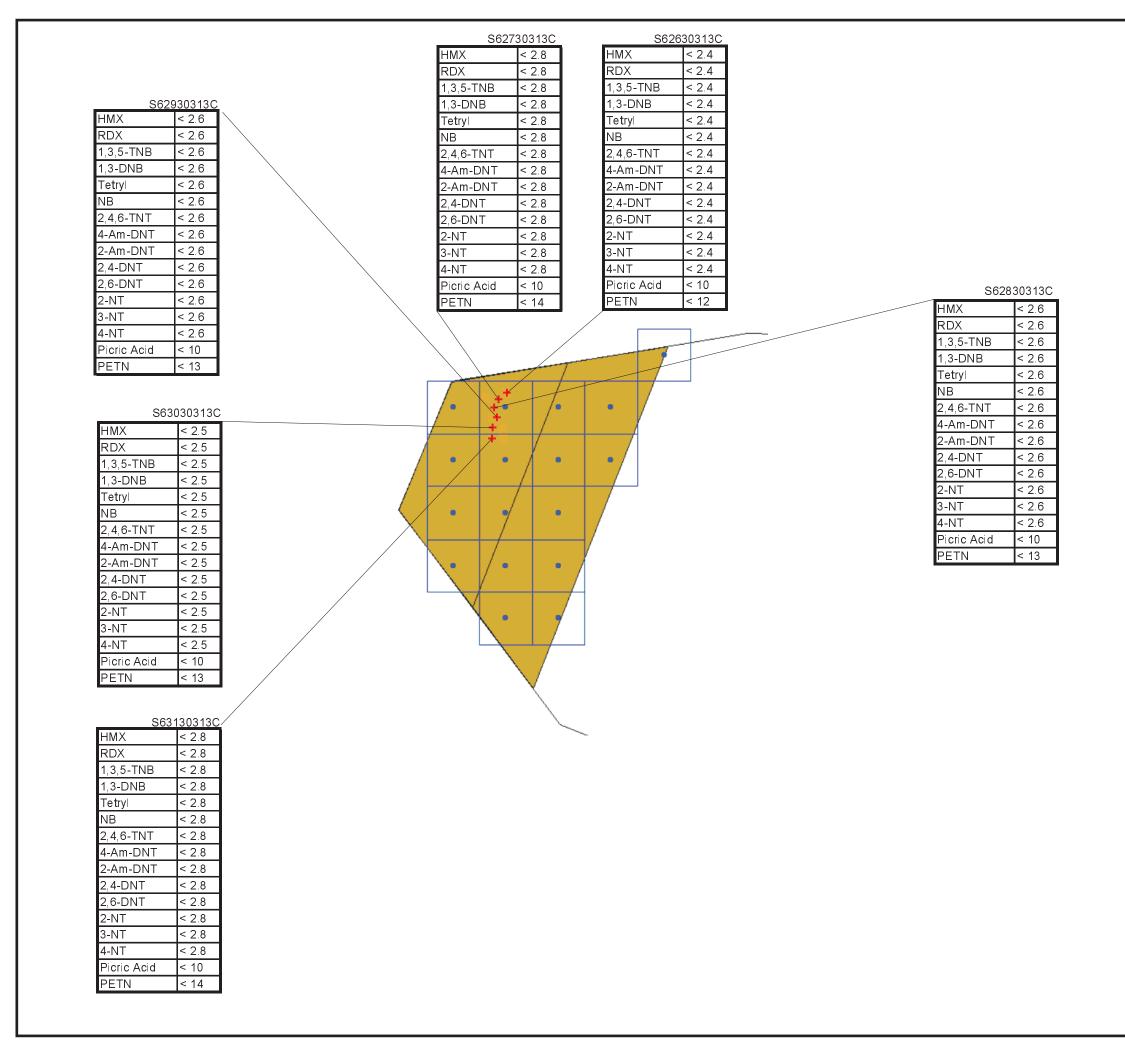
Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

Infiltration Course North Muzzle Blast Zone Samples (mg/Kg)

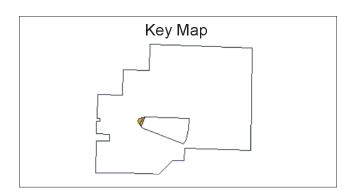



S62130317C	S62030317	7C S62	2230317C	S623	330317C	S624	430317C	S62	2530317C
IMX < 2.5	HMX < 2.7		< 2.7	HMX	< 2.7	НМХ	< 2.6	НМХ	< 2.7
RDX < 2.5	RDX < 2.7		< 2.7	RDX	< 2.7	RDX	< 2.6	RDX	< 2.7
,3,5-TNB < 2.5	1,3,5-TNB < 2.7		< 2.7	1,3,5-TNB	< 2.7	1,3,5-TNB	< 2.6	1,3,5-TNB	< 2.7
3-DNB < 2.5	1.3-DNB < 2.7		< 2.7	1.3-DNB	< 2.7	1,3-DNB	< 2.6	1,3-DNB	< 2.7
etry < 2.5	Tetry < 2.7		< 2.7	Tetry	< 2.7	Tetry	< 2.6	Tetry	< 2.7
B < 2.5	NB < 2.7		< 2.7	NB	< 2.7	NB	< 2.6	NB	< 2.7
4.6-TNT < 2.5	2,4,6-TNT < 2.7		< 2.7	2,4,6-TNT	< 2.7	2,4,6-TNT	< 2.6	2,4,6-TNT	< 2.7
-Am-DNT < 2.5	4-Am-DNT < 2.7		< 2.7	4-Am-DNT	< 2.7	4-Am-DNT	< 2.6	4-Am-DNT	< 2.7
-Am-DNT < 2.5	2-Am-DNT < 2.7		< 2.7	2-Am-DNT	< 2.7	2-Am-DNT	< 2.6	2-Am-DNT	< 2.7
4-DNT < 2.5	2,4-DNT < 2.7		< 2.7	2,4-DNT	< 2.7	2,4-DNT	< 2.6	2,4-DNT	< 2.7
6-DNT < 2.5	2,6-DNT < 2.7		< 2.7	2,6-DNT	< 2.7	2,6-DNT	< 2.6	2,6-DNT	< 2.7
NT < 2.5	2-NT < 2.7		< 2.7	2-NT	< 2.7	2-NT	< 2.6	2-NT	< 2.7
NT < 2.5	3-NT < 2.7		< 2.7	3-NT	< 2.7	3-NT	< 2.6	3-NT	< 2.7
-NT < 2.5	4-NT < 2.7		< 2.7	4-NT	< 2.7	4-NT	< 2.6	4-NT	< 2.7
icric Acid < 10	Picric Acid < 10	Picric Acid	< 10	Picric Acid	< 10	Picric Acid	< 10	Picric Acid	< 10
ETN < 13	PETN < 14	PETN	< 14	PETN	< 14	PETN	< 13	PETN	< 14
			<u> </u>		< 14	FEIN	< 13	FEIN	N 14
				•••	•				
S66830301C	566930301		6730301C				5303010		
/	S66930301		6730301C	S660	530301C		530301C		
/ HMX < 3.0	HMX < 2.8	в НМХ	< 2.7	S660	630301C	S66 HMX	< 3.1		
HMX < 3.0 RDX < 3.0	HMX < 2.8 RDX < 2.8	HMX RDX	< 2.7 < 2.7	S660 HMX RDX	630301C < 3.0 < 3.0	S66 HMX RDX	< 3.1 < 3.1		
HMX < 3.0 RDX < 3.0 1,3,5-TNB < 3.0	HMX< 2.8RDX< 2.8	HMX RDX 1,3,5-TNB	< 2.7 < 2.7 < 2.7	S666 HMX RDX 1,3,5-TNB	530301C < 3.0 < 3.0 < 3.0	S66 HMX RDX 1,3,5-TNB	< 3 1 < 3 1 < 3 1		
HMX < 3.0	HMX< 2.8RDX< 2.8	HMX RDX 1,3,5-TNB 3 1,3-DNB	< 2.7 < 2.7 < 2.7 < 2.7	S666 HMX RDX 1,3,5-TNB 1,3-DNB	530301C < 3.0 < 3.0 < 3.0 < 3.0 < 3.0	S66 HMX RDX 1,3,5-TNB 1,3-DNB	< 3.1 < 3.1 < 3.1 < 3.1		
HMX < 3.0	HMX < 2.6	HMX RDX 1,3,5-TNB 1,3-DNB Tetryl	< 2.7 < 2.7 < 2.7 < 2.7 < 2.7 < 2.7	S666 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl	530301C < 3.0 < 3.0 < 3.0 < 3.0 < 3.0 < 3.0	S66 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl	< 3.1 < 3.1 < 3.1 < 3.1 < 3.1 < 3.1		
HMX < 3.0	HMX< 2.8RDX< 2.8	B HMX B RDX B 1,3,5-TNB B 1,3-DNB B Tetryl B NB	< 2 7 < 2 7	S660 HMX RDX 1,3,5-TNB 1,3-DNB Tetry NB	630301C < 3.0 < 3.0	S66 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB	 < 3.1 		
HMX < 3.0	HMX < 2.8	B HMX B RDX B 1,3,5-TNB B 1,3-DNB B Tetryl B NB B 2,4,6-TNT	< 2.7 < 2.7 < 2.7 < 2.7 < 2.7 < 2.7 < 2.7 < 2.7 < 2.7	S666 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT	630301C < 3.0 < 3.0	S66 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT	 < 3.1 		
HMX < 3.0	HMX< 2.8RDX< 2.8	HMX RDX 1,3,5-TNB 1,3-DNB Tetryl RDX	<pre>< 2.7 < 2.7</pre>	S666 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT	530301C < 3.0 < 3.0	S66 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT	 < 3.1 		
HMX < 3.0	HMX < 2.6	B HMX B RDX B 1,3,5-TNB B 1,3-DNB B Tetryl B 2,4,6-TNT B 4-Am-DNT B 2-Am-DNT	< 2.7 < 2.7	S666 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2-Am-DNT	530301C < 3.0 < 3.0	S66 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2-Am-DNT	 < 3.1 		
HMX < 3.0	HMX< 2.8RDX< 2.8	B HMX B RDX B 1,3,5-TNB B 1,3-DNB B Tetryl B 2,4,6-TNT B 2-Am-DNT B 2,4-DNT	<pre>< 2.7 < 2.7</pre>	S666 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2-Am-DNT 2,4-DNT	530301C < 3.0 < 3.0	S66 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2-Am-DNT 2,4-DNT	 < 3.1 		Ν
HMX < 3.0	HMX< 2.8RDX< 2.8	3 HMX 3 RDX 3 1,3,5-TNB 3 1,3-DNB 3 Tetryl 3 2,4,6-TNT 3 4-Am-DNT 3 2-Am-DNT 3 2,4-DNT 3 2,6-DNT	<pre>< 2.7 < 2.7</pre>	S666 HMX RDX 1,3,5-TNB 1,3-DNB Tetry NB 2,4,6-TNT 4-Am-DNT 2-Am-DNT 2,4-DNT 2,4-DNT 2,6-DNT	630301C < 3.0 < 3.0	S66 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2,4-DNT 2,4-DNT 2,6-DNT	 < 3.1 		N
HMX < 3.0	HMX< 2.8RDX< 2.8	HMX RDX 1,3,5-TNB 1,3-DNB 1,3-DNB RDX RDX <td< td=""><td><pre>< 2.7 < 2.7</pre></td><td>S666 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2,4-DNT 2,4-DNT 2,4-DNT 2,6-DNT 2,0-DNT 2,0-DNT</td><td>630301C < 3.0 < 3.0</td><td>S66 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2,4-DNT 2,4-DNT 2,6-DNT 2,6-DNT 2-NT</td><td> < 3.1 </td><td></td><td>N</td></td<>	<pre>< 2.7 < 2.7</pre>	S666 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2,4-DNT 2,4-DNT 2,4-DNT 2,6-DNT 2,0-DNT 2,0-DNT	630301C < 3.0 < 3.0	S66 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2,4-DNT 2,4-DNT 2,6-DNT 2,6-DNT 2-NT	 < 3.1 		N
HMX < 3.0	HMX< 2.8RDX< 2.8	3 HMX 3 RDX 3 1,3,5-TNB 3 1,3-DNB 3 Tetryl 3 RDX 3 RDX 3 1,3-DNB 3 Tetryl 3 2,4,6-TNT 3 2-Am-DNT 3 2,4-DNT 3 2,4-DNT 3 2,6-DNT 3 3-NT	<pre>< 2.7 < 2.7</pre>	S666 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2,4-0NT 2,4-DNT 2,4-DNT 2,4-DNT 2,6-DNT 2,6-DNT 2,-NT 3-NT	530301C < 3.0 < 3.0	S66 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2,4-DNT 2,4-DNT 2,6-DNT 2,6-DNT 2,6-DNT 2-NT 3-NT	 < 3.1 	W	N
HMX < 3.0	HMX< 2.6RDX< 2.6	B HMX B RDX B 1,3,5-TNB B 1,3-DNB Comparison Tetryl B 2,4,6-TNT B 2,4,6-TNT B 2,4,6-TNT B 2,4,0-TNT B 2,4-DNT B 2,4-DNT B 2,6-DNT B 2-NT B 3-NT B 4-NT	<pre>< 2.7 < 2.7</pre>	S666 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2,4-0NT 2,4-DNT 2,4-DNT 2,6-DNT 2,6-DNT 2-NT 3-NT 4-NT	530301C < 3.0 < 3.0	S66 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2,4,6-TNT 4-Am-DNT 2,4-DNT 2,4-DNT 2,4-DNT 2,6-DNT 2,6-DNT 2-NT 3-NT 4-NT	 < 3.1 	W	N
HMX < 3.0	HMX< 2.8RDX< 2.8	B HMX B RDX B 1,3,5-TNB B 1,3-DNB Tetryl RDX B 2,4,6-TNT B 2-Am-DNT B 2,4-DNT B 2,4-DNT B 2,0-DNT B 2-NT B 3-NT B 4-NT Picric Acid	<pre>< 2.7 < 2.7</pre>	S666 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2,4-0NT 2,4-DNT 2,4-DNT 2,4-DNT 2,6-DNT 2,6-DNT 2,-NT 3-NT	530301C < 3.0 < 3.0	S66 HMX RDX 1,3,5-TNB 1,3-DNB Tetryl NB 2,4,6-TNT 4-Am-DNT 2,4-DNT 2,4-DNT 2,6-DNT 2,6-DNT 2,6-DNT 2-NT 3-NT	 < 3.1 	W-	N S

Camp Bonneville


Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

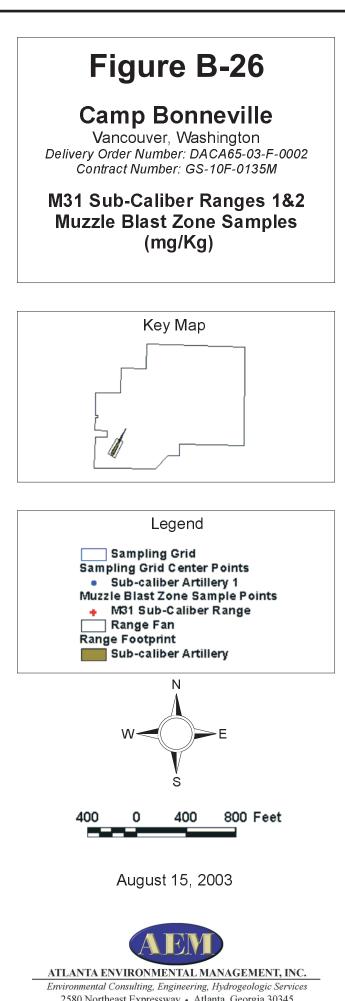
Field Firing Ranges 1 & 2 and Undocumented Pistol Range Muzzle Blast Zone Samples (mg/Kg)


2580 Northeast Expressway • Atlanta, Georgia 30345 Office (404) 329-9006 • Fax (404) 329-2057


Camp Bonneville

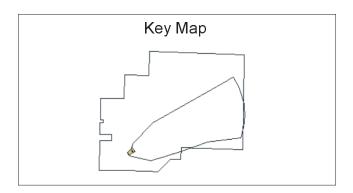
Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

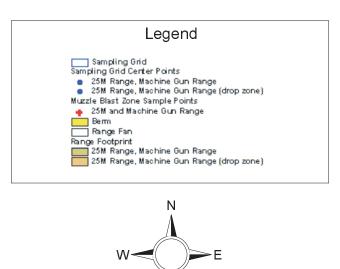
Combat Pistol Range Muzzle Blast Zone Samples (mg/Kg)



August 15, 2003

0000000100			
S63330318C	S63430318C	S63530318C	S63630318C
HMX < 2.4	HMX < 2.3	HMX < 2.5	HMX < 2.3
RDX < 2.4	RDX < 2.3	RDX < 2.5	RDX < 2.3
1,3,5-TNB < 2.4	1,3,5-TNB < 2.3	1,3,5-TNB < 2.5	1,3,5-TNB < 2.3
1,3-DNB < 2.4	1,3-DNB < 2.3	1,3-DNB < 2.5	1,3-DNB < 2.3
Tetry < 2.4	Tetry < 2.3	Tetryl < 2.5	Tetryl < 2.3
NB < 2.4	NB < 2.3	NB < 2.5	NB < 2.3
2,4,6-TNT < 2.4	2,4,6-TNT < 2.3	2,4,6-TNT < 2.5	2,4,6-TNT < 2.3
4-Am-DNT < 2.4	4-Am-DNT < 2.3	4-Am-DNT < 2.5	4-Am-DNT < 2.3
2-Am-DNT < 2.4	2-Am-DNT < 2.3	2-Am-DNT < 2.5	2-Am-DNT < 2.3
2,4-DNT < 2.4	2,4-DNT < 2.3	2,4-DNT < 2.5	2,4-DNT < 2.3
2,6-DNT < 2.4	2,6-DNT < 2.3	2,6-DNT < 2.5	2,6-DNT < 2.3
2-NT < 2.4	2-NT < 2.3	2-NT < 2.5	2-NT < 2.3
3-NT < 2.4	3-NT < 2.3	3-NT < 2.5	3-NT < 2.3
4-NT < 2.4	4-NT < 2.3	4-NT < 2.5	4-NT < 2.3
Picric Acid < 10	Picric Acid < 10	Picric Acid < 10	Picric Acid < 10
PETN < 12	PETN < 12	PETN < 13	PETN < 12
		FEIN SIS	FEIN SIZ
\sim		/ /	/
\sim			S63730318C
			HMX < 2.4
	$\langle \rangle$	/	RDX < 2.4
			1,3,5-TNB < 2.4
			1,3-DNB < 2.4
			NB < 2.4
			2,4,6-TNT < 2.4
			4-Am-DNT < 2.4
			2-Am-DNT < 2.4
			2,4-DNT < 2.4
			2,6-DNT < 2.4
			2-NT < 2.4
			3-NT < 2.4
			4-NT < 2.4
			Picric Acid < 10
			PETN < 12
<u>k</u>			
		0000000000	
		S63830318C	
	HMX	< 2.3	
	RDX	< 2.3	
	1,3,5-		
	1,3-DI		
	Tetry	< 2.3	
	NB	< 2.3	
	2,4,6-	TNT < 2.3	
	4-Am-		
	2-Am-		
	2,4-D		
	2,6-D		
	2-NT	< 2.3	
	2-NT 3-NT	< 2.3	
	4-NT	< 2.3	
	Picric		
	PETN	< 12	


2580 Northeast Expressway • Atlanta, Georgia 30345 Office (404) 329-9006 • Fax (404) 329-2057


S6	64130306C	S64030306C	S639303	6C		S6	4630306C
НМХ	< 3.3	HMX < 2.7	HMX < 2.			HMX	< 2.9
RDX	< 3.3	RDX < 2.7	RDX < 2.	-		RDX	< 2.9
1,3,5-TNB	< 3.3	1,3,5-TNB < 2.7	1,3,5-TNB < 2.	-		1,3,5-TNB	< 2.9
1,3-DNB	< 3.3	1,3-DNB < 2.7	1,3-DNB < 2.			1,3-DNB	< 2.9
Tetry	< 3.3	Tetry < 2.7	Tetryl < 2.			Tetry	< 2.9
NB	< 3.3	NB < 2.7	NB < 2.			NB	< 2.9
2,4,6-TNT	< 3.3	2,4,6-TNT < 2.7	2,4,6-TNT < 2.			2,4,6-TNT	< 2.9
4-Am-DNT	< 3.3	4-Am-DNT < 2.7	4-Am-DNT < 2.	-		4-Am-DNT	< 2.9
2-Am-DNT	< 3.3	2-Am-DNT < 2.7	2-Am-DNT < 2.	-		2-Am-DNT	< 2.9
2,4-DNT	12	2,4-DNT < 2.7	2,4-DNT < 2.	-		2.4-DNT	14
2,6-DNT	< 3.3	2,6-DNT < 2.7	2,6-DNT < 2.			2,6-DNT	< 2.9
2-NT	< 3.3	2-NT < 2.7	2-NT < 2.			2-NT	< 2.9
3-NT	< 3.3	3-NT < 2.7	3-NT < 2.			3-NT	< 2.9
4-NT	< 3.3	4-NT < 2.7	4-NT < 2.			4-NT	< 2.9
Picric Acid	< 10	Picric Acid < 10	Picric Acid < 10	-		Picric Acid	< 10
PETN	< 17	PETN < 14	PETN < 13	-		PETN	< 15
				┛ /		1 2 111	10
				/			
S6	4230306C						
HMX	< 3.0						4730306C
RDX	< 3.0					HMX	< 2.9
1,3,5-TNB	< 3.0					RDX	< 2.9
1,3-DNB	< 3.0					1,3,5-TNB	< 2.9
Tetry	< 3.0					1,3-DNB	< 2.9
NB	< 3.0				\times	Tetry	< 2.9
2,4,6-TNT	< 3.0					NB	< 2.9
4-Am-DNT	< 3.0					2,4,6-TNT	< 2.9
2-Am-DNT	< 3.0					4-Am-DNT	< 2.9
2,4-DNT	12				•	2-Am-DNT	< 2.9
2,6-DNT	< 3.0					2,4-DNT	10
2-NT	< 3.0			+		2,6-DNT	< 2.9
3-NT	< 3.0					2-NT	< 2.9
4-NT	< 3.0					3-NT	< 2.9
Picric Acid	< 10					4-NT	< 2.9
PETN	< 15					Picric Acid	< 10
		/				PETN	< 15
			,	ζ			
	/	/ /		\		S	648303060
	1330306C		30306C /	S64530306C		HMX	< 2.8
HMX	< 2.9			MX <u> </u>		RDX	< 2.8
RDX	< 2.9			DX < 2.9		1,3,5-TNB	< 2.8
,3,5-TNB	< 2.9			3,5-TNB < 2.9		1,3-DNB	< 2.8
1,3-DNB	< 2.9			3-DNB < 2.9		Tetry	< 2.8
Tetry	< 2.9			etry < 2.9		NB	< 2.8
NВ	< 2.9			B < 2.9		2,4,6-TNT	< 2.8
2,4,6-TNT	< 2.9			4,6-TNT < 2.9		4-Am-DNT	< 2.8
1-Am-DNT	< 2.9			Am-DNT < 2.9		2-Am-DNT	< 2.8
2-Am-DNT	< 2.9			Am-DNT < 2.9		2,4-DNT	4.9
2,4-DNT	17			4-DNT 20		2,6-DNT	< 2.8
2 _, 6-DNT	< 2.9			6-DNT < 2.9		2-NT	< 2.8
2-NT	< 2.9	2-NT	< 2.4	NT < 2.9		2-NT 3-NT	< 2.8
3-NT	< 2.9	3-NT	< 2.4	NT < 2.9		4-NT	< 2.8
1-NT	< 2.9		< 2.4	NT < 2.9		Picric Acid	< 10
Picric Acid	< 10			cric Acid < 10		PETN	< 10
PETN	< 15			ETN < 15		FEIN	<u> </u>

Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

25 Meter and Machine Gun Range Muzzle Blast Zone Samples (mg/Kg)

S 100 0 100 200 300 Feet

August 15, 2003

SF	5230306C	S6	5130306C	S65	030306C	564	4930306C	c		S65630306C
HMX	< 3.0	НМХ	< 2.8	НМХ	< 2.7	НМХ	< 2.9	HMX	65530306C	HMX < 3.0
RDX	< 3.0	RDX	< 2.8			RDX	< 2.9	RDX	< 3.0	RDX < 3.0
1.3.5-TNB	< 3.0	1.3.5-TNB	< 2.8		< 2.7	1.3.5-TNB	< 2.9			1,3,5-TNB < 3.0
				1,3,5-TNB	< 2.7	1.3-DNB	< 2.9	1,3,5-TNB	< 3.0	1.3-DNB < 3.0
1 3-DNB	< 3.0	1,3-DNB	< 2.8	1,3-DNB	< 2.7		_	1,3-DNB	< 3.0	
Tetry	< 3.0	Tetry	< 2.8	Tetry	< 2.7	Tetry	< 2.9	Tetry	< 3.0	Tetryl < 3.0
NB	< 3.0	NB	< 2.8	NB	< 2.7	NB	< 2.9	NB	< 3.0	NB < 3.0
2,4,6-TNT	< 3.0	2,4,6-TNT	< 2.8	2,4,6-TNT	< 2.7	2,4,6-TNT	< 2.9	2,4,6-TNT	< 3.0	2,4,6-TNT < 3.0
4-Am-DNT	< 3.0	4-Am-DNT	< 2.8	4-Am-DNT	< 2.7	4-Am-DNT	< 2.9	4-Am-DNT	< 3.0	4-Am-DNT < 3.0
2-Am-DNT	< 3.0	2-Am-DNT	< 2.8	2-Am-DNT	< 2.7	2-Am-DNT	< 2.9	2-Am-DNT	< 3.0	2-Am-DNT < 3.0
2,4-DNT	< 3.0	2,4-DNT	< 2.8	2,4-DNT	< 2.7	2,4-DNT	< 2.9	2,4-DNT	< 3.0	2,4-DNT < 3.0
2,6-DNT	< 3.0	2,6-DNT	< 2.8	2,6-DNT	< 2.7	2,6-DNT	< 2.9	2,6-DNT	< 3.0	2,6-DNT < 3.0
2-NT	< 3.0	2-NT	< 2.8	2-NT	< 2.7	2-NT	< 2.9	2-NT	< 3.0	2-NT < 3.0
3-NT	< 3.0	3-NT	< 2.8	3-NT	< 2.7	3-NT	< 2.9	3-NT	< 3.0	3-NT < 3.0
4-NT	< 3.0	4-NT	< 2.8	4-NT	< 2.7	4-NT	< 2.9	4-NT	< 3.0	4-NT < 3.0
Picric Acid	< 10	Picric Acid	< 10	Picric Acid	< 10	Picric Acid	< 10	Picric Acid	< 10	Picric Acid < 10
PETN	< 15	PETN	< 14	PETN	< 14	PETN	< 15	PETN	< 15	PETN < 15
							,			
							/ /		/	
SA	5330306C		_							S65730306C
НМХ	< 2.9						/			HMX < 3.2
RDX	< 2.9									RDX < 3.2
1.3.5-TNB	< 2.9				•		ſ			1,3,5-TNB < 3.2
	< 2.9			+						1.3-DNB < 3.2
1,3-DNB				*						Tetry < 3.2
Tetry	< 2.9									NB < 3.2
	< 2.9									2,4,6-TNT < 3.2
2,4,6-TNT	< 2.9									4-Am-DNT < 3.2
4-Am-DNT	< 2.9				•	•				2-Am-DNT < 3.2
2-Am-DNT	< 2.9									
2,4-DNT	< 2.9		/							2,4-DNT < 3.2
2,6-DNT	< 2.9							7		2,6-DNT < 3.2
2-NT	< 2.9									2-NT < 3.2
3-NT	< 2.9									3-NT < 3.2
4-NT	< 2.9	/				$\overline{}$				4-NT < 3.2
Picric Acid	< 10									Picric Acid < 10
PETN	< 15									PETN < 16
						\sim				
					```	$\backslash$				
	/									
	<u>5430306C</u>		6130306C/		5230306C		3030306C		65930306C	S65830306C
НМХ	< 3.0	HMX	< 2.6	HMX	< 2.7	НМХ	< 2.3	HMX	< 2.5	HMX < 2.8
RDX	< 3.0	RDX	< 2.6	RDX	< 2.7	RDX	< 2.3	RDX	< 2.5	RDX < 2.8
1,3,5-TNB	< 3.0	1,3,5-TNB	< 2.6	1,3,5-TNB	< 2.7	1,3,5-TNB	< 2.3	1,3,5-TNB	< 2.5	1,3,5-TNB < 2.8
1,3-DNB	< 3.0	1,3-DNB	< 2.6	1,3-DNB	< 2.7	1,3-DNB	< 2.3	1,3-DNB	< 2.5	1,3-DNB < 2.8
Tetry	< 3.0	Tetry	< 2.6	Tetry	< 2.7	Tetry	< 2.3	Tetry	< 2.5	Tetryl < 2.8
NB	< 3.0	NB	< 2.6	NB	< 2.7	NB	< 2.3	NB	< 2.5	NB < 2.8
2,4,6-TNT	< 3.0	2,4,6-TNT	< 2.6	2,4,6-TNT	< 2.7	2,4,6-TNT	< 2.3	2,4,6-TNT	< 2.5	2,4,6-TNT < 2.8
4-Am-DNT	< 3.0	4-Am-DNT	< 2.6	4-Am-DNT	< 2.7	4-Am-DNT	< 2.3	4-Am-DNT		4-Am-DNT < 2.8
2-Am-DNT	< 3.0	2-Am-DNT	< 2.6	2-Am-DNT	< 2.7	2-Am-DNT	< 2.3	2-Am-DNT		2-Am-DNT < 2.8
				2,4-DNT	< 2.7	2,4-DNT	< 2.3	2-AIII-DINT 2,4-DNT	< 2.5	2,4-DNT < 2.8
2,4-DNT	< 3.0	2,4-DNT	< 2.6							
2,6-DNT	< 3.0 < 3.0	2,6-DNT 2-NT	< 2.6 < 2.6	2,6-DNT 2-NT	< 2.7 < 2.7	2,6-DNT 2-NT	< 2.3 < 2.3	2,6-DNT 2-NT	< 2.5 < 2.5	2,6-DNT < 2.8 2-NT < 2.8
2-NT		E 2 15 1 1								

3-NT

4-NT

PETN

Picric Acid

< 3.0

< 3.0

< 10

< 15

3-NT

4-NT

PETN

Picric Acid

< 2.6

< 2.6

< 10

< 13

3-NT

4-NT

PETN

Picric Acid

< 2.7

< 2.7

< 10

< 14

< 2.3

< 2.3

< 10

< 12

3-NT

4-NT

PETN

Picric Acid

< 2.5

< 2.5

< 10

< 13

3-NT

4-NT

PETN

Picric Acid

< 2.8

< 2.8

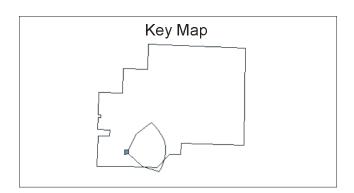
< 10

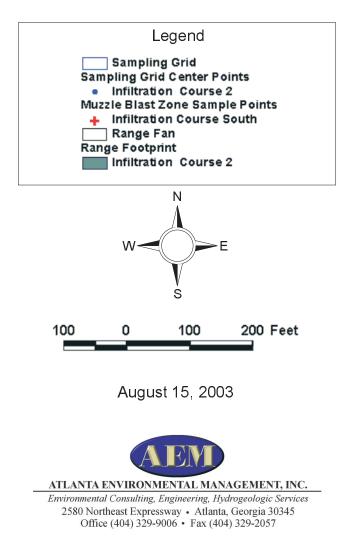
< 14

3-NT

4-NT

PETN


Picric Acid


## Figure B-28

## Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

### Infiltration Course South Muzzle Blast Zone Samples (mg/Kg)





S66	430314C
НМХ	< 2.7
RDX	< 2.7
1,3,5-TNB	< 2.7
1,3-DNB	< 2.7
Tetry	< 2.7
NB	< 2.7
2,4,6-TNT	< 2.7
4-Am-DNT	< 2.7
2-Am-DNT	< 2.7
2,4-DNT	< 2.7
2,6-DNT	< 2.7
2-NT	< 2.7
3-NT	< 2.7
4-NT	< 2.7
Picric Acid	< 10
PETN	< 14

НМХ

RDX

1,3,5-TNB

2,4,6-TNT

1-Am-DNT

2-Am-DNT

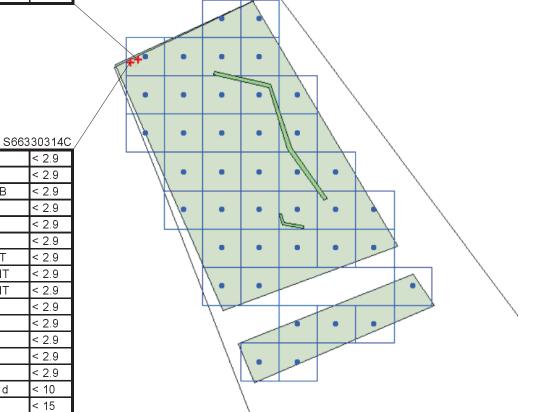
2,4-DNT

2,6-DNT

2-NT

3-NT

4-NT

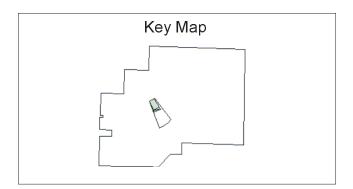

PETN

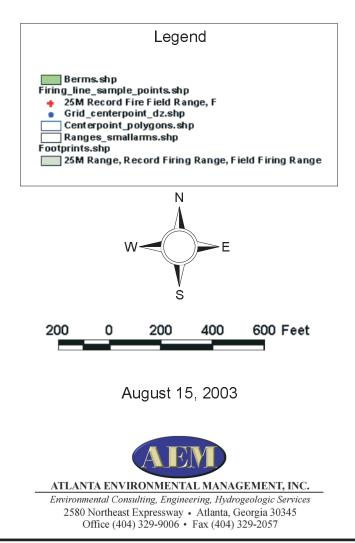
Picric Acid

1,3-DNB

Tetry

NB





## Figure B-29

## Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

25M Record Fire Field Range Field Firing Range Muzzle Blast Zone Samples (mg/Kg)





6742202270	Cur	S71430227C	0 E <del>ft</del>		070 1000070		0705000070								
S71330227C HMX	Sur < 2.9	371430227C HMX		1	S70430227C		S70530227C			S7103022	7C Sur		C 2.5 ft	S71230227	′C 4 ft.
	< 2.9	RDX	< 2.5		HMX	< 2.7	HMX	< 2.8		HMX	< 3.1	HMX	< 2.7	HMX	< 3.2
3.5-TNB	< 2.9	1.3.5-TNB	< 2.5 < 2.5			< 2.7		< 2.8		RDX	< 3.1		< 2.7	RDX	< 3.2
3-DNB	< 2.9	1.3-DNB	< 2.5		1,3,5-TNB	< 2.7	1,3,5-TNB	< 2.8		1,3,5-TNB	< 3.1		< 2.7	1,3,5-TNB	< 3.2
etry	< 2.9	Tetryl	< 2.5		1,3-DNB	< 2.7	1,3-DNB	< 2.8		1,3-DNB	< 3.1	1,3-DNB	< 2.7	1,3-DNB	< 3.2
IB	< 2.9	NB	< 2.5		Tetry	< 2.7	Tetry	< 2.8		Tetry	< 3.1		< 2.7	Tetry	< 3.2
4,6-TNT	< 2.9	1ND 2,4,6-TNT	< 2.5			< 2.7		< 2.8		NB	< 3.1		< 2.7	NB	< 3.2
-Am-DNT	< 2.9	2,4,0-111 4-Am-DNT	< 2.5		2,4,6-TNT	< 2.7	2,4,6-TNT	< 2.8		2,4,6-TNT	< 3.1		< 2.7	2,4,6-TNT	< 3.2
-Am-DNT	< 2.9	2-Am-DNT	< 2.5		4-Am-DNT	< 2.7	4-Am-DNT	< 2.8		4-Am-DNT	< 3.1	4-Am-DNT	< 2.7	4-Am-DNT	< 3.2
4-DNT	< 2.9	2-AIII-DINT 2,4-DNT	< 2.5		2-Am-DNT	< 2.7	2-Am-DNT	< 2.8		2-Am-DNT	< 3.1	2-Am-DNT	< 2.7	2-Am-DNT	< 3.2
,4-DNT	< 2.9	2,4-DNT 2,6-DNT	< 2.5		2,4-DNT	< 2.7	2,4-DNT	< 2.8		2,4-DNT	< 3.1		< 2.7	2,4-DNT	< 3.2
-NT	< 2.9	2-0-DNT 2-NT	< 2.5		2,6-DNT	< 2.7	2,6-DNT	< 2.8		2,6-DNT	< 3.1		< 2.7	2,6-DNT	< 3.2
-NT	< 2.9	2-NT 3-NT	< 2.5		2-NT	< 2.7	2-NT	< 2.8		2-NT	< 3.1	2-NT	< 2.7	2-NT	< 3.2
-NT	< 2.9	3-NT 4-NT	< 2.5		3-NT	< 2.7	3-NT	< 2.8		3-NT	< 3.1	3-NT	< 2.7	3-NT	< 3.2
	< 10	4-NT Picric Acid	< 10		4-NT	< 2.7	4-NT	< 2.8		4-NT	< 3.1	4-NT	< 2.7	4-NT	< 3.2
icric Acid	< 10	PETN			Picric Acid	< 10	Picric Acid	< 10		Picric Acid	< 10	Picric Acid	< 10	Picric Acid	< 10
ETN	_		< 13		PETN	< 14	PETN	< 14		PETN	< 16	PETN	< 14	PETN	< 16
erchlorate	< 033	Perchlorate	< 033		Perchlorate	< 033	Perchlorate	< 033		Perchlorate	e <.03	3 Perchlorate	e < .033	B Perchlorate	e <.03
					_							-			
0130227C	Sur	S70230227C	2.5 ft.						\						
MX	< 2.8	HMX	< 2.6	$\sim$		_				/					
DX	< 2.8	RDX	< 2.6							/					
3,5-TNB	< 2.8	1,3,5-TNB	< 2.6					_							
3-DNB	< 2.8	1,3-DNB	< 2.6												
	< 2.8	Tetryl	< 2.6					7							
etryl B	< 2.8	NB	< 2.6						•						
в 4,6-TNT	< 2.8	NB 2,4,6-TNT													
	-		< 2.6						<b>_</b>	7					
Am-DNT	< 2.8	4-Am-DNT	< 2.6	Ap	proximate Apparei	nt Area of	fDA2			/					
-Am-DNT	< 2.8	2-Am-DNT	< 2.6		Approximate	Berm Loo	cation—								
4-DNT	< 2.8	2,4-DNT	< 2.6												
6-DNT	< 2.8	2,6-DNT	< 2.6						-						
-NT	< 2.8	2-NT	< 2.6				_	<u>_</u>		Approximate R	(oadway (	Jenterline			
NT	< 2.8	3-NT	< 2.6				_								
NT	< 2.8	4-NT	< 2.6												
cric Acid	< 10	Picric Acid	< 10				/ /	/							
ETN	< 14	PETN	< 13				. /								
erchlorate	< .033	Perchlorate	< .033												
		<u></u>	630227C	2 ft.	S71730227C	2 ft.	<u> </u>	′C 2 ft	\	S70730227C	Sur	S70830227C	2.5 ft.	S70930227C	5 ft.
		HMX	(	< 2.8	НМХ	< 2.7	HMX	< 2.5	]	НМХ	< 2.5	HMX		HMX	< 3.0
		RDX		< 2.8	RDX	< 2.7	RDX	< 2.5	1	RDX	< 2.5	RDX		RDX	< 3.0
		1,3,5	5-TNB	< 2.8	1,3,5-TNB	< 2.7	1,3,5-TNB	< 2.5	1	1,3,5-TNB	< 2.5	1,3,5-TNB		1,3,5-TNB	< 3.0
		1,3-[	DNB	< 2.8	1,3-DNB	< 2.7	1,3-DNB	< 2.5	1	1,3-DNB	< 2.5	1,3-DNB		1,3-DNB	< 3.0
		Tetry		< 2.8	Tetry	< 2.7	Tetry	< 2.5	1	Tetryl	< 2.5	Tetryl		Tetryl	< 3.0
		NB		< 2.8	NB	< 2.7	NB	< 2.5	1	NB	< 2.5	NB		NB	< 3.0
			3-TNT	< 2.8	2,4,6-TNT	< 2.7	2,4,6-TNT	< 2.5	1	NB 2,4,6-TNT	< 2.5	NB 2,4,6-TNT		NB 2,4,6-TNT	< 3.0
			n-DNT	< 2.8	4-Am-DNT	< 2.7	4-Am-DNT	< 2.5	1						
			n-DNT	< 2.8	2-Am-DNT	< 2.7	2-Am-DNT	< 2.5	1	4-Am-DNT	< 2.5	4-Am-DNT		4-Am-DNT	< 3.0
		2.4-[		< 2.8	2,4-DNT	< 2.7 < 2.7	2-AIII-DNT 2,4-DNT	< 2.5	4	2-Am-DNT	< 2.5	2-Am-DNT		2-Am-DNT	< 3.0
		2,4-		< 2.8					4	2,4-DNT	< 2.5	2,4-DNT		2,4-DNT	< 3.0
					2,6-DNT	< 2.7	2,6-DNT	< 2.5	4	2,6-DNT	< 2.5	2,6-DNT		2,6-DNT	< 3.0
		2-NT		< 2.8	2-NT	< 2.7	2-NT	< 2.5	4	2-NT	< 2.5	2-NT		2-NT	< 3.0
		3-NT		< 2.8	3-NT	< <u>2.</u> 7	3-NT	< 2.5	1	3-NT	< 2.5	3-NT	< 2.7	3-NT	< 3.0
		4-NT	-	< 2.8	4 NT	< 27	4 NT	< 25							

4-NT

PETN

Picric Acid

Perchlorate

< 2.8

< 10

< 14

< .033

4-NT

PETN

Picric Acid

Perchlorate

< 2.7

< 10

< 14

< .033

4-NT

PETN

Picric Acid

Perchlorate

< 2.5

< 10

< 13

< .033

4-NT

PETN

Picric Acid

Perchlorate

< 2.5

< 10

< 13

< .033

4-NT

PETN

Picric Acid

Perchlorate

< 2.7

< 10

< 14

< .033

4-NT

PETN

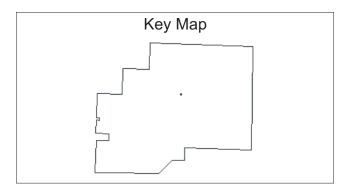
Picric Acid

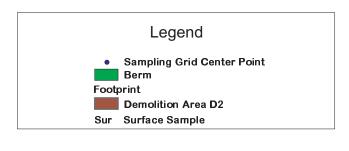
Perchlorate

< 3.0

< 10

< 15


< .033


## Figure B-30

## Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

### Demolition Area 2 Explosive Residuals and Perchlorate (mg/Kg)







Approximate Scale 0 100 200

400

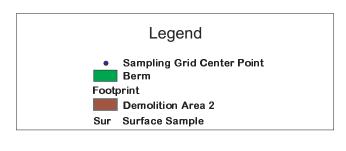
200

1 inch = 200 ft.

