ISCR/ISB INTERIM ACTION WORK PLAN

Former Tux Shop Site Remediation Project

Prepared for: F&N Investment Company, LLC

Project No. 090030 • July 18, 2024 DRAFT

ISCR/ISB INTERIM ACTION WORK PLAN

Former Tux Shop Site Remediation Project

Prepared for: F&N Investment Company, LLC

Project No. 090030 • July 18, 2024 DRAFT

Aspect Consulting

Jeremy Porter, PE Senior Principal Engineer jeremy.porter@aspectconsulting.com **Delia Massey, PE** Senior Engineer delia.massey@aspectconsulting.com

\\ASP-Sea-01\Deliverables\090030 Former Tux Shop\Deliverables\Interim Action Work Plan\Ecology Review Draft\ISCR ISB IA Work Plan_20240718_DRAFT.docx

Contents

Ac	crony	ms		iii				
1	Int	roduct	tion	1				
	1.1	Repo	ort Organization	1				
2	60	' nconti		2				
2	2 1	Gool		3 2				
	2.1	Geor		J				
	2.2 2.3	Notu	ure and Extent of CV/CCs					
	2.3	1Natu 2 1		4				
	2	32	COCs in Groundwater					
	2	.3.3	COCs in Soil Gas and Air	6				
	2.4	Grou	Indwater Biogeochemistry	6				
3	Pil	ot Stu	dy Overview	9				
Ŭ	31	Appr	roach	9				
	3.2	Obie	ctives					
4	PII		ay Design					
	4.1	Field						
	4	.1.1	Injection Well Installation					
	4	1.2	Baseline Groundwater Sampling					
	42	Read	gent Injections	12				
	4	.2.1	Design					
	4	.2.2	Reagent Selection and Handling					
	4	.2.3	Injection System					
	4	.2.4	Injection Methods					
	4	.2.5	Reagent Dosing and Batching					
	4.3		ltoring					
	4 1	3.1	Operational Monitoring					
	11	Cont	tingency Considerations					
	т. т 4	. <u>4</u> 1	Rest Practices	16				
_	-	• • •						
5	Pro	oject C						
	5.1	Role						
	5.2	Repo	orting					
	5.3	Sche	edule	5.3 Schedule				

6	References21
7	Limitations22

List of Tables

1	Screening Levels for Site Contaminants of Concern
2	Injection Design
3	Monitoring Program - Analyte List
4	Groundwater Monitoring Program

List of Figures

- 1 Site Location Map
- 2 Expanded Pilot Test Layout
- 3 PCE Concentrations in Vadose Zone Soil (2019 to 2023)
- 4 PCE Concentrations in Saturated Zone Soil (2019 to 2023)
- 5 PCE Concentrations in Groundwater Water Table Interval
- 6 PCE Concentrations in Groundwater Shallow Interval
- 7 PCE Concentrations in Groundwater Intermediate and Deep Intervals
- 8 Extent of PCE in Groundwater

List of Appendices

- A Pilot Test Tech Memo
- B Reagent Information
- C HASP
- D Injection Logs
- E Utility Maps

Acronyms

AS	air sparging
Aspect	Aspect Consulting
bgs	below ground surface
BMPs	best management practices
Cascade	Cascade Remediation Services
cis-DCE	cis-1,2-dichloroethene
COCs	contaminants of concern
CSM	conceptual site model
CUL	Cleanup level
CVOCs	chlorinated volatile organic compounds
Ecology	Washington State Department of Ecology
gpm	gallons per minute
HSA	hollow stem auger
IDW	Investigative-derived waste
ISB	in situ bioremediation
ISCR	in situ chemical reduction
lbs.	pounds
mg/kg	milligrams/kilograms
mg/L	milligrams per liter
µg/L	micrograms per liter
MTCA	Model Toxics Control Act
Onsite	OnSite Environmental, Inc.
PCE	tetrachloroethene
PID	photoionization detector
ROI	radius of influence
ROW	right-of-way
SC	specific conductivity

ASPECT CONSULTING

SDS	Safety Data Sheet
SVE	soil vapor extraction
TCE	trichloroethene
TDS	total dissolved solids
ТОС	total organic carbon
UIC	Underground Injection Control
VC	vinyl chloride
VOC	volatile organic compound
WAC	Washington Administrative Code
ZVI	zero valent iron

1 Introduction

This in situ chemical reduction (ISCR) and in situ bioremediation (ISB) Interim Action Work Plan (Work Plan) has been prepared by Aspect Consulting (Aspect) on behalf of F&N Investment Company, LLC for the Former Tux Shop Site (Site). The Former Tux Shop is located at 5409 15th Avenue Northwest in the Ballard neighborhood of Seattle, Washington (Property) as shown on Figure 1. The Site encompasses the area impacted by tetrachloroethene (PCE) and associated daughter products, which originated from historical releases from a former dry cleaner that operated on the Property. A Walgreens drugstore has been located on the Property since 1996. Prior interim actions conducted at the Site include soil removal during redevelopment of the Property in 1996 and operation of an air sparging/soil vapor extraction (AS/SVE) system from 1998 to 2010; however, the AS/SVE system reached a point of diminishing effectiveness and elevated concentrations of PCE persist in soil and groundwater. Since 2010, Aspect has been collecting additional data to characterize the Site and select a remedy that meets the requirements of the state Model Toxics Control Act (MTCA: WAC 173-340).

Aspect evaluated potential remedial alternatives to address contaminated media at the Site in accordance with WAC 173-340-351. Pilot testing of two remediation technologies (ISCR and ISB) was determined to be an appropriate step to reduce the uncertainties associated with treatment of chlorinated volatile organic compounds (CVOCs) in groundwater. The initial ISCR/ISB pilot test was implemented in January 2023, and the methods and results of the pilot test are described in the ISCR/ISB Pilot Test Results Memorandum (Aspect, 2024), which is provided in Appendix A. The results of the initial pilot study indicated that ISCR/ISB is a potentially viable remedial technology at the Site; however, additional data is needed to fully evaluate its potential effectiveness for full-scale implementation and complete the evaluation of remedial alternatives.

This Work Plan presents an expanded ISCR/ISB pilot test targeting the southwest area of the Property. The expanded pilot test will also serve as an interim remedial action to address PCE in groundwater migrating off-Property until a final remedy is selected for the Site.

This Work Plan describes the pilot study activities proposed to evaluate the in situ treatment of CVOCs by ISCR and ISB in the Water Table and Shallow Interval groundwater at the Site. The Site layout and the proposed pilot study monitoring well network is presented on Figure 2.

1.1 Report Organization

This report is organized as follows:

- Section 1 describes the purpose and organization of the Work Plan.
- Section 2 presents the conceptual site model (CSM) as a basis for pilot testing design including geology, hydrogeology, groundwater biogeochemistry, and nature and extent of CVOC contamination in the pilot test area.

- Section 3 describes the objectives and approach of the pilot test.
- Section 4 describes the final pilot study design and is organized by field data collection, reagent injections, monitoring, and contingency considerations. The field data collection section includes injection well installation, soil sampling, and groundwater sampling. The reagent injections subsection includes design, reagent selection, injection system, injection methods, and reagent dosing and batching. The monitoring subsection is organized according to operational and performance monitoring.
- Section 5 presents the project team's roles and responsibilities, and the schedule and reporting required for the pilot study.
- Section 6 provides references used in the preparation of this report.

Appendices to this report provide supporting information referenced within the text. These include vendor mixing instructions for the reagents, a Health and Safety Plan (HASP), example operational log for field monitoring, and a manual for operation of the instrument used for methane monitoring.

2 Conceptual Site Model

This section summarizes the CSM including hydrogeologic conditions and the nature and extent of contamination, based on the currently available data.

2.1 Geology

Site soils consist of 1 to 5 feet of surficial fill overlying a thick glacial till (Till) unit, which generally consists of over-consolidated poorly graded, fine- to medium-grained silty sand. The Till unit has been observed to the maximum depth explored at the Site, 90 feet below ground surface (bgs). Below the contact of the fill-Till interface, the Till consistently grades from dense within the first few feet downward to very dense, suggesting the top of the Till unit was slightly weathered during the period where it was exposed as the land surface. Within the Till unit, the silt content varies widely, ranging from a sand with trace amounts of silt (SP) to a sandy silt (ML). Additionally, fine to medium, subrounded to rounded gravel is commonly present in the silty sand or silt matrix, and interbeds of silt and sand lenses have been noted in several borings. It should be noted that the Till unit by nature is exceptionally heterogeneous, and lenses of finer-and coarser-grained deposits within the Till unit are not laterally or vertically continuous over ranges of more than a few feet to tens of feet, at most.

2.2 Hydrogeology

The depth to groundwater varies across the Site due to changing topography and groundwater gradients. Wells are installed at varying depths to characterize water-bearing zones encountered in different intervals; however, based on geology and contaminant distribution, these intervals are interconnected and do not represent separate groundwater units. The following terminology is used for different groundwater depth intervals:

- The **Water Table Interval** is characterized by wells screened across the water table and includes approximately the upper five feet of the saturated zone. The depth to the water table varies from approximately 13 to 22 feet bgs across the Site.
- The **Shallow Interval** is located just below the Water Table Interval and is generally characterized by wells screened to a depth of approximately 25 to 35 feet but varies slightly depending on location.
- The **Intermediate Interval** is generally characterized by wells screened approximately 40 to 50 feet deep.
- The **Deep Interval** is characterized by one well, screened 80 to 90 feet deep.

Groundwater Occurrence and Flow Direction. Prior to remediation activities (which began in 1996), groundwater was encountered at depths ranging from 8 to 13 feet bgs. Shallow groundwater flowed to the south and southeast and slightly downward. Since 1996, the water table has dropped, and is currently observed at depths between 13 to 19 feet bgs. Groundwater flow direction on the Property in the Water Table and Shallow Intervals is currently to the south and southwest. In July 2023, the horizontal hydraulic gradient on the Property ranged between 0.01 and 0.03 foot/foot in the Water Table

Interval and between 0.01 and 0.02 foot/foot in the Shallow Interval. The presumed groundwater flow direction in the Intermediate Interval is also to the southwest, due to the connection between the Shallow and Intermediate Intervals. The planned additional monitoring wells in the Intermediate Interval will be analyzed to confirm the assumed groundwater flow direction.

On the Property, downward hydraulic gradients are observed between the Water Table, Shallow, and Intermediate Intervals. An upward gradient is observed from the Deep to Intermediate Interval, which likely limits migration of contamination beneath the Intermediate Interval.

Hydraulic Conductivity. A limited pumping test was conducted in 2020 at AC-1-25, AC-4-50, AS-35, and IW-1. Results from the pumping test indicates the hydraulic conductivity in the 25-to 35-foot (0.13 to 0.35 ft/day) depth interval is higher than the 15-to 25-foot (0.07 ft/day) and the 40- to 50-foot (0.03 ft/day) depth intervals. This indicates that the 25- to 35- foot depth interval is more permeable and is most likely the zone with the highest groundwater flux and potential for lateral transport. The estimated range of groundwater velocities in the Shallow Interval, based on the range of hydraulic gradients measured on the Property in July 2023, the range of hydraulic conductivities calculated from the pumping tests, and assuming an effective porosity of 0.06, is 8 to 43 feet per year.

2.3 Nature and Extent of CVOCs

The contaminants of concern (COCs) for the Site are PCE, trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE), and vinyl chloride (VC) in groundwater, and PCE in soil. PCE is the primary Site contaminant for soil and groundwater, with generally low or nondetect concentrations of TCE, cis-DCE, and VC over most of the Site.

Site COCs and applicable screening levels in soil, groundwater, and indoor air are summarized in Table 1. These include preliminary cleanup levels¹ (typically, the lowest applicable cleanup level for a particular medium), as well as other media-specific screening levels that are relevant to specific exposure pathways and the development of remedial alternatives such as vapor intrusion screening levels for groundwater and soil gas (based on protection of indoor air under residential and commercial exposure scenarios) and MTCA Method B direct contact cleanup levels for soil.

The occurrence of COCs in soil, groundwater, soil gas, and air at the Site are summarized below.

2.3.1 COCs in Soil

PCE is the only chemical that has been detected in soil above the MTCA Method A cleanup level for unrestricted use of 0.05 mg/kg. This section summarizes the estimated extent of PCE in soil at the Site after prior interim actions.

¹ For the purposes of this Feasibility Study, we have assumed MTCA Method A cleanup levels apply when available. If no Method A value is available, then the lowest applicable MTCA Method B cleanup level is used.

Soil data was collected during the installation of on- and off-Property monitoring wells between 2019 and 2023. The range of maximum PCE concentrations detected at each location are shown on Figure 3 (vadose zone) and Figure 4 (saturated zone). In summary:

- Vadose Zone. PCE was not detected above the preliminary cleanup level in any soil samples above the water table. However, very few samples have been collected beneath the building in the vadose zone.²
- Saturated Zone. PCE was detected above the preliminary cleanup level at locations on the Property beneath the southern portion of the Walgreens Building, to the west and south of the Walgreens building, and south of the Property in the NW 54th Street right-of-way (ROW). The maximum concentration detected was 5,420 ug/kg at AC-7-35, at a depth of 30 feet.

The highest concentrations of PCE in soil were generally detected between 28 and 33 feet bgs. The maximum depth of PCE exceeding the preliminary cleanup level was 45 feet bgs at AC-4-50.

2.3.2 COCs in Groundwater

Prior to remediation, PCE was the primary chemical detected in groundwater above the MTCA Method A cleanup level for unrestricted use of 5 μ g/L. PCE degrades in the environment to other compounds, including TCE, cis-DCE, and VC under reducing conditions (i.e., reductive dechlorination). TCE was also detected in several samples that also contained PCE but was present at much lower concentrations. Concentrations of cis-DCE and VC in groundwater were generally very low or not detected.³ Therefore, this section describes the occurrence of PCE in Site groundwater.

Current Groundwater Data

Recent groundwater monitoring results are included in Table 1 of Appendix A. The most recent PCE data in groundwater (collected in 2023, unless otherwise noted) is shown on Figure 5 (Water Table Interval), Figure 6 (Shallow Interval), and Figure 7 (Intermediate and Deep Intervals), and a summary of data from all intervals is provided on Figure 8. The occurrence of PCE in each interval is summarized as follows:

- Water Table Interval. PCE concentrations exceed the preliminary cleanup level on the Property to the west, south, and southeast of the Walgreens building, with the highest concentration in July 2023 (3,300 ug/L) located west of the building at AC-11-25. The lateral extent of the PCE plume is bounded in these directions by wells AC-18-25, AC-2-25, AC-22-20, AC-24-35, and AC-26-25 (Figure 5).
- Shallow Interval. Similar to the Water Table Interval, PCE concentrations exceed the preliminary cleanup level on the Property in the Shallow Interval beneath and to the west, south, and southeast of the Walgreens building, with the

² Most of the interior of the Walgreens Building is not accessible for drilling. Angle borings have been installed but these are only able to assess vadose zone conditions near the building edges.

³ Higher concentrations of PCE degradation products TCE, cis-DCE, and VC have been detected southeast of the Property, at well HC-8, and in other historical explorations on the Mud Bay property. It is suspected that petroleum contamination from historical service stations located downgradient of the Site has resulted in localized conditions that are more conducive to biodegradation.

highest concentrations in July 2023 located east of the building at AC-12-35 (2,900 ug/L) and south of the building at AS-31 (5,460 ug/L) and AS-15-35 (4,300 ug/L). PCE concentrations also exceed the preliminary cleanup level south, southwest, and southeast of the Property in the NW 54th Street ROW. The lateral extent of the PCE plume is bounded in these directions by wells AC-19-35, AC-2-25, AC-23-30, AC-25-35, and AC-27-35 (Figure 6).

- Intermediate Interval. PCE concentrations exceed the preliminary cleanup level on the Property in the Intermediate Interval to the west and south of the Walgreens building, with the highest concentration in July 2023 (2,100 ug/L) located south of the building at AC-4-50. PCE concentrations also exceed the preliminary cleanup level south of the Property in the NW 54th Street ROW (Figure 7).
- **Deep Interval.** PCE concentrations are below the preliminary cleanup level at the one Deep Interval well, AC-5-90, located on the Property south of the building (Figure 7).

The lateral extent of the PCE plume in the downgradient directions has been characterized in the Water Table and Shallow Intervals. The downgradient extent in the Intermediate Interval has not been defined, but it is assumed to be less than the extent in the Shallow Interval, since the Shallow Interval has been characterized to contain the highest levels of contamination and is the most permeable, and therefore most amenable to contaminant migration, of the Site water bearing zones.

2.3.3 COCs in Soil Gas and Air

Because of the PCE and TCE concentrations detected in groundwater, they are COCs for soil gas and indoor air. COC concentrations in soil gas and indoor air have not been measured on the Property since operation of the AS/SVE system. At the time of building construction, a subslab depressurization system, consisting of a network of vapor extraction piping beneath the foundation slab connected to a ventilation blower, was installed. This system operates continuously and maintains a negative pressure beneath the building, preventing vapor intrusion. Vapor intrusion assessments were conducted in 2021 at the two adjacent properties that contain structures in the vicinity of groundwater exceeding vapor intrusion screening levels in the Water Table Interval and did not identify vapor intrusion concerns.

PCE concentrations in groundwater upgradient of three other structures in the area—the adjacent Fire Station, the Leva on Market building, and the Gallagher Apartments building—are below vapor intrusion screening levels. In addition, the Leva on Market and Gallagher Apartments buildings have underground parking garages that should be ventilated and provide separation between soil gas and occupied spaces. Based on the data, the vapor intrusion pathway is currently not complete at the Site with the ongoing operation of the subslab depressurization system.

2.4 Groundwater Biogeochemistry

A biogeochemical investigation was performed at Site monitoring wells IW-1, HC-4, AS-35, and AC-4-50 to aid in the design of a bioremediation pilot test and evaluation of remedial alternatives. This included the analysis of natural attenuation and conventional parameters, as well as a microbiological analysis to determine the population of *Dehalococcoides*. Results from this investigation in April 2019, and the ISCR and ISB pilot test in January 2023, are included in the Pilot Test Technical Memorandum. (Aspect, 2024: Appendix A). Sitewide groundwater monitoring has included measurement of field parameters, including dissolved oxygen, which is included in groundwater data tables.

Groundwater geochemical conditions at the Site vary based on depth and location. The Water Table Interval exhibits generally moderate to high levels of dissolved oxygen on and near the Property, whereas the Shallow and Intermediate Intervals exhibit generally reducing conditions but with some exceptions. Several wells that exhibit reducing conditions also contain detectable cis-DCE concentrations (an anaerobic breakdown product of PCE).

The following bullets summarize the key groundwater analytical results from the pilot test area pre- and post-pilot test:

- **Dissolved Oxygen.** Dissolved oxygen is the primary electron acceptor in aerobic aquifers and will be used preferentially before other electron acceptors are consumed in the following order of preference: nitrate, manganese, iron, sulfate, and carbon dioxide. Sulfate reducing conditions are optimal for full reductive dechlorination of PCE to ethane and ethene. Anaerobic bacteria like *Dehalococcoides* generally cannot function at dissolved oxygen concentrations greater than approximately 0.5 milligrams per liter (mg/L). Dissolved oxygen concentrations were greater than 3.0 mg/L at AS-35 and IW-1, during pre-pilot test monitoring. Dissolved oxygen concentrations were less than 0.1 mg/L during post-pilot test monitoring, indicating that anaerobic conditions favorable for biological degradation of PCE were achieved.
- Nitrate. Nitrate is the first electron acceptor consumed when the prime electron acceptor, dissolved oxygen, is depleted. Nitrate was detected at concentrations greater than 1.0 mg/L at AS-35 and IW-1 during pre-pilot test monitoring, which does not indicate nitrate-reducing conditions. During post-pilot test monitoring, nitrate was not detected in AS-35 or IW-1, which is indicative of nitrate-reducing conditions.
- Manganese. Manganese is typically the next electron acceptor consumed after nitrate in anaerobic environments. Relatively insoluble naturally occurring manganese (IV) is reduced to highly soluble manganese (II). Dissolved manganese was detected at concentrations less than 0.5 mg/L at all wells during pre-pilot test monitoring, which does not indicate that manganese (IV) is being reduced. During post-pilot test monitoring, manganese was detected at 10.5 mg/L at AS-35 and IW-1, respectively, indicating that manganese reducing conditions were achieved in the pilot test area.
- **Iron.** Under iron-reducing conditions, relatively insoluble and naturally occurring ferric iron (Fe3+) is reduced to more soluble ferrous iron (Fe2+); therefore, greater dissolved iron concentrations in groundwater indicate iron-reducing conditions. During pre-pilot test monitoring iron was present in wells AC-4-50,

AS-35, HC-4, and IW-1 at concentrations lower than 1.0 mg/L, indicating slightly iron-reducing conditions. Post-pilot test monitoring of AS-35, the pilot test dose-response well, showed iron concentrations of greater than 10 mg/L, indicating strongly iron-reducing conditions.

- Sulfate. The most rapid biodegradation rates for reductive dechlorination occur under sulfate-reducing conditions. During pre-pilot test monitoring, sulfate concentrations in the pilot test area monitoring wells ranged from 36.4 to 233 mg/L, which do not indicate sulfate-reducing conditions. During post-pilot test monitoring, sulfate concentrations in the injection well (IW-1) and dose-response well (AS-35) ranged from 1 to 18 mg/L, indicating sulfate-reducing conditions were achieved in the pilot test area.
- Total Organic Carbon. Total organic carbon (TOC), which represents the electron donor for electron acceptors (iron, sulfate, etc.) in redox reactions, was detected before the pilot test at concentrations below 10 mg/L. These levels of TOC are generally regarded as indicating that reducing conditions are limited by the availability of organic carbon (Wiedemeier et al., 1998). The pilot test injection reagent ELSTM microemulsion contains a high concentration of TOC to support reductive dechlorination metabolic pathways.
- Ethane and Ethene. The most direct indication of redox conditions supportive of biodegradation of chlorinated volatile organic compounds (CVOCs) in groundwater is the presence of dechlorination end products ethene and ethane. The detection of ethane at AC-4-50 prior to the pilot test confirms the presence of a native microbial community capable of completely dechlorinating TCE to nontoxic end products. Ethane and ethene were detected at low concentrations in IW-1 and AS-35 during post-pilot test monitoring.
- **Dehalococcoides.** The microbiological results confirm *Dehalococcoides* are present at low concentrations in AS-35 and IW-1. *Dehalococcoides* are a bacterial group responsible for complete reductive dechlorination of PCE and TCE to nontoxic end products ethene and ethane. The *Dehalococcoides* concentrations measured in the pilot study area before the pilot test are considered below the threshold where reductive dechlorination will yield a generally useful biodegradation rate (<104 cells/mL). *Dehalococcoides* were also not detected above the threshold in the pilot test wells during post-pilot test monitoring, suggesting that degradation of PCE observed during the pilot test may be due more to abiotic reactions than biodegradation.

Overall, some areas of the Site—particularly in the Shallow and Intermediate Intervals have ambient conditions conducive to biodegradation, but limited evidence of significant biodegradation has been observed on or near the Property. The pilot test was able to enhance conditions favorable for biodegradation.

3 Pilot Study Overview

3.1 Approach

An expanded field-scale pilot study will be conducted to address contaminant concentrations in groundwater. The injection reagent will be delivered through existing air sparge wells (AS-31 and AS-39) and proposed permanent injection wells IW-2 through IW-15 in the Shallow Interval, located downgradient of the Walgreens building. Four proposed injection wells (IW-3-WT, IW-5-WT, IW-7-WT, and IW-9-WT) will be screened in the Water Table Interval, and ten proposed injection wells (IW-2, IW-4, IW-6, IW-8, IW-10, IW-11, IW-12, IW-13, IW-14, and IW-15) and the existing air sparge wells will be screened in the Shallow Interval.

An injection reagent which supports both biotic and abiotic treatment (ISB and ISCR) was selected for the initial pilot test as likely to be most effective to achieve Site cleanup levels. The baseline data was indicative of slightly reducing conditions and suggests that there is an existing (albeit small) native microbial community capable of reductive dechlorination; however, there is limited evidence that full biodegradation of PCE is occurring. The initial ISCR/ISB pilot test at IW-1 demonstrated the ability of ISCR/ISB to significantly reduce CVOC concentrations, but the ability of this technology to fully dechlorinate PCE to the point of preventing off-Property migration of daughter products is still to be determined (Aspect 2024; Appendix A). Therefore, the combined approach of ISB and ISCR will be the approach implemented during this expanded pilot test.

Based on injection reagent availability and implementability (discussed in Section 4.2.2), a different ISCR reagent comprised of micro-ZVI will be used in the expanded pilot test. Due to the use of this new reagent and ongoing questions about the ability of ISCR to fully biodegrade PCE as described above, the injections will be implemented in two phases:

- 1. **On-Property (Phase 1):** installation of the on-Property injection wells (IW-2 through IW-10) and injection into the on-Property locations (IW-2 through IW-10 and AS-31 and AS-39); and
- 2. Off-Property (Phase 2): installation of the off-Property injection wells (IW-11 through IW-15), and injection into these off-Property wells.

Performance monitoring will be conducted at 3 months and 6 months after the on-Property injection to evaluate whether the reagent fully degrades PCE. If there is sufficient evidence of cis-DCE and VC degradation, then the off-Property phase will be implemented as outlined in this work plan. If there is not sufficient degradation of cis-DCE and VC at the performance monitoring wells after the first two Phase 1 monitoring events, or other performance issues such as well clogging or poor reagent distribution are encountered, then the injection design will be revisited prior to installing the off-Property injection wells. This phased approach will limit the risk of daughter product accumulation—particularly at off-Property locations.

3.2 Objectives

The pilot study objectives are as follows:

- 1. Evaluate the ability to deliver and distribute reagent in the Water Table and Shallow groundwater intervals. This objective will be evaluated based on the ability to achieve targeted injection volumes and observe reagent breakthrough. This objective also includes assessing logistical considerations of access and utility locations.
- 2. Significantly reduce CVOC concentrations and determine if full dechlorination is viable. Post-injection CVOC trends at wells influenced by injections will be compared to wells not influenced by injections. The presence of nontoxic byproducts of reductive dechlorination (ethene and ethane) will be evaluated, and any potential accumulation of cis-DCE or VC will be assessed.
- **3.** Estimate design parameters for implementing the selected technology. This includes the longevity of the desired biogeochemical change and associated injection frequency required to maintain dechlorinating conditions. Other design parameters include radius of influence (ROI)/injection-volume relationship, injection-specific capacity (relationship of injection rate and water level increase), and injection-pressure thresholds.
- 4. Evaluate ability to manage secondary effects. With both the ISCR and ISB technologies, there are secondary effects inherent to the desired change in CVOC concentrations that should be expected and managed. These include the reductive dissolution of redox-sensitive metals such as iron, the generation and potential accumulation of methane, and potential short-circuiting of injection solution. The pilot test design includes management elements such as a redox recovery zone, a buffer between buildings and injection points, and monitoring of these secondary effects.

The initial pilot test was successful in evaluating these parameters at the tested injection well (IW-1); this expanded pilot test will provide additional data for implementation in different areas and depth intervals, including the potential for using existing AS wells as injection points, which will be used to evaluate potential future treatment beneath the existing building.

4 Pilot Study Design

The pilot study will be designed to meet the objectives in the previous section. This section summarizes the elements of design for the reagent injections, describes the operational and performance monitoring, and addresses contingency considerations.

4.1 Field Data Collection

4.1.1 Injection Well Installation

Up to 14 new injection wells (IW-2 through IW-15) will be installed to treat groundwater downgradient of the source area and substantially reduce off-Property migration. Wells IW-2 through IW-10 will be installed during the initial phase of work and, if adequate degradation is confirmed 6 months after the Phase 1 injection, wells IW-11 through IW-15 will be installed. The proposed well locations are on the west and south Property lines and in the ROW on the north side of 5315 15th Ave NW. The final well locations are subject to access based on the field locates and utility clearance (Figure 2). Four of the 14 wells (IW-3-WT, IW-5-WT, IW-7-WT, and IW-9-WT) will be screened in the Water Table Interval between approximately 15 and 25 feet bgs. The remaining 10 injection wells (IW-2, IW-4, IW-6, IW-8, IW-10, IW-11, IW-12, IW-13, IW-14, and IW-15) will be screened in the Shallow Interval between approximately 25 and 35 feet bgs.

All proposed injection wells will be constructed of 4-inch stainless-steel casing with 4inch stainless-steel wire-wrapped screens to increase well efficiency during the pilot test injection and allow long-term use as necessary. Injection wells will be installed by a Washington State-licensed driller using Hollow Stem-Auger (HSA) drilling methods. Upon the completion of the injection wells, well development will be performed using surge and purge development methods. Well coordinates and top of casing and top of monument elevations will be surveyed by a Washington State-licensed surveyor.

As-built monitoring well construction details, locations, and drilling observations will be documented and summarized in the ISCR/ISB Pilot Technical Memorandum. Soils observed during the injection well drilling will be classified by an Aspect geologist or engineer in accordance with the ASTM International, Inc. (ASTM) Method D2488 Standard Practice for Description and Identification of Soils. Investigative-derived waste (IDW) generated during drilling will be containerized, characterized, and disposed of at an approved off-Site disposal facility.

Five proposed well locations are within NW 54th Street and the associated ROW. A City of Seattle street use permit will be obtained, and although no access agreements are anticipated, the business owner/operators affected by the drilling will be notified of planned activities. A traffic control plan will be required to obtain the street use permit and will be implemented diligently to ensure worker safety and minimize disruptions to local traffic and businesses.

4.1.2 Soil Sampling

Soil samples will be collected at 5-foot depth intervals using EPA Method 5035A and will be field screened with a photoionization detector (PID). If elevated PID readings are

detected from depths not previously characterized at the proposed locations, up to two soil samples per location will be submitted to OnSite Environmental, Inc. (OnSite) in Redmond, Washington for analysis of VOCs by EPA Method 8260. If no elevated PID readings are detected, a minimum of two samples will be collected for waste profiling.

4.1.3 Baseline Groundwater Sampling

Groundwater samples will be collected from new injection wells to provide baseline concentrations for CVOCs. Sampling will be conducted after the wells are installed for each phase (IW-2 through IW-10 for Phase 1 and IW-11 through IW-15 for Phase 2). Sampling will be conducted no sooner than 48 hours after development. This monitoring event will consist of depth to groundwater gauging at both existing and new wells and groundwater sample collection at the new injection wells. Measurement of depth to groundwater will be conducted using an electronic water level tape, relative to the north side of the top of well casing following a minimum of 20 minutes of equilibration with atmospheric pressure. Groundwater sample collection will be completed using low-flow sampling methods, following stabilization of field parameters (temperature, dissolved oxygen, pH, specific conductivity, and oxidation reduction potential) and when turbidity is stable or below 10 NTU. Groundwater samples obtained will be submitted to OnSite for analysis of VOCs by EPA Method 8260.

Additionally, baseline groundwater monitoring will be completed at the dose-response monitoring wells prior to implementation of the injections for each phase. The analytes to be evaluated are listed in Table 3, and the locations and frequency based on each phase are presented in Table 4.

4.2 Reagent Injections

4.2.1 Design

The selected reagent will be injected into each well to evaluate the objectives presented in Section 4.2. Based on the initial pilot test, a ROI of 12 feet at each injection well is targeted with the planned injection volume of 2,000 gallons per well. This injection volume was calculated based on the targeted ROI, an estimated mobile porosity of 6 percent, and the injection well screened interval length of 10 feet (Table 2). This planned ROI is depicted on Figure 2. This total planned injection volume of 2,000 gallons is equal to 6 percent of the total aquifer in the ROI, by volume, or the estimated mobile porosity.

4.2.2 Reagent Selection and Handling

Based on the favorable results of the initial ISCR/ISB pilot study at IW-1, the pilot study will use Evonik EHC® Liquid Reagent (EHC® Liquid), which was used for the initial pilot study. The selection of this reagent was based on the higher solubility relative to other ISCR reagents and, thus, associated ease of delivery in the dense Site geology. The EHC® Liquid includes a controlled-release organic carbon substrate (ELS®), and an iron amendment. The manufacturer has updated the iron amendment to be a 5-micron zero valent iron (micro-ZVI) mix instead of the previous organo-ferrous compound, based on concerns with a new formulation that is less soluble and can cause fouling and reduced reagent delivery in permanent injection. This reagent has demonstrated effectiveness at degradation through abiotic (ISCR) and biologically mediated (ISB) degradation. A

soluble iron reagent (GeoFormTM) is also available from Evonik but the longevity of soluble iron is not expected to be as robust as micro-ZVI. If the results of this expanded pilot with micro-ZVI do not suggest an advantage in longevity, or indicate a potential for fouling that may be exacerbated over repeated injections, the iron amendment may be replaced with GeoFormTM for subsequent applications. A limited scale pilot test may be appropriate if GeoFormTM is selected.

The reagent vendor will supply the ELS® as a 100% concentrate in 55-gallon drums and the 5-micron ZVI mix in powder form in 25-lb bags. Upon delivery to the Site, the reagents will be stored on Site in a secure Conex box provided by the injection contractor. The location of the Conex box will be in an agreed-upon location with the Walgreens, likely in the parking spaces on the southeast corner of the Property. The injection-strength reagent will be diluted in smaller batches for sufficient mixing at the time of injections.

The product sheets and the vendor's mixing guidelines are included in Appendix B, and the Safety Data Sheets (SDSs) are included in the HASP in Appendix C.

4.2.3 Injection System

Aspect will use an injection contractor, Cascade Remediation Services (Cascade), to complete the reagent injections. The reagent will be mixed in batches in a 250-gallon tote. The outlet of the tank will be connected to a 2-inch hose with quick-connect fittings for piping to the injection wellhead and will be instrumented with a flow totalizer to gauge total injection volume and injection rate. An injection wellhead will be connected to the 4-inch injection well casing using a threaded connection, which will include an airrelease valve to relieve entrained air in the injection piping and well casing, preventing reduction of injection capacity or any off-gassing generated from injections. A pressure gauge will also be part of the injection manifold to monitor if there is any pressure buildup during the injections. Reagent will be injected into up to three wells at once, depending on access limitations. The final setup is subject to change depending on Cascade's equipment.

4.2.4 Injection Methods

Based on the results of the clean water injection during the initial pilot study, pumping head was not necessary to achieve the targeted injection volume. If possible, the injection will be performed without any pumping head and rely on the elevation head in the tote and gravity flow to the injection well. This approach will avoid the risks associated with high pressures, including system leaks, nonporous distribution, and/or potential aquifer formation fracturing.

However, during the injection of the EHC® Liquid reagent during the initial pumping test, a pump was needed to deliver the reagent into the subsurface. If pumping head is necessary to deliver the targeted injection volumes in the planned injection time frame, an in-line centrifugal trash pump will be added to the injection piping via quick-connect fittings to increase the injection rate.

For implementation of Phase 1, Aspect will not interfere with the operation of the Walgreen's drive-through, which is open daily from 8am to 9pm. It is not expected that the injections along the west side of the property line will interfere with drive-through

operations. Injection wells IW-9-WT and IW-10 are located within the exit of the Walgreens' drive-through, and injections will be completed at these wells after business hours if necessary. Air sparge wells AS-31 and AS-39 are located within the Walgreens' delivery zone, and access is limited to Monday, Tuesday, and Thursday after 5pm (subject to change depending on the delivery schedule when the injections are implemented). In order to perform injections at AS-31 and AS-39 during standard business hours, Aspect will coordinate with the Walgreens' store manager for the space required to implement the injections.

For implementation of Phase 2, Aspect will obtain a City of Seattle street use permit to inject into wells in the ROW. No access agreements are anticipated, but the business owner/operators affected by the injections will be notified of planned activities. A traffic control plan will be implemented diligently to protect workers and minimize disruptions to local traffic and businesses.

Assuming an average injection rate of 3 gallons per minute (gpm), a total active injection time of 11 hours per injection well is estimated. Delivery to more than one injection well at a time (up to a maximum of five at once) may be conducted if feasible, depending on property logistics and access.

4.2.5 Reagent Dosing and Batching

The reagent dosing calculations are presented in Table 2. A total of 800 lbs. of ELS® Concentrate reagent and 47 lbs. of EHC® Liquid reagent will be diluted into 2,000 gallons of water. To facilitate thorough mixing, the reagent formulation will be prepared in 250-gallon batches consisting of 247 gallons of makeup water, 3.1 gallons of ELS® (100 percent) Concentrate, and 0.27 24.5-pound bag of EHC® Liquid powder. Additionally, 2.5 lbs. of potassium bicarbonate buffer will be added per 250-gallon batch, to manage the adverse secondary effect of pH change. The vendor mixing procedures are included in Appendix B. The ELS® Concentrate will be emulsified by Cascade, the EHC® Liquid is soluble, and the buffer is soluble; therefore, the reagents will readily dissolve. Each batch will be mixed for a minimum of 10 minutes before injections are commenced. Following injection of the full 2,000 gallons of injection solution, 200 gallons of clean chase water will be injected to flush the well and filter pack.

Cascade will provide water for mixing and clean water flushes. A Seattle Public Utilities hydrant permit cannot be secured for a property with a City of Seattle water supply.

Reagent batches will be injected completely before demobilizing for the day and no batch solutions will be stored overnight or for any extended period of time. A total of 128 250-gallon batches will be necessary to achieve the targeted injection volume and delivery of total reagent quantities.

Secondary containment will be installed and maintained around the footprint of the injection system (tanks, pumps, reagent, and header) for the entirety of the injection event and will be the responsibility of Cascade. Any stormwater inlets or drains in the vicinity of the pilot test (within the area shown on Figure 2) will be protected using best management practices (BMPs) to prevent release of any accidental spills to the surface water, as also discussed in more detail in Section 4.1.1.

4.3 Monitoring

4.3.1 Operational Monitoring

Operational monitoring will be conducted during the injections to guide the injection operations and modify as necessary. Example operational monitoring logs are included in Appendix D. The injection rate and injected volume will be gauged at the flow totalizer at a minimum frequency of every hour. As discussed in Section 4.2.4, injections will be accomplished with tank head and gravity flow if possible and little pressure is anticipated at the wellhead. If measurable pressures are observed or pumping head is added to the injection system, the injection pressure (at the injection wellhead) will be monitored at the same frequency as injection rate and volume. The total injection volume will also be recorded. Observations will be recorded on the Injection Monitoring Log (Appendix D).

- **Reagent dosing.** A minimum of one sample will be collected from each batch of injection solution and will be analyzed for TOC and total iron by OnSite.
- Water level monitoring. Manual water levels will be measured at monitoring wells AC-10-40, AC-11-25, AC-12-35, AC-15-35, and AS-35 (Phase 1) and AC-7-35, AC-21-35 (Phase 2) at least twice daily while injections are occurring. Observations will be recorded on the Breakthrough Monitoring Log (Appendix D).
- **Dose-response (DR) monitoring.** DR monitoring will be conducted at wells AC-10-40, AC-11-25, AC-12-35, AC-15-35, and AS-35 (Phase 1) and AC-7-35, AC-21-35 (Phase 2) during active injections at nearby injection wells. DR monitoring will consist of the following:
 - Reagent Tracer. The high total dissolved solids (TDS) of the injection reagent allows for specific conductivity (SC) to be used as a surrogate tracer to indicate breakthrough at dose response monitoring wells during injection. For the purposes of this Work Plan, the term "breakthrough" refers to when concentrations/measurements of a constituent (or tracer) indicate the arrival of the injection solution at that monitoring point.
 - Breakthrough monitoring. Breakthrough monitoring samples will be collected every half hour, or every 125 gallons injected, whichever is more frequent. Breakthrough monitoring at the DR monitoring well will consist of measuring the SC with a multiparameter meter from a flow-through cell. Any visual evidence of the injection reagent at the DR well will be noted. After reagent breakthrough as indicated by an increase in SC, one sample will be collected after a one-well-volume purge for analysis of total organic carbon (TOC) and dissolved iron. Observations will be recorded on the Breakthrough Monitoring Log (Appendix D).

4.3.2 Performance Monitoring

Performance monitoring will be initiated at the end of the pilot study injections to evaluate the objectives described in Section 3.2. The analytes to be evaluated are listed in Table 3, and the locations and frequency presented in Table 4.

Nearby monitoring wells AC-10-40, AC-11-25, AC-12-35, AC-15-35, and AS-35 (Phase 1) and AC-7-35 and AC-21-35 (Phase 2) will be monitored to determine the area of influence of the injection and its effectiveness at reducing PCE concentrations in groundwater. During the injection, surrounding wells will be monitored for field parameters only to evaluate potential changes in groundwater chemistry. Downgradient monitoring wells AC-28-35 and AC-2-25 (Phase 1) and AC-23-30 (Phase 2) will be monitored for iron and nitrate to comply with the expected conditions of the Underground Injection Control (UIC) permit, based on the initial pilot test UIC authorization. Groundwater samples will be collected 3 months, 6 months, and 12 months after injection. At 12 months, one additional downgradient well will be monitored (AC-1-25).

4.4 Contingency Considerations

The application of in situ remediation technologies requires the careful management of nontarget, secondary reactions and effects that require monitoring and contingency actions, if conditions warrant. The pilot study is designed at a scale to minimize the secondary effect footprint and provide information necessary for full-scale design (see Pilot Study Objectives in Section 3.2). This section discusses all considerations that may warrant a contingency action and includes best practices, which are a comprehensive list of all contingency considerations not identified in this Work Plan.

These considerations will also affect whether Phase 2 is implemented; if issues arise that require mitigation as described below, this will be factored into the design of Phase 2 (e.g., alternative reagents may be considered). If significant concerns arise, or performance from Phase 1 is poor and may not be corrected through redesign, then Phase 2 may not be implemented, and alternative remedial approaches would be considered.

4.4.1 Best Practices

This section provides a comprehensive list of considerations for the pilot testing and associated best practices to prevent any condition that may warrant a contingency action. Many of the considerations are included for comprehension and intended to be evaluated during pilot-scale testing, and the understanding gained will be considered in final remedial selection.

- The first consideration is the recognition and monitoring of pH change associated with organic carbon fermentation and generation of volatile fatty acids, which can reduce groundwater pH to levels toxic (<5 standard units [s.u.]) to biological processes (Lutes et al, 2004). The performance monitoring during the pilot test at IW-1 indicated that there was insufficient buffering capacity of the aquifer to manage the decrease in pH. The pH at IW-1 decreased below 5 standard units during the first performance monitoring event. An engineered pH buffer consisting of potassium bicarbonate will be added to the injection solution during the expanded ISCR/ISB pilot test, as described in Section 4.2.5.
- A significant increase and accumulation of cis-DCE may indicate that reductive dechlorination has "stalled out" and there are not sufficient bacterial populations to achieve complete degradation to ethene and ethane. Bioaugmentation can enhance complete treatment of PCE by supplementing the native microbial population through the injection of commercially grown bacteria. If incomplete

degradation is observed, an additional injection event may be conducted to inject *Dehalococcoides* into the aquifer once redox conditions are favorable for biodegradation.

- There is a potential that VC may accumulate due to incomplete reductive dechlorination, although this issue will be controlled through managing the scale and reagent dosing to reduce potential impacts. If a significant increase in VC concentrations is observed that would potentially expand off-Property impacts, the existing AS system could be restarted temporarily to mitigate VC and prevent off-Property migration.
- The generation and accumulation of methane is another consideration, as methane is produced by bacteria under ideal conditions for enhanced reductive dechlorination. The potential for methane to accumulate in the vadose zone in the vicinity of structures is an explosive hazard that warrants a contingency trigger. If elevated concentrations (greater than 20,000 μ g/L) of dissolved methane in groundwater are observed at shallow monitoring well HC-4, this will trigger additional monitoring to determine the potential migration of methane to the vadose zone, and include the installation of a permanent soil gas monitoring point in the pilot test area to monitor vadose zone methane concentrations.
- As with all injection-based technologies, there is potential for injection solution or groundwater to surface or daylight. The proximity of utilities in the injection area results in an increased risk of the injection reagent short-circuiting to these preferential pathways. There is a 12-inch drainage line in the sidewalk to the south of the Walgreens building at a depth of 7.6 feet bgs with an 8-inch-wide connection to the catch basins near the injection area, as shown on the sewer card in Appendix E. Water levels at shallow well HC-4, located between the injection well and the drainage line, will be monitored, and if water levels increase to less than 10 feet bgs, the injection will be halted. As another precaution, nearby catch basins will be checked every half hour for any visual indication that the injection reagent is present. If there is visual confirmation of infiltration of the injection reagent into the catch basin, the injections will be stopped immediately, and Aspect staff will notify the Project Manager.
- A sudden increase in injection rate or drop in injection pressure are also indications of short-circuiting, and injections will be stopped if these conditions are encountered. Reagent levels in the injection well will be monitored to avoid surface "daylighting" of the injection reagent; if reagent levels rise to less than 5 feet bgs, injection will be paused until the water level has decreased to at least 5 feet bgs. A lower injection rate than planned may be required to complete the injections if elevated reagent levels is an ongoing issue.
- Spills or releases of injection solution, or raw reagent and tracer, are potential occurrences during the implementation of the pilot test. Best practices (secondary containment and stormwater BMPs) will be used to address any spills or releases.
- Significant mounding is a potential when injecting fluids into the subsurface and can result in changes in groundwater flow direction. The primary means of fluid accommodation in the subsurface is mounding, therefore it is expected. However,

the changes in groundwater flow direction would be temporary (limited to the period of injection or shortly thereafter) and is not expected to be significant in magnitude, spatial extent, or longevity due to the total volume of injection compared to the volume of groundwater in the aquifer.

5 Project Organization

5.1 Roles and Responsibilities

The project organization is led by Aspect, who will engage the necessary subcontractors to complete the pilot study. All team members are responsible for execution of work in accordance with the Work Plan. The key individuals and their roles on this project are as follows:

- **Project Manager Jeremy Porter, PE**. The Project Manager is responsible for the successful completion of all aspects of this project, including day-to-day management, production of reports, liaison with client and regulatory agencies, and coordination with the project team members. The Project Manager is also responsible for resolution of nonconformance issues, is the lead author on project plans and reports, and will provide regular, up-to-date progress reports and other requested information to project team and the client.
- Field Manager Delia Massey, PE. The Field Manager is responsible for overseeing the pilot study outlined in this Work Plan, including oversight and management of field personnel and subcontractors, ensuring conformance with the Work Plan. The Field Manager will procure necessary field supplies, ensure that monitoring equipment is operational and calibrated in accordance with the specifications provided herein, and act as the Site Health and Safety Officer.
- **Injection Contractor.** Aspect will contract with Cascade, a Washington Statelicensed driller, to implement the reagent injections. Cascade is responsible for providing the necessary injection equipment and implementing the reagent injections according to the Work Plan. Cascade will also be responsible for complying with all SPU requirements. Contracting will occur after the Work Plan is approved by the client.
- Other Contractors. Other contractors are necessary to complete the pilot testing activities, including analytical laboratories (OnSite), investigative derived waste (IDW) disposal,⁴ and the reagent vendor, Evonik. These contractors are responsible for conforming to the Work Plan and the agreed-to scope with Aspect.

5.2 Reporting

After performance monitoring is completed, a technical memorandum will be prepared that includes:

- A description of pilot test activities
- A summary of pilot test results
- An evaluation of bioremediation effectiveness
- A description of conceptual approaches to bioremediation at the site (if effective)

⁴ IDW disposal will be contracted directly with the Property owner, and not through Aspect.

• Recommendations for next steps

5.3 Schedule

Phase 1 pilot test activities will commence after the Site has been accepted into Ecology's VCP program, and the Ecology Site Manager has reviewed and approved this Work Plan. Additionally, the injection wells must be registered with Ecology's UIC Program (WAC 173-218), using their online registration tool. The proposed injection wells are considered Class V underground injection wells, which is subject to the UIC program. Injections will not be implemented until the UIC coordinator has reviewed and approved the registration.

6 References

- Aspect Consulting (Aspect), 2024, ISCR/ISB Pilot Test Results, Former Tux Shop, Seattle, Washington. June 4, 2024.
- Lutes, C., A. Frizzel, S. Suthersan, 2004, "Enhanced Reductive Dechlorination of CAHs using Soluble Carbohydrates – A Summary of Detailed Data from 50 Sites," Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents, Appendix E, AFCEE/NFESC/ESTCP, Brooks City-Base, TX, August 2004.
- Wiedemeier, T.H., M.A. Swanson, D.E. Moutoux, E.K. Gordon, J.T. Wilson, B.H.
 Wilson, D.H. Kampbell, P.E. Haas, R.N. Miller, J.E. Hansen, and F.H. Chapelle (Wiedemeier, et al.), 1998, Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water, EPA/600/R-98/128. U.S.
 Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH, <https://cluin.org/download/remed/protocol.pdf>

7 Limitations

Work for this project was performed for the F&N Investment Company, LLC (Client), and this report was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

TABLES

Table 1. Screening Levels for Site Contaminants of Concern

Project No. 090030, Former Tux Shop Site, Seattle, WA

	So	il Cleanup Level (mg/k	g)	Groundwater Scree	ening Levels (μg/L)	Indoor Air Screeni	ng Levels (μg/m³)
	MTCA Method A for unrestricted use	MTCA Method B for protection of groundwater ²	MTCA Method B for direct-contact	MTCA Method A CUL for unrestricted use	MTCA Method B Target Criterion ³	MTCA Method B for unrestricted use	Commercial Screening Level ¹
Volatile Organic Compounds							
Tetrachloroethene (PCE)	0.05	0.003	480	5	5	9.62	44.9
Trichloroethene (TCE)	0.03	0.002	12	5	4	0.33	2.85
cis-Dichloroethene (cis-DCE)		0.025	160		16	18.3	156
Vinyl Chloride (VC)		0.025	0.67	0.2	0.029	0.28	1.33

Notes:

¹ Commercial screening levels calculated by adjusting exposure frequency for both noncarcinogens and carcinogens to a 9-hour, 5-day work week, 50 weeks per year, and average body weight and breathing rate for noncarcinogens to 70 kg and 20 m3/day, respectively. These adjustments are in accordance with MTCA Equations 750-1 and 750-2 and Ecology's Implementation Memorandum No. 21 (FAQs Regarding VI and Ecology's 2009 Draft VI Guidance) and Implementation Memorandum No. 22 (VI Investigations and Short-term TCE Toxicity).

²Practical quantitation limit adjusted up from site-specific MTCA Method B Value protective of saturated groundwater.

