Data Quality Summary: Wyckoff 4th Quarter 2022 Groundwater Treatment Plant Bioassay Sampling

Samples were collected and analyzed in support of the Wyckoff Groundwater Treatment Plant. All analytical data were evaluated in accordance with the following guidance:

 Wyckoff Groundwater Treatment Plant Operations and Maintenance Quality Assurance Project Plan (QAPP), Bainbridge Island, Washington (CH2M, 2022).

This data quality summary presents the findings of the data validation activities.

Analytical Data

The methods, sample delivery group (SDG) number and laboratory name for all analyses are presented in Table 1. These reports can be found in Attachment 1.

Table 1. Analytical Data Summary

Data Quality Summary: Wyckoff Groundwater Treatment Plant Operations and Maintenance Q4 Bioassay

Laboratory	SDG	Method	Analyte
Enthalpy	2211-S332	EPA600/R-95/136	Chronic bioassay
Enthalpy	2212-S119	EPA821/R-02/012	Acute bioassay

Notes:

Enthalpy = Enthalpy Analytical

SDG = Sample Delivery Group

One water sample was collected on November 29, 2022, for chronic toxicity, and another sample collected on December 13, 2022, for acute toxicity. The bioassays were performed by Enthalpy Analytical, San Diego, California.

A CH2M chemist validated the bioassay results Stage 2A in accordance with the QAPP. The data were 100% complete, method and QAPP quality control requirements were met. The latest version of the QAPP was utilized by the laboratory, and it was confirmed that the appropriate species of mussel and estuarine fish that was specified in the QAPP were used.

For the chronic bioassay, there were no statistically significant effects detected in any effluent concentration tested for the survival endpoint of the bivalve test. This results in a NOEC of 67.2 (the highest concentration tested) and a TUc of less than 1.5. There was a statistically significant effect detected in the 67.2 percent effluent concentration for the development endpoint. This results in a NOEC of 35 and a TUc of 2.9. Overall, the effect concentration (EC_{50}) expected to cause an effect to 50% of the organisms is determined to be greater than 67.2 (the highest concentration tested).

For the acute bioassay, there was no statistically significant effect detected to survival for any concentration tested in the inland silverside test. This results in a LC50 of greater than 100 percent concentration and an acute toxic unit (TUa) of less than 1.0.

EN1021151050RDD 1

Attachment 1 Bioassay Reports

EN1021151050RDD 1 OF 1

Chronic Toxicity Testing Results for Wyckoff Eagle Harbor Groundwater Treatment Plant

Monitoring Period: November 2022

Prepared for: Jacobs

1100 112th Ave NE Suite 500

Bellevue, WA, 98004

Prepared by: Enthalpy Analytical

4340 Vandever Avenue San Diego, CA 92120

(858) 587-7333

Date Submitted: January 9, 2023

Data Quality Assurance:

- Enthalpy Analytical is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (ORELAP ID 4053). It is also certified by the State of California Water Resources Control Board Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552). Specific fields of testing applicable to each accreditation are available upon request.
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective US EPA protocols, unless otherwise noted in this report.
- All tests have met internal Quality Assurance Program requirements.

Results verified by:

υу. __

Barbara Orelo, Project Manager

California

4340 Vandever Avenue San Diego, California 92120 858.587.7333 fax: 619.279.5919

Introduction

A toxicity test was performed using a groundwater composite sample collected from the Wyckoff Eagle Harbor Groundwater Treatment Plant on Bainbridge Island in Washington. This test was performed to satisfy quarterly monitoring requirements according to the project Quality Assurance Project Plan (QAPP 2022). The chronic bioassay was conducted using the bivalve *Mytilus galloprovincialis* (Mediterranean mussel). Testing was performed at Enthalpy Analytical located in San Diego, California.

Materials and Methods

The groundwater sample was collected into a low-density polyethylene cubitainer by Jacobs personnel, packed in a cooler containing ice, and shipped overnight to Enthalpy. Appropriate chain-of-custody (COC) procedures were employed during collection and transport. Upon arrival at the laboratory, the cooler was opened, the sample inspected, and the contents verified against information on the COC form. Standard water quality parameters were measured and recorded on a sample check-in form and are summarized in Table 1. The sample was stored at 4°C in the dark until used for testing.

Table 1. Sample Information

Sample ID	112922			
Enthalpy Log-in Number	22-1486			
Collection Date; Time	11/29/22; 1000h			
Receipt Date; Time	11/30/22; 1314h			
Receipt Temperature (°C)	3.2			
Dissolved Oxygen (mg/L)	6.8			
рН	7.53			
Conductivity (µS/cm)	2,200			
Salinity (ppt)	1.2			
Alkalinity (mg/L CaCO ₃)	342			
Total Chlorine (mg/L)	0.04			
Total Ammonia (mg/L as N)	7.5			

Test Methods

Chronic toxicity testing was conducted according to the method set forth in USEPA (1995) and WDOE (2016). This method is summarized in Table 2.

Table 2. Summary of Methods for the Bivalve Larval Development Test

Table 2. Sulfillially of Methods for th	le Bivaive Laivai Developilient Test
Test Period	11/30/22, 1655h to 12/2/22, 1530h
Test Organism	Mytilus galloprovincialis
Test Organism Source	M-Rep (Carlsbad, CA)
Test Organism Age	4 hours post fertilization
Test Duration	48 ± 2 hours
Test Type	Static
Test Chamber, Test Solution Volume	30 mL glass vial, 10 mL
Test Temperature	15 ± 1°C
Dilution Water	Laboratory Seawater (Source: Scripps Institution of Oceanography [SIO] intake) diluted with de-ionized water
Additional Control	Brine Control (de-ionized water and hypersaline brine)
Test Salinity	30 ± 2 ppt
Source of Salinity	Hypersaline brine made by freezing seawater to a salinity of 89.1 ppt
Test Concentrations (% sample)	67.2a, 35, 18, 9, 4, and 2%, lab and brine controls
Number of Replicates	5
Photoperiod	16 hours light/8 hours dark
Test Protocol	EPA/600/R-95/136
Test Acceptability Criteria for Controls	≥ 50% mean survival, ≥ 90% mean development rate
Reference Toxicant	Copper chloride ^b

^a Highest concentration tested due to the addition of hypersaline brine

CETIS™ 2.1.2.3

Statistical Methods

Statistical Software

Statistical analyses were conducted using USEPA flowchart specifications as outlined in the test guidance manual (USEPA 1995). Organism performance in the sample was compared to that observed in the brine control. Results were used to calculate the No Observed Effect Concentration (NOEC) and the concentrations expected to cause an adverse effect to 50 percent of test organisms (EC50). The chronic toxic unit (TUc) value was calculated as 100/NOEC, as specified in the permit. The statistical analyses were performed using the Comprehensive Environmental Toxicity Information System (CETIS), version 2.1.2.3 by Tidepool Scientific Software.

Results

There were no statistically significant effects detected in any effluent concentration tested for the survival endpoint of the bivalve test. This results in a NOEC of 67.2 (the highest concentration tested) and a TU_c of less than 1.5.

There was a statistically significant effect detected in the 67.2 percent effluent concentration for the development endpoint. This results in a NOEC of 35 and a TU_c of 2.9.

Results for the chronic toxicity test are summarized in Tables 3 and 4. Individual statistical summaries for the test and copies of the laboratory bench sheets are provided in Appendix A. The sample check-in sheet and COC form are provided in Appendices B and C, respectively.

^b A deviation to the QAPP was approved by USEPA and Washington Department of Ecology to conduct reference toxicant testing with copper chloride. See QA section.

Table 3. Summary of Statistical Results for the Chronic Toxicity Tests

Species	Endpoint	NOEC (% effluent)	LOEC (% effluent)	Toxic Unit (TU _c)	EC ₅₀ (% effluent)
Pivolvo	Normal Development	35	67.2	2.9	> 67.2
Bivalve	Survival	67.2	> 67.2	< 1.5	> 67.2

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

Chronic Toxic Unit (TU_c) = 100/NOEC. NOTE: Since 100% sample was not tested, the TU_c value can only be calculated up to the highest concentration tested. If no toxicity is observed at this concentration, the TU_c is reported as less than the calculated value.

Effect Concentration 50 (EC $_{50}$) = Concentration expected to cause an effect to 50% of the organisms

Table 4. Detailed Results for the Bivalve Development Chronic Toxicity Test

able 4. Detailed Results for the bivarve bevelopment officine residing rest									
Concentration (% Effluent)	Mean Survival (%)	Mean Normal Development (%)							
0 (Brine Control)	91.8	96.9							
0 (Lab Control)	95.2	98.3							
2	97.7	98.2							
4	95.5	98.3							
9	98.8	97.8							
18	98.6	98.2							
35	98.1	98.8							
67.2ª	95.6	59.4							

^a Highest concentration tested due to the addition of hypersaline brine

Quality Assurance

The sample was received the day after collection, in good condition, and within the appropriate temperature range of 0-6°C. The test was initiated within the required 36-hour holding time. All control acceptability criteria were met, and water quality parameters remained within the appropriate ranges throughout the test. Statistical analyses followed standard USEPA flowchart selections. Dose-response relationships were reviewed to ensure the reliability of the results. Based on the dose response observed, the calculated effects concentrations were deemed reliable. Minor QA/QC issues that were unlikely to have any bearing on the final test results, such as slight temperature deviations, are noted on the data sheets and a list of qualifier codes used on bench data sheets is presented in Appendix D.

Values in **bold** indicate a statistically significant effect.

Reference Toxicant

Results for the reference toxicant tests used to monitor laboratory performance and test organism sensitivity are summarized in Table 5. A deviation to the QAPP was approved by USEPA and Washington Department of Ecology to conduct reference toxicant testing with copper chloride rather than copper sulfate. The results for the concurrent reference toxicant test were within the acceptable range of the mean historical test results plus or minus two standard deviations for development and survival. Reference toxicant statistical summaries and laboratory bench sheets are provided in Appendix E.

Table 5. Reference Toxicant Test Results

Species and Endpoint	NOEC (%)	EC ₅₀ (µg/L copper)	Historical Mean ± 2 SD (µg/L copper)	CV (%)
Bivalve Survival Rate	10	26.8	26.8 ± 6.54	12.2
Bivalve Normal Development	2.5	7.17	9.24 ± 4.54	24.6

NOEC = No Observed Effect Concentration

Effect Concentration 50 (EC₅₀) = The concentration expected to cause an effect to 50% of the organisms

Historical Mean \pm 2 SD = The mean EC₅₀ from the previous 20 tests performed by the laboratory, plus or minus two standard deviations (SD)

CV = Coefficient of Variation

References

- CH2MHill. 2022. Quality Assurance Project Plan Groundwater Treatment Plant Operations, Maintenance, Bainbridge, Washington. Prepared for USEPA Region, January 2022.
- Standard Guide for Conducting Static Acute Toxicity Tests with Embryos of Four Species of Saltwater Bivalve Molluscs. 1989. ASTM Standard E 724-89.
- Tidepool Scientific Software. 2000-2022. CETIS Comprehensive Environmental Toxicity Information System Software, Version 2.1.2.3.
- USEPA. 1995. Short-Term Method for Estimating the Chronic Toxicity of Effluents and Receiving Waters to the West Coast Marine and Estuarine Organisms. EPA/600/R-95/136. pp. 209-258 and 389-465.
- Washington State Department of Ecology. 2016. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Publication No. WQ-R-95-80. Revised June 2016

Appendix A
Statistical Summaries and Raw Bench Sheets

CETIS Summary Report

02-1155-3168 Development Rate

01-0736-3836 Survival Rate

Report Date: Test Code/ID:

EC25

EC50

EC25

EC50

55.4

>67.2

>67.2

>67.2

52

59.1

1.8

<1.5

<1.5

<1.5

06 Jan-23 11:01 (p 1 of 4) 2211-S332 / 00-7250-7607

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Batch ID: Start Date: Ending Date: Test Length:	30 Nov-22 16:55 02 Dec-22 15:30	Test Type: Protocol: Species: Taxon:	Development-Survival EPA/600/R-95/136 (1995) Mytilus galloprovincialis		Dilu Brir	lyst: lent: le: lrce:	Diluted N Frozen S M-Rep, C	eawate	r	Age:	
1 '	29 Nov-22 10:00	Code: Material: CAS (PC):	22-1486 Effluent Sample		Sou	ject: rce: ion:	Jacobs Wyckoff				
Sample Age:	31h (3.2 °C)	Client:	Jacobs								
Multiple Com	parison Summary										
Analysis ID	Endpoint	Comp	oarison Method	✓	NOEL	LOE	L TO	EL	PMSD	TU	s
11-3857-6594	Combined Development	t Rat Dunne	ett Multiple Comparison Test		35	67.2	48.	5	9.27%	2.9	1
00-7714-8399	Development Rate	Dunne	ett Multiple Comparison Test		35	67.2	48.	5	1.94%	2.9	1
17-4497-2337	Survival Rate	Dunne	ett Multiple Comparison Test		67.2	>67.2	2		9.37%	∠ 1.5	1
Point Estimat	e Summary										
Analysis ID	Endpoint	Point	Estimate Method	✓	Level	%	95%	6 LCL	95% UCL	TU	s
03-9255-2551	Combined Development	t Rat Linear	Interpolation (ICPIN)		EC25	55	52.	4	58	1.8	1
					EC50	>67.2	2			<1.5	

Test Acceptability TAC Limits									
Analysis ID	Endpoint	Attribute	Test Stat	Lower	Upper	Overlap	Decision		
00-7714-8399	Development Rate	Control Resp	0.969	0.9	<<	Yes	Passes Criteria		
02-1155-3168	Development Rate	Control Resp	0.969	0.9	<<	Yes	Passes Criteria		
01-0736-3836	Survival Rate	Control Resp	0.918	0.5	<<	Yes	Passes Criteria		
17-4497-2337	Survival Rate	Control Resp	0.918	0.5	<<	Yes	Passes Criteria		
11-3857-6594	Combined Development Rat	PMSD	0.0927	<<	0.25	No	Passes Criteria		

Linear Interpolation (ICPIN)

Linear Interpolation (ICPIN)

Report Date: Test Code/ID:

06 Jan-23 11:01 (p 2 of 4) 2211-S332 / 00-7250-7607

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Combined De	velopment Ra	te Summary	1								
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	ВС	5	0.890	0.747	1.030	0.690	0.973	0.051	0.115	12.92%	0.00%
0	LC	5	0.935	0.897	0.974	0.903	0.982	0.014	0.031	3.33%	-5.09%
2		5	0.959	0.906	1.010	0.884	0.987	0.019	0.043	4.43%	-7.74%
4		5	0.938	0.888	0.988	0.875	0.987	0.018	0.040	4.28%	-5.40%
9		5	0.966	0.941	0.992	0.931	0.982	0.009	0.021	2.13%	-8.55%
18		5	0.968	0.936	1.000	0.931	0.996	0.012	0.026	2.69%	-8.78%
35		5	0.970	0.935	1.000	0.940	0.996	0.012	0.028	2.85%	-8.94%
67.2		5	0.567	0.514	0.620	0.502	0.620	0.019	0.043	7.56%	36.28%
Development	Rate Summar	у									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	BC	5	0.969	0.958	0.980	0.955	0.976	0.004	0.009	0.91%	0.00%
0	LC	5	0.983	0.976	0.989	0.976	0.990	0.002	0.005	0.52%	-1.39%
2		5	0.982	0.975	0.989	0.973	0.987	0.002	0.006	0.57%	-1.28%
4		5	0.983	0.977	0.988	0.976	0.987	0.002	0.004	0.45%	-1.39%
9		5	0.978	0.974	0.982	0.974	0.982	0.002	0.003	0.35%	-0.90%
18		5	0.982	0.968	0.995	0.966	0.996	0.005	0.011	1.10%	-1.29%
35		5	0.988	0.981	0.995	0.982	0.996	0.002	0.005	0.55%	-1.92%
67.2		5	0.594	0.523	0.665	0.502	0.654	0.025	0.057	9.58%	38.71%
Survival Rate	Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	ВС	5	0.918	0.778	1.060	0.722	1.000	0.050	0.112	12.26%	0.00%
0	LC	5	0.952	0.909	0.995	0.917	1.000	0.015	0.034	3.62%	-3.73%
2		5	0.977	0.924	1.030	0.903	1.000	0.019	0.042	4.32%	-6.46%
4		5	0.955	0.904	1.000	0.889	1.000	0.018	0.040	4.23%	-4.04%
9		5	0.988	0.963	1.010	0.954	1.000	0.009	0.020	2.03%	-7.67%
18		5	0.986	0.962	1.010	0.963	1.000	0.009	0.019	1.94%	-7.47%
35		5	0.981	0.950	1.010	0.954	1.000	0.011	0.025	2.58%	-6.96%
67.2		5	0.956	0.919	0.994	0.921	1.000	0.014	0.031	3.19%	-4.24%

Analyst: 47(QA: 19/23

Report Date: Test Code/ID: 06 Jan-23 11:01 (p 3 of 4) 2211-S332 / 00-7250-7607

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Bivaive Larva	i Survivai and	Developme	entiest	Nautilus Environmental (CA)			
Combined De	velopment Ra	te Detail					MD5: 8212D4D92BCE9770D2E81A032252E2D7
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	ВС	0.954	0.931	0.903	0.973	0.690	
0	LC	0.912	0.982	0.935	0.903	0.944	
2		0.973	0.983	0.968	0.884	0.987	
4		0.940	0.944	0.875	0.944	0.987	
9		0.968	0.931	0.982	0.977	0.974	
18		0.996	0.978	0.954	0.931	0.983	
35		0.991	0.982	0.940	0.940	0.996	
67.2		0.502	0.583	0.569	0.560	0.620	
Development	Rate Detail			***************************************		amministra — vicinistra de la compania de la compa	MD5: 2BDF87BB681BC472C9658C63ACA44F83
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	ВС	0.976	0.966	0.975	0.973	0.955	
0	LC	0.990	0.982	0.981	0.985	0.976	
2		0.973	0.983	0.986	0.979	0.987	
4		0.976	0.986	0.984	0.981	0.987	
9		0.981	0.976	0.982	0.977	0.974	
18		0.996	0.978	0.986	0.966	0.983	
35		0.991	0.982	0.985	0.985	0.996	
67.2		0.502	0.621	0.586	0.608	0.654	
Survival Rate	Detail						MD5: B5549213E865B7CE0E4BE5D9D9DECF26
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	BC	0.977	0.963	0.926	1.000	0.722	
0	LC	0.921	1.000	0.954	0.917	0.968	
2		1.000	1.000	0.981	0.903	1.000	
4		0.963	0.958	0.889	0.963	1.000	
9		0.986	0.954	1.000	1.000	1.000	
18		1.000	1.000	0.968	0.963	1.000	
35		1.000	1.000	0.954	0.954	1.000	
67.2		1.000	0.940	0.972	0.921	0.949	

Report Date: Test Code/ID: 06 Jan-23 11:01 (p 4 of 4) 2211-S332 / 00-7250-7607

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

							Taddido Environtal (o
Combined De	velopment Rat	te Binomials					
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	ВС	206/216	201/216	195/216	220/226	149/216	
0	LC	197/216	221/225	202/216	195/216	204/216	
2		219/225	225/229	209/216	191/216	232/235	
4		203/216	204/216	189/216	204/216	227/230	
9		209/216	201/216	213/217	216/221	223/229	
18		237/238	226/231	206/216	201/216	229/233	
35		220/222	217/221	203/216	203/216	229/230	
67.2		109/217	126/216	123/216	121/216	134/216	
Development	Rate Binomial	s					
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	ВС	206/211	201/208	195/200	220/226	149/156	
0	LC	197/199	221/225	202/206	195/198	204/209	
2		219/225	225/229	209/212	191/195	232/235	
4		203/208	204/207	189/192	204/208	227/230	
9		209/213	201/206	213/217	216/221	223/229	
18		237/238	226/231	206/209	201/208	229/233	
35		220/222	217/221	203/206	203/206	229/230	
67.2		109/217	126/203	123/210	121/199	134/205	
Survival Rate	Binomials						
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	ВС	211/216	208/216	200/216	216/216	156/216	
0	LC	199/216	216/216	206/216	198/216	209/216	
2		216/216	216/216	212/216	195/216	216/216	
4		208/216	207/216	192/216	208/216	216/216	
9		213/216	206/216	216/216	216/216	216/216	
18		216/216	216/216	209/216	208/216	216/216	
35		216/216	216/216	206/216	206/216	216/216	
67.2		216/216	203/216	210/216	199/216	205/216	

Report Date:

06 Jan-23 11:01 (p 1 of 6)

Test Code/ID: 2211-S332 / 00-7250-7607

Bivalve Larval Survival and Development Test Nautilus Environmental (CA)

CETISv2.1.2 **Analysis ID:** 11-3857-6594 Endpoint: Combined Development Rate **CETIS Version:**

