Data Quality Summary: Wyckoff 2nd Quarter 2022 Groundwater Treatment Plant Bioassay Sampling

Samples were collected and analyzed in support of the Wyckoff Groundwater Treatment Plant. All analytical data were evaluated in accordance with the following guidance:

• Wyckoff Groundwater Treatment Plant Operations and Maintenance Quality Assurance Project Plan (QAPP), Bainbridge Island, Washington (CH2M, 2022).

This data quality summary presents the findings of the data validation activities.

Analytical Data

The methods, sample delivery group (SDG) number and laboratory name for all analyses are presented in Table 1. These reports can be found in Attachment 1.

Table 1. Analytical Data Summary

Data Quality Summary: Wyckoff Groundwater Treatment Plant Operations and Maintenance Q4 Bioassay

Laboratory	SDG	Method	Analyte
Enthalpy	2204-S143	EPA600/R-95/136	chronic bioassay

Notes:

Enthalpy = Enthalpy AnalyticalPolycyclic aromatic hydrocarbons

SDG = Sample Delivery Group

A CH2M chemist validated the bioassay results Stage 2A in accordance with the QAPP. The data were 100% complete, method and QAPP quality control requirements were met.

Table 2 provides a summary of the final test results.

Table 2 Summary of	Chronic Test R	esults				
Species .e o o p u u		NOEC (% effluent)	LOEC (% effluent)	TUc	EC50 (% effluent)	Was there statistically significan effects in effluent concentration tested for the survival or development endpoint species test?
Mytilus galloprovincialis (Mediterranean mussel)	Normal Developent	69.1	>69.1	<1.4	>69.1	No
	Survival	69.1	>69.1	<1.4	>69.1	No

Table 2 Summary of Chronic Test Results

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

Chronic Toxic Unit (TU_c) = 100/NOEC. NOTE: Since 100% sample was not tested, the TU_c value can only be calculated up to the highest concentration tested. If no toxicity is observed at this concentration, the TU_c is reported as less than the calculated value.

Effect Concentration 50 (EC₅₀) = Concentration expected to cause an effect to 50% of the organisms

There were no statistically significant effects detected in the effluent sample 041922 tested for the survival or development endpoint of the bivalve test. This results in a no observed effect concentration (NOEC) of 69.1 (the highest concentration tested) and a chronic toxic unit (TUc) of less than 1.4 for both endpoints. The mean survival rate was greater than 50% (98.5%) as specified in the QAPP.

Attachment 1 Bioassay Report

Chronic Toxicity Testing Results for Wyckoff Eagle Harbor Groundwater Treatment Plant

Monitoring Period: April 2022

Prepared for: Jacobs 1100 112th Ave NE Suite 500 Bellevue, WA, 98004

Prepared by: Enthalpy Analytical 4340 Vandever Avenue San Diego, CA 92120 (858) 587-7333

Date Submitted: May 11, 2022

Data Quality Assurance:

- Enthalpy Analytical is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (ORELAP ID 4053). It is also certified by the State of California Water Resources Control Board Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552). Specific fields of testing applicable to each accreditation are available upon request.
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective US EPA protocols, unless otherwise noted in this report.
- All tests have met internal Quality Assurance Program requirements.

Verified by:

Yasey Strivsort

Kasey Skrivseth, Project Manager

California 4340 Vandever Avenue San Diego, California 92120 858.587.7333

Introduction

A toxicity test was performed using a groundwater composite sample collected from the Wyckoff Eagle Harbor Groundwater Treatment Plant on Bainbridge Island in Washington. This test was performed to satisfy quarterly monitoring requirements according to the project Quality Assurance Project Plan (QAPP 2013). The chronic bioassay was conducted using the bivalve *Mytilus galloprovincialis* (Mediterranean mussel). Testing was performed at Enthalpy Analytical located in San Diego, California.

Materials and Methods

The groundwater sample was collected into a low-density polyethylene cubitainer by Jacobs personnel, packed in a cooler containing ice, and shipped overnight to Enthalpy. Appropriate chain-of-custody (COC) procedures were employed during collection and transport. Upon arrival at the laboratory, the cooler was opened, the sample inspected, and the contents verified against information on the COC form. Standard water quality parameters were measured and recorded on a sample check-in form and are summarized in Table 1. The sample was stored at 4° C in the dark until used for testing.

Sample ID	041922
Enthalpy Log-in Number	22-0545
Collection Date; Time	4/19/22; 0934h
Receipt Date; Time	4/20/22; 0853h
Receipt Temperature (°C)	5.2
Dissolved Oxygen (mg/L)	10.8
рН	7.58
Conductivity (µS/cm)	4,910
Salinity (ppt)	2.8
Alkalinity (mg/L CaCO₃)	440
Total Chlorine (mg/L)	0.02
Total Ammonia (mg/L as N)	<0.5

Table 1. Sample Information

Test Methods

Chronic toxicity testing was conducted according to the method set forth in USEPA (1995) and WDOE (2016). This method is summarized in Table 2.

Test Period	4/20/22, 1430h to 4/22/22, 1400h
Test Organism	Mytilus galloprovincialis
Test Organism Source	M-Rep (Carlsbad, CA)
Test Organism Age	4 hours post fertilization
Test Duration	48 ± 2 hours
Test Type	Static
Test Chamber, Test Solution Volume	30 mL glass vial, 10 mL
Test Temperature	15 ± 1°C
Dilution Water	Laboratory Seawater (Source: Scripps Institution of Oceanography [SIO] intake) diluted with de-ionized water
Additional Control	Brine Control (de-ionized water and hypersaline brine)
Test Salinity	30 ± 2 ppt
Source of Salinity	Hypersaline brine made by freezing seawater to a salinity of 99.6 ppt
Test Concentrations (% sample)	69.1 ^a , 35, 18, 9, 4, and 2%, lab and brine controls
Number of Replicates	5
Photoperiod	16 hours light/8 hours dark
Test Protocol	EPA/600/R-95/136
Test Acceptability Criteria for Controls	\geq 50% mean survival, \geq 90% mean development rate
Reference Toxicant	Copper chloride ^b
Statistical Software	CETIS™ 1.8.7.20

Table 2. Summary of Methods for the Bivalve Larval Development Test

^a Highest concentration tested due to the addition of hypersaline brine

^b A deviation to the QAPP was approved by USEPA and Washington Department of Ecology to conduct reference toxicant testing with copper chloride. See QA section.

Statistical Methods

Statistical analyses were conducted using USEPA flowchart specifications as outlined in the test guidance manual (USEPA 1995). Organism performance in the sample was compared to that observed in the brine control. Results were used to calculate the No Observed Effect Concentration (NOEC) and the concentrations expected to cause an adverse effect to 50 percent of test organisms (EC₅₀). The chronic toxic unit (TU_c) value was calculated as 100/NOEC, as specified in the permit. The statistical analyses were performed using the Comprehensive Environmental Toxicity Information SystemTM (CETIS), version 1.8.7.20 by Tidepool Scientific Software.

Results

There were no statistically significant effects detected in any effluent concentration tested for the survival or development endpoint of the bivalve test. This results in a NOEC of 69.1 (the highest concentration tested) and a TU_c of less than 1.4 for both endpoints.

Results for the chronic toxicity test are summarized in Tables 3 and 4. Individual statistical summaries for the test and copies of the laboratory bench sheets are provided in Appendix A. The sample check-in sheet and COC form are provided in Appendices B and C, respectively.

Species	Endpoint	NOEC (% effluent)	LOEC (% effluent)	Toxic Unit (TU _c)	EC₅₀ (% effluent)
Bivalve	Normal Development	69.1	> 69.1	< 1.4	> 69.1
Divalve	Survival	69.1	> 69.1	< 1.4	> 69.1

Table 3. Summary of Statistical Results for the Chronic Toxicity Tests

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

Chronic Toxic Unit (TU_c) = 100/NOEC. NOTE: Since 100% sample was not tested, the TU_c value can only be calculated up to the highest concentration tested. If no toxicity is observed at this concentration, the TU_c is reported as less than the calculated value. Effect Concentration 50 (EC₅₀) = Concentration expected to cause an effect to 50% of the organisms

Concentration (% Effluent)	Mean Survival (%)	Mean Normal Development (%)
0 (Brine Control)	98.5	94.6
0 (Lab Control)	98.0	96.1
2	97.2	93.3
4	99.6	94.8
9	99.5	94.2
18	99.2	93.7
35	100	95.0
69.1ª	98.5	93.9

Table 4. Detailed Results for the Bivalve Development Chronic Toxicity Test

^a Highest concentration tested due to the addition of hypersaline brine

Quality Assurance

The sample was received within the required 36-hour holding time, in good condition, and within the appropriate temperature range of 0-6°C. All control acceptability criteria were met, and water quality parameters remained within the appropriate ranges throughout the test. Statistical analyses followed standard USEPA flowchart selections. Dose-response relationships were reviewed to ensure the reliability of the results. Based on the dose response observed, the calculated effects concentrations were deemed reliable. Minor QA/QC issues that were unlikely to have any bearing on the final test results, such as slight temperature deviations, are noted on the data sheets and a list of qualifier codes used on bench data sheets is presented in Appendix D.

Reference Toxicant

Results for the reference toxicant tests used to monitor laboratory performance and test organism sensitivity are summarized in Table 5. A deviation to the QAPP was approved by USEPA and Washington Department of Ecology to conduct reference toxicant testing with copper chloride rather than copper sulfate. The results for the concurrent reference toxicant test were within the acceptable range of the mean historical test results plus or minus two standard deviations for development and survival. Reference toxicant statistical summaries and laboratory bench sheets are provided in Appendix E.

Table 5. Reference Toxicant Test Results

Species and Endpoint	NOEC (%)	EC₅₀ (µg/L copper)	Historical Mean ± 2 SD (µg/L copper)	CV (%)
Bivalve Survival Rate	10	27.4	27.5 ± 10.9	19.9
Bivalve Normal Development	5	7.53	8.49 ± 3.48	20.5

NOEC = No Observed Effect Concentration

Effect Concentration 50 (EC₅₀) = Concentration expected to cause an effect to 50% of the organisms

Historical Mean \pm 2 SD = The mean EC₅₀ from the previous 20 tests performed by the laboratory, plus or minus two standard deviations (SD)

CV = Coefficient of Variation

References

- CH2MHill. 2013. Quality Assurance Project Plan Groundwater Treatment Plant Operations, Maintenance, Bainbridge, Washington. Prepared for USEPA Region 10 June 5, 2013.
- Standard Guide for Conducting Static Acute Toxicity Tests with Embryos of Four Species of Saltwater Bivalve Molluscs. 1989. ASTM Standard E 724-89.
- Tidepool Scientific Software. 2000-2013. CETIS Comprehensive Environmental Toxicity Information System Software, Version 1.8.7.20.
- USEPA. 1995. Short-Term Method for Estimating the Chronic Toxicity of Effluents and Receiving Waters to the West Coast Marine and Estuarine Organisms. EPA/600/R-95/136. pp. 209-258 and 389-465.
- Washington State Department of Ecology. 2016. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Publication No. WQ-R-95-80. Revised June 2016

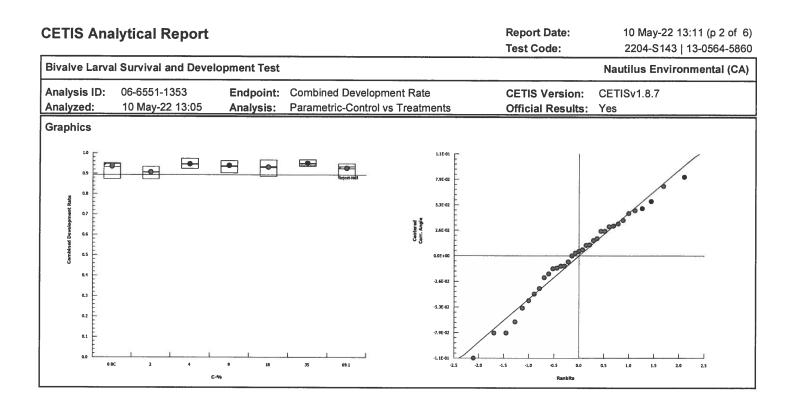
Appendix A Statistical Summaries and Raw Bench Sheets

