Wyckoff Groundwater Treatment Plant: First Quarter 2023 Bioassay Monitoring

PREPARED FOR: Hun Seak/Washington State Department of Ecology

Kristen Reed/Washington State Department of Ecology

COPY: Jacob Moersen/U.S. Environmental Protection Agency

Brandon Perkins/U.S. Environmental Protection Agency

PREPARED BY: Joy Chen/CH2M HILL Engineers, Inc.

Mark Cichy/CH2M HILL Engineers, Inc.

DATE: June 20, 2023

1. Introduction

This technical memorandum summarizes information obtained from the first quarter 2023 sampling event performed at the U.S. Environmental Protection Agency (EPA) Wyckoff/Eagle Harbor Superfund Site (the Site) groundwater treatment plant (GWTP) located at 5350 Creosote Place NE, Bainbridge Island, Washington. CH2M HILL Engineers, Inc. (CH2M)¹ conducted this sampling event to support the current biomonitoring requirements of the Site's National Pollutant Discharge Elimination System (NPDES).

Sampling was generally conducted in accordance with the final *Quality Assurance Project Plan*, *Groundwater Treatment Plant Operations and Maintenance* (QAPP; CH2M, 2022). While there were deviations from the QAPP as noted in the Laboratory Quality Data Review section, the data is deemed usable, and the sampling is considered to have met the monitoring requirements of the NPDES permit.

The current NPDES permit does not include effluent limits for chronic toxicity. Chronic toxicity testing was conducted on the effluent samples per the requirements outlined in the NPDES permit. The current NPDES permit does not include specific dilution series for chronic toxicity tests. For the mussel larvae chronic toxicity testing conducted during the first quarter 2023 sampling event, 100 percent effluent is the highest concentration tested due to the addition of artificial sea salts to achieve a salinity of 30 parts per trillion (ppt) per the *Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms* (EPA/600/R-95/136, 1995).

No statistically significant effects on the survival endpoint were observed for all test concentrations and species, indicating no evidence of the presence of acute toxicity or chronic toxicity for the survival endpoint. A statistically significant effect was detected at the highest test concentration (100 percent effluent concentration) for the development endpoint of the chronic toxicity test.

As stated above, the current NPDES permit does not include effluent limit for chronic toxicity. The chronic toxicity test requirement section of the permit (Section II.8) specifies the following:

"EPA and Ecology will evaluate the results to determine whether they indicate the occurrence of chronic toxicity outside the mixing zone. If it appears that this may be occurring, a toxicity evaluation and reduction plan will be prepared within 90 days. The evaluation portion of the plan may include additional toxicity testing if needed to follow up on initial results or gather information for a possible toxicity limit in the future."

The observed results for the chronic developmental endpoint would therefore trigger this requirement.

1

 $^{^{}m 1}$ CH2M HILL Engineers, Inc. is now a wholly owned subsidiary of Jacobs Engineering Group Inc.

2. Sampling and Analysis Results

Biomonitoring samples were collected per the monitoring frequency included in the NPDES permit. Samples were collected from a 24-hr. autosampler collection point at the effluent tank of the treatment system. Water samples were collected on March 28, 2023. Chemical testing was conducted on a split of each sample collected for bioassay testing per the NPDES permit requirement. The bioassays were performed by EcoAnalysts, Inc. (EcoAnalysts), Port Gamble, Washington, a Washington State Department of Ecology accredited lab. Table 1 lists the sample Laboratory ID and sampling analysis methods. EcoAnalysts sampling analysis report for chronic toxicity testing is provided in Attachment 1.

Table 1. Biological Testing Summary

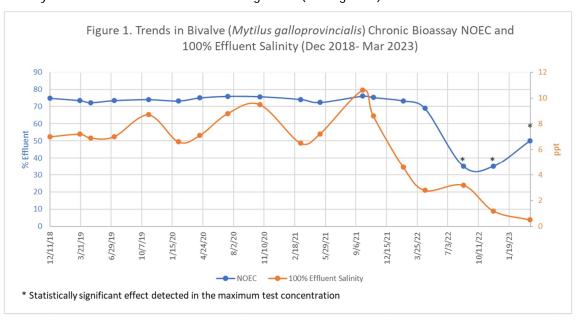
Laboratory	Laboratory ID	Method	Test Type/Descriptor/Species
EcoAnalysts	P230328.01	EPA/600/R-95-136 Method 1005.0; ASTM E724-89 TOX042.12	Chronic/48-hr Survival and Development/ <i>Mytilus galloprovincialis</i> (Mussel)

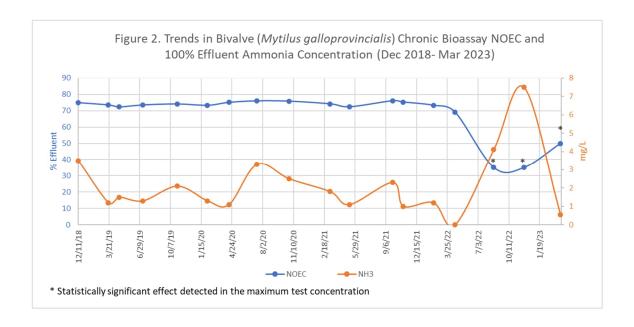
No statistically significant effects were detected in any effluent concentration tested for the survival endpoint of the bivalve test. This result indicates a No Observed Effect Concentration of 100 percent of the effluent concentration and a chronic toxic unit of 1. A statistically significant effect was detected in the 100 percent effluent concentration for the development endpoint, which results in a No Observed Effect Concentration (NOEC) of 50 and a chronic toxic unit of 2. Overall, the Effect Concentration 50 is expected to affect 50 percent of the organisms and determined to be greater than 100 percent of the effluent concentration.

