TOXICITY TEST REPORT

TEST IDENTIFICATION

Test No.: 658-88

<u>Title</u>: Mussel (*Mytilus galloprovincialis*) larval test using static 48-hr exposure to CH2M Hill-Wyckoff Treatment Plant SP11 Field Sample. EPA permit number WAD009248295.

Protocol No.: NAS-XXX-CG/MG2, August 28, 1990, Revision 3 (9-8-01). This protocol complies with the U.S. EPA West Coast chronic toxicity manual (EPA/600/R-95/136) and the ASTM bivalve toxicity method (E 724-89).

STUDY MANAGEMENT

Study Sponsor: CH2M Wyckoff Treatment Plant, 5350 Creosote Place NE, Bainbridge Island, WA 98110. Sponsor's Study Monitor: Mr. Ken Scheffler

Testing Laboratory: Northwestern Aquatic Sciences, P.O. Box 1437, Newport, OR 97365.

Test Location: Newport laboratory.

Laboratory's Study Personnel: G.A. Buhler, B.S., Proj. Man.; G.J. Irissarri, B.S., Study Dir.; L.K. Nemeth, B.A., M.B.A., QA Officer; J. B. Brown, B.S., D.V.M., Assoc. Aq. Toxicol.

Study Schedule:

Test Beginning: 9-12-18, 1550 hrs.

Test Ending: 9-14-18, 1550 hrs.

<u>Disposition of Study Records</u>: All raw data, reports and other study records are stored at Northwestern Aquatic Sciences, 3814 Yaquina Bay Rd., Newport, OR 97365.

<u>Statement of Quality Assurance</u>: The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

TEST MATERIAL

Description: CH2M Hill-Wyckoff Treatment Plant SP11 Ground Water Sample. Details are as follows:

NAS Sample No.	6239G
Collection Date	9-11-18
Receipt Date	9-12-18
Temperature (°C)	4.9
pH	7.6
Dissolved oxygen (mg/L)	9.2
Salinity (%)	6.0

<u>Treatments</u>: Samples briefly temperature-equilibrated prior to use. <u>Storage</u>: Used date of receipt.

DILUTION WATER

<u>Source</u>: Yaquina Bay, Oregon seawater. <u>Date of Collection</u>: 9-11-18 <u>Water Quality</u>: Salinity, 31.0 ‰; pH, 8.0 <u>Pretreatment</u>: Filtered to ≤0.45 µm, aerated, salinity adjusted Milli-Q deionized water.

BRINE USED FOR DILUTION WATER AND SALINITY CONTROL

Source: Filtered Yaquina Bay, Oregon, sea water Salinity: 100.0 ‰ Date of Preparation: 5-1-18 Method of Preparation: Freezing method

TEST ORGANISMS

<u>Species</u>: Mussel (*Mytilus galloprovincialis*). <u>Age</u>: 1.5 hrs post-fertilization. <u>Source</u>: Taylor Shellfish Farms, Shelton, WA. <u>Conditioning</u>: Adult mussels were received on 9-11-18 and placed in trays with flowing seawater. Holding conditions prior to testing were: temperature, 15.9 °C; pH, 7.9; salinity, 34.5‰; and dissolved oxygen, 6.6 mg/L. Photoperiod was natural daylight.

Source of Gametes: 2 females and 2 males.

TEST PROCEDURES AND CONDITIONS

Test Chambers: 30 ml borosilicate glass vials containing 10 ml of test solutions.

Test Concentrations: 70, 35, 18, 9, 4, 2, and 0% (Control).

<u>Brine Control</u>: A brine control was run in which salinity-adjusted Milli-Q[®] deionized water (6.0 ppt) was substituted for effluent in the preparation of the highest test solution concentration. As a result, the amount of brine in the brine control was the same as used in the 70.0% effluent test concentration.

Replicates/Treatment: 4

Initial Concentration of Test Organisms: 22.9/ml.

Volume of Subsamples Taken for Counting: NA

Water Volume Changes per 24 hr: None (non-renewal static test).

Aeration: None

Feeding: None

<u>Effects Criteria</u>: The effect criteria used were: 1) ability of embryos to survive and produce completely developed shells; and 2) survival. Data collected were: 1) the initial embryo density; 2) the number of abnormal larvae observed; and 3) the number of normal (live with completely developed shells) larvae observed.

<u>Water Quality and Other Test Conditions</u>: Temperature, 15.8 ± 0.5 °C; pH, 8.1 ± 0.2 ; salinity, $30.8 \pm 0.7\%$; and dissolved oxygen, 8.0 ± 0.1 mg/L. Photoperiod 16:8 hr, L:D.

DATA ANALYSIS METHODS

The proportion of surviving larvae, and the proportion of normal surviving larvae were calculated for each treatment replicate. The calculation used for the proportion of normal surviving larvae, Combined Proportion Normal, was the combined endpoint specified by EPA/600/R-95/136. The means were obtained for each treatment level and the latter were then corrected for control response using Abbott's formula. The LC50 (survival) and the EC50 (normality) were calculated, where data permitted, using either the Maximum-Likelihood Probit or the Trimmed Spearman-Karber methods. An IC25 was determined by linear interpolation with bootstrapping. NOEC and LOEC values for survival and normality were computed using either Dunnett's test, T-test with Bonferroni's adjustment, Steel's Many-One Rank Test, or Wilcoxon Rank Sum Test with Bonferroni Adjustment. The appropriate test was selected after evaluating the data for normality and homogeneity of variance. An arcsine-square root (angular) transformation was performed on the data prior to statistical analysis. The statistical software employed for these calculations was CETIS, v1.8.7.4, Tidepool Scientific Software. Toxic units (TU_e) were computed as 100/NOEC, 100/EC50, or 100/IC25.

PROTOCOL DEVIATIONS

None.

REFERENCE TOXICANT TEST

The routine reference toxicant test is a standard multi-concentration toxicity test using copper sulfate to evaluate the performance of the test organisms used in the effluent toxicity test. The performance is evaluated by comparing the results of this test with historical results obtained at the laboratory. A summary of the reference toxicant test result is given below. The reference toxicant test raw data are found in Appendix III.

Test No.: 999-3809

<u>Reference Toxicant and Source</u>: Copper as CuSO₄-5H₂O, Argent Lot No. 0195, 1.0 mg/ml stock prepared 3-27-18. <u>Test Date</u>: 9-12-18

Dilution Water Used: Yaquina Bay, OR seawater. Salinity 31.0 ppt, pH 8.0

<u>Results</u>: EC50, 10.7 μ g/L; NOEC, 4 μ g/L; IC25, 9.53 μ g/L. The EC50 result was within the laboratory's control chart warning limits (8.60 – 11.7 μ g/L).

TEST RESULTS

Detailed tabulations of the test results are given in Table 1. The biological effects, given as the NOEC, LOEC, EC50/LC50 for normality and survival, and IC25 for normality are summarized below.

	Combined Proportion Normal	Survival
NOEC (%)	70 (TU _c =1.43)	70 (TU _c =1.43)
LOEC (%)	>70 (TU _c <1.43)	>70 (TU _c <1.43)
EC50/LC50 (%)	>70 (TU _c <1.43)	>70 (TU _c <1.43)
(95% C.l.)		
Method of Calculation	By Data Inspection	By Data Inspection
IC25 (%)	>70 (TU _c <1.43)	
(95% C.I.) Method of Calculation	Linear Interpolation	

DISCUSSION/CONCLUSIONS

The NOEC for combined proportion normal was 70% effluent. The EC50 and IC25 for abnormal development were both >70%. The brine control test indicated that the brine did not contribute to effluent toxicity.

STUDY APPROVAL

Con Buth 9-25-78 Study Director Date Study Director Date 9-20-18 Project Manager Date Study Director Date 9-20-18 Michael J. Cld 424 9/25/18 Quality Assurance Unit Date 9-20-18 Laboratory Director Date Quality Assurance Unit Date Date

Oulie R. >	Frone 9	-20-18
Quality Assurance Unit	•	Date

Test Material Concentration					Ргор	bined ortion mal*		ortion ived*
(%)	Repl.	Norm.	Abn.	Total	-	Mean		Mean
70	1	221	7	228	0.965		0.996	
	2	206	2	208	0.900		0.908	
	3	231	5	236	0.979		1.000	
	4	215	5	220	0.939	0.946	0.961	0.966
35	1	242	3	245	0.988		1.000	
	2	229	3	232	1.000		1.000	
	3	252	4	256	0.984		1.000	
	4	241	2	243	0.992	0.991	1.000	1.000
18	1	223	6	229	0.974		1.000	
	2	249	4	253	0.984		1.000	
	3	241	5	246	0.980		1.000	
	4	237	2	239	0.992	0.982	1.000	1.000
9	1	241	4	245	0.984		1.000	
	2	210	5	215	0.917		0.939	
	3	238	3	241	0.988		1.000	
	4	225	3	228	0.983	0.968	0.996	0.984
4	1	242	2	244	0.992		1.000	
	2	221	7	228	0.965		0.996	
	3	222	3	225	0.969		0.983	
	4	235	2	237	0.992	0.980	1.000	0.995
2	1	231	5	236	0.979		1.000	
	2	230	2	232	0.991		1.000	
	3	233	4	237	0.983		1.000	
	4	235	4	239	0.983	0.984	1.000	1.000
Normal Control	1	248	6	254	0.976		1.000	
	2	230	5	235	0.979		1.000	
	3	239	1	240	0.996		1.000	
	4	216	6	222	0.943	0.974	0.969	0.992
Brine Control ¹	1	234	3	237	0.987		1.000	
	2	235	2	237	0.992		1.000	
	3	243	3	246	0.988		1.000	
	4	224	6	230	0.978	0.986	1.000	1.000

Table 1. Test response of mussel (*Mytilus galloprovincialis*) larvae exposed to CH2M Hill-Wyckoff Treatment Plant SP11 Field Sample.

* Based on an average initial count of 229 embryos per 10 ml sample, except that for the case in the combined proportion normal endpoint where number normal>average initial count, number normal is divided by the total count (as per EPA/600/R-95/136).

+ Result significantly different (P \leq 0.05) from the control.

¹Salinity-adjusted Milli Q[®] deionized water (6.0 ppt) was substituted for effluent so that the brine concentration is equivalent to that for the 70.0% effluent concentration.

APPENDIX I

PROTOCOL

TEST PROTOCOL

BIVALVE, PACIFIC OYSTER OR BLUE MUSSEL, 48-HR LARVAL DEVELOPMENT TEST

1. INTRODUCTION

1.1 <u>Purpose of Study</u>: The purpose of this test is to estimate chronic toxicity of effluents, receiving waters, or other test materials using bivalve larval development in a 48-hr static test.

1.2 <u>Referenced Method</u>: This protocol complies with the U.S. EPA West Coast chronic toxicity manual (EPA/600/R-95/136), ASTM bivalve toxicity method (E 724-89), and the WDOE toxicity guidance manual (WQ-R-95-80). Amendments may be incorporated to meet other methods or regulatory requirements as needed.