August 15, 2003



AS       30.1       AS       29.7         BA       181       BA       130         CD       <1.1       CD       <1.1         CR       30.1       CR       31.2         CU       77.4       CU       63.8         PB<       <21       PB       <22.1         NI       21.6       NI       15         ZN       69.4       ZN       50         VIII       21.6       NI       15         ZN       69.4       ZN       50         VIII       21.6       NI       15         ZN       69.4       ZN       50	SB	< 10.5	SB	< 11.	5 ft.		9	SB	< 10.7		)227C 2.									S712302	
BA       181       BA       130         CD       <1.1       CD       <1.1																					
CD       <1.1		181																			
CR       30.1       CR       31.2         CU       77.4       CU       63.8         PB       <21	CD	< 1.1																			
CU       77.4       CU       63.8       CR       39       CR       34         PB       < 21	CR	30.1	CR	31.2																	
PB       < 21       PB       < 22.1         NI       21.6       N       15         NI       17.6       N       23.9         XN       69.4       ZN       50         VI       17.6       N       23.9         XN       69.4       ZN       68.8       ZN         73020227C       Sur       50       Sur       73.5         VI       17.8       N       10.9       Sur       43.0         CD       11.0       CD       11.0       CD       11.0         VI       17.6       N       23.9       Sur       Sur       Sur         VI       17.6       N       23.9       Sur	CU	77.4																			
NI       21.6       NI       15         ZN       69.4       ZN       50         NI       17.6       NI       23.9         ZN       66.8       ZN       75.5         NI       27.2       NI       27.2         NI       27.2       NI       27.2         NI       27.2       NI       84.7         ZN       84.7       ZN       86.2       ZN         0130227C       Sur       S70230227C       2.5 ft       NI       2.2         152       BA       121       As       <10.9	ΡВ	< 21	ΡВ									7									
ZN       69 4       ZN       50         ZN       66 8       ZN       75 5         N1       27 2       N1       27 0       N1       27 0         X0130227C       Sur       570230227C       2 5 ft       56.2       ZN       84.7       ZN       66.2       ZN       84.7       ZN       65.2       ZN       82         Y0130227C       Sur       S70230227C       2 5 ft       25.6       X       75.5       X       84.7       ZN       65.2       ZN       82         Y0130227C       Sur       S70230227C       2 5 ft       X       X       75.5       X       X       75.5       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X	NI	21.6	NI	15																	
0130227C Sur S70230227C 25 ft         3         3         4         5         21.8         AS         5         21.8         5         21.8         5         21.8         6         152         BA         121         0         152         152         152         152         152         152         152         152         152         152         152         152         152         152         152         152         167         17.8         17.8         17.8         17.8         17.8         17.8         17.8         17.8         17.8         17.8         17.8         17.8         12.7         13.8         14.9         15.9	ZN	69.4	ZN	50																	
17.8     NI     16.6       N     101     ZN     52.6       Approximate Apparent Area of DA2     Approximate Berm Location	3 5 4	< 10.9 S < 21.8 A 152 B,	B S A D	< 10.9 < 21.8 121 < 1.1																	
		87.7 C	U	82.4									ſ								
	J 3	87.7 C < 21.8 P 17.8 N	U B	82.4 < 21.8 16.6 52.6	227C 2		Ар	proximat	te Berm L	ocation—	8302270										
SB Lc 10.4 SP Lc 11.6 SD Lc 11.8 SP Lc 11.6 SD Lc 11.8 SP S70730227C Sur S70830227C 25 ft S70930227C 5	J }	87.7 C < 21.8 P 17.8 N	U B	82.4 < 21.8 16.6 52.6 \$71630		<u>2 ft</u>	Ар 	proximat	te Berm L	ocation—	830227C	2 ft.		5707302	27C S	<u>ur </u> S7	0830227	7C 2.5 ft.			
SB     < 10.4     SB     < 11.6     SB     < 11.8     SB     < 11.3     SB     < 11.5     SB     < 10.9	J }	87.7 C < 21.8 P 17.8 N	U B	82.4 < 21.8 16.6 52.6 \$71630 \$B	< 10	<u>2 ft</u>	Ap S71 SB	proximat	te Berm L <u>C 2 ft</u> 11.6	ocation S71 SB	< 1	2 ft.		3707302 B	27C S	ur S7 3 SE	0830227	⁷ C 2.5 ft. ≤ 11.5	SB	<	10.9
SB       < 10.4       SB       < 11.6       SB       < 11.8       SB       < 11.3       SB       < 11.5       SB       < 10.9         AS       < 20.7	J }	87.7 C < 21.8 P 17.8 N	U B	82.4 < 21.8 16.6 52.6 \$71630 \$8 AS	< 10. < 20.	<u>2 ft</u>	Ap S71 SB AS	7302270	c 2 ft.	ST1 SB AS	< 29	2 ft.		5707302 B S	27C S < 11. < 22.	ur S7 3 SE 6 AS	0830227 3 5	7C 2.5 ft. < 11.5 < 23	SB AS	< 2	109 285
SB       < 10.4       SB       < 11.6       SB       < 11.8       SB       < 11.8       SB       < 11.3       SB       < 11.5       SB       < 10.9         AS       < 20.7	J }	87.7 C < 21.8 P 17.8 N	U B	82.4 < 21.8 16.6 52.6 \$71630 \$8 AS BA	< 10. < 20. 264	<u>2 ft</u>	Ap S71 SB AS BA	7302270	c 2 ft. : 11.6 : 23.3 246	S71 SB AS BA	< 1 29 3	2 ft. 1.8 0.3 3		5707302 B S A	27C S < 11. < 22. 166	ur S7 3 SE 6 AS	0830227 3 5 4	7C 2.5 ft. < 11.5 < 23 180	SB AS BA	< 2 1	10.9 28.5 23
SB       < 10.4       SB       < 11.6       SB       < 11.8       SB       < 11.3       SB       < 11.5       SB       < 10.9         AS       < 20.7	J 3	87.7 C < 21.8 P 17.8 N	U B	82.4 < 21.8 16.6 52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6 \$52.6\$\$55 \$52.6\$\$\$55 \$52.6\$\$\$55 \$52.6\$\$\$\$55 \$52.6\$\$\$\$55 \$52.6\$\$\$\$\$55 \$52.6\$\$\$\$\$\$\$\$\$\$55 \$52.6\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	<ul><li>&lt; 10.</li><li>&lt; 20.</li><li>264</li><li>&lt; 1</li></ul>	2 ft.	Ap S71 SB AS BA CD	7302270	c 2 ft. 11.6 23.3 246 1.2	S71 SB AS BA CD	< 29 3 < 7	2 ft. 1.8 3 .2		5707302 B S A D	27C S < 11. < 22. 166 < 1.1	ur S7 3 SE 6 AS B <i>I</i> CI	0830227 3 5 4 0	7C 2.5 ft. < 11.5 < 23 180 < 1.2	SB AS BA CD	< 2 1 <	10 9 28 5 23 1 1
SB       < 10.4       SB       < 11.6       SB       < 11.8         AS       < 20.7	J 3	87.7 C < 21.8 P 17.8 N	U B	82.4 < 21.8 16.6 52.6 52.6 SB AS BA CD CR	<pre>&lt; 10 &lt; 20 264 &lt; 1 30 3</pre>	2 ft	Ap S71 SB AS BA CD CR	7302270	C 2 ft. 11.6 23.3 246 1.2 34.2	ST1 SB AS CD CR	< 29 39 < 29 37 37 37	2 ft. 1.8 3 .2 .1		5707302 B S A D R	27C S < 11. < 22. 166 < 1.1 33.3	ur S7 3 SE 6 AS 6 CI CI	0830227 3 5 4 2 7	⁷ C 2.5 ft. < 11.5 < 23 180 < 1.2 33.6	SB AS BA CD CR	< 2 1 < 4	109 285 23 11 36
SB       < 10.4       SB       < 11.6       SB       < 11.8       SB       < 11.3       SB       < 11.5       SB       < 10.9         AS       < 20.7	J 3	87.7 C < 21.8 P 17.8 N	U B	82.4 < 21.8 16.6 52.6 52.6 SB AS BA CD CR CU	<pre>&lt; 10 &lt; 20 264 &lt; 1 30 3 92 6</pre>	2 ft, 4 7	App S71 SB AS CD CR CU	7302270	C 2 ft 11.6 23.3 246 1.2 34.2 94.9	ST1 SB AS BA CD CR CU	<ul> <li>&lt; -</li> <li>29</li> <li>37</li> <li>&lt; -</li> <li>37</li> <li>37</li> <li>10</li> </ul>	2 ft. 1.8 3.3 2 1.1 4		5707302 B S A D R U	27C S < 11. < 22. 166 < 1.1 33.3 96.2	ur S7 3 SE 6 AS 6 CI CI CI	0830227 3 3 3 3 3 3 3 3 3 3 7 7 7	7C 2.5 ft. < 11.5 < 23 180 < 1.2 33.6 90.6	SB AS BA CD CR CU	<	10 9 28 5 23 1 1 3 6 05
SB       < 10.4       SB       < 11.6       SB       < 11.8       SB       < 11.8       SB       < 11.3       SB       < 11.5       SB       < 10.9         AS       < 20.7	J }	87.7 C < 21.8 P 17.8 N	U B	82.4 < 21.8 16.6 52.6 52.6 SB AS BA CD CR CU PB	<pre>&lt; 10 &lt; 20 264 &lt; 1 303 926 365</pre>	2 ft	App S71 SB AS BA CC CC PB	7302270	c 2 ft. 11.6 23.3 246 1.2 34.2 94.9 23.3	ST SB AS BA CD CR CU PB	<ul> <li></li> <li>29</li> <li>30</li> <li></li> <li< td=""><td>2 ft. 1.8 3.3 3 .2 .1 .4 23.6</td><td></td><td>5707302 B S A D R U B</td><td>27C S &lt; 11. &lt; 22. 166 &lt; 1.1 33.3 96.2 &lt; 22.</td><td>ur S7 3 SE 6 AS 6 AS CI CI 6 PE</td><td>0830227 3 5 4 7 7 7 3</td><td>7C 2.5 ft. &lt; 11.5 &lt; 23 180 &lt; 1.2 33.6 90.6 &lt; 23</td><td>SB AS BA CD CR CU PB</td><td>21&lt;</td>41&lt;</li<></ul>	2 ft. 1.8 3.3 3 .2 .1 .4 23.6		5707302 B S A D R U B	27C S < 11. < 22. 166 < 1.1 33.3 96.2 < 22.	ur S7 3 SE 6 AS 6 AS CI CI 6 PE	0830227 3 5 4 7 7 7 3	7C 2.5 ft. < 11.5 < 23 180 < 1.2 33.6 90.6 < 23	SB AS BA CD CR CU PB	21<	10.9 28.5 23 1.1 3.6 05 21.8


## Figure B-30a


## Camp Bonneville

Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

### Demolition Area 2 Priority Pollutant Metal Results by Method 6010 (mg/Kg)







Approximate Scale
200 0 100 200

400

1 inch = 200 ft.

August 15, 2003



WDA230321P	Water
НМХ	< 3.0
RDX	< 3.0
1,3,5-TNB	< 3.0
1,3-DNB	< 3.0
Tetry	< 3.0
NB	< 3.0
2,4,6-TNT	< 3.0
4-Am-DNT	< 3.0
2-Am-DNT	< 3.0
2,4-DNT	< 3.0
2,6-DNT	< 3.0
2-NT	< 3.0
3-NT	< 3.0
4-NT	< 3.0
Picric Acid	< 3.0
PETN	< 3.0
Perchlorate	< 3.0

S80330227C	Sur	S80430227C	2.5 ft.
НМХ	< 2.8	HMX	< 2.5
RDX	< 2.8	RDX	< 2.5
1,3,5-TNB	< 2.8	1,3,5-TNB	< 2.5
1,3-DNB	< 2.8	1,3-DNB	< 2.5
Tetry	< 2.8	Tetry	< 2.5
NB	< 2.8	NB	< 2.5
2,4,6-TNT	< 2.8	2,4,6-TNT	< 2.5
4-Am-DNT	< 2.8	4-Am-DNT	< 2.5
2-Am-DNT	< 2.8	2-Am-DNT	< 2.5
2,4-DNT	< 2.8	2,4-DNT	< 2.5
2,6-DNT	< 2.8	2,6-DNT	< 2.5
2-NT	< 2.8	2-NT	< 2.5
3-NT	< 2.8	3-NT	< 2.5
4-NT	< 2.8	4-NT	< 2.5
Picric Acid	< 10	Picric Acid	< 10
PETN	< 14	PETN	< 13
Perchlorate	< .33	Perchlorate	< .033

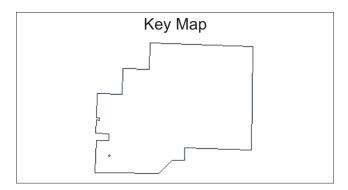
S80530227C	Sur	S80630227C	2.5 ft.
НМХ	< 3.0	НМХ	< 2.6
RDX	< 3.0	RDX	< 2.6
1,3,5-TNB	< 3.0	1,3,5-TNB	< 2.6
1,3-DNB	< 3.0	1,3-DNB	< 2.6
Tetry	< 3.0	Tetry	< 2.6
NB	< 3.0	NB	< 2.6
2,4,6-TNT	< 3.0	2,4,6-TNT	< 2.6
4-Am-DNT	< 3.0	4-Am-DNT	< 2.6
2-Am-DNT	< 3.0	2-Am-DNT	< 2.6
2,4-DNT	< 3.0	2,4-DNT	< 2.6
2,6-DNT	< 3.0	2,6-DNT	< 2.6
2-NT	< 3.0	2-NT	< 2.6
3-NT	< 3.0	3-NT	< 2.6
4-NT	< 3.0	4-NT	< 2.6
Picric Acid	< 10	Picric Acid	< 10
PETN	< 15	PETN	< 13
Perchlorate	< .033	Perchlorate	< .33

Approximate Roadway Centerline

Storoathere proting to the ball to the

-Approximate Periphery of DA3 Depression/Crater

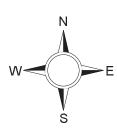
- -- -

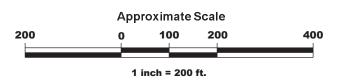

S80930227C	Sur	S81030227C	2.5 ft.
НМХ	< 2.7	НМХ	< 2.5
RDX	< 2.7	RDX	< 2.5
1,3,5-TNB	< 2.7	1,3,5-TNB	< 2.5
1,3-DNB	< 2.7	1,3-DNB	< 2.5
Tetry	< 2.7	Tetryl	< 2.5
NB	< 2.7	NB	< 2.5
2,4,6-TNT	< 2.7	2,4,6-TNT	< 2.5
4-Am-DNT	< 2.7	4-Am-DNT	< 2.5
2-Am-DNT	< 2.7	2-Am-DNT	< 2.5
2,4-DNT	< 2.7	2,4-DNT	< 2.5
2,6-DNT	< 2.7	2,6-DNT	< 2.5
2-NT	< 2.7	2-NT	< 2.5
3-NT	< 2.7	3-NT	< 2.5
4-NT	< 2.7	4-NT	< 2.5
Picric Acid	< 10	Picric Acid	< 10
PETN	< 14	PETN	< 13
Perchlorate	< .33	Perchlorate	< .33

S80730227C	Sur	S80830227C	2.5 ft.
HMX	< 2.5	Picric Acid	< 10
RDX	< 2.5	PETN	< 13
1,3,5-TNB	< 2.5	Perchlorate	< .33
1,3-DNB	< 2.5	НМХ	< 2.5
Tetry	< 2.5	RDX	< 2.5
NB	< 2.5	1,3,5-TNB	< 2.5
2,4,6-TNT	< 2.5	1,3-DNB	< 2.5
4-Am-DNT	< 2.5	Tetryl	< 2.5
2-Am-DNT	< 2.5	NB	< 2.5
2,4-DNT	< 2.5		
2,6-DNT	< 2.5	2,4,6-TNT	< 2.5
2-NT	< 2.5	4-Am-DNT	< 2.5
3-NT	< 2.5	2-Am-DNT	< 2.5
4-NT	< 2.5	2,4-DNT	< 2.5
Picric Acid	< 10	2,6-DNT	< 2.5
PETN	< 13	2-NT	< 2.5
Perchlorate	< .33	3-NT	< 2.5
<b>1</b>			

## Figure B-31

Camp Bonneville Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M


### **Demolition Area 3 Explosive Residuals and** Perchlorate (mg/Kg)




### Legend

• Sampling Grid Center Point Footprint Demolition Area D3

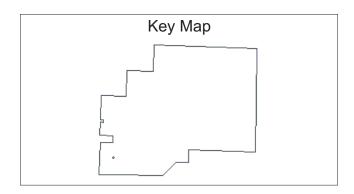
Sur Surface Sample

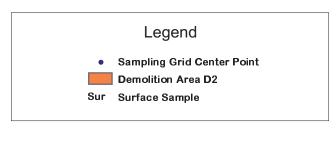


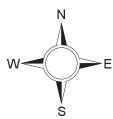


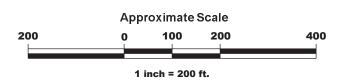
August 15, 2003




S80930227C       Sur         SB       < 11.2         AS       < 22.5         BA       206         CD       < 1.1         CR       19         CU       113         PB       < 22.5         NI       18.7         ZN       73.2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
S80530227CSurSB< 10.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


## Figure B-31a


## Camp Bonneville


Vancouver, Washington Delivery Order Number: DACA65-03-F-0002 Contract Number: GS-10F-0135M

### **Demolition Area 3 Priority Pollutant Metal Results** by Method 6010 (mg/Kg)









August 15, 2003



### **APPENDIX C**

### **Summary Tables of Samples and Photographs**

(Previously Submitted in electronic format on Compact Disk)

Site Investigation Report Small Arms Ranges and Demolition Areas 2 and 3 Camp Bonneville, Vancouver, Washington DRAFT FINAL – September 25, 2003

### **APPENDIX C ERRATA**

1. The latitude and longitude coordinates of samples collected from the muzzle blast zone at the 25 Meter M60/Pistol range are as follows:

Sample Point ID	Latitude	Longitude
25M_M60-FP1	45.69760	-122.41173
25M_M60-FP2	45.69760	-122.41161
25M_M60-FP3	45.69760	-122.41144
25M_M60-FP4	45.69760	-122.51135
25M_M60-FP5	45.69765	-122.41124
25M_M60-FP6	45.69764	-122.41113

- 2. An "S" should appear in each space of the "Matrix" column (to complete the sample number) in the summary table for the Machine Gun Range (south, grid nos. 163 through 188).
- 3. Photographs of the following samples are not included in Appendix D:

Sample No.	Photograph No.	Range
S03130303S	0303031058P356	Sub Machine Gun Range
S06030226W	0226030937P080	Rifle Ranges 1 & 2
S06930226W	0226031355Q994	
S10930317C	0316031515Q314	Field Fire Rifle Ranges 1 & 2
S10930317N	0316031519Q317	
S10930317S	0316031516Q315	
S10930317E	0316031520Q318	
S10930317W	0316031517Q316	
S12230314S	0314030859Q055	1,000 Foot Range, 1,000 Foot Machine
S13030310N	0310031606P816	Gun and Moving Target Range
S14730312W	0312031556Q010	Combat Pistol Range
S20030307N	0307031411P436	Machine Gun Range

4. In Appendix D, photograph no. 0226031314P134 (sample no. S06830226C at Rifle Ranges 1 & 2) should be numbered 0226031314P131 as it is in the Appendix C summary table.

### APPENDIX D

Sample Photographs

(Previously Submitted)

### **APPENDIX E**

Laboratory Data Reports

(Previously Submitted)

Sample Index				
Range	Grid No.	Report Number	Report Date	
Close Com	bat Range			
	001	K2301620	31-Mar-03	
	002	K2301620	31-Mar-03	
	003	K2301580	19-Mar-03	
	004	K2301580	19-Mar-03	
	005	K2301620	31-Mar-03	
	006	K2301620	31-Mar-03	
	007	K2301586	27-Mar-03	
	008	K2301580	19-Mar-03	
	009	K2301621	25-Mar-03	
	010	K2301621	25-Mar-03	
	011	K2301586	27-Mar-03	
	012	K2301580	19-Mar-03	
	013	K2301621	25-Mar-03	
	014	K2301621	25-Mar-03	
	015	K2301586	27-Mar-03	
	016	K2301583	19-Mar-03	
	017	K2301623	24-Mar-03	
	018	K2301623	24-Mar-03	
	019	K2301586	27-Mar-03	
	020	K2301583	19-Mar-03	
	021	K2301514	20-Mar-03	
	022	K2301514	20-Mar-03	
	023	K2301514	20-Mar-03	
	024	K2301514	20-Mar-03	

		Sample Index		
Range	Grid No.	Report Number	Report Date	
25 Meter M	60 Range/Pistol Range			
	601	K2301588	26-Mar-03	
	602	K2301588	26-Mar-03	
	603	K2301588	26-Mar-03	
	604	K2301588	26-Mar-03	
	605	K2301588	26-Mar-03	
	606	K2301588	26-Mar-03	
	025	K2301581	19-Mar-03	
	026	K2301581	19-Mar-03	
	027	K2301581	19-Mar-03	
	028	K2301581	19-Mar-03	
	320	K2301588	26-Mar-03	
	321	K2301588	26-Mar-03	
	322	K2301588	26-Mar-03	

Sample Index				
Range	Grid No.	Report Number	Report Date	
Sub Machir	ne Gun Range			
	029	K2301511	19-Mar-03	
	030	K2301511	19-Mar-03	
	031	K2301511	19-Mar-03	
	032	K2301511	19-Mar-03	
	033	K2301513	20-Mar-03	
	034	K2301513	20-Mar-03	
	035	K2301513	20-Mar-03	
	323	K2301513	20-Mar-03	
	324	K2301513	20-Mar-03	
	325	K2301513	20-Mar-03	

		Sample Index		
Range	Grid No.	Report Number	Report Date	
TF Range				
	036	K2301744	31-Mar-03	
	037	K2301744	31-Mar-03	
	038	K2301745	31-Mar-03	
		K2301759	01-Apr-03	
	039	K2301744	31-Mar-03	
	040	K2301744	31-Mar-03	
		K2301759	01-Apr-03	
	041	K2301745	31-Mar-03	
	042	K2301745	31-Mar-03	
	043	K2301745	31-Mar-03	
	326	K2301748	02-Apr-03	
	327	K2301759	01-Apr-03	
	328	K2301759	01-Apr-03	
	329	K2301748	02-Apr-03	
	607	K2301748	02-Apr-03	
	608	K2301748	02-Apr-03	

		Sample Index	
Range	Grid No.	Report Number	Report Date
Rifle Range	es 1 & 2		
	609	K2301473	26-Mar-03
	610	K2301473	26-Mar-03
	611	K2301427	02-Apr-03
	612	K2301427	02-Apr-03
	613	K2301427	02-Apr-03
	614	K2301427	02-Apr-03
	615	K2301427	02-Apr-03
	044	K2301340	11-Mar-03
	045	K2301340	11-Mar-03
	046	K2301341	14-Mar-03
	047	K2301341	14-Mar-03
	048	K2301340	11-Mar-03
	049	K2301340	11-Mar-03
	050	K2301341	14-Mar-03
	051	K2301341	14-Mar-03
	052	K2301342	11-Mar-03
	053	K2301342	11-Mar-03
	054	K2301342	11-Mar-03
	055	K2301344	07-Mar-03
	056	K2301380	13-Mar-03
	057	K2301380	13-Mar-03
	058	K2301342	11-Mar-03
	059	K2301342	07-Mar-03
	060		13-Mar-03
		K2301380	
	061	K2301380	13-Mar-03
	062	K2301383	11-Mar-03
	063	K2301383	11-Mar-03
	064	K2301383	11-Mar-03
	065	K2301383	11-Mar-03
	066	K2301385	11-Mar-03
	067	K2301385	11-Mar-03
	068	K2301385	11-Mar-03
	069	K2301385	11-Mar-03
	070	K2301389	18-Mar-03
	071	K2301389	18-Mar-03
	072	K2301389	18-Mar-03
	073	K2301389	18-Mar-03
	074	K2301388	18-Mar-03
	075	K2301388	18-Mar-03
	330	K2301344	07-Mar-03
	331	K2301344	07-Mar-03
	332	K2301344	07-Mar-03
	333	K2301344	07-Mar-03
	334	K2301344	07-Mar-03
	335	K2301344	07-Mar-03
	336	K2301388	18-Mar-03
	337	K2301344	07-Mar-03
	338	K2301388	18-Mar-03
	339	K2301388	18-Mar-03