3. Laboratory Quality Data Review

A CH2M chemist validated the bioassay results Stage 2A in accordance with the QAPP. Additional examination of the data beyond the data validation scope was performed because a statistically significant biological response by the test organism was observed. The QAPP (CH2M 2022) was cited by EcoAnalysts and the appropriate species of mussel specified in the QAPP was used for the analytical testing.

The data were 100 percent complete, and method and QAPP quality control requirements were met, with the following exceptions noted:


- 1. The QAPP reference toxicant copper sulfate was not used. The reference toxicant utilized was ammonia. A review of the total and unionized ammonia quality control data indicates the ammonia reference toxicant test results were within two standard deviations of the laboratory mean at the time of testing. There is no impact to the data and an addendum to the QAPP to utilize ammonia as reference toxicant has been requested.
- 2. The EPA method indicates that hypersaline brine (HSB) is to be used to adjust salinity. EcoAnalysts utilized artificial sea salts to adjust salinity. The method indicates that the use artificial sea salts is only necessary when high effluent concentrations preclude the use of HSB alone. A request was made to the EcoAnalysts to compare test samples to both lab and salt control to evaluate potential effects of artificial salt on toxicity. As noted in the report the artificial salt used to increase the salinity may have contributed to toxicity of the sample when compared to the lab control. The use of HSB was discussed with EcoAnalysts and they indicated they will follow method specification going forward.
- 3. The test failed to meet EPA test acceptability criteria of greater than or equal to 90 percent normal shell development. Percent normal for shell development endpoint for the lab control


sample was 70 percent, which met the Washington Department of Ecology's (WDOE) test acceptability criteria of greater than or equal to 70 percent combined normal shell development (WDOE WQ-R-95-80). Test data is considered generally usable, however toxicity may be overestimated or underestimated due to uncertainty from reduced species performance.

4. Trends

A review of bioassay data collected from 2007 through the first quarter of 2023 indicated there were no statistically significant effect detected for the survival endpoint for any test concentrations and species. No statistically significant effect was detected for the sublethal endpoints with the exception for the sampling events since the third quarter of 2022. For these three sampling events, statistically significant effects were detected in the maximum test concentrations for the developmental endpoint of the chronic bioassay test.

Figure 1 shows the bivalve chronic bioassay NOEC and salinity for the 100 percent effluent samples from December 2018 through March 2023. NOEC for bivalve chronic bioassay tests conducted prior to December 2018 were 70 percent. HSB with a fixed concentration was used for the salinity adjustment for chronic toxicity testing conducted prior to December 2018, therefore the maximum test concentrations remained the same for that test period. The laboratories that conducted the testing from December 2018 to November 2022 used HSB created at their laboratory (i.e. concentration varies slightly from batch to batch), therefore the resulting maximum test concentrations varies slightly for the different monitoring events. The maximum test concentration for the current quarter (i.e. first quarter of 2023) is higher than previous monitoring events (i.e. 100 percent versus ~70 percent) due to the use of artificial sea salts as opposed to HSB. This resulted in a higher NOEC than those reported for the third and fourth quarter of 2022 despite a statistically significant effect was only observed in the maximum test concentration in the samples in all three sampling events. A review of the water quality parameters measured for the bioassay samples indicated the lowest detected salinity levels were detected in the samples collected from the most recent three sampling events (see Figure 1). While the elevated ammonia concentrations detected in the third and fourth guarter 2022 may have contributed to the observed toxicity during those sampling events, ammonia does not appear to be contributing to the toxicity observed in the current monitoring event (see Figure 2).

5. Overall Assessment

While the current NPDES permit does not include specific whole effluent toxicity (WET) limits, the Washington Administrative Code (WAC) 173-205-020 specifies the following:

"Whole effluent toxicity performance standard" means a level of effluent toxicity that is consistently so much lower than is necessary to meet state water quality standards (chapter 173-201A WAC) that no reasonable potential exists to violate the water quality standards. For acute toxicity, the performance standard is the median survival in one hundred percent effluent being equal to or greater than eighty percent and no individual test result showing less than sixty-five percent survival in one hundred percent effluent. For chronic toxicity, the performance standard is no chronic toxicity test demonstrating a statistically significant difference in response between the control and a test concentration equal to the acute critical effluent concentration. For permittees that are ineligible for an approved mixing zone, the performance standard will equal or be close to equal (in the case of acute toxicity) the water quality-based effluent toxicity limit.

