June 2024

Groundwater Monitoring Report

North Central Petroleum Spill

SR 17 Near MP 123

Bridgeport, WA 98813

Facility Site No.: 25378742, Cleanup Site No.: 2088

Prepared for:

Don Michelson 27 Hahn Rd. Omak, WA 98841

Prepared by:

West Central Environmental Consultants, Inc.

1030 South Ave. W.

Missoula, MT 59801

August 2, 2024 WCEC Project No. 2403-0544

Nationwide Services www.wcec.com

TABLE OF CONTENTS

1.0	INTRODUCTI	ON1
1.1		tion1
1.2		ory1
1.3	Scope of	Work
2.0	GROUNDWA	TER MONITORING4
2.1		vater Monitoring Procedures4
2.2		vater Analytical Results4
2.3	Groundv	vater Flow Direction and Gradient4
3.0	DISCUSSION	AND RECOMMENDATIONS6
3.1	Field Wo	rk Summary6
3.2	Discussio	on of Results6
3.3	Recomm	endations7
4.0	REFERENCES	8
Figui	res	
	Figure 1:	Site Location
	Figure 2:	Site Details
	Figure 3:	Potentiometric Surface 6-4-24
	Figure 4:	2D Contour Map – Soil WTPH-Gas >200 mg/kg
	Figure 5:	Groundwater Cleanup Level Exceedances – June 2024
Table	es	
	Table 1:	Groundwater Elevation Data
	Table 2:	Groundwater Analytical Results – WTPH-Gas, BTEX, MTBE
	Table 3:	Groundwater Analytical Results – Natural Attenuation Parameters
	Table 4:	Soil Borehole Analytical Results – WTPH-Gas, BTEX, MTBE
	Table 5:	Soil Borehole Groundwater Analytical Results – WTPH-Gas, BTEX, MTBE
	i abic J.	Jon Dorenote Groundwater Analytical Nesults - WIFTI-Gas, DIEA, WITEL

Appendix A: Laboratory Analytical Report

Appendix B: Groundwater Sampling Field Data Sheets

1.0 Introduction

This report documents the June 2024 groundwater monitoring event completed for the North Central Petroleum Spill located at mile post (MP) 122.6 of State Route (SR) Highway 17 near Bridgeport, WA. The Washington Department of Ecology (Ecology) requested additional investigation to define the extent of soil and groundwater impacts north of the highway as a required condition of a No Further Action (NFA) determination for the site [Ecology, 2018]. Remedial investigation activities conducted in 2021 and 2023 documented residual impacts to soil and groundwater that exceeded Model Toxics Control Act (MTCA) Method A cleanup levels (CULs) at the spill source on the north side of SR 17 [WCEC, 2021], [WCEC, 2023]. A PetroFix™ injection was proposed as an in-situ treatment for the identified source area impacts with the goal of reducing groundwater concentrations to below Method A CULs at all compliance monitoring points [WCEC, 2024]. The June 2024 groundwater monitoring was completed to collect additional pre-injection data, as outlined in the *April 2024 PetroFix™ Injection Work Plan* submitted to Ecology on April 12, 2024.

1.1 Site Location

The site is located in a rural area of Douglas County, Washington where the primary land use is agricultural. The spill occurred adjacent to SR 17 approximately 14 miles east of Bridgeport, WA and 2.7 miles west of Leahy Junction at MP 122.6. The approximate geographic coordinates are 47.926169, -119.447942. The Public Land Survey System (PLSS) description for the site is the SW/4, NW/4, Section 16, and the SE/4, NE/4, Section 17, Township 28 North, Range 27 East. An intermittent stream (East Foster Creek) is located south of the spill site at a distance of approximately 300 feet. Depth to first shallow groundwater varies from approximately 1 to 7 feet below ground surface (bgs) depending on seasonal fluctuations [WCEC, 2015]. The groundwater flow direction is generally to the west-northwest. Subsurface soil primarily consists of silt and silty sand with minor amounts of clay and gravel.

1.2 Site History

Approximately 6,900 gallons of unleaded gasoline were released at the site as the result of a petroleum transport trailer vehicle accident that occurred on December 1, 1994. Excavation of contaminated soil was conducted by LMH Environmental (LMH) in December 1994 at locations north and south of the highway [LMH, 1995]. The excavations were restricted laterally by the highway embankment and vertically by the presence of shallow groundwater. Approximately 770 cubic yards of contaminated soil was removed from the excavations. Soil samples were collected from the pit bottom and sidewalls of the excavations at the completion of excavation activities. The analytical results from these excavation soil samples indicated that

gasoline constituents remained underneath the highway right-of-way (ROW) and to the north of the highway at concentrations exceeding applicable Model Toxics Control Act (MTCA) Method A cleanup levels (CULs).

Two sumps (North Sump and South Sump) were installed in the excavations during backfilling to provide a means for future sampling of groundwater in the excavation backfill [Figure 2]. The sumps were constructed of slotted 4-foot diameter pre-cast concrete manholes bedded in oversized gravel [LMH, 1995]. On the north side of the highway, a layer of oversized gravel was also placed along the entire length of the excavation floor within the highway right-of-way to a depth of approximately 1 foot above the water table to facilitate total fluids recovery from the north excavation through the North Sump as a potential remedial method.

Four groundwater monitoring wells (MP1-MP4) were installed in September 1996 as part of a soil/groundwater investigation to assess constituent concentrations in source area and downgradient locations, primarily south of the highway [Summit, 1997]. Groundwater samples were obtained from 13 borehole locations during the September 1996 investigation, with maximum concentrations of benzene registered at nearly 5,000 μ g/L and TPH-G over 50,000 μ g/L. Groundwater monitoring of permanent wells MP1 through MP4 was conducted on at least an annual basis from 1997 to 2014. Groundwater concentrations in samples collected from all four monitoring wells were below the applicable Method A CULs for all constituents of concern (COCs) for four consecutive quarters in 2014/15 [WCEC, 2015].

In response to Ecology's request for further investigation in the source area north of the highway, WCEC supervised the installation of six soil boreholes (SB1-SB6) and three temporary wells (SB2, SB3, and SB5) on June 2, 2021 [WCEC, 2021]. Two soil samples were obtained from each of the soil boreholes based on the results of field screening for hydrocarbon impacts. Groundwater samples were collected from the three temporary wells and the North Sump. Samples were submitted for laboratory analysis of WTPH-Gas, BTEX, and MTBE. Exceedances of Method A CULs for soil and groundwater were recorded at SB2, SB3, SB5, and the North Sump [Tables 4 and 5].

Based on the results from the June 2021 soil boring investigation, four groundwater monitoring wells (MW1-MW4) were installed in the source area north of the highway on July 11, 2023 to delineate the extent and magnitude of source area groundwater impacts. An additional six soil boreholes (SB7-SB12) were advanced north of the highway ROW fence on Washington Department of Natural Resources (DNR) property to assess residual petroleum concentrations in this area [WCEC, 2023]. Soil samples were obtained from the soil boreholes and monitoring well borings depending on the results of field screening for hydrocarbon impacts. Soil and groundwater samples were submitted for laboratory analysis of WTPH-Gas, BTEX, and MTBE. According to the analytical results from boreholes SB7 through SB12, soil concentrations in the excavation area north of the ROW fence on the DNR property are below Method A CULs for all constituents of concern (COCs) [Table 4, Figure 4]. Method A CULs for groundwater were exceeded in samples from monitoring well MW3 [Table 2], coinciding with the location of soil borehole SB3.

1.3 Scope of Work

The following scope of work was completed to further define the extent and magnitude of petroleum impacts at the spill source north of the highway:

- Conducting a groundwater monitoring event during high groundwater conditions in June 2024.
 Groundwater samples were submitted to Pace for analysis of NWTPH-Gx, EPA 8260B (BTEX and MTBE), EPA 300.0 (Sulfate), and EPA 353.2 (Nitrate + Nitrite).
- Preparation and submittal of a Groundwater Monitoring Report within 60 days of receipt of laboratory analytical data. Newly obtained data will also be uploaded into the Environmental Information Management (EIM) system database according to Ecology's requirements.

2.0 Groundwater Monitoring

2.1 Groundwater Monitoring Procedures

Groundwater sampling of monitoring wells MW1-MW4 was performed on June 4, 2024. Well sampling was conducted according to WCEC standard sampling procedures using a low flow peristaltic pump for purging and sample collection. Groundwater parameters for pH, dissolved oxygen, conductivity, salinity, temperature, oxidation-reduction potential, and turbidity were obtained using a multi-parameter YSI field meter with a flow through cell attached to the peristaltic pump. Groundwater sampling field data sheets are contained in Appendix B.

Monitoring wells were purged until all groundwater parameters stabilized. Groundwater samples were collected in method-specific laboratory containers, packed on ice, and delivered under chain of custody to Pace in Minneapolis, Minnesota. Pace was instructed to analyze the groundwater samples for WTPH-Gx, BTEX, and MTBE via EPA 8260B. The groundwater samples were also analyzed for the biodegradation indicators sulfate (EPA 300.0) and nitrate (EPA 353.2) to assess microbial activity in the source area.

2.2 Groundwater Analytical Results

Groundwater analytical results from the June 2024 monitoring event are summarized in the following paragraphs and in Tables 2 and 3. Method A CUL exceedances are displayed on Figure 5. The complete laboratory analytical results package is contained in Appendix A.

Groundwater sampled from monitoring wells MW1, MW2, and MW4 was below the Method A CULs for all constituents of concern.

Groundwater sampled from monitoring well MW3 contained benzene (28.9 $\mu g/L$) at a concentration exceeding the Method A CULs.

2.3 Groundwater Flow Direction and Gradient

The depth to static water level in the monitoring wells was measured during the groundwater monitoring event using an electronic water level indicator accurate to 0.01 feet. Depth to water measurements varied from 1.83 feet bgs at MW3 to 7.30 feet bgs at MW1. Groundwater elevations were calculated using the established well survey data and the current depth to water measurements. Cumulative groundwater elevation data is presented in Table 1. A potentiometric surface map displaying the data collected during the

June 2024 Groundwater Monitoring Report

North Central Petroleum Spill Bridgeport, WA

June 2024 monitoring event is included as Figure 3. The calculated groundwater flow direction was to the west-northwest under a hydraulic gradient of 0.002. This flow direction generally follows the anticipated flow direction based on local surface topography and the drainage direction of East Foster Creek.

3.0 Discussion and Recommendations

3.1 Field Work Summary

Groundwater monitoring activities were completed on June 4, 2024, including the collection of depth to water measurements and groundwater samples from monitoring wells MW1-MW4. Groundwater samples were submitted for laboratory analysis of WTPH-Gas, BTEX, MTBE, sulfate, and nitrate. The June 2024 monitoring event was conducted during seasonal high groundwater conditions.

3.2 Discussion of Results

Based on the results of the June 2021 and July 2023 soil boring investigations and subsequent groundwater sampling events, soil and groundwater concentrations in the source area north of the highway exceed Method A CULs. The greatest constituent concentrations in soil were encountered at a depth of 6 feet bgs in the SB3 borehole, with a WTPH-Gas concentration of 2,030 mg/kg and a benzene concentration of 0.956 mg/kg [Table 4, Figure 4]. Similarly, groundwater concentrations in the SB3 temporary well were elevated with a WTPH-Gas result of 12,300 μ g/L and a benzene result of 77.5 μ g/L [Table 5]. Monitoring well MW3 was installed at the SB3 borehole location and also currently exceeds Method A CULs for benzene in groundwater [Table 2, Figure 5]. The highest benzene concentration in groundwater was found in the North Sump sample from June 2021, with a result of 198 μ g/L [Table 2]. MTBE was not detected above the laboratory MRLs in any of the soil or groundwater samples obtained during the June 2021 and July 2023 soil boring investigations and groundwater sampling events. Based on the analytical results from boreholes SB7 through SB12, soil concentrations in the excavation area north of the ROW fence are below Method A CULs for all constituents of concern (COCs) [Table 4, Figure 4].

In downgradient locations, the last detection of a COC at the site above Method A CULs was benzene at monitoring well MP2 in September 2012 [Table 2]. MTBE was first detected in downgradient well MP4 during the September 2004 sampling event. MTBE is the most soluble and readily mobilized constituent in gasoline. Samples from monitoring well MP4 contained MTBE at concentrations above the laboratory MRLs during the June 2015 and September 2015 monitoring events, however, the last exceedance of the Method A CUL for MTBE in MP4 occurred in September 2007. Groundwater sampled from all of the downgradient wells (MP1-MP4) was below the Method A CULs for all COCs for four consecutive quarterly monitoring events from December 2014 to June 2015. Sampling of the downgradient monitoring wells MP1 through MP4 has subsequently been discontinued with the approval of Ecology.

The cumulative analytical dataset indicates that natural attenuation processes at the site have been effective in reducing downgradient dissolved constituent concentrations to levels below Method A CULs. However,

natural attenuation alone has not sufficiently diminished COC concentrations in the source area north of the highway. An active remedial strategy will likely be necessary in the source area to augment natural attenuation processes and further reduce COC concentrations to below CULs. Analysis of natural attenuation parameters collected during the groundwater monitoring events indicate that dissolved oxygen and nitrate are depleted within the footprint of the plume when compared to background conditions as represented by upgradient monitoring well MW1 [Table 3]. The depletion of these terminal electron acceptors, in addition to the corresponding negative ORP values recorded, provides evidence that anaerobic degradation processes are occurring. This site-specific data suggests that a remedial strategy including application of additional terminal electron acceptors for microbial respiration may be beneficial for stimulating further anaerobic biodegradation.

3.3 Recommendations

The recent soil boring investigations and groundwater sampling events have provided sufficient data to delineate the extent and magnitude of residual source area contamination in both soil and groundwater. Impacts are primarily limited to the area north of the highway and south of the ROW fence, with the highest groundwater concentrations found in the vicinity of the North Sump and MW3/SB3. WCEC recommends completing a remedial injection in this area using PetroFix™ colloidal activated carbon (CAC) manufactured by Regenesis. PetroFix is a dual function CAC consisting of a water-based colloidal suspension of micronscale activated carbon mixed with an electron acceptor blend. It is designed for in-situ treatment of petroleum hydrocarbons through carbon adsorption followed by microbial biodegradation.

