

Chronic Toxicity Testing Results for Wyckoff Eagle Harbor Groundwater Treatment Plant

Monitoring Period: December 2018

Prepared for: Jacobs 1100 112th Ave NE Suite 500 Bellevue, WA, 98004

Prepared by: Enthalpy Analytical (formerly Nautilus Environmental) 4340 Vandever Avenue San Diego, CA 92120 (858) 587-7333

Date Submitted: January 11, 2019

Data Quality Assurance:

- Nautilus Environmental is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (ORELAP ID 4053). It is also certified by the State of California Water Resources Control Board Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552). Specific fields of testing applicable to each accreditation are available upon request.
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective US EPA protocols, unless otherwise noted in this report.
- All tests have met internal Quality Assurance Program requirements.

Results verified by: ____

Eric Green, Project Manager

California 4340 Vandever Avenue San Diego, California 92120

858.587.7333 fax: 858.587.3961

Introduction

A toxicity test was performed using a groundwater sample collected on December 11, 2018 from the Wyckoff Eagle Harbor Groundwater Treatment Plant on Bainbridge Island in Washington. This test was performed to satisfy quarterly monitoring requirements according to the project Quality Assurance Project Plan (QAPP 2013). The chronic bioassay was conducted using the bivalve *Mytilus galloprovincialis* (Mediterranean mussel). Testing was performed at Enthalpy Analytical (formerly Nautilus Environmental) located in San Diego, California between December 12 and 14, 2018.

Materials and Methods

The groundwater sample was collected into a low density polyethylene cubitainer by Jacobs personnel, packed in a cooler containing ice, and shipped overnight to Enthalpy. Appropriate chain-of-custody (COC) procedures were employed during collection and transport. Upon arrival at the laboratory, the cooler was opened, the sample inspected, and the contents verified against information on the COC form. Standard water quality parameters were measured and recorded on a sample check-in form and are summarized in Table 1. The sample was stored at 4° C in the dark until used for testing.

Sample ID	121118
Nautilus Log-in Number	18-1357
Collection Date; Time	12/11/2018; 0925h
Receipt Date; Time	12/12/2018; 0910h
Receipt Temperature (°C)	4.2
Dissolved Oxygen (mg/L)	9.6
рН	7.53
Conductivity (µS/cm)	11,500
Salinity (ppt)	7.0
Alkalinity (mg/L CaCO ₃)	606
Total Chlorine (mg/L)	< 0.02
Total Ammonia (mg/L)	3.5

Table 1. Sample Information

Test Methods

Chronic toxicity testing was conducted according to the method set forth in USEPA (1995). This method is summarized in Table 2.

Table 2. Summary of Methods for th	le bivalve Laival Development Test
Test Period	12/12/2018, 1355h to 12/14/2018, 1230h
Test Organism	Mytilus galloprovincialis
Test Organism Source	Taylor Shellfish (Shelton, WA)
Test Organism Age	4 hours post fertilization
Test Duration	48 ± 2 hours
Test Type	Static
Test Chamber, Test Solution Volume	30 mL glass vial, 10 mL
Test Temperature	15 ± 1°C
Dilution Water	Laboratory Seawater (Source: Scripps Institution of Oceanography [SIO] intake)
Additional Control	Brine Control (deionized water and hypersaline brine)
Test Salinity	30 ± 2 ppt
Source of Salinity	Hypersaline brine made by freezing seawater to a salinity of 98.7
Test Concentrations (% sample)	74.9 ^a , 35, 18, 9, 4, and 2%, lab and brine controls
Number of Replicates	5
Photoperiod	16 hours light/8 hours dark
Test Protocol	EPA/600/R-95/136
Test Acceptability Criteria for Controls	\geq 50% mean survival, \geq 90% mean development rate
Reference Toxicant	Copper sulfate (per project QAPP)
Statistical Software	CETIS™ 1.8.7.20

Table 2. Summary of Methods for the Bivalve Larval Development Test

^a Highest concentration tested due to the addition of hypersaline brine

Results

There were no statistically significant effects observed in any effluent concentration tested for the survival or development endpoint of the bivalve test. This results in a no observed effect concentration (NOEC) of 74.9 (the highest concentration tested) and a chronic toxic unit (TU_c) of less than 1.34 for both endpoints.

Results for the chronic toxicity test are summarized in Tables 3 and 4. Individual statistical summaries for the test and copies of the laboratory bench sheets are provided in Appendix A. The sample check-in sheet and COC form are provided in Appendices B and C, respectively.

Table 3. Summary of Statistical Results for the Chronic Toxicity Tests
--

Species	Endpoint	NOEC (% effluent)	LOEC (% effluent)	Toxic Unit (TU _c)	EC ₂₅ (% effluent)
Bivalve	Normal Development	74.9	> 74.9	< 1.34	> 74.9
Divalve	Survival	74.9	> 74.9	< 1.34	> 74.9

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

Chronic Toxic Unit (TU_c) = 100% sample/NOEC. NOTE: Since 100% sample was not tested, the TU_c value can only be calculated up to the highest concentration tested. If no toxicity is observed at this concentration, the TU_c is reported as less than the calculated value.

Effect Concentration 25 (IC₂₅) = Concentration expected to cause an effect to 25% of the organisms

Concentration	Bivalve						
Concentration (% Effluent)	Mean Survival (%)	Mean Normal Development (%)					
0 (Brine Control)	100	97.9					
0 (Lab Control)	99.2	98.8					
2	100	98.9					
4	99.2	98.2					
9	100	98.7					
18	100	97.9					
35	99.2	99.0					
74.9 ^ª	100	98.5					

Table 4. Detailed Results for the Bivalve Development Chronic Toxicity Test

^a Highest concentration tested due to the addition of hypersaline brine

Quality Assurance

The sample was received within the required 36-hour holding time, in good condition, and within the appropriate temperature range of 0-6°C. All control acceptability criteria were met and water quality parameters remained within the appropriate ranges throughout the test. Statistical analyses followed standard USEPA flowchart selections. Dose-response relationships were reviewed to ensure the reliability of the results. Based on the dose response observed, the calculated effects concentrations were deemed reliable.

Results for the reference toxicant test used to monitor laboratory performance and test organism sensitivity are summarized in Table 5. The results for the reference toxicant tests were within the acceptable range of the mean historical test results plus or minus two standard deviations. The reference toxicant statistical summaries and laboratory bench sheets are provided in Appendix D, and a list of qualifier codes is provided in Appendix E.

Species	Endpoint	EC₅₀ (μg/L Copper)	Historical mean ± 2 SD (µg/L copper)	CV (%)
Bivalve	Development Rate	5.59	6.39 ± 1.24	9.69
Divalve	Survival Rate	23.9	23.5 ± 0.372	0.79

Effect Concentration 50 (EC_{50}) = Concentration expected to cause an effect to 50% of the organisms CV = Coefficient of Variation.

References

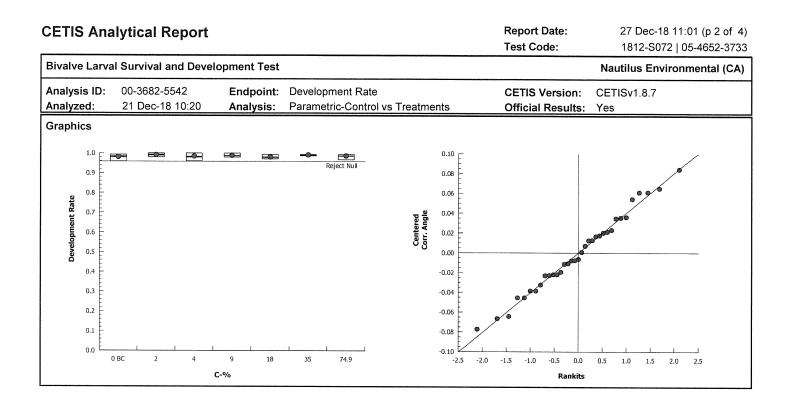
- CH2MHill. 2013. Quality Assurance Project Plan Groundwater Treatment Plant Operations, Maintenance, Bainbridge, Washington. Prepared for USEPA Region 10 June 5, 2013.
- Standard Guide for Conducting Static Acute Toxicity Tests with Embryos of Four Species of Saltwater Bivalve Molluscs. 1989. ASTM Standard E 724-89.
- Tidepool Scientific Software. 2000-2013. CETIS Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20.
- USEPA. 1995. Short-Term Method for Estimating the Chronic Toxicity of Effluents and Receiving Waters to the West Coast Marine and Estuarine Organisms. EPA/600/R-95/136. pp. 209-258 and 389-465.
- Washington State Department of Ecology. 2016. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Publication No. WQ-R-95-80. Revised June 2016

Appendix A Statistical Summaries and Raw Bench Sheets **Bivalve Larval Development Test**