Sample Index				
Range	Grid No.	Report Number	Report Date	
	340	K2301388	18-Mar-03	
	341	K2301388	18-Mar-03	
	342	K2301388	18-Mar-03	
	343	K2301388	18-Mar-03	
	344	K2301388	18-Mar-03	
	345	K2301388	18-Mar-03	
	468	K2301430	26-Mar-03	

		Sample Index		
Range	Grid No.	Report Number	Report Date	
Field Fire R	tifle Range 1 & 2			
	616	K2301473	26-Mar-03	
	617	K2301473	26-Mar-03	
	076	K2301473	26-Mar-03	
	077	K2301504	19-Mar-03	
	078	K2301473	26-Mar-03	
	079	K2301474	20-Mar-03	
	080	K2301474	20-Mar-03	
	081	K2301503	19-Mar-03	
	082	K2301474	20-Mar-03	
	083	K2301474	20-Mar-03	
	084	K2301477	19-Mar-03	
	085	K2301477	19-Mar-03	
	086	K2301477	19-Mar-03	
	087	K2301477	19-Mar-03	
	088	K2301478	20-Mar-03	
	089	K2301478	20-Mar-03	
	090	K2301478	20-Mar-03	
	091	K2301478	20-Mar-03	
	092	K2301479	19-Mar-03	
	093	K2301503	19-Mar-03	
	094	K2301479	19-Mar-03	
	095	K2301480	18-Mar-03	
	096	K2301503	19-Mar-03	
	097	K2301503	19-Mar-03	
	346	K2301479	19-Mar-03	
	347	K2301479	19-Mar-03	
	348	K2301479	19-Mar-03	
	349	K2301479	19-Mar-03	
	350	K2301479	19-Mar-03	
	351	K2301479	19-Mar-03	
	352	K2301479	19-Mar-03	
	353	K2301479	19-Mar-03	
	354	K2301479	19-Mar-03	
	355	K2301479	19-Mar-03	
	356	K2301505	19-Mar-03	

	Sample Index				
Range	Grid No.	Report Number	Report Date		
Infiltration	Course North				
	618	K2301506	26-Mar-03		
	619	K2301506	26-Mar-03		
	098	K2301504	19-Mar-03		
	099	K2301504	19-Mar-03		
	100	K2301505	19-Mar-03		
	101	K2301505	19-Mar-03		
	357	K2301505	19-Mar-03		
	358	K2301505	19-Mar-03		

Sample Index				
Range	Grid No.	Report Number	Report Date	
Undocume	nted Pistol Range			
	307	K2301505	19-Mar-03	
	665	K2301506	26-Mar-03	
	666	K2301506	26-Mar-03	
	667	K2301506	26-Mar-03	
	668	K2301506	26-Mar-03	
	669	K2301506	26-Mar-03	

		Sample Index	
Range	Grid No.	Report Number	Report Date
Combat Pis	tol Range		
	626	K2301962	02-Apr-03
	627	K2301962	02-Apr-03
	628	K2301962	02-Apr-03
	629	K2301962	02-Apr-03
	630	K2301962	02-Apr-03
	631	K2301962	02-Apr-03
	146	K2301957	02-Apr-03
	147	K2301865	31-Mar-03
	148	K2301957	02-Apr-03
	149	K2301865	31-Mar-03
	150	K2301960	02-Apr-03
	151	K2301865	31-Mar-03
	152	K2301865	31-Mar-03
	153	K2301957	02-Apr-03
	154	K2301957	02-Apr-03
	155	K2301959	02-Apr-03
	156	K2301959	02-Apr-03
	157	K2301959	02-Apr-03
	158	K2301959	02-Apr-03
	159	K2301959	02-Apr-03
	160	K2301960	02-Apr-03
	161	K2301960	02-Apr-03
	162	K2301960	02-Apr-03
	308	K2301623	24-Mar-03
	309	K2301588	26-Mar-03
	310	K2301623	24-Mar-03
	312	K2301623	24-Mar-03
	313	K2301588	26-Mar-03
	314	K2301623	24-Mar-03
	315	K2301588	26-Mar-03
	316	K2301623	24-Mar-03
	317	K2301588	26-Mar-03
	318	K2301513	20-Mar-03
	319	K2301513	20-Mar-03
	382	K2301962	02-Apr-03
	383	K2301962	02-Apr-03
	384	K2301962	02-Apr-03
	385	K2301869	02-Apr-03
	386	K2301962	02-Apr-03
	387	K2301962	02-Apr-03
	388	K2301962	02-Apr-03
	389	K2301962	02-Apr-03
	390	K2301962	02-Apr-03
	469	K2301962	02-Apr-03

		Sample Index	
Range	Grid No.	Report Number	Report Date
Machine Gu	ın - North		
	189	K2301789	31-Mar-03
	190	K2301789	31-Mar-03
	191	K2301789	31-Mar-03
	192	K2301789	31-Mar-03
	193	K2301790	01-Apr-03
	194	K2301748	02-Apr-03
	195	K2301747	31-Mar-03
	196	K2301790	01-Apr-03
	197	K2301790	01-Apr-03
	198	K2301746	31-Mar-03
	199	K2301748	02-Apr-03
	200	K2301746	31-Mar-03
	201	K2301747	31-Mar-03
	202	K2301746	31-Mar-03
	203	K2301747	31-Mar-03
	204	K2301747	31-Mar-03
	205	K2301790	01-Apr-03
	206	K2301792	04-Apr-03
	207	K2301792	04-Apr-03
	208	K2301746	31-Mar-03
	209	K2301790	01-Apr-03
	210	K2301792	04-Apr-03
	211	K2301792	04-Apr-03
	212	K2301793	31-Mar-03
	213	K2301793	31-Mar-03
	214	K2301793	31-Mar-03
	215	K2301793	31-Mar-03
	216	K2301795	31-Mar-03
	217	K2301795	31-Mar-03
	218	K2301795	31-Mar-03
	219	K2301795	31-Mar-03
	220	K2301796	02-Apr-03
	221	K2301796	02-Apr-03
	404	K2301796	02-Apr-03
	405	K2301796	02-Apr-03
	406	K2301796	02-Apr-03
	407	K2301748	02-Apr-03
	408	K2301796	02-Apr-03
	409	K2301748	02-Apr-03
	410	K2301748	02-Apr-03
	411	K2301748	02-Apr-03
	412	K2301796	02-Apr-03
	413	K2301796	02-Apr-03
	414	K2301796	02-Apr-03
	415	K2301796	02-Apr-03
	416	K2301796	02-Apr-03
	417	K2301796	02-Apr-03
	418	K2301796	02-Apr-03
	419	K2301796	02-Apr-03

		Sample Index	
Range	Grid No.	Report Number	Report Date

		Sample Index	
Range	Grid No.	Report Number	Report Date
Machine Gu	un - South		
	163	K2302012	02-Apr-03
	164	K2302012	02-Apr-03
	165	K2302012	02-Apr-03
	166	K2302012	02-Apr-03
	167	K2302013	03-Apr-03
	168	K2302013	03-Apr-03
	169	K2302013	03-Apr-03
	170	K2302067	03-Apr-03
	171	K2302067	03-Apr-03
	172	K2302067	03-Apr-03
	173	K2302067	03-Apr-03
	174	K2302067	03-Apr-03
	175	K2302070	03-Apr-03
	176	K2302070	03-Apr-03
	177	K2302072	04-Apr-03
	178	K2302070	03-Apr-03
	179	K2302070	03-Apr-03
	180	K2302072	04-Apr-03
	181	K2302072	04-Apr-03
	182	K2302072	04-Apr-03
	183	K2302077	03-Apr-03
	184	K2302077	03-Apr-03
	185	K2302077	03-Apr-03
	186	K2302077	03-Apr-03
	187	K2302078	04-Apr-03
	188	K2302078	04-Apr-03
	391	K2302014	04-Apr-03
	392	K2302014	04-Apr-03
	393	K2302014	04-Apr-03
	394	K2302014	04-Apr-03
	395	K2302078	04-Apr-03
	396	K2302078	04-Apr-03
	397	K2302078	04-Apr-03
	398	K2302078	04-Apr-03
	399	K2302078	04-Apr-03
	400	K2302078	04-Apr-03
	401	K2302078	04-Apr-03
	402	K2302078	04-Apr-03
	403	K2302078	04-Apr-03

		Sample Index	
Range	Grid No.	Report Number	Report Date
M31 Sub-Ca	aliber Ranges 1 & 2		
	633	K2302082	04-Apr-03
	634	K2302082	04-Apr-03
	635	K2302082	04-Apr-03
	636	K2302082	04-Apr-03
	637	K2302082	04-Apr-03
	638	K2302082	04-Apr-03
	222	K2302109	03-Apr-03
	223	K2302109	03-Apr-03
	224	K2302109	03-Apr-03
	225	K2302111	03-Apr-03
	226	K2302111	03-Apr-03
	227	K2302109	03-Apr-03
	228	K2302143	04-Apr-03
	229	K2302143	04-Apr-03
	230	K2302143	04-Apr-03
	231	K2302143	04-Apr-03
	232	K2302144	04-Apr-03
	233	K2302144	04-Apr-03
	234	K2302111	03-Apr-03
	235	K2302144	04-Apr-03
	236	K2302111	03-Apr-03
	237	K2302112	04-Apr-03
	238	K2302112	04-Apr-03
	239	K2302112	04-Apr-03
	240	K2302112	04-Apr-03
	241	K2302115	03-Apr-03
	242	K2302115	03-Apr-03
	243	K2302115	03-Apr-03
	244	K2302117	03-Apr-03
	245	K2302117	03-Apr-03
	246	K2302082	04-Apr-03
	420	K2302124	04-Apr-03
	421	K2302124	04-Apr-03
	422	K2302124	04-Apr-03
	423	K2302144	04-Apr-03
	424	K2302144	04-Apr-03
	425	K2302144	04-Apr-03
	426	K2302124	04-Apr-03
	427	K2302124	04-Apr-03
	428	K2302124	04-Apr-03
	429	K2302124	04-Apr-03
	430	K2302124	04-Apr-03
	430	K2302124 K2302124	04-Apr-03
	431	K2302124 K2302078	04-Apr-03

		Sample Index	
Range	Grid No.	Report Number	Report Date
25 Meter ar	nd Machine Gun Range		
	639	K2301687	02-Apr-03
	640	K2301687	02-Apr-03
	641	K2301687	02-Apr-03
	642	K2301687	02-Apr-03
	643	K2301687	02-Apr-03
	644	K2301687	02-Apr-03
	645	K2301687	02-Apr-03
	646	K2301687	02-Apr-03
	647	K2301687	02-Apr-03
	648	K2301687	02-Apr-03
	247	K2301684	02-Apr-03
	248	K2301684	02-Apr-03
		K2301680	24-Mar-03
	249	K2301680	24-Mar-03
	250	K2301680	24-Mar-03
		K2301684	02-Apr-03
	251	K2301680	24-Mar-03
	252	K2301678	24-Mar-03
		K2301680	24-Mar-03
	253	K2301690	24-Mar-03
	254	K2301676	24-Mar-03
		K2301690	24-Mar-03
	255	K2301676	24-Mar-03
	256	K2301676	24-Mar-03
		K2301678	24-Mar-03
	257	K2301678	24-Mar-03
	258	K2301678	24-Mar-03
		K2301690	24-Mar-03
	259	K2301678	24-Mar-03
	433	K2301684	02-Apr-03
	434	K2301684	02-Apr-03
	435	K2301684	02-Apr-03
	436	K2301684	02-Apr-03
	437	K2301684	02-Apr-03
	438	K2301684	02-Apr-03
	439	K2301684	02-Apr-03
	440	K2301684	02-Apr-03

		Sample Index		
Range	Grid No.	, Report Number	Report Date	
Infiltration	course - South			
	649	K2301687	02-Apr-03	
	650	K2301687	02-Apr-03	
	651	K2301687	02-Apr-03	
	652	K2301687	02-Apr-03	
	653	K2301687	02-Apr-03	
	654	K2301687	02-Apr-03	
	655	K2301687	02-Apr-03	
	656	K2301687	02-Apr-03	
	657	K2301687	02-Apr-03	
	658	K2301687	02-Apr-03	
	659	K2301687	02-Apr-03	
	660	K2301687	02-Apr-03	
	661	K2301687	02-Apr-03	
	662	K2301687	02-Apr-03	
	260	K2301690	24-Mar-03	
	261	K2301690	24-Mar-03	
	262	K2301689	24-Mar-03	
	263	K2301689	24-Mar-03	
	264	K2301689	24-Mar-03	
	265	K2301689	24-Mar-03	
	266	K2301676	24-Mar-03	
	441	K2301684	02-Apr-03	
	442	K2301684	02-Apr-03	
	443	K2301684	02-Apr-03	
	444	K2301684	02-Apr-03	
	445	K2301684	02-Apr-03	

		Sample Index		
Range	Grid No.	Report Number	Report Date	
Backgroun	d			
	501	K2301308	11-Mar-03	
	502	K2301583	19-Mar-03	
	503	K2301583	19-Mar-03	
	504	K2301308	11-Mar-03	
	505	K2301308	11-Mar-03	
	506	K2302144	04-Apr-03	
	507	K2302144	04-Apr-03	
	508	K2301759	01-Apr-03	
	509	K2302144	04-Apr-03	
	510	K2302144	04-Apr-03	
	511	K2302144	04-Apr-03	
	512	K2301583	19-Mar-03	
	513	K2301583	19-Mar-03	
	514	K2301583	19-Mar-03	
	515	K2301583	19-Mar-03	
	516	K2302144	04-Apr-03	
	517	K2302144	04-Apr-03	
	518	K2301308	11-Mar-03	
	519	K2301308	11-Mar-03	
	520	K2301983	04-Apr-03	

		Sample Index		
Range	Grid No.	Report Number	Report Date	
Demolition	Area 2			
	701	K2301427	02-Apr-03	
	702	K2301427	02-Apr-03	
	704	K2301427	02-Apr-03	
	705	K2301427	02-Apr-03	
	707	K2301427	02-Apr-03	
	708	K2301427	02-Apr-03	
	709	K2301427	02-Apr-03	
	710	K2301427	02-Apr-03	
	711	K2301427	02-Apr-03	
	712	K2301427	02-Apr-03	
	713	K2301427	02-Apr-03	
	714	K2301427	02-Apr-03	
	716	K2301427	02-Apr-03	
	717	K2301427	02-Apr-03	
	718	K2301427	02-Apr-03	
	466	K2301430	26-Mar-03	
	470	K2301430	26-Mar-03	
	DA2	K2302189	02-Apr-03	

		Sample Index		
Range	Grid No.	Report Number	Report Date	
Demolition	Area 3			
	467	K2301430	26-Mar-03	
	803	K2301430	26-Mar-03	
	804	K2301430	26-Mar-03	
	805	K2301430	26-Mar-03	
	806	K2301430	26-Mar-03	
	807	K2301430	26-Mar-03	
	808	K2301430	26-Mar-03	
	809	K2301430	26-Mar-03	
	810	K2301430	26-Mar-03	

# APPENDIX F Manifests for Disposal of IDW



JUN-13-03 FRI 11:42 CAMP BONNEVILLE FAX NO. 13606943728	P. 02
Jun 13 03 11:25a EMS, LLC 253-549-2717	p.2
Jun 13 03 10:134 SOUND ENVIRONMENTAL 2053061907	P-1
JUN 80 2003 12:34 FR CHENCARE KENT 250 072 5003 10 912500492717	
Colored Citics Colored	
Vision Industrial Services USA Inc. Voper	
Physical Territy Trans 75()	
FACK (770)567-1522 Generator's Whatle Profile (CMP) Common Service Paul (Ministration Paul Common Service	
CONSIGNATION TO A CONSIGNATION TO A CONSIGNATION OF THE CONSIGNATION OF	
- commonwe lamp connecille	
Barge Costrol Mandaugeters, Bring 19893 Low Ha 1000	
Yadico or white and	
a and an and the set of a state was a state of the state	
C ANALYTING THE COLOR OF COLOR AND C	
". OLACENTON STATE MANY COOL MO. L WOME CAPACITANT LEADERS	
- more way - men De con ten as shared whited	
· prover in resources sourcements Dearsterne when pling cluberents	
= YOUNG > 10 grallows S	
MUNITE CONTINUES (TONOR COMM 32 BALLER DENT	
A PHYSICAL CHARACTERISTICS OF TRUSTIC STREAM	
a commence clark & man 090 1.000 DIA ~ DONC	
a manual state where a matching the matching the state of the	
TO CONTRACT CONTRACT CONTRACT DO NOT OSE DENERIO TRANS DA. CONCUMENT, SOLUTIA, UNION TRACT MEETING TO AND TAKEN THE PROPERTY	
H20 80-99% Di Di Diverse 4-20 ppn	
(" england The Lines Champer) Trees	
V WYSTE CONTRACT FLEXING ON CATE IF THE WESTE CONTRACT, AND OF THE POLICIPACIES (2015) CONTRACT, WITH ADDRESS OF THE POLICY OF T	
WHENC CONTRACT PLEASE ON-CATE IN THE WARK CONTACT ANT OF THE PARAMETER (ATTENDED AND ATTENDED AND ATTENDED     SALADE     S	
v weight constant freedom and and an an an and a second a second and an an an and a second and an and a second and a secon	
NERPERATOR CONTRACT - NERTE AND CONTRACT ON COLOR OF ANY COLOR OF ANY	
V WYSHE CONTENT - FLEASE BESCATE IT THE WASHE CONTINUE AND OF THE POLEOWERE, DEFECT ADDLETTERS, WHERE ATTLETABLES SALFOR	
ν         ν         ν         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ         χ	
M. MCN'S COMMENT - NEW TRUE AND SET THE AND SET OF A	
C. LARTWOOLANDALON AND AND AND AND AND AND AND AND AND AN	
A matrix for an file and all the angle control and all the control all the control all the control and the control all the con	
C. LARTWOOLANDALON AND AND AND AND AND AND AND AND AND AN	
Develop physics and definition and appropriate Static and approximate	
* which contrasts and cate to the general contrasts and contrasts ane	
* weight Contract Price and Contract Price weight Contract Der Der Verschweiser, De	
* weight Contract Price and Contract Price weight Contract Der Der Verschweiser, De	
v       wm_b/cc Constraints and Confer to the constraint Conference on the constraint of the second of the second of the constraint of the constraint of the second of the constraint of the	
v       milling Constraint - Price cases and cases of the mark weight Constraint of the mark weight cases and the states of the mark weight cases and the states of the states states of the states of the states of the states of t	
v       wm_b/cc Constraints and Confer to the constraint Conference on the constraint of the second of the second of the constraint of the constraint of the second of the constraint of the	
v       milling Constraint - Price cases and cases of the mark weight Constraint of the mark weight cases and the states of the mark weight cases and the states of the states states of the states of the states of the states of t	
v       milling Constraint - Price cases and cases of the mark weight Constraint of the mark weight cases and the states of the mark weight cases and the states of the states states of the states of the states of the states of t	
v       milling Constraint - Price cases and cases of the mark weight Constraint of the mark weight cases and the states of the mark weight cases and the states of the states states of the states of the states of the states of t	
v       milling Constraint - Price cases and cases of the mark weight Constraint of the mark weight cases and the states of the mark weight cases and the states of the states states of the states of the states of the states of t	
v       maximum distribution of the state o	
v       milling Constraint - Price cases and cases of the mark weight Constraint of the mark weight cases and the states of the mark weight cases and the states of the states states of the states of the states of the states of t	