³From Ecology's CLARC Workbook (August 2023)

Project No. 090030, Former Tux Shop, Seattle, WA

Parameter	Value	Units	Notes
Injection Point Layout			
Number of Injection Wells	16	wells	14 injection wells in Water Table and Shallow Intervals; 2 air sparge wells
Distance to Dose-Response MW	12	feet	
Target ROI	12	feet	ROI confirmed in pilot test
Target Treatment Interval	25-35	feet bgs	Water Table (15-25 ft) or Shallow (25-35 ft), but consistently 10' depth
Target Treatment Thickness	10	feet	
Estimated Aquifer Volume in ROI	541,420	gallons	
Injection Point Hydraulics			
Design Mobile Porosity	0.06		Estimated for fine to medium sand with silt
Estimated Pore Volume	2,030	gallons/target ROI	
Target Pore Volume	100%		As percentage of total pore volume.
Target Injection Volume	2,000	gallons/point	Rounded down to simplify batch quantities.
Total Injection Volume	32,400	gallons/point	Rounded down to simplify batch quantities.
Reagent Batching			
Selected Reagent	Evonik EHC Liquid		Includes both ELS Concentrate and EHC Liquid Mix (5 micron ZVI)
ELS Concentrate TOC Content	100	%	Vendor Formulations
Volume Water	247	gallons/batch	
Volume ELS	3.1	gallons/batch	
Total batch volume	250	gallons	
# batches	130	batches/well	
ELS Dilution with Water	5%	by volume	
EHC Liquid Mix	0.27	bags/well	4.4x 25-lb bag per 50 gal of ELS 100% concentrate
Estimated TOC in Solution	14,000	mg/L	Assumes ELS Concentrate is 100% TOC content and 8.4 lbs/gal.
Estimated EHC-L in Solution	3,000	mg/L	
KHCO ₃ buffer	2.5	lbs	25 lb per 50 gal of EHC Liquid
Total Quantities			
Total ELS Concentrate Reagent	400	gallons	8 drums
Total EHC Powder Reagent	862	lbs	35 bags
Total KHCO ₃ buffer	329	lbs	
Total Water	32,000	gallons	

Notes:

% - percent lbs - pounds g - grams mg - milligrams mg/L - milligrams per liter MW - monitoring well ROI - radius of influence TOC - total organic carbon

S

Aspect Consulting

Table 3. Monitoring Program - Analyte List

Project No. 090030, Former Tux Shop, Seattle, WA

Analyte	Analytical Method	Purpose						
CVOCs and Degradation Products								
Volatile Organic Compounds (VOCs)	EPA 8260B							
Dissolved gases; ethane, ethene, methane	RSK-175	Degradation end-product (ethene and ethane); redox indicator (methane)						
General Chemistry								
Total Organic Carbon (TOC)	SM 5310B	Electron donor						
Chloride	SM 4500-CI E	ERD reaction product						
Nitrate	EPA 353.2	Electron acceptor/ Redox Indicator						
Sulfate	ASTM D516-11	Electron acceptor/ Redox Indicator						
Iron (Dissolved) ¹	EPA 6010D	Electron acceptor/redox indicator						
Redox-Sensitive Metals								
Calcium, Magnesium, and Manganese (Dissolved) ¹	EPA 6010D	Redox-sensitive COCs						
Field Parameters								
Fe(II)/Fe(III) ²	Hach ferrous iron kit, in field	Electron acceptor/Redox Indicator						
Specific conductance	Multimeter	Field parameter						
Dissolved oxygen	Multimeter	Field parameter						
рН	Multimeter	Field parameter						
ORP	Multimeter	Field parameter						
Turbidity	Turbidimeter	Field parameter						

Notes:

1. Dissolved metals analysis will be field-filtered using a 0.45 micron filter. Reagent solution samples will be analyzed for total iron.

2. Fe(III) is a calculated value from the difference between total iron and ferrous iron.

ASTM - American Society for Testing and Materials

EPA - Environmental Protection Agency

ERD - Enhanced Reductive Dechlorination

SM - Standard Method

DRAFT

Table 4. Groundwater Monitoring Program

Project No. 090030, Former Tux Shop, Seattle, WA

æ		Baseline	Time Elapsed Postinjection				
Phase	Monitoring Event	Pre-Pilot	Month 3	Month 6 ¹	Month 12 ²		
	Monitoring						
	IW-2	1					
	IW-3-WT	1					
	IW-4	1					
	IW-5-WT	1					
	IW-6	1					
	IW-7-WT	1	-	-			
	IW-8	1					
	IW-9-WT	1					
7	IW-10	1					
ase	Performance Monitoring						
РР	AC-10-40	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5		
	AC-11-25	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5		
	AC-12-35	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5		
	AC-15-35	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5		
	AS-35	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5		
	AC-1-25	1,2,3,4,5			1,2,3,4,5		
	AC-13-50	1,2,3,4,5			1,2,3,4,5		
	Downgradient Monito	oring					
	AC-28-35	3,5 ³	3,5 ³	3,5 ³	3,5 ³		
	AC-2-25	3,5 ³	3,5 ³	3,5 ³	3,5 ³		
	Monitoring						
	IW-11	1					
	IW-12	1					
2	IVV-13 IVV-14	1					
se	IW-15	1					
ha	Performance Monitor	ing			1		
1	AC-7-35	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5		
	AC-21-35	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5	1,2,3,4,5		
	Downgradient Monito	oring					
	AC-23-30	3,5 ³	3,5 ³	3,5 ³	3,5 ³		

Analytes (see Table 3):

1 - CVOCs

2 - Dissolved Gases

3 - General Chemistry Parameters

4 - Field Parameters

5 - Redox Sensitive Metals

Notes:

1) After the Phase 1 6-month sampling event, the data will be reviewed and it will be decided whether Phase 2 will be implemented or if design changes are needed.

2) After the 12-month sampling event, the data will be reviewed and it will be determined whether additional monitoring beyond the planned 12 months is necessary to fully evaluate effectiveness.

3) Downgradient monitoring wells will only be sampled for dissolved iron and nitrate.

Aspect Consulting

7/18/2024 V:\090030 Former Tux Shop\Deliverables\Interim Action Work Plan\Ecology Review Draft\Tables\T04 Performance Monitoring

FIGURES

15TH AVENUE NM	TETHATENNE TETHATENNE	TELEVICE NO.
15TH AVENUE NV	12TH AVENUE NU	TU T

ISCR/ISB Interim Action Work Plan Former Tux Shop Seattle, Washington

et	Aspect	Jul-2024	BBC/SCC	FIGURE NO.
	CONSULTING	PROJECT NO. 090030	^{REV BY:} DIM/JPR	2

et	Aspect	Feb-2024	BBC/SCC	FIGURE NO.	
	CONSULTING	PROJECT NO. 090030	REV BY: JJP/SCC	2	

PROJECT NO. REV BY:	t	Aspect	Feb-2024	BBC/SCC	FIGURE NO.		
CONSULTING 090030 JJP/SCC T		CONSULTING	PROJECT NO. 090030	JJP/SCC	4		

AC-6-25

52 -

- - Monitoring Well or Air Sparging Well Location

Groundwater Elevation Contour in Feet (07/2023)

Approximate Groundwater Flow Direction

- (52.83) Groundwater Elevation in Feet (07/2023) (15-25) Well Screen Interval Depth in Feet
- PCE Concentration (150) >120 µg/L (22.0)
 - event if not sampled in 07/2023) >5 to <120 µg/L

(07/2023 or most recent sampling

- (2.9) <5 µg/L
- (NS) Not Sampled (U) Not Detected

* Monitoring wells with asterisk were not used to define groundwater elevation contours.

PCE Concentrations in Groundwater Water Table Interval

ISCR/ISB Interim Action Work Plan

Former Tux Shop Seattle, Washington

Feet		Feb-2024	BBC/SCC	FIGURE NO.	
	CONSULTING	PROJECT NO. 090030	JJP/SCC	5	

>120 µg/L >5 to <120 µg/L (22.0)

Approximate Groundwater Flow Direction

- <5 µg/L
- (2.9) (NS)
- Not Sampled (U)
 - Not Detected
- Monitoring wells with asterisk were not used to define groundwater elevation contours.
 Data from July 2023 at IW-1 and AS-35 reflect treatment from ISCR/ISB pilot test injections at IW-1 in January 2023.

60

Seattle, Washington

t	Aspect	Feb-2024	DWU/SCC	FIGURE NO.
	CONSULTING	PROJECT NO. 090030	JJP/SCC	6

eet		Feb-2024	DWU/SCC	FIGURE NO.		
	CONSULTING	PROJECT NO. 090030	REV BY: BBC/SCC	7		

- Angled Boring and Well Screen Alignment

et	Aspect	Feb-2024	BBC/SCC	FIGURE NO.
	CONSULTING	PROJECT NO. 090030	JJP/SCC	8

APPENDIX A

Pilot Test Tech Memo

DRAFT MEMORANDUM

Project No. 090030

June 14, 2024

To: F&N Investment Co. LLC

From:

Jeremy Porter, PE Senior Principal Engineer Jeremy.porter@aspectconsulting.com **Delia Massey, PE** Senior Engineer delia.massey@aspectconsulting.com

Re: ISCR/ISB Pilot Test Results

Aspect Consulting (Aspect) prepared this In Situ Chemical Reduction (ISCR)/In Situ Bioremedation (ISB) Pilot Test Results memorandum (Pilot Test Memo) for the Former Tux Shop Site (Site) on behalf of F&N Investment Company, LLC. The Site is located at 5409 15th Avenue Northwest in the Ballard district of Seattle, Washington (Property). From the early 1950s to the early 1990s, a dry cleaning facility operated on the western portion of the Property. The Property was redeveloped in 1996 and is currently occupied by a Walgreen's store and pharmacy. Tetrachloroethene (PCE) occurrences in soil and groundwater above the Washington State Model Toxics Control Act (MTCA) Method A cleanup level are present in the south and west portions of the Property and in the adjacent rights-of-way.

Based on the investigations and evaluations to date, prior remedial actions have significantly reduced contamination at the Site, but additional remedial actions will be needed to meet the requirements of MTCA. The Feasibility Study (FS) Work Plan (Aspect, 2020a) identified data needs required to develop and evaluate remedial alternatives to address PCE at the Site, which included testing in situ bioremediation (ISB) and in situ chemical reduction (ISCR). The Pilot Test Work Plan (Aspect, 2020b) described the scope of a field-scale pilot test. This technical memorandum presents the methods and results from the pilot test and evaluates the potential effectiveness of ISB/ISCR at the Site.

DRAFT MEMORANDUM

Project No. 090030

Pre-Pilot Test Activities

Pre-pilot test activities included installing an injection well, obtaining necessary permits, and collecting groundwater quality and hydrogeologic information to inform the pilot test injection design. Details and results of pre-pilot test activities are included in the Pilot Test Work Plan. Below is a summary of completed pre-pilot test activities:

- Injection well (IW-1) was installed on the south side of the Walgreens building on February 7, 2019. The well location is shown on Figure 1.
- Groundwater monitoring data, including cVOC concentrations and geochemical data, was collected to inform the pilot testing injection design and establish baseline conditions for performance evaluation. Groundwater samples and water levels were collected at the injection well, existing wells AS-35, HC-4, and new monitoring well AC-4-50 on April 1, 2019. The baseline groundwater analytical results are included in Table 1.
- Limited short-term pumping tests were performed at AC-1-25, AC-4-50, AS-35, and IW-1 during a February 2020 groundwater sampling event to assess the hydraulic conductivity of soils at varying depths, confirm the interval proposed for injection, and to provide an assessment of feasible injection rates for the pilot test.
- The injection well was registered with the Washington State Department of Ecology's (Ecology) underground injection control (UIC) program. The registration was authorized by Ecology on June 2, 2020 (UIC site number 35107).
- A hydraulic evaluation was conducted at IW-1 on June 16, 2020, to assess the injection flow rate and pressure, and determine whether the injections could be completed by tank head and gravity flow.

Pilot Test Activities

Pilot test injections were completed at injection well IW-1 between January 30 and January 31, 2023. The injections were performed by Cascade Drilling, Inc. (Cascade) using an in-line pump, under direction by Aspect. Injections were initiated using gravity flow as specified in the Pilot Test Work Plan. However, gravity flow was observed to deliver a maximum injection reagent flow rate of 1 gallon per minute (gpm), substantially lower than the pilot test injection design flow rate of 3 gpm. Aspect requested the addition of an in-line centrifugal trash pump to the injection piping to increase injection rate. The in-line pump Cascade provided was single speed, operating at approximately 10 gpm. In order to achieve the injection design flow rate of 3 gpm the pump was cycled during injections. Injection monitoring data is included in Table 2.

Prior to the pilot test, manual water levels were measured at select monitoring wells (AC-4-50, AS-31, AS-35, AS-39, and HC-4) adjacent to the injection well IW-1. During active injections water level measurements were collected at AS-35, the closest monitoring well to IW-1, approximately every 30 minutes to monitor groundwater mounding. Reagent breakthrough, as defined by an increase in specific conductance (SC) or visual evidence of injection reagent, was monitored during active injections at dose-response wells AC-4-50, AS-35, and HC-4. Breakthrough monitoring readings were collected approximately every 30 minutes during active injections. Manual water levels and breakthrough monitoring results are included in Table 3.

DRAFT MEMORANDUM

Project No. 090030

Injection reagents were mixed onsite in 250-gallon batches by Cascade for a minimum of 10 minutes before commencing injections. A total of seven 250-gallon reagent batches were mixed and injected into IW-1. Batches #1 through #6 were mixed according to the injection design detailed in the Pilot Test Work Plan (Aspect, 2020b), with one exception. The ELS® was supplied as the 100% concentrate instead of the 25% microemulsion, so the dosing was adjusted for this 4-fold change. Each batch consisted of 3 gallons of ELS® (100 percent) microemulsion, 4.9 pounds of EHC® Liquid powder, and 247 gallons of water. Batch #7 was mixed with double reagent concentrations, 6 gallons of ELS® (100 percent) concentrate, 9.8 pounds of EHC® Liquid powder, and 244 gallons of water. Aspect doubled the reagent concentrations for Batch #7 to ensure the delivery of the design amount of reagent, a total of 25 gallons of ELS® (100 percent) microemulsion and 47 pounds of EHC® Liquid power, were injected within the available timeframe for pilot test activities. The product sheets and vendor's mixing guidelines, and the Safety Data Sheets (SDSs) are included in Attachment A.

The average injection flow rate achieved during the pilot test was approximately 2 gpm, less than the design flow rate of 3 gpm, which necessitated the concentration adjustment to Batch #7 and elimination of Batch #8 from the injection schedule. One sample from each reagent batch was analyzed for total organic carbon (TOC) and total iron by Analytical Resources, LLC Laboratories (ARI) in Tukwila, WA. Additionally, a reagent breakthrough sample from AS-35 was collected at the completion of the pilot test injections and analyzed for TOC and dissolved iron by ARI. Reagent batch and AS-35 breakthrough sample analytical reports are included in Attachment B, and results are presented in Table 4. Following completion of the full injection reagent amount, 200 gallons of clean water were injected into IW-1 to flush the well and filter pack.

Performance groundwater monitoring was initiated at the end of the pilot study injections to evaluate changes in field parameters¹ and groundwater chemistry. Field parameters were measured in select performance monitoring wells (AC-4-50, AS-35, and HC-4) two weeks post-injection on February 14, 2023. Field parameters and performance monitoring analytes² were recorded and analyzed at all performance monitoring wells (AC-4-50, AS-35, HC-4, and IW-1) and select analytes were tested at the furthest downgradient performance monitoring well AS-31,³ at one month (February 27, 2023), three months (April 27, 2023), six months (July 27, 2023), and one year⁴ (January 9, 2024) post-injection. One-month and three-month post-injection samples were analyzed by ARI. Six-month and one-year post-injection samples were analyzed by OnSite Environmental, Inc (OnSite) in Redmond, WA. Additionally, six-month post-injection samples from AC-4-50, AS-35, HC-4, and IW-1 were analyzed for microbiological populations of dechlorinating bacteria (*Dehalococcoides*) by Microbial Insights, Inc in Knoxville, TN.

¹ Field parameters monitored as part of post-injection performance monitoring included: Temperature, specific conductance, dissolved oxygen, pH, oxidation reduction potential (ORP), turbidity, and ferrous iron.

² Performance monitoring analytes included cVOCs, dissolved gases, general chemistry parameters, and redox sensitive metals.

³ Per the conditions of the UIC permit authorization, monitoring of a downgradient well located close to the property line or plume boundary was required to demonstrate compliance with the Water Quality Standards for Groundwaters of the State of Washington, chapter 173-200 WAC (GWQS) criterion for dissolved iron (0.3 mg/L) and nitrate (10 mg/L). AS-31 was monitored to fulfill this permit requirement and met the compliance criteria.

⁴ The Pilot Test Work Plan called for 6 months of post-injection monitoring; an additional monitoring round was added after one year to further assess longevity and effectiveness of treatment.

DRAFT MEMORANDUM

Project No. 090030

Performance monitoring analytical reports are included in Attachment B, and field parameters and analytical results are presented in Table 1.

Pilot Test Analysis and Results

Pilot test performance monitoring data from the injection well and nearby monitoring wells AC-4-50, AS-35, and HC-4 was analyzed to determine the area of influence of the injection and its effectiveness at reducing PCE concentrations in groundwater. Results of breakthrough monitoring at AS-35, the closest well downgradient from the injection well, confirm that the pilot test injections achieved the planned radius of influence (ROI) of 12 feet. Although there was no increase in specific conductivity in AS-35 during breakthrough monitoring, both TOC and dissolved iron (indicators of the presence of injection reagents) in the injection completion sample increased by more than 100 percent over the baseline values.

Performance monitoring indicates effective and consistent reduction of PCE concentrations in groundwater at the injection well (IW-1) and AS-35, which are screened in the Shallow Interval. No significant effect was observed at Water Table Interval well HC-4 or Intermediate Interval well AC-4-50.⁵ These wells are also partly cross-gradient from the injection well and may not be directly affected by the treated area. Performance monitoring trends in IW-1 and AS-35 are presented in Figure 2, and analytical results for cVOCs and geochemical parameters in all wells tested are included in Table 1. Results at these wells are discussed below.

IW-1 Performance Monitoring Results

After one year, IW-1 performance monitoring samples show a reduction in total chlorinated ethenes of greater than 90 percent compared to baseline values. There was an observed increase in ethene and ethane during the one-, and three-month post-injection monitoring samples. PCE breakdown intermediates (trichloroethene (TCE), cis-1,2-dichloroethene (DCE), and vinyl chloride (VC)) were not detected in IW-1 performance monitoring samples until the year 1 sample.

Geochemical parameters in IW-1 show that injections induced highly reducing conditions, which are ideal for complete reductive dechlorination by abiotic and biotic pathways. Specifically:

- Dissolved oxygen was present at well over 1 mg/L during baseline sampling and has been consistently under 0.2 mg/L during all four performance monitoring events.
- Oxidation Reduction Potential (ORP) decreased from a baseline of 45.9 mV to -74.3 mV during the 12-month post-injection monitoring event.
- Reductive dechlorination by iron oxidation and biodegradation releases hydrogen ions, making pH another geochemical performance indicator. pH in IW-1 decreased significantly from baseline values of approximately 7.1 to 4.9 during the 6-month post-injection monitoring event, but partly rebounded to 5.9 at the one-year event. The low pH (less than

⁵ There is an increasing trend of PCE and breakdown intermediates in AC-4-50, and of PCE in HC-4 during the post-injection performance monitoring period. However, evaluation of baseline groundwater quality on a longer timescale from April 2019 through October 2022 shows variability in CVOC concentrations in both wells greater than the increases observed during the performance monitoring. Historical groundwater trends for AC-4-50 and HC-4 are included in Table 5. Additionally, there are no apparent trends in geochemical parameters at AC-4-50 and HC-4 that would suggest influence by injection reagents.

DRAFT MEMORANDUM

5) observed from Month 1 to Month 6 can inhibit biodegradation of PCE; this effect is discussed further in the Conclusions and Recommendations section below.

- Nitrate and sulfate have been reduced from their baseline concentrations of 5.86 and 233 mg/L, respectively, to very low or non-detect results during performance monitoring.
- Dissolved iron and manganese have increased from near non-detect to very high levels (92,000 ug/L and 7,500 ug/L, respectively, after one year), although the presence of iron-rich EHC® Liquid Powder reagent is likely dominating the increase in iron.
- Methane increased from non-detect in IW-1 during baseline sampling to 4,300 ug/L during the one-year post-injection monitoring event, indicating sustained methanogenic conditions.

AS-35 Performance Monitoring Results

Results from AS-35 performance monitoring samples show substantial treatment at the far extent of the injection ROI. After one year, PCE concentrations were reduced greater than 99 percent, although total chlorinated ethenes were reduced only 45 percent due to an increase in cis-DCE. The progression of dechlorination appears to still be developing at the one-year mark, with cis-DCE and TCE peaking at Month 6 and vinyl chloride first detected at one year.

Similar to IW-1, geochemical parameters at AS-35 indicate that injections induced a highly reducing condition conducive for reductive dechlorination. Specifically:

- Dissolved oxygen was rapidly depleted from a baseline of approximately 4 mg/L to less than 0.2 mg/L. ORP similarly declined from a baseline of 65 mV to a highly reducing condition, ranging between -41 and -165 mV after 3 months.
- pH decreased from a baseline of 6.9 to 5.7, but has rebounded to 6.5.
- Nitrate and sulfate concentrations fell from baseline values of 6.5 and 222 mg/L, respectively, to very low or non-detect results during the three-month post-injection sampling event.
- Manganese and iron concentrations increased from a baseline of non-detect or nearly nondetect to sustained concentrations greater than 5,000 ug/L manganese and 9,300 ug/L iron.
- Methane concentrations at Month 1 and Month 3 were very low, but increased to 8,700 ug/L during the one-year post-injection monitoring event.

Microbiological Testing Results

Microbiological results (see Table 1) from the baseline monitoring and 6-month post-injection performance monitoring event were compared to evaluate the effectiveness of ISB at the injection well, and downgradient monitoring wells AS-35 and HC-4. The comparison showed no apparent increase in the population of *Dehalococcoides* (DHC), a bacterial group responsible for complete reductive dechlorination of PCE and TCE to nontoxic end products ethene and ethane, in any of the samples collected. The DHC concentrations in the pilot study area are considered below the threshold where reductive dechlorination will yield a generally useful biodegradation rate (<104

Project No. 090030

cells/mL). However, DHC is not the only microbial strain that dechlorinates PCE, so the results are not conclusive regarding the mechanism for treatment.

Conclusions and Recommendations

The effectiveness of ISB and ISCR technologies at the Site is determined by the ability to meet the pilot study objectives, as defined in the Pilot Test Work Plan.

1. Evaluate the ability to deliver and distribute reagent in the 20-to 30-foot groundwater interval.

The results of the pilot study show that injection technology at the Site can deliver and distribute reagent in the 20-to 30-foot groundwater interval and meets pilot study objective number one. Although the achievable injection flow rate in the field was lower than the design injection flow rate of 3 gpm, the pilot test injections were able to deliver the entire design reagent volume in a timely manner, and reagent breakthrough was observed at the target ROI.

2. Significantly reduce CVOC concentration and determine if full dechlorination is viable.

Analysis of post-injection groundwater quality trends at IW-1 shows that the pilot study significantly reduced the CVOC concentrations and achieved full dechlorination in the injection well. Evidence of full dechlorination has also been observed at AS-35, but accumulation of intermediates—primarily cis-DCE—was observed at the six-month and one-year intervals. It is unclear how quickly these intermediates will degrade as they migrate downgradient. The ability of ISCR/ISB to significantly reduce CVOC concentrations has been confirmed, but the ability of this technology to fully dechlorinate PCE to the point of preventing off-Property migration of daughter products is still to be determined.

3. Estimate design parameters for implementing the selected technology.

The pilot test results are useful in estimating certain design parameters such as injection pressure, flowrate, and radius of influence for full-scale implementation of ISB/ISCR via injection, and so meet pilot study objective number three. The longevity of desired biogeochemical changes in the pilot test area is at least 1 year, based on sustained reducing conditions and elevated TOC concentrations that can support biodegradation. Additional monitoring would be helpful in further assessing reagent longevity.

4. Evaluate the ability to manage secondary effects.

During the post-injection performance monitoring period Aspect monitored for potential secondary effects from treatment, as follows:

- pH change. Organic carbon fermentation and generation of volatile fatty acids can reduce groundwater pH to levels toxic (<5 standard units [s.u.]) to biological processes. The pH at IW-1 decreased to 4.79 s.u. during the Month 1 performance monitoring event, indicating that that there was insufficient buffering capacity of the aquifer to balance the reagent dosing. Engineered pH buffering is recommend for future injection events to prevent any adverse effects on the bacterial population.
- Methane accumulation. There has been no observed accumulation of methane in HC-4, the shallow monitoring well identified in the Pilot Test Work Plan as the point for evaluation of

DRAFT MEMORANDUM

Project No. 090030

contingency methane management, during the post-injection performance monitoring period. However, this well may not be directly downgradient of the injection. Based on the one-year results at AC-39, it would be beneficial to monitoring the nearest downgradient Water Table Interval well (AC-14-22) for methane to determine the extent of elevated methane at the water table.

• Daylighting of Reagent. There were no observed instances of injection reagent daylighting in nearby monitoring wells or stormwater catch basins, and no indication of short-circuiting to preferential pathways associated with nearby utilities during injection monitoring.

In summary, aside from a decrease in pH which can be managed with engineered buffering, no other adverse secondary effects were observed. Additional methane monitoring is recommended for future events.

Recommendations

The ISCR/ISB pilot study indicated that this technology is a potentially viable remedial technology at the Site. The ISCR/ISB technology can treat PCE via two different pathways—abiotic and biotic reductive dechlorination—although both processes are likely ongoing, the relative contribution of each pathway to overall treatment is not certain. Additional monitoring at the 18-month mark, including existing performance monitoring wells and at the next two wells downgradient of the injection area (AC-14-22 and AC-15-35), is recommended to further evaluate the ability to achieve full dechlorination, sustain treatment, and not create adverse effects from methane generation.

References

Aspect Consulting, LLC (Aspect), 2020a, Feasibility Study Work Plan, Former Tux Shop, Seattle, Washington, August 19, 2020.

Aspect Consulting, LLC (Aspect), 2020b, Pilot Test Work Plan, Former Tux Shop, Seattle, Washington, November 20, 2020.

Limitations

Work for this project was performed for the F&N Investment Company, LLC (Client), and this memorandum was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This memorandum does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

Attachments:	Table 1 – Pilot Test Groundwater Monitoring Results
	Table 2 – Operational Monitoring
	Table 3 – Breakthrough Monitoring
	Table 4 – Operational Monitoring
	Table 5 – Historical Trends for Downgradient Wells

DRAFT MEMORANDUM

Project No. 090030

Figure 1 – Pilot Test Injection Layout Figure 2 – Post-Injection Performance Monitoring Trends Attachment A – Injection Reagent Specifications Attachment B – Laboratory Reports

V:\090030 Former Tux Shop\Deliverables\Interim Action Work Plan\Ecology Review Draft\Appendices\App A\Draft Pilot Test Tech Memo_20240614.docx

TABLES

Table 1. Pilot Test Groundwater Monitoring Results

Project No. 090030, Former Tux Shop Site, Seattle, WA

				Injection Well						Performance Monitoring Well				
		MTCA			IN	V-1					AS	-35		
		Method A ¹ ,		Shallow Interval							Shallow	Interval		
		Groundwater	Baseline	Baseline	Month 1	Month 3	Month 6	Month 12	Baseline	Baseline	Month 1	Month 3	Month 6	Month 12
Analyte	Unit	(ug/L)	4/1/2019	10/27/2022	2/27/2023	4/27/2023	7/27/2023	1/9/2024	4/1/2019	10/27/2022	2/27/2023	4/27/2023	7/27/2023	1/9/2024
VOCs														
1,1,1,2-Tetrachloroethane	ug/L		< 0.2 U	< 10 U	< 10 U	< 2 U	< 8.0 U	<1U	< 2 U	< 2 U	< 2 U	< 2 U	< 2.0 U	< 1 U
1,1,1-Trichloroethane	ug/L	200	< 0.2 U	< 10 U	< 10 U	< 2 U	< 8.0 U	<1U	< 2 U	< 2 U	< 2 U	< 2 U	< 2.0 U	< 1 U
1,2-Dichloroethane (EDC)	ug/L	5	< 0.2 U	< 10 U	< 10 U	< 2 U	< 8.0 U	<1U	< 2 U	< 2 U	< 2 U	< 2 U	< 2.0 U	< 1 U
Chloroform	ug/L		< 0.2 U	< 10 U	11.4	6.36	< 8.0 U	< 1 U	< 2 U	< 2 U	6.25	< 2 U	< 2.0 U	< 1 U
cis-1,2-Dichloroethene (cDCE)	ug/L	16	5.99	15.8	< 10 U	< 2 U	< 8.0 U	88	7.18	6.67	2.15	17.3	230	200
Tetrachloroethene (PCE)	ug/L	5	438	2500	21.2	10.1	18	66	693	630	207	90.3	24	3.6
Trichloroethene (TCE)	ug/L	5	5.1	20	< 10 U	< 2 U	< 8.0 U	14	5	4.13	2.71	4.03	17	<1U
Vinyl Chloride	ug/L	0.2	< 0.20 U	< 10 U	< 10 U	< 2 U	< 8.0 U	5.4	< 2.00 U	< 2 U	< 2 U	< 2 U	< 2.0 U	4.9
Total Chlorinated Ethenes	umol/L		3.4	15.4	0.13	0.061	0.11	1.5	5.38	3.90	1.29	0.75	2.65	2.16
Dissolved Gases		-					-					-		
Ethane	ug/L		< 1.23 U		6.77	1.64	< 0.22 U	< 0.56 U	< 1.23 U		1.41	1.25	< 0.22 U	< 0.56 U
Ethene	ug/L		< 1.14 U		1.22	< 1.14 U	< 0.29 U	< 0.58 U	< 1.14 U		< 1.14 U	< 1.14 U	< 0.29 U	< 0.58 U
Methane	ug/L		< 0.65 U		< 0.65 U	0.96	4700	4300	< 0.65 U		1.18	11.6	5000	8700
Conventionals														
Alkalinity, Total	mg/L		124						109					
Chloride	mg/L		44.4		0.86	18.9	89	40	33.4		9.78	25.7	46	43
Nitrate as Nitrogen	mg/L		5.86		< 0.1 U	< 1 U	0.31	< 0.025	6.46 J		< 0.1 U	< 0.1 UJ	0.059	< 0.025
Sulfate	mg/L		233		1.18	< 1 U	< 5.0 U	< 5 U	222		18.6 J	0.263	27	14
Total Organic Carbon	mg/L		1.43		2726	3104	2400	770	1.35		980.4	397.9	30	40
Metals, dissolved	-					-								
Calcium	ug/L		35900		29500	39000	140000	42000	37500		169000	100000	49000	59000
Iron	ug/L		14.2 J		228000	193000	290000	92000	< 20 U		11700	21800	9300	16000
Magnesium	ug/L		31500		15600	38700	120000	72000	29600		123000	76500	38000	44000
Manganese	ug/L		4.07		1560	3240	22000	7500	0.326 J		10600	18200	5000	11000
Microbiological				1		T	T	-		1	-	-	-	
Dehalococcoides (DHC) ²	cells/bead		14.2 J						17.3 J					
	cells/mL						< 26.3 U						3.30	
Field Parameters				1		T	T	-		1	-	-	-	
Temperature	deg C		16.5	17.3	12.16	17.51	20.5	16.05	16.1	17.39	12.98	16.28	20.1	15.41
Specific Conductance	uS/cm		743	593.12	833.3	1396.6	1800	750.86	658	568.16	1416	900.41	485.1	467.13
Dissolved Oxygen	mg/L		3.13	1.37	0.02	0.04	0.18	0.09	5.88	4.1	0.09	0.1	0.15	0.14
pH	pH units		7.21	7.11	4.79	5.02	4.88	5.9	6.92	6.94	5.74	5.78	6.19	6.49
Oxidation Reduction Potential	mV		69.4	45.9	9.6	18.9	-1	-74.3	81.2	65.6	-0.4	-164.6	-41.3	-147.5
Turbidity	NTU		17.2	4.12	1000	1000	1000	83.9	6.74	1.48	18.2	10.5	14	6.14
Iron, Ferrous, Fe+2	ppm				7	7	7	3			1	1.5	4	5.5

Notes:

1) MTCA Method B Cleanup Level used for cDCE (Method A not available).

2) Six month post-injection microbiological results analyzed with different method than baseline microbiological results. Cells/mL and cells/bead are not directly comparable, but can be considered to be within 1 to 2 orders of magnitude of each other.

3) Monitoring at downgradient well AS-31 was required as a condition of the Underground Injection Control authorization. Iron and nitrate were not to exceed the Water Quality Standards for Groundwaters of the State of Washington, chapter 173-200 WAC (GWQS) criterion of 0.3 mg/L and 10 mg/L, respectively.

Blue Shaded - Detected result exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

MTCA - Model Toxics Control Act

ug/L - micrograms per liter, mg/L - milligrams per liter, deg C - degrees Celsius, uS/cm - microsiemens per centimeter, mV - millivolts, NTU - Nephelometric Turbidity Units

Aspect Consulting

DRAFT

Table 1

Pilot Test Tech Memo Page 1 of 2

Table 1. Pilot Test Groundwater Monitoring ResultsProject No. 090030, Former Tux Shop Site, Seattle, WA

				Performance Monitoring Wells									Downgradient Well		
		MTCA			HC-4					AC-4-50			AS-31 ³		
		Method A ¹ ,		Water Table Interval					Inter	mediate Inte	erval		Sh	allow Inter	val
		Groundwater	Baseline	Baseline	Month 3	Month 6	Month 12	Baseline	Baseline	Month 3	Month 6	Month 12	Month 3	Month 6	Month 12
Analyte	Unit	(ug/L)	4/1/2019	10/28/2022	4/27/2023	7/27/2023	1/9/2024	4/1/2019	10/27/2022	4/27/2023	7/27/2023	1/9/2024	4/27/2023	7/27/2023	1/9/2024
VOCs															
1,1,1,2-Tetrachloroethane	ug/L		< 0.2 U	< 0.2 U	< 0.2 U	< 0.40 U	< 0.4 U	< 0.2 U	< 2 U	< 2 U	< 10 U	< 20 U			
1,1,1-Trichloroethane	ug/L	200	< 0.2 U	< 0.2 U	< 0.2 U	< 0.40 U	< 0.4 U	< 0.2 U	< 2 U	< 2 U	< 10 U	< 20 U			
1,2-Dichloroethane (EDC)	ug/L	5	< 0.2 U	0.29	< 0.2 U	< 0.40 U	< 0.4 U	< 0.2 U	< 2 U	< 2 U	< 10 U	< 20 U			
Chloroform	ug/L		< 0.2 U	< 0.2 U	< 0.2 U	< 0.40 U	< 0.4 U	< 0.2 U	< 2 U	< 2 U	< 10 U	< 20 U			
cis-1,2-Dichloroethene (cDCE)	ug/L	16	9.36	5.91	2.06	4.4	8.2	18.9	3.5	14.7	23	27			
Tetrachloroethene (PCE)	ug/L	5	36.9	18.2	41	44	79	2230	422	1650	2100	4500			
Trichloroethene (TCE)	ug/L	5	5.45	1	1.08	1.5	3.3	46	10.1	28.5	69	95			
Vinyl Chloride	ug/L	0.2	< 0.20 U	< 0.2 U	< 0.2 U	< 0.40 U	< 0.4 U	0.21	< 2 U	< 2 U	< 10 U	< 20 U			
Total Chlorinated Ethenes	umol/L		0.41	0.18	0.28	0.32	0.59	17.4	2.7	10.3	13.4	28.1			
Dissolved Gases							-								
Ethane	ug/L		< 1.23 U		< 1.23 U	< 0.22 U	< 0.56 U	5.35		< 1.23 U	< 0.22 U	< 0.56 U			
Ethene	ug/L		< 1.14 U		< 1.14 U	< 0.29 U	< 0.58 U	9.69		< 1.14 U	< 0.29 U	< 0.58 U			
Methane	ug/L		14.8		18.9	< 0.55 U	20	17.9		1.31	< 0.55 U	0.69			
Conventionals	•			1	-	T	-				1				T
Alkalinity, Total	mg/L		155					104							
Chloride	mg/L		7.37		9.86	14	21	50.4		15.8	23	17			
Nitrate as Nitrogen	mg/L		< 0.1 U		< 0.1 UJ	< 0.050 U	< 0.025	< 0.1 U		< 0.1 UJ	0.054	< 0.025	2.65	2.2	2.86
Sulfate	mg/L		36.4		15.2	25	17	183		61.8	71	96			
Total Organic Carbon	mg/L		1.06		1.26	1.1	1.8	1.52		1.32	1.1	1			
Metals, dissolved	I			1		1			1 1						1
Calcium	ug/L		17300		19300	22000	23000	12500		23200	25000	26000			
Iron	ug/L		317		< 360 U	140	740	157		< 360 U	< 56 U	< 56 U	< 182 U	75	< 56 U
Magnesium	ug/L		19400		22500	25000	23000	13000		22800	26000	26000			
Manganese	ug/L		121		12.1	79	140	26.1		91.5	55	93			
Microbiological	T 11 /1 1				F	1			1 1			F			
Dehalococcoides (DHC) ²	cells/bead		< 25 U												
	cells/mL					< 0.500 U					9.30				<u> </u>
Fleid Parameters				47.00	44.05			10.0			40.0		45.00	10.11	
	deg C		14.4	17.38	14.25	17.5	14.44	16.6	17.13	17.16	19.2	15.17	15.23	16.44	15.04
	uS/cm		373	455.83	287.85	328.1	253.35	619	440.61	323.34	334.4	269.98	314.96	249.09	245.40
Dissolved Oxygen	mg/L		0.35	7.42	0.86	4.91	0.24	0.24	0.32	0.19	0.27	0.35	5.90	5.13	5.21
	pH units		6.71	6.91	6.73	6.5	6.87	8.16	8.13	7.63	7.5	8	6.17	7.01	6.89
Uxidation Reduction Potential	mV		16.9	38.5	103.3	63.5	-50.9	100.9	-2.5	-31.8	77.2	167.6	208.1	246.5	115.9
	NTU		2.85	289.3	3.22	1.77	2.1	55.7	3.48	2.86	4.6	0.93	5.60	7.14	0.80
Iron, Ferrous, Fe+2	ppm				0.5	< 0 U	1			0.5	< 0 U	< 0 U			

Table 1

Pilot Test Tech Memo Page 2 of 2

Table 2. Operational Monitoring

Project No. 090030, Former Tux Shop, Seattle, WA

			Injection Rate	Injection Pressure ¹	Cumulative Injected Volume
Injection Well	Date	Time	(gpm)	(psig)	(gal)
		10:42	1	0	10
		11:40	2.2	0	125
		13:48	1.9	10	300
	1/30/2023	14:50	1.9	5	420
		15:50	2.2	5	550
		16:50	2.1	5	675
		17:20	2.5	5	750
1\\/_1		8:30	10	10	800
100-1		9:50	2.5	5	1000
		10:50	1.4	5	1085
		11:50	1.7	5	1185
	1/31/2023	12:50	1.7	5	1285
		13:50	2.3	5	1425
		14:50	2.4	20*	1570
		15:50	1.5	15*	1660
		16:30	2.25	15*	1750

Notes:

1) Pressure not constant during injections. Injection pressure is approximately 0 psi during gravity drainage.

* Injection pressure increased as a result of increased (x2) reagent in batch being injected

Table 3. Breakthrough MonitoringProject No. 090030, Former Tux Shop, Seattle, WA

					Specific	
Injection	Monitoring			Water Level	Conductance	
Well	Well	Date	Time	(ft bTOC)	(μS/cm)	Observations
	AS-35	1/30/2023	8:58	16.72		Baseline, pre-injection
	AS-35	1/30/2023	10:53	16.09	604.71	
	AS-35	1/30/2023	11:25	10.07	601.81	No Odor, No Color
	AS-35	1/30/2023	11:59	9.58	600.04	
	AS-35	1/30/2023	13:45	4.5	645.02	Pump on
	AS-35	1/30/2023	14:28	7.69	634.15	Pump on
	AS-35	1/30/2023	14:55	8.85	641.65	Pump off
	AS-35	1/30/2023	15:40	11.58	628.94	Pump off
	AS-35	1/30/2023	16:24	6.05	776.7	Pump off. No Odor, No Color
	AS-35	1/30/2023	17:00	7.25	604.53	Pump off. No Odor, No Color
	AS-35	1/31/2023	8:22	15.96		Prior to start of injections on Day 2
	AS-35	1/31/2023	8:53	12.25	449.89	Pump off. No Odor, No Color
	AS-35	1/31/2023	9:27	9.5	415.65	Pump on. No Odor, No Color
	AS-35	1/31/2023	9:55	8.27	399.48	Pump off. No Odor, No Color
	AS-35	1/31/2023	10:30	4.15	408.32	Pump on. No Odor, No Color
11.47 4	AS-35	1/31/2023	11:05	8.89	3/1.0/	Pump off. No Odor, No Color
144-1	AS-30	1/31/2023	10:00	7.00	382.04	Pump off. No Odor, No Color
	AS-30	1/31/2023	12.20	9.14	900.55	Pump off. No Odor, No Color
	AS-35	1/31/2023	12:46	0.29	404.40	Pump off. No Odor, No Color
	AS-35	1/31/2023	13.40	5.52 7 1	404.49	Pump off. No Odor, No Color
	AS-35	1/31/2023	14.27	6.22	414.0	Pump off. No Odor, No Color
	AS-30	1/31/2023	15.10	0.22	424.33	Pump off
	AS-30	1/31/2023	15:34	0.03		Pullip oli. Rump off No Odar, No Color
	AS-30	1/31/2023	15.44	5.55	440.37	Pump off. No Odor, No Color
	A3-35	1/31/2023	0.02	0.0 17.01	409.20	Pullip oll. No Odol, No Color
	AC-4-50	1/30/2023	9.03	17.21	406.04	Baseline, pre-injection
	AC-4-50	1/30/2023	10.07		420.24	No Odor, No Color
	AC-4-50	1/30/2023	11.00		414.92	No Odor, No Color
	AC-4-50	1/30/2023	12:05	10.9	421.7	No Odor, No Color
	AC-4-50	1/30/2023	14.22		412.04	
	AC-4-50	1/30/2023	14.00		915.56	Pump off
	AC-4-50	1/30/2023	15.02		424.41	No Odor, No Color
	AC-4-50	1/30/2023	16.32		420.99	
	AC-4-50	1/30/2023	17:04		424.75	Rump off No Odor No Color
	AC-4-50	1/30/2023	8.25	17.16	433.07	Prior to start of injections on Day 2
	AC-4-50	1/31/2023	0.20 Q·03		300 / 0	The to start of injections on Day 2
	AC-4-50	1/31/2023	0.00 0.33		361 5	
	AC-4-50	1/31/2023	10.00		364.26	
	AC-4-50	1/31/2023	10:35		367.51	
	AC-4-50	1/31/2023	11.00		364 12	
	AC-4-50	1/31/2023	11:53		366.29	
	AC-4-50	1/31/2023	12:35		370 55	
	AC-4-50	1/31/2023	13:15		362.05	
	AC-4-50	1/31/2023	13:50		369.71	
	AC-4-50	1/31/2023	14:32		371.58	
	AC-4-50	1/31/2023	15:15		374.75	
	AC-4-50	1/31/2023	15:33	15.88		1
	AC-4-50	1/31/2023	15:48		366.9	1
	AC-4-50	1/31/2023	16:21		374.74	1
IW-1	AS-31	1/30/2023	9:06	16.29		Baseline, pre-injection
	AS-31	1/30/2023	15:29	15.63		
	AS-31	1/31/2023	8:33	16.04		Prior to start of injections on Day 2
	AS-31	1/31/2023	15:31	14.98		
	HC-4	1/30/2023	8:52	15.73		Baseline, pre-injection
	HC-4	1/30/2023	11:01		391.22	
	HC-4	1/30/2023	11:38		395.58	No Odor, No Color
	HC-4	1/30/2023	12:09	12.73	398.1	No Odor, No Color
	HC-4	1/30/2023	13:59		396.3	No Odor, No Color
	HC-4	1/30/2023	14:39		399.57	Pump on, No Odor, No Color
	HC-4	1/30/2023	15:06		404.28	Pump off. No Odor, No Color
	HC-4	1/30/2023	15:55		420.99	
	HC-4	1/30/2023	16:34		413.85	Pump off. No Odor, No Color
	HC-4	1/30/2023	17:09		407.6	Pump off. No Odor, No Color
	HC-4	1/31/2023	8:36	13.62		Prior to start of injections on Day 2
	HC-4	1/31/2023	9:07		333.05	
	HC-4	1/31/2023	9:37		332.4	

	HC-4	1/31/2023	9:37		332.4	
	HC-4	1/31/2023	10:10		328.44	
	HC-4	1/31/2023	10:40		331.05	
	HC-4	1/31/2023	11:14		334.66	
	HC-4	1/31/2023	11:58		333.9	
	HC-4	1/31/2023	12:41		338.35	
	HC-4	1/31/2023	13:20		342.4	
	HC-4	1/31/2023	13:56		346.25	
1\\\/ 1	HC-4	1/31/2023	14:37		351.58	
144-1	HC-4	1/31/2023	15:19		358.24	
	HC-4	1/31/2023	15:29	10.37		
	HC-4	1/31/2023	15:53		356.08	
	HC-4	1/31/2023	16:26		361.9	
	AS-39	1/30/2023	9:10	15.01	-	Baseline, pre-injection
	AS-39	1/30/2023	15:29	15.63		Pump off. No Odor, No Color
	AS-39	1/31/2023	8:38	14.24		Prior to start of injections on Day 2
	AS-39	1/31/2023	15:28	11.38		

-- = Not measured

Aspect Consulting 2/6/2024

V:\090030 Former Tux Shop\Deliverables\Feasibility Study Report\Draft\Appendices\Appendix A- Pilot Test Memo\Tables\Table 3 - Breakthrough Monitoring

Table 3 Pilot Test Tech Memo

Page 1 of 1

Table 4. Reagent Dosing

Project No. 090030, Former Tux Shop, Seattle, WA

Sample Name	Date	TOC (mg/L)	Total Iron (μg/L)	Dissolved Iron (μg/L)
Batch-1	1/30/2023	3,112	20,900	
Batch-2	1/30/2023	2,156	33,700	
Batch-3	1/30/2023	2,913	182,000	
Batch-4	1/30/2023	1,913	221,000	
Batch-5	1/31/2023	1,058	28,500	
Batch-6	1/31/2023	2,160	120,000	
Batch-7	1/31/2023	3,233	159,000	
AS-35	1/31/2023	435.4		8,180

Notes:

-- - Sample was not analyzed for this analyte

Table 5. Historical Downgradient Groundwater TrendsProject No. 090030, Former Tux Shop Site, Seattle, WA

			AC-4-50			HC-4				
				Screened 40 - 50 ft bgs			Scre	Screened 15 - 25 ft bgs		
Analyte	Unit	MTCA Method A ¹ , Groundwater (ug/L)	04/01/2019	2/24/2020	6/16/2020	9/30/2021	10/27/2022	04/01/2019	2/24/2020	10/28/2022
Volatilo Organic Compounds ()								1		
1 1 1 2 Totrachleroothono			< 0.211	< 0.411	< 111	< 111	< 211	< 0.211	< 0.211	< 0.211
1,1,1,2-Tetrachioroethane	ug/L	200	< 0.2 U	< 0.4 U	<10	<10	< 2 U	< 0.2 U	< 0.2 U	< 0.2 U
	ug/L	200	< 0.2 0	< 0.4 U	< 1 U	< 1 U	< 2 U	< 0.2 0	< 0.2 0	< 0.2 0
1,2-Dichloroethane (EDC)	ug/L	5	< 0.2 U	< 0.4 U	< 1 U	<10	<20	< 0.2 U	< 0.2 U	0.29
Chloroform	ug/L		< 0.2 U	< 0.4 U	< 1 U	<1U	< 2 U	< 0.2 U	< 0.2 U	< 0.2 U
cis-1,2-Dichloroethene (cDCE)	ug/L	16	18.9	0.77	1.45	5.10	3.5	9.36	0.37	5.91
Tetrachloroethene (PCE)	ug/L	5	2230	93.1	153	903	422	36.9	17.2	18.2
Trichloroethene (TCE)	ug/L	5	46	2.70	4.02	15.1	10.1	5.45	0.71	1
Vinyl Chloride	ug/L	0.2	0.21	< 0.4 U	< 1 U	<1U	< 2 U	< 0.20 U	< 0.2 U	< 0.2 U
Field Parameters										
Temperature	deg C		16.6	14.3	17.4	16.7	17.13	14.4	13.4	17.38
Specific Conductance	uS/cm		619	420.6	402.3	411.7	440.61	373	331	455.83
Dissolved Oxygen	mg/L		0.24	0.23	1.63	1.78	0.32	0.35	0.54	7.42
рН	pH units		8.16	7.89	7.52	7.28	8.13	6.71	6.57	6.91
Oxidation Reduction Potential	mV		100.9	88.7	79.9	87.6	-2.5	16.9	76.8	38.5
Turbidity	NTU		55.7	19.8	8.29	5.05	3.48	2.85	2.21	289.3

Notes:

Bold - Analyte Detected

Blue Shaded - Detected result exceeded screening level

1) MTCA Method B Cleanup Level used for cDCE (Method A not available)

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

MTCA - Model Toxics Control Act

ug/L - micrograms per liter, mg/L - milligrams per liter, deg C - degrees Celsius, uS/cm - microsiemens per centimeter, mV - millivolts, NTU - Nephelometric Turbidity Units

DRAFT

Table 5

Pilot Test Tech Memo Page 1 of 1

FIGURES

Figure 2 **Post-Injection Performance Monitoring Trends**

Pilot Test Tech Memo Project No. 090030, Former Tux Shop Site, Seattle, WA

Aspect Consulting

2/6/2024 V:\090030 Former Tux Shop\Deliverables\Feasibility Study Report\Draft\Appendices\Appendix A- Pilot Test Memo\Figures\Figure 2 -Performance Monitoring

ATTACHMENT A

Injection Reagent Specifications

SAFETY DATA SHEET EHC® Liquid Reagent Mix

SDS # : EHCLM-C Revision date: 2016-02-03 Format: NA Version 1.01

1. PRODUCT AND COMPANY IDENTIFICATION

Product Identifier	
Product Name	EHC® Liquid Reagent Mix
Other means of identification	
Alternate Commercial Name	EHC®-L Mix; EHC® Liquid - Solid Component
Recommended use of the chemica	l and restrictions on use
Recommended Use:	Bioremediation product for the remediation of contaminated soil and groundwater
Restrictions on Use:	Not for drinking water purification treatment.
<u>Manufacturer/Supplier</u> Emergency telephone number	PeroxyChem LLC 2005 Market Street Suite 3200 Philadelphia, PA 19103 Phone: +1 267/ 422-2400 (General Information) E-Mail: sdsinfo@peroxychem.com For leak, fire, spill or accident emergencies, call: 1 800 / 424 9300 (CHEMTREC - U.S.A.) 1 703 / 527 3887 (CHEMTREC - Collect - All Other Countries) 1 303/ 389-1409 (Medical - U.S Call Collect)

2. HAZARDS IDENTIFICATION

Classification

OSHA Regulatory Status

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200).

Combustible dust

GHS Label elements, including precautionary statements

EMERGENCY OVERVIEW

Warning

Hazard Statements May form combustible dust concentrations in air

Precautionary Statements - Prevention

Keep away from all ignition sources including heat, sparks and flame. Keep container closed and grounded. Prevent dust accumulations to minimize explosion hazard.

Hazards not otherwise classified (HNOC)

No hazards not otherwise classified were identified.

Other Information

CONTAINMENT HAZARD: Any vessel that contains wet EHC must be vented due to potential pressure build up from fermentation gases

3. COMPOSITION/INFORMATION ON INGREDIENTS

Chemical name	CAS-No	Weight %
Iron salt	Proprietary	92-97
amino acid	Proprietary	3-7

Occupational exposure limits, if available, are listed in section 8

	4. FIRST AID MEASURES
Eye Contact	Rinse thoroughly with plenty of water for at least 15 minutes, lifting lower and upper eyelids intermittently. Consult a physician.
Skin Contact	Wash off with warm water and soap. Get medical attention if irritation develops and persists.
Inhalation	Remove from exposure, lie down. If symptoms persist, call a physician.
Ingestion	If swallowed, do not induce vomiting - seek medical advice.
Protection of first-aiders	No information available.
Most important symptoms and effects, both acute and delayed	Gastrointestinal effects. Inhalation of dust in high concentration may cause irritation of respiratory system.
Indication of immediate medical attention and special treatment needed, if necessary	Treat symptomatically
	5. FIRE-FIGHTING MEASURES
Suitable Extinguishing Media	Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.
Specific Hazards Arising from the Chemical	Avoid generating dust; fine dust dispersed in air in sufficient concentrations, and in the presence of an ignition source is a potential dust explosion hazard.
Hazardous Combustion Products	Carbon oxides (COx).
<u>Explosion data</u> Sensitivity to Mechanical Impact Sensitivity to Static Discharge	Not sensitive. Not sensitive.

Protective equipment and precautions for firefighters	As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.		
	6. ACCIDENTAL RELEASE MEASURES		
Personal Precautions	For personal protection see Section 8. Avoid dispersal of dust in the air (i.e., cleaning dust surfaces with compressed air.).		
Other	Eliminate all ignition sources (no smoking, flares, sparks or flames in immediate area). Use only non-sparking tools.		
Environmental Precautions	No special environmental precautions required.		
Methods for Containment	Sweep or vacuum up spillage and return to container. Avoid wetting dust and clean up as a dry powder with appropriate PPE for handling dry dusty materials; store in containers that keep material dry, segregated but allow to vent. Avoid dispersal of dust in the air (i.e., cleaning dust surfaces with compressed air.). Dust deposits should not be allowed to accumulate on surfaces, as these may form an explosive mixture if they are released into the atmosphere in sufficient concentration. Material may be recycled when contamination is not a problem.		
Methods for cleaning up	Following product recovery, flush area with water.		
	7. HANDLING AND STORAGE		
Handling	Avoid contact with skin, eyes and clothing. Do not ingest. Ensure adequate ventilation. Minimize dust generation and accumulation. Routine housekeeping should be instituted to ensure that dusts do not accumulate on surfaces. Dry powdered material can build static electricity when subjected to the friction of transfer and mixing operations. Provide adequate precautions, such as electrical grounding and bonding, or inert atmosphere.		
Storage	Keep tightly closed in a dry and cool place. Keep away from open flames, hot surfaces and sources of ignition.		
Incompatible products	. Strong oxidizing agents		
8.	EXPOSURE CONTROLS/PERSONAL PROTECTION		

Control parameters

Exposure Guidelines

Ingredients with workplace control parameters.

Chemical name	ACGIH TLV	OSHA PEL	NIOSH	Mexico
Iron salt TWA: 1 mg/m ³		-	-	-
Chemical name	British Columbia	Quebec	Ontario TWAEV	Alberta
Iron salt	TWA: 1 mg/m ³	TWA: 1.0 mg/m ³	TWA: 1 mg/m ³	TWA: 1 mg/m ³

Appropriate engineering controls

Engineering measures Ensure adequate ventilation, especially in confined areas. It is recommended that all dust control equipment such as local exhaust ventilation and material transport systems involved in the handling of this product contain explosion relief vents or an explosion suppression or an oxygen-deficient environment. Ensure that dust-handling systems (such as exhaust ducts, dust collectors, vessels, and processing equipment) are designed in a manner to prevent the escape of dust into the work area (i.e., there is no leakage from the equipment). Use only appropriately classified electrical equipment and powered industrial trucks.

Individual protection measures, such as personal protective equipment

	9. PHYSICAL AND CHEMICAL PROPERTIES	
Hygiene measures	Handle in accordance with good industrial hygiene and safety practice.	
Respiratory Protection	When workers are facing concentrations above the exposure limit they must use appropriate certified respirators.	
Hand Protection	Protective gloves	
Skin and Body Protection	Wear suitable protective clothing.	
Eye/Face Protection	Safety glasses with side-shields.	sion

Information on basic physical and chemical properties

Appearance	Dry powder
Physical State	Solid
Color	light gray
Odor	Slight
Odor threshold	No information available
рН	4.5 (1% solution)
Melting point/freezing point	100 °C
Boiling Point/Range	No information available
Flash point	Not applicable
Evaporation Rate	No information available
Flammability (solid, gas)	May be combustible at high temperatures
Flammability Limit in Air	
Upper flammability limit:	No information available
Lower flammability limit:	No information available
Vapor pressure	No information available
Vapor density	No information available
Density	No information available
Specific gravity	No information available
Water solubility	Fairly soluble
Solubility in other solvents	
Partition coefficient	No information available
Autoignition temperature	
Decomposition temperature	No information available
Viscosity, kinematic	No information available
Viscosity, dynamic	No information available
Explosive properties	Low level dust explosion hazard
Kst	76 bar-m/sec: St1 Class dust
Oxidizing properties	No information available
Molecular weight	No information available
Bulk density	Not applicable

10. STABILITY AND REACTIVITY

None under normal use conditions

Chemical Stability	Stable under recommended storage conditions. Decomposes on heating.
Possibility of Hazardous Reactions	None under normal processing.
Hazardous polymerization	Hazardous polymerization does not occur.
Conditions to avoid	To avoid thermal decomposition, do not overheat.
Incompatible materials	Strong oxidizing agents.
Hazardous Decomposition Products	Carbon oxides (COx).

11. TOXICOLOGICAL INFORMATION

Product Information

LD50 Oral	Iron Salt: 2100 mg/kg (guinea pig)		
LD50 Dermal LC50 Inhalation	No information available No information available		
Sensitization	Not expected to be sensitizing based on the components.		
Information on toxicological effects	_		
Symptoms	Dust is irritating eyes, nose, throat, and lungs.		
Delayed and immediate effects as w	ell as chronic effects from short and long-term exposure		
Carcinogenicity	Contains no ingredient listed as a carcinogen.		
Mutagenicity	This product is not recognized as mutagenic by Research Agencies		
Reproductive toxicity	This product does not contain any known or suspected reproductive hazards.		
STOT - single exposure STOT - repeated exposure	No information available. No information available.		
Aspiration hazard	Not applicable.		
	12. ECOLOGICAL INFORMATION		
<u>Ecotoxicity</u>			
Ecotoxicity effects	Not expected to have significant environmental effects		
Persistence and degradability	No information available.		
Bioaccumulation	No information available.		
Mobility	No information available.		
Other Adverse Effects	None known.		
	13. DISPOSAL CONSIDERATIONS		
Waste disposal methods	It must undergo special treatment, e.g. at suitable disposal site, to comply with local regulations.		
Contaminated Packaging	Dispose of in accordance with local regulations.		
	14. TRANSPORT INFORMATION		

DOT

NOT REGULATED

15. REGULATORY INFORMATION

U.S. Federal Regulations

SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372

SARA 311/312 Hazard Categories

Acute health hazard	No
Chronic health hazard	No
Fire hazard	No
Sudden release of pressure hazard	No
Reactive Hazard	No

Clean Water Act

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42)

CERCLA/EPCRA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material

International Inventories

Component	TSCA (United States)	DSL (Canada)	EINECS/EL INCS (Europe)	ENCS (Japan)	China (IECSC)	KECL (Korea)	PICCS (Philippines)	AICS (Australia)	NZIoC (New Zealand)
Iron salt (92-97)	X	X	Х			Х	X	X	Х
amino acid (3-7)	х	X	Х	Х	Х	Х	Х	Х	Х

CANADA

WHMIS Hazard Class

Non-controlled

16. OTHER INFORMATION

NFPA	Health Hazards 1	Flammability 1	Stability 0	Special Hazards -		
HMIS	Health Hazards 1	Flammability 1	Physical hazard 0	Special precautions -		
NFPA/HMIS Ratings Leg	end Severe = 4; S	Severe = 4; Serious = 3; Moderate = 2; Slight = 1; Minimal = 0				
Uniform Fire Code References	COMBUSTIE Refer to NFF <i>Manufacturir</i> handling.	BLE DUST/POWDER PA 654, Standard for the Pa og, Processing, and Handli	revention of Fire and Dust ng of Combustible Particul	Explosions from the ate Solids , for safe		
Revision date: Revision note Issuing Date:	2016-02-03 (M)SDS sect 2016-01-26	ions updated 9				
		Page 6/7				

Disclaimer

PeroxyChem believes that the information and recommendations contained herein (including data and statements) are accurate as of the date hereof. NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specified product designated and may not be applicable where such product is used in combination with any other materials or in any process. Further, since the conditions and methods of use are beyond the control of PeroxyChem, PeroxyChem expressly disclaims any and all liability as to any results obtained or arising from any use of the products or reliance on such information.

Prepared By:

PeroxyChem © 2016 PeroxyChem. All Rights Reserved. End of Safety Data Sheet

SDS #: ELS-C Revision date: 2015-07-22 Format: NA Version 1

1. PRODUCT AND COMPANY IDENTIFICATION

Product Identifier			
Product Name	ELS TM Microemulsion		
Other means of identification			
Synonyms	Lecithin: L-α-Phosphatidylcholine, Azolectin; Sodium Benzoate: Benzoic acid sodium salt; Sorbitan monooleate, ethoxylated: Polyoxyethylenesorbitan monooleate		
Recommended use of the chemical	and restrictions on use		
Recommended Use:	Bioremediation product for the remediation of contaminated soil and groundwater		
Restrictions on Use:	Not for drinking water purification treatment.		
<u>Manufacturer/Supplier</u>	PeroxyChem LLC 2005 Market Street Suite 3200 Philadelphia, PA 19103 Phone: +1 267/ 422-2400 (General Information) E-Mail: sdsinfo@peroxychem.com		
Emergency telephone number	For leak, fire, spill or accident emergencies, call: 1 800 / 424 9300 (CHEMTREC - U.S.A.) 1 703 / 527 3887 (CHEMTREC - Collect - All Other Countries) 1 303/ 389-1409 (Medical - U.S Call Collect)		

2. HAZARDS IDENTIFICATION

Classification

OSHA Regulatory Status

This material is not considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200).

GHS Label elements, including precautionary statements

EMERGENCY OVERVIEW

Hazards not otherwise classified (HNOC)

No hazards not otherwise classified were identified.

Other Information

CONTAINMENT HAZARD: Any vessel that contains wet ELS must be vented due to potential pressure build up from fermentation gases

3. COMPOSITION/INFORMATION ON INGREDIENTS

Chemical name	CAS-No	Weight %
Sorbitan monooleate, ethoxylated	9005-65-6	2-4
Lecithin	8002-43-5	20-30
Water	7732-18-5	60-80
Sodium Benzoate	532-32-1	2-4

Synonyms are provided in Section 1.

	4. FIRST AID MEASURES			
Eye Contact	In case of contact, immediately flush eyes with plenty of water. Get medical attention if irritation develops and persists.			
Skin Contact	Wash skin with soap and water. Get medical attention if irritation develops and persists.			
Inhalation	Move to fresh air in case of accidental inhalation of vapors. Consult a physician if necessary.			
Ingestion	Drink 1 or 2 glasses of water. Get medical attention if symptoms occur. If swallowed, do not induce vomiting - seek medical advice. Never give anything by mouth to an unconscious person.			
Most important symptoms and effects, both acute and delayed	None known			
Indication of immediate medical attention and special treatment needed, if necessary	Treat symptomatically			
	5. FIRE-FIGHTING MEASURES			
Suitable Extinguishing Media	Carbon dioxide (CO ₂). Dry chemical. Dry powder.			
Specific Hazards Arising from the Chemical	. Combustible material: may burn but does not ignite readily			
<u>Explosion data</u> Sensitivity to Mechanical Impact Sensitivity to Static Discharge	Not sensitive. Not sensitive.			
Protective equipment and precautions for firefighters	As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.			
	6. ACCIDENTAL RELEASE MEASURES			

Personal Precautions

	SDS # : ELS-C Revision date: 2015-07-22		
	Version 1		
Other	For further clean-up instructions, call PeroxyChem Emergency Hotline number listed in Section 1 "Product and Company Identification" above.		
Environmental Precautions No special environmental precautions required.			
Methods for Containment	Absorb with earth, sand or other non-combustible material and transfer to containers for later disposal.		
Methods for cleaning up	After cleaning, flush away traces with water.		
	7. HANDLING AND STORAGE		
Handling	Handle in accordance with good industrial hygiene and safety practice.		
Storage	Any vessel that contains wet ELS must be vented due to potential pressure build up from fermentation gases. Keep away from open flames, hot surfaces and sources of ignition.		
Incompatible products	Water, Alkalis		
8. E	XPOSURE CONTROLS/PERSONAL PROTECTION		
Control parameters			
Exposure Guidelines	This product, as supplied, does not contain any hazardous materials with occupational exposure limits established by the region specific regulatory bodies.		
Appropriate engineering controls			
Engineering measures	None under normal use conditions.		
Individual protection measures, s	uch as personal protective equipment		
Eye/Face Protection	Safety glasses with side-shields.		
Skin and Body Protection	Wear suitable protective clothing.		
Hand Protection	Protective gloves		
Respiratory Protection	Use only with adequate ventilation.		

Hygiene measures Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and immediately after handling the product.

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance Physical State	Light amber emulsion Liquid
Color	No information available
Odor	odorless
Odor threshold	No information available
рН	6.5 - 6.9
Melting point/freezing point	Not applicable No data available
Boiling Point/Range	No information available
Flash point	> 200 °F
Evaporation Rate	No information available
Flammability (solid, gas)	No information available
Flammability Limit in Air	
Upper flammability limit:	No information available
Lower flammability limit:	No information available
Vapor pressure	No information available
Vapor density	No information available
------------------------------	--------------------------
Density	No information available
Specific gravity	No information available
Water solubility	Dispersible in water
Solubility in other solvents	No information available
Partition coefficient	No information available
Autoignition temperature	No information available
Decomposition temperature	No information available
Viscosity, kinematic	No information available
Viscosity, dynamic	No information available
Explosive properties	Not explosive
Oxidizing properties	Non-oxidizing
Molecular weight	No information available
Bulk density	Not applicable

10. STABILITY AND REACTIVITY

Reactivity	None under normal use conditions
Chemical Stability	Stable under recommended storage conditions.
Possibility of Hazardous Reactions	None under normal processing.
Hazardous polymerization	Hazardous polymerization does not occur.
Conditions to avoid	Temperatures above 71°C
Incompatible materials	Water, Alkalis.

Hazardous Decomposition Products None under normal use.

11. TOXICOLOGICAL INFORMATION

Product Information

Ingredients in this product have been designated as GRAS (Generally Recognized as Safe) by govenment agencies.

LD50 Oral LD50 Dermal LC50 Inhalation	There are no data available for this product There are no data available for this product No information available
Sensitization	Not expected to be sensitizing based on the components.
Information on toxicological effects	-
Symptoms	No information available.
Delayed and immediate effects as w	ell as chronic effects from short and long-term exposure
Carcinogenicity	Contains no ingredient listed as a carcinogen.
Mutagenicity	No information available
Reproductive toxicity	No information available.
STOT - single exposure STOT - repeated exposure	No information available. No information available.

SDS #: ELS-C Revision date: 2015-07-22 Version 1 Aspiration hazard

No information available.

12. ECOLOGICAL INFORMATION					
Ecotoxicity					
Ecotoxicity effects	Contains no substances known to be hazardous to the environment or that are not degradable in waste water treatment plants				
Persistence and degradability	Expected to biodegrade, based on component information.				
Bioaccumulation	Bioaccumulation is unlikely.				
Mobility	Will likely be mobile in the environment due to its water solubility but will likely degrade over time.				
Other Adverse Effects	None known.				
	13. DISPOSAL CONSIDERATIONS				
Waste disposal methods	Can be landfilled or incinerated, when in compliance with local regulations.				
Contaminated Packaging	Dispose of in accordance with local regulations.				
	14. TRANSPORT INFORMATION				
DOT	NOT REGULATED				

15. REGULATORY INFORMATION

U.S. Federal Regulations

<u>SARA 313</u>

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372

SARA 311/312 Hazard Categories

Acute health hazard	No
Chronic health hazard	NO
Fire hazard	NO
Sudden release of pressure hazard	NO
Reactive Hazard	NO

Clean Water Act

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42)

CERCLA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material

International Inventories

Component	TSCA (United States)	DSL (Canada)	EINECS/EL INCS (Europe)	ENCS (Japan)	China (IECSC)	KECL (Korea)	PICCS (Philippines)	AICS (Australia)	NZIoC (New Zealand)
Sorbitan monooleate, ethoxylated 9005-65-6 (2-4)	Х	X	Х	Х	Х	Х	Х	Х	Х
Lecithin 8002-43-5 (20-30)	Х	X	Х		Х	Х	Х	х	х
Sodium Benzoate 532-32-1 (2-4)	Х	x	X	Х	X	Х	X	X	Х

Mexico - Grade

Minimum risk, Grade 0

CANADA

WHMIS Hazard Class

Non-controlled

16. OTHER INFORMATION

NFPA	Health Hazards 1	Flammability 0	Stability 0	Special Hazards -
HMIS	Health Hazards 1	Flammability 0	Physical hazard 0	Special precautions -
NFPA/HMIS Ratings Leg	end Severe = 4; \$	Serious = 3; Moderate = 2;	Slight = 1; Minimal = 0	

Revision date:	2015-07-22
Revision note	Initial Release
Issuing Date:	2015-07-14

Disclaimer

PeroxyChem believes that the information and recommendations contained herein (including data and statements) are accurate as of the date hereof. NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specified product designated and may not be applicable where such product is used in combination with any other materials or in any process. Further, since the conditions and methods of use are beyond the control of PeroxyChem, PeroxyChem expressly disclaims any and all liability as to any results obtained or arising from any use of the products or reliance on such information.

Prepared By:

PeroxyChem © 2015 PeroxyChem. All Rights Reserved. End of Safety Data Sheet

EHC[®] Liquid reagent is a cold-water soluble formulation specially designed to be emplaced via existing wells and/or hydraulic injection networks for the treatment of a wide range of groundwater contaminants. EHC Liquid is delivered as <u>two</u> components that are mixed together on site. The first component, ELS[™] Microemulsion is a 25% liquid emulsion of food-grade lecithin, provided in 55-USG drums containing 50 USG. The second component, EHC Liquid Mix is a food-grade powdered organo-iron compound. The two components are proportioned such that one bag of the EHC Liquid Mix is required for every 50 USG of ELS Microemulsion.

This document provides guidelines for the preparation of diluted EHC Liquid for injection.

Packaging

Part 1: ELS Microemulsion delivered in 55-USG drums, filled with 50 USG / 420 lbs per drum (190 L / 190 Kg)

Part 2: EHC Liquid Mix, water soluble powder with the organo-iron compound in 24.5 lb bags (11.1 Kg)

EHC Liquid Injection Volumes and Dilutions

Depending on the application method, between 10% and 100% of the effective porosity is normally targeted during EHC Liquid injection, with a higher percent pore fill normally targeted during low-flow injections into wells and injection networks. This is in contrast to applications via direct push technology where normally around 10 to 15% of effective porosity is targeted. To facilitate the desired injection volume, the components are diluted in the field. The table below shows examples of mixing ratios for a 55-USG drum of ELS Microemulsion in United States customary units (USC) and metric units.

Dilution (USC):	3-fold	5-fold	10-fold	25-fold
Volume of Part 1 - ELS Microemulsion per drum (USG)		5	0	
Mass of Part 2 - EHC Liquid Mix component (lbs)		24	.5	
Volume water (USG)	100	200	450	1200
Resulting total volume (USG)	150	250	500	1250
Resulting EHC Liquid concentration (wt%)	10.5%	6.3%	3.2%	1.3%
Dilution (Metric):	3-fold	5-fold	10-fold	25-fold
Volume of Part 1 - ELS Microemulsion per drum (L)	190			
Mass of Part 2 - EHC Liquid Mix component (Kg)	11.1			
Volume water (L)	380	760	1710	4560
Resulting total volume (L)	570	950	1900	4750
Resulting EHC Liquid concentration (wt%)	10.5%	6.3%	3.2%	1.3%

remediation@peroxychem.com | 1.866.860.4760 | peroxychem.com/remediation

General Mixing Procedure

Proportioning can be varied to accommodate mixing tank size. The general mixing procedure is:

- 1. Fill mixing tank with required amount of dilution water per the treatment design.
- Transfer Part 1 ELS Microemulsion to mixing tank. Note that this material is pre-emulsified, has a viscosity of about 3,000 – 4,000 centipoise and will require an appropriate pump for transfer from the drum. Alternatively, the emulsion may be transferred in pails by hand. A paddle mixer and/or recirculation pump is sufficient for mixing.
- 3. Add Part 2 EHC Liquid Mix organo-iron powder and continue mixing. Ensure no solids remain on bottom of tank.
- 4. If other additives are used (e.g., pH buffers), they may be added at this time.
- 5. Mixing time depends on equipment used (typically 5-10 min). Continue to mix until uniform.

Health and Safety

EHC Liquid is safe when handled properly in accordance with instructions for use and the SDS's. The SDS's are posted on our web site at: http://www.peroxychem.com/markets/environment. When working with EHC Liquid the use of standard personal protective equipment, including safety glasses, protective clothing and gloves are recommended. Additional safety equipment may be required for mechanical and site operations.

Please contact PeroxyChem for additional guidance.

EHC and ELS are Trademarks of PeroxyChem. © 2016 PeroxyChem. All rights reserved. Document 26-01-ESD-16 The information contained herein is presented to the best of our knowledge, PeroxyChem makes no representations or warranties regarding the accuracy, quality, or reliability of this information and shall under no circumstances be liable with respect to such information.

A Dynamic Solution Promoting Abiotic and Biotic Processes

EHC[®] Liquid Reagent is an *in situ* chemical reduction (ISCR) product for the treatment of impacted groundwater. It is a cold-water soluble formulation that is specially designed for injection via existing wells or hydraulic injection networks for the treatment of a wide range of groundwater contaminants. EHC Liquid creates strong reducing conditions and promotes both biotic and abiotic dechlorination reactions. EHC Liquid is composed of two parts: EHC Liquid Reagent Mix, an organo-iron compound, and ELS[™] Microemulsion, which are easily combined and diluted for injection.

The benefits of EHC Liquid

- Stimulation of biotic reductive dechlorination through the generation of strong reducing conditions
- Structurally bound nutrients phosphorous and nitrogen released to bacteria via the fermentation of the lecithin molecule
- Direct chemical reduction from redox reaction of organoiron compound
- Surface dechlorination by magnetite and green rust precipitates from iron corrosion
- Replenished reactive iron surface provided by the cycling of iron from ferrous to ferric state in the presence of a carbon source - anticipated longevity of 2-3 yrs. depending on site conditions
- Easy to handle and cold water soluble

Contaminants treated

- Chlorinated solvents such as PCE, TCE, TCA, DCA, CCl₄, chloroform and methylene chloride
- Chlorobenzenes including di- and tri-chlorobenzene
- · Energetic compounds such as TNT, DNT, HMX, RDX, nitroglycerine and perchlorate
- Most pesticides including DDT, DDE, dieldrin, 2,4-D and 2,4,5-T
- Chlorofluorocarbons
- Nitrate compounds
- Chromium

The sound science of EHC Liquid

Organic carbon addition in the saturated zone is well-known to promote conventional enzymatic reductive dechlorination reactions. This happens because the carbon in the subsurface will support the growth of indigenous microbes in the groundwater environment. As bacteria feed on the soluble carbon, they consume dissolved oxygen and other electron acceptors, thereby reducing the redox potential in groundwater. As bacteria ferment the ELS microemulsion, they

Product Sheet

release a variety of volatile fatty acids (VFAs) such as lactic, propionic and butyric, which diffuse from the site of fermentation into the groundwater plume and serve as electron donors for other bacteria, including dehalogenators. The biogenolysis/hydrogenolysis reaction for the reduction of PCE is shown below.

Lecithin itself is composed primarily of phospholipids, which have both hydrophilic and hydrophobic regions in their molecular structure. As a result, ELS emulsions tend to be stable emulsions, expectedly more stable than with only hydrophobic compounds. Further, phospholipids support remediation by providing essential nutrients (carbon, nitrogen, phosphorus) to bacteria.

The soluble organo-iron compound is comprised of a ferrous iron (Fe^{+2}) that can form a variety of iron minerals (e.g. magnetite, pyrite) that are capable of reducing contaminants as they oxidize further to the ferric (Fe^{+3}) state via one electron transfer. The ferric ion can be "recycled" back to ferrous as long as other electrons from supplied carbon and indigenous carbon are available.

EHC Liquid is primarily recommended for plume treatment. It can be used as a source treatment depending on site conditions.

Application methods

- Direct push injection
- Gravity feed through existing wells
- Low pressure injections
- Recirculation systems

For more information and detailed case studies, please visit our website.

ATTACHMENT B

Laboratory Reports

27 February 2023

Delia Massey Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle, WA 98104

RE: Former Tux Shop (090030)

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 23B0015 Associated SDG ID(s) N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, LLC

Shelly Frish

Shelly Fishel, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Chain of Custody Record & Laboratory Analysis Request

AR Assigned Number: Turn-around Requested: Standard				Date:	2/1/2	3				Analyti	Analytical Resources, LLC cal Chemists and Consultants	
AR Client Company: Aspect Consulting Phone:					Page:)	of	l		$\neg \neg$	4611	South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact: Delia Massey, Baxter Call				No. of Coolers:	l	Cooler Temps:	3.	2		206-	695-6200 206-695-6202 (fax)	
Client Project Name: Former	Tux sh	rep				1		Analysis I	Requested			Notes/Comments
Client Project #: 09030	Samplers: Baxter Call			Kgank	_ {	ved						
Sample ID	Date	Time	Matrix	No. Containers	Total O Carb	15H	Dissu					
Batch-1-20230130	1/30/23	1020	Witter	2	X	X						
Batch-2-20230130		1335	1	1	1	1						
Batul-3-20230130	2	1540										
Batch - 4 - 20230131	1/31/23	0845										
Batch -5-20230131		0850										
Batch - 6 - 20230131		1040										
Batch -7-20230131		1445				5						
AS-35-20230131		1650	4		V		Х				1	Field fiftered then
		^т я:										
×		8										
Comments/Special Instructions	Relinquished by: (Signature) BCM (Signature)		phillip por		Relinquished by: (Signature)		Received by: (Signature)	Received by: (Signature)				
	Printed Name: Baxter Call Printed Name:		ILSO BOYPS		Printed Name:		Printed Name					
	Company: Company:		Company:		Company:							
	Date & Time: $\frac{2}{1/2}$	3 1000	ý	Date & Time:	23	10	00	Date & Time	:		Date & Time:	

Limits of Liability: Analytical Resources, LLC (AR) will perform all requested services in accordance with appropriate methodology following AR Standard Operating Procedures and the AR Quality Assurance Program. This program meets standards for the industry. The total liability of AR, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by AR release AR from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between AR and the Client.

Sample Retention Policy: Unless specified by work order or contract, all water/soil samples submitted to AR will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hard copy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

Aspect Consulting, LLC.	Project: Former Tux Shop	
710 2nd Avenue, Suite 550	Project Number: 090030	Reported:
Seattle WA, 98104	Project Manager: Delia Massey	27-Feb-2023 10:57
	ANALYTICAL REPORT FOR SAMPLES	

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Batch-1-20230130	23B0015-01	Water	30-Jan-2023 10:20	01-Feb-2023 10:00
Batch-2-20230130	23B0015-02	Water	30-Jan-2023 13:35	01-Feb-2023 10:00
Batch-3-20230130	23B0015-03	Water	30-Jan-2023 15:40	01-Feb-2023 10:00
Batch-4-20230130	23B0015-04	Water	31-Jan-2023 08:45	01-Feb-2023 10:00
Batch-5-20230131	23B0015-05	Water	31-Jan-2023 08:50	01-Feb-2023 10:00
Batch-6-20230131	23B0015-06	Water	31-Jan-2023 10:40	01-Feb-2023 10:00
Batch-7-20230131	23B0015-07	Water	31-Jan-2023 14:45	01-Feb-2023 10:00
AS-35-20230131	23B0015-08	Water	31-Jan-2023 16:50	01-Feb-2023 10:00

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 27-Feb-2023 10:57

Work Order Case Narrative

Client: Aspect Consulting, LLC. Project: Former Tux Shop Project Number: 090030 Work Order: 23B0015

Sample receipt

Sample(s) as listed on the preceding page were received 01-Feb-2023 10:00 under ARI work order 23B0015. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Total and Dissolved Metals - EPA Method 6020B

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

Wet Chemistry

The sample(s) were prepared and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

TOC was detected in the method blank at the reporting limits. The sample concentrations are all greater than one hundred times the blank detection and is therefore insignificant. All samples which contain analyte have been flagged with a "B" qualifier.

The blank spike (BS/LCS) percent recoveries were within control limits.

Analytical Resources, LLC Analytical Chemists and Consultants

Cooler Receipt Form

ARI Client: ASpect	Project Name: former Tux Shop
COC No(s): NA	Delivered by: Fed-Ex UPS Courier Hand Delivered Other:
Assigned ARI Job No: 238 0015	Tracking No:
Preliminary Examination Phase:	
Were intact, properly signed and dated custody seals attached to the	outside of the cooler? YES
Were custody papers included with the cooler?	MES NO
Were custody papers properly filled out (ink, signed, etc.)	
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry Time $\frac{10100}{1000}$	3.2
If cooler temperature is out of compliance fill out form 00070F	PLB 2/1 Temp Gun ID#: 5000 708
Cooler Accepted by:DaDa	ite: <u>+ 2/1/23</u> Time: <u>10-00</u>
Complete custody forms and a	attach all shipping documents
Log-In Phase:	

Was a temperature blank included in the cooler?		YES	NO
What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Baggies Foam Bl	ock Paper Othe	r:	
Was sufficient ice used (if appropriate)?	NA	YES	NO
How were bottles sealed in plastic bags?	Individually	Grouped	Not
Did all bottles arrive in good condition (unbroken)?		YES	NO
Were all bottle labels complete and legible?		YES	NO
Did the number of containers listed on COC match with the number of containers received?		YES	NO
Did all bottle labels and tags agree with custody papers?		YES	NO
Were all bottles used correct for the requested analyses?		YES	NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs)	NA	YES	NO
Were all VOC vials free of air bubbles?	NA	YES	NO
Was sufficient amount of sample sent in each bottle?		YES	NO
Date VOC Trip Blank was made at ARI	NA		
Were the sample(s) split NA YES Date/Time: Equipment: by ARI?		Split by:	
Samples Logged by: OMSmm Date: 0-10123 Time: 0:28 Labe	Is checked by:	Tas	

** Notify Project Manager of discrepancies or concerns **

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
ditional Notas Discronanci	Pacolutions:		
Unional Nones, Discreballine	as o nesulululus		
unional Notes, Discrepancie	es, a resolutions.		
unional Notes, Discrepancie	es, a resolutions.		
	s, a resolutions.		
unional Notes, Discrepance	s, a resolutions.		
unional Notes, Discrepance	s, a resolutions.		
unional Notes, Discrepance	s, a resolutions.		
unional Notes, Discrepance	s, a resolutions.		
unuonai Notes, Discrepancie	s, a resolutions.		
unional Notes, Discrepancie	s, a resolutions.		

WORK ORDER

23B0015

Sam	ples will be discarded 90 days after submiss	ion of a final report unless other instructions are received	
Client: Aspect C	onsulting, LLC.	Project Manager: Shelly Fishel	
Project: Former Tux Shop		Project Number: 090030	
	Preserva	tion Confirmation	
Container ID	Container Type	рН	
23B0015-01 A	Glass NM, Amber, 500 mL	22F21)	
23B0015-01 B	HDPE NM, 250mL HNO3	L2 P23	
23B0015-02 A	Glass NM, Amber, 500 mL	22 foil	
23B0015-02 B	HDPE NM, 250mL HNO3	L2 P0.55	
23B0015-03 A	Glass NM, Amber, 500 mL	72 Fail	
23B0015-03 B	HDPE NM, 250mL HNO3	62 Pass	
23B0015-04 A	Glass NM, Amber, 500 mL	22 ferl	
23B0015-04 B	HDPE NM, 250mL HNO3	<2 lost	
23B0015-05 A	Glass NM, Amber, 500 mL	22 fari	
23B0015-05 B	HDPE NM, 500 mL, 1:1 HNO3	(2 P23	
23B0015-06 A	Glass NM, Amber, 500 mL	27 foil	
23B0015-06 B	HDPE NM, 250mL HNO3	ZZ Pasi	
23B0015-07 A	Glass NM, Amber, 500 mL	72 Foil	
23B0015-07 B	HDPE NM, 250mL HNO3	L2 P255	
23B0015-08 A	Glass NM, Amber, 500 mL	2 R for	
23B0015-08 B	HDPE NM, 250mL HNO3 (FF)	22 Pass	

Preservation Confirmed By

©2101123 Date

WORK ORDER

23B0015

Samples will be discarded 90 days after submission of a final report unless other instructions are received						
Client: Aspect Cons	ulting, LLC.	Project Manager: Sl	relly Fishel			
Project: Former Tux	Shop	Project Number: 09	00030			
	Preservat	ion Confirmation				
Container ID	Container Type	рН				
23B0015-01 A	Glass NM, Amber, 500 mL	22 Fail	()			
23B0015-01 B	HDPE NM, 250mL HNO3	L2 P23	· • • · · · · · · · · · · · · · · · · ·			
23B0015-02 A	Glass NM, Amber, 500 mL	22 for1	Ø			
23B0015-02 B	HDPE NM, 250mL HNO3	L2 Pass				
23B0015-03 A	Glass NM, Amber, 500 mL	22 fail	0			
23B0015-03 B	HDPE NM, 250mL HNO3	C2 Pass				
23B0015-04 A	Glass NM, Amber, 500 mL	22 fail	0			
23B0015-04 B	HDPE NM, 250mL HNO3	<2 lass	2			
23B0015-05 A	Glass NM, Amber, 500 mL	-22 for1	0			
23B0015-05 B	HDPE NM, 500 mL, 1:1 HNO3	C2 823	~			
23B0015-06 A	Glass NM, Amber, 500 mL	27 Fail	Φ			
23B0015-06 B	HDPE NM, 250mL HNO3	K2 Pasi	2			
23B0015-07 A	Glass NM, Amber, 500 mL	22 foi	0			
23B0015-07 B	HDPE NM, 250mL HNO3	L2- P.255	1			
23B0015-08 A	Glass NM, Amber, 500 mL	2 D2 fri)	0			
23B0015-08 B	HDPE NM, 250mL HNO3 (FF)	22 Pass				
<u></u> Preservation Confirmed B	<u>}</u>	02101123 Date	@ imt 9N Hz Qu added - pH < Z			
			BF 1409 2/1/29			

Iron

Analytical Report

٦

Aspect Consulting, LLC.		Project: Former	Tux Shop					
710 2nd Avenue, Suite 5	50 Project	Number: 090030					Repor	ted:
Seattle WA, 98104	Project	Manager: Delia N	lassey				27-Feb-20	23 10:57
	В	atch-1-202301	30					
	2.	3B0015-01 (Wat	er)					
Metals and Metallic Co	ompounds							
Method: EPA 6020B						S	ampled: 01/3	30/2023 10:20
Instrument: ICPMS2 Ana	lyst: MCB					Aı	nalyzed: 02/	6/2023 20:06
Analysis by: Analytical	Resources, LLC							
Sample Preparation:	Preparation Method: REN - EPA 3010A M					Ext	ract ID: 23B	0015-01 B 01
	Preparation Batch: BLB0350	Sample Size: 2	5 mL					
	Prepared: 02/14/2023	Final Volume:	25 mL					
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes

C	AS Number	Dilution	Limit	Limit	Result	Units	Notes
	7439-89-6	20	364	720	20900	ug/L	D

Aspect Consulting, LLC	2.	Project: Former Tux Shop					
710 2nd Avenue, Suite	550	Project Number: 090030	Reported:				
Seattle WA, 98104		Project Number: 090030 Project Manager: Delia Massey 27-F					
		Batch-1-20230130					
		23B0015-01 (Water)					
Wet Chemistry							
Method: EPA 9060A			Sampled: 01/30/2023 10:20				
Instrument: TOC-LCSH	Analyst: RMS		Analyzed: 02/23/2023 01:31				
Analysis by: Analytica	al Resources, LLC						
Sample Preparation:	Preparation Method: No Prep Wet Ch	nem	Extract ID: 23B0015-01 A				
	Preparation Batch: BLB0327	Sample Size: 20 mL					
	Prepared: 02/13/2023	Final Volume: 20 mL					

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Total Organic Carbon		50	25.00	25.00	3112	mg/L	B, D

Iron

Analytical Report

٦

Aspect Consulting, LL	С.	Project: For	mer	Fux Shop					
710 2nd Avenue, Suite	550 Projec	t Number: 090	030					Repo	rted:
Seattle WA, 98104	Project	Project Manager: Delia Massey 27-						27-Feb-20	023 10:57
	1	Batch-2-2023	3013	30					
	2	3B0015-02 (V	Vate	r)					
	~ .								
Metals and Metallic (Compounds								
Method: EPA 6020B							S	ampled: 01/	/30/2023 13:35
Instrument: ICPMS2 An	nalyst: MCB						Aı	halyzed: 02/	/16/2023 20:18
Analysis by: Analytic	al Resources, LLC								
Sample Preparation:	Preparation Method: REN - EPA 3010A M						Ext	ract ID: 231	B0015-02 B 01
	Preparation Batch: BLB0350	Sample Siz	e: 25	mL					
	Prepared: 02/14/2023	Final Volur	ne: 2	5 mL					
					Detection	Reporting			
Analyte		CAS Numb	er	Dilution	Limit	Limit	Result	Units	Notes

7439-89-6

20

720

133

33700

ug/L

D

٦

B, D

Aspect Consulting, LLC	2.	Project: Former	Tux Shop					
710 2nd Avenue, Suite	550 Proj	Project Number: 090030 Rep						rted:
Seattle WA, 98104 Project Manager: Delia Massey							27-Feb-20	23 10:57
		Batch-2-202301	30					
		23B0015-02 (Wate	er)					
Wet Chemistry								
Method: EPA 9060A						S	ampled: 01/	30/2023 13:35
Instrument: TOC-LCSH	Analyst: RMS					A	nalyzed: 02/	23/2023 01:53
Analysis by: Analytica	al Resources, LLC							
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BLB0327 Prepared: 02/13/2023	Sample Size: 2 Final Volume: 2	0 mL 20 mL]	Extract ID: 2	23B0015-02 A
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes

50

25.00

25.00

2156

mg/L

Total Organic Carbon

Iron

Analytical Report

٦

Aspect Consulting, LLC	v	Project:	Former '	Tux Shop					
710 2nd Avenue, Suite 5	50 Project	t Number:	090030					Repor	rted:
Seattle WA, 98104	Project	Manager:	Delia M	assey				27-Feb-20	23 10:57
	В	Batch-3-2	02301.	30					
	2.	3B0015-0.	3 (Wate	er)					
Metals and Metallic C	fomnounds								
Method: EPA 6020B							Sa	ampled: 01/	30/2023 15:40
Instrument: ICPMS2 Ana	alyst: MCB						Ar	alyzed: 02/	16/2023 20:23
Analysis by: Analytica	ll Resources, LLC								
Sample Preparation:	Preparation Method: REN - EPA 3010A M Preparation Batch: BLB0350 Prepared: 02/14/2023	Sample Final V	e Size: 2: Volume: 2	5 mL 25 mL			Ext	act ID: 23E	30015-03 B 01
					Detection	Reporting			
Analyte		CAS N	umber	Dilution	Limit	Limit	Result	Units	Notes

7439-89-6

100

663

3600

182000

ug/L

D

Aspect Consulting, LL	2.	Project: Fo	ormer Tux Shop					
710 2nd Avenue, Suite	550	Project Number: 09	90030				Repo	rted:
Seattle WA, 98104	1	Project Manager: D	elia Massey	27-Feb-2023 10:57				
		Batch-3-20 23B0015-03	230130 (Water)					
Wet Chemistry							1 1 01	/20/2022 15 40
Method: EPA 9060A						S	ampled: 01/	30/2023 15:40
Instrument: IOC-LCSH	Analyst: RMS					A	nalyzed: 02/	23/2023 02:14
Analysis by: Analytic	al Resources, LLC							
Sample Preparation:	Preparation Method: No Prep Wet Cher Preparation Batch: BLB0327 Prepared: 02/13/2023	m Sample S Final Vol	Sample Size: 20 mL Final Volume: 20 mL]	Extract ID:	23B0015-03 A
Analyte		CAS Num	ber Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Total Organic Carbon			50	25.00	25.00	2913	mg/L	B, D

nalyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
otal Organic Carbon		50	25.00	25.00	2913	mg/L	B, D

٦

Aspect Consulting, LL	С.	Project: Former Tux Shop			
710 2nd Avenue, Suite	550 Projec	ct Number: 090030			Reported:
Seattle WA, 98104	Projec	t Manager: Delia Massey			27-Feb-2023 10:57
		Batch-4-20230130			
	:	23B0015-04 (Water)			
Metals and Metallic (Compounds				
Method: EPA 6020B					Sampled: 01/31/2023 08:45
Instrument: ICPMS2 A	nalyst: MCB				Analyzed: 02/16/2023 20:26
Analysis by: Analytic	al Resources, LLC				
Sample Preparation:	Preparation Method: REN - EPA 3010A M				Extract ID: 23B0015-04 B 01
	Preparation Batch: BLB0350	Sample Size: 25 mL			
	Prepared: 02/14/2023	Final Volume: 25 mL			
			Detection	Reporting	

			Detection F	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Iron	7439-89-6	100	663	3600	221000	ug/L	D

Aspect Consulting, LL	С.	Project: Former Tux Shop			
710 2nd Avenue, Suite	550 P	roject Number: 090030			Reported:
Seattle WA, 98104	Pr	roject Manager: Delia Massey			27-Feb-2023 10:57
		Batch-4-20230130			
		23B0015-04 (Water)			
Wet Chemistry					
Method: EPA 9060A					Sampled: 01/31/2023 08:45
Instrument: TOC-LCSH	Analyst: RMS				Analyzed: 02/23/2023 02:41
Analysis by: Analytic	al Resources, LLC				
Sample Preparation:	Preparation Method: No Prep Wet Chem	L			Extract ID: 23B0015-04 A
	Preparation Batch: BLB0327	Sample Size: 20 mL			
	Prepared: 02/13/2023	Final Volume: 20 mL			
			Detection	Reporting	

Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Total Organic Carbon		50	25.00	25.00	1913	mg/L	B, D

Aspect Consulting, LL	с.	Project: Former Tux Shop		
710 2nd Avenue, Suite	550 Proje	ect Number: 090030		Reported:
Seattle WA, 98104	Proje	ct Manager: Delia Massey		27-Feb-2023 10:57
		Batch-5-20230131		
		23B0015-05 (Water)		
Metals and Metallic (Compounds			
Method: EPA 6020B				Sampled: 01/31/2023 08:50
Instrument: ICPMS2 An	nalyst: MCB			Analyzed: 02/16/2023 20:08
Analysis by: Analytic	al Resources, LLC			
Sample Preparation:	Preparation Method: REN - EPA 3010A M			Extract ID: 23B0015-05 B 01
	Preparation Batch: BLB0350	Sample Size: 25 mL		
	Prepared: 02/14/2023	Final Volume: 25 mL		
			Detection Reporting	

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Iron	7439-89-6	20	364	720	28500	ug/L	D

Aspect Consulting, LLC	2.	Project: Former Tux Shop	
710 2nd Avenue, Suite	550	Project Number: 090030	Reported:
Seattle WA, 98104		Project Manager: Delia Massey	27-Feb-2023 10:57
		Batch-5-20230131	
		23B0015-05 (Water)	
Wet Chemistry			
Method: EPA 9060A			Sampled: 01/31/2023 08:50
Instrument: TOC-LCSH	Analyst: RMS		Analyzed: 02/23/2023 03:12
Analysis by: Analytic	al Resources, LLC		
Sample Preparation:	Preparation Method: No Prep Wet Ch	em	Extract ID: 23B0015-05 A
	Preparation Batch: BLB0327	Sample Size: 20 mL	
	Prepared: 02/13/2023	Final Volume: 20 mL	
		D	testion Demonstruct

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Total Organic Carbon		50	25.00	25.00	1058	mg/L	B, D

Aspect Consulting, LL	С.	Project: Former Tux Shop	
710 2nd Avenue, Suite	550	Project Number: 090030	Reported:
Seattle WA, 98104	F	roject Manager: Delia Massey	27-Feb-2023 10:57
		Batch-6-20230131	
		23B0015-06 (Water)	
Metals and Metallic (Compounds		
Method: EPA 6020B			Sampled: 01/31/2023 10:40
Instrument: ICPMS2 An	nalyst: MCB		Analyzed: 02/16/2023 20:21
Analysis by: Analytic	al Resources, LLC		
Sample Preparation:	Preparation Method: REN - EPA 3010A	M	Extract ID: 23B0015-06 B 01
	Preparation Batch: BLB0350	Sample Size: 25 mL	
	Prepared: 02/14/2023	Final Volume: 25 mL	
		Detection	Deventions

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Iron	7439-89-6	100	1820	3600	120000	ug/L	D

Aspect Consulting, LLC		Project: Former Tux Shop	
710 2nd Avenue, Suite 5	50	Project Number: 090030	Reported:
Seattle WA, 98104		Project Manager: Delia Massey	27-Feb-2023 10:57
		Batch-6-20230131	
		23B0015-06 (Water)	
Wet Chemistry			
Method: EPA 9060A			Sampled: 01/31/2023 10:40
Instrument: TOC-LCSH	Analyst: RMS		Analyzed: 02/23/2023 03:38
Analysis by: Analytica	l Resources, LLC		
Sample Preparation:	Preparation Method: No Prep Wet Ch	em	Extract ID: 23B0015-06 A
	Preparation Batch: BLB0327	Sample Size: 20 mL	
	Prepared: 02/13/2023	Final Volume: 20 mL	
		Detection	Banantin a

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Total Organic Carbon		50	25.00	25.00	2160	mg/L	B, D

Aspect Consulting, LL	С.	Project: Former Tux Shop		
710 2nd Avenue, Suite	550	Project Number: 090030	Reported:	
Seattle WA, 98104	F	Project Manager: Delia Massey		27-Feb-2023 10:57
		Batch-7-20230131		
		23B0015-07 (Water)		
Metals and Metallic (Compounds			
Method: EPA 6020B				Sampled: 01/31/2023 14:45
Instrument: ICPMS2 An	nalyst: MCB			Analyzed: 02/16/2023 20:31
Analysis by: Analytic	al Resources, LLC			
Sample Preparation:	Preparation Method: REN - EPA 3010A	ΛM		Extract ID: 23B0015-07 B 01
	Preparation Batch: BLB0350	Sample Size: 25 mL		
	Prepared: 02/14/2023	Final Volume: 25 mL		
			Detection Reporting	

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Iron	7439-89-6	100	663	3600	159000	ug/L	D

Aspect Consulting, LL0	2.	Project: Former Tux Shop			
710 2nd Avenue, Suite	550 Pro	ject Number: 090030			Reported:
Seattle WA, 98104	Proj	ject Manager: Delia Massey			27-Feb-2023 10:57
		Batch-7-20230131			
		23B0015-07 (Water)			
Wet Chemistry					
Method: EPA 9060A					Sampled: 01/31/2023 14:45
Instrument: TOC-LCSH	Analyst: RMS				Analyzed: 02/23/2023 05:39
Analysis by: Analytic	al Resources, LLC				
Sample Preparation:	Preparation Method: No Prep Wet Chem				Extract ID: 23B0015-07 A
	Preparation Batch: BLB0327	Sample Size: 20 mL			
	Prepared: 02/13/2023	Final Volume: 20 mL			
			Detection	Reporting	

Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Total Organic Carbon		50	25.00	25.00	3233	mg/L	B, D

Analytical Report

٦

Aspect Consulting, LLC	2.	Project: Former	Tux Shop					
710 2nd Avenue, Suite	550 Proje	ct Number: 090030					Repo	rted:
Seattle WA, 98104	Projec	et Manager: Delia M	lassey				27-Feb-20	023 10:57
		AS-35-2023013	51					
		23B0015-08 (Wat	er)					
Metals and Metallic C	Compounds (dissolved)							
Method: EPA 6020B						S	ampled: 01	/31/2023 16:50
Instrument: ICPMS2 An	alyst: MCB					Aı	nalyzed: 02	/16/2023 19:53
Analysis by: Analytics	al Resources, LLC							
Sample Preparation:	Preparation Method: REN - EPA 3010A M					Ext	ract ID: 23	B0015-08 B 01
	Preparation Batch: BLB0293	Sample Size: 2	5 mL					
	Prepared: 02/10/2023	Final Volume:	25 mL					
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Iron, Dissolved		7439-89-6	10	182	360	8180	ug/L	D

182

ug/L

Aspect Consulting, LL	С.	Project: Former Tux Shop	
710 2nd Avenue Suite	550	Project Number: 090030	Reported
Seattle WA 98104	550	Project Manager: Delia Massey	27-Feb-2023 10:57
Seattle WA, 98104		Tojeet Manager. Dena Massey	27-10-2025 10.57
		AS-35-20230131	
		23B0015-08 (Water)	
		· · · ·	
Wet Chemistry			
Method: EPA 9060A			Sampled: 01/31/2023 16:50
Instrument: TOC-LCSH	Analyst: RMS		Analyzed: 02/23/2023 06:01
Analysis by: Analytic	al Resources, LLC		
Sample Preparation:	Preparation Method: No Prep Wet Che	m	Extract ID: 23B0015-08 A
- *	Preparation Batch: BLB0327	Sample Size: 20 mL	
	Prepared: 02/13/2023	Final Volume: 20 mL	

	Flepared. 02/13/2023	Final volume. 20 mL							
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes	
Total Organic Carbon			20	10.00	10.00	435.4	mg/L	B, D	

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 27-Feb-2023 10:57

Analysis by: Analytical Resources, LLC

Metals and Metallic Compounds - Quality Control

Batch BLB0350 - EPA 6020B

Instrument: ICPMS2 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLB0350-BLK2)					Prep	ared: 14-Feb	-2023 An	alyzed: 16-1	Feb-2023 19	9:50		
Iron	54	ND	18.2	36.0	ug/L							U
Iron	57	ND	6.63	36.0	ug/L							U
LCS (BLB0350-BS2)					Prep	ared: 14-Feb	-2023 An	alyzed: 16-	Feb-2023 19	9:52		
Iron	54	4840	18.2	36.0	ug/L	5000		96.7	80-120			
Iron	57	5020	6.63	36.0	ug/L	5000		100	80-120			

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 27-Feb-2023 10:57

Analysis by: Analytical Resources, LLC

Metals and Metallic Compounds (dissolved) - Quality Control

Batch BLB0293 - EPA 6020B

Instrument: ICPMS2 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLB0293-BLK1)					Prep	ared: 10-Feb	-2023 Ana	alyzed: 13-1	Feb-2023 23	:13		
Iron, Dissolved	54	ND	18.2	36.0	ug/L							U
LCS (BLB0293-BS1)					Prep	ared: 10-Feb	-2023 Ana	alyzed: 13-1	Feb-2023 23	:18		
Iron, Dissolved	54	4970	18.2	36.0	ug/L	5000		99.3	80-120			

Aspect Consulting, LLC.Project:Former Tux Shop710 2nd Avenue, Suite 550Project Number:090030Seattle WA, 98104Project Manager:Delia Massey

Reported: 27-Feb-2023 10:57

Analysis by: Analytical Resources, LLC

Wet Chemistry - Quality Control

Batch BLB0327 - EPA 9060A

Instrument: TOC-LCSH Analyst: RMS

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLB0327-BLK1)				Prep	ared: 13-Feb	-2023 An	alyzed: 22-	Feb-2023 15	5:38		
Total Organic Carbon	0.82	0.50	0.50	mg/L							
LCS (BLB0327-BS2)				Prep	ared: 13-Feb	-2023 An	alyzed: 23-	Feb-2023 08	8:21		
Total Organic Carbon	19.74	0.50	0.50	mg/L	20.00		98.7	90-110			В

Seattle WA, 98104	Project Manager: Delia Massey	27-Feb-2023 10:57
Seattle WA, 98104 Certified Analyses included in this Report	Project Manager: Delia Massey	27-Feb-2023 10:57

Analyte	Ce	rtifications		
EPA 6020B in	Water			
Iron-54	NE	ELAP,WADOE,DoD-ELAP		
Iron-57	NE	LAP,WADOE,DoD-ELAP		
Iron-54	NE	LAP,WADOE,DoD-ELAP		
Iron-57	NE	LAP,WADOE,DoD-ELAP		
EPA 9060A in	Water			
Total Organic	Carbon Do	D-ELAP,WADOE,NELAP		
Code	Description		Number	Expires
ADEC	Alaska Dept of Environmental Conserv	ration	17-015	03/28/2023
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program, PJLA Testing		66169	02/28/2023
NELAP	ORELAP - Oregon Laboratory Accreditation Program		WA100006-012	05/12/2023
WADOE	WA Dept of Ecology		C558	06/30/2023
WA-DW	Ecology - Drinking Water		C558	06/30/2023

Aspect Consulting, LLC.	
710 2nd Avenue, Suite 550	Pre
Seattle WA, 98104	Pro

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 27-Feb-2023 10:57

Notes and Definitions

*	Flagged value is not within established control limits.
В	This analyte was detected in the method blank.
D	The reported value is from a dilution
J	Estimated concentration value detected below the reporting limit.
U	This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
[2C]	Indicates this result was quantified on the second column on a dual column analysis.

07 April 2023

Delia Massey Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle, WA 98104

RE: Former Tux Shop (090030)

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 23B0552 Associated SDG ID(s) N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, LLC

Shelly Frish?

Shelly Fishel, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around	Requested:	Standard		Page:	í	of	۱		6	Analytic Analytic 4611 Sc	cal Resources, Incorporated cal Chemists and Consultants outh 134th Place, Suite 100
ARI Client Company:	Consulting	Phone: 20	26 328	7443	Date:	2/27/2	3 Prese	ent?)	V	Tukwila 206-69	a, WA 98168 5-6200_206-695-6201 (fax)
Client Contact: Delia Mass	cis Baxi	er Call,	Alasda'r	(Course	No. of Coolers:	1	Coole Temps	r s: 9,	7	c	www.ai	rilabs.com
Client Project Name: Tilx She	P			/			4 0	Analysis F	Requested			Notes/Comments
Client Project #: 040030	Samplers:	Alaschi r	Courtag	, Amis	Pitton Ved Here, Name	64 260	by EP	Nitrate OD. O	Iron Magacsiu Sc	30		
Sample ID	Date	Time	Matrix	No. Containers	ethure, e and meth	VOC> EPA 8	Toc Visit Siw-346	Chloride, Suifate	R'sourch calc' um, Prugazie	EA 60		
As-35-022723	2/27/23	1340	W	10	X	Х	Х	×	\times			Ficial Filtered + freserved bottle, for Observed metals
IW-1-022723		1520	W	11	X	X	X	\times	\times			one Dissolved Metalis bottle half full, Field Filtered.
TB-1			W	1		X						Pone Unfreezoud bottle that needs hab filmation
TB-2	$ \downarrow$		W	1		X						
											 	a manufacture and a m
				A								
		A	Tues /	Jour	Ð							
		Then										
											20	
Comments/Special Instructions	Relinquished by: (Signature)	Herten 1	Hortes	Received by: (Signature)	villi	o Pd	2	Relinquished (Signature)	l by:		Received by (Signature)	y:
	Printed Name:	sdair (Our long	Printed Name:	nillipy	Dat	5	Printed Nam	e:		Printed Nan	ne:
	Company:	ect	0	Company:	AR			Company:			Company:	
	Date & Time:	8/23	045	Date & Time:	2612	23	10:15	Date & Time	1		Date & Time	e:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

WORK ORDER

23B0552

Samples will be discarded 90 days after submission of a final report unless other instructions are received					
Client: Aspect Consu	llting, LLC.	Project Manager:	Shelly Fishel		
Project: Former Tux S	Shop	Project Number:	090030		
	Preservatio	n Confirmation			
Container ID	Container Type	pН			
23B0552-01 A	HDPE NM, 500 mL				
23B0552-01 B	Glass NM, Amber, 250 mL, 9N H2SO4	62	Pass(f)		
23B0552-01 C	Miscellaneous Container	25	fail ()		
23B0552-01 D	VOA Vial, Clear, 40 mL, HCL				
23B0552-01 E	VOA Vial, Clear, 40 mL, HCL				
23B0552-01 F	VOA Vial, Clear, 40 mL, HCL				
23B0552-01 G	VOA Vial, Clear, 40 mL, HCL				
23B0552-01 H	VOA Vial, Clear, 40 mL, HCL				
23B0552-01 I	VOA Vial, Clear, 40 mL, HCL				
23B0552-01 J	HDPE NM, 500 mL, 1:1 HNO3				
23B0552-01 K	HDPE NM, 500 mL, 1:1 HNO3				
23B0552-02 A	HDPE NM, 500 mL				
23B0552-02 B	Glass NM, Amber, 250 mL, 9N H2SO4	62	P		
23B0552-02 C	HDPE NM, 500 mL	72	Fail D		
23B0552-02 D	VOA Vial, Clear, 40 mL, HCL				
23B0552-02 E	VOA Vial, Clear, 40 mL, HCL				
23B0552-02 F	VOA Vial, Clear, 40 mL, HCL				
23B0552-02 G	VOA Vial, Clear, 40 mL, HCL				
23B0552-02 H	VOA Vial, Clear, 40 mL, HCL				
23B0552-02 I	VOA Vial, Clear, 40 mL, HCL				
23B0552-02 J	HDPE NM, 500 mL, 1:1 HNO3				
23B0552-02 K	HDPE NM, 500 mL, 1:1 HNO3				
23B0552-03 A	VOA Vial, Clear, 40 mL, HCL				
23B0552-04 A	VOA Vial, Clear, 40 mL, HCL				

Preservation Confirmed By

2/28/23 D Filtered at 0:45 Date Ord preserved to pH L2.0 WITH 0.50 m care. HNON (L492). ML OZ/28/23 AND OZ/28/23 AND OZ/28/23 AND OZ/28/23 AND OZ/28/23 AND OZ/28/23 OZ/29 OZ/20 OZ/2 0,25 micone. HNOM (L4927.

> N 02129123

Page 3 of 32 23B0552 ARISample FINAL 07 Apr 2023 1346

Aspect Consulting, LLC.	Project: Former Tux Shop			
710 2nd Avenue, Suite 550	Project Number: 090030	Reported:		
Seattle WA, 98104	Project Manager: Delia Massey	07-Apr-2023 13:46		
ANALYTICAL REPORT FOR SAMPLES				

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
AS-35-022723	23B0552-01	Water	27-Feb-2023 13:40	28-Feb-2023 10:45
IW-1-022723	23B0552-02	Water	27-Feb-2023 15:20	28-Feb-2023 10:45
TB-1	23B0552-03	Water	27-Feb-2023 13:40	28-Feb-2023 10:45
TB-2	23B0552-04	Water	27-Feb-2023 13:40	28-Feb-2023 10:45

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 07-Apr-2023 13:46

Work Order Case Narrative

Client: Aspect Consulting, LLC. Project: Former Tux Shop Project Number: 090030 Work Order: 23B0552

Sample receipt

Sample(s) as listed on the preceding page were received 28-Feb-2023 10:45 under ARI work order 23B0552. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Volatiles - EPA Method SW8260D

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike and blank spike duplicate (BS/LCS and BSD/LCSD) spike recoveries and relative percent difference (RPD) were within control limits.

Dissolved Metals - EPA Method 6020B

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

Wet Chemistry

The sample(s) were prepared and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Analytical Report

Reported: 07-Apr-2023 13:46

The blank spike (BS/LCS) percent recoveries were within control limits.

The duplicate (DUP) relative percent difference (RPD) were within advisory control limits. The matrix spike (MS) percent recoveries were within advisory control limits except Sulfate which was out of control high. The deviation has been flagged.

Volatile Gases - MEE by RSK175

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike and blank spike duplicate (BS/LCS and BSD/LCSD) spike recoveries and relative percent difference (RPD) were within control limits.

WORK ORDER

23B0552

Sam	pples will be discarded 90 days after submission	of a final report unle	ess other instructions are received
Client: Aspect C	Consulting, LLC.	Project Manager:	Shelly Fishel
Project: Former 7	Fux Shop	Project Number:	090030
	Preservatio	on Confirmation	
Container ID	Container Type	рН	
23B0552-01 A	HDPE NM, 500 mL	and the second	
23B0552-01 B	Glass NM, Amber, 250 mL, 9N H2SO4	<2	Pass(P)
23B0552-01 C	Miscellaneous Container	25	fail
23B0552-01 D	VOA Vial, Clear, 40 mL, HCL		£
23B0552-01 E	VOA Vial, Clear, 40 mL, HCL		
23B0552-01 F	VOA Vial, Clear, 40 mL, HCL		
23B0552-01 G	VOA Vial, Clear, 40 mL, HCL		
23B0552-01 H	VOA Vial, Clear, 40 mL, HCL		
23B0552-01 I	VOA Vial, Clear, 40 mL, HCL		
23B0552-01 J	HDPE NM, 500 mL, 1:1 HNO3		
23B0552-01 K	HDPE NM, 500 mL, 1:1 HNO3		
23B0552-02 A	HDPE NM, 500 mL		
23B0552-02 B	Glass NM, Amber, 250 mL, 9N H2SO4	62	P
23B0552-02 C	HDPE NM, 500 mL	55	Fail
23B0552-02 D	VOA Vial, Clear, 40 mL, HCL		•
23B0552-02 E	VOA Vial, Clear, 40 mL, HCL		
23B0552-02 F	VOA Vial, Clear, 40 mL, HCL		
23B0552-02 G	VOA Vial, Clear, 40 mL, HCL		
23B0552-02 H	VOA Vial, Clear, 40 mL, HCL		
23B0552-02 I	VOA Vial, Clear, 40 mL, HCL		-
23B0552-02 J	HDPE NM, 500 mL, 1:1 HNO3		
23B0552-02 K	HDPE NM, 500 mL, 1:1 HNO3		
23B0552-03 A	VOA Vial, Clear, 40 mL, HCL		
23B0552-04 A	VOA Vial Clear 40 mL HCI		

PIB Preservation Confirmed By

2/28/23 Date

Analytical Resources, LLC Analytical Chemists and Consultants	Cooler Receipt Form				
ARI Client: <u>ASpect</u> COC No(s): <u>NA</u> Assigned ARI Job No: <u>23 00552</u> Preliminary Examination Phase:	Project Name: TUK Shop Delivered by: Fed-Ex UPS Courier Hand Delivered Other: Tracking No:NA				
Were intact, properly signed and dated custody seals attached to Were custody papers included with the cooler?	the outside of the cooler? YES NO				
Were custody papers properly filled out (ink, signed, etc.) Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chem Time 10.45	nistry) 9,7				
If cooler temperature is out of compliance fill out form 00070F Cooler Accepted by:PB	Temp Gun ID# <u>: 5009909</u> _Date: <u>2/28/23</u> Time: <u>10</u> .'45				
Complete custody forms and attach all shipping documents					
Log-In Phase:					

Was a temperature blank included in the cooler?	YES	NO
What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Baggies) Form Blook Paper Other:		
Was sufficient ice used (if appropriate)? NA	YES	NO
How were bottles sealed in plastic bags? Individually	Grouped	Not
Did all bottles arrive in good condition (unbroken)?	YES	NO
Were all bottle labels complete and legible?	(YES)	NO
Did the number of containers listed on COC match with the number of containers received?	YES	NO
Did all bottle labels and tags agree with custody papers?	ES	NO
Were all bottles used correct for the requested analyses?	ES	NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) NA	(ES)	NO
Were all VOC vials free of air bubbles? NA	YES	NO
Was sufficient amount of sample sent in each bottle?	(ES)	NO
Date VOC Trip Blank was made at ARI NA	2713	
Were the sample(s) split NA (ES) Date/Time: 2/28/23 1.35 Equipment: N/A S	plit by: P	TB
Samples Logged by: PIBDate: Z 2827 Time: 11.48Labels checked by:		

** Notify Project Manager of discrepancies or concerns **

Sample ID on Bo	ttle Sa	mple ID on COC	Sample	e ID on Bottle	Sample ID on COC		
Additional Notes, Dis Unable to bottles, bo aniong	crepancies, & Res Listin ttles bottle	guish fi Consumed fop	i and metals,	оч AS-35 Volume	-022723 metals splig 0ff		
By: PIB	Date: 2	128123					

Cooler Receipt Form

Cooler#:	Femperature(°C):7	v f
ample ID	Bottle Count	Bottle Type
All Samples perpis	180.	
dial hor		
above oc		
		>
Cooler#: 1	Temperature(°C):	
Sample ID	Bottle Count	Bottle Type
and the second se		
- and the second se		
Cooler#:	[emperature(°C):	
ample ID	Bottle Count	Bottle Type
	Dotte oount	Donie Type
ooler#: 7	Comporaturo/0C)	
ample ID	Bottla Count	Bottlo
	Bottle Count	
	/	
/		
mpleted by:	Dat	e: 7 17 8123 Time: 10,40

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 07-Apr-2023 13:46

AS-35-022723

23B0552-01 (Water)

Volatile Organic Compounds

Method: EPA 8260D						Sampled: 02/27/2023 13:40		
Instrument: NT3 Analys	t: PKC				An	alyzed: 02/	28/2023 14:40	
Analysis by: Analytica	l Resources, LLC							
Sample Preparation:	Preparation Method: EPA 5030C (Purge and T Preparation Batch: BLB0725 Prepared: 02/28/2023	ap) Sample Size: 1 mL Final Volume: 10 mL			Ε	Extract ID: 1	23B0552-01 D	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl Chloride		75-01-4	1	2.00	ND	ug/L	U	
cis-1,2-Dichloroethene		156-59-2	1	2.00	2.15	ug/L		
Chloroform		67-66-3	1	2.00	6.25	ug/L		
1,1,1-Trichloroethane		71-55-6	1	2.00	ND	ug/L	U	
1,2-Dichloroethane		107-06-2	1	2.00	ND	ug/L	U	
Trichloroethene		79-01-6	1	2.00	2.71	ug/L		
Tetrachloroethene		127-18-4	1	2.00	207	ug/L		
1,1,1,2-Tetrachloroethane		630-20-6	1	2.00	ND	ug/L	U	
Surrogate: 1,2-Dichloroetha	ne-d4			80-129 %	104	%		
Surrogate: Toluene-d8				80-120 %	99 .7	%		
Surrogate: 4-Bromofluorobe	nzene			80-120 %	100	%		

Surrogate: 1,2-Dichlorobenzene-d4

80-120 %

102

%

Analytical Report

Reported:

07-Apr-2023 13:46

Aspect Consulting, LLC.	Project: Former Tux Shop		
710 2nd Avenue, Suite 550	Project Number: 090030		
Seattle WA, 98104	Project Manager: Delia Massey		
	AS-35-022723		
23B0552-01 (Water)			

Dissolved Gases							
Method: EPA RSK-175	Iethod: EPA RSK-175					mpled: 02	/27/2023 13:40
Instrument: FID6 Analyst: LH					An	alyzed: 03	/02/2023 13:25
Analysis by: Analytic	al Resources, LLC						
Sample Preparation:	Preparation Method: EPA 5030C (Purge and Trap)Preparation Batch: BLC0051SPrepared: 03/02/2023F	ample Size: 10 inal Volume: 1	0 mL 0 mL		I	Extract ID:	23B0552-01 E
Analyte	С	AS Number	Dilution	Reporting Limit	Result	Units	Notes
Methane		74-82-8	1	0.65	1.18	ug/L	
Ethane		74-84-0	1	1.23	1.41	ug/L	
Ethene		74-85-1	1	1.14	ND	ug/L	U
Surrogate: Propane				62-122 %	77.6	%	

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 07-Apr-2023 13:46

AS-35-022723

23B0552-01 (Water)

Metals and Metallic C	Compounds (dissolved)							
Method: EPA 6020B						S	ampled: 02	/27/2023 13:40
Instrument: ICPMS1 An	aalyst: SKD					A	nalyzed: 03	/16/2023 20:14
Analysis by: Analytics	al Resources, LLC							
Sample Preparation:	Preparation Method: REN - EPA 3010A M Preparation Batch: BLC0336 Prepared: 03/14/2023	Sample Size: 2 Final Volume:	25 mL 25 mL			Ext I Filtratio	ract ID: 23 Filtration B on Date: 02	B0552-01 C 02 atch: BLB0723 /28/2023 11:19
Analyte	A	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Calcium, Dissolved		7440-70-2	20	222	1000	169000	ug/L	D
Iron, Dissolved		7439-89-6	20	364	720	11700	ug/L	D
Instrument: ICPMS2 An	alyst: MCB					Aı	nalyzed: 03	/17/2023 16:01
Analysis by: Analytica	al Resources, LLC							
Sample Preparation:	Preparation Method: REN - EPA 3010A M Preparation Batch: BLC0336 Prepared: 03/14/2023	Sample Size: 2 Final Volume:	25 mL 25 mL			Ext I Filtratio	ract ID: 23 Filtration B on Date: 02	B0552-01 C 02 atch: BLB0723 /28/2023 11:19
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Magnesium, Dissolved		7439-95-4	100	222	2000	123000	ug/L	D

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550

Seattle WA, 98104

Analytical Report

Reported:

07-Apr-2023 13:46

AS-35 23B0552-	-022723 01 (Water)
Project Manager	Delia Massey
Project Number	090030
Project	Former Tux Shop

Wet Chemistry								
Method: EPA 300.0						S	ampled: 02	/27/2023 13:40
Instrument: IC930 Anal					A	nalyzed: 02	/28/2023 19:18	
Analysis by: Analytic	al Resources, LLC							
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BLB0738 Prepared: 02/28/2023	Sample Size: 10 Final Volume: 1) mL 0 mL]	Extract ID:	23B0552-01 A
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	0.100	9.78	mg/L	
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Nitrate-N		14797-55-8	1	0.100	0.100	ND	mg/L	U

Aspect Consulting, LLC.	Pro	oject: Former Tux Shop	
710 2nd Avenue, Suite 55	50 Project Nur	nber: 090030	Reported:
Seattle WA, 98104	Project Man	ager: Delia Massey	07-Apr-2023 13:46
	AS	-35-022723	
	23B0	552-01 (Water)	
Wet Chemistry			
Method: EPA 9060A			Sampled: 02/27/2023 13:40
Instrument: TOC-LCSH A	Analyst: RMS		Analyzed: 03/04/2023 16:30
Analysis by: Analytical	Resources, LLC		
Sample Preparation:	Preparation Method: No Prep Wet Chem		Extract ID: 23B0552-01 B

	Preparation Batch: BLC0082 Prepared: 03/03/2023	Sample Size: 2 Final Volume: 2	0 mL 20 mL					
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Total Organic Carbon			20	10.00	10.00	980.4	mg/L	D

Aspect Consulting, LLC.	Project: Former Tux Shop	
710 2nd Avenue, Suite 550	Project Number: 090030	Reported:
Seattle WA, 98104	Project Manager: Delia Massey	07-Apr-2023 13:46
	AS-35-022723	
	23B0552-01RE1 (Water)	
Aetals and Metallic Compounds (dissolve	ed)	
Asthad, EDA 6020D		Samuela de 02/27/2022 1

Metals and Metallic C	Compounds (dissolved)							
Method: EPA 6020B						S	ampled: 02/	/27/2023 13:40
Instrument: ICPMS1 Ar	aalyst: SKD					Aı	nalyzed: 03/	/16/2023 20:53
Analysis by: Analytic	al Resources, LLC							
Sample Preparation:	Preparation Method: REN - EPA 3010A M					Extract	ID: 23B055	2-01RE1 C 02
	Preparation Batch: BLC0336	Sample Size: 2	5 mL			l	Filtration Ba	atch: BLB0723
	Prepared: 03/14/2023	Final Volume:	25 mL			Filtratio	on Date: 02	/28/2023 11:19
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Manganese, Dissolved		7439-96-5	200	28.4	100	10600	ug/L	D

Aspect Consulting, LLC.	Project: Former Tux Shop	
710 2nd Avenue, Suite 550	Project Number: 090030	Reported:
Seattle WA, 98104	Project Manager: Delia Massey	07-Apr-2023 13:46
	AS-35-022723	
	23B0552-01RE1 (Water)	

Wet Chemistry								
Method: EPA 300.0						S	ampled: 02	/27/2023 13:40
Instrument: IC930 Analyst: KLD					Ar	nalyzed: 03	/17/2023 20:10	
Analysis by: Analytica	al Resources, LLC							
Sample Preparation:	Preparation Method: No Prep Wet Chem					Extra	et ID: 23B	0552-01RE1 A
	Preparation Batch: BLB0738	Sample Size: 10	0 mL					
	Prepared: 02/28/2023	Final Volume: 1	l0 mL					
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Sulfate		14808-79-8	10	1.00	1.00	18.6	mg/L	D

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 07-Apr-2023 13:46

Sampled: 02/27/2023 15:20

Analyzed: 02/28/2023 15:05

IW-1-022723

23B0552-02 (Water)

Volatile Organic Compounds Method: EPA 8260D

Instrument: NT3 Analyst: PKC

Aspect Consulting, LLC.

Seattle WA, 98104

710 2nd Avenue, Suite 550

Analysis by: Analytical Resources, LLC

Sample Preparation:	Preparation Method: EPA 5030C (Purge and	l Trap)		Extract ID: 23B0552			
	Preparation Batch: BLB0725	Sample Size: 0.	2 mL				
	Prepared: 02/28/2023	Final Volume: 1	0 mL				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride		75-01-4	1	10.0	ND	ug/L	U
cis-1,2-Dichloroethene		156-59-2	1	10.0	ND	ug/L	U
Chloroform		67-66-3	1	10.0	11.4	ug/L	
1,1,1-Trichloroethane		71-55-6	1	10.0	ND	ug/L	U
1,2-Dichloroethane		107-06-2	1	10.0	ND	ug/L	U
Trichloroethene		79-01-6	1	10.0	ND	ug/L	U
Tetrachloroethene		127-18-4	1	10.0	21.2	ug/L	
1,1,1,2-Tetrachloroethane		630-20-6	1	10.0	ND	ug/L	U
Surrogate: 1,2-Dichloroethe	nne-d4			80-129 %	103	%	
Surrogate: Toluene-d8				80-120 %	101	%	
Surrogate: 4-Bromofluorob	enzene			80-120 %	99.2	%	
Surrogate: 1,2-Dichloroben	zene-d4			80-120 %	103	%	

Analytical Report

Reported:

07-Apr-2023 13:46

Aspect Consulting, LLC.	Project: Former Tux Shop	
710 2nd Avenue, Suite 550	Project Number: 090030	
Seattle WA, 98104	Project Manager: Delia Massey	
	IW-1-022723	
	23B0552-02 (Water)	

Dissolved Gases							
Method: EPA RSK-175					Sa	mpled: 02	/27/2023 15:20
Instrument: FID6 Analyst: LH				An	alyzed: 03	/02/2023 14:00	
Analysis by: Analytic	al Resources, LLC						
Sample Preparation:	Preparation Method: EPA 5030C (Purge and Trap)Preparation Batch: BLC0051SPrepared: 03/02/2023F	ample Size: 10 inal Volume: 1) mL 0 mL		Ε	Extract ID:	23B0552-02 E
Analyte	С	AS Number	Dilution	Reporting Limit	Result	Units	Notes
Methane		74-82-8	1	0.65	ND	ug/L	U
Ethane		74-84-0	1	1.23	6.77	ug/L	
Ethene		74-85-1	1	1.14	1.22	ug/L	
Surrogate: Propane				62-122 %	70.3	%	

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 07-Apr-2023 13:46

IW-1-022723

23B0552-02 (Water)

Metals and Metallic (Compounds (dissolved)							
Method: EPA 6020B						S	ampled: 02	/27/2023 15:20
Instrument: ICPMS1 Ar	nalyst: SKD					A	nalyzed: 03	/16/2023 20:30
Analysis by: Analytic	al Resources, LLC							
Sample Preparation:	Preparation Method: REN - EPA 3010A M					Ext	ract ID: 23	B0552-02 C 02
	Preparation Batch: BLC0336	Sample Size: 2	25 mL			1	Filtration Ba	atch: BLB0723
	Prepared: 03/14/2023	Final Volume:	25 mL			Filtration Date: 02/28/202		/28/2023 11:19
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Calcium, Dissolved		7440-70-2	100	1110	5000	29500	ug/L	D
Iron, Dissolved		7439-89-6	100	1820	3600	228000	ug/L	D
Manganese, Dissolved		7439-96-5	100	14.2	50.0	1560	ug/L	D
Instrument: ICPMS2 Ar	nalyst: MCB					Aı	nalyzed: 03	/17/2023 16:03
Analysis by: Analytic	al Resources, LLC							
Sample Preparation:	Preparation Method: REN - EPA 3010A M					Ext	ract ID: 23	B0552-02 C 02
* *	Preparation Batch: BLC0336	Sample Size: 2	25 mL			I	Filtration Ba	atch: BLB0723
	Prepared: 03/14/2023	Final Volume:	25 mL			Filtratio	on Date: 02	/28/2023 11:19
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Magnesium, Dissolved		7439-95-4	100	222	2000	15600	ug/L	D

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550

Seattle WA, 98104

Analytical Report

Reported:

07-Apr-2023 13:46

IW-1-02272	723
Project Manager: Delia	ia Massey
Project Number: 09003	0030
Project: Form	mer Tux Shop

23B0552-02 (Water)

Wet Chemistry								
Method: EPA 300.0						S	ampled: 02	2/27/2023 15:20
Instrument: IC930 Analy	yst: KLD					Aı	nalyzed: 02	2/28/2023 20:18
Analysis by: Analytica	al Resources, LLC							
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BLB0738 Prepared: 02/28/2023	Sample Size: 10 Final Volume: 1	0 mL 0 mL			1	Extract ID:	23B0552-02 A
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	0.100	0.860	mg/L	
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitrate-N		14797-55-8	1	0.100	0.100	ND	mg/L	U

Aspect Consulting, LL	С.	Project: Former Tux Shop						
710 2nd Avenue, Suite	550	Project Number: 090030	Reported:					
Seattle WA, 98104		Project Manager: Delia Massey	07-Apr-2023 13:46					
IW-1-022723								
23B0552-02 (Water)								
Wet Chemistry								
Method: EPA 9060A			Sampled: 02/27/2023 15:20					
Instrument: TOC-LCSH	Analyst: RMS		Analyzed: 03/04/2023 16:56					
Analysis by: Analytic	al Resources, LLC							
Sample Preparation:	Preparation Method: No Prep Wet Che	m	Extract ID: 23B0552-02 B					
	Preparation Batch: BLC0082	Sample Size: 20 mL						
	Prepared: 03/03/2023	Final Volume: 20 mL						

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Total Organic Carbon		200	100.0	100.0	2726	mg/L	D

Aspect Consulting, LLC.	Project: Former Tux Shop					
710 2nd Avenue, Suite 550	Project Number: 090030	Reported:				
Seattle WA, 98104	Project Manager: Delia Massey	07-Apr-2023 13:46				
IW-1-022723 23B0552-02RE1 (Water)						

Wet Chemistry								
Method: EPA 300.0						S	ampled: 02/	/27/2023 15:20
Instrument: IC930 Anal					Ar	halyzed: 03/	/18/2023 02:31	
Analysis by: Analytic	al Resources, LLC							
Sample Preparation:	Preparation Method: No Prep Wet Chem					Extra	et ID: 23B	0552-02RE1 A
	Preparation Batch: BLB0738	Sample Size: 10) mL					
	Prepared: 02/28/2023	Final Volume: 1	0 mL					
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Sulfate		14808-79-8	5	0.500	0.500	1.18	mg/L	D

Aspect Consulting, LLC	2.	Project: Former Tux Shop				
710 2nd Avenue, Suite	550	Project Number: 090030	Repor	rted:		
Seattle WA, 98104	1	Project Manager: Delia Massey			07-Apr-20	23 13:46
		TB-1				
		23B0552-03 (Water)				
Volatile Organic Com	pounds					
Method: EPA 8260D				S	ampled: 02/2	27/2023 13:40
Instrument: NT3 Analys	t: PKC			Aı	nalyzed: 02/2	28/2023 13:54
Analysis by: Analytica	al Resources, LLC					
Sample Preparation:	Preparation Method: EPA 5030C (Purg	e and Trap)]	Extract ID: 2	23B0552-03 A
	Preparation Batch: BLB0725	Sample Size: 10 mL				
	Prepared: 02/28/2023	Final Volume: 10 mL				
			Reporting			
Analyte		CAS Number Dilution	Limit	Result	Units	Notes
Vinvl Chloride		75-01-4 1	0.20	ND	nø/L	U

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride	75-01-4	1	0.20	ND	ug/L	U
cis-1,2-Dichloroethene	156-59-2	1	0.20	ND	ug/L	U
Chloroform	67-66-3	1	0.20	ND	ug/L	U
1,1,1-Trichloroethane	71-55-6	1	0.20	ND	ug/L	U
1,2-Dichloroethane	107-06-2	1	0.20	ND	ug/L	U
Trichloroethene	79-01-6	1	0.20	ND	ug/L	U
Tetrachloroethene	127-18-4	1	0.20	ND	ug/L	U
1,1,1,2-Tetrachloroethane	630-20-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	98.0	%	
Surrogate: Toluene-d8			80-120 %	97.4	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	98.1	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	102	%	

Aspect Consulting, LL0 710 2nd Avenue, Suite Seattle WA, 98104	C. 550	Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey	x Shop Reported: sey 07-Apr-2023 1.					
		TB-2						
		23B0552-04 (Water)						
Volatile Organic Com	pounds							
Method: EPA 8260D				Sampled: 02/27/2023 13:40				
Instrument: NT3 Analys	st: PKC			Analyzed: 02/28/2023 14:16				
Analysis by: Analytic	al Resources, LLC							
Sample Preparation:	Preparation Method: EPA 5030C (P	urge and Trap)		Extract ID: 23B0552-04 A				
* *	Preparation Batch: BLB0725	Sample Size: 10 mL						
	Prepared: 02/28/2023	Final Volume: 10 mL						
			Reporting					
Analyte		CAS Number Dilution	Limit	Result Units Notes				

Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride	75-01-4	1	0.20	ND	ug/L	U
cis-1,2-Dichloroethene	156-59-2	1	0.20	ND	ug/L	U
Chloroform	67-66-3	1	0.20	ND	ug/L	U
1,1,1-Trichloroethane	71-55-6	1	0.20	ND	ug/L	U
1,2-Dichloroethane	107-06-2	1	0.20	ND	ug/L	U
Trichloroethene	79-01-6	1	0.20	ND	ug/L	U
Tetrachloroethene	127-18-4	1	0.20	ND	ug/L	U
1,1,1,2-Tetrachloroethane	630-20-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	98.7	%	
Surrogate: Toluene-d8			80-120 %	98.0	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	95.0	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	100	%	

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 07-Apr-2023 13:46

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BLB0725 - EPA 8260D

Instrument: NT3 Analyst: PKC

Surrogate: 1,2-Dichlorobenzene-d4

4.97

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BLB0725-BLK1)			Prep	ared: 28-Feb	-2023 An	nalyzed: 28-F	Feb-2023 12	2:02		
Vinyl Chloride	ND	0.20	ug/L							U
cis-1,2-Dichloroethene	ND	0.20	ug/L							U
Chloroform	ND	0.20	ug/L							U
1,1,1-Trichloroethane	ND	0.20	ug/L							U
1,2-Dichloroethane	ND	0.20	ug/L							U
Trichloroethene	ND	0.20	ug/L							U
Tetrachloroethene	ND	0.20	ug/L							U
1,1,1,2-Tetrachloroethane	ND	0.20	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	4.74		ug/L	5.00		94.8	80-129			
Surrogate: Toluene-d8	5.04		ug/L	5.00		101	80-120			
Surrogate: 4-Bromofluorobenzene	4.94		ug/L	5.00		98.7	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.06		ug/L	5.00		101	80-120			
LCS (BLB0725-BS1)			Prep	ared: 28-Feb	-2023 An	nalyzed: 28-H	Feb-2023 10):34		
Vinyl Chloride	9.68	0.20	ug/L	10.0		96.8	66-133			
cis-1,2-Dichloroethene	9.87	0.20	ug/L	10.0		98.7	80-121			
Chloroform	10.0	0.20	ug/L	10.0		100	80-122			
1,1,1-Trichloroethane	9.96	0.20	ug/L	10.0		99.6	79-123			
1,2-Dichloroethane	9.99	0.20	ug/L	10.0		99.9	75-123			
Trichloroethene	9.85	0.20	ug/L	10.0		98.5	80-120			
Tetrachloroethene	9.94	0.20	ug/L	10.0		99.4	80-120			
1,1,1,2-Tetrachloroethane	10.1	0.20	ug/L	10.0		101	80-120			
Surrogate: 1,2-Dichloroethane-d4	4.93		ug/L	5.00		98.6	80-129			
Surrogate: Toluene-d8	5.00		ug/L	5.00		100	80-120			
Surrogate: 4-Bromofluorobenzene	4.96		ug/L	5.00		99.2	80-120			

LCS Dup (BLB0725-BSD1)			Prepared: 28-Feb-2023 Analyzed: 28-Feb-2023 11:18							
Vinyl Chloride	9.94	0.20	ug/L	10.0	99.4	66-133	2.70	30		
cis-1,2-Dichloroethene	10.2	0.20	ug/L	10.0	102	80-121	3.08	30		
Chloroform	10.4	0.20	ug/L	10.0	104	80-122	3.29	30		
1,1,1-Trichloroethane	10.3	0.20	ug/L	10.0	103	79-123	3.48	30		
1,2-Dichloroethane	10.1	0.20	ug/L	10.0	101	75-123	1.12	30		
Trichloroethene	10.1	0.20	ug/L	10.0	101	80-120	2.11	30		

ug/L

5.00

99.4

80-120

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 07-Apr-2023 13:46

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BLB0725 - EPA 8260D

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BLB0725-BSD1)			Prep	ared: 28-Feb	-2023 Ana	alyzed: 28-	Feb-2023 11	:18		
Tetrachloroethene	10.1	0.20	ug/L	10.0		101	80-120	1.24	30	
1,1,1,2-Tetrachloroethane	10.4	0.20	ug/L	10.0		104	80-120	3.14	30	
Surrogate: 1,2-Dichloroethane-d4	4.93		ug/L	5.00		98.6	80-129			
Surrogate: Toluene-d8	5.06		ug/L	5.00		101	80-120			
Surrogate: 4-Bromofluorobenzene	5.15		ug/L	5.00		103	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.15		ug/L	5.00		103	80-120			

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 07-Apr-2023 13:46

Analysis by: Analytical Resources, LLC

Dissolved Gases - Quality Control

Batch BLC0051 - EPA RSK-175

Instrument: FID6 Analyst: LH/KT

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLC0051-BLK1)			Prep	ared: 02-Ma	r-2023 A1	nalyzed: 02-	Mar-2023 1	1:01		
Methane	ND	0.65	ug/L							U
Ethane	ND	1.23	ug/L							U
Ethene	ND	1.14	ug/L							U
Surrogate: Propane	1880		ug/L	1800		105	62-122			
LCS (BLC0051-BS1)			Prep	ared: 02-Ma	r-2023 Ai	nalyzed: 02-	Mar-2023 0	9:39		
Methane	609	0.65	ug/L	656		92.9	80-120			
Ethane	1180	1.23	ug/L	1230		96.1	80-120			
Ethene	1120	1.14	ug/L	1150		97.2	80-120			
Surrogate: Propane	1710		ug/L	1800		94.9	62-122			
LCS Dup (BLC0051-BSD1)			Prep	ared: 02-Ma	r-2023 Ai	nalyzed: 02-	Mar-2023 1	0:43		
Methane	694	0.65	ug/L	656		106	80-120	13.00	30	
Ethane	1370	1.23	ug/L	1230		112	80-120	14.90	30	
Ethene	1290	1.14	ug/L	1150		112	80-120	14.00	30	
Surrogate: Propane	1970		ug/L	1800		109	62-122			
Duplicate (BLC0051-DUP1)	Source	: 23B0552-01	Prep	ared: 02-Ma	r-2023 Aı	nalyzed: 02-	Mar-2023 1	3:43		
Methane	1.12	0.65	ug/L		1.18			5.83	30	
Ethane	1.38	1.23	ug/L		1.41			1.64	30	
Ethene	ND	1.14	ug/L		ND					U
Surrogate: Propane	1310		ug/L	1800	1400	72.6	62-122			

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 07-Apr-2023 13:46

Analysis by: Analytical Resources, LLC

Metals and Metallic Compounds (dissolved) - Quality Control

Batch BLC0336 - EPA 6020B

Instrument: ICPMS1 Analyst: SKD

QC Sample/Analyte	Isotope	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLC0336-BLK1)					Prep	ared: 14-Ma	r-2023 An	alyzed: 16-1	Mar-2023 1	9:17		
Calcium, Dissolved	44	ND	11.1	50.0	ug/L							U
Iron, Dissolved	54	ND	18.2	36.0	ug/L							U
Manganese, Dissolved	55	ND	0.142	0.500	ug/L							U
LCS (BLC0336-BS1)					Prep	ared: 14-Ma	r-2023 An	alyzed: 16-1	Mar-2023 1	9:21		
Calcium, Dissolved	44	5440	11.1	50.0	ug/L	5000		109	80-120			
Iron, Dissolved	54	5240	18.2	36.0	ug/L	5000		105	80-120			
Manganese, Dissolved	55	26.9	0.142	0.500	ug/L	25.0		108	80-120			
Instrument: ICPMS2 Analyst	:: MCB											
			Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Isotope	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BLC0336-BLK2)					Prep	ared: 14-Ma	r-2023 An	alyzed: 17-	Mar-2023 1	5:24		
Magnesium, Dissolved	24	ND	2.22	20.0	ug/L							U
LCS (BLC0336-BS2)					Prep	ared: 14-Ma	r-2023 An	alyzed: 17-	Mar-2023 1	5:26		
Magnesium, Dissolved	24	5150	2.22	20.0	ug/L	5000		103	80-120			

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 07-Apr-2023 13:46

Analysis by: Analytical Resources, LLC

Wet Chemistry - Quality Control

Batch BLB0738 - EPA 300.0

Aspect Consulting, LLC.

Seattle WA, 98104

710 2nd Avenue, Suite 550

Instrument: IC930 Analyst: KLD

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BLB0738-BLK1)				Prep	ared: 28-Feb	-2023 An	alyzed: 28-	Feb-2023 18	3:38		
Chloride	ND	0.100	0.100	mg/L							U
Nitrate-N	ND	0.100	0.100	mg/L							U
LCS (BLB0738-BS1)				Prep	ared: 28-Feb	-2023 An	alyzed: 28-	Feb-2023 18	3:58		
Chloride	5.00	0.100	0.100	mg/L	5.00		100	90-110			
Nitrate-N	5.36	0.100	0.100	mg/L	5.00		107	90-110			
Duplicate (BLB0738-DUP1)	So	ource: 23E	80552-01	Prep	ared: 28-Feb	-2023 An	alyzed: 28-	Feb-2023 19	9:38		
Chloride	9.80	0.100	0.100	mg/L		9.78			0.18	20	
Nitrate-N	ND	0.100	0.100	mg/L		ND					U
Duplicate (BLB0738-DUP2)	So	ource: 23E	80552-01RE1	Prep	ared: 28-Feb	-2023 An	alyzed: 17-	Mar-2023 2	0:30		
Sulfate	18.3	1.00	1.00	mg/L		18.6			1.85	20	D
Matrix Spike (BLB0738-MS1)	So	ource: 23E	80552-01	Prep	ared: 28-Feb	-2023 An	alyzed: 28-	Feb-2023 19	9:58		
Nitrate-N	2.11	0.100	0.100	mg/L	1.98	ND	107	75-125			
Recovery limits for target analytes in MS/MS	D QC samples are	advisory on	ly.								
Matrix Spike (BLB0738-MS3)	So	ource: 23E	80552-01RE1	Prep	ared: 28-Feb	-2023 An	alyzed: 23-	Mar-2023 0	1:40		
Sulfate	59.6	5.00	5.00	mg/L	20.0	18.6	205	75-125			*, D
Recovery limits for target analytes in MS/MS	D QC samples are	advisory on	ly.								
Matrix Spike (BLB0738-MS4)	So	ource: 23E	80552-01	Prep	ared: 28-Feb	-2023 An	alyzed: 23-	Mar-2023 2	1:33		
Chloride	24.9	5.00	5.00	mø/L	20.0	9.78	75.6	75-125			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 F Seattle WA, 98104 P

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 07-Apr-2023 13:46

Analysis by: Analytical Resources, LLC

Wet Chemistry - Quality Control

Batch BLC0082 - EPA 9060A

Instrument: TOC-LCSH Analyst: RMS

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLC0082-BLK1)				Prep	ared: 03-Ma	r-2023 An	alyzed: 04-	Mar-2023 1	1:59		
Total Organic Carbon	ND	0.50	0.50	mg/L							U
LCS (BLC0082-BS1)				Prep	ared: 03-Ma	r-2023 An	alyzed: 04-	Mar-2023 1	2:26		
Total Organic Carbon	20.08	0.50	0.50	mg/L	20.00		100	90-110			

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 07-Apr-2023 13:46

Certified Analyses included in this Report

Analyte		Certifications								
EPA 300.0 in	Water									
Chloride		DoD-ELAP,WADOE,WA-DW,N	IELAP							
Nitrate-N		DoD-ELAP,WADOE,WA-DW,N	IELAP							
Sulfate		DoD-ELAP,WADOE,WA-DW,N	DoD-ELAP,WADOE,WA-DW,NELAP							
EPA 6020B in	Water									
Calcium-44		DoD-ELAP,NELAP								
Iron-54		NELAP,WADOE,DoD-ELAP								
Magnesium-	24	NELAP,DoD-ELAP,WADOE								
Manganese	-55	NELAP,WADOE,DoD-ELAP								
EPA 8260D in	Water									
Vinyl Chloric	le	DoD-ELAP,ADEC,NELAP,WAD	DOE							
cis-1,2-Dich	loroethene	DoD-ELAP,ADEC,NELAP,WAI	DoD-ELAP,ADEC,NELAP,WADOE							
Chloroform		DoD-ELAP,ADEC,NELAP,WAD	DoD-ELAP,ADEC,NELAP,WADOE							
1,1,1-Trichlc	proethane	DoD-ELAP,ADEC,NELAP,WAD	DOE							
1,2-Dichloro	ethane	DoD-ELAP,ADEC,NELAP,WAD	DOE							
Trichloroeth	ene	DoD-ELAP,ADEC,NELAP,WAD	DOE							
Tetrachloroe	thene	DoD-ELAP,ADEC,NELAP,WAD	DOE							
1,1,1,2-Tetra	achloroethane	DoD-ELAP,ADEC,NELAP,WAD	DOE							
EPA 9060A in	Water									
Total Organi	c Carbon	DoD-ELAP,WADOE,NELAP								
EPA RSK-175	5 in Water									
Methane		NELAP								
Ethane		NELAP								
Ethene		NELAP								
Code	Description		Number	Expires						
ADEC	Alaska Dept of Environmental	Conservation	17-015	03/28/2023						
NELAP	ORELAP - Oregon Laboratory	WA100006-012	05/12/2023							
WADOE	WA Dept of Ecology		C558	06/30/2023						
WA-DW	Ecology - Drinking Water		C558	06/30/2023						

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 07-Apr-2023 13:46

Notes and Definitions

*	Flagged value is not within established control limits.
D	The reported value is from a dilution
J	Estimated concentration value detected below the reporting limit.
U	This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
[2C]	Indicates this result was quantified on the second column on a dual column analysis.

19 May 2023

Delia Massey Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle, WA 98104

RE: Former Tux Shop (090030)

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 23D0666 Associated SDG ID(s) N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, LLC

Shelly Frish?

Shelly Fishel, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: 300666 ARI Client Company: ARI Client Company: ARI Client Company: ARI Assigned Number: Turn-around Requested: Standard Phone:					Page: of I							Analytical Resources, LLC Analytical Chemists and Consultants 4611 South 134th Place Suite 100			
ARI Client Company. Aspect		Phone:			Date:	1/27/2	3 Prese	ent?				4611 So Tukwila	outh 134th Place, Suite 100 a. WA 98168		
Client Contact: Pel:4 Masse	o Ba	inter l	all		No. of Coolers:		Coole Temp	er s: 10'	C			206-69	5-6200 206-695-6201 (fax)		
Client Project Name:	Tur	SLOP						Analysis	Requested			T	Notes/Comments		
Client Project #:	Samplers:	Ame	3		Ethene- Dephane 175	3260	15.1 of	54	Jun	Tron	Hanfin, Job. 00	e.			
Sample ID	Date	Time	Matrix	No. Containers	Praved Ethune d RSK	Vous 1	TOC 1 FIN 4	Nr trate	Pissoud EPa 6	P:Saved CUChum, M Nunganga	Chloride Sulfare EPA				
HL-4-042723	4/27/23	0957	W	9	Х	X	×			Х	X		Field Filtered bottle		
As-35-042723	1	1115		9	X	Х	X			X	\times		Field Filered buryle for means charges		
AC-4-50-042223		1230		9	X	X,	Х			X	X		Field Filtcred byric For metals Anarchis		
Iu-1-042723		1420		8	\times	×	Х			$ \times$	$ $ \times		1 log is unfiltered to needs his the filtration for netals analysis		
AS-31-042723		1639		2				X	X				Field Filtered borne for metons contensis		
TB-1				1		X							*IW-1 hors high TSS,		
TB-2	4		\checkmark	l		X							appears very cloudy.		
β.		AL		How	es	2									
		Harr	C	10											
Comments/Special Instructions	Relinquished by: (Signature)	tations /	Juny	Received by: (Signature)	atthew	Preil	2-1	Relinquished (Signature)	l by:			Received by: (Signature)			
Printed Name: Alasdair Coursen Printed Name:			then P	and		Printed Nam	e:			Printed Name	9:				
Company: ASPARL Company: 17K			euc			Company:				Company:					
Intervention Intervention Date & Time: Units 4/28/23 1115 4/28/23 1115			23 11/5	c.		Date & Time				Date & Time:					

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

TB-2

28-Apr-2023 11:15

27-Apr-2023 09:57

Aspect Consulting, LLC.	Project: Former Tux Shop	
710 2nd Avenue, Suite 550	Project Number: 090030	Reported:
Seattle WA, 98104	Project Manager: Delia Massey	19-May-2023 11:47
	ANALYTICAL REPORT FOR SAMPLES	

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
HC-4-042723	23D0666-01	Water	27-Apr-2023 09:57	28-Apr-2023 11:15
AS-35-042723	23D0666-02	Water	27-Apr-2023 11:15	28-Apr-2023 11:15
AC-4-50-042723	23D0666-03	Water	27-Apr-2023 12:30	28-Apr-2023 11:15
IW-1-042723	23D0666-04	Water	27-Apr-2023 14:20	28-Apr-2023 11:15
AS-31-042723	23D0666-05	Water	27-Apr-2023 16:39	28-Apr-2023 11:15
TB-1	23D0666-06	Water	27-Apr-2023 09:57	28-Apr-2023 11:15

Water

23D0666-07

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Work Order Case Narrative

Client: Aspect Consulting, LLC. Project: Former Tux Shop Project Number: 090030 Work Order: 23D0666

Sample receipt

Sample(s) as listed on the preceding page were received 28-Apr-2023 11:15 under ARI work order 23D0666. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Volatiles - EPA Method SW8260D

The sample(s) were analyzed within the recommended holding times.

Sample vial used for 23D0666-06 contained bubbles 2-4 mm in diameter.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike and blank spike duplicate (BS/LCS and BSD/LCSD) spike recoveries and relative percent difference (RPD) were within control limits.

Total Metals - EPA Method 6020B

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

Wet Chemistry

The sample(s) were prepared and analyzed within the recommended holding times except Nitrate. The samples were received on a Friday with insufficient staff to perform the Nitrate analysis. The Saturday analys was scheduled later in the day and hold time was missed. The deviation has been flagged.

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

The matrix spike (MS) percent recoveries and the duplicate (DUP) relative percent difference (RPD) were within advisory control limits.

Volatile Gases - MEE by RSK175

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike and blank spike duplicate (BS/LCS and BSD/LCSD) spike recoveries and relative percent difference (RPD) were within control limits.

The duplicate (DUP) relative percent difference (RPD) were within advisory control limits.

WORK ORDER

23D0666

Samp	bles will be discarded 90 days after submission	of a final report unles	ss other instructions are received
Client: Aspect Co	nsulting, LLC.	Project Manager:	Shelly Fishel
Project: Former Ti	ıx Shop	Project Number:	090030
	Preservatio	n Confirmation	
Container ID	Container Type	рН	
23D0666-01 A	HDPE NM, 500 mL		
23D0666-01 B	Glass NM, Amber, 250 mL, 9N H2SO4	(2	Pass (P)
23D0666-01 C	HDPE NM, 500 mL, 1:1 HNO3 (FF)	(2	P
23D0666-01 D	HDPE NM, 500 mL, 1:1 HNO3 (FF)	17	ρ
23D0666-01 E	VOA Vial, Clear, 40 mL, HCL		
23D0666-01 F	VOA Vial, Clear, 40 mL, HCL		
23D0666-01 G	VOA Vial, Clear, 40 mL, HCL		
23D0666-01 H	VOA Vial, Clear, 40 mL, HCL		
23D0666-01 I	VOA Vial, Clear, 40 mL, HCL		
23D0666-02 A	HDPE NM, 500 mL		
23D0666-02 B	Glass NM, Amber, 250 mL, 9N H2SO4	52	ρ
23D0666-02 C	HDPE NM, 500 mL, 1:1 HNO3 (FF)	(2	P
23D0666-02 D	HDPE NM, 500 mL, 1:1 HNO3 (FF)	(2	ρ
23D0666-02 E	VOA Vial, Clear, 40 mL, HCL		3
23D0666-02 F	VOA Vial, Clear, 40 mL, HCL		
23D0666-02 G	VOA Vial, Clear, 40 mL, HCL		2
23D0666-02 H	VOA Vial, Clear, 40 mL, HCL		
23D0666-02 I	VOA Vial, Clear, 40 mL, HCL		
23D0666-03 A	HDPE NM, 500 mL		
23D0666-03 B	Glass NM, Amber, 250 mL, 9N H2SO4	(2	ρ
23D0666-03 C	HDPE NM, 500 mL, 1:1 HNO3 (FF)	(7	ρ
23D0666-03 D	HDPE NM, 500 mL, 1:1 HNO3 (FF)	くみ	ρ
23D0666-03 E	VOA Vial, Clear, 40 mL, HCL		3
23D0666-03 F	VOA Vial, Clear, 40 mL, HCL		
23D0666-03 G	VOA Vial, Clear, 40 mL, HCL		
23D0666-03 H	VOA Vial, Clear, 40 mL, HCL		
23D0666-03 I	VOA Vial, Clear, 40 mL, HCL		
23D0666-04 A	HDPE NM, 500 mL	8	
23D0666-04 B	Glass NM, Amber, 250 mL, 9N H2SO4	52	P
23D0666-04 C	HDPE NM, 500 mL	22	Fail
23D0666-04 D	VOA Vial, Clear, 40 mL, HCL	Dubble.	
23D0666-04 E	VOA Vial, Clear, 40 mL, HCL	Bibble.	
23D0666-04 F	VOA Vial, Clear, 40 mL, HCL		
23D0666-04 G	VOA Vial, Clear, 40 mL, HCL		and the second

WORK ORDER

23D0666

Client: Aspect Consulting, LLC. Project: Former Tux Shop		Project Manager: Shelly Fish	rel	
		Project Number: 090030		
23D0666-04 H	VOA Vial, Clear, 40 mL, HCL			
23D0666-05 A	HDPE NM, 500 mL			
23D0666-05 B	HDPE NM, 500 mL, 1:1 HNO3 (FF)	(7	Pass	
23D0666-06 A	VOA Vial, Clear, 40 mL, HCL	Aubble		
23D0666-07 A	VOA Vial, Clear, 40 mL, HCL			

10-

Preservation Confirmed By

04/28/23 Date

Analytical Resources, LLC Analytical Chemists and Consultants	Cooler R	eceipt F	orm	
ARI Client: <u>ASpect</u>	Project Name: Former	Tax sho	2	
CUC NO(S):	Delivered by: Fed-Ex UPS	Courier Hand Delivere	ed Other:	
Assigned ARI Job No:	Tracking No:		C	NA
				-
Were intact, properly signed and dated custody seals attached to t	he outside of the cooler?	YI	ES C	NO
Were custody papers included with the cooler?		E	S	NO
Were custody papers properly filled out (ink, signed, etc.) Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chem	istry)	C	S	NO
Time 11:15) o°C			
If cooler temperature is out of compliance fill out form 00070F		Temp Gun ID# <u>:</u>	500070	8
Cooler Accepted by: N\Q	Date: 04 28/23	Time: 11:15		
Complete custody forms a	nd attach all shipping docume	ents		
Log-In Phase:				
Was a temperature blank included in the cooler? What kind of packing material was used? Bubble Wr	ap Wet Ice Gel Packs Baggies	oam Block-Paper Oth	YES er:	NO
Was sufficient ice used (if appropriate)?		NA	YES	(NO)
How were bottles sealed in plastic bags?		Individually	Grouped	Not
Did all bottles arrive in good condition (unbroken)?			YES	NO
Were all bottle labels complete and legible?			YES	NO
Did the number of containers listed on COC match with the numb	per of containers received?		YES	NO
Did all bottle labels and tags agree with custody papers?			YES	NO
Were all bottles used correct for the requested analyses?			ES	NO
Do any of the analyses (bottles) require preservation? (attach pre	eservation sheet, excluding VOC	Cs) NA	YES	NO
Were all VOC vials free of air bubbles?		NA	YES	NO
Was sufficient amount of sample sent in each bottle?		53-123	VES ,	NO
Date VOC Trip Blank was made at ARI			0011	3193
Were the sample(s) split NA YES Date/Time	Equipment:	1 	Split by:	
by ARI?	(
Samples Logged by: <u>JJ-</u> Date: <u>GY</u>	8/23_Time: _1153	Labels checked by:	30~	

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC		
Additional Notes, Discrepanci	es, & Resolutions:		1 deal		
1 mile March	ubbles marked	an preseria	tion shelt,		
vicus run o		1			
(1)	lermhe 5'205				
ab to de	Willie s. us				
	1				
By: 10 - D	ate: 04/28/23				
J. Jun Di					

Cooler Receipt Form

ARI Work Order: 2300	666	
Cooler#:	Temperature(°C): //	*C
Sample ID	Bottle Count	Bottle Type
Gemales repeved	39	
above 6°C		
Cooler#:	Temperature(°C):	
Sample ID	Bottle Count	Bottle Type
Cooler#:	Temperature(°C):	
Sample ID	Bottle Count	Bottle Type
Cooler#:	Temperature(°C):	
Sample ID	Bottle Count	Bottle Type
Completed by:	Date	A11/28/27 Time: 111/
	Date	

Cooler Temperature Compliance Form

WORK ORDER

23D0666

Samples	will be discarded 90 days after submission	of a final report unle	ess other instructions are received
Client: Aspect Cons	ulting, LLC.	Project Manager:	Shelly Fishel
Project: Former Tux	Shop	Project Number:	090030
	Preservatio	n Confirmation	
Container ID	Container Type	рН	
23D0666-01 A	HDPE NM, 500 mL		
23D0666-01 B	Glass NM, Amber, 250 mL, 9N H2SO4	(2	Pass(P)
23D0666-01 C	HDPE NM, 500 mL, 1:1 HNO3 (FF)	<u> </u>	ρ
23D0666-01 D	HDPE NM, 500 mL, 1:1 HNO3 (FF)	٢٦	<u> </u>
23D0666-01 E	VOA Vial, Clear, 40 mL, HCL		
23D0666-01 F	VOA Vial, Clear, 40 mL, HCL		
23D0666-01 G	VOA Vial, Clear, 40 mL, HCL		
23D0666-01 H	VOA Vial, Clear, 40 mL, HCL		
23D0666-011	VOA Vial, Clear, 40 mL, HCL		······································
23D0666-02 A	HDPE NM, 500 mL		
23D0666-02 B	Glass NM, Amber, 250 mL, 9N H2SO4	<2	ρ
23D0666-02 C	HDPE NM, 500 mL, 1:1 HNO3 (FF)	(2	ρ
23D0666-02 D	HDPE NM, 500 mL, 1:1 HNO3 (FF)	(2)	ρ
23D0666-02 E	VOA Vial, Clear, 40 mL, HCL		······································
23D0666-02 F	VOA Vial, Clear, 40 mL, HCL	· · · · · · · · ·	
23D0666-02 G	VOA Vial, Clear, 40 mL, HCL		
23D0666-02 H	VOA Vial, Clear, 40 mL, HCL		
23D0666-02 I	VOA Vial, Clear, 40 mL, HCL		
23D0666-03 A	HDPE NM, 500 mL		
23D0666-03 B	Glass NM, Amber, 250 mL, 9N H2SO4	(2	ρ
23D0666-03 C	HDPE NM, 500 mL, 1:1 HNO3 (FF)	79	ρ
23D0666-03 D	HDPE NM, 500 mL, 1:1 HNO3 (FF)	くみ	ρ
23D0666-03 E	VOA Vial, Clear, 40 mL, HCL		â
23D0666-03 F	VOA Vial, Clear, 40 mL, HCL		
23D0666-03 G	VOA Vial, Clear, 40 mL, HCL		
23D0666-03 H	VOA Vial, Clear, 40 mL, HCL		
23D0666-03 I	VOA Vial, Clear, 40 mL, HCL		
23D0666-04 A	HDPE NM, 500 mL		
23D0666-04 B	Glass NM, Amber, 250 mL, 9N H2SO4	くつ	P_
23D0666-04 C	HDPE NM, 500 mL	72	Fail (1)
23D0666-04 D	VOA Vial, Clear, 40 mL, HCL	Bebble.	
23D0666-04 E	VOA Vial, Clear, 40 mL, HCL	Aloble.	
23D0666-04 F	VOA Vial, Clear, 40 mL, HCL		
23D0666-04 G	VOA Vial, Clear, 40 mL, HCL		

WORK ORDER

23D0666

Sam	ples will be discarded 90 days after submissio	n of a final report unless other in	structions are received		
Client: Aspect Consulting, LLC. Project: Former Tux Shop		Project Manager: Shelly Fi	shel		
		Project Number: 090030			
23D0666-04 H	VOA Vial, Clear, 40 mL, HCL				
23D0666-05 A	HDPE NM, 500 mL				
23D0666-05 B	HDPE NM, 500 mL, 1:1 HNO3 (FF)	(7	Paus		
23D0666-06 A	VOA Vial, Clear, 40 mL, HCL	Aubble			
23D0666-07 A	VOA Vial, Clear, 40 mL, HCL				
70-		04/28/27 (D Filtered at Dius n		
Preservation Confirme	a By	Date W	14h 0.10 ml conc. 11NO3 (L4188). 04128123		

0

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

HC-4-042723

23D0666-01 (Water)

Volatile Organic Compounds

Method: EPA 8260D Sampled: 04/27/2023 09:57 Instrument: NT3 Analyst: PKC Analyzed: 05/03/2023 02:03 Analysis by: Analytical Resources, LLC Extract ID: 23D0666-01 E Sample Preparation: Preparation Method: EPA 5030C (Purge and Trap) Sample Size: 10 mL Preparation Batch: BLE0087 Prepared: 05/02/2023 Final Volume: 10 mL Reporting CAS Number Limit Result Units Dilution Analyte Notes Vinyl Chloride 75-01-4 ND 1 0.20 ug/L U cis-1,2-Dichloroethene 156-59-2 0.20 2.06 ug/L 1 Chloroform 67-66-3 0.20 ND ug/L U 1 1,1,1-Trichloroethane 71-55-6 0.20 ND U 1 ug/L 107-06-2 1,2-Dichloroethane ND U 1 0.20 ug/L Trichloroethene 79-01-6 1 0.20 1.08 ug/L Tetrachloroethene 127-18-4 1 0.20 41.0 ug/L 1,1,1,2-Tetrachloroethane 630-20-6 0.20 ND U 1 ug/L Surrogate: 1,2-Dichloroethane-d4 80-129 % 109 % Surrogate: Toluene-d8 80-120 % 97.7 % Surrogate: 4-Bromofluorobenzene 80-120 % 99.4 %

Surrogate: 1,2-Dichlorobenzene-d4

80-120 %

102

%

Aspect Consulting, LLC.	Project:	Former Tux Shop
710 2nd Avenue, Suite 550	Project Number:	090030
Seattle WA, 98104	Project Manager:	Delia Massey

Reported: 19-May-2023 11:47

HC-4-042723

23D0666-01 (Water)

Dissolved Gases							
Aethod: EPA RSK-175				Sa	mpled: 04/	27/2023 09:57	
Instrument: FID6 Analyst: LH				An	alyzed: 05/	03/2023 09:18	
Analysis by: Analytic	al Resources, LLC						
Sample Preparation:	Preparation Method: EPA 5030C (Purge and Preparation Batch: BLE0090 Prepared: 05/03/2023	Trap) Sample Size: 10 mL Final Volume: 10 mL			Ι	Extract ID:	23D0666-01 F
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Methane		74-82-8	1	0.65	18.9	ug/L	
Ethane		74-84-0	1	1.23	ND	ug/L	U
Ethene		74-85-1	1	1.14	ND	ug/L	U
Surrogate: Propane				62-122 %	94.3	%	

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

HC-4-042723

23D0666-01 (Water)

Metals and Metallic C	Compounds (dissolved)							
Method: EPA 6020B						S	ampled: 04	/27/2023 09:57
Instrument: ICPMS2 Analyst: SKD				Ar	nalyzed: 05	/15/2023 21:24		
Analysis by: Analytic	al Resources, LLC							
Sample Preparation:	Preparation Method: REN - EPA 3010A M Preparation Batch: BLE0382 Prepared: 05/11/2023	Sample Size: 25 mL Final Volume: 25 mL				Extr	ract ID: 231	D0666-01 D 01
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Calcium, Dissolved		7440-70-2	10	111	500	19300	ug/L	D
Iron, Dissolved		7439-89-6	10	182	360	ND	ug/L	U
Magnesium, Dissolved		7439-95-4	10	22.2	200	22500	ug/L	D
Manganese, Dissolved		7439-96-5	10	1.42	5.00	12.1	ug/L	D

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550

Seattle WA, 98104

Analytical Report

нс 4 (11772
Project Manager:	Delia Massey
Project Number:	090030
Project:	Former Tux Shop

Reported: 19-May-2023 11:47

HC-4-042723

23D0666-01 (Water)

Wet Chemistry								
Iethod: EPA 300.0					Sampled: 04/27/2023 09:57			
Instrument: IC930 Analy					Aı	nalyzed: 04	/29/2023 12:37	
Analysis by: Analytica	al Resources, LLC							
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BLD0824 Prepared: 04/29/2023	Sample Size: 10 Final Volume: 1) mL 0 mL]	Extract ID:	23D0666-01 A
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	0.100	9.86	mg/L	
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitrate-N		14797-55-8	1	0.100	0.100	ND	mg/L	H, U

Aspect Consulting, LLC.	Project: Former Tux Shop	
710 2nd Avenue, Suite 550	Project Number: 090030	Reported:
Seattle WA, 98104	Project Manager: Delia Massey	19-May-2023 11:47
	НС-4-042723	
	23D0666-01 (Water)	
Wet Chemistry		
Method: EPA 9060A		Sampled: 04/27/2023 09:57
Instrument: TOC-LCSH Analyst: RMS		Analyzed: 05/17/2023 03:40
Analysis by: Analytical Resources, LLC		

Sample Preparation:	Preparation Method: No Prep Wet Chem				Extract ID: 23D0666-01 B			
	Preparation Batch: BLE0460	Sample Size: 20 mL Final Volume: 20 mL						
	Frepared. 05/10/2025	Final volume.	20 IIIL					
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Total Organic Carbon			1	0.50	0.50	1.26	mg/L	

Aspect Consulting, LLC.	Project: Former Tux Shop				
710 2nd Avenue, Suite 550	Project Number: 090030	Reported:			
Seattle WA, 98104	Project Manager: Delia Massey	19-May-2023 11:47			
HC-4-042723 23D0666-01RE1 (Water)					

Wet Chemistry								
Method: EPA 300.0						S	ampled: 04	/27/2023 09:57
Instrument: IC930 Anal					Ar	nalyzed: 04	/29/2023 16:37	
Analysis by: Analytic	al Resources, LLC							
Sample Preparation:	Preparation Method: No Prep Wet Chem					Extra	et ID: 23D	0666-01RE1 A
	Preparation Batch: BLD0824	Sample Size: 10) mL					
	Prepared: 04/29/2023	Final Volume: 10 mL						
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Sulfate		14808-79-8	4	0.400	0.400	15.2	mg/L	D

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550

Seattle WA, 98104

Analytical Report

Reported:

19-May-2023 11:47

Sampled: 04/27/2023 11:15 Analyzed: 05/03/2023 02:28

Extract ID: 23D0666-02 E

AS-35-	042723
Project Manager:	Delia Massey
Project Number:	090030
Project:	Former Tux Shop

23D0666-02 (Water)

KC			
Resources, LLC			
Preparation: Preparation Method: EPA 5030C (Purge and Trap)			
Preparation Batch: BLE0087	Sample Size: 1 mL		
Prepared: 05/02/2023	Final Volume: 10 mL		
	KC Resources, LLC Preparation Method: EPA 5030C (Purg Preparation Batch: BLE0087 Prepared: 05/02/2023		

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride	75-01-4	1	2.00	ND	ug/L	U
cis-1,2-Dichloroethene	156-59-2	1	2.00	17.3	ug/L	
Chloroform	67-66-3	1	2.00	ND	ug/L	U
1,1,1-Trichloroethane	71-55-6	1	2.00	ND	ug/L	U
1,2-Dichloroethane	107-06-2	1	2.00	ND	ug/L	U
Trichloroethene	79-01-6	1	2.00	4.03	ug/L	
Tetrachloroethene	127-18-4	1	2.00	90.3	ug/L	
1,1,1,2-Tetrachloroethane	630-20-6	1	2.00	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	102	%	
Surrogate: Toluene-d8			80-120 %	96.7	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	104	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	98.5	%	

Aspect Consulting, LLC.	Project: Former Tux Shop	
710 2nd Avenue, Suite 550	Project Number: 090030	Reported:
Seattle WA, 98104	Project Manager: Delia Massey	19-May-2023 11:47
	AS-35-042723	
	23D0666-02 (Water)	

Dissolved Gases							
Method: EPA RSK-175					Sa	ampled: 04	/27/2023 11:15
Instrument: FID6 Analyst: LH					An	alyzed: 05	/03/2023 10:44
Analysis by: Analytic	al Resources, LLC						
Sample Preparation:	Preparation Method: EPA 5030C (Purge	and Trap)			Ι	Extract ID:	23D0666-02 F
	Preparation Batch: BLE0090	Sample Size: 10					
	Prepared: 05/03/2023	Final Volume: 1					
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Methane		74-82-8	1	0.65	11.6	ug/L	
Ethane		74-84-0	1	1.23	1.25	ug/L	
Ethene		74-85-1	1	1.14	ND	ug/L	U
Surrogate: Propane				62-122 %	102	%	

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Sampled: 04/27/2023 11:15

Analyzed: 05/15/2023 21:26

AS-35-042723

23D0666-02 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020B Instrument: ICPMS2 Analyst: SKD

Analysis by: Analytical Resources, LLC

Sample Size: 25 mL Final Volume: 25 mL				Extract ID: 23D0666-02 D 01		
		Detection	Reporting			
CAS Number	Dilution	Limit	Limit	Result	Units	Notes
7440-70-2	20	222	1000	100000	ug/L	D
7439-89-6	20	364	720	21800	ug/L	D
7439-95-4	20	44.4	400	76500	ug/L	D
7439-96-5	200	28.4	100	18200	ug/L	D
-	Sample Size: 2 Final Volume: CAS Number 7440-70-2 7439-89-6 7439-95-4 7439-96-5	Sample Size: 25 mL Final Volume: 25 mL CAS Number Dilution 7440-70-2 20 7439-89-6 20 7439-95-4 20 7439-96-5 200	Sample Size: 25 mL Final Volume: 25 mL Detection CAS Number Dilution Limit 7440-70-2 20 222 7439-89-6 20 364 7439-95-4 20 44.4 7439-96-5 200 28.4	Sample Size: 25 mL Final Volume: 25 mL Detection Reporting CAS Number Dilution Limit Limit 7440-70-2 20 222 1000 7439-89-6 20 364 720 7439-95-4 20 44.4 400 7439-96-5 200 28.4 100	Extr Sample Size: 25 mL Final Volume: 25 mL Detection Reporting CAS Number Dilution Limit Result 7440-70-2 20 222 1000 100000 7439-89-6 20 364 720 21800 7439-95-4 20 44.4 400 76500 7439-96-5 200 28.4 100 18200	Extract ID: 231 Sample Size: 25 mL Final Volume: 25 mL Detection Reporting CAS Number Dilution Limit Result Units 7440-70-2 20 222 1000 100000 ug/L 7439-89-6 20 364 720 21800 ug/L 7439-95-4 20 44.4 400 76500 ug/L 7439-96-5 200 28.4 100 18200 ug/L

Aspect Consulting, LLC.	Project: Former Tux Shop	
710 2nd Avenue, Suite 550	Project Number: 090030	Reported:
Seattle WA, 98104	Project Manager: Delia Massey	19-May-2023 11:47
	AS-35-042723	
	23D0666-02 (Water)	
Wet Chemistry		
Method: EPA 300.0		Sampled: 04/27/2023 11:15
Instrument: IC930 Analyst: CDE		Analyzed: 04/29/2023 13:37

Analysis by: Analytical Resources, LLC

Tinary 515 Dy. Tinary tica								
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BLD0824 Prepared: 04/29/2023	Sample Size: 10 mL Final Volume: 10 mL					Extract ID:	23D0666-02 A
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitrate-N		14797-55-8	1	0.100	0.100	ND	mg/L	H, U
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Sulfate		14808-79-8	1	0.100	0.100	0.263	mg/L	

٦

Aspect Consulting, LL	С.	Project: Former Tux Shop			
710 2nd Avenue, Suite	550 P:	roject Number: 090030			Reported:
Seattle WA, 98104	Pr	oject Manager: Delia Massey			19-May-2023 11:47
		AS-35-042723			
		23D0666-02 (Water)			
Wet Chemistry					
Method: EPA 9060A					Sampled: 04/27/2023 11:15
Instrument: TOC-LCSH	Analyst: RMS				Analyzed: 05/17/2023 03:59
Analysis by: Analytic	al Resources, LLC				
Sample Preparation:	Preparation Method: No Prep Wet Chem				Extract ID: 23D0666-02 B
	Preparation Batch: BLE0460	Sample Size: 20 mL			
	Prepared: 05/16/2023	Final Volume: 20 mL			
			Detection	Reporting	
1					

Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Total Organic Carbon		10	5.00	5.00	397.9	mg/L	D

Aspect Consulting, LLC.	Project: Former Tux Shop	
710 2nd Avenue, Suite 550	Project Number: 090030	Reported:
Seattle WA, 98104	19-May-2023 11:47	
	AS-35-042723	
	23D0666-02RE1 (Water)	
Wet Chemistry		

Method: EPA 300.0						S	ampled: 04/	27/2023 11:15
Instrument: IC930 Analyst: CDE					Aı	nalyzed: 04/	29/2023 17:16	
Analysis by: Analytic	al Resources, LLC							
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BLD0824 Prepared: 04/29/2023	Sample Size: 10 mL Final Volume: 10 mL				Extra	et ID: 23D	0666-02RE1 A
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Chloride		16887-00-6	6	0.600	0.600	25.7	mg/L	D

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550

Seattle WA, 98104

Analytical Report

Sampled: 04/27/2023 12:30 Analyzed: 05/03/2023 02:53

Project: Former Tux Shop	
Project Number: 090030	Reported:
Project Manager: Delia Massey	19-May-2023 11:47
AC-4-50-042723	
23D0666-03 (Water)	

Volatile Organic Com	ipounds			
Method: EPA 8260D				
Instrument: NT3 Analys	st: PKC			
Analysis by: Analytic	al Resources, LLC			
Sample Preparation:	Preparation Method: EPA 5030C (Purg	ge and Trap)		
	Preparation Batch: BLE0087	Sample Size: 1	mL	
	Prepared: 05/02/2023	Final Volume:	0 mL	
				Repo
Analyte		CAS Number	Dilution	Ι
Vinyl Chloride		75-01-4	1	
cis-1,2-Dichloroethene		156-59-2	1	
Chloroform		67-66-3	1	
1,1,1-Trichloroethane		71-55-6	1	
1,2-Dichloroethane		107-06-2	1	

Sample Preparation:	Preparation Method: EPA 5030C (Purge Preparation Batch: BLE0087 Prepared: 05/02/2023	and Trap) Sample Size: 1 Final Volume: 1	ap) Sample Size: 1 mL Final Volume: 10 mL			Extract ID: 1	ctract ID: 23D0666-03 E	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Vinyl Chloride		75-01-4	1	2.00	ND	ug/L	U	
cis-1,2-Dichloroethene		156-59-2	1	2.00	12.3	ug/L		
Chloroform		67-66-3	1	2.00	ND	ug/L	U	
1,1,1-Trichloroethane		71-55-6	1	2.00	ND	ug/L	U	
1,2-Dichloroethane		107-06-2	1	2.00	ND	ug/L	U	
Trichloroethene		79-01-6	1	2.00	26.4	ug/L		
Tetrachloroethene		127-18-4	1	2.00	1320	ug/L	E	
1,1,1,2-Tetrachloroethane		630-20-6	1	2.00	ND	ug/L	U	
Surrogate: 1,2-Dichloroetha	ne-d4			80-129 %	94.3	%		

Surrogate: 1,2-Dichloroethane-d4	80-129 %	94.3	%
Surrogate: Toluene-d8	80-120 %	97.2	%
Surrogate: 4-Bromofluorobenzene	80-120 %	95.6	%
Surrogate: 1,2-Dichlorobenzene-d4	80-120 %	101	%

Aspect Consulting, LL	С.	Project: Former Tux Shop	
710 2nd Avenue, Suite	550	Project Number: 090030	Reported:
Seattle WA, 98104		Project Manager: Delia Massey	19-May-2023 11:47
		AC-4-50-042723	
		23D0666-03 (Water)	
Dissolved Gases			
Method: EPA RSK-175			Sampled: 04/27/2023 12:30
Instrument: FID6 Analy	vst: LH		Analyzed: 05/03/2023 11:02
Analysis by: Analytic	al Resources, LLC		
Sample Preparation:	Preparation Method: EPA 5030	C (Purge and Trap)	Extract ID: 23D0666-03 F
	Preparation Batch: BLE0090	Sample Size: 10 mL	

Prepared: 05/03/20	123 Final Volume:	10 mL				
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Methane	74-82-8	1	0.65	1.31	ug/L	
Ethane	74-84-0	1	1.23	ND	ug/L	U
Ethene	74-85-1	1	1.14	ND	ug/L	U
Surrogate: Propane			62-122 %	115	%	

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

AC-4-50-042723

23D0666-03 (Water)

Metals and Metallic Compounds (dissolved) Method: EPA 6020B Sampled: 04/27/2023 12:30 Instrument: ICPMS2 Analyst: SKD Analyzed: 05/15/2023 21:29 Analysis by: Analytical Resources, LLC Extract ID: 23D0666-03 D 01 Sample Preparation: Preparation Method: REN - EPA 3010A M Preparation Batch: BLE0382 Sample Size: 25 mL Prepared: 05/11/2023 Final Volume: 25 mL Detection Reporting CAS Number Limit Limit Analyte Dilution Result Units Notes Calcium, Dissolved 7440-70-2 10 111 500 23200 ug/L D 7439-89-6 U Iron, Dissolved 10 182 360 ND ug/L 22.2 D Magnesium, Dissolved 7439-95-4 10 200 22800 ug/L 7439-96-5 10 91.5 D Manganese, Dissolved 1.42 5.00 ug/L

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

٦

Aspect Consulting, LL	2.	Project: Former	Tux Shop						
710 2nd Avenue, Suite	550 Proj	Project Number: 090030					Reported:		
Seattle WA, 98104	Proje	ect Manager: Delia M	assey				19-May-20	023 11:47	
		AC-4-50-04272	3						
		23D0666-03 (Wat	er)						
Wet Chemistry									
Method: EPA 300.0						S	ampled: 04/	/27/2023 12:30	
Instrument: IC930 Anal	yst: CDE					Aı	nalyzed: 04/	/29/2023 13:57	
Analysis by: Analytic	al Resources, LLC								
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BLD0824 Prepared: 04/29/2023	Sample Size: 1 Final Volume:	0 mL 10 mL]	Extract ID: 2	23D0666-03 A	
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes	

14797-55-8

1

0.100

0.100

ND

mg/L

H, U

Aspect Consulting, LLC 710 2nd Avenue, Suite 5			Repo	rted:				
Seattle WA, 98104	Pro	ject Manager: Delia N	Massey				19-May-2	023 11:47
AC-4-50-042723 23D0666-03 (Water)								
Wet Chemistry								
Method: EPA 9060A						S	ampled: 04	/27/2023 12:30
Instrument: TOC-LCSH	Analyst: RMS					Aı	nalyzed: 05	/17/2023 04:23
Analysis by: Analytica	l Resources, LLC							
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BLE0460 Prepared: 05/16/2023	Sample Size: Final Volume:	20 mL 20 mL]	Extract ID:	23D0666-03 B
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Total Organic Carbon			1	0.50	0.50	1.32	mg/L	

Aspect Consulting, LLC.

Seattle WA, 98104

710 2nd Avenue, Suite 550

Analytical Report

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

AC-4-50-042723

23D0666-03RE1 (Water)

Volatile Organic Con	npounds						
Method: EPA 8260D			Sa	ampled: 04/	27/2023 12:30		
Instrument: NT3 Analy	strument: NT3 Analyst: PKC					alyzed: 05/	/03/2023 21:52
Analysis by: Analytic	al Resources, LLC						
Sample Preparation:	Preparation Method: EPA 5030C (Purge	e and Trap)			Extra	ct ID: 23D0)666-03RE1 G
	Preparation Batch: BLE0096	Sample Size: 0.	2 mL				
	Prepared: 05/03/2023	Final Volume: 1	0 mL				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride		75-01-4	1	10.0	ND	ug/L	U
cis-1,2-Dichloroethene		156-59-2	1	10.0	14.7	ug/L	
Chloroform		67-66-3	1	10.0	ND	ug/L	U
1,1,1-Trichloroethane		71-55-6	1	10.0	ND	ug/L	U
1,2-Dichloroethane		107-06-2	1	10.0	ND	ug/L	U
Trichloroethene		79-01-6	1	10.0	28.5	ug/L	
Tetrachloroethene		127-18-4	1	10.0	1650	ug/L	
1,1,1,2-Tetrachloroethane		630-20-6	1	10.0	ND	ug/L	U
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	105	%	
Surrogate: Toluene-d8				80-120 %	95.6	%	
Surrogate: 4-Bromofluorob	penzene			80-120 %	99.9	%	

Surrogate: 1,2-Dichlorobenzene-d4

80-120 %

100

%

Analytical Report

Reported:

19-May-2023 11:47

	23D0666-03RE1 (Water)	
	AC-4-50-042723	
Seattle WA, 98104	Project Manager: Delia Massey	
710 2nd Avenue, Suite 550	Project Number: 090030	
Aspect Consulting, LLC.	Project: Former Tux Shop	

Wet Chemistry								
Method: EPA 300.0						S	ampled: 04	/27/2023 12:30
Instrument: IC930 Analy	yst: CDE					Ar	nalyzed: 04	/29/2023 17:36
Analysis by: Analytica	al Resources, LLC							
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BLD0824 Prepared: 04/29/2023	Sample Size: 10 Final Volume: 1) mL 0 mL			Extra	ct ID: 23D	0666-03RE1 A
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloride		16887-00-6	15	1.50	1.50	15.8	mg/L	D
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Sulfate		14808-79-8	15	1.50	1.50	61.8	mg/L	D

Page 30 of 51 23D0666 ARISample FINAL 19 May 2023 1147

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

IW-1-042723

23D0666-04 (Water)

Volatile Organic Co	mpounds
Method: EPA 8260D	
Instrument: NT3 Anal	vst: PKC

Sampled: 04/27/2023 14:20 Analyzed: 05/03/2023 22:16

Analysis by: Analytical Resources, LLC

Sample Preparation:	Preparation Method: EPA 5030C (Purge	Preparation Method: EPA 5030C (Purge and Trap)			E	Extract ID: 2	23D0666-04 H
	Preparation Batch: BLE0096	Sample Size: 1	mL				
	Prepared: 05/03/2023	Final Volume:	0 mL				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride		75-01-4	1	2.00	ND	ug/L	U
cis-1,2-Dichloroethene		156-59-2	1	2.00	ND	ug/L	U
Chloroform		67-66-3	1	2.00	6.36	ug/L	
1,1,1-Trichloroethane		71-55-6	1	2.00	ND	ug/L	U
1,2-Dichloroethane		107-06-2	1	2.00	ND	ug/L	U
Trichloroethene		79-01-6	1	2.00	ND	ug/L	U
Tetrachloroethene		127-18-4	1	2.00	10.1	ug/L	
1,1,1,2-Tetrachloroethane		630-20-6	1	2.00	ND	ug/L	U
Surrogate: 1,2-Dichloroeth	ane-d4			80-129 %	98.6	%	
Surrogate: Toluene-d8				80-120 %	100	%	
Surrogate: 4-Bromofluorob	enzene			80-120 %	102	%	
Surrogate: 1,2-Dichloroben	zene-d4			80-120 %	94.2	%	

Analytical Report

	IW-1-042723
Seattle WA, 98104	Project Manager: Delia Massey
710 2nd Avenue, Suite 550	Project Number: 090030
Aspect Consulting, LLC.	Project: Former Tux Shop

Reported: 19-May-2023 11:47

1 **-1-042/23

23D0666-04 (Water)

Dissolved Gases							
Method: EPA RSK-175					Sa	mpled: 04/	27/2023 14:20
Instrument: FID6 Analy	st: LH				An	alyzed: 05/	03/2023 11:20
Analysis by: Analytic	al Resources, LLC						
Sample Preparation:	Preparation Method: EPA 5030C (Purge and	d Trap)			Ε	xtract ID: 2	23D0666-04 G
	Preparation Batch: BLE0090	Sample Size: 10					
	Prepared: 05/03/2023	Final Volume: 1					
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Methane		74-82-8	1	0.65	0.96	ug/L	
Ethane		74-84-0	1	1.23	1.64	ug/L	
Ethene		74-85-1	1	1.14	ND	ug/L	U
Surrogate: Propane				62-122 %	71.9	%	

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Notes

D

D

D

D

IW-1-042723

23D0666-04 (Water)

Metals and Metallic Compounds (dissolved) Method: EPA 6020B Sampled: 04/27/2023 14:20 Instrument: ICPMS2 Analyst: SKD Analyzed: 05/15/2023 21:21 Analysis by: Analytical Resources, LLC Extract ID: 23D0666-04 C 02 Sample Preparation: Preparation Method: REN - EPA 3010A M Preparation Batch: BLE0381 Sample Size: 5 mL Filtration Batch: BLD0815 Prepared: 05/11/2023 Final Volume: 25 mL Filtration Date: 04/28/2023 13:55 Detection Reporting CAS Number Limit Limit Analyte Dilution Result Units Calcium, Dissolved 7440-70-2 20 1110 5000 39000 ug/L 7439-89-6 193000 Iron, Dissolved 20 1820 3600 ug/L 7439-95-4 Magnesium, Dissolved 20 222 2000 38700 ug/L 7439-96-5 Manganese, Dissolved 20 14.2 50.0 3240 ug/L

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

IW-1-042723

23D0666-04 (Water)

Wet Chemistry								
Method: EPA 300.0	lethod: EPA 300.0						ampled: 04	/27/2023 14:20
Instrument: IC930 Analy	yst: CDE					Aı	nalyzed: 04	/29/2023 14:17
Analysis by: Analytica	al Resources, LLC							
Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BLD0824 Prepared: 04/29/2023	Sample Size: 10 Final Volume: 1	Sample Size: 10 mL Final Volume: 10 mL				Extract ID:	23D0666-04 A
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloride		16887-00-6	10	1.00	1.00	18.9	mg/L	D
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Nitrate-N		14797-55-8	10	1.00	1.00	ND	mg/L	U
				Detection	Reporting			
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Sulfate		14808-79-8	10	1.00	1.00	ND	mg/L	U

Aspect Consulting, LL	С.	Project: Former Tux Shop	
710 2nd Avenue, Suite	550 F	Project Number: 090030	Reported:
Seattle WA, 98104	P	roject Manager: Delia Massey	19-May-2023 11:47
		IW-1-042723	
		23D0666-04 (Water)	
Wet Chemistry			
Method: EPA 9060A			Sampled: 04/27/2023 14:20
Instrument: TOC-LCSH	Analyst: RMS		Analyzed: 05/17/2023 04:49
Analysis by: Analytic	al Resources, LLC		
Sample Preparation:	Preparation Method: No Prep Wet Chem	1	Extract ID: 23D0666-04 B
	Preparation Batch: BLE0460	Sample Size: 20 mL	

	Prepared: 05/16/2023	Final Volume:	Final Volume: 20 mL						
				Detection	Reporting				
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes	
Total Organic Carbon			20	10.00	10.00	3104	mg/L	D	

Aspect Consulting, LL	С.	Project: Former Tux Shop	
710 2nd Avenue, Suite	550	Project Number: 090030	Reported:
Seattle WA, 98104	J	Project Manager: Delia Massey	19-May-2023 11:47
		AS-31-042723	
		23D0666-05 (Water)	
Metals and Metallic (Compounds (dissolved)		
Method: EPA 6020B			Sampled: 04/27/2023 16:39
Instrument: ICPMS2 An	nalyst: SKD		Analyzed: 05/15/2023 21:31
Analysis by: Analytic	al Resources, LLC		
Sample Preparation:	Preparation Method: REN - EPA 3010A	AM	Extract ID: 23D0666-05 B 01
	Preparation Batch: BLE0382	Sample Size: 25 mL	
	Prepared: 05/11/2023	Final Volume: 25 mL	
		Datastia	n Banantina

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Iron, Dissolved	7439-89-6	10	182	360	ND	ug/L	U

Aspect Consulting, LL	С.	Project: Former Tux Shop			
710 2nd Avenue, Suite	550	Project Number: 090030	Reported:		
Seattle WA, 98104	attle WA, 98104 Project Manager: Delia Massey				
		AS-31-042723			
		23D0666-05 (Water)			
Wet Chemistry					
Method: EPA 300.0			Sampled: 04/27/2023 16:39		
Instrument: IC930 Ana	lyst: CDE		Analyzed: 04/29/2023 14:36		
Analysis by: Analytic	al Resources, LLC				
Sample Preparation:	Preparation Method: No Prep Wet	Chem	Extract ID: 23D0666-05 A		
	Preparation Batch: BLD0824	Sample Size: 10 mL			
	Prepared: 04/29/2023	Final Volume: 10 mL			

	1 Teparea. 0 1/20/2025								
				Detection	Reporting				
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes	
Nitrate-N		14797-55-8	1	0.100	0.100	2.65	mg/L		

I

Aspect Consulting, LLC.	Project: Former Tux Shop						
710 2nd Avenue, Suite 550	Project Number: 090030	Reported:					
Seattle WA, 98104	19-May-2023 11:47						
	TB-1						
23D0666-06 (Water)							
Volatile Organic Compounds							
Method: EPA 8260D		Sampled: 04/27/2023 09:57					
Instrument: NT3 Analyst: PKC		Analyzed: 05/02/2023 23:06					
Analysis by: Analytical Resources, LLC							

Sample Preparation:	Preparation Method: EPA 5030C (Purge and Tr	ap)			E	xtract ID:	23D0666-06 A
	Sample Size: 10) mL					
	Prepared: 05/02/2023	Final Volume: 1	0 mL				
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl Chloride		75-01-4	1	0.20	ND	ug/L	U
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U
Chloroform		67-66-3	1	0.20	ND	ug/L	U
1,1,1-Trichloroethane		71-55-6	1	0.20	ND	ug/L	U
1,2-Dichloroethane		107-06-2	1	0.20	ND	ug/L	U
Trichloroethene		79-01-6	1	0.20	ND	ug/L	U
Tetrachloroethene		127-18-4	1	0.20	ND	ug/L	U
1,1,1,2-Tetrachloroethane		630-20-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethan	e-d4			80-129 %	104	%	
Surrogate: Toluene-d8				80-120 %	97.2	%	
Surrogate: 4-Bromofluorober	zene			80-120 %	100	%	
Surrogate: 1,2-Dichlorobenze	ene-d4			80-120 %	103	%	

Trichloroethene

Tetrachloroethene

1,1,1,2-Tetrachloroethane

Surrogate: Toluene-d8

Surrogate: 1,2-Dichloroethane-d4

Surrogate: 4-Bromofluorobenzene

Surrogate: 1,2-Dichlorobenzene-d4

Analytical Report

U

U

U

Aspect Consulting, LLC		Project: Former	Tux Shop							
710 2nd Avenue, Suite 5	50 P	Project Number: 090030		Reported:						
Seattle WA, 98104	P	19-May-2023 11:47								
		TB-2								
23D0666-07 (Water)										
Volatile Organic Com	pounds									
Method: EPA 8260D					Sa	ampled: 04/	27/2023 09:57			
Instrument: NT3 Analys	: PKC				An	alyzed: 05/	02/2023 23:28			
Analysis by: Analytica	l Resources, LLC									
Sample Preparation:	Preparation Method: EPA 5030C (Purge	and Trap)			E	Extract ID: 2	23D0666-07 A			
	Preparation Batch: BLE0087	Sample Size: 10	mL							
	Prepared: 05/02/2023	Final Volume: 1	0 mL							
				Reporting						
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes			
Vinyl Chloride		75-01-4	1	0.20	ND	ug/L	U			
cis-1,2-Dichloroethene		156-59-2	1	0.20	ND	ug/L	U			
Chloroform		67-66-3	1	0.20	ND	ug/L	U			
1,1,1-Trichloroethane		71-55-6	1	0.20	ND	ug/L	U			
1,2-Dichloroethane		107-06-2	1	0.20	ND	ug/L	U			

79-01-6

127-18-4

630-20-6

1

1

1

0.20

0.20

0.20

80-129 %

80-120 %

80-120 %

80-120 %

ND

ND

ND

108

97.5

101

105

ug/L

ug/L

ug/L

%

%

%

%

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104

Analytical Report

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BLE0087 - EPA 8260D

Instrument: NT3 Analyst: PKC

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BLE0087-BLK1)			Prep	ared: 02-May	y-2023 At	nalyzed: 02-	May-2023 2	22:44		
Vinyl Chloride	ND	0.20	ug/L							U
cis-1,2-Dichloroethene	ND	0.20	ug/L							U
Chloroform	ND	0.20	ug/L							U
1,1,1-Trichloroethane	ND	0.20	ug/L							U
1,2-Dichloroethane	ND	0.20	ug/L							U
Trichloroethene	ND	0.20	ug/L							U
Tetrachloroethene	ND	0.20	ug/L							U
1,1,1,2-Tetrachloroethane	ND	0.20	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	5.11		ug/L	5.00		102	80-129			
Surrogate: Toluene-d8	4.86		ug/L	5.00		97.2	80-120			
Surrogate: 4-Bromofluorobenzene	4.97		ug/L	5.00		99.4	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.17		ug/L	5.00		103	80-120			
LCS (BLE0087-BS1)			Prep	ared: 02-May	y-2023 At	nalyzed: 02-	May-2023 2	21:37		
Vinyl Chloride	10.5	0.20	ug/L	10.0		105	66-133			
cis-1,2-Dichloroethene	10.1	0.20	ug/L	10.0		101	80-121			
Chloroform	10.7	0.20	ug/L	10.0		107	80-122			
1,1,1-Trichloroethane	10.6	0.20	ug/L	10.0		106	79-123			
1,2-Dichloroethane	10.4	0.20	ug/L	10.0		104	75-123			
Trichloroethene	10.6	0.20	ug/L	10.0		106	80-120			
Tetrachloroethene	10.5	0.20	ug/L	10.0		105	80-120			
1,1,1,2-Tetrachloroethane	10.5	0.20	ug/L	10.0		105	80-120			
Surrogate: 1,2-Dichloroethane-d4	5.01		ug/L	5.00		100	80-129			
Surrogate: Toluene-d8	5.07		ug/L	5.00		101	80-120			
Surrogate: 4-Bromofluorobenzene	4.99		ug/L	5.00		99.8	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.08		ug/L	5.00		102	80-120			

LCS Dup (BLE0087-BSD1)				Prepared: 02-May-2023 Analyzed: 02-May-2023 21:59					
Vinyl Chloride	10.1	0.20	ug/L	10.0	101	66-133	3.71	30	
cis-1,2-Dichloroethene	9.75	0.20	ug/L	10.0	97.5	80-121	3.62	30	
Chloroform	10.1	0.20	ug/L	10.0	101	80-122	5.52	30	
1,1,1-Trichloroethane	10.1	0.20	ug/L	10.0	101	79-123	4.72	30	
1,2-Dichloroethane	10.1	0.20	ug/L	10.0	101	75-123	3.74	30	
Trichloroethene	10.4	0.20	ug/L	10.0	104	80-120	1.92	30	

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BLE0087 - EPA 8260D

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BLE0087-BSD1)			Prep	ared: 02-Ma	y-2023 Ana	lyzed: 02	-May-2023	21:59		
Tetrachloroethene	9.86	0.20	ug/L	10.0		98.6	80-120	6.57	30	
1,1,1,2-Tetrachloroethane	9.84	0.20	ug/L	10.0		98.4	80-120	6.33	30	
Surrogate: 1,2-Dichloroethane-d4	4.98		ug/L	5.00	\$	9.6	80-129			
Surrogate: Toluene-d8	4.94		ug/L	5.00	9	98.7	80-120			
Surrogate: 4-Bromofluorobenzene	5.05		ug/L	5.00	1	01	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	4.97		ug/L	5.00	9	9.4	80-120			

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104

Analytical Report

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BLE0096 - EPA 8260D

Instrument: NT3 Analyst: PKC

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BLE0096-BLK1)			Prep	ared: 03-Ma	y-2023 A	nalyzed: 03-	May-2023	13:40		
Vinyl Chloride	ND	0.20	ug/L							U
cis-1,2-Dichloroethene	ND	0.20	ug/L							U
Chloroform	ND	0.20	ug/L							U
1,1,1-Trichloroethane	ND	0.20	ug/L							U
1,2-Dichloroethane	ND	0.20	ug/L							U
Trichloroethene	ND	0.20	ug/L							U
Tetrachloroethene	ND	0.20	ug/L							U
1,1,1,2-Tetrachloroethane	ND	0.20	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	5.01		ug/L	5.00		100	80-129			
Surrogate: Toluene-d8	4.95		ug/L	5.00		99.0	80-120			
Surrogate: 4-Bromofluorobenzene	4.93		ug/L	5.00		98.7	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	4.99		ug/L	5.00		99.8	80-120			
LCS (BLE0096-BS1)			Prep	ared: 03-Ma	y-2023 A	nalyzed: 03-	May-2023	12:11		
Vinyl Chloride	10.4	0.20	ug/L	10.0		104	66-133			
cis-1,2-Dichloroethene	10.1	0.20	ug/L	10.0		101	80-121			
Chloroform	10.4	0.20	ug/L	10.0		104	80-122			
1,1,1-Trichloroethane	10.4	0.20	ug/L	10.0		104	79-123			
1,2-Dichloroethane	10.2	0.20	ug/L	10.0		102	75-123			
Trichloroethene	10.4	0.20	ug/L	10.0		104	80-120			
Tetrachloroethene	10.7	0.20	ug/L	10.0		107	80-120			
1,1,1,2-Tetrachloroethane	10.0	0.20	ug/L	10.0		100	80-120			
Surrogate: 1,2-Dichloroethane-d4	4.92		ug/L	5.00		98.5	80-129			
Surrogate: Toluene-d8	4.92		ug/L	5.00		98.5	80-120			
Surrogate: 4-Bromofluorobenzene	5.07		ug/L	5.00		101	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.12		ug/L	5.00		102	80-120			

LCS Dup (BLE0096-BSD1)	Prep	ared: 03-May-20	023 Analyzed: 03-	Analyzed: 03-May-2023 12:56					
Vinyl Chloride	10.2	0.20	ug/L	10.0	102	66-133	2.26	30	
cis-1,2-Dichloroethene	9.96	0.20	ug/L	10.0	99.6	80-121	1.45	30	
Chloroform	10.2	0.20	ug/L	10.0	102	80-122	1.96	30	
1,1,1-Trichloroethane	10.3	0.20	ug/L	10.0	103	79-123	0.84	30	
1,2-Dichloroethane	10.1	0.20	ug/L	10.0	101	75-123	0.70	30	
Trichloroethene	10.5	0.20	ug/L	10.0	105	80-120	1.23	30	

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BLE0096 - EPA 8260D

Instrument: NT3 Analyst: PKC

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BLE0096-BSD1)			Prep	ared: 03-Ma	y-2023 Analy	zed: 03-Ma	ay-2023	12:56		
Tetrachloroethene	10.3	0.20	ug/L	10.0		103	80-120	3.53	30	
1,1,1,2-Tetrachloroethane	10.0	0.20	ug/L	10.0		100	80-120	0.19	30	
Surrogate: 1,2-Dichloroethane-d4	5.00		ug/L	5.00	99.	9	80-129			
Surrogate: Toluene-d8	5.00		ug/L	5.00	100)	80-120			
Surrogate: 4-Bromofluorobenzene	5.07		ug/L	5.00	101	!	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	4.98		ug/L	5.00	<i>99</i> .	6	80-120			

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Analysis by: Analytical Resources, LLC

Dissolved Gases - Quality Control

Batch BLE0090 - EPA RSK-175

Instrument: FID6 Analyst: LH

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLE0090-BLK1)			Prep	ared: 03-Ma	y-2023 A	nalyzed: 03-	-May-2023	07:45		
Methane	ND	0.65	ug/L							U
Ethane	ND	1.23	ug/L							U
Ethene	ND	1.14	ug/L							U
Surrogate: Propane	1830		ug/L	1800		102	62-122			
LCS (BLE0090-BS1)			Prep	ared: 03-Ma	y-2023 A	nalyzed: 03-	-May-2023	07:09		
Methane	717	0.65	ug/L	656		109	80-120			
Ethane	1400	1.23	ug/L	1230		114	80-120			
Ethene	1260	1.14	ug/L	1150		110	80-120			
Surrogate: Propane	1880		ug/L	1800		105	62-122			
LCS Dup (BLE0090-BSD1)			Prep	ared: 03-Ma	y-2023 A	nalyzed: 03-	-May-2023	07:27		
Methane	743	0.65	ug/L	656		113	80-120	3.55	30	
Ethane	1450	1.23	ug/L	1230		118	80-120	3.79	30	
Ethene	1310	1.14	ug/L	1150		114	80-120	3.88	30	
Surrogate: Propane	2060		ug/L	1800		114	62-122			
Duplicate (BLE0090-DUP1)	Source	: 23D0666-01	Prep	ared: 03-Ma	y-2023 A	nalyzed: 03-	-May-2023	10:26		
Methane	20.5	0.65	ug/L		18.9			8.43	30	
Ethane	ND	1.23	ug/L		ND					U
Ethene	ND	1.14	ug/L		ND					U
Surrogate: Propane	1930		ug/L	1800	1700	107	62-122			

24

55

5120

23.5

2.22

0.142

20.0

0.500

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Analytical Report

Reported: 19-May-2023 11:47

Analysis by: Analytical Resources, LLC

Metals and Metallic Compounds (dissolved) - Quality Control

Batch BLE0381 - EPA 6020B

Magnesium, Dissolved

Manganese, Dissolved

Instrument: ICPMS2 Analyst: SKD

QC Sample/Analyte	Isotope	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLE0381-BLK1)					Prep	ared: 11-May	y-2023 Ar	alyzed: 15-	May-2023	21:11		
Calcium, Dissolved	44	ND	11.1	50.0	ug/L							U
Iron, Dissolved	54	ND	18.2	36.0	ug/L							U
Iron, Dissolved	57	ND	18.2	36.0	ug/L							U
Magnesium, Dissolved	24	ND	2.22	20.0	ug/L							U
Manganese, Dissolved	55	0.355	0.142	0.500	ug/L							J
LCS (BLE0381-BS1)					Prep	ared: 11-May	y-2023 An	nalyzed: 15-	May-2023	21:13		
Calcium, Dissolved	44	5180	11.1	50.0	ug/L	5000		104	80-120			
Iron, Dissolved	54	5330	18.2	36.0	ug/L	5000		107	80-120			
Iron, Dissolved	57	5230	18.2	36.0	ug/L	5000		105	80-120			

ug/L

ug/L

5000

25.0

102

93.9

80-120

80-120

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Analysis by: Analytical Resources, LLC

Metals and Metallic Compounds (dissolved) - Quality Control

Batch BLE0382 - EPA 6020B

Instrument: ICPMS1 Analyst: MCB

QC Sample/Analyte	Isotope	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLE0382-BLK3)					Prep	ared: 11-Ma	y-2023 An	alyzed: 15-	May-2023	19:09		
Iron, Dissolved	54	ND	18.2	36.0	ug/L							U
Iron, Dissolved	57	ND	18.2	36.0	ug/L							U
Manganese, Dissolved	55	ND	0.142	0.500	ug/L							U
LCS (BLE0382-BS3)					Prep	ared: 11-Ma	y-2023 An	alyzed: 15-	May-2023	19:14		
Iron, Dissolved	54	5290	18.2	36.0	ug/L	5000		106	80-120			
Iron, Dissolved	57	5220	18.2	36.0	ug/L	5000		104	80-120			
Manganese, Dissolved	55	22.6	0.142	0.500	ug/L	25.0		90.5	80-120			
Instrument: ICPMS2 Analyst	: SKD											
			Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Isotope	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BLE0382-BLK2)					Prep	ared: 11-Ma	y-2023 An	alyzed: 15-	May-2023	21:16		
Calcium, Dissolved	44	ND	11.1	50.0	ug/L							U
Magnesium, Dissolved	24	ND	2.22	20.0	ug/L							U
LCS (BLE0382-BS2)					Prep	ared: 11-Ma	y-2023 An	alyzed: 15-	May-2023	21:18		
Calcium, Dissolved	44	5360	11.1	50.0	ug/L	5000		107	80-120			
Magnesium, Dissolved	24	5360	2.22	20.0	ug/L	5000		107	80-120			

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Analysis by: Analytical Resources, LLC

Wet Chemistry - Quality Control

Batch BLD0824 - EPA 300.0

Instrument: IC930 Analyst: CDE

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLD0824-BLK1)				Prep	ared: 29-Apr	r-2023 Ana	alyzed: 29-	Apr-2023 15	5:17		
Chloride	ND	0.100	0.100	mg/L							U
Nitrate-N	ND	0.100	0.100	mg/L							U
Sulfate	ND	0.100	0.100	mg/L							U
LCS (BLD0824-BS1)				Prep	ared: 29-Apr	r-2023 Ana	alyzed: 29-	Apr-2023 16	5:17		
Chloride	4.97	0.100	0.100	mg/L	5.00		99.4	90-110			
Nitrate-N	5.11	0.100	0.100	mg/L	5.00		102	90-110			
Sulfate	5.09	0.100	0.100	mg/L	5.00		102	90-110			
Duplicate (BLD0824-DUP1)	S	ource: 23E	0666-01	Prep	ared: 29-Api	r-2023 Ana	alyzed: 29-	Apr-2023 12	2:57		
Chloride	9.87	0.100	0.100	mg/L		9.86			0.12	20	
Nitrate-N	ND	0.100	0.100	mg/L		ND					H, U
Duplicate (BLD0824-DUP2)	Se	ource: 23E	0666-01RE	l Prep	ared: 29-Api	r-2023 Ana	alyzed: 29-	Apr-2023 16	5:56		
Sulfate	15.3	0.400	0.400	mg/L		15.2			0.94	20	D
Matrix Spike (BLD0824-MS1)	Se	ource: 23E	0666-01	Prep	ared: 29-Api	r-2023 Ana	alyzed: 29-	Apr-2023 13	3:17		
Nitrate-N	1.93	0.100	0.100	mg/L	1.98	ND	97.7	75-125			Н

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Analysis by: Analytical Resources, LLC

Wet Chemistry - Quality Control

Batch BLE0460 - EPA 9060A

Instrument: TOC-LCSH Analyst: RMS

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLE0460-BLK1)				Prep	ared: 16-Ma	y-2023 Ar	nalyzed: 16-	May-2023	18:32		
Total Organic Carbon	ND	0.50	0.50	mg/L							U
LCS (BLE0460-BS1)				Prep	ared: 16-Ma	y-2023 Ar	nalyzed: 16-	May-2023	18:53		
Total Organic Carbon	21.18	0.50	0.50	mg/L	20.00		106	90-110			

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104

Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Certified Analyses included in this Report

Analyte	Certifications
EPA 300.0 in Water	
Chloride	DoD-ELAP,WADOE,WA-DW,NELAP
Nitrate-N	DoD-ELAP,WADOE,WA-DW,NELAP
Sulfate	DoD-ELAP,WADOE,WA-DW,NELAP
EPA 6020B in Water	
Calcium-44	DoD-ELAP,NELAP
Iron-54	NELAP,WADOE,DoD-ELAP
Iron-57	NELAP,WADOE,DoD-ELAP
Magnesium-24	NELAP,DoD-ELAP,WADOE
Manganese-55	NELAP,WADOE,DoD-ELAP
EPA 8260D in Water	
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,WADOE
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE
Chloroform	DoD-ELAP,ADEC,NELAP,WADOE
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,WADOE
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,WADOE
Trichloroethene	DoD-ELAP,ADEC,NELAP,WADOE
Tetrachloroethene	DoD-ELAP,ADEC,NELAP,WADOE
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE
EPA 9060A in Water	
Total Organic Carbon	DoD-ELAP,WADOE,NELAP
EPA RSK-175 in Water	
Methane	NELAP
Ethane	NELAP
Ethene	NELAP

Aspect Consulting, LLC.	Project: Former Tux Shop	
710 2nd Avenue, Suite 550	Project Number: 090030	Reported:
Seattle WA, 98104	Project Manager: Delia Massey	19-May-2023 11:47

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	03/28/2025
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program, PJLA Testing	66169	02/28/2025
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2023
WADOE	WA Dept of Ecology	C558	06/30/2023
WA-DW	Ecology - Drinking Water	C558	06/30/2023

Aspect Consulting, LLC. 710 2nd Avenue, Suite 550 Seattle WA, 98104 Project: Former Tux Shop Project Number: 090030 Project Manager: Delia Massey

Reported: 19-May-2023 11:47

Notes and Definitions

*	Flagged value is not within established control limits.
D	The reported value is from a dilution
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)
Н	Hold time violation - Hold time was exceeded.
J	Estimated concentration value detected below the reporting limit.
U	This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
[2C]	Indicates this result was quantified on the second column on a dual column analysis.

August 7, 2023

Baxter Call Aspect Consulting Dexter Horton Building 710 2nd Avenue, Suite 550 Seattle, WA 98104

Re: Analytical Data for Project 090030 Laboratory Reference No. 2307-222

Dear Baxter:

Enclosed are the analytical results and associated quality control data for samples submitted on July 27, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: August 7, 2023 Samples Submitted: July 27, 2023 Laboratory Reference: 2307-222 Project: 090030

Case Narrative

Samples were collected on July 24, 25, 26 and 27, 2023 and received by the laboratory on July 28, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-1-25-072623					
Laboratory ID:	07-222-01					
Dichlorodifluoromethane	ND	1.2	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	25	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	4.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	4.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	17	0.80	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	20	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	55	0.80	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	0.80	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-1-25-072623					
Laboratory ID:	07-222-01					
1,1,2-Trichloroethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	150	0.80	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	1.6	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	89	75-127				
Toluene-d8	95	80-127				
4-Bromofluorobenzene	99	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-3-25-072623					
Laboratory ID:	07-222-02					
Dichlorodifluoromethane	ND	0.30	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	6.3	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	0.25	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	0.24	0.20	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloroform	0.60	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	0.86	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-3-25-072623					
Laboratory ID:	07-222-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	29	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	90	75-127				
Toluene-d8	95	80-127				
4-Bromofluorobenzene	100	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-4-50-072723					
Laboratory ID:	07-222-03					
Dichlorodifluoromethane	ND	15	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	50	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	10	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	50	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	50	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	10	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	10	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	320	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	250	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	13	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	50	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	10	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	10	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	50	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	10	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	23	10	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	250	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	10	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	10	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	10	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	10	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	69	10	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	10	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	10	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	10	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	100	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	50	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	ND	10	EPA 8260D	8-3-23	8-3-23	

7

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-4-50-072723					
Laboratory ID:	07-222-03					
1,1,2-Trichloroethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	2100	20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	10	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	100	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	10	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	20	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	10	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	10	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	50	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	10	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	10	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	10	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	10	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	10	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	50	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	50	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	50	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	10	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	91	75-127				
Toluene-d8	97	80-127				
4-Bromofluorobenzene	101	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-6-25-072623					
Laboratory ID:	07-222-04					
Dichlorodifluoromethane	ND	1.2	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	25	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	4.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	4.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	20	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	1.8	0.80	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	ND	0.80	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-6-25-072623					
Laboratory ID:	07-222-04					
1,1,2-Trichloroethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	110	0.80	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	1.6	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	0.80	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	0.80	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	88	75-127				
Toluene-d8	96	80-127				
4-Bromofluorobenzene	100	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-7-35-072623					
Laboratory ID:	07-222-05					
Dichlorodifluoromethane	ND	3.0	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	63	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	50	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	2.5	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	10	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	10	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	50	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	3.4	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	20	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	10	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	ND	2.0	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-7-35-072623					
Laboratory ID:	07-222-05					
1,1,2-Trichloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	300	2.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	20	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	10	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	10	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	10	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	10	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	88	75-127				
Toluene-d8	97	80-127				
4-Bromofluorobenzene	98	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-8-35-072623					
Laboratory ID:	07-222-06					
Dichlorodifluoromethane	ND	1.5	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	32	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	25	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	1.3	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	5.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	5.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	25	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	3.8	1.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	10	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	5.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	ND	1.0	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

13

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-8-35-072623					
Laboratory ID:	07-222-06					
1,1,2-Trichloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	180	1.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	10	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	5.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	89	75-127				
Toluene-d8	96	80-127				
4-Bromofluorobenzene	99	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-9-32-072523					
Laboratory ID:	07-222-07					
Dichlorodifluoromethane	ND	0.30	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	6.3	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	0.25	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

15

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-9-32-072523					
Laboratory ID:	07-222-07					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	11	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	89	75-127				
Toluene-d8	94	80-127				
4-Bromofluorobenzene	97	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-10-40-072723					
Laboratory ID:	07-222-08					
Dichlorodifluoromethane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	40	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	40	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	40	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	200	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	200	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	40	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	40	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	200	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	80	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	40	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	8.0	EPA 8260D	8-3-23	8-3-23	

17

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-10-40-072723					
Laboratory ID:	07-222-08					
1,1,2-Trichloroethane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	1100	8.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	80	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	16	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	40	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	8.0	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	40	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	40	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	40	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	90	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-11-25-072723					
Laboratory ID:	07-222-09					
Dichlorodifluoromethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	100	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	20	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	100	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	100	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	20	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	500	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	500	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	20	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	100	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	20	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	100	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	20	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	500	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	20	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	20	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	20	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	20	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	200	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	100	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	20	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-11-25-072723					
Laboratory ID:	07-222-09					
1,1,2-Trichloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	3300	20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	20	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	200	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	40	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	20	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	20	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	100	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	20	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	20	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	100	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	100	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	100	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	93	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

20

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-12-35-072723					
Laboratory ID:	07-222-10					
Dichlorodifluoromethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	100	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	20	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	100	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	100	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	20	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	500	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	500	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	20	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	100	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	20	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	100	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	130	20	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	500	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	20	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	20	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	48	20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	20	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	20	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	200	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	100	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	20	EPA 8260D	8-3-23	8-3-23	

21

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-12-35-072723					
Laboratory ID:	07-222-10					
1,1,2-Trichloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	2900	20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	20	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	200	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	40	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	20	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	20	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	100	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	20	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	20	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	100	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	100	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	100	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	20	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	92	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-13-50-072523					
Laboratory ID:	07-222-11					
Dichlorodifluoromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	100	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	100	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	20	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	20	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	29	4.0	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	100	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	110	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	40	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	20	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	4.0	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

23

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-13-50-072523					
Laboratory ID:	07-222-11					
1,1,2-Trichloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	550	4.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	40	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	20	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	20	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	90	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Analyte						
Client ID:	AC-14-25-072623					
Laboratory ID:	07-222-12					
Dichlorodifluoromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	50	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	50	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	10	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	10	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	50	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	20	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	10	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	2.0	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

25
VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-14-25-072623					
Laboratory ID:	07-222-12					
1,1,2-Trichloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	350	2.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	20	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	10	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	10	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	10	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	10	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	91	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-15-35-072723					
Laboratory ID:	07-222-13					
Dichlorodifluoromethane	ND	30	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	150	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	30	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	150	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	150	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	30	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	30	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	750	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	750	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	30	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	150	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	30	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	30	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	30	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	150	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	30	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	30	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	750	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	30	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	30	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	30	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	30	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	30	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	30	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	30	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	ND	30	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	30	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	30	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	30	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	30	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	300	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	150	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	30	EPA 8260D	8-3-23	8-3-23	

27

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-15-35-072723					
Laboratory ID:	07-222-13					
1,1,2-Trichloroethane	ND	30	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	4300	30	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	30	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	300	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	30	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	30	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	30	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	60	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	30	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	30	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	150	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	30	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	30	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	30	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	30	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	30	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	150	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	150	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	150	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	30	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	90	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-16-50-072623					
Laboratory ID:	07-222-14					
Dichlorodifluoromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	100	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	100	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	20	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	20	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	21	4.0	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	100	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	130	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	40	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	20	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	4.0	EPA 8260D	8-3-23	8-3-23	

29

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-16-50-072623					
Laboratory ID:	07-222-14					
1,1,2-Trichloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	770	4.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	40	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	20	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	20	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	92	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-17-35-072523					
Laboratory ID:	07-222-15					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	9.3	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	0.55	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	4.5	0.20	EPA 8260D	8-4-23	8-4-23	
2-Butanone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	5.4	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	8-4-23	8-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

31

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-17-35-072523					
Laboratory ID:	07-222-15					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	33	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	75-127				
Toluene-d8	104	80-127				
4-Bromofluorobenzene	92	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-18-25-072423					
Laboratory ID:	07-222-16					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-18-25-072423					
Laboratory ID:	07-222-16					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	93	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-19-35-072423					
Laboratory ID:	07-222-17					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-19-35-072423					
Laboratory ID:	07-222-17					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	90	78-125				

Matrix: Water Units: ug/L

·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-20-25-072523					
Laboratory ID:	07-222-18					
Dichlorodifluoromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	10	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	50	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	50	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	10	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	10	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	8.6	2.0	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	50	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	6.7	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	20	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	10	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	2.0	EPA 8260D	8-3-23	8-3-23	

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-20-25-072523					
Laboratory ID:	07-222-18					
1,1,2-Trichloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	240	2.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	20	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	10	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	2.0	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	10	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	10	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	10	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	91	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-21-35-072523					
Laboratory ID:	07-222-19					
Dichlorodifluoromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	20	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	100	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	100	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	20	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	20	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	11	4.0	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	100	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	15	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	40	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	20	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	4.0	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

39

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-21-35-072523					
Laboratory ID:	07-222-19					
1,1,2-Trichloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	690	4.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	40	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	8.0	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	20	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	4.0	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	20	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	4.0	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	91	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

40

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-22-20-072523					
Laboratory ID:	07-222-20					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloroform	0.37	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

41

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-22-20-072523					
Laboratory ID:	07-222-20					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	75-127				
Toluene-d8	97	80-127				
4-Bromofluorobenzene	92	78-125				

Matrix: Water Units: ug/L

·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-23-30-072523					
Laboratory ID:	07-222-21					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloroform	0.28	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-23-30-072523					
Laboratory ID:	07-222-21					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	3.2	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	91	78-125				

Matrix: Water Units: ug/L

·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-24-25-072423					
Laboratory ID:	07-222-22					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	0.47	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-24-25-072423					
Laboratory ID:	07-222-22					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	91	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-25-35-072423					
Laboratory ID:	07-222-23					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	9.3	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	0.37	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Butanone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	8-4-23	8-4-23	

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-25-35-072423					
Laboratory ID:	07-222-23					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	91	78-125				

Matrix: Water Units: ug/L

·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-26-25-072423					
Laboratory ID:	07-222-24					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	0.23	0.20	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	0.25	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-26-25-072423					
Laboratory ID:	07-222-24					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	1.9	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	94	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-27-35-072423					
Laboratory ID:	07-222-25					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

51

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-27-35-072423					
Laboratory ID:	07-222-25					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	92	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-35-072723					
Laboratory ID:	07-222-27					
Dichlorodifluoromethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	10	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	10	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	10	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	50	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	93	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	2.5	2.0	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	10	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	10	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	230	2.0	EPA 8260D	8-4-23	8-4-23	
2-Butanone	190	50	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	17	2.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	20	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	10	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	ND	2.0	EPA 8260D	8-4-23	8-4-23	

53

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-35-072723					
Laboratory ID:	07-222-27					
1,1,2-Trichloroethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	24	2.0	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	20	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	10	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	10	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	10	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	10	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	87	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-39-072623					
Laboratory ID:	07-222-28					
Dichlorodifluoromethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	20	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	20	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	20	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	100	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	190	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	20	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	20	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	39	4.0	EPA 8260D	8-4-23	8-4-23	
2-Butanone	ND	100	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	14	4.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	40	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	20	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	ND	4.0	EPA 8260D	8-4-23	8-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-39-072623					
Laboratory ID:	07-222-28					
1,1,2-Trichloroethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	540	4.0	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	40	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	20	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	20	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	20	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	20	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	88	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-45-072623					
Laboratory ID:	07-222-29					
Dichlorodifluoromethane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	20	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	37	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	4.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	4.0	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	1.3	0.80	EPA 8260D	8-4-23	8-4-23	
2-Butanone	ND	20	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	2.7	0.80	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	ND	0.80	EPA 8260D	8-4-23	8-4-23	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AS-45-072623					
Laboratory ID:	07-222-29					
1,1,2-Trichloroethane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	60	0.80	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	1.6	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	0.80	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	4.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	87	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date			
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags		
Client ID:	HC-4-072723							
Laboratory ID:	07-222-30							
Dichlorodifluoromethane	ND	0.40	EPA 8260D	8-4-23	8-4-23			
Chloromethane	ND	2.0	EPA 8260D	8-4-23	8-4-23			
Vinyl Chloride	ND	0.40	EPA 8260D	8-4-23	8-4-23			
Bromomethane	ND	2.0	EPA 8260D	8-4-23	8-4-23			
Chloroethane	ND	2.0	EPA 8260D	8-4-23	8-4-23			
Trichlorofluoromethane	ND	0.40	EPA 8260D	8-4-23	8-4-23			
1,1-Dichloroethene	ND	0.40	EPA 8260D	8-4-23	8-4-23			
Acetone	ND	10	EPA 8260D	8-4-23	8-4-23			
lodomethane	ND	19	EPA 8260D	8-4-23	8-4-23			
Carbon Disulfide	ND	0.40	EPA 8260D	8-4-23	8-4-23			
Methylene Chloride	ND	2.0	EPA 8260D	8-4-23	8-4-23			
(trans) 1,2-Dichloroethene	ND	0.40	EPA 8260D	8-4-23	8-4-23			
Methyl t-Butyl Ether	ND	0.40	EPA 8260D	8-4-23	8-4-23			
1,1-Dichloroethane	ND	0.40	EPA 8260D	8-4-23	8-4-23			
Vinyl Acetate	ND	2.0	EPA 8260D	8-4-23	8-4-23			
2,2-Dichloropropane	ND	0.40	EPA 8260D	8-4-23	8-4-23			
(cis) 1,2-Dichloroethene	4.4	0.40	EPA 8260D	8-4-23	8-4-23			
2-Butanone	ND	10	EPA 8260D	8-4-23	8-4-23			
Bromochloromethane	ND	0.40	EPA 8260D	8-4-23	8-4-23			
Chloroform	ND	0.40	EPA 8260D	8-4-23	8-4-23			
1,1,1-Trichloroethane	ND	0.40	EPA 8260D	8-4-23	8-4-23			
Carbon Tetrachloride	ND	0.40	EPA 8260D	8-4-23	8-4-23			
1,1-Dichloropropene	ND	0.40	EPA 8260D	8-4-23	8-4-23			
Benzene	ND	0.40	EPA 8260D	8-4-23	8-4-23			
1,2-Dichloroethane	ND	0.40	EPA 8260D	8-4-23	8-4-23			
Trichloroethene	1.5	0.40	EPA 8260D	8-4-23	8-4-23			
1,2-Dichloropropane	ND	0.40	EPA 8260D	8-4-23	8-4-23			
Dibromomethane	ND	0.40	EPA 8260D	8-4-23	8-4-23			
Bromodichloromethane	ND	0.40	EPA 8260D	8-4-23	8-4-23			
(cis) 1,3-Dichloropropene	ND	0.40	EPA 8260D	8-4-23	8-4-23			
Methyl Isobutyl Ketone	ND	4.0	EPA 8260D	8-4-23	8-4-23			
Toluene	ND	2.0	EPA 8260D	8-4-23	8-4-23			
(trans) 1,3-Dichloropropene	ND	0.40	EPA 8260D	8-4-23	8-4-23			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

59

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-4-072723					
Laboratory ID:	07-222-30					
1,1,2-Trichloroethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	44	0.40	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	87	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-5-072623					
Laboratory ID:	07-222-31					
Dichlorodifluoromethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	10	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	19	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	2.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	2.0	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
2-Butanone	ND	10	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	0.85	0.40	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	ND	0.40	EPA 8260D	8-4-23	8-4-23	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-5-072623					
Laboratory ID:	07-222-31					
1,1,2-Trichloroethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	40	0.40	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	4.0	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	0.80	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	0.40	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	2.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	88	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-6-072523					
Laboratory ID:	07-222-32					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	9.3	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	0.63	0.20	EPA 8260D	8-4-23	8-4-23	
2-Butanone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	3.1	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-6-072523					
Laboratory ID:	07-222-32					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	22	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	88	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-8-072623					
Laboratory ID:	07-222-33					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	9.3	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	0.52	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	3.3	0.20	EPA 8260D	8-4-23	8-4-23	
2-Butanone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	0.28	0.20	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	2.2	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-8-072623					
Laboratory ID:	07-222-33					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	22	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	86	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	IW-1-072723					
Laboratory ID:	07-222-34					
Dichlorodifluoromethane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	40	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	40	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	40	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	200	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	370	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	40	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	40	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
2-Butanone	2100	200	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	80	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	40	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	ND	8.0	EPA 8260D	8-4-23	8-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	IW-1-072723					
Laboratory ID:	07-222-34					
1,1,2-Trichloroethane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	18	8.0	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	80	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	16	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	40	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	8.0	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	40	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	40	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	40	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	8.0	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	88	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1A-072523					
Laboratory ID:	07-222-35					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	9.3	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Butanone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	0.58	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1A-072523					
Laboratory ID:	07-222-35					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	2.9	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	75-127				
Toluene-d8	102	80-127				
4-Bromofluorobenzene	88	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5A-072523					
Laboratory ID:	07-222-36					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	9.3	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	1.1	0.20	EPA 8260D	8-4-23	8-4-23	
2-Butanone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	1.0	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5A-072523					
Laboratory ID:	07-222-36					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	6.6	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	88	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TB-01					
Laboratory ID:	07-222-37					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	9.3	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Butanone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

73

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TB-01					
Laboratory ID:	07-222-37					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	89	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TB-02					
Laboratory ID:	07-222-38					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	9.3	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Butanone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TB-02					
Laboratory ID:	07-222-38					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	88	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0803W1					
Dichlorodifluoromethane	ND	0.30	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	6.3	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	0.25	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0803W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	1.0	EPA 8260D	8-3-23	8-3-23	
lsopropylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	91	75-127				
Toluene-d8	95	80-127				
4-Bromofluorobenzene	102	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0803W2					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloromethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromomethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Chloroethane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Acetone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
lodomethane	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-3-23	8-3-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Butanone	ND	5.0	EPA 8260D	8-3-23	8-3-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chloroform	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Benzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Trichloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Dibromomethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Toluene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-3-23	8-3-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0803W2					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Tetrachloroethene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Hexanone	ND	2.0	EPA 8260D	8-3-23	8-3-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-3-23	8-3-23	
o-Xylene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Styrene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromoform	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Isopropylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Bromobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
Naphthalene	ND	1.0	EPA 8260D	8-3-23	8-3-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-3-23	8-3-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	93	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0804W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloromethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Vinyl Chloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromomethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Chloroethane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Acetone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
lodomethane	ND	9.3	EPA 8260D	8-4-23	8-4-23	
Carbon Disulfide	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methylene Chloride	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Vinyl Acetate	ND	1.0	EPA 8260D	8-4-23	8-4-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Butanone	ND	5.0	EPA 8260D	8-4-23	8-4-23	
Bromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chloroform	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Benzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Trichloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Dibromomethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromodichloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Toluene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-4-23	8-4-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0804W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Tetrachloroethene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Hexanone	ND	2.0	EPA 8260D	8-4-23	8-4-23	
Dibromochloromethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Chlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Ethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
m,p-Xylene	ND	0.40	EPA 8260D	8-4-23	8-4-23	
o-Xylene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Styrene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromoform	ND	1.0	EPA 8260D	8-4-23	8-4-23	
lsopropylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Bromobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Propylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
tert-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
sec-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
p-Isopropyltoluene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
n-Butylbenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
Naphthalene	ND	1.0	EPA 8260D	8-4-23	8-4-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	8-4-23	8-4-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	75-127				
Toluene-d8	103	80-127				
4-Bromofluorobenzene	93	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

					Per	Percent			RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	03W1								
	SB	SBD	SB	SBD	SB	SBD				
Dichlorodifluoromethane	6.71	5.94	10.0	10.0	67	59	34-166	12	21	
Chloromethane	8.34	7.71	10.0	10.0	83	77	63-138	8	18	
Vinyl Chloride	8.91	8.21	10.0	10.0	89	82	71-135	8	20	
Bromomethane	9.00	9.05	10.0	10.0	90	91	20-151	1	36	
Chloroethane	9.26	8.37	10.0	10.0	93	84	76-125	10	20	
Trichlorofluoromethane	9.28	8.79	10.0	10.0	93	88	75-131	5	19	
1,1-Dichloroethene	10.1	9.51	10.0	10.0	101	95	78-125	6	19	
Acetone	7.88	8.03	10.0	10.0	79	80	76-125	2	18	
lodomethane	8.59	8.46	10.0	10.0	86	85	10-155	2	40	
Carbon Disulfide	7.98	7.95	10.0	10.0	80	80	58-129	0	17	
Methylene Chloride	9.49	9.05	10.0	10.0	95	91	80-120	5	15	
(trans) 1,2-Dichloroethene	10.1	9.26	10.0	10.0	101	93	80-125	9	17	
Methyl t-Butyl Ether	9.44	8.91	10.0	10.0	94	89	80-122	6	15	
1,1-Dichloroethane	10.1	9.39	10.0	10.0	101	94	80-125	7	17	
Vinyl Acetate	8.28	8.39	10.0	10.0	83	84	80-131	1	15	
2,2-Dichloropropane	10.9	10.5	10.0	10.0	109	105	80-146	4	21	
(cis) 1,2-Dichloroethene	10.4	9.64	10.0	10.0	104	96	80-129	8	17	
2-Butanone	8.52	8.98	10.0	10.0	85	90	80-129	5	16	
Bromochloromethane	9.37	8.79	10.0	10.0	94	88	80-125	6	18	
Chloroform	10.2	9.53	10.0	10.0	102	95	80-123	7	16	
1,1,1-Trichloroethane	10.1	9.60	10.0	10.0	101	96	80-123	5	18	
Carbon Tetrachloride	10.7	10.0	10.0	10.0	107	100	80-126	7	17	
1,1-Dichloropropene	10.2	9.66	10.0	10.0	102	97	80-126	5	18	
Benzene	9.87	9.33	10.0	10.0	99	93	80-121	6	16	
1,2-Dichloroethane	9.49	9.04	10.0	10.0	95	90	80-124	5	15	
Trichloroethene	10.4	9.98	10.0	10.0	104	100	80-122	4	18	
1,2-Dichloropropane	10.5	9.91	10.0	10.0	105	99	80-123	6	15	
Dibromomethane	9.90	9.43	10.0	10.0	99	94	80-123	5	15	
Bromodichloromethane	10.4	10.1	10.0	10.0	104	101	80-125	3	15	
(cis) 1,3-Dichloropropene	10.4	9.93	10.0	10.0	104	99	80-129	5	15	
Methyl Isobutyl Ketone	8.98	8.90	10.0	10.0	90	89	80-124	1	15	
Toluene	9.89	9.51	10.0	10.0	99	95	80-120	4	18	
(trans) 1,3-Dichloropropene	11.1	10.4	10.0	10.0	111	104	80-134	7	17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB080	03W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1,2-Trichloroethane	10.4	10.2	10.0	10.0	104	102	77-126	2	20	
Tetrachloroethene	11.4	10.9	10.0	10.0	114	109	80-124	4	18	
1,3-Dichloropropane	10.3	9.55	10.0	10.0	103	96	80-120	8	15	
2-Hexanone	9.19	9.20	10.0	10.0	92	92	80-130	0	16	
Dibromochloromethane	10.6	10.1	10.0	10.0	106	101	80-128	5	15	
1,2-Dibromoethane	10.5	10.1	10.0	10.0	105	101	80-127	4	15	
Chlorobenzene	11.0	10.4	10.0	10.0	110	104	80-120	6	17	
1,1,1,2-Tetrachloroethane	10.9	10.4	10.0	10.0	109	104	80-125	5	17	
Ethylbenzene	11.3	10.6	10.0	10.0	113	106	80-125	6	18	
m,p-Xylene	22.8	21.3	20.0	20.0	114	107	80-127	7	18	
o-Xylene	11.1	10.3	10.0	10.0	111	103	80-126	7	18	
Styrene	11.0	10.3	10.0	10.0	110	103	80-130	7	17	
Bromoform	10.4	10.1	10.0	10.0	104	101	80-130	3	15	
Isopropylbenzene	11.5	10.9	10.0	10.0	115	109	80-129	5	18	
Bromobenzene	11.0	10.3	10.0	10.0	110	103	76-128	7	16	
1,1,2,2-Tetrachloroethane	10.6	10.4	10.0	10.0	106	104	74-130	2	15	
1,2,3-Trichloropropane	10.4	10.4	10.0	10.0	104	104	71-129	0	25	
n-Propylbenzene	11.8	11.5	10.0	10.0	118	115	80-129	3	19	
2-Chlorotoluene	11.2	11.0	10.0	10.0	112	110	80-128	2	18	
4-Chlorotoluene	11.4	10.9	10.0	10.0	114	109	80-130	4	19	
1,3,5-Trimethylbenzene	11.8	11.4	10.0	10.0	118	114	80-131	3	18	
tert-Butylbenzene	11.5	11.1	10.0	10.0	115	111	80-130	4	18	
1,2,4-Trimethylbenzene	11.5	11.0	10.0	10.0	115	110	80-130	4	18	
sec-Butylbenzene	11.9	11.4	10.0	10.0	119	114	80-130	4	18	
1,3-Dichlorobenzene	11.1	10.6	10.0	10.0	111	106	80-126	5	17	
p-Isopropyltoluene	12.3	11.7	10.0	10.0	123	117	80-132	5	18	
1,4-Dichlorobenzene	10.8	10.3	10.0	10.0	108	103	80-121	5	17	
1,2-Dichlorobenzene	11.0	10.5	10.0	10.0	110	105	79-125	5	15	
n-Butylbenzene	12.9	12.4	10.0	10.0	129	124	80-138	4	19	
1,2-Dibromo-3-chloropropane	10.2	10.4	10.0	10.0	102	104	73-133	2	15	
1,2,4-Trichlorobenzene	11.0	10.9	10.0	10.0	110	109	80-139	1	18	
Hexachlorobutadiene	11.9	12.0	10.0	10.0	119	120	80-151	1	18	
Naphthalene	10.0	9.91	10.0	10.0	100	99	68-144	1	25	
1,2,3-Trichlorobenzene	10.3	10.0	10.0	10.0	103	100	75-146	3	28	
Surrogate:										
Dibromofluoromethane					90	91	75-127			
Toluene-d8					95	97	80-127			
4-Bromofluorobenzene					107	105	78-125			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

					Per	Percent		RPD		
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	03W2								
	SB	SBD	SB	SBD	SB	SBD				
Dichlorodifluoromethane	12.2	12.3	10.0	10.0	122	123	34-166	1	21	
Chloromethane	10.7	10.8	10.0	10.0	107	108	63-138	1	18	
Vinyl Chloride	10.2	10.2	10.0	10.0	102	102	71-135	0	20	
Bromomethane	10.6	11.4	10.0	10.0	106	114	20-151	7	36	
Chloroethane	10.1	9.77	10.0	10.0	101	98	76-125	3	20	
Trichlorofluoromethane	9.86	10.0	10.0	10.0	99	100	75-131	1	19	
1,1-Dichloroethene	9.82	9.89	10.0	10.0	98	99	78-125	1	19	
Acetone	8.44	8.71	10.0	10.0	84	87	76-125	3	18	
lodomethane	8.52	8.62	10.0	10.0	85	86	10-155	1	40	
Carbon Disulfide	9.65	9.62	10.0	10.0	97	96	58-129	0	17	
Methylene Chloride	9.02	9.71	10.0	10.0	90	97	80-120	7	15	
(trans) 1,2-Dichloroethene	9.56	10.1	10.0	10.0	96	101	80-125	5	17	
Methyl t-Butyl Ether	9.50	9.84	10.0	10.0	95	98	80-122	4	15	
1,1-Dichloroethane	9.59	9.83	10.0	10.0	96	98	80-125	2	17	
Vinyl Acetate	8.77	8.79	10.0	10.0	88	88	80-131	0	15	
2,2-Dichloropropane	11.5	12.2	10.0	10.0	115	122	80-146	6	21	
(cis) 1,2-Dichloroethene	9.97	10.2	10.0	10.0	100	102	80-129	2	17	
2-Butanone	9.00	8.96	10.0	10.0	90	90	80-129	0	16	
Bromochloromethane	9.76	9.96	10.0	10.0	98	100	80-125	2	18	
Chloroform	9.78	9.80	10.0	10.0	98	98	80-123	0	16	
1,1,1-Trichloroethane	9.99	10.0	10.0	10.0	100	100	80-123	0	18	
Carbon Tetrachloride	9.95	10.0	10.0	10.0	100	100	80-126	1	17	
1,1-Dichloropropene	9.65	9.72	10.0	10.0	97	97	80-126	1	18	
Benzene	9.39	9.51	10.0	10.0	94	95	80-121	1	16	
1,2-Dichloroethane	9.17	9.49	10.0	10.0	92	95	80-124	3	15	
Trichloroethene	9.68	9.96	10.0	10.0	97	100	80-122	3	18	
1,2-Dichloropropane	9.22	9.46	10.0	10.0	92	95	80-123	3	15	
Dibromomethane	9.66	9.67	10.0	10.0	97	97	80-123	0	15	
Bromodichloromethane	9.99	10.3	10.0	10.0	100	103	80-125	3	15	
(cis) 1,3-Dichloropropene	9.29	9.51	10.0	10.0	93	95	80-129	2	15	
Methyl Isobutyl Ketone	9.02	9.16	10.0	10.0	90	92	80-124	2	15	
Toluene	8.84	8.96	10.0	10.0	88	90	80-120	1	18	
(trans) 1,3-Dichloropropene	10.3	9.96	10.0	10.0	103	100	80-134	3	17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

					F	ercent	Recovery			
Analyte	Res	ult	Spike	Level	R	ecovery	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB080)3W2								
	SB	SBD	SB	SBD	SE	B SBD				
1,1,2-Trichloroethane	10.4	10.3	10.0	10.0	10	4 103	77-126	1	20	
Tetrachloroethene	10.5	10.4	10.0	10.0	10	5 104	80-124	1	18	
1,3-Dichloropropane	10.4	10.1	10.0	10.0	10	4 101	80-120	3	15	
2-Hexanone	9.69	10.0	10.0	10.0	97	100	80-130	3	16	
Dibromochloromethane	9.87	9.70	10.0	10.0	99	97	80-128	2	15	
1,2-Dibromoethane	11.0	10.6	10.0	10.0	11	0 106	80-127	4	15	
Chlorobenzene	10.1	9.92	10.0	10.0	10	1 99	80-120	2	17	
1,1,1,2-Tetrachloroethane	11.1	10.8	10.0	10.0	11	1 108	80-125	3	17	
Ethylbenzene	10.3	10.0	10.0	10.0	10	3 100	80-125	3	18	
m,p-Xylene	20.6	20.5	20.0	20.0	10	3 103	80-127	0	18	
o-Xylene	10.3	10.2	10.0	10.0	10	3 102	80-126	1	18	
Styrene	10.8	10.7	10.0	10.0	10	8 107	80-130	1	17	
Bromoform	9.93	9.80	10.0	10.0	99	98	80-130	1	15	
Isopropylbenzene	10.6	10.4	10.0	10.0	10	6 104	80-129	2	18	
Bromobenzene	10.3	10.3	10.0	10.0	10	3 103	76-128	0	16	
1,1,2,2-Tetrachloroethane	10.1	9.97	10.0	10.0	10	1 100	74-130	1	15	
1,2,3-Trichloropropane	10.5	10.3	10.0	10.0	10	5 103	71-129	2	25	
n-Propylbenzene	10.8	10.7	10.0	10.0	10	8 107	80-129	1	19	
2-Chlorotoluene	10.6	10.5	10.0	10.0	10	6 105	80-128	1	18	
4-Chlorotoluene	10.7	10.6	10.0	10.0	10	7 106	80-130	1	19	
1,3,5-Trimethylbenzene	10.6	10.5	10.0	10.0	10	6 105	80-131	1	18	
tert-Butylbenzene	10.7	10.7	10.0	10.0	10	7 107	80-130	0	18	
1,2,4-Trimethylbenzene	10.6	10.5	10.0	10.0	10	6 105	80-130	1	18	
sec-Butylbenzene	10.8	10.7	10.0	10.0	10	8 107	80-130	1	18	
1,3-Dichlorobenzene	10.6	10.6	10.0	10.0	10	6 106	80-126	0	17	
p-lsopropyltoluene	11.0	11.0	10.0	10.0	11	0 110	80-132	0	18	
1,4-Dichlorobenzene	10.3	10.3	10.0	10.0	10	3 103	80-121	0	17	
1,2-Dichlorobenzene	10.3	10.2	10.0	10.0	10	3 102	79-125	1	15	
n-Butylbenzene	10.9	10.9	10.0	10.0	10	9 109	80-138	0	19	
1,2-Dibromo-3-chloropropane	9.66	9.77	10.0	10.0	97	′ <u>98</u>	73-133	1	15	
1,2,4-Trichlorobenzene	11.2	11.3	10.0	10.0	11	2 113	80-139	1	18	
Hexachlorobutadiene	11.2	11.3	10.0	10.0	11	2 113	80-151	1	18	
Naphthalene	9.65	10.2	10.0	10.0	97	102	68-144	6	25	
1,2,3-Trichlorobenzene	10.3	10.7	10.0	10.0	10	3 107	75-146	4	28	
Surrogate:										
Dibromofluoromethane					10	5 103	75-127			
Toluene-d8					10	1 98	80-127			
4-Bromofluorobenzene					10	0 96	78-125			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

					Percent		Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	04W1								
	SB	SBD	SB	SBD	SB	SBD				
Dichlorodifluoromethane	11.6	11.4	10.0	10.0	116	114	34-166	2	21	
Chloromethane	9.31	9.33	10.0	10.0	93	93	63-138	0	18	
Vinyl Chloride	10.7	10.4	10.0	10.0	107	104	71-135	3	20	
Bromomethane	8.72	10.2	10.0	10.0	87	102	20-151	16	36	
Chloroethane	10.7	10.7	10.0	10.0	107	107	76-125	0	20	
Trichlorofluoromethane	9.82	9.77	10.0	10.0	98	98	75-131	1	19	
1,1-Dichloroethene	10.8	10.4	10.0	10.0	108	104	78-125	4	19	
Acetone	9.84	10.1	10.0	10.0	98	101	76-125	3	18	
lodomethane	5.41	7.43	10.0	10.0	54	74	10-155	31	40	
Carbon Disulfide	9.87	10.1	10.0	10.0	99	101	58-129	2	17	
Methylene Chloride	10.2	10.5	10.0	10.0	102	105	80-120	3	15	
(trans) 1,2-Dichloroethene	10.1	10.1	10.0	10.0	101	101	80-125	0	17	
Methyl t-Butyl Ether	10.0	10.1	10.0	10.0	100	101	80-122	1	15	
1,1-Dichloroethane	9.90	9.90	10.0	10.0	99	99	80-125	0	17	
Vinyl Acetate	9.06	9.27	10.0	10.0	91	93	80-131	2	15	
2,2-Dichloropropane	11.4	11.5	10.0	10.0	114	115	80-146	1	21	
(cis) 1,2-Dichloroethene	10.2	10.4	10.0	10.0	102	104	80-129	2	17	
2-Butanone	9.64	10.1	10.0	10.0	96	101	80-129	5	16	
Bromochloromethane	10.0	10.3	10.0	10.0	100	103	80-125	3	18	
Chloroform	9.76	9.96	10.0	10.0	98	100	80-123	2	16	
1,1,1-Trichloroethane	9.85	9.88	10.0	10.0	99	99	80-123	0	18	
Carbon Tetrachloride	9.68	9.92	10.0	10.0	97	99	80-126	2	17	
1,1-Dichloropropene	9.49	9.63	10.0	10.0	95	96	80-126	1	18	
Benzene	9.35	9.56	10.0	10.0	94	96	80-121	2	16	
1,2-Dichloroethane	9.38	9.55	10.0	10.0	94	96	80-124	2	15	
Trichloroethene	9.30	9.66	10.0	10.0	93	97	80-122	4	18	
1,2-Dichloropropane	9.08	9.35	10.0	10.0	91	94	80-123	3	15	
Dibromomethane	9.73	9.72	10.0	10.0	97	97	80-123	0	15	
Bromodichloromethane	9.90	10.2	10.0	10.0	99	102	80-125	3	15	
(cis) 1,3-Dichloropropene	9.08	9.36	10.0	10.0	91	94	80-129	3	15	
Methyl Isobutyl Ketone	9.33	9.56	10.0	10.0	93	96	80-124	2	15	
Toluene	8.69	8.99	10.0	10.0	87	90	80-120	3	18	
(trans) 1,3-Dichloropropene	9.78	10.1	10.0	10.0	98	101	80-134	3	17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

						Percent		Recovery		RPD	
Analyte	Res	ult	Spike	Level		Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB080	04W1									
	SB	SBD	SB	SBD	e.	SB	SBD				
1,1,2-Trichloroethane	10.5	10.9	10.0	10.0	1	105	109	77-126	4	20	
Tetrachloroethene	10.3	10.5	10.0	10.0	1	103	105	80-124	2	18	
1,3-Dichloropropane	10.4	10.6	10.0	10.0	1	104	106	80-120	2	15	
2-Hexanone	10.2	11.0	10.0	10.0	1	102	110	80-130	8	16	
Dibromochloromethane	9.65	9.87	10.0	10.0		97	99	80-128	2	15	
1,2-Dibromoethane	11.0	11.1	10.0	10.0	1	110	111	80-127	1	15	
Chlorobenzene	10.1	10.3	10.0	10.0	1	101	103	80-120	2	17	
1,1,1,2-Tetrachloroethane	10.9	11.0	10.0	10.0	1	109	110	80-125	1	17	
Ethylbenzene	10.3	10.4	10.0	10.0	1	103	104	80-125	1	18	
m,p-Xylene	20.7	21.1	20.0	20.0	1	104	106	80-127	2	18	
o-Xylene	10.2	10.3	10.0	10.0	1	102	103	80-126	1	18	
Styrene	10.7	11.0	10.0	10.0	1	107	110	80-130	3	17	
Bromoform	10.0	10.1	10.0	10.0	1	100	101	80-130	1	15	
Isopropylbenzene	10.6	10.7	10.0	10.0	1	106	107	80-129	1	18	
Bromobenzene	10.3	10.4	10.0	10.0	1	103	104	76-128	1	16	
1,1,2,2-Tetrachloroethane	10.6	10.8	10.0	10.0	1	106	108	74-130	2	15	
1,2,3-Trichloropropane	10.9	11.0	10.0	10.0	1	109	110	71-129	1	25	
n-Propylbenzene	10.7	10.8	10.0	10.0	1	107	108	80-129	1	19	
2-Chlorotoluene	10.4	10.7	10.0	10.0	1	104	107	80-128	3	18	
4-Chlorotoluene	10.7	10.7	10.0	10.0	1	107	107	80-130	0	19	
1,3,5-Trimethylbenzene	10.4	10.6	10.0	10.0	1	104	106	80-131	2	18	
tert-Butylbenzene	10.6	10.7	10.0	10.0	1	106	107	80-130	1	18	
1,2,4-Trimethylbenzene	10.4	10.5	10.0	10.0	1	104	105	80-130	1	18	
sec-Butylbenzene	10.8	10.8	10.0	10.0	1	108	108	80-130	0	18	
1,3-Dichlorobenzene	10.5	10.7	10.0	10.0	1	105	107	80-126	2	17	
p-lsopropyltoluene	10.9	10.9	10.0	10.0	1	109	109	80-132	0	18	
1,4-Dichlorobenzene	10.3	10.3	10.0	10.0	1	103	103	80-121	0	17	
1,2-Dichlorobenzene	10.3	10.5	10.0	10.0	1	103	105	79-125	2	15	
n-Butylbenzene	11.0	11.1	10.0	10.0	1	110	111	80-138	1	19	
1,2-Dibromo-3-chloropropane	10.2	10.2	10.0	10.0	1	102	102	73-133	0	15	
1,2,4-Trichlorobenzene	11.1	11.6	10.0	10.0	1	111	116	80-139	4	18	
Hexachlorobutadiene	11.0	11.2	10.0	10.0	1	110	112	80-151	2	18	
Naphthalene	10.3	10.9	10.0	10.0	1	103	109	68-144	6	25	
1,2,3-Trichlorobenzene	10.4	10.9	10.0	10.0	1	104	109	75-146	5	28	
Surrogate:											
Dibromofluoromethane					1	113	113	75-127			
Toluene-d8					1	103	102	80-127			
4-Bromofluorobenzene						97	95	78-125			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NITRATE (as Nitrogen) EPA 353.2

Matrix: Water Units: mg/L-N

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-4-50-072723					
Laboratory ID:	07-222-03					
Nitrate	0.054	0.050	EPA 353.2	7-27-23	7-27-23	
Client ID:	AS-31-072723					
Laboratory ID:	07-222-26					
Nitrate	2.2	0.050	EPA 353.2	7-27-23	7-27-23	
Client ID:	AS-35-072723					
Laboratory ID:	07-222-27					
Nitrate	0.059	0.050	EPA 353.2	7-27-23	7-27-23	
Client ID:	HC-4-072723					
Laboratory ID:	07-222-30					
Nitrate	ND	0.050	EPA 353.2	7-27-23	7-27-23	
Client ID:	IW-1-072723					
Laboratory ID:	07-222-34					
Nitrate	0.31	0.050	EPA 353.2	7-27-23	7-27-23	

NITRATE (as Nitrogen) EPA 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L-N

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0727W1					
Nitrate	ND	0.050	EPA 353.2	7-27-23	7-27-23	

				Source	Percent	Recovery		RPD	
Analyte	Res	ult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	07-220	0-07							
	ORIG	DUP							
Nitrate	ND	ND	NA	NA	NA	NA	NA	19	
MATRIX SPIKE									
Laboratory ID:	07-22	0-07							
	MS	5	MS		MS				
Nitrate	1.9	3	2.00	ND	97	85-121	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB072	27W1							
	SE	3	SB		SB				
Nitrate	2.0	3	2.00	NA	102	87-118	NA	NA	

DISSOLVED METALS EPA 6010D

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-4-50-072723					
Laboratory ID:	07-222-03					
Calcium	25000	1100	EPA 6010D		8-1-23	
Iron	ND	56	EPA 6010D		8-1-23	
Magnesium	26000	1100	EPA 6010D		8-1-23	
Manganese	55	11	EPA 6010D		8-1-23	
	AC 24 070700					
	AS-31-0/2/23					
Laboratory ID:	07-222-26	1100			0.4.00	
	25000	1100	EPA 6010D		8-1-23	
Iron Manus a issue	75	56	EPA 6010D		8-1-23	
Magnesium	21000	1100	EPA 6010D		8-1-23	
Manganese	38	11	EPA 6010D		8-1-23	
Client ID:	AS-35-072723					
Laboratory ID:	07-222-27					
Calcium	49000	1100	EPA 6010D		8-1-23	
Iron	9300	56	EPA 6010D		8-1-23	
Magnesium	38000	1100	EPA 6010D		8-1-23	
Manganese	5000	11	EPA 6010D		8-1-23	
Client ID:	HC-4-072723					
Laboratory ID:	07-222-30					
Calcium	22000	1100	EPA 6010D		8-1-23	
Iron	140	56	EPA 6010D		8-1-23	
Magnesium	25000	1100	EPA 6010D		8-1-23	
Manganese	79	11	EPA 6010D		8-1-23	
Client ID:	IW-1-072723					
Laboratory ID:	07-222-34					
Calcium	140000	20000	EPA 6010D	7-28-23	8-1-23	
Iron	290000	1000	EPA 6010D	7-28-23	8-1-23	
Magnesium	120000	20000	EPA 6010D	7-28-23	8-1-23	
Manganese	22000	200	EPA 6010D	7-28-23	8-1-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

91

DISSOLVED METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0728F1					
Calcium	ND	1100	EPA 6010D	7-28-23	8-1-23	
Iron	ND	56	EPA 6010D	7-28-23	8-1-23	
Magnesium	ND	1100	EPA 6010D	7-28-23	8-1-23	
Manganese	ND	11	EPA 6010D	7-28-23	8-1-23	

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	07-22	22-30								
	ORIG	DUP								
Calcium	21600	21800	NA	NA		NA	NA	1	20	
Iron	138	132	NA	NA		NA	NA	4	20	
Magnesium	24900	25300	NA	NA		NA	NA	2	20	
Manganese	79.4	80.4	NA	NA		NA	NA	1	20	

MATRIX SPIKES

Laboratory ID:	07-22	22-30									
	MS	MSD	MS	MSD		MS	MSD				
Calcium	44000	43800	22200	22200	21600	101	100	75-125	0	20	
Iron	22500	22500	22200	22200	138	101	101	75-125	0	20	
Magnesium	47100	47000	22200	22200	24900	100	99	75-125	0	20	
Manganese	612	608	556	556	79.4	96	95	75-125	1	20	

SPIKE BLANK

Laboratory ID:	SB0728F1					
Calcium	23700	22200	N/A	107	80-120	
Iron	22200	22200	N/A	100	80-120	
Magnesium	24000	22200	N/A	108	80-120	
Manganese	529	556	N/A	95	80-120	

DISSOLVED GASES RSK 175

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-4-50-072723					
Laboratory ID:	07-222-03					
Methane	ND	0.55	RSK 175	8-2-23	8-2-23	
Ethane	ND	0.22	RSK 175	8-2-23	8-2-23	
Ethene	ND	0.29	RSK 175	8-2-23	8-2-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	101	50-150				
Client ID:	AS-35-072723					
Laboratory ID:	07-222-27					
Methane	5000	55	RSK 175	8-2-23	8-2-23	
Ethane	ND	0.22	RSK 175	8-2-23	8-2-23	
Ethene	ND	0.29	RSK 175	8-2-23	8-2-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	93	50-150				
Client ID:	HC-4-072723					
Laboratory ID:	07-222-30					
Methane	ND	0.55	RSK 175	8-2-23	8-2-23	
Ethane	ND	0.22	RSK 175	8-2-23	8-2-23	
Ethene	ND	0.29	RSK 175	8-2-23	8-2-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	105	50-150				
Client ID:	IW-1-072723					
Laboratory ID:	07-222-34					
Methane	4700	55	RSK 175	8-2-23	8-2-23	
Ethane	ND	0.22	RSK 175	8-2-23	8-2-23	
Ethene	ND	0.29	RSK 175	8-2-23	8-2-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	93	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED GASES RSK 175 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0802W1					
Methane	ND	0.55	RSK 175	8-2-23	8-2-23	
Ethane	ND	0.22	RSK 175	8-2-23	8-2-23	
Ethene	ND	0.29	RSK 175	8-2-23	8-2-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	90	50-150				

					Per	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANK										
Laboratory ID:	SB08	02W1								
	SB	SBD	SB	SBD	SB	SBD				
Methane	46.2	46.1	44.2	44.2	105	104	75-125	0	25	
Ethane	89.4	89.9	83.2	83.2	107	108	75-125	1	25	
Ethene	81.6	82.0	77.7	77.7	105	106	75-125	0	25	
Surrogate:										
1-Butene					101	102	50-150			

TOTAL ORGANIC CARBON SM 5310B

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-4-50-072723					
Laboratory ID:	07-222-03					
Total Organic Carbon	1.1	1.0	SM 5310B	8-4-23	8-4-23	
Client ID:	AS-35-072723					
Laboratory ID:	07-222-27					
Total Organic Carbon	30	1.0	SM 5310B	8-4-23	8-4-23	
Client ID:	HC-4-072723					
Laboratory ID:	07-222-30					
Total Organic Carbon	1.1	1.0	SM 5310B	8-4-23	8-4-23	
Client ID:	IW-1-072723					
Laboratory ID:	07-222-34					
Total Organic Carbon	2400	100	SM 5310B	8-4-23	8-4-23	

TOTAL ORGANIC CARBON SM 5310B QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0804W1					
Total Organic Carbon	ND	1.0	SM 5310B	8-4-23	8-4-23	

				Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	07-22	22-03							
	ORIG	DUP							
Total Organic Carbon	1.06	ND	NA	NA	NA	NA	NA	13	
MATRIX SPIKE									
Laboratory ID:	07-22	22-03							
	Μ	S	MS		MS				
Total Organic Carbon	10	.7	10.0	1.06	96	86-127	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB08	04W1							
	S	В	SB		SB				
Total Organic Carbon	9.	68	10.0	NA	97	90-122	NA	NA	

CHLORIDE SM 4500-CI E

Matrix: Water Units: mg/L

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
AC-4-50-072723					
07-222-03					
23	2.0	SM 4500-CI E	7-28-23	7-28-23	
AS-35-072723					
07-222-27					
46	2.0	SM 4500-CI E	7-28-23	7-28-23	
HC-4-072723					
07-222-30					
14	2.0	SM 4500-CI E	7-28-23	7-28-23	
IW-1-072723					
07-222-34					
89	2.0	SM 4500-CI E	7-28-23	7-28-23	
	Result AC-4-50-072723 07-222-03 23 AS-35-072723 07-222-27 46 HC-4-072723 07-222-30 14 IW-1-072723 07-222-34	Result PQL AC-4-50-072723 07-222-03 2.0 23 2.0 AS-35-072723 07-222-27 2.0 HC-4-072723 07-222-30 2.0 IW-1-072723 07-222-34 2.0 IW-1-072723 07-222-34 2.0	Result PQL Method AC-4-50-072723 07-222-03 2.0 SM 4500-CI E AS-35-072723 07-222-27 - - 46 2.0 SM 4500-CI E HC-4-072723 07-222-30 - - 14 2.0 SM 4500-CI E IW-1-072723 07-222-34 - - 89 2.0 SM 4500-CI E	Result PQL Method Prepared AC-4-50-072723 07-222-03 7-28-23 07-222-03 2.0 SM 4500-CI E 7-28-23 AS-35-072723 7-28-23 7-28-23 07-222-27 2.0 SM 4500-CI E 7-28-23 HC-4-072723 7-28-23 7-28-23 07-222-30 SM 4500-CI E 7-28-23 IW-1-072723 SM 4500-CI E 7-28-23 07-222-34 2.0 SM 4500-CI E 7-28-23	Result PQL Method Prepared Date AC-4-50-072723 07-222-03 7-28-23 7-28-23 23 2.0 SM 4500-CI E 7-28-23 7-28-23 AS-35-072723 7-28-23 7-28-23 7-28-23 07-222-27 7-28-23 7-28-23 7-28-23 HC-4-072723 7-28-23 7-28-23 7-28-23 07-222-30 2.0 SM 4500-CI E 7-28-23 7-28-23 IW-1-072723 2.0 SM 4500-CI E 7-28-23 7-28-23 14 2.0 SM 4500-CI E 7-28-23 7-28-23 IW-1-072723 2.0 SM 4500-CI E 7-28-23 7-28-23 89 2.0 SM 4500-CI E 7-28-23 7-28-23

CHLORIDE SM 4500-CI E QUALITY CONTROL

Matrix: Water Units: mg/L

Analyte	Result	PQL	Method	Date Prepared	Date Analvzed	Flags
METHOD BLANK					,	-
Laboratory ID:	MB0728W1					
Chloride	ND	2.0	SM 4500-CI E	7-28-23	7-28-23	

				Source	Percent	Recovery		RPD	
Analyte	Resul	t	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	07-220-	07							
	ORIG I	DUP							
Chloride	11.7	12.5	NA	NA	NA	NA	7	12	
MATRIX SPIKE									
Laboratory ID:	07-220-	07							
	MS		MS		MS				
Chloride	60.0		50.0	11.7	97	83-120	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB0728	W1							
	SB		SB		SB				
Chloride	50.7		50.0	NA	101	83-119	NA	NA	

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

SULFATE ASTM D516-11

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	AC-4-50-072723					
Laboratory ID:	07-222-03					
Sulfate	71	25	ASTM D516-11	7-28-23	7-28-23	
Client ID:	AS-35-072723					
Laboratory ID:	07-222-27					
Sulfate	27	10	ASTM D516-11	7-28-23	7-28-23	
Client ID:	HC-4-072723					
Laboratory ID:	07-222-30					
Sulfate	25	10	ASTM D516-11	7-28-23	7-28-23	
Client ID:	IW-1-072723					
Laboratory ID:	07-222-34					
Sulfate	ND	5.0	ASTM D516-11	7-28-23	7-28-23	

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

SULFATE ASTM D516-11 QUALITY CONTROL

Matrix: Water Units: mg/L

Analyte	Result	PQL	Me	ethod	Date Prepared	Date Analyz	ed	Flags	
METHOD BLANK									
Laboratory ID:	MB0728W1								_
Sulfate	ND	5.0	ASTM	D516-11	7-28-23	7-28-2	23		•
Analyte	Result	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags	
DUPLICATE									

Laboratory ID:	07-22	20-07							
	ORIG	DUP							
Sulfate	ND	ND	NA	NA	NA	NA	NA	10	
MATRIX SPIKE									
Laboratory ID:	07-22	20-07							
	М	S	MS		MS				
Sulfate	11	.5	10.0	ND	115	73-127	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB072	28W1							
	S	В	SB		SB				
Sulfate	9.6	67	10.0	NA	97	85-114	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	10 2 - 12 - 35 - 072723	9 RC - 11 - 25 - 072723	8 Ac-10-40-072723	7 AC- 9-32-072523	6 RC-8-35-072623	5 RC-7-35-072623	4 RC-6-25-672623	3 AC-4-50-072723	2 RC-3-25-072623	1 RC-1-25-672623	Lab ID Sample Identification	Sampled by NTC / P. V.Z	Fruperi Manageri Baxter (ult	Project Name: Former Tux Shop		Company: Xspect Lons, Iting	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	INA OnSite
Reviewed/Date					S (OXE	Aspect Consulting	Company	07/27 1230 V 3	07/27 1340 3	5 5201 13/10	57/25 1510 3	5/26/303 3	07/26 1015 3	UV26 0438 3	0/27 1520 10	07/26 1230 1 3	07/26 1400 W 3	Date Time Sampled Sampled Matrix	(other)	Contain	Standard (7 Days)	2 Days 3 Days	Same Day	(in working days) (Check One)	Turnaround Request	Chain of C
					7/27/23 1750	02 f1 22/22/20	Date Time	X	×	×	×	×	X		×	×	×	NWTF NWTF NWTF Volatil Halog EDB E	PH-HCI PH-Gx/ PH-Gx PH-Dx les 826 enated EPA 80	BTEX (8 (SG Cle 0 Volatile 11 (Wat	an-up [3021] 8 an-up [3021] 8 as an-up [3021] 8 3021] 8 300	3260[])]) S	<u>E</u> wa		I abovatany Number	ustody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard 🛛 Level III 🗋 Level IV 🗌						Comments/Special Instructions								XXXX			Semix (with I PAHs PCBs Organ Organ Chlori Total I Total I Total I Total I TCLP HEM	volatile: ow-lev 8270/s 8082 nochlor nophos inated RCRA I MTCA Metals (oil anc (oil anc (oil anc (oil anc (oil anc (oil anc (oil anc (oil anc (oil anc	s 8270/s el PAHs SIM (low ine Pes phorus Acid He Metals	SIM) r-level) ticides & Pesticid rbicides) 1664 2 PA 2 PA	1081 es 827(8151 2.44 5.45 4.5 4.5 5.76			5	Page 1 of 4

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	225220-01-22-2 Q	19 XC-21-35-072523	18 AC-20-25-072523	17 AC-19-35-072423	16 RC-18-25-072423	15 AC-17-35-672523	14 RC-16-50-072623	13 AC-15-35-072723	12 AC-14-25-072623	11 XC-13-50-072523	Lab ID Sample Identification	Sampled by: NTC/RWN	Project Manager: B GX tor Cull	Project Name: Former Tux Ship	090030	Priort Number	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date					S COXE 7/27	Aspect Consulting 07/27/	Company Date	07/25 1500 V V	07/25 620	01/1 21/10	07/24 1550	2041 h2/L0	07/25 1205	57/26 W15	01/27 09/00 13/50	57/26 1640 / 1	5 M 5H1 S2/10	Sampled Sampled Matrix	(other) per of C PH-HCII	ontain D D STEX (8	ers	2 Days 3 Days	Same Day	(Check One)	Turnaround Request (in working days)	Chain of Custo
Chromatograms wi	Data Package: Sta				0251 220	23 1750	Time Comments/Special	4										Volati Volati EDB I Semin (with PAHs PCBs Organ	PH-Dx (les 8260 genated EPA 801 volatiles low-leve 8270/S 8082 nochlori	SG Cle Volatile 1 (Wate 8270/S al PAHs IM (Iow	an-up s 8260 ers Only SIM) r-level) ticides 8)			ory Number: 07 - 22	Ϋ́
ith final report 🗌 Electronic Data Deliverables (EDDs) 🗌	andard Level III Level IV						Instructions											Orgar Chlor Total Total TCLP HEM	inated A RCRA M MTCA M Metals (oil and	Acid He Aetals Aetals grease	Pesticides rbicides	8151	0/SIM		2	Page 2 of 4

Chromatograms with final report Electronic Data Deliverables (EDDs)	0		Reviewed/Date	Reviewed/Date
Data Package: Standard Level III Level IV				Received
				Relinquished
L'ITANY				Received
				Relinquished
summer were fred	2/12/123 1750	SE .	00	Received
Dissolve metals	07/27/23 1750	routhing	- Aspect Co	Relinquished
Comments/Special Instructions	Date Time (Company	Signature
	+		127 0457	30 HC-4-672723 0
		3	21/26 09-15	29 X5-45-072623 0
		w	0401 gr/10	28 R5-39-072623
XXXX	×	10	07/27 1340	27 25-35-072723
		2	7/27 1445	26 RS-31-072723
	4	4	07/24 1350	25 AC-27-35-072423
			1/24 1445	24 RC-26-25-072423
			57/24 1650	23 RC-25-35-072423
			7/24 1745	22 RC-24-25-0724230
	×	2 3	07/25 H15 L	21 RC-23-30-072523
(with I PAHs PCBs Organ Organ Chlori Total I Total I Total I Total I	NWTF NWTF Volatil Halog EDB E	NWTP	Date Time Sampled Sampled M	Lab ID Sample Identification
ow-leve 8270/S 8082 ochlorin ophosp nated A RCRA N Metals oil and Solv a solv a	PH-Gx/E PH-Gx PH-Dx (Ph-Dx (Ph	er of C	(other)	Sampled by: ZTC/RWN
In a low and a l	SG Cle Volatile 1 (Wate 8270/S	ontain		Project Manager: BIXER CU
ticides 8 Pesticid rbicides	an-up an-u	ers	Standard (7 Days)	Project Name: Former Tux Shop
)	Days	2 Days 3	DEC ODD SO
		Day	Same Day 1	Company: Aspect
0/-222 20 20 20 20 10	aboratory Number:		(in working days) (Check One)	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
			Turnaround Remiest	Anticial Incommental Inc.
Page 3 of L	stody	1 of Cu	Chair	MM OnSite

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	50-01	10-01	JO NW - JE O C J	Leserting 2 Jun 10	35 MW-1A-072523	34 KTW-1-072723	33 HC-8-072623	32 HC-6-072523	3) MC-S-072623	Lab ID Sample Identification	Sampled by: NTC/RWN	Project Manager: Baxter Cull	Project Name: Follow Tux Shop	040030	Company: RSPEX	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
Reviewed/Date					- CORE Martin 1750	Aspect Consulting 07/27/23 1750	Company Date Time			× 215/ 2010		57/23 LOUG 3 X	57/27 hrus 10 X	×	X 1 1 1 2221 23/10	57/26 1317 W 3 X	Sampled Sampled Matrix Number NWTF	(other) (other) PH-Gx/P PH-Gx/P PH-Gx PH-Dx (les 8260 enated EPA 801	Containe D BTEX (8 SG Clea D Volatile	An-up an-up s 8260	2 Days	Same Day 1 Day	(Check One)	Chain of Custody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV	need to be filtered.	for teres . Includity ZUUU	Show the will will	LANE VES NA D.	XIN-1 dissowed metals	Comments/Special Instructions										Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I Total I Total I Total I Total I R	rolatiles ow-leve 8270/S 8082 nochlori nated A RCRA N MTCA N Metals (oil and OUTCA N Metals	Repeated in the second	Indexe and the second s	081 es 827(8151 8151	eth c-17 sub fue		Page 1 of

10515 Research Drive Knoxville, TN 37932 Phone: (865) 573-8188 Fax: (865) 573-8133

Client:	Baxter (Aspect (710 Sec Suite 55	Call Consulting cond Ave Sol 60 WA 98104	uth	•	Phone: Fax:	
lala mái f i a m		W/ 00104	Data Daai		ux.	Demont Deter 00/04/2022
identifier:	0920G		Date Rec:	07/31/2023		Report Date: 08/04/2023
Client Proj	ect #:	090030		Client Project N	Name:	Former Tux Shop
Purchase (Order #:					
Test result	s provid	ed for:	CENSUS			

Reviewed By:

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

Results relate only to the items tested and the sample(s) as received by the laboratory.

10515 Research Dr., Knoxville, TN 37932 Tel. (865) 573-8188 Fax. (865) 573-8133

Client: Project:	Aspect Consultin Former Tux Shop	ng			MI Project Number Date Received:	092UG 07/31/2023	
Sample Inform	mation						
Client Sar	mple ID:		AC-4-50-072723	AS-35-072723	HC-4-072723	IW-1-072723	
Sample D	ate:		07/27/2023	07/27/2023	07/27/2023	07/27/2023	
Units:			cells/mL	cells/mL	cells/mL	cells/mL	
Analyst/Re	eviewer:		AR/OR	AR/OR	AR/OR	AR/OR	
Dechlorinatin	ig Bacteria						
Dehalococc	oides	DHC	9.30E+00	3.30E+00	<5.00E-01	<2.63E+01	
tceA Rec	ductase	TCE	<5.00E-01	<1.40E+00	<5.00E-01	<2.63E+01	
BAV1 Vi	nyl Chloride Reductase	BVC	<5.00E-01	5.00E-01 (J)	<5.00E-01	<2.63E+01	
Vinyl Chl	loride Reductase	VCR	<5.00E-01	<1.40E+00	<5.00E-01	<2.63E+01	

Legend:

NA = Not Analyzed NS = Not Sampled J = Est

J = Estimated gene copies below PQL but above LQL

I = Inhibited

< = Result not detected

Quality Assurance/Quality Control Data

Samples Received 7/29/2023

Component	Date Prepared	Date Analyzed	Arrival Temperature	Positive Control	Extraction Blank	Negative Control	
BVC	07/29/2023	08/04/2023	0°0	96%	non-detect	non-detect	
TCE	07/29/2023	08/04/2023	0 °C	90%	non-detect	non-detect	
VCR	07/29/2023	08/04/2023	0 °C	95%	non-detect	non-detect	
DHC	07/29/2023	08/04/2023	0 °C	105%	non-detect	non-detect	

APPENDIX B

Reagent Information

Product Sheet EHC[®] LIQUID

A DYNAMIC SOLUTION PROMOTING ABIOTIC AND BIOTIC PROCESSES

EHC[®] Liquid is an in situ chemical reduction

(ISCR) product for the treatment of impacted groundwater. It is a cold-water soluble formulation that is specially designed for injection via existing wells or hydraulic injection networks for the treatment of a wide range of groundwater

contaminants. EHC[®] Liquid creates strong reducing conditions and promotes both biotic and abiotic dechlorination reactions. EHC[®] Liquid is composed of two parts: EHC[®] Liquid Reagent Mix, an organo-iron compound, and ELS[®] Micro, which are easily combined and diluted for injection.

KEY BENEFITS

- Stimulation of biotic reductive dechlorination through the generation of strong reducing conditions
- Structurally bound nutrients phosphorous and nitrogen released to bacteria via the fermentation of the lecithin molecule
- Direct chemical reduction from redox reaction of organoiron compound
- Surface dechlorination by magnetite and green rust precipitates from iron corrosion
- Replenished reactive iron surface provided by the cycling of iron from ferrous to ferric state in the presence of a carbon source – anticipated longevity of 2-3 yrs. depending on site conditions
- · Easy to handle and cold water soluble

CONTAMINANTS TREATED

- Chlorinated solvents such as PCE, TCE, TCA, DCA, CCl₄, chloroform and methylene chloride
- Chlorobenzenes including di- and tri-chlorobenzene
- Energetic compounds such as TNT, DNT, HMX, RDX, nitroglycerine and perchlorate
- Most pesticides including DDT, DDE, dieldrin, 2,4-D and 2,4,5-T
- Chlorofluorocarbons
- Nitrate compounds
- Chromium

THE SOUND SCIENCE OF EHC® LIQUID

Organic carbon addition in the saturated zone is well-known to promote conventional enzymatic reductive dechlorination reactions. This happens because the carbon in the subsurface will support the growth of indigenous microbes in the groundwater environment. As bacteria feed on the soluble carbon, they consume dissolved oxygen and other electron acceptors, thereby reducing the redox potential in groundwater. As bacteria ferment the ELS[®] Microemulsion, they release a variety of volatile fatty acids (VFAs) such as lactic, propionic and butyric, which diffuse from the site of fermentation into the groundwater plume and serve as electron donors for other bacteria, including dehalogenators. The biogenolysis/hydrogenolysis reaction for the reduction of PCE is shown on the next page (Figure 2).

Figure 2

Lecithin itself is composed primarily of phospholipids, which have both hydrophilic and hydrophobic regions in their molecular structure. As a result, ELS[®] emulsions tend to be stable emulsions, expectedly more stable than with only hydrophobic compounds. Further, phospholipids support remediation by providing essential nutrients (carbon, nitrogen, phosphorus) to bacteria.

The soluble organo-iron compound is comprised of a ferrous iron (Fe⁺²) that can form a variety of iron minerals (e.g. magnetite, pyrite) that are capable of reducing contaminants as they oxidize further to the ferric (Fe⁺³) state via one electron transfer. The ferric ion can be "recycled" back to ferrous as long as other electrons from supplied carbon and indigenous carbon are available. EHC[®] Liquid is primarily recommended for plume treatment. It can be used as a source treatment depending on site conditions.

APPLICATION METHODS

- Direct push injection
- · Gravity feed through existing wells
- Low pressure injections
- Recirculation systems

For more information and detailed case studies, please visit our website.

Disclaimer This information and any recommendations, technical or otherwise, are presented in good faith and believed to be correct as of the date prepared. Recipients of this information and recommendations must make their own determination as to its suitability for their purposes. In no event shall Evonik assume liability for damages or losses of any kind or nature that result from the use of or reliance upon this information and recommendations. EVONIK EXPRESSLY DISCLAIMS ANY REPRESENTATIONS AND WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO THE ACCURACY, COMPLETENESS, NON-INFRINGEMENT, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE) WITH RESPECT TO ANY INFORMATION AND RECOMMENDATIONS PROVIDED. Reference to any trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used. Evonik reserves the right to make any change to the information and/or recommendations at any time, without prior or subsequent notice.

Evonik Operations GmbH Smart Materials Active Oxygens Business Line Soil & Groundwater Remediation

remediation@evonik.com www.evonik.com/remediation

EHC[®] Liquid reagent is a cold-water soluble formulation specially designed to be emplaced via existing wells and/or hydraulic injection networks for the treatment of a wide range of groundwater contaminants. EHC Liquid is delivered as <u>two</u> components that are mixed together on site. The first component, ELS[™] Microemulsion is a 25% liquid emulsion of food-grade lecithin, provided in 55-USG drums containing 50 USG. The second component, EHC Liquid Mix is a food-grade powdered organo-iron compound. The two components are proportioned such that one bag of the EHC Liquid Mix is required for every 50 USG of ELS Microemulsion.

This document provides guidelines for the preparation of diluted EHC Liquid for injection.

Packaging

Part 1: ELS Microemulsion delivered in 55-USG drums, filled with 50 USG / 420 lbs per drum (190 L / 190 Kg)

Part 2: EHC Liquid Mix, water soluble powder with the organo-iron compound in 24.5 lb bags (11.1 Kg)

EHC Liquid Injection Volumes and Dilutions

Depending on the application method, between 10% and 100% of the effective porosity is normally targeted during EHC Liquid injection, with a higher percent pore fill normally targeted during low-flow injections into wells and injection networks. This is in contrast to applications via direct push technology where normally around 10 to 15% of effective porosity is targeted. To facilitate the desired injection volume, the components are diluted in the field. The table below shows examples of mixing ratios for a 55-USG drum of ELS Microemulsion in United States customary units (USC) and metric units.

Dilution (USC):	3-fold	5-fold	10-fold	25-fold
Volume of Part 1 - ELS Microemulsion per drum (USG)		5	0	
Mass of Part 2 - EHC Liquid Mix component (lbs)		24	.5	
Volume water (USG)	100	200	450	1200
Resulting total volume (USG)	150	250	500	1250
Resulting EHC Liquid concentration (wt%)	10.5%	6.3%	3.2%	1.3%
Dilution (Metric):	3-fold	5-fold	10-fold	25-fold
Volume of Part 1 - ELS Microemulsion per drum (L)		19	90	
Mass of Part 2 - EHC Liquid Mix component (Kg)	11.1			
Volume water (L)	380	760	1710	4560
Resulting total volume (L)	570	950	1900	4750
Resulting EHC Liquid concentration (wt%)	10.5%	6.3%	3.2%	1.3%

remediation@peroxychem.com | 1.866.860.4760 | peroxychem.com/remediation

General Mixing Procedure

Proportioning can be varied to accommodate mixing tank size. The general mixing procedure is:

- 1. Fill mixing tank with required amount of dilution water per the treatment design.
- Transfer Part 1 ELS Microemulsion to mixing tank. Note that this material is pre-emulsified, has a viscosity of about 3,000 – 4,000 centipoise and will require an appropriate pump for transfer from the drum. Alternatively, the emulsion may be transferred in pails by hand. A paddle mixer and/or recirculation pump is sufficient for mixing.
- 3. Add Part 2 EHC Liquid Mix organo-iron powder and continue mixing. Ensure no solids remain on bottom of tank.
- 4. If other additives are used (e.g., pH buffers), they may be added at this time.
- 5. Mixing time depends on equipment used (typically 5-10 min). Continue to mix until uniform.

Health and Safety

EHC Liquid is safe when handled properly in accordance with instructions for use and the SDS's. The SDS's are posted on our web site at: http://www.peroxychem.com/markets/environment. When working with EHC Liquid the use of standard personal protective equipment, including safety glasses, protective clothing and gloves are recommended. Additional safety equipment may be required for mechanical and site operations.

Please contact PeroxyChem for additional guidance.

EHC and ELS are Trademarks of PeroxyChem. © 2016 PeroxyChem. All rights reserved. Document 26-01-ESD-16 The information contained herein is presented to the best of our knowledge, PeroxyChem makes no representations or warranties regarding the accuracy, quality, or reliability of this information and shall under no circumstances be liable with respect to such information.

APPENDIX C

HASP

PROJECT-SPECIFIC HEALTH AND SAFETY PLAN

Property Name:	Former Tux Shop		
Project Number:	AS090030A		
Prepared By:	Risi Naa	Date:	5/29/2024
Reviewed By:	Delia Massey	Date:	5/30/2024

1 INTRODUCTION

This project-specific health and safety plan establishes procedures and practices to protect employees of Aspect Consulting (Aspect) from potential hazards posed by field activities at the subject site. In this health and safety plan, measures are provided to minimize potential exposure, accidents, and physical injuries that may occur during daily activities and adverse conditions. Contingency arrangements are also provided for emergency situations.

2 EMERGENCY CONTACT INFORMATION

PROPERTY LOCATION	Walgreens		
	5409 15th Avenue NW,		
	Seattle, WA, 98107		
NEAREST HOSPITAL	Swedish Medical Center Ballard Campus		
	5300 Tallman Ave NW		
	Seattle, WA 98107		
	(206) 782-2700		
	Attached figure shows route to hospital.		
EMERGENCY	Police, Ambulance, Fire911		
RESPONDERS			
OTHER CONTACTS	Aaron Fitts (mobile)(207) 650-6191		
	Aspect, Seattle Office(206) 328-7443		
	Jackie Ayzenberg (Client)(206) 819-2882		
IN EVENT OF EMERGENCY,	Give the following information:		
CALL FOR HELP AS SOON	 Where You Are: address, cross streets, or landmarks 		
AS POSSIBLE	 Phone Number you are calling from 		
	 What Happened: type of accident, injury 		
	✓ How Many Persons need help		
	✓ What is Being Done for the victims		
	 You Hang Up Last: let whomever you called hang up first 		

In case of serious injuries or other emergency, immediately call Aaron Fitts, Aspect Corporate Safety Manager, at (207) 650-6191 or (360)-746-8926. If no response, call Tim Flynn at (206) 780-9370.

3 PERSONNEL ORGANIZATION AND CHAIN OF COMMAND

The Aspect Project Manager assigns the Site Safety Supervisor and other field personnel for this project, and has ultimate responsibility for developing this project-specific health and safety plan and ensuring it is complied with during project execution. The Aspect Site Safety Supervisor has responsibility and authority for Aspect employees' safety during site activities. Other Aspect personnel on site have the responsibility to comply with this project-specific health and safety plan in coordination with the Site Safety Supervisor.

Aspect Personnel				
Role	Name	Office Phone	Mobile/Cell Phone	
Project Manager	Delia Massey	206-812-4749	860-368-9745	
Project Engineer	Delia Massey	206-812-4749	860-368-9745	
Person-in-Charge (PIC)	Jeremy Porter	206-838-5835	206-790-2129	
Site Safety Supervisor	Daniel Babcock	206-838-5846	316-617-0499	
Corporate Safety Manager	Aaron Fitts	360-746-8926	207-650-6191	
Other Field Personnel	Emily Rusen	206-413-5407	973-294-2634	
Aspect's Subcontractors	Working On Site			
Name	Task/Role	Contact	Phone	
APS	Private utility locate	Daniel Herrera	206-914-4642	
Cascade	Drilling contractor	Kasey Goble	425-466-8588	

Aspect will inform its subcontractors working onsite of potential fire, explosion, health, safety or other hazards associated with planned site activities, and can make available to them this project-specific health and safety plan. However, all subcontractors are solely responsible for preparation of their own health and safety plan, and for the safety of their employees.

4 SITE CONTROL PLAN

4.1 **Property Description**

Property Name:	Walgreens		
Property Location or Address:	5409 15th Avenue NW, Seattle, WA, 98107		
Owners/Tenants:	F&N Investment Company, LLC		
Current Property Use:	Commercial		
Designated Hazardous Waste Site?	No If yes, specify federal, state, or other: NO		
Industrial Site?	No		
Topography:	Generally flat		
Surround Land Use/Nearest Population:	Mixed commercial and residential		
Drinking Water/Sanitary Facilities:	On-site		
Site Map:	Include with HASP		

4.2 Site Access Control

Describe controls to be used to prevent entry by unauthorized persons:

• Traffic cones, barriers, chain-link fence, and caution tape, as needed.

Describe how exclusion zones and contamination reduction zones will be designated:

- Drilling will be performed in multiple areas of the property.
- The area immediately adjacent to each boring/monitoring well/test pit location will be considered an exclusion zone.
- The subcontractor will mark the limits of the exclusion zone using cones, caution tape, etc.
- The contamination reduction zone will be located adjacent to the driller's/excavation contractor's mobile decontamination trailer, and will include steam cleaning equipment for equipment decontamination.
- Aspect field personnel will remain vigilant about preventing unauthorized persons from approaching the exclusion zone.

4.3 Worker Hygiene Practices

Aspect personnel will use the following hygiene practices while working on site:

- No person will eat, drink, chew gum or tobacco in potentially contaminated areas. Drinking of replacement fluids for heat stress control will be permitted only in areas that are free from contamination, except in emergency situations.
- Smoking is prohibited except in designated areas of the site.
- Long hair will be secured away from the face so that it does not interfere with any activities.
- All personnel leaving potentially contaminated areas will wash their hands and face prior to entering any eating areas.
- Personnel leaving potentially contaminated areas will shower (including washing hair) and change to clean clothing as soon as practical after leaving the property.

4.4 Emergency Communications

Aspect workers on site will have a mobile (cell) phone on site, which will be used for communications should an emergency arise. Phone numbers for Aspect site personnel are listed in Section 3: Personnel Organization and Chain of Command.

4.5 Nearest Medical Assistance

FIRST CALL 911. The route from the site to the nearest hospital is shown in the attached figure.

5 SITE WORK PLAN

Proposed Work Activities On Site:	 Well installation Injection of in situ treatment Groundwater monitoring
Objectives of Site Activities:	Evaluate the in situ treatment of the tetrachloroethene (PCE) plume
Proposed Work Dates:	2024-2025
Will On-site Personnel Potentially be Exposed to Hazardous Substances?	Likely. The property historically included a dry cleaning business with associated support facilities. Based on the Groundwater Investigation Memo, potential chemical hazards include: • Chlorinated solvents • Injection reagent (iron salts)
Do Personnel Conducting Site Activities have Training in Accordance with WAC 296-843-200?	Yes, see Section 13 below.

6 **DECONTAMINATION**

Goals	Procedures
To prevent the distribution of contaminants outside the exclusion zone or cross- contamination of samples, the following procedures will be used to decontaminate sample equipment:	 Decontamination process involving Alconox wash, tap water rinse, and deionized water rinse (with air dry). Dedicated tubing used for groundwater sampling will be disposed of or retained (bagged) for future use, but not decontaminated.
To prevent the distribution of contaminants outside the exclusion zone via vehicles, the following procedures will be used:	 Unnecessary vehicles will not be allowed inside the exclusion zone. For vehicles required in the exclusion zone (e.g., drill rig, excavator). Contractor is responsible for cleaning all equipment prior to leaving any contamination reduction zones.
To minimize or prevent worker exposure to hazardous substances, all personnel working in the exclusion zone and contamination reduction zones will comply with the following decontamination procedures:	 Wash boots and rain gear that have come into contact with soil or groundwater with Alconox/tap water and air dry. Dispose of disposable personal protective equipment (PPE such as gloves, Tyvek) into Department of Transportation (DOT) approved and appropriately labeled 55-gallon drums.
Soil cuttings, monitoring well purge water, and decontamination wastewater will be managed in the following manner:	 Place soil and groundwater from each location in DOT approved drums at the property for future disposal by the owner.

7 HAZARD ANALYSIS

The potential hazards and corresponding control measures for planned site work activities are as follows:

Work Activity	Primary Potential Hazards	Control Measures
Injection oversight	 Excavator and other heavy equipment present significant overhead hazards. 	 Stay back from excavator whenever possible and stay alert and maintain open eye contact with operator.
		 Modified Level D PPE (with hard hat, traffic vest, steel-toe boots).
	• Excessive noise.	Wear hearing protection.
	 Chemical exposure (skin contact, ingestion, inhalation). 	Modified Level D PPE.Air monitoring.
Soil sampling and sample handling	 Chemical exposure (skin contact, ingestion, inhalation). 	Modified Level D PPE.Air monitoring.
Well development and groundwater sampling	 Chemical exposure (skin or eye contact, ingestion). 	 Modified Level D PPE. Securely join pump tubing and other connectors.

ASPECT CONSULTING

Work Activity	Primary Potential Hazards	Control Measures
All	 Getting hit by other vehicles or equipment working on the property. 	 Wear traffic vest. Stay back from roads and stay alert.
	Heat stress.	 Take breaks, seek shade, and increase fluid intake.

Potentially Hazardous Chemicals Known or Suspected at the Property and Permissible Exposure Limits (air)					
Substance	Medium	OHSA PEL	OSHA STEL	IDLH	Carcinogen or Other Hazard
PCE	Soil, GW	100 ppm	100 ppm	150 ppm	С
Trichloroethylene (TCE)	Soil, GW	100 ppm	100 ppm	1000 ppm	С
Cis-1,2- dichlorethylene (DCE)	Soil, GW	200 ppm	200 ppm	1000 ppm	
Vinyl Chloride	Soil, GW	1 ppm		NA ppm	С
ELS® Concentrate ¹	Injection reagent				
5 micron ZVI ¹	Injection reagent	1 mg/m ³			
GeoForm™ (iron salts)	Injection reagent	1 mg/m ³			

Notes:

= none established --

С = carcinogen

GW = groundwater

immediately dangerous to life or healthnot applicable/not available IDLH

N/A

OHSA = Occupational Safety and Health Administration

= toxic Т

= permissible exposure level (8-hour time-weighted average) PEL

= short-term exposure level STEL

ZVI = zero valent iron

1. Safety Data Sheet (SDS) attached.

Chemicals Known or Suspected On-site (check box)							
Chemical Class Known Possible Unlikely							
Corrosive (if expected, specify)			х				
Ignitable (if expected, specify)			х				
Desething							
Reactive			X				
Volatile		х					
Radioactive			х				
Explosive			х				
Biological Agent			х				
Particulate or Fibers			х				
If known or likely, describe:							

8 PERSONAL PROTECTIVE EQUIPMENT

Based on the hazards identified above, the following personal protective equipment (PPE) will be required for the following field activities. This section specifies both an initial level of protection and a more protective (contingency) level or protection, in the event conditions should change. The contingency defines the PPE that will be available on site.

Mork Activity	Level of Protection		
WORK ACTIVITY	Initial	Contingency	
Drilling/Injection oversight	D	Mod. D	
Well development/groundwater sampling	D	Mod. D	
Other activities (list):			

Each level of protection will incorporate the following equipment (specify type of protective clothing, boots, gloves, respiratory cartridges or other protection, safety glasses, hardhat, and hearing protection):

Level of Protection	Specific PPE
Level D	Work clothing, traffic vest, rubber (nitrile) gloves, steel toe and shank boots, safety glasses, hearing protection, and hardhat.
Modified D	Level D plus Tyvek coveralls or rain gear, and neoprene outer gloves.

NOTE: Project personnel are not permitted to deviate from the specified levels of protection without the prior approval of the Site Safety Supervisor. A traffic vest is not needed if work clothes are suitably visible (e.g., orange/yellow rain gear or white/yellow chemical protective clothing).

9 AIR MONITORING

Air monitoring will be conducted for all subsurface explorations (soil borings, monitoring wells, and test pit excavations) to identify potentially hazardous environments and determine reference or background concentrations. Air monitoring can be used to define exclusion zones. Air monitoring can also be conducted to evaluate relative concentrations of volatile organic chemicals in samples.

The following equipment will be used to monitor air quality in the breathing zone during work activities:

Monitoring Instrument	Calibration Frequency	Parameters of Interest	Sampling Frequency
PID	Daily	Volatile organic compounds	• During collection of each soil sample during excavation.
			 During trenching if workers smell gasoline odor.
			 During routine monitoring of remediation equipment.

Use the following action levels to determine the appropriate level of personal protection to be used during field activities:

Monitoring Instrument	Reading in Breathing Zone	Action	Comments
PID	10 PID units above background for 5 minutes	Confirm with detector tube (<i>PCE</i>) or upgrade to Level C PPE (air- purifying respirator with organic vapor cartridge).	Alternatively, use engineering controls (ventilation) or leave location and return at a later time.
PID	100 PID units above background for 5 minutes	Leave location pending further evaluation by Aspect Corporate Safety Officer.	

10 SAFETY EQUIPMENT

The following safety equipment will be on site during the proposed field activities:

Other Required Items (check items required)	
First aid kit	х
Eyewash (e.g., bottled water)	x
PID	x
Drinking water	x
Fire extinguisher	x
Brush fan	
Wind sox	
Other:	

11 SPILL CONTAINMENT

Will the proposed field work include the handling of bulk chemicals?	Yes X	No
If yes, describe spill containment provisions for the property: Injection reagents will be stored in large plastic totes, with sealed lid on top. Reag out from the totes and totes will not be tipped on their side. The reagent storage a enveloped within secondary containment.	ent will be nd mixing v	pumped will be
Any spills will be mitigated by Aspect staff and their contractor. No incremental PF spill management activities, however this HASP does not preclude additional PPE warrant.	PE is requir E, if conditio	ed for ons

12 CONFINED SPACE ENTRY

Will the proposed field work include confined space entry?	Yes	No X
If yes, attach to this plan the confined space entry checklist and permit.		

13 ASPECT TRAINING AND MEDICAL MONITORING

Aspect employees who perform site work are responsible for understanding potential health and safety hazards of the site. All Aspect site workers will have health and safety training for hazardous waste operations, in accordance with WAC 296-843-200. In addition, Aspect requires medical monitoring for all employees potentially exposed to chemical hazards in concentrations in excess of the permissible exposure limit (PEL) for more than 30 days per year, as required under WAC 296-843-210. Employees who use respirators for their work will have a respirator medical evaluation as required under Chapter 296-842-WAC.

14 DISCLAIMER

Aspect Consulting does not guarantee the health or safety of any person entering the property. Because of the potentially hazardous nature of this property and the activity occurring thereon, it is not possible to discover, evaluate, and provide protection for all possible hazards that may be encountered. Strict adherence to the health and safety guidelines set forth herein will reduce, but not eliminate, the potential for injury and illness at this property. The health and safety guidelines in this plan were prepared specifically for this site and should not be used on any other property without prior evaluation by trained health and safety personnel.

FIELD SAFETY PLAN CONSENT AGREEMENT

Aspect Consulting Employees

I have reviewed the project specific health and safety plan, dated (*specify month, date, year*) for the (*give project name and type of*) fieldwork. I understand the purpose of the plan and I consent to adhere to its procedures and guidelines while conducting activities on site that are described in the plan.

Employee Printed Name	Signature	Date

Site Visitors

I have been briefed on the contents of the project-specific health and safety plan. I am responsible for my own health and safety.

Visitor Printed Name and Organization/Company	Signature	Date

FIELD SAFETY MEETING MINUTES

Site Name		Project No
Meeting Location		
Meeting Date	_ Time	Conducted by
Pre-field Work Orientation_	Weekly Safety Meet	ingOther
Subject Discussed		
Site Safety Supervisor Comr	nents	

Participants

Printed Name (and company if subcontractor)	Signature

Google Maps Walgreens to Swedish Medical Center Ballard Campus Drive 0.3 mile, 3 min

Walgreens

5409 15th Ave NW, Seattle, WA 98107

1	1.	Head south toward NW 54th St	
L →	2. 1	Turn right onto NW 54th St Pass by Wendy's (on the left)	- 15/π
4	3.	Turn left onto 17th Ave NW	0.1 mi
r ≁	4.	Turn right onto NW Ione Pl	- 433 ft
r ≁	5.	Turn right at the 1st cross street onto Tallmar NW	n Ave
L,	6. 1	Turn right onto NW Central PI Destination will be on the right	- 223 ft
			— 66 ft

Swedish Medical Center Ballard Campus

5300 Tallman Ave NW, Seattle, WA 98107

These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to

6/15/2020

differ from the map results, and you should plan your route accordingly. You must obey all signs or notices regarding your route.

SAFETY DATA SHEET

Classified in accordance 29 CFR 1910.1200

1. Identification

Product identifier: ELS® Concentrate

Other means of identification

None.

Recommended restrictions

Recommended use: Remediation of contaminated soil and groundwater. **Restrictions on use:** Not known.

Manufacturer/Importer/Distributor Information

Company Name	: Evonik Corporation 2 Turner Place Piscataway, NJ 08854 USA
Telephone	: +1 732 981 5000
E-mail	: product-regulatory-services@evonik.com

Emergency telephone number:

24-Hour Health	: +1 800 424 9300 (CHEMTREC - US & CANADA)
Emergency	800 681 9531 (CHEMTREC MEXICO)
	+1 703 527 3887 (CHEMTREC WORLD)

2. Hazard(s) identification

Hazard Classification

Label Elements

Hazard Symbol:	No symbol
Signal Word:	No signal word
Hazard Statement:	Not applicable
Precautionary Statements	Not applicable

Hazard(s) not otherwise None. classified (HNOC):

3. Composition/information on ingredients

Mixtures

Composition Comments:	The components are not hazardous or are below required
	disclosure limits.

4. First-aid measures

Description of necessary first-aid measures	
Inhalation:	If inhaled, remove to fresh air. Get medical attention if any discomfort continues.
Skin Contact:	Wash skin with soap and water. Get medical attention if irritation develops and persists.
Eye contact:	If in eyes wash out immediately with water. Get medical attention if any discomfort continues.
Ingestion:	Drink 1 or 2 glasses of water. Get medical attention if symptoms occur. IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Never give anything by mouth to an unconscious person.
Personal Protection for First-aid Responders:	No data available.
Most important symptoms and effects, both	acute and delayed
Symptoms:	No data available.

No data available.

Indication of immediate medical attention and special treatment needed Treatment: No data available.

5. Fire-fighting measures

Hazards:

Suitable (and unsuitable) extinguishing r Suitable extinguishing media:	nedia Carbon Dioxide. Dry chemicals. Dry powder	
Unsuitable extinguishing media:	No data available.	
Special hazards arising from the substance or mixture:	No data available.	
Special protective equipment and precautions for fire-fighters		
Special fire-fighting procedures:	No data available.	
Special protective equipment for fire- fighters:	As in any fire, wear self-contained breathing apparatus pressure-demand, (MSHA/NIOSH approved or equivalent) and full protective gear.	

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures:	See Section 8 of the SDS for Personal Protective Equipment.
Accidental release measures:	No data available.
Methods and material for containment and cleaning up:	Small Spills: Absorb with earth, sand or other non- combustible material and transfer to containers for later disposal. After cleaning, flush away traces with water.
Environmental Precautions:	Do not permit to enter into surface water, stretches of water, soil undiluted.

7. Handling and storage

Handling	
Technical measures (e.g. Local and general ventilation):	No data available.
Safe handling advice:	Handle in accordance with good industrial hygiene and safety practice.
Contact avoidance measures:	No data available.
Storage	
Safe storage conditions:	Store and handle in properly designed pressure vessels and equipment. Keep away from open flames, hot surfaces and sources of ignition.
Safe packaging materials:	No data available.