1.3 <u>Summary of Method</u>: Pacific oyster or blue mussel larvae (<4-hr-old) are exposed for 48-hr to different concentrations of test material in a static test. Salinity adjustment and brine controls are used when testing low salinity effluents. The test chambers are 30 ml borosilicate glass vials each containing 10 ml of test solution. Four replicate chambers each with 15-30 larvae per milliliter of test solution are employed at each test concentration. Test results are based on abnormal shell development and mortality. Data analysis normally consists of the calculation of an EC50 and IC25 for "percent normal", the calculation of an LC50 for percent survival, and the determination of NOECs and LOECs for both criteria. Special requirements may apply for the State of Washington or other regulatory entities. A test summary table is appended to the end of this protocol.

2. STUDY MANAGEMENT

2.1 Sponsor's Name and Address:

2.2 Sponsor's Study Monitor:

2.3 <u>Name of Testing Laboratory</u>: Northwestern Aquatic Sciences
3814 Yaquina Bay Road
P.O. Box 1437
Newport, OR 97365

2.4 Test Location:

2.5 Laboratory's Personnel to be Assigned to the Study: Study Director: ______Quality Assurance Unit: ______Aquatic Toxicologist: _______Aquatic Toxicologist: ______Aquatic Toxicologist: _______Aquatic Toxicologist: ______Aquatic Toxicologist: _______Aquatic Toxicologist: ______Aquatic Toxicologist: _______Aquatic Toxicologist: ________Aquatic Toxicologist: _______Aquatic Toxicologist

2.6 <u>Proposed Study Schedule</u>: Effluent/receiving water tests must begin within 36 hours of the end of the sample collection period. In no case should the test be started more than 72 hours after sample collection.

2.7 <u>Good Laboratory Practices</u>: The test is conducted following the principles of Good Laboratory Practices (GLP) as defined in the EPA/TSCA Good Laboratory Practice regulations revised August 17, 1989 (40 CFR Part 792).

3. TEST MATERIAL

An effluent, receiving water sample, pore water or elutriate sample, or other test material as requested. A reference toxicant test is run concurrently.

4. DILUTION WATER

Dilution water is filtered ($\leq 0.45 \mu m$) Yaquina Bay seawater or other suitable seawater, adjusted to 30 ± 2 ‰ salinity with deionized water and/or hypersaline brine. Hypersaline brine is prepared from filtered ($\leq 0.45 \mu m$) Yaquina Bay water adjusted to 100 ‰ by the freezing method. When testing low salinity effluents, hypersaline brine is administered with dilution water for salinity adjustment.

5. TEST ORGANISMS

5.1 <u>Species</u>: Commonly used West Coast species are Pacific oyster, *Crassostrea gigas*, or blue mussel, *Mytilus edulis*, *M. galloprovincialis*, or *M. trossulus*. These three *Mytilus* species were formerly all believed to be a single cosmopolitan species, *M. edulis* (Geller et al., 1993; McDonald & Koehn, 1988; McDonald et al., 1991). The test conditions specified in this protocol apply to the aforementioned species. Other species (e.g. *M. californianus*, *C. virginica* and *Mercenaria mercenaria*) are allowed by one or more of the referenced methods applicable to this protocol, but their use may require modified test conditions or procedures.

5.2 <u>Source</u>: Adult oysters are purchased from commercial sources. Mussels are purchased from commercial sources or field collected as required.

5.3 Age at Study Initiation: <4-hr-old embryos.

5.4 <u>Conditioning of Adult Oysters</u>: Adult oysters may be conditioned if needed by holding for one to eight weeks in seasoned plastic tubs supplied with about 1-2 L/min of unfiltered Yaquina Bay, OR water (25-32 ‰) at a temperature of approximately 20°C. For mussels, conditioning is not ordinarily required.

5.5 <u>Spawning and Fertilization</u>: Adult bivalves are cleaned by brushing and placed into spawning trays supplied with seawater. Oysters are spawned by gradually increasing the water temperature to 25-28°C (23-25°C for mussels) over approximately a one-hour period. Sperm from a sacrificed male may be added to the spawning tray to aid stimulation of natural spawning in oysters. If spawning does not occur, the water is cooled to about 20°C (16°C for mussels) and the cycle is repeated. Bivalves that begin spawning are isolated in clean seawater for collection of gametes. After spawning is complete, the temperature is returned to approximately 20°C (16°C for mussels).

Eggs from two or more females are combined and filtered (200-300 μ m) to remove feces and psuedofeces and adjusted in concentration to about 2500-6000/ml. Eggs are then fertilized by addition of sperm from two or more males at a concentration of 10⁵ to 10⁷/ml. For mussels, ten minutes after adding sperm, the egg and sperm mixture is poured through a 25 μ m screen to remove excess sperm; then the eggs are rinsed and resuspended in dilution water. Next, the embryo density is adjusted to between 1500 and 3000/ml. Embryos are kept suspended by frequent gentle agitation with a perforated plunger and the temperature is maintained at approximately 20°C (16 ± 1°C for mussels). The quality of the embryos is verified before testing by microscopic examination. Embryos are used to initiate the test within 4 hours of fertilization

6. DESCRIPTION OF TEST SYSTEM

6.1 <u>Preparation of Test Concentrations</u>: Test concentrations are prepared by manual dilution of test material with dilution water or with a combination of hypersaline brine and dilution water. Hypersaline brine may be required when testing dilute effluents to adjust the salinity of the test solutions to the appropriate salinity. Stock test solutions are prepared then distributed to appropriate replicate test chambers. The method for determining the appropriate volume of test material, brine and dilution water to be used in preparing the stock test solution is described in the laboratory SOP for salinity adjustment using hypersaline brine. Prior to mixing, the test material and dilution water are brought to test temperature. Effluents may not be aerated, or are aerated only if necessary to maintain a minimal dissolved oxygen concentration. When necessary, a brine control is prepared at the highest test concentration by substituting for the effluent deionized water to which has been added sufficient dilution water to achieve a salinity equal to that of the effluent.

6.2 <u>Test Chambers and Environmental Control</u>: Larvae are tested in 30 ml glass vials containing 10 ml of the test solutions. Temperature control of test chambers is provided by placement in a constant temperature room. No aeration is required. The required photoperiod is achieved by timer control of the room lights.

6.3 <u>Cleaning</u>: All laboratory glassware, including test chambers, is cleaned as described in EPA/600/4-90/027F. New glassware and test systems are soaked 15 minutes in tap water and scrubbed with detergent (or cleaned in automatic dishwasher); rinsed twice with tap water; carefully rinsed once with fresh, dilute (10%, V:V) hydrochloric or nitric acid to remove scale, metals, and bases; rinsed twice with deionized water; rinsed once with acetone to remove organic compounds (using a fume hood or canopy); and rinsed three times with deionized water. Test systems and chambers are rinsed again with dilution water just before use. For this test, there is an exception in that the <u>test chambers</u> are used new and unwashed

7. EXPERIMENTAL DESIGN AND TEST PROCEDURES

7.1 Experimental Design: The test involves exposure of test embryos, within 4 hr of fertilization, to five or more test material concentrations and a dilution water control. Low salinity effluents require brine adjustment of salinity. Brine controls (substituting Milli-Q or low salinity water for the effluent) are run when brine is used to test effluent concentrations up to 70% effluent. A typical effluent concentration series might be 70%, 35%, 18%, 9%, 4%, 2%, 1%, and control. Exposures are for approximately 48 hours, but in no case shall the duration of exposure exceed 54 hours. Each treatment and control consists of four replicate 30 ml test vessels containing 10 ml of test solution. The final density of the embryos is between 15 and 30 embryos/ml in the test solutions. A stratified random design is employed to position vials in the temperature control chamber.

7.2 <u>Test Procedure</u>: Each test container is filled with 10 ml of test solution to which is added embryos at a final density of 15-30 embryos/ml. The embryos are incubated at 20 ± 1 °C (16 ± 1 °C for mussels) for approximately 48 hr to permit development into prodissoconch I larvae. Larvae are subsequently counted to determine the total number of abnormal and normal surviving larvae. These data are used for calculating the EC50s and LC50s.

7.3 <u>Effect Criteria</u>: The effect criteria are: 1) failure of embryos to survive and produce completely developed shells (abnormal/dead); and 2) mortality of the embryos.

7.4 <u>Test Conditions</u>: The test temperature is $20 \pm 1^{\circ}$ C for oysters, $16 \pm 1^{\circ}$ C for blue mussels. The test temperatures specified by EPA (EPA/600/R-95/136) are $15 \pm 1^{\circ}$ C or $18 \pm 1^{\circ}$ C, but these specifications were based on erroneous assumptions of the agency authors. Consequently, this protocol specifies $16 \pm 1^{\circ}$ C. The salinity is $30 \pm 2\%$. The dissolved oxygen concentration should be at least 60% of saturation at the test temperature and salinity. The photoperiod is a 16:8 hr, L/D cycle of fluorescent light. Test chambers are 30 ml glass vials held in a constant temperature room to obtain precise temperature control.

7.5 <u>Beginning of Test</u>: 10 ml of each test concentration is dispensed to each of the corresponding four replicate test vials. The test is then started by the addition of 0.1 ml of a suspension (1,500-3,000 embryos/ml) of <4-hr-old

embryos to the test chambers. Six extra vials of seawater controls are preserved with 5% buffered formalin for establishing the initial count of embryos in the test vessels.

7.6 Feeding: Embryos are not fed during the test.

7.7 <u>Test Duration, Type and Frequency of Observations, and Methods</u>: The test duration is approximately 48 hours. The type and frequency of observations to be made during the test are summarized as follows:

Type of Observation	Times of Observation
Biological Data	
Initial number of embryos/10 ml	At start of test in six 0-time vials
Number of live abnormal larvae/10 ml	At end of test (48 hr)
Number of live normal larvae/10 ml	At end of test (48 hr)
Physical and Chemical Data	
Temperature	Daily - in water bath or two locations in the temperature control room. Beginning & end of test - in the beaker
	reservoirs of each test concentration and controls.
Dissolved oxygen, salinity & pH	Beginning & end of test - in the beaker reservoirs of each test
	concentration and controls.

The initial number of embryos is determined according to method 2 (Sect. 11.4.6.2) of ASTM 1989. This consists of the average count of all embryos exhibiting cell division in six extra test containers at time zero. Live abnormal larvae are those observed at 48 hr in which shell development is incomplete. Live normal larvae are those observed at 48 hr that have completely developed shells containing meat. Larvae possessing misshapen or otherwise malformed shells are considered normal, provided shell development has been completed.

Temperature is measured using a thermister thermometer. Dissolved oxygen is measured using a polarographic oxygen probe calibrated according to the manufacturer's recommendations. Salinity is measured using a refractometer. The pH is measured with a pH probe and a calibrated meter with scale divisions of 0.1 pH units.