Corporate Office Vopak Industriol Services					22 OLE 701	39 10 91253		F.02
		-						Disposal Facility
2000 West Loop South, Sil	ute 2200		\	/opa	k		Vopen Indu	wheil Services Deer Park
Houseon, Texas, 71027 PHONE, (713) 623-0000				opa	IK.			2758 Retifeground R Deer Park, Texas 77
FAX. (713) 581-7322			Generator's	8 Waste F	Profile (GWP)			PHONE, (281) 604-6
					,		Custome	LAD FAX (281) 604-6 Service Fax: (281) 604-6
								e-mai via gep@vepsk.cs
L GENERAL INFORMA A GENERATOR NAME:		2	ila	6	BALING NAME	UNIVAR USA, Inc.		
		Bone						
-		P. Bonn-			Kent WA 980	COLOR F COLORED & F.M.	h	
Bange (M		aguar	LEAS, BLOG . TH	398	ALCH WA SOU	J2		
C GENERATOR CONTAC		1/1-2-10	1 10		BILLING			
		WE HAD	fung			Linda Wimmer		
	1992.00			_ '	BILLING PHONE N	0. (253) 872-5062		
C GENERATOR STATE D				κ	GENERATORIPH	IONE NO. 3410	694	0337.
P. GENERATOR STATE WA					VOPAK SAUCE C	ONTACT CHER	stiller	HURIS
IL WASTE INFORMATIO	N-PLEASE L	USE FULL NAME	FS RATHER THAN					and the second
A NAME OF WASTE STREAM		Pecor	tamestra	N W	Inter			
A DESCRIDE THE PROCE	SE GENERAT		Decontam		Church	N	ALLA	5
	allo	-		in the	The second se	plinger	opmen	LA
	PULON	12	D PRECINEN			ANPLE SOURCE:		
				ONTWINEN (	TRUCK, ORUM.	20 galles	Dew	4
PHYSICAL CHANACT	ERISTICS OF	WASTE STR	ZAM					
FLASHPONT;			F 0. pH			C, DENEITY (B)		MA
COLOROPPEARANCE:	Clear		E. STN 105 (%):	0%0		5. ODOR	MA	- none
PHYTICAL STATE: (	water	_	H PHALESLAYERS	6 GINO		I STU VALUE	OLA	-
				_	_			
			(* Welcalas To Lated Cher	mical) Tele			Mas: ba - 100'	K)
WATT CONTRAT		70 at 1946 at			-		Mes: ba >- 100	
	EASE INDIÇA		ASTE CONTAINS ANY OF	THE FOLL	OWING (ATTACH	ANALYTICAL WHERE	APPUCARU	3
R/10E (994	_ YEC	XNO	ASTE CONTAINS ANY OF	THE FOLL	OWING (ATTACH,		APPUCABL	
AMITE 1944	YES	1 40 1 40	ASTE CONTAINS ANY OF RADIOACTIVE 7 PCB3 AS0 ppm 7	VES J		ANALYTICAL WHERE NZENE NESHAP WASTE: CHR 01 SUBPART FF; CLESS THAN 500 ppm/	APPUCABL	9
ANITE	YES	XNO	ASTE CONTAINS ANY OF	THE FOLLO	OWING (ATTACH) CNO BLI KND PAP KND VOX	ANALYTICAL WHERE NZENE NESHAP WASTE CPR 01 SUBPART FF CLESS 1HAN 500 permit CPA 200 SUBPART CC)	APPUCARU YES YCS	
44175 284 AMITE 284 MZEME	YES	1 40 1 40	ASTE CONTAINS ANY OF RADIOACTIVE 7 PCB3 AS0 ppm 7	- YES )	000006 (ATTACH, CNO BL) CNO PO CNO PO CNO PO	ANALYTICAL WHERE NERE NESHAP WASTE CIRED SUBPARTIF CIESS THAN 500 pomot CPR 201 SUBPART CO WASTEWATER STREAM	APPUCARU YES YCS	
	_ YES	<u>х</u> но <u>х</u> но <u>х</u> но	ASTE CONTAINS ANY OF HADROACTINE 7 PCB3 +50 ppm 7 PCD 13CA WASTET	- YES )	000006 (ATTACH, CNO BL) CNO PO CNO PO CNO PO	ANALYTICAL WHERE NZENE NESHAP WASTE CPR 01 SUBPART FF CLESS 1HAN 500 permit CPA 200 SUBPART CC)	APPUCARU YES YCS	Хм0 Хм0
	YES YES YES	<u>х</u> но х но х но	ASTE CONTAINS ANY OF HADROACTINE 7 PCB3 +50 ppm 7 PCD 13CA WASTET	- YES )	000006 (ATTACH, CNO BL) CNO PO CNO PO CNO PO	ANALYTICAL WHERE NERE NESHAP WASTE CIRED SUBPARTIF CIESS THAN 500 pomot CPR 201 SUBPART CO WASTEWATER STREAM	APPUCARU YES YCS	Хм0 Хм0
		<u>ж</u> но <u>х</u> но <u>х</u> но <u>х</u> но	ASTE CONTAINS ANY OF RADIOACTIVE 7 PCB3 +50 ppm 7 PCD 13CA WASTER DIONRS 7	THE FOLLO YES YES YES		ANALYTICAL WHERE NZENE NESHAP WASTE: CHI OT ZUPART IF; CLESS THAN 500 pprovi CPR 200 JUPART CO WASTEMATER STNER CFR 03 SUPART C)	APPUCARU YES YCS	Хм0 Хм0
		<u>х</u> но <u>х</u> но <u>х</u> но <u>х</u> но <u>х</u> но	ASTE CONTAINS ANY OF RADIOACTIVE 7 PCB3 +50 ppm 7 PCB 13CA WASTET DIONNIS 7	- YES 2		ANALYTICAL WHERE KZENE NESHAP WASTE CENS INAN 500 pomot CESS INAN 500 pomot CPN 200 SUBPART CC) WASTEWATER STREAM CFR 03 SUBPART C) ~-1% TES)	APPUCABL YES YCS w?TÉS	та 2 мо 2 мо
		2 HO 2 HO 2 HO 2 HO 2 HO 2 HO 2 HO 2 HO	ASTE CONTAINS ANY OF RUDOACTIVE 7 PCB3+S0 ppm 7 PCD 13CA WASTET DIOXINS 7 DIOXINS 7 IIIYESXM	- YES 2		ANALYTICAL WHERE NZENE NESHAP WASTE: CHI OT ZUPART IF; CLESS THAN 500 pprovi CPR 200 JUPART CO WASTEMATER STNER CFR 03 SUPART C)	APPUCABL YES YCS w?TÉS	Хм0 Хм0
LTOE OH ANTE DIA NZENE AN STROGEMERBICOC IN OSINC MATERIAL RCRA CHARACTERIZA THE MATERIAL IS A IS THIS A USEPA HAZARDO		2 HO 2 HO 2 HO 2 HO 2 HO 2 HO 2 HO 2 HO	ASTE CONTAINS ANY OF RUDOACTIVE 7 PCB3+S0 ppm 7 PCD 13CA WASTET DIOXINS 7 DIOXINS 7 IIIYESXM	- YES 2		ANALYTICAL WHERE KZENE NESHAP WASTE CENS INAN 500 parts CESS INAN 500 parts CPN 200 SUBPART CO WASTEWATER STREAM CFR 03 SUBPART CO ~1% TES)	APPUCABL YES YCS w?TÉS	х но Х но
ANTE DIA MERCIOC MATERIAL STICOGENERRICOC REGSIUC MATERIAL RCRA CMARACTERIZA THIS MATERIAL IS A IS THIS A USEPA HAZARDO IF B IS VES, LIST ALL ÉPA M		X NO X NO X NO X NO X NO 100 (41% TOC / 0 CFR PART 200 HUMBERS (D. F.	ASTE CONTAINS ANY OF RADIOACTIVE 7 PCD3-50 ppm 7 PCD 13CA WASTET DIONINS 7 DIONINS 7 IIIYESX M K_ P. U).	- YES 2		ANALYTICAL WHERE KZENE NESHAP WASTE CENS INAN 500 parts CESS INAN 500 parts CPN 200 SUBPART CO WASTEWATER STREAM CFR 03 SUBPART CO ~1% TES)	APPUCABL YES YCS w?TÉS	х но Х но
ANTE BANCOC ANTERNAL NZENE ANTERNAL ROBA CHARACTORIZA THE NATERIAL CADITIONIAL INFORMAT		X NO X NO X NO X NO X NO X NO CER PART 200 AUTH & SAFET	ASTE CONTAINS ANY OF RADIOACTIVE 7 PCB3 +50 ppm 7 PCD 18CA WASTET DIONINS 7 DIONINS 7 DIONINS 7 LL	THE FOLL(	Owward (ATTACH) C 400 BLD K ND (400 K ND	ANALYTICAL WHERE NZENE NESHAP WASTE CREATEDPARTIF; CLESS THAM 500 pprovi CP4 204 DUE/ARTICO M WASTEWATER STNEW CFR 43 SW0PARTIC) *-1% TB5; WASTE (20 TAC 325 247)	APPUCABL YES YCS w?TÉS	та 2 мо 2 мо
AUTOC OF AUTOC AND A CONTRACTOR AND A CONTRACT AND A		X NO X NO	ASTE CONTAINS ANY OF HADIOACTIVE 7 PCB3 +50 ppm 7 PCB 13CA WASTET DIONINS 7 DIONINS 7 DIONINS 7 IN	THE FOLL( YES	Owward (ATTACH) L NO (ATTACH) L NO (ATTACH) L NO (ATTACH) L NO (ATTACH) C NO (ATTACH) (ATTACH) L NO (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (AT	ANALYTICAL WHERE NZENE NESHAP WASTE: CHERS LUMPARTEF; CLESS THAN 500 pprovi CPR 200 SUMPART CC) N WASTEMATER STREAM CFR 03 SUMPART C) *-1% TES; WASTE (30 TAC 315 201)	APPUCANU - YES - YES - YES - YES - YES	ано Жио Хио
AUTOC OF AUTOC OF INZENE DE STOCICENERBICOC IN DOINC MATERIAL ING NATORIAL IS A IS THIS AUCON HAZARDO IF DIS VES, UST AUL EIN M ADDITIONAL INFORMAT INCIDENTIONAL INFORMAT		X NO X NO X NO X NO X NO X NO CER PART 200 AUTH & SAFET	ASTE CONTAINS ANY OF HADIOACTIVE 7 PCB3 +50 ppm 7 PCD 13CA WASTET DIONHS 7 DIONHS 7 DIONHS 7 INYESXM K, P. U).	THE FOLL( YES	Owward (ATTACH) C 400 BLD K ND (400 K ND	ANALYTICAL WHERE NZENE NESHAP WASTE: CHERS LUMPARTEF; CLESS THAN 500 pprovi CPR 200 SUMPART CC) N WASTEMATER STREAM CFR 03 SUMPART C) *-1% TES; WASTE (30 TAC 315 201)	APPUCANU - YES - YES - YES - YES - YES	х но Х но
AUTOC OF AUTOC OF INZENE DE STOCICENERBICOC IN DOINC MATERIAL ING NATORIAL IS A IS THIS AUCON HAZARDO IF DIS VES, UST AUL EIN M ADDITIONAL INFORMAT INCIDENTIONAL INFORMAT		X NO X NO	ASTE CONTAINS ANY OF HADIOACTIVE 7 PCB3 +50 ppm 7 PCB 13CA WASTET DIONINS 7 DIONINS 7 DIONINS 7 IN	THE FOLL( YES	Owward (ATTACH) L NO (ATTACH) L NO (ATTACH) L NO (ATTACH) L NO (ATTACH) C NO (ATTACH) (ATTACH) L NO (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (AT	ANALYTICAL WHERE NZENE NESHAP WASTE: CHERS LUMPARTEF; CLESS THAN 500 pprovi CPR 200 SUMPART CC) N WASTEMATER STREAM CFR 03 SUMPART C) *-1% TES; WASTE (30 TAC 315 201)	APPUCANU - YES - YES - YES - YES - YES	ано Жио Хио
AUTOC OF AUTOC OF INZENE DE STOCICENERBICOC IN DOINC MATERIAL ING NATORIAL IS A IS THIS AUCON HAZARDO IF DIS VES, UST AUL EIN M ADDITIONAL INFORMAT INCIDENTIONAL INFORMAT		X NO X NO	ASTE CONTAINS ANY OF HADIOACTIVE 7 PCB3 +50 ppm 7 PCB 13CA WASTET DIONINS 7 DIONINS 7 DIONINS 7 IN	THE FOLL( YES	Owward (ATTACH) L NO (ATTACH) L NO (ATTACH) L NO (ATTACH) L NO (ATTACH) C NO (ATTACH) (ATTACH) L NO (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (AT	ANALYTICAL WHERE NZENE NESHAP WASTE: CHERS LUMPARTEF; CLESS THAN 500 pprovi CPR 200 SUMPART CC) N WASTEMATER STREAM CFR 03 SUMPART C) *-1% TES; WASTE (30 TAC 315 201)	APPUCANU - YES - YES - YES - YES - YES	2 но Х но Х но
AUTOC OF YANTE BRANCICC INZERE AVAILABLE INTERNETING MATERIAL ING MATERIAL IS A ISTING MATERIAL IS A ISTING AUGEPA HAZARDO IF DIS VES, UST AUL EPA M ADDITIONAL INFORMAT INDERNETING AUGEPA HAZARDO IF DIS VES, UST AUL EPA M ADDITIONAL INFORMAT INTERNETING AUGEPA INFORMAT		<u>х</u> но <u>х</u> но <u>х</u> но <u>х</u> но <u>х</u> но (CR ракт зас номегез (D. F. ALTH & SAFC) Вих = 3470 street Value mater integ	ASTE CONTAINS ANY OF HADIOACTIVE 7 PCB3 +50 ppm 7 PCB 13CA WASTET DIONINS 7 DIONINS 7 DIONINS 7 IN	THE FOLLO 	Owward (ATTACH) L NO (ATTACH) L NO (ATTACH) L NO (ATTACH) L NO (ATTACH) C NO (ATTACH) (ATTACH) L NO (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (ATTACH) (AT	ANALYTICAL WHERE NZENE NESHAP WASTE CHI OT SUBPATTIF CLESS THAN 500 pprovi CPR 200 SUBPARTICO WASTEMATER STNER CFR 03 SUBPARTICO *-1% TBS WASTE (30 TAC 325 Jun; wASTE (30 TAC 325 Jun; wASTE (30 TAC 325 Jun;	APPUCANU - YES - YES - YES - YES - YES	2 но Х но Х но
VAUTE BURNERSECOC INZERE AND CITOBERERSECOC UN DENCE MATERIAL INCERA CHARACTERIZA THE MATERIAL IS A IS THE A USER MAZARDO IF DIS VES, UST AUL EIS M ADDITIONAL SECONDERS MAL INDERSE DEPENDENT IN INTERSE DEPENDENT IN INTERSE IS AMPLE SUDMITTED IS 1		X NO X NO	ASTE CONTAINS ANY OF RADIOACTIVE 7 PCB3 +50 ppm 7 PCB T3CA WASTET DIONINS 7 DIONINS 7 DIONINS 7 IN	THE FOLL( 	Owward (ATTACH, LND (4) LND (40) LND (40)	ANALYTICAL WHERE NZENE NESHAP WASTE CIESS THAN SDO permit CIESS THAN SDO permit NASTE NESHAP NASTE (20 TAC 215 201) ANALYTE Lond M (2) CATE Lond M (2)	APPLICABLY VES VCS VCS VCS VCS VCS VCS VCS VCS VCS VC	2 м0 Д м0 Д м0 Д м0 <u>Х</u> м0
AUTOC OF AUTOC OF AUTOC OF NZEAE DATE STOCOMERSING OC IN DISING MATERIAL INS MATCRIAL IS A IS THIS AUGERA HAZARDO IF DIS VES, UST AUL EPA M ADDITIONAL INFORMAT INSTRUMENT OF SCIENTIFIC INSTRUMENT OF SCIENTIFIC IS IN		X NO X NO X NO X NO X NO X NO X NO CFR PART 200 AUTH 6 SAFET PRI AUTH 6 SAFET	ASTE CONTAINS ANY OF RADIOACTIVE 7 PCB3 +50 ppm 7 PCB 13/CA WASTET D/DNHS 7 D/DNHS 7 D/DNH	THE FOLL(	Owward: (ATTACH, L NO         BLD           L NO         BLD           L NO         HO           Sub-Re CO         L           Sub-Re CO         L           Sub-Re CO         L           Homogen         Homogen	ANALYTICAL WHERE NZENE NESHAP WASTE CTR 01 SUPART FF CLESS THAN 500 pprovi CPR 200 SUPART CO WASTEWATER STREAM CFR 03 SUPPART CO WASTE (20 TAC 325 Jun; WASTE (20 TAC 325 Jun; MASTE (20 TAC 325 Jun; Lond Mi pi CATE T HE ADDVC AND AT	APPLICABLY VES VES VES VES VES VES VES VES	2 но 
AUTOE OF AUTOR AUT	VES VES VES VES NON WASTEWAN US WASTE (HIS WASTE (HIS WASTE (HIS WASTE COLLE IN US WASTE (HIS WASTE COLLE IN US WASTE (HIS WASTE ON IN CATION	X NO     CFR PART 200	ASTE CONTAINS ANY OF RADIOACTIVE 7 PCB3 +50 ppm 7 PCB 13/CA WASTET D/DNHS 7 D/DNHS 7 D/DNH	THE FOLL(	Owward: (ATTACH, L NO         BLD           L NO         BLD           L NO         HO           L NO         HO           L NO         HO           L NO         HO           CREATING CO L         HOMORESAL           Submits CO L         HOMORESAL           Submits CO L         HOMORESAL           Submits CO L         HOMORESAL	ANALYTICAL WHERE NZENE NESHAP WASTE CTR 01 SUPART FF CLESS THAN 500 pprovi CPR 200 SUPART CO WASTEWATER STREAM CFR 03 SUPPART CO WASTE (20 TAC 325 Jun; WASTE (20 TAC 325 Jun; MASTE (20 TAC 325 Jun; Lond Mi pi CATE T HE ADDVC AND AT	APPLICABLY VES VES VES VES VES VES VES VES	2 но _ Д но _ Д но _ Д но _ Д но _ Д но 
AUTOE OF AUTORS CENTRES CONTRACTORS CONTRACTORS CONTRACTORS AND A	VES VES VES VES NON WASTEWAN US WASTE (HIS WASTE (HIS WASTE (HIS WASTE COLLE IN US WASTE (HIS WASTE COLLE IN US WASTE (HIS WASTE ON IN CATION	X NO     CFR PART 200	ASTE CONTAINS ANY OF RADIOACTIVE 7 PCB3 +50 ppm 7 PCB 13/CA WASTET D/DNHS 7 D/DNHS 7 D/DNH	THE FOLL(	Owward: (ATTACH, L NO         BLD           L NO         BLD           L NO         HO           L NO         HO           L NO         HO           L NO         HO           CREATING CO L         HOMORESAL           Submits CO L         HOMORESAL           Submits CO L         HOMORESAL           Submits CO L         HOMORESAL	ANALYTICAL WHERE NZENE NESHAP WASTE CTR 01 SUPART FF CLESS THAN 500 pprovi CPR 200 SUPART CO WASTEWATER STREAM CFR 03 SUPPART CO WASTE (20 TAC 325 Jun; WASTE (20 TAC 325 Jun; MASTE (20 TAC 325 Jun; Lond Mi pi CATE T THE ADDVC AND AT	APPLICABLY YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES 	2 NO X NO
AUTOE OF AUTORS CERTIFIC SCIENT AND THE SCIENCES CONTRACTORS AND THE AUTORS AND THE AUTORS AU	VES VES VES VES NON WASTEWAN US WASTE (HIS WASTE (HIS WASTE (HIS WASTE COLLE IN US WASTE (HIS WASTE COLLE IN US WASTE (HIS WASTE ON IN CATION	X NO     CFR PART 200	ASTE CONTAINS ANY OF RADIOACTIVE 7 PCB3 +50 ppm 7 PCB 13/CA WASTET D/DNHS 7 D/DNHS 7 D/DNH	THE FOLL(	Owward: (ATTACH, L NO         BLD           L NO         BLD           L NO         HO           L NO         HO           L NO         HO           L NO         HO           CREATING CO L         HOMORESAL           Submits CO L         HOMORESAL           Submits CO L         HOMORESAL           Submits CO L         HOMORESAL	ANALYTICAL WHERE NZENE NESHAP WASTE CTR 01 SUPART FF CLESS THAN 500 pprovi CPR 200 SUPART CO WASTEWATER STREAM CFR 03 SUPPART CO WASTE (20 TAC 325 Jun; WASTE (20 TAC 325 Jun; MASTE (20 TAC 325 Jun; Lond Mi pi CATE T THE ADDVC AND AT	APPLICABLY YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES 	2 но 
AUTOC OF AUTOR AUT	VES VES VES VES NON WASTEWAN US WASTE (HIS WASTE (HIS WASTE (HIS WASTE COLLE IN US WASTE (HIS WASTE COLLE IN US WASTE (HIS WASTE ON IN CATION	X NO     CFR PART 200	ASTE CONTAINS ANY OF RADIOACTIVE 7 PCB3 +50 ppm 7 PCB 13/CA WASTET D/DNHS 7 D/DNHS 7 D/DNH	THE FOLL(	Owward: (ATTACH, L NO         BLD           L NO         BLD           L NO         HO           L NO         HO           L NO         HO           L NO         HO           CREATING CO L         HOMORESAL           Submits CO L         HOMORESAL           Submits CO L         HOMORESAL           Submits CO L         HOMORESAL	ANALYTICAL WHERE NZENE NESHAP WASTER ZENE NESHAP WASTE CLESS THAN 500 pprovid CPR 200 SUBPART CC) WASTEMATER STREAM CFR 03 SUBPART C) *-1% TES) WASTE (30 TAC 325 201) *-1% TES)	APPLICABLY VES VES VES VES VES VES VES VES VES VES	2 NO X NO

ふう

P	lease print or type				
ľ	NON-HAZARDOUS         1. Generator's US EPA ID No.         Manifest Dec. No.         2. Po           WASTE MANIFEST         NAH 0000110 927 50010000000000000000000000000000000000				_
7	3. Generator's Name and Malling Address CAMP JONNE VILLE - RANGE (ON tro) HEADQUARTERS BLOG # T4398 VANCOWER, WA	1			_
	Rivers Edge Services WAH00.00.10.3.14 2	ansporter's P 53 87 ansporter's P	728	3988	
	9. Designated Facility Name and Site Address 10. US EPA ID Number C. Fa	ucility's Phone			
	11. Waste Shipping Name and Description	12. Conta No.	iners Type	13. Total Quantity	14. Unit WbVol
	" SAMPLING GEAR - SOLID WASTE - RCRA Subtille D DSPOSAL - NON Req.			00003	
GENER					
A T O R	6. ) 1				
	d.				
	16		or Was	tes Listed Above	
	15. Special Handling Instructions and Additional Information				
	16. GENERATOR'S CERTIFICATION: I certify the materials described above on this manifest evenes subject to technol regulations for or Bright/Typed Narger?	reporting propa	r dispose	il of Hazardous Waste	0
₩ R	17. Transporter 1 Acknowledgement of Receipt of Materials			06 06	03
TRANSPORTER	Printed Typed Name Kits 61 AS S. Kemp 18. Transporter 2 Acknowledgement of Receipt of Materials			Co Day	Year Q.S
Ē	Printed/Typed Name Signature 19. Discrepancy Indication Space			Month Day	Yaar
FACI					
L T Y	20. Facility Owner or Operator: Certification of receipt of waste materials covered by this particest except as noted in Item 19.           Primed/Typegersame         Signature				
him				10613	03
	ORIGINAL - RETURN TO GENERATOR		12-B	LS-C5 Rev. 1	2/98