8. Exposure controls/personal protection

Control Parameters

Occupational Exposure Limits

None of the components have assigned exposure limits.

Biological Limit Values

No biological exposure limits noted for the ingredient(s).

Appropriate Engineering Controls No data available.

Individual protection measures, such as personal protective equipment

Eye/face protection:	Safety glasses with side shields
Skin Protection Hand Protection:	Additional Information: Use protective gloves.
Skin and Body Protection:	Wear suitable protective clothing.
Respiratory Protection:	In case of inadequate ventilation use suitable respirator.

Hygiene measures:

When using do not eat, drink or smoke. Wash hands before breaks and immediately after handling the product.

9. Physical and chemical properties

Information on basic physical and chemic Appearance	cal properties
Physical state:	liquid
Form:	Viscous Liquid
Color:	Amber
Odor:	Odorless
Odor Threshold:	No data available.
Freezing point:	No data available.
Boiling Point:	> 212 °F/> 100 °C (1,013 hPa) Not known.
Flammability:	No data available.
Upper/lower limit on flammability or ex	plosive limits
Explosive limit - upper:	No data available.
Explosive limit - lower:	No data available.
Flash Point:	> 392 °F/> 200 °C
Self Ignition Temperature:	The substance or mixture is not classified as pyrophoric.
Decomposition Temperature:	The substance or mixture is not classified self-reactive.
pH:	6.5 - 6.9
Viscosity	
Dynamic viscosity:	No data available.
Kinematic viscosity:	No data available.
Flow Time:	No data available.
Solubility(ies)	
Solubility in Water:	No data available.
Solubility (other):	No data available.
Partition coefficient (n- octanol/water):	No data available.
Vapor pressure:	No data available.
Relative density:	No data available.
Density:	No data available.
Bulk density:	No data available.
Relative vapor density:	No data avallable.
Other information	
Oxidizing properties:	The substance or mixture is not classified as oxidizing.
Self-heating:	The substance or mixture is not classified as self heating.
Formation of Flammable Gases:	Substance or mixture, which in contact with water, does not emit flammable gas
Peroxides:	The substance or mixture is not classified as organic peroxide.
Metal Corrosion:	Not corrosive to metals

10. Stability and reactivity

Reactivity:

No data available.

Chemical Stability:	Stable under recommended storage conditions.
Possibility of hazardous reactions:	No data available.
Conditions to avoid:	No data available.
Incompatible Materials:	Strong oxidizing agents. Water. Alkalies.
Hazardous Decomposition Products:	In case of fire, toxic and corrosive gases may be formed. Carbon oxides

11. Toxicological information

Information on toxicological eff	ects	
Information on likely routes of exposure		
Inhalation:	No data available.	
Skin Contact:	No data available.	
Eye contact:	No data available.	
Ingestion:	No data available.	
Acute toxicity (list all possibl	e routes of exposure)	
Oral Product:	Not classified for acute toxicity based on available data.	
Dermal Product:	Not classified for acute toxicity based on available data.	
Inhalation Product:	Not classified for acute toxicity based on available data.	
Repeated dose toxicity Product:	No data available.	
Skin Corrosion/Irritation Product:	No data available.	
Serious Eye Damage/Eye Irritation Product: No data available.		
Respiratory or Skin Sensitiza Product:	ntion No data available.	
Carcinogenicity Product:	No data available.	
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: No carcinogens present or none present in regulated quantities		
ACGIH: US.ACGIH Threshold	I Limit Values:	

No carcinogens present or none present in regulated quantities

US. National Toxicology Program (NTP) Report on Carcinogens:

No carcinogens present or none present in regulated quantities

US. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050), as amended:

No carcinogens present or none present in regulated quantities

Germ Cell Mutagenicity

In vitro Product:	No data available.
In vivo Product: Reproductive toxicity Product:	No data available. No data available.
Specific Target Organ Toxicity Product:	y - Single Exposure No data available.
Specific Target Organ Toxicity Product:	y - Repeated Exposure No data available.
Aspiration Hazard Product:	Not classified
Information on health hazards	
Other hazards Product:	No data available.

12. Ecological information

Ecotoxicity:

Acute hazards to the aquatic environment:

Fish Product:	No data available.	
Aquatic Invertebrates Product:	No data available.	
Toxicity to Aquatic Plants Product:	No data available.	
Toxicity to microorganisms Product:	No data available.	
Chronic hazards to the aquatic environment:		
Fish Product:	No data available.	
Aquatic Invertebrates Product:	No data available.	
Toxicity to Aquatic Plants Product:	No data available.	
Toxicity to microorganisms		

Product:	No data available.		
Persistence and Degradability			
Biodegradation Product:	No data available.		
BOD/COD Ratio Product:	D/COD Ratio Product: No data available.		
Bioaccumulative potential			
Bioconcentration Factor (BCF) Product:	No data available.		
Partition Coefficient n-octanol Product:	/ water (log Kow) No data available.		
Mobility in soil:			
Product	No data available.		
Results of PBT and vPvB assessm	nent:		
Product	No data available.		
Other adverse effects:			
Other hazards Product:	No data available.		
13. Disposal considerations			
13. Disposal considerations Disposal methods:	Dispose of waste at an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal.		
13. Disposal considerations Disposal methods:	Dispose of waste at an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal. Recycle empty drums at an appropriate facility in accordance with current applicable laws and regulations, and product characteristics at time of disposal. Ensure drums are tightly sealed.		
13. Disposal considerations Disposal methods: Contaminated Packaging:	Dispose of waste at an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal. Recycle empty drums at an appropriate facility in accordance with current applicable laws and regulations, and product characteristics at time of disposal. Ensure drums are tightly sealed. No data available.		
13. Disposal considerations Disposal methods: Contaminated Packaging: 14. Transport information	Dispose of waste at an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal. Recycle empty drums at an appropriate facility in accordance with current applicable laws and regulations, and product characteristics at time of disposal. Ensure drums are tightly sealed. No data available.		
13. Disposal considerations Disposal methods: Contaminated Packaging: 14. Transport information	Dispose of waste at an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal. Recycle empty drums at an appropriate facility in accordance with current applicable laws and regulations, and product characteristics at time of disposal. Ensure drums are tightly sealed. No data available.		
13. Disposal considerations Disposal methods: Contaminated Packaging: 14. Transport information Domestic regulation 49 CER	Dispose of waste at an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal. Recycle empty drums at an appropriate facility in accordance with current applicable laws and regulations, and product characteristics at time of disposal. Ensure drums are tightly sealed. No data available.		
13. Disposal considerations Disposal methods: Contaminated Packaging: 14. Transport information Domestic regulation 49 CFR Not regulated as a dangerous go	Dispose of waste at an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal. Recycle empty drums at an appropriate facility in accordance with current applicable laws and regulations, and product characteristics at time of disposal. Ensure drums are tightly sealed. No data available.		
13. Disposal considerations Disposal methods: Contaminated Packaging: 14. Transport information Domestic regulation 49 CFR Not regulated as a dangerous go International Regulations	Dispose of waste at an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal. Recycle empty drums at an appropriate facility in accordance with current applicable laws and regulations, and product characteristics at time of disposal. Ensure drums are tightly sealed. No data available.		
13. Disposal considerations Disposal methods: Disposal methods: Contaminated Packaging: 14. Transport information Domestic regulation 49 CFR Not regulated as a dangerous go International Regulations UNRTDG Not regulated as a dangerous go	Dispose of waste at an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal. Recycle empty drums at an appropriate facility in accordance with current applicable laws and regulations, and product characteristics at time of disposal. Ensure drums are tightly sealed. No data available.		

IMDG-Code Not regulated as a dangerous good

Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code

Not applicable for product as supplied.

15. Regulatory information

US Federal Regulations

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)

None present or none present in regulated quantities.

US. Toxic Substances Control Act (TSCA) Section 5(a)(2) Final Significant New Use Rules (SNURs) (40 CFR 721, Subpt E)

None present or none present in regulated quantities.

US. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050), as amended None present or none present in regulated guantities.

CERCLA Hazardous Substance List (40 CFR 302.4):

None present or none present in regulated quantities.

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Hazard categories

Not classified

US. EPCRA (SARA Title III) Section 304 Extremely Hazardous Substances Reporting Quantities and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Hazardous Substances

None present or none present in regulated quantities.

US. EPCRA (SARA Title III Section 313 Toxic Chemical Release Inventory (TRI) Reporting

None present or none present in regulated quantities.

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130):

None present or none present in regulated quantities.

Clean Water Act Section 311 Hazardous Substances (40 CFR 117.3)

None present or none present in regulated quantities.

US State Regulations

US. California Proposition 65

No ingredient requiring a warning under CA Prop 65.

Inventory Status:

US TSCA Inventory:	Included on Inventory.	
--------------------	------------------------	--

16.Other information, including date of preparation or last revision

HMIS Hazard ID

Hazard rating: 0 - Minimal; 1 - Slight; 2 - Moderate; 3 - Serious; 4 - Severe; RNP - Rating not possible; *Chronic health effect

Issue Date:	09/09/2022
Version #:	1.0
Further Information:	No data available.
Revision Information	Changes since the last version are highlighted in the margin. This version replaces all previous versions.
Disclaimer:	This information and any recommendations, technical or otherwise, are presented in good faith and believed to be correct as of the date prepared. Recipients of this information and recommendations must make their own determination as to its suitability for their purposes. In no event shall Evonik assume liability for damages or losses of any kind or nature that result from the use of or reliance upon this information and recommendations. EVONIK EXPRESSLY DISCLAIMS ANY REPRESENTATIONS AND WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO THE ACCURACY, COMPLETENESS, NON-INFRINGEMENT, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE) WITH RESPECT TO ANY INFORMATION AND RECOMMENDATIONS PROVIDED. Reference to any trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used. Evonik reserves the right to make any changes to the information and/or recommendations at any time, without prior or subsequent notice.

SAFETY DATA SHEET

Classified in accordance with 29 CFR 1910.1200

1. Identification

Product identifier: 5 micron ZVI

Other means of identification

None.

Recommended restrictions

Recommended use: Remediation of contaminated soil and groundwater. Restrictions on use: Not determined.

Manufacturer/Importer/Distributor Information

Company Name	: Evonik Corporation 2 Turner Place Piscataway, NJ 08854 USA	
Telephone	: +1 732 981 5000	
E-mail	: product-regulatory-services@evonik.com	
rgency telephone number:		

Emerge reieb

24-Hour Health	:	+1 800 424 9300 (CHEMTREC - US & CANADA)
Emergency		800 681 9531 (CHEMTREC MEXICO)
		+1 703 527 3887 (CHEMTREC WORLD)

2. Hazard(s) identification

Hazard Classification

Not classified

Label Elements

Hazard Symbol:	No symbol
Signal Word:	No signal word
Hazard Statement:	Not applicable
Precautionary Statements	

Hazard(s) not otherwise None. classified (HNOC):

3. Composition/information on ingredients

Mixtures

Chemical Identity	Common name and synonyms	CAS number	Content in percent (%)*
iron		7439-89-6	35 - 45%
Glycerol		56-81-5	45 - 65%
Water		7732-18-5	>15%

* All concentrations are percent by weight unless ingredient is a gas. Gas concentrations are in percent by volume.

The exact concentration has been withheld as a trade secret.

4. First-aid measures	
Description of first aid measures	
Inhalation:	If aerosol or mists are formed: Take affected persons out into the fresh air.
Skin Contact:	Gently wash with plenty of soap and water.
Eye contact:	In case of contact, immediately flush eyes with plenty of water. Obtain medical attention if irritation develops.
Ingestion:	If accidentally swallowed, rinse mouth thoroughly with water and afterwards, drink plenty of water. In case of discomfort, obtain medical attention.
Personal Protection for First-aid Responders:	No data available.
Most important symptoms and effect	s, both acute and delayed
Symptoms:	None known.
Hazards:	None known.
Indication of immediate medical attention	on and special treatment needed
Treatment:	No hazards which require special first aid measures.
5. Fire-fighting measures	
Suitable (and unsuitable) extinguishi	ng media
Suitable extinguishing media:	Water spray, foam, CO2, dry powder. Adapt fire- extinguishing measures to surroundings
Unsuitable extinguishing media:	None known.
Special hazards arising from the substance or mixture:	No data available.

Special protective equipment and precautions for firefighters

Special fire fighting procedures:	As in any fire, wear self-contained positive-pressure breathing apparatus, (MSHA/NIOSH approved or equivalent) and full protective gear.
Special protective equipment for fire- fighters:	No data available.
6. Accidental release measures	
Personal precautions, protective equipment and emergency procedures:	Use personal protective equipment.
Accidental release measures:	No data available.
Methods and material for containment and cleaning up:	Pick up mechanically with an adsorbent and collect in a suitable container. Rinse with water in suitable containers.
Environmental Precautions:	Do not allow entrance in sewage water, soil stretches of water, groundwater, drainage systems.

7. Handling and storage

Har	ndling	
-	Technical measures:	Ensure suitable suction/aeration at the work place and with operational machinery.
I	Local/Total ventilation:	No data available.
:	Safe handling advice:	Handle in accordance with good industrial hygiene and safety practice. If there is the possibility of skin/eye contact, the indicated hand/eye/body protection should be used. If workplace exposure limits are exceeded and/or larger amounts are released (leakage, spilling, dust) the indicated respiratory protection should be used.Stir and/or shake well before use.
(Contact avoidance measures:	No data available.
Sto	rage	
;	Safe storage conditions:	Observe specified storage time because of re- agglomeration.Avoid frost. Keep container tightly closed.
:	Safe packaging materials:	No data available.

8. Exposure controls/personal protection

Control Parameters

Occupational Exposure Limits

Chemical Identity	Туре	Exposure Limit Values	Source
Glycerol - Total dust.	PEL	15 mg/m3	OSHA Z1 (03 2016)

Glycerol - Respirable	PEL	5 mg/m3	OSHA Z1 (03 2016)	
Glycerol - Vapor.	ST ESL	1,000 µg/m3	TX ESL (11 2016)	
	AN ESL	100 µg/r	n3 TX ESL (11 2016)	

Please refer to the latest edition of the appropriate source text and consult an industrial hygienist or similar professional, or local agencies, for further information.

Biological Limit Values

No biological exposure limits noted for the ingredient(s).

Appropriate Engineering Controls	Ensure suitable suction/aeration at the work place and with operational machinery.
Individual protection measures, such as per	sonal protective equipment
Eye/face protection:	Wear safety glasses with side shields (or goggles).
Skin Protection Hand Protection:	Additional Information: Use impermeable gloves.
Skin and Body Protection:	No special protective equipment required. Take off contaminated clothing and wash it before reuse. When handling larger quantities: disposable protective suit (Solvent-resistant)
Respiratory Protection:	A respiratory protection program that meets OSHA 1910.134 and ANSI Z88.2 or applicable federal/provincial requirements must be followed whenever workplace conditions warrant respirator use. NIOSH's "Respirator Decision Logic" may be useful in determining the suitability of various types of respirators.
Hygiene measures:	When using, do not eat, drink or smoke. Wash face and/or hands before break and end of work. To ensure ideal skin protection: use super fatted soaps and skin cream for skin care. Wash contaminated clothing before reuse.

9. Physical and chemical properties

Information on basic physical and chemical properties Appearance		
liquid		
Slurry		
Black		
Slight		
Not applicable		
No data available.		
No data available.		

Flammability:	not to be expected, given the composition employed
Upper/lower limit on flammability or ex	plosive limits
Explosive limit - upper:	Not applicable
Explosive limit - lower:	Not applicable
Flash Point:	not relevant, since based on water
Auto-ignition temperature:	not flammable
Decomposition Temperature:	No data available.
pH:	Not applicable
Viscosity	
Dynamic viscosity:	2,000 - 5,000 mPa.s
Kinematic viscosity:	No data available.
Flow Time:	No data available.
Solubility(ies)	
Solubility in Water:	No data available.
Solubility (other):	No data available.
Partition coefficient (n-octanol/water):	No data available.
Vapor pressure:	No data available.
Relative density:	No data available.
Density:	1.8 g/cm3 at 68 °F/20 °C
Bulk density:	No data available.
Relative vapor density:	No data available.
Other information	
Explosive properties:	not to be expected, given the composition employed
Oxidizing properties:	not to be expected, given the composition employed
Peroxides:	Not applicable
Miscible (water):	partly miscible
Minimum ignition energy:	Not applicable

10. Stability and reactivity

Reactivity:	No dangerous reaction known under conditions of normal use.
Chemical Stability:	Stable under recommended storage conditions.
Possibility of hazardous reactions:	No data available.
Conditions to avoid:	Strong acids.
Incompatible Materials:	Strong oxidizing agents. Strong acids.
Hazardous Decomposition Products:	No decomposition if stored and applied as directed. Stable under normal conditions. Product will not undergo hazardous polymerization.

6/12

11. Toxicological information

Information on I Inhalation:	ikely routes	of exposure No data available.
Skin Contact:		No data available.
Eye contact:		No data available.
Ingestion:		No data available.
Acute toxicity (I	ist all possik	ble routes of exposure)
Oral Product:		Not classified for acute toxicity based on available data.
Dermal Product:		Not classified for acute toxicity based on available data.
Inhalation Product:		Not classified for acute toxicity based on available data.
Repeated dose Product: Components: Glycerol	toxicity	No data available. NOAEL Rat, Female, Male, Oral, 90 d, daily, 4,580 mg/kg NOAEC, Rat, Female, Male, Inhalation - dust and mist, 90 d, 5 days/weeks, 6 hours/day, 167 mg/m ³ NOAEL Rabbit, Dermal, 315 d, 5 days/weeks, 5,040 mg/kg
Skin Corrosion/ Product: Components: iron Glycerol Water	Irritation	No data available. Not irritating, OECD 404, Rabbit Not irritating, Rabbit Not irritating
Serious Eye Dat Product: Components: iron Glycerol Water	mage/Eye Irr	itation No data available. Not irritating, OECD 405, Rabbit Not irritating, Rabbit Not irritating
Respiratory or S	Skin Sensitiz	ation No data available
Components: iron Glycerol		Optimizations-test, Guinea Pig, Not a skin sensitizer. Local Lymph Node Assay (LLNA), OECD 429, Mouse, Not a skin sensitizer.
Water		Not a respiratory sensitizer Not a skin sensitizer. Not a respiratory sensitizer
Carcinogenicity Product: Components: Glycerol	,	No data available.
Water		Not classified
05078249	US	2024-04-16

IARC Monographs on the Evaluation of Carcinogenic Risks to Humans:

No carcinogens present or none present in regulated quantities

ACGIH: US.ACGIH Threshold Limit Values:

No carcinogens present or none present in regulated quantities

US. National Toxicology Program (NTP) Report on Carcinogens:

No carcinogens present or none present in regulated quantities

US. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1053), as amended:

No carcinogens present or none present in regulated quantities

Germ Cell Mutagenicity In vitro Product:	No data available.
iron	gene mutation test, OECD 471: , negative gene mutation test, OECD 476: , negative
Glycerol	Ames test, OECD 471: , negative gene mutation test, OECD 476: , negative Chromosomal aberration, OECD 473: , negative DNA damage and/or repair, OECD 482: , negative
In vivo Product:	No data available.
Reproductive toxicity Product: Components:	No data available.
Glycerol Water	Not classified Not classified
Specific Target Organ Toxic Product: Components:	ity - Single Exposure No data available.
Glycerol Water	Not classified
Specific Target Organ Toxic Product:	ity - Repeated Exposure No data available.
Components: Glycerol	Not classified
Water	Not classified
Aspiration Hazard Product: Components:	No data available.
iron Glycerol Water	Not applicable Not classified Not classified

8/12

Information on health hazards

Other hazards Product:

No data available.

12. Ecological information

Ecotoxicity:

Acute hazards to the aquatic environment:

Fish	
Product:	No data available.
Glycerol	LC 50, Oncorhynchus mykiss, 96 h, 54,000 mg/l
Aquatic Invertebrates Product:	No data available.
Glycerol	LC 50, Daphnia magna, 48 h, 1,955 mg/l
Toxicity to Aquatic Plant Product:	t s No data available.
Glycerol	EC 50, Scenedesmus quadricauda (Green algae), 8 d, 2,900 mg/l
Toxicity to microorganis Product:	ms No data available.
Glycerol	EC 50, Pseudomonas putida, 16 h, > 10,000 mg/l
Chronic hazards to the a	equatic environment:
Fish Product:	No data available.
Aquatic Invertebrates Product:	No data available.
Toxicity to microorganis Product: Components:	ms No data available.
Glycerol	EC 50, Pseudomonas putida, 16 h, > 10,000 mg/l
Persistence and Degradal	bility
Biodegradation	
Product:	not biodegradable
BOD/COD Ratio	
Product:	No data available.
Bioaccumulative potentia	I
Bioconcentration Factor Product:	(BCF) No data available.
000005078249 US	2024-04-16

Components: Glycerol	Bioaccumulation is not to be expected. Literature	
Partition Coefficient n-octan Product: Components:	ol / water (log Kow) No data available.	
Glycerol	-1.76	
Mobility in soil:		
Product:	No data available.	
Results of PBT and vPvB asso	essment:	
Product:	No data available.	
Other adverse effects:		
Other hazards Product:	No data available.	
13. Disposal considerations		
Disposal methods:	Waste must be disposed of in accordance with federal, state, provincial and local regulations.	
Contaminated Packaging:	Packaging material should be recycled or disposed of in accordance with federal, state and local regulations.	
14. Transport information		
Domestic regulation		
49 CFR Not regulated as a dangerous g	ood	
International Regulations		
UNRTDG Not regulated as a dangerous good		
IATA-DGR Not regulated as a dangerous good		
IMDG-Code Not regulated as a dangerous good		
Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code Not applicable for product as supplied.		
15. Regulatory information		
US Federal Regulations		

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D) None present or none present in regulated quantities (on the basis of current knowledge of the product composition).

US. Toxic Substances Control Act (TSCA) Section 5(a)(2) Final Significant New Use Rules (SNURs) (40 CFR 721, Subpt E)

None present or none present in regulated quantities (on the basis of current knowledge of the product composition).

US. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1053), as amended

None present or none present in regulated quantities (on the basis of current knowledge of the product composition).

CERCLA Hazardous Substance List (40 CFR 302.4):

None present or none present in regulated quantities (on the basis of current knowledge of the product composition).

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Hazard categories

Not classified

US. EPCRA (SARA Title III) Section 304 Extremely Hazardous Substances Reporting Quantities and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Hazardous Substances

None present or none present in regulated quantities (on the basis of current knowledge of the product composition).

US. EPCRA (SARA Title III Section 313 Toxic Chemical Release Inventory (TRI) Reporting

None present or none present in regulated quantities (on the basis of current knowledge of the product composition).

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130):

None present or none present in regulated quantities (on the basis of current knowledge of the product composition).

Clean Water Act Section 311 Hazardous Substances (40 CFR 117.3)

None present or none present in regulated quantities (on the basis of current knowledge of the product composition).

US State Regulations

US. California Proposition 65

No ingredient requiring a warning under CA Prop 65.

16.Other information, including date of preparation or last revision

HMIS Hazard ID

TX ESL / AN ESL:

Annual ESL:

Hazard rating: 0 - Minimal; 1 - Slight; 2 - Moderate; 3 - Serious; 4 - Severe; RNP - Rating not possible; *Chronic health effect

Version #:	1.1
Generation date:	04/16/2024
Date of first report version:	04/16/2024
Abbreviations and acronyms	:
OSHA_TRANS:	US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000), as amended
TX ESL:	US. Texas. Effects Screening Levels (Texas Commission on Environmental Quality), as amended
OSHA_TRANS / PEL:	Permissible exposure limit:
TX ESL / ST ESL:	Short-Term ESL:

AIIC - Australian Inventory of Industrial Chemicals; ASTM - American Society for the Testing of Materials; bw - Body weight: CERCLA - Comprehensive Environmental Response. Compensation, and Liability Act: CMR - Carcinogen, Mutagen or Reproductive Toxicant; DIN - Standard of the German Institute for Standardisation: DOT - Department of Transportation: DSL - Domestic Substances List (Canada): ECx -Concentration associated with x% response; EHS - Extremely Hazardous Substance; ELx - Loading rate associated with x% response; EmS - Emergency Schedule; ENCS - Existing and New Chemical Substances (Japan); ErCx - Concentration associated with x% growth rate response; ERG - Emergency Response Guide; GHS - Globally Harmonized System; GLP - Good Laboratory Practice; HMIS -Hazardous Materials Identification System; IARC - International Agency for Research on Cancer; IATA -International Air Transport Association; IBC - International Code for the Construction and Equipment of Ships carrying Dangerous Chemicals in Bulk; IC50 - Half maximal inhibitory concentration; ICAO -International Civil Aviation Organization; IECSC - Inventory of Existing Chemical Substances in China; IMDG - International Maritime Dangerous Goods: IMO - International Maritime Organization: ISHL -Industrial Safety and Health Law (Japan); ISO - International Organisation for Standardization; KECI -Korea Existing Chemicals Inventory; LC50 - Lethal Concentration to 50 % of a test population; LD50 -Lethal Dose to 50% of a test population (Median Lethal Dose); MARPOL - International Convention for the Prevention of Pollution from Ships; MSHA - Mine Safety and Health Administration; n.o.s. - Not Otherwise Specified; NFPA - National Fire Protection Association; NO(A)EC - No Observed (Adverse) Effect Concentration; NO(A)EL - No Observed (Adverse) Effect Level; NOELR - No Observable Effect Loading Rate; NTP - National Toxicology Program; NZIoC - New Zealand Inventory of Chemicals; OECD -Organization for Economic Co-operation and Development; OPPTS - Office of Chemical Safety and Pollution Prevention; PBT - Persistent, Bioaccumulative and Toxic substance; PICCS - Philippines Inventory of Chemicals and Chemical Substances; (Q)SAR - (Quantitative) Structure Activity Relationship; RCRA - Resource Conservation and Recovery Act; REACH - Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals; RQ - Reportable Quantity; SADT - Self-Accelerating Decomposition Temperature; SARA - Superfund Amendments and Reauthorization Act; SDS - Safety Data Sheet; TCSI -Taiwan Chemical Substance Inventory; TECI - Thailand Existing Chemicals Inventory; TSCA - Toxic

US

Substances Control Act (United States); UN - United Nations; UNRTDG - United Nations Recommendations on the Transport of Dangerous Goods; vPvB - Very Persistent and Very Bioaccumulative

Further Information:	No data available.		
Revision Information	Changes since the last version are highlighted in the margin. This version replaces all previous versions.		
Disclaimer:	This information and any recommendations, technical or otherwise, are presented in good faith and believed to be correct as of the date prepared. Recipients of this information and recommendations must make their own determination as to its suitability for their purposes. In no event shall Evonik assume liability for damages or losses of any kind or nature that result from the use of or reliance upon this information and recommendations. EVONIK EXPRESSLY DISCLAIMS ANY REPRESENTATIONS AND WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO THE ACCURACY, COMPLETENESS, NON-INFRINGEMENT, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE) WITH RESPECT TO ANY INFORMATION AND RECOMMENDATIONS PROVIDED. Reference to any trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used. Evonik reserves the right to make any changes to the information and/or recommendations at any time, without prior or subsequent notice.		

SAFETY DATA SHEET GeoForm™ Extended Release

SDS # : GEOS Revision date: 2021-10-14 Format: NA Version 1.02

1. PRODUCT AND COMPANY IDENTIFICATION

Product Identifier

Product Name	GeoForm [™] Extended Release
Recommended use of the chemical	and restrictions on use
Recommended Use:	Remediation of contaminated soil and groundwater
Restrictions on Use	Use as recommended by the label.
Manufacturer/Supplier	
	Evonik Active Oxygens, LLC
	2005 Market Street
	Suite 3200
	Philadelphia, PA 19103
	Phone: +1 267/ 422-2400 (General Information)
	E-Mail: Product-regulatory-services@evonik.com
Emergency telephone numbers	
	For leak, fire, spill or accident emergencies, call:
	1 800 / 424 9300 (CHEMTREC - U.S.A.)
	1 703 / 527 3887 (CHEMTREC - Collect - All Other Countries) +1 303/ 389-1409 (Medical - U.S Call Collect)

GeoForm[™] Extended Release

2. HAZARDS IDENTIFICATION

Classification

OSHA Regulatory Status

This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200) and the 2015 Workplace Hazardous Materials Information System (WHMIS)

Skin corrosion/irritation	Category 2
Serious eye damage/eye irritation	Category 2
Combustible dust	

GHS Label elements, including precautionary statements

EMERGENCY OVERVIEW

Warning

Hazard Statements

May form combustible dust concentrations in air H315 - Causes skin irritation H319 - Causes serious eye irritation

Precautionary Statements - Prevention

P264 - Wash hands thoroughly after handling
P280 - Wear protective gloves and eye/face protection
Keep away from all ignition sources including heat,sparks and flame.
Keep container closed and grounded.
Prevent dust accumulations to minimize explosion hazard.

P305 + P351 + P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing

P337 + P313 - If eye irritation persists: Get medical advice/ attention

P302 + P352 - IF ON SKIN: Wash with plenty of water.

P332 + P313 - If skin irritation occurs: Get medical advice/ attention

Hazards not otherwise classified (HNOC)

No hazards not otherwise classified were identified.

Other Information

CONTAINMENT HAZARD: Any vessel that contains wet product must be vented due to potential pressure build up from gases.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Chemical name	CAS-No	Weight %
Ferrous Sulfate Monohydrate	17375-41-6	10 - 15
Iron	7439-89-6	40 - 50
Organic amendment	Proprietary	20 - 30%
Starch	Proprietary	< 10

4. FIRST AID MEASURES			
Eye Contact	Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. If irritation persists, call a physician.		
Skin Contact	Wash off with warm water and soap. In the case of skin irritation or allergic reactions see a physician.		
Inhalation	Remove person to fresh air. If breathing is difficult or if discomfort occurs and persists, obtain medical attention.		
Ingestion	Clean mouth with water and afterwards drink plenty of water. Get medical attention if symptoms occur.		
Most important symptoms and effects, both acute and delayed	May cause skin and eye irritation.		
Indication of immediate medical attention and special treatment needed, if necessary	Treat symptomatically		
	5. FIRE-FIGHTING MEASURES		
Suitable Extinguishing Media	Carbon dioxide (CO ₂). Dry chemical. Water spray. Foam.		
Specific Hazards Arising from the Chemical	Fine dust dispersed in air, in sufficient concentrations, and in the presence of an ignition source is a potential dust explosion hazard.		
Flammable properties	Not combustible		
Hazardous Combustion Products	Oxides of sulfur. Carbon monoxide.		
Explosion data Sensitivity to Mechanical Impact Sensitivity to Static Discharge	Not sensitive. Fine dust dispersed in air, in sufficient concentrations, and in the presence of an ignition source is a potential dust explosion hazard.		

6. ACCIDENTAL RELEASE MEASURES

Personal Precautions	Avoid contact with eyes. Use personal protective equipment. For personal protection see Section 8. Avoid dust formation. Eliminate all ignition sources (no smoking, flares, sparks or flames in immediate area).		
Other	For further clean-up instructions, call PeroxyChem Emergency Hotline number listed in Section 1 "Product and Company Identification" above.		
Environmental Precautions	Prevent entry into waterways, sewers, basements or confined areas.		
Methods for Containment	Maintain good housekeeping practices to avoid accumulation of settled dust, especially on overhead surfaces. Cover powder spill with plastic sheet or tarp to minimize spreading and keep powder dry.		
Methods for cleaning up	Pick up and transfer to properly labeled containers. Take precautionary measures against static discharges. Avoid wetting dust and clean up as a dry powder with appropriate PPE for handling dry dusty materials; store in containers that keep material dry, segregated but allow to vent. The waste may be recovered and recycled.		
	7. HANDLING AND STORAGE		
Handling	Avoid contact with eyes. Avoid breathing dust. Wear personal protective equipment. Refer to Section 8. Minimize dust generation and accumulation. Keep away from open flames, hot surfaces and sources of ignition. Dry powdered material can build static electricity when subjected to the friction of transfer and mixing operations. Provide adequate precautions, such as electrical grounding and bonding, or inert atmosphere.		
Storage	Store in a well-ventilated place. Keep cool. Keep away from open flames, hot surfaces and sources of ignition. Any vessel that contains wet product must be vented due to potential pressure build up from gases.		
Incompatible products	Oxidizing agents. Strong acids. Strong bases.		

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

Exposure Guidelines

Chemical name	ACGIH TLV	OSHA PEL	NIOSH	Mexico
Ferrous Sulfate Monohydrate 17375-41-6	TWA: 1 mg/m³	-	-	-
salt	TWA: 10 mg/m ³	-	-	Mexico: TWA 10 mg/m ³
Chemical name	British Columbia	Quebec	Ontario TWAEV	Alberta
Ferrous Sulfate Monohydrate 17375-41-6	TWA: 1 mg/m ³	TWA: 1.0 mg/m ³	TWA: 1 mg/m ³	TWA: 1 mg/m ³
salt	TWA: 10 mg/m ³	-	TWA: 10 mg/m ³ inhalable	-

Appropriate engineering controls

Engineering measures

Adequate engineering controls and/or personal protective equipment must be used to prevent contact with skin and eyes. Provide emergency on-site eyewash. Provide appropriate exhaust ventilation at places where dust is formed. Use grounding and bonding of dry handling equipment for pneumatics or free falling powder during processing in

SDS #: GEOS

Revision date: 2021-10-14

Version 1.02

enclosed systems. Use only appropriately classified electrical equipment and powered industrial trucks.

Individual protection measures, such as personal protective equipment

Eye/Face Protection	Whenever airborn dust concentrations are high, appropriate protective eyewear, such as mono-goggles, should be worn to prevent eye contact.
Skin and Body Protection	Wear suitable protective clothing. Protective shoes or boots.
Hand Protection	Wear suitable gloves (tested to EN374): Nitrile rubber, Rubber/latex/neoprene or other suitable chemical resistant gloves.
Respiratory Protection	Whenever dust in the worker's breathing zone cannot be controlled with ventilation or other engineering means, workers should wear respirators or dust masks approved by NIOSH/MSHA, EU CEN or comparable organization to protect against airborne dust.
Hygiene measures	Do not eat, drink or smoke when using this product. Must have clean water available for washing in case of eye or skin contamination. Wash skin before eating, drinking, chewing gum, or using snuff. Shower after work. Remove contaminated clothing and wash before reuse. Wash all work clothing separately; do not mix with household laundry.

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Brown Powder
Physical State	Solid
Color	Brown
Odor	Nearly odorless
Odor threshold	Not applicable
рН	6 - 8
Melting point/freezing point	No information available
Boiling Point/Range	No information available
Flash point	No information available
Evaporation Rate	No information available
Flammability (solid, gas)	Combustible material
Flammability Limit in Air	
Upper flammability limit:	No information available
Lower flammability limit:	No information available
Vapor pressure	No information available
Vapor density	No information available
Density	No information available
Specific gravity	No information available
Water solubility	Insoluble in water
Solubility in other solvents	No information available
Partition coefficient	No information available
Autoignition temperature	No information available
Decomposition temperature	No information available
Viscosity, kinematic	Not applicable (Solid)
Viscosity, dynamic	Not applicable
Explosive properties	Low level dust explosion hazard
Oxidizing properties	Not applicable
Other Information	

Molecular weight

0.92 g/cm3 (loose) / 1.13 g/cm3 (tapped)

No information available

Page 5/9

10. STABILITY AND REACTIVITY			
Reactivity	None under normal use conditions.		
Chemical Stability	table under recommended storage conditions.		
Possibility of Hazardous Reactions	Avoid generating dust; fine dust dispersed in air in sufficient concentrations, and in the presence of an ignition source is a potential dust explosion hazard. Product may form by-products during processing which can be toxic or potentially explosive such as hydrogen, hydrogen sulfide and carbon monoxide.		
Hazardous polymerization	Hazardous polymerization does not occur.		
Conditions to avoid	Heat, flames and sparks.		
Incompatible materials	Oxidizing agents. Strong acids. Strong bases.		

Hazardous Decomposition Products Thermal decomposition can lead to release of irritating and toxic gases and vapors: Hydrogen sulfide, Hydrogen gas, Sulfur oxides, Carbon oxides (COx),

11. TOXICOLOGICAL INFORMATION

Product Information

Product does not present an acute toxicity hazard based on known information.

LD50 Oral	Iron Salt: > 670 mg/kg (mouse, 4-hr)
LD50 Dermal	No information available
LC50 Inhalation	No information available
Serious eye damage/eye irritation	Irritating to eyes.
Skin corrosion/irritation	Irritating to skin.

Sensitization

Not expected to be sensitizing based on the components.

Chemical name	LD50 Oral	LD50 Dermal	LC50 Inhalation	NOAEL Oral Value
Iron	98600 mg/kg (Rat)			
(7439-89-6)				
Trade secret	= 8500 mg/kg (Rat)			
0				
Viscosity modifier	6770 mg/kg (Rat)			
0				

Information on toxicological effects

Symptoms

No information available.

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Carcinogenicity Contains no ingredients above reportable quantities listed as a carcinogen.

Mutagenicity

No known mutagenic or teratogenic effects.

GeoForm[™] Extended Release

Reproductive toxicity	This product does not contain any known or suspected reproductive hazards.	Version	1.0
STOT - single exposure STOT - repeated exposure	No information available. No information available.		
Aspiration hazard	No information available.		

12. ECOLOGICAL INFORMATION

Ecotoxicity

Ecotoxicity effects

Not expected to have significant environmental effects

Chemical name	Toxicity to algae	Toxicity to fish	Toxicity to Microorganisms	Toxicity to daphnia and other aquatic invertebrates
Iron		96 h LC50: = 13.6 mg/L		48 h Daphnia magna
Trade secret		96 h LC50: 220 - 460 mg/L (Leuciscus idus) static		24 h LC50: = 330 mg/L (Psammechinus miliaris)
Magnesium Hydroxide		96 h LC50: = 511.31 mg/L (Pimephales promelas) static		
Persistence and degradability	The organic comp Biodegradability c	oonents are biodegradable loes not pertain to inorgar	e and can be expected to nic substances.	o contribute to BOD.
Bioaccumulation	Bioaccumulation i	s unlikely.		
Mobility	No information av	ailable.		
Other Adverse Effects	None known.			
	13. DISPO	SAL CONSIDERATION	ONS	
Waste disposal methods	This material, as CFR 261). This m comes in contact if the material is p the altered materi regulations for ad	supplied, is not a hazardo haterial could become a ha with a hazardous waste, i rocessed or otherwise alt al is a hazardous waste. (ditional requirements. Red	us waste according to F azardous waste if it is m f chemical additions are ered. Consult 40 CFR 2 Consult the appropriate covery/recycling recomn	ederal regulations (40 ixed with or otherwise made to this material, or 61 to determine whether state, regional, or local nended.
Contaminated Packaging	Dispose of in acco	ordance with local regulati	ions.	
	14. TRAN	SPORT INFORMATI	ON	
DOT	NOT REGULATE	D		

TDG NOT REGULATED

15. REGULATORY INFORMATION

U.S. Federal Regulations

<u>SARA 313</u>

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372

SARA 311/312 Hazard Categories

This product is not subject to reporting under the Emergency Planning and Community Right-to-Know rule.

Clean Water Act

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42)

CERCLA/EPCRA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material

US State Regulations

U.S. State Right-to-Know Regulations

This product contains the following substances regulated under state Right-to-Know laws:

Chemical name	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
salt					Х
Trade secret			Х		

California Proposition 65

This product does not contain any Proposition 65 chemicals

<u>CANADA</u>

Environmental Emergencies

This product contains no substances listed under Canada's Environmental Emergency regulations.

Canadian National Pollutant Release Inventory

This product contains no substances reportable under Canada's National Pollutant Release Inventory regulations.

International Inventories

Chemical name	TSCA (United States)	DSL (Canada)	EINECS/EL INCS (Europe)	ENCS (Japan)	China (IECSC)	KECL (Korea)	PICCS (Philippines)	AICS (Australia)	NZIoC (New Zealand)
Ferrous Sulfate Monohydrate 17375-41-6		Н	Н	Х	Н	Н	H	Х	Х
Iron 7439-89-6	Х	Х	231-096-4	Х	Х	Х	X	Х	Х
Organic amendment		Х	281-689-7		Х		Х	Х	Х
salt					Х		Х	Х	Х
Starch	Х	Х	232-940-4	Х	Х	Х	X	Х	Х

GeoForm[™] Extended Release

SDS # : GEOS Revision date: 2021-10-14 Version 1.02

All ingredients are directly listed on the active TSCA Inventory

Mexico

Mexico - Grade

Minimum risk, Grade 0

16. OTHER INFORMATION

NFPA	Health Hazards	1	Flammability 1	Stability 0	Special Hazards -
HMIS	Health Hazards	1	Flammability 1	Physical hazard 0	Special precautions -

Revision date: Revision note 2021-10-14 Manufacturer name changed.

Disclaimer

This information and any recommendations, technical or otherwise, are presented in good faith and believed to be correct as of the date prepared. Recipients of this information and recommendations must make their own determination as to its suitability for their purposes. In no event shall Evonik assume liability for damages or losses of any kind or nature that result from the use of or reliance upon this information and recommendations. EVONIK EXPRESSLY DISCLAIMS ANY REPRESENTATION AND WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO THE ACCURACY, COMPLETENESS, NON-INFRINGEMENT, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAT PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE) WITH RESPECT TO ANY INFORMATION AND RECOMMENDATIONS PROVIDED. Reference to any trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product and does not imply that similar products could not be used. Evonik reserves the right to make any changes to the information and/or recommendations at any time, without prior or subsequent notice.

Prepared By:

Evonik © 2021 Evonik. All Rights Reserved. End of Safety Data Sheet

APPENDIX D

Injection Logs

Breakthrough Monitoring Log

Field Staff: _____

Former Tux Shop 090030

Monitoring Well	Date	Time	Water Level (ft bTOC)	Specific Conductance (µS/cm)	Observations ¹

Notes

1) Note any visual evidence of injection reagent in monitoring wells.

ft bTOC = feet below top of casing

µS/cm = microsiemens/centimeter

Field Staff: _____

Injection Monitoring Log

Former Tux Shop 090030

Injection Well	Date	Time	Injection Rate (gpm)	Injection Pressure (psig)	Cumulative Injected Volume (gal)

Notes

gpm = gallons per minute

psig = pounds per square inch, gauge

gal = gallons

APPENDIX E

Utility Maps

HOUSE PERMIT AND DATE DATE DATE ISSUED APPROVED OWNER CONTRACTOR INSPECTOR DATE INSPECTION REMARKS	
1511 14003 9-23-10 A.A.M. W. Flindal P. Rodal Slingerland 10-4-10 1542-46 21999 9-19-14 A.G.T. P. Jakobson. T. Christensen. B.F. Smith 9-24-14	
1518 A 3229 6-24+9 F.N.H WM Greeley O. Grohn H.A. Cameron 6-27-1,9 1532 B-19706 8-18-27 H.F.L. W.M. samanskee E.B. Erickson. Tourtellot 8-20-27	
1535 C1835 4-4-28 ITH Eugene Strang Owner " 4-23-28 Inside 1.506 D-6119 11-21-35 C.E.H. W" Kauffman " II II 11-25-35 " repair - No record of Original Conn. 1538 D-8364 1-10-38 " M.Somoski M. Pederson " 1-13-38	
15° Arenne 5315 E-3047 11-15-40 " B. Ruff John Potricelli" " 12.3-40 1525 F-4456 9-21-46 R.W. Henry Mailsen owner No inspection Inside	
1516 H-401 5-12-52 E.W. Edgar G. Johnson P. Ourtellot 5-13-52 Treas. Rec. No. 76650 For 230 1516 H-5531 H-30-54 Lucrail W.C. Ruff A. & F. Const. "" " 5.5-54 Treas. Rec. No. 05303 Fee 20" 2- 545-51-51 K4326 7-22-59 Kertes Torkalson M. Farland Wates H. Walin H-13-60 Treas. Rec. No. 100 Forfee Cap. Serve	C.B. Com.
531418 K-5815 11-24-67 112. " M. M. M. Helespino WALIN 12-29-59 Frees. Rec. No. 28878 Fee 11223 NW 5478 1515 M-3523 5-4-64 ISANSON GARDNER - W. UESS 6-12-64 Tree Plan R. # Kellel Fee Nores 1	# 25 ENG ST. 25 PT PECORP OWLY RECP # 75627 FOR
5325 5325 5325 5325 1578 NN H8112 3-26-70 White Herfy's Inc Able W. ANKNEY 7-28-70 Free Had NZ- C.B. Fee 45-11. 15-5 1578 NN H8112 3-26-70 White Herfy's Inc Able W. ANKNEY 7-28-70 Free Had NZ- C.B. Fee 45-11. 15-5 1578 NN H8102 6-4-70 Directle Nordic Hall & Martin Free W. ANKNEY 6-23-70 Free Hicab Only Fee	45. \$10.22 for C.B.
1546 P-3562 12-1-73 WITHROW RAINER WATIONAL LIFE STERLING (0 E. MEGIFFORD 4-12-74 14000 13510) to 1800 014 1535 P-2534 2-13-73 ALEX ALF ADDERN OWNER MSGIFFORD 6-19-74 2000 036 1500 1500 1500 1500 1500 1500 1000 100	
MARKET 940780 8-10-94 SRC GEERENDE TRIEDMAN OWNER STORE FAILUR 12.28.94 #40000 Direct Connect 5401-5407 941468 12-15-94 Scott Unocal OWNER E. NOLEF-MILLER 12.28.94 #40000 Direct Connect 5407-15NO 961198 9-18-96 SRC WALGERENS HUBART BACKHOE L. GAMET 7-16,96 \$468 = SANI. \$100500 STREM DIR. CONT	J. MDC#9609180329
MARKET 982075 12-18-98 SRC CITY of SETTINE CURRENC (RDS CONT.)	uş szor
	- Kanalan in

HOUSE NUMBERPLATE INSPECTIONDATE ISSUEDAPPROVEDOWNERCONTRACTORINSPECTORDATE INSPECTIONDATE INSPECTION1501Market11-9-10AAM.H. LinsjoChas MichaelSlingerland11-45-101521A-439111-29-19M.T.M.R. PaulsonOscar Grohn.H.R. Comeron12-1-19Inside only - Sewer le.1501D-615212-10-35C.E.H.Capt NeilsonBallard Plum Go,Par Ker3-26-36Inside1504F-89646-3-49E.S.R.Shell Oil CoRH. DeenyP. Tourtellot6-18-981514A.M.E.S.R.Shell Oil CoRH. DeenyP. Tourtellot6-18-98	City of Seattle 4894-B 12/07/01
1501 Market 11-9-10 AAM. H. Linsjo Chas Michael Slingerland 11-15-10 1521 A-4391 11-28-19 M.T. M.R. Paulson Oscar Grohn. H.A. Comeron 12-1-19 Inside only - Sewer lo. 1501 D-6152 12-10-35 C.E.H. Capt Neilson Bollard Plum Co. Parker 3-26-36 Inside 1504 F-8964 6-3-48 E.S.D. Shell Oil Co R.H. Deeny P. Tourtellot 6-18-98	wered.
1521 A-4391 11-29-19 M.T. M.R. Paulson Oscar Grohn. H.A. Comeron 12-1-19 Inside only - Sewer 10. 1501 D-6152 12-10-35 C.E.H. Capt Neilson Ballard Plum Co, Parker 3-26-36 Inside 1504 F-8964 6-3-48 E.J.R. Shell Oil Co RH. Deeny P. Tourtellot 6-18-98	wered.
1501 D-6152 12-10-35 C.E.H. Capt Neilson Bollard Plum Co. Parker 3-26-36 inside 1504 F-8964 6-3-48 E.J.D. Shell Oil Co P.H. Deeny P. Tourtellot 6-18-98	
1504 F-8964 6-3-48 E.J.D. Shell Oil Co P.H. Deeny P. Tourtellot 6-18-98	
Bin ANA LARCA A DEL TIME MAPLING SU DE C " " "	
5413 - 5-1306 1-0-31 TINNEY 14-KALES, INC. K.E. FOST 1-10-51	
1575 KAW21 2-19-59 Kentes C.S. 6/eg Excarmo H. WALIN 3-3-59 Treas. Rec. NO. 6/ 75 Feb 09-	169 195. Inch 1-0 B.
1515 M-3523 5-4-64 Isakson Gardner - W. Jess 6-12-64 No Fee. Record only. Fee Par	d on Permit # K-1121
15BANC NW M-3640 520-64 Withrow Mannings Inc. Washington Der. Co. W. Jess 6.26-64 85.50 145.	
NW - N-2496 11-13-67 " Union OII Modern R.S. GARNETT 12-15-67 28.04 The Addition	11.28 C7 ew
1527 Nº 8403 6-4-70 Dreissche Nordie Hall By Martin Excar. W. ANKNEY 6-22-70 LIC-to Cop Only	
15 NW - N-9142 12-28-70 White City Light City Light E.G.MEGIFFORD 12-29-70 2000 255 Repair /h St.	
1516 PT388 8-7-75 L.F.EMRY BALLARDMALL, INC. MERIDIANEXCAN. & WARKE. BLAKE B-19-75 \$200 CAP S.S.	
1522 51594 5-23-84 ANDERSON Dennys Rest MODERN Seuler SEE # 1095 5-31-84 30°CAP	
IS NO SIBIZ 7-1284 Green Denny's, Modern Seubr R. PEHRRSON 7-13-84 25 ADO'L COMN.	
1510 T1963 8-27-90 Scott JSH Properties Owner M. McDaniel 8-31-90 \$6000 Dir. Disches to P/L + \$6000	1-CB
1510 T1986 8-29-90 Scott JSH Properties and M. McDaniel B.31.90 #65" Weephole from P/L	to curb
15TH NW-T-5687 1-8.92 RBB UNICAL A.L. SLEISTER & SONS L. GAMET 1-27.93 \$6500 Sto CAP	RD #3203 Diaginassa
5409-15NW 961198 9-18-96 SEC WALGREENS HOBART BACKHEE \$4480 SANI\$100500 STORM DIN	R. Conn, MDC# 96019
1522 010282 2-5-2001 SRC HANK TYERMAN RESCUE ROOTER #6500 ON SITE REPAI	R
	The second second
	· · · · · · · · · · · · · · · · · · ·
	The second second
the second se	and the second second
	and the second second