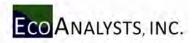
Based on sampling results, the survival endpoint of the chronic toxicity test met the WET performance standard because survival rates were within acceptable limits. While the development endpoint of the chronic toxicity test showed a statistically significant response relative to the lab control, uncertainty exists as the observed toxicity may be related to poor species performance and/or salinity adjustment using artificial sea salts. As there are no established chronic toxicity criteria included in the permit, CH2M recommends an accelerated schedule of WET testing to establish whether a pattern of chronic toxicity exists. Consistent with WAC 173-205-090(1)(b), it is recommended that the accelerated testing to be conducted monthly for three months using the same toxicity test as in the routine effluent WET testing where a statistically significant effect is detected. Due to uncertainties with the toxicity results relating to the deviations identified in Section 3, CH2M recommends triggering of the accelerated testing: 1) after EcoAnalysts switch to the use of HSB for salinity adjustment, 2) if the testing meets EPA test acceptability criteria, and 3) a statistically significant effect is detected when compared to the lab control.

Statistical analysis for monitoring events from December 2018 to November 2022 compared test samples to HSB data as opposed to the dilution water control (i.e. lab control) per the recommendation

included in EPA/600/R96-136 Section 13.10.8.4.2 "Statistical analysis should use the appropriate dilution water control data." Review of the third and fourth quarter 2022 results indicates the differences in the mean percent normal development results for HSB and lab controls are not expected to change the conclusion of the associated toxicity reports.

CH2M will provide recommendations for next steps after review of bioassay data collected after EcoAnalysts makes the necessary adjustments to the testing procedures listed in Section 3.

6. References


CH2M HILL Engineers, Inc. (CH2M, now a wholly owned subsidiary of Jacobs Engineering Group Inc.). 2022. *Quality Assurance Project Plan, Groundwater Treatment Plant Operations and Maintenance.* Final. Prepared for Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington, U.S. Environmental Protection Agency, Region 10, Seattle, Washington. January.

EPA. 1995. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, 1st ed. EPA/600/R-95/136. U.S. Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH.

Washington Administrative Code (WAC) 173-205-020, "Definitions." Available at: https://app.leg.wa.gov/WAC/default.aspx?cite=173-205-020

WAC 173-205-090, "Response to noncompliance with whole effluent toxicity limits." Available at: https://app.leg.wa.gov/WAC/default.aspx?cite=173-205-090

Attachment 1
EcoAnalysts Toxicity Testing Results
Wyckoff/Eagle Harbor Superfund Groundwater
Treatment Plant

TOXICITY TESTING RESULTS

WYCKOFF/EAGLE HARBOR SUPERFUND SITE GROUNDWATER TREATMENT PLANT BAINBRIDGE ISLAND, WA

TOXICITY TESTING: 1ST QUARTER 2023

Prepared for

Jacobs 1100 112th Avenue NE, Suite 400 Bellevue, WA 98004

Prepared by

EcoAnalysts, Inc. PO Box 216 4770 NE View Drive Port Gamble, WA 98364

Contract: 68HE0318D0004 Task Order No: 68HE0722F0011

EcoAnalysts Report ID: PG1799Q1.02

Submittal Date: April 21st, 2023 Revision Date: May 18th, 2023 2nd Revision Date: May 30th, 2023

Toxicity Testing Results
Wyckoff/Eagle Harbor Superfund Site Groundwater
Treatment Plant

All testing reported herein was performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and EcoAnalysts is not responsible for use of less than the complete report. The test results summarized in this report apply only to the sample(s) evaluated. This document is uncontrolled when printed or accessed from electronic distribution.

APPROVED BY

Marisa Seibert

Laboratory Manager

Author(s):

Julia Levengood

Sarah Zischke

QA Review:

Mary Ann Rempel-Hester

CONTENTS

1.	EXECUTIVE SUMMARY	1
2.	METHODS	2
 2.1	Sample Collection and Storage	
2.2	Bioassay Testing	
2.3	Organisms for Testing	
2.4	Water for Bioassay Testing	
2.5	Sample Adjustment	
2.6	Data Management and Analysis	
2.7	Quality Assurance/Quality Control	
3.	RESULTS	
3.1	Mytilus galloprovincialis Test Results	
4.	REFERENCES	
TABLE	ES CONTRACTOR OF THE PROPERTY	
Table 1	-1. Toxicity Test Results Summary	1
Table 2	-1. Sample Conditions upon Receipt	2
Table 2	-2. Biological Testing Performed	2
Table 2	-3. Salinity Adjustment of Project Samples	3
Table 3	-1. Results Summary for Mytilus galloprovincialis Embryo Development Test	5
Table 3	-2. Test Condition Summary for <i>Mytilus galloprovincialis</i> Embryo Development Test	7

APPENDICES

Appendix A: Statistical Comparison and Laboratory Documents

Appendix B: Chain-of-Custody and Sample Receipt Forms

ACRONYMS AND ABBREVIATIONS

EC₅₀: Effect Concentration to 50% of test population

EPA: Environmental Protection Agency

LC₅₀: Lethal Concentration to 50% of test population

LOEL: Lowest Observed Effect Level

NOEL: No Observed Effect Level

NPDES: National Pollutant Discharge Elimination System

PMSD: Percent Minimum Significant Difference

QAPP: Quality Assurance Project Plan

QM: Quality Manual

SOP: Standard Operating Procedures

WET: Whole Effluent Toxicity

1. EXECUTIVE SUMMARY

EcoAnalysts conducted Whole Effluent Toxicity (WET) testing as part of the biological compliance monitoring for Wyckoff/Eagle Harbor Superfund Site, in Bainbridge Island, Washington. The objective of this program was to assess the potential toxicity of discharge water to selected aquatic organisms following procedures defined under the facility's Quality Assurance Project Plan (QAPP) (CH2M HILL 2022). The results of the toxicity testing are contained in this report.

A statistically significant biological response of the test organisms was detected at the 100% test concentration when compared to the dilution water (laboratory) control. However, no statistically significant biological response of the test organisms was detected at any of the concentrations tested when compared to the salt control. (Table 1-1). See Section 3.1 for further information.

Table 1-1. Toxicity Test Results Summary.

	Test					
Dilution Water Control Comparison	<i>Mytilus galloprovincialis</i> 48-Hour Proportion Survived	100	>100	>100		
	<i>Mytilus galloprovincialis</i> 48-Hour Proportion Normal	50	100	>100		
Salt Control Comparison	<i>Mytilus galloprovincialis</i> 48-Hour Proportion Survived	100	>100	>100		
	<i>Mytilus galloprovincialis</i> 48-Hour Proportion Normal	100	>100	>100		

NOEL = No Observed Effect Level LOEL = Lowest Observed Effect Level

LC₅₀/EC₅₀ = Lethal/Effect Concentration to 50% of test population

2. METHODS

The sample was analyzed for toxicity using criteria outlined in the Washington Department of Ecology's (WDOE) Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria (WDOE WQ-R-95-80). These criteria are further defined through the Environmental Protection Agency's (EPA) most recently promulgated effluent guidance documents outlined in Section 4.

To evaluate the relative sensitivity of the organisms, reference toxicity tests were performed using standard reference toxicants (Lee 1980).

2.1 Sample Collection and Storage

Jacobs personnel collected a sample on March 28, 2023. The sample was transported by courier and received at the laboratory on the same day as collection. The sample temperature upon receipt was 2.3°C, below the 6°C threshold.

Additional sample conditions are summarized in Table 2-1. The samples were held in a walk-in cold room at 4 ± 2 °C in the dark until utilized for testing.

Table 2-1. Sample Conditions upon Receipt

Sample	032823
Laboratory ID	P230328.01
Date/Time sampled	3/28/23; 0138
Date/Time received	3/28/23; 1310
Dissolved Oxygen (mg/L) Recommended: >4.0 mg/L	9.2
Temperature (°C) Recommended: 0 – 6°C	2.3
pH (units) Recommended: 6 – 9	7.6
Conductivity (µS/cm)	1061
Salinity (ppt)	0.513
Total Chlorine (mg/L)	0.05
Total Ammonia (mg/L)	0.553

2.2 Bioassay Testing

Bioassay testing for this project consisted of one chronic bioassay. The test conducted in support of this project is summarized in Table 2-2.

Table 2-2. Biological Testing Performed

Test Type	Test Descriptor	Species	Method
Chronic	48-Hour Survival and Development	Mytilus galloprovincialis (Mussel)	EPA/600/R-95-136 Method 1005.0; ASTM E724-89 TOX042.12

2.3 Organisms for Testing

Adult mussels (*Mytilus galloprovincialis*) were obtained from Taylor Shellfish in Shelton, Washington on March 22, 2023. They were shipped dry and maintained under ambient seawater flow-through conditions at 12 ± 3 °C until utilized for testing. The overall health of the organisms was visually confirmed by a laboratory technician.

2.4 Water for Bioassay Testing

Seawater diluent used in this study came from the northern Hood Canal at Port Gamble, Washington. This water source has been used successfully on similar bioassay testing programs. Extensive testing on a variety of test species has shown that there is no significant potential for toxicity or bioaccumulation from this water supply. Chemical analysis of each water source is conducted and reviewed on an annual basis.

2.5 Sample Adjustment

Salinity adjustment was necessary to bring the sample within the recommended test salinity for the marine test species. The salinity of the effluent sample was adjusted with Crystal Sea® Marinemix bioassay-grade artificial salt to the desired test salinity for the marine acute and chronic tests.

Table 2-3 summarizes the salinity adjustment performed on the project sample in relation to marine test species.

An artificial salt control sample was created to evaluate any potential negative impacts to the test organisms from the salinity adjustment alone. Filtered seawater was diluted with laboratory deionized water to meet the salinity of the received effluent sample. Next, Crystal Sea® Marinemix was added to adjust the salinity to the test requirement. This sample was designated "Salt Control" and the results are discussed in the sections below.

Table 2-3. Salinity Adjustment of Project Samples

Sample ID: 032823	Sample Salinity Adjustment (ppt)			
Sample 1: Collected 3/28/23	30 ± 2			

2.6 Data Management and Analysis

Endpoint data was calculated for each replicate, and the mean value and standard deviation were determined for each sample concentration. All hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting was reviewed for errors. Review counts were conducted on any apparent outliers.

Statistical comparisons were made according to the EPA guidance. Statistical comparisons were performed using $CETIS^{\mathsf{TM}}$ software.

2.7 Quality Assurance/Quality Control

The quality assurance objectives for toxicity testing conducted by the testing laboratory are detailed in the method specific guidance documents and the laboratory's quality manual (QM). These objectives for accuracy and precision involve all aspects of the testing process, including the following:

- Source and Condition of Test Organisms
- Condition of Equipment
- Test Conditions

- Instrument Calibration
- Use of Reference Toxicants
- Record Keeping
- Data Evaluation

The batch of test organisms obtained was evaluated in a reference toxicant test that was run concurrently with the test period to establish the sensitivity of the test organisms. The reference toxicant LC_{50} or EC_{50} should fall within two standard deviations of the historical laboratory mean. Water quality measurements were monitored to ensure that they fell within prescribed limits.

The methods employed in every phase of the toxicity testing program are detailed in the EcoAnalysts Standard Operating Procedures (SOP). All EcoAnalysts staff members receive regular, documented training in all SOPs and test methods. Finally, all data collected and produced because of these analyses were recorded on approved data sheets. If an aspect of a test deviated from protocol, the test was evaluated to determine whether it was valid according to the regulatory agencies responsible for approval of the proposed permitting action.

3. RESULTS

The results of the effluent testing are presented in this section. Statistical comparisons and laboratory documents are provided in Appendix A. Chain-of-custody and sample receipt logs are provided in Appendix B.

3.1 Mytilus galloprovincialis Test Results

The chronic toxicity test with *M. galloprovincialis* was conducted on March 28, 2023. The test failed to meet the EPA test acceptability criteria of ≥90% normal shell development but met ≥50% survival and <25% Percent Minimum Significant Difference (PMSD). The WDOE test acceptability criteria of ≥70% combined normal shell development and <25% PMSD were met with 98.1% proportion survived, 70.0% proportion normal, 70.0% combined proportion normal and 8.8% PMSD for proportion normal in the laboratory control. Mean survival and proportion normal are summarized in Table 3-1. The test conditions are summarized in Table 3-2.

Concentrations of 6.25, 12.5, 25, 50, and 100% effluent were prepared utilizing laboratory water. Sample P230328.01 (received 3/28/23) was used for test initiation. Water quality parameters were within the acceptable limits throughout the duration of the 48-hour static test.

A significant difference was observed between the laboratory (dilution water) control and the salt control for the proportion normal endpoint, but not the survival or combined proportion normal endpoints. This indicates that the salt used to increase the salinity of the sample may have contributed to the toxicity of the sample, if observed, in the proportion normal endpoint. To counteract this potential effect, the proportion normal for the sample was compared to the salt control for statistical analysis. Though there was a toxic effect observed in the 100% concentration for the proportion normal endpoint when compared to the laboratory control, there was no effect when compared to the salt control. The NOEL/LOEL from the comparison to the salt control are reported below. There was no significant difference in survival or combined endpoint in any concentration of the sample compared to either control, nor was there a difference in the point estimate values (EC₅₀) calculated based on either control for any endpoint.

The EC $_{50}$ for the ammonia reference toxicant test was 5.5 mg/L total ammonia and was within two standard deviations of the laboratory mean (Table 3-2) at the time of testing. This indicates that the organisms are of a similar sensitivity to those previously tested at the EcoAnalysts laboratory.

Table 3-1. Results Summary for Mytilus galloprovincialis Embryo Development Test

Conc. (%)	Mean Proportion Survived (%)	Standard Deviation	NOEL (%)	LOEL (%)	EC ₅₀ Value (%)	
0	98.1	2.9				
Salt Control	94.6	7.6				
6.25	95.1	3.6				
12.5	98.2	3.6	100 ^{c,d}	>100 ^{c,d}	>100 ^{c,d}	
25	97.0	3.2				
50	98.2	2.5				
100	99.9	0.2				

Conc. (%)	Mean Proportion Normal (%)	Standard Deviation	NOEL (%)	LOEL (%)	EC ₅₀ Value (%)		
0	70.0	5.8					
Salt Control	61.2ª	5.6					
6.25	68.4	1.6					
12.5	68.0	3.4	50°/ 100 ^d	100°/ >100 ^d	>100 ^{c,d}		
25	68.6	2.9	100	7100			
50	67.6	2.7					
100	63.0ª	4.3					
Conc. (%)	Mean Combined Proportion Normal (%)	Standard Deviation	NOEL (%)	LOEL (%)	EC ₅₀ Value (%)		
0	70.0	2.8					
Salt Control	60.0	11.0					
6.25	66.0	5.4					
12.5	69.1	4.2	100 ^{c,d}	>100 ^{c,d}	>100 ^{c,d}		
25	66.9	4.2					
50	67.9	5.4					
100	65.1	2.3					

BOLD = Significantly different than control;

NOEL = No Observed Effect Level; LOEL = Lowest Observed Effect Level; LC_{50}/EC_{50} = Lethal/Effect Concentration to 50% of test population; proportion survived = total counted / stocking density; proportion normal = number normal/total counted; combined proportion normal = number normal / stocking density

a = significant compared to dilution water control;

b = significant compared to salt control;

c = compared to dilution water control; d = compared to salt control

Table 3-2. Test Condition Summary for Mytilus galloprovincialis Embryo Development Test.

Test Duration / Type	48-Hour; Static				
Species	Mytilus galloprovincialis				
Supplier	Taylor Shellfish				
Date acquired	3/22/23				
Test Dates	3/28 – 3	3/30/23			
Age at test initiation Recommended: <4-hour embryos	<4 h	ours			
Sample(s) used:	032823; P	230328.01			
Holding Time at Initiation: Recommended: < 36 hours	14 h	ours			
Test Procedures	EPA/600/R-95-136, Metho	od 1005.0; SOP: TOX042.12			
Test location	EcoAnalysts, Po	ort Gamble, WA			
Control water / Diluent	0.45 μm-filtered, Nort	h Hood Canal seawater			
Test Lighting	16 hour light	/ 8 hour dark			
Test Chamber	30-mL Chamber				
Exposure volume	10 mL				
Organisms/replicate	Recommended: 150 –300	Actual: 211			
Replicates/treatment	4	4			
Concentration/treatment	6.25, 12.5, 25	, 50 and 100%			
Feeding	No	one			
Test solution renewal	No	one			
Test Water Quality					
Test Dissolved Oxygen	Recommended: > 4.0 mg/L	Actual: 7.8 – 8.4 mg/L			
Test Temperature	Recommended: $16 \pm 1^{\circ}$ C	Actual: 15.4 – 16.3 °C			
Test pH	Recommended: 7 – 9	Actual: 7.7 – 8.4			
Test Salinity	Recommended: 30 ± 2 ppt	Actual: 29 – 31 ppt			
Control performance standard (Survival, Normal shell development, PMSD)	Recommended: EPA: ≥50% survival, ≥90% normal development, <25% PMSD; WDOE: ≥70% combined normal development, <25% PMSD	Actual: 98.1% survival, 70.0% normal development, 8.8% PMSD; 70.0% combined normal development EPA: Fail; WDOE: Pass			
Reference Toxicant Date	3/29	8/23			
Reference Toxicant EC ₅₀	5.5 mg/L to	tal ammonia			
Laboratory Mean EC ₅₀	7.0 mg/L to	tal ammonia			
Acceptable Range EC ₅₀ (± 2 SD)	3.6 – 13.7 mg/L total a	mmonia (within range)			
Deviations from Test Protocol	Control acceptability u	nder EPA requirements			

4. REFERENCES

- CETIS. 2022. CETIS[™] Comprehensive Environmental Toxicity Information System User's Guide. Tidepool Scientific Software. McKinleyville, CA.
- CH2M HILL. 2022. Quality Assurance Project Plan, Groundwater Treatment Plant Operations and Maintenance, Final. Wyckoff/Eagle Harbor Superfund Site. Bainbridge Island, Washington.
- USEPA. 1995. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine Organisms and Estuarine Organisms, First Edition. EPA-600-R-95-136.
- WDOE. 2016. Laboratory Guidance and Whole Effluent Toxicity Test Review Criteria. Washington State Department of Ecology. Water Quality Program. Publication number: WQ-R-95-80, Revised June 2016.

Toxicity Testing Results Wyckoff/Eagle Harbor Superfund Site Groundwater Treatment Plant

APPENDIX A

Statistical Comparisons and Laboratory Documents

Report ID PG1799Q1.03 EcoAnalysts, Inc.

Toxicity Testing Results Wyckoff/Eagle Harbor Superfund Site Groundwater Treatment Plant

APPENDIX A.1

Mytilus galloprovincialis 48-Hour Survival and Development Test

Statistical Comparison and Laboratory Data Sheets

Report ID PG1799Q1.03 EcoAnalysts, Inc.