The goal of the proposed PetroFix injection is to reduce groundwater concentrations to below Method A CULs at all compliance monitoring points. At that point, WCEC recommends pursuing an NFA determination for the site through an environmental covenant with WSDOT that acknowledges any remaining soil contamination in combination with the institutional control provided by the highway. The June 2024 groundwater monitoring was completed to collect additional pre-injection data, as outlined in the *April 2024 PetroFix™ Injection Work Plan* submitted to Ecology on April 12, 2024 [WCEC, 2024]. WCEC will move ahead with the PetroFix injection pending comments from Ecology, including a formal opinion review.

4.0 References

LMH Environmental. (LMH, 1995). Report of Gasoline Spill. March 25, 1995.

Summit Envirosolutions. (Summit, 1996). *Proposal for Land Application of Remediated Soil.* October 31, 1996.

Summit Envirosolutions. (Summit, 1997). Groundwater Assessment Report. April 11, 1997.

Washington State Department of Ecology. (Ecology, 2013). *Model Toxics Control Act Cleanup Regulation, Chapter 173-340 WAC.* Revised 2013. Washington State Department of Ecology Toxics Cleanup Program, Publication No. 94-06.

Washington State Department of Ecology. (Ecology, 2018). *North Central Petroleum Spill VCP Opinion Letter.* April 11, 2018.

Washington State Department of Ecology. (Ecology, 2022). *North Central Petroleum Spill VCP Opinion Letter.* May 31, 2022.

West Central Environmental Consultants. (WCEC, 2015). *December through September 2015 Groundwater Monitoring Summary Report.* October 6, 2015.

West Central Environmental Consultants. (WCEC, 2021). *June 2021 Soil Boring Investigation Report*. September 30, 2021.

West Central Environmental Consultants. (WCEC, 2023). *July 2023 Soil Boring Investigation & Monitoring Well Installation Report.* September 18, 2023.

West Central Environmental Consultants. (WCEC, 2024). April 2024 PetroFix™ Injection Work Plan. April 12, 2024.

Figures

Bridgeport, WA

Figure 1: Site Location

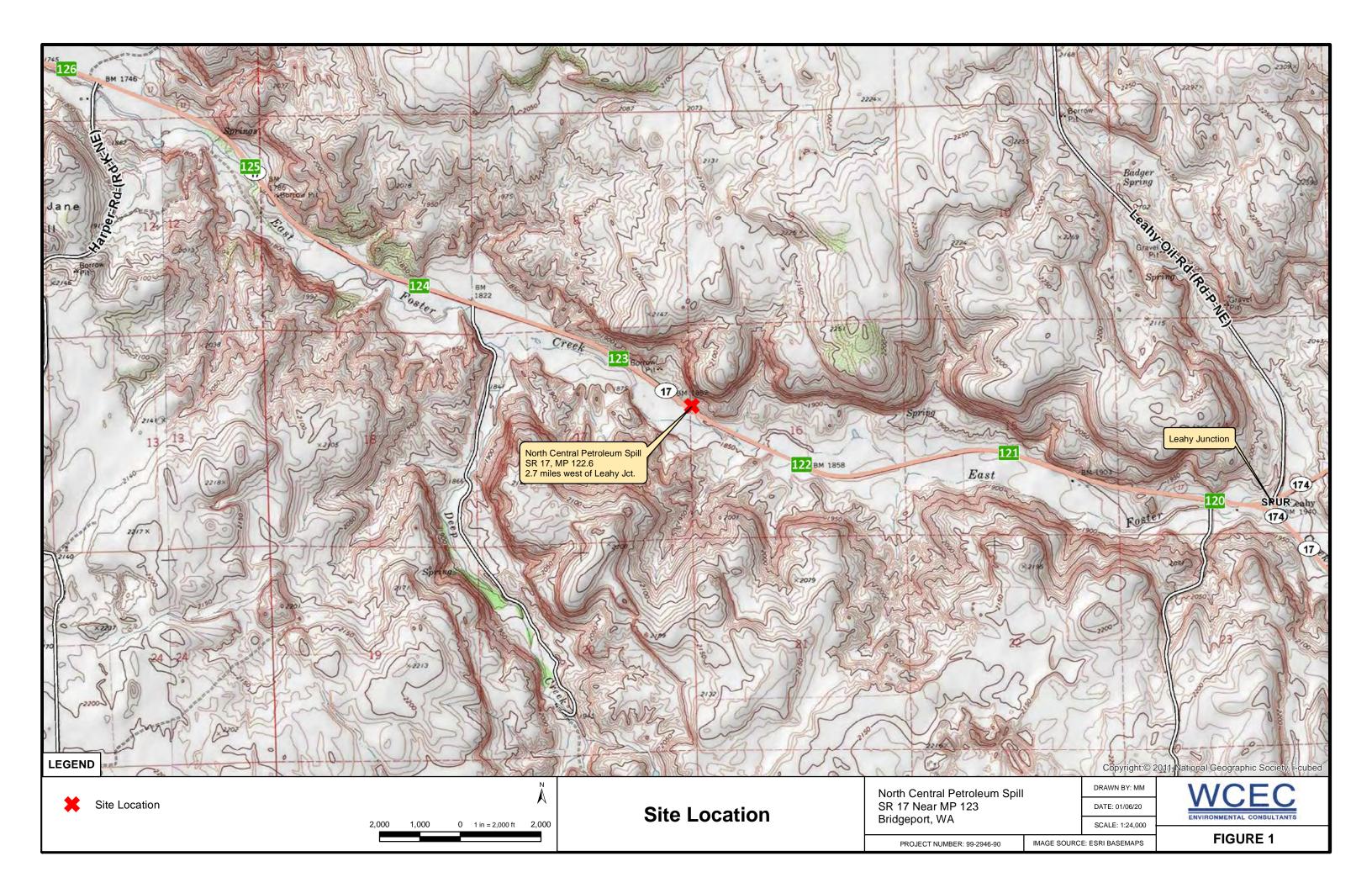
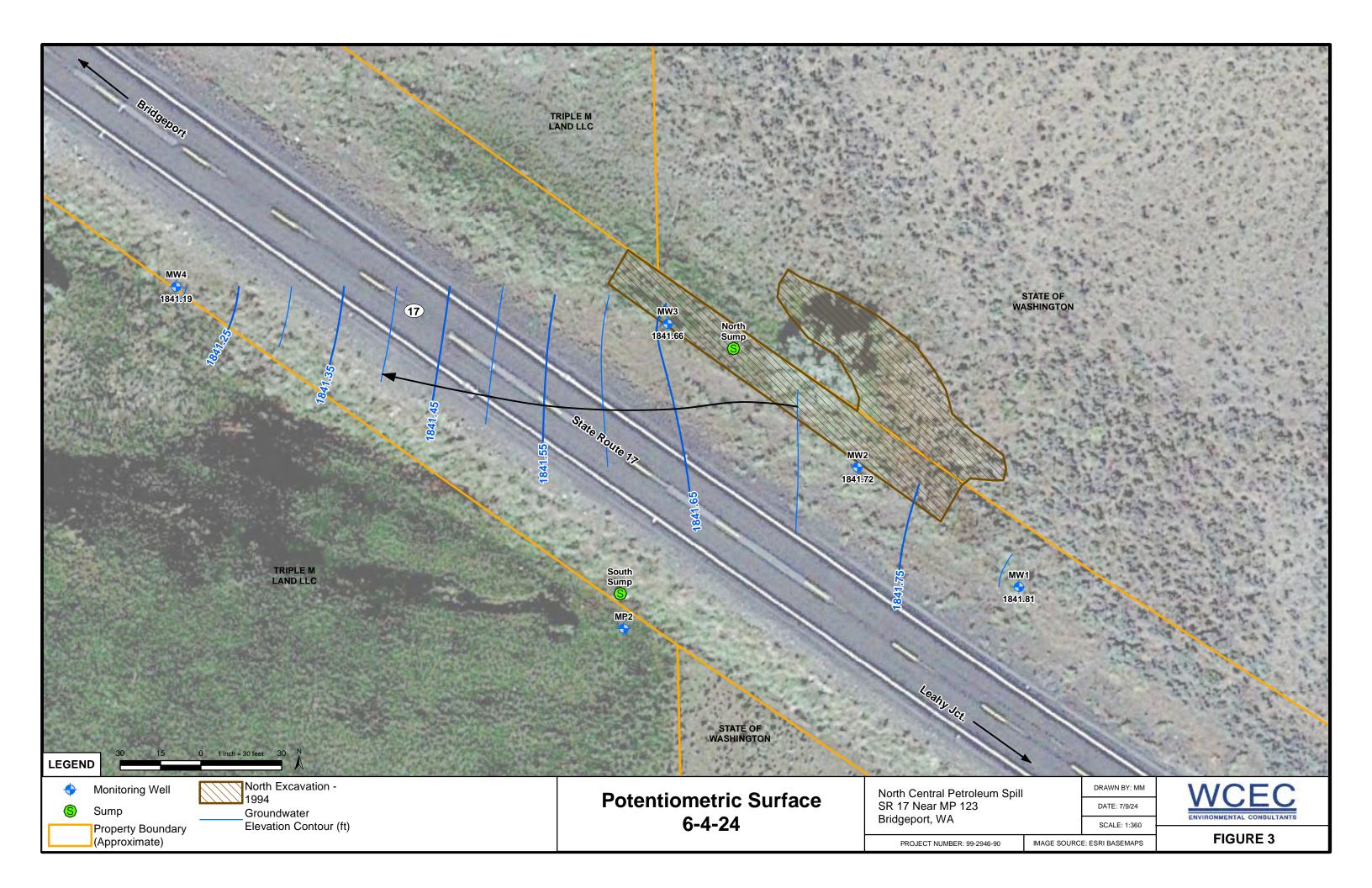
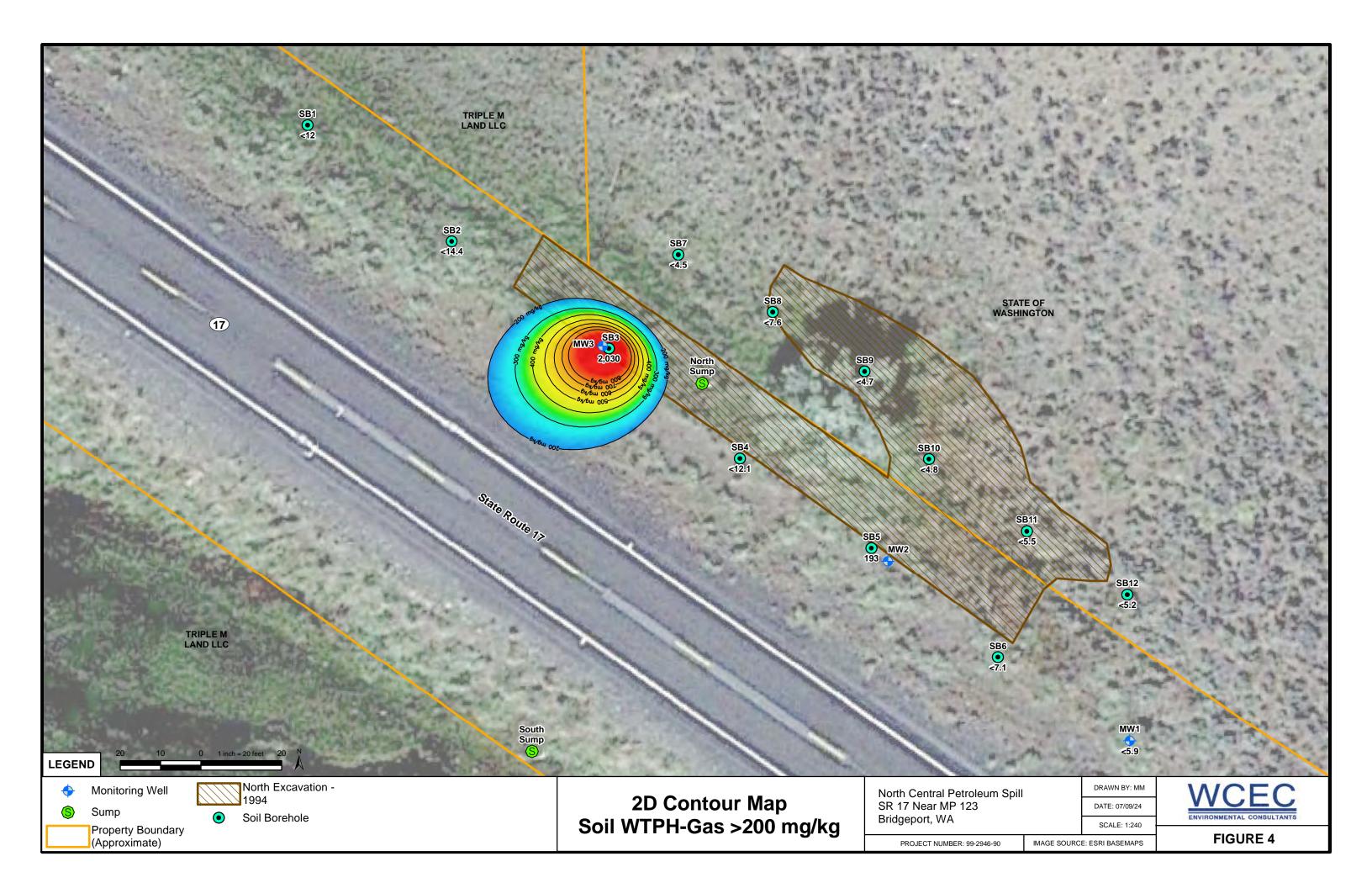
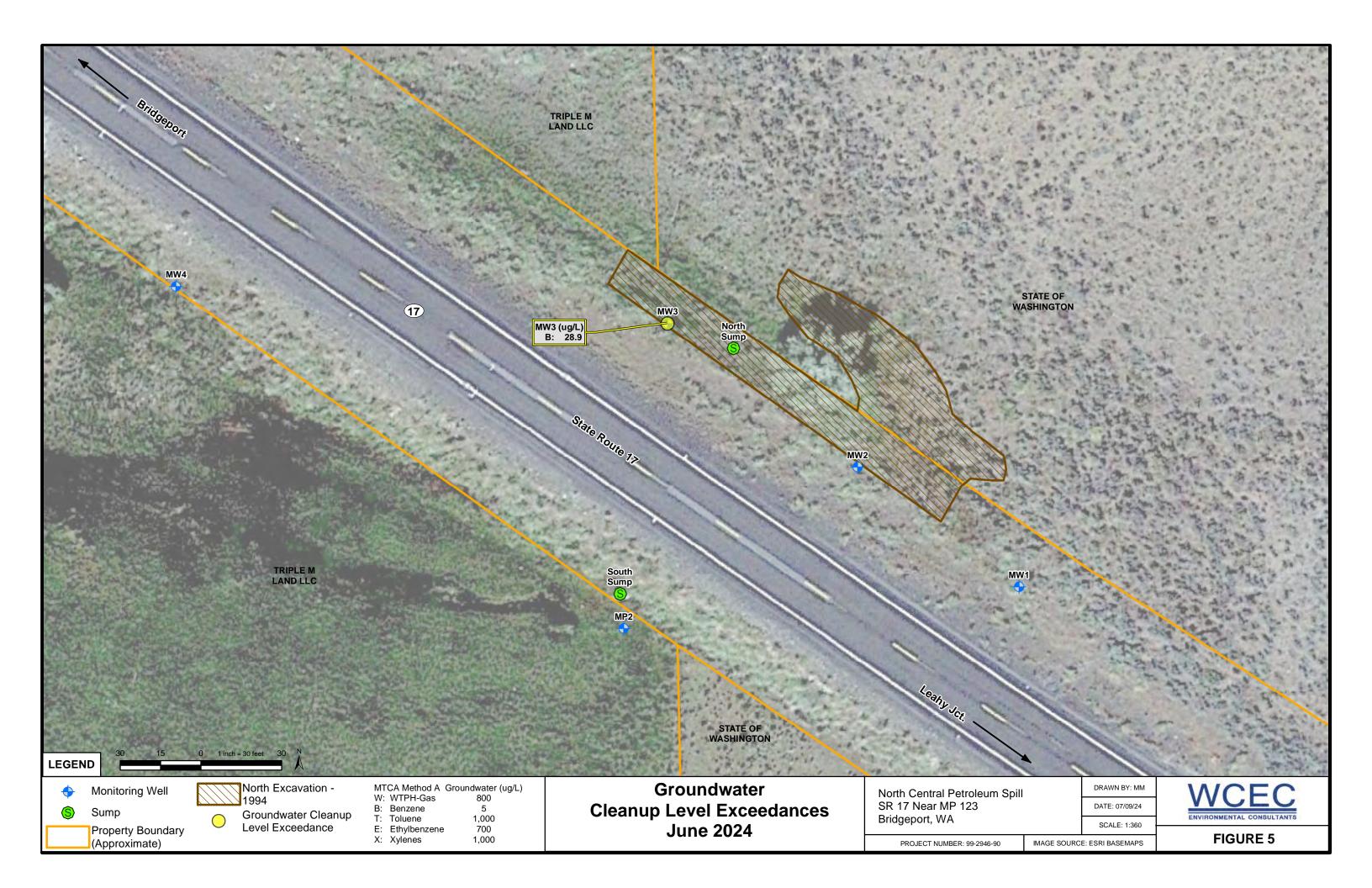

