TOXICITY TEST REPORT

TEST IDENTIFICATION

Test No.: 658-74

<u>Title</u>: Mussel (*Mytilus galloprovincialis*) larval test using static 48-hr exposure to CH2M Hill-Wyckoff Treatment Plant SP11 Field Sample. EPA permit number WAD009248295.

Protocol No.: NAS-XXX-CG/MG2, August 28, 1990, Revision 3 (9-8-01). This protocol complies with the U.S. EPA West Coast chronic toxicity manual (EPA/600/R-95/136) and the ASTM bivalve toxicity method (E 724-89).

STUDY MANAGEMENT

<u>Study Sponsor</u>: CH2M Wyckoff Treatment Plant, 5350 Creosote Place NE, Bainbridge Island, WA 98110. <u>Sponsor's Study Monitor</u>: Mr. Stanley Warner

Testing Laboratory: Northwestern Aquatic Sciences, P.O. Box 1437, Newport, OR 97365.

Test Location: Newport laboratory.

Laboratory's Study Personnel: G.A. Buhler, B.S., Proj. Man.; G.J. Irissarri, B.S., Study Dir.; L.K. Nemeth, B.A., M.B.A., QA Officer; J. B. Brown, B.S., D.V.M., Assoc. Aq. Toxicol.; Y. Nakahama, Sr. Tech. Study Schedule:

Test Beginning: 4-27-16, 1340 hrs.

Test Ending: 4-29-16, 1400 hrs.

Disposition of Study Records: All raw data, reports and other study records are stored at Northwestern Aquatic Sciences, 3814 Yaquina Bay Rd., Newport, OR 97365.

<u>Statement of Quality Assurance</u>: The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

TEST MATERIAL

Description: CH2M Hill-Wyckoff Treatment Plant SP11 Field Sample. Details are as follows:

NAS Sample No.	5582G
Collection Date	4-26-16
Receipt Date	4-27-16
Temperature (°C)	5.1
рН	7.7
Dissolved oxygen (mg/L)	9.3
Salinity (‰)	5.0

<u>Treatments</u>: Samples briefly temperature-equilibrated prior to use. <u>Storage</u>: Used date of receipt.

DILUTION WATER

<u>Source</u>: Yaquina Bay, Oregon seawater. <u>Date of Collection</u>: 4-26-16 <u>Water Quality</u>: Salinity, 30.0 ‰; pH, 8.2 <u>Pretreatment</u>: Filtered to ≤0.45 µm, aerated, salinity adjusted with Milli-O.

BRINE USED FOR DILUTION WATER AND SALINITY CONTROL

Source: Filtered Yaquina Bay, Oregon, sea water Salinity: 100.0 ‰ Date of Preparation: 4-20-16 Method of Preparation: Freezing method

TEST ORGANISMS

<u>Species</u>: Mussel (*Mytilus galloprovincialis*). <u>Age</u>: 2.5 hrs post-fertilization. <u>Source</u>: Kamilche Sea Farms, Shelton, WA. <u>Conditioning</u>: Adult mussels were received on 4-19-16 and placed in trays with flowing seawater. Holding conditions for the week prior to testing were: temperature, $14.0 \pm 0.7^{\circ}$ C; pH, 8.1 ± 0.1 ; salinity, $29.1 \pm 1.5\%$; and dissolved oxygen, 7.2 ± 0.2 mg/L. Photoperiod was natural daylight. Source of Gametes: 1 female and 3 males.

TEST PROCEDURES AND CONDITIONS

Test Chambers: 30 ml borosilicate glass vials containing 10 ml of test solutions.

Test Concentrations: 70, 35, 18, 9, 4, 2, and 0% (Control).

<u>Brine Control</u>: A brine control was run in which salinity-adjusted Milli-Q[®] deionized water (5.0 ppt) was substituted for effluent in the preparation of the highest test solution concentration. As a result, the amount of brine in the brine control was the same as used in the 70.0% effluent test concentration.

Replicates/Treatment: 4

Initial Concentration of Test Organisms: 24.1/ml.

Volume of Subsamples Taken for Counting: NA

Water Volume Changes per 24 hr: None (non-renewal static test).

Aeration: None

Feeding: None

<u>Effects Criteria</u>: The effect criteria used were: 1) ability of embryos to survive and produce completely developed shells; and 2) survival. Data collected were: 1) the initial embryo density; 2) the number of abnormal larvae observed; and 3) the number of normal (live with completely developed shells) larvae observed.

<u>Water Quality and Other Test Conditions</u>: Temperature, 15.4 ± 0.4 °C; pH, 8.2 ± 0.2 ; salinity, 30.0 ± 0.2 %; and dissolved oxygen, 7.9 ± 0.0 mg/L. Photoperiod 16:8 hr, L:D.

DATA ANALYSIS METHODS

The proportion of surviving larvae, and the proportion of normal surviving larvae were calculated for each treatment replicate. The calculation used for the proportion of normal surviving larvae, Combined Proportion Normal, was the combined endpoint specified by EPA/600/R-95/136. The means were obtained for each treatment level and the latter were then corrected for control response using Abbott's formula. The LC50 (survival) and the EC50 (normality) were calculated, where data permitted, using either the Maximum-Likelihood Probit or the Trimmed Spearman-Karber methods. An IC25 was determined by linear interpolation with bootstrapping. NOEC and LOEC values for survival and normality were computed using either Dunnett's test, T-test with Bonferroni's adjustment, Steel's Many-One Rank Test, or Wilcoxon Rank Sum Test with Bonferroni Adjustment. The appropriate test was selected after evaluating the data for normality and homogeneity of variance. An arcsine-square root (angular) transformation was performed on the data prior to statistical analysis. The statistical software employed for these calculations was CETIS, v1.8.7.4, Tidepool Scientific Software. Toxic units (TU_c) were computed as 100/NOEC, 100/EC50, or 100/IC25.

PROTOCOL DEVIATIONS

None.

REFERENCE TOXICANT TEST

The routine reference toxicant test is a standard multi-concentration toxicity test using copper sulfate to evaluate the performance of the test organisms used in the effluent toxicity test. The performance is evaluated by comparing the results of this test with historical results obtained at the laboratory. A summary of the reference toxicant test result is given below. The reference toxicant test raw data are found in Appendix III.

Test No.: 999-3551 <u>Reference Toxicant and Source</u>: Copper as CuSO₄-5H₂O, Argent Lot No. 0195, 1.0 mg/ml stock prepared 6-19-14. <u>Test Date</u>: 4-27-16 <u>Dilution Water Used</u>: Yaquina Bay, OR seawater. Salinity 30.0 ppt, pH 8.2 <u>Results</u>: EC50, 10.4 µg/L; NOEC, 4 µg/L; IC25, 9.13 µg/L. The EC50 result was within the laboratory's control chart warning limits (8.18 - 12.0 µg/L).

TEST RESULTS

Detailed tabulations of the test results are given in Table 1. The biological effects, given as the NOEC, LOEC, EC50/LC50 for normality and survival, and IC25 for normality are summarized below.

Combined Proportion Normal	Survival
70 (TU _c =1.43)	70 (TU _c =1.43)
>70 (TU _c <1.43)	>70 (TU _c <1.43)
>70 (TU _c <1.43)	>70 (TU _e <1.43)
By Data Inspection	By Data Inspection
>70 (TU _c <1.43)	
Linear Interpolation	
	Normal 70 (TU _c =1.43) >70 (TU _c <1.43) >70 (TU _c <1.43) By Data Inspection >70 (TU _c <1.43)

DISCUSSION/CONCLUSIONS

The NOEC for combined proportion normal was 70% effluent. The EC50 and IC25 for abnormal development were both >70%. The brine control test indicated that the brine did not contribute to effluent toxicity.

STUDY APPROVAL

Bull 5-7-16 Anager Date Project Manager

Assistant Laboratory Director Date

5-17-16

Geall Suparie	5-17-16
Study Director	Date

5-17-16 Quality Assurance Unit Date

Test Material					Prop	bined ortion mal*		ortion vived*
Concentration (%)	Repl.	Norm.	Abn.	Total		Mean		Mean
70	1	202	6	208	0.838		0.863	
	2	260	3	263	0.989		1.000	
	3	204	2	206	0.847		0.855	
	4	212	4	216	0.880	0.888	0.896	0.904
35	1	212	2	214	0.880		0.888	
	2	211	4	215	0.876		0.892	
	3	221	3	224	0.917		0.930	
	4	219	3	222	0.909	0.895	0.921	0.908
18	1	230	4	234	0.954		0.971	
	2	205	2	207	0.851		0.859	
	3	228	4	232	0.946		0.963	
	4	205	3	208	0.851	0.900	0.863	0.914
9	1	231	3	234	0.959		0.971	
	2	250	0	250	1.000		1.000	
	3	227	3	230	0.942		0.954	
	4	204	4	208	0.847	0.937	0.863	0.947
4	1	232	5	237	0.963		0.983	
	2	235	0	235	0.975		0.975	
	3	219	2	221	0.909		0.917	
	4	191	3	194	0.793	0.910	0.805	0.920
2	1	230	I	231	0.954		0.959	
	2	223	4	227	0.925		0.942	
	3	212	4	216	0.880		0.896	
	4	224	3	227	0.930	0.922	0.942	0.935
Normal Control	1	226	4	230	0.938		0.954	
	2	238	2	240	0.988		0.996	
	3	224	5	229	0.930		0.950	
	4	225	3	228	0.934	0.947	0.946	0.962
Brine Control ¹	1	226	2	228	0.938		0.946	
	2	214	7	221	0.888		0.917	
	3	235	5	240	0.975		0.996	
	4	240	10	250	0.996	0.949	1.000	0.965

Table 1. Test response of mussel (*Mytilus galloprovincialis*) larvae exposed to CH2M Hill-Wyckoff Treatment Plant SP11 Field Sample.

* Based on an average initial count of 241 embryos per 10 ml sample, except that for the case in the combined proportion normal endpoint where number normal>average initial count, number normal is divided by the total count (as per EPA/600/R-95/136).

† Result significantly different ($P \le 0.05$) from the control.

¹Salinity-adjusted Milli Q[®] deionized water (5.0 ppt) was substituted for effluent so that the brine concentration is equivalent to that for the 70.0% effluent concentration.

APPENDIX I

PROTOCOL

TEST PROTOCOL

BIVALVE, PACIFIC OYSTER OR BLUE MUSSEL, 48-HR LARVAL DEVELOPMENT TEST

1. INTRODUCTION

1.1 <u>Purpose of Study</u>: The purpose of this test is to estimate chronic toxicity of effluents, receiving waters, or other test materials using bivalve larval development in a 48-hr static test.

1.2 <u>Referenced Method</u>: This protocol complies with the U.S. EPA West Coast chronic toxicity manual (EPA/600/R-95/136), ASTM bivalve toxicity method (E 724-89), and the WDOE toxicity guidance manual (WQ-R-95-80). Amendments may be incorporated to meet other methods or regulatory requirements as needed.

1.3 <u>Summary of Method</u>: Pacific oyster or blue mussel larvae (<4-hr-old) are exposed for 48-hr to different concentrations of test material in a static test. Salinity adjustment and brine controls are used when testing low salinity effluents. The test chambers are 30 ml borosilicate glass vials each containing 10 ml of test solution. Four replicate chambers each with 15-30 larvae per milliliter of test solution are employed at each test concentration. Test results are based on abnormal shell development and mortality. Data analysis normally consists of the calculation of an EC50 and IC25 for "percent normal", the calculation of an LC50 for percent survival, and the determination of NOECs and LOECs for both criteria. Special requirements may apply for the State of Washington or other regulatory entities. A test summary table is appended to the end of this protocol.

2. STUDY MANAGEMENT

2.1 Sponsor's Name and Address:

2.2 Sponsor's Study Monitor:

2.3 <u>Name of Testing Laboratory</u>: Northwestern Aquatic Sciences
3814 Yaquina Bay Road
P.O. Box 1437
Newport, OR 97365

2.4 Test Location:

2.5 Laboratory's Personnel to be Assigned to the Study: Study Director: ______Quality Assurance Unit: ______Aquatic Toxicologist: ______Aquatic Toxicologist:

2.6 <u>Proposed Study Schedule</u>: Effluent/receiving water tests must begin within 36 hours of the end of the sample collection period. In no case should the test be started more than 72 hours after sample collection.

2.7 <u>Good Laboratory Practices</u>: The test is conducted following the principles of Good Laboratory Practices (GLP) as defined in the EPA/TSCA Good Laboratory Practice regulations revised August 17, 1989 (40 CFR Part 792).

3. TEST MATERIAL

An effluent, receiving water sample, pore water or elutriate sample, or other test material as requested. A reference toxicant test is run concurrently.

4. DILUTION WATER

Dilution water is filtered ($\leq 0.45 \mu m$) Yaquina Bay seawater or other suitable seawater, adjusted to 30 ± 2 ‰ salinity with deionized water and/or hypersaline brine. Hypersaline brine is prepared from filtered ($\leq 0.45 \mu m$) Yaquina Bay water adjusted to 100 ‰ by the freezing method. When testing low salinity effluents, hypersaline brine is administered with dilution water for salinity adjustment.

5. TEST ORGANISMS

5.1 <u>Species</u>: Commonly used West Coast species are Pacific oyster, *Crassostrea gigas*, or blue mussel, *Mytilus edulis*, *M. galloprovincialis*, or *M. trossulus*. These three *Mytilus* species were formerly all believed to be a single cosmopolitan species, *M. edulis* (Geller et al., 1993; McDonald & Koehn, 1988; McDonald et al., 1991). The test conditions specified in this protocol apply to the aforementioned species. Other species (e.g. *M. californianus*, *C. virginica* and *Mercenaria mercenaria*) are allowed by one or more of the referenced methods applicable to this protocol, but their use may require modified test conditions or procedures.

5.2 <u>Source</u>: Adult oysters are purchased from commercial sources. Mussels are purchased from commercial sources or field collected as required.

5.3 Age at Study Initiation: <4-hr-old embryos.

5.4 <u>Conditioning of Adult Oysters</u>: Adult oysters may be conditioned if needed by holding for one to eight weeks in seasoned plastic tubs supplied with about 1-2 L/min of unfiltered Yaquina Bay, OR water (25-32 ‰) at a temperature of approximately 20°C. For mussels, conditioning is not ordinarily required.