	-	· ·				# 2550	90	
	Emergen	cy Contac	t Teleph	one Number				
ti deseneri for use on elle (12-sidd) typewriter.)	1. Generator's	10 004 10 11	000 000			Form Approved. Of	MB No. 209	-0039, Expires 9-31
UNIFORM HAZARDOUS WASTE MANIFEST	WA.H.D.C	0.0.0.1	.69.7	ZI-OOI-	2. Pa	- Pointan	on in the s red by Fed	haded areas is leral law.
3. Generator's Name and Mailing Address Comp Bonneville Build the Fuzee	- Roma (	- last	Ilan	alar	A. St	ate Manifest Docum	nent Numb	xer
1 7370		044.00	HEADY	cartor,>	B. St	ate Generator's ID	tractor out	and the barrier being
4. Generator's Phone ( 360 ) 694 5. Transporter 1 Company Name	0332	dinas tent				703	a informer	sheets the followin
RIVERS Edge Services	SEMS	6. 10.1.A.L	US EPA ID	Number 0.1.0.314		ate Transporter's IE ansporter's Phone		t Geometocs
7. Transporter 2 Company Name		8.	US EPA ID	the second s	-	ate Transporter's ID	,	englishes successful
9. Designated Facility Name and Site Address	sector and or new prod	10.	US EPA ID		-	insporter's Phone		
UNIVAR USA INC.		10.	US EPA ID	Number	6. 55	ite Facility's ID		
8201 S. 21244 KENT, WA 98032		1.10.5	0107	1.0011		cility's Phone	polison (	to a smoot with to
11. US DOT Description (Including Proper Shipp		ss, and ID M	mber)	54.89.6d		13.	14,	tion first such each
ни				No.	Туре	Total Quantity	Unit Wt/Vol	I. Waste No.
2 D Notro Tolvene	WATER			-		- 2010		The second second
in a second s				0.0.1	10	1.D. q.a.1	ZOTA	
b,								
c		and the second						
the second advector presentation of								
d.								aning addition
J. Additional Descriptions for Materials Listed Abo	ove	O-terla		· · ·	· K Han	dling Codes for Wa		
A A 15. Special Handling Instructions and Additional I	Information	Angelena Angelena Angelena Angelena Angelena	adi mana Infilia ter	n af bilengileb y rante Joseffer af	and selling	initiana sena Sear Activity In activity activity of the statement many bene	A (Basel) op antisz tastosos tas gróne admit A O	And a local sector of the sect
6. GENERATOR'S CERTIFICATION: 1 hereby de		of this consist						
packed, marked, and labeled, and are in all respe- If I am a large quantity generator, I certily that I I practicable and that I have selected the practicab and the environment; OR, if I am a small quantity available to me and that I can afford.	tos in proper condition le have a program in place le method of treatment	e to reduce the storage, or de a good faith	highway acco a volume and posal currenti offort to frink	cling to applicable int (pricity of waste gene	emational mated to t	and national govern he degree I have de	mental regi termined to	ulations. > be economically
								th Day Year
Printed/Typed Name Stave Spencel (Ald	EMT)	Sign	A.	X	-		Mon O	1607
Printed/Typed Name			ature	X	-		00	0/1607
Printed/Typed Name HOUE SHONCEL (A.L. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name Nabert S. Kem,	Materials		ZA-	Ach.	-		Mon OC Mon	0/1607
Printed/Typed Name HEVE MACEL (ALC Transporter 1 Acknowledgement of Receipt of Printed/Typed Name	Materials		A	Neg			00	6 16 07 th Day Year 6 1.6 03
Printed/Typed Name Have Moncel (Ald Transporter 1 Acknowledgement of Receipt of Printed/Typed Name Printed/Typed Name	Materials	Sign	A	Neg			0(  Mon  0:4	6 16 07 th Day Year 6 1.6 03
Printed/Typed Name C Transporter 1 Acknowledgement of Receipt of Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name 9. Discrepancy Indication Space	Materials Materials	Sign 4 Sign	A sture MM ature	Neg			0(  Mon  0:4	6 16 07 th Day Year 6 1.6 03
Printed/Typed Name C Transporter 1 Acknowledgement of Receipt of Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name 9. Discrepancy Indication Space 0. Facility Owner or Operator: Certification of rec	Materials Materials	Sign 4 Sign	A sture MM ature	Act of the second secon	lin Item 1	9.	0(  Mon  0:4	th Day Year 6 1.6 0.3
Printed/Typed Name C Transporter 1 Acknowledgement of Receipt of Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name 9. Discrepancy Indication Space	Materials Materials	Sign 4 Sign	A store ature	lest except as noted	lin litern 1	9.	0(  Mon  0:4	th Day Year 6 1.6 03

TRANSPORTER #1





Vopak Industrial Services USA Inc.

## (GENERATOR AND RECYCLING/TSD CONTRACTOR)

WHEREAS, Generator produces spent chemicals which may be considered to be "hazardous" or "toxic" within the meaning of applicable federal and state laws ("Spent Chemicals") and which therefore must be transported, stored, disposed of, recycled, treated or re-used ("Handled") in accordance with applicable laws pertaining to hazardous or toxic chemicals.

WHEREAS, Recycling/TSD Contractor owns or controls facilities which are capable of Handling spent Chemicals in accordance with all applicable laws pertaining to such activities;

WHEREAS, the parties desire to enter into an arrangement for the Handling of Spent Chemicals, all on the terms and conditions hereinafter set forth;

NOW, THEREFORE, in consideration of the covenants and agreements contained herein, the undersigned agree to the following terms and conditions of this Recycling/TSD Handling Agreement as well as to the Standard Terms and Conditions Governing the Handling of Spent Chemicals ("Standard Terms and Conditions"), which are attached to the Generator copy of this Agreement and are incorporated herein by reference. All capitalized terms not otherwise defined herein shall have the meanings set forth in the Standard Terms and Conditions.

 SPENT CHEMICALS SHIPMENT. The completed Uniform Hazardous Waste Manifest or appropriate state manifest which is identified by the reference number appearing in a space below the signatures to this agreement and which pertains to the Spent Chemicals Shipment Handled under this Agreement is hereby incorporated herein by reference. Such manifest describes certain Spent Chemicals which Generator hereby agrees to ship to Recycling/TSD Contractor and which Recycling/TSD Contractor agrees to handle at the facility named in such manifest ("Designated Facility").

 COLLECTION, TRANSPORTATION, STORAGE AND DELIVERY. All Spent Chemicals Shipments shall be transported to Recycling/TSD Contractor by Univar USA Inc., a Washington Corporation ("Univar USA"), or an entity designated by Univar USA to provide transportation and temporary storage services.

3. PAYMENT. It is understood that Univar USA shall pay Recycling/TSD Contractor for Handling the Spent Chemicals Shipment (or, where money is owed to Generator, Univar USA shall pay Generator for the Spent Chemicals Shipment) according to the terms of a certain Master Spent Chemicals Handling Agreement between Recycling/TSD Contractor and Univar USA. Recycling/TSD Contractor shall not look to Generator for payment for Handling the Spent Chemicals Shipment, except for certain extraordinary charges incurred in connection with Non-conforming Spent Chemicals as set forth in the Standard Terms and Conditions.

 INDEMNIFIED PARTY. As used in the Standard Terms and Conditions, the term "Indemnified Party" shall mean either Recycling/TSD Contractor or Generator, depending upon which party claims indemnification under this Agreement.

5. GENERATOR INDEMNIFICATION. Generator shall defend, indemnify and hold harmless Recycling/TSD Contractor, its past, present and future officers, directors, employees, agents, insurers, and successors (hereinafter in this Paragraph referred to collectively as "Recycling/TSD Contractor") from and against any and all loss which Recycling/TSD Contractor may sustain or incur, be responsible for or pay out as a result of:

(a) Generator's breach of any representation, warranty, term or provision of this Agreement; or

(b) The negligence or intentional misconduct of Generator, its employees, agents, representatives or subcontractors in the performance of this Agreement, provided that such indemnification shall not apply to the extent such liabilities result from Recycling/ TSD Contractor's negligence or intentional misconduct or from a breach of this Agreement by Recycling/TSD Contractor.

6. NAMES AND ADDRESSES OF PERSONS TO WHOM NOTICE IS TO BE GIVEN. The name of the person to whom notice is to be given on behalf of Generator appears on the Uniform Hazardous Waste Manifest in Item 16 or the appropriate state manifest. The name of the person to whom notice is to be given on behalf of Recycling/TSD Contractor appears on the Uniform Hazardous Waste manifest in Item 20 or the appropriate state manifest. The addresses of the persons to whom notice is to be given appear on the Uniform Hazardous Waste Manifest under Item 3 (for Generator) and Item 9 (for Recycling/TSD Contractor) or the appropriate state manifest.

#### RECYCLING/TSD HANDLING AGREEMENT (GENERATOR AND RECYCLING/TSD CONTRACTOR)

The undersigned hereby agree that, upon execution of this Recycling/TSD Handling Agreement, there is a binding contract between them according to the above terms and conditions, as of the day and year appearing below.

FACILITY Camp Bonnewille	RECYCLING/TSD CONTRACTOR: Vice President PRINT NAME: Michael J. Dilick TITLE: and General Manager
PRINT Steve Sporce TITLE: AGONT	11,0101-1
	RECYCLING/TSD CONTRACTOR SHIPMENT APPROVAL NUMBER
UNIFORM HAZARDOUS WASTE MANIFEST DOCUMENT NUMBER:	VS- 32940 -C

	-03 FRI 11:42	CAMP BONNEVILLE	FAX NO, 1360694	3120	P. 02	
	13 03 11:25a	EMS, LLC	253-51	9-2717	p.2	
3	lun 13 03 10:19a	SOUND ENVIRONME	INTAL 2063051	907	P-1	
	JUN 80 2003 121	JA FR CHEHCARE KENT	253 972 5039 TO 5125(R-4)	96717 T.VE		. '
	Colporate Office			Depasal Fannin Upan Index 200 Sen (02 Dev/ 1787) Inc.		
	Vision Principal Survives LOA inc. 2000 Weigel Land Echan, June 2200 Program, Vision YV21	Vop	ak	2758 Battlegrante Rosa Deer Pers, Tunas 77538		
	FINDINE, (713) 422-4004 FAX: (713) 561-1222	Generator's Visit	e Profile (GMP)	54(0)(C; (20))(04-0150 CAD FAX (20)(954-6170	1	·.
				Contention Services Faur, 1219 1995 Automatication automatication Contention Contention Contention	-	
	CONTRACTOR	ne Emerille	S DELING HANT UNEVAR USA, INC	······		
	0. GENENATOR KODATEST	AMA BOAR AVILLE	H. MILLING ADDRESS AND SOUTH 2120			
		HONORDON CAS, BLAG ISBN		······································	· .	
	O DEPORTOR CONTACT	steve Unitung	, an und and a first standar			
	O, OCHERATORISANDHO: <u>V</u> C, OCHERATORISANDHO: <u>V</u>	VAH 000 016 972		44 -227		
	. GENERATON SINTE WASTE CO		L VOPAK SALTA FORMATT	A designed and the second second		
		ASE DESTURI THE STATISTA THEY	when			
	• • • • • • • • • • • • • • • • • • •	Decontan Asharal	<u> </u>	PMENT		
	= row × 10 gall		1 TURE . mesource		•	
		P. MASTE CONTINU	en much on 20 anilion	Denn		
	N. FITTECAL CRANNED FRETT	P. B. M	G. DE NORTH BOSIN	asses MA		
	D. COLONIA CAR			niA - none		
	8		SHOLE MATING CONTANIES	. <u>014</u>		
	T. CHEMICAL CONFESTION	CALIFITUENTE DO HOT USE DENENE TENNE (LA	. OFGAMCE SALT, BOLDA, UR SPATTACH NO	DE POR PROPUETS		
	Case Therein	an-99% ***		*. an-		
	H20		Dillitrike lower	2 4-20 Mpm		
	. Siahot	, ₩C5 X 80	L ALAO (ATCH OT CAPTAIN TO ) TO CONTAIN AND AND AND AND AND AND AND AND AND AN	_1775 J\$40		
		TTO CHO DODALE _ TO	S X NO HOY WASTENNIER STIEREN	2 TES ING		
	STURIOSAL INTERNU	<u>wi 140</u>				
	A. 1885 MO100104 (PA			anna Xian.		4
		1676(++0/h hust 204)r _ 166 _ L πΩ (	3200 of Turing Biom Prize, Very TE (30 TAU 394 34197			:
	Mr. Aller Martin and P. Edit & Street -					
	Second Advances in water of the second					
		- transmission		egalige of greybeauxis 3,7, 962, sitt.		
A	Var former our system	Cure Alsonia		Tues 2002		
$(\mathcal{B})$	The Souler	There harries	OATH OATH	war 2003	- . ,	.•
B	Jour Josefer	The second states and a state of				
Ø	Jour Josefer	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער מאדע מער אין איז	CHED DESCRIPTION & LONS OF DONNOSTION OR MR F FROM ANY WASTR		
B	JOHN THEE SUBMITTEDIS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער מאדע מער אין איז			
Ø	SOM THESE SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CHED DESCRIPTION & LONS OF DONNOSTION OR MR F FROM ANY WASTR		یر ۱۰ ۱۰
Ø	SOM THESE SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CITED UES CRIVTINA (C UENS CRIVTINA (C UENS CRIVALUR MALE FERCIA ANY MANYTA MALE FERCIA ANY MANYTA MALE Tempi (Jongr 2) (Mark)7		
Ø	SOM THESE SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CITED UES CRIVTINA (C UENS CRIVTINA (C UENS CRIVALUR MALE FERCIA ANY MANYTA MALE FERCIA ANY MANYTA MALE Tempi (Jongr 2) (Mark)7	· ·	یر ۲۰۰۰ ۲۰۰۰
Ø	SOM THESE SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CITED UES CRIVTINA (C UENS CRIVTINA (C UENS CRIVALUR MALE FERCIA ANY MANYTA MALE FERCIA ANY MANYTA MALE Tempi (Jongr 2) (Mark)7		ہر • • • • • • • • • • • • • • • • • • •
ß	SOM THESE SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CITED UES CRIVTINA (C UENS CRIVTINA (C UENS CRIVALUR MALE FERCIA ANY MANYTA MALE FERCIA ANY MANYTA MALE Tempi (Jongr 2) (Mark)7		بر ۲۰۰۰ ۱۰۰۰ ۱۰۰۰ ۱۰۰۰ ۱۰۰۰
×.	SOM THESE SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CITED UES CRIVTINA (C UENS CRIVTINA (C UENS CRIVALUR MALE FERCIA ANY MANYTA MALE FERCIA ANY MANYTA MALE Tempi (Jongr 2) (Mark)7		ی ۲۰۰۰ ۱۰۰۰ ۱۰۰۰ ۱۰۰۰ ۱۰۰۰
×.	JOHN THEE MY SAMEL SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CITED UES CRIVTINA (C UENS CRIVTINA (C UENS CRIVALUR MALE FERCIA ANY MANYTA MALE FERCIA ANY MANYTA MALE Tempi (Jongr 2) (Mark)7		یر ۱۰ ۱۰ ۱۰ ۱۰
×.	JOHN THEE MY SAMEL SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CITED UES CRIVTINA (C UENS CRIVTINA (C UENS CRIVALUR MALE FERCIA ANY MANYTA MALE FERCIA ANY MANYTA MALE Tempi (Jongr 2) (Mark)7		• • • • • •
÷.	JOHN THEE MY SAMEL SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CITED UES CRIVTINA (C UENS CRIVTINA (C UENS CRIVALUR MALE FERCIA ANY MANYTA MALE FERCIA ANY MANYTA MALE Tempi (Jongr 2) (Mark)7		
÷.	JOHN THEE MY SAMEL SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CITED UES CRIVTINA (C UENS CRIVTINA (C UENS CRIVALUR MALE FERCIA ANY MANYTA MALE FERCIA ANY MANYTA MALE Tempi (Jongr 2) (Mark)7		
÷.	JOHN THEE MY SAMEL SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CITED UES CRIVTINA (C UENS CRIVTINA (C UENS CRIVALUR MALE FERCIA ANY MANYTA MALE FERCIA ANY MANYTA MALE Tempi (Jongr 2) (Mark)7		
	JOHN THEE MY SAMEL SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CITED UES CRIVTINA (C UENS CRIVTINA (C UENS CRIVALUR MALE FERCIA ANY MANYTA MALE FERCIA ANY MANYTA MALE Tempi (Jongr 2) (Mark)7	- <b>1977</b>	
×.	JOHN THEE MY SAMEL SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CITED UES CRIVTINA (C UENS CRIVTINA (C UENS CRIVALUR MALE FERCIA ANY MANYTA MALE FERCIA ANY MANYTA MALE Tempi (Jongr 2) (Mark)7		
×.	JOHN THEE MY SAMEL SUBMITTED IS NOT	THE ALL ALL THE ALL THE ALL THE ALL THE ALL THE ALL ALL THE ALL ALL THE ALL ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ער איז	CITED UES CRIVTINA (C UENS CRIVTINA (C UENS CRIVALUR MALE FERCIA ANY MANYTA MALE FERCIA ANY MANYTA MALE Tempi (Jongr 2) (Mark)7	 	

Vopak Industrial Services USA Inc. 2000 West Loop South, Suite 2200	Vopak 🐃	omi Industrial Services E 2758 Battle
Houston, Texas 77827	vopun	Deer Park, 1
PHONE, (713) 623-0000 FAX. (713) 561-7322	Generator's Waste Profile (GWP)	PHONE: (2 LABITAX (2
	4	Customer Service Fax: (2
L GENERAL INFORMATION		ensi na gan
A GENERATOR NAME: CAMP BOMEN	cille G. DILLING NAME UNIVARUSA, Inc.	
D. GENERATOR ADDRESS CAMP BORN.		<b></b> ,
	1245 BLAG TH398 Kent WA 98032	
C CENERATOR CONTACT SHPLL HA	BILLING Linds Wimmer	
	-+U/19 [100 VURNENT ] BBLING PHONE NO. (253) 872-5062	
D. GENERATOR EPA ID NO.:		~ . /
	K. GENERATOR PHONE NO. 210 (	<u>44 055</u>
F. GENERATOR STATE WASTE CODE NO.: 11. WASTE INFORMATION - PLEASE USE FULL NA	L. VOPAK SALES CONTACT. CHELS H	Les Jeuer
1 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
A MANE OF WASTE STREAM DE CO		
A. DESCRIDE THE PROCESS GENERATING WASTE	1	ment
· volume × 10 gallons	D FREQUENCY: 1 TUM'E & SAMPLE SOURCE:	
		Denn
III. PHYSICAL CHARACTERISTICS OF WASTE ST		NSG) MA
A FLASHPOINT:	F B, pr:: C, DENGITY (WGAL O	
D. COLORIAPPEARANCE: <u>Clead</u>	E. STR 105 (%): 0%	11A - non
a physical state: Water	H PHASCSLAYERS; SINOLE _MULTIPLE (, BTU VALUE:	<u>14</u>
Constituent H20	o NOT USE GENERIC TERMS (0.0. ORGANICS, SALT, BOLIDS, OILB)-ATTACH MSD. -99% mm Constilluent D. D. L. Le To luene	% ppn (t⊃rm)
Constituent of M		% ppn (t⊃rm)
Constituent of M	-99% mm constituent D. D. Lute Tolvene	% ppn
Constituent H20 80	-99 % mm Constituent D. M. Lieber To Wene ("Indicates Tri Lieber Chemical) Total WASTE CONTAINS ANY OF THE FOLLOWING (ATTACH ANALYTICAL WHERE APP	[№]
Constillent H20 80	Constillight D. M. Le Tolvene D. M. Listed Chemical) Tolal & Mean WASTE CONTAINS ANY OF THE FOLLOWING (ATTACH ANALYTICAL WHERE APP RADUACTIVE 7 VES X NO BENZEN RESHARD WASTE?	[№]
Constiluent H20 80	Constituent D. M. Leter To Wene ("Indicates Tri Lieter Chemical) Total WASTE CONTAINS ANY OF THE FOLLOWING (ATTACH ANALYTICAL WHERE APP RADICACTIVE 7 VES X NO BENEZHA DESTAD WASTE? PCB'3-500 ppm 7YES X NO KON BUDDANT FFJ VOC LESS THAN 500 ppm/ 7	4-20 ₽ 4-20 ₽
Constiluent H20 80	Constituent DINATE TO WERE ("INDECIDES THE FOLLOWING" (ATTACH ANALYTICAL WHERE APP RADIOACTIVE 7YES X NO	4-20 p 4-20 p - 100Kj UCAULE) _ YES _X NO _ YES _X NO
Constiluent H20 80	Constituent D. M. Leter To Wene ("Indicates Tri Lieter Chemical) Total WASTE CONTAINS ANY OF THE FOLLOWING (ATTACH ANALYTICAL WHERE APP RADICACTIVE 7 VES X NO BENEZHA DESTAD WASTE? PCB'3-500 ppm 7YES X NO KON BUDDANT FFJ VOC LESS THAN 500 ppm/ 7	4 -20 p 4-20 p •• 101×1 UCAULE) _YES_X№0
Constiluent H2O 80	Constituent D. M. H. To Wene (* Indicates Tri Listed Chemical) Total WASTE CONTAINS ANY OF THE FOLLOWING (ATTACH ANALYTICAL WHERE APP RADUACTIVE 7	4-20 p 4-20 p - 100Kj UCAULE) _ YES _X NO _ YES _X NO
Constiluent H20 80	Constituent D. M. H. To Wene (* Indicates Tri Listed Chemical) Total WASTE CONTAINS ANY OF THE FOLLOWING (ATTACH ANALYTICAL WHERE APP RADUACTIVE 7	4-20 p 4-20 p UCAULE) _YES_XNO _YES_XNO
Constiluent H20 80	Constituent D. M. Lo Vene D. M. Lo Vene Notice To Vene Notice Contains any of the Following (ATTACH ANALYTICAL WHERE APP RADUACTIVE 7	4-20 p 4-20 p VCAULE) _YES XNO _YES XNO _TES XNO
Constiluent H20 80	Constituent D. M. Lot To Wene Constituent D. M. Lot To Wene Constituent D. M. Lot To Wene Constituent D. M. Lot To Wene Constituent Constituent Constituent Constituent Constituent D. M. Lot To Wene Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent C	4-20 p 4-20 p VCAULE) _YES XNO _YES XNO _TES XNO
Constiluent H20 80	Constituent D. M. Lot To Wene Constituent D. M. Lot To Wene Constituent D. M. Lot To Wene Constituent D. M. Lot To Wene Constituent Constituent Constituent Constituent Constituent D. M. Lot To Wene Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent Constituent C	4 -20 p 4-20 p 4-20 p 10CAULE) _YES XNO _YES XNO _TES XNO
Constilluent H20 80 W WASTE CONTENT - PLEASE INDICATE IF THE V SULFIDE pon _YEG X NO SYANIGE	Cand +1% TSS) X MONWASTEWATER (>=1% TSS) X MONWASTEWATER (>=1% TSS) X MONWASTEWATER (>=1% TSS) X MONWASTEWATER (>=1% TSS) X MO SIGNAL UNIVERSAL WASTE (30 TAC 135 201)7 CAND +1% TSS) X MONWASTEWATER (>=1% TSS) X MO SIGNAL UNIVERSAL WASTE (30 TAC 135 201)7 F, F, P. U).	4 -20 p 4-20 p 4-20 p 10CAULE) _YES XNO _YES XNO _TES XNO
Constillent H20 80 WASTE CONVENT - PLEASE INDICATE IF THE V SULFIDE	Cand offer TSS; Cand o	4 -20 p 4-20 p 4-20 p 10CAULE) _YES XNO _YES XNO _TES XNO
Constillent H20 00 WASTE CONTENT - PLEASE INDICATE IF THE V SULFIDE	Constituent D. M. Levie To Went D. M. Levie To Went Master Contains any of the Following (attach analytical where app Radioactive 7ves X noso CRE as SUBPART FF; PCB'S ~50 ppm 7Yes X no (ao CRE as SUBPART FF; PCB'S ~50 ppm 7Yes X no (ao CRE as SUBPART FF; DIOXWS 7YES X NO (ao CRE as SUBPART G) DIOXWS 7YES X NO (ao CRE as SUBPART G) CAND = 1% TSS; X NO XNO = 1% TSS; X NO = Subpart G) CAND = 1% TSS; X NO = Subpart G) ETY PRECAUTIONS Barm by Underground injection; or Subble C/D Land(U	4-20 p 4-20 p - 100 x1 - YES X NO - YES X NO - YES X NO - YES X NO
Constillerit H20 00 WASTE CONTENT - PLEASE INDICATE IF THE V SULFIDE	Cand 45% TSS) X MONYASYCWATCR (1415 TOC AND 2-1% TSS) X MONYASYCWATCR (1415 TOC AND 2-	4 -20 p 4-20 p 4-20 p 10CAULE) _YES XNO _YES XNO _TES XNO
Constillent H20 00 WASTE CONTENT - PLEASE INDICATE IF THE V SULFIDE	Constituent D. M. Levie To Went D. M. Levie To Went Master Contains any of the Following (attach analytical where app Radioactive 7ves X noso CRE as SUBPART FF; PCB'S ~50 ppm 7Yes X no (ao CRE as SUBPART FF; PCB'S ~50 ppm 7Yes X no (ao CRE as SUBPART FF; DIOXWS 7YES X NO (ao CRE as SUBPART G) DIOXWS 7YES X NO (ao CRE as SUBPART G) CAND = 1% TSS; X NO XNO = 1% TSS; X NO = Subpart G) CAND = 1% TSS; X NO = Subpart G) ETY PRECAUTIONS Barm by Underground injection; or Subble C/D Land(U	4-20 p 4-20 p - 100 x1 - YES X NO - YES X NO - YES X NO
Constillent H20 00	Constituent Di Mitcheller Tolvene Di Mitcheller Tolvene Di Mitcheller Tolvene Di Mitcheller Tolvene Di Mitcheller Tolvene Di Mitcheller Tolvene Di Mitcheller Tolvene Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name Name	4-20 p 4-20 p - 100 x1 - YES X NO - YES X NO - YES X NO - YES X NO
Constilluent H20 00 WASTE CONTENT - PLEASE INDICATE IF THE V SULFIDE	Constituent D. M. Levie To Went D. M. Levie To Went Master Contains any of the Following (attach analytical where app Radioactive 7ves X noso CRE as SUBPART FF; PCB'S ~50 ppm 7Yes X no (ao CRE as SUBPART FF; PCB'S ~50 ppm 7Yes X no (ao CRE as SUBPART FF; DIOXWS 7YES X NO (ao CRE as SUBPART G) DIOXWS 7YES X NO (ao CRE as SUBPART G) CAND = 1% TSS; X NO XNO = 1% TSS; X NO = Subpart G) CAND = 1% TSS; X NO = Subpart G) ETY PRECAUTIONS Barm by Underground injection; or Subble C/D Land(U	4 ppn 4-20 p 4-20 p