07 Jan-19 07:58 (p 1 of 2) 1812-S072 | 05-4652-3733

Bivalve Larval	I Survival and D	evelopi	ment Test						Nautilus	s Environ	mental (CA
Batch ID: Start Date: Ending Date: Duration:	10-5797-1018 12 Dec-18 13:5 14 Dec-18 12:3 47h	5 I 0 \$	Test Type: Protocol: Species: Source:	Development-S EPA/600/R-95/ Mytilus gallopro Taylor Shellfish	136 (1995) ovincialis				ted Natural : en Seawate		
-	03-0912-0974 11 Dec-18 09:2 12 Dec-18 09:1 28h (4.2 °C)	5 I 0 \$	Code: Material: Source: Station:	18-1357 Effluent Sample Jacobs Wyckoff	9	W. (Client: Jaco Project:	obs		
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
00-3682-5542	Development R	ate	74.9	>74.9	NA	2.14%	∠1.335		lultiple Com	parison Te	st
07-6427-6312			74.9	>74.9	NA	0.96%	∠1.335		y-One Rank		
Point Estimate	e Summary										
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Method			
10-1716-4191	Development R	ate	EC25	>74.9	N/A	N/A	<1.33	5 Linear Inte	erpolation (IC	CPIN)	
	-		EC50	>74.9	N/A	N/A	<1.33			~ ~	
02-7171-0200	Survival Rate		EC25	>74.9	N/A	N/A	<1.33		erpolation (IC	CPIN)	
			EC50	>74.9	N/A	N/A	<1.33	5		,	
Test Acceptab	bility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	its	Overlap	Decision		
00-3682-5542	Development R	ate	Contro	l Resp	0.9788	0.9 - NL		Yes	Passes Ad	ceptability	Criteria
10-1716-4191	Development R	ate	Contro	ol Resp	0.9788	0.9 - NL		Yes	Passes Ad	•	
02-7171-0200	Survival Rate		Contro	ol Resp	1	0.5 - NL		Yes	Passes Ac	ceptability	Criteria
07-6427-6312	Survival Rate		Contro	ol Resp	1 .	0.5 - NL		Yes	Passes Ac	ceptability	Criteria
Development I	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
	Brine Control	5	0.9788		0.9957	0.9577	0.992	6 0.006092	0.01362	1.39%	0.0%
	Lab Control	5	0.9883		1	0.9746	1	0.004205	0.009403	0.95%	-0.97%
2		5	0.9888		1	0.9792	1	0.004157	0.009295	0.94%	-1.03%
4		5	0.9815		1	0.959	1	0.006958	0.01556	1.59%	-0.28%
9				0.9752	0.9985			0.004201	0.009393	0.95%	-0.83%
		5	0.9869			0.9781	1				
18		5	0.9792	0.9685	0.99	0.9701	0.993	6 0.003868	0.008648	0.88%	-0.05%
18 35		5 5	0.9792 0.9898	2 0.9685 3 0.9846	0.99 0.9951	0.9701 0.9852	0.993 0.993	6 0.003868 9 0.001901	0.008648 0.004251	0.88% 0.43%	-1.13%
18 35 74.9	Summery	5	0.9792	2 0.9685 3 0.9846	0.99	0.9701	0.993	6 0.003868 9 0.001901	0.008648	0.88%	
18 35 74.9 Survival Rate \$	-	5 5 5	0.9792 0.9898 0.9846	2 0.9685 3 0.9846 5 0.9711	0.99 0.9951 0.998	0.9701 0.9852 0.9667	0.993 0.993 0.993	6 0.003868 9 0.001901 1 0.004832	0.008648 0.004251 0.0108	0.88% 0.43% 1.1%	-1.13% -0.59%
18 35 74.9 Survival Rate 5 C-%	Control Type	5 5 5 Count	0.9792 0.9898 0.9846 Mean	2 0.9685 3 0.9846 5 0.9711 95% LCL	0.99 0.9951 0.998 95% UCL	0.9701 0.9852 0.9667 Min	0.993 0.993 0.993 Max	6 0.003868 9 0.001901 1 0.004832 Std Err	0.008648 0.004251 0.0108 Std Dev	0.88% 0.43% 1.1% CV%	-1.13% -0.59% %Effec
18 35 74.9 Survival Rate 5 C-%	Control Type Brine Control	5 5 5 Count 5	0.9792 0.9898 0.9846 Mean 1	2 0.9685 3 0.9846 5 0.9711 95% LCL 1	0.99 0.9951 0.998 95% UCL 1	0.9701 0.9852 0.9667 Min 1	0.993 0.993 0.993 Max 1	6 0.003868 9 0.001901 1 0.004832 Std Err 0	0.008648 0.004251 0.0108 Std Dev 0	0.88% 0.43% 1.1% CV% 0.0%	-1.13% -0.59% %Effec 0.0%
18 35 74.9 Survival Rate 5 C-% 0 0	Control Type	5 5 5 Count 5 5	0.9792 0.9898 0.9846 Mean 1 0.9915	2 0.9685 3 0.9846 5 0.9711 95% LCL 1 0.9693	0.99 0.9951 0.998 95% UCL 1	0.9701 0.9852 0.9667 Min 1 0.9593	0.993 0.993 0.993 Max 1	6 0.003868 9 0.001901 1 0.004832 Std Err 0 0.00813	0.008648 0.004251 0.0108 Std Dev 0 0.01818	0.88% 0.43% 1.1% CV% 0.0% 1.83%	-1.13% -0.59% %Effec 0.0% 0.81%
18 35 74.9 Survival Rate 9 C-% 0 0 2	Control Type Brine Control	5 5 5 Count 5 5 5	0.9792 0.9898 0.9846 Mean 1 0.9919 1	2 0.9685 3 0.9846 5 0.9711 95% LCL 1 0.9693 1	0.99 0.9951 0.998 95% UCL 1 1	0.9701 0.9852 0.9667 Min 1 0.9593 1	0.993 0.993 0.993 Max 1 1 1	6 0.003868 9 0.001901 1 0.004832 Std Err 0 0.00813 0	0.008648 0.004251 0.0108 Std Dev 0 0.01818 0	0.88% 0.43% 1.1% CV% 0.0% 1.83% 0.0%	-1.13% -0.59% %Effec 0.0% 0.81% 0.0%
18 35 74.9 Survival Rate S C-% 0 0 2 4	Control Type Brine Control	5 5 5 Count 5 5 5 5 5	0.9792 0.9898 0.9846 Mean 1 0.9915	2 0.9685 3 0.9846 5 0.9711 95% LCL 1 0.9693 1	0.99 0.9951 0.998 95% UCL 1 1 1 1	0.9701 0.9852 0.9667 Min 1 0.9593 1 0.9675	0.993 0.993 0.993 Max 1 1 1 1	6 0.003868 9 0.001901 1 0.004832 Std Err 0 0.00813 0 0.006298	0.008648 0.004251 0.0108 Std Dev 0 0.01818 0 0.01408	0.88% 0.43% 1.1% CV% 0.0% 1.83% 0.0% 1.42%	-1.13% -0.59% %Effec 0.0% 0.81% 0.0% 0.81%
18 35 74.9 Survival Rate 9 C-% 0 0 2 4 9	Control Type Brine Control	5 5 5 Count 5 5 5 5 5 5	0.9792 0.9898 0.9846 Mean 1 0.9915 1 0.9915	2 0.9685 3 0.9846 5 0.9711 95% LCL 1 0.9693 1 0.9744	0.99 0.9951 0.998 95% UCL 1 1 1 1 1	0.9701 0.9852 0.9667 Min 1 0.9593 1 0.9675 1	0.993 0.993 0.993 Max 1 1 1 1 1 1	6 0.003868 9 0.001901 1 0.004832 Std Err 0 0.00813 0 0.006298 0	0.008648 0.004251 0.0108 Std Dev 0 0.01818 0 0.01408 0	0.88% 0.43% 1.1% CV% 0.0% 1.83% 0.0% 1.42% 0.0%	-1.13% -0.59% %Effec 0.0% 0.81% 0.0% 0.81% 0.0%
18 35 74.9 Survival Rate 9 C-% 0 0 2 4	Control Type Brine Control	5 5 5 Count 5 5 5 5 5	0.9792 0.9898 0.9846 Mean 1 0.9919 1 0.9919 1	2 0.9685 3 0.9846 5 0.9711 95% LCL 1 0 0.9693 1 0 0.9744 1 1	0.99 0.9951 0.998 95% UCL 1 1 1 1	0.9701 0.9852 0.9667 Min 1 0.9593 1 0.9675	0.993 0.993 0.993 Max 1 1 1 1	6 0.003868 9 0.001901 1 0.004832 Std Err 0 0.00813 0 0.006298	0.008648 0.004251 0.0108 Std Dev 0 0.01818 0 0.01408	0.88% 0.43% 1.1% CV% 0.0% 1.83% 0.0% 1.42%	-1.13% -0.59% %Effec 0.0% 0.81% 0.0% 0.81%

						-	Test Code:	1812-5072 05-4652-3733
Bivalve L	arval Survival and I	Developme	ent Test					Nautilus Environmental (CA)
Developr	nent Rate Detail							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	0.9926	0.9577	0.9837	0.9735	0.9863		
0	Lab Control	0.9859	0.9931	0.988	0.9746	1		
2		1	0.9933	0.9792	0.9792	0.9925		
4		0.959	0.9781	1	0.9789	0.9916		
9		1	0.9862	0.9781	0.9781	0.992		
18		0.9769	0.9771	0.9784	0.9701	0.9936		
35		0.9854	0.9932	0.9852	0.9939	0.9915		
74.9		0.986	0.984	0.9931	0.993	0.9667		
Survival	Rate Detail			·		9999 BROLL II.		
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	1	1	1	1	1		
0	Lab Control	1	1	1	0.9593	1		
2		1	1	1	1	1		

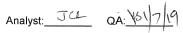

0	Brine Control	1	1	1	1	1
0	Lab Control	1	1	1	0.9593	1
2		1	1	1	1	1
4		0.9919	1	1	1	0.9675
9		1	1	1	1	1
18		1	1	1	1	1
35		1	1	1	1	0.9593
74.9		1	1	1	1	1

Development Rate Binomials

Developin	ent Nate Binomais	•				
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	Brine Control	134/135	136/142	121/123	147/151	144/146
0	Lab Control	140/142	143/144	164/166	115/118	137/137
2		170/170	149/150	141/144	141/144	133/134
4		117/122	134/137	140/140	139/142	118/119
9		124/124	143/145	134/137	134/137	124/125
18		127/130	128/131	136/139	130/134	155/156
35		135/137	146/147	133/135	164/165	117/118
74.9		141/143	123/125	144/145	142/143	145/150
Survival R	ate Binomials					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	Brine Control	123/123	123/123	123/123	123/123	123/123
0	Lab Control	123/123	123/123	123/123	118/123	123/123
2		123/123	123/123	123/123	123/123	123/123
4		122/123	123/123	123/123	123/123	119/123
9		123/123	123/123	123/123	123/123	123/123
18		123/123	123/123	123/123	123/123	123/123
35		123/123	123/123	123/123	123/123	118/123
74.9		123/123	123/123	123/123	123/123	123/123

Report Date: Test Code:

	alytical Rep	on						ort Date: Code:		ec-18 11∷ 2-S072 0	5-4652-373
Bivalve Larva	al Survival and I	Developme	ent Test						Nautilus	Environ	nental (CA)
Analysis ID: Analyzed:	00-3682-5542 21 Dec-18 10:		-	velopment R ametric-Cor		tments		IS Version: ial Results:	CETISv1. Yes	8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C > T	NA	NA		2.14%	74.9	>74.9	NA	1.335
Dunnett Mult	tiple Compariso	n Test								ente de la constanción	
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Brine Control	2		-1.489	2.407	0.066 8	0.9974	CDF		icant Effect		
	4		-0.5038	2.407	0.066 8	0.9524	CDF	-	icant Effect		
	9		-1.105	2.407	0.066 8	0.9910	CDF	-	icant Effect		
	18		0.02745	2.407	0.066 8	0.8496	CDF	-	icant Effect		
	35		-1.492	2.407	0.066 8	0.9974	CDF	-	icant Effect		
	74.9		-0.768	2.407	0.066 8	0.9761	CDF	-	icant Effect		
ANOVA Table	e										
Source	Sum Squ	iares	Mean Squ	are	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.009342	185	0.0015570)31	6	0.8169	0.5661	Non-Signif	icant Effect		
Error	0.053368	14	0.0019060	005	28			•			
Total	0.062710	32			34						
Distributiona	I Tests										
Distributiona Attribute	Il Tests Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
	Test	Equality of \	/ariance	Test Stat 3.946	Critical	P-Value 0.6839	Decision Equal Var				
Attribute	Test Bartlett B	Equality of \ Wilk W Nor						iances			
Attribute Variances Distribution	Test Bartlett B	Wilk W Nor		3.946	16.81	0.6839	Equal Var	iances			
Attribute Variances Distribution	Test Bartlett E Shapiro-	Wilk W Nor		3.946	16.81	0.6839	Equal Var	iances	Std Err	CV%	%Effect
Attribute Variances Distribution Development C-% 0	Test Bartlett E Shapiro- t Rate Summary	Wilk W Nor	rmality	3.946 0.9847	16.81 0.9146	0.6839 0.8977	Equal Var Normal D	iances stribution	Std Err 0.006092	CV% 1.39%	%Effect 0.0%
Attribute Variances Distribution Development C-% 0	Test Bartlett E Shapiro- t Rate Summary Control Type	Wilk W Nor	rmality Mean	3.946 0.9847 95% LCL	16.81 0.9146 95% UCL	0.6839 0.8977 Median	Equal Var Normal Di Min	iances stribution Max			
Attribute Variances Distribution Development C-% 0	Test Bartlett E Shapiro- t Rate Summary Control Type	Wilk W Nor Count 5	Mean 0.9788	3.946 0.9847 95% LCL 0.9619	16.81 0.9146 95% UCL 0.9957	0.6839 0.8977 Median 0.9837	Equal Var Normal Di Min 0.9577	iances stribution Max 0.9926	0.006092	1.39%	0.0%
Attribute Variances Distribution Development C-% 0 2 4	Test Bartlett E Shapiro- t Rate Summary Control Type	Count 5 5	Mean 0.9788 0.9888	3.946 0.9847 95% LCL 0.9619 0.9773	16.81 0.9146 95% UCL 0.9957 1	0.6839 0.8977 Median 0.9837 0.9925	Equal Var Normal D Min 0.9577 0.9792	iances stribution Max 0.9926 1	0.006092 0.004157	1.39% 0.94%	0.0% -1.03%
Attribute Variances Distribution Development C-% 0 2 4 9 18	Test Bartlett E Shapiro- t Rate Summary Control Type	Count 5 5 5 5	Mean 0.9788 0.9888 0.9815	3.946 0.9847 95% LCL 0.9619 0.9773 0.9622	16.81 0.9146 95% UCL 0.9957 1 1	0.6839 0.8977 Median 0.9837 0.9925 0.9789	Equal Var Normal D Min 0.9577 0.9792 0.959	Max 0.9926 1 1	0.006092 0.004157 0.006958	1.39% 0.94% 1.59%	0.0% -1.03% -0.28%
Attribute Variances Distribution Development C-% 0 2 4 9	Test Bartlett E Shapiro- t Rate Summary Control Type	Count 5 5 5 5 5 5	Mean 0.9788 0.9888 0.9815 0.9869 0.9792 0.9898	3.946 0.9847 95% LCL 0.9619 0.9773 0.9622 0.9752	16.81 0.9146 95% UCL 0.9957 1 1 0.9985	0.6839 0.8977 Median 0.9837 0.9925 0.9789 0.9862	Equal Var Normal D 0.9577 0.9792 0.959 0.9781	Max 0.9926 1 1 1	0.006092 0.004157 0.006958 0.004201	1.39% 0.94% 1.59% 0.95%	0.0% -1.03% -0.28% -0.83%
Attribute Variances Distribution Development C-% 0 2 4 9 18	Test Bartlett E Shapiro- t Rate Summary Control Type	Count 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9788 0.9888 0.9815 0.9869 0.9792	3.946 0.9847 95% LCL 0.9619 0.9773 0.9622 0.9752 0.9685	16.81 0.9146 95% UCL 0.9957 1 1 0.9985 0.99	0.6839 0.8977 Median 0.9837 0.9925 0.9789 0.9862 0.9771	Equal Var Normal D 0.9577 0.9792 0.959 0.9781 0.9701	Max 0.9926 1 1 1 0.9936	0.006092 0.004157 0.006958 0.004201 0.003868	1.39% 0.94% 1.59% 0.95% 0.88%	0.0% -1.03% -0.28% -0.83% -0.05%
Attribute Variances Distribution Development C-% 0 2 4 9 18 35 74.9	Test Bartlett E Shapiro- t Rate Summary Control Type	Count 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9788 0.9888 0.9815 0.9869 0.9792 0.9898 0.9846	3.946 0.9847 95% LCL 0.9619 0.9773 0.9622 0.9752 0.9685 0.9846	16.81 0.9146 95% UCL 0.9957 1 1 0.9985 0.99 0.9951	0.6839 0.8977 Median 0.9837 0.9925 0.9789 0.9862 0.9771 0.9915	Equal Var Normal D 0.9577 0.9792 0.959 0.9781 0.9701 0.9852	iances istribution Max 0.9926 1 1 1 0.9936 0.9939	0.006092 0.004157 0.006958 0.004201 0.003868 0.001901	1.39% 0.94% 1.59% 0.95% 0.88% 0.43%	0.0% -1.03% -0.28% -0.83% -0.05% -1.13%
Attribute Variances Distribution Development C-% 0 2 4 9 18 35 74.9 Angular (Cor	Test Bartlett E Shapiro- t Rate Summary Control Type Brine Control	Count 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9788 0.9888 0.9815 0.9869 0.9792 0.9898 0.9846	3.946 0.9847 95% LCL 0.9619 0.9773 0.9622 0.9752 0.9685 0.9846	16.81 0.9146 95% UCL 0.9957 1 1 0.9985 0.99 0.9951	0.6839 0.8977 Median 0.9837 0.9925 0.9789 0.9862 0.9771 0.9915 0.986	Equal Var Normal D 0.9577 0.9792 0.959 0.9781 0.9701 0.9852	iances istribution Max 0.9926 1 1 1 0.9936 0.9939	0.006092 0.004157 0.006958 0.004201 0.003868 0.001901 0.004832	1.39% 0.94% 1.59% 0.95% 0.88% 0.43% 1.1%	0.0% -1.03% -0.28% -0.83% -0.05% -1.13% -0.59%
Attribute Variances Distribution Development C-% 0 2 4 9 18 35 74.9 Angular (Cor C-%	Test Bartlett E Shapiro- t Rate Summary Control Type Brine Control	Count 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9788 0.9888 0.9815 0.9869 0.9792 0.9898 0.9846 mary	3.946 0.9847 95% LCL 0.9619 0.9773 0.9622 0.9752 0.9685 0.9846 0.9711 95% LCL	16.81 0.9146 95% UCL 0.9957 1 1 0.9985 0.99 0.9951 0.998 0.998 0.998	0.6839 0.8977 Median 0.9837 0.9925 0.9789 0.9862 0.9771 0.9915 0.986 Median	Equal Var Normal D 0.9577 0.9792 0.959 0.9781 0.9701 0.9852 0.9667 Min	iances istribution Max 0.9926 1 1 1 0.9936 0.9939 0.9931 Max	0.006092 0.004157 0.006958 0.004201 0.003868 0.001901 0.004832 Std Err	1.39% 0.94% 1.59% 0.95% 0.88% 0.43% 1.1%	0.0% -1.03% -0.28% -0.83% -0.05% -1.13% -0.59% %Effect
Attribute Variances Distribution Development C-% 0 2 4 9 18 35 74.9 Angular (Cor C-% 0	Test Bartlett E Shapiro- t Rate Summary Control Type Brine Control Brine Control	Count 5 6 7 6	Mean 0.9788 0.9888 0.9815 0.9869 0.9792 0.9898 0.9846 mary Mean	3.946 0.9847 95% LCL 0.9619 0.9773 0.9622 0.9752 0.9685 0.9846 0.9711 95% LCL 1.373	16.81 0.9146 95% UCL 0.9957 1 1 0.9985 0.99 0.9951 0.998 95% UCL 1.488	0.6839 0.8977 Median 0.9837 0.9925 0.9789 0.9862 0.9771 0.9915 0.986 0.986 Median 1.443	Equal Var Normal D 0.9577 0.9792 0.959 0.9781 0.9701 0.9852 0.9667 Min 1.364	iances istribution Max 0.9926 1 1 1 0.9936 0.9939 0.9931 Max 1.485	0.006092 0.004157 0.006958 0.004201 0.003868 0.001901 0.004832 Std Err 0.02074	1.39% 0.94% 1.59% 0.95% 0.88% 0.43% 1.1% CV% 3.24%	0.0% -1.03% -0.28% -0.83% -0.05% -1.13% -0.59% %Effect 0.0%
Attribute Variances Distribution Development C-% 0 2 4 9 18 35 74.9 Angular (Cor C-% 0 2	Test Bartlett E Shapiro- t Rate Summary Control Type Brine Control Brine Control	Wilk W Nor 5 5 5 5 5 5 5 5 5 5 5 7 med Sum Count	Mean 0.9788 0.9888 0.9885 0.9869 0.9792 0.9898 0.9846 mary Mean 1.43 1.472	3.946 0.9847 95% LCL 0.9619 0.9773 0.9622 0.9752 0.9685 0.9846 0.9711 95% LCL 1.373 1.415	16.81 0.9146 95% UCL 0.9957 1 1 0.9985 0.99 0.9951 0.998 95% UCL 1.488 1.528	0.6839 0.8977 Median 0.9837 0.9925 0.9789 0.9862 0.9771 0.9915 0.986 Median 1.443 1.484	Equal Var Normal D 0.9577 0.9792 0.959 0.9781 0.9701 0.9852 0.9667 Min 1.364 1.426	iances istribution Max 0.9926 1 1 1 0.9936 0.9939 0.9931 Max 1.485 1.532	0.006092 0.004157 0.006958 0.004201 0.003868 0.001901 0.004832 Std Err 0.02074 0.02074	1.39% 0.94% 1.59% 0.95% 0.88% 0.43% 1.1% CV% 3.24% 3.1%	0.0% -1.03% -0.28% -0.83% -0.05% -1.13% -0.59% %Effect 0.0% -2.87%
Attribute Variances Distribution Development C-% 0 2 4 9 18 35 74.9 Angular (Cor C-% 0 2 4	Test Bartlett E Shapiro- t Rate Summary Control Type Brine Control Brine Control	Count 5	Mean 0.9788 0.9888 0.9815 0.9869 0.9792 0.9846 mary Mean 1.43 1.472 1.444	3.946 0.9847 95% LCL 0.9619 0.9773 0.9622 0.9752 0.9685 0.9846 0.9711 95% LCL 1.373 1.415 1.368	16.81 0.9146 95% UCL 0.9957 1 1 0.9985 0.99 0.9951 0.998 95% UCL 1.488 1.528 1.521	0.6839 0.8977 Median 0.9837 0.9925 0.9789 0.9862 0.9771 0.9915 0.986 Median 1.443 1.443 1.484 1.425	Equal Var Normal D 0.9577 0.9792 0.959 0.9781 0.9701 0.9852 0.9667 Min 1.364 1.426 1.367	iances istribution Max 0.9926 1 1 1 0.9936 0.9939 0.9931 Max 1.485 1.532 1.529	0.006092 0.004157 0.006958 0.004201 0.003868 0.001901 0.004832 Std Err 0.02074 0.02074 0.02041 0.02752	1.39% 0.94% 1.59% 0.95% 0.88% 0.43% 1.1% CV% 3.24% 3.1% 4.26%	0.0% -1.03% -0.28% -0.83% -0.05% -1.13% -0.59% %Effect 0.0% -2.87% -0.97%
Attribute Variances Distribution Development C-% 0 2 4 9 18 35 74.9 Angular (Cor C-% 0 2 4 9 0 2 4 9 9 18 35 74.9	Test Bartlett E Shapiro- t Rate Summary Control Type Brine Control Brine Control	Count 5	Mean 0.9788 0.9888 0.9815 0.9869 0.9792 0.9846 mary Mean 1.43 1.472 1.444 1.461	3.946 0.9847 95% LCL 0.9619 0.9773 0.9622 0.9752 0.9685 0.9846 0.9711 95% LCL 1.373 1.415 1.368 1.407	16.81 0.9146 95% UCL 0.9957 1 1 0.9985 0.99 0.9951 0.998 95% UCL 1.488 1.528 1.521 1.515	0.6839 0.8977 Median 0.9837 0.9925 0.9789 0.9862 0.9771 0.9915 0.986 0.986 0.986 1.443 1.443 1.443 1.443 1.425 1.453	Equal Var Normal D 0.9577 0.9792 0.959 0.9781 0.9701 0.9852 0.9667 Min 1.364 1.364 1.367 1.422	iances istribution Max 0.9926 1 1 1 0.9936 0.9939 0.9931 Max 1.485 1.532 1.529 1.526	0.006092 0.004157 0.006958 0.004201 0.003868 0.001901 0.004832 Std Err 0.02074 0.02074 0.02041 0.02752 0.0196	1.39% 0.94% 1.59% 0.95% 0.88% 0.43% 1.1% CV% 3.24% 3.1% 4.26% 3.0%	0.0% -1.03% -0.28% -0.83% -0.05% -1.13% -0.59% %Effect 0.0% -2.87% -0.97% -2.13%
Attribute Variances Distribution Development C-% 0 2 4 9 18 35 74.9	Test Bartlett E Shapiro- t Rate Summary Control Type Brine Control Brine Control	Count 5	Mean 0.9788 0.9888 0.9815 0.9869 0.9792 0.9846 mary Mean 1.43 1.472 1.444	3.946 0.9847 95% LCL 0.9619 0.9773 0.9622 0.9752 0.9685 0.9846 0.9711 95% LCL 1.373 1.415 1.368	16.81 0.9146 95% UCL 0.9957 1 1 0.9985 0.99 0.9951 0.998 95% UCL 1.488 1.528 1.521	0.6839 0.8977 Median 0.9837 0.9925 0.9789 0.9862 0.9771 0.9915 0.986 Median 1.443 1.443 1.484 1.425	Equal Var Normal D 0.9577 0.9792 0.959 0.9781 0.9701 0.9852 0.9667 Min 1.364 1.426 1.367	iances istribution Max 0.9926 1 1 1 0.9936 0.9939 0.9931 Max 1.485 1.532 1.529	0.006092 0.004157 0.006958 0.004201 0.003868 0.001901 0.004832 Std Err 0.02074 0.02074 0.02041 0.02752	1.39% 0.94% 1.59% 0.95% 0.88% 0.43% 1.1% CV% 3.24% 3.1% 4.26%	0.0% -1.03% -0.28% -0.83% -0.05% -1.13% -0.59% %Effect 0.0% -2.87% -0.97%