5.5 <u>Spawning and Fertilization</u>: Adult bivalves are cleaned by brushing and placed into spawning trays supplied with seawater. Oysters are spawned by gradually increasing the water temperature to 25-28°C (23-25°C for mussels) over approximately a one-hour period. Sperm from a sacrificed male may be added to the spawning tray to aid stimulation of natural spawning in oysters. If spawning does not occur, the water is cooled to about 20°C (16°C for mussels) and the cycle is repeated. Bivalves that begin spawning are isolated in clean seawater for collection of gametes. After spawning is complete, the temperature is returned to approximately 20°C (16°C for mussels).

Eggs from two or more females are combined and filtered (200-300 μ m) to remove feces and psuedofeces and adjusted in concentration to about 2500-6000/ml. Eggs are then fertilized by addition of sperm from two or more males at a concentration of 10⁵ to 10⁷/ml. For mussels, ten minutes after adding sperm, the egg and sperm mixture is poured through a 25 μ m screen to remove excess sperm; then the eggs are rinsed and resuspended in dilution water. Next, the embryo density is adjusted to between 1500 and 3000/ml. Embryos are kept suspended by frequent gentle agitation with a perforated plunger and the temperature is maintained at approximately 20°C (16 ± 1°C for mussels). The quality of the embryos is verified before testing by microscopic examination. Embryos are used to initiate the test within 4 hours of fertilization

6. DESCRIPTION OF TEST SYSTEM

6.1 <u>Preparation of Test Concentrations</u>: Test concentrations are prepared by manual dilution of test material with dilution water or with a combination of hypersaline brine and dilution water. Hypersaline brine may be required when testing dilute effluents to adjust the salinity of the test solutions to the appropriate salinity. Stock test solutions are prepared then distributed to appropriate replicate test chambers. The method for determining the appropriate volume of test material, brine and dilution water to be used in preparing the stock test solution is described in the laboratory SOP for salinity adjustment using hypersaline brine. Prior to mixing, the test material and dilution water are brought to test temperature. Effluents may not be aerated, or are aerated only if necessary to maintain a minimal dissolved oxygen concentration. When necessary, a brine control is prepared at the highest test concentration by substituting for the effluent deionized water to which has been added sufficient dilution water to achieve a salinity equal to that of the effluent.

6.2 <u>Test Chambers and Environmental Control</u>: Larvae are tested in 30 ml glass vials containing 10 ml of the test solutions. Temperature control of test chambers is provided by placement in a constant temperature room. No aeration is required. The required photoperiod is achieved by timer control of the room lights.

6.3 <u>Cleaning</u>: All laboratory glassware, including test chambers, is cleaned as described in EPA/600/4-90/027F. New glassware and test systems are soaked 15 minutes in tap water and scrubbed with detergent (or cleaned in automatic dishwasher); rinsed twice with tap water; carefully rinsed once with fresh, dilute (10%, V:V) hydrochloric or nitric acid to remove scale, metals, and bases; rinsed twice with deionized water; rinsed once with acetone to remove organic compounds (using a fume hood or canopy); and rinsed three times with deionized water. Test systems and chambers are rinsed again with dilution water just before use. For this test, there is an exception in that the <u>test chambers</u> are used new and unwashed

7. EXPERIMENTAL DESIGN AND TEST PROCEDURES

7.1 Experimental Design: The test involves exposure of test embryos, within 4 hr of fertilization, to five or more test material concentrations and a dilution water control. Low salinity effluents require brine adjustment of salinity. Brine controls (substituting Milli-Q or low salinity water for the effluent) are run when brine is used to test effluent concentrations up to 70% effluent. A typical effluent concentration series might be 70%, 35%, 18%, 9%, 4%, 2%, 1%, and control. Exposures are for approximately 48 hours, but in no case shall the duration of exposure exceed 54 hours. Each treatment and control consists of four replicate 30 ml test vessels containing 10 ml of test solution. The final density of the embryos is between 15 and 30 embryos/ml in the test solutions. A stratified random design is employed to position vials in the temperature control chamber.

7.2 <u>Test Procedure</u>: Each test container is filled with 10 ml of test solution to which is added embryos at a final density of 15-30 embryos/ml. The embryos are incubated at 20 ± 1 °C (16 ± 1 °C for mussels) for approximately 48 hr to permit development into prodissoconch I larvae. Larvae are subsequently counted to determine the total number of abnormal and normal surviving larvae. These data are used for calculating the EC50s and LC50s.

7.3 <u>Effect Criteria</u>: The effect criteria are: 1) failure of embryos to survive and produce completely developed shells (abnormal/dead); and 2) mortality of the embryos.

7.4 <u>Test Conditions</u>: The test temperature is $20 \pm 1^{\circ}$ C for oysters, $16 \pm 1^{\circ}$ C for blue mussels. The test temperatures specified by EPA (EPA/600/R-95/136) are $15 \pm 1^{\circ}$ C or $18 \pm 1^{\circ}$ C, but these specifications were based on erroneous assumptions of the agency authors. Consequently, this protocol specifies $16 \pm 1^{\circ}$ C. The salinity is 30 ± 2 ‰. The dissolved oxygen concentration should be at least 60% of saturation at the test temperature and salinity. The photoperiod is a 16:8 hr, L/D cycle of fluorescent light. Test chambers are 30 ml glass vials held in a constant temperature room to obtain precise temperature control.

7.5 <u>Beginning of Test</u>: 10 ml of each test concentration is dispensed to each of the corresponding four replicate test vials. The test is then started by the addition of 0.1 ml of a suspension (1,500-3,000 embryos/ml) of <4-hr-old

embryos to the test chambers. Six extra vials of seawater controls are preserved with 5% buffered formalin for establishing the initial count of embryos in the test vessels.

7.6 Feeding: Embryos are not fed during the test.

7.7 <u>Test Duration, Type and Frequency of Observations, and Methods</u>: The test duration is approximately 48 hours. The type and frequency of observations to be made during the test are summarized as follows:

Type of Observation	Times of Observation
Biological Data	
Initial number of embryos/10 ml	At start of test in six 0-time vials
Number of live abnormal larvae/10 ml	At end of test (48 hr)
Number of live normal larvae/10 ml	At end of test (48 hr)
Physical and Chemical Data	
Temperature	Daily - in water bath or two locations in the temperature control room. Beginning & end of test - in the beaker reservoirs of each test concentration and controls.
Dissolved oxygen, salinity & pH	Beginning & end of test - in the beaker reservoirs of each test concentration and controls.

The initial number of embryos is determined according to method 2 (Sect. 11.4.6.2) of ASTM 1989. This consists of the average count of all embryos exhibiting cell division in six extra test containers at time zero. Live abnormal larvae are those observed at 48 hr in which shell development is incomplete. Live normal larvae are those observed at 48 hr that have completely developed shells containing meat. Larvae possessing misshapen or otherwise malformed shells are considered normal, provided shell development has been completed.

Temperature is measured using a thermister thermometer. Dissolved oxygen is measured using a polarographic oxygen probe calibrated according to the manufacturer's recommendations. Salinity is measured using a refractometer. The pH is measured with a pH probe and a calibrated meter with scale divisions of 0.1 pH units.

8. <u>CRITERIA OF TEST ACCEPTANCE</u>:

For the EPA West Coast bivalve toxicity method (EPA/600/R-95/136) the test is considered acceptable if:

- 1. ≥70% of embryos introduced into a required control treatment result in live larvae (≥50% for mussels).
- 2. normal shell development in surviving controls is \geq 90%.

For the WDOE bivalve toxicity method (Publication No. WQ-R-95-80) the test is considered acceptable if:

- 1. ≥70% of embryos introduced into a required control treatment result in live larvae.
- 2. normal shell development in surviving controls is \geq 90%.
- 3. the test must achieve a minimum significant difference (%MSD) of <25% relative to the control.
- 4. the coefficient of variation of the six zero time counts must be $\leq 15\%$.

For the ASTM bivalve toxicity method (E 724-89) the test is considered acceptable if:

- 1. All test chambers were identical.
- 2. Treatments were randomly assigned to individual test chamber locations.
- 3. Either a dilution water or solvent control was included.
- 4. All brood stock animals came from the same location.
- 5. Embryos were used at <4 hr after fertilization.
- 6. \geq 70% of embryos introduced into a required control treatment resulted in live larvae with completely developed shells at the end of the test.
- 7. The DO and temperature were measured as specified in Sect. 7.7 of the method.
- 8. Every measured DO concentration was between 60% and 100% saturation.
- 9. The difference between the time-weighted average measured temperatures for any two test chambers from the beginning to the end of the test was ≤1°C.

NORTHWESTERN AQUATIC SCIENCES August 28, 1990

- 10. Any single measured temperature was not more than 3°C different from the mean of the time-weighted average measured temperatures for individual test chambers.
- 11. At any one time, the difference between the measured temperatures in any two chambers was not more than 2°C.
- 12. Each data set must have at least one mean treatment response, corrected for controls, that is <37% and one that is >63% (not applicable for many applications).

9. DATA ANALYSIS

The proportion of normal larvae and the proportion of surviving larvae are calculated for each treatment replicate. The means are obtained for each treatment level and the latter are then corrected for control response using Abbott's formula.

For ASTM (ASTM Standard E 724-89) and EPA (EPA/600/R-95/136) the LC50 (survival) and the EC50 (normal) are calculated, where data permits, using either the Maximum Likelihood Probit or the Trimmed Spearman-Karber methods (EPA 600/4-90-027F). An IC25 is calculated by linear interpolation with bootstrapping (EPA 600/4-89/001a). NOEC and LOEC values for survival and normality are computed using either Dunnett's test, T-test with Bonferroni's Adjustment, Steel's Many-One Rank Test, or Wilcoxon Rank Sum Test with Bonferroni's Adjustment. The appropriate test is selected after evaluating the data for normality and homogeneity of variance. An arcsine square root transformation is performed on the data prior to statistical analysis. The statistical software employed for these calculations is ToxCalc, (most recent version), Tidepool Scientific Software.

For special endpoints requirements applicable in the State of Washington, refer to the WDOE guidance manual (Publication No. WQ-R-95-80, Revised December 1998) or latest version.

Some agencies require that toxic units (TU) be reported. This is reported as either toxic unit acute (TU_a), which is 100/LC50, or toxic unit chronic (TU_c), which is 100/NOEC.

10. <u>REPORTING</u>

A report of the test results must include all of the following standard information at a minimum:

- 1. Name and identification of the test; the investigator and laboratory;
- 2. Information on the test material;
- 3. Information on the dilution water;
- 4. Detailed information about the test organisms including acclimation conditions;
- 5. A description of the experimental design and test chambers and other test conditions including water quality;
- 6. Information about any aeration that may have been required;
- 7. Definition of the effect criteria and other observations;
- 8. Responses, if any, in the control treatment;
- 9. Tabulation and statistical analysis of measured responses;
- 10. A description of the statistical methods used;
- 11. Any unusual information about the test or deviations from procedures;
- 12. Reference toxicant testing information.

11. STUDY DESIGN ALTERATION

Amendments made to the protocol must be approved by the Sponsor and Study Director and should include a description of the change, the reason for the change, the date the change took effect, and the dated signatures of the Study Director and Sponsor. Any deviations in the protocol must be described and recorded in the study raw data.

12. <u>REFERENCE TOXICANT</u>

Reference toxicant testing should be included with each study or at regular intervals as defined in the Quality Assurance Program of the laboratory.

13. <u>REFERENCES AND GUIDELINES</u>

Geller, J.B. *et al.* 1993. Interspecific and intrapopulation variation in mitochondrial ribosomal DNA sequences of *Mytilus* spp. (Bivalvia: Mollusca). Molecular Marine Biology and Biotechnology. **2**:44-50.

McDonald, J.H. and R.K. Koehn. 1988. The mussels *Mytilus galloprovincialis* and *M. trossulus* on the Pacific coast of North America. Marine Biology. 99:111-118.

McDonald, J.H. et al. 1991. Allozymes and morphometric characters of three species of *Mytilus* in the northern and southern hemispheres. Marine Biology.

Standard Guide for Conducting Static Acute Toxicity Tests with Embryos of Four Species of Sałtwater Bivalve Molluscs. 1989. ASTM Standard E 724-89.

U.S. Environmental Protection Agency. 1989. Supplement to "Short-term methods for estimating the chronic toxicity of effluents and surface waters to freshwater organisms". Revision 1. EPA/600/4-89/001a.

Washington State Department of Ecology. 1998. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Publication No. WQ-R-95-80. Revised December 1998.

Weber, C.I. (Ed.) 1993. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms (Fourth Edition). EPA/600/4-90/027F.

U.S. Environmental Protection Agency. 1995. Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms (First Edition). EPA/600/R-95/136.

14. APPROVALS

Name

Date

_ for

for Northwestern Aquatic Sciences

Name

Date

Appendix A Test Conditions Summary

1. Test type:	Static non-renewal
2. Test duration:	48 hours, or until complete development up to 54 hours
3. Temperature:	$20 \pm 1^{\circ}$ C oysters
	$16 \pm 1^{\circ}$ C mussels (ASTM), 15 or $18 \pm 1^{\circ}$ C (EPA 1995)
4. Dissolved oxygen:	\geq 60% saturation
5. Salinity:	30 ± 2‰
6. Light quality & intensity:	Ambient laboratory light (50-100 ft-c)
7. Photoperiod:	16:8 hr L/D
8. Test chambers:	30 ml glass vials
9. Test solution volume:	10 ml per replicate
10. Renewal of test solutions:	None
11. Age of test organisms:	<4 hr old embryos
12. No. of larvae/container:	150-300
13. No. of replicates/treatment:	4
14. No. of zero time replicates:	6
15. Feeding regime:	Organisms are not fed during the test.
16. Aeration:	None. Initially aerated if necessary to achieve >60% saturation.
17. Dilution water:	Filtered Yaquina Bay seawater, salinity adjusted to $30 \pm 2\%$ and filtered to
	≤0.45 μm.
18. Effects measured:	Survival and normal shell development.
19. Test acceptability:	≥70% of embryos introduced into a required control treatment resulted in
	live larvae (≥50% for mussels, EPA 1995); ≥90% normal shell development
	in surviving controls; must achieve minimum significant difference
	(%MSD) of <25% relative to the control. The cv of six zero time counts
	must be $\leq 15\%$.
20. Sample volume required:	1 L normally requested.

APPENDIX II

RAW DATA

NORTHWESTERN AQUATIC SCIENCES BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

PROTOCOL NO. NAS-XXX-CG/MG2

REVIE

Test No.	658-74	_Client:	CH2M Hill - Wyckoff

Investigator_ ? Aut.