8. <u>CRITERIA OF TEST ACCEPTANCE</u>:

For the EPA West Coast bivalve toxicity method (EPA/600/R-95/136) the test is considered acceptable if:

- 1. ≥70% of embryos introduced into a required control treatment result in live larvae (≥50% for mussels).
- 2. normal shell development in surviving controls is $\geq 90\%$.

For the WDOE bivalve toxicity method (Publication No. WQ-R-95-80) the test is considered acceptable if:

- 1. ≥70% of embryos introduced into a required control treatment result in live larvae.
- 2. normal shell development in surviving controls is $\geq 90\%$.
- 3. the test must achieve a minimum significant difference (%MSD) of <25% relative to the control.
- 4. the coefficient of variation of the six zero time counts must be $\leq 15\%$.

For the ASTM bivalve toxicity method (E 724-89) the test is considered acceptable if:

- 1. All test chambers were identical.
- 2. Treatments were randomly assigned to individual test chamber locations.
- 3. Either a dilution water or solvent control was included.
- 4. All brood stock animals came from the same location.
- 5. Embryos were used at <4 hr after fertilization.
- 6. \geq 70% of embryos introduced into a required control treatment resulted in live larvae with completely developed shells at the end of the test.
- 7. The DO and temperature were measured as specified in Sect. 7.7 of the method.
- 8. Every measured DO concentration was between 60% and 100% saturation.
- The difference between the time-weighted average measured temperatures for any two test chambers from the beginning to the end of the test was ≤1°C.

- 10. Any single measured temperature was not more than 3°C different from the mean of the time-weighted average measured temperatures for individual test chambers.
- 11. At any one time, the difference between the measured temperatures in any two chambers was not more than 2°C.
- 12. Each data set must have at least one mean treatment response, corrected for controls, that is <37% and one that is >63% (not applicable for many applications).

9. DATA ANALYSIS

The proportion of normal larvae and the proportion of surviving larvae are calculated for each treatment replicate. The means are obtained for each treatment level and the latter are then corrected for control response using Abbott's formula.

For ASTM (ASTM Standard E 724-89) and EPA (EPA/600/R-95/136) the LC50 (survival) and the EC50 (normal) are calculated, where data permits, using either the Maximum Likelihood Probit or the Trimmed Spearman-Karber methods (EPA 600/4-90-027F). An IC25 is calculated by linear interpolation with bootstrapping (EPA 600/4-89/001a). NOEC and LOEC values for survival and normality are computed using either Dunnett's test, T-test with Bonferroni's Adjustment, Steel's Many-One Rank Test, or Wilcoxon Rank Sum Test with Bonferroni's Adjustment. The appropriate test is selected after evaluating the data for normality and homogeneity of variance. An arcsine square root transformation is performed on the data prior to statistical analysis. The statistical software employed for these calculations is ToxCalc, (most recent version), Tidepool Scientific Software.

For special endpoints requirements applicable in the State of Washington, refer to the WDOE guidance manual (Publication No. WQ-R-95-80, Revised December 1998) or latest version.

Some agencies require that toxic units (TU) be reported. This is reported as either toxic unit acute (TU_a), which is 100/LC50, or toxic unit chronic (TU_c), which is 100/NOEC.

10. <u>REPORTING</u>

A report of the test results must include all of the following standard information at a minimum:

- 1. Name and identification of the test; the investigator and laboratory;
- 2. Information on the test material;
- 3. Information on the dilution water;
- 4. Detailed information about the test organisms including acclimation conditions;
- 5. A description of the experimental design and test chambers and other test conditions including water quality;
- 6. Information about any aeration that may have been required;
- 7. Definition of the effect criteria and other observations;
- 8. Responses, if any, in the control treatment;
- 9. Tabulation and statistical analysis of measured responses;
- 10. A description of the statistical methods used;
- 11. Any unusual information about the test or deviations from procedures;
- 12. Reference toxicant testing information.

11. STUDY DESIGN ALTERATION

Amendments made to the protocol must be approved by the Sponsor and Study Director and should include a description of the change, the reason for the change, the date the change took effect, and the dated signatures of the Study Director and Sponsor. Any deviations in the protocol must be described and recorded in the study raw data.

12. REFERENCE TOXICANT

Reference toxicant testing should be included with each study or at regular intervals as defined in the Quality Assurance Program of the laboratory.

13. <u>REFERENCES AND GUIDELINES</u>

Geller, J.B. et al. 1993. Interspecific and intrapopulation variation in mitochondrial ribosomal DNA sequences of Mytilus spp. (Bivalvia: Mollusca). Molecular Marine Biology and Biotechnology. 2:44-50.

McDonald, J.H. and R.K. Koehn. 1988. The mussels Mytilus galloprovincialis and M. trossulus on the Pacific coast of North America. Marine Biology. 99:111-118.

McDonald, J.H. et al. 1991. Allozymes and morphometric characters of three species of Mytilus in the northern and southern hemispheres. Marine Biology.

Standard Guide for Conducting Static Acute Toxicity Tests with Embryos of Four Species of Saltwater Bivalve Molluscs. 1989. ASTM Standard E 724-89.

U.S. Environmental Protection Agency. 1989. Supplement to "Short-term methods for estimating the chronic toxicity of effluents and surface waters to freshwater organisms". Revision 1. EPA/600/4-89/001a.

Washington State Department of Ecology. 1998. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Publication No. WQ-R-95-80. Revised December 1998.

Weber, C.I. (Ed.) 1993. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms (Fourth Edition). EPA/600/4-90/027F.

U.S. Environmental Protection Agency. 1995. Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms (First Edition). EPA/600/R-95/136.

14. APPROVALS

Name

Date

for

for Northwestern Aquatic Sciences

Name

Date

Appendix A Test Conditions Summary

1. Test type:	Static non-renewal
2. Test duration:	48 hours, or until complete development up to 54 hours
3. Temperature:	$20 \pm 1^{\circ}$ C oysters
	16 ± 1°C mussels (ASTM), 15 or 18 ± 1°C (EPA 1995)
4. Dissolved oxygen:	\geq 60% saturation
5. Salinity:	30 ± 2‰
6. Light quality & intensity:	Ambient laboratory light (50-100 ft-c)
7. Photoperiod:	16:8 hr L/D
8. Test chambers:	30 ml glass vials
9. Test solution volume:	10 ml per replicate
10. Renewal of test solutions:	None
11. Age of test organisms:	<4 hr old embryos
12. No. of larvae/container:	150-300
13. No. of replicates/treatment:	4
14. No. of zero time replicates:	6
15. Feeding regime:	Organisms are not fed during the test.
16. Aeration:	None. Initially aerated if necessary to achieve >60% saturation.
17. Dilution water:	Filtered Yaquina Bay seawater, salinity adjusted to 30 ± 2‰ and filtered to
	≤0.45 μm.
18. Effects measured:	Survival and normal shell development.
19. Test acceptability:	≥70% of embryos introduced into a required control treatment resulted in
	live larvae (≥50% for mussels, EPA 1995); ≥90% normal shell development
	in surviving controls; must achieve minimum significant difference
	(%MSD) of <25% relative to the control. The cv of six zero time counts
	must be $\leq 15\%$.
20. Sample volume required:	1 L normally requested.

APPENDIX II

RAW DATA

NORTHW	/ ESTEF	RN AQUATIC S BI\		L TEST BASED C		TOCOL NO. NAS-XXX-CG/MG2 /136
Test No.	658	3-88 Client	:CH2	2M Hill - Wyckoff		TOCOL NO. NAS-XXX-CG/MG2 /136 Investigator
STUDY N	IANAG	EMENT				
Client:		CH2M Hill Wy	ckoff Treatme	nt Plant, 5350 Cre	osote Place NE,	Bainbridge Island, WA 98110
Client'	s Study	Monitor:	Mr. Stanley V	Varner	· · ·	
Testin	g Labor	atory: Northwe	stern Aquatic	Sciences		
		: Newport Labo				
Labora	atory's S	Study Personne		6	le .	
		tudy Dir.		/G.J. Irissarri		
		<u>L.K</u> . N				
1.	<u> </u>	Biblin	X3	2.		
3.				4.		
	Schedu					
Test B	leginnin	g: <u>1</u> -	12-18 13	50	Test Ending:	9-14-18 1550
TEST MA	TERIA	L				
De	escriptio	on:6	LOUND WAT	EL COMPOSITE	SP-11	
		iple No.		62396		
		ollection:		9-11-15		
	ate of R			9-12-18		
		ure (deg C):		4.9		
рH				7.6		
		oxygen (mg/L		9.2		
		ity (umhos/cm/):			
		(mg/L):		(ment		
	kalinity				,	
	alinity (p			6.0		
		rine (mg/L):				
10	otal amr	nonia-N (mg/L):			
			-:			
DILUTIO		ER				
De	escriptic	n:	Yaquina Bay,	OR		
Da	ate of C	ollection:	9-1	-18	Salinity (ppt)) 31.0 pH 8.0
Tr	eatmen	ts: Aerate	ed, filtered to <	≤ 0.45 um, salinity	adjusted with Mil	li-Q deionized water
_						
TEST OR	CANIS	MC	_			
	ecies:	-			5	tota Dessivado - Contra St
•	ource:		GALLOPRO			ate Received: <u>9-11-18</u>
		Data:	SHELLFIS	h Farms, 5	HELTON, WA	
		Temp (deg.C)	рН	Sal (ppt)	D.O. (mg/L)	Comments
4.	-12-17	15,9	7.9	34.5		Held outside in trays of
E.	1-10	13; <u> </u>	<u> </u>		<u>6,6</u>	flowing seawater
-				-		
-				+		
				+		<u> </u>
-				1		<u> </u>
-	Mean			++		
-	S.D.			+		<u> </u>
_	(N)			<u> </u>		

