TOXICITY TEST REPORT

TEST IDENTIFICATION

Test No.: 658-85

Title: Mussel (Mytilus galloprovincialis) larval test using static 48-hr exposure to CH2M Hill-Wyckoff

Treatment Plant SP11 Field Sample. EPA permit number WAD009248295.

<u>Protocol No.</u>: NAS-XXX-CG/MG2, August 28, 1990, Revision 3 (9-8-01). This protocol complies with the U.S. EPA West Coast chronic toxicity manual (EPA/600/R-95/136) and the ASTM bivalve toxicity method (E 724-89).

STUDY MANAGEMENT

Study Sponsor: CH2M Wyckoff Treatment Plant, 5350 Creosote Place NE, Bainbridge Island, WA 98110.

Sponsor's Study Monitor: Mr. Stanley Warner

Testing Laboratory: Northwestern Aquatic Sciences, P.O. Box 1437, Newport, OR 97365.

Test Location: Newport laboratory.

<u>Laboratory's Study Personnel</u>: G.A. Buhler, B.S., Proj. Man.; G.J. Irissarri, B.S., Study Dir.; L.K. Nemeth, B.A., M.B.A., QA Officer; J. B. Brown, B.S., D.V.M., Assoc. Aq. Toxicol.; Y. Nakahama, Sr. Tech.

Study Schedule:

Test Beginning: 3-1-18, 1350 hrs. Test Ending: 3-3-18, 1400 hrs.

<u>Disposition of Study Records</u>: All raw data, reports and other study records are stored at Northwestern Aquatic Sciences, 3814 Yaquina Bay Rd., Newport, OR 97365.

Statement of Quality Assurance: The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

TEST MATERIAL

Description: CH2M Hill-Wyckoff Treatment Plant SP11 Ground Water Sample. Details are as follows:

NAS Sample No.	6135G
Collection Date	2-28-18
Receipt Date	3-1-18
Temperature (°C)	2.0
pH	7.5
Dissolved oxygen (mg/L)	10.9
Salinity (‰)	4.5

Treatments: Samples briefly temperature-equilibrated prior to use.

Storage: Used date of receipt.

DILUTION WATER

Source: Yaquina Bay, Oregon seawater.

Date of Collection: 2-28-18

Water Quality: Salinity, 30.0 %; pH, 8.0

Pretreatment: Filtered to ≤0.45 μm, aerated, salinity adjusted Milli-Q deionized water.

BRINE USED FOR DILUTION WATER AND SALINITY CONTROL

Source: Filtered Yaquina Bay, Oregon, sea water

Salinity: 100.0 ‰

Date of Preparation: 2-9-18

Method of Preparation: Freezing method

TEST ORGANISMS

Species: Mussel (Mytilus galloprovincialis).

Age: 2.0 hrs post-fertilization.

Source: Taylor Shellfish Farms, Shelton, WA.

Conditioning: Adult mussels were received on 2-27-18 and placed in trays with flowing seawater. Holding conditions the day of testing were: temperature, 8.1°C; pH, 8.1; salinity, 27.0%; and dissolved oxygen, 9.1 mg/L. Photoperiod was natural daylight.

Source of Gametes: 2 females and 3 males.

TEST PROCEDURES AND CONDITIONS

Test Chambers: 30 ml borosilicate glass vials containing 10 ml of test solutions.

Test Concentrations: 70, 35, 18, 9, 4, 2, and 0% (Control).

<u>Brine Control</u>: A brine control was run in which salinity-adjusted Milli-Q[®] deionized water (4.5 ppt) was substituted for effluent in the preparation of the highest test solution concentration. As a result, the amount of brine in the brine control was the same as used in the 70.0% effluent test concentration.

Replicates/Treatment: 4

<u>Initial Concentration of Test Organisms</u>: 24.7/ml. <u>Volume of Subsamples Taken for Counting</u>: NA

Water Volume Changes per 24 hr: None (non-renewal static test).

Aeration: None Feeding: None

Effects Criteria: The effect criteria used were: 1) ability of embryos to survive and produce completely developed shells; and 2) survival. Data collected were: 1) the initial embryo density; 2) the number of abnormal larvae observed; and 3) the number of normal (live with completely developed shells) larvae observed.

Water Quality and Other Test Conditions: Temperature, 15.3 ± 0.2 °C; pH, 8.1 ± 0.2 ; salinity, 29.7 ± 0.6 %; and dissolved oxygen, 8.0 ± 0.1 mg/L. Photoperiod 16:8 hr, L:D.

DATA ANALYSIS METHODS

The proportion of surviving larvae, and the proportion of normal surviving larvae were calculated for each treatment replicate. The calculation used for the proportion of normal surviving larvae, Combined Proportion Normal, was the combined endpoint specified by EPA/600/R-95/136. The means were obtained for each treatment level and the latter were then corrected for control response using Abbott's formula. The LC50 (survival) and the EC50 (normality) were calculated, where data permitted, using either the Maximum-Likelihood Probit or the Trimmed Spearman-Karber methods. An IC25 was determined by linear interpolation with bootstrapping. NOEC and LOEC values for survival and normality were computed using either Dunnett's test, T-test with Bonferroni's adjustment, Steel's Many-One Rank Test, or Wilcoxon Rank Sum Test with Bonferroni Adjustment. The appropriate test was selected after evaluating the data for normality and homogeneity of variance. An arcsine-square root (angular) transformation was performed on the data prior to statistical analysis. The statistical software employed for these calculations was CETIS, v1.8.7.4, Tidepool Scientific Software. Toxic units (TU_c) were computed as 100/NOEC, 100/EC50, or 100/IC25.

PROTOCOL DEVIATIONS

None.

REFERENCE TOXICANT TEST

The routine reference toxicant test is a standard multi-concentration toxicity test using copper sulfate to evaluate the performance of the test organisms used in the effluent toxicity test. The performance is evaluated by comparing the results of this test with historical results obtained at the laboratory. A summary of the reference toxicant test result is given below. The reference toxicant test raw data are found in Appendix III.

Test No.: 999-3760

Reference Toxicant and Source: Copper as CuSO₄-5H₂O, Argent Lot No. 0195, 1.0 mg/ml stock prepared 5-16-16.

Test Date: 3-1-18

Dilution Water Used: Yaquina Bay, OR seawater. Salinity 30.0 ppt, pH 8.0

Results: EC50, 9.04 μ g/L; NOEC, 4 μ g/L; IC25, 7.09 μ g/L. The EC50 result was within the laboratory's control chart warning limits (8.65 – 12.0 μ g/L).

TEST RESULTS

Detailed tabulations of the test results are given in Table 1. The biological effects, given as the NOEC, LOEC, EC50/LC50 for normality and survival, and IC25 for normality are summarized below.

	Combined Proportion Normal	Survival
NOEC (%)	70 (TU _c =1.43)	70 (TU _c =1.43)
LOEC (%)	>70 (TU _c <1.43)	>70 (TU _c <1.43)
EC50/LC50 (%)	>70 (TU _c <1.43)	>70 (TU _c <1.43)
(95% C.I.)		
Method of Calculation	By Data Inspection	By Data Inspection
IC25 (%)	>70 (TU _c <1.43)	
(95% C.I.)		
Method of Calculation	Linear Interpolation	

DISCUSSION/CONCLUSIONS

The NOEC for combined proportion normal was 70% effluent. The EC50 and IC25 for abnormal development were both >70%. The brine control test indicated that the brine did not contribute to effluent toxicity.

STUDY APPROVAL

Project Manager Date Study Director Date

| Date | Study Director | Date | Date

Table 1. Test response of mussel (Mytilus galloprovincialis) larvae exposed to CH2M Hill-Wyckoff

Treatment Plant SP11 Field Sample.

Test Material Concentration					Prop	ibined ortion mal*		ortion ived*
(%)	Repl.	Norm.	Abn.	Total		Mean		Mean
70	i	212	14	226	0.858		0.915	
	2	218	16	234	0.883		0.947	
	3	217	4	221	0.879		0.895	
	4	228	8	236	0.923	0.886	0.956	0.928
35	1	197	9	206	0.798		0.834	
	2	215	7	222	0.870		0.899	
	3	210	7	217	0.850		0.879	
	4	198	9	207	0.802	0.830	0.838	0.862
18	1	198	6	204	0.802		0.826	
	2	216	10	226	0.875		0.915	
	3	225	9	234	0.911		0.947	
	4	213	12	225	0.862	0.862	0.911	0.900
9	1	197	12	209	0.798		0.846	
	2	225	9	234	0.911		0.947	
	3	192	6	198	0.777		0.802	
	4	217	9	226	0.879	0.841	0.915	0.878
4	1	191	11	202	0.773		0.818	
	2	187	12	199	0.757		0.806	
	3	189	11	200	0.765		0.810	
	4	201	9	210	0.814	0.777	0.850	0.821
2	1	199	14	213	0.806		0.862	
	2	206	11	217	0.834		0.879	
	3	226	6	232	0.915		0.939	
	4	201	11	212	0.814	0.842	0.858	0.885
Normal Control	1	220	13	233	0.891		0.943	
	2	190	10	200	0.769		0.810	
	3	231	14	245	0.935		0.992	
	4	221	7	228	0.895	0.873	0.923	0.917
Brine Control ¹	1	207	9	216	0.838		0.875	
	2	210	8	218	0.850		0.883	
	3	221	11	232	0.895		0.939	
	4	200	13	213	0.810	0.848	0.862	0.890

^{*} Based on an average initial count of 247 embryos per 10 ml sample, except that for the case in the combined proportion normal endpoint where number normal>average initial count, number normal is divided by the total count (as per EPA/600/R-95/136).

[†] Result significantly different (P≤0.05) from the control.

Salinity-adjusted Milli Q[©] deionized water (5.5 ppt) was substituted for effluent so that the brine concentration is equivalent to that for the 70.0% effluent concentration.

APPENDIX I

PROTOCOL

TEST PROTOCOL

BIVALVE, PACIFIC OYSTER OR BLUE MUSSEL, 48-HR LARVAL DEVELOPMENT TEST

1. <u>INTRODUCTION</u>

2. STUDY MANAGEMENT

- 1.1 <u>Purpose of Study</u>: The purpose of this test is to estimate chronic toxicity of effluents, receiving waters, or other test materials using bivalve larval development in a 48-hr static test.
- 1.2 <u>Referenced Method</u>: This protocol complies with the U.S. EPA West Coast chronic toxicity manual (EPA/600/R-95/136), ASTM bivalve toxicity method (E 724-89), and the WDOE toxicity guidance manual (WQ-R-95-80). Amendments may be incorporated to meet other methods or regulatory requirements as needed.
- 1.3 Summary of Method: Pacific oyster or blue mussel larvae (<4-hr-old) are exposed for 48-hr to different concentrations of test material in a static test. Salinity adjustment and brine controls are used when testing low salinity effluents. The test chambers are 30 ml borosilicate glass vials each containing 10 ml of test solution. Four replicate chambers each with 15-30 larvae per milliliter of test solution are employed at each test concentration. Test results are based on abnormal shell development and mortality. Data analysis normally consists of the calculation of an EC50 and IC25 for "percent normal", the calculation of an LC50 for percent survival, and the determination of NOECs and LOECs for both criteria. Special requirements may apply for the State of Washington or other regulatory entities. A test summary table is appended to the end of this protocol.

2.1 Sponsor's Name and Address: 2.2 Sponsor's Study Monitor: 2.3 Name of Testing Laboratory: Northwestern Aquatic Sciences 3814 Yaquina Bay Road P.O. Box 1437 Newport, OR 97365 2.4 Test Location: 2.5 Laboratory's Personnel to be Assigned to the Study: Study Director: Quality Assurance Unit: Aquatic Toxicologist: Aquatic Toxicologist:

- 2.6 <u>Proposed Study Schedule</u>: Effluent/receiving water tests must begin within 36 hours of the end of the sample collection period. In no case should the test be started more than 72 hours after sample collection.
- 2.7 Good Laboratory Practices: The test is conducted following the principles of Good Laboratory Practices (GLP) as defined in the EPA/TSCA Good Laboratory Practice regulations revised August 17, 1989 (40 CFR Part 792).