STUDY MANAG						
Client:				Creosote Place NE	E, Bainbridge Island	d, WA 98110
Client's Study		Mr. Stanley				
	ratory: Northwe		: Sciences			
	n: Newport Labo	•				
	Study Personne			631		
Proj. Mgr./S		G.A. Buhler	/G.J. Irissar	i =		
QA Officer	L.K. No					
1	YUDS KO	saken	- 2	_2		
3.				_4		
Study Sched				Test Cadina	4-29-16	1400
Test Beginni	ng: <u>4</u> .	27-16	1340	Test Ending:		• •
TEST MATERIA	AL.					
Descripti		P-11 FIEL	D SAMPLE			
NAS Sar			55320			
	Collection:		4-26-16			
Date of F			4-27-16		,	
•	ature (deg C):		5.1			
pH:			7.7			
	d oxygen (mg/L)		9.3			
	ivity (umhos/cm)	: 2 _				
	s (mg/L):		-			
Alkalinity			-			
Salinity (5.0	- <u> </u>		
	orine (mg/L):					
I otal am	monia-N (mg/L)	:			·	
				- <u></u>	· · · · · · · · · · · · · · · · · · ·	
DILUTION WAT					•	
Descripti		Yaquina Ba	, OR			
	Collection:	<u> </u>	26-16	Salinity (p	pt) <u> </u>	oH <u> </u>
Treatme	nts: <u>Aerate</u>	d, filtered to	≤ 0.45 um, sa	inity adjusted with N	Ailli-Q deionized wa	ater
				<u> </u>		
TEST ORGANIS	SMS					
Species:		galloprovin	cialis		Date Received:	4-19-16
Source:	<u>/ .</u>		ms, Shelton, V	/A		
	ion Data:		,			
Date	Temp (deg.C)	рH	Sal (ppt)	D.O. (mg/L)	Com	ments
4-20-16		8.)	30.0	6.9	Held outside in	
4-22-11		9 ,]	3-11-136.2	5 7.3	flowing seav	
4-25-16		8.1	29.0	7.3		
4-27-1		2.0	27.0			•
Mean		8.	6 1 2-10 5 12-16 1-4			-
<u></u>	0.7	0.1		1.5 0.2		<u> </u>
_(N)		<u>4</u>	<u> </u>	viont conditions		
Photopel	riod during accli	mation:	Outdoor amb	ient conditions	_	

Photoperiod during acclimation:

2) written in wrong location; entry deleted

3) wrong date deleted, replaced with correct date

4) error found in measurement; measurement repeated

NORTHWESTERN AQUATIC SCIENCES

PROTOCOL NO. NAS-XXX-CG/MG2

BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Dilution factor = DF (mean x EST PROCEDURES AND CONDITIONS Test concentrations (50% series recon Test chamber: 30 ml glass vials Organisms/ml (15-30): <u>24, 1</u> Feeding: None	ales: 1 34 100/2500 S mmended	2. <u>4</u>)) = <u>1</u>	n	nales:	tilization: 3 35		5
Number of organisms used: fema Egg Dilution (1 ml diluted to 100 ml): Count/ml of dilution: 1 Dilution factor = DF (mean x EST PROCEDURES AND CONDITIONS Test concentrations (50% series reconsections Test chamber: 30 ml glass vials Organisms/ml (15-30): <u>24.1</u> Feeding: None	ales: 1 34 100/2500 S mmended	2. <u>4</u> 1) = <u>1</u>	n o	nales:	3		0
Egg Dilution (1 ml diluted to 100 ml): Count/ml of dilution: 1. Dilution factor = DF (mean x ST PROCEDURES AND CONDITIONS Test concentrations (50% series recond Test chamber: 30 ml glass vials Organisms/ml (15-30): <u>24</u> , <u>l</u> Feeding: None	<u>34</u> 100/2500 S mmended	2. <u>4</u>)) = <u>1</u>	0			- Mean:	
Count/ml of dilution: 1. Dilution factor = DF (mean x ST PROCEDURES AND CONDITIONS Test concentrations (50% series recon Test chamber: 30 ml glass vials Organisms/ml (15-30): <u>24, 1</u> Feeding: None	100/2500 S mmended)) = 1		3	35	Mean:	
Dilution factor = DF (mean x ST PROCEDURES AND CONDITIONS Test concentrations (50% series recon Test chamber: 30 ml glass vials Organisms/ml (15-30): <u>24, l</u> Feeding: None	100/2500 S mmended)) = 1		3	<u> </u>	Mean:	-2/ .7
ST PROCEDURES AND CONDITIONS Test concentrations (50% series recont Test chamber: 30 ml glass vials Organisms/ml (15-30): <u>24(, (</u> Feeding: None	S mmended		<u>.5</u>				36,5
Test concentrations (50% series recon Test chamber: 30 ml glass vials Organisms/ml (15-30): <u>24, l</u> Feeding: None	mmended						
Test chamber: 30 ml glass vials Organisms/ml (15-30): <u>2-4, l</u> Feeding: None		N. 70 (
Organisms/ml (15-30): <u>24, l</u> Feeding: None	Testy	n: <u>70, s</u>	35, 18, 9, 4	, 2, 0% + E	Brine Cont	rol	
Feeding: None	1 C 3 L V	/olume: 10	ml	Rep	licates/tre	atment (4	4): 4
	Test v	vater chan	ges: None		ation durin		
	Photo	period: 16	L:8D	Sali	nity: 30 +/-	2 ppt	
Temperature: 20 +/- 1 °C, oysters; 16	+/- 1 °C, n	nussels	Bea	aker place	ment:Strat	ified rand	lomizati
DOMIZATION CHART							
A 18 \$ 9	2	4	35	70	GRINE		
2 LINE				_	CONTROL		
B CONTAGE Z Ø	35	18	70	g	4		
c ø 4 35	BRINE CEISTRE	1 9 1	18	2	70		
26 70 4	9	BRINE					
D 33 10 1	• ·		2	ø	18		1
۲his test uses a brine control بر f a brine control is used, follow SOP # Date of brine preparation: <u>4-</u>	#6208 to p -20-16 ; b	orine salinit	t solutions		18		
This test uses a brine control If a brine control is used, follow SOP # Date of brine preparation: <u>4-</u> Source of seawater: Yaqu VB = VE <u>(TS - SE)</u>	^{≇6208} to p <u>-20-16</u> ; b iina Bay, C (<u>3</u> = VE —	a salinity co prepare tes prine salinit Dregon 30 - 5)	ontrol t solutions ty (ppt) <u>1c</u> = VE	20,0	18	Where: VB=volum VE=volum SB=salinii	e effluent
This test uses a brine control If a brine control is used, follow SOP # Date of brine preparation: <u>4-</u> Source of seawater: Yaqu	^{≇6208} to p <u>-20-16</u> ; b iina Bay, C (<u>3</u> = VE —	a salinity co prepare tes prine salinit Dregon 30 - 5)	ontrol t solutions ty (ppt) <u>1c</u> = VE	20,0	18	VB=volum VE=volum SB=salinit SE=salinit	e effluent y of brine y of efflue
This test uses a brine control V If a brine control is used, follow SOP # Date of brine preparation: <u>4-</u> Source of seawater: Yaqu VB = VE (TS - SE) (SB - TS)	#6208 to p <u>-20~}</u> ; b iina Bay, C = VE	a salinity co prepare tes prine salinit Dregon 30 - 5)	ontrol t solutions ty (ppt) = VE	(0.36)	18	VB=volum VE=volum SB=salinit	e effluent y of brine y of efflue
This test uses a brine control $$ f a brine control is used, follow SOP # Date of brine preparation: $4-$ Source of seawater: Yaqu VB = VE $\frac{(TS - SE)}{(SB - TS)}$ n making up either a brine control or a deionized water in place of the effluen	#6208 to p - <u>20~16</u> ; b ina Bay, C = VE (1 (1 a salinity c t.	a salinity co prepare tes prine salinit Dregon 30 - 5) 100 - 30) control, use	ontrol t solutions ty (ppt) <u>1c</u> = VE e salinity-ac	(c. 36) djusted	<u> </u>	VB=volum VE=volum SB=salinit SE=salinit	e effluent y of brine y of efflue
This test uses a brine control $$ f a brine control is used, follow SOP # Date of brine preparation: $4-$ Source of seawater: Yaqu VB = VE $\frac{(TS - SE)}{(SB - TS)}$ n making up either a brine control or a deionized water in place of the effluen Test Conc. Effluen (%) (ml/100)	#6208 to p - <u>20-16</u> ; b iina Bay, C = VE (1 a salinity c t.	a salinity co prepare tes prine salinit Dregon 30 - 5) 100 - 30) control, use Brine	ontrol t solutions ty (ppt) <u>1c</u> = = VE e salinity-ac	(c, 36) djusted	Nater	VB=volum VE=volum SB=salinit SE=salinit	e effluent y of brine y of efflue
This test uses a brine control $$ f a brine control is used, follow SOP # Date of brine preparation: $4-$ Source of seawater: Yaqu VB = VE $\frac{(TS - SE)}{(SB - TS)}$ n making up either a brine control or a deionized water in place of the effluen (%) (ml/100)	#6208 to p - <u>20-16</u> ; b iina Bay, C = VE (({ a salinity o t. ml)	a salinity co prepare tes prine salinit Dregon 30 - 5) 30 - 30) control, use Brine (ml/100r	ontrol t solutions ty (ppt) <u>re</u> = VE e salinity-ac	(c , 36) djusted Dilution \ (ml/100	Vater Dml)	VB=volum VE=volum SB=salinit SE=salinit	e effluent y of brine y of efflue
This test uses a brine control $$ f a brine control is used, follow SOP # Date of brine preparation: $4-$ Source of seawater: Yaqu VB = VE $\frac{(TS - SE)}{(SB - TS)}$ n making up either a brine control or a deionized water in place of the effluen (%) (ml/100)	#6208 to p - <u>20-16</u> ; b iina Bay, C = VE (1 a salinity c t. nt)	a salinity co prepare tes prine salinit Dregon 30 - 5) 100 - 30) control, use Brine	ntrol t solutions ty (ppt) <u>re</u> = VE salinity-ac	(c, 36) djusted	Water Dml) a final	VB=volum VE=volum SB=salinit SE=salinit	e effluent y of brine y of efflue
This test uses a brine control $$ f a brine control is used, follow SOP # Date of brine preparation: $4-$ Source of seawater: Yaqu VB = VE $\frac{(TS - SE)}{(SB - TS)}$ n making up either a brine control or a deionized water in place of the effluen (%) (ml/100)	#6208 to p - <u>20-16</u> ; b iina Bay, C = VE (1 a salinity c t. nt ml)	a salinity co prepare tes prine salinit Dregon 30 - 5) 00 - 30) control, use Brine (ml/100r 2.5.0 12.5	ontrol t solutions ty (ppt) <u>ic</u> = VE e salinity-ac	(c, 36) djusted Dilution \ (ml/100 pught up to	Water Dml) a final 100 ml	VB=volum VE=volum SB=salinit SE=salinit	e effluent y of brine y of efflue
This test uses a brine control $$ f a brine control is used, follow SOP # Date of brine preparation: $4-$ Source of seawater: Yaqu VB = VE $\frac{(TS - SE)}{(SB - TS)}$ n making up either a brine control or a deionized water in place of the effluen (%) (ml/100)	#6208 to p - <u>20~16</u> ; b iina Bay, C = VE (1 a salinity c t. nt ml)	a salinity co prepare tes prine salinit Dregon 30 - 5) 30 - 30) control, use Brine (ml/100r 25.0	nl)	(c. 36) djusted Dilution V (ml/100 volume of	Water Dml) a final 100 ml	VB=volum VE=volum SB=salinit SE=salinit	e effluent y of brine y of efflue
This test uses a brine control $$ f a brine control is used, follow SOP # Date of brine preparation: <u>4-</u> Source of seawater: Yaqu VB = VE $\frac{(TS - SE)}{(SB - TS)}$ n making up either a brine control or a deionized water in place of the effluen (%) (ml/100 (ml/100 35 35 18 18	#6208 to p -20~16; b ina Bay, C = VE (1 a salinity c t. nt ml)	a salinity co prepare tes prine salinit Dregon 30 - 5) 30 - 5) control, use Brine (ml/100r 2.5.0 12.5 6.4 3.2	nl)	(c. 36) djusted Dilution V (ml/100 volume of	Water Dml) a final 100 ml	VB=volum VE=volum SB=salinit SE=salinit	e effluent y of brine y of efflue
This test uses a brine control $$ f a brine control is used, follow SOP # Date of brine preparation: <u>4-</u> Source of seawater: Yaqu $VB = VE \frac{(TS - SE)}{(SB - TS)}$ n making up either a brine control or a deionized water in place of the effluen (%) (ml/100) (%) (ml/100) (%) 18 18 9 9 9	#6208 to p - <u>20-16</u> ; b iina Bay, C = VE (<u>1</u> a salinity c t. nt ml)	a salinity co prepare tes prine salinit Dregon 30 - 5) 30 - 5] 30 - 5] 3	ontrol t solutions ty (ppt) <u>1c</u> = = VE e salinity-ac	(c. 36) djusted Dilution V (ml/100 volume of	Water Dml) a final 100 ml	VB=volum VE=volum SB=salinit SE=salinit	e effluent y of brine y of efflue
This test uses a brine control $$ f a brine control is used, follow SOP # Date of brine preparation: <u>4-</u> Source of seawater: Yaqu $VB = VE \frac{(TS - SE)}{(SB - TS)}$ n making up either a brine control or a deionized water in place of the effluen (%) (ml/100) (%) $(ml/100)(35)$ (35) $(35)18$ (18) (18) $(18)(9)$ (9) $(16)(100)(17)$ $(100)(17)$ $(100)(18)$ (18) (18) $(18)(18)$ (18) (18) $(18)(18)$ (18) $($	#6208 to p -20-16; b ina Bay, C = VE (1 a salinity c t. ml)	a salinity co prepare tes prine salinit Dregon 30 - 5) 30 - 5) control, use Brine (ml/100r 2.5.0 12.5 6.4 3.2	ontrol t solutions ty (ppt) <u>1c</u> = = VE e salinity-ac	(c. 36) djusted Dilution V (ml/100 volume of	Water Dml) a final 100 ml	VB=volum VE=volum SB=salinit SE=salinit	e effluent y of brine y of efflue
This test uses a brine control $$ If a brine control is used, follow SOP # Date of brine preparation: <u>4</u> - Source of seawater: Yaque $VB = VE \frac{(TS - SE)}{(SB - TS)}$ In making up either a brine control or a deionized water in place of the effluen (%) (ml/100) (%) (ml/100) (%) (ml/100) (%) (ml/100) (%) (%) (%) (%) 18 18 9 9 9 4 4 2 2 0 0 Brine Control 0	#6208 to p -20-16; b ina Bay, C = VE (1 a salinity c t. ml)	a salinity co prepare tes prine salinit Dregon 30 - 5) 30 - 5) 30 - 30) control, use Brine (ml/100r 2.5.0 1.2.5 6.4 3.2 1.4 0.7 2.5.0	ontrol t solutions ty (ppt) <u>ic</u> = VE e salinity-ac	(c. 36) djusted Dilution V (ml/100 volume of with dilutio	Vater Oml) a final 100 ml n water	VB=volum VE=volum SB=salinil SE=salinil TS=target	e effluent y of brine y of efflue
This test uses a brine control V If a brine control is used, follow SOP # Date of brine preparation: 4- Source of seawater: Yaque $VB = VE \frac{(TS - SE)}{(SB - TS)}$ In making up either a brine control or a deionized water in place of the effluen (%) (ml/100) (%) (ml/100) (%) (ml/100) (%) (ml/100) (%) (ml/100) 18 18 9 9 4 4 2 2 0 0 Brine Control 0 THE BEINE SOUTPOL	#6208 to p -20-16; b ina Bay, C = VE (1 a salinity c t. ml)	a salinity co prepare tes prine salinit Dregon 30 - 5) 30 - 5) 30 - 30) control, use Brine (ml/100r 2.5.0 1.2.5 6.4 3.2 1.4 2.5.0 6.4 3.2 1.4 0.7 2.5.0 0.7 0.7	nl)	Dilution N (c. 36) djusted Dilution N (ml/100 volume of with dilutio	Vater Dml) a final 100 ml n water	VB=volum VE=volum SB=salinil SE=salinil TS=target	e effluent y of brine y of efflue
Source of seawater: Yaque $VB = VE \frac{(TS - SE)}{(SB - TS)}$ In making up either a brine control or a deionized water in place of the effluen $\frac{Test Conc.}{(\%)} \frac{Effluen}{(ml/100)}$ $\frac{Test Conc.}{(ml/100)} \frac{Ffluen}{(ml/100)}$ $\frac{35}{35} \frac{35}{35}$ $\frac{18}{18} \frac{18}{18}$ $\frac{9}{9} \frac{9}{9}$ $\frac{4}{4} \frac{4}{4}$ $\frac{2}{2} \frac{2}{2}$ $0 0 0$	#6208 to p -20-16; b ina Bay, C = VE (1 a salinity c t. ml)) - wAs b	a salinity co prepare tess prine salinity Dregon 30 - 5) 30 - 30) control, use Brine (ml/100r 25.0 12.5 4.4 3.2 1.4 0.7	ntrol t solutions ty (ppt) <u>ic</u> = = VE salinity-ac	Dilution 1 (c. 36) djusted Dilution 1 (ml/100 volume of with dilutio	ADJUSTO	VB=volum VE=volum SB=salinil SE=salinil TS=target	e effluent y of brine y of efflue salinity