CETIS Ana	alytical Rep	ort						-	ort Date: Code:			01 (p 3 of 4) 5-4652-3733
Bivalve Larva	al Survival and I	Develop	ment Test							Nautilus	Environ	mental (CA)
Analysis ID: Analyzed:	07-6427-6312 21 Dec-18 10:			vival Rate parametric-	Control v	s Ti	reatments		IS Version: ial Results		.8.7	
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)	NA	C > T	NA	NA			0.96%	74.9	>74.9	NA	1.335
Steel Many-O) ne Rank Sum T	est										
Control	vs C-%		Test Stat	Critical	Ties	DF	P-Value	P-Type	Decision	(a:5%)		
Brine Control	2		27.5	16			0.8571	Asymp		ficant Effect		
	4		22.5	16			0.4265	Asymp	-	ficant Effect		
	9		27.5	16			0.8571	Asymp	-	ficant Effect		
	18		27.5	16			0.8571	Asymp	-	ficant Effect		
	35		25	16			0.6693	Asymp	-	ficant Effect		
	74.9		27.5	16			0.8571	Asymp	-	ficant Effect		
ANOVA Table)											
Source	Sum Squ	ares	Mean Squ	are	DF		F Stat	P-Value	Decision(α:5%)		
Between	0.008279		0.0013799		6		1.138	0.3668		ficant Effect		
Error	0.033966	59	0.0012130		28			0.0000	Hon oigh			
Total	0.042246	48			34							
Distributiona	l Tests											
Attribute	Test			Test Stat	Critical		P-Value	Decision	(a·1%)			
Variances		ene Fau	ality of Variance		3.812		0.3613	Equal Var				
Variances			of Variance	6.341	3.528		0.0003	Unequal \				
Distribution	Shapiro-			0.5609	0.9146		<0.0001		al Distributio	on		
Survival Rate	Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UC	L	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	1	1	1		1	1	1	0	0.0%	0.0%
2		5	1	1	1		1	1	1	0	0.0%	0.0%
4		5	0.9919	0.9744	1		1	0.9675	1	0.006298	1.42%	0.81%
9		5	1	1	1		1	1	1	0	0.0%	0.0%
18		5	1	1	1		1	1	1	0	0.0%	0.0%
35		5	0.9919	0.9693	1		1	0.9593	1	0.00813	1.83%	0.81%
74.9		5	1	1	1		1	1	1	0	0.0%	0.0%
Angular (Corr	rected) Transfor	med Su	mmary									
C-%	Control Type	Count	Mean	95% LCL	95% UC	Ľ	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	1.526	1.525	1.526		1.526	1.526	1.526	0	0.0%	0.0%
2		5	1.526	1.525	1.526		1.526	1.526	1.526	0	0.0%	0.0%
4		5	1.489	1.416	1.563		1.526	1.389	1.526	0.02647	3.98%	2.38%
9		5	1.526	1.525	1.526		1.526	1.526	1.526	0	0.0%	0.0%
		~	4 500	1.525	1.526		1.526	1.526	1.526	0	0.0%	0.0%
18		5	1.526	1.020	1.520		1.020	1.020	1.020	0	0.070	0.070
		5 5	1.526	1.406	1.582		1.526	1.368	1.526	0.03158	4.73%	2.07%

CETIS Analytical Report

Report Date: Test Code:

							Test Code:	1012-5072 05-4652-3733
Bivalve Larv	al Survival and	Developm	ent Test					Nautilus Environmental (CA)
Analysis ID: Analyzed:	07-6427-6312 21 Dec-18 10		ndpoint: nalysis:			ntrol vs Treatm	CETIS Version: ents Official Results:	CETISv1.8.7 Yes
Graphics								
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0	1 1		•	•	•	.0 .0 .0. .0. .0. .0. .0. .0. .0. .0.		
	0 BC 2	4 9 C-%	18	35	74.9		-2.5 -2.0 -1.5 -1.0 -0.5 0.0 Rankits	0.5 1.0 1.5 2.0 2.5

CETIS	S Anal	ytical Repo	ort					-	rt Date: Code:			:01 (p 1 of 2)5-4652-373:
Bivalve	e Larval	Survival and D	evelopmen	t Test						Nautilu	s Environ	mental (CA)
Analys Analyz		10-1716-4191 21 Dec-18 10:2		point: lysis:	Development R Linear Interpola				S Version: ial Results:	CETISv1 Yes	.8.7	
Linear	Interpol	ation Options										
X Tran	sform	Y Transform	Seed	d	Resamples	Exp 95%	CL Meth	od				
Linear		Linear	1638	3278	1000	Yes	Two-I	Point Interpo	olation			*******
Point E	Estimate	S										Ministration of the second sec
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
EC25	>74.9	N/A	N/A	<1.335	5 NA	NA						
EC50	>74.9	N/A	N/A	<1.335	5 NA	NA						
Develo	pment F	Rate Summary				Calcul	ated Variat	e(A/B)				
C-%	Co	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	в
0	Br	ine Control	5	0.9788	0.9577	0.9926	0.006092	0.01362	1.39%	0.0%	682	697
2			5	0.9888	0.9792	1	0.004157	0.009295	0.94%	-1.03%	734	742
4			5	0.9815	0.959	1	0.006958	0.01556	1.59%	-0.28%	648	660
9			5	0.9869	0.9781	1	0.004201	0.009393	0.95%	-0.83%	659	668
18			5	0.9792	0.9701	0.9936	0.003868	0.008649	0.88%	-0.05%	676	690
35			5	0.9898	0.9852	0.9939	0.001901	0.00425	0.43%	-1.13%	695	702
74.9			5	0.9846	0.9667	0.9931	0.004832	0.0108	1.1%	-0.59%	695	706
Graphi	cs											
Develormment Rate	0.3				•••							
	0	10 20 3	30 40	50 (50 70 80							
			C-%									

Analyst: Ja QA: 48 /7/19

CETIS	Anal	ytical Repo	ort					•	ort Date: Code:			:01 (p 2 of 2 05-4652-373
Bivalve	Larval	Survival and D	evelopmen	t Test			a anna an an an anna an an an an an an a			Nautilu	s Enviror	mental (CA
Analysi Analyze		02-7171-0200 21 Dec-18 10:2		point: ysis:	Survival Rate Linear Interpola	tion (ICPIN))		IS Version: cial Results:	CETISv1 Yes	.8.7	
Linear	Interpol	ation Options							a (1917)			
X Trans	form	Y Transform	Seed	ł	Resamples	Exp 95%	CL Meth	od				
Linear		Linear	2044	787	1000	Yes	Two-	Point Interp	olation			
Point E	stimate	S										
Level	%	95% LCL	95% UCL	τU	95% LCL	95% UCL						
EC25	>74.9	N/A	N/A	<1.33		NA						
EC50	>74.9	N/A	N/A	<1.33	5 NA	NA						
Surviva	I Rate S	ummary				Calcu	lated Varia	te(A/B)				
C-%	Co	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	в
0	Bri	ine Control	5	1	1	1	0	0	0.0%	0.0%	615	615
2			5	1	1	1	0	0	0.0%	0.0%	615	615
4			5	0.9919	9 0.9675	1	0.006298	0.01408	1.42%	0.81%	610	615
9			5	1	1	1	0	0	0.0%	0.0%	615	615
18			5	1	1	1	0	0	0.0%	0.0%	615	615
35			5	0.9919	9 0.9593	1	0.00813	0.01818	1.83%	0.81%	610	615
74.9			5	1	1	1	0	0	0.0%	0.0%	615	615
Graphic Survival Rate	1.0 .	10 20 2	L		 60 70 80							
	U	20 20 3		20	00 70 80							
			C-%									

Analyst: JCL QA: 1/31/19

CETIS Test Data Worksheet

Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

Start Date: End Date: Sample Dat	14 [Dec-18 Dec-18 Dec-18	В	Protocol:	/lytilus galloprovi EPA/600/R-95/13 Effluent Sample			Sample Code: Sample Source: Sample Station:	
C-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes
			31			134	130	AES 12/20/1	8
			32			145	143		0
			33			142	136		
			34			135	133		
			35				137		
			36			142 143	141		
			37			150	149		
			38			135	134		
			39			125	23		
			40			37	134		
			41			137	135		
			42			137	137		
			43			124	124		
			44			144	143		
			45			146	144		
			46			170	170		
			47			123	121		
			48			122	117		
			49			134	133		
			50			145	144		
			51			150	145		
			52			119			
			53			144	118 141		
			54			151	147		
			55			37	134		
			56			147	1416		
			57			118	117		
			58			156	155		
			59			130	122		
			60			165	164		
			61			137	134 136		
			62			134417	136		
			63			144	141		
			64			125	124		
			65			(3)	124 128	*****	
			66			118	115		
			67			166	164		
	-		68			143			
			69			140	142 140		
			70			142	140		

@Q18 ACS 12/20/19

CETIS Test Data Worksheet

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Start Date: End Date: Sample Date:	14 C	Dec-18 Dec-18 Dec-18	3	Protocol:	Mytilus galloprov EPA/600/R-95/13 Effluent Sample			Sample Code: 18- 35구 Sample Source: Jacobs Sample Station: Wyckoff
C-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	BC	1	38			33	(33	EG 12/14/18
0	BC	2	33			AX		
0	BC	3	47					
0	BC	4	54					
0	BC	5	45					
0	LC	1	70					
0	LC	2	44			140	140	56 12/15/18
0	LC	3	67					
0	LC	4	66					
0	LC	5	42					
2		1	46					
2		2	37					
2		3	63			146	143	56 12/15/18
2		4	53					
2		5	49					
4		1	48			128	123	56 12/15/18
4		2	61		(4	0146 (<u>H</u>	
4		3	69					
4		4	35					
4		5	52			-		
9		1	43					
9		2	32			146	144	SG 12/15/18
9		3	40					
9		4	55					
9		5	64					
18		1	59					
18		2	65			R. e.		
18		3	62			141	138	56 12/15/18
18		4	31					
18 35		5 1	58					
35		2	41 56			1515	15-	16 to bolis
35		2	34			153	152	56 12/15/18
35		4	60					
35		5	57					
		1	36			1,10	4200	<u>Co</u>
19, 1 4, 9 70		2	39			143	142	Eq
71. 1 7		3	50					
749 10		4	68					
74.9 ⁷⁰ 4.9 ⁷⁰ 74.9 ⁷⁰ 74.9 ⁷⁰ 74.9 ⁷⁰		5	51					
EG Q18 12/21/18		(A)	(<i>C</i> =	EL 18561 12/1	6/18		1	

