TOXICITY TEST REPORT

TEST IDENTIFICATION

Test No.: 658-75

<u>Title</u>: Mussel (*Mytilus galloprovincialis*) larval test using static 48-hr exposure to CH2M Hill-Wyckoff Treatment Plant SP11 Field Sample. EPA permit number WAD009248295.

Protocol No.: NAS-XXX-CG/MG2, August 28, 1990, Revision 3 (9-8-01). This protocol complies with the U.S. EPA West Coast chronic toxicity manual (EPA/600/R-95/136) and the ASTM bivalve toxicity method (E 724-89).

STUDY MANAGEMENT

<u>Study Sponsor</u>: CH2M Wyckoff Treatment Plant, 5350 Creosote Place NE, Bainbridge Island, WA 98110. <u>Sponsor's Study Monitor</u>: Mr. Stanley Warner

Testing Laboratory: Northwestern Aquatic Sciences, P.O. Box 1437, Newport, OR 97365.

Test Location: Newport laboratory.

Laboratory's Study Personnel: G.A. Buhler, B.S., Proj. Man.; G.J. Irissarri, B.S., Study Dir.; L.K. Nemeth, B.A., M.B.A., QA Officer; J. B. Brown, B.S., D.V.M., Assoc. Aq. Toxicol.; Y. Nakahama, Sr. Tech. Study Schedule:

Test Beginning: 9-14-16, 1410 hrs.

Test Ending: 9-16-16, 1430 hrs.

Disposition of Study Records: All raw data, reports and other study records are stored at Northwestern Aquatic Sciences, 3814 Yaquina Bay Rd., Newport, OR 97365.

<u>Statement of Quality Assurance</u>: The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

TEST MATERIAL

Description: CH2M Hill-Wyckoff Treatment Plant SP11 Field Sample. Details are as follows:

NAS Sample No.	5709G
Collection Date	9-13-16
Receipt Date	9-14-16
Temperature (°C)	8.7
pH	7.9
Dissolved oxygen (mg/L)	10.7
Salinity (‰)	4.0

<u>Treatments</u>: Samples briefly temperature-equilibrated prior to use. <u>Storage</u>: Used date of receipt.

DILUTION WATER

<u>Source</u>: Yaquina Bay, Oregon seawater. <u>Date of Collection</u>: 9-13-16 <u>Water Quality</u>: Salinity, 30.0 ‰; pH, 8.2 <u>Pretreatment</u>: Filtered to ≤0.45 µm, aerated, salinity adjusted with Milli-Q.

BRINE USED FOR DILUTION WATER AND SALINITY CONTROL

Source: Filtered Yaquina Bay, Oregon, sea water Salinity: 100.0 ‰ Date of Preparation: 8-5-16 Method of Preparation: Freezing method

TEST ORGANISMS

<u>Species</u>: Mussel (*Mytilus galloprovincialis*). <u>Age</u>: 2.5 hrs post-fertilization. <u>Source</u>: Kamilche Sea Farms, Shelton, WA. <u>Conditioning</u>: Adult mussels were received on 9-7-16 and placed in trays with flowing seawater. Holding conditions for the week prior to testing were: temperature, $18.2 \pm 0.2^{\circ}$ C; pH, 8.0 ± 0.2 ; salinity, $32.7 \pm 0.8\%$; and dissolved oxygen, 6.9 ± 0.4 mg/L. Photoperiod was natural daylight. Source of Gametes: 2 females and 1 male.

TEST PROCEDURES AND CONDITIONS

Test Chambers: 30 ml borosilicate glass vials containing 10 ml of test solutions.

Test Concentrations: 70, 35, 18, 9, 4, 2, and 0% (Control).

<u>Brine Control</u>: A brine control was run in which salinity-adjusted Milli-Q[®] deionized water (4.0 ppt) was substituted for effluent in the preparation of the highest test solution concentration. As a result, the amount of brine in the brine control was the same as used in the 70.0% effluent test concentration.

Replicates/Treatment: 4

Initial Concentration of Test Organisms: 23.2/ml.

Volume of Subsamples Taken for Counting: NA

Water Volume Changes per 24 hr: None (non-renewal static test).

Aeration: None

Feeding: None

<u>Effects Criteria</u>: The effect criteria used were: 1) ability of embryos to survive and produce completely developed shells; and 2) survival. Data collected were: 1) the initial embryo density; 2) the number of abnormal larvae observed; and 3) the number of normal (live with completely developed shells) larvae observed.

<u>Water Quality and Other Test Conditions</u>: Temperature, 15.9 ± 0.5 °C; pH, 8.1 ± 0.2 ; salinity, 30.1 ± 0.2 %; and dissolved oxygen, 8.0 ± 0.1 mg/L. Photoperiod 16:8 hr, L:D.

DATA ANALYSIS METHODS

The proportion of surviving larvae, and the proportion of normal surviving larvae were calculated for each treatment replicate. The calculation used for the proportion of normal surviving larvae, Combined Proportion Normal, was the combined endpoint specified by EPA/600/R-95/136. The means were obtained for each treatment level and the latter were then corrected for control response using Abbott's formula. The LC50 (survival) and the EC50 (normality) were calculated, where data permitted, using either the Maximum-Likelihood Probit or the Trimmed Spearman-Karber methods. An IC25 was determined by linear interpolation with bootstrapping. NOEC and LOEC values for survival and normality were computed using either Dunnett's test, T-test with Bonferroni's adjustment, Steel's Many-One Rank Test, or Wilcoxon Rank Sum Test with Bonferroni Adjustment. The appropriate test was selected after evaluating the data for normality and homogeneity of variance. An arcsine-square root (angular) transformation was performed on the data prior to statistical analysis. The statistical software employed for these calculations was CETIS, v1.8.7.4, Tidepool Scientific Software. Toxic units (TU_c) were computed as 100/NOEC, 100/EC50, or 100/IC25.

PROTOCOL DEVIATIONS

None,

REFERENCE TOXICANT TEST

The routine reference toxicant test is a standard multi-concentration toxicity test using copper sulfate to evaluate the performance of the test organisms used in the effluent toxicity test. The performance is evaluated by comparing the results of this test with historical results obtained at the laboratory. A summary of the reference toxicant test result is given below. The reference toxicant test raw data are found in Appendix III.

Test No.: 999-3599 <u>Reference Toxicant and Source</u>: Copper as CuSO₄-5H₂O, Argent Lot No. 0195, 1.0 mg/ml stock prepared 5-16-16. <u>Test Date</u>: 9-14-16 <u>Dilution Water Used</u>: Yaquina Bay, OR seawater. Salinity 30.0 ppt, pH 8.2 <u>Results</u>: EC50, 11.4 μg/L; NOEC, 8 μg/L; IC25, 9.96 μg/L. The EC50 result was within the laboratory's control chart warning limits (8.74 – 12.2 μg/L).

TEST RESULTS

Detailed tabulations of the test results are given in Table 1. The biological effects, given as the NOEC, LOEC, EC50/LC50 for normality and survival, and IC25 for normality are summarized below.

Combined Proportion Normal	Survival
35 (TU _c =2.86)	70 (TU _c =1.43)
70 (TU _c =1.43)	>70 (TU _c <1.43)
>70 (TU _c <1.43)	>70 (TU _c <1.43)
Bran val	
By Data Inspection	By Data Inspection
>70 (TU _c <1.43)	
Linear Interpolation	
	Normal $35 (TU_c=2.86)$ $70 (TU_c=1.43)$ $>70 (TU_c<1.43)$ By Data Inspection

DISCUSSION/CONCLUSIONS

The NOEC for combined proportion normal was 35% effluent. The EC50 and IC25 for abnormal development were both >70%. The brine control test indicated that the brine did not contribute to effluent toxicity.

STUDY APPROVAL

9-27 Date Project Manager

Study Director 9-27-16 Date

-Pa Linda Nemethy rector 9-27-16 Assistant Laboratory Director

Qulie R. Finis	
grace in pune	9-27-16
Quality Assurance Unit	Date

Test Material		<u>~ * * * * * * * * * * * * * * * * * * *</u>			Prop	nbined portion rmal*		ortion vived*
Concentration (%)	Repl.	Norm.	Abn.	Total		Mean		Mean
70	1	227	2	229	0.978		0.987	
	2	221	3	224	0.953		0.966	
	3	213	2	215	0.918		0.927	
	4	194	3	197	0.836	0.921†	0.849	0.932
35	1	241	3	244	0.988		1.000	
	2	201	1	202	0.866		0.871	
	3	216	1	217	0.931		0.935	
	4	227	0	227	0.978	0.941	0.978	0.946
18	1	233	2	235	0.992		1.000	
	2	227	1	228	0.978		0.983	
	3	228	1	229	0.983		0.987	
	4	213	1	214	0.918	0.968	0.922	0.973
9	1	221	1	222	0.953		0.957	
	2	219	4	223	0.944		0.961	
	3	224	3	227	0.966		0.978	
	4	214	2	216	0.922	0.946	0.931	0.957
4	1	237	1	238	0.996		1.000	
	2	243	4	247	0.984		1.000	
	3	227	0	227	0.978		0.978	
	4	228	6	234	0.983	0.985	1.000	0.995
2	1	222	3	225	0.957		0.970	
	2	240	3	243	0.988		1.000	
	3	211	1	212	0.910		0.914	
	4	217	2	219	0.935	0.947	0.944	0.957
Normal Control	1	247	2	249	0.992		1.000	
	2	223	2	225	0.961		0.970	
	3	251	1	252	0.996		1.000	
	4	230	1	231	0.991	0.985	0.996	0.991
Brine Control ¹	1	239	3	242	0.988		1.000	
	2	211	2	213	0.910		0.918	
	3	234	2	236	0.992		1.000	
	4	224	3	227	0.966	0.964	0.978	0.974

Table 1. Test response of mussel (*Mytilus galloprovincialis*) larvae exposed to CH2M Hill-Wyckoff Treatment Plant SP11 Field Sample.

* Based on an average initial count of 232 embryos per 10 ml sample, except that for the case in the combined proportion normal endpoint where number normal>average initial count, number normal is divided by the total count (as per EPA/600/R-95/136).

† Result significantly different (P≤0.05) from the control.

¹Salinity-adjusted Milli Q[®] deionized water (4.0 ppt) was substituted for effluent so that the brine concentration is equivalent to that for the 70.0% effluent concentration.

APPENDIX I

PROTOCOL

TEST PROTOCOL

BIVALVE, PACIFIC OYSTER OR BLUE MUSSEL, 48-HR LARVAL DEVELOPMENT TEST

1. INTRODUCTION

1.1 <u>Purpose of Study</u>: The purpose of this test is to estimate chronic toxicity of effluents, receiving waters, or other test materials using bivalve larval development in a 48-hr static test.

1.2 <u>Referenced Method</u>: This protocol complies with the U.S. EPA West Coast chronic toxicity manual (EPA/600/R-95/136), ASTM bivalve toxicity method (E 724-89), and the WDOE toxicity guidance manual (WQ-R-95-80). Amendments may be incorporated to meet other methods or regulatory requirements as needed.

1.3 <u>Summary of Method</u>: Pacific oyster or blue mussel larvae (<4-hr-old) are exposed for 48-hr to different concentrations of test material in a static test. Salinity adjustment and brine controls are used when testing low salinity effluents. The test chambers are 30 ml borosilicate glass vials each containing 10 ml of test solution. Four replicate chambers each with 15-30 larvae per milliliter of test solution are employed at each test concentration. Test results are based on abnormal shell development and mortality. Data analysis normally consists of the calculation of an EC50 and IC25 for "percent normal", the calculation of an LC50 for percent survival, and the determination of NOECs and LOECs for both criteria. Special requirements may apply for the State of Washington or other regulatory entities. A test summary table is appended to the end of this protocol.