NORTHWESTERN AQUATIC SCIENCES

PROTOCOL NO. NAS-XXX-CG/MG2

BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Test No.	658-74	Client		CH2M Hill	- Wyckoff		Investigato	r
			WATER		DATA			
	Date:	12716	initials:	Ye -	Date:	1-29-16	initials:	1/2
Conc. (%)	Temp. (deg.C)	рН	Sal. (ppt)	DO (mg/L)	Temp. (deg.C)	pH	Sal. (ppt)	DO (mg/L)
70 35	15.1	7.8	30.5	7.8	15.4	8.6	29.5	729
18 9 4	15.2 15:3	8.0	30.0	7.9	15,3	8.4	30,0 30,0	79 79
2 Control	15.6	8.1 8.1 8.2	30.0 30.0 30.0	7.9 7.9 7.9	15.4	8.2	30.0 30.0 30.0	7.9 7.9 7.9
Brine control	16.9	8.2	30.0	7.9	<u> (</u> 5.3	8.2	30,0	7.9
WATER QUA Temperatu		Mean 15,4	<u>SD</u> 0.4	<u>N</u> (6			bath tempe	
pH Salinity (pp		5.2 30,0	0.2	16	- Da - Da	iy 0: <u>15.7</u>	2 Day 0: / Day 1: / Day 2: _	15-1
DO (mg/L)		7.9	0,0	16	Da	iy 2: 15-3	Day 2:	15-4

	5-5-	(b w)	5-6	-16 -	5-1	6 -16 6	16	
Conc.	Replie	cate 1	Repli	cate 2	Replic	cate 3	Replic	cate 4
(%)	N	A	N	A	N	A	N	A
70	202	6	260	3	20-1	2	212	4
35	212	2	٩.((4	221	3	219	3
18	230	4	7.05	2	228	4	205	3
9	231	3	250	$ \mathcal{Q} $	227	3	204	4
4	252	5	235	0	219	2	191	3
2	230		223	4	212	4	2:24	3
Control	226	4	238	2	224	5	225	3
Brine control	226	2	214	7	235	5	240	10
Zero time	252	214	253	239	247	238	· · ·]	~
<u>Zero time:</u>	Mean 2	<u>41</u> sd	14	N <u>6</u>		CV=(sd/	mean)x100	6,070

Remarks:

	[] N/V (O) [(C) [
KAMILCHE S E A F A R M S Kamilche Sea Farms, Inc. 2741 SE Bloomfield Road • Shelton, WA 98584 360 427 5774 • Fax 360 427 0610 , WA Cert. #217-SS Harvested: Totten Inlet, Puget Sound	35637
TO NWAS Gerald	DATE 4-19-16 CUSTOMER ORDER NO.
	SALESPERSON
	VIA
TERMS:	
QUANTITY DESCRIPTION	PRICE AMOUNT

QUANTITY	DESCRIPTION	PRICE	AMOUNT
10165.	Mussels - Beard On (@ 10 (bz.		-
	Rec' 4-19-16 yr	Total	

Thank You!

. .

CETIS Analytical Report

Report Date: Test Code:

		_						Code:	ζ.	050-14 12	0-7301-730
Bivalve Larv	al Survival and D)evelopme	nt Test						Northwest	ern Aquat	ic Sclence:
Analysis ID:	12-3583-2647	End	point: Pro	portion Surv	/ived		CET	IS Version	: CETISV1	.8.7	
Analyzed:	11 May-16 9:4			ametric-Two				ial Result			
Batch ID:	04-5029-0558	Tes	t Type: Dev	elonment-S	urvival		Ana	vet:			
Start Date:	27 Apr-16 13:4			V600/R-95/			Dilu	-	quina Bay Si	anwatar	
Ending Date				ilis galloprov	. ,		Brin		quilla bay Si	eawater	
Duration:	48h	•	•	nilche Sea F							
Duration.		30			anns, wA		Age				
Sample ID:	00-6564-0337	Co	de: 3E9	9791			Cile	nt: Wy	ckoff Treatm	nent Plant	
Sample Date	: 26 Apr-16 09:0	3 Mat	terial: Indu	ustrial Efflue	ent		Proj	ect:			
Receive Date	e: 27 Apr-16 10:5	5 So i	urce: Wy	ckoff							
Sample Age:	29h (5.1 °C)	Sta	tion:								
Data Transfo		Zeta	Alt Hyp	Trials	Seed	· · · · ·	PMSD	Test Res	sult		
Angular (Corr	rected)	NA	C⇔T	NA	NA		9.53%	Passes p	proportion su	rvived	
Equal Varian	ice t Two-Sample	e Test									
Control	vs Control		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Dilution Wate		agent)	0.3852	2.447	0.184 6	0.7133	CDF	<u> </u>	ificant Effec	£	
ANOVA Tabl	0										
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision	ı(α:5%)		
Between	0.0016793		0.0016793		1	0.1484	0.7133		ificant Effect	•	
Error	0.0678938	3	0.0113156		6		0.1100	itten olgi		•	
Total	0.069573		-		7						
Distributiona	al Tests										÷
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Variance	Ratio F		2.483	47.47	0.4747	Equal Var				
Variances	Mod Leve	ene Equality	of Variance	2.501	13.75	0.1648	Equal Var	iances			
Variances	Levene E	iquality of V	ariance	3.731	13.75	0.1016	Equal Var				
Distribution	Shapiro-\	Nilk W Non	nality	0.8875	0.6451	0.2217	Normal D	istribution			
Distribution	Kolmogo	rov-Smirnov	/ D	0.2466	0.3313	0.1756	Normal D	istribution			
Distribution	Andersor	Darling A2	Normality	0.5104	3.878	0.2005	Normal D	istribution			
Proportion S	urvived Summa	γ									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	4	0.9616	0.9249	0.9983	0.9523	0.9461	0.9959	0.01154	2.4%	0.0%
0	Brine Reagent	4	0.9647	8009.0	1	0.9523	0.917	1	0.02008	4.16%	-0.32%
Angular (Cor	rected) Transfor	med Summ	агу								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	4	1,386	1.258	1.514	1.351	1.336	1.506	0.0403	5.82%	0.0%
0	Brine Reagent	4	1.415	1.213	1.617	1.351	1.279	1.539	0.06351	8.98%	-2.09%
Proportion S	urvived Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	_					
0	Dllution Water	0.9544	0.9959	0.9502	0.9461						
0	Brine Reagent	0.9461	0.917	0.9959	1						
Angular (Cor	rected) Transform	med Detail				······					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	Dilution Water	1.355	1.506	1.346	1.336						
0	Brine Reagent	1.336	1.279	1.506	1.539						
•	Sinc Keagent	1.000	1.213	1.000	1.000						