Figure 2: Site Details

Figure 3: Potentiometric Surface 6-4-24


Figure 4: 2D Contour Map – Soil WTPH-Gas >200 mg/kg


Figure 5: Groundwater Cleanup Level Exceedances – June 2024



Tables

Bridgeport, WA

Table 1: Gro	oundwater E	levation D)ata
--------------	-------------	------------	------

Table 2: Groundwater Analytical Results – WTPH-Gas, BTEX, MTBE

Table 3: Groundwater Analytical Results – Natural Attenuation Parameters

Table 4: Soil Borehole Analytical Results – WTPH-Gas, BTEX, MTBE

Table 5: Soil Borehole Groundwater Analytical Results – WTPH-Gas, BTEX, MTBE

TABLE 1
Groundwater Elevation Data
North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor Point	Sample Date	Top of Casing Elevation	Depth to Groundwater	Groundwater Elevation
MW1				
	07/12/23	1849.11	8.10	1841.01
	09/26/23	1849.11	8.91	1840.20
	06/04/24	1849.11	7.30	1841.81
MW2				
	07/12/23	1845.61	4.68	1840.93
	09/26/23	1845.61	5.70	1839.91
	06/04/24	1845.61	3.89	1841.72
MW3				
	07/12/23	1843.49	2.64	1840.85
	09/26/23	1843.49	3.66	1839.83
	06/04/24	1843.49	1.83	1841.66
MW4				
	07/12/23	1843.11	2.90	1840.21
	09/26/23	1843.11	3.68	1839.43
	06/04/24	1843.11	1.92	1841.19

TABLE 1 Continued (Page 2 of 5 Pages)

Groundwater Elevation Data

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	Top of Casing	Depth to	Groundwater
Point	Date	Elevation	Groundwater	Elevation
MP1				
	09/10/96	101.38	2.71	98.67
	09/17/97	101.38	2.33	99.05
	03/24/98	101.38	1.32	100.06
	10/11/98	101.38	1.31	100.07
	03/28/99	101.38	0.94	100.44
	09/28/99	101.38	2.53	98.85
	03/10/00	101.38	2.22	99.16
	09/20/00	101.38	2.41	98.97
	03/14/01	101.38	1.91	99.47
	03/21/02	101.38	2.20	99.18
	09/10/02	101.38	5.40	95.98
	09/03/03	101.38	4.41	96.97
	09/02/04	101.38	4.41	96.97
	09/06/05	101.38	5.20	96.18
	09/13/06	101.38	4.94	96.44
	09/24/07	101.38	5.13	96.25
	09/03/08	101.38	5.36	96.02
	09/02/09	101.38	5.64	95.74
	09/07/10	101.38	5.41	95.97
	09/28/11	101.38	4.74	96.64
	09/12/12	101.38	5.61	95.77
	09/10/13	101.38	5.62	95.76
	09/10/14	101.38	6.88	94.50
	12/15/14	101.38	5.30	96.08
	03/18/15	101.38	2.76	98.62
	06/10/15	101.38	4.68	96.70
	09/02/15	101.38	6.77	94.61

TABLE 1 Continued (Page 3 of 5 Pages)

Groundwater Elevation Data

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	Top of Casing	Depth to	Groundwater
Point	Date	Elevation	Groundwater	Elevation
MP2				
	09/10/96	101.25	2.87	98.38
	09/17/97	101.25	2.22	99.03
	03/24/98	101.25	1.36	99.89
	10/11/98	101.25	1.23	100.02
	03/28/99	101.25	0.90	100.35
	09/28/99	101.25	2.50	98.75
	03/10/00	101.25	2.24	99.01
	09/20/00	101.25	2.63	98.62
	03/14/01	101.25	2.19	99.06
	08/28/01	101.25	5.05	96.20
	03/21/02	101.25	2.34	98.91
	09/10/02	101.25	5.42	95.83
	09/03/03	101.25	5.42	95.83
	09/02/04	101.25	3.75	97.50
	09/06/05	101.25	5.39	95.86
	09/13/06	101.25	4.87	96.38
	09/24/07	101.25	5.13	96.12
	09/03/08	101.25	5.49	95.76
	09/02/09	101.25	5.78	95.47
	09/07/10	101.25	5.56	95.69
	09/28/11	101.25	5.07	96.18
	09/12/12	101.25	5.87	95.38
	09/10/13	101.25	5.91	95.34
	09/10/14	101.25	6.53	94.72
	12/15/14	101.25	6.01	95.24
	03/18/15	101.25	3.71	97.54
	06/10/15	101.25	5.17	96.08
	09/02/15	101.25	6.97	94.28
A 11		101.20	0.5 /	20.2046

TABLE 1 Continued (Page 4 of 5 Pages)

Groundwater Elevation Data

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	Top of Casing	Depth to	Groundwater
Point	Date	Elevation	Groundwater	Elevation
MP3				
	09/10/96	99.20	1.95	97.25
	09/17/97	99.20	1.09	98.11
	03/24/98	99.20	0.90	98.30
	10/11/98	99.20	1.28	97.92
	03/28/99	99.20	0.38	98.82
	09/28/99	99.20	1.90	97.30
	03/10/00	99.20	1.80	97.40
	09/20/00	99.20	2.11	97.09
	03/14/01	99.20	1.93	97.27
	08/28/01	99.20	5.04	94.16
	09/10/02	99.20	5.41	93.79
	09/03/03	99.20	5.52	93.68
	09/02/04	99.20	3.40	95.80
	09/06/05	99.20	5.33	93.87
	09/13/06	99.20	4.70	94.50
	09/24/07	99.20	4.96	94.24
	09/03/08	99.20	5.57	93.63
	09/02/09	99.20	5.90	93.30
	09/07/10	99.20	5.55	93.65
	09/28/11	99.20	4.80	94.40
	09/12/12	99.20	5.94	93.26
	09/10/13	99.20	5.89	93.31
	09/10/14	99.20	-	-
	12/15/14	99.20	5.02	94.18
	03/18/15	99.20	2.91	96.29
	06/10/15	99.20	5.03	94.17
	09/02/15	99.20	7.27	91.93

(-) Well was dry.

TABLE 1 Continued (Page 5 of 5 Pages)

Groundwater Elevation Data

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Commis	Top of Cosin -	Donth to	Groundwater
Point Point	Sample Date	Top of Casing Elevation	Depth to Groundwater	Elevation
MP4	Date	Licvation	Groundwater	Elevation
1711 -	00/10/06	00.10	1.70	06.21
	09/10/96	98.10	1.79	96.31
	09/17/97	98.10	0.98	97.12
	03/24/98	98.10	0.77	97.33
	10/11/98	98.10	1.35	96.75
	03/28/99	98.10	0.65	97.45
	09/28/99	98.10	1.67	96.43
	03/10/00	98.10	1.86	96.24
	09/20/00	98.10	1.97	96.13
	03/14/01	98.10	1.92	96.18
	08/28/01	98.10	4.23	93.87
	03/21/02	98.10	1.50	96.60
	09/10/02	98.10	4.70	93.40
	09/03/03	98.10	4.95	93.15
	09/02/04	98.10	5.55	92.55
	09/06/05	98.10	4.98	93.12
	09/13/06	98.10	3.76	94.34
	09/24/07	98.10	5.04	93.06
	09/03/08	98.10	4.56	93.54
	09/02/09	98.10	5.29	92.81
	09/07/10	98.10	4.15	93.95
	09/28/11	98.10	3.08	95.02
	09/12/12	98.10	4.60	93.50
	09/10/13	98.10	4.79	93.31
	09/10/14	98.10	6.40	91.70
	12/15/14	98.10	2.64	95.46
	03/18/15	98.10	1.04	97.06
	06/10/15	98.10	3.43	94.67
	09/02/15	98.10	6.05	92.05
A 11	09/02/13	70.10	0.03	22.03

TABLE 2
Groundwater Analytical Results - WTPH-Gas, BTEX, MTBE
North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

3.6	G 1	II/TDII C	D	TD 1	D.1 11	37.1) (TDE
Monitor	Sample	WTPH-Gas	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Point	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW1							
	07/12/23	<100	<1	3	<1	<3	<1
	09/26/23	<100	<1	<1	<1	<3	<1
	06/04/24	<100	<1	<1	<1	<3	<1
MW2							
	07/12/23	<100	<1	6.4	<1	<3	<1
	09/26/23	<100	<1	<1	<1	<3	<1
	06/04/24	<100	<1	<1	<1	<3	<1
MW3							
	07/12/23	3,550	79.8	10.4	128	263	<1
	09/26/23	3,720	27.2	1.3	216	1.3	<1
	06/04/24	641	28.9	<1	46.5	16	<1
MW4							
	07/12/23	<100	<1	10.2	<1	<3	<1
	09/26/23	<100	<1	<1	<1	<3	<1
	06/04/24	<100	<1	<1	<1	<3	<1
North Su	mp						
	12/10/94	191,000	42,500	48,000	4,700	28,000	-
	03/28/95	98,000	16,000	21,000	1,300	8,300	-
	08/14/95	240,000	25,000	43,000	2,800	24,000	-
	06/02/21	2,470	198	226	10.4	49.9	<2
Clean Up Lo	evel	800	5	1,000	700	1,000	20
Rold indicates	that the constitue	nt exceeds the MTC	A Method A cleanu	n level			99-2946-90

(-) Sample not analyzed for constituent.

TABLE 2 Continued (Page 2 of 5 Pages) Groundwater Analytical Results - WTPH-Gas, BTEX, MTBE North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	WTPH-Gas	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Point	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MP1							
	09/10/96	<50	<0.5	<0.5	< 0.5	<1	-
	09/17/97	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/24/98	< 50	< 0.5	< 0.5	< 0.5	<1	-
	10/11/98	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/28/99	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/28/99	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/10/00	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/20/00	4,470	3,390	<100	146	418	-
	03/14/01	< 50	0.613	< 0.5	< 0.5	<1	-
	03/21/02	<100	< 0.5	<2	<1	<1.5	-
	09/10/02	<100	< 0.5	<2	<1	<1.5	-
	09/03/03	<100	< 0.5	<2	<1	<1.5	<5
	09/02/04	<100	< 0.5	<2	<1	<1.5	<5
	09/06/05	<100	< 0.5	<2	<1	<1.5	<5
	09/13/06	<100	< 0.5	<2	<1	<1.5	<5
	09/24/07	<100	< 0.5	<2	<1	<1.5	<5
	09/03/08	<100	< 0.5	<2	<1	<1.5	<5
	09/02/09	<100	< 0.2	<1	<1	<1	<1
	09/07/10	<100	< 0.2	<1	<1	<3	<1
	09/28/11	159	<1	<1	<1	<3	<1
	09/12/12	< 50	<1	<1	<1	<3	<1
	09/10/13	<100	<1	<1	<1	<3	<1
	09/10/14	<100	<1	<1	<1	<3	<1
	12/15/14	<100	<1	<1	<1	<3	<1
	03/18/15	<100	<1	<1	<1	<3	<1
	06/10/15	<100	<1	<1	<1	<3	<1
	09/02/15	<100	<1	<1	<1	<3	<1
Clean Up Le	evel	800	5	1,000	700	1,000	20

99-2946-90

(-) Sample not analyzed for constituent.