2. STUDY MANAGEMENT

2.1 Sponsor's Name and Address:

2.2 Sponsor's Study Monitor:

2.3 <u>Name of Testing Laboratory</u>: Northwestern Aquatic Sciences
3814 Yaquina Bay Road
P.O. Box 1437
Newport, OR 97365

2.4 Test Location:

2.5 Laboratory's Personnel to be Assigned to the Study: Study Director: ______ Quality Assurance Unit: ______ Aquatic Toxicologist: ______ Aquatic Toxicologist: ______

2.6 <u>Proposed Study Schedule</u>: Effluent/receiving water tests must begin within 36 hours of the end of the sample collection period. In no case should the test be started more than 72 hours after sample collection.

2.7 <u>Good Laboratory Practices</u>: The test is conducted following the principles of Good Laboratory Practices (GLP) as defined in the EPA/TSCA Good Laboratory Practice regulations revised August 17, 1989 (40 CFR Part 792).

3. TEST MATERIAL

An effluent, receiving water sample, pore water or elutriate sample, or other test material as requested. A reference toxicant test is run concurrently.

4. DILUTION WATER

Dilution water is filtered ($\leq 0.45 \mu m$) Yaquina Bay seawater or other suitable seawater, adjusted to 30 ± 2 ‰ salinity with deionized water and/or hypersaline brine. Hypersaline brine is prepared from filtered ($\leq 0.45 \mu m$) Yaquina Bay water adjusted to 100 ‰ by the freezing method. When testing low salinity effluents, hypersaline brine is administered with dilution water for salinity adjustment.

5. TEST ORGANISMS

5.1 <u>Species</u>: Commonly used West Coast species are Pacific oyster, *Crassostrea gigas*, or blue mussel, *Mytilus edulis*, *M. galloprovincialis*, or *M. trossulus*. These three *Mytilus* species were formerly all believed to be a single cosmopolitan species, *M. edulis* (Geller et al., 1993; McDonald & Koehn, 1988; McDonald et al., 1991). The test conditions specified in this protocol apply to the aforementioned species. Other species (e.g. *M. californianus*, *C. virginica* and *Mercenaria mercenaria*) are allowed by one or more of the referenced methods applicable to this protocol, but their use may require modified test conditions or procedures.

5.2 <u>Source</u>: Adult oysters are purchased from commercial sources. Mussels are purchased from commercial sources or field collected as required.

5.3 Age at Study Initiation: <4-hr-old embryos.

5.4 <u>Conditioning of Adult Oysters</u>: Adult oysters may be conditioned if needed by holding for one to eight weeks in seasoned plastic tubs supplied with about 1-2 L/min of unfiltered Yaquina Bay, OR water (25-32 ‰) at a temperature of approximately 20°C. For mussels, conditioning is not ordinarily required.

5.5 <u>Spawning and Fertilization</u>: Adult bivalves are cleaned by brushing and placed into spawning trays supplied with seawater. Oysters are spawned by gradually increasing the water temperature to 25-28°C (23-25°C for mussels) over approximately a one-hour period. Sperm from a sacrificed male may be added to the spawning tray to aid stimulation of natural spawning in oysters. If spawning does not occur, the water is cooled to about 20°C (16°C for mussels) and the cycle is repeated. Bivalves that begin spawning are isolated in clean seawater for collection of gametes. After spawning is complete, the temperature is returned to approximately 20°C (16°C for mussels).

Eggs from two or more females are combined and filtered (200-300 μ m) to remove feces and psuedofeces and adjusted in concentration to about 2500-6000/ml. Eggs are then fertilized by addition of sperm from two or more males at a concentration of 10⁵ to 10⁷/ml. For mussels, ten minutes after adding sperm, the egg and sperm mixture is poured through a 25 μ m screen to remove excess sperm; then the eggs are rinsed and resuspended in dilution water. Next, the embryo density is adjusted to between 1500 and 3000/ml. Embryos are kept suspended by frequent gentle agitation with a perforated plunger and the temperature is maintained at approximately 20°C (16 ± 1°C for mussels). The quality of the embryos is verified before testing by microscopic examination. Embryos are used to initiate the test within 4 hours of fertilization

6. DESCRIPTION OF TEST SYSTEM

6.1 <u>Preparation of Test Concentrations</u>: Test concentrations are prepared by manual dilution of test material with dilution water or with a combination of hypersaline brine and dilution water. Hypersaline brine may be required when testing dilute effluents to adjust the salinity of the test solutions to the appropriate salinity. Stock test solutions are prepared then distributed to appropriate replicate test chambers. The method for determining the appropriate volume of test material, brine and dilution water to be used in preparing the stock test solution is described in the laboratory SOP for salinity adjustment using hypersaline brine. Prior to mixing, the test material and dilution water are brought to test temperature. Effluents may not be aerated, or are aerated only if necessary to maintain a minimal dissolved oxygen concentration. When necessary, a brine control is prepared at the highest test concentration by substituting for the effluent deionized water to which has been added sufficient dilution water to achieve a salinity equal to that of the effluent.

6.2 <u>Test Chambers and Environmental Control</u>: Larvae are tested in 30 ml glass vials containing 10 ml of the test solutions. Temperature control of test chambers is provided by placement in a constant temperature room. No aeration is required. The required photoperiod is achieved by timer control of the room lights.

6.3 <u>Cleaning</u>: All laboratory glassware, including test chambers, is cleaned as described in EPA/600/4-90/027F. New glassware and test systems are soaked 15 minutes in tap water and scrubbed with detergent (or cleaned in automatic dishwasher); rinsed twice with tap water; carefully rinsed once with fresh, dilute (10%, V:V) hydrochloric or nitric acid to remove scale, metals, and bases; rinsed twice with deionized water; rinsed once with acetone to remove organic compounds (using a fume hood or canopy); and rinsed three times with deionized water. Test systems and chambers are rinsed again with dilution water just before use. For this test, there is an exception in that the <u>test chambers</u> are used new and unwashed

7. EXPERIMENTAL DESIGN AND TEST PROCEDURES

7.1 Experimental Design: The test involves exposure of test embryos, within 4 hr of fertilization, to five or more test material concentrations and a dilution water control. Low salinity effluents require brine adjustment of salinity. Brine controls (substituting Milli-Q or low salinity water for the effluent) are run when brine is used to test effluent concentrations up to 70% effluent. A typical effluent concentration series might be 70%, 35%, 18%, 9%, 4%, 2%, 1%, and control. Exposures are for approximately 48 hours, but in no case shall the duration of exposure exceed 54 hours. Each treatment and control consists of four replicate 30 ml test vessels containing 10 ml of test solution. The final density of the embryos is between 15 and 30 embryos/ml in the test solutions. A stratified random design is employed to position vials in the temperature control chamber.

7.2 <u>Test Procedure</u>: Each test container is filled with 10 ml of test solution to which is added embryos at a final density of 15-30 embryos/ml. The embryos are incubated at $20 \pm 1^{\circ}$ C ($16 \pm 1^{\circ}$ C for mussels) for approximately 48 hr to permit development into prodissoconch I larvae. Larvae are subsequently counted to determine the total number of abnormal and normal surviving larvae. These data are used for calculating the EC50s and LC50s.

7.3 <u>Effect Criteria</u>: The effect criteria are: 1) failure of embryos to survive and produce completely developed shells (abnormal/dead); and 2) mortality of the embryos.

7.4 <u>Test Conditions</u>: The test temperature is $20 \pm 1^{\circ}$ C for oysters, $16 \pm 1^{\circ}$ C for blue mussels. The test temperatures specified by EPA (EPA/600/R-95/136) are $15 \pm 1^{\circ}$ C or $18 \pm 1^{\circ}$ C, but these specifications were based on erroneous assumptions of the agency authors. Consequently, this protocol specifies $16 \pm 1^{\circ}$ C. The salinity is 30 ± 2 ‰. The dissolved oxygen concentration should be at least 60% of saturation at the test temperature and salinity. The photoperiod is a 16:8 hr, L/D cycle of fluorescent light. Test chambers are 30 ml glass vials held in a constant temperature room to obtain precise temperature control.

7.5 <u>Beginning of Test</u>: 10 ml of each test concentration is dispensed to each of the corresponding four replicate test vials. The test is then started by the addition of 0.1 ml of a suspension (1,500-3,000 embryos/ml) of <4-hr-old

embryos to the test chambers. Six extra vials of seawater controls are preserved with 5% buffered formalin for establishing the initial count of embryos in the test vessels.

7.6 <u>Feeding</u>: Embryos are not fed during the test.

7.7 <u>Test Duration, Type and Frequency of Observations, and Methods</u>: The test duration is approximately 48 hours. The type and frequency of observations to be made during the test are summarized as follows:

Type of Observation	Times of Observation					
Biological Data						
Initial number of embryos/10 ml	At start of test in six 0-time vials					
Number of live abnormal larvae/10 ml	At end of test (48 hr)					
Number of live normal larvae/10 ml	At end of test (48 hr)					
Physical and Chemical Data						
Temperature	Daily - in water bath or two locations in the temperature control room. Beginning & end of test - in the beaker reservoirs of each test concentration and controls.					
Dissolved oxygen, salinity & pH	Beginning & end of test - in the beaker reservoirs of each test concentration and controls.					

The initial number of embryos is determined according to method 2 (Sect. 11.4.6.2) of ASTM 1989. This consists of the average count of all embryos exhibiting cell division in six extra test containers at time zero. Live abnormal larvae are those observed at 48 hr in which shell development is incomplete. Live normal larvae are those observed at 48 hr that have completely developed shells containing meat. Larvae possessing misshapen or otherwise malformed shells are considered normal, provided shell development has been completed.

Temperature is measured using a thermister thermometer. Dissolved oxygen is measured using a polarographic oxygen probe calibrated according to the manufacturer's recommendations. Salinity is measured using a refractometer. The pH is measured with a pH probe and a calibrated meter with scale divisions of 0.1 pH units.

8. <u>CRITERIA OF TEST ACCEPTANCE</u>:

For the EPA West Coast bivalve toxicity method (EPA/600/R-95/136) the test is considered acceptable if:

- 1. ≥70% of embryos introduced into a required control treatment result in live larvae (≥50% for mussels).
- 2. normal shell development in surviving controls is \geq 90%.

For the WDOE bivalve toxicity method (Publication No. WQ-R-95-80) the test is considered acceptable if:

- 1. ≥70% of embryos introduced into a required control treatment result in live larvae.
- 2. normal shell development in surviving controls is $\geq 90\%$.
- 3. the test must achieve a minimum significant difference (%MSD) of <25% relative to the control.
- 4. the coefficient of variation of the six zero time counts must be $\leq 15\%$.

For the ASTM bivalve toxicity method (E 724-89) the test is considered acceptable if:

- 1. All test chambers were identical.
- 2. Treatments were randomly assigned to individual test chamber locations.
- 3. Either a dilution water or solvent control was included.
- 4. All brood stock animals came from the same location.
- 5. Embryos were used at <4 hr after fertilization.
- 6. \geq 70% of embryos introduced into a required control treatment resulted in live larvae with completely developed shells at the end of the test.
- 7. The DO and temperature were measured as specified in Sect. 7.7 of the method.
- 8. Every measured DO concentration was between 60% and 100% saturation.
- 9. The difference between the time-weighted average measured temperatures for any two test chambers from the beginning to the end of the test was ≤1°C.

NORTHWESTERN AQUATIC SCIENCES August 28, 1990

- 10. Any single measured temperature was not more than 3°C different from the mean of the time-weighted average measured temperatures for individual test chambers.
- 11. At any one time, the difference between the measured temperatures in any two chambers was not more than 2°C.
- 12. Each data set must have at least one mean treatment response, corrected for controls, that is <37% and one that is >63% (not applicable for many applications).

9. DATA ANALYSIS

The proportion of normal larvae and the proportion of surviving larvae are calculated for each treatment replicate. The means are obtained for each treatment level and the latter are then corrected for control response using Abbott's formula.

