

Chronic Toxicity Testing Results for Wyckoff Eagle Harbor Groundwater Treatment Plant

Monitoring Period: May 2021

Prepared for:

Jacobs 1100 112th Ave NE Suite 500 Bellevue, WA, 98004

Prepared by:

: Enthalpy Analytical 4340 Vandever Avenue San Diego, CA 92120 (858) 587-7333

Date Submitted: June 11, 2021

Data Quality Assurance:

- Enthalpy Analytical is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (ORELAP ID 4053). It is also certified by the State of California Water Resources Control Board Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552). Specific fields of testing applicable to each accreditation are available upon request.
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective US EPA protocols, unless otherwise noted in this report.
- All tests have met internal Quality Assurance Program requirements.

Barbara Orelo, Project Manager

Results verified by:

California

4340 Vandever Avenue San Diego, California 92120 858.587.7333 fax: 619.279.5919

Introduction

A toxicity test was performed using a groundwater composite sample collected from the Wyckoff Eagle Harbor Groundwater Treatment Plant on Bainbridge Island in Washington. This test was performed to satisfy quarterly monitoring requirements according to the project Quality Assurance Project Plan (QAPP 2013). The chronic bioassay was conducted using the bivalve *Mytilus galloprovincialis* (Mediterranean mussel). Testing was performed at Enthalpy Analytical located in San Diego, California.

Materials and Methods

The groundwater sample was collected into a low-density polyethylene cubitainer by Jacobs personnel, packed in a cooler containing ice, and shipped overnight to Enthalpy. Appropriate chain-of-custody (COC) procedures were employed during collection and transport. Upon arrival at the laboratory, the cooler was opened, the sample inspected, and the contents verified against information on the COC form. Standard water quality parameters were measured and recorded on a sample check-in form and are summarized in Table 1. The sample was stored at 4°C in the dark until used for testing.

Sample ID	051121				
Enthalpy Log-in Number	21-0530				
Collection Date; Time	5/11/2021; 0943h				
Receipt Date; Time	5/12/2021; 1000h				
Receipt Temperature (°C)	3.7				
Dissolved Oxygen (mg/L)	9.4				
рН	7.78				
Conductivity (µS/cm)	11,600				
Salinity (ppt)	7.2				
Alkalinity (mg/L CaCO₃)	421				
Total Chlorine (mg/L)	0.04				
Total Ammonia (mg/L as N)	1.1				

Table 1. Sample Information

NM = not measured

Test Methods

Chronic toxicity testing was conducted according to the method set forth in USEPA (1995). This method is summarized in Table 2.

Test Period	5/12/2021, 1500h to 5/14/2021, 1340h
Test Organism	Mytilus galloprovincialis
Test Organism Source	M-Rep (Carlsbad, CA)
Test Organism Age	4 hours post fertilization
Test Duration	48 ± 2 hours
Test Type	Static
Test Chamber, Test Solution Volume	30 mL glass vial, 10 mL
Test Temperature	15 ± 1°C
Dilution Water	Laboratory Seawater (Source: Scripps Institution of Oceanography [SIO] intake) diluted with de-ionized water
Additional Control	Brine Control (de-ionized water and hypersaline brine)
Test Salinity	30 ± 2 ppt
Source of Salinity	Hypersaline brine made by freezing seawater to a salinity of 94.9 ppt
Test Concentrations (% sample)	72.4 ^a , 35, 18, 9, 4, and 2%, lab and brine controls
Number of Replicates	5
Photoperiod	16 hours light/8 hours dark
Test Protocol	EPA/600/R-95/136
Test Acceptability Criteria for Controls	\geq 50% mean survival, \geq 90% mean development rate
Reference Toxicant	Copper chloride ^b
Statistical Software	CETIS™ 1.8.7.20

Table 2. Summary of Methods for the Bivalve Larval Development Test

^a Highest concentration tested due to the addition of hypersaline brine

^b A deviation to the QAPP was approved by USEPA and Washington Department of Ecology to conduct reference toxicant testing with copper chloride. See QA section.

Results

There were no statistically significant effects detected in any effluent concentration tested for the survival or development endpoint of the bivalve test. This results in a no observed effect concentration (NOEC) of 72.4 (the highest concentration tested) and a chronic toxic unit (TU_c) of less than 1.38 for both endpoints.

Results for the chronic toxicity test are summarized in Tables 3 and 4. Individual statistical summaries for the test and copies of the laboratory bench sheets are provided in Appendix A. The sample check-in sheet and COC form are provided in Appendices B and C, respectively.

Table 3. Summary	y of Statistical Results for the Chron	ic Toxicity Tests
------------------	--	-------------------

Species	Endpoint	NOEC (% effluent)	LOEC (% effluent)	Toxic Unit (TU _c)	EC ₂₅ (% effluent)
Piyohyo	Normal Development	72.4	> 72.4	< 1.38	> 72.4
Bivalve	Survival	72.4	> 72.4	< 1.38	> 72.4

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

Chronic Toxic Unit (TU_c) = 100/NOEC. NOTE: Since 100% sample was not tested, the TU_c value can only be calculated up to the highest concentration tested. If no toxicity is observed at this concentration, the TU_c is reported as less than the calculated value. Effect Concentration 25 (EC₂₅) = Concentration expected to cause an effect to 25% of the organisms

Concentration (% Effluent)	Mean Survival (%)	Mean Normal Development (%)			
0 (Brine Control)	98.2	99.4			
0 (Lab Control)	96.1	99.6			
2	99.0	99.6			
4	96.5	99.6			
9	97.2	99.8			
18	97.1	99.6			
35	95.0	99.6			
72.4ª	100	99.9			

Table 4. Detailed Results for the Bivalve Development Chronic Toxicity Test

^a Highest concentration tested due to the addition of hypersaline brine

Quality Assurance

The sample was received within the required 36-hour holding time, in good condition, and within the appropriate temperature range of 0-6°C. All control acceptability criteria were met and water quality parameters remained within the appropriate ranges throughout the test. Statistical analyses followed standard USEPA flowchart selections. Dose-response relationships were reviewed to ensure the reliability of the results. Based on the dose response observed, the calculated effects concentrations were deemed reliable. Minor QA/QC issues that were unlikely to have any bearing on the final test results, such as slight temperature deviations, are noted on the data sheets and a list of qualifier codes used on bench data sheets is presented in Appendix D.

Reference Toxicant

Results for the reference toxicant tests used to monitor laboratory performance and test organism sensitivity are summarized in Table 5. A deviation to the QAPP was approved by USEPA and Washington Department of Ecology to conduct reference toxicant testing with copper chloride rather than copper sulfate. The results for the concurrent reference toxicant test were within the acceptable range of the mean historical test results plus or minus two standard deviations for development. The EC₅₀ for survival was over three standard deviations above the historical mean; indicating organisms may have been less sensitive than typical for the survival endpoint. Reference toxicant statistical summaries and laboratory bench sheets are provided in Appendix E.

Table 5. Reference Toxicant Test Results

Species and Endpoint	NOEC (%)	EC₅₀ (µg/L copper)	Historical Mean ± 2 SD (μg/L copper)	CV (%)
Bivalve Survival Rate	20	39.2	29.5 ± 4.47	7.57
Bivalve Normal Development	5	14.3	9.18 ± 5.21	28.4

NOEC = No Observed Effect Concentration

Effect Concentration 50 (EC₅₀) = Concentration expected to cause an effect to 50% of the organisms

Historical Mean ± 2 SD = The mean EC₅₀ from the previous 20 tests performed by the laboratory, plus or minus two standard deviations (SD)

CV = Coefficient of Variation

References

- CH2MHill. 2013. Quality Assurance Project Plan Groundwater Treatment Plant Operations, Maintenance, Bainbridge, Washington. Prepared for USEPA Region 10 June 5, 2013.
- Standard Guide for Conducting Static Acute Toxicity Tests with Embryos of Four Species of Saltwater Bivalve Molluscs. 1989. ASTM Standard E 724-89.
- Tidepool Scientific Software. 2000-2013. CETIS Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20.
- USEPA. 1995. Short-Term Method for Estimating the Chronic Toxicity of Effluents and Receiving Waters to the West Coast Marine and Estuarine Organisms. EPA/600/R-95/136. pp. 209-258 and 389-465.
- Washington State Department of Ecology. 2016. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Publication No. WQ-R-95-80. Revised June 2016

Appendix A Statistical Summaries and Raw Bench Sheets

11 Jun-21 10:54 (p 1 of 4) 2105-S081 | 07-3309-7869

Bivalve Larvai	Survival and Developm	ent Test	-					Nautilus Environmental (CA
Batch ID: Start Date: Ending Date: Duration:	12 May-21 15:00 P 14 May-21 13:40 S	est Type: rotocol: pecies: ource:	Development- EPA/600/R-95 Mytilus gallopr M-Rep, Carlsb	5/136 (1995) rovincialis			ne: F	Diluted Natural Seawater Trozen Seawater
-	11 May-21 09:43M12 May-21 10:00S	ode: aterial: ource: tation:	21-0530 Effluent Samp Jacobs Wyckoff	le		Clie Pro	nt: J ject:	acobs
Comparison S	ummary							
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	τu	Method	d
16-0254-6995 06-2787-9475 12-7314-4397	Combined Development Development Rate Survival Rate	Ra 72.4 72.4 72.4	>72.4 >72.4 >72.4	NA NA NA	7.24% 0.83% 6.44%	≰ 1.381 ≰ 1.381 ≰ 1.381	Steel N	lany-One Rank Sum Test lany-One Rank Sum Test lany-One Rank Sum Test
Point Estimate	Summary							
Analysis ID	Endpoint	Level	%	95% LCL	95% UCL	. τυ	Method	d
13-8722-7064	Combined Development	Ra EC25 EC50	>72.4 >72.4	N/A N/A	N/A N/A	<1.381 <1.381	Linear I	Interpolation (ICPIN)
18-7960-6538	Development Rate	EC25 EC50	>72.4	N/A N/A	N/A N/A	<1.381 <1.381	Linear I	Interpolation (ICPIN)
17-3343-9816	Survival Rate	EC25 EC50	>72.4 >72.4	N/A N/A	N/A N/A	<1.381 <1.381	Linear I	Interpolation (ICPIN)
Test Acceptab	ility					<u> </u>		
Analysis ID	Endpoint	Attrib	ute	Test Stat	TAC Lim	lits	Overla	p Decision
06-2787-9475 18-7960-6538 12-7314-4397	Development Rate Development Rate Survival Rate	Contro Contro	bl Resp bl Resp bl Resp	0.9942 0.9942 0.9824	0.9 - NL 0.9 - NL 0.5 - NL		Yes Yes Yes	Passes Acceptability Criteria Passes Acceptability Criteria Passes Acceptability Criteria
17-3343-9816 16-0254-6995	Survival Rate Combined Development		ol Resp)	0.9824 0.07241	0.5 - NL NL - 0.25		Yes No	Passes Acceptability Criteria Passes Acceptability Criteria