Photoperiod during acclimation: Outdoor ambient conditions

NORTHWESTERN AQUATIC SCIENCES

PROTOCOL	. NO.	NAS-XXX-	-CG/MG2
----------	-------	----------	---------

BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Test No.	658-88	Client_	nt CH2M Hill - Wyckoff Investig					stigator			
Spawni Numbe	AWNING AND GAMETE HANDLINGSpawning: Initial:1136Final: 1245 Fertilization: 1420 Number of organisms used:females:2males:2Egg Dilution (1 ml diluted to 100 ml):Count/ml of dilution:1. 31.7 3.30Mean: 31.7 Dilution factor = DF (mean x 100/2500) =1.31.31.31.7										
TEST PRO Test co				_	d): <u>70,</u>	35, 18,	9, 4,	<u>, 2, 0% + B</u>	rine Cont	rol	
Organis Feeding	Test chamber: 30 ml glass vials Test volume: 10 ml Replicates/treatment (4): Organisms/ml (15-30): 12.9 Test water changes: None Aeration during test: None Feeding: None Photoperiod: 16L:8D Salinity: 30 +/- 2 ppt Temperature: 20 +/- 1 °C, oysters; 16 +/- 1 °C, mussels Beaker placement: Stratified randomization										
RANDOMIZ	ZATION C	HART						·			· · · · · · · · · · · · · · · · · · ·
A	9	35	CONTROL		ø	Z		18	4		
E	3 18	70	20	BRINE		4		ø	35		
C	70	2	18	ø	4	BRIN		35	9		
0	BRING LONSTROL	٩	D	35	2	70		4	18		
This tes If a brin In makin	PREPARATION OF TEST SOLUTIONS This test uses a brine control If a brine control is used, follow SOP #6208 to prepare test solutions Date of brine preparation: $\underline{s-i-i5}$; brine salinity (ppt) $\underline{i00.0}$ Source of seawater: Yaquina Bay, OregonWhere: VB=volume brine VB=volume brine VE=volume effluent SB=salinity of brine SE=salinity of effluent TS=target salinityVB =VE $(TS - SE)$ (SB - TS)=VE ($\underline{0.343}$)Where: VE=volume brine VE=volume brine SE=salinity of brine SE=salinity of effluent TS=target salinity						e effluent y of brine y of effluent				
deionize			the effluen	t.							
	Test Conc. (%) 70		Effluer (ml/100 70	ml)	Brine (ml/100 24.0	ml)	Dilution Water (ml/100ml) Brought up to a final		ml)	-	
9-12-18	35		35		12.4			volume of 1		-	
651	18		18		6.7			with dilutior]	
	9		9		3,1					-	
	4		4		<u> </u>	1	<u> </u>			-	
					0.1 Ø	<u> </u>				-	
	Brine Co	ntrol 🕷	φ		24.0					1	
	* 7	AT	6.0 PP	T WAS	MIXED	w/ 2	4.0	DEIONIE DML OF DITH DI	BRINE	,	

NORTHWESTERN AQUATIC SCIENCES

PROTOCOL NO. NAS-XXX-CG/MG2

BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Test No.	658-88	Client	<u></u>	CH2M Hill	- Wyckoff	,	Investigator	
			WATER	QUALITY	DATA			
	Date:	4-12-18	initials:	Z	Date:	9-14-18	initials:	<u>}8</u>
Conc. (%)	Temp. (deg.C)	рН	Sal. (ppt)	DO (mg/L)	Temp. (deg.C)	рН	Sal. (ppt)	DO (mg/L)
70 35 18	15.2 15.7 15.9	7.7 7.8 7.9	31.0 31.0 29.5	7.8	15.4 15.4 14.5	8.4	31.0 31.0 29.0	8.0 8.0
9	16-2 16-3 16-3	7.9	30.0	7.9	15.4 15.5 15.5	8.1	305 31.0	8.0 8.0
Control Brine control	16.1	8.0	31.0 31.5 31.5	8.0	15.5	8.1 8.0	31.0 31.5 31.0	8.0 8.0 8.0
WATER QUA		<u>Mean</u> 15,8	<u>SD</u>	N	Roo	m/ Water b	ath temper	ature: (⁰ C)
Temperature (°C): 15,% pH 9.1 Salinity (ppt): 30,% DO (mg/L): 7,0			0.5 0.2 0.7 0.1	16 16 16 16	Day 1: 15-4 Day 1: 15-5			
,		48 637	LARVA		- Djata	-	18 ×3 -	
Conc. (%)		cate 1	· · ·	cate 2	Replic	cate 3		cate 4

(%)	N	A	N	A	N	A	N	Α
L					I			
L					┨───── ┤			
70	221	7	206	2	231	6	215	-5
35	242	3	229	3	252	-4	241	e
18	223	6	249	4	241	5	237	2
9	241	4	210	5	738	3	225	3
4	242	2	221	7	222	3	235	2
2	231	5	230	2	233	4	235	4
Control	248	6	230	5	239		216	6
Brine control	234	3	235	2	273	3	224	6
Zero time	226	237	222	219	231	237	-	~
<u>Zero time:</u>	Mean	29_SD	ę	N <u>6</u>		CV=(sd/i	mean)x100	3.3%

Remarks:

130 SE Lynch Rd. Shelton WA 98584

Order	ORD00405054
Date	9/10/2018
Page	1

Bill To:

NORTHWESTERN AQUATIC SCIENCES 3814 YAQUINA BAY RD NEWPORT OR 97365

Ship To:

NORTHWESTERN AQUATIC SCIENCES 3814 YAQUINA BAY RD NEWPORT OR 97365

Customer	ID	Purchase Order No.	Salesperso	n iD	Shipping Me	thod	Payment Terms	R	g Ship Date	Master No.
11117			A931		FED EX		CREDIT CARD	9/	0/2018	396,649
Ordered	Shipped	Item Number		Description						
10	10	10264		MS Totten I	Inlet Mussel Re	-	8			Ext. Price
							Subtotal Misc			\$0.00
							Tax			\$0.00
							Freight			\$0.00
							Trade Disc	oun		\$0.00
							Total			

CETIS Analytical Report					•	ort Date: Code:			40 (p 2 of 2) 3-95 79-0496
Bivalve Larval Survival and Deve	lopment Test						Northweste	ern Aquat	ic Sciences
Analysis ID: 11-8164-0850 Analyzed: 20 Sep-18 9:37		roportion Survion		e		IS Version		8.7	
Batch ID: 09-9972-9530 Start Date: 12 Sep-18 15:50 Ending Date: 14 Sep-18 15:50 Duration: 48h	Test Type: D Protocol: E Species: N	evelopment-S PA/600/R-95/ lytilis gallopro amilche Sea f	Survival 136 (1995) vincialis		Anal Dilue Brine Age:	yst: ent: Ya e:	quina Bay Se	awater	
Sample ID: 13-5101-8713 Sample Date: 11 Sep-18 09:20 Receive Date: 12 Sep-18 14:30 Sample Age: 30h (4.9 °C)	Material: Ir	086E8D9 ndustrial Efflue Vyckoff	ent		Clier Proje		yckoff Treatme	ent Plant	
Data Transform Zo Angular (Corrected) N	ata Alt Hyp A C<>⊤	Trials NA	Seed NA		PMSD 1.66%	Test Re	sult proportion sur	vived	
Wilcoxon Rank Sum Two-Sampl						. 20000			
Control vs Control Dilution Water Brine Reage	Test Sta	at Critical NA	Ties DF	P-Value	P-Type Exact	Decision Non-Sig	n(α:5%) hificant Effect	\geq	
Auxiliary Tests Attribute Test Extreme Value Grubbs Extreme	me Value	Test Stat 2.291	Critical 2.127	P-Value 0.0077	Decision(Outlier De				
ANOVA Table									
Source Sum Square Between 0.002545141 Error 0.01527085 Total 0.01781599	s Mean S 0.00254 0.00254	5141	DF 1 6 7	F Stat 1	P-Value 0.3559	Decision Non-Sign	n(α:5%) hificant Effect		
Distributional Tests	_								
Variances Levene Equa Distribution Shapiro-Wilk Distribution Kolmogorov-	Equality of Varian lity of Variance W Normality Smirnov D Irling A2 Normality	9 0.7065 0.375	Critical 13.75 13.75 0.6451 0.3313 3.878	P-Value 0.3559 0.0240 0.0027 0.0015 0.0049	Non-norm	iances	tion		
Proportion Survived Summary									
C-%Control TypeC0Dilution Water40Brine Reagent4	ount Mean 0.9924 1	95% LCL 0.968 1	95% UCL 1 1	Median 1 1	Min 0.9694 1	Max 1	Std Err 0.007642	CV%	%Effect
Angular (Corrected) Transformed					1	1	0	0.0%	-0.77%
0 Dilution Water 4	ount Mean 1.502	95% LCL 1.389	95% UCL 1.616	Median 1.538	Min 1.395	Max 1.538	Std Err 0.03567	CV% 4.75%	%Effect
0 Brine Reagent 4	1.538	1.537	1.538	1.538	1.538	1.538	0	0.0%	-2.38%
	ap 1 Rep 2	Rep 3	Rep 4						
0 Dilution Water 1 0 Brine Reagent 1	1	1 1	0.9694 1						
Angular (Corrected) Transformed									
0 Dilution Water 1.	ap 1 Rep 2 538 1.538	Rep 3 1.538	Rep 4 1.395						
0 Brine Reagent 1.	538 1.538	1.538	1.538			_			

CETIS	Analy	tical	Report
-------	-------	--------------	--------

Report Date: Test Code:

							Tear	Code:	~	00-00 00	-90/ 9-0490
Bivalve Larva	I Survival and Dev	elopment Test							Northweste	m Aquati	c Sclences
Analysis ID:	17-3896-0561	Endpoint:	Proportion Su	(bevivru			CETI	S Version:	CETISv1.	8.7	
Analyzed:	20 Sep-18 9:37	Analysis:	Nonparametr	ic-Control	vs T	reatments	Offic	ial Results	: Yes		
Batch ID:	09-9972-9530	Test Type:	Development	-Survival			Anal	yst:			
Start Date:	12 Sep-18 15:50	Protocol:	EPA/600/R-9	5/136 (19	95)		Dilue	ent: Yao	juina Bay Sea	awater	
Ending Date:	14 Sep-18 15:50	Species:	Mytilis gallop	rovincialis			Brine	Ð:			
Duration:	48h	Source:	Kamilche Se	a Farms, \	NA		Age:				
Sample ID:	13-5101-8713	Code:	5086E8D9				Clier	nt: Wy	ckoff Treatme	ent Plant	
Sample Date:	11 Sep-18 09:20	Material:	Industrial Eff	luent			Proje	ect:			
Receive Date:	12 Sep-18 14:30	Source:	Wyckoff								
Sample Age:	30h (4.9 °C)	Station:					_		<u> </u>		
Data Transfor	m 2	Zeta Alt H	lyp Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	cted) I	NA C>1	"NA	NA			2.81%	70	>70	NA	1.429
Steel Many-O	ne Rank Sum Test	:									
Control	vs C-%	Test	Stat Critical	Tles	DF	P-Value	P-Type	Decision	(α:5%)		
Dilution Water	2	20	10	1	6	0.9616	Asymp	-	ificant Effect		
	4	17	10	1	6	0.7639	Asymp	-	ificant Effect		
	9	16	10	1	6	0.6451	Asymp	-	ificant Effect		
	18	20	10	1	6	0.9616	Asymp	-	ificant Effect		
	35	20	10	1	6	0.9616	Asymp	-	ificant Effect		
	70	13.5	10	1	6	0.3133	Asymp	Non-Sign	ificant Effect		
Auxillary Test	\$										
Attribute	Test		Test St	at Critic	al	P-Value	Decision	(a:5%)			
Extreme Value	Grubbs Ext	reme Value	2.534	2.876		0.2009	No Outlier	rs Detected			
ANOVA Table											
Source	Sum Squan	es Meai	n Square	DF		F Stat	P-Value	Decision	(α:5%)		
Between	0.0456452	0.007	7607534	6		1.561	0.2078	Non-Sign	ificant Effect		
Error	0.1023722	0.004	1874864	21							
Total	0.1480174			27							
Distributional	Tests										
Attribute	Test		Test St	at Critic	al	P-Value	Decision	(a:1%)			
Variances		e Equality of Var		3.812		0.0624	Equal Var				
Variances		ality of Variance		3.812		0.0004	Unequal \				
Distribution	Shapiro-Wi	lk W Normality	0.8578	0.897	5	0.0014	Non-norm	al Distribut	ion		
Proportion Su	urvived Summary										
C-%		Count Mea			JCL		Min	Max	Std Err	CV%	%Effect
0		4 0.992		1		1	0.9694	1	0.007642	1.54%	0.0%
2		4 1	1	1		1	1	1	0	0.0%	-0.77%
4		4 0.99		1		0.9978	0.9825	1	0.004133	0.83%	-0.22%
9		4 0.96		1		0.9978	0.9389	1	0.01496	3.04%	0.88%
18		4 1	1	1		1	1	1	0	0.0%	-0.77%
35		4 1 4 0.060	1	1		1	1	1	0	0.0%	-0.77%
70		40.966	62 0.8987	1		0.9782	0.9083	1	0.0212	4.39%	2.64%