For ASTM (ASTM Standard E 724-89) and EPA (EPA/600/R-95/136) the LC50 (survival) and the EC50 (normal) are calculated, where data permits, using either the Maximum Likelihood Probit or the Trimmed Spearman-Karber methods (EPA 600/4-90-027F). An IC25 is calculated by linear interpolation with bootstrapping (EPA 600/4-89/001a). NOEC and LOEC values for survival and normality are computed using either Dunnett's test, T-test with Bonferroni's Adjustment, Steel's Many-One Rank Test, or Wilcoxon Rank Sum Test with Bonferroni's Adjustment. The appropriate test is selected after evaluating the data for normality and homogeneity of variance. An arcsine square root transformation is performed on the data prior to statistical analysis. The statistical software employed for these calculations is ToxCalc, (most recent version), Tidepool Scientific Software.

For special endpoints requirements applicable in the State of Washington, refer to the WDOE guidance manual (Publication No. WQ-R-95-80, Revised December 1998) or latest version.

Some agencies require that toxic units (TU) be reported. This is reported as either toxic unit acute (TU_n) , which is 100/LC50, or toxic unit chronic (TU_c) , which is 100/NOEC.

10. <u>REPORTING</u>

A report of the test results must include all of the following standard information at a minimum:

- 1. Name and identification of the test; the investigator and laboratory;
- 2. Information on the test material;
- 3. Information on the dilution water;
- 4. Detailed information about the test organisms including acclimation conditions;
- 5. A description of the experimental design and test chambers and other test conditions including water quality;
- 6. Information about any aeration that may have been required;
- 7. Definition of the effect criteria and other observations;
- 8. Responses, if any, in the control treatment;
- 9. Tabulation and statistical analysis of measured responses;
- 10. A description of the statistical methods used;
- 11. Any unusual information about the test or deviations from procedures;
- 12. Reference toxicant testing information.

11. STUDY DESIGN ALTERATION

Amendments made to the protocol must be approved by the Sponsor and Study Director and should include a description of the change, the reason for the change, the date the change took effect, and the dated signatures of the Study Director and Sponsor. Any deviations in the protocol must be described and recorded in the study raw data.

12. <u>REFERENCE TOXICANT</u>

Reference toxicant testing should be included with each study or at regular intervals as defined in the Quality Assurance Program of the laboratory.

13. REFERENCES AND GUIDELINES

Geller, J.B. et al. 1993. Interspecific and intrapopulation variation in mitochondrial ribosomal DNA sequences of *Mytilus* spp. (Bivalvia: Mollusca). Molecular Marine Biology and Biotechnology. 2:44-50.

McDonald, J.H. and R.K. Koehn. 1988. The mussels *Mytilus galloprovincialis* and *M. trossulus* on the Pacific coast of North America. Marine Biology. 99:111-118.

McDonald, J.H. et al. 1991. Allozymes and morphometric characters of three species of *Mytilus* in the northern and southern hemispheres. Marine Biology.

Standard Guide for Conducting Static Acute Toxicity Tests with Embryos of Four Species of Saltwater Bivalve Molluscs. 1989. ASTM Standard E 724-89.

U.S. Environmental Protection Agency. 1989. Supplement to "Short-term methods for estimating the chronic toxicity of effluents and surface waters to freshwater organisms". Revision 1. EPA/600/4-89/001a.

Washington State Department of Ecology. 1998. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Publication No. WQ-R-95-80. Revised December 1998.

Weber, C.I. (Ed.) 1993. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms (Fourth Edition). EPA/600/4-90/027F.

U.S. Environmental Protection Agency. 1995. Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms (First Edition). EPA/600/R-95/136.

14. APPROVALS

_____ for _____

Name

Date

Name

Date

for Northwestern Aquatic Sciences

Appendix A Test Conditions Summary

1. Test type:	Static non-renewal
2. Test duration:	48 hours, or until complete development up to 54 hours
3. Temperature:	$20 \pm 1^{\circ}$ C oysters
	16 ± 1°C mussels (ASTM), 15 or 18 ± 1°C (EPA 1995)
4. Dissolved oxygen:	\geq 60% saturation
5. Salinity:	30 ± 2‰
6. Light quality & intensity:	Ambient laboratory light (50-100 ft-c)
7. Photoperiod:	16:8 hr L/D
8. Test chambers:	30 ml glass vials
9. Test solution volume:	10 ml per replicate
10. Renewal of test solutions:	None
11. Age of test organisms:	<4 hr old embryos
12. No. of larvae/container:	150-300
13. No. of replicates/treatment:	4
14. No. of zero time replicates:	6
15. Feeding regime:	Organisms are not fed during the test.
16. Aeration:	None. Initially aerated if necessary to achieve >60% saturation.
17. Dilution water:	Filtered Yaquina Bay seawater, salinity adjusted to $30 \pm 2\%$ and filtered to
	≤0.45 μm.
18. Effects measured:	Survival and normal shell development.
19. Test acceptability:	≥70% of embryos introduced into a required control treatment resulted in
	live larvae (≥50% for mussels, EPA 1995); ≥90% normal shell development
	in surviving controls; must achieve minimum significant difference
	(%MSD) of <25% relative to the control. The cv of six zero time counts
	must be $\leq 15\%$.
20. Sample volume required:	I L normally requested.

APPENDIX II

RAW DATA

NORTH	WESTER			7.61			PRO	TOCOL NO. NAS-XXX-CG/MG2
BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136								
Test No). <u>658</u>	8-75 Client	:C	H2M	I Hill - Wyckof	f		Investigator
STUDY	MANAG	EMENT						
Clier	nt:	CH2M Hill Wy	/ckoff Treatn	nent	Plant. 5350 C	reo	sote Place NE. I	Bainbridge Island, WA 98110
Clier	nt's Study	Monitor:	Mr. Stanley	/ Wa	rner		,	
		ratory: Northwe						
		: Newport Lab						
Labo	oratory's S	Study Personn	el:		,	12		
Pro	oj. Mgr./S	Study Dir.	G.A. Buhle	r /	G.J. Irissarri			
QA	Officer	L.K. N	lemeth					
1	. Yu	2) Nalah	HE Y		2		J. BNI	WA 53
3	I		<u>_</u>		4	. —		
Stud	y Schedu	ıle:						
Test	Beginnin	ig:	1-14-16	141	10		Test Ending:	9-16-761430
TEST N	ATERIA	L						
[Descriptio	on:	51	2-1	ι			
1	NAS Sarr	nple No.			7096-			
1	Date of C	ollection:	_		-13-16			
	Date of R				14-16			
7	Temperal	ture (deg C):			5.7			,,
F	pH:				7.9			
		l oxygen (mg/L			10,7	-		
(Conductiv	ity (umhos/cm	ı):		-	_		
ŀ	Hardness	; (mg/L):						
	Alkalinity				<u> </u>			
	Salinity (p				4.0			
		prine (mg/L):						
٦	Fotal amr	nonia-N (mg/L):			_		
				_		_		<u> </u>
	ON WAT		Yaquina Ba	av. O	R			
		ollection:		-13-			Salinity (ppt)	30.0 pH 9.2
٦	Freatmen	its: <u>Aerat</u>	ed, filtered to	$\frac{1}{2}$.45 um, salini	ty a	djusted with Mill	-Q deionized water
			_					
	RGANIS							
	Species:		s galloprovin				Da	ate Received: 9-7-16
	Source:		<u>ilche Sea Fa</u>	<mark>rms</mark> ,	Shelton, WA			
A	Acclimatio							
		Temp (deg.C)			Sal (ppt)		D.O. (mg/L)	Comments
	7-7-16	19,1	8,1		33.0		6.9	Held outside in trays of
	67-5-16	18,3	8,0		32.0		71	flowing seawater
	9-9-16		8,0		34.0		6.9	
	9-12-16	18.4	8,0		32,5		7,3	

Photoperiod during acclimation: Outdoor ambient conditions

オデ

8.0

5

Error codes: 1) correction of handwriting error

2) written in wrong location; entry deleted

1-14-16

Mean

S.D.

(N)

3) wrong date deleted, replaced with correct date

4) error found in measurement; measurement repeated

17.9

18.2

0,2

5

32.0

32.7

0.8

5

6.3

69

0,4

5

NORTHWESTERN AQUATIC SCIENCES

PROTOCOL NO. NAS-XXX-CG/MG2

BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Test No.	658-75	Client_	t CH2M Hill - Wyckoff				Investigator			
Numbe	ing: Initial: er of organi lution (1 m Count/m	sms used I diluted to I of dilutio	femal 100 ml):	es: <u>2</u> 54	2.		males:		 _ Mean:	
	TEST PROCEDURES AND CONDITIONS Test concentrations (50% series recommended): <u>70, 35, 18, 9, 4, 2, 0% + Brine Control</u>									
Test chamber: 30 ml glass vials Test volume: 10 ml Replicates/treatment (4): _4 Organisms/ml (15-30): 23.2 Test water changes: None Aeration during test: None Feeding: None Photoperiod: 16L:8D Salinity: 30 +/- 2 ppt Temperature: 20 +/- 1 °C, oysters: 16 +/- 1 °C, mussels Beaker placement: Stratified randomization										one
RANDOM	ZATION C	HART								
/	A 18	Brine	4	35	ø	9	2	70		
E	в 9	Ø	2	70	Bine	18	35	4		
C	2	35	9	4	70	18	Brine	Ø		
[35	70	Brine	4	9	18	Ø	2		
This test uses a brine control $\sqrt{2}$; a salinity control If a brine control is used, follow SOP #6208 to prepare test solutions Date of brine preparation: $\underline{\circ}-\underline{5}-\underline{i}_{6}$; brine salinity (ppt) $\underline{i}_{00,0}$ Source of seawater: Yaquina Bay, Oregon $VB = VE \frac{(TS - SE)}{(SB - TS)} = VE \frac{(30 - 4)}{(100 - 30)} = VE(0,31)$										e effluent y of brine y of effluent
			control or a he effluent		control, use	e salinity-	adjusted		TS=target	salinity
	Test 0 (%		Effluen (ml/100r 70		Brine (ml/100	ml)	Dilution V (ml/100 rought up to)ml)		
9-14-160	35		35		<u> </u>		volume of	100 ml		
651	9	18 6.7 with dilution water 9 9 3.3								
	2		2		<u>0.7</u>					
	Brine Co		0		26.0					
	THE BRINE CONTROL WAS MADE UP OF SALINITY ADJUSTED MILLI-Q DEIGNIZED WATER (4.0 PPT) SIMULAR TO THE EFFLUENT, AS A RESULT, THE AMOUNT OF BRINE IN THE BRINE CONTROL WAS THE SAME USED IN THE 70% EFFLUENT CONCENTRATION.									