CETIS™ v1.8.7.20

Marine Chronic Bioassay

Water Quality Measurements

Client: Jacobs	Test Sp
Sample ID: Wyckoff	Start Date
Sample Log No.: 18- 1357	End Date
Test No.: 1812-8072	
8 8	

Test Species:	M. galloprovincialis					
Start Date/Time:	12/12/2018	1355				
End Date/Time:	12/14/2018	1230				

Concentration		Salinity	an a	T T	emperatu	re	Diss	olved Ox	ygen		рН	
(% sample)		(ppt)			(°C)	-		(mg/L)			(pH units)
	0	24	48	0	24	48	0	24	48	0	24	48
Lab Control	30:3	30.4	30.3	14.7	15.0	14.8	8.7	8.4	8.0	8.12	7.94	7.92
Brine Control	30.6	30.8	30.7	14.1	14.9	14.8	8.6	83	7.9	8.44	8.13	8.00
2	30.3	30.6	30.6	15.0	14.9	14.7	8.5	8.3	7.9	8.08	7=97	7-94
4	30.4	30.6	30.6	14.6	15.0	14.7	8.6	8.4	7.9	8.08	7.98	7.96
9	30.5	30.7	30.6	14.7	14.9	14.8	8.6	8.3	7.9	8.05	7.98	8.00
18	30.5	30.6	30.6	15,0	15.2	14.8	8.5	8.3	7.9	7.98	8.00	8.04
35	30.5	30.7	30.7	15.0	15.1	14.8	8.4	8.3	7.9	7.91	8.01	8.12
BZ0-74.9	30.9	31.1	31.1	15,2	15.1	14.8	8.1	8.2	7-9	7.83	8-04	8.18
					- 1.01							

Technician Initials:	02448WQ Readings:BDFCBTDilutions made by:EG		
Comments:	0 hrs: () EL Q\& 12/21 \8 24 hrs: 48 hrs:	*	
QC Check:	EG 12/21/18	Final Review: 19149	

Marine Chronic Bioassay

Brine Dilution Worksheet

Project:	JACOBS		_	Analyst:	EG	
Sample ID:	Wyckoff		_	Test Date:	12/12/2018	
Test No:	<u>1812-S072</u>	*******	_	Test Type:	Mussel Develop	nent
Salinity of Ef	fluent	7.0	_			
Salinity of Br	ine	98.7	_ Date	of Brine used:	7/24/2018	
Target Salinit	ty	30	Alkalinity of	Brine Control:	82	mg/L as CaCO3
Test Dilution	Volume	250	_			
		Effluent	Brine Control			
Salinity Adjus (TS - SE)/(SB TS = targe	•	0.33	0.44			

SE = salinity of effluent

SB = salinity of brine

Concentration %	Effluent Volume (ml)	Salinity Adjustment Factor	Brine Volume (ml)	Dilute to: (ml)
Control	NA	NA	NA	250
2	5.0	0.33	1.7	250
4	10.0	0.33	3.3	250
9	22.5	0.33	7.5	250
18	45.0	0.33	15.1	250
35	87.5	0.33	29.3	250
74.9	187.3	0.33	62.7	250

	DI Volume			
Brine Control	143.6	0.44	62.7	250

Total Brine Volume Required (ml): 182.3

QC Check: EG 12/21/18

Final Review: 14/19

Larval Development Worksheet

Client:	JACOBS - Wyckoff
Test No.: -	1812-5072
Test Species:	M. galloprovincidis
Animal Source:	Taylor Shellfish
Date Received:	9/25/18 and 10/30/18
Test Chambers:	30 mL shell vial
Sample Volume:	

1130

Start Date/Time:	12/12/2018	1355	
End Date/Time:	12/14/2018	1230	
Technician Initials:	EG		

Spawn Information

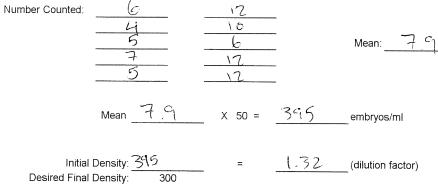
First Gamete Release Time:

Gamete Selection

Sex	Number Spawning
Male	(c
Female	2

Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)
Male	2,3,6	good density and not. lit.
Female 1	١	good directly, sound, pale color
Female 2	2	good trick density, round pake color
Female 3		0

Egg Fertilization Time: 1210


Embryo Stock Selection

Stock Number	% of embryos at 2-cell division stage
Female 1	100
Female 2	100
Female 3	-

	1
Stock(s) chosen for testing:	/

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos

(to inoculate with 0.5 ml)

Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

	Time Z	ero Control Co	ounts			
	Rand. No.	No. Dividing	Total	% Dividing	Mean % Dividing	48-h QC: 141/142 99.3%
	T#1	132	132	100		
	T#2	114	114	100		
	703	106	106	100	100	
	794	134	134	,00	-	
	T\$5	124	124	160		
Comments:	$T\psi \leftarrow$	127	127	100		
		× 122.8	3			
QC Check:	Ē	h 12/21/18				Final Review: 16 14/19

Appendix B Sample Check-In Information

Nautilus Environmental	Client:	JACOB	5		Sample Check-In In	formation
4340 Vandever Avenue	Sample ID:	Wycke		118	_	
San Diego, CA 92120	Test ID No(s).:	1812 -	- 5072		Sample Description:	<i>,</i>
					A: colocless, clear, odocless, no del	pris
Sample (A, B, C):	A					
Log-in No. (18-xxxx):	1357					
Sample Collection Date & Time:	12/11/19 5925				COC Complete (Y/N)?	
Sample Receipt Date & Time:	2/12/18 0910				ABC	
Number of Containers & Container Type:	1 IL cube					
Approx. Total Volume Received (L):	~12				Filtration? Y (N)	
Check-in Temperature (°C)	4.2				Pore Size:	
Temperature OK?	Ŷ N	Y N	Y N	Y N	Organisms or Debris	
DO (mg/L)	9.6					
pH (units)	7.53				Salinity Adjustment? Y N	
Conductivity (µS/cm)	11,500	1			Test: MUSSel Source: Brive Targ	at not: 3 C
Salinity (ppt)	7.0				1 3	et ppt: 5 -
Alkalinity (mg/L) ²	606				1	et ppt:
Hardness (mg/L) ^{2,3}					pH Adjustment? Y (N)	sc ppc.
Total Chlorine (mg/L)	40.02				A B	с
Technician Initials	PACS				Initial pH:	
L			L	1	Amount of HCI added:	
Test Performed: Chumic Mussel Develop	neit	0-0 / 1 -1		04		
Test Performed: Chranic 1103300	Alkalinity: 125	er: 8:2 / Lan	Salinity 30Port	Other:	Final pH: Cl ₂ Adjustment? Y (N)	
Additional Control? 🕢 N	- Dome Controlan	$\frac{1}{82}$	Jannity	- Colinity 30-0+	\bigcirc	0
				<u>Sammy. 30 pp 1</u>	A B Initial Free Cl ₂ :	c
Test Performed:	Control/Dilution Wat	er 8·2 / lah	SW / Lab ART	Other:		
	Alkalinity:				Final Free Cl ₂ :	
Additional Control? Y N						I
		-		·	Sample Aeration? Y 🔊	
Test Performed:	Control/Dilution Wate	er: 8:2 / Lab	SW / Lab ART	Other:	АВ	С
	Alkalinity:	Hardness or	Salinity:		Initial D.O.	
Additional Control? Y N	= All	calinity:	Hardness or S	Salinity:	Duration & Rate	
					Final D.O.	
Notes: ¹ Temperature of sample should				ne.		
² mg/L as CaCO3, ³ Measured for	or freshwater samples	only, NA = Not A	pplicable		Subsamples for Additional Chemistry Require	ed? 🕜 N
					NH3 Other	
Additional Comments:					Tech Initials A	
					QC Check: EL	12/21/18

Final Review: 1/2 1/19

Total Ammonia Analysis Freshwater

	ent: <u>JACOBS</u> ect: Wyckoff					
	pe: Mussel Dev	/elopment				
DI Blaı Test Start Da	nk: <u>() ()</u> nte: <u>12 12 18</u>		Δ	Analys analysis Date	t: <u>56</u> e: <u>12/12/19</u> N x 1.22	- X
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)	
Blank Spike (10 mg/L NH3)		NA	NA	8.8	10.7	
18-1357	1	12/12/2018	0	2.9	3.5	
Spike Check (10 mg/L NH ₃)		NA	NA	8.8	10.7	-
			Ju			-
Sample Duplicate ^a Sample Duplicate + Spike ^a	1	NA	NA	2.6	3.2	
Spike Check (10 mg/L NH ₃)		NA NA	NA NA	10.4	1207	-
Relative Percent Difference	e (RPD) = [sample] ([average ammor y = [spiked sample] (nominal [spike	nia] (mg/L) (mg/L) - [sample] () x 100	Acceptable Ra	그 ange: 0-20% ange: 80-120% ^b
QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	0.0	NA	10.7	10	NA	107
1	3.5	3.2	12,7	10	9.0	92
Comments:	ecovery applies only	the datasheet is ι ν to the blank spike	used for duplicate. Spike recover	ate and duplicate eries in samples r	+ spike QC chec may vary based c	k. on sample matrix
and are for information only contract of the second	f	values below the	method detecti	on limit.		
Method Detection Limit = 0						
QC Check: <u>E4 12/21/18</u>			ч ч	Final Review:	19.14	19
Nautilus Environmental. 4340 Vandever Av	venue. San Diego, CA	92120.				