LC 50 > 70% BY DATA INSPECTION

-651

Analyst:_____

QA:__

CETIS	Analytical	Report
-------	------------	--------

Report Date: Test Code:

							Iest	Code:	2	000-00	5-95/9-049
Bivalve Larva	al Survival and D	evelopme	nt Test						Northweste	rn Aquati	c Sciences
Analysis ID: Analyzed:	12-4759-4159 20 Sep-18 9:37			nbined Prop ametric-Two	ortion Norm	al		S Version: Ial Results:	CETISv1. Yes	8.7	
Batch ID:	09-9972-9530	Tes	t Type: Dev	elopment-S	urvival		Anal	yst:			
Start Date:	12 Sep-18 15:5			V600/R-95/			Dilue	-	uina Bay Se	awater	
Ending Date:	-			iis galloprov			Brin				
Duration:	48h	•	•	nilche Sea F			Age:				
Sample ID:	13-5101-8713	Cod	de: 508	6E8D9			Clier	nt: Wyo	koff Treatme	ent Plant	
	: 11 Sep-18 09:2	20 Mat	erial: Indu	Istrial Efflue	int		Proje	-			
Receive Date	: 12 Sep-18 14:3	30 So u	urce: Wy	koff			-				
Sample Age:	30h (4.9 °C)	Sta	tion:								
Data Transfor		Zeta	Alt Hyp	Trials	Seed		PMSD	Test Resi	ult		
Angular (Corre	ected)	NA	C <> T	NA	NA		3.28%	Passes co	proprint prop	portion no	mal
Equal Variand	ce t Two-Sample	e Test									
Centrol	vs Control		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(a:5%)		
Dilution Water		agent	0.9393	2.447	0.093 6	0.3838			ficant Effect)	
Auxillary Tes	ts										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:5%)			
Extreme Value		Extreme Val	ue	1.799	2.127	0.3289		s Detected			
ANOVA Table											
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision	a:5%)		
Between	0.002526		0.0025261		1	0.8822	0.3838		ficant Effect		
Error	0.017180		0.0028633		6			····· -·g···			
Total	0.0197063	32			7						
Distributiona	i Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Variance	Ratio F		9.355	47.47	0.0989	Equal Var				
Variances	Mod Leve	ene Equality	of Variance	1.486	13.75	0.2686	Equal Var	iances			
Variances		Equality of V		1.387	13.75	0.2836	Equal Var	iances			
Distribution	Shapiro-	Wilk W Nor	nality	0.9214	0.6451	0.4416	Normal Di	istribution			
Distribution	-	rov-Smirno		0.2271	0.3313	0.2913	Normal Di				
Distribution	Andersor	n-Darling A2	2 Normality	0.5114	3.878	0.1995	Normal Di	istribution			
	oportion Norma	I Summary	,								
C-%	Control Type	Count	Mean	95% LCL			Min	Max	Std Err	CV%	%Effect
0	Dilution Water	4	0.9735	0.9386	1	0.983	0.9432	0.9958	0.01099	2.26%	0.0%
0	Brine Reagent	4	0.9862	0.9772	0.9953	0.983	0.9782	0.9916	0.002845	0.58%	-1.3%
- ·	rected) Transfor		nary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	4	1.419	1.305	1.534	1.441	1.33	1.506	0.03596	5.07%	0.0%
	Brine Reagent	4	1.455	1.417	1.492	1.441	1.422	1.479	0.01176	1.62%	-2.5%
0											
Combined Pr	oportion Norma										
Combined Pr	roportion Norma Control Type	Rep 1	Rep 2	Rep 3	Rep 4	_					
Combined Pr C-% 0	roportion Norma Control Type Dilution Water	Rep 1 0.9764	0.9787	0.9958	0.9432						
Combined Pr	roportion Norma Control Type	Rep 1		-							
Combined Pr C-% 0 0	roportion Norma Control Type Dilution Water	Rep 1 0.9764 0.9873	0.9787 0.9916	0.9958	0.9432						
Combined Pr C-% 0 0	Control Type Dilution Water Brine Reagent	Rep 1 0.9764 0.9873	0.9787 0.9916	0.9958	0.9432						
Combined Pr C-% 0 0 Angular (Con	Control Type Dilution Water Brine Reagent rected) Transfor	Rep 1 0.9764 0.9873 med Detail	0.9787 0.9916	0.9958 0.9878	0.9432 0.9782						