Page 2 of _____

NORTHWESTERN AQUATIC SCIENCES

-

PROTOCOL NO. NAS-XXX-CG/MG2

BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

BIANCAE EVILANE LEGT DROED ON EL MODOUL-20/100												
Test No.	658-75	Client		CH2M Hill	- Wyckoff	Wyckoff Investigator						
WATER QUALITY DATA												
	Date:	9-14-16	initials:	631	Date: <u>9-(6-(6</u> initials: <u>Y</u>							
Conc. (%)	Temp. (deg.C)	рН	Sal. (ppt)	DO (mg/L)	Temp. (deg.C)	pН	Sal. (ppt)	DO (mg/L)				
								<u> </u>				
70	16.0	7.8	30,0		15.4	8.6	30.0	7.9				
35	1612	7.8	30,5	8,0	15.4	8.5	30.5	7.9				
18	16.2	7.9	30.5	8.0	15.3	8.4	30.5	7.9				
9	16,3	8.0	30,0	8,1	15.4	8.3	30.0	7.9				
4	16.4	8,0	30.0	5.1	15.3	8-3	30.0	80				
2	16.4	9.0	30.0	8.1	1514	8.2-	30.0	81(
Control	16.4	8,0	30.0	8.0	15.4	8-2	30.0	811				
Brine control	16.7	े 😚 ।	30,0	7.9	15.4	8.2	30.0	8.1				

WATER QUALITY:	<u>Mean</u>	<u>SD</u>	<u>N</u>
Temperature (°C):	15.9	0.5	16
рН	8.1	0.2	16
Salinity (ppt):	30,1	0.2	. 16
DO (mg/L):	5.0	0,1	16

Room/ Water bath temperature: (^oC)

Day 0:	16.4	Day 0: 16.1
Day 1:	1516	Day 1: 106
Day 2:	15.4	Day 2: 15-4

F-9-20-16 23 LARVAL COUNT DATA 9-22-16 33 19-25-16 632									
						16 \$	9-25-	16 652	
Conc.	Replic	cate 1	Repli	cate 2	Replic	cate 3	Replie	cate 4	
(%)	<u>N</u>	A	<u> </u>	A	N	A	N	A	
			_						
							<u> </u>		
70	227	2	221	3	213	2	194	3	
35	241	3	201	1	216	1	227	Ø	
18	233	2	227	1	228		213	i	
9	221		219	4.	224	3	214	2	
4	237		243	<u>'</u> 4	221	Ø	228	62	
2	222	3	240	3	211		217	2	
Control	247	2	223	2	251		230		
Brine control	239	3	211	R	234	2	227	3	
Zero time	214	236	229	248	239	224		-	
Zero time: Mean 232 SD 12 N 6 CV=(sd/mean)x100 5,2%									

Remarks:

To fit 771 DU-O-VUE* Envelope, fold along boltom of shaded strip

PRODUCT 108

IE M S

S E A F A R M S Kamilche Sea Farms, Inc. 2741 SE Bloomfield Road • Shelton, WA 98584 360 427 5774 • Fax 360 427 0610 WA Cert. #217-SS Harvested: Totten Inlet, Puget Sound

Northwat Sciences то 1

DATE	9-	6-	16		
CUSTO	MER ORDER	NO			
SALES	PERSON			·	
VIA					

36289

TERMS

QUANTITY	Mussels - Beard On	DESCRIPTION		PRIČE	
		Rec. d.	9-7-16 ye	Total	

Thank You!

CETIS An	alytical Rep	ort					-	ort Date: Code:		and the second s	06 (p 2 of 2) 5-1168-7781
Bivalve Larv	al Survival and [Developme	nt Test						Northwest	ern Aquat	ic Sclences
Analysis ID: Analyzed:	18-1994-5734 26 Sep-16 9:0		· .	portion Sun				IS Version: ial Results		.8.7	
Batch ID: Start Date: Ending Date Duration:	16-3831-3512 14 Sep-16 14:	Tes 10 Pro 30 Spe	t Type: De tocol: EP ocies: My	velopment-S A/600/R-95/ tilis gallopro milche Sea I	Survival 136 (1995) vincialis		Anal Dilu Brin Age:	yst: ent: Yac e:	quina Bay Se	awater	
Receive Dat	03-0633-8162 e: 13 Sep-16 09: e: 14 Sep-16 10: : 29h (8.7 °C)	10 So u	erial: Ind	125972 ustrial Efflue ckoff	ent		Clier Proj		ckoff Treatm	ent Plant	
Data Transfe Angular (Cor		Zeta	Alt Hyp C <> T	Trials NA	Seed NA		PMSD 5.17%	Test Res	ult roportion su	wived	
	nca t Two-Sample							- asses p		*1VGU	
Control Dilution Wate	vs Control	-	Test Stat 0.7074	Critical 2.447	MSD DF 0.171 6	P-Value 0.5059	P-Type CDF	Decision Non-Sign	(a:5%) ificant Effect)	
Auxiliary Te	sts										
Attribute	Test		_	Test Stat		P-Value	Decision	· /			
Extreme Valu		Extreme Val	ue	1.801	2.127	0.3257	No Outlie	s Detected			
ANOVA Tabl											
Source	Sum Squ		Mean Squ		DF	F Stat	P-Value	Decision	<u> </u>		
Between Error	0.004865		0.0048650		1	0.5004	0.5059	Non-Sign	ificant Effect		
Total	0.063204		0.0097232	200	6 7						
Distribution											
Attribute	Test			Test Stat	Critical	P-Value	Decision	a.1%)			
Variances	Variance	Ratio F		3.305	47.47	0.3524	Equal Var				
Variances	Mod Leve	ene Equality	of Variance		13.75	0.3143	Equal Var				
Variances		Equality of V		1.638	13.75	0.2479	Equal Var				
Distribution		Wilk W Norr		0.9024	0.6451	0.3039	Normal D	stribution			
Distribution	Kolmogo	rov-Smirnov	D	0.1837	0.3313	0.7316	Normal D	stribution			
Distribution	Andersor	D-Darling A2	Normality	0.4027	3.878	0.3618	Normal D	stribution			
Proportion S	Survived Summa	ry .								-	
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water Brine Reagent	4 4	0.9914 0.9741	0.9683 0.9125	1	0.9978	0.9698 0.9181	1	0.007256	1.46% 3.97%	0.0% 1.74%
	rrected) Transfor									0.3770	
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Мах	Std Err	CV%	%Effect
0	Dilution Water	4	1.494	1.387	1.601	1.522	1.396	1.538	0.0336	4.5%	0.0%
0	Brine Reagent	4	1.445	1.251	1.639	1.522	1.281	1.538	0.06109	4.5% 8.46%	0.0% 3.3%
	urvived Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0 0	Dilution Water Brine Reagent	1 1	0.9698 0.9181	1 1	0.9957 0.9784						
	rected) Transfor										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	Dilution Water	1.538	1.396	1.538	1.505						
0	Brine Reagent	1.538	1.281	1.538	1.423						