** TOTAL PAGE.02 **

----

··-**_**- ·

2 44 5 M. 10 4

-- .__

- and here repair

....

---- .

	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID No. MAH. 0.0.00.1.6.9.72 50.0.1.0			
		Ange control Horadguartees			
	Cenerator's Hone ( SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (     SCC ) 6-14 (	6. US EPA ID Number 10000010314 8. US EPA ID Number	A. Transporter's P ZS3 8 B. Transporter's P	72 89 8	8
	9. Designated Facility Name and Site Address	10. US EPA ID Number	C. Facility's Phone		 
	11. Waste Shipping Name and Description		12. Conta No.	ainers 13 To Type Quar	tai 🛛 Unit 🖂
G	RCRA Sobulle	D DSposal - non leg	. 003	55 000	203
ENERAT	ι 			· · · ·	
0 R 	d.			· .	<u> </u>
	D. Additional Descriptions for Materials Listed Abo	ove	E. Handling Codes	for Wastes Listed	Above
· · · · · · · · · · · · · · · · · · ·	15. Special Handling Instructions and Additional In	formation			
	NIA				
	16. GENERATOR'S CERTIFICATION: I certify the	materials described above on this manifest around subject to federal regula	tions for reporting prope	r disposal of Hazar Monti	h Day Year
	17. Transporter 1 Acknowledgement of Receipt of I Printeo/Typed Name	Signature		Morry Co	h Day Year
O R T E R	<ul> <li>18. Transporter 2 Acknowledgement of Receipt of I Printed/Typed Name</li> <li>19. Discrepancy Indication Space</li> </ul>	Vaterials 'Signature		Month	h Day Year
F A C I					
L T T Y	20. Facility Owner or Operator: Certification of rece	ipt of waste materials covered by this pranifest except as noted in Ite Signature	em 19.	Month	h Day Year
	AUDUNUN	ORIGINAL - RETURN TO GENERATOR			2 <b>  3 03</b> Rev. 9298

					# 2550	an	
	Eme Roman Roman Roman (1997) Mile (20	ergency Contact Telephone N	lumber		یا <b>ت</b> کرد شکر	10	
		rator's US EPA ID No. 1.0.0.0.0.0.1.69.7.7	Manifest	2. Pa	-	·	<u>가지 가지 않는 것</u> naded areas is aral law.
ł	3. Generator's Name and Mailing Address Camp Bonneville - RANG Build # 74398				ate Manifest Docum	•	
:	4. Generator's Phone (360) 694 0332	r.		B. St	ate Generator's ID		
	5. Transporter 1 Company Name	<ol><li>US EPA ID Number</li></ol>			ate Transporter's ID ansporter's Phone	۰ ۰	
	7. Transporter 2 Companý Name	8. US EPA ID Numbe			ate Transporter's ID ansporter's Phone		
	9. Designated Facility Name and Site Address	10. US EPA ID Numbe	ər		ate Facility's ID		
	8201 S. ZIZ+* KENT, WA 98032 11. US DOT Description (Including Proper Shipping Name, Haz	WAD06.754.			cility's Phone	,	
	нм		12. Con No.	tainers ; Type	13. Total Quantity	14. Unit Wt/Vol	t. Waste No.
	a. D Notro Tolvene WATE	-x	0.01		1.D. qa.1	2016	
I G E	b.			· · ·	1.0.44.1		
GENERAT	c.		<u> </u>	<u> </u>	• • • •		
Î O R				.			
	d		. <b> -</b>	!			
	J. Additional Descriptions for Materials Listed Above			K. Han	dling Codes for Wa	stes Listed	Above
	n/A						
	15. Special Handling Instructions and Additional Information	·					
	n/a						
	16. GENERATOR'S CERTIFICATION: I hereby declare that the creacked, marked, and labeled, and are in all respects in proper complete and a second se	ndition for transport by highway according to	applicable inte	irnationa	l and national govern	menta: regi	lations.
	If I am a large quantity generator, I certify that I have a program practicable and that I have selected the practicable method of tre and the environment; <b>OR</b> , if I am a small quantity generator, I ha available to me and that I can afford.	atment, storage, or disposal currently availal ave made a good faith effort to himitize my	or waste gene bl <u>e to m</u> e whic waste generati	rated to i h minimis ion and s	the degree I have de zed the present and f select the best waste	termined to uture threat manageme	be economically to human health int method that is
¥¦	Stave Spencer (ALENT)	Signature				Mon  00	ih Day Year
T R A N	Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	Signature				Mon	th Day Year
	18. Transporter 2 Acknowledgement of Receipt of Materials	lan be	·/			0.6	1603
_	Printed/Typed Name	Signature 🗸				Mom	h Day Year
F	19. Discrepancy Indication Space						
A C I L	20 Facility Durbon of Decretory Contribution of according to be and	·					
Ϊ  Τ  ¥ -	20. Facility Owner or Operator: Certification of receipt of hazardo	Signature	cept as noted	in Item	19. 		
	STEVE HIBBELN	i signature	H.	Ľ	/	Mont D	h Day Year <b>Bo</b>  03
		TRANSPORTER #1					
			_				



# **RECYCLING/TSD HANDLING AGREEMENT**



Vopak Industrial Services USA Inc.

(GENERATOR AND RECYCLING/TSD CONTRACTOR)

WHEREAS, Generator produces spent chemicals which may be considered to be "hazardous" or "toxic" within the meaning of applicable federal and state laws ("Spent Chemicals") and which therefore must be transported, stored, disposed of, recycled, treated or re-used ("Handled") in accordance with applicable laws pertaining to hazardous or toxic chemicals.

WHEREAS, Recycling/TSD Contractor owns or controls facilities which are capable of Handling spent Chemicals in accordance with all applicable laws pertaining to such activities;

WHEREAS, the parties desire to enter into an arrangement for the Handling of Spent Chemicals, all on the terms and conditions hereinafter set forth:

**NOW, THEREFORE**, in consideration of the covenants and agreements contained herein, the undersigned agree to the following terms and conditions of this Recycling/TSD Handling Agreement as well as to the Standard Terms and Conditions Governing the Handling of Spent Chemicals ('Standard Terms and Conditions''), which are attached to the Generator copy of this Agreement and are incorporated herein by reference. All capitalized terms not otherwise defined herein shall have the meanings set forth in the Standard Terms and Conditions.

1. SPENT CHEMICALS SHIPMENT. The completed Uniform Hazardous Waste Manifest or appropriate state manifest which is identified by the reference number appearing in a space below the signatures to this agreement and which pertains to the Spent Chemicals Shipment Handled under this Agreement is hereby incorporated herein by reference. Such manifest describes certain Spent Chemicals which Generator hereby agrees to ship to Recycling/TSD Contractor and which Recycling/TSD Contractor agrees to handle at the facility named in such manifest ("Designated Facility").

2. COLLECTION, TRANSPORTATION, STORAGE AND DELIVERY. All Spent Chemicals Shipments shall be transported to Recycling/TSD Contractor by Univar USA Inc., a Washington Corporation ("Univar USA"), or an entity designated by Univar USA to provide transportation and temporary storage services.

3. PAYMENT. It is understood that Univar USA shall pay Recycling/TSD Contractor for Handling the Spent Chemicals Shipment (or, where money is owed to Generator, Univar USA shall pay Generator for the Spent Chemicals Shipment) according to the terms of a certain Master Spent Chemicals Handling Agreement between Recycling/TSD Contractor and Univar USA. Recycling/TSD Contractor shall not look to Generator for payment for Handling the Spent Chemicals Shipment, except for certain extraordinary charges incurred in connection with Non-conforming Spent Chemicals as set forth in the Standard Terms and Conditions.

4. INDEMNIFIED PARTY. As used in the Standard Terms and Conditions, the term "Indemnified Party" shall mean either Recycling/TSD Contractor or Generator, depending upon which party claims indemnification under this Agreement.

5. **GENERATOR INDEMNIFICATION.** Generator shall defend, indemnify and hold harmless Recycling/TSD Contractor. its past, present and future officers, directors, employees, agents, insurers, and successors (hereinafter in this Paragraph referred to collectively as "Recycling/TSD Contractor") from and against any and all loss which Recycling/TSD Contractor may sustain or incur, be responsible for or pay out as a result of:

(a) Generator's breach of any representation, warranty, term or provision of this Agreement: or

(b) The negligence or intentional misconduct of Generator, its employees, agents, representatives or subcontractors in the performance of this Agreement, provided that such indemnification shall not apply to the extent such liabilities result from Recycling/ TSD Contractor's negligence or intentional misconduct or from a breach of this Agreement by Recycling/TSD Contractor.

6. NAMES AND ADDRESSES OF PERSONS TO WHOM NOTICE IS TO BE GIVEN. The name of the person to whom notice is to be given on behalf of Generator appears on the Uniform Hazardous Waste Manifest in Item 16 or the appropriate state manifest. The name of the person to whom notice is to be given on behalf of Recycling/TSD Contractor appears on the Uniform Hazardous Waste manifest in Item 20 or the appropriate state manifest. The addresses of the persons to whom notice is to be given appear on the Uniform Hazardous Waste Manifest under Item 3 (for Generator) and Item 9 (for Recycling/TSD Contractor) or the appropriate state manifest.

#### RECYCLING/TSD HANDLING AGREEMENT (GENERATOR AND RECYCLING/TSD CONTRACTOR)

The undersigned hereby agree that, upon execution of this Recycling/TSD Handling Agreement, there is a binding contract between them according to the above terms and conditions, as of the day and year appearing below.

GENERATOR EPAID# WAHOOOULG972	RECYCLING/TSD CONTRACTOR: Vice President
FACILITY Caso NO COMANE OF ME	PRINT Michael J. Dilick T.TLE: and General Manager
PRINT STELLE SOUCE TITLE: AGENT NAME: JELLE SOUCE TITLE: AGENT SIGNATURE: JELLE DATE: 6-30-03	
SIGNATURE: DATE: (C200)	
STATE HAZARDOUS WASTE MANIFEST DOCUVENT NUVBER:	VS- <u>32343</u> -C

APPENDIX B MTCA STAT97 REPORTS FOR SMALL ARMS RANGE SOILS

5.2		Group 3 >250 Lead R	emoved					
5.7								
6.1								
6.7								
6.9		Number of samples	s		Uncensored valu	es		
6.9		Uncensore		378	Me	an	20.74	
6.9		Censore			Lognormal me		19.98	
7		Detection limit or PQI			Std. dev		6579681	
7.4		Method detection limit			Medi		3999996	
7.6		TOTA		378			9999981	
7.7			L	570	Ma		165	
					IVIc	IX.	105	
8								
8								
8.5								
8.7		Lognormal distribution?			rmal distribution?			
8.8		r-squared is:	0.919	r-se	quared is:	0.528	}	
8.9		Recommendations:						
9.1		Use lognormal distribution.						
9.2								
9.3								
9.5								
9.6								
9.8								
9.8								
9.8		UCL (Land's method) is 20.9	93858383	26046				
9.9								
10								
10.1			UCL (ba	sed on 7	-statistic) is 22.234			
10.2			001 (00		514115110) 15 22.204			
10.2								
10.2								
10.3								
10.3								
10.3								
10.3								
10.4								
10.4								
10.5								
10.6								
10.6								
10.7								
10.7								
10.7								
10.7								
10.8								
10.9								
11								
11.2								
11.3								
11.3								
11.4								
11.4								
11.4								
11.5	40.4		<b>-</b>	47.0		0	00 F	
11.5	13.1	15.3	3	17.8	20	.ö	26.5	

11.5	13.2	15.3	18.0	20.8	26.6
11.5	13.2	15.3	18.1	20.9	26.7
11.5	13.4	15.5	18.1	20.9	27.0
11.5	13.4	15.5	18.1	21.0	27.5
11.6	13.4	15.5	18.1	21.0	27.6
11.6	13.4	15.5	18.1	21.1	27.6
11.7	13.4	15.6	18.1	21.1	27.8
11.7	13.4	15.6	18.2	21.2	28.8
11.7	13.5	15.6	18.2	21.2	29.5
11.8	13.5	15.7	18.4	21.2	29.6
11.9	13.5	15.7	18.5	21.2	30.3
11.9	13.5	15.8	18.5	21.4	30.5
11.9	13.6	15.9	18.6	21.5	30.5
	13.6	15.9	18.7	21.8	
11.9					31.5
12	13.6	15.9	18.7	22.0	31.7
12	13.6	15.9	18.8	22.0	31.8
12	13.7	15.9	18.8	22.1	32.9
12	13.8	16.0	18.8	22.1	33.1
12	13.8	16.0	18.8	22.1	33.3
12	13.9	16.1	18.9	22.2	34.9
12	14	16.1	18.9	22.5	35.5
12	14	16.1	18.9	22.5	35.5
12.1	14.1	16.2	18.9	22.7	36.4
12.1	14.1	16.3	19.0	22.7	37.8
12.1	14.1	16.3	19.0	22.8	38.3
12.2	14.2	16.4	19.1	22.9	38.3
12.2	14.2	16.4	19.2	22.9	39.2
12.2	14.2	16.4	19.3	22.9	39.3
12.3	14.2	16.5	19.4	23.0	39.5
12.3	14.2	16.5	19.5	23.2	39.6
12.3	14.3	16.6	19.5	23.2	40.9
12.3	14.3	16.7	19.5	23.3	42.4
12.4	14.4	16.8	19.5	23.3	43.0
12.5	14.4	16.8	19.6	23.6	44.6
12.5	14.4	16.8	19.6	23.6	46.1
12.6	14.4	16.9	19.6	23.6	50.2
12.7	14.4	16.9	19.8	23.7	52.2
12.7	14.4	16.9	19.8	23.8	53.2
12.7	14.5	17.0	19.8	24.1	54.0
12.8	14.5	17.0	19.9	24.1	54.7
12.8	14.5	17.1	20.0	24.1	58.5
12.9	14.6	17.2	20.0	24.2	59.1
12.9	14.6	17.2	20.1	24.4	62.8
12.9	14.7	17.2	20.1	24.6	63.4
12.9	14.8	17.5	20.2	25.2	72.8
12.9	14.9	17.5	20.3	25.3	81.0
12.9	14.9	17.6	20.3	25.4	81.8
12.9	14.9	17.7	20.4	25.5	86.2
13.1	15	17.7	20.5	25.7	107.0
13.1	15	17.8	20.5	25.9	116.0
13.1	15.1	17.8	20.5	25.9	135.0
13.1	15.2	17.8	20.6	26.0	158.0
13.1	15.2	17.8	20.7	26.4	165.0
			_0	20.1	

4.7		Group 4 - >250 Lead	Remove	d				
4.8								
4.9								
5								
5.2		Number of sample	s		Uncensored	values		
5.2		Uncensore		415		Mean	21.03	
5.4		Censore			Lognorma		18.96	
5.4		Detection limit or PQ				. devn.		
5.4		Method detection lim				/ledian	12.6000004	
5.5		TOTA		415	ľ	Min.	4.69999981	
5.5		IUIA	L	415				
						Max.	238	
5.6								
5.7								
5.9								
5.9		Lognormal distribution?			distribution?			
6.1		r-squared is:	0.857	r-square	ed is:		0.465	
6.6		Recommendations:						
6.6								
6.7		Reject BOTH lognormal and	d normal d	istributions. S	ee Statistics Guid	lance.		
6.8								
7.2								
7.2								
7.4								
7.4								
7.5		UCL (Land's method) is 20.	18782535	05537				
7.5								
7.5								
7.6			LICL (ba	en 7-stati	stic) is 23.275			
7.6					310) 13 20.270			
7.6								
7.7								
7.7								
7.8								
7.9								
8								
8								
8								
8								
8.1								
8.1								
8.1								
8.2								
8.2								
8.2								
8.3								
8.4								
8.5								
8.5 8.5								
8.5								
8.5								
8.5								
8.5								
8.7								
8.7								
8.7	10.3	11.	5	12.9		14.6	19.9	43.6

8.8	10.3	11.5	12.9	14.7	19.9	44.3
8.8	10.3	11.6	12.9	14.8	20.3	44.9
8.8	10.4	11.6	12.9	14.8	20.5	45.3
8.8	10.4	11.6	12.9	15.1	20.5	45.4
8.8	10.4	11.6	12.9	15.2	20.5	47.6
8.8	10.4	11.6	13	15.2	20.7	49.1
8.9	10.5	11.7	13	15.4	20.8	51.0
8.9	10.5	11.7	13	15.4	21.0	51.3
8.9	10.5	11.8	13.2	15.4	21.0	55.2
8.9	10.5	11.8	13.2	15.5	21.5	61.0
9	10.5	11.9	13.2	15.5	22.7	62.1
9	10.5	11.9	13.2	15.6	22.7	64.0
9.1	10.5	11.9	13.3	15.7	22.8	64.3
9.1	10.5	11.9	13.3	15.7	22.9	66.6
9.1	10.6	11.9	13.3	15.8	23.0	75.3
9.1	10.6	11.9	13.4	15.9	23.2	76.5
9.1	10.7	11.9	13.4	15.9	23.6	70.5
9.3	10.7	11.9	13.5	16.1	23.6	78.4
9.3 9.3	10.7	11.9	13.5	16.1	23.8	84.5
9.3 9.3	10.7	12.0	13.5	16.2	23.8	85.9
9.3 9.3		12.0				
	10.8		13.6	16.2	24.3	88.2
9.4	10.9	12.0	13.6	16.2	24.7	90.3
9.5	10.9	12.0	13.6	16.3	24.8	94.9
9.5	10.9	12.0	13.6	16.6	25.0	105.0
9.5	10.9	12.1	13.7	16.6	25.1	105.0
9.6	10.9	12.1	13.7	16.8	25.2	107.0
9.6	11	12.1	13.8	16.9	25.3	114.0
9.6	11	12.1	13.8	17.0	25.5	116.0
9.7	11	12.1	13.8	17.1	25.5	120.0
9.7	11	12.2	13.8	17.2	25.9	126.0
9.7	11	12.2	13.8	17.2	26.0	150.0
9.7	11.1	12.3	13.8	17.5	26.3	151.0
9.8	11.1	12.3	13.8	17.5	27.0	163.0
9.8	11.1	12.3	13.8	17.7	27.3	204.0
9.9	11.2	12.4	13.9	17.8	28.5	214.0
9.9	11.2	12.4	13.9	17.9	29.3	238.0
9.9	11.2	12.4	14	18.2	30.6	
10	11.2	12.4	14	18.2	31.1	
10	11.2	12.4	14.1	18.2	31.6	
10	11.3	12.5	14.1	18.2	31.7	
10	11.3	12.5	14.1	18.3	31.7	
10	11.3	12.5	14.1	18.5	31.7	
10.1	11.3	12.5	14.1	18.5	32.8	
10.1	11.3	12.6	14.2	18.5	33.7	
10.1	11.4	12.6	14.2	18.6	33.8	
10.2	11.4	12.6	14.3	18.9	33.9	
10.2	11.4	12.6	14.3	19.0	34.6	
10.2	11.4	12.7	14.4	19.0	37.6	
10.3	11.4	12.7	14.5	19.1	37.6	
10.3	11.5	12.7	14.5	19.1	38.2	
10.3	11.5	12.8	14.5	19.2	40.4	
10.3	11.5	12.8	14.6	19.3	41.5	
10.3	11.5	12.8	14.6	19.5	42.7	

13.1 13.1 13.4 13.4 13.5 13.5 13.6 13.8 14	
14 14.1 14.2 14.2 14.3 14.4 14.4 14.5 14.5 14.5 14.5	
14.6 14.8 14.9 14.9 15 15 15.2 15.6 15.9 16.1	
16.3 16.4 16.4 16.5 16.9 16.9 17 17.2 17.7 17.8	
18.1 18.1 18.2 18.5 18.6 18.8 18.8 18.9 19	
19.1 19.2 19.4 19.5	

19.5	
19.6	
19.9	
20.1	
20.4	
20.9	
20.9	
21.1	
21.2	
21.8	
22	
24.1	
24.1	
27	
27.8	
28.8	
31.5	
81	
105	

		Linconcered values	
Number of samples Uncensored	151	Uncensored values Mean	33.3
Censored	101	Lognormal mean	31.3
Detection limit or PQL		Std. devn.	41.852064
Method detection limit		Median	17.3999999
TOTAL	151	Min.	3.5999999
	-	Max.	220
Lognormal distribution?	Norma	al distribution?	
r-squared is:	r-squa		
Recommendations:			
Assume lognormal distribution			
Y value is -2.2239. This lies w	ithin the tabled value	es of 1.4245 and -2.4508	
UCL (Land's method) is 36.660	J5627538411		

14.4 14.5 15.1 15.2 15.3 15.5 15.6 15.6 15.6 16.1 16.2 16.2 16.2 16.3 16.4	
17 17.1 17.2 17.3 17.4 17.5 17.8 18.4 18.7 18.9 19.1 19.2 19.3 19.3 19.5 21.1 21.2 21.3	
21.3 21.6 21.6 21.9 22.4 22.5 22.7 23 24.2 24.4 24.6 25 25.4 25.5 25.9 26 27.9 29.2	

29.6
31.4
31.8
32.8
32.9
34.4
34.8
35.4
36
37.3
01.0
39.4
41.8
49.3
51.3
51.6
51.0
52.1
52.8
55.0
55.8
59.1
05
65
67
67 69.9
67 69.9
67 69.9 74.8
67 69.9 74.8 80.7
67 69.9 74.8
67 69.9 74.8 80.7 82.4
67 69.9 74.8 80.7 82.4 87.6
67 69.9 74.8 80.7 82.4
67 69.9 74.8 80.7 82.4 87.6 92.3
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 96.8
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 96.8 108
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 96.8 108
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 96.8 108 108
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 95.8 95.8 108 108 130
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 96.8 108 108
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 95.8 95.8 108 108 130 132
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 96.8 108 108 130 132 137
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 96.8 108 108 130 132 137 145
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 96.8 108 108 130 132 137 145
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 96.8 108 108 130 132 137 145 172
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 96.8 108 108 130 132 137 145 172 180
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 96.8 108 108 130 132 137 145 172
67 69.9 74.8 80.7 82.4 87.6 92.3 94.5 95.8 96.8 108 108 130 132 137 145 172 180

212

25m & Machine	e Gun Range	> 250 Lead	d Removed	
Number o	fsamples		Uncensored values	5
	censored	58	Mear	n 42.40
	Censored		Lognormal mear	n 42.03
Detection lim	nit or PQL		Std. devn	
Method dete	ction limit		Mediar	
	TOTAL	58	Min	. 5.5
			Max	
		Niema		
Lognormal distribut			al distribution?	
r-squared is:	0.983	r-squ	ared is:	0.726
Recommendations				
Use lognormal distr	ibution.			
UCL (Land's metho	d) is 54.4761628	3977016		
	UCL (I	based on Z-st	atistic) is 51.991	

126 204 214

25m Record F	ire Field F	Range >25	0 Lead Removed	b	
Number	of samples		Uncens	sored values	
	ncensored	197	,	Mean	20.25
	Censored		Logn	ormal mean	18.30
Detection li	mit or PQL		-	Std. devn.	26.7507268
Method det	ection limit			Median	12.3000002
	TOTAL	197	,	Min.	4.80000019
				Max.	238
Lognormal distribu	ution?		Normal distribution?	?	
r-squared is:		0.844	r-squared is:		0.443
Recommendation			•		
Reject BOTH logn	ormal and n	ormal distrib	utions. See Statistics	s Guidance.	
UCL (Land's meth	od) is 20.00	0498683030	9		
	,		-		
		UCL (based o	on Z-statistic) is 23.38	88	
		,	,		

10.3 10.3
10.4 10.4
10.5 10.5 10.5
10.5 10.5
10.6 10.7
10.7 10.9 10.9
10.9 11
11 11.1 11.2
11.2 11.2 11.3
11.4 11.4
11.5 11.5 11.5
11.5 11.6
11.6 11.7 11.8
11.8 11.9
11.9 11.9 11.9
12 12
12 12.1 12.1
12.2 12.3
12.3 12.4 12.4
12.5 12.5
12.6 12.6 12.7
12.7 12.8
12.8 12.9

12.9	
12.9 12.9	
12.9 13	
13.2 13.2	
13.2 13.2	
13.5 13.6	
13.6 13.6	
13.7 13.8	
13.8 13.8	
13.9 13.9	
14 14.1	
14.1	
14.2 14.3	
14.4 14.8	
15.2 15.2	
15.7 15.9	
16.2 16.3	
17.5 18.2	
18.5 18.5	
18.6 19	
19.2 19.3	
19.5 19.9	
19.9 20.5	
20.8 21	
21 21.5	
22.7 22.8	
22.9 23	
23.2 23.6	
23.8	

24.3 24.8 25.3 25.5 25.9 26 26.3 27.3 30.6 31.7 31.7 32.8 33.7 33.9 34.6 41.5 44.3 44.9 45.3 51 55.2 76.5 77.5 78.4 84.5 88.2 90.3 94.9 107 150 163

238

1,000' Range, 1000' Machine Gun Range - 250 Lead Removed

4.7

4.7		1,000' Range, 1000' M	achine Gun	Range - 250 Lead	d Remove	ed	
4.8							
4.9							
6.2							
6.3		Number of samples		Uncenso	red values		
7.4		Uncensored	137	,	Mean	35.29	
7.5		Censored		Lognoi	rmal mean	31.80	
7.5		Detection limit or PQL			Std. devn.	46.7799078	
7.8		Method detection limit			Median	15.3000002	
8.8		TOTAL	137	,	Min.	4.69999981	
9.1					Max.	241	
9.3							
9.3							
9.4							
9.7		Lognormal distribution?		Normal distribution?			
9.9		r-squared is:	0.884	r-squared is:		0.602	
9.9		Recommendations:					
10		Reject lognormal distribution					
10		Y value is -6.6098. This lies		bled values of 1 3918 a	and -2 478		
10		Reject normal distribution.					
10		Y value is -29.3375. This lie	s outside the t	abled values of 1 3918	and -2 478		
10.1							
10.1							
10.1							
10.4		UCL (Land's method) is 37.3	02880083308	8			
10.4			920009033000	0			
10.9							
10.3			LICI (based (	on Z-statistic) is 41.866			
11.3				JI Z-Statistic) 15 41.000			
11.4							
11.4							
11.5	12.0	16.6	26.6	•	106.0		
11.5	13.9 14.2				108.0		
11.0	14.2				115.0		
11.7	14.3				115.0		
11.9	14.5				120.0		
11.9	14.8				128.0		
12.1	14.8				136.0		
12.2	14.9	19.2			146.0		
12.3	15				170.0		
12.4	15.1				172.0		
12.4	15.2				198.0		
12.5	15.2				210.0		
12.6	15.2				216.0		
12.6	15.3				241.0		
12.7	15.3						
13.1	15.5						
13.3	15.5						
13.4	15.5						
13.5	16						
13.6	16						
13.7	16.4						
13.8	16.5						
13.8	16.6	25.5	98.4				

8.7	Combat Pistol Range -	>250 Lea	ad Removed	1	
9.2 9.3					
9.5					
10.1	Number of samples			Uncensored values	
10.2	Uncensored		84	Mean	23.23
11	Censored			Lognormal mean	22.07
11.2	Detection limit or PQL			Std. devn.	22.371283
11.3	Method detection limit			Median	16.25
11.3	TOTAL		84	Min.	8.69999981
11.4				Max.	165
11.5					
11.5					
12					
12	Lognormal distribution?		Normal dist	ribution?	
12.2	r-squared is:	0.879	r-squared is	6:	0.515
12.2	Recommendations:				
12.3					
12.3	Reject BOTH lognormal and	normal distri	ibutions. See	Statistics Guidance.	
12.5					
12.6					
12.7					
12.8					
13.1 13.4	LICL (Land's mathed) is 24 7	4047404405	40		
13.5	UCL (Land's method) is 24.7	4017124130	949		
14.1					
14.2		UCL (based	d on Z-statistic)	) is 27 243	
14.3		002 (54666		10 21 2 10	
14.4					
14.4					
14.9					
15.2					
15.3					
15.5					
15.5					
15.7					
15.9					
15.9					
15.9 16					
16.2					
16.3					
16.4					
16.7					
16.8					
16.9					
17					
17.2					
17.2					
17.7					
18.1					
19.5					
19.8					
20.3					

- 20.5 20.5 21.4 22.2 22.9 23.2 23.3 23.8 24.1 24.2 25.3 27.6 27.6 29.5 29.6 31.7 33.1 33.3 35.5 35.5 39.3 39.5 43 46.1 54 58.5 81.8
- 116
- 165

#### 5.8 Field Fire Ranges 1 & 2 & Pistol - 250 Lead Removed 6.9 8.1 8.1 8.2 Number of samples Uncensored values 8.6 Uncensored 66 Mean 23.44 8.8 Censored Lognormal mean 20.18 8.8 Detection limit or PQL Std. devn. 34.661875 9.2 Method detection limit Median 13.0500002 9.2 TOTAL 66 5.80000019 Min. 9.2 Max. 187 9.6 9.9 9.9 Lognormal distribution? Normal distribution? 10 10.1 r-squared is: r-squared is: 10.4 Recommendations: 10.4 Reject lognormal distribution. 10.5 Y value is -12.7266. This lies outside the tabled values of 1.1516 and -2.6708 10.6 Reject normal distribution. 10.6 Y value is -31.3655. This lies outside the tabled values of 1.1516 and -2.6708 10.7 10.7 11.2 11.4 UCL (Land's method) is 24.2061713645749 11.5 11.7 11.7 UCL (based on Z-statistic) is 30.462 11.8 11.9 11.9 12.7 13 13.1 13.1 13.5 13.6 13.6 13.7 13.8 13.8 13.9 13.9 14.8 15.2 15.8 16 16 17.1 17.2 17.7 18.7 19.6 20.3

20.3

20.4 21 24.6 25.9 49 58.5 68.1 125 136 154 187

#### Field Fire Rifle Range 1 & 2 - >250 Lead Removed 4.4 4.6 5 5.1 5.2 Number of samples Uncensored values 5.4 Uncensored 109 Mean 23.07 5.8 Censored Lognormal mean 22.10 6 Detection limit or PQL Std. devn. 24.450883 6.1 Method detection limit Median 14.1999998 6.1 TOTAL 109 4.4000001 Min. 6.4 Max. 149 6.8 6.9 7.4 7.4 Lognormal distribution? Normal distribution? 7.4 r-squared is: r-squared is: 7.4 Recommendations: 7.4 Assume lognormal distribution. 7.5 Y value is -0.8166. This lies within the tabled values of 1.3246 and -2.534 7.6 7.7 7.9 8 8.1 8.2 UCL (Land's method) is 25.8599201911779 8.2 8.4 8.5 8.5 8.6 8.9 9 9.1 9.3 9.4 9.4 9.4 10.1 10.2 10.7 10.7 10.8 11 11.1 11.2 11.2 11.2 11.2 11.5 11.7 12.3 13.4 13.5

14.6	
14.9	
15	
15.2 15.2	
15.4	
16.2	
16.8	
17.1	
17.5 17.7	
17.7	
18.7	
18.7	
19	
19.1 19.6	
20.6	
20.8	
22.5	
23.1 23.6	
23.6	
23.6	
23.7	
23.8	
24.7 25.9	
26.2	
28.2	
29.3	
29.4	
29.8 32.3	
35.6	
37	
38.8	
44.4 47.3	
47.3	
48.8	
52.3	
52.6	
53.3 59.1	
61	
62.4	
69.3	
69.9 78 5	
78.5 95.4	
97	
114	
149	

	Group 1 >250 Lead Re	emoved					
	I						
	Number of samples	S		Uncensored valu	ies		
			366			23.43	
				Lognormal me	an		
	Detection limit or PQI	L					
	ΤΟΤΑΙ	L	366	Μ			
				Ma			
	Lognormal distribution?		١	Normal distribution?			
		0.903			0.4	192	
		0.000	•		0		
	LICL (Land's mothod) is 22	72569760	00202				
	UCL (Lanu's method) is 22.	12300700	90203				
		LICL (br	and an	7 statistic) is 26 160			
			ased on	Z-Statistic) is 20.109			
10.7	12.7	7	16.1	19	9.6	35.4	
	10.7	Number of sample:         Uncensore:         Detection limit or PQI         Method detection limit         TOTAL         Lognormal distribution?         r-squared is:         Recommendations:         Use lognormal distribution.         UCL (Land's method) is 22:	Number of samples         Uncensored         Censored         Detection limit or PQL         Method detection limit         TOTAL         Lognormal distribution?         r-squared is:       0.903         Recommendations:         Use lognormal distribution.         UCL (Land's method) is 22.72568760         UCL (backstop)	Uncensored 366 Censored Detection limit TOTAL 366 Lognormal distribution? M r-squared is: 0.903 m Recommendations: Use lognormal distribution. UCL (Land's method) is 22.7256876090203 UCL (based on	Number of samples       Uncensored       366       Me         Censored       366       Me       Me         Detection limit or PQL       Std. detection limit       Media         TOTAL       366       M       Me         Lognormal distribution?       Normal distribution?       Normal distribution?         r-squared is:       0.903       r-squared is:         Recommendations:       Use lognormal distribution.         USL (Land's method) is 22.7256876090203       UCL (based on Z-statistic) is 26.169	Number of samples       Uncensored       366       Mean         Detection limit or PQL       Std. devn. 3       Median 1         TOTAL       366       Min. 3         Method detection limit       Median 1         TOTAL       366       Min. 3         Max       Meximum       Meximum         Lognormal distribution?       Normal distribution?       Max         r-squared is:       0.903       r-squared is:       0.4         Recommendations:       Use lognormal distribution.       UCL (Land's method) is 22.7256876090203       UCL (based on Z-statistic) is 26.169	Number of samples       Uncensored       366       Mean       23.43         Uncensored       366       Lognormal mean       21.07         Detection limit or PQL       Std. devn. 31.8831872       Median       14.199998         TOTAL       366       Min. 3.5999991       Max       220         Lognormal distribution?       Normal distribution?       Median       14.199998         required is:       0.903       r-squared is:       0.492         Recommendations:       USe lognormal distribution.       UCL (Land's method) is 22.7256876090203         UCL (based on Z-statistic) is 26.169       UCL (based on Z-statistic) is 26.169

8.8	10.7	12.8	16.2	19.7	36.0
8.9	10.7	12.9	16.2	19.8	37.2
8.9	10.8	12.9	16.3	19.8	37.3
9	10.9	12.9	16.3	20.1	39.4
9	10.9	12.9	16.3	20.4	41.8
9	10.9	13.1	16.3	21.1	44.9
9	10.9	13.2	16.4	21.1	49.3
9	10.9	13.4	16.4	21.1	51.3
9.1	10.9	13.6	16.4	21.2	51.6
9.1	11	13.7	16.5	21.2	52.1
9.2	11.1	13.7	16.5	21.3	52.8
9.2	11.1	13.7	16.7	21.3	55.8
9.2	11.2	13.8	16.7	21.4	59.1
9.2 9.2	11.2	13.8	16.8	21.0	64.6
9.2 9.3	11.2	14.0	16.9	21.0	65.0
9.3 9.3	11.2	14.0	17.0	21.7	67.0
	11.2			21.7 21.8	
9.3		14.0	17.0		68.3
9.3	11.3	14.1	17.1	21.9	69.9
9.4	11.3	14.2	17.2	21.9	74.8
9.4	11.4	14.2	17.2	22.2	80.7
9.4	11.4	14.2	17.2	22.2	82.4
9.4	11.5	14.2	17.3	22.4	87.6
9.4	11.6	14.2	17.4	22.5	88.3
9.4	11.6	14.4	17.5	22.7	92.3
9.5	11.6	14.4	17.5	23.0	94.5
9.5	11.6	14.5	17.6	23.0	95.8
9.6	11.7	14.5	17.6	23.4	96.8
9.6	11.7	14.5	17.7	23.4	108.0
9.7	11.7	14.6	17.8	23.7	108.0
9.8	11.7	14.9	18.0	23.9	108.0
9.8	11.7	15.0	18.2	24.2	130.0
9.9	11.8	15.1	18.2	24.4	132.0
10	11.8	15.1	18.3	24.6	136.0
10	11.9	15.2	18.4	24.8	137.0
10	12	15.2	18.4	25.0	145.0
10.1	12	15.3	18.4	25.4	172.0
10.2	12	15.3	18.6	25.5	180.0
10.2	12.1	15.4	18.7	25.9	199.0
10.2	12.1	15.4	18.7	26.0	212.0
10.3	12.2	15.4	18.8	27.9	219.0
10.3	12.2	15.5	18.9	29.2	220.0
10.3	12.2	15.5	18.9	29.6	
10.3	12.3	15.5	19.0	29.9	
10.4	12.3	15.6	19.1	30.2	
10.4	12.4	15.6	19.1	31.4	
10.5	12.4	15.6	19.2	31.8	
10.5	12.5	15.7	19.2	32.8	
10.5	12.5	15.7	19.2	32.9	
10.5	12.5	15.9	19.3	33.7	
10.5	12.5	16.0	19.3	34.4	
10.6	12.5	16.0	19.4	34.6	
10.6	12.6	16.0	19.5	34.8	
10.7	12.6	16.1	19.5	35.3	
10.1	12.0	10.1	10.0	00.0	

3.7	Group 2 >250 Lead F	Removed				
3.8	·					
4.4						
4.6						
4.7	Number of sample	es		Uncensored values		
4.8	Uncensore		337	Mean	28.28	
4.9	Censore			Lognormal mean		
4.9	Detection limit or PC			Std. devn.		
5	Method detection lin			Median		
5.1	TOTA		337	Min.		
5.2	1017		001	Max.	241	
5.4				Max.	271	
5.8						
5.8						
6	Lognormal distribution?		Normal	distribution?		
6.1	r-squared is:	0.911	r-square		0.570	
6.1	Recommendations:	0.011	i oquaro	u 10.	0.070	
6.2	Use lognormal distribution.					
6.3	Use logitornal distribution.					
6.4						
6.8						
6.9						
6.9						
0.9 7.4						
7.4	UCL (Land's method) is 27	07015717	26205			
7.4 7.4	OCE (Land's method) is 27	.97213717	30205			
7.4 7.4						
7.4 7.4		UCL /ba	sed on Z-statis	tia) in 21 652		
7.4 7.4		UCL (Da	ised on Z-statis	SIIC) IS 31.003		
7.4 7.5						
7.5 7.5						
7.5 7.5						
7.5 7.6						
7.0						
7.8						
7.8 7.9						
7.9 8						
о 8.1						
8.1						
8.1 8.2						
8.2 8.2						
8.2						
8.4						
8.5						
8.5						
8.6						
8.6						
8.8						
8.8						
8.8						
8.9						
9						
9						
9.1	11.4 14	.2	18.7	29.8	136	

9.1	11.5	14.2	18.7	29.8	136
9.2	11.5	14.3	18.7	30.1	146
9.2	11.5	14.3	19.0	32.2	149
9.2	11.5	14.3	19.1	32.3	154
9.3	11.6	14.5	19.2	34.6	154
9.3	11.7	14.6	19.4	35.6	170
9.3	11.7	14.8	19.6	37.0	172
9.4	11.7	14.8	19.6	38.8	187
9.4	11.7	14.8	19.6	39.1	198
9.4	11.7	14.9	19.8	39.6	210
9.4	11.8	14.9	20.1	44.1	216
9.6	11.9	15.0	20.1	44.4	241
9.7	11.9	15.0	20.3	45.0	
9.9	11.9	15.1	20.3	47.3	
9.9	11.9	15.2	20.4	47.4	
9.9	12.1	15.2	20.4	48.3	
9.9	12.1	15.2	20.6	48.8	
9.9 10	12.1	15.2	20.8	49.0	
10	12.1	15.2	20.0	49.6	
10	12.2	15.2	21.0	49.0 51.9	
10	12.3		21.2	52.3	
		15.3			
10	12.4	15.3	21.8	52.6	
10.1	12.4	15.3	22.1	53.3	
10.1	12.5	15.4	22.4	55.8	
10.1	12.6	15.4	22.5	56.7	
10.1	12.6	15.5	22.6	58.0	
10.2	12.7	15.5	22.6	58.5	
10.2	12.7	15.5	22.8	59.1	
10.4	12.9	15.8	22.8	61.0	
10.4	13	16.0	22.9	62.4	
10.4	13.1	16.0	23.1	63.3	
10.4	13.1	16.0	23.6	63.4	
10.5	13.1	16.0	23.6	63.7	
10.6	13.3	16.2	23.6	68.1	
10.6	13.4	16.4	23.7	68.5	
10.7	13.4	16.5	23.8	69.3	
10.7	13.5	16.6	24.6	69.9	
10.7	13.5	16.6	24.6	78.5	
10.7	13.5	16.7	24.7	86.0	
10.8	13.6	16.8	24.8	90.7	
10.8	13.6	17.0	25.0	91.7	
10.9	13.6	17.1	25.3	95.4	
10.9	13.7	17.1	25.5	96.4	
11	13.7	17.2	25.9	97.0	
11.1	13.8	17.2	25.9	98.4	
11.2	13.8	17.4	26.2	106.0	
11.2	13.8	17.4	26.6	109.0	
11.2	13.8	17.5	27.0	114.0	
11.2	13.9	17.7	28.1	115.0	
11.2	13.9	17.7	28.2	115.0	
11.3	13.9	17.7	28.2	120.0	
11.4	13.9	18.5	29.3	125.0	
11.4	14.2	18.6	29.4	128.0	