	lytical Report					Repo Test (Code:	(i		40 (p 1 of 3) 3-9579-0496
Bivalve Larva	I Survival and Develo	opment Test						Northweste	rn Aquati	c Sciences
Analysis ID: Analyzed:	14-9228-5364 20 Sep-18 9:38	Endpoint: C Analysis: Pa	ombined Prop arametric-Cor		and the second s		S Version: al Results	CETISv1. Yes	8.7	
Batch ID: Start Date: Ending Date: Duration:	09-9972-9530 12 Sep-18 15:50 14 Sep-18 15:50 48h	Protocol: El Specles: M	PA/600/R-95/ ytilis gallopro	elopment-Survival V600/R-95/136 (1995) Ilis galloprovincialis nilche Sea Farms, WA			v st: nt: Yaq ::	uina Bay Sea	awater	
	13-5101-8713 11 Sep-18 09:20 : 12 Sep-18 14:30 30h (4.9 °C)	Material: In	986E8D9 dustrial Efflue yckoff	ent		Clien Proje	•	koff Treatme	ent Plant	
Data Transfor	rm Zet	a Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected) NA	C > T	NA	NA		3.71%	70	>70	NA	1.429
Dunnett Multi	ple Comparison Test					`				
Control	vs C-%	Test Sta	t Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Dilution Water		-0.6445 -0.3568 0.3548 -0.4962 -1.483 1.814	2.448 2.448 2.448 2.448 2.448 2.448 2.448 2.448	0.101 6 0.101 6 0.101 6 0.101 6 0.101 6 0.101 6 0.101 6	0.9663 0.9325 0.7399 0.9514 0.9971 0.1557	CDF CDF CDF CDF CDF CDF CDF CDF	Non-Signi Non-Signi Non-Signi Non-Signi Non-Signi	ficant Effect ficant Effect ficant Effect ficant Effect ficant Effect ficant Effect		
								noant Ellect	_	
Auxiliary Test	\$									
Attribute	Test		Test Stat		P-Value	Decision(
Extreme Value	e Grubbs Extrem	ie Value	2.439	2.876	0.2826	No Outlier	s Detected			
ANOVA Table										
Source	Sum Squares	Mean So	juare	DF	F Stat	D. Value	Decision			
Between	0.04000470				(Our	P-Value	Decision	(α:5%)		
Error	0.04333178	0.00722	1963	6	2.104	0.0960		(0:5%) ficant Effect		
	0.07208219	0.00722 0.003432		21						
Total				-						
	0.07208219 0.115414			21						
Total	0.07208219 0.115414			21 27			Non-Signi			
Total Distributional	0.07208219 0.115414	0.003433	2485	21 27	2.104	0.0960	Non-Signi α:1%)			
Total Distributional Attribute Variances Variances	0.07208219 0.115414 I Tests Test Bartlett Equalit Mod Levene E	0.00343: y of Variance quality of Variance	2485 Test Stat 6.698 2 0.6817	21 27 Critical 16.81 3.812	2.104 P-Value 0.3496 0.6662	0.0960 Decision(Equal Vari Equal Vari	Non-Signi α:1%) ances ances			
Total Distributional Attribute Variances Variances Variances	0.07208219 0.115414 I Tests Test Bartlett Equalit Mod Levene E Levene Equalit	0.00343 y of Variance quality of Variance ty of Variance	Test Stat 6.698 © 0.6817 1.471	21 27 Critical 16.81 3.812 3.812	2.104 P-Value 0.3496 0.6662 0.2361	0.0960 Decision(Equal Vari Equal Vari Equal Vari	Non-Signi α:1%) ances ances ances ances			
Total Distributional Attribute Variances Variances Variances Distribution	0.07208219 0.115414 I Tests Test Bartlett Equalit Mod Levene E Levene Equalit Shapiro-Wilk V	0.003433 y of Variance quality of Variance ty of Variance V Normality	Test Stat 6.698 20.6817 1.471 0.9621	21 27 Critical 16.81 3.812 3.812 0.8975	2.104 P-Value 0.3496 0.6662 0.2361 0.3907	0.0960 Decision(Equal Vari Equal Vari Equal Vari Normal Dis	Non-Signi α:1%) ances ances ances stribulion			
Total Distributional Attribute Variances Variances Variances Distribution Distribution	0.07208219 0.115414 I Tests Bartlett Equalit Mod Levene E Levene Equalit Shapiro-Wilk V Kolmogorov-S	0.003433 y of Variance quality of Variance ty of Variance V Normality mirnov D	Test Stat 6.698 2 0.6817 1.471 0.9621 0.1236	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914	2.104 P-Value 0.3496 0.6662 0.2361 0.3907 0.3254	0.0960 Decision(Equal Vari Equal Vari Equal Vari Normal Dis Normal Dis	Non-Signi α:1%) ances ances ances stribution stribution			
Total Distributional Attribute Variances Variances Distribution Distribution Distribution	0.07208219 0.115414 I Tests Bartlett Equalit Mod Levene E Levene Equalit Shapiro-Wilk V Kolmogorov-Si D'Agostino Sko	0.00343 y of Variance quality of Variance ty of Variance V Normality mirnov D ewness	Test Stat 6.698 © 0.6817 1.471 0.9621 0.1236 1.31	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576	2.104 P-Value 0.3496 0.6662 0.2361 0.3907 0.3254 0.1903	0.0960 Decision(Equal Vari Equal Vari Equal Vari Normal Dis Normal Dis Normal Dis	Non-Signi α:1%) ances ances ances stribulion stribution stribution			
Total Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution	0.07208219 0.115414 I Tests Bartlett Equalit Mod Levene E Levene Equalit Shapiro-Wilk V Kolmogorov-St D'Agostino Ske D'Agostino Kut	0.00343: y of Variance quality of Variance ty of Variance V Normality mirnov D ewness ttosis	Test Stat 6.698 2 0.6817 1.471 0.9621 0.1236 1.31 0.4648	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576	2.104 P-Value 0.3496 0.6662 0.2361 0.3907 0.3254 0.1903 0.6420	0.0960 Decision(Equal Vari Equal Vari Equal Vari Normal Dis Normal Dis Normal Dis	Non-Signi α:1%) ances ances ances stribution stribution stribution stribution			
Total Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution	0.07208219 0.115414	0.00343: y of Variance quality of Variance ty of Variance V Normality mirnov D ewness ttosis arson K2 Omnibu	Test Stat 6.698 2485 260 260 260 270 2485 200 200 200 200 200 200 200 20	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21	2.104 P-Value 0.3496 0.6662 0.2361 0.3907 0.3254 0.1903 0.6420 0.3807	0.0960 Decision(Equal Vari Equal Vari Equal Vari Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis	Non-Signi α:1%) ances ances ances stribution stribution stribution stribution stribution			
Total Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution	0.07208219 0.115414	0.00343 y of Variance quality of Variance ty of Variance V Normality mirnov D ewness tosis arson K2 Omnibu ing A2 Normality	Test Stat 6.698 2 0.6817 1.471 0.9621 0.1236 1.31 0.4648	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576	2.104 P-Value 0.3496 0.6662 0.2361 0.3907 0.3254 0.1903 0.6420	0.0960 Decision(Equal Vari Equal Vari Equal Vari Normal Dis Normal Dis Normal Dis	Non-Signi α:1%) ances ances ances stribution stribution stribution stribution stribution			
Total Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution	0.07208219 0.115414 I Tests Bartlett Equalit Mod Levene E Levene Equalit Shapiro-Wilk V Kolmogorov-Si D'Agostino Ske D'Agostino Ku D'Agostino-Pea Anderson-Dart	0.00343: y of Variance quality of Variance ty of Variance V Normality mirnov D ewness rtosis arson K2 Omnibu ing A2 Normality	Test Stat 6.698 2485 260 260 260 270 2485 200 200 200 200 200 200 200 20	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21	2.104 P-Value 0.3496 0.6662 0.2361 0.3907 0.3254 0.1903 0.6420 0.3807 0.3227	0.0960 Decision(Equal Vari Equal Vari Equal Vari Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis	Non-Signi α:1%) ances ances ances ances stribution stribution stribution stribution stribution stribution	ficant Effect	CV%	%Effect
Total Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution	0.07208219 0.115414	0.00343: y of Variance quality of Variance ty of Variance V Normality mirnov D ewness rtosis arson K2 Omnibu ing A2 Normality	Test Stat 6.698 0.6817 1.471 0.9621 0.1236 1.31 0.4648 1.932 0.4241	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878	2.104 P-Value 0.3496 0.6662 0.2361 0.3907 0.3254 0.1903 0.6420 0.3807 0.3227 Median	0.0960 Decision(Equal Vari Equal Vari Equal Vari Equal Vari Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis	Non-Signi α:1%) ances ances ances ances stribution stribution stribution stribution stribution stribution		CV% 2,26%	%Effect 0.0%
Total Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Distribution Combined Pro C-%	0.07208219 0.115414	0.00343 y of Variance quality of Variance ty of Variance V Normality mirnov D ewness rtosis arson K2 Omnibu ing A2 Normality mary unt Mean	Test Stat 6.698 2485 1.471 0.9621 0.1236 1.31 0.4648 1.932 0.4241	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL	2.104 P-Value 0.3496 0.6662 0.2361 0.3907 0.3254 0.1903 0.6420 0.3807 0.3227	0.0960 Decision(Equal Vari Equal Vari Equal Vari Normal Dis Normal Dis Normal Dis Normal Dis Normal Dis	Non-Signi α:1%) ances ances ances ances stribution stribution stribution stribution stribution stribution	Std Err	CV% 2.26% 0.53%	0.0%
Total Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Distribution Combined Pro C-% 0	0.07208219 0.115414	0.00343 y of Variance quality of Variance ty of Variance V Normality mirnov D ewness ttosis arson K2 Omnibu ing A2 Normality mary unt Mean 0.9735	Test Stat 6.698 0.6817 1.471 0.9621 0.1236 1.31 0.4648 1.932 0.4241	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 1	2.104 P-Value 0.3496 0.6662 0.2361 0.3907 0.3254 0.1903 0.6420 0.3807 0.3227 Medlan 0.9776	0.0960 Decision(Equal Vari Equal Vari Equal Vari Equal Vari Normal Dis Normal Dis	Non-Signi α:1%) ances ances ances ances stribution stribution stribution stribution stribution Max 0.9958	Std Err 0.01099	2.26%	
Total Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Distribution Combined Pro C-% 0 2	0.07208219 0.115414	0.00343 y of Variance quality of Variance ty of Variance V Normality mirnov D ewness rtosis arson K2 Omnibu ing A2 Normality mary unt Mean 0.9735 0.9841	Test Stat 6.698 0.6817 1.471 0.9621 0.1236 1.31 0.4648 1.932 0.4241 95% LCL 0.9386 0.9758	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 1 0.9925	2.104 P-Value 0.3496 0.6662 0.2361 0.3907 0.3254 0.1903 0.6420 0.3807 0.3227 Medlan 0.9776 0.9832	0.0960 Decision(Equal Vari Equal Vari Equal Vari Equal Vari Normal Dis Normal Dis	Non-Signi α:1%) ances ances ances ances stribution stribution stribution stribution stribution Max 0.9958 0.9914	Std Err 0.01099 0.002623	2.26% 0.53%	0.0% -1.09%
Total Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Combined Pro C-% 0 2 4 9 18	0.07208219 0.115414	0.00343 y of Variance quality of Variance ty of Variance V Normality mirnov D ewness rtosis arson K2 Omnibu ing A2 Normality mary unt Mean 0.9735 0.9841 0.9795	Test Stat 6.698 0.6817 1.471 0.9621 0.1236 1.31 0.4648 1932 0.4241 95% LCL 0.9386 0.9758 0.9568	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 1 0.9925 1	2.104 P-Value 0.3496 0.6662 0.2361 0.3907 0.3254 0.1903 0.6420 0.3807 0.3227 Median 0.9776 0.9832 0.9805	0.0960 Decision(Equal Vari Equal Vari Equal Vari Equal Vari Normal Dis Normal Dis	Non-Signi α:1%) ances ances ances ances stribution stribution stribution stribution stribution Max 0.9958 0.9914 0.9918	Std Err 0.01099 0.002623 0.007109	2.26% 0.53% 1.45%	0.0% -1.09% -0.61%
Total Distributional Attribute Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Combined Pro C-% 0 2 4 9	0.07208219 0.115414	0.00343 y of Variance quality of Variance ty of Variance V Normality mirnov D ewness rtosis arson K2 Omnibu ing A2 Normality mary unt Mean 0.9735 0.9841 0.9795 0.9677	Test Stat 6.698 0.6817 1.471 0.9621 0.1236 1.31 0.4648 95% LCL 0.9386 0.9758 0.9568 0.9138	21 27 Critical 16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 1 0.9925 1 1	2.104 P-Value 0.3496 0.6662 0.2361 0.3907 0.3254 0.1903 0.6420 0.3807 0.3227 Median 0.9776 0.9832 0.9805 0.9831	0.0960 Decision(Equal Vari Equal Vari Equal Vari Equal Vari Normal Dis Normal Dis	Non-Signi α:1%) ances ances ances ances stribution stribution stribution stribution stribution stribution Max 0.9958 0.9914 0.9976	Std Err 0.01099 0.002623 0.007109 0.01692	2.26% 0.53% 1.45% 3.5%	0.0% -1.09% -0.61% 0.6%

Analyst:_____ QA:____

EC50>70% BY DATA INSPECTION -631

Analyst:____

QA:_

		ytical Repo	ort						rt Date: Code:		Sep-18 09 : 658-88] 0	40 (p 1 of 3-9579-04
Bivalve	Larval	Survival and D	evelopmen	t Test						Northwest	ern Aqual	ic Scienc
Analysi Analyze		02-0236-2241 20 Sep-18 9:38			mbined Prop near Interpola				S Version ial Results		.8.7	_
Batch II Start Da Ending Duratio	ate: Date:	09-9972-9530 12 Sep-18 15:5 14 Sep-18 15:5 48h	0 Prof 0 Spe	cies: My	velopment-S PA/600/R-95/ /tilis galloprov milche Sea F	136 (1995) /incialis		Analy Dilue Brine Age:	nt: Ya	quina Bay Se	eawater	
Receive	e Date: e Date:	13-5101-8713 11 Sep-18 09:2 12 Sep-18 14:3 30h (4.9 °C)	0 Sou	erial: Ind	86E8D9 dustrial Efflue yckoff	nt		Clien Proje		rckoff Treatm	ent Plant	
Linear	Interpol	ation Options	_									
X Trans Linear	sform	Y Transform Linear	1 See 3150		esamples 0	Exp 95% Yes		od Point Interpo	plation			
Residua Attribut Extrema	te e Value	Method Grubbs E	treme Valu	9	Test Stat 2.439	Critical 2.876	P-Value 0.2826	Decision(No Outlier		I		
Point E Level EC25	stimate % >70	95% LCL	95% UCL N/A	TU <1.429	95% LCL NA	95% UCL NA						
Combin	ned Pro	portion Norma	l Summary		_	Calcu	lated Variat	e(A/B)				
C-%	C	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	B
0 2 4	Di	lution Waler	4 4 4	0.9735 0.9841 0.9795	0.9432 0.9788 0.9651	0.9958 0.9914 0.9918	0.01099 0.002623 0.007109	0.02199 0.005247 0.01422	2.26% 0.53% 1.45%	0.0% -1.09% -0.61%	933 929 920	958 944 939
9 18 35			4 4 4	0.9677 0.9823 0.991	0.917 0.9738 0.9844	0.9876 0.9916 1	0.01692 0.003762 0.003367	0.03385 0.007524 0.006733	3.5% 0.77% 0.68%	0.6% -0.9% -1.79%	914 950 964	944 967 973
70	_		4	0.9456	0.8996	0.9788	0.01743	0.03487	3.69%	2.87%	873	923
Combin	ned Pro	portion Norma	Detall									
C-%	C	ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	D	lution Water	0.9764	0.9787	0.9958	0.9432						
2			0.9788	0.9914	0.9831	0.9833						
			0.9918	0.9651	0.9694	0.9916						
4			0.9837	0.917	0.9876	0.9825						
4 9												
9 18			0.9738	0.9842	0.9797	0.9916						
9				0.9842 1 0.8996	0.9797 0.9844 0.9788	0.9916 0.9918 0.9389						