Analyst:_____ QA:____

CETIS Ana	alytical Repo	ort						ort Date: Code:)7 (p 3 of 3 5-1 168-778
Bivalve Larva	al Survival and C	Develop	ment Test		-				Northweste	ern Aquati	c Sciences
Analysis ID: Analyzed:	09-8205-9580 26 Sep-16 9:0!			oportion Surv arametric-Con	and the second second	tments		S Version Ial Result		.8.7	
Batch ID: Start Date: Ending Date: Duration:	16-3831-3512 14 Sep-16 14:1 16 Sep-16 14:3 48h	10 30	Species: M	evelopment-S PA/600/R-95/1 ytilis galloprov amilche Sea F	136 (1995) /incialis		Analy Dilue Brine Age:	ent: Ya	aquina Bay Se	awater	
•	03-0633-8162 : 13 Sep-16 09:1 : 14 Sep-16 10:1 29h (8.7 °C)	15 10	Material: In	425972 dustrial Efflue yckoff	nt		Clien Proje		yckoff Treatm	ent Plant	
Data Transfo		Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C > T	NA	NA		5.27%	70	>70	NA	1.429
	iple Comparisor	n Test									
Control	vs C-%		Test Star			P-Value	P-Type		n(α:5%)		
Dilution Water			1.553	2.448	0.173 6	0.2311	CDF	-	nificant Effect		
	4 9		-0.213 1.823	2.448 2.448	0.173 6 0.173 6	0.9069 0.1534	CDF CDF		nificant Effect nificant Effect		
	18		0.9028	2.448	0.173 6	0.4985	CDF		nificant Effect		
	35		1.769	2.448	0.173 6	0.1673	CDF	-	nificant Effect		
	70		2.366	2.448	0.173 6	0.0586	CDF	-	nificant Effect		
Auxiliary Tes	ts								<u> </u>		
Attribute	Test			Test Stat	Critical	P-Value	Decision(a:5%)			
Extreme Value	e Grubbs E	Extreme	Value	1.914	2.876	1.0000	No Outlier		d		
ANOVA Table											
Source	Sum Squ	2000	Mean So	ularo	DF	F Stat	P-Value	Doninio	n(α:5%)		
Between	0.1138183		0.018969		6	1.905	0.1273		nificant Effect		
Error	0.2091037		0.009957		21	1.000	0.1270	Hon-oig	inicant Eneot		
Total	0.322922				27						
Distributiona	l Tests										
Attribute	Test			Test Stat	Critical	D 1/-1					
Variances	Bartlett E	augliby (P-Value	Decision(a:1%)			
Distribution		quality of	of Variance	4.922	16.81	0.5539	Decision(Equal Vari	-			
Distribution	Shapiro-1	• •	of Variance Normality					ances			
	Shapiro-\ urvived Summa	Wilk W I		4.922	16.81	0.5539	Equal Vari	ances			
	· · · · · ·	Wilk W I	Normality	4.922	16.81	0.5539	Equal Vari	ances	Std Err		%Effect
Proportion S	urvived Summa	Vilk W I	Normality	4.922 0.9666	16.81 0.8975	0.5539 0.4931	Equal Vari Normal Dis	ances stribution	Std Err 0.007256	CV% 1.46%	%Effect
Proportion S C-% 0 2	urvived Summa Control Type	Wilk W I	Normality t Mean 0.9914 0.9569	4.922 0.9666 95% LCL 0.9683 0.8984	16.81 0.8975 95% UCL	0.5539 0.4931 Median	Equal Vari Normal Dis Min	ances stribution Max			
Proportion S C-% 0 2 4	urvived Summa Control Type	Wilk W I ry Count 4 4 4	Normality t Mean 0.9914 0.9569 0.9946	4.922 0.9666 95% LCL 0.9683 0.8984 0.9775	16.81 0.8975 95% UCL 1 1 1	0.5539 0.4931 Median 0.9978 0.9569 1	Equal Vari Normal Dis Min 0.9698 0.9138 0.9784	Ances stribution Max 1 1 1	0.007256 0.01837 0.005388	1.46% 3.84% 1.08%	0.0% 3.48% -0.33%
Proportion S C-% 0 2 4 9	urvived Summa Control Type	Wilk W I Count 4 4 4 4 4	Normality t Mean 0.9914 0.9569 0.9946 0.9569	4.922 0.9666 95% LCL 0.9683 0.8984 0.9775 0.9257	16.81 0.8975 95% UCL 1 1 1 0.9881	0.5539 0.4931 Median 0.9978 0.9569 1 0.9591	Equal Vari Normal Dis 0.9698 0.9138 0.9784 0.931	Max 1 1 1 0.9784	0.007256 0.01837 0.005388 0.009798	1.46% 3.84% 1.08% 2.05%	0.0% 3.48% -0.33% 3.48%
Proportion S C-% 0 2 4 9 18	urvived Summa Control Type	Wilk W I ry Count 4 4 4 4 4 4	Normality t Mean 0.9914 0.9569 0.9946 0.9569 0.9731	4.922 0.9666 95% LCL 0.9683 0.8984 0.9775 0.9257 0.9181	16.81 0.8975 95% UCL 1 1 1 0.9881 1	0.5539 0.4931 Median 0.9978 0.9569 1 0.9591 0.9849	Equal Vari Normal Dis 0.9698 0.9138 0.9784 0.931 0.9224	Ances stribution Max 1 1 1 0.9784 1	0.007256 0.01837 0.005388 0.009798 0.01728	1.46% 3.84% 1.08% 2.05% 3.55%	0.0% 3.48% -0.33% 3.48% 1.85%
Proportion S C-% 0 2 4 9 18 35	urvived Summa Control Type	Wilk W I ry Count 4 4 4 4 4 4 4 4	Normality t Mean 0.9914 0.9569 0.9946 0.9569 0.9731 0.9461	4.922 0.9666 95% LCL 0.9683 0.8984 0.9775 0.9257 0.9181 0.8554	16.81 0.8975 95% UCL 1 1 1 0.9881 1 1	0.5539 0.4931 Median 0.9978 0.9569 1 0.9591 0.9591 0.9849 0.9569	Equal Vari Normal Dis 0.9698 0.9138 0.9784 0.931 0.9224 0.8707	Max 1 1 1 0.9784 1	0.007256 0.01837 0.005388 0.009798 0.01728 0.02851	1.46% 3.84% 1.08% 2.05% 3.55% 6.03%	0.0% 3.48% -0.33% 3.48% 1.85% 4.57%
Proportion S C-% 0 2 4 9 18 35 70	urvived Summa Control Type Dilution Water	Wilk W I ry Couni 4 4 4 4 4 4 4 4 4	Mean 0.9914 0.9569 0.9946 0.9569 0.9731 0.9461 0.9321	4.922 0.9666 95% LCL 0.9683 0.8984 0.9775 0.9257 0.9181	16.81 0.8975 95% UCL 1 1 1 0.9881 1	0.5539 0.4931 Median 0.9978 0.9569 1 0.9591 0.9849	Equal Vari Normal Dis 0.9698 0.9138 0.9784 0.931 0.9224	Ances stribution Max 1 1 1 0.9784 1	0.007256 0.01837 0.005388 0.009798 0.01728	1.46% 3.84% 1.08% 2.05% 3.55%	0.0% 3.48% -0.33% 3.48% 1.85%
Proportion S C-% 0 2 4 9 18 35 70 Angular (Con	urvived Summa Control Type Dilution Water rected) Transfor	Wilk W I ry Coun 4 4 4 4 4 4 4 4 4 4 4 4 5 med Su	Normality t Mean 0.9914 0.9569 0.9946 0.9569 0.9731 0.9461 0.9321	4.922 0.9666 95% LCL 0.9683 0.8984 0.9775 0.9257 0.9181 0.8554 0.8355	16.81 0.8975 95% UCL 1 1 1 0.9881 1 1 1	0.5539 0.4931 Median 0.9978 0.9569 1 0.9591 0.9569 0.9569 0.9569	Equal Vari Normal Dis 0.9698 0.9138 0.9784 0.931 0.9224 0.8707 0.8491	ances stribution Max 1 1 1 0.9784 1 1 0.9871	0.007256 0.01837 0.005388 0.009798 0.01728 0.02851 0.03035	1.46% 3.84% 1.08% 2.05% 3.55% 6.03% 6.51%	0.0% 3.48% -0.33% 3.48% 1.85% 4.57% 5.98%
Proportion S C-% 0 2 4 9 18 35 70 Angular (Con C-%	urvived Summa Control Type Dilution Water rected) Transfor Control Type	Wilk W I ry Count 4 4 4 4 4 4 4 4 4 4 4 5 med Su Count	Normality t Mean 0.9914 0.9569 0.9946 0.9569 0.9731 0.9461 0.9321 Immary t Mean	4.922 0.9666 95% LCL 0.9683 0.8984 0.9775 0.9257 0.9181 0.8554 0.8355 95% LCL	16.81 0.8975 95% UCL 1 1 1 0.9881 1 1 1 95% UCL	0.5539 0.4931 Median 0.9978 0.9569 1 0.9591 0.9569 0.9569 0.9461 Median	Equal Vari Normal Dis 0.9698 0.9138 0.9784 0.931 0.9224 0.8707 0.8491 Min	ances stribution 1 1 1 0.9784 1 1 0.9871 Max	0.007256 0.01837 0.005388 0.009798 0.01728 0.02851 0.03035 Std Err	1.46% 3.84% 1.08% 2.05% 3.55% 6.03% 6.51%	0.0% 3.48% -0.33% 3.48% 1.85% 4.57% 5.98%
Proportion S C-% 0 2 4 9 18 35 70 Angular (Con C-% 0	urvived Summa Control Type Dilution Water rected) Transfor	Wilk W I ry Coun 4 4 4 4 4 4 4 4 4 4 4 4 5 med Su	Normality t Mean 0.9914 0.9569 0.9946 0.9569 0.9731 0.9461 0.9321 mmary t Mean 1.494	4.922 0.9666 95% LCL 0.9683 0.8984 0.9775 0.9257 0.9181 0.8554 0.8355 95% LCL 1.387	16.81 0.8975 95% UCL 1 1 1 0.9881 1 1 1 1 95% UCL 1.601	0.5539 0.4931 Median 0.9978 0.9569 1 0.9591 0.9569 0.9461 0.9461 Median 1.522	Equal Vari Normal Dis 0.9698 0.9138 0.9784 0.931 0.9224 0.8707 0.8491 Min 1.396	ances stribution 1 1 1 0.9784 1 1 0.9871 <u>Max</u> 1.538	0.007256 0.01837 0.005388 0.009798 0.01728 0.02851 0.03035 Std Err 0.0336	1.46% 3.84% 1.08% 2.05% 3.55% 6.03% 6.51% CV% 4.5%	0.0% 3.48% -0.33% 3.48% 1.85% 4.57% 5.98% %Effect 0.0%
Proportion S C-% 0 2 4 9 18 35 70 Angular (Con C-%	urvived Summa Control Type Dilution Water rected) Transfor Control Type	Wilk W I ry Count 4 4 4 4 4 4 4 4 4 4 4 4 5 med Su Count 4	Normality t Mean 0.9914 0.9569 0.9946 0.9569 0.9731 0.9461 0.9321 Immary t Mean	4.922 0.9666 95% LCL 0.9683 0.8984 0.9775 0.9257 0.9181 0.8554 0.8355 95% LCL 1.387 1.203	16.81 0.8975 95% UCL 1 1 1 0.9881 1 1 1 1 95% UCL 1.601 1.566	0.5539 0.4931 Median 0.9978 0.9569 1 0.9591 0.9849 0.9569 0.9461 Median 1.522 1.364	Equal Vari Normal Dis 0.9698 0.9138 0.9784 0.931 0.9224 0.8707 0.8491 Min 1.396 1.273	ances stribution 1 1 1 0.9784 1 1 0.9871 <u>Max</u> 1.538 1.538	0.007256 0.01837 0.005388 0.009798 0.01728 0.02851 0.03035 Std Err 0.0336 0.05697	1.46% 3.84% 1.08% 2.05% 3.55% 6.03% 6.51% CV% 4.5% 8.23%	0.0% 3.48% -0.33% 3.48% 1.85% 4.57% 5.98% %Effect 0.0% 7.34%
Proportion S C-% 0 2 4 9 18 35 70 Angular (Con C-% 0 2	urvived Summa Control Type Dilution Water rected) Transfor Control Type	Wilk W I ry Count 4 4 4 4 4 4 4 4 4 4 5 Count 4 4	Normality t Mean 0.9914 0.9569 0.9946 0.9569 0.9731 0.9461 0.9321 mmary t Mean 1.494 1.385	4.922 0.9666 95% LCL 0.9683 0.8984 0.9775 0.9257 0.9181 0.8554 0.8355 95% LCL 1.387	16.81 0.8975 95% UCL 1 1 1 0.9881 1 1 1 1 95% UCL 1.601	0.5539 0.4931 Median 0.9978 0.9569 1 0.9569 0.9461 0.9461 Median 1.522 1.364 1.538	Equal Vari Normal Dis 0.9698 0.9138 0.9784 0.931 0.9224 0.8707 0.8491 Min 1.396 1.273 1.423	ances stribution 1 1 1 0.9784 1 1 0.9871 <u>Max</u> 1.538 1.538 1.538	0.007256 0.01837 0.005388 0.009798 0.01728 0.02851 0.03035 Std Err 0.0336 0.05697 0.02863	1.46% 3.84% 1.08% 2.05% 3.55% 6.03% 6.51% CV% 4.5% 8.23% 3.79%	0.0% 3.48% -0.33% 3.48% 1.85% 4.57% 5.98% %Effect 0.0% 7.34% -1.01%
Proportion S C-% 0 2 4 9 18 35 70 Angular (Con C-% 0 2 4	urvived Summa Control Type Dilution Water rected) Transfor Control Type	Wilk W I ry Count 4 4 4 4 4 4 4 4 4 4 4 5 Count 4 4 4 4	Normality t Mean 0.9914 0.9569 0.9946 0.9569 0.9731 0.9461 0.9321 immary t Mean 1.494 1.385 1.509	4.922 0.9666 95% LCL 0.9683 0.8984 0.9775 0.9257 0.9181 0.8554 0.8355 95% LCL 1.387 1.203 1.418	16.81 0.8975 95% UCL 1 1 1 0.9881 1 1 1 1 95% UCL 1.601 1.566 1.6	0.5539 0.4931 Median 0.9978 0.9569 1 0.9591 0.9849 0.9569 0.9461 Median 1.522 1.364	Equal Vari Normal Dis 0.9698 0.9138 0.9784 0.931 0.9224 0.8707 0.8491 Min 1.396 1.273	ances stribution 1 1 1 0.9784 1 1 0.9871 <u>Max</u> 1.538 1.538	0.007256 0.01837 0.005388 0.009798 0.01728 0.02851 0.03035 Std Err 0.0336 0.05697	1.46% 3.84% 1.08% 2.05% 3.55% 6.03% 6.51% CV% 4.5% 8.23%	0.0% 3.48% -0.33% 3.48% 1.85% 4.57% 5.98% %Effect 0.0% 7.34% -1.01% 8.61%
Proportion S C-% 0 2 4 9 18 35 70 Angular (Con C-% 0 2 4 9	urvived Summa Control Type Dilution Water rected) Transfor Control Type	Vilk W I ry Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Normality t Mean 0.9914 0.9569 0.9946 0.9569 0.9731 0.9461 0.9321 ummary t Mean 1.494 1.385 1.509 1.366	4.922 0.9666 95% LCL 0.9683 0.8984 0.9775 0.9257 0.9181 0.8554 0.8355 95% LCL 1.387 1.203 1.418 1.288	16.81 0.8975 95% UCL 1 1 1 0.9881 1 1 1 1 95% UCL 1.601 1.566 1.6 1.443	0.5539 0.4931 Median 0.9978 0.9569 1 0.9569 0.9461 0.9569 0.9461 Median 1.522 1.364 1.538 1.367	Equal Vari Normal Dis 0.9698 0.9138 0.9784 0.931 0.9224 0.8707 0.8491 Min 1.396 1.273 1.423 1.305	ances stribution 1 1 0.9784 1 1 0.9871 Max 1.538 1.538 1.538 1.538 1.423	0.007256 0.01837 0.005388 0.009798 0.01728 0.02851 0.03035 Std Err 0.0336 0.05697 0.02863 0.02428	1.46% 3.84% 1.08% 2.05% 3.55% 6.03% 6.51% CV% 4.5% 8.23% 3.79% 3.56%	0.0% 3.48% -0.33% 3.48% 1.85% 4.57% 5.98% %Effect 0.0% 7.34% -1.01%

Analyst:_____ QA:___

-631

Analyst:____

QA:_

CETIS An	alytical Rep	ort					•	ort Date: Code:		and the second s	06 (p 1 of 2) 5-1168-7781
Bivalve Larv	al Survival and I	Developm	ent Test								ic Sciences
Analysis ID: Analyzed:	19-7432-6057 26 Sep-16 9:0		ndpoint: Cor nalysis: Par	nbined Prop ametric-Two				S Version: Ial Results		.8.7	
Batch ID: Start Date: Ending Date Duration:	16-3831-3512 14 Sep-16 14∵ : 16 Sep-16 14: 48h	10 P 30 S	rotocol: EP/ pecies: Myt	velopment-S V600/R-95/ ills galloprov nilche Sea F	136 (1995) vincialis		Anal Dilue Brine Age:	ent: Yaq e:	uina Bay Se	awater	
Receive Dat	03-0633-8162 2: 13 Sep-16 09: 2: 14 Sep-16 10: 29h (8.7 °C)	15 M 10 S	laterial: Indu	25972 Jstrial Efflue ckoff	ent		Clier Proje	+	ckoff Treatm	ent Plant	
Data Transfe		Zeta	Alt Hyp	Trials	Seed		PMSD	Test Res	ult		
Angular (Cor	rected)	NA	С <> Т	NA	NA		4.71%	Passes co	ombined pro	portion no	rmal
Control Dilution Wate		7	Test Stat	Critical 2.447	MSD DF 0.139 6	P-Value 0.3099	P-Type CDF	Decision Non-Signi	(a:5%) ficant Effect	\geq	
Auxiliary Tes Attribute Extreme Valu	Test	Extreme V	alue	Test Stat	Critical	P-Value 0.3719	Decision(a:5%) s Detected	- -		
ANOVA Tabl											
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0.007945		0.0079454		1	1.23	0.3099 Non-Significant Effect				
Error Total	0.038761		0.0064602	96	6 7						
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Variance			2.626	47.47	0.4488	Equal Vari				
Variances Variances		ene Equal Equality of	ity of Variance	0.9855 0.9459	13.75 13.75	0.3592 0.3683	Equal Vari Equal Vari				
Distribution		Wilk W No		0.905	0.6451	0.3201	Normal Di				
Distribution	•	rov-Smirn	•	0.2207	0.3313	0.3401	Normal Di				
Distribution	Andersor	n-Darling /	A2 Normality	0.4258	3.878	0.3198	Normal Di	stribution			
Combined P	roportion Norma	l Summa	ry								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water Brine Reagent	4 4	0.9851 0.9635	0.9595 0.9034	1 1	0.9895 0.9895	0.9612 0.9095	0.996 0.9915	0.008046	1.63% 3.92%	0.0% 2.19%
	Tected) Transfor				<u> </u>			0.3313	0.0109	J. J	2.1370
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	4	1.46	1.365	1.555	1.469	1.373	1.508	0.02985	4.09%	0.0%
0	Brine Reagent	4	1.397	1.243	1.551	1.469	1.265	1.479	0.04837	6.93%	4.32%
	roportion Norma	l Detail									
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	Dilution Water Brine Reagent	0.992 0.9876	0.9612 0.9095	0.996 0.9915	0.9914 0.9655						
	rected) Transfor	_								-	
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	Dilution Water	1.481	1.373	1.508	1.478						
0	Brine Reagent	1.459	1.265	1.479	1.384						

