

Site Closure Report

Conducted on: **4 Corners Cleaners** 2386 SE Kent-Kangley Road Maple Valley, Washington 98038-6848

Prepared for: Mr. Chang Kim 23886 SE Kent-Kangley Road Maple Valley, Washington 98038-6848

Prepared & Reviewed by:

Pault

Paul Hitch Project Environmental Scientist

AEG Atlas Project #: 17-126 Date of Report: July 24, 2024

all.

Scott Rose, L.H.G. Director of Technical Services

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

REQUEST FOR OPINION FORM

Use this form to request a written opinion on your planned or completed independent remedial action under the Voluntary Cleanup Program (VCP). Attach to this form the plans or reports documenting the remedial action. Please submit only one form for each request.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are requesting a written opinion under the VCP. This information may be found on the VCP Agreement.

Facility/Site Name: Four Corners Cleaners New Location

Facility/Site Address: 23886 SE Ken-Kangley Roas, Maple Valley

Facility/Site No: 5867

VCP Project No.: NW3234

Step 2: REQUEST WRITTEN OPINION ON PLAN OR REPORT

What type of independent remedial action plan or report are you submitting to Ecology for review under the VCP? Please check all that apply.
Remedial investigation plan
Remedial investigation report
Feasibility study report
Property cleanup* plan (* cleanup of one or more parcels located within the Site)
Property cleanup* report
Site cleanup plan
Site cleanup report
Other – please specify:
Do you want Ecology to provide you with a written opinion on the planned or completed independent remedial action?
🖂 Yes 🗌 No
Please note that Ecology's opinion will be limited to:
• Whether the planned or completed remedial action at the site meets the substantive requirements of the Model Toxics Control Act (MTCA), and/or
VAUs of the second state of the second state of the second state of the second state MTCA

• Whether further remedial action is necessary at the site under MTCA.

Step 3: REPRESENTATIONS AND SIGNATURE

The undersigned representative of the Customer hereby certifies that he or she is fully authorized to request services from Ecology under the Agreement for this VCP Project.

Name: Scott Rose				Title: Director of Technical Srvces		
Signature:					Date: 7/24/24	
Organization: AEG Atlas, LLC						
Mailing address: 2633 Parkmont Lane SW, Suite A						
City: Olympia		State: WA		Zij	Zip code: 98501	
Phone: 360-352-9835	Fax:		E-mail: sr	ose@a	egwa.com	

Step 4: SUBMITTAL

Please mail your completed form and the independent remedial action plan or report that you are requesting Ecology review to the site manager Ecology assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 General Site Information	1
1.2 Site History	1
1.3 SITE USE	2
2.0 FIELD INVESTIGATIONS	
2.1 SITE CHARACTERIZATION HISTORY (POST NFA LETTER)	3
2.1.1 Phase II Environmental Site Assessment – AEG, March 2017	3
2.1.2 Remedial Investigation – AEG, July 2018	3
2.1.3 SVE Pilot Test – AEG, December 2018	4
2.2 Field Methodologies	4
2.2.1 Soil Sampling Procedures	4
2.2.2 Monitoring Well Construction	5
2.2.3 Sub-Slab Vapor Sampling Procedures	5
2.2.4 Boring Groundwater, and Monitoring Well Groundwater Sampling Procedures	5
2.2.5 Quality Controls	6
2.2.0 Investigation-Derived Waste	0
2.3 ANALYTICAL RESULTS	
2.5.1 Soll Results	
2.3.2 Groundwater Results	7
3.0 CONCEPTIAL SITE MODEL	
3.1 CONSTITUENTS OF CONCERN AND AFFECTED MEDIA	8
3.2 SITE GEOLOGY AND HYDROGEOLOGY	8
3.3 ENVIRONMENTAL FATE OF CHLORINATED SOLVENTS IN THE SUBSURFACE	9
3.4 POTENTIAL EXPOSURE PATHWAYS	9
3.4.1 Potential Soil Exposure Pathways	
3.4.2 Potential Grounawater Exposure Pathways	
5.4.5 Folential Air Exposure Painways	10
5.4.4 Terresinal Ecological Evaluation	
4.0 CLEANUP STANDARDS	11
4.1 POTENTIALLY APPLICABLE LAWS	11
4.2 Remedial Action Objectives	
4.3 CLEANUP STANDARDS	12
4.3.1 Proposed Cleanup Levels	
4.3.2 Points of Compliance	12
5.0 SITE CLEANUP	14
5.1 System Installation	14
5.2 OPERATION & MAINTENANCE	14
5.3 CONFIRMATION SOIL SAMPLING	15
5.4 Confirmation Groundwater Monitoring	16
6.0 CONCLUSIONS AND RECOMMENDATIONS	
2622 DADEMONT LANE SW. SULTE A. OLYMPIA, WA. 09502 57	51

2633 PARKMONT LANE SW. SUITE A • OLYMPIA, WA • 98502-5751 Phone: 360.352.9835 • Fax: 360.352.8164 • Email: <u>admin@aegwa.com</u>

6.	1 CONCLUSIONS	.17
6.	2 RECOMMENDATIONS	.18
7.0	LIMITATIONS	.19
8.0	REFERENCES	.20

FIGURES

Figure 1:	Vicinity Map
Figure 2:	Site Map
Figure 3:	Cross-Section Index Map and PCE Plume in Soil
Figure 4:	Geologic Cross-Section A-A'
Figure 5:	Geologic Cross-Section B-B'
Figure 6:	Groundwater Elevation Contour Map 06/23/2020
Figure 7:	Groundwater Elevation Contour Map 09/14/2020
Figure 8:	Groundwater Elevation Contour Map 12/11/2020
Figure 9:	Groundwater Elevation Contour Map 03/19/2021
Figure 10:	Groundwater Elevation Contour Map 07/14/2022
Figure 11:	Groundwater Elevation Contour Map 01/12/2023
Figure 12:	Groundwater Elevation Contour Map 07/07/2023

TABLES

Table 1:	Summary of Soil Analytical Results
Table 2:	Summary of Groundwater Analytical Results
Table 3:	Summary of Sub-Slab Vapor Analytical Results
Table 4:	Summary of SVE System Air Analytical Results

APPENDICES

- Appendix A: Supporting Documents: Boring Logs Laboratory Datasheets
- Appendix B: No Further Action Letter NW2931 No Further Action Letter – NW2932

1.0 INTRODUCTION

This report presents the findings of a Remedial Investigation (RI) and cleanup activities conducted by AEG Atlas, LLC (AEG) at the 4 Corners Cleaners located at 23886 SE Kent-Kangley Road, Maple Valley, WA (Site). The purpose of this report is to document the completion of the RI, provide a summary of cleanup activities, and provide information to support a No Further Action (NFA) decision from the Washington State Department of Ecology (Ecology). The scope of work for this investigation was developed based on our professional judgment and experience in accordance with requirements in the Model Toxics Control Act (MTCA) Cleanup Regulations (Chapter 173-340 Washington Administrative Code [WAC]).

1.1 General Site Information

Site Name: 4 Corners Cleaners Site Address: 23886 SE Kent-Kangley Road, Maple Valley, WA 98038-6848 King County Parcel No.: 510711-0010 Property Owner: ROIC Four Corner Square, LLC

The Site is located northwest of the intersection between SE Kent-Kangley Road and Highway 169 in Maple Valley, King County, Washington. The Site is positioned on an approximately 9.57acre parcel with five retail buildings totaling 254,663 square feet. An "L" shaped building on the southwest portion of the parcel includes the 4 Corners Cleaners tenant space. The remainder of the parcel not covered by buildings is improved with asphalt-paved parking and driveways, and landscaped areas. The immediate vicinity of the Site is primarily commercial businesses. Figure 1, *Vicinity Map*, presents the general layout of the Site vicinity. The Site's current layout can be seen in Figure 2, *Site Map*.

1.2 Site History

This Site History refers to activities performed at both the Site (current 4 Corners Cleaners) and the property situated to the east, which was enrolled in Ecology's Voluntary Cleanup Program (VCP) under ID# NW2931, hereafter referred to as site NW2931, and was previously issued a NFA Determination, issued on March 2, 2015. Based on the site assessment results for site NW2931, the results for tetrachloroethene (PCE) and related daughter products were confirmed in soil. Impacts of these contaminants to the surface and subsurface soils occurred over time through releases from the operation of the former dry-cleaning facility. This property was redeveloped in 2012 and is currently an asphalt parking lot and Walgreens pharmacy. Refer to this letter for a summary of prior activities regarding site NW2931 (Appendix B, *No Further Action Letter - NW2931*).

The current 4 Corners Cleaners has had site assessments conducted on the Site from 2003 to 2014 that confirmed the presence of PCE and daughter products in the soil vapor. A NFA determination was issued for the current 4 Corners Cleaners (VCP# NW2932) on February 28, 2017. Refer to this letter for a summary of prior activities (Appendix B, *No Further Action Letter - NW2932*).

The current 4 Corners Cleaners switched to a hydrocarbon dry cleaning machine in 2017, which triggered a Phase II Environmental Site Assessment (ESA) from the tenant's environmental insurance. The results of this Phase II ESA and subsequent investigations are further summarized in Section 2.0, *Field Investigations*.

1.3 Site Use

The Site is located northwest of the intersection between SE Kent-Kangley Road and Highway 169 in Maple Valley, Washington, and operates within a single suite within the retail shopping center. Current tenants in the "L" shaped building along the southern portion of the property include: 4 Corners Cleaners, Bellissimo Lashes and Nails, Papa Murphy's Pizza, Allstate Insurance, Serena Hair Design, a chiropractic office, Smoke & Vape shop, Four Corners Family Dentist, Bike Masters, and Maple Valley Bar and Grill. Gravity Coffee, MOD Pizza, and a Verizon Retailer occupy the square building located in the southeast portion of the property. North of the "L" shaped building, and the 4 Corners Cleaners tenant space, is Johnsons Home & Garden, Dog Spaw, Subway, Discovery Playtown, and Grocery Outlet.

2.0 FIELD INVESTIGATIONS

This section includes summaries of environmental activities completed during the involvement of AEG at the Site and descriptions of prior activities are limited to the content of historical reports provided to AEG for review. Methods used during fieldwork are summarized in Section 2.2, *Field Methodologies*.

Analytical data provided in historical reports as compared to applicable MTCA cleanup levels are presented in Table 1, *Summary of Soil Analytical Results*, Table 2, *Summary of Groundwater Analytical Results*, and Table 3, *Summary of Sub-Slab Vapor Analytical Results*. Sampling and monitoring well locations are illustrated in Figure 2, *Site Map*. Laboratory reports, boring, and well logs are included in Appendix A, *Supporting Documents*.

2.1 Site Characterization History (Post NFA Letter)

2.1.1 Phase II Environmental Site Assessment – AEG, March 2017

On March 13, 2017, AEG supervised the advancement of three borings (B-1 through B-3) to a maximum depth of 2 feet below ground surface (bgs) inside the current dry-cleaning facility. One soil sample was collected from each boring. AEG returned to the Site on March 31, 2017, and collected soil vapor samples from 14 sub-slab vapor locations (SV-1 through SV-14). The soil vapor was sampled from directly beneath the slab. Based on the analytical results indicating impacts in soil and sub-slab vapor, AEG recommended the following:

- Further Site characterization, including the installation of at least three groundwater monitoring wells to assess the depth of potential impacts in soil and groundwater, and to identify groundwater gradient and potential for off-property migration of PCE.
- Additional soil borings in the parking areas and near the entrance roadway to assess the potential source of the dichlorodifluoromethane, which is a refrigerant and not usually associated with dry cleaning operations.
- A Tier II Vapor assessment be performed to determine the lateral extent of VOCs present in sub-slab soil vapor, and whether those vapors may be impacting indoor air. AEG recommends advancing a soil vapor probes outside the building perimeter, and concurrently collecting one indoor air sample and one background ambient air sample.

2.1.2 Remedial Investigation – AEG, July 2018

In July 2018, AEG returned to the Site to define the extent of contamination in soil and to determine if contamination was present in groundwater. AEG advanced 10 borings (B-4 through B-13) to a maximum depth of 35 feet bgs using a limited-access sonic drill rig, operated by Cascade Drilling. Soil and groundwater (where encountered) samples were collected from the borings and

analyzed for PCE and its daughter products. Soil sample B11-18 at 18 feet bgs reported PCE at 0.053 milligrams per kilogram (mg/kg), which was the only soil sample collected during this event that was above the MTCA Method A cleanup level for PCE (0.05 mg/kg). Deeper sample results from the same boring at 21 and 24 feet bgs (0.034 mg/kg and 0.046 mg/kg respectively) were below the MTCA cleanup level. Groundwater was encountered in six of the 10 borings (not including B-11), and no contaminants were detected.

2.1.3 SVE Pilot Test – AEG, December 2018

On December 4, 2018, for the purpose of performing a Soil Vapor Extraction (SVE) pilot test, eight temporary wells (T-1 through T-8) were installed at the Site with specific spacing used to determine the effectiveness of SVE as a remedial option. The temporary wells were completed with 10 feet of slotted screen from 5 to 15 feet bgs. The wells were sealed with bentonite for the top 5 feet of the boring and were installed to measure the radius of influence (ROI) and vacuum during the pilot test. No soil samples were collected during the temporary well installations. On December 5, 2018, AEG performed a SVE pilot test over one day at the Site using the temporary wells, with T-1 as the extraction point and field monitoring in wells T-2 through T-8.

2.2 Field Methodologies

AEG supervised the advancement of soil borings, temporary monitoring wells, permanent monitoring wells, and collected sub-slab soil vapor samples as described in Section 2.1, *Site Characterization History*. Soil samples were collected during drilling for field screening and laboratory analyses. Groundwater samples were collected following borehole completion and from groundwater monitoring wells during quarterly groundwater monitoring events. Sampling locations are illustrated in Figure 2, *Site Map*. Boring and well logs are presented in Appendix A, *Supporting Documents*.

2.2.1 Soil Sampling Procedures

Soil sampling methods for this work followed the protocols established by Ecology and the U.S. Environmental Protection Agency (EPA). To minimize volatile organic compound (VOC) losses, soil sampling and field preservation methods for VOCs followed methods set forth by EPA's Method 5035A, and Ecology's guidance, "*Collecting and Preparing Soil Samples for VOC Analysis*". Soil samples were collected from the boreholes via continuous soil cores in an acetate sleeve inside the drilling rod's core barrel. Soils were observed to document soil lithology, color, moisture content, and sensory evidence of contamination. Samples were transported via laboratory-provided pre-weighed 20-milliliter (ml) volatile organic analysis (VOA) glass vials and pre-weighted 4-ounce glass jars for analysis under chain-of-custody protocols.

2.2.2 Monitoring Well Construction

Groundwater monitoring wells at the Site were constructed pursuant to Ecology's *Minimum Standards for Construction and Maintenance of Wells*, Chapter 173-160 WAC. Groundwater monitoring wells at the Site were constructed up to 25 feet bgs, with 10 feet of 2-inch diameter 0.020-inch slotted PVC screen. The annular space around the well screen was filled with 10/20 Colorado sand to approximately 1.5 feet above the top of the well screen. To seal each well, bentonite chips were placed above the sand and a traffic-rated surface monument was placed over the well casing to protect it. The monitoring wells were properly developed after installation using high-flow pumping until turbidity decreased and stabilized.

2.2.3 Sub-Slab Vapor Sampling Procedures

For temporary sub-slab vapor samples, 3/8-inch diameter borings were drilled into the concrete slab using a rotary hammer drill. The borings were drilled into the subsurface material beneath the building slab where soil gas vapors accumulate. Upon clearing the boring, a stainless-steel sample port was inserted into the boring and sealed with either bentonite (for temporary points) or concrete (for permanent points). The bentonite or concrete seals were checked using a water dam technique before purging at least three volumes of the sample tubing. Samples were collected in evacuated 1-liter passivated stainless-steel canisters or evacuated 1-liter passivated glass amber bottles equipped with 10-minute regulators.

For permanently installed vapor pins, tubing was connected to the pins before purging at least three volumes of the sample tubing. Samples were collected in evacuated 1-liter passivated stainless-steel canisters or evacuated 1-liter passivated glass amber bottles equipped with 10-minute regulators.

2.2.4 Boring Groundwater, and Monitoring Well Groundwater Sampling Procedures

AEG sampled the groundwater from borings where groundwater was present during drilling. For one-time borings, a temporary well screen was installed to collect a groundwater sample. The temporary well screen was placed at the interval below the vadose zone where groundwater was encountered during drilling activities. Dedicated polyethylene tubing was inserted into the retractable screen, and groundwater was then purged using a peristaltic pump until the discharge was relatively free of sediment, for sample collection via the EPA approved low-flow purge technique.

Groundwater monitoring wells were purged until the target field parameters stabilized. Groundwater samples were collected in laboratory-provided bottles. Upon collection, the samples were placed in a chilled cooler for transport to the analytical laboratory under chain-of-custody documentations.

2.2.5 Quality Controls

To ensure that quality information was obtained at the Site:

- All samples were collected in general accordance with industry protocols for the collection, documentation, and handling of samples.
- Descriptions of soil sampling depths were carefully logged in the field; the driller and Site geologist confirmed sample depths as soil samples were collected.
- Nitrile gloves were used in handling all sampling containers and sampling devices.
- Soil samples were tightly packed into jars to eliminate sample headspace.
- Groundwater samples were filled carefully in the sampling containers to prevent volatilization.
- Upon sampling, all samples were immediately placed into chilled ice chests.
- Upon sampling, all soil vapor samples were placed into a cooler.
- The samples were transported under a chain-of-custody to the analytical laboratory for analysis.

Analytical laboratories used for Site investigations provided standard quality assurance/quality control (QA/QC), which included:

- Surrogate recoveries for each sample.
- Method blank results.
- Laboratory control samples, and laboratory control duplicate samples, matrix or blank spiked analyses.
- Duplicate spiked analyses.

2.2.6 Investigation-Derived Waste

Investigation-derived waste for this project consisted of soil cuttings from the subsurface exploration activities, purge water from well development and groundwater sampling, and decontamination water from decontamination of the drilling core barrel and associated equipment. These wastes were separated and placed in U.S. Department of Transportation (DOT)-approved 55-gallon drums. The drums were appropriately labelled and stored on Site for subsequent characterization and disposal.

2.3 Analytical Results

Soil, groundwater, and vapor samples collected to date have been analyzed for the following analyses:

- PCE and daughter products using EPA Method 8260.
- VOCs using Method TO-15.

All analytical results were compared to MTCA Method A or B cleanup levels for soil and groundwater, and Method B sub-slab screening levels for sub-slab vapor. Copies of the laboratory datasheets are provided in Appendix A, *Supporting Documents, Laboratory Datasheets*.

2.3.1 Soil Results

Analytical results of the soil samples collected during the RI investigations indicated concentrations of PCE exceeding the MTCA Method A cleanup level of 0.05 mg/kg in four samples ranging in concentrations from 0.053 to 0.12 mg/kg. It should be noted that two of these samples (B11-18 and MW3-21) were collected below 15 feet bgs and are well below the MTCA Method B cleanup level of 480 mg/kg for PCE. One sample (MW3-18) contained TCE at 0.031 mg/kg exceeding the MTCA Method A cleanup level of 0.03 mg/kg, but below the Method B cleanup level of 12.0 mg/kg. No other chlorinated VOCs were detected at concentrations above their respective MTCA Method A cleanup levels in any of the other soil samples. Table 1, *Summary of Soil Analytical Results*, presents analytical results as compared to MTCA cleanup levels for soil. The distribution of soil concentrations in excess of MTCA Method A cleanup levels is illustrated in plan view on Figure 3, *Cross-Section Index Map and PCE Plume in Soil*, and in cross section on Figure 4, *Geologic Cross-Section A-A'*, and Figure 5, *Geologic Cross-Section B-B'*.

2.3.2 Groundwater Results

Analytical results of the groundwater samples collected to date have consistently been non-detect for all constituents analyzed. Table 2, *Summary of Groundwater Analytical Results*, present analytical results compared to MTCA cleanup levels for groundwater.

2.3.3 Soil Vapor Results

Analytical results of the sub-slab vapor samples collected during the RI investigations indicated the presence of PCE above the MTCA Method B sub-slab screening level of 320 micrograms per cubic meter (μ g/m³) in all vapor samples, except SV-13. Concentrations of PCE ranged from 850 μ g/m³ in SV-6 to 6,300 μ g/m³ in SV-11, with the highest concentrations being near the current and former dry-cleaning machine. Table 3, *Summary of Sub-Slab Vapor Analytical Results*, presents analytical results as compared to MTCA Method B screening levels for sub-slab soil vapor.

3.0 CONCEPTUAL SITE MODEL

This section provides a conceptual understanding of the Site, derived from the results of the subsurface investigations performed at the Site. The Conceptual Site Model (CSM) is dynamic and may be refined as additional information becomes available.

3.1 Constituents of Concern and Affected Media

The chlorinated VOC PCE and its anaerobic sequential degradation chain constituents, including trichloroethene (TCE), cis-1,2-dichloroethene (DCE), trans-1,2-DCE, and vinyl chloride, are the contaminants of concern (COCs) for the Site. Soil and soil vapor are the media affected. Groundwater was encountered at various depths from 25 to 33 feet bgs in six of the ten borings, and did not contain detectable concentrations of VOCs. Soil impacts at the Site are likely the result of use and storage of PCE formerly used in the dry cleaner machine and dry-cleaning process.

PCE exceeded the MTCA Method A cleanup level in AEG soil samples B1-22 (1.8 feet bgs) and B3-23 (1.9 feet bgs). Both borings were located inside the building. The vertical extent of PCE in these borings could not be determined due to the very dense soils encountered and the limitations of drilling in these soils inside the building. However, confirmation soil borings were able to target areas just below these depths to demonstrate compliance (see Section 5.3).

The distribution of soil concentrations in excess of MTCA Method A cleanup levels in is illustrated in plan view on Figure 3, *Cross-Section Index Map and PCE Plume in Soil*, and in cross section on Figure 5, *Geologic Cross Section A-A'*, and Figure 6, *Geologic Cross Section B-B'*.

3.2 Site Geology and Hydrogeology

The Site and vicinity are primarily underlain by Vashon till, a dense unconsolidated glacial deposit characterized by poorly sorted materials including gravel, sand, silt, and clay. A thin veneer of Vashon recession outwash deposits is also present, as recorded in well logs to depths of at least 20 feet bgs, overlying the till.

According to the U.S. Department of Agriculture Natural Resources Conservation Service soil survey, surface soils beneath the Site consist of soil unit Everett very gravelly sandy loam, consist of moderately deep soils and is somewhat excessively drained. Typically, the surface layer is slightly decomposed plant material. The upper part of the soil is very gravelly sandy loam and transitions to extremely cobbly coarse sand.

Soils encountered at the Site during subsurface investigations generally consisted of silt with gravel to approximately 5 feet bgs, underlain by dense, sandy gravel with fine- to coarse-sized gravels, and cobbles to about 35 feet bgs. Groundwater at the time of drilling was encountered at

various depths from 25 to 33 feet bgs. This is assumed to be a perched shallow groundwaterbearing zone. Based on the data collected during groundwater monitoring events conducted by AEG, the groundwater flow direction is generally to the north.

3.3 Environmental Fate of Chlorinated Solvents in the Subsurface

The density of PCE and its breakdown products is greater than water. Upon release into the environment, chlorinated VOCs can sink through the vadose zone, through the water table, and possibly penetrate leaking aquitards. These chemicals can also exist as a residual non-mobile phase either sorbed to the soil or trapped in the pore spaces between the soil particles. At this Site, residual dissolved-phase PCE, TCE, DCE, and vinyl chloride have not been detected in groundwater; however, sorbed-phase PCE has been detected in soil, and PCE is present in soil gas. No dense non-aqueous phase liquid (DNAPL) has been detected.

Chlorinated VOCs and their associated compounds can be volatilized under the appropriate conditions. In the subsurface, volatilization releases COCs from soil and/or groundwater into soil vapor where, if conditions are right, can migrate beneath or into structures.

The most common anaerobic dechlorination pathway of PCE is the degradation to ethenes. In the sequential transformation of the chlorinated ethenes, chlorine is replaced using hydrogen as an electron donor. The occurrence of the lesser chlorinated ethenes (such as vinyl chloride and DCE) in groundwater is primarily a consequence of incomplete anaerobic reductive dechlorination of the more highly chlorinated ethenes (PCE and TCE). Vinyl chloride and DCE are toxic, and vinyl chloride is a known human carcinogen.

3.4 Potential Exposure Pathways

As defined in WAC 173-340-200, an exposure pathway describes the mechanism by which a hazardous substance takes or could take a pathway from a source or contaminated medium to an exposed receptor.

3.4.1 Potential Soil Exposure Pathways

Potentially complete soil exposure pathways at the Site include:

• <u>Contact (dermal contact, incidental ingestion) with hazardous substances in soil by visitors,</u> residents, and workers (including excavation workers). Direct ingestion of, or dermal contact with, soil containing PCE is considered a potential exposure pathway. Impacted areas are currently covered by the building, asphalt, and landscaped areas, and unless disturbed, are not available for potential direct contact or ingestion. Soil impacts have been documented at and below 2 feet bgs.

3.4.2 Potential Groundwater Exposure Pathways

Potentially complete groundwater exposure pathways at the Site include:

- <u>Contact (dermal, incidental ingestion) with hazardous substances dissolved in groundwater</u> by visitors, residents, and workers (including excavation workers). Groundwater was not encountered in all borings at the Site; where it was encountered, depths ranged from about 25 to 33 feet bgs. Further, the Site is currently covered by asphalt, the Site building, and landscape areas and, unless disturbed, are not available for potential direct contact or ingestion.
- <u>Consumption of hazardous substances in groundwater</u>. Currently, drinking water is provided by the city. For the purpose of this CSM, consumption of hazardous substances in groundwater is considered a completed pathway.

3.4.3 Potential Air Exposure Pathways

Potentially complete air exposure pathways include:

• Inhalation of hazardous substances in soil vapor by visitors, residents, and workers (including excavation workers). Analytical results of the sub-slab vapor samples indicated the presence of PCE and TCE above their respective MTCA Method B screening levels for sub-slab vapor. However, no samples of the indoor air have been collected to date as the space is occupied by an active dry-cleaning operation. The sub-slab vapor data suggests that impacts present beneath the building may migrate into the building potentially impacting indoor air. For the purpose of this CSM and establishing cleanup standards, this pathway is considered potentially complete.

3.4.4 Terrestrial Ecological Evaluation

This Site qualifies for an exclusion from further terrestrial ecological evaluation based on the following:

• <u>Undeveloped Land: WAC 173-340-7491(1)(c)</u>: There is less than 1.5 acres of contiguous undeveloped land on or within 500 feet of any area of the Site.

A Terrestrial Ecological Evaluation Form was previously submitted with the March 2019, *Remedial Investigation / Feasibility Study Report.*

4.0 CLEANUP STANDARDS

The following sections identify applicable or relevant and appropriate requirements (ARARs), remedial action objectives (RAOs), and preliminary cleanup standards for the Site, which were developed to address Ecology's requirements for cleanup. These requirements address conditions relative to potential identified impacts. Together, ARARs, RAOs, and cleanup standards provide the framework for evaluating remedial alternatives.

4.1 Potentially Applicable Laws

All cleanup actions conducted under MTCA shall comply with applicable state and federal laws [WAC 173-340-710(1)]. MTCA defines applicable state and federal laws to include legally applicable requirements and those requirements that are relevant and appropriate. Collectively, these requirements are referred to as ARARs. The primary ARAR is the MTCA regulation (WAC 173-340), especially with regard to the development of cleanup levels and procedures for development and implementation of a cleanup under MTCA. ARARs for the Site cleanup also include the following:

- Federal Safe Drinking Water Act Maximum Contaminant Levels (MCLs; 40 CFR Part 141).
- Washington Clean Air Act (Chapter 70.94 RCW).
- Puget Sound Clean Air Agency (PSCAA), Regulation I.
- Washington Solid and Hazardous Waste Management (RCW 70.105); Chapter 173-303 WAC; 40 CFR 241, 257; Chapter 173-350 and 173-351 WAC) and Land Disposal Restrictions (40 CFR 268; WAC 173-303-340).
- Washington Industrial Safety and Health Act (RCW 49.17) and other Federal Occupational Safety and Health Act (29 CFR 1910, 1926).

Federal MCLs are minimum requirements for drinking water. MTCA Method A cleanup levels for groundwater are set at least as low as federal MCLs. State and federal groundwater and air quality criteria are considered in the development of cleanup levels. State dangerous waste regulations may be applicable to contaminated soil removed from the Site.

4.2 *Remedial Action Objectives*

RAOs have been established for the Site to establish remedial alternatives protective of human health and the environment under the MTCA cleanup process (WAC 173-340-350). The primary RAO for this cleanup action focuses on substantially eliminating, reducing, and controlling unacceptable risks to human health and the environment posed by the COCs, to the greatest extent practicable.

RAOs are important for the evaluation of the general response actions, technologies, process options, and cleanup action alternatives. Based on the assessment of Site-specific conditions and the potentially applicable cleanup levels presented below, the RAOs for the Site have been established as follows:

• In a reasonable restoration time frame, reduce concentrations of COCs in Site soils and soil vapors to levels protective of human health and the environment and which are protective of groundwater quality.

4.3 Cleanup Standards

Cleanup standards include cleanup levels and points of compliance (POCs) as described in WAC 173-340-700 through WAC 173-340-760. Cleanup standards must also incorporate other state and federal regulatory requirements applicable.

4.3.1 Proposed Cleanup Levels

MTCA Method A cleanup levels for the soil exposure pathways are appropriate for this Site. MTCA Method B cleanup levels are appropriate for the air exposure pathway, and for constituents where MTCA Method A cleanup levels are not promulgated. These cleanup levels are based on the most stringent values for each exposure pathway and are considered appropriate for the Site COCs. Proposed MTCA cleanup levels for the Site COCs that have been measured at the Site include:

	Constituent	<u>Soil</u>	Groundwater	Indoor Air
•	PCE	0.05 mg/kg	5 µg/L	$9.62 \ \mu g/m^{3*}$
•	TCE	0.03 mg/kg	$5 \mu g/L$	$0.37~\mu\text{g/m}^{3*}$
•	cis-1,2- DCE	160 mg/kg*	16 µg/L*	$18.3 \mu g/m^{3*}$
•	trans-1,2- DCE	1,600 mg/kg*	160 µg/L*	$18.3 \mu g/m^{3*}$
•	Vinyl Chloride	0.67 mg/kg*	0.2 µg/L	$0.28 \ \mu g/m^{3*}$

mg/kg = milligrams per kilogram $\mu g/L = micrograms per liter$ $\mu g/m^3 = micrograms per cubic meter$

* Method B cleanup level (Method A cleanup level not established)

4.3.2 Points of Compliance

For this Site, it is assumed that standard points of compliance will be used.

• <u>Soil – Direct Contact</u>: For soil cleanup levels based on human exposure via direct contact, the point of compliance is throughout the Site from the ground surface to 15 feet bgs.

- <u>Soil Leaching</u>: For soil cleanup levels based on protection of groundwater, the point of compliance is throughout the Site.
- <u>Groundwater</u>: For groundwater, the point of compliance is throughout the Site from the uppermost level of the saturated zone extending vertically to the lowest most depth that could potentially be affected by the Site.
- <u>Indoor Air/Soil Gas</u>: The point of compliance is ambient and indoor air throughout the Site.

5.0 SITE CLEANUP

AEG's Cleanup Action Plan (CAP) dated May 29, 2019, and ultimately approved by Ecology, included a summary of the proposed SVE remedy for the Site. The remedy consisted of installing and operating an active SVE system to extract and remove adsorbed vapor-phase PCE and other VOCs from subsurface soil beneath the building. The extracted soil vapors from the SVE system were to be treated using granular activated carbon (GAC) prior to discharge under a PSCAA permit.

5.1 System Installation

Five SVE wells were installed on August 9 and 10, 2019 by Cascade Drilling, LP (Cascade) using sonic drilling technology. Four SVE wells (SVE-1 through SVE-4) were installed outside the tenant space to 15 feet with slotted screens from 2 to 15 feet bgs. SVE-5 was installed inside the tenant space using vacuum extraction to a depth of 3 feet bgs and completed with slotted screen from 6 inches to 3 feet bgs. All wells were sealed at the surface with bentonite and concrete grout.

Sub-slab vapor monitoring points (VP-1 to VP-4) were installed by drilling through the existing concrete slab, placement, and sealing of the stainless steel VaporPin® sampling points. The vapor points were completed with accessible lids in locations for easy monitoring. Vapor monitoring points and SVE well locations are illustrated on Figure 2, *Site Map*.

The SVE system underground conveyance piping installation was completed in August through September 2019, and startup occurred on October 9, 2019. The system was constructed to meet the Site conditions and requirements of the property management company. The system started with GAC filters in-place to be in compliance with the required PSCAA regulations.

5.2 *Operation & Maintenance*

Following startup, on behalf of AEG, DH Environmental, Inc. (DHE) performed routine operations and maintenance (O&M) work to ensure the SVE system was operating normally. The only system shutdowns were the result of general power failures and intended shutdowns during sampling events.

On February 2, 2022, DHE replaced four non-functioning vacuum gauges (SVE 1, 2, 3, 4) on the SVE well manifold. Additionally, testing was conducted on SVE-4 to determine whether the well was under vacuum. Subsequent results determined the well-maintained adequate suction at the wellhead and water was noted in the SVE-4 manifold line. All five vacuum gauges had since properly functioned and provided accurate readings of the vacuum maintained on each well.

The system performance had been monitored by sampling a network of four sub-slab vapor pins installed throughout the inside of the business (VP-1 through VP-4). Ongoing monitoring of the sub-slab vapor monitoring points noted PCE continued to be present in sub-slab vapors in the southern half of the tenant space following the replacement and testing of the original four SVE wells. As such, on April 10, 2022, DHE mobilized to the Site to install three additional SVE wells (SVE-6, SVE-7, and SVE-8). The addition of these three wells provided additional air flow beneath the building foundation to mitigate the exposure to PCE vapors. These additional SVE well locations are illustrated on Figure 2, *Site Map*.

The analytical results of the past four sub-slab performance sampling events (May & October 2022, and March & October 2023) indicated that all constituents analyzed for were either nondetect or detected below MTCA Method B screening levels. Also, all results to date have been below MTCA Method B screening levels for commercial workers. Analytical results of the subslab analytical results are presented in Table 3, *Summary of Sub-Slab Vapor Analytical Results*. Analytical results of the SVE System analytical results are presented in Table 4, *Summary of SVE System Air Analytical Results*. Sample locations are illustrated on Figure 2, *Site Map*.

5.3 Confirmation Soil Sampling

As of the October 18, 2023, monitoring date, the SVE system had been operational at the Site for 1,199 days. Based on the October 2023 sub-slab vapor results, AEG scheduled confirmation soil sampling to evaluate the success of the SVE system in remediating PCE-impacted soil. On November 19 and 20, 2023, AEG advanced six soil borings (B-14 through B-19) using a limited-access, direct-push drill rig (inside the tenant space) and a hollow-stem auger rig (outside) in areas where COCs were previously detected above MTCA screening levels. Borings B-14 through B-16 were advanced inside the building near borings B-1 through B-3 where PCE-impacted soil was present during the initial 2017 investigation. Borings B-17 through B-19 were advanced in the area to the north of the store near B-11. A total of 10 soil samples collected from the borings were submitted for laboratory analysis.

Analytical results of soil sample B-17-20 indicated the presence of PCE at 0.089 milligrams per kilogram (mg/kg) at 20 feet bgs, which exceeds the MTCA Method A cleanup level of 0.05 mg/kg. Analytical results from all other soil samples were either non-detect or below MTCA Method A cleanup levels. Since the PCE exceedance detected in B-17-20 (0.089 mg/kg) is less than twice the MTCA Method A cleanup level of 0.05 mg/kg, and it was detected in less than 10% of the samples, the Site is in compliance with MTCA cleanup standards per WAC 173-340-740(7)(e). The detection in this sample was also well below the MTCA Method B cleanup level of 480 mg/kg for protection of direct contact exposure, and the boring is adjacent MW-3, which has consistently been non-detect in groundwater since it was installed.

Based on the confirmation soil sampling results, the SVE system was turned off on December 8, 2023.

5.4 Confirmation Groundwater Monitoring

Ecology issued an opinion on April 13, 2022, in response to work performed to that point. As part of their opinion, Ecology requested that quarterly groundwater monitoring resume when operation of the SVE system is complete. As such, groundwater monitoring of the four Site monitoring wells (MW-1, MW-2, MW-3, and MW-5) resumed on January 3, 2024, and sampled again on April 12 and July 2, 2024. Subcontractor Blaine Tech gauged the four monitoring wells and collected groundwater samples to be analyzed for PCE and breakdown products. Consistent with all groundwater sampling performed to date, analytical results of the groundwater samples were non-detect for all constituents analyzed. Analytical results of the groundwater samples collected to date are presented as compared to MTCA Method A cleanup levels in Table 2, *Summary of Groundwater Analytical Results*.

While one additional quarterly event is budgeted for this project, it is AEG's professional opinion that groundwater sampling to date, including three consecutive quarters of non-detect results after system shutdown, are sufficient to demonstrate groundwater meets MTCA cleanup standards. That said, another groundwater monitoring event is planned in October 2024 pending Ecology's opinion, and if needed, results will be shared with Ecology under separate cover.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

- A Phase II ESA conducted by AEG in 2017 discovered PCE-impacted soil and vapor that warranted further investigations to characterize the extent of impacted media. Subsequent investigations determined the extent of PCE-impacted soil and vapor. All constituents analyzed for in groundwater samples have consistently been non-detect.
- PCE was the only COC detected in soil above MTCA cleanup levels. PCE exceeded the MTCA Method A cleanup level in AEG soil samples B1-22 (1.8 feet bgs), and B3-23 (1.9 feet bgs). Both borings were located inside the building. The vertical extent of PCE in these borings could not be determined due to the very dense soils encountered and the limitations of drilling in these soils inside the building.
- In October 2019, AEG installed and began operating and monitoring the performance of the SVE system. Since startup, the SVE system has operated normally with shutdowns occurring as a result of general power failures and intended shutdowns during sampling events. As of the date of the last performance sampling event on October 18, 2023, the SVE system had been operational at the Site for 1,199 days. All constituents analyzed for during the last four sub-slab sampling events (May & October 2022, and March & October 2023) have been non-detect or detected below MTCA Method B screening levels. Also, all results to date have been below MTCA Method B screening levels for commercial workers.
- In November 2023, AEG advanced confirmation soil borings (B-14 through B-19) in areas where COCs were previously detected above MTCA cleanup levels. Analytical results of soil sample B-17-20 indicated the presence of PCE at 0.089 milligrams per kilogram (mg/kg) at 20 feet bgs, which exceeds the MTCA Method A cleanup level of 0.05 mg/kg. Analytical results from all other soil samples were either non-detect or below MTCA Method A cleanup levels. Since the PCE exceedance detected in B-17-20 (0.089 mg/kg) is less than twice the MTCA Method A cleanup level of 0.05 mg/kg, and it was detected in less than 10% of the samples, the Site is in compliance with MTCA cleanup standards per WAC 173-340-740(7)(e). The detection in this sample was also well below the MTCA Method B cleanup level of 480 mg/kg for protection of direct contact exposure, and the boring is adjacent MW-3, which has consistently been non-detect in groundwater since it was installed.
- Site COCs have been non-detect in all groundwater samples collected from the Site to date, including before and after operation of the SVE system.

6.2 Recommendations

Based on the work performed to date at the Site, MTCA cleanup standards have been achieved for all affected media, and continued operation of the SVE system does not appear to be warranted. AEG recommends Ecology review in consideration of an unrestricted No Further Action (NFA) determination.

7.0 LIMITATIONS

This report summarizes the findings of the services authorized under our agreement with Mr. Chang Kim. It has been prepared using generally accepted professional practices, related to the nature of the work accomplished. This report was prepared for the exclusive use of Mr. Chang Kim and his designated representatives for the specific application to the project purpose.

Recommendations, opinions, site history, and proposed actions contained in this report apply to conditions and information available at the time this report was completed. Since conditions and regulations beyond our control can change at any time after completion of this report, or our proposed work, we are not responsible for any impacts of any changes in conditions, standards, practices, and/or regulations subsequent to our performance of services. We cannot warrant or validate the accuracy of information supplied by others, in whole or part.

8.0 REFERENCES

American Society for Testing and Materials (ASTM) Standard E 1903-11. *Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process.*

American Society for Testing and Materials (ASTM) E 1943-98 (2015), *Standard Guide for Remediation of Ground Water by Natural Attenuation at Petroleum Release Sites.*

Associated Environmental Group, LLC, April 2017, Phase II Environmental Site Assessment Report.

Associated Environmental Group, LLC, December 2018, Soil Vapor Extraction Pilot Testing Event Summary Report.

Associated Environmental Group, LLC, March 2019, Remedial Investigation / Feasibility Study.

Associated Environmental Group, LLC, May 2019, Cleanup Action Plan.

Associated Environmental Group, LLC, December 2019, *Technical Memorandum – Soil Vapor Extraction (SVE) System Installation*.

Associated Environmental Group, LLC, February 2020, *Technical Memorandum – SVE System O&M and Performance Monitoring*.

Associated Environmental Group, LLC, September 2020, Monitoring Well Installation Summary, SVE O&M Update, and June 2020 Compliance Quarterly Groundwater Monitoring Report.

Associated Environmental Group, LLC, October 2020, September 2020 Compliance Quarterly Groundwater Monitoring & SVE O&M Report.

Associated Environmental Group, LLC, January 2021, December 2020 Compliance Quarterly Groundwater Monitoring & SVE O&M Report.

Associated Environmental Group, LLC, April 2021, March 2021 Compliance Quarterly Groundwater Monitoring & SVE O&M Report.

Associated Environmental Group, LLC, January 2022, Technical Memorandum – Cleanup Progress Report.

2633 PARKMONT LANE SW. SUITE A • OLYMPIA, WA • 98502-5751 Phone: 360.352.9835 • Fax: 360.352.8164 • Email: <u>admin@aegwa.com</u> AEG Atlas, August 2023, Technical Memorandum – Cleanup Progress Report.

AEG Atlas, April 2024, Final Compliance Monitoring Summary & NFA Request.

Natural Resource Conservation Service (NRCS) Soil Survey, <u>http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>, accessed May 2, 2016.

Riley Group. 2004. Supplemental Phase II Subsurface Investigation, Four Corner Square Shopping Center, Maple Valley, Washington. Dated December 7.

Riley Group. 2012. Technical Memorandum. Four Corners Cleaners.

US EPA, Engineering Bulletin, Granular Activated Carbon Treatment, EPA/540/2-91/024, October 1991.

US EPA OSWER Directive 9200.4-17P, 1999a, Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites.

US EPA OSWER Publication 9200.2-154, June 2015, OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air.

Washington State Department of Ecology, 2004, *Collecting and Preparing Soil Samples for VOC Analysis*, Implementation Memorandum #5.

Washington State Department of Ecology, 2009, *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*, Publication number 09-09-047. DRAFT.

Washington State Department of Ecology, 2013, *Model Toxic Control Act Statute and Regulation* – *Chapter 173-340 WAC*, Publication number 94-06 (Revised 2013).

Washington State Department of Natural Resources, 2013, The Geology of Washington State, http://file.dnr.wa.gov/publications/ger_geol_map_washington_pagesize.pdf.

FIGURES

	0 5 10 HORIZONTAL SCALE
г	VERTICAL SCALE
	AEG ATLAS GEOSCIENCES NW COMPANY
SHOWN ARE	FIGURE 5
PURPOSES. IT IS IURES IT.	GEOLOGIC CROSS-SECTION B-B'
OGRAPH LLC.	4 CORNERS CLEANERS 23886 SE KENT KANGLEY ROAD MAPLE VALLEY, WASHINGTON

LEGEND

MW-1	+
B-1	•
SV-1	A
SVE-1	8
VP-1	0
540	.94
- •540	.00 —

025 ft/ft

MONITORING WELL LOCATION SOIL BORING LOCATION SUB-SLAB VAPOR SAMPLE LOCATION SOIL VAPOR EXTRACTION WELL LOCATION VAPOR MONITORING POINT LOCATION GROUNDWATER ELEVATION (FEET) INFERRED GROUNDWATER ELEVATION CONTOUR LINE (FEET)

APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft)

<u>NOTES</u>

1. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE

2. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT.

REFERENCE

DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG ATLAS, LLC.

FIGURE 10

GROUNDWATER ELEVATION CONTOUR MAP 07/14/2022

4 CORNERS CLEANERS 23886 SE KENT KANGLEY ROAD MAPLE VALLEY, WASHINGTON

LEGEND

MW-1 💠	MONITORING WELL LOCATION
B−1 ●	SOIL BORING LOCATION
SV-1 🔺	SUB-SLAB VAPOR SAMPLE LOCATION
SVE-1 🖪	SOIL VAPOR EXTRACTION WELL LOCATION
VP-1 O	VAPOR MONITORING POINT LOCATION
543.29	GROUNDWATER ELEVATION (FEET)
— 542.00• —	INFERRED GROUNDWATER ELEVATION CONTOUR LINE (FEET)

ELEVATION NOT USED IN CONTOURING POSSIBLE ANOMALOUS DATA APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft)

<u>NOTES</u>

.03 ft/ft

1. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE

2. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT.

REFERENCE

DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG ATLAS, LLC.

FIGURE 11

GROUNDWATER ELEVATION CONTOUR MAP 01/12/2023

4 CORNERS CLEANERS 23886 SE KENT KANGLEY ROAD MAPLE VALLEY, WASHINGTON

LEGEND

MW-1	+
B-1	•
SV-1	A
SVE-1	8
VP-1	0
538	.06
- •542.	.00 — 00.

MONITORING WELL LOCATION SOIL BORING LOCATION SUB-SLAB VAPOR SAMPLE LOCATION SOIL VAPOR EXTRACTION WELL LOCATION VAPOR MONITORING POINT LOCATION GROUNDWATER ELEVATION (FEET) INFERRED GROUNDWATER ELEVATION CONTOUR LINE (FEET)

0.025 ft/ft

APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft)

<u>NOTES</u>

1. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE

2. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT.

REFERENCE

DRAWING CREATED FROM AERIAL PHOTOGRAPH AND NOTES PROVIDED BY AEG ATLAS, LLC.

FIGURE 12

GROUNDWATER ELEVATION CONTOUR MAP 07/07/2023

4 CORNERS CLEANERS 23886 SE KENT KANGLEY ROAD MAPLE VALLEY, WASHINGTON

TABLES

Table 1 - Summary of Soil Analytical Results

4 Corners Dry Cleaning (17-126)

Maple Valley, Washington

Sample Number	Depth Collected (feet)	Date Collected	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	Vinyl Chloride
B1-22	1.8	3/13/2017	0.058	< 0.02	< 0.05	< 0.05	< 0.02
B2-20	1.6	3/13/2017	0.044	< 0.02	< 0.05	< 0.05	< 0.02
B3-23	1.9	3/13/2017	0.067	< 0.02	< 0.05	< 0.05	< 0.02
B4-5	5.0	7/17/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B4-10	10.0	7/17/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B4-25	25.0	7/17/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B5-5	5.0	7/17/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B5-10	10.0	7/17/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B5-15	15.0	7/17/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B5-25	25.0	7/17/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B5-30	30.0	7/17/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B6-5	5.0	7/18/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B6-10	10.0	7/18/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B6-25	25.0	7/18/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B6-35	35.0	7/18/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B7-3	3.0	7/18/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B7-6	6.0	7/18/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B7-16	16.0	7/18/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B7-28	28.0	7/18/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B7-37	37.0	7/18/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B8-3	3.0	7/19/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B8-6	6.0	7/19/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B8-24	24.0	7/19/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B8-33	33.0	7/19/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B9-3	3.0	7/19/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B9-9	9.0	7/19/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B9-15	15.0	7/19/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B9-24	24.0	7/19/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B9-33	33.0	7/19/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B10-3	3.0	7/20/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B10-6	6.0	7/20/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B10-15	15.0	7/20/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B10-27	27.0	7/20/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B10-33	33.0	7/20/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02

Table 1 - Summary of Soil Analytical Results

4 Corners Dry Cleaning (17-126)

Maple Valley, Washington

Sample Number	Depth Collected (feet)	Date Collected	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	Vinyl Chloride
B11-3	3.0	7/20/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B11-6	6.0	7/20/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B11-9	9.0	7/20/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B11-15	15.0	7/20/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B11-18	18.0	7/20/2018	0.053	< 0.02	< 0.05	< 0.05	< 0.02
B11-21	21.0	7/20/2018	0.034	< 0.02	< 0.05	< 0.05	< 0.02
B11-24	24.0	7/20/2018	0.046	< 0.02	< 0.05	< 0.05	< 0.02
B11-33	33.0	7/20/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B12-3	3.0	7/23/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B12-18	18.0	7/23/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B12-33	33.0	7/23/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B12-37	37.0	7/23/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B13-3	3.0	7/23/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B13-18	18.0	7/23/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B13-35	35.0	7/23/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B13-37	37.0	7/23/2018	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW1-3	3.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW1-9	9.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW1-15	15.0	5/18/2020	0.019 J	< 0.02	< 0.05	< 0.05	< 0.02
MW1-18	18.0	5/18/2020	< 0.02	0.011 J	< 0.05	< 0.05	< 0.02
MW1-20	20.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW1-23	23.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW1-33	33.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW1-36	36.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW1-50	50.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW2-3	3.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW2-9	9.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW2-15	15.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW2-18	18.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW2-21	21.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW2-23	23.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW2-36	36.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW2-43	43.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW2-50	50.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02

Table 1 - Summary of Soil Analytical Results

Sample Number	Depth Collected (feet)	Date Collected	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	Vinyl Chloride
MW3-3	3.0	5/18/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW3-9	9.0	5/19/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW3-18	18.0	5/19/2020	< 0.02	0.031	< 0.05	< 0.05	< 0.02
MW3-21	21.0	5/19/2020	0.12	< 0.02	< 0.05	< 0.05	< 0.02
MW3-27	27.0	5/19/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW3-36	36.0	5/19/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW3-48	48.0	5/19/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW5-3	3.0	5/20/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW5-9	9.0	5/20/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW5-15	15.0	5/20/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW5-18	18.0	5/20/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW5-21	21.0	5/20/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW5-30	30.0	5/20/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
MW5-45	45.0	5/20/2020	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
B-14-3	3.0	11/19/2023	0.024	< 0.012	< 0.017	< 0.017	< 0.012
B-15-3	3.0	11/19/2023	0.014	< 0.011	< 0.017	< 0.017	< 0.011
B-16-3	3.0	11/19/2023	0.012	< 0.012	< 0.018	< 0.018	< 0.012
B-17-10	10.0	11/20/2023	0.025	< 0.016	< 0.024	< 0.024	< 0.016
B-17-15	15.0	11/20/2023	0.020	< 0.019	< 0.029	< 0.029	< 0.019
B-17-20	20.0	11/20/2023	0.089	< 0.013	< 0.020	< 0.020	< 0.013
B-17-25	25.0	11/20/2023	< 0.017	< 0.017	< 0.026	< 0.026	< 0.017
B-18-10	10.0	11/20/2023	0.013	< 0.013	< 0.019	<0.019	< 0.013
B-18-15	15.0	11/20/2023	<0.066	< 0.013	< 0.020	< 0.020	< 0.013
B-19-18	18.0	11/20/2023	0.042	< 0.011	< 0.017	< 0.017	< 0.011
MTCA M	Iethod A Clear	up Levels	0.05	0.03	NL	NL	NL
MTCA Me Dire	thod B Cleanu ct Contact Exp	p Levels for osure	480	12.0	160	1,600	0.67

4 Corners Dry Cleaning (17-126) Maple Valley, Washington

Notes:

All values are presented in milligrams per kilogram (mg/kg)PCE = Tetrachloroethene< = Not detected at the listed laboratory detection limits</td>TCE = TrichloroethenePQL = Practical Quantification Limit (laboratory detection limit)DCE = DichloroetheneNL = Not listed; no Method A cleanup has been established.TCE = TetrachloroetheneRed Bold indicates the detected concentration exceeds MTCA Method A cleanup levelTCE = Tetrachloroethene

Bold indicates the detected concentration is below MTCA Method A cleanup levels

J = Indicates analyte was positively idenified and reported result is an estimate.

Table 2 - Summary of Groundwater Analytical Results

4 Corners Cleaners (17-126) Maple Valley, Washington

Sample Number	Date Collected	PCE	TCE	cis-1,2-	trans-1,2-	Vinyl
Tumber	Borin	g Groundwa	ter Data	DCE	DCE	Chionde
B4-W	7/17/2018	< 1.0		<1.0	<1.0	<0.2
B5-W	7/17/2018	<1.0	<1.0	<1.0	<1.0	<0.2
B6-W	7/18/2018	<1.0	<1.0	<1.0	<1.0	<0.2
B7-W	7/18/2018	<1.0	<1.0	<1.0	<1.0	<0.2
B8-W	7/19/2018	<1.0	<1.0	<1.0	<1.0	<0.2
B9-W	7/19/2018	<1.0	<1.0	<1.0	<1.0	<0.2
27 11	Monitoring	Well Grour	dwater Da	(1.0 1a ¹	(1.0	<0.2
	c in a name			1.0	1.0	0.0
	6/23/2020	<1.0	<0.4	<1.0	<1.0	<0.2
	9/14/2020	<1.0	<0.4	<1.0	<1.0	<0.2
	12/11/2020	<1.0	<0.4	<1.0	<1.0	<0.2
	3/19/2021	<1.0	<0.4	<1.0	<1.0	<0.2
MW-1	7/15/2022	<1.0	<0.4	<1.0	<1.0	< 0.2
	1/12/2023	<1.0	<0.4	<1.0	<1.0	< 0.2
	7/7/2023	<1.0	<0.4	<1.0	<1.0	< 0.2
	1/3/2024	<1.0	<0.4	<1.0	<1.0	< 0.2
	4/19/2024	``````````````````````````````````````	Vehicle par	ked on well	; inaccessible	2
	7/2/2024	<1.0	< 0.40	<1.0	<1.0	< 0.20
	6/23/2020	<1.0	<0.4	<1.0	<1.0	< 0.2
	9/14/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2
	12/11/2020	<1.0	<0.4	<1.0	<1.0	< 0.2
	3/19/2021	<1.0	< 0.4	<1.0	<1.0	< 0.2
MW-2	7/15/2022	<1.0	< 0.4	<1.0	<1.0	< 0.2
	1/12/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2
	7/7/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2
	1/3/2024	<1.0	<0.4	<1.0	<1.0	< 0.2
	4/19/2024	<1.0	<0.4	<1.0	<1.0	< 0.2
	7/2/2024	<1.0	< 0.40	<1.0	<1.0	< 0.20
	6/23/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2
	9/14/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2
	12/11/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2
	3/19/2021	<1.0	< 0.4	<1.0	<1.0	< 0.2
MW-3	7/15/2022	<1.0	< 0.4	<1.0	<1.0	< 0.2
	1/12/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2
	7/7/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2
	1/3/2024	<1.0	< 0.4	<1.0	<1.0	< 0.2
	4/19/2024	<1.0	< 0.4	<1.0	<1.0	< 0.2
	7/2/2024	<1.0	< 0.40	<1.0	<1.0	< 0.20

Table 2 - Summary of Groundwater Analytical Results

Sample Number	Date Collected	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	Vinyl Chloride
	6/23/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2
	9/14/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2
	12/11/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2
	3/19/2021	<1.0	< 0.4	<1.0	<1.0	< 0.2
MW 5	7/15/2022	<1.0	< 0.4	<1.0	<1.0	< 0.2
101 00 -5	1/12/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2
	7/7/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2
	1/3/2024	<1.0	< 0.4	<1.0	<1.0	< 0.2
	4/19/2024	<1.0	< 0.4	<1.0	<1.0	< 0.2
	7/2/2024	<1.0	< 0.40	<1.0	<1.0	< 0.20
PQL		1.0	0.4/1.0	1.0	1.0	0.2
MTCA Metho	od A Cleanup Levels	5	5	160*	16*	0.2

4 Corners Cleaners (17-126) Maple Valley, Washington

Notes:

All values present are micrograms per liter (µg/L)

-- = Not analyzed for constituent

< = Not detected at the listed laboratory detection limits

PQL = Practical Quantification Limit (laboratory detection limit)

Red Bold indicates the detected concentration exceeds Ecology MTCA Method A cleanup level

Bold indicates the detected concentration is below Ecology MTCA Method A cleanup levels

PCE = Tetrachloroethene

TCE = Trichloroethene

DCE = Dichloroethene

¹Refusal was consistently encountered throughout the area proposed for well MW-4; it was never installed.

* MTCA Method B cleanup level; Method A cleanup level not established

Table 3 - Summary of Sub-Slab Vapor Analytical Results

4 Corners Cleaners (17-126)

Maple Valley, Washington

Sample	er Products					
Number	Collected	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Vinyl Chloride
SV-1	3/31/2017	1,600	<10	<10	<10	<10
SV-2	3/31/2017	1,800	<10	<10	<10	<10
SV-3	3/31/2017	1,500	<10	<10	<10	<10
SV-4	3/31/2017	790	<10	<10	<10	<10
SV-5	3/31/2017	940	<10	<10	<10	<10
SV-6	3/31/2017	850	<10	<10	<10	<10
SV-7	3/31/2017	1,700	<10	<10	<10	<10
SV-8	3/31/2017	1,100	<10	<10	<10	<10
SV-9	3/31/2017	2,800	<10	<10	<10	<10
SV-10	3/31/2017	2,100	<10	<10	<10	<10
SV-11	3/31/2017	6,300	<10	<10	<10	<10
SV-12	3/31/2017	2,600	<10	<10	<10	<10
SV-13	3/31/2017	180	<10	<10	<10	<10
SV-14	3/31/2017	2,600	<10	<10	<10	<10
		SVE SYST	EM STARTU	POCTOBER 9	9, 2019	
	10/9/2019	586	4.48	< 0.793	< 0.793	<0.511
	12/16/2019	4.03	1.95	< 0.793	< 0.793	<0.511
	1/16/2020	264E	3.18	< 0.793	< 0.793	<0.511
	2/25/2020	198	3.92	< 0.793	< 0.793	<0.511
	3/16/2020	270	3.7	<2.7	<2.7	<1.7
	5/20/2020	570	4.3	<5.6	<5.6	<3.6
	7/8/2020	580	4.6	<2.8	<2.8	<1.8
	8/26/2020	42	<1.0	<1.5	<1.5	< 0.97
$\mathbf{VD} 1^{1}$	9/16/2020	<45	< 0.71	<2.6	<2.6	<1.7
VP-1	12/17/2020	420	2.7	<8.3	<8.3	<5.4
	4/20/2021	150	1.8	<2.5	<2.5	<1.6
	6/21/2021	53	1.2	<2.8	<2.8	<1.8
	8/17/2021	68	<2.1	<7.9	<7.9	<5.1
	11/2/2021	240	1.8	<2.5	<2.5	<1.6
	5/9/2022	<28	< 0.44	<1.6	<1.6	<1.0
	10/6/2022	<39	< 0.62	<2.3	<2.3	<1.5
	3/23/2023	69	1.1	<2.3	<2.3	<1.5
	10/18/2023	130	2.1	<3.3	<3.3	<2.1

Table 3 - Summary of Sub-Slab Vapor Analytical Results

4 Corners Cleaners (17-126)

Maple Valley, Washington

Sample	Date	PCE and Daughter Products						
Number	Collected	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Vinyl Chloride		
	10/9/2019	<2.03	<1.07	< 0.793	< 0.793	<0.511		
	12/16/2019	4.77	<1.07	< 0.793	< 0.793	<0.511		
	1/16/2020	101	1.49	< 0.793	< 0.793	<0.511		
	2/25/2020	72	<1.07	< 0.793	< 0.793	<0.511		
	3/16/2020	66	<1.07	<2.7	<2.7	<1.7		
	5/20/2020	230	<1.8	<2.7	<2.7	<1.7		
	7/8/2020	170	<1.9	<2.8	<2.8	<1.8		
	8/26/2020	120	<2.7	<4	<4	<2.6		
	9/16/2020	<44	<0.7	<2.6	<2.6	<1.7		
VP-2	12/17/2020	87	<1.1	<4.0	<4	<2.6		
	4/20/2021	190	0.76	<2.3	<2.3	<1.5		
	6/21/2021	86	0.78	<2.3	<2.3	<1.5		
	8/17/2021	53	< 0.75	<2.8	<2.8	<1.8		
	11/2/2021	79	< 0.73	<2.7	<2.7	<1.7		
	5/9/2022	<35	0.90	<2	<2	<1.3		
	10/6/2022	<38	<0.6	<2.2	<2.2	<1.4		
	3/23/2023	<39	2.40	<2.3	<2.3	<1.5		
	10/18/2023	<37	< 0.58	<2.1	<2.1	<1.4		
	10/9/2019	743	1.32	< 0.793	< 0.793	<0.511		
	12/16/2019	2.53	<1.07	< 0.793	< 0.793	<0.511		
	1/16/2020	423	<1.07	< 0.793	< 0.793	<0.511		
	2/25/2020	457	1.13	< 0.793	< 0.793	<0.511		
	3/16/2020	960	<9.4	<14	<14	<8.9		
	5/20/2020	1,300	<9.4	<14	<14	<8.9		
	7/8/2020	970	<3.8	<5.6	<5.6	<3.6		
	8/26/2020	420	1.8	<1.6	<1.6	<1.6		
	9/16/2020	720	<5.6	<21	<21	<13		
VP-31	12/17/2020	690	<2.1	<7.9	<7.9	<5.1		
	4/20/2021	890 ve	1.6	<2.3	<2.3	<1.5		
	6/21/2021	830 ve	1.8	<2.6	<2.6	<1.7		
	8/17/2021	720	2.6	<8.3	<8.3	<5.4		
	11/2/2021	950	1.0	<2.7	<2.7	<1.7		
	5/9/2022	65	1.1	<1.9	<1.9	<1.2		
	10/6/2022	78	1.3	<2.3	<2.3	<1.5		
	3/23/2023	260	< 0.92	<3.4	<3.4	<2.2		
	10/18/2023	190	< 0.87	<3.2	<3.2	<2.1		

Table 3 - Summary of Sub-Slab Vapor Analytical Results

Sample	Date	PCE and Daughter Products						
Number	Collected	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Vinyl Chloride		
	7/8/2020	<32	<1.3	<1.9	<1.9	<1.2		
	8/26/2020	290	<13	<19	<19	<13		
	9/16/2020	56	<2.4	<3.4	<2.4	<1.5		
	12/17/2020	400	<2.1	<7.9	<7.9	<5.1		
	4/20/2021	340	1.2	<2.9	<2.9	<1.8		
$\mathbf{VD} \mathbf{A}^{1}$	6/21/2021	280	0.8	<2.5	<2.5	<1.6		
VP-4	8/17/2021	72	<1.1	<3.9	<3.9	<2.5		
	11/2/2021	370	<0.68	<2.5	<2.5	<1.6		
	5/9/2022	<31	< 0.49	<1.8	<1.8	<1.2		
	10/6/2022	<37	< 0.58	<2.1	<2.1	<1.4		
	3/23/2023	<56	< 0.89	<3.3	<3.3	<2.1		
	10/18/2023	60	<5.2	<1.9	<1.9	<1.2		
MTCA Method B Sub- Slab Screening Levels		320*	11.0*	610	610	9.50*		
MTCA Method B Sub- Slab Screening Levels Commercial Worker		1,500*	95.0*	5,200	5,200	44.0*		

4 Corners Cleaners (17-126) Maple Valley, Washington

Notes:

¹ - Collected from the permanent vapor monitoring point.

All values are presented in micrograms per cubic meter ($\mu g/m^3$)

< = Not detected at the listed laboratory detection limits

PCE = Tetrachloroethene TCE = Trichloroethene

DCE = Dichloroethene

ve = The analyte response exceeded the valid instrument calibration range. The value reported is an

estimate.

* Cancer cleanup/screening level (all other constituents listed have non-cancer values)

Red Bold indicates the detected concentration exceeds MTCA Method B sub-slab screening levels. Bold indicates the detected concentration is below MTCA Method B sub-slab screening levels.

Table 4 - Summary of SVE System Air Analytical Results

4 Corners Dry Cleaners (17-146)

	Date	TO-15 - Volatile Organic Compounds					
Sample ID	Collected	Vinyl Chloride	trans-1,2- DCE	cis-1,2-DCE	TCE	PCE	
INPUT	10/9/2019	<0.511	< 0.793	2.19	4.48	10.3	
OUTPUT (Post Carbon)	10/9/2019	<0.511	< 0.793	< 0.793	<1.07	<2.03	
INPUT-1	12/16/2019	<0.511	< 0.793	< 0.793	<1.07	<2.03	
INPUT-1	1/16/2020	<0.511	< 0.793	< 0.793	<1.07	155	
INPUT-1	2/25/2020	<0.511	< 0.793	< 0.793	<1.07	31	
OUTPUT (No Carbon)	3/16/2020	< 0.069	<1.1	<1.1	1.0	16	
OUTPUT (No Carbon)	7/17/2020	<1.2	<1.9	<1.9	<1.3	38	
OUTPUT (No Carbon)	8/26/2020	<1.0	<1.6	<1.6	<1.1	4.6j	
INFLUENT-121720 (No Carbon)	12/17/2020	<1.7	<2.7	<2.7	<0.86	73	
SVE-OUT-42021 (No Carbon)	4/20/2021	<1.4	<2.1	<2.1	1.2	<37	
SVE-IN-062121 (No Carbon)	6/21/2021	<1.6	<2.4	<2.4	<0.66	12	
INF-08172021 (No Carbon)	8/17/2021	<1.5	<2.4	<2.4	0.74	29 ј	
INF-110221 (No Carbon)	11/2/2021	<1.7	<2.6	<2.6	<0.71	<45	
SVE-IN (05/09/22)	5/9/2022	<1.2	<1.9	<1.9	<0.51	<32	
SVE-IN (03/23/23)	3/23/2023	<2.1	<3.3	<3.3	< 0.88	<56	
SVE-IN (10/18/23)	10/18/2023	<1.9	<3	<3	< 0.82	<52	
MTCA Method B Sub-Slab Screen	ing Levels	9.50*	610	610	11.0*	320*	
MTCA Method B Sub-Slab Screen Commercial Worker	ing Levels	44.0*	5,200	5,200	95.0*	1,500*	

Maple Valley, WA

Notes:

All values presented in micrograms per cubic meter ($\mu g/m^3$)

-- = Not analyzed for constituent

< = Not detected above laboratory limits

* Cancer cleanup/screening level (all other constituents listed have non-cancer values)

Bold indicates the detected concentration is below MTCA Method B screening levels

Red Bold indicates the detected concentration exceeds MTCA Method B screening levels

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

- PCE = Tetrachloroethene
- TCE = Trichloroethene
- DCE = Dichloroethene

APPENDIX A

Supporting Documents Boring and Well Logs Laboratory Datasheets

PROJECT: 4 Corners Cleaners			JOB # 17-126 BORING # B-1 PAGE 1 OF 1								
Loca	tion:	23886 SE Kent Kangley Road, Maple Valley, WA			Appro	ximate Elev	vation:				
Subc	ontractor /	Driller: ESN			Equip	ment / Drilli	ng Meth	nod: LAR D	irect Pu	lsh	
Date	:	March 3, 2018			Logge	d By:	B.Dilba				
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Conrete und	rlain by;									
	brown, mois	t, medium stiff, GRAVELY SILT; fine to medium gravel				B1-22					
	Explanatic	<u>n</u> Sample Advance / Recovery No Recovery									
		Contact located approximately									
	ATD	Groundwater level at time of drilling or date of measurement									

PROJECT: 4 Corners Cleaners			JOB # <i>17-126</i> BORING # <i>B-2</i> PAGE 1 OF 1							
Loca	tion: 23886 SE Kent Kangley Road, Maple Valley, WA			Appro	ximate Elev	vation:				
Subc	contractor / Driller: ESN			Equip	ment / Drilli	ing Meth	nod: LAR D	irect Pu	ush	
Date	e: March 3, 2018			Logge	ed By:	B.Dilba				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Conrete undrlain by;									
	brown, moist, medium stiff, GRAVELY SILT; fine to medium gravel				B2-20					
	-				-					
	-				-					
					-					
					-					
	-				-					
					-					
	-				-					
	-				-					
	-				-					
					-					
					-					
	-				-					
	-				-					
					-					
					-					
	Explanation									
	Sample Advance / Recovery									
	No Recovery									
	Contact located approximately									
	Oroundwater level at time of drilling ATD or date of measurement									

PROJECT: 4 Corners Cleaners			JOB # 17-126 BORING # B-3 PAGE 1 OF 1							PAGE 1 OF 1		
Loca	tion:	23886 SE Kent Kangley Road, Maple Valley, WA			Approximate Elevation:							
Subc	ontractor /	Driller: ESN				Equipr	nent / Drilli	ing Meth	nod: LAR D	irect Pu	ush	
Date):	March 3, 2018				Logge	d By:	B.Dilba				
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample	Ueptn	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Conrete und	rlain by;			1							
	brown, moist	t, medium stiff, GRAVELY SILT; fine to medium gravel			2		B3-23					
	Explanatio	2 Sample Advance / Recovery No Recovery Contact located approximately										
	ATD	or date of measurement										

PRO.	PROJECT: 4 Corners Cleaners			JOB # 17-126 BORING # B-4 PAGE 1 OF 2							
Loca	tion: 23886 SE Kent Kangley Road, Maple Valley, WA				Appro	ximate Ele	vation:				
Subc	contractor / Driller: Cascade/Jeffery Johnson				Equip	ment / Drill	ing Meth	nod: Sonic			
Date	e: July 17, 2018				Logge	d By:	B.Dilba				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample	Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Asphalt underlain by;						10:07				
	at 3.0 feet; brown, moist, medium stiff, <u>GRAVELY SILT</u> ; fine to medim grain gravel			1 2 3 4							
5	at 5.0 feet; gray, dry, dense, <u>SANDY GRAVEL</u> ; fine to medium grain sand, fie to coarse grain gravel with cobbles			5		B4-5	10:18				
10				8 9 10 11		B4-10	10:18				
15				12 13 14 		B4-15	10:34				
20	at 17.5 feet; moist			17 18 19 20 21 22 23		B4-20	10:57				
25				24		B4-25	10:57				
	Explanation										
	Sample Advance / Recovery No Recovery										
	Contact located approximately										
	Oroundwater level at time of drilling ATD or date of measurement										

PROJ	PROJECT: 4 Corners Cleaners				JOB # 17-126 BORING # B-4 PAGE 2 OF 2								
Locat	ion:	23886 SE Kent Kangley Road, Maple Valley, WA			Approximate Elevation:								
Subco	ontractor /	Driller: Cascade/Jeffery Johnson			Equipr	nent / Drill	ing Meth	od: Sonic					
Date		July 17, 2018			Logge	d By:	B. Dilba	1					
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations		
30				26 27 28 30 30 31 32 33 33 34 35 35 36 37 37 38 39		B4-30 B4-35	11:50						
40	Explanatio	Total Depth = 35 feet <u>m</u> Sample Advance / Recovery No Recovery		40									
		Contact located approximately Groundwater level at time of drilling or date of measurement											

PRO.	PROJECT: 4 Corners Cleaners			JOB # 17-126 BORING # B-5 PAGE 1 OF 2							
Loca	tion: 23886 SE Kent Kangley Road, Maple Valley, WA				Appro	ximate Ele	vation:				
Subc	ontractor / Driller: Cascade/Jeffery Johnson				Equipr	ment / Drill	ing Meth	nod: Sonic			
Date	: July 17, 2018				Logge	d By:	B.Dilba				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample	Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Asphalt underlain by;						14:05				
	at 3.0 feet; brown, moist, medium stiff, <u>GRAVELY SILT</u> ; fine to medim grain gravel			1							
5	at 5.0 feet; gray, dry, dense, <u>SANDY GRAVEL;</u> fine to medium grain sand, fie to coarse grain gravel with cobbles			4 5 6 7		B5-5	14:10				
10				8		B5-10	14:20				
				10 11 12 13							
15				14 15 16		B5-15	14:30				
20	at 17.5 feet; moist			17 18 19 20 21		B5-20	14:37				
25				22 23 24 25		B5-25	14:50				
	Explanation										
	Sample Advance / Recovery No Recovery										
	Contact located approximately										
	ATD Groundwater level at time of drilling or date of measurement										

	ECT:	4 Corners Cleaners			JOB #	17-126		BORING #	B-5		PAGE 2 OF 2
Locat	ion:	23886 SE Kent Kangley Road, Maple Valley, WA			Appro	ximate Ele	vation:				
Subco	ontractor /	Driller: Cascade/Jeffery Johnson			Equip	ment / Drill	ing Meth	od: Sonic			
Date		July 17, 2018			Logge	d By:	B. Dilba				
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
30				26 27 29 30 30 31 31 32 33		B5-30	15:00				
25						B5-35	15:07				
		Total Depth = 35 feet		35							
	Explanatio	<u>n</u>									
	I	Sample Advance / Recovery									
	\bigotimes	No Recovery									
		Contact located approximately									
		Groundwater level at time of drilling or date of measurement									

PRO.	ROJECT: 4 Corners Cleaners			JOB # 17-126 BORING # B-6 PAGE 1 OF 2								
Loca	tion: 23886 SE Kent Kangley Road, Maple Valley, WA				Арр	ro	kimate Elev	vation:				
Subc	ontractor / Driller: Cascade/Jeffery Johnson				Equ	ipr	nent / Drill	ing Meth	nod: Sonic			
Date	: July 18, 2018				Log	ge	d By:	B.Dilba				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample	Depth	Sample	Kecovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Asphalt underlain by;							8:00				
	at 3.0 feet; brown, moist, medium stiff, <u>GRAVELY SILT;</u> fine to medim grain gravel			1 2 3 4								
5	at 5.0 feet; gray, dry, dense, <u>SANDY GRAVEL</u> ; fine to medium grain sand, fie to coarse grain gravel with cobbles			5	_	_	B6-5	8:38				
				8			B6-10	8:38				
10				10	_	_	2010	0.00				
				11								
				12								
				13								
15			_	15	_	_	B6-15	8:45				
				16								
	at 17.5 feet; moist			17								
20				19 20	_	-	B6-20	8:56				
				21								
			\vdash	23								
			\vdash	24	_		B- 4-	a a =				
25				25			В6-25	9:05				
	Explanation											
	Sample Advance / Recovery											
	No Recovery											
	Contact located approximately											
	ATD Groundwater level at time of drilling or date of measurement											

PRO.	JECT:	4 Corners Cleaners			JOB #	17-126		BORING #	B-6		PAGE 2 OF 2		
Loca	tion:	23886 SE Kent Kangley Road, Maple Valley, WA			Approximate Elevation:								
Subc	ontractor /	Driller: Cascade/Jeffery Johnson			Equipr	nent / Drilli	ng Meth	od: Sonic					
Date	:	July 18, 2018			Logge	d By:	B. Dilba						
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations		
				26 27 28 29									
30				30 31 32 33 33 34		B6-30	9:30						
35				35		B6-35	9:30						
	-	'		36		B6-37 5	9.44		I				
		Total Depth = 37.5 feet bgs											
	 ∑ 	^w Sample Advance / Recovery No Recovery Contact located approximately											
		Groundwater level at time of drilling or date of measurement											

PRO.	ROJECT: 4 Corners Cleaners				JOB #	17-126		BORING #	B-7		PAGE 1 OF 2
Loca	tion: 23886 SE Kent Kangley Road, Maple Valley, WA				Appro	ximate Ele	vation:				
Subc	ontractor / Driller: Cascade/Jeffery Johnson				Equip	ment / Drill	ing Meth	nod: Sonic			
Date	: July 18, 2018				Logge	d By:	B.Dilba				
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample	Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Asphalt underlain by;						10:50				
	at 3.0 feet: brown, moist, medium stiff, CDAVELY SILT: fine to medium			2		B7-3					
5	grain gravel			4							
	at 5.0 feet; gray, dry, dense, <u>SANDY GRAVEL</u> ; fine to medium grain sand, fie to coarse grain gravel with cobbles			6		B7-6	11:03				
				8		B7-8					
10				10		B7-11	11:01				
				12		B7-13					
15				14 15 16		B7-16	11:09				
20	at 17.5 feet; moist			18		B7-19	11:16				
				21 22 23		B7-22	11:25				
25				24 25		B7-25	11:35				
	Explanation										
	Sample Advance / Recovery										
	No Recovery										
	Contact located approximately										
	Groundwater level at time of drilling or date of measurement										

PRO.	JECT:	4 Corners Cleaners			JOB #	17-126		BORING #	B-7		PAGE 2 OF 2
Loca	tion:	23886 SE Kent Kangley Road, Maple Valley, WA			Approx	kimate Elev	vation:				
Subc	ontractor /	Driller: Cascade/Jeffery Johnson			Equipn	nent / Drilli	ing Meth	od: Sonic			
Date	:	July 18, 2018			Logge	d By:	B. Dilba				
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	-			26 27 28		B7-28					
30	-			30		B7-31	11:37				
35				33 34 35							
	-			36		B7-37	11:48				
	-	Total Depth = 37.5 feet bgs									
	-										
	-										
	Explanatio	<u>n</u>									
	I	Sample Advance / Recovery									
	\otimes	No Recovery									
		Contact located approximately									
	ATD	Groundwater level at time of drilling or date of measurement									

PROJECT: 4 Corners Cleaners			JOB # 17-126 BORING # B-8 PAGE 1 OF 2									
Locat	tion:	23886 SE Kent Kangley Road, Maple Valley, WA				Appro	ximate Ele	vation:				
Subc	ontractor /	Driller: Cascade/Jeffery Johnson				Equipr	nent / Drill	ing Meth	nod: Sonic			
Date	:	July 19, 2018				Logge	d By:	B.Dilba				
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample	Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Asphalt und	erlain by;						8:43				
					2		B8-3					
5	at 3.0 feet; I grain gravel	rown, moist, medium stiff, <u>GRAVELY SILT;</u> fine to medim			4							
5	at 5.0 feet; g sand, fie to	ray, dry, dense, <u>SANDY GRAVEL</u> ; fine to medium grain coarse grain gravel with cobbles			6		B8-6					
					8		B8-9					
10				_	10			8:50				
					12		B8-12					
15					14		B8-15	8.29				
	at 15.0 feet;	moist			16		B8-18	0.00				
20				_	1920							
					21		B8-21	9:05				
	sand, fine to	coarse grain gravel with cobbles			23 24		B8-24					
25					25			9:13				
	Explanatio	<u>n</u>										
	I	Sample Advance / Recovery										
	\otimes	No Recovery										
		Contact located approximately										
	ATD	Groundwater level at time of drilling or date of measurement										

PRO	JECT:	4 Corners Cleaners			JOB #	17-126		BORING #	B-8		PAGE 2 OF 2			
Loca	tion:	23886 SE Kent Kangley Road, Maple Valley, WA			Approximate Elevation:									
Subc	ontractor /	Driller: Cascade/Jeffery Johnson			Equip	nent / Drilli	ng Meth	od: Sonic						
Date): 	July 19, 2018			Logge	d By:	B. Dilba							
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations			
	-			26 27 28 29		B8-27								
30	-			30		B8-30	9:22							
35	-			33		B8-33	9:33							
55		Total Depth = 35 feet bas		35	I									
	_													
	-													
	-													
	-													
	-													
	-													
	-													
	-													
	-													
	-													
	-													
	-													
	For the sta	-												
	<u>Explanatio</u>	<u>n</u>												
	I	Sample Advance / Recovery												
	\otimes	No Recovery												
		Contact located approximately												
		Groundwater level at time of drilling or date of measurement												

PROJECT: 4 Corners Cleaners			JOB # 17-126 BORING # B-9 PAGE 1 OF 2									
Loca	tion:	23886 SE Kent Kangley Road, Maple Valley, WA			Approximate Elevation:							
Subc	ontractor / [oriller: Cascade/Jeffery Johnson				Equip	ment / Dril	ling Meth	nod: Sonic			
Date):	July 19, 2018			l	Logge	ed By:	B.Dilba				
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample	Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Asphalt unde	rlain by;						13:11				
	at 3.0 feet; br grain gravel	own, moist, medium stiff, <u>GRAVELY SILT;</u> fine to medim			2		B9-3					
5	at 5.0 feet; gr sand, fie to c	ay, dry, dense, <u>SANDY GRAVEL</u> ; fine to medium grain barse grain gravel with cobbles			6		B9-6					
10					8 9 10		B9-9					
					11 12 13		B9-12	13:19				
15	at 15.0 feet; r	noist			14 15 16	_	B9-15	13:26				
	-				17 18 19		B9-18					
20	-				20 21 22	_	B9-21	13:34				
25	at 22.0 feet; I	rown, wet, dense <u>, SANDY GRAVEL</u> ; fine to coarse grain coarse grain gravel with cobbles			23 24 25		B9-24	13:40				
	Explanation	1	1				1	1	1	1	1	
		Sample Advance / Recovery No Recovery Contact located approximately Groundwater level at time of drilling or date of measurement										

PROJ	IECT:	4 Corners Cleaners			JOB #	17-126		BORING #	B-9		PAGE 2 OF 2			
Locat	ion:	23886 SE Kent Kangley Road, Maple Valley, WA			Approximate Elevation:									
Subc	ontractor /	Driller: Cascade/Jeffery Johnson			Equipment / Drilling Method: Sonic									
Date	:	July 19, 2018			Logge	d By:	B. Dilba							
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations			
				26 27 28 29		B9-27								
30				30 31 32		B9-30	13:49							
35				33 34 35		В9-33	13:57							
	<u>Explanatio</u>	<u>n</u>												
	Ι	Sample Advance / Recovery												
	\otimes	No Recovery												
		Contact located approximately												
		Groundwater level at time of drilling or date of measurement												

PROJECT: 4 Corners Cleaners			JOB # 17-126 BORING # B-10 PAGE 1 (PAGE 1 OF 2				
Loca	ation: 23886 SE Kent Kangley Road,	Maple Valley, WA			Approximate Elevation:							
Subc	contractor / Driller: Cascade/Jeffery Johns	son		_	E	Equip	ment / Drill	ing Meth	od: Sonic			
Date	e: July 20, 2018				L	ogge	d By:	B.Dilba				
Boring Depth (feet)	Soil Descriptio	n	Unified Soil Symbol	Sample	Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Asphalt underlain by;							7:15				
	at 3.0 feet; brown, moist, medium stiff, <u>GRAVE</u> grain gravel	:LY SILT; fine to medim			1 2 3 4		B10-3					
5	at 5.0 feet; gray, dry, dense, <u>SANDY GRAVEL</u> sand, fie to coarse grain gravel with cobbles	; fine to medium grain			5 6 7		B10-6					
10	-				8 9 10		B10-9	7.00				
	-				11 12 13		B10-12	7:26				
15	at 15.0 feet; moist				14 15 16		B10-15	7:36				
20	-				17 18 19 20		B10-18					
	at 22.0 fact: brown wat donce SANDY CBAN	/EL : fine to coorse grain			21		B10-21					
25	sand, fine to coarse grain gravel with cobbles				23 24 25		B10-24	7:46				
_	Explanation			!_	_		1		1			1
	Sample Advance / Recovery No Recovery											
	Contact located approximately											
	V Groundwater level at time of dr ATD or date of measurement	illing										

PROJ	PROJECT: 4 Corners Cleaners			JOB # 17-126 BORING # B-10 PAGE 2 0						PAGE 2 OF 2			
Locat	tion: 23886	SE Kent Kangley Road, Maple Valley, WA			Appro	ximate Ele	vation:						
Subc	ontractor / Driller:	Cascade/Jeffery Johnson			Equipment / Drilling Method: Sonic								
Date	: July 20	, 2018			Logge	d By:	B. Dilba						
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations		
				26									
				27		B10-27							
				28									
				29									
30				30		B10-30	7:48						
				31									
				32		B10-33	7:55						
				33									
25				34									
35				35									
				36									
				37									
		Total enth = 37 5 feet has		38									
	<u>Explanation</u>												
	Sample	Advance / Recovery											
	No Rec	covery											
	Contac	t located approximately											
	Ground ATD or date	lwater level at time of drilling of measurement											

PROJECT: 4 Corners Cleaners			JOB # 17-126 BORING # B-11 PAGE 1 OF						PAGE 1 OF 2				
Loca	tion:	23886 SE Kent Kangley Road, Maple Valley, WA			Approximate Elevation:								
Subc	ontractor /	Driller: Cascade/Jeffery Johnson				Equ	ipr	nent / Drilli	ing Metl	nod: Sonic			
Date):	July 20, 2018				Log	ge	d By:	B.Dilba				
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample	Depth	Sample	Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Asphalt und	erlain by;							9:21				
	at 3.0 feet; I grain gravel	prown, moist, medium stiff, <u>GRAVELY SILT;</u> fine to medim			1 2 3 4			B11-3					
5	at 5.0 feet; g sand, fie to	gray, dry, dense, <u>SANDY GRAVEL</u> ; fine to medium grain coarse grain gravel with cobbles			5 6 7			B11-6					
10					8 9 10		_	B11-9					
	-				11 12 13			B11-12	9:33				
15	at 15.0 feet;	moist			14 15 16			B11-15	9:33				
20	-				17			B11-18	9:40				
	at 22.0 feet	brown wet dense SANDY GRAVEL fine to coarse grain			20 21 22			B11-21	9:40				
25	sand, fine to	coarse grain gravel with cobbles			23 24 25			B11-24	9:50				
	Explanatio	<u>n</u>											
	⊥ ⊗ 	Sample Advance / Recovery No Recovery Contact located approximately Groundwater level at time of drilling											
	ATD	or date of measurement											

PRO.	JECT:	4 Corners Cleaners			JOB #	17-126		BORING #	B-11		PAGE 2 OF 2			
Loca	tion:	23886 SE Kent Kangley Road, Maple Valley, WA			Appro	ximate Elev	vation:							
Subc	ontractor /	Driller: Cascade/Jeffery Johnson			Equipment / Drilling Method: Sonic									
Date):	July 20, 2018			Logge	d By:	B. Dilba							
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations			
				26										
				27										
				28		B11-28								
				29										
30				30		B11-30	9:50							
				31										
				32										
				33		B11-33	9:58							
				34										
35				35										
				36										
				37										
				38			10:01							
		Total Depth = 37.5 feet bgs												
]													
]													
	Explanatio	<u>on</u>												
	I	Sample Advance / Recovery												
	\otimes	No Recovery												
		Contact located approximately												
	ATD	Groundwater level at time of drilling or date of measurement												

PROJECT: 4 Corners Cleaners			JOB # 17-126 BORING # B-12 PAGE 1					PAGE 1 OF 2			
Loca	ation: 23886 SE Kent Kangley Road, Maple Val	ley, WA			Approximate Elevation:						
Subc	contractor / Driller: Cascade/Jeffery Johnson				Equip	ment / Drill	ing Meth	nod: Sonic			
Date	e: July 23, 2018				Logge	d By:	B.Dilba				
Boring Depth (feet)	Soil Description	Unified Soil	Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Asphalt underlain by;						8:25				
	at 3.0 feet; brown, moist, medium stiff, <u>GRAVELY SILT</u> ; fir grain gravel	ne to medim	-		3	B12-3					
5	at 5.0 feet; gray, dry, dense, <u>SANDY GRAVEL</u> ; fine to me sand, fie to coarse grain gravel with cobbles	dium grain	-		5 6 7	B12-6	8:52				
10	-					B12-9					
	-		_	1	3	B12-12	8:58				
15	at 15.0 feet; moist		-	1	4 5 <u> </u>	B12-15	9:02				
20	-		-	1	8	B12-18					
	at 22.0 feet; brown, moist, dense <u>, SANDY GRAVEL;</u> fine t	o coarse	-	2	2	B12-21	9:15				
25	_grain sand, fine to coarse grain gravel with cobbles			2	8 4 5	B12-24	9:26				
	<u>Explanation</u>										
	Sample Advance / Recovery No Recovery										
	Contact located approximately										
	Groundwater level at time of drilling ATD or date of measurement										

PRO.	JECT: 4 Corners Cleaners		JOB # 17-126 BORING # B-12 PAGE 2						PAGE 2 OF 2				
Loca	ocation: 23886 SE Kent Kangley Road, Maple Valley, WA			Approximate Elevation:									
Subc	ontractor / Driller: Cascade/Jeffery Johnson			Equipment / Drilling Method: Sonic									
Date	:: July 23, 2018			Logge	d By:	B. Dilba							
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations			
			26										
			20		B12-27								
			27										
			28										
			29		D40.00	0.07							
30	at 30 feet: wet		30		B12-30	9:27							
	-	-	31										
			32										
			33		B12-33	10:04							
			34										
35			35										
			36										
			27		B12-37								
			37										
	Total Depth = 37.0 feet		38										
			39										
40			40										
45													
50													
- 50	<u>Explanation</u>												
	L Sample Advance / Recovery												
	No Recovery												
	Contact located approximately												
	Groundwater level at time of drilling or date of measurement												

PROJECT: 4 Corners Cleaners			JOB # 17-126 BORING # B-13 PAG					PAGE 1 OF 2							
Loca	ocation: 23886 SE Kent Kangley Road, Maple Valley, WA				Approximate Elevation:										
Subo	contractor /	Driller: Cascade/Jeffery Johnson				Equipment / Drilling Method: Sonic									
Date	ə:	July 23, 2018				Logge	d By:	B.Dilba							
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample	Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations			
	Asphaltung	erlain hv:						11.15							
	at 3.0 feet;	prown, moist, medium stiff, <u>GRAVELY SILT</u> ; fine to medim			1		B13-3	11.15							
5	at 5.0 feet; sand, fie to	gray, dry, dense, <u>SANDY GRAVEL</u> ; fine to medium grain coarse grain gravel with cobbles			5 6 7		B13-6	11:38							
10	-				8 9 10		B13-9	11:44							
	-				11 12 13		B13-12								
15	at 15.0 feet	moist			14 15 16 17		B13-15	11:52							
20	-				18		B13-18								
	at 20.0 feet	wet			20 21 22		B13-21								
25	grain sand,	fine to coarse grain gravel with cobbles			23 24 25		B13-24	12:10							
	Explanatio	<u>on</u>	•								•				
		Sample Advance / Recovery No Recovery Contact located approximately Groundwater level at time of drilling or date of measurement													

PRO.	JECT: 4 Corners	Cleaners			JOB #	17-126		BORING #	B-13		PAGE 2 OF 2
Loca	tion: 23886 SE F	Kent Kangley Road, Maple Valley, WA			Appro	ximate Ele	vation:				
Subc	ontractor / Driller: Case	cade/Jeffery Johnson			Equipr	ment / Drill	ing Meth	od: Sonic			
Date	July 23, 20	18			Logge	d By:	B. Dilba				
Boring Depth (feet)	S	oil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
				26		B13-27					
30				29		B13-30	12:24				
				31 32 33							
35				34 35		B13-35	12:26				
-				36							
				37							
	Tota	I Depth = 37.0 feet bgs		39							
40				40							
45											
50											
50	Explanation										
	Sample Ad	vance / Recovery									
	No Recove	ry									
	Contact loc	ated approximately									
	Groundwate ATD or date of n	er level at time of drilling neasurement									

AEC		S NWW MAY						LO	G OF	BOR	EHOLE
PROJ	JECT:	4 Corners Cleaners			JOB #	17-126		BORING	# B-14		PAGE 1 OF 1
ocat	tion:	23886 SE Kent Kangley Road, Maple Va	lley, WA		Appro	ximate Ele	vation:				
Subc	ontractor /	Driller: Cascade/Josh Doty			Equipr	ment / Drill	ling Met	hod: Geop	robe 420	M/Dire	ct Push
Date	:	November 19, 2023			Logge	d By:	Paul Hi	tch			_
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observation
	Conrete und	derlain by									
3	Brown Silty	Gravel, dry to moist	GM	3		B-14-3	9:15	N/A	0.0	N	
	Fynlanatic	n									
		Sample Advance / Recovery									
	\otimes	No Recovery									
		Contact located approximately									
		Groundwater level at time of drilling or date of measurement									

AIEG		AN S NW MAT						LO	G OF	BOR	EHOLE
PROJ	ECT:	4 Corners Cleaners			JOB #	17-126		BORING	# B-15		PAGE 1 OF 1
Locat	ion:	23886 SE Kent Kangley Road, Maple Valle	ey, WA		Appro	ximate Ele	vation:				
Subco	ontractor /	Driller: Cascade/Josh Doty			Equipr	ment / Drill	ling Meth	nod: Geop	robe 420	M/Dire	ct Push
Date		November 19, 2023			Logge	d By:	Paul Hit	tch			
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observation
	Conrete und	lerlain by									
3	Brown Silty	Gravel, dry to moist	GM	3		B-15-3	9:25	N/A	0.0	N	
	Explanatio	<u>on</u>									
	I	Sample Advance / Recovery									
	\otimes	No Recovery									
		Groundwater level at time of drilling									

AEC		AN S NW						LO	G OF	BOR	EHOLE
PRO.	JECT:	4 Corners Cleaners			JOB #	17-126		BORING	# B-16		PAGE 1 OF 1
Loca	tion:	23886 SE Kent Kangley Road, Maple Valley	<i>ı, W</i> A		Appro	ximate Ele	vation:				
Subc	ontractor /	Driller: Cascade/Josh Doty			Equip	ment / Dril	ling Met	hod: Geop	robe 420)M/Dire	ct Push
Date	:	November 19, 2023			Logge	d By:	Paul Hi	tch		1	
Boring Depth (feet)		Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observation
	Conrete und	erlain by									
3	Brown Silty	Gravel, dry to moist	GM		2	B-16-3	9:40	N/A	0.0	N	
	<u>Explanatio</u>	<u>on</u>									
	Τ	Sample Advance / Recovery									
	\otimes	No Recovery									
		Contact located approximately									
	ATD	Groundwater level at time of drilling or date of measurement									

PRO	IECT: 4 Corners Cleaners			JOB #	17-126		BORING #	B-17		PAGE 1 OF 1
Loca	tion: 23886 SE Kent Kangley Road, Maple Valley, WA			Approx	ximate Elev	ation:				
Subc	ontractor / Driller: Cascade/Wes Kennedy			Equipr	nent / Drilli	ng Meth	od: Truck-l	Mounted	d HSA	
Date	: November 20, 2023			Logge	d By:	Paul Hit	ch			
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Asphalt underlain by									
5	Brown Silt, large cobble, moist	GM	5				7-10-12	0.0	Ν	
10	Brown Silt, large cobble, moist		10		B-17-10	9:50	13-15-50	0.0	Ν	
15	Brown Silt, wood debris, wet		15		B-17-15	9:55	8-6-11	0.0	Ν	
20	Brown Silty Sand, well graded, wet	SM	20		B-17-20	10:20	17-50	0.0	Ν	
25	Brown Silty Gravel, poorly graded, wet	GM	25		B-17-25	10:40	37-50	0.0	Ν	
30	Brown Sandy Gravel, well graded, wet		30				21-50	0.0	Ν	
_	Explanation									
	Image: Sample Advance / Recovery Image: Sample Advance / Recovery Image: No Recovery Image: Contact located approximately Image: Sample Advance / Recovery Image: Sample A									
	ATD or date of measurement									

PRO	ECT: 4 Corners Cleaners			JOB #	17-126		BORING #	B-18		PAGE 1 OF 1
oca	tion: 23886 SE Kent Kangley Road, Maple Valley, WA			Approx	ximate Elev	vation:				
Subc	ontractor / Driller: Cascade/Wes Kennedy			Equipr	nent / Drilli	ing Meth	od: Truck-	Mounted	d HSA	
Date	: November 20, 2023			Logge	d By:	Paul Hit	ch			
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Asphalt underlain by									
5	Brown Silty Sand, well graded gravel, moist	SM	5				50	0.0	Ν	
10	Brown Silty Gravel, well graded, moist	GM	10		B-18-10	12:30	50	0.0	Ν	
15	Brown Silty Gravel, well graded, moist		15		B-18-15	12:40	34-50	0.0	Ν	
	Refusal at 18 ft bos									
20										
25										
30										
	Explanation									
	Sample Advance / Recovery									
	No Recovery									
	Contact located approximately									
	ATD Groundwater level at time of drilling or date of measurement									

PROJ	ECT: 4 Corners Cleaners			JOB #	17-126		BORING #	B-19		PAGE 1 OF 1
ocat	ion: 23886 SE Kent Kangley Road, Maple Valley, WA			Appro	ximate Elev	vation:				
Subc	ontractor / Driller: Cascade/Wes Kennedy			Equip	ment / Drill	ing Meth	od: Truck-	Mounted	d HSA	
Date	: November 20, 2023			Logge	d By:	Paul Hit	ch			
Boring Depth (feet)	Soil Description	Unified Soil Symbol	Sample Depth	Sample Recovery	Sample Number	Time	Blows/Foot	PID Reading	Sheen	Observations
	Asphalt underlain by									
5	Brown Silty Sand, well graded gravel, moist	SM	5				50 for 4	0.0	Ν	
10	Brown Silty Gravel, well graded, moist	GM	10				27-50	0.0	N	
10										
15	Brown Silty Gravel, well graded, moist		15				31-50	0.0	N	
18	Brown Silty Gravel, well graded, moist, refusal		18		B-19-18	14:20	50 for 6	0.0	N	
20										
25										
30										
	Explanation									
	Sample Advance / Recovery									
	No Recovery									
	Contact located approximately									
	ATD Groundwater level at time of drilling or date of measurement									

March 20, 2017

MAR 2 7 2017

Charlie Swift Associated Environmental Group, Inc. 605 11th Ave. SE, Suite 201 Olympia, WA 98501

Dear Mr. Swift:

Please find enclosed the analytical data report for the 4 Corners Cleaners in Kent, Washington. Probe services were conducted on March 13, 2016. Soil samples were analyzed for Chlorinated VOC's by Method 8260 on March 15, 2017.

The results of the analyses are summarized in the attached table. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. An invoice for this work is also enclosed.

ESN Northwest appreciates the opportunity to have provided analytical services to Associated Environmental Group, Inc. for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Michael a Koroser

Michael A. Korosec President

1210 Eastside Street SE, Suite 200 ■ Olympia, Washington 98501 ■ 360.459.4670 ■ FAX 360.459.3432 Web Site: www.esnnw.com E-Mail: info@esnnw.com

ESN NORTHWEST CHEMISTRY LABORATORY

Associated Environmental Group PROJECT FOUR CORNERS CLEANERS PROJECT #17-126 Kent, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

	DI	MR	LCS	LCSD	R_3_23	B-2-20	B-1-22
Data outroated	RL	03/15/17	03/15/17	03/15/17	03/13/17	03/13/17	03/13/17
Date analyzed	(mg/Kg)	03/15/17	03/15/17	03/15/17	03/15/17	03/15/17	03/15/17
% Moisture	(116) 126)	05/15/17	00/10/17	00/10/11	5%	6%	6%
Dichlorodifluoromethane	0.05	nd			nd	nd	nd
Chloromethane	0.05	nd			nd	nd	nd
Vinyl chloride	0.02	nd	149*%	139*%	nd	nd	nd
Chloroethane	0.05	nd			nd	nd	nd
Trichlorofluoromethane	0.05	nd			nd	nd	nd
1 1-Dichloroethene	0.05	nd	83%	78%	nd	nd	nd
Methylene chloride	0.05	nd			nd	nd	nd
trans-1 2-Dichloroethene	0.05	nd			nd	nd	nd
1 1-Dichloroethane	0.05	nd			nd	nd	nd
cis-1 2-Dichloroethene	0.05	nd			nd	nd	nd
2 2-Dichloropropane	0.05	nd			nd	nd	nd
Chloroform	0.05	nd	84%	77%	nd	nd	nd
Bromochloromethane	0.05	nd			nd	nd	nd
1.1.1-Trichloroethane	0.05	nd			nd	nd	nd
1.2-Dichloroethane (EDC)	0.05	nd			nd	nd	nd
1 1-Dichloropropene	0.05	nd			nd	nd	nd
Carbon tetrachloride	0.05	nd			nd	nd	nd
Trichloroethene (TCF)	0.02	nd	96%	89%	nd	nd	nd
1.2-Dichloropropage	0.05	nd	94%	87%	nd	nd	nd
Bromodichloromethane	0.05	nd			nd	nd	nd
cis-1 3-Dichloropropene	0.05	nd			nd	nd	nd
trans-1 3-Dichloropropene	0.05	nd			nd	nd	nd
1 1 2-Trichloroethane	0.05	nd			nd	nd	nd
1.3-Dichloropropage	0.05	nd			nd	nd	nd
Dibromochloromethane	0.05	nd			nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	101%	96%	0.067	0.044	0.058
Chlorobenzene	0.05	nd	94%	91%	nd	nd	nd
1 1 1 2 Tetrachloroethane	0.05	nd			nd	nd	nd
1 1 2 2-Tetrachloroethane	0.05	nd			nd	nd	nd
1 2 3-Trichloronronane	0.05	nd			nd	nd	nd
2. Chlorotoluene	0.05	nd			nd	nd	nd
4-Chlorotoluene	0.05	nd			nd	nd	nd
1 3-Dichlorobenzene	0.05	nd			nd	nd	nd
1.4-Dichlorobenzene	0.05	nd			nd	nd	nd
1.2-Dichlorobenzene	0.05	nd			nd	nd	nd
1.2-Dibromo-3-Chloropropane	0.05	nd			nd	nd	nd
1.2.4-Trichlorobenzene	0.05	nd			nd	nd	nd
Hexachloro-1.3-butadiene	0.05	nd			nd	nd	nd
1.2.3-Trichlorobenzene	0.05	nd			nd	nd	nd
Surrogate recoveries			11.50/	11407	1000/	1000/	1020/
Dibromofluoromethane		111%	115%	114%	127%	120%	12370
Toluene-d8		79%	75%	73%	82%	ð1%	01% 1100/
4-Bromofluorobenzene		120%	113%	113%	119%	122%	119%

Analysis of Chlorinated Volatile Organic Compounds in Soil by Method 8260C/5035

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

CHAIN-OF-CUSTODY RECORD

	A STATE OF A DECK OF A STATE		41									-		-					-								_
61	10								1. 1.				DA	TE:	14	3/	13,	15)	a de la	-	PA	GE	OF			_
	, jtc	Au S.	x S.t	4	201	1.0	1/10	1.5	4	, A			PR	OJE	ст	NA	ME			4	-1	O R	MAI (Vian	al		
. 35	52-5	835	FAX: 3	10	- 3	52.	81	60	1				LO	CAT	101	N: _		Ke.	+	-	me	pl	1. U.I.	, W.	Ă.		
1	7-	126	PROJECT	ГМ	ANA	GER		C.	Se	sit	ž		СС	LLE	сто	DR:		(2.	Se	if	1		DATE OF	3/1	3/1	2
	1.4	14 14 M			14.	7	1.		7	7	7	-/	7	10	7	7	7	7.	7	7	7	7	111	COLLEGIN		2	1.57
				Sec. 2	1587	1	t ine	/	1	/ /	10	/		20	25	atals	/ /	Sil								ber ers	ber
				NA	*/JP	ie ^{se}	2501	1	s/,	8/3	v a	1%	6/.i	10° 11	15	/	100	/ ji	e/ii	e/ite	/	/	//			Vum	Num
		Sample	Container	1%	×/2	:/x	12	8	8	mill	×/	\$°/	20/	2/2	5/	/	38°/	0/	2°/	5%	/	/	NOTES			Con	ote N
Depth	1 ime	Type	Type	K~	<u> </u>	~~	Ŷ		79	<u> </u>	<u> </u>	70	~ ~	14									A Pa	- 1	-	<u>5</u> 5	S C
05.	10.50	Soil	00'	2.5%	in the second				202	1.1.1.	1.1	1	1						1.1.1	in the			10 0 11 120	stie me	1		1
1.	10,50	2011	800	and the			X	1.1.1								1										1.11	
22	11.00	Seil.	807				X		in the																		
											1			an an											and the second		No.
									1		i.e.																
											1.1.1			100	4434 4434			in the second	1								
															-									and a little			
	1.2.2.2				12		1			Sec. 1																and a	1947
				and an			1		24								1										
	. Second			1.50				1		1.1																	
				and the second													, a gar Nga										
	in the						14																	(m) 市政有			
	1200																										
Sec.	A constant								1	1.1				la de la				10 10 10 10 10 10			1						
				-				a sector	1													12 - 12 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14		1.1.1.2.		An Ang	
							1.5				1 Section														122.13		Sec. 1
	S. Salar	a the state	and the second								Ner Al														and and		al de la composition de la composition La composition de la c
n de la composition d La composition de la c								1.17	140						1		4	1									
re)	DAT	TE/TIME	RECE	IVED	BY (Si	gnatu	re)		DAT	E/TIM	E				S	AMP	LE RI	CEIP	т	Sec. 1		1	LABORATORY	NOTES:			
-	1.11	- 1-	11 1	7	2			2	1:0			тот	AL N	UMBE	R OF		NTAIN	IERS									
51	15/1	1/31.	58.0	/				1	115/	174	:05	CHA	IN O	FCUS	TOD	Y SEA	LS Y	/N/N	A	1.1.1							
re)	DAT	TE/TIME	RECE	IVED	BY (Si	gnatu	re)	4. 2. 4. 4. 	DAT	E/TIM	E	SEA	LS IN	TACT?	Y/N	/NA			1			-					
												REC	EIVE	GOC	D C	OND.	/COL	D				1 					
	and the second			4.	14				1.2	i dente		ТОИ	ES:				1.15	1122		1		1.4.1.1	Turn Around	Fime: 24 H	R 48 H	R 5 [DAY
e 200								Pho	one:	360-45	9-46	570												Website:	www.e	snnw	.com
INT:														G	C Image: Container DATE: Image: Container Image: Container Image: Container Image: Container Image: Container Image: Container Image: Container Image: Container Image: Container Image: Container	C	C	C			C	C	C	C	C	C	C

ESN

NORTHWEST, INC.

Environmental

Services Network

Environmental Services Network

April 5, 2017

Becky Dilba Associated Environmental Group, Inc. 605 11th Ave. SE, Suite 201 Olympia, WA 98501

Dear Ms. Dilba:

Please find enclosed the analytical data report for the Four Corners Cleaners in Maple Valley, Washington. Probe services were conducted on March 31, 2017. Soil vapor samples were analyzed for Chlorinated VOC's by Method 8260 on April 1, 2017.

The results of the analyses are summarized in the attached table. Applicable detection limits and QA/QC data are included. An invoice for this work is also enclosed.

ESN Northwest appreciates the opportunity to have provided analytical services to Associated Environmental Group, Inc. for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Michael a Kororea

Michael A. Korosec President

ESN NORTHWEST CHEMISTRY LABORATORY

Associated Environmental Group PROJECT FOUR CORNERS CLEANERS PROJECT #17-126 Maple Valley, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Chlorinated Volatile Organic Compounds in Soil Vapor by Method 8260C

Analytical Results			· .							
	RL	MB	LCS	LCSD	SV1	SV2	SV3	SV4	SV5	SV6
Date analyzed	(ug/m3)	04/01/17	04/01/17	04/01/17	04/01/17	04/01/17	04/01/17	04/01/17	04/01/17	04/01/17
Dichlorodifluoromethane	10.0	nd			nd	8,600	12,000	15,000	8,200	7,200
Chloromethane	10.0	nd			nd	nd	nd	nd	nd	nd
Vinvl chloride	10.0	nd	130%	125%	nd	nd	nd	nd	nd	nd
Chloroethane	10.0	nd			nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	10.0	nd			nd	nd	nd	nd	nd	nd
1.1-Dichloroethene	10.0	nd	83%	86%	nd	nd	nd	nd	nd	nd
Methylene chloride	10.0	nd			nd	nd	nd	nd	nd	nd
trans-1.2-Dichloroethene	10.0	nd			nd	nd	nd	nd	nd	nd
1.1-Dichloroethane	10.0	nd			nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	10.0	nd			nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	10.0	nd			nd	nd	nd	nd	nd	nd
Chloroform	10.0	nd	103%	111%	nd	nd	nd	nd	nd	nd
Bromochloromethane	10.0	nd			nd	nd	nd	nd	nd	nd
1.1.1-Trichloroethane	10.0	nd			nd	nd	nd	nd	nd	nd
1.2-Dichloroethane (EDC)	10.0	nd			nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	10.0	nd			nd	nd	nd	nd	nd	nd
Carbon tetrachloride	10.0	nd			nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	10.0	nd	93%	98%	nd	nd	nd	nd	nd	nd
1.2-Dichloropropane	10.0	nd			nd	nd	nd	nd	nd	nd
Bromodichloromethane	10.0	nd			nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	10.0	nd			nd	nd	nd	nd	nd	nd
trans-1,3-Dichloropropene	10.0	nd			nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	10.0	nd			nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	10.0	nd			nd	nd	nd	nd	nd	nd
Dibromochloromethane	10.0	nd			nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	10.0	nd	97%	97%	1,600	1,800	1,500	790	940	850
Chlorobenzene	10.0	nd	98%	100%	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	10.0	nd			nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	10.0	nd			nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	10.0	nd			nd	nd	nd	nd	nd	nd
2-Chlorotoluene	10.0	nd			nd	nd	nd	nd	nd	nd
4-Chlorotoluene	10.0	nd			nd	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	10.0	nd			nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	10.0	nd			nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	10.0	nd			nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	10.0	nd			nd	nd	nd	nd	nd	nd
1,2,4-Trichlorobenzene	10.0	nd			nd	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	10.0	nd			nd	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	10.0	nd			nd	nd	nd	nd	nd	nd
Promocete apostonice										
Dibromofluoromothana		10404	112%	114%	102%	106%	106%	107%	108%	112%
Taluana de		10470	06%	04%	10270	107%	107%	107%	107%	110%
A Dromofluorohannana		10370	020%	100%	102%	107%	107%	104%	103%	101%
4-Dromonuorobenzene		10470	7070	10070	10070	10770	10//0	10770	10370	10170

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

ESN NORTHWEST CHEMISTRY LABORATORY

Associated Environmental Group PROJECT FOUR CORNERS CLEANERS PROJECT #17-126 Maple Valley, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Chlorinated Volatile Organic Compounds in Soil Vapor by Method 8260C

RLSV7SV8SV9SV10SV11SV12SV13SV14Date analyzed $(ug/m3)$ $04/01/17$ $04/01$	Analytical Results									
Date analyzed(ug/m3) 04/01/17 </th <th></th> <th>RL</th> <th>SV7</th> <th>SV8</th> <th>SV9</th> <th>SV10</th> <th>SV11</th> <th>SV12</th> <th>SV13</th> <th>SV14</th>		RL	SV7	SV8	SV9	SV10	SV11	SV12	SV13	SV14
Dichlorodifluoromethane10.08702902,5003,1002,8003,4009,000610Chloromethane10.0ndndndndndndndndndVinyl chloride10.0ndndndndndndndndndChloroethane10.0ndndndndndndndndndTichlorofluoromethane10.0ndndndndndndndnd1,1-Dichloroethene10.0ndndndndndndndndMethylene chloride10.0ndndndndndndndndMethylene chloride10.0ndndndndndndndnd1,1-Dichloroethene10.0ndndndndndndndnd2,2-Dichloroethene10.0ndndndndndndndnd1,1-Dichloroethene10.0ndndndndndndndnd2,2-Dichloropropane10.0ndndndndndndndnd1,1,1-Trichloroethane10.0ndndndndndndndnd1,1,1-Trichloroethane10.0ndndndndndndndnd1,1,1-Trichloroethane10.0ndnd	Date analyzed	(ug/m3)	04/01/17	04/01/17	04/01/17	04/01/17	04/01/17	04/01/17	04/01/17	04/01/17
Dichlorodiftuoromethane10.08702902,5003,1002,8003,4009,000610Chloromethane10.0ndndndndndndndndndndVinyl chloride10.0ndndndndndndndndndndChloroethane10.0ndndndndndndndndndndTrichlorofluoromethane10.0ndndndndndndndndnd1,1-Dichloroethene10.0ndndndndndndndndndMethylene chloride10.0ndndndndndndndndnd1,1-Dichloroethene10.0ndndndndndndndnd1,2-Dichloroethene10.0ndndndndndndndnd2,2-Dichloroethene10.0ndndndndndndndnd2,2-Dichloropropane10.0ndndndndndndndnd1,1,1-Trichloroethane10.0ndndndndndndndnd1,1,1-Trichloroethane10.0ndndndndndndndndnd1,1-Dichloropropene10.0ndndndndndndndnd		10.0	070	200	2 500	2 100	2 000	2 400	0.000	(10
Chloromethane10.0nd </td <td>Dichlorodifluoromethane</td> <td>10.0</td> <td>870</td> <td>290</td> <td>2,500</td> <td>3,100</td> <td>2,800</td> <td>3,400</td> <td>9,000</td> <td>610</td>	Dichlorodifluoromethane	10.0	870	290	2,500	3,100	2,800	3,400	9,000	610
Vinyl chloride10.0ndndndndndndndndndndChloroethane10.0ndndndndndndndndndndndTrichlorofluoromethane10.0ndndndndndndndndndndnd1,1-Dichloroethene10.0ndndndndndndndndndndndMethylene chloride10.0ndndndndndndndndndndndtrans-1,2-Dichloroethene10.0ndndndndndndndndndndnd1,1-Dichloroethene10.0ndndndndndndndndndndndndnd2,2-Dichloropropane10.0nd	Chloromethane	10.0	nd	nd	nd	nd	nd	nd	na	na
Chloroethane10.0ndndndndndndndndndndTrichlorofluoromethane10.0ndndndndndndndndndndnd1,1-Dichloroethene10.0ndndndndndndndndndndndMethylene chloride10.0nd<	Vinyl chloride	10.0	nd	nd	nd	nd	nd	nd	na	nd
Trichlorofluoromethane10.0ndndndndndndndndnd1,1-Dichloroethene10.0ndndndndndndndndndndMethylene chloride10.0ndndndndndndndndndndtrans-1,2-Dichloroethene10.0ndndndndndndndndnd1,1-Dichloroethane10.0ndndndndndndndndndcis-1,2-Dichloroethene10.0ndndndndndndndnd2,2-Dichloroethene10.0ndndndndndndndnd2,2-Dichloropropane10.0ndndndndndndndndBromochloromethane10.0ndndndndndndndnd1,1-Trichloroethane10.0ndndndndndndndnd1,2-Dichloropropene10.0ndndndndndndndndnd1,1-Dichloropropene10.0ndndndndndndndnd1,2-Dichloropropene10.0ndndndndndndndnd1,2-Dichloropropene10.0ndndndndndndndnd1,2-	Chloroethane	10.0	nd							
1,1-Dichloroethene10.0ndndndndndndndndndMethylene chloride10.0ndndndndndndndndndndtrans-1,2-Dichloroethene10.0ndndndndndndndndnd1,1-Dichloroethane10.0ndndndndndndndndndcis-1,2-Dichloroethene10.0ndndndndndndndnd2,2-Dichloroethene10.0ndndndndndndndnd2,2-Dichloroethene10.0ndndndndndndndnd2,2-Dichloroethane10.0ndndndndndndndndBromochloromethane10.0ndndndndndndndnd1,1-Trichloroethane10.0ndndndndndndndnd1,2-Dichloroethane (EDC)10.0ndndndndndndndnd1,1-Dichloropropene10.0ndndndndndndndnd1,2-Dichloropropene10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndnd1,2-Dichloropropane10.0	Trichlorofluoromethane	10.0	nd							
Methylene chloride10.0nd <th< td=""><td>1,1-Dichloroethene</td><td>10.0</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td><td>nd</td></th<>	1,1-Dichloroethene	10.0	nd							
trans-1,2-Dichloroethene10.0ndndndndndndndnd1,1-Dichloroethane10.0ndndndndndndndndndcis-1,2-Dichloroethene10.0ndndndndndndndndnd2,2-Dichloroethene10.0ndndndndndndndndnd2,2-Dichloroethene10.0ndndndndndndndndBromochloromethane10.0ndndndndndndndndBromochloroethane10.0ndndndndndndndnd1,1-Trichloroethane10.0ndndndndndndndnd1,2-Dichloropropene10.0ndndndndndndndnd1,1-Dichloropropene10.0ndndndndndndndnd1,2-Dichloropropene10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndnd1,2-Dichloropropane10.0ndnd	Methylene chloride	10.0	nd							
1,1-Dichloroethane10.0ndndndndndndndndndcis-1,2-Dichloroethene10.0ndndndndndndndndnd2,2-Dichloropropane10.0ndndndndndndndndnd2,2-Dichloropropane10.0ndndndndndndndndBromochloromethane10.0ndndndndndndndBromochloromethane10.0ndndndndndndnd1,1-Trichloroethane10.0ndndndndndndnd1,2-Dichloropropene10.0ndndndndndndnd1,1-Dichloropropene10.0ndndndndndndnd1,2-Dichloropropene10.0ndndndndndndnd1,2-Dichloropropane10.0ndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndnd1,2-	trans-1,2-Dichloroethene	10.0	nd							
cis-1,2-Dichloroethene10.0ndndndndndndndndnd2,2-Dichloropropane10.0ndndndndndndndndndChloroform10.0ndndndndndndndndndndBromochloromethane10.0ndndndndndndndndnd1,1-Trichloroethane10.0ndndndndndndndnd1,2-Dichloroethane (EDC)10.0ndndndndndndnd1,1-Dichloropropene10.0ndndndndndndnd1,1-Dichloropropene10.0ndndndndndndnd1,2-Dichloropropene10.0ndndndndndndnd1,2-Dichloropropane10.0ndndndndndndnd1,2-Dichloropropane10.0ndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndnd </td <td>1,1-Dichloroethane</td> <td>10.0</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>nd</td>	1,1-Dichloroethane	10.0	nd							
2,2-Dichloropropane10.0ndndndndndndndndChloroform10.0ndndnd31031,000ndndndndndBromochloromethane10.0ndndndndndndndndndnd1,1,1-Trichloroethane10.0ndndndndndndndndnd1,2-Dichloroethane (EDC)10.0ndndndndndndndnd1,1-Dichloropropene10.0ndndndndndndnd1,1-Dichloropropene10.0ndndndndndndnd1,2-Dichloropropene10.0ndndndndndndnd1,2-Dichloropropane10.0ndndndndndndnd1,2-Dichloropropane10.0ndndndndndndnd1,2-Dichloropropane10.0ndndndndndndnd	cis-1,2-Dichloroethene	10.0	nd							
Chloroform10.0ndnd31031,000ndndndndndBromochloromethane10.0ndndndndndndndndndnd1,1,1-Trichloroethane10.0ndndndndndndndndndnd1,2-Dichloroethane (EDC)10.0ndndndndndndndndnd1,1-Dichloropropene10.0ndndndndndndndndCarbon tetrachloride10.0ndndndndndndndndTrichloroethene (TCE)10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndndRemedichloromethane10.0ndndndndndndndnd	2,2-Dichloropropane	10.0	nd							
Bromochloromethane10.0ndndndndndndndndnd1,1,1-Trichloroethane10.0ndndndndndndndndnd1,2-Dichloroethane (EDC)10.0ndndndndndndndndnd1,1-Dichloropropene10.0ndndndndndndndnd1,1-Dichloropropene10.0ndndndndndndndCarbon tetrachloride10.0ndndndndndndndTrichloroethene (TCE)10.0ndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndRemedichloromethane10.0ndndndndndndnd	Chloroform	10.0	nd	nd	310	31,000	nd	nd	nd	nd
1,1,1-Trichloroethane10.0ndndndndndndndnd1,2-Dichloroethane (EDC)10.0ndndndndndndndndnd1,1-Dichloropropene10.0ndndndndndndndndndCarbon tetrachloride10.0ndndndndndndndndndTrichloroethene (TCE)10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndndRemedichloromethane10.0ndndndndndndndnd	Bromochloromethane	10.0	nd							
1,2-Dichloropethane (EDC)10.0ndndndndndndndndnd1,1-Dichloropropene10.0ndndndndndndndndndCarbon tetrachloride10.0ndndndndndndndndndTrichloropthene (TCE)10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndRemedichloropmethane10.0ndndndndndndnd	1,1,1-Trichloroethane	10.0	nd							
1,1-Dichloropropene10.0ndndndndndndndndCarbon tetrachloride10.0ndndndndndndndndTrichloroethene (TCE)10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndndRemedichloropropane10.0ndndndndndndnd	1,2-Dichloroethane (EDC)	10.0	nd							
Carbon tetrachloride10.0ndndndndndndndndTrichloroethene (TCE)10.0ndndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndndBramodichloropropane10.0ndndndndndndnd	1,1-Dichloropropene	10.0	nd							
Trichloroethene (TCE)10.0ndndndndndndnd1,2-Dichloropropane10.0ndndndndndndndBromodichloropropate10.0ndndndndndndnd	Carbon tetrachloride	10.0	nd							
1,2-Dichloropropane 10.0 nd nd nd nd nd nd nd nd nd Bromodichloroprothane 10.0 nd nd nd nd nd nd nd nd	Trichloroethene (TCE)	10.0	nd							
Bromodichloromethane 10.0 nd nd nd nd nd nd nd	1,2-Dichloropropane	10.0	nd	nđ						
promodicinoronicanane rozo na	Bromodichloromethane	10.0	nd							
cis-1,3-Dichloropropene 10.0 nd nd nd nd nd nd nd nd	cis-1,3-Dichloropropene	10.0	nd	nd	nd	nd	nd	nd	nđ	nd
trans-1,3-Dichloropropene 10.0 nd nd nd nd nd nd nd nd	trans-1,3-Dichloropropene	10.0	nd							
1.1.2-Trichloroethane 10.0 nd nd nd 380 nd nd nd nd	1,1,2-Trichloroethane	10.0	nd	nd	nd	380	nd	nd	nd	nd
1.3-Dichloropropane 10.0 nd nd nd nd nd nd nd	1.3-Dichloropropane	10.0	nd							
Dibromochloromethane 10.0 nd nd nd nd nd nd nd nd	Dibromochloromethane	10.0	nd							
Tetrachloroethene (PCE) 10.0 1.700 1.100 2.800 2.100 6.300 2.600 180 2.600	Tetrachloroethene (PCE)	10.0	1.700	1.100	2.800	2.100	6,300	2.600	180	2,600
Chlorobenzene 10.0 nd nd nd nd nd nd nd	Chlorobenzene	10.0	nd							
1.1.1.2-Tetrachloroethane 10.0 nd nd nd nd nd nd nd nd	1.1.1.2-Tetrachloroethane	10.0	nd							
1.1.2.2-Tetrachloroethane 10.0 nd nd nd nd nd nd nd nd	1.1.2.2-Tetrachloroethane	10.0	nd							
12 3-Trichloropropage 10.0 nd nd nd nd nd nd nd nd	1 2 3-Trichloropropane	10.0	nd							
2-Chlorotoluene 10.0 nd nd nd nd nd nd nd nd	2-Chlorotoluene	10.0	nd							
4-Chlorotoluene 10.0 nd nd nd nd nd nd nd	4-Chlorotoluene	10.0	nd							
13-Dicklorobenzene 10.0 nd nd nd nd nd nd nd	1 3-Dichlorobenzene	10.0	nd							
14-Dichlorobenzene 10.0 nd nd nd nd nd nd nd nd	1 4-Dichlorobenzene	10.0	nd							
12-Dichorobenzene 100 nd nd nd nd nd nd nd nd	1.2-Dichlorobenzene	10.0	nd							
12-Dipromo-3-Chloropropage 10.0 nd nd nd nd nd nd nd nd nd	12-Dibromo-3-Chloropropage	10.0	nd							
1.24-Trioblorobergene 10.0 nd nd nd nd nd nd nd nd nd	1.2.4-Trichlorobenzene	10.0	nd							
Herzeloro-13-but diene 100 nd nd nd nd nd nd nd nd	Heyachloro-1 3-butadiene	10.0	nd							
12.3 Trishlorobenzane 10.0 nd nd nd nd nd nd nd nd nd	1.2.3-Trichlorobenzene	10.0	nd							
1,2,5-11 chronobelizene 10.0 na na na na na na na na	1,2,3-111011010000120110	10.0	110	iiu	i	110	110		110	
Surrogate recoveries	Surrogate recoveries									
Dibromofluoromethane 107% 111% 108% 111% 102% 100% 103% 110%	Dibromofluoromethane		107%	111%	108%	111%	102%	100%	103%	110%
Toluene-d8 104% 105% 103% 104% 112% 106% 106% 104%	Toluene-d8		104%	105%	103%	104%	112%	106%	106%	104%
4-Bromofluorobenzene 106% 104% 106% 105% 110% 104% 106% 106%	4-Bromofluorobenzene		106%	104%	106%	105%	110%	104%	106%	106%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

CHAIN-OF-CUSTODY RECORD

	1920 4 - 15		1		11 A 1			14			1		1				-			-								
CLIENT: AFG	McG S: bos (3bb) 3bb) PROJECT #: PROJECT MANAGER:														9	3/31	11	7				PA	GE	C	DF	1	-	_
ADDRESS: 100	51	1.th	Aul	SE	6	yv	10%	-					PR	OJE	СТ	NA	ME		4	Co	xx	er	s clea	mer	5			
PHONE: (360)-	3520	- 48	335	FAX:	100		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						LO	CA	ГЮ	N: _	2	3%	386	·X	er	t-	- Knyle	YP	10	Mai	rev	all
CLIENT PROJECT #	p-	12.0		PROJEC		NAG	ER:	2 1	22	2 m			cc	DLLE	сто	OR:	F	3.	21	5				COLLE	OF CTION:	3/	31	h
	and the second			and the second		5/	/i	1	1	11	/	/	7	10	5%	15	7	/a	7	7	/	/	111			1.		
	1.				alts	6/	2/2	sine	100	1.0/	\$270	10/	2/	383	et?	Net al	1	?/	0/.	e/.	/	/	///				iners	mber
			Sample	Container	AN	8/9		4/	3%	920°) 39/	×/ 8		8	3		best .	53	0/	Suit		//	//				Conta	orati te Nu
Sample Number	Depth	Time	Туре	Туре	1.8%	2/2	¥/\$	У s	× 39	55	01/0	<u>%</u>	<u>}</u>	<u>z</u> /i	2	<u>%</u>	2/6	20	2	Z,	4		/ NOTES				of of	Not
1.		101.00	Ar.	and a start of the	artice .	1					1.		1						t all a	1			and and the			and a		1
2. SVI	1	1277	NIC	1 caloge	in the second		and the	Γ				10.12	1.10	and a second			1.165		Ara an State	17	1.4.2%							
3. 502		1105									d any	A series						1		1.1.1	1. 18							
4. SV3	1	1109	and a second					1.1		10				1.2			114			1.0				and the second	In the			
5. 504	1	1115							14	1.	4										1-11-1							
6. SUS																												
7. 3506	1	1130				N Start						1	1.14			-						14/201						
8. 577		1140		and grant	300																a fine					a de la composition de la comp	100	
9. 508	1	155	an there a	Barr Barris	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					2.14							1			1 Call							-	
10 529		1207				a Lag						- Same								1.10			te a gan da se da se da	a de la			19	
11 SV 12	/	1211																						and and a second se				
12 51 1	1	1218		a de la compañía de l La compañía de la comp							14 14 14 14 14 14 14 14 14 14 14 14 14 1																	
12. 51 12		1230											and the second								144			and the second sec				
14		12hp				tent spranse								201		Carlos Carlos						199.24				1994 - 1994 1994 - 1994 1994 - 1994		
15 JV 14		20/19											1.1.1				1999 - 1999 - 1999 - 1999 - 1999 - 1999				and an			1. 1927 (BL)				
15.							1000				•																1	
17						en en la			5 14 19 1 1 1 1				AST	n de la constance de la constance			T. A. MARKE				100					de al p		
17.					1.00	415	and		and the second													and and a second se						
18.	urol	DA.		PECE		/ (Signa	turo				ME	1.1.1			5		IFR	CEIP	т		1		LABORATORY	NOTES	<u>.</u>			
KELINQUISHED BY (Signat		DA		RECE		r (Signa	iturej			:6	71	тот		UMB	ER OF	FCON		JERS	1				LADONATON	NOTES				
(2)	3	31	117	135	()	. P.	1.7	~	1	121	11-	7 CHA	AIN O	FCUS	TOD	Y SEA	LS Y/	/N/N/	4	1								
RELINQUISHED BY (Signat	ure)	DA	TE/TIME	RECE	IVED BY	(Signa	iture)	91	D	ATE/TI	ME	SEA	LS IN	ТАСТ	? Y/N	I/NA							MER					
	all the second and a second se				1	1.546				294		REC	EIVE	O GO	OD CO	OND.	/COL	D										
												NO	TES:	12.				15.0					Turn Around	Time: 2	4 HR	48 HR	5 0	YAC
1210 Eastside Street SE, Su	ite 200								Phon	e: 360-	459-4	1670												Webs	ite: wv	ww.es	nnw	.com
Olympia, Washington 9850	1								Fax:	360-4	59-34	32												E-M	all: inf	o@es	nnw	.com

FSN

NORTHWEST, INC.

Environmental

Services Network

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

December 12, 2018

Becky Dilba Associated Environmental Group, LLC 605 11th Avenue SE, Suite 201 Olympia, WA 98501

Dear Ms. Dilba:

Please find enclosed the analytical data report for the 4 Corners Project located in Maple Valley, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy I Uni

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

4 CORNERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L181206-1 Client Project # 17-126

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	AS1	AS2	AS2 Dup	
Sumple Desemption		Blank		1102	1102 D up	
Date Sampled		n/a	12/5/18	12/5/18	12/5/18	
Date Analyzed	PQL	12/7/18	12/7/18	12/7/18	12/7/18	
	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	
Vinyl Chloride (VC)	5	nd	nd	nd	nd	
1,1-Dichloroethene	100	nd	nd	nd	nd	
trans-1,2-Dichloroethene	100	nd	nd	nd	nd	
cis-1,2-Dichloroethene	100	nd	nd	nd	nd	
Trichloroethene (TCE)	10	nd	nd	nd	nd	
Tetrachloroethene (PCE)	25	nd	61	163	130	
Surrogate Recovery						
Dibromofluoromethane		123	97	107	103	
1,2-Dichloroethane-d4		132	89	80	98	
Toluene-d8		106	88	91	102	
4-Bromofluorobenzene		118	123	109	112	
"nd" Indicates not deter	cted at listed	detection li	nit			

Specific Halogenated and Aromatic Hydrocarbons by EPA Method 8260C in Vapor

cates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY: Kodey Eley

4 CORNERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L181206-1 Client Project # 17-126 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

		Labora	atory Contro
	Spiked Conc.	Measured Conc.	Spike Recovery
	(µg/m ³)	(µg/m [°])	(%)
1,1-Dichloroethene	10	10.1	101
Chlorobenzene	10	11.1	111
Trichloroethene (TCE)	10	12.3	123
Surrogate Recovery			
Dibromofluoromethane			114
1,2-Dichloroethane-d4			98
Toluene-d8			92
4-Bromofluorobenzene			110

QA/QC Data - EPA 8260C Analyses

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Kodey Eley

4 CORNERS PROJECT AEG, LLC Libby Project # L181206-1 Date Received 12/6/2018 Time Received 11:38 AM 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By EB

Sample Receipt Checklist

Chain of Custody						
1. Is the Chain of Custody is complete?	1	Yes		No		
2. How was the sample delivered?		Hand Delivered	\checkmark	Picked Up		Shipped
Log In						
3. Cooler or Shipping Container is present.		Yes		No	\checkmark	N/A
4. Cooler or Shipping Container is in good condition.		Yes		No	\checkmark	N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes		No	\checkmark	N/A
6. Was an attempt made to cool the samples?		Yes		No	\checkmark	N/A
7. Temperature of cooler (0°C to 8°C recommended)		N/A	°C			
8. Temperature of sample(s) (0°C to 8°C recommended)		N/A	°C			
9. Did all containers arrive in good condition (unbroken)?	1	Yes		No		
10. Is it clear what analyses were requested?	1	Yes		No		
11. Did container labels match Chain of Custody?	1	Yes		No		
12. Are matrices correctly identified on Chain of Custody?	1	Yes		No		
13. Are correct containers used for the analysis indicated?	1	Yes		No		
14. Is there sufficient sample volume for indicated analysis?	\checkmark	Yes		No		
15. Were all containers properly preserved per each analysis?	1	Yes		No		
16. Were VOA vials collected correctly (no headspace)?		Yes		No	\checkmark	N/A
17. Were all holding times able to be met?	\checkmark	Yes		No		
Discrepancies/ Notes						
18. Was client notified of all discrepancies?		Yes		No	\checkmark	N/A
Person Notified:			_	Date:		
By Whom:			_	Via:		
Regarding:			_			
19. Comments.			_			

Libby Environm	ental,	Inc.		Cł	nair	l of	Cu	stc	ody	Re	ecor	d							www.Li	bbyEnvi	ronment	al.com
4139 Libby Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4	2110 154			[Date:	12	16	18						Page	э:	١		of	١	
Client: McG						F	Projec	t Ma	inage	er:	40	on	nes	2								
Address:						F	Projec	t Na	me:	B.	Dil	ba										
City: Olympia		State:	A Zip	: 18			ocati	on:								City,	State	e: 🖊	Taple	Vall	ey, l	NA
Phone: 360 - 352-9	835	Fax:				(Collec	tor:	B	3.0	115.	م				Date	e of C	ollec	tion:	25	1B	
Client Project #	20					E	Email:	k	6	115	rcp .	C	α	eg	er	a ·	co	n				
Sample Number	Depth	Time	Sample Type	Container Type	15	5 8280 5 8280	RH ST	802 L	QTH.I.	D D	SHUDY DY	+ 10 8210 8210 8210 82	10 vo	38 80 M	SA PC	3° 0° 0°	Netals	owo	Fi	eld Note	es	
1 MS1	-	1257	MK	Tellae												X						
2 ASZ	-	1352	Anz	Tedlon												×						
3																						
4																						
5																						
6																						
7																						
8																						
9																						
10																						
11																						
12																						
13																						
14																						
15																						
16				-																		
17																						
Relinquished by:	Date	/ Time	217	Received by:	-)			[Date / T	Fime	8	Sar	nple	Rec	eipt		Rem	arks:			
Polinguisha	13		112	Boogived	-1	-	/		14	16/18		Goo	od Con	dition?		Y	N					
Reinquistieu by:	Date	/ 111110		Received by:					L	Jale / I	iiiie	Ter	np.			NI	°C					
Relinguished by:	Date	/ Time		Received by:					Г	Date / T	Time	Sea	al Num	ber of	Y	N	N/A					$ \prec $
	Date	, 11110											Contain	ers				TA	T: 241	-IR 48	BHR 6	-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law.

Distribution: White - Lab, Yellow - File, Pink - Originator

3322 South Bay Road NE • Olympia, WA 98506-2957

January 27, 2020

Becky Dilba Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Ms. Dilba:

Please find enclosed the analytical data report for 4 Corners Cleaners Project located in Maple Valley, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: 4 Corners Cleaners Work Order Number: 2001282

January 24, 2020

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 4 sample(s) on 1/17/2020 for the analyses presented in the following report.

Volatile Organic Compounds by EPA Method TO-15

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Libby Environmental 4 Corners Cleaners 2001282	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2001282-001	VP-2	01/16/2020 11:52 AM	01/17/2020 11:04 AM
2001282-002	VP-3	01/16/2020 2:00 PM	01/17/2020 11:04 AM
2001282-003	VP-1	01/16/2020 1:45 PM	01/17/2020 11:04 AM
2001282-004	Input-1	01/16/2020 2:08 PM	01/17/2020 11:04 AM

Case Narrative

WO#: **2001282** Date: **1/24/2020**

CLIENT:Libby EnvironmentalProject:4 Corners Cleaners

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS: Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Qualifiers & Acronyms

 WO#:
 2001282

 Date Reported:
 1/24/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank **CCV** - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL - Reporting Limit RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

 Client:
 Libby Environmental

 WorkOrder:
 2001282

 Project:
 4 Corners Cleaners

 Client Sample
 VP-2

 Lab ID:
 2001282-001A

 Date Sampled:
 1/16/2020

 Date Received:
 1/17/2020

Sample Type:	Summa Canist	er							
Analyte		Concen	tration	Reporti	ng Limit	Qual	Method	Date/Analy	st
Volatile Organic C	ompounds by EPA	Method TC	<u>)-15</u>						
		(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1-Dichloroethene (D	CE)	<0.200	<0.793	0.200	0.793		EPA-TO-15	01/22/2020	AD
cis-1,2-Dichloroethene	e	<0.200	<0.793	0.200	0.793		EPA-TO-15	01/22/2020	AD
Tetrachloroethene (PC	CE)	62.4	423	3.00	20.3		EPA-TO-15	01/22/2020	AD
trans-1,2-Dichloroethe	ene	<0.200	<0.793	0.200	0.793		EPA-TO-15	01/22/2020	AD
Trichloroethene (TCE))	0.277	1.49	0.200	1.07		EPA-TO-15	01/22/2020	AD
Vinyl chloride		<0.200	<0.511	0.200	0.511		EPA-TO-15	01/22/2020	AD
Surr: 4-Bromofluoro	benzene	93.5 %Rec		70-130			EPA-TO-15	01/22/2020	AD

Client:Libby EnvironmentalWorkOrder:2001282-Project:4 Corners CleanersClient Sample ID:VP-3Lab ID:2001282-002ASample Type:Summa Canister

 Date Sampled:
 1/16/2020

 Date Received:
 1/17/2020

Analyte	Concen	tration	Reporti	ng Limit	Qual	Method	Date/Analy	st
Volatile Organic Compounds by	EPA Method TO	-15						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1-Dichloroethene (DCE)	<0.200	<0.793	0.200	0.793		EPA-TO-15	01/22/2020	AD
cis-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793		EPA-TO-15	01/22/2020	AD
Tetrachloroethene (PCE)	14.9	101	0.300	2.03		EPA-TO-15	01/22/2020	AD
trans-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793		EPA-TO-15	01/22/2020	AD
Trichloroethene (TCE)	<0.200	<1.07	0.200	1.07		EPA-TO-15	01/22/2020	AD
Vinyl chloride	<0.200	<0.511	0.200	0.511		EPA-TO-15	01/22/2020	AD
Surr: 4-Bromofluorobenzene	96.7 %Rec		70-130			EPA-TO-15	01/22/2020	AD

Client: Libby Environmental WorkOrder: 2001282 **Project: 4** Corners Cleaners VP-1 Date Sampled: 1/16/2020 **Client Sample ID:** Lab ID: 2001282-003A Date Received: 1/17/2020 Sample Type: Summa Canister Analyte Concentration **Reporting Limit** Qual Method Date/Analyst

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1-Dichloroethene (DCE)	<0.200	<0.793	0.200	0.793		EPA-TO-15	01/23/2020	AD
cis-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793		EPA-TO-15	01/23/2020	AD
Tetrachloroethene (PCE)	38.9	264	0.300	2.03	Е	EPA-TO-15	01/23/2020	AD
trans-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793		EPA-TO-15	01/23/2020	AD
Trichloroethene (TCE)	0.592	3.18	0.200	1.07		EPA-TO-15	01/23/2020	AD
Vinyl chloride	<0.200	<0.511	0.200	0.511		EPA-TO-15	01/23/2020	AD
Surr: 4-Bromofluorobenzene	90.4 %Rec		70-130			EPA-TO-15	01/23/2020	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

Client: Libby Environmental WorkOrder: 2001282 **Project: 4** Corners Cleaners Date Sampled: 1/16/2020 **Client Sample ID:** Input-1 Lab ID: 2001282-004A Date Received: 1/17/2020 Sample Type: Summa Canister Analyte Concentration **Reporting Limit** Qual Method Date/Analyst

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1-Dichloroethene (DCE)	<0.200	<0.793	0.200	0.793		EPA-TO-15	01/23/2020	AD
cis-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793		EPA-TO-15	01/23/2020	AD
Tetrachloroethene (PCE)	22.9	155	0.300	2.03	Е	EPA-TO-15	01/23/2020	AD
trans-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793		EPA-TO-15	01/23/2020	AD
Trichloroethene (TCE)	<0.200	<1.07	0.200	1.07		EPA-TO-15	01/23/2020	AD
Vinyl chloride	<0.200	<0.511	0.200	0.511		EPA-TO-15	01/23/2020	AD
Surr: 4-Bromofluorobenzene	90.1 %Rec		70-130			EPA-TO-15	01/23/2020	AD

NOTES:

E - Estimated value. The amount exceeds the linear working range of the instrument.

QC SUMMARY REPORT

2001282

Work Order:

CLIENT: Libby Enviro Project: 4 Corners 0	onmental Cleaners					Volatile 0	ی Organic Compoun	ds by EPA Method	TO-15
Sample ID: LCS-R56827	SampType: LCS			Units: ppbv		Prep Date:	1/22/2020	RunNo: 56827	
Client ID: LCSW	Batch ID: R56827					Analysis Date:	1/22/2020	SeqNo: 1132689	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride	2.38	0.107	2.000	0	119	70	130		
1,1-Dichloroethene (DCE)	2.36	0.400	2.000	0	118	70	130		
trans-1,2-Dichloroethene	2.38	0.200	2.000	0	119	70	130		
cis-1,2-Dichloroethene	2.32	0.200	2.000	0	116	70	130		
Trichloroethene (TCE)	2.34	0.0649	2.000	0	117	70	130		
Tetrachloroethene (PCE)	2.34	0.200	2.000	0	117	70	130		
Surr: 4-Bromofluorobenzene	4.17		4.000		104	70	130		
Sample ID: MB-R56827	SampType: MBLK			Units: ppbv		Prep Date:	1/22/2020	RunNo: 56827	
Client ID: MBLKW	Batch ID: R56827					Analysis Date:	1/22/2020	SeqNo: 1132690	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride	ND	0.0268							
1,1-Dichloroethene (DCE)	ND	0.100							
trans-1,2-Dichloroethene	ND	0.0500							
cis-1,2-Dichloroethene	ND	0.0500							
Trichloroethene (TCE)	ND	0.0162							
Tetrachloroethene (PCE)	ND	0.0500							
Surr: 4-Bromofluorobenzene	0.848		1.000		84.8	70	130		
Sample ID: LCS-R56865	SampType: LCS			Units: ppbv		Prep Date:	1/23/2020	RunNo: 56865	
Client ID: LCSW	Batch ID: R56865					Analysis Date:	1/23/2020	SeqNo: 1133524	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride	2.35	0.107	2.000	0	118	70	130		
1,1-Dichloroethene (DCE)	2.39	0.400	2.000	0	120	70	130		
trans-1,2-Dichloroethene	2.42	0.200	2.000	0	121	70	130		
cis-1,2-Dichloroethene	2.35	0.200	2.000	0	117	70	130		

0

0

118

116

70

70

130

130

Trichloroethene (TCE)

Tetrachloroethene (PCE)

2.36

2.33

0.0649

0.200

2.000

2.000

Work Order:	2001282									2.00			ORT
CLIENT:	Libby Enviro	onmental											
Project:	4 Corners C	Cleaners						Volatile	Organic	Compoun	ds by EPA	A Method	TO-15
Sample ID: LCS-F	R56865	SampType	: LCS			Units: ppbv		Prep Dat	e: 1/23/202	20	RunNo: 568	365	
Client ID: LCSW	I	Batch ID:	R56865					Analysis Dat	e: 1/23/20 2	20	SeqNo: 113	33524	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofle	uorobenzene		4.20		4.000		105	70	130				
Sample ID: 20012	81-001AREP	SampType	E REP			Units: ppbv		Prep Dat	e: 1/23/20 2	20	RunNo: 568	365	
Client ID: BATC	Н	Batch ID:	R56865					Analysis Dat	e: 1/23/20 2	20	SeqNo: 113	33527	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride			ND	0.107						0		30	
1,1-Dichloroethene	e (DCE)		ND	0.400						0		30	
trans-1,2-Dichloro	ethene		ND	0.200						0		30	
cis-1,2-Dichloroeth	nene		ND	0.200						0		30	
Trichloroethene (T	CE)		ND	0.0649						0		30	
Tetrachloroethene	(PCE)		ND	0.200						0		30	
Surr: 4-Bromofle	uorobenzene		3.60		4.000		90.0	70	130		0		
Sample ID: MB-R	56865	SampType	: MBLK			Units: ppbv		Prep Dat	e: 1/24/20 2	20	RunNo: 568	365	
Client ID: MBLK	Ŵ	Batch ID:	R56865					Analysis Dat	e: 1/24/20 2	20	SeqNo: 113	33736	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride			ND	0.0268									
1,1-Dichloroethene	e (DCE)		ND	0.100									
trans-1,2-Dichloro	ethene		ND	0.0500									
cis-1,2-Dichloroeth	nene		ND	0.0500									
Trichloroethene (T	CE)		ND	0.0162									
Tetrachloroethene	(PCE)		ND	0.0500									
Surr: 4-Bromofle	uorobenzene		0.830		1.000		83.0	70	130				

Sample Log-In Check List

С	lient Name:	LIBBY	Work Order Num	ber: 2001282	
L	ogged by:	Carissa True	Date Received:	1/17/2020	0 11:04:00 AM
<u>Cha</u>	nin of Cust	ody			
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present
2.	How was the	sample delivered?	Client		
Loc	<u>i In</u>				
3.	Coolers are p	present?	Yes	No 🖌	NA 🗌
			<u>Air samples</u>		
4.	Shipping con	tainer/cooler in good condition?	Yes 🖌	No 🗌	
5.	Custody Seal (Refer to com	ls present on shipping container/cooler? ments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹
6.	Was an atten	npt made to cool the samples?	Yes	No 🗌	NA 🗹
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes	No 🗌	NA 🔽
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗹	No 🗌	
10	Are samples	properly preserved?	Yes 🗹	No 🗌	
11	Was preserva	ative added to bottles?	Yes	No 🗹	NA 🗌
12	Is there head	space in the VOA vials?	Yes	No 🗌	NA 🗹
13	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14	Does paperw	ork match bottle labels?	Yes 🖌	No 🗌	
15	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16	Is it clear what	at analyses were requested?	Yes 🗹	No 🗌	
17	Were all hold	ing times able to be met?	Yes 🖌	No 🗌	
Spe	ecial Handl	ing (if applicable)			
18	Was client no	tified of all discrepancies with this order?	Yes 🖌	No 🗌	NA 🗌
	Person	Notified: Kodev Elev Date	:	1/20/2020	
	By Who	m: Carissa True Via:	🖌 eMail 🗌 Ph	none 🗌 Fax	In Person
	Regardi	ng: Confirmation of report distrubution.			
	Client Ir	structions: Report only to Libby.			

19. Additional remarks:

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

RIATE LEADER	-	Air Chain of Custody Record & Laboratory Services Agreemer														ment										
rrein	Date	tab	taboratory Project Na (Internal): 2001282																							
Ano Ano	Project Name: 4/ A/									Special Remarks:																
Client: Libby					Project Name: I CORMERT Clerning									editsper K.E. 1/22/20 cg												
Address:					Project No: 1 - 146									'												
Fib. Sebo Te					Location: Meple Uctley Wishing to																					
City, state, Zip:					Collected by: Chan 61 Swift										Air samples are disposed of one week after report is submitted to client unless /											
Telephone:				Reports to	(PM):	B.D	1154					othe	otherwise requésted.													
Fax:		namental and a statement of the statement of		Email (PM)	e es	Cas 175 C	5 Gis	416 .6	105		***	Analycic														
Cani Sarupie Name Rej	ister / Flow •g Serial #	Sample Date & Time	Sample Type (Matrix) *	Container Type **	Fill Time / Flow Rate	Initial Evacuation Pressure (mtorr)	Field Initial Sample Pressure ("Hg)	Field Finai Sample Pressure (° Hg)	VOCs TOTS SCAN	VOCS TO IS SCAN EL	Siloxanes TOIS	Sulfur TO15 Sulfur Ext. TO15	APH TOIS Helium	Major Gases 3C	RE+ Brea		Comme	Pots		Final Pressure ("Hg)						
UP-2	4680 42 CO	1/16/20		1L	10 min	10mtorr 1/13/202 - Dave	33 1116/00	8 11/1/2=					t		Ø	5f. 57	int = 4 =	1:5	2	10						
VP-3 4	4685 #2 co	14:00		1L	1L $\frac{10}{\min} \frac{10 \text{ mtorr}}{1/13/2020} \frac{30}{1/14/2} \frac{10}{1/14/2} \frac{10}{1/14/2} \frac{11}{1/14/2} \frac{11}{14/2} \frac{11}{1$							-t = 0	?;a	>	12											
UP-1 5	5025 #2 co	1/16/20		1L	10 min	10mtorr 1/6/2020	20	10				-	4		Ð	sta	= 1:	45								
J-put-1 #	487 200	111/2-		12	10 Min	Seale Scale	28 1/14/20	7.5					K		Ð	st. str	-at -	2:0	8 8	9						
* Matrix Codor: AA - Ambient Air		5												anovana interneti andere andere i andere i andere i andere i andere andere andere andere andere andere andere a												
** Container Codes: BV = 1 Liter Bottle Va	A = Indoor A ac $6L = 6$	Ar L = Lan	$\frac{1}{1} = 1 \text{Canist}$	Subslab / Sc	High Procu	una Culiadar	E - Eiltar	E - East			TO T.								Turn-Arou	nd Time:						
I represent that I am authorized to terms on the front and backside of	enter into this Agree) this Agreen ement.	nent with F	remont A	nalytical	on behalf o	f the Clier	n named :	ibove,	that	I have	verifie	d Clier	u's ag	greem	ent to ea	ich of th	e	Stand 3 Day	ard						
Relinquished	1/1 Da	te/Time 7/25 // te/Time	:07			Received * MAD Received	K. V	M			Date/T	me 71/ nie	10			104		a dente de la constante de la	2 Day Next C iame Day	lay						

	Air Chain of Custody Record & Laboratory Services Agreemen														ment							
Freedom Seattle, WA 98103 Tel: 206-352-3790					Date: 1/16/20 Page: of:										aboratory Project No (Internal): 2001282							
	Page: 01:									Special Remarks: C												
					Project Name: I CORNERF Cleaning															Je 1		
Client: Libby					Project No: / - / 16															Paç		
Address:	Location:	Location: Maple Ochey Westers, for																				
City, State, Zip:	Collected by: Charles Swift																					
Telephone:				Reports to	(PM):	B.D	ille					Air s othe	Air samples are disposed of one week after report is submitted to client unless otherwise requested. OK to Dispose Hold (fees may apply)									
Fax:				Email (PM): CSW FK & GIELIG 60L																		
						Internal	- 4.5	ala : c	05		, ,	Analysis								Internal		
1									zz	1												
						Initial Evacuation	Field Initial Sample	Field Final Sample	15 SCA	15 SIM	T015	15 t. T015	5	ses 3C						Final		
Sample Name	Canister / Flow Reg Serial #	Sample Date & Time	Sample Type (Matrix) *	Container Type **	Fill Time / Flow Rate	Pressure (mtorr)	Pressure ("Hg)	Pressure (" Hg)	OCs TO	OCs TO	loxanes	ultur TC ulfur Ex	PH TO1	leium lajor Ga			Comme	ents		Pressure ("Hg)		
1	4680	1/16/20			10	10mtorr	21	8	> >	>	S C	N N	Υ -	_ 2		sta	+=	110				
UP-2	Canister #2 CO	In co		1L	min	Pressure 1/13/2021	Petrine	Fessure								Ster 2			2	10		
2	Flow Reg.	1715 LTime				Date	1/16/20	1/6/23				_	1	_		7.	P -	2,0	23			
1/0 2	4085 Canister	1/16/23 Date		1L	10	Pressure	30	10 Pressure								St.	-t = 2	lia	2	12		
01-3	#2 CO Flow Reg.	14:00 Time			min	1/13/2020 Date	1/16/200	11/6/18					X							12		
1100	5025	1/16/200		41	10	10mtorr	20	10							stat		f= 1:45		-	11		
		IL	min	1/6/2020 1/16/22 1/11/2							X			Sty 1:55				11				
4	3487	1111				Cars	28	7 6				+				st	.+ .	2.	n C			
Input-1	# 200	116/2Date		11	10		Are Qure	Pressure					\mathbf{X}			al	~)	2.0	0	9		
5	Flow Reg.	/Y.0%ame		1-	min	Date	116/20	116/18				_		_		STO	p - i	r, 1	8	1		
	Canister	Date				Pressure	Pressure	Pressure														
	Flow Reg.	Time				Date	Oate	Dale														
* Matrix Codes: AA = Ambient Air	IA = Indoor	r Air L = Lai	ndfill S =	= Subslab / Se	oil Gas		V									Universities Advances	9		Turn-Arou	und Time:		
** Container Codes: BV = 1 Liter Bc	ottle Vac 6L =	6L Canister	1L = 1L Canist	ter CYL =	High Press	ure Cylinder	<pre>F = Filter</pre>	S = Sorb	ent Tub	e T	B = Teo	llar Bag			*	¢			t stand	ard		
I represent that I am authoriz terms on the front and backsi	ed to enter in de of this Agr	Fremont A	nalytical	on behalf o	f the Clie	nt named a	above,	that l	have	verifi	ed Cli	ent's ag	greemen	nt to ea	ch of th	e		aiu				
Relinquished			Received		ĥ			Date/Ti	me		100000	2. M.	4	-								
x / Sul	1/1	7/20 /1	1:07			· Mp	W.V	N.)	11:	21-	15	7	1)	Dr	- *		2 Day			
Relinquished		Date/Time				Received	1.	· · ·		2	Date/Ti	me	V		1	U,	ļ		Next I	Day		
x						x													Same Day	(specify)		

		Air Chain of Custody Record & Laboratory Services Agreemer														ment							
Frei	Date:	116	120	Labor																			
	Project Name: 4 Council Aline									Special Remarks:													
Client: Libby					Project No: 17-126									editsper Kt. 1/2/20 cg									
Address:					Location: Meals D.M. 11.1 1														Ľ				
City, State, Zip.					by:	11.1.																	
Telephone:					Reports to (PM): R D												port is sul	mitted to clie	nt unless /				
Fax:				Email (PM	Email (PM): Of Sea Al Constraint of Sea												ر () (ion (rees may	(shbiA)				
						Internal	1-3-5	<u>feles : c</u>			Ar	nalysis	1 1	2					Internal				
Sample Name	Canister / Flow Reg Serial #	Sample Date & Time	Sample Type (Matrix) *	Container Type **	Fill Time / Flow Rate	Initial Evacuation Pressure (mtorr)	Field Initial Sample Pressure (* Hg)	Field Final Sample Pressure (° Hg)	OCS TOTS SCAN	0Cs T015 SIM	loxanes TOIS ufur TOIS	Jífur Ext. TO15	elum	ajor Gases 3C		Co	mments		Final Pressure (°Hg)				
UP-2	4680 22 CO	1/16/20		1L	10 min	10mtorr (2000) 1/13/202 - Dare	33	8	> >			×	A I		5	tant Stay	= 1:.	52	10				
VP-3	4685 #2 co	1/16/23		1L	10 min	10mtorr 1/13/2020	30	10				+	t	Ð		St-t	= 210	<u>ی</u>	12				
UP-1	5025 #2 co	1/16/20		1L	10 min	10mtorr 1/6/2020	30	10				4	8		54	I =	1:45	*	La construcción de la construcci				
I-put-1	3487 220	116/2-14:08		12	10 mja	1.000 (2001)	28 1/14/20	7.5				×	1	Ø		stop -	- 2: - 2;	08	9				
	e ne ja mene ali germania												navala se										
* Matrix Codes: AA = Ambient Air ** Container Codes: BV = 1 Liter Bo	IA = Indoor	Air L = Lai	ndfill S :	= Subslab / So	oil Gas	a in an an an an ann an an an an an an an a			e er er er er er er er					······································				Turn-Arou	nd Time:				
I represent that I am authoriz terms on the front and backsie	[*] Container Codes: BV = 1 Liter Bottle Vac 6L = 6L Canister 1L = 1L Canister CYL = High Pressure Cylinder F = Filter 5 = Sorbent Tube TB = Tedlar Bag I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.													f the	Standard								
Relinguished	///			Received * MAR Received	hi V	M			Date/Time	e 117	2	2)-]		2 Day							
			an a		and streams of the property speed of	>	antinadan manana ni na na hababa da ma na											Danne, Mað	ime Day (specify)				

3322 South Bay Road NE • Olympia, WA 98506-2957

March 6, 2020

Becky Dilba Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Ms. Dilba:

Please find enclosed the analytical data report for 4 Corners Cleaners Project located in Kent, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Aby I Unt

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: 4 Corners Cleaners Work Order Number: 2002477

March 06, 2020

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 4 sample(s) on 2/28/2020 for the analyses presented in the following report.

Volatile Organic Compounds by EPA Method TO-15

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Libby Environmental 4 Corners Cleaners 2002477	Work Order Sample Sum					
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received				
2002477-001	VP-1	02/25/2020 9:27 AM	02/28/2020 9:30 AM				
2002477-002	VP-2	02/25/2020 9:36 AM	02/28/2020 9:30 AM				
2002477-003	VP-3	02/25/2020 9:23 AM	02/28/2020 9:30 AM				
2002477-004	Input	02/25/2020 9:34 AM	02/28/2020 9:30 AM				

Case Narrative

WO#: **2002477** Date: **3/6/2020**

CLIENT:Libby EnvironmentalProject:4 Corners Cleaners

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS: Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Qualifiers & Acronyms

WO#: 2002477 Date Reported: 3/6/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV** - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

 Client:
 Libby Environmental

 WorkOrder:
 2002477-001A

 Date Sampled:
 2/25/2020

 Date Received:
 2/28/2020

Sample Type:	Summa Canister
eample i jpei	Carnina Carnotor

Analyte	Concen	tration	Reporti	ng Limit	Qual	Method	Date/Analyst
Volatile Organic Compoun	ds by EPA Method TO	<u>-15</u>					
	(ppby)	(ua/m³)	(nnby)	(ua/m³)			

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
1,1-Dichloroethene (DCE)	<0.200	<0.793	0.200	0.793	EPA-TO-15	02/29/2020	WC
cis-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793	EPA-TO-15	02/29/2020	WC
Tetrachloroethene (PCE)	29.2	198	3.00	20.3	EPA-TO-15	03/03/2020	AD
trans-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793	EPA-TO-15	02/29/2020	WC
Trichloroethene (TCE)	0.730	3.92	0.200	1.07	EPA-TO-15	02/29/2020	WC
Vinyl chloride	<0.200	<0.511	0.200	0.511	EPA-TO-15	02/29/2020	WC
Surr: 4-Bromofluorobenzene	101 %Rec		70-130		EPA-TO-15	02/29/2020	WC

 Client:
 Libby Environmental

 WorkOrder:
 2002477

 Project:
 4 Corners Cleaners

 Client Sample ID:
 VP-2

 Lab ID:
 2002477-002A

 Date Sampled:
 2/25/2020

 Date Received:
 2/28/2020

Sample Type: Summa Canister

Analyte	Concentration	Reporting Limit	Qual	Method	Date/Analyst
Volatile Organic Compoun	ds by EPA Method TO-15				
	(mmh)) (um/m3)	(mmh)) (um/m3)			

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
1,1-Dichloroethene (DCE)	<0.200	<0.793	0.200	0.793	EPA-TO-15	02/29/2020	WC
cis-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793	EPA-TO-15	02/29/2020	WC
Tetrachloroethene (PCE)	10.6	72.0	0.300	2.03	EPA-TO-15	02/29/2020	WC
trans-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793	EPA-TO-15	02/29/2020	WC
Trichloroethene (TCE)	<0.200	<1.07	0.200	1.07	EPA-TO-15	02/29/2020	WC
Vinyl chloride	<0.200	<0.511	0.200	0.511	EPA-TO-15	02/29/2020	WC
Surr: 4-Bromofluorobenzene	102 %Rec		70-130		EPA-TO-15	02/29/2020	WC

Client: Libby Environmental WorkOrder: 2002477 **Project: 4** Corners Cleaners Client Sample ID: VP-3 2002477-003A Lab ID: Sample Type: Summa Canister

Date Sampled:	2/25/2020
Date Received:	2/28/2020

Analyte Concentration **Reporting Limit** Qual Method Date/Analyst Volatile Organic Compounds by EPA Method TO-15 (ug/m³) (ppbv) (ug/m³) (ppbv) 1,1-Dichloroethene (DCE) <0.200 <0.793 0.200 0.793 EPA-TO-15 02/29/2020

cis-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793	EPA-TO-15	02/29/2020	WC
Tetrachloroethene (PCE)	67.3	457	3.00	20.3	EPA-TO-15	03/03/2020	AD
trans-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793	EPA-TO-15	02/29/2020	WC
Trichloroethene (TCE)	0.210	1.13	0.200	1.07	EPA-TO-15	02/29/2020	WC
Vinyl chloride	<0.200	<0.511	0.200	0.511	EPA-TO-15	02/29/2020	WC
Surr: 4-Bromofluorobenzene	101 %Rec		70-130		EPA-TO-15	02/29/2020	WC

WC

Client:Libby EnvironmentalWorkOrder:2002477Project:4 Corners Cleaners

Analyte		Concentration	Reporting Limit	Qual	Method	Date/Analyst
Sample Type:	Summa Canister					
Lab ID:	2002477-004A			Date Red	ceived: 2/2	8/2020
Client Sample ID:	Input			Date Sar	npled: 2/2	5/2020

Volatile Organic Compounds by EPA Method TO-15

	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)			
1,1-Dichloroethene (DCE)	<0.200	<0.793	0.200	0.793	EPA-TO-15	02/29/2020	WC
cis-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793	EPA-TO-15	02/29/2020	WC
Tetrachloroethene (PCE)	4.50	30.5	0.300	2.03	EPA-TO-15	02/29/2020	WC
trans-1,2-Dichloroethene	<0.200	<0.793	0.200	0.793	EPA-TO-15	02/29/2020	WC
Trichloroethene (TCE)	<0.200	<1.07	0.200	1.07	EPA-TO-15	02/29/2020	WC
Vinyl chloride	<0.200	<0.511	0.200	0.511	EPA-TO-15	02/29/2020	WC
Surr: 4-Bromofluorobenzene	103 %Rec		70-130		EPA-TO-15	02/29/2020	WC

QC SUMMARY REPORT

Project: 4 Corners Cleaners

2002477

Libby Environmental

Work Order:

CLIENT:

Volatile Organic Compounds by EPA Method TO-15

Sample ID: LCS-R57711	SampType: LC	S		Units: ppbv		Prep Dat	e: 2/29/20	20	RunNo: 577	'11	
	Batch ID: R5	7711		PF		Analysis Dat	e [.] 2/29/20	 20	SegNo: 115	2260	
	Daterrib				** 5 5 6						2
Analyte	Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ret Val	%RPD	RPDLimit	Qual
Vinyl chloride	1.9	7 0.107	2.000	0	98.5	70	130				
1,1-Dichloroethene (DCE)	1.9	6 0.400	2.000	0	98.0	70	130				
trans-1,2-Dichloroethene	1.9	9 0.200	2.000	0	99.5	70	130				
cis-1,2-Dichloroethene	2.0	0 0.200	2.000	0	100	70	130				
Trichloroethene (TCE)	1.9	7 0.0649	2.000	0	98.5	70	130				
Tetrachloroethene (PCE)	1.9	5 0.200	2.000	0	97.5	70	130				
Surr: 4-Bromofluorobenzene	3.9	6	4.000		99.0	70	130				
Sample ID: MB-R57711	SampType: ME	BLK		Units: ppbv		Prep Dat	e: 2/29/20	20	RunNo: 577	'11	
Client ID: MBLKW	Batch ID: R5	57711				Analysis Dat	e: 2/29/20	20	SeqNo: 115	2261	
Analyte	Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride	N	D 0.107									
1,1-Dichloroethene (DCE)	N	D 0.400									
trans-1,2-Dichloroethene	N	D 0.200									
cis-1,2-Dichloroethene	N	D 0.200									
Trichloroethene (TCE)	N	D 0.0649									
Tetrachloroethene (PCE)	N	D 0.200									
Surr: 4-Bromofluorobenzene	3.8	0	4.000		95.0	70	130				
Sample ID: 2002477-001AREP	SampType: RE	P		Units: ppbv		Prep Dat	e: 2/29/20	20	RunNo: 577	'11	
Client ID: VP-1	Batch ID: R5	57711				Analysis Dat	e: 2/29/20	20	SeqNo: 115	2267	

Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride	ND	0.107						0		30	
1,1-Dichloroethene (DCE)	ND	0.400						0		30	
trans-1,2-Dichloroethene	ND	0.200						0		30	
cis-1,2-Dichloroethene	ND	0.200						0		30	
Trichloroethene (TCE)	0.740	0.0649						0.7300	1.36	30	
Tetrachloroethene (PCE)	42.5	0.200						40.79	4.11	30	Е

Work Order:	2002477								00 5		RY REF	PORT
CLIENT:	Libby Enviro	onmental						• ·				TO 15
Project:	4 Corners C	leaners					Volatile	Organio	c Compoun	ds by EPA	AMethod	10-15
Sample ID: 2002477	7-001AREP	SampType: RE	P		Units: ppbv		Prep Date	e: 2/29/20	20	RunNo: 57	711	
Client ID: VP-1		Batch ID: R5	57711				Analysis Date	e: 2/29/20	20	SeqNo: 11	52267	
Analyte		Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofluo NOTES:	robenzene	4.0	1	4.000		100	70	130		0		
E - Estimated valu	ue. The amount	t exceeds the linear	r working range of	the instrument	t.							
Sample ID: LCS-R5	7781	SampType: LC	S		Units: ppbv		Prep Date	e: 3/3/202	0	RunNo: 57	781	
Client ID: LCSW		Batch ID: R5	7781				Analysis Date	e: 3/3/202	0	SeqNo: 11	53802	
Analyte		Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Tetrachloroethene (F	PCE)	1.9	2 0.200	2.000	0	95.8	70	130				
Surr: 4-Bromofluo	robenzene	4.1	0	4.000		103	70	130				
Sample ID: MB-R57	781	SampType: ME	BLK		Units: ppbv		Prep Date	e: 3/3/202	:0	RunNo: 57	781	
Client ID: MBLKW	I	Batch ID: R5	57781				Analysis Date	e: 3/3/202	0	SeqNo: 11	53803	
Analyte		Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Tetrachloroethene (F	PCE)	N	D 0.0500									
Surr: 4-Bromofluo	robenzene	0.89	4	1.000		89.4	70	130				
Sample ID: 2002477	7-001AREP	SampType: RE	P		Units: ppbv		Prep Date	e: 3/3/202	:0	RunNo: 57	781	
Client ID: VP-1		Batch ID: R5	7781				Analysis Date	e: 3/3/202	0	SeqNo: 11	53805	
Analyte		Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Tetrachloroethene (F	PCE)	33.	9 2.00						29.16	14.9	30	
Surr: 4-Bromofluo	robenzene	38.	6	40.00		96.4	70	130		0		

Sample Log-In Check List

Client Name: LIBBY	Work Order Numb	ber: 2002477		
Logged by: Carissa True	Date Received:	2/28/2020	9:30:00 AM	
Chain of Custody				
1. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present	
2. How was the sample delivered?	UPS			
<u>Log In</u>				
3. Coolers are present?	Yes	No 🔽	NA 🗌	
	Air samples			
4. Shipping container/cooler in good condition?	Yes 🗹	No 🗌		
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes	No 🗹	Not Required	
6. Was an attempt made to cool the samples?	Yes	No 🗌	NA 🗹	
7. Were all items received at a temperature of >2°C to 6°C *	Yes	No 🗌	NA 🔽	
8. Sample(s) in proper container(s)?	Yes 🖌	No 🗌		
9. Sufficient sample volume for indicated test(s)?	Yes 🖌	No 🗌		
10. Are samples properly preserved?	Yes 🖌	No 🗌		
11. Was preservative added to bottles?	Yes	No 🗹	NA 🗌	
12. Is there headspace in the VOA vials?	Yes	No 🗌	NA 🔽	
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌		
14. Does paperwork match bottle labels?	Yes 🗹	No 🗌		
15. Are matrices correctly identified on Chain of Custody?	Yes 🖌	No 🗌		
16. Is it clear what analyses were requested?	Yes 🖌	No 🗌		
17. Were all holding times able to be met?	Yes 🗹	No 🗌		
<u>Special Handling (if applicable)</u>				
18. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🔽	
Person Notified: Date	9:			
By Whom: Via:	eMail Ph	one 🗌 Fax [In Person	
Regarding:				
Client Instructions:				

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

RATA TA		2600 Era	mont Ave N			Air Ch	ain o	f Cust	od	y I	Red	cor	d 8	k L	ab	ora	ato	ory Services	Agree	ment
Fren	non	Seattle Tel: 2	, WA 98103 06-352-3790	A	2017	170)		Page		of	1		Lai	oorato	ry Proje	ct No	(Inter	rnal):		
	nalytic	Fax: 2	06-352-7178	Droject No.		600				01. 0 <i>c</i>			Sp	ecial I	Remar	s:				
	(Project Na	17	171	213	-lear	K V					PCE i Dauguter Fromos						
Client: LIDDY A	-G, LL	<u> </u>	C									via 10-15								
Address: 2633	Parkmo	nt Lane Sul	SW te A	Location:	238	do se	kent 10	pinna	2	0, °	180	120	2							
City, State, Zip: Olympia,	WK 98	501		Collected b	y: B-	81160	-1						Air	samp	es are	dispo	osed o	of one week after report is sub	mitted to clier	nt unless
Telephone: 360 - 352	- 9835			Reports to	(PM):								oth	erwis	e requ	ested		OK to Dispose	old (fees may	apply)
Fax:				Email (PM)	:	bdill	Dale (regma	χ.	C.	m						3			
						Internal				-		T					me Ph			Internal
						Initial	Field Initial	Field Final	SCAN	SCAN I	SIM	015	TO15			es 3C	i Da			Final
Sample Name	Canister / Flow	Sample Date &	Sample Type	Container	Fill Time /	Pressure	Pressure	Pressure	S T015	S T015	S T015	xanes T	ur T01: ur Ext.	I T015	ium	or Gase	NC.	Comments		Pressure ("Ha)
1	heg Serial #	21-1-20	(Matrix)	Type	Tiow Nate	10	1.16/	(116/	VOO	VOC	VOO	Silo	Sulf Sulf	APF	Hel	Maj	₩.	Commonia		(
10-1	4687 Canister	0[25] 2020 Date		1L	10	Pressure	Pressure	-9 Pressure												
	Flow Reg.	Og27 Time			min	2/7/2020 Date	25 2020 Date	425/ 102	6								7			
2 110-2	4686	2/2512020		11	10	10mtorr	-36	-4												
	Flow Oce	0934		11	min	2/7/2020	2/3/200	2/25/20	W								V			
3	4902	2/5/2020			10	10mtorr	-30	-4												
VP-3	Canister	Date		1L	min	Pressure 2/10/2020	Pressure	Pressure									ጽ			
4	Flow Reg.	1/1.11mo				Date 10mtorr	Date -30	Date				_		-						
	Canister	9 CS W Date		1L	10 min	2/18/2020	Pressure	Pressure									V			
	Flow Reg.	0434 Time				2/18/2020 Date	all Sille	alts ZOA					_	-			_			
	Canister	Date				Pressure	Pressure	Pressure												
	Flow Reg.	Time				Date	Date	Dale												
* Matrix Codes: AA = Ambient Ai	r IA = Indoo	r Air L = La	ndfill S	= Subslab / S	oil Gas														Turn-Arou	und Time:
** Container Codes: BV = 1 Liter B	Bottle Vac 6L =	= 6L Canister	1L = 1L Canis	ter CYL =	High Press	sure Cylinder	F = Filter	S = Sorl	oent '	Tube	TI	3 = Te	dlar Ba	ng	<u></u>				Y Stand	ard
I represent that I am authoriterms on the front and backs	ized to enter in side of this Ag	ito this Agree reement.	ment with	Fremont A	nalytical	on behalf o	of the Clie	nt named	abo	ve, ti	hat I	have	e vern	lied	Clien	t's a	igree	ement to each of the	3 Day	
Relinquished	Stall	Date/Time	125	Received Date/Time								2 Day								
× H	- Ind.	1000 ((0)			× B7F	F		21	261	20	20	113	0					Next	Day
Relinquished		Date/Time				Received						Date/1	ïme						Same Day	
x						×														(specify)

					A	ir Chai	in of (Custo	dy	Ke	eco	ora	ði I	_dL	101	au	.,.		5 0 11	77	
	ant	3600 Fremon	t Ave N. A 98103	01				i		6			Laborat	tory Pro	oject N	o (Inte	rnal):	200) 24	11	
Frem		Tel: 206-3	52-3790	Date:	26/20	20	Pa	ige: l	of	:	ļ		Specia	l Rem	arks:			-0	roductor		
An	alytica	Fax: 206	52-11/6	Project Name	: 4 (pene	<u>(S</u> C	leark	<u> </u>	5				PCI	1 1	, 0	lawav	Liber L			
				Project No:	17-1	26						~		VI	4	D-	15				
Libby				Location: 2	388	to ser	ient lice	noral	20	, 98	302	3									
3322 south Bay Re	3	A/_		Collected by	: B-	Q:100	L						Air sar	nples	are dis	posec	of one wee	ek after repor	rt is submitte	ed to client	unless
e, Zip: Olympia, U	JA 980	06		Deports to [PMI: 5h	erry Cl	vileut	-					otherv	wise re	quest	ed.	C OK	to Dispose	U Hold (fees may a	рріу)
e: 360 352 2110	0			Reports to (1.60	yenva	Comai	licom				An	alveis				2				Intern
				Email (Pivi):		Internal			-							1	and				
						Initial	Field Initial	Field Final	SCAN	SCANI	SIM	S S	T015		10	Ses or	2				Fin
				Container	Fill Time /	Evacuation Pressure	Sample Pressure	Sample Pressure	s T015	S T015	CS T015	fur TO1	fur Ext.	H T015	elium	ajor Ga	A.C.	Com	ments		("H
	Canister / Flow Reg Serial #	Sample Date & Time	Sample Type (Matrix) *	Type **	Flow Rate	(mtorr)	(" Hg)	(пg)	VOC	VO	Ň i	Sul	Sul	AP	Ť	Σd	£.				_1
Sample Name	4687	2/25/2020			10	10mtorr Pressure	= 3 0 Pressure	- 4 Pressure								,	7				
	Carrisle	Crate Grad		11	min	2/7/2020 Cate	21512020 Date	425/ 102	0				-								
2-1	Flow Rag	2/25/2020			10	10mtorr	-36 Pressue	Fressure	2								0				-
0-2-	4686 Cansid	n Date		1L	min	2/7/2020	2/5/200	2/25/20 Delo	e e							_					-
) (Flow Pe	2 0974 Tim	6		10	10mtorr	- 30	-4 Deserve	Ω								X				-9
~	4902 Canis	er Do	6	1L	min	2/10/2020	225/20,	2/25/200	20												
JP-3	Flow R	0923 TH	10			10mtorr	- 30	-4													-
	3486	425/2020	te	1L	10	2/18/2020	Pressu	Prissue 2/25/20	20								\vee				
an input-	277 Januar 1	0934	10			D	ate Da	le Toa	to												
40	1.0349.1		-10			Press	ura Prassi	ns Pressu	1.6												
	Can	aler b	ente-				516 ()	nte Da	ale											Turn-Ar	round
Ambien	t Air IA = In	door Air L=	- Landfill	S = Subslab	o / Soil Gas	Cylinds	ar F=Fil	ter S = S	orber	nt Tube	2	TB = Te	edlar B	ag						🕅 Sta	indard
Matrix Codes: AA = Amblet	ter Bottle Vac	6L = 6L Canister	1L = 1L	Canister C	YL = High Pr	cal on beha	If of the C	lient name	ed at	oove,	that	I hav	e ver	ified	Clie	nt's a	agreemen	it to each	of the	(] 3 D)ay
I represent that I am aut	horized to ente	er into this Ag	reement v	with Fremo	at Analy .							Date	Time							20	Jay
terms on the front and ba	ackside of this	Date/Time	1125			Received	DE		-	2/20	12	620)[3	30						. D Ne	ext Day
telinquished	σv	9 2020	1105			Received						Date	/Time				~			Same D)ay
Delinguished	2/11	Date/Time	0			x	N			2	-12	87-0	W		(U	150			(sp
Remiquisite	2120	10 12	V			1		And a second			1	1									

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 2, 2020

Becky Dilba, Project Manager AEG 605 11th Ave SE Suite 201 Tacoma, WA 98501

Dear Ms Dilba:

Included are the amended results from the testing of material submitted on March 17, 2020 from the 4 Corners Cleaners 17-126, F&BI 003260 project. The tetrachloroethene reporting limit in sample Output was lowered.

Sincerely,

FRIEDMAN & BRUYA, INC.

Lily

Michael Erdahl Project Manager

Enclosures c: bdilba@aegwa.com AEG0327R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 27, 2020

Becky Dilba, Project Manager AEG 605 11th Ave SE Suite 201 Tacoma, WA 98501

Dear Ms Dilba:

Included are the results from the testing of material submitted on March 17, 2020 from the 4 Corners Cleaners 17-126, F&BI 003260 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

al

Michael Erdahl Project Manager

Enclosures c: bdilba@aegwa.com AEG0327R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 17, 2020 by Friedman & Bruya, Inc. from the AEG 4 Corners Cleaners 17-126, F&BI 003260 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
003260 -01	VP-1
003260 -02	VP-2
003260 -03	VP- 3
003260 -04	Output

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	D: VP-1 Client: 03/17/20 Project: 03/16/20 Lab ID: 03/24/20 Data File: Air Instrumen ug/m3 Operator:		ent: ject: 1D: a File: trument: erator:	AEG 4 Corners Cleaners 17-126 003260-01 1/6.8 032322.D GCMS7 bat	
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 101	Lower Limit: 70	Upper Limit: 130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.7	< 0.68		
1,1-Dichloroethene		<2.7	< 0.68		
trans-1,2-Dichloroe	thene	<2.7	< 0.68		
cis-1,2-Dichloroethe	ene	<2.7	< 0.68		
Trichloroethene		3.7	0.68		
Tetrachloroethene		270	40		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-2 03/17/2 03/16/2 03/24/2 Air ug/m3	0 0 0	Clie Pro Lak Dat Ins Ope	ent: ject:) ID: :a File: trument: erator:	AEG 4 Corners Cleaners 17-126 003260-02 1/6.8 032323.D GCMS7 bat
	0		1		
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	98	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.7	< 0.68		
1,1-Dichloroethene		<2.7	< 0.68		
trans-1,2-Dichloroe	thene	<2.7	< 0.68		
cis-1,2-Dichloroethe	ene	<2.7	< 0.68		
Trichloroethene		<1.8	< 0.34		
Tetrachloroethene		66	9.8		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-3 03/17/2 03/16/2 03/24/2 Air ug/m3	0 0 0	Client: Project: Lab ID: Data File: Instrument: Operator:		AEG 4 Corners Cleaners 17-126 003260-03 1/35 032324.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 111	Lower Limit: 70	Upper Limit: 130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride 1,1-Dichloroethene trans-1,2-Dichloroethe cis-1,2-Dichloroethene Trichloroethene	thene ene	<8.9 <14 <14 <14 <9.4 960	<3.5 <3.5 <3.5 <3.5 <1.7		
remaindroethene		500	140		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Output 03/17/2 03/16/2 03/24/2 Air ug/m3	0 0 0	Client: Project: Lab ID: Data File: Instrument: Operator:		AEG 4 Corners Cleaners 17-126 003260-04 1/2.7 032320.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 104	Lower Limit: 70	Upper Limit: 130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.69	< 0.27		
1,1-Dichloroethene		<1.1	< 0.27		
trans-1,2-Dichloroe	thene	<1.1	< 0.27		
cis-1,2-Dichloroethe	ene	<1.1	< 0.27		
Trichloroethene		1.0	0.19		
Tetrachloroethene		16 j	2.3 j		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Methoo Not Ap Not Ap 03/23/2 Air ug/m3	d Blank pplicable pplicable 20	Client: Project: Lab ID: Data File: Instrument: Operator:		AEG 4 Corners Cleaners 17-126 00-0716 mb 032311.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 105	Lower Limit: 70	Upper Limit: 130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride 1,1-Dichloroethene trans-1,2-Dichloroe cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	thene ene	<0.26 <0.4 <0.4 <0.4 <0.27 <6.8	<0.1 <0.1 <0.1 <0.1 <0.05 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/27/20 Date Received: 03/17/20 Project: 4 Corners Cleaners 17-126, F&BI 003260

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 003260-04 1/2.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	< 0.69	< 0.69	nm
1,1-Dichloroethene	ug/m3	<1.1	<1.1	nm
trans-1,2-Dichloroethene	ug/m3	<1.1	<1.1	nm
cis-1,2-Dichloroethene	ug/m3	<1.1	<1.1	nm
Trichloroethene	ug/m3	1.0	1.0	0
Tetrachloroethene	ug/m3	<18	<18	nm

Laboratory Code: Laboratory Control Sample

	I I I I I I		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	92	70-130
1,1-Dichloroethene	ug/m3	54	97	70-130
trans-1,2-Dichloroethene	ug/m3	54	96	70 - 130
cis-1,2-Dichloroethene	ug/m3	54	99	70-130
Trichloroethene	ug/m3	73	85	70-130
Tetrachloroethene	ug/m3	92	86	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

- 3.0:	166			SAMP	LERS (sign	iature)		h		- 1				Page #	#of		
Report To	ny AEG			- PROJI	CT NAME	6 & AD	DRESS			PO	#		•Sta	TUR) ndar	NAROUND TIME		
Company MEG				- 4 convers Creaners				12	12-12-10				RUSH				
Address 2633 Port	mont un	nont unce sw Sufert			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~		17	17-14				Kush charges authorized by:			
City, State, ZIP_014	MAG	9857	2_	- NOTE	OTES:				IN	INVOICE TO			SAMPLE DISPOSAL				
Phone 360. 352.183	Email 🕑	dilba (Paequ	aicon					A	EG	ົງ □ Archive (Fe				ee may apply)		
SAMPLE INFORMATIO	N								· · · · · · · · · · · · · · · · · · ·	ANA	LYSIS	REQ	UEST	TED			
Sample Name	Lab	Canister ID 7 307	Flow Cont. ID	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Date Sampled	Initial Vac. ("Hg)	Field Initial Time	Final Vac. ("Hg)	Field Final Time	TO15 Full Scan	TO15 BTEXN	APH	* Helium	с 	Notes		
VF-1		1.00	243	IA / 86	100	- 30	1030		10.0			<u>\</u>					
VPC	02	4118	043	IA / \$G	(1032	$\frac{\partial}{\partial t}$	1046			4					
<u>1</u> <u></u>	03	2305	220	IA / &		20	1039	0	1017		7	<					
arput	04	3000	201	IA / 68		-30	1034	Ø	1042		7	₹	<u> </u>	ļ			
				IA / SG													
· · ·				IA / SG											2		
				TA / SG	1						Sar	poles	Tecei	hav	+ 18 00		

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Buy alpa	Arey	3/17/2020	813
Seattle, WA 98119-2029	Received by: Manhut	Nhan Phan	FEBI	3/17/20	0818
Ph. (206) 285-8282	Relinquished by: /		·····		
Fax (206) 283-5044	Received by:				
FORMS\COC\COCTO-15.DOC		e e e e e e e e e e e e e e e e e e e			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 30, 2020

Sherry Chilcutt Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506

Dear Ms Chilcutt :

Included are the results from the testing of material submitted on April 13, 2020 from the 4 Corners Cleaners 17-126, F&BI 004132 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

vle

Michael Erdahl Project Manager

Enclosures c: libbyenv@gmail.com NAA0430R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 13, 2020 by Friedman & Bruya, Inc. from the Libby Labs 4 Corners Cleaners 17-126, F&BI 004132 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Libby Labs</u>
004132 -01	SVE-InPct-4920
004132 -02	HP-1
004132 -03	HP-3
004132 -04	HP-2

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVE-Ir 04/13/2 04/09/2 04/27/2 Air ug/m3	nPct-4920 20 20 20	Client: Project: Lab ID: Data File: Instrument: Operator:		Libby Environmental 4 Corners Cleaners 17-126, F&BI 004132 004132-01 1/9.1 042712.D GCMS7 bat/MS
a		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne	92	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
X7: 1 1 1 · 1		-0.0	-0.01		
Vinyl chloride		<2.3	< 0.91		
Chloroethane		<24	<9.1		
1,1-Dichloroethene	_	<3.6	< 0.91		
trans-1,2-Dichloroet	hene	<3.6	< 0.91		
1,1-Dichloroethane		<3.7	< 0.91		
cis-1,2-Dichloroethe	ne	<3.6	< 0.91		
1,2-Dichloroethane	(EDC)	< 0.37	< 0.091		
1,1,1-Trichloroethan	ne	<5	< 0.91		
Trichloroethene		<2.4	< 0.45		
1,1,2-Trichloroethan	ne	< 0.99	< 0.18		
Tetrachloroethene		<62	< 9.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	HP-1 04/13/2 04/09/2 04/23/2 Air ug/m3	20 20 20	Client:IProject:4Lab ID:0Data File:0Instrument:0Operator:1		Libby Environmental 4 Corners Cleaners 17-126, F&BI 004132 004132-02 1/19 042223.D GCMS7 MS
a		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	103	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<4.9	<1.9		
Chloroethane		<50	<19		
1,1-Dichloroethene		<7.5	<1.9		
trans-1,2-Dichloroet	hene	<7.5	<1.9		
1,1-Dichloroethane		<7.7	<1.9		
cis-1,2-Dichloroethe	ne	<7.5	<1.9		
1,2-Dichloroethane	(EDC)	< 0.77	< 0.19		
1,1,1-Trichloroethar	ne	<10	<1.9		
Trichloroethene		<5.1	< 0.95		
1,1,2-Trichloroethar	ne	<2.1	< 0.38		
Tetrachloroethene		620	91		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	HP-3 04/13/2 04/09/2 04/23/2 Air ug/m3	20 20 20	Client:IProject:4Lab ID:0Data File:0Instrument:0Operator:N		Libby Environmental 4 Corners Cleaners 17-126, F&BI 004132 004132-03 1/16 042224.D GCMS7 MS
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne	106	70	130	
		Concent	ration		
Compounds.		ug/m3	nnhv		
compounds.		ug/iiio	pppv		
Vinyl chloride		<4.1	<1.6		
Chloroethane		<42	<16		
1,1-Dichloroethene		<6.3	<1.6		
trans-1,2-Dichloroet	hene	<6.3	<1.6		
1,1-Dichloroethane		< 6.5	<1.6		
cis-1,2-Dichloroethe	ne	<6.3	<1.6		
1,2-Dichloroethane	(EDC)	< 0.65	< 0.16		
1,1,1-Trichloroethar	ne	<8.7	<1.6		
Trichloroethene		<4.3	< 0.8		
1.1.2-Trichloroethar	ne	<1.7	< 0.32		
Tetrachloroethene		930	140		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	HP-2 04/13/2 04/09/2 04/23/2 Air ug/m3	20 20 20	Client: Project: Lab ID: Data File: Instrument: Operator:		Libby Environmental 4 Corners Cleaners 17-126, F&BI 004132 004132-04 1/9.9 042221.D GCMS7 MS
a		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromolluorobenze	ene	107	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<2.5	< 0.99		
Chloroethane		<26	<9.9		
1,1-Dichloroethene		<3.9	< 0.99		
trans-1,2-Dichloroet	hene	<3.9	< 0.99		
1,1-Dichloroethane		<4	< 0.99		
cis-1,2-Dichloroethe	ne	<3.9	< 0.99		
1,2-Dichloroethane	(EDC)	< 0.4	< 0.099		
1,1,1-Trichloroethar	ne	<5.4	< 0.99		
Trichloroethene		<2.7	< 0.49		
1,1,2-Trichloroethar	ne	<1.1	< 0.2		
Tetrachloroethene		220	33		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Not Ap 04/22/2 Air ug/m3	l Blank plicable plicable 0	Client:IProject:4Lab ID:0Data File:0Instrument:0Operator:1		Libby Environmental 4 Corners Cleaners 17-126, F&BI 004132 00-831 mb 042210.D GCMS7 MS
a		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	93	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
-		-			
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroet	hene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroethe	ne	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
1,1,1-Trichloroethar	ne	< 0.55	< 0.1		
Trichloroethene		< 0.27	< 0.05		
1,1,2-Trichloroethan	ne	< 0.11	< 0.02		
Tetrachloroethene		<6.8	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/30/20 Date Received: 04/13/20 Project: 4 Corners Cleaners 17-126, F&BI 004132

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 004176-01 1/3.0 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	< 0.77	< 0.77	nm
Chloroethane	ug/m3	<7.9	<7.9	nm
1,1-Dichloroethene	ug/m3	<1.2	<1.2	nm
trans-1,2-Dichloroethene	ug/m3	<1.2	<1.2	nm
1,1-Dichloroethane	ug/m3	<1.2	<1.2	nm
cis-1,2-Dichloroethene	ug/m3	<1.2	<1.2	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.12	< 0.12	nm
1,1,1-Trichloroethane	ug/m3	5.9	5.9	0
Trichloroethene	ug/m3	< 0.81	< 0.81	nm
1,1,2-Trichloroethane	ug/m3	< 0.33	< 0.33	nm
Tetrachloroethene	ug/m3	<20	<20	nm

Laboratory Code: Laboratory Control Sample

	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	87	70-130
Chloroethane	ug/m3	36	90	70 - 130
1,1-Dichloroethene	ug/m3	54	100	70 - 130
trans-1,2-Dichloroethene	ug/m3	54	95	70 - 130
1,1-Dichloroethane	ug/m3	55	92	70 - 130
cis-1,2-Dichloroethene	ug/m3	54	100	70 - 130
1,2-Dichloroethane (EDC)	ug/m3	55	100	70 - 130
1,1,1-Trichloroethane	ug/m3	74	97	70-130
Trichloroethene	ug/m3	73	83	70-130
1,1,2-Trichloroethane	ug/m3	74	82	70-130
Tetrachloroethene	ug/m3	92	86	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

004/32 Report To Company Address	j L	<u> </u>		SAMPLE SAMPLE PROJEC 4-2 23 NOTES	CHAIN TRS (signa TNAME GARGAR (886-5	ADE & ADE & ADE Caned Caned Caned	CUSTO RESS + Kajk	DDY R-L	// ///	PO#	<i>04</i> # Е ТС	- 13		Pa Ti Stand RUSI ash cl Defa	ige # URN dard H harge SAMI ult: C	AROUND ' as authorize PLE DISPO	f FIME ed by: DSAL 3 days	
City, State, ZIPO	mpi	s far	1	-	/ *0		1 WM						□ Archive (Fee may apply)					
PhoneEm	ail			- L						ANA	LYS	IS RI	QU	EST	ED			4
SAMPLE INFORMATION Sample Name SEF - In P. 7-4920 HP-1 HP-3 LP-2	Lab ID 0/ 02 03 04	Canister ID 3249 7350 3386 2252	Flow Cont. ID 12 18 11	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One) IA / SG IA / SG IA / SG IA / SG	Date Sampled 4/9/20 8/5/20 8/5/20 8/5/20	Initial Vac. ("Hg) 30 38 28 30	Field Initial Time 10:42 11:00 11:15 11:33	Final Vac. ("Hg) 7 8 3 8	Field Final Time (6:52 (1:58 (1:25 (1:38	TO15 Full Scan	TO15 BTEXN	TO15 cVOCs	APH	Helium	XXXX RETAN	Pro Pro Pro	otes E shtree dects	
				IA / SG IA / SG IA / SG IA / SG							San	ples	rece	ived	at_	20°C		
Friedman & Bruya, Inc.	Polind	A SI(GNATU	RE	27	PRI	NT NAM	Æ			- <u>cc</u> 42	DMP.	ANY	r		DATE 4-5-2.	TIME 15:4	5

05

1 mm

:

 \leq

4

ENI

Ear

りり

<u>(1</u>

Cu

n

9-20

4-9-20

49

z

1600

3012 16th Avenue West
Seattle, WA 98119-2029
Ph. (206) 285-8282

Relinquished by:

Ä

Relinquished by:

Received by:

Received by:

ŧ

Fax (206) 283-5044

FORMS\COC\COCTO-15.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 1, 2020

Becky Dilba, Project Manager AEG 605 11th Ave SE Suite 201 Tacoma, WA 98501

Dear Ms Dilba:

Included are the results from the testing of material submitted on May 26, 2020 from the 4 Corners Cleaners 17-126, F&BI 005309 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures AEG0601R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 26, 2020 by Friedman & Bruya, Inc. from the AEG 4 Corners Cleaners 17-126, F&BI 005309 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
005309 -01	VP-1
005309 -02	VP-2
005309 -03	VP- 3
005309 -04	Output

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1 05/26/2 05/20/2 05/27/2 Air ug/m3	20 20 20	Clier Proje Lab Data Instr Oper	nt: ect: ID: a File: rument: rator:	AEG 4 Corners Cleaners 17-126, F&BI 005309 005309-01 1/14 052638.D GCMS7 bat/MS
a		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	96	70	130	
Concentration					
Compounds:		ug/m3	ppbv		
Vinyl chloride		<3.6	<1.4		
Chloroethane		<37	<14		
1,1-Dichloroethene		<5.6	<1.4		
trans-1,2-Dichloroethene <5.6		<1.4			
1,1-Dichloroethane <5.7		<1.4			
cis-1,2-Dichloroethe	ne	<5.6	<1.4		
1,2-Dichloroethane (EDC) <0.57		< 0.14			
1,1,1-Trichloroethane <7.6		<1.4			
Trichloroethene 4.3		0.80			
1,1,2-Trichloroethane <1.5		< 0.28			
Tetrachloroethene 570		84			
ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-2 05/26/2 05/20/2 05/27/2 Air ug/m3	20 20 20	Client: Project: Lab ID: Data File: Instrument: Operator:		AEG 4 Corners Cleaners 17-126, F&BI 005309 005309-02 1/6.8 052637.D GCMS7 bat/MS
~		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne	107	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.7	< 0.68		
Chloroethane		<18	<6.8		
1,1-Dichloroethene		<2.7	< 0.68		
trans-1,2-Dichloroet	hene	<2.7	< 0.68		
1,1-Dichloroethane		<2.8	< 0.68		
cis-1,2-Dichloroether	ne	<2.7	< 0.68		
1,2-Dichloroethane ((EDC)	< 0.28	< 0.068		
1,1,1-Trichloroethan	ie	<3.7	< 0.68		
Trichloroethene		<1.8	< 0.34		
1,1,2-Trichloroethan	ie	< 0.74	< 0.14		
Tetrachloroethene		230	34		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-3 05/26/2 05/20/2 05/27/2 Air ug/m3	0 0 0	Client: Project: Lab ID: Data File: Instrument: Operator:		AEG 4 Corners Cleaners 17-126, F&BI 005309 005309-03 1/35 052639.D GCMS7 bat/MS
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne	112	70	130	
		~			
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<8.9	<3.5		
Chloroethane		<92	<35		
1,1-Dichloroethene		<14	<3.5		
trans-1,2-Dichloroet	hene	<14	<3.5		
1,1-Dichloroethane		<14	<3.5		
cis-1,2-Dichloroethe	ne	<14	<3.5		
1,2-Dichloroethane	(EDC)	<1.4	< 0.35		
1,1,1-Trichloroethan	ie	<19	<3.5		
Trichloroethene		<9.4	<1.7		
1,1,2-Trichloroethan	ne	<3.8	< 0.7		
Tetrachloroethene		1,300	190		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Output 05/26/2 05/20/2 05/27/2 Air ug/m3	t 20 20 20	Client: Project: Lab ID: Data File: Instrument: Operator:		AEG 4 Corners Cleaners 17-126, F&BI 005309 005309-04 1/6.9 052636.D GCMS7 bat/MS
~		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	97	70	130	
0 1		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.8	< 0.69		
Chloroethane		<18	<6.9		
1,1-Dichloroethene		<2.7	< 0.69		
trans-1,2-Dichloroet	thene	<2.7	< 0.69		
1,1-Dichloroethane		<2.8	< 0.69		
cis-1,2-Dichloroethe	ne	<2.7	< 0.69		
1,2-Dichloroethane	(EDC)	< 0.28	< 0.069		
1,1,1-Trichloroethar	ne	<3.8	< 0.69		
Trichloroethene		<1.9	< 0.34		
1,1,2-Trichloroethar	ne	< 0.75	< 0.14		
Tetrachloroethene		<47	< 6.9		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Not Ap Not Ap 05/26/2 Air ug/m3	d Blank oplicable oplicable 20	Client: Project: Lab ID: Data File: Instrument: Operator:		AEG 4 Corners Cleaners 17-126, F&BI 005309 00-1154 mb 052619.D GCMS7 bat/MS
~		- %	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne	106	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroet	hene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroethe	ne	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
1,1,1-Trichloroethar	ne	< 0.55	< 0.1		
Trichloroethene		< 0.27	< 0.05		
1,1,2-Trichloroethar	ne	< 0.11	< 0.02		
Tetrachloroethene		<6.8	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/01/20 Date Received: 05/26/20 Project: 4 Corners Cleaners 17-126, F&BI 005309

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 005310-01 1/3.0 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	63	61	3
Chloroethane	ug/m3	<7.9	<7.9	nm
1,1-Dichloroethene	ug/m3	<1.2	<1.2	nm
trans-1,2-Dichloroethene	ug/m3	<1.2	<1.2	nm
1,1-Dichloroethane	ug/m3	<1.2	<1.2	nm
cis-1,2-Dichloroethene	ug/m3	<1.2	<1.2	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.12	< 0.12	nm
1,1,1-Trichloroethane	ug/m3	<1.6	<1.6	nm
Trichloroethene	ug/m3	< 0.81	< 0.81	nm
1,1,2-Trichloroethane	ug/m3	< 0.33	< 0.33	nm
Tetrachloroethene	ug/m3	<20	<20	nm

Laboratory Code: Laboratory Control Sample

	1			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	84	70-130
Chloroethane	ug/m3	36	86	70-130
1,1-Dichloroethene	ug/m3	54	95	70-130
trans-1,2-Dichloroethene	ug/m3	54	90	70-130
1,1-Dichloroethane	ug/m3	55	86	70-130
cis-1,2-Dichloroethene	ug/m3	54	92	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	93	70-130
1,1,1-Trichloroethane	ug/m3	74	92	70-130
Trichloroethene	ug/m3	73	84	70-130
1,1,2-Trichloroethane	ug/m3	74	89	70-130
Tetrachloroethene	ug/m3	92	89	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

c (206) 283-5044 NCOCNCOCTO-15.DOC	. (206) 285-8282	12 16th Avenue West attle, WA 98119-2029	iedman & Bruya, Inc.					indino and	S-dA	VP-2	\$\$ VP-1	Sample Name		Phone	City, State, ZIP	Address	Report To & Be Company MECI
Received by:	Reproduished by:	Received by:	SIGNATUR					or 2433 220	03 2296 28	02 418324	01 3385 243	Lab Canister Cont. ID ID ID		Email Ich Iba O ace			291 W has
			E	IA / SG	IA / 60	IA / 60	IA / 60	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)		wa.com	ITON	Le	PRO.				
	James	Wacen	rad) -30	-21	5- 23	5/20/2020 -2	- Date Sampled ("H			ŝ	Conneres	PLERS (signati
	BIOKES	DA BA				•		1154 40	8 1219 0	0 8121 0	8 1216 0	ial Field Fin c. Initial Va g) Time ("H				Clearp	ure) ADDRESS
		<u> </u>						12.20	1224	1228	1221	g c al Field Time	A	AF	INVO	7	
	B	COMPANY			ç.							TO15 Pull Scan TO15 BTEXN TO15 cVOCs APH	NALYSIS REQ		DICE TO	126	PO# 07
	2520 26/30	DATE TIME	*		·			Y	X	x	K YOLES	Helium PCR i Javg Vitus	UESTED	 Denamic Clean after 3 days Archive (Fee may apply) 	SAMPLE DISPOSAL	Rush charges authorized by:	-26-20 Page #of TURNAROUND TIME XStandard

3322 South Bay Road NE • Olympia, WA 98506-2957

June 3, 2020

Becky Dilba Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Ms. Dilba:

Please find enclosed the analytical data report for the 4 Corners Cleaners Project located in Maple Valley, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Aby Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200521-1 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	MW1-3	MW1-9	MW1-18	MW1-23	MW1-33
		Blank					
Date Sampled		N/A	5/18/2020	5/18/2020	5/18/2020	5/18/2020	5/18/2020
Date Analyzed	PQL	5/26/2020	5/26/2020	5/26/2020	5/26/2020	5/26/2020	5/26/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	0.011 J	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		96	97	97	99	8	98
1,2-Dichloroethane-d4		95	101	101	105	103	104
Toluene-d8		102	101	98	101	97	100
4-Bromofluorobenzene		91	82	80	76	74	91

Volatile Organic Compounds by EPA Method 8260D in Soil

"J" Indicates analyte was positively identified. Reported result is an estimate.

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200521-1 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		MW1-33	MW1-36	MW1-50	MW2-3	MW2-9	MW2-18
		Dup					
Date Sampled		5/18/2020	5/18/2020	5/18/2020	5/18/2020	5/18/2020	5/18/2020
Date Analyzed	PQL	5/26/2020	5/26/2020	5/26/2020	5/26/2020	5/26/2020	5/26/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		98	93	97	98	99	96
1,2-Dichloroethane-d4		107	95	107	105	107	101
Toluene-d8		100	97	99	100	98	97
4-Bromofluorobenzene		79	71	72	92	67	78
"nd" Indicates not deter	cted at listed	l detection lin	nit.				
"int" Indicates that inte	rference pre	vents determi	ination.				

Volatile Organic Compounds by EPA Method 8260D in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200521-1 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		MW2-24	MW2-36	MW2-43	MW2-50	MW2-50	MW3-3
						Dup	
Date Sampled		5/18/2020	5/18/2020	5/18/2020	5/18/2020	5/18/2020	5/18/2020
Date Analyzed	PQL	5/26/2020	5/26/2020	5/26/2020	5/26/2020	5/26/2020	5/26/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		96	94	98	98	99	100
1,2-Dichloroethane-d4		102	102	106	107	106	109
Toluene-d8		87	95	98	99	99	100
4-Bromofluorobenzene		87	70	77	71	88	74
"nd" Indicates not dete	cted at listed	detection lin	nit.				
"int" Indicates that inte	rference pre	vents determ	ination.				

Volatile Organic Compounds by EPA Method 8260D in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200521-1 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		MW3-9	MW3-18	MW3-27	MW3-36	MW3-36	MW3-48
						Dup	
Date Sampled		5/19/2020	5/19/2020	5/19/2020	5/19/2020	5/19/2020	5/19/2020
Date Analyzed	PQL	5/27/2020	5/27/2020	5/27/2020	5/27/2020	5/27/2020	5/27/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	0.031	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		100	96	98	97	97	96
1,2-Dichloroethane-d4		108	106	104	108	105	104
Toluene-d8		99	97	98	98	108	96
4-Bromofluorobenzene		79	69	66	83	68	76
"nd" Indicates not dete	cted at listed	detection lin	nit.				
"int" Indicates that inte	rference pre	vents determi	ination.				

Volatile Organic Compounds by EPA Method 8260D in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200521-1 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		MW5-3	MW5-9	MW5-30	MW5-45	MW5-45	Method
						Dup	Blank
Date Sampled		5/20/2020	5/20/2020	5/20/2020	5/20/2020	5/20/2020	NA
Date Analyzed	PQL	5/27/2020	5/27/2020	5/27/2020	5/27/2020	5/27/2020	5/27/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		100	101	102	98	101	97
1,2-Dichloroethane-d4		104	107	108	109	109	108
Toluene-d8		101	101	101	100	100	102
4-Bromofluorobenzene		66	69	67	66	66	75
"nd" Indicates not deter	cted at listed	detection lin	nit.				
"int" Indicates that inte	rference pre	vents determi	nation.				

Volatile Organic Compounds by EPA Method 8260D in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200521-1 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

N	latrix Spike	Sample Iden	ntification:	MW1-36				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	
Vinyl Chloride (VC)	0.25	0.21	0.21	84	84	0.0	65-135	
1,1-Dichloroethene	0.25	0.23	0.24	92	96	4.3	65-135	
trans-1,2-Dichloroethene	0.25	0.21	0.21	84	84	0.0	65-135	
cis-1,2-Dichloroethene	0.25	0.24	0.24	96	96	0.0	65-135	
Trichloroethene (TCE)	0.25	0.24	0.23	96	92	4.3	65-135	
Tetrachloroethene (PCE)	0.25	0.18	0.21	72	84	15.4	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				97	98		65-135	
1,2-Dichloroethane-d4				106	104		65-135	
Toluene-d8				102	101		65-135	
4-Bromofluorobenzene				92	78		65-135	
ACCEPTABLE RPD IS	\$ 35%							

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

ANALYSES PERFORMED BY: Paul Burke

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	-
Vinyl Chloride (VC)	0.25	0.20	80	80-120	
1,1-Dichloroethene	0.25	0.22	88	80-120	
trans-1,2-Dichloroethene	0.25	0.23	92	80-120	
cis-1,2-Dichloroethene	0.25	0.25	100	80-120	
Trichloroethene (TCE)	0.25	0.25	100	80-120	
Tetrachloroethene (PCE)	0.25	0.22	88	80-120	
Surrogate Recovery					
Dibromofluoromethane			115	65-135	
1,2-Dichloroethane-d4			116	65-135	
Toluene-d8			118	65-135	
4-Bromofluorobenzene			96	65-135	

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200521-1 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

N	Matrix Spike Sample Identification: MW5-45												
	0 - 1 - 1	MC	MCD	MC	MCD	מתת	Timite	Dete					
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data					
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag					
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)						
Vinyl Chloride (VC)	0.25	0.17	0.17	68	68	0.0	65-135						
1,1-Dichloroethene	0.25	0.19	0.19	76	76	0.0	65-135						
trans-1,2-Dichloroethene	0.25	0.18	0.18	72	72	0.0	65-135						
cis-1,2-Dichloroethene	0.25	0.22	0.22	88	88	0.0	65-135						
Trichloroethene (TCE)	0.25	0.21	0.20	84	80	4.9	65-135						
Tetrachloroethene (PCE)	0.25	0.19	0.17	76	68	11.1	65-135						
Surrogate Recovery (%)				MS	MSD								
Dibromofluoromethane				102	99		65-135						
1,2-Dichloroethane-d4				106	107		65-135						
Toluene-d8				102	101		65-135						
4-Bromofluorobenzene				71	71		65-135						
ACCEPTABLE RPD IS	\$ 35%												

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

ANALYSES PERFORMED BY: Paul Burke

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Vinyl Chloride (VC)	0.25	0.21	84	80-120	
1,1-Dichloroethene	0.25	0.21	84	80-120	
trans-1,2-Dichloroethene	0.25	0.23	92	80-120	
cis-1,2-Dichloroethene	0.25	0.27	108	80-120	
Trichloroethene (TCE)	0.25	0.26	104	80-120	
Tetrachloroethene (PCE)	0.25	0.21	84	80-120	
Surrogate Recovery					
Dibromofluoromethane			116	65-135	
1,2-Dichloroethane-d4			126	65-135	
Toluene-d8			121	65-135	
4-Bromofluorobenzene			85	65-135	

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200521-1 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	MW1-15	MW1-20	MW2-15	MW2-21	MW3-21
		Blank					
Date Sampled		N/A	5/18/2020	5/18/2020	5/18/2020	5/18/2020	5/19/2020
Date Analyzed	PQL	6/1/2020	6/1/2020	6/1/2020	6/1/2020	6/1/2020	6/1/2020
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	0.019 J	nd	nd	nd	0.063
Surrogate Recovery							
Dibromofluoromethane		91	88	92	93	90	94
1,2-Dichloroethane-d4		86	87	84	91	89	93
Toluene-d8		101	100	87	88	82	74
4-Bromofluorobenzene		86	96	94	92	93	91

Volatile Organic Compounds by EPA Method 8260D in Soil

"J" Indicates analyte was positively identified. Reported result is an estimate.

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200521-1 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

~						
Sample Description		MW3-21	MW5-15	MW5-18	MW5-21	
		Dup				
Date Sampled		5/19/2020	5/20/2020	5/20/2020	5/20/2020	
Date Analyzed	PQL	6/1/2020	6/1/2020	6/1/2020	6/1/2020	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	
1,1-Dichloroethene	0.05	nd	nd	nd	nd	
trans-1,2-Dichloroethene	0.02	nd	nd	nd	nd	
cis-1,2-Dichloroethene	0.02	nd	nd	nd	nd	
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	
Tetrachloroethene (PCE)	0.02	0.12	nd	nd	nd	
Surrogate Recovery						
Dibromofluoromethane		93	93	93	95	
1,2-Dichloroethane-d4		92	91	95	94	
Toluene-d8		75	79	74	76	
4-Bromofluorobenzene		93	94	90	94	
"nd" Indicates not detec	cted at listed	detection lin	nit.			
"int" Indicates that inter	rference pre	vents determi	ination.			

Volatile Organic Compounds by EPA Method 8260D in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200521-1 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

N	latrix Spike	Sample Ide	ntification:	L200529-1				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc. (mg/kg)	Response (mg/kg)	Response (mg/kg)	Recovery (%)	Recovery (%)	(%)	Recovery (%)	Flag
Vinyl Chloride (VC)	0.25	0.20	0.21	80	84	4.9	65-135	
1,1-Dichloroethene	0.25	0.23	0.24	93	96	3.0	65-135	
trans-1,2-Dichloroethene	0.25	0.25	0.26	100	104	3.9	65-135	
cis-1,2-Dichloroethene	0.25	0.26	0.28	104	112	7.4	65-135	
Trichloroethene (TCE)	0.25	0.26	0.27	104	108	3.8	65-135	
Tetrachloroethene (PCE)	0.25	0.26	0.26	104	104	0.0	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				93	96		65-135	
1,2-Dichloroethane-d4				91	97		65-135	
Toluene-d8				100	100		65-135	
4-Bromofluorobenzene				79	87		65-135	
ACCEPTABLE RPD IS	35%							

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

ANALYSES PERFORMED BY: Paul Burke

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Vinyl Chloride (VC)	0.25	0.22	88	80-120	
1,1-Dichloroethene	0.25	0.22	88	80-120	
trans-1,2-Dichloroethene	0.25	0.25	100	80-120	
cis-1,2-Dichloroethene	0.25	0.26	104	80-120	
Trichloroethene (TCE)	0.25	0.25	100	80-120	
Tetrachloroethene (PCE)	0.25	0.25	100	80-120	
Surrogate Recovery					
Dibromofluoromethane			93	65-135	
1,2-Dichloroethane-d4			93	65-135	
Toluene-d8			100	65-135	
4-Bromofluorobenzene			92	65-135	

4 CORNERS CLEANERS PROJECT AEG, LLC Libby Project # L200521-1 Date Received 5/21/2020

Time Received 9:30 AM

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	No No	
2. How was the sample delivered?	Hand Delivered	✓ Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	No	□ N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	No No	□ N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	□ N/A
6. Was an attempt made to cool the samples?	Yes	✓ No	N/A
7. Temperature of cooler (0°C to 8°C recommended)	16.2	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	12.7	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	No No	
10. Is it clear what analyses were requested?	✓ Yes	No No	
11. Did container labels match Chain of Custody?	✓ Yes	No No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	No No	
13. Are correct containers used for the analysis indicated?	✓ Yes	No No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	No No	
15. Were all containers properly preserved per each analysis?	✓ Yes	No No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	No No	N/A
17. Were all holding times able to be met?	✓ Yes	No No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	No No	✓ N/A
Person Notified:			Date:
By Whom:			Via:
Regarding:			
19. Comments.			