Bivalve Larv							Test				-/301-/30
	al Survival and D)evelopn	ent Test						Northwest	ern Aquati	c Sclences
Analysis ID:	00-3513-4227	E	ndpoint:	roportion Surv	ived		CETI	S Version:	CETISv1	.8.7	
Analyzed:	11 May-16 9:4	B A		arametric-Cor		tments	Offic	ial Results			
Batch ID:	04-5029-0558	т	est Type: D	evelopment-S	urvival		Analy	vst:			
Start Date:	27 Apr-16 13:4			PA/600/R-95/			Dilue		quina Bay Se	eawater	
Ending Date:	29 Apr-16 14:0	0 s		lytilis galloprov			Brine		,		
Duration:	48h		•	amilche Sea F			Age:				
Sample ID:	00-6564-0337		adar 31	E99791					-1# T 1		
•	: 26 Apr-16 09:0			⊑99791 Idustrial Efflue	nt		Clien		ckoff Treatm	ient Plant	
•	: 20 Apr-16 09.0 : 27 Apr-16 10:5			loustnar Einue /yckoff	nt		Proje	PCT:			
	29h (5.1 °C)		tation:	ryckoli							
									<u></u>		
Data Transfo		Zeta	Alt Hyp		Seed		PMSD	NOEL		TOEL	TU
Angular (Corr	ected)	NA	C > T	NA	NA		10.8%	70	>70	NA	1.429
Dunnett Mult	iple Comparisor	n Test						_			
Control	vs C-%		Test Sta	t Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Dilution Wate			0.8505	2.448	0.202 6	0.5228	CDF		ificant Effect		
	4		0.9031	2.448	0.202 6	0.4984	CDF	-	ificant Effect		
	9		0.1777	2.448	0.202 6	0.8037	CDF	Non-Sign	ificant Effect		
	18		1.184	2.448	0.202 6	0.3724	CDF	Non-Signi	ificant Effect	:	
	35		1.485	2.448	0.202 6	0.2543	CDF	Non-Sign	ificant Effect		
	70		1.185	2.448	0.202 6	0.3720	CDF	Non-Sign	ificant Effect		
ANOVA Table)					-					
Source	Sum Squ		Mean So	quare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.0490250		0.00817		6	0.6001	0.7271	Non-Signi	ificant Effect		
Error	0.2859159	3	0.01361	504	21						
Total	0.334941				27						
Distributiona	l Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(
Attribute Variances	Test Bartiett E		Variance	8.206	16.81	0.2234	Equal Vari	iances			
Attribute Variances	Test				_			iances			
Attribute Variances Distribution	Test Bartiett E	Nilk W N		8.206	16.81	0.2234	Equal Vari	iances			
Attribute Variances Distribution Proportion S C-%	Test Bartlett E Shapiro-V urvived Summar Control Type	Nilk W N		8.206 0.9806	16.81	0.2234 0.8656	Equal Vari	iances	Std Err	CV%	%Effect
Attribute Variances Distribution Proportion S C-% 0	Test Bartlett E Shapiro-V urvived Summar	Vilk W N	ormality Mean 0.9616	8.206 0.9806 95% LCL 0.9249	16.81 0.8975 95% UCL 0.9983	0.2234 0.8656 Median 0.9523	Equal Vari Normal Di	ances stribution	Std Err 0.01154	CV% 2.4%	%Effect
Attribute Variances Distribution Proportion S C-% 0 2	Test Bartlett E Shapiro-V urvived Summar Control Type	Vilk W N y Count 4 4	Mean 0.9616 0.9346	8.206 0.9806 95% LCL 0.9249 0.8921	16.81 0.8975 95% UCL	0.2234 0.8656 Median 0.9523 0.9419	Equal Vari Normal Dis Min 0.9461 0.8963	Max 0.9959 0.9585	0.01154 0.01338	-	0.0% 2.81%
Attribute Variances Distribution Proportion S C-% 0 2 4	Test Bartlett E Shapiro-V urvived Summar Control Type	Vilk W No y Count 4 4 4	Mean 0.9616 0.9346 0.9201	8.206 0.9806 95% LCL 0.9249 0.8921 0.7892	16.81 0.8975 95% UCL 0.9983 0.9772 1	0.2234 0.8656 Median 0.9523 0.9419 0.9461	Equal Vari Normal Di: 0.9461 0.8963 0.805	Max 0.9959 0.9585 0.9834	0.01154 0.01338 0.04112	2.4% 2.86% 8.94%	0.0% 2.81% 4.32%
Attribute Variances Distribution Proportion S C-% 0 2 4 9	Test Bartlett E Shapiro-V urvived Summar Control Type	Vilk W N Count 4 4 4 4	Mean 0.9616 0.9346 0.9201 0.9471	8.206 0.9806 95% LCL 0.9249 0.8921 0.7692 0.853	16.81 0.8975 95% UCL 0.9983 0.9772 1 1	0.2234 0.8656 Median 0.9523 0.9419 0.9461 0.9627	Equal Vari Normal Dis 0.9461 0.8963 0.805 0.8631	Max 0.9959 0.9585 0.9834 1	0.01154 0.01338 0.04112 0.02955	2.4% 2.86% 8.94% 6.24%	0.0% 2.81% 4.32% 1.51%
Attribute Variances Distribution Proportion S C-% 0 2 4 9 18	Test Bartlett E Shapiro-V urvived Summar Control Type	Vilk W No y Count 4 4 4 4 4	Mean 0.9616 0.9346 0.9201 0.9471 0.9139	8.206 0.9806 95% LCL 0.9249 0.8921 0.7892 0.853 0.8165	16.81 0.8975 95% UCL 0.9983 0.9772 1 1 1	0.2234 0.8656 Median 0.9523 0.9419 0.9461 0.9627 0.9129	Equal Vari Normal Dis 0.9461 0.8963 0.805 0.8631 0.8589	Max 0.9959 0.9585 0.9834 1 0.971	0.01154 0.01338 0.04112 0.02955 0.0306	2.4% 2.86% 8.94% 6.24% 6.7%	0.0% 2.81% 4.32% 1.51% 4.96%
Attribute Variances Distribution Proportion S C-% 0 2 2 4 9 18 35	Test Bartlett E Shapiro-V urvived Summar Control Type	Vilk VV No y Count 4 4 4 4 4 4 4 4	Mean 0.9616 0.9346 0.9201 0.9471 0.9139 0.9077	8.206 0.9806 95% LCL 0.9249 0.8921 0.7892 0.853 0.8165 0.8747	16.81 0.8975 95% UCL 0.9983 0.9772 1 1 1 1 0.9406	0.2234 0.8656 Median 0.9523 0.9419 0.9461 0.9627 0.9129 0.9066	Equal Vari Normal Dis 0.9461 0.8963 0.805 0.8631 0.8589 0.888	Max 0.9959 0.9585 0.9834 1 0.971 0.9295	0.01154 0.01338 0.04112 0.02955 0.0306 0.01036	2.4% 2.86% 8.94% 6.24% 6.7% 2.28%	0.0% 2.81% 4.32% 1.51% 4.96% 5.61%
Attribute Variances Distribution Proportion S C-% 0 2 4 9 18 35 70	Test Bartlett E Shapiro-N urvived Summar Control Type Dilution Water	Vilk W No y Count 4 4 4 4 4 4 4 4 4 4	Mean 0.9616 0.9346 0.9201 0.9471 0.9139 0.9077 0.9035	8.206 0.9806 95% LCL 0.9249 0.8921 0.7892 0.853 0.8165	16.81 0.8975 95% UCL 0.9983 0.9772 1 1 1	0.2234 0.8656 Median 0.9523 0.9419 0.9461 0.9627 0.9129	Equal Vari Normal Dis 0.9461 0.8963 0.805 0.8631 0.8589	Max 0.9959 0.9585 0.9834 1 0.971	0.01154 0.01338 0.04112 0.02955 0.0306	2.4% 2.86% 8.94% 6.24% 6.7%	0.0% 2.81% 4.32% 1.51% 4.96%
Attribute Variances Distribution Proportion S C-% 0 2 2 4 9 18 35 70 Angular (Con	Test Bartlett E Shapiro-V urvived Summar Control Type Dilution Water	Wilk W No y Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean 0.9616 0.9346 0.9201 0.9471 0.9139 0.9077 0.9035	8.206 0.9806 95% LCL 0.9249 0.8921 0.7892 0.853 0.8165 0.8747 0.7973	16.81 0.8975 95% UCL 0.9983 0.9772 1 1 1 0.9406 1	0.2234 0.8656 Median 0.9523 0.9419 0.9461 0.9627 0.9129 0.9066 0.8797	Equal Vari Normal Dis 0.9461 0.8963 0.805 0.8631 0.8589 0.888 0.8548	Max 0.9959 0.9585 0.9834 1 0.971 0.9295 1	0.01154 0.01338 0.04112 0.02955 0.0306 0.01036 0.03338	2.4% 2.86% 8.94% 6.24% 6.7% 2.28% 7.39%	0.0% 2.81% 4.32% 1.51% 4.96% 5.61% 6.04%
Attribute Variances Distribution Proportion S C-% 0 2 4 9 18 35 70 Angular (Con C-%	Test Bartlett E Shapiro-V urvived Summar Control Type Dilution Water rected) Transfor Control Type	Wilk W No y Count 4 4 4 4 4 4 4 4 4 4 4 5 med Sun Count	Mean 0.9616 0.9346 0.9201 0.9471 0.9139 0.9077 0.9035 mmary Mean	8.206 0.9806 95% LCL 0.9249 0.8921 0.7892 0.853 0.8165 0.8747 0.7973 95% LCL	16.81 0.8975 95% UCL 0.9983 0.9772 1 1 1 0.9406 1 95% UCL	0.2234 0.8656 Median 0.9523 0.9419 0.9461 0.9627 0.9129 0.9066 0.8797 Medlan	Equal Vari Normal Dis 0.9461 0.8963 0.805 0.8631 0.8589 0.888 0.8548 Min	Max 0.9959 0.9585 0.9834 1 0.9295 1 Max	0.01154 0.01338 0.04112 0.02955 0.0306 0.01036 0.03338 Std Err	2.4% 2.86% 8.94% 6.24% 6.7% 2.28% 7.39%	0.0% 2.81% 4.32% 1.51% 4.96% 5.61% 6.04%
Attribute Variances Distribution Proportion S C-% 0 2 4 9 18 35 70 Angular (Con C-% 0	Test Bartlett E Shapiro-V urvived Summar Control Type Dilution Water	Wilk W No y Count 4 4 4 4 4 4 4 4 4 4 4 4 4 5 0 med Sun Count 4	Mean 0.9616 0.9346 0.9201 0.9471 0.9139 0.9077 0.9035 mmary Mean 1.386	8.206 0.9806 95% LCL 0.9249 0.8921 0.7892 0.853 0.8165 0.8747 0.7973 95% LCL 1.258	16.81 0.8975 95% UCL 0.9983 0.9772 1 1 1 0.9406 1 95% UCL 1.514	0.2234 0.8656 Median 0.9523 0.9419 0.9461 0.9627 0.9129 0.9066 0.8797 Medlan 1.351	Equal Vari Normal Dis 0.9461 0.8963 0.805 0.8631 0.8589 0.8589 0.8588 0.8548 Min 1.336	Max 0.9959 0.9585 0.9834 1 0.9295 1 <u>Max</u> 1.506	0.01154 0.01338 0.04112 0.02955 0.0306 0.01036 0.03338 Std Err 0.0403	2.4% 2.86% 8.94% 6.24% 6.7% 2.28% 7.39% CV% 5.82%	0.0% 2.81% 4.32% 1.51% 4.96% 5.61% 6.04% %Effect 0.0%
Attribute Variances Distribution Proportion S C-% 0 2 4 9 18 35 70 Angular (Con C-% 0 2	Test Bartlett E Shapiro-V urvived Summar Control Type Dilution Water rected) Transfor Control Type	Wilk W No y Count 4 4 4 4 4 4 4 4 4 4 4 5 0 0 0 0 0 0 0 0	Mean 0.9616 0.9346 0.9201 0.9471 0.9139 0.9077 0.9035 mmary Mean 1.386 1.316	8.206 0.9806 95% LCL 0.9249 0.8921 0.7892 0.853 0.8165 0.8747 0.7973 95% LCL 1.258 1.233	16.81 0.8975 95% UCL 0.9983 0.9772 1 1 1 0.9406 1 95% UCL 1.514 1.398	0.2234 0.8656 Median 0.9523 0.9419 0.9461 0.9627 0.9129 0.9066 0.8797 Median 1.351 1.327	Equal Vari Normal Dis 0.9461 0.8963 0.805 0.8631 0.8589 0.8589 0.888 0.8548 Min 1.336 1.243	Max 0.9959 0.9585 0.9634 1 0.9295 1 Max 1.506 1.366	0.01154 0.01338 0.04112 0.02955 0.0306 0.01036 0.03338 Std Err 0.0403 0.02594	2.4% 2.86% 8.94% 6.24% 6.7% 2.28% 7.39% CV% 5.82% 3.94%	0.0% 2.81% 4.32% 1.51% 4.96% 5.61% 6.04% %Effect 0.0% 5.06%
Attribute Variances Distribution Proportion S C-% 0 2 4 9 18 35 70 Angular (Con C-% 0 2 4	Test Bartlett E Shapiro-V urvived Summar Control Type Dilution Water rected) Transfor Control Type	Vilk VV No y Count 4 4 4 4 4 4 4 4 4 4 5 0 0 0 0 0 0 0 0 0	Mean 0.9616 0.9346 0.9201 0.9471 0.9139 0.9077 0.9035 mmary Mean 1.386 1.316 1.311	8.206 0.9806 95% LCL 0.9249 0.8921 0.7892 0.853 0.8165 0.8747 0.7973 95% LCL 1.258 1.233 1.073	16.81 0.8975 95% UCL 0.9983 0.9772 1 1 1 1 0.9406 1 95% UCL 1.514 1.398 1.55	0.2234 0.8656 Median 0.9523 0.9419 0.9461 0.9627 0.9129 0.9066 0.8797 Median 1.351 1.327 1.345	Equal Vari Normal Dis 0.9461 0.8963 0.805 0.8631 0.8589 0.888 0.8548 Min 1.336 1.243 1.113	Max 0.9959 0.9585 0.9634 1 0.9295 1 Max 1.506 1.366 1.442	0.01154 0.01338 0.04112 0.02955 0.0306 0.01036 0.03338 Std Err 0.0403 0.02594 0.07496	2.4% 2.86% 8.94% 6.24% 6.7% 2.28% 7.39% CV% 5.82% 3.94% 11.43%	0.0% 2.81% 4.32% 1.51% 4.96% 5.61% 6.04% %Effect 0.0% 5.06% 5.38%
Attribute Variances Distribution Proportion S C-% 0 2 4 9 18 35 70 Angular (Con C-% 0 2 4 9 9	Test Bartlett E Shapiro-V urvived Summar Control Type Dilution Water rected) Transfor Control Type	Wilk W No y Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean 0.9616 0.9346 0.9201 0.9471 0.9139 0.9077 0.9035 mmary Mean 1.386 1.316 1.311 1.371	8.206 0.9806 95% LCL 0.9249 0.8921 0.7892 0.853 0.8165 0.8747 0.7973 95% LCL 1.258 1.233 1.073 1.144	16.81 0.8975 95% UCL 0.9983 0.9772 1 1 1 1 0.9406 1 1 95% UCL 1.514 1.398 1.55 1.599	0.2234 0.8656 Median 0.9523 0.9419 0.9461 0.9627 0.9129 0.9066 0.8797 Median 1.351 1.327 1.345 1.378	Equal Vari Normal Dis 0.9461 0.8963 0.805 0.8631 0.8589 0.888 0.8548 Min 1.336 1.243 1.113 1.192	Max 0.9959 0.9585 0.9634 1 0.971 0.9295 1 Max 1.506 1.366 1.442 1.539	0.01154 0.01338 0.04112 0.02955 0.0306 0.01036 0.03338 Std Err 0.0403 0.02594 0.07496 0.07146	2.4% 2.86% 8.94% 6.24% 6.7% 2.28% 7.39% CV% 5.82% 3.94% 11.43% 10.42%	0.0% 2.81% 4.32% 1.51% 4.96% 5.61% 6.04% %Effect 0.0% 5.06% 5.38% 1.06%
Attribute Variances Distribution Proportion S C-% 0 2 4 9 18 35 70	Test Bartlett E Shapiro-V urvived Summar Control Type Dilution Water rected) Transfor Control Type	Vilk VV No y Count 4 4 4 4 4 4 4 4 4 4 5 0 0 0 0 0 0 0 0 0	Mean 0.9616 0.9346 0.9201 0.9471 0.9139 0.9077 0.9035 mmary Mean 1.386 1.316 1.311	8.206 0.9806 95% LCL 0.9249 0.8921 0.7892 0.853 0.8165 0.8747 0.7973 95% LCL 1.258 1.233 1.073	16.81 0.8975 95% UCL 0.9983 0.9772 1 1 1 1 0.9406 1 95% UCL 1.514 1.398 1.55	0.2234 0.8656 Median 0.9523 0.9419 0.9461 0.9627 0.9129 0.9066 0.8797 Median 1.351 1.327 1.345	Equal Vari Normal Dis 0.9461 0.8963 0.805 0.8631 0.8589 0.888 0.8548 Min 1.336 1.243 1.113	Max 0.9959 0.9585 0.9634 1 0.9295 1 Max 1.506 1.366 1.442	0.01154 0.01338 0.04112 0.02955 0.0306 0.01036 0.03338 Std Err 0.0403 0.02594 0.07496	2.4% 2.86% 8.94% 6.24% 6.7% 2.28% 7.39% CV% 5.82% 3.94% 11.43%	0.0% 2.81% 4.32% 1.51% 4.96% 5.61% 6.04% %Effect 0.0% 5.06% 5.38%

___ QA:____

-651

Analyst:

CETIS Ana	alytical Repo					ort Date: Code:		May-16 09:			
Bivalve Larva	al Survival and De	velopmen	t Test						Northwest	ern Aquat	ic Science
Analysis ID: Analyzed:	13-1249-3666 11 May-16 9:49		point: Con lysis: Para	nbined Prop ametric-Two		al		- IS Version: ial Results		.8.7	
Batch ID: Start Date: Ending Date: Duration:	04-5029-0558 27 Apr-16 13:40	Tesi Prol	t Type: Dev locol: EPA cles: Myt		urvival 136 (1995) /incialis	·	Anal Dilue Brin Age:	yst: ent: Yac e:	quina Bay Se	eawater	
Receive Date	00-6564-0337 : 26 Apr-16 09:03 : 27 Apr-16 10:55 29h (5.1 °C)		e: 3E9 erial: Indu rce: Wyd	9791 ustrial Efflue ckoff		<u>_</u>	Clier Proj	nt: Wy	ckoff Treatm	nent Plant	
Data Transfo		Zeta	Alt Hyp	Trials	Seed		PMSD	Test Res	ult	,	
Angular (Corr	ected)	NA	C⇔T	NA	NA		10.1%	Passes c	ombined pro	portion no	mal
Equal Varian	ce t Two-Sample	Test				_					
Control Dilution Water	vs Control Brine Reag	gent	Test Stat 0.2736	Critical 2.447	MSD DF 0.172 6	P-Value 0.7936	P-Type CDF	Decision Non-Sign	i(α:5%) ificant Effec	<u>)</u>	
ANOVA Table	3								-		
Source	Sum Squar	res	Mean Squ	are	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.00074142		0.0007414		1	0.07484	0.7936	Non-Sign	ificant Effec	t	
Error	0.05944255		0.0099070	91	6						
Total	0.06018397				7						
Distributiona											
Attribute	Test			Test Stat		P-Value	Decision	. ,			
Variances	Variance R		- 63 In 1 -	2.554	47.47	0.4616	Equal Var				
Variances Variances	Levene Eq		of Variance	1.393 1.286	13.75 13.75	0.2826	Equal Var				
Distribution	Shapiro-W	-		0.9245	0.6451	0.3000 0.4671	Equal Var Normal Di				
Distribution	Kolmogoro		•	0.32477	0.3313	0.4071	Nomal Di				
Distribution	Anderson-I			0.4267	3.878	0.3182	Normal Di				
Combined Pr	oportion Normal S	Summary									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
0		4	0.9471	0.9038	0.9903	0.9378	0.9295	0.9876	0.01359	2.87%	0.0%
0	Brine Reagent	4	0.9492	0.8738	1	0.9378	0.888	0.9959	0.02368	4.99%	-0.22%
Angular (Con	rected) Transform	ed Summ	ary								
C-%		Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	_CV%	%Effec
0		4	1.347	1.229	1.466	1.319	1.302	1.459	0.03733	5.54%	0.0%
0	· ·	4	1.367	1.177	1.557	1.319	1.229	1.506	0.05966	8.73%	-1.43%
	oportion Normal I										
C-%		Rep 1	Rep 2	Rep 3	Rep 4						
0 0		0.9378 0.9378	0.9876 0.888	0.9295 0.9751	0.9336 0.9959						
	rected) Transform	_									
C-%		Rep 1	Rep 2	Rep 3	Rep 4						
- /0		1.319	1.459	1.302	1.31						
0	Dilution Water	1.319	1.402								

Analyst:_____

____QA:___

CETIS Anal	lytical Report					Repor Test C	rt Date: Code:			50 (p 1 of 3) 0-7301-7302
Bivalve Larval	Survival and Deve	lopment Test					1	lorthweste	rn Aquati	c Sciences
Analysis iD: Analyzed:	20-0792-5515 11 May-16 9:49		nbined Prop ametric-Con				Version: al Results:	CETISv1. Yes	8.7	
Batch ID: Start Date: Ending Date: Duration:	04-5029-0558 27 Apr-16 13:40 29 Apr-16 14:00 48h	Protocol: EP/ Species: My	velopment-S 4/600/R-95/ ilis galloprov nilche Sea F	136 (1995) /incialis		Analy Diluer Brine Age:	nt: Yaqu	ina Bay Sea	awater	
	00-6564-0337 26 Apr-16 09:03 27 Apr-16 10:55 29h (5.1 °C)	Material: Ind	99791 ustrial Efflue ckoff	nt		Client Proje	-	coff Treatme	ent Plant	
Data Transform	m Ze	ta Alt Hyp	Trials	Seed		PMSD /			TOEL	TU
Angular (Correc	cted) N/	C>T	NA	NA		11.4%	70	>70	NA	1.429
Dunnett Multir	ple Comparison Te	st								
Control	vs C-%	Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(c	(-5%)		
Dilution Water	2	0.7165	2.448	0.19 6	0.5847	CDF	Non-Signifi			
	4	0.7733	2.448	0.19 6	0.5586	CDF	Non-Signifi			
	9	-0.03415	2.448	0.19 6	0.8662	CDF	Non-Signifi			
	18	1.131	2.448	0.19 6	0.3954	CDF	Non-Signifi	cant Effect		
	35	1.359	2.448	0.19 6	0.3010	CDF	Non-Signifi	cant Effect		
	70	1.242	2.448	0.19 6	0.3478	CDF	Non-Signifi	cant Effect		
ANOVA Table										
Source	Sum Squares	Mean Squ	lare	DF	F Stat	P-Value	Decision(c	(:5%)		
Between	0.04638238			6			Non-Signifi		-	
Error	0.04030230	0.0077303	90	0	0.6453	0.6933		cant Effect		
	0.2515802	0.0077303		21	0.6453	0.6933	Non-Oighia	cant Effect		
Total				-	0.6453	0.6933		cant Effect		
Total Distributional	0.2515802 0.2979626			<u>2</u> 1	0.6453	0.6933		Cant Effect		
	0.2515802 0.2979626)1	21 27	-			cant Effect		
Distributional	0.2515802 0.2979626 Tests Test			21 27	0.6453 P-Value 0.2668	0.6933 Decision(o Equal Varia	1:1%)	Cant Effect		
Distributional Attribute	0.2515802 0.2979626 Tests Test Bartlett Equa	0.0119800	Test Stat 7.626	21 27 Critical	P-Value	Decision(c	1:1%) ances	Cant Effect		
Distributional Attribute Variances	0.2515802 0.2979626 Tests Test Bartlett Equa Mod Levene	0.0119800	Test Stat 7.626	21 27 Critical 16.81	P-Value 0.2668	Decision(o Equal Varia	1:1%) ances ances	салі Еттесt		
Distributional Attribute Variances Variances Variances Distribution	0.2515802 0.2979626 Tests Test Bartlett Equa Mod Levene I Levene Equa Shapiro-Wilk	0.0119800 ity of Variance Equality of Variance ity of Variance W Normality	Test Stat 7.626 0.8408 1.387 0.9719	21 27 Critical 16.81 3.812 3.812 0.8975	P-Value 0.2668 0.5526 0.2657 0.6310	Decision(o Equal Varia Equal Varia	a:1%) ances ances ances	салі Елесt		
Distributional Attribute Variances Variances Variances Distribution Distribution	0.2515802 0.2979626 Tests Test Bartlett Equa Mod Levene Levene Equa Shapiro-Wilk Kolmogorov-S	0.0119800 ity of Variance Equality of Variance ity of Variance W Normality Smirnov D	Test Stat 7.626 0.8408 1.387 0.9719 0.1287	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914	P-Value 0.2668 0.5526 0.2657 0.6310 0.2682	Decision(o Equal Varia Equal Varia Equal Varia Normal Dis Normal Dis	a:1%) ances ances ances stribution stribution	Cant Effect		
Distributional Attribute Variances Variances Variances Distribution Distribution Distribution	0.2515802 0.2979626 Tests Test Bartlett Equal Mod Levene Equa Shapiro-Wilk Kolmogorov-S D'Agostino St	0.0119800 ity of Variance Equality of Variance ity of Variance W Normality Smirnov D Kewness	Test Stat 7.626 0.8408 1.387 0.9719 0.1287 0.6109	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576	P-Value 0.2668 0.5526 0.2657 0.6310 0.2682 0.5413	Decision(o Equal Varia Equal Varia Equal Varia Normal Dis Normal Dis Normal Dis	a:1%) ances ances ances ances stribution stribution stribution	Cant Effect		
Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution	0.2515802 0.2979626 Tests Test Bartlett Equal Mod Levene Equa Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino Ki	0.0119800 ity of Variance Equality of Variance ity of Variance W Normality Smirnov D kewness urtosis	Test Stat 7.626 0.8408 1.387 0.9719 0.1287 0.6109 0.4066	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576	P-Value 0.2668 0.5526 0.2657 0.6310 0.2682 0.5413 0.6843	Decision(o Equal Varia Equal Varia Equal Varia Rormal Dis Normal Dis Normal Dis Normal Dis	a:1%) ances ances ances ances stribution stribution stribution	Cant Effect		
Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution	0.2515802 0.2979626 Tests Test Bartlett Equal Mod Levene I Levene Equa Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino Ki D'Agostino-Pi	0.0119800 ity of Variance Equality of Variance ity of Variance W Normality Smirnov D kewness urtosis earson K2 Omnibus	Test Stat 7.626 0.8408 1.387 0.9719 0.1287 0.6109 0.4066 0.5385	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21	P-Value 0.2668 0.5526 0.2657 0.6310 0.2682 0.5413 0.6843 0.7639	Decision(o Equal Varia Equal Varia Equal Varia Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis	a:1%) ances ances ances stribution stribution stribution stribution	салі Е тесt		
Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Distribution	0.2515802 0.2979626 Tests Test Bartlett Equal Mod Levene I Levene Equa Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino Ki D'Agostino-Pu Anderson-Da	0.0119800 ity of Variance Equality of Variance ity of Variance W Normality Smirnov D kewness urtosis earson K2 Omnibus fling A2 Normality	Test Stat 7.626 0.8408 1.387 0.9719 0.1287 0.6109 0.4066	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576	P-Value 0.2668 0.5526 0.2657 0.6310 0.2682 0.5413 0.6843	Decision(o Equal Varia Equal Varia Equal Varia Rormal Dis Normal Dis Normal Dis Normal Dis	a:1%) ances ances ances stribution stribution stribution stribution	салі Е тесt		
Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution	0.2515802 0.2979626 Tests Test Bartlett Equa Mod Levene I Levene Equa Shapiro-Wilk Kolmogorov-5 D'Agostino St D'Agostino St D'Agostino Fi Anderson-Da	0.0119800 ity of Variance Equality of Variance ity of Variance W Normality Smirnov D kewness urtosis earson K2 Omnibus fling A2 Normality	Test Stat 7.626 0.8408 1.387 0.9719 0.1287 0.6109 0.4066 0.5385 0.382	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878	P-Value 0.2668 0.5526 0.2657 0.6310 0.2682 0.5413 0.6843 0.7639 0.4038	Decision(Equal Varia Equal Varia Equal Varia Rormal Dis Normal Dis Normal Dis Normal Dis Normal Dis	a:1%) ances ances ances atribution atribution atribution atribution atribution			
Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Distribution Combined Pro	0.2515802 0.2979626 Tests Test Bartlett Equa Mod Levene Equa Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino Si D'Agostino Fi Anderson-Da	0.0119800 ity of Variance Equality of Variance ity of Variance W Normality Smirnov D kewness urtosis earson K2 Omnibus fing A2 Normality mmary punt Mean	Test Stat 7.626 0.8408 1.387 0.9719 0.1287 0.6109 0.4066 0.5385 0.382 95% LCL	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL	P-Value 0.2668 0.5526 0.2657 0.6310 0.2682 0.5413 0.6843 0.7639 0.4038 Median	Decision(c Equal Varia Equal Varia Equal Varia Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis	a:1%) ances ances ances ances atribution atribution atribution atribution atribution	Std Err		%Effect
Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Combined Pro C-% 0	0.2515802 0.2979626 Tests Tests Bartlett Equa Mod Levene Equa Shapiro-Wilk Kolmogorov-S D'Agostino-Pi D'Agostino-Pi Anderson-Da Doportion Normal Su Control Type Co Dilution Water 4	0.0119800 ity of Variance Equality of Variance ity of Variance W Normality Smirnov D Kewness urtosis earson K2 Omnibus ding A2 Normality mmary ount Mean 0.9471	Test Stat 7.626 0.8408 1.387 0.9719 0.1287 0.6109 0.4066 0.5385 0.382 95% LCL 0.9038	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 0.9903	P-Value 0.2668 0.5526 0.2657 0.6310 0.2682 0.5413 0.6843 0.7639 0.4038 Median 0.9357	Decision(c Equal Varia Equal Varia Equal Varia Equal Varia Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis	a:1%) ances ances ances ances ances atribution atribution atribution atribution atribution atribution	Std Err 0.01359	2.87%	0.0%
Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Combined Pro C-% 0 2	0.2515802 0.2979626 Tests Tests Bartlett Equa Mod Levene Equa Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino Si D'Agostino Ni D'Agostino-Pa Anderson-Da Doportion Normal Su Control Type Co Dilution Water 4 4	0.0119800 ity of Variance Equality of Variance ity of Variance W Normality Smirnov D Kewness urtosis earson K2 Ornnibus rting A2 Normality mmary ount Mean 0.9471 0.9222	Test Stat 7.626 0.8408 1.387 0.9719 0.1287 0.6109 0.4066 0.5385 0.382 95% LCL 0.9038 0.8727	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 0.9903 0.9717	P-Value 0.2668 0.5526 0.2657 0.6310 0.2682 0.5413 0.6843 0.7639 0.4038 Median 0.9357 0.9274	Decision(c Equal Varia Equal Varia Equal Varia Equal Varia Normal Dis Normal Dis	a:1%) ances ances ances ances ances atribution atribution atribution atribution atribution Max 0.9876 0.9544	Std Err 0.01359 0.01556	2.87% 3.38%	0.0% 2.63%
Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Combined Pro C-% 0 2 4	0.2515802 0.2979626 Tests Tests Bartlett Equa Mod Levene Equa Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino Si D'Agostino Ni D'Agostino Pi Anderson-Da Doportion Normal Su Control Type Co Dilution Water 4 4	0.0119800 ity of Variance Equality of Variance ity of Variance W Normality Smirnov D kewness urtosis earson K2 Ornnibus ding A2 Normality mmary bunt Mean 0.9471 0.9222 0.9098	Test Stat 7.626 0.8408 1.387 0.9719 0.1287 0.6109 0.4066 0.5385 0.382 95% LCL 0.9038 0.8727 0.7772	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 0.9903 0.9717 1	P-Value 0.2668 0.5526 0.2657 0.6310 0.2682 0.5413 0.6843 0.7639 0.4038 Median 0.9357 0.9274 0.9357	Decision(c Equal Varia Equal Varia Equal Varia Equal Varia Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis Min 0.9295 0.8797 0.7925	a:1%) ances ances ances ances ances atribution atribution atribution atribution atribution Max 0.9876 0.9544 0.9751	Std Err 0.01359 0.01556 0.04164	2.87% 3.38% 9.16%	0.0% 2.63% 3.94%
Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Combined Pro C-% 0 2 4 9	0.2515802 0.2979626 Tests Tests Bartlett Equa Mod Levene Equa Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino Si D'Agostino Ni D'Agostino-Pa Anderson-Da Doportion Normal Su Control Type Co Dilution Water 4 4	0.0119800 ity of Variance Equality of Variance ity of Variance W Normality Smirnov D kewness urtosis earson K2 Omnibus fling A2 Normality mmary ount Mean 0.9471 0.9222 0.9098 0.9367	Test Stat 7.626 0.8408 1.387 0.9719 0.1287 0.6109 0.4066 0.5385 0.382 95% LCL 0.9038 0.8727 0.7772 0.8334	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 0.9903 0.9717 1 1	P-Value 0.2668 0.5526 0.2657 0.6310 0.2682 0.5413 0.6843 0.7639 0.4038 Median 0.9357 0.9274 0.9357 0.9502	Decision(c Equal Varia Equal Varia Equal Varia Equal Varia Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis 0.9295 0.8797 0.7925 0.8465	a:1%) ances ances ances ances ances arribution atribution atribution atribution atribution Max 0.9876 0.9544 0.9751 1	Std Err 0.01359 0.01556 0.04164 0.03247	2.87% 3.38% 9.16% 6.93%	0.0% 2.63% 3.94% 1.1%
Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Combined Pro C-% 0 2 4	0.2515802 0.2979626 Tests Test Bartlett Equal Mod Levene I Levene Equa Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino Si D'Agostino Ki D'Agostino-Pi Anderson-Da Deportion Normal Su Control Type Co Dilution Water 4 4 4	0.0119800 ity of Variance Equality of Variance ity of Variance W Normality Smirnov D kewness urtosis earson K2 Ornnibus ding A2 Normality mmary bunt Mean 0.9471 0.9222 0.9098	Test Stat 7.626 0.8408 1.387 0.9719 0.1287 0.6109 0.4066 0.5385 0.382 95% LCL 0.9038 0.8727 0.7772	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 0.9903 0.9717 1	P-Value 0.2668 0.5526 0.2657 0.6310 0.2682 0.5413 0.6843 0.7639 0.4038 Median 0.9357 0.9274 0.9357	Decision(c Equal Varia Equal Varia Equal Varia Equal Varia Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis Min 0.9295 0.8797 0.7925	a:1%) ances ances ances ances ances atribution atribution atribution atribution atribution Max 0.9876 0.9544 0.9751	Std Err 0.01359 0.01556 0.04164	2.87% 3.38% 9.16%	0.0% 2.63% 3.94%