3. TEST MATERIAL

An effluent, receiving water sample, pore water or elutriate sample, or other test material as requested. A reference toxicant test is run concurrently.

4. DILUTION WATER

Dilution water is filtered ($\leq 0.45 \, \mu m$) Yaquina Bay seawater or other suitable seawater, adjusted to $30 \pm 2 \, \%$ salinity with deionized water and/or hypersaline brine. Hypersaline brine is prepared from filtered ($\leq 0.45 \, \mu m$) Yaquina Bay water adjusted to $100 \, \%$ by the freezing method. When testing low salinity effluents, hypersaline brine is administered with dilution water for salinity adjustment.

5. TEST ORGANISMS

- 5.1 Species: Commonly used West Coast species are Pacific oyster, Crassostrea gigas, or blue mussel, Mytilus edulis, M. galloprovincialis, or M. trossulus. These three Mytilus species were formerly all believed to be a single cosmopolitan species, M. edulis (Geller et al., 1993; McDonald & Koehn, 1988; McDonald et al., 1991). The test conditions specified in this protocol apply to the aforementioned species. Other species (e.g. M. californianus, C. virginica and Mercenaria mercenaria) are allowed by one or more of the referenced methods applicable to this protocol, but their use may require modified test conditions or procedures.
- 5.2 <u>Source</u>: Adult oysters are purchased from commercial sources. Mussels are purchased from commercial sources or field collected as required.
- 5.3 Age at Study Initiation: <4-hr-old embryos.
- 5.4 <u>Conditioning of Adult Oysters</u>: Adult oysters may be conditioned if needed by holding for one to eight weeks in seasoned plastic tubs supplied with about 1-2 L/min of unfiltered Yaquina Bay, OR water (25-32 ‰) at a temperature of approximately 20°C. For mussels, conditioning is not ordinarily required.
- 5.5 <u>Spawning and Fertilization</u>: Adult bivalves are cleaned by brushing and placed into spawning trays supplied with seawater. Oysters are spawned by gradually increasing the water temperature to 25-28°C (23-25°C for mussels) over approximately a one-hour period. Sperm from a sacrificed male may be added to the spawning tray to aid stimulation of natural spawning in oysters. If spawning does not occur, the water is cooled to about 20°C (16°C for mussels) and the cycle is repeated. Bivalves that begin spawning are isolated in clean seawater for collection of gametes. After spawning is complete, the temperature is returned to approximately 20°C (16°C for mussels).

Eggs from two or more females are combined and filtered (200-300 μ m) to remove feces and psuedofeces and adjusted in concentration to about 2500-6000/ml. Eggs are then fertilized by addition of sperm from two or more males at a concentration of 10^5 to 10^7 /ml. For mussels, ten minutes after adding sperm, the egg and sperm mixture is poured through a 25 μ m screen to remove excess sperm; then the eggs are rinsed and resuspended in dilution water. Next, the embryo density is adjusted to between 1500 and 3000/ml. Embryos are kept suspended by frequent gentle agitation with a perforated plunger and the temperature is maintained at approximately 20°C (16 \pm 1°C for mussels). The quality of the embryos is verified before testing by microscopic examination. Embryos are used to initiate the test within 4 hours of fertilization

6. DESCRIPTION OF TEST SYSTEM

- 6.1 <u>Preparation of Test Concentrations</u>: Test concentrations are prepared by manual dilution of test material with dilution water or with a combination of hypersaline brine and dilution water. Hypersaline brine may be required when testing dilute effluents to adjust the salinity of the test solutions to the appropriate salinity. Stock test solutions are prepared then distributed to appropriate replicate test chambers. The method for determining the appropriate volume of test material, brine and dilution water to be used in preparing the stock test solution is described in the laboratory SOP for salinity adjustment using hypersaline brine. Prior to mixing, the test material and dilution water are brought to test temperature. Effluents may not be aerated, or are aerated only if necessary to maintain a minimal dissolved oxygen concentration. When necessary, a brine control is prepared at the highest test concentration by substituting for the effluent deionized water to which has been added sufficient dilution water to achieve a salinity equal to that of the effluent.
- 6.2 <u>Test Chambers and Environmental Control</u>: Larvae are tested in 30 ml glass vials containing 10 ml of the test solutions. Temperature control of test chambers is provided by placement in a constant temperature room. No aeration is required. The required photoperiod is achieved by timer control of the room lights.
- 6.3 <u>Cleaning</u>: All laboratory glassware, including test chambers, is cleaned as described in EPA/600/4-90/027F. New glassware and test systems are soaked 15 minutes in tap water and scrubbed with detergent (or cleaned in automatic dishwasher); rinsed twice with tap water; carefully rinsed once with fresh, dilute (10%, V:V) hydrochloric or nitric acid to remove scale, metals, and bases; rinsed twice with deionized water; rinsed once with acetone to remove organic compounds (using a fume hood or canopy); and rinsed three times with deionized water. Test systems and chambers are rinsed again with dilution water just before use. For this test, there is an exception in that the <u>test chambers</u> are used new and unwashed

7. EXPERIMENTAL DESIGN AND TEST PROCEDURES

- 7.1 Experimental Design: The test involves exposure of test embryos, within 4 hr of fertilization, to five or more test material concentrations and a dilution water control. Low salinity effluents require brine adjustment of salinity. Brine controls (substituting Milli-Q or low salinity water for the effluent) are run when brine is used to test effluent concentrations up to 70% effluent. A typical effluent concentration series might be 70%, 35%, 18%, 9%, 4%, 2%, 1%, and control. Exposures are for approximately 48 hours, but in no case shall the duration of exposure exceed 54 hours. Each treatment and control consists of four replicate 30 ml test vessels containing 10 ml of test solution. The final density of the embryos is between 15 and 30 embryos/ml in the test solutions. A stratified random design is employed to position vials in the temperature control chamber.
- 7.2 <u>Test Procedure</u>: Each test container is filled with 10 ml of test solution to which is added embryos at a final density of 15-30 embryos/ml. The embryos are incubated at $20 \pm 1^{\circ}$ C ($16 \pm 1^{\circ}$ C for mussels) for approximately 48 hr to permit development into prodissoconch I larvae. Larvae are subsequently counted to determine the total number of abnormal and normal surviving larvae. These data are used for calculating the EC50s and LC50s.
- 7.3 Effect Criteria: The effect criteria are: 1) failure of embryos to survive and produce completely developed shells (abnormal/dead); and 2) mortality of the embryos.
- 7.4 Test Conditions: The test temperature is $20 \pm 1^{\circ}\text{C}$ for oysters, $16 \pm 1^{\circ}\text{C}$ for blue mussels. The test temperatures specified by EPA (EPA/600/R-95/136) are $15 \pm 1^{\circ}\text{C}$ or $18 \pm 1^{\circ}\text{C}$, but these specifications were based on erroneous assumptions of the agency authors. Consequently, this protocol specifies $16 \pm 1^{\circ}\text{C}$. The salinity is 30 \pm 2 ‰. The dissolved oxygen concentration should be at least 60% of saturation at the test temperature and salinity. The photoperiod is a 16:8 hr, L/D cycle of fluorescent light. Test chambers are 30 ml glass vials held in a constant temperature room to obtain precise temperature control.
- 7.5 <u>Beginning of Test</u>: 10 ml of each test concentration is dispensed to each of the corresponding four replicate test vials. The test is then started by the addition of 0.1 ml of a suspension (1,500-3,000 embryos/ml) of <4-hr-old

embryos to the test chambers. Six extra vials of seawater controls are preserved with 5% buffered formalin for establishing the initial count of embryos in the test vessels.

- 7.6 Feeding: Embryos are not fed during the test.
- 7.7 <u>Test Duration, Type and Frequency of Observations, and Methods</u>: The test duration is approximately 48 hours. The type and frequency of observations to be made during the test are summarized as follows:

Type of Observation	Times of Observation
Biological Data	
Initial number of embryos/10 ml	At start of test in six 0-time vials
Number of live abnormal larvae/10 ml	At end of test (48 hr)
Number of live normal larvae/10 ml	At end of test (48 hr)
Physical and Chemical Data	
Temperature	Daily - in water bath or two locations in the temperature control room. Beginning & end of test - in the beaker reservoirs of each test concentration and controls.
Dissolved oxygen, salinity & pH	Beginning & end of test - in the beaker reservoirs of each test concentration and controls.

The initial number of embryos is determined according to method 2 (Sect. 11.4.6.2) of ASTM 1989. This consists of the average count of all embryos exhibiting cell division in six extra test containers at time zero. Live abnormal larvae are those observed at 48 hr in which shell development is incomplete. Live normal larvae are those observed at 48 hr that have completely developed shells containing meat. Larvae possessing misshapen or otherwise malformed shells are considered normal, provided shell development has been completed.

Temperature is measured using a thermister thermometer. Dissolved oxygen is measured using a polarographic oxygen probe calibrated according to the manufacturer's recommendations. Salinity is measured using a refractometer. The pH is measured with a pH probe and a calibrated meter with scale divisions of 0.1 pH units.

8. CRITERIA OF TEST ACCEPTANCE:

For the EPA West Coast bivalve toxicity method (EPA/600/R-95/136) the test is considered acceptable if:

- 1. ≥70% of embryos introduced into a required control treatment result in live larvae (≥50% for mussels).
- 2. normal shell development in surviving controls is ≥90%.

For the WDOE bivalve toxicity method (Publication No. WQ-R-95-80) the test is considered acceptable if:

- 1. ≥70% of embryos introduced into a required control treatment result in live larvae.
- 2. normal shell development in surviving controls is ≥90%.
- 3. the test must achieve a minimum significant difference (%MSD) of <25% relative to the control.
- 4. the coefficient of variation of the six zero time counts must be $\leq 15\%$.

For the ASTM bivalve toxicity method (E 724-89) the test is considered acceptable if:

- 1. All test chambers were identical.
- 2. Treatments were randomly assigned to individual test chamber locations.
- 3. Either a dilution water or solvent control was included.
- 4. All brood stock animals came from the same location.
- 5. Embryos were used at <4 hr after fertilization.
- 6. ≥70% of embryos introduced into a required control treatment resulted in live larvae with completely developed shells at the end of the test.
- 7. The DO and temperature were measured as specified in Sect. 7.7 of the method.
- 8. Every measured DO concentration was between 60% and 100% saturation.
- 9. The difference between the time-weighted average measured temperatures for any two test chambers from the beginning to the end of the test was ≤1°C.

- 10. Any single measured temperature was not more than 3°C different from the mean of the time-weighted average measured temperatures for individual test chambers.
- 11. At any one time, the difference between the measured temperatures in any two chambers was not more than 2°C.
- 12. Each data set must have at least one mean treatment response, corrected for controls, that is <37% and one that is >63% (not applicable for many applications).

9. DATA ANALYSIS

The proportion of normal larvae and the proportion of surviving larvae are calculated for each treatment replicate. The means are obtained for each treatment level and the latter are then corrected for control response using Abbott's formula.

For ASTM (ASTM Standard E 724-89) and EPA (EPA/600/R-95/136) the LC50 (survival) and the EC50 (normal) are calculated, where data permits, using either the Maximum Likelihood Probit or the Trimmed Spearman-Karber methods (EPA 600/4-90-027F). An IC25 is calculated by linear interpolation with bootstrapping (EPA 600/4-89/001a). NOEC and LOEC values for survival and normality are computed using either Dunnett's test, T-test with Bonferroni's Adjustment, Steel's Many-One Rank Test, or Wilcoxon Rank Sum Test with Bonferroni's Adjustment. The appropriate test is selected after evaluating the data for normality and homogeneity of variance. An arcsine square root transformation is performed on the data prior to statistical analysis. The statistical software employed for these calculations is ToxCalc, (most recent version), Tidepool Scientific Software.

For special endpoints requirements applicable in the State of Washington, refer to the WDOE guidance manual (Publication No. WQ-R-95-80, Revised December 1998) or latest version.