35

72.4

5

5

0.9497

1

0.8613

1

1

1

0.8491

1

1

1

0.03182

0

0.07116

0

7.49%

0.0%

3.33%

-1.79%

Bivalve La	arval Survival and I	Developme	nt Test						Nautilus	s Environr	nental (CA)
Combined	Development Rate	e Summary	· · · · · · · · · · · · · · · · · · ·								·· · · · · · · · · · · · · · · · · · ·
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Brine Control	5	0.9766	0.9311	1	0.9119	1	0.01639	0.03665	3.75%	0.0%
0	Lab Control	5	0.9575	0.8472	1	0.7987	1	0.0397	0.08877	9.27%	1.96%
2		5	0.9862	0.952	1	0.9371	1	0.01233	0.02758	2.8%	-0.99%
4		5	0.9603	0.8655	1	0.8239	1	0.03415	0.07636	7.95%	1.67%
9		5	0.97	0.9143	1	0.8931	1	0.02007	0.04488	4.63%	0.67%
18		5	0.9674	0.922	1	0.9245	1	0.01636	0.03658	3.78%	0.94%
35		5	0.946	0.8547	1	0.8428	1	0.03288	0.07351	7.77%	3.13%
72.4		5	0.9988	0.9955	1	0.9941	1	0.001183	0.002646	0.26%	-2.28%
Developm	ent Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Brine Control	5	0.9942	0.9855	1	0.9829	1	0.003131	0.007001	0.7%	0.0%
0	Lab Control	5	0.9961	0.9916	1	0.9922	1	0.001619	0.00362	0.36%	-0.2%
2		5	0.9961	0.9889	1	0.9868	1	0.002622	0.005862	0.59%	-0.2%
4		5	0.9955	0.9896	1	0.9886	1	0.002134	0.004773	0.48%	-0.13%
9		5	0.9977	0.9912	1	0.9884	1	0.002326	0.0052	0.52%	-0.35%
18		5	0.9963	0.9894	1	0.9875	1	0.002487	0.005562	0.56%	-0.21%
35		5	0.996	0.9913	1	0.9926	1	0.001668	0.003729	0.37%	-0.18%
72.4		5	0.9988	0.9955	1	0.9941	1	0.001183	0.002646	0.26%	-0.47%
Survival R	ate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Brine Control	5	0.9824	0.9335	1	0.9119	1	0.01761	0.03938	4.01%	0.0%
0	Lab Control	5	0.961	0.8527	1	0.805	1	0.03899	0.08719	9.07%	2.18%
2		5	0.9899	0.962	1	0.9497	1	0.01006	0.0225	2.27%	-0.77%
4		5	0.9648	0.867	1	0.8239	1	0.03522	0.07875	8.16%	1.79%
9		5	0.9723	0.9148	1	0.8931	1	0.02073	0.04634	4.77%	1.02%
18		5	0.9711	0.9218	1	0.9245	1	0.01774	0.03968	4.09%	1.15%

11 Jun-21 10:54 (p 2 of 4) 2105-S081 | 07-3309-7869

Report Date: Test Code:

72.4

0.8491

0.8239

0.9686

0.9497

0.8931

0.9245

0.8994

CETIS™ v1.8.7.20

0.9308

000-089-187-4

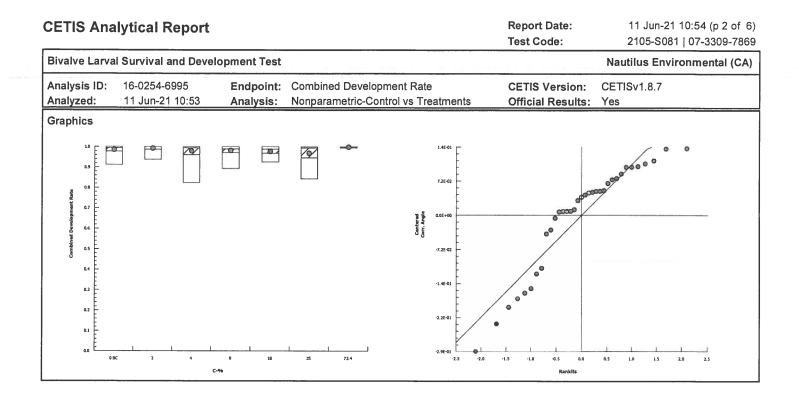
Brine Control	0.9939	0.9829	0.9941	1	0.9119	-
Lab Control	0.9943	1	1	0.9942	0.7987	
	1	1	0.9371	0.994	1	
	0.9886	0.8239	0.9951	0.9939	1	
	0.9884	0.9686	0.8931	1	1	
	0.994	1	0.9245	0.9875	0.9308	
	0.8428	0.9943	0.8931	1	1	
	0.9941	1	1	1	1	
nt Rate Detail				· · · ·		
Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
Brine Control	0.9939	0.9829	0.9941	1	1	
Lab Control	0.9943	1	1	0.9942	0.9922	
	1	1	0.9868	0.994	1	
	0.9886	1	0.9951	0.9939	1	
	0.9884	1	1	1	1	
					•	
	0.994	1	1	0.9875	1	
	0.994 0.9926	1 0.9943	1 0.993	0.9875 1	1 1	
	Lab Control nt Rate Detail Control Type Brine Control	Lab Control 0.9943 1 0.9886 0.9884 0.994 0.8428 0.9941 mt Rate Detail Control Type Rep 1 Brine Control 0.9939 Lab Control 0.9943 1 0.9886	Lab Control 0.9943 1 1 1 1 0.9886 0.8239 0.9884 0.9686 0.994 1 0.8428 0.9943 0.9941 1 0.8428 0.9943 nt Rate Detail Exp 1 Rep 2 Brine Control 0.9943 1 1 1 1 0.9943 1 1 1 1 1 0.9943 1 1	Lab Control 0.9943 1 1 1 1 0.9371 0.9886 0.8239 0.9951 0.9884 0.9686 0.8931 0.994 1 0.9245 0.8428 0.9943 0.8931 0.9941 1 1 nt Rate Detail Rep 1 Rep 2 Rep 3 Brine Control 0.9943 1 1 1 1 1 1 1 1 0.9868 0.9941	Lab Control 0.9943 1 1 0.9942 1 1 0.9371 0.994 0.9886 0.8239 0.9951 0.9399 0.9884 0.9686 0.8931 1 0.994 1 0.9245 0.9875 0.8428 0.9943 0.8931 1 0.9941 1 1 1 nt Rate Detail E E E Brine Control 0.9939 0.9829 0.9941 1 Lab Control 0.9943 1 1 0.9942 1 1 1 0.9942 1 0.9942 1 1 1 1 1 1	Lab Control 0.9943 1 1 0.9942 0.7987 1 1 0.9371 0.994 1 0.9886 0.8239 0.9951 0.9939 1 0.9884 0.9686 0.8931 1 1 0.994 1 0.9245 0.9875 0.9308 0.8428 0.9943 0.8931 1 1 0.9941 1 1 1 1 0.9941 1 1 1 1 nt Rate Detail E E E E Brine Control 0.9939 0.9829 0.9941 1 1 Lab Control 0.9943 1 0.9942 0.9942 0.9942 1 1 0.9943 1 1 1 1 Lab Control 0.9943 1 1 0.9942 0.9922 1 1 0.9951 0.9939 1 1

							Test Code:	2105-5081 07-3309-7869
Bivalve La	arval Survival and I	Developme	ent Test				яя.	Nautilus Environmental (CA)
Combined	d Development Rate	e Detail						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	0.9939	0.9829	0.9941	1	0.9119		
0	Lab Control	0.9943	1	1	0.9942	0.7987		
2		1	1	0.9371	0.994	1		
4		0.9886	0.8239	0.9951	0.9939	1		
9		0.9884	0.9686	0.8931	1	1		
18		0.994	1	0.9245	0.9875	0.9308		
35		0.8428	0.9943	0.8931	1	1		
72.4		0.9941	1	1	1	1		
Developm	ent Rate Detail							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	0.9939	0.9829	0.9941	1	1		······································
0	Lab Control	0.9943	1	1	0.9942	0.9922		
2		1	1	0.9868	0.994	1		
4		0.9886	1	0.9951	0.9939	1		
9		0.9884	1	1	1	1		
18		0.994	1	1	0.9875	1		
35		0.9926	0.9943	0.993	1	1		
72.4		0.9941	1	1	1	1		
Survival R	Rate Detail							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	1	1	1	1	0.9119		·····
0	Lab Control	1	1	1	1	0.805		

Analyst: JU QA: Badute

11 Jun-21 10:54 (p 3 of 4) 2105-S081 | 07-3309-7869

Report Date: Test Code:

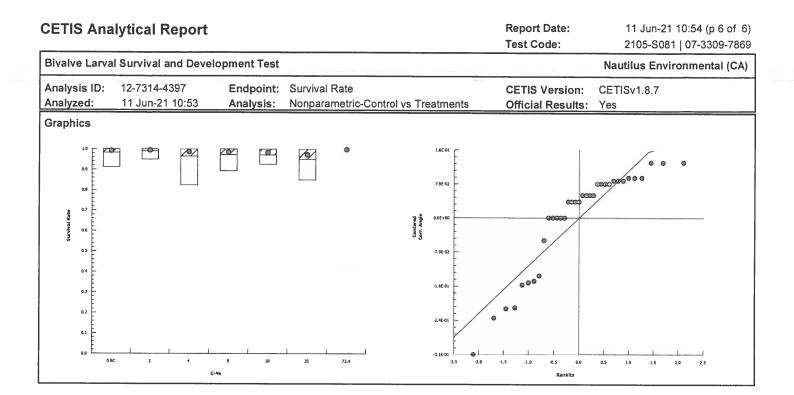

Report Date:

Test Code:

Bivalve Larv	al Survival and C	Developmer	nt Test				Nautilus Environmental (CA)
Combined D	Development Rate	e Binomials					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Brine Control	163/164	172/175	169/170	172/172	145/159	
0	Lab Control	175/176	177/177	179/179	172/173	127/159	
2		163/163	162/162	149/159	165/166	177/177	
4		173/175	131/159	202/203	164/165	188/188	
9		170/172	154/159	142/159	177/177	173/173	
18		166/167	159/159	147/159	158/160	148/159	
35		134/159	173/174	142/159	175/175	168/168	
72.4		168/169	175/175	163/163	175/175	171/171	
Developmer	nt Rate Binomials	;					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Brine Control	163/164	172/175	169/170	172/172	145/145	
0	Lab Control	175/176	177/177	179/179	172/173	127/128	
2		163/163	162/162	149/151	165/166	177/177	
4		173/175	131/131	202/203	164/165	188/188	
9		170/172	154/154	142/142	177/177	173/173	
18		166/167	159/159	147/147	158/160	148/148	
35		134/135	173/174	142/143	175/175	168/168	
72.4		168/169	175/175	163/163	175/175	171/171	
Survival Rat	e Binomials						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Brine Control	159/159	159/159	159/159	159/159	145/159	
0	Lab Control	159/159	159/159	159/159	159/159	128/159	
2		159/159	159/159	151/159	159/159	159/159	
4		159/159	131/159	159/159	159/159	159/159	
9		159/159	154/159	142/159	159/159	159/159	
18		159/159	159/159	147/159	159/159	148/159	
35		135/159	159/159	143/159	159/159	159/159	
72.4		159/159	159/159	159/159	159/159	159/159	

CETIS Ana	alytical Rep	ort			ort Date: Code:	11 Jun-21 10:54 (p 1 of 6) 2105-S081 07-3309-7869							
Bivalve Larva	al Survival and [Develop	ment Test			-				Nautilus	Environ	mental (CA)	
Analysis ID: Analyzed:	16-0254-6995 11 Jun-21 10:5		-		mbined Development Rate				CETIS Version: CET Official Results: Yes				
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU	
Angular (Corr	ected)	NA	C > T	NA	NA			7.24%	72.4	>72.4	NA	1.381	
Steel Many-C	one Rank Sum T	est											
Control	vs C-%		Test Sta	at Critical	Ties	DF	P-Value	P-Type	Decision(α:5%)			
Brine Control	2		32.5	16	1	8	0.9904	Asymp		ficant Effect			
	4		28.5	16	1	8	0.9067	Asymp	-	ficant Effect			
9			27	16	1	8	0.8267	Asymp Non-Significant Effect					
	18 35		26.5	16	1	8	0.7925	Asymp	-	ficant Effect			
			28	16	1	8	0.8838	Asymp	-	ficant Effect			
			36	16	1	8	0.9994	Asymp	+	ficant Effect			
ANOVA Table	9												
Source	Sum Squ	Mean Se	quare	DF F Stat			P-Value	Decision(a:5%)					
Between	0.05928196 0		0.00988	0327	6		0.6569	0.6845	Non-Signi	ficant Effect			
Error	0.4211631 0.0		0.01504	154	28				-				
Total	0.480445			34									
Distributiona	l Tests												
Attribute	Test			Test Stat	Critica	al	P-Value	Decision	(α:1%)				
Variances	Bartlett E	quality o	of Variance	13.46	16.81 0.0363 Equal Va			Equal Var	al Variances				
Distribution	Shapiro-	Wilk W N	Normality	0.8854	0.9146	3	0.0016	Non-normal Distribution					
Combined De	evelopment Rate	Summ	ary										
C-%	Control Type	Count	t Mean	95% LCL	95% U	ICL	Median	Min	Max	Std Err	CV%	%Effect	
0	Brine Control	5	0.9766	0.9311	1		0.9939	0.9119	1	0.01639	3.75%	0.0%	
2		5	0.9862	0.952	1		1	0.9371	1	0.01233	2.8%	-0.99%	
4		5	0.9603	0.8655	1		0.9939	0.8239	1	0.03415	7.95%	1.67%	
9		5	0.97	0.9143	1		0.9884	0.8931	1	0.02007	4.63%	0.67%	
18		5	0.9674	0.922	1		0.9875	0.9245	1	0.01636	3.78%	0.94%	
35		5	0.946	0.8547	1		0.9943	0.8428	1	0.03288	7.77%	3.13%	
72.4		5	0.9988	0.9955	1		1	0.9941	1	0.001183	0.26%	-2.28%	
Angular (Cor	rected) Transfor	med Su	mmary										
C-%	Control Type	Count	Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect	
0	Brine Control	5	1.446	1.317	1.575		1.493	1.27	1.533	0.04646	7.19%	0.0%	
2		5	1.481	1.366	1.597		1.532	1.317	1.533	0.0417	6.3%	-2.47%	
4		5	1.426	1.223	1.628		1.493	1.138	1.534	0.0729	11.43%	1.37%	
9		5	1.432	1.279	1.585		1.463	1.238	1.533	0.05507	8.6%	0.96%	
18		5	1.416	1.279	1.553		1.459	1.292	1.531	0.04936	7.79%	2.05%	
		~	4 202	1.171	1 6 1 2		1.495	1.163	1.533	0.07948			
35		5	1.392	1.171	1.613		1.490	1.105	1.000	0.07946	12.77%	3.7%	

CETIS Ana	alytical Rep	ort					-	ort Date: Code:			:54 (p 3 of 6))7-3309-7869	
Bivalve Larva	al Survival and I	Developm	ent Test						Nautilu	s Environ	mental (CA)	
Analysis ID: Analyzed:	06-2787-9475 11 Jun-21 10:		•	evelopment R onparametric-		Treatmen		CETIS Version: CETISv1.8.7 Official Results: Yes				
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU	
Angular (Corr	ected)	NA	C > T	NA	NA		0.83%	72.4	>72.4	NA	1.381	
Steel Many-C	one Rank Sum T	est										
Control	vs C-%		Test Sta	t Critical	Ties D	F P-Value	e P-Type	Decisior	n(α:5%)			
Brine Control	2		30	16	2 8	0.9557	Asymp		nificant Effect			
1	4		29	16	2 8	0.9262	Asymp	-	nificant Effect			
	9		32	16	2 8	0.9866	Asymp	-	nificant Effect			
	18		30	16	2 8	0.9557	Asymp	-	nificant Effect			
	35		28	16	2 8	0.8838	Asymp	-	nificant Effect			
	72.4		33	16	2 8	0.9932	Asymp	-	nificant Effect			
ANOVA Table)		· · · · · · · · · · · · · · · · · · ·									
Source	Sum Squ	ares	Mean Sq	uare	DF	F Stat	P-Value	Decisior	n(α:5%)			
Between	0.002427	117	0.000404	5195	6	0.4527	0.8369	Non-Significant Effect				
Error	0.025020	79	0.000893	5998	28			-				
Total	0.027447	91			34							
Distributiona	l Tests											
Attribute	Test			Test Stat	Critical	P-Value	e Decision	(α:1%)				
Variances	Bartlett E	Equality of	Variance	2.501	16.81	0.8683	Equal Va	riances				
Distribution	Shapiro-	Wilk W No	ormality	0.9002	0.9146	0.0040	Non-norm	al Distribut	ion			
Development	Rate Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UCI	. Median	Min	Мах	Std Err	CV%	%Effect	
0	Brine Control	5	0.9942	0.9855	1	0.9941	0.9829	1	0.003131	0.7%	0.0%	
2		5	0.9961	0.9889	1	1	0.9868	1	0.002622	0.59%	-0.2%	
4		5	0.9955	0.9896	1	0.9951	0.9886	1	0.002134	0.48%	-0.13%	
9		5	0.9977	0.9912	1	1	0.9884	1	0.002325	0.52%	-0.35%	
18		5	0.9963	0.9894	1	1	0.9875	1	0.002487	0.56%	-0.21%	
35		5	0.996	0.9913	1	0.9943	0.9926	1	0.001667	0.37%	-0.18%	
72.4		5	0.9988	0.9955	1	1	0.9941	1	0.001183	0.26%	-0.47%	
Angular (Cor	rected) Transfor	med Sum	mary									
C-%	Control Type	Count	Mean	95% LCL	95% UCI	. Median	Min	Мах	Std Err	CV%	%Effect	
0	Brine Control	5	1.498	1.451	1.544	1.494	1.439	1.533	0.0168	2.51%	0.0%	
2		5	1.509	1.466	1.552	1.532	1.455	1.533	0.01537	2.28%	-0.76%	
4		5	1.504	1.469	1.539	1.501	1.464	1.534	0.01268	1.89%	-0.41%	
9		5	1.518	1.479	1.556	1.53	1.463	1.533	0.01374	2.02%	-1.34%	
		5	1.508	1.469	1.548	1.53	1.459	1.531	0.01433	2.12%	-0.73%	
18		-										
18 35		5	1.506	1.476	1.536	1.495	1.485	1.533	0.01085	1.61%	-0.58%	


Analyst: JU QA: BOGILITZI

CETIS Analytical Repor	t		Report Date: 11 Jun-21 10:54 (p 4 c Test Code: 2105-S081 07-3309-7	
Bivalve Larval Survival and De	elopment Test		Nautilus Environmental (
Analysis ID: 06-2787-9475 Analyzed: 11 Jun-21 10:53	Endpoint: Analysis:	Development Rate Nonparametric-Control vs Treatments	CETIS Version: CETISv1.8.7 Official Results: Yes	
Graphics	2	44E42 29E42 44E42 44E42 44E42 55E2 23E42 44E42 55E2 23E42 23E42 44E42 55E2 23E42		

Analyst: JL QA: BO G/11/21

CETIS Ana	alytical Rep	ort							ort Date: Code:			54 (p 5 of 6 7-3309-786
Bivalve Larva	al Survival and I	Developr	nent Test						a :	Nautilus	s Environi	mental (CA)
Analysis ID: Analyzed:	12-7314-4397 11 Jun-21 10:5		•	Survival Rate Nonparametric-	Control v	s T	reatments		CETIS Version: CETISv1.8.7 Official Results: Yes			
Data Transfo	rm	Zeta	Alt Hy	p Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C > T	NA	NA			6.44%	72.4	>72.4	NA	1.381
Steel Many-C	one Rank Sum T	est										
Control	vs C-%		Test S	tat Critical	at Critical Ties D		P-Value	P-Type	Decision	(α:5%)		
Brine Control	2		28	16	1	8	0.8838	Asymp		ificant Effect		
	4		27	16		8	0.8267	Asymp		ificant Effect		
	9		25	16		8	0.6693	Asymp				
	18		26	16		8	0.7547	Asymp	-	ificant Effect		
	35		24	16		8	0.5746	Asymp	-	ificant Effect		
	72.4		30	16		8	0.9557	Asymp	Non-Significant Effect			
ANOVA Table)											
Source	Sum Squ	ares	Mean S	Square	DF		F Stat	P-Value	Decision	(α:5%)		
Between	0.052753	78	0.0087	92298	6		0.5282	0.7821	Non-Significant Effect			
Error	0.4661114	4	0.0166	4684	28				-			
Total	0.518865	2			34							
Distributiona	l Tests											
Attribute	Test		Test Stat	Critical		P-Value	Decision	(α:1%)				
Variances	Bartlett E	quality o	f Variance	112.8	16.81		<0.0001	Unequal \	/ariances			
Distribution	Shapiro-	Wilk W N	lormality	0.841	0.9146		0.0001	Non-normal Distribution				
Survival Rate	Summary											
C-%	Control Type	Count	Mean	95% LCL	95% UC	L	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	0.9824	0.9335	1		1	0.9119	1	0.01761	4.01%	0.0%
2		5	0.9899	0.962	1		1	0.9497	1	0.01006	2.27%	-0.77%
4		5	0.9648	0.867	1		1	0.8239	1	0.03522	8.16%	1.79%
9		5	0.9723		1		1	0.8931	1	0.02073	4.77%	1.02%
18		5	0.9711	0.9218	1		1	0.9245	1	0.01774	4.09%	1.15%
35		5	0.9497	0.8613	1		1	0.8491	1	0.03182	7.49%	3.33%
72.4		5	1	1	1		1	1	1	0	0.0%	-1.79%
	rected) Transfor	med Sur	nmary									
C-%	Control Type	Count	Mean	95% LCL	95% UC	Ľ	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	1.479	1.334	1.624		1.531	1.27	1.531	0.05232	7.91%	0.0%
2		5	1.494	1.39	1.597		1.531	1.345	1.531	0.03731	5.59%	-1.02%
4		5	1.452	1.234	1.671		1.531	1.138	1.531	0.07868	12.11%	1.78%
9		5	1.445	1.283	1.607		1.531	1.238	1.531	0.0583	9.02%	2.31%
		5	1.438	1.28	1.596		1.531	1.292	1.531	0.057	8.86%	2.75%
18												
18 35		5	1.403	1.182	1.624		1.531	1.172	1.531	0.07961	12.69%	5.15%

Analyst: JU QA:Bo 6/11/21

Analyst: JU QA: 1006/11/21

CETIS Analytical Report								ort Date: Code:	11 Jun-21 10:54 (p 1 of 3) 2105-S081 07-3309-7869		
Bivalve Lar	val Survival and De	evelopmen	t Test						Nautilu	s Enviror	mental (CA)
Analysis ID Analyzed:	: 13-8722-7064 11 Jun-21 10:54		point: lysis:	Combined Deve Linear Interpola		Э		S Version: ial Results		.8.7	
Linear Inter	polation Options										
X Transforn	n Y Transform	See	d	Resamples	Exp 95% C	L Meth	od				
Linear	Linear	1415	5993	1000	Yes	Two-	Point Interpo	olation			
Point Estim	ates										
Level %	95% LCL	95% UCL	TU	95% LCL	95% UCL						
EC25 >72	2.4 N/A	N/A	<1.38		NA			·			-
EC50 >72	2.4 N/A	N/A	<1.38	1 NA	NA						
Combined [Development Rate	Summary			Calcula	ted Variat	e(A/B)				
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	в
0	Brine Control	5	0.9766	6 0.9119	1	0.01639	0.03665	3.75%	0.0%	821	840
2		5	0.9862	2 0.9371	1	0.01233	0.02758	2.8%	-0.99%	816	827
4		5	0.9603	3 0.8239	1 (0.03415	0.07636	7.95%	1.67%	858	890
9		5	0.97	0.8931	1 (0.02007	0.04488	4.63%	0.67%	816	840
18		5	0.9674	0.9245	1 (0.01636	0.03658	3.78%	0.94%	778	804
35		5	0.946	0.8428	1 (0.03288	0.07351	7.77%	3.13%	792	835
72.4		5	0.9988	3 0.9941	1	0.001183	0.002645	0.26%	-2.28%	852	853
10 07 07 00 00 00 00 00 00 00 00 00 00 00	BO···••················	•••••		•							

CETIS	6 Analy	/tical Repo	ort								ort Date: Code:):54 (p 2 of 3) 07-3309-7869
Bivalve	Larval S	Survival and D	evelop	ment	Test							Nautilu	s Enviror	nmental (CA)
Analysi Analyze		18-7960-6538 11 Jun-21 10:54		-			elopment R ar Interpola	ate tion (ICPIN)			S Version: ial Results:	CETISv1 Yes	.8.7	
Linear	Interpola	ation Options												
X Trans	sform	Y Transform	;	Seed	1	Resa	amples	Exp 95%	CL Meth	od				
Linear		Linear		6429	97	1000		Yes	Two-l	Point Interpo	olation			
Point E	stimates	3			<u>.</u>									
Level	%	95% LCL	95% L	ICL	TU		95% LCL	95% UCL						
EC25	>72.4	N/A	N/A		<1.381		NA	NA	·					
EC50	>72.4	N/A	N/A		<1.381	1	NA	NA						
Develo	pment R	ate Summary						Calcu	lated Variat	e(A/B)				
C-%		ntrol Type	Count	:	Mean		Min	Max	Std Err	Std Dev	CV%	%Effect	A	в
0	Bri	ne Control	5		0.9942	2	0.9829	1	0.003131	0.007001	0.7%	0.0%	821	826
2			5		0.9961		0.9868	1	0.002622	0.005862	0.59%	-0.2%	816	819
4			5		0.9955	5	0.9886	1	0.002134	0.004772	0.48%	-0.13%	858	862
9			5		0.9977	7	0.9884	1	0.002325	0.0052	0.52%	-0.35%	816	818
18			5		0.9963	3	0.9875	1	0.002487	0.005562	0.56%	-0.21%	778	781
35			5		0.996		0.9926	1	0.001667	0.003729	0.37%	-0.18%	792	795
72.4			5		0.9988	3	0.9941	1	0.001183	0.002645	0.26%	-0.47%	852	853
Graphic are unaversity	1.0 000 0.9	oo					0							
	0.1	10 20 3C	10 C-%		50 6	L	70 90							

CETIS	S Anal	ytical Repo	ort									ort Date: Code:			:54 (p 3 of 3) 07-3309-7869
Bivalve	e Larval	Survival and D	evelopr	nent	Test								Nautilu	s Environ	mental (CA)
Analysi Analyze		17-3343-9816 11 Jun-21 10:54			ooint: ysis:	Surviva Linear		tion (ICPIN)				S Version: ial Results:	CETISv1 Yes	.8.7	
Linear	Interpol	ation Options													
X Trans	sform	Y Transform	5	Seed	l	Resam	ples	Exp 95%	CL	Meth	od				
Linear		Linear	6	50032	2	1000		Yes		Two-	Point Interp	olation			
Point E	stimate	S													
Level	%	95% LCL	95% U	ICL	TU	95	5% LCL	95% UCL							
EC25	>72.4	N/A	N/A		<1.381			NA							
EC50	>72.4	N/A	N/A		<1.381	1 N/	A	NA							
Surviva	al Rate S	ummary						Calcu	lated	Variat	e(A/B)				
C-%	Co	ontrol Type	Count		Mean	м	in	Мах	Std	Err	Std Dev	CV%	%Effect	А	в
0	Br	ine Control	5		0.9824	4 0.9	9119	1	0.01	761	0.03938	4.01%	0.0%	781	795
2			5		0.9899	9 0.9	9497	1	0.01	006	0.0225	2.27%	-0.77%	787	795
4			5		0.9648	3 0.8	8239	1	0.03	522	0.07875	8.16%	1.79%	767	795
9			5		0.9723	3 0.8	8931	1	0.02	073	0.04635	4.77%	1.02%	773	795
18			5		0.9711	1 0.9	9245	1	0.01	774	0.03968	4.09%	1.15%	772	795
35			5		0.9497	7 0.8	8491	1	0.03	182	0.07116	7.49%	3.33%	755	795
72.4			5		1	1		1	0		0	0.0%	-1.79%	795	795
Graphic							•								
	٥	10 20 30	40 C-%		50 0	60 70	80								

CETIS Test Data Worksheet

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Start Date: End Date: Sample Date	14 M : 11 M		1	Species: Protocol: Material:	Mytilus galloprovi EPA/600/R-95/13 Effluent Sample			Sample Code: 21- 6570 Sample Source: Jacobs Sample Station: Wyckoff
C-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
			31			165	164	GM 6/2/21
			32	.,		173	172	
			33			147	147	V
			34			163	163	
			35			177	177	
			36			174	173	
			37			175	172	
			38			143	142	
			39			177	177	
			40			169	168	
			41			131	131	
			42			175	1767	PAD 1
			43			167	166	
			44			176	175	
			45			164	163	
			46			175	173	1
			47			173	173	
			48			188	188	GM 613121
			49			179	179	
			50			163	163	
			51		-	172	172	6-M 614121
			52			166	165	
			53			175	175	
			54			170	169	
			55			128	127	
			56			142	142	
			57			154	154	
			58			162	162	
			59			168	168	
			60			171	171	V
			61			175	175	GM 65121
			62			151	149	
			63			159	159	
			64			177	177	
			65	· · · · · · · · · · · · · · · · · · ·		203	202	
			66			148	143	(JM 6/7/2)
			67			172	170	
			68			135	134	
			69			160	158	
			70			145	145	L

DQ18 GM 6/2/2,

CETIS Test Data Worksheet

Report Date:	08 May-21 09:35 (p 1 of 1)
Test Code: 2105.508	07-3309-7869/2BB22F8D QVY

nd Date: 14 May-21 Pro			Mytilus galloprov EPA/600/R-95/13 Effluent Sample			Sample Code: Sample Source: Sample Station:				
C-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes	3
0	BC	1	45							
0	BC	2	37							
0	BC	3	54			170	169	R S	115/21	······································
0	BC	4	51			·····				
0	BC	5	70							
0	LC	1	44	<u> </u>						
0	LC	2	39							
0	LC	3	49			174	174		-,,.	
0	LC	4	32							
0	LC	5	55					anni 1997 - 201 - 201 - 201 - 201 - 201 - 201 - 201 - 201 - 201 - 201 - 201 - 201 - 201 - 201 - 201 - 201 - 201		
2		1	34							
2		2	58							
2		3	62			146	144			
2		4	52							
2		5	64							
4		1	46						· · · · · · · · · · · · · · · · · · ·	
4		2	41							
4		3	65			188	187			
4		4	31							
4		5	48							
9		1	67							
9		2	57							
9		3	56			139	139			
9		4	35		2					THE STATE & STATE OF AND A REAL PROPERTY OF STATE AND ADDRESS.
9		5	47							
18		1	43							
18		2	63							
18		3	33	10 m		148	148			
18		4	69							
18		5	66							
35		∞ 1	68							
35		2	36							
35		3	38			136	135			
35		4	53							
35		5	59							
24 74.2		1	40					THEFT TO STREET AND AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRE		········
2.4 14.2		2	42							
2.4 74.2 2.4 74.2 2.4 74.2 2.4 74.2 2.4 74.2 2.4 74.2 2.4 74.2 2.4 74.2 2.4 74.2		3	50			158	158			
2.4 74/2		4	61							
1214 74.12		5	60							

Marine Chronic Bioassay DM-014

Client: JACOBS

Test No.: 2105-5081

Sample ID: Wyckoff

Sample Log No.: 71 - 0530

Water Quality Measurements

 Test Species:
 M. galloprovincialis

 Start Date/Time:
 5/12/2021
 1500

 End Date/Time:
 5/14/2021
 1340
 1340

 Start Date/Time:
 5/14/2021
 1340
 1340

 Start Date/Time:
 5/14/2021
 1340
 1340

80 6/11/21

Final Review:

Salinity Temperature **Dissolved** Oxygen Concentration pH (ppt) (°C) (mg/L)(% sample) (pH units) 0 24 48 0 24 48 0 24 24 48 0 48 29.8 29.4 15.4 8.8 8.7 7.92 8.5 8,02 29.8 7.87 16.0 15.9 Lab Control 15.4 8.9 8.02 30.9 15.5 8.8 J.S 7.93 31-1 31.0 5.8 8.17 **Brine Control** 8.6 299 29.8 15.8 8.6 8.05 29.9 16.0 15.6 7.93 7.94 9.8 2 30.0 8,5 15,9 5.9 8.8 30.0 30.0 8.6 \$.00 7.94 7.95 15.6 4 29.9 30.0 29.9 15.7 8.7 8.7 8.6 15.9 15.7 7.95 8.00 7.95 9 30.1 8.7 30-0 5.8 15.7 8.6 7.98 30.1 15.8 8,8 7,88 8.05 18 303 5.6 7,80 30.3 15.8 15.7 7.98 70.3 8.7 8-6 8.11 8.8 35 7.98 9.19 15.5 8.5 30.4 7,68 30.6 30.4 8.6 8.8 16.0 15.8 12.4 0 24 48 ACS 080 RT KL Environmental Chamber: \mathcal{D} **Technician Initials:** WQ Readings: VS Dilutions made by: VA -----Comments: 0 hrs: 24 hrs: (R) Q18KL 5 13/21 48 hrs:

QC Check:

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Marine Chro DC-010	nic Bioassay			Brine Dilution Worksheet
Project:	JACOBS		Analyst:	KS
Sample ID:	Wyckoff	·····	Test Date:	5/12/2021
Test No:	2105-508		Test Type:	Mussel Development
Salinity of Effl	uent	7.2		
Salinity of Brir	ie	89.7	Date of Brine used:	4/13/2021
Target Salinity	,	30	Alkalinity of Brine Control:	and the second s
Test Dilution V	/olume	250		@ Q18 BS 5/14/21
8		Effluent	Brine Control	
Salinity Adjust (TS - SE)/(SB - TS = target SE = salinit	TS) =	0.38	0.50	

SB = salinity of brine

Concentration %	Effluent Volume (ml)	Salinity Adjustment Factor	Brine Volume (ml)	Dilute to: (ml)
Control	NA	NA	NA	250
2	5.0	0.38	1.9	250
4	10.0	0.38	3.8	250
9	22.5	0.38	8.6	250
18	45.0	0.38	17.2	250
35	87.5	0.38	33.4	250
72.4	180.9	0.38	69.1	250

	DI Volume			
Brine Control	137.5	0.50	69.1	250

Total Brine Volume Required (ml): 203.1

QC Check: At 5 5/27/21

Final Review: BOG/11/21

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120

Marine Chronic Bioassay DM-013

DIM-013				
Client/Sample: Test No.:	Jacobs/Wychoff 2105-5081	Start Date/Time:	5/12/21	1500
		End Date/Time:	5/19/21	
Test Species:	Mytilus galloprovincialis	Technician Initials:	45	ON PT SIMIZI
Animal Source/Bate	ch Tank: M-REP / 3A	_		
Date Received:	4/19/21			
Test Chambers:	shell vials			
Sample Volume:	10 mL			

Spawn Information

First Gamete Release Time:

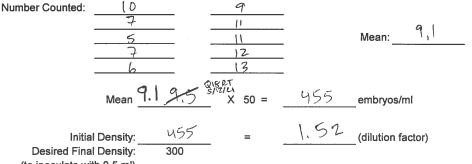
Gamete Selection

Sex	Number Spawning
Male	3
Female	2

Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)
Male	1,2,3	excellent motility & density
Female 1	1	excellent density pake orange, nostly round
Female 2	•	
Female 3	-	

Egg	Fertilization	Time:	12:30

Embryo Stock Selection


Stock Number	% of embryos at 2-cell division stage				
Female 1	100				
Female 2	-				
Female 3	_				

Stock(s) chosen for testing:

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos

11:30

(to inoculate with 0.5 ml)

Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

> **Time Zero Control Counts** TØ Vial Mean % No. Dividing Total % Dividing No. Dividing 150 180 100 TØ A 191 99.0 ТØВ 189 99.8 131 131 тøс 100 TØ D 165 100 165 ΤØΕ 141 141 100 TØ F 147 14 100 159 <u>X</u> =

48-h QC: 153/153

Comments:

QC Check:

A(S 5/27/21

Final Review: 606/11/21

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Larval Development Worksheet

Appendix B Sample Check-In Information

DC-005

Enthalpy Analytical		-0.		N	ORTHWEST	CLIENTS
4340 Vandever Avenue	Client:	HOBS		Sample	Check-In In	formation
San Diego, CA 92120	Sample ID: ()	yckoff	(05/121)			DC-005
	Test ID No(s).: Z(C	5-5081		Sample Description:		
				A: colociess, cieae, ,	no ador.	no debris
						3
Sample (A, B, C):	A					
Log-in No. (21-xxxx):						
Sample Collection Date & Time:	5/11/21 105 5/12/ C Ploos			Subsamples for Additional Che	mistry Require	ed:
Sample Receipt Date & Time:	5/12/21 1000			NH3 (always required)		
Number of Containers & Container Type:				Other		
Approx. Total Volume Received (L):				Tech Initials A <u> 귀</u> H B	_c	
Check-in Temperature (°C)	3.7					
Temperature OK?		Y N	Y N	COC Complete (Y/N)?		
DO (mg/L)	9.4			AY B C		
pH (units)	7.78					
Conductivity (µS/cm)	11,600			Filtration? Y N Initia	s:	
Salinity (ppt)				Pore Size:		
Alkalinity (mg/L) ²	421			Organisms or	Debris	
Hardness (mg/L) ^{2, 3}						
Total Chlorine (mg/L)	0.04			Salinity Adjustment? Y N		
Technician Initials	GM				Bine Tara	et ppt: 30 ppt
				Test: Source:		et ppt:
1.101				Test: Source:		et ppt:
Test Performed: MUSSEl Development	Control/Dilution Water: 8:2 / Lab	SW / Lab ART	Other:			
	Alkalinity: 9999 Hardness or	Salinity: 3000	>+	pH Adjustment? Y N		
Additional Control? (Y) N	= Brine Alkalinity: 106	Hardness or S	alinity: 3000 T	A	В	С
				Initial pH:		
Test Performed:	Control/Dilution Water: 8:2 / Lab		Other:	Amount of HCI added:		
	Alkalinity: Hardness or		-	Final pH:		
Additional Control? Y N	_= Alkalinity:	Hardness or S	alinity:	Cl ₂ Adjustment? Y N		
				A	B	С
Test Performed:	Control/Dilution Water: 8:2 / Lab			Initial Free Cl ₂ :		
	Alkalinity: Hardness or			STS added:		
Additional Control? Y N	_=Alkalinity:	mardness of S	annuy:	Final Free Cl ₂ :		
Notes: ¹ Temperature of sample should	the 0-6°C at receipt			Sample Aeration? Y(N)		
	for freshwater samples only, NA = Not A	onlicable			в	C
myre as caces, inteasured	tor nearmater samples only, NA - Not A	phicable		Initial D.O.	B	C
Additional Comments: ADBIS GM 51	2/21 (5) Q 8 HIS 5/27	1/22		Duration & Rate		
		· · ·		Final D.O.		

QC Check: Ars 5/27/21 Final Review: 00 6/11/21

	Jacobs						
	Wyckoff						
Test Type:	Mussel development						
DI Blank	0.0_	Тор	st Start Date:	5/12/2021		Analyst:	KE
SW Blank:	0.0		St Start Date.	J/12/2021		nalysis Date:	
		Enthalpy	Sub-Sample	Test	NH3-N	N x 1.22 Ammonia	
	Sample ID	ID	Date	Day	(mg/L)	(mg/L)	
	Blank Spike (10 mg/L NH3)		NA	NA	9,5	11.6	
	Wyckoff	21-0530	5/12/2021	check-in	111	1.3	
						Č.	
	Spike Check (10 mg/L NH ₃)		NA	NA	9.5	11.6	
	Batch QC	19			2.2	2.7	
	Sample Duplicate ^a	19	NA	NA	2.2	2.7	
	Sample Duplicate + Spike ^a		NA	NA	11.2	13.7	
	Spike Check (10 mg/L NH ₃)		NA	NA	9.5	11.6	
Relative Percer	nt Difference (RPD) = [sample] (mg [average ammonia]	/L) - [sample duplica (mg/L)	<u>te] (mg/L)</u> x 100		Acceptable Ra	nge: 0-20%	
Perce	nt Recovery = [spiked sample] (mg nominal [spike] (r	/L) - [sample] (mg/L)	x 100		Acceptable Ra	nge: 80-120% ^b	
mple ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recover(A)	
ank	0.0	NA	1).6	10	NA	0 120 AA	-116
h QC	2.7	27	13.7	10	0	110	

		Reagent i	reagent 2	lest lubes
ſ	Standard Lot Number	A8236	A B249	A1056
			1	

Notes: ^a Unless otherwise noted, the last sample listed on the datasheet is used for duplicate and duplicate + spike QC check.

^b Acceptable range for % recovery applies only to the blank spike. Spike recoveries in samples may vary based on sample matrix and are for information only.

^c Calculation not performed due to one or both values below the method detection limit.

HACH Ammonia Nitrogen Test Kit, Test 'N Tube™ Vials. Method 10031. Method Detection Limit = 0.5 mg/L

QC Check: A(S 6/1/2)

Final Review:

BO 6/11/21

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix C Chain-of-Custody Form

Page 1 of 1

Enthalpy Analytical (REGION COPY)

DateShipped: 5/11/2021 CarrierName: FedEx

AirbillNo: 7736 9092 7629

Jacobs, Wyckoff-Wyckoff Eagle Harbor GWTP 2020/WA Project Code: WEH-029Z Cooler #: 1 of 1

No: 10-051121-100930-0543

2021T10P000DD210W2LA00 **Contact Name: Keith Allers** Contact Phone: 206-780-1711

Sample Identifier	CLP Sample No.	Matrix/Sampler	Coll. Method	Analysis/Turnaround (Days)	Tag/Preservative/Bottles	Location	Collection Date/Time	Sample Type
051121		Ground Water/ K.Allers	Composite	CHRTOX(8 Weeks)	A (< 6 C) (1)	SP-11	05/11/2021 09:43	Field Sample
r *								
1								
						·		
				······				

	Shipment for Case Complete? N
Special Instructions:	Samples Transferred From Chain of Custody #
Analysis Key: CHRTOX=Chronic Toxicity	

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	1/ BA MILLA TO	5-11-21	Hawland EHSP	5/12/21	received in good
	MILLES JES OKOBS	1015		1000	received in good condition
1					
		·			

Plieipt Himp. 3.7°C Log-in number: 21-0530

Appendix D List of Qualifier Codes

Glossary of Qualifier Codes:

- Q1 Temperature out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperature out of recommended range; no action taken, test terminated same day
- Q3 Sample pH adjusted to within range of 6-9 with reagent grade NaOH or HCl, as needed
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with continuous aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, partial renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was $\leq 110\%$
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set. Test results were reviewed and reported in accordance with guidance found in EPA-833-R-00-003, 2000 unless otherwise specified.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set. Test results were reviewed and reported in accordance with EPA-833-R-00-003, 2000 guidance unless otherwise specified.
- Q18 Incorrect or illegible Entry
- Q19 Miscalculation
- Q20 PMSD criteria do not apply to test of significant toxicity (TST) analysis
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% batch <u>mortality</u> observed upon receipt and/or in holding prior to test initiation. Organisms acclimated to test conditions at Enthalpy and ultimately deemed fit to use for testing.
- Q23 Test organisms experienced a <u>temperature</u> shift greater than 3°C in holding or were received at a temperature greater than 3°C outside the recommended test temperature range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.
- Q24 Test organisms experienced a <u>salinity</u> shift greater than 3 ppt in holding or were received at a salinity greater than 3 ppt outside the recommended test salinity range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.

Appendix E Reference Toxicant Test Results

Report Date: Test Code:

27 May-21 11:22 (p 1 of 3) 210512msdv | 15-4594-3065

Bivalve Larval	Survival and Developm	nent Test						Nautilus Environmental (CA)
Batch ID: Start Date: Ending Date: Duration:	12 May-21 15:00 F 14 May-21 13:40 S	Fest Type Protocol: Species: Source:	EPA/600/f Mytilus ga	ent-Survival R-95/136 (1995) Iloprovincialis arlsbad, CA			Analyst: Diluent: Brine: Age:	Diluted Natural Seawater Not Applicable
Sample ID: Sample Date: Receive Date: Sample Age:	12 May-21 May-21 S	Code: Material: Source: Station:	210512ms Copper ch Reference Copper Ch	loride Toxicant			Client: Project:	Internal
Comparison S	ummary							
Analysis ID	Endpoint	NOE	L LOEI	- TOEL	PMSD	τu	Meth	od
08-3594-9466 17-5934-7608 01-3180-9279	Combined Developmen Development Rate Survival Rate	t Ra 5 5 20	10 10 40	7.071 7.071 28.28	1.06% 1.06% 2.12%		Dunne	ett Multiple Comparison Test ett Multiple Comparison Test Many-One Rank Sum Test
Point Estimate	Summary							
Analysis ID	Endpoint	Leve	el µg/L	95% LCL	95% UCL	TU	Metho	od
00-9727-8504	Combined Development	t Ra EC2 EC5	5 11.4	10.88 ′ 13.92	11.83 14.55		Linea	r Interpolation (ICPIN)
12-3891-6641	Development Rate	EC2 EC5		10.86	11.83 14.55		Linea	r Interpolation (ICPIN)
18-1677-8776	Survival Rate	EC2 EC5			33.67 N/A	_	Linea	r Interpolation (ICPIN)
Test Acceptab	ility							
Analysis ID	Endpoint	Attri	bute	Test Stat	TAC Limi	ts	Overl	ap Decision
12-3891-6641 17-5934-7608 01-3180-9279	Development Rate Development Rate Survival Rate	Cont Cont	rol Resp rol Resp rol Resp	0.9952 0.9952 1	0.9 - NL 0.9 - NL 0.5 - NL		Yes Yes Yes	Passes Acceptability Criteria Passes Acceptability Criteria Passes Acceptability Criteria
	Survival Rate Combined Development		rol Resp D	1 0.01055	0.5 - NL NL - 0.25		Yes No	Passes Acceptability Criteria Passes Acceptability Criteria

000-089-187-4

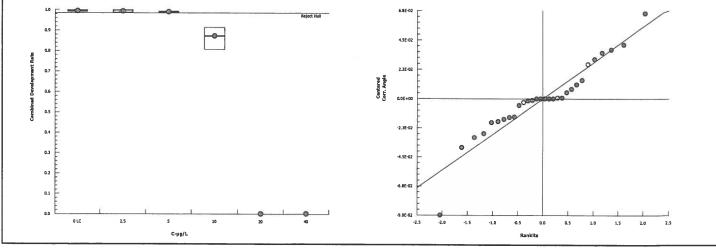
Analyst: JU QA: ACCE/1/21

Report Date: Test Code:

							Tes	t Code:	21051	12msdv 1	5-4594-30
Bivalve La	rval Survival and I	Developme	nt Test	_			211		Nautilus	s Environn	nental (C/
Combined	Development Rate	e Summary	<u> </u>						· · · · · ·		
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0	Lab Control	5	0.9952	0.9897	1	0.9906	1	0.001995	0.004461	0.45%	0.0%
2.5		5	0.9936	0.9857	1	0.9866	1	0.002825	0.006316	0.64%	0.16%
5		5	0.9903	0.9865	0.994	0.9866	0.9931	0.001351	0.003021	0.31%	0.49%
10		5	0.8709	0.8198	0.922	0.8072	0.9134	0.0184	0.04114	4.72%	12.49%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
Developme	ent Rate Summary	·····		·			, <u>, , , , , , , , , , , , , , , ,</u>				
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
0	Lab Control	5	0.9952	0.9897	1	0.9906	1	0.001995	0.004461	0.45%	0.0%
2.5		5	0.9936	0.9857	1	0.9866	1	0.002825	0.006316	0.64%	0.16%
5		5	0.9903	0.9865	0.994	0.9866	0.9931	0.001351	0.003021	0.31%	0.49%
10		5	0.8709	0.8198	0.922	0.8072	0.9134	0.0184	0.04114	4.72%	12.49%
20		5								÷n.1∠70	
			0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
	ate Summary										
С-µg/L 0	Control Type Lab Control	Count 5	Mean 1	95% LCL	95% UCL	Min 1	Max 1	Std Err 0	Std Dev 0	CV%	%Effec
	Lab Control										
2.5		5	1	1	1	1	1	0	0	0.0%	0.0%
5		5	1	1	1	1	1	0	0	0.0%	0.0%
10		5	1	1	1	1	1	0	0	0.0%	0.0%
20		5	1	1	1	1	1	0	0	0.0%	0.0%
40		5	0.48	0.2893	0.6707	0.27	0.63	0.0687	0.1536	32.0%	52.0%
Combined	Development Rate	e Detail									·····
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.9929	1	1	0.9906	0.9926					
2.5		0.9931	1	1	0.9866	0.9883					
5		0.9925	0.9875	0.9931	0.9866	0.9919					
10		0.9134	0.8993	0.8611	0.8072	0.8735					
20		0	0	0	0	0					
40		0	0	0	0	0					
Developme	ent Rate Detail										
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.9929	1	1	0.9906	0.9926					
2.5		0.9931	1	1	0.9866	0.9883					
5		0.9925	0.9875	0.9931	0.9866	0.9919					
10											
		0.9134	0.8993	0.8611	0.8072	0.8735					
20		0	0	0	0	0					
40		0	0	0	0	0					
+0											
	ite Detail										
Survival Ra C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
Survival Ra C-µg/L		Rep 1 1	Rep 2	Rep 3	Rep 4	Rep 5					
Survival Ra C-µg/L 0	Control Type										
Survival Ra C-µg/L 0 2.5	Control Type	1	1	1	1	1 1					
Survival Ra C-µg/L 0 2.5 5	Control Type	1 1	1 1 1	1 1 1	1 1 1	1					
Survival Ra C-μg/L 0 2.5 5 10	Control Type	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1					
Survival Ra C-µg/L 0 2.5 5	Control Type	1 1	1 1 1	1 1 1	1 1 1	1 1					

Analyst: JL QA: ACCel7/21

Bivalve Larval Survival and Development Test


Report Date: Test Code:

Nautilus	Environ	mental	(CA)	

Combined Development Rate Binomials									
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
0	Lab Control	140/141	130/130	156/156	105/106	134/135			
2.5		143/144	151/151	135/135	147/149	169/171			
5		132/133	158/160	143/144	147/149	122/123			
10		116/127	134/149	124/144	134/166	145/166			
20		0/143	0/118	0/170	0/159	0/156			
40		0/100	0/100	0/100	0/100	0/100			
Developmer	t Rate Binomials	;							
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
0	Lab Control	140/141	130/130	156/156	105/106	134/135			
2.5		143/144	151/151	135/135	147/149	169/171			
5		132/133	158/160	143/144	147/149	122/123			
10		116/127	134/149	124/144	134/166	145/166			
20		0/143	0/118	0/170	0/159	0/156			
40		0/51	0/38	0/27	0/63	0/61			
Survival Rat	e Binomials								
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
0	Lab Control	100/100	100/100	100/100	100/100	100/100			
2.5		100/100	100/100	100/100	100/100	100/100			
5		100/100	100/100	100/100	100/100	100/100			
10		100/100	100/100	100/100	100/100	100/100			
20		100/100	100/100	100/100	100/100	100/100			
40		51/100	38/100	27/100	63/100	61/100			

Analyst: JL QA: AK 6/7/2/

CETIS Analytical Report							Rep Test	27 May-21 11:22 (p 1 of 4) 210512msdv 15-4594-3065			
Bivalve Larv	al Survival and	Developme	ent Test						Nautilus	s Environ	mental (CA
Analysis ID: Analyzed:	08-3594-9466 27 May-21 11				elopment Ra htrol vs Trea			IS Version: cial Results	CETISv1 : Yes	.8.7	-
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	rected)	NA	C > T	NA	ŇA		1.06%	5	10	7.071	
Dunnett Mul	tiple Compariso	n Test									-
Control	vs C-µg/L		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	2.5		0.332	2.227	0.054 8	0.6181	CDF	Non-Signi	ficant Effect		
	5		1.138	2.227	0.054 8	0.2804	CDF	Non-Signi	ficant Effect		
	10*		12.21	2.227	0.054 8	<0.0001	CDF	Significan	tEffect		
ANOVA Tabl	e										
Source	Sum Squ	lares	Mean Squ	lare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.300622	9	0.1002076	6	3	69.11	<0.0001	Significant Effect			
Error	0.023200		0.0014500	018	16						
Total	0.323823	2			19						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett B	Equality of \	/ariance	6.527	11.34	0.0886	Equal Var	iriances			
Distribution	Shapiro-	Wilk W Nor	mality	0.9628	0.866	0.6011	Normal D	istribution			
Combined D	evelopment Rate	e Summary	/								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9952	0.9897	1	0.9929	0.9906	1	0.001995	0.45%	0.0%
2.5		5	0.9936	0.9857	1	0.9931	0.9866	1	0.002825	0.64%	0.16%
5		5	0.9903	0.9865	0.994	0.9919	0.9866	0.9931	0.00135	0.3%	0.49%
10		5	0.8709	0.8198	0.922	0.8735	0.8072	0.9134	0.0184	4.72%	12.49%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
Angular (Cor	rected) Transfo	rmed Sumr	mary								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	1.5	1.468	1.533	1.486	1.474	1.531	0.01181	1.76%	0.0%
2.5		5	1.492	1.448	1.536	1.487	1.455	1.53	0.01584	2.37%	0.53%
5		5	1.473	1.454	1.492	1.481	1.455	1.487	0.006787	1.03%	1.83%
10		5	1.206	1.132	1.281	1.207	1.116	1.272	0.0269	4.99%	19.59%
20		5	0.04119	0.03748	0.04489	0.04004	0.03836	0.04605	0.001335	7.25%	97.26%
40		5	0.05002	0.05001	0.05003	0.05002	0.05002	0.05002	0	0.0%	96.67%
Graphics											
10			and the second se	and the second designed to the second second	-	6.8E-02		1			-

CETIS™ v1.8.7.20

Analyst: JU QA: Alle 17/21

							lest	Code:		2msdv 1	
Bivalve Larva	I Survival and	Developm	ent Test						Nautilus	s Environr	nental (C/
Analysis ID: Analyzed:	17-5934-7608 27 May-21 11		•	Development R Parametric-Cor		tments		IS Version: cial Results		.8.7	
Data Transfor	rm	Zeta	Alt Hy	p Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)	NA	C > T	NA	NA		1.06%	5	10	7.071	10
Dunnett Multi	iple Compariso	n Test						<u> </u>			
Control	vs C-µg/L		Test St	at Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Lab Control	2.5		0.332	2.227	0.054 8	0.6181	CDF		ificant Effect		
	5		1.138	2.227	0.054 8	0.2804	CDF	-	ificant Effect		
	10*		12.21	2.227	0.054 8	<0.0001	CDF	Significar	t Effect		
ANOVA Table)										
Source	Sum Squ	lares	Mean S	quare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.300622	-	0.10020		3	69.11	<0.0001	Significan	t Effect		
Error	0.023200		0.00145	50018	16						
Total	0.323823	2			19						
Distributional	Tests										
Attribute	Test	-		Test Stat		P-Value	Decision	· · · · · · · · · · · · · · · · · · ·			
Variances Distribution		Equality of		6.527	11.34	0.0886	Equal Va				
		Wilk W No		0.9628	0.866	0.6011	Normal D	Istribution			<u></u>
-	Rate Summary										
С-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
0 2.5	Lab Control	5 5	0.9952 0.9936	0.9897 0.9857	1 1	0.9929 0.9931	0.9906 0.9866	1 1	0.001995 0.002825	0.45% 0.64%	0.0% 0.16%
5		5	0.9903	0.9865	0.994	0.9919	0.9866	0.9931	0.002825	0.3%	0.49%
10		5	0.8709	0.8198	0.922	0.8735	0.8072	0.9134	0.0184	4.72%	12.49%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
Angular (Corr	ected) Transfor	rmed Sum	marv								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
0	Lab Control	5	1.5	1.468	1.533	1.486	1.474	1.531	0.01181	1.76%	0.0%
2.5		5	1.492	1.448	1.536	1.487	1.455	1.53	0.01584	2.37%	0.53%
5		5	1.473	1.454	1.492	1.481	1.455	1.487	0.006787	1.03%	1.83%
10		5	1.206	1.132	1.281	1.207	1.116	1.272	0.0269	4.99%	19.59%
20		5	0.04119	0.03748	0.04489	0.04004	0.03836	0.04605	0.001335	7.25%	97.26%
40		5	0.07495	5 0.05758	0.09231	0.07007	0.06304	0.09637	0.006254	18.66%	95.0%
Graphics											
10 📻 📟	o					6.8E-02		i.		-	/
0.9		8		Reject Null		Ē				/	
						4.5E-02					
0.8						Ē			8.8.B	-	
0.7 L					3	2.3E-02			00		
					Centrared	4 1 0 0 0.0E+00			000		<u></u>
0.5						-		000000000000000000000000000000000000000			
an E						-2.3E-02					

0.4

0.2 F

0.1 F

0 LC

2.5

5

C-µg/L

10

40

20

-4.5E-02

-6.8E-02

-9.0E-02 -2.5

•2.0

-1.5 -1.0 -0.5 0.0 0.5 1.0

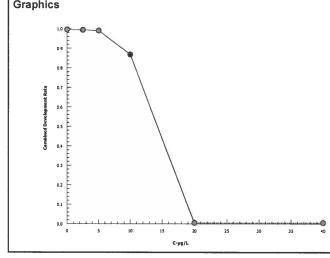
• •

Rankits

JU QA: AC6/7/21

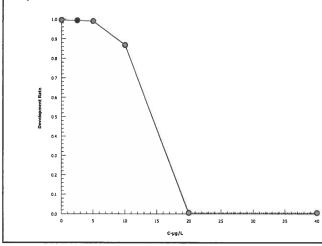
2.0 2.5

1.5


CETIS An	alytical Rep	ort					•	ort Date: Code:		•	22 (p 3 of 5-4594-306
Bivalve Larv	al Survival and [Developn	nent Test						Nautilus	Environr	nental (CA
Analysis ID: Analyzed:	01-3180-9279 27 May-21 11:		•	vival Rate parametric-	Control vs	Treatments		IS Version: cial Results:	CETISv1. Yes	8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Cor	rected)	NA	C > T	NA	NA		2.12%	20	40	28.28	
Steel Many-	One Rank Sum T	est									
Control	vs C-µg/L		Test Stat	Critical	Ties D	P-Value	P-Type	Decision(α:5%)		
Lab Control	2.5		27.5	16	1 8	0.8333	Asymp	Non-Signif	icant Effect		
	5		27.5	16	1 8	0.8333	Asymp	Non-Signif	icant Effect		
	10		27.5	16	1 8	0.8333	Asymp	Non-Signif	icant Effect		
	20		27.5	16	1 8	0.8333	Asymp	Non-Signif	icant Effect		
	40*		15	16	0 8	0.0191	Asymp	Significant	Effect		
ANOVA Tabl	e								<u> </u>		
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision(α:5%)		
Between	2.38726		0.477452		5	115.5	<0.0001	Significant	Effect	· · · · · · · · ·	
Error	0.0991782	24	0.0041324	27	24						
Total	2.486439				29						
Distribution	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Mod Leve	ene Equa	lity of Variance	20.36	4.248	<0.0001	Unequal \	/ariances			-
Variances	Levene E	Equality of	f Variance	17.16	3.895	<0.0001	Unequal \	/ariances			
Distribution	Shapiro-	Wilk W N	ormality	0.5426	0.9031	<0.0001	Non-norm	al Distributio	n		
Survival Rat	e Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Мах	Std Err	CV%	%Effect
0	Lab Control	5	1	1	1	1	1	1	0	0.0%	0.0%
2.5		5	1	1	1	1	1	1	0	0.0%	0.0%
5		5	1	1	1	1	1	1	0	0.0%	0.0%
10		5	1	1	1	1	1	1	0	0.0%	0.0%
20		5	1	1	1	1	1	1	0	0.0%	0.0%
40		5	0.48	0.2893	0.6707	0.51	0.27	0.63	0.0687	32.0%	52.0%
American (Co	rrected) Transfor	med Sun									
	Control Turne	Count	Mean	95% LCL			Min	Мах	Std Err	CV%	%Effect
C-µg/L	Control Type			4 504	1.521	1.521	1.521	1.521	0	0.0%	0.0%
С-µg/L 0	Lab Control	5	1.521	1.521							
С-µg/L 0 2.5		5	1.521	1.521	1.521	1.521	1.521	1.521	0	0.0%	0.0%
С-µg/L 0 2.5 5		5 5	1.521 1.521	1.521 1.521	1.521 1.521	1.521	1.521	1.521	0 0	0.0% 0.0%	0.0% 0.0%
С-µg/L 0 2.5 5 10		5 5 5	1.521 1.521 1.521	1.521 1.521 1.521	1.521 1.521 1.521	1.521 1.521	1.521 1.521	1.521 1.521	0	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%
С-µg/L 0 2.5 5		5 5	1.521 1.521	1.521 1.521	1.521 1.521	1.521	1.521	1.521	0 0	0.0% 0.0%	0.0% 0.0%

Analyst: JL QA: AC4/7/21

CETIS Ana	lytical R	eport				Report Date: Test Code:	27 May-21 11:22 (p 4 of 4) 210512msdv 15-4594-3065
Bivalve Larva	I Survival a	nd Develo	pment Test				Nautilus Environmental (CA)
Analysis ID: Analyzed:	01-3180-92 27 May-21		Endpoint: Analysis:	Survival Rate Nonparametric-Co	ontrol vs Treatments	CETIS Version: Official Results:	CETISv1.8.7 Yes
an a		•	•		U-16-01 1.1E-01 1.1E-01 5.4E-62 5.4E-62 1.1E-01 5.4E-62 1.1E-01 1.1E-0	•	•
	<i>iu</i> 25	с-µg		20 40	-2.5 -2.0	-1.5 -1.0 -0.5 0.0 Rankits	0.5 1.0 1.5 2.0 2.5


Analyst: IL QA: ACLe[7]21

CETIS	Anal	ytical Repo	ort					•	ort Date: Code:		•	1:22 (p 1 of 3 15-4594-306
Bivalve	Larval	Survival and D	evelopme	nt Test				,		Nautilu	s Enviro	nmental (CA
Analysi Analyze		00-9727-8504 27 May-21 11:2		lpoint: Ilysis:	Combined Dev Linear Interpo	•			S Version: ial Results:	CETISv1 Yes	.8.7	
Linear l	Interpol	ation Options										
X Trans	sform	Y Transform	n See	d	Resamples	Exp 95%	6 CL Met	hod				
Linear		Linear	724	345	1000	Yes	Two	-Point Interp	olation			
Point E Level EC25 EC50	stimate µg/L 11.4 14.27	95% LCL 10.88 13.92	95% UCL 11.83 14.55									
Combir	ned Dev	elopment Rate	Summary			Calc	ulated Varia	ate(A/B)				
C-µg/L	Co	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	в
0	La	ab Control	5	0.9952	2 0.9906	1	0.001995	0.004462	0.45%	0.0%	665	668
2.5			5	0.9936	6 0.9866	1	0.002825	0.006316	0.64%	0.16%	745	750
			5	0.9903	3 0.9866	0.9931	0.00135	0.00302	0.3%	0.49%	702	709
5			5	0.8709	0.8072	0.9134	0.0184	0.04114	4.72%	12.49%	653	752
5 10						•	0	0		100.0%	•	
			5	0	0	0	0	U		100.0%	0	746

Analyst: JL QAACCE/1/21

CETIS	S Ana	ytical Repo	ort					•	ort Date: Code:			1:22 (p 2 of 3 15-4594-306
Bivalve	e Larval	Survival and D	evelopmer	t Test						Nautilu	s Enviro	nmental (CA
Analysi Analyze		12-3891-6641 27 May-21 11:2		point: lysis:	Development I Linear Interpol		۷)		S Version: ial Results:	CETISv1 Yes	.8.7	
Linear	Interpo	ation Options									··	
X Trans	sform	Y Transform	See	d	Resamples	Exp 95%	6 CL Metl	hod				
Linear		Linear	176	9803	1000	Yes	Two	-Point Interpo	olation			
Point E	stimate	S										
Level	µg/L	95% LCL	95% UCL									
EC25	11.4	10.86	11.83					· · · ·				
EC50	14.27	13.91	14.55									
Develo	pment l	Rate Summary				Calc	ulated Varia	ate(A/B)				
C-µg/L	C	ontrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	в
0	La	ab Control	5	0.995	2 0.9906	1	0.001995	0.004462	0.45%	0.0%	665	668
2.5			5	0.993	6 0.9866	1	0.002825	0.006316	0.64%	0.16%	745	750
5			5	0.990	3 0.9866	0.9931	0.00135	0.00302	0.3%	0.49%	702	709
10			5	0.870	9 0.8072	0.9134	0.0184	0.04114	4.72%	12.49%	653	752
20			5	0	0	0	0	0		100.0%	0	746
40			5	0	0	0	0	0		100.0%	0	240

ETIS Analytical Rep	ort				oort Date: t Code:			:22 (p 3 of 3 15-4594-306
ivalve Larval Survival and	Development Tes	it				Nautilu	s Environ	mental (CA
nalysis ID: 18-1677-8776 nalyzed: 27 May-21 11	Endpoint 21 Analysis		plation (ICPIN)		TIS Version: cial Results:	CETISv ² Yes	1.8.7	
inear Interpolation Options								
Transform Y Transform	n Seed	Resamples	Exp 95% CL	Method				
inear Linear	1793240	1000	Yes	Two-Point Inter	polation			
oint Estimates								
evel µg/L. 95% LCL	95% UCL							
C25 29.62 26.56	33.67				· · · · · ·			
C50 39.23 33.11	N/A							
urvival Rate Summary			Calculate	d Variate(A/B)				
-µg/L Control Type	Count Mea	an Min		d Err Std Dev	CV%	%Effect	A	в
Lab Control	5 1	1	1 0	0	0.0%	0.0%	500	500
5	5 1	1	1 0	0	0.0%	0.0%	500	500
	5 1	1	1 0	0	0.0%	0.0%	500	500
0	5 1	1	1 0	0	0.0%	0.0%	500	500
0	5 1	1	1 0	0	0.0%	0.0%	500	500
0	5 0.48	3 0.27	0.63 0.0	687 0.1536	32.0%	52.0%	240	500
raphics			•					

Analyst: JL QA: <u>*tLle*</u>]7/2/

Bivalve La	rval Survival and Development T	est	Nautilus Environmental (CA)
Test Type: Protocol:	Development-Survival EPA/600/R-95/136 (1995)	Organism: Mytilus galloprovincialis (Bay Mussel) Endpoint: Combined Development Rate	Material: Copper chloride Source: Reference Toxicant-REF
		Bivalve Larval Survival and Development Test	
	18.2		+35
per chloride	9.1		+2s Mean
ECS0-µg/L Copper chloride	4.6		-25
	17 Mar-20 06 Apr-20- 15 Apr-20- 28 Apr-20- 12 May-20-	11 Jun-20- 15 Jul 20- 23 Jul 20- 30 Jul 20- 06 Jug 20- 11 July 20- 15 Sep 20- 22 Sep 20- 20 Oct-20-	23 CR-20- 28 CR-20- 20 Nov-20- 10 Mar-21- 20 Apr-21- 12 May-21- 12 May-21-

CETIS	QC	Plot	

			ean: gma:	9.142 2.688		Count: CV:	20 29.40%	-2s Warning Lim +2s Warning Lim		3.766 14.52	-3s Action Limit: +3s Action Limit:	1.078 17.21
Qualit	ty Con	trol Data	a									
Point	Year	Month	Day	Time	QC Dat	a Delta	Sigma	Warning Action	Те	est ID	Analysis ID	
1	2020	Mar	17	14:20	7.408	-1.734	4 -0.6452		14	-6169-3689	18-9939-7640	
2		Apr	6	17:15	6.537	-2.605	5 -0.9691		02	2-0082-4673	13-2096-3831	
3			15	13:25	11.68	2.541	0.9453		16	6-4614-0901	11-3098-9850	
4			28	13:25	7.292	-1.85	-0.6884		06	6-8086-6028	13-2749-2065	
5		May	12	16:15	8.819	-0.323	-0.1202		12	2-3773-8150	00-4087-7530	
6		Jun	11	15:45	7.306	-1.836	-0.6832		20	-6521-9403	10-1893-3875	
7		Jul	15	13:55	14.16	5.02	1.868		17	-4780-3294	11-0488-5403	
8			23	15:00	9.974	0.832	4 0.3097		06	6-0741-6264	07-6012-8216	
9			30	15:35	14.17	5.023	1.869		00	-9901-5729	19-4020-2576	
10		Aug	6	15:40	14.13	4.983	1.854		01	-4440-0014	02-9592-9535	
11			11	14:30	8.085	-1.057	7 -0.3931		21	-4043-5119	05-6052-3343	
12		Sep	15	0:00	7.365	-1.777	7 -0.6611		19	9-9833-0655	18-5101-1090	
13			22	14:40	7.405	-1.737	7 -0.6462		04	-0347-9113	09-6026-9613	
14		Oct	20	14:25	7.1	-2.042	-0.7595		80	8-8652-5764	17-2783-6415	
15			23	13:45	7.548	-1.594	4 -0.5928		09	-8413-3498	19-3049-9702	
16			28	15:50	7.269	-1.873	-0.6968		09	-4043-4676	02-6542-7057	
17		Nov	20	16:00	7.187	-1.955	5 -0.7273		13	3-7696-8009	10-4367-1427	
18	2021	Feb	9	15:15	12.74	3.597	1.338		12	2-5648-6062	18-1503-3303	
19		Mar	10	14:15	9.481	0.338	7 0.126		13	3-7922-5399	10-0885-9755	
20		Apr	20	16:15	7.185	-1.957	-0.7281		06	6-7450-9711	18-3353-6875	
21		May	12	15:00	14.27	5.126	1.907		15	-4594-3065	00-9727-8504	

Analyst: JU QA: N.6/7/21

CETIS QC Plot

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Organism: Mytilus galloprovincialis (Bay Mussel) Test Type: Development-Survival Material: Copper chloride Protocol: EPA/600/R-95/136 (1995) Endpoint: Development Rate Source: Reference Toxicant-REF **Bivalve Larval Survival and Development Test** 18.0-+35 +25 13.5-9.0 EC50-µg/L Copper chloride 4.5--25 - 3s 0.0 -4.5 17 Mar-20 06 Apr-20-28 Apr-20-12 May-20---02-nuC 11 15 Jul-20--02-INC E2 -02-ILC 0E 06 Aug-20-11 Aug-20-15 Sep-20-20 Oct-20-28 Oct-20-15 Apr-20-22 Sep-20-23 Oct-20-20 Nov-20-09 Feb-21--10 Mar-21-20 Apr-21-12 May-21--

		M	ean:	9.176	C	Count:	20	-2s Warning Limit:	3.966	-3s Action Limit:	1.361
		Si	gma:	2.605	C	SV:	28.40%	+2s Warning Limit:	14.39	+3s Action Limit:	16.99
Quali	ty Con	trol Dat	a		9						
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning Action T	est ID	Analysis ID	
1	2020	Mar	17	14:20	7.489	-1.687	-0.6477	1,	4-6169-3689	12-6636-5212	
2		Apr	6	17:15	6.609	-2.567	-0.9853	03	2-0082-4673	11-5300-1558	
3			15	13:25	11.68	2.507	0.9624	1	6-4614-0901	19-2371-7781	
4			28	13:25	7.365	-1.811	-0.6952	0	6-8086-6028	17-1633-3832	
5		May	12	16:15	8.876	-0.299	-0.1151	1:	2-3773-8150	04-4023-9067	
6		Jun	11	15:45	7.306	-1.87	-0.718	2	0-6521-9403	18-5947-9043	
7		Jul	15	13:55	13.94	4.763	1.828	1	7-4780-3294	14-0926-7215	
8			23	15:00	9.999	0.8231	1 0.316	0	6-0741-6264	12-5816-3058	
9			30	15:35	14.14	4.961	1.904	0	0-9901-5729	02-7058-2757	
10		Aug	6	15:40	13.95	4.774	1.833	0	1-4440-0014	13-7910-6508	
11			11	14:30	8.237	-0.939	-0.3604	2	1-4043-5119	01-1240-7098	
12		Sep	15	0:00	7.397	-1.779	-0.6828	1	9-9833-0655	03-7616-5506	
13			22	14:40	7.576	-1.6	-0.6141	04	4-0347-9113	01-0437-7711	
14		Oct	20	14:25	7.089	-2.087	-0.801	0	8-8652-5764	06-9681-8469	
15			23	13:45	7.616	-1.56	-0.5989	0	9-8413-3498	17-5257-3346	
16			28	15:50	7.257	-1.919	-0.7367	0	9-4043-4676	12-0840-2779	
17		Nov	20	16:00	7.23	-1.946	-0.7471	1:	3-7696-8009	11-4264-3018	
18	2021	Feb	9	15:15	12.58	3.407	1.308	1:	2-5648-6062	01-5747-2564	
19		Mar	10	14:15	9.694	0.5177	7 0.1987	1	3-7922-5399	08-4869-7631	
20		Apr	20	16:15	7.482	-1.694	-0.6503	0	6-7450-9711	17-9210-1733	
21		May	12	15:00	14.27	5.092	1.955	1:	5-4594-3065	12-3891-6641	

Bivalve La	rval Survival and Developmen	nt Test	Nautilus Environmental (C
Test Type: Protocol:	Development-Survival EPA/600/R-95/136 (1995)	Organism: Mytilus galloprovincialis (Bay Mussel) Endpoint: Survival Rate	Material: Copper chloride Source: Reference Toxicant-REF
		Bivalve Larval Survival and Development Test	
EC50-µg/L Copper choride			+35 +25 Mean -25
	22. Jan.20 05 Feb:20- 17 Mar-20- 06 Apr-20- 15 Apr-20-	28 Apr-20- 12 May-20- 11 Jur-20- 23 Ju-20- 6 Aug-20- 11 Aug-20- 15 Sep-20- 12 Sep-20-	20 CCt-20- 23 CCt-20- 28 CCt-20- 20 Mov-20- 20 Apr-21- 12 May-21- 12 May-21-
	Mean: 29.51	Count: 20 -2s Warning Limit: 25.05	5 -3s Action Limit: 22.81

+2s Warning Limit: 33.98

Qualit	y Con	trol Data	a								
Point	Year	Month	Day	Time	QC Data	Deita	Sigma	Warning	Action	Test ID	Analysis ID
1	2020	Jan	22	13:25	29.76	0.2456	0.11			02-1152-2212	19-4150-8988
2		Feb	5	13:10	29.83	0.3163	0.1417			06-6849-2235	07-0404-6516
3		Mar	17	14:20	26.48	-3.028	-1.356			14-6169-3689	14-2151-4803
4		Apr	6	17:15	29.18	-0.3332	-0.1492			02-0082-4673	12-2147-8498
5			15	13:25	30	0.49	0.2194			16-4614-0901	00-5465-8677
6			28	13:25	29.9	0.386	0.1728			06-8086-6028	08-1083-2165
7		May	12	16:15	29.85	0.341	0.1527			12-3773-8150	18-0143-0286
8		Jun	11	15:45	35.5	5.989	2.682	(+)		20-6521-9403	17-6494-5506
9		Jul	23	15:00	28.98	-0.5302	-0.2375			06-0741-6264	11-2012-0880
10			30	15:35	35.02	5.508	2.467	(+)		00-9901-5729	18-8992-7280
11		Aug	6	15:40	29.92	0.4132	0.185			01-4440-0014	05-9348-7696
12			11	14:30	27.06	-2.451	-1.098			21-4043-5119	16-7506-8565
13		Sep	15	0:00	28.73	-0.7843	-0.3512			19-9833-0655	01-9900-7404
14			22	14:40	28.86	-0.6464	-0.2895			04-0347-9113	03-4439-9784
15		Oct	20	14:25	27.4	-2.114	-0.9467			08-8652-5764	01-6350-7777
16			23	13:45	27.94	-1.568	-0.7024			09-8413-3498	02-1232-2390
17			28	15:50	29.82	0.3095	0.1386			09-4043-4676	15-7574-6891
18		Nov	20	16:00	28.24	-1.266	-0.5671			13-7696-8009	21-0824-4197
19	2021	Feb	9	15:15	29.8	0.2946	0.1319			12-5648-6062	08-9593-0094
20		Apr	20	16:15	27.97	-1.539	-0.6893			06-7450-9711	02-2099-4435
21		May	12	15:00	39.23	9.721	4.353	(+)	(+)	15-4594-3065	18-1677-8776

7.57%

CV:

Sigma: 2.233

+3s Action Limit: 36.21

CETIS Test Data Worksheet

Report Date: Test Code:

07 May-21 15:34 (p 1 of 1) 2msdv

Bivalve Larval Survival and Development Test

:	15-4594-3065/210512

End Date: 14 May-21 Protocol				Protocol:	Mytilus galloprovincialis EPA/600/R-95/136 (1995)			Sample Sample				
Sample Date		-			Copper chloride			Sample Station: Copper Chlor			Chloride	
C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal			N	otes	
			1			106	105	GM	5/25/2	1		
			2			133	132					
			3			135	134					
			4			123	122					
			5			130	130					
			6			61	0				520	45 6 7
			7			151	151		1			
			8			38	0				50/0	¥56/7
			9	······································		1441	124				//	
			10			135	135					
			11			118	0					
			12			127	116				133/131	¥56(7)
			13			170	0					
			14			144	143					
			15			27	0					
			16			141	140					
			17			149	147					
		-	18			166	134				172/162	45 67
			19	·······		166	145				11-110-	
			20			171	169					
			21			149	134					
			22			160	158					
			23			139	158				171/0	4567
			24			156	0	l				
			25			51	0					
			26			143	0	,		1		
····· · · · · · · · · · · · · · · · ·			27			156	156			1		
			28			144	143					
			29			63	0			1		
A			30			149	147			*		

Analyst: GM QA: ACIE/7/4

CETIS Test Data Worksheet

Report Date: Test Code:

07 May-21 15:33 (p 1 of 1) 15-4594-3065/210512msdv

Bivalve Larval Survival and Development Test Nautilus Environmental (CA)									
Start Date: End Date: Sample Date:	, , , , , , , , , , , , , , , , , , , ,				210512msdv Reference Toxicant Copper Chloride				
C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes
0	LC	1	16						
0	LC	2	5			135	133	133/135	GH 5/15/21
0	LC	3	27						
0	LC	4	1						
0	LC	5	3						
2.5		1	14						
2.5		2	7						
2.5		3	10						
2.5		4	17			153	15	151/153	
2.5		5	20				1		
5		1	2						
5		2	22						
5		3	28						
5		4	30						
5		5	4			136	136	136/138	
10		1	12 21						
10		2	21						
10		4	18			1.0.1	10	1A-1	
10		5	19			170	152	152/170	
20		1	26						
20		2	11						
20		3	13						
20		4	23			167	0	0/167	
20		5	24			167	[°] O	-/ 10 /	
40		1	25					1	
40		2	8			58	Ö	0158 Most	and have been
40		3	15			~0		1001051	CINITOS 17200
40		4	29						
40		5	6						

QU: VA

Analyst: BO QA: AC 10/7/21

Marine Chronic Bioassay

DM-014

Client: Internal

Sample ID: CuCl₂

Test No.: 210512msdv

Water Quality Measurements

Test Species: <u>M. galloprovincialis</u> Start Date/Time: <u>5/12/2021</u> /500 End Date/Time: <u>5/14/2021</u> JSTO 1340

Concentration (µg/L)		Salinity (ppt)		T	emperatu (°C)	re	Diss	olved Ox (mg/L)	ygen		pH (pH units))
	0	24	48	0	24	48	0	24	48	0	24	48
Lab Control	31.7	31.5	31.4	15.2	15.5	55	8,6	8.9	8.6	7,99	7.90	7.94
2.5	32.0	31.0	31.9	14.9	15.3	15.3	8.6	8.9	8.6	8.02	7.94	7-95
5	32.0	32.0	52.0	14.8	15.4	15.4	8.7	8.8	8.6	8.03	7.95	7.96
10	32.0	320	32.0	14.9	15.4	15.4	8.6	8.8	8.5	8.03	7.94	7.96
20	31.9	31.9	31.9	15.0	15.5	15.4	8.7	8.8	8.6	8,03	7.95	7.97
40	31.8	31.8	31.8	14.9	15.6	155	8.6	90.8	85	8.04	7.96	7.97
										;		
			0	24	48		High	conc. mad	de (µg/L):	4	0	
Technician Initials:	WQ F	Readings:	87	FL	RT]	-		ded (mL):			
	Dilutions I	made by:	V4						me (mL):			
Environmental Chamber:					Cι	u stock co	ncentratio	on (µg/L):	9,0	00		
Comments:	0 hrs:											
	24 hrs:											
	48 hrs:											
QC Check:	ACS SI	126/21	· · · · · · · · · · · · · · · · · · ·					Fina	l Review:	ACI	0/1/21	

Marine Chronic Bioassay DM-013

Larval Development Worksheet

Client/Sample: Internal/(n	. Cl2	Start Date/Time:	5/12/21	1500
Test No.: 210512450	\checkmark	End Date/Time:	5/14/21	1510 1340
Test Species: Mytilus galloprovi	ncialis	Technician Initials:	15	CINE RT Shuiz
Animal Source/Batch Tank: M- i	REP / 3A			
Date Received: 4/19/2	-1			
Test Chambers: Shell u	ials		,	.*
Sample Volume: IC w L				8 h

Spawn Information

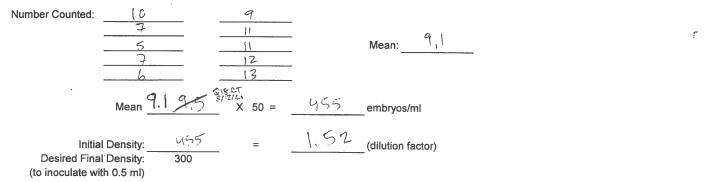
Gamete Selection

Sex	Number Spawning
Male	3
Female	2

Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)
Male	1,2,3	excellent motility & density
Female 1	1	excellent density pake orange, nostly round
Female 2		
Female 3	-	

Egg Fertilization Time: 12:30

Embryo Stock Selection


Stock Number	% of embryos at 2-cell division stage
Female 1	100
Female 2	-
Female 3	

Stock(s) chosen for testing:

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos

11:30

Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

Time Zero Control Counts TØ Vial Mean % No. Dividing % Dividing Total No. Dividing 180 TØ A 180 100 тøв 191 99,0 189 99.8 тøс 131 131 100 165 TØD 100 165 ΤØΕ 141 141 100 TØ F 147 147 100 159 X =

48-h QC: 153/153

Comments:

QC Check:

ACS 5/26/21

Final Review: <u>AK (e/7/Z/</u>

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.