Appendix C Chain-of-Custody Form

Page 1 of 1

Enthalpy Analytical (REGION COPY)

DateShipped: 12/11/2018 CarrierName: FedEx AirbillNo: 773939295943

CHAIN OF CUSTODY RECORD

No: 10-121118-100928-0327

Wyckoff Eagle Harbor GWTP 2018/WA Project Code: WEH-025W Cooler #: 1 of 1

2019T10P000DD210W2LA00 Contact Name: Keith Allers Contact Phone: 206-780-1711

Sample Identifier	CLP Sample No.	Matrix/Sampler	Coll. Method	Analysis/Turnaround (Days)	Tag/Preservative/Bottles	Location	Collection Date/Time	Sample Type	Rec Trimp
121118		Ground Water/ K.Allers	Composite	CHRTOX(8 Weeks)	(< 6 C) (1)	SP-11	12/11/2018 09:25	Field Sample	4,2
								ana managana da kata ya kata y	
	(0040001)								

	Shipment for Case Complete? N
Special Instructions:	Samples Transferred From Chain of Custody #
Analysis Key: CHRTOX=Chronic Toxicity	

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	Ketto allost JACOBS	12-11-18 1045	and by Matiles	12/12/18	Cond
	0				

Nautilus 10= 18-1357

Appendix D Reference Toxicant Test Results

31 Dec-18 14:58 (p 1 of 3) 181212msdvSO | 11-6161-8836

	50 C							
Bivalve Larva	Survival and Developr	nent Test						Nautilus Environmental (CA)
Batch ID: Start Date: Ending Date: Duration:	12 Dec-18 13:55	Fest Type: Protocol: Species: Source:	Development-S EPA/600/R-95, Mytilus gallopr Taylor Shellfish	/136 (1995) ovincialis			Analyst: Diluent: Brine: Age:	Diluted Natural Seawater Not Applicable
Sample ID: Sample Date: Receive Date: Sample Age:	12 Dec-18 12 Dec-18 5	Code: Material: Source: Station:	181212msdvS Copper sulfate Reference Tox Copper Sulfate	icant	<u> </u>		Client: Project:	Internal
Comparison S	Summary	·						
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Meth	od
20-5760-9453 11-3000-4340 00-5033-9234	Combined Developmen Development Rate Survival Rate	t Ra 2 2 16	4 4 32	2.828 2.828 22.63	1.82% 1.21% 1.64%		Dunn	ett Multiple Comparison Test ett Multiple Comparison Test Many-One Rank Sum Test
Point Estimate	e Summary							
Analysis ID	Endpoint	Level	μg/L	95% LCL	95% UCL	ти	Meth	od
02-1891-3936	Combined Developmen	t Ra EC25 EC50	4.383 5.593	4.234 5.494	4.498 5.672		Linea	r Interpolation (ICPIN)
13-7938-6780	Development Rate	EC25 EC50	4.377 5.589	4.236 5.494	4.49 5.664		Linea	r Interpolation (ICPIN)
20-5520-1077	Survival Rate	EC25 EC50	19.79 23.86	19.41 23.61	20.1 24.07		Linea	r Interpolation (ICPIN)
Test Acceptab	bility							
Analysis ID	Endpoint	Attrib	ute	Test Stat	TAC Limi	ts	Over	lap Decision
11-3000-4340 13-7938-6780 00-5033-9234	Development Rate Development Rate Survival Rate Survival Rate	Contro	ol Resp ol Resp ol Resp	0.9889 0.9889 0.9951	0.9 - NL 0.9 - NL 0.5 - NL		Yes Yes Yes	Passes Acceptability Criteria Passes Acceptability Criteria Passes Acceptability Criteria

000-089-187-4

Analyst: EL QA: Aululig

Bivalve Larval Survival and Development Test

Combined Development Rate Summary

000-089-187-4

Combined	Development Nat	counnary									
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
0	Lab Control	5	0.984	0.9696	0.9985	0.9724	1	0.005204	0.01164	1.18%	0.0%
2		5	0.9815	0.9582	1	0.9512	1	0.008385	0.01875	1.91%	0.26%
4		5	0.8138	0.7839	0.8438	0.7846	0.8457	0.01077	0.02409	2.96%	17.29%
8		5	0.002694	0	0.007311	0	0.007407	0.001663	0.003719	138.1%	99.73%
16		5	0	0	0	0	0	0	0		100.0%
32		5	0	0	0	0	0	0	0		100.0%
Developme	ent Rate Summary	,									
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
0	Lab Control	5	0.9889	0.9736	1	0.9724	1	0.005511	0.01232	1.25%	0.0%
2		5	0.9879	0.9774	0.9984	0.9787	1	0.003791	0.008476	0.86%	0.1%
4		5	0.8165	0.7886	0.8443	0.7846	0.8457	0.01002	0.02241	2.75%	17.44%
8		5	0.002694	0	0.007311	0	0.007407	0.001663	0.003719	138.1%	99.73%
16		5	0	0	0	0	0	0	0		100.0%
32		5	0	0	0	0	0	0	0		100.0%
Survival Ra	ate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
0	Lab Control	5	0.9951	0.9816	1	0.9756	1	0.004878	0.01091	1.1%	0.0%
2		5	0.9935	0.9754	1	0.9675	1	0.006504	0.01454	1.46%	0.16%
4		5	0.9967	0.9877	1	0.9837	1	0.003252	0.007272	0.73%	-0.16%
8		5	1	1	1	1	1	0	0	0.0%	-0.49%
16		5	0.9789	0.9498	1	0.9431	1	0.01047	0.02342	2.39%	1.63%
32		5	0	0	0	0	0	0	0		100.0%
Combined	Development Rate	e Detail									
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.9921	0.9756	1	0.98	0.9724					
2		0.9787	1	0.9512	0.9847	0.9929					
4		0.8457	0.7846	0.8264	0.8158	0.7967					
8		0	0.007407	0	0.006061	0					
16		0	0	0	0	0					
32		0	0	0	0	0					
Developme	ent Rate Detail										
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.9921	1	1	0.98	0.9724					

C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Control	0.9921	1	1	0.98	0.9724	
2		0.9787	1	0.9832	0.9847	0.9929	
4		0.8457	0.7846	0.8264	0.8158	0.8099	
8		0	0.007407	0	0.006061	0	
16		0	0	0	0	0	
32		0	0	0	0	0	
Survival Rat	e Detail						
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Control	1	0.9756	1	1	1	
2		1	1	0.9675	1	1	
4		1	1	1	1	0.9837	
8		1	1	1	1	1	
16		0.9756	1	0.9431	1	0.9756	
32		0	0	0	0	0	

Report Date: Test Code:

%Effect

17.29%

99.73%

100.0%

100.0%

%Effect

17.44%

99.73%

100.0%

100.0%

%Effect

100.0%

Nautilus Environmental (CA)

Report Date:	
Test Code:	

31 Dec-18 14:58 (p 3 of 3) 5161-8836

Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

|--|

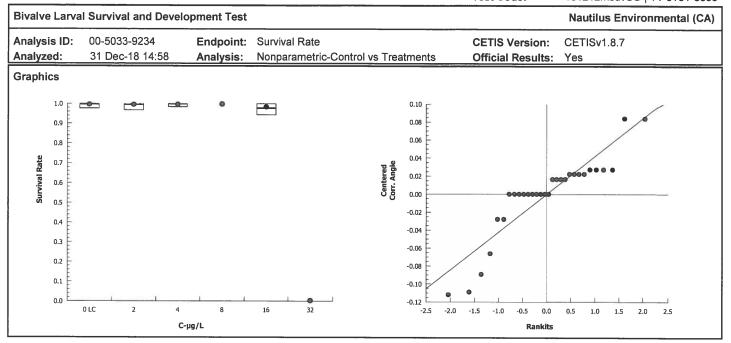
Combined	Development Rate	e Binomials	5							
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5				
0	Lab Control	125/126	120/123	140/140	147/150	141/145			 	
2		138/141	127/127	117/123	129/131	139/140				
4		137/162	102/130	119/144	124/152	98/123				
8		0/156	1/135	0/129	1/165	0/126				
16		0/123	0/153	0/123	0/155	0/123				
32		0/123	0/123	0/123	0/123	0/123				
Developme	nt Rate Binomials	3						ñ	 · · · · · · · · · · · · · · · · · · ·	
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5				
0	Lab Control	125/126	120/120	140/140	147/150	141/145				
2		138/141	127/127	117/119	129/131	139/140				
4		137/162	102/130	119/144	124/152	98/121				
8		0/156	1/135	0/129	1/165	0/126				
16		0/120	0/153	0/116	0/155	0/120				
32		0/1	0/1	0/1	0/1	0/1				
Survival Ra	te Binomials		, <u>, , , , , , , , , , , , , , , , , , </u>						 	
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5				
0	Lab Control	123/123	120/123	123/123	123/123	123/123			 	
2		123/123	123/123	119/123	123/123	123/123				
4		123/123	123/123	123/123	123/123	121/123				
8		123/123	123/123	123/123	123/123	123/123				
16		120/123	123/123	116/123	123/123	120/123				
32		0/123	0/123	0/123	0/123	0/123				

	alytical Rep	ort						ort Date: Code:			58 (p 1 of 4 1-6161-8836
Bivalve Larva	al Survival and I	Developm	ent Test						Nautilus	s Environr	nental (CA)
Analysis ID: Analyzed:	20-5760-9453 31 Dec-18 14:		•	mbined Deve rametric-Cor	•			S Version:	CETISv1 Yes	.8.7	
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)	NA	C > T	NA	NA		1.82%	2	4	2.828	·
Dunnett Mult	iple Compariso	n Test									
Control	vs C-µg/L		Test Stat	Critical	MSD DF	P-Value	Р-Туре	Decision(α:5%)		
Lab Control	2		0.1686	2.227	0.066 8	0.6859	CDF		ficant Effect		
	4*		11.04	2.227	0.066 8	<0.0001	CDF	Significant			
	8*		47.15	2.227	0.066 8	<0.0001	CDF	Significant	t Effect		
ANOVA Table	•										
Source	Sum Squ	ares	Mean Squ	Jare	DF	F Stat	P-Value	Decision(α:5%)		
Between	6.516973		2.172324	_	3	995.7	<0.0001	Significant	Effect		
Error Total	0.034906 6.551879	22	0.0021816	539	16 19						
				<u></u>							
Distributional					•						
Attribute	Test	and the state	Variation	Test Stat		P-Value	Decision(
Variances Distribution		Equality of Wilk W No		5.001 0.9682	11.34 0.866	0.1718 0.7164	Equal Var Normal Di				
					0.000	0.7104					
	evelopment Rate										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL		Min	Max	Std Err	CV%	%Effect
0 2	Lab Control	5 5	0.984 0.9815	0.9696 0.9582	0.9985 1	0.98 0.9847	0.9724 0.9512	1 1	0.005204	1.18%	0.0%
4		5	0.8138	0.7839	0.8438	0.8158	0.9512	ı 0.8457	0.008386 0.01077	1.91% 2.96%	0.26% 17.29%
8		5	0.002694	0	0.007311	0	0	0.007407	0.001663	138.1%	99.73%
16		5	0	0	0	0	0	0	0		100.0%
32		5	0	0	0	0	0	0	0		100.0%
Angular (Corr	rected) Transfor	med Sum	mary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.451	1.386	1.517	1.429	1.404	1.529	0.02347	3.62%	0.0%
2		5	1.446	1.363	1.53	1.447	1.348	1.526	0.03011	4.66%	0.34%
4 8		5 5	1.125 0.05855	1.087 0.03158	1.164 0.08552	1.127 0.04456	1.088 0.04004	1.167 0.08617	0.01391 0.009715	2.76% 37.1%	22.47% 95.97%
16		5	0.04318	0.03992	0.04644	0.0451	0.04004	0.0451	0.001176	6.09%	97.02%
32		5	0.0451	0.04509	0.04511	0.0451	0.0451	0.0451	0	0.0%	96.89%
Graphics	·········										
1.0 🕞 👔						0.10					
0.9				Reject Null	-	0.10		[/
ate		-0-				0.06				• /	
8.0 E						a a f			~		
Combined Development Rate					lered	0.02 Yudge					
					Cent	0.00		CO PORT	00000		
0.5 -						-0.02					
5 0.4						-0.04	• •				
0.3						-0.06	•				
0.2						-0.08					
0.1						-0.10	•				
E 2	10					E					
0.0 E	0 LC 2	4	8 16	32	1	-0.12 -2.5	-2.0 -1.5 -:	1.0 -0.5 0.0	0.5 1.0	1.5 2.0	 2.5