Libby Environmer	ntal, Ir	IC.		C	hain c	f Cus	tody	Reco	ord					W	www.LibbyB	invironmental.	com
3322 South Bay Road NE Olympia, WA 98506	Ph: Fax:	360-352-2	2110 4154			Date:	5/2	-1/202	e			Pa	qe:	١	0	f Y	
Client: AEG	****					Project N	lanage	er: B.C	2:11	25			<u> </u>				
Address:						Project N	lame:	4 000	MA	25	Cle	unel	25				
City:		State:	Zip:			Location	238	86 55	K	at -Ku	aleyi	Cit	v. Sta	te: N	uple com	Loy	
Phone:		Fax:	p.			Collector	: 3	·DILba			1-1	'Da	te of (Collect	ion:5/18	12020	
Client Project # 17-126		- un				Email:	bd'l	hall	aea	LUC.	con						
THE BOA			Sample	Container	S. S.	S Causter	2400 37 8260 57 8260	SALAN SALAN	07	S NE AS	Netals Netals Net B210	8210 V	8270		Field	Notos	
Sample Number	Depth 2	lime	Type	Type		$\gamma \approx \gamma \otimes$	$\langle \langle \langle \rangle \rangle$	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- N	₹° 0	2 84	50/	1	ff	Field	NOTES	-
1 1/101-3	2	917	Sort	VDAX F WAR					+		-		-				-
2 11/01-0	9	907	$\left \right $		V				+				-				-
5 11/01 /	GUN	GENT	$\left \right\rangle$		7				+			-	+				-
4 WW/12	Gue	(HAR							+				+				-
5 MWI-15	GUE	A REAL				+-+-											-
7 101/10	Gru	15-LI							+				+				-
1 MW1- 20	Grut	905							+				+				-
0 11101 13	139-	- 74	-/						+				-				-
10 11 1 20	100039	2.	+ (+				+				-
10 MW 1- 90	12 col	7 51			~				+			-	+				-
11 10/01-35	11142	1 35							-				+	+			-
12 1101- 36	111-1	54			7		$\left \right $		+				+				-
13 MW - 92	11/ 1-	5)	+ -														-
14 MW 51	110	12-5	· ·						+				+	+			-
15 MG 2- 3		156			X								-	+			
16 MWd-6		1318							+				+	+			-
17 MWJ-9		1328	Date / Time	Received by:	X			Date / Tir	me	San		Receir	at	Dom	anke:		_
R 8/21/4	20		Buto / Timo	mi		5	21/2	x D93	30 G	lood Cond	lition?	Y	N	5-2	9-202	0	23
Relinquished by:			Date / Time	Received by:			-16	Date / Tir	me C	ooler Ten	np.		°C	ADA	D-ON F	LEQUEST	
Polinguished by:		-	Date / Time	Received by:		-		Date / Tir	S me -	ample Te	mp.		°C	PER	BECKN	VIA EMA	1C.
			Date / Time	Neceived by.						Contain	ers			TAT	: 24HR	48HR 5	SAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay. Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Kellow - Originator

Libby Environmer	oby Environmental, Inc. Chair						of Custody Record								v	www.LibbyEnvironmental.com		
3322 South Bay Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4	110 154			Date:	5/2	12	020				Pag	e:	2	C	of	4
Client: AEG						Proje	ct Mana	ager:	B.	21	he							
Address:						Proje	ct Nam	e:	40	cna	eas	CL	an					
City:	an ann an far a far ann an	State:	Zin			Locat	tion:			<u>o u </u>			City	Stat	te:			
Phone:		Fax:				Colle	ctor:	2. 1	14				Date	e of (ion: \$/1	8/2	2
Client Project # 17-12	4					Emai	1: 4	1.1	50 (G	aer	46.0						4
Sample Number	Denth	Time	Sample	Container	00	E CH IN	STEL PRO	ASOL AND	SU SU SU SU SU SU SU SU SU SU SU SU SU S	0 ⁺	Sheds he	215 18210 18210	10 vo	8210		Eield	Notes	
1 mw2-17	Deptit	1332	туре	Туре	K ×	YY	× ×	Y FY		NY.	74	-	2	<u> </u>	f f	rielu	NOLES	· · · · · · · · · · · · · · · · · · ·
2 MUD-15		1340			1					+			+					
3 Mu12-18		1344						+		+			+					
4 11422-29		1349								+			1					
5 10102-24		349				(+								
6 MU2 17		1254								+			1					
7 141/12-20		1255								+			1					
8 mm 1- 33		1431											1					
9 MW2-36		1439			V					+								
10 muluyo		1431								+								
11 MW 2 - 43		4503			K													
12 mwz-4,		1504																
13 MWL-50		1505				-												
14																		
15																		
16																		
17																		
Relinquished by: SIII 2 11	,		Date / Time	Received by:			11.1	Di	ate / Tim	ie	Samp	ole Re	ceipt	t	Rema	arks: 5-2	.9-20	20
Relinquished by:			Date / Time	Received by:	<u> </u>		5/21	120 Di	ate / Tim	G Go G Go	od Conditi oler Temp	on?	Y	N ℃	ADD BEC	-ONS P KY VIA	EQUE	est per
Relinquished by:			Date / Time	Received by:				D	ate / Tim	Sai	tal Numbe Containers	r of		0	TAT	24HR	48HF	5-DAX

Distribution: White - Lab, Yellow - Originato

Libby Environme	Chain of Custody Record							www.LibbyEnvironmental.com										
3322 South Bay Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4	2110 1154			Date:	5/21	12020)			P	age:	2	3		of Y	
Client: AEG						Project	Manag	er: ß	RI	h,							,	
Address:						Project	Name:	Ye	Eann	ins								1
City:		State:	Zip:			Locatio	n:					С	ity, St	ate:		_		
Phone:		Fax:				Collecto	or: n.	Al	69			D	ate of	Colle	ection	5/19	12000	-5720
Client Project # 17-120	6					Email:												
Sample Number	Sample Number Depth Time Type					ER Daugh	2000 2000 2000 2000 2000 2000 2000 200	RHHCR RHHCR RHHCR	CB 8082	SA SHE	S CALLON	10 10 H 82 5811	V01821			Field	Notes	
1MW3-3 '		852			1										5/	15		
2 mw 3-6		855													$\left[\right]$			
3 MW 3-9		855			4													
4 MW3-12		905	-		1 1 1											/		
5-AAW 3-15		905)		
6 MW 3- 18		905			Y											7		
7 MW.2-21		918			X											$\left(\right)$		
8 MW 3-24		919															1 -	
9 MW3-27		1010			X											/		
10 M W 3- 30		1010														(
11 Marz- 23		1023														5		
12 MW3-36		1029			X													
13 MW 3. 39		1029														1		
14 MW3 - 43	105%	# 45														2		
15 11W 3-4B		/			X											L		
16 MWS-3		343			X										51	26		
17 Mars-10		850			1 MA									1				
Relinquished by: Date / Time F Relinquished by: Date / Time I				Received by: Received by:	Received by: Cooler Temp. Cooler Temp. Cooler Temp. Cooler Temp. Cooler Temp. Cooler Temp.					Pript Remarks: 5-29-2020 Y N ADD-ON REQUEST °C BECKY °C STD								
Relinquished by:			Date / Time	Received by:				Date /	Time	Total No Cont	umber of ainers				T: 2	24HR	48HR	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

3322 South Bay Road NE F	h: 360-352-2	140	Chain of Custody Recor														ntai.com	
Olympia, WA 98506	ax: 360-352-4	110			Date:	5/2	1/20	nv	>			Page	e:	Z	4	of		4
Client: AEG					Project M	anage	r: B	Oil	6									-
Address:					Project Name: fun Conneg													
City:	State:	Zip:			Location: City, Sta							Stat	e:					
Phone: Fax:					Collector	bd	alber	/				Date	e of C	Collect	ion:	5/20		
Client Project # 126					Email:				2									
THE RADIE		Sample	Container	6	ES Daugher	2400 2400 2400	Sell Rest	27 88 27 88	CASHE	als hears	110 11	nillo	8210		7	//		
Sample Number Dep	h Time	Туре	Туре	K SV	2/2/8/8		2 4	1	<u>/ ~/</u>	0/9	7 5		\leftarrow	\leftarrow	Fi	eld Not	es	
1 1003-9	1004		-					+										
2 100 15	10116							+										
1 2011 21	1277						-											
5	140							+										
6 mins of	10/7																	
7	1029			Y														
8	1021																	
9 1445-31	1100-										-							
10 2006-210	1031																	
11	102										-							
12 MALANTA-	1454										+							
13 BULLE B WALL B	NSB	lares																
14,04,0,10-17 MW/12	143																	
15 male Male Male Male	1520																	
16 route to nawe 18	1573										1							
17 Marsuss Extra	1600		2								1							
Relinquished by: 57a11		Date / Time	Received by:				Date /	/ Time	S	ample	Rec	eipt		Rema	arks:	5-29-	2020	2
121/1010		Data (T	M7P.	6	B	121/2	10 (193	Good C	ondition	?	Y	N	ADC	-ONS	S RED	UEST	PER
Reinquisned by:		Date / Time	Received by:				Date /	Time	Cooler	Temp.			°C	BECK	N P	A EM	AIL.	0.00
Relinquished by:		Date / Time	Received by:				Date /	/ Time	Total N	umber o	f	1000/01/2014/01/1010					1	SIN
									Cont	ainers				TAT	24	HR 48	HR	5-DAY

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 1, 2020

Becky Dilba, Project Manager AEG 605 11th Ave SE Suite 201 Tacoma, WA 98501

RECEIVED JUN 1 5 2020 BY:

Dear Ms Dilba:

Included are the results from the testing of material submitted on May 26, 2020 from the 4 Corners Cleaners 17-126, F&BI 005309 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures AEG0601R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 26, 2020 by Friedman & Bruya, Inc. from the AEG 4 Corners Cleaners 17-126, F&BI 005309 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	$\underline{\text{AEG}}$
005309 -01	VP-1
005309 -02	VP-2
005309 -03	VP-3
005309 -04	Output

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

<5.6

<5.7

< 5.6

<7.6

 $<\!\!1.5$

570

4.3

< 0.57

<1.4

<1.4

<1.4

<1.4

0.80

84

<0.28

< 0.14

trans-1,2-Dichloroethene

1,2-Dichloroethane (EDC)

1,1-Dichloroethane

cis-1,2-Dichloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Tetrachloroethene

Trichloroethene

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1 05/26/20 05/20/20 05/27/20 Air ug/m3	Clien Projec Lab I Data Instru Opera	t: ct: D: File: ument: ator:	AEG 4 Corners Cleaners 17-126, F&BI 005309 005309-01 1/14 052638.D GCMS7 bat/MS
Surrogates	% Recovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenzo	ene 96	70	130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Vinyl chloride	<3.6	<1.4		
Chloroethane	<37	<14		
1,1-Dichloroethene	<5.6	<1.4		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-2 05/26/2 05/20/2 05/27/2 Air ug/m3	20 20 20	Clien Proje Lab I Data Instru Opera	t: ct: D: File: ument: ator:	AEG 4 Corners Cleaners 17-126, F&BI 005309 005309-02 1/6.8 052637.D GCMS7 bat/MS
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	107	70	130	
		Concert			
a 1		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.7	<0.68		
Chloroethane		<18	<6.8		
1,1-Dichloroethene		<2.7	<0.68		
trans-1,2-Dichloroe	thene	<2.7	<0.68		
1,1-Dichloroethane		<2.8	<0.68		
cis-1,2-Dichloroethe	ene	<2.7	<0.68		
1,2-Dichloroethane	(EDC)	<0.28	<0.068		
1,1,1-Trichloroethan	ne	<3.7	<0.68		
Trichloroethene		<1.8	<0.34		
		o - -			

1,1,2-Trichloroethane < 0.74< 0.14 Tetrachloroethene 230 34

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-3 05/26/20 05/20/20 05/27/20 Air ug/m3)))	Clien Projec Lab I Data Instru Opera	t: ct: D: File: ument: ator:	AEG 4 Corners Cleaners 17-126, F&BI 005309 005309-03 1/35 052639.D GCMS7 bat/MS
		%	Lower	Upper	
Surrogates:]	Recovery:	Limit:	Limit:	
4-Bromofluorobenzene		112	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<8.9	<3.5		
Chloroethane		<92	<35		
1,1-Dichloroethene		<14	<3.5		
trans-1,2-Dichloroetl	hene	<14	<3.5		
1,1-Dichloroethane		<14	<3.5		
cis-1,2-Dichloroether	ne	<14	<3.5		
12-Dichloroethane (EDC)	<14	<0.35		

· · · · · · · · · · · · · · · · · · ·		
cis-1,2-Dichloroethene	<14	<3.5
1,2-Dichloroethane (EDC)	<1.4	<0.35
1,1,1-Trichloroethane	<19	<3.5
Trichloroethene	<9.4	<1.7
1,1,2-Trichloroethane	<3.8	<0.7
Tetrachloroethene	1,300	190

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Output 05/26/2 05/20/2 05/27/2 Air ug/m3	0 0 0	Clien Proje Lab I Data Instr Opera	t: ct: D: File: ument: ator:	AEG 4 Corners Cleaners 17-126, F&BI 005309 005309-04 1/6.9 052636.D GCMS7 bat/MS
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	97	70	130	
Compounds:		Concent ug/m3	ration ppbv		
Vinyl chloride		<1.8	<0.69		
Chloroethane		<18	<6.9		
1,1-Dichloroethene		<2.7	<0.69		
trans-1,2-Dichloroet	hene	<2.7	<0.69		
1,1-Dichloroethane		<2.8	<0.69		
cis-1,2-Dichloroethe	ne	<2.7	<0.69		
1,2-Dichloroethane	(EDC)	< 0.28	< 0.069		
1,1,1-Trichloroethar	ie	<3.8	< 0.69		
Trichloroethene		<1.9	< 0.34		
1,1,2-Trichloroethar	ne	<0.75	< 0.14		

<47

<6.9

Tetrachloroethene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Metho Not Ar Not Ar 05/26/2 Air ug/m3	d Blank oplicable oplicable 20	Clien Proje Lab I Data Instru Opera	t: ct: D: File: ument: ator:	AEG 4 Corners Cleaners 17-126, F&BI 005309 00-1154 mb 052619.D GCMS7 bat/MS
~		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	106	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<0.26	<0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		<0.4	<0.1		
trans-1,2-Dichloroet	thene	<0.4	<0.1		
1,1-Dichloroethane		<0.4	< 0.1		
cis-1,2-Dichloroethe	ne	<0.4	<0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
1,1,1-Trichloroethan	ie	< 0.55	< 0.1		
Trichloroethene		< 0.27	< 0.05		
1,1,2-Trichloroethar	ne	<0.11	< 0.02		
Tetrachloroethene		<6.8	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/01/20 Date Received: 05/26/20 Project: 4 Corners Cleaners 17-126, F&BI 005309

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 005310-01 1/3.0 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	63	61	3
Chloroethane	ug/m3	<7.9	<7.9	nm
1,1-Dichloroethene	ug/m3	< 1.2	< 1.2	nm
trans-1,2-Dichloroethene	ug/m3	< 1.2	<1.2	nm
1,1-Dichloroethane	ug/m3	< 1.2	<1.2	nm
cis-1,2-Dichloroethene	ug/m3	<1.2	<1.2	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.12	< 0.12	nm
1,1,1-Trichloroethane	ug/m3	<1.6	<1.6	nm
Trichloroethene	ug/m3	<0.81	< 0.81	nm
1,1,2-Trichloroethane	ug/m3	<0.33	< 0.33	nm
Tetrachloroethene	ug/m3	<20	<20	nm

Laboratory Code: Laboratory Control Sample

	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	84	70-130
Chloroethane	ug/m3	36	86	70-130
1,1-Dichloroethene	ug/m3	54	95	70-130
trans-1,2-Dichloroethene	ug/m3	54	90	70-130
1,1-Dichloroethane	ug/m3	55	86	70-130
cis-1,2-Dichloroethene	ug/m3	54	92	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	93	70-130
1,1,1-Trichloroethane	ug/m3	74	92	70-130
Trichloroethene	ug/m3	73	84	70-130
1,1,2-Trichloroethane	ug/m3	74	89	70-130
Tetrachloroethene	ug/m3	92	89	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

 ${\rm j}$ - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

 ${\rm nm}$ - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To & Beck	J.	0.1he		SAM	PLERS (si	gnatur	e)			Me	-	0	2-	26	-20		
a Acce		V110-	1			2				1	SERVER AND	24.25.25		CESSEE ST	URNA	ROUN	D TIME
Company NEY				PRO	JECT NAN	Æ&A	DDRES	S		PC)#		X	Stan	idard		5 11111
Address				14	(name		.,			7-1	76	,		RUS	H		
City Chata 17TD					CUMY 4		rear	-12S		-1	CX				narges :	authori	ized by:
Orly, State, ZIP				NO1	59: 59:				II	IOVV	CET	0		5	SAMPL	E DISF	OSAL
PhoneE	nail	dilba (aca	Na cont						her.				Defa	ult: Clea	an afte:	r 3 days
SAMPLE INFORMATION										19				mu	we (r ee	may a	pply)
22 22 INI OIDMANION	T	1	1	-						ANA	LYS	IS RE	COU	ESTF	dD		
RECEIVED	57											T	T	T	2		
111N 1 5 2020				Perset						Jcar	XN	G			7		
JON I D ZUZU				Level:						E F	TE	NO	H	H ·	N E		
BY:			Flow	IA=Indoor Air	-	Initia	Field	Fina	Field	6 F.	IG H	16	AP	feli	3		
Sample Name	Lab	Canister	Cont.	SG=Soil Gas	Date	Vac.	Initial	Vac.	Final	õ	TO	5T			-4		
ALAND .		10		(Circle One)	Sampled	("Hg)	Time	("Hg)) Time					000	2	Nc	otes
Steve-1	01	3385	243	IA / SG	20 2020	-28	1216	ð	1227								
VP-2	62	4183	241	LA / 6G	1	-30	1218	0	1228				+	1			
VP-3	D3	2296	2.8	IA / 60		-28	1219	0	1229					1			•
D Output	04	2433	230	IA / SG		-30	here	th	12.20						-	<u> </u>	
				LA / SG	······ # i		164					_	+-	+			
				IA / SG										+			
		4		LA / SG									+				
				IA / SG									San	uples	recei	ived a	<u>it 22</u>
			l	I	1	ł	1										
riedman & Bruya, Inc.		SIGN	IATURE		·,	PRIN	P NAME				1010						* *
Rest Rest	linquig	bed by:			Aller		6 1h			(COMI	AN			DATH	5	TIME
Seattle, WA 98119-2029 Re	coived	by: B			male	u i	nat	1		AE	9			4	9126/2	oficat	97
h. (206) 285-8282	Induis	hed by:	6		Sapre	3	SIDYE	5		Fŧ	B				5/2/	0	955

3322 South Bay Road NE • Olympia, WA 98506-2957

June 29, 2020

Scott Rose Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr. Rose:

Please find enclosed the analytical data report for the 4 Corners Cleaners Project located in Maple Valley, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200623-3 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	MW-1	MW-1 Dup	MW-2	MW-3	MW-5
		Blank					
Date Sampled		N/A	6/23/2020	6/23/2020	6/23/2020	6/23/2020	6/23/2020
Date Analyzed	PQL	6/27/2020	6/27/2020	6/27/2020	6/27/2020	6/27/2020	6/27/2020
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		130	134	132	129	128	134
1,2-Dichloroethane-d4		126	133	123	123	120	119
Toluene-d8		97	94	85	95	88	98
4-Bromofluorobenzene		91	96	92	92	97	96
"nd" Indicates not detec	ted at listed	d detection lin	mit.				
"int" Indicates that inter	ference pre	events determ	ination.				

Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200623-3 Client Project # 17-126

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

	Matrix Sp	oike Sample Ic	lentification:	L206026-2				
	Spiked Conc. (µg/L)	MS Response (µg/L)	MSD Response (µg/L)	MS Recovery (%)	MSD Recovery (%)	RPD (%)	Limits Recovery (%)	Data Flag
Vinyl Chloride (VC)	5.0	3.9	4.3	78	86	9.8	65-135	
1,1-Dichloroethene	5.0	4.4	4.7	88	94	6.6	65-135	
trans-1,2-Dichloroethene	5.0	3.7	4.5	74	90	19.3	65-135	
cis-1,2-Dichloroethene	5.0	3.5	3.8	70	76	8.2	65-135	
Trichloroethene (TCE)	5.0	4.0	4.3	80	86	7.2	65-135	
Tetrachloroethene (PCE)	5.0	5.5	6.1	109	121	10.5	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane			131	129	65-135			
1,2-Dichloroethane-d4				119	118		65-135	
Toluene-d8				103	103		65-135	
4-Bromofluorobenzene				102	105		65-135	

ANALYSES PERFORMED BY: Sherry Chilcutt

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	(µg/L)	(%)	Limits (%)	
Vinyl Chloride (VC)	5.0	4.9	98	80-120	
1,1-Dichloroethene	5.0	5.8	116	80-120	
trans-1,2-Dichloroethene	5.0	5.2	104	80-120	
cis-1,2-Dichloroethene	5.0	4.6	92	80-120	
Trichloroethene (TCE)	5.0	4.8	96	80-120	
Tetrachloroethene (PCE)	5.0	6.0	120	80-120	
Surrogate Recovery					
Dibromofluoromethane			130	65-135	
1,2-Dichloroethane-d4			131	65-135	
Toluene-d8			91	65-135	
4-Bromofluorobenzene			89	65-135	

ANALYSES PERFORMED BY: Sherry Chilcutt
4 CORNERS CLEANERS PROJECT AEG, LLC Libby Project # L200623-3 Date Received 6/25/2020 Time Received 2:31 PM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	No No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	No No	N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	No No	N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	N/A
6. Was an attempt made to cool the samples?	✓ Yes	No No	N/A
7. Temperature of cooler (0°C to 8°C recommended)	2.1	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	4.6	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	No No	
10. Is it clear what analyses were requested?	✓ Yes	No No	
11. Did container labels match Chain of Custody?	✓ Yes	No No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	No No	
13. Are correct containers used for the analysis indicated?	✓ Yes	No No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	No No	
15. Were all containers properly preserved per each analysis?	✓ Yes	No No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	No No	N/A
17. Were all holding times able to be met?	✓ Yes	No No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	No	✓ N/A
Person Notified:			Date:
By Whom:			Via:
Regarding:			
19. Comments.			

Libby Environmental, Inc.				Chain of Custody Record						www.LibbyEnvironmental.com					tal.com					
3322 South Bay Road NE	Ph:	360-352-2	2110					r in	010-					De				-6		
Olympia, WA 98506	Fax:	360-352-4	1154			Dat	te:	612	3120		0			Pa	ge:		1	OT	1	
Client: AE9						Pro	ject M	anag	er:)	<u>cott</u>	Ros	e								
Address: 2633 Parkn	nont (n Sw	Snite	A		Pro	ject N	ame	4	C	orne	rs	<u></u>	eand	ers					
City: Olympiq		State: L	NA Zip:	98502		Loc	ation:	2388	6 SE	Kent	-Kau	ngleu	Re	、 City	, Sta	te: p	Taple	Vall.	ey,1	NA
Phone: (360) 352 - 9835		Fax:	360)352-	- 8164		Col	lector:		latric	E H	0			Dat	te of (Collec	ction:	6(23	120	
Client Project # 17-126						Em	ail:	SR	ose@	AE	Gw	7.00	m				, ,		,	
Comple Alumber	Donth	Time	Sample	Container	6	Stel S	Saugher Saugher	2100 5+ 802 5+ 802	SOL HOLE			10 22 25 25	5315 10 10 10 10	8210 V	18270			eld Not		
	Deptin	1122	1 ype	VolAs	K×Y,		\sim	1	4	Y P	7			5/	1	<u>f</u>	/ 11			
2		11.55		VAC		c		-		+					+					
2 MWVC		1250	(4)	bac			+	-					-		+					
5 MW-5		1400	W	MAR			+			-			-	-						
5		1005		VOIN	+			-		-			-		+					
6													+	-	1					
7						-				-				-	1					
8																				
9																				
10																				
11																				
12																				
13																				
14																				
15																				
16																				
17																				
Relinquished by: Patrick IL	61	72/20	Date / Time	Received by:	2	-		1.1-	Date	/ Time	Georg	Sam	ple F	leceip v	N	Rem	narks:			
Relinquished by:	W I	-1100	Date / Time	Received by:	~			RIC	Date	/Time	Coole	er Tem	0.		°C	1				
											Samp	ole Terr	np.		°C]				
Relinquished by:			Date / Time	Received by:					Date	/ Time	Total Co	Numbontaine	er of rs			TAT	F: 24	HR 48	BHR	5 DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 21, 2020

Becky Dilba, Project Manager AEG 605 11th Ave SE Suite 201 Olympia, WA 98501

Dear Ms Dilba:

Included are the results from the testing of material submitted on July 13, 2020 from the 4 Corners Cleaners, F&BI 007192 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

al

Michael Erdahl Project Manager

Enclosures AEG0721R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 13, 2020 by Friedman & Bruya, Inc. from the AEG 4 Corners Cleaners, F&BI 007192 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
007192 -01	VP-1
007192 -02	VP-2
007192 -03	VP-3
007192 -04	VP-4
007192 -05	Output

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1 07/13/2 07/08/2 07/17/2 Air ug/m3	0 0 0	Clie Pro Lak Dat Ins Ope	ent: ject:) ID: ta File: trument: erator:	AEG 4 Corners Cleaners, F&BI 007192 007192-01 1/7.1 071629.D GCMS7 BAT
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenze	ene	113	70	130	
Compounds:		Concen ug/m3	tration ppbv		
Vinyl chloride		<1.8	< 0.71		
Chloroethane		<19	<7.1		
1,1-Dichloroethene		<2.8	< 0.71		
trans-1,2-Dichloroet	thene	<2.8	< 0.71		
1,1-Dichloroethane		<2.9	< 0.71		
cis-1,2-Dichloroethe	ne	<2.8	< 0.71		
1,2-Dichloroethane	(EDC)	< 0.29	< 0.071		
1,1,1-Trichloroethan	ne	<3.9	< 0.71		
Trichloroethene		4.6	0.85		
1,1,2-Trichloroethan	ne	< 0.77	< 0.14		
Tetrachloroethene		580	86		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-2 07/13/20 07/08/20 07/17/20 Air ug/m3		Cliv Pro Lal Da Ins Opt	ent: oject: o ID: ta File: trument: erator:	AEG 4 Corners Cleaners, 007192-02 1/7.0 071628.D GCMS7 BAT	F&BI 007192
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 94	Lower Limit: 70	Upper Limit: 130		
		Concen	tration			
Compounds:		ug/m3	ppbv			
Vinyl chloride		<1.8	< 0.7			
Chloroethane		<18	<7			
1,1-Dichloroethene		<2.8	< 0.7			
trans-1,2-Dichloroet	thene	<2.8	< 0.7			
1,1-Dichloroethane		<2.8	< 0.7			
cis-1,2-Dichloroethe	ne	2.8	0.71			
1,2-Dichloroethane	(EDC)	< 0.28	< 0.07			
1,1,1-Trichloroethar	ne	<3.8	< 0.7			
Trichloroethene		<1.9	< 0.35			
1,1,2-Trichloroethar	ne	< 0.76	< 0.14			
Tetrachloroethene		170	25			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-3 07/13/2 07/08/2 07/17/2 Air ug/m3	0 0 0	Clie Pro Lat Dat Ins Ope	ent: oject: o ID: ta File: trument: erator:	AEG 4 Corners Cleaners, 007192-03 1/14 071630.D GCMS7 BAT	F&BI 007192
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 89	Lower Limit: 70	Upper Limit: 130		
		Concen	tration			
Compounds:		ug/m3	ppbv			
Vinyl chloride		<3.6	<1.4			
Chloroethane		<37	<14			
1,1-Dichloroethene		<5.6	<1.4			
trans-1,2-Dichloroet	thene	<5.6	<1.4			
1,1-Dichloroethane		<5.7	<1.4			
cis-1,2-Dichloroethe	ene	<5.6	<1.4			
1,2-Dichloroethane	(EDC)	< 0.57	< 0.14			
1,1,1-Trichloroethane		<7.6	<1.4			
Trichloroethene		<3.8	< 0.7			
1,1,2-Trichloroethan	ne	<1.5	< 0.28			
Tetrachloroethene		970	140			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-4 07/13/2 07/08/2 07/17/2 Air ug/m3	0 0 0	Clie Pro Lak Dat Ins Ope	ent: ject:) ID: ta File: trument: erator:	AEG 4 Corners Cleaners, 007192-04 1/4.7 071627.D GCMS7 BAT	F&BI 007192
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 94	Lower Limit: 70	Upper Limit: 130		
		Concen	tration			
Compounds:		ug/m3	ppbv			
Vinyl chloride		<1.2	< 0.47			
Chloroethane		<12	<4.7			
1,1-Dichloroethene		<1.9	< 0.47			
trans-1,2-Dichloroet	thene	<1.9	< 0.47			
1,1-Dichloroethane		<1.9	< 0.47			
cis-1,2-Dichloroethe	ene	<1.9	< 0.47			
1,2-Dichloroethane	(EDC)	< 0.19	< 0.047			
1,1,1-Trichloroethar	ne	<2.6	< 0.47			
Trichloroethene		<1.3	< 0.23			
1,1,2-Trichloroethan	ne	< 0.51	< 0.094			
Tetrachloroethene		<32	<4.7			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Output 07/13/2 07/08/2 07/17/2 Air ug/m3	0 0 0	Clie Pro Lat Dat Ins Ope	ent: oject: o ID: ta File: trument: erator:	AEG 4 Corners Cleaners, 007192-05 1/4.7 071626.D GCMS7 BAT	F&BI 007192
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 106	Lower Limit: 70	Upper Limit: 130		
		Concen	tration			
Compounds:		ug/m3	ppbv			
Vinyl chloride		<1.2	< 0.47			
Chloroethane		<12	<4.7			
1,1-Dichloroethene		<1.9	< 0.47			
trans-1,2-Dichloroet	thene	<1.9	< 0.47			
1,1-Dichloroethane		<1.9	< 0.47			
cis-1,2-Dichloroethe	ne	<1.9	< 0.47			
1,2-Dichloroethane	(EDC)	< 0.19	< 0.047			
1,1,1-Trichloroethar	ne	<2.6	< 0.47			
Trichloroethene		<1.3	< 0.23			
1,1,2-Trichloroethar	ne	< 0.51	< 0.094			
Tetrachloroethene		38	5.6			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Metho Not Ap Not Ap 07/16/2 Air ug/m3	d Blank pplicable pplicable 20	Clie Pro Lak Dat Ins Ope	ent: oject: o ID: ta File: trument: erator:	AEG 4 Corners Cleaners, 00-1616 mb 071612.D GCMS7 BAT	F&BI 007192
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 110	Lower Limit: 70	Upper Limit: 130		
Compounds:		Concent	tration			
Compounds.		ug/mo	ppnv			
Vinyl chloride		< 0.26	< 0.1			
Chloroethane		<2.6	<1			
1,1-Dichloroethene		< 0.4	< 0.1			
trans-1,2-Dichloroet	thene	< 0.4	< 0.1			
1,1-Dichloroethane		< 0.4	< 0.1			
cis-1,2-Dichloroethe	ne	< 0.4	< 0.1			
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01			
1,1,1-Trichloroethan	ne	< 0.55	< 0.1			
Trichloroethene		< 0.27	< 0.05			
1,1,2-Trichloroethan	ne	< 0.11	< 0.02			
Tetrachloroethene		<6.8	<1			

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/20 Date Received: 07/13/20 Project: 4 Corners Cleaners, F&BI 007192

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 007179-02 1/3.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	< 0.82	< 0.82	nm
Chloroethane	ug/m3	<8.4	<8.4	nm
1,1-Dichloroethene	ug/m3	<1.3	<1.3	nm
trans-1,2-Dichloroethene	ug/m3	<1.3	<1.3	nm
1,1-Dichloroethane	ug/m3	<1.3	<1.3	nm
cis-1,2-Dichloroethene	ug/m3	<1.3	<1.3	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.13	< 0.13	nm
1,1,1-Trichloroethane	ug/m3	<1.7	<1.7	nm
Trichloroethene	ug/m3	< 0.86	< 0.86	nm
1,1,2-Trichloroethane	ug/m3	< 0.35	< 0.35	nm
Tetrachloroethene	ug/m3	<22	<22	nm

Laboratory Code: Laboratory Control Sample

	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	91	70-130
Chloroethane	ug/m3	36	88	70 - 130
1,1-Dichloroethene	ug/m3	54	97	70-130
trans-1,2-Dichloroethene	ug/m3	54	92	70 - 130
1,1-Dichloroethane	ug/m3	55	88	70 - 130
cis-1,2-Dichloroethene	ug/m3	54	93	70 - 130
1,2-Dichloroethane (EDC)	ug/m3	55	96	70 - 130
1,1,1-Trichloroethane	ug/m3	74	95	70-130
Trichloroethene	ug/m3	73	86	70 - 130
1,1,2-Trichloroethane	ug/m3	74	86	70-130
Tetrachloroethene	ug/m3	92	87	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

007192				$\mathbf{S}_{\mathbf{A}}$	AMPL	E CHAI	N OF	CUST	ODY	1	١E	C	o7-	13-	20	>		/
Report To & Becchi	pilbe	~			SAMPI	LERS (sign	ature)		3	•					, ,	Page : TUR	# of NAROUND TIME]
Company AE	т С1				PROJE	PROJECT NAME & ADDRESS PO #					Standard							
Address				_	4 conners cleaners							R	Rush charges authorized by:					
City, State, ZIP	•				NOTES	5:	-			IN	VOI	CE TO	C		Def	SAN	1PLE DISPOSAL Clean after 3 days	
PhoneEr	nail 🛛	tilba (aagu	ia con		Ø	<u>;</u>			A	EG.				Arc	hive	(Fee may apply)	
SAMPLE INFORMATION								r			ANA	LYS	IS R	EQU	EST	ED		
Sample Name	Lab ID	Canister ID	Flow Cont. ID	Repo Le IA=Inc SG=S (Circl	orting evel: door Air oil Gas le One)	Date Sampled	Initial Vac.	Field Initial Time	Final Vac. ("Hg)	Field Final Time	TO15 Full Scan	TO15 BTEXN	POID EVOES	APH	Helium		Notes	
VEI	01	3250	35	IA	1 69	7 8 2020	-23	1055	-0	1104	_		*					
Ve-Z	02	2300	07	IA	। ईछ	(-30	1056	-0	1106			-4					
UP-3	03	Holds	105	IA	1 GG		-30	1104	-0	1109			4	st.				
VP-4	04	3259	104	IA	1 58		-29	1100	-0	1100			+				-	
output	05	3311	117	IA	1 (SA		-70	1105	0	1114			4					
				IA	/ SG											-0-00		e
				IA	/ SG										.03	ece		
· · · · ·				IA	/ SG													

				-713/2020	<u>ر</u>
Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	ŢIME
3012 16th Avenue West	Relinquished by:	B. pilby	Mr. G	345Far	101
Seattle, WA 98119-2029	Received by: S. Om	S. Obary	FNB, Inc	7.13.20	10:14A
Ph. (206) 285-8282	Relinquished by:				
Fax (206) 283-5044	Received by:				
FORMS\COC\COCTO-15.DOC				l	ل ــــــــــــــــــــــــــــــــــــ

.....

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 4, 2020

Charlie Swift, Project Manager AEG 605 11th Ave SE Suite 201 Olympia, WA 98501

Dear Mr Swift:

Included are the amended results from the testing of material submitted on August 20, 2020 from the 4-Corners Cleaners Maple Valley PO 17-126, F&BI 008293 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures AEG0902R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 2, 2020

Charlie Swift, Project Manager AEG 605 11th Ave SE Suite 201 Olympia, WA 98501

Dear Mr Swift:

Included are the results from the testing of material submitted on August 20, 2020 from the 4-Corners Cleaners Maple Valley PO 17-126, F&BI 008293 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures AEG0902R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 20, 2020 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaners Maple Valley PO 17-126, F&BI 008293 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
008293 -01	4CC-Inlet SVE
008293 -02	M-1
008293 -03	M-3
008293 -04	M-2
008293 -05	M-4

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	4CC-Ir 08/20/2 08/26/2 08/27/2 Air ug/m3	llet SVE 20 20 20 20	Clie Pro Lab Dat Ins Ope	ent: ject:) ID: :a File: trument: erator:	AEG 4-Corners Cleaners Maple Valley 008293-01 1/4 082623.D GCMS12 VM
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 98	Lower Limit: 70	Upper Limit: 130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1	< 0.4		
Chloroethane		<11	<4		
1,1-Dichloroethene		<1.6	< 0.4		
trans-1,2-Dichloroe	thene	<1.6	< 0.4		
1,1-Dichloroethane		<1.6	< 0.4		
cis-1,2-Dichloroethe	ene	<1.6	< 0.4		
1,2-Dichloroethane	(EDC)	2.5	0.62		
1,1,1-Trichloroetha	ne	<2.2	< 0.4		
Trichloroethene		<1.1	< 0.2		
1,1,2-Trichloroetha	ne	< 0.44	< 0.08		
Tetrachloroethene		4.6 j	1.4 j		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	M-1 08/20/2 08/26/2 08/27/2 Air ug/m3	0 0 0	Clie Pro Lat Dat Ins Ope	ent: jject: o ID: ta File: trument: erator:	AEG 4-Corners Cleaners Maple Valley 008293-02 1/3.8 082624.D GCMS12 VM
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 88	Lower Limit: 70	Upper Limit: 130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.97	< 0.38		
Chloroethane		<10	<3.8		
1,1-Dichloroethene		<1.5	< 0.38		
trans-1,2-Dichloroe	thene	<1.5	< 0.38		
1,1-Dichloroethane		<1.5	< 0.38		
cis-1,2-Dichloroethe	ene	<1.5	< 0.38		
1,2-Dichloroethane	(EDC)	< 0.15	< 0.038		
1,1,1-Trichloroetha	ne	<2.1	< 0.38		
Trichloroethene		<1	< 0.19		
1,1,2-Trichloroetha	ne	< 0.41	< 0.076		
Tetrachloroethene		42	6.2		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	M-3 08/20/2 08/26/2 08/27/2 Air ug/m3	0 0 0	Clie Pro Lab Dat Ins Ope	ent: ject:) ID: :a File: trument: erator:	AEG 4-Corners Cleaners Maple Valley 008293-03 1/4 082625.D GCMS12 VM					
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 90	Lower Limit: 70	Upper Limit: 130						
Concentration										
Compounds:		ug/m3	ppbv							
Vinyl chloride		<1	< 0.4							
Chloroethane		<11	<4							
1,1-Dichloroethene		<1.6	< 0.4							
trans-1,2-Dichloroe	thene	<1.6	< 0.4							
1,1-Dichloroethane		<1.6	< 0.4							
cis-1,2-Dichloroethe	ene	<1.6	< 0.4							
1,2-Dichloroethane	(EDC)	< 0.16	< 0.04							
1,1,1-Trichloroetha	ne	<2.2	< 0.4							
Trichloroethene		1.8	0.33							
1,1,2-Trichloroetha	ne	< 0.44	< 0.08							
Tetrachloroethene		420	61							

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	M-2 08/20/2 08/26/2 08/27/2 Air ug/m3	0 0 0	Clie Proj Lab Dat Inst Ope	nt: ject: ID: a File: rument: rrator:	AEG 4-Corners Cleaners Maple Valley 008293-04 1/10 082626.D GCMS12 VM
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 99	Lower Limit: 70	Upper Limit: 130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<2.6	<1		
Chloroethane		<26	<10		
1,1-Dichloroethene		<4	<1		
trans-1,2-Dichloroe	thene	<4	<1		
1,1-Dichloroethane		<4	<1		
cis-1,2-Dichloroethe	ene	<4	<1		
1,2-Dichloroethane	(EDC)	< 0.4	< 0.1		
1,1,1-Trichloroetha	ne	<5.5	<1		
Trichloroethene		<2.7	< 0.5		
1,1,2-Trichloroetha	ne	<1.1	< 0.2		
Tetrachloroethene		120	18		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	M-4 08/20/2 08/26/2 08/27/2 Air ug/m3	0 0 0	Clie Pro Lat Dat Ins Ope	ent: ject:) ID: :a File: trument: erator:	AEG 4-Corners Cleaners Maple Valley 008293-05 1/49 082627.D GCMS12 VM
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 102	Lower Limit: 70	Upper Limit: 130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<9 j	<3.6 j		
Chloroethane		<130	<49		
1,1-Dichloroethene		<19	<4.9		
trans-1,2-Dichloroet	thene	<19	<4.9		
1,1-Dichloroethane		<20	<4.9		
cis-1,2-Dichloroethe	ene	<19	<4.9		
1,2-Dichloroethane	(EDC)	<2	< 0.49		
1,1,1-Trichloroetha	ne	<27	<4.9		
Trichloroethene		<9 j	<1.7 j		
1,1,2-Trichloroetha	ne	<5.3	< 0.98		
Tetrachloroethene		290 j	43 j		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Not Ap Not Ap 08/26/2 Air ug/m3	d Blank pplicable pplicable 20	Clie Pro Lab Dat Ins Ope	ent: ject:) ID: :a File: trument: erator:	AEG 4-Corners Cleaners Maple Valley 00-1927 MB 082609.D GCMS12 VM
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 97	Lower Limit: 70	Upper Limit: 130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroe	thene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroethe	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
1,1,1-Trichloroetha	ne	< 0.55	< 0.1		
Trichloroethene		< 0.27	< 0.05		
1,1,2-Trichloroetha	ne	< 0.11	< 0.02		
Tetrachloroethene		<6.8	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/02/20 Date Received: 08/20/20 Project: 4-Corners Cleaners Maple Valley PO 17-126, F&BI 008293

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Dancant

Laboratory Code: 008378-07 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	< 0.26	< 0.26	nm
Chloroethane	ug/m3	<2.6	<2.6	nm
1,1-Dichloroethene	ug/m3	< 0.4	< 0.4	nm
trans-1,2-Dichloroethene	ug/m3	< 0.4	< 0.4	nm
1,1-Dichloroethane	ug/m3	< 0.4	< 0.4	nm
cis-1,2-Dichloroethene	ug/m3	< 0.4	< 0.4	nm
1,2-Dichloroethane (EDC)	ug/m3	0.057	0.057	0
1,1,1-Trichloroethane	ug/m3	< 0.55	< 0.55	nm
Trichloroethene	ug/m3	< 0.27	< 0.27	nm
1,1,2-Trichloroethane	ug/m3	< 0.11	< 0.11	nm
Tetrachloroethen e	ug/m3	<6.8	<6.8	nm

Laboratory Code: Laboratory Control Sample

			reiteint	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	93	70-130
Chloroethane	ug/m3	36	93	70-130
1,1-Dichloroethene	ug/m3	54	99	70-130
trans-1,2-Dichloroethene	ug/m3	54	97	70-130
1,1-Dichloroethane	ug/m3	55	92	70-130
cis-1,2-Dichloroethene	ug/m3	54	94	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	86	70-130
1,1,1-Trichloroethane	ug/m3	74	83	70-130
Trichloroethene	ug/m3	73	93	70-130
1,1,2-Trichloroethane	ug/m3	74	93	70-130
Tetrachloroethene	ug/m3	92	86	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COCTO-15.DOC	Ph. (206) 285-8282	Seattle, WA 98119-2029	Source 10th Avenue West	Friedman & Bruya, Inc.					h-WA	4m-2	4m-3	HW-1	ACC-IVE RAF	Sample Name	SAMPLE INFORMATION	Phone 763-752-553 F	City, State, ZIP	Address 2617 Ports	Company AE	Down Chal	008293
Receive	Relinqu	Receive	nhirrani	D I					R	P9	03	ß	0	Lab ID		mail		J'Lim		0	
all (ished by:	d by: c		SIG					2294	2995	メニ	4175	3675	Canister ID		Sait	0A 75	1.3			
All All			K	NATUR					122	224	203	120	У Y	Flow Cont. ID		Gage	2225	A			-
		J		E		IA / SG	IA / SG	IA / SG	IA / SG	IA /(SG)	IA ISO	IA / SG	IA / D	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)		N-OX S	NOTE		PROJI	SAMP!	SAMPL
Ann (R	CL.						8/18/20	8/15/2.	8/18/20	8/15/22	8/15/20	Date Sampled		UE-	3:	+- Cox	CT NAME	LIPHS (sign	E CHAI
ucro		E L	and	PRIN					8 S	201	30	30	30	Initial Vac. ("Hg)		155)ers	& ADI	ature	NOF
the B		34	Sait	T NAMI					14:28	4:20	51 IV	17:00	13:16	Field Initial Time		1		Soca	RESS		CUST
miles		Riv	1						Pe	P.S.	8.8	7,0	8,5	Final Vac. ("Hg)				1			ODY ^N
		A							12:21	15:25	17.3	Y:0	12:15	Field Final Time			IN	7			Æ
			Ac	00	-							1		TO15 Full Scan TO15 BTEXN	ANALY	176	/OICE		PO#		0
8B		, MEL	7	IMPAN										TO15 cVOCs	SIS RE		P	2			8-20
		1	~	Υ										APH Helium	QUEST	D Defa		Rush o	Stan		-20
0(18		to the	37/3	DA	Ļ	-			\times	X	\sim	×	\prec	PCE/TLE + Deech has	GB	ult: Clea ive (Fee	SAMPLI	H harges a	URNAR	age #	-
0		Jule	2.	TE										Not		ın after (may apı	3 DISPO	uthorize	COUND (0	
00 9		060		TIME										ф И		3 days oly)	SAL	d by:	TIME		

.

Samples received at $\frac{22}{3}$ oc

3322 South Bay Road NE • Olympia, WA 98506-2957

September 18, 2020

Scott Rose Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr. Rose:

Please find enclosed the analytical data report for the 4 Corners Cleaners Project located in Maple Valley, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200914-1 Client Project # 17-126

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	MW-1	MW-2	MW-3	MW-5	MW-5 Dup
		Blank					-
Date Sampled		N/A	9/14/2020	9/14/2020	9/14/2020	9/14/2020	9/14/2020
Date Analyzed	PQL	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		101	101	104	104	107	106
1,2-Dichloroethane-d4		106	118	118	118	117	119
Toluene-d8		98	99	99	99	99	99
4-Bromofluorobenzene		95	93	95	95	97	94
"nd" Indicates not detec	ted at liste	d detection li	mit.				

Volatile Organic Compounds by EPA Method 8260D in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L200914-1 Client Project # 17-126

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

Matrix Spike Sample Identification: L200911-1											
	Spiked Conc. (µg/L)	MS Response (µg/L)	MSD Response (µg/L)	MS Recovery (%)	MSD Recovery (%)	RPD (%)	Limits Recovery (%)	Data Flag			
Vinyl Chloride (VC)	5.0	4.7	4.7	94	94	0.0	65-135				
1,1-Dichloroethene	5.0	4.6	4.9	92	98	6.3	65-135				
trans-1,2-Dichloroethene	5.0	5.8	5.9	116	118	1.7	65-135				
cis-1,2-Dichloroethene	5.0	5.5	5.6	110	112	1.8	65-135				
Trichloroethene (TCE)	5.0	5.7	5.6	114	112	1.8	65-135				
Tetrachloroethene (PCE)	5.0	4.5	4.8	90	95	5.4	65-135				
Surrogate Recovery (%)				MS	MSD						
Dibromofluoromethane				105	108		65-135				
1,2-Dichloroethane-d4				112	121		65-135				
Toluene-d8				98	100		65-135				
4-Bromofluorobenzene				99	100		65-135				

ANALYSES PERFORMED BY: Sherry Chilcutt

Laboratory Control Sample

	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	(µg/L)	(%)	Limits (%)	
Vinyl Chloride (VC)	5.0	5.6	112	80-120	
1,1-Dichloroethene	5.0	4.4	88	80-120	
trans-1,2-Dichloroethene	5.0	5.7	114	80-120	
cis-1,2-Dichloroethene	5.0	5.1	103	80-120	
Trichloroethene (TCE)	5.0	5.2	104	80-120	
Tetrachloroethene (PCE)	5.0	5.0	100	80-120	
Surrogate Recovery					
Dibromofluoromethane			100	65-135	
1,2-Dichloroethane-d4			111	65-135	
Toluene-d8			99	65-135	
4-Bromofluorobenzene			98	65-135	

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANERS PROJECT AEG, LLC Libby Project # L200914-1 Date Received 9/14/2020

Time Received 2:45 PM

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	🗌 No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	🗌 No	🗌 N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	🗌 No	🗌 N/A
5. Cooler or Shipping Container has Custody Seals present.	🗌 Yes	✓ No	🗌 N/A
6. Was an attempt made to cool the samples?	✓ Yes	🗌 No	🗌 N/A
7. Temperature of cooler (0°C to 8°C recommended)	-1.0	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	4.0	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	🗌 No	
10. Is it clear what analyses were requested?	✓ Yes	🗌 No	
11. Did container labels match Chain of Custody?	✓ Yes	🗌 No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	🗌 No	
13. Are correct containers used for the analysis indicated?	✓ Yes	🗌 No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	🗌 No	
15. Were all containers properly preserved per each analysis?	✓ Yes	🗌 No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	🗌 No	🗌 N/A
17. Were all holding times able to be met?	✓ Yes	🗌 No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	🗌 Yes	🗌 No	☑ N/A
Person Notified:		Date:	
By Whom:		Via:	
Regarding:		_	
19. Comments.			

Libby Environmental, Inc.			CI	nain	of	Cus	stod	ly F	Rec	or	d						www.l	LibbyEn	vironme	ntal.com	
3322 South Bay Road NE	Ph:	360-352-2	2110					01													
Olympia, WA 98506	Fax:	Fax: 360-352-4154				Date: 9/19/20 Page: of															
Client: AEG	Client: AEG					Project Manager: Scott Rose															
Address: 2633 Parkmont	Lane	SW, S	nite A			P	roject	Name	: 4	Co	rne	ers	CI	ean	ers						
City: Olympia		State: V	VA Zip:	98502		Location: 23886 SE Kent - Kangley Rd. City, State: Maple Valley, WA									IA						
Phone: (360)362 - 1835		Fax:(3	60) 352-	8169		C	ollecto	or:	HP						Da	te of	Colle	ection:	9/10	120	
Client Project # 17-12	6					E	mail:	SRO	ose	@ A	TEGI	WA.L	MO								
Sample Number	Depth	Time	Sample Type	Container Type	10	5 2 CH	8 Daugh	PRO E S S S S S S S S S S S S S S S S S S	SO THE W	STR C	10 10 10 00 10 10 10 10 10 10	ST ST ST	51919 PM	10 2 M	8210 5810	6210 6210 1100	Ne Prod	Black	Field No	otes	
1 mw-1		0842	Gw	voA's											7	(
2 mw-2		0817	GN	VOAS											×	:					
3 mw-3		0912	GW	VOAS											X						
4 mw-5		0749	GN	VOA'S											X						
5																					
6																					
7																					
8																					
9																					
10																					
11																					
12																					
13																					
14																					
15																					
16																					
17																					
Relinquished by:		alual	Date / Time	Received by:	>-	_		9	Dul2	ate / T	lime	5	Sam	ole R	Recei	pt	Rei	marks:			
Relinquished by:		71141	Date / Time	Received by:	K	-		11	D	ate / T	Time	Cooler	Temp	ion?	Ť	°C	-				
												Sampl	e Tem	p.		°C					
Relinquished by:			Date / Time	Received by:					D	ate / T	Time	Total N Cor	Numbe	er of s			TA	T: 24	4HR	48HR	5-DAY

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 2, 2020

Charles Swift, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Swift:

Included are the amended results from the testing of material submitted on September 17, 2020 from the 4-Corners Cleaners PO 17-126, F&BI 009309 project. The tetrachloroethene concentration was lowered in the Effluent-091620 sample.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures AEG0928R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 28, 2020

Charles Swift, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Swift:

Included are the results from the testing of material submitted on September 17, 2020 from the 4-Corners Cleaners PO 17-126, F&BI 009309 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures AEG0928R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 17, 2020 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaners PO 17-126, F&BI 009309 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
009309 -01	Effluent-091620
009309 -02	VP-1-091620
009309 -03	VP-3-091620
009309 -04	VP-2-091620
009309 -05	VP-4-091620

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Effluent 09/17/20 09/16/20 09/21/20 Air ug/m3	-091620	Client: Project: Lab ID: Data File: Instrument: Operator:		AEG 4-Corners Cleaners PO 17-126, F&BI 009309 009309-01 1/6.3 092118.D GCMS7 bat
		%	Lower	Upper	
Surrogates:	F	Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	87	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.6	< 0.63		
Chloroethane		<17	<6.3		
1,1-Dichloroethene		<2.5	< 0.63		
trans-1,2-Dichloroet	thene	<2.5	< 0.63		
1,1-Dichloroethane		<2.5	< 0.63		
cis-1,2-Dichloroethe	ne	<2.5	< 0.63		
1,2-Dichloroethane	(EDC)	2.0	0.50		
1,1,1-Trichloroethar	ne	<3.4	< 0.63		
Trichloroethene		0.71	0.13		
1,1,2-Trichloroethar	ne	< 0.34	< 0.063		
Tetrachloroethene		23	3.4		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1-0 09/17/2 09/16/2 09/21/2 Air ug/m3	91620 20 20 20	Client: Project: Lab ID: Data File: Instrument: Operator:		AEG 4-Corners Cleaners PO 17-126, F&BI 009309 009309-02 1/6.6 092114.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	105	70	130	
		~			
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.7	< 0.66		
Chloroethane		<17	<6.6		
1,1-Dichloroethene		<2.6	< 0.66		
trans-1,2-Dichloroet	thene	<2.6	< 0.66		
1,1-Dichloroethane		<2.7	< 0.66		
cis-1,2-Dichloroethe	ene	<2.6	< 0.66		
1.2-Dichloroethane	(EDC)	< 0.27	< 0.066		
1,1,1-Trichloroetha	ne	<3.6	< 0.66		
Trichloroethene		< 0.71	< 0.13		
1,1,2-Trichloroetha	ne	< 0.36	< 0.066		
Tetrachloroethene		<45	<6.6		

<6.6

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-3-09 09/17/20 09/16/20 09/21/20 Air ug/m3	1620	Client: Project: Lab ID: Data File: Instrument: Operator:		AEG 4-Corners Cleaners PO 17-126, F&BI 009309 009309-03 1/52 092119.D GCMS7 bat
a	-	%	Lower	Upper	
Surrogates:	1	decovery:	Limit:	Limit:	
4-Dromonuorobenze	ene	98	70	150	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<13	<5.2		
Chloroethane		<140	<5 2		
1,1-Dichloroethene		<21	<5.2		
trans-1,2-Dichloroet	thene	<21	<5.2		
1,1-Dichloroethane		<21	<5.2		
cis-1,2-Dichloroethe	ne	<21	<5.2		
1,2-Dichloroethane	(EDC)	<2.1	< 0.52		
1,1,1-Trichloroethan	ne	<28	<5.2		
Trichloroethene		<5.6	<1		
1,1,2-Trichloroethan	ne	<2.8	< 0.52		
Tetrachloroethene		720	110		
ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-2-09 09/17/20 09/16/20 09/21/20 Air ug/m3	91620)))	Clien Proje Lab I Data Instr Oper	at: Ect: D: File: ument: ator:	AEG 4-Corners Cleaners PO 17-126, F&BI 009309 009309-04 1/6.5 092116.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	107	70	130	
		a .			
~ .		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.7	< 0.65		
Chloroethane		<17	< 6.5		
1,1-Dichloroethene		<2.6	< 0.65		
trans-1,2-Dichloroet	thene	<2.6	< 0.65		
1,1-Dichloroethane		<2.6	< 0.65		
cis-1,2-Dichloroethe	ene	<2.6	< 0.65		
1.2-Dichloroethane	(EDC)	< 0.26	< 0.065		
1,1,1-Trichloroetha	ne	<3.5	< 0.65		
Trichloroethene		< 0.7	< 0.13		
1,1,2-Trichloroetha	ne	< 0.35	< 0.065		
Tetrachloroethene		<44	< 6.5		

< 6.5

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-4-0 09/17/2 09/16/2 09/21/2 Air ug/m3	91620 20 20 20	Client Projec Lab II Data I Instru Opera	: t: D: File: Iment: tor:	AEG 4-Corners Cleaners PO 17-126, F&BI 009309 009309-05 1/6.0 092117.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	107	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.5	<0.6		
Chloroethane		<16	<6		
1,1-Dichloroethene		<2.4	< 0.6		
trans-1,2-Dichloroet	thene	<2.4	< 0.6		
1,1-Dichloroethane		<2.4	< 0.6		
cis-1,2-Dichloroethe	ne	<2.4	< 0.6		
1,2-Dichloroethane	(EDC)	< 0.24	< 0.06		
1,1,1-Trichloroethar	ne	<3.3	< 0.6		
Trichloroethene		< 0.64	< 0.12		
1,1,2-Trichloroethan	ne	< 0.33	< 0.06		
Tetrachloroethene		56	8.3		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Not App Not App 09/21/2 Air ug/m3	Blank plicable plicable 0	Client Projec Lab II Data I Instru Opera	: t: D: File: ment: tor:	AEG 4-Corners Cleaners PO 17-126, F&BI 009309 00-2105 MB 092110.D GCMS7 bat
~		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	107	70	130	
		Concent	nation		
C 1		Concent	ration		
Compounds:		ug/m3	ppov		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroet	thene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroethe	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
1,1,1-Trichloroethar	ne	< 0.55	< 0.1		
Trichloroethene		< 0.11	< 0.02		
1,1,2-Trichloroethar	ne	< 0.055	< 0.01		
Tetrachloroethene		<3.4	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/28/20 Date Received: 09/17/20 Project: 4-Corners Cleaners PO 17-126, F&BI 009309

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 009309-02 1/6.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.7	<1.7	nm
Chloroethane	ug/m3	<17	<17	nm
1,1-Dichloroethene	ug/m3	<2.6	<2.6	nm
trans-1,2-Dichloroethene	ug/m3	<2.6	<2.6	nm
1,1-Dichloroethane	ug/m3	<2.7	<2.7	nm
cis-1,2-Dichloroethene	ug/m3	<2.6	<2.6	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.27	< 0.27	nm
1,1,1-Trichloroethane	ug/m3	<3.6	<3.6	nm
Trichloroethene	ug/m3	< 0.71	0.82	nm
1,1,2-Trichloroethane	ug/m3	< 0.36	< 0.36	nm
Tetrachloroethene	ug/m3	<45	<45	nm

Laboratory Code: Laboratory Control Sample

	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	97	70-130
Chloroethane	ug/m3	36	96	70-130
1,1-Dichloroethene	ug/m3	54	95	70-130
trans-1,2-Dichloroethene	ug/m3	54	96	70 - 130
1,1-Dichloroethane	ug/m3	55	99	70-130
cis-1,2-Dichloroethene	ug/m3	54	94	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	96	70-130
1,1,1-Trichloroethane	ug/m3	74	94	70-130
Trichloroethene	ug/m3	73	100	70-130
1,1,2-Trichloroethane	ug/m3	74	103	70-130
Tetrachloroethene	ug/m3	92	93	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

											DRMS\COC\COCTO-15.DOC
									ed by:	Receive	Fax (206) 283-5044
				~					uished by:	Relinq	Ph. (206) 285-8282
9/17/20	Fall		5	240	22) Nh		Mary	and in the	Receive	Seattle, WA 98119-2029
4C 67/15/14	Acch		40	K.	alr	R		Ú.	isped by C	Relinq	3012 16th Avenue West
NY DATE	COMPA		ME .	VT NAN	PRIN		E	NATUR	SIG		Friedman & Bruya, Inc.
les received at $\frac{2}{0}$ C	Sampl						IA / SG				×
>							IA / SG				
X	•	2:21	R	12:52	30	5/16/20	IA / 30	10)	3252	50	M-4-51620
		86:21	~	12:40	30	9/16/20	IA / SG	209	8210	404	46-2-51620
· · X		12:22	2	51151	BC BC	5/16/20	1A / 60	37	2423	3	4123-51620
×		11:01	<i>S</i>	12:05	sc	7/10/2	IA (SG	234	2435	02	HP-1-51620
-#242 ×		ನ್ನ	11:54	11:46	3	9/18/20	IA / SG	109	3249	01	EFFluent - 91620
							IA / SG				Het la
APH Helium PCE/TC. \$ Daught Ze	TO15 Full TO15 BTE TO15 cVC	Field Final Time	Final Vac. ("Hg)	Field Initial Time	Initial Vac. ("Hg)	Date Sampled	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Flow Cont. ID	Canister ID	Lab ID	Sample Name
	Scan XN DCs										AMPLE INFORMATION
ROTIESTED	ANALVSIS RI							<			THE PARTY AND
□ Archive (Fee may app	EL	A		2	Sin	- 242	Sid Sid	icsus	2017 fr	nail L	Phone 3/4 - 352-983(En
SAMPLE DISPOS	OICE TO	INI					NOTES		86 VI		City State 710
Rush charges authorized	-126	フ	.		2	o knin	79				Address
RUSH	PO#			DRESS	& ADI	ĈŤ NAME	PROJE			K	Company ASG
Page #of TURNAROUND T	N				Sume	BRS/ (sign	SAMPL		5	Ser	Report To Clark,
17-20	1609-1	k	ODY	CUSI	NOF	CHAII	SAMPLI				1009309

į

-

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 4, 2020

Becky Dilba, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Ms Dilba:

Included are the results from the testing of material submitted on October 23, 2020 from the 4 corners cleaners, F&BI 010418 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures AEG1104R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 23, 2020 by Friedman & Bruya, Inc. from the AEG 4 corners cleaners, F&BI 010418 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
010418 -01	Output
010418 -02	UP-1
010418 -03	UP-2
010418 -04	UP-3
010418 -05	UP-4

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Output 10/23/2 10/22/2 10/30/2 Air ug/m3	0 0 0	Clie Pro Lak Dat Ins Ope	ent: ject:) ID: :a File: trument: erator:	AEG 4 corners cleaners, 010418-01 1/3.2 102925.D GCMS7 bat	F&BI 010418
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 86	Lower Limit: 70	Upper Limit: 130		
		Concent	tration			
Compounds:		ug/m3	ppbv			
Vinyl chloride		< 0.82	< 0.32			
Chloroethane		<8.4	<3.2			
1,1-Dichloroethene		<1.3	< 0.32			
trans-1,2-Dichloroet	thene	<1.3	< 0.32			
1,1-Dichloroethane		<1.3	< 0.32			
cis-1,2-Dichloroethe	ne	<1.3	< 0.32			
1,2-Dichloroethane	(EDC)	1.3	0.32			
1,1,1-Trichloroethar	ne	<1.7	< 0.32			
Trichloroethene		0.64	0.12			
1,1,2-Trichloroethan	ne	< 0.17	< 0.032			
Tetrachloroethene		<22	<3.2			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	UP-1 10/23/2 10/23/2 10/26/2 Air ug/m3	0 0 0	Clie Pro Lak Dat Ins Ope	ent: ject: o ID: ta File: trument: erator:	AEG 4 corners cleaners, F&BI 010418 010418-02 1/7.2 102621.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 107	Lower Limit: 70	Upper Limit: 130	
		Concen	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.8	< 0.72		
Chloroethane		<19	<7.2		
1,1-Dichloroethene		<2.9	< 0.72		
trans-1,2-Dichloroet	thene	<2.9	< 0.72		
1,1-Dichloroethane		<2.9	< 0.72		
cis-1,2-Dichloroethe	ne	<2.9	< 0.72		
1,2-Dichloroethane	(EDC)	< 0.29	< 0.072		
1,1,1-Trichloroethar	ne	<3.9	< 0.72		
Trichloroethene		0.81	0.15		
1,1,2-Trichloroethar	ne	< 0.39	< 0.072		
Tetrachloroethene		130	20		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	UP-2 10/23/2 10/23/2 10/26/2 Air ug/m3	0 0 0	Clie Pro Lak Dat Ins Ope	ent: ject: o ID: ta File: trument: erator:	AEG 4 corners cleaners, F&BI 010418 010418-03 1/7.1 102622.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 102	Lower Limit: 70	Upper Limit: 130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.8	< 0.71		
Chloroethane		<19	<7.1		
1,1-Dichloroethene		<2.8	< 0.71		
trans-1,2-Dichloroet	thene	<2.8	< 0.71		
1,1-Dichloroethane		<2.9	< 0.71		
cis-1,2-Dichloroethe	ne	<2.8	< 0.71		
1,2-Dichloroethane	(EDC)	< 0.29	< 0.071		
1,1,1-Trichloroethar	ne	<3.9	< 0.71		
Trichloroethene		< 0.76	< 0.14		
1,1,2-Trichloroethar	ne	< 0.39	< 0.071		
Tetrachloroethene		71	10		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	UP-3 10/23/2 10/23/2 10/26/2 Air ug/m3	0 0 0	Clie Pro Lak Dat Ins Ope	ent: ject:) ID: :a File: trument: erator:	AEG 4 corners cleaners, 010418-04 1/15 102623.D GCMS7 bat	F&BI 010418
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 102	Lower Limit: 70	Upper Limit: 130		
		Concen	tration			
Compounds:		ug/m3	ppbv			
Vinyl chloride		<3.8	<1.5			
Chloroethane		<40	<15			
1,1-Dichloroethene		<5.9	<1.5			
trans-1,2-Dichloroet	thene	<5.9	<1.5			
1,1-Dichloroethane		< 6.1	<1.5			
cis-1,2-Dichloroethe	ne	<5.9	<1.5			
1,2-Dichloroethane	(EDC)	< 0.61	< 0.15			
1,1,1-Trichloroethar	ne	<8.2	<1.5			
Trichloroethene		<1.6	< 0.3			
1,1,2-Trichloroethan	ne	< 0.82	< 0.15			
Tetrachloroethene		740	110			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	UP-4 10/23/2 10/23/2 10/26/2 Air ug/m3	0 0 0	Clie Pro Lak Dat Ins Ope	ent: ject: o ID: ta File: trument: erator:	AEG 4 corners cleaners, 010418-05 1/4.7 102619.D GCMS7 bat	F&BI 010418
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 105	Lower Limit: 70	Upper Limit: 130		
		Concen	tration			
Compounds:		ug/m3	ppbv			
Vinyl chloride		<1.2	< 0.47			
Chloroethane		<12	<4.7			
1,1-Dichloroethene		<1.9	< 0.47			
trans-1,2-Dichloroet	thene	<1.9	< 0.47			
1,1-Dichloroethane		<1.9	< 0.47			
cis-1,2-Dichloroethe	ne	<1.9	< 0.47			
1,2-Dichloroethane	(EDC)	< 0.19	< 0.047			
1,1,1-Trichloroethar	ne	3.2	0.59			
Trichloroethene		< 0.51	< 0.094			
1,1,2-Trichloroethar	ne	< 0.26	< 0.047			
Tetrachloroethene		130	20			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Not Ap Not Ap 10/26/2 Air ug/m3	d Blank pplicable pplicable 20	Clie Pro Lab Dat Ins Ope	ent: ject:) ID: :a File: trument: erator:	AEG 4 corners cleaners, 00-2621 MB 102610.D GCMS7 bat	F&BI 010418
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 103	Lower Limit: 70	Upper Limit: 130		
		Concent	ration			
Compounds:		ug/m3	ppbv			
Vinyl chloride		< 0.26	< 0.1			
Chloroethane		<2.6	<1			
1,1-Dichloroethene		< 0.4	< 0.1			
trans-1,2-Dichloroet	thene	< 0.4	< 0.1			
1,1-Dichloroethane		< 0.4	< 0.1			
cis-1,2-Dichloroethe	ne	< 0.4	< 0.1			
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01			
1,1,1-Trichloroethan	ne	< 0.55	< 0.1			
Trichloroethene		< 0.11	< 0.02			
1,1,2-Trichloroethan	ne	< 0.055	< 0.01			
Tetrachloroethene		< 6.8	<1			

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/20 Date Received: 10/23/20 Project: 4 corners cleaners, F&BI 010418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

	· · · · · ·			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m ³	35	91	70-130
Chloroethane	ug/m ³	36	89	70-130
1,1-Dichloroethene	ug/m ³	54	97	70-130
trans-1,2-Dichloroethene	ug/m ³	54	94	70-130
1,1-Dichloroethane	ug/m ³	55	95	70-130
cis-1,2-Dichloroethene	ug/m ³	54	99	70-130
1,2-Dichloroethane (EDC)	ug/m ³	55	94	70-130
1,1,1-Trichloroethane	ug/m ³	74	93	70-130
Trichloroethene	ug/m ³	73	106	70-130
1,1,2-Trichloroethane	ug/m ³	74	106	70-130
Tetrachloroethene	ug/m ³	92	104	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Becky	alta				r LENO (SIJ	çnature)	R		199165 2002220			♣ſ	·	TU	RNAROUND TIME
*Company MEY		*****		PROJ	ECT NAM	(È & A)	DDRESS	3	·	PC)#		 	YSta PT	anda ICU	ırd
Address		÷.		40	corners C	ilan	ns					\$]	Rush	cha	rges authorized by:
City, State, ZIP				NOTE	CS:	HJL3=3			I	VVOI	CEI	°O.			SA	MPLE DISPOSAL
Phone	Email_\	adilla é o	egward	esna			ر		A AB	ej] De:] Arc	fault	∷ Clean after 3 days ≥ (Fee may apply)
SAMPLE INFORMATIOP	J		•				•			AN	ALYS	SIS R	EQI	JES'	TED	······································
				Reporting Level:				-		Full Scan	BTEXN	cVOCs	Р́Н	lium	wanters	
Sample Name	Lab ID	Canister ID	Flow Cont. ID	IA=Indoor Ain SG=Soil Gas (Circle One)	Date Sampled	Initia Vac ("Hg)	Field Initial Time	Final Vac. ("Hg)	Field Final Time	T015	TO15	T016	4	Ĥ	Ke: de	Notes
ounput	01	2293	200	IA / 🕥	1923/2020	-28	943	-3	loog						Ý	
UP-1	02	4135	204	IA / 😡		-28	10000	0	1014						7	
VP-2	03	2294	221	IA / 🚱		-30	950 944	ø	1002						۴	<u>.</u>
NP-3.	oy	3667	223	IA / SC	1	-73	2511	ø	958						Y	······
UP-4	05	4173	220	IA / 🚱		-30	19951	ø	109						¥	······
4	Ť			IA / SG			•				Ī				<i>+</i>	
ŕ.;	22			IA / SG												
<u> </u>		,		TA / SG	· · · · · · · · · · · · · · · · · · ·			'			Sar	nple	es re	eceli	ve	l at <u>16</u> °C

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by	Breley Bubg	AFEL .	10/23/1020	1133
Seåttle, WA 98119-2029	Received by:	Khoi Hoana	FBL	10/22/20	11.25
Ph. (206) 285-8282	Relinquished by:				
Fax (206) 283-5044	Received by:				
FORMS\COC\COCTO-15.DOC					

~,

3322 South Bay Road NE • Olympia, WA 98506-2957

December 14, 2020

Scott Rose Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr. Rose:

Please find enclosed the analytical data report for the 4 Corners Cleaner Project located in Maple Valley, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

4 CORNERS CLEANER PROJECT AEG, LLC Maple Valley, Washington Libby Project # L201211-7 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	MW-1	MW-2	MW-3	MW-5	
		Blank					
Date Sampled		N/A	12/11/2020	12/11/2020	12/11/2020	12/11/2020	
Date Analyzed	PQL	12/13/2020	12/13/2020	12/13/2020	12/13/2020	12/13/2020	
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	nd	
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	
Surrogate Recovery							
Dibromofluoromethane		122	126	109	127	125	
1,2-Dichloroethane-d4		111	113	132	109	112	
Toluene-d8		101	69	84	65	100	
4-Bromofluorobenzene		98	100	97	101	102	
"nd" Indicates not detect	ed at listed	d detection lin	mit.				
"int" Indicates that interf	erence pre	events determ	ination.				

Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANER PROJECT AEG, LLC Maple Valley, Washington Libby Project # L201211-7 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

	Matrix S ₁	pike Sample Id	lentification:	L201208-4							
	Date Analyzed: 12/13/2020										
	Spiked	MS	MS	Limits	Data						
	Conc.	Response	Recovery	Recovery	Flag						
	$(\mu g/L)$	$(\mu g/L)$	(%)	(%)	-						
Vinyl Chloride (VC)	5.0	3.6	72	65-135							
1,1-Dichloroethene	5.0	4.4	88	65-135							
trans-1,2-Dichloroethene	5.0	4.2	84	65-135							
cis-1,2-Dichloroethene	5.0	6.4	128	65-135							
Trichloroethene (TCE)	5.0	4.0	80	65-135							
Tetrachloroethene (PCE)	5.0	4.2	84	65-135							
Surrogate Recovery (%)			MS								
Dibromofluoromethane			130	65-135							
1,2-Dichloroethane-d4			128	65-135							
Toluene-d8			89	65-135							
4-Bromofluorobenzene			114	65-135							

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANER PROJECT AEG, LLC Maple Valley, Washington Libby Project # L201211-7 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Date Analyzed:	12/13/2020				
	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	(µg/L)	(%)	Limits (%)	
Vinyl Chloride (VC)	5.0	4.7	94	80-120	
1,1-Dichloroethene	5.0	4.1	82	80-120	
trans-1,2-Dichloroethene	5.0	4.1	82	80-120	
cis-1,2-Dichloroethene	5.0	5.7	114	80-120	
Trichloroethene (TCE)	5.0	5.4	108	80-120	
Tetrachloroethene (PCE)	5.0	5.1	102	80-120	
Surrogate Recovery					
Dibromofluoromethane			124	65-135	
1,2-Dichloroethane-d4			125	65-135	
Toluene-d8			107	65-135	
4-Bromofluorobenzene			113	65-135	

Laboratory Control Sample

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANER PROJECT AEG, LLC Libby Project # L201211-7 Date Received 12/11/2020 14:20 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By JC

Sample Receipt Checklist

Chain of Custody					
1. Is the Chain of Custody complete?	\checkmark	Yes	🗌 No		
2. How was the sample delivered?	\checkmark	Hand Delivered	Picked Up		Shipped
Log In					
3. Cooler or Shipping Container is present.	\checkmark	Yes	🗌 No		□ N/A
4. Cooler or Shipping Container is in good condition.	\checkmark	Yes	🗌 No		□ N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes	✓ No		□ N/A
6. Was an attempt made to cool the samples?	\checkmark	Yes	🗌 No		🗌 N/A
7. Temperature of cooler (0°C to 8°C recommended)		0.8	°C		
8. Temperature of sample(s) (0°C to 8°C recommended)		2.3	°C		
9. Did all containers arrive in good condition (unbroken)?	\checkmark	Yes	🗌 No		
10. Is it clear what analyses were requested?	\checkmark	Yes	🗌 No		
11. Did container labels match Chain of Custody?	\checkmark	Yes	🗌 No		
12. Are matrices correctly identified on Chain of Custody?	\checkmark	Yes	🗌 No		
13. Are correct containers used for the analysis indicated?	\checkmark	Yes	🗌 No		
14. Is there sufficient sample volume for indicated analysis?	\checkmark	Yes	🗌 No		
15. Were all containers properly preserved per each analysis?	\checkmark	Yes	🗌 No		
16. Were VOA vials collected correctly (no headspace)?	\checkmark	Yes	🗌 No		🗌 N/A
17. Were all holding times able to be met?	\checkmark	Yes	🗌 No		
Discrepancies/ Notes					
18. Was client notified of all discrepancies?		Yes	🗌 No		☑ N/A
Person Notified:				Date:	
By Whom:				Via:	
Regarding:					
19. Comments.					

Libby Environm	nental	, Inc.		Cł	nain	of	Cus	tod	ly F	leco	ord					W	/ww.Lib	byEnv	ironmental.com
4139 Libby Road NE	Ph:	360-352-2	2110					0	111	200						/			1
Olympia, WA 98506	Fax:	360-352-4	154			[Date:	12/	11/	W			~		Page:	/		of	/
Client: AEG						F	Project	Mana	ger:	S	ot	F .	Ros	e					
Address: 605 11# P	We SE	Suit	e 201			F	Project	Name):	40	200	ner	50	ile	ner				
City: Olympia		State: W	/A Zip	98501		L	ocation	1: 23	786	SE	Ker	7-6	angle	er R	City, St	ate: M	ade	vq	11er WA
Phone: (36)7352-	9835	Fax:				(Collecto	or: F	05	ter	Ka	eta	el	0	Date of	Collecti	ion:	12/1	1/20
Client Project # 17-1	26					E	Email:	SI	205	ea	AE	GWF	7.00	m					
Samela Number	Donth	Time	Sample	Container		A 80219	88218 82 88218 82	50 0011	ATPHX ATPHX	SID GT	RH.OT	HID CONT	410 5	882 5 M	Sale Here			otes	
	Depui	la(h	(Id	Voo	K^{\sim}			1 T		<u> </u>	Y	Ý	X N		f	ſ '		0100	
2 Mul-7		1000	600	VOA		-		-		-	+	+	+	1×					
3 001-3		(807	611	VaA		-	-	+			+	+	-	X					
4 MU-5		0938	GW	VOA				+			-			X					
5		0120	001																
6																			
7																			
8																			
9			1																
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
Relinquished by:	2 Date	1/20 1	420	Received by:	du	ldu	AS R	1/1	Date 20	/Time	D S	amp	le Red	ceipt:		Rema	arks:		
Relinquished by:	Date	/ Time		Received by:				1	Date	/ Time	G	ood Co	ondition	?					
				/							C	old?							
Relinquished by:	Date	/ Time		Received by:					Date	/ Time	Se	eals In	act?						
	novmost and/or fail	ure to pay. Client a	mean to new the cost	s of collection including cou	rt costs and	reasonah	e attornev fee	s to he det	ermined hy	a cout of la	To	otal Nu	mber of	Conta	iners	TAT:	24H	IR 4	8HR 5-DAY

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 28, 2020

Charlie Swift, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Swift:

Included are the results from the testing of material submitted on December 17, 2020 from the 4-Corners Cleaners PO 17-126, F&BI 012313 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures AEG1228R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 17, 2020 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaners PO 17-126, F&BI 012313 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	$\underline{\text{AEG}}$
012313 -01	VP-4-121720
012313 -02	VP-2-121720
012313 -03	VP-3-121720
012313 -04	VP-1-121720
012313 -05	Influent-121720

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-4-1 12/17/2 12/17/2 12/22/2 Air ug/m3	21720 20 20 20	Client Projec Lab II Data Instru Opera	:: ct: D: File: ument: tor:	AEG 4-Corners Cleaners PO 17-126, F&BI 012313 012313-01 1/20 122153.D GCMS7 bat
Surrogates		% Recovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenze	ene	107	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<5.1	<2		
Chloroethane		<53	<20		
1,1-Dichloroethene		<7.9	<2		
trans-1,2-Dichloroet	thene	<7.9	<2		
1,1-Dichloroethane		<8.1	<2		
cis-1,2-Dichloroethe	ne	<7.9	<2		
1,2-Dichloroethane	(EDC)	< 0.81	< 0.2		
1,1,1-Trichloroethan	ne	<11	<2		
Trichloroethene		<2.1	< 0.4		
1,1,2-Trichloroethan	ne	<1.1	< 0.2		
Tetrachloroethene		400	59		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-2-12 12/17/2 12/17/2 12/22/2 Air ug/m3	21720 0 0 0	Client Projec Lab II Data Instru Opera	:: bt: D: File: ument: utor:	AEG 4-Corners Cleaners PO 17-126, F&BI 012313 012313-02 1/10 122152.D GCMS7 bat
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenze	ene	108	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<2.6	<1		
Chloroethane		<26	<10		
1,1-Dichloroethene		<4	<1		
trans-1,2-Dichloroet	thene	<4	<1		
1,1-Dichloroethane		<4	<1		
cis-1,2-Dichloroethe	ne	<4	<1		
1,2-Dichloroethane	(EDC)	< 0.4	< 0.1		
1,1,1-Trichloroethar	ne	<5.5	<1		
Trichloroethene		<1.1	< 0.2		
1,1,2-Trichloroethar	ne	< 0.55	< 0.1		
Tetrachloroethene		87	13		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-3-1 12/17/2 12/17/2 12/22/2 Air ug/m3	21720 20 20 20	Client Projec Lab II Data I Instru Opera	: t: D: File: ment: tor:	AEG 4-Corners Cleaners PO 17-126, F&BI 012313 012313-03 1/20 122155.D GCMS7 bat
C		%	Lower	Upper	
4-Bromofluorobenze	ene	Recovery: 87	Limit: 70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<5.1	<2		
Chloroethane		<53	<20		
1,1-Dichloroethene		<7.9	<2		
trans-1,2-Dichloroet	hene	<7.9	<2		
1,1-Dichloroethane		<8.1	<2		
cis-1,2-Dichloroethe	ne	<7.9	<2		
1,2-Dichloroethane	(EDC)	< 0.81	< 0.2		
1,1,1-Trichloroethar	ne	<11	<2		
Trichloroethene		<2.1	< 0.4		
1,1,2-Trichloroethar	пе	<1.1	< 0.2		
Tetrachloroethene		690	100		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1-12 12/17/2 12/17/2 12/22/2 Air ug/m3	21720 0 0 0	Client Projec Lab II Data I Instru Opera	:: ct: D: File: ument: tor:	AEG 4-Corners Cleaners PO 17-126, F&BI 012313 012313-04 1/21 122154.D GCMS7 bat
~		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	108	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<5.4	<2.1		
Chloroethane		<55	<21		
1,1-Dichloroethene		<8.3	<2.1		
trans-1,2-Dichloroet	thene	<8.3	<2.1		
1,1-Dichloroethane		<8.5	<2.1		
cis-1,2-Dichloroethe	ene	<8.3	<2.1		
1,2-Dichloroethane	(EDC)	< 0.85	< 0.21		
1,1,1-Trichloroethan	ne	<11	<2.1		
Trichloroethene		2.7	0.50		
1,1,2-Trichloroethan	ne	<1.1	< 0.21		
Tetrachloroethene		420	62		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Influent 12/17/20 12/17/20 12/22/20 Air ug/m3	;-121720))	Clier Proje Lab Data Instr Oper	nt: ect: ID: File: rument: rator:	AEG 4-Corners Cleaners PO 17-126, F&BI 012313 012313-05 1/6.7 122151.D GCMS7 bat
		%	Lower	Upper	
Surrogates:]	Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	110	70	130	
		Concent	nation		
Compounda		Concern	ration		
Compounds:		ug/m5	pppv		
Vinyl chloride		<1.7	< 0.67		
Chloroethane		<18	<6.7		
1,1-Dichloroethene		<2.7	< 0.67		
trans-1,2-Dichloroet	thene	<2.7	< 0.67		
1,1-Dichloroethane		<2.7	< 0.67		
cis-1,2-Dichloroethe	ne	<2.7	< 0.67		
1,2-Dichloroethane	(EDC)	< 0.27	< 0.067		
1,1,1-Trichloroethar	ne	<3.7	< 0.67		
Trichloroethene		0.86	0.16		
1,1,2-Trichloroethan	ne	< 0.37	< 0.067		
Tetrachloroethene		73	11		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Not App Not App 12/21/20 Air ug/m3	Blank plicable plicable 0	Client Projec Lab II Data I Instru Opera	:: ct: D: File: ument: tor:	AEG 4-Corners Cleaners PO 17-126, F&BI 012313 00-2829 MB 122132.D GCMS7 bat
a		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	101	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroet	thene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroethe	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
1,1,1-Trichloroethan	ne	< 0.55	< 0.1		
Trichloroethene		< 0.11	< 0.02		
1,1,2-Trichloroethan	ne	< 0.055	< 0.01		
Tetrachloroethene		<6.8	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/28/20 Date Received: 12/17/20 Project: 4-Corners Cleaners PO 17-126, F&BI 012313

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 012334-02 1/3.3 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	< 0.84	< 0.84	nm
Chloroethane	ug/m3	<8.7	<8.7	nm
1,1-Dichloroethene	ug/m3	<1.3	<1.3	nm
trans-1,2-Dichloroethene	ug/m3	<1.3	<1.3	nm
1,1-Dichloroethane	ug/m3	<1.3	<1.3	nm
cis-1,2-Dichloroethene	ug/m3	<1.3	<1.3	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.13	< 0.13	nm
1,1,1-Trichloroethane	ug/m3	<1.8	<1.8	nm
Trichloroethene	ug/m3	< 0.35	< 0.35	nm
1,1,2-Trichloroethane	ug/m3	< 0.18	< 0.18	nm
Tetrachloroethene	ug/m3	<22	<22	nm

Laboratory Code: Laboratory Control Sample

-		Percent	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
ug/m3	35	98	70-130
ug/m3	36	99	70 - 130
ug/m3	54	100	70 - 130
ug/m3	54	107	70 - 130
ug/m3	55	102	70 - 130
ug/m3	54	107	70 - 130
ug/m3	55	103	70 - 130
ug/m3	74	108	70-130
ug/m3	73	110	70-130
ug/m3	74	110	70-130
ug/m3	92	109	70-130
	Reporting Units ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	Reporting Units Spike Level ug/m3 35 ug/m3 36 ug/m3 54 ug/m3 54 ug/m3 55 ug/m3 55 ug/m3 55 ug/m3 74 ug/m3 73 ug/m3 74 ug/m3 74 ug/m3 92	Reporting Units Spike Level Percent Recovery LCS ug/m3 35 98 ug/m3 36 99 ug/m3 54 100 ug/m3 54 107 ug/m3 55 102 ug/m3 55 103 ug/m3 74 108 ug/m3 74 110 ug/m3 92 109

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	012313				SAMPL	E CHAI	N OF	CUST	ODY		ŗ	1Ē	121	117	120)				
1	Report To 4E6	110		,	SAMPI	LERS (sign	uature)	p)	$\int $	$\overline{\mathbb{N}}$		4				Page i FIJR	# NAROI	of IND TIM	 F	<u>`</u>
	Company Chalin	- Ser,	<i>G</i>		PROJE	CT NAME	E & AD	DRESS			PO	#	<u> </u>	- Line	Standard					
Ĺ	Address 2633 Per K	no-t.	Ln Se	; 4A	_ 4	-Corn	ens (Nen.	\$	1	7-	126		R	lush	char	ges aut	horized b	y:	
(City, State, ZIP	L.g.) K	WA9	8-502	NOTES	3: _.				IN	VOI	CE T	0		SAMPLE DISPOSAL					
]	Phone <u>3/0-752-5711</u> En	nail		-		$A \in C, L \subset [\Box Archive (Fee may apply)]$					2									
S	AMPLE INFORMATION				X		y	·····	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	ANA	LYS	IS R	EQU	EST	ED		· · · ·]
					Reporting Level:						ð Full Scan	5 BTEXN	15 cVOCs	APH	Ielium	125 +	sh he Perhacts			e. P
	Somple Neme	Lab	Canister	Flow Cont.	IA=Indoor Air SG=Soil Gas	Date	Vac.	Field Initial	Final Vac.	Field Final	TOI	TOI	D		<u>н</u> ч	RE	Due	Mataa		
	+7P- 4-121720	0)	8538	259	IA / (SG)	12/17/2	27	//:30	$\left(\frac{\Pi g}{S}\right)$	11:29						\mathbf{x}		notes		
	UP-2-121720	02	8267	242	IA / SG	2/17/2	28	11:45	- 5	11:58						X				
	HP-3-121720	03	4177	256	IA / SQ /	0/17/20	29	11:55	8	12:05						X				
	HP-1-121720	oy	4183	241	IA / (SG)	12/17/22	30	12:00	8	12:10						\times				
	······				IA / SG													-		
	Influent - 1217	205	4175	109	IA / SG	12/17/20	29	1:20	8	1:30						X				
					IA / SG		** *					\downarrow								
L					IA / SG			×												

		¥ ·			
Friedman & Bruya, Inc.	SIGNAŢURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Cherles Swift	AFG, LLC	12/17/20	15:00
Seattle, WA 98119-2029	Received by	Gac YOUNG	FCB	Plato	1500
Ph. (206) 285-8282	Relinquished by:			A	
Fax (206) 283-5044	Received by:	· · · · · · · · · · · · · · · · · · ·	Samples received	at IT oc	
FORMS\COC\COCTO-15.DOC					

ж.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 29, 2021

Charles Swift, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Swift:

Included are the results from the testing of material submitted on April 21, 2021 from the 4-Corners Cleaners 17-126, F&BI 104382 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures AEG0429R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 21, 2021 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaners 17-126, F&BI 104382 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
104382 -01	SVE-09T-42021
104382 -02	VP-3-42021
104382 -03	VP-1-42021
104382 -04	VP-2-42021
104382 -05	VP-4-42021

The tetrachloroethene concentration in sample VP-3-42021 exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.
ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVE-09 04/21/2 04/20/2 04/23/2 Air ug/m3	9T-42021 21 21 21 21	Clier Proje Lab Data Instr Oper	nt: ect: ID: t File: rument: rator:	AEG 4-Corners Cleaners 17-126, F&BI 104382 104382-01 1/5.4 042325.D GCMS7 bat
a		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	97	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.4	< 0.54		
Chloroethane		<14	<5.4		
1,1-Dichloroethene		<2.1	< 0.54		
trans-1,2-Dichloroet	hene	<2.1	< 0.54		
1,1-Dichloroethane		<2.2	< 0.54		
cis-1,2-Dichloroethe	ne	<2.1	< 0.54		
1,2-Dichloroethane	(EDC)	0.74	0.18		
1,1,1-Trichloroethar	ne	<2.9	< 0.54		
Trichloroethene		1.2	0.23		
1,1,2-Trichloroethar	ne	< 0.29	< 0.054		
Tetrachloroethene		<37	<5.4		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-3-4 04/21/2 04/20/2 04/24/2 Air ug/m3	2021 1 1 1 1	Clier Proje Lab Data Instr Oper	nt: ect: ID: File: rument: rator:	AEG 4-Corners Cleaners 17-126, F&BI 104382 104382-02 1/5.7 042326.D GCMS7 bat
a		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	92	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.5	< 0.57		
Chloroethane		<15	<5.7		
1,1-Dichloroethene		<2.3	< 0.57		
trans-1,2-Dichloroet	thene	<2.3	< 0.57		
1,1-Dichloroethane		<2.3	< 0.57		
cis-1,2-Dichloroethe	ne	<2.3	< 0.57		
1,2-Dichloroethane	(EDC)	< 0.23	< 0.057		
1,1,1-Trichloroethar	ne	<3.1	< 0.57		
Trichloroethene		1.6	0.30		
1,1,2-Trichloroethar	ne	< 0.31	< 0.057		
Tetrachloroethene		890 ve	130 ve		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1-42 04/21/2 04/20/2 04/24/2 Air ug/m3	2021 1 1 1 1	Clier Proje Lab Datz Instr Oper	nt: ect: ID: a File: rument: rator:	AEG 4-Corners Cleaners 17-126, F&BI 104382 104382-03 1/6.3 042327.D GCMS7 bat
a ,		%	Lower	Upper	
Surrogates:	no	Recovery:	Limit:	Limit:	
4-Dromonuorobenze	ene	50	10	150	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.6	< 0.63		
Chloroethane		<17	<6.3		
1,1-Dichloroethene		<2.5	< 0.63		
trans-1,2-Dichloroet	thene	$<\!\!2.5$	< 0.63		
1,1-Dichloroethane		$<\!\!2.5$	< 0.63		
cis-1,2-Dichloroethe	ne	<2.5	< 0.63		
1,2-Dichloroethane	(EDC)	< 0.25	< 0.063		
1,1,1-Trichloroethar	ne	<3.4	< 0.63		
Trichloroethene		1.8	0.34		
1,1,2-Trichloroethar	ne	< 0.34	< 0.063		
Tetrachloroethene		150	22		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-2-4 04/21/2 04/20/2 04/24/2 Air ug/m3	2021 21 21 21 21	Clier Proje Lab Data Instr Oper	nt: ect: ID: a File: rument: rator:	AEG 4-Corners Cleaners 17-126, F&BI 104382 104382-04 1/5.9 042328.D GCMS7 bat
a		%	Lower	Upper	
Surrogates: 4-Bromofluorobenze	me	Recovery: 91	Limit: 70	Limit: 130	
1 Diomondoi obenize		01	10	100	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.5	< 0.59		
Chloroethane		<16	<5.9		
1,1-Dichloroethene		<2.3	< 0.59		
trans-1,2-Dichloroet	hene	<2.3	< 0.59		
1,1-Dichloroethane		<2.4	< 0.59		
cis-1,2-Dichloroethe	ne	<2.3	< 0.59		
1,2-Dichloroethane	(EDC)	< 0.24	< 0.059		
1,1,1-Trichloroethar	ne	<3.2	< 0.59		
Trichloroethene		0.76	0.14		
1,1,2-Trichloroethar	ne	< 0.32	< 0.059		
Tetrachloroethene		190	28		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-4-4 04/21/2 04/20/2 04/24/2 Air ug/m3	2021 21 21 21 21	Clier Proje Lab Data Instr Oper	nt: ect: ID: a File: rument: rator:	AEG 4-Corners Cleaners 17-126, F&BI 104382 104382-05 1/7.2 042329.D GCMS7 bat
a		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne	95	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.8	< 0.72		
Chloroethane		<19	<7.2		
1,1-Dichloroethene		<2.9	< 0.72		
trans-1,2-Dichloroet	hene	<2.9	< 0.72		
1,1-Dichloroethane		<2.9	< 0.72		
cis-1,2-Dichloroethe	ne	<2.9	< 0.72		
1,2-Dichloroethane	(EDC)	< 0.29	< 0.072		
1,1,1-Trichloroethar	ne	4.9	0.91		
Trichloroethene		1.2	0.22		
1,1,2-Trichloroethan	ne	< 0.39	< 0.072		
Tetrachloroethene		340	50		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Not App Not App 04/23/21 Air ug/m3	Blank Ilicable Ilicable	Clien Proje Lab 1 Data Instr Oper	nt: ect: ID: File: rument: ator:	AEG 4-Corners Cleaners 17-126, F&BI 104382 01-838 MB 042311.D GCMS7 bat
		%	Lower	Upper	
Surrogates:]	Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	90	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroet	hene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroethe	ne	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
1,1,1-Trichloroethar	ne	< 0.55	< 0.1		
Trichloroethene		< 0.11	< 0.02		
1,1,2-Trichloroethan	ne	< 0.055	< 0.01		
Tetrachloroethene		< 6.8	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/21 Date Received: 04/21/21 Project: 4-Corners Cleaners 17-126, F&BI 104382

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 104394-01 1/5.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.4	<1.4	nm
Chloroethane	ug/m3	<14	<14	nm
1,1-Dichloroethene	ug/m3	<2.1	<2.1	nm
trans-1,2-Dichloroethene	ug/m3	<2.1	<2.1	nm
1,1-Dichloroethane	ug/m3	16	16	0
cis-1,2-Dichloroethene	ug/m3	<2.1	<2.1	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.22	< 0.22	nm
1,1,1-Trichloroethane	ug/m3	910	900	1
Trichloroethene	ug/m3	1.4	1.4	0
1,1,2-Trichloroethane	ug/m3	< 0.29	< 0.29	nm
Tetrachloroethene	ug/m3	96	96	0

Laboratory Code: Laboratory Control Sample

5 5	1			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	97	70-130
Chloroethane	ug/m3	36	118	70 - 130
1,1-Dichloroethene	ug/m3	54	100	70 - 130
trans-1,2-Dichloroethene	ug/m3	54	97	70 - 130
1,1-Dichloroethane	ug/m3	55	109	70 - 130
cis-1,2-Dichloroethene	ug/m3	54	96	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	116	70 - 130
1,1,1-Trichloroethane	ug/m3	74	112	70-130
Trichloroethene	ug/m3	73	114	70-130
1,1,2-Trichloroethane	ug/m3	74	123	70-130
Tetrachloroethene	ug/m3	92	115	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

10	143	82		SAW	LTE CH	AIN (OF CUS	STOL)Y		10	<i>ה</i>נ	1-01			
Report To Chalt	Peri 7			SAN	APLERS (s	ignatu	re)				<u>e</u>			Pa	3e# of	
Company AEF				PRC	JECT NAL	ME & /	ADDRES	S			<u>~</u>		- m	TU	TRNAROUND TIME	
Address 26.27 B.A		/ r	- 1 A		4-Corneas	clien	ers	·····		. ۲	$\cup \pi$			RUSH	aru	······
anne cos co ja reak.	m t l		<u>.1# /1</u>	- 23	896-5E	Kat-K	msley 1	<u>r I</u>	/	17	~ 12	6		ish cha	arges authorized by:	
City, State, ZIP 01	apic,	UA 7	8542		es:	0	-			IOVV	ICE T	0		SA Defaul	MPLE DISPOSAL t: Clean after 3 days	
Phone 164-152-9915 F	mail_	crike	Feera	e.con	Jail bas	Ser	N			A 6	56,	llc	o .	Archiv	e (Fee may apply)	
SAMPLE INFORMATIO N										IAN	ALVS			ימייסי		
							1	1		1			1201		, T	
				Reporting						all Scan	TEXN	VOCa	н	al +	dhe	
Sample Name	Lab	Canister	Flow Cont.	IA=Indoor Ai SG=Soil Gas	r Date	Initia Vac.	al Field Initial	Fina Vac.	l Field Final	PO16 F1	TO15 B	T015 c	AP	Hell E/7CE	Jacob	
SUF-047-42021				(Circle One)	Sampled) Tîme	("Hg)	Time					18	Notes	
48-2-42021	67	22)1			1/2/21	8	15:50	15	15:58			<u>× </u>		X	PEELICE	
1/P of your		366)	290	IA / SG	4/22/21	125	16:10	5	18:23			×		Y	Pieller.	
1/2 2	03	2305	204	IA ISA	1/20/21	25	18:05	5	16:15			×		7	Protes	7
-HP-2-42021	04	3387	231	IA / SG	4/20/21	20	16:26	5	16:76			X		X		1
HP-4-42021	05	2297	228	IA / SG	8/schi	28	16:45	5	16:50			$\overline{\langle}$	1	V		
				IA / SG											····	-
				IA / SG		t.				\neg				┼──╂	,	
				IA / SG								1	\uparrow	╞┈╌╊	· · · · · · · · · · · · · · · · · · ·	

Friedman & Bruna Inc					
2012 16th Anomala West	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
sort rour roence west	Areanquished by!	MISTG.	17/ 11/		
Seattle, WA 98119-2029	Berginetty	Cherles Suffe	AEG, LLC	94/21/21	11:30
	and af	Michael Elect	PERM	4/2.61	1400
Ph. (206) 285-8282	Relinquished by:			1/21/21	1700
Fax (206) 283-5044	Received by:				- 170
			Ba	inples receit	ved at <u>790</u>
FORMS\COC\COCTO-15.DOC					

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 28, 2021

Charles Swift, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Swift:

Included are the results from the testing of material submitted on June 22, 2021 from the 4-Corner Dry Cleaner 17-126, F&BI 106380 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures AEG0628R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 22, 2021 by Friedman & Bruya, Inc. from the AEG 4-Corner Dry Cleaner 17-126, F&BI 106380 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	$\overline{\text{AEG}}$
106380 -01	VP-1
106380 -02	VP-2
106380 -03	VP-3
106380 -04	VP-4
106380 -05	SVE-IN-062121

The tetrachloroethene concentration for sample VP-3 exceeded the calibration range. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1 06/22/21 06/21/21 06/22/21 Air ug/m3		Clien Proje Lab I Data Instru Opera	t: ct: D: File: ument: ator:	AEG 4-Corner Dry Cleaner 17-126, F&BI 106380 106380-01 1/7 062218.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	R	% ecovery: 91	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concent ug/m3	ration ppbv		
Vinyl chloride 1,1-Dichloroethene trans-1,2-Dichloroethe cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	thene ene	<1.8 <2.8 <2.8 <2.8 1.2 53	<0.7 <0.7 <0.7 <0.7 0.22 7.8		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-2 06/22/2 06/21/2 06/22/2 Air ug/m3	1 1 1	Clien Proje Lab Data Insta Open	nt: ect: ID: a File: rument: rator:	AEG 4-Corner Dry Cleaner 17-126, F&BI 106380 106380-02 1/5.8 062220.D GCMS7 bat
Surrogates		% Recovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenze	ene	92	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.5	< 0.58		
1,1-Dichloroethene		<2.3	< 0.58		
trans-1,2-Dichloroet	thene	<2.3	< 0.58		
cis-1,2-Dichloroethe	ne	<2.3	< 0.58		
Trichloroethene		0.78	0.14		
Tetrachloroethene		86	13		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-3 06/22/21 06/21/21 06/22/21 Air ug/m3	L L	Clier Proje Lab I Data Instr Oper	nt: ect: ID: File: rument: rator:	AEG 4-Corner Dry Cleaner 17-126, F&BI 106380 106380-03 1/6.5 062221.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	92	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.7	< 0.65		
1,1-Dichloroethene		<2.6	< 0.65		
trans-1,2-Dichloroet	thene	<2.6	< 0.65		
cis-1,2-Dichloroethe	ene	<2.6	< 0.65		
Trichloroethene		1.8	0.33		
Tetrachloroethene		830 ve	120 ve		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-4 06/22/21 06/21/21 06/23/21 Air ug/m3		Clien Proje Lab I Data Instru Opera	t: ct: D: File: ument: ator:	AEG 4-Corner Dry Cleaner 17-126, F&BI 106380 106380-04 1/6.2 062222.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	Re	% covery: 90	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concent ug/m3	ration ppbv		
Vinyl chloride 1,1-Dichloroethene trans-1,2-Dichloroethe cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	chene ne	<1.6 <2.5 <2.5 <2.5 0.80 280	<0.62 <0.62 <0.62 <0.62 0.15 41		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVE-IN 06/22/21 06/21/21 06/23/21 Air ug/m3	-062121 1 1 1	Clie Proj Lab Data Inst Ope	nt: ect: ID: a File: rument: rator:	AEG 4-Corner Dry Cleaner 17-126, F&BI 106380 106380-05 1/6.1 062223.D GCMS7 bat
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenze	ene	91	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.6	< 0.61		
1,1-Dichloroethene		<2.4	< 0.61		
trans-1,2-Dichloroet	thene	<2.4	< 0.61		
cis-1,2-Dichloroethe	ne	<2.4	< 0.61		
Trichloroethene		< 0.66	< 0.12		
Tetrachloroethene		12	1.8		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 06/22/21 Air ug/m3	Clier Proje Lab Data Instr Oper	nt: ect: ID: IFile: rument: rator:	AEG 4-Corner Dry Cleaner 17-126, F&BI 106380 01-1230 MB 062211.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	% Recovery: me 89	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concen ug/m3	tration ppbv		
Vinyl chloride 1,1-Dichloroethene trans-1,2-Dichloroethe cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	<0.26 <0.4 chene <0.4 ne <0.4 <0.11 <0.68	<0.1 <0.1 <0.1 <0.1 <0.02 <0.1		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/28/21 Date Received: 06/22/21 Project: 4-Corner Dry Cleaner 17-126, F&BI 106380

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 106380-01 1/7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.8	<1.8	nm
1,1-Dichloroethene	ug/m3	<2.8	<2.8	nm
trans-1,2-Dichloroethene	ug/m3	<2.8	<2.8	nm
cis-1,2-Dichloroethene	ug/m3	<2.8	<2.8	nm
Trichloroethene	ug/m3	1.2	1.2	0
Tetrachloroethene	ug/m3	53	52	2

Laboratory Code: Laboratory Control Sample

	I I I		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	84	70-130
1,1-Dichloroethene	ug/m3	54	88	70-130
trans-1,2-Dichloroethene	ug/m3	54	86	70-130
cis-1,2-Dichloroethene	ug/m3	54	85	70-130
Trichloroethene	ug/m3	73	91	70-130
Tetrachloroethene	ug/m3	92	111	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

106380	SAMI	PLE CHAIN O	F CUSTODY	ME or log 1	0]
Benort To	SAN	APLERS (signafure	CC	/WE UB[dd]	Page # of
Company AFC 12C	PRC	DJECT NAME & A	DDRESS	PO #	TURNAROUND TIME
companyP		U.A. A	/1	10#	DRUSH
Address 26 [Confort L.	<u>56</u>	T- Come Ky	1 Cherry M	17-126	Rush charges authorized by:
City, State, ZIP 0 (7 pi) 6/A	<u> 78502</u> NOI			INVOICE TO	SAMPLE DISPOSAL
Phone 360-372-78 TEmail OSC,	HE acquit in			AFG, LLC	□ Archive (Fee may apply)
SAMPLE INFORMATION	1			ANALYSIS	REQUESTED
	Reporting			ull Scan TEXN . VOCs	HI HI CE +
Sample Name ID ID	Flow IA=Indoor A er Cont. SG=Soil Gas ID (Circle One)	ir Initia s Date Vac.) Sampled ("Hg)	l Field Final Initial Vac. Time ("Hg)	Field Final CL Time	AP Helli AP Ar AP
HP-1 01 225	7 2 89 IA / SG	6/21/20 28	12:53 6	12:56	
HP-2 02 2305	- 240 IA 1 (SG)	6/21/21 27	12:55 6	1301	7 12'01
HP-3 03 3675	- 225 IA (SG)	6/21/2 28	1:65 6	18:10	X 12:10
HP-4 04 247	2 203 IA (SO	6/21/21 25	1:1850	31/8	X IAVIX
SHE-IN-012121 05 2302	22/ IA / SS	8/4/21 30	1:25-6	12:21	× 17:21
	IA / SG				
· .	IA / SG			Sample	s received at 25 °C
	IA / SG				

Friedman & Bruva, Inc.	SIGNATURE				
3012 16th Augure West	Relinquished bur La Contraction	PRINT NAME	COMPANY	DATE	TIME
Scattle WA ASIA 2020	Reading and a second se	Cherles Supt	AEGULC	06/21/21	3:31
Secure, WA 30119-2029	deceived by	Inil Raddird	EART	r lagla	12-1
Ph. (206) 285-8282	Relinquished by:	With TEACIOL &		6/2012	15:57 J
()) = 00 0.202		•			4
Fax (206) 283-5044	Received by:	*			
FORMS\COC\COCTO-15.DOC				[

×,

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 27, 2021

Scott Rose, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Rose:

Included are the results from the testing of material submitted on August 19, 2021 from the 4 Corners Cleaners 17-126, F&BI 108316 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: AEG A/P AEG0827R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 19, 2021 by Friedman & Bruya, Inc. from the AEG 4 Corners Cleaners 17-126, F&BI 108316 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
108316 -01	INF-08172021
108316 -02	VP-1-081721
108316 -03	VP-3-081721
108316 -04	VP-2-081721
108316 -05	VP-4-081721

Tetrachloroethene in sample INF-08172021 was reported below the standard reporting limit. The data were qualified accordingly.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	INF-08 08/19/2 08/17/2 08/25/2 Air ug/m3	8172021 81 81 81 81 81	Clien Proje Lab I Data Instr Opera	t: ct: D: File: ument: ator:	AEG 4 Corners Cleaners 17-126, F&BI 108316 108316-01 1/6 082428.D GCMS8 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne	94	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.5	< 0.6		
Chloroethane		<16	<6		
1,1-Dichloroethene		<2.4	< 0.6		
trans-1,2-Dichloroet	hene	<2.4	< 0.6		
1,1-Dichloroethane		<2.4	< 0.6		
cis-1,2-Dichloroethe	ne	<2.4	< 0.6		
1,2-Dichloroethane	(EDC)	0.85	0.21		
1,1,1-Trichloroethar	ne	<3.3	< 0.6		
Trichloroethene		0.74	0.14		
1,1,2-Trichloroethar	ne	< 0.33	< 0.06		
Tetrachloroethene		29 j	4.3 j		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1-08 08/19/2 08/17/2 08/25/2 Air ug/m3	81721 1 1 1 1	Clien Projec Lab I Data Instru Opera	t: ct: D: File: ument: ator:	AEG 4 Corners Cleaners 17-126, F&BI 108316 108316-02 1/20 082432.D GCMS8 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne	82	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<5.1	<2		
Chloroethane		<53	<20		
1,1-Dichloroethene		<7.9	<2		
trans-1.2-Dichloroet	hene	<7.9	<2		
1,1-Dichloroethane		<8.1	<2		
cis-1,2-Dichloroether	ne	<7.9	<2		
1.2-Dichloroethane (EDC)	< 0.81	< 0.2		
1,1,1-Trichloroethan	e	<11	<2		
Trichloroethene		<2.1	< 0.4		
1,1,2-Trichloroethan	e	<1.1	< 0.2		
Tetrachloroethene		68	10		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-3-0 08/19/2 08/17/2 08/25/2 Air ug/m3	981721 21 21 21 21	Clien Proje Lab J Data Instr Oper	nt: ect: ID: File: ument: ator:	AEG 4 Corners Cleaners 17-126, F&BI 108316 108316-03 1/21 082433.D GCMS8 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne	84	70	130	
Compounds:		Concent ug/m3	ration ppbv		
Vinyl chloride		<5.4	<2.1		
Chloroethane		<55	<21		
1,1-Dichloroethene		<8.3	<2.1		
trans-1,2-Dichloroet	hene	<8.3	<2.1		
1,1-Dichloroethane		<8.5	<2.1		
cis-1,2-Dichloroethe	ne	<8.3	<2.1		
1,2-Dichloroethane	(EDC)	< 0.85	< 0.21		
1,1,1-Trichloroethar	ie	<11	<2.1		
Trichloroethene		2.6	0.48		
1,1,2-Trichloroethan	ne	<1.1	< 0.21		
Tetrachloroethene		720	110		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-2-0 08/19/2 08/17/2 08/25/2 Air ug/m3	981721 21 21 21 21	Clier Proje Lab I Data Instr Oper	nt: ect: ID: File: rument: rator:	AEG 4 Corners Cleaners 17-126, F&BI 108316 108316-04 1/7 082430.D GCMS8 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne	81	70	130	
Compounds:		Concent ug/m3	cration ppbv		
Vinyl chloride		<1.8	< 0.7		
Chloroethane		<18	<7		
1,1-Dichloroethene		<2.8	< 0.7		
trans-1,2-Dichloroet	hene	<2.8	< 0.7		
1,1-Dichloroethane		<2.8	< 0.7		
cis-1,2-Dichloroethe	ne	<2.8	< 0.7		
1,2-Dichloroethane	(EDC)	< 0.28	< 0.07		
1,1,1-Trichloroethar	ne	<3.8	< 0.7		
Trichloroethene		< 0.75	< 0.14		
1,1,2-Trichloroethan	ne	< 0.38	< 0.07		
Tetrachloroethene		53	7.7		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-4-00 08/19/2 08/17/2 08/25/2 Air ug/m3	81721 1 1 1 1	Clier Proje Lab Data Instr Oper	nt: ect: ID: File: rument: rator:	AEG 4 Corners Cleaners 17-126, F&BI 108316 108316-05 1/9.9 082431.D GCMS8 bat
~		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne	83	70	130	
		Concent	cration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<2.5	< 0.99		
Chloroethane		<26	<9.9		
1,1-Dichloroethene		<3.9	< 0.99		
trans-1,2-Dichloroet	hene	<3.9	< 0.99		
1,1-Dichloroethane		<4	< 0.99		
cis-1,2-Dichloroether	ne	<3.9	< 0.99		
1.2-Dichloroethane ((EDC)	< 0.4	< 0.099		
1,1,1-Trichloroethan	ne	<5.4	< 0.99		
Trichloroethene		<1.1	< 0.2		
1,1,2-Trichloroethan	ne	< 0.54	< 0.099		
Tetrachloroethene		72	11		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Metho Not Ap Not Ap 08/24/2 Air ug/m3	d Blank pplicable pplicable 21	Clien Proje Lab I Data Instr Opera	t: ct: D: File: ument: ator:	AEG 4 Corners Cleaners 17-126, F&BI 108316 01-1858 MB 082412.D GCMS8 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	87	70	130	
		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroet	hene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroethe	ne	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
1,1,1-Trichloroethar	ne	< 0.55	< 0.1		
Trichloroethene		< 0.11	< 0.02		
1,1,2-Trichloroethar	ne	< 0.055	< 0.01		
Tetrachloroethene		<3.4	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/27/21 Date Received: 08/19/21 Project: 4 Corners Cleaners 17-126, F&BI 108316

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 108361-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.5	<1.5	nm
Chloroethane	ug/m3	<15	<15	nm
1,1-Dichloroethene	ug/m3	<2.3	<2.3	nm
trans-1,2-Dichloroethene	ug/m3	<2.3	<2.3	nm
1,1-Dichloroethane	ug/m3	<2.3	<2.3	nm
cis-1,2-Dichloroethene	ug/m3	<2.3	<2.3	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.23	< 0.23	nm
1,1,1-Trichloroethane	ug/m3	<3.1	<3.1	nm
Trichloroethene	ug/m3	< 0.61	< 0.61	nm
1,1,2-Trichloroethane	ug/m3	< 0.31	< 0.31	nm
Tetrachloroethene	ug/m3	<39	<39	nm

Laboratory Code: Laboratory Control Sample

-		Percent	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
ug/m3	35	79	70-130
ug/m3	36	89	70 - 130
ug/m3	54	93	70 - 130
ug/m3	54	94	70 - 130
ug/m3	55	94	70 - 130
ug/m3	54	97	70 - 130
ug/m3	55	109	70 - 130
ug/m3	74	109	70-130
ug/m3	73	91	70-130
ug/m3	74	86	70-130
ug/m3	92	106	70-130
	Reporting Units ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	Reporting Units Spike Level ug/m3 35 ug/m3 36 ug/m3 54 ug/m3 54 ug/m3 55 ug/m3 55 ug/m3 55 ug/m3 74 ug/m3 73 ug/m3 74 ug/m3 74 ug/m3 92	Reporting Units Spike Level Percent Recovery LCS ug/m3 35 79 ug/m3 36 89 ug/m3 54 93 ug/m3 54 94 ug/m3 55 94 ug/m3 55 109 ug/m3 74 109 ug/m3 73 91 ug/m3 74 86 ug/m3 92 106

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

				SAMPL	E CHAI	NOF	CUST	ODY	c.l	10		44 T			•	·····	·		
108316				SAMPI	ERS (sign	ature)			81			<u>nn</u>	٦]	Page	#	<u>of_</u>		····-
Report To Scatt R	ase				11.	1-									TUR	NARC	UND TI	ME	
Company AEG.	15			– PROJE	CT NAME	E & AD	DRESS			PO	#			Sta: RU	ndar SH_	d	• .		
Address 7617 Port	4	6.5	4A		-Cara	~ (-	2/	_	1	17	-/	26	R	ush	char	ges au	thorized	by:	
		111 -	28504	NOTES	3:		Y CALA	<u> </u>	IN	VOIC	Έī	<u>'O</u>			SAN	PLE	DISPOS	AL	
City, State, ZIP	2		10105	- 0	- 1	<u> </u>	<u>م ، ،</u>		1	-1	•			Det Arc	ault: hive	(Fee n	after 3 (1ay appl	days y)	
Phone <u>3/4 - 3/2 987</u> En	nail <u>5</u>	Rose & c	ingeie	ica M	E/100	- <i>f</i> I	heghte	~/	A	EG	·								
SAMPLE INFORMATION				3			······	r	1	ANA	LY	SIS R	EQU	ESI	ED	1		····	_
										an	z	Р° 				14.0			
	·			Reporting	·					ll Sc	TEX	200	۲۳	đ					
	ŀ			Level:						Ful	6 B'	15 c/	API	Ielit	Ĩ,	12			
	Tah	Conistor	Flow	IA=Indoor Air	Data	Initial Vac	Field	Final Vac	Field Final	016	lOl	TOI		بسلمو	N.	8			
Sample Name	ID	ID	ID	(Circle One)	Sampled	("Hg)	Time	("Hg)	Time	E-1					8		Note	s	
INF-08172021	<u>G</u>	P531	255	IA / SG	68/17/21	25	13:00	8	19:08			X			X				
¥P-1-081721	62	8536	243	IA /SG	8/n/11	28	14:10	8	14:18			X			X		•		
HP-3-081721	03	8207	258	IA / 🚱	8/17/21	28	14:20	8	14:25			\propto			X				÷
HP-2-081721	04	8532	301	IA / SO	08/17/21	28	14:25	8	14:4		•	メ			X	 			
HP-4-081721	05	8535	307	IA / 🚱	68/17/1	28	19:55	8	18:0]			X			r				
				IA / SG															
				IA / SG		2 1										<u>}-</u>			
		s.		IA / SG						Sar	npl	es re	ecei	ved	at	29	٥C	÷	

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinguisher by:	Clarke E.A.	AT-C	\$/17/21	SU
Received by: Will him	Will Radford	FEBI	8/19/21	15:29
Relinquished by:	Ville IS TE	<u></u>		
Received by:		· . · · · · · · · · · · · · · · · · · ·		
-	SIGNATURE Relinguished by: Received by: Received by:	SIGNATURE PRINT NAME Relinguished by: Clark Received by: Will Radiord Received by: Image: Clark	SIGNATURE PRINT NAME COMPANY Relinguished by: Classifier MIL Received by: Will Radford F? BI Received by: Received by: Image: Classifier	SIGNATURE PRINT NAME COMPANY DATE Relinguished by: Classifier AFC 8/17/21 Received by: Will Radford F? BI 8/19/21 Received by: Received by: Image: State of the stat

.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 12, 2021

Scott Rose, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Rose:

Included are the results from the testing of material submitted on November 2, 2021 from the 4-Corners Cleaners 17-126, F&BI 111022 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: AEG A/P AEG1112R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 2, 2021 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaners 17-126, F&BI 111022 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
111022 -01	INF-110221
111022 -02	VP-1-110221
111022 -03	VP-3-110221
111022 -04	VP-2-110221
111022 -05	VP-4-110221

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	INF-11 11/02/2 11/02/2 11/03/2 Air ug/m3	.0221 21 21 21 21	Clie Proj Lab Data Inst Ope	nt: ect: ID: a File: rument: rator:	AEG 4-Corners Cleaners 17-126, F&BI 111022 111022-01 1/6.6 110321.D GCMS7 bat
~		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne	85	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.7	< 0.66		
Chloroethane		<17	<6.6		
1,1-Dichloroethene		<2.6	< 0.66		
trans-1,2-Dichloroet	hene	<2.6	< 0.66		
1,1-Dichloroethane		<2.7	< 0.66		
cis-1,2-Dichloroethe	ne	<2.6	< 0.66		
1,2-Dichloroethane	(EDC)	< 0.27	< 0.066		
1,1,1-Trichloroethar	ne	<3.6	< 0.66		
Trichloroethene		< 0.71	< 0.13		
1,1,2-Trichloroethan	ne	< 0.36	< 0.066		
Tetrachloroethene		<45	< 6.6		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1-1 11/02/2 11/02/2 11/03/2 Air ug/m3	10221 11 11 11	Clie: Proj Lab Data Inst	nt: ect: ID: a File: rument: rator:	AEG 4-Corners Cleaners 17-126, F&BI 111022 111022-02 1/6.4 110322.D GCMS7 bat
~		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	85	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.6	< 0.64		
Chloroethane		<17	< 6.4		
1,1-Dichloroethene		<2.5	< 0.64		
trans-1,2-Dichloroet	hene	<2.5	< 0.64		
1,1-Dichloroethane		<2.6	< 0.64		
cis-1,2-Dichloroethe	ne	<2.5	< 0.64		
1,2-Dichloroethane	(EDC)	< 0.26	< 0.064		
1,1,1-Trichloroethan	ne	<3.5	< 0.64		
Trichloroethene		1.8	0.33		
1,1,2-Trichloroethar	ne	< 0.35	< 0.064		
Tetrachloroethene		240	35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-3-1 11/02/2 11/02/2 11/03/2 Air ug/m3	10221 1 1 1 1	Clier Proje Lab Data Instr Oper	nt: ect: ID: File: rument: rator:	AEG 4-Corners Cleaners 17-126, F&BI 111022 111022-03 1/6.7 110323.D GCMS7 bat
~		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	85	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.7	< 0.67		
Chloroethane		<18	<6.7		
1,1-Dichloroethene		<2.7	< 0.67		
trans-1,2-Dichloroet	thene	<2.7	< 0.67		
1,1-Dichloroethane		<2.7	< 0.67		
cis-1,2-Dichloroethe	ne	<2.7	< 0.67		
1,2-Dichloroethane	(EDC)	< 0.27	< 0.067		
1,1,1-Trichloroethar	ne	<3.7	< 0.67		
Trichloroethene		1.0	0.19		
1,1,2-Trichloroethar	ne	< 0.37	< 0.067		
Tetrachloroethene		950 ve	140 ve		
ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-2-1 11/02/2 11/02/2 11/03/2 Air ug/m3	10221 21 21 21 21	Clier Proje Lab Datz Instr Oper	nt: ect: ID: a File: rument: rator:	AEG 4-Corners Cleaners 17-126, F&BI 111022 111022-04 1/6.8 110324.D GCMS7 bat
a		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	86	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.7	< 0.68		
Chloroethane		<18	< 6.8		
1,1-Dichloroethene		<2.7	< 0.68		
trans-1,2-Dichloroet	hene	<2.7	< 0.68		
1,1-Dichloroethane		<2.8	< 0.68		
cis-1,2-Dichloroethe	ne	<2.7	< 0.68		
1,2-Dichloroethane	(EDC)	< 0.28	< 0.068		
1,1,1-Trichloroethar	ne	<3.7	< 0.68		
Trichloroethene		< 0.73	< 0.14		
1,1,2-Trichloroethar	ne	< 0.37	< 0.068		
Tetrachloroethene		79	12		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-4-1 11/02/2 11/02/2 11/04/2 Air ug/m3	10221 21 21 21 21	Clier Proje Lab Data Instr Oper	nt: ect: ID: a File: rument: rator:	AEG 4-Corners Cleaners 17-126, F&BI 111022 111022-05 1/6.3 110325.D GCMS7 bat
a		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ne	83	70	130	
		Concen	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.6	< 0.63		
Chloroethane		<17	<6.3		
1,1-Dichloroethene		<2.5	< 0.63		
trans-1,2-Dichloroet	hene	<2.5	< 0.63		
1,1-Dichloroethane		<2.5	< 0.63		
cis-1,2-Dichloroethe	ne	<2.5	< 0.63		
1,2-Dichloroethane	(EDC)	< 0.25	< 0.063		
1,1,1-Trichloroethar	ne	8.5	1.6		
Trichloroethene		< 0.68	< 0.13		
1,1,2-Trichloroethan	ne	< 0.34	< 0.063		
Tetrachloroethene		370	54		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Metho Not Ap 11/03/2 11/03/2 Air ug/m3	d Blank oplicable 21 21	Clien Proje Lab I Data Instr Opera	t: ct: D: File: ument: ator:	AEG 4-Corners Cleaners 17-126, F&BI 111022 01-2408 MB 110310.D GCMS7 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	86	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroet	thene	< 0.4	< 0.1		
1,1-Dichloroethane		< 0.4	< 0.1		
cis-1,2-Dichloroethe	ne	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
1,1,1-Trichloroethar	ne	< 0.55	< 0.1		
Trichloroethene		< 0.11	< 0.02		
1,1,2-Trichloroethar	ne	< 0.055	< 0.01		
Tetrachloroethene		<6.8	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/21 Date Received: 11/02/21 Project: 4-Corners Cleaners 17-126, F&BI 111022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 111043-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.5	<1.5	nm
Chloroethane	ug/m3	<15	<15	nm
1,1-Dichloroethene	ug/m3	<2.3	<2.3	nm
trans-1,2-Dichloroethene	ug/m3	<2.3	<2.3	nm
1,1-Dichloroethane	ug/m3	<2.3	<2.3	nm
cis-1,2-Dichloroethene	ug/m3	<2.3	<2.3	nm
1,2-Dichloroethane (EDC)	ug/m3	0.35	0.35	0
1,1,1-Trichloroethane	ug/m3	<3.1	<3.1	nm
Trichloroethene	ug/m3	< 0.61	< 0.61	nm
1,1,2-Trichloroethane	ug/m3	< 0.31	< 0.31	nm
Tetrachloroethene	ug/m3	<39	<39	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 11/12/21 Date Received: 11/02/21 Project: 4-Corners Cleaners 17-126, F&BI 111022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

T		Doroont	
	a .1	T er cent	A 1
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
ug/m3	35	85	70-130
ug/m3	36	96	70-130
ug/m3	54	96	70-130
ug/m3	54	91	70-130
ug/m3	55	93	70-130
ug/m3	54	89	70-130
ug/m3	55	92	70-130
ug/m3	74	100	70-130
ug/m3	73	109	70-130
ug/m3	74	112	70-130
ug/m3	92	117	70-130
	Reporting Units ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	Reporting Units Spike Level ug/m3 35 ug/m3 36 ug/m3 54 ug/m3 54 ug/m3 55 ug/m3 55 ug/m3 54 ug/m3 55 ug/m3 74 ug/m3 73 ug/m3 74 ug/m3 74 ug/m3 92	Reporting Units Spike Spike Level Percent Recovery LCS ug/m3 35 85 ug/m3 36 96 ug/m3 54 96 ug/m3 54 91 ug/m3 55 93 ug/m3 54 89 ug/m3 54 90 ug/m3 54 91 ug/m3 54 89 ug/m3 54 92 ug/m3 74 100 ug/m3 74 112 ug/m3 92 117

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

						,			FORMS\COC\COCTO-15.DOC
-							ed by:	Receive	Fax (206) 283-5044
	· · · · ·		×.				uished by:	Relinq	Ph. (206) 285-8282
11/2/21 16.8	TRT	ç	n Hoar	H		he	ed by:	Receive	Seattle, WA 98119-2029
1/02/21 16:20	DHE/NEG	100	the lan	anth		A GUS	uished by:	Relinqu	3012 16th Avenue West
Y DATE TIME	COMPAN	AME	PRINT N		B	HATUR	SIC		Friedman & Bruya, Inc.
					IA / SG	х 			
					IA / SG				
			~		IA / SG				
×		0 8. 12	230110	110221	1A / (SG)	242	1.9%	De la	WP-Y-10221
×	X	11 8-01	15:22	122011	1A 1/SQ	643	62/2	1×1	NP \$2.110721
~		1 8 22	11/2	NOR2	IA 1(SG)	242	8622	B	WP-3- 110221
×		12-8-12	12,0012	122011	IA / (SG)	50	2300	P.	VP-1-110221
×	X	21 12 38	121 12	1/0221	IA / SG	683	7922	10	INY- 110221
PC	T	me ("Hg) T	("Hg) T	Sampled	(Circle One)	ID .	ĮD ĮD	ID 5	Sample Name
APH Helium	O15 Full Scan FO15 BTEXN TO15 cVOCs "	eld Final F	Initial Fi Vac Ini) ste	Reporting Level: IA=Indoor Air	Flow			
QUESTED	ANALYSIS RE								SAMPLE INFORMATION
Default: Clean after 3 days Archive (Fee may apply)	INVOICE TO	176RS	N30000	F JUL	- MCE/	KGWN U	N YO	Bmail S	City, State, ZIP 1/2/11 Phone 10-352-48201
Rush charges authorized by:	17-126	N	Celh	men	N 4 - 2	NON NON	Alere	w & how	Address 2673 R
TURNAROUND TIME Standard	PO#	SSS SSS	E & ADDRI	JULE NAMI	PROJE			KUL KUL	Report To JCOTI
2 2 Page # of	ME	XGOTS(N OF CC	E CHAU	SAMPL		,	2	111022
	}	TO TO TO TO		E OTAT	CANDE				

3322 South Bay Road NE • Olympia, WA 98506-2957

March 23, 2021

Scott Rose Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr. Rose:

Please find enclosed the analytical data report for the 4 Corners Cleaners Project located in Maple Valley, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Shy Ille

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

4 Corners Cleaners PROJECT AEG, LLC Maple Valley WA Libby Project # L210319-4 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	MW-1	MW-2	MW-3	MW-5	MW-5 Dup
		Blank					_
Date Sampled		N/A	3/19/2021	3/19/2021	3/19/2021	3/19/2021	3/19/2021
Date Analyzed	PQL	3/22/2021	3/22/2021	3/22/2021	3/22/2021	3/22/2021	3/22/2021
-	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		103	115	98	107	92	111
1,2-Dichloroethane-d4		100	99	99	100	96	103
Toluene-d8		89	92	94	90	88	93
4-Bromofluorobenzene		84	79	80	84	66	65
"nd" Indicates not detec	ted at liste	d detection li	mit.				

Volatile Organic Compounds by EPA Method 8260D in Water

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

4 Corners Cleaners PROJECT AEG, LLC Maple Valley WA Libby Project # L210319-4 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

	Matrix S	pike Sample I	dentification:	MW-5				
		Da	te Analyzed:	3/22/2021				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(µg/L)	(µg/L)	(µg/L)	(%)	(%)	(%)	(%)	
Vinyl Chloride (VC)	5.0	4.2	4.4	84	88	4.7	65-135	
1,1-Dichloroethene	5.0	4.7	4.2	94	84	11.2	65-135	
trans-1,2-Dichloroethene	5.0	5.0	4.5	99	91	8.8	65-135	
cis-1,2-Dichloroethene	5.0	5.2	5.0	103	99	4.0	65-135	
Trichloroethene (TCE)	5.0	4.4	4.3	88	85	2.8	65-135	
Tetrachloroethene (PCE)	5.0	5.9	5.3	117	107	9.3	65-135	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				101	93		65-135	
1,2-Dichloroethane-d4				99	96		65-135	
Toluene-d8				96	92		65-135	
4-Bromofluorobenzene				91	91		65-135	

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Paul Burke

Laboratory Control Sample

Date Analyze	ed: 3/22/2021				
	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	(µg/L)	(%)	Limits (%)	
Vinyl Chloride (VC)	5.0	4.9	98	80-120	
1,1-Dichloroethene	5.0	4.9	98	80-120	
trans-1,2-Dichloroethene	5.0	4.8	95	80-120	
cis-1,2-Dichloroethene	5.0	5.1	102	80-120	
Trichloroethene (TCE)	5.0	4.8	96	80-120	
Tetrachloroethene (PCE)	5.0	5.6	112	80-120	
Surrogate Recovery					
Dibromofluoromethane			112	65-135	
1,2-Dichloroethane-d4			95	65-135	
Toluene-d8			93	65-135	
4-Bromofluorobenzene			94	65-135	

ANALYSES PERFORMED BY: Paul Burke

4 Corners Cleaners PROJECT AEG, LLC Libby Project # L210319-4 Date Received 3/19/21 14:11 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By JC

Sample Receipt Checklist

Chain of Custody					
1. Is the Chain of Custody complete?	⊡ Yes	S	🗌 No		
2. How was the sample delivered?	⊡ Har	nd Delivered	Picked Up		Shipped
Log In					
3. Cooler or Shipping Container is present.	🗹 Yes	S	🗌 No		🗌 N/A
4. Cooler or Shipping Container is in good condition.	🗸 Yes	S	🗌 No		□ N/A
5. Cooler or Shipping Container has Custody Seals present.	🗌 Yes	S	✓ No		□ N/A
6. Was an attempt made to cool the samples?	🗹 Yes	S	🗌 No		🗌 N/A
7. Temperature of cooler (0°C to 8°C recommended)		0.1	°C		
8. Temperature of sample(s) (0°C to 8°C recommended)		4.9	°C		
9. Did all containers arrive in good condition (unbroken)?	⊡ Yes	S	🗌 No		
10. Is it clear what analyses were requested?	⊡ Yes	S	🗌 No		
11. Did container labels match Chain of Custody?	🗹 Yes	S	🗌 No		
12. Are matrices correctly identified on Chain of Custody?	⊡ Yes	S	🗌 No		
13. Are correct containers used for the analysis indicated?	⊡ Yes	S	🗌 No		
14. Is there sufficient sample volume for indicated analysis?	⊡ Yes	S	🗌 No		
15. Were all containers properly preserved per each analysis?	⊡ Yes	S	🗌 No		
16. Were VOA vials collected correctly (no headspace)?	🗹 Yes	S	🗌 No		🗌 N/A
17. Were all holding times able to be met?	🗹 Yes	S	🗌 No		
Discrepancies/ Notes					
18. Was client notified of all discrepancies?	🗌 Yes	S	🗌 No		☑ N/A
Person Notified:				Date:	
By Whom:				Via:	
Regarding:					
19. Comments.					

Libby Environmen	tal, Ir	IC.		Cł	nain	0	f Cu	ste	ody	y F	lec	or	d							www.Libł	byEnviron	mental.com
3322 South Bay Road NE	Ph:	360-352-2	2110				Deter	210	12)								Dag	. .	1		of 1	
Olympia, WA 98506	rax:	300-302-4	104				Date.	SIM	100			C.		P			ray	5.	/		01 1	
Client: Atta) -	6.	/ .				Projec	ot Ma	anag	er:	-	> 2 4	517	Ka	SE							
Address: 2633 PARKMONT	- LANE	SW,	SULTE A				Projec	ct Na	me:	4	6	GRN	625	5 (LE	ANE	RS			10	1/	1.0
City: OLYMPIA		State:	WA Zip:	98502			Locati	ion:	238	86	SE	K	ENT	- KA	NGLE	ey RD	City,	Stat	te:	MALPE	YALE	I, WA
Phone: (360) 890 - 720	25	Fax:					Collec	tor:	And	rey	V	iser					Date	e of C	Colle	ction: 3	119/21	
Client Project # 17-126							Email:	:	SR	OSE	e	AEE	WA	. co	m	,						
THE AND			Sample	Container		0.826	L D J	artic t	+ 100 100	R R R	SI SI SI	4 50 8 80 8 80	5	Astals,	Astalis Art 62	10 11	Srivol	8210				
Sample Number	Depth	Time	Туре	Туре	K2	2	1-21	8	2	14	2	1	Zæ	20	294	15	<u>Z</u>	_	\leftarrow	Fiel	ld Notes	
1 MW-J		1016	Grub	AON		X			\rightarrow		_											
2 MW-2		0448	Grab	VOA		X		-	\rightarrow	_												
3 MU-3	-	0846	Grub	NOA		X		_	_	_												
4 MW-S		0416	Grub	VOA		χ		_	_			_										
5																						
6																				-		
7																						
8																						
9																						
10																						
11																						
12																						
13																						
14																						
15																						
16																						
17																						
Relinquished by:	1		Date / Time	Received by:	-11					1.9	ate /	Time		San	ple	Rec	eipt		Ren	narks:		
m		3/19/21	1411	local Ch	NU	ing			3	191	414	11	Good	Conc	lition?		Y	N	-			
Relinquished by:			Date / Time	Received by:						.0	ate /	ime	Coole	er Ten	np.			°C				
Relinquished by:			Date / Time	Received by:						D	ate / -	Time	Total	Numb	per of ers			-	TA	T: 24H	R 48HI	R 50AY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

3322 South Bay Road NE • Olympia, WA 98506-2957

July 21, 2022

Scott Rose Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr. Rose:

Please find enclosed the analytical data report for the 4 Corners Cleaners project located in Maple Valley, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L22G056 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	MW-1	MW-2	MW-3	MW-5	MW-5 Dup
Sumple Description		Blank	111 11 1	1,1,1,1,2	11111 0	11111 0	in the buy
Date Sampled		N/A	7/15/2022	7/15/2022	7/15/2022	7/15/2022	7/15/2022
Date Analyzed	PQL	7/19/2022	7/19/2022	7/19/2022	7/19/2022	7/19/2022	7/19/2022
·	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		120	130	108	122	121	121
1,2-Dichloroethane-d4		130	130	128	127	126	124
Toluene-d8		86	88	51 S	86	89	90
4-Bromofluorobenzene		78	83	86	83	79	80

Volatile Organic Compounds by EPA Method 8260D in Water

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

"S" Spike compound recovery is outside acceptance limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L22G056 Client Project # 17-126

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

Matrix Spike Sample Identification: MW-5										
		Da	ate Analyzed:	7/19/2022						
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data		
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag		
	(µg/L)	(µg/L)	(µg/L)	(%)	(%)	(%)	(%)			
Vinyl Chloride (VC)	5.0	3.4	3.9	69	78	12.3	65-135			
1,1-Dichloroethene	5.0	5.4	6.0	109	120	9.6	65-135			
trans-1,2-Dichloroethene	5.0	6.2	6.2	125	123	1.3	65-135			
cis-1,2-Dichloroethene	5.0	5.9	5.9	117	117	0.0	65-135			
Trichloroethene (TCE)	5.0	4.8	5.1	97	101	4.8	65-135			
Tetrachloroethene (PCE)	5.0	5.7	6.3	113	127	11.2	65-135			
Surrogate Recovery (%)				MS	MSD					
Dibromofluoromethane				122	136		65-135	S		
1,2-Dichloroethane-d4				132	102		65-135			
Toluene-d8				92	78		65-135			
4-Bromofluorobenzene				110	100		65-135			

ACCEPTABLE RPD IS 35%

"S" Spike recovery outside accepted recovery limits.

ANALYSES PERFORMED BY: Sherry Chilcutt

Laboratory Control Sample

Date Analyzed:	7/19/2022				
	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(µg/L)	$(\mu g/L)$	(%)	Limits (%)	_
Vinyl Chloride (VC)	5.0	5.2	103	80-120	
1,1-Dichloroethene	5.0	4.8	96	80-120	
trans-1,2-Dichloroethene	5.0	5.1	102	80-120	
cis-1,2-Dichloroethene	5.0	4.8	97	80-120	
Trichloroethene (TCE)	5.0	4.2	84	80-120	
Tetrachloroethene (PCE)	5.0	4.8	95	80-120	
Surrogate Recovery					
Dibromofluoromethane			178	65-135	S
1,2-Dichloroethane-d4			135	65-135	
Toluene-d8			88	65-135	
4-Bromofluorobenzene			109	65-135	

"S" Spike compound recovery is outside acceptance limits.

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANERS PROJECT AEG, LLC Libby Project # L22G056 Date Received 7/18/22 11:50 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By JC

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	🗌 No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	🗌 No	🗌 N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	🗌 No	□ N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	□ N/A
6. Was an attempt made to cool the samples?	✓ Yes	🗌 No	🗌 N/A
7. Temperature of cooler (0°C to 8°C recommended)	0.4	_°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	2.1	_°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	🗌 No	
10. Is it clear what analyses were requested?	✓ Yes	🗌 No	
11. Did container labels match Chain of Custody?	✓ Yes	🗌 No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	🗌 No	
13. Are correct containers used for the analysis indicated?	✓ Yes	🗌 No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	🗌 No	
15. Were all containers properly preserved per each analysis?	✓ Yes	🗌 No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	🗌 No	🗌 N/A
17. Were all holding times able to be met?	✓ Yes	🗌 No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	🗌 No	✓ N/A
Person Notified:		Date:	
By Whom:		- Via:	
Regarding:		-	
19. Comments.			

Libby Environm	nental,	Inc.		Cł	nain	of C	ust	od	y R	eco	rd	1							www	.Libby	Envi	onmental.	com
4139 Libby Road NE Olympia, WA 98506	Ph: Fax:	360-352- 360-352-	2110 4154			Da	te:	7/1	5/2	22						Page	Ð:		l		of	1	
Client: AEG						Pro	ject N	lanag	ger:	Scott	Ros	se											
Address: 2633 Parkmoun	t Lane SW	/, Suite A				Pro	ject N	lame		4 Corr	ners	s Cle	aner	s									
City: Olympia		State:	WA Zip	98502		Loc	Location: 23886 Se Kent-Kangley Rd City, Stat					Stat	e:	Мар	le Va	lley, V	NA						
Phone: (360) 352-9835		Fax:	(360) 352	-8164	164 (Collector: Jonah Davis Date of (e of C	ollec	ction:	7/1	5/2	22					
Client Project # 17-126						Em	ail:	Sros	e@Al	EGWA	.co	m											
Sample Number	Depth	Time	Sample Type	Container Type	100	ICE WD	august				////									Field	Note	es	
1 MW-1	-	1158	G	Voois	×																		
2 MW-2	-	1255			X																		
3 MW-3	-	1129			K		_																
4 MW-5	-	1226	+	4	×					_													_
5							-			_	_							<u> </u>					
6						_		-		-					_	_							
7											_												
8	_																						
9										1													
10						-			-										_				
11																							
12																							
13																							
14																							
15																							
16																							
17																							
Relinquished by:	Date	/ Time		Received by:	5			-1	Date /	Time			San	nple	Rec	eipt		Ren	narks	3:			
10 6	2 7/1	5/220	1430	Ne	2	-		1/1	5/22	143	0	Goo	d Conc	lition?		Y	N						
Relinquisned by:	Date	/ Time		Received by:	-Ar	111	1	-	Date /	Time	50	Tem	p.	_	<u> </u>								
Relinquished by:	//1 Date	/ Time	150	Received by:	John	Child	up		Date	Time	~	Sea	s Intac	t?	Y	N	N/A						
					_						C	ontain	ers			- 1	TA	T: :	24HR	48	HR 5-D	AY	

3322 South Bay Road NE • Olympia, WA 98506-2957

January 18, 2023

Scott Rose AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Scott Rose:

Please find enclosed the analytical data report for the 4 Corners Cleaners project located in Maple Valley, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	ental,	Inc.		Cł	ain	of	Cu	sto	dy	Rec	ord	ł						www.L	ibbyEr	vironm	ental.com
4139 Libby Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4	110 154				Date:	61,	/12	123	,				Page	e:		1	of	١	
Client: AEG							Projec	t Mar	nager	Sco	ott Ros	se									
Address: 2633 Parkmount	Lane SW	, Suite A		- Marcanadan ara			Projec	t Nan	ne:	4 C	orner	s Clea	aners								
City: Olympia		State:	WA Zip	98502			Location: 23886 Se Kent-Kangley Rd City, State: Maple Valley, WA														
Phone: (360) 352-9835		Fax: (360) 352-8164					Collec	tor:	Chr	isti	ina	m	rc77	-	Date	e of C	Collec	ction:	01/	12/2	3
Client Project # 17-126							Email:	Sr	ose@	AEGV	VA.co	m									
Sample Number	Depth	Time	Sample Type	Container Type	100	AN A	W Daugh	5										F	ield N	otes	
1 MW-1	-	0811	Gw	VOA	\times																
2 MW-2	-	0907	1		X															_	
3 MW-3	-	1008			X																
4 MW-5	-	0938	\checkmark	\checkmark	\times																
5																					
6								_						_	-						
7																					
8																					
9																					
10																					
11																					
12																					
13						1								-							
14																					
15																					
16																					
17								/													
Relinquished by:	Date	/ Time		Received by:		/	/	1	Da	te / Tin	ne Iv		Sampl	e Rec	ceipt	t	Ren	narks:			
8A	1/12	-/23	1140	4/1	/			4	1120	4	140	Good	Condition	?	Υ	Ν	1				
Relinquished by:	Date	/ Time		Received by:					Da	te / Tin	ne	Temp				°C					
Relinquished by:	Date	/ Time		Received by:					Da	te / Tin	18	Seals	Intact?	Y f	N	N/A	-				
	Date		9.1	i tootivou by.					Da			Co	ntainers				TA	T: 24	4HR	48HR	(5-DAY)

4 CORNERS CLEANERS PROJECT AEG an Atlas Geosciences NW Company Maple Valley, Washington Libby Project # L23A043 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	MW-1	MW-2	MW-3	MW-5		
		Blank						
Date Sampled		N/A	1/12/2023	1/12/2023	1/12/2023	1/12/2023		
Date Analyzed	PQL	1/15/2023	1/15/2023	1/15/2023	1/15/2023	1/15/2023		
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)		
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	nd		
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd		
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd		
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd		
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd		
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd		
Surrogate Recovery	Acceptable							
Dibromofluoromethane	27-188	107	105	106	111	109		
1,2-Dichloroethane-d4	17-212	99	98	101	105	102		
Toluene-d8	41-142	96	95	95	94	96		
4-Bromofluorobenzene	47-167	90	90	91	85	93		
"nd" Indicates not detected at listed detection limit. "int" Indicates that interference prevents determination.								

Volatile Organic Compounds by EPA Method 8260D in Water

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANERS PROJECT AEG an Atlas Geosciences NW Company Maple Valley, Washington

Libby Project # L23A043 Client Project # 17-126

Matrix Spike Sample Identification: L23A042-07										
		Date	e Analyzed:	1/15/2023						
	Spiked	MS	MSD	MS	MSD	RPD	Recovery	Data		
	Conc.	Response	Response	Recovery	Recovery		Limits	Flag		
	(µg/L)	(µg/L)	(µg/L)	(%)	(%)	(%)	(%)			
Vinyl chloride	5.0	4.1	4.2	82	84	2.4	10-234			
1,1-Dichloroethene	5.0	4.9	5.4	97	108	10.5	15-233			
trans -1,2-Dichloroethene	5.0	5.0	5.3	100	105	4.8	54-165			
cis-1,2-Dichloroethene	5.0	5.1	5.1	102	103	1.0	35-167			
Trichloroethene (TCE)	5.0	5.7	5.6	114	112	2.4	64-141			
Tetrachloroethene (PCE)	5.0	6.2	6.1	124	122	1.8	42-173			
Surrogate Recovery (%)				MS	MSD					
Dibromofluoromethane				108	109		27-188			
1,2-Dichloroethane-d4				100	98		17-212			
Toluene-d8				96	98		41-142			
4-Bromofluorobenzene				97	96		47-167			

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt

Date Analyzed: 1/15/2023 LCS LCS Spiked Recovery Data Response Recovery Conc. Limits Flag $(\mu g/L)$ $(\mu g/L)$ (%) (%) 4.0 80 Vinyl chloride 5.0 15-226 1,1-Dichloroethene 5.0 5.1 102 38-193 trans -1,2-Dichloroethene 5.0 5.5 109 53-156 5.0 5.2 cis-1,2-Dichloroethene 104 10-219 5.0 37-121 Trichloroethene (TCE) 6.0 120 Tetrachloroethene (PCE) 5.0 6.6 133 46-159 Surrogate Recovery Dibromofluoromethane 109 27-188 1,2-Dichloroethane-d4 96 17-212 Toluene-d8 98 41-142 97 4-Bromofluorobenzene 47-167

Laboratory Control Sample

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANERS PROJECT AEG an Atlas Geosciences NW Company Libby Project # L23A043 Date Received 1/12/23 11:40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By AR

Sample Receipt Checklist

Chain of Custody					
1. Is the Chain of Custody complete?	\checkmark	Yes	🗌 No		
2. How was the sample delivered?	\checkmark	Hand Delivered	Picked Up		Shipped
Log In					
3. Cooler or Shipping Container is present.	1	Yes	🗌 No		□ N/A
4. Cooler or Shipping Container is in good condition.	\checkmark	Yes	🗌 No		🗌 N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes	✓ No		🗌 N/A
6. Was an attempt made to cool the samples?	1	Yes	🗌 No		🗌 N/A
7. Temperature of cooler (0°C to 8°C recommended)		0.2	°C		
8. Temperature of sample(s) (0°C to 8°C recommended)		0.6	°C		
9. Did all containers arrive in good condition (unbroken)?	1	Yes	🗌 No		
10. Is it clear what analyses were requested?	1	Yes	🗌 No		
11. Did container labels match Chain of Custody?	1	Yes	🗌 No		
12. Are matrices correctly identified on Chain of Custody?	1	Yes	🗌 No		
13. Are correct containers used for the analysis indicated?	1	Yes	🗌 No		
14. Is there sufficient sample volume for indicated analysis?	1	Yes	🗌 No		
15. Were all containers properly preserved per each analysis?	1	Yes	🗌 No		
16. Were VOA vials collected correctly (no headspace)?	1	Yes	🗌 No		🗌 N/A
17. Were all holding times able to be met?	1	Yes	🗌 No		
Discrepancies/ Notes					
18. Was client notified of all discrepancies?		Yes	🗌 No		✓ N/A
Person Notified:				Date:	
By Whom:				Via:	
Regarding:					
19. Comments.					

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 8, 2022

Scott Rose, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Rose:

Included are the results from the testing of material submitted on May 20, 2022 from the 4-Corners Cleaners 17-126, F&BI 205354 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: AEG A/P AEG0608R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 20, 2022 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaners 17-126, F&BI 205354 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	$\overline{\text{AEG}}$
205354 -01	SVE-IN
205354 - 02	VP-1
205354 -03	VP-2
205354- 04	VP-3
205354 -05	VP-4

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVE-IN 05/20/2 05/09/2 05/26/2 Air ug/m3	1 2 2 2	Cli Pro La Da Ins Op	ent: oject: b ID: ta File: strument: erator:	AEG 4-Corners Cleaners 17-126 205354-01 1/4.7 052612.D GCMS8 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 90	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concent ug/m3	tration ppbv		
Vinyl chloride trans-1,2-Dichloroe cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	thene ene	<1.2 <1.9 <1.9 <0.51 <32	<0.47 <0.47 <0.47 <0.094 <4.7		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1 05/20/2 05/09/2 05/26/2 Air ug/m3	2 2 2	Cl Pr La Da In Op	ient: oject: lb ID: ata File: strument: perator:	AEG 4-Corners Cleaners 17-126 205354-02 1/4.1 052613.D GCMS8 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 92	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concent ug/m3	tration ppbv		
Vinyl chloride trans-1,2-Dichloroe cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	thene ene	<1 <1.6 <1.6 <0.44 <28	<0.41 <0.41 <0.41 <0.082 <4.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-2 05/20/2 05/09/2 05/26/2 Air ug/m3	2 2 2	C P L L L L C	lient: roject: ab ID: pata File: nstrument: perator:	AEG 4-Corners Cleaners 17-126 205354-03 1/5.1 052614.D GCMS8 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 90	Lowe Limi 7	er Upper t: Limit: 0 130	
Compounds:		Concent ug/m3	tration ppb	v	
Vinyl chloride		<1.3	< 0.5	1	
trans-1,2-Dichloroe	thene	<2	< 0.5	1	
cis-1,2-Dichloroethe	ene	<2	< 0.5	1	
Trichloroethene		0.90	0.1	7	
Tetrachloroethene		<35	<5.	1	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-3 05/20/2 05/09/2 05/26/2 Air ug/m3	2 2 2	C P L D Ir O	lient: roject: ab ID: ata File: astrument: perator:	AEG 4-Corners Cleaners 17-126 205354-04 1/4.8 052615.D GCMS8 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 92	Lowe Limit 70	r Upper : Limit: 0 130	
Compounds:		Concent ug/m3	tration ppb	V	
Vinyl chloride trans-1,2-Dichloroe cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	thene ene	<1.2 <1.9 <1.9 1.1 65	<0.48 <0.48 <0.48 0.20 9.0	3 3 3 0 3	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-4 05/20/2 05/09/2 05/26/2 Air ug/m3	2 2 2	Cl Pr La Da Ina Op	ient: oject: b ID: ta File: strument: perator:	AEG 4-Corners Cleaners 17-126 205354-05 1/4.6 052616.D GCMS8 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 93	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concent ug/m3	tration ppbv		
Vinyl chloride trans-1,2-Dichloroe cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	thene ene	<1.2 <1.8 <1.8 <0.49 <31	<0.46 <0.46 <0.46 <0.092 <4.6		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	nple ID: Method Blank ived: Not Applicable cted: Not Applicable yzed: 05/26/22 Air ug/m3		Cli Pro La Da Ins Op	ent: oject: b ID: ta File: strument: erator:	AEG 4-Corners Cleaners 17-126 02-1228 MB 052611.D GCMS8 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 89	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concent ug/m3	tration ppbv		
Vinyl chloride trans-1,2-Dichloroe cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	thene ene	<0.26 <0.4 <0.4 <0.11 <6.8	<0.1 <0.1 <0.1 <0.02 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/08/22 Date Received: 05/20/22 Project: 4-Corners Cleaners 17-126, F&BI 205354

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 205435-01 1/4.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.2	<1.2	nm
trans-1,2-Dichloroethene	ug/m3	<1.9	<1.9	nm
cis-1,2-Dichloroethene	ug/m3	<1.9	<1.9	nm
Trichloroethene	ug/m3	0.78	0.61	24
Tetrachloroethene	ug/m3	1,100	1,000	10

Laboratory Code: Laboratory Control Sample

	I I I		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	96	70-130
trans-1,2-Dichloroethene	ug/m3	54	104	70-130
cis-1,2-Dichloroethene	ug/m3	54	98	70-130
Trichloroethene	ug/m3	73	104	70 - 130
Tetrachloroethene	ug/m3	92	116	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

205 354				SAM	IPLE CHA	IN OF	CUST	ODY	مى .	51	l2c	2/2	27	· .	1.	
Report To_ Scoti	nature)	A	1p	نسور	an a	<u></u>			Page TU	# of RNAROUND TIME						
Company 1EG Address 2633 Parkme	nt ber	e sin i	Anie N	-	ROJECT NAM Y-Corners	Е & AD (<i>lea</i> ,	& ADDRESS Clearers			PO 26	#		X, Standard □ RUSH Rush charges authorized by:			
City, State, ZIP <u>O14</u> MP12 Phone <u>360-352-9835</u> E	n WŃ mailSt	gfszz earec pa	SINC (D)	h h	OTES: ACC/ICE	ę DPW	WIGE R	<i>RO</i> OVCI	J A	v010 6G	CE TO	0		SA efault rchive	MPLE DISPOSAL 1: Clean after 3 days 2 (Fee may apply)	
SAMPLE INFORMATION		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			······		ANA	LYS	IS RE	QUE	STED) ·	
Sample Name	Lab ID	Canister ID	Flow Cont. ID	Reporti Level IA=Indoo: SG=Soil (Circle O	ing : r Air Gas Date Dne) Sampled	Initial Vac. ("Hg)	Field Initial Time	Final Vac. ("Hg)	Field Final Time	TO15 Full Scan	TO15 BTEXN	TO15 cVOCs	APH	PC/TCE DAUGHTEN	SUE System Shut OF(for SG Tertiny Notes	
SVE-IN	01	3254	304	IA 1 (S	SGT STANZ	28"	1230	6"	1238		I	X		X	uche vande port	
UP-1	02	3256	259	IA / (50 J/ 19/2	- 261	1301	3"	1309			X		X	whe work word a	
- 2- 9V	035	2433	64	IA / /Š	sa) 1/19)2	428"	ny1	611	1249			X		X		
VP-3	04	3251	255	IA / S	sg 5/19/1	2 281	1312	6 ^{ki}	1319			χ		·X	,	
VP-4	X	3250	55	IA / S	SG) 5/19/7	251	1251	6"	1259	× .		X		X		
			· · ·	IA / S	SG					1 ,				1		
				IA / S	SG										,	
				IA / S	G		Ŧ				ſ					

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Tory Bichmich	166	5/20/22	
Seattle, WA 98119-2029	Received by: Winder Maddey	Windy Madden	F+BI	5/20/22	11:09
Ph. (206) 285-8282	Relinquished by:				··· .
Fax (206) 283-5044	Received by:		Samples rec	eived at	¥°C ∶
FORMS\COC\COCTO-15.DOC					

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 31, 2023

Scott Rose, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Rose:

Included are the results from the testing of material submitted on March 24, 2023 from the 4-Corners Cleaners Maple Valley, WA 17-126, F&BI 303407 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: AEG A/P AEG0331R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 24, 2023 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaners Maple Valley, WA 17-126, F&BI 303407 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
303407 -01	VP-1
303407 -02	VP-2
303407 -03	VP-4
303407 -04	SVE-IN
303407 -05	VP-3

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1 03/24/2 03/23/2 03/29/2 Air ug/m3	3 3 3	Clie Pro Lak Dat Ins Ope	ent: ject:) ID: ta File: trument: erator:	AEG 4-Corners Cleaners Maple Valley 303407-01 1/5.7 032827.D GCMS7 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 88	Lower Limit: 70	Upper Limit: 130	
Compounds:		Conce ug/m3	ntration ppbv		
Vinyl chloride trans-1,2-Dichloroet cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	thene ene	<1.5 <2.3 <2.3 1.1 69	<0.57 <0.57 <0.57 0.21 10		
ENVIRONMENTAL CHEMISTS

Client Sample ID:VP-2Date Received:03/24/Date Collected:03/23/Date Analyzed:03/29/Matrix:AirUnits:ug/m3		3 3 3	Clic Pro Lak Dat Ins Ope	ent: oject: o ID: ta File: trument: erator:	AEG 4-Corners Cleaners Maple Valley 303407-02 1/5.8 032826.D GCMS7 bat
Surrogates: 4-Bromofluorobenzene		% Recovery: 87	Lower Limit: 70	Upper Limit: 130	
Compounds:		Conce ug/m3	ntration ppbv		
Vinyl chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene		<1.5 <2.3 <2.3 2.4 <39	<0.58 <0.58 <0.58 0.45 <5.8		

ENVIRONMENTAL CHEMISTS

Client Sample ID:VP-4Date Received:03/24/Date Collected:03/23/Date Analyzed:03/29/Matrix:AirUnits:ug/matrix		3 3 3	Clic Pro Lak Dat Ins Ope	ent: oject: o ID: ta File: trument: erator:	AEG 4-Corners Cleaners Maple Valley 303407-03 1/8.3 032829.D GCMS7 bat
Surrogates: 4-Bromofluorobenzene		% Recovery: 82	Lower Limit: 70	Upper Limit: 130	
Compounds:		Conce ug/m3	ntration ppbv		
Vinyl chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene		<2.1 <3.3 <3.3 <0.89 <56	<0.83 <0.83 <0.83 <0.17 <8.3		

ENVIRONMENTAL CHEMISTS

Client Sample ID:SVE-IDate Received:03/24/Date Collected:03/23/Date Analyzed:03/29/Matrix:AirUnits:ug/matrix		I 3 3 3	Clie Pro Lak Dat Ins Ope	ent: ject:) ID: ta File: trument: erator:	AEG 4-Corners Cleaners Maple Valley 303407-04 1/8.2 032828.D GCMS7 bat
Surrogates: 4-Bromofluorobenzene		% Recovery: 85	Lower Limit: 70	Upper Limit: 130	
Compounds:		Conce ug/m3	ntration ppbv		
Vinyl chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene		<2.1 <3.3 <3.3 <0.88 <56	<0.82 <0.82 <0.82 <0.16 <8.2		

ENVIRONMENTAL CHEMISTS

Client Sample ID:VP-3Date Received:03/24/Date Collected:03/23/Date Analyzed:03/29/Matrix:AirUnits:ug/m3		3 3 3	Clie Proj Lab Dat Inst Ope	ent: ject: ID: a File: trument: erator:	AEG 4-Corners Cleaners Maple Valley 303407-05 1/8.6 032830.D GCMS7 bat
Surrogates: 4-Bromofluorobenzene		% Recovery: 86	Lower Limit: 70	Upper Limit: 130	
Compounds:		Conce ug/m3	ntration ppbv		
Vinyl chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene		<2.2 <3.4 <3.4 <0.92 260	<0.86 <0.86 <0.86 <0.17 38		

ENVIRONMENTAL CHEMISTS

Client Sample ID:MethDate Received:Not ADate Collected:Not ADate Analyzed:03/28Matrix:AirUnits:ug/matrix:		d Blank Client: oplicable Project: 23 Data File Instrume: Operator:		ent: ject:) ID: ta File: trument: erator:	AEG 4-Corners Cleaners Maple Valley 03-0682 MB 032811.D GCMS7 bat
Surrogates: 4-Bromofluorobenzene		% Recovery: 81	Lower Limit: 70	Upper Limit: 130	
Compounds:		Conce ug/m3	ntration ppbv		
Vinyl chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene		<0.26 <0.4 <0.4 <0.11 <6.8	<0.1 <0.1 <0.1 <0.02 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/23 Date Received: 03/24/23 Project: 4-Corners Cleaners Maple Valley, WA 17-126, F&BI 303407

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 303447-01 1/5.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.3	<1.3	nm
trans-1,2-Dichloroethene	ug/m3	<2.1	<2.1	nm
cis-1,2-Dichloroethene	ug/m3	<2.1	<2.1	nm
Trichloroethene	ug/m3	< 0.56	< 0.56	nm
Tetrachloroethene	ug/m3	<35	<35	nm

Laboratory Code: Laboratory Control Sample

	I I I		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	88	70-130
trans-1,2-Dichloroethene	ug/m3	54	94	70-130
cis-1,2-Dichloroethene	ug/m3	54	88	70-130
Trichloroethene	ug/m3	73	110	70 - 130
Tetrachloroethene	ug/m3	92	128	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Fax (206) 283-5044 Received by:	Seattle, WA 98108 Received by:	5500 4th Avenue South Relinquished	Friedman & Bruya, Inc.				VP-3 05 22	SUC-IN OY 22.	UP-4 03 23	25 AA	VP-0400 2 02 33	VP-1 01 32.	Sample Name ID Cau		SAMPLE INFORMATION	Phone 30 - 352 753 Email Slage	City, State, ZIP OKIM M. WA	Address 263 Pork Mert La	Company 1166- NTLNJ	JCOTT JUNC	303407
A oy.	hv.	1 by: Frilly	SIGNATY		·		95 228	h02 ht	1 27 231	822 06	022 68	SH 206	nister Cont ID ID			XIDN Ø.	9556	or MS a			-
	June	1XI	RE /		IA / SG	IA / SG	IA / 6G)	IA //SG)	IA /(SG)	IA / SG	IA /(SG)	IA / (SG)	 IA=Indoor Air SG=Soil Gas (Circle One) 	Reporting Level:		C. COM PCE	L NOTE		PROJ	SAMP	
		Tons					3/23/23)/12/hJ	Cular	112/12	Chisho	Shini	Date Sampled			TCE J	ŝ		ECT NAME	LERS (sign	
	NHPH	Bechnic	PRINT N	_			26° [27	27" 12	30" 110	11,162	11 11/12	27 11 22	Initial Fiv Vac. Ini ("Hg) Th			laughter		MAPLE UK	& ADDRE	ature)	
	AN	5	AME				4 Juli	11.51	NO S'I	1	12 511	5 1	eld Final tial Vac. me ("Hg)		t	Forderly	,	illey log	SS.	2 Miller	
							1234	1302	1210	1222	122	1246	Field Final 'Time	•	A	1 106	INV	11) 0
	F8D	DNG	COMP		Sam		X	X	X			X	TO15 TO18 TO1	Full Scan 5 BTEXN 5 cVOCs	NALYSIS I		OICE TO	921-	P0 #		5/24/23
			ANY		0004 = 01d								н	APH elium	REQUEST	fina Hold		Rush	Stan]0-
	03/24/23 11	2/2Y/2J	DATE		0000 at 2000		X and offer to	\times	X	Kell X	×	<u>У</u> .	FCF/TCC) Note	I DAUGH TER MODUL IS	ΈD	l report delivery (Fee may apply):	SAMPLE DISPOS	charges authorized	SH	Page # of	!
	11:56		TIME				estury)			ない			Ces .				SAL	ed by:			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 17, 2022

Scott Rose, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Rose:

Included are the results from the testing of material submitted on October 6, 2022 from the 4-Corners Cleaner 17-126, F&BI 210077 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: AEG A/P AEG1017R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 6, 2022 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaner 17-126, F&BI 210077 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
210077 -01	VP-4
210077 -02	VP-2
210077 -03	VP- 3
210077 -04	VP-1

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	ole ID: VP-4 red: 10/06/22 ted: 10/06/22 zed: 10/11/22 Air ug/m3		Clien Proje Lab 1 Data Instr Oper	at: fD: File: ument: ator:	AEG 4-Corners Cleaner 17-126, F&BI 210077 210077-01 1/5.4 101115.D GCMS7 bat			
Surrogates:	220	% Recovery:	Lower Limit:	Upper Limit:				
4-Dromonuorobenze	ene	51	70	130				
		Concen	tration					
Compounds:		ug/m3	ppbv					
Vinyl chloride		<1.4	< 0.54					
trans-1,2-Dichloroethene		<2.1	< 0.54					
cis-1,2-Dichloroethene <2.1		<2.1	< 0.54					
Trichloroethene <0.58		< 0.58	< 0.11					
Tetrachloroethene		<37	<5.4					

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	ient Sample ID:VP-2ate Received:10/06/22ate Collected:10/06/22ate Analyzed:10/11/22atrix:Airnits:ug/m3		Clien Proje Lab I Data Instr Opera	t: ct: D: File: ument: ator:	AEG 4-Corners Cleaner 17-126, F&BI 210077 210077-02 1/5.6 101116.D GCMS7 bat				
C .		%	Lower	Upper					
Surrogates: Recov		Recovery:	Limit:	Limit:					
4-Bromofluorobenze	ene	95	70	130					
		Concen	tration						
Compounds:		ug/m3	ppbv						
Vinyl chloride		<1.4	< 0.56						
trans-1.2-Dichloroe	thene	<2.2	< 0.56						
cis-1,2-Dichloroethene		<2.2	< 0.56						
Trichloroethene <0 6		< 0.6	< 0.11						
Tetrachloroethene		<38	<5.6						

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	ient Sample ID:VP-3ate Received:10/06/22ate Collected:10/06/22ate Analyzed:10/11/22atrix:Airnits:ug/m3		Clier Proje Lab I Data Instr Oper	nt: ect: ID: File: rument: rator:	AEG 4-Corners Cleaner 17-126, F&BI 210077 210077-03 1/5.9 101117.D GCMS7 bat			
Surrogates:]	% Recovery:	Lower Limit:	Upper Limit:				
4-Bromofluorobenze	ene	98	70	130				
Compounds:		Concen ug/m3	tration ppbv					
Vinyl chloride		<1.5	< 0.59					
trans-1,2-Dichloroe	thene	<2.3	< 0.59					
cis-1,2-Dichloroethene		<2.3	< 0.59					
Trichloroethene		1.3	0.24					
Tetrachloroethene		78	11					

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1 10/06/22 10/06/22 10/11/22 Air ug/m3		Clier Proje Lab Data Instr Oper	nt: ect: ID: File: rument: rator:	AEG 4-Corners Cleaner 17-126, F&BI 210077 210077-04 1/5.8 101118.D GCMS7 bat
		%	Lower	Upper	
Surrogates:	Re	covery:	Limit:	Limit:	
4-Bromofluorobenze	ene	98	70	130	
		Concen	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.5	< 0.58		
trans-1,2-Dichloroe	thene	<2.3	< 0.58		
cis-1,2-Dichloroethe	ene	<2.3	< 0.58		
Trichloroethene		< 0.62	< 0.12		
Tetrachloroethene		<39	<5.8		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 10/11/22 Air ug/m3	Clien Proje Lab I Data Instru Opera	t: ct: D: File: ument: ator:	AEG 4-Corners Cleaner 17-126, F&BI 210077 02-2308 mb 101111.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenzene		70	130	
	Concent	ration		
Compounds:	ug/m3	ppbv		
Vinyl chloride	< 0.26	< 0.1		
trans-1,2-Dichloroe	thene <0.4	< 0.1		
cis-1,2-Dichloroethe	ene <0.4	< 0.1		
Trichloroethene	< 0.11	< 0.02		
Tetrachloroethene	<6.8	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/17/22 Date Received: 10/06/22 Project: 4-Corners Cleaner 17-126, F&BI 210077

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 210122-01 1/4.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.2	<1.2	nm
trans-1,2-Dichloroethene	ug/m3	<1.9	<1.9	nm
cis-1,2-Dichloroethene	ug/m3	<1.9	<1.9	nm
Trichloroethene	ug/m3	0.96	0.91	5
Tetrachloroethene	ug/m3	<32	<32	nm

Laboratory Code: Laboratory Control Sample

	I I I		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	107	70-130
trans-1,2-Dichloroethene	ug/m3	54	104	70-130
cis-1,2-Dichloroethene	ug/m3	54	101	70-130
Trichloroethene	ug/m3	73	106	70 - 130
Tetrachloroethene	ug/m3	92	105	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Forms (206) 283-5044 Forms cocycocto-15.doc	Ph. (206) 285-8282	3012 16th Avenue West	Friedman & Bruya, Inc.			,	SWG-IN NP-1	1-10 2 - 1A	UP-3	VP-2	h-dn	Sample Name		ж 1		SAMPLE INFORMATION	Phone 366-3529835 E	City, State, ZIP OLYMO	Address 7637 Pm	Company // C	Report To ÚG	t t 0016
Received by:	Relinquished by:	Relinquished by: Received hv-	0				04 3252	795	292 50	8622 20	01 348		Lab Canis				Email ACU (C)	NA WA 9	Know LANK	. ()	off plate	2
	Aulo	All	IGNATUR				69	1-304	2 303	5	50	IJ	Flow ter Cont.			-	166JNC.C	FULL	NOL MY			
		al 12	E /	IA / SG	IA / SG	IA / SG	. IA / (SG)	IA / SG	IA / SQ	IA / SG	IA / SG	(Circle One)	IA=Indoor Air SG=Soil Gas	Reporting Level:			PCG	NOTE	7- h 4:	- PROJ	SAME	SAMPI
	A	Idn					10/1/22	10/1/22	10/6/22	10/6/22	10/6/22	Sampled	Date				106 501	ÿ	Jorney	ECT NAMI	LERS (sigi	LE CHAI
	H N	19 C1	PRINT				1 482	1 ,02	1 482	1 462	"82	("Hg)	Initial Vac				JUGATE		Cleane	E & ADI	uature)	NOF
	PHA	MNIC	NAME				333 4	All	Ehe	SKC	1302	Time (Field :	80 \$-1.00			K PROX		Nd	RESS		CUST
	R	\$ 3					UN K	A	SAL	1 41	SM K	("Hg)]	Final I				nctr				A	YQC
		•	_				243	9	408	126	813	lime	Field			A	N	INV	1-21		OR	-
Sampl	F8b	166	COM								$\overline{\mathbf{v}}$		О15 ГО15	Full So BTEX	can (N	NALYSI	3	DICE TO	26	PO #		б
es rece			PANY				7	Nay	×	X		;	TO18	5 cVOC	<u>Cs</u>	S REQU				X		1061;
ived at	1	1				•	X.	Anplus.	X	X	X	RE	He HCC	elium	SHILL NGN	ESTED	final rej Hold (Fe	SAI	ush char	Standau	Page	11
t _21	0/06/2	16122	DATE					may be	-								port deliv e may ap	MPLE DI	ges auth	p.	#	
Ĉ	512:							million	velie			Notes					rery ply):	SPOSAL	orized by		ND TIM	
	54		ज्ञे				0	and a													(J)	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 21, 2022

Scott Rose, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Rose

Included are the results from the testing of material submitted on January 13, 2022 from the 4-Corners Cleaners 17-126, F&BI 201161 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: AEG A/P AEG0121R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 13, 2022 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaners 17-126, F&BI 201161 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
201161 -01	4C-CARBON-011222-01
201161 -02	4C-KOW-011222-02

The 8260D calibration standard failed the acceptance criteria for methylene chloride. The data were flagged accordingly.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	4C-CARBO	N-011222-01	Client:	AEG	
Date Received:	01/13/22		Project:	4-Corners Cleaners 1	7-126, F&BI 201161
Date Extracted:	01/18/22		Lab ID:	201161-01	,
Date Analyzed:	01/18/22		Data File:	011810.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppn	n) Dry Weight	Operator:	RF	
	0 0 11	, i 8	т т		
C		0/ D	Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-	·d4	97	90	109	
Toluene-d8		94	89	112	
4-Bromofluorobenze	ene	114	84	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	oroethene	< 0.025
Vinvl chloride		< 0.05	Dibromo	chloromethane	< 0.05
Bromomethane		<0.5	1.2-Dibr	omoethane (EDB)	<0.05
Chloroethane		<0.5	Chlorobe	enzene	<0.05
Trichlorofluorometh	nane	<0.5	Ethylber	nzene	<0.05
Acetone		<5	1.1.1.2-7	'etrachloroethane	<0.05
1.1-Dichloroethene		<0.05	m.p-Xvle	ene	<0.1
Hexane		<0.25	o-Xvlene		<0.05
Methylene chloride		<0.5 ca	Styrene	, ,	<0.05
Methyl t-butyl ethe	r (MTBE)	<0.05	Isopropy	<0.05	
trans-1 2-Dichloroe	thene	<0.00	Bromofo	<0.05	
1.1-Dichloroethane		<0.05	n-Propyl	benzene	< 0.05
2.2-Dichloropropan	e	<0.05	Bromobe	enzene	<0.05
cis-1.2-Dichloroethe	ene	<0.05	1.3.5-Tri	methylbenzene	<0.05
Chloroform		<0.05	1,1,2,2-T	'etrachloroethane	<0.05
2-Butanone (MEK)		<1	1.2.3-Tri	chloropropane	<0.05
1 2-Dichloroethane	(EDC)	<0.05	2-Chloro	toluene	<0.05
1.1.1-Trichloroethau	ne	<0.05	4-Chloro	toluene	<0.05
1.1-Dichloropropene	9	<0.05	tert-But	vlbenzene	<0.05
Carbon tetrachlorid	le	<0.05	1.2.4-Tri	methylbenzene	<0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pvltoluene	< 0.05
1.2-Dichloropropan	e	< 0.05	1.3-Dich	lorobenzene	< 0.05
Bromodichlorometh	ane	< 0.05	1.4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1.2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentanc	me	<1	1.2-Dibr	omo-3-chloropropane	< 0.5
cis-1.3-Dichloropror	pene	< 0.05	1.2.4-Tri	chlorobenzene	< 0.25
Toluene	-	< 0.05	Hexachl	orobutadiene	< 0.25
trans-1.3-Dichlorop	ropene	<0.05	Nanhtha	lene	< 0.05
1.1.2-Trichloroetha	ne	< 0.05	1.2.3-Tri	chlorobenzene	< 0.25
2-Hexanone	-	< 0.5	-, - ,0 111		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	Method Bla	nk	Client:	AEG	
Date Received:	Not Applica	ıble	Project:	4-Corners Cleaners 1	7-126, F&BI 201161
Date Extracted:	01/18/22		Lab ID:	02-119 mb	,
Date Analyzed:	01/18/22		Data File:	011805.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppn	n) Dry Weight	Operator :	\mathbf{RF}	
	0 0 0 0	, ,	- T	тт	
C		0/ D	Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-04	98	90	109	
Toluene-d8		96	89	112	
4-Bromofluorobenze	ene	100	84	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluorometh	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene	e	< 0.05
Methylene chloride		<0.5 ca	Styrene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Isopropy	vlbenzene	< 0.05
trans-1,2-Dichloroe	thene	< 0.05	Bromofo	orm	< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	e	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroethe	ene	< 0.05	1,3,5-Tri	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Fetrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tri	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorid	le	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentance	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloroprop	pene	< 0.05	1,2,4-Tri	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	ropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	4C-KOW-01 01/13/22 01/14/22 01/18/22 Water ug/L (ppb)	1222-02	Client: Project: Lab ID: Data File: Instrument: Operator:	AEG 4-Corners Cleaners 1 201161-02 018010.D GCMS13 RF	7-126, F&BI 201161
a			Lower	Upper	
Surrogates:	1.4	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-	·d4	106	85	117	
Toluene-d8		97	88	112	
4-Bromofluorobenze	ene	105	90	111	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compour	nds:	ug/L (ppb)
Dichlorodifluorome	thane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.02	Dibromo	chloromethane	< 0.5
Bromomethane		<5	1,2-Dibro	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometh	nane	<1	Ethylber	nzene	<1
Acetone		<50	1,1,1,2-T	'etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Hexane		<5	o-Xylene	;	<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ether (MTBE)		<1	Isopropy	<1	
trans-1,2-Dichloroe	thene	<1	Bromofo	rm	<5
1,1-Dichloroethane		<1	n-Propyl	benzene	<1
2,2-Dichloropropan	е	<1	Bromobe	enzene	<1
cis-1,2-Dichloroethe	ene	<1	1,3,5-Tri	methylbenzene	<1
Chloroform		<1	1,1,2,2-T	'etrachloroethane	< 0.2
2-Butanone (MEK)		<20	1,2,3-Tri	chloropropane	<1
1,2-Dichloroethane	(EDC)	< 0.2	2-Chloro	toluene	<1
1,1,1-Trichloroetha	ne	<1	4-Chloro	toluene	<1
1,1-Dichloropropene	Э	<1	tert-Buty	ylbenzene	<1
Carbon tetrachlorid	le	< 0.5	1,2,4-Tri	methylbenzene	<1
Benzene		< 0.35	sec-Buty	lbenzene	<1
Trichloroethene		< 0.5	p-lsoproj	pyltoluene	<1
1,2-Dichloropropan	e	<1	1,3-Dich	lorobenzene	<1
Bromodichlorometh	ane	< 0.5	1,4-Dich	lorobenzene	<1
Dibromomethane		<1	1,2-Dich	lorobenzene	<1
4-Methyl-2-pentanc	one	<10	1,2-Dibro	omo-3-chloropropane	<10
cis-1,3-Dichloroprop	oene	<0.4	1,2,4-Tri	chlorobenzene	<1
Toluene		<1	Hexachle	orobutadiene	<0.5
trans-1,3-Dichlorop	ropene	<0.4	Naphtha	llene	<1
1,1,2-Trichloroetha	ne	<0.5	1,2,3-Tri	chlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla: Not Applica 01/14/22 01/14/22 Water ug/L (ppb)	nk ble	Client: Project: Lab ID: Data File: Instrument: Operator:	AEG 4-Corners Cleaners 1 02-113 mb 011407.D GCMS11 RF	7-126, F&BI 201161
			Lower	Upper	
Surrogates:	1.4	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	·d4	106	78	126	
1 oluene-d8		98	87	115	
4-Bromofluorobenze	ene	94	92	112	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compour	nds:	ug/L (ppb)
Dichlorodifluorome	thane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.02	Dibromo	chloromethane	< 0.5
Bromomethane		<5	1,2-Dibr	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometh	nane	<1	Ethylber	nzene	<1
Acetone		<50	1,1,1,2-T	'etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Hexane		<5	o-Xylene	9	<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe	r (MTBE)	<1	Isopropy	lbenzene	<1
trans-1,2-Dichloroe	thene	<1	Bromofo	rm	<5
1,1-Dichloroethane		<1	n-Propyl	benzene	<1
2,2-Dichloropropan	e	<1	Bromobe	enzene	<1
cis-1,2-Dichloroethe	ene	<1	1,3,5-Tri	methylbenzene	<1
Chloroform		<1	1,1,2,2-T	etrachloroethane	< 0.2
2-Butanone (MEK)		<20	1,2,3-Tri	chloropropane	<1
1,2-Dichloroethane	(EDC)	< 0.2	2-Chloro	toluene	<1
1,1,1-Trichloroetha	ne	<1	4-Chloro	toluene	<1
1,1-Dichloropropen	е	<1	tert-But	ylbenzene	<1
Carbon tetrachlorid	le	< 0.5	1,2,4-Tri	methylbenzene	<1
Benzene		< 0.35	sec-Buty	lbenzene	<1
Trichloroethene		< 0.5	p-Isopro	pyltoluene	<1
1,2-Dichloropropan	e	<1	1,3-Dich	lorobenzene	<1
Bromodichlorometh	ane	< 0.5	1,4-Dich	lorobenzene	<1
Dibromomethane		<1	1,2-Dich	lorobenzene	<1
4-Methyl-2-pentanc	one	<10	1,2-Dibr	omo-3-chloropropane	<10
cis-1,3-Dichloroprop	pene	< 0.4	1,2,4-Tri	chlorobenzene	<1
Toluene		<1	Hexachle	orobutadiene	< 0.5
trans-1,3-Dichlorop	ropene	< 0.4	Naphtha	lene	<1
1,1,2-Trichloroetha	ne	< 0.5	1,2,3-Tri	chlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/22 Date Received: 01/13/22 Project: 4-Corners Cleaners 17-126, F&BI 201161

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 201161-01 (Matrix Spike)

, v	1 /		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	<0.5	5 ip	5 ip	10-142	0
Chloromethane	mg/kg (ppm)	1	< 0.5	19	21	10-126	10
Vinyl chloride	mg/kg (ppm)	1	< 0.05	13	12	10-138	8
Bromomethane	mg/kg (ppm)	1	< 0.5	33	28	10-163	16
Chloroethane	mg/kg (ppm)	1	<0.5	24	25	10-176	4
Aestono	mg/kg (ppm)	1 5	<0.5	14	14	10-176	0
1 1-Dichloroethene	mg/kg (ppm)	1	<0.05	13	12	10-160	8
Hexane	mg/kg (ppm)	1	<0.25	4 ip	4 ip	10-137	0
Methylene chloride	mg/kg (ppm)	1	< 0.5	0 ip	0 ip	10-156	
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	43	43	21-145	0
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	8 ip	8 ip	14-137	0
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	23	22	19-140	4
2,2-Dichloropropane	mg/kg (ppm)	1	<0.05	27	28	10-158	4
Chloroform	mg/kg (ppm)	1	< 0.05	12 1p 19 ip	11 ip 18 in	20-130	9
2-Butanone (MEK)	mg/kg (ppm)	5	<0.05	40	38	19-147	5
1.2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	18	18	12-160	0
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	18	19	10-156	5
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	6 ip	6 ip	17-140	0
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	12	13	9-164	8
Benzene	mg/kg (ppm)	1	< 0.03	3 ip	3 ip	29-129	0
Trichloroethene	mg/kg (ppm)	1	< 0.02	4 ip	4 ip	21-139	0
1,2-Dichloropropane Bromodiableromothene	mg/kg (ppm)	1	< 0.05	15 ip 12 ip	15 ip 12 ip	30-135	0
Dibromomethane	mg/kg (ppin)	1	<0.05	18 in	12 ip 17 in	23-135	6
4-Methyl-2-pentanone	mg/kg (ppm)	5	<1	28	27	24-155	4
cis-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	9 ip	8 ip	28-144	12
Toluene	mg/kg (ppm)	1	< 0.05	2 ip	2 ip	35-130	0
trans-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	8 ip	7 ip	26-149	13
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	14	14	10-205	0
2-Hexanone	mg/kg (ppm)	5	<0.5	15	14 ip	15-166	1
1,3-Dichloropropane Totrachloroothono	mg/kg (ppm)	1	<0.05	15 ip 2 in	13 1p 2 in	31-137 20,133	14
Dibromochloromethane	mg/kg (ppm)	1	<0.025	11 in	10 in	28-150	10
1.2-Dibromoethane (EDB)	mg/kg (ppm)	1	< 0.05	10 ip	10 ip	28-142	0
Chlorobenzene	mg/kg (ppm)	1	< 0.05	1 ip	1 ip	32-129	0
Ethylbenzene	mg/kg (ppm)	1	< 0.05	2 ip	2 ip	32-137	0
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	10 ip	10 ip	31-143	0
m,p-Xylene	mg/kg (ppm)	2	<0.1	1 ip	1 ip	34-136	0
o-Aylene Sturono	mg/kg (ppm)	1	< 0.05	1 ip	2 ip 1 in	33-134	67 ip
Isopropylhenzene	mg/kg (ppin)	1	<0.05	2 in	2 in	31-142	0
Bromoform	mg/kg (ppm)	1	< 0.05	7 ip	8 ip	21-156	13
n-Propylbenzene	mg/kg (ppm)	1	< 0.05	1 ip	1 ip	23-146	0
Bromobenzene	mg/kg (ppm)	1	< 0.05	1 ip	2 ip	34-130	67 ip
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	1 ip	2 ip	18-149	67 ip
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	<0.05	13 ip	14 ip	28-140	7
2. Chlorotoluono	mg/kg (ppm)	1	< 0.05	13 1p	13 ip	20-144 21.124	0 67 in
4-Chlorotoluene	mg/kg (ppiii)	1	<0.05	1 ip	2 ip 2 in	31-134	67 in
tert-Butylbenzene	mg/kg (ppm)	1	< 0.05	3 ip	3 ip	30-137	0
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	1 ip	2 ip	10-182	67 ip
sec-Butylbenzene	mg/kg (ppm)	1	< 0.05	2 ip	2 ip	23 - 145	0
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	1 ip	1 ip	21-149	0
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	1 ip	2 ip	30-131	67 ip
1,4-Dichlorobenzene	mg/kg (ppm)	1	<0.05	1 1p 1 in	2 1p 2 in	29-129	67 ip
1.2-Dibromo-3-chloropropane	mg/kg (ppm)	1	<0.00 <0.5	1 lp 5 in	⊿ıp 6 in	11.161	18
1.2.4-Trichlorobenzene	mg/kg (ppm)	1	<0.25	1 ip	1 ip	22-142	0
Hexachlorobutadiene	mg/kg (ppm)	1	< 0.25	4 ip	4 ip	10-142	õ
Naphthalene	mg/kg (ppm)	1	< 0.05	1 ip	1 ip	14-157	0
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	1 ip	1 ip	20-144	0

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/22 Date Received: 01/13/22 Project: 4-Corners Cleaners 17-126, F&BI 201161

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

	_		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	47	10-146
Chloromethane	mg/kg (ppm)	1	68	27-133
Vinyl chloride	mg/kg (ppm)	1	77	22-139
Bromomethane	mg/kg (ppm)	1	85	38-114
Unioroethane Trickloreflueremethere	mg/kg (ppm)	1	88	9-163
Acetone	mg/kg (ppm)	5	89 89	52.141
1.1-Dichloroethene	mg/kg (ppm)	1	100	47-128
Hexane	mg/kg (ppm)	1	95	43-142
Methylene chloride	mg/kg (ppm)	1	68	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	91	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	1	93	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	93	68-115
2,2-Dichloropropane	mg/kg (ppm)	1	118	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	98	72-127
2-Butanono (MEK)	mg/kg (ppm)	5	94	30.197
1 2-Dichloroethane (EDC)	mg/kg (ppm)	1	96	56.135
1.1.1-Trichloroethane	mg/kg (ppm)	1	92	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	95	69-128
Carbon tetrachloride	mg/kg (ppm)	1	81	60-139
Benzene	mg/kg (ppm)	1	97	71-118
Trichloroethene	mg/kg (ppm)	1	91	63-121
1,2-Dichloropropane	mg/kg (ppm)	1	92	72-127
Bromodichloromethane	mg/kg (ppm)	1	82	57-126
Dibromomethane	mg/kg (ppm)	1	99	62-123
4-Metnyi-2-pentanone	mg/kg (ppm)	0 1	96	40-140
Toluene	mg/kg (ppm)	1	106	66.126
trans-1.3-Dichloropropene	mg/kg (ppm)	1	99	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	98	64-115
2-Hexanone	mg/kg (ppm)	5	100	33 - 152
1,3-Dichloropropane	mg/kg (ppm)	1	105	72-130
Tetrachloroethene	mg/kg (ppm)	1	110	72-114
Dibromochloromethane	mg/kg (ppm)	1	89	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	109	74-132
Ethylhongono	mg/kg (ppm)	1	104	76-111 64 199
1 1 1 2 Totrachloroothano	mg/kg (ppm)	1	94	64-125
m.p.Xvlene	mg/kg (ppm)	2	112	78-122
o-Xvlene	mg/kg (ppm)	1	107	77-124
Styrene	mg/kg (ppm)	1	105	74-126
Isopropylbenzene	mg/kg (ppm)	1	108	76-127
Bromoform	mg/kg (ppm)	1	84	56-132
n-Propylbenzene	mg/kg (ppm)	1	113	74-124
Bromobenzene	mg/kg (ppm)	1	111	72-122
1,3,5-1rimethylbenzene	mg/kg (ppm)	1	109	76-126
1, 1, 2, 2-1 etrachloroethane	mg/kg (ppm)	1	107	61.137
2-Chlorotoluene	mg/kg (ppm)	1	109	74-121
4-Chlorotoluene	mg/kg (ppm)	1	112	75-122
tert-Butylbenzene	mg/kg (ppm)	1	112	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	110	76-125
sec-Butylbenzene	mg/kg (ppm)	1	114	71-130
p-Isopropyltoluene	mg/kg (ppm)	1	115	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	1	113	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	1	111	74-117
1,2-Dichioropenzene	mg/kg (ppm)	1	107	70-121 59 199
1.2-Distollorobenzene	mg/kg (ppm)	1	119	64.135
Hexachlorobutadiene	mg/kg (ppm)	1	121	50-153
Naphthalene	mg/kg (ppm)	1	108	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	112	63-138

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/22 Date Received: 01/13/22 Project: 4-Corners Cleaners 17-126, F&BI 201161

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Percent

Laboratory Code: 201163-01 (Matrix Spike)

	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	102	50-150
Chloromethane	ug/L (ppb)	10	<10	84	50 - 150
Vinyl chloride	ug/L (ppb)	10	< 0.02	103	50-150
Bromomethane	ug/L (ppb)	10	<5	115	50-150
Trichlorofluoromothono	ug/L (ppb)	10	<1	107	50-150 50 150
Acetone	ug/L (ppb)	50	<50	72	50-150
1,1-Dichloroethene	ug/L (ppb)	10	<1	96	50-150
Hexane	ug/L (ppb)	10	<5	79	50 - 150
Methylene chloride	ug/L (ppb)	10	<5	58	50 - 150
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	95	50-150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	102	50-150
2.2-Dichloropropano	ug/L (ppb)	10	<1	95 147	50-150
cis-1.2-Dichloroethene	ug/L (ppb)	10	<1	103	50-150
Chloroform	ug/L (ppb)	10	<1	100	50-150
2-Butanone (MEK)	ug/L (ppb)	50	<20	78	50 - 150
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	98	50 - 150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	104	50-150
1,1-Dichloropropene	ug/L (ppb)	10	<1	92	50-150
Carbon tetrachioride Bonzono	ug/L (ppb)	10	<0.5	102	50-150 50-150
Trichloroethene	ug/L (ppb)	10	2.0	92	50-150
1.2-Dichloropropane	ug/L (ppb)	10	<1	83	50-150
Bromodichloromethane	ug/L (ppb)	10	< 0.5	102	50-150
Dibromomethane	ug/L (ppb)	10	<1	99	50 - 150
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	89	50-150
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	84	50-150
Toluene trong 1.2 Dichloropropono	ug/L (ppb)	10	<1	96	50-150 50-150
1 1 2-Trichloroethane	ug/L (ppb)	10	<0.4	94	50-150
2-Hexanone	ug/L (ppb)	50	<10	77	50-150
1,3-Dichloropropane	ug/L (ppb)	10	<1	90	50 - 150
Tetrachloroethene	ug/L (ppb)	10	<1	109	50 - 150
Dibromochloromethane	ug/L (ppb)	10	< 0.5	96	50-150
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1	97	50-150
Ethylbonzono	ug/L (ppb)	10	<1	96	50-150
1.1.1.2-Tetrachloroethane	ug/L (ppb)	10	<1	102	50-150
m,p-Xylene	ug/L (ppb)	20	<2	98	50-150
o-Xylene	ug/L (ppb)	10	<1	97	50 - 150
Styrene	ug/L (ppb)	10	<1	95	50 - 150
Isopropylbenzene	ug/L (ppb)	10	<1	97	50-150
Bromotorm	ug/L (ppb)	10	<0	92	50-150
Bromohenzene	ug/L (ppb)	10	<1	89 86	50-150
1.3.5-Trimethylbenzene	ug/L (ppb)	10	<1	92	50-150
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	89	50-150
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	85	50 - 150
2-Chlorotoluene	ug/L (ppb)	10	<1	89	50 - 150
4-Chlorotoluene	ug/L (ppb)	10	<1	82	50-150
1.2.4 Trimothylbonzono	ug/L (ppb)	10	<1	89	50-150 50 150
sec-Butylbenzene	ug/L (ppb)	10	<1	88	50-150
p-Isopropyltoluene	ug/L (ppb)	10	<1	93	50-150
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	90	50 - 150
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	91	50 - 150
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	89	50-150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	86	50-150
1,2,4-1 richlorobenzene Hovachlorobutadiono	ug/L (ppb)	10	<1	87	50-150 50-150
Naphthalene	ug/L (ppb)	10	<1	85	50-150
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	90	50-150

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/22 Date Received: 01/13/22 Project: 4-Corners Cleaners 17-126, F&BI 201161

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recoverv	Recoverv	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	92	89	46-206	3
Chloromethane	ug/L (ppb)	10	82	84	70-142	2
Vinyl chloride	ug/L (ppb)	10	97	97	70-130	0
Bromomethane	ug/L (ppb)	10	108	107	56 - 197	1
Chloroethane	ug/L (ppb)	10	102	102	70-130	0
Trichlorofluoromethane	ug/L (ppb)	10	106	104	70-130	2
Acetone	ug/L (ppb)	50	72	71	10-140	1
1,1-Dichloroethene	ug/L (ppb)	10	90	91	70-130	1
Hexane	ug/L (ppb)	10	80	80	54-136	0
Methylene chloride	ug/L (ppb)	10	68	69	43-134	1
tuona 1 2 Dichlanasthana	ug/L (ppb)	10	91	91	70-130	0
1 1-Dichloroothano	ug/L (ppb)	10	95	96	70-130	1
2 2-Dichloropropane	ug/L (ppb)	10	142 vo	135 vo	70-130	5
cis-1 2-Dichloroethene	ug/L (ppb)	10	98	98	70-130	0
Chloroform	ug/L (ppb)	10	96	99	70-130	3
2-Butanone (MEK)	ug/L (ppb)	50	88	77	17-154	13
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	95	95	70-130	0
1,1,1-Trichloroethane	ug/L (ppb)	10	99	99	70-130	0
1,1-Dichloropropene	ug/L (ppb)	10	89	90	70-130	1
Carbon tetrachloride	ug/L (ppb)	10	100	98	70-130	2
Benzene	ug/L (ppb)	10	93	92	70-130	1
Trichloroethene	ug/L (ppb)	10	91	91	70-130	0
1,2-Dichloropropane	ug/L (ppb)	10	83	78	70-130	6
Bromodichloromethane	ug/L (ppb)	10	83	88	70-130	6
Dibromomethane	ug/L (ppb)	10	94	100	70-130	6
4-Methyl-2-pentanone	ug/L (ppb)	50	92	94	68-130	2
Toluono	ug/L (ppb)	10	00	00	70 120	2
trang-1 3-Dichloropropono	ug/L (ppb)	10	90	87	70-130	3
1 1 2-Trichloroethane	ug/L (ppb)	10	95	95	70-130	0
2-Hexanone	ug/L (ppb)	50	85	84	45-138	1
1.3-Dichloropropane	ug/L (ppb)	10	91	105	70-130	14
Tetrachloroethene	ug/L (ppb)	10	109	108	70-130	1
Dibromochloromethane	ug/L (ppb)	10	102	103	60-148	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	98	97	70-130	1
Chlorobenzene	ug/L (ppb)	10	101	100	70-130	1
Ethylbenzene	ug/L (ppb)	10	100	100	70-130	0
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	101	100	70-130	1
m,p-Xylene	ug/L (ppb)	20	101	101	70-130	0
o-Xylene	ug/L (ppb)	10	100	100	70-130	0
Styrene	ug/L (ppb)	10	100	100	70-130	0
Bromoform	ug/L (ppb)	10	101	101	69.138	1
n-Pronylhenzene	ug/L (ppb)	10	94	94	70.130	0
Bromobenzene	ug/L (ppb)	10	92	90	70-130	2
1.3.5-Trimethylbenzene	ug/L (ppb)	10	96	97	70-130	1
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	93	93	70-130	0
1,2,3-Trichloropropane	ug/L (ppb)	10	91	89	70-130	2
2-Chlorotoluene	ug/L (ppb)	10	97	95	70-130	2
4-Chlorotoluene	ug/L (ppb)	10	91	89	70-130	2
tert-Butylbenzene	ug/L (ppb)	10	96	93	70-130	3
1,2,4-Trimethylbenzene	ug/L (ppb)	10	96	94	70-130	2
sec-Butylbenzene	ug/L (ppb)	10	97	95	70-130	2
p-Isopropyltoluene	ug/L (ppb)	10	100	99	70-130	1
1,3-Dichlorobenzene	ug/L (ppb)	10	95	94	70-130	1
1,4-Dichlorobenzene	ug/L (ppb)	10	96	95	70-130	1
1.2-Dibromo-3-chloropropano	ug/L (ppb)	10	90	94 80	70-130	2 1
1.2.4.Trichlorohenzene	ug/L (ppb)	10	95	95	70-130	1
Hexachlorobutadiene	ug/L (ppb)	10	99	96	70-130	3
Naphthalene	ug/L (ppb)	10	93	92	70-130	1
1,2,3-Trichlorobenzene	ug/L (ppb)	10	97	95	70-130	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	3012 16 th Avenue West Rec Seattle, WA 98119-2029 Reli	Friedman & Bruya, Inc. Reli										40- KOW-011222-02	YC-CARBON-011222-01	Sample ID		Phone 760.32-98 J Email	City, State, ZIP Oh mp 12, 1	Address 2633 Partnest	Company AEG, U.C.	Report To Scolt Rave	2 72HTUL
ived by:	nquished by:	nquished by:	SIC									on A-C	01A-E	Lab ID		SROVED N	1 Da	live su			19110
	link	21/180	NATURE									1/12/22	1/12/22	Date Sampled		(CM) CON	Sel.	N Sharver 1			
	h	1										NS VC	1200	Time Sampled		Project S	- REMAR	, Å. Å	PROJEC	SAMPLI	SAMPLE
	Aw	Ton										Ø	veryon/	Sample Type		pecific RLs	KS	men c	T NAME	3RS (signat	CHAIN
	3	50	PRIM	r								3	S	# of Jars		; - Ye		37)	ture)	OF
	NOX	1452	NT N/							•				NWTPH-Dx		s / N		Jer	\$ }	1. Charles	CUS
	K	S	IME											NWTPH-Gx					* *		IOI
					ŀ							$\mathbf{\times}$	\geq	VOCe EPA 8260			X			2	Y
						·								PAHs EPA 8270	ANA		5	Y	Ĵ		
		D												PCBs EPA 8082	LYSH	AC		2	N P Z		0
	T	5	a			. 		ļ		ļ					IS RE	0	י בי		~ [#]		1
	G	100	OMI												QUE	-	C				2
Sam		5	ANJ			ļ	ļ		ļ		ļ				STE			। হ	×		5
ples			7	ļ			<u> </u>				 					Othe	Disp	ush c	Stan RUS	ЧF	
s rec								ļ								r vo vo	ose af	narge	dard (URN/	· •
eived at	1(3/2)	72/01/1	DATE											Note			ter 30 days	s authorized	Turnaround	AROUND TIL	Aol/
0°0	1317		TIME											ζΩ			Ē	by:		ME	VIWI/VS

Libby Environmental, Inc.

3322 South Bay Road NE • Olympia, WA 98506-2957 Phone (360) 352-2110 • libbyenv@gmail.com

July 13, 2023

Scott Rose AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

RE: 4 Corners Cleaners Work Order Number: L23G015

Enclosed are the results of analyses for samples received by our laboratory on 7/7/2023.

Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please feel free to contact us. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

r 2 Mint

Sherry Chilcutt Senior Chemist

Libby Environm	nental,	Inc.		Cł	nain	of	Cust	ody	y R	eco	rd						www.l	ibbyEi	nvironme	ental.con
4139 Libby Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4	2110 4154			D	ate:	71	7	123	>			Pag	e:		1	of	1	o of 1(
Client: AEG						Р	roject N	lanag	jer:	Scott R	lose									acc
Address: 2633 Parkmount	t Lane SV	V, Suite A				P	roject N	lame:		4 Corne	ers C	leaners								ň
City: Olympia		State:	WA Zip	98502		Lo	ocation		2388	6 Se K	ent-ł	Kangley Ro	d	City	, Stat	e:	Maple	Valle	y, WA	
Phone: (360) 352-9835		Fax:	(360) 352	-8164		С	ollector	A	in	nee	12	like		Date	e of C	Collec	tion:	71	7/2	.3
Client Project # 17-126						E	mail:	Sros	e@Al	GWA.	com									
Sample Number	Depth	Time	Sample Type	Container Type	1 all	TCEM	Saugher P										F	ield N	otes	
1 MW-1		1045	GW	VOA	X															
2 MW-2	-	1018			X															
3 MW-3	-	0856			X															
4 MW-5	-	0935	4	4	X															
5								-												
6																				
7																				
8											_									
9								25												
10																				
11																				
12																				
13						_		· · · · ·												
14																				
15																				
16																				•
17																				
Relinquished by:	7/7/7		200	Received by:	-11	AA		2-	Date /	Time		Sample	e Red	ceipt	A I	Rem	arks:			
Relinguished by:	Date	/ Time	200	Received by:	N	Y			Date /	Time	Go To	od Condition	7	Y	N °C					
				,							Se	als Intact?	Y	N	N/A					
Relinquished by:	Date	/ Time		Received by:					Date /	Time	То	tal Number o Containers	of		11/7	TA	Г: 24	HR	48HR (5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23G015 **Reported:** 07/13/2023 16:07

Notes and Definitions

Item	Definition
RL	Reporting Limit
ND	Analyte NOT DETECTED at or above the reporting limit
DET	Analyte DETECTED at or above the reporting limit
Qual	Qualifier
	All results reported on an "as received" basis unless indicated by "Dry"

Work Order Sample Summary

Lab ID	Sample	Matrix	Date Sampled	Date Received
L23G015-01	MW-1	Water	07/07/2023	07/07/2023
L23G015-02	MW-2	Water	07/07/2023	07/07/2023
L23G015-03	MW-3	Water	07/07/2023	07/07/2023
L23G015-04	MW-5	Water	07/07/2023	07/07/2023

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose City/State: Maple Valley, WA Work Order: L23G015 Reported: 07/13/2023 16:07

Sample Results

Client Sample ID: MW-1

г

Lab ID: L23G015-01 (Water)

					Date	Analyst						
Analyte	Result	Qual	RL	Units	Analyzed	Initials						
/olatile Organic Compounds by EPA Method 8260D												
Vinyl Chloride (SIM)	ND		0.20	ug/L	07/11/2023	AR						
1,1-Dichloroethene	ND		0.50	ug/L	07/11/2023	AR						
trans-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR						
cis-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR						
Trichloroethene (SIM)	ND		0.40	ug/L	07/11/2023	AR						
Tetrachloroethene (SIM)	ND		1.0	ug/L	07/11/2023	AR						
Surrogate: Dibromofluoromethane	105%		22.9-220		07/11/2023	AR						
Surrogate: 1,2-Dichloroethane-d4	94.4%		32.2-196		07/11/2023	AR						
Surrogate: Toluene-d8	97.8%		47.3-146		07/11/2023	AR						
Surrogate: 4-Bromofluorobenzene	94.4%		38.4-136		07/11/2023	AR						

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose City/State: Maple Valley, WA Work Order: L23G015 Reported: 07/13/2023 16:07

Sample Results (Continued)

Client Sample ID: MW-2

Lab ID: L23G015-02 (Water)

					Date	Analyst						
Analyte	Result	Qual	RL	Units	Analyzed	Initials						
<u>/olatile Organic Compounds by EPA Method 8260D</u>												
Vinyl Chloride (SIM)	ND		0.20	ug/L	07/11/2023	AR						
1,1-Dichloroethene	ND		0.50	ug/L	07/11/2023	AR						
trans-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR						
cis-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR						
Trichloroethene (SIM)	ND		0.40	ug/L	07/11/2023	AR						
Tetrachloroethene (SIM)	ND		1.0	ug/L	07/11/2023	AR						
Surrogate: Dibromofluoromethane	108%		22.9-220		<i>07/11/2023</i>	AR						
Surrogate: 1,2-Dichloroethane-d4	95.8%		32.2-196		<i>07/11/2023</i>	AR						
Surrogate: Toluene-d8	99.8%		47.3-146		<i>07/11/2023</i>	AR						
Surrogate: 4-Bromofluorobenzene	89.0%		38.4-136		<i>07/11/2023</i>	AR						

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose City/State: Maple Valley, WA Work Order: L23G015 Reported: 07/13/2023 16:07

Sample Results (Continued)

Client Sample ID: MW-3

Lab ID: L23G015-03 (Water)

					Date	Analyst						
Analyte	Result	Qual	RL	Units	Analyzed	Initials						
olatile Organic Compounds by EPA Method 8260D												
Vinyl Chloride (SIM)	ND		0.20	ug/L	07/11/2023	AR						
1,1-Dichloroethene	ND		0.50	ug/L	07/11/2023	AR						
trans-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR						
cis-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR						
Trichloroethene (SIM)	ND		0.40	ug/L	07/11/2023	AR						
Tetrachloroethene (SIM)	ND		1.0	ug/L	07/11/2023	AR						
Surrogate: Dibromofluoromethane	111%		22.9-220		07/11/2023	AR						
Surrogate: 1,2-Dichloroethane-d4	96.0%		32.2-196		07/11/2023	AR						
Surrogate: Toluene-d8	102%		47.3-146		07/11/2023	AR						
Surrogate: 4-Bromofluorobenzene	87.0%		38.4-136		07/11/2023	AR						

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23G015 **Reported:** 07/13/2023 16:07

Sample Results (Continued)

Client Sample ID: MW-5

г

Lab ID: L23G015-04 (Water)

					Date	Analyst
Analyte	Result	Qual	RL	Units	Analyzed	Initials
Volatile Organic Compounds by EPA M	lethod 8260D)				
Vinyl Chloride (SIM)	ND		0.20	ug/L	07/11/2023	AR
1,1-Dichloroethene	ND		0.50	ug/L	07/11/2023	AR
trans-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR
cis-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR
Trichloroethene (SIM)	ND		0.40	ug/L	07/11/2023	AR
Tetrachloroethene (SIM)	ND		1.0	ug/L	07/11/2023	AR
Surrogate: Dibromofluoromethane	109%		22.9-220		<i>07/11/2023</i>	AR
Surrogate: 1,2-Dichloroethane-d4	99.3%		32.2-196		<i>07/11/2023</i>	AR
Surrogate: Toluene-d8	101%		47.3-146		<i>07/11/2023</i>	AR
Surrogate: 4-Bromofluorobenzene	92.8%		38.4-136		<i>07/11/2023</i>	AR

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose City/State: Maple Valley, WA Work Order: L23G015 Reported: 07/13/2023 16:07

Quality Control

Volatile Organic Compounds by EPA Method 8260D

Analyte	Result	Qual	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Potchy BVC0022 - VOA										
Balchi: BAGUUS2 - VOA					_					
Blank (BXG0032-BLK1)					Prepar	ed & Analyze	d: //11/2023			
Vinyl Chloride (SIM)	ND		0.20	ug/L						
1,1-Dichloroethene	ND		0.50	ug/L						
trans-1,2-Dichloroethene	ND		1.0	ug/L						
cis-1,2-Dichloroethene	ND		1.0	ug/L						
Trichloroethene (SIM)	ND		0.40	ug/L						
Tetrachloroethene (SIM)	ND		1.0	ug/L						
Surrogate: Dibromofluoromethane			22.2	ug/L	20.0		111	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			20.2	ug/L	20.0		101	<i>32.2-196</i>		
Surrogate: Toluene-d8			20.4	ug/L	20.0		102	47.3-146		
Surrogate: 4-Bromofluorobenzene			18.2	ug/L	20.0		91.0	38.4-136		
LCS (BXG0032-BS1)					Prepar	ed & Analyze	d: 7/11/2023			
Vinyl Chloride (SIM)	5.01		0.20	ug/L	5.00		100	44.2-183		
1,1-Dichloroethene	5.17		0.50	ug/L	5.00		103	39.6-181		
trans-1,2-Dichloroethene	4.82		1.0	ug/L	5.00		96.5	39.6-177		
cis-1,2-Dichloroethene	5.18		1.0	ug/L	5.00		104	29.5-182		
Trichloroethene (SIM)	4.57		0.40	ug/L	5.00		91.4	28.8-130		
Tetrachloroethene (SIM)	4.72		1.0	ug/L	5.00		94.5	30.4-159		
Surrogate: Dibromofluoromethane			21.5	ug/L	20.0		107	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			19.7	ug/L	20.0		98.6	32.2-196		
Surrogate: Toluene-d8			21.7	ug/L	20.0		108	47.3-146		
Surrogate: 4-Bromofluorobenzene			22.6	ug/L	20.0		113	38.4-136		
Duplicate (BXG0032-DUP1)		Parent	: L23G023-	02RE2	Prepar	ed & Analyze	d: 7/11/2023			
Vinyl Chloride (SIM)	ND		0.20	ug/L		ND				35
1,1-Dichloroethene	ND		0.50	ug/L		ND				35
trans-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
cis-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
Trichloroethene (SIM)	ND		0.40	ug/L		ND				35
Tetrachloroethene (SIM)	ND		1.0	ug/L		ND				35
Surrogate: Dibromofluoromethane			22.4	ug/L	20.0		112	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			20.0	ug/L	20.0		100	32.2-196		
Surrogate: Toluene-d8			20.4	ug/L	20.0		102	47.3-146		
Surrogate: 4-Bromofluorobenzene			20.8	ug/L	20.0		104	38.4-136		

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose City/State: Maple Valley, WA Work Order: L23G015 Reported: 07/13/2023 16:07

Quality Control (Continued)

Volatile Organic Compounds by EPA Method 8260D (Continued)

Araba	Desult	0		11-24-	Spike	Source		%REC	DDD	RPD
Analyte	Result	Quai	RL	Units	Level	Result	%REC	Limits	RPD	Limit
Duplicate (BXG0032-DUP2)		Parent	: L23G015	-01RE1	Prepar	ed & Analyze	d: 7/11/2023			
Vinyl Chloride (SIM)	ND		0.20	ug/L		ND				35
1,1-Dichloroethene	ND		0.50	ug/L		ND				35
trans-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
cis-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
Trichloroethene (SIM)	ND		0.40	ug/L		ND				35
Tetrachloroethene (SIM)	ND		1.0	ug/L		ND				35
Surrogate: Dibromofluoromethane			22.6	ug/L	20.0		113	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			20.0	ug/L	20.0		100	32.2-196		
Surrogate: Toluene-d8			20.3	ug/L	20.0		102	47.3-146		
Surrogate: 4-Bromofluorobenzene			17.2	ug/L	20.0		86.2	38.4-136		
Matrix Spike (BXG0032-MS1)		Parent	: L23G023-	-02RE2	Prepar	ed & Analyze	d: 7/11/2023			
Vinyl Chloride (SIM)	5.10		0.20	ug/L	5.00	ND	102	10.7-223		
1,1-Dichloroethene	5.27		0.50	ug/L	5.00	ND	105	21.7-199		
trans-1,2-Dichloroethene	4.46		1.0	ug/L	5.00	ND	89.3	10-216		
cis-1,2-Dichloroethene	4.52		1.0	ug/L	5.00	ND	90.3	10-246		
Trichloroethene (SIM)	4.50		0.40	ug/L	5.00	ND	89.9	25.2-172		
Tetrachloroethene (SIM)	4.56		1.0	ug/L	5.00	ND	91.1	43.2-139		
Surrogate: Dibromofluoromethane			20.2	ug/L	20.0		101	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			18.8	ug/L	20.0		93.8	32.2-196		
Surrogate: Toluene-d8			19.9	ug/L	20.0		99.6	47.3-146		
Surrogate: 4-Bromofluorobenzene			22.7	ug/L	20.0		113	38.4-136		
Matrix Spike Dup (BXG0032-MSD1)		Parent	: L23G023-	-02RE2	Prepar	ed & Analyze	d: 7/11/2023			
Vinyl Chloride (SIM)	5.23		0.20	ug/L	5.00	ND	105	10.7-223	2.46	35
1,1-Dichloroethene	5.45		0.50	ug/L	5.00	ND	109	21.7-199	3.28	35
trans-1,2-Dichloroethene	4.63		1.0	ug/L	5.00	ND	92.6	10-216	3.61	35
cis-1,2-Dichloroethene	4.87		1.0	ug/L	5.00	ND	97.3	10-246	7.46	35
Trichloroethene (SIM)	4.40		0.40	ug/L	5.00	ND	88.1	25.2-172	2.07	35
Tetrachloroethene (SIM)	4.34		1.0	ug/L	5.00	ND	86.7	43.2-139	4.95	35
Surrogate: Dibromofluoromethane			21.1	ug/L	20.0		105	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			19.5	ug/L	20.0		97.5	32.2-196		
Surrogate: Toluene-d8			20.2	ug/L	20.0		101	47.3-146		
Surrogate: 4-Bromofluorobenzene			22.0	ug/L	20.0		110	38.4-136		

Libby Environmental, Inc.

4 CORNERS CLEANERS PROJECT AEG an Atlas Geosciences NW Company Libby Project # L23G015 Date Received 7/7/2023 Time Received 1:00 PM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By SC

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody is complete?	✓ Yes	🗌 No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	🗌 No	□ N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	🔲 No	□ N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	□ N/A
6. Was an attempt made to cool the samples?	✓ Yes	🗌 No	□ N/A
7. Temperature of cooler (0°C to 8°C recommended)	0.3	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	6.4	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	🔲 No	
10. Is it clear what analyses were requested?	✓ Yes	🗋 No	
11. Did container labels match Chain of Custody?	✓ Yes	🗋 No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	🗌 No	
13. Are correct containers used for the analysis indicated?	✓ Yes	🗌 No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	🗌 No	
15. Were all containers properly preserved per each analysis?	✓ Yes	🗌 No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	🗌 No	□ N/A
17. Were all holding times able to be met?	✓ Yes	🗌 No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	🗋 No	✓ N/A
Person Notified:		Date:	
By Whom:		Via:	
Regarding:		-	
19. Comments.		_	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 27, 2023

Scott Rose, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Rose:

Included are the results from the testing of material submitted on October 18, 2023 from the 4-Corners Cleaners Maple Valley, WA 17-126, F&BI 310343 project. There are 11 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: AEG A/P AEG1027R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 18, 2023 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaners Maple Valley, WA 17-126, F&BI 310343 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AEG
310343 -01	VP-1
310343 -02	VP-2
310343 -03	VP-3
310343 -04	VP-4
310343 -05	SVE-IN

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-1 10/18/2 10/18/2 10/19/2 Air ug/m3	3 3 3	Clie Pro Lab Dat Ins ^s Ope	ent: ject:) ID: :a File: trument: erator:	AEG 4-Corners Cleaners Maple Valley 310343-01 1/8.2 101915.D GCMS8 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 97	Lower Limit: 70	Upper Limit: 130	
Compounds:		Conce ug/m3	ntration ppbv		
Vinyl chloride trans-1,2-Dichloroet cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	chene ne	<2.1 <3.3 <3.3 2.1 130	<0.82 <0.82 <0.82 0.39 19		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-2 10/18/2 10/18/2 10/19/2 Air ug/m3	3 3 3	Clie Proj Lab Dat Inst Ope	nt: ect: ID: a File: rument: rator:	AEG 4-Corners Cleaners Maple Valley 310343-02 1/5.4 101913.D GCMS8 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 95	Lower Limit: 70	Upper Limit: 130	
Compounds:		Conce ug/m3	ntration ppbv		
Vinyl chloride trans-1,2-Dichloroet cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	thene me	<1.4 <2.1 <2.1 <0.58 <37	<0.54 <0.54 <0.54 <0.11 <5.4		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-3 10/18/2 10/18/2 10/20/2 Air ug/m3	3 3 3	Clien Proje Lab Data Instr Open	nt: ect: ID: a File: rument: rator:	AEG 4-Corners Cleaners Maple Valley 310343-03 1/8.1 101916.D GCMS8 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 98	Lower Limit: 70	Upper Limit: 130	
Compounds:		Conce ug/m3	ntration ppbv		
Vinyl chloride trans-1,2-Dichloroet cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	chene ne	<2.1 <3.2 <3.2 <0.87 190	<0.81 <0.81 <0.81 <0.16 28		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	VP-4 10/18/2 10/18/2 10/19/2 Air ug/m3	3 3 3	Clic Pro Lak Dat Ins Ope	ent: ject: o ID: ta File: trument: erator:	AEG 4-Corners Cleaners Maple Valley 310343-04 1/4.8 101914.D GCMS8 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 97	Lower Limit: 70	Upper Limit: 130	
Compounds:		Conce ug/m3	ntration ppbv		
Vinyl chloride trans-1,2-Dichloroet cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	thene me	<1.2 <1.9 <1.9 <0.52 60	<0.48 <0.48 <0.48 <0.096 8.9		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVE-IN 10/18/2 10/18/2 10/20/2 Air ug/m3	5 3 3 3	Clie Proj Lab Dat Inst Ope	nt: ject: ID: a File: crument: orator:	AEG 4-Corners Cleaners Maple Valley 310343-05 1/7.6 101918.D GCMS8 bat
Surrogates: 4-Bromofluorobenze	ene	% Recovery: 98	Lower Limit: 70	Upper Limit: 130	
Compounds:		Conce ug/m3	ntration ppbv		
Vinyl chloride trans-1,2-Dichloroet cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	chene ne	<1.9 <3 <3 <0.82 <52	<0.76 <0.76 <0.76 <0.15 <7.6		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Not App 10/19/23 Air ug/m3	Blank licable licable	Client: Project: Lab ID: Data File: Instrument: Operator:		AEG 4-Corners Cleaners Maple Valley 03-2424 mb 101912.D GCMS8 bat
Surrogates: 4-Bromofluorobenze	F	% Recovery: 95	Lower Limit: 70	Upper Limit: 130	
Compounds:		Conce ug/m3	ntration ppbv		
Vinyl chloride trans-1,2-Dichloroet cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	hene ne	<0.26 <0.4 <0.4 <0.11 <6.8	<0.1 <0.1 <0.1 <0.02 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/27/23 Date Received: 10/18/23 Project: 4-Corners Cleaners Maple Valley, WA 17-126, F&BI 310343 Date Extracted: 10/27/23 Date Analyzed: 10/27/23

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

<u>Sample ID</u> Laboratory ID	<u>Helium</u>
VP-1 310343-01	<0.6
VP-2 310343-02	<0.6
VP-3 310343-03	<0.6
VP-4 310343-04	0.9
Method Blank	<0.6

03-2560 MB

ENVIRONMENTAL CHEMISTS

Date of Report: 10/27/23 Date Received: 10/18/23 Project: 4-Corners Cleaners Maple Valley, WA 17-126, F&BI 310343

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 310343-05 1/7.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.9	<1.9	nm
trans-1,2-Dichloroethene	ug/m3	<3	<3	nm
cis-1,2-Dichloroethene	ug/m3	<3	<3	nm
Trichloroethene	ug/m3	< 0.82	< 0.82	nm
Tetrachloroethene	ug/m3	<52	<52	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	86	70-130
trans-1,2-Dichloroethene	ug/m3	54	102	70-130
cis-1,2-Dichloroethene	ug/m3	54	97	70-130
Trichloroethene	ug/m3	73	96	70 - 130
Tetrachloroethene	ug/m3	92	107	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 10/27/23 Date Received: 10/18/23 Project: 4-Corners Cleaners Maple Valley, WA 17-126, F&BI 310343

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code:	310275-01 (Du	plicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	<0.6	<0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Relinquished by:	Seattle, WA 98108 Received by: 7	5500 4th Avenue South Relinquished by:	Friedman & Bruya, Inc. SIGNAT				ff , JUCIN or 8232 20	VP-4 04 8528 22	UPP -3 03 4180 20	NP PHE-2 02 8529 20	VP-1 01 9560 20	Sample Name ID ID II	Tot Flo	SAMPLE INFORMATION	City, State, ZIP OL YMPIN, WIN 410 CC Phone 360 - 352, 9835 Email SROUG @ 166 LNG	Company AC6 - ATLAS Address 2633 MARMONT LANG JW JUS	310343 Report To SCOTT ROSE
	he	C I	URF	IA / SG	IA / SG	IA / SG) IA / (SG)	S IA / SG	7 IA //SG)	Y IA I (SG)	(IA / (SG)	(Circle One)	Reporting Level: W IA=Indoor Air		$r_{c,com}$ $PCE/1$	ICA Y-CC	SAMPL
	ANHP	TONY BAK	PRINT				1 10 20 CC/31/01	10/18/27 JON 10	10/18/27 30 12 10	1 " 19" [19]	10/18/23 30 in 1	Sampled ("Hg)	Initial	-	CE ? DAUGNTER .	NUNGNE & ADDI NUNGN S CLOAN MORE &	E CHAIN OF C
	HAN	INICA	'NAME				411 " A 951	072 5" 104	JUY JUN 110	101 N V 00	117 5 ¹⁰ /11	Time ("Hg) Tir	Field Final Fie		Monut	RESS NE/LS ALGY, WD	USTODY
	F83	90/ 3 MO	COMPAI		Samples		X	× 21	12 X	12 ×	X b	ne To	D15 Full Scan O15 BTEXN FO15 cVOCs	ANALYSIS RE	M66 M001CE TO	17-126	52/31/01
	101	G iol	NY D.		received at		X	X X	XX	XX	XX	PCE/	APH Helium 70.6/DAU6H7672 p20DUC15	QUESTED	SAMPI Default:Clea final report Hold (Fee m	Standard RUSH Rush charges	Page #
	18/23 14:05	52/8	ATE TIME		al oc							Notes			an following delivery ay apply):	authorized by:	ROUND TIME

FORMS\COC\COCTO-15.DOC

Libby Environmental, Inc.

3322 South Bay Road NE • Olympia, WA 98506-2957 Phone (360) 352-2110 • libbyenv@gmail.com

December 08, 2023

Scott Rose AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

RE: 4 Corners Cleaners Work Order Number: L23K097

Enclosed are the results of analyses for samples received by our laboratory on 11/21/2023.

Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please feel free to contact us. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

r 2 Mint

Sherry Chilcutt Senior Chemist

Libby Environmen	Libby Environmental, Inc.				nain (of Cu	usto	dy I	Rec	or	d						www.Libb	yEnviror	mental.	00
3322 South Bay Road NE Olympia, WA 98506	Ph: Fax:	360-352-2	2110 4154			Date	11/2	123					1	Pag	e:	1		of /	r	2 of 1
Client: AF (All L)				Project Manager: Stalt Rese									ige I							
Address: 2632 Pakaut In	SW C	tek				Proie	ect Nam	ne: 4	Lor	1005	c ()	10.00.05	c							- 6
City: pl		State: W	A Zip:	98505		Loca	tion: 🤈	2001	CE	1.0	Kart-K	- la	D.L (City	Stat	te: A	A. J. V.	11.	14	
Phone: 360 - 365 - 9826		Eax:									Date	e of C	Collec	ction: 11/	19/22-					
Client Project # 17-126						Emai	I: SR	DSF (D. AF	Irh	IA. CO	n					11/2	0/23		
Sample Number	Depth	Time	Sample Type	Container Type	JOC 6	C C CO	Prod Brief CT	SASO I	SC CO	4 40 40	5 42 - 23 - 25 - 25 - 25 - 25	C PAH 28	10 210	rivol e	8270	Lawer's	a Risker Ale Field	d Notes	Collect Date	ion
1 B-14-3	3	0915	Soil	IJ,ZV	×													ulu	9/23	
2B-15-3	3	0925			×		_													
3 B-16-3	3	0940			×												-	_	+	_
4 B-17.5	5	0935															Hold	11/2	0/23	5
5 B-17-10	10	0950													_		Hold		Ĺ	
6 B-17-15	15	0955			X														_	
7 B-17-20	20	1020			X										\mathbf{X}					
8B-17-25	25	1040			X															
9 B-17-30	30	1045															Hold			
10 B-18-5	5	1220			×	(PH)											Hold			
11B-18-10	10	1230			-*	-PH							Č	X			Hold			
12 B-18-15	15	1240			X															
13 8-19-5	5	1330															Hold			
14 8-19-10	10	1335															Hold			
15 B-19-15	15	1350															Hold			
16 3-19-13	18	1420	1	F	6										_		Hold		6	
17																	1			
Relinquished by: Paul Hitch Relinquished by:		LV2V	Date / Time 23(AI3) Date / Time	Received by:	ullers	7	11	21/2	Date / T) (4 Date / T	ime 113 ime	Sa Good Co Cooler Te	mple ndition? amp.	Rece	eipt Y	N °C	Rem 12- vie	iarks: 1-23 A L enail.	tsted Z Da	per P. TAT	aul
Relinquished by:			Date / Time	Received by:				[)ate / Ti	ime	Sample T Total Nur Contai	emp. nber of ners			C	TA	T: 1-Da	y 2-Da	y 5-D/	AY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Cilent agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose City/State: Maple Valley, WA Work Order: L23K097 Reported: 12/08/2023 16:53

Notes and Definitions

Item	Definition
R	High Relative Percent Difference observed.
S1	Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.
S3	Outlying spike recovery observed (high bias). Analyte will be qualified with a ** if detected.
RL	Reporting Limit
ND	Analyte NOT DETECTED at or above the reporting limit
DET	Analyte DETECTED at or above the reporting limit
Qual	Qualifier
A	Il results reported on an "as received" basis unless indicated by "Dry"
RPD	Relative Percent Difference
%REC	Percent Recovery
Parent	Sample that was matrix spiked or duplicated

Work Order Sample Summary

Lab ID	Sample	Matrix	Date Sampled	Date Received
L23K097-01	B-14-3	Soil	11/19/2023	11/21/2023
L23K097-02	B-15-3	Soil	11/19/2023	11/21/2023
L23K097-03	B-16-3	Soil	11/19/2023	11/21/2023
L23K097-04	B-17-5	Soil	11/20/2023	11/21/2023
L23K097-05	B-17-10	Soil	11/20/2023	11/21/2023
L23K097-06	B-17-15	Soil	11/20/2023	11/21/2023
L23K097-07	B-17-20	Soil	11/20/2023	11/21/2023
L23K097-08	B-17-25	Soil	11/20/2023	11/21/2023
L23K097-09	B-17-30	Soil	11/20/2023	11/21/2023
L23K097-10	B-18-5	Soil	11/20/2023	11/21/2023
L23K097-11	B-18-10	Soil	11/20/2023	11/21/2023
L23K097-12	B-18-15	Soil	11/20/2023	11/21/2023
L23K097-13	B-19-5	Soil	11/20/2023	11/21/2023
L23K097-14	B-19-10	Soil	11/20/2023	11/21/2023
L23K097-15	B-19-15	Soil	11/20/2023	11/21/2023
L23K097-16	B-19-18	Soil	11/20/2023	11/21/2023

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23K097 **Reported:** 12/08/2023 16:53

Libby Environmental Sample Detection Summary

Analyte	Result	Qual	Units	RL	Method	
Sample: B-14-3			Lab#: L23K09	97-01		
Tetrachloroethene (PCE)	0.024		mg/kg dry	0.012	8260D	
Sample: B-15-3			Lab#: L23K09	97-02		
Tetrachloroethene (PCE)	0.014		mg/kg dry	0.011	8260D	
Sample: B-16-3			Lab#: L23K09	97-03		
Tetrachloroethene (PCE)	0.012		mg/kg dry	0.012	8260D	
Sample: B-17-10			Lab#: L23K09	97-05		
Tetrachloroethene (PCE)	0.025		mg/kg dry	0.016	8260D	
Sample: B-17-15			Lab#: L23K09	97-06		
Tetrachloroethene (PCE)	0.020		mg/kg dry	0.019	8260D	
Sample: B-17-20			Lab#: L23K09	7-07		
Tetrachloroethene (PCE)	0.073		mg/kg dry	0.013	8260D	
Tetrachloroethene (PCE)	0.089		mg/kg dry	0.013	8260D	
Sample: B-18-10			Lab#: L23K09	97-11		
Tetrachloroethene (PCE)	0.013		mg/kg dry	0.013	8260D	
Sample: B-18-15			Lab#: L23K09	97-12		
Tetrachloroethene (PCE)	0.022		mg/kg dry	0.013	8260D	
Sample: B-19-18			Lab#: L23K09	07-16		
Tetrachloroethene (PCE)	0.042		mg/kg dry	0.011	8260D	

Note: If no entry is made, then no target compounds were detected.

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23K097 **Reported:** 12/08/2023 16:53

Sample Results

Client Sample ID: B-14-3

Lab ID: L23K097-01 (Soil)

					Date	Analyst
Analyte	Result	Qual	RL	Units	Analyzed	Initials
Volatile Organic Compounds by E	PA Method 826	<u>0D</u>				
Vinyl Chloride (SIM)	ND		0.012	mg/kg dry	11/29/2023	РВ
1,1-Dichloroethene	ND		0.029	mg/kg dry	11/29/2023	PB
trans-1,2-Dichloroethene	ND		0.017	mg/kg dry	11/29/2023	PB
cis-1,2-Dichloroethene	ND		0.017	mg/kg dry	11/29/2023	PB
Trichloroethene (SIM)	ND		0.012	mg/kg dry	11/29/2023	PB
Tetrachloroethene (PCE)	0.024		0.012	mg/kg dry	11/29/2023	РВ
Surrogate: Dibromofluoromethane	128%		22.9-220		11/29/2023	PB
Surrogate: 1,2-Dichloroethane-d4	159%		32.2-196		11/29/2023	PB
Surrogate: Toluene-d8	114%		47.3-146		11/29/2023	PB
Surrogate: 4-Bromofluorobenzene	91.4%		38.4-136		11/29/2023	PB
Moisture by ASTM D2216-19						
Moisture	4.5		0.50	%	11/22/2023	JC

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23K097 **Reported:** 12/08/2023 16:53

Sample Results (Continued)

Client Sample ID: B-15-3

г

Lab ID: L23K097-02 (Soil)

					Date	Analyst
Analyte	Result	Qual	RL	Units	Analyzed	Initials
Volatile Organic Compounds by EPA N	<u>1ethod 8260D</u>	<u>)</u>				
Vinyl Chloride (SIM)	ND		0.011	mg/kg dry	11/29/2023	PB
1,1-Dichloroethene	ND		0.028	mg/kg dry	11/29/2023	PB
trans-1,2-Dichloroethene	ND		0.017	mg/kg dry	11/29/2023	PB
cis-1,2-Dichloroethene	ND		0.017	mg/kg dry	11/29/2023	PB
Trichloroethene (SIM)	ND		0.011	mg/kg dry	11/29/2023	PB
Tetrachloroethene (PCE)	0.014		0.011	mg/kg dry	11/29/2023	PB
Surrogate: Dibromofluoromethane	122%		22.9-220		11/29/2023	PB
Surrogate: 1,2-Dichloroethane-d4	158%		32.2-196		11/29/2023	PB
Surrogate: Toluene-d8	109%		47.3-146		11/29/2023	PB
Surrogate: 4-Bromofluorobenzene	86.4%		38.4-136		11/29/2023	РВ
Moisture by ASTM D2216-19						
Moisture	3.6		0.50	%	11/22/2023	JC

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23K097 **Reported:** 12/08/2023 16:53

Sample Results (Continued)

Client Sample ID: B-16-3

г

Lab ID: L23K097-03 (Soil)

					Date	Analyst	
Analyte	Result	Qual	RL	Units	Analyzed	Initials	
Volatile Organic Compounds by EP	A Method 826	<u>0D</u>					
Vinyl Chloride (SIM)	ND		0.012	mg/kg dry	11/29/2023	PB	
1,1-Dichloroethene	ND		0.029	mg/kg dry	11/29/2023	PB	
trans-1,2-Dichloroethene	ND		0.018	mg/kg dry	11/29/2023	PB	
cis-1,2-Dichloroethene	ND		0.018	mg/kg dry	11/29/2023	PB	
Trichloroethene (SIM)	ND		0.012	mg/kg dry	11/29/2023	PB	
Tetrachloroethene (PCE)	0.012		0.012	mg/kg dry	11/29/2023	PB	
Surrogate: Dibromofluoromethane	173%		22.9-220	1	11/29/2023	PB	
Surrogate: 1,2-Dichloroethane-d4	154%		32.2-196		11/29/2023	PB	
Surrogate: Toluene-d8	103%		47.3-146		11/29/2023	PB	
Surrogate: 4-Bromofluorobenzene	81.4%		38.4-136		11/29/2023	РВ	
Moisture by ASTM D2216-19							
Moisture	5.0		0.50	%	11/22/2023	JC	

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23K097 **Reported:** 12/08/2023 16:53

Sample Results (Continued)

Client Sample ID: B-17-10

Lab ID: L23K097-05 (Soil)

					Date	Analyst	
Analyte	Result	Qual	RL	Units	Analyzed	Initials	
Volatile Organic Compounds by EF	A Method 826	<u>0D</u>					
Vinyl Chloride (VC)	ND		0.016	mg/kg dry	12/04/2023	AA	
1,1-Dichloroethene	ND		0.040	mg/kg dry	12/04/2023	AA	
trans-1,2-Dichloroethene	ND		0.024	mg/kg dry	12/04/2023	AA	
cis-1,2-Dichloroethene	ND		0.024	mg/kg dry	12/04/2023	AA	
Trichloroethene (TCE)	ND		0.016	mg/kg dry	12/04/2023	AA	
Tetrachloroethene (PCE)	0.025		0.016	mg/kg dry	12/04/2023	AA	
Surrogate: Dibromofluoromethane	104%		22.9-220)	12/04/2023	AA	
Surrogate: 1,2-Dichloroethane-d4	118%		32.2-196	;	12/04/2023	AA	
Surrogate: Toluene-d8	110%		47.3-146	;	12/04/2023	AA	
Surrogate: 4-Bromofluorobenzene	98.6%		38.4-136	;	12/04/2023	AA	
Moisture by ASTM D2216-19							
Moisture	16		0.50	%	12/05/2023	AA	

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23K097 **Reported:** 12/08/2023 16:53

Sample Results (Continued)

Client Sample ID: B-17-15

Lab ID: L23K097-06 (Soil)

					Date	Analyst	
Analyte	Result	Qual	RL	Units	Analyzed	Initials	
Volatile Organic Compounds by EF	A Method 826	<u>0D</u>					
Vinyl Chloride (SIM)	ND		0.019	mg/kg dry	11/29/2023	PB	
1,1-Dichloroethene	ND		0.048	mg/kg dry	11/29/2023	PB	
trans-1,2-Dichloroethene	ND		0.029	mg/kg dry	11/29/2023	PB	
cis-1,2-Dichloroethene	ND		0.029	mg/kg dry	11/29/2023	PB	
Trichloroethene (SIM)	ND		0.019	mg/kg dry	11/29/2023	PB	
Tetrachloroethene (PCE)	0.020		0.019	mg/kg dry	11/29/2023	PB	
Surrogate: Dibromofluoromethane	109%		22.9-220	,	11/29/2023	PB	
Surrogate: 1,2-Dichloroethane-d4	135%		32.2-196		11/29/2023	PB	
Surrogate: Toluene-d8	104%		47.3-146		11/29/2023	PB	
Surrogate: 4-Bromofluorobenzene	85.1%		38.4-136	;	11/29/2023	PB	
Moisture by ASTM D2216-19							
Moisture	23		0.50	%	11/22/2023	JC	

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23K097 **Reported:** 12/08/2023 16:53

Sample Results (Continued)

Client Sample ID: B-17-20

Lab ID: L23K097-07 (Soil)

Analyte	Result	Qual	RL	Units	Date Analyzed	Analyst Initials
Volatile Organic Compounds by EPA Me	ethod 8260D					
Vinyl Chloride (SIM)	ND		0.013	mg/kg dry	11/29/2023	PB
Vinyl Chloride (VC)	ND		0.013	mg/kg dry	12/04/2023	AA
1,1-Dichloroethene	ND		0.033	mg/kg dry	11/29/2023	PB
1,1-Dichloroethene	ND		0.033	mg/kg dry	12/04/2023	AA
trans-1,2-Dichloroethene	ND		0.020	mg/kg dry	11/29/2023	PB
trans-1,2-Dichloroethene	ND		0.020	mg/kg dry	12/04/2023	AA
cis-1,2-Dichloroethene	ND		0.020	mg/kg dry	11/29/2023	PB
cis-1,2-Dichloroethene	ND		0.020	mg/kg dry	12/04/2023	AA
Trichloroethene (SIM)	ND		0.013	mg/kg dry	11/29/2023	PB
Trichloroethene (TCE)	ND		0.013	mg/kg dry	12/04/2023	AA
Tetrachloroethene (PCE)	0.073		0.013	mg/kg dry	11/29/2023	PB
Tetrachloroethene (PCE)	0.089		0.013	mg/kg dry	12/04/2023	AA
Surrogate: Dibromofluoromethane	117%		22.9-220		11/29/2023	РВ
Surrogate: Dibromofluoromethane	103%		22.9-220		12/04/2023	AA
Surrogate: 1,2-Dichloroethane-d4	136%		32.2-196		11/29/2023	РВ
Surrogate: 1,2-Dichloroethane-d4	117%		32.2-196		12/04/2023	AA
Surrogate: Toluene-d8	109%		47.3-146		11/29/2023	РВ
Surrogate: Toluene-d8	107%		47.3-146		12/04/2023	AA
Surrogate: 4-Bromofluorobenzene	79.4%		38.4-136		11/29/2023	РВ
Surrogate: 4-Bromofluorobenzene	92.6%		38.4-136		12/04/2023	AA
Moisture by ASTM D2216-19						
Moisture	9.3		0.50	%	11/22/2023	JC

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23K097 **Reported:** 12/08/2023 16:53

Sample Results (Continued)

Client Sample ID: B-17-25

Lab ID: L23K097-08 (Soil)

г

					Date	Analyst	
Analyte	Result	Qual	RL	Units	Analyzed	Initials	
Volatile Organic Compounds by EP	A Method 826	<u>0D</u>					
Vinyl Chloride (SIM)	ND		0.017	mg/kg dry	11/29/2023	PB	
1,1-Dichloroethene	ND		0.043	mg/kg dry	11/29/2023	PB	
trans-1,2-Dichloroethene	ND		0.026	mg/kg dry	11/29/2023	PB	
cis-1,2-Dichloroethene	ND		0.026	mg/kg dry	11/29/2023	PB	
Trichloroethene (SIM)	ND		0.017	mg/kg dry	11/29/2023	PB	
Tetrachloroethene (PCE)	ND		0.017	mg/kg dry	11/29/2023	PB	
Surrogate: Dibromofluoromethane	110%		22.9-220	,	11/29/2023	PB	
Surrogate: 1,2-Dichloroethane-d4	136%		32.2-196		11/29/2023	PB	
Surrogate: Toluene-d8	109%		47.3-146		11/29/2023	PB	
Surrogate: 4-Bromofluorobenzene	90.0%		38.4-136	ŗ	11/29/2023	PB	
Moisture by ASTM D2216-19							
Moisture	19		0.50	%	11/22/2023	JC	

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23K097 **Reported:** 12/08/2023 16:53

Sample Results (Continued)

Client Sample ID: B-18-10

Lab ID: L23K097-11 (Soil)

г

					Date	Analyst	
Analyte	Result	Qual	RL	Units	Analyzed	Initials	
Volatile Organic Compounds by EF	A Method 826	<u>0D</u>					
Vinyl Chloride (VC)	ND		0.013	mg/kg dry	12/04/2023	AA	
1,1-Dichloroethene	ND		0.032	mg/kg dry	12/04/2023	AA	
trans-1,2-Dichloroethene	ND		0.019	mg/kg dry	12/04/2023	AA	
cis-1,2-Dichloroethene	ND		0.019	mg/kg dry	12/04/2023	AA	
Trichloroethene (TCE)	ND		0.013	mg/kg dry	12/04/2023	AA	
Tetrachloroethene (PCE)	0.013		0.013	mg/kg dry	12/04/2023	AA	
Surrogate: Dibromofluoromethane	106%		22.9-220		12/04/2023	AA	
Surrogate: 1,2-Dichloroethane-d4	117%		32.2-196		12/04/2023	AA	
Surrogate: Toluene-d8	110%		47.3-146		12/04/2023	AA	
Surrogate: 4-Bromofluorobenzene	98.6%		38.4-136		12/04/2023	AA	
Moisture by ASTM D2216-19							
Moisture	8.5		0.50	%	12/05/2023	AA	

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23K097 **Reported:** 12/08/2023 16:53

Sample Results (Continued)

Client Sample ID: B-18-15

Lab ID: L23K097-12 (Soil)

				Date	Analyst	
Result	Qual	RL	Units	Analyzed	Initials	
PA Method 826	<u>0D</u>					
ND		0.013	mg/kg dry	11/29/2023	РВ	
ND		0.033	mg/kg dry	11/29/2023	PB	
ND		0.020	mg/kg dry	11/29/2023	PB	
ND		0.020	mg/kg dry	11/29/2023	PB	
ND		0.013	mg/kg dry	11/29/2023	PB	
0.022		0.013	mg/kg dry	11/29/2023	PB	
130%		22.9-220)	11/29/2023	PB	
154%		32.2-196	;	11/29/2023	PB	
108%		47.3-146	;	11/29/2023	PB	
89.2%		38.4-136	;	11/29/2023	PB	
9.6		0.50	%	11/22/2023	JC	
	Result PA Method 826 ND ND ND ND 0.022 130% 154% 89.2% 9.6	Result Qual PA Method 8260D ND ND ND ND 0.022 130% 154% 89.2%	Result Qual RL PA Method 8260D 0.013 ND 0.013 ND 0.033 ND 0.020 ND 0.020 ND 0.020 ND 0.013 0.022 0.013 1.30% 22.9-220 1.54% 32.2-196 1.08% 47.3-146 89.2% 38.4-136	Result Qual RL Units PA Method 8260D 0.013 mg/kg dry ND 0.013 mg/kg dry ND 0.033 mg/kg dry ND 0.020 mg/kg dry ND 0.020 mg/kg dry ND 0.013 mg/kg dry ND 0.013 mg/kg dry ND 0.013 mg/kg dry 0.022 0.013 mg/kg dry 130% 22.9-220 154% 108% 47.3-146 108% 89.2% 38.4-136 1050	Result Qual RL Units Analyzed PA Method 8260D 0.013 mg/kg dry 11/29/2023 ND 0.013 mg/kg dry 11/29/2023 ND 0.033 mg/kg dry 11/29/2023 ND 0.020 mg/kg dry 11/29/2023 ND 0.020 mg/kg dry 11/29/2023 ND 0.020 mg/kg dry 11/29/2023 ND 0.013 mg/kg dry 11/29/2023 0.022 0.013 mg/kg dry 11/29/2023 130% 22.9-220 11/29/2023 154% 32.2-196 11/29/2023 108% 47.3-146 11/29/2023 9.6 0.50 % 11/22/2023	Date Analyst Result Qual RL Units Analyzed Initials PA Method 8260D

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23K097 **Reported:** 12/08/2023 16:53

Sample Results (Continued)

Client Sample ID: B-19-18

Lab ID: L23K097-16 (Soil)

					Date	Analyst	
Analyte	Result	Qual	RL	Units	Analyzed	Initials	
Volatile Organic Compounds by EF	A Method 826	<u>0D</u>					
Vinyl Chloride (VC)	ND		0.011	mg/kg dry	12/04/2023	AA	
1,1-Dichloroethene	ND		0.029	mg/kg dry	12/04/2023	AA	
trans-1,2-Dichloroethene	ND		0.017	mg/kg dry	12/04/2023	AA	
cis-1,2-Dichloroethene	ND		0.017	mg/kg dry	12/04/2023	AA	
Trichloroethene (TCE)	ND		0.011	mg/kg dry	12/04/2023	AA	
Tetrachloroethene (PCE)	0.042		0.011	mg/kg dry	12/04/2023	AA	
Surrogate: Dibromofluoromethane	98.2%		22.9-220	1	12/04/2023	AA	
Surrogate: 1,2-Dichloroethane-d4	113%		32.2-196		12/04/2023	AA	
Surrogate: Toluene-d8	106%		47.3-146		12/04/2023	AA	
Surrogate: 4-Bromofluorobenzene	96.9%		38.4-136	;	12/04/2023	AA	
Moisture by ASTM D2216-19							
Moisture	4.7		0.50	%	12/05/2023	AA	

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose City/State: Maple Valley, WA Work Order: L23K097 Reported: 12/08/2023 16:53

Quality Control

Volatile Organic Compounds by EPA Method 8260D

Analyte	Result	Qual	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BYK0121 - VOA										
					D		. 11/20/2022			
BIANK (BXKU121-BLK1)					Prepare	ed & Analyzed	1: 11/29/2023			
Vinyl Chloride (SIM)	ND		0.020	mg/kg wet						
1,1-Dichloroethene	ND		0.050	mg/kg wet						
trans-1,2-Dichloroethene	ND		0.030	mg/kg wet						
cis-1,2-Dichloroethene	ND		0.030	mg/kg wet						
Trichloroethene (SIM)	ND		0.020	mg/kg wet						
Tetrachloroethene (PCE)	ND		0.020	mg/kg wet						
Surrogate: Dibromofluoromethane			23.4	ug/L	20.0		117	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			29.8	ug/L	20.0		149	32.2-196		
Surrogate: Toluene-d8			21.1	ug/L	20.0		105	47.3-146		
Surrogate: 4-Bromofluorobenzene			17.8	ug/L	20.0		89.0	38.4-136		
LCS (BXK0121-BS1)					Prepare	ed & Analyzed	: 11/29/2023			
Vinyl Chloride (VC)	0.436		0.10	mg/kg wet	0.250		174	29.9-188		
1,1-Dichloroethene	0.483	S3	0.050	mg/kg wet	0.250		193	39.6-181		
trans-1,2-Dichloroethene	0.429		0.030	mg/kg wet	0.250		172	39.6-177		
cis-1,2-Dichloroethene	0.289		0.030	mg/kg wet	0.250		116	29.5-182		
Trichloroethene (SIM)	0.283		0.020	mg/kg wet	0.250		113	28.8-130		
Tetrachloroethene (PCE)	0.161		0.020	mg/kg wet	0.250		64.3	53.1-167		
Surrogate: Dibromofluoromethane			21.7	ug/L	20.0		109	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			25.0	ug/L	20.0		125	32.2-196		
Surrogate: Toluene-d8			22.9	ug/L	20.0		114	47.3-146		
Surrogate: 4-Bromofluorobenzene			20.5	ug/L	20.0		103	38.4-136		
Matrix Spike (BXK0121-MS1)		Parent	: L23K097-07	I	Prepare	ed & Analyzed	: 11/29/2023			
Vinyl Chloride (SIM)	0.332		0.013	mg/kg dry	0.164	ND	203	30.4-218		
1,1-Dichloroethene	0.336	S1	0.033	mg/kg dry	0.164	ND	205	44.2-190		
trans-1,2-Dichloroethene	0.235		0.020	mg/kg dry	0.164	ND	144	35.2-199		
cis-1,2-Dichloroethene	0.205		0.020	mg/kg dry	0.164	ND	125	36.9-180		
Trichloroethene (SIM)	0.202		0.013	mg/kg dry	0.164	ND	124	43-151		
Tetrachloroethene (PCE)	0.160		0.013	mg/kg dry	0.164	0.0735	53.1	10-217		
Surrogate: Dibromofluoromethane			21.2	ug/L	20.0		106	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			25.9	ug/L	20.0		129	32.2-196		
Surrogate: Toluene-d8			22.8	ug/L	20.0		114	47.3-146		
Surrogate: 4-Bromofluorobenzene			20.7	ug/L	20.0		103	38.4-136		

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23K097 **Reported:** 12/08/2023 16:53

Quality Control (Continued)

Volatile Organic Compounds by EPA Method 8260D (Continued)

					Spike	Source		%REC		RPD
Analyte	Result	Qual	RL	Units	Level	Result	%REC	Limits	RPD	Limit
Matrix Spike Dup (BXK0121-MSD1)		Parent:	L23K097-07		Prepared	d & Analyzed: 1	1/29/2023			
Vinyl Chloride (SIM)	0.352		0.013	mg/kg dry	0.164	ND	215	30.4-218	5.98	35
1,1-Dichloroethene	0.350	S1	0.033	mg/kg dry	0.164	ND	214	44.2-190	3.99	35
trans-1,2-Dichloroethene	0.287		0.020	mg/kg dry	0.164	ND	176	35.2-199	20.1	35
cis-1,2-Dichloroethene	0.202		0.020	mg/kg dry	0.164	ND	123	36.9-180	1.79	35
Trichloroethene (SIM)	0.195		0.013	mg/kg dry	0.164	ND	119	43-151	3.69	35
Tetrachloroethene (PCE)	0.185		0.013	mg/kg dry	0.164	0.0735	68.3	10-217	14.4	35
Surrogate: Dibromofluoromethane			21.7	ug/L	20.0		109	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			28.8	ug/L	20.0		144	32.2-196		
Surrogate: Toluene-d8			22.2	ug/L	20.0		111	47.3-146		
Surrogate: 4-Bromofluorobenzene			20.7	ug/L	20.0		104	38.4-136		
Blank (BXL0012-BLK1)					Prepare	d & Analyzed: 1	12/4/2023			
Vinyl Chloride (VC)	ND		0.10	mg/kg wet						
1,1-Dichloroethene	ND		0.050	mg/kg wet						
trans-1,2-Dichloroethene	ND		0.030	mg/kg wet						
cis-1,2-Dichloroethene	ND		0.030	mg/kg wet						
Trichloroethene (TCE)	ND		0.020	mg/kg wet						
Tetrachloroethene (PCE)	ND		0.10	mg/kg wet						
Surrogate: Dibromofluoromethane			22.9	ug/L	20.0		115	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			23.0	ug/L	20.0		115	32.2-196		
Surrogate: Toluene-d8			20.7	ug/L	20.0		104	47.3-146		
Surrogate: 4-Bromofluorobenzene			17.1	ug/L	20.0		85.3	38.4-136		
LCS (BXL0012-BS1)					Prepare	d & Analyzed: 1	12/4/2023			
Vinyl Chloride (VC)	0.192		0.10	mg/kg wet	0.250		76.7	29.9-188		
1,1-Dichloroethene	0.282		0.050	mg/kg wet	0.250		113	39.6-181		
trans-1,2-Dichloroethene	0.254		0.030	mg/kg wet	0.250		102	39.6-177		
cis-1,2-Dichloroethene	0.276		0.030	mg/kg wet	0.250		110	29.5-182		
Trichloroethene (TCE)	0.222		0.020	mg/kg wet	0.250		88.6	59.1-140		
Tetrachloroethene (PCE)	0.238		0.10	mg/kg wet	0.250		95.1	53.1-167		
Surrogate: Dibromofluoromethane			22.6	ug/L	20.0		113	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			23.9	ug/L	20.0		119	32.2-196		
Surrogate: Toluene-d8			21.6	ug/L	20.0		108	47.3-146		
Surrogate: 4-Bromofluorobenzene			21.1	ug/L	20.0		106	38.4-136		

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L23K097 **Reported:** 12/08/2023 16:53

Quality Control (Continued)

Volatile Organic Compounds by EPA Method 8260D (Continued)

					Spike	Source		%REC		RPD
Analyte	Result	Qual	RL	Units	Level	Result	%REC	Limits	RPD	Limit
Duplicate (BXL0012-DUP1)		Parent:	L23K097-07F	RE1	Prepare	d & Analyzed: 1	12/4/2023			
Vinyl Chloride (VC)	ND		0.065	mg/kg dry		ND				35
1,1-Dichloroethene	ND		0.033	mg/kg dry		ND				35
trans-1,2-Dichloroethene	ND		0.020	mg/kg dry		ND				35
cis-1,2-Dichloroethene	ND		0.020	mg/kg dry		ND				35
Trichloroethene (TCE)	ND		0.013	mg/kg dry		ND				35
Tetrachloroethene (PCE)	0.0163	R	0.013	mg/kg dry		0.0892			138	35
Surrogate: Dibromofluoromethane			20.8	ug/L	20.0		104	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			23.3	ug/L	20.0		117	32.2-196		
Surrogate: Toluene-d8			21.8	ug/L	20.0		109	47.3-146		
Surrogate: 4-Bromofluorobenzene			19.5	ug/L	20.0		97.4	38.4-136		
Matrix Spike (BXL0012-MS1)		Parent:	L23K097-05		Prepare	d & Analyzed: 1	12/4/2023			
Vinyl Chloride (VC)	0.234		0.080	mg/kg dry	0.200	ND	117	10-220		
1,1-Dichloroethene	0.226		0.040	mg/kg dry	0.200	ND	113	44.2-190		
trans-1,2-Dichloroethene	0.265		0.024	mg/kg dry	0.200	ND	132	35.2-199		
cis-1,2-Dichloroethene	0.284		0.024	mg/kg dry	0.200	ND	142	36.9-180		
Trichloroethene (TCE)	0.238		0.016	mg/kg dry	0.200	ND	119	14.3-183		
Tetrachloroethene (PCE)	0.288		0.080	mg/kg dry	0.200	0.0250	132	10-217		
Surrogate: Dibromofluoromethane			18.9	ug/L	20.0		94.5	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			21.6	ug/L	20.0		108	32.2-196		
Surrogate: Toluene-d8			20.4	ug/L	20.0		102	47.3-146		
Surrogate: 4-Bromofluorobenzene			21.9	ug/L	20.0		110	38.4-136		

AEG an Atlas Geosciences NW Company	Project: 4 Corners Cleaners	City/State: Maple Valley, WA
2633 Parkmont Lane SW, Suite A	Project Number: 17-126	Work Order: L23K097
Olympia, WA 98502	Project Manager: Scott Rose	Reported: 12/08/2023 16:53

Quality Control (Continued)

Moisture by ASTM D2216-19

Analyte	Result	Qual	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BXK0119 - Gen Chem										
LCS (BXK0119-BS1)					Prepare	d & Analyzed: 1	1/22/2023			
Moisture	18			%	17.0		105	90-115		
LCS (BXL0017-BS1)		Prepared & Analyzed: 12/5/2023								
Moisture	18			%	17.0		105	90-115		

Libby Environmental, Inc.

4 Corners Cleaners Project AEG an Atlas Geosciences NW Company Libby Work Order # L23K097 Date Received 11/21/2023 Time Received 2:13 PM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By JC

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody is complete?	✓ Yes	No	
2. How was the sample delivered?	Hand Delivered	✓ Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	No	N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	No	N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	N/A
6. Was an attempt made to cool the samples?	✓ Yes	No	N/A
7. Temperature of cooler (0°C to 8°C recommended)	3.7	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	5.0	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	No	
10. Is it clear what analyses were requested?	✓ Yes	No	
11. Did container labels match Chain of Custody?	✓ Yes	No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	No	
13. Are correct containers used for the analysis indicated?	✓ Yes	No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	No	
15. Were all containers properly preserved per each analysis?	✓ Yes	No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	No	N/A
17. Were all holding times able to be met?	✓ Yes	No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	No	✓ N/A
Person Notified:		-	Date:
By Whom:			Via:
Regarding:			
19. Comments.			

Libby Environmental, Inc.

3322 South Bay Road NE • Olympia, WA 98506-2957 Phone (360) 352-2110 • libbyenv@gmail.com

January 09, 2024

Scott Rose AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

RE: 4 Corners Cleaners Work Order Number: L24A010

Enclosed are the results of analyses for samples received by our laboratory on 1/3/2024.

Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please feel free to contact us. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

r 2 Mint

Sherry Chilcutt Senior Chemist

Libb	y Environm	iental,	Inc.		CI	nain	of	Cust	tod	y R	leco	rd						www.	LibbyEr	vironmen	ital.con
4139 Libl Olympia,	by Road NE WA 98506	Ph: Fax:	360-352- 360-352-	2110 4154				Date: $+2^{30} 01/03/29$ Page:									1	of	1		
Client:	AEG							Project N	/ana	ger:	Scott R	lose									
Address	: 2633 Parkmount	t Lane SV	V. Suite A					Project N	lame	:	4 Corn	ers Cle	eaner	s							1.000
City C	Ivmpia		State:	WA Zip	98502		-	Location		2388	36 Se K	ent-Ka	angley	v Rd	(Lity St	ate:	Manle	Valley		
Phone:	(360) 352-9835		Fax:	(360) 352	-8164		-	Collector	. 1	-	h De			1.14	`)ate of	Colle	ection:	Alla	2124	
Client P	roject # 17-126		T GA.	(000) 002	0104		1	Email:	Sros	e@A	EGWA.	com					COlle		01/0	3124	
Sa	THE RANGE	Depth	Time	Sample	Container	65	INCH I	N Daugher									T			1	
1	An I (.)	Deptil	0857	(F		151	1		ſ	\square		\frown	(I			-	1	<u> </u>	IEIG NC	les	
2	Mic-7	-	0006	1 ī	1	X						-									
3	MLC3	-	1016			x						+					-				
3	MUS		natic		1	1X	-										+				
5	1114-3		Varia				-					+									
6	······································	1													-	-	+				
7	<u> </u>						-+					+					-	+			
8				1			-					+				-	-				
0							-		1			+					+	+			
10		-					\rightarrow											1	<u></u>		
11						╞╌┼	-			-		+					+				
12												+					-				
13												-					+	1			
14												-					+				
15	<u> </u>	1										1									
16							1														
17																	-				
Relinquist	Relinquished by: Date / Time Received by:						Date / Time Sample Re					Rece	ipt	Remarks:							
Belinguist	ned by:	Date	/Time		Received by:	1	-	1	-).	C 9 Date	// Time	Good	o Condi	Ition?	Y	<u>N</u>	-				
												Seal	p. s Intact	2	YN						
Relinquist	ied by:	Date	/ Time		Received by:					Date	/ Time	Tota	I Numb	per of				T: 24			

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24A010 **Reported:** 01/09/2024 10:09

Notes and Definitions

Item	Definition
RL	Reporting Limit
ND	Analyte NOT DETECTED at or above the reporting limit
DET	Analyte DETECTED at or above the reporting limit
Qual	Qualifier
	All results reported on an "as received" basis unless indicated by "Dry"

Work Order Sample Summary

Lab ID	Sample	Matrix	Date Sampled	Date Received
L24A010-01	MW-1	Water	01/03/2024	01/03/2024
L24A010-02	MW-2	Water	01/03/2024	01/03/2024
L24A010-03	MW-3	Water	01/03/2024	01/03/2024
L24A010-04	MW-5	Water	01/03/2024	01/03/2024

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24A010 **Reported:** 01/09/2024 10:09

Sample Results

Client Sample ID: MW-1

r

Lab ID: L24A010-01 (Water)

					Date	Analyst
Analyte	Result	Qual	RL	Units	Analyzed	Initials
Volatile Organic Compounds by EPA N	lethod 8260D	<u>)</u>				
Vinyl Chloride (SIM)	ND		0.20	ug/L	01/04/2024	PB
1,1-Dichloroethene	ND		0.50	ug/L	01/04/2024	PB
trans-1,2-Dichloroethene	ND		1.0	ug/L	01/04/2024	PB
cis-1,2-Dichloroethene	ND		1.0	ug/L	01/04/2024	PB
Trichloroethene (SIM)	ND		0.40	ug/L	01/04/2024	PB
Tetrachloroethene (SIM)	ND		1.0	ug/L	01/04/2024	PB
Surrogate: Dibromofluoromethane	123%		22.9-220		<i>01/04/2024</i>	PB
Surrogate: 1,2-Dichloroethane-d4	123%		32.2-196		<i>01/04/2024</i>	РВ
Surrogate: Toluene-d8	90.6%		47.3-146		<i>01/04/2024</i>	РВ
Surrogate: 4-Bromofluorobenzene	89.4%		38.4-136		<i>01/04/2024</i>	РВ

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24A010 **Reported:** 01/09/2024 10:09

Sample Results (Continued)

Client Sample ID: MW-2

Lab ID: L24A010-02 (Water)

					Date	Analyst	
Analyte	Result	Qual	RL	Units	Analyzed	Initials	
Volatile Organic Compounds by EPA	Method 826	<u>0D</u>					
Vinyl Chloride (SIM)	ND		0.20	ug/L	01/04/2024	РВ	
1,1-Dichloroethene	ND		0.50	ug/L	01/04/2024	РВ	
trans-1,2-Dichloroethene	ND		1.0	ug/L	01/04/2024	РВ	
cis-1,2-Dichloroethene	ND		1.0	ug/L	01/04/2024	РВ	
Trichloroethene (SIM)	ND		0.40	ug/L	01/04/2024	РВ	
Tetrachloroethene (SIM)	ND		1.0	ug/L	01/04/2024	РВ	
Surrogate: Dibromofluoromethane	127%		22.9-220	7	01/04/2024	РВ	
Surrogate: 1,2-Dichloroethane-d4	127%		32.2-196	5	<i>01/04/2024</i>	PB	
Surrogate: Toluene-d8	91.0%		47.3-146	5	<i>01/04/2024</i>	PB	
Surrogate: 4-Bromofluorobenzene	87.6%		38.4-136	5	<i>01/04/2024</i>	PB	

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24A010 **Reported:** 01/09/2024 10:09

Sample Results (Continued)

Client Sample ID: MW-3

Lab ID: L24A010-03 (Water)

					Date	Analyst
Analyte	Result	Qual	RL	Units	Analyzed	Initials
Volatile Organic Compounds by EPA M	ethod 8260D	<u>)</u>				
Vinyl Chloride (SIM)	ND		0.20	ug/L	01/04/2024	PB
1,1-Dichloroethene	ND		0.50	ug/L	01/04/2024	PB
trans-1,2-Dichloroethene	ND		1.0	ug/L	01/04/2024	PB
cis-1,2-Dichloroethene	ND		1.0	ug/L	01/04/2024	PB
Trichloroethene (SIM)	ND		0.40	ug/L	01/04/2024	PB
Tetrachloroethene (SIM)	ND		1.0	ug/L	01/04/2024	PB
Surrogate: Dibromofluoromethane	111%		22.9-220		<i>01/04/2024</i>	РВ
Surrogate: 1,2-Dichloroethane-d4	117%		32.2-196		<i>01/04/2024</i>	РВ
Surrogate: Toluene-d8	78.4%		47.3-146		<i>01/04/2024</i>	РВ
Surrogate: 4-Bromofluorobenzene	86.5%		38.4-136		<i>01/04/2024</i>	РВ

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24A010 **Reported:** 01/09/2024 10:09

Sample Results (Continued)

Client Sample ID: MW-5

Lab ID: L24A010-04 (Water)

					Date	Analyst	
Analyte	Result	Qual	RL	Units	Analyzed	Initials	
Volatile Organic Compounds by EPA	Method 8260	<u>DD</u>					
Vinyl Chloride (SIM)	ND		0.20	ug/L	01/04/2024	PB	
1,1-Dichloroethene	ND		0.50	ug/L	01/04/2024	PB	
trans-1,2-Dichloroethene	ND		1.0	ug/L	01/04/2024	PB	
cis-1,2-Dichloroethene	ND		1.0	ug/L	01/04/2024	PB	
Trichloroethene (SIM)	ND		0.40	ug/L	01/04/2024	PB	
Tetrachloroethene (SIM)	ND		1.0	ug/L	01/04/2024	PB	
Surrogate: Dibromofluoromethane	118%		22.9-220		<i>01/04/2024</i>	PB	
Surrogate: 1,2-Dichloroethane-d4	123%		32.2-196		<i>01/04/2024</i>	PB	
Surrogate: Toluene-d8	80.2%		47.3-146		<i>01/04/2024</i>	PB	
Surrogate: 4-Bromofluorobenzene	85.1%		38.4-136		<i>01/04/2024</i>	PB	

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24A010 **Reported:** 01/09/2024 10:09

Quality Control

Volatile Organic Compounds by EPA Method 8260D

Appleto	Pocult	Qual	Ы	Unito	Spike	Source	04.DEC	%REC	חחם	RPD
Allalyte	Result	Quai	RL	Units	Level	Result	70REC	LIIIIIUS	RPD	LIITIIL
Batch: BYA0025 - VOA										
Blank (BYA0025-BLK1)					Prepa	red & Analyze	ed: 1/4/2024			
Vinyl Chloride (SIM)	ND		0.20	ug/L						
1,1-Dichloroethene	ND		0.50	ug/L						
trans-1,2-Dichloroethene	ND		1.0	ug/L						
cis-1,2-Dichloroethene	ND		1.0	ug/L						
Trichloroethene (SIM)	ND		0.40	ug/L						
Tetrachloroethene (SIM)	ND		1.0	ug/L						
Surrogate: Dibromofluoromethane			25.1	ug/L	20.0		126	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			26.4	ug/L	20.0		132	32.2-196		
Surrogate: Toluene-d8			17.9	ug/L	20.0		89.7	47.3-146		
Surrogate: 4-Bromofluorobenzene			17.3	ug/L	20.0		86.7	38.4-136		
LCS (BYA0025-BS1) Prepared & Analyzed: 1/4/2024										
Vinyl Chloride (SIM)	5.78		0.20	ug/L	5.00		116	44.2-183		
1,1-Dichloroethene	7.42		0.50	ug/L	5.00		148	39.6-181		
trans-1,2-Dichloroethene	6.84		1.0	ug/L	5.00		137	39.6-177		
cis-1,2-Dichloroethene	6.96		1.0	ug/L	5.00		139	29.5-182		
Trichloroethene (SIM)	4.91		0.40	ug/L	5.00		98.2	28.8-130		
Tetrachloroethene (SIM)	4.72		1.0	ug/L	5.00		94.5	30.4-159		
Surrogate: Dibromofluoromethane			23.6	ug/L	20.0		118	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			23.0	ug/L	20.0		115	32.2-196		
Surrogate: Toluene-d8			18.8	ug/L	20.0		94.1	47.3-146		
Surrogate: 4-Bromofluorobenzene			19.6	ug/L	20.0		98.0	38.4-136		
Duplicate (BYA0025-DUP1)		Parent	: L24A012-	05	Prepa	red & Analyze	ed: 1/4/2024			
Vinyl Chloride (SIM)	ND		0.20	ug/L		ND				35
1,1-Dichloroethene	ND		0.50	ug/L		ND				35
trans-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
cis-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
Trichloroethene (SIM)	ND		0.40	ug/L		ND				35
Tetrachloroethene (SIM)	ND		1.0	ug/L		ND				35
Surrogate: Dibromofluoromethane			23.6	ug/L	20.0		118	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			25.6	ug/L	20.0		128	32.2-196		
Surrogate: Toluene-d8			18.6	ug/L	20.0		92.8	47.3-146		
Surrogate: 4-Bromofluorobenzene			18.2	ug/L	20.0		90.8	38.4-136		

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24A010 **Reported:** 01/09/2024 10:09

Quality Control (Continued)

Volatile Organic Compounds by EPA Method 8260D (Continued)

					Spike	Source		%REC		RPD
Analyte	Result	Qual	RL	Units	Level	Result	%REC	Limits	RPD	Limit
Matrix Spike (BYA0025-MS1)		Parent:	L24A012-05		Prepar	ed & Analyzed:	1/4/2024			
Vinyl Chloride (SIM)	5.60		0.20	ug/L	5.00	ND	112	10.7-223		
1,1-Dichloroethene	6.99		0.50	ug/L	5.00	ND	140	21.7-199		
trans-1,2-Dichloroethene	6.54		1.0	ug/L	5.00	ND	131	10-216		
cis-1,2-Dichloroethene	6.62		1.0	ug/L	5.00	ND	132	10-246		
Trichloroethene (SIM)	4.85		0.40	ug/L	5.00	ND	97.0	25.2-172		
Tetrachloroethene (SIM)	4.57		1.0	ug/L	5.00	ND	91.4	43.2-139		
Surrogate: Dibromofluoromethane			23.2	ug/L	20.0		116	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			23.8	ug/L	20.0		119	32.2-196		
Surrogate: Toluene-d8			18.5	ug/L	20.0		92.6	47.3-146		
Surrogate: 4-Bromofluorobenzene			19.5	ug/L	20.0		97.4	38.4-136		
Matrix Spike Dup (BYA0025-MSD1)		Parent: L24A012-05			Prepar	ed & Analyzed:	1/4/2024			
Vinyl Chloride (SIM)	5.46		0.20	ug/L	5.00	ND	109	10.7-223	2.46	35
1,1-Dichloroethene	6.87		0.50	ug/L	5.00	ND	137	21.7-199	1.72	35
trans-1,2-Dichloroethene	6.45		1.0	ug/L	5.00	ND	129	10-216	1.35	35
cis-1,2-Dichloroethene	6.55		1.0	ug/L	5.00	ND	131	10-246	1.14	35
Trichloroethene (SIM)	4.61		0.40	ug/L	5.00	ND	92.2	25.2-172	5.01	35
Tetrachloroethene (SIM)	4.45		1.0	ug/L	5.00	ND	88.9	43.2-139	2.68	35
Surrogate: Dibromofluoromethane			23.6	ug/L	20.0		118	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			24.8	ug/L	20.0		124	32.2-196		
Surrogate: Toluene-d8			18.4	ug/L	20.0		92.1	47.3-146		
Surrogate: 4-Bromofluorobenzene			19.8	ug/L	20.0		99.0	38.4-136		

Libby Environmental, Inc.

4 Corners Cleaners Project AEG an Atlas Geosciences NW Company Libby Work Order # L24A010 Date Received 1/3/2024 Time Received 11:45 AM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By AA

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody is complete?	✓ Yes	No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	No	N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	No	N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	N/A
6. Was an attempt made to cool the samples?	✓ Yes	No	N/A
7. Temperature of cooler (0°C to 8°C recommended)	-0.4	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	10.0	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	No	
10. Is it clear what analyses were requested?	✓ Yes	No No	
11. Did container labels match Chain of Custody?	✓ Yes	No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	No	
13. Are correct containers used for the analysis indicated?	✓ Yes	No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	No	
15. Were all containers properly preserved per each analysis?	✓ Yes	No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	No	N/A
17. Were all holding times able to be met?	✓ Yes	No No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	No No	✓ N/A
Person Notified:		Da	ate:
By Whom:			∕ia:
Regarding:			
19. Comments.			

Libby Environmental, Inc.

3322 South Bay Road NE • Olympia, WA 98506-2957 Phone (360) 352-2110 • libbyenv@gmail.com

April 23, 2024

Scott Rose AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

RE: 4 Corners Cleaners Work Order Number: L24D083

Enclosed are the results of analyses for samples received by our laboratory on 4/19/2024.

Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please feel free to contact us. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

r 2 Mint

Sherry Chilcutt Senior Chemist

Libby Environm	nental	Inc.		CI	nain	of C	ust	ody	R	eco	rd	1						ww	w.Libl	byEnv	ironme	ntal.com
4139 Libby Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4	2110 154			Date: 4/19/29 Page:										ι	of	ι				
Client: AEG						Pro	iect N	lanad	er S	Scott F	Ros	e				¥						
Address: 2633 Parkmour	nt Lane SM	/ Suite A				Pro	iect N	ame.		1 Corn	ere	Clea	ners									
City: Olympia		State:		. 08502		Location: 23886 So Kent Kangley Pd City Stat								nto:	Mar		allev					
Bhana: (260) 252 0925		Eav:	(200) 252	9464		Col	la stor	A	100	o Se N	D	-nai	giey r	lu		y, Ste	Colle	IVICI	JIE V	IICy,	2/2	
Client Droiget# 47 126		rax.	(300) 352	-0104		<u>Coi</u>	lector.	<u>. </u>		ee	n	IK			Da		Colle	CLION		110	1/2	7
Client Project # 17-120						Em		Srose	e@At	GWA.	.cor	<u>m</u>	, ,	,								
Sample Number	Depth	Time	Sample Type	Container Type	2 SE	CE M De	ugher												Fiel	d Not	tes	
1 MW-2	-	1205	GW	VOA	X																	
2 MW-3	-	1135			X																	
3 MW-5	-	1055	3	+	X																0.01	
4																						
5																						
6																						
7																						
8																						
9																		T				
10																						
11																						
12																						
13																						
14																						
15																		1				
16																						,
17									1													
Relinquished by:	Date	/ Time		Received by:	11/	1		[Date /	Time	1	5	Samp	le R	eceip	ot	Rer	nark	S:			
MK	4/19	124	1415	Aulling.	the	1	4-	9-2	4	1416	2 0	Good (Conditic	n?	Y	N						
elinquished by:	Date	/ Time		Received by:				[Date /	Time	1	Temp.				°C						
o linguished but	Dete	(Time		Dessived two		_			Dat- 1	Times	5	Seals I	ntact?	1	N	N/A						
	Date	/ TIME		Received by:				L	Jate /	lime		Con	umber tainers	to			TA	T:	24HF	R 4	BHR /	5-DAY
GAL ACTION CLAUSE: In the event of default of	payment and/or failur	e to pay, Client agr	ees to pay the costs o	of collection including court	costs and reas	onable attorn	ey fees to b	e determin	ed by a co	out of law.							Distribu	tion: W	hite - La	b, Yellow	- File, Pile	k - Originato

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose City/State: Maple Valley, WA Work Order: L24D083 Reported: 04/23/2024 12:18

Notes and Definitions

Item	Definition
RL	Reporting Limit
ND	Analyte NOT DETECTED at or above the reporting limit
DET	Analyte DETECTED at or above the reporting limit
Qual	Qualifier
	All results reported on an "as received" basis unless indicated by "Dry"

Work Order Sample Summary

Lab ID	Sample	Matrix	Date Sampled	Date Received
L24D083-01	MW-2	Water	04/19/2024	04/19/2024
L24D083-02	MW-3	Water	04/19/2024	04/19/2024
L24D083-03	MW-5	Water	04/19/2024	04/19/2024

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24D083 **Reported:** 04/23/2024 12:18

Sample Results

Client Sample ID: MW-2

Г

Lab ID: L24D083-01 (Water)

					Date	Analyst					
Analyte	Result	Qual	RL	Units	Analyzed	Initials					
Volatile Organic Compounds by EPA Method 8260D											
Vinyl Chloride (SIM)	ND		0.20	ug/L	04/22/2024	AA					
1,1-Dichloroethene	ND		0.50	ug/L	04/22/2024	AA					
trans-1,2-Dichloroethene	ND		1.0	ug/L	04/22/2024	AA					
cis-1,2-Dichloroethene	ND		1.0	ug/L	04/22/2024	AA					
Trichloroethene (SIM)	ND		0.40	ug/L	04/22/2024	AA					
Tetrachloroethene (SIM)	ND		1.0	ug/L	04/22/2024	AA					
Surrogate: Dibromofluoromethane	104%		49.6-175		<i>04/22/2024</i>	AA					
Surrogate: 1,2-Dichloroethane-d4	107%		31.7-194		<i>04/22/2024</i>	AA					
Surrogate: Toluene-d8	103%		<i>52.9-135</i>		<i>04/22/2024</i>	AA					
Surrogate: 4-Bromofluorobenzene	97.1%		50.8-121		<i>04/22/2024</i>	AA					

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24D083 **Reported:** 04/23/2024 12:18

Sample Results (Continued)

Client Sample ID: MW-3

r

Lab ID: L24D083-02 (Water)

					Date	Analyst					
Analyte	Result	Qual	RL	Units	Analyzed	Initials					
Volatile Organic Compounds by EPA Method 8260D											
Vinyl Chloride (SIM)	ND		0.20	ug/L	04/22/2024	AA					
1,1-Dichloroethene	ND		0.50	ug/L	04/22/2024	AA					
trans-1,2-Dichloroethene	ND		1.0	ug/L	04/22/2024	AA					
cis-1,2-Dichloroethene	ND		1.0	ug/L	04/22/2024	AA					
Trichloroethene (SIM)	ND		0.40	ug/L	04/22/2024	AA					
Tetrachloroethene (SIM)	ND		1.0	ug/L	04/22/2024	AA					
Surrogate: Dibromofluoromethane	106%		49.6-175		<i>04/22/2024</i>	AA					
Surrogate: 1,2-Dichloroethane-d4	107%		31.7-194		<i>04/22/2024</i>	AA					
Surrogate: Toluene-d8	104%		<i>52.9-135</i>		<i>04/22/2024</i>	AA					
Surrogate: 4-Bromofluorobenzene	94.8%		50.8-121		<i>04/22/2024</i>	AA					

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24D083 **Reported:** 04/23/2024 12:18

Sample Results (Continued)

Client Sample ID: MW-5

r

Lab ID: L24D083-03 (Water)

					Date	Analyst					
Analyte	Result	Qual	RL	Units	Analyzed	Initials					
Volatile Organic Compounds by EPA Method 8260D											
Vinyl Chloride (SIM)	ND		0.20	ug/L	04/22/2024	AA					
1,1-Dichloroethene	ND		0.50	ug/L	04/22/2024	AA					
trans-1,2-Dichloroethene	ND		1.0	ug/L	04/22/2024	AA					
cis-1,2-Dichloroethene	ND		1.0	ug/L	04/22/2024	AA					
Trichloroethene (SIM)	ND		0.40	ug/L	04/22/2024	AA					
Tetrachloroethene (SIM)	ND		1.0	ug/L	04/22/2024	AA					
Surrogate: Dibromofluoromethane	120%		49.6-175		<i>04/22/2024</i>	AA					
Surrogate: 1,2-Dichloroethane-d4	124%		31.7-194		<i>04/22/2024</i>	AA					
Surrogate: Toluene-d8	119%		<i>52.9-135</i>		<i>04/22/2024</i>	AA					
Surrogate: 4-Bromofluorobenzene	95.7%		50.8-121		<i>04/22/2024</i>	AA					

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24D083 **Reported:** 04/23/2024 12:18

Quality Control

Volatile Organic Compounds by EPA Method 8260D

Analvte	Result	Oual	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
		1								
Batch: BYD0131 - VOA										
Blank (BYD0131-BLK1)					Prepar	ed & Analyzed	d: 4/22/2024			
Vinyl Chloride (SIM)	ND		0.20	ug/L						
1,1-Dichloroethene	ND		0.50	ug/L						
trans-1,2-Dichloroethene	ND		1.0	ug/L						
cis-1,2-Dichloroethene	ND		1.0	ug/L						
Trichloroethene (SIM)	ND		0.40	ug/L						
Tetrachloroethene (SIM)	ND		1.0	ug/L						
Surrogate: Dibromofluoromethane			20.6	ug/L	20.0		103	49.6-175		
Surrogate: 1,2-Dichloroethane-d4			21.2	ug/L	20.0		106	31.7-194		
Surrogate: Toluene-d8			21.1	ug/L	20.0		106	52.9-135		
Surrogate: 4-Bromofluorobenzene			19.4	ug/L	20.0		96.9	50.8-121		
LCS (BYD0131-BS1)					Prepar	ed & Analyzed	d: 4/22/2024			
Vinyl Chloride (VC)	3.84		2.0	ug/L	5.00		76.8	27.5-188		
1,1-Dichloroethene	4.74		0.50	ug/L	5.00		94.9	42.4-208		
trans-1,2-Dichloroethene	5.04		1.0	ug/L	5.00		101	37.7-200		
cis-1,2-Dichloroethene	4.89		1.0	ug/L	5.00		97.8	53.2-160		
Trichloroethene (TCE)	4.35		2.0	ug/L	5.00		86.9	63.3-132		
Tetrachloroethene (PCE)	4.49		2.0	ug/L	5.00		89.9	46.9-140		
Surrogate: Dibromofluoromethane			20.4	ug/L	20.0		102	49.6-175		
Surrogate: 1,2-Dichloroethane-d4			21.5	ug/L	20.0		107	31.7-194		
Surrogate: Toluene-d8			21.2	ug/L	20.0		106	<i>52.9-135</i>		
Surrogate: 4-Bromofluorobenzene			22.7	ug/L	20.0		113	50.8-121		
Duplicate (BYD0131-DUP1)		Parent	: L24D083-	01	Prepar	ed & Analyzed	d: 4/22/2024			
Vinyl Chloride (SIM)	ND		0.20	ug/L		ND				35
1,1-Dichloroethene	ND		0.50	ug/L		ND				35
trans-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
cis-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
Trichloroethene (SIM)	ND		0.40	ug/L		ND				35
Tetrachloroethene (SIM)	ND		1.0	ug/L		ND				35
Surrogate: Dibromofluoromethane			21.5	ug/L	20.0		108	49.6-175		
Surrogate: 1,2-Dichloroethane-d4			22.2	ug/L	20.0		111	31.7-194		
Surrogate: Toluene-d8			21.2	ug/L	20.0		106	<i>52.9-135</i>		
Surrogate: 4-Bromofluorobenzene			19.3	ug/L	20.0		96.6	50.8-121		

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose City/State: Maple Valley, WA Work Order: L24D083 Reported: 04/23/2024 12:18

Quality Control (Continued)

Volatile Organic Compounds by EPA Method 8260D (Continued)

					Spike	Source		%REC		RPD
Analyte	Result	Qual	RL	Units	Level	Result	%REC	Limits	RPD	Limit
Matrix Spike (BYD0131-MS1)		Parent:	L24D083-01		Prepare	ed & Analyzed:	4/22/2024			
Vinyl Chloride (VC)	4.03		2.0	ug/L	5.00	ND	80.5	12.9-180		
1,1-Dichloroethene	4.63		0.50	ug/L	5.00	ND	92.6	39.1-203		
trans-1,2-Dichloroethene	4.72		1.0	ug/L	5.00	ND	94.3	40.5-190		
cis-1,2-Dichloroethene	5.26		1.0	ug/L	5.00	ND	105	28.9-177		
Trichloroethene (TCE)	4.20		2.0	ug/L	5.00	ND	83.9	58.3-130		
Tetrachloroethene (PCE)	4.96		2.0	ug/L	5.00	ND	99.3	32-159		
Surrogate: Dibromofluoromethane			20.8	ug/L	20.0		104	49.6-175		
Surrogate: 1,2-Dichloroethane-d4			21.7	ug/L	20.0		109	31.7-194		
Surrogate: Toluene-d8			21.8	ug/L	20.0		109	<i>52.9-135</i>		
Surrogate: 4-Bromofluorobenzene			21.6	ug/L	20.0		108	50.8-121		
Matrix Spike Dup (BYD0131-MSD1)		Parent: L24D083-01			Prepare	ed & Analyzed:	4/22/2024			
Vinyl Chloride (VC)	4.59		2.0	ug/L	5.00	ND	91.9	12.9-180	13.2	35
1,1-Dichloroethene	5.49		0.50	ug/L	5.00	ND	110	39.1-203	17.0	35
trans-1,2-Dichloroethene	5.93		1.0	ug/L	5.00	ND	119	40.5-190	22.9	35
cis-1,2-Dichloroethene	5.72		1.0	ug/L	5.00	ND	114	28.9-177	8.32	35
Trichloroethene (TCE)	4.79		2.0	ug/L	5.00	ND	95.8	58.3-130	13.2	35
Tetrachloroethene (PCE)	5.40		2.0	ug/L	5.00	ND	108	32-159	8.49	35
Surrogate: Dibromofluoromethane			21.1	ug/L	20.0		105	49.6-175		
Surrogate: 1,2-Dichloroethane-d4			21.6	ug/L	20.0		108	31.7-194		
Surrogate: Toluene-d8			21.5	ug/L	20.0		108	52.9-135		
Surrogate: 4-Bromofluorobenzene			22.0	ug/L	20.0		110	50.8-121		

Libby Environmental, Inc.

4 Corners Cleaners Project AEG an Atlas Geosciences NW Company Libby Work Order # L24D083 Date Received 4/19/2024 Time Received 2:16 PM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KLI

Sample Receipt Checklist

Chain of Custody				
1. Is the Chain of Custody is complete?	✓ Yes	No		
2. How was the sample delivered?	✓ Hand Delivered	Picked Up)	Shipped
Log In				
3. Cooler or Shipping Container is present.	✓ Yes	No		□ N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	No		N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No		□ N/A
6. Was an attempt made to cool the samples?	✓ Yes	No		N/A
7. Temperature of cooler (0°C to 8°C recommended)	0.0	°C		
8. Temperature of sample(s) (0°C to 8°C recommended)	3.5	°C		
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	No		
10. Is it clear what analyses were requested?	✓ Yes	No		
11. Did container labels match Chain of Custody?	✓ Yes	No		
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	No		
13. Are correct containers used for the analysis indicated?	✓ Yes	No		
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	No		
15. Were all containers properly preserved per each analysis?	✓ Yes	No		
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	No		N/A
17. Were all holding times able to be met?	✓ Yes	No		
Discrepancies/ Notes				
18. Was client notified of all discrepancies?	Yes	No		✓ N/A
Person Notified:		_	Date:	
By Whom:		_	Via:	
Regarding:		_		
19. Comments.				

Libby Environmental, Inc.

3322 South Bay Road NE • Olympia, WA 98506-2957 Phone (360) 352-2110 • libbyenv@gmail.com

July 09, 2024

Scott Rose AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

RE: 4 Corners Cleaners Work Order Number: L24G004

Enclosed are the results of analyses for samples received by our laboratory on 7/2/2024.

Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please feel free to contact us. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

r 2 Mint

Sherry Chilcutt Senior Chemist

Libby Environ	mental,	Inc.		C	hain	of Cu	sto	dy F	Recor	ď					www.	LibbyEn	vironmen	tal.con
4139 Libby Road NE Olympia, WA 98506	Ph: Fax:	360-352- 360-352-	2110 4154			Date:	7/	2/2	24				Page	:	T	of	1	+ + - C
Client: AEG						Projec	t Man	ager:	Scott R	ose								
Address: 2633 Parkmou	unt Lane SV	V, Suite A	1			Projec	t Nam	ne:	4 Corne	ers Cle	eaners							à
City: Olympia		State:	WA Z	ip: 98502		Locati	on:	238	86 Se K	ent-Ka	anglev R	d	City.	State:	Maple	Vallev	. WA	
Phone: (360) 352-983	5	Fax:	(360) 35	2-8164		Collec	tor:	Dia	na O	rede	2		Date	of Colle	ection:	7/2	124	
Client Project # 17-126			<u> </u>	-		Email:	Sro	ose@A	EGWA.c	:om						-1		
Sample Number	Depth	Time	Sample	Container Type	24	ICE W Daught	\$									ield No	tes	
1 MW-1	-	0606	GW	VOA	X			T		T		T			1			
2 MW-7	-	0828	11		X													
3 MW-3	-	0926			X													
4 MW-5	-	0850	V	*	X													
5																		
6																		
7																		
8																		
9																		
10																		
11																		
12																		
13																		
14																		
15																		
16																		
17																		
Relinquished by:	Date	/ Time	17	Received by:	1		7/2	Date	/ Time		Samp	e Rec	ceipt	Re	marks:			
Relinguished by:	Date	Time		Received by:				Date	/ Time	Good	Condition	17	<u>т Г</u>					
										Seal	s Intact?	Y	NN	I/A				
Relinquished by:	Date	/ Time		Received by:				Date	/ Time	Tota	I Number	of		TA	T: 24	HR 4	8HR 5	DAY

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24G004 **Reported:** 07/09/2024 12:13

Notes and Definitions

Item	Definition
RL	Reporting Limit
ND	Analyte NOT DETECTED at or above the reporting limit
DET	Analyte DETECTED at or above the reporting limit
Qual	Qualifier
	All results reported on an "as received" basis unless indicated by "Dry"

Work Order Sample Summary

Lab ID	Sample	Matrix	Date Sampled	Date Received
L24G004-01	MW-1	Water	07/02/2024	07/02/2024
L24G004-02	MW-2	Water	07/02/2024	07/02/2024
L24G004-03	MW-3	Water	07/02/2024	07/02/2024
L24G004-04	MW-5	Water	07/02/2024	07/02/2024

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24G004 **Reported:** 07/09/2024 12:13

Sample Results

Client Sample ID: MW-1

Lab ID: L24G004-01 (Water)

					Date	Analyst						
Analyte	Result	Qual	RL	Units	Analyzed	Initials						
Volatile Organic Compounds by EPA Method 8260D												
Vinyl Chloride (SIM)	ND		0.20	ug/L	07/02/2024	AA						
1,1-Dichloroethene	ND		0.50	ug/L	07/02/2024	AA						
trans-1,2-Dichloroethene	ND		1.0	ug/L	07/02/2024	AA						
cis-1,2-Dichloroethene	ND		1.0	ug/L	07/02/2024	AA						
Trichloroethene (SIM)	ND		0.40	ug/L	07/02/2024	AA						
Tetrachloroethene (SIM)	ND		1.0	ug/L	07/02/2024	AA						
Surrogate: Dibromofluoromethane	101%		49.6-175		<i>07/02/2024</i>	AA						
Surrogate: 1,2-Dichloroethane-d4	104%		31.7-194		<i>07/02/2024</i>	AA						
Surrogate: Toluene-d8	95.6%		<i>52.9-135</i>		<i>07/02/2024</i>	AA						
Surrogate: 4-Bromofluorobenzene	91.0%		50.8-121		<i>07/02/2024</i>	AA						

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24G004 **Reported:** 07/09/2024 12:13

Sample Results (Continued)

Client Sample ID: MW-2

г

Lab ID: L24G004-02 (Water)

					Date	Analyst
Analyte	Result	Qual	RL	Units	Analyzed	Initials
Volatile Organic Compounds by EPA M						
Vinyl Chloride (SIM)	ND		0.20	ug/L	07/02/2024	AA
1,1-Dichloroethene	ND		0.50	ug/L	07/02/2024	AA
trans-1,2-Dichloroethene	ND		1.0	ug/L	07/02/2024	AA
cis-1,2-Dichloroethene	ND		1.0	ug/L	07/02/2024	AA
Trichloroethene (SIM)	ND		0.40	ug/L	07/02/2024	AA
Tetrachloroethene (SIM)	ND		1.0	ug/L	07/02/2024	AA
Surrogate: Dibromofluoromethane	104%		49.6-175		<i>07/02/2024</i>	AA
Surrogate: 1,2-Dichloroethane-d4	102%		31.7-194		<i>07/02/2024</i>	AA
Surrogate: Toluene-d8	93.6%		<i>52.9-135</i>		<i>07/02/2024</i>	AA
Surrogate: 4-Bromofluorobenzene	93.4%		50.8-121		<i>07/02/2024</i>	AA

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24G004 **Reported:** 07/09/2024 12:13

Sample Results (Continued)

Client Sample ID: MW-3

Lab ID: L24G004-03 (Water)

					Date	Analyst		
Analyte	Result	Qual	RL	Units	Analyzed	Initials		
Volatile Organic Compounds by EPA Method 8260D								
Vinyl Chloride (SIM)	ND		0.20	ug/L	07/02/2024	AA		
1,1-Dichloroethene	ND		0.50	ug/L	07/02/2024	AA		
trans-1,2-Dichloroethene	ND		1.0	ug/L	07/02/2024	AA		
cis-1,2-Dichloroethene	ND		1.0	ug/L	07/02/2024	AA		
Trichloroethene (SIM)	ND		0.40	ug/L	07/02/2024	AA		
Tetrachloroethene (SIM)	ND		1.0	ug/L	07/02/2024	AA		
Surrogate: Dibromofluoromethane	111%		49.6-175		<i>07/02/2024</i>	AA		
Surrogate: 1,2-Dichloroethane-d4	109%		31.7-194		<i>07/02/2024</i>	AA		
Surrogate: Toluene-d8	100%		<i>52.9-135</i>		<i>07/02/2024</i>	AA		
Surrogate: 4-Bromofluorobenzene	91.3%		50.8-121		<i>07/02/2024</i>	AA		

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24G004 **Reported:** 07/09/2024 12:13

Sample Results (Continued)

Client Sample ID: MW-5

Lab ID: L24G004-04 (Water)

					Date	Analyst		
Analyte	Result	Qual	RL	Units	Analyzed	Initials		
Volatile Organic Compounds by EPA Method 8260D								
Vinyl Chloride (SIM)	ND		0.20	ug/L	07/02/2024	AA		
1,1-Dichloroethene	ND		0.50	ug/L	07/02/2024	AA		
trans-1,2-Dichloroethene	ND		1.0	ug/L	07/02/2024	AA		
cis-1,2-Dichloroethene	ND		1.0	ug/L	07/02/2024	AA		
Trichloroethene (SIM)	ND		0.40	ug/L	07/02/2024	AA		
Tetrachloroethene (SIM)	ND		1.0	ug/L	07/02/2024	AA		
Surrogate: Dibromofluoromethane	98.4%		49.6-175		<i>07/02/2024</i>	AA		
Surrogate: 1,2-Dichloroethane-d4	98.6%		31.7-194		<i>07/02/2024</i>	AA		
Surrogate: Toluene-d8	88.8%		<i>52.9-135</i>		<i>07/02/2024</i>	AA		
Surrogate: 4-Bromofluorobenzene	87.5%		50.8-121		<i>07/02/2024</i>	AA		

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose City/State: Maple Valley, WA Work Order: L24G004 Reported: 07/09/2024 12:13

Quality Control

Volatile Organic Compounds by EPA Method 8260D

Analyte	Result	Qual	RI	Units	Spike	Source	%REC	%REC	RPD	RPD Limit
Andryce	Result	Quui		01103	Level	Result	JUILEE	Linito	N D	Linit
Batch: BYG0011 - VOA										
Blank (BYG0011-BLK1)	Slank (BYG0011-BLK1) Prepared & Analyzed: 7/2/2024									
Vinyl Chloride (SIM)	ND		0.20	ug/L						
1,1-Dichloroethene	ND		0.50	ug/L						
trans-1,2-Dichloroethene	ND		1.0	ug/L						
cis-1,2-Dichloroethene	ND		1.0	ug/L						
Trichloroethene (SIM)	ND		0.40	ug/L						
Tetrachloroethene (SIM)	ND		1.0	ug/L						
Surrogate: Dibromofluoromethane			19.7	ug/L	20.0		98.4	49.6-175		
Surrogate: 1,2-Dichloroethane-d4			19.3	ug/L	20.0		96.3	31.7-194		
Surrogate: Toluene-d8			17.6	ug/L	20.0		88.0	52.9-135		
Surrogate: 4-Bromofluorobenzene			18.2	ug/L	20.0		91.0	50.8-121		
LCS (BYG0011-BS1)		Prepared & Analyzed: 7/2/2024								
Vinyl Chloride (VC)	5.39		2.0	ug/L	5.00		108	27.5-188		
1,1-Dichloroethene	5.15		0.50	ug/L	5.00		103	42.4-208		
trans-1,2-Dichloroethene	5.01		1.0	ug/L	5.00		100	37.7-200		
cis-1,2-Dichloroethene	4.70		1.0	ug/L	5.00		94.0	53.2-160		
Trichloroethene (TCE)	4.55		2.0	ug/L	5.00		91.0	63.3-132		
Tetrachloroethene (PCE)	4.77		2.0	ug/L	5.00		95.5	46.9-140		
Surrogate: Dibromofluoromethane			19.4	ug/L	20.0		96.8	49.6-175		
Surrogate: 1,2-Dichloroethane-d4			20.0	ug/L	20.0		100	31.7-194		
Surrogate: Toluene-d8			18.2	ug/L	20.0		90.9	52.9-135		
Surrogate: 4-Bromofluorobenzene			21.4	ug/L	20.0		107	50.8-121		
Duplicate (BYG0011-DUP1)		Parent	: L24G004-	01	Prepa	red & Analyze	ed: 7/2/2024			
Vinyl Chloride (SIM)	ND		0.20	ug/L		ND				35
1,1-Dichloroethene	ND		0.50	ug/L		ND				35
trans-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
cis-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
Trichloroethene (SIM)	ND		0.40	ug/L		ND				35
Tetrachloroethene (SIM)	ND		1.0	ug/L		ND				35
Surrogate: Dibromofluoromethane			20.0	ug/L	20.0		100	49.6-175		
Surrogate: 1,2-Dichloroethane-d4			19.8	ug/L	20.0		98.9	31.7-194		
Surrogate: Toluene-d8			18.2	ug/L	20.0		90.9	<i>52.9-135</i>		
Surrogate: 4-Bromofluorobenzene			17.3	ug/L	20.0		86.7	50.8-121		

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose **City/State:** Maple Valley, WA **Work Order:** L24G004 **Reported:** 07/09/2024 12:13

Quality Control (Continued)

Volatile Organic Compounds by EPA Method 8260D (Continued)

					Spike	Source		%REC		RPD
Analyte	Result	Qual	RL	Units	Level	Result	%REC	Limits	RPD	Limit
Matrix Spike (BYG0011-MS1)		Parent: L24G004-01			Prepared & Analyzed: 7/2/2024					
Vinyl Chloride (SIM)	5.14		0.20	ug/L	5.00	ND	103	12.9-183		
1,1-Dichloroethene	4.96		0.50	ug/L	5.00	ND	99.2	39.1-203		
trans-1,2-Dichloroethene	4.71		1.0	ug/L	5.00	ND	94.3	40.5-190		
cis-1,2-Dichloroethene	4.57		1.0	ug/L	5.00	ND	91.5	28.9-177		
Trichloroethene (TCE)	4.90		2.0	ug/L	5.00	ND	98.0	58.3-130		
Tetrachloroethene (PCE)	5.13		2.0	ug/L	5.00	ND	103	32-159		
Surrogate: Dibromofluoromethane			19.4	ug/L	20.0		96.8	49.6-175		
Surrogate: 1,2-Dichloroethane-d4			19.6	ug/L	20.0		97.9	31.7-194		
Surrogate: Toluene-d8			18.3	ug/L	20.0		91.6	<i>52.9-135</i>		
Surrogate: 4-Bromofluorobenzene			21.6	ug/L	20.0		108	50.8-121		
Matrix Spike Dup (BYG0011-MSD1)		Parent: L24G004-01			Prepared & Analyzed: 7/2/2024					
Vinyl Chloride (VC)	4.48		2.0	ug/L	5.00	ND	89.7	12.9-180	0.998	35
1,1-Dichloroethene	4.84		0.50	ug/L	5.00	ND	96.8	39.1-203	2.49	35
trans-1,2-Dichloroethene	4.82		1.0	ug/L	5.00	ND	96.5	40.5-190	2.31	35
cis-1,2-Dichloroethene	4.59		1.0	ug/L	5.00	ND	91.8	28.9-177	0.371	35
Trichloroethene (TCE)	5.46		2.0	ug/L	5.00	ND	109	58.3-130	10.7	35
Tetrachloroethene (PCE)	5.28		2.0	ug/L	5.00	ND	106	32-159	2.75	35
Surrogate: Dibromofluoromethane			19.7	ug/L	20.0		<i>98.3</i>	49.6-175		
Surrogate: 1,2-Dichloroethane-d4			19.7	ug/L	20.0		98.4	31.7-194		
Surrogate: Toluene-d8			18.2	ug/L	20.0		91.2	<i>52.9-135</i>		
Surrogate: 4-Bromofluorobenzene			23.1	ug/L	20.0		116	50.8-121		

Libby Environmental, Inc.

4 Corners Cleaners Project AEG an Atlas Geosciences NW Company Libby Work Order # L24G004 Date Received 7/2/2024 Time Received 11:15 AM 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By LB

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody is complete?	✓ Yes	No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	No	N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	No	N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	N/A
6. Was an attempt made to cool the samples?	✓ Yes	No	N/A
7. Temperature of cooler (0°C to 8°C recommended)	0.3	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	5.1	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	No	
10. Is it clear what analyses were requested?	✓ Yes	No	
11. Did container labels match Chain of Custody?	✓ Yes	No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	No	
13. Are correct containers used for the analysis indicated?	✓ Yes	No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	No	
15. Were all containers properly preserved per each analysis?	✓ Yes	No	
16. Were VOA vials collected correctly (no headspace)?	✓ Yes	No	□ N/A
17. Were all holding times able to be met?	✓ Yes	No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	No	✓ N/A
Person Notified:		Da	ate:
By Whom:			Via:
Regarding:			
19. Comments.			

APPENDIX B

No Further Action Letter – NW2931 No Further Action Letter – NW2932

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Northwest Regional Office • 3190 160th Ave SE • Bellevue, WA 98008-5452 • 425-649-7000 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

March 2, 2015

Mr. Mark Jenkins Kite Realty Group 30 South Meridian Street, Suite 1100 Indianapolis, IN 46204

Re: No Further Action at the Following Site:

- Name: Four Corners Cleaners Original Location
- Address: 23900 Kent-Kangley Road, Maple Valley, WA
- Facility/Site No.: 98451692
- Cleanup Site ID No.: 12512
- VCP No.: NW2931

Dear Mr. Jenkins:

The Washington State Department of Ecology (Ecology) received your request for an opinion on your independent cleanup of the Four Corners Cleaners Original Location facility (Site). This letter provides our opinion. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW.

Issue Presented and Opinion

Is further remedial action necessary to clean up contamination at the Site?

NO. Ecology has determined that no further remedial action is necessary to clean up contamination at the Site.

This opinion is based on information and data provided in the Remedial Action Report dated August 22, 2014. The report documents the remedial activities that have addressed contamination in soil at the Site due to operations of the former dry cleaning facility.

This opinion is also based on an analysis of whether the remedial action meets the substantive requirements of MTCA, Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided below.

1

1 1

}

Description of the Site

This opinion applies only to the Site described below. The Site is defined by the nature and extent of contamination associated with the following releases:

• Perchloroethylene (PCE), Trichloroethene (TCE), cis-1,2-Dichloroethene (cis-1,2-DCE), and trans-1,2-Dichloroethene (trans-1, 2-DCE) into Soil.

Basis for the Opinion

This opinion is based on the information contained in the following documents:

- 1. The Riley Group, Inc., August 22, 2014, Remedial Action Report.
- 2. The Riley Group, Inc., February 26, 2014, Addendum to 2012 Additional Subsurface Investigation Report.
- 3. The Riley Group, Inc., September 28, 2012, Additional Subsurface Investigation Report.
- 4. The Riley Group, Inc., May 9, 2012, Phase I Environmental Site Assessment Update.
- 5. The Riley Group, Inc., December 7, 2004, Supplemental Phase II Subsurface Investigation.
- 6. The Riley Group, Inc., September 30, 2003, Phase I Environmental Site Assessment.

Those documents listed above are kept in the Central Files of the Northwest Regional Office of Ecology (NWRO) for review by appointment only. You can make an appointment by calling the NWRO resource contact at (425) 649-7235 or by sending an email to nwro public request@ecy.wa.gov.

This opinion is void if any of the information contained in those documents is materially false or misleading.

Analysis of the Cleanup

Ecology has concluded that **no further remedial action** is necessary to further clean up the contaminated soil at the Site. That conclusion is based on the following analysis:

Į

1

I

į

1. Characterization of the Site.

Ecology has determined characterization of the Site is sufficient to establish cleanup standards and select cleanup actions for removal of the contaminated soil exceeding MTCA Method A cleanup levels and confirmation of the groundwater quality.

- **a.** Site assessments conducted at this Site from 1989 to 2014 confirmed the presence of chemicals of concern (COCs) as aforementioned in soil. The studies also concluded that the contamination resulted from operations of the former dry cleaning facility.
- b. Following completion of Site characterization, cleanup actions were conducted in August 2014. The remedial activities included excavation of approximately 134 tons of impacted soil at two locations (Figure 3), collection of confirmation soil samples in both of the excavations and transport of the soil to Columbia Ridge Subtitle D Landfill for disposal.
- c. Laboratory analysis results of the soil samples collected from the bottoms and sidewalls of the two excavations (Figure 3) confirmed that the contaminated soil exceeding MTCA Method A cleanup levels has been cleaned up at this Site.
- **d.** Soil vapor measurement was conducted in two soil borings with PCE during the site characterization in 2004. The study concluded that there was no soil vapor pathway existing at this Site.
- e. Ground water encountered in the monitoring wells at approximately 21 feet bgs was analyzed during Site assessment activities. None of the samples contained COCs at concentrations exceeding MTCA Method A cleanup levels. Ground water was not present in either of the two excavations at the maximum depth of approximately seven feet bgs, which is about 14 feet above the ground water table. Ground water at this Site was unlikely impacted by releases due to operations of the facility.

2. Establishment of cleanup standards.

a. Substance-specific standards.

Ecology has determined the cleanup levels and points of compliance you established for the Site meet the substantive requirements of MTCA.

Cleanup levels for soil contamination at this Site are defined as the MTCA Method A cleanup levels, which are classified for unrestricted land use.

Cleanup levels for ground water contamination at this Site are defined as the MTCA Method A cleanup levels.

b. Action and location-specific requirements.

The requirements to clean up this Site included removal and disposal of the contaminated soil exceeding the MTCA Method A cleanup levels.

3. Selection of cleanup action.

Ecology has determined the cleanup action you selected for the Site meets the substantive requirements of MTCA.

- a. Investigations were conducted to characterize the Site, and remediation was performed later to remove contaminated soil which was disposed of at an appropriate facility.
- **b.** Confirmation soil samples were collected for laboratory analysis at the bottoms and sidewalls of the two excavations. The results indicated the concentrations of COCs were either undetectable, or below the MTCA Method A cleanup levels.
- c. Ground water was detected for the COCs at concentrations below the MTCA Method A cleanup levels for unrestricted land use.

4. Cleanup.

Ecology has determined the cleanup you performed meets the cleanup standards established for the Site at MTCA Method A cleanup levels for all the COCs aforementioned. This determination is based on the performances specified below.

- a. PCE, TCE, cis-1,2-DCE, and trans-1,2-DCE-contaminated soils exceeding MTCA Method A cleanup levels were excavated; a total of approximately 134 tons of the soil was disposed of at a subtitle D landfill. The follow up soil confirmation sample analysis concluded that completion of soil removal to undetectable, or below MTCA Method A cleanup levels was achieved.
- **b.** Laboratory results demonstrated the ground water had not been impacted due to operation of the former dry cleaning facility.

Listing of the Site

Based on this opinion, Ecology will initiate the process of removing the Site from our lists of hazardous waste sites, including:

• Confirmed and Suspected Contaminated Sites List.

Limitations of the Opinion

1. Opinion does not settle liability with the state.

Liable persons are strictly liable, jointly and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion **does not**:

- Resolve or alter a person's liability to the state.
- Protect liable persons from contribution claims by third parties.

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70.105D.040(4).

2. Opinion does not constitute a determination of substantial equivalence.

To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-supervised action. This opinion does not determine whether the action you performed is substantially equivalent. Courts make that determination. *See* RCW 70.105D.080 and WAC 173-340-545.

3. State is immune from liability.

The state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. *See* RCW 70.105D.030(1)(i).

Termination of Agreement

Thank you for cleaning up the Site under the Voluntary Cleanup Program (VCP). This opinion terminates the VCP Agreement governing this project #NW2931.

For more information about the VCP and the cleanup process, please visit our web site: <u>www.ecy.wa.gov/programs/tcp/vcp/vcpmain.htm</u>. If you have any questions about this opinion or the termination of the Agreement, please contact me by phone at (425) 649-7126 or e-mail at gyan461@ecy.wa.gov.

Sincerely,

Ĺ

Ì.

Yori

Grant Yang Toxics Cleanup Program

Enclosures: A - Site Description B - Site Diagrams

cc: Jerry Sawetz, The Riley Group, Inc. Sonia Fernandez, VCP Coordinator, Ecology Dolores Mitchell, VCP Financial Manager, Ecology
Site Description

This enclosure provides Ecology's understanding and interpretation of Site conditions and forms part of the basis for the opinion expressed in the letter.

<u>Site:</u> The Site is located at 23886 Kent-Kangley Road in Maple Valley, WA (Property) (see Figure 1) and consists of PCE, TCE, and DCE contamination in soil. The Property covers King County tax parcel number 2722069086.

<u>Area and Property Description</u>: The Property is located in a mixed commercial and residential area with a size of less than 5,000 square feet (< 1 acre; Figure 2).

<u>Property History and Current Use:</u> The Site was historically occupied by a dry cleaning facility, 4 Corners Cleaners, which operated from 1984 to 2000. The Site was redeveloped as a parking lot for a newly constructed Walgreens at the same time when the remedial action was performed in 2014.

ŗ

<u>Source of Contamination</u>: Based on the Site assessment results, the presence of PCE and related degradation products (TCE, cis-1,2-DCE, and trans-1,2-DCE) were confirmed in soil at this Site. Impacts of these contaminants to the surface and subsurface soils occurred over time through releases from operations of the former dry cleaning facility.

Physiographic Setting: The Site is located on the Des Moines drift upland at an elevation of approximately 500 feet above mean sea level. The Site is relatively level, with a slight gradient toward the north.

<u>Surface/Storm Water System</u>: The closest surface water body to the Site is Wilderness Lake, which is approximately 4,000 feet to the northwest. Surface water and storm water runoff on and in the vicinity of the Site disperse via sheet flow to the city of Maple Valley's storm water drainage system.

Ecological Setting: There is no terrestrial habitat within 1000 feet of any part of the Site, which is surrounded by the developed land occupied by residential and commercial buildings, roads, paved areas and other barriers. Therefore, the environment prevents wildlife from feeding on plants, earthworms, insects, or other food in or on the soil.

<u>Geology</u>: The Site and vicinity are primarily underlain by the Vashon till, a dense unconsolidated glacial deposit characterized by poorly-sorted materials. A thin veneer of Vashon recessional outwash deposits is also present, as recorded in well logs to depths of at least 20 feet below the ground surface (bgs) overlying the till at this Site.

<u>Ground Water</u>: A perched shallow ground water-bearing zone was encountered at depths of approximately 21 feet bgs at the Site. The ground water flow direction is generally north.

<u>Water Supply</u>: A public water supply is currently provided to the Site by the Covington Water District which obtains water from the Lake Sawyer wellfield in Black Diamond. According to Ecology's well log data base, there are no private drinking water wells located within approximately 1,000 feet of the Property.

<u>Releases and Extent of Soil Contamination</u>: Soil was contaminated due to releases from operations of the former dry cleaning facility from 1984 to 2000. From 1989 to 2014, various investigative and cleanup efforts were conducted at the Site, which included characterization of the Site contamination and over-excavation of the contaminated soil. As a result, approximately 134 tons of the soil contaminated by PCE, TCE and DCEs were excavated at two locations (Figure 3) and the materials were disposed off-site at a regulated disposal landfill afterwards.

Confirmation soil sampling conducted in 2014 indicated that concentrations of the COCs in the soil were at the non-detectable or below MTCA Method A cleanup levels. The vapor intrusion study concluded that there was no a vapor intrusion pathway in the Site. Therefore, Ecology determines the cleanup at this Site is complete.

<u>Releases and Extent of Ground Water Contamination</u>: Ground water samples collected at 21 feet bgs from two monitoring wells were analyzed for the COCs at the Site. The laboratory results indicated that the concentrations in the water did not exceed MTCA Method A cleanup levels.

Figure 1 Location of the Site

ſ,

l

Ĺ.

ſ

1 :

L.

Figure 2 General Vicinity Map of the Site

--,

Figure 3 Confirmation Soil Locations with Analytical Results (mg/kg) at the Excavations

Figure 4 Soil Sampling Locations Showing at the Cross Section

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Northwest Regional Office • 3190 160th Ave SE • Bellevue, WA 98008-5452 • 425-649-7000 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

February 28, 2017

Mr. Mark Jenkins Kite Realty Group 30 South Meridian St Ste 1100 Indianapolis IN 46204

Re: No Further Action at the following Site:

- Name: Four Corners Cleaners New Location
- Address: 23886 Kent-Kangley Road, Maple Valley, WA
- Facility/Site No.: 5867
- Cleanup Site ID No.: 12513
- VCP No.: NW2932

Dear Mr. Jenkins:

The Washington State Department of Ecology (Ecology) received your request for an opinion on your independent cleanup of the Four Corners Cleaners New Location facility (Site). This letter provides our opinion. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW.

Issue Presented and Opinion

Is further remedial action necessary to clean up contamination at the Site?

NO. Ecology has determined that no further remedial action is necessary to clean up contamination at the Site.

This opinion is based on information and data provided in the Addendum to 2012 Additional Subsurface Investigation Report dated February 26, 2014 and Response to Ecology Comments Dated June 22, 2015. The reports document the remedial activities that have addressed contamination in soil at the Site due to operations of the former dry cleaning facility.

This opinion is also based on an analysis of whether the remedial action meets the substantive requirements of MTCA, Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided below.

Mr. Mark Jenkins February 28, 2017 Page 2

Description of the Site

This opinion applies only to the Site described below. The Site is defined by the nature and extent of contamination associated with the following releases:

• Perchloroethylene (PCE) and Trichloroethene (TCE) into Soil.

Enclosure A includes a detailed description of the Site, as currently known to Ecology. **Enclosure B** includes diagrams of the Four Corners Cleaners New Location Site.

Please note a parcel of real property can be affected by multiple sites. At this time, we have no information that the parcel associated with this Site is affected by other sites.

Basis for the Opinion

This opinion is based on the information contained in the following documents:

- 1. The Riley Group, Inc., June 22, 2015, Response to Ecology Comments dated April 2, 2015.
- 2. The Riley Group, Inc., February 26, 2014, Addendum to 2012 Additional Subsurface Investigation Report.
- 3. The Riley Group, Inc., September 28, 2012, Additional Subsurface Investigation Report.
- 4. The Riley Group, Inc., May 9, 2012, Phase I Environmental Site Assessment Update Report.
- 5. The Riley Group, Inc., January 18, 2011, Phase I Environmental Site Assessment Update Report.
- 6. The Riley Group, Inc., January 3, 2011, Drycleaners Compliance Review Report.
- 7. The Riley Group, Inc., December 7, 2004, Supplemental Phase II Subsurface Investigation.
- 8. The Riley Group, Inc., September 30, 2003, Phase I Environmental Site Assessment.

Those documents listed above are kept in the Central Files of the Northwest Regional Office of Ecology (NWRO) for review by appointment only. You can make an appointment by calling the NWRO resource contact at (425) 649-7235, or sending an email to nwro_public_request@ecy.wa.gov.

This opinion is void if any of the information contained in those documents is materially false or misleading.

 \sim

Analysis of the Cleanup

Ecology has concluded that **no further remedial action** is necessary to further clean up the contaminated soil at the Site. That conclusion is based on the following analysis:

1. Characterization of the Site.

Ecology has determined that your characterization of the Site is sufficient to establish cleanup standards, and select cleanup actions for removal of the contaminated soil exceeding MTCA Method A cleanup levels and confirmation of the groundwater quality.

- a. Site assessments conducted at this Site from 2003 to 2014 confirmed the presence of chemicals of concern (COCs) as aforementioned in soil vapor. The studies also concluded that the contamination resulted from operations of the former dry cleaning facility on the Property, Four Corners Cleaners.
- b. While a total of 16 soil samples were collected from the soil borings at a range of 0.1 to 30 feet below the ground surface (bgs), three ground water samples were obtained from the soil borings where ground water was encountered between 21 to 23 feet bgs. The laboratory results indicated none of the analytes (gasoline, diesel, heavy oil, PCE, TCE, 1,2-dichloroethylene and vinyl chloride) were found in Site soil or ground water.
- c. Soil vapor measurements were conducted during the Site characterization in 2004. PCE and TCE were the only chlorinated compounds detected and occurred at concentrations in the soil vapor at 1,000 and 11 μ g/m³ respectively. RGI utilized the Environmental Protection Agency (EPA) online Johnson and Ettinger Model (JEM) to calculate property-specific soil vapor screening levels for PCE and TCE. The calculated Site-specific soil vapor screening levels were 2,755 μ g/m³ for PCE and 103 μ g/m³ for TCE. Therefore, there is no soil vapor intrusion risk at this Site since the field measurements were detected at 1,000 and 11 μ g/m³ for PCE and TCE, respectively.

2. Establishment of cleanup standards.

a. Substance-specific standards.

Ecology has determined the cleanup levels and points of compliance you established for the Site meet the substantive requirements of MTCA.

Cleanup levels for soil contamination at this Site are defined as the MTCA Method A cleanup levels, which are classified for unrestricted land use.

Cleanup levels for ground water contamination at this Site are defined as the MTCA Method A cleanup levels.

Mr. Mark Jenkins February 28, 2017 Page 4

Cleanup level for soil vapor at this Site is defined as the MTCA Method B calculated site-specific concentration screening levels.

b. Action and location-specific requirements.

The requirement to clean up this Site includes reducing concentrations of soil vapor to the MTCA Method B calculated site-specific concentration screening level.

3. Selection of cleanup action.

Ecology has determined the cleanup action you selected for the Site meets the substantive requirements of MTCA.

- **a.** Investigations conducted to characterize the Site indicated the exceedance was not found in soil and ground water.
- b. The soil vapor study concluded that vapor intrusion is not of concern at this Site because measured soil vapor concentrations of PCE and TCE are below MTCA Method B calculated Site-specific concentration screening levels (JEM Model) of 2,755 and 103 μg/m³, respectively.

4. Cleanup.

Ecology has determined the cleanup you performed meets the cleanup standards established for the Site at MTCA Method A cleanup levels for the COCs aforementioned. This determination is based on the performances specified below.

- **a.** PCE and TCE detected in soil vapor were below MTCA Method B calculated sitespecific concentration screening levels.
- **b.** Laboratory results demonstrated the COCs in soil and ground water were at concentrations below the detectable levels.

Listing of the Site

Based on this opinion, Ecology will initiate the process of removing the Site from our lists of hazardous waste sites, including:

Confirmed and Suspected Contaminated Sites List.

Limitations of the Opinion

1. Opinion does not settle liability with the state.

Liable persons are strictly liable, jointly and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion **does not**:

- Resolve or alter a person's liability to the state.
- Protect liable persons from contribution claims by third parties.

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70.105D.040(4).

2. Opinion does not constitute a determination of substantial equivalence.

To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-supervised action. This opinion does not determine whether the action you performed is substantially equivalent. Courts make that determination. *See* RCW 70.105D.080 and WAC 173-340-545.

3. State is immune from liability.

The state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. *See* RCW 70.105D.030(1)(i).

Termination of Agreement

Thank you for cleaning up the Site under the Voluntary Cleanup Program (VCP). This opinion terminates the VCP Agreement governing this project #NW2931.

For more information about the VCP and the cleanup process, please visit our web site: <u>www. ecy.wa.gov/programs/tcp/vcp/vcpmain.htm</u>. If you have any questions about this opinion or the termination of the Agreement, please contact me by phone at (425) 649-7126 or e-mail at gyan461@ecy.wa.gov. Mr. Mark Jenkins February 28, 2017 Page 6

Sincerely,

y onl Grant Yang

Toxics Cleanup Program

3

Enclosures (2) A - Site Description B - Site Diagrams

cc: Jerry Sawetz, The Riley Group, Inc. Sonia Fernandez, VCP Coordinator, Ecology Matt Alexander, VCP Financial Manager, Ecology

Enclosure A:

Site Description

This enclosure provides Ecology's understanding and interpretation of Site conditions and forms part of the basis for the opinion expressed in the letter.

<u>Site:</u> The Site is located at 23886 Kent-Kangley Road in Maple Valley, Washington (Property) (see Figure 1) and consists of PCE and TCE in soil vapor.

<u>Area and Property Description</u>: The Property is located in a mixed commercial and residential area with a size of less than 5,000 square feet (Figure 2).

<u>Property History and Current Use:</u> The Site was historically occupied by a dry cleaning facility, Four Corners Cleaners, which operated from 1984 to 2000. The Site was redeveloped as a parking lot for a newly constructed Walgreens at the same time as the Site assessment was performed in 2014.

Source of Contamination: Based on the Site assessment results, the presence of PCE and a related degradation product, TCE, were confirmed in soil vapor at this Site. Impacts of these contaminants to the surface and subsurface soils occurred over time through releases from operations of the former dry cleaning facility. Once in the soil, PCE and TCE volatilized and migrated into the soil vapor.

Physiographic Setting: The Site is located on the Des Moines drift upland at an elevation of approximately 500 feet above mean sea level. The Site is relatively level, with a slight gradient toward the north.

<u>Surface/Storm Water System</u>: The closest surface water body to the Site is Rock Creek, which is approximately 2,000 feet to the east. Surface water and storm water runoff on and in the vicinity of the Site disperses via sheet flow to the city of Maple Valley's storm water drainage system.

Ecological Setting: There is no terrestrial habitat within 1,000 feet of any part of the Site, which is surrounded by the developed land occupied by residential and commercial buildings, roads, paved areas and other barriers. Therefore, the environment prevents wildlife from feeding on plants, earthworms, insects, or other food in or on the soil.

<u>Geology</u>: The Site and vicinity are primarily underlain by the Vashon till, a dense unconsolidated glacial deposit characterized by poorly-sorted materials including gravel, sand, silt and clay. A thin veneer of Vashon recessional outwash deposits is also present, as recorded in well logs to depths of at least 20 feet below the ground surface (bgs) overlying the till at this Site.

<u>Ground Water</u>: A perched shallow ground water-bearing zone was encountered at depths of approximately 21 to 23 feet bgs at the Site. Based on the formation of ground water encountered in soil borings and monitoring wells, the ground water flow direction is generally north.

<u>Water Supply</u>: A public water supply system is currently provided to the Site by the Covington Water District which obtains water from the Lake Sawyer wellfield in Black Diamond. According to Ecology's well log data base, there are no private drinking water wells located within approximately 1,000 feet of the Property.

<u>Releases and Extent of Soil Contamination</u>: Soil was contaminated due to releases from operations of the former dry cleaning facility from 1984 to 2000. From 1989 to 2014, various investigative were conducted at the Site, which included characterization of the Site contamination in soil and performance of a soil vapor study. Based on the conclusions obtained from these remedial investigations, soil was not found to be exceeded with PCE and TCE above MTCA Cleanup levels.

PCE and TCE were detected in soil during the site assessment at levels of 1,000 and 11 μ g/m³. In accordance with the calculations used Ecology's MTCA Method B and EPA's JEM, the Sitespecific screening levels for PCE and TCE are 1,680 and 65 μ g/m³; and 2,755 and 103 μ g/m³, respectively. The soil vapor study indicated that there is no a vapor intrusion pathway on the Site since the detected levels were below the Site-specific screening levels. Therefore, Ecology determines the cleanup at this Site is complete.

<u>Releases and Extent of Ground Water Contamination</u>: Ground water samples collected at 21 to 23 feet bgs from three monitoring wells were analyzed for the COCs at the Site. The laboratory results indicated that the concentrations of COCs in the ground water were at undetectable levels.

Figure 2 General Vicinity Map of the Site

 From:
 Yang, Grant (ECY)

 To:
 "Jerry Sawetz"

 Subject:
 Four Corners New Location (NW 2932) at Maple Valley, WA

 Date:
 Thursday, September 10, 2015 11:29:00 AM

 Attachments:
 Site Map.pdf

Jerry,

The correspondence made to respond Ecology's comments (June 22, 2015) have been reviewed. While most of the Ecology's concerns to satisfy issuing a NFA determination have been addressed, there is still a data-gap remained to be filled, present of PCE and TCE in soil within the Property. Based on the site assessment reports conducted at Site NW 2932 and 2931, you concluded in the document, 1. There were no indications of a release from the on-going-operation dry cleaner; 2. The soil vapor detected inside the facility was most likely from the adjacent site (NW2931).

١

It is noted that the conclusions were derived from the sampling results in two soil boings (P1 and P2) and one ground water well (B-3) at this Property. After reviewing all the data to date, Ecology believes more information needed to collect for determining the contamination source for the soil vapor found beneath the facility. Ecology recommends to install additional two soil and one ground water boings to characterize the contamination at this Site (see the attachment).

Please contact me to discuss this matter if you have any questions regarding the comments above.

Grant Yang, VCP Site Manager TCP/NWRO, Ecology

New to FS + I	รับวิริ VCP FILE ROUTER SHEET (Please include router in file)					
	VCP Project (FILE) Name: Four Corners Chaners hew Locator Day Action Date:					
	VCP#/WZ932_ Address: 23866 last Amyle & Rel CITY: Maple Valley					
	ERTS # UST# HIST LUST# COUNTY:					
	FS # 5847 FS Name (X-ref): Four Corners Clearens New Locator					
	CSID#_12513LUST Site Name (X-ref):					
,	Notes:					
	VCP APP COMPLETE? Reviewed by: Musa Fernandez Escobedo (initial) (date) 12/19/14					
	Louise Bardy sign agreement & assign Site Manager (write below) (initial) RT (date) 12/19/14					
	ISIS ENTRY Done by <u>S. Fernindez (initial) A (date) 12/19/14</u>					
	BARTS ENTRY Done by <u>G. Fernandez (initial) At (date) 12/19/14</u>					
	10-Day Letter Sent (Orig Agreement & App Pgs 1&2 to Dolores) (initial) 4 (date)					
	LUST ENTRY Done by (initial) (date)					
	Review Start Date: 12/19/14 Review Completion Date: 2/28/17					
	Review Results (circle): NFA Further Cleanup Action Needed Incomplete Report Received					
	Interim Status Letter Sent Long-term Monitoring Restrictive Covenant					
	Copy of Letter to DOLORES MITCHELL sent by S. Fernán Date: 3/7/17					
	SITE MANAGER NAME: Jany INITIALS:DATE:					
	Final Letter Sent by(date)Site Reg Notice? (initial)(date)					
	ISIS/VCP Update (initial) (date) LUST Update (initial) (date)					
	Site Delisted from HSL by (initial) (date)					
	Routed to Central Files by (date)					
	Instructions for FILE?					

·

-

•

VCP FILE ROUTER FINAL 5/30/14

.

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Northwest Regional Office • 3190 160th Ave SE • Bellevue, WA 98008-5452 • 425-649-7000 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

December 19, 2014

MR. MARK JENKINS KITE REALTY GROUP 30 SOUTH MERIDIAN STREET, SUITE 1100 INDIANAPOLINS, IN 46204

Re: Acceptance of VCP Application for the following Site:

- Site Name: Four Corners Cleaners New Location
- Site Address: 23886 Kent Kangley Road, Maple Valley, WA 98038
- Facility/Site No.: 5867
- CS ID: 12513
- VCP Project No.: NW2932

Dear Mr. Jenkins:

The Department of Ecology (Ecology) has accepted your Voluntary Cleanup Program (VCP) application for the Four Corners Cleaners New Location facility (Site). We applaud your initiative and welcome your interest in the VCP. This letter confirms your entry into the VCP and provides important information on how we will manage the Project.

Agreement

Ecology has completed and signed the VCP Agreement governing the Project. The effective date of the Agreement is **December 19, 2014**. A copy of the Agreement is enclosed. Please review it carefully.

Identification

Ecology has assigned a unique name and number to the **Site**. We have also assigned a unique number to your **Project** at the Site. You can find this information in the box at the bottom of the first page of the Agreement. When contacting us, please use this information to identify your Project.

Designated Managers

Communications between Ecology and Four Corners Cleaners New Location should be directed through their designated managers to the maximum extent possible.

Mr. Mark Jenkins December 19, 2014 Page 2

Ecology

We have designated the following site manager to respond to your requests:

Mr. Grant Yang

Department of Ecology Toxic Cleanup Program, NWRO 3190 160th Ave SE Bellevue, WA 98008 Phone: (425) 649-7126 E-mail: gyan461@ecy.wa.gov

Four Corners Cleaners New Location

The application designated you as the project manager for the site. We will therefore respond only to your requests. If someone replaces you as the project manager or your contact information changes, please submit a Change of Contact Form. You may download the Form from our VCP web site:

http://www.ecv.wa.gov/programs/tcp/vcp/vcp2008/vcpForms.html

Requests for Written Opinions

N.

In your application, you requested a written opinion on the sufficiency of your cleanup. Ecology will review the documents you submitted and provide you a written opinion within about 90 days.

Reporting Requirements

When requesting written opinions on planned or completed remedial actions, please comply with the following reporting requirements:

- 1. Licensing. Documents submitted containing geologic, hydrologic, or engineering work must be under the seal of an appropriately licensed professional, as required by Chapters 18.43 and 18.220 RCW.
- 2. Data Submittal. Environmental sampling data must be submitted in both a printed form and an electronic form capable of being transferred into our data management systems. For instructions on how to submit data, please refer to the following web site:

www.ecy.wa.gov/programs/tcp/data_submittal/data_requirements.htm.

Failure to comply with these requirements may result in unnecessary delays.

Mr. Mark Jenkins December 19, 2014 Page 3

Payment

Ecology will send monthly invoices to you, the billing contact designated in the Application Form. If someone replaces you as the billing contact or your contact information changes, please submit a Change of Contact Form. The Form is available on the VCP web site.

The invoice will include a summary of the costs incurred, payments received, identity of staff involved, and the amount of time spent on the Project during the previous month. Payment is due within thirty days of the invoice date. For more information on the billing system, please refer to the VCP web site.

Contact Information

We are committed to working with you to accomplish the prompt and effective cleanup of the Site. Again, if you have any questions about the VCP or your Project, please contact Mr. Grant Yang at (425) 649-7126.

Sincerely,

Sonia Fernández Toxics Cleanup Program, NWRO

SF:sf

cc:

Enclosure:

Copy of VCP Agreement

Jerry Sawetz, The Riley Group, Inc. (e-mail) Dolores Mitchell, VCP Financial Manager

INSTRUCTIONS: Submit this Agreement (original) to Ecology as part of your Application. Before submitting, enter the Customer's name and the Site's address on the first page and sign the Agreement on the second page. If your Application is accepted, then Ecology will do the following: 1) identify the Site and VCP project in the box below. 2) sign the Agreement; and 3) send you a copy of the completed Agreement.

This document constitutes an Agreement between the State of Washington Department of Ecology (Ecology) and <u>Kite Realty Group- KRG Four Corner Square</u>, UC <u>RECEMED</u> (Customer) to provide informal site-specific technical consultations under the Voluntary Cleanup Program (VCP) for the Site identified below and associated with the following address: 7 2 4 2014

The purpose of this Agreement is to facilitate independent remedial action at the Site Ecology is entering into this Agreement under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC. If a term in this Agreement is defined in MTCA or Chapter 173-340 WAC, then that definition shall govern.

Services Provided by Ecology

Upon request, Ecology agrees to provide the Customer informal site-specific technical consultations on the independent remedial actions proposed for or performed at the Site consistent with WAC 173-340-515(5). Those consultations may include assistance in identifying applicable regulatory requirements and opinions on whether the remedial actions proposed for or conducted at the Site meet those requirements.

Ecology may use any appropriate resource to provide the Customer with the requested consultative services. Those resources may include, but shall not be limited to, those of Ecology and the Office of the Attorney General. However, Ecology shall not use independent contractors unless the Customer provides Ecology with prior written authorization.

In accordance with RCW 70.105D.030(1)(i), any opinions provided by Ecology under this Agreement are advisory only and not binding on Ecology. Ecology, the state, and officers and employees of the state are immune from all liability. Furthermore, no cause of action of any nature may arise from any act or omission in providing, or failing to provide, informal advice and assistance under the VCP.

Payment for Services by Customer

The Customer agrees to pay all costs incurred by Ecology in providing the informal site-specific technical consultations requested by the Customer consistent with WAC 173-340-515(6) and 173-340-550(6). Those costs may include the costs incurred by attorneys or independent contractors used by Ecology to provide the requested consultative services. Ecology's hourly costs shall be determined based on the method in WAC 173-340-550(2).

Ecology shall mail the Customer a monthly itemized statement of costs (invoice) by the tenth day of each month (invoice date) that there is a balance on the account. The invoice shall include a summary of the costs incurred, payments received, identity of staff involved, and amount of time staff spent on the project.

The Customer shall pay the required amount by the due date, which shall be thirty (30) calendar days after the invoice date. If payment has not been received by the due date, then Ecology shall withhold

	Facility / Site Name:	Four Corners Chaners	New Location
BY ECOLOGY ONLY	Facility / Site No.:	5847	
	VCP Project No.:	NW 2932	

any requested opinions and notify the Customer by certified mail that the debt is past due. If payment has not been received within sixty (60) calendar days of the invoice date, then Ecology shall stop all work under the Agreement and may, as appropriate, assign the debt to a collection agency under Chapter 19.16 RCW. The Customer agrees to pay the collection agency fee incurred by Ecology in the course of debt collection.

Reservation of Rights / No Settlement

This Agreement does not constitute a settlement of liability to the state under MTCA. This Agreement also does not protect a liable person from contribution claims by third parties for matters addressed by the Agreement. The state does not have the authority to settle with any person potentially liable under MTCA except in accordance with RCW 70.105D.040(4). Ecology's signature on this Agreement in no way constitutes a covenant not to sue or a compromise of any Ecology rights or authority.

Ecology reserves all rights under MTCA, including the right to require additional or different remedial actions at the Site should it deem such actions necessary to protect human health and the environment, and to issue orders requiring such remedial actions. Ecology also reserves all rights regarding the injury to, destruction of, or loss of natural resources resulting from the release or threatened release of hazardous substances at the Site.

Effective Date, Modifications, and Severability

The effective date of this Agreement shall be the date on which this Agreement is signed by the Toxics Cleanup Program's Section Manager or delegated representative. This Agreement may be amended by mutual agreement of Ecology and the Customer. Amendments shall be in writing and shall be effective when signed by the Toxics Cleanup Program's Section Manager or delegated representative. If any provision of this Agreement proves to be void, it shall in no way invalidate any other provision of this Agreement.

Termination of Agreement

Either party may terminate this Agreement without cause by sending written notice by U.S. mail to the other party. The effective date of termination shall be the date Ecology sends notice to the Customer or the date Ecology receives notice from the Customer, whichever occurs first. Unless otherwise directed, issuance of a No Further Action opinion, either for the Site as a whole or for a portion of the real property located within the Site, shall constitute notice of termination by Ecology.

Under this Agreement, the Customer is only responsible for costs incurred by Ecology before the effective date of termination. However, termination of this Agreement shall not affect any right Ecology may have to recover its costs under MTCA or any other provision of law.

Representations and Signatures

The undersigned representative of the Customer hereby certifies that he or she is fully authorized to enter into this Agreement and to execute and legally bind the Customer to comply with the Agreement.

STATE OF WASHINGTON	Kite Realty Group
DEPARTMENT OF ECOLOGY	Name of Customer
Fonald W. Jenni VCP Supervisor	1180-
Signature /	Signature
RONALD W. Timm	Mark S. Jenkins
Printed Name	Printed Name of Signatory
Section Manager, Bob WARREN MURD	Sr. VP of Development
Toxics Cleanup Program Section	Title of Signatory
Date: 12/19/14	Date:Q_[[0][14

If you need this document in an alternative format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

ECY 070-324 (revised July 2008)

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

APPLICATION FORM

Under the Voluntary Cleanup Program (VCP), the Department of Ecology (Ecology) may provide informal site-specific technical consultations to persons conducting independent remedial actions at a hazardous waste site. Ecology may provide such consultations under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC.

To enter the VCP, complete and submit to the Department of Ecology (Ecology) a VCP Application. The Application consists of the following two documents:

- 1. Application Form (including required attachments). THIS DOCUMENT
- 2. Agreement.

For guidance on how to complete your Application, please refer to the Application Instructions, which are available separately on the VCP web site: www.ecy.wa.gov/programs/tcp/vcp/vcpmain.htm.

Part 1 - ADMINISTRATION

A. Customer Information. The Customer is the person or organization requesting services from Ecology under the VCP, and is responsible for paying the costs incurred by Ecology. The authority and duty of the Customer are explained in the Agreement.						
Name of Customer: KRG Four C	Corners Square, LLC					
What type of entity is the Custom	ner?					
Person	If the Customer is a "person," then the Customer shall serve as both the Manager and Billing Contact for the Project. When identifying the Project Manager below, please enter the name of the Customer and his or her contact information.					
🛛 Organization	If the Customer is an "organization," then please identify below both a Manager and Billing Contact for the Project. Those persons must be employed by the organization.					
What is the Customer's involvement at the Site? Please check all that apply.						
 Property owner Past property owner Future property owner Property lessee Other – please specify: 						
If not the current property owner, is the Customer acting as the agent for the property owner?						
🗌 Yes 🔲 No						
If not the current property owner	, is the Customer authorized to grant access to the property?					
🗌 Yes 🗌 No						

Part 1 – ADMINISTRATION continued

B. Project Manager Information. Ecology will send this person all official correspondence. Please enter the required information below.						
Name: Mr. Mark Jenkins				Title: Senior Vice President		
Mailing address: 30 South Meridia	an Street, Suite 110)				
City: Indianapolis,		State: India	na	Zip: 46204		
Phone: 317-578-5152	Fax: 317-577-7879		E-mail: mj	enkins@kiterealty.com		
C. Project Billing Contact Inform	nation. Ecology wil	l send this pe	erson mon	thly invoices.		
Is the Project Billing Contact the s	ame as the Project I	Manager?				
Yes If you answ	wered "YES," then	skip to the ne	xt questio	n.		
No If you ansu	wered "NO," then p	lease enter th	ne required	information below.		
Name:			Title:			
Mailing address:						
City:		State:	_	Zip:		
Phone:	Fax:		E-mail:			
D. Project Consultant Informati	on.					
Is the Customer a consultant?	<u> </u>					
🗌 Yes 🛛 If you answ	wered "YES," then a	skip to the ne	xt questio	n.		
No If you and independe	swered " NO" and the nt remedial action,	the Custome	r hired a e required	consultant to conduct the information below.		
Name: Jerry Sawetz			Title: Ser Scientist	nior Environmental		
Organization: The Riley Group, In	C					
Mailing address: 17522 Bothell W	ay Northeast			· · · · · · · · · · · · · · · · · · ·		
City: Bothell		State: WA		Zip: 98011		
Phone: 425-415-0551	Fax: 425-415-0311		E-mail: jsa	awetz@riley-group.com		
Do you want Ecology to contact th	e Project Consultan	t?	-			
Yes 🗋 No						
E. Property Owner Information.						
Is the Customer the owner of the property where independent remedial action is being conducted?						
Yes If you answered "YES," then enter the type of entity and skip to the next question.						
No If you answered "NO," then please enter all of the required information below.						
Name:			Title:			
Organization:						
Mailing address:						
City:		State:		Zip:		
Phone:	Fax:		E-mail:			

Part 1 – ADMINISTRATION continued					
What type of entity is the property owner? Please check only one.					
Private County Tribal Municipal Federal Mixed State Public School Other please specify:					
F. Request for Written Opinion.					
Are you requesting a written opinion at this time?					
✓ Yes □ No					
If you answered "YES," on what planned or completed remedial action do you want a written opinion? The Riley Group and KRG Four Corners Square, LLC are of the opinion that no further action is necessary at the Property based on our 2012 investigation documented in the attached Additional Subsurface Investigation Letter Report dated September 28, 2012 by RGI and the Addendum to the 2012 ASI Report dated February 26, 2014). Please note that this report also documents investigation of the Former 4 Corners Cleaners Site, which is a separate Site and information pertaining to the Former 4 Corners Cleaners is being submitted under a different VCP application. We are submitting reports to Ecology for review to determine if Ecology concurs with our opinion that no further action is necessary at the Property.					
Please attach to this Application any additional remedial action plans or reports you want Ecology to review. Ecology will base its opinion on the information contained in the Site file, including any information attached to this Application.					
If you answered "NO," please explain why you are enrolling in the VCP at this time and when you expect to request a written opinion from Ecology.					
Attach additional pages if necessary.					
G. Reporting Requirements.					
Please comply with the following reporting requirements when requesting written opinions on planned or completed remedial actions:					
Licensing. Documents submitted containing geologic, hydrologic, or engineering work must be under the seal of an appropriately licensed professional, as required by Chapters 18.43 and 18.220 RCW.					

Data Submittal. Environmental sampling data must be submitted in Soth a printed form and an electronic form capable of being transferred into Ecology's data management systems. For instructions on how to submit the data, please refer to the following Ecology web site: www.ecy.wa.gov/programs/tcp/data submittal/Data Requirements.htm.

Failure to comply with these requirements may result in unnecessary delays. Ecology will not issue a No Further Action (NFA) opinion unless these requirements are satisfied.

Part 2 - DESCRIPTION OF THE SITE					
A. Name of the Site. If Ecology has already identified the Site, enter the name provided by Ecology. Otherwise, enter a suggested name for the Site. You may also include an alternate name.					
Name: 4 Corne	rs Cleaners				
Alternate Name:					
B. Location of	Property where th	e Releases Occi	urred (Source Pro	perty).	
The "source pro For example, if the UST was loc	perty" is the propert petroleum was rele ated.	ty where hazardo ased from a leaki	us substances wer ing UST, the sourc	e released into the environment. e property is the property where	
Do you know on	which property the	releases occurre	d?		
	Yes If you ans answering t	wered "YES," t he following ques	hen please refer tions.	to the source property when	
	lo If you answ remedial ac	vered "NO," thei tion (cleanup) wh	n please refer to t en answering the f	he property addressed by your ollowing questions.	
Physical Addre	ss. Please enter th	e physical addres	s of the property be	elow.	
Street Address:	23886 Kent-Kangle	ey Road			
City: Maple Vall	ey		State: WA	Zip: 98038	
Geographic Po guidance on hov	<i>sition.</i> Please entry to complete this p	ter the geograph art, please refer t	ical position of the o instructions on th	property below. For additional e VCP web site.	
Cooppiniates	LATITUDE:	Degrees: 47	Minutes: 21	Seconds: 44.0424	
COORDINATES	LONGITUDE :	Degrees: -122	Minutes: 1	Seconds: 21.5394	
LOC [e.g., point of re	ATION ON PROPERTY: elease or center of parcel	Location of dry cleaning machine on the Property			
C fe.a. C	COLLECTION METHOD:	Google Maps			
(COLLECTION SOURCE:	1" = 20 meters			
[i.e., base reference for coordinate system]					
ACCURACY LEVEL: [i.e., +/- feet or meters] +/- 250 feet					
Legal Descriptions.					
TRS DA	TA: Township: 22	Range: 6	Section: 27	Quarter-Quarter: SE	
Tax Parcel #(s): The Property consists of the current 4 Corners Cleaners and is situated on the southern portion of Parcel # 2722069029 (See attached Figure 2)					

Part 2 - DESCRIPTION OF THE SITE continued

C. Io	C. Identification of Properties affected by the Releases (Affected Properties).					
An "a prop migra	An "affected property" is a property affected by the release of hazardous substances on the source property. For example, petroleum released from a leaking UST on one property (source property) may migrate through the soil or ground water onto an adjacent property (affected property).					
Do a	ny of the releases aff	ect any properties adjacent to the source property?				
	🗌 Yes	If you answered "YES," then please identify below each property that you know has been affected by the releases on the source property. If you need to identify additional properties, please attach additional pages.				
	🔀 No	If you answered " NO, " then skip to the next question.				
		If you answered "UNKNOWN," then skip to the next question.				
1.	Address:					
	Tax Parcel(s):					
2.	Address:					
	Tax Parcel(s):					
3.	Address:					
	Tax Parcel(s):					
4.	Address:					
	Tax Parcel(s):					
D. k	lentification of Publ	lic Right-of-Ways affected by the Releases.				
Do a	ny of the releases aff	ect any public right-of-ways (e.g., streets)?				
1	🗌 Yes 🛛	No 🗌 Unknown				
lf you	answered "YES" al	pove, please specify below. Otherwise, skip to the next question.				
Attach additional pages if necessary.						
E. Extent of the Site.						
Wha	t is the approximate a	areal extent of the Site? Please check only one.				
	⊠ < 5.000	square feet				
> 5,000 square feet, but < 1 acre						
	└ > 1 acre, but < 10 acres					
	Unknow	n				

•

Part 2 - DESCRIPTION OF THE SITE continued

F. Description of Release(s) at the Site.				
Source of Release(s).				
What are the source(s) of the release(s) at the Site? Please check all that apply.				
 Point source (e.g., leaking tank) Non-point source (e.g., contaminated soil used as fill) Area-wide lead and arsenic soil contamination (see questions below) Other – please specify: Unknown 				
To the extent known, please describe the source(s) of the release(s):				
Tetrachloroethene (PCE) and trichloroethene (TCE) were detected in soil vapor at a concentrations below the calculated site-specific soil vapor screening levels. The screening level calculations are documented in the attached Additional Subsurface Investigation Report. No PCE or TCE were detected in soil or groundwater on the Property. Therefore, no source of a release was identified and soil vapor concentrations may be the result of a vapor release from the dry cleaning machine.				
Attach additional pages if necessary.				
<i>Circumstances of Release(s).</i> To the extent known, please describe below the circumstances of the release(s).				
Unknown				
Attach additional pages if necessary.				
<i>Circumstances of Release Discovery.</i> To the extent known, please describe below the circumstances of the discovery of the release(s).				

--

Soil vapor concentrations of PCE and TCE were detected during a 2012 subsurface investigation near the current dry cleaning machine. The detected soil vapor concentrations were below the calculated Site-specific soil vapor screening levels.

Attach additional pages if necessary.

.

Part 2 - DESCRIPTION OF THE SITE continued

Area-Wide Soil Contamination. For information about the area-wide soil contamination project, please refer to the following web site: www.ecy.wa.gov/programs/tcp/area_wide/area_wide/hp.html . For information about the Tacoma Smelter Plume (TSP) and the associated Management Plan, please refer to the following web site: www.ecy.wa.gov/programs/tcp/area_wide/area_wide/hp.html . For information about the Tacoma Smelter Plume (TSP) and the associated Management Plan, please refer to the following web site: www.ecy.wa.gov/programs/tcp/sites/tacoma_smelter/ts-hp.htm .							
Is the Site located within an area affected by	smelter em	issions, sucl	n as the TSF	^o area?			
🗌 Yes 🛛 No 🗌 Unkn	own						
To determine whether your Site is located win site identified above.	thin the TSI	⊃ area, pleas	se refer to th	ne map on the	e TSP web		
Is the Site located on a former apple or pear	orchard in c	peration pri	or to 1947?				
🗌 Yes 🔲 No 🛛 Unkn	own						
Is the Site impacted by area-wide arsenic an	d/or lead so	il contamina	tion?				
🗌 Yes 🖾 No 🗌 Unkn	own						
G. Nature and Extent of Hazardous Subst to conditions after the release, but prior to an	ances Rele y cleanup, c	ased at the of the hazard	Site. The f	ollowing ques nces at the Si	tions refer		
Hazardous Substances and Affected Medi table the hazardous substances released at t substances. Use the codes at the bottom of t	a. To the exherence the site and the table.	xtent known, the media («	please ider e.g., soil) im	ntify in the fol pacted by the	lowing ose		
		A	FFECTED MEL				
HAZARDOUS SUBSTANCE	Soil	GROUND WATER	SURFACE WATER	SEDIMENT	AIR		
EXAMPLE: Benzene	С	S	N/A	N/A	В		
Tetrachloroethene (PCE)	0	0			B		
Trichloroethene (TCE)	0	0			<u> </u>		
	<u> </u>			<u> </u>	<u>.</u>		
┝━──────┤───┤───┤───┤───┤───┤							
When identifying the affected media in the table above, please use one of the following codes:							
 C = confirmed, above cleanup level B = confirmed, below cleanup level 							
 B = confirmed, below cleanup level Ω = confirmed, not present 							
 S = suspected 							
N/A = not suspected							
• U = unknown							

,

.•

Part 2 - DESCRIPTION OF THE SITE continued

<u>.</u> .

Drinking Water.
Does any of the contamination at the Site pose a threat or potential threat to an existing drinking water source (ground water or surface water)?
🗌 Yes 🖾 No 📋 Unknown
If you answered "YES" above, what type of drinking water system is threatened by the contamination? Please check all that apply.
 Single Family Public Drinking Water Supply
If you checked "Public Drinking Water Supply" above, is the contamination located within or upstream of a 10-year wellhead protection area?
🗋 Yes 🔲 No 🔛 Unknown
To help answer the above question or if you answered "Yes" to that question, then go to <u>https://fortress.wa.gov/doh/eh/dw/swap/maps/</u> or call (800) 521-0323.
Indoor Air.
Are contaminant odors present in any buildings, manholes, or other confined spaces?
🗌 Yes 🖾 No 🗌 Unknown
If you answered "YES" above, please specify:
Attach additional pages if necessary.
H. Maps of the Site.
Please attach to this application map(s) that identify, to the extent known, the following:
The location of the site.
The properties, and any public right-of ways, affected by the site. The source(s) of the release(s) at the site.
The nature and extent of contamination at the site.
Any human or ecological receptors impacted by the site (e.g., drinking water wells).
The physical characteristics of the site (e.g., property lines, building and road outlines, surface water bodies, water supply wells, ground water flow direction, and utility right-of-ways).
The properties adjacent to the site and the uses of those properties (e.g., gas station, dry

cleaner, residential).

Part 3 - OPERATIONAL HISTORY OF THE SITE

A. Current Use of Source Property. Note that the following questions refer only to the Source Property, not other properties affected by the Site. Answer these questions to the best of your ability.					
<i>Current Property Owners.</i> To the extent known, please identify below the current owner of the source property.					
Name: Mr. Mark Jenkins			Title: Senior Pi	roject Manager	
Organization: KRG Four Corn	ers Square, LLC				
Mailing address: 30 South Me	ridian Street, Suite 1100				
City: Indianapolis,		State:	Indiana	Zip code: 46204	
Phone: 317-578-5152					
Current Business Owner (Op the business located on the so	perator). To the extent k urce property.	nown, p	please identify b	elow the current owner of	
Name: Mr. Chang Kim			Title:		
Organization: 4 Corners Clear	ners				
Mailing address: 23886 Kent-	Kangley Road				
City: Maple Valley		State: WA		Zip code: 98038	
Phone: 425-432-3296					
Current Business Operation the business located on the so	s. To the extent known urce property.	, pleas	e identify below	the current operations of	
What is the current land use of	f the source property? P	ease c	heck all that app	ly.	
Residential School Commercial Childcare facility Industrial Park Agricultural Other – please specify:					
Is there a currently operationa	I commercial or industria	l busine	ess located on th	ne source property?	
Yes 🗌 No 🗍 Unknown					
If you answered "YES" above, please identify in the following table the current business operations using the North American Industry Classification System (NAICS) codes and specifying the operations.					
IAICS CODE DESCRIPTION OF OPERATIONS					
EX: 447110 Gasoline Stations with Convenience Stores					
012020 	Cleaners, drycleaning and laundry service (except coin-operated)				
			<u> </u>		

Is there a solid waste handling facility located on the Source Property?	Part 3 – OPERATIONAL HISTORY OF THE SITE continued					
☐ Yes No ☐ Unknown If you answered "YES" above, please identify:	Is there a solid waste handling facility located on the Source Property?					
If you answered "YES" above, please identify: Attach additional pages if necessary. Is there a dangerous waste treatment, storage, or disposal facility located on the Source Property? Attach additional pages if necessary. If you answered "YES" above, please identify: Attach additional pages if necessary. Regulation of Current Business Operations. Does the business operate under any federal, state, or local permits related to the release of hazardous substances into the environment (e.g., NPDES permit)? Yes ⊠ No ☐ Unknown If you answered "YES" above, please specify the regulated operation, the name of the permit, and the date it was issued in the table below. ReguLATED OPERATION PERMIT DATE ISSUED EX: Wastewater discharge NPDES permit 02/02/02 Has a state or federal notice of enforcement action (e.g., notice of violation) ever been issued related to the release of hazardous substances at the business? Yes ⊠ No ☐ Unknown If you answered "yes" above, please specify (notice and year issued): Yes ≊ No ☐ Unknown	🗌 Yes 🛛 No 🔲 Unknown					
Attach additional pages if necessary. Is there a dangerous waste treatment, storage, or disposal facility located on the Source Property? Yes No Unknown	If you answered "YES" above, please identify:					
Attach additional pages if necessary. Is there a dangerous waste treatment, storage, or disposal facility located on the Source Property? □ Yes No Unknown If you answered "YES" above, please identify:						
Is there a dangerous waste treatment, storage, or disposal facility located on the Source Property?	Attach additional pages if necessary.					
☐ Yes No ☐ Unknown If you answered "YES" above, please identify:	Is there a dangerous waste treatment, storage, or disposal facility located on the Source Property?					
If you answered "YES" above, please identify: Attach additional pages if necessary. Regulation of Current Business Operations. Does the business operate under any federal, state, or local permits related to the release of hazardous substances into the environment (e.g., NPDES permit)? □ Yes No □ Unknown If you answered "YES" above, please specify the regulated operation, the name of the permit, and the date it was issued in the table below. REGULATED OPERATION PERMIT EX: Wastewater discharge NPDES permit 02/02/02 02/02/02 Has a state or federal notice of enforcement action (e.g., notice of violation) ever been issued related to the release of hazardous substances at the business? □ Yes No □ Yes No □ Yes No □ Unknown If you answered "yes" above, please specify (notice and year issued):	🗍 Yes 🛛 No 🗌 Unknown					
Attach additional pages if necessary. Regulation of Current Business Operations. Does the business operate under any federal, state, or local permits related to the release of hazardous substances into the environment (e.g., NPDES permit)? Yes No Unknown	If you answered "YES" above, please identify:					
Regulation of Current Business Operations. Does the business operate under any federal, state, or local permits related to the release of hazardous substances into the environment (e.g., NPDES permit)? Yes IN NO INKNOWN	Attach additional pages if necessary.					
Does the business operate under any federal, state, or local permits related to the release of hazardous substances into the environment (e.g., NPDES permit)? Yes No Unknown If you answered "YES" above, please specify the regulated operation, the name of the permit, and the date it was issued in the table below. REGULATED OPERATION PERMIT DATE ISSUED EX: Wastewater discharge NPDES permit 02/02/02 Has a state or federal notice of enforcement action (e.g., notice of violation) ever been issued related to the release of hazardous substances at the business? Yes No If you answered "yes" above, please specify (notice and year issued):	Regulation of Current Business Operations.					
☐ Yes No ☐ Unknown If you answered "YES" above, please specify the regulated operation, the name of the permit, and the date it was issued in the table below. REGULATED OPERATION PERMIT EX: Wastewater discharge NPDES permit 02/02/02 02/02/02 Has a state or federal notice of enforcement action (e.g., notice of violation) ever been issued related to the release of hazardous substances at the business? ☐ Yes No ☐ Yes No ☐ Yes No ☐ Unknown	Does the business operate under any federal, state, or local permits related to the release of hazardous substances into the environment (e.g., NPDES permit)?					
If you answered "YES" above, please specify the regulated operation, the name of the permit, and the date it was issued in the table below. REGULATED OPERATION PERMIT DATE ISSUED EX: Wastewater discharge NPDES permit 02/02/02 Has a state or federal notice of enforcement action (e.g., notice of violation) ever been issued related to the release of hazardous substances at the business? Image: Pression of the permit issued is the pression of the permit issued is the please specify (notice and year issued):	🗌 Yes 🛛 No]Yes 🖾 No 🔲 Unknown				
REGULATED OPERATION PERMIT DATE ISSUED EX: Wastewater discharge NPDES permit 02/02/02 Image: Second Se	If you answered "YES" above, please specify the regulated operation, the name of the permit, and the date it was issued in the table below.					
EX: Wastewater discharge NPDES permit 02/02/02 Image: state of the	REGULATED OPERATION	PERMIT		DATE ISSUED		
Has a state or federal notice of enforcement action (e.g., notice of violation) ever been issued related to the release of hazardous substances at the business?	EX: Wastewater discharge	NPDES permit		02/02/02		
Has a state or federal notice of enforcement action (e.g., notice of violation) ever been issued related to the release of hazardous substances at the business?	<u>├</u> ────────────────────────────────────					
Has a state or federal notice of enforcement action (e.g., notice of violation) ever been issued related to the release of hazardous substances at the business?						
Has a state or federal notice of enforcement action (e.g., notice of violation) ever been issued related to the release of hazardous substances at the business? Yes No Unknown If you answered "yes" above, please specify (notice and year issued):						
☐ Yes ⊠ No ☐ Unknown If you answered "yes" above, please specify (notice and year issued):	Has a state or federal notice of enforcement action (e.g., notice of violation) ever been issued related to the release of hazardous substances at the business?					
If you answered "yes" above, please specify (notice and year issued):	🗌 Yes 🛛 No	🗌 Yes 🖾 No 🔲 Unknown				
Have business operations resulted in any other spills or other unpermitted releases on the source property?						
🗌 Yes 🖾 No 🔲 Unknown	🗌 Yes 🛛 No	Unknown				
If you answered "YES" above, please specify in the table below.						
RELEASE DATE OF RELEASE STATUS OF RELEASE	RELEASE	DATE OF RELEASE STATUS OF RELEASE		RELEASE		

,
Part 3 – OPERATIONAL HISTORY OF THE SITE continued

Storage Tank Information. In table below, please identify all above ground storage tanks (AST) and										
underground storage tanks (UST) that have been used for storing hazardous substances on the source										
property, irrespective of whether the tanks are still in use or in place. If you are unable to provide										
answers to specific questions regarding a tank, please enter "U" for unknown.										
		N Ci-c	STATUS AND CLOSURE RELEA					EASES		
Hazardous Substance	(AST/UST)	Gallons)	TANK ID	DATE INSTALL	IN USE (Y/N)	DATE CLOSED	METHOD (*)	LOSURE PAST CURREN		
EX: Diesel	UST	10,000	4	02/87	N	05/98	Removed	Ý	N	
	-	-			 	-		<u> </u>		
			· 							
							·			
				_		·				
			L	l		(*) Or	otions = Removed	or Close	d in Place	
B. Past Use of Sou not other properties	u rce Pro p affected l	berty. Not	te that the . Please	following answer t	g ques hèse q	tions refer uestions t	only to the Sol o the best of ye	urce Pri our abili	operty, ity.	
Past Property Own at the time the relea	ers. To t se occurr	the extent ed	known, p	lease ide	ntify be	elow the o	wner of the sou	irce pro	operty	
Name:					Т	itlė:			<u> </u>	
Organization:										
Mailing address:				_					·	
City:	State: Zip code:									
Phone:	none: Fax: E-mail:									
Past Business Owr business (operator) a	Past Business Owners (Operators). To the extent known, please identify below the owner of the business (operator) at the time the release occurred.									
Name: Mr. Chang Kim Title:										
Organization: 4 Cor	Organization: 4 Corners Cleaners									
Mailing address: 23	886 Kent	Kangley F	Road	-						
City: Maple Valley				St	ate: V	IA	Zip code:	98038		
Phone: 425-432-329	96	Fax:				E-ma	ail:			
<i>Identification of Past Business Operations.</i> Please identify in the following table the past operations of businesses located on the source property using the North American Industry Classification System (NAICS) codes and/or specifying the operations.										
NAICS CODE		DESCRIPTION OF OPERATIONS								
EX: 447110		Gasoline Stations with Convenience Stores								
812320		Clean	ers, drycle	aning and	laund	y service (e	except coin-oper	ated)		
·										

Part 3 – OPERATIONAL HISTORY OF THE SITE continued

~ ,

C. Future Use of Source and Affected Properties. The following questions refer to both source and affected properties. Please answer these questions to the best of your ability.
Will any ownership interest in the source or affected properties be conveyed prior to, or upon completion of, the cleanup?
🗋 Yes 🔲 No 🛛 Unknown
If you answered "YES" above, please specify:
·
·
·
Attach additional pages if necessary.
Will any of the source or affected properties, or portions of those properties, be redeveloped as part of the cleanup?
🗌 Yes 🖾 No 🔲 Unknown
If you answered "YES" above, please specify the proposed land use below. Please check all that apply.
 Residential School Commercial Childcare facility Industrial Park Agricultural Other – please specify:
Please also specify the activities proposed for that land use:
· · · · · · · · · · · · · · · · · · ·
·
Attach auditional pages in necessary.

Part 4 – ADMINIST	RATIVE HISTORY OF THE SITE			
Have you previously	reported the release(s) of hazardous substances at the Site to Ecology?			
🗌 Yes	- If so, when? No 🔲 Unknown			
Has the cleanup of th	ne Site, or any portion of the Site, ever been managed under the VCP?			
☐ Yes ⊠ No ☐ Unk	- If so, please specify the VCP Project Number:			
Has the cleanup of order or decree?	the Site, or any portion of the Site, ever been managed under a federal or state			
☐ Yes ⊠ No ☐ Unk	s – If so, please specify the type and docket number:			
Part 5 – DESCRIP	TION OF INDEPENDENT REMEDIAL ACTIONS AT THE SITE			
A. Scope of Remed	lial Actions.			
Do you plan to ch contamination locate	naracterize and address all of the contamination at the Site, including any d on affected adjacent properties, as part of the VCP project?			
🛛 Yes	🗌 No 🔲 Unknown			
If you answered "NO" above, please describe below the scope of the VCP project, including the contamination (properties, portions of a property, media and/or hazardous substances) that you DO NOT plan on characterizing and/or addressing as part of the VCP project. Please include additional pages if necessary.				
·				
·				
·				
·				
·				
Attach additional pages	if necessary.			

~

•

Part 5 – DESCRIPTION OF INDEPENDENT REMEDIAL ACTIONS AT THE SITE continued

B. Status of Remedial Actions.

What is the current status of remedial actions at the site? Please check all that apply in the table below.					
REMEDIAL ACTION	NOT APPLICABLE				
INITIAL RESPONSE (UST ONLY)				X	
INTERIM ACTION				X	
REMEDIAL INVESTIGATION			X		
FEASIBILITY STUDY				X	
CLEANUP ACTION	_			X	

C. Documentation of Remedial Actions.

Please list in the table below all known remedial action plans or reports produced for the site, including:

- The title of the plan or report,
- The author (e.g. consulting firm) of the plan or report,
- The date the plan or report was produced,
- Whether the plan or report has been submitted to Ecology,
- The date the plan or report was submitted to Ecology.

				SUBMITTED TO ECOLOGY		
				Y/N?	DATE	
Ex:	John Doe's Site: Remedial Investigation Work Plan	Mom's Consulting Firm	02/20/05	NO	N/A	
1.	Phase I Environmental Site Assessment Report (also includes areas outside the Property boundary)	The Riley Group, Inc.	9/30/03	Y	With this application	
2.	Drycleaners Compliance Review Report	The Riley Group, Inc.	1/03/11	Y	With this application	
3.	Phase I Environmental Site Assessment Update Report (also includes areas outside of the Property boundary)	The Riley Group, Inc.	1/18/11	Y	With this application	
4.	Phase I Environmental Site Assessment Update Report (also includes areas outside of the Property boundary)	The Riley Group, Inc.	5/9/2012	Y	With this application	
5.	Additional Subsurface Investigation Letter Report (also includes areas outside of the Property boundary)	The Riley Group, Inc.	9/28/12	Y	With this application	
6.	Addendum to 2012 Additional Subsurface	The Riley Group, Inc.	2/26/14	Y	With this application	
7.						
8.						
9.						
10.						

Part 6 – STATEMENT AND SIGNATURE

A. Statement and Signature. The undersigned affirms that the information contained in this application is true and accurate to the best of his or her knowledge. Please note that someone other than the Customer may sign this Application Form.					ner	
Name: Jerry Sawetz			Title:	Senior E	vironmental Scient	ist
Signature: Jun Amt					Date: 10/22/14	
Organization: The Riley Group, In	IC.				,	
Mailing address: 17522 Bothell W	ay Northeast					
City: Bothell		State:	WA		Zip code: 98011	
Phone: 425-415-0551 Fax: 425-315-0331				E-mail: j	sawetz@riley-grou	o.com
B. Affiliation.						
What is the signatory's involvemer	nt at the Site? Please	e check	all tha	t apply.		
 Customer Property Owner Consultant Attorney Other – please specify: 						

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: 4 Corners Cleaners

Facility/Site Address: 23886 Kent Kangley Road, Maple Valley, Washington 98038

Facility/Site No: N/A

VCP Project No.: N/A

Title: Senior Environmental

Scientist

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name: Jerry Sawetz

Organization: The Riley Group

Mailing address: 17522 Bothell Way Northeast

City: Bothell			te: shington	Zip code: 98011
Phone: 425-415-0551	Fax: 425-415-0311		E-mail: jsawe	etz@riley-group.com

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS						
A. Exclusion from further evaluation.						
1. Does the Site qualify for an exclusion from further evaluation?						
Yes If you answered "YES," then answer Question 2 .						
No or Unknown If you answered "NO" or "UKNOWN," then skip to Step 3B of this form.						
2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.						
Point of Compliance: WAC 173-340-7491(1)(a)						
All soil contamination is, or will be,* at least 15 feet below the surface.						
All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.						
Barriers to Exposure: WAC 173-340-7491(1)(b)						
All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.						
Undeveloped Land: WAC 173-340-7491(1)(c)						
There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.						
For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.						
Background Concentrations: WAC 173-340-7491(1)(d)						
Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.						
 * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. * "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. * "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife. 						

В.	3. Simplified evaluation.					
1.	1. Does the Site qualify for a simplified evaluation?					
	XY	es If you answered "YES," then answer Question 2 below.				
	Unkn	lo or own If you answered "NO" or "UNKNOWN," then skip to Step 3C of this form.				
2.	Did you co	onduct a simplified evaluation?				
	X Y	es If you answered "YES," then answer Question 3 below.				
	<u>и П</u>	lo If you answered "NO," then skip to Step 3C of this form.				
3.	Was furth	er evaluation necessary?				
	🗆 Y	es If you answered "YES," then answer Question 4 below.				
		lo If you answered "NO," then answer Question 5 below.				
4.	lf further e	valuation was necessary, what did you do?				
		Used the concentrations listed in Table 749-2 as cleanup levels. <i>If so, then skip to</i> Step 4 of this form.				
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.				
5.	If no furth to Step 4 o	er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.				
	Exposure	Analysis: WAC 173-340-7492(2)(a)				
		Area of soil contamination at the Site is not more than 350 square feet.				
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.				
1	Pathway A	nalysis: WAC 173-340-7492(2)(b)				
	No potential exposure pathways from soil contamination to ecological receptors.					
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.				

_

C.	Site-specient the problem require contract of the second s	ific evaluation. A site-specific evaluation process consists of two parts: (1) formulating m, and (2) selecting the methods for addressing the identified problem. Both steps insultation with and approval by Ecology. See WAC 173-340-7493(1)(c).						
1.	1. Was there a problem? See WAC 173-340-7493(2).							
	🗌 Y	es If you answered "YES," then answer Question 2 below.						
	No If you answered "NO," then identify the reason here and then skip to Question 5 below:							
		No issues were identified during the problem formulation step.						
		While issues were identified, those issues were addressed by the cleanup actions for protecting human health.						
2.	What did y	you do to resolve the problem? See WAC 173-340-7493(3).						
		Used the concentrations listed in Table 749-3 as cleanup levels. <i>If so, then skip to</i> Question 5 below.						
		Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>						
3.	lf you con Check all ti	ducted further site-specific evaluations, what methods did you use? hat apply. See WAC 173-340-7493(3).						
		Literature surveys.						
		Soil bioassays.						
		Wildlife exposure model.						
		Biomarkers.						
		Site-specific field studies.						
		Weight of evidence.						
		Other methods approved by Ecology. If so, please specify:						
4.	What was	the result of those evaluations?						
		Confirmed there was no problem.						
		Confirmed there was a problem and established site-specific cleanup levels.						
5.	5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?							
	Yes If so, please identify the Ecology staff who approved those steps:							
	□ No							

-

г

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