Some agencies require that toxic units (TU) be reported. This is reported as either toxic unit acute (TU_a), which is 100/LC50, or toxic unit chronic (TU_c), which is 100/NOEC.

10. REPORTING

A report of the test results must include all of the following standard information at a minimum:

- 1. Name and identification of the test; the investigator and laboratory;
- 2. Information on the test material;
- 3. Information on the dilution water;
- 4. Detailed information about the test organisms including acclimation conditions;
- 5. A description of the experimental design and test chambers and other test conditions including water quality;
- 6. Information about any aeration that may have been required;
- 7. Definition of the effect criteria and other observations:
- 8. Responses, if any, in the control treatment;
- 9. Tabulation and statistical analysis of measured responses;
- 10. A description of the statistical methods used;
- 11. Any unusual information about the test or deviations from procedures;
- 12. Reference toxicant testing information.

11. STUDY DESIGN ALTERATION

Amendments made to the protocol must be approved by the Sponsor and Study Director and should include a description of the change, the reason for the change, the date the change took effect, and the dated signatures of the Study Director and Sponsor. Any deviations in the protocol must be described and recorded in the study raw data.

12. REFERENCE TOXICANT

Reference toxicant testing should be included with each study or at regular intervals as defined in the Quality Assurance Program of the laboratory.

13. REFERENCES AND GUIDELINES

Geller, J.B. *et al.* 1993. Interspecific and intrapopulation variation in mitochondrial ribosomal DNA sequences of *Mytilus* spp. (Bivalvia: Mollusca). Molecular Marine Biology and Biotechnology. 2:44-50.

McDonald, J.H. and R.K. Koehn. 1988. The mussels *Mytilus galloprovincialis* and *M. trossulus* on the Pacific coast of North America. Marine Biology. 99:111-118.

McDonald, J.H. et al. 1991. Allozymes and morphometric characters of three species of *Mytilus* in the northern and southern hemispheres. Marine Biology.

Standard Guide for Conducting Static Acute Toxicity Tests with Embryos of Four Species of Saltwater Bivalve Molluscs. 1989. ASTM Standard E 724-89.

U.S. Environmental Protection Agency. 1989. Supplement to "Short-term methods for estimating the chronic toxicity of effluents and surface waters to freshwater organisms". Revision 1. EPA/600/4-89/001a,

Washington State Department of Ecology. 1998. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Publication No. WQ-R-95-80. Revised December 1998.

Weber, C.I. (Ed.) 1993. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms (Fourth Edition). EPA/600/4-90/027F.

U.S. Environmental Protection Agency. 1995. Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms (First Edition). EPA/600/R-95/136.

14. APPROVALS

		for
Name	Date	
		for Northwestern Aquatic Sciences
Name	Date	1

Appendix A Test Conditions Summary

1. Test type:	Static non-renewal
2. Test duration:	48 hours, or until complete development up to 54 hours
3. Temperature:	20 ± 1°C oysters
	16 ± 1°C mussels (ASTM), 15 or 18 ± 1°C (EPA 1995)
4. Dissolved oxygen:	≥ 60% saturation
5. Salinity:	30 ± 2‰
6. Light quality & intensity:	Ambient laboratory light (50-100 ft-c)
7. Photoperiod:	16:8 hr L/D
8. Test chambers:	30 ml glass vials
9. Test solution volume:	10 ml per replicate
10. Renewal of test solutions:	None
11. Age of test organisms:	<4 hr old embryos
12. No. of larvae/container:	150-300
13. No. of replicates/treatment:	4
14. No. of zero time replicates:	6
15. Feeding regime:	Organisms are not fed during the test.
16. Aeration:	None. Initially aerated if necessary to achieve >60% saturation.
17. Dilution water:	Filtered Yaquina Bay seawater, salinity adjusted to 30 ± 2‰ and filtered to
	≤0.45 μm.
18. Effects measured:	Survival and normal shell development.
19. Test acceptability:	≥70% of embryos introduced into a required control treatment resulted in
	live larvae (≥50% for mussels, EPA 1995); ≥90% normal shell development
	in surviving controls; must achieve minimum significant difference
	(%MSD) of <25% relative to the control. The cv of six zero time counts
	must be ≤15%.
20. Sample volume required:	1 L normally requested.

APPENDIX II RAW DATA

NORTHWESTERN AQUATIC SCIENCES

PROTOCOL NO. NAS-XXX-CG/MG2

BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Test No	658	3-85 Client:		CH2M Hill - Wy	ckoff		_ Investigate	or the same
STUDY M	ANAG			t t Di t . 50	50.0	and Diago NE	D-i	1 18/4 00440
Client:	Charles				50 Cre	osote Place NE, I	Bainbridge Island	1, WA 98110
		Monitor: atory: Northwes		ey Warner			-	
		: Newport Labo		alic Sciences				
		. Newport Labo Study Personne		(52)				
		tudy Personne tudy Dir.	G.A. Buh	ler /G.J. Iriss	ورو arri	•		
	fficer	L.K. N		70.0.11133	aiii			
1.	1/1	es katali		pr.	2.	J. Brow	() 2	
3.	/(/~~	S NOTICE TO	//·· ()		— <u>-</u> : -	V. DIADI	2 X 3	
Study S	Schedu	ile:						
Test Be			-18	1350		Test Ending:	3-3-18	1400
TEST MAT								
	scriptio		reun D	WATER COM	POST	E SP-11		
		iple No.		61356				
		ollection: eceipt:		2-28-18				
		eceipi. ture (deg C):		3-1-18	-			
pH:	•	uie (deg C).	•	7,5				
		l oxygen (mg/L)		10,91				
		/ity (umhos/cm)		- 10, 1				
		(mg/L):	•	_				•
		(mg/L):	•	_				
	linity (p		•	4.5				
		rine (mg/L):	•					
Tot	tal amr	nonia-N (mg/L)						
DILUTION			V	D. OD				
	scription		Yaquina			Caliaite (ant)		U Sc &
	te or C eatmen	ollection:		-28-18	adinity	Salinity (ppt) adjusted with Mill	<u> </u>	H <u>%.o</u>
116	aunen	its. <u>Aer</u> ate	a, iliterea	to \$ 0.45 um, s	sammy	adjusted with will	ii-Q deloriized wa	1161
_						 -		
rest ord						5	ate Received: _	7-17-19
	ecies:		gallopro		10/0	D	ate Received: _	
	urce:	n Data:	SHEIIIISH	Farms, Shelton	i, VVA			
		Temp (deg.C)	pН	Sal (ppt)	1	D.O. (mg/L)	Com	ments
_	-1-18	remp (deg.o)	8,		$\overline{}$	9.1	Held outside in	
2	-1-10	<u> </u>		7 2-11		7 + 7	flowing seav	
_						_		<u>= :</u>
_								
_								
_	Mean		-					
	S.D.		-	<u> </u>				
_	(N)							-
Dh		od during accli	mation:	Outdoor at	mhient	conditions	•	

Error codes: 1) correction of handwriting error

²⁾ written in wrong location; entry deleted

³⁾ wrong date deleted, replaced with correct date

NORTHWESTERN AQUATIC SCIENCES

PROTOCOL NO. NAS-XXX-CG/MG2

BIVALVE LARVAL TEST BASED ON EPA/600/R-95/136

Test No.	658-85	Client	CH2M Hill - Wyckoff	Investigator
SPAWNIN	IG AND GAI	METE HANDL	ING	
Spawr	ning: Initial:	1110	Final: 1125	Fertilization: 1150
Numb	er of organis	ms used:	females: 2	males: 3
Egg D	ilution (1 ml	diluted to 100	ml):	
	Count/ml	of dilution:	1. 38 2. 39	3. 44 Mean: 40.3
	Dilution fa	actor = DF (me	ean x 100/2500) = 1,6	
		•		
TEST PRO	OCEDURES	AND CONDI	TIONS	
Test c	oncentration	s (50% series	recommended): 70, 35, 18, 9,	4, 2, 0% + Brine Control
Test c	hamber: 30	ml glass vials	Test volume: 10 ml	Replicates/treatment (4):
Organ	isms/ml (15-	30): 24.7	Test water changes: Non	• • • • • • • • • • • • • • • • • • • •
_	ng: None		Photoperiod: 16L:8D	Salinity: 30 +/- 2 ppt
		/- 1 ℃, oyster		leaker placement:Stratified randomization
RANDOM	IZATION CH	IART		

Α	35	4	2	ø	18	OF	CONTROL	9	,
В	18	BRINE CONTROL	70	9	φ	2	35	4	
С	70	2	9	BRING CONTRAL	35	4	18	ø	
D	18	ø	35	70	9	BRINE LONTINOL	4	Z	

PREPARATION OF TEST SOLUTIONS

; a salinity control This test uses a brine control If a brine control is used, follow SOP #6208 to prepare test solutions

Date of brine preparation: 2-9-18; brine salinity (ppt) 100.0 Source of seawater: Yaquina Bay, Oregon

VE $\frac{(TS - SE)}{(SB - TS)} = VE \frac{(30 - 4.5)}{(100 - 30)} = VE (0.364)$ VB =

Where: VB=volume brine VE=volume effluent SB=satinity of brine SE=salinity of effluent TS=target salinity

In making up either a brine control or a salinity control, use salinity-adjusted deionized water in place of the effluent.

Test Conc.	Effluent	Brine	Dilution Water
(%)	(ml/100ml)	(ml/100ml)	(ml/100ml)
70	70	25,5	Brought up to a final
35	35	12.7	volume of 100 ml
18	18	6,6	with dilution water
9	9	3,3	
4	4	1,5	
2	2	0.7	
0	0	ø	
Brine Control	Д	25.5	

Test No.

658-85

Client

CH2M Hill - Wyckoff

Investigator

WATER QUALITY DATA

Date: 3-1-18 initials:						3-318	initials:	B
Conc.	Temp.	рН	Sal.	DŌ	Temp.	pН	Sal.	DO
(%)	(deg.C)		(ppt)	(mg/L)	(deg.C)		(ppt)	(mg/L)
\vdash		_		-				
70	15.0	7.6	29.0	79	15-2	8.6	29-5	8.1
35	151	77	29.5	79	15-3	8.4	29.5	8.1
18	15,1	7.8	30,0	7.9	15-2	8.2_	300	8 (
9	15.0	8.0	30.0	7-9	15-5	8-2	30.0	8.1
4	15.0	8.0	30.0	7-1	15-4	8-2	30.0	8-1
2	15.4	8.0	30.0	7-9	15-3	8.2	30.0	8.1
Control	15.4	8.1	28,034	79	15-5	8.2	300	8.2
Brine control	15.1	8:1	28.0	7-9	15-5	8-2	29-0	8,0
			Y-0					

2118

WATER QUALITY:

Temperature (℃):

SD <u>Mean</u> N 15.3 0.2 16

Room/ Water bath temperature: (°C)

pН Salinity (ppt):

DO (mg/L):

8,1 0,2 16 29,7 0.6 9.0 16

Day 0: 16.0 Day 0: 15.4 Day 1: 16.0 Day 1: 158 Day 2: 15.8 Day 2: 15.5

LABVAL COUNT DATA

			LARVA	L COUNT I	DATA	. 9-		_ >
	3-5-19	5 63L	12		3-6-18	V>		,
Conc.	Replic	cate 1	Replic	cate 2	Replic	cate 3	Replic	cate 4 /
(%)	N	Α	N	À	N N	Α	N	Α
70	712	14	218	16	217	4	228	8
35	197	9	215	7	210	7	198	9
18	198	6	216	1.0	552	7	213	12
9	197	12	552	9	192	9	217	9
4	191	11	187	12-	189	11	201	9
2	199	14	206	//	226	G	201	//_
Control	220	13	190	/0	231	14	22/	7
Brine control	207	9	210	8	221		200	/3
Zero time	229	254	249	270	240	24/	_	

Zero time: Mean 247 SD 14 N 6

CV=(sd/mean)x100 5.7%

Remarks:

130 SE Lynch Rd. Shelton WA 98584

nder	ORD00390924
ate	2/26/2018
age	1

-	_
	LA
ош	

NORTHWESTERN AQUATIC SCIENCES 3814 YAQUINA BAY RD NEWPORT OR 97365

Ship To:

NORTHWESTERN AQUATIC SCIENCES 3814 YAQUINA BAY RD NEWPORT OR 97365

Customer	D	Purchase Order No.	Salespersor	n ID	Shipping Method	Payment Terms	Re	og Ship Date	Master No.
11117			A931		FED EX	CREDIT CARD	2/2	26/2018	379,288
Ordered	Shipped	Item Number		Description	3				
	Shipped 10					-18		Unit Price	Ext. Price

 Subtotal
 \$0.00

 Misc
 \$0.00

 Tax
 \$0.00

 Freight
 \$0.00

 Trade Discount
 \$0.00

 Total
 \$0.00

CETIS Analytical Report

Report Date: Test Code: 06 Mar-18 14:18 (p 2 of 2) 658-85) 16-8466-7613

							rest	Code:		000-000	-6400- /01
Bivalve Larva	al Survival and D)evelopme	nt Test						Northwest	ern Aquatio	Science
Analysis ID:	04-7952-2676	En	dpoint: Pr	oportion Surv	ived)		CET	S Version:	CETISv1	.8.7	
Analyzed:	06 Mar-18 14:1	8 An	alysis: Pa	arametno-Two	Sample		Offic	lai Results	: Yes		
Batch ID:	15-1631-3211	Tes	st Type: De	evelopment-S	urvival		Analyst:				
Start Date:	01 Mar-18 13:5	io Pro	tocol: Ef	PA/600/R-95/	136 (1995)		Diluent: Yaquina Bay Seawater				
Ending Date:	: 03 Mar-18 14:0	00 Sp	ecies: M	ytilis galloprov	inclalis/		Brine	e:			
Duration:	48h	So	urce: Ka	amilche Sea F	arms, WA	_	Age:				
Sample ID:	17-3365-4727	Co	de: 67	75578C7			Clier	nt: Wy	ckoff Treatm	ent Plant	
Sample Date	: 28 Feb-18 09:1	5 Ma	terial: In	dustrial Efflue	nt		Proje	ect:			
Receive Date	e: 01 Mar-18 12:5	55 So	urce: W	yckoff							
Sample Age:	29h (2 °C)	Sta	tion:								
Data Transfo		Zeta	Alt Hyp	Trials	Seed		PMSD	Test Res			
Angular (Corre	rected)	NA	C <> T	NA	NA		12.5%	Passes p	roportion su	vîved	
Equal Varian	ice t Two-Sample	e Test									
Control	vs Control	1	Test Sta	t Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Dilution Wate	r Brine Re	agent	0.8702	2.447	0.196 6	0.4176	CDF	Non-Sign	ificant Effect		
ANOVA Table	0										
Source	Sum Squ	ares	Mean So	quare	DF	F Ştat	P-Value	Decision	(a:5%)		
Between	0.009664	159	0.009664	1159	1	0.7573	0.4176	Non-Sign	ificant Effect		
Error	0.0765729		0.012762	215	6						
Total	0.0862370	 _		1	7						
Distributiona	•										
Attribute	Test			Test Stat		P-Value	Decision				
Variances	Variance		1ib.	6.374	47.47	0.1625	Equal Variances				
Distribution		Wilk W Nor	maiity ————	0.9468	0.6451	0.6791	Normal Di	stribution			
	Survived Summar	-									
C-%	Control Type	Count	Mean	95% LCL	95% UCL		Min	Max	Std Err	CV%	%Effect
0	Dilution Water	4	0.917	0.7943	1	0.9028	0.8097	0.9919	0.03857	8.41%	0.0%
0	Brine Reagent	4	0.8897	0.8354	0.9439	0.9028	0.8623	0.9393	0.01705	3.83%	2.98%
	rrected) Transfor	med Sumr	nary								
C-%	Control Type	Count	Mean		95% UCL		_Min	Max	Std Err	CV%	%Effect
0	Dilution Water	4	1.305	1.069	1.541	1.255	1.119	1.481	0.07427	11.38%	0.0%
0	Brine Reagent	4	1.236	1.142	1.329	1.255	1.191	1.322	0.02942	4.76%	5.33%
Proportion S	Survived Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
^	Dilution Meter	0.9433	0.8097	0.9919	0.9231						
0	Dilution Water										
0	Brine Reagent	0.8745	0.8826	0.9393	0.8623						
0		0.8745		0.9393	0.8623			_			
0	Brine Reagent	0.8745		0.9393 Rep 3	0.8623 Rep 4						
0 Angular (Cor	Brine Reagent	0.8745 med Detail									

06 Mar-18 14:04 (p 3 of 3) 658-85 16-8466-7613

Bivalve Larval Survival and Development Test Northwestern Aquatic Sciences Proportion Survived Analysis ID: 07-4732-0291 Endpoint 2 **CETIS Version: CETISv1.8.7** Parametric-Control vs Treatments Analyzed: 06 Mar-18 14:02 Analysis: Official Results: Yes Batch ID: 15-1631-3211 Test Type: Development-Survival Analyst: Start Date: 01 Mar-18 13:50 Protocol: EPA/600/R-95/136 (1995) Diluent: Yaquina Bay Seawater Ending Date: 03 Mar-18 14:00 Species: Mytilis galloprovincialis Brine: **Duration:** 48h Source: Kamilche Sea Farms, WA Age: 17-3365-4727 Code: 675578C7 Sample ID: Client: **Wyckoff Treatment Plant** Sample Date: 28 Feb-18 09:15 Material: Industrial Effluent Project: Receive Date: 01 Mar-18 12:55 Wyckoff Source: Sample Age: 29h (2 °C) Station: LOEL Data Transform Zeta Alt Hyp **Trials** Seed **PMSD** NOEL TOEL TU Angular (Corrected) NA C > T NA NA 8.4% 70 >70 NA 1.429 **Dunnett Multiple Comparison Test** Control C-% Critical ٧S Test Stat MSD DF P-Value P-Type Decision(a:5%) **Dilution Water** 2 1.293 2.448 CDF 0.146 6 0.3756 Non-Significant Effect 4* 2.867 2.448 0.146 6 0.0213 CDF Significant Effect 9 2.448 0.2925 CDF 1.381 0.146 6 Non-Significant Effect 18 0.8303 2.448 0.5322 CDF 0.146 6 Non-Significant Effect 35 2.448 1.89 0.146 6 0.1374 CDF Non-Significant Effect 70 0.03145 2.448 0.146 6 0.8485 CDF Non-Significant Effect **ANOVA Table** DF P-Value Sum Squares Mean Square F Stat Source Decision(a:5%) Between 0.08860122 0.01476687 6 2.079 0.0995 Non-Significant Effect 0.1491608 Error 0.007102897 21 Total 0.237762 27 **Distributional Tests Attribute Test Stat** Critical P-Value Decision(a:1%) **Bartlett Equality of Variance** 8.952 0.1763 Variances 16.81 **Equal Variances** Distribution Shapiro-Wilk W Normality 0.9815 0.8975 0.8848 Normal Distribution **Proportion Survived Summary** C-% **Control Type** Count 95% UCL Mean 95% LCL Median Min Max CV% %Effect Std Err 0.917 0 **Dllution Water** 4 0.7943 0.9332 0.8097 0.9919 0.03857 8.41% 0.0% 2 0.8846 0.825 0.9442 0.8704 0.8583 0.9393 0.01874 4.24% 3.53% 4 4 0.8209 0.7887 0.853 0.8138 0.8057 0.8502 2.46% 0.0101 10.49% 9 4 0.8775 0.7727 0.9824 0.8806 0.8016 0.9474 0.03295 7.51% 4.31% 18 4 0.8998 0.8259 0.8172 0.9824 0.913 0.9474 0.02594 5.77% 1.88% 35 4 0.8623 0.8122 0.9125 0.834 3.66% 0.8583 0.8988 5.96% 0.01577 70 0.9281 0.9732 0.8831 0.9312 0.8947 0.9555 3.05% 0.01416 -1.21% Angular (Corrected) Transformed Summary **Control Type** C-% Count Mean 95% LCL 95% UCL Median Mln Max CV% %Effect Std Err 0 Dilution Water 4 1.305 1.069 1.541 1.31 1.119 1.481 0.07427 11.38% 0.0% 2 4 1.228 1.126 1.33 1.203 1.185 1.322 0.03192 5.2% 5.9% 4 4 1.091 1.125 1.134 1,177 1.114 1.173 2.37% 13.09% 0.01345 9 4 1.223 1.058 1.388 1.221 1.109 1.339 0.05183 8.48% 6.31% 18 4 1.256 1.123 1.388 1.339 1.271 1.14 0.04164 6.63% 3.79% 35 3.89% 4 1.192 1.119 1.266 1.186 1,151 1.247 0.02321 8.63% 70 4 1.303 1.216 1.307 1.358 1.391 1.24 0.0275 4.22% 0.14%

06 Mar-18 14:04 (p 4 of 3) 658-85) 16-8466-7613

							Test Code:	658-85/ 16-8466-761
Bivalve Larva	al Survival and D	Developme	nt Test				N	Iorthwestern Aquatic Sciences
Analysis ID: Analyzed:	07-4732-0291 06 Mar-18 14:0			oportion Sur rametric-Co	vived) ontrol vs Treatmen	ts	CETIS Version: Official Results:	CETISv1.8.7 Yes
Proportion S	urvived Detall			-				<u> </u>
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4			
0	Dilution Water	0.9433	0.8097	0.9919	0.9231			
2		0.8623	0.8785	0.9393	0.8583			
4		0.8178	0.8057	0.8097	0.8502			
9		0.8462	0.9474	0.8016	0.915			
18		0.8259	0.915	0.9474	0.9109			
35		0.834	0.8988	0.8785	0.8381			
70		0.915	0.9474	0.8947	0.9555			
Angular (Cor	rected) Transfor	med Detai	l		-			
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4			
0	Dilution Water	1.33	1.119	1.481	1.29			
2		1.191	1.215	1.322	1.185			
4		1.13	1.114	1.119	1.173			
9		1.168	1.339	1.109	1.275			
18		1.14	1.275	1.339	1.268			
35		1.151	1.247	1.215	1.157			
70		1.275	1.339	1.24	1.358			
Graphics								1 m 1 m
0.9 0.7 0.7 0.7 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		•	•	Reject Nul		0.20 F		Marketo, and a series of