CETIS Sun	nmary Repo	rt					-	ort Date: t Code:		•	11 (p 1 of 3) 3-0564-5860
Bivalve Larva	l Survival and D	evelopm	ent Test						Nautilu	s Environr	mental (CA)
Batch ID: Start Date: Ending Date: Duration:	18-5412-5543 20 Apr-22 14:30 22 Apr-22 14:00 48h) P) S	est Type: rotocol: pecies: ource:	Development-S EPA/600/R-95/ Mytilus gallopro M-Rep, Carlsba	136 (1995) ovincialis		Analyst: Diluent: Diluted Natural Seawater Brine: Frozen Seawater Age:				
•	13-8767-1317 19 Apr-22 09:34 20 Apr-22 08:53 29h (5.2 °C)	4 M 3 S	ode: aterial: ource: tation:	22-0545 Effluent Sample Jacobs Wyckoff	e			Client: Jacobs Project:			
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
06-6551-1353 09-6584-5807 13-9563-0486	Combined Deve Development R Survival Rate	•	Ra 69.1 69.1 69.1	>69.1 >69.1 >69.1	NA NA NA	4.14% 3.12% 2.76%	4 1.447 ←1.447 ←1.447	Dunnett M	Dunnett Multiple Comparison Test Dunnett Multiple Comparison Test Steel Many-One Rank Sum Test		
Test Acceptab	oility										
Analysis ID 09-6584-5807 13-9563-0486	Endpoint Development R Survival Rate	ute ol Resp ol Resp	Test Stat 0.9461 0.9853	TAC Lir 0.9 - NL 0.5 - NL	nits	Overlap Yes Yes		cceptability			
06-6551-1353	Combined Deve	elopment	Ra PMSD)	0.04141	NL - 0.25	5	No	Passes A	cceptability	Criteria
Combined Dev	velopment Rate	Summa	ry								
	Control Type	Count	Mean	95% LCL		Min	Max	Std Err	Std Dev	CV%	%Effect
	Brine Control	5	0.9323		0.9734	0.8733	0.9516	0.0148	0.0331	3.55%	0.0%
	Lab Control	5	0.941		0.9925	0.8733	0.9752	0.01828	0.04088	4.34%	-1.02%
2 4		5 5	0.906 0.944	0.8791 2 0.9188	0.9329 0.9696	0.8733	0.9333	0.009686	0.02166	2.39%	2.82%
9		5	0.944	0.9188	0.9696	0.9231 0.902	0.9737 0.9627	0.009145 0.01046	0.02045 0.02339	2.17% 2.5%	-1.28% -0.5%
18		5	0.929		0.9655	0.8867	0.9671	0.01288	0.02333	3.1%	0.28%
35		5	0.9498		0.9681	0.9351	0.9679	0.006591	0.01474	1.55%	-1.88%
69.1		5	0.925	0.8909	0.959	0.88	0.9492	0.01226	0.02741	2.96%	0.78%
Development	Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
	Brine Control	5	0.946	0.9416	0.9506	0.9424	0.9516	0.001626	0.003637	0.38%	0.0%
	Lab Control	5	0.9612		0.9802	0.9357	0.9752	0.006834	0.01528	1.59%	-1.59%
2		5	0.9327		0.9656	0.9032	0.9589	0.01185	0.0265	2.84%	1.42%
4		5	0.948	0.9257	0.9703	0.9231	0.9737	0.008045	0.01799	1.9%	-0.2%
9 18		5 5	0.942	0.9124	0.9717	0.902	0.9627	0.01067	0.02387	2.53%	0.43%
35		5	0.937 [.] 0.9498		0.9589 0.9681	0.9236 0.9351	0.9671 0.9679	0.007843 0.006591	0.01754 0.01474	1.87% 1.55%	0.95% -0.39%
69.1		5	0.9389		0.9544	0.9195	0.9496	0.00557	0.01245	1.33%	0.76%
Survival Rate	Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
	Brine Control	5	0.9853	3 0.9446	1	0.9267	1	0.01467	0.0328	3.33%	0.0%
	Lab Control	5	0.98	0.9245	1	0.9	1	0.02	0.04472	4.56%	0.54%
2		5	0.972	0.928	1	0.9133	1	0.01583	0.0354	3.64%	1.35%
4		5	0.996	0.9849	1	0.98	1	0.004	0.008944	0.9%	-1.08%
9		5	0.9947		1	0.98	1	0.003887	0.008692	0.87%	-0.95%
18 35		5	0.992	0.9698	1	0.96	1	0.008	0.01789	1.8%	-0.68%
35 69.1		5 5	1	1	1	1	1	0	0	0.0%	-1.49%
		5	0.9853	3 0.9446	1	0.9267	1	0.01467	0.0328	3.33%	0.0%

CETIS™ v1.8.7.20

Analyst: ____ QA: A 5 5/11/22

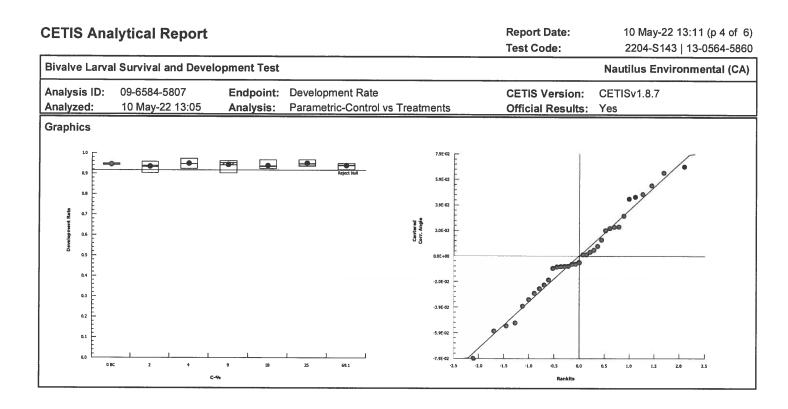
CETIS	Summary Rep	ort					Report Date: Test Code:	10 May-22 13:11 (p 2 of 3) 2204-S143 13-0564-5860
Bivalve L	arval Survival and	Developme	ent Test					Nautilus Environmental (CA)
Combine	d Development Rat	e Detail						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	0.9516	0.8733	0.9467	0.9467	0.9432		
0	Lab Control	0.9618	0.963	0.9752	0.8733	0.9357		
2		0.9133	0.8733	0.9333	0.9032	0.9068		
4		0.9506	0.9267	0.9471	0.9231	0.9737		
9		0.9627	0.9535	0.9333	0.902	0.9333		
18		0.9342	0.9255	0.8867	0.9351	0.9671		
35		0.9351	0.9632	0.9405	0.9423	0.9679		
69.1		0.9195	0.88	0.9346	0.9492	0.9416		
Developm	nent Rate Detail							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	0.9516	0.9424	0.9467	0.9467	0.9432		······.
0	Lab Control	0.9618	0.963	0.9752	0.9704	0.9357		
2		0.9384	0.9562	0.9589	0.9032	0.9068		
4		0.9506	0.9456	0.9471	0.9231	0.9737		
9		0.9627	0.9535	0.9524	0.902	0.9396		
18		0.9342	0.9255	0.9236	0.9351	0.9671		
35		0.9351	0.9632	0.9405	0.9423	0.9679		
69.1		0.9195	0.9496	0.9346	0.9492	0.9416		
Survival F	Rate Detail							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	1	0.9267	1	1	1		
0	Lab Control	1	1	1	0.9	1		
2		0.9733	0.9133	0.9733	1	1		
4		1	0.98	1	1	1		
9		1	1	0.98	1	0.9933		
18		1	1	0.96	1	1		
35		1	1	1	1	1		
69.1		1	0.9267	1	1	1		


Analyst: JL QA: Ars 5/11/22

CETIS S	Summary Repo	ort					Report Date: Test Code:	10 May-22 13:11 (p 3 of 3) 2204-S143 13-0564-5860
Bivalve L	arval Survival and [Developme	nt Test					Nautilus Environmental (CA)
Combined	d Development Rate	Binomials	i					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	177/186	131/150	142/150	142/150	166/176		
0	Lab Control	151/157	156/162	157/161	131/150	160/171		
2		137/150	131/150	140/150	140/155	146/161		
4		154/162	139/150	179/189	156/169	148/152		
9		155/161	164/172	140/150	138/153	140/150		
18		142/152	149/161	133/150	144/154	147/152		
35		144/154	157/163	158/168	147/156	151/156		
69.1		160/174	132/150	143/153	168/177	145/154		
Developm	ent Rate Binomials	;						
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	177/186	131/139	142/150	142/150	166/176		·····
0	Lab Control	151/157	156/162	157/161	131/135	160/171		
2		137/146	131/137	140/146	140/155	146/161		
4		154/162	139/147	179/189	156/169	148/152		
9		155/161	164/172	140/147	138/153	140/149		
18		142/152	149/161	133/144	144/154	147/152		
35		144/154	157/163	158/168	147/156	151/156		
69.1		160/174	132/139	143/153	168/177	145/154		
Survival F	Rate Binomials							
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Brine Control	150/150	139/150	150/150	150/150	150/150		
0	Lab Control	150/150	150/150	150/150	135/150	150/150		
2		146/150	137/150	146/150	150/150	150/150		
4		150/150	147/150	150/150	150/150	150/150		
9		150/150	150/150	147/150	150/150	149/150		
18		150/150	150/150	144/150	150/150	150/150		
35		150/150	150/150	150/150	150/150	150/150		
69.1		150/150	139/150	150/150	150/150	150/150		

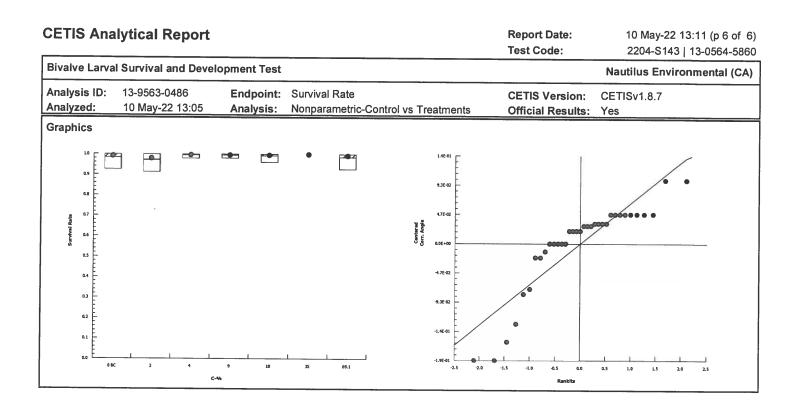
Analyst: _____ QA: 4/5 5/11/22_

CETIS Ana	alytical Repo	ort			•	ort Date: Code:	10 May-22 13:10 (p 1 of 6) 2204-S143 13-0564-5860				
Bivalve Larva	al Survival and D	Developme	ent Test	_			Nautilus Environmenta				mental (CA)
Analysis ID: Analyzed:	06-6551-1353 10 May-22 13:		-	ombined Deve arametric-Cor				IS Version: cial Results:	CETISv1. Yes	8.7	
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)	NA	C > T	NA	NA		4.14%	69.1	>69.1	NA	1.447
Dunnett Mult	iple Comparisor	n Test									
Control	vs C-%		Test Sta	t Critical	MSD DF	P-Value	Р-Туре	Decision(α:5%)		
Brine Control	2		1.686	2.407	0.074 8	0.1858	CDF	Non-Signi	ficant Effect		
	4		-0.7718	2.407	0.074 8	0.9763	CDF	Non-Signi	ficant Effect		
	9		-0.2616	2.407	0.074 8	0.9163	CDF	Non-Signit	ficant Effect		
	18		0.1758	2.407	0.074 8	0.8042	CDF	Non-Signi	ficant Effect		
	35		-1.129	2.407	0.074 8	0.9917	CDF	Non-Signi	ficant Effect		
	69.1		0.5169	2.407	0.074 8	0.6731	CDF	Non-Signi	ficant Effect		
ANOVA Table)										· · · · · · · · · · · · · · · · · · ·
Source	Sum Squ	ares	Mean Se	quare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.0237407	72	0.00395	6786	6	1.692	0.1600	Non-Signi	ficant Effect		
Error	0.065497	74	0.00233	9205	28						
Total	0.0892384	46			34						
Distributiona	l Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	quality of V	/ariance	1.679	16.81	0.9468	Equal Variances				
Distribution	Shapiro-	Wilk W No	mality	0.9773	0.9146	0.6689	Normal Distribution				
Combined De	evelopment Rate	Summar	/			8					
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	0.9323	0.8912	0.9734	0.9467	0.8733	0.9516	0.0148	3.55%	0.0%
2		5	0.906	0.8791	0.9329	0.9068	0.8733	0.9333	0.009686	2.39%	2.82%
4		5	0.9442	0.9188	0.9696	0.9471	0.9231	0.9737	0.009144	2.17%	-1.28%
9		5	0.937	0.9079	0.966	0.9333	0.902	0.9627	0.01046	2.5%	-0.5%
18		5	0.9297	0.8939	0.9655	0.9342	0.8867	0.9671	0.01288	3.1%	0.28%
35		5	0.9498	0.9315	0.9681	0.9423	0.9351	0.9679	0.006591	1.55%	-1.88%
69.1		5	0.925	0.8909	0.959	0.9346	0.88	0.9492	0.01226	2.96%	0.78%
	rected) Transfor	med Sum	mary								
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	1.312	1.239	1.386	1.338	1.207	1.349	0.02652	4.52%	0.0%
2		5	1.261	1.215	1.307	1.261	1.207	1.31	0.01651	2.93%	3.93%
4		5	1.336	1.277	1.395	1.339	1.29	1.408	0.02119	3.55%	-1.8%
9		5	1.32	1.261	1.38	1.31	1.252	1.377	0.02134	3.61%	-0.61%
		5	1.307	1.236	1.378	1.311	1.227	1.388	0.02567	4.39%	0.41%
18		0									
		5	1.347	1.303	1.39	1.328	1.313	1.391	0.01561	2.59%	-2.63%


Analyst: 31 QA: MSS/1422

Analyst: OL QA: ASS/11/22

CETIS Ana	alytical Rep	ort					•	ort Date: Code:			11 (p 3 of 6 3-0564-586
Bivalve Larv	al Survival and I	Developme	nt Test						Nautilus	s Environ	mental (CA
Analysis ID: Analyzed:	09-6584-5807 10 May-22 13:		•	velopment R ametric-Cor		e CETIS Version of vs Treatments Official Result			CETISv1. Yes	.8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C > T	NA	NA		3.12%	69.1	>69.1	NA	1.447
Dunnett Mult	tiple Compariso	n Test				ita a					
Control	vs C-%		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(a:5%)		
Brine Control	2		0.9962	2.407	0.059 8	0.4540	CDF		icant Effect		
	4		-0.2884	2.407	0.059 8	0.9212	CDF	-	icant Effect		
	9		0.2261	2.407	0.059 8	0.7871	CDF	-	icant Effect		
	18		0.6979	2.407	0.059 8	0.5924	CDF	-	icant Effect		
	35		-0.4185	2.407	0.059 8	0.9415	CDF		icant Effect		
	69.1		0.6003	2.407	0.059 8	0.6366	CDF	-	icant Effect		
ANOVA Table	e										
Source	Sum Squ	ares	Mean Squ	lare	DF	F Stat	P-Value	Decision(a:5%)		
Between	0.005002	312	0.0008337	'187	6	0.5598	0.7583	Non-Significant Effect			
Error	0.041700	26	0.0014892	95	28						
Total	0.046702	57			34						
Distributiona	l Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	Equality of V	'ariance	10.36	16.81	0.1103	Equal Variances				
Distribution	Shapiro-	Wilk W Nor	mality	0.9825	0.9146	0.8372	Normal Di	stribution			
Development	t Rate Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	0.9461	0.9416	0.9506	0.9467	0.9424	0.9516	0.001627	0.38%	0.0%
		5	0.9327	0 0000	0.0656		0.0022	0.0500		2.84%	1.42%
				0.8998	0.9656	0.9384	0.9032	0.9589	0.01185	2.0470	
4		5	0.948	0.9257	0.9703	0.9384 0.9471	0.9032	0.9589 0.9737	0.01185 0.008045	1.9%	-0.2%
4 9		5 5	0.948 0.942	0.9257 0.9124	0.9703 0.9717	0.9471 0.9524	0.9231 0.902				-0.2% 0.43%
2 4 9 18		5 5 5	0.948	0.9257 0.9124 0.9153	0.9703 0.9717 0.9589	0.9471 0.9524 0.9342	0.9231	0.9737	0.008045	1.9%	
4 9 18 35		5 5 5 5	0.948 0.942 0.9371 0.9498	0.9257 0.9124 0.9153 0.9315	0.9703 0.9717	0.9471 0.9524 0.9342 0.9423	0.9231 0.902	0.9737 0.9627	0.008045 0.01067	1.9% 2.53%	0.43%
4 9 18 35		5 5 5	0.948 0.942 0.9371	0.9257 0.9124 0.9153	0.9703 0.9717 0.9589	0.9471 0.9524 0.9342	0.9231 0.902 0.9236	0.9737 0.9627 0.9671	0.008045 0.01067 0.007842	1.9% 2.53% 1.87%	0.43% 0.95%
4 9 18 35 69.1 Angular (Cor	rected) Transfor	5 5 5 5 5	0.948 0.942 0.9371 0.9498 0.9389	0.9257 0.9124 0.9153 0.9315	0.9703 0.9717 0.9589 0.9681	0.9471 0.9524 0.9342 0.9423	0.9231 0.902 0.9236 0.9351	0.9737 0.9627 0.9671 0.9679	0.008045 0.01067 0.007842 0.006591	1.9% 2.53% 1.87% 1.55%	0.43% 0.95% -0.39%
4 9 18 35 69.1 Angular (Cor	rected) Transfor Control Type	5 5 5 5 5	0.948 0.942 0.9371 0.9498 0.9389	0.9257 0.9124 0.9153 0.9315	0.9703 0.9717 0.9589 0.9681	0.9471 0.9524 0.9342 0.9423	0.9231 0.902 0.9236 0.9351	0.9737 0.9627 0.9671 0.9679	0.008045 0.01067 0.007842 0.006591	1.9% 2.53% 1.87% 1.55%	0.43% 0.95% -0.39%
4 9 18 35 69.1 Angular (Cor C-%		5 5 5 5 5 med Sum n	0.948 0.942 0.9371 0.9498 0.9389	0.9257 0.9124 0.9153 0.9315 0.9234	0.9703 0.9717 0.9589 0.9681 0.9544	0.9471 0.9524 0.9342 0.9423 0.9416	0.9231 0.902 0.9236 0.9351 0.9195	0.9737 0.9627 0.9671 0.9679 0.9496	0.008045 0.01067 0.007842 0.006591 0.00557	1.9% 2.53% 1.87% 1.55% 1.33%	0.43% 0.95% -0.39% 0.76%
4 9 18 35 69.1 Angular (Cor C-% 0	Control Type	5 5 5 5 5 med Sumn Count	0.948 0.942 0.9371 0.9498 0.9389 mary Mean	0.9257 0.9124 0.9153 0.9315 0.9234 95% LCL	0.9703 0.9717 0.9589 0.9681 0.9544 95% UCL	0.9471 0.9524 0.9342 0.9423 0.9416 Median	0.9231 0.902 0.9236 0.9351 0.9195 Min	0.9737 0.9627 0.9671 0.9679 0.9496 Max	0.008045 0.01067 0.007842 0.006591 0.00557 Std Err	1.9% 2.53% 1.87% 1.55% 1.33%	0.43% 0.95% -0.39% 0.76% %Effect
4 9 18 35 69.1 Angular (Cor C-% 0 2	Control Type	5 5 5 5 med Sum Count	0.948 0.942 0.9371 0.9498 0.9389 mary Mean 1.337	0.9257 0.9124 0.9153 0.9315 0.9234 95% LCL 1.327	0.9703 0.9717 0.9589 0.9681 0.9544 95% UCL 1.347	0.9471 0.9524 0.9342 0.9423 0.9416 Median 1.338	0.9231 0.902 0.9236 0.9351 0.9195 Min 1.329 1.254	0.9737 0.9627 0.9671 0.9679 0.9496 Max 1.349 1.367	0.008045 0.01067 0.007842 0.006591 0.00557 Std Err 0.003634	1.9% 2.53% 1.87% 1.55% 1.33% CV% 0.61% 4.05%	0.43% 0.95% -0.39% 0.76% %Effect 0.0% 1.82%
4 9 18 35 69.1 Angular (Cor C-% 0 2 4	Control Type	5 5 5 5 med Sum 5 5 5	0.948 0.942 0.9371 0.9498 0.9389 mary Mean 1.337 1.312	0.9257 0.9124 0.9153 0.9315 0.9234 95% LCL 1.327 1.246	0.9703 0.9717 0.9589 0.9681 0.9544 95% UCL 1.347 1.378	0.9471 0.9524 0.9342 0.9423 0.9416 Median 1.338 1.32	0.9231 0.902 0.9236 0.9351 0.9195 Min 1.329	0.9737 0.9627 0.9671 0.9679 0.9496 Max 1.349	0.008045 0.01067 0.007842 0.006591 0.00557 Std Err 0.003634 0.02377	1.9% 2.53% 1.87% 1.55% 1.33% CV% 0.61%	0.43% 0.95% -0.39% 0.76% %Effect 0.0%
4 9 18 35 69.1 Angular (Cor C-% 0 2 4 9	Control Type	5 5 5 5 med Sum 5 5 5 5 5	0.948 0.942 0.9371 0.9498 0.9389 Mean 1.337 1.312 1.344	0.9257 0.9124 0.9153 0.9315 0.9234 95% LCL 1.327 1.246 1.291	0.9703 0.9717 0.9589 0.9681 0.9544 95% UCL 1.347 1.378 1.396	0.9471 0.9524 0.9342 0.9423 0.9416 Median 1.338 1.32 1.339 1.351	0.9231 0.902 0.9236 0.9351 0.9195 Min 1.329 1.254 1.29 1.252	0.9737 0.9627 0.9671 0.9679 0.9496 Max 1.349 1.367 1.408 1.377	0.008045 0.01067 0.007842 0.006591 0.00557 Std Err 0.003634 0.02377 0.01888	1.9% 2.53% 1.87% 1.55% 1.33% CV% 0.61% 4.05% 3.14% 3.61%	0.43% 0.95% -0.39% 0.76% %Effect 0.0% 1.82% -0.53% 0.41%
4 9 18 35 69.1	Control Type	5 5 5 5 med Sum 5 5 5 5 5 5 5	0.948 0.942 0.9371 0.9498 0.9389 Mean 1.337 1.312 1.344 1.331	0.9257 0.9124 0.9153 0.9315 0.9234 95% LCL 1.327 1.246 1.291 1.271	0.9703 0.9717 0.9589 0.9681 0.9544 95% UCL 1.347 1.378 1.396 1.391	0.9471 0.9524 0.9342 0.9423 0.9416 Median 1.338 1.32 1.339	0.9231 0.902 0.9236 0.9351 0.9195 Min 1.329 1.254 1.29	0.9737 0.9627 0.9671 0.9679 0.9496 Max 1.349 1.367 1.408	0.008045 0.01067 0.007842 0.006591 0.00557 Std Err 0.003634 0.02377 0.01888 0.02148	1.9% 2.53% 1.87% 1.55% 1.33% CV% 0.61% 4.05% 3.14%	0.43% 0.95% -0.39% 0.76% %Effect 0.0% 1.82% -0.53%


Analyst: The QA: ATS S/11/22

Analyst: The QA: Ars 5/11/22

CETIS Ana	alytical Rep	ort						•	ort Date:			11 (p 5 of 6
							•••	Test	Code:			3-0564-5860
Bivalve Larva	al Survival and [Developr	nent Test							Nautilus	s Environ	mental (CA)
Analysis ID: Analyzed:	13-9563-0486 10 May-22 13:			urvival Rate	-Control v	vs T	reatments		IS Version: cial Results:	CETISv1. Yes	.8.7	_
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed			PMSD	NOEL	LOEL	TOEL	TU
Angular (Corre	ected)	NA	C > T	NA	NA			2.76%	69.1	>69.1	NA	1.447
Steel Many-C	ne Rank Sum T	est										
Control	vs C-%		Test Stat	t Critical	Ties	DF	P-Value	P-Type	Decision(α:5%)		
Brine Control	2		23	16	1	8	0.4756	Asymp	Non-Signif	icant Effect		
	4		28	16	1	8	0.8838	Asymp	-	icant Effect		
	9		26	16	1	8	0.7547	Asymp	-	icant Effect		
	18		28	16	1	8	0.8838	Asymp	•	icant Effect		
	35		30	16	1	8	0.9557	Asymp	-	icant Effect		
	69.1		27.5	16	2	8	0.8571	Asymp	-	icant Effect		
ANOVA Table)											
Source	Sum Squ	ares	Mean Sq	uare	DF		F Stat	P-Value	Decision(α:5%)		
Between	0.0299000	03	0.004983	338	6		0.8216	0.5627	Non-Signif	icant Effect		
Error	0.169824		0.006065	141	28							
Totai	0.199724				34							
Distributiona	l Tests											
Attribute	Test			Test Stat	Critica		P-Value	Decision	(α:1%)			
Variances	Mod Leve	ene Equa	ality of Varianc	e 0.5934	3.812		0.7321	Equal Var	iances			
Variances	Levene E	quality o	f Variance	2.131	3.528		0.0812	Equal Var	iances			
Distribution	Shapiro-\	Nilk W N	lormality	0.8088	0.9146		<0.0001	Non-norm	al Distributio	n		
Survival Rate	Summary							·				
C-%	Control Type	Count	Mean	95% LCL	95% UG	CL	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	0.9853	0.9446	1		1	0.9267	1	0.01467	3.33%	0.0%
2		5	0.972	0.928	1		0.9733	0.9133	1	0.01583	3.64%	1.35%
4		5	0.996	0.9849	1		1	0.98	1	0.004	0.9%	-1.08%
9		5	0.9947	0.9839	1		1	0.98	1	0.003887	0.87%	-0.95%
18		5	0.992	0.9698	1		1	0.96	1	0.008	1.8%	-0.68%
35		5	1	1	1		1	1	1	0	0.0%	-1.49%
69.1		5	0.9853	0.9446	1		1	0.9267	1	0.01467	3.33%	0.0%
Angular (Corr	rected) Transfor	med Sur	nmary									
C-%	Control Type	Count	Mean	95% LCL	95% UC	CL	Median	Min	Max	Std Err	CV%	%Effect
0	Brine Control	5	1.483	1.354	1.613		1.53	1.297	1.53	0.04668	7.04%	0.0%
2		5	1.429	1.296	1.562		1.407	1.272	1.53	0.04797	7.51%	3.65%
4		5	1.51	1.454	1.566		1.53	1.429	1.53	0.02021	2.99%	-1.78%
		5	1.502	1.447	1.557		1.53	1.429	1.53	0.01982	2.95%	-1.23%
												0.000/
9 18		5	1.498	1.409	1.587		1.53	1.369	1.53	0.0321	4.79%	-0.98%
		5 5	1.498 1.53	1.409 1.53	1.587 1.53		1.53 1.53	1.369 1.53	1.53 1.53	0.0321 0	4.79% 0.0%	-0.98% -3.15%

Analyst: The QA: A(5 5/11/22

Analyst: AL QA: HIS S/11/22

CETIS Test Data Worksheet

 Report Date:
 17 Apr-22 11:55 (p 1 of 1)

 Test Code:
 2204-S143
 13-0564-5860/4DD29324

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Start Date: End Date: Sample Date:	22 A : 19 A			Species: Protocol: Material:	Mytilus galloprovi EPA/600/R-95/13 Effluent Sample			Sample Code: 22- 6545 Sample Source: Jacobs Sample Station: Wyckoff
C-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
			31			161	149	AS 5/9/27
			32			172	264	
			33			152	148	
			34		1	147	140	
			35			186	177	
			36			152	142 144	
			37			154	144	
			38			171	160	
			39			139	132	
			40			163	157	
			41			152	147	
			42			153	138	
			43			156	147	
			44			150	142	V
			45			162	156	ALS S/10/2
			46		2	176	166	
			47			146	140	
			48			161	140	
			49			146	137	
			50			157	15 /	
			51			154	145	
			52			189	179	
			53			147	139	
			54			16(55 156	
			55			169	156	
			56		¢	155	140	
			57			161	146	
			58			137	13	
			59			154	144	
			60			149	140	
			61			135	13 /	
			62			174	160	/
			63			53	143	
			64			139	131 154	
			65			162	154	
1			66			168	158	
			67			156	15)	
			68			144	133	
			69			177	168	. //
			70			150	142	\vee

CETIS™ v1.8.7.20

CETIS Test Data Worksheet

17 Apr-22 11:55 (p 1 of 1) Report Date: Test Code: 2204-5143 13-0564-5860/4DD29324

Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

	Date: Die Date:		\pr-22 \pr-22			EPA/600/R-95/13 Effluent Sample	6 (1995)		Sample Source: Jacobs Sample Station: Wyckoff
С	-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
	0	BC	1	35					
	0	BC	2	64					
	0	BC	3	70			148	140	WF
	0	BC	4	44					
	0	BC	5	46					
	0	LC	1	50					
	0	LC	2	45					
	0	LC	3	48	······		161	157	WF
	0	LC	4	61			101		
	0	LC	5	38					
	2		1	49					
	2		2	58		-			
	2		3	47			142	140	WF
	2		4	56			16	. 10	
	2		5	57					
	4		1	65					
	4		2	53					
	4		3	52			179	169	WE
	4		4	55			1/9	101	
	4		5	33					
	9		1	54					
	9		2	32					
	9		3	34			145	142	WE
	9		4	42		· · · · · · · · · · · · · · · · · · ·	1.1.2	1412	
	9		5	60					
	18		1	36					
	18		2	31					
	18		3	68			110	172	
	18		4	37			143	132	WÉ
	18		5	41					
					· · · · · · · · · · · · · · · · · · ·				
	35		1	59					
	35		2	40			117	110	
	35		3	66			162	160	WF
	35		4	43					
	35		5	67					
0	73.3		1	62					
22	73.3 73.3 6	11.1	2	39					
/		(,' (°	3	63			153	144	WF
	73.3		4	69					
/ 1	73.3	QC	5	51					

Analyst: RT QA: HTS 1/1/22

Marine Chro DC-010	onic Bioassay				Brine Dilutio	n Worksheet
Project:	JACOBS			Analyst:	во	
Sample ID:	Wyckoff			Test Date:	4/20/2022	
Test No:	<u>2204-5143</u>			Test Type:	Mussel Developme	ent
Salinity of Effl	uent	2.8				
Salinity of Brin	ne	90.9	Date	of Brine used:	12/27/2021	
Target Salinity	,	30	Alkalinity of	Brine Control:	108	mg/L as CaCO3
Test Dilution V	/olume	250				
		Effluent	Brine Control			
Salinity Adjust (TS - SE)/(SB - TS = target SE = salinit	TS) =	0.45	0.49			

SB = salinity of brine

Concentration %	Effluent Volume (ml)	Salinity Adjustment Factor	Brine Volume (ml)	Dilute to: (ml)
Control	NA	NA	NA	250
2	5.0	0.45	2.2	250
4	10.0	0.45	4.5	250
9	22.5	0.45	10.0	250
18	45.0	0.45	20.1	250
35	87.5	0.45	39.1	250
69.1	172.8	0.45	77.2	250

	DI Volume			
Brine Control	156.7	0.49	77.2	250

Total Brine Volume Required (ml): 230.3

QC Check: JU 5/5/m

Final Review: Ars 5/11/22

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120

Marine Chronic Bioassay DM-014

Client: JACOBS

Sample ID: Wyckoff

Sample Log No.: 12-6915

Test No.: 2204- Si43

Water Quality Measurements

Test Species:	M. galloprovincialis
Start Date/Time:	4/20/22 1430
End Date/Time:	4/22/22 1400

Concentration		Salinity		T	emperatu	re	Diss	solved Ox	ygen		pН	
(% sample)		(ppt)			(°C)			(mg/L)			(pH units)
	0	24	48	0	24	48	0	24	48	0	24	48
Lab Control		30.0	30.0	15.4	14.6	14.8	8.1	8.7	8.6	7.96	7.93	7.98
Brine Control	30.6	20.8	30.7	14.5	14.4	14.6	8.4	8.8	8.6	8.18	8.08	8.10
2	29.9	30.1	30.0	15.0	14.4	146	8.2	8.8	8.7	7.95	7.96	8.00
4	30.0	30.1	30.0	15.1	14.5	14.6	8.2	8.8	8.8	7.92	7.95	8.01
9	30,0	30.2	30.1	15.0	14.5	14.6	8.3	8.8	8.8	7.86	7.95	8.01
18	30.2	30.3	30.2	15.0	14.7	142	8.3	8.7	3.7	7.79	7.95	8.01
35	29.9	30.5	30.3	15.0	14.6	14.8	8.3	8.7	8.7	7.71	7.94	8.03
69.1	30.Z	30.8	30.4	14.3	14.6	14.8	8.4	8.7	8.7	7.69	7.94	8.04

Technician Initials:	0 WQ Readings: BD Dilutions made by: BD	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Environmental Chamber: _	Do
Comments:	0 hrs: 24 hrs: 48 hrs:			
QC Check:	ou 5/5/n		Final Review:	Ars 5/11/22

Enthalpy Analytical. 4340 Vandever Avenue. San Diego. CA 92120.

Marine Chronic Bioassay DM-013

Larval Development Worksheet

	Co.
Client/Sample:	JACOBS/Wyekoff
Test No.:	2204-5143
Test Species:	Mytilus galloprovincialis
Animal Source/Bato	hTank: MPEP16A
Date Received:	11/17/21
Test Chambers:	30 mL glass shell vials
Sample Volume:	10 mL

1100

Start Date/Time:	4/20/22 1430
End Date/Time:	4/22/22 1400
Technician Initials:	BO

Spawn Information

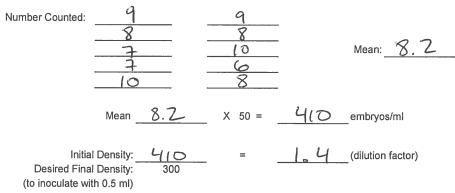
First Gamete Release Time:

Gamete Selection

Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)
Male	1,2,3	good withly, very dense
Female 1	2	Some rand some oval, white, density
Female 2	3	hand, white, very dense
Female 3	-	

SexNumber SpawningMale5Female3

Egg Fertilization Time: 200


Embryo Stock Selection

Stock Number	% of embryos at 2-cell division stage
Female 1	30
Female 2	100
Female 3	

Stock(s) chosen for testing:

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos

Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

Time Ze	Time Zero Control Counts										
TØ Vial No.	No. Dividing	Total	% Dividing	Mean % Dividing							
TØ A	169	169	100								
TØ B	141	141	100								
тø с	167	169	99	99.5							
TØ D	133	133	100								
TØ E	143	144	99								
TØ F	147	140	99								
<u>X</u> =	150										

48-h QC: 168/175 = 96%

Comments:

QC Check: OU_ 5/5/22

Final Review:	Ars	5/11/22
---------------	-----	---------

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix B Sample Check-In Information

Enthalpy Analytical					Ν	ORTHWEST	CLIENTS
4340 Vandever Avenue	Client:	2	JAUOR	S	Sample	Check-In In	formation
San Diego, CA 92120	Sample ID:		WICKO	Eugle Hurbor GWTP			DC-005
	Test ID No(s).:	2201	4-5143		Sample Description:		
					A: no color, clear, no od	or, no dek	oris
			1	·			
Sample (A, B, C)							
Log-in No. (22-xxxx)							
Sample Collection Date & Time					Subsamples for Additional Chem	istry Required	:
Sample Receipt Date & Time	4/20/22 0853				NH3 (always required)		
Number of Containers & Container Type	: lx1ccubi				Other		
Approx. Total Volume Received (L)	: ~12				Tech Initials AKP B	C	
Check-in Temperature (°C)	5.2						
Temperature OK?	1 (Y) N	Y N	Y N	YN	COC Complete (Y/N)?		
DO (mg/L)	10.9				А <u>Т</u> в		
pH (units)	7.58						
Conductivity (µS/cm)	4910				Filtration? Y N Initia	ls:	
Salinity (pp	1) 2.8				Pore Size:	10	
Alkalinity (mg/L)	2 440				Organisms or	Debris	
Hardness (mg/L) ²	3 0 487 587						
Total Chlorine (mg/L)	0.02	· · · · · · · · · · · · · · · · · · ·			Salinity Adjustment?		
Technician Initials	KR	-			Test: WWISEL Source	SMAN Taro	et pot: 30
<u>^</u>	L		1		Test: Source:		et ppt:
Mussel,		-	\bigcirc		Test: Source:	이 영상에 가지 않는 것이 없다.	et ppt:
Test Performed: alle lapment	_Control/Dilution W	ater: 8:2 / (at	SW Lab ART	Other:			
\sim	Alkalinity: 103	Hardness of	r Salinity: 30 p	pt south	pH Adjustment? Y		
Additional Control? Y N	= Brine	Alkalinity: 00	Hardness or S	Salinity: 30, PP -	A	В	C
					Initial pH:		
Test Performed:				Other:	Amount of HCI added:		
			r Salinity:		Final pH:		
Additional Control? Y N	_=	Alkalinity:	Hardness or S	Salinity:	Cl ₂ Adjustment? Y N		
					A	В	C
Test Performed:	_			Other:	Initial Free Cl ₂ :	Carte Sa	
		Hardness o		_	STS added:	-	
Additional Control? Y N	_=	Alkalinity:	Hardness or S	Salinity:	Final Free Cl ₂ :		
					<u> </u>		
Notes: 1 Temperature of sample shou					Sample Aeration? Y(N)		
² mg/L as CaCO3, ³ Measured	I for freshwater sample	es only, NA = Not A	pplicable		A	В	C
Additional Commanday (B) D 16 and 11 at -					Initial D.O.		
Additional Comments: 竹白しゃルクリカン					Duration & Rate		
50					Final D.O.		94.05.3309440 1943-1943-1944

QC Check: $\frac{\partial \mathcal{M}}{\partial f} = \frac{5/5}{2}$ Final Review: $\frac{\partial f}{\partial f} = \frac{5}{2} \frac{5}{10} \frac{1}{10} \frac{1}{10$

Total Ammonia Analysis Client: JACOBS Project: Wyckoff Test Type: Mussel Development Test Start Date: 4/20/22 N/A DI Blank: Analyst: 0.0 Analysis Date: SW Blank:

N x 1.22 NH3-N Ammonia Enthalpy Sub-Sample Test Sample ID ID Date Day (mg/L) (mg/L) 9.0 Blank Spike (10 mg/L NH₃) <u>11.0</u> NA NA 22-0545 4/20/22 0.3 20.5 checkin Wychoff NA NA Spike Check (10 mg/L NH₃) 22-0545 ONB JU Shoin < 0.5 Sample Duplicate^a NA NA 0 9 Sample Duplicate + Spike^a NA NA 2 Spike Check (10 mg/L NH₃) NA NA 9 D

<u>Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L)</u> x 100 [average ammonia] (mg/L) Acceptable Range: 0-20% Acceptable Range: 80-120%^b Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	0.0	NA	11.0	10	NA	110
22-0545	40.5	0×0.5	11.3	10	С	С

	Reagent 1	Reagent 2	Test Tubes
Standard Lot Number	A1208	A(2))	A1319

Comments: Dal \$ 8 5/6/22

Marine DC-001

Notes: ^a Unless otherwise noted, the last sample listed on the datasheet is used for duplicate and duplicate + spike QC check.

^b Acceptable range for % recovery applies only to the blank spike. Spike recoveries in samples may vary based on sample matrix and are for information only. ^c Calculation not performed due to one or both values below the method detection limit.

HACH Ammonia Nitrogen Test Kit, Test 'N Tube™ Vials. Method 10031. Method Detection Limit = 0.5 mg/L

QC Check: OU Sliolm

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Final Review:

Ars 5/11/22

Overlying Water

Appendix C Chain-of-Custody Form

Page 1 of 1

Enthalpy Analytical (REGION COPY) DateShipped: 4/19/2022

CarrierName: FedEx AirbillNo:

Jacobs, Wyckoff-Wyckoff Eagle Harbor GWTP 2022/WA Project Code: WEH-031K Cooler #: 1 of 1

No: 10-041922-111646-0616

2021T10P000DD210W2LA00 Contact Name: Daniel Baca Contact Phone: 661-313-3807

Sample Identifier	CLP Sample No.	Matrix/Sampler	Coll. Method	Analysis/Turnaround (Days)	Tag/Preservative/Bottles	Location	Collection Date/Time	Sample Type	Receipt (C
041922		Ground Water/ D. Baca	Composite	CHRTOX(8 Weeks)	N (1)	SP-11	04/19/2022 09:34	Field Sample	5.2

	Shipment for Case Complete? N
Special Instructions: 2022 Q2	Samples Transferred From Chain of Custody #
Analysis Key: CHRTOX=Chronic Toxicity	

Analysis	Key:	CHRT	OX=Chronic	Toxicity

Items/Reason	Relinquished by ((Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt	
	Dela	a JACOBS	04-19-22 B1126	KAD EA-SD	4/20/22 0053	3 Good	

Shipped Via: Fedty Log in #: 22-0545

Appendix D List of Qualifier Codes

Glossary of Qualifier Codes

- Q1 Temperature out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperature out of recommended range; no action taken, test terminated same day
- Q3 Sample pH adjusted to within range of 6-9 with reagent grade NaOH or HCl, as needed
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with continuous aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, partial renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set. Test results were reviewed and reported in accordance with guidance found in EPA-833-R-00-003, 2000 unless otherwise specified.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set. Test results were reviewed and reported in accordance with EPA-833-R-00-003, 2000 guidance unless otherwise specified.
- Q18 Incorrect or illegible Entry
- Q19 Miscalculation
- Q20 PMSD criteria do not apply to the test of significant toxicity (TST) analysis
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% batch <u>mortality</u> observed upon receipt and/or in holding prior to test initiation. Organisms acclimated to test conditions at Enthalpy and ultimately deemed fit to use for testing.
- Q23 Test organisms experienced a <u>temperature</u> shift greater than 3°C within 1 day or were received at a temperature greater than 3°C outside the recommended test temperature range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.
- Q24 Test organisms experienced a <u>salinity</u> shift greater than 3 ppt within 1 day or were received at a salinity greater than 3 ppt outside the recommended test salinity range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.

Appendix E Reference Toxicant Test Results

CETIS Sum	nmary Report						Report Date: Test Code:	10 May-22 11:18 (p 1 of 3 220420msdv 07-3521-2032
Bivalve Larval	Survival and Develop	ment Test						Nautilus Environmental (CA)
Batch ID: Start Date: Ending Date: Duration:	20 Apr-22 14:30 22 Apr-22 14:00	Test Type: Protocol: Species: Source:	Development- EPA/600/R-98 Mytilus gallop M-Rep, Carlst	5/136 (1995) rovincialis				iluted Natural Seawater ot Applicable
Sample ID: Sample Date: Receive Date: Sample Age:	20 Apr-22 20 Apr-22	Code: Material: Source: Station:	220420msdv Copper chlorid Reference To Copper Chlori	xicant			Client: In Project:	iternal
Comparison S	ummary							
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Method	i
10-5521-5229	Combined Developmer	nt Ra 5	10	7.071	4.01%		Dunnett	t Multiple Comparison Test
09-5797-9362	Development Rate	5	10	7.071	3.0%		Dunnett	t Multiple Comparison Test
14-9901-0252	Survival Rate	10	20	14.14	2.13%		Dunnett	t Multiple Comparison Test
Point Estimate	e Summary							
Analysis ID	Endpoint	Level	μg/L	95% LCL	95% UCL	TU	Method	1
06-3800-2192	Combined Developmen	nt Ra EC25 EC50	6.222 7.519	6.092 7.412	6.315 7.613		Linear I	nterpolation (ICPIN)
16-7080-8967	Development Rate	EC25	6.234	6.122	6.32		Linear	nterpolation (ICPIN)
		EC50	7.527	7.434	7.619			
11-4955-0328	Survival Rate	EC25	20.84	18.86	22.36		Linear I	nterpolation (ICPIN)
		EC50	27.36	26.19	28.41			
Test Acceptab	ility							
Analysis ID	Endpoint	Attrib	ute	Test Stat	TAC Limi	ts	Overlap	Decision
09-5797-9362	Development Rate	Contro	ol Resp	0.9515	0.9 - NL		Yes	Passes Acceptability Criteria
16-7080-8967	Development Rate	Contro	ol Resp	0.9515	0.9 - NL		Yes	Passes Acceptability Criteria
11-4955-0328	Survival Rate	Contro	ol Resp	0.9973	0.5 - NL		Yes	Passes Acceptability Criteria
14-9901-0252	Survival Rate	Contro	ol Resp	0.9973	0.5 - NL		Yes	Passes Acceptability Criteria
10-5521-5229	Combined Developmen	nt Ra PMSE)	0.04015	NL - 0.25		No	Passes Acceptability Criteria

Analyst: (7) QA: A(5 5/11/22

	ummary Repo	ort						ort Date: Code:			18 (p 2 of 3 7-3521-2032
Bivalve La	rval Survival and [Developme	nt Test						Nautilus	s Environn	nental (CA)
Combined	Development Rate	e Summary									
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Мах	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.949	0.9326	0.9655	0.9267	0.9578	0.005926	0.01325	1.4%	0.0%
2.5		5	0.9299	0.892	0.9678	0.8933	0.9655	0.01366	0.03054	3.28%	2.01%
5		5	0.9386	0.9065	0.9707	0.9	0.9653	0.01155	0.02583	2.75%	1.1%
10		5	0.02049	0	0.0468	0.006623	0.05732	0.009474	0.02119	103.4%	97.84%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
Developme	ent Rate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Мах	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9515	0.9414	0.9617	0.9392	0.9578	0.003661	0.008187	0.86%	0.0%
2.5		5	0.9566	0.9422	0.971	0.9371	0.9655	0.005172	0.01156	1.21%	-0.53%
5		5	0.9423	0.9181	0.9665	0.9184	0.9653	0.008719	0.0195	2.07%	0.97%
10		5	0.0206	0	0.04685	0.006623	0.05732	0.009454	0.02114	102.6%	97.83%
20		5	0	0	0	0	0	0	0		100.0%
40		5	0	0	0	0	0	0	0		100.0%
Survival Ra	ate Summary										
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Мах	Std Err	Std Dev	CV%	%Effect
0	Lab Control	5	0.9973	0.9899	1	0.9867	1	0.002667	0.005963	0.6%	0.0%
2.5		5	0.972	0.9403	1	0.9533	1	0.01143	0.02556	2.63%	2.54%
5		5	0.996	0.9849	1	0.98	1	0.004	0.008944	0.9%	0.13%
10		5	0.992	0.9698	1	0.96	1	0.008	0.01789	1.8%	0.53%
20		5	0.78	0.7125	0.8475	0.7	0.84	0.02431	0.05437	6.97%	21.79%
40		5	0.016	0	0.03912	0	0.04667	0.008327	0.01862	116.4%	98.4%
Combined	Development Rate	e Detail									
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.9267	0.9578	0.9563	0.9573	0.947					
2.5		0.9133	0.92	0.9573	0.9655	0.8933					
5		0.9558	0.9448	0.9	0.9272	0.9653					
10		0.01852	0.01333	0.006623	0.05732	0.006667					
20		0	0	0	0	0					
40		0	0	0	0	0					
Developme	ent Rate Detail				,						
C-μg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	0.9392	0.9578	0.9563	0.9573	0.947					
2.5		0.958	0.965	0.9573	0.9655	0.9371					
5		0.9558	0.9448	0.9184	0.9272	0.9653					
10		0.01852	0.01389	0.006623	0.9272	0.006667					
20		0.01052	0.01389	0.000023	0.05732	0.000007					
40		0	0	0	0	0					
Survival Ra	nto Dotail	-	-								
		Don 4	Don 2	Bon 2	Don 4	Don F					
С-µg/L 0	Control Type Lab Control	Rep 1 0.9867	Rep 2	Rep 3	Rep 4	Rep 5					
	Lab Control		-		1	1					
2.5		0.9533	0.9533	1	1	0.9533					
5		1	1	0.98	1	1					
10		1	0.96	1	1	1					
20		0.8	0.7	0.7533	0.84	0.8067					
40		0.04667	0.006667	0	0.006667	0.02					

Analyst: Ju QA: ATS S/11/22

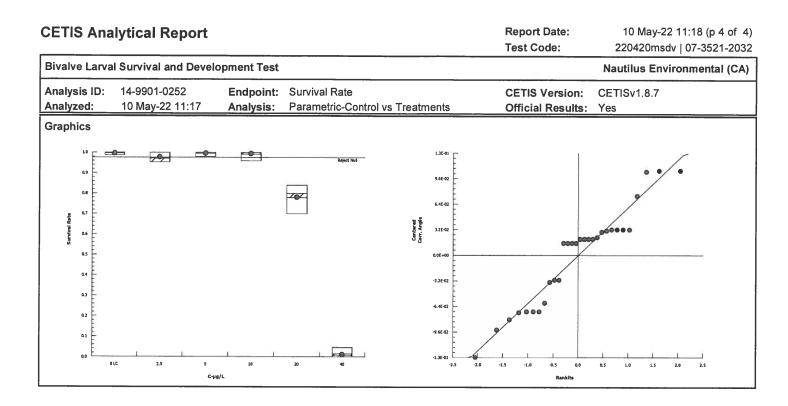
CETIS S	ummary Repo	ort	Report Date: Test Code:	10 May-22 11:18 (p 3 of 3) 220420msdv 07-3521-2032							
Bivalve La	rval Survival and I	Developmei		Nautilus Environmental (CA)							
Combined Development Rate Binomials											
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	139/150	159/166	153/160	157/164	143/151					
2.5		137/150	138/150	157/164	168/174	134/150					
5		173/181	154/163	135/150	140/151	167/173					
10		3/162	2/150	1/151	9/157	1/150					
20		0/150	0/150	0/150	0/150	0/150					
40		0/150	0/150	0/150	0/150	0/150					
Developm	ent Rate Binomials	5									
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	139/148	159/166	153/160	157/164	143/151					
2.5		137/143	138/143	157/164	168/174	134/143					
5		173/181	154/163	135/147	140/151	167/173					
10		3/162	2/144	1/151	9/157	1/150					
20		0/120	0/105	0/113	0/126	0/121					
40		0/7	0/1	0/1	0/1	0/3					
Survival R	ate Binomials										
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Lab Control	148/150	150/150	150/150	150/150	150/150					
2.5		143/150	143/150	150/150	150/150	143/150					
5		150/150	150/150	147/150	150/150	150/150					
10		150/150	144/150	150/150	150/150	150/150					
20		120/150	105/150	113/150	126/150	121/150					
40		7/150	1/150	0/150	1/150	3/150					

Analyst: ON QA: Ars 5/11/22

CETIS Analytical Report								ort Date: Code:		18 (p 1 of 4 7-3521-203		
Bivalve Larva	al Survival and [Developm	ent Test						Nautilus	Environ	mental (CA	
Analysis ID: Analyzed:	10-5521-5229 10 May-22 11:				relopment Rate ntrol vs Treatments		CETIS Version: Official Results:			CETISv1.8.7 Yes		
Data Transfo	rm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU	
Angular (Corrected) NA C > T			C > T	NA	NA		4.01%	5	10	7.071		
Dunnett Mult	iple Compariso	n Test								_		
Control	vs C-µg/L		Test Stat	Critical	MSD DF	P-Value	Р-Туре	Decision				
Lab Control	2.5		1.052	2.227	0.077 8	0.3119	CDF	-	ificant Effect			
	5		0.5767	2.227	0.077 8	0.5108	CDF	-	ificant Effect			
	10*		35.24	2.227	0.077 8	<0.0001	CDF	Significar	nt Effect			
ANOVA Table												
Source				Mean Square		DF F Stat 3 602.2		e Decision(α:5%)				
Between	5.351591	05	1.783864			602.2	<0.0001	<0.0001 Significant Effect				
Error Total	0.04739965 0. 5.398991		0.002962	0.002962478		16 19						
Distributiona Attribute	l Tests Test			Test Stat	Critical	P-Value	Decision/	a:1%)				
Variances	Bartlett Equality of Variance		2.487	11.34	0.4777	Decision(α:1%) Equal Variances						
Distribution		Wilk W No		0.9701	0.866	0.7566	Normal Distribution					
Combined De	evelopment Rate	Summa	rv									
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	Lab Control	5	0.949	0.9326	0.9655	0.9563	0.9267	0.9578	0.005926	1.4%	0.0%	
2.5		5	0.9299	0.892	0.9678	0.92	0.8933	0.9655	0.01366	3.28%	2.01%	
5		5	0.9386	0.9065	0.9707	0.9448	0.9	0.9653	0.01155	2.75%	1.1%	
10		5	0.02049	0	0.0468	0.01333	0.006623	0.05732	0.009474	103.4%	97.84%	
20		5	0	0	0	0	0	0	0		100.0%	
40		5	0	0	0	0	0	0	0		100.0%	
	rected) Transfor	med Sum	nmary									
C-µg/L	Control Type	Count	Mean	95% LCL			Min	Max	Std Err	CV%	%Effect	
0	Lab Control	5	1.344	1.309	1.38	1.36	1.297	1.364	0.01282	2.13%	0.0%	
2.5		5	1.308	1.231	1.386	1.284	1.238	1.384	0.02786	4.76%	2.69%	
5 10		5 5	1.325 0.1314	1.259 0.04952	1.39 0.2134	1.334 0.1157	1.249 0.08147	1.383 0.2418	0.02363 0.02951	3.99% 50.2%	1.48% 90.22%	
20		5	0.1314	0.04952	0.2134	0.04084	0.08147	0.2418	0.02951	50.2 <i>%</i> 0.0%	90.22% 96.96%	
40		5	0.04084	0.04083	0.04085	0.04084	0.04084	0.04084	0	0.0%	96.96%	
Graphics					· · · · · ·							
*° E						1.1E-01		Ĩ		•		
a.9				Reject Null	_	Ē				/	/	
. 0.8						8.3E-02				•/		
						5.5E-02				•/		
udo -					Centor ed	Angle			/			
					Cent	2.8E-02						
						Ę						
0.4						0.06+00		•	0000			
0.3												
0.2						-2.8E-02	/	~				
Ē						-5.5E-02						
0.1 — E						F	. /•					
ao t	0LC 2.5	5	10 20	1 10		-8.3E-02 -2.5	-2.0 -1.5 -1	.0 -0.5 0.0	0.5 1.0	1.5 2.0	2.5	
		C-µg/L					•	Rankits				

CETIS™ v1.8.7.20

Analyst: OU QA: ACS Shiller


CETIS Ana	alytical Repo	ort			•	ort Date: Code:		-	18 (p 2 of 4 7-3521-203:		
Bivalve Larva	al Survival and D	Developm	ent Test						Nautilus	Environr	nental (CA)
Analysis ID: Analyzed:	09-5797-9362 10 May-22 11:			velopment R ametric-Cor		tments		IS Version: ial Results	CETISv1. Yes	8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C > T	NA	NA		3.0%	5	10	7.071	
Dunnett Mult	tiple Comparisor	n Test					· · ·				
Control	vs C-µg/L		Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
Lab Control	2.5		-0.4784	2.227	0.06 8	0.8869	CDF	-	ficant Effect		
	5		0.6878	2.227	0.06 8	0.4618	CDF	-	ficant Effect		
	10*		45.36	2.227	0.06 8	<0.0001	CDF	Significan			
ANOVA Table	-										
Source	Sum Squ	ares	Mean Squ	lare	DF	F Stat	P-Value	Decision(
Between	5.543667		1.847889	10	3	1026	<0.0001	Significant	t Effect		
Error Total	0.028821 5.572488		0.0018013	513	16 19						
Distributiona	I Tests										<u> </u>
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Bartlett E	quality of	Variance	6.061	11.34	0.1087	Equal Var				
Distribution	Shapiro-	Wilk W No	rmality	0.9105	0.866	0.0650	Normal Di	stribution			
Development	t Rate Summary		· · ·								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Control	5	0.9515	0.9414	0.9617	0.9563	0.9392	0.9578	0.003661	0.86%	0.0%
2.5		5	0.9566	0.9422	0.971	0.958	0.9371	0.9655	0.005172	1.21%	-0.53%
5		5	0.9423	0.9181	0.9665	0.9448	0.9184	0.9653	0.008719	2.07%	0.97%
10 20		5 5	0.0206 0	0	0.04685 0	0.01389 0	0.006623 0	0.05732 0	0.009454 0	102.6%	97.83% 100.0%
40		5	0	0	0	0	0	0	0		100.0%
Angular (Cor	rected) Transfor	med Sum	marv								
C-µg/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Мах	Std Err	CV%	%Effect
0	Lab Control	5	1.349	1.326	1.373	1.36	1.322	1.364	0.008344	1.38%	0.0%
2.5		5	1.362	1.329	1.396	1.365	1.317	1.384	0.01209	1.99%	-0.95%
5		5	1.331	1.278	1.383	1.334	1.281	1.383	0.01892	3.18%	1.37%
10		5	0.1319	0.05016	0.2137	0.1181	0.08147	0.2418	0.02945	49.91%	90.22%
20 40		5 5	0.04631 0.4108	0.04425 0.2137	0.04837 0.6078	0.04566 0.5236	0.04456 0.1901	0.04881 0.5236	0.0007423 0.07099	3.58% 38.64%	96.57% 69.56%
Graphics							<u></u>	· · · · ·			<u>.</u>
10 F						1.7E-01		F			
0.9				Reject Nul	-	Ē				/	
a.8 -						1.1E-01			•	• • •	
Ē						5.5E-02					
Development Rate					Caritor ed						
					Cent	6 0.0E+00		00000000			
0.5											
Q.4 -						-5.5E-02	/				
0.3						-1.1E-01					
0.2						Ę_					
0.1				۰		-1.7E-01					
E	1	1			1		al I		a	a .	Т
a.o	0LC 2.5	5	10 20	40	- -	-2.2E-01 -2.5	-2.0 -1.5 -1	.0 -0.5 0.0	0.5 1.0	1.5 2.0	2.5
		C-µg/L						Rankita			

CETIS™ v1.8.7.20

Analyst: CIL QA: ATS S/11/12

CETIS An	alytical Rep	ort					•	ort Date: Code:			18 (p 3 of 4) 7-3521-2032
Bivalve Larv	al Survival and	Developm	nent Test						Nautilus	s Environr	nental (CA)
Analysis ID: Analyzed:	14-9901-0252 10 May-22 11	-	•	vival Rate ametric-Cor	itrol vs Tre	atments		IS Version: cial Results:	CETISv1. Yes	.8.7	
Data Transfo	orm	Zeta	Alt Hyp	Trials	Seed		PMSD	NOEL	LOEL	TOEL	TU
Angular (Corr	ected)	NA	C > T	NA	NA		2.13%	10	20	14.14	
Dunnett Mult	tiple Compariso	on Test									
Control	vs C-µg/L		Test Stat	Critical	MSD [F P-Value	P-Type	Decision(α:5%)		
Lab Control	2.5		2.162	2.362	0.1 8	0.0737	CDF		icant Effect		
	5		0.1241	2.362	0.1 8	0.7940	CDF	-	icant Effect		
	10		0.4061	2.362	0.1 8	0.6870	CDF	Non-Signif	icant Effect		
	20*		10.2	2.362	0.1 8	<0.0001	CDF	Significant			
	40*		33.25	2.362	0.1 8	<0.0001	CDF	Significant	Effect		
ANOVA Table	e										
Source	Sum Sq	uares	Mean Squ	lare	DF	F Stat	P-Value	Decision(a:5%)		
Between	7.64366	7	1.528733		5	343.9	<0.0001	Significant			
Error	0.106692	25	0.0044455	0444552 24				- J			
Total	7.75036				29						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	α:1%)			
Variances	Bartlett	Equality of	Variance	4.541	15.09	0.4744	Equal Var				
Distribution		-Wilk W N		0.9281	0.9031	0.0438	Normal Di				
Survival Rate	e Summary										
Survival Rate C-µg/L	e Summary Control Type	Count	Mean	95% LCL	95% UC	. Median	Min	Max	Std Err	CV%	%Effect
	•	Count 5	Mean 0.9973	95% LCL	95% UC	. Median 1	Min 0.9867	Max	Std Err 0.002667		%Effect
C-µg/L	Control Type									CV% 0.6% 2.63%	
С-µg/L 0	Control Type	5	0.9973	0.9899	1	1	0.9867	1	0.002667	0.6%	0.0%
С-µg/L 0 2.5	Control Type	5 5	0.9973 0.972	0.9899 0.9403	1 1	1 0.9533	0.9867 0.9533	1	0.002667 0.01143	0.6% 2.63%	0.0% 2.54%
С-µg/L 0 2.5 5	Control Type	5 5 5	0.9973 0.972 0.996	0.9899 0.9403 0.9849	1 1 1	1 0.9533 1	0.9867 0.9533 0.98	1 1 1	0.002667 0.01143 0.004	0.6% 2.63% 0.9%	0.0% 2.54% 0.13%
С-µg/L 0 2.5 5 10	Control Type	5 5 5 5	0.9973 0.972 0.996 0.992	0.9899 0.9403 0.9849 0.9698	1 1 1 1	1 0.9533 1 1	0.9867 0.9533 0.98 0.96	1 1 1 1	0.002667 0.01143 0.004 0.008	0.6% 2.63% 0.9% 1.8%	0.0% 2.54% 0.13% 0.53%
С-µg/L 0 2.5 5 10 20 40	Control Type	5 5 5 5 5 5 5	0.9973 0.972 0.996 0.992 0.78 0.016	0.9899 0.9403 0.9849 0.9698 0.7125	1 1 1 1 0.8475	1 0.9533 1 1 0.8	0.9867 0.9533 0.98 0.96 0.7	1 1 1 1 0.84	0.002667 0.01143 0.004 0.008 0.02431	0.6% 2.63% 0.9% 1.8% 6.97%	0.0% 2.54% 0.13% 0.53% 21.79%
С-µg/L 0 2.5 5 10 20 40	Control Type Lab Control	5 5 5 5 5 5 5	0.9973 0.972 0.996 0.992 0.78 0.016	0.9899 0.9403 0.9849 0.9698 0.7125	1 1 1 0.8475 0.03912	1 0.9533 1 1 0.8 0.006667	0.9867 0.9533 0.98 0.96 0.7	1 1 1 1 0.84	0.002667 0.01143 0.004 0.008 0.02431	0.6% 2.63% 0.9% 1.8% 6.97%	0.0% 2.54% 0.13% 0.53% 21.79%
С-µg/L 0 2.5 5 10 20 40 Angular (Cor	Control Type Lab Control	5 5 5 5 5 5	0.9973 0.972 0.996 0.992 0.78 0.016	0.9899 0.9403 0.9849 0.9698 0.7125 0	1 1 1 0.8475 0.03912	1 0.9533 1 1 0.8 0.006667	0.9867 0.9533 0.98 0.96 0.7 0	1 1 1 0.84 0.04667	0.002667 0.01143 0.004 0.008 0.02431 0.008327	0.6% 2.63% 0.9% 1.8% 6.97% 116.4%	0.0% 2.54% 0.13% 0.53% 21.79% 98.4%
С-µg/L 0 2.5 5 10 20 40 Angular (Cor C-µg/L	Control Type Lab Control rrected) Transfo Control Type	5 5 5 5 5 5 ormed Sun Count	0.9973 0.972 0.996 0.992 0.78 0.016 mmary Mean	0.9899 0.9403 0.9849 0.9698 0.7125 0 95% LCL	1 1 1 0.8475 0.03912 95% UC	1 0.9533 1 1 0.8 0.006667 	0.9867 0.9533 0.98 0.96 0.7 0 Min 1.455	1 1 1 0.84 0.04667 Max 1.53	0.002667 0.01143 0.004 0.008 0.02431 0.008327 Std Err 0.01498	0.6% 2.63% 0.9% 1.8% 6.97% 116.4% CV% 2.21%	0.0% 2.54% 0.13% 0.53% 21.79% 98.4% %Effect 0.0%
С-µg/L 0 2.5 5 10 20 40 Angular (Cor C-µg/L 0	Control Type Lab Control rrected) Transfo Control Type	5 5 5 5 5 5 ormed Sun Count 5	0.9973 0.972 0.996 0.992 0.78 0.016 mmary <u>Mean</u> 1.515	0.9899 0.9403 0.9849 0.9698 0.7125 0 95% LCL 1.473	1 1 1 0.8475 0.03912 95% UC 1.557	1 0.9533 1 1 0.8 0.006667 - Median 1.53	0.9867 0.9533 0.98 0.96 0.7 0 Min 1.455 1.353	1 1 1 0.84 0.04667 Max 1.53 1.53	0.002667 0.01143 0.004 0.008 0.02431 0.008327 Std Err	0.6% 2.63% 0.9% 1.8% 6.97% 116.4% CV% 2.21% 6.81%	0.0% 2.54% 0.13% 0.53% 21.79% 98.4% %Effect 0.0% 6.02%
С-µg/L 0 2.5 5 10 20 40 Angular (Cor C-µg/L 0 2.5	Control Type Lab Control rrected) Transfo Control Type	5 5 5 5 5 5 5 0 rmed Sun Count 5 5	0.9973 0.972 0.996 0.992 0.78 0.016 mmary <u>Mean</u> 1.515 1.424	0.9899 0.9403 0.9849 0.9698 0.7125 0 95% LCL 1.473 1.304	1 1 1 0.8475 0.03912 95% UC 1.557 1.544	1 0.9533 1 1 0.8 0.006667 - Median 1.53 1.353 1.53	0.9867 0.9533 0.98 0.96 0.7 0 Min 1.455 1.353 1.429	1 1 1 0.84 0.04667 Max 1.53 1.53 1.53	0.002667 0.01143 0.004 0.008 0.02431 0.008327 Std Err 0.01498 0.04333 0.02021	0.6% 2.63% 0.9% 1.8% 6.97% 116.4% CV% 2.21% 6.81% 2.99%	0.0% 2.54% 0.13% 0.53% 21.79% 98.4% %Effect 0.0% 6.02% 0.35%
С-µg/L 0 2.5 5 10 20 40 Angular (Cor C-µg/L 0 2.5 5	Control Type Lab Control rrected) Transfo Control Type	5 5 5 5 5 5 5 5 0 7 med Sun 5 5 5 5 5	0.9973 0.972 0.996 0.992 0.78 0.016 mmary <u>Mean</u> 1.515 1.424 1.51	0.9899 0.9403 0.9849 0.9698 0.7125 0 95% LCL 1.473 1.304 1.454	1 1 1 0.8475 0.03912 95% UC 1.557 1.544 1.566	1 0.9533 1 1 0.8 0.006667 - Median 1.53 1.353	0.9867 0.9533 0.98 0.96 0.7 0 Min 1.455 1.353	1 1 1 0.84 0.04667 Max 1.53 1.53	0.002667 0.01143 0.004 0.008 0.02431 0.008327 Std Err 0.01498 0.04333	0.6% 2.63% 0.9% 1.8% 6.97% 116.4% CV% 2.21% 6.81%	0.0% 2.54% 0.13% 0.53% 21.79% 98.4% %Effect 0.0% 6.02%

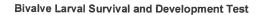
Analyst: OL QA: ALS S/1/22

(5 5/1/22

ETIS Analytical	Report		Repor Test (rt Date: Code:		ay-22 11:18 0msdv 07-3	
Bivalve Larval Survival	and Development Test				Nautilus	Environme	ental (CA)
Analysis ID: 06-3800- Analyzed: 10 May-2		Combined Development Rate Linear Interpolation (ICPIN)		S Version: al Results:	CETISv1.8 Yes	8.7	
inear Interpolation Op	tions	· · · · · · · · · · · · · · · · · · ·					
CTransform Y Trar	sform Seed	Resamples Exp 95% CL	Method				
_inear Linear	1911543	1000 Yes	Two-Point Interpo	lation	······		
Point Estimates							
_evel µg/L 95%	LCL 95% UCL						
EC25 6.222 6.09	6.315						
EC50 7.519 7.41	2 7.613						
Combined Developmen	t Rate Summary	Calculate	d Variate(A/B)				
C-µg/L Control Ty	pe Count Mea	n Min Max St	d Err Std Dev	CV%	%Effect	Α	в
) Lab Contro	5 0.94	0.9267 0.9578 0.	05926 0.01325	1.4%	0.0%	751	791
2.5	5 0.92		0.03054	3.28%	2.01%	734	788
5	5 0.93		0.02583			769	818
10	5 0.02		09474 0.02119	103.4%		16	770
20	5 0	0 0 0	0			0	750
10	5 0	0 0 0	0		100.0%	0	750
	15 20 25	11110−1−1−1−1−1−−−−−−−−−− 30 35 40					

iyst: on QA: M3 5/11/22

CETIS	S Analy	ytical Repo	ort						ort Date: Code:		•	18 (p 2 of 3) 7-3521-203
Bivalv	e Larval S	Survival and D	evelopmer	it Test						Nautilu	s Environ	mental (CA)
Analys Analyz		16-7080-8967 10 May-22 11:1		point: lysis:	Development R Linear Interpola				S Version: ial Results:	CETISv1 Yes	.8.7	
Linear	Interpola	ation Options			·							
X Tran	sform	Y Transform	See	d	Resamples	Exp 95% C	L Meth	od				
Linear		Linear	146	9357	1000	Yes		Point Interp	olation			
Point E	Estimates	5										
Level	µg/L	95% LCL	95% UCL									
EC25	6.234	6.122	6.32									
EC50	7.527	7.434	7.619									
Develo	pment R	ate Summary				Calcula	ted Variat	te(A/B)			<u></u>	
C-µg/L	Co	ntrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	La	o Control	5	0.951			0.003661	0.008187	0.86%	0.0%	751	789
2.5			5	0.956			0.005172	0.01156	1.21%	-0.53%	734	767
5			5	0.942			0.008719	0.0195	2.07%	0.97%	769	815
10			5	0.020			0.009454	0.02114	102.6%	97.83%	16	764
20 40			5 5	0 0	0 0		0 0	0 0		100.0% 100.0%	0 0	585 13
Graphi					• •					100.070		
- Речиферински: Каке		5 10 11	20 C+μg/L	25	. <u>Januar 1, and 1</u> 30 35 40							