TABLE 2 Continued (Page 3 of 5 Pages)

Groundwater Analytical Results - WTPH-Gas, BTEX, MTBE

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor Point	Sample Date	WTPH-Gas (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)
MP2							
	09/10/96	1,800	8.52	147	49.4	283	-
	09/17/97	1,990	47	106	33.7	332	-
	03/24/98	757	5.24	31.1	27.8	94.2	-
	10/11/98	1,080	30.6	43.3	29.2	115	-
	03/28/99	4,270	38	77.9	185	539	-
	09/28/99	11,200	3,540	78.2	397	1,120	-
	03/10/00	7,890	<68	65.8	299	900	-
	09/20/00	9,120	3,780	<53	178	520	-
	03/14/01	6,760	<19.8	8.18	188	539	-
	08/28/01	5,450	1,620	19.8	18	36.9	-
	03/21/02	2,840	71.5	<2	41	90.5	-
	09/10/02	10,700	4,140	58.1	289	763	-
	09/03/03	7,160	3,060	33.5	196	389	67
	09/02/04	5,200	2,100	20.3	227	94.2	45.5
	09/06/05	1,670	354	7.94	10.3	58	17.2
	09/13/06	3,370	1,030	<20	283	90.9	61.7
	09/24/07	1,960	484	8.99	348	11.6	41.2
	09/03/08	<1,000	205	<20	220	<15	<10
	09/02/09	597	38.7	<10	99.4	<10	<10
	09/07/10	<100	11.4	<1	5.95	<3	<1
	09/28/11	< 50	17.3	<1	4.1	<3	<1
	09/12/12	54.2	11.8	<1	3.9	<3	<1
	09/10/13	<100	1.6	<1	<1	<3	<1
	09/10/14	*	*	*	*	*	*
	12/15/14	<100	<1	<1	<1	<3	<1
	03/18/15	<100	<1	<1	<1	<3	<1
	06/10/15	<100	<1	<1	<1	<3	<1
	09/02/15	*	*	*	*	*	*
Clean Up Le	evel	800	5	1,000	700	1,000	20

^(*) Insufficient water for sample collection.

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 2 Continued (Page 4 of 5 Pages)

Groundwater Analytical Results - WTPH-Gas, BTEX, MTBE

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	WTPH-Gas	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Point	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MP3					•		
	09/10/96	<50	31.4	0.586	< 0.5	<1	-
	09/17/97	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/24/98	< 50	< 0.5	< 0.5	< 0.5	<1	-
	10/11/98	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/28/99	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/28/99	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/10/00	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/20/00	< 50	< 0.5	0.561	< 0.5	1.17	-
	03/14/01	50.8	< 0.5	< 0.5	< 0.5	< 0.5	-
	08/28/01	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/10/02	<100	2.71	<2	<1	<1.5	-
	09/03/03	106	< 0.5	<2	<1	<1.5	<5
	09/02/04	<100	< 0.5	<2	<1	<1.5	<5
	09/06/05	<100	1.16	<2	<1	<1.5	<5
	09/13/06	<100	0.872	<2	<1	<1.5	<5
	09/24/07	<100	< 0.5	<2	<1	<1.5	<5
	09/03/08	<100	< 0.5	<2	<1	<1.5	<5
	09/02/09	<100	< 0.2	<1	<1	<1	<1
	09/07/10	<100	< 0.2	<1	<1	<3	<1
	09/28/11	< 50	<1	<1	<1	<3	<1
	09/12/12	< 50	<1	<1	<1	<3	<1
	09/10/13	<100	<1	<1	<1	<3	<1
	09/10/14	*	*	*	*	*	*
	12/15/14	<100	<1	<1	<1	<3	<1
	03/18/15	<100	<1	<1	<1	<3	<1
	06/10/15	<100	<1	<1	<1	<3	<1
	09/02/15	<100	<1	<1	<1	<3	<1
Clean Up Lo	evel	800	5	1,000	700	1,000	20

^(*) Insufficient water for sample collection.

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 2 Continued (Page 5 of 5 Pages)

Groundwater Analytical Results - WTPH-Gas, BTEX, MTBE

North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	WTPH-Gas	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Point	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MP4							
	09/10/96	<50	<0.5	<0.5	< 0.5	<1	-
	09/17/97	< 50	< 0.5	< 0.5	< 0.5	<1	_
	03/24/98	< 50	< 0.5	< 0.5	< 0.5	<1	-
	10/11/98	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/28/99	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/28/99	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/10/00	< 50	< 0.5	< 0.5	< 0.5	<1	-
	09/20/00	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/14/01	< 50	< 0.5	< 0.5	< 0.5	<1	-
	08/28/01	< 50	< 0.5	< 0.5	< 0.5	<1	-
	03/21/02	<100	< 0.5	<2	<1	<1.5	-
	09/10/02	<100	0.855	<2	<1	<1.5	-
	09/03/03	<100	< 0.5	<2	<1	<1.5	<5
	09/02/04	<100	< 0.5	<2	<1	< 0.5	29.7
	09/06/05	<100	< 0.5	<2	<1	<1.5	39.4
	09/13/06	<100	< 0.5	<2	<1	<1.5	36
	09/24/07	<100	< 0.5	<2	<1	<1.5	24.6
	09/03/08	<100	< 0.5	<2	<1	<1.5	10.2
	09/02/09	<100	< 0.2	<1	<1	<1	14.2
	09/07/10	<100	< 0.2	<1	<1	<3	10.8
	09/28/11	< 50	<1	<1	<1	<3	6.3
	09/12/12	< 50	<1	<1	<1	<3	4.7
	09/10/13	<100	<1	<1	<1	<3	3.1
	09/10/14	<100	<1	<1	<1	<3	3.9
	12/15/14	<100	<1	<1	<1	<3	<1
	03/18/15	<100	<1	<1	<1	<3	<1
	06/10/15	<100	<1	<1	<1	<3	1.2
	09/02/15	<100	<1	<1	<1	<3	2.4
Clean Up L	evel	800	5	1,000	700	1,000	20
Rold indicates	that the constitue	nt exceeds the MTC	A Method A cleanu	n level			99-2946-90

(-) Sample not analyzed for constituent.

TABLE 3
Groundwater Analytical Results - Natural Attenuation Parameters
North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Monitor	Sample	Lab A	nalysis	Field Parameters		
Point	Date	Sulfate (mg/L)	Nitrate/Nitrite (mg/L)	Dissolved Oxygen (mg/L)	ORP (mV)	
MW1		(mg. 2)	(mg/2)	onygen (mg/2)	(III v)	
	07/12/23	104	0.35	4.46	51.4	
	09/26/23	-	-	-	-	
	06/04/24	116	< 0.1	2.39	62.5	
MW2						
	07/12/23	118	<0.1	2.94	-88.6	
	09/26/23	84	< 0.1	1.44	-124.3	
	06/04/24	75.8	< 0.1	1.43	-121.1	
MW3						
	07/12/23	135	< 0.1	1.26	-102.3	
	09/26/23	64.7	< 0.1	1.03	-127.5	
	06/04/24	104	< 0.1	1.29	-112.8	
MW4						
	07/12/23	96.3	< 0.1	3.12	-75.9	
	09/26/23	101	< 0.1	0.97	-111.3	
	06/04/24	99.9	< 0.1	1.30	-123.8	

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 3 Continued (Page 2 of 5 Pages) **Groundwater Analytical Results - Natural Attenuation Parameters North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA**

Monitor Point Sample Date Lab Analysis Field Parmeters MPI Sulfate (mg/L) Nitrate/Nitrite (mg/L) Dissolved Oxygen (mg/L) pH MPI 09/17/97 - <0.01 1.20 7.28 03/24/98 - <0.1 1.19 7.35 10/11/98 - 0.283 9.55 7.84 03/28/99 - 0.278 10.90 8.55 09/28/99 - 0.246 11.80 8.68 03/10/00 70.1 <0.01 0.76 7.10 09/20/00 2.67 <0.01 0.26 7.22 03/14/01 75.5 <0.01 4.11 6.98 03/21/02 97.6 <0.01 0.57 7.55 09/10/02 101 <0.02 0.25 7.68 09/03/03 103 0.012 4.10 6.90 09/02/04 112 4.47 1.82 7.76 09/08/05 - - 2.14 7.83							
Point Date (mg/L) Sulfate (mg/L) Nitrate/Nitrite (mg/L) Dissolved Oxygen (mg/L) pH MP1 09/17/97 - <0.01 1.20 7.28 03/24/98 - <0.1 1.19 7.35 10/11/98 - 0.283 9.55 7.84 03/28/99 - 0.246 11.80 8.68 03/10/00 70.1 <0.01 0.76 7.10 09/20/00 2.67 <0.01 0.26 7.22 03/14/01 75.5 <0.01 0.57 7.55 09/10/02 97.6 <0.01 0.57 7.55 09/10/02 101 <0.02 0.25 7.68 09/03/03 103 0.012 4.10 6.90 09/05/05 - - 2.14 7.83 09/13/06 - - 0.95 7.52 09/24/07 - - 1.45 7.96 09/03/08 - - 1.44 <th>Monitor</th> <th rowspan="2">_</th> <th>Lab A</th> <th>nalysis</th> <th colspan="3">Field Parameters</th>	Monitor	_	Lab A	nalysis	Field Parameters		
MP1 (mg/L) (mg/L) Oxygen (mg/L) pH 09/17/97 - <0.01 1.20 7.28 03/24/98 - <0.1 1.19 7.35 10/11/98 - 0.283 9.55 7.84 03/28/99 - 0.278 10.90 8.55 09/28/99 - 0.246 11.80 8.68 03/10/00 70.1 <0.01 0.76 7.10 09/20/00 2.67 <0.01 0.26 7.22 03/14/01 75.5 <0.01 0.26 7.22 03/21/02 97.6 <0.01 0.57 7.55 09/10/02 101 <0.02 0.25 7.68 09/03/03 103 0.012 4.10 6.90 09/02/04 112 4.47 1.82 7.76 09/06/05 - - 2.14 7.83 09/13/06 - - 0.95 7.52 09/24/07 -			Sulfate	Nitrate/Nitrite	Dissolved		
09/17/97 - <0.01 1.20 7.28 03/24/98 - <0.1 1.19 7.35 10/11/98 - 0.283 9.55 7.84 03/28/99 - 0.278 10.90 8.55 09/28/99 - 0.246 11.80 8.68 03/10/00 70.1 <0.01 0.76 7.10 09/20/00 2.67 <0.01 0.26 7.22 03/14/01 75.5 <0.01 0.26 7.22 03/14/02 97.6 <0.01 0.57 7.55 09/10/02 101 <0.02 0.25 7.68 09/03/03 103 0.012 4.10 6.90 09/02/04 112 4.47 1.82 7.76 09/02/04 112 4.47 1.82 7.76 09/03/08 - - 2.14 7.83 09/13/06 - - 0.95 7.52 09/24/07 - -<			(mg/L)	(mg/L)	Oxygen (mg/L)	pН	
03/24/98 - <0.1	MP1						
10/11/98 - 0.283 9.55 7.84 03/28/99 - 0.278 10.90 8.55 09/28/99 - 0.246 11.80 8.68 03/10/00 70.1 <0.01	09/17/97		-	< 0.01	1.20	7.28	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		03/24/98	-	< 0.1	1.19	7.35	
09/28/99 - 0.246 11.80 8.68 03/10/00 70.1 <0.01		10/11/98	-	0.283	9.55	7.84	
03/10/00 70.1 <0.01		03/28/99	-	0.278	10.90	8.55	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		09/28/99	-	0.246	11.80	8.68	
03/14/01 75.5 <0.01		03/10/00	70.1	< 0.01	0.76	7.10	
03/21/02 97.6 <0.01		09/20/00	2.67	< 0.01	0.26	7.22	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		03/14/01	75.5	< 0.01	4.11	6.98	
09/03/03 103 0.012 4.10 6.90 09/02/04 112 4.47 1.82 7.76 09/06/05 - - 2.14 7.83 09/13/06 - - 0.95 7.52 09/24/07 - - 1.45 7.96 09/03/08 - - 3.10 7.78 09/02/09 - - 1.44 9.44 09/07/10 - - 3.50 7.81 09/28/11 - - 1.62 7.88 09/12/12 - - - - 09/10/13 - - 0.75 6.90 09/10/14 - - 1.63 7.31 12/15/14 - - 0.59 7.59 03/18/15 - - 1.18 6.90 06/10/15 - 0.97 7.15		03/21/02	97.6	< 0.01	0.57	7.55	
09/02/04 112 4.47 1.82 7.76 09/06/05 - - 2.14 7.83 09/13/06 - - 0.95 7.52 09/24/07 - - 1.45 7.96 09/03/08 - - 3.10 7.78 09/02/09 - - 1.44 9.44 09/07/10 - - 3.50 7.81 09/28/11 - - 1.62 7.88 09/12/12 - - - - 09/10/13 - - 0.75 6.90 09/10/14 - 1.63 7.31 12/15/14 - - 0.59 7.59 03/18/15 - - 1.18 6.90 06/10/15 - 0.97 7.15		09/10/02	101	< 0.02	0.25	7.68	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		09/03/03	103	0.012	4.10	6.90	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		09/02/04	112	4.47	1.82	7.76	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		09/06/05	-	-	2.14	7.83	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		09/13/06	-	=	0.95	7.52	
09/02/09 - - 1.44 9.44 09/07/10 - - 3.50 7.81 09/28/11 - - 1.62 7.88 09/12/12 - - - - 09/10/13 - - 0.75 6.90 09/10/14 - - 1.63 7.31 12/15/14 - - 0.59 7.59 03/18/15 - - 1.18 6.90 06/10/15 - 0.97 7.15		09/24/07	-	-	1.45	7.96	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		09/03/08	-	=	3.10	7.78	
09/28/11 - - 1.62 7.88 09/12/12 - - - - 09/10/13 - - 0.75 6.90 09/10/14 - - 1.63 7.31 12/15/14 - - 0.59 7.59 03/18/15 - - 1.18 6.90 06/10/15 - - 0.97 7.15		09/02/09	-	-	1.44	9.44	
09/12/12 -<		09/07/10	-	-	3.50	7.81	
09/10/13 - - 0.75 6.90 09/10/14 - - 1.63 7.31 12/15/14 - - 0.59 7.59 03/18/15 - - 1.18 6.90 06/10/15 - - 0.97 7.15		09/28/11	-	-	1.62	7.88	
09/10/14 - - 1.63 7.31 12/15/14 - - 0.59 7.59 03/18/15 - - 1.18 6.90 06/10/15 - - 0.97 7.15		09/12/12	-	-	-	-	
12/15/14 - - 0.59 7.59 03/18/15 - - 1.18 6.90 06/10/15 - - 0.97 7.15		09/10/13	<u>-</u>	-	0.75	6.90	
03/18/15 - - 1.18 6.90 06/10/15 - - 0.97 7.15		09/10/14	<u>-</u>	-	1.63	7.31	
06/10/15 0.97 7.15		12/15/14	-	<u>-</u>	0.59	7.59	
		03/18/15	-	-	1.18	6.90	
09/02/15 0.40 7.44		06/10/15	-	-	0.97	7.15	
		09/02/15	-	-	0.40	7.44	

