

# Chronic Toxicity Testing Results for Wyckoff Eagle Harbor Groundwater Treatment Plant

### Monitoring Period: July 2020

Prepared for:

Jacobs 1100 112<sup>th</sup> Ave NE Suite 500 Bellevue, WA, 98004

Prepared by:

Enthalpy Analytical (formerly Nautilus Environmental) 4340 Vandever Avenue San Diego, CA 92120 (858) 587-7333

Date Submitted: August 18, 2020

### **Data Quality Assurance:**

- Enthalpy Analytical is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (ORELAP ID 4053). It is also certified by the State of California Water Resources Control Board Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552). Specific fields of testing applicable to each accreditation are available upon request.
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective US EPA protocols, unless otherwise noted in this report.
- All tests have met internal Quality Assurance Program requirements.

California 4340 Vandever Avenue San Diego, California 92120 858.587.7333 fax: 619.279.5919

Results verified by:

Eric Green, Project Manager

### Introduction

A toxicity test was performed using a groundwater composite sample collected from the Wyckoff Eagle Harbor Groundwater Treatment Plant on Bainbridge Island in Washington. This test was performed to satisfy quarterly monitoring requirements according to the project Quality Assurance Project Plan (QAPP 2013). The chronic bioassay was conducted using the bivalve *Mytilus galloprovincialis* (Mediterranean mussel). Testing was performed at Enthalpy Analytical located in San Diego, California.

### **Materials and Methods**

The groundwater sample was collected into a low-density polyethylene cubitainer by Jacobs personnel, packed in a cooler containing ice, and shipped overnight to Enthalpy. Appropriate chain-of-custody (COC) procedures were employed during collection and transport. Upon arrival at the laboratory, the cooler was opened, the sample inspected, and the contents verified against information on the COC form. Standard water quality parameters were measured and recorded on a sample check-in form and are summarized in Table 1. The sample was stored at  $4^{\circ}$ C in the dark until used for testing.

| Sample ID                            | 071420           |
|--------------------------------------|------------------|
| Enthalpy Log-in Number               | 20-0770          |
| Collection Date; Time                | 7/14/2020; 0936h |
| Receipt Date; Time                   | 7/15/2020; 0915h |
| Receipt Temperature (°C)             | 5.0              |
| Dissolved Oxygen (mg/L)              | 7.4              |
| рН                                   | 7.38             |
| Conductivity (µS/cm)                 | 14,120           |
| Salinity (ppt)                       | 8.8              |
| Alkalinity (mg/L CaCO <sub>3</sub> ) | 396              |
| Total Chlorine (mg/L)                | 0.02             |
| Total Ammonia (mg/L as N)            | 3.3              |

Table 1. Sample Information

NM = not measured

### **Test Methods**

Chronic toxicity testing was conducted according to the method set forth in USEPA (1995). This method is summarized in Table 2.

| Table 2. Summary of Methous for th       |                                                                                                                 |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Test Period                              | 7/15/2020, 1355h to 7/17/2020, 1310h                                                                            |
| Test Organism                            | Mytilus galloprovincialis                                                                                       |
| Test Organism Source                     | M-Rep (Carlsbad, CA)                                                                                            |
| Test Organism Age                        | 4 hours post fertilization                                                                                      |
| Test Duration                            | 48 ± 2 hours                                                                                                    |
| Test Type                                | Static                                                                                                          |
| Test Chamber, Test Solution Volume       | 30 mL glass vial, 10 mL                                                                                         |
| Test Temperature                         | 15 ± 1°C                                                                                                        |
| Dilution Water                           | Laboratory Seawater (Source: Scripps Institution of<br>Oceanography [SIO] intake) diluted with de-ionized water |
| Additional Control                       | Brine Control (de-ionized water and hypersaline brine)                                                          |
| Test Salinity                            | 30 ± 2 ppt                                                                                                      |
| Source of Salinity                       | Hypersaline brine made by freezing seawater to a salinity of 97.2 ppt                                           |
| Test Concentrations (% sample)           | 76.0 <sup>a</sup> , 35, 18, 9, 4, and 2%, lab and brine controls                                                |
| Number of Replicates                     | 5                                                                                                               |
| Photoperiod                              | 16 hours light/8 hours dark                                                                                     |
| Test Protocol                            | EPA/600/R-95/136                                                                                                |
| Test Acceptability Criteria for Controls | $\geq$ 50% mean survival, $\geq$ 90% mean development rate                                                      |
| Reference Toxicant                       | Copper chloride <sup>b</sup>                                                                                    |
| Statistical Software                     | CETIS™ 1.8.7.20                                                                                                 |

### Table 2. Summary of Methods for the Bivalve Larval Development Test

<sup>a</sup> Highest concentration tested due to the addition of hypersaline brine

<sup>b</sup> A deviation to the QAPP was approved by USEPA and Washington Department of Ecology to conduct reference toxicant testing with copper chloride. See QA section.

### Results

There were no statistically significant effects observed in any effluent concentration tested for the survival or development endpoint of the bivalve test. This results in a no observed effect concentration (NOEC) of 76.0 (the highest concentration tested) and a chronic toxic unit ( $TU_c$ ) of less than 1.32 for both endpoints.

Results for the chronic toxicity test are summarized in Tables 3 and 4. Individual statistical summaries for the test and copies of the laboratory bench sheets are provided in Appendix A. The sample check-in sheet and COC form are provided in Appendices B and C, respectively.

| Species | Endpoint NOEC LOEC<br>(% effluent) (% effluent) |      | Toxic Unit<br>(TU <sub>c</sub> ) | EC <sub>25</sub><br>(% effluent) |        |
|---------|-------------------------------------------------|------|----------------------------------|----------------------------------|--------|
| Biyolyo | Normal Development                              | 76.0 | > 76.0                           | < 1.32                           | > 76.0 |
| Bivalve | Survival                                        | 76.0 | > 76.0                           | < 1.32                           | > 76.0 |

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

Chronic Toxic Unit ( $TU_c$ ) = 100/NOEC. NOTE: Since 100% sample was not tested, the  $TU_c$  value can only be calculated up to the highest concentration tested. If no toxicity is observed at this concentration, the  $TU_c$  is reported as less than the calculated value. Effect Concentration 25 ( $EC_{25}$ ) = Concentration expected to cause an effect to 25% of the organisms

| Concentration<br>(% Effluent) | Mean Survival<br>(%) | Mean Normal Development<br>(%) |  |  |  |  |  |  |
|-------------------------------|----------------------|--------------------------------|--|--|--|--|--|--|
| 0 (Brine Control)             | 91.1                 | 97.9                           |  |  |  |  |  |  |
| 0 (Lab Control)               | 94.1                 | 98.1                           |  |  |  |  |  |  |
| 2                             | 95.9                 | 98.3                           |  |  |  |  |  |  |
| 4                             | 92.5                 | 98.8                           |  |  |  |  |  |  |
| 9                             | 96.6                 | 98.2                           |  |  |  |  |  |  |
| 18                            | 96.6                 | 98.2                           |  |  |  |  |  |  |
| 35                            | 94.6                 | 98.7                           |  |  |  |  |  |  |
| 76.0 <sup>a</sup>             | 91.6                 | 97.4                           |  |  |  |  |  |  |

### Table 4. Detailed Results for the Bivalve Development Chronic Toxicity Test

<sup>a</sup> Highest concentration tested due to the addition of hypersaline brine

### **Quality Assurance**

The sample was received within the required 36-hour holding time, in good condition, and within the appropriate temperature range of 0-6°C. All control acceptability criteria were met and water quality parameters remained within the appropriate ranges throughout the test. Statistical analyses followed standard USEPA flowchart selections. Dose-response relationships were reviewed to ensure the reliability of the results. Based on the dose response observed, the calculated effects concentrations were deemed reliable. Minor QA/QC issues that were unlikely to have any bearing on the final test results, such as slight temperature deviations, are noted on the data sheets and a list of qualifier codes used on bench data sheets is presented in Appendix D.

### **Reference Toxicant**

Results for the reference toxicant tests used to monitor laboratory performance and test organism sensitivity are summarized in Table 5. A deviation to the QAPP was approved by USEPA and Washington Department of Ecology to conduct reference toxicant testing with copper chloride rather than copper sulfate. The results for the concurrent reference toxicant test were within the acceptable range of the mean historical test results plus or minus two standard deviations for development. The EC<sub>50</sub> for survival was greater than the highest concentration tested; indicating organisms may have been less sensitive than typical for the survival endpoint. Reference toxicant statistical summaries and laboratory bench sheets are provided in Appendix E.

| Species and<br>Endpoint       | NOEC<br>(%) | <b>EC<sub>50</sub></b><br>(μg/L copper) | <b>Historical mean ± 2 SD</b><br>(μg/L copper) | <b>CV</b><br>(%) |
|-------------------------------|-------------|-----------------------------------------|------------------------------------------------|------------------|
| Bivalve Normal<br>Development | 5           | 13.9                                    | 9.03 ± 6.47                                    | 35.8             |
| Bivalve Survival<br>Rate      | 20          | > 40.0                                  | 29.7 ± 5.08                                    | 8.56             |

NOEC = No Observed Effect Concentration

Effect Concentration 50 (EC<sub>50</sub>) = Concentration expected to cause an effect to 50% of the organisms

CV = Coefficient of Variation

### References

- CH2MHill. 2013. Quality Assurance Project Plan Groundwater Treatment Plant Operations, Maintenance, Bainbridge, Washington. Prepared for USEPA Region 10 June 5, 2013.
- Standard Guide for Conducting Static Acute Toxicity Tests with Embryos of Four Species of Saltwater Bivalve Molluscs. 1989. ASTM Standard E 724-89.
- Tidepool Scientific Software. 2000-2013. CETIS Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20.
- USEPA. 1995. Short-Term Method for Estimating the Chronic Toxicity of Effluents and Receiving Waters to the West Coast Marine and Estuarine Organisms. EPA/600/R-95/136. pp. 209-258 and 389-465.
- Washington State Department of Ecology. 2016. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Publication No. WQ-R-95-80. Revised June 2016

Appendix A Statistical Summaries and Raw Bench Sheets

#### **Report Date:** 17 Aug-20 08:36 (p 1 of 2) **CETIS Summary Report Test Code:** 2007-S059 | 11-6319-6188 **Bivalve Larval Survival and Development Test** Nautilus Environmental (CA) 16-0484-7554 Batch ID: Test Type: Development-Survival Analyst: Start Date: 15 Jul-20 13:55 EPA/600/R-95/136 (1995) Protocol: **Diluent: Diluted Natural Seawater** 17 Jul-20 13:10 Ending Date: Species: Mytilus galloprovincialis Brine: Frozen Seawater **Duration:** 47h Source: M-Rep, Carlsbad, CA Age: Sample ID: 02-9423-5209 Code: 20-0770 Client: Jacobs Sample Date: 14 Jul-20 09:36 Material: Effluent Sample **Project:** Receive Date: 15 Jul-20 09:15 Source: Jacobs Sample Age: 28h (5 °C) Station: Wyckoff **Comparison Summary** NOEL LOEL TOEL PMSD Analysis ID Endpoint TU Method L1.316 03-4229-2286 **Development Rate** 76 >76 NA 2.0% **Dunnett Multiple Comparison Test** 11-2108-7541 Survival Rate 76 >76 NA 13.7% £1.316 **Dunnett Multiple Comparison Test Point Estimate Summary** Analysis ID Endpoint Level % 95% LCL 95% UCL TU Method 02-6789-9030 **Development Rate** EC25 >76 N/A N/A <1.316 Linear Interpolation (ICPIN) **EC50** >76 N/A N/A <1.316 17-4635-1121 Survival Rate EC25 >76 N/A N/A <1.316 Linear Interpolation (ICPIN) EC50 >76 N/A N/A <1.316 **Test Acceptability** Analysis ID Endpoint Attribute Test Stat **TAC Limits** Overlap Decision 02-6789-9030 **Development Rate** Control Resp 0.9788 0.9 - NL Yes Passes Acceptability Criteria 03-4229-2286 **Development Rate** Control Resp 0.9788 0.9 - NL Yes Passes Acceptability Criteria 11-2108-7541 Survival Rate Control Resp 0.9107 0.5 - NL Yes Passes Acceptability Criteria 17-4635-1121 Survival Rate Control Resp 0.9107 0.5 - NŁ Yes Passes Acceptability Criteria **Development Rate Summary** C-% **Control Type** Count Mean 95% LCL 95% UCL Min Max Std Err CV% Std Dev %Effect 0 Brine Control 5 0.9788 0.9637 0.9939 0.971 1 0.005439 0.01216 1.24% 0.0% 0 Lab Control 5 0.981 0.9677 0.9943 0.9923 0.9636 0.004781 0.01069 1.09% -0.23% 2 5 0.9832 0.9764 0.99 0.9797 0.9929 0.002448 0.005475 0.56% -0.45% 4 5 0.9878 0.9739 1 0.9732 1 0.005017 0.01122 -0.92% 1.14% 9 5 0.9819 0.9726 0.9911 0.9745 0.9942 0.003331 0.007449 0.76% -0.32% 18 5 0.9821 0.9718 0.9924 0.994 0.9739 0.003707 0.00829 0.84% -0.34% 35 5 0.9871 0.977 0.9971 0.9789 0.00362 0.008095 1 0.82% -0.85% 76 5 0.9742 0.47% 0.9539 0.9944 0.9551 0.9865 0.007305 0.01633 1.68% Survival Rate Summary C-% **Control Type** Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 0 Brine Control 5 0.9107 0.8308 0.9906 0.8491 0.06435 0.0% 1 0.02878 7.07% 0 Lab Control 5 0.9409 0.8426 1 0.8176 1 0.07913 0.03539 8.41% -3.32% 2 5 0.9585 0.8986 1 0.8868 1 0.04823 5.03% -5.25% 0.02157 4 5 0.9245 0.8664 0.9827 0.8805 1 0.02095 0.04685 5.07% -1.52%

9

18

35

76

5

5

5

5

0.966

0.966

0.9459

0.9157

0.8929

0.9077

0.8587

0.8566

1

1

1

0.9748

0.8616

0.8868

0.8491

0.8553

1

1

1

0.9811

Analyst: JU QA: FU8/18/20

0.05893

0.04698

0.07026

0.04761

6.1%

4.86%

7.43%

5.2%

-6.08%

-6.08%

-3.87%

-0.55%

0.02636

0.02101

0.03142

0.02129

### **CETIS Summary Report**

| Bivalve | Larval | Survival | and | Development Test |  |
|---------|--------|----------|-----|------------------|--|
| Diraito | Larvar | ourritui | una | Bevelopment rest |  |

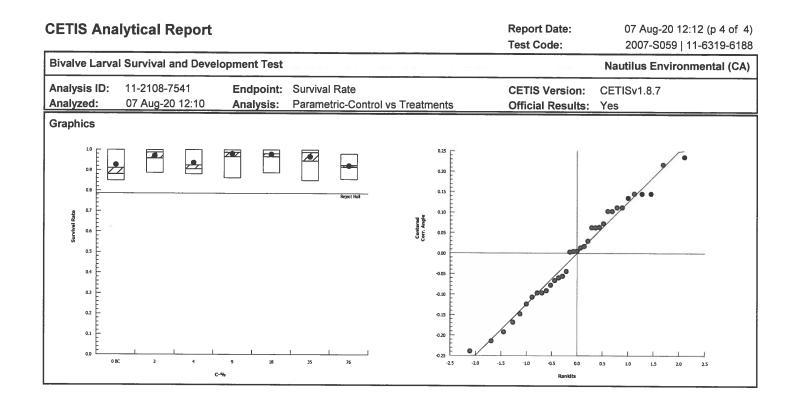
| Report Date: |  |
|--------------|--|
| Test Code:   |  |

| 17 Aug-20 0 | 8:36 (p 2 of 2) |
|-------------|-----------------|
| 2007-S059   | 11-6319-6188    |

Nautilus Environmental (CA)

| Development Rate Detail                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5                                                                                                    |
| 0 Brine Control 0.9778 0.971 0.9714 0.9737 1                                                                                                      |
| 0 Lab Control 0.9636 0.9923 0.9861 0.9808 0.9822                                                                                                  |
| 2 0.9809 0.9809 0.9815 0.9797 0.9929                                                                                                              |
| 4 0.9938 1 0.979 0.9732 0.9931                                                                                                                    |
| 9 0.9817 0.9808 0.9781 0.9745 0.9942                                                                                                              |
| 18 0.9872 0.994 0.9767 0.9787 0.9739                                                                                                              |
| 35 0.9818 0.9874 0.9789 1 0.9873                                                                                                                  |
| 76 0.9574 0.9551 0.9865 0.9853 0.9864                                                                                                             |
|                                                                                                                                                   |
| Survival Rate Detail                                                                                                                              |
| C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5                                                                                                    |
| 0 Brine Control 0.8491 0.8679 0.8805 0.956 1                                                                                                      |
| 0 Lab Control 1 0.8176 0.9057 0.9811 1                                                                                                            |
| 2 0.9874 0.9874 1 0.9308 0.8868                                                                                                                   |
| 4 1 0.8805 0.8994 0.9371 0.9057                                                                                                                   |
| 9 1 0.9811 0.8616 0.9874 1                                                                                                                        |
| 18 0.9811 1 1 0.8868 0.9623                                                                                                                       |
| 35 1 1 0.8931 0.8491 0.9874                                                                                                                       |
| 76 0.8868 0.9811 0.9308 0.8553 0.9245                                                                                                             |
|                                                                                                                                                   |
| Development Rate Binomials                                                                                                                        |
| C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5                                                                                                    |
| 0 Brine Control 132/135 134/138 136/140 148/152 172/172                                                                                           |
| 0 Lab Control 159/165 129/130 142/144 153/156 166/169                                                                                             |
| 2 154/157 154/157 159/162 145/148 140/141                                                                                                         |
| 4 159/160 140/140 140/143 145/149 143/144                                                                                                         |
| 9 161/164 153/156 134/137 153/157 172/173                                                                                                         |
| 18 154/156 165/166 168/172 138/141 149/153                                                                                                        |
| 35 162/165 157/159 139/142 135/135 155/157                                                                                                        |
| 76 135/141 149/156 146/148 134/136 145/147                                                                                                        |
| Survival Rate Binomials                                                                                                                           |
|                                                                                                                                                   |
| C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5                                                                                                    |
| 0 Brine Control 135/159 138/159 140/159 152/159 159/159                                                                                           |
| 0 Lab Control 159/159 130/159 144/159 156/159 159/159                                                                                             |
|                                                                                                                                                   |
| 2 157/159 157/159 159/159 148/159 141/159                                                                                                         |
| 2157/159157/159159/159148/159141/1594159/159140/159143/159149/159144/159                                                                          |
| 2157/159157/159159/159148/159141/1594159/159140/159143/159149/159144/1599159/159156/159137/159157/159159/159                                      |
| 2157/159157/159159/159148/159141/1594159/159140/159143/159149/159144/1599159/159156/159137/159157/159159/15918156/159159/159159/159141/159153/159 |
| 2157/159157/159159/159148/159141/1594159/159140/159143/159149/159144/1599159/159156/159137/159157/159159/159                                      |

| CETIS Ana                 | alytical Re                | port         |                  |                                 |            |         | -         | ort Date:<br>Code:           |                 | -       | 12 (p 1 of 4)<br>1-6319-6188 |
|---------------------------|----------------------------|--------------|------------------|---------------------------------|------------|---------|-----------|------------------------------|-----------------|---------|------------------------------|
| Bivalve Larva             | al Survival and            | d Developr   | nent Test        |                                 |            |         |           |                              | Nautilus        | Environ | mental (CA)                  |
| Analysis ID:<br>Analyzed: | 03-4229-228<br>07 Aug-20 1 | -            | -                | Development R<br>Parametric-Cor |            | tments  |           | IS Version:<br>cial Results: | CETISv1.<br>Yes | .8.7    |                              |
| Data Transfo              | rm                         | Zeta         | Alt Hy           | p Trials                        | Seed       |         | PMSD      | NOEL                         | LOEL            | TOEL    | TU                           |
| Angular (Corre            | ected)                     | NA           | C > T            | NA                              | NA         |         | 2.0%      | 76                           | >76             | NA      | 1.316                        |
| Dunnett Mult              | iple Comparis              | on Test      |                  |                                 |            |         |           |                              |                 |         |                              |
| Control                   | vs C-%                     |              | Test S           | tat Critical                    | MSD DF     | P-Value | P-Type    | Decision(                    | α:5%)           |         |                              |
| Brine Control             | 2                          |              | -0.373           | 9 2.407                         | 0.065 8    | 0.9351  | CDF       | Non-Signi                    | ficant Effect   |         |                              |
|                           | 4                          |              | -1.307           | 2.407                           | 0.065 8    | 0.9952  | CDF       | Non-Signit                   | ficant Effect   |         |                              |
|                           | 9                          |              | -0.235           | 8 2.407                         | 0.065 8    | 0.9115  | CDF       | Non-Signi                    | ficant Effect   |         |                              |
|                           | 18                         |              | -0.285           | 1 2.407                         | 0.065 8    | 0.9206  | CDF       | Non-Signi                    | ficant Effect   |         |                              |
|                           | 35                         |              | -1.049           | 2.407                           | 0.065 8    | 0.9894  | CDF       | Non-Signi                    | ficant Effect   |         |                              |
|                           | 76                         |              | 0.6249           | 2.407                           | 0.065 8    | 0.6256  | CDF       | Non-Signi                    | ficant Effect   |         |                              |
| ANOVA Table               | )                          |              |                  |                                 |            |         |           |                              |                 |         |                              |
| Source                    | Sum S                      | quares       | Mean             | Square                          | DF         | F Stat  | P-Value   | Decision(                    | α:5%)           |         |                              |
| Between                   | 0.00912                    | 22896        | 0.0015           | 20483                           | 6          | 0.83    | 0.5568    | Non-Signit                   | ficant Effect   |         |                              |
| Error                     | 0.05129                    | 9094         | 0.0018           | 31819                           | 28         |         |           |                              |                 |         |                              |
| Total                     | 0.0604                     | 1384         |                  |                                 | 34         |         |           |                              |                 |         |                              |
| Distributiona             | l Tests                    |              |                  |                                 |            |         |           |                              |                 |         |                              |
| Attribute                 | Test                       |              |                  | Test Stat                       | Critical   | P-Value | Decision  | (α:1%)                       |                 |         |                              |
| Variances                 | Bartlet                    | t Equality o | f Variance       | 3.499                           | 16.81      | 0.7441  | Equal Var | iances                       |                 |         |                              |
| Distribution              | Shapir                     | o-Wilk W N   | lormality        | 0.9487                          | 0.9146     | 0.1032  | Normal D  | istribution                  |                 |         |                              |
| Development               | Rate Summa                 | ry           |                  |                                 |            |         |           |                              |                 |         |                              |
| C-%                       | Control Type               |              | Mean             | 95% LCL                         | 95% UCL    | Median  | Min       | Max                          | Std Err         | CV%     | %Effect                      |
| 0                         | Brine Control              |              | 0.9788           |                                 | 0.9939     | 0.9737  | 0.971     | 1                            | 0.005439        | 1.24%   | 0.0%                         |
| 2                         |                            | 5            | 0.9832           |                                 | 0.99       | 0.9809  | 0.9797    | 0.9929                       | 0.002448        | 0.56%   | -0.45%                       |
| 4                         |                            | 5            | 0.9878           |                                 | 1          | 0.9931  | 0.9732    | 1                            | 0.005017        | 1.14%   | -0.92%                       |
| 9                         |                            | 5            | 0.9819           |                                 | 0.9911     | 0.9808  | 0.9745    | 0.9942                       | 0.003331        | 0.76%   | -0.32%                       |
| 18                        |                            | 5            | 0.9821           |                                 | 0.9924     | 0.9787  | 0.9739    | 0.994                        | 0.003708        | 0.84%   | -0.34%                       |
| 35<br>76                  |                            | 5<br>5       | 0.9871<br>0.9742 |                                 | 0.9971     | 0.9873  | 0.9789    | 1                            | 0.00362         | 0.82%   | -0.85%                       |
|                           |                            |              |                  | 0.9539                          | 0.9944     | 0.9853  | 0.9551    | 0.9865                       | 0.007305        | 1.68%   | 0.47%                        |
|                           | rected) Transf             |              | •                | 050/ 1.01                       | 0.50/ 1101 |         |           |                              | e               |         |                              |
| <u>C-%</u>                | Control Type               |              |                  | 95% LCL                         | 95% UCL    | Median  | Min       | Max                          | Std Err         | CV%     | %Effect                      |
| 0                         | Brine Control              |              | 1.432            | 1.362                           | 1.503      | 1.408   | 1.4       | 1.533                        | 0.02534         | 3.96%   | 0.0%                         |
| 2                         |                            | 5            | 1.443            | 1.412                           | 1.473      | 1.432   | 1.428     | 1.486                        | 0.01102         | 1.71%   | -0.71%                       |
| 4<br>9                    |                            | 5            | 1.468            | 1.405                           | 1.531      | 1.487   | 1.406     | 1.529                        | 0.02261         | 3.45%   | -2.47%                       |
| 9<br>18                   |                            | 5            | 1.439            | 1.398                           | 1.479      | 1.432   | 1.41      | 1.495                        | 0.0146          | 2.27%   | -0.45%                       |
| 35                        |                            | 5<br>5       | 1.44<br>1.461    | 1.397<br>1.411                  | 1.483      | 1.424   | 1.408     | 1.493                        | 0.01559         | 2.42%   | -0.54%                       |
| 76                        |                            | 5<br>5       |                  |                                 | 1.511      | 1.458   | 1.425     | 1.528                        | 0.01792         | 2.74%   | -1.98%                       |
| 10                        |                            | 5            | 1.416            | 1.353                           | 1.478      | 1.449   | 1.357     | 1.454                        | 0.02264         | 3.58%   | 1.18%                        |


Analyst: JU QA: Englist 20

| CETIS Analytical I                          | Report               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Report Date:<br>Test Code:           | 07 Aug-20 12:12 (p 2 of 4)<br>2007-S059   11-6319-6188 |
|---------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------|
| Bivalve Larval Survival                     | and Development Test |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      | Nautilus Environmental (CA)                            |
| Analysis ID: 03-4229-<br>Analyzed: 07 Aug-2 |                      | Development Rate<br>Parametric-Control vs Treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      | CETISv1.8.7<br>Yes                                     |
| Graphics                                    | 4 9 18<br>C-%        | Biset Neal<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1 | -2.0 -1.5 -1.0 -0.5 0.0 -0.5 Rankits |                                                        |

Analyst: JU QA: FL8/18/20

| CETIS Ana                                                                                                                                                                             | alytical Re                                                               | port                                                                                                                     |                                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                 | ort Date:<br>Code:                                                                                                           |                                                                                                                                         | 0                                                                                                            | l2 (p 3 of 4)<br>I-6319-6188                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Bivalve Larv                                                                                                                                                                          | al Survival and                                                           | Developm                                                                                                                 | ent Test                                                                                                                             | ==                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                 |                                                                                                                              | Nautilus                                                                                                                                | s Environn                                                                                                   | nental (CA)                                                                                                               |
| Analysis ID:<br>Analyzed:                                                                                                                                                             | 11-2108-754<br>07 Aug-20 12                                               |                                                                                                                          | •                                                                                                                                    | •                                                                                                                                                                                |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                 |                                                                                                                              |                                                                                                                                         | ETISv1.8.7<br>jes                                                                                            |                                                                                                                           |
| Data Transfo                                                                                                                                                                          | orm                                                                       | Zeta                                                                                                                     | Alt Hyp                                                                                                                              | Trials                                                                                                                                                                           | Seed                                                                                                                                             |                                                                                                                                                | PMSD                                                                                                                                            | NOEL                                                                                                                         | LOEL                                                                                                                                    | TOEL                                                                                                         | TU                                                                                                                        |
| Angular (Corr                                                                                                                                                                         | rected)                                                                   | NA                                                                                                                       | C > T                                                                                                                                | NA                                                                                                                                                                               | NA                                                                                                                                               |                                                                                                                                                | 13.7%                                                                                                                                           | 76                                                                                                                           | >76                                                                                                                                     | NA                                                                                                           | 1.316                                                                                                                     |
| Dunnett Mult                                                                                                                                                                          | tiple Comparis                                                            | on Test                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                 |                                                                                                                              |                                                                                                                                         |                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                                     |
| Control                                                                                                                                                                               | vs C-%                                                                    |                                                                                                                          | Test Sta                                                                                                                             | t Critical                                                                                                                                                                       | MSD DF                                                                                                                                           | P-Value                                                                                                                                        | P-Type                                                                                                                                          | Decision(                                                                                                                    | α:5%)                                                                                                                                   |                                                                                                              |                                                                                                                           |
| Brine Control                                                                                                                                                                         | 2                                                                         |                                                                                                                          | -1.173                                                                                                                               | 2.407                                                                                                                                                                            | 0.206 8                                                                                                                                          | 0.9927                                                                                                                                         | CDF                                                                                                                                             | Non-Signif                                                                                                                   | icant Effect                                                                                                                            |                                                                                                              |                                                                                                                           |
|                                                                                                                                                                                       | 4                                                                         |                                                                                                                          | -0.2196                                                                                                                              | 2.407                                                                                                                                                                            | 0.206 8                                                                                                                                          | 0.9084                                                                                                                                         | CDF                                                                                                                                             | Non-Signif                                                                                                                   | icant Effect                                                                                                                            |                                                                                                              |                                                                                                                           |
|                                                                                                                                                                                       | 9                                                                         |                                                                                                                          | -1.554                                                                                                                               | 2.407                                                                                                                                                                            | 0.206 8                                                                                                                                          | 0.9979                                                                                                                                         | CDF                                                                                                                                             | Non-Signif                                                                                                                   | icant Effect                                                                                                                            |                                                                                                              |                                                                                                                           |
|                                                                                                                                                                                       | 18                                                                        |                                                                                                                          | -1.449                                                                                                                               | 2.407                                                                                                                                                                            | 0.206 8                                                                                                                                          | 0.9970                                                                                                                                         | CDF                                                                                                                                             | -                                                                                                                            | icant Effect                                                                                                                            |                                                                                                              |                                                                                                                           |
|                                                                                                                                                                                       | 35                                                                        |                                                                                                                          | -1.056                                                                                                                               | 2.407                                                                                                                                                                            | 0.206 8                                                                                                                                          | 0.9896                                                                                                                                         | CDF                                                                                                                                             | -                                                                                                                            | icant Effect                                                                                                                            |                                                                                                              |                                                                                                                           |
|                                                                                                                                                                                       | 76                                                                        |                                                                                                                          | 0.09497                                                                                                                              | 2.407                                                                                                                                                                            | 0.206 8                                                                                                                                          | 0.8299                                                                                                                                         | CDF                                                                                                                                             | +                                                                                                                            | icant Effect                                                                                                                            |                                                                                                              |                                                                                                                           |
| ANOVA Table                                                                                                                                                                           | e                                                                         |                                                                                                                          |                                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                 |                                                                                                                              |                                                                                                                                         |                                                                                                              |                                                                                                                           |
| Source                                                                                                                                                                                | Sum Sc                                                                    | uares                                                                                                                    | Mean So                                                                                                                              | uare                                                                                                                                                                             | DF                                                                                                                                               | F Stat                                                                                                                                         | P-Value                                                                                                                                         | Decision(                                                                                                                    | α:5%)                                                                                                                                   |                                                                                                              |                                                                                                                           |
| Between                                                                                                                                                                               | 0.10826                                                                   | 72                                                                                                                       | 0.018044                                                                                                                             | 53                                                                                                                                                                               | 6                                                                                                                                                | 0.9878                                                                                                                                         | 0.4523                                                                                                                                          | Non-Significant Effect                                                                                                       |                                                                                                                                         |                                                                                                              |                                                                                                                           |
| Error                                                                                                                                                                                 | 0.51150                                                                   | 49                                                                                                                       | 0.018268                                                                                                                             | 103                                                                                                                                                                              | 28                                                                                                                                               |                                                                                                                                                |                                                                                                                                                 |                                                                                                                              |                                                                                                                                         |                                                                                                              |                                                                                                                           |
| Total                                                                                                                                                                                 | 0.61977                                                                   | 21                                                                                                                       |                                                                                                                                      |                                                                                                                                                                                  | 34                                                                                                                                               |                                                                                                                                                |                                                                                                                                                 |                                                                                                                              |                                                                                                                                         |                                                                                                              |                                                                                                                           |
|                                                                                                                                                                                       |                                                                           |                                                                                                                          |                                                                                                                                      |                                                                                                                                                                                  | 34                                                                                                                                               |                                                                                                                                                |                                                                                                                                                 |                                                                                                                              |                                                                                                                                         |                                                                                                              |                                                                                                                           |
| Distributiona                                                                                                                                                                         | al Tests                                                                  |                                                                                                                          |                                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                 |                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                   |                                                                                                              |                                                                                                                           |
| Distributiona<br>Attribute                                                                                                                                                            | al Tests<br>Test                                                          |                                                                                                                          |                                                                                                                                      | Test Stat                                                                                                                                                                        |                                                                                                                                                  | P-Value                                                                                                                                        | Decision                                                                                                                                        | (α:1%)                                                                                                                       |                                                                                                                                         |                                                                                                              | <u> </u>                                                                                                                  |
|                                                                                                                                                                                       | Test                                                                      | Equality of                                                                                                              | Variance                                                                                                                             | <b>Test Stat</b><br>1.355                                                                                                                                                        |                                                                                                                                                  | <b>P-Value</b> 0.9685                                                                                                                          | Decision<br>Equal Var                                                                                                                           |                                                                                                                              |                                                                                                                                         |                                                                                                              |                                                                                                                           |
| Attribute                                                                                                                                                                             | Test<br>Bartlett                                                          |                                                                                                                          |                                                                                                                                      |                                                                                                                                                                                  | Critical                                                                                                                                         |                                                                                                                                                |                                                                                                                                                 | iances                                                                                                                       |                                                                                                                                         |                                                                                                              |                                                                                                                           |
| Attribute<br>Variances                                                                                                                                                                | Test<br>Bartlett<br>Shapiro                                               | Equality of                                                                                                              |                                                                                                                                      | 1.355                                                                                                                                                                            | Critical<br>16.81                                                                                                                                | 0.9685                                                                                                                                         | Equal Var                                                                                                                                       | iances                                                                                                                       |                                                                                                                                         |                                                                                                              |                                                                                                                           |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%                                                                                                                        | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type                  | Equality of                                                                                                              |                                                                                                                                      | 1.355                                                                                                                                                                            | Critical<br>16.81                                                                                                                                | 0.9685                                                                                                                                         | Equal Var                                                                                                                                       | iances                                                                                                                       | Std Err                                                                                                                                 | CV%                                                                                                          | %Effect                                                                                                                   |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0                                                                                                                   | Test<br>Bartlett<br>Shapiro<br>e Summary                                  | Equality of<br>Wilk W No<br>Count<br>5                                                                                   | Mean<br>0.9107                                                                                                                       | 1.355<br>0.9777<br><b>95% LCL</b><br>0.8308                                                                                                                                      | <b>Critical</b><br>16.81<br>0.9146                                                                                                               | 0.9685<br>0.6838                                                                                                                               | Equal Var<br>Normal Di                                                                                                                          | iances<br>stribution                                                                                                         | <b>Std Err</b><br>0.02878                                                                                                               | <b>CV%</b><br>7.07%                                                                                          | %Effect<br>0.0%                                                                                                           |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2                                                                                                              | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type                  | Equality of<br>Wilk W No<br><u>Count</u><br>5<br>5                                                                       | <b>Mean</b><br>0.9107<br>0.9585                                                                                                      | 1.355<br>0.9777<br><b>95% LCL</b><br>0.8308<br>0.8986                                                                                                                            | <b>Critical</b><br>16.81<br>0.9146<br><b>95% UCL</b><br>0.9906<br>1                                                                              | 0.9685<br>0.6838<br>Median<br>0.8805<br>0.9874                                                                                                 | Equal Var<br>Normal Di<br>Min<br>0.8491<br>0.8868                                                                                               | iances<br>stribution<br>Max                                                                                                  |                                                                                                                                         |                                                                                                              |                                                                                                                           |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2<br>4                                                                                                         | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type                  | Equality of<br>Wilk W No<br><u>Count</u><br>5<br>5<br>5<br>5                                                             | Mean<br>0.9107<br>0.9585<br>0.9245                                                                                                   | 1.355<br>0.9777<br><b>95% LCL</b><br>0.8308<br>0.8986<br>0.8664                                                                                                                  | Critical<br>16.81<br>0.9146<br>95% UCL<br>0.9906                                                                                                 | 0.9685<br>0.6838<br>Median<br>0.8805<br>0.9874<br>0.9057                                                                                       | Equal Var<br>Normal Di<br><b>Min</b><br>0.8491                                                                                                  | iances<br>stribution<br>Max<br>1                                                                                             | 0.02878                                                                                                                                 | 7.07%                                                                                                        | 0.0%                                                                                                                      |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2<br>4<br>9                                                                                                    | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type                  | Equality of<br>Wilk W No<br><u>Count</u><br>5<br>5<br>5<br>5<br>5<br>5                                                   | Mean<br>0.9107<br>0.9585<br>0.9245<br>0.966                                                                                          | 1.355<br>0.9777<br><b>95% LCL</b><br>0.8308<br>0.8986<br>0.8664<br>0.8664<br>0.8929                                                                                              | Critical<br>16.81<br>0.9146<br>95% UCL<br>0.9906<br>1<br>0.9827<br>1                                                                             | 0.9685<br>0.6838<br>Median<br>0.8805<br>0.9874<br>0.9057<br>0.9874                                                                             | Equal Var<br>Normal Di<br>Min<br>0.8491<br>0.8868<br>0.8805<br>0.8616                                                                           | iances<br>stribution<br>Max<br>1<br>1                                                                                        | 0.02878<br>0.02157<br>0.02095<br>0.02636                                                                                                | 7.07%<br>5.03%                                                                                               | 0.0%<br>-5.25%                                                                                                            |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2<br>4<br>9<br>18                                                                                              | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type                  | Equality of<br>-Wilk W No<br><u>Count</u><br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                        | Mean<br>0.9107<br>0.9585<br>0.9245<br>0.966<br>0.966                                                                                 | 1.355<br>0.9777<br><b>95% LCL</b><br>0.8308<br>0.8986<br>0.8664<br>0.8929<br>0.9077                                                                                              | Critical<br>16.81<br>0.9146<br>95% UCL<br>0.9906<br>1<br>0.9827                                                                                  | 0.9685<br>0.6838<br>Median<br>0.8805<br>0.9874<br>0.9057<br>0.9874<br>0.9874                                                                   | Equal Var<br>Normal Di<br>Min<br>0.8491<br>0.8868<br>0.8805                                                                                     | Max<br>1<br>1                                                                                                                | 0.02878<br>0.02157<br>0.02095                                                                                                           | 7.07%<br>5.03%<br>5.07%                                                                                      | 0.0%<br>-5.25%<br>-1.52%                                                                                                  |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2<br>4<br>9<br>18<br>35                                                                                        | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type                  | Equality of<br>-Wilk W No<br><u>Count</u><br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                         | Mean<br>0.9107<br>0.9585<br>0.9245<br>0.966<br>0.966<br>0.9459                                                                       | 1.355<br>0.9777<br><b>95% LCL</b><br>0.8308<br>0.8986<br>0.8664<br>0.8929<br>0.9077<br>0.8587                                                                                    | Critical<br>16.81<br>0.9146<br>95% UCL<br>0.9906<br>1<br>0.9827<br>1<br>1<br>1                                                                   | 0.9685<br>0.6838<br>Median<br>0.8805<br>0.9874<br>0.9057<br>0.9874<br>0.9811<br>0.9874                                                         | Equal Var<br>Normal Di<br>0.8491<br>0.8868<br>0.8805<br>0.8616<br>0.8868<br>0.8491                                                              | Max<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                             | 0.02878<br>0.02157<br>0.02095<br>0.02636<br>0.02101<br>0.03142                                                                          | 7.07%<br>5.03%<br>5.07%<br>6.1%                                                                              | 0.0%<br>-5.25%<br>-1.52%<br>-6.08%                                                                                        |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2<br>4<br>9<br>18                                                                                              | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type                  | Equality of<br>-Wilk W No<br><u>Count</u><br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                        | Mean<br>0.9107<br>0.9585<br>0.9245<br>0.966<br>0.966                                                                                 | 1.355<br>0.9777<br><b>95% LCL</b><br>0.8308<br>0.8986<br>0.8664<br>0.8929<br>0.9077                                                                                              | Critical<br>16.81<br>0.9146<br>95% UCL<br>0.9906<br>1<br>0.9827<br>1<br>1                                                                        | 0.9685<br>0.6838<br>Median<br>0.8805<br>0.9874<br>0.9057<br>0.9874<br>0.9874                                                                   | Equal Var<br>Normal Di<br>0.8491<br>0.8868<br>0.8805<br>0.8616<br>0.8868                                                                        | Max<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                       | 0.02878<br>0.02157<br>0.02095<br>0.02636<br>0.02101                                                                                     | 7.07%<br>5.03%<br>5.07%<br>6.1%<br>4.86%                                                                     | 0.0%<br>-5.25%<br>-1.52%<br>-6.08%<br>-6.08%                                                                              |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2<br>4<br>9<br>18<br>35<br>76<br>Angular (Cor                                                                  | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type<br>Brine Control | Equality of<br>-Wilk W No<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Mean<br>0.9107<br>0.9585<br>0.9245<br>0.966<br>0.966<br>0.9459<br>0.9157                                                             | 1.355<br>0.9777<br><b>95% LCL</b><br>0.8308<br>0.8986<br>0.8664<br>0.8929<br>0.9077<br>0.8587<br>0.8566                                                                          | Critical<br>16.81<br>0.9146<br>95% UCL<br>0.9906<br>1<br>0.9827<br>1<br>1<br>1                                                                   | 0.9685<br>0.6838<br>Median<br>0.8805<br>0.9874<br>0.9057<br>0.9874<br>0.9811<br>0.9874                                                         | Equal Var<br>Normal Di<br>0.8491<br>0.8868<br>0.8805<br>0.8616<br>0.8868<br>0.8491                                                              | Max<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                             | 0.02878<br>0.02157<br>0.02095<br>0.02636<br>0.02101<br>0.03142                                                                          | 7.07%<br>5.03%<br>5.07%<br>6.1%<br>4.86%<br>7.43%                                                            | 0.0%<br>-5.25%<br>-1.52%<br>-6.08%<br>-6.08%<br>-3.87%                                                                    |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2<br>4<br>9<br>18<br>35<br>76<br>Angular (Cor<br>C-%                                                           | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type<br>Brine Control | Equality of<br>-Wilk W No<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Mean<br>0.9107<br>0.9585<br>0.9245<br>0.966<br>0.966<br>0.9459<br>0.9157                                                             | 1.355<br>0.9777<br><b>95% LCL</b><br>0.8308<br>0.8986<br>0.8664<br>0.8929<br>0.9077<br>0.8587                                                                                    | Critical<br>16.81<br>0.9146<br>95% UCL<br>0.9906<br>1<br>0.9827<br>1<br>1<br>1                                                                   | 0.9685<br>0.6838<br>Median<br>0.8805<br>0.9874<br>0.9057<br>0.9874<br>0.9811<br>0.9874                                                         | Equal Var<br>Normal Di<br>0.8491<br>0.8868<br>0.8805<br>0.8616<br>0.8868<br>0.8491                                                              | Max<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                             | 0.02878<br>0.02157<br>0.02095<br>0.02636<br>0.02101<br>0.03142                                                                          | 7.07%<br>5.03%<br>5.07%<br>6.1%<br>4.86%<br>7.43%                                                            | 0.0%<br>-5.25%<br>-1.52%<br>-6.08%<br>-6.08%<br>-3.87%                                                                    |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2<br>4<br>9<br>18<br>35<br>76<br>Angular (Cor<br>C-%<br>0                                                      | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type<br>Brine Control | Equality of<br>-Wilk W No<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Mean<br>0.9107<br>0.9585<br>0.9245<br>0.966<br>0.966<br>0.9459<br>0.9157<br>mary<br>Mean<br>1.296                                    | 1.355<br>0.9777<br><b>95% LCL</b><br>0.8308<br>0.8986<br>0.8664<br>0.8929<br>0.9077<br>0.8587<br>0.8566<br><b>95% LCL</b><br>1.109                                               | Critical<br>16.81<br>0.9146<br>95% UCL<br>0.9906<br>1<br>0.9827<br>1<br>1<br>1<br>1<br>0.9748                                                    | 0.9685<br>0.6838<br><b>Median</b><br>0.8805<br>0.9874<br>0.9057<br>0.9874<br>0.9871<br>0.9874<br>0.9245                                        | Equal Var<br>Normal Di<br>0.8491<br>0.8868<br>0.8805<br>0.8616<br>0.8868<br>0.8491<br>0.8553                                                    | Max<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.9811                                                                   | 0.02878<br>0.02157<br>0.02095<br>0.02636<br>0.02101<br>0.03142<br>0.02129                                                               | 7.07%<br>5.03%<br>5.07%<br>6.1%<br>4.86%<br>7.43%<br>5.2%                                                    | 0.0%<br>-5.25%<br>-1.52%<br>-6.08%<br>-6.08%<br>-3.87%<br>-0.55%                                                          |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2<br>4<br>9<br>18<br>35<br>76<br>Angular (Cor<br>C-%<br>0<br>2                                                 | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type<br>Brine Control | Equality of<br>-Wilk W No<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Mean<br>0.9107<br>0.9585<br>0.9245<br>0.966<br>0.966<br>0.9459<br>0.9157<br>mary<br>Mean<br>1.296<br>1.396                           | 1.355<br>0.9777<br>95% LCL<br>0.8308<br>0.8986<br>0.8664<br>0.8929<br>0.9077<br>0.8587<br>0.8566<br>95% LCL                                                                      | Critical<br>16.81<br>0.9146<br>95% UCL<br>0.9906<br>1<br>0.9827<br>1<br>1<br>1<br>0.9748<br>95% UCL<br>1.482<br>1.552                            | 0.9685<br>0.6838<br>Median<br>0.8805<br>0.9874<br>0.9057<br>0.9874<br>0.9874<br>0.9874<br>0.9874<br>0.9245<br>Median                           | Equal Var<br>Normal Di<br>0.8491<br>0.8868<br>0.8805<br>0.8616<br>0.8868<br>0.8491<br>0.8553<br>Min                                             | Max<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.9811<br>Max                                                                 | 0.02878<br>0.02157<br>0.02095<br>0.02636<br>0.02101<br>0.03142<br>0.02129<br>Std Err                                                    | 7.07%<br>5.03%<br>5.07%<br>6.1%<br>4.86%<br>7.43%<br>5.2%                                                    | 0.0%<br>-5.25%<br>-1.52%<br>-6.08%<br>-6.08%<br>-3.87%<br>-0.55%                                                          |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2<br>4<br>9<br>18<br>35<br>76<br>Angular (Cor<br>C-%<br>0<br>2<br>4                                            | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type<br>Brine Control | Equality of<br>-Wilk W No<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Mean<br>0.9107<br>0.9585<br>0.9245<br>0.966<br>0.966<br>0.9459<br>0.9157<br>mary<br>Mean<br>1.296                                    | 1.355<br>0.9777<br>95% LCL<br>0.8308<br>0.8986<br>0.8664<br>0.8929<br>0.9077<br>0.8587<br>0.8566<br>95% LCL<br>1.109<br>1.241<br>1.158                                           | Critical<br>16.81<br>0.9146<br>95% UCL<br>0.9906<br>1<br>0.9827<br>1<br>1<br>1<br>0.9748<br>95% UCL<br>1.482                                     | 0.9685<br>0.6838<br>Median<br>0.8805<br>0.9874<br>0.9057<br>0.9874<br>0.9874<br>0.9874<br>0.9245<br>Median<br>1.218                            | Equal Var<br>Normal Di<br>0.8491<br>0.8868<br>0.8805<br>0.8616<br>0.8868<br>0.8491<br>0.8553<br>Min<br>1.172                                    | iances<br>istribution<br>Max<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.9811<br>Max<br>1.531                                    | 0.02878<br>0.02157<br>0.02095<br>0.02636<br>0.02101<br>0.03142<br>0.02129<br>Std Err<br>0.06719                                         | 7.07%<br>5.03%<br>5.07%<br>6.1%<br>4.86%<br>7.43%<br>5.2%<br><b>CV%</b><br>11.59%                            | 0.0%<br>-5.25%<br>-1.52%<br>-6.08%<br>-6.08%<br>-3.87%<br>-0.55%<br>%Effect<br>0.0%                                       |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2<br>4<br>9<br>18<br>35<br>76<br>Angular (Cor<br>C-%<br>0<br>2<br>4<br>9<br>0<br>2<br>4<br>9<br>9              | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type<br>Brine Control | Equality of<br>-Wilk W No<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Mean<br>0.9107<br>0.9585<br>0.9245<br>0.966<br>0.9459<br>0.9157<br>mary<br>Mean<br>1.296<br>1.396<br>1.315<br>1.429                  | 1.355<br>0.97777<br><b>95% LCL</b><br>0.8308<br>0.8986<br>0.8664<br>0.8929<br>0.9077<br>0.8587<br>0.8566<br><b>95% LCL</b><br>1.109<br>1.241<br>1.158<br>1.254                   | Critical<br>16.81<br>0.9146<br>95% UCL<br>0.9906<br>1<br>0.9827<br>1<br>1<br>1<br>0.9748<br>95% UCL<br>1.482<br>1.482<br>1.552<br>1.471<br>1.603 | 0.9685<br>0.6838<br>Median<br>0.8805<br>0.9874<br>0.9057<br>0.9874<br>0.9874<br>0.9245<br>Median<br>1.218<br>1.458                             | Equal Var<br>Normal Di<br>0.8491<br>0.8868<br>0.8805<br>0.8616<br>0.8868<br>0.8491<br>0.8553<br>Min<br>1.172<br>1.228                           | iances<br>istribution<br>Max<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.9811<br>Max<br>1.531<br>1.531                      | 0.02878<br>0.02157<br>0.02095<br>0.02636<br>0.02101<br>0.03142<br>0.02129<br>Std Err<br>0.06719<br>0.05601                              | 7.07%<br>5.03%<br>5.07%<br>6.1%<br>4.86%<br>7.43%<br>5.2%<br><b>CV%</b><br>11.59%<br>8.97%                   | 0.0%<br>-5.25%<br>-1.52%<br>-6.08%<br>-6.08%<br>-3.87%<br>-0.55%<br><b>%Effect</b><br>0.0%<br>-7.74%                      |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2<br>4<br>9<br>18<br>35<br>76<br>Angular (Cor<br>C-%<br>0<br>2<br>4<br>9<br>0<br>2<br>4<br>9<br>18<br>35<br>76 | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type<br>Brine Control | Equality of<br>-Wilk W No<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Mean<br>0.9107<br>0.9585<br>0.9245<br>0.966<br>0.966<br>0.9459<br>0.9157<br>mary<br>Mean<br>1.296<br>1.396<br>1.315<br>1.429<br>1.42 | 1.355<br>0.97777<br><b>95% LCL</b><br>0.8308<br>0.8986<br>0.8664<br>0.8929<br>0.9077<br>0.8587<br>0.8566<br><b>95% LCL</b><br>1.109<br>1.241<br>1.158<br>1.254<br>1.254<br>1.263 | Critical<br>16.81<br>0.9146<br>95% UCL<br>0.9906<br>1<br>0.9827<br>1<br>1<br>1<br>0.9748<br>95% UCL<br>1.482<br>1.552<br>1.471<br>1.603<br>1.577 | 0.9685<br>0.6838<br>Median<br>0.8805<br>0.9874<br>0.9057<br>0.9874<br>0.9811<br>0.9874<br>0.9245<br>Median<br>1.218<br>1.458<br>1.259          | Equal Var<br>Normal Di<br>0.8491<br>0.8868<br>0.8805<br>0.8616<br>0.8868<br>0.8491<br>0.8553<br>Min<br>1.172<br>1.228<br>1.218<br>1.19<br>1.228 | iances<br>istribution<br>Max<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.9811<br><b>Max</b><br>1.531<br>1.531<br>1.531 | 0.02878<br>0.02157<br>0.02095<br>0.02636<br>0.02101<br>0.03142<br>0.02129<br><b>Std Err</b><br>0.06719<br>0.05601<br>0.05649            | 7.07%<br>5.03%<br>5.07%<br>6.1%<br>4.86%<br>7.43%<br>5.2%<br><b>CV%</b><br>11.59%<br>8.97%<br>9.61%          | 0.0%<br>-5.25%<br>-1.52%<br>-6.08%<br>-6.08%<br>-3.87%<br>-0.55%<br><b>%Effect</b><br>0.0%<br>-7.74%<br>-1.45%            |
| Attribute<br>Variances<br>Distribution<br>Survival Rate<br>C-%<br>0<br>2<br>4<br>9<br>18<br>35<br>76<br>Angular (Cor<br>C-%<br>0<br>2<br>4<br>9<br>0<br>2<br>4<br>9<br>9              | Test<br>Bartlett<br>Shapiro<br>e Summary<br>Control Type<br>Brine Control | Equality of<br>-Wilk W No<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Mean<br>0.9107<br>0.9585<br>0.9245<br>0.966<br>0.9459<br>0.9157<br>mary<br>Mean<br>1.296<br>1.396<br>1.315<br>1.429                  | 1.355<br>0.97777<br><b>95% LCL</b><br>0.8308<br>0.8986<br>0.8664<br>0.8929<br>0.9077<br>0.8587<br>0.8566<br><b>95% LCL</b><br>1.109<br>1.241<br>1.158<br>1.254                   | Critical<br>16.81<br>0.9146<br>95% UCL<br>0.9906<br>1<br>0.9827<br>1<br>1<br>1<br>0.9748<br>95% UCL<br>1.482<br>1.482<br>1.552<br>1.471<br>1.603 | 0.9685<br>0.6838<br>Median<br>0.8805<br>0.9874<br>0.9057<br>0.9874<br>0.9811<br>0.9874<br>0.9245<br>Median<br>1.218<br>1.458<br>1.259<br>1.458 | Equal Var<br>Normal Di<br>0.8491<br>0.8868<br>0.8805<br>0.8616<br>0.8868<br>0.8491<br>0.8553<br>Min<br>1.172<br>1.228<br>1.218<br>1.218<br>1.19 | iances<br>istribution<br>Max<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.9811<br>Max<br>1.531<br>1.531<br>1.531<br>1.531         | 0.02878<br>0.02157<br>0.02095<br>0.02636<br>0.02101<br>0.03142<br>0.02129<br><b>Std Err</b><br>0.06719<br>0.05601<br>0.05649<br>0.06286 | 7.07%<br>5.03%<br>5.07%<br>6.1%<br>4.86%<br>7.43%<br>5.2%<br><b>CV%</b><br>11.59%<br>8.97%<br>9.61%<br>9.84% | 0.0%<br>-5.25%<br>-1.52%<br>-6.08%<br>-6.08%<br>-3.87%<br>-0.55%<br><b>%Effect</b><br>0.0%<br>-7.74%<br>-1.45%<br>-10.25% |

Analyst: Ja QA: E68/1870





| CETIS Analytic       | al Report               |                        |                                         |            |          | •             | rt Date:<br>Code:         |                 | Nug-20 08:3<br>7-S059   11 |            |
|----------------------|-------------------------|------------------------|-----------------------------------------|------------|----------|---------------|---------------------------|-----------------|----------------------------|------------|
| Bivalve Larval Surv  | vival and Devel         | opment Test            |                                         |            | -        |               |                           | Nautilus        | Environm                   | ental (CA) |
| •                    | 789-9030<br>Jug-20 8:35 | Endpoint:<br>Analysis: | Development F<br>Linear Interpola       |            |          |               | S Version:<br>al Results: | CETISv1.<br>Yes | .8.7                       |            |
| Linear Interpolatior | o Options               |                        |                                         |            |          |               |                           |                 |                            |            |
| X Transform Y        | Transform               | Seed                   | Resamples                               | Exp 95% CL | Meth     | od            |                           |                 |                            |            |
| Linear Li            | near                    | 1766866                | 1000                                    | Yes        | Two-l    | Point Interpo | lation                    |                 |                            |            |
| Point Estimates      |                         |                        |                                         |            |          |               |                           |                 |                            |            |
| Level %              | 95% LCL 95%             | & UCL TU               | 95% LCL                                 | 95% UCL    |          |               |                           |                 |                            |            |
| EC25 >76             | N/A N/A                 | <1.3                   | 16 NA                                   | NA         |          |               |                           |                 |                            |            |
| EC50 >76             | N/A N/A                 | × <1.3                 | 16 NA                                   | NA         |          |               |                           |                 |                            |            |
| Development Rate     | Summary                 |                        |                                         | Calculate  | d Variat | e(A/B)        |                           |                 |                            |            |
| C-% Contro           | l Type Co               | unt Mea                | n Min                                   | Max St     | d Err    | Std Dev       | CV%                       | %Effect         | A                          | в          |
| 0 Brine C            | ontrol 5                | 0.978                  | 38 0.971                                | 1 0.       | 05439    | 0.01216       | 1.24%                     | 0.0%            | 722                        | 737        |
| 2                    | 5                       | 0.98                   | 32 0.9797                               | 0.9929 0.0 | 02448    | 0.005474      | 0.56%                     | -0.45%          | 752                        | 765        |
| 4                    | 5                       | 0.98                   | 78 0.9732                               | 1 0.0      | 005017   | 0.01122       | 1.14%                     | -0.92%          | 727                        | 736        |
| 9                    | 5                       | 0.98                   | 0.9745                                  | 0.9942 0.0 | 003331   | 0.007449      | 0.76%                     | -0.32%          | 773                        | 787        |
| 18                   | 5                       | 0.982                  | 0.9739                                  | 0.994 0.0  | 003708   | 0.00829       | 0.84%                     | -0.34%          | 774                        | 788        |
| 35                   | 5                       | 0.98                   | 71 0.9789                               |            | 0362     | 0.008095      | 0.82%                     | -0.85%          | 748                        | 758        |
| 76                   | 5                       | 0.974                  | 42 0.9551                               | 0.9865 0.0 | 07305    | 0.01633       | 1.68%                     | 0.47%           | 709                        | 728        |
| Graphics             | 20 30                   | 40 50                  | • 1 • • • • • • • • • • • • • • • • • • |            |          |               |                           |                 |                            |            |

Analyst: JU QA: EG8/18/20

| CETIS            | 5 Ana            | lytical Repo                   | ort       |                  |                                   |               |          |             | Report Date:<br>Fest Code:         |         | -         | 3:36 (p 2 of 2<br>11-6319-618 |
|------------------|------------------|--------------------------------|-----------|------------------|-----------------------------------|---------------|----------|-------------|------------------------------------|---------|-----------|-------------------------------|
| Bivalve          | e Larva          | I Survival and D               | evelopmen | t Test           |                                   |               |          |             |                                    | Nautilu | s Enviror | nmental (CA                   |
| Analys<br>Analyz |                  | 17-4635-1121<br>17 Aug-20 8:36 |           | point:<br>lysis: | Survival Rate<br>Linear Interpola | ation (ICPIN) |          |             | CETIS Version:<br>Official Results |         | .8.7      |                               |
| Linear           | Interpo          | plation Options                |           |                  | · · · · ·                         |               |          |             |                                    |         |           |                               |
| X Tran           | sform            | Y Transform                    | n See     | d                | Resamples                         | Exp 95% (     | CL Me    | ethod       |                                    |         |           |                               |
| Linear           |                  | Linear                         | 7729      | 937              | 1000                              | Yes           |          | /o-Point Ir | terpolation                        |         |           |                               |
| Point E          | Estimat          | es                             |           |                  |                                   |               |          |             |                                    |         |           |                               |
| Level            | %                | 95% LCL                        | 95% UCL   | TU               | 95% LCL                           | 95% UCL       |          |             |                                    |         |           |                               |
| EC25             | >76              | N/A                            | N/A       | <1.31            | 6 NA                              | NA            |          |             |                                    |         |           |                               |
| EC50             | >76              | N/A                            | N/A       | <1.31            | 6 NA                              | NA            |          |             |                                    |         |           |                               |
| Surviva          | al Rate          | Summary                        |           |                  |                                   | Calcula       | ated Var | riate(A/B)  |                                    |         |           |                               |
| C-%              | C                | Control Type                   | Count     | Mean             | Min                               | Max           | Std Err  | Std D       | ev CV%                             | %Effect | Α         | в                             |
| 0                | E                | Brine Control                  | 5         | 0.910            | 0.8491                            | 1             | 0.02878  | 3 0.064     | 35 7.07%                           | 0.0%    | 724       | 795                           |
| 2                |                  |                                | 5         | 0.958            | 5 0.8868                          | 1             | 0.02157  | 7 0.048     | 23 5.03%                           | -5.25%  | 762       | 795                           |
| 4                |                  |                                | 5         | 0.924            | 5 0.8805                          | 1             | 0.02095  | 5 0.046     | 85 5.07%                           | -1.52%  | 735       | 795                           |
| 9                |                  |                                | 5         | 0.966            | 0.8616                            | 1             | 0.02636  | 6 0.058     | 93 6.1%                            | -6.08%  | 768       | 795                           |
| 18               |                  |                                | 5         | 0.966            | 0.8868                            | 1             | 0.02101  | 0.046       | 98 4.86%                           | -6.08%  | 768       | 795                           |
| 35               |                  |                                | 5         | 0.945            | 9 0.8491                          | 1             | 0.03142  | 2 0.070     | 26 7.43%                           | -3.87%  | 752       | 795                           |
| 76               |                  |                                | 5         | 0.915            | 0.8553                            | 0.9811        | 0.02129  | 0.047       | 61 5.2%                            | -0.55%  | 728       | 795                           |
| Graphi           | ics              |                                |           |                  |                                   |               |          |             |                                    |         |           |                               |
|                  | <sup>10</sup> Fo |                                |           |                  |                                   |               |          |             |                                    |         |           |                               |
|                  | 0.9              | r                              |           |                  | •                                 |               |          |             |                                    |         |           |                               |
|                  | 08               |                                |           |                  |                                   |               |          |             |                                    |         |           |                               |
|                  | 0.7              |                                |           |                  |                                   |               |          |             |                                    |         |           |                               |
|                  | Ē                |                                |           |                  |                                   |               |          |             |                                    |         |           |                               |
| urvival Rate     | 0.6              |                                |           |                  |                                   |               |          |             |                                    |         |           |                               |
| Survh            | 0.5              |                                |           |                  |                                   |               |          |             |                                    |         |           |                               |
|                  | 0.4              |                                |           |                  |                                   |               |          |             |                                    |         |           |                               |
|                  | 0.3              |                                |           |                  |                                   |               |          |             |                                    |         |           |                               |
|                  | Ē                |                                |           |                  |                                   |               |          |             |                                    |         |           |                               |
|                  | 02               |                                |           |                  |                                   |               |          |             |                                    |         |           |                               |
|                  | 0.1              |                                |           |                  |                                   |               |          |             |                                    |         |           |                               |
|                  | E.               | ليتتجلب                        |           |                  | ليتماممنك                         |               |          |             |                                    |         |           |                               |
|                  | 00               | 10 20 3                        | 80 40     | 50               | 60 70 80                          |               |          |             |                                    |         |           |                               |

C-%

QA: EL 8/8/20

### **CETIS Test Data Worksheet**

### **Bivalve Larval Survival and Development Test**

Nautilus Environmental (CA)

| Start Date:<br>End Date:<br>Sample Date: | 17 J | lul-20<br>lul-20<br>lul-20 |     | Species:<br>Protocol:<br>Material: | Mytilus galloprovi<br>EPA/600/R-95/13<br>Effluent Sample |           |            | Sample Code:<br>Sample Source:<br>Sample Station: |        |
|------------------------------------------|------|----------------------------|-----|------------------------------------|----------------------------------------------------------|-----------|------------|---------------------------------------------------|--------|
| C-%                                      | Code | Rep                        | Pos | Initial Density                    | Final Density                                            | # Counted | # Normal   |                                                   | Notes  |
|                                          |      |                            | 31  |                                    |                                                          | 157       | 154        | JU                                                | 8/6/20 |
|                                          |      |                            | 32  |                                    |                                                          | 135       | 135        | 74                                                | 1      |
|                                          |      |                            | 33  |                                    |                                                          | 143       | 140        |                                                   |        |
|                                          |      |                            | 34  |                                    |                                                          | 136       | 134        |                                                   |        |
|                                          |      |                            | 35  |                                    |                                                          | 157       | 155        |                                                   |        |
|                                          |      |                            | 36  |                                    |                                                          | 149       | 145        |                                                   |        |
|                                          |      |                            | 37  |                                    |                                                          | 135       | 132        |                                                   |        |
|                                          |      |                            | 38  |                                    |                                                          | 137       | 134        |                                                   |        |
|                                          |      |                            | 39  |                                    |                                                          | 172       | 172        |                                                   |        |
|                                          |      |                            | 40  |                                    |                                                          | 172       | 168        |                                                   |        |
|                                          |      |                            | 41  |                                    |                                                          | 148       | 146        |                                                   |        |
|                                          |      |                            | 42  |                                    |                                                          | 173       | 172        |                                                   |        |
|                                          |      |                            | 43  |                                    |                                                          | 144       | 143        |                                                   |        |
|                                          |      |                            | 44  |                                    |                                                          | 152       | 148        |                                                   |        |
|                                          |      |                            | 45  |                                    |                                                          | 169       | 166        |                                                   |        |
|                                          |      |                            | 46  |                                    |                                                          | 157       | 153        | · · · · · · · · · · · · · · · · · · ·             |        |
|                                          |      |                            | 47  |                                    |                                                          | 140       | 136        |                                                   |        |
|                                          |      |                            | 48  |                                    |                                                          | 144       | 142        |                                                   |        |
|                                          |      |                            | 49  |                                    |                                                          | 148       | 145        |                                                   |        |
|                                          |      |                            | 50  |                                    |                                                          | 156       | 154        |                                                   |        |
|                                          |      |                            | 51  |                                    |                                                          | 165       | 162        |                                                   |        |
|                                          |      |                            | 52  |                                    |                                                          | 160       | 159        |                                                   |        |
|                                          |      |                            | 53  |                                    |                                                          | 141       | 135        |                                                   |        |
|                                          |      |                            | 54  |                                    |                                                          | 159       | 157        |                                                   |        |
|                                          |      |                            | 55  |                                    |                                                          | 140       | 140        |                                                   |        |
|                                          |      |                            | 56  |                                    |                                                          | 153       | 149        |                                                   |        |
|                                          |      |                            | 57  |                                    |                                                          | 162       | 159        |                                                   |        |
|                                          |      |                            | 58  |                                    |                                                          | 165       | 151        |                                                   |        |
|                                          |      |                            | 59  |                                    |                                                          | 147       | 145        |                                                   |        |
|                                          |      |                            | 60  |                                    |                                                          | 147       | 139        |                                                   |        |
|                                          | 1    |                            | 61  |                                    |                                                          | 164       | 161        | · · · · · · · · · · · · · · · · · · ·             |        |
|                                          |      |                            | 62  |                                    |                                                          | 156       | 153        |                                                   |        |
|                                          |      |                            | 63  |                                    |                                                          |           | 153        |                                                   |        |
|                                          |      |                            | 64  |                                    |                                                          | 156       | 149        |                                                   |        |
|                                          |      |                            | 65  |                                    |                                                          | 156       |            |                                                   |        |
|                                          |      |                            | 66  |                                    |                                                          | 141       | 165        |                                                   |        |
|                                          |      |                            | 67  |                                    |                                                          | 138       | 138<br>134 |                                                   |        |
|                                          |      |                            | 68  |                                    |                                                          | 157       | 154        |                                                   |        |
|                                          |      |                            | 69  |                                    |                                                          |           |            |                                                   |        |
|                                          |      |                            | 70  |                                    |                                                          | 141       | 140<br>129 |                                                   |        |

Analyst: JCL QA: AC8/6/20

### **CETIS Test Data Worksheet**

#### **Bivalve Larval Survival and Development Test**

Nautilus Environmental (CA)

| t Date:<br>Date:<br>ple Date | 17 、 | lul-20<br>lul-20<br>lul-20 |          | Species:<br>Protocol:<br>Material: | Mytilus galloprovi<br>EPA/600/R-95/13<br>Effluent Sample |           |          | Sample Code: 20- ク <i>구구の</i><br>Sample Source: Jacobs<br>Sample Station: Wyckoff |
|------------------------------|------|----------------------------|----------|------------------------------------|----------------------------------------------------------|-----------|----------|-----------------------------------------------------------------------------------|
| C-%                          | Code | Rep                        | Pos      | Initial Density                    | Final Density                                            | # Counted | # Normal | Notes                                                                             |
| 0                            | BC   | 1                          | 37       |                                    |                                                          | 144       | (41      | DM 7/18/20                                                                        |
| 0                            | BC   | 2                          | 67       |                                    |                                                          | 1         |          |                                                                                   |
| 0                            | BC   | 3                          | 47       |                                    |                                                          |           |          |                                                                                   |
| 0                            | BC   | 4                          | 44       |                                    |                                                          |           |          |                                                                                   |
| 0                            | BC   | 5                          | 39       |                                    |                                                          |           |          |                                                                                   |
| 0                            | LC   | 1                          | 58       |                                    |                                                          | 172       | 168      |                                                                                   |
| 0                            | LC   | 2                          | 70       |                                    |                                                          |           |          |                                                                                   |
| 0                            | LC   | 3                          | 48       | 1                                  |                                                          |           |          |                                                                                   |
| 0                            | LC   | 4                          | 63       |                                    |                                                          |           |          |                                                                                   |
| 0                            | LC   | 5                          | 45       |                                    |                                                          |           |          |                                                                                   |
| 2                            |      | 1                          | 31       |                                    |                                                          | 164       | 162      |                                                                                   |
| 2                            |      | 2                          | 68       |                                    |                                                          |           |          |                                                                                   |
| 2                            |      | 3                          | 57       |                                    |                                                          |           |          |                                                                                   |
| 2                            |      | 4                          | 49       |                                    |                                                          |           |          |                                                                                   |
| 2                            |      | 5                          | 69       |                                    |                                                          |           |          |                                                                                   |
| 4                            |      | 1                          | 52       |                                    |                                                          | 172       | 171      |                                                                                   |
| 4                            |      | 2                          | 55       |                                    |                                                          |           |          |                                                                                   |
| 4                            |      | 3                          | 33       |                                    |                                                          |           |          |                                                                                   |
| 4                            |      | 4                          | 36       |                                    |                                                          |           |          |                                                                                   |
| 4                            |      | 5                          | 43       |                                    |                                                          |           |          |                                                                                   |
| 9                            |      | 1                          | 61       |                                    |                                                          | 153       | (50      |                                                                                   |
| 9                            |      | 2                          | 62       |                                    |                                                          |           |          |                                                                                   |
| 9                            |      | 3                          | 38       |                                    |                                                          |           |          |                                                                                   |
| 9                            |      | 4                          | 46       |                                    |                                                          |           |          |                                                                                   |
| 9                            |      | 5                          | 42       |                                    |                                                          |           |          |                                                                                   |
| 18                           |      | 1                          | 50       |                                    |                                                          | 158       | 155      |                                                                                   |
| 18                           |      | 2                          | 65       |                                    |                                                          |           |          |                                                                                   |
| 18                           |      | 3                          | 40       |                                    |                                                          |           |          |                                                                                   |
| 18                           |      | 4                          | 66       |                                    |                                                          |           |          |                                                                                   |
| 18                           |      | 5                          | 56       |                                    |                                                          |           |          |                                                                                   |
| 35<br>35                     |      | 1                          | 51<br>54 |                                    |                                                          | 176       | 173      |                                                                                   |
| 35                           |      | 2<br>3                     | 54<br>60 |                                    |                                                          |           |          |                                                                                   |
| 35                           |      | 4                          | 32       |                                    |                                                          |           |          |                                                                                   |
| 35                           |      | 4                          | 32<br>35 |                                    |                                                          |           |          |                                                                                   |
| 55<br>6 75.1                 |      | 5                          | 53       |                                    |                                                          | 14-       | 141      |                                                                                   |
|                              |      | 2                          | 53<br>64 |                                    |                                                          | 145       | 141      | DM 7/18/20                                                                        |
| 6 75.1                       |      | 2                          | 41       |                                    |                                                          |           |          |                                                                                   |
| 6 75.1<br>6 75.1             | -    | 4                          | 34       |                                    |                                                          |           |          |                                                                                   |
|                              |      | 5                          | 59       |                                    | -                                                        |           |          |                                                                                   |
| 6 75.1 B                     |      | 3                          | 55       |                                    |                                                          |           |          |                                                                                   |

CETIS™ v1.8.7.20

Analyst: AT QA: ACS/ 6/20

# Marine Chronic Bioassay DM-014

Client: JACOBS

Sample ID: Wyckoff

Sample Log No.: 20- 0770

Test No.: 2007-S 659

### Water Quality Measurements

| Test Species:    |         |      |
|------------------|---------|------|
| Start Date/Time: | 7/15/20 | 1355 |
| End Date/Time:   | 7/17/20 | 1310 |

| Concentration |      | Salinity |      | T     | emperatu | re   | Diss | olved Ox | ygen |      | рН        |      |
|---------------|------|----------|------|-------|----------|------|------|----------|------|------|-----------|------|
| (% sample)    |      | (ppt)    |      |       | (°C)ΰ(∖  |      |      | (mg/L)   |      |      | (pH units | )    |
|               | 0    | 24       | 48   | 0     | 24       | 48   | 0    | 24       | 48   | 0    | 24        | 48   |
| Lab Control   | 36.1 | 29.7     | 29.6 | 16.0  | 16.1     | 15.6 | 8,5  | 8.2      | 8.4  | 8.11 | 225       | 7.80 |
| Brine Control | 30.4 | 30.0     | 30.3 | 15.80 | 15.9     | 15.4 | 7.9  | 8.1      | 8.5  | 8.17 | Tiet      | 7.82 |
| 2             | 30.1 | 29.9     | 30.2 | 16.0  | B10.0    | 15.4 | 8,1  | 8.2      | 8.4  | 8.09 |           | 7.81 |
| 4             | 30.2 | 29.9     | 30.2 | 16.0  | 15.8     | 15.4 | 8.3  | 8.1      | 8.4  | 8.67 | 8.00      | 7.84 |
| 9             | 30.2 | 29.9     | 30.2 | 160   | 16.1     | 15.6 | 8.3  | 8.1      | 8.4  | 860  | 1-76      | 7.85 |
| 18            | 30.2 | 29.8     | 30.2 | 16.0  | 16.1     | 15.5 | 8.3  | 8.1      | 8.4  | 7.90 | 8.06 F.   | 7.91 |
| 35            | 30.1 | 29.8     | 30.2 | 16.0  | 16.1     | 15.5 | 8.3  | 8-1      | 8.4  | 7-83 | 8.06      | 7.97 |
| 76            | 30.1 | 29.8     | 30.2 | 16.0  | 16.0     | 15.6 | 8.2  | 8.6      | 8.3  | 7,77 | 8.04      | 8.03 |
|               |      |          |      |       |          |      |      |          |      | ,    |           |      |
|               |      |          |      |       |          |      |      |          |      |      |           |      |
|               |      |          |      |       |          | •.   |      |          |      |      |           |      |

| Technician Initials: | 0     24     48       WQ Readings:     EQ     FL     GP       Dilutions made by:     FT     Image: Construction of the second seco | onmental Chamber:              |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Comments:            | 0 hrs: (Aremprature measured using Surrog 4 4 vial RT 7/15/20<br>24 hrs: BOIBHL7/16/20<br>48 hrs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                              |
| QC Check:            | EG 7/17/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Review: <u>AC 816120</u> |

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

| Marine Chr<br>DC-010        | onic Bioassay |          |                           | Brine Dilution Worksheet     |
|-----------------------------|---------------|----------|---------------------------|------------------------------|
| Project:                    | JACOBS        |          | _ Analys                  | st: EG/RT                    |
| Sample ID:                  | Wyckoff       |          | _ Test Da                 | te: 7/15/2020                |
| Test No:                    | 2007-SOS9     |          | Test Ty                   | pe: Mussel Development       |
| Salinity of Ef              | fluent        | 8.8      | _                         |                              |
| Salinity of Br              | ine           | 97.2     | _ Date of Brine use       | ed: <u>6/9/2020</u>          |
| Target Salini               | ty            | 30       | Alkalinity of Brine Contr | rol: <u>15</u> mg/L as CaCO3 |
| Test Dilution               | Volume        | 250      | -                         |                              |
|                             |               | Effluent | Brine Control             |                              |
| (TS - SE)/(SB<br>TS = targe |               | 0.32     | 0.45                      |                              |

SB = salinity of brine

| Concentration<br>% | Effluent<br>Volume<br>(ml) | Salinity<br>Adjustment<br>Factor | Brine<br>Volume<br>(ml) | Dilute<br>to:<br>(ml) |
|--------------------|----------------------------|----------------------------------|-------------------------|-----------------------|
| Control            | NA                         | NA                               | NA                      | 250                   |
| 2                  | 5.0                        | 0.32                             | 1.6                     | 250                   |
| 4                  | 10.0                       | 0.32                             | 3.2                     | 250                   |
| 9                  | 22.5                       | 0.32                             | 7.1                     | 250                   |
| 18                 | 45.0                       | 0.32                             | 14.2                    | 250                   |
| 35                 | 87.5                       | 0.32                             | 27.6                    | 250                   |
| 76.0               | 190.0                      | 0.32                             | 60.0                    | 250                   |

|               | DI Volume |      |      |     |
|---------------|-----------|------|------|-----|
| Brine Control | 134.3     | 0.45 | 60.0 | 250 |

Total Brine Volume Required (ml): 173.5

QC Check: RT 7/18/20

Final Review: <u>AC 816/2</u>0

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120

# Marine Chronic Bioassay DM-013

| Client/Sample:     | JACOBS/Wyckoff            |
|--------------------|---------------------------|
| Test No.:          | 2007-5059                 |
| Test Species:      | Mytilus galloprovincialis |
| Animal Source/Batc | hTank: M-rep/3A           |
| Date Received:     | 4/21/20                   |
| Test Chambers:     | 30 mL glass shell vials   |
| Sample Volume:     | 10 mL                     |

1007

#### Larval Development Worksheet

| Start Date/Time:     | 7/15 | 5/2020 | 1355 |  |
|----------------------|------|--------|------|--|
| End Date/Time:       | 7/17 | 7/2020 | 1310 |  |
| Technician Initials: | EG   | RT     |      |  |

#### Spawn Information

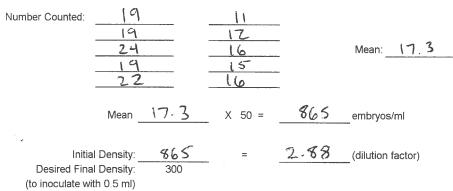
First Gamete Release Time:

### Gamete Selection

| Sex    | Number Spawning |
|--------|-----------------|
| Male   | 3               |
| Female | 3+              |

| Sex      | Beaker<br>Number(s) | Condition (sperm motility, egg density, color, shape,<br>etc.) |
|----------|---------------------|----------------------------------------------------------------|
| Male     | 1,2                 | Ok density + Motility                                          |
| Female 1 | 2                   | grood density pale color, mostly rom                           |
| Female 2 | 3                   | good density, overeishedor, mostly non                         |
| Female 3 | -                   |                                                                |

Egg Fertilization Time: 1105


#### Embryo Stock Selection

| Stock Number | % of embryos at 2-cell division<br>stage |  |  |
|--------------|------------------------------------------|--|--|
| Female 1     | 99                                       |  |  |
| Female 2     | 100                                      |  |  |
| Female 3     |                                          |  |  |

| Stock(s) chosen for testing | j: { |
|-----------------------------|------|
|-----------------------------|------|

### Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos



Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

#### **Time Zero Control Counts**

| TØ Vial<br>No.    | No. Dividing | Total | % Dividing | Mean %<br>Dividing |
|-------------------|--------------|-------|------------|--------------------|
| TØA               | 179          | 181   | 98.9       |                    |
| TØ B <sup>.</sup> | 139          | 139   | 100        |                    |
| тøс               | 166          | 166   | 100        | 99.8               |
| тød               | 167          | 167   | 100        | 1 17 -             |
| TØE               | 147          | 147   | 100        |                    |
| TØ F              | 155          | 155   | 100        |                    |
| <u>X</u> =        | 159          |       |            |                    |

## 48-h QC: 133/136 = 97.8%

Comments:

QC Check:

RT 7/18/20

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Final Review: ACS/6/20

Appendix B Sample Check-In Information

| Enthalpy Analytical<br>4340 Vandever Avenu |                                              | Client:                       | JACO               |                   | Harbor Gwt       | Sample Check-In Information                                    |
|--------------------------------------------|----------------------------------------------|-------------------------------|--------------------|-------------------|------------------|----------------------------------------------------------------|
| San Diego, CA 92120                        | -                                            | Sample ID:<br>Test ID No(s).: |                    |                   | THAT DOT GWI     | Sample Description:                                            |
|                                            |                                              |                               |                    |                   |                  | A: colortesspear, odortess, no debris                          |
|                                            | Sample (A, B, C):                            | A                             |                    |                   |                  |                                                                |
|                                            | Log-in No. (20-xxxx):                        | 0770                          |                    |                   |                  | · · · · · ·                                                    |
| Sar                                        | nple Collection Date & Time:                 | 7/14/20 0936                  |                    |                   |                  | COC Complete (Y/N)?                                            |
| 5                                          | Sample Receipt Date & Time:                  |                               |                    |                   |                  | ABC                                                            |
| Number of C                                | ontainers & Container Type:                  | 1,1Laubi                      |                    |                   |                  |                                                                |
| Approx                                     | . Total Volume Received (L):                 | ~                             |                    |                   |                  | Filtration? Y N                                                |
|                                            | Check-in Temperature (°C)                    | 5.0                           |                    |                   |                  | Initials: A) B) C)                                             |
|                                            | Temperature OK? <sup>1</sup>                 | Y N                           | Y N                | Y N               | Y N              | Pore Size:                                                     |
|                                            | DO (mg/L)                                    | 7.4                           |                    |                   |                  | Organisms or Debris                                            |
|                                            | pH (units)                                   | 7.38                          |                    |                   |                  | Salinity Adjustment? 🕢 N                                       |
|                                            | Conductivity (µS/cm)                         | @ +14120                      |                    |                   |                  | Test: Mussel Source: Brill Target ppt: 30                      |
|                                            | Salinity (ppt)                               | 8.8                           |                    |                   |                  | Test: Source: Target ppt:                                      |
|                                            | Alkalinity (mg/L) <sup>2</sup>               | 396                           |                    |                   |                  | Test: Source: Target ppt:                                      |
|                                            | Hardness (mg/L) <sup>2, 3</sup>              | )                             |                    |                   |                  | pH Adjustment? Y (N)                                           |
|                                            | Total Chlorine (mg/L)                        | 0.02                          |                    |                   |                  | A C                                                            |
|                                            | Technician Initials                          | ¥L                            |                    |                   |                  | Initial pH:                                                    |
|                                            |                                              |                               |                    |                   |                  | Amount of HCI added:                                           |
| Test Performed:                            | MUSSE Development<br>dditional Control? OP N | Control/Dilution Wat          | ter: 8:2 / J=ar    |                   | Other:           | Final pH:                                                      |
|                                            |                                              | Alkalinity: 101               | Hardness o         | r Salinity: 3000+ |                  | Cl <sub>2</sub> Adjustment? Y N                                |
| A                                          | dditional Control? 🔗 N                       | = Brine A                     | Ikalinity: 95      | Hardness or S     | Salinity: 30 pp+ | АВС                                                            |
|                                            |                                              |                               |                    |                   | //               | Initial Free Cl <sub>2</sub> :                                 |
| Test Performed:                            |                                              | Control/Dilution Wat          | ter: 8:2 / La      | bSW / LabART      | Other:           | STS added:                                                     |
|                                            |                                              | Alkalinity:                   | Hardness o         | r Salinity:       |                  | Final Free Cl <sub>2</sub> :                                   |
| A                                          | dditional Control? Y N                       | = A                           | Ikalinity:         | Hardness or S     | Salinity:        |                                                                |
|                                            |                                              |                               |                    |                   |                  | Sample Aeration? Y(N)                                          |
| Test Performed:                            |                                              | Control/Dilution Wat          | ter: 8:2 / La      | b SW / Lab ART    | Other:           | ABC                                                            |
|                                            |                                              | Alkalinity:                   |                    |                   | _                | Initial D.O.                                                   |
| A                                          | dditional Control? Y N                       | =A                            | kalinity:          | Hardness or S     | Salinity:        | Duration & Rate                                                |
|                                            |                                              |                               |                    |                   |                  | Final D.O.                                                     |
|                                            | Temperature of sample should                 |                               |                    |                   | ne.              |                                                                |
|                                            | mg/L as CaCO3, <sup>3</sup> Measured f       | or freshwater samples         | s only, NA = Not / | Applicable        |                  | Subsamples for Additional Chemistry Required?                  |
| Additional Comments:                       | ADDIEKL 7/16/-                               | 26                            |                    |                   |                  | Tech Initials AFL BC                                           |
|                                            | a and the                                    |                               |                    |                   |                  |                                                                |
|                                            |                                              |                               |                    |                   |                  | QC Check: <u><b>RT 7/18/20</b></u><br>Final Review: Ac 8 (6/20 |
|                                            |                                              |                               |                    |                   |                  | Final Review: AC 816/20                                        |

### **Overlying Water**

y

### **Total Ammonia Analysis**

Freshwater

|                                                                   | :: JACOBS                                 |                                  |                 | ······                  |                     | _                                         |
|-------------------------------------------------------------------|-------------------------------------------|----------------------------------|-----------------|-------------------------|---------------------|-------------------------------------------|
|                                                                   | : Mussel Dev                              | elopment                         |                 |                         |                     | _                                         |
|                                                                   | : 0.0                                     | _                                | A               | Analyst<br>nalysis Date | : 7/21/20           | -                                         |
|                                                                   | Enthalpy                                  | Sub-Sample                       | Test            | NH3-N                   | N x 1.22<br>Ammonia | 7                                         |
| Sample ID                                                         | ID                                        | Date                             | Day             | (mg/L)                  | (mg/L)              | 4                                         |
| Blank Spike (10 mg/L NH <sub>3</sub> )                            |                                           | NA                               | NA              | 9.5                     | 11.6                | -                                         |
| Wyckoff                                                           | 20- 0770                                  | 7/15/2020                        | Check In        | 3.3                     | 4.0                 |                                           |
| Spike Check (10 mg/L NH3)                                         |                                           | NA                               | NA              |                         |                     | -                                         |
|                                                                   |                                           |                                  |                 |                         |                     | -                                         |
| Batch QA Sample                                                   | 20-0971                                   |                                  |                 | 36.7                    | 44.8                |                                           |
| Sample Duplicate <sup>a</sup>                                     | 20-0971                                   | NA                               | NA              | 36.3                    | 44.3                | -                                         |
| Sample Duplicate + Spike <sup>a</sup>                             |                                           | NA                               | NA              | 43.3                    | 52.8                | -                                         |
| Spike Check (10 mg/L NH <sub>3</sub> )                            |                                           | NA                               | NA              | 9.5                     | 11.6                | -                                         |
| <u>Relative Percent Difference (</u><br><u>Percent Recovery =</u> | [average ammor                            | nia] (mg/L)<br>(mg/L) - [sample] |                 | ) x 100<br>Nominal      | Acceptable Ra       | ange: 0-20%<br>ange: 80-120% <sup>b</sup> |
| QC Sample ID                                                      | [NH <sub>3</sub> ]                        | [Sample Dup]                     | [Spike]         | [Spike]                 | RPD                 | % Recovery                                |
| Blank                                                             | 0.0                                       | NA                               | 11.6            | 10                      | NA                  | 116                                       |
| Batch QA Sample                                                   | 44.8                                      | 44.3                             | 52.8            | 10                      | 1.1                 | 80                                        |
| Comments:                                                         | covery applies only<br>due to one or both | / to the blank spik              | e. Spike recove | eries in samples        |                     |                                           |
| QC Check: PT 3/15/20                                              | i mg/L                                    |                                  |                 | Final Review:           | BO 8/1.             | 5 20                                      |
| Enthalpy Analytical. 4340 Vandever Avenue                         | . San Diego, CA 921                       | 20.                              |                 |                         | <u> </u>            |                                           |

Appendix C Chain-of-Custody Form Page 1 of 1

### Enthalpy Analytical (REGION COPY)

DateShipped: 7/14/2020 CarrierName: FedEx AirbillNo: 7709 4990 2064

### Jacobs, Wyckoff-Wyckoff Eagle Harbor GWTP 2020/WA Project Code: WEH-029P Cooler #: 1 of 1

### No: 10-071420-101314-0479

2020T10P000DD210W2LA00 Contact Name: Keith Allers Contact Phone: 206-780-1711

| Sample Identifier | CLP<br>Sample No. | Matrix/Sampler            | Coll.<br>Method | Analysis/Turnaround<br>(Days) | Tag/Preservative/Bottles | Location | Collection<br>Date/Time | Sample Type  |
|-------------------|-------------------|---------------------------|-----------------|-------------------------------|--------------------------|----------|-------------------------|--------------|
| 071420            |                   | Ground Water/<br>K.Allers | Composite       | CHRTOX(8 Weeks)               | (< 6 C) (1)              | SP-11    | 07/14/2020<br>OG:36     | Field Sample |
|                   |                   |                           |                 |                               |                          |          |                         |              |
|                   |                   |                           |                 |                               |                          |          |                         |              |
|                   |                   |                           |                 |                               |                          |          |                         |              |
|                   |                   |                           |                 |                               |                          |          |                         |              |
|                   |                   |                           |                 |                               |                          |          |                         |              |
|                   |                   |                           |                 |                               |                          |          |                         |              |
|                   |                   |                           |                 |                               |                          |          |                         |              |
|                   |                   |                           |                 |                               |                          |          | ,                       |              |
|                   |                   |                           |                 |                               |                          |          |                         |              |
|                   |                   |                           |                 |                               |                          |          | -                       |              |
|                   |                   |                           |                 |                               |                          |          |                         |              |
|                   |                   |                           |                 |                               |                          | ·        |                         |              |
|                   |                   |                           |                 |                               |                          |          |                         |              |
|                   |                   |                           |                 |                               |                          |          |                         |              |
|                   |                   |                           |                 |                               |                          |          |                         |              |
|                   |                   |                           |                 |                               |                          |          |                         |              |

|                                       | Shipment for Case Complete? N               |
|---------------------------------------|---------------------------------------------|
| Special Instructions:                 | Samples Transferred From Chain of Custody # |
|                                       |                                             |
| Analysis Key: CHRTOX=Chronic Toxicity |                                             |

| Items/Reason | Relinquished by (Signature and Organization) | Date/Time | Received by (Signature and Organization) | Date/Time         | Sample Condition Upon Receipt |
|--------------|----------------------------------------------|-----------|------------------------------------------|-------------------|-------------------------------|
|              | Knoth aller - JACOBS                         | 1020      | Milfer Nautilus                          | 7/15/2020<br>0915 |                               |
|              |                                              |           |                                          |                   |                               |
|              |                                              |           |                                          |                   |                               |
|              |                                              |           |                                          |                   |                               |

Recipt temp: 5.0°C Nautilus ID: 20-0770 Appendix D List of Qualifier Codes



### **Glossary of Qualifier Codes:**

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was  $\leq 110\%$
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% mortality observed upon receipt and/or in holding prior to test initiation. Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test organisms received at a <u>temperature</u> greater than 3°C outside the recommended test temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.

Appendix E Reference Toxicant Test Results

### **CETIS Summary Report**

12 Aug-20 11:56 (p 1 of 3) 200715msdv | 17-4780-3294

| Bivalve Larva                                                                | I Survival and Developr                          | nent Test                                      |                                                                 |                                      |                                         |       |                | Nautilus Environmental (CA                                     |
|------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------|-----------------------------------------|-------|----------------|----------------------------------------------------------------|
| Batch ID:<br>Start Date:<br>Ending Date:<br>Duration:                        | 15 Jul-20 13:55 F<br>17 Jul-20 13:10 S           | Fest Type:<br>Protocol:<br>Species:<br>Source: | Development-<br>EPA/600/R-95<br>Mytilus gallop<br>M-Rep, Carlst | 5/136 (1995)<br>rovincialis          |                                         |       |                | luted Natural Seawater<br>ot Applicable                        |
| Sample ID:                                                                   | 04-7267-3004                                     | Code:                                          | 200715msdv                                                      |                                      |                                         |       | Client: Int    | ernal                                                          |
| Sample Date:                                                                 | 15 Jul-20                                        | Naterial:                                      | Copper chlorid                                                  | le                                   |                                         |       | Project:       |                                                                |
| Receive Date:                                                                | 15 Jul-20 🗧                                      | Source:                                        | Reference To:                                                   | kicant                               |                                         |       |                |                                                                |
| Sample Age:                                                                  | 14h S                                            | Station:                                       | Copper Chlori                                                   | de                                   |                                         |       |                |                                                                |
| Comparison S                                                                 | Summary                                          |                                                |                                                                 |                                      |                                         |       |                |                                                                |
| Analysis ID                                                                  | Endpoint                                         | NOEL                                           | LOEL                                                            | TOEL                                 | PMSD                                    | τυ    | Method         |                                                                |
| 14-5603-4025                                                                 | Combined Developmen                              | t Ra 10                                        | 20                                                              | 14.14                                | 10.2%                                   |       | Dunnett        | Multiple Comparison Test                                       |
| 19-8463-7267                                                                 | Development Rate                                 | 5                                              | 10                                                              | 7.071                                | 2.41%                                   |       | Dunnett        | Multiple Comparison Test                                       |
| 01-3736-1147                                                                 | Survival Rate                                    | 20                                             | 40                                                              | 28.28                                | 11.4%                                   |       | Dunnett        | Multiple Comparison Test                                       |
| Point Estimate                                                               | e Summary                                        |                                                |                                                                 |                                      |                                         | ***** |                |                                                                |
| Analysis ID                                                                  | Endpoint                                         | Level                                          | μg/L                                                            | 95% LCL                              | 95% UCL                                 | τu    | Method         |                                                                |
| 11-0488-5403                                                                 | Combined Developmen                              | t Ra EC25<br>EC50                              | 11.24<br>14.16                                                  | 10.31<br>13.54                       | 12.09<br>14.73                          |       | Linear Ir      | terpolation (ICPIN)                                            |
| 14-0926-7215                                                                 | Development Rate                                 | EC25                                           | 10.9                                                            | 10.08                                | 11.53                                   |       | Linear Ir      | terpolation (ICPIN)                                            |
|                                                                              |                                                  | EC50                                           | 13.94                                                           | 13.39                                | 14.36                                   |       |                | ,                                                              |
| 14-7805-7540                                                                 | Survival Rate                                    | EC25                                           | >40                                                             | N/A                                  | N/A                                     |       | Linear Ir      | terpolation (ICPIN)                                            |
|                                                                              |                                                  |                                                |                                                                 |                                      |                                         |       |                |                                                                |
|                                                                              |                                                  | EC50                                           | >40                                                             | N/A                                  | N/A                                     |       |                |                                                                |
| Test Acceptab                                                                | bility                                           | EC50                                           | >40                                                             | N/A                                  | N/A                                     |       |                |                                                                |
| •                                                                            | ility<br>Endpoint                                | EC50                                           |                                                                 | N/A<br>Test Stat                     |                                         | ts    | Overlap        | Decision                                                       |
| Analysis ID                                                                  | 2                                                | Attrib                                         |                                                                 |                                      |                                         | ts    | Overlap<br>Yes | Decision<br>Passes Acceptability Criteria                      |
| Analysis ID<br>14-0926-7215                                                  | Endpoint                                         | Attrib<br>Contro                               | ute                                                             | Test Stat                            | TAC Limi                                | ts    | -              |                                                                |
| Test Acceptab<br>Analysis ID<br>14-0926-7215<br>19-8463-7267<br>01-3736-1147 | Endpoint<br>Development Rate                     | Attrib<br>Contro<br>Contro                     | ute<br>bl Resp                                                  | <b>Test Stat</b><br>0.9869           | TAC Limi<br>0.9 - NL                    | ts    | Yes            | Passes Acceptability Criteria                                  |
| Analysis ID<br>14-0926-7215<br>19-8463-7267                                  | Endpoint<br>Development Rate<br>Development Rate | Attrib<br>Contro<br>Contro<br>Contro           | ute<br>bl Resp<br>bl Resp                                       | <b>Test Stat</b><br>0.9869<br>0.9869 | <b>TAC Limi</b><br>0.9 - NL<br>0.9 - NL | ts    | Yes<br>Yes     | Passes Acceptability Criteria<br>Passes Acceptability Criteria |

## **CETIS Summary Report**

Report Date: Test Code: 20

12 Aug-20 11:56 (p 2 of 3) 200715msdv | 17-4780-3294

|                                                            |                   | ****                                       |                                  |                                            |                                       |                                 | Test     | Code:    | 2007     | 15msdv   1 | 7-4780-3294 |
|------------------------------------------------------------|-------------------|--------------------------------------------|----------------------------------|--------------------------------------------|---------------------------------------|---------------------------------|----------|----------|----------|------------|-------------|
| Bivalve La                                                 | rval Survival and | Developme                                  | nt Test                          |                                            |                                       |                                 |          |          | Nautilus | s Environn | nental (CA) |
| Combined                                                   | Development Rat   | e Summary                                  |                                  |                                            |                                       |                                 |          |          |          |            |             |
| C-µg/L                                                     | Control Type      | Count                                      | Mean                             | 95% LCL                                    | 95% UCL                               | Min                             | Max      | Std Err  | Std Dev  | CV%        | %Effect     |
| 0                                                          | Lab Control       | 5                                          | 0.887                            | 0.8062                                     | 0.9678                                | 0.8239                          | 0.9695   | 0.02909  | 0.06506  | 7.33%      | 0.0%        |
| 2.5                                                        |                   | 5                                          | 0.948                            | 0.9109                                     | 0.9852                                | 0.9119                          | 0.9944   | 0.01337  | 0.0299   | 3.15%      | -6.88%      |
| 5                                                          |                   | 5                                          | 0.9525                           | 0.8925                                     | 1                                     | 0.8742                          | 0.9885   | 0.02159  | 0.04827  | 5.07%      | -7.39%      |
| 10                                                         |                   | 5                                          | 0.7944                           | 0.7146                                     | 0.8741                                | 0.7233                          | 0.8802   | 0.02874  | 0.06426  | 8.09%      | 10.44%      |
| 20                                                         |                   | 5                                          | 0                                | 0                                          | 0                                     | 0                               | 0        | 0        | 0        |            | 100.0%      |
| 40                                                         |                   | 5                                          | 0.001258                         | 0                                          | 0.00475                               | 0                               | 0.006289 | 0.001258 | 0.002813 | 223.6%     | 99.86%      |
|                                                            | ent Rate Summary  | ,                                          |                                  |                                            |                                       |                                 |          |          |          |            |             |
| C-µg/L                                                     | Control Type      | Count                                      | Mean                             | 95% LCL                                    | 95% UCL                               |                                 | Max      | Std Err  | Std Dev  | CV%        | %Effect     |
| 0                                                          | Lab Control       | 5                                          | 0.9869                           | 0.9729                                     | 1                                     | 0.9695                          | 1        | 0.005032 | 0.01125  | 1.14%      | 0.0%        |
| 2.5                                                        |                   | 5                                          | 0.9817                           | 0.9559                                     | 1                                     | 0.9471                          | 1        | 0.009274 | 0.02074  | 2.11%      | 0.52%       |
| 5                                                          |                   | 5                                          | 0.9823                           | 0.9669                                     | 0.9977                                | 0.9613                          | 0.9929   | 0.005556 | 0.01242  | 1.27%      | 0.46%       |
| 10                                                         |                   | 5                                          | 0.8115                           | 0.7426                                     | 0.8805                                | 0.7325                          | 0.8802   | 0.02483  | 0.05553  | 6.84%      | 17.77%      |
| 20                                                         |                   | 5                                          | 0                                | 0                                          | 0                                     | 0                               | 0        | 0        | 0        |            | 100.0%      |
| 40                                                         |                   | 5                                          | 0.001639                         | 0                                          | 0.006191                              | 0                               | 0.008197 | 0.001639 | 0.003666 | 223.6%     | 99.83%      |
| Survival Ra                                                | ate Summary       |                                            |                                  |                                            |                                       |                                 |          |          |          |            |             |
| C-µg/L                                                     | Control Type      | Count                                      | Mean                             | 95% LCL                                    | 95% UCL                               | Min                             | Max      | Std Err  | Std Dev  | CV%        | %Effect     |
| 0                                                          | Lab Control       | 5                                          | 0.8994                           | 0.8066                                     | 0.9921                                | 0.8302                          | 1        | 0.0334   | 0.07468  | 8.3%       | 0.0%        |
| 2.5                                                        |                   | 5                                          | 0.966                            | 0.9227                                     | 1                                     | 0.9245                          | 1        | 0.01561  | 0.0349   | 3.61%      | -7.41%      |
| 5                                                          |                   | 5                                          | 0.9698                           | 0.9065                                     | 1                                     | 0.8805                          | 1        | 0.0228   | 0.05098  | 5.26%      | -7.83%      |
| 10                                                         |                   | 5                                          | 0.9786                           | 0.9397                                     | 1                                     | 0.9245                          | 1        | 0.01401  | 0.03132  | 3.2%       | -8.81%      |
| 20                                                         |                   | 5                                          | 0.9006                           | 0.8647                                     | 0.9366                                | 0.8553                          | 0.9308   | 0.01295  | 0.02896  | 3.22%      | -0.14%      |
| 40                                                         |                   | 5                                          | 0.761                            | 0.6428                                     | 0.8792                                | 0.6415                          | 0.9057   | 0.04256  | 0.09517  | 12.51%     | 15.38%      |
| Combined                                                   | Development Rate  | e Detail                                   |                                  |                                            |                                       |                                 |          |          |          |            |             |
| C-µg/L                                                     | Control Type      | Rep 1                                      | Rep 2                            | Rep 3                                      | Rep 4                                 | Rep 5                           |          |          |          |            |             |
| 0                                                          | Lab Control       | 0.8428                                     | 0.9695                           | 0.8239                                     | 0.8553                                | 0.9434                          |          |          |          |            |             |
| 2.5                                                        |                   | 0.9371                                     | 0.9944                           | 0.9497                                     | 0.9119                                | 0.9471                          |          |          |          |            |             |
| 5                                                          |                   | 0.9811                                     | 0.9371                           | 0.8742                                     | 0.9885                                | 0.9815                          |          |          |          |            |             |
| 10                                                         |                   | 0.7233                                     | 0.7547                           | 0.8802                                     | 0.7736                                | 0.84                            |          |          |          |            |             |
| 20                                                         |                   | 0                                          | 0                                | 0                                          | 0                                     | 0                               |          |          |          |            |             |
| 40                                                         |                   | 0                                          | 0.006289                         | 0                                          | 0                                     | 0                               |          |          |          |            |             |
| Developme                                                  | nt Rate Detail    | •                                          |                                  |                                            |                                       |                                 |          |          |          |            |             |
| C-µg/L                                                     | Control Type      | Rep 1                                      | Rep 2                            | Rep 3                                      | Rep 4                                 | Rep 5                           |          |          |          |            |             |
| 0                                                          | Lab Control       | 1                                          | 0.9695                           | 0.9924                                     | 0.9855                                | 0.9868                          |          |          |          |            |             |
| 2.5                                                        |                   | 1                                          | 0.9944                           | 0.9805                                     | 0.9864                                | 0.9000                          |          |          |          |            |             |
| 5                                                          |                   | 0.9873                                     | 0.9613                           | 0.9929                                     |                                       |                                 |          |          |          |            |             |
| 10                                                         |                   |                                            |                                  |                                            | 0.9885                                | 0.9815                          |          |          |          |            |             |
| 20                                                         |                   | 0.7325                                     | 0.8163                           | 0.8802                                     | 0.7885                                | 0.84                            |          |          |          |            |             |
| 2U                                                         |                   | 0                                          | 0                                | 0                                          | 0                                     | 0                               |          |          |          |            |             |
|                                                            |                   | ^                                          |                                  |                                            | 0                                     | 0                               |          |          |          |            |             |
| 40                                                         |                   | 0                                          | 0.008197                         | 0                                          |                                       | -                               |          |          |          |            |             |
| 40<br>Survival Ra                                          |                   |                                            | 0.008197                         | 0                                          |                                       |                                 |          |          |          |            |             |
| 40<br>Survival Ra<br>C-µg/L                                | Control Type      | Rep 1                                      | Rep 2                            | Rep 3                                      | Rep 4                                 | Rep 5                           |          |          |          |            |             |
| 40<br><b>Survival Ra<br/>C-µg/L</b><br>0                   |                   | <b>Rep 1</b><br>0.8428                     |                                  | <b>Rep 3</b> 0.8302                        | <b>Rep 4</b> 0.8679                   |                                 |          |          |          |            |             |
| 40<br><b>Survival Ra</b><br><b>C-µg/L</b><br>0<br>2.5      | Control Type      | <b>Rep 1</b><br>0.8428<br>0.9371           | Rep 2                            | Rep 3                                      | Rep 4                                 | Rep 5                           |          |          |          |            |             |
| 40<br><b>Survival Ra</b><br><b>C-µg/L</b><br>0<br>2.5<br>5 | Control Type      | <b>Rep 1</b><br>0.8428                     | <b>Rep 2</b>                     | <b>Rep 3</b> 0.8302                        | <b>Rep 4</b> 0.8679                   | <b>Rep 5</b> 0.956              |          |          |          |            |             |
| 40<br><b>Survival Ra</b><br><b>C-µg/L</b><br>0<br>2.5      | Control Type      | <b>Rep 1</b><br>0.8428<br>0.9371           | <b>Rep 2</b><br>1<br>1           | <b>Rep 3</b><br>0.8302<br>0.9686           | <b>Rep 4</b><br>0.8679<br>0.9245      | <b>Rep 5</b><br>0.956<br>1      |          |          |          |            |             |
| 40<br><b>Survival Ra</b><br><b>C-µg/L</b><br>0<br>2.5<br>5 | Control Type      | <b>Rep 1</b><br>0.8428<br>0.9371<br>0.9937 | <b>Rep 2</b><br>1<br>1<br>0.9748 | <b>Rep 3</b><br>0.8302<br>0.9686<br>0.8805 | <b>Rep 4</b><br>0.8679<br>0.9245<br>1 | <b>Rep 5</b><br>0.956<br>1<br>1 |          |          |          |            |             |

### **Bivalve Larval Survival and Development Test**

| I | Report Date: |
|---|--------------|
|   | Test Code:   |

12 Aug-20 11:56 (p 3 of 3) 200715msdv | 17-4780-3294

Nautilus Environmental (CA)

| Combined Development Rate Binomials |                   |         |           |         |         |         |  |  |  |  |
|-------------------------------------|-------------------|---------|-----------|---------|---------|---------|--|--|--|--|
| C-µg/L                              | Control Type      | Rep 1   | Rep 2     | Rep 3   | Rep 4   | Rep 5   |  |  |  |  |
| 0                                   | Lab Control       | 134/159 | 159/164   | 131/159 | 136/159 | 150/159 |  |  |  |  |
| 2.5                                 |                   | 149/159 | 178/179   | 151/159 | 145/159 | 161/170 |  |  |  |  |
| 5                                   |                   | 156/159 | 149/159   | 139/159 | 172/174 | 159/162 |  |  |  |  |
| 10                                  |                   | 115/159 | 120/159   | 147/167 | 123/159 | 147/175 |  |  |  |  |
| 20                                  |                   | 0/159   | 0/159     | 0/159   | 0/159   | 0/159   |  |  |  |  |
| 40                                  |                   | 0/159   | 1/159     | 0/159   | 0/159   | 0/159   |  |  |  |  |
| Developmer                          | nt Rate Binomials |         | ********* |         |         |         |  |  |  |  |
| C-µg/L                              | Control Type      | Rep 1   | Rep 2     | Rep 3   | Rep 4   | Rep 5   |  |  |  |  |
| 0                                   | Lab Control       | 134/134 | 159/164   | 131/132 | 136/138 | 150/152 |  |  |  |  |
| 2.5                                 |                   | 149/149 | 178/179   | 151/154 | 145/147 | 161/170 |  |  |  |  |
| 5                                   |                   | 156/158 | 149/155   | 139/140 | 172/174 | 159/162 |  |  |  |  |
| 10                                  |                   | 115/157 | 120/147   | 147/167 | 123/156 | 147/175 |  |  |  |  |
| 20                                  |                   | 0/142   | 0/148     | 0/146   | 0/144   | 0/136   |  |  |  |  |
| 40                                  |                   | 0/102   | 1/122     | 0/116   | 0/121   | 0/144   |  |  |  |  |
| Survival Rat                        | e Binomials       |         |           |         |         |         |  |  |  |  |
| C-µg/L                              | Control Type      | Rep 1   | Rep 2     | Rep 3   | Rep 4   | Rep 5   |  |  |  |  |
| 0                                   | Lab Control       | 134/159 | 159/159   | 132/159 | 138/159 | 152/159 |  |  |  |  |
| 2.5                                 |                   | 149/159 | 159/159   | 154/159 | 147/159 | 159/159 |  |  |  |  |
| 5                                   |                   | 158/159 | 155/159   | 140/159 | 159/159 | 159/159 |  |  |  |  |
| 10                                  |                   | 157/159 | 147/159   | 159/159 | 156/159 | 159/159 |  |  |  |  |
| 20                                  |                   | 142/159 | 148/159   | 146/159 | 144/159 | 136/159 |  |  |  |  |
| 40                                  |                   | 102/159 | 122/159   | 116/159 | 121/159 | 144/159 |  |  |  |  |

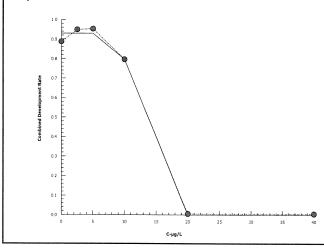
| CETIS An                  | alytical Rep                  | ort           |               |                             |                                    |                |               | ort Date:<br>Code:          |                      |               | 55 (p 1 of 4<br>7-4780-3294                                                                                    |
|---------------------------|-------------------------------|---------------|---------------|-----------------------------|------------------------------------|----------------|---------------|-----------------------------|----------------------|---------------|----------------------------------------------------------------------------------------------------------------|
| Bivalve Larv              | al Survival and               | Developme     | nt Test       |                             |                                    |                |               | ····                        | Nautilus             | Environ       | mental (CA)                                                                                                    |
| Analysis ID:<br>Analyzed: | 14-5603-4025<br>12 Aug-20 11: |               | -             | mbined Deve<br>rametric-Cor | •                                  |                |               | IS Version:<br>ial Results: | CETISv1.<br>Yes      | 8.7           |                                                                                                                |
| Data Transfo              | orm                           | Zeta          | Alt Hyp       | Trials                      | Seed                               |                | PMSD          | NOEL                        | LOEL                 | TOEL          | TU                                                                                                             |
| Angular (Corr             | rected)                       | NA            | C > T         | NA                          | NA                                 |                | 10.2%         | 10                          | 20                   | 14.14         |                                                                                                                |
| Dunnett Mul               | tiple Compariso               | n Test        |               | ****                        | nya mananga talani talah katikagi. |                |               |                             |                      |               |                                                                                                                |
| Control                   | vs C-µg/L                     |               | Test Stat     | Critical                    | MSD DF                             | P-Value        | P-Type        | Decision(                   | α:5%)                |               |                                                                                                                |
| Lab Control               | 2.5                           |               | -1.801        | 2.227                       | 0.138 8                            | 0.9949         | CDF           |                             | ficant Effect        | ******        |                                                                                                                |
|                           | 5                             |               | -2.092        | 2.227                       | 0.138 8                            | 0.9977         | CDF           | Non-Signit                  | ficant Effect        |               |                                                                                                                |
|                           | 10                            |               | 2.212         | 2.227                       | 0.138 8                            | 0.0514         | CDF           | Non-Signif                  | ficant Effect        |               |                                                                                                                |
| ANOVA Tabl                | e                             |               |               |                             |                                    |                | ,             |                             |                      |               |                                                                                                                |
| Source                    | Sum Squ                       | uares         | Mean Squ      | uare                        | DF                                 | F Stat         | P-Value       | Decision(                   | α:5%)                |               |                                                                                                                |
| Between                   | 0.227228                      |               | 0.0757428     | 32                          | 3                                  | 7.873          | 0.0019        | Significant                 | Effect               |               |                                                                                                                |
| Error                     | 0.153926                      |               | 0.0096204     | 1                           | 16                                 |                |               |                             |                      |               |                                                                                                                |
| Total                     | 0.381154                      | .8            |               |                             | 19                                 |                |               |                             |                      |               |                                                                                                                |
| Distributiona             | al Tests                      |               |               |                             |                                    | . —            |               |                             |                      | _             |                                                                                                                |
| Attribute                 | Test                          |               |               | Test Stat                   | Critical                           | P-Value        | Decision(     | α:1%)                       |                      |               |                                                                                                                |
| Variances                 |                               | Equality of ∖ |               | 0.5808                      | 11.34                              | 0.9008         | Equal Var     |                             | Her Land Constanting |               |                                                                                                                |
| Distribution              | Shapiro-                      | Wilk W Nor    | mality        | 0.9514                      | 0.866                              | 0.3890         | Normal Di     | stribution                  |                      |               |                                                                                                                |
| Combined D                | evelopment Rate               | e Summary     |               |                             |                                    |                |               |                             |                      |               | 2012/11/2012/01/2012/02/2012/02/2012/02/2012/02/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/20 |
| C-µg/L                    | Control Type                  | Count         | Mean          | 95% LCL                     | 95% UCL                            | Median         | Min           | Max                         | Std Err              | CV%           | %Effect                                                                                                        |
| 0                         | Lab Control                   | 5             | 0.887         | 0.8062                      | 0.9678                             | 0.8553         | 0.8239        | 0.9695                      | 0.02909              | 7.33%         | 0.0%                                                                                                           |
| 2.5                       |                               | 5             | 0.948         | 0.9109                      | 0.9852                             | 0.9471         | 0.9119        | 0.9944                      | 0.01337              | 3.15%         | -6.88%                                                                                                         |
| 5                         |                               | 5             | 0.9525        | 0.8925                      | 1                                  | 0.9811         | 0.8742        | 0.9885                      | 0.02159              | 5.07%         | -7.39%                                                                                                         |
| 10<br>20                  |                               | 5<br>5        | 0.7944<br>0   | 0.7146<br>0                 | 0.8741<br>0                        | 0.7736         | 0.7233        | 0.8802                      | 0.02874              | 8.09%         | 10.44%                                                                                                         |
| 40                        |                               | 5             | 0.001258      | 0                           | 0.00475                            | 0<br>0         | 0<br>0        | 0<br>0.006289               | 0<br>0.001258        | 223.6%        | 100.0%<br>99.86%                                                                                               |
| Angular (Cor              | rrected) Transfor             |               |               |                             |                                    |                |               | 0.000200                    | 0.001200             | 223.070       | 55.00 %                                                                                                        |
| C-µg/L                    | Control Type                  |               |               |                             | 0.5% 11.01                         | NA             |               |                             |                      |               |                                                                                                                |
| <u>о-ру/с</u><br>0        | Lab Control                   | Count<br>5    | Mean<br>1,241 | 95% LCL                     | 95% UCL                            | Median         | Min           | Max                         | Std Err              | <u>CV%</u>    | %Effect                                                                                                        |
| 2.5                       |                               | 5             | 1.353         | 1.248                       | 1.459                              | 1.181<br>1.339 | 1.138<br>1.27 | 1.395<br>1.496              | 0.05109<br>0.03805   | 9.2%<br>6.29% | 0.0%<br>-9.0%                                                                                                  |
| 5                         |                               | 5             | 1.371         | 1.238                       | 1.504                              | 1.433          | 1.208         | 1.463                       | 0.03803              | 7.8%          | -9.0%<br>-10.45%                                                                                               |
| 10                        |                               | 5             | 1.104         | 1.002                       | 1.206                              | 1.075          | 1.017         | 1.217                       | 0.03674              | 7.44%         | 11.05%                                                                                                         |
| 20                        |                               | 5             | 0.03966       | 0.03965                     | 0.03967                            | 0.03966        | 0.03966       | 0.03966                     | 0                    | 0.0%          | 96.81%                                                                                                         |
| 40                        |                               | 5             | 0.04761       | 0.02555                     | 0.06967                            | 0.03966        | 0.03966       | 0.07939                     | 0.007945             | 37.32%        | 96.17%                                                                                                         |
| Graphics                  |                               |               |               |                             |                                    |                |               |                             |                      |               |                                                                                                                |
| 0.9                       |                               |               |               |                             |                                    | 0.20           |               |                             |                      |               | /                                                                                                              |
|                           |                               |               | <b>₽</b>      | Reject Null                 | -                                  | -              |               |                             |                      |               |                                                                                                                |
| Combined Development Rate |                               | L             | ]             |                             |                                    | 0.10           |               | vaneeraa                    | • •                  | /             |                                                                                                                |
| 0.6 Develo                |                               |               |               |                             | Centered                           | 0.05           |               |                             | 990                  |               |                                                                                                                |
| paulde 0.5                |                               |               |               |                             | 0                                  | Ę              |               |                             | •                    |               |                                                                                                                |
| - E                       |                               |               |               |                             |                                    | 0.00           |               | 000000000                   |                      |               |                                                                                                                |
| 0.4                       |                               |               |               |                             |                                    | -0.05          |               | 000                         |                      |               |                                                                                                                |
| 0.3                       |                               |               |               |                             |                                    | -0.10          |               |                             |                      |               |                                                                                                                |
| 0.2                       |                               |               |               |                             |                                    | Ę              | ~             |                             |                      |               |                                                                                                                |
| 0.1                       |                               |               |               |                             |                                    | -0.15          |               |                             |                      |               |                                                                                                                |
| 0.0                       |                               | L             | <b>@</b>      |                             | L                                  | -0.20          | L             |                             | I                    | I             |                                                                                                                |
|                           | 0 LC 2.5                      | S<br>Countil  | 10 20         | 40                          |                                    |                | 1.0 -1.5 -1.0 | -0.5 0.0                    | 0.5 1.0              | 1.5 2.0       | 2.5                                                                                                            |
|                           |                               | C-µg/L        | ·····         |                             |                                    |                |               | Rankits                     |                      |               |                                                                                                                |

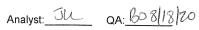
|                           | alytical Repo                 |              |                  |                            |                    |                    |                    | ort Date:<br>Code:          | 20071                | 5msdv   1       | 55 (p 2 of 4<br>7-4780-3294 |
|---------------------------|-------------------------------|--------------|------------------|----------------------------|--------------------|--------------------|--------------------|-----------------------------|----------------------|-----------------|-----------------------------|
| Bivalve Larva             | al Survival and E             | Developme    | nt Test          |                            |                    |                    |                    |                             | Nautilus             | s Environ       | nental (CA)                 |
| Analysis ID:<br>Analyzed: | 19-8463-7267<br>12 Aug-20 11: |              | -                | velopment R<br>ametric-Cor |                    | tments             |                    | IS Version:<br>cial Results | CETISv1<br>: Yes     | .8.7            |                             |
| Data Transfo              | rm                            | Zeta         | Alt Hyp          | Trials                     | Seed               |                    | PMSD               | NOEL                        | LOEL                 | TOEL            | τυ                          |
| Angular (Corre            | ected)                        | NA           | C > T            | NA                         | NA                 |                    | 2.41%              | 5                           | 10                   | 7.071           |                             |
| Dunnett Mult              | iple Comparisor               | n Test       |                  |                            |                    |                    |                    |                             |                      |                 |                             |
| Control                   | vs C-µg/L                     |              | Test Stat        | Critical                   | MSD DF             | P-Value            | P-Type             | Decision                    | (α:5%)               |                 |                             |
| Lab Control               | 2.5                           |              | 0.3315           | 2.227                      | 0.085 8            | 0.6183             | CDF                |                             | ficant Effect        |                 |                             |
|                           | 5                             |              | 0.5115           | 2.227                      | 0.085 8            | 0.5397             | CDF                | Non-Signi                   | ficant Effect        |                 |                             |
|                           | 10*                           |              | 8.826            | 2.227                      | 0.085 8            | <0.0001            | CDF                | Significan                  | t Effect             |                 |                             |
| ANOVA Table               | )                             |              |                  |                            |                    |                    |                    |                             |                      |                 |                             |
| Source                    | Sum Squ                       | ares         | Mean Squ         | lare                       | DF                 | F Stat             | P-Value            | Decision                    | α:5%)                |                 |                             |
| Between                   | 0.4015166                     |              | 0.1338388        |                            | 3                  | 36.6               | <0.0001            | Significan                  | t Effect             |                 |                             |
| Error                     | 0.0585129                     |              | 0.0036570        | 58                         | 16                 |                    |                    |                             |                      |                 |                             |
| Total                     | 0.4600295                     | 5            |                  |                            | 19                 |                    |                    |                             |                      |                 |                             |
| Distributiona             | l Tests                       |              |                  |                            |                    |                    |                    |                             |                      |                 |                             |
| Attribute                 | Test                          |              |                  | Test Stat                  | Critical           | P-Value            | Decision           | (α:1%)                      |                      |                 |                             |
| Variances                 |                               | quality of V |                  | 1.467                      | 11.34              | 0.6900             | Equal Var          | iances                      |                      |                 |                             |
| Distribution              | Shapiro-\                     | Nilk W Nori  | mality           | 0.9684                     | 0.866              | 0.7218             | Normal Di          | istribution                 |                      |                 |                             |
| Development               | Rate Summary                  |              |                  |                            |                    |                    |                    |                             |                      |                 |                             |
| C-µg/L                    | Control Type                  | Count        | Mean             | 95% LCL                    | 95% UCL            | Median             | Min                | Max                         | Std Err              | CV%             | %Effect                     |
| 0                         | Lab Control                   | 5            | 0.9869           | 0.9729                     | 1                  | 0.9868             | 0.9695             | 1                           | 0.005032             | 1.14%           | 0.0%                        |
| 2.5                       |                               | 5            | 0.9817           | 0.9559                     | 1                  | 0.9864             | 0.9471             | 1                           | 0.009274             | 2.11%           | 0.52%                       |
| 5                         |                               | 5            | 0.9823           | 0.9669                     | 0.9977             | 0.9873             | 0.9613             | 0.9929                      | 0.005556             | 1.27%           | 0.46%                       |
| 10                        |                               | 5            | 0.8115           | 0.7426                     | 0.8805             | 0.8163             | 0.7325             | 0.8802                      | 0.02483              | 6.84%           | 17.77%                      |
| 20                        |                               | 5<br>5       | 0                | 0                          | 0                  | 0                  | 0                  | 0                           | 0                    |                 | 100.0%                      |
| 40                        |                               | 5            | 0.001639         | 0                          | 0.006191           | 0                  | 0                  | 0.008197                    | 0.001639             | 223.6%          | 99.83%                      |
|                           | rected) Transfor              | med Sumn     | nary             |                            |                    |                    |                    |                             |                      |                 |                             |
| C-µg/L                    | Control Type                  | Count        | Mean             | 95% LCL                    | 95% UCL            | Median             | Min                | Max                         | Std Err              | CV%             | %Effect                     |
| 0                         | Lab Control                   | 5            | 1.462            | 1.402                      | 1.523              | 1.456              | 1.395              | 1.528                       | 0.02168              | 3.31%           | 0.0%                        |
| 2.5                       |                               | 5            | 1.45             | 1.359                      | 1.54               | 1.454              | 1.339              | 1.53                        | 0.03262              | 5.03%           | 0.87%                       |
| 5<br>10                   |                               | 5            | 1.443            | 1.389                      | 1.497              | 1.458              | 1.373              | 1.486                       | 0.01939              | 3.0%            | 1.34%                       |
| 20                        |                               | 5<br>5       | 1.125<br>0.04181 | 1.036                      | 1.213              | 1.128              | 1.027              | 1.217                       | 0.03188              | 6.34%           | 23.08%                      |
| 40                        |                               | 5            | 0.04181          | 0.04096<br>0.02959         | 0.04266<br>0.07992 | 0.04168<br>0.04644 | 0.04111<br>0.04168 | 0.04289<br>0.09066          | 0.000306<br>0.009063 | 1.63%<br>37.01% | 97.14%<br>96.26%            |
| Graphics                  |                               |              |                  |                            |                    |                    |                    |                             |                      | 01.0170         | 00.2070                     |
|                           |                               |              |                  |                            |                    | 0.10               |                    |                             |                      |                 |                             |
| 0.9                       | <u> </u>                      |              |                  | Reject Null                | -                  | 0.08               |                    |                             |                      |                 |                             |
| E                         |                               | Γ            |                  |                            |                    | -                  |                    |                             |                      |                 |                             |
| 0.8                       |                               | 20           |                  |                            |                    | 0.06               |                    |                             |                      | 7               |                             |
| T.0 It Kate               |                               |              |                  |                            |                    | 0.04               |                    |                             |                      |                 |                             |
| Development Rate          |                               |              |                  |                            | Centered           | 0.02 -             |                    |                             |                      |                 |                             |
| 0.5                       |                               |              |                  |                            | 0                  | 0.00               |                    | 00000000000                 | Ø                    |                 |                             |
|                           |                               |              |                  |                            |                    | -0.02              |                    |                             |                      |                 |                             |
| 0.4                       |                               |              |                  |                            |                    | -0.04              | •                  |                             |                      |                 |                             |
| 0.3                       |                               |              |                  |                            |                    | -0.06              |                    |                             |                      |                 |                             |
| 0.2                       |                               |              |                  |                            |                    | -0.08              | • •                |                             |                      |                 |                             |
| 0.1                       |                               |              |                  |                            |                    | Ē                  | /                  |                             |                      |                 |                             |
| Ē                         |                               |              |                  |                            |                    | -0.10              |                    |                             |                      |                 |                             |
| 0.0                       | DLC 2.5                       | 5            | 10 20            | 40                         | L                  | -0.12              | 1.0 -1.5 -1.0      | -0.5 0.0                    | 0.5 1.0              | 1.5 2.0         | 2.5                         |
|                           |                               | C-µg/L       |                  |                            |                    |                    |                    | Rankits                     |                      |                 |                             |

CETIS™ v1.8.7.20

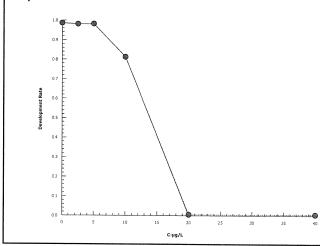
| CETIS An                             | alytical Rep                  | ort              |                                 |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | ort Date:<br>t Code:                    |                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55 (p 3 of 4<br>7-4780-3294 |
|--------------------------------------|-------------------------------|------------------|---------------------------------|----------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Bivalve Larv                         | al Survival and               | Develo           | oment Test                      |                                  |                       | <b>1,000,000,000,000,000,000,000,000</b> ,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0000 |                         | energene version in her energy services |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mental (CA)                 |
| Analysis ID:<br>Analyzed:            | 01-3736-1147<br>12 Aug-20 11: | 54               | Endpoint: Su<br>Analysis: Pa    | irvival Rate<br>irametric-Coi    | ntrol vs Trea         | atments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | IS Version                              |                               | .8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| Data Transfo                         | orm                           | Zeta             | Alt Hyp                         | Trials                           | Seed                  | ter til til en forste som en stade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PMSD                    | NOEL                                    | LOEL                          | TOEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TU                          |
| Angular (Cori                        | rected)                       | NA               | C > T                           | NA                               | NA                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.4%                   | 20                                      | 40                            | 28.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
| Dunnett Mul                          | tiple Compariso               | n Test           |                                 |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Control                              | vs C-µg/L                     |                  | Test Stat                       | Critical                         | MSD DI                | P-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P-Type                  | Decision                                | ( <b>a:5%</b> )               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Lab Control                          | 2.5                           |                  | -1.786                          | 2.362                            | 0.176 8               | 0.9985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDF                     |                                         | ificant Effect                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
|                                      | 5                             |                  | -2.103                          | 2.362                            | 0.176 8               | 0.9995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDF                     | -                                       | ificant Effect                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
|                                      | 10                            |                  | -2.273                          | 2.362                            | 0.176 8               | 0.9997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDF                     | -                                       | ificant Effect                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
|                                      | 20                            |                  | 0.365                           | 2.362                            | 0.176 8               | 0.7040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDF                     | -                                       | ificant Effect                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
|                                      | 40*                           |                  | 2.841                           | 2.362                            | 0.176 8               | 0.0182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDF                     | Significar                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| ANOVA Tabl                           | е                             |                  |                                 |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Source                               | Sum Squ                       | ares             | Mean Sq                         | uare                             | DF                    | F Stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P-Value                 | Decision                                | (α:5%)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Between                              | 0.543329                      | 4                | 0.108665                        | 9                                | 5                     | 7.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0002                  | Significar                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Error                                | 0.333911                      | 3                | 0.013912                        | 97                               | 24                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | •                                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Total                                | 0.877240                      | 8                |                                 |                                  | 29                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Distributiona                        | al Tests                      |                  |                                 |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *********************   |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Attribute                            | Test                          |                  |                                 | Test Stat                        | Critical              | P-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Decision                | (α:1%)                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Variances                            | Bartlett E                    | Equality         | of Variance                     | 4.935                            | 15.09                 | 0.4239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Equal Var               |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Distribution                         | Shapiro-                      | Wilk W           | Normality                       | 0.9863                           | 0.9031                | 0.9571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Normal D                |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Survival Rate                        | e Summary                     |                  |                                 |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| C-µg/L                               | Control Type                  | Cour             | nt Mean                         | 95% LCL                          | 95% UCL               | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Min                     | Max                                     | Std Err                       | CV%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %Effect                     |
| 0                                    | Lab Control                   | 5                | 0.8994                          | 0.8066                           | 0.9921                | 0.8679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8302                  | 1                                       | 0.0334                        | 8.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0%                        |
| 2.5                                  |                               | 5                | 0.966                           | 0.9227                           | 1                     | 0.9686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9245                  | 1                                       | 0.01561                       | 3.61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -7.41%                      |
| 5                                    |                               | 5                | 0.9698                          | 0.9065                           | 1                     | 0.9937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8805                  | 1                                       | 0.0228                        | 5.26%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -7.83%                      |
| 10                                   |                               | 5                | 0.9786                          | 0.9397                           | 1                     | 0.9874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9245                  | 1                                       | 0.01401                       | 3.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -8.81%                      |
| 20                                   |                               | 5                | 0.9006                          | 0.8647                           | 0.9366                | 0.9057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8553                  | 0.9308                                  | 0.01295                       | 3.22%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.14%                      |
| 40                                   |                               | 5                | 0.761                           | 0.6428                           | 0.8792                | 0.761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6415                  | 0.9057                                  | 0.04256                       | 12.51%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.38%                      |
| Angular (Cor                         | rected) Transfor              | med Su           | ummary                          |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
|                                      | O a sector of T               | Coun             | it Mean                         | 95% LCL                          | 95% UCL               | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Min                     | Max                                     | Std Err                       | CV%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %Effect                     |
| C-µg/L                               | Control Type                  |                  | mcan                            |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                         |                               | and the second se |                             |
| <b>С-µg/L</b><br>0                   | Lab Control                   | 5                | 1.28                            | 1.076                            | 1.483                 | 1.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.146                   | 1.531                                   | 0.07334                       | 12.81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                        |
| <b>С-µg/L</b><br>0<br>2.5            |                               | 5<br>5           | 1.28<br>1.413                   | 1.076<br>1.271                   | 1.555                 | 1.393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.146<br>1.292          | 1.531<br>1.531                          | 0.07334<br>0.05099            | 12.81%<br>8.07%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0%<br>-10.41%             |
| <b>С-µg/L</b><br>0<br>2.5<br>5       |                               | 5<br>5<br>5      | 1.28<br>1.413<br>1.437          | 1.076<br>1.271<br>1.273          | 1.555<br>1.6          | 1.393<br>1.491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.292<br>1.218          |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| <b>С-µg/L</b><br>0<br>2.5<br>5<br>10 |                               | 5<br>5<br>5<br>5 | 1.28<br>1.413<br>1.437<br>1.449 | 1.076<br>1.271<br>1.273<br>1.328 | 1.555<br>1.6<br>1.571 | 1.393<br>1.491<br>1.458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.292<br>1.218<br>1.292 | 1.531<br>1.531<br>1.531                 | 0.05099<br>0.05889<br>0.04378 | 8.07%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -10.41%                     |
| <b>С-µg/L</b><br>0<br>2.5<br>5       |                               | 5<br>5<br>5      | 1.28<br>1.413<br>1.437          | 1.076<br>1.271<br>1.273          | 1.555<br>1.6          | 1.393<br>1.491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.292<br>1.218          | 1.531<br>1.531                          | 0.05099<br>0.05889            | 8.07%<br>9.17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -10.41%<br>-12.26%          |

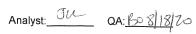
000-089-187-3


Analyst: JU QA: 608/18/20


#### **CETIS Analytical Report** Report Date: 12 Aug-20 11:55 (p 4 of 4) 200715msdv | 17-4780-3294 Test Code: **Bivalve Larval Survival and Development Test** Nautilus Environmental (CA) Analysis ID: 01-3736-1147 Endpoint: Survival Rate **CETIS Version:** CETISv1.8.7 Analyzed: 12 Aug-20 11:54 Analysis: Parametric-Control vs Treatments **Official Results:** Yes Graphics 1.0 0.30 F \_ 2 CO. 0.25 0.9 Ž 0.8 0.20 Reject Null 0.15 0.7 Survival Rate Centered Corr. Angle 0.10 0.6 09 0.05 ٥.: 0.00 900 0.05 0. -0.10 F 0.2 -0.15 0.1 -0.20 0.0 -0.25 0 LC 2.5 5 10 20 40 ·2.0 ·1.5 -2.5 -0.5 -1.0 0.0 0.5 1.0 2.5 1.5 2.0 C-µg/L Rankits

QA:BO 3/18/20


| CETIS              | Anal    | ytical Repo                    | ort       |        |                                            |          |            | •                                      | ort Date:<br>Code:                                      |                                                           | -         | 56 (p 1 of 3)<br>7-4780-3294 |
|--------------------|---------|--------------------------------|-----------|--------|--------------------------------------------|----------|------------|----------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|-----------|------------------------------|
| Bivalve            | Larval  | Survival and D                 | evelopmen | t Test |                                            |          |            |                                        |                                                         | Nautilus                                                  | s Environ | mental (CA)                  |
| Analysi<br>Analyze |         | 11-0488-5403<br>12 Aug-20 11:5 |           | •      | Combined De <sup>.</sup><br>Linear Interpo | •        |            |                                        | IS Version:<br>cial Results:                            | CETISv1<br>Yes                                            | .8.7      |                              |
| Linear I           | nterpol | ation Options                  |           |        |                                            | *****    |            | ###################################### |                                                         | , Péleski Manadala ang Kang Kang Kang Kang Kang Kang Kang |           |                              |
| X Trans            | form    | Y Transform                    | See       | d      | Resamples                                  | Exp 95%  | CL Met     | thod                                   |                                                         |                                                           |           |                              |
| Linear             |         | Linear                         | 6665      | 566    | 1000                                       | Yes      | Two        | o-Point Interp                         | olation                                                 |                                                           |           |                              |
| Point E            | stimate | s                              |           |        |                                            |          |            |                                        |                                                         |                                                           |           |                              |
| Level              | µg/L    | 95% LCL                        | 95% UCL   |        |                                            |          |            |                                        |                                                         |                                                           |           |                              |
| EC25               | 11.24   | 10.31                          | 12.09     |        |                                            |          |            |                                        | 1.410 - 210 (California - Ur and Arrows California - Ur |                                                           |           |                              |
| EC50               | 14.16   | 13.54                          | 14.73     |        |                                            |          |            |                                        |                                                         |                                                           |           |                              |
| Combin             | ed Dev  | elopment Rate                  | Summary   |        |                                            | Calcu    | lated Vari | ate(A/B)                               |                                                         |                                                           |           |                              |
| C-µg/L             | Co      | ontrol Type                    | Count     | Mean   | Min                                        | Max      | Std Err    | Std Dev                                | CV%                                                     | %Effect                                                   | Α         | в                            |
| 0                  | La      | b Control                      | 5         | 0.887  | 0.8239                                     | 0.9695   | 0.02909    | 0.06506                                | 7.33%                                                   | 0.0%                                                      | 710       | 800                          |
| 2.5                |         |                                | 5         | 0.948  | 0.9119                                     | 0.9944   | 0.01337    | 0.0299                                 | 3.15%                                                   | -6.88%                                                    | 784       | 826                          |
| 5                  |         |                                | 5         | 0.9525 | 0.8742                                     | 0.9885   | 0.02159    | 0.04827                                | 5.07%                                                   | -7.39%                                                    | 775       | 813                          |
| 10                 |         |                                | 5         | 0.7944 | 0.7233                                     | 0.8802   | 0.02874    | 0.06426                                | 8.09%                                                   | 10.44%                                                    | 652       | 819                          |
| 20                 |         |                                | 5         | 0      | 0                                          | 0        | 0          | 0                                      |                                                         | 100.0%                                                    | 0         | 795                          |
| 40                 |         |                                | 5         | 0.0012 | 58 0                                       | 0.006289 | 0.001258   | 3 0.002813                             | 223.6%                                                  | 99.86%                                                    | 0         | 795                          |


Graphics





| CETIS              | S Ana   | lytical Repo                   | ort                                |                   |                                  |          |                                | •            | ort Date:<br>Code:                                  |                |                                            | :56 (p 2 of 3<br>17-4780-3294                      |
|--------------------|---------|--------------------------------|------------------------------------|-------------------|----------------------------------|----------|--------------------------------|--------------|-----------------------------------------------------|----------------|--------------------------------------------|----------------------------------------------------|
| Bivalve            | e Larva | Survival and D                 | evelopm                            | ent Test          |                                  |          |                                |              |                                                     | Nautilu        | s Enviror                                  | nmental (CA)                                       |
| Analysi<br>Analyzo |         | 14-0926-7215<br>12 Aug-20 11:5 |                                    |                   | Development<br>₋inear Interpo    |          | )                              |              | IS Version:<br>cial Results:                        | CETISv1<br>Yes | .8.7                                       |                                                    |
| Linear             | Interpo | lation Options                 | inini de statemento de la constana | <b></b>           | an yana sa dhudhada dan mayadaga |          | MANANA SI ITI MUMANI MANANA MI |              | n Bach - Canadal a de Anna Anna Anna Anna Anna Anna |                | alaan ay ahaa ahaa ahaa ahaa ahaa ahaa aha |                                                    |
| X Trans            | sform   | Y Transform                    | n Se                               | ed I              | Resamples                        | Exp 95%  | CL Meth                        | nod          |                                                     |                |                                            |                                                    |
| Linear             |         | Linear                         | 81                                 | 8614 <sup>~</sup> | 000                              | Yes      | Two-                           | Point Interp | olation                                             |                | ·····                                      | unter etter generation forstande statis - Ligen et |
| Point E            | Stimate | es                             |                                    |                   |                                  |          |                                |              |                                                     |                |                                            |                                                    |
| Level              | μg/L    | 95% LCL                        | 95% UC                             | L                 |                                  |          |                                |              |                                                     |                |                                            |                                                    |
| EC25               | 10.9    | 10.08                          | 11.53                              |                   |                                  |          |                                |              |                                                     |                |                                            |                                                    |
| EC50               | 13.94   | 13.39                          | 14.36                              |                   |                                  |          |                                |              |                                                     |                |                                            |                                                    |
| Develo             | pment   | Rate Summary                   |                                    |                   |                                  | Calcu    | lated Varia                    | te(A/B)      |                                                     |                |                                            |                                                    |
| C-µg/L             | с       | ontrol Type                    | Count                              | Mean              | Min                              | Max      | Std Err                        | Std Dev      | CV%                                                 | %Effect        | А                                          | в                                                  |
| 0                  | La      | ab Control                     | 5                                  | 0.9869            | 0.9695                           | 1        | 0.005032                       | 0.01125      | 1.14%                                               | 0.0%           | 710                                        | 720                                                |
| 2.5                |         |                                | 5                                  | 0.9817            | 0.9471                           | 1        | 0.009274                       | 0.02074      | 2.11%                                               | 0.52%          | 784                                        | 799                                                |
| 5                  |         |                                | 5                                  | 0.9823            | 0.9613                           | 0.9929   | 0.005556                       | 0.01242      | 1.27%                                               | 0.46%          | 775                                        | 789                                                |
| 10                 |         |                                | 5                                  | 0.8115            | 0.7325                           | 0.8802   | 0.02483                        | 0.05553      | 6.84%                                               | 17.77%         | 652                                        | 802                                                |
| 20                 |         |                                | 5                                  | 0                 | 0                                | 0        | 0                              | 0            |                                                     | 100.0%         | 0                                          | 716                                                |
| 40                 |         |                                | 5                                  | 0.00163           | 9 0                              | 0.008197 | 0.001639                       | 0.003666     | 223.6%                                              | 99.83%         | 0                                          | 605                                                |





| CETIS            | S Ana                          | lytical Repo                   | ort     |                                            | 1011-1010-001-001-001-001-001-001-001-0 |               |                                                                                                                 |          | -                                  | ort Date:<br>Code:         |                | •         | :56 (p 3 of 3<br>17-4780-329 |
|------------------|--------------------------------|--------------------------------|---------|--------------------------------------------|-----------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|----------|------------------------------------|----------------------------|----------------|-----------|------------------------------|
| Bivalve          | e Larval                       | Survival and D                 | evelopn | nent Test                                  |                                         |               |                                                                                                                 |          |                                    |                            | Nautilu        | s Enviror | mental (CA                   |
| Analys<br>Analyz |                                | 14-7805-7540<br>12 Aug-20 11:5 |         | Indpoint:<br>Analysis:                     | Survival Rate<br>Linear Interpol        | lation (ICPII | N)                                                                                                              |          |                                    | IS Version:<br>al Results: | CETISv1<br>Yes | .8.7      |                              |
| Linear           | Interpo                        | lation Options                 |         | 1991 H M & CONTRACTOR AND CONTRACTOR OFFIC |                                         |               | and the second secon |          | Geldeline Construction of a second |                            | <u></u>        |           |                              |
| X Trans          | sform                          | Y Transform                    | s       | eed                                        | Resamples                               | Exp 95%       | 6 CL                                                                                                            | Method   | 1                                  |                            |                |           |                              |
| Linear           |                                | Linear                         | 1       | 852204                                     | 1000                                    | Yes           |                                                                                                                 |          | int Interp                         | olation                    |                |           |                              |
| Point F          | stimate                        | 29                             |         |                                            |                                         |               |                                                                                                                 |          |                                    |                            |                |           |                              |
| Level            | µg/L                           | 95% LCL                        | 95% U   | <b>C</b> 1                                 |                                         |               |                                                                                                                 |          |                                    |                            |                |           |                              |
| EC25             | 240                            | N/A                            | N/A     |                                            |                                         |               |                                                                                                                 |          |                                    |                            |                |           |                              |
| EC50             | >40                            | N/A                            | N/A     |                                            |                                         |               |                                                                                                                 |          |                                    |                            |                |           |                              |
| Surviva          | al Rate S                      | Summary                        |         |                                            |                                         | Calc          | ulated                                                                                                          | Variate( |                                    |                            |                |           |                              |
| C-µg/L           |                                | ontrol Type                    | Count   | Mean                                       | Min                                     | Max           | Std                                                                                                             |          | td Dev                             | CV%                        | %Effect        | А         |                              |
| 0                |                                | ab Control                     | 5       | 0.8994                                     |                                         | 1             | 0.03                                                                                                            |          | .07468                             | 8.3%                       | 0.0%           | 715       | <b>B</b><br>795              |
| 2.5              |                                |                                | 5       | 0.966                                      |                                         | 1             | 0.01                                                                                                            |          | .0349                              | 3.61%                      | -7.41%         | 768       | 795                          |
| 5                |                                |                                | 5       | 0.9698                                     |                                         | 1             | 0.02                                                                                                            |          | .05098                             | 5.26%                      | -7.83%         | 771       | 795                          |
| 10               |                                |                                | 5       | 0.9786                                     | 6 0.9245                                | 1             | 0.01                                                                                                            |          | .03132                             | 3.2%                       | -8.81%         | 778       | 795                          |
| 20               |                                |                                | 5       | 0.9006                                     | 6 0.8553                                | 0.9308        | 0.01                                                                                                            | 295 0    | .02896                             | 3.22%                      | -0.14%         | 716       | 795                          |
| 40               |                                |                                | 5       | 0.761                                      | 0.6415                                  | 0.9057        | 0.042                                                                                                           | 256 0    | .09517                             | 12.51%                     | 15.38%         | 604       | 795                          |
| Graphic          | 10<br>0.9<br>0.8<br>0.7<br>0.6 |                                |         |                                            |                                         |               |                                                                                                                 |          |                                    |                            |                |           |                              |

03

0.1

0.0 0.0 0.0 5 10 15 20 25 20 33 40 **C-pg/L** 



| ivalve Larval Surviva                     | I and Developm                         | ent Test                               |                                                      |                                     |                                                                                                                 | Nautilus Environme                                 | ental (CA |
|-------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------|
| est Type: Developme<br>rotocol: EPA/600/R | ent-Survival<br>-95/136 (1995)         |                                        | Mytilus galloprovincialis<br>Combined Developmer     |                                     |                                                                                                                 | per chloride<br>erence Toxicant-REF                | ****      |
|                                           |                                        | Biv                                    | alve Larval Survival and Developn                    | ient Test                           |                                                                                                                 |                                                    |           |
| 20                                        |                                        |                                        |                                                      |                                     | the same and the same state of the same | +3s                                                |           |
| 15-                                       |                                        |                                        |                                                      |                                     |                                                                                                                 | +25                                                |           |
| -                                         |                                        |                                        |                                                      |                                     | •                                                                                                               | <b>•*</b> 25                                       |           |
| e 10-                                     |                                        |                                        |                                                      |                                     |                                                                                                                 |                                                    |           |
| EC50-Jg/L Copper chloride                 |                                        |                                        |                                                      |                                     |                                                                                                                 | Mean                                               |           |
| EC50-J1g/LL                               |                                        |                                        |                                                      |                                     |                                                                                                                 |                                                    |           |
| 0                                         |                                        |                                        |                                                      |                                     |                                                                                                                 | -25                                                |           |
|                                           |                                        |                                        |                                                      |                                     |                                                                                                                 | -3s                                                |           |
| -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -  | -19-                                   | -616161-                               | -020202-                                             | 50 50 50                            | 20                                                                                                              | S 20 20                                            |           |
| 28 Aug-19<br>11 Sep-19                    | 12 Sep-19-<br>18 Sep-19-<br>17 Oct-19- | 30 Oct-19-<br>27 Nov-19-<br>05 Dec-19- | 11 Dec-19-<br>08 Jan-20-<br>22 Jan-20-<br>04 Feb-20- | 05 Feb-20<br>25 Feb-20<br>17 Mar-20 | 06 Apr-20                                                                                                       | 28 Apr-20<br>12 May-20<br>11 Jun-20-<br>15 Jul-20- |           |

-2s Warning Limit: 2.582

+2s Warning Limit: 15.31

Report Date:

12 Aug-20 11:57 (1 of 1)

| Qualit | ty Con | trol Data | a   |       |         |         |          |         |        |              |              |
|--------|--------|-----------|-----|-------|---------|---------|----------|---------|--------|--------------|--------------|
| Point  | Year   | Month     | Day | Time  | QC Data | Delta   | Sigma    | Warning | Action | Test ID      | Analysis ID  |
| 1      | 2019   | Aug       | 28  | 14:30 | 7.348   | -1.6    | -0.5027  |         | ~      | 01-0546-0046 | 21-3090-7111 |
| 2      |        | Sep       | 11  | 14:30 | 11.93   | 2.987   | 0.9383   |         |        | 09-2717-2159 | 04-2480-9094 |
| 3      |        |           | 12  | 14:25 | 8.444   | -0.5036 | -0.1582  |         |        | 19-6218-6352 | 07-5188-6358 |
| 4      |        |           | 18  | 13:20 | 7.4     | -1.548  | -0.4863  |         |        | 10-9359-1611 | 21-3838-7021 |
| 5      |        | Oct       | 17  | 12:30 | 4.368   | -4.58   | -1.439   |         |        | 01-8239-7270 | 07-0806-0577 |
| 6      |        |           | 30  | 12:30 | 7.518   | -1.43   | -0.4493  |         |        | 07-8198-2858 | 11-8079-0492 |
| 7      |        | Nov       | 27  | 20:00 | 7.249   | -1.699  | -0.5339  |         |        | 12-9914-0499 | 16-0529-7707 |
| 8      |        | Dec       | 5   | 13:15 | 4.982   | -3.966  | -1.246   |         |        | 04-7411-4445 | 13-6587-0425 |
| 9      |        |           | 11  | 13:35 | 7.245   | -1.703  | -0.535   |         |        | 10-8800-1613 | 10-7929-5811 |
| 10     | 2020   | Jan       | 8   | 13:40 | 12.34   | 3.392   | 1.066    |         |        | 07-8444-5322 | 01-1422-4896 |
| 11     |        |           | 22  | 13:25 | 14.72   | 5.772   | 1.813    |         |        | 02-1152-2212 | 07-1224-7163 |
| 12     |        | Feb       | 4   | 16:30 | 14.68   | 5.728   | 1.799    |         |        | 19-9078-6483 | 21-0369-4045 |
| 13     |        |           | 5   | 13:10 | 7.103   | -1.845  | -0.5797  |         |        | 06-6849-2235 | 04-8167-3886 |
| 14     |        |           | 25  | 14:15 | 14.58   | 5.633   | 1.77     |         |        | 09-2101-6353 | 02-3593-4650 |
| 15     |        | Mar       | 17  | 14:20 | 7.408   | -1.54   | -0.4839  |         |        | 14-6169-3689 | 18-9939-7640 |
| 16     |        | Apr       | 6   | 17:15 | 6.537   | -2.411  | -0.7574  |         |        | 02-0082-4673 | 13-2096-3831 |
| 17     |        |           | 15  | 13:25 | 11.68   | 2.735   | 0.8592   |         |        | 16-4614-0901 | 11-3098-9850 |
| 18     |        |           | 28  | 13:25 | 7.292   | -1.656  | -0.5204  |         |        | 06-8086-6028 | 13-2749-2065 |
| 19     |        | May       | 12  | 16:15 | 8.819   | -0.1291 | -0.04056 |         |        | 12-3773-8150 | 00-4087-7530 |
| 20     |        | Jun       | 11  | 15:45 | 7.306   | -1.642  | -0.516   |         |        | 20-6521-9403 | 10-1893-3875 |
| 21     |        | Jul       | 15  | 13:55 | 14.16   | 5.214   | 1.638    |         |        | 17-4780-3294 | 11-0488-5403 |

**CETIS QC Plot** 

Mean:

Sigma: 3.183

8.948

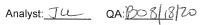
**Count:** 20

35.60%

CV:

-3s Action Limit: -0.6014

+3s Action Limit: 18.5


| Bivalve Lar               | val Survival and Developmer                                                           | nt Test                                                                                              | Nautilus Environmental (C                                                      |
|---------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| est Type:<br>Protocol:    | Development-Survival<br>EPA/600/R-95/136 (1995)                                       | Organism: Mytilus galloprovincialis (Bay Musse<br>Endpoint: Development Rate                         | el Material: Copper chloride<br>Source: Reference Toxicant-REF                 |
|                           |                                                                                       | Bivalve Larval Survival and Development Test                                                         |                                                                                |
|                           | 20                                                                                    |                                                                                                      | +3s                                                                            |
|                           |                                                                                       |                                                                                                      |                                                                                |
|                           | 15                                                                                    |                                                                                                      | +25                                                                            |
| Q                         | 10-                                                                                   |                                                                                                      | $\land$                                                                        |
| er chlorid                |                                                                                       |                                                                                                      | Mean                                                                           |
| EC50-µg/L Copper chloride | 5-                                                                                    |                                                                                                      |                                                                                |
| EC50-I                    |                                                                                       |                                                                                                      | -25                                                                            |
|                           |                                                                                       |                                                                                                      | -35                                                                            |
|                           |                                                                                       |                                                                                                      |                                                                                |
|                           | 0,<br>28 Aug-19<br>11 Sep-19-<br>12 Sep-19-<br>18 Sep-19-<br>18 Sep-19-<br>17 Oct-19- | 30 Oct.19<br>27 Nov.19 -<br>05 Dec.19-<br>11 Dec.19-<br>04 Feb.20 -<br>04 Feb.20 -<br>05 Feb.20 -    | ar-20-<br>ar-20-<br>y-20-<br>h-20-<br>h-20-                                    |
|                           | 28 A<br>11 5<br>12 5<br>12 5<br>18 5<br>17 0                                          | 30 OCt-19<br>27 Nov-19<br>05 Dec-19<br>08 Jan-20<br>08 Jan-20<br>04 Feb-20<br>05 Feb-20<br>05 Feb-20 | 17 Mar-20<br>06 Apr-20<br>28 Apr-20-<br>12 May-20-<br>11 Jun-20-<br>15 Jul-20- |

Report Date:

12 Aug-20 11:57 ( 1 of 1)

|       |        |          | ean:<br>gma: | 9.031<br>3.236 |         |        | 20<br>35.80% | -2s Warning L<br>+2s Warning L |              | -3s Action Limit:<br>+3s Action Limit: |  |
|-------|--------|----------|--------------|----------------|---------|--------|--------------|--------------------------------|--------------|----------------------------------------|--|
| Quali | ty Con | trol Dat | a            |                |         |        |              |                                |              |                                        |  |
| Point | Year   | Month    | Day          | Time           | QC Data | Delta  | Sigma        | Warning Actio                  | on Test ID   | Analysis ID                            |  |
| 1     | 2019   | Aug      | 28           | 14:30          | 7.351   | -1.68  | -0.5192      |                                | 01-0546-0046 | 10-3410-8075                           |  |
| 2     |        | Sep      | 11           | 14:30          | 11.98   | 2.952  | 0.9121       |                                | 09-2717-2159 | 17-4622-9429                           |  |
| 3     |        |          | 12           | 14:25          | 8.608   | -0.423 | 4 -0.1308    |                                | 19-6218-6352 | 06-5225-4823                           |  |
|       |        |          |              |                |         |        |              |                                |              |                                        |  |

|    |      | 1-  |    |       |       |         | 0.0.1    | 00 2111 2100 | 11-4022-0420 |
|----|------|-----|----|-------|-------|---------|----------|--------------|--------------|
| 3  |      |     | 12 | 14:25 | 8.608 | -0.4234 | -0.1308  | 19-6218-6352 | 06-5225-4823 |
| 4  |      |     | 18 | 13:20 | 7.546 | -1.485  | -0.459   | 10-9359-1611 | 16-7089-5314 |
| 5  |      | Oct | 17 | 12:30 | 4.375 | -4.656  | -1.439   | 01-8239-7270 | 19-1864-9270 |
| 6  |      |     | 30 | 12:30 | 7.481 | -1.55   | -0.4789  | 07-8198-2858 | 15-7183-3565 |
| 7  |      | Nov | 27 | 20:00 | 7.297 | -1.734  | -0.5358  | 12-9914-0499 | 01-7534-7240 |
| 8  |      | Dec | 5  | 13:15 | 5.087 | -3.944  | -1.219   | 04-7411-4445 | 10-0471-4567 |
| 9  |      |     | 11 | 13:35 | 7.32  | -1.711  | -0.5287  | 10-8800-1613 | 20-9346-8800 |
| 10 | 2020 | Jan | 8  | 13:40 | 12.43 | 3.398   | 1.05     | 07-8444-5322 | 06-2499-4329 |
| 11 |      |     | 22 | 13:25 | 14.68 | 5.65    | 1.746    | 02-1152-2212 | 04-4145-0874 |
| 12 |      | Feb | 4  | 16:30 | 15.01 | 5.977   | 1.847    | 19-9078-6483 | 06-3219-7963 |
| 13 |      |     | 5  | 13:10 | 7.132 | -1.899  | -0.5868  | 06-6849-2235 | 20-3119-3253 |
| 14 |      |     | 25 | 14:15 | 15    | 5.969   | 1.845    | 09-2101-6353 | 13-1093-9538 |
| 15 |      | Mar | 17 | 14:20 | 7.489 | -1.542  | -0.4766  | 14-6169-3689 | 12-6636-5212 |
| 16 |      | Apr | 6  | 17:15 | 6.609 | -2.422  | -0.7483  | 02-0082-4673 | 11-5300-1558 |
| 17 |      |     | 15 | 13:25 | 11.68 | 2.652   | 0.8195   | 16-4614-0901 | 19-2371-7781 |
| 18 |      |     | 28 | 13:25 | 7.365 | -1.666  | -0.5148  | 06-8086-6028 | 17-1633-3832 |
| 19 |      | May | 12 | 16:15 | 8.876 | -0.1547 | -0.04782 | 12-3773-8150 | 04-4023-9067 |
| 20 |      | Jun | 11 | 15:45 | 7.306 | -1.725  | -0.5332  | 20-6521-9403 | 18-5947-9043 |
| 21 |      | Jul | 15 | 13:55 | 13.94 | 4.908   | 1.517    | 17-4780-3294 | 14-0926-7215 |
|    |      |     |    |       |       |         |          |              |              |



CETIS™ v1.8.7.20

000-089-187-3

| CE | TIS | QC | Plot |
|----|-----|----|------|
|----|-----|----|------|

| Bivalve Larval Survival and Development Test Nautilus Environmental ( |                                                                |                                        |                                                                                                |                      |                                                                    |  |  |  |  |  |  |
|-----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| Test Type:<br>Protocol:                                               | Development-Survival<br>EPA/600/R-95/136 (1995)                |                                        | Mytilus galloprovincialis (Bay Musse<br>Survival Rate                                          | Material:<br>Source: | Copper chloride<br>Reference Toxicant-REF                          |  |  |  |  |  |  |
|                                                                       |                                                                | Biva                                   | alve Larval Survival and Development Test                                                      |                      |                                                                    |  |  |  |  |  |  |
| ECS0-µg/L Copper chloride                                             | 45<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 12 Sep-19-<br>18 Sep-19-<br>17 Oct-19- | 30 Oct:19-<br>27 Nov:19-<br>05 Dec:19-<br>08 Jan-20-<br>08 Jan-20-<br>22 Jan-20-<br>23 Jan-20- | 05 Feb-20            | +35<br>+35<br>+25<br>+25<br>-25<br>-25<br>-35<br>-25<br>-35<br>-35 |  |  |  |  |  |  |

| Mean:  | 29.67 | Count: | 20    | -2s Warning Limit: | 24.59 | -3s Action Limit: | 22.05 |
|--------|-------|--------|-------|--------------------|-------|-------------------|-------|
| Sigma: | 2.54  | CV:    | 8.56% | +2s Warning Limit: | 34.75 | +3s Action Limit: | 37.29 |

| Quality Control Data | Qua | lity | Control | Data |
|----------------------|-----|------|---------|------|
|----------------------|-----|------|---------|------|

| Point | Year | Month | Day | Time  | QC Data | Delta    | Sigma    | Warning | Action | Test ID      | Analysis ID  |
|-------|------|-------|-----|-------|---------|----------|----------|---------|--------|--------------|--------------|
| 1     | 2019 | Aug   | 17  | 14:00 | 29.6    | -0.06634 | -0.02612 |         |        | 15-9584-4385 | 20-0172-5237 |
| 2     |      |       | 20  | 14:15 | 37.92   | 8.249    | 3.248    | (+)     | (+)    | 14-8361-1578 | 02-5800-6574 |
| 3     |      |       | 24  | 16:00 | 30.04   | 0.3674   | 0.1446   |         |        | 19-4374-5817 | 17-7461-0750 |
| 4     |      |       | 28  | 14:30 | 28.66   | -1.005   | -0.3958  |         |        | 01-0546-0046 | 13-4512-6481 |
| 5     |      | Sep   | 11  | 14:30 | 33.71   | 4.045    | 1.592    |         |        | 09-2717-2159 | 01-1883-2964 |
| 6     |      |       | 12  | 14:25 | 29.16   | -0.5059  | -0.1992  |         |        | 19-6218-6352 | 02-6393-7831 |
| 7     |      |       | 18  | 13:20 | 29.04   | -0.631   | -0.2484  |         |        | 10-9359-1611 | 04-3365-2341 |
| 8     |      | Oct   | 17  | 12:30 | 24.88   | -4.788   | -1.885   |         |        | 01-8239-7270 | 13-2801-3685 |
| 9     |      |       | 30  | 12:30 | 29.32   | -0.3471  | -0.1366  |         |        | 07-8198-2858 | 20-5233-5110 |
| 10    |      | Nov   | 27  | 20:00 | 29.07   | -0.6033  | -0.2375  |         |        | 12-9914-0499 | 00-1104-7300 |
| 11    |      | Dec   | 5   | 13:15 | 28.21   | -1.456   | -0.5731  |         |        | 04-7411-4445 | 20-5035-4724 |
| 12    |      |       | 11  | 13:35 | 29.18   | -0.4907  | -0.1932  |         |        | 10-8800-1613 | 02-9848-3585 |
| 13    | 2020 | Jan   | 8   | 13:40 | 29.6    | -0.06894 | -0.02714 |         |        | 07-8444-5322 | 01-5655-1706 |
| 14    |      |       | 22  | 13:25 | 29.76   | 0.08561  | 0.0337   |         |        | 02-1152-2212 | 19-4150-8988 |
| 15    |      | Feb   | 5   | 13:10 | 29.83   | 0.1563   | 0.06154  |         |        | 06-6849-2235 | 07-0404-6516 |
| 16    |      | Mar   | 17  | 14:20 | 26.48   | -3.188   | -1.255   |         |        | 14-6169-3689 | 14-2151-4803 |
| 17    |      | Apr   | 6   | 17:15 | 29.18   | -0.4932  | -0.1942  |         |        | 02-0082-4673 | 12-2147-8498 |
| 18    |      |       | 15  | 13:25 | 30      | 0.33     | 0.1299   |         |        | 16-4614-0901 | 00-5465-8677 |
| 19    |      |       | 28  | 13:25 | 29.9    | 0.226    | 0.08896  |         |        | 06-8086-6028 | 08-1083-2165 |
| 20    |      | May   | 12  | 16:15 | 29.85   | 0.181    | 0.07127  |         |        | 12-3773-8150 | 18-0143-0286 |
| 21    |      | Jun   | 11  | 15:45 | 35.5    | 5.829    | 2.295    | (+)     |        | 20-6521-9403 | 17-6494-5506 |

\*EC50 for survival is greater than highest concentration tested on 7/15/20

| Bivalve Larval Survival and Development Test Nautilus Environmental (Ca |                                                                                                      |                                                                                                 |                                                                                                                                                 |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Development-Survival<br>EPA/600/R-95/136 (1995)                         | Organism: Mytilus galloprovincialis (Bay Mussel Endpoint: Survival Rate                              | Material:<br>Source:                                                                            | Copper chloride<br>Reference Toxicant-REF                                                                                                       |  |  |  |  |  |  |  |
|                                                                         | Bivalve Larval Survival and Development Test                                                         |                                                                                                 |                                                                                                                                                 |  |  |  |  |  |  |  |
| 70                                                                      |                                                                                                      |                                                                                                 |                                                                                                                                                 |  |  |  |  |  |  |  |
| 60-                                                                     |                                                                                                      |                                                                                                 | +35                                                                                                                                             |  |  |  |  |  |  |  |
| 50                                                                      |                                                                                                      |                                                                                                 | +25                                                                                                                                             |  |  |  |  |  |  |  |
| 40                                                                      |                                                                                                      |                                                                                                 |                                                                                                                                                 |  |  |  |  |  |  |  |
| 30                                                                      |                                                                                                      |                                                                                                 | Mean                                                                                                                                            |  |  |  |  |  |  |  |
| 20                                                                      | ¥                                                                                                    |                                                                                                 |                                                                                                                                                 |  |  |  |  |  |  |  |
| 10-                                                                     |                                                                                                      |                                                                                                 | -25                                                                                                                                             |  |  |  |  |  |  |  |
| 0                                                                       |                                                                                                      |                                                                                                 |                                                                                                                                                 |  |  |  |  |  |  |  |
| -10                                                                     |                                                                                                      |                                                                                                 | -35                                                                                                                                             |  |  |  |  |  |  |  |
| 17 Aug-19<br>20 Aug-19-<br>24 Aug-19-<br>28 Aug-19-<br>28 Aug-19-       | 12 Sep-19<br>17 Oct-19<br>30 Oct-19<br>27 Nov-19<br>05 Dec-19<br>11 Dec-19<br>08 Jan-20<br>22 Jan-20 | 05 Feb-20                                                                                       | 06 Apr-20<br>15 Apr-20<br>28 Apr-20<br>12 May-20<br>11 Jun-20                                                                                   |  |  |  |  |  |  |  |
|                                                                         | Development-Survival<br>EPA/600/R-95/136 (1995)                                                      | Development-Survival<br>EPA/600/R-95/136 (1995)<br>Bivalve Larval Survival and Development Test | Development-Survival<br>EPA/600/R-95/136 (1995) Organism: Mytilus galloprovincialis (Bay Mussel Source:<br>Bivalve Larval Survival Rate Source: |  |  |  |  |  |  |  |

### **CETIS QC Plot**

| Mean:  | 29.67 | Count: | 20     | -2s Warning Limit: | 8.901 | -3s Action Limit: | -1.484 |
|--------|-------|--------|--------|--------------------|-------|-------------------|--------|
| Sigma: | 10.38 | CV:    | 35.00% | +2s Warning Limit: | 50.44 | +3s Action Limit: | 60.82  |

**Quality Control Data** 

| Point | Year | Month | Day | Time  | QC Data | Delta    | Sigma    | Warning | Action | Test ID      | Analysis ID  |
|-------|------|-------|-----|-------|---------|----------|----------|---------|--------|--------------|--------------|
| 1     | 2019 | Aug   | 17  | 14:00 | 29.6    | -0.06634 | -0.00639 |         |        | 15-9584-4385 | 20-0172-5237 |
| 2     |      |       | 20  | 14:15 | 37.92   | 8.249    | 0.7943   |         |        | 14-8361-1578 | 02-5800-6574 |
| 3     |      |       | 24  | 16:00 | 30.04   | 0.3674   | 0.03538  |         |        | 19-4374-5817 | 17-7461-0750 |
| 4     |      |       | 28  | 14:30 | 28.66   | -1.005   | -0.09682 |         |        | 01-0546-0046 | 13-4512-6481 |
| 5     |      | Sep   | 11  | 14:30 | 33.71   | 4.045    | 0.3895   |         |        | 09-2717-2159 | 01-1883-2964 |
| 6     |      |       | 12  | 14:25 | 29.16   | -0.5059  | -0.04872 |         |        | 19-6218-6352 | 02-6393-7831 |
| 7     |      |       | 18  | 13:20 | 29.04   | -0.631   | -0.06077 |         |        | 10-9359-1611 | 04-3365-2341 |
| 8     |      | Oct   | 17  | 12:30 | 24.88   | -4.788   | -0.461   |         |        | 01-8239-7270 | 13-2801-3685 |
| 9     |      |       | 30  | 12:30 | 29.32   | -0.3471  | -0.03342 |         |        | 07-8198-2858 | 20-5233-5110 |
| 10    |      | Nov   | 27  | 20:00 | 29.07   | -0.6033  | -0.0581  |         |        | 12-9914-0499 | 00-1104-7300 |
| 11    |      | Dec   | 5   | 13:15 | 28.21   | -1.456   | -0.1402  |         |        | 04-7411-4445 | 20-5035-4724 |
| 12    |      |       | 11  | 13:35 | 29.18   | -0.4907  | -0.04726 |         |        | 10-8800-1613 | 02-9848-3585 |
| 13    | 2020 | Jan   | 8   | 13:40 | 29.6    | -0.06894 | -0.00664 |         |        | 07-8444-5322 | 01-5655-1706 |
| 14    |      |       | 22  | 13:25 | 29.76   | 0.08561  | 0.008244 |         |        | 02-1152-2212 | 19-4150-8988 |
| 15    |      | Feb   | 5   | 13:10 | 29.83   | 0.1563   | 0.01505  |         |        | 06-6849-2235 | 07-0404-6516 |
| 16    |      | Mar   | 17  | 14:20 | 26.48   | -3.188   | -0.307   |         |        | 14-6169-3689 | 14-2151-4803 |
| 17    |      | Apr   | 6   | 17:15 | 29.18   | -0.4932  | -0.04749 |         |        | 02-0082-4673 | 12-2147-8498 |
| 18    |      |       | 15  | 13:25 | 30      | 0.33     | 0.03178  |         |        | 16-4614-0901 | 00-5465-8677 |
| 19    |      |       | 28  | 13:25 | 29.9    | 0.226    | 0.02176  |         |        | 06-8086-6028 | 08-1083-2165 |
| 20    |      | May   | 12  | 16:15 | 29.85   | 0.181    | 0.01743  |         |        | 12-3773-8150 | 18-0143-0286 |
| 21    |      | Jun   | 11  | 15:45 | 35.5    | 5.829    | 0.5613   |         |        | 20-6521-9403 | 17-6494-5506 |
|       |      |       |     |       |         |          |          |         |        |              | 41           |

A Reference toxicant warning and control chart limits recalculated based on 75th percentile interlaboratory coefficient of Variation, as defined in EPA-833-R-00-003, for compansion purposes any



### **CETIS Test Data Worksheet**

Report Date: 11 Jul-20 17:57 (p 1 of 1) 17-4780-3294/200715msdv Test Code:

| Bivalve Larval Survival and Dev | velopment Test |
|---------------------------------|----------------|

| tart Date:<br>nd Date:<br>ample Date | 17 . | lul-20<br>lul-20<br>lul-20 |     | Protocol:       | Mytilus galloprovi<br>EPA/600/R-95/13<br>Copper chloride |           |            | Sample Code:200715msdvSample Source:Reference ToxicantSample Station:Copper Chloride |
|--------------------------------------|------|----------------------------|-----|-----------------|----------------------------------------------------------|-----------|------------|--------------------------------------------------------------------------------------|
| C-µg/L                               | Code | Rep                        | Pos | Initial Density | Final Density                                            | # Counted | # Normal   | Notes                                                                                |
|                                      |      |                            | 1   |                 |                                                          | 140       | 139        | JUL OBO DM 8/12/20                                                                   |
|                                      |      |                            | 2   |                 |                                                          | 132       | (3)        |                                                                                      |
|                                      |      |                            | 3   |                 |                                                          | 167       | 147        |                                                                                      |
|                                      |      |                            | 4   |                 |                                                          | 116       | Ø          | JU 8/12/20                                                                           |
|                                      |      |                            | 5   |                 |                                                          | 122       | 1          | 1                                                                                    |
|                                      |      |                            | 6   |                 |                                                          | 148       | 0          | · · · · ·                                                                            |
|                                      |      |                            | 7   |                 |                                                          | 170       | 161        |                                                                                      |
|                                      |      |                            | 8   |                 |                                                          | 175       | 147        |                                                                                      |
|                                      |      |                            | 9   |                 |                                                          | 146       | Ø          |                                                                                      |
|                                      |      |                            | 10  |                 |                                                          | 136       | Õ          |                                                                                      |
|                                      |      |                            | 11  |                 |                                                          | 152       | 150        |                                                                                      |
|                                      |      |                            | 12  |                 |                                                          | 154       | 151        |                                                                                      |
|                                      |      |                            | 13  |                 |                                                          | 147       | 120        |                                                                                      |
|                                      |      |                            | 14  |                 | ~                                                        | 134       | 134        |                                                                                      |
|                                      |      |                            | 15  |                 |                                                          | 138       | (36        |                                                                                      |
|                                      |      |                            | 16  |                 |                                                          | 144       | Ø          |                                                                                      |
|                                      |      |                            | 17  |                 |                                                          | 179       | 178        |                                                                                      |
|                                      |      |                            | 18  |                 |                                                          | 174       | 172        |                                                                                      |
|                                      |      |                            | 19  |                 |                                                          | 102       | $\bigcirc$ |                                                                                      |
|                                      |      |                            | 20  |                 |                                                          | 147       | 145        |                                                                                      |
|                                      |      |                            | 21  |                 |                                                          | 149       | 149        |                                                                                      |
|                                      |      |                            | 22  |                 |                                                          | 158       | 156        |                                                                                      |
|                                      |      |                            | 23  |                 |                                                          | 155       | 149        |                                                                                      |
|                                      |      |                            | 24  |                 |                                                          | 121       | $\Diamond$ |                                                                                      |
|                                      |      |                            | 25  |                 |                                                          | 42-       | 0          |                                                                                      |
|                                      |      |                            | 26  |                 |                                                          | 156       | 123        |                                                                                      |
|                                      |      |                            | 27  |                 |                                                          | 164       | 159        |                                                                                      |
|                                      |      |                            | 28  |                 |                                                          | 162       | 159        |                                                                                      |
|                                      |      |                            | 29  |                 |                                                          | 157       | 115        |                                                                                      |
|                                      |      |                            | 30  |                 |                                                          | 144       | Ø          | <b>4</b> 2                                                                           |



### **CETIS Test Data Worksheet**

Report Date: 11 Jul-20 17:57 (p 1 of 1) Test Code: 17-4780-3294/200715msdv

| Bivalve Larva                            | I Surv | vival a                 | and De | evelopment Test | :                                                        |           |          |                                                   | Nautilus Environmental (CA)                         |
|------------------------------------------|--------|-------------------------|--------|-----------------|----------------------------------------------------------|-----------|----------|---------------------------------------------------|-----------------------------------------------------|
| Start Date:<br>End Date:<br>Sample Date: | 17 J   | ul-20<br>ul-20<br>ul-20 |        | Protocol:       | Mytilus galloprovi<br>EPA/600/R-95/13<br>Copper chloride |           |          | Sample Code:<br>Sample Source:<br>Sample Station: | 200715msdv<br>Reference Toxicant<br>Copper Chloride |
| C-µg/L                                   | Code   | Rep                     | Pos    | Initial Density | Final Density                                            | # Counted | # Normal |                                                   | Notes                                               |
| 0                                        | LC     | 1                       | 14     |                 |                                                          | 130       | (30      | OM 7/1                                            | 8/20                                                |
| 0                                        | LC     | 2                       | 27     |                 |                                                          | 100       |          | VI //1                                            |                                                     |
| 0                                        | LC     | 3                       | 2      |                 |                                                          |           |          |                                                   |                                                     |
| 0                                        | LC     | 4                       | 15     |                 |                                                          |           |          |                                                   |                                                     |
| 0                                        | LC     | 5                       | 11     |                 |                                                          |           |          |                                                   |                                                     |
| 2.5                                      |        | 1                       | 21     |                 |                                                          | 153       | (52      |                                                   |                                                     |
| 2.5                                      |        | 2                       | 17     |                 |                                                          | <u>_</u>  | 150      |                                                   |                                                     |
| 2.5                                      |        | 3                       | 12     |                 |                                                          |           |          |                                                   |                                                     |
| 2.5                                      |        | 4                       | 20     |                 |                                                          |           |          |                                                   |                                                     |
| 2.5                                      |        | 5                       | 7      |                 |                                                          |           |          |                                                   |                                                     |
| 5                                        |        | 1                       | 22     |                 |                                                          | 153       | 150      |                                                   |                                                     |
| 5                                        |        | 2                       | 23     |                 |                                                          | 1 - 2     |          |                                                   |                                                     |
| 5                                        |        | 3                       | 1      |                 |                                                          |           |          |                                                   |                                                     |
| 5                                        |        | 4                       | 18     |                 |                                                          |           |          |                                                   |                                                     |
| 5                                        |        | 5                       | 28     |                 |                                                          |           |          |                                                   |                                                     |
| 10                                       |        | 1                       | 29     |                 |                                                          |           |          |                                                   |                                                     |
| 10                                       |        | 2                       | 13     |                 |                                                          | 143       | 123      |                                                   |                                                     |
| 10                                       |        | 3                       | 3      |                 |                                                          |           |          |                                                   |                                                     |
| 10                                       |        | 4                       | 26     |                 |                                                          |           |          |                                                   |                                                     |
| 10                                       |        | 5                       | 8      |                 |                                                          |           |          |                                                   |                                                     |
| 20                                       |        | 1                       | 25     |                 |                                                          | 145       | 0        |                                                   |                                                     |
| 20                                       |        | 2                       | 6      |                 |                                                          |           |          |                                                   |                                                     |
| 20                                       |        | 3                       | 9      |                 |                                                          |           |          |                                                   |                                                     |
| 20                                       |        | 4                       | 16     |                 |                                                          |           |          |                                                   |                                                     |
| 20                                       |        | 5                       | 10     |                 |                                                          |           | ~        |                                                   |                                                     |
| 40                                       |        | 1                       | 19     |                 |                                                          | 98        | 980      | cells (550                                        | ed                                                  |
| 40                                       |        | 2                       | 5      |                 |                                                          |           |          |                                                   | W. W. 3.                                            |
| 40                                       |        | 3                       | 4      |                 |                                                          |           |          |                                                   |                                                     |
| 40                                       |        | 4                       | 24     |                 |                                                          |           |          |                                                   |                                                     |
| 40                                       |        | 5                       | 30     |                 |                                                          |           |          |                                                   |                                                     |

QC: EG

A Q18 pm 3/18/20



# Marine Chronic Bioassay DM-014

Client: Internal

Sample ID: CuCl<sub>2</sub>

Test No.: 200715msdv

### Water Quality Measurements

| Test Species:    | M. gallopro | vincialis |
|------------------|-------------|-----------|
| Start Date/Time: | 7/15/2020   | 1355      |
| End Date/Time:   | 7/17/2020   | 1312      |

| Concentration |      | Salinity |      | T    | emperatu | re   | Diss | olved Ox | ygen |      | рН              |      |
|---------------|------|----------|------|------|----------|------|------|----------|------|------|-----------------|------|
| (μg/L)        |      | (ppt)    |      |      | (°C)Ŷ\   | -    |      | (mg/L)   |      |      | (pH units       | )    |
|               | 0    | 24       | 48   | 0    | 24       | 48   | 0    | 24       | 48   | 0    | 24              | 48   |
| Lab Control   | 31,9 | 31.4     | 31.4 | 15.9 | 16.3     | 15.5 | 8.8  | 8.3      | 8.4  | 8.09 | 王子              | 7.86 |
| 2.5           | 32.1 | 31.7     | 32.2 | 15.7 | 15.8     | 15.2 | 8.7  | 8.4      | 8.4  | 8.10 | 9.05<br>7.75    | 7.90 |
| 5             | 32.1 | 31.7     | 32.2 | 15,6 | 15.8     | 15.2 | 8.8  | 8.2      | 8.3  | 8-11 | 0.0.07<br>7.776 | 7.94 |
| 10            | 32.1 | Ə1.7     | 32.2 | 15.9 | 16.0     | 15.4 | 8.6  | 8.2      | 8.3  | 8-11 | 8-06-77         | 7.93 |
| 20            | 32.1 | 31.7     | 32.2 | 15.7 | 15.9     | 15.4 | 8.7  | 83       | 8.3  | 8.12 | 8.00<br>7.7     | 7.93 |
| 40            | 32.0 | 31.6     | 32.1 | 15.7 | 15.9     | 15.4 | 8.7  | 8.2      | 8.3  | 8.12 | 288             | 7.93 |
|               |      |          |      |      |          |      |      |          |      |      |                 |      |
|               |      |          |      |      |          |      |      |          |      |      |                 |      |
|               |      |          |      |      |          |      |      |          |      |      |                 |      |
|               |      |          |      |      |          |      |      |          |      |      |                 |      |
|               |      |          |      |      |          |      |      |          |      |      |                 |      |

|                                | 0 2                | <u>2</u> 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                        | High conc. made (µg/L):                                                                | 40                                                                        |                                                                                                                                                                                                                                                                     |
|--------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WQ Readings:                   | E. K               | 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                         | Vol. Cu stock added (mL):                                                              | 1.8                                                                       |                                                                                                                                                                                                                                                                     |
| Dilutions made by:             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           | Final Volume (mL):                                                                     | 500                                                                       |                                                                                                                                                                                                                                                                     |
| -                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           | Cu stock concentration (µg/L):                                                         | 11,400                                                                    |                                                                                                                                                                                                                                                                     |
| ber: <u> </u>                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                        |                                                                           |                                                                                                                                                                                                                                                                     |
|                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                        |                                                                           |                                                                                                                                                                                                                                                                     |
|                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                        |                                                                           | a da citada ante a como a como a desta de alta de alta da                                                                                                                                                                                                           |
| $24 \text{ hrs:} (A) \oplus B$ | 1-7/16/2           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                        |                                                                           |                                                                                                                                                                                                                                                                     |
| 48 hrs:                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                        |                                                                           |                                                                                                                                                                                                                                                                     |
| EL 7/17/20                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           | Final Review:                                                                          | BO 8/18/20                                                                |                                                                                                                                                                                                                                                                     |
|                                | Dilutions made by: | WQ Readings:<br>Dilutions made by:<br>PT<br>Dilutions made by:<br>Dilutions made by:<br>Dilution | WQ Readings: $F_{L}$ $F_{L}$ $F_{L}$<br>Dilutions made by: $F_{T}$<br>ber: $D$ .<br>0 hrs:<br>24 hrs: $(F)$ (NEVL 7/16/20 | Dilutions made by: <b>PT</b><br>Der: <b>D</b> .<br>0 hrs:<br>24 hrs: (P) (NEVL 7/16/20 | WQ Readings:<br>Dilutions made by: PT · · · · · · · · · · · · · · · · · · | WQ Readings: $\mu_{L}$ $\mu_{L}$ $\mu_{L}$ $Vol. Cu stock added (mL):$ $l.8$ Dilutions made by: $\mu_{T}$ $P$ $Final Volume (mL):$ $500$ Cu stock concentration ( $\mu$ g/L): $II, 400$ 0 hrs: $Q$ $Q$ $II, 400$ 24 hrs: $P$ $P$ $II, 400$ 48 hrs: $II$ $III$ $III$ |

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

# Marine Chronic Bioassay DM-013

| Client/Sample:     | Internal/CUCIZ            |
|--------------------|---------------------------|
| Test No.:          | 200715 msdv               |
| Test Species:      | Mytilus galloprovincialis |
| Animal Source/Batc | hTank: M-rep/3A           |
| Date Received:     | 4/21/20                   |
| Test Chambers:     | 30 mL glass shell vials   |
| Sample Volume:     | 10 mL                     |

1007

### Larval Development Worksheet

| Start Date/Time:     | 7/15/2020 | 1355 |
|----------------------|-----------|------|
| End Date/Time:       | 7/17/2020 | 1310 |
| Technician Initials: | EGIRT     |      |

#### Spawn Information

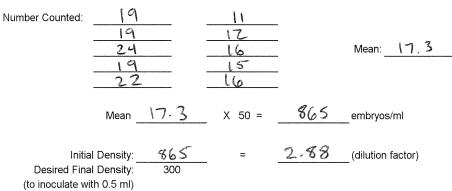
First Gamete Release Time:

### **Gamete Selection**

| Sex    | Number Spawning |
|--------|-----------------|
| Male   | 3               |
| Female | 3+              |

| Sex      | Beaker<br>Number(s) | Condition (sperm motility, egg density, color, shape,<br>etc.) |
|----------|---------------------|----------------------------------------------------------------|
| Male     | 1,2                 | Ok density & motility                                          |
| Female 1 | 2                   | grood density, pale color, mostly round                        |
| Female 2 | 3                   | good density, oraneisticator, mostly rand                      |
| Female 3 | ~                   |                                                                |

Egg Fertilization Time: 1105


### Embryo Stock Selection

| Stock Number | % of embryos at 2-cell division<br>stage |
|--------------|------------------------------------------|
| Female 1     | 99                                       |
| Female 2     | 100                                      |
| Female 3     | Sandara.                                 |

| Stock(s) chosen for testing: |
|------------------------------|
|------------------------------|

### Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos



Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

#### **Time Zero Control Counts**

| TØ Vial<br>No. | No. Dividing | Total | % Dividing | Mean %<br>Dividing |
|----------------|--------------|-------|------------|--------------------|
| TØ A           | 179          | 181   | 98.9       |                    |
| TØ B           | 139          | 139   | 100        |                    |
| тøс            | 166          | 166   | 100        | 99.8               |
| TØ D           | 167          | 167   | 100        |                    |
| TØ E           | 147          | 147   | 100        |                    |
| TØ F           | 155          | 185   | 100        |                    |
| <u>X</u> =     | 159          |       |            |                    |

48-h QC: 133/136 = 97.8%

Comments:

QC Check:

RT 7/18/20

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Final Review: BO 8/18/20