Analyst: EG QA: Aci/11/19

CETIS An	alytical Rep	ort					-	ort Date: Code:			58 (p 2 of 4) 1-6161-8836
Bivalve Larv	val Survival and I	Developme	nt Test						Nautilus	Environn	nental (CA)
Analysis ID: Analyzed:	11-3000-4340 31 Dec-18 14:		•	velopment R rametric-Cor		tments		IS Version: al Results:	CETISv1 Yes	.8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cori	rected)	NA	C > T	NA	NA		1.21%	2	4	2.828	
Dunnett Mul	tiple Compariso	n Test									
Control	vs C-µg/L		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	2		0.3497	2.227	0.055 8	0.6105	CDF		icant Effect		
	4*		13.91	2.227	0.055 8	<0.0001	CDF	Significant	Effect		
	8*	-	57.05	2.227	0.055 8	<0.0001	CDF	Significant	Effect		
ANOVA Tabl	e										
Source	Sum Squ	ares	Mean Squ	lare	DF	F Stat	P-Value	Decision(α:5%)		
Between	6.697048		2.232349		3	1451	< 0.0001	Significant	Effect		· · · ·
Error	0.024607	41	0.0015379	963	16						
Total	6.721655				19						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances		Equality of V		3.535	11.34	0.3163	Equal Var				
Distribution	Shapiro-	Wilk W Nor	mality	0.975	0.866	0.8557	Normal D	stribution	<u> </u>		
Developmen	nt Rate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9889	0.9736	1	0.9921	0.9724	1	0.005511	1.25%	0.0%
2		5	0.9879	0.9774	0.9984	0.9847	0.9787	1	0.003791	0.86%	0.1%
4 8		5 5	0.8165	0.7886	0.8443	0.8158	0.7846	0.8457	0.01002	2.75%	17.44%
16		5	0.002694 0	0 0	0.007311 0	0 0	0 0	0.007407 0	0.001663 0	138.1%	99.73% 100.0%
32		5	0	0	0	0	0	0	0		100.0%
Angular (Co	rrected) Transfor	med Sumn							-	· · · ·	
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Мах	Std Em	C)/0/	
0-µg/L 0	Lab Control	5	1.474	1.404	1.543	1.482	1.404	1.529	Std Err 0.02509	CV%	%Effect 0.0%
2		5	1.465	1.414	1.516	1.447	1.404	1.529	0.02509	2.81%	0.59%
4		5	1.129	1.093	1.165	1.127	1.088	1.167	0.01294	2.56%	23.41%
8		5	0.05855	0.03158	0.08552	0.04456	0.04004	0.08617	0.009715	37.1%	96.03%
16		5	0.04367	0.03983	0.04752	0.04566	0.04017	0.04644	0.001384	7.09%	97.04%
32		5	0.5236	0.5234	0.5238	0.5236	0.5236	0.5236	0	0.0%	64.47%
Graphics											
1.0				Reject Null		0.08 F					
0.9				Reject Null		0.07				~	/
0.8						0.05				••/	
B 0.7						0.04			•		
Development Rate					tered	0.03 0.02 0.01			00		
elop					Cen	0.01 E			••		
E						-0.01		0000000	Older -		
0.4						-0.02		••••			
0.3						-0.03	1				
0.2						-0.04	•••				
0.1						-0.06					
0.0 È		i				-0.07	•				
	0 LC 2	4	8 16	32		-2.5	-2.0 -1.5 -	1.0 -0.5 0.0	0.5 1.0	1.5 2.0	2.5
		C-µg/L						Rankits			

Analyst: EG QA: ACI/11/19


		nsdvSO 1	1-6161-8836
Bivalve Larval Survival and Development Test	Nautilu	s Environ	mental (CA)
Analysis ID: 00-5033-9234 Endpoint: Survival Rate CETIS Version Analyzed: 31 Dec-18 14:58 Analysis: Nonparametric-Control vs Treatments Official Results		.8.7	
Data Transform Zeta Alt Hyp Trials Seed PMSD NOEL	LOEL	TOEL	TU
Angular (Corrected) NA C > T NA NA 1.64% 16	32	22.63	
Steel Many-One Rank Sum Test			
Control vs C-µg/L Test Stat Critical Ties DF P-Value P-Type Decision	n(α:5%)		
	nificant Effect	1	
	nificant Effect		
	nificant Effect		
	nificant Effect		
ANOVA Table			
Source Sum Squares Mean Square DF F Stat P-Value Decisior	n(α:5%)		
	nificant Effect		
Error 0.05845465 0.002922733 20			
Total 0.0786854 24			
Distributional Tests			
Attribute Test Test Stat Critical P-Value Decision(α:1%)			
Variances Mod Levene Equality of Variance 1.299 4.893 0.3149 Equal Variances			
Variances Levene Equality of Variance 3.623 4.431 0.0224 Equal Variances			
Distribution Shapiro-Wilk W Normality 0.8573 0.8877 0.0024 Non-normal Distribut	tion		
Survival Rate Summary			
C-µg/L Control Type Count Mean 95% LCL 95% UCL Median Min Max	Std Err	CV%	%Effect
0 Lab Control 5 0.9951 0.9816 1 1 0.9756 1	0.004878	1.1%	0.0%
2 5 0.9935 0.9754 1 1 0.9675 1	0.006504	1.46%	0.16%
4 5 0.9967 0.9877 1 1 0.9837 1	0.003252	0.73%	-0.16%
8 5 1 1 1 1 1 1	0	0.0%	-0.49%
16 5 0.9789 0.9498 1 0.9756 0.9431 1	0.01047	2.39%	1.63%
32 5 0 0 0 0 0 0	0		100.0%
Angular (Corrected) Transformed Summary			
C-µg/L Control Type Count Mean 95% LCL 95% UCL Median Min Max	Std Err	CV%	%Effect
0 Lab Control 5 1.503 1.441 1.565 1.526 1.414 1.526	0.02234	3.32%	0.0%
2 5 1.498 1.423 1.574 1.526 1.389 1.526	0.02725	4.07%	0.33%
4 5 1.509 1.463 1.555 1.526 1.443 1.526	0.01655	2.45%	-0.39%
	0	0.0%	-1.49%
8 5 1.526 1.525 1.526 1.526 1.526 1.526	0		
8 5 1.526 1.525 1.526 1.526 1.526 1.526 16 5 1.442 1.338 1.546 1.414 1.33 1.526 32 5 0.0451 0.04509 0.04511 0.0451 0.0451 0.0451	0.03751	5.82%	4.09%

Analyst: EG QA: ACI/11/19

CETIS Analytical Report

Report Date: Test Code:

31 Dec-18 14:58 (p 4 of 4) 181212msdvSO | 11-6161-8836

Analyst: EG QA: ACI/11/19

CETIS	S Analy	vtical Repo	ort					-	ort Date: Code:			:58 (p 1 of 3 1-6161-883
Bivalve	e Larval S	Survival and D	evelopmen	t Test						Nautilu	s Environ	mental (CA)
Analys Analyz		02-1891-3936 31 Dec-18 14:5		•		velopment Ra ation (ICPIN)			S Version: ial Results:	CETISv1 Yes	.8.7	
Linear	Interpola	ation Options										
X Tran	sform	Y Transform	See	d Re	samples	Exp 95%	CL Meth	nod				
Linear		Linear	2028	30 10	00	Yes		Point Interp	olation			
Point E	Estimates	3										
Level	µg/L	95% LCL	95% UCL									
EC25	4.383	4.234	4.498									
EC50	5.593	5.494	5.672									
Combi	ned Dev	elopment Rate	Summary			Calcu	lated Varia	te(A/B)				
C-µg/L		entrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	в
0		b Control	5	0.984	0.9724	1	0.005204	0.01164	1.18%	0.0%	673	684
2			5	0.9815	0.9512	1	0.008386	0.01875	1.91%	0.26%	650	662
4			5	0.8138	0.7846	0.8457	0.01077	0.02409	2.96%	17.29%	580	711
8			5	0.002694	0	0.007407	0.001663	0.003719	138.1%	99.73%	1	711
16			5	0	0	0	0	0		100.0%	0	677
32			5	0	0	0	0	0		100.0%	0	615
Graphi	1.0											

30 35

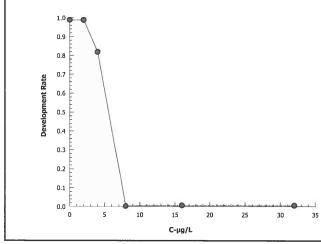
30

0.2 0.1

0.0 0 5

1.0

C-µg/L


20

25

15

10

CETIS	S Ana	lytical Repo	ort			-			Report Date: Test Code:			4:58 (p 2 of 3 11-6161-883
Bivalve	e Larval	Survival and D	evelopm	nent Test						Nautilu	is Enviro	nmental (CA
Analys		13-7938-6780		indpoint:	Developm			(CETIS Versio	n: CETISv	1.8.7	
Analyz	ed:	31 Dec-18 14:5	58 A	nalysis:	Linear Inte	rpolation (ICPI)	1)	(Official Resul	ts: Yes		
Linear	Interpo	lation Options										
X Tran	sform	Y Transform	n S	eed	Resample	s Exp 95%	6CL M	lethod				
Linear		Linear	1	200573	1000	Yes	T	wo-Point In	terpolation			
Point E	Estimate											
Level	µg/L	95% LCL	95% U	CL								
EC25	4.377	4.236	4.49									
EC50	5.589	5.494	5.664									
Develo	pment	Rate Summary				Calc	ulated Va	ariate(A/B)				
C-µg/L	С	ontrol Type	Count	Mean	Min	Max	Std Er	r Std D	ev CV%	%Effect	Α	в
0	L	ab Control	5	0.988	9 0.972	4 1	0.0055	511 0.012	32 1.25%	0.0%	673	681
2			5	0.987	9 0.978	7 1	0.0037	'91 0.008 _'	477 0.86%	0.1%	650	658
4			5	0.816	5 0.784	6 0.8457	0.0100	0.022	41 2.75%	17.44%	580	709
8			5	0.002	694 0	0.007407	0.0016	63 0.003	719 138.1%	99.73%	1	711
16			5	0	0	0	0	0		100.0%	0	664
32			5	0	0	0	0	0		100.0%	0	5

Analyst: EG QA: ACILI1/19

CETIS	S Anal	ytical Repo	ort					eport Date: st Code:			:58 (p 3 of 3 11-6161-883
Bivalve	e Larval	Survival and D	evelopment Te	est				10	Nautilu	s Enviror	mental (CA)
Analys Analyz		20-5520-1077 31 Dec-18 14:5	Endpoi 8 Analysi		Rate nterpolation (IC	PIN)		ETIS Version ficial Results		.8.7	
Linear	Interpol	ation Options									
X Trans	sform	Y Transform	a Seed	Resam	oles Exp	95% CL M	lethod				
Linear		Linear	170602	5 1000	Yes		wo-Point Inte	rpolation			
Point E	Stimate	s									-
Level	µg/L	95% LCL	95% UCL								
EC25	19.79	19.41	20.1								
EC50	23.86	23.61	24.07								
Surviva	al Rate S	Summary			С	alculated Va	ariate(A/B)			12	
C-µg/L	Co	ontrol Type	Count M	ean Mii	n Max	Std Er	r Std De	v CV%	%Effect	Α	в
0	La	b Control	5 0.	9951 0.9	756 1	0.0048	378 0.0109 ⁻	1.1%	0.0%	612	615
2			5 0.	9935 0.9	675 1	0.0065	504 0.0145 <i>4</i>	1.46%	0.16%	611	615
4			5 0.5	9967 0.9	837 1	0.0032	252 0.00727	72 0.73%	-0.16%	613	615
8			5 1	1	1	0	0	0.0%	-0.49%	615	615
16			5 0.5	9789 0.9	431 1	0.0104	0.02342	2.39%	1.63%	602	615
32			5 0	0	0	0	0		100.0%	0	615
Graphi	cs										
Survival Rate	1.0 • •••••••••••••••••••••••••••••••••••	•		\ \							