-0.05

-0.10

-0.15

-0.20

-2.0 -1.5 -1.0 -0.5 0.0

LC50 > 70% BY DATA INSPECTION

1.0 1,5

0.5

Rankits

2.0 2.5

0.3

0.2

0.1

0.0

06 Mar-18 14:18 (p 1 of 2) 658-85 | 16-8466-7613

Bivalve Larval Survival and Development Test Northwestern Aquatic Sciences Analysis ID: 06-1314-0330 Endpoint: Combined Proportion Normal **CETIS Version: CETISv1.8.7** Parametric-Two Sample Analyzed: 06 Mar-18 14:18 Analysis: Official Results: Yes Batch ID: 15-1631-3211 Test Type: Development-Survival Analyst: **Start Date:** 01 Mar-18 13:50 Protocol: EPA/600/R-95/136 (1995) **Diluent:** Yaquina Bay Seawater Ending Date: 03 Mar-18 14:00 Species: Mytilis galloprovincialis Brine: **Duration:** 48h Source: Kamilche Sea Farms, WA Age: Sample ID: 17-3365-4727 Code: 675578C7 Client: Wyckoff Treatment Plant Sample Date: 28 Feb-18 09:15 Material: Industrial Effluent Project: Receive Date: 01 Mar-18 12:55 Wyckoff Source: Sample Age: 29h (2 °C) Station: **Data Transform** Zeta Alt Hyp Trials Seed **PMSD Test Result** Angular (Corrected) NA C <> T NA NA 11.4% Passes combined proportion normal **Equal Variance t Two-Sample Test** Control Control Critical **Test Stat** MSD **DF P-Value** P-Type Decision(a:5%) **Dilution Water** Brine Reagent CDF 0.7303 2.447 0.4927 Non-Significant Effect 0.140 6 **ANOVA Table** Source Mean Square DF F Stat P-Value Decision(a:5%) Sum Squares 0.003509655 0.003509655 0.4927 Between 1 0.5334 Non-Significant Effect Error 0.03947853 6 0.006579755 7 Total 0.04298818 **Distributional Tests** Attribute Test Test Stat Critical P-Value Decision(a:1%) Variance Ratio F Variances 4.142 47.47 0.2736 **Equal Variances** Distribution Shapiro-Wilk W Normality 0.9545 0.6451 0.7565 Normal Distribution **Combined Proportion Normal Summary** C-% **Control Type** Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 **Dilution Water** 0.8725 0.7692 4 0.7584 0.9866 0.8704 0.9352 0.03585 8.22% 0.0% 0 **Brine Reagent** 4 0.8482 0.7919 0.9045 0.8704 0.8097 0.8947 0.01769 4.17% 2.78% Angular (Corrected) Transformed Summary C-% **Control Type** Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 **Dilution Water** 1.214 1.051 1.378 1.204 1.07 1.313 0.05148 8.48% 0.0% 0 **Brine Reagent** 4 1.172 1.092 1.253 1.204 1,119 1.24 0.0253 4.32% 3.45% **Combined Proportion Normal Detail** C-% **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 0 **Dilution Water** 0.8907 0.7692 0.9352 0.8947 **Brine Reagent** 0.8381 0.8502 0.8947 0.8097 Angular (Corrected) Transformed Detail C-% **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 1.234 1.07 1.313 1.24 0 Dilution Water 0 **Brine Reagent** 1.157 1.173 1.24 1.119

CETIS Analytical Report

Report Date: Test Code: 06 Mar-18 14:04 (p 1 of 3) 658-85 16-8466-7613

Bivalve Larva	Survival and Devel	opment Test						Northweste	rn Aquatio	Sciences
Analysis ID:	04-1228-3858	Endpoint: Cor	nbined Prop	ortion Norma	al	CETI	S Version:	CETISv1.	8.7	
Analyzed:	06 Mar-18 14:03	Analysis: Par	ametric-Con	trol vs Treati	ments	Offic	ial Results	: Yes		
Batch ID:	15-1631-3211	Test Type: Dev	elopment-S	urvival		Analy	yst:			
Start Date:	01 Mar-18 13:50	Protocol: EP	V600/R-95/1	36 (1995)		Dilue	nt: Yad	quina Bay Sea	awater	
Ending Date:	03 Mar-18 14:00	Species: Myl	ilis galloprov	incialis		Brine	: :			
Duration:	48h	Source: Kar	nilche Sea F	ams, WA		Age:				
Sample ID:	17-3365-4727	Code: 675	578C7	578C7			nt: Wy	ckoff Treatme	ent Plant	
Sample Date:	28 Feb-18 09:15	Material: Inde	ustrial Efflue	nt		Proje	ect:			
Receive Date:	01 Mar-18 12:55	Source: Wy	ckoff							
Sample Age:	29h (2 °C)	Station:								
Data Transfor	m Ze	ta Alt Hyp	Trials	Seed		PMSD /	NOEL	LOEL	TOEL	TU
Angular (Corre	cted) NA	C>T	NA	NA		9.5%	70	70	NA	1.429
Dunnett Multi	ple Comparison Tes	st								
Control	vs C-%	Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	ι(α:5%)		
Dilution Water		0.981	2.448	0.12 6	0.4625	CDF		ificant Effect		
	4*	2.742	2.448	0.12 6	0.0276	CDF	Significat	nt Effect		
	9	0.9753	2.448	0.12 6	0.4651	CDF	Non-Sign	ificant Effect		
	18	0.4134	2.448	0.12 6	0.7167	CDF	Non-Sign	ificant Effect		
	35	1,367	2.448	0.12 6	0.2978	CDF	Non-Sigr	ificant Effect		
	70	-0.2709	2.448	0.12 6	0.9178	CDF	Non-Sigr	ificant Effect		
ANOVA Table										
Source	Sum Squares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	ι(α:5%)		
Between	0.0581069	0.0096844	84	6	2.014	0.1091	Non-Sigr	ificant Effect		
Error	0.1010001	0.004809	26	21						
Total	0.159107			27						
Distributional	Tests									
Attribute	Test		Test Stat	Critical	P-Value	Decision((a:1%)			
Variances	Test Bartlett Equal	ity of Variance	5.092	Critical 16.81	P-Value 0.5320	Decision(Equal Var				
	Test Bartlett Equal Mod Levene I	Equality of Variance	5.092 0.7228	16.81 3.812	0.5320 0.6360	Equal Var Equal Var	iances iances			
Variances Variances Variances	Test Bartlett Equal Mod Levene I Levene Equa	Equality of Variance lity of Variance	5.092 0.7228 1.288	16.81 3.812 3.812	0.5320 0.6360 0.3053	Equal Var Equal Var Equal Var	iances iances iances			
Variances Variances Variances Distribution	Test Bartlett Equal Mod Levene I Levene Equal Shapiro-Wilk	Equality of Variance lity of Variance W Normality	5.092 0.7228 1.288 0.981	16.81 3.812 3.812 0.8975	0.5320 0.6360 0.3053 0.8735	Equal Var Equal Var Equal Var Normal Di	iances iances iances istribution			
Variances Variances Variances Distribution Distribution	Test Bartlett Equal Mod Levene I Levene Equal Shapiro-Wilk Kolmogorov-S	Equality of Variance lity of Variance W Normality Smirnov D	5.092 0.7228 1.288 0.981 0.09342	16.81 3.812 3.812 0.8975 0.1914	0.5320 0.6360 0.3053 0.8735 0.8115	Equal Var Equal Var Equal Var Normal Di Normal Di	iances iances iances istribution istribution			
Variances Variances Variances Distribution Distribution Distribution	Test Bartlett Equal Mod Levene I Levene Equal Shapiro-Wilk Kolmogorov-S D'Agostino Si	Equality of Variance lity of Variance W Normality Smirnov D kewness	5.092 0.7228 1.288 0.981 0.09342 0.2694	16.81 3.812 3.812 0.8975 0.1914 2.576	0.5320 0.6360 0.3053 0.8735 0.8115 0.7876	Equal Var Equal Var Equal Var Normal Di Normal Di Normal Di	iances iances iances iances istribution istribution			
Variances Variances Variances Distribution Distribution Distribution Distribution	Test Bartlett Equal Mod Levene I Levene Equal Shapiro-Wilk Kolmogorov-S D'Agostino SI D'Agostino Ki	Equality of Variance lity of Variance W Normality Smirnov D kewness urtosis	5.092 0.7228 1.288 0.981 0.09342 0.2694 0.1026	16.81 3.812 3.812 0.8975 0.1914 2.576 2.576	0.5320 0.6360 0.3053 0.8735 0.8115 0.7876 0.9183	Equal Var Equal Var Equal Var Normal Di Normal Di Normal Di	iances iances iances iances istribution istribution istribution			
Variances Variances Variances Distribution Distribution Distribution Distribution Distribution	Test Bartlett Equal Mod Levene I Levene Equal Shapiro-Wilk Kolmogorov-S D'Agostino SI D'Agostino Ki D'Agostino-Po	Equality of Variance lity of Variance W Normality Smirnov D kewness urtosis earson K2 Omnibus	5.092 0.7228 1.288 0.981 0.09342 0.2694 0.1026 0.08309	16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21	0.5320 0.6360 0.3053 0.8735 0.8115 0.7876 0.9183 0.9593	Equal Var Equal Var Equal Var Normal Di Normal Di Normal Di Normal Di	iances iances iances istribution istribution istribution istribution istribution			
Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Distribution Distribution	Test Bartlett Equal Mod Levene I Levene Equal Shapiro-Wilk Kolmogorov-S D'Agostino SI D'Agostino Ki D'Agostino-Po	Equality of Variance lity of Variance W Normality Smirnov D Kewness urtosis earson K2 Omnibus rling A2 Normality	5.092 0.7228 1.288 0.981 0.09342 0.2694 0.1026	16.81 3.812 3.812 0.8975 0.1914 2.576 2.576	0.5320 0.6360 0.3053 0.8735 0.8115 0.7876 0.9183	Equal Var Equal Var Equal Var Normal Di Normal Di Normal Di	iances iances iances istribution istribution istribution istribution istribution			
Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Distribution Combined Pro-	Test Bartlett Equal Mod Levene I Levene Equal Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino Ki D'Agostino-Pi Anderson-Da	Equality of Variance lity of Variance W Normality Smirnov D kewness urtosis earson K2 Omnibus rling A2 Normality mmary	5.092 0.7228 1.288 0.981 0.09342 0.2694 0.1026 0.08309 0.2019	16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878	0.5320 0.6360 0.3053 0.8735 0.8115 0.7876 0.9183 0.9593 0.9227	Equal Var Equal Var Equal Var Normal Di Normal Di Normal Di Normal Di	iances iances iances istribution istribution istribution istribution istribution istribution	G44 F-	CNO	N/E/S/
Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Distribution Combined Proces	Test Bartlett Equal Mod Levene I Levene Equal Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino Ki D'Agostino-Po Anderson-Da oportion Normal Su Control Type Co	Equality of Variance lity of Variance W Normality Smirnov D Kewness Partosis Parson K2 Omnibus Irling A2 Normality The mary The Mean	5.092 0.7228 1.288 0.981 0.09342 0.2694 0.1026 0.08309 0.2019	16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878	0.5320 0.6360 0.3053 0.8735 0.8115 0.7876 0.9183 0.9593 0.9227	Equal Var Equal Var Romal Di Normal Di Normal Di Normal Di Normal Di	iances iances iances iances istribution istribution istribution istribution istribution	Std Err	CV%	%Effect
Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Combined Process 0	Test Bartlett Equal Mod Levene I Levene Equal Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino-Po Anderson-Da coportion Normal Su Control Type Co Control Type Co Corea Sartlett Equal	Equality of Variance lity of Variance W Normality Smirnov D Kewness Lurtosis Learson K2 Omnibus Irling A2 Normality mmary Lunt Mean 0.8725	5.092 0.7228 1.288 0.981 0.09342 0.2694 0.1026 0.08309 0.2019 95% LCL 0.7584	16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 0.9866	0.5320 0.6360 0.3053 0.8735 0.8115 0.7876 0.9183 0.9593 0.9227 Median 0.8927	Equal Var Equal Var Romal Di Normal Di Normal Di Normal Di Normal Di Mormal Di	iances iances iances iances istribution istribution istribution istribution istribution Max 0.9352	0.03585	8.22%	0.0%
Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Combined Proces 0 2	Test Bartlett Equal Mod Levene I Levene Equal Shapiro-Wilk Kolmogorov-S D'Agostino SI D'Agostino Ki D'Agostino-Po Anderson-Da Control Type Co Dilution Water 4	Equality of Variance lity of Variance W Normality Smirnov D Kewness Lurtosis Learson K2 Omnibus Irling A2 Normality mmary bunt Mean 0.8725 0.8421	5.092 0.7228 1.288 0.981 0.09342 0.2694 0.1026 0.08309 0.2019 95% LCL 0.7584 0.7625	16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 0.9866 0.9217	0.5320 0.6360 0.3053 0.8735 0.8115 0.7876 0.9183 0.9593 0.9227 Median 0.8927 0.8239	Equal Var Equal Var Romal Di Normal Di Normal Di Normal Di Normal Di Min 0.7692 0.8057	iances iances iances iances istribution istribution istribution istribution istribution Max 0.9352 0.915	0.03585 0.02501	8.22% 5.94%	0.0% 3.48%
Variances Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Combined Process 0 2 4	Test Bartlett Equal Mod Levene I Levene Equal Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino Ki D'Agostino-Pi Anderson-Da Control Type Co Dilution Water 4	Equality of Variance W Normality Smirnov D Kewness Partosis Parson K2 Omnibus Irling A2 Normality mmary punt Mean 0.8725 0.8421 0.7773	5.092 0.7228 1.288 0.981 0.09342 0.2694 0.1026 0.08309 0.2019 95% LCL 0.7584 0.7625 0.7373	16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 0.9866 0.9217 0.8174	0.5320 0.6360 0.3053 0.8735 0.8115 0.7876 0.9183 0.9593 0.9227 Median 0.8927 0.8239 0.7692	Equal Var Equal Var Romal Di Normal Di Normal Di Normal Di Normal Di Normal Di 0.7692 0.8057 0.7571	iances iances iances iances istribution istribution istribution istribution istribution istribution output Max 0.9352 0.915 0.8138	0.03585 0.02501 0.01259	8.22% 5.94% 3.24%	0.0% 3.48% 10.9%
Variances Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Combined Proces 0 2 4 9	Test Bartlett Equal Mod Levene I Levene Equal Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino Ki D'Agostino-Pi Anderson-Da control Type Co Dilution Water 4 4 4	Equality of Variance W Normality Smirnov D Kewness Litosis Bearson K2 Omnibus rling A2 Normality mmary Ount Mean 0.8725 0.8421 0.7773 0.8411	5.092 0.7228 1.288 0.981 0.09342 0.2694 0.1026 0.08309 0.2019 95% LCL 0.7584 0.7625 0.7373 0.7395	16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 0.9866 0.9217 0.8174 0.9427	0.5320 0.6360 0.3053 0.8735 0.8115 0.7876 0.9183 0.9593 0.9227 Median 0.8927 0.8239 0.7692 0.8381	Equal Var Equal Var Romal Di Normal Di Normal Di Normal Di Normal Di Normal Di 0.7692 0.8057 0.7571	iances iances iances iances iances istribution istribution istribution istribution istribution istribution istribution 0.9352 0.915 0.8138 0.9109	0.03585 0.02501 0.01259 0.03194	8.22% 5.94% 3.24% 7.59%	0.0% 3.48% 10.9% 3.6%
Variances Variances Variances Variances Distribution Distribution Distribution Distribution Distribution Combined Proces C-% 0 2 4	Test Bartlett Equal Mod Levene I Levene Equal Shapiro-Wilk Kolmogorov-S D'Agostino Si D'Agostino Ki D'Agostino-Pi Anderson-Da Control Type Co Dilution Water 4	Equality of Variance W Normality Smirnov D Kewness Partosis Parson K2 Omnibus Irling A2 Normality mmary punt Mean 0.8725 0.8421 0.7773	5.092 0.7228 1.288 0.981 0.09342 0.2694 0.1026 0.08309 0.2019 95% LCL 0.7584 0.7625 0.7373	16.81 3.812 3.812 0.8975 0.1914 2.576 2.576 9.21 3.878 95% UCL 0.9866 0.9217 0.8174	0.5320 0.6360 0.3053 0.8735 0.8115 0.7876 0.9183 0.9593 0.9227 Median 0.8927 0.8239 0.7692	Equal Var Equal Var Romal Di Normal Di Normal Di Normal Di Normal Di Normal Di 0.7692 0.8057 0.7571	iances iances iances iances istribution istribution istribution istribution istribution istribution output Max 0.9352 0.915 0.8138	0.03585 0.02501 0.01259	8.22% 5.94% 3.24%	0.0% 3.48% 10.9%

