

Chronic Toxicity Testing Results for Wyckoff Eagle Harbor Groundwater Treatment Plant

Monitoring Period: October 2019

Prepared for: Jacobs

1100 112th Ave NE Suite 500

Bellevue, WA, 98004

Prepared by: Enthalpy Analytical (formerly Nautilus

Environmental)

4340 Vandever Avenue San Diego, CA 92120

(858) 587-7333

Date Submitted: November 21, 2019

Data Quality Assurance:

- Nautilus Environmental is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (ORELAP ID 4053). It is also certified by the State of California Water Resources Control Board Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552). Specific fields of testing applicable to each accreditation are available upon request.
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective US EPA protocols, unless otherwise noted in this report.
- All tests have met internal Quality Assurance Program requirements.

Results verified by: ______ Eric Green, Project Manager

California

4340 Vandever Avenue San Diego, California 92120 858.587.7333 fax: 619.279.5919

Introduction

Acute and chronic toxicity tests were performed using a groundwater composite sample collected on October 29, 2019 from the Wyckoff Eagle Harbor Groundwater Treatment Plant on Bainbridge Island in Washington. The tests were performed to satisfy quarterly and annual monitoring requirements according to the project Quality Assurance Project Plan (QAPP 2013). The chronic bioassay was conducted using the bivalve *Mytilus galloprovincialis* (Mediterranean mussel) and the acute bioassay was conducted using the fish *Menidia beryllina* (inland silverside). Testing was performed at Enthalpy Analytical (formerly Nautilus Environmental) located in San Diego, California between October 30 and November 3, 2019.

Materials and Methods

The groundwater sample was collected into a low-density polyethylene cubitainer by Jacobs personnel, packed in a cooler containing ice, and shipped overnight to Enthalpy. Appropriate chain-of-custody (COC) procedures were employed during collection and transport. Upon arrival at the laboratory, the cooler was opened, the sample inspected, and the contents verified against information on the COC form. Standard water quality parameters were measured and recorded on a sample check-in form and are summarized in Table 1. The sample was stored at 4°C in the dark until used for testing.

Table 1. Sample Information

Sample ID	102919; Location SP-11				
Enthalpy Log-in Number	19-1164				
Collection Date; Time	10/29/2019; 0950h				
Receipt Date; Time	10/30/2019; 1000h				
Receipt Temperature (°C)	2.0				
Dissolved Oxygen (mg/L)	8.5				
рН	7.51				
Salinity (ppt)	8.7				
Alkalinity (mg/L CaCO ₃)	387				
Total Chlorine (mg/L)	0.07				
Total Ammonia (mg/L as N)	2.1				

Test Methods

Chronic toxicity testing was conducted according to the method set forth in USEPA 1995 and acute toxicity testing was conducted according to the method set forth in USEPA 2002. The methods are summarized in Tables 2 and 3.

Table 2. Summary of Methods for the Bivalve Larval Development Test

Test Period 10/30/2019, 1230h to 11/1/2019, 1130h **Test Organism** Mytilus galloprovincialis **Test Organism Source** Taylor Shellfish (Shelton, WA) 4 hours post fertilization Test Organism Age **Test Duration** $48 \pm 2 \text{ hours}$

Static Test Type

Test Chamber, Test Solution Volume 30 mL glass vial, 10 mL

Test Temperature 15 ± 1°C

Dilution Water Laboratory Seawater (Source: Scripps Institution of

Oceanography [SIO] intake) diluted with de-ionized water

Additional Control Brine Control (de-ionized water and hypersaline brine)

Test Salinity $30 \pm 2 ppt$

Source of Salinity Hypersaline brine made by freezing seawater to a salinity of

91.0 ppt

Test Concentrations (% sample) 74.1^a, 35, 18, 9, 4, and 2%, lab and brine controls

Number of Replicates

Photoperiod 16 hours light/8 hours dark

Test Protocol EPA/600/R-95/136

Test Acceptability Criteria for Controls ≥ 50% mean survival, ≥ 90% mean development rate

Reference Toxicant Copper chloride b CETIS™ 1.8.7.20 Statistical Software

Table 3. Summary of Methods for the Inland Silverside Acute Survival Test

Test Period 10/30/2019, 1445h to 11/3/2019, 1410h Test Organism Menidia beryllina Aquatic Indicators (St. Augustine, FL) **Test Organism Source**

Test Organism Age 12 days **Test Duration** $96 \pm 2 \text{ hours}$ Test Type Static - renewal

Test Chamber, Test Solution Volume 500mL Plastic Cup, 250mL

Test Temperature $25 \pm 1^{\circ}C$

Dilution Water Laboratory Seawater (Source: SIO intake) diluted with de-

ionized water

Salt Control (Instant Ocean™ brand sea salts added to de-Additional Control

ionized water)

Test Salinity $30 \pm 2 ppt$

Instant Ocean™ brand sea salts Source of Salinity

100, 50, 25, 12.5, and 6.25%, lab and salt controls Test Concentrations (% sample)

Number of Replicates

Photoperiod 16 hours light/8 hours dark

Test Protocol EPA/821/R-02/012, 2002 Acute Manual

Test Acceptability Criteria for Controls ≥ 90% mean survival Reference Toxicant Copper chloride Statistical Software CETIS™ 1.8.7.20

^a Highest concentration tested due to the addition of hypersaline brine

^b A deviation to the QAPP was approved by USEPA and Washington Department of Ecology to conduct reference toxicant testing with copper chloride instead of copper sulfate.

Results

There were no statistically significant effects observed in any effluent concentration tested for the survival or development endpoint of the bivalve test. This results in a no observed effect concentration (NOEC) of 74.1 (the highest concentration tested) and a chronic toxic unit (TU_c) of less than 1.35 for both endpoints.

There were no statistically significant effects observed in any effluent concentration tested for the survival endpoint of the inland silverside test, and all concentrations resulted in 100 percent survival. This results in a no observed effect concentration (NOEC) of 100 and an acute toxic unit (TU_a) of 1.0.

Statistical results for the acute and chronic toxicity tests are summarized in Table 4. Detailed summaries of the acute and chronic toxicity tests are provided in Tables 5 and 6, respectively. Individual statistical summaries for the tests and copies of the laboratory bench sheets are provided in Appendix A. The sample check-in sheet and COC form are provided in Appendices B and C, respectively.

Table 4. Summary of Statistical Results for the Chronic Toxicity Tests

Species	Endpoint	Endpoint NOEC LOEC (% effluent) (% effluent)		•			EC ₂₅ (% effluent)
Inland Silverside	Survival	100	> 100	1.0	> 100		
Bivalve	Normal Development 74.1		> 74.1	< 1.35	> 74.1		
Divalve	Survival	74.1	> 74.1	< 1.35	> 74.1		

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

Acute Toxic Unit $(TU_a) = 100/LC_{50}$. A TU_a of 1.0 indicates no toxicity in the sample.

Chronic Toxic Unit (TU_c) = 100/NOEC. NOTE: Since 100% sample was not tested, the TU_c value can only be calculated up to the highest concentration tested. If no toxicity is observed at this concentration, the TU_c is reported as less than the calculated value.

Effect Concentration 25 (IC₂₅) = Concentration expected to cause an effect to 25% of the organisms

Table 5. Detailed Results for the Inland Silverside Acute Survival Test

Concentration (% Effluent)	Mean Survival (%)					
0 (Salt Control)	100					
0 (Lab Control)	100					
6.25	100					
12.5	100					
25	100					
50	100					
100	100					

Table 6. Detailed Results for the Bivalve Development Chronic Toxicity Test

able of Betanea Results for the Bitante Betalephient emonie residity rest											
Concentration (% Effluent)	Mean Survival (%)	Mean Normal Development (%)									
0 (Brine Control)	99.2	99.0									
0 (Lab Control)	97.6	98.2									
2	94.8	98.5									
4	96.2	97.9									
9	92.7	98.8									
18	94.2	97.7									
35	91.0	98.0									
74.1 ^a	99.0	98.7									

^a Highest concentration tested due to the addition of hypersaline brine

Quality Assurance

The sample was received and tested within the required 36-hour holding time, in good condition, and within the appropriate temperature range of 0-6°C. All control acceptability criteria were met and water quality parameters remained within the appropriate ranges throughout the test. Statistical analyses followed standard USEPA flowchart selections. Dose-response relationships were reviewed to ensure the reliability of the results. Based on the dose responses observed, the calculated effects concentrations were deemed reliable.

Results for the reference toxicant tests used to monitor laboratory performance and test organism sensitivity are summarized in Table 7. The results for the bivalve reference toxicant test were within the acceptable range of the mean historical test results plus or minus two standard deviations. The result for the inland silverside reference toxicant test was below two, but within three, standard deviations of the historical mean. This indicates that this batch of organisms was slightly more sensitive than typical for our laboratory.

The reference toxicant statistical summaries and laboratory bench sheets are provided in Appendix D. Minor QA/QC issues that were unlikely to have any bearing on the final test results, such as slight temperature deviations, are noted on the data sheets and a list of qualifier codes used on bench data sheets is presented in Appendix E.

Table 7. Reference Toxicant Test Results

Species	Endpoint	EC ₅₀ (μg/L copper)	Historical mean ± 2 SD (μg/L copper)	CV (%)
Bivalve	Normal Development	7.48	8.45 ± 4.45	26.3
Divalve	Survival	29.3	29.7 ± 4.97	8.36
Inland Silverside	Survival	115	196 ± 76.8	19.6

Effect Concentration 50 (EC $_{50}$) = Concentration expected to cause an effect to 50% of the organisms CV = Coefficient of Variation.

References

- CH2MHill. 2013. Quality Assurance Project Plan Groundwater Treatment Plant Operations, Maintenance, Bainbridge, Washington. Prepared for USEPA Region 10 June 5, 2013.
- Standard Guide for Conducting Static Acute Toxicity Tests with Embryos of Four Species of Saltwater Bivalve Molluscs. 1989. ASTM Standard E 724-89.
- Tidepool Scientific Software. 2000-2013. CETIS Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20.
- USEPA. 1995. Short-Term Method for Estimating the Chronic Toxicity of Effluents and Receiving Waters to the West Coast Marine and Estuarine Organisms. EPA/600/R-95/136. pp. 209-258 and 389-465.
- USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. United States Environmental Protection Agency Office of Water, Washington DC (EPA-821-R-02-012).
- Washington State Department of Ecology. 2016. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Publication No. WQ-R-95-80. Revised June 2016

Appendix A
Statistical Summaries and Raw Bench Sheets

CETIS Summary Report

Report Date: Test Code:

15 Nov-19 09:37 (p 1 of 2) 1910-S148 | 14-0607-3357

								est Code:	191	0-3146 1	4-0607-335
Bivalve Larva	I Survival and D	evelopn	nent Test						Nautilus	s Environr	mental (CA
Batch ID: Start Date: Ending Date: Duration:	19-0640-4065 30 Oct-19 12:3 01 Nov-19 11:3 47h	0 P 80 S	est Type: Protocol: Species: Source:	Development-S EPA/600/R-95/ Mytilus gallopro Taylor Shellfish	136 (1995) ovincialis		E		ited Natural s zen Seawate		
-	16-3418-8863 29 Oct-19 09:5 30 Oct-19 10:0 27h (2 °C)	0 N 0 S	ode: flaterial: ource: station:	19-1164 Effluent Sample Jacobs Wyckoff (Sp	· 11)			Client: Jac Project:	obs		
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
14-1360-5611	Development F	Rate	74.1	>74.1	NA	1.63%	< 1.35		/lultiple Com	parison Te	st
00-6811-3566	Survival Rate		74.1	>74.1	NA		< 1.35		/lultiple Com	•	
Test Acceptal	oility		-								
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lin	nits	Overlap	Decision		
14-1360-5611	Development F	Rate	Contro	l Resp	0.9903	0.9 - NL		Yes	Passes Ad	ceptability	Criteria
00-6811-3566	Survival Rate		Contro	l Resp	0.9915	0.5 - NL		Yes		cceptability	
Development	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Brine Control	5	0.9903	0.985	0.9956	0.9854	0.9935	0.001911	0.004274	0.43%	0.0%
0	Lab Control	5	0.9816	0.9712	0.9919	0.971	0.9935	0.003722	0.008322	0.85%	0.88%
2		5	0.9851	0.9737	0.9964	0.9762	1	0.004103	0.009175	0.93%	0.53%
4		5	0.979	0.9692	0.9888	0.9735	0.9928	0.003522	0.007875	0.8%	1.14%
9		5	0.9877		0.9967	0.9767	0.993	0.003241	0.007248	0.73%	0.27%
18		5	0.9772		1	0.9474	0.9934	0.009843	0.02201	2.25%	1.32%
35		5	0.9796		0.9966	0.96	0.9933	0.00614	0.01373	1.4%	1.08%
74.1		5	0.9868	0.9815	0.992	0.9806	0.9926	0.001893	0.004233	0.43%	0.36%
Survival Rate	Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Brine Control	5	0.9915		1	0.9648	1	0.006828	0.01527	1.54%	0.0%
0	Lab Control	5	0.9761		1	0.9296	1	0.01291	0.02886	2.96%	1.56%
2		5	0.9479	0.8778	1	0.8662	1	0.02525	0.05647	5.96%	4.4%
4		5	0.962	0.9009	1	0.8803	1	0.022	0.0492	5.11%	2.98%
9		5	0.9268		0.9906	0.8592	1	0.02299	0.05141	5.55%	6.53%
18		5	0.9423	0.8337	1	0.8028	1	0.03911	0.08745	9.28%	4.97%
35		5	0.9099	0.8318	0.9879	0.838	1	0.02812	0.06287	6.91%	8.24%
74.1		5	0.9901	0.9628	1	0.9507	1	0.009859	0.02205	2.23%	0.14%

Report Date: Test Code:

15 Nov-19 09:37 (p 2 of 2)

•	_	•	•	_		•	_	_	_	•	_	•	١,	۳	_	_	•	_	٠,
1	9	1	n	-5	31	4	l8	1	•	1	4		Ŋβ	รด	17	-3	3	5	7

							Test Code:	1910-S148 14-0607-335
Bivalve La	arval Survival and [Developme	nt Test					Nautilus Environmental (CA
Developm	ent Rate Detail							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	0.9933	0.9854	0.9935	0.9934	0.9858		
0	Lab Control	0.971	0.98	0.9935	0.9848	0.9784		
2		1	0.9762	0.9847	0.9852	0.9792		
4		0.9928	0.9735	0.976	0.9779	0.9747		
9		0.9925	0.9767	0.9924	0.993	0.9836		
18		0.9474	0.9931	0.9934	0.9597	0.9922		
35		0.9921	0.9776	0.96	0.9748	0.9933		
74.1		0.9865	0.9806	0.9871	0.9926	0.987		
Survival R	Rate Detail							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	1	0.9648	1	1	0.993		
0	Lab Control	0.9718	1	1	0.9296	0.9789		
2		0.8662	1	0.9225	0.9507	1		
4		0.9718	1	0.8803	0.9577	1		
9		0.9437	0.9085	0.9225	1	0.8592		
18		0.8028	1	1	1	0.9085		
35		0.8873	0.9437	0.8803	0.838	1		
74.1		1	1	1	0.9507	1		
Developm	ent Rate Binomials	5						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	149/150	135/137	152/153	151/152	139/141		
0	Lab Control	134/138	147/150	153/154	130/132	136/139		
2		123/123	164/168	129/131	133/135	141/144		
4		137/138	147/151	122/125	133/136	154/158		
9		133/134	126/129	130/131	142/143	120/122		
18		108/114	144/145	151/152	143/149	128/129		
35		125/126	131/134	120/125	116/119	148/149		
74.1		146/148	152/155	153/155	134/135	152/154		
Survival R	Rate Binomials							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	142/142	137/142	142/142	142/142	141/142		
0	Lab Control	138/142	142/142	142/142	132/142	139/142		
2		123/142	142/142	131/142	135/142	142/142		
4		138/142	142/142	125/142	136/142	142/142		
9		134/142	129/142	131/142	142/142	122/142		
18		114/142	142/142	142/142	142/142	129/142		
35		126/142	134/142	125/142	119/142	142/142		
		142/142	142/142	142/142		142/142		

Analyst: Ja QA: E4 1/15/19

Report Date:

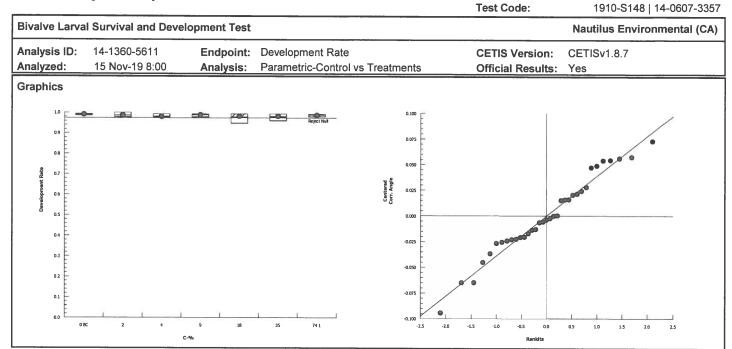
15 Nov-19 08:00 (p 1 of 4)

				Test Code:	1910-S148 14-0607-3357
Bivalve Larva	al Survival and Deve	elopment Test			Nautilus Environmental (CA)
Analysis ID:	14-1360-5611	Endpoint:	Development Rate	CETIS Version:	CETISv1.8.7
Analyzed:	15 Nov-19 8:00	Analysis:	Parametric-Control vs Treatments	Official Results:	Yes

Analyzed:	15 Nov-19 8:00	Analysis	s: Para	ametric-Co	ntrol vs Treatments	Offic	cial Results	: Yes		
Data Transfor	m Z	eta Ali	t Hyp	Trials	Seed	PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected) N	A C	> T	NA	NA	1.63%	74.1	>74.1	NA	1.35

Dunnett Multip	ole C	omparison Test							
Control	VS	C-%	Test Stat	Critical	MSD	DF	P-Value	P-Type	Decision(α:5%)
Brine Control		2	0.7918	2.407	0.065	8	0.5490	CDF	Non-Significant Effect
		4	1.703	2.407	0.065	8	0.1812	CDF	Non-Significant Effect
		9	0.4079	2.407	0.065	8	0.7186	CDF	Non-Significant Effect
		18	1.501	2.407	0.065	8	0.2454	CDF	Non-Significant Effect
		35	1.473	2.407	0.065	8	0.2554	CDF	Non-Significant Effect
		74.1	0.6396	2.407	0.065	8	0.6190	CDF	Non-Significant Effect

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	0.008873828	0.001478971	6	0.8193	0.5644	Non-Significant Effect
Error	0.05054396	0.001805142	28			
Total	0.05941779		34			


Distributional Te	Distributional Tests						
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)		
Variances	Bartlett Equality of Variance	9.764	16.81	0.1349	Equal Variances		
Distribution	Shapiro-Wilk W Normality	0.972	0.9146	0.4998	Normal Distribution		

C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	0.9903	0.985	0.9956	0.9933	0.9854	0.9935	0.001912	0.43%	0.0%
2		5	0.9851	0.9737	0.9964	0.9847	0.9762	1	0.004103	0.93%	0.53%
4		5	0.979	0.9692	0.9888	0.976	0.9735	0.9928	0.003522	0.8%	1.14%
9		5	0.9877	0.9787	0.9967	0.9924	0.9767	0.993	0.003241	0.73%	0.27%
18		5	0.9772	0.9498	1	0.9922	0.9474	0.9934	0.009843	2.25%	1.32%
35		5	0.9796	0.9625	0.9966	0.9776	0.96	0.9933	0.00614	1.4%	1.08%
74.1		5	0.9868	0.9815	0.992	0.987	0.9806	0.9926	0.001894	0.43%	0.36%

C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	1.474	1.447	1.5	1.489	1.45	1.49	0.009548	1.45%	0.0%
2		5	1.453	1.399	1.506	1.447	1.416	1.526	0.0193	2.97%	1.44%
4		5	1.428	1.388	1.469	1.415	1.407	1.486	0.01455	2.28%	3.1%
9		5	1.463	1.424	1.502	1.483	1.418	1.487	0.014	2.14%	0.74%
18		5	1.434	1.342	1.525	1.483	1.339	1.49	0.03283	5.12%	2.74%
35		5	1.434	1.372	1.497	1.421	1.369	1.489	0.0225	3.51%	2.69%
74.1		5	1.457	1.433	1.48	1.457	1.431	1.485	0.00847	1.3%	1.17%

Report Date:

15 Nov-19 08:00 (p 2 of 4)

Report Date:
Test Code:

15 Nov-19 08:00 (p 3 of 4) 1910-S148 | 14-0607-3357

							Test	Code:	191	0-S148 1	4-0607-3357
Bivalve Larva	al Survival and I	Developm	ent Test						Nautilus	Environ	mental (CA)
Analysis ID: Analyzed:	00-6811-3566 15 Nov-19 8:0		•	ırvival Rate ırametric-Coı	ntrol vs Trea	tments		IS Version:		.8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C > T	NA	NA		7.03%	74.1	>74.1	NA	1.35
Dunnett Mult	tiple Compariso	n Test								· · · · · · · · · · · · · · · · · · ·	
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Brine Control	2		1.338	2.407	0.204 8	0.3063	CDF	Non-Sign	ificant Effect		
	4		0.9794	2.407	0.204 8	0.4617	CDF	Non-Sign	ificant Effect		
	9		2.027	2.407	0.204 8	0.1045	CDF		ificant Effect		
	18		1.17	2.407	0.204 8	0.3761	CDF	Non-Sign	ificant Effect		
	35		2.347	2.407	0.204 8	0.0565	CDF	Non-Sign	ificant Effect		
	74.1		-0.01636	2.407	0.204 8	0.8615	CDF	Non-Sign	ificant Effect		
ANOVA Table	е										
Source	Sum Squ	ares	Mean Sq	uare	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0.176840	8	0.029473	47	6	1.648	0.1711	Non-Sign	ificant Effect	•	
Error	0.500806	7	0.017885	95	28						
Total	0.677647	5			34						
Distributiona	l Tests										-
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances			Variance	5.442	16.81	0.4885	Equal Var	iances			
Distribution	Shapiro-	Wilk W No	ormality	0.9789	0.9146	0.7238	Normal Distribution				
Survival Rate	Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	0.9915	0.9726	1	1	0.9648	1	0.006828	1.54%	0.0%
2		5	0.9479	0.8778	1	0.9507	0.8662	1	0.02525	5.96%	4.4%
4		5	0.962	0.9009	1	0.9718	0.8803	1	0.022	5.11%	2.98%
9		5	0.9268	0.8629	0.9906	0.9225	0.8592	1	0.02299	5.55%	6.53%
18		5	0.9423	0.8337	1	1	0.8028	1	0.03911	9.28%	4.97%
35		5	0.9099	0.8318	0.9879	0.8873	0.838	1	0.02812	6.91%	8.24%
74.1		5	0.9901	0.9628	1	1	0.9507	1	0.009859	2.23%	0.14%
Angular (Cor	rected) Transfor	med Sum	nmary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	1.491	1.412	1.57	1.529	1.382	1.529	0.02845	4.27%	0.0%
2		5	1.378	1.194	1.562	1.347	1.196	1.529	0.06612	10.73%	7.59%
4		5	1.408	1.247	1.569	1.402	1.217	1.529	0.05809	9.22%	5.56%
		5	1.32	1.16	1.479	1.289	1.186	1.529	0.05738	9.72%	11.5%
9											
9 18		5	1.392	1.15	1.634	1.529	1.111	1.529	0.08713	14.0%	6.64%
				1.15 1.111	1.634 1.474	1.529 1.228	1.111 1.157	1.529 1.529	0.08713 0.0654	14.0% 11.31%	6.64% 13.32%

Analyst: Ju QA: EQ 11/19/19

Report Date: Test Code: 15 Nov-19 08:00 (p 4 of 4) 1910-S148 | 14-0607-3357

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Analysis ID: 00-6811-3566 Endpoint: Survival Rate **CETIS Version:** CETISv1.8.7 Analyzed: 15 Nov-19 8:00 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics -0.10 -0.20

Report Date:

26 Oct-19 16:34 (p 1 of 1)

Test Code: 1910-5148 14-0607-3357/53CEFA0D

19-1164

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

30 Oct-19 **Start Date:** Species: Mytilus galloprovincialis Sample Code: End Date: 01 Nov-19 Protocol: EPA/600/R-95/136 (1995)

Sample Source: Jacobs

0

LC

70

Report Date:

26 Oct-19 16:34 (p 1 of 1)

Test Code: 1910-5148 14-0607-3357/53CEFA0D

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Start Date: 30 Oct-19 Species: Mytilus galloprovincialis Sample Code: 19-1164 End Date: 01 Nov-19 Protocol: EPA/600/R-95/136 (1995) Sample Source: Jacobs Sample Date: 29 Oct-19 Effluent Sample Material: Sample Station: Wyckoff 5P-IIC-% Code Rep Pos Initial Density **Final Density** # Counted # Normal Notes 0 BC 1 38 0 ВС 2 48 0 BC 3 42 0 BC 4 49 148 148 R1 11/1/19 0 ВС 5 59

0	LC	2	39			
0	LC	3	31	150	149	RT
0	LC	4	61		1	
0	LC	5	33			
2		1	46			
2		2	69			
2		3	36	123	123	FT
2		4	63		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1)
2		5	35			
4		1	41			
4		2	51			
4		3	68	126	123	f
4		4	65			
4		5	32			
9		1	66			
9		2	64			
9		3	55	131	130	RT
9		4	43			
9		5	47			
18		1	45			
18		2	40			
18		3	34	154	154	F
18		4	37			
18		5	50			
35		1	60			
35		2	52			
35		3	58	119	116	RT
35		4	53			'
35		5	67			
73.5		1	57			
73/5		2	56			
78.5		3	44	168	165	P-1
3.5		4	62	1,60		
/73.5A		5	54			

ac-80

(Pais ACS 10/27/19

Marine Chronic Bioassay DM-014

Water Quality Measurements

Client	lacobe

Client: Jacobs
ple ID: Wyckoff (SP-II)

Sample ID: Wyckoff (SP~II)
Sample Log No.: 19- IIG4

Test No.: 1910-5148

Test Species: M. galloprovincialis
Start Date/Time: 10/30/2019 | 230

End Date/Time: 11/1/2019 1/30

Concentration (% sample)		Salinity (ppt)		T	emperatu (°C)	re	Diss	olved Ox (mg/L)	ygen Q14		pH (pH units))
	0	24	48	0	24	48	0	24	48	0	24	48
Lab Control	29.7	29.8	29.8	15.8	14.5	14.5	8.4	8.4	9.2	8.01	8.00	7.96
Brine Control	30.6	30.7	30.9	15.6	14-6	14.7	8.6	8.3	9.2	8.17	8.05	8.01
2	30.0	30.2	30.2	15.8	14.5	14.6	8.6	8.3	9.3	8.06	8.03	7.99
4	30.0	30.2	30.2	15.6	14.5	14.8	8.5	8.3	9.2	8.03	8.03	8.02
9	30.1	30.2	30.3	15.5	14.5	14.6	8.6	8.3	9.3	7.98	8.03	8.06
18	30.2	30.3	30-4	15.6	14-6	14,9	8.6	8.2	9.3	7.89	8.04	8.(0
35	30.3	30.5	30.7	15.2	14.5	14.8	8.8	8.3	9.3	7.79	8.04	8.19
74.1	30.6	30.9	30.9	14.6	14.6	14.9	8.8	8.2	9.2	7.68	8.07	8-26

Technician Initials:	WQ Readings: Dilutions made by:	24 RT	48 KL -	Environmental Chamber:	<u> </u>	
Comments:	0 hrs: 24 hrs: 48 hrs:					
QC Check:	En 11/15/19			Final Review	: Acn/20/19	

Marine Chronic Bioassay

Brine Dilution Worksheet

	!	 -4-
\sim	roi	

JACOBS

Analyst: BO

Sample ID:

(5P-11) Wyckoff

Test Date: 10/30/2019

Test No:

1910-5 148

Test Type: Mussel Development

Salinity of Effluent

8.7

Salinity of Brine

91

Date of Brine used: 9/27/2019

Target Salinity

30

Alkalinity of Brine Control:

mg/L as CaCO3

Test Dilution Volume

250

Effluent

Brine Control

Salinity Adjustment Factor:

(TS - SE)/(SB - TS) =

0.35 0.49

TS = target salinity

SE = salinity of effluent

SB = salinity of brine

Concentration %	Effluent Volume (ml)	Salinity Adjustment Factor	Brine Volume (ml)	Dilute to: (ml)
Control	NA	NA	NA	250
2	5.0	0.35	1.7	250
4	10.0	0.35	3.5	250
9	22.5	0.35	7.9	250
18	45.0	0.35	15.7	250
35	87.5	0.35	30.6	250
74.1	185.3	0.35	64.7	250

	DI Volume			
Brine Control	131.6	0.49	64.7	250

Total Brine Volume Required (ml): 188.8

QC Check: Ea 11/15/19

Final Review: A Cli /2019

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Client/Sample:	Jacobs/Wckoff (SP-11)
Test No.:	1910-5148
Test Species:	Mytilus galloprovincialis
Animal Source/Batc	h Tank: Taylor Shellfish 117B
Date Received:	3/14/19
Test Chambers:	30 mL glass shell vials
Sample Volume:	10 mL

Start Date/Time: 10/30/2019 1230
End Date/Time: 11/1/2019 130
Technician Initials: 20

Spawn Information

First Gamete Release Time:

0945

Sex	Number Spawning
Male	4+
Female	4

Gamete Selection

0	arriete Selection		
	Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)
	Male	3,4	good density + motility
	Female 1	4	yellow color, good density, mostly rand
	Female 2	3	pink woor, good density, kicstly, and
	Female 3	_	7

Egg Fertilization Time: 1040

Embryo Stock Selection

	,							
Sto	ock Number	% of embryos at 2-cell division stage						
	Female 1	100						
	Female 2	100						
	Female 3	_						

Stock(s) chosen for testing: ____2

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos

Number Counted:

7	8
5	(0
8	6
7	6
7	8

Mean: 6.8

Mean 6.8 x 50 = 340 embryos/ml

Initial Density: Desired Final Density:

340

_____(dilution factor)

(to inoculate with 0.5 ml)

Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

Time Zero Control Counts

Tille Ze	TO CONTROL COL	AIII S		
TØ Vial No.	No. Dividing	Total	% Dividing	Mean % Dividing
TØ A	141	141	100	
TØ B	194	154	100	
TØC	130	130	100	99.8
TØ D	150	150	100] ,,,,,
TØ E	133	134	99,2	
TØF	142	143	99.3	
<u> </u>	147			

48-h QC: 140/143 = 97.9%

Comments:

QC Check:

Eq 11/15/19

Final Review: AC 11/20/19

CETIS Summary Report

Report Date: Test Code: 12 Nov-19 08:51 (p 1 of 1) 1910-S149 | 08-3055-1545

Inland Silvers	side 96-h Acute Surv	rival Test	Nautilus Environmental (CA)
Batch ID:	04-5621-4720	Test Type: Survival (96h)	Analyst: Artificial seawater
Start Date:	30 Oct-19 14:45	Protocol: EPA/821/R-02-012 (2002)	Diluent: Diluted Natural Seawater
Ending Date:	03 Nov-19 14:10	Species: Menidia beryllina	Brine: Not Applicable Instant Ocean
Duration:	95h	Source: Aquatic Indicators	Age: 12d

Sample ID: 14-1353-6260 Code: 19-1164 Client: Jacobs

Sample Date: 29 Oct-19 09:50 Material: Effluent Sample Project:

Receive Date: 30 Oct-19 10:00 Source: Jacobs

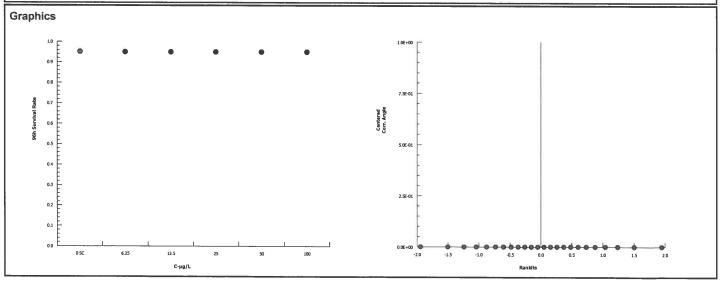
Sample Age: 29h (2 °C) Station: Wyckoff (\$\varphi^{-1}I)

Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Method
02-5978-7537	96h Survival Rate	100	>100	NA	NA	1	Steel Many-One Rank Sum Test

Analysis ID	Endpoint		Attribute	9	Test Stat	TAC L	imits	Overlap	Decision		
02-5978-7537	96h Survival R	ate	Control F	Resp	1	0.9 - NL	_	Yes	Passes A	cceptability	/ Criteria
96h Survival	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	4	1	1	1	1	1	0	0	0.0%	0.0%
0	Salt Control	4	1	1	1	1	1	0	0	0.0%	0.0%
6.25		4	1	1	1	1	1	0	0	0.0%	0.0%
12.5		4	1	1	1	1	1	0	0	0.0%	0.0%
25		4	1	1	1	1	1	0	0	0.0%	0.0%
50		4	1	1	1	1	1	0	0	0.0%	0.0%
100		4	1	1	1	1	1	0	0	0.0%	0.0%

96h Survi	val Rate Detail				
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Lab Control	1	1	1	1
0	Salt Control	1	1	1	1
6.25		1	1	1	1
12.5		1	1	1	1
25		1	1	1	1
50		1	1	1	1
100		1	1	1	1

DEG Q18 11/15/19


Report Date:

07 Nov-19 08:55 (p 1 of 1)

										Test	Code:	19	10-S149 0	8-3055-154 -
Inland Silver	side 9	6-h Acute S	Surviv	al Test								Nautilu	s Environ	mental (CA
Analysis ID: Analyzed:		978-7537 Nov-19 8:54		Endpoint: Analysis:		Survival F arametri		vs T	reatments		S Version		1.8.7	
Data Transfo	rm	·	Zeta	Alt H	ур	Trials	Seed				NOEL	LOEL	TOEL	TU
Angular (Corre	ected)		NA	C > T		NA	NA			"	100	>100	NA	
Steel Many-C	ne Ra	nk Sum Te	st											
Control	vs	C-µg/L		Test S	Stat	Critical	Ties	DF	P-Value	P-Type	Decision	η(α:5%)		
Salt Control		6.25		18		10	1	6	0.8333	Asymp	Non-Sigr	nificant Effect	t	
		12.5		18		10	1	6	0.8333	Asymp	Non-Sigr	nificant Effec	t	
		25		18		10	1	6	0.8333	Asymp	Non-Sigr	nificant Effec	t	
		50		18		10	1	6	0.8333	Asymp	Non-Sigr	nificant Effec	t	
		100		18		10	1	6	0.8333	Asymp	•	nificant Effec		
ANOVA Table	e													
Source		Sum Squa	ares	Mean	Squa	re	DF		F Stat	P-Value	Decision	η(α:5%)		
Between		0		0			5	1	65540	<0.0001	Significa	nt Effect		
Error		0		0			18				-			
Total		0					23							

96h Surviv	al Rate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Salt Control	4	1	1	1	1	1	1	0	0.0%	0.0%
6.25		4	1	1	1	1	1	1	0	0.0%	0.0%
12.5		4	1	1	1	1	1	1	0	0.0%	0.0%
25		4	1	1	1	1	1	1	0	0.0%	0.0%
50		4	1	1	1	1	1	1	0	0.0%	0.0%
100		4	1	1	1	1	1	1	0	0.0%	0.0%

Angular (C	Angular (Corrected) Transformed Summary													
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect			
0	Salt Control	4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%			
6.25		4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%			
12.5		4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%			
25		4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%			
50		4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%			
100		4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%			

Tech Initials Client: Jacobs Test Species: M. beryllina Sample ID: Wyckoff SP-11 Start Date/Time: 10/30/2019 1445 24 48 72 96 Sample Log-in No.: 19- 1194 1164 Counts: DMRTRTRTRO End Date/Time: 11/3/2019 14(0 HHHHKI Test No.: 1910-5 149 RTIPM Readings: Dilutions made by:

Concentration (%)	Rep			ber o ganis	f Live ms				Salinit (ppt)				Ter	nperat (°C)	ture				lved ((mg/L	Oxyge .)	n			pH (unită		
		0	24	48	72	96	0	24	48	7:2	96	0	24	48	38	96		24	49	78	96		24	48	7	98
Lab Control	Α	5	5	5	5	5	2047	09	29.1	30.4	309	241)	J43	14.0	24.3	24.2	0.5	51	7.7	(L.)	2/8	271	77	18.05	7.77	791
	В	5	5	.5	5	5			5315					54.1					16.4					7.78		
	С	5	5	5	5	S																				
	D	5	5	5	5	5																				
Salt Control	Α	5	5	5	5	5	10.F	20 Y	30 B	31,5	315	24.0	245	215	24.6	24.4	0.7	5.0	7.1	5.7	5.5	KJ6	1.99	8-19	7.43	799
	В	5	5	5	5	5			53					240					6.7					7.95		
	С	5	5	5	5	9																				
	D	5	5	5	5	5																				
6.25	Α	5	5	5	5	5	1050	المحرب	28.7	31.3	31,3	24.1	N.	24.6	24,8	24.6	6.8	5.0	7.2	5.5	5.3	8.10	P99	8.15	797	809
	В	5	5	5	5	5			8.2					54.1					6.0					8.01		
	С	5	5	5	5	5																				
	D	5	5	5	5	S																				
12.5	Α	5	5	5	5	5	30.4	no4	30.6	31.4	31.6	W.C	24,14	245	248	24.7	69	5.7	7.2	5.4	5.4	80	8 3	8-11	8.01	8,15
	В	5	5	5	5	5			51.12					24.2					f. \					8.07		
	С	5	5	5	5	5							1													
	D	5	5	5	5	S																				
25	Α	5	5	5	5	5	:p3	4p3	305	31-D	31,1	N.D	24.6	243	218	24.7	7.1	51	7.3	5.5	5,4	794	Z.01	8.06	8.07	8.18
	В	5	~	5	5	S			30.8					24.3					6.0					8.14		
	С	5	5	5	5	5					1/8															
<u> </u>	D	5	5	5	5	S																				
50	Α	5	5	5	5	5	30.C	30,	50.7	30.9	31.1	yı.I	کا۔پی	24.0	248	24.5	1.5	4.9	7.6	53	5.4	184	E OL	7.97	312	8,28
	В	5	5	5	5	-			29.7					24.4					59					8:17		
	С	5	.5	\$	5	S																				
	D	S	5	5	5	S																				
100	Α	5	5	5	5	5	195	29.	25	30,9	31,6	247	w?	242	24,5	24,3	8.5	53	8.3	55	5.5	1.17	813	7.15	8.21	8.40
	В	5	5	5	.5	5			3.E					24.3					5.9					3.32		
	С	5	5	5	5	5																				
	P	ک.	5	5	3	5									XL1() 132											

Initial Counts QC'd by:

Environmental Chambe

Animal Source/Date R	Received: Ayua Kc Indiato: /(0/2/19 Age at Initiatio		Fee	ding T	imes	
Animal Acclimation Q	tualifiers (circle all that apply):	0	24	48	72	96
			6900	0930	1000	284
Comments:	i = initial reading in fresh test solution, f = final reading in test chamb	715	5			
	Organisms fed prior to initiation, circle one (y v n) (F) E4 018 / 5/19					

QC Check:

BO 11/11/19

Appendix B
Sample Check-In Information

Enthalpy Analytical 4340 Vandever Avenue San Diego, CA 92120

> Sample (A, B, C): Log-in No. (19-xxxx):

Client:	Jacobs
Sample ID:	Wyckoff (SP-11)
Test ID No(s).:	1910 - 5148 and 5149

S	ample Collection Date & Time:	10/29/19 09:50)		
	Sample Receipt Date & Time:	10/30/19 10:0	0		
Number of	Containers & Container Type:	14L aubi			
Appr	ox. Total Volume Received (L):				
	Check-in Temperature (°C)	2.0			
	Temperature OK? 1	(Y) N	YN	Y N	Y N
	DO (mg/L)	8.5	,		
	pH (units)	751			
	Conductivity (µS/cm)	-			
	Salinity (ppt)	8.7	-		
	Alkalinity (mg/L) 2	387			
	Hardness (mg/L) ^{2, 3}				
	Total Chlorine (mg/L)	0.07			
	Technician Initials	AC/FR			
Test Performed:	Additional Control? N Acute Menidia Additional Control? N	= Brine Courte Control/Dilution W Alkalinity: 14	Alkalinity: 93 /ater: 8:2 / Lab Hardness or	Salinity:	Other:
Test Performed:	Additional Control? Y N	Alkalinity:	Hardness or	SW / Lab ART (Salinity: Hardness or Sa	_
	¹ Temperature of sample should ² mg/L as CaCO3, ³ Measured	be 0-6°C, if receive	d more than 24 hou	rs past collection time	
Additional Comments:					

Sample Check-In Information DC-005

Colorless, cu	ear, no	odar, n	o debi
COC Complete (VIN)			
A B C	•		
Filtration? Y N)		
Initials: A) B)	C))	
Pore Size:		_	_
Organisms	or	Debris	
Salinity Adjustment?	Ŷ)N		
Test: Mussel	Source: 8	Targ	et ppt: 36
Test: Memidia	Source: Inc	taut Targ	et ppt:30
Test:	Source:	Targ	et ppt:
pH Adjustment? Y/	Ñ)		
	A	В	С
Initial pH:			
Amount of HCI added:			
Final pH:			
	N		•
	A	В	С
Initial Free Cl ₂ :			
STS added:			
Final Free Cl ₂ :			
Sample Aeration? Y	(N)		
	A	В	С
Initial D.O.			
Duration & Rate Final D.O.			
Final D.O.		I	
Subsamples for Addi	tional Chem	istry Requir	ed? (Ŷ) N
NH3 Other			•
Tech Initials A	7/C B	_C	
		, b	صالیات
		eck: <u>BO</u>	
	Final Revi	ew: <u>E</u> 9 1	1117117

Client: JACOBS
Project: Wyckoff
Test Type: Mussel Development

DI Blank: O · C
Test Start Date: 10/30/2019

Analyst: 44
Analysis Date: 11/14/19

N x 1.22

7.4					N x 1.22
Sample ID	Nautilus ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)
Blank Spike (10 mg/L NH ₃)		NA	NA	8.0	9.8
Wyckoff	19-1164	10/30/2019	Check in	2.1	2.6
Spike Check (10 mg/L NH ₃)		NA NA	NA		
Sample Duplicate ^a	19-1164	NA	NA	2.0	2.4
Sample Duplicate + Spike ^a		NA	NA	9.8	12.0
Spike Check (10 mg/L NH ₃)		NA	NA	8.0	9.8

Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L) x 100 [average ammonia] (mg/L)

Acceptable Range: 0-20%

 $\frac{\text{Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L)}}{\text{nominal [spike] (mg/L)}} \times 100$

Acceptable Range: 80-120%b

QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	0.0	NA	9.8	10	NA	98
Wycko@	2.6	2.4	12.0	10	8.0	94

Comments:		
Notes: ^a Unless otherwise noted, the last sample listed on the datasheet is used for dupl	icate and duplicate +	spike QC check.
^b Acceptable range for % recovery applies only to the blank spike. Spike reco	overies in samples ma	ay vary based on sample matrix
^c Calculation not performed due to one or both values below the method dete	ction limit.	
Method Detection Limit = 0.5 mg/L		1
QC Check: EG 11/15/19	Final Review:	AC11/20/19

Nautilus Environmental. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix C Chain-of-Custody Form

Enthalpy Analytical (REGION COPY)

DateShipped: 10/29/2019 CarrierName: FedEx AirbillNo: 7768 4265 7340

CHAIN OF CUSTODY RECORD

Wyckoff Eagle Harbor GWTP 2019/WA Project Code: WEH-029G Cooler #: 1 of 1 No: 10-102919-101727-0409

2020T10P000DD210W2LA00 Contact Name: Keith Allers Contact Phone: 206-780-1711

Sample Identifier	CLP Sample No.	Matrix/Sampler	Coll. Method	Analysis/Turnaround (Days)	Tag/Preservative/Bottles	Location	Collection Date/Time	Sample Type
102919		Ground Water/ K.Allers	Composite	ACTOX-CHRTOX(8 Weeks)	A (< 6 C) (1)	SP-11	10/29/2019 09:50	Field Sample
						-		
								L
	,							

Shipment for Case Complete? N
Samples Transferred From Chain of Custody #

Items/Reason	Relinquished by (Signatu		Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	Vul May	JACOBS	10-29-2019	adriana a Cibra	10/30/19	Temp oc
	I vous year		1030	GETTE WILL COOK	10:00	900a x-0
					1	
	1				1	

20g-in # 19-1164

Appendix D
Reference Toxicant Test Results

CETIS Summary Report

Report Date:

08 Nov-19 11:48 (p 1 of 3)

Test Code:

191030msdv | 07-8198-2858

Bivalve Larval	Survival and Developm	nent Test						Nautilus Environmental (CA)
Batch ID: Start Date: Ending Date: Duration:	30 Oct-19 12:30 F 01 Nov-19 11:30 S	Test Type: Protocol: Species: Source:	Development-S EPA/600/R-95/ Mytilus gallopro Taylor Shellfish	136 (1995) ovincialis				uted Natural Seawater t Applicable
Sample ID: Sample Date: Receive Date: Sample Age:	30 Oct-19 8	Code: Material: Source: Station:	191030msdv Copper chloride Reference Tox Copper Chlorid	icant			Client: Int Project:	ernal
Comparison S	ummary							
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Method	
11-3686-0042	Combined Developmen	t Ra 5	10	7.071	6.68%		Dunnett	Multiple Comparison Test
18-3591-5974	Development Rate	2.5	5	3.536	1.11%		Dunnett	Multiple Comparison Test
10-2770-1957	Survival Rate	20	40	28.28	8.59%		Dunnett	Multiple Comparison Test
Point Estimate	e Summary							
Analysis ID	Endpoint	Level	μg/L	95% LCL	95% UCL	TU	Method	
11-8079-0492	Combined Developmen	t Ra EC25	6.259	6.084	6.273		Linear In	terpolation (ICPIN)
11-00/3-0432	Combined Developmen	EC50		7.405	7.545			torpolation (for ht)
15-7183-3565	Development Rate			7.405 6.15		<u> </u>		terpolation (ICPIN)
	•	EC50	7.518 6.204		7.545			
	Development Rate	EC50 EC25	7.518 6.204 7.481 23.94	6.15	7.545 6.254		Linear In	
15-7183-3565	Development Rate Survival Rate	EC50 EC25 EC50 EC25	7.518 6.204 7.481 23.94	6.15 7.439 22.13	7.545 6.254 7.522 25.33		Linear In	terpolation (ICPIN)
15-7183-3565 20-5233-5110	Development Rate Survival Rate	EC50 EC25 EC50 EC25	7.518 6.204 7.481 23.94 29.32	6.15 7.439 22.13	7.545 6.254 7.522 25.33	ts	Linear In	terpolation (ICPIN)
15-7183-3565 20-5233-5110 Test Acceptab	Development Rate Survival Rate iility Endpoint	EC50 EC25 EC50 EC25 EC50	7.518 6.204 7.481 23.94 29.32	6.15 7.439 22.13 28.14	7.545 6.254 7.522 25.33 30.24	ts	Linear In	terpolation (ICPIN)
15-7183-3565 20-5233-5110 Test Acceptab Analysis ID	Development Rate Survival Rate	EC50 EC25 EC50 EC25 EC50 Attrib	7.518 6.204 7.481 23.94 29.32	6.15 7.439 22.13 28.14	7.545 6.254 7.522 25.33 30.24	ts	Linear In Linear In Overlap	terpolation (ICPIN) terpolation (ICPIN) Decision
15-7183-3565 20-5233-5110 Test Acceptab Analysis ID 15-7183-3565	Development Rate Survival Rate sility Endpoint Development Rate	EC50 EC25 EC50 EC50 Attrib	7.518 6.204 7.481 23.94 29.32 ute	6.15 7.439 22.13 28.14 Test Stat 0.9844	7.545 6.254 7.522 25.33 30.24 TAC Limi 0.9 - NL	ts	Linear In Linear In Overlap Yes	terpolation (ICPIN) terpolation (ICPIN) Decision Passes Acceptability Criteria
15-7183-3565 20-5233-5110 Test Acceptab Analysis ID 15-7183-3565 18-3591-5974	Development Rate Survival Rate sility Endpoint Development Rate Development Rate	EC50 EC25 EC50 EC50 Attrib	7.518 6.204 7.481 23.94 29.32 ute ol Resp	6.15 7.439 22.13 28.14 Test Stat 0.9844 0.9844	7.545 6.254 7.522 25.33 30.24 TAC Limi 0.9 - NL 0.9 - NL	ts	Linear In Linear In Overlap Yes Yes	terpolation (ICPIN) terpolation (ICPIN) Decision Passes Acceptability Criteria Passes Acceptability Criteria

Report Date: Test Code: 08 Nov-19 11:48 (p 2 of 3) 191030msdv | 07-8198-2858

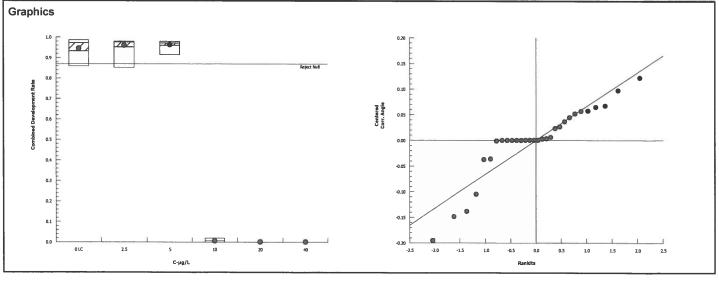
							lest	Code:	19103	sumsav u7	-8198-2858
Bivalve Lar	val Survival and [Developmen	t Test						Nautilus	Environm	ental (CA)
Combined	Development Rate	Summary									
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.933	0.8529	1	0.8592	0.9871	0.02885	0.06451	6.91%	0.0%
2.5		5	0.9523	0.8827	1	0.8521	0.98	0.02509	0.05609	5.89%	-2.07%
5		5	0.9616	0.9289	0.9943	0.9155	0.981	0.01178	0.02635	2.74%	-3.06%
10		5	0.006761	0	0.01704	0	0.02027	0.003702	0.008278	122.4%	99.28%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
Developme	nt Rate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9844	0.9769	0.9918	0.9762	0.9919	0.002688	0.00601	0.61%	0.0%
2.5		5	0.9787	0.9739	0.9835	0.9737	0.9837	0.001726	0.00386	0.39%	0.58%
5		5	0.9697	0.9579	0.9814	0.9559	0.981	0.004232	0.009464	0.98%	1.49%
10		5	0.006891	0	0.01718	0	0.02027	0.003707	0.008288	120.3%	99.3%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
	ite Summary	_									
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9479	0.8664	1	0.8662	1	0.02934	0.06561	6.92%	0.0%
2.5		5	0.9732	0.8989	1	0.8662	1	0.02676	0.05984	6.15%	-2.68%
5		5	0.9915	0.9681	1	0.9577	1	0.008451	0.0189	1.91%	-4.61%
10		5	0.9676	0.9124	1	0.9155	1	0.01987	0.04443	4.59%	-2.08%
20		5	0.9056	0.8168	0.9945	0.8169	1	0.03201	0.07158	7.9%	4.46%
40		5	0.004225	0.0100	0.009015	0.0103	0.007042	0.001725	0.003857	91.29%	99.55%
	Development Rate										
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.8662	0.8592	0.9871	0.9718	0.9809					
2.5	Lab Control	0.98	0.9797	0.9762							
					0.9737	0.8521					
5		0.981	0.9735	0.9724	0.9655	0.9155					
10		0	0.006494	0	0.02027	0.007042					
20		0	0	0	0	0					
40		0	0	0	0	0					
Developme	nt Rate Detail										
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.9762	0.9919	0.9871	0.9857	0.9809					
2.5		0.98	0.9797	0.9762	0.9737	0.9837					
5		0.981	0.9735	0.9724	0.9655	0.9559					
10		0	0.006494	0	0.02027	0.007692					
20		0	0	0	0	0					
40		0	0	0	0	0					
Survival Ra	ate Detail										
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.8873	0.8662	1	0.9859	1					
2.5		1	1	1	1	0.8662					
5		1	1	1	1	0.9577					
10											
		1	1	0.9225	1	0.9155					
20		0.8944	0.9507	1	0.8662	0.8169					
40		0.007042	0.007042	0.007042	U	0					

Report Date: Test Code: 08 Nov-19 11:48 (p 3 of 3) 191030msdv | 07-8198-2858

							 101000111001 01 0100 2000
Bivalve La	rval Survival and [Developmer	nt Test				Nautilus Environmental (CA)
Combined	Development Rate	Binomials	3				
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Control	123/142	122/142	153/155	138/142	154/157	
2.5		147/150	145/148	164/168	148/152	121/142	
5		155/158	147/151	141/145	140/145	130/142	
10		0/151	1/154	0/142	3/148	1/142	
20		0/142	0/142	0/152	0/142	0/142	
40		0/142	0/142	0/142	0/142	0/142	
Developme	ent Rate Binomials	5					
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Control	123/126	122/123	153/155	138/140	154/157	
2.5		147/150	145/148	164/168	148/152	121/123	
5		155/158	147/151	141/145	140/145	130/136	
10		0/151	1/154	0/131	3/148	1/130	
20		0/127	0/135	0/152	0/123	0/116	
40		0/1	0/1	0/1	0/1	0/1	
Survival R	ate Binomials						
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Lab Control	126/142	123/142	142/142	140/142	142/142	
2.5		142/142	142/142	142/142	142/142	123/142	
5		142/142	142/142	142/142	142/142	136/142	
10		142/142	142/142	131/142	142/142	130/142	
20		127/142	135/142	142/142	123/142	116/142	
40		1/142	1/142	1/142	0/142	0/142	

Report Date:

08 Nov-19 11:48 (p 1 of 4)


										Test	Code:	1910	30msdv 0	7-8198-2858
Bivalve Larva	l Surv	ival and D	evelo	pment Test							<u></u>	Nautilu	ıs Environr	nental (CA)
Analysis ID: Analyzed:		686-0042 lov-19 11:4	7	Endpoint: Analysis:		nbined Dev ametric-Co	•				S Version: ial Results		1.8.7	
Data Transfor	m		Zeta	Alt H	lyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)		NA	C > T		NA	NA			6.68%	5	10	7.071	
Dunnett Multi	ple C	omparison	Test											
Control	vs	C-µg/L		Test	Stat	Critical	MSD	DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control		2.5		-0.61	35	2.227	0.132	8	0.9138	CDF	Non-Sign	ificant Effec	t	
		5		-0.77	74	2.227	0.132	8	0.9379	CDF	Non-Sign	ificant Effec	t	
		10*		21.24		2.227	0.132	8	<0.0001	CDF	Significar	t Effect		
ANOVA Table									····					
Source		Sum Squa	res	Mean	Squ	are	DF		F Stat	P-Value	Decision	(α:5%)		_

Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
6.190468	2.063489	3	235.7	<0.0001	Significant Effect
0.1400762	0.008754763	16			
6.330544		19			
	6.190468 0.1400762	6.190468 2.063489 0.1400762 0.008754763	6.190468 2.063489 3 0.1400762 0.008754763 16	6.190468 2.063489 3 235.7 0.1400762 0.008754763 16	6.190468 2.063489 3 235.7 <0.0001 0.1400762 0.008754763 16

Distributional Tests					
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	5.288	11.34	0.1519	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9002	0.866	0.0415	Normal Distribution

Combined	Development Rate	Summary	,								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.933	0.8529	1	0.9718	0.8592	0.9871	0.02885	6.91%	0.0%
2.5		5	0.9523	0.8827	1	0.9762	0.8521	0.98	0.02509	5.89%	-2.07%
5		5	0.9616	0.9289	0.9943	0.9724	0.9155	0.981	0.01178	2.74%	-3.06%
10		5	0.006761	0	0.01704	0.006494	0	0.02027	0.003702	122.4%	99.28%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%

Angular (C	orrected) Transfor	med Sumr	nary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.335	1.17	1.499	1.402	1.186	1.457	0.05926	9.93%	0.0%
2.5		5	1.371	1.235	1.507	1.416	1.176	1.429	0.04897	7.99%	-2.74%
5		5	1.381	1.305	1.457	1.404	1.276	1.433	0.02734	4.43%	-3.45%
10		5	0.07804	0.02633	0.1298	0.08067	0.0407	0.1429	0.01863	53.37%	94.15%
20		5	0.04169	0.04091	0.04247	0.04197	0.04057	0.04197	0.000281	1.51%	96.88%
40		5	0.04197	0.04196	0.04198	0.04197	0.04197	0.04197	0	0.0%	96.86%

Report Date:

08 Nov-19 11:48 (p 2 of 4)

Test Code: 191030msdv | 07-8198-2858

							Test	Code:	19103	0msdv 07	'-8198-28
Bivalve Larva	al Survival and [Developm	ent Test						Nautilus	Environn	nental (CA
Analysis ID: Analyzed:	18-3591-5974 08 Nov-19 11:		•	evelopment R arametric-Cor		tments		IS Version: cial Results:	CETISv1. Yes	8.7	
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)	NA	C > T	NA	NA		1.11%	2.5	5	3.536	·
Dunnett Mult	iple Compariso	n Test		:							
Control	vs C-μg/L		Test Stat	t Critical	MSD DF	P-Value	P-Type	Decision(x:5%)		
Lab Control	2.5		1.251	2.227	0.040 8	0.2419	CDF		icant Effect		
	5*		2.763	2.227	0.040 8	0.0179	CDF	Significant	Effect		
	10*		75.78	2.227	0.040 8	<0.0001	CDF	Significant	Effect		
ANOVA Table	9										
Source	Sum Squ	iares	Mean Sq	luare	DF	F Stat	P-Value	Decision(a:5%)		
Between	6.779801		2.259934	}	3	2773	<0.0001	Significant	Effect		
Error	0.013038	5	0.000814	9062	16						
Total	6.79284				19						
Distributiona	I Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances			Variance	4.105	11.34	0.2503	Equal Va				
Distribution	Shapiro-	Wilk W N	ormality	0.9475	0.866	0.3310	Normal D	istribution			
Development	t Rate Summary	,									
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
0	Lab Control	5	0.9844	0.9769	0.9918	0.9857	0.9762	0.9919	0.002688	0.61%	0.0%
2.5		5	0.9787	0.9739	0.9835	0.9797	0.9737	0.9837	0.001727	0.39%	0.58%
5		5	0.9697	0.9579	0.9814	0.9724	0.9559	0.981	0.004233	0.98%	1.49%
10		5	0.006891	1 0	0.01718	0.006494	0	0.02027	0.003707	120.3%	99.3%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
Angular (Cor	rected) Transfo	rmed Sun	nmary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
0	Lab Control	5	1.447	1.417	1.478	1.451	1.416	1.481	0.01102	1.7%	0.0%
2.5		5	1.425	1.408	1.441	1.428	1.408	1.443	0.006009	0.94%	1.56%
5		5	1.397	1.363	1.432	1.404	1.359	1.433	0.01228	1.97%	3.45%
10 20		5 5	0.07915 0.04391	0.02769 0.04113	0.1306 0.04668	0.08067	0.0407	0.1429 0.04644	0.01854 0.000999	52.37% 5.00%	94.53% 96.97%
40		5 5	0.5236	0.04113	0.04666	0.04438 0.5236	0.04057 0.5236	0.5236	0.000999	5.09% 0.0%	63.82%
	· · · · · · · · · · · · · · · · · · ·		0.0200	0.0207	0.0200	5.0200	0.0200			5.570	00.02.70
Graphics											
1.0 € ■				Reject Null	_	°.07 F		1		249	
0.9		and the second		nejoci 1608		0.06					
0.8						0.05					
8						0.04					
10.7 L					F					• •	
0.6					Cente	£ .					
0.5						0.02			(
0.4						0.01		1.	••••		
E						0.00		-	-		
0.3						-0.01		•/			
0.2				•		-0.02	•	•			
0.1						E					
E	210 0				c	-0.03	. /•••.	, [

-0.5 0.0

C-µg/L

Report Date:

08 Nov-19 11:48 (p 3 of 4)

Test Code:

191030msdv | 07-8198-2858

							rest	Code:	13103	0msdv 07	0100 2000
Bivalve Larva	al Survival and I	Developme	nt Test						Nautilus	Environm	nental (CA)
Analysis ID:	10-2770-1957	End	dpoint: Sur	vival Rate			CET	S Version:	CETISv1.	8.7	
Analyzed:	08 Nov-19 11:	47 An a	alysis: Par	ametric-Cor	trol vs Trea	tments	Offic	ial Results:	Yes		
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)	NA	C > T	NA	NA		8.59%	20	40	28.28	
Dunnett Mult	iple Compariso	n Test									
Control	vs C-μg/L		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	2.5		-0.9374	2.362	0.190 8	0.9802	CDF	Non-Signif	icant Effect		
	5		-1.353	2.362	0.190 8	0.9941	CDF	Non-Signif	icant Effect		
	10		-0.5385	2.362	0.190 8	0.9452	CDF	Non-Signif	icant Effect		
	20		1.227	2.362	0.190 8	0.3235	CDF	Non-Signif	icant Effect		
	40*		16.39	2.362	0.190 8	<0.0001	CDF	Significant	Effect		
ANOVA Table	9										
Source	Sum Squ	ıares	Mean Squ	are	DF	F Stat	P-Value	Decision(α:5%)		
Between	7.67212		1.534424		5	94.69	<0.0001	Significant	Effect		
Error	0.388907	1	0.0162044	6	24						
Total	8.061027				29	_					
Distributiona	l Toete										
D.01.10410114	11 16313										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
	Test	Equality of V	/ariance	Test Stat	Critical	P-Value 0.0409	Decision Equal Var				
Attribute	Test Bartlett I	Equality of V						iances			
Attribute Variances	Test Bartlett I Shapiro-			11.59	15.09	0.0409	Equal Var	iances			
Attribute Variances Distribution	Test Bartlett I Shapiro-			11.59	15.09	0.0409	Equal Var	iances	Std Err	CV%	%Effect
Attribute Variances Distribution Survival Rate C-µg/L 0	Test Bartlett I Shapiro-	Wilk W Nor	mality	11.59 0.9467	15.09 0.9031	0.0409 0.1374	Equal Var Normal D	iances stribution	Std Err 0.02934	CV% 6.92%	%Effect
Attribute Variances Distribution Survival Rate C-µg/L	Test Bartlett I Shapiro- Summary Control Type	Wilk W Nor	mality Mean	11.59 0.9467 95% LCL	15.09 0.9031 95% UCL	0.0409 0.1374 Median	Equal Var Normal Di	iances stribution Max			
Attribute Variances Distribution Survival Rate C-µg/L 0	Test Bartlett I Shapiro- Summary Control Type	Wilk W Nor Count 5	Mean 0.9479	11.59 0.9467 95% LCL 0.8664	15.09 0.9031 95% UCL	0.0409 0.1374 Median 0.9859	Equal Var Normal Di Min 0.8662	iances stribution Max	0.02934	6.92%	0.0%
Attribute Variances Distribution Survival Rate C-µg/L 0 2.5	Test Bartlett I Shapiro- Summary Control Type	Count 5 5	Mean 0.9479 0.9732	11.59 0.9467 95% LCL 0.8664 0.8989	15.09 0.9031 95% UCL 1	0.0409 0.1374 Median 0.9859	Min 0.8662 0.8662	iances stribution Max 1	0.02934 0.02676	6.92% 6.15%	0.0% -2.68%
Attribute Variances Distribution Survival Rate C-µg/L 0 2.5 5	Test Bartlett I Shapiro- Summary Control Type	Count 5 5 5	Mean 0.9479 0.9732 0.9915	11.59 0.9467 95% LCL 0.8664 0.8989 0.9681	15.09 0.9031 95% UCL 1 1	0.0409 0.1374 Median 0.9859 1	Min 0.8662 0.8662 0.9577	Max 1 1 1	0.02934 0.02676 0.008451	6.92% 6.15% 1.91%	0.0% -2.68% -4.61%
Attribute Variances Distribution Survival Rate C-µg/L 0 2.5 5 10	Test Bartlett I Shapiro- Summary Control Type	Count 5 5 5 5	Mean 0.9479 0.9732 0.9915 0.9676	95% LCL 0.8664 0.9899 0.9681 0.9124	15.09 0.9031 95% UCL 1 1 1	0.0409 0.1374 Median 0.9859 1 1	Min 0.8662 0.9577 0.9155	Max 1 1 1 1	0.02934 0.02676 0.008451 0.01987	6.92% 6.15% 1.91% 4.59%	0.0% -2.68% -4.61% -2.08%
Attribute Variances Distribution Survival Rate C-µg/L 0 2.5 5 10 20 40	Test Bartlett I Shapiro- Summary Control Type	Count 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9479 0.9732 0.9915 0.9676 0.9056 0.004225	95% LCL 0.8664 0.8989 0.9681 0.9124 0.8168	15.09 0.9031 95% UCL 1 1 1 0.9945	0.0409 0.1374 Median 0.9859 1 1 1 0.8944	Min 0.8662 0.9577 0.9155 0.8169	Max 1 1 1 1 1	0.02934 0.02676 0.008451 0.01987 0.03201	6.92% 6.15% 1.91% 4.59% 7.9%	0.0% -2.68% -4.61% -2.08% 4.46%
Attribute Variances Distribution Survival Rate C-µg/L 0 2.5 5 10 20 40	Test Bartlett I Shapiro- Summary Control Type Lab Control	Count 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.9479 0.9732 0.9915 0.9676 0.9056 0.004225	95% LCL 0.8664 0.8989 0.9681 0.9124 0.8168	15.09 0.9031 95% UCL 1 1 1 0.9945	0.0409 0.1374 Median 0.9859 1 1 1 0.8944	Min 0.8662 0.9577 0.9155 0.8169	Max 1 1 1 1 1	0.02934 0.02676 0.008451 0.01987 0.03201	6.92% 6.15% 1.91% 4.59% 7.9%	0.0% -2.68% -4.61% -2.08% 4.46%
Attribute Variances Distribution Survival Rate C-µg/L 0 2.5 5 10 20 40 Angular (Cor	Test Bartlett I Shapiro- Summary Control Type Lab Control	Count 5 5 5 5 5 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8	Mean 0.9479 0.9732 0.9915 0.9676 0.9056 0.004225	95% LCL 0.8664 0.8989 0.9681 0.9124 0.8168 0	15.09 0.9031 95% UCL 1 1 1 0.9945 0.009015	0.0409 0.1374 Median 0.9859 1 1 0.8944 0.007042	Min 0.8662 0.8662 0.9577 0.9155 0.8169 0	Max 1 1 1 1 0.007042	0.02934 0.02676 0.008451 0.01987 0.03201 0.001725	6.92% 6.15% 1.91% 4.59% 7.9% 91.29%	0.0% -2.68% -4.61% -2.08% 4.46% 99.55%
Attribute Variances Distribution Survival Rate C-µg/L 0 2.5 5 10 20 40 Angular (Cor	Test Bartlett E Shapiro- Summary Control Type Lab Control Trected) Transfo Control Type	Count 5 5 5 5 5 7 Trmed Sumr	Mean 0.9479 0.9732 0.9915 0.9676 0.9056 0.004225 mary Mean	95% LCL 0.8664 0.8989 0.9681 0.9124 0.8168 0	15.09 0.9031 95% UCL 1 1 1 0.9945 0.009015 95% UCL	0.0409 0.1374 Median 0.9859 1 1 0.8944 0.007042	Min 0.8662 0.8662 0.9577 0.9155 0.8169 0	Max 1 1 1 1 0.007042	0.02934 0.02676 0.008451 0.01987 0.03201 0.001725	6.92% 6.15% 1.91% 4.59% 7.9% 91.29%	0.0% -2.68% -4.61% -2.08% 4.46% 99.55%
Attribute Variances Distribution Survival Rate C-µg/L 0 2.5 5 10 20 40 Angular (Cor C-µg/L 0	Test Bartlett E Shapiro- Summary Control Type Lab Control Trected) Transfo Control Type	Count 5 5 5 5 7 rmed Sumr Count 5	Mean 0.9479 0.9732 0.9915 0.9676 0.9056 0.004225 mary Mean 1.387	95% LCL 0.8664 0.8989 0.9681 0.9124 0.8168 0	15.09 0.9031 95% UCL 1 1 1 1 0.9945 0.009015 95% UCL 1.589	0.0409 0.1374 Median 0.9859 1 1 0.8944 0.007042 Median 1.452	Min 0.8662 0.8662 0.9577 0.9155 0.8169 0 Min 1.196	Max 1 1 1 1 0.007042 Max 1.529	0.02934 0.02676 0.008451 0.01987 0.03201 0.001725 Std Err 0.07277	6.92% 6.15% 1.91% 4.59% 7.9% 91.29% CV% 11.73%	0.0% -2.68% -4.61% -2.08% 4.46% 99.55% %Effect 0.0%
Attribute Variances Distribution Survival Rate C-µg/L 0 2.5 5 10 20 40 Angular (Cor C-µg/L 0 2.5	Test Bartlett E Shapiro- Summary Control Type Lab Control Trected) Transfo Control Type	Count 5 5 5 5 7 rmed Sumr Count 5 5 5	Mean 0.9479 0.9732 0.9915 0.9676 0.9056 0.004225 mary Mean 1.387 1.462	95% LCL 0.8664 0.8989 0.9681 0.9124 0.8168 0 95% LCL 1.185 1.278	15.09 0.9031 95% UCL 1 1 1 1 0.9945 0.009015 95% UCL 1.589 1.647	0.0409 0.1374 Median 0.9859 1 1 0.8944 0.007042 Median 1.452 1.529	Min 0.8662 0.8662 0.9577 0.9155 0.8169 0 Min 1.196 1.196	Max 1 1 1 1 0.007042 Max 1.529 1.529	0.02934 0.02676 0.008451 0.01987 0.03201 0.001725 Std Err 0.07277 0.0665	6.92% 6.15% 1.91% 4.59% 7.9% 91.29% CV% 11.73% 10.17%	0.0% -2.68% -4.61% -2.08% 4.46% 99.55% %Effect 0.0% -5.44%
Attribute Variances Distribution Survival Rate C-µg/L 0 2.5 5 10 20 40 Angular (Cor C-µg/L 0 2.5 5	Test Bartlett E Shapiro- Summary Control Type Lab Control Trected) Transfo Control Type	Count 5 5 5 5 7 rmed Sumr Count 5 5 5 5	Mean 0.9479 0.9732 0.9915 0.9676 0.9056 0.004225 mary Mean 1.387 1.462 1.496	95% LCL 0.8664 0.8989 0.9681 0.9124 0.8168 0 95% LCL 1.185 1.278 1.404	95% UCL 1 1 1 0.9945 0.009015 95% UCL 1.589 1.647 1.587	0.0409 0.1374 Median 0.9859 1 1 1 0.8944 0.007042 Median 1.452 1.529 1.529	Min 0.8662 0.8662 0.9577 0.9155 0.8169 0 Min 1.196 1.196 1.364	Max 1 1 1 1 0.007042 Max 1.529 1.529 1.529	0.02934 0.02676 0.008451 0.01987 0.03201 0.001725 Std Err 0.07277 0.0665 0.03301	6.92% 6.15% 1.91% 4.59% 7.9% 91.29% CV% 11.73% 10.17% 4.94%	0.0% -2.68% -4.61% -2.08% 4.46% 99.55% **Effect 0.0% -5.44% -7.86%

Report Date: Test Code:

08 Nov-19 11:48 (p 4 of 4) 191030msdv | 07-8198-2858

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) 10-2770-1957 Analysis ID: Endpoint: Survival Rate **CETIS Version:** CETISv1.8.7 Analyzed: 08 Nov-19 11:47 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0.25 1 0.20 0.05 -0.10 -0.15 -0.25 -2.5 0.0 C-µg/L

Report Date:

08 Nov-19 11:48 (p 1 of 3)

Test Code:

191030msdv | 07-8198-2858

Bivalve Larva	l Survival and Devel	opment Test			Nautilus Environmental (CA)
Analysis ID:	11-8079-0492	Endpoint:	Combined Development Rate	CETIS Version:	CETISv1.8.7
Analyzed:	08 Nov-19 11:47	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Linear Interpolation Options							
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method		
Linear	Linear	450191	1000	Yes	Two-Point Interpolation		

Point Estimates

Graphics

Level	μg/L	95% LCL	95% UCL
EC25	6.259	6.084	6.273
EC50	7.518	7.405	7.545

Combined	d Development Rat	e Summary			Calcu	ılated Variat	e(A/B)				
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.933	0.8592	0.9871	0.02885	0.06451	6.91%	0.0%	690	738
2.5		5	0.9523	0.8521	0.98	0.02509	0.05609	5.89%	-2.07%	725	760
5		5	0.9616	0.9155	0.981	0.01178	0.02635	2.74%	-3.06%	713	741
10		5	0.006761	0	0.02027	0.003702	0.008278	122.4%	99.28%	4	737
20		5	0	0	0	0	0		100.0%	0	720
40		5	0 .	0	0	0	0		100.0%	0	710

C-µg/L

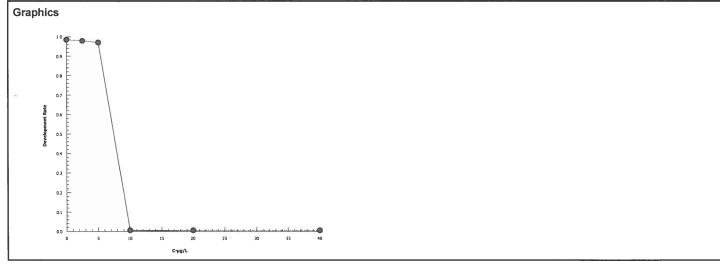
Report Date:

08 Nov-19 11:48 (p 2 of 3)

Test Code:

191030msdv | 07-8198-2858

Bivalve Larva	I Survival and Dev	velopment Test		Nautilus Environmental (CA)	
Analysis ID:	15-7183-3565	Endpoint:	Development Rate	CETIS Version:	CETISv1.8.7


Analyzed: 08 Nov-19 11:48 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Linear Interpolation Options								
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method			
Linear	Linear	567986	1000	Yes	Two-Point Interpolation			

Point E	stimates		
Level	μg/L	95% LCL	95% UCL

EC25 6.204 6.15 6.254 EC50 7.481 7.439 7.522

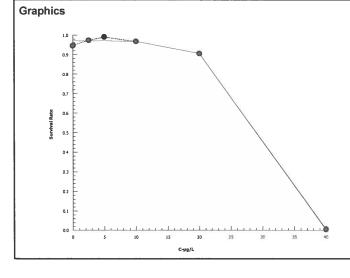
Developm	ent Rate Summary	,			Calcu	ılated Variat	te(A/B)				
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9844	0.9762	0.9919	0.002688	0.00601	0.61%	0.0%	690	701
2.5		5	0.9787	0.9737	0.9837	0.001727	0.003861	0.39%	0.58%	725	741
5		5	0.9697	0.9559	0.981	0.004233	0.009464	0.98%	1.49%	713	735
10		5	0.006891	0	0.02027	0.003707	0.008288	120.3%	99.3%	4	714
20		5	0	0	0	0	0		100.0%	0	653
40		5	0	0	0	0	0		100.0%	0	5

Report Date:

08 Nov-19 11:48 (p 3 of 3)

Test Code:

191030msdv | 07-8198-2858


Bivalve Larva	Bivalve Larval Survival and Development Test					
Analysis ID:	20-5233-5110	Endpoint:	Survival Rate	CETIS Version:	CETISv1.8.7	
Analyzed:	08 Nov-19 11:47	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes	

Linear Interpolation Options							
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method		
Linear	Linear	1995347	1000	Yes	Two-Point Interpolation		

Point	Estimates

Level	μg/L	95% LCL	95% UCI
EC25	23.94	22.13	25.33
EC50	29.32	28.14	30.24

Survival R	ate Summary				Calcu	lated Variat	te(A/B)			8	
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9479	0.8662	1	0.02934	0.06561	6.92%	0.0%	672	710
2.5		5	0.9732	0.8662	1	0.02676	0.05984	6.15%	-2.68%	691	710
5		5	0.9915	0.9577	1	0.008451	0.0189	1.91%	-4.61%	704	710
10		5	0.9676	0.9155	1	0.01987	0.04443	4.59%	-2.08%	687	710
20		5	0.9056	0.8169	1	0.03201	0.07158	7.9%	4.46%	643	710
40		5	0.004225	0	0.007042	0.001725	0.003857	91.29%	99.55%	3	710

08 Nov-19 11:49 (1 of 1)

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Test Type: Development-Survival


Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel

Endpoint: Combined Development Rate

Material: Copper chloride

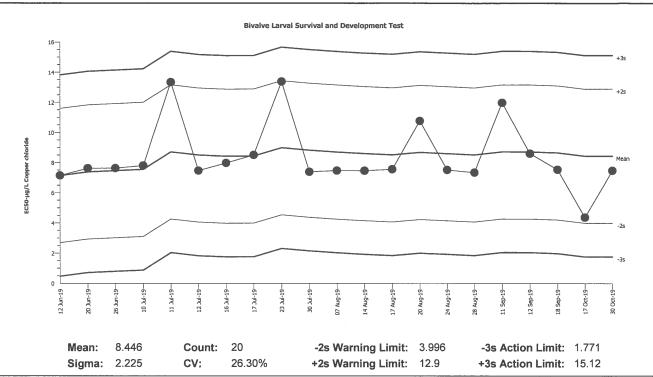
Source: Reference Toxicant-REF

Qualit	y Con	trol Data	a								
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2019	Jun	12	15:00	7.174	-1.252	-0.5477			20-8735-2782	03-4367-9827
2			20	15:00	7.627	-0.799	-0.3495			00-4624-1892	07-7845-5970
3			26	15:55	7.636	-0.7897	-0.3454			00-8415-2643	12-3790-3484
4		Jul	10	15:15	7.786	-0.6401	-0.28			02-0190-4206	08-2094-6054
5			11	14:35	13.33	4.903	2.145	(+)		05-8111-1120	10-3716-8433
6			12	14:45	7.443	-0.983	-0.43			01-0237-5581	01-3582-7031
7			16	14:35	7.951	-0.4749	-0.2077			04-6285-8375	08-7682-6614
8			17	14:50	8.497	0.0712	0.03115			04-5072-3133	00-7236-3161
9			23	14:30	13.76	5.335	2.334	(+)		07-6771-8781	18-1893-5656
10			30	15:30	7.313	-1.113	-0.4869			15-3542-8276	10-4430-8659
11		Aug	7	15:30	7.395	-1.031	-0.4512			01-2834-9487	15-5629-3220
12			14	14:15	7.255	-1.171	-0.5122			18-5609-6564	17-5885-5207
13			17	14:00	7.582	-0.8441	-0.3692			15-9584-4385	11-8998-1524
14			20	14:15	10.86	2.436	1.065			14-8361-1578	03-1832-9380
15			24	16:00	7.414	-1.012	-0.4425			19-4374-5817	01-6546-9581
16			28	14:30	7.348	-1.078	-0.4716			01-0546-0046	21-3090-7111
17		Sep	11	14:30	11.93	3.509	1.535			09-2717-2159	04-2480-9094
18			12	14:25	8.444	0.01845	0.00807			19-6218-6352	07-5188-6358
19			18	13:20	7.4	-1.026	-0.4488			10-9359-1611	21-3838-7021
20		Oct	17	12:30	4.368	-4.058	-1.775			01-8239-7270	07-0806-0577
21			30	12:30	7.518	-0.908	-0.3972			07-8198-2858	11-8079-0492

08 Nov-19 11:49 (1 of 1)

Bivalve Larval Survival and Development Test

Test Type: Development-Survival

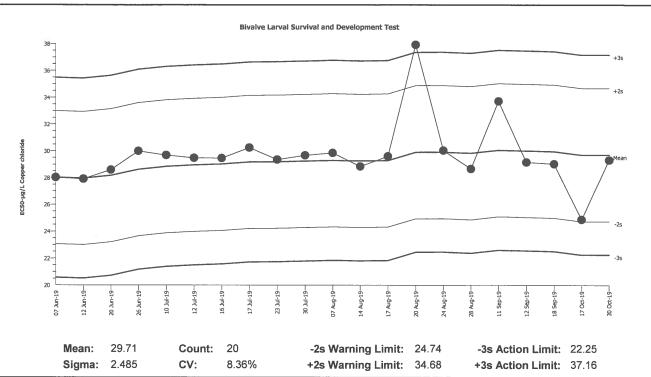

Protocol: EPA/600/R-95/136 (1995)

Development Rate

Nautilus Environmental (CA)

Material: Copper chloride

Source: Reference Toxicant-REF



Quality (Cont	rol Data	a								
Point Y	ear	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1 20	019	Jun	12	15:00	7.147	-1.299	-0.584			20-8735-2782	10-3598-4911
2			20	15:00	7.627	-0.8187	-0.368			00-4624-1892	15-3942-3527
3			26	15:55	7.636	-0.8098	-0.364			00-8415-2643	06-7718-5278
4		Jul	10	15:15	7.8	-0.6465	-0.2905			02-0190-4206	02-8661-6124
5			11	14:35	13.34	4.894	2.199	(+)		05-8111-1120	03-7465-8007
6			12	14:45	7.467	-0.979	-0.44			01-0237-5581	09-6402-3981
7			16	14:35	7.977	-0.4691	-0.2108			04-6285-8375	01-4279-2596
В			17	14:50	8.504	0.05786	0.026			04-5072-3133	09-0911-7730
9			23	14:30	13.38	4.935	2.218	(+)		07-6771-8781	07-7153-3575
10			30	15:30	7.388	-1.058	-0.4755			15-3542-8276	07-3589-9194
11		Aug	7	15:30	7.473	-0.973	-0.4373			01-2834-9487	19-8086-2685
12			14	14:15	7.466	-0.9801	-0.4405			18-5609-6564	14-6389-5644
13			17	14:00	7.563	-0.8826	-0.3967			15-9584-4385	19-0402-2449
14			20	14:15	10.76	2.318	1.042			14-8361-1578	12-0750-5104
15			24	16:00	7.521	-0.9252	-0.4158			19-4374-5817	04-6745-5945
16			28	14:30	7.351	-1.095	-0.4922			01-0546-0046	10-3410-8075
17		Sep	11	14:30	11.98	3.537	1.589			09-2717-2159	17-4622-9429
18			12	14:25	8.608	0.1616	0.07263			19-6218-6352	06-5225-4823
19			18	13:20	7.546	-0.9003	-0.4046			10-9359-1611	16-7089-5314
20		Oct	17	12:30	4.375	-4.071	-1.83			01-8239-7270	19-1864-9270
21			30	12:30	7.481	-0.9648	-0.4336			07-8198-2858	15-7183-3565

08 Nov-19 11:49 (1 of 1)

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Test Type: Development-Survival Organism: Mytilus galloprovincialis (Bay Mussel Material: Copper chloride

Protocol: EPA/600/R-95/136 (1995) Endpoint: Survival Rate Source: Reference Toxicant-REF

Quality Cor	ntrol Dat	а								
Point Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1 2019	Jun	7	13:35	28.03	-1.682	-0.6769			16-0229-2669	01-4873-8064
2		12	15:00	27.92	-1.795	-0.7223			20-8735-2782	03-5721-7619
3		20	15:00	28.59	-1.119	-0.4503			00-4624-1892	18-2643-8450
4		26	15:55	30	0.29	0.1167			00-8415-2643	15-8975-2294
5	Jul	10	15:15	29.69	-0.02142	-0.00862			02-0190-4206	18-9463-9841
6		12	14:45	29.48	-0.2291	-0.0922			01-0237-5581	14-9229-9767
7		16	14:35	29.46	-0.2465	-0.09921			04-6285-8375	17-5419-9497
8		17	14:50	30.25	0.5379	0.2165			04-5072-3133	00-3161-9686
9		23	14:30	29.36	-0.3524	-0.1418			07-6771-8781	15-4437-4125
10		30	15:30	29.67	-0.03697	-0.01488			15-3542-8276	20-8453-4017
11	Aug	7	15:30	29.85	0.1449	0.05832			01-2834-9487	07-4855-2818
12		14	14:15	28.85	-0.8645	-0.3479			18-5609-6564	13-1367-1354
13		17	14:00	29.6	-0.1063	-0.04279			15-9584-4385	20-0172-5237
14		20	14:15	37.92	8.209	3.303	(+)	(+)	14-8361-1578	02-5800-6574
15		24	16:00	30.04	0.3274	0.1317			19-4374-5817	17-7461-0750
16		28	14:30	28.66	-1.045	-0.4207			01-0546-0046	13-4512-6481
17	Sep	11	14:30	33.71	4.005	1.612			09-2717-2159	01-1883-2964
18		12	14:25	29.16	-0.5459	-0.2197			19-6218-6352	02-6393-7831
19		18	13:20	29.04	-0.671	-0.27			10-9359-1611	04-3365-2341
20	Oct	17	12:30	24.88	-4.828	-1.943			01-8239-7270	13-2801-3685
21		30	12:30	29.32	-0.3871	-0.1558			07-8198-2858	20-5233-5110

26 Oct-19 16:33 (p 1 of 1) 07-8198-2858/191030msdv

Test Code:

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Start Date:30 Oct-19Species:Mytilus galloprovincialisSample Code:191030msdvEnd Date:01 Nov-19Protocol:EPA/600/R-95/136 (1995)Sample Source:Reference ToxicantSample Date:30 Oct-19Material:Copper chlorideSample Station:Copper Chloride

iple Date					Copper chloride			Sample Station: Copper Chloride	•
C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes	
			1			152	0	JU 11/8/19	
			2			123	(2)		
			3			150	147		
			4			145	141		
			5			127	Ø		
			6			130	1		
			7			(5)	0		
			8			148	145		
			9			1	(7)	most cells lysed	
			10			155	153		
			11			(1)	0	cells lysed	
			12			135	0		
			13			154	-		
-			14				Ø	most cour lyred	
			15			158	155		
			16			126	123		b
			17			116			
			18			131	8		
			19			151	147		
			20			140	138		
			21			136	130		
			22			168	164		
			23			152	148		
			24			123	122		
			25			148	3		
			26			1	Ö	most cells lysed	
			27			157	154	The state of the s	
			28			145	140		
			29			Ø	0		
			30			(23	121		

Report Date: Test Code: 26 Oct-19 16:33 (p 1 of 1) 07-8198-2858/191030msdv

Bivalve Larv	al Sur	vival a	and De	evelopment Test				Nautilus Environmental (CA)
Start Date: End Date: Sample Date	01 I	Oct-19 Nov-19 Oct-19	9	Protocol: I	Mytilus galloprovi EPA/600/R-95/13 Copper chloride			Sample Code: 191030msdv Sample Source: Reference Toxicant Sample Station: Copper Chloride
C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	LC	1	16					
0	LC	2	24					
0	LC	3	10			151	149	RT 11/19
0	LC	4	20					
0	LC	5	27					
2.5		1	3					
2.5		2	8					
2.5		3	22			159	157	RY
2.5		4	23					
2.5		5	30					
5		1	15					
5		2	19					
5		3	4			148	144	PT
5		4	28			1 10		
5		5	21					
10		1	7					
10		2	13					
10		3	18			136	0	RT
10		4	25			127 12		
10		5	6		-			
20		1	5					
20		2	12					
20		3	1			158	0	RT
20		4	2					, ,
20		5	17					
40		1	14					
40		2	26					
40		3	9			0	0	RY
40		4	29					,
40		5	11					

QC=BO

Marine Chronic Bioassay

Water Quality Measurement

Client:	Internal	Test Species: M. galloprovincialis
Sample ID:	CuCl ₂	Start Date/Time: 10/30/2019 1730
Test No.:	191030msdv	End Date/Time: 11/1/2019 130

Concentration		Salinity		T	emperatu	re	Diss	olved Ox	ygen		рН	
(μg/L)	(ppt)				(°C)			(mg/L) ૧૫			(pH units)
	0	24	48	0	24	48	0	24	48	0	24	48
Lab Control	31.8	31.7	31.3	15.3	14.8	14.7	8.4	8.6	9.39.2	8.08	8.01	7.97
2.5	31.8	31.8	31.9	15.2	14.5	14.5	8.4	8.5	9.2	8.08	8.01	7.99
5	31.9	31.8	31.9	15.3	14.5	14.6	8.6	8.4	9.2	8.08	8.01	7.99
10	31.8	31.8	32.0	15.5	14.6	14.6	8.6	8.3	9.3	8.08	8.02	7.99
20	31.8	31.9	32.1	15.5	14.4	14.5	8.5	8.3	9.4	8.08	8.02	7.99
40	31.7	31.8	31.9	15.5	14.5	14.8	8.5	8.4	9.4	8.08	8.02	7,99

	_	0	24	48	High conc. made (μg/L):	40	
Technician Initials:	WQ Readings:	B0	RT	KV	Vol. Cu stock added (mL):	1.9	
	Dilutions made by:	BO			Final Volume (mL):	5 <i>0</i> 0	
					Cu stock concentration (μg/L):	10,400	
Environmental Cham	ber: D.		_				
Comments:	0 hrs:						
	24 hrs:				100		
	48 hrs: 10018 BC	11/11	9				
QC Check:	4511/8/19		_		Final Review:	xcul1/19	

Date Received: Test Chambers:	Internal/CuUz 191030 msdV Mytilus galloprovincialis th Tank: Taylor Shellfish 1178 30 mL glass shell vials	Start Date/Time: _ End Date/Time: _ Technician Initials: _	10/30/2019 11/1/2019 13/0	130	
Sample Volume:	10 mL				

Spawn Information

First Gamete Release Time:

0945

Sex	Number Spawning
Male	4+
Female	4

Gamete Selection

_													
	Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)										
	Male	3,4	good density+motility										
	Female 1	4	yellow color, good density, mostly rand										
	Female 2	3	pink woor, good density, mostly, and										
	Female 3		- 3, 3										

Egg Fertilization Time: 1040

Embryo Stock Selection

Stock Number	% of embryos at 2-cell division stage
Female 1	100
Female 2	100
Female 3	_

Stock(s) chosen for testing: 2

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos

Number Counted:

7	8
5	6
8	
	6
7	8

Mean 6.8 x 50 = 340 embryos/ml

Initial Density: 340 = 1.13 (dilution factor)
I Final Density: 300 Desired Final Density:

(to inoculate with 0.5 ml)

Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

Time Ze	ro Control Cou	ınts		
TØ Vial No.	No. Dividing	Total	% Dividing	Mean % Dividing
TØ A	141	141	100	
TØ B	194	154	100	
TØC	130	130	100	99.8
TØ D	150	150	100] / /
TØ E	133	134	99,2	
TØ F	142	143	99.3	
<u>x</u> =	147			

48-h QC: 140/143 = 97.9%

Comments:

QC Check:

Final Review: AUI/19

CETIS Summary Report

Report Date:

06 Nov-19 09:14 (p 1 of 1)

Test Code:

191030mbra | 05-0159-0485

								Test Code:		1910	Sumbra US	0-0109-046
Inland Silvers	ide 96-h Acute S	Surviva	l Test							Nautilus	s Environm	nental (CA
Batch ID: Start Date: Ending Date: Duration:	09-3320-6780 30 Oct-19 14:4! 03 Nov-19 14:1 95h	5 5	Test Type: Protocol: Species: Source:	Survival (96h) EPA/821/R-02 Menidia berylli Aquatic Indica	Analyst: Diluent: Brine: Age:	nt: Diluted Natural Seawater						
Sample ID: Sample Date: Receive Date: Sample Age:		! :	Code: 191030mbra Material: Copper chloride Source: Reference Toxicant Station: Copper Chloride					Client: Project:	Inter	rnal		
Comparison S	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meth	hod			
10-9321-0468	96h Survival Ra	ite	100	200	141.4	28.4%		Stee	l Man	y-One Rank	Sum Test	
Point Estimate	e Summary											
Analysis ID	Endpoint		Level	μg/L	95% LCL	95% UCL	TU	Meth	hod			
07-6888-5964	96h Survival Ra	ite	EC50	114.9	99.66	132.4 S			arman	-Kärber		
Test Acceptab	oility											
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	ts	Ove	rlap	Decision		
07-6888-5964	96h Survival Ra	ite	Contro	ol Resp	1	0.9 - NL		Yes		Passes A	cceptability	Criteria
10-9321-0468	96h Survival Ra	ite	Contro	ol Resp	1	0.9 - NL	Yes		Passes A	cceptability	Criteria	
96h Survival F	Rate Summary											
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std	Err	Std Dev	CV%	%Effect
0	Lab Control	4	1	1	1	1	1	0		0	0.0%	0.0%
50		4	1	1	1	1	1	0		0	0.0%	0.0%
100		4	0.7	0.1488	1	0.2	1	0.17	32	0.3464	49.49%	30.0%
200		4	0	0	0	0	0	0		0		100.0%
400		4	0	0	0	0	0	0		0		100.0%
800		4	0	0	0	0	0	0		0		100.0%
96h Survival F	Rate Detail											
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							
0	Lab Control	1	1	1	1							
		1	1	1	1							
50		1										
50 100		1	0.8	0.8	0.2							
		1 0		0.8 0	0.2 0							
100		1	0.8									

Report Date:

06 Nov-19 09:14 (p 1 of 1)

Test Code:

191030mbra | 05-0159-0485

							Test	Code:	1910	30mbra 0:	5-0159-0485				
Inland Silver	side 96-h Acut	e Survival T	est						Nautilu	s Environr	nental (CA)				
Analysis ID:	10-9321-0468	B En	ndpoint: 96	h Survival Ra	ate		CET	IS Version:	CETISv1	.8.7					
Analyzed:	06 Nov-19 9:		-	nparametric-		Treatments		cial Results:							
Data Transfo		Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU				
Angular (Corre	ected)	NA	C > T	NA	NA 		28.4%	100	200	141.4					
Steel Many-C	ne Rank Sum	Test													
Control	vs C-µg/L		Test Stat	Critical	Ties D	F P-Value	P-Type	Decision(α:5%)						
Lab Control	50		18	11	1 6	0.6667	Asymp	Non-Signif	icant Effec	t					
	100		12	11	1 6	0.0738	Asymp	Non-Signif	icant Effec	t					
ANOVA Table	Э														
Source	Sum So	uares	Mean Sq	uare	DF	F Stat	P-Value	Decision(α:5%)						
Between	0.30731	71	0.153658	5	2	3.218	0.0882	Non-Signif	icant Effect	1					
Error	0.42972		0.047746	78	9										
Total	0.73703	81 			11										
Distributiona	I Tests														
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)							
Variances		•	ty of Variance		8.022	0.1774	Equal Va	riances							
Variances		Equality of		6.494	8.022	0.0180		Variances							
Distribution	Shapiro	-Wilk W No	rmality	0.6789	0.8025	0.0005	Non-normal Distribution								
96h Survival	Rate Summary	1													
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect				
0	Lab Control	4	1	1	1	1	1	1	0	0.0%	0.0%				
50		4	1	1	1	1	1	1	0	0.0%	0.0%				
100		4	0.7	0.1488	1	0.8	0.2	1	0.1732	49.49%	30.0%				
200		4	0	0	0	0	0	0	0		100.0%				
400		4	0	0	0	0	0	0	0		100.0%				
800		4	0	0	0	0	0	0	0		100.0%				
Angular (Cor	rected) Transfo	ormed Sum	mary					-							
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect				
0	Lab Control	4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%				
50		4	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%				
100		4	1.006	0.4036	1.608	1.107	0.4636	1.345	0.1892	37.63%	25.23%				
200		4	0.2255	0.2255	0.2256	0.2255	0.2255	0.2255	0	0.0%	83.24%				
400		4	0.2255	0.2255	0.2256	0.2255	0.2255	0.2255	0	0.0%	83.24%				
800		4	0.2255	0.2255	0.2256	0.2255	0.2255	0.2255	0	0.0%	83.24%				
Graphics															
1.0 E						0.4 E		1							
0.9	•					0.3					•				
0.8						=									
Ę						0.2									
96h Survival Rata		194			3	0.1				5					
MAN 0.6						Corr. Angle		0000000	*****	•					
0.5						Ė.									
-						-0.1									
0.4						-0.2									
0.3						-0.3									
0.2						-0.4									

-0.5

Report Date:

06 Nov-19 09:14 (p 1 of 1)

Test Code:

191030mbra | 05-0159-0485

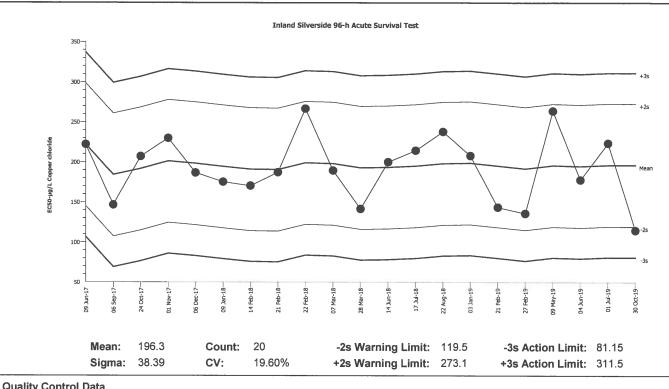
Inland Silvers	Nautilus Environmental (CA)									
Analysis ID: Analyzed:			6h Survival ntrimmed S	Rate Spearman-Kärber		TIS Version: icial Results:	CETISv1.8.7 Yes			
Spearman-Kä	rber Estimates									
Threshold Op	tion Th	reshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL		
Control Thresh	old 0	0		2.06	0.03085	85 114.9		132.4		
96h Survival I	Rate Summary				Calculated V	ariate(A/R)				

96h Survi	val Rate Summary										
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	4	1	1	1	0	0	0.0%	0.0%	20	20
50		4	1	1	1	0	0	0.0%	0.0%	20	20
100		4	0.7	0.2	1	0.1732	0.3464	49.49%	30.0%	14	20
200		4	0	0	0	0	0		100.0%	0	20
400		4	0	0	0	0	0		100.0%	0	20
800		4	0	0	0	0	0		100.0%	0	20

Analyst: Ja QA: Acilli 19

Inland Silverside 96-h Acute Survival Test

Report Date: 06 Nov-19 09:15 (1 of 1)


Nautilus Environmental (CA)

Test Type: Survival (96h)

Organism: Menidia beryllina (Inland Silverside)

Material: Copper chloride

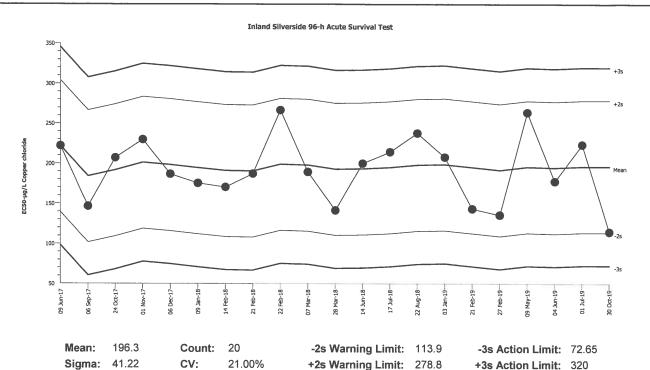
Protocol: EPA/821/R-02-012 (2002) Endpoint: 96h Survival Rate Source: Reference Toxicant-REF

Quali	ty Con	troi Dat	а								
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2017	Jun	9	17:15	221.9	25.61	0.6672			04-5405-2533	13-3732-1084
2		Sep	6	15:50	146.4	-49.89	-1.3			01-8301-6131	10-0799-2130
3		Oct	24	16:10	207.1	10.75	0.2801			10-0714-4627	19-6697-7894
4		Nov	1	10:15	229.7	33.44	0.8711			14-0848-4500	09-3507-0741
5		Dec	6	15:25	186.6	-9.693	-0.2525			17-2716-0280	10-6923-1723
6	2018	Jan	9	16:05	175.2	-21.1	-0.5495			15-9782-4320	14-5127-3080
7		Feb	14	14:50	170.3	-26.03	-0.6779			14-7429-6310	14-6416-7425
8			21	12:25	187.2	-9.122	-0.2376			20-0148-6736	18-8740-2809
9			22	17:20	266.7	70.41	1.834			21-2244-9573	15-2512-9013
10		Mar	7	16:25	189.3	-6.95	-0.181			06-3891-7579	03-5981-6406
11			28	17:15	141.4	-54.88	-1.43			18-3798-9831	05-5342-2351
12		Jun	14	14:35	200	3.7	0.09638			01-9952-0614	00-3575-1747
13		Jul	17	14:30	214.4	18.05	0.4703			11-1445-3115	12-3693-5336
14		Aug	22	16:25	237.8	41.54	1.082			08-6172-7555	12-4329-0617
15	2019	Jan	3	16:50	207.9	11.55	0.3009			16-0506-4055	11-1190-1934
16		Feb	21	16:05	143.5	-52.82	-1.376			10-4228-2556	08-7111-9529
17			27	16:25	135.8	-60.53	-1.577			14-0947-0420	00-4247-8099
18		May	9	19:10	263.9	67.6	1.761			03-9779-6453	09-3747-7536
19		Jun	4	14:50	177.8	-18.55	-0.4831			00-2136-1210	01-4264-5145
20		Jul	1	15:55	223.6	27.32	0.7115			04-4319-5710	17-4098-1084
21		Oct	30	14:45	114.9	-81.43	-2.121	(-)		05-0159-0485	07-6888-5964

06 Nov-19 09:15 (1 of 1)

Inland Silverside 96-h Acute Survival Test

Nautilus Environmental (CA)


Test Type: Survival (96h)

Protocol: EPA/821/R-02-012 (2002) Organism: Menidia beryllina (Inland Silverside)

Endpoint: 96h Survival Rate

Copper chloride Material:

Source: Reference Toxicant-REF

Quali	Quality Control Data													
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID			
1	2017	Jun	9	17:15	221.9	25.61	0.6213			04-5405-2533	13-3732-1084			
2		Sep	6	15:50	146.4	-49.89	-1.21			01-8301-6131	10-0799-2130			
3		Oct	24	16:10	207.1	10.75	0.2608			10-0714-4627	19-6697-7894			
4		Nov	1	10:15	229.7	33.44	0.8112			14-0848-4500	09-3507-0741			
5		Dec	6	15:25	186.6	-9.693	-0.2351			17-2716-0280	10-6923-1723			
6	2018	Jan	9	16:05	175.2	-21.1	-0.5118			15-9782-4320	14-5127-3080			
7		Feb	14	14:50	170.3	-26.03	-0.6313			14-7429-6310	14-6416-7425			
8			21	12:25	187.2	-9.122	-0.2213			20-0148-6736	18-8740-2809			
9			22	17:20	266.7	70.41	1.708			21-2244-9573	15-2512-9013			
10		Mar	7	16:25	189.3	-6.95	-0.1686			06-3891-7579	03-5981-6406			
11			28	17:15	141.4	-54.88	-1.331			18-3798-9831	05-5342-2351			
12		Jun	14	14:35	200	3.7	0.08976			01-9952-0614	00-3575-1747			
13		Jul	17	14:30	214.4	18.05	0.438			11-1445-3115	12-3693-5336			
14		Aug	22	16:25	237.8	41.54	1.008			08-6172-7555	12-4329-0617			
15	2019	Jan	3	16:50	207.9	11.55	0.2802			16-0506-4055	11-1190-1934			
16		Feb	21	16:05	143.5	-52.82	-1.281			10-4228-2556	08-7111-9529			
17			27	16:25	135.8	-60.53	-1.468			14-0947-0420	00-4247-8099			
18		May	9	19:10	263.9	67.6	1.64			03-9779-6453	09-3747-7536			
19		Jun	4	14:50	177.8	-18.55	-0.4499			00-2136-1210	01-4264-5145			
20		Jul	1	15:55	223.6	27.32	0.6626			04-4319-5710	17-4098-1084			
21		Oct	30	14:45	114.9	-81.43	-1.975			05-0159-0485	07-6888-5964			

* Reference toxicant warning and control chart limits recalculated based on 75th percentile interlaboratory coefficient of vanation, as defined in EPA-833-R-00-003, for companson purposes only.

Marine Acute Bioassay Static-Renewal Conditions DM-001

Water Quality Measurements & Test Organism Survival

Client:		-			Te	st Sp	ecies:	M. b	eryllir	па							Tech Initials									
Sample ID:	CuCl ₂							-4		Start	Date	Time:	10/3	0/201	9 /	144	15					0	24	48	72	96
Test No.:	19103	30mt	ora							End	Date	Time:	11/3	/2019)	1415				C	ounts:	HH	RY	KL	RT	les
																					dings:		нн	KL	RT	DM
																			Dilutio		de by:			TN		
																	High conc. made (μg/L)					000	-	100	-	-
																	٧	ol. Cu	stock	added	l (mL):	16:31	<u>}</u> ;;	2.0	-	-
									Cu st	ock co	ncenti	ration (μ g/L) :	99	16	000)	1	Final V	olume	(mL):	2000	-	2000	-	-
																							_			
Concentration (µg/L)	Rand #			ber o)			Salinit (ppt)			Temperature (°C)					Disso	lved C (mg/L		n	pH (units)					
		0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	4	5	5	5	35	5	30.le	3	24.1	30-3	29,8	24.1	gul	171.6	24.6	24,5	6.4	5.2	7.9	58	5.3-	7.91	1.18	8.02	7.74	7,97
	10	5	5	3	5	S			\$1.4					3.0					5.7					7.76		
	5	5	5	5	5	S																				
	9	5	5	5	5	5																				
50	23	5	5	5	5	5	3c.5	20t	290	30.0	1,05	24.0	25?	24.6	25.2	24.8	63	4.8	7.7	5.4	5.6	7.91	176	8.c2	275	789
	18	5	5	5	5	5			30.8					25.3					5.4					7.35		
	3	5	5	5	5	S																				
	6	5	5	5	5	5																				
100	19	5	5	5	5	5	33.5	2010	29.1	29.9	29.7	248	150	24.8	25.3	25.0	63	4.4	7.8	5.2	5.4	7.91	172	18.01	1.72	7.84
	14	5	4	4	4	4			30.7					253					5.1					7.71		
	2	5	4	4	4	4																				
	17	5	2	1	1	1																				
200	20	5	0		1.	0	30.4	20.8	-	_	~	24.1	24.8	-	_	/	6.4	51	-	_	-	7.92	7.19	١,-	-	_
	11	5	0	A	10				1-		2			1					1-					1-		
	7	5	0																							
	22	5	0	/																						
400	8	5	0		1	0	30.4	2010	-	_	_	240	149	-	_	-	64	5.0	-		-	7.91	1.19	-	-	-
	15	5	0	AU	de	/		7	1/					f _					f _				1	' _		
	1	5	0		/																					
	21	5	0	/																						
800	13	5	0	الم		1	30.5	204	'_	~	-	210	249	1_	_	^	6.3	= .0	1_	~	_	791	7.58	1_	_	-
	16	5	0	1.				7	11					1 _					1			1910		1_		
	24	5	0	1																						
	12	5	0	/																						
Rand # QC:	R-														J. 2 10. 2		1					Accessed to			1000000	
Initial Counts QC'd by: Initiated by:			-						Er	viron	menta	al Cha	mher:	Δ												
			-	4) li a	1:0	. 1.	n 1 :								10		-					Food	dina Ti		
Animal Source/Date Received: H940 tic Indicator S Age at Initiation: 12 days												0	24	ding Ti	72	96										
Animal Acclimation Qualifiers (circle all that apply): 1111 Q22 Q23 1, Q24 1 none													7501250	-												
Comments:		j = in	itial re	eading	ı in fre	esh te	st solu	ion f	= final	readir	na in te	est cho	mher	nrior +) tene	wai					AM:	1715	400	0930	000	UIU
							ation, c		-								19			-	- wi					
									''	,	-		<u> </u>	FI WIL	- 1	'/''	/			-			4	, ,		
QC Check:	B) 1	uh	1/19	1														Fi	nal Re	view:		CIII	11/1	9	

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix E
List of Qualifier Codes

Glossary of Qualifier Codes:

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% mortality observed upon receipt and/or in holding prior to test initiation.
 Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test organisms received at a <u>temperature</u> greater than 3°C outside the recommended test temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.

Updated: 6/30/15