0.4 0.3 0.2 0.1

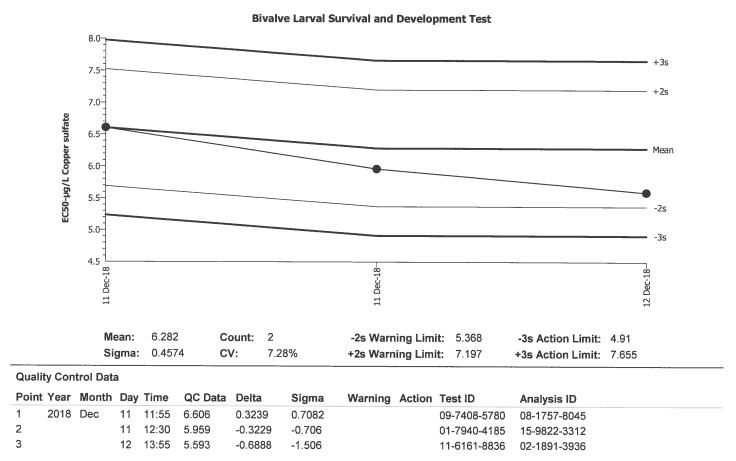
0.0 ^E 5 10 15

15

C-µg/L

25

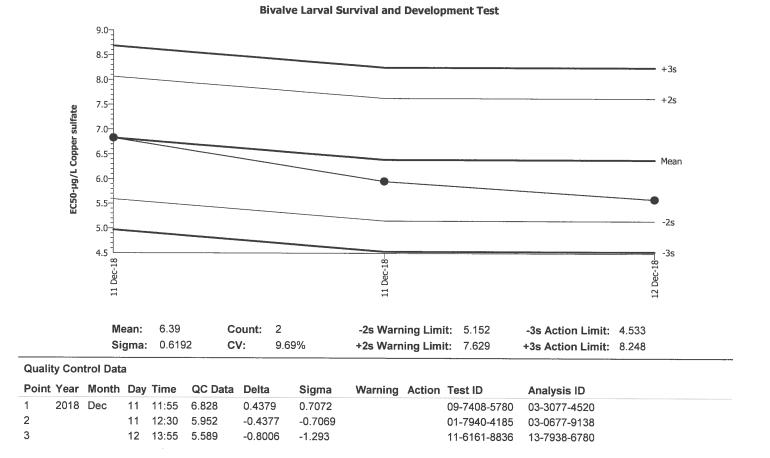
20


6 ____

35

30

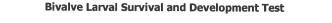
CETIS QC Plot

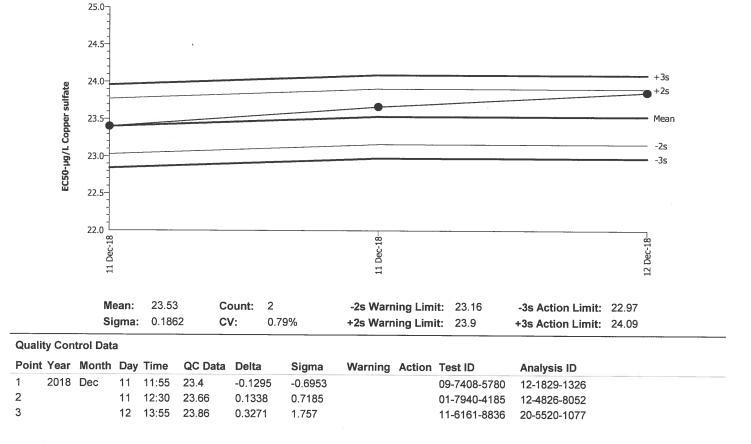

Bivalve Larval Survival and Developmen	Nautilus Environmental (CA)		
Test Type: Development-Survival	Organism: Mytilus galloprovincialis (Bay Mussel	Material:	Copper sulfate
Protocol: EPA/600/R-95/136 (1995)	Endpoint: Combined Development Rate	Source:	Reference Toxicant-REF

Bivalve Larval Survival and Developmer	Nautilus Environmental (CA)		
Test Type: Development-Survival	Organism: Mytilus galloprovincialis (Bay Mussel	Material:	Copper sulfate
Protocol: EPA/600/R-95/136 (1995)	Endpoint: Development Rate	Source:	Reference Toxicant-REF

Report Date:

31 Dec-18 14:58 (1 of 1)




CETIS QC Plot

Analyst: EG QA: Ac1/1/19

CETIS QC Plot

Bivalve Larval Survival and Developmen	Nautilus Environmental (CA)		
Test Type:Development-SurvivalProtocol:EPA/600/R-95/136 (1995)	Organism: Mytilus galloprovincialis (Bay Mussel Endpoint: Survival Rate		Copper sulfate Reference Toxicant-REF

Analyst: EG QA: Aciliilia

CETIS Test Data Worksheet

Bivalve Larval Survival and Development Test	Bivalve	vival and Development Te	est
--	---------	--------------------------	-----

Nautilus Environmental (CA)

Start Date: End Date: Sample Date	14 C	Dec-18 Dec-18 Dec-18	3	Protocol:	Mytilus galloprov EPA/600/R-95/13 Copper sulfate			Sample Code: 181212msdvS Sample Source: Reference To: Sample Station: Copper Sulfate	kicant
C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes	
			71			155	Ø	12/22/	10
			72			120	Ð		0
			73			153	0 1530	Re-read JUL 12/27/18	
			74			145	141		
			75			141	138		
			76			127	127		
			77			126	125		
			78			120	Ø		
			79			152	124		
			80			135	1		
			81			116	Ð		
			82			e	Ø		
			83			150	147		
			84			150	Ø		
			85			Ø	Ø		
			86			120	120		
			87			120 129	Ø		
			88			165	1		
			89			126	Ð		
			90			126	Ø		
			91			156	Ð		
			92			Ø	Ð		
			93			162	137		
			94			140	139		
			95			121	98		
			96			140	140		
			97			119	117		
			98		ľ	131	129		
			99			144	119		
			100		1	130	1.3	SY.	

@ Q18 JFL 12/27/18

Analyst: SGA QA: DH/EQ 12/31/1

CETIS Test Data Worksheet

Start Date:12 Dec-18End Date:14 Dec-18Sample Date:12 Dec-18			3	Protocol:	Mytilus galloprovi EPA/600/R-95/13 Copper sulfate			Nautilus Environmental (C Sample Code: 181212msdvSO Sample Source: Reference Toxicant Sample Station: Copper Sulfate		
C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes		
0	LC	1	77							
0	LC	2	86							
0	LC	3	96			143	143	SG. 12/15/18		
0	LC	4	83				. 12			
0	LC	5	74							
2.5	-	1	75							
2.5		2	76							
2.5	-	3	97							
2.5	-	4	98			126	124	56 12/15/18		
2.5		5	94			1=0				
5		1	93							
5		2	100							
5	-	3	99			148	118	SG 12/15/18		
5	-	4	79				-1-0			
5		5	95							
10		1	91							
10		2	80							
10		3	87							
10		4	88			166	2	56 12/15/18		
10	-	5	89			100				
20	-	1	72							
20	-	2	73							
20		3	81							
20		4	71			142	Ø	56 12/15/18		
20		5	78				1 1 1			
40		1	92							
40		2	85							
40		3	84			g	Ø	56 12/15/18		
40		4	82				~~			
40		5	90							

QC:EG

Analyst: EG QA: DH/ACI/11/19

Marine Chronic Bioassay

Client: Internal

Sample ID: CuSO₄

Test No.: 181212msdvSO

Water Quality Measurements

Test Species:	M. galloprovincialis				
Start Date/Time:	12/12/2018	1355			
End Date/Time:	12/14/2018	1230			

Concentration		Salinity		Т	emperatu	re	Diss	olved Ox	ygen		pН	
(μg/L)	(ppt)			(°C)			(mg/L)			(pH units)		
	0	24	48	0	24	48	0	24	48	0	24	48
Lab Control	31.2	31.4	31.4	15.2	15.3	15.Z	8.5	8.4	7.9	8.05	7.98	7.93
2.5 2	31.5	31.6	31.6	15.2	15-2	15.0	8.4	8.4	7.9	8.06	7.97	7.92
5 4	31.4	31.7	31.6	15.1	15.3	15.0	8.4	8.3	7.9	8.66	798	7.92
10 8	31.4	31.6	31-6	15.1	155	15.1	8.5	13. 18	7.9	8.07	7.98	7.92
20 16	31.4	31.6	31.6	15.Z	15.5	15.2	8.4	8.2	7.9	8.07	7.98	7.92
40 32	31.4	31.6	31.5	15.2	15.5	15.2	8.4	8.2	7.8	8.08	7.99	7.92
Ř												
			0	24	48			conc. mad			0	
Technician Initials:	WQ R ا Dilutions	eadings: made by:		KL	RT			stock ado inal Volu			>	
		J *	ry			Cu				P-10,00	5-8,000	

Comments:

s: O hrs: BEG &18 12/31/18; adjusteer for MCasured stock - oncentration 24 hrs:

QC Check:

Final Review: tec (11/19

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

18

48 hrs:

Marine Chronic Bioassay

Client:	Internal
Test No.:	181212 mSdVS0 At 12/31/18
Test Species:	M. galloprovincidis
Animal Source:	Taylor Shellfish
Date Received:	9/25/18 and 10/30/18
Test Chambers:	30 mL sheel vial
Sample Volume:	10 mg l

1130

Larval Development Worksheet

Start Date/Time:	12/12/2018	1355	
End Date/Time:	12/14/2018	1230	
Technician Initials:	EG		

Spawn Information

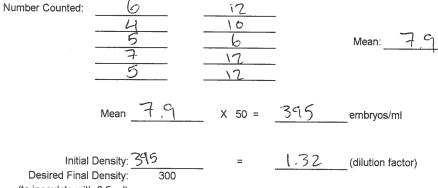
First Gamete Release Time:

Gamete Selection

Sex	Number Spawning
Male	6
Female	2

Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)			
Male	2,3,6	good density and not. lit.			
Female 1)	good devoity, round, pale color			
Female 2	2	good trok density, round pale color			
Female 3	-	0 _ ,			

Embryo Stock Selection


Stock Number	% of embryos at 2-cell division stage		
Female 1	100		
Female 2	100		
Female 3	-		

Egg Fertilization Time: 1210

	1
Stock(s) chosen for testing:	/

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos

(to inoculate with 0.5 ml)

Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

	Time Ze	ro Control Co	unts			
	Rand. No.	No. Dividing	Total	% Dividing	Mean % Dividing	48-h QC: 141/142
	T\$	132	132	100		
	TF2	114	114	100		
	703	106	106	100	100	
	TPH	134	134	100		
	T#5	124	124	140		
Comments:	TAG	127	127	100		
		× 122,8	3			
QC Check:	PH/	12/31/1	8			Final Review: <u>_AC 1/11/19</u>

Appendix E List of Qualifier Codes

Glossary of Qualifier Codes:

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was $\leq 110\%$
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% mortality observed upon receipt and/or in holding prior to test initiation. Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test organisms received at a <u>temperature</u> greater than 3°C outside the recommended test temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.