CETIS Ana	alytical Repo	ort						ort Date: t Code:	~	May-16 09:5	
Bivalve Larva	al Survival and D	evelopn	nent Test		_				Northwest	ern Aquati	c Science
Analysis ID: Analyzed:	20-0792-5515 11 May-16 9:49		indpoint: Co inalysis: Pa	ombined Prop				ris Version: <u>cl</u> al Results:	CETISv1 Yes	.8.7	
Angular (Cor	rected) Transfor	med Sur	nmary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	4	1.347	1.229	1.466	1.314	1.302	1.459	0.03733	5.54%	0.0%
2		4	1.292	1.201	1.383	1.298	1.217	1.355	0.02862	4.43%	4.1 2%
4		4	1.288	1.063	1.513	1.32	1.098	1.412	0.07071	10.98%	4.44%
9		4	1.35	1.108	1.592	1.347	1.168	1.539	0.07616	11.28%	-0.2%
18		4	1.26	1.101	1.418	1.255	1.174	1.355	0.0498	7.91%	6.4 9%
35		4	1.242	1.188	1.296	1.24	1.21	1.279	0.01702	2.74%	7.8%
70		4	1.251	1.022	1.48	1.192	1.157	1.464	0.072	11.51%	7.13%
Combined Pi	roportion Norma	l Detail									
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4				-		
0	Dilution Waler	0.9378	0.9876	0.9295	0.9336						
2		0.9544	0.9253	0.8797	0.9295						
4		0.9627	0.9751	0.9087	0.7925						
9		0.9585	1	0.9419	0.8465						
18		0.9544	0.8506	0.9461	0.8506						
35		0.8797		0.917	0.9087						
70		0.8382	0.9886	0.8465	0.8797			_			
Angular (Cor	rected) Transfor	med Det	aìl								
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	Dilution Water	1.319	1.459	1.302	1.31			·			
2		1.355	1.294	1.217	1.302						
4		1.376	1.412	1.264	1.098						
9		1.366	1.539	1.327	1.168						
18		1.355	1.174	1.336	1.174						
35		1.217	1.21	1.279	1.264						
70		1.157	1.464	1.168	1.217						
Graphics										· <u>-</u>	
orupinos											
1.0						0.25 F				•	/
0.9		7 L				D.20 -				• /	
5 0.6				Reject Null		0.15					
5 0.7						- - - - -					
bout]						
					l	Corr. Angla			A		
Comparison of the second secon						0.00					
						-0.05					
0.3						-0.10	•	••••			
0.2						-0.15					
Ē						E					
0.1						-0.20	/				
0.0 E	0D 2	4 9		35 70		-0.25	1 1	10 05 05	05 10	16 24	-1
	vu 2	• · ·	10	J) (I		-2.5	-2.0 -1.5	-1.0 -0.5 0.0 Rankits	0.5 1.0	1.5 2.0	2.5

ECSO> +0% BY DATA INSPECTI \mathcal{N}

Analyst:_____ QA:____

CETIS Ana	lytical Repo	ort						ort Date: Code:			: 50 (p 1 of 20-7301 -73
Bivalve Larva	Survival and D	evelopmer	nt Test						Northwest	ern Aqua	lc Science
Analysis ID: Analyzed:	13-3657-8118 11 May-16 9:49			Combined Prop				S Version		.8.7	
Batch ID: Start Date: Ending Date: Duration:	04-5029-0558 27 Apr-16 13:40 29 Apr-16 14:00 48h) Pro) Spe	tocol: cies:	Development-S EPA/600/R-95/ Mytilis gallopro Kamilche Sea I	1 36 (1 995) vincialis		Anal Diluc Brin Age:	ənt: Ya ə:	quina Bay Se	eawater	
•	00-6564-0337 26 Apr-16 09:03 27 Apr-16 10:55 29h (5.1 °C)	5 Sou	erial:	3E99791 Industrial Efflue Wyckoff	ent		Clier Proj		yckoff Treatm	ient Plant	
Linear Interpo	lation Options										
X Transform	Y Transform	See	d i	Resamples	Exp 95%	CL Meth	nod				
Linear	Linear	164	7373	280	Yes	Two-	-Point Interp	olation			
EC25 >70	95% LCL N/A	N/A	<1.429	95% LCL NA	95% UCL NA	Jated Varia	te(A/B)				
	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	в
-	ilution Water	4	0.9471	0.9295	0.9876	0.01359	0.02718	2.87%	0.0%	913	964
2		4	0.9222		0.9544	0.01556	0.03112	3.38%	2.63%	889	964
4		4	0.9098	0.7925	0.9751	0.04164	0.08329	9.16%	3.94%	877	964
9		4	0.9367	0.8465	1	0.03247	0.06494	6.93%	1.1%	912	973
18		4	0.9004		0.9544	0.0288	0.0576	6.4%	4.93%	868	964
35		4	0.8952		0.917	0.01036	0.02071	2.31%	5.48%	863	964
70		4	0.8882	0.8382	0.9886	0.03464	0.06927	7.8%	6.22%	878	986
Combined Pro	portion Normal	Detail									
c-% C	ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4						
) D	ilution Water	0.9378	0.9876	0.9295	0.9336						
2		0.9544	0.9253	0.8797	0.9295						
4		0.9627	0.9751	0.9087	0.7925						
9		0.9585	1	0.9419	0.8465						
		0.9544	0.8506	0.9461	0.8506						
18 35 70		0.8797	0.8755	0.917	0.9087						

Analyst:_____

QA:___

Report Date: Test Code:

Start Date: End Date: Sample Date	29 A	Apr-16	13:40 14:00 09:03	Species: Protocol: Material:	Mytilis galloprovir EPA/600/R-95/13 Industrial Effluent	6 (1995)		Sample Code: Sample Source: Sample Station:	•
C-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	an a	Notes
0	B	1	32	241	228	228	226		
0	B	2	11	241	221	221	214		
0	в	3	12	241	240	240	235		
0	В	4	3	241	250	250	240		
0	D	1	10	241	230	230	226		
0	D	2	2	241	240	240	238		
0	D	3	23	241	229	229	224		
0	D	4	9	241	228	228	225		
2		1	18	241	231	231	230		
2		2	27	241	227	227	223		
2		3	22	241	216	216	212		
2		4	30	241	227	227	224		
4		1	26	241	237	237	232		
4		2	15	241	235	235	235		
4		3	14	241	221	221	219		
4		4	24	241	194	194	191		
9		1	6	241	234	234	231		
9	1	2	29	241	250	250	250		
9		3	5	241	230	230	227		
9		4	17	241	208	208	204		
18		1	16	241	234	234	230		
18		2	13	241	207	207	205		
18		з	1	241	232	232	228		
18		4	31	241	208	208	205		
35		1	7	241	214	214	212		
35	+	2	26	241	215	215	211		
35		3	21	241	224	. 224	221		
35	1	4	8	241	222	222	219		
70		1	4	241	208	208	202		
70		2	20	241	263	263	260		
70		3	19	241	206	206	204		
70		4	25	241	216	216	212		

dicta entry revified against laboratory bench sheets 5-12-16 she

Analyst:

QA:____

No: 10-042616-092946-0104 2016T10P303DD210W2LA00 Contact Name_Keith Allers	Collection Sample Type	Date/Time 04/26/2016 09-03 Field Sample				Shipment for Case Complete? N Samples Transferred From Chain of Custody #	Sample Condition Upon Receipt
ž	Location	SP-11 04				Shipment for Case Complete? N Samples Transferred From Chair	Date/Time
RECORD P 2015/WA 224U	Tag/Preservative/Bottles	A (< 6 C) (1)					Received by (Signature and Organization)
CHAIN OF CUSTODY RECORD Wyckoff Eagle Harbor GWTP 2015/WA Project Code WEH-024U	Analysis/Turnaround (Days)	CHRTOX(8 Weeks)					Date/Time Received t
	Coll.	Composite				526	(noi)
EGION COPY)	Matrix/Sampler	Ground Waler/ K Allers				MAS & 5-58 2 C	Reinquished by (Signature and Organization)
Jatic Sciences (R 2016 :X 8.6504	0	No.				s: TOX=Chronic Tox	Reinquished b
Page 1 of 1 Northwestern Aquatic Sciences (REGION COPY) DateShipped: 4/26/2016 CarrierName: FedEx Architton 7829 2118 6504	Sample Identifier	658-2nd Quarter				Special Instructions:	Items/Reason

NORTHWESTERN SAMPLE NO, <u>65</u> DATE 4-26-2016 SEAL BROKEN BY 8 AQUATIC SCIENCES SIGNATURE A Division of NAS Associates, Inc. PRINT VIT/IA PD 5

APPENDIX III

RAW DATA – REFERENCE TOXICANT TEST

NORTHWESTERN AQUATIC SCIENCES

IC SCIENCES PROTOCOL NO. NAS-XXX-CG/MG2 BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Test No	o. <u>999-3</u>	551 Clien	t:	QC Tes	it		_ Investiga	tor PACES by
 STUDY	MANAG	EMENT						
Clier	nt:	QC 1						
	nt's Study			QC Tes				
		atory: Northw		atic Scie	ences			
		: Newport Lab	•					
		Study Personr	nel:		6.52			
	oj. Mgr./S	tudy Dir.		G.J. Iris	sarri 631			
	A Officer	£ 7	L.K. Nem		<u></u>			
		Xier	Kalarli	ana 2	2.	J. Brown		
3					4.		0	
	ly Schedu			- A 21	-	Tool Codie of	Vanic	1400
lest	Beginnin	ig: <u>1</u>	-27-16	134	0	Test Ending: _	42416	1700
TEST N	IATERIA	L						
	Descriptio	on: Copp	er as CuSC	0₄·5H₂O	, Argent Lot#	0195,		
	NAS Sam	nple No.			1.0) mg/ml stock pre	oared: 6-19-1	4
	Date of C		-			<u>`</u>		
	Date of R	eceipt:	-					
•	Temperat	ture (deg C):	-					
1	pH:							-
	Dissolved	l oxygen (mg/	L):					
(Conductiv	/ity (umhos/cr	n): _		<u>-</u> ,			
	Hardness		_		······································			
	Alkalinity		_					
	Salinity (p		-					
		orine (mg/L):	-					
•	Total amr	monia-N (mg/l	_): _					
-			_: -					
DILUTI		ER						
1	Descriptio	on:	Yaquina B	Bay, OR	Seawater			
	Date of C			1-26-		Salinity (ppt	30.0	рН х.1
	Treatmen	its:	Aerated, t	filtered t	t o ≤ 0.45 um,	salinity adjusted w		
						· -		
	RGANIS					r	-to Dessived	1 10 11
	Species:		us galloprov		Shelton, WA	L	ate Received:	4-14-16
	Source: Acclimatio		mone Sea h	anns, t	Shellon, WA			
	Date	Temp (deg.C) pH		Sal (not)			nments
	H-20-16	14.7	<u>) p⊓</u> 37,1		Sal (ppt) 30.0	D.O. (mg/L) ሬ.ኖ	Held outside ir	
	4-22-16	<u>14.7</u> 14.4	<u> </u>		30,5	7.3	flowing sea	
	4-25-16		<u> </u>		29.0	7.3	iowing aca	
	4-23-16		8.0	, - -	27.0	7,3		
	7-67-16	<u> </u>	<u>a,c</u>				1	
							+	
	Mean	14.0	9.1	601	29.0 29	1 7.2	+	
	S.D.	0.7	0.1	5/17	1-1b Ard 1.5	0.2	+	
	(N)		4		4	4	1	
I		od during acc		 	tdoor ambien		¹	

Photoperiod during acclimation: Outdoor a

BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Test No.	999-3551	Client_		Q	C Test			Invest	tigator						
SPAWNIN	PAWNING AND GAMETE HANDLING														
Spawr	ning: Initial:	0940		Final:	1020		Fert	ilization:	1110						
Numb	er of organis	ms used:	fema	les: <u> </u>		г	nales:	3							
Egg D	ilution (1 ml	diluted to 1	00 ml):						-						
	Count/ml	of dilution:	11	34	2 4	10	3	35	Mean: <u>36.3</u>						
	Dilution fa	actor = DF	(mean x 1	00/2500)	=!	.5									
TEST PRO	CEDURES		IDITIONS												
Test c	TEST PROCEDURES AND CONDITIONS Test concentrations (50% series recommended): 64, 32, 16, 8, 4, 2, 1 and 0 ug/L														
		•					. , , ,								
Test c	hamber: 30 r	nl glass vi	als	Test v	olume: 10) ml	Rep	licates/trea	atment (4): 4						
Organ	isms/ml (15-	30): 2	4.1	Test v	vater char	iges: None			g test: None						
Feedir	ig: None	· <u></u>		Photo	period: 16	L:8D		nity: 30 +/-	-						
Tempe	erature: 20 +	/- 1 °C, oys	sters; 16 +.	/- 1 °C, mi	ussels	Be		-	ified randomization						
		-					·								
KANDUM	IZATION CH														
	A 4	f	2	64	8	16	32	φ							
	A														
	в 16	64	1	4	32	φ	2	8							
	64	8	Ø	32	1	2	16	4							

4

Ο

64

l

8

PREPARATION OF TEST SOLUTIONS

2

D

16

	Test Conc.	ml of working stock #2	Dilution water
	(Cu, ug/L)	(2 ug/mL)	(ml/100mL)
4-27-16	64	3.2	Brought up to a
4-27-16	32	1.6	final volume of
	16	0.8	100 ml with
	8	0.4	dilution water.
	4	0.2	
	2	0.1	
	1	0.05	
	0	0	

32

1st working stock made by 1:99 (1.0 mL 100mL) dilution of concentrated 1 mg/mL stock solution. Final concentration 10 ug/mL.