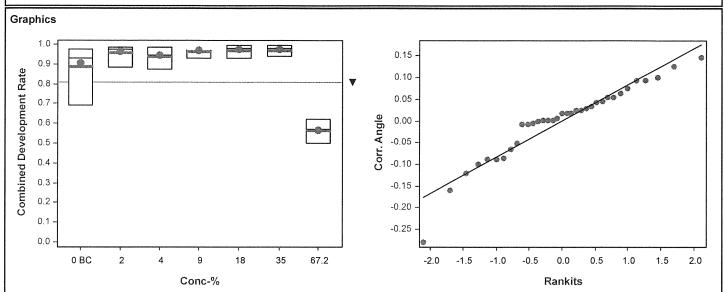
Analyzed: 06 Jan-23 11:00 Analysis: Parametric-Control vs Treatments Status Level:

Edit Date: 06 Jan-23 10:54 MD5 Hash: EFFDC09D775D17F9977D6F6E34552561 Editor ID: 007-926-968-0

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	Tox Units	MSDu	PMSD
Angular (Corrected)	C > T	35	67.2	48.5	2.9	0.0825	9.27%

Dunnett Multiple Comparison Test									
Control	vs	Conc-%	df	Test Stat	Critical	MSD	P-Type	P-Value	Decision(α:5%)
Brine Control		2	8	-2.07	2.41	0.143	CDF	0.9997	Non-Significant Effect
		4	8	-1.2	2.41	0.143	CDF	0.9932	Non-Significant Effect
		9	8	-2.21	2.41	0.143	CDF	0.9999	Non-Significant Effect
		18	8	-2.45	2.41	0.143	CDF	0.9999	Non-Significant Effect
		35	8	-2.57	2.41	0.143	CDF	0.9999	Non-Significant Effect
		67.2*	8	6.84	2.41	0.143	CDF	<1.0E-05	Significant Effect

ANOVA Table							
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)	
Between	1.20431	0.200718	6	22.7	<1.0E-05	Significant Effect	
Error	0.247635	0.0088441	28				
Total	1.45194		34				


ANOVA Assumptions Tests										
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)					
Variance	Bartlett Equality of Variance Test	8.58	16.8	0.1986	Equal Variances					
Distribution	Shapiro-Wilk W Normality Test	0.928	0.915	0.0238	Normal Distribution					

Combined Development Rate Summary											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	ВС	5	0.890	0.747	1.000	0.931	0.690	0.973	0.051	12.92%	0.00%
2		5	0.959	0.906	1.000	0.973	0.884	0.987	0.019	4.43%	-7.74%
4		5	0.938	0.888	0.988	0.944	0.875	0.987	0.018	4.28%	-5.40%
9		5	0.966	0.941	0.992	0.974	0.931	0.982	0.009	2.13%	-8.55%
18		5	0.968	0.936	1.000	0.978	0.931	0.996	0.012	2.69%	-8.78%
35		5	0.970	0.935	1.000	0.982	0.940	0.996	0.012	2.85%	-8.94%
67.2		5	0.567	0.514	0.620	0.569	0.502	0.620	0.019	7.56%	36.28%

Angular (Corre	Angular (Corrected) Transformed Summary												
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect		
0	ВС	5	1.260	1.050	1.470	1.300	0.980	1.410	0.074	13.21%	0.00%		
2		5	1.380	1.270	1.500	1.410	1.220	1.460	0.042	6.73%	-9.80%		
4		5	1.330	1.220	1.440	1.330	1.210	1.460	0.039	6.57%	-5.64%		
9		5	1.390	1.330	1.460	1.410	1.300	1.430	0.023	3.70%	-10.44%		
18		5	1.410	1.310	1.500	1.420	1.300	1.510	0.035	5.57%	-11.55%		
35		5	1.410	1.310	1.520	1.440	1.320	1.500	0.038	6.04%	-12.12%		
67.2		5	0.853	0.799	0.907	0.855	0.788	0.907	0.019	5.07%	32.30%		

Report Date: 06 Jan-23 11:01 (p 2 of 6) **Test Code/ID:** 2211-S332 / 00-7250-7607

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) Analysis ID: 11-3857-6594 Endpoint: Combined Development Rate **CETIS Version:** CETISv2.1.2 Analyzed: 06 Jan-23 11:00 Analysis: Parametric-Control vs Treatments Status Level: **Edit Date:** 06 Jan-23 10:54 MD5 Hash: EFFDC09D775D17F9977D6F6E34552561 Editor ID: 007-926-968-0

Report Date: Test Code/ID: 06 Jan-23 11:01 (p 3 of 6) 2211-S332 / 00-7250-7607

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 00-7714-8399 Endpoint: Development Rate CETIS Version: CETISv2.1.2

Analyzed: 06 Jan-23 11:00 Analysis: Parametric-Control vs Treatments Status Level: 1

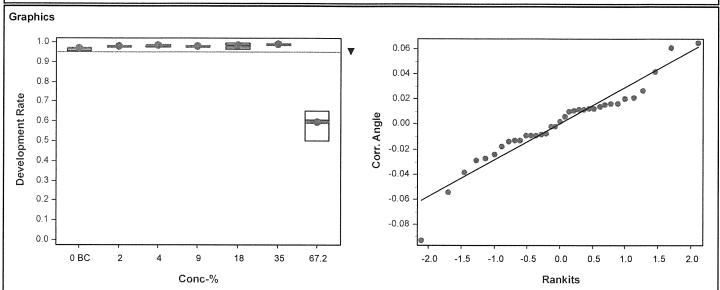
 Edit Date:
 06 Jan-23 10:54
 MD5 Hash: 6E4EA53C951191645760F53DD80B8235
 Editor ID:
 007-926-968-0

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	Tox Units	MSDu	PMSD
Angular (Corrected)	C > T	35	67.2	48.5	2.9	0.0188	1.94%

Dunnett Multi	ple (Comparison Test							
Control	vs	Conc-%	df	Test Stat	Critical	MSD	P-Type	P-Value	Decision(α:5%)
Brine Control		2	8	-1.97	2.41	0.0495	CDF	0.9995	Non-Significant Effect
		4	8	-2.14	2.41	0.0495	CDF	0.9997	Non-Significant Effect
		9	8	-1.28	2.41	0.0495	CDF	0.9948	Non-Significant Effect
		18	8	-2.2	2.41	0.0495	CDF	0.9998	Non-Significant Effect
		35	8	-3.28	2.41	0.0495	CDF	1.0000	Non-Significant Effect
		67.2*	8	25.1	2.41	0.0495	CDF	<1.0E-05	Significant Effect

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	1.32114	0.220189	6	208	<1.0E-05	Significant Effect
Error	0.0296007	0.0010572	28			
Total	1.35074		34			

ANOVA Assum	ANOVA Assumptions Tests										
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)						
Variance	Bartlett Equality of Variance Test	12.9	16.8	0.0440	Equal Variances						
Distribution	Shapiro-Wilk W Normality Test	0.943	0.915	0.0674	Normal Distribution						


Development	Development Rate Summary											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	ВС	5	0.969	0.958	0.980	0.973	0.955	0.976	0.004	0.91%	0.00%	
2		5	0.982	0.975	0.989	0.983	0.973	0.987	0.002	0.57%	-1.28%	
4		5	0.983	0.977	0.988	0.984	0.976	0.987	0.002	0.45%	-1.39%	
9		5	0.978	0.974	0.982	0.977	0.974	0.982	0.002	0.35%	-0.90%	
18		5	0.982	0.968	0.995	0.983	0.966	0.996	0.005	1.10%	-1.29%	
35		5	0.988	0.981	0.995	0.985	0.982	0.996	0.002	0.55%	-1.92%	
67.2		5	0.594	0.523	0.665	0.608	0.502	0.654	0.025	9.58%	38.71%	

Angular (Corr	Angular (Corrected) Transformed Summary											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	BC	5	1.400	1.370	1.430	1.410	1.360	1.420	0.011	1.75%	0.00%	
2		5	1.440	1.410	1.460	1.440	1.410	1.460	0.009	1.41%	-2.90%	
4		5	1.440	1.420	1.460	1.450	1.420	1.460	0.007	1.14%	-3.15%	
9		5	1.420	1.410	1.440	1.420	1.410	1.430	0.005	0.82%	-1.88%	
18		5	1.440	1.390	1.500	1.440	1.390	1.510	0.020	3.03%	-3.24%	
35		5	1.460	1.430	1.500	1.450	1.440	1.500	0.012	1.87%	-4.83%	
67.2		5	0.880	0.809	0.952	0.894	0.788	0.942	0.026	6.56%	36.92%	

Report Date: Test Code/ID:

06 Jan-23 11:01 (p 4 of 6) 2211-S332 / 00-7250-7607

Bivalve Larval Survival and Development Test Nautilus Environmental (CA) **Analysis ID:** 00-7714-8399 Endpoint: Development Rate **CETIS Version:** CETISv2.1.2 Analyzed: 06 Jan-23 11:00 Analysis: Parametric-Control vs Treatments Status Level: **Edit Date:** 06 Jan-23 10:54 MD5 Hash: 6E4EA53C951191645760F53DD80B8235 Editor ID: 007-926-968-0

Report Date: Test Code/ID: 06 Jan-23 11:01 (p 5 of 6) 2211-S332 / 00-7250-7607

Bivalve Larva	al Survival and Develop	ment Test			Nautilus Environmental (CA)	
Analysis ID:	17-4497-2337	Endpoint:	Survival Rate	CETIS Version:	CETISv2.1.2	ĺ
Analyzed:	06 Jan-23 11:00	Analysis:	Parametric-Control vs Treatments	Status Level:	1	
Edit Date:	06 Jan-23 10:54	MD5 Hash:	F4F72CB7E06B7C017E4118C577E07F98	Editor ID:	007-926-968-0	

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	Tox Units	MSDu	PMSD
Angular (Corrected)	C > T	67.2	>67.2		1.5	0.0859	9.37%
Dunnett Multiple Comparison	Test						

Dunnett Multi	ple C	Comparison Test							
Control	vs	Conc-%	df	Test Stat	Critical	MSD	P-Type	P-Value	Decision(α:5%)
Brine Control		2	8	-1.75	2.41	0.181	CDF	0.9989	Non-Significant Effect
		4	8	-0.652	2.41	0.181	CDF	0.9674	Non-Significant Effect
		9	8	-2.06	2.41	0.181	CDF	0.9997	Non-Significant Effect
		18	8	-1.96	2.41	0.181	CDF	0.9995	Non-Significant Effect
		35	8	-1.8	2.41	0.181	CDF	0.9991	Non-Significant Effect
		67.2	8	-0.666	2.41	0.181	CDF	0.9686	Non-Significant Effect

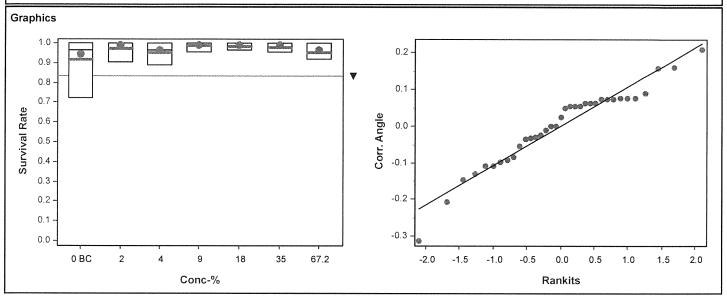
ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.111795	0.0186325	6	1.32	0.2790	Non-Significant Effect
Error	0.393749	0.0140625	28			
Total	0.505544		34			

ANOVA Assump	tions Tests				
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	4.63	16.8	0.5915	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.951	0.915	0.1193	Normal Distribution

Survival Rate Summary												
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	ВС	5	0.918	0.778	1.000	0.963	0.722	1.000	0.050	12.26%	0.00%	
2		5	0.977	0.924	1.000	1.000	0.903	1.000	0.019	4.32%	-6.46%	
4		5	0.955	0.904	1.000	0.963	0.889	1.000	0.018	4.23%	-4.04%	
9		5	0.988	0.963	1.000	1.000	0.954	1.000	0.009	2.03%	-7.67%	
18		5	0.986	0.962	1.000	1.000	0.963	1.000	0.009	1.94%	-7.47%	
35		5	0.981	0.950	1.000	1.000	0.954	1.000	0.011	2.58%	-6.96%	
67.2		5	0.956	0.919	0.994	0.949	0.921	1.000	0.014	3.19%	-4.24%	

Angular (Corr	ngular (Corrected) Transformed Summary												
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect		
0	ВС	5	1.330	1.090	1.570	1.380	1.020	1.540	0.087	14.71%	0.00%		
2		5	1.460	1.310	1.610	1.540	1.250	1.540	0.055	8.45%	-9.87%		
4		5	1.380	1.240	1.510	1.380	1.230	1.540	0.049	7.87%	-3.68%		
9		5	1.480	1.380	1.580	1.540	1.350	1.540	0.036	5.46%	-11.65%		
18		5	1.480	1.370	1.580	1.540	1.380	1.540	0.038	5.70%	-11.06%		
35		5	1.460	1.340	1.590	1.540	1.350	1.540	0.045	6.84%	-10.17%		
67.2		5	1.380	1.260	1.500	1.340	1.290	1.540	0.044	7.11%	-3.76%		

Report Date: Test Code/ID: 06 Jan-23 11:01 (p 6 of 6) 2211-S332 / 00-7250-7607


Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 17-4497-2337 Endpoint: Survival Rate CETIS Version: CETISv2.1.2

Analyzed: 06 Jan-23 11:00 Analysis: Parametric-Control vs Treatments Status Level: 1

Edit Date: 06 Jan-23 10:54 MD5 Hash: F4F72CB7E06B7C017E4118C577E07F98 Editor ID: 007-926-968-0

Report Date: Test Code/ID:

Editor ID:

06 Jan-23 11:01 (p 1 of 3)

2211-S332 / 00-7250-7607

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 03-9255-2551 Analyzed:

06 Jan-23 11:00

Endpoint: Combined Development Rate Analysis: Linear Interpolation (ICPIN)

CETIS Version: Status Level:

007-926-968-0

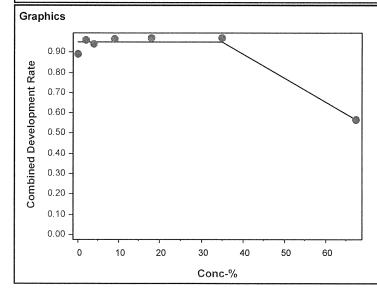
CETISv2.1.2

Edit Date: 06 Jan-23 10:54

Linear Interpolation Options

MD5 Hash: EFFDC09D775D17F9977D6F6E34552561

X Transform Y Transform Seed Resamples Exp 95% CL


Linear Linear 1178517 1000 Two-Point Interpolation Yes

Point Estimates

Level % 95% LCL 95% UCL Tox Units 95% LCL 95% UCL

EC25 55 52.4 58 1.8 1.7 1.9 EC50 >67.2 <1.5

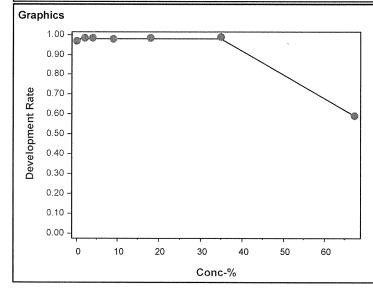
Combined De	velopment Ra	te Summary				Isotonic Variate					
Conc-%	Code Count			Median	Min	Max	CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	ВС	5	0.890	0.931	0.690	0.973	12.92%	0.00%	971/1090	0.949	0.00%
2		5	0.959	0.973	0.884	0.987	4.43%	-7.74%	1076/1121	0.949	0.00%
4		5	0.938	0.944	0.875	0.987	4.28%	-5.40%	1027/1094	0.949	0.00%
9		5	0.966	0.974	0.931	0.982	2.13%	-8.55%	1062/1099	0.949	0.00%
18		5	0.968	0.978	0.931	0.996	2.69%	-8.78%	1099/1134	0.949	0.00%
35		5	0.970	0.982	0.940	0.996	2.85%	-8.94%	1072/1105	0.949	0.00%
67.2		5	0.567	0.569	0.502	0.620	7.56%	36.28%	613/1081	0.567	40.25%

Report Date: Test Code/ID: 06 Jan-23 11:01 (p 2 of 3) 2211-S332 / 00-7250-7607

Bivalve Larval Survival and Development Test Nautilus Environmental (CA)

Analysis ID: 02-1155-3168 Endpoint: Development Rate **CETIS Version:** CETISv2.1.2 Analyzed: 06 Jan-23 11:00 Analysis: Linear Interpolation (ICPIN) Status Level:

Edit Date: 06 Jan-23 10:54 MD5 Hash: 6E4EA53C951191645760F53DD80B8235 Editor ID: 007-926-968-0


Linear Interpolation Options

X Transform Y Transform Seed Resamples Exp 95% CL Linear Linear 1697317 1000 Two-Point Interpolation Yes

Point Estimates

Level % 95% LCL 95% UCL Tox Units 95% LCL 95% UCL EC25 55.4 52 59.1 1.8 1.7 1.9 EC50 >67.2 <1.5

Development	Rate Summar	y			Calculate	ed Variate(A	VB)			Isoto	nic Variate
Conc-%	Code	Count	Mean	Median	Min	Max	CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	ВС	5	0.969	0.973	0.955	0.976	0.91%	0.00%	971/1001	0.980	0.00%
2		5	0.982	0.983	0.973	0.987	0.57%	-1.28%	1076/1096	0.980	0.00%
4		5	0.983	0.984	0.976	0.987	0.45%	-1.39%	1027/1045	0.980	0.00%
9		5	0.978	0.977	0.974	0.982	0.35%	-0.90%	1062/1086	0.980	0.00%
18		5	0.982	0.983	0.966	0.996	1.10%	-1.29%	1099/1119	0.980	0.00%
35		5	0.988	0.985	0.982	0.996	0.55%	-1.92%	1072/1085	0.980	0.00%
67.2		5	0.594	0.608	0.502	0.654	9.58%	38.71%	613/1034	0.593	39.49%

Analyst: #() QA: [[a]23

Report Date:

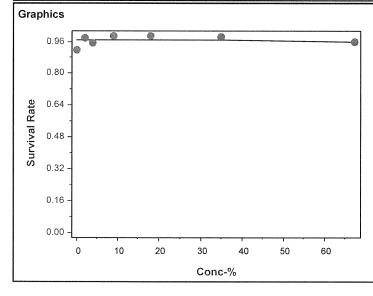
06 Jan-23 11:01 (p 3 of 3) 2211-S332 / 00-7250-7607

Test Code/ID:

Bivalve Larval Survival and Development Test Nautilus Environmental (CA)

Analysis ID: 01-0736-3836 Endpoint: Survival Rate CETISv2.1.2 **CETIS Version:** Analyzed: 06 Jan-23 11:00 Analysis: Linear Interpolation (ICPIN) Status Level:

Edit Date: 06 Jan-23 10:54 MD5 Hash: F4F72CB7E06B7C017E4118C577E07F98 Editor ID: 007-926-968-0


Linear Interpolation Options

X Transform Y Transform Seed Resamples Exp 95% CL Method Linear Linear 1425004 1000 Yes Two-Point Interpolation

Point Estimates

Level % 95% LCL 95% UCL Tox Units 95% LCL 95% UCL EC25 >67.2 <1.5 EC50 >67.2 <1.5

Survival Rate	Summary				Calculate			Isoto	nic Variate		
Conc-%	Code	Count	Mean	Median	Min	Max	CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	ВС	5	0.918	0.963	0.722	1.000	12.26%	0.00%	991/1080	0.967	0.00%
2		5	0.977	1.000	0.903	1.000	4.32%	-6.46%	1055/1080	0.967	0.00%
4		5	0.955	0.963	0.889	1.000	4.23%	-4.04%	1031/1080	0.967	0.00%
9		5	0.988	1.000	0.954	1.000	2.03%	-7.67%	1067/1080	0.967	0.00%
18		5	0.986	1.000	0.963	1.000	1.94%	-7.47%	1065/1080	0.967	0.00%
35		5	0.981	1.000	0.954	1.000	2.58%	-6.96%	1060/1080	0.967	0.00%
67.2		5	0.956	0.949	0.921	1.000	3.19%	-4.24%	1033/1080	0.956	1.14%

Report Date: Test Code/ID: ລາ 29 Nov-22 15:54 (p 1 of 1) 45260D7 / 00-7250-7607

Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

Start Date:30 Nov-22Species:Mytilus galloprovincialisSample Code:22- [4 5 6]End Date:02 Dec-22Protocol:EPA/600/R-95/136 (1995)Sample Source:JacobsSample Date:29 Nov-22Material:Effluent SampleSample Station:Wyckoff

				Initial	Final	T Gampie			Jampie Station. Wyckon
Conc-%	Code	Rep	Pos 31	Density	Density	# Counted		Asas	Notes
	1		32			208	201	m	12/27/22
	-		33			206	203		
			34			195	191		
	-					717	209	/	
			35			230	229		
			36			229	223		
	-		37			156	149		
	-		38			725	219		
			39			230	227	1	
			40			222	220	k	
			41			211	206	MM	12/28/22
			42			221	216		
			43			338	237		
			44			192	189		
			45			225	221		
			46			233	279		
			47			198	195		
			48			231	226		
			49			208	201		
			50			208 208	201 183 [13]		
PART 1980 1980 1980 1980 1980 1980 1980 1980			51			200	195		
			52			226	220		
			53			235	232		
			54			209	204		
			55			208	204		
			56			209	206		
			57			203	203		
			58			712	7.00		
			59		· ·	7 will	+5 × 10 48)	
			60			200 Br	164 134	3) +	
			61			717	712		
			62			2060	168176		
			63			206 (8)	2017		
			64			207	204		
			65				201		
			66			221	217		
			67						
			68			14 3 igg	202)	
			69			229	12 5		
			70				225	1	
	· Cud v					199	197	V	

A alguminization Balam 1/5/23

CETIS Test Data Worksheet

Report Date: Test Code/ID: スペリ Nov-22 15:54 (p 1 of 1) 45260D7 / 00-7250-7607

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Start Date:30 Nov-22Species:Mytilus galloprovincialisSample Code:22- 1486End Date:02 Dec-22Protocol:EPA/600/R-95/136 (1995)Sample Source:JacobsSample Date:29 Nov-22Material:Effluent SampleSample Station:Wyckoff

Conc-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	ВС	1	41	•		221	216	EL 12/6/22
0	вс	2	49					
0	ВС	3	51					
0	ВС	4	52					
0	вс	5	37					
0	LC	1	70			205	203	
0	LC	2	45			10)	003	
0	LC	3	67					
0	LC	4	47					
0	LC	5	54					
2		1	38			229	223	
2		2	69				00)	
2		3	34					
2		4	33					
2		5	53					
4		1	57			208	202	
4		2	64					
4		3	44					
4		4	55					
4		5	39					
9		1	58			703	199	
9		2	65					
9		3	61					
9		4	42					
9		5	36					
18		1	43			225	775	
18		2	48					
18		3	56					
18		4	31					
18		5	46					
35		1	40			228	222	
35		2	66	,	- CAN SERVICE TO THE SERVICE AND ASSESSED.			
35		3	32					
35		4	63					
35		5	35					
72.5 <i>(</i> 4		1	59			220	121	
72/5		2	62			-		
72.5		3	50					
72.5		4	68					
72.5	and a contract of the contract	5	60					

QC 2

@OUTACS 16/23

Analyst: HH

67.2%

Marine Chronic Bioassay

Water Quality Measurements

	011101110	
DM-014		

Client: JACOBS Sample ID: Wyckoff

Test Species: M. galloprovincialis Start Date/Time: (\130/27 \1655

Sample Log No.: 22- 1486

1530 End Date/Time: 12/2/22

Test No.: 2211-5332

Concentration (% sample)		Salinity (ppt)		T	emperatu (°C)	ire	Diss	solved Ox (mg/L)	ygen		pH (pH units	
(0	24	48	0	24	48	0	24	48	0	24	48
Lab Control	30.5	30.4	30.3	15.1	14.8	14,8	8.7	8.7	8.7	8.03	8.02	7.96
Brine Control	30.6	30-3	30.3	16.0	14.6	14.6	7.9	8.6	8.7	8.09	8.05	7.97
2	30.4	30-4	30.6	15.6	14.6	14.5	8.7	8.7	8.7	801	8.00	7.97
4	30.5	36.6	30-6	15.4	14.7	14.6	8.7	8.6	8.7	7.98	7.99	7.98
9	30.5	30.5	30.5	15.3	14.7	14.6	8.7	8.6	8.7	7.91	7.98	8.00
18	30.5	30.5	30.5	15.1	14.9	14.7	8.6	8.5	8.6	7.80	7.95	8.04
35	30.3	30.5	30.6	14.1	14.7	14.5	8.6	8.5	8.7	7.67	7.99	8.12
78-67.2	30.3	30.3	30.3	14.1	14.8	14.7	8.0	8.3	8.6	7.57	7.98	8.17
Q18 chins					"							
												.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Technician Initials:	WQ Readings: 24 48 Dilutions made by: 25 -	Environmental Chamber:
Comments:	0 hrs:	
	24 hrs: 6 6 pr 11/30/172	
QC Check:	A15 1/6/23	Final Review: BO 11912

Marine Chronic Bioassay	M	arine	Chro	nic	Bioas	ssav
-------------------------	---	-------	------	-----	-------	------

DC-010

Brine Dilution Worksheet

Pro	je	ct:
-----	----	-----

JACOBS

Analyst: RT

Sample ID:

Wyckoff

Test Date: 11/30/2022

Test No:

2211-5332

Test Type: Mussel Development

Salinity of Effluent

1.2

Salinity of Brine

89.1

Date of Brine used: 10/11/2022

Target Salinity

30

Alkalinity of Brine Control: \\\7\ mg/L as CaCO3

Test Dilution Volume

250

Effluent

Brine Control

Salinity Adjustment Factor:

(TS - SE)/(SB - TS) =

0.49

0.51

TS = target salinity

SE = salinity of effluent

SB = salinity of brine

Concentration %	Effluent Volume (ml)	Salinity Adjustment Factor	Brine Volume (ml)	Dilute to: (ml)
Control	NA	NA	NA	250
2	5.0	0.49	2.4	250
4	10.0	0.49	4.9	250
9	22.5	0.49	11.0	250
18	45.0	0.49	21.9	250
35	87.5	0.49	42.6	250
67.2	168.1	0.49	81.9	250

	DI Volume			
Brine Control	161.4	0.51	81.9	250

Total Br	ine Volume	Required ((ml):	246.7

QC Check: ACS V6/23

Final Review: 19/23

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120

Marine Chronic Bioassay DM-013

Larval Development Worksheet

	- 1 / 1 m + 1 1/1 n
Client/Sample:	Jacobs/ Lyckoff tayle Harbor COWT
Test No.:	2211-5332
Test Species:	Mytilus galloprovincialis
Animal Source/Bato	ch Tank: M-DZP 6A+6B
Date Received:	In/20/22
Test Chambers:	30 mL glass shell vials
Sample Volume:	10 mL

Start Date/Time:	11/30/22	1655	
End Date/Time:	12/2/22	1530	
echnician Initials	DI		

Spawn Information

First Gamete Release Time: 1420

Sex	Number Spawning
Male	2
Female	4+

Gamete Selection

Guillott Goldstion		
Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)
Male	1.2	good desity, goodnothity
Female 1	2	good dessity, orange, mostly round
Female 2	4	good desity, ple crange mostly and
Female 3	All and the second seco	7 7 7

Egg Fertilization Time: 1500

Stock(s) chosen for testing:

Embryo Stock Selection

Stock Number	% of embryos at 2-cell division stage
Female 1	99
Female 2	99
Female 3	

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos

Number Counted:

Mean 14.6 x 50 = 730 embryos/ml

Initial Density: 730 = 2.4 (dilution factor) Desired Final Density: 300

(to inoculate with 0.5 ml)

Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

Time Zero Control Counts

TØ Vial No.	No. Dividing	Total	% Dividing	Mean % Dividing
TØ A	7.18	218	(00)	
TØ B	7.70	220	100	
TØ C	207	207	(00)	۸
TØ D	203	203	100	100
TØ E	210	216	100	
TØ F	220	779	100	
▽-	711			

48-h QC: 203 = 98.1%

Comments:

QC Check:

5 1/6/23

Final Review: BO 19/23

Appendix B
Sample Check-In Information

Enthalpy Analytical 4340 Vandever Avenue San Diego, CA 92120

Additional Comments:

QC Check: ACS 1/6/23

Client:	Salobs		
Sample ID:	Wy ckott	Eagle	Harbor GWTP
Test ID No(s).:	22/1-5332	7	The state of the s

Sample (A, B, C)	A			
Log-in No. (22-xxxx)	1.07			
Sample Collection Date & Time		TO TO THE RESERVE OF THE STATE		
Sample Receipt Date & Time:				
Number of Containers & Container Type:				
Approx. Total Volume Received (L):				
Check-in Temperature (°C)	3.2			
Temperature OK? ¹		Y N	YN	YN
DO (mg/L)	6.8	***************************************		
pH (units)	7.53			
Conductivity (µS/cm)	2200	1977 - 1980		
Salinity (ppt)				
Alkalinity (mg/L) ²	342			
Hardness (mg/L) ^{2, 3}	288			
Total Chlorine (mg/L)	0.04			
Technician Initials	OR	Control Street Control		
Additional Control? Y N	Alkalinity: 105	Hardness or	r Salinity: 30 pt	Other:
est Performed:	Control/Dilution W	ater: 8:2 / Lal	b SW / Lab ART	Other:
			r Salinity:	
Additional Control? Y N	****	Alkalinity:	Hardness or S	Salinity:
est Performed:				Other:
	Alkalinity:	Hardness or	r Salinity:	
Additional Control? Y N	WENTERSON AND ADMINISTRATION AND	Alkalinity:	Hardness or S	Salinity:
Additional Control? Y N Notes: 1 Temperature of sample should	_			-

Sample Check-In Information DC-005

Coloxless, C			
COC Complete (Y/N)?			
Filtration? Y (N)	1		
iltration? Y (N)	C)		
Pore Size:	<u>C)</u>		
Organisms	or	Debris	
Salinity Adjustment? \		2021.0	
Test:	Source:	Tarq	et ppt:
Test:	Source:		et ppt:
Test:	Source:	Targ	et ppt:
H Adjustment? Y	N)		
	A	В	С
Initial pH:			
Amount of HCI added:			
Final pH:			
I ₂ Adjustment? Y	N/		
	A	В	С
Initial Free Cl ₂ :			
STS added:			
Fir.al Free Cl ₂ :			
ample Aeration? Y			
	A	В	С
Initial D.O.			***************************************
Duration & Rate			
Final D.O.			
leasure NH3 via test s	trip (circle o	ne)? Y	N
H3 Strip Result* A: if 6 or more, notify PM)	B:_	C:_	ARTHURAN
ubsamples for Addition	nal Chemis	try Required	YN
(NH3) Other		- •	
Tech Initials A	6×0000 B	c	annound of the same of the sam
Final Review:	V	1/9/23	

DC-001

Client: JACOBS Project: Wyckoff	•	
Test Type: Menidia Acute	Jussel Development	
DI Blank:	Test Start Date: 11/30/23	Analyst: [5] Analysis Date: 1/6/23

N x 1.22

					N x 1.22
Sample ID	Enthalpy ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)
Blank Spike (10 mg/L NH ₃),		NA	NA	9.8	12.0
Wychoff Effluent	22-1486	1//30/22	check in	7.5	9.2

Spike Check (10 mg/L NH ₃)		NA	NA	9.8	12.0
Sample Duplicate ^a	22-1486	NA NA	NA.	7.6	9,3
Sample Duplicate + Spike ^a		NA	NA	17.3	21.1
Spike Check (10 mg/L NH ₃)		NA	NA	4.8	17.0

 $\frac{Relative\ Percent\ Difference\ (RPD) = [sample]\ (mg/L)\ - [sample\ duplicate]\ (mg/L)}{[average\ ammonia]\ (mg/L)}\ \ x\ 100$

Acceptable Range: 0-20%

 $\frac{Percent\ Recovery = [spiked\ sample]\ (mg/L)\ - [sample]\ (mg/L)}{nominal\ [spike]\ (mg/L)} \quad x\ 100$

Acceptable Range: 80-120%b

QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	0.0	NA	12.0	10	NA	120
Wyckoff Efficient	4.2	9.3	21.1	10	1.1	119

	Reagent 1	Reagent 2	Test Tubes
Standard Lot Number	A2223	A2262	A2294
Comments: (5) QN ACS V6/	$\frac{2}{3}$. If the last sample listed on the datasheet is used for dup	nlicate and dunlicate + snike Of	C check
	or % recovery applies only to the blank spike. Spike rec		
^c Calculation not perf	ormed due to one or both values below the method dete	ection limit.	
HACH Ammonia Nitro	ogen Test Kit, Test 'N Tube™ Vials. Method 10031. Me	ethod Detection Limit = 0.5 mg/	'L
QC Check: ACS 1/6/23)	Final Review	v: B 1/9/23

Appendix C
Chain-of-Custody Form

Enthalpy Analytical (REGION COPY)

DateShipped: 11/29/2022 CarrierName: FedEx

AirbillNo:

Jacobs, Wyckoff-

Wyckoff Eagle Harbor GWTP 2022/WA Project Code: WEH-031R

Cooler #: 1 of 1

No: 10-112922-114833-0653

2022T10P000DD210W2LA00 Contact Name: Daniel Baca Contact Phone: 661-313-3807

Sample Identifier	CLP Sample No.	Matrix/Sampler	Coll. Method	Analysis/Turnaround (Days)	Tag/Preservative/Bottles	Location	Collection Date/Time	Sample Type
112922		Ground Water/ D. Baca	Composite	CHRTOX(8 Weeks)	N (1)	SP-11	11/29/2022 10:00	Field Sample
	MANAGEM AND							

	Shipment for Case Complete? N
Special Instructions: 2022 Q4 Sample	Samples Transferred From Chain of Custody #
Analysis Key: CHRTOX=Chronic Toxicity	

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	DIP & JACOBS	21204	7-7- Denise FASD	11/30/22	600 d
2011					

Receipt Temp: 3.2

109 # 22-1486

Appendix D
List of Qualifier Codes

Glossary of Qualifier Codes

- Q1 Temperature out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperature out of recommended range; no action taken, test terminated same day
- Q3 Sample pH adjusted to within range of 6-9 with reagent grade NaOH or HCl, as needed
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with continuous aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, partial renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set. Test results were reviewed and reported in accordance with guidance found in EPA-833-R-00-003, 2000 unless otherwise specified.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set. Test results were reviewed and reported in accordance with EPA-833-R-00-003, 2000 guidance unless otherwise specified.
- Q18 Incorrect or illegible Entry
- Q19 Miscalculation
- Q20 PMSD criteria do not apply to the test of significant toxicity (TST) analysis
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% batch <u>mortality</u> observed upon receipt and/or in holding prior to test initiation. Organisms acclimated to test conditions at Enthalpy and ultimately deemed fit to use for testing.
- Q23 Test organisms experienced a <u>temperature</u> shift greater than 3°C within 1 day or were received at a temperature greater than 3°C outside the recommended test temperature range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.
- Q24 Test organisms experienced a <u>salinity</u> shift greater than 3 ppt within 1 day or were received at a salinity greater than 3 ppt outside the recommended test salinity range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.

Version: 6/1/2021

Appendix E
Reference Toxicant Test Results

CETIS Summary Report

Report Date:

06 Jan-23 11:22 (p 1 of 3)

Test Code/ID:

221130msdv / 18-6969-8385

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

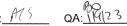
Batch ID: Start Date: Ending Date: Test Length:	05-3665-1511 30 Nov-22 16:55 02 Dec-22 15:30 47h	Test Type: Protocol: Species: Taxon:	Development-Survival EPA/600/R-95/136 (1995) Mytilus galloprovincialis	Analyst: Diluent: Brine: Source:	Diluted Natural Seawater Not Applicable M-Rep, Carlsbad, CA	Age:
Sample ID: Sample Date:	12-7426-1585 30 Nov-22	Code: Material:	221130msdv Copper chloride	Project: Source:	Reference Toxicant	
Receipt Date:	30 Nov-22	CAS (PC):		Station:	Copper Chloride	

Sample Age: 17h Client: Internal

Multiple Com	parison Summary							
Analysis ID	Endpoint	Comparison Method	✓	NOEL	LOEL	TOEL	PMSD	s
19-3880-6824	Combined Development Rat	Dunnett Multiple Comparison Test		2.5	5	3.536	9.38%	1
01-5267-8516	Development Rate	Steel Many-One Rank Sum Test		2.5	5	3.536	4.26%	1
02-7738-0819	Survival Rate	Dunnett Multiple Comparison Test		10	20	14.14	7.61%	1

Point Estimate Summary								
Endpoint	Point Estimate Method	✓	Level	μg/L	95% LCL	95% UCL	s	
Combined Development Rat	Linear Interpolation (ICPIN)		EC25	5.4	4.67	5.95	1	
			EC50	6.97	6.51	7.34		
Development Rate	Linear Interpolation (ICPIN)		EC25	5.71	5.36	6	1	
			EC50	7.17	6.92	7.4		
Survival Rate	Linear Interpolation (ICPIN)		EC25	20.1	15.1	22.7	1	
			EC50	26.8	24.9	28.5		
	Endpoint Combined Development Rat Development Rate	Endpoint Point Estimate Method Combined Development Rat Linear Interpolation (ICPIN) Development Rate Linear Interpolation (ICPIN)	Endpoint Point Estimate Method Combined Development Rat Linear Interpolation (ICPIN) Development Rate Linear Interpolation (ICPIN)	EndpointPoint Estimate Method✓ LevelCombined Development Rat Development RateLinear Interpolation (ICPIN)EC25 EC50Development RateLinear Interpolation (ICPIN)EC25 EC50Survival RateLinear Interpolation (ICPIN)EC25	EndpointPoint Estimate Method✓ Levelμg/LCombined Development Rat Development RateLinear Interpolation (ICPIN)EC25 EC505.4 EC50Development RateLinear Interpolation (ICPIN)EC25 EC505.71 EC50Survival RateLinear Interpolation (ICPIN)EC25 EC2520.1	Endpoint Point Estimate Method ✓ Level μg/L 95% LCL Combined Development Rat Linear Interpolation (ICPIN) EC25 5.4 4.67 EC50 6.97 6.51 Development Rate Linear Interpolation (ICPIN) EC25 5.71 5.36 EC50 7.17 6.92 Survival Rate Linear Interpolation (ICPIN) EC25 20.1 15.1	Endpoint Point Estimate Method ✓ Level μg/L 95% LCL 95% UCL Combined Development Rat Development Rate Linear Interpolation (ICPIN) EC25 EC50 5.4 6.97 4.67 6.51 7.34 Development Rate Linear Interpolation (ICPIN) EC25 EC50 5.71 7.17 5.36 6.92 6.92 7.4 Survival Rate Linear Interpolation (ICPIN) EC25 EC25 20.1 15.1 22.7	

Test Acceptability			TAC Limits				
Analysis ID	Endpoint	Attribute	Test Stat	Lower	Upper	Overlap	Decision
01-5267-8516	Development Rate	Control Resp	0.968	0.9	<<	Yes	Passes Criteria
04-3978-8699	Development Rate	Control Resp	0.968	0.9	<<	Yes	Passes Criteria
02-7738-0819	Survival Rate	Control Resp	0.924	0.5	<<	Yes	Passes Criteria
20-7306-6373	Survival Rate	Control Resp	0.924	0.5	<<	Yes	Passes Criteria
19-3880-6824	Combined Development Rat	PMSD	0.0938	<<	0.25	No	Passes Criteria


Report Date: Test Code/ID:

06 Jan-23 11:22 (p 2 of 3) 221130msdv / 18-6969-8385

Bivalve Larval Survival and Development Test	Nautilus Environmental (CA)

Combined Deve	elopment Ra	te Summan	<i>I</i>								***************************************
Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	LC	5	0.894	0.806	0.983	0.815	0.972	0.032	0.071	7.98%	0.00%
2.5		5	0.919	0.875	0.962	0.875	0.972	0.016	0.035	3.82%	-2.72%
5		5	0.739	0.649	0.829	0.639	0.838	0.033	0.073	9.83%	17.37%
10		5	0.015	-0.020	0.050	0.000	0.065	0.013	0.028	190.60%	98.34%
20		5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	***	100.00°
40		5	0.000	0.000	0.000	0.000	0.000	0.000	0.000		100.009
Development R	ate Summar	у									
Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0	LC	5	0.968	0.963	0.972	0.962	0.972	0.002	0.004	0.41%	0.00%
2.5		5	0.971	0.958	0.984	0.959	0.985	0.005	0.011	1.09%	-0.32%
5		5	0.843	0.776	0.910	0.767	0.905	0.024	0.054	6.43%	12.87%
10		5	0.017	-0.024	0.059	0.000	0.077	0.015	0.033	193.67%	98.22%
20		5	0.000	0.000	0.000	0.000	0.000	0.000	0.000		100.009
40		5	0.000	0.000	0.000	0.000	0.000	0.000	0.000		100.009
Survival Rate S	ummary										
Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0	LC	5	0.924	0.835	1.010	0.847	1.000	0.032	0.072	7.75%	0.00%
2.5		5	0.946	0.904	0.989	0.912	1.000	0.015	0.034	3.62%	-2.40%
5		5	0.876	0.807	0.945	0.824	0.944	0.025	0.055	6.32%	5.21%
10		5	0.853	0.776	0.930	0.792	0.954	0.028	0.062	7.28%	7.72%
20		5	0.706	0.616	0.795	0.616	0.815	0.032	0.072	10.19%	23.65%
40		5	0.003	-0.002	0.008	0.000	0.009	0.002	0.004	149.07%	99.70%
Combined Deve	elopment Ra	te Detail					ME)5: 484B892	2BF9AD4629	82D390EF0	A4C2EB
Conc-µg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	LC	0.972	0.966	0.870	0.815	0.847					
2.5		0.917	0.907	0.921	0.875	0.972					
5		0.838	0.722	0.769	0.639	0.727					
10		0.065	0.009	0.000	0.000	0.000					
20		0.000	0.000	0.000	0.000	0.000					
40		0.000	0.000	0.000	0.000	0.000					
Development R	ate Detail	***************************************	***************************************				MC)5: ED5C13	018A8C2282	21C7452106	EF2D6B
Conc-µg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	LC	0.972	0.966	0.969	0.962	0.968		***************************************			4-11/2-11-1
2.5		0.985	0.975	0.961	0.959	0.972					
5		0.905	0.876	0.814	0.767	0.853					
10		0.077	0.010	0.000	0.000	0.000					
20 40		0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000					
Survival Rate D	etail						R A IT)5· 02EEE0)R1EE20 <i>EE</i> 4	3DAEEA DO	RARTING
Survival Rate D Conc-µg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	IVIL	05: 93FFE20	JD IEFZ8554	SUAFFABOS	DWD / DU8
0 0	LC	1.000	1.000	0.898	0.847	0.875		, , , , , , , , , , , , , , , , , , , ,			
	LO										
2.5		0.931	0.931	0.958	0.912	1.000					
5		0.926	0.824	0.944	0.833	0.852					
10		0.847	0.954	0.856	0.792	0.815					
20		0.616	0.718	0.685	0.815	0.694					
40		0.000	0.009	0.005	0.000	0.000					

Analyst: # QA: 14/23

Report Date: Test Code/ID: 06 Jan-23 11:22 (p 3 of 3) 221130msdv / 18-6969-8385

Nautilus Environmental (CA)

Bivalve Larval Survival and Development T		
	206	

Combined Dave	Janmant Bat	to Dinomials		***************************************		51114 A. 11 A.			
Combined Deve	-				_				
Conc-µg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	POTOTE NEW YORK AND ADDRESS OF THE POTOTE ADDRES		Management
0	LC	211/217	228/236	188/216	176/216	183/216			
2.5		198/216	196/216	199/216	189/216	210/216			
5		181/216	156/216	166/216	138/216	157/216			
10		14/216	2/216	0/216	0/216	0/216			
20		0/216	0/216	0/216	0/216	0/216			
40		0/216	0/216	0/216	0/216	0/216			
Development R	ate Binomial	s		······································				_	Management of the second of th
Conc-µg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
0	LC	211/217	228/236	188/194	176/183	183/189		-	
2.5		198/201	196/201	199/207	189/197	210/216			
5		181/200	156/178	166/204	138/180	157/184			
10		14/183	2/206	0/185	0/171	0/176			
20		0/133	0/155	0/148	0/176	0/150			
40		0/1	0/2	0/1	0/1	0/1			
Survival Rate B	inomials								***************************************
Conc-µg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
0	LC	216/216	216/216	194/216	183/216	189/216			
2.5		201/216	201/216	207/216	197/216	216/216			
5		200/216	178/216	204/216	180/216	184/216			
10		183/216	206/216	185/216	171/216	176/216			
20		133/216	155/216	148/216	176/216	150/216			
40		0/216	2/216	1/216	0/216	0/216			

Report Date: Test Code/ID:

06 Jan-23 11:22 (p 1 of 6) 221130msdv / 18-6969-8385

Bivalve Larval Survival and Development Test Nautilus Environmental (CA)

CETISv2.1.2 **Analysis ID**: 19-3880-6824 Endpoint: Combined Development Rate **CETIS Version:**

Analyzed: 06 Jan-23 11:19 Analysis: Parametric-Control vs Treatments Status Level: 1

Edit Date: 06 Jan-23 11:18 007-926-968-0

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	Tox Units	MSDu	PMSD
Angular (Corrected)	C > T	2.5	5	3.536		0.0839	9.38%

Dunnett	Multiple	Comparison	Toct
Dunnett	munipie	Comparison	rest

Control	vs	Conc-µg/L	df	Test Stat	Critical	MSD	P-Type	P-Value	Decision(α:5%)
Lab Control		2.5	8	-0.492	2.23	0.137	CDF	0.8898	Non-Significant Effect
		5*	8	3.57	2.23	0.137	CDF	0.0035	Significant Effect
		10*	8	18.9	2.23	0.137	CDF	<1.0E-05	Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	4.74928	1.58309	3	167	<1.0E-05	Significant Effect
Error	0.151972	0.0094983	16			
Total	4.90125		19			

ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	1.4	11.3	0.7066	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.911	0.866	0.0673	Normal Distribution

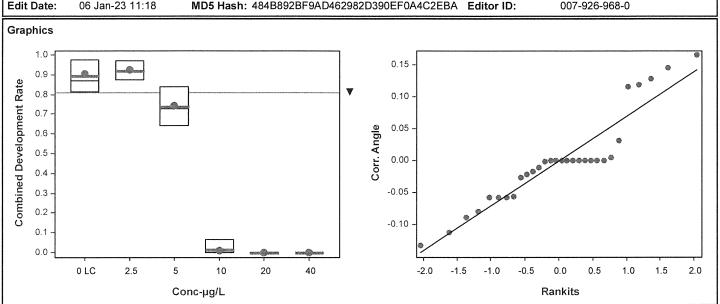
Combined Development Rate Summary

Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	LC	5	0.894	0.806	0.983	0.870	0.815	0.972	0.032	7.98%	0.00%
2.5		5	0.919	0.875	0.962	0.917	0.875	0.972	0.016	3.82%	-2.72%
5		5	0.739	0.649	0.829	0.727	0.639	0.838	0.033	9.83%	17.37%
10		5	0.015	0.000	0.050	0.000	0.000	0.065	0.013	190.60%	98.34%
20		5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	***	100.00%
40		5	0.000	0.000	0.000	0.000	0.000	0.000	0.000		100.00%

Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	LC	5	1.260	1.100	1.420	1.200	1.130	1.400	0.057	10.21%	0.00%
2.5		5	1.290	1.200	1.380	1.280	1.210	1.400	0.032	5.53%	-2.41%
5		5	1.040	0.933	1.140	1.020	0.926	1.160	0.038	8.11%	17.48%
10		5	0.091	-0.029	0.211	0.034	0.034	0.257	0.043	106.14%	92.75%
20		5	0.034	0.034	0.034	0.034	0.034	0.034	0.000	0.00%	97.29%
40		5	0.034	0.034	0.034	0.034	0.034	0.034	0.000	0.00%	97.29%

Report Date: Test Code/ID: 06 Jan-23 11:22 (p 2 of 6)

D: 221130msdv / 18-6969-8385


Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 19-3880-6824 Endpoint: Combined Development Rate CETIS Version: CETISv2.1.2

 Analyzed:
 06 Jan-23 11:19
 Analysis:
 Parametric-Control vs Treatments
 Status Level:
 1

 Edit Date:
 06 Jan-23 11:18
 MD5 Hash:
 484B892BF9AD462982D390EF0A4C2EBA
 Editor ID:
 007-926-968-0

Report Date:

06 Jan-23 11:22 (p 3 of 6)

Test Code/ID:

221130msdv / 18-6969-8385

								Test Co	ode/ID:	22113	0msdv / 18	-6969-838
Bivalve Larv	al Sur	vival and D	Developmen	t Test						Nautilus	Environm	ental (CA)
Analysis ID: Analyzed: Edit Date:	06 J	267-8516 an-23 11:19 an-23 11:18	Anal	I ysis: N or	•	ate Control vs T C22821C74		Stati	IS Version: us Level: or ID:	CETISv2. 1 007-926-9		
Data Transfo	orm		Alt Hyp				NOEL	LOEL	TOEL	Tox Units	MSDu	PMSD
Angular (Cor	rected)		C > T				2.5	5	3.536		0.0412	4.26%
Steel Many-0	One Ra	ank Sum Te	est									
Control	vs	Conc-µg/	L df	Test Stat	Critical	Ties	P-Type	P-Value	Decision(α:5%)		
Lab Control		2.5	8	29	17	0	CDF	0.8495	Non-Signif	icant Effect		
		5*	8	15	17	0	CDF	0.0123	Significant	ignificant Effect		
		10*	8	15	17	0	CDF	0.0123	Significant Effect			
ANOVA Tabl	e											
Source					are	DF	F Stat	P-Value	Decision(α:5%)		
Between		5.76508		1.92169		3	433	<1.0E-05	Significant Effect			
Error		0.0710671	1	0.0044417	•	16						
Total		5.83615				19	_					
ANOVA Assu	ımptio	ns Tests										
Attribute		Test				Test Stat	Critical	P-Value	Decision(α:1%)		
Variance		Bartlett Ed	quality of Var	riance Test		14.1	11.3	0.0027	Unequal V	ariances		
Distribution		Shapiro-W	Vilk W Norma	ality Test		0.901	0.866	0.0432	Normal Dis	stribution		
Developmen	t Rate	Summary										
Conc-µg/L		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0		LC	5	0.968	0.963	0.972	0.968	0.962	0.972	0.002	0.41%	0.00%
2.5			5	0.971	0.958	0.984	0.972	0.959	0.985	0.005	1.09%	-0.32%
5			5	0.843	0.776	0.910	0.853	0.767	0.905	0.024	6.43%	12.87%
10			5	0.017	0.000	0.059	0.000	0.000	0.077	0.015	193.67%	98.22%
20			5	0.000	0.000	0.000	0.000	0.000	0.000	0.000		100.00%
40			5	0.000	0.000	0.000	0.000	0.000	0.000	0.000		100.00%
Angular (Co	rrected	i) Transfor	med Summ	ary								
Conc-µg/L		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect

0.00%

-0.80% 15.99%

92.92%

97.08%

64.66%

0.79%

2.33%

6.37%

5.01%

14.77%

106.87%

5

5

5

5

5

5

1.390

1.400

1.170

0.098

0.041

0.491

1.380

1.360

1.080

-0.032

0.038

0.401

1.400

1.440

1.260

0.229

0.043

0.581

1.390

1.400

1.180

0.038

0.041

0.524

1.370

1.370

1.070

0.037

0.038

0.361

1.400

1.450

1.260

0.280

0.043

0.524

0.005

0.015

0.033

0.047

0.001

0.032

LC

2.5

5

10

20

40

Report Date: Test Code/ID:

Rankits

06 Jan-23 11:22 (p 4 of 6) 221130msdv / 18-6969-8385

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 01-5267-8516 Endpoint: Development Rate CETIS Version: CETISv2.1.2

Conc-µg/L

Analyzed: 06 Jan-23 11:19 Analysis: Nonparametric-Control vs Treatments Status Level: 1 **Edit Date:** MD5 Hash: ED5C13018A8C22821C7452106EF2D6B1 Editor ID: 007-926-968-0 06 Jan-23 11:18 Graphics 1.0 0.9 0.15 0.8 0.10 Development Rate 0.7 Corr. Angle 0.6 0.05 0.5 0.00 0.4 0.3 -0.05 0.2 0.1 -0.10 0.0 0 LC 2.5 5 10 20 40 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0

Report Date: Test Code/ID:

06 Jan-23 11:22 (p 5 of 6) 221130msdv / 18-6969-8385

Nautilus Environmental (CA)

Bivalve Larval Survival and Development Test

Endpoint: Survival Rate

CETIS Version: CETISv2.1.2

Analysis ID: 02-7738-0819 Analyzed: 06 Jan-23 11:19

Analysis: Parametric-Control vs Treatments

Status Level:

007-926-968-0

Edit Date: 06 Jan-23 11:18 MD5 Hash: 93FFE20B1EF285543D4FFAB63AB7D089 Editor ID:

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	Tox Units	MSDu	PMSD
Angular (Corrected)	C > T	10	20	14.14		0.0703	7.61%

Dunnett Mult	iple (Comparison Tes	t						
Control	vs	Conc-µg/L	df	Test Stat	Critical	MSD	P-Type	P-Value	Decision(α:5%)
Lab Control		2.5	8	-0.24	2.36	0.161	CDF	0.8944	Non-Significant Effect
		5	8	1.78	2.36	0.161	CDF	0.1460	Non-Significant Effect
		10	8	2.26	2.36	0.161	CDF	0.0616	Non-Significant Effect
		20*	8	4.98	2.36	0.161	CDF	0.0001	Significant Effect
		40*	8	18.8	2.36	0.161	CDF	<1.0E-05	Significant Effect

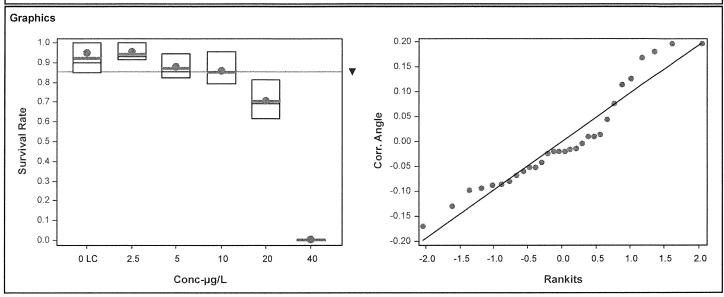
ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	6.08281	1.21656	5	104	<1.0E-05	Significant Effect
Error	0.279637	0.0116516	24			
Total	6.36245		29			

ANOVA Assu	ANOVA Assumptions Tests											
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)							
Variance	Bartlett Equality of Variance Test	10.1	15.1	0.0737	Equal Variances							
Distribution	Shapiro-Wilk W Normality Test	0.922	0.903	0.0297	Normal Distribution							

Survival Rate Summary											
Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	LC	5	0.924	0.835	1.000	0.898	0.847	1.000	0.032	7.75%	0.00%
2.5		5	0.946	0.904	0.989	0.931	0.912	1.000	0.015	3.62%	-2.40%
5		5	0.876	0.807	0.945	0.852	0.824	0.944	0.025	6.32%	5.21%
10		5	0.853	0.776	0.930	0.847	0.792	0.954	0.028	7.28%	7.72%
20		5	0.706	0.616	0.795	0.694	0.616	0.815	0.032	10.19%	23.65%
40		5	0.003	0.000	0.008	0.000	0.000	0.009	0.002	149.07%	99.70%

Angular (Corrected) Transformed Summary											
Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	LC	5	1.340	1.110	1.570	1.250	1.170	1.540	0.081	13.59%	0.00%
2.5		5	1.360	1.220	1.490	1.300	1.270	1.540	0.048	7.87%	-1.22%
5		5	1.220	1.110	1.330	1.180	1.140	1.330	0.040	7.33%	9.05%
10		5	1.190	1.060	1.310	1.170	1.100	1.350	0.045	8.44%	11.50%
20		5	1.000	0.899	1.100	0.985	0.902	1.130	0.036	8.12%	25.37%
40		5	0.053	0.018	0.088	0.034	0.034	0.096	0.013	52.96%	96.02%

Bivalve Larval Survival and Development Test


Report Date: Test Code/ID: 06 Jan-23 11:22 (p 6 of 6) 221130msdv / 18-6969-8385

Nautilus Environmental (CA)

Analysis ID: 02-7738-0819 Endpoint: Survival Rate CETIS Version: CETISv2.1.2

Analyzed: 06 Jan-23 11:19 Analysis: Parametric-Control vs Treatments Status Level: 1

Edit Date: 06 Jan-23 11:18 MD5 Hash: 93FFE20B1EF285543D4FFAB63AB7D089 Editor ID: 007-926-968-0

Report Date:

06 Jan-23 11:22 (p 1 of 3)

Test Code/ID:

221130msdv / 18-6969-8385

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 20-6599-7993 06 Jan-23 11:20 Endpoint: Combined Development Rate

CETIS Version:

Analyzed: **Edit Date:**

06 Jan-23 11:18

Analysis: Linear Interpolation (ICPIN)

Status Level:

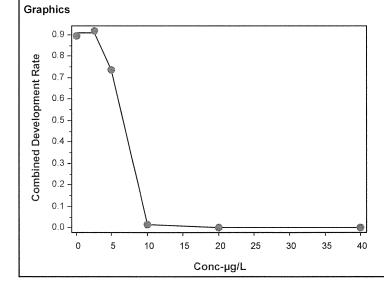
007-926-968-0

CETISv2.1.2

Linear Interpolation Options

X Transform Y Transform Seed Resamples Exp 95% CL Method

Linear 1058417 1000 Yes Two-Point Interpolation


Point Estimates

6.97

Linear

Level μg/L 95% LCL 95% UCL EC25 5.4 4.67 5.95 EC50 6.51

Combined Development Rate Summary				Calculated Variate(A/B)							Isotonic Variate	
Conc-µg/L	Code	Count	Mean	Median	Min	Max	CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect	
0	LC	5	0.894	0.870	0.815	0.972	7.98%	0.00%	986/1101	0.907	0.00%	
2.5		5	0.919	0.917	0.875	0.972	3.82%	-2.72%	992/1080	0.907	0.00%	
5		5	0.739	0.727	0.639	0.838	9.83%	17.37%	798/1080	0.739	18.52%	
10		5	0.015	0.000	0.000	0.065	190.60%	98.34%	16/1080	0.015	98.37%	
20		5	0.000	0.000	0.000	0.000		100.00%	0/1080	0.000	100.00%	
40		5	0.000	0.000	0.000	0.000		100.00%	0/1080	0.000	100.00%	

7.34

Report Date:

06 Jan-23 11:22 (p 2 of 3)

Test Code/ID:

221130msdv / 18-6969-8385

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 04-3978-8699 Analyzed: 06 Jan-23 11:20

Endpoint: Development Rate Analysis: Linear Interpolation (ICPIN) **CETIS Version:**

Status Level:

CETISv2.1.2

Edit Date: 06 Jan-23 11:18

1000

MD5 Hash: ED5C13018A8C22821C7452106EF2D6B1

Yes

Editor ID:

Linear Interpolation Options

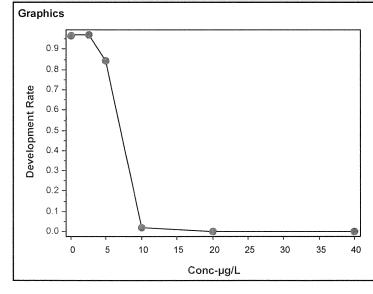
X Transform Y Transform Seed Resamples Exp 95% CL Method

1333117

Two-Point Interpolation

007-926-968-0

Point	Estim	ates
-------	--------------	------


Linear

Level	μg/L	95%	LCL	95%	UCL

Linear

EC25 5.71 5.36 6 EC50 7.17 6.92 7.4

Development R	ate Summary	Calculated Variate(A/B)							Isotonic Variate		
Conc-µg/L	Code	Count	Mean	Median	Min	Max	CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	LC	5	0.968	0.968	0.962	0.972	0.41%	0.00%	986/1019	0.969	0.00%
2.5		5	0.971	0.972	0.959	0.985	1.09%	-0.32%	992/1022	0.969	0.00%
5		5	0.843	0.853	0.767	0.905	6.43%	12.87%	798/946	0.844	12.90%
10		5	0.017	0.000	0.000	0.077	193.67%	98.22%	16/921	0.017	98.20%
20		5	0.000	0.000	0.000	0.000		100.00%	0/762	0.000	100.00%
40		5	0.000	0.000	0.000	0.000		100.00%	0/6	0.000	100.00%

Report Date:

06 Jan-23 11:22 (p 3 of 3)

Test Code/ID:

221130msdv / 18-6969-8385

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Analysis ID: 20-7306-6373

06 Jan-23 11:20

Endpoint: Survival Rate

CETIS Version: CETISv2.1.2

Analyzed: **Edit Date:**

06 Jan-23 11:18

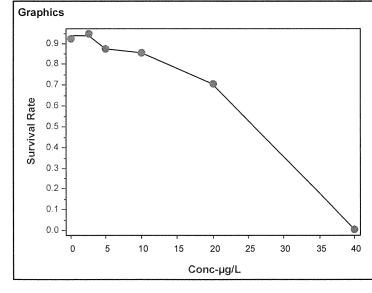
Analysis: Linear Interpolation (ICPIN) MD5 Hash: 93FFE20B1EF285543D4FFAB63AB7D089

Status Level: **Editor ID:**

007-926-968-0

Linear Interpolation Options

X Transform Y Transform Seed Resamples Exp 95% CL

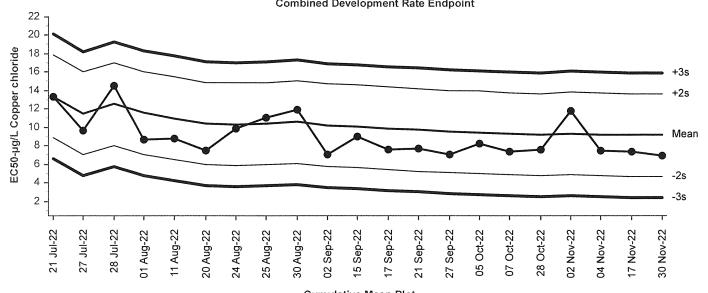

Linear Linear 430683 1000 Two-Point Interpolation

Point Estimates

Level μg/L 95% LCL 95% UCL EC25 20.1 15.1 22.7

EC50 28.5 26.8 24.9

Survival Rate S	ummary	Calculated Variate(A/B)						and the second s	Isotonic Variate		
Conc-µg/L	Code	Count	Mean	Median	Min	Max	CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	LC	5	0.924	0.898	0.847	1.000	7.75%	0.00%	998/1080	0.935	0.00%
2.5		5	0.946	0.931	0.912	1.000	3.62%	-2.40%	1022/1080	0.935	0.00%
5		5	0.876	0.852	0.824	0.944	6.32%	5.21%	946/1080	0.876	6.31%
10		5	0.853	0.847	0.792	0.954	7.28%	7.72%	921/1080	0.853	8.77%
20		5	0.706	0.694	0.616	0.815	10.19%	23.65%	762/1080	0.706	24.49%
40		5	0.003	0.000	0.000	0.009	149.07%	99.70%	3/1080	0.003	99.70%


Report Date: **CETIS QC Plot** 06 Jan-23 11:23 (1 of 1)

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Test Type: Development-Survival Organism: Mytilus galloprovincialis Copper chloride Material: EPA/600/R-95/136 (1995) Protocol: Endpoint: Combined Development Rate Source: Reference Toxicant-REF

> Bivalve Larval Survival and Development Test **Combined Development Rate Endpoint**

Cumulative Mean Plot

Mean: 9.154 Count: 20 -2s Warning Limit: -3s Action Limit: 2.43 Sigma: 2.24 CV: 24.50% +2s Warning Limit: 13.6 +3s Action Limit: 15.9

Quality Control I	Data	
-------------------	------	--

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2022	Jul	21	15:20	13.35	4.193	1.872			19-9779-3969	07-3733-9935
2			27	17:10	9.634	0.48	0.2143			10-2942-6187	02-0896-6713
3			28	16:10	14.54	5.388	2.405	(+)		12-6417-7061	20-3705-6551
4		Aug	1	14:15	8.601	-0.5526	-0.2467			13-9611-9448	10-0347-5354
5			11	17:15	8.711	-0.4431	-0.1978			00-9864-7136	07-4996-9021
6			20	13:15	7.437	-1.717	-0.7664			17-3409-3229	13-5013-5598
7			24	17:00	9.827	0.6727	0.3003			00-6269-9880	09-5721-9456
8			25	16:10	11.03	1.879	0.8387			09-4049-8245	16-6708-7113
9			30	16:00	11.87	2.72	1.214			19-7189-9086	16-5328-3209
10		Sep	2	15:50	7.006	-2.148	-0.9591			20-7743-0163	03-9271-4476
11			15	17:10	8.93	-0.2239	-0.09996			05-2639-2543	14-5316-2495
12			17	15:50	7.569	-1.585	-0.7075			01-1452-0296	11-5344-5886
13			21	14:00	7.73	-1.424	-0.6355			21-3821-2403	01-0407-9043
14			27	14:45	7.05	-2.104	-0.9392			16-5489-6261	14-2194-1742
15		Oct	5	17:55	8.255	-0.8992	-0.4014			07-3382-0760	11-3283-4631
16			7	16:50	7.327	-1.827	-0.8156			18-9536-1232	04-5872-4598
17			28	14:00	7.533	-1.621	-0.7236			15-6262-8974	16-6274-0594
18		Nov	2	15:45	11.84	2.688	1.2			00-8571-5759	02-8850-9512
19			4	14:20	7.429	-1.725	-0.77			07-4090-5456	06-1005-1310
20			17	17:15	7.395	-1.759	-0.785			10-8063-1957	09-3146-9181
21			30	16:55	6.971	-2.183	-0.9747			18-6969-8385	20-6599-7993

007-926-968-0 CETIS™ v2.1.2.3

CETIS QC PlotReport Date: 06 Jan-23 11:23 (1 of 1)

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Test Type:Development-SurvivalOrganism:Mytilus galloprovincialisMaterial:Copper chlorideProtocol:EPA/600/R-95/136 (1995)Endpoint:Development RateSource:Reference Toxicant-REF

Bivalve Larval Survival and Development Test Development Rate Endpoint 22 20 EC50-µg/L Copper chloride 18 +3s 16 14 +2s 12 10 Mean 8 6 -2s 4 -3s 2 21 Jul-22 27 Jul-22 28 Jul-22 11 Aug-22 02 Sep-22 15 Sep-22 17 Sep-22 21 Sep-22 27 Sep-22 05 Oct-22 07 Oct-22 02 Nov-22 17 Nov-22 30 Nov-22 01 Aug-22 20 Aug-22 24 Aug-22 25 Aug-22 30 Aug-22 28 Oct-22 04 Nov-22 **Cumulative Mean Plot**

 Mean:
 9.238
 Count:
 20
 -2s Warning Limit:
 4.69
 -3s Action Limit:
 2.42

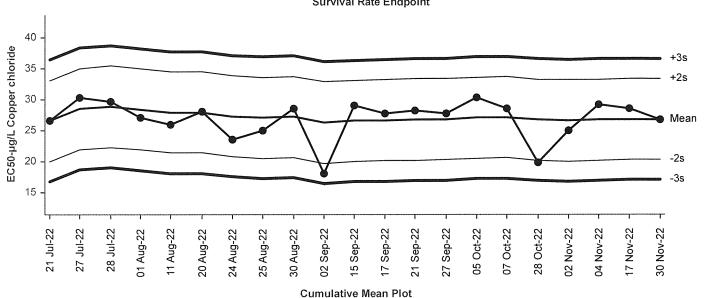
 Sigma:
 2.272
 CV:
 24.60%
 +2s Warning Limit:
 13.8
 +3s Action Limit:
 16.1

Quality	Control	Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2022	Jul	21	15:20	13.28	4.037	1.777			19-9779-3969	12-5751-9718
2			27	17:10	9.524	0.2862	0.126			10-2942-6187	20-1467-5696
3			28	16:10	14.48	5.242	2.307	(+)		12-6417-7061	16-6165-4739
4		Aug	1	14:15	8.58	-0.6582	-0.2897			13-9611-9448	13-0914-2180
5			11	17:15	9.087	-0.1506	-0.06628			00-9864-7136	10-5564-7447
6			20	13:15	7.411	-1.827	-0.8043			17-3409-3229	01-3382-1740
7			24	17:00	10.31	1.074	0.4727			00-6269-9880	18-8831-9322
8			25	16:10	11.78	2.545	1.12			09-4049-8245	09-4327-5326
9			30	16:00	11.99	2.749	1.21			19-7189-9086	10-6237-7089
10		Sep	2	15:50	7.005	-2.233	-0.9828			20-7743-0163	12-4705-1691
11			15	17:10	8.947	-0.2906	-0.1279			05-2639-2543	09-3905-5948
12			17	15:50	7.57	-1.668	-0.7342			01-1452-0296	10-4926-6934
13			21	14:00	7.915	-1.323	-0.5823			21-3821-2403	11-1198-0760
14			27	14:45	7.076	-2.162	-0.9514			16-5489-6261	06-9229-6449
15		Oct	5	17:55	8.312	-0.9261	-0.4076			07-3382-0760	16-5397-8534
16			7	16:50	7.327	-1.911	-0.8411			18-9536-1232	20-1532-2768
17			28	14:00	7.48	-1.758	-0.7738			15-6262-8974	03-0762-2274
18		Nov	2	15:45	11.84	2.607	1.147			00-8571-5759	01-8428-9056
19			4	14:20	7.429	-1.809	-0.7961			07-4090-5456	12-6999-9673
20			17	17:15	7.423	-1.815	-0.7987			10-8063-1957	16-6822-5457
21			30	16:55	7.173	-2.065	-0.9091			18-6969-8385	04-3978-8699

Analyst: MS QA: 1983

007-926-968-0 CETIS™ v2.1.2.3


Report Date: 06 Jan-23 11:23 (1 of 1) **CETIS QC Plot**

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Test Type: Development-Survival Organism: Mytilus galloprovincialis Material: Copper chloride Protocol: EPA/600/R-95/136 (1995) Endpoint: Survival Rate Reference Toxicant-REF Source:

Bivalve Larval Survival and Development Test Survival Rate Endpoint

Mean: 26.79 Count: 20 -2s Warning Limit: 20.3 -3s Action Limit: 17 Sigma: 3.269 CV: 12.20% +2s Warning Limit: 33.3 +3s Action Limit: 36.6

Quality	Contro	Data
---------	--------	------

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2022	Jul	21	15:20	26.53	-0.2622	-0.08021			19-9779-3969	06-3587-0808
2			27	17:10	30.34	3.551	1.086			10-2942-6187	08-5991-2538
3			28	16:10	29.61	2.818	0.8622			12-6417-7061	16-9619-1003
4		Aug	1	14:15	27.1	0.3112	0.09519			13-9611-9448	19-4797-3651
5			11	17:15	25.91	-0.8809	-0.2695			00-9864-7136	03-2596-2467
6			20	13:15	28.03	1.24	0.3793			17-3409-3229	00-2953-9784
7			24	17:00	23.46	-3.328	-1.018			00-6269-9880	07-4875-9471
8			25	16:10	24.98	-1.81	-0.5537			09-4049-8245	01-3678-6981
9			30	16:00	28.45	1.657	0.5068			19-7189-9086	04-7142-7490
10		Sep	2	15:50	17.97	-8.816	-2.697	(-)		20-7743-0163	07-3288-6541
11			15	17:10	29	2.207	0.6753			05-2639-2543	11-6800-1324
12			17	15:50	27.77	0.9769	0.2988			01-1452-0296	09-4499-7601
13			21	14:00	28.13	1.344	0.411			21-3821-2403	00-9005-5752
14			27	14:45	27.65	0.856	0.2618			16-5489-6261	09-9794-3011
15		Oct	5	17:55	30.31	3.521	1.077			07-3382-0760	19-5972-4820
16			7	16:50	28.44	1.65	0.5047			18-9536-1232	15-0116-3798
17			28	14:00	19.73	-7.062	-2.16	(-)		15-6262-8974	03-9777-8315
18		Nov	2	15:45	24.89	-1.903	-0.5821			00-8571-5759	08-9990-6478
19			4	14:20	29.08	2.294	0.7017			07-4090-5456	15-9684-3131
20			17	17:15	28.52	1.732	0.5298			10-8063-1957	17-0268-5735
21			30	16:55	26.77	-0.01793	-0.00549			18-6969-8385	20-7306-6373

CETIS™ v2.1.2.3 007-926-968-0

	-1 1/ 0	
Client/Sample:	Internal/Cullz	•
Test No.:	221130 nsdv	
Test Species:	Mytilus galloprovincialis	
Animal Source/Bato	h Tank: M-DER 6A+6B	
Date Received:	10/20/22	
Test Chambers:	30 mL glass shell vials	
Sample Volume:	10 mL	

Start Date/Time: 11/30/22 (656)
End Date/Time: 12/2/22 1530
Technician Initials: RT

Spawn Information

First Gamete Release Time:

 14	30

Sex	Number Spawning
Male	2
Female	4+

Gamete Selection

Gamete Selection		
Sex	Beaker Number(s)	Condition (sperm motility, egg density, color, shape, etc.)
Male	1,2	good dessity, goodnothy
Female 1	2	good descity, orange, mostly round
Female 2	4	good destry, sile crange mostly round
Female 3		7, _ 7,

Egg Fertilization Time: 1500

Stock(s) chosen for testing:

Embryo Stock Selection

Stock Number	% of embryos at 2-cell division stage
Female 1	99
Female 2	99
Female 3	

Embryo Inoculum Preparation

Target count on Sedgwick-Rafter slide for desired density is 6 embryos

Number Counted:

15	27
20	13
11	12
8	11
18	11

Mean: 14.6

Mean 14.6 x 50 = 730 embryos/ml

Initial Density: 730 =

2.4 (dilution factor)

Desired Final Density:

(to inoculate with 0.5 ml)

Prepare the embryo inoculum according to the calculated dilution factor. For example, if the dilution factor is 2.25, use 100 ml of existing stock (1 part) and 125 ml of dilution water (1.25 parts).

Time Zero Control Counts

I IIII Le	io control cot	IIII		
TØ Vial No.	No. Dividing	Total	% Dividing	Mean % Dividing
TØ A	7.18	218	(00)	
TØ B	7.70	220	100	
TØ C	207	207	(00)	2 4 4
TØ D	203	203	100	100
TØ E	2-V0	216	100	
TØ F	229	779	100	
	711			

48-h QC: 2007=98-17

Comments:

QC Check:

Acs 1/6/23

Final Review: 050 1/9/23

Report Date: Test Code/ID:

23 Nov-22 15:33 (p 1 of 1) 221130msdv / 18-6969-8385

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Start Date: 30 Nov-22 End Date: 3-90: 30-Nov-22 Species: Mytilus galloprovincialis Sample Code: 221130msdv Protocol: EPA/600/R-95/136 (1995) Sample Source: Reference Toxicant Sample Date: 30 Nov-22 Material: Copper chloride Sample Station: Copper Chloride

Conc-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes ,
			1			197 217	+85 211	LM 12-7-22
			2			171	0	
			3			111	(1)	
			4			236 133 148	208	QC: 223/230 RT
			5			133	0	OC: 0/144 RT
			6			148	Ó	
			7			201	196	
			1.8			201 183 0 +50 50 176 0	14-	QC: 21/188 FT
			9			0	Ó	
			. 10			+501 A	0	
			11			176	000	
			12			0	0	
			13			183	176	
			14			1210	2.10	
			15			0	0	
Security Control of the Control of t			16			204	166.	QC; 167/200 RT
		and an annual section of the section	17			-0/31	1957	
			18			+857194	157188	
		A THE STREET	19			189	183	
			20			2.	' A	
			21			206	2.	
			22			216/16	20	
			23			216176 185 200	0	
			24			200	181.	
			25			207	179	·
			26			201	199	
			27			201	138	
			28			197	189	
			29			178	181: 179 138 189 156	4
			30			155	0	Ů,

(A): Q16 CM 12/7/2 -

Analyst: 4 QA: A() 1/6/23

CETIS Test Data Worksheet

Report Date: Test Code/ID:

23 Nov-22 15:33 (p 1 of 1) 221130msdv / 18-6969-8385

Bivalve Larval Survival and Development Test

Nautilus Environmental (CA)

Start Date: 30 Nov-22 End Date: \$000 Nov-22 Sample Date: 30 Nov-22

Species: Mytilus galloprovincialis
Protocol: EPA/600/R-95/136 (1995)
Material: Copper chloride

Sample Code: 221130msdv
Sample Source: Reference Toxicant
Sample Station: Copper Chloride

Conc-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	LC	1	1			209	207	E4 12/6/22
0	LC	2	4					
0	LC	3	18					
0	LC	4	13	,				
0	LC	5	19				1	
2.5		1	26			207	700	
2.5		2	7					
2.5		3	25				1	
2.5		4	28					
2.5		5	14					
5		1	24			209	194	
5		2	29				p. 100 mm	
5		3	16					
5		4	27					
5		5	17					
10		1	8			211	18	
10		2	21				1.3	
10		3	23					
10		4	2					
10		5	11					
20		1	5		16	168	allo	
20		2	30					
20		3	6					
20		4	22					
20		5	10					
40		1	9			0	0	
40		2	20					
40		3	3					
40		4	12					
40		5	15					

QC: RT

@ Q18 ACS 1/6/23

Marine Chronic Bioassay

Water Quality Measurements

111-01-4		
	Client: Internal	

Sample ID: CuCl₂

Test No.: 221/30 msdv

Test Species: M. galloprovincialis
Start Date/Time: \\/30/22 \\655

End Date/Time: 12/2/22 1530

Concentration (μg/L)		Salinity (ppt)		T	Temperature (°C)		Dissolved Oxygen (mg/L)			pH (pH units)		
	0	24	48	0	24	48	0	24	48	0	24	48
Lab Control	30.5	30.3	30.3	814.9	15.0	15-1	8.8	8-8	8.8	7.95	7.96	7.92
2.5	30.8	30.6	30-6	14.7	14.7	14.7	8.9	8.8	89	7.98	7.99	7.93
5	30.7	30.4	30.6	14.6	14.6	14.6	8.8	6.8	8.9	8.00	8.00	7.94
10	30.7	30.7	30-7	14.7	14.7	14.7	8.7	8.7	8-8	8.02	8.00	7.95
20	30.7	30.7	30.6	14.7	14.7	14.7	8.8	8.7	8.8	8.02	8.01	7.96
40	30.7	30.6	20.6	14.7	14.7	14.6	8.7	8.7	8-8	8.03	8.01	7.96

	_	0	24	48	High conc. made (μg/L):	40	ĺ
Technician Initials:	WQ Readings:	RT	KR	6m	Vol. Cu stock added (mL):	22	1
	Dilutions made by:	RT			Final Volume (mL):	500	
Environmental Cham	nber:		-		Cu stock concentration (μg/L):[9200	
Comments:	0 hrs: (R) (Q) 4 K	1130122	,				
	24 hrs:						
	48 hrs:	······································					
QC Check:	ACS 1/6/23				Final Review:	B01/9/23	

Acute Toxicity Testing Results for Wyckoff Eagle Harbor Groundwater Treatment Plant

Monitoring Period: December 2022

Prepared for: Jacobs

1100 112th Ave NE Suite 500

Bellevue, WA, 98004

Prepared by: Enthalpy Analytical

4340 Vandever Avenue San Diego, CA 92120

(858) 587-7333

Date Submitted: January 12, 2023

Data Quality Assurance:

- Enthalpy Analytical is accredited in accordance with NELAP by the State of Oregon Environmental Laboratory Accreditation Program (ORELAP ID 4053). It is also certified by the State of California Water Resources Control Board Environmental Laboratory Accreditation Program (Certificate No. 1802) and the State of Washington Department of Ecology (Lab ID C552). Specific fields of testing applicable to each accreditation are available upon request.
- All data have been reviewed and verified.
- All test results have met minimum test acceptability criteria under their respective US EPA protocols, unless otherwise noted in this report.
- All tests have met internal Quality Assurance Program requirements.

Results verified by:

Barbara Orelo, Project Manager

California

4340 Vandever Avenue San Diego, California 92120 858.587.7333 fax: 619.279.5919

Introduction

A toxicity test was performed using a groundwater composite sample collected from the Wyckoff Eagle Harbor Groundwater Treatment Plant on Bainbridge Island in Washington. This test was performed to satisfy quarterly monitoring requirements according to the project Quality Assurance Project Plan (QAPP 2013). The acute bioassay was conducted using the *Menidia beryllina* (inland silverside). Testing was performed at Enthalpy Analytical located in San Diego, California.

Materials and Methods

The groundwater sample was collected into a low-density polyethylene cubitainer by Jacobs personnel, packed in a cooler containing ice, and shipped overnight to Enthalpy. Appropriate chain-of-custody (COC) procedures were employed during collection and transport. Upon arrival at the laboratory, the cooler was opened, the sample inspected, and the contents verified against information on the COC form. Standard water quality parameters were measured and recorded on a sample check-in form and are summarized in Table 1. The sample was stored at 4°C in the dark until used for testing.

Table 1. Sample Information

Sample ID	121322
Enthalpy Log-in Number	22-1573
Collection Date; Time	12/13/22; 10:40
Receipt Date; Time	12/14/22; 09:10
Receipt Temperature (°C)	3.2
Dissolved Oxygen (mg/L)	8.5
рН	7.68
Conductivity (µS/cm)	1097
Salinity (ppt)	0.6
Alkalinity (mg/L CaCO ₃)	330
Hardness (mg/L CaCO ₃)	150
Total Chlorine (mg/L)	0.04
Total Ammonia (mg/L as N)	<0.5

Test Methods

Acute toxicity testing was conducted according to the method set forth in USEPA 2002. This method is summarized in Table 2.

Table 2. Summary of Methods for the Inland Silverside Acute Test

Table 2. Sulfilliary of Methods for the	ie iliana Silversiae Acute Test
Test Period	12/14/22, 16:45 to 12/18/22, 15:15
Test Organism	Menidia beryllina
Test Organism Source	Aquatic Biosystems (Fort Collins, CO)
Test Organism Age	14 days
Test Duration	96 ± 2 hours
Test Type	Static with 48-hr renewal
Test Chamber, Test Solution Volume	500 mL plastic cup, 250 mL
Test Temperature	25 ± 1°C
Dilution Water	Artificial Saltwater (Instant Ocean® salts added to deionized water to 30 ± 2 ppt)
Additional Control	Laboratory Seawater (Source: Scripps Institution of Oceanography [SIO] intake) diluted with de-ionized water
Test Salinity	30 ± 2 ppt
Source of Salinity	Instant Ocean® salts were added to the sample to raise salinity to 30 ± 2 ppt
Test Concentrations (% sample)	100, 50, 25, 12.5, and 6.25%; plus lab and salt controls
Number of Replicates	4
Photoperiod	16 hours light/8 hours dark
Test Protocol	EPA/821/R-02/012
Test Acceptability Criteria for Controls	≥ 90% mean survival

^a A deviation to the QAPP was approved by USEPA and Washington Department of Ecology to conduct reference toxicant testing with copper chloride. See QA section.

Copper chloridea

CETIS™ 2.1.2.3

Statistical Methods

Reference Toxicant

Statistical Software

Statistical analyses were conducted using USEPA flowchart specifications as outlined in the test guidance manual (USEPA 2002). Organism performance in the sample was compared to that observed in the salt control. Results were used to calculate the No Observed Effect Concentration (NOEC) and the concentrations expected to cause a lethal effect to 50 and 25 percent of test organisms (LC $_{50}$ and LC $_{25}$, respectively). The acute toxic unit (TU $_{a}$) value was calculated as 100/LC $_{50}$. The statistical analyses were performed using the Comprehensive Environmental Toxicity Information System TM (CETIS), version 2.1.2.3 by Tidepool Scientific Software.

Results

There was no statistically significant effect detected to survival for any concentration tested in the inland silverside test. This results in a LC_{50} of greater than 100 percent concentration and an acute toxic unit (TU_a) of less than 1.0.

Results for the toxicity tests are summarized in Table 3. Detailed summaries of the acute toxicity test are provided in Table 4. Individual statistical summaries for the test and copies of the laboratory bench sheets are provided in Appendix A. The sample check-in sheet and COC form are provided in Appendices B and C, respectively.

Table 3. Summary of Statistical Results for the Toxicity Tests

Species	Endpoint	NOEC (% effluent)	LOEC (% effluent)	Toxic Unit (TU _a)	LC ₅₀ (% effluent)	LC ₂₅ (% effluent)
Inland Silverside	Survival	100	> 100	<1.0	> 100	> 100

NOEC = No Observed Effect Concentration

LOEC = Lowest Observed Effect Concentration

Acute Toxic Unit (TUa) = $100/LC_{50}$. A TUa of 1.0 indicates no toxicity in the sample.

Lethal Concentration 50 (LC $_{50}$) = Concentration expected to cause an effect to 50% of the organisms

Lethal Concentration 25 (LC₂₅) = Concentration expected to cause an effect to 25% of the organisms

Table 4. Detailed Results for the Inland Silverside Acute Survival Test

Concentration (% Effluent)	Mean Survival (%)
0 (Salt Control)	100
0 (Lab Control)	100
6.25	100
12.5	100
25	100
50	100
100	100

Quality Assurance

The sample was received in good condition and within the appropriate temperature range of 0-6°C. The test was initiated within the required 36-hour holding time. Control acceptability criteria was met, and water quality parameters remained within the appropriate ranges throughout the test. Statistical analyses followed standard USEPA flowchart selections. Dose-response relationships were reviewed to ensure the reliability of the results. Based on the dose response observed, the calculated effects concentrations were deemed reliable.

Minor QA/QC issues that were unlikely to have any bearing on the final test results, such as slight temperature deviations, are noted on the data sheets and a list of qualifier codes used on bench data sheets is presented in Appendix D.

Reference Toxicant

Results for the reference toxicant tests used to monitor laboratory performance and test organism sensitivity are summarized in Table 5. A deviation to the QAPP was approved by USEPA and Washington Department of Ecology to conduct reference toxicant testing with copper chloride rather than copper sulfate. The results for the concurrent reference toxicant tests were within the acceptable range of the mean historical test results plus or minus two standard deviations for all tests and endpoints. Reference toxicant statistical summaries and laboratory bench sheets are provided in Appendix E.

Table 5. Reference Toxicant Test Results

Species and	NOEC	EC ₅₀	Historical Mean ± 2 SD	CV
Endpoint	(%)	(μg/L copper)	(μg/L copper)	(%)
Inland Silverside Survival	100	192	182 ± 82.9	22.7

NOEC = No Observed Effect Concentration

Effect Concentration 50 (EC₅₀) = Concentration expected to cause an effect to 50% of the organisms

Historical Mean \pm 2 SD = The mean EC₅₀ from the previous 20 tests performed by the laboratory, plus or minus two standard deviations (SD)

CV = Coefficient of Variation

References

- CH2MHill. 2013. Quality Assurance Project Plan Groundwater Treatment Plant Operations, Maintenance, Bainbridge, Washington. Prepared for USEPA Region 10 June 5, 2013.
- Tidepool Scientific Software. 2000-2022. CETIS Comprehensive Environmental Toxicity Information System Software, Version 2.1.2.3.
- USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. United States Environmental Protection Agency Office of Water, Washington DC. EPA/821/R-02/012.
- Washington State Department of Ecology. 2016. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Publication No. WQ-R-95-80. Revised June 2016

Appendix A
Statistical Summaries and Raw Bench Sheets

CETIS Summary Report

Report Date: Test Code/ID: 11 Jan-23 16:22 (p 1 of 1)

2212-S119 / 20-8408-8453

Inland Silverside 96-h Acute Survival Test	Inland	Silverside	96-h Acute	Survival	Test
--	--------	------------	------------	----------	------

Nautilus Environmental (CA)

Batch ID:	01-8095-7181	Test Type:	Survival (96h)	Analyst:	Artificial Saltwater (A) Diluted Natural Seawater	
Start Date:	14 Dec-22 16:45	Protocol:	EPA/821/R-02-012 (2002)	Diluent:	(A) Diluted Natural Seawater	
Ending Date:	18 Dec-22 15:15	Species:	Menidia beryllina	Brine:	Instant Ocean	
Test Length:	94h	Taxon:		Source:	Aquatic Biosystems, CO	Age: 14d

Sample ID: 00-7055-1751 Code: 22-1573 Project: Sample Date: 13 Dec-22 10:40 Material: Effluent Sample Source: Jacobs

Receipt Date: 14 Dec-22 09:10 CAS (PC): Station: Wyckoff

Sample Age: 30h (3.2 °C) Client: Jacobs

Multiple Comp	parison Summary								
Analysis ID	Endpoint	Comparison Method	✓	NOEL	LOEL	TOEL	PMSD	TU	S
13-8564-4261	96h Survival Rate	Steel Many-One Rank Sum Test		100	>100			1	1
Point Estimate	e Summary								
Analysis ID	Endpoint	Point Estimate Method	✓	Level	%	95% LCL	95% UCL	TU	S
19-7584-9697	96h Survival Rate	Linear Interpolation (ICPIN)		EC25	>100	***		<1	1
				EC50	>100			<1	

Test Acceptal	bility			TAC I			
Analysis ID	Endpoint	Attribute	Test Stat	Lower	Upper	Overlap	Decision
13-8564-4261	96h Survival Rate	Control Resp	1	0.9	<<	Yes	Passes Criteria
19-7584-9697	96h Survival Rate	Control Resp	1	0.9	<<	Yes	Passes Criteria

96h Survival I	6h Survival Rate Summary												
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect		
0	LC	4	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%		
0	SC	4	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%		
6.25		4	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%		
12.5		4	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%		
25		4	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%		
50		4	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%		
100		4	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%		

96h Survival F	Rate Detail					MD5: 2DF63B8F56A38BF2F8B31B242708326E
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	LC	1.000	1.000	1.000	1.000	
0	SC	1.000	1.000	1.000	1.000	
6.25		1.000	1.000	1.000	1.000	
12.5		1.000	1.000	1.000	1.000	
25		1.000	1.000	1.000	1.000	
50		1.000	1.000	1.000	1.000	
100		1.000	1.000	1.000	1.000	

Report Date: Test Code/ID: 11 Jan-23 16:22 (p 1 of 2) 2212-S119 / 20-8408-8453

Inland Silver	side 96-h Acute Sur	vival Test			Nautilus Environmental (CA)
Analysis ID:	13-8564-4261	Endpoint:	96h Survival Rate	CETIS Version:	CETISv2.1.2
A sa a la ser a el a	44 1 00 40:00		Market Co. C. C. T. C. C.		

 Analyzed:
 11 Jan-23 16:22
 Analysis:
 Nonparametric-Control vs Treatments
 Status Level:
 1

 Edit Date:
 11 Jan-23 14:29
 MD5 Hash:
 68E117461239090AA7E1427F0F536296
 Editor ID:
 007-803-386-7

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	Tox Units
Angular (Corrected)	C > T	100	>100		1

Steel Many-C	One R	ank Sum Test							
Control	vs	Conc-%	df	Test Stat	Critical	Ties	P-Type	P-Value	Decision(α:5%)
Salt Control		6.25	6	18	10	1	CDF	0.8333	Non-Significant Effect
		12.5	6	18	10	1	CDF	0.8333	Non-Significant Effect
		25	6	18	10	1	CDF	0.8333	Non-Significant Effect
		50	6	18	10	1	CDF	0.8333	Non-Significant Effect
		100	6	18	10	1	CDF	0.8333	Non-Significant Effect

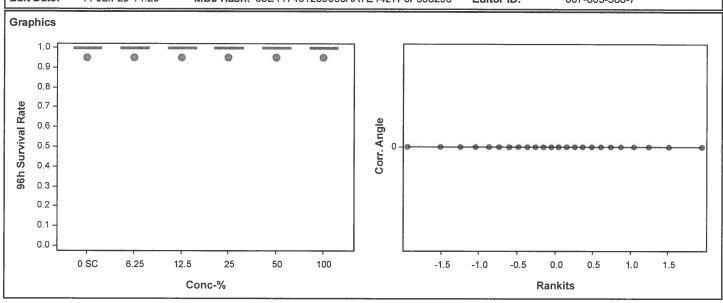
ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0	0	5			Indeterminate
Error	0	0	18			
Total	0		23			

tions Tests					
Test	Test Stat	Critical	P-Value	Decision(α:1%)	
Bartlett Equality of Variance Test				Indeterminate	
Shapiro-Wilk W Normality Test				Indeterminate	
1	Test Bartlett Equality of Variance Test	Test Stat Bartlett Equality of Variance Test	Test Test Stat Critical Bartlett Equality of Variance Test	Test Test Stat Critical P-Value Bartlett Equality of Variance Test	Test Test Stat Critical P-Value Decision(α:1%) Bartlett Equality of Variance Test Indeterminate

96h Survival I	Rate Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	sc	4	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
6.25		4	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
12.5		4	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
25		4	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
50		4	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
100		4	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%

Angular (Corr	ected) Transfo	ormed Sumi	nary								
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	SC	4	1.350	1.340	1.350	1.350	1.350	1.350	0.000	0.00%	0.00%
6.25		4	1.350	1.340	1.350	1.350	1.350	1.350	0.000	0.00%	0.00%
12.5		4	1.350	1.340	1.350	1.350	1.350	1.350	0.000	0.00%	0.00%
25		4	1.350	1.340	1.350	1.350	1.350	1.350	0.000	0.00%	0.00%
50		4	1.350	1.340	1.350	1.350	1.350	1.350	0.000	0.00%	0.00%
100		4	1.350	1.340	1.350	1.350	1.350	1.350	0.000	0.00%	0.00%

Inland Silverside 96-h Acute Survival Test


Report Date: Test Code/ID: 11 Jan-23 16:22 (p 2 of 2) 2212-S119 / 20-8408-8453

Nautilus Environmental (CA)

Analysis ID: 13-8564-4261 Endpoint: 96h Survival Rate **CETIS Version:** CETISv2.1.2

Analyzed: 11 Jan-23 16:22 Analysis: Nonparametric-Control vs Treatments Status Level:

Edit Date: 11 Jan-23 14:29 MD5 Hash: 68E117461239090AA7E1427F0F536296 007-803-386-7 Editor ID:

Report Date: Test Code/ID:

Editor ID:

11 Jan-23 16:22 (p 1 of 1)

2212-S119 / 20-8408-8453

Inland Silverside 96-h Acute Survival Test

Nautilus Environmental (CA)

Analysis ID: 19-7584-9697

Endpoint: 96h Survival Rate

CETIS Version:

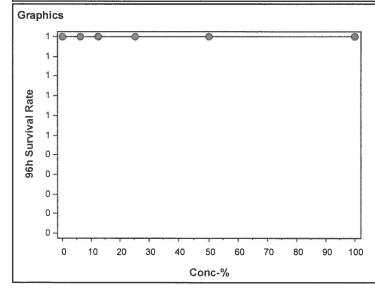
Analyzed:

Edit Date:

11 Jan-23 14:31 11 Jan-23 14:29 Analysis: Linear Interpolation (ICPIN) MD5 Hash: 68E117461239090AA7E1427F0F536296 Status Level:

CETISv2.1.2 007-803-386-7

Linear Interpolation Options


X Transform Y Transform Seed Resamples Exp 95% CL Method Linear Linear 290134 1000 Yes Two-Point Interpolation

Point Estimates

Level 95% LCL 95% UCL Tox Units 95% LCL 95% UCL EC25 >100 <1

EC50 >100 <1

96h Survival I	Rate Summary	Calculated Variate(A/B)							Isotonic Variate		
Conc-%	Code	Count	Mean	Median	Min	Max	CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	SC	4	1.000	1.000	1.000	1.000	0.00%	0.00%	20/20	1.000	0.00%
6.25		4	1.000	1.000	1.000	1.000	0.00%	0.00%	20/20	1.000	0.00%
12.5		4	1.000	1.000	1.000	1.000	0.00%	0.00%	20/20	1.000	0.00%
25		4	1.000	1.000	1.000	1.000	0.00%	0.00%	20/20	1.000	0.00%
50		4	1.000	1.000	1.000	1.000	0.00%	0.00%	20/20	1.000	0.00%
100		4	1.000	1.000	1.000	1.000	0.00%	0.00%	20/20	1.000	0.00%

Marine Acute Bioassay Static-Renewal Conditions DM-001

Water Quality Measurements & Test Organism Survival

Tech Initials Client: JACOBS Test Species: M. beryllina Start Date/Time: 12/14/27 Sample ID: Wyckoff Sample Log-in No.: 22 -1573 Counts: DR End Date/Time: 12/18/22 1515 Test No.: 22/2-5/19 HHEM WE KE Readings: 2T Dilutions made by:

Concentration (%)	Rep			ber o ganis	f Live sms	•		8	Salinit (ppt)	у			Ten	nperat (°C)	ure		1	Disso	lved C (mg/L		n			pH (units)	
(~)		0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	727	96
Lab Control	Α	5	5	5	5	5	29.7	29.50	30.7	30.5	307	24,5	\$	27	24.7	24.6	6.5	5.2	69	5.2	5.4	796	120	5.84		7.79
	В	5	5	5	5	5			30.4					279					6.0					5.71	7.72	+
	С	5	5	5	5	5																				
	D	5	5	5	2	5																				
Salt Control	Α	3	5	5	5	5	30.2	20	9.8	30.3	30.6	24.7	طوي	4.8	24.9	25,0	6.5	5.0	65	5.1	5.3	8.23	800	8.15	8,03	7.91
	В	5	5	5	5	5		393505552	31.7	31 5				25.1					5-8					5.94		
	С	5	5	5	5	5																				
	D	5	5	5	5	5																				
6.25%	Α	5	5	5	5	5	30.2	الأورد	4.8	303	30.4	Z4.0	254	14.8	24.7	25.0	64	6.1	6.5	5,2	5.2	8,17	8,96	8.17	8.04	8.02
	В	5	3	5	5	5		ARRESTANCES INC.	30.9	design Marchine			STREET, STREET,	5.1					5.7					8-0		
	С	S	3	5	5	5																				
	D	5	3	5	5	5																				
12.5%	Α	5	5	3	5	5	30.Z	20,0	43	30.4	30.5	24.1	North	149	24.9	251	6.5	5.1	6.6	5.1	5.2	8.11	88	8.0	8.07	8.09
	В	5	5	5	5	5		100000000000000000000000000000000000000	20.				2000000000	25.5					5.3					80	STATISTICAL PROPERTY.	
	С	5	5	5	5	5		LO ,																		
	D	5	3	5	5	5																				
25%	Α	5	5	5	5	5	30.1	20.Y	25.8	30.5	30.8	24.2	150	4.7	248	249	6.5	49	6.6	5.1	5.1	8.02	6,0	8.03	11.80	8.14
	В	5	5	5	5	5		CONTRACTOR AND	30.5	場合の			BEEFFER	25.0					5.6					808		
	С	5	5	3	5	5																				
	D	5	5	3	5	5																				
50%	Α	క	5	3	5	5	29.9	₩,	29 8	30.5	31.0	24.0	150	24.6	245	247	6.7	6.5	4.8	5.72	5.3	787	814	7.95	8,18	8.2
	В	5	5	5	5	5		EG/HSTB/CHR	30.5	Others and the				25.7					5.0					8.20		
	С	5	5	5	5	5																				
	D	5	5	5	5	5								P) L												
100%	А	5	5	5	5	5	29,8	20.0	199	30.8	315	Z4.1	KA B	24.4	24.4	24.iq	609	4.9	7.0	5.3	5.4	7.70	4,10	7.86	8.25	83
	В	5	3	5	5	5			30.	L				5.7					5.0				76.0000E3h	8.3	120/03/03	
	С	5	5	5	5	5																				
	D	5	5	5	5	5																			7 - 1	
itial Counts QC'd by: Initiated by:	-	7			-				Er	viron	menta	al Cha	mber:	Α	7					4.0						
nimal Source/Date	Rece	ived:		A	65		1	1/9	122		Age	at initi	ation:		14		la	y S	2				Fee	ding T	imes	
nimal Acclimation	Quali	fiers	(circl	e ali	that a	pply):	:			(0)	22) 1	Q23	1 (Q24	/ no	ne						0	24	48 a\0	72	96
omments:		i = in	itial r	eadin	g in fr	esh te	est solu	ıtion, f	= fina	l readi	ng in	test ch	amber	prior 1	o rene	ewal					AM: PM:	1736	0900	101,	0955	20
		Orga	ınism	s fed	prior t	o initi	ation, d	circle o	ne (<u>// n</u>) (018	A(50	Bov	F 1/	11/2-3				-		AC	٠, (/	23	

BO 1/11/23 Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

QC Check:

Final Review:

Appendix B
Sample Check-In Information

Sample (A, B, C):

Log-in No. (22-xxxx): Sample Collection Date & Time: 12/13/22 1040 Sample Receipt Date & Time: 12/14/22 0910

Temperature OK? 1

Conductivity (µS/cm)

DO (mg/L)

pH (units)

Number of Containers & Container Type:

Approx. Total Volume Received (L):

Check-in Temperature (°C)

1573

1 XIDL CUG: 10

3.2

(Y) N

8,5

7.68

1097

Y N

(12/322)

Y N

Υ

	Clear, Colorie	55, NO 00	oi, No d	126/15
]				
-				
1	COC Complete (Y/N	1/2		
	A B C	•		
	Filtration? Y	N N		
	Initials: A)	B) C)		
	Pore Size:			-
	Organisms	or	Debris	
	Salinity Adjustment	2(V) N		
	Test: Menidle	Source: OC	istani ean Taro	et ppt: 30
	Test:	Source:		et ppt:
	Test:	Source:	Targ	et ppt:
	pH Adjustment?	Y (N)	_	• • •
		A	В	С
	Initial	pH:		
	Amount of HCI add	ed:		
	Final	pH:		**
	Cl ₂ Adjustment?	YN		
		A	В	С
	Initial Free CI	2:		
_	STS added:			
	Final Free Cl ₂	:		
		. \frown		
	Sample Aeration?	\bigcirc	_	
	Initial D.O.	A	В	<u> </u>
	Duration & Ra	nto .	-	
	Final D.O.	ate		
			I	
	_ Measure NH3 via te	st strip (circle o	one)? Y	N
	NH3 Strip Result* A *(if 6 or more, notify PM)	λ:B:	C:	
	Subsamples for Add	ditional Chemis	try Required	N (Y7St
	_ NH3 O	ther		
	Tech-Initial	S AWF B	c_	
	Final Revie	w: ACS 1/11	/23	

	Salinity (ppt)	0.6				
	Alkalinity (mg/L) 2	330				
	Hardness (mg/L) 2,3	150				
	Total Chlorine (mg/L)	0.04				
	Technician Initials	WF				
	Menidia					
Test Performed:	Acute Mysid.	Control/Dilution W	/ater: 8:2 / Lab	SW / Lab ART	Other:	
	E18 151 15113155	Alkalinity:5	2 Hardness or	Salinity:	_	
	Additional Control? (Y) N	= LAB SW	Alkalinity: 99	Hardness or S	alinity: 30PPT	
<u>Test Performed:</u>		Control/Dilution W	/ater: 8:2 / Lab	SW / Lab ART	Other:	
		,	Hardness or			
	Additional Control? Y N	=	Alkalinity:	Hardness or S	alinity:	
Test Performed:		Control/Dilution 14	(atam. 0.2 1 at	C)4/ / 1 - 1 - 4 D.T.		
rest Performed.			Hardness or		Other:	
	Additional Control? Y N					
	,		Additity.	Hardness of S	diffity.	
	1					
Notes:	¹ Temperature of sample should				ne.	
	² mg/L as CaCO3, ³ Measured	for freshwater sampl	es only, NA = Not A	pplicable		
	·					
Additional Comments:						
QC Check:	BO 1/11/23					
	* *					

Total Ammonia Analysis Marine

Overlying Water

DC-001

Client:	JACOBS			
Project	Wyckoff Mussel-Development			
Test Type:	Mussel-Development	Meridia	acute	
DI Blank:			Test Start Date: 12/14/22	Analyst: ℳM
SW Blank:	d-0			Analysis Date: 12/15/22

N x 1.22

					N x 1.22		
Sample ID	Enthalpy ID	Sub-Sample Date	Test Day	NH3-N (mg/L)	Ammonia (mg/L)		
Blank Spike (10 mg/L NH ₃)		NA,	NA	9.0	11.0		
Wyckoff Effluent	22-1573	NA 13/14/50/2022	check in	0-060.0	20.5		
Spike Check (10 mg/L NH ₃)		NA NA	NA				
	04-15-2						
Sample Duplicate ⁸	22-1573	NA NA	NA	0,0 20,0	60.5		
Sample Duplicate + Spike ^a		NA NA	NA	8.9	10.9		
Spike Check (10 mg/L NH ₃)		NA	NA	9.0	11.0		

 $\frac{\text{Relative Percent Difference (RPD) = [sample] (mg/L) - [sample duplicate] (mg/L)}{\text{[average ammonia] (mg/L)}} \times 100$

Acceptable Range: 0-20%

Percent Recovery = [spiked sample] (mg/L) - [sample] (mg/L) x 100 nominal [spike] (mg/L)

Acceptable Range: 80-120%b

QC Sample ID	[NH ₃]	[Sample Dup]	Measured [Spike]	Nominal [Spike]	RPD	% Recovery
Blank	0-0	NA	11.0	10	NA	110
22 -1573	20.5	10.4 40.5	10.9	10	C	C
		(D)				

	9			
	Reagent 1	Reagent 2	Test Tubes	
Standard Lot Number	AZIIT / AZOSS	AZIIT	A2223	
Comments: @@(g/my 17)	15/72 (DOLY ALS 12/30/22			
Notes: a Unless otherwise noted	t, the last sample listed on the datasheet is used t	for duplicate and duplicate + spike QC	check.	
	or % recovery applies only to the blank spike. Spilormed due to one or both values below the metho		sed on sample matrix and are for	information only.
HACH Ammonia Nitro	ogen Test Kit, Test 'N Tube™ Vials. Method 1003	31. Method Detection Limit = 0.5 mg/L	-	
QC Check: RL 12/23/2	1	Final Review	: A(S 1/	11/23

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.

Appendix C
Chain-of-Custody Form

Enthalphy Analytical (REGION COPY)

DateShipped: 12/13/2022 CarrierName: FedEx

AirbillNo:

Jacobs, Wyckoff-

Wyckoff Eagle Harbor GWTP 2022/WA
Project Code: WEH-031S
Cooler #: 1 of 1

2022T10P000DD210W2LA00 Contact Name: Daniel Baca Contact Phone: 661-313-3807

No: 10-121322-115003-0658

CLP Matrix/Sampler Coll. Analysis/Turnaround Tag/Preservative/Bottles Location Collection Sample Type Sample Identifier Date/Time Sample No. (Days) Method A (< 6 C) (1) 12/13/2022 10:40 Field Sample 121322 Ground Water/ Composite Acute Toxicity(8 Weeks) SP-11 D. Baca

	Shipment for Case Complete? N				
Special Instructions: 2022 Week 51 Acute Toxicity. Sample 10L Cube filled >50%	Samples Transferred From Chain of Custody #				
Analysis Key					

Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt	
DALL - @ JACOBS	12-13-22 @1200	WYLL EASD	12/14/22	6008 3.2°C 22	1873
\(\frac{1}{2}\)	elinquished by (Signature and Organization)	, ,		D// 2 Thoras 12-13-22 While Y =160 12/14/22	D// 12-13-22 WILLIAM Y =160 12/14/22 / 1 3 200

Appendix D
List of Qualifier Codes

Glossary of Qualifier Codes

- Q1 Temperature out of recommended range; corrective action taken and recorded in Test Temperature Correction Log
- Q2 Temperature out of recommended range; no action taken, test terminated same day
- Q3 Sample pH adjusted to within range of 6-9 with reagent grade NaOH or HCl, as needed
- Q4 Test aerated; D.O. levels dropped below 4.0 mg/L
- Q5 Test initiated with continuous aeration due to an anticipated drop in D.O.
- Q6 Airline obstructed or fell out of replicate and replaced; drop in D.O. occurred
- Q7 Salinity out of recommended range
- Q8 Spilled test chamber/ Unable to recover test organism(s)
- Q9 Inadequate sample volume remaining, partial renewal performed
- Q10 Inadequate sample volume remaining, no renewal performed
- Q11 Sample out of holding time; refer to QA section of report
- Q12 Replicate(s) not initiated; excluded from data analysis
- Q13 Survival counts not recorded due to poor visibility or heavy debris
- Q14 D.O. percent saturation was checked and was ≤ 110%
- Q15 Did not meet minimum test acceptability criteria. Refer to QA section of report.
- Q16 Percent minimum significant difference (PMSD) was <u>below</u> the lower bound limit for acceptability. This indicates that statistics may be over-sensitive in detecting a difference from the control due to low variability in the data set. Test results were reviewed and reported in accordance with guidance found in EPA-833-R-00-003, 2000 unless otherwise specified.
- Q17 Percent minimum significant difference (PMSD) was <u>above</u> the upper bound limit for acceptability. This indicates that statistics may be under-sensitive in detecting a difference from the control due to high variability in the data set. Test results were reviewed and reported in accordance with EPA-833-R-00-003, 2000 guidance unless otherwise specified.
- Q18 Incorrect or illegible Entry
- Q19 Miscalculation
- Q20 PMSD criteria do not apply to the test of significant toxicity (TST) analysis
- Q21 Other (provide reason in comments section)
- Q22 Greater than 10% batch <u>mortality</u> observed upon receipt and/or in holding prior to test initiation. Organisms acclimated to test conditions at Enthalpy and ultimately deemed fit to use for testing.
- Q23 Test organisms experienced a <u>temperature</u> shift greater than 3°C within 1 day or were received at a temperature greater than 3°C outside the recommended test temperature range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.
- Q24 Test organisms experienced a <u>salinity</u> shift greater than 3 ppt within 1 day or were received at a salinity greater than 3 ppt outside the recommended test salinity range and had minimal time to acclimate prior to test initiation. However, due to age-specific protocol requirements and/or sample holding time constraints, the organisms were used to initiate test(s). Organisms were ultimately deemed fit to use for testing.

Version: 6/1/2021

Appendix E
Reference Toxicant Test Results

CETIS Summary Report

Report Date: Test Code/ID: 11 Jan-23 14:36 (p 1 of 2)

221214mbra / 05-3190-6319

Inland Silverside 96-h Acute Survival	Toet

Nautilus Environmental (CA)

illiand Silvers	ide 90-11 Acute	Surviva	ii iest								Nautiius	Environme	entai (C	.A)
Batch ID: Start Date: Ending Date: Test Length:	00-5812-1136 14 Dec-22 17:0 18 Dec-22 15:2 94h		Test Type: Protocol: Species: Taxon:	, , , , , , , , , , , , , , , , , , , ,				Dil Bri	alyst: uent: ine: urce:	Diluted Natural Seawater Not Applicable Aquatic Biosystems, CO			Age: 1	14d
Sample ID: Sample Date: Receipt Date: Sample Age:	14 Dec-22		Code: Material: CAS (PC): Client:	221214mbra Copper chlorid Internal	е			So	oject: urce: ation:		rence Toxic per Chloride			
Multiple Com	parison Summa	ary												
Analysis ID	Endpoint	•	Comr	parison Method	I		✓	NOEL	LOEI		TOEL	PMSD		s
	48h Survival Ra	ite	<u>`</u>	Many-One Rani			÷	100	200	_	141.4	19.2%		1
15-2152-3233	96h Survival Ra	ite		Many-One Ranl				100	200		141.4	19.2%		1
Point Estimat	e Summary			-										
Analysis ID	Endpoint		Point	Estimate Meth	od		√	Level	ua/I		95% LCL	95% UCL		S
_	48h Survival Ra	ıte		ned Spearman-F			٧	EC50	μ g/L 192		154	241		1
	96h Survival Ra			ned Spearman-r ned Spearman-r				EC50	192		154	241		1
Test Acceptat	oility					TAC	: Li	mits						
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower		Upper	Over	lap	Decision			
	96h Survival Ra		Contro	ol Resp	1	0.9		<<	Yes		Passes Cr	iteria		
15-9199-6379	96h Survival Ra	ite	Contro	ol Resp	1	0.9		<<	Yes		Passes Cr	iteria		
48h Survival I	Rate Summary													
Conc-µg/L	Code	Coun	t Mean	95% LCL	95% UCL	Min		Max	Std E	rr	Std Dev	CV%	%Effe	ct
0	LC	4	1.000	1.000	1.000	1.000		1.000	0.000)	0.000	0.00%	0.00%	
50		4	0.950	0.791	1.110	0.800		1.000	0.050)	0.100	10.53%	5.00%)
100		4	0.800	0.540	1.060	0.600		1.000	0.082	!	0.163	20.41%	20.00	%
200		4	0.600	0.340	0.860	0.400		0.800	0.082	!	0.163	27.22%	40.00	%
400		4	0.050	-0.109	0.209	0.000		0.200	0.050)	0.100	200.00%	95.00	%
800		4	0.000	0.000	0.000	0.000		0.000	0.000)	0.000		100.0	٥%
96h Survival I	Rate Summary													
Conc-µg/L	Code	Coun	t Mean	95% LCL	95% UCL	Min		Max	Std E	rr	Std Dev	CV%	%Effe	ct
0	LC	4	1.000	1.000	1.000	1.000		1.000	0.000)	0.000	0.00%	0.00%)
50		4	0.950	0.791	1.110	0.800		1.000	0.050	1	0.100	10.53%	5.00%)
100		4	0.800	0.540	1.060	0.600		1.000	0.082	!	0.163	20.41%	20.00	%
200		4	0.600	0.340	0.860	0.400		0.800	0.082	!	0.163	27.22%	40.00	%
400		4	0.050	-0.109	0.209	0.000		0.200	0.050		0.100	200.00%	95.00	%
800		4	0.000	0.000	0.000	0.000		0.000	0.000	1	0.000		100.00	ე%

CETIS Summary Report

Report Date: Test Code/ID: 11 Jan-23 14:36 (p 2 of 2)

221214mbra / 05-3190-6319

Inland Silverside 96-h Acute Survival Test

Nautilus Environmental (CA)

48h Survival R	ate Detail					MD5: DF7FDE934F83BDDA7A3C88C813BFA558
Conc-µg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	LC	1.000	1.000	1.000	1.000	
50		1.000	0.800	1.000	1.000	
100		1.000	0.800	0.600	0.800	
200		0.400	0.600	0.600	0.800	
400		0.200	0.000	0.000	0.000	
800		0.000	0.000	0.000	0.000	
96h Survival R	ate Detail					MD5: DF7FDE934F83BDDA7A3C88C813BFA558
Conc-µg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	LC	1.000	1.000	1.000	1.000	
50		1.000	0.800	1.000	1.000	
100		1.000	0.800	0.600	0.800	
200		0.400	0.600	0.600	0.800	
400		0.200	0.000	0.000	0.000	
800		0.000	0.000	0.000	0.000	

Report Date: Test Code/ID:

11 Jan-23 14:36 (p 1 of 4) 221214mbra / 05-3190-6319

Inland Silve	rside 9	6-h Acute S	urvival Tes	st						Nautilus	Environm	nental (CA)
Analysis ID: Analyzed: Edit Date:	11 Ja	219-1164 an-23 14:36 an-23 14:34	Anal			-Control vs 7		Statu	S Version: us Level: or ID:	CETISv2. 1 007-803-3		
Data Transfo	orm		Alt Hyp				NOEL	LOEL	TOEL	Tox Units	MSDu	PMSD
Angular (Cor	rected)		C > T				100	200	141.4		0.192	19.16%
Steel Many-0	One Ra	ank Sum Tes	st									
Control	vs	Conc-µg/L	df	Test Stat	Critical	Ties	P-Type	P-Value	Decision(α:5%)		
Lab Control		50	6	16	10	1	CDF	0.5661	Non-Signif	icant Effect		
		100	6	12	10	1	CDF	0.1228	Non-Signif	icant Effect		
		200*	6	10	10	0	CDF	0.0350	Significant	Effect		
		400*	6	10	10	0	CDF	0.0350	Significant	Effect		
ANOVA Tabl	e											
Source		Sum Squa	res	Mean Squ	are	DF	F Stat	P-Value	Decision(α:5%)		
Between		2.93998		0.734995		4	39.4	<1.0E-05	Significant	Effect		
Error		0.27989		0.0186593	i	15			-			
Total		3.21987				19						
ANOVA Assu	umptio	ns Tests										
Attribute		Test				Test Stat	Critical	P-Value	Decision(α:1%)		
Variance		Bartlett Equ	uality of Var	iance Test					Indetermin	ate		
Distribution		Shapiro-Wi	ik W Norma	ality Test		0.917	0.866	0.0850	Normal Dis	stribution		
48h Survival	Rate	Summary										
Conc-µg/L		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0		LC	4	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
50			4	0.950	0.791	1.000	1.000	0.800	1.000	0.050	10.53%	5.00%
100			4	0.800	0.540	1.000	0.800	0.600	1.000	0.082	20.41%	20.00%
200			4	0.600	0.340	0.860	0.600	0.400	0.800	0.082	27.22%	40.00%
400			4	0.050	0.000	0.209	0.000	0.000	0.200	0.050	200.00%	95.00%

Conc-µg/L	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	LC	4	1.350	1.340	1.350	1.350	1.350	1.350	0.000	0.00%	0.00%
50		4	1.290	1.100	1.480	1.350	1.110	1.350	0.060	9.26%	4.43%
100		4	1.110	0.813	1.410	1.110	0.886	1.350	0.094	16.87%	17.38%
200		4	0.891	0.616	1.170	0.886	0.685	1.110	0.086	19.37%	33.77%
400		4	0.285	0.096	0.475	0.226	0.226	0.464	0.060	41.77%	78.81%
800		4	0.226	0.225	0.226	0.226	0.226	0.226	0.000	0.00%	83.24%

0.000

0.000

0.000

0.000

0.000

0.000

0.000

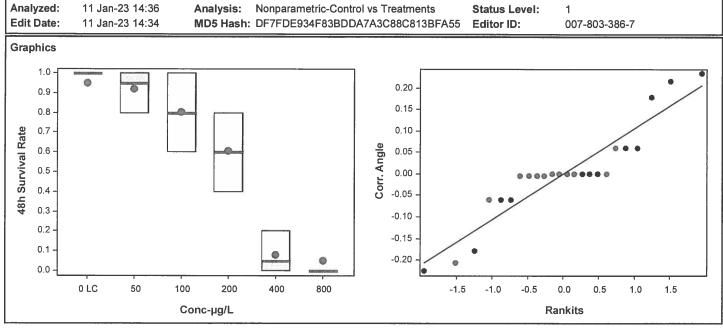
100.00%

800

Angular (Corrected) Transformed Summary

Report Date: Test Code/ID:

11 Jan-23 14:36 (p 2 of 4) 221214mbra / 05-3190-6319


Inland Silverside 96-h Acute Survival Test Nautilus Environmental (CA)

Analysis ID: 01-7219-1164

Endpoint: 48h Survival Rate

CETIS Version:

CETISv2.1.2

Report Date: Test Code/ID:

11 Jan-23 14:36 (p 3 of 4) 221214mbra / 05-3190-6319

	side 96-h Ac	ute Survival 1	est						Nautilus	Environm	ental (CA)
Analysis ID: Analyzed: Edit Date:	15-2152-32 11 Jan-23 1 11 Jan-23 1	33 Er 14:36 Ar	idpoint: 96	•	-Control vs T		Statu	S Version: us Level: or ID:	CETISv2. 1 007-803-3	1.2	
Data Transfor	rm	Alt Hyp				NOEL	LOEL	TOEL	Tox Units	MSDu	PMSD
Angular (Corre	ected)	C > T				100	200	141.4		0.192	19.16%
Steel Many-O	ne Rank Su	m Test									
Control	vs Conc	-μg/L d	If Test Stat	Critical	Ties	P-Type	P-Value	Decision(α:5%)		
Lab Control	50	6	16	10	1	CDF	0.5661	Non-Signif	icant Effect		
	100	6	12	10	1	CDF	0.1228	Non-Signif	icant Effect		
	200*	6	10	10	0	CDF	0.0350	Significant			
	400*	6	10	10	0	CDF	0.0350	Significant	Effect		
ANOVA Table)	······································									
Source	Sum	Squares	Mean Squ	ıare	DF	F Stat	P-Value	Decision(α:5%)		
Between	2.939	98	0.734995		4	39.4	<1.0E-05	Significant	Effect		
Error	0.279	89	0.0186593	3	15			J			
Total	3.219	87			19	_					
ANOVA Assur	mptions Tes	its							*******		
Attribute	Test				Test Stat	Critical	P-Value	Decision(α:1%)		
Variance	Rartle	# Equality of \	ariance Test					Indetermin	ate		
Variance	Dartic	at Equality of v	anance rest					maetermin	ale		
Distribution		ro-Wilk W Nor			0.917	0.866	0.0850	Normal Dis			
	Shapi	ro-Wilk W Nor			0.917	0.866	0.0850			****	
Distribution	Shapi	ro-Wilk W Nor		95% LCL	0.917 95% UCL	0.866 Median	0.0850 Min			CV%	%Effect
Distribution 96h Survival I	Shapi Rate Summa	ro-Wilk W Nor	mality Test	95% LCL 1.000				Normal Dis	stribution	CV% 0.00%	%Effect 0.00%
Distribution 96h Survival I Conc-µg/L	Shapi Rate Summa Code	ro-Wilk W Nor	mality Test Mean		95% UCL	Median	Min	Normal Dis	Std Err		
Distribution 96h Survival I Conc-μg/L 0	Shapi Rate Summa Code	ro-Wilk W Nor ary Count	Mean 1.000	1.000	95% UCL 1.000	Median 1.000	Min 1.000	Max 1.000	Std Err 0.000	0.00%	0.00%
Postribution 96h Survival I Conc-µg/L 0 50	Shapi Rate Summa Code	ro-Wilk W Nor ary Count 4 4	Mean 1.000 0.950	1.000 0.791	95% UCL 1.000 1.000 1.000	Median 1.000 1.000 0.800	Min 1.000 0.800 0.600	Max 1.000 1.000 1.000	Std Err 0.000 0.050 0.082	0.00% 10.53% 20.41%	0.00% 5.00% 20.00%
Pistribution 96h Survival I Conc-µg/L 0 50 100 200	Shapi Rate Summa Code	ro-Wilk W Nor ary Count 4 4	Mean 1.000 0.950 0.800 0.600	1.000 0.791 0.540 0.340	95% UCL 1.000 1.000 1.000 0.860	Median 1.000 1.000 0.800 0.600	Min 1.000 0.800 0.600 0.400	Max 1.000 1.000 1.000 0.800	Std Err 0.000 0.050 0.082 0.082	0.00% 10.53% 20.41% 27.22%	0.00% 5.00% 20.00% 40.00%
Postribution 96h Survival I Conc-µg/L 0 50 100	Shapi Rate Summa Code	Count 4 4 4 4	Mean 1.000 0.950 0.800	1.000 0.791 0.540	95% UCL 1.000 1.000 1.000	Median 1.000 1.000 0.800	Min 1.000 0.800 0.600	Max 1.000 1.000 1.000	Std Err 0.000 0.050 0.082	0.00% 10.53% 20.41%	0.00% 5.00% 20.00%
Pistribution 96h Survival I Conc-μg/L 0 50 100 200 400 800	Shapi Rate Summa Code LC	Count 4 4 4 4 4 4	Mean 1.000 0.950 0.800 0.600 0.050 0.000	1.000 0.791 0.540 0.340 0.000	95% UCL 1.000 1.000 1.000 0.860 0.209	Median 1.000 1.000 0.800 0.600 0.000	Min 1.000 0.800 0.600 0.400 0.000	Max 1.000 1.000 1.000 0.800 0.200	Std Err 0.000 0.050 0.082 0.082 0.050	0.00% 10.53% 20.41% 27.22% 200.00%	0.00% 5.00% 20.00% 40.00% 95.00%
Pistribution 96h Survival I Conc-μg/L 0 50 100 200 400	Shapi Rate Summa Code LC	Count 4 4 4 4 4 4 5 Sformed Sum	Mean 1.000 0.950 0.800 0.600 0.050 0.000	1.000 0.791 0.540 0.340 0.000	95% UCL 1.000 1.000 1.000 0.860 0.209	Median 1.000 1.000 0.800 0.600 0.000	Min 1.000 0.800 0.600 0.400 0.000	Max 1.000 1.000 1.000 0.800 0.200	Std Err 0.000 0.050 0.082 0.082 0.050	0.00% 10.53% 20.41% 27.22% 200.00%	0.00% 5.00% 20.00% 40.00% 95.00% 100.00%
Pistribution 96h Survival I Conc-μg/L 0 50 100 200 400 800 Angular (Corr	Shapi Rate Summa Code LC rected) Trans	Count 4 4 4 4 4 4 5 Sformed Sum	Mean 1.000 0.950 0.800 0.600 0.050 0.000 mary Mean	1.000 0.791 0.540 0.340 0.000 0.000	95% UCL 1.000 1.000 1.000 0.860 0.209 0.000	Median 1.000 1.000 0.800 0.600 0.000 0.000	Min 1.000 0.800 0.600 0.400 0.000 0.000	Max 1.000 1.000 1.000 0.800 0.200 0.000	Std Err 0.000 0.050 0.082 0.082 0.050 0.000 Std Err	0.00% 10.53% 20.41% 27.22% 200.00% 	0.00% 5.00% 20.00% 40.00% 95.00% 100.00%
Distribution 96h Survival I Conc-μg/L 0 50 100 200 400 800 Angular (Corr Conc-μg/L 0	Shapi Rate Summa Code LC	Count 4 4 4 4 4 4 5formed Sum Count	Mean 1.000 0.950 0.800 0.600 0.050 0.000 mary Mean 1.350	1.000 0.791 0.540 0.340 0.000 0.000 95% LCL	95% UCL 1.000 1.000 1.000 0.860 0.209 0.000 95% UCL 1.350	Median 1.000 1.000 0.800 0.600 0.000 0.000 Median 1.350	Min 1.000 0.800 0.600 0.400 0.000 0.000 Min 1.350	Max 1.000 1.000 1.000 0.800 0.200 0.000 Max 1.350	Std Err 0.000 0.050 0.082 0.082 0.050 0.000 Std Err 0.000	0.00% 10.53% 20.41% 27.22% 200.00% 	0.00% 5.00% 20.00% 40.00% 95.00% 100.00%
Distribution 96h Survival I Conc-µg/L 0 50 100 200 400 800 Angular (Corr Conc-µg/L 0 50	Shapi Rate Summa Code LC rected) Trans	Count 4 4 4 4 4 4 5 count Count Count Count	Mean 1.000 0.950 0.800 0.600 0.050 0.000 mary Mean 1.350 1.290	1.000 0.791 0.540 0.340 0.000 0.000 95% LCL 1.340 1.100	95% UCL 1.000 1.000 1.000 0.860 0.209 0.000 95% UCL 1.350 1.480	Median 1.000 1.000 0.800 0.600 0.000 Median 1.350 1.350	Min 1.000 0.800 0.600 0.400 0.000 0.000 Min 1.350 1.110	Max 1.000 1.000 1.000 0.800 0.200 0.000 Max 1.350 1.350	Std Err 0.000 0.050 0.082 0.082 0.050 0.000 Std Err 0.000 0.060	0.00% 10.53% 20.41% 27.22% 200.00% CV% 0.00% 9.26%	0.00% 5.00% 20.00% 40.00% 95.00% 100.00% %Effect 0.00% 4.43%
Distribution 96h Survival I Conc-μg/L 0 50 100 200 400 800 Angular (Corr Conc-μg/L 0 50 100	Shapi Rate Summa Code LC rected) Trans	Count 4 4 4 4 4 4 5 sformed Sum Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Mean 1.000 0.950 0.800 0.050 0.000 mary Mean 1.350 1.290 1.110	1.000 0.791 0.540 0.340 0.000 0.000 95% LCL 1.340 1.100 0.813	95% UCL 1.000 1.000 1.000 0.860 0.209 0.000 95% UCL 1.350 1.480 1.410	Median 1.000 1.000 0.800 0.600 0.000 Median 1.350 1.350 1.110	Min 1.000 0.800 0.600 0.400 0.000 0.000 Min 1.350 1.110 0.886	Max 1.000 1.000 1.000 0.800 0.200 0.000 Max 1.350 1.350	Std Err 0.000 0.050 0.082 0.082 0.050 0.000 Std Err 0.000 0.060 0.094	0.00% 10.53% 20.41% 27.22% 200.00% CV% 0.00% 9.26% 16.87%	0.00% 5.00% 20.00% 40.00% 95.00% 100.00% %Effect 0.00% 4.43% 17.38%
Distribution 96h Survival I Conc-μg/L 0 50 100 200 400 800 Angular (Corr Conc-μg/L 0 50	Shapi Rate Summa Code LC rected) Trans	Count 4 4 4 4 4 4 5 count Count Count Count	Mean 1.000 0.950 0.800 0.600 0.050 0.000 mary Mean 1.350 1.290	1.000 0.791 0.540 0.340 0.000 0.000 95% LCL 1.340 1.100	95% UCL 1.000 1.000 1.000 0.860 0.209 0.000 95% UCL 1.350 1.480	Median 1.000 1.000 0.800 0.600 0.000 Median 1.350 1.350	Min 1.000 0.800 0.600 0.400 0.000 0.000 Min 1.350 1.110	Max 1.000 1.000 1.000 0.800 0.200 0.000 Max 1.350 1.350	Std Err 0.000 0.050 0.082 0.082 0.050 0.000 Std Err 0.000 0.060	0.00% 10.53% 20.41% 27.22% 200.00% CV% 0.00% 9.26%	0.00% 5.00% 20.00% 40.00% 95.00% 100.00% %Effect 0.00% 4.43%

Report Date: Test Code/ID:

11 Jan-23 14:36 (p 4 of 4) 221214mbra / 05-3190-6319

Inland Silverside 96-h Acute Survival Test Nautilus Environmental (CA) Analysis ID: 15-2152-3233 CETISv2.1.2 Endpoint: 96h Survival Rate **CETIS Version:** Analyzed: 11 Jan-23 14:36 Analysis: Nonparametric-Control vs Treatments Status Level: Edit Date: 11 Jan-23 14:34 MD5 Hash: DF7FDE934F83BDDA7A3C88C813BFA55 Editor ID: 007-803-386-7 **Graphics** 1.0 0.20 0.9 0.15 0.8 0.10 96h Survival Rate 0.7 Corr. Angle 0.6 0.05 0.5 0.00 0.4 -0.05 0.3 -0.10 0.2 -0.15 0.1 -0.20 0 LC 50 100 200 400 800 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Conc-µg/L

Rankits

Report Date:

11 Jan-23 14:36 (p 1 of 2)

Test Code/ID:

221214mbra / 05-3190-6319

Nautilus Environmental (CA)

Inland Silverside 96-h Acute Survival Test

Analysis ID: 07-1654-3492

Endpoint: 48h Survival Rate

CETIS Version:

CETISv2.1.2

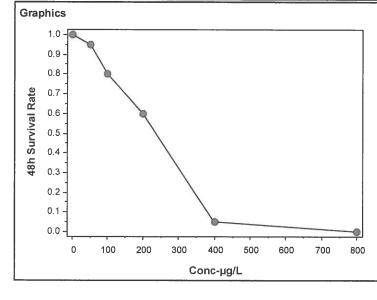
Analyzed:

11 Jan-23 14:36

Analysis: Trimmed Spearman-Kärber Status Level:

Edit Date: 11 Jan-23 14:34

MD5 Hash: DF7FDE934F83BDDA7A3C88C813BFA55


Editor ID:

007-803-386-7

Trimmed Spearman-Kärber Estimates

Threshold Option Threshold Trim Mu Sigma EC50 95% LCL 95% UCL Control Threshold 0 5.00% 2.28 0.0487 192 154 241

48h Survival R	ate Summary	•	Calculated Variate(A/B)							Isotonic Variate	
Conc-µg/L	Code	Count	Mean	Median	Min	Max	CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	LC	4	1.000	1.000	1.000	1.000	0.00%	0.00%	20/20	1.000	0.00%
50		4	0.950	1.000	0.800	1.000	10.53%	5.00%	19/20	0.950	5.00%
100		4	0.800	0.800	0.600	1.000	20.41%	20.00%	16/20	0.800	20.00%
200		4	0.600	0.600	0.400	0.800	27.22%	40.00%	12/20	0.600	40.00%
400		4	0.050	0.000	0.000	0.200	200.00%	95.00%	1/20	0.050	95.00%
800		4	0.000	0.000	0.000	0.000		100.00%	0/20	0.000	100.00%

Report Date:

11 Jan-23 14:36 (p 2 of 2)

Test Code/ID:

221214mbra / 05-3190-6319

Inland Silverside 96-h Acute Survival Test

Nautilus Environmental (CA)

Analysis ID: 15-9199-6379

Endpoint: 96h Survival Rate

CETIS Version:

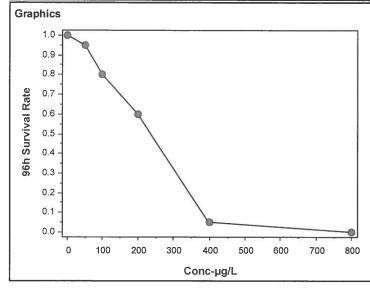
CETISv2.1.2

Analyzed:

Analysis:

Status Level:

Edit Date:


11 Jan-23 14:36 11 Jan-23 14:34

Trimmed Spearman-Kärber MD5 Hash: DF7FDE934F83BDDA7A3C88C813BFA55 Editor ID:

007-803-386-7

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0	5.00%	2.28	0.0487	192	154	241

96h Survival Ra	ate Summary		Calculated Variate(A/B)							Isotonic Variate	
Conc-µg/L	Code	Count	Mean	Median	Min	Max	CV%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	LC	4	1.000	1.000	1.000	1.000	0.00%	0.00%	20/20	1.000	0.00%
50		4	0.950	1.000	0.800	1.000	10.53%	5.00%	19/20	0.950	5.00%
100		4	0.800	0.800	0.600	1.000	20.41%	20.00%	16/20	0.800	20.00%
200		4	0.600	0.600	0.400	0.800	27.22%	40.00%	12/20	0.600	40.00%
400		4	0.050	0.000	0.000	0.200	200.00%	95.00%	1/20	0.050	95.00%
800		4	0.000	0.000	0.000	0.000		100.00%	0/20	0.000	100.00%

CETIS QC Plot

Report Date:

11 Jan-23 14:37 (1 of 1)

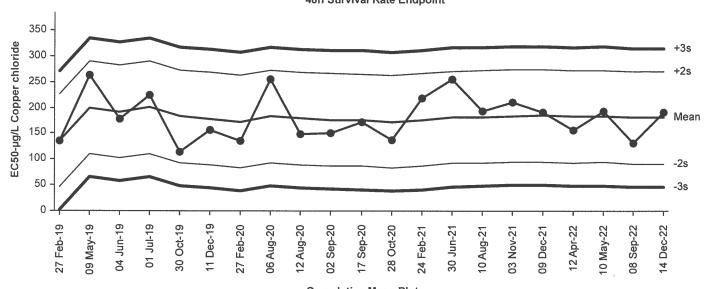
Inland Silverside 96-h Acute Survival Test

Nautilus Environmental (CA)

Test Type: Survival (96h)

Protocol: EPA/821/R-02-012 (2002)

Organism: Menidia beryllina Endpoint: 48h Survival Rate


Material:

Copper chloride

Source: Re

Reference Toxicant-REF

Inland Silverside 96-h Acute Survival Test 48h Survival Rate Endpoint

Cumulative Mean Plot

Mean: 181.2 **Sigma:** 44.9

Count: CV:

20 24.80% -2s Warning Limit: 91.4 +2s Warning Limit: 271

-3s Action Limit: 46.5 +3s Action Limit: 316

Qualit	y Con	trol Data	a								
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2019	Feb	27	16:25	135.8	-45.43	-1.012			14-0947-0420	02-5508-4150
2		May	9	19:10	263.9	82.7	1.842			03-9779-6453	03-1351-8680
3		Jun	4	14:50	177.8	-3.445	-0.07673			00-2136-1210	13-3334-6824
4		Jul	1	15:55	223.6	42.42	0.9447			04-4319-5710	18-6869-6221
5		Oct	30	14:45	114.9	-66.33	-1.477			05-0159-0485	12-2414-9813
6		Dec	11	16:30	156.9	-24.28	-0.5408			11-0566-6524	01-2860-3882
7	2020	Feb	27	17:15	136.4	-44.84	-0.9988			00-2639-4829	03-7515-2505
8		Aug	6	16:00	254.9	73.71	1.642			13-3377-6823	17-9944-6476
9			12	15:20	148.4	-32.84	-0.7315			02-5307-3356	02-4132-9895
10		Sep	2	15:25	151.6	-29.63	-0.6599			09-8373-9144	13-7286-8914
11			17	14:45	172	-9.243	-0.2058			07-8442-4358	10-5127-9850
12		Oct	28	16:35	136.6	-44.6	-0.9932			10-9446-3954	17-3578-0181
13	2021	Feb	24	17:30	218.2	36.99	0.8238			11-4316-4077	14-2201-8542
14		Jun	30	16:05	254.9	73.71	1.642			01-4075-9626	08-3028-1140
15		Aug	10	14:30	193.2	11.99	0.267			20-1130-3481	18-0139-1152
16		Nov	3	17:15	211.2	30.05	0.6693			01-2577-3416	15-8121-1522
17		Dec	9	17:20	192.4	11.24	0.2504			15-9690-9061	15-0369-8333
18	2022	Apr	12	17:35	156.9	-24.28	-0.5408			07-5453-0338	01-4100-4645
19		May	10	17:15	193.2	11.99	0.267			13-4082-2694	15-9283-9569
20		Sep	8	18:45	132	-49.25	-1.097			01-2610-4728	12-3529-7018
21		Dec	14	17:05	192.4	11.24	0.2504			05-3190-6319	07-1654-3492

Report Date:

11 Jan-23 14:37 (1 of 1)

Inland Silverside 96-h Acute Survival Test

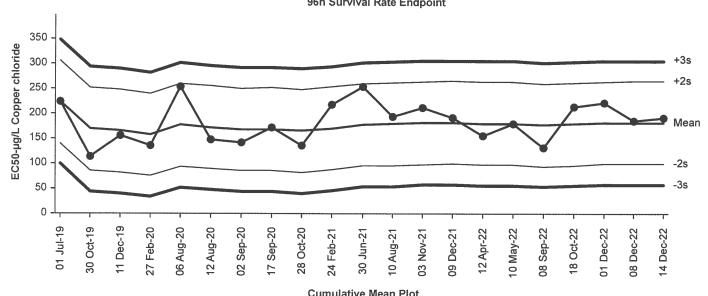
Nautilus Environmental (CA)

Test Type: Survival (96h)

Organism: Menidia beryllina

Material:

Copper chloride


Protocol: EPA/821/R-02-012 (2002)

Endpoint: 96h Survival Rate

Source:

Reference Toxicant-REF

Inland Silverside 96-h Acute Survival Test 96h Survival Rate Endpoint

Cumulative Mean Plot

Mean: 182.3 Sigma: 41.45 CV:

Count: 20 22.70%

-2s Warning Limit: 99.4 +2s Warning Limit: 265

-3s Action Limit: 57.9 +3s Action Limit: 307

Quality Control Data Point Year Month Day Time QC Data Delta Sigma Warning **Action Test ID Analysis ID** 1 2019 Jul 223.6 41.32 0.9967 15:55 04-4319-5710 17-4098-1084 2 Oct 14:45 114.9 -67.43 30 -1.62705-0159-0485 07-6888-5964 3 Dec 16:30 156.9 -25.38 -0.6124 11 11-0566-6524 14-4935-0865 2020 Feb 4 27 17:15 136.4 -45.94 -1.108 00-2639-4829 10-5059-8408 5 Aug 6 16:00 254.9 72.61 1.752 13-3377-6823 09-5433-0150 6 15:20 148.4 -33.94 -0.8189 12 02-5307-3356 11-5066-6205 7 2 15:25 141.4 -40.88 -0.9862 Sep 09-8373-9144 18-7650-2455 8 14:45 172 -10.34 -0.2495 17 07-8442-4358 02-9347-5784 9 16:35 136.6 Oct 28 -45.7 -1.102 10-9446-3954 10-4215-8111 2021 10 Feb 17:30 218.2 35.89 0.8658 24 11-4316-4077 02-1492-4727 11 16:05 254.9 72.61 Jun 30 1.752 01-4075-9626 19-2668-9340 14:30 193.2 10.89 12 Aug 10 0.2627 20-1130-3481 09-5748-8802 13 Nov 17:15 211.2 28.95 3 0.6984 01-2577-3416 13-6085-8539 14 9 17:20 192.4 Dec 10.14 0.2447 15-9690-9061 01-9685-6201 2022 Apr 15 17:35 156.9 -25.38 12 -0.6124 07-5453-0338 19-2336-1516 16 17:15 180.3 May 10 -2.05 -0.04945 13-4082-2694 00-0925-3219 18:45 132 -50.35 17 Sep 8 -1.215 01-2610-4728 13-4659-9428 Oct 15:45 213.3 18 18 30.97 0.7471 04-3098-2404 19-6506-1409 18:15 221.9 19 Dec 1 39.61 0.9557 10-3325-3262 00-5431-5878 20 8 16:42 186.6 4.307 0.1039 14-7600-8927 07-7357-4624 21 14 17:05 192.4 10.14 0.2447 05-3190-6319 15-9199-6379

Marine Acute Bioassay Static-Renewal Conditions

Water Quality Measurements & Test Organism Survival

Client:	Internal
Sample ID:	CuCl ₂
Test No.:	221214mbra

 Tech Initials

0 24 48 72 96

Counts: WEG MM KD

Readings: 2T HH GM KR

Dilutions made by: HH GM

High conc. made (µg/L): 800 - 400 - -
Vol. Cu stock added (mL): 1000 - 2000 - -

Cu stock concentration (µg/L):97,000

Concentration (μg/L)	Rand #	Number of Live Organisms				Salinity (ppt)				Temperature (°C)						Dissol	ved O (mg/L)		pH (units)							
		0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
Lab Control	4	5	5	5	5	5	29.7	1878	20.7	30,5	30.7	24.6	25.60	14.2	24.5	24.4	6.5	5.2	69	5.0	5.6	193	1.4P	7.84	7,72	7:70
	10	5	5	5	5	5			30.7		(A)	24.5		279		(A)	6.5		0.0		1	7.96		(7.7)		
	5	5	5	5	5	5																				
	9	5	5	5	5	5					278															
50	23	5	5	5	5	5	29.60	1918	30.0	30.2	30.5	246	65	245	25.0	25.1	6.6	5.4	6.8	5.5	5.4	7.93	150	7.86	7.7	7.80
	18	5	4	4	4	4			29 C	•				25.5	\				5.5					7.64	3	
	3	5	5	5	5	5																				
	6	5	5	5	5	5																				
100	19	5	5	5	5	5	29.6	pit	30.	30.1	30.1	24.6	159	245	25.7	25.3	6.6	5.3	67	5,2	5.3	7.93	1.80	7.85	7.72	77
	14	5	ч	4	24	4			29.9	\$			Section 1	25.5					3-4	100				7.68		
	2	5	3	3	3	3																				
	17	5	4	4	4	4																				200
200	20	5	2	2	2	2	29.5	81.	30-	30.2	30.3	24.6	V52	24.1	25.2	25.3	6.6	5.2	6.7	5.5	5.4	7.93	778	7.84	7.82	7.8
	11	5	3	3	3	3			29-					5.7					5.3	-				7.6	7	
	7	5	3	3	3	3																				
	22	5	4	4	4	4																				
400	8	5	1	1	10	201	294	me	20	30,2	30.2	245	155.7	24.2	-25.1	25.2	66	55	1.8	5.7	5.4	792	1.84	1.85	7.84	7.6
	15	5	0	_	_	_			29-	1				15:)				3.5					7.7	3	
	1	5	Ò	_	_	_																				
	21	5	1	0	-	-																				
800	13	5	Ü			/	21.7	new	-	-	_	24,6	15	-	-	-	6.6	55	-	_	-	7,89	183	<u> </u>	-	
	16	5	0		1	1			-					f —					-					-		
	24	5	0	/	مرو	100																				K
	12	5	0	1	-												7.6									

Rand # QC:		-	-	-				
Initial Counts QC'd by:	Λ							
Animal Source/Date Red	eived: ABS 12/9/22 Age at Initiation: 14 day S			Feed	ling Ti	imes		
Animal Acclimation Qua		0	24	48	72	96	,	
		AM:	18	0400	2910	0455	665	1
Comments:	i = initial reading in fresh test solution, f = final reading in test chamber prior to renewal	PM:	1730					
	Organisms fed prior to initiation, circle one (y) n) (A) Q (8 M 12/14/72							
	(3)040 192 12/10/22			. 1	1			

QC Check:

BO 1/11/23

Final Review: 9(5 1/1/23

Enthalpy Analytical. 4340 Vandever Avenue. San Diego, CA 92120.