Analyst:_____ QA:____

CETIS Ana	lytical Repo	rt					-	rt Date: Code:			06 (p 1 of 3) 5-1168-7781
Bivalve Larva	I Survival and De	velopmen	it Test						Northweste	rn Aquat	ic Sciences
Analysis ID: Analyzed:	01-8887-6439 26 Sep-16 9:05		-	mbined Prop rametric-Cor				S Version: al Results:	CETISv1. Yes	8.7	
Batch ID: Start Date: Ending Date: Duration:	16-3831-3512 14 Sep-16 14:10 16 Sep-16 14:30 48h) Prol	tocol: EP cles: My	velopment-S A/600/R-95/ tilis galloprov mllche Sea F	136 (1995) /incialis		Analy Dilue Brine Age:	nt: Yaqı	uina Bay Se	awater	
•	03-0633-8162 13 Sep-16 09:15 14 Sep-16 10:10 29h (8.7 °C)) Sou	erial: Ind	425972 lustrial Efflue rckoff	nt		Clien Proje	•	koff Treatmo	ent Plant	
Data Transfor	m	Zeta	Alt Hyp	Trials	Seed		PMSD /	NOEL	LOEL	TOEL	TU
Angular (Corre	cted)	NA	C>T	NA	NA		4.94% (35	70	49.5	2.857
Dunnett Multi	ple Comparison	Test									
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P- Type	Decision(a.2%)		
Dilution Water			1.869 0.117 2.058 0.9264	2.448 2.448 2.448 2.448 2.448	0.144 6 0.144 6 0.144 6 0.144 6	0.1422 0.8232 0.1032 0.4876	CDF CDF CDF CDF CDF	Non-Signi Non-Signi Non-Signi	ficant Effect ficant Effect ficant Effect ficant Effect		
	35 70*		1.934 2.681	2.448 2.448	0.144 6 0.144 6	0.1277 0.0314	CDF CDF	-	ficant Effect		
Auxillary Test	s						-				
Attribute	Test			Test Stat	Critical	P-Value	Decision(a:5%)			
Extreme Value	Grubbs Ex	treme Valu	le	2.043	2.876	0.9740	No Outlier				
ANOVA Table		_				<u> </u>					
Source	Sum Squa		Mean Sq		DF	F Stat	P-Value	Decision(-	
Between	0.08833917	7	0.014723		6	2.134	0.0920	Non-Signif	ficant Effect		
Error Total	0.1448655		0.006898	355	21						
								_			
Distributional	Tests										
Attribute	Test			Test Stat		P-Value	Decision(,			
Variances		uality of Va		6.198	16.81	0.4014	Equal Vari				
Variances			of Variance		3.812	0.2953	Equal Vari				
Variances	Levene Eq	• •		1.654	3.812	0.1820	Equal Vari				
Distribution	-	lik W Nom	•	0.9639	0.8975	0.4297	Normal Dis				
Distribution	Kolmogoro			0.09894	0.1914	0.7073	Normal Dis				
Distribution	D'Agostino		5	1.003	2.576	0.3160	Normal Di				
Distribution	D'Agostino		/0 O- "	0.05312	2.576	0.9576	Normal Dis				
Distribution	-		K2 Omnibu:		9.21	0.6040	Normal Dis				
Distribution	Anderson-	Daning A2	Normality	0.3232	3.878	0.5459	Normal Dis				
Combined Pro	oportion Normal	Summary Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Em	C)/8/	
0		4	0.9851	0.9595	1	0.9917	Min 0.9612	Max	Std Err	CV%	%Effect
2	Distion Water	4	0.9651	0.9595	1	0.9917 0.9461	0.9612	0.996	0.008046	1.63%	0.0%
4		4	0.9473	0.8946	0.997	0.9461	0.9095	0.9877	0.01657	3.5%	3.84%
9		4	0.9461	0.9734	0.997	0.9833 0.9483	0.9784	0.9958 0.9655	0.003717 0.009059	0.75%	-0.01%
9 18		4	0.9677	0.9173	0.9749	0.9483	0.9224 0.9181	0.9655	0.009059	1.92% 3.46%	3.96%
35		4	0.9409	0.9144	1	0.9806	0.9181	0.9915	0.01675	3.46% 5.9%	1.77%
											4.49% 6.48%
70		4	0.9213	0.8228	1	0.9353	0.8362	0.9784	0.03095	6.72%	6.48%

Analyst:_____ QA:___

Analyst:____

QA:_

CETIS AI	nalytical Repo	ort					-	rt Date: Code:			:06 (p 1 of 5-1168-77
Bivalve La	rval Survival and D	evelopmen	it Test						Northwest	ern Aquat	lc Science
Analysis ID Analyzed:	0: 00-3944-7763 26 Sep-16 9:05			ombined Prop near Interpola				S Version al Results		.8.7	
Batch ID: Start Date: Ending Dat Duration:		0 Pro t 0 Spe	tocol: EF cies: My	evelopment-S PA/600/R-95/ vtilis galloprov amilche Sea F	136 (1995) /incialis		Analy Dilue Brine Age:	nt: Yao	quina Bay Se	eawater	
Receive Da	: 03-0633-8162 te: 13 Sep-16 09:1 ate: 14 Sep-16 10:1 e: 29h (8.7 °C)	0 Sou	erial: In	425972 dustrial Efflue yckoff	ent		Clien Proje		ckoff Treatm	ent Plant	
Linear Inte	rpolation Options										
X Transfor	m Y Transform Linear		d Re 2626 28	esamples	Exp 95% Yes		od Point Interpo				
					163						
Residual A Attribute Extreme Va	Method	treme Valu	<u></u>	Test Stat 2.043	Critical 2.876	P-Value 0.9740	Decision(No Outlier		1		
					2.070	0.3140					
Point Estin	95% LCL	95% UCL	TU <1.429	95% LCL NA	95% UCL NA						
			-1.420				14.000				
	Proportion Normal					lated Variat					_
C-%	Control Type Dilution Water	Count 4	Mean 0.9851	Min 0.9612	Max 0.996	Std Err 0.008046	Std Dev 0.01609	CV% 1.63%	%Effect 0.0%	A 951	<u> </u>
2	Dilution water	4	0.9851	0.9095	0.9877	0.01657	0.03313	3.5%	3.84%	890	939
4		4	0.9852	0.9784	0.9958	0.003717	0.007434	0.75%	-0.01%	935	949
9		4	0.9461	0.9224	0.9655	0.009059	0.01812	1.92%	3.96%	878	928
18		4	0.9677	0.9181	0.9915	0.01675	0.03351	3.46%	1.77%	901	931
35		4	0.9409	0.8664	0.9877	0.02777	0.05553	5.9%	4.49%	885	940
70		4	0.9213	0.8362	0.9784	0.03095	0.0619	6.72%	6.48%	855	928
Combined	Proportion Norma	Detail									
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	Dilution Water	0.992	0.9612	0.996	0.9914						
2		0.9569	0.9877	0.9095	0.9353						
4		0.9958	0.9838	0.9784	0.9828						
9		0.9526	0.944	0.9655	0.9224						
18		0.9915	0.9784	0.9828	0.9181						
35 70		0.9877	0.8664	0.931	0.9784						
711		0.9784	0.9526	0.9181	0.8362						

CETIS Test Data Worksheet

Report Date: Test Code:

26 Sep-16 09:05 (p 1 of 1) 15-1168-7781/658-75

Start Date: End Date:	14 S	Sep-16 Sep-16	5 14:10 5 14:30		Mytilis galloprovir EPA/600/R-95/13	6 (1995)		Sample Source: \	Northwestern Aquatic Science 12425972 Wyckoff
Sample Date				Material:	Industrial Effluent			Sample Station:	
C-%	Code		Pos	Initial Density	Final Density	# Counted	# Normal		Notes
0	В	1	32	232	242	242	239		
0	В	2	11	232	213	213	211		
0	В	3	12	232	236	236	234		
0	В	4	3	232	227	227	224		
0	D	1	10	232	249	249	247		
0	D	2	2	232	225	225	223		
0	D	3	23	232	252	252	251		
0	D	4	9	232	231	231	230		
2	1	1	18	232	225	225	222		
2	1	2	27	232	243	243	240		
2	1	3	22	232	212	212	211		
2		4	30	232	219	219	217		
4	1	1	28	232	238	238	237		
4		2	15	232	247	247	243		
4	1	3	14	232	227	227	227		
4	1	4	24	232	234	234	228		
9	1	1	6	232	222	222	221		
9	1	2	29	232	223	223	219		
9		3	5	232	227	227	224		
9	1	4	17	232	216	216	214		
18	1	1	16	232	235	235	233		
18		2	13	232	228	228	227		
18		3	1	232	229	229	228		
18		4	31	232	: 214	214	213		
35		1	7	232	244	244	241		
35		2	26	232	202	202	201		
35	-	3	21	232	217	217	216		
35	+	4	8	232	227	227	227		
70		1	4	232	229	229	227		
70		2	20	232	224	224	221		
70		3	19	232	215	215	213		
70		4	25	232	197	197	194		

data entry venified against laboratory bench streets q-26-16 JRF

Page 1 of 1							
Northwestern Aquatic Sciences (REGION COPY) DateShipped. 9/13/2016 CarrierName FedEx AirbillNo 7840 7318 3739		CHAIN OF CUSTODY RECORD Wyckoff Eagle Harbor GWTP 2015/WA Project Code WEH-024U Cooler # 1 of 1	CHAIN OF CUSTODY RECORD ckoff Eagle Harbor GWTP 2015A Project Code WEH-024U Cooler # 1 of 1	RECORD FP 2015/MA 024U		No: 10-042616-092946-0104 2016T10P303DD210W2LA00 Contact Name ⁻ Keith Allers Contact Phone 206-780-1711	10-042616-092946-0104 2016T10P303DD210W2LA00 Contact Name Keith Allers Contact Phone 206-780-1711
Sample Identifier CLP Matrix/Sampler Sample No. 658-3rd Quarter ม _ั ษ่ ด้ที่ ธรรุณวี G round Water/ KAllers ·	Coll. Method Composite	Analysis/Turnaround (Days) CHRTOX(8 Weeks)	rround eeks)	Tag/Preservative/Bottles A (< 6 C) (1)	Location SP-11	Collection Date/Time 09/13/2016 09 15	Sample Type Field Sample
Special Instructions					Shipment for Case Complete? N Samples Transferred From Chair	Shipment for Case Complete? N Samples Transferred From Chain of Custody #	Custody #
Analysis Key CHRTOX=Chronic Toxicity							
Items/Reason Relinquished by (Signature and Organization)	rganization) $H_{Z}M$	Date/Time <i>q</i> - 73-/く /0:00	Received by	Received by (Signature and Organization) Date/Time	1) Date/Time	Sample Condition Upon Receipt ו אדאביד	n Upon Receipt