Report Date: 06 Mar-18 14:04 (p 2 of 3) Test Code: 658-85 16-8466-7613

							Test	t Code:		000-001 10	3-8466-761
Bivalve Lan	al Survival and D)evelopme	nt Test					-	Northwest	ern Aquati	c Sciences
Analysis ID:	04-1228-3858	Enr	Incint: 60	mbined Prop	ortion Norm	al)	CFI	"IS Version:	CETISv1	8.7	
Analyzed:	06 Mar-18 14:0		-	rametric-Con				cial Results:	Yes		
					10170 1104			- Trooditor			
_	rrected) Transfor		-	050/ 1 01	059/ 1101	Madlan	Min	Man	Ctd Ear	C) /9/	D/ Essant
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
)	Dilution Water	4	1,214	1.051	1.378	1.237	1.07	1.313	0.05148	8.48%	0.0%
2		4	1.166	1.048	1.284	1.138	1.114	1.275	0.03705	6.35%	3.96%
,		4	1.08	1.031	1.129	1.07	1.055	1.125	0.01541	2.85%	11.07%
		4	1.167	1.024	1.309	1.159	1.079	1.268	0.04478	7.68%	3.94%
8		4	1.194	1.09	1.298	1.2	1.109	1.268	0.03273	5.48%	1.67% 5.52%
5		4	1.147 1.228	1.07 1.157	1.224 1.298	1.141 1.218	1.104	1.203 1.29	0.02425 0.02217	4.23% 3.61%	-1.09%
<u>'0</u>			1.225	1.157	1.295	1.210	1.185	1.29	0.02217	3.01%	-1.09%
ombined F	Proportion Norma	l Detail									
:-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	_					
)	Dilution Water	0.8907	0.7692	0.9352	0.8947						
2		0.8057	0.834	0.915	0.8138						
ļ.		0.7733	0.7571	0.7652	0.8138						
)		0.7976	0.9109	0.7773	0.8785						
8		0.8016	0.8745	0.9109	0.8623						
5		0.7976	0.8704	0.8502	0.8016						
0		0.8583	0.8826	0.8785	0.9231						
Angular (Co	rrected) Transfor	med Detail									
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
)	Dilution Water	1.234	1.07	1,313	1,24						
2		1.114	1.151	1.275	1.125						
ļ		1.075	1.055	1.065	1.125						
)		1.104	1.268	1.079	1.215						
18		1.109	1.209	1.268	1.191						
			1.203	1.173	1.109						
		1.104									
5		1.104	1.221	1.215	1.29						
05 70			1.221	1.215	1.29		<u> </u>				
35 70 Graphics			1.221	1.215	1.29	<u></u> .					<u> </u>
35 70			1.221	1.215	1.29	0.12		1			
35 70 Graphics			1.221	1.215	1.29	0.10				• • •	
5 0 6raphics		1.185		• •	1.29	0.10			عود	• • •	
5 0 6raphics		1.185		1.215		0.10			98888	• • •	
5 0 6raphics		1.185		• •		0.10			and Sprage	• • •	
70 Graphics		1.185		• •		0.10			gard State of	• • •	
35 70 Graphics		1.185		• •		0.10 0.08 0.06 0.04			See	• • •	
35 70 Graphics		1.185		• •		0.00 60.00 60.00 60.00 60.00 60.00		. 9948	parts Spings	• • •	
35 70 Graphics 1.0 Inturvol to the particular of the particular		1.185		• •		01.0 80.0 0.00 0.00 0.00 0.00 0.00		• • • • • • • • • • • • • • • • • • •	per Strange	• • •	
35 70 Graphics		1.185		• •		0.10 0.08 0.06 0.04 0.02 0.02 -0.02 -0.04	<u> </u>		98.5 P. S. P.	• • •	-
1.0 February 1.0 0.8 February 1.0 0.8 February 1.0 0.8 February 1.0 0.7 February 1.0 0.6 February 1.0 0.6 February 1.0 0.4 Fe		1.185		• •		0.10 - 0.08 - 0.00 - 0.02 - 0.04 - 0.06 - 0.00 - 0.	<u> </u>		Sere Sere Sere	• • •	
35 70 Graphics 1.0 0.9 0.8 0.7 0.7 0.6 0.6 0.7 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		1.185		• •		0.10 0.08 0.09 0.00 0.	• • •		Set	• • •	
35 70 Graphics 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.		1.185		• •		0.10 0.08 0.09 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.		• • • • • • •	See	• • •	
1.0 Females 1.0 Control of the second of the		1.185		• •		0.10 0.08 0.09 0.00 0.	-2.0 -1.5	-1.0 -0.5 0.0	0.5 1.0	1.5 2.0	

EC 50 > 70 % BY DATA INSPECTION. -631

CETIS Analytical Report

Report Date: Test Code: 06 Mar-18 14:04 (p 1 of 1) 658-85) 16-8466-7613

Bivaive Larval Survival and Development Test Northwestern Aquatic Sciences 02-9176-0113 Combined Proportion Normal **CETIS Version: CETISv1.8.7** Analysis ID: Endpoint: Linear Interpolation (ICPIN) Analyzed: 06 Mar-18 14:03 Analysis: Official Results: Yes Batch ID: 15-1631-3211 Test Type: Development-Survival Analyst: Start Date: 01 Mar-18 13:50 Protocol: EPA/600/R-95/136 (1995) Diluent: Yaquina Bay Seawater Ending Date: 03 Mar-18 14:00 Species: Mytilis galloprovincialis Brine: Kamliche Sea Farms, WA **Duration:** 48h Source: Age: Client: Wyckoff Treatment Plant Sample ID: 17-3365-4727 Code: 675578C7 Sample Date: 28 Feb-18 09:15 Material: Industrial Effluent Project: Wyckoff Receive Date: 01 Mar-18 12:55 Source: Sample Age: 29h (2 °C) Station: **Linear Interpolation Options** X Transform Y Transform Resamples Exp 95% CL Method Seed Two-Point Interpolation Linear 1099397 280 Linear Yes **Point Estimates** 95% UCL Level % 95% LCL 95% UCL TU 95% LCL EC25 >70 <1.429 NA N/A N/A NA **Combined Proportion Normal Summary** Calculated Variate(A/B) C-% Control Type Count Mean Min Max Std Err Std Dev CV% %Effect Α В 0.7692 0.9352 0.03585 0.0717 0.0% 862 988 0 **Dilution Water** 4 0.8725 8.22% 2 4 0.8421 0.8057 0.915 0.02501 0.05002 5.94% 3.48% 832 988 768 988 4 4 0.7773 0.7571 0.8138 0.01259 0.02518 3.24% 10.9% 9 831 988 0.8411 0.9109 0.06387 7.59% 3.6% 4 0.7773 0.03194 988 852 18 4 0.8623 0.8016 0.9109 0.02272 0.04545 5.27% 1.16% 35 4 0.83 0.7976 0.8704 0.01803 0.03606 4.35% 4.87% 820 988 0.9231 3.06% -1.51% 675 988 70 4 0.8856 0.8583 0.01357 0.02713 **Combined Proportion Normal Detail** C-% **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 0 **Dilution Water** 0.8907 0.7692 0.9352 0.8947 2 0.8057 0.834 0.915 0.8138 4 0.8138 0.7733 0.7571 0.7652 9 0.7976 0.9109 0.7773 0.8785 0.9109 0.8623 18 0.8016 0.8745 35 0.7976 0.8704 0.8502 0.8016 0.8826 0.9231 70 0.8583 0.8785

06 Mar-18 14:04 (p 1 of 1) 16-8466-7618/658-85)

Bivalve Larval Survival and Development Test									Northwestern Aquatic Sciences
Start Date:	01 [Vlar-1	8 13:50	Species:	Mytilis galloprovir	ncialis		Sample Code:	675578C7
End Date:	03 I	Vlar-18	8 14:00	Protocol:	EPA/600/R-95/13	6 (1995)		Sample Source:	Wyckoff
Sample Date	e: 28 l	Feb-1	8 09:15	Material:	Industrial Effluent	1		Sample Station:	
C-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes
0	В	1	32	247	216	216	207		