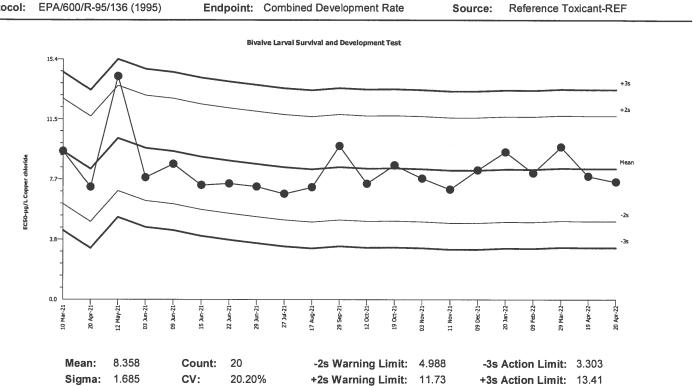

Analyst: The QA: A/S 5/11/22

CETIS	S Analy	vtical Repo	ort					-	ort Date: Code:		•	:18 (p 3 of 3)7-3521-203
Bivalve	e Larval	Survival and D	evelopme	nt Test						Nautilu	s Environ	mental (CA
Analys Analyz		11-4955-0328 10 May-22 11:1		dpoint: alysis:	Survival Rate Linear Interpola	ation (ICPIN)			S Version: ial Results:	CETISv1 Yes	.8.7	
Linear	Interpola	ation Options										
X Tran	sform	Y Transform	se	ed	Resamples	Exp 95% C	L Meth	nod				
Linear		Linear	390	0374	1000	Yes	Two-	Point Interp	olation			
Point E	stimates	5										
Level	µg/L	95% LCL	95% UCL									
EC25	20.84	18.86	22.36							· · · · ·		_
EC50	27.36	26.19	28.41									
Surviva	al Rate S	ummary				Calcula	ted Varia	te(A/B)	····			
C-µg/L	Co	ntrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	в
0	La	o Control	5	0.997	3 0.9867	1	0.002667	0.005963	0.6%	0.0%	748	750
2.5			5	0.972	0.9533	1	0.01143	0.02556	2.63%	2.54%	729	750
5			5	0.996	0.98		0.004	0.008944	0.9%	0.13%	747	750
10			5	0.992	0.96	1	0.008	0.01789	1.8%	0.53%	744	750
20			5	0.78	0.7	0.84).02431	0.05437	6.97%	21.79%	584	750
40			5	0.016	0	0.04667	0.008327	0.01862	116.4%	98.4%	12	750
Graphic arguments	LO CS	5 10 11		23	20 25 40							

Analyst: JU QA: 7755/11/22

Report Date: 10 May-22 11:19 (1 of 1)

Nautilus Environmental (CA)


Test Type: Development-Survival Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel)

Endpoint: Combined Development Rate

Material: Copper chloride

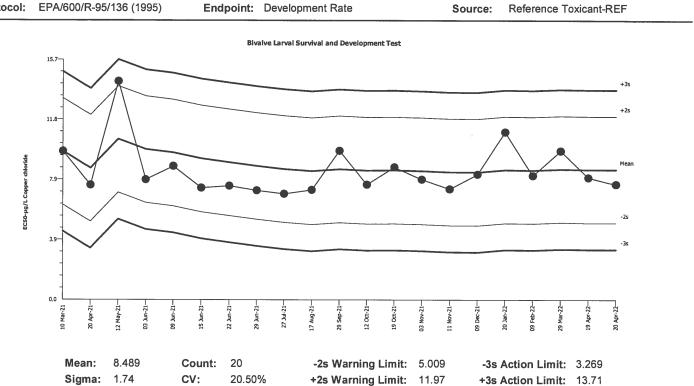
Source:

Quality Control Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2021	Mar	10	14:15	9.481	1.123	0.6663			13-7922-5399	10-0885-9755
2		Apr	20	16:15	7.185	-1.173	-0.6962			06-7450-9711	18-3353-6875
3		May	12	15:00	14.27	5.91	3.507	(+)	(+)	15-4594-3065	00-9727-8504
4		Jun	3	15:50	7.791	-0.5668	-0.3364			07-9391-2508	21-2212-7050
5			9	14:00	8.654	0.2955	0.1754			18-5736-8495	04-4549-3405
6			15	15:40	7.302	-1.056	-0.6269			00-2993-6780	17-7654-7354
7			22	13:45	7.404	-0.954	-0.5662			16-6840-3553	15-2803-6917
8			29	14:55	7.211	-1.147	-0.6806			07-2040-2693	08-8247-6801
9		Jul	27	16:30	6.748	-1.61	-0.9552			16-6019-6958	06-5859-7928
10		Aug	17	14:25	7.168	-1.19	-0.7065			07-7298-7649	09-6648-5411
11		Sep	29	15:45	9.809	1.451	0.8612			12-3450-8829	18-2247-7613
12		Oct	12	15:00	7.395	-0.9628	-0.5714			14-7239-9185	01-1367-5722
13			19	17:00	8.581	0.2229	0.1323			17-5798-2248	09-1208-0351
14		Nov	3	15:00	7.733	-0.6255	-0.3712			14-6395-1490	06-4040-2968
15			11	14:35	7.03	-1.328	-0.7884			00-1546-1531	12-7713-2161
16		Dec	9	15:50	8.264	-0.09375	-0.05564			06-2693-6580	11-5581-5612
17	2022	Jan	20	15:15	9.426	1.068	0.6341			06-1599-8254	16-9050-7435
18		Feb	9	16:25	8.083	-0.2751	-0.1632			20-6883-0287	13-7282-5479
19		Mar	29	13:15	9.75	1.392	0.8264			09-4881-8633	10-6557-0477
20		Apr	19	17:40	7.878	-0.4803	-0.2851			20-9064-9386	10-4205-1906
21			20	14:30	7.519	-0.8385	-0.4976			07-3521-2032	06-3800-2192

Analyst: On QA: AT 5 5/11/22

Report Date: 10 May-22 11:19 (1 of 1)


Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

Test Type: Development-Survival Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel) Endpoint: Development Rate Copper chloride

Material:

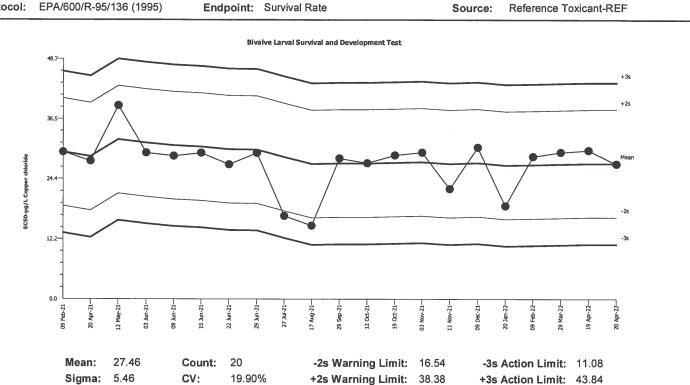
Quality	Control	Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2021	Mar	10	14:15	9.694	1.205	0.6923			13-7922-5399	08-4869-7631
2		Apr	20	16:15	7.482	-1.007	-0.5788			06-7450-9711	17-9210-1733
3		May	12	15:00	14.27	5.779	3.321	(+)	(+)	15-4594-3065	12-3891-6641
4		Jun	3	15:50	7.832	-0.6569	-0.3775			07-9391-2508	11-7075-1183
5			9	14:00	8.715	0.2264	0.1301			18-5736-8495	18-6125-5477
6			15	15:40	7.302	-1.187	-0.6824			00-2993-6780	13-6998-5313
7			22	13:45	7.427	-1.062	-0.6105			16-6840-3553	07-3347-2243
8			29	14:55	7.132	-1.357	-0.78			07-2040-2693	17-0989-5973
9		Jul	27	16:30	6.912	-1.577	-0.9065			16-6019-6958	03-0913-6262
10		Aug	17	14:25	7.168	-1.321	-0.7595			07-7298-7649	11-4901-9823
11		Sep	29	15:45	9.718	1.229	0.7063			12-3450-8829	04-7958-3381
12		Oct	12	15:00	7.509	-0.9796	-0.563			14-7239-9185	04-3282-5514
13			19	17:00	8.648	0.1586	0.09112			17-5798-2248	05-0981-9303
14		Nov	3	15:00	7.85	-0.6387	-0.3671			14-6395-1490	11-9492-7222
15			11	14:35	7.225	-1.264	-0.7265			00-1546-1531	03-5898-7126
16		Dec	9	15:50	8.177	-0.3119	-0.1793			06-2693-6580	19-9748-5087
17	2022	Jan	20	15:15	10.94	2.455	1.411			06-1599-8254	16-8693-8465
18		Feb	9	16:25	8.097	-0.3918	-0.2252			20-6883-0287	03-6791-7638
19		Mar	29	13:15	9.709	1.22	0.7011			09-4881-8633	12-2799-4519
20		Apr	19	17:40	7.967	-0.5224	-0.3002			20-9064-9386	19-3933-4036
21			20	14:30	7.527	-0.9616	-0.5527			07-3521-2032	16-7080-8967

Analyst: OL QA: #75 5/11/22

Quality Control Data

Report Date: 10 May-22 11:19 (1 of 1)


Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

Test Type: Development-Survival Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel) Material: Endpoint: Survival Rate

Copper chloride

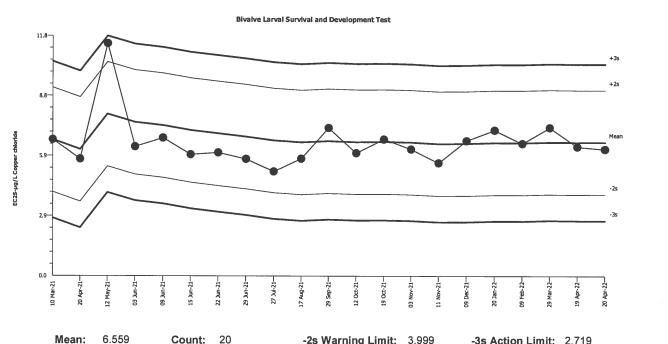
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2021	Feb	9	15:15	29.8	2.345	0.4294			12-5648-6062	08-9593-0094
2		Apr	20	16:15	27.97	0.5108	0.09354			06-7450-9711	02-2099-4435
3		May	12	15:00	39.23	11.77	2.156	(+)		15-4594-3065	18-1677-8776
4		Jun	3	15:50	29.62	2.158	0.3952			07-9391-2508	05-7225-1680
5			9	14:00	28.97	1.506	0.2759			18-5736-8495	17-4075-5383
6			15	15:40	29.61	2.151	0.394			00-2993-6780	11-7676-4213
7			22	13:45	27.27	-0.193	-0.03535			16-6840-3553	00-7652-1305
8			29	14:55	29.58	2.125	0.3892			07-2040-2693	20-9452-4039
9		Jul	27	16:30	16.82	-10.64	-1.949			16-6019-6958	09-3317-6652
10		Aug	17	14:25	14.86	-12.6	-2.307	(-)		07-7298-7649	12-6822-1646
11		Sep	29	15:45	28.5	1.039	0.1903			12-3450-8829	17-8563-2416
12		Oct	12	15:00	27.53	0.06711	0.01229			14-7239-9185	11-8743-4626
13			19	17:00	29.13	1.67	0.3058			17-5798-2248	01-7668-6950
14		Nov	3	15:00	29.71	2.246	0.4113			14-6395-1490	03-1145-8832
15			11	14:35	22.33	-5.135	-0.9405			00-1546-1531	07-6640-8098
16		Dec	9	15:50	30.73	3.268	0.5985			06-2693-6580	02-3744-1694
17	2022	Jan	20	15:15	18.86	-8.604	-1.576			06-1599-8254	12-6429-5476
18		Feb	9	16:25	28.86	1.402	0.2567			20-6883-0287	05-7427-9529
19		Mar	29	13:15	29.74	2.275	0.4167			09-4881-8633	11-4846-6536
20		Apr	19	17:40	30.12	2.656	0.4865			20-9064-9386	11-9782-6263
21			20	14:30	27.36	-0.09525	-0.01745			07-3521-2032	11-4955-0328

Quality Control Data

Report Date: 10 May-22 11:19 (1 of 1)

Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test


Test Type: Development-Survival Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel) Endpoint: Combined Development Rate

Material: Copper chloride

Source:

Reference Toxicant-REF

Mean:	6.559	Count:	20	-2s Warning Limit:	3.999	-3s Action Limit:	2.719
Sigma:	1.28	CV:	19.50%	+2s Warning Limit:	9.119	+3s Action Limit:	10.4