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 3 Continued (Page 3 of 5 Pages) **Groundwater Analytical Results - Natural Attenuation Parameters North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA**

Monitor	Sample	Lab A	nalysis	Field Para	Field Parameters		
Point	Date	Sulfate	Nitrate/Nitrite	Dissolved			
. FDA		(mg/L)	(mg/L)	Oxygen (mg/L)	pН		
MP2							
	09/17/97	-	1.73	1.31	7.38		
	03/24/98	-	< 0.1	2.58	7.39		
	10/11/98	=	0.342	5.15	7.51		
	03/28/99	-	< 0.01	1.45	7.50		
	09/28/99	-	0.252	<1.00	7.46		
	03/10/00	70.2	0.0439	0.60	6.98		
	09/20/00	3.39	0.0108	0.16	6.51		
	03/14/01	143	< 0.01	4.03	6.93		
	08/28/01	6.08	35.5	1.27	7.28		
	03/21/02	71.5	< 0.01	0.57	7.53		
	09/10/02	31.1	< 0.02	0.11	7.40		
	09/03/03	7.07	0.193	9.95	6.97		
	09/02/04	9.03	4.5	1.55	7.32		
	09/06/05	-	-	1.33	7.91		
	09/13/06	-	-	1.38	7.53		
	09/24/07	-	-	0.54	8.12		
	09/03/08	-	-	1.98	8.18		
	09/02/09	-	-	0.61	9.52		
	09/07/10	-	-	0.96	7.19		
	09/28/11	-	-	1.38	7.75		
	09/12/12	-	-	-	-		
	09/10/13	-	-	0.37	3.60		
	09/10/14	-	-	-	-		
	12/15/14	-	-	2.06	8.07		
	03/18/15	-	-	3.18	7.31		
	06/10/15	-	-	0.80	7.02		
	09/02/15	-	-	-	-		

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 3 Continued (Page 4 of 5 Pages) **Groundwater Analytical Results - Natural Attenuation Parameters North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA**

Monitor	Sample	Lab A	nalysis	Field Parameters		
Point	Date	Sulfate	Nitrate/Nitrite	Dissolved		
		(mg/L)	(mg/L)	Oxygen (mg/L)	pН	
MP3						
	09/17/97	-	< 0.01	1.85	7.39	
	03/24/98	-	< 0.1	3.99	7.76	
	10/11/98	-	< 0.1	5.10	7.63	
	03/28/99	-	< 0.01	1.40	7.46	
	09/28/99	-	0.0546	<1.00	7.39	
	03/10/00	69.7	0.0284	0.72	7.43	
	09/20/00	80.1	< 0.01	0.25	7.22	
	03/14/01	61.8	13.1	4.65	7.09	
	08/28/01	68.6	12.3	1.12	7.34	
	09/10/02	70	< 0.02	1.08	7.61	
	09/03/03	49.1	0.0182	5.98	6.71	
	09/02/04	86.5	4.43	1.24	7.89	
	09/06/05	-	-	1.61	7.58	
	09/13/06	-	-	2.96	7.39	
	09/24/07	-	-	7.31	8.00	
	09/03/08	-	-	3.64	7.47	
	09/02/09	-	-	7.99	9.45	
	09/07/10	-	-	6.93	7.18	
	09/28/11	-	-	11.30	6.61	
	09/12/12	-	-	<u>-</u>		
	09/10/13	<u>-</u>		0.55	5.30	
	09/10/14	<u>-</u>	-	-	-	
	12/15/14	-	-	1.81	7.37	
	03/18/15	<u>-</u>	-	1.81	6.49	
	06/10/15	-	-	1.10	6.42	
	09/02/15	-	-	-	-	

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 3 Continued (Page 5 of 5 Pages) **Groundwater Analytical Results - Natural Attenuation Parameters North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA**

Monitor	Sample	Lab A	nalysis	Field Parameters		
Point	Date	Sulfate (mg/L)	Nitrate/Nitrite (mg/L)	Dissolved Oxygen (mg/L)	рН	
MP4						
	09/17/97	-	< 0.01	1.55	6.92	
	03/24/98	-	0.1	3.54	7.41	
	10/11/98	-	< 0.1	9.63	7.20	
	03/28/99	-	0.594	1.05	7.33	
	09/28/99	-	0.01	1.53	7.25	
	03/10/00	71.8	0.0266	0.79	7.48	
	09/20/00	113	< 0.01	0.37	7.25	
	03/14/01	129	25.3	4.47	7.11	
	08/28/01	143	51.8	0.37	7.02	
	03/21/02	140	< 0.01	0.58	7.39	
	09/10/02	132	< 0.02	1.23	7.40	
	09/03/03	134	0.446	6.71	6.40	
	09/02/04	79.5	4.5	1.37	7.63	
	09/06/05	-	-	1.56	7.43	
	09/13/06	-	-	1.75	7.21	
	09/24/07	-	-	7.85	7.91	
	09/03/08	-	-	6.32	7.72	
	09/02/09	-	=	2.73	10.35	
	09/07/10	-	=	1.65	6.97	
	09/28/11	-	-	1.01	7.76	
	09/12/12	-	-	2.58	6.92	
	09/10/13	-	-	0.41	3.60	
	09/10/14	-	-	2.99	6.62	
	12/15/14	-	-	1.79	7.22	
	03/18/15	-	-	1.02	6.57	
	06/10/15	-	-	1.25	7.03	
	09/02/15	-	-	0.56	6.48	

⁽⁻⁾ Sample not analyzed for constituent.

TABLE 4
Soil Borehole Analytical Results - WTPH-Gas, BTEX, MTBE
North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Sample	Sample	Sample	WTPH-Gas	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Location	Depth (ft)	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB1								
	3	06/02/21	<9.3	< 0.0373	< 0.0932	< 0.0932	< 0.279	< 0.0932
	6	06/02/21	<12	< 0.0435	< 0.109	< 0.109	< 0.326	< 0.109
SB2								
	3	06/02/21	<8.7	0.053	< 0.0809	< 0.0809	< 0.243	< 0.0809
	6	06/02/21	<14.4	< 0.061	< 0.153	< 0.153	< 0.458	< 0.153
SB3 (MV	V3)							
	4	06/02/21	878	0.218	1.27	10.5	65	< 0.0743
	6	06/02/21	2,030	0.956	22.2	89.6	597	< 0.0794
SB4								
	3	06/02/21	<8.3	< 0.0308	< 0.0771	< 0.0771	< 0.231	< 0.0771
	6	06/02/21	<12.1	< 0.0365	< 0.0912	< 0.0912	< 0.274	< 0.0912
SB5 (MV	V2)							
	3	06/02/21	<7	< 0.0243	< 0.0608	< 0.0608	< 0.182	< 0.0608
	7	06/02/21	193	< 0.0487	< 0.122	< 0.122	< 0.365	< 0.122
SB6								
	3	06/02/21	<6.2	< 0.0265	< 0.0663	< 0.0663	< 0.199	< 0.0663
	6	06/02/21	<7.1	< 0.0281	< 0.0702	< 0.0702	< 0.210	< 0.0702
SB7								
	3	07/11/23	<4.5	< 0.0221	< 0.0552	< 0.0552	< 0.166	< 0.0552
SB8								
	4	07/11/23	<7.6	< 0.0208	< 0.052	< 0.052	< 0.156	< 0.052
	7	07/11/23	10.5	< 0.0159	< 0.0397	< 0.0397	< 0.119	< 0.0397
SB9								
	4	07/11/23	<4.7	< 0.0184	< 0.046	< 0.046	< 0.138	< 0.046
SB10								
	4	07/11/23	<4.8	< 0.0171	< 0.0428	< 0.0428	<0.128	< 0.0428
SB11								
	4	07/11/23	<5.5	< 0.0201	< 0.0504	< 0.0504	< 0.151	< 0.0504
SB12								
	8	07/11/23	<5.2	< 0.0209	< 0.0521	< 0.0521	< 0.156	< 0.0521
MW1								
	5	07/11/23	<5.9	<0.0226	< 0.0565	< 0.0565	< 0.169	< 0.0565
	8	07/11/23	<4.5	< 0.0184	< 0.046	< 0.046	<0.138	<0.046
MW4				2.220.	2.0.0			3.0.0
	5	07/11/23	<4.7	< 0.020	< 0.0499	< 0.0499	< 0.150	< 0.0499
Clean Up I		0 // 11/23	30	0.03	7	6	9	0.1
_		tuent exceeds t	he MTCA Method A					99-2946-

TABLE 5
Soil Borehole Groundwater Analytical Results - WTPH-Gas, BTEX, MTBE
North Central Petroleum, Inc., Gasoline Spill, Bridgeport, WA

Sample Location	Sample Date	WTPH-Gas (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)
SB2							
	06/02/21	<100	49.1	<1	<1	<3	<1
SB3							
	06/02/21	12,300	77.5	254	766	3,530	<1
SB5							
	06/02/21	6,230	<1	<1	<1	<3	<1
Clean Up Le	evel	800	5	1,000	700	1,000	20

Appendix A

Laboratory Analytical Report

Pace Analytical Services, LLC 1700 Elm Street Minneapolis, MN 55414 (612)607-1700

June 19, 2024

Myles Morris WCEC (Montana) 1030 South Ave. W Missoula, MT 59801

RE: Project: 2403-0544 2946 Bridgeport

Pace Project No.: 10695389

Dear Myles Morris:

Enclosed are the analytical results for sample(s) received by the laboratory on June 06, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross jennifer.gross@pacelabs.com (612)607-1700

ENNI (-POSS

Project Manager

Enclosures

CERTIFICATIONS

Project: 2403-0544 2946 Bridgeport

Pace Project No.: 10695389

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414

Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929

Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 DoD Certification via A2LA #: 2926.01

EPA Region 8 Tribal Water Systems+Wyoming DW

Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 GMP+ Certification #: GMP050884 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368

ISO/IEC 17025 Certification via A2LA #: 2926.01

Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: AI-03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064

Maryland Certification #: 322 Michigan Certification #: 9909

Minnesota Certification #: 027-053-137

Minnesota Dept of Ag Approval: via MN 027-053-137

Minnesota Petrofund Registration #: 1240

Mississippi Certification #: MN00064 Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647

North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification (A2LA) #: R-036 North Dakota Certification (MN) #: R-036

Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Oklahoma Certification #: 9507

Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Vermont Certification #: VT-027053137 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C

Wyoming UST Certification via A2LA #: 2926.01

USDA Permit #: P330-19-00208

Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: 2403-0544 2946 Bridgeport

Pace Project No.: 10695389

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10695389001	MW1	Water	06/04/24 08:15	06/06/24 08:50
10695389002	MW2	Water	06/04/24 09:05	06/06/24 08:50
10695389003	MW3	Water	06/04/24 10:00	06/06/24 08:50
10695389004	MW4	Water	06/04/24 11:05	06/06/24 08:50
10695389005	Trip Blank	Water	06/04/24 00:00	06/06/24 08:50

SAMPLE ANALYTE COUNT

Project: 2403-0544 2946 Bridgeport

Pace Project No.: 10695389

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10695389001	MW1	NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	PAB	8	PASI-M
		EPA 300.0	JFP	1	PASI-M
		EPA 353.2	JFP	1	PASI-M
10695389002	MW2	NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	PAB	8	PASI-M
		EPA 300.0	JFP	1	PASI-M
		EPA 353.2	JFP	1	PASI-M
10695389003	MW3	NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	LPM	8	PASI-M
		EPA 300.0	JFP	1	PASI-M
		EPA 353.2	JFP	1	PASI-M
10695389004	MW4	NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	PAB	8	PASI-M
		EPA 300.0	JFP	1	PASI-M
		EPA 353.2	JFP	1	PASI-M
10695389005	Trip Blank	NWTPH-Gx	TM2	2	PASI-M
		EPA 8260D	PAB	8	PASI-M