PAGE 13 OF 14

APPENDIX III

RAW DATA – REFERENCE TOXICANT TEST

NORTH	WESTER	RN AQUA				TEOT 0.0		PRO	TOCOL NO. NA	S-XXX-CG/MG2
			BIAN		KVAL	TEST BASE	=D (ON EPA/600/R-95	/136	CIVIEWER 1-8
Test No). <u>999-3</u>	59 <u>9</u> 0	Client:			est			Investiga	tor Philip W
STUDY	MANAG	EMENT								
Clier	nt:	(QC Tes	st						
	nt's Study				QC Te					
Test	ing Labor	atory: No	rthwes	tern Aqua	atic So	iences				
Test	Location	: Newport	t Labor	atory						
Labo	oratory's S	Study Per:	sonnel	•		631				
Pro	oj. Mgr./S	tudy Dir.			G.J. Ir	issarri				
QA	Officer			L.K. Nem	eth					
1	. Yu	esta	196	The 4	C		2.	J. Brow	an Ine	
3	i			· · · · · · · · · · · · · · · · · · ·			4.		-0	
Stud	y Schedu	ile:								
Test	Beginnin	g: _	9-	14-16	14	10	_	Test Ending:	9-16-16	1430
TEST N	ATERIA	L					_			
1	Descriptio	on: C	Copper	as CuSC	D₄·5Ha	O, Argent L	ot#	0195.		
	NAS Sam				- 4 2			mg/ml stock prep	bared: 5-16-	<u></u>
		ollection:		-			1.0	ing/ini stock prep		····
	Date of R			-						
		ure (deg	C).	-						
	DH:	und (and	0).	-						
•		oxygen (-					<u> </u>	
		ity (umhc								
	Hardness	÷ •	siony.	-					<u> </u>	
	Alkalinity			-						
	Salinity (p			-	_		• •			
		rine (mg/	1.30	-						
		nonia-N (-						
			ng,∟).	-						
				-						
	ON WATI									
	Descriptio			Yaquina E		R Seawate	r			
	Date of C		_			3-16		Salinity (ppt)		pH_ 8.2
	Freatmen	ts: –	/	Aerated, f	filterec	l to ≤ 0.45 u	m, s	salinity adjusted w	ith Milli-Q® deid	nized water
TEST O	RGANIS	MS								
5	Species:	٨	Aytilus	galloprov	vinciali	s		D	ate Received:	4-7-16
	Source:		Kamilo	he Sea F	arms	Shelton, W	/A			
ŀ	Acclimatio									
	Date	Temp (de	eg.C)	pH _		Sal (ppt)	[D.O. (mg/L)	Com	ments

	remp (deg.e)	PII			Continents
7-7-16	(6.1	8.1	33.0	6.9	Held outside in trays of
9-5-14	18.3	5.0	32,0	7.1	flowing seawater
9-9-1-16	15.	5,0	34,0	6.9	
9-12-16	13.4	8.0	\$2.5	7.3	
9-14-16	149	7.7	32,0	6,3	
Mean	18.2	8:0	32,7	6.9	<u> </u>
S.D.	c. 2	0.2	0.8	0,4	
(N)	5	5	5	5	
Photoperi	od during acclir	mation: C	Jutdoor ambien	t conditions	

Photoperiod during acclimation: Outdoor ambient conditions

Error codes: 1) correction of handwriting error

2) written in wrong location; entry deleted

3) wrong date deleted, replaced with correct date

4) error found in measurement; measurement repeated

NORTHWESTERN AQUATIC SCIENCES

PROTOCOL NO. NAS-XXX-CG/MG2

BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Test No.	999-3599	Client		Q	C Test			Invest	tigator	
SPAWNIN			DLING							
Spawr	ning: Initial:	1030		Final:		2	Fert	ilization:	1140	i
Numbe	er of organisr	ns used:	fema	iles: 2			nales:	1		
Egg D	ilution (1 ml o	liluted to 10)0 ml):						•	
	Count/ml o	of dilution:	1	54	2. (>1	3	<u>54</u>	Mean:	56,3
	Dilution fa	ctor = DF (mean x 1	00/2500)	=	3				
Test c Test c Organ Feedir	hamber: 30 n isms/ml (15-3 ng: None erature: 20 +/	s (50% seri nl glass via 30):2	es recom	nmended): Test v Test v Photo	olume: 10 vater char period: 16	mi ges: None L:8D	Aera	licates/treation during	atment (4) g test: No 2 ppt	ne
RANDOM		ART								
	A 32	2	8	64	4	16	1	Ø		
		17	56		21			. /		

A	32	2	8	64	7	16	/	Ø	
в	2	16	Ø	1	32	64	8	4	
с	8	64	1	4	2	Ø	32	16	
D	16	4	32	8	Ø	1	2	64	

PREPARATION OF TEST SOLUTIONS

	Test Conc.	ml of working stock #2	Dilution water
	(Cu, ug/L)	(2 ug/mL)	(ml/100mL)
	64	3.2	Brought up to a
9-14-16 631	32	1.6	final volume of
611	16	0.8	100 ml with
005	8	0.4	dilution water.
	4	0.2	
	2	0.1	
	1	0.05	
	0	0	

1st working stock made by 1:99 (1.0 mL ¹100mL) dilution of concentrated 1 mg/mL stock solution. Final concentration 10 ug/mL.

2nd working stock made (working stock #2) made by 20:80 (20 mL 100mL) dilution of 1st working stock. Final concentration 2 ug/mL.

Comments:

Page 2 of 🍠

NORTHWESTERN AQUATIC SCIENCES

BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Test No.	<u>99</u> 9-3599	Client	QC Test	Investigator
----------	------------------	--------	---------	--------------

WATER QUALITY DATA

من الحالية: <u>ما المالية</u> Date: <u>ما المالية</u> initials:						9-16-11	Anitials: 🏸	
Conc.	Temp.	pН	Sal.	DO	Temp.	pН	Sal.	DO
(ug/L)	(deg.C)		(ppt)	(mg/L)	(deg.C)		(ppt)	(mg/L)
64	16.2	8,0	29.0	7.8	1514	8.2	29.5	8.1
32	16.2	8.0	29.5	7.8	154	8.2	29.5	8.1
16	16.2	8.0	30.0	7,8	15.4	8.2	30:0	8.1
8	16.1	9.0	30.0	7,9	15.3	8.2	30.0	8-1
4	16.2	8,0	30.0	7.8	15.3	8.2	30.0	8.1
2	16.2	8.0	30,0	7.8	15.4	8.2	30.0	8.1
1	16:2	8.0	30,0	7.8	15.3	8.2	30.0	8-1
Control	16,4	8.0	30.0	7.9	15.4	8-2	70.0	8-1
Brine control				_			_	

WATER QUALITY:	<u>Mean</u>	<u>SD</u>	<u>N</u>
Temperature (°C):	15,8	6.4	16
pH:	8.1	0.1	16
Salinity (ppt): 291	8 28.8	0,3	16
DO (mg/L):	ନ୍ୟ	0.2	16

Room/ Water bath temperature: (°C)

Day 0:	16,4	Day 0: <u>16,4</u>
Day 1:	1526	Day 1: 15.6
Day 2:	154	Day 2: 15-4

LARVAL COUNT DATA								
		9-20-1		3->		16 ps	9-25-11	651
Conc.	Replic	cate 1	Repli	cate 2	Replicate 3			cate 4
(ug/L)	<u>N</u>	A	N	A	N	A	N	A
64	9	Z	D.	Ø	Ø	Ø	Ø	1
32	0	153	Ø	129	0	151	φ	126
16	'9	2/3	16	204	15	210	4	20
8	226	ሃ	241	1	221	1	210	4
4	250	3	227	2	218	1	205	1
2	230	ø	219		201		225	2
1	234	3	236	3	239	3	199	Ø
Control	240	3	239	4	228	Ø	216	4
Brine control				· · · - ·]		/		
Zero time	214	236	229	248	239	224		
<u>Zero time:</u>	Mean 2	32_ SD	12	N <u>6</u>		CV=(sd/	mean)x100	5,2%

Remarks:

To fit 771 DU-O-VUE® Envelope, fold along bottom of shaded strip

PRODUCT 108

 $\frac{1}{K}$

S E A F A R M S Kamilche Sea Farms, Inc. 2741 SE Bloomfield Road • Shelton, WA 98584 360 427 5774 • Fax 360 427 0610 WA Cert. #217-SS Harvested: Totten Inlet, Puget Sound

Northwat Sciences то ŝ

DATE	9-6	- 16		
CUSTO	DMER ORDER NO		·	
SALES	PERSON			-
VIA				\neg

36289

1

TERMS

QUANTITY	Mussels - Beard On	DESCRIPTION		PRICE	
		Perid	9-7-16 ya	Total	
			(*		

Thank You!

CETIS Sum	mary Repo	rt					-	ort Date: Code:			9 (p 1 of 2) 7-6290-8502
Bivalve Larval	Survival and D	evelopmen	it Test						Northweste	ern Aquatio	: Sciences
Batch ID: Start Date: Ending Date: Duration:	16-3831-3512 14 Sep-16 14:1 16 Sep-16 14:3 48h	0 Prot 0 Spe	tocol: E cies: M	Development-S EPA/600/R-95/ Mytilis galloprov Kamilche Sea F	136 (1995) /incialis		Analy Dilue Brine Age:	ont: Yaqı ə:	uina Bay Se	awater	
Sample ID: Sample Date: Receive Date: Sample Age:			erial: (rce: F	15FF889D Copper sulfate Reference Toxio	cant		Clien Proje		rnal Lab		
Comparison S	ummary			\sim							
	Endpoint	/	NOEL)	LOEL	TOEL	PMSD	TU	Method			
	Combined Prop		~	16	11.31	8.21%			iultiple Com		
00-0990-2625	Proportion Surv	ived	16	32	22.63	7.01%		Dunnett M	iultiple Com	parison Tes	st
Point Estimate	Summary						-				
Analysis ID	Endpoint		Level	μg/L	95% LCL	95% UCL	TU	Method			
02-5069-8037	Combined Prop	ortion Norm	EC25	9.959	9.539	10.19		Linear Inte	erpolation (IC	CPIN)	
15-4984-2250	Combined Prop	ortion Norm	1 EC50	11.38	11.2	11.56	·		Spearman-K		
03-8246-0195	Proportion Surv	ived	EC50	33.27	32.33	34.23		Trimmed \$	Spearman-K	ärber	
Combined Pro	portion Normal	Summary							_ <u>+</u>		
C-µg/L (Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0 1	Dilution Water	4	0.9712	0.9285	1	0.931	0.9877	0.01345	0.02689	2.77%	0.0%
1		4	0.955	0.8518	1	0.8578	0.9876	0.03243	0.06485	6.79%	1.67%
2		4	0.9429	0.8561	1	0.8664	0.9914	0.02728	0.05456	5.79%	2.92%
4		4	0.9475	0.872	1	0.8836	0.9881	0.02372	0.04744	5.01%	2.45%
8		4	0.9569	0.8952	1	0.9052	0.9959	0.01939	0.03877	4.05%	1.47%
16		4	0.04741	0.009021	0.08581	0.01724	0.06897	0.01206	0.02413	50.89%	95.12%
32		4	0	0	0	0	0	0	0		100.0%
64		4	0	0	0	0	0	0	0		100.0%
Proportion Sur	rvived Summar	y									
C-µg/L (Control Type	Count	Mean	95% LCL	95% UCL	Mln	Max	Std Err	Std Dev	CV%	%Effect
0 0	Dilution Water	4	0.9828	0.944	1	0.9483	1	0.01219	0.02438	2.48%	0.0%
1		4	0.9644	0.8513	1	0.8578	1	0.03556	0.07112	7.37%	1.86%
2		4	0.9472	0.8611	1	0.8707	0.9914	0.02705	0.05411	5.71%	3.62%
4		4	0.9547	0.8743	1	0.8879	1	0.02529	0.05057	5.3%	2.85%
8		4	0.9655	0.9118	1	0.9224	1	0.01688	0.03376	3.5%	1.75%
16		4	0.9397	0.8786	1	0.8836	0.9698	0.0192	0.03839	4.09%	4.39%
32 64		4	0.6024 0.00323	0.5048 33 0	0.6999 0.009799	0.5431	0.6595	0.03065	0.0613	10.18%	38.71%