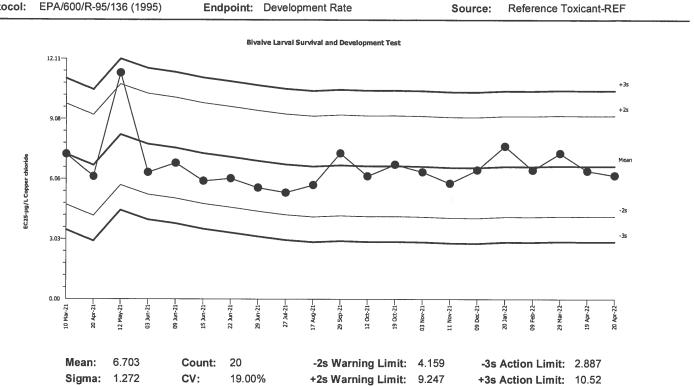
Point Year Month Day Time QC Data Delta Warning Action Test ID Sigma Analysis ID 1 2021 Mar 10 14:15 6.682 0.1235 0.09646 13-7922-5399 10-0885-9755 2 Apr 20 16:15 5.728 -0.8307 -0.649 06-7450-9711 18-3353-6875 3 May 12 15:00 11.4 4.843 3.783 (+) (+) 15-4594-3065 00-9727-8504 4 Jun 3 15:50 6.337 -0.2221 -0.1735 07-9391-2508 21-2212-7050 5 9 14:00 6.767 0.2075 0.1621 18-5736-8495 04-4549-3405 6 15 15:40 5.953 -0.6065 -0.4738 00-2993-6780 17-7654-7354 7 22 13:45 6.048 -0.5106 -0.3989 16-6840-3553 15-2803-6917 8 29 14:55 5.736 -0.8235 -0.6433 07-2040-2693 08-8247-6801 9 Jul 27 16:30 5.123 -1.436 -1.122 16-6019-6958 06-5859-7928 10 Aug 17 14:25 5.751 -0.8077 -0.631 07-7298-7649 09-6648-5411 11 Sep 29 15:45 7.261 0.7023 0.5487 12-3450-8829 18-2247-7613 12 Oct 12 15:00 6.03 -0.5294 -0.4136 14-7239-9185 01-1367-5722 13 19 17:00 6.701 0.1421 0.1111 17-5798-2248 09-1208-0351 14 Nov 3 15:00 6.215 -0.3443 -0.269 14-6395-1490 06-4040-2968 15 11 14:35 5.544 -1.015 -0.7927 00-1546-1531 12-7713-2161 16 Dec 9 15:50 6.632 0.07313 0.05713 06-2693-6580 11-5581-5612 17 2022 Jan 20 15:15 7.149 0.5896 0.4607 06-1599-8254 16-9050-7435 18 Feb 9 16:25 6.494 -0.06506 -0.05083 20-6883-0287 13-7282-5479 19 Mar 29 13:15 7.278 0.7193 0.5619 09-4881-8633 10-6557-0477 20 19 17:40 6.34 -0.2185 -0.1707 Apr 20-9064-9386 10-4205-1906 21 20 14:30 6.222 -0.3365 -0.2629 07-3521-2032 06-3800-2192

000-089-187-3

CETIS™ v1.8.7.20

Analyst: A QA: MS S/11/22

Report Date: 10 May-22 11:19 (1 of 1)


Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

Test Type: Development-Survival Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel) Material: Endpoint: Development Rate

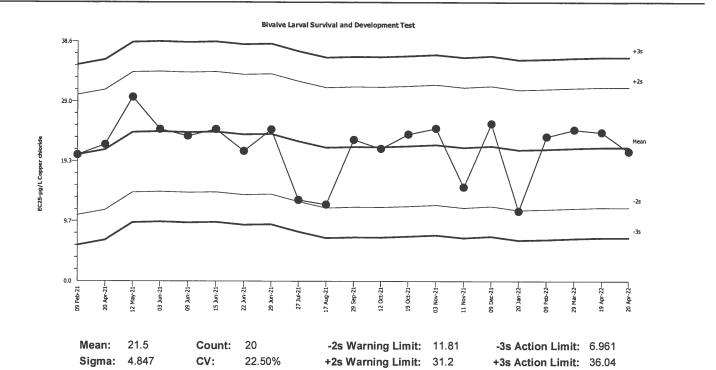
Copper chloride

		_
Quality	Control	Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2021	Mar	10	14:15	7.308	0.6049	0.4756			13-7922-5399	08-4869-7631
2		Apr	20	16:15	6.175	-0.5285	-0.4155			06-7450-9711	17-9210-1733
3		May	12	15:00	11.4	4.699	3.694	(+)	(+)	15-4594-3065	12-3891-6641
4		Jun	3	15:50	6.387	-0.3164	-0.2487			07-9391-2508	11-7075-1183
5			9	14:00	6.858	0.1547	0.1216			18-5736-8495	18-6125-5477
6			15	15:40	5.953	-0.7505	-0.59			00-2993-6780	13-6998-5313
7			22	13:45	6.084	-0.6194	-0.4869			16-6840-3553	07-3347-2243
8			29	14:55	5.615	-1.088	-0.8551			07-2040-2693	17-0989-5973
9		Jul	27	16:30	5.367	-1.336	-1.05			16-6019-6958	03-0913-6262
10		Aug	17	14:25	5.751	-0.9517	-0.7482			07-7298-7649	11-4901-9823
11		Sep	29	15:45	7.359	0.6559	0.5157			12-3450-8829	04-7958-3381
12		Oct	12	15:00	6.202	-0.5012	-0.3941			14-7239-9185	04-3282-5514
13			19	17:00	6.79	0.08685	0.06828			17-5798-2248	05-0981-9303
14		Nov	3	15:00	6.411	-0.2923	-0.2298			14-6395-1490	11-9492-7222
15			11	14:35	5.837	-0.8657	-0.6805			00-1546-1531	03-5898-7126
16		Dec	9	15:50	6.512	-0.1907	-0.1499			06-2693-6580	19-9748-5087
17	2022	Jan	20	15:15	7.713	1.01	0.7941			06-1599-8254	16-8693-8465
18		Feb	9	16:25	6.507	-0.1959	-0.154			20-6883-0287	03-6791-7638
19		Mar	29	13:15	7.354	0.6514	0.5121			09-4881-8633	12-2799-4519
20		Apr	19	17:40	6.469	-0.234	-0.1839			20-9064-9386	19-3933-4036
21			20	14:30	6.234	-0.4687	-0.3685			07-3521-2032	16-7080-8967

Analyst: M QA: MS 5/11/2

Quality Control Data


Report Date: 10 May-22 11:19 (1 of 1)

Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

Test Type: Development-Survival Protocol: EPA/600/R-95/136 (1995) Organism: Mytilus galloprovincialis (Bay Mussel) Endpoint: Survival Rate

Material: Copper chloride Reference Toxicant-REF Source:

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2021	Feb	9	15:15	20.31	-1.191	-0.2456			12-5648-6062	08-9593-0094
2		Apr	20	16:15	21.96	0.4561	0.09411			06-7450-9711	02-2099-4435
3		May	12	15:00	29.62	8.115	1.674			15-4594-3065	18-1677-8776
4		Jun	3	15:50	24.43	2.926	0.6038			07-9391-2508	05-7225-1680
5			9	14:00	23.34	1.844	0.3804			18-5736-8495	17-4075-5383
6			15	15:40	24.42	2.917	0.6019			00-2993-6780	11-7676-4213
7			22	13:45	20.9	-0.5995	-0.1237			16-6840-3553	00-7652-1305
8			29	14:55	24.38	2.877	0.5936			07-2040-2693	20-9452-4039
9		Jul	27	16:30	13.05	-8.454	-1.744			16-6019-6958	09-3317-6652
10		Aug	17	14:25	12.3	-9.205	-1.899			07-7298-7649	12-6822-1646
11		Sep	29	15:45	22.73	1.225	0.2528			12-3450-8829	17-8563-2416
12		Oct	12	15:00	21.29	-0.2093	-0.04319			14-7239-9185	11-8743-4626
13			19	17:00	23.62	2.119	0.4372			17-5798-2248	01-7668-6950
14		Nov	3	15:00	24.56	3.059	0.6311			14-6395-1490	03-1145-8832
15			11	14:35	15.09	-6.406	-1.322			00-1546-1531	07-6640-8098
16		Dec	9	15:50	25.32	3.825	0.7891			06-2693-6580	02-3744-1694
17	2022	Jan	20	15:15	11.23	-10.27	-2.12	(-)		06-1599-8254	12-6429-5476
18		Feb	9	16:25	23.23	1.725	0.356			20-6883-0287	05-7427-9529
19		Mar	29	13:15	24.35	2.851	0.5883			09-4881-8633	11-4846-6536
20		Apr	19	17:40	23.94	2.44	0.5035			20-9064-9386	11-9782-6263
21			20	14:30	20.84	-0.6623	-0.1366			07-3521-2032	11-4955-0328

CETIS™ v1.8.7.20

Analyst: DL QA: ASS/11/22

CETIS	Test	Data	Workshe	et
-------	------	------	---------	----

Report Date: Test Code:

07 May-22 17:35 (p 1 of 1) 07-3521-2032/220420msdv

Bivalve Larva	al Sur	vival a	and De	evelopment Tes	st				Nautilus Environmental (CA)
Start Date: End Date: Sample Date	22 A	Apr-22 Apr-22 Apr-22		Species: Protocol: Material:	Mytilus galloprovi EPA/600/R-95/13 Copper chloride				220420msdv Reference Toxicant Copper Chloride
C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes
			1			105	0	APS 5/9/22	
			2			181	173		
			3			120	0		
			4			150			
			5			166	159		
			6			151	143		
			7			147	135		
			8			3	0		
			9			7	O		
			10			174	168		
			11			151	140		
			12			143	138		
			13			173	167		
			14			126	6		
			15			121	0		
			16			15	1		
			17			144	2		
			18			157	9		
			19	- 10 ¹ 111		162	3		
			20			143	37	4	
			21			164	157		
			22			143	134		
			23			160	153		
			24			1	D		
			25			113	D		
			26			I I	0		
			27			163	154	e.	
			28			164	157		
			29			0	D		
			30			148	139		

Analyst: AS QA: 455 10 22

CETIS Test Data Worksheet

Report Date: Test Code:

17 Apr-22 11:54 (p 1 of 1) 07-3521-2032/220420msdv

Bivalve Larval Survival and Development Test

Bivalve Larva	al Surv	vival a	and D	evelopment Tes	st				Nautilus Environmental (CA)
Start Date: End Date: Sample Date	22 A	\pr-22 \pr-22 \pr-22		Species: Protocol: Material:	Mytilus galloprovi EPA/600/R-95/13 Copper chloride			Sample Code: Sample Source: Sample Station:	
C-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes
0	LC	1	30						
0	LC	2	5						
0	LC	3	23			160	153	WF	
0	LC	4	28						
0	LC	5	6						
2.5		1	20						
2.5		2	12			1 APR - 1			
2.5		3	21			159	154	WF	
2.5		4	10						
2.5		5	22						
5		1	2						
5		2	27			1 1 -	1		
5		3	7			140	131	WE	
5		4	11						
5		5	13						
10		1	19						
10		2	17 16					15	
10		4	18			145	0	WF	
10		5	4						
20		1	3						
20		2	1						
20		3	25			114	0	WF	
20		4	14			11.1		401	
20		5	15						
40		1	9						
40		2	24						
40		3	29			0	\bigcirc	WF	
40		4	26						
40		5	8						

QC=BO

000-089-187-4

Analyst: <u>RT</u> QA:<u>A755/11/22</u>

Marine Chronic Bioassay

DM-014

Client: Internal

Sample ID: CuCl₂

Test No.: 220420 msdv

Water Quality Measurements

Test Species:	M. gallopi	ovincialis
Start Date/Time:	1430	4/20/22
End Date/Time:	1400	4/22/22

Concentration		Salinity		Т	emperatu	re	Dise	solved Ox	ygen		рН	
(µg/L)		(ppt)			(°C)	-		(mg/L)			(pH units)
	0	24	48	0	24	48	0	24	48	0	24	48
Lab Control	31.2	31.6	31.5	15.5	14.6	14.8	8.2	8.6	8.5	8.00	7,93	7.96
2.5	31.6	31.8	31.7	15.1	14.4	14.6	8.3	8.7	8.6	7.99	7.93	7.98
5	31.6	31.9	31.8	15.0	14.7	14.6	8.4	8.7	8.6	7.99	7.94	8.00
10	31.6	31.9	31.8	15.1	14.7	14.7	8.3	8.6	8.6	7.98	7.94	7.99
20	31.6	31.8	31.8	15.1	14.6	14.8	8.3	8.7	8.6	7.96	7.95	7.99
40	31.5	31.7	31.7	15.0)4.6	14.7	8.3	\$.7	8.6	7.96	7.95	7.96
								то П				
			0	24	48		Lliab	0000 000			10	7
Technician Initiala:		Doodingo		24	40	1	-	conc. ma			10	4

		-			right conto. mado (µg/=).	10	
Technician Initials:	WQ Reading	IS: BO	GM	PO	Vol. Cu stock added (mL):	2.0	
	Dilutions made b	y: BO			Final Volume (mL):	500	
					Cu stock concentration (µg/L):	10,000	
Environmental Char	nber:	Do					
Comments:	0 hrs:						
	24 hrs:						
	48 hrs:						
QC Check:	Ju 5/5/n	-			Final Review:	Ars 5/11/22	
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Larval Development Worksheet

Marine Chronic Bioassay DM-013

Client/Sample:	Internal/Cullz
Test No.:	220420 msdv
Test Species:	Mytilus galloprovincialis
Animal Source/Batc	hTank: MPEP16A
Date Received:	11/17/21
Test Chambers:	30 mL glass shell vials
Sample Volume:	10 mL

Start Date/Time:	4/20/22	1430	
End Date/Time:	4/22/22	1400	
Technician Initials:	BO		

Spawn Information

Gamete Selection

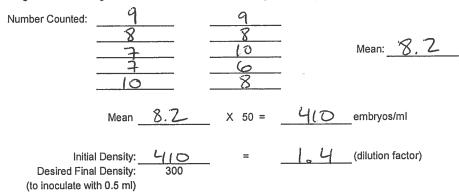
Fi

irst Gamete Release Time:	100
---------------------------	-----

Sex	Number Spawning
Male	.5
Female	3

Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)
Male	1,2,3	good with the very dense
Female 1	2	Some land, some oval, white, density
Female 2	3	hand, white, very dense
Female 3		

Egg Fertilization Time: 200


Embryo Stock Selection

Stock Number	% of embryos at 2-cell division stage	
Female 1	30	
Female 2	100	
Female 3		

2 Stock(s) chosen for testing: _

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos

Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

 $\hat{}$

Time Zero Control Counts

TØ Vial No.	No. Dividing	Total	% Dividing	Mean % Dividing
TØ A	169	169	100	
тø в	141	141	100	
тøс	167	169	94	99.5
TØ D	133	133	100	
TØ E	143	144	99	
TØ F	147	140	99	
X =	150			

48-h QC: 168/175 = 96%

Final Review: 175 5/11/22

Comments:

QC Check:

515122 ou

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.