CETIS Test Data Worksheet

Report Date: Test Code:

20 Sep-18 09:36 (p 1 of 1) 03-9579-0496 658-88

End Date: Sample Date: C-% Co 0 0 0 0 0 0 0 0	14 S 11 S	ep-18	3 15:50 3 15:50 3 09:20 Pos 32 11 12	Material: Initial Density 229	Mytilis galloprovin EPA/600/R-95/13 Industrial Effluent Final Density 237	86 (1995)		Sample Code: 5086E8D9 Sample Source: Wyckoff Sample Station:	
C-% C4 0 0 0 0 0 0	B B B B B D	Rep 1 2 3	Pos 32 11	initial Density 229	Final Density				
0 0 0 0 0	B B B D	1 2 3	32 11	229		# Gounted	# Normal	Notes	
0 0 0 0	B B B D	2 3	11			237	234	NUCE	
0 0 0	B B D	3		229	237	237	234		
0 0 0	B D		17	229	246	246	233		
0	D		3	229	230	230	243		
0				229	254				
	D	1	10			254	248		
0 1		2	2	229	235	235	230		
	D	3	23	229	240	240	239		
	D	4	9	229	222	222	216		
2		1	18	229	236	236	231		
2		2	27	229	232	232	230		
2		3	22	229	237	237	233		
2		4	30	229	239	239	235		
4		1	28	229	244	244	242		
4		2	15	229	228	228	221		
4		3	14	229	225	225	222		
4		4	24	229	237	237	235		
9		1	6	229	245	245	241		
9	ľ	2	29	229	215	215	210		
9	-1	з	5	229	241	241	238		
9		4	17	229	228	228	225		
16		1	16	229	229	229	223		
18		2	13	229	253	253	249		
18		3	1	229	246	246	241		
18	-	4	31	229	239	239	237		
35	- 1	1	7	229	245	245	242		
35	- +	2	26	229	232	232	229		
35		3	21	229	258	256	252		
35		4	8	229	230	243	241		
70	-	1	4	229	245	243	241		
70		2	20	229	208		221		
		i				208			
70 70		3	19 25	229	236	236	231 215		

data entry verified against laborativy bench sheets n-20-18 TRE

PAGE 13 OF H

.

APPENDIX III

RAW DATA – REFERENCE TOXICANT TEST

NORTHWESTERN AQUATIC SCIENCES PROTOCO BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

PROTOCOL NO. NAS-XXX-CG/MG2

		BIVALVI	E LARVAL	TEST BASE	DO	N EPA/600/R-95	6/136	ENTERIED
Test No	999-3809	_Client:		est			_ Investigator	PALES 1-9
STUDY	MANAGEMEN	r						
Clier	nt:	QC Test						
Clier	nt's Study Monito		QC T	est				
	ing Laboratory: N							
Test	Location: Newpo	ort Laborator	V					
	pratory's Study P		•	. 2				
	oj. Mgr./Study Di		G.J. I	rissarri				
	Officer		Nemeth					
1	J. Bro				2.			
3),				4.			
Stud	y Schedule:				_			
Test	Beginning:	9-12-	18 15	50		Test Endina:	4-14-18	1550
TEST	ATERIAL	<u> </u>						
		•						
	Description:		CuSO₄ 5H	20, Argent L				
	NAS Sample No.				1.0	mg/ml stock prep	ared: 3-27-18	
	Date of Collection	n:			_			
	Date of Receipt:	-						
	Temperature (de	g C):			_			
	pH:	6 B S			_			
L	Dissolved oxyger	1 (mg/L):			_			
	Conductivity (um							
	Hardness (mg/L)	:			_			
	Alkalinity (mg/L):				_			
	Salinity (ppt):	- # \						
	Fotal chlorine (m				_			
I	Fotal ammonia-N	(mg/L):						
_		:		<u> </u>	_			
DILUTIC	ON WATER							
C	Description:	Yaqu	ina Bay, C	R Seawater				
C	Date of Collection	1:		-18	_	Salinity (ppt)	31.0 pH	8,0
Т	reatments:	Aera			m. sa	alinity adjusted w	ith Milli-Q® deioniz	ed water
					,			
TEATA								
	RGANISMS							
	Species:	Mytilus gallo	provincial	is		D	ate Received:	1-11-18
	Source:	Kamilche-	sea l arms	Shelton, W	AT	YLOR SHELLE	ISH FARMS SH	ELTON WA
A	colimation Data:							
	Date Temp (aeg.C)	pH ·	Sal (ppt)		D.O. (mg/L)	Comme	nts

Error codes: 1) correction of handwriting error

2) written in wrong location; entry deleted

3) wrong date deleted, replaced with correct date

Photoperiod during acclimation:

15,9

9-12-18

Mean S.D. (N) 7.9

Outdoor ambient conditions

34.5

6.6

Held outside in trays of

flowing seawater

NGRTHWESTERN AQUATIC SCIENCES

SCIENCES PROTOCOL NO. NAS-XXX-CG/MG2 BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Test No.	999-3809	Client	QC Test	Investigator
Spawni Numbe	r of organism ution (1 ml d Count/ml o	1130 is used: iluted to 100 f dilution:	Final: <u>1245</u>	Fertilization: <u>1420</u> males: <u>z</u> 3. <u>30</u> Mean: <u>51.7</u>
	CEDURES Ancentrations		TIONS s recommended):	64, 32, 16, 8, 4, 2, 1 and 0 ug/L

Test chamber: 30 ml glass vials	Test volume: 10 ml	Replicates/treatment (4): 4
Organisms/ml (15-30): 22.1	Test water changes: None	Aeration during test: None
Feeding: None	Photoperiod 16L:8D	Salinity: 30 +/- 2 ppt
Temperature: 20 +/- 1 °C, oysters; 16 +/-	1 °C, mussels Beake	er placement:Stratified randomization

RANDOMIZATION CHART

А	4	32	8	ø	16	64	1	2	
в	32	¢	64	4	1	2	8	16	
с	8	16	2	32	64	1	Ø	4	
D	1	64	4	16	32	8	2	ø	

PREPARATION OF TEST SOLUTIONS

	Test Conc. (Cu, ug/L)	ml of working stock #2 (2 ug/mL)	Dilution water (ml/100mL)
	64		
		3.2	Brought up to a
18	32	1.6	final volume of
9-12-18	16	0.8	100 ml with
632	8	0.4	dilution water.
	4	0.2	
	2	0.1	
	1	0.05	
	0	0	

1st working stock made by 1:99 (1.0 mL 100mL) dilution of concentrated 1 mg/mL stock solution. Final concentration 10 ug/mL.

2nd working stock made (working stock #2) made by 20:80 (20 mL 100mL) dilution of 1st working stock. Final concentration 2 ug/mL.

Comments:

NORTHWESTERN AQUATIC SCIENCES

BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Test No.	999-3809	Client_	QC Test	Investigator

WATER QUALITY DATA

Date: 9-12-18 initials:				<u>}</u>	Date:	9-14-1	mitials:	33
Conc.	Temp.	pН	Sal.	DO	Temp.	pН	Sal.	DO
(ug/L)	(deg.C)		(ppt)	(mg/L)	(deg.C)		(ppt)	(mg/L)
64	16.0	\$.1	31.0	8.0	15.10	8.1	31.0	8.1
32	16.1	8.1	312	8.1	15.6	8.1	30.5	8.0
16	16.2	8.1	31.0	8.1	15.6	8.1	31.0	8.1
8	16.i	8.1	31.5	<u>8</u> i	15.6	8.1	31.0	8.1
4	163	8.i	312	8.1	15.6	8.1	31.0	8.0
2	16.3	8.1	31.0	8.1	5.7	8.0	31.0	8.0
1	16.2	8-1	31.0	8.0	15.7	8.0	31.0	8.0
Control	16.4	8-0	31,0	8.0	15.8	8.0	31.0	8.0
Brine control								

WATER QUALITY:	<u>Mean</u>	<u>SD</u>
Temperature (°C):	15.9	0.3
pH:	8.1	0.0
Salinity (ppt):	31.1	0,3
DO (mg/L):	<u> </u>	0.1

N 16 16 16 16

Room/ Water bath temperature: (°C)

Day 0	16.1	Day 0:_	16.4
	15-4		15-5
Day 2	15.2	Day 2:	158

.

LARVAL	COUNT	DATA
		a

	9-16	-18 62	1			9-17-18	SX S	
Conc.	Replic	cate 1	Repli	cate 2	Replicate 3		Replicate 4	
(ug/L)	N	A	N	A	N	A	N	A
64	φ	<u> </u>	ϕ	¢	Ø		Ø	1
32	¢	86	ø	74	ø	118	φ	83
16	ϕ	224	ø	242	Ø	247	Ø	201
8	203	12	200	Л	195	_//	215	14
4	234	Z	243	5	204	3	216	3
2	236	7	219	5	214	4	226	7
1	218	3	233	8	211	4	224	3
Control	206	4	221	6	241	6	230	4
Brine control								
Zero time	224	237	222	219	231	237	-	~
Zero time:	Mean _ 2	29 SD	.8	N <u>6</u>		CV=(sd/	mean)x100	3.3%

Remarks:

130 SE Lynch Rd. Shelton WA 98584

COM IC.

NORTHWESTERN AQUATIC SCIENCES 3814 YAQUINA BAY RD NEWPORT OR 97365

Urder	URD00405054
Date	9/10/2018
Page	1

Ship To:

NORTHWESTERN AQUATIC SCIENCES 3814 YAQUINA BAY RD NEWPORT OR 97365

Customar	<u>ID</u>	Purchase Order No.	Salesperad	on ID	Shipping Me	thod	Payment Terms	Reg Ship Date	Master No.
11117			A931		FED EX		CREDIT CARD	9/10/2018	396,649
Ordered	Shipped	Item Number		Description	·				
10	10	10264		MS Totten I	niol Mussel Re		6		Ext. Price
							Subtotal Misc Tax Freight Trade Disce		\$0.00 \$0.00 \$0.00
							Total		\$0.00