2nd working stock made (working stock #2) made by 20:80 (20 mL 100mL) dilution of 1st working stock. Final concentration 2 ug/mL.

Comments:

BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Test No.

999-3551 Client

NORTHWESTERN AQUATIC SCIENCES

QC Test

Investigator

WATER QUALITY DATA

	Date:	4.271	nitials:	Te	Date:	4.29-16	initials:	10
Conc.	Temp.	рН	Sal.	DO	Temp.	pH	Sal.	DO
(_ug/L)	(deg.C)		(ppt)	(mg/L)	(deg.C)		(ppt)	(mg/L)
64	15.1	8.2	29.5	7.9	15.3	8-2	29.5	7.9
32	15.1	8.2	30.0	7.9	15.3	8.2	70.0	79
16	15.1	8.2	30.0	7.9	15.3	8.2	30.0	70
8	15.0	8.2	30.0	Tra	15.3	8.2	30.0	7.9
4	15.0	8.2	30.0	7.9	15.3	8.2	30.0	79
2	15.0	8.2	30.0	7.9	15.3	8.2	30.0	7.9
1	15.0	8.2	30.0	7.9	15-4	8.2	30.0	7.9
Control	15.1	8.1	30.0	7.9	15.4	9.2	30.0	7.9
Brine control				—				

WATER QUALITY:	Mean	<u>SD</u>
Temperature (°C):	15.2	0,2
pH:	9.2	0,0
Salinity (ppt):	29.9	0.2
DO (mg/L):	7.9	0,0

N 16 16 16 16 Room/ Water bath temperature: (°C)

Day 0:	15.7	Day 0:	15-1
Day 1:	155	Day 1:	
Day 2:	1513	Day 2:	154

					DATA	- / .		
	16-	5-5-16	w-		1 3-6	5-165 1	5-8-1	6 632
Conc.	Repli	cate 1	۲ Repli	cate 2	Repli	cate 3	Replic	cate 4
(ug/L)	N	A	N	A A	N	A	N	A
64	0	Ø	Ø	2	Ø	2	ø	2
32	Ø	136	Ø	158	Ŷ	(21	Ø	113
16	Ø	217	Ø	231	Ø	220	Ø	195
8	272	29	(87	34	208 208	3(187	35
4	227	C	253	8	251	3	223	8
2	220	4	239	5	250	6	248	4
1	259	10	234	3	-234	8	222	I
Control	221	1	270	7	228	5	221	2
Brine control								
Zero time	252	214	253	239	247	238		-
<u>Zero time:</u>	Mean	41SD	14	N 6		CV=(sd/	mean)x100	6.0%

Remarks:

	KAMILCHE 5 E A F A R M 5 Kamilche Sea Farms, Inc. 2741 SE Bloomfield Road • Shelton, WA 98584 360 427 5774 • Fax 360 427 0610 WA Cert. #217-SS Harvested: Totten Inlet, Puget Sound	35637
ТО	NWAS Gerald	CUSTOMER ORDER NO
		SALESPERSON
		VIA
011		
QU/	ANTITY DESCRIPTION 10 ¹⁶⁵ Mussels - Beard On ا ((الع)	PRICE AMOUNT

Rec' 4-19-16 4

٣

Thank You!

Total

PAGE	4	OF	8
------	---	----	---

ы. *н*

Test Code: **Bivalve Larval Survival and Development Test** Northwestern Aquatic Sciences Batch ID: 04-5029-0558 Test Type: Development-Survival Analyst: Start Date: 27 Apr-16 13:40 Protocol: EPA/600/R-95/136 (1995) **Diluent:** Yaquina Bay Seawater Ending Date: 29 Apr-16 14:00 Species: Mytilis galloprovincialis Brine: **Duration:** 48h Source: Kamilche Sea Farms, WA Age: Sample ID: 20-4684-5129 Code: 7A0060C9 **Client:** Internal Lab Sample Date: 27 Apr-16 13:40 Material: Copper sulfate Project: Receive Date: 27 Apr-16 13:40 Source: Reference Toxicant Sample Age: NA Station: **Comparison Summary** NOE LOEL Analysis ID Endpoint TOEL PMSD TU Method 12-6549-7029 Combined Proportion North 8 5.657 4 7.44% Dunnett Multiple Comparison Test 07-3754-5189 **Proportion Survived** 32 22.63 Dunnett Multiple Comparison Test 16 9.25% **Point Estimate Summary** Analysis ID Endpoint Jug/L 95% LCL 95% UCL TU Method Level 03-1552-6985 (Combined Proportion Norm EC25 9.129 Linear Interpolation (ICPIN) 8.453 9.76 03-6222-0465 Combined Proportion Norm EC50 10.36 10.21 Spearman-Kärber 10.51 19-0074-0746 **Proportion Survived EC50** 31.56 30.75 32.4 Trimmed Spearman-Kärber **Combined Proportion Normal Summary** C-µg/L **Control Type** Count Mean 95% LCL 95% UCL Min Std Err Std Dev CV% %Effect Max **Dilution Water** 0 4 0.9387 0.8947 0.9827 0.917 0.9747 0.01382 0.02765 2.95% 0.0% 0.9565 0.9185 0.9944 0.9212 0.971 0.01193 0.02385 1 4 2.49% -1.89% 2 4 0.9663 0.9088 0.9129 0.9917 0.01808 0.03617 3.74% -2.94% 1 4 4 0.9562 0.9116 0.9253 0.9882 0.01401 1 0.02802 2.93% -1.86% 8 4 0.8296 0.7275 0.9318 0.7759 0.9037 0.0321 0.0642 7.74% 11.62% 16 0 4 0 0 0 0 0 0 100.0% 32 0 4 0 0 0 0 0 0 100.0% 64 4 0 0 0 0 0 0 0 100.0% **Proportion Survived Summary** C-µg/L **Control Type** Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect Dilution Water 0 4 0.9533 0.8939 0.9212 0.03733 1 1 0.01866 3.92% 0.0% 1 4 0.9772 0.9208 1 0.9253 0.03545 1 0.01773 3.63% -2.5% 2 4 0.9824 0.9262 1 0.9295 0.01763 0.03527 3.59% -3.05% 1 4 4 0.9813 0.9466 1 0.9585 0.01091 0.02183 -2.94% 1 2.22% 8 4 0.9575 0.8867 1 0.917 1 0.02224 0.04448 4.65% -0.44% 16 4 0.8952 0.7956 0.8091 0.9585 0.9948 0.0313 0.0626 6.99% 6.09% 32 4 0.5477 0.4171 0.6783 0.4689 0.6556 42.55% 0.04104 0.08208 14.99% 4 64 0.006224 0.01283 0.008299 0 0 0.002075 0.004149 66.67% 99.35%

000-091-187-4

QA:_

CETIS Summary Report

Bivalve Larv	al Survival and D	evelopmen	t Test	_		Northwestern Aquatic Sciences
Combined P	roportion Norma	l Detail				
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Dilution Water	0.917	0.9747	0.9461	0.917	
1		0.9628	0.971	0.971	0.9212	
2		0.9129	0.9917	0.9766	0.9841	
4		0.9419	0.9693	0.9882	0.9253	
8		0.9037	0.7759	0.8631	0.7759	
16		0	0	0	0	
32		0	0	0	0	
64		0	0	0	0	
Proportion S	urvived Detail		-			
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Dilution Water	0.9212	1	0.9668	0.9253	 ·
1		1	0.9834	1	0.9253	
2		0.9295	1	1	1	
4		0.9668	1	1	0.9585	
8		1	0.917	0.9917	0.9212	
16		0.9004	0.9585	0.9129	0.8091	
32		0.5643	0.6556	0.5021	0.4689	
64		0	0.008299	0.008299	0.008299	
Combined P	roportion Normal	Binomials		<u></u> `		
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Dilution Water	221/241	270/277	228/241	221/241	
1		259/269	234/241	234/241	222/241	
2		220/241	239/241	250/256	248/252	
4		227/241	253/261	251/254	223/241	
8		272/301	187/241	208/241	187/241	
16		0/241	0/241	0/241	0/241	
32		0/241	0/241	0/241	0/241	
64		0/241	0/241	0/241	0/241	
Proportion S	urvived Binomia	ls				
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Dilution Water	222/241	241/241	233/241	223/241	
1		241/241	237/241	241/241	223/241	
2		224/241	241/241	241/241	241/241	
4		233/241	241/241	241/241	231/241	
8		241/241	221/241	239/241	222/241	
16		217/241	231/241	220/241	195/241	
32		136/241	158/241	121/241	113/241	

Report Date:

Test Code:

64

0/241

2/241

2/241

2/241

Analyst:_____ QA:___

CETIS Test Data Worksheet

Report Date:	11	N
Test Code:		1

Start Date: 27 Apr-16 13:40 End Date: 29 Apr-16 14:00 Sample Date: 27 Apr-16 13:40			14:00	Species: Protocol: Material:	Mytilis galloprovir EPA/600/R-95/13 Copper sulfate			Sample Code: Sample Source: Sample Station:	7A0060C9 Reference Toxicant		
C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes		
0	D	1	8	241	222	222	221				
0	D	2	14	241	277	277	270				
0	D	3	18	241	233	233	228				
0	D	4	25	241	223	223	221				
1		1	16	241	269	269	259				
1		2	32	241	237	237	234				
1		3	27	241	242	242	234				
1	- 1	4	7	241	223	223	222				
2		1	23	241	224	224	220				
2		2	4	241	244	244	239				
2		3	2	241	256	256	250				
2		4	24	241	252	252	248				
4		1	1	241	233	233	227				
4	-	2	29	241	261	261	253				
4		3	9	241	254	254	251				
4	-	4	31	241	231	231	223				
8		1	10	241	301	301	272				
8	-	2	6	241	221	221	187				
8		3	5	241	239	239	208				
8		4	11	241	222	222	187				
16		1	30	241	217	217	0				
16		2	15	241	231	231	0				
16		3	28	241	220	220	ö				
16		4	12	241	195	195	0				
32		1	19	241	136	136	0				
32		2	26	241	150	158	0				
32		3	17	241	121	121	0	·			
32		4	20	241	113	113	0	-			
64		1	13	241	0	ō	0	•			
64		2	22	241	2	2	0				
64	_	3	3	241	2	2	0				
64		4	21	241	2	2	0				

data entry verified against laboration bench sheets 5-12-16 MAF

QA:___

CETIS QC Plot

Bivalve Larval Survival and Development Test Northwestern Aquatic Sciences Test Type: Development-Survival Organism: Mytilis galloprovincialis (Bay Mussel) Material: Copper sulfate Protocol: EPA/600/R-95/136 (1995) Endpoint: Combined Proportion Normal Source: Reference Toxicant-REF

Mean:	9.924	Count:	20	-2s Warning Limit:	8.183	-3s Action Limit:	7 43
Ciama a.	ALA.			•		oo Aodon Ennit.	7.45
Sigma:		CV:	10.10%	+2s Warning Limit:	12.04	+3s Action Limit:	13.26

Quality Control Data

Point		Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2015	Apr	22	13:40	8.585	-1.339	-1.502			00-3213-1743	14-0335-9169
2			23	14:55	8.612	-1.312	-1.47			04-5651-6084	07-9131-6184
3		May	7	15:35	10.89	0.9697	0.966			00-3523-0479	12-8078-2374
4			13	13:45	10.35	0.4303	0.4398			16-6504-7989	11-4000-6150
5			26	12:40	9.895	-0.02907	-0.0304			15-2938-1576	00-3109-6336
6		Jun	4	16:30	8.168	-1.757	-2.019	(-)		17-2527-9288	05-3466-4089
7		Jul	30	16:35	10.31	0.3883	0.3977			09-9236-7237	16-6604-3815
8		Sep	10	14:20	10.17	0.2481	0.2558			14-2847-3680	18-2495-6117
9			23	15:20	10.27	0.349	0.3581			07-5017-0556	12-5711-0160
10			25	14:45	10.64	0.7198	0.7256			08-8031-4805	17-8304-1379
11		Oct	1	15:00	11.05	1.129	1.117			02-0435-7572	17-5283-9042
12			14	14:20	11.56	1.634	1.579			04-2701-8188	06-5641-7689
13		Nov	4	14:35	10.07	0.1498	0.1553			01-4945-0913	12-4167-7901
14		Dec	3	12:10	9.003	-0.9219	-1.01			03-1706-3107	08-0944-2928
15	2016	Jan	12	14:40	10.4	0.474	0.4834			10-6038-5674	20-9220-6975
16				13:20	9.075	-0.8497	-0.9275			18-1116-9330	06-8399-0866
17		Feb	10	14:45	9.559	-0.3658	-0.3892			18-2305-5641	14-7293-2864
18				14:50	10.66	0.7321	0.7375			01-7836-7496	17-6653-1457
19		Mar	2	14:40	9.062	-0.8619	-0.9415			03-1233-9663	15-4736-9649
20		•		12:50	10.95	1.027	1.021			06-2981-4615	06-1924-7869
21			27	13:40	10.36	0.4376	0.4472			10-3412-7541	03-6222-0465

QA: Analyst