PASI-M = Pace Analytical Services - Minneapolis

ANALYTICAL RESULTS

Project: 2403-0544 2946 Bridgeport

Date: 06/19/2024 09:07 AM

Sample: MW1	Lab ID: 1069	5389001	Collected: 06/04/2	24 08:15	Received: 0	6/06/24 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Meth	od: NWTP	H-Gx				_	
	Pace Analytica	Services -	Minneapolis					
TPH as Gas	ND	ug/L	100	1		06/07/24 06:35	5	
Surrogates		-						
a,a,a-Trifluorotoluene (S)	99	%.	50-150	1		06/07/24 06:35	5 98-08-8	
3260D MSV UST	Analytical Meth	od: EPA 82	60D					
	Pace Analytica	Services -	Minneapolis					
Benzene	ND	ug/L	1.0	1		06/08/24 01:45	5 71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		06/08/24 01:45		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		06/08/24 01:45	5 1634-04-4	
oluene	ND	ug/L	1.0	1		06/08/24 01:45		
(ylene (Total)	ND	ug/L	3.0	1		06/08/24 01:45		
Surrogates	115	ug/ L	0.0			00/00/2101.10	1000 20 1	
,2-Dichlorobenzene-d4 (S)	101	%.	75-125	1		06/08/24 01:45	5 2199-69-1	
-Bromofluorobenzene (S)	100	%.	75-125	1		06/08/24 01:45		
oluene-d8 (S)	103	%.	75-125	1		06/08/24 01:45		
00.0 IC Anions	Analytical Meth							
	Pace Analytica	Services -	Minneapolis					
Sulfate	116	mg/L	6.0	5		06/16/24 20:53	3 14808-79-8	
53.2 Nitrate + Nitrite	Analytical Meth	od: EDA 35	:2 2					
533.2 Nitrate + Nitrite	•							
	Pace Analytica	Services -	wimeapoils					
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	1		06/13/24 12:33	3	
Sample: MW2	Lab ID: 1069	5389002	Collected: 06/04/2	24 09:05	Received: 0	6/06/24 08:50	Matrix: Water	
Sample: MW2 Parameters	Lab ID: 1069	95389002 Units	Collected: 06/04/2	24 09:05 DF	Received: 0	6/06/24 08:50 Analyzed	Matrix: Water CAS No.	Qua
	Results	Units	Report Limit					Qua
Parameters	Results Analytical Meth	Units	Report Limit -					Qua
Parameters	Results	Units	Report Limit -					Qua
Parameters IWTPH-Gx GCV TPH as Gas	Results Analytical Meth	Units	Report Limit -				CAS No.	Qua
Parameters NWTPH-Gx GCV TPH as Gas Surrogates	Results Analytical Meth Pace Analytica	Units od: NWTP	Report Limit H-Gx Minneapolis	DF		Analyzed	CAS No.	Qua
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S)	Results Analytical Methodology Pace Analytica ND 98	Units od: NWTP Services - ug/L %.	Report Limit H-Gx Minneapolis 100 50-150	DF1		Analyzed 06/07/24 06:55	CAS No.	Qua
Parameters IWTPH-Gx GCV TPH as Gas Surrogates 1,a,a-Trifluorotoluene (S)	Results Analytical Meth Pace Analytica ND 98 Analytical Meth	Units od: NWTPi Services - ug/L %. od: EPA 82	Report Limit H-Gx Minneapolis 100 50-150	DF1		Analyzed 06/07/24 06:55	CAS No.	Qua
Parameters IWTPH-Gx GCV TPH as Gas Surrogates 1,a,a-Trifluorotoluene (S)	Results Analytical Methodology Pace Analytica ND 98	Units od: NWTPi Services - ug/L %. od: EPA 82	Report Limit H-Gx Minneapolis 100 50-150	DF1		Analyzed 06/07/24 06:55	CAS No.	Qui
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 2260D MSV UST	Results Analytical Meth Pace Analytica ND 98 Analytical Meth	Units od: NWTPi Services - ug/L %. od: EPA 82	Report Limit H-Gx Minneapolis 100 50-150	DF1		Analyzed 06/07/24 06:55	CAS No.	Qua
Parameters IWTPH-Gx GCV TPH as Gas Surrogates 1,a,a-Trifluorotoluene (S) 1260D MSV UST Benzene	Analytical Meth Pace Analytica ND 98 Analytical Meth Pace Analytica	Units od: NWTPl Services - ug/L %. od: EPA 82 Services -	Report Limit H-Gx Minneapolis 100 50-150 Minneapolis	DF 1 1		Analyzed 06/07/24 06:58	CAS No. 5 98-08-8 1 71-43-2	Qu
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 2260D MSV UST Benzene Ethylbenzene	Analytical Meth Pace Analytica ND 98 Analytical Meth Pace Analytica ND	Units od: NWTPl Services - ug/L %. od: EPA 82 Services - ug/L ug/L	Report Limit H-Gx Minneapolis 100 50-150 Minneapolis 1.0	DF 1 1 1 1		Analyzed 06/07/24 06:58 06/07/24 06:58 06/08/24 02:07 06/08/24 02:07	CAS No. 5 98-08-8 1 71-43-2 1 100-41-4	Qu
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 2260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether	Analytical Meth Pace Analytica ND 98 Analytical Meth Pace Analytica ND ND	Units od: NWTPl Services - ug/L %. od: EPA 82 Services - ug/L ug/L ug/L	Report Limit H-Gx Minneapolis 100 50-150 Minneapolis 1.0 1.0 1.0	DF 1 1 1 1 1 1 1 1		06/07/24 06:55 06/07/24 06:55 06/08/24 02:0* 06/08/24 02:0* 06/08/24 02:0*	CAS No. 5 98-08-8 1 71-43-2 1 100-41-4 1 1634-04-4	Qu
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 2260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene	Results Analytical Mether Pace Analytical ND 98 Analytical Mether Pace Analytical Mether Pace Analytical ND ND ND ND ND ND	Units od: NWTPl Services - ug/L %. od: EPA 82 Services - ug/L ug/L ug/L ug/L	Report Limit H-Gx Minneapolis 100 50-150 Minneapolis 1.0 1.0 1.0 1.0	DF 1 1 1 1 1 1 1 1 1 1		06/07/24 06:55 06/07/24 06:55 06/08/24 02:0* 06/08/24 02:0* 06/08/24 02:0* 06/08/24 02:0*	CAS No. 5 98-08-8 1 71-43-2 1 100-41-4 1 1634-04-4 1 108-88-3	Qu
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) 3260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Foluene Kylene (Total)	Analytical Meth Pace Analytica ND 98 Analytical Meth Pace Analytica ND ND	Units od: NWTPl Services - ug/L %. od: EPA 82 Services - ug/L ug/L ug/L	Report Limit H-Gx Minneapolis 100 50-150 Minneapolis 1.0 1.0 1.0	DF 1 1 1 1 1 1 1 1		06/07/24 06:55 06/07/24 06:55 06/08/24 02:0* 06/08/24 02:0* 06/08/24 02:0*	CAS No. 5 98-08-8 1 71-43-2 1 100-41-4 1 1634-04-4 1 108-88-3	Qu
Parameters NWTPH-Gx GCV TPH as Gas Surrogates a,a,a-Trifluorotoluene (S) B260D MSV UST Benzene Ethylbenzene Methyl-tert-butyl ether Toluene Kylene (Total) Surrogates	Results Analytical Meth Pace Analytical ND 98 Analytical Meth Pace Analytical Meth Pace Analytical ND ND ND ND ND ND ND ND ND	Units od: NWTPl Services - ug/L %. od: EPA 82 Services - ug/L ug/L ug/L ug/L ug/L ug/L	Report Limit H-Gx Minneapolis 100 50-150 Minneapolis 1.0 1.0 1.0 3.0	1 1 1 1 1 1 1		06/07/24 06:55 06/07/24 06:55 06/08/24 02:0* 06/08/24 02:0* 06/08/24 02:0* 06/08/24 02:0*	CAS No. 5 98-08-8 1 71-43-2 1 100-41-4 1 1634-04-4 1 108-88-3 1 1330-20-7	Qu
	Results Analytical Mether Pace Analytical ND 98 Analytical Mether Pace Analytical Mether Pace Analytical ND ND ND ND ND ND	Units od: NWTPl Services - ug/L %. od: EPA 82 Services - ug/L ug/L ug/L ug/L	Report Limit H-Gx Minneapolis 100 50-150 Minneapolis 1.0 1.0 1.0 1.0	DF 1 1 1 1 1 1 1 1 1 1		06/07/24 06:55 06/07/24 06:55 06/08/24 02:0* 06/08/24 02:0* 06/08/24 02:0* 06/08/24 02:0*	CAS No. 5 98-08-8 1 71-43-2 1 100-41-4 1 1634-04-4 1 108-88-3 1 1330-20-7 1 2199-69-1	Qu

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: 2403-0544 2946 Bridgeport

Pace Project No.: 10695389

Date: 06/19/2024 09:07 AM

Pace Project No.: 10695389								
Sample: MW2	Lab ID: 1069	95389002	Collected: 06/04/2	4 09:05	Received: 0	6/06/24 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions	Analytical Meth	od: EPA 30	0.00					
	Pace Analytical	Services -	Minneapolis					
Sulfate	75.8	mg/L	1.2	1		06/15/24 13:4	7 14808-79-8	
353.2 Nitrate + Nitrite	Analytical Meth Pace Analytical							
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	1		06/13/24 12:34	4	
Sample: MW3	Lab ID: 1069	95389003	Collected: 06/04/2	4 10:00	Received: 0	6/06/24 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Meth Pace Analytical							
TPH as Gas Surrogates	641	ug/L	100	1		06/07/24 07:14	4	
a,a,a-Trifluorotoluene (S)	97	%.	50-150	1		06/07/24 07:14	4 98-08-8	
8260D MSV UST	Analytical Meth Pace Analytical							
Benzene	28.9	ug/L	1.0	1		06/12/24 22:14	4 71-43-2	
Ethylbenzene	46.5	ug/L	1.0	1		06/12/24 22:14		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		06/12/24 22:14		
Toluene	ND	ug/L	1.0	1		06/12/24 22:14		
Xylene (Total) Surrogates	16.0	ug/L	3.0	1		06/12/24 22:14	4 1330-20-7	
1,2-Dichlorobenzene-d4 (S)	96	%.	75-125	1		06/12/24 22:14	4 2199-69-1	
4-Bromofluorobenzene (S)	98	%.	75-125	1		06/12/24 22:14	4 460-00-4	
Toluene-d8 (S)	101	%.	75-125	1		06/12/24 22:14	4 2037-26-5	
300.0 IC Anions	Analytical Meth							
Sulfate	104	mg/L	6.0	5		06/16/24 21:30	0 14808-79-8	
353.2 Nitrate + Nitrite	Analytical Meth Pace Analytical							
Nitrogen, NO2 plus NO3	ND	mg/L	0.10	1		06/13/24 12:3	5	
Sample: MW4	Lab ID: 1069	95389004	Collected: 06/04/2	4 11:05	Received: 0	6/06/24 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Meth							
TPH as Gas	ND	ug/L	100	1		06/07/24 07:5	3	
11 11 43 043	IND	ug/L	100	ı		30/01/24 01.3	•	

ANALYTICAL RESULTS

Project: 2403-0544 2946 Bridgeport

Pace Project No.: 10695389

Date: 06/19/2024 09:07 AM

,	l Services -		DF	Prepared	Analyzed	CAS No.	Qua						
Pace Analytica	l Services -												
99		Minneapolis	Analytical Method: NWTPH-Gx Pace Analytical Services - Minneapolis										
	64												
	0.1												
Analytical Meth	%.	50-150	1		06/07/24 07:53	98-08-8							
	nod: EPA 82	260D											
Pace Analytica	l Services -	Minneapolis											
ND	ug/L	1.0	1		06/08/24 02:18	71-43-2							
ND	•	1.0	1										
	-												
	Ū												
	-		1										
	yr - -	3.0	•		22.22.2.0								
100	%.	75-125	1		06/08/24 02:18	2199-69-1							
97	%.	75-125	1		06/08/24 02:18	460-00-4							
109	%.	75-125	1		06/08/24 02:18	2037-26-5							
Analytical Meth	nod: EPA 30	0.00											
Pace Analytica	l Services -	Minneapolis											
99.9	mg/L	6.0	5		06/16/24 21:48	14808-79-8							
Analytical Meth	nod: EPA 35	53.2											
Pace Analytica	l Services -	Minneapolis											
ND	ma/L	0.10	1		06/13/24 12:36	i							
	9 =												
Lab ID: 106	95389005	Collected: 06/04/2	4 00:00	Received: (06/06/24 08:50 N	Matrix: Water							
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua						
Analytical Meth	nod: NWTP	—— ——— - H-Gx											
•													
•		•	1		06/07/24 08:12	<u>!</u>							
ND	~g/ =	100	•		33,31,24 00.12								
99	%.	50-150	1		06/07/24 08:12	98-08-8							
Analytical Meth	nod: EPA 82	260D											
ND	ug/L	1.0	1		06/08/24 01:11	71-43-2							
ND	-	1.0	1			_							
	_												
	_												
	-												
ND	~g/ =	0.0	•		30,00,27 01.11	.000 20 1							
102	%.	75-125	1		06/08/24 01:11	2199-69-1							
102 100	%. %.	75-125 75-125	1 1		06/08/24 01:11 06/08/24 01:11								
•	ND ND ND 100 97 109 Analytical Meth Pace Analytical Pace Analytical ND Lab ID: 1069 Results Analytical Meth Pace Analytical ND 99 Analytical Meth Pace Analytical ND ND	ND ug/L ND ug/L ND ug/L ND ug/L 100 %. 97 %. 109 %. Analytical Method: EPA 36 Pace Analytical Services - 99.9 mg/L Analytical Method: EPA 35 Pace Analytical Services - ND mg/L Lab ID: 10695389005 Results Units Analytical Method: NWTPI Pace Analytical Services - ND ug/L 99 %. Analytical Method: EPA 82 Pace Analytical Services - ND ug/L	ND	ND	ND	ND	ND						

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 2403-0544 2946 Bridgeport

Pace Project No.: 10695389

QC Batch: 949960 Analysis Method: NWTPH-Gx
QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Water

Laboratory: Pace Analytical Services - Minneapolis

Qualifiers

Associated Lab Samples: 10695389001, 10695389002, 10695389003, 10695389004, 10695389005

METHOD BLANK: 4968489 Matrix: Water

Associated Lab Samples: 10695389001, 10695389002, 10695389003, 10695389004, 10695389005

Blank Reporting
Units Result Limit

 Parameter
 Units
 Result
 Limit
 Analyzed

 Gas
 ug/L
 ND
 100
 06/07/24 06:16

TPH as Gas ug/L ND 100 06/07/24 06:16 a,a,a-Trifluorotoluene (S) %. 99 50-150 06/07/24 06:16

LABORATORY CONTROL SAMPLE & LCSD: 4968491 4968492 Spike LCS LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers TPH as Gas ug/L 1000 831 838 83 84 66-125 20 a,a,a-Trifluorotoluene (S) 98 98 50-150 %.