CETIS Summary Report								ort Date: Code:		Sep-18 10:5	
Bivalve Larva	l Survival and D	evelopment	Test						Northwest	and the second second	
Batch ID: Start Date: Ending Date: Duration:	09-9972-9530 12 Sep-18 15:50 14 Sep-18 15:50 48h	D Proto	ies: My	evelopment-S PA/600/R-95/ /tilis galloprov milche Sea F	136 (1995) /incialis		Anal Dilue Brine Age:	ent: Yaq e:	uina Bay Se	awaler	
	06-3658-0230 12 Sep-18 15:50 12 Sep-18 15:50 NA		rial: Co ce: Re	F17186 opper sulfate eference Toxi	canl		Clier Proje		nal Lab		
Comparison \$	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	τυ	Method			
15-1843-8007				8	5.657	6.28%			ultiple Com	parison Tes	i i
11-1742-4239	· · · · · · · · · · · · · · · · · · ·		4	8	5.657	1.17%			Adj t Test		
18-9820-6985	Proportion Survi	ived	16	32	22.63	7.13%		Dunnett M	ultiple Com	parison Tes	t
Point Estimat	e Summary										
Analysis ID	Endpoint		Level	μg/L	95% LCL	95% UCL	τu	Method			
06-7348-0523	Combined Prop			9 525)	9.07	9.892	_	Linear Inte	rpolation (IC	CPIN)	
11-7187-6407	Combined Prop			10.71	10.58	10.84		Spearman	-Kärber		
19-4709-1684	Proportion Norm		EC25	9.774	9.715	9.819		Linear Inte	rpolation (IC	CPIN)	
20-8554-4545	Proportion Norm		EC50	11.03	10.94	11.13		Spearman			
07-6968-3996	Proportion Surv		EC50	28.79	28.07	29.53	<u> </u>	Trimmed §	Spearman-K	ärber	_
Combined Pro	oportion Normal	Summary									
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	4	0.9558	0.895	1	0.8996	0.9829	0.0191	0.03821	4.0%	0.0%
1		4	0.9546	0.9155	0.9937	0.9214	0.9782	0.01229	0.02459	2.58%	0.13%
2		4	0.9622	0.9267	0.9977	0.9345	0.9869	0.01115	0.02231	2.32%	-0.67%
4		4	0.9514	0.8793	1	0.8908	0.9915	0.02265	0.04529	4.76%	0.47%
8		4	0.8876	0.8285	0.9466	0.8515	0.9389	0.01856	0.03712	4.18%	7.14%
16		4	0	0	0	0	0	0	0		100.0%
32		4	0	0	0	0	0	0	0		100.0%
64		4	0	0	0	0	0	0	0		100.0%
Proportion Su	rvived Summary	7								_	
	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
	Dilution Water		0.9771	0.913	1	0.917	1	0.02012	0.04024	4.12%	0.0%
1			0.9738	0.9299	1	0.9389	1	0.01381	0.02762	2.84%	0.34%
2			0.9825	0.9462	1	0.952	1	0.01142	0.02283	2.32%	-0.56%
4			0.9651	0.8924	1	0.9039	1	0.02283	0.04566	4.73%	1.23%
		4	0.94	0.8713	1	0.8996	1	0.02157	0.04314	4.59%	3.8%
8											
16		4	0.964	0.871	1	0.8777	1	0.02921	0.05841	6.06%	1.34%
		4 4		0.871 0.2608	1 0.5274		1 0.5153	0.02921 0.0419			

CETIS Summary Report

Rivelye Lervel Survival and Develo at Test Report Date:

Bivalve Lar	val Survival and D	Developmen	it Test		Northwestern Aquatic Sciences	
Combined	Proportion Norma	l Detail				
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Dilution Water	0.8996	0.9651	0.9757	0.9829	
1		0.952	0.9668	0.9214	0.9782	
2		0.9712	0.9563	0.9345	0.9869	
4		0.9915	0.9798	0.8908	0.9432	
8		0.8865	0.8734	0.8515	0.9389	
16		0	0	0	0	
32		0	0	0	0	
64		0	0	0	0	
Proportion	Survived Detail		-			
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Dilution Water	0.917	0.9913	1	1	
1		0.9651	1	0.9389	0.9913	
2		1	0.9782	0.952	1	
4		1	1	0.9039	0.9563	
8		0.9389	0.9214	0.8996	1	
16		0.9782	1	1	0.8777	
32		0.3755	0.3231	0.5153	0.3624	
64		0.004367	0	0.004367	0.004367	
Combined	Proportion Norma	I Binomials				
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Dilution Water	206/229	221/229	241/247	230/234	
1		218/229	233/241	211/229	224/229	
2		236/243	219/229	214/229	226/229	
4		234/236	243/248	204/229	216/229	
8		203/229	200/229	195/229	215/229	
16					210/220	
0		0/229	0/229	0/229	0/229	
				0/229 0/229		
32		0/229	0/229		0/229	
32 64	Survived Binomia	0/229 0/229 0/229	0/229 0/229	0/229	0/229 0/229	
32 64 Proportion	Survived Binomia Control Type	0/229 0/229 0/229	0/229 0/229	0/229	0/229 0/229	
32 64 Proportion C-µg/L		0/229 0/229 0/229	0/229 0/229 0/229	0/229 0/229	0/229 0/229 0/229	
32 64 Proportion C-µg/L 0	Control Type	0/229 0/229 0/229 Ils Rep 1	0/229 0/229 0/229 Rep 2	0/229 0/229 Rep 3	0/229 0/229 0/229 Rep 4	
32 64 Proportion C-µg/L 0 1	Control Type	0/229 0/229 0/229 Ils Rep 1 210/229	0/229 0/229 0/229 Rep 2 227/229	0/229 0/229 Rep 3 229/229	0/229 0/229 0/229 Rep 4 229/229	
32 64 Proportion C-µg/L 0 1	Control Type	0/229 0/229 0/229 Ils Rep 1 210/229 221/229	0/229 0/229 0/229 0/229 229 229 229/229	0/229 0/229 Rep 3 229/229 215/229	0/229 0/229 0/229 229/229 227/229	
32 64 Proportion C-µg/L 0 1 2 4	Control Type	0/229 0/229 0/229 Ils Rep 1 210/229 221/229 229/229	0/229 0/229 0/229 227/229 227/229 229/229 224/229	0/229 0/229 Rep 3 229/229 215/229 218/229	0/229 0/229 0/229 229/229 227/229 229/229 229/229	
32 64 Proportion C-µg/L 0 1 2	Control Type	0/229 0/229 0/229 11s Rep 1 210/229 221/229 229/229 229/229	0/229 0/229 0/229 227/229 227/229 229/229 224/229 229/229	0/229 0/229 Rep 3 229/229 215/229 218/229 207/229	0/229 0/229 0/229 229/229 227/229 229/229 229/229 219/229	
32 64 Proportion C-µg/L 0 1 2 4 8	Control Type	0/229 0/229 0/229 Rep 1 210/229 221/229 229/229 229/229 215/229	0/229 0/229 0/229 227/229 227/229 229/229 229/229 229/229 211/229	0/229 0/229 Rep 3 229/229 215/229 218/229 207/229 206/229	0/229 0/229 0/229 229/229 229/229 227/229 229/229 219/229 229/229	

CETIS Test Data Worksheet

Report Date: Tesl Code:

18 Sep-18 10:44 (p 1 of 1) 03-0658-4322(999-3809)

Start Date: End Date: Sample Date:	14 \$	Sep-18	3 15:50 3 15:50 3 15:50	Species: Protocol: Material:	st Mytilis galloprovincialis EPA/600/R-95/136 (1995) Copper sulfate			Sample Code: Sample Source: Sample Station:	Northwestern Aquatic Science 25F17186 Reference Toxicant
C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes
0	D	1	5	229	210	210	206		10163
0	D	2	31	229	227	227	221		
0	D	3	25	229	247	247	241		
D	D	4	28	229	234	234	230		
1	· ·	1	8	229	221	221	218		
1		2	21	229	241	241	233	-	
1		3	15	229	215	215	233		
1		4	10	229	215				
2			24	229		227	224		
		1			243	243	236		
2		2	27	229	224	224	219		
2		3	17		218	218	214		
2			26	229	233	233	226		
4		1	22	229	236	236	234		
4		2	4	229	248	248	243		
4		3	6	229	207	207	204		
4		4	9	229	219	219	216		
8		1	29	229	215	215	203		
B	1	2	7	229	211	211	200		
8	-	3	13	229	206	206	195		
8		4	2	229	229	229	215		
16		1	32	229	224	224	0		
16	1	2	20	229	242	242	0		
16	i	3	23	229	247	247	0		
16		4	11	229	201	201	0		
32		1	3	229	86	86	0		
32		2	18	229	74	74	0		
32		3	16	229	118	118	0		
32		4	12	229	83	83	0		· · · · · · · · · · · · · · · · · · ·
64	1	1	30	229	1	1	0		
64	1	2	19	229	0	0	0		
64		3	1	229	1	1	0		
64		4	14	229			0		

data entry verified against laboratory bench sheek 9-20-18 J2F

Bivalve Larval Survival and Developm	ent Test		Northwestern Aquatic Sciences
Test Type: Development-Survival	Organism: Mytilis galloprovincialis (Bay Mussel)	Material:	Copper sulfale
Protocol: EPA/600/R-95/136 (1995)	Endpoint: Combined Proportion Normal	Source:	Reference Toxicant-REF

Mean: Sigma:	10.04 NA	Count: CV:	20 8.10%	-2s Warning Limit: +2s Warning Limit:	-3s Action Limit: +3s Action Limit:	
Quality Control Data						

1 2017 Oct 31 13:55 11 0.9595 1.172 19-0668-1049 19-2975-1853 2 Nov 1 13:35 11.19 1.142 1.383 17-3365-4072 06-0748-0919	
2 Nov 1 13:35 11.19 1.142 1.383 17-3365-4072 06-0748-0919	
3 9 14:05 9.488 -0.556 -0.7312 02-6639-7760 19-3779-2145	
4 22 14:00 9.666 -0.3785 -0.4932 14-5021-8992 06-6921-5494	
5 30 13:40 11.02 0.9721 1.186 00-8984-2368 13-5466-3879	
6 Dec 6 13:45 10.46 0.4176 0.523 20-9204-7376 08-8218-5639	
7 7 13:00 10.69 0.6413 0.7947 17-2684-2601 21-0626-4507	
8 12 14:20 10.1 0.05765 0.0735 13-4785-2533 00-4154-6333	
9 2018 Jan 18 17:30 9.259 -0.785 -1.045 18-1463-9193 16-7842-9995	
10 Feb 8 12:30 10.41 0.363 0.4559 12-4129-6067 04-6683-9588	
11 Mar 1 13:50 9.037 -1.008 -1.357 17-0778-1414 17-6952-8158	
12 8 13:15 9.724 -0.3205 -0.4164 06-2342-5193 14-1701-7153	
13 15 13:40 9.132 -0.9126 -1.223 03-6132-1874 05-3263-8438	
14 20 14:20 10.28 0.2405 0.3039 04-1206-8235 10-0132-8767	
15 Apr 12 13:45 10.97 0.9285 1.135 04-5251-3935 19-5006-5316	
16 May 15 13:55 10.2 0.1583 0.2008 00-8499-1435 03-3023-6490	
17 23 14:20 11:06 1:015 1:236 01-8034-7341 14-7874-1735	
18 Jun 12 13:50 8.858 -1.186 -1.613 20-7731-4517 07-1052-9994	
19 Jul 3 13:00 8.935 -1.109 -1.502 15-9311-8936 16-1627-9282	
20 12 14:40 10.04 -0.00096 -0.00122 19-6340-6472 19-1532-3200	
21 Sep 12 15:50 10.71 0.6652 0.8234 03-0658-4322 11-7187-6407	

QA: Analyst: