

Chronic Toxicity Testing Results for Wyckoff Eagle Harbor Groundwater Treatment Plant

Monitoring Period: March 2021

Prepared for: Jacobs

1100 112th Ave NE Suite 500

Bellevue, WA, 98004

Prepared by: Enthalpy Analytical

4340 Vandever Avenue San Diego, CA 92120

(858) 587-7333

Date Submitted: April 7, 2021

Data Quality Assurance:

- Enthalpy Analytical is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (ORELAP ID 4053). It is also certified by the State of California Water Resources Control Board Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552). Specific fields of testing applicable to each accreditation are available upon request.
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective US EPA protocols, unless otherwise noted in this report.
- All tests have met internal Quality Assurance Program requirements.

California

4340 Vandever Avenue San Diego, California 92120 858.587.7333 fax: 619.279.5919

Results verified by:

Barbara Orelo, Project Manager

Introduction

A toxicity test was performed using a groundwater composite sample collected from the Wyckoff Eagle Harbor Groundwater Treatment Plant on Bainbridge Island in Washington. This test was performed to satisfy quarterly monitoring requirements according to the project Quality Assurance Project Plan (QAPP 2013). The chronic bioassay was conducted using the bivalve *Mytilus galloprovincialis* (Mediterranean mussel). Testing was performed at Enthalpy Analytical located in San Diego, California.

Materials and Methods

The groundwater sample was collected into a low-density polyethylene cubitainer by Jacobs personnel, packed in a cooler containing ice, and shipped overnight to Enthalpy. Appropriate chain-of-custody (COC) procedures were employed during collection and transport. Upon arrival at the laboratory, the cooler was opened, the sample inspected, and the contents verified against information on the COC form. Standard water quality parameters were measured and recorded on a sample check-in form and are summarized in Table 1. The sample was stored at 4°C in the dark until used for testing.

Table 1. Sample Information

Sample ID	030921
Enthalpy Log-in Number	21-0281
Collection Date; Time	3/9/2021; 0915h
Receipt Date; Time	3/10/2021; 0915h
Receipt Temperature (°C)	1.9
Dissolved Oxygen (mg/L)	9.6
рН	7.70
Conductivity (µS/cm)	11,390
Salinity (ppt)	6.5
Alkalinity (mg/L CaCO₃)	327
Total Chlorine (mg/L)	<0.02
Total Ammonia (mg/L as N)	1.8

NM = not measured

Test Methods

Chronic toxicity testing was conducted according to the method set forth in USEPA (1995). This method is summarized in Table 2.

Table 2. Summary of Methods for the Bivalve Larval Development Test

Test Period	3/10/2021, 1415h to 3/12/2021, 1315h
Test Organism	Mytilus galloprovincialis
Test Organism Source	M-Rep (Carlsbad, CA)
Test Organism Age	4 hours post fertilization
Test Duration	48 ± 2 hours
Test Type	Static
Test Chamber, Test Solution Volume	30 mL glass vial, 10 mL
Test Temperature	15 ± 1°C
Dilution Water	Laboratory Seawater (Source: Scripps Institution of Oceanography [SIO] intake) diluted with de-ionized water
Additional Control	Brine Control (de-ionized water and hypersaline brine)
Test Salinity	$30 \pm 2 \text{ ppt}$
Source of Salinity	Hypersaline brine made by freezing seawater to a salinity of 94.9 ppt
Test Concentrations (% sample)	74.2a, 35, 18, 9, 4, and 2%, lab and brine controls
Number of Replicates	5
Photoperiod	16 hours light/8 hours dark
Test Protocol	EPA/600/R-95/136
Test Acceptability Criteria for Controls	≥ 50% mean survival, ≥ 90% mean development rate
Reference Toxicant	Copper chloride ^b
Statistical Software	CETIS™ 1.8.7.20

^a Highest concentration tested due to the addition of hypersaline brine

Results

There were no statistically significant effects detected in any effluent concentration tested for the survival or development endpoint of the bivalve test. This results in a no observed effect concentration (NOEC) of 74.2 (the highest concentration tested) and a chronic toxic unit (TU_c) of less than 1.35 for both endpoints.

Results for the chronic toxicity test are summarized in Tables 3 and 4. Individual statistical summaries for the test and copies of the laboratory bench sheets are provided in Appendix A. The sample check-in sheet and COC form are provided in Appendices B and C, respectively.

Table 3. Summary of Statistical Results for the Chronic Toxicity Tests

Species	Endpoint	NOEC (% effluent)	LOEC (% effluent)	Toxic Unit (TU₅)	EC ₂₅ (% effluent)
Bivalve	Normal Development	74.2	> 74.2	< 1.35	> 74.2
Divalve	Survival	74.2	> 74.2	< 1.35	> 74.2

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

Chronic Toxic Unit (TU_c) = 100/NOEC. NOTE: Since 100% sample was not tested, the TU_c value can only be calculated up to the highest concentration tested. If no toxicity is observed at this concentration, the TU_c is reported as less than the calculated value.

Effect Concentration 25 (EC₂₅) = Concentration expected to cause an effect to 25% of the organisms

^b A deviation to the QAPP was approved by USEPA and Washington Department of Ecology to conduct reference toxicant testing with copper chloride. See QA section.

Table 4. Detailed Results for the Bivalve Development Chronic Toxicity Test

Concentration (% Effluent)	Mean Survival (%)	Mean Normal Development (%)
0 (Brine Control)	76.4	98.6
0 (Lab Control)	91.5	97.0
2	87.9	97.4
4	83.0	98.1
9	77.6	98.8
18	85.7	97.8
35	84.9	97.7
74.2ª	88.5	96.8

^a Highest concentration tested due to the addition of hypersaline brine

Quality Assurance

The sample was received within the required 36-hour holding time, in good condition, and within the appropriate temperature range of 0-6°C. All control acceptability criteria were met and water quality parameters remained within the appropriate ranges throughout the test. Statistical analyses followed standard USEPA flowchart selections. Dose-response relationships were reviewed to ensure the reliability of the results. Based on the dose response observed, the calculated effects concentrations were deemed reliable. Minor QA/QC issues that were unlikely to have any bearing on the final test results, such as slight temperature deviations, are noted on the data sheets and a list of qualifier codes used on bench data sheets is presented in Appendix D.

Reference Toxicant

Results for the reference toxicant tests used to monitor laboratory performance and test organism sensitivity are summarized in Table 5. A deviation to the QAPP was approved by USEPA and Washington Department of Ecology to conduct reference toxicant testing with copper chloride rather than copper sulfate. The results for the concurrent reference toxicant test were within the acceptable range of the mean historical test results plus or minus two standard deviations for development. The EC₅₀ for survival was greater than the highest concentration tested; indicating organisms may have been less sensitive than typical for the survival endpoint. Reference toxicant statistical summaries and laboratory bench sheets are provided in Appendix E.

Table 5. Reference Toxicant Test Results

Species and Endpoint	NOEC (%)	EC ₅₀ (μg/L copper)	Historical Mean ± 2 SD (µg/L copper)	CV (%)
Bivalve Survival Rate	20	> 40.0	29.6 ± 4.41	7.46
Bivalve Normal Development	5	9.69	9.42 ± 5.85	31.0

NOEC = No Observed Effect Concentration

Effect Concentration 50 (EC $_{50}$) = Concentration expected to cause an effect to 50% of the organisms

Historical Mean \pm 2 SD = The mean EC₅₀ from the previous 20 tests performed by the laboratory, plus or minus two standard deviations (SD)

CV = Coefficient of Variation

References

- CH2MHill. 2013. Quality Assurance Project Plan Groundwater Treatment Plant Operations, Maintenance, Bainbridge, Washington. Prepared for USEPA Region 10 June 5, 2013.
- Standard Guide for Conducting Static Acute Toxicity Tests with Embryos of Four Species of Saltwater Bivalve Molluscs. 1989. ASTM Standard E 724-89.
- Tidepool Scientific Software. 2000-2013. CETIS Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20.
- USEPA. 1995. Short-Term Method for Estimating the Chronic Toxicity of Effluents and Receiving Waters to the West Coast Marine and Estuarine Organisms. EPA/600/R-95/136. pp. 209-258 and 389-465.
- Washington State Department of Ecology. 2016. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Publication No. WQ-R-95-80. Revised June 2016

Appendix A
Statistical Summaries and Raw Bench Sheets

CETIS Summary Report

Report Date:

06 Apr-21 10:22 (p 1 of 2)

Test Code:

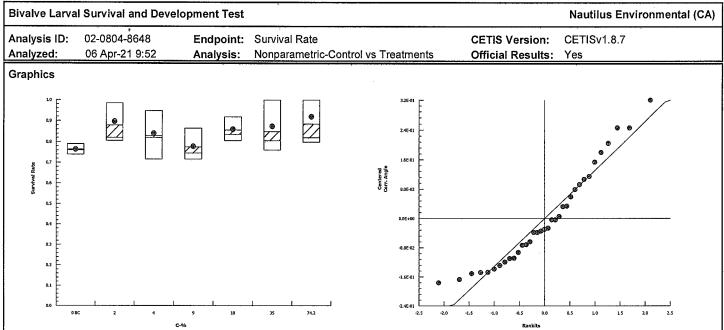
				, , , , , , , , , , , , , , , , , , , 				Test Code		210	13-3003 01	5-3498-6822
Bivalve Larva	l Survival and D	evelop	ment Test							Nautilus	s Environn	nental (CA)
Batch ID: Start Date: Ending Date: Duration:	16-5403-8639 10 Mar-21 14:1 12 Mar-21 13:1 47h		Test Type: Protocol: Species: Source:	Development-S EPA/600/R-95/ Mytilus gallopro M-Rep, Carlsba	/136 (1995) ovincialis			Analyst: Diluent: Brine: Age:		ted Natural S en Seawate		
Sample ID:	16-5966-5760		Code:	21-0281				Client:	Jaco	bs		
Sample Date:	09 Mar-21 09:1	5	Material:	Effluent Sampl	е			Project:				
Receive Date:	: 10 Mar-21 09:1	5	Source:	Jacobs								
Sample Age:	29h (1.9 °C)		Station:	Wyckoff								
Comparison S	Summary											
Analysis ID	Endpoint		NOEL	. LOEL	TOEL	PMSD	TU	Met	hod			
03-2387-1345	Development R	Rate	74.2	>74.2	NA	1.74%	∠ 1.34	8 Dun	nett M	lultiple Com	parison Te	st
02-0804-8648	Survival Rate		74.2	>74.2	NA	27.2%	(1.34	8 Stee	el Man	y-One Rank	Sum Test	
Point Estimat	e Summary		-	:								
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	_ TU	Met	hod			
07-9634-7858	Development R	Rate	EC25	>74.2	N/A	N/A	<1.3	348 Line	ar Inte	erpolation (IC	CPIN)	
			EC50	>74.2	N/A	N/A	<1.3	348				
16-3953-4561	Survival Rate		EC25	>74.2	N/A	N/A	<1.3	348 Line	ar Inte	erpolation (IC	CPIN)	
			EC50	>74.2	N/A	N/A	<1.3	348				
Test Acceptat	oility											
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	nits	Ove	rlap	Decision		
03-2387-1345	Development R	Rate	Contro	ol Resp	0.9862	0.9 - NL		Yes		Passes Ad	cceptability	Criteria
07-9634-7858	Development R	Rate	Contro	ol Resp	0.9862	0.9 - NL		Yes			cceptability	
02-0804-8648	Survival Rate			ol Resp	0.7642	0.5 - NL		Yes			cceptability	
16-3953-4561	Survival Rate		Contr	ol Resp	0.7642	0.5 - NL		Yes		Passes Ad	cceptability	Criteria
Development	Rate Summary											
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std	Err	Std Dev	CV%	%Effect
0	Brine Control	5	0.986	2 0.9719	1	0.9697	1	0.00	5159	0.01154	1.17%	0.0%
0	Lab Control	5	0.97	0.9463	0.9937	0.9402	0.99		8535	0.01909	1.97%	1.65%
2		5	0.974		0.9816	0.9697	0.98		2624	0.005867	0.6%	1.2%
4		5	0.980		0.9975	0.9636	0.99		6043	0.01351	1.38%	0.55%
9		5	0.988		1	0.9688	1			0.01313	1.33%	-0.21%
18		5	0.977		0.9928	0.9593	0.99			0.01218	1.25%	0.87%
35 74.2		5 5	0.976 0.968		0.9922 0.9815	0.9608 0.9533	0.99 0.98)5637)4688	0.0126 0.01048	1.29% 1.08%	0.98% 1.8%
Survival Rate	Summary	-					3.00			2.2.2.0		
C-%	Control Type	Coun	t Mean	95% LCI	95% UCL	Min	Max	Std	Err	Std Dev	CV%	%Effect
0	Brine Control	5	0.764		0.7874	0.7388	0.79		8377	0.01873	2.45%	0.0%
0	Lab Control	5	0.704		1	0.806	1	0.03		0.07658	8.37%	-19.73%
2		5	0.879		0.9911	0.806	0.98			0.09023	10.26%	-15.04%
4		5	0.829		0.9527	0.7164	0.94			0.09892	11.92%	-8.59%
9		5	0.776		0.8502	0.7164	0.86			0.0597	7.69%	-1.56%
18		5	0.856		0.9233	0.806	0.91			0.05366	6.26%	-12.11%
35		5	0.849	3 0.7211	0.9774	0.7612	1	0.04	615	0.1032	12.15%	-11.13%
74.2		5	0.885	1 0.7544	1	0.7985	1	0.04	706	0.1052	11.89%	-15.82%

Report Date: Test Code: 06 Apr-21 10:22 (p 2 of 2)

							lest Code:	2103-5063 06-3498-682
Bivalve La	arval Survival and I	Developme	nt Test					Nautilus Environmental (CA
Developm	ent Rate Detail							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	0.9697	1	0.9906	0.9903	0.9804		
0	Lab Control	0.9402	0.9722	0.968	0.9767	0.9926		
2		0.9697	0.9725	0.9722	0.9727	0.9846		
4		0.9636	0.9685	0.9896	0.9918	0.9901		
9		1	0.9828	0.9688	1	0.99		
18		0.9821	0.9836	0.9722	0.9908	0.9593		
35		0.9608	0.9926	0.9815	0.9806	0.9672		
74.2		0.9533	0.9701	0.9722	0.9648	0.9818		
Survival F	Rate Detail							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	0.7388	0.7612	0.791	0.7687	0.7612		
0	Lab Control	0.8731	0.806	0.9328	0.9627	1		
2		0.9851	0.8134	0.806	0.8209	0.9701		
4		0.8209	0.9478	0.7164	0.9104	0.7537		
9		0.7463	0.8657	0.7164	0.806	0.7463		
18		0.8358	0.9104	0.806	0.8134	0.9179		
35		0.7612	1	0.806	0.7687	0.9104		
74.2		0.7985	1	0.806	1	0.8209		
Developm	nent Rate Binomials	3						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	96/99	102/102	105/106	102/103	100/102		
0	Lab Control	110/117	105/108	121/125	126/129	135/136		
2		128/132	106/109	105/108	107/110	128/130		
4		106/110	123/127	95/96	121/122	100/101		
9		100/100	114/116	93/96	108/108	99/100		
18		110/112	120/122	105/108	108/109	118/123		
35		98/102	135/136	106/108	101/103	118/122		
74.2		102/107	130/134	105/108	137/142	108/110		
Survival F	Rate Binomials							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	99/134	102/134	106/134	103/134	102/134		
0	Lab Control	117/134	108/134	125/134	129/134	134/134		
2		132/134	109/134	108/134	110/134	130/134		
4		110/134	127/134	96/134	122/134	101/134		
9		100/134	116/134	96/134	108/134	100/134		
18		112/134	122/134	108/134	109/134	123/134		
35		102/134	134/134	108/134	103/134	122/134		
74.2		107/134	134/134	108/134	134/134	110/134		

Report Date:

06 Apr-21 10:22 (p 3 of 4)


Test Code:

Bivalve Larva	al Survival and D)evelopme	nt Test				·		Nautilus	Environn	nental (CA
Analysis ID: Analyzed:	02-0804-8648 06 Apr-21 9:52		dpoint: Sur alysis: Nor	vival Rate iparametric-	Control vs	Treatments		IS Version: cial Results:	CETISv1. Yes	8.7	
Data Transfor	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)	NA	C > T	NA	NA		27.2%	74.2	>74.2	NA	1.348
Steel Many-O	ne Rank Sum Te	est								·A·····	
Control	vs C-%		Test Stat	Critical	Ties D	F P-Value	P-Type	Decision(α:5%)		
Brine Control	2		40	16	0 8	1.0000	Asymp	Non-Signif	icant Effect		
	4		31	16	0 8	0.9749	Asymp	_	ficant Effect		
	9		27	16	0 8	0.8267	Asymp	_	icant Effect		
	18		40	16	0 8	1.0000	Asymp	Non-Signif	icant Effect		
	35		35.5	16	2 8	0.9991	Asymp	Non-Signif	icant Effect		
	74.2		40	16	0 8	1.0000	Asymp	Non-Signif	icant Effect		
ANOVA Table)					 :					
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.1935783	3	0.0322630	6	6	1.52	0.2082	Non-Signif	ficant Effect		
Error	0.5944435	5	0.0212301	3	28						
Total	0.7880218	3			34						
Distributiona	l Tests										
Distributiona Attribute	l Tests Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
	Test	equality of V	/ariance	Test Stat	Critical 16.81	P-Value 0.0091	Decision Unequal \				
Attribute	Test Bartlett E	iquality of V						/ariances			
Attribute Variances Distribution	Test Bartlett E Shapiro-\			17.06	16.81	0.0091	Unequal \	/ariances			
Attribute Variances Distribution Survival Rate	Test Bartlett E Shapiro-\			17.06	16.81	0.0091 0.0398	Unequal \	/ariances	Std Err	CV%	%Effect
Attribute Variances Distribution Survival Rate C-%	Test Bartlett E Shapiro-\	Wilk W Nor	mality	17.06 0.9351	16.81 0.9146	0.0091 0.0398	Unequal \ Normal D	Variances istribution	Std Err 0.008377	CV% 2.45%	%Effect
Attribute Variances Distribution Survival Rate C-% 0	Test Bartlett E Shapiro-\ Summary Control Type	Wilk W Nor	mality Mean	17.06 0.9351 95% LCL	16.81 0.9146 95% UCL	0.0091 0.0398 Median	Unequal \ Normal D	Variances istribution Max			0.0%
Attribute Variances Distribution Survival Rate C-% 0 2	Test Bartlett E Shapiro-\ Summary Control Type	Count 5	Mean 0.7642	17.06 0.9351 95% LCL 0.7409	16.81 0.9146 95% UCL 0.7874	0.0091 0.0398 Median 0.7612	Unequal Normal D Min 0.7388	Variances istribution Max 0.791	0.008377	2.45%	0.0% -15.04% -8.59%
Attribute Variances Distribution Survival Rate C-% 0 2 4 9	Test Bartlett E Shapiro-\ Summary Control Type	Count 5 5 5 5	Mean 0.7642 0.8791 0.8299 0.7761	17.06 0.9351 95% LCL 0.7409 0.7671 0.707 0.702	95% UCL 0.7874 0.9911 0.9527 0.8502	0.0091 0.0398 Median 0.7612 0.8209 0.8209 0.7463	Min 0.7388 0.806 0.7164 0.7164	Max 0.791 0.9851 0.9478 0.8657	0.008377 0.04035 0.04424 0.0267	2.45% 10.26% 11.92% 7.69%	0.0% -15.04% -8.59% -1.56%
Attribute Variances Distribution Survival Rate C-% 0 2 4 9 18	Test Bartlett E Shapiro-\ Summary Control Type	Count 5 5 5 5 5 5 5	Mean 0.7642 0.8791 0.8299 0.7761 0.8567	17.06 0.9351 95% LCL 0.7409 0.7671 0.707 0.702 0.7901	95% UCL 0.7874 0.9911 0.9527 0.8502 0.9233	0.0091 0.0398 Median 0.7612 0.8209 0.8209 0.7463 0.8358	Min 0.7388 0.806 0.7164 0.7164 0.806	Max 0.791 0.9851 0.9478	0.008377 0.04035 0.04424 0.0267 0.024	2.45% 10.26% 11.92% 7.69% 6.26%	0.0% -15.04% -8.59% -1.56% -12.11%
Attribute Variances Distribution Survival Rate C-% 0 2 4 9 18 35	Test Bartlett E Shapiro-\ Summary Control Type	Count 5 5 5 5 5 5 5 5 5	Mean 0.7642 0.8791 0.8299 0.7761 0.8567 0.8493	17.06 0.9351 95% LCL 0.7409 0.7671 0.707 0.702 0.7901 0.7211	95% UCL 0.7874 0.9911 0.9527 0.8502 0.9233 0.9774	0.0091 0.0398 Median 0.7612 0.8209 0.8209 0.7463 0.8358 0.806	Min 0.7388 0.806 0.7164 0.7164 0.806 0.7612	Max 0.791 0.9851 0.9478 0.8657 0.9179 1	0.008377 0.04035 0.04424 0.0267 0.024 0.04615	2.45% 10.26% 11.92% 7.69% 6.26% 12.15%	0.0% -15.04% -8.59% -1.56% -12.11% -11.13%
Attribute Variances Distribution Survival Rate C-% 0 2 4 9 18 35	Test Bartlett E Shapiro-\ Summary Control Type	Count 5 5 5 5 5 5 5	Mean 0.7642 0.8791 0.8299 0.7761 0.8567	17.06 0.9351 95% LCL 0.7409 0.7671 0.707 0.702 0.7901	95% UCL 0.7874 0.9911 0.9527 0.8502 0.9233	0.0091 0.0398 Median 0.7612 0.8209 0.8209 0.7463 0.8358	Min 0.7388 0.806 0.7164 0.7164 0.806	Max 0.791 0.9851 0.9478 0.8657 0.9179	0.008377 0.04035 0.04424 0.0267 0.024	2.45% 10.26% 11.92% 7.69% 6.26%	0.0% -15.04% -8.59% -1.56% -12.11% -11.13%
Attribute Variances Distribution Survival Rate C-% 0 2 4 9 18 35 74.2	Test Bartlett E Shapiro-\ Summary Control Type	Count 5 5 5 5 5 5 5 5 5	Mean 0.7642 0.8791 0.8299 0.7761 0.8567 0.8493 0.8851	17.06 0.9351 95% LCL 0.7409 0.7671 0.707 0.702 0.7901 0.7211	95% UCL 0.7874 0.9911 0.9527 0.8502 0.9233 0.9774	0.0091 0.0398 Median 0.7612 0.8209 0.8209 0.7463 0.8358 0.806	Min 0.7388 0.806 0.7164 0.7164 0.806 0.7612	Max 0.791 0.9851 0.9478 0.8657 0.9179 1	0.008377 0.04035 0.04424 0.0267 0.024 0.04615	2.45% 10.26% 11.92% 7.69% 6.26% 12.15%	0.0% -15.04% -8.59% -1.56% -12.11% -11.13%
Attribute Variances Distribution Survival Rate C-% 0 2 4 9 18 35 74.2 Angular (Core	Test Bartlett E Shapiro-\ e Summary Control Type Brine Control	Count 5 5 5 5 5 5 5 5 5	Mean 0.7642 0.8791 0.8299 0.7761 0.8567 0.8493 0.8851	17.06 0.9351 95% LCL 0.7409 0.7671 0.707 0.702 0.7901 0.7211	95% UCL 0.7874 0.9911 0.9527 0.8502 0.9233 0.9774	0.0091 0.0398 Median 0.7612 0.8209 0.8209 0.7463 0.8358 0.806 0.8209	Min 0.7388 0.806 0.7164 0.7164 0.806 0.7612	Max 0.791 0.9851 0.9478 0.8657 0.9179 1	0.008377 0.04035 0.04424 0.0267 0.024 0.04615	2.45% 10.26% 11.92% 7.69% 6.26% 12.15%	0.0% -15.04% -8.59% -1.56% -12.11% -11.13% -15.82%
Attribute Variances Distribution Survival Rate C-% 0 2 4 9 18 35 74.2 Angular (Core	Test Bartlett E Shapiro-\ Summary Control Type Brine Control	Count 5 5 5 5 5 5 5 5 med Summ	Mean 0.7642 0.8791 0.8299 0.7761 0.8567 0.8493 0.8851	95% LCL 0.7409 0.7671 0.707 0.702 0.7901 0.7211 0.7544	95% UCL 0.7874 0.9911 0.9527 0.8502 0.9233 0.9774	0.0091 0.0398 Median 0.7612 0.8209 0.7463 0.8358 0.806 0.8209 Median 1.06	Min 0.7388 0.806 0.7164 0.7164 0.806 0.7612 0.7985	Max 0.791 0.9851 0.9478 0.8657 0.9179 1 1 Max 1.096	0.008377 0.04035 0.04424 0.0267 0.024 0.04615 0.04706 Std Err 0.009897	2.45% 10.26% 11.92% 7.69% 6.26% 12.15% 11.89%	0.0% -15.04% -8.59% -1.56% -12.11% -11.13% -15.82%
Attribute Variances Distribution Survival Rate C-% 0 2 4 9 18 35 74.2 Angular (Core	Test Bartlett E Shapiro-\ Summary Control Type Brine Control rected) Transfor Control Type	Count 5 5 5 5 5 5 med Sumr	Mean 0.7642 0.8791 0.8299 0.7761 0.8567 0.8493 0.8851 mary Mean	95% LCL 0.7409 0.7671 0.707 0.702 0.7901 0.7211 0.7544	95% UCL 0.7874 0.9911 0.9527 0.8502 0.9233 0.9774 1	0.0091 0.0398 Median 0.7612 0.8209 0.8209 0.7463 0.8358 0.806 0.8209	Min 0.7388 0.806 0.7164 0.7164 0.806 0.7612 0.7985	Max 0.791 0.9851 0.9478 0.8657 0.9179 1 1 Max	0.008377 0.04035 0.04424 0.0267 0.024 0.04615 0.04706	2.45% 10.26% 11.92% 7.69% 6.26% 12.15% 11.89%	0.0% -15.04% -8.59% -1.56% -12.11% -11.13% -15.82% %Effect 0.0%
Attribute Variances Distribution Survival Rate C-% 0 2 4 9 18 35 74.2 Angular (Corr C-% 0 2	Test Bartlett E Shapiro-\ Summary Control Type Brine Control rected) Transfor Control Type	Count 5 5 5 5 5 5 med Sumr Count 5	Mean 0.7642 0.8791 0.8299 0.7761 0.8567 0.8493 0.8851 mary Mean 1.064	95% LCL 0.7409 0.7671 0.702 0.7901 0.7211 0.7544 95% LCL 1.036	95% UCL 0.7874 0.9911 0.9527 0.8502 0.9233 0.9774 1 95% UCL 1.091	0.0091 0.0398 Median 0.7612 0.8209 0.7463 0.8358 0.806 0.8209 Median 1.06	Min 0.7388 0.806 0.7164 0.7164 0.806 0.7612 0.7985 Min 1.034	Max 0.791 0.9851 0.9478 0.8657 0.9179 1 1 Max 1.096	0.008377 0.04035 0.04424 0.0267 0.024 0.04615 0.04706 Std Err 0.009897	2.45% 10.26% 11.92% 7.69% 6.26% 12.15% 11.89% CV% 2.08%	0.0% -15.04% -8.59% -1.56% -12.11% -11.13% -15.82% %Effect 0.0%
Attribute Variances Distribution Survival Rate C-% 0 2 4 9 18 35 74.2 Angular (Core C-% 0 2 4	Test Bartlett E Shapiro-\ Summary Control Type Brine Control rected) Transfor Control Type	Count 5 5 5 5 5 5 med Summ Count 5 5 5	Mean 0.7642 0.8791 0.8299 0.7761 0.8567 0.8493 0.8851 mary Mean 1.064 1.244	95% LCL 0.7409 0.7671 0.707 0.702 0.7901 0.7211 0.7544 95% LCL 1.036 1.039	95% UCL 0.7874 0.9911 0.9527 0.8502 0.9233 0.9774 1 95% UCL 1.091 1.448	0.0091 0.0398 Median 0.7612 0.8209 0.7463 0.8358 0.806 0.8209 Median 1.06 1.134	Min 0.7388 0.806 0.7164 0.7164 0.806 0.7612 0.7985 Min 1.034 1.115	Max 0.791 0.9851 0.9478 0.8657 0.9179 1 1 Max 1.096 1.448	0.008377 0.04035 0.04424 0.0267 0.024 0.04615 0.04706 Std Err 0.009897 0.07363	2.45% 10.26% 11.92% 7.69% 6.26% 12.15% 11.89% CV% 2.08% 13.24%	0.0% -15.04% -8.59% -1.56% -12.11% -11.13% -15.82% %Effect 0.0% -16.88%
Attribute Variances Distribution Survival Rate C-% 0 2 4 9 18 35 74.2 Angular (Core	Test Bartlett E Shapiro-\ Summary Control Type Brine Control rected) Transfor Control Type	Count 5 5 5 5 5 med Summ Count 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.7642 0.8791 0.8299 0.7761 0.8567 0.8493 0.8851 mary Mean 1.064 1.244 1.16	95% LCL 0.7409 0.7671 0.707 0.702 0.7901 0.7211 0.7544 95% LCL 1.036 1.039 0.9857	95% UCL 0.7874 0.9911 0.9527 0.8502 0.9233 0.9774 1 95% UCL 1.091 1.448 1.335	0.0091 0.0398 Median 0.7612 0.8209 0.8209 0.7463 0.8358 0.806 0.8209 Median 1.06 1.134 1.134	Min 0.7388 0.806 0.7164 0.7164 0.806 0.7612 0.7985 Min 1.034 1.115 1.009	Max 0.791 0.9851 0.9478 0.8657 0.9179 1 1 Max 1.096 1.448 1.34	0.008377 0.04035 0.04424 0.0267 0.024 0.04615 0.04706 Std Err 0.009897 0.07363 0.06288	2.45% 10.26% 11.92% 7.69% 6.26% 12.15% 11.89% CV% 2.08% 13.24% 12.12%	0.0% -15.04% -8.59% -1.56% -12.11% -11.13% -15.82% %Effect 0.0% -16.88% -9.06% -1.6%
Attribute Variances Distribution Survival Rate C-% 0 2 4 9 18 35 74.2 Angular (Core C-% 0 2 4 9	Test Bartlett E Shapiro-\ Summary Control Type Brine Control rected) Transfor Control Type	Count 5 5 5 5 5 5 med Summ Count 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0.7642 0.8791 0.8299 0.7761 0.8567 0.8493 0.8851 mary Mean 1.064 1.244 1.16 1.081	95% LCL 0.7409 0.7671 0.707 0.702 0.7901 0.7211 0.7544 95% LCL 1.036 1.039 0.9857 0.9883	95% UCL 0.7874 0.9911 0.9527 0.8502 0.9233 0.9774 1 95% UCL 1.091 1.448 1.335 1.174	0.0091 0.0398 Median 0.7612 0.8209 0.7463 0.8358 0.806 0.8209 Median 1.06 1.134 1.134 1.043	Min 0.7388 0.806 0.7164 0.7164 0.806 0.7612 0.7985 Min 1.034 1.115 1.009 1.009	Max 0.791 0.9851 0.9478 0.8657 0.9179 1 1 Max 1.096 1.448 1.34 1.196	0.008377 0.04035 0.04424 0.0267 0.024 0.04615 0.04706 Std Err 0.009897 0.07363 0.06288 0.0334	2.45% 10.26% 11.92% 7.69% 6.26% 12.15% 11.89% CV% 2.08% 13.24% 12.12% 6.91%	-15.04% -8.59% -1.56% -12.11% -11.13% -15.82% %Effect 0.0% -16.88% -9.06%

Report Date:

06 Apr-21 10:22 (p 4 of 4)

Test Code: 2103-S063 | 06-3498-6822

Report Date:

06 Apr-21 10:22 (p 1 of 4)

Test Code:

Rivalve I arva	al Survival and I)evelonme	nt Toet				1000	Ouc.		· · · · · · · · · · · · · · · · · · ·	nental (CA
		_	· · · · · · · · · · · · · · · · · · ·								
Analysis ID:	03-2387-1345			elopment R				S Version		8.7	
Analyzed:	06 Apr-21 9:52	<u>An</u>	alysis: Par	ametric-Con	itroi vs Trea	iments	Onic	ial Results	: Yes		
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TŲ
Angular (Corre	ected)	NA	Ç > T	NA	NA		1.74%	74.2	>74.2	NÁ	1.348
Dunnett Mult	iple Compariso	n Test	. *					•			
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Brine Control	2		1.775	2.407	0.065 8	0.1612	CDF	Non-Sign	ificant Effect		
	4		0.7588	2.407	0.065 8	0.5643	CDF	Non-Sign	ificant Effect		
	9		-0.3965	2.407	0.065 8	0.9384	CDF	Non-Sign	ificant Effect		
	18		1.25	2.407	0.065 8	0.3419	CDF	Non-Sign	ificant Effect		
	35		1.36	2.407	0.065 8	0.2974	CDF	Non-Sign	ificant Effect		
	74.2		2.398	2.407	0.065 8	0.0509	CDF	Non-Sign	ificant Effect		
ANOVA Table	9								-		
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.020749	23	0.0034582	04	6	1.918	0.1128	Non-Sign	ificant Effect		
Error	0.050480	63	0.0018028	8	28						
Total	0.071229	86			34						
Distributiona	ıl Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	Equality of \	/ariance	4.163	16.81	0.6546	Equal Var	iances			
Distribution	Shapiro-	Wilk W Nor	mality	0.9693	0.9146	0.4240	Normal D	istribution			
Development	t Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	0.9862	0.9719	1	0.9903	0.9697	1	0.005159	1.17%	0.0%
2		5	0.9743	0.9671	0.9816	0.9725	0.9697	0.9846	0.002624	0.6%	1.2%
4		5	0.9807	0.9639	0.9975	0.9896	0.9636	0.9918	0.006043	1.38%	0.55%
9		5	0.9883	0.972	1	0.99	0.9688	1	0.005872	1.33%	-0.21%
18		5	0.9776	0.9625	0.9928	0.9821	0.9593	0.9908	0.005448	1.25%	0.87%
35		5	0.9765	0.9609	0.9922	0.9806	0.9608	0.9926	0.005636	1.29%	0.98%
-		5	0.9684	0.9554	0.9815	0.9701	0.9533	0.9818	0.004689	1.08%	1.8%
74.2	rected) Transfo										
74.2 Angular (Cor	rected) Transfo	rmed Sumi	mary		95% UCL	Median	Min	Max	Std Err	CV%	%Effec
74.2 Angular (Cor C-%	•	rmed Sumi	mary		95% UCL 1.518	Median	Min 1.396	Max 1.521	Std Err 0.0213	CV% 3.27%	%Effec
74.2 Angular (Cor C-% 0	Control Type	rmed Sumi Count	mary Mean	95% LCL							0.0% 3.27%
74.2 Angular (Cor C-% 0 2	Control Type	rmed Sumr Count 5	mary Mean 1.459	95% LCL 1.399	1.518	1.472	1.396	1.521	0.0213	3.27%	0.0%
74.2 Angular (Cor C-% 0 2 4	Control Type	rmed Sumr Count 5 5	mary Mean 1.459 1.411	95% LCL 1.399 1.386	1.518 1.436	1.472 1.404	1.396 1.396	1.521 1.446	0.0213 0.009026	3.27% 1.43%	0.0% 3.27%
74.2 Angular (Cor C-% 0 2 4 9	Control Type	Count 5 5 5	Mean 1.459 1.411 1.438	95% LCL 1.399 1.386 1.378	1.518 1.436 1.498	1.472 1.404 1.469	1.396 1.396 1.379	1.521 1.446 1.48	0.0213 0.009026 0.02165	3.27% 1.43% 3.37%	0.0% 3.27% 1.4%
74.2 Angular (Cor	Control Type	Count 5 5 5 5	Mean 1.459 1.411 1.438 1.469	95% LCL 1.399 1.386 1.378 1.401	1.518 1.436 1.498 1.538	1.472 1.404 1.469 1.471	1.396 1.396 1.379 1.393	1.521 1.446 1.48 1.523	0.0213 0.009026 0.02165 0.02472	3.27% 1.43% 3.37% 3.76%	3.27% 1.4% -0.73%

Report Date: Test Code: 06 Apr-21 10:22 (p 2 of 4) 2103-S063 | 06-3498-6822

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Analysis ID: 03-2387-1345 CETISv1.8.7 Endpoint: Development Rate **CETIS Version:** Analyzed: 06 Apr-21 9:52 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 0.0E+00

16-3953-4561

Analysis ID:

Report Date:

CETIS Version:

06 Apr-21 10:22 (p 2 of 2)

Test Code:

2103-S063 | 06-3498-6822

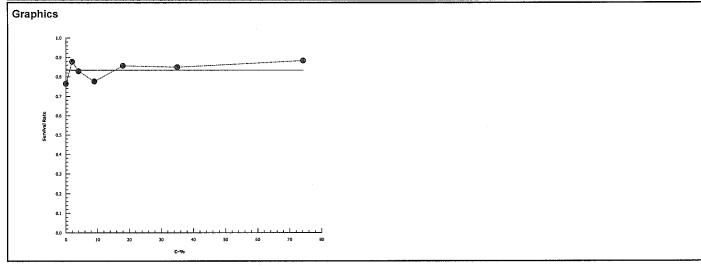
CETISv1.8.7

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analyzed: 06 Apr-21 9:52 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Endpoint: Survival Rate


Linear Interpolation Options

X Transform Y Transform Seed Resamples Exp 95% CL Method

Linear Linear 1655526 1000 Yes Two-Point Interpolation

Point Estimates % 95% LCL 95% UCL Level 95% LCL 95% UCL TU EC25 >74.2 N/A NA N/A <1.348 NA EC50 >74.2 N/A N/A <1.348 NA NA

Survival	Rate Summary	Calculated Variate(A/B)									
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Brine Control	5	0.7642	0.7388	0.791	0.008377	0.01873	2.45%	0.0%	512	670
2		5	0.8791	0.806	0.9851	0.04035	0.09023	10.26%	-15.04%	588	670
4		5	0.8299	0.7164	0.9478	0.04424	0.09892	11.92%	-8.59%	555	670
9		5	0.7761	0.7164	0.8657	0.0267	0.0597	7.69%	-1.56%	520	670
18		5	0.8567	0.806	0.9179	0.024	0.05366	6.26%	-12.11%	574	670
35		5	0.8493	0.7612	1	0.04615	0.1032	12.15%	-11.13%	569	670
74.2		5	0.8851	0.7985	1	0.04706	0.1052	11.89%	-15.82%	592	670

Report Date:

06 Apr-21 10:22 (p 1 of 2)

Test Code:

2103-S063 | 06-3498-6822

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: Analyzed:

07-9634-7858 06 Apr-21 9:52 Endpoint: Development Rate Analysis:

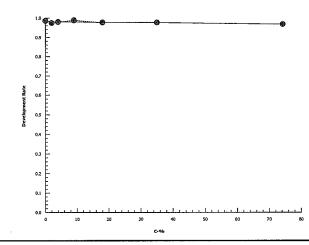
Linear Interpolation (ICPIN)

CETIS Version: Official Results:

CETISv1.8.7 Yes

Linear	Interpolation	Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
				·····	


Two-Point Interpolation Linear Linear 254027 1000 Yes

Point Estimates

Level	%	95% LCL	95% UCL	TŲ	95% LCL	95% UC
EC25	>74.2	N/A	N/A	<1.348	NA	NA
EC50	>7/12	NI/A	NI/A	<1 3/B	NΔ	NΔ

Develop	Development Rate Summary			Calculated Variate(A/B)							
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Brine Control	5	0.9862	0.9697	1	0.005159	0.01154	1.17%	0.0%	505	512
2		5	0.9743	0.9697	0.9846	0.002624	0.005867	0.6%	1.2%	574	589
4		5	0.9807	0.9636	0.9918	0.006043	0.01351	1.38%	0.55%	545	556
9		5	0.9883	0.9688	1	0.005872	0.01313	1.33%	-0.21%	514	520
18		5	0.9776	0.9593	0.9908	0.005448	0.01218	1.25%	0.87%	561	574
35		5	0.9765	0.9608	0.9926	0.005636	0.0126	1.29%	0.98%	558	571
74.2		5	0.9684	0.9533	0.9818	0.004689	0.01048	1.08%	1.8%	582	601

Graphics

CETIS Test Data Worksheet

Report Date:

06 Mar-21 13:12 (p 1 of 1)

Test Code: 203-5063

06-3498-6822/25D92146

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Start Date:10 Mar-21Species:Mytilus galloprovincialisSample Code: $21-\mathcal{O}2\varsigma$ End Date:12 Mar-21Protocol:EPA/600/R-95/136 (1995)Sample Source:JacobsSample Date:09 Mar-21Material:Effluent SampleSample Station:Wyckoff

C-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes
			31			125	121	RY	4/2/21
			32			116	114	1	
			33			108	106		
			34			134	130		
			35			106	105		•
			36			110	106		
			37			117	110		
			38			101	(00		
			39			127	123		
			40			130	128		
			41			102	98		
			42			108	105		
			43			129	126		
			44			108	105		
			45			96	93		
			46			122	120		
			47			100	100		
			48	·		99	96		
			49			96	95		
			50			102	102		
			51			136	135		
			52			110	108		
			53			100	99		
			54			109	108		
			55			103	101		:
			56			103	102		
			57			108	108		
			58			122	121		
			59			122	118		
			60			123	118		
			61			132	128		
			62			142	137		
			63			112	110		
			64			110	107		
			65			102	100		
			66			136	135		
			67			108	105		
			68			109	106		
			69			107	102		
			70			108	105	V	

CETIS Test Data Worksheet

Report Date:

06 Mar-21 13:12 (p 1 of 1)

Test Code: 2103-5063 .06-3498-6822/25D92146 - 618

Bivalve Larval Survival and Development Test

Start Date: 10 M	Mar-21 Spe	ecies:	Mytilus galloprovincialis	Sample Code:	21-028
End Date: 12 N	Mar-21 Pro	tocol:		Sample Source:	,
Sample Date: 09 N	Mar-21 Ma t	terial:	Effluent Sample	Sample Station:	Wyckoff

C-%		Rep		Initial Density	Final Density	# Counted	# Normal	Notes
0	BC	1	48					
0	вс	2	50		-			
0	ВС	3	35	-		111	110	Bo 3/12/21
0	ВС	4	56					
0	вс	5	65		-			Average and the second
0	LC	1	37			110	102	
0	LC	2	70			102	110-6	Dm 3/13/21
0	LC	3	31			102	1100	y- () () () ()
0	LC	4	43					
0	LC	5	66					
2		1	61			128	125	
2		2	68			1	100	
2		3	67					
2		4	64			<u> </u>		
2		5	40					
4		1	36			109	104	
4		2	39	****		101	W T	
4		3	49					
4	,	4	58					
4		5	38					
9		1	47			102	(62	
9		2	32			100		
9		3	45			 		
9		4	57					
9		5	53					
18		1	63			127	123	
18		2	46			107		
18		3	42					
18		4	54					
18		5	60					
35		1	41			101	103	
35		2	51			106	107	
35		3	33	4				
35		4	55			!		
35		5	59	Min. dec. of the second				
75.8		1	69			inc	6.00 2	÷ - //3 /-:
75.8		2	34			109	102	Dm 3/13/21
75.8		3	44					
75.8	,	4	62					
75.8		5	52					
()(- 52					

QC=BO QQ18B03/10/21 BQ19B160B0 DM 4/6/21

Marine Chronic Bioassay

DM-014

Client: Jacobs

Sample ID: Wycoff Wyckoff

Sample Log No.: 21- 02\$1

Test No.: 2103-5663

Water Quality Measurements

Test Species: M. galloprovincialis

Start Date/Time: 3/10/2021 1415

End Date/Time: 3/12/2021 (315

Concentration	Salinity		Т	Temperature (°C)		Diss	solved Ox (mg/L)	ygen	pH (pH units)			
(% sample)	0	(ppt) 24	48	0	24	48	0	(Hig/L)	48	0	(pri units	48
Lab Control	30.1	30.2	30.2	14.6	15.0	14.9	8.6	8.0	8.4	8.05	7.99	7.90
Brine Control	29.9	29.9	29-9	15.8	15,0	14.8	8.0	8.0	8.4	8.10	8.09	7.94
2	30.2	30.4	30.4	14.8	14.8	14.8	8.6	8.0	8.3	8.02	8.03	8.01
4	30.3	30.4	304	14.9	14.9	14.8	8.7	6.0	33	8.02	8.02	8.03
9	30.3	30.4	30.4	14.9	14.8	14.8	8.7	8.0	8.3	798	8.02	8.07
18	30.2	30.3	30.3	15.0	is.0	15.0	8.5	B.0	なろ	7.92	8.04	8.13
35	30.1	30.2	302	15,6	14.9	14.9	8.3	8.0	83	7.89	8.09	8.19
74.2 73.4 @	29.9	29.9	29.9	15.8	149	14,8	7.9	8-0	8.3	7.86	3716	8.29
												<u> </u>

Technician Initials:	WQ Readings: 30 4	RT RT	Environmental Chamber: _	ν
Comments:	0 hrs: <u>@ (3/8 BO 3/10/21</u> 24 hrs: 48 hrs:	1 @ Q18 475 3/16/	2	
QC Check:	ACS 3(16/2)		Final Review:	Bo 4/6/21

48

0

24

Marine Chronic Bioassay

DC-010

Brine Dilution Worksheet

D	ra	i۵	_	4	

Project:

JACOBS

Analyst: BO

Sample ID:

Wyckoff

Test Date: 3/10/2021

Test No:

2103- 3063

Test Type: Mussel Development

Salinity of Effluent

7.4

Salinity of Brine

94.9

Date of Brine used: 1/5/2021

Target Salinity

30

Alkalinity of Brine Control:

mg/L as CaCO3

Test Dilution Volume

250

Effluent

Brine Control

Salinity Adjustment Factor:

(TS - SE)/(SB - TS) =

0.35

0.46

TS = target salinity

SE = salinity of effluent

SB = salinity of brine

Concentration %	Effluent Volume (ml)	Salinity Adjustment Factor	Brine Volume (ml)	Dilute to: (ml)
Control	NA	NA	NA	250
2	5.0	0.35	1.7	250
4	10.0	0.35	3.5	250
. 9	22.5	0.35	7.8	250
18	45.0	0.35	15.7	250
35	87.5	0.35	30.5	250
74.2	185.4	0.35	64.6	250

	DI Volume			
Brine Control	139.7	0.46	64.6	250

Total Brine Volume Required (ml): 188.3

QC Check: #15 3/16/21

Final Review: Bo 4/6/21

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120

Clie	ent/S	San	nple:

Test No.:

Mytilus galloprovincialis

Test Species: Animal Source/Batch Tank: M-REP/IB Date Received:

Test Chambers:

1/19/21 30 mL glass shell vials

Sample Volume:

10 mL

Start Date/Time: 3/10/2021 End Date/Time: 3/12/2021 Technician Initials:

Spawn Information

First Gamete Release Time:

1100

Sex	Number Spawning
Male	4
Female	3

Gamete Selection

Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)
Male	1,2,3	good notify, good dersity
Female 1		pand shape, white, poor density
Female 2	1	round shape, white poor density
Female 3		

Egg Fertilization Time: 1145

Embryo Stock Selection

ambiyo diddit doloddol						
Stock Number	% of embryos at 2-cell division stage					
Female 1	100					
Female 2	100					
Female 3						

Stock(s) chosen for testing:

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos

Number Counted:

5	6
4	4
3	3
5	3
5	

Mean: 4.3

Mean

X 50 =

embryos/ml

Initial Density:

(dilution factor)

Desired Final Density:

(to inoculate with 0.5 ml)

Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

Time Zero Control Counts										
TØ Vial No.	No. Dividing	Total	% Dividing	Mean % - Dividing						
TØ A	136	140	97.1							
TØ B	143	i43	100							
TØ C	133	134	99.3	99.2						
TØ D	1400	1410	99.3	, ,,,,						
TØ E	129122	130 122	100	e.						
TØ F	129	130	99,2							
<u>~</u> _	1228									

48-h QC: 139/143 = 97.2%

Comments:

QC Check:

Final Review: 800 4/6/2

Appendix B
Sample Check-In Information

Enthalpy Analytical 434 San

aipy Analytical	*	···-	. 1	
Vandever Avenue	Client: _	-	cops	
Diego, CA 92120	Sample ID:	WY	ckoff	
	Test ID No(s).:	2103	<u>-5063</u>	
	Α		1	1
Sample (A, B, C):	A			
Log-in No. (21-xxxx):	0281	·		<u> </u>
Sample Collection Date & Time:				
Sample Receipt Date & Time:	3/10/21 0915			
Number of Containers & Container Type:	1,1L cusi			
Approx. Total Volume Received (L):	'~i			
Check-in Temperature (°C)	1,9			
Temperature OK? 1	(Ŷ) N	ΥN	Y N	YN
DO (mg/L)	9.6			
pH (units)	7,70			
Conductivity (µS/cm)	0.00			
Salinity (ppt)	6.5			
Alkalinity (mg/L) ²	327			
Hardness (mg/L) ^{2, 3}				
Total Chlorine (mg/L)	20.07			
Technician Initials	ĎΛ			
'				
Test Performed: MUSSEL Development Additional Control? (Y) N	Alkalinity:	Hardness	or Salinity:	2 1
Test Performed:	Control/Dilution W	ater: 8:2 / La	b SW / Lab ART	Other:
	Alkalinity:	Hardness	or Salinity:	<u>-</u> _
Additional Control? Y N	=	Alkalinity:	Hardness or	Salinity:
Test Performed:	Control/Dilution W	ater: 8:2 / La	b SW / Lab ART	Other:
	Alkalinity:	Hardness	or Salinity:	

² mg/L as CaCO3, ³ Measured for freshwater samples only, NA = Not Applicable

Additional Comments:

NORTHWEST CLIENTS Sample Check-In Information

Sample Description:	iclear:	odorless	no debi
		,	
	• • • • •		
Subsamples for Addit	ional Chen	nistry Require	d:
NH3 (always	required)		
Other			
Tech Initials A	<u>Гуу_</u> В	_c	
COC Complete (Y/N)?) >		
A B C	,		
Filtration? Y (N	\ Initials	: :	
Pore Size:)		•
Organisms	or	Debris	
Salinity Adjustment?	ØN		
Test: Mussel		Targe	et ppt: 30
Test:	Source:		et ppt:
Test:	Source:	Targe	et ppt:
pH Adjustment? Y	(N)		
pri Aujustinenti T	. A	В	С
Initial pH:			
Amount of HCI added:			
Final pH:			
Cl ₂ Adjustment? Y	N)		
	<u> </u>	В	С
Initial Free Cl ₂ :			
STS added:			
Final Free Cl ₂ :			
Sample Aeration? Y	N		
•	$\bigcup_{\mathbf{A}}$	В	С
Initial D.O.			
Duration & Rate			
Final D.O.			

DC-001

Client:	JACOBS
Project:	Wyckoff
et Type	Mussel Development

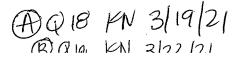
Test Type: Mussel Development

DI Blank: O.O Test Start Date: 3/10/2021 Analyst: $\frac{KN}{3/(9/2)}$

N x 1.22

					N X 1.22	•
Sample ID	Enthalpy ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)	
Blank Spike (10 mg/L NH3)		NA NA	NA NA	8.9	10.9	
Wyckoff	21-0281	3/10/2021	Check In	1.8	3,2 50.5	A 2.2 B
29	-					
Spike Check (10 mg/L NH ₃)		NA.	. NA			
	1.					
			-			
Batch sample QC	21-0169			0.1	9/1/01	A
Sample Duplicate ^a		NA	NA NA	0.1	0/100	A
Sample Duplicate + Spike ^a		NA	NA NA	9.2	11.2	
Spike Check (10 mg/L NH ₃)		NA	NA	B. G	10.7	

Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L) x 100 [average ammonia] (mg/L)


Acceptable Range: 0-20%

 $\frac{\text{Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L)}}{\text{nominal [spike] (mg/L)}} \times 100$

Acceptable Range: 80-120%b

QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery			
Blank	0.0	NA,	10.9	10	NA	109			
Batch sample Qc	9/(A)	0/1 (A)	11.2	10	Ø(A)	W(A)			
Comments: 10+#5: R1:	comments: 10+#5: R1: A0268 60.5 R2: A0127 Test tubes: A0195								
Notes: aUnless otherwise noted, the last	sample listed on	the datasheet is u	used for duplicat	e and duplicate +	spike QC check				
^b Acceptable range for % recovery applies only to the blank spike. Spike recoveries in samples may vary based on sample matrix and are for information only.									
^c Calculation not performed du	e to one or both	values below the	method detectio	n limit.					
Method Detection Limit = 0.5 mg/L									
QC Check: A(5 3/22/2)	_			Final Review:	BO 4/6	<u>kı</u>			

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix C
Chain-of-Custody Form

Page 1 of 1

Enthalpy Analytical (REGION COPY)

DateShipped: 3/9/2021 CarrierName; FedEx AirbillNo: 7731 0833 2105

Jacobs, Wyckoff-

Wyckoff Eagle Harbor GWTP 2020/WA Project Code: WEH-029X Cooler #: 1 of 1 No: 10-030921-093518-0522

2021T10P000DD210W2LA00 Contact Name: Keith Allers Contact Phone: 206-780-1711

Sample Identifier	CLP Sample No.	Matrix/Sampler	Coll. Method	Analysis/Turnaround (Days)	Tag/Preservative/Bottles	Location	Collection Date/Time	Sample Type
030921		Ground Water/ K.Allers	Composite	CHRTOX(8 Weeks)	A (< 6 C) (1)	SP-11	03/09/2021 09:15	Field Sample
						, , , , , , , , , , , , , , , , , , ,		
							,	
								····
				-				.,,

	Shipment for Case Complete? N
Special Instructions:	Samples Transferred From Chain of Custody #
Analysis Key: CHRTOX=Chronic Toxicity	

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	Knoth allo JACOBS	3-9-21 6940	Jaylus 6450	3/10/21	

109-in#:21-0281 plaint temp: 1.9°C Appendix D
List of Qualifier Codes

Glossary of Qualifier Codes:

- Q1 Temperatures out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperatures out of recommended range; no action taken, test terminated same day
- Q3 Sample aerated prior to initiation or renewal due to dissolved oxygen (D.O.) levels below 6.0 mg/L
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, 50% renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set.
- Q18 Incorrect Entry
- Q19 Illegible Entry
- Q20 Miscalculation
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% mortality observed upon receipt and/or in holding prior to test initiation.
 Organisms acclimated to test conditions at Nautilus and ultimately deemed fit to use for testing.
- Q23 Test organisms received at a <u>temperature</u> greater than 3°C outside the recommended test temperature range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.
- Q24 Test organisms received at <u>salinity</u> greater than 3 ppt outside of the recommended test salinity range. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate tests upon the day of arrival. Organisms were acclimated to the appropriate test conditions upon receipt and prior to test initiation.

Updated: 6/30/15

Appendix E
Reference Toxicant Test Results

CETIS Summary Report

Report Date:

06 Apr-21 10:46 (p 1 of 3)

Test Code:

210310msdv | 13-7922-5399

							rest Code	•	210310HISOV 13-7922-5398
Bivalve Larval	Survival and Developme	ent Test							Nautilus Environmental (CA)
Batch ID: Start Date: Ending Date: Duration:	10 Mar-21 14:15 Pr 12 Mar-21 13:15 Sp	est Type: rotocol: pecies: purce:	Development-S EPA/600/R-95/ Mytilus gallopro M-Rep, Carlsba	136 (1995) ovincialis			Analyst: Diluent: Brine: Age:		ed Natural Seawater Applicable
Sample ID: Sample Date: Receive Date: Sample Age:	10 Mar-21 Ma 10 Mar-21 So	ode: aterial: ource: ation:	210310msdv Copper chloride Reference Tox Copper Chlorid	icant			Client: Project:	Inter	nal
Comparison S	ummary	· · · · · · · · · · · · · · · · · · ·							
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Met	hod	
12-6519-0936	Combined Development I	Ra 5	10	7.071	12.5%		Dun	nett M	ultiple Comparison Test
13-4134-2422	Development Rate	5	10	7.071	2.73%		Dun	nett M	ultiple Comparison Test
18-8943-0292	Survival Rate	20	40	28.28	13.6%		Dun	nett M	ultiple Comparison Test
Point Estimate	Summary	·							
Analysis ID	Endpoint	Level	μg/L	95% LCL	95% UCL	TU	Met	hod	
10-0885-9755	Combined Development I	Ra EC25 EC50	6.682 9.481	5.741 8.639	7.601 10.58		Line	ar Inte	rpolation (ICPIN)
08-4869-7631	Development Rate	EC25	7.308	7.009	7.641		Line	ar Inte	rpolation (ICPIN)
		EC50	9.694	9.109	10.56				
03-1123-6073	Survival Rate	EC25	>40	N/A	N/A		Line	ar Inte	rpolation (ICPIN)
		EC50	>40	N/A	N/A				
Test Acceptab	ility								
Analysis ID	Endpoint	Attrib	ute	Test Stat	TAC Limi	ts	Ove	rlap	Decision
08-4869-7631	Development Rate	Contro	ol Resp	0.9625	0.9 - NL		Yes		Passes Acceptability Criteria
13-4134-2422	Development Rate	Contro	ol Resp	0.9625	0.9 - NL		Yes		Passes Acceptability Criteria
03-1123-6073	Survival Rate	Contro	ol Resp	0.8612	0.5 - NL		Yes		Passes Acceptability Criteria
18-8943-0292	Survival Rate	Contro	ol Resp	0.8612	0.5 - NL		Yes		Passes Acceptability Criteria
12-6519-0936	Combined Development F	Ra PMSD	•	0.1254	NL - 0.25		No		Passes Acceptability Criteria
									

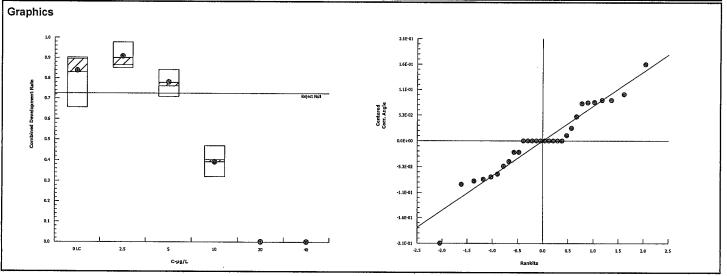
Report Date:

06 Apr-21 10:46 (p 2 of 3) 210310msdv | 13-7922-5399

Test Code: Bivalve Larval Survival and Development Test Nautilus Environmental (CA) **Combined Development Rate Summary** C-µg/L **Control Type** Count 95% UCL Max Std Err Std Dev CV% %Effect Mean 95% LCL Min 0 Lab Control 5 0.8299 0.903 12.77% 0.6983 0.9614 0.6567 0.0474 0.106 0.0% 2.5 5 0.9002 0.8273 0.9732 0.8507 0.9784 0.02629 0.05878 6.53% -8.48% 5 5 0.7791 0.7127 0.8455 0.709 0.8433 0.0239 0.05345 6.86% 6.12% 10 5 0.3925 0.32 0.4651 0.3209 0.4701 0.02613 0.05843 14.88% 52.7% 20 5 0 0 0 0 0 0 0 100.0% 40 5 0 0 0 0 0 0 0 100.0% **Development Rate Summary** C-µg/L **Control Type** CV% Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev %Effect Lab Control 5 0.9625 0.9758 0.006649 0.01487 1.55% 0.0% 0.944 0.9809 0.9462 5 2.5 0.9717 0.9518 0.9917 0.9481 0.9915 0.007175 0.01604 1.65% -0.96% 5 5 0.9596 0.9482 0.9711 0.9496 0.9735 0.00412 0.009212 0.96% 0.29% 10 5 0.4518 0.3795 0.5241 0.3805 0.525 0.02604 0.05824 12.89% 53.06% 20 5 0 0 0 0 0 0 100.0% 0 40 5 0 0 0 0 0 0 0 100.0% Survival Rate Summary C-µg/L **Control Type** Count 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect Mean 0 5 Lab Control 0.8612 0.7375 0.9849 0.694 0.9254 0.04456 0.09965 11.57% 0.0% 2.5 5 0.9269 0.8439 1 0.8731 1 0.02989 0.06683 7.21% -7.63% 5 5 0.8119 0.7419 0.882 0.7388 0.8881 0.02524 0.05644 6.95% 5.72% 5 10 0.8672 0.8415 0.8929 0.8433 0.8955 0.009261 0.02071 2.39% -0.69% 20 5 0.8866 0.7988 0.9743 0.7836 0.9776 0.03161 0.07068 7.97% -2.95% 40 5 0.6955 0.6364 0.7546 0.6418 0.7687 0.02129 0.04761 6.85% 19.24% Combined Development Rate Detail C-µg/L **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 0 Lab Control 0.903 0.8955 0.6567 0.8955 0.7985 2.5 0.9784 0.8582 0.8657 0.8507 0.9481 5 0.7612 0.8433 0.8209 0.7612 0.709 10 0.403 0.4701 0.3209 0.3507 0.4179 20 0 0 0 0 0 40 0 0 0 0 0 **Development Rate Detail** C-µg/L **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 0 Lab Control 0.9758 0.9756 0.9462 0.9677 0.9469 2.5 0.9746 0.9784 0.9915 0.9661 0.9481 5 0.9623 0.9496 0.9596 0.9735 0.9533 10 0.4576 0.525 0.3805 0.4087 0.487 20 0 0 0 0 0 40 0 0 0 0 0 Survival Rate Detail C-µg/L **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 0 Lab Control 0.9254 0.9179 0.694 0.9254 0.8433 2.5 0.8806 0.8731 0.8806 1 5 0.791 0.8881 0.7388 0.8433 0.7985 10 0.8806 0.8955 0.8582 0.8433 0.8582 20 0.8657 0.9104 0.7836 0.8955 0.9776 40 0.709 0.6866 0.6716 0.7687 0.6418

Report Date: Test Code: 06 Apr-21 10:46 (p 3 of 3) 210310msdv | 13-7922-5399

							rest Code.	21031011180V 10-7922-0099
Bivalve La	rval Survival and I	Developme	nt Test					Nautilus Environmental (CA)
Combined	Development Rate	e Binomials	3		· · · · · · · · · · · · · · · · · · ·			
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	121/134	120/134	88/134	120/134	107/134		
2.5		136/139	115/134	116/134	114/134	128/135		
5		102/134	113/134	95/134	110/134	102/134		
10		54/134	63/134	43/134	47/134	56/134		
20		0/134	0/134	0/134	0/134	0/134		
40		0/134	0/134	0/134	0/134	0/134		
Developme	ent Rate Binomials	3						
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	121/124	120/123	88/93	120/124	107/113		
2.5		136/139	115/118	116/117	114/118	128/135		
5		102/106	113/119	95/99	110/113	102/107		
10		54/118	63/120	43/113	47/115	56/115		
20		0/116	0/122	0/105	0/120	0/131		
40		0/95	0/92	0/90	0/103	0/86		
Survival R	ate Binomials							
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Lab Control	124/134	123/134	93/134	124/134	113/134		
2.5		134/134	118/134	117/134	118/134	134/134		
5		106/134	119/134	99/134	113/134	107/134		
10		118/134	120/134	113/134	115/134	115/134		
20		116/134	122/134	105/134	120/134	131/134		
40		95/134	92/134	90/134	103/134	86/134		


Report Date: Test Code: 06 Apr-21 10:46 (p 1 of 4)

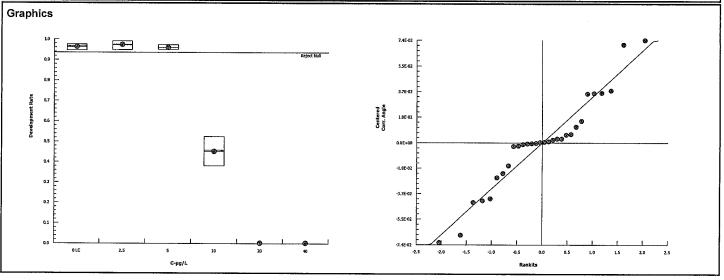
210310msdv I 13-7922-5399

					rest	Code:	2103	10msdv (1	3-7922-5399	
Bivalve Larval Survival and Develo	pment Test						Nautilu	Nautilus Environmental (CA)		
Analysis ID: 12-6519-0936 Analyzed: 06 Apr-21 10:43		mbined Dev			CETIS Version: Official Results		CETISv1.8.7 : Yes			
Data Transform Zeta	a Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU	
Angular (Corrected) NA	C > T	NA	NA.		12.5%	5	10	7.071		
Dunnett Multiple Comparison Test	,							10 7.071		
Control vs C-µg/L	Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)			
Lab Control 2.5	-1.718	2.227	0.138 8	0.9936	ÇDF	Non-Signif	icant Effect			
5	1.191	2.227	0.138 8	0.2619	CDF	Non-Signif	Non-Significant Effect Non-Significant Effect			
10*	7.775	2.227	0.138 8	<0.0001	CDF	Significant Effect				
ANOVA Table							Ų			
Source Sum Squares	Mean Sq	uare	DF	F Stat	P-Value	Decision(a:5%)			
Between 0.9892086	0.329736	2	3	34.46	<0.0001	Significant	Effect			
Error 0.1531111	0.009569	443	16			•				
Total 1.14232			19	-						
Distributional Tests									~	
Attribute Test		Test Stat	Critical	P-Value	Decision	(α:1%)				
Variances Bartlett Equality	y of Variance	3.251	11.34	0.3545	Equal Var	iances				
Distribution Shapiro-Wilk W	/ Normality	0.9474	0.866	0.3287	Normal D	stribution				

Combined	l Development Rate	e Summary	1								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.8299	0.6983	0.9614	0.8955	0.6567	0.903	0.0474	12.77%	0.0%
2.5		5	0.9002	0.8273	0.9732	0.8657	0.8507	0.9784	0.02629	6.53%	-8.48%
5		5	0.7791	0.7127	0.8455	0.7612	0.709	0.8433	0.0239	6.86%	6.12%
10		5	0.3925	0.32	0.4651	0.403	0.3209	0.4701	0.02613	14.88%	52.7%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%

Angular (C	orrected) Transfor	med Sumr	nary								
C-μg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.157	0.9915	1.323	1.242	0.9448	1.254	0.05977	11.55%	0.0%
2.5		5	1.264	1.124	1.403	1.196	1.174	1.423	0.05019	8.88%	-9.18%
5		5	1.084	1.003	1.164	1.06	1.001	1.164	0.02904	5.99%	6.37%
10		5	0.6765	0.6019	0.751	0.6878	0.6022	0.7555	0.02684	8.87%	41.56%
20		5	0.04321	0.0432	0.04322	0.04321	0.04321	0.04321	0	0.0%	96.27%
40		5	0.04321	0.0432	0.04322	0.04321	0.04321	0.04321	0	0.0%	96.27%

Report Date:

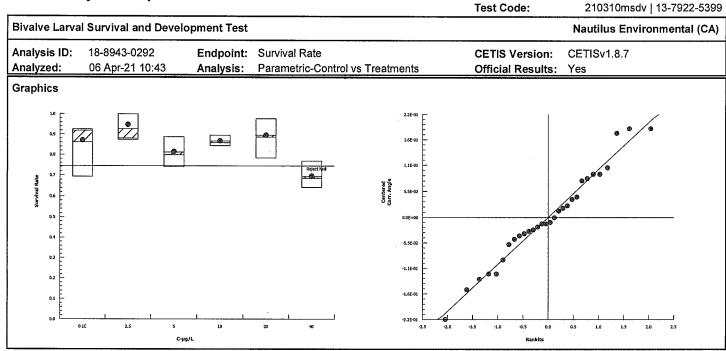

06 Apr-21 10:46 (p 2 of 4)

10310msdv | 13-792

		***************************************					Test	Code:	210	310msdv 1	3-7922-5399
Bivalve Larval S	urvival a	nd Develo	pment Test						Nautil	us Environ	mental (CA)
	3-4134-2- 06 Apr-21		•	evelopment R arametric-Cor		itments		IS Version		1.8.7	
Data Transform		Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	ΤŲ
Angular (Correcte	∋d)	NA	C > T	NA	NA		2.73%	5	10	7.071	
Dunnett Multiple	e Compai	rison Test									
Control	vs C-µg	ı/L	Test Sta	t Critical	MSD DE	P-Value	P-Type	Decision	n(α:5%)		
Lab Control	2.5		-1.02	2.227	0.063 8	0.9637	CDF	Non-Sigr	nificant Effe	ct	
	5		0.3223	2.227	0.063 8	0.6223	CDF		nificant Effe		
	10*		22.57	2.227	0.063 8	<0.0001	CDF	Significa	nt Effect		
ANOVA Table								Significant Effect			
Source	Sum	Squares	Mean So	quare	DF	F Stat	P-Value	Decision	ι(α:5%)		
Between	1.581	414	0.527137	79	3	260.7	<0.0001	Significa	nt Effect		
Error	0.032	34775	0.002021	1734	16			Ū			
Total	1.613	761			19						
Distributional Te	ests			-							
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartl	ett Equality	of Variance	2.754	11.34	0.4311	Equal Var	iances			
			Normality	0.9687	0.866	0.7264	Normal D				

Developm	ent Rate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9625	0.944	0.9809	0.9677	0.9462	0.9758	0.006649	1.55%	0.0%
2.5		5	0.9717	0.9518	0.9917	0.9746	0.9481	0.9915	0.007175	1.65%	-0.96%
5		5	0.9596	0.9482	0.9711	0.9596	0.9496	0.9735	0.00412	0.96%	0.29%
10		5	0.4518	0.3795	0.5241	0.4576	0.3805	0.525	0.02604	12.89%	53.06%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%

Angular (C	orrected) Transfor	med Sumr	nary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.379	1.33	1.427	1.39	1.337	1.415	0.0174	2.82%	0.0%
2.5		5	1.408	1.345	1.47	1.411	1.341	1.478	0.02253	3.58%	-2.1%
5		5	1.37	1.339	1.4	1.368	1.344	1.407	0.01086	1.77%	0.66%
10		5	0.7368	0.6639	0.8097	0.743	0.6648	0.8104	0.02625	7.97%	46.56%
20		5	0.04598	0.04365	0.04831	0.04566	0.0437	0.04881	0.0008378	4.07%	96.67%
40		5	0.05189	0.04973	0.05404	0.05215	0.04929	0.05394	0.0007774	3.35%	96.24%



CETIS An	alytical Rep	ort					-	ort Date: Code:		•	46 (p 3 of 4) 3-7922-5399
Bivalve Larv	al Survival and I	Developme	ent Test						Nautilus	Environ	mental (CA)
Analysis ID: Analyzed:	18-8943-0292 06 Apr-21 10:4		ndpoint: Sui nalysis: Pai	vival Rate ametric-Cor	ntrol vs Trea	atments		IS Version		.8.7	· · · · · · · · · · · · · · · · · · ·
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C > T	NA	NA		13.6%	20	40	, ,	
Dunnett Mul	tiple Compariso	n Test			, , , , , , , , , , , , , , , , , , , 				7		
Control	vs C-μg/L		Test Stat	Critical	MSD DE	P-Value	P-Type	Decision	ι(α:5%)		
Lab Control	2.5		-1.975	2.362	0.163 8	0.9992	CDF		ificant Effect		
	5		1.125	2.362	0.163 8	0.3656	CDF	_	ificant Effect		
	10		0.06959	2.362	0.163 8	0.8119	CDF	_	ificant Effect		
	20		-0.565	2.362	0.163 8	0.9486	CDF	-	ificant Effect		
	40*		3.134	2.362	0.163 8	0.0094	CDF	Significar			
ANOVA Tabl	e			·							
Source	Sum Squ	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.351318		0.0702636		5	5.912	0.0011	Significar			
Error	0.285236	1	0.0118848	34	24						
Total	0.636554	1			29						
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	quality of \	/ariance	11.74	15.09	0.0385	Equal Var	iances			
Distribution	Shapiro-	Wilk W No	mality	0.9755	0.9031	0.6970	Normal Di	stribution			
Survival Rat	e Summary										
C-μg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.8612	0.7375	0.9849	0.9179	0.694	0.9254	0.04456	11.57%	0.0%
2.5		5	0.9269	0.8439	1	0.8806	0.8731	1	0.02989	7.21%	-7.63%
5		5	0.8119	0.7419	0.882	0.7985	0.7388	0.8881	0.02524	6.95%	5.72%
10		5	0.8672	0.8415	0.8929	0.8582	0.8433	0.8955	0.009261	2.39%	-0.69%
20		5	0.8866	0.7988	0.9743	0.8955	0.7836	0.9776	0.03161	7.97%	-2.95%
40		5	0.6955	0.6364	0.7546	0.6866	0.6418	0.7687	0.02129	6.85%	19.24%
Angular (Cor	rected) Transfor	med Sumi	nary	,							
C-μg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.203	1.037	1.37	1.28	0.9847	1.294	0.0599	11.13%	0.0%
2.5		5	1.34	1.126	1.553	1.218	1.207	1.528	0.0768	12.82%	-11.32%
5		5	1.126	1.034	1.218	1.105	1.034	1.23	0.03308	6.57%	6.44%
10		5	1.199	1.16	1.237	1.185	1.164	1.242	0.01383	2.58%	0.4%
20		5	1.242	1.092	1.393	1.242	1.087	1.421	0.05419	9.75%	-3.24%
40		5	0.9873	0.9219	1.053	0.9766	0.9292	1.069	0.02353	5.33%	17.96%

Report Date:

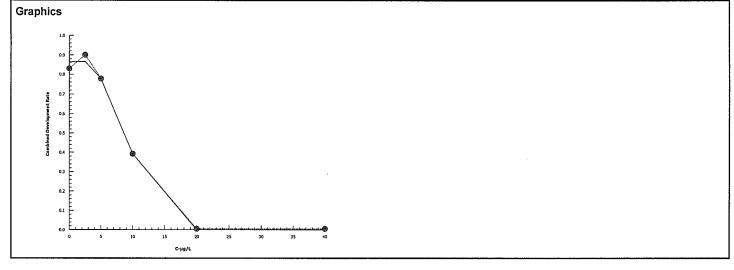
06 Apr-21 10:46 (p 4 of 4)

210310msdv | 13-7922-5399

Report Date:

06 Apr-21 10:46 (p 1 of 3)

Test Code:


210310msdv | 13-7922-5399

Bivalve Larva	l Survival and Devel	opment Test			Nautilus Environmental (CA)
Analysis ID:	10-0885-9755	Endpoint:	Combined Development Rate	CETIS Version:	CETISv1.8.7
Analyzed:	06 Apr-21 10:43	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes

Linear Interpol	lation Options					
X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method	
Linear	Linear	1455771	1000	Yes	Two-Point Interpolation	
Point Estimate	s			. ""		
Level un/l	95% I CI 95	% UCI				

Point	stimates		
Level	μg/L	95% LCL	95% UCL
EC25	6.682	5.741	7.601
EC50	9.481	8.639	10.58

Combined	l Development Rat	e Summary	Calculated Variate(A/B)								
C-μg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.8299	0.6567	0.903	0.0474	0.106	12.77%	0.0%	556	670
2.5		5	0.9002	0.8507	0.9784	0.02629	0.05878	6.53%	-8.48%	609	676
5		5	0.7791	0.709	0.8433	0.0239	0.05345	6.86%	6.12%	521	670
10		5	0.3925	0.3209	0.4701	0.02613	0.05843	14.88%	52.7%	263	670
20		5	0	0	0	0	0		100.0%	0	670
40		5	0	0	0	0	0		100.0%	0	670

Report Date:

06 Apr-21 10:46 (p 2 of 3)

Test Code:

210310msdv | 13-7922-5399

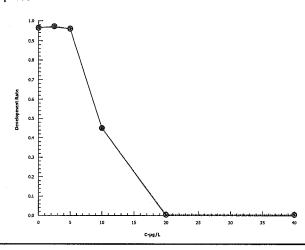
Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 08-4869-7631 Analyzed: 06 Apr-21 10:44 **Endpoint:** Development Rate **Analysis:** Linear Interpolation (ICPIN)

CETIS Version: CETISv1.8.7

Official Results: Yes


Linear Interpol	inear Interpolation Options												
X Transform Y Transform Seed Resamples Exp 95% CL Method													
Linear	Linear	864583	1000	Yes	Two-Point Interpolation								

Point Estimates

Level	μg/L	95% LCL	95% UCL
EC25	7.308	7.009	7.641
EC50	9.694	9.109	10.56

Developm	ent Rate Summary	Calculated Variate(A/B)									
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.9625	0.9462	0.9758	0.006649	0.01487	1.55%	0.0%	556	577
2.5		5	0.9717	0.9481	0.9915	0.007175	0.01604	1.65%	-0.96%	609	627
5		5	0.9596	0.9496	0.9735	0.00412	0.009212	0.96%	0.29%	522	544
10		5	0.4518	0.3805	0.525	0.02604	0.05824	12.89%	53.06%	262	581
20		5	0	0	0	0	0		100.0%	0	594
40		5	0	0	0	0	0		100.0%	0	466

Graphics

Analyst: Ju QA: BOUT 721

Report Date: Test Code:

06 Apr-21 10:46 (p 3 of 3)

210310msdv | 13-7922-5399

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 03-1123-6073 Endpoint: Survival Rate

CETIS Version:

CETISv1.8.7

Analyzed:

06 Apr-21 10:43 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Linear Interpola	Linear Interpolation Options											
X Transform Y Transform Seed Resamples Exp 95% CL Method												
Linear	Linear	276224	1000	Yes	Two-Point Interpolation							

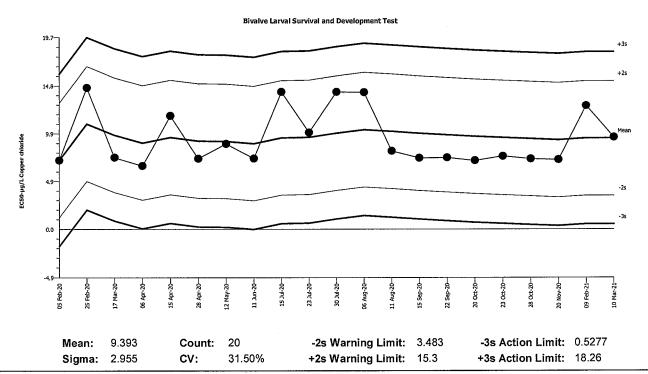
Point Estimates

Level	μg/L	95% LCL	95% UC
EC25	>40	N/A	N/A
EC50	>40	N/A	N/A

Survival F	Rate Summary		Calculated Variate(A/B)								-
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	Lab Control	5	0.8612	0.694	0.9254	0.04456	0.09965	11.57%	0.0%	577	670
2.5		5	0.9269	0.8731	1	0.02989	0.06683	7.21%	-7.63%	621	670
5		5	0.8119	0.7388	0.8881	0.02524	0.05644	6.95%	5.72%	544	670
10		5	0.8672	0.8433	0.8955	0.009261	0.02071	2.39%	-0.69%	581	670
20		5	0.8866	0.7836	0.9776	0.03161	0.07068	7.97%	-2.95%	594	670
40		5	0.6955	0.6418	0.7687	0.02129	0.04761	6.85%	19.24%	466	670

Graphics

Report Date: 06 Apr-21 10:49 (1 of 1)


CETIS QC Plot

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Test Type: Development-Survival Organism: Mytilus galloprovincialis (Bay Mussel) Material: Copper chloride

Protocol: EPA/600/R-95/136 (1995) Endpoint: Combined Development Rate Source: Reference Toxicant-REF

Quality Control Data											
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2020	Feb	5	13:10	7.103	-2.29	-0.775			06-6849-2235	04-8167-3886
2			25	14:15	14.58	5.188	1.756			09-2101-6353	02-3593-4650
3		Mar	17	14:20	7.408	-1.985	-0.6719			14-6169-3689	18-9939-7640
4		Apr	6	17:15	6.537	-2.856	-0.9665			02-0082-4673	13-2096-3831
5			15	13:25	11.68	2.29	0.775			16-4614-0901	11-3098-9850
6			28	13:25	7.292	-2.101	-0.7111			06-8086-6028	13-2749-2065
7		May	12	16:15	8.819	-0.5741	-0.1943			12-3773-8150	00-4087-7530
8		Jun	11	15:45	7.306	-2.087	-0.7064			20-6521-9403	10-1893-3875
9		Jul	15	13:55	14.16	4.769	1.614			17-4780-3294	11-0488-5403
10			23	15:00	9.974	0.5814	0.1967			06-0741-6264	07-6012-8216
11			30	15:35	14.17	4.772	1.615			00-9901-5729	19-4020-2576
12		Aug	6	15:40	14.13	4.732	1.601			01-4440-0014	02-9592-9535
13			11	14:30	8.085	-1.308	-0.4425			21-4043-5119	05-6052-3343
14		Sep	15	0:00	7.365	-2.028	-0.6863			19-9833-0655	18-5101-1090
15			22	14:40	7.405	-1.988	-0.6728			04-0347-9113	09-6026-9613
16		Oct	20	14:25	7.1	-2.293	-0.7758			08-8652-5764	17-2783-6415
17			23	13:45	7.548	-1.845	-0.6242			09-8413-3498	19-3049-9702
18			28	15:50	7.269	-2.124	-0.7188			09-4043-4676	02-6542-7057
19		Nov	20	16:00	7.187	-2.206	-0.7465			13-7696-8009	10-4367-1427
20	2021	Feb	9	15:15	12.74	3.346	1.132			12-5648-6062	18-1503-3303
21		Mar	10	14:15	9.481	0.08772	0.02969			13-7922-5399	10-0885-9755

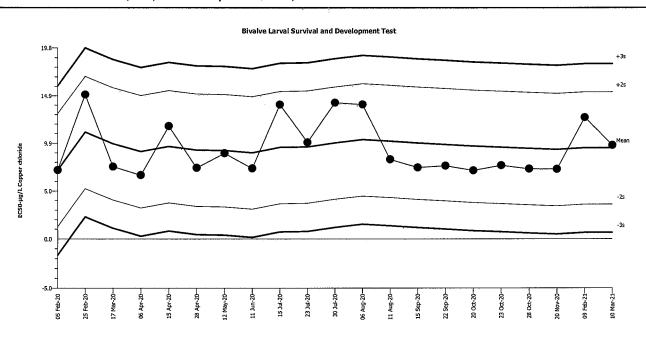
CETIS QC Plot

Report Date: 06 Ap

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Test Type: Development-Survival Organism


Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel)

Endpoint: Development Rate

Material: Source:

Copper chloride
Reference Toxicant-REF

Mean:	9.424	Count:	20	-2s Warning Limit:	3.572	-3s Action Limit:	0.6456
Sigma:	2.926	CV:	31.00%	+2s Warning Limit:	15.28	+3s Action Limit:	18.2

Quality Control Data											
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2020	Feb	5	13:10	7.132	-2.292	-0.7833			06-6849-2235	20-3119-3253
2			25	14:15	15	5.576	1.906			09-2101-6353	13-1093-9538
3		Mar	17	14:20	7.489	-1.935	-0.6614			14-6169-3689	12-6636-5212
4		Apr	6	17:15	6.609	-2.815	-0.9619			02-0082-4673	11-5300-1558
5			15	13:25	11.68	2.259	0.772			16-4614-0901	19-2371-7781
6			28	13:25	7.365	-2.059	-0.7037			06-8086-6028	17-1633-3832
7		May	12	16:15	8.876	-0.5477	-0.1872			12-3773-8150	04-4023-9067
8		Jun	11	15:45	7.306	-2.118	-0.724			20-6521-9403	18-5947-9043
9		Jul	15	13:55	13.94	4.515	1.543			17-4780-3294	14-0926-7215
10			23	15:00	9.999	0.5751	0.1966			06-0741-6264	12-5816-3058
11			30	15:35	14.14	4.713	1.611			00-9901-5729	02-7058-2757
12		Aug	6	15:40	13.95	4.526	1.547			01-4440-0014	13-7910-6508
13			11	14:30	8.237	-1.187	-0.4057			21-4043-5119	01-1240-7098
14		Sep	15	0:00	7.397	-2.027	-0.6927			19-9833-0655	03-7616-5506
15			22	14:40	7.576	-1.848	-0.6315			04-0347-9113	01-0437-7711
16		Oct	20	14:25	7.089	-2.335	-0.7978			08-8652-5764	06-9681 - 8469
17			23	13:45	7.616	-1.808	-0.6179			09-8413-3498	17-5257-3346
18			28	15:50	7.257	-2.167	-0.7407			09-4043-4676	12-0840-2779
19		Nov	20	16:00	7.23	-2.194	-0.7499			13-7696-8009	11-4264-3018
20	2021	Feb	9	15:15	12.58	3.159	1.08			12-5648-6062	01-5747-2564
21		Mar	10	14:15	9.694	0.2697	0.09216			13-7922-5399	08-4869-7631

Report Date:

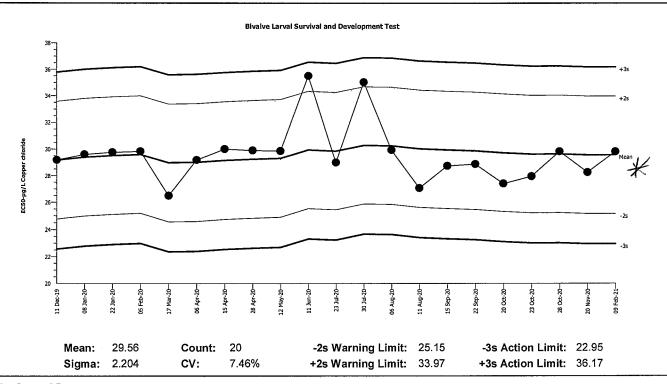
06 Apr-21 10:51 (1 of 1)

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Test Type: Development-Survival

Organism: Mytilus galloprovincialis (Bay Mussel)


Protocol: EPA/600/R-95/136 (1995)

Endpoint: Survival Rate

Material:

Copper chloride

Source: Reference Toxicant-REF

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2019	Dec	11	13:35	29.18	-0.3807	-0.1727			10-8800-1613	02-9848-3585
2	2020	Jan	8	13:40	29.6	0.04106	0.01863			07-8444-5322	01-5655-1706
3			22	13:25	29.76	0.1956	0.08875			02-1152-2212	19-4150-8988
4		Feb	5	13:10	29.83	0.2663	0.1208			06-6849-2235	07-0404-6516
5		Mar	17	14:20	26.48	-3.078	-1.397			14-6169-3689	14-2151-4803
6		Apr	6	17:15	29.18	-0.3832	-0.1739			02-0082-4673	12-2147-8498
7			15	13:25	30	0.44	0.1996			16-4614-0901	00-5465-8677
8			28	13:25	29.9	0.336	0.1524			06-8086-6028	08-1083-2165
9		May	12	16:15	29.85	0.291	0.132			12-3773-8150	18-0143-0286
10		Jun	11	15:45	35.5	5.939	2.695	(+)		20-6521-9403	17-6494-5506
11		Jul	23	15:00	28.98	-0.5802	-0.2633			06-0741-6264	11-2012-0880
12			30	15:35	35.02	5.458	2.477	(+)		00-9901-5729	18-8992-7280
13		Aug	6	15:40	29.92	0.3632	0.1648			01-4440-0014	05-9348-7696
14			11	14:30	27.06	-2.501	-1.135			21-4043-5119	16-7506-8565
15		Sep	15	0:00	28.73	-0.8343	-0.3786			19-9833-0655	01-9900-7404
16			22	14:40	28.86	-0.6964	-0.316			04-0347-9113	03-4439-9784
17		Oct	20	14:25	27.4	-2.164	-0.9818			08-8652-5764	01-6350-7777
18			23	13:45	27.94	-1.618	-0.7343			09-8413-3498	02-1232-2390
19			28	15:50	29.82	0.2595	0.1177			09-4043-4676	15-7574-6891
20		Nov	20	16:00	28.24	-1.316	-0.5972			13-7696-8009	21-0824-4197
21	2021	Feb	9	15:15	29.8	0.2446	0.111			12-5648-6062	08-9593-0094

* Ecso for survival enapoint was greater than highest concentration tested. Therefore, it is not included in the control chart.

CETIS Test Data Worksheet

Report Date:

06 Mar-21 13:11 (p 1 of 1) 13-7922-5399/210310msdv

Test Code:

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Start Date:	10 Mar-21	Species:	Mytilus galloprovincialis	Sample Code:	210310msdv
End Date:	12 Mar-21	Protocol:	EPA/600/R-95/136 (1995)	Sample Source:	Reference Toxicant
Sample Date:	10 Mar-21	Material:	Copper chloride	Sample Station:	Copper Chloride

C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
			1			105	0	GH 4/1/21
			2			115	500	
			3			131	A)ZC	
			4			139	156	
			5			86	0	
			6			95	0	
			7			135	128	
			8			122	0	
			9			118	114	
			10			113	107	
			11				110	
			12			95	88	,
			13			116	0	
			14			123	170	
			15			118	54	
			16			120	63	
			17			92	63 95	
			18			99	95	
			19			90	0	
			20			90	102	
			21			107	102	
			22			113	43	
			23			124	121	
			24			124	120	
			25			115	47	
			26			118	115	
			27			119	113	
			28			117	116	
			29			103	0	
			30			120	0	J

A Q18 GH 4/1/21

CETIS Test Data Worksheet

Bivalve Larval Survival and Development Test

Report Date: **Test Code:**

06 Mar-21 13:11 (p 1 of 1) 13-7922-5399/210310msdv

Nautilus Environmental (CA)

Start Date: 10 Mar-21 Species: Mytilus galloprovincialis Sample Code: 210310msdv End Date: 12 Mar-21 **Protocol:** EPA/600/R-95/136 (1995) Sample Source: Reference Toxicant Sample Date: 10 Mar-21 Material: Copper chloride Sample Station: Copper Chloride

C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Note		
0	LC	1	23			126	121	PM	3/13/21		
0	LC	2	14			'					
0 (LC	3	12								
0	LC	4	24								
0	LC	5	10								
2.5		1	4			119	116				
2.5		2	26								
2.5	Ĭ	3	28								
2.5		4	9								
2.5		5	7								
5		1	20			110	165				//
5		2	27				1.0	***************************************			***************************************
5		3	18								
5		4	11								
5		5	21								
10		1	15			(33	49		-		
10		2	16	,		100					
10		3	22								
10		4	25					· · · · · · · · · · · · · · · · · · ·			
10		5	2							,	
20		1	13			113	6				
20		2	8								
20		3	1								
20		4	30								
20		5	3								
40		. 1	6	***************************************		0	0	Cells	(sed	bm	3/13/2
40		2	17				_	-0(()	\)'	· · · · · · · · · · · · · · · · · · ·	1.2.0
40		3	19								
40		4	29			<u> </u>					
40		5	- 5								

PC=BO

Marine Chronic Bioassay

DM-014

Client:	Internal
Sample ID:	CuCl ₂

Test No.: 210310msdv

Water Quality Measurements

Test Species: M. galloprovincialis

Start Date/Time: 3/10/2021 14(5

End Date/Time: 3/12/2021 (3)5

Concentration (μg/L)		Salinity (ppt)		T	emperatu (°C)	ire	Diss	olved Ox (mg/L)	ygen		pH (pH units)
(M9, =-)	0	24	48	0	24	48	0	24	48	0	24	48
Lab Control	31.7	32.2	32.1	14.6	15.0	14.9	8.7	8.0	8.3	8.01	8.02	8.00
2.5	32.2	32.5	32,5	14.3	14.8	14.8	8.7	8.1	8.5	3.02	8.00	7.99
5	32.2	32,5	32.5	14.4	14.8	14.8	8.7	8.1	8.4	8.04	7.99	7.99
10	32.2	32.5	32.5	14.5	14.9	14.8	8.6	8.0	4.5	8.04	7.99	7.99
20	32.2	32.4	32.5	14.4	148	14.8	8.6	31	85	8.05	7.19	7.99
40	32.1	324	32.3	14.5	14-8	14.8	8.6	8.0	8.4	8.06	7.91	7.99
												÷

Technician Initials:	WQ Readings: 60 Dilutions made by: 60	24 PT	48 RT	High conc. made (μg/L): Vol. Cu stock added (mL): Final Volume (mL): Cu stock concentration (μg/L):	1.8 500	
Environmental Cham	nber: D.			ou stock concentration (μg/L).		
Comments:	0 hrs: 24 hrs: 48 hrs:					
QC Check:	Acc 3/16/21			Final Review:	B UZIZ	1

Marine Chronic Bioassay DM-013

Larval Development Worksheet

Client/Sample:	Internal/Cullz				
Test No.:	210310 msdv				
Test Species:	Mytilus galloprovincialis				
Animal Source/Batch Tank: 14-REP / 1B					
Date Received:	1/19/21				
Test Chambers:	30 mL glass shell vials				
Sample Volume:	10 mi				

Start Date/Time:	3/10/2021	1415	
End Date/Time:	3/12/2021	1315	
Technician Initials	20		

Spawn Information

First Gamete Release Time:

١	100	
- 1	100	

Sex	Number Spawning
Male	4
Female	3

Gamete Selection

Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)
Male	1,2,3	good notify, good deasity
Female 1	1	round shape, white, poor density
Female 2	2	round shape, white poordersity
Female 3		

Egg Fertilization Time: 1145

Embryo Stock Selection

Stock Number	% of embryos at 2-cell division stage
Female 1	100
Female 2	100
Female 3	

Stock(s) chosen for testing: 2

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos

Number Counted:

5	. 6
4	4
3	3
5	3
5	5

Mean: 4.3

Mean $\frac{4.3}{1.3}$ x 50 = $\frac{215}{1.3}$

Initial Density: 215

0.72 (dilution factor

Desired Final Density: (to inoculate with 0.5 ml)

Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

Time Zero Control Counts

Time Zero Control Counts				
TØ Vial No.	No. Dividing	Total	% Dividing	Mean % Dividing
TØ A	136	140	97.1	
TØ B	143	143	100	
TØ C	133	134	99.3	99.2
TØ D	1400	1410	99.3	, 1
TØ E	129122	130 122	100	
TØ F	129	130	99,2	
	1000			

48-h QC: 139/143 = 97.2%

Comments:

@ @18 BO 3/10/21

QC Check:

Ars 3/16/21

Final Review: 180 4/7/21