SAMPLE DUPLICATE: 4968493

Date: 06/19/2024 09:07 AM

10695389003 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers 641 TPH as Gas ug/L 646 30 a,a,a-Trifluorotoluene (S) %. 97 98

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2403-0544 2946 Bridgeport

Pace Project No.: 10695389

Date: 06/19/2024 09:07 AM

QC Batch: 950125 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV UST-WATER

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10695389001, 10695389002, 10695389004, 10695389005

METHOD BLANK: 4969266 Matrix: Water
Associated Lab Samples: 10695389001, 10695389002, 10695389004, 10695389005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND ND	1.0	06/08/24 00:55	
Ethylbenzene	ug/L	ND	1.0	06/08/24 00:55	
Methyl-tert-butyl ether	ug/L	ND	1.0	06/08/24 00:55	
Toluene	ug/L	ND	1.0	06/08/24 00:55	
Xylene (Total)	ug/L	ND	3.0	06/08/24 00:55	
1,2-Dichlorobenzene-d4 (S)	%.	101	75-125	06/08/24 00:55	
4-Bromofluorobenzene (S)	%.	99	75-125	06/08/24 00:55	
Toluene-d8 (S)	%.	107	75-125	06/08/24 00:55	

LABORATORY CONTROL SAMPLE	& LCSD: 4969267		49	969268						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/L	20	20.1	19.1	100	96	75-125	5	20	
Ethylbenzene	ug/L	20	20.1	18.8	100	94	75-125	6	20	
Methyl-tert-butyl ether	ug/L	20	17.5	16.9	88	84	75-125	4	20	
Toluene	ug/L	20	20.3	18.4	102	92	75-125	10	20	
Xylene (Total)	ug/L	60	59.7	59.3	100	99	75-125	1	20	
1,2-Dichlorobenzene-d4 (S)	%.				97	101	75-125			
4-Bromofluorobenzene (S)	%.				94	98	75-125			
Toluene-d8 (S)	%.				103	99	75-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2403-0544 2946 Bridgeport

Pace Project No.: 10695389

Date: 06/19/2024 09:07 AM

QC Batch: 950991 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV UST-WATER

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10695389003

METHOD BLANK: 4973435 Matrix: Water

Associated Lab Samples: 10695389003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND ND	1.0	06/12/24 22:00	
Ethylbenzene	ug/L	ND	1.0	06/12/24 22:00	
Methyl-tert-butyl ether	ug/L	ND	1.0	06/12/24 22:00	
Toluene	ug/L	ND	1.0	06/12/24 22:00	
Xylene (Total)	ug/L	ND	3.0	06/12/24 22:00	
1,2-Dichlorobenzene-d4 (S)	%.	95	75-125	06/12/24 22:00	
4-Bromofluorobenzene (S)	%.	101	75-125	06/12/24 22:00	
Toluene-d8 (S)	%.	107	75-125	06/12/24 22:00	

LABORATORY CONTROL SAMPLE	& LCSD: 4973436	5	49	973437						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/L	20	19.0	18.1	95	91	75-125	5	20	
Ethylbenzene	ug/L	20	19.1	18.3	96	92	75-125	4	20	
Methyl-tert-butyl ether	ug/L	20	19.4	18.4	97	92	75-125	5	20	
Toluene	ug/L	20	17.8	17.1	89	86	75-125	4	20	
Xylene (Total)	ug/L	60	57.4	54.9	96	92	75-125	4	20	
1,2-Dichlorobenzene-d4 (S)	%.				97	97	75-125			
4-Bromofluorobenzene (S)	%.				97	98	75-125			
Toluene-d8 (S)	%.				96	97	75-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2403-0544 2946 Bridgeport

Pace Project No.: 10695389

Date: 06/19/2024 09:07 AM

QC Batch: 951460 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

> Laboratory: Pace Analytical Services - Minneapolis

10695389001, 10695389002, 10695389003, 10695389004 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 10695389001, 10695389002, 10695389003, 10695389004

> Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Sulfate ND 1.2 06/15/24 06:02 mg/L

LABORATORY CONTROL SAMPLE: 4976068

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Sulfate 50 51.0 102 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4976069 4976070

> MSD MS

10695346001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Result Conc. % Rec % Rec Limits Qual 20 Sulfate mg/L 61.3 50 50 105 105 87 88 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4976071 4976072

MS MSD

10695346002 MS MSD MS MSD % Rec Spike Spike Max RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Sulfate 50 50 82 92.3 133 133 80 20 mg/L 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2403-0544 2946 Bridgeport

Pace Project No.: 10695389

Date: 06/19/2024 09:07 AM

QC Batch: 951094 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, preserved

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10695389001, 10695389002, 10695389003, 10695389004

METHOD BLANK: 4974220 Matrix: Water

Associated Lab Samples: 10695389001, 10695389002, 10695389003, 10695389004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, NO2 plus NO3 mg/L ND 0.10 06/13/24 12:22

LABORATORY CONTROL SAMPLE: 4974221

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Nitrogen, NO2 plus NO3 mg/L 1 1.0 105 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4974222 4974223

MS MSD

10695346001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Result Conc. % Rec % Rec Limits Qual Nitrogen, NO2 plus NO3 20 mg/L 2.6 3.6 3.6 98 94 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4974224 4974225

MS MSD

10695576001 MS MSD MS MSD % Rec Spike Spike Max **RPD** RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Nitrogen, NO2 plus NO3 1 1 1.2 1.2 0.061J 110 109 20 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2403-0544 2946 Bridgeport

Pace Project No.: 10695389

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 949960

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 950125

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 950991

Date: 06/19/2024 09:07 AM

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2403-0544 2946 Bridgeport

Pace Project No.: 10695389

Date: 06/19/2024 09:07 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10695389001	MW1	NWTPH-Gx	949960		
10695389002	MW2	NWTPH-Gx	949960		
10695389003	MW3	NWTPH-Gx	949960		
10695389004	MW4	NWTPH-Gx	949960		
10695389005	Trip Blank	NWTPH-Gx	949960		
10695389001	MW1	EPA 8260D	950125		
10695389002	MW2	EPA 8260D	950125		
10695389003	MW3	EPA 8260D	950991		
10695389004	MW4	EPA 8260D	950125		
10695389005	Trip Blank	EPA 8260D	950125		
10695389001	MW1	EPA 300.0	951460		
10695389002	MW2	EPA 300.0	951460		
10695389003	MW3	EPA 300.0	951460		
10695389004	MW4	EPA 300.0	951460		
10695389001	MW1	EPA 353.2	951094		
10695389002	MW2	EPA 353.2	951094		
10695389003	MW3	EPA 353.2	951094		
10695389004	MW4	EPA 353.2	951094		

*** Preservative Types: (1) None, (2) HNO3, (3) H2SO4, (4) HCl, (5) NaOH, (6) Zn Acetate, (7) NaHSO4, (8) Sod. Thiosulfate, (9) Ascorbic Acid, (10) MeOH, (11) Other "Container size, (4) 44, 44, 44, (7) EnCore, (8) TerraCore, (9) 90mL, (10) Other MO#: 10695389 AcctNum / Client ID: Jennifer Gross "Fi" Workorder/Login Label Here Proj. Mgr. Identify Container Preservative Type*** Specify Container Size ** Analysis Requested LABU CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields 60100 Reportable [] Yes [] No Washington andersoj@wcec.com mmorris@wcec.com Jeri Anderson Myles Morris County / State origin of sample(s): Contact/Report To: Purchase Order # (if Regulatory Program (DW, RCRA, etc.) as applicable: invoice E-Mail: applicable): Invoice To: Cc E-Mail: Phone #: Quote #: E-Mail: ᆵ ace® Location Requested (City/State): <u>ნ</u> **2405-0544** 2946 Bridgeport Σ Pace Analytical Minnesota 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Site Collection Info/Facility ID (as applicable): Vissoula, MT 59801 1030 South Ave. W,] P ime Zone Collected: [] AK Sustamer Project #: ata Deliverables 333 Company Name: Street Address: roject Name:

aldmes

Profile / Template:

Table #:

DW PWSID # or WW Permit # as applicable:

Rush (Pre-approval required):

[]Level II []Level III []Level IV

[] EQUIS

Date Results

Field Filtered (if applicable): [] Yes [] No

31206

on Jee: Delivered by: [] In- Person [] Courier 7, 9 Sample Comment 602 N 00 200 Prelog / Bottle Ord. ID: EZ 3113179 \mathcal{O} 00 cObs. Temp. (c) Correction Factor (*C): Customer Remarks / Special Conditions / Possible Hazards Date/Iffine: × × × × × AWTPH-Gx × × × × × 3260D BTEX+MTBE × × × × 553.2 Nitrate + Nitrite × × × × 300.0 Sulfate Results Units | Other | Analysis: | Requested: | Requested: | Requested: | Nater (DW), Ground Water (GW), Waste Water (WW), Product (P), Soil/Soild (SS), Oil (OL), Wipe (WP), Tissue (TS), Bioassay Res. Chlorine Collected By: My/es Moms Cont # Collected or Composite End Time (Soll) Date Signature: 2:05 10:00 二 次 8:15 Time 6/4/24-16/2 B), Vapor (V), Surface Water (SW), Sediment (SED), Sludge (SL), Caulk (CK), Leachate (LL), Biosolid (BS), Other (OT) Composite Start 6/4/24 Date Matrix * Comp / Grab 9 × ₹ × ₹ ₹ Customer Sample ID 16xCFC Additional Instructions from Pace® Myle WWKIZ Trip Blank WW 4 MW2 MW3 MW1

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace® Terms and Conditions found at https://www.pacelabs.com/resource-library/resource/pace-terms-and-conditions/

ENV-FRM-CORQ-0019_v02_110123 ©

[]FedEX []UPS []Other

Jate/Time: Date/Time:

leceived by/Company: (Signature) Received by/Company: (Signature)

ate/Time: Date/Time:

Relinquished by/Company: (Signature) eling Shed by/Company: (Signature)

ENV-FRM-MIN4-0150 v17_Sample Con	ditic	n U	lpon	Receipt
CLIENT NAME: WCEC		ECT #:	[W	0#:10695389
COURIER: ☐ Client ☐ Commercial ☐ FedEx ☐ ☐ SpeeDee ☐ UPS ☐ USPS	Pace		. PM:	JMG Due Date: 06/20/24 ENT: WCEC WA
TRACKING NUMBER: 715/6/15 3 75/ See Excepti	ons forr	n <i>42</i>		
Custody Seal on Cooler/Box Present: YES NO Seals Infact: Deaking Material: Bubble Bags Bubble Wrap None Othe		NO np Blan		gical Tissue Frozen: YES NO NA YES NO Type of ice: Blue Dry Wet
Thermometer: ☐ T1 (0461) ☐ T2 (0436) ☐ T3 (0459) ☐ T4 (0402) ☐ T7 (0042) ☐ T8 (0775) ☐ T9 (0727) ☐ 01339252	□ T5			
	42	~,c		Il Container Temps taken:
Cooler Temp Corrected w/Temp Blank:	3. q	_°C	☐ See E	Exceptions Form ENV-FRM-MIN4-0142
USDA Regulated Soil: N/A – Water Sample/Other (describe): Did Samples originate from one of the following states (check maps) – AL, AR, AR, AR, AR, AR, AR, AR, AR, AR, AR	, AZ, CA,	FL,	Did sam	& Date of Person Examining Contents: R. C.
GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, or VA: NOTE: If YES to either question, fill out a Regulated Soil Checklist (ENV-FRM.	-MIN4-0	154) ar	Hawaii : nd includ	and Puerto Rico): YES NO NO NO
LOCATION (check one): DULUTH MINNEAPOLIS VIRGINIA	YES	NO	N/A	COMMENT(S)
Chain of Custody Present and Filled Out? Chain of Custody Relinquished?			ļ	1.
Sampler Name and/or Signature on COC?			 	2.
Samples Arrived within Hold Time?	X			A If Foodly To 9 has To 9 has
Short Hold Time Analysis (<72 hr)?			+	4. If Fecal: □ <8 hrs □ >8 hr, <24 hr □No 5. □ BOD / cBOD □ Fecal coliform □ Hex Chrom
*· · · · · · · · · · · · · · · · · · ·		-		☐ HPC ☐ Nitrate ☐ Nitrite ☐ Ortho Phos ☐ Total coliform/ <i>E. coli</i> ☐ Other:
Rush Turn Around Time Requested?		ď		6.
Sufficient Sample Volume?				7.
Correct Containers Used? — Pace Containers Used?				8.
Containers Intact?				
Field Filtered Volume Received for Dissolved Tests?		. 🗆	12/	9. 10. Is sediment visible in the dissolved container:
			ا سکا	YES □ NO
Is sufficient information available to reconcile the samples to the COC? NOTE: If ID/Date/Time don't match fill out section 11.	Ø			11. If NO, write ID/Date/Time of container below:
Matrix: Oil Soil Water Other				☐ See Exceptions form ENV-FRM-MIN4-0142
All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO ₃ , $\frac{1}{2}$ SQ ₄ , < 2 pH, NaOH > 9 Sulfide, NaOH > 10	Į			12. Sample #: () () / - O) → □ HNO ₃ ☑ H ₂ SO ₄ □ NaOH □ Zinc Acetate
Cyanide) Exceptions: VOA, Coliform, TOC/DOC, Oil & Grease, DRO/8015 (water) and Dioxins/PFAS				Positive for Residual Chlorine: ☐ YES ☐ NO
				pH Paper Lot # Residual 0-6 Roll 0-6 Strip 0-14 Strip
NOTE: If adding preservation to the container, verify with the PM first. Clients may require adding preservative to the field and equipment blanks when this occurs.				213923
Headsnace in Methyl Mercury Container?			/	☐ See Exceptions form ENV-FRM-MIN4-0142
Headspace in Methyl Mercury Container? Extra labels present on soil VOA or WIDRO containers?	무ㅣ		Ø	13.
Headspace in VOA Vials (greater than 6mm)?				14. ☐ See Exceptions form ENV-FRM-MIN4-0140
Trip Blanks Present?	<u></u>			15H
Trip Blank Custody Seals Present?				Pace Trip Blank Lot # (if purchased): 467817
CLIENT NOTIFICATION / RESOLUTION				FIELD DATA REQUIRED: YES NO
Person Contacted:		Date 8	k Time:	
Comments / Resolution:				
111				
Project Manager Review:			Date:	6/6/24
NOTE: When there is a discrepancy affecting North Carolina compliance sampl (i.e., out of hold, incorrect preservative, out of temp, incorrect contains	es, a co _l rs).	by of th	is form v	will be sent to the North Carolina DEQ Certification Office
		Label	led By:	