C-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	В	1	32	247	216	216	207	
0	В	2	11	247	218	218	210	
0	В	3	12	247	232	232	221	
0	В	4	3	247	213	213	200	
0	D	1	10	247	233	233	220	
0	D	2	2	247	200	200	190	
0	D	3	23	247	245	245	231	
0	D	4	8	247	228	228	221	
2	-	1	18	247	213	213	199	
2		2	27	247	217	217	206	
2		3	22	247	232	232	226	
2		4	30	247	212	212	201	
4		1	28	247	202	202	191	
4		2	15	247	199	199	187	
4		3	14	247	200	200	189	
4		4	24	247	210	210	201	= =
9	1	1	6	247	209	209	197	
9		2	29	247	234	234	225	
9		3	5	247	198	198	192	
9	1	4	17	247	226	226	217	
18		1	16	247	204	204	198	
18		2	13	247	226	226	216	
18	+ -	3	1	247	234	234	225	
18		4	31	247	225	225	213	
35		1	7	247	208	206	197	
35		2	26	247	222	222	215	
35		3	21	247	217	217	210	
35		4	8	247	207	207	198	
70		1	4	247	226	226	212	
70		2	20	247	234	234	218	
70		3	19	247	221	221	217	
70		4	25	247	236	236	228	

data entry vented against laboratory bench sheets 3.7.16 JRF

Page 1 of 1

Northwestern Aquatic Sciences (REGION COPY) DateShipped: 2/28/2018

AirbillNo: 7716 3761 8883 CarrierName: FedEx

CHAIN OF CUSTODY RECORD Project Code: WEH-025M

No: 10-022818-094122-0238 2018T10P303DD210W2LA00 Contact Name: Keith Allers Contact Phone: 206-780-1711

> Wyckoff Eagle Harbor GWTP 2017/WA Cooler #: 1 of 1

Sample Type Field Sample 02/28/2018 09:15 Collection Date/Time Location SP-11 Tag/Preservative/Bottles (< 6 C) (1) Analysis/Turnaround (Days) CHRTOX(8 Weeks) Composite Coll. Method Matrix/Sampler Ground Water/ KAllers Sample No. CLP P Sample Identifier 658 1st Quarter

Shipment for Case Complete? N	Samples Transferred From Chain of Custody #		
1.12	6000		
	RANK AND THE	X=Chronic Toxicity	
	Special Instructions:	Analysis Key: CHRTOX=Chronic Toxicity	

Sample Condition Upon Receipt	Inta		
Date/Time	3-1-25 1255		
Received by (Signature and Organization)	En But ME		
Date/Time	2-28-2018		
Relinquished by (Signature and Organization)	Loith allera CHEM		
Items/Reason			

(206) 780-1711

BAINBRIDGE ISLAND, WA 98110 UNITED STATES US

SHIP DATE: 28FEB18 ACTWGT: 8.00 LB CAD: 111531780WSXU3100 DIMS: 11x9x13 IN

BILL SENDER

GEARLD IRISSARRI NORTHWESTERN AQUATIC SCIENCES 3814 YAQUINA BAY ROAD

NEWPORT OR 97365

REF: PN: 438558,FP.Y7.01

DEPT:

THU - 01 MAR 12:00P PRIORITY OVERNIGHT

7716 3761 8883

86 ONPA

97365

OR-US PDX

Signature:

Date:

APPENDIX III RAW DATA – REFERENCE TOXICANT TEST

NORTHWESTERN AQUATIC SCIENCES

PROTOCOL NO. NAS-XXX-CG/MG2

0 001611060		
BIVALVE LARVAL	TEST BASED ON	EPA/600/R-95/13

NOICHIA	LOILIN	BIV	ALVE LARVAL	TEST BASED	ON EPA/600/R-95/1	136 REVIEWED 1-8
Test No.	999-37	60 Client:	QC T	est		Investigator PACE 651
STUDY I						
Client	_	QC Te				
	's Study I		QC T			
			stern Aquatic S	ciences		
		Newport Labo tudy Personne	d.			
	. Mgr./St		 G.I	rissarri ⁴³¹		
	Officer	ddy Dir.	L.K. Nemeth			
1.		S world	gha c	2.	GABLER	AS
3.		BLOWN	75	4.		
Study	Schedul	e: c	7			2-7 2 1
Test 6	Beginning	j: <u> </u>	3-1-18 13	50 <u> </u>	Test Ending:	3-3-18 1400
TEST M	ATERIAL					
D	escriptio	n: Coppe	er as CuSO ₄ -51	l ₂ O, Argent Lot		
	AS Sam			1.	0 mg/ml stock prepa	ared: <u>5-16-16</u>
_	ate of Co					
	ate of Re	*				
		ure (deg C):				
	H:	overen /ma/l	· —			
		oxygen (mg/L ity (umhos/cm				
	lardness		<i></i>			
	lkalinity (,				
	alinity (p					
		rine (mg/L):		_		
Т	otal amn	nonia-N (mg/L):			
			_:			
DILUTIO	N WATE	R				
	escriptio	n:	Yaquina Bay,	OR Seawater	<u> </u>	
	ate of Co	ollection:	2-2	8-18	Salinity (ppt)	
Т	reatmen	ts:	Aerated, filter	ed to ≤ 0.45 um	, salinity adjusted w	ith Milli-Q® deionized water
TEST O	RGANIS				_	
	Species:	Mytilu	s galloprovinci	alis	_ D	ate Received: 2-27-18
	Source:		<u>r Shellfish Farn</u>	ns, Shelton, WA		
A	cclimation			Col /mmt\	DO (mg/L)	Comments
		Temp (deg.C		Sal (ppt)	D.O. (mg/L)	Held outside in trays of
	3-1-18	3.1	8.1_	27.0	+	flowing seawater
			 			
				1	†	
			 			
	Mean					ļ
	S.D.		1 =			<u> </u>

Error codes: 1) correction of handwriting error

Photoperiod during acclimation:

2) written in wrong location; entry deleted

3) wrong date deleted, replaced with correct date

4) error found in measurement; measurement repeated

Outdoor ambient conditions

Revised 12-7-01

NORTHWESTERN AQUATIC SCIENCES

PROTOCOL NO. NAS-XXX-CG/MG2

BIVALVE I	ADV/AL	TEST BASED	ON EDA	JERRAID_	05/43
DIVALVE		ILUI UNULU	UNLER	VUUUVIX-	30110

Test No.	999-3760 Client QC Test							Inves	tigator
Number	ng: Initial: of organis ition (1 ml Count/ml		fema 00 ml): 13	les: <u> </u>	2. <u>3</u> °	·	Fert males:	ilization: 3	
Test cha Organis Feeding	amber: 30 ms/ml (15-	s (50% sei ml glass vi 30):	als	Test v Test v Photo	rolume: 10 vater char period: 16	mi nges: None SL:8D	Aera Sali	licates/tre ation durin nity: 30 +/-	atment (4): _4 g test: None
RANDOMIZ		•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
А	φ	64	1	32	4	2_	16	8	
В	2	16	8	4	64	ø	32)	
C	32	1	Ø	16	2	8	64	4	
D	64	1	32	8	2	4	ø	16	

PREPARATION OF TEST SOLUTIONS

Test Conc.	ml of working stock #2	Dilution water
(Cu, ug/L)	(2 ug/mL)	(ml/100mL)
64	3.2	Brought up to a
32	1.6	final volume of
16	0.8	100 ml with
8	0.4	dilution water.
4	0.2	
2	0.1	
1	0.05	
0	0	

1st working stock made by 1:99 (1.0 mL \$\frac{1}{100mL}\$) dilution of concentrated 1 mg/mL stock solution. Final concentration 10 ug/mL.

2nd working stock made (working stock #2) made by 20:80 (20 mL 100mL) dilution of 1st working stock. Final concentration 2 ug/mL.

Comments:

Test No.

999-3760

Client

QC Test

Investigator

WATER QUALITY DATA

	Date:	3-1-18	initials:	<u>></u>	Date:	3-378	initials:	U15
Conc.	Temp.	рН	Sal.	DO	Temp.	pН	Sal.	DO
(ug/L)	(deg.C)		(ppt)	(mg/L)	(deg.C)		(ppt)	(mg/L)
64	15.9	8.1	295	7.9	15-6	8-2	-295	8-1
32	15.9	8.1	29.5	79	15.5	8.2	300	81
16	16.0	8.1	30.0	79	15-5	8-2	300	8-1
8	15.9	8.1	30.0	7.9	15-10	8.2	300	8-2
4	15.8	8.1	30.0	7.9	15-5	8-2	30.5	8.2
2	15.9	8.1	30,0	79	15-5	8.2	300	8.2
1	15.9	8.1	30,0	7-9	15-5	8.2	300	81
Control	160	8.0	30,0	79	15-8	8.2	30-0	82
Brine control							_	

WATER QUALITY: SD Mean N Temperature (℃): 15.7 pH: 8.1 0.1 Salinity (ppt): 299 0.3 16 DO (mg/L): 8.0 0,1 14 Room/ Water bath temperature: (°C)

Day 0: <u>/6.0</u> Day 0: <u>/5.4</u> Day 1: <u>/6.0</u> Day 1: <u>/5.5</u> Day 2: <u>15.8</u> Day 2: <u>i5.5</u>

			, LARVA	L COUNT I		~~		•
_	3-5-18	60I			3-5-18	; XX .		/
Conc.	Replic	cate 1	Replic	cate 2	Replicate 3		Replicate 4	
(ug/L)	N	Α	N	Α	N	Α	N	A
64	ø		Ø	Ø	Φ	Ø	4	Ø
32	Ø	50	\$	73	Ø	62	Ø	74
16	ø	206	Ø	225	Ø	1.85	ø	222
8	165	52	149	71	126	66	152	57
4	210	11	231	Ü	220	10	231	7
2	205	14	219	13	234	8	211	10
1	236	12	220	15	210	7	207	13
Control	202	9	217	11	231	7	220	10
Brine control		_					_	
Zero time	229	254	249	270	240	24/	-	

Zero time: Mean 247 SD 14 N 6

CV=(sd/mean)x100 <u>5.7%</u>

Remarks:

130 SE Lynch Rd. Shelton WA 98584

 Order
 ORD00390924

 Date
 2/26/2018

 Page
 1

BI	11	To
01		10.

NORTHWESTERN AQUATIC SCIENCES 3814 YAQUINA BAY RD NEWPORT OR 97365

Ship To:

NORTHWESTERN AQUATIC SCIENCES 3814 YAQUINA BAY RD NEWPORT OR 97365

Customer	D	Purchase Order No.	Salesperson ID	Shipping Method	Payment Terms	Reg Ship Date	Master No.
11117			A931	FED EX	CREDIT CARD	2/26/2018	379,288
Ordered	Shipped	Item Number	Descrip	Unit Price			
10	10		MS Med	Nerranean Regular ELEIVED 2-27 -631		Unit Price	Ext. Price

 Subtotal
 ==

 Misc
 \$0.00

 Tax
 \$0.00

 Freight
 \$0.00

 Trade Discount
 \$0.00

 Total
 \$0.00

CETIS Summary Report

Report Date: Test Code:

05 Mar-18 14:21 (p 1 of 2)

999-3760) 17-0778-1414

Dischar La	10	David								0 0700) 17	
BIVAIVE Larva	al Survival and I	Developme	nt lest						Northweste	ern Aquatio	Sciences
Batch ID:	15-1631-3211		t Type: D	evelopment-S	urvival		Anal	yst:			
Start Date:	01 Mar-18 13:	50 Pro	tocol: E	PA/600/R-95/	136 (1995)		Dilue	ent: Yaq	uina Bay Se	awater	
Ending Date:	03 Mar-17 14:0	00 Sp e	ecies: M	lytilis gallopro	vincialis		Brine	e:			
Duration:	NA	Sou	urce: K	amilche Sea F	arms, WA		Age:				
Sample ID:	03-1968-5423	Coe	de: 1	30E032F			Clier	nt: Inter	nal Lab		
Sample Date:	: 01 Mar-18 13:	50 Mai	terial: C	opper sulfate			Proje	ect:			
Receive Date	: 01 Mar-18 13:	50 So ı	ırce: R	eference Toxi	cant						
Sample Age:	NA	Sta	tion:								
Comparison	Summary)					<u> </u>			-
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
19-2338-8869	Combined Pro	portion Nor	R.4	(8)	5.657	10.4%	_	Dunnett M	lultiple Com	parison Tes	t
18-9848-1589	Proportion Nor	mal	4	8	5.657	2.78%			Adj t Test		
20-9328-0766	Proportion Sur	vived	16	32	22.63	10.6%		Dunnett M	lultiple Com	parison Tes	t
Point Estimat	te Summary										
Analysis ID	Endpoint		Level	µg/L	95% LCL	95% UCL	TU	Method			
07-2704-1665				7.085	6.021	8.009		Linear Inte	erpolation (I	CPIN)	
17-6952-8158				9.037	8.852	9.225		Spearman			
06-0467-9395			EC25	7.789	6.95	8.581			erpolation (I		
03-0888-9917			EC50	9.424	9.224	9.629			Spearman-K		
19-0796-7634	Proportion Sur	vived	EC50	24.42	23.78	25.08	_	Trimmed \$	Spearman-K	(ārber ————	
Combined Pr	oportion Norma	I Summary	,								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	4	0.8806	0.8035	0.9576	0.8178	0.9352	0.02421	0.04841	5.5%	0.0%
1		4	0.8836	0.7994	0.9678	0.8381	0.9555	0.02646	0.05293	5.99%	-0.34%
2		4	0.8796	0.7987	0.9604	0.83	0.9474	0.02541	0.05082	5.78%	0.11%
4		4	0.9028	0.8378	0.9679	0.8502	0.9352	0.02044	0.04089	4.53%	-2.53%
8		4	0.5992	0.4946	0.7037	0.5101	0.668	0.03285	0.0657	10.96%	31.95%
16		4	0	0	0	0	0	0	0		100.0%
32		4	0	0	0	0	0	0	0		100.0%
64		4	0	0	0	0	0	0	0		100.0%
Proportion St	urvived Summa	ry									
									04.1.0	C) /0/	
C-µg/L	Control Type	Count	Mean		95% UCL		Max	Std Err	Std Dev	CV%	%Effect
0	Control Type Dilution Water	4	0.918	0.8449	0.9912	0.8543	0.9636	0.02298	0.04597	5.01%	%Effect 0.0%
0			0.918 0.9302	0.8449 0.8404	0.9912 1	0.8543 0.8785	0.9636 1	0.02298 0.02821	0.04597 0.05643	5.01% 6.07%	0.0% -1.32%
0 1 2		4	0.918 0.9302 0.9251	0.8449 0.8404 0.8564	0.9912 1 0.9938	0.8543 0.8785 0.8866	0.9636 1 0.9798	0.02298 0.02821 0.02158	0.04597 0.05643 0.04316	5.01%	0.0%
0 1 2 4		4	0.918 0.9302 0.9251 0.9423	0.8449 0.8404 0.8564 0.8825	0.9912 1 0.9938 1	0.8543 0.8785 0.8866 0.8947	0.9636 1 0.9798 0.9798	0.02298 0.02821 0.02158 0.0188	0.04597 0.05643 0.04316 0.0376	5.01% 6.07% 4.67% 3.99%	0.0% -1.32%
0 1 2 4 8		4	0.918 0.9302 0.9251 0.9423 0.8482	0.8449 0.8404 0.8564 0.8825 0.7673	0.9912 1 0.9938 1 0.9291	0.8543 0.8785 0.8866 0.8947 0.7773	0.9636 1 0.9798 0.9798 0.8907	0.02298 0.02821 0.02158 0.0188 0.02542	0.04597 0.05643 0.04316 0.0376 0.05084	5.01% 6.07% 4.67%	0.0% -1.32% -0.77%
0 1 2 4 8 16		4	0.918 0.9302 0.9251 0.9423 0.8482 0.8482	0.8449 0.8404 0.8564 0.8825 0.7673 0.73	0.9912 1 0.9938 1 0.9291 0.9663	0.8543 0.8785 0.8866 0.8947 0.7773 0.749	0.9636 1 0.9798 0.9798 0.8907 0.9109	0.02298 0.02821 0.02158 0.0188 0.02542 0.03712	0.04597 0.05643 0.04316 0.0376 0.05084 0.07425	5.01% 6.07% 4.67% 3.99%	0.0% -1.32% -0.77% -2.65%
0 1 2 4 8		4	0.918 0.9302 0.9251 0.9423 0.8482	0.8449 0.8404 0.8564 0.8825 0.7673 0.73	0.9912 1 0.9938 1 0.9291	0.8543 0.8785 0.8866 0.8947 0.7773 0.749 0.2024	0.9636 1 0.9798 0.9798 0.8907	0.02298 0.02821 0.02158 0.0188 0.02542 0.03712 0.02275	0.04597 0.05643 0.04316 0.0376 0.05084 0.07425 0.04549	5.01% 6.07% 4.67% 3.99% 5.99%	0.0% -1.32% -0.77% -2.65% 7.61%

CETIS Summary Report

Report Date: Test Code: 05 Mar-18 14:21 (p 2 of 2) 999-3760 | 17-0778-1414

Bivalve Lar	val Survival and [Developmen	t Test			Northwestern Aquatic Sciences
Combined	Proportion Norma	l Detail	-			
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Dilution Water	0.8178	0.8785	0.9352	0.8907	
1		0.9555	0.8907	0.8502	0.8381	
2		0.83	0.8866	0.9474	0.8543	
4		0.8502	0.9352	0.8907	0.9352	
8		0.668	0.6032	0.5101	0.6154	
16		0	0	0	0	
32		0	0	0	0	
64		0	0	0	0	
Proportion	Survived Detail					
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Dilution Water	0.8543	0.9231	0.9636	0.9312	
1		1	0.9514	0.8785	0.8907	
2		0.8866	0.9393	0.9798	0.8947	
4		0.8947	0.9798	0.9312	0.9636	
8		0.8785	0.8907	0.7773	0.8462	
16		0.834	0.9109	0.749	0.8988	
32		0.2024	0.2955	0.251	0.2996	
64		0.004049	0	0	0	
Combined	Proportion Norma	l Binomials		_		
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Dilution Water	202/247	217/247	231/247	220/247	
1		236/247	220/247	210/247	207/247	
2		205/247	219/247	234/247	211/247	
4		210/247	231/247	220/247	231/247	
8		165/247	149/247	126/247	152/247	
16		0/247	0/247	0/247	0/247	
32		0/247	0/247	0/247	0/247	
64		0/247	0/247	0/247	0/247	
Proportion	Survived Binomia	ls				
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Dilution Water	211/247	228/247	238/247	230/247	
1		247/247	235/247	217/247	220/247	
2		219/247	232/247	242/247	221/247	
4		221/247	242/247	230/247	238/247	
8		217/247	220/247	192/247	209/247	
16		206/247	225/247	185/247	222/247	
32		50/247	73/247	62/247	74/247	

000-091-187-4

CETIS™ v1.8.7.4

PAGE & OF 8

Analyst:_____ QA:____

05 Mar-18 14:22 (p 1 of 1) 17-0778-141 (/999-3760)

Bivalve Larval	Survival and Deve	elopment Te	st	Northwestern Aquatic Sciences
Start Date: End Date:	01 Mar-18 13:50 03 Mar-17 14:00	•	Mytilis galloprovincialis EPA/600/R-95/136 (1995)	Sample Code: 130E032F Sample Source: Reference Toxicant
Sample Date:	01 Mar-18 13:50	Material:	Copper sulfate	Sample Station:

-μg/L	Code	Rep	Pos	initial Density	Final Density	# Counted	# Normal	Notes
0	D	1	5	247	211	211	202	
0	D	2	31	247	228	228	217	
0	D	3	25	247	238	238	231	
0	D	4	28	247	230	230	220	
1		1	8	247	248	248	236	
1		2	21	247	235	235	220	
1		3	15	247	217	217	210	
1		4	10	247	220	220	207	
2		1	24	247	219	219	205	
2		2	27	247	232	232	219	· · · · · · · · · · · · · · · · · · ·
2		3	17	247	242	242	234	
2		4	26	247	221	221	211	
4		1	22	247	221	221	210	
4		2	4	247	242	242	231	
4		3	6	247	230	230	220	
4		4	9	247	238	238	231	
8		1	29	247	217	217	165	
8		2	7	247	220	220	149	
8		3	13	247	192	192	126	
8		4	2	247	209	209	152	
16		1	32	247	206	208	0	
16	1	2	20	247	225	225	. 0	
16		3	23	247	185	185	0	
16		4	11	247	222	222	0	
32		1	3	247	50	50	0	
32		2	18	247	73	73	0	
32		3	16	247	62	62	0	
32		4	12	247	74	74	0	
64		1	30	247	1	1	0	
64		2	19	247	0	0	0	
64		3	1	247	0	0	0	
64		4	14	247	0	0	0 ,	

data entry verified against laboratory bench sheets 3-7.18 see

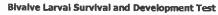
Report Date:

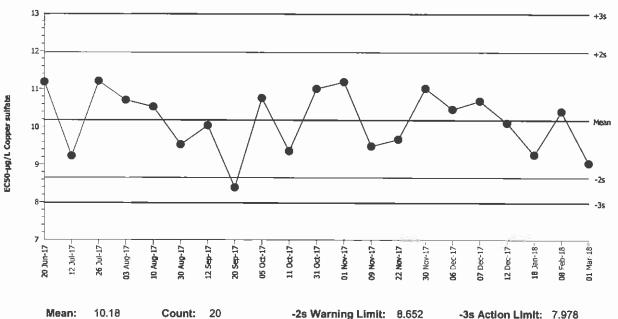
05 Mar-18 14:38 (1 of 1)

Bivaive Larval Survival and Development Test

Northwestern Aquatic Sciences

Test Type: Development-Survival **Protocol:** EPA/600/R-95/136 (1995)


Organism: Mytilis galloprovincialis (Bay Mussel)


Endpoint: Combined Proportion Normal

Material: C Source: R

Copper sulfate

Reference Toxicant-REF

	Sigma:	NA	CV:	8.45%	+2s Warning Limi
Qual	ity Control Data				

rning Limit:	8.652	-3s Action Limit:	7.978
rning Limit:	11.97	+3s Action Limit:	12.98

Quality Co	ontroi Dat	а								
Point Yea	r Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1 201	7 Jun	20	16:50	11.18	1.006	1.162			02-1409-7276	08-4079-1566
2	Jul	12	13:25	9.224	-0.9519	-1.211			02-4818-7084	16-2581-4533
3		26	14:10	11.2	1.028	1.186			17-8688-1039	02-1882-3377
4	Aug	3	13:30	10.7	0.5269	0.6223			12-5107-4745	07-3767-8523
5		10	15:10	10.53	0.3502	0.4171			14-0880-4376	18-5220-7572
6		30	14:35	9.527	-0.6487	-0.812			21-1251-6624	08-5861-5172
7	Sep	12	14:00	10.03	-0.1432	-0.1747			10-5774-5128	09-7081-1600
В		20	13:50	8.39	-1.786	-2.379	(-)		12-1488-7812	06-3387-4553
9	Oct	5	15:20	10.76	0.5849	0.689			01-0974-4829	16-8936-6824
10		11	17:10	9.355	-0.8206	-1.036			06-4503-4555	15-6316-6751
11		31	13:55	11	0.8281	0.9645			19-0668-1049	19-2975-1853
12	Nov	1	13:35	11.19	1.011	1.168			17-3365-4072	06-0748-0919
13		9	14:05	9.488	-0.6874	-0.8623			02-6639-7760	19-3779-2145
14		22	14:00	9.666	-0.5099	-0.6338			14-5021-8992	06-6921-5494
15		30	13:40	11.02	0.8407	0.9786			00-8984-2368	13-5466-3879
16	Dec	6	13:45	10.46	0.2862	0.3419			20-9204-7376	08-8218-5639
17		7	13:00	10.69	0.5099	0.6027			17-2684-2601	21-0626-4507
18		12	14:20	10.1	-0.07377	-0.08969			13-4785-2533	00-4154-6333
19 201	B Jan	18	17:30	9.259	-0.9164	-1.163			18-1463-9193	16-7842-9995
20	Feb	8	12:30	10.41	0.2316	0.2774			12-4129-6067	04-6683-9588
21	Mar	1	13:50	9.037	-1.139	-1.463			17-0778-1414	17-6952-8158