Г

26	Sep-16	07:59	(p 2
0	999-3599	3 07-6	5290-

Report Date: Test Code:

26 Sep-16 07:59 (p 2 of	
999-3599 07-6290-85	02

	ivalve Larval Survival and Development Test Northwestern Aquatic Sciences								
Combined	Proportion Norma	l Detail		_					
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4				
0	Dilution Water	0.9877	0.9835	0.9828	0.931				
1		0.9873	0.9874	0.9876	0.8578				
2		0.9914	0.944	0.8664	0.9698				
4		0.9881	0.9784	0.9397	0.8836				
8		0.9741	0.9959	0.9526	0.9052				
16		0.03879	0.06897	0.06466	0.01724				
32		0	0	0	0				
64		0	0	0	0				
Proportion	Survived Detail								
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4				
0	Dilution Water	1	1	0.9828	0.9483	<u>~.</u>			
1		1	1	1	0.8578				
2		0.9914	0.9483	0.8707	0.9784				
4		1	0.9871	0.944	0.8879				
8		0.9828	1	0.9569	0.9224				
16		0.9569	0.9483	0.9698	0.8836				
32		0.6595	0.556	0.6509	0.5431				
64		0.008621	0	0	0.00431				
Combined I	Proportion Norma	l Binomials							
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4				
0									
	Dilution Water	240/243	239/243	228/232	216/232				
1	Dilution Water	240/243 234/237	239/243 236/239	228/232 239/242	216/232 199/232				
1 2	Dilution Water								
	Dilution Water	234/237	236/239	239/242	199/232				
2	Dilution Water	234/237 230/232	236/239 219/232	239/242 201/232	199/232 225/232				
2 4	Dilution Water	234/237 230/232 250/253	236/239 219/232 227/232	239/242 201/232 218/232	199/232 225/232 205/232				
2 4 8	Dilution Water	234/237 230/232 250/253 226/232	236/239 219/232 227/232 241/242	239/242 201/232 218/232 221/232	199/232 225/232 205/232 210/232				
2 4 8 16 32	Dilution Water	234/237 230/232 250/253 226/232 9/232	236/239 219/232 227/232 241/242 16/232	239/242 201/232 218/232 221/232 15/232	199/232 225/232 205/232 210/232 4/232				
2 4 8 16 32 64	Dilution Water	234/237 230/232 250/253 226/232 9/232 0/232 0/232	236/239 219/232 227/232 241/242 16/232 0/232	239/242 201/232 218/232 221/232 15/232 0/232	199/232 225/232 205/232 210/232 4/232 0/232				
2 4 8 16 32 64		234/237 230/232 250/253 226/232 9/232 0/232 0/232	236/239 219/232 227/232 241/242 16/232 0/232	239/242 201/232 218/232 221/232 15/232 0/232	199/232 225/232 205/232 210/232 4/232 0/232				
2 4 8 16 32 64 Proportion	Survived Binomia	234/237 230/232 250/253 226/232 9/232 0/232 0/232	236/239 219/232 227/232 241/242 16/232 0/232 0/232	239/242 201/232 218/232 221/232 15/232 0/232 0/232	199/232 225/232 205/232 210/232 4/232 0/232 0/232				
2 4 8 16 32 64 Proportion C-µg/L	Survived Binomia Control Type	234/237 230/232 250/253 226/232 9/232 0/232 0/232 Ils Rep 1	236/239 219/232 227/232 241/242 16/232 0/232 0/232 Rep 2	239/242 201/232 218/232 221/232 15/232 0/232 0/232 Rep 3	199/232 225/232 205/232 210/232 4/232 0/232 0/232 Rep 4				
2 4 8 16 32 64 Proportion C-µg/L 0	Survived Binomia Control Type	234/237 230/232 250/253 226/232 9/232 0/232 0/232 0/232	236/239 219/232 227/232 241/242 16/232 0/232 0/232 0/232 Rep 2 232/232	239/242 201/232 218/232 221/232 15/232 0/232 0/232 Rep 3 228/232	199/232 225/232 205/232 210/232 4/232 0/232 0/232 Rep 4 220/232				
2 4 8 16 32 64 Proportion C-µg/L 0 1	Survived Binomia Control Type	234/237 230/232 250/253 226/232 9/232 0/232 0/232 0/232 Rep 1 232/232 232/232	236/239 219/232 227/232 241/242 16/232 0/232 0/232 0/232 Rep 2 232/232 232/232	239/242 201/232 218/232 221/232 15/232 0/232 0/232 0/232 Rep 3 228/232 232/232	199/232 225/232 205/232 210/232 4/232 0/232 0/232 0/232 Rep 4 220/232 199/232				
2 4 8 16 32 64 Proportion C-µg/L 0 1 2	Survived Binomia Control Type	234/237 230/232 250/253 226/232 9/232 0/232 0/232 0/232 Rep 1 232/232 232/232 230/232	236/239 219/232 227/232 241/242 16/232 0/232 0/232 0/232 232/232 232/232 220/232	239/242 201/232 218/232 221/232 15/232 0/232 0/232 0/232 Rep 3 228/232 232/232 202/232	199/232 225/232 205/232 210/232 4/232 0/232 0/232 0/232 Rep 4 220/232 199/232 227/232				
2 4 8 16 32 64 Proportion C-µg/L 0 1 2 4 8	Survived Binomia Control Type	234/237 230/232 250/253 226/232 9/232 0/232 0/232 0/232 1/5 Rep 1 232/232 232/232 230/232 232/232	236/239 219/232 227/232 241/242 16/232 0/232 0/232 0/232 Rep 2 232/232 232/232 232/232 220/232	239/242 201/232 218/232 221/232 0/232 0/232 0/232 Rep 3 228/232 232/232 202/232 219/232	199/232 225/232 205/232 210/232 4/232 0/232 0/232 0/232 222/232 199/232 227/232 206/232				
2 4 8 16 32 64 Proportion C-µg/L 0 1 2 4	Survived Binomia Control Type	234/237 230/232 250/253 226/232 9/232 0/232 0/232 0/232 232/232 232/232 230/232 230/232 232/232 232/232	236/239 219/232 227/232 241/242 16/232 0/232 0/232 0/232 232/232 232/232 220/232 229/232 232/232	239/242 201/232 218/232 221/232 15/232 0/232 0/232 0/232 Rep 3 228/232 232/232 202/232 219/232 222/232	199/232 225/232 205/232 210/232 4/232 0/232 0/232 0/232 222/232 199/232 227/232 206/232 214/232				

Analyst:_____ QA:____

CETIS Test Data Worksheet

26 Sep-16 07:53	(p	1	of	1)
07-6290-8502	99	9	-35	(99)

Report Date: Test Code:

Bivalve Larva									Northwestern Aquatic Science
Start Date: End Date: Sample Date:	14 Sep-16 14:10 16 Sep-16 14:30 14 Sep-16 14:10		Species: Protocol: Material:	Mytilis galloprovincialis EPA/600/R-95/136 (1995) Copper sulfate			Sample Code: Sample Source: Sample Station:	45FF889D Reference Toxicant	
C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes
0	D	1	8	232	243	243	240		10103
0	D	2	14	232	243	243	239		
0	D	3	18	232	228	226	228		
0	D	4	25	232	220	220	216		
1	-	1	16	232	237	237	234		
1		2	32	232	239	239	238		
1		3	27	232	238	242	230		
1		4	7	232	199				
					-	199	199		
2		1	23	232	230	230	230		
2		2	4	232	220	220	219		
2		3	2	232	202	202	201		
2		4	24	232	227	227	225		
4		1	1	232	253	253	250		
4		2	29	232	229	229	227		
4		3	9	232	219	219	218		
4		4	31	232	206	206	205		
В		1	10	232	228	228	226		
В		2	6	232	242	242	241		
в		3	5	232	222	222	221		
В		4	11	232	214	214	210		
16		1	30	232	222	222	9		
16		2	15	232	220	220	16		
16		3	28	232	225	225	15		
16		4	12	232	205	205	- 4		
32	-	1	19	232	153	153	0		
32	-	2	26	232	129	129	0		
32	- •	3	17	232	151	151	0		
32		4	20	232	126	126	0		
64	-	1	13	232	2	2	0		
64	-	2	22	232	0	0	0		
64		3	3	232	0	0		_	
64	-	4	3 21	232	0	1	0		

data entry verified gainst laboratory bench sheets 9-26-16 Mp

Analyst:_____ QA:____

Bivalve Larvai Survival and Development		Northwestern Aquatic Sciences	
Test Type: Development-Survival	Organism: Mytilis galloprovincialis (Bay Mussel)	Material:	Copper sulfate
Protocol: EPA/600/R-95/136 (1995)	Endpoint: Combined Proportion Normal	Source:	Reference Toxicant-REF

Mean:	10.34	Count:	20	-2s Warning Limit:	8.743	-3s Action Limit:	8.04
Sigma:	NA	CV:	8.75%	+2s Warning Limit:	12.23	+3s Action Limit:	13.3

Quality Control Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2015	Sep	25	14:45	10.64	0.3045	0.3461			08-8031-4805	17-8304-1379
2		Oct	1	15:00	11.05	0.7141	0.7964			02-0435-7572	17-5283-9042
3			14	14:20	11.56	1.218	1.328			04-2701-8188	06-5641-7689
4		Nov	4	14:35	10.07	-0.2655	-0.3103			01-4945-0913	12-4167-7901
5		Dec	3	12:10	9.003	-1.337	-1.651			03-1706-3107	08-0944-2928
5	2016	Jan	12	14:40	10.4	0.0586	0.06738			10-6038-5674	20-9220-6975
7			26	13:20	9.075	-1.265	-1.556			18-1116-9330	06-8399-0866
3		Feb	10	14:45	9,559	-0.7811	-0.9367			18-2305-5641	14-7293-2864
9			24	14:50	10.66	0.3167	0.3598			01-7836-7496	17-6653-1457
0		Mar	2	14:40	9.062	-1.277	-1.572			03-1233-9663	15-4736-9649
11		Арг	21	12:50	10.95	0.6119	0.6856			06-2981-4615	06-1924-7869
12			27	13:40	10.36	0.02227	0.02565			10-3412-7541	03-6222-0465
13		May	18	13:50	10.3	-0.04422	-0.05112			00-5077-6110	04-6829-6018
4			26	15:05	9.988	-0.3513	-0.4122			00-2461-1517	20-1645-6539
15		Jun	23	13:50	9.66	-0.6793	-0.8104			20-2900-3441	12-0442-8997
16		Jul	7	14:20	11.37	1.034	1.137			20-3374-2875	12-6544-3567
17			14	14:40	11.36	1.016	1.118			14-8632-5752	09-0596-6683
8			26	17:45	11.38	1.038	1.141			03-9839-1525	11-6670-0698
9		Aug	4	14:30	9.471	-0.869	-1.047			08-0477-0132	01-3411-5201
20		Sep	8	14:35	11.46	1.124	1.231			17-2952-4030	02-3236-2087
21			14	14:10	11.38	1.038	1.14			07-6290-8502	15-4984-2250

Analyst:_____ QA:_____