Appendix B

Groundwater Sampling Field Data Sheets

Project Number: ame: Audress:	290 NC	16 P Brid	SIPHT			0) 21	EN	VIRONMENTAL	CONSULTANTS
Well Identification:	mw-	- [Field Team:	mn	1		Date:	6/4/2	4
Well Information: Well Diameter (in.) Depth to Bottom (ft.) Initial Depth to Water (ft.) Length of Water Column (ft.) 1 Casing Volumes (L) 3 Casing Volumes (L)	7 7.30	Midsecti	Screen interval ion saturated zone Free Product? Depth to FP (ft.) Thickness (ft.) Volume (L)		Pumping Method: Historic v Bladder control-	of pump inlet: [] Bladder Pu [] Submersible well purge rate: Discharge time:	mp e Pump		
Time DTW	Liters	Conductivity	рН	Salinity	DO (mg/L)	D0%	Temperature	ORP	Turbidity
7:45 7:50 8.20 8:00 8.50 8:10 8.58	0,5	1910 1845 1807	7.40 7.30 7.32	0.98 0.94 0.97	7.58 7.14 7.39	22.5	9,7	(17.0) 95.4 62.5	28.92 28.91 27.4
1			Parameters Imme	distely Prior to	Sample Collection:				
Sample Time DTW	Total L	Conductivity	pH	Salinity	DO (mg/L)	DO%	Temperature	ORP	Turbidity
Well Condition: Monument Condition: [] God *If replacement is recommend Comments / Exceptio	[] Moderate [ed, add notes below] Poor [] Repla w and take pictur	acement Necessary e for file.			Photo taken: []Yes []No	l co/6.	ctecl

Well Casing Volume per Foot of Depth					
Diameter of Casing or Hole (in.)	Volume (L)	Volume (gal.)			
1	0.155	0.041			
2	0.617	0.163			
4	2.472	0.653			

pH	± 0.1 units
Specific Conductance	± 3%
Dissolved Oxygen - ± 10% or 3 consecutive reading <0.5 mg/L	± 10%
Oxidation Reduction Potential (ORP)	± 10 millivolts
Turbidity - 3 reading <5 (NTU) or 10% if reading >5 (NTU)	± 10%

Measurements should be recorded every 3 to 5 minutes, and stabilization is considered achieved when three consecutive readings are within the ranges in table above. Turbidity is considered stable when three consecutive readings are within 10% for values greater than 5 NTU and if three turbidity values are less than 5 NTU.

Dissolved oxygen (DO) is considered stable when three consecutive readings are within 10% for values greater than 0.5 mg/L or if three consecutive readings are less than 0.5 mg/L.

If a matters do not stabilize during pumping one of the following should be selected: (1) Purge the well for a minimum of four hours prior to sampling if the static water level was stable prior to pumping; (2) three well volumes from the well prior to sampling; (3) Contact project manager and/or DEQ case manager to determine if purging should be discontinued and sample should not be collected.

Groundwate	r Samp	ling Fie	eld Dat	ta Sheet
------------	--------	----------	---------	----------

Project Number: ame: Address:		294 N(6 P Brita	Jebart				EN	IVIRONMENTAL	CONSULTANTS
Well Identification:	[mw-	1	Field Team:	mr	^		Date	6/4/	24
Well Informat	ion:	В				Purge Inform	nation:		•	
Well Diameter (in.) Depth to Bottom (ft Initial Depth to Wat Length of Water Col 1 Casing Volumes (L 3 Casing Volumes (L	ter (ft.)	7 10 3.89	Midsection	Screen interval on saturated zone Free Product? Depth to FP (ft.) Thickness (ft.) Volume (L)		Pumping Method Historic	[] Submersib well purge rate l-Discharge time	ump ole Pump :		
Time	DTW	Liters	Conductivity	рН	Salinity	DO (mg/L)	DO%	Temperature	ORP	Turbidity
8:40 8:40 9:30 9:00	474 464 499 8	Total L	1545 1539 1538	7.79 7.30 Parameters Imme pH 7.30	0.78 0.78 0.78 0.78 ediately Prior to Salinity	59 48 45 45 DO (mg/L)	13.9 13.0 17.8	9,3 9,5 9,6	-/26,6 -119.0 -121,1	27.82 26.54 26.72 Turbidity 26.95
Well Conditio Monument Conditio Casing Condition: *If replacement is re Comments / E	n: on:[]Good []Good [ecommended	I [] Moderate] Moderate [, add notes belo	e []Poor []R]Poor []Repla	Replacement Neces	ssary* [] Bolt		needed:			
	Well Cost	ng Volume per F	oot of Death				Water O	Quality Indicator P	arameter Stabili	zation Range
Diameter o	of Casing or H		Volume (L) 0.155 0.617 2.472	Volume (gal.) 0.041 0.163 0.653		pH Specific Conducta Dissolved Oxygen Oxidation Reduct	nce - ± 10% or 3 co	nsecutive reading		± 0.1 units ± 3% ± 10% ± 10 millivolts

WCEC

Measurements should be recorded every 3 to 5 minutes, and stabilization is considered achieved when three consecutive readings are within the ranges in table above.

Turbidity is considered stable when three consecutive readings are within 10% for values greater than 5 NTU and if three turbidity values are less than 5 NTU.

Dissolved oxygen (DO) is considered stable when three consecutive readings are within 10% for values greater than 0.5 mg/L or if three consecutive readings are less than 0.5 mg/L.

Turbidity - 3 reading <5 (NTU) or 10% if reading >5 (NTU)

± 10%

If a sameters do not stabilize during pumping one of the following should be selected: (1) Purge the well for a minimum of four hours prior to sampling if the static water level was stable prior to pumping; (2) hree well volumes from the well prior to sampling; (3) Contact project manager and/ or DEQ case manager to determine if purging should be discontinued and sample should not be collected.

Groundwat	oundwater Sampling Field Data Sheet						N.	MA	EC	
Project Number: lame: Audress:		2 n	946 JCP BN	tg eport				EN	NVIRONMENTAL	CONSULTANTS
Well Identification	ł.	mw	-3	Field Team:		mm		Date:	6/4/2	4
Well Informa	tion:					Purge Inform	ation:			
Well Diameter (in.))	Screen interval Set depth of								
Depth to Bottom (epth to Bottom (ft.) [() Midsection saturated zone Pumping Method:							Peristaltic Pu	ump	
Initial Depth to Wa	ater (ft.)	1.83	•0 65	Free Product?	[] Yes [] No	5	[] Submersib	le Pump	[] Other:	
Length of Water Co	olumn (ft.)		•	Depth to FP (ft.)		Historic	well purge rate:	344	Volume Purged:	
1 Casing Volumes	(L)		.	Thickness (ft.)		The contract of the contract				
3 Casing Volumes	(L)		** 2	Volume (L)		Peristaltic contro			<u>-</u>	
Time	DTW	Liters	Conductivity	рН	Salinity	DO (mg/L)	DO%	Temperature	ORP	Turbidity
9:25			1.0		New York		3110	EMILE S	THE HELL	7.5
91,35	1.93		1860	7.36	0.95	1,54	13.4	9.2	-102.4	60101
9,45	1,94	2	1853	736	0,95	1,37	12.1	9,6	-108.8	25.93
9155	1,94	3	147	736	0.94	1.32	11.7	9.8	-111,4	25,52
,			10	1.5	,			1	7,	
		1c.				-				
'		1				 			 	
					0.050					
Sample Time	DTW	Total L	Conductivity	Parameters Imme	Salinity	DO (mg/L)	D0%	Temperature	ORP	Turbidity
10:00	1.54	3.5	1815	7.36	093	1,29	11.5	10,0	-1128	26.49
1010	11,1		1 1 1 1 1	1170	17/13	1 1/0/	11.5	110,()	1100	10011
	tion : [] Good [] Good [] Moderate [] Poor [] Repla	cement Necessary		ts Missing (Number I) []Yes []No		
Comments /	Exception	s:								
				HC (201.1					
			-) N O8					
	427.		21				a provincial and	2001 11. 6 (1 .7 50) ••• (2.850) ••• (2.850)	×270 ×200 •	A175 BANK BANK BANK BANK BANK BANK BANK BANK
Diameter	Well Casi of Casing or H	ing Volume per I Iole (in.)	Foot of Depth Volume (L)	Volume (gal.)		pH	Water Q	uality Indicator P	arameter Stabiliz	± 0.1 units
Diameter	1		0.155	0.041]	Specific Conductar				± 3%
	2		0.617 2.472	0.163 0.653	-	Dissolved Oxygen - Oxidation Reduction			<0.5 mg/L	± 10% ± 10 millivolts
	4		2.4/2	0.055	1	Turbidity - 3 readir			(NTU)	± 10 millivoits
						A STATE OF THE PARTY OF THE PAR				

Measurements should be recorded every 3 to 5 minutes, and stabilization is considered achieved when three consecutive readings are within the ranges in table above. Turbidity is considered stable when three consecutive readings are within 10% for values greater than 5 NTU and if three turbidity values are less than 5 NTU.

Dissolved oxygen (DO) is considered stable when three consecutive readings are within 10% for values greater than 0.5 mg/L or if three consecutive readings are less than 0.5 mg/L.

If a manufers do not stabilize during pumping one of the following should be selected: (1) Purge the well for a minimum of four hours prior to sampling if the static water level was stable prior to pumping; (2) hree well volumes from the well prior to sampling; (3) Contact project manager and/ or DEQ case manager to determine if purging should be discontinued and sample should not be collected.

Project Number: Vame: Audress:		294	6 ICP BAC	lse put			5 6	EN	IVIRONMENTAL (CONSULTANTS
Well Identification:	[mw-	4	Field Team:		mm		Date	6/4/	24
Well Informative Well Diameter (in.) Depth to Bottom (finitial Depth to Wallength of Water Control 1 Casing Volumes (t.) ter (ft.)	2 10 1.92	– Midsectio	Screen interval on saturated zone Free Product? Depth to FP (ft.) Thickness (ft.)	[] Yes [] No	Pumping Method:	n of pump inlet: [] Bladder Pu [] Submersibl well purge rate:	mp le Pump	Peristaltic Pu Other: Volume Purged: Fill time:	
3 Casing Volumes (DTW	Liters	- Conductivity	Volume (L)	Salinity	Peristaltic contro				Turbidity
10:75	2.18	7 3	1775 1699 1541	7.48	0.90 0.86 0.74	2.17 1.48 1.30	13.2 13.2 11.8	10,1	-1087 7206 -1238	57.31 33.24 34.93
				Parameters Imme		Sample Collection:				
Sample Time	2.27	Total L		7,41	Salinity O.7 K	DO (mg/L)	1).7	Temperature	-/238	Turbidity
Casing Condition:	on: ion:[]Good []Good [recommended	[] Moderat] Moderate [, add notes belo	Conductivity 5 3 6 e [] Poor [] Replace and take picture	PH 7 4 Replacement Necescement Necessary	Salinity O.78 ssary* [] Bolts	Sample Collection: DO (mg/L) 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DO%		ORP -/238	

Well Casing Volume per Foot of Depth					
Diameter of Casing or Hole (in.)	Volume (L)	Volume (gal.)			
1	0.155	0.041			
2	0.617	0.163			
4	2.472	0.653			

Water Quality Indicator Parameter State	± 0.1 units
Specific Conductance	± 3%
Dissolved Oxygen - ± 10% or 3 consecutive reading <0.5 mg/L	± 10%
Oxidation Reduction Potential (ORP)	± 10 millivolts
Turbidity - 3 reading <5 (NTU) or 10% if reading >5 (NTU)	± 10%

Measurements should be recorded every 3 to 5 minutes, and stabilization is considered achieved when three consecutive readings are within the ranges in table above.

Turbidity is considered stable when three consecutive readings are within 10% for values greater than 5 NTU and if three turbidity values are less than 5 NTU.

Dissolved oxygen (DO) is considered stable when three consecutive readings are within 10% for values greater than 0.5 mg/L or if three consecutive readings are less than 0.5 mg/L.

remeters do not stabilize during pumping one of the following should be selected: (1) Purge the well for a minimum of four hours prior to sampling if the static water level was stable prior to pumping; (2) hree well volumes from the well prior to sampling; (3) Contact project manager and/ or DEQ case manager to determine if purging should be discontinued and sample should not be collected.