Report Date: Test Code/ID: 17 Apr-23 15:08 (p 1 of 4) P230328.01 / 04-9403-3749

							Test	Code/ID:	P23	0328.01 / 04	4-0403	37/10
Bivalve Larva	al Survival and Developme	ent Test							120	7.7	coAnaly	
Batch ID: Start Date: Ending Date: Test Length:	28 Mar-23 15:46 Pro 30 Mar-23 14:40 Sp	Test Type: Development-Survival Protocol: EPA/600/R-95/136 (1995) Species: Mytilus galloprovincialis Taxon: Bivalvia				Di Br	luent: ine:	Sarah Zischke Laboratory Sea Crystal Sea Ma Taylor Shellfish	water	Age:		
	28 Mar-23 01:38 Ma 28 Mar-23 13:10 CA	de: terial: S (PC): ent:	P230328.01 Treated Groun Jacobs Wycke				So	urce:	WEH-031V Jacobs Wyckofi 32823			
Multiple Com	parison Summary											
Analysis ID	Endpoint	Comp	arison Metho	d		1	NOEL	LOEL	TOEL	PMSD	TU	s
10-1140-9931	Combined Proportion Normal Proportion Survived	n Norma Dunnett Multiple Comparison Test Dunnett Multiple Comparison Test Dunnett Multiple Comparison Test			t		100 50 100	>100 100 >100	70.71	10.3% 8.83% 5.78%	1 2 1	1 1
Point Estimate	e Summarv					_					_	
Analysis ID	Endpoint	Point	Estimate Meth	hod		1	Level	%	95% LCL	05% 1101	711	
19-9657-7128	Combined Proportion Norm					インン	EC15 EC20 EC25 EC40	>100 >100 >100 >100	— — —	95% UCL	<1 <1 <1 <1	1
03-6956-7611	Proportion Normal	Linear Interpolation (ICPIN)				1111	EC20 EC25 EC40	>100 >100 >100 >100 >100 >100		-	<1 <1 <1 <1 <1	1
12-5279-0442	Proportion Survived	Linear	Interpolation (I	CPIN)		1111	EC50 EC15 EC20 EC25 EC40 EC50	>100 >100 >100 >100 >100 >100 >100			<1 <1 <1 <1 <1 <1	1
Test Acceptab	ility										-	_
Analysis ID	Endpoint	Attribu	ıte	Test Stat	Lower	C Li	mits Upper	Overla	p Decision			
10-1140-9931 08-0886-0540 12-5279-0442	Proportion Normal Proportion Normal Proportion Survived Proportion Survived Combined Proportion Norm	Contro Contro Contro Contro	l Resp l Resp	0.6999 0.6999 0.981 0.981 0.1031	0.9 0.9 0.5 0.5		<< << << << << << 0.25	Yes Yes Yes Yes Yes	Below Crite Below Crite Passes Cri Passes Cri Passes Cri	eria iteria iteria		

Report Date: Test Code/ID: 17 Apr-23 15:08 (p 2 of 4) P230328.01 / 04-9403-3749

Bivalve Larval Survival and Development Test

EcoAnalysts

Combined Proportion Normal Summary											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	D	4	0.7002	0.6561	0.7444	0.6682	0.7346	0.0139	0.0277	3.96%	0.00%
0	SC	4	0.5995	0.4247	0.7744	0.5024	0.7062	0.0550	0.1099	18.33%	14.38%
6.25		4	0.6600	0.5743	0.7456	0.6161	0.7346	0.0269	0.0538	8.15%	5.75%
12.5		4	0.6908	0.6246	0.7569	0.6445	0.7441	0.0208	0.0416	6.02%	1.35%
25		4	0.6694	0.6030	0.7359	0.6114	0.7109	0.0209	0.0417	6.24%	4.40%
50		4	0.6789	0.5926	0.7652	0.6114	0.7441	0.0271	0.0542	7.99%	3.05%
100		4	0.6505	0.6139	0.6871	0.6209	0.6730	0.0115	0.0230	3.54%	7.11%

Proportion	Normal Summary	
------------	-----------------------	--

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	D	4	0.6999	0.6075	0.7923	0.6351	0.7525	0.0290	0.0581	8.30%	0.00%
0	SC	4	0.6119	0.5224	0.7013	0.5377	0.6564	0.0281	0.0562	9.18%	12.57%
6.25		4	0.6837	0.6590	0.7085	0.6633	0.6982	0.0078	0.0156	2.28%	2.31%
12.5		4	0.6804	0.6267	0.7340	0.6300	0.7009	0.0169	0.0337	4.96%	2.79%
25		4	0.6856	0.6389	0.7323	0.6482	0.7186	0.0147	0.0294	4.28%	2.05%
50		4	0.6759	0.6336	0.7182	0.6450	0.7040	0.0133	0.0266	3.93%	3.43%
100		4	0.6299	0.5623	0.6975	0.5796	0.6762	0.0213	0.0425	6.75%	10.00%

Proportion Survived Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	D	4	0.9810	0.9346	1.0280	0.9384	1.0000	0.0146	0.0292	2.98%	0.00%
0	SC	4	0.9455	0.8246	1.0660	0.8389	1.0000	0.0380	0.0760	8.04%	3.62%
6.25		4	0.9514	0.8939	1.0090	0.9194	1.0000	0.0181	0.0362	3.80%	3.02%
12.5		4	0.9822	0.9257	1.0390	0.9289	1.0000	0.0178	0.0356	3.62%	-0.12%
25		4	0.9704	0.9202	1.0210	0.9431	1.0000	0.0158	0.0315	3.25%	1.09%
50		4	0.9822	0.9431	1.0210	0.9479	1.0000	0.0123	0.0246	2.50%	-0.12%
100		4	0.9988	0.9950	1.0030	0.9953	1.0000	0.0012	0.0024	0.24%	-1.81%

Report Date:

17 Apr-23 15:08 (p 3 of 4)

400000000000000000000000000000000000000						Test Code/ID:	P230328.01 / 04-9403-3749
Bivalve Larval	Survival and	Developme	ent Test				EcoAnalysts
Combined Pro	portion Norm	nal Detail				MD5: 7555811	0FA6653E4FA062C9B56CB3B61
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		
0	D	0.6919	0.7346	0.7062	0.6682		
0	SC	0.6825	0.7062	0.5071	0.5024		
6.25		0.6161	0.7346	0.6635	0.6256		
12.5		0.7441	0.6967	0.6777	0.6445		
25		0.7109	0.6114	0.6777	0.6777		
50		0.6777	0.6114	0.7441	0.6825		
100		0.6209	0.6730	0.6635	0.6445		
Proportion Nor	mal Detail					MD5: B0585D7	7FEBF8132D862044D4E10140BD
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		
0	D	0.6667	0.7452	0.7525	0.6351		
0	SC	0.6545	0.6564	0.5377	0.5989		
6.25		0.6633	0.6982	0.6931	0.6804		
12.5		0.7009	0.6967	0.6300	0.6939		
25		0.6944	0.6482	0.7186	0.6810		
50		0.6908	0.6450	0.7040	0.6636		
100		0.5796	0.6762	0.6512	0.6126		
Proportion Sur	vived Detail					MD5: 4AEE090	CAA5E6EFB9703AECE9C0CF6D5
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		2 (2-2-2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
0	D	1.0000	0.9858	0.9384	1.0000		
0	SC	1.0000	1.0000	0.9431	0.8389		
6.25		0.9289	1.0000	0.9573	0.9194		
12.5		1.0000	1.0000	1.0000	0.9289		
25		1.0000	0.9431	0.9431	0.9953		
50		0.9810	0.9479	1.0000	1.0000		
100		1.0000	0.9953	1.0000	1.0000		

Bivalve Larval Survival and Development Test

Report Date: Test Code/ID:

17 Apr-23 15:08 (p 4 of 4) P230328.01 / 04-9403-3749

	23 103 2 00 E 3 E E E E	_
	- T- 2-7-27-3	
	EcoAnalyst	8

Combined Pro	ombined Proportion Normal Binomials										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
0	D	146/211	155/211	149/211	141/211						
0	SC	144/211	149/211	107/211	106/211						
6.25		130/211	155/211	140/211	132/211						
12.5		157/211	147/211	143/211	136/211						
25		150/211	129/211	143/211	143/211						
50		143/211	129/211	157/211	144/211						
100		131/211	142/211	140/211	136/211						

Proportion Normal Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	146/219	155/208	149/198	141/222	
0	sc	144/220	149/227	107/199	106/177	
6.25		130/196	155/222	140/202	132/194	
12.5		157/224	147/211	143/227	136/196	
25		150/216	129/199	143/199	143/210	
50		143/207	129/200	157/223	144/217	
100		131/226	142/210	140/215	136/222	

Proportion Survived Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	211/211	208/211	198/211	211/211
0	SC	211/211	211/211	199/211	177/211
6.25		196/211	211/211	202/211	194/211
12.5		211/211	211/211	211/211	196/211
25		211/211	199/211	199/211	210/211
50		207/211	200/211	211/211	211/211
100		211/211	210/211	211/211	211/211

Report Date: Test Code/ID: 17 Apr-23 15:04 (p 1 of 2) P230328.01 / 04-9403-3749

Bivalve Larva	al Survival a	nd Develo	pme	nt Test								04-9403-3 EcoAnalys
Analysis ID: Analyzed: Edit Date:	00-2533-07 17 Apr-23 1 17 Apr-23 1	15:01	Ana	lysis: P	ombined Pro arametric-Tw 495C1D26B	vo Sample	., 443.	St	TIS Versi atus Leve litor ID:	l: 1		
Batch ID:	02-5396-50	48	Tes	t Type: D	evelopment-	Survival		An	alyst:	Sarah Zischke		
Start Date:	28 Mar-23	15:46			PA/600/R-95							
Ending Date:	30 Mar-23	14:40			ytilus gallopr							
Test Length:	47h		Tax		valvia	or sometime.				Taylor Shellfis		Age:
Sample ID:	12-0776-78	17	Coc	le: Pi	230328.01			Pro		WEH-031V		
Sample Date:	28 Mar-23 (1:38	Mat	erial: Tr	eated Groun	dwater				Jacobs Wycko	off	
Receipt Date:	28 Mar-23	13:10	CAS	(PC):						32823	211	
Sample Age:	14h (2.3 °C)	Clie	nt: Ja	cobs Wycko	ff						
Data Transfor	m	Alt	Нур				Compari	son Resul	f			DMCD
Angular (Corre	cted)	C > '	_							proportion no	rmal endno	PMSD
Equal Variance	e t Two-Sar	nole Test							50111511164	proportion no	illiai ellapo	10.457
Control I	vs Contr	Marie and the	df	Test Sta	Critical	MCD	D.T.	604	25.0	Sec. 200		
Dilution Water		Control	6	1.779	1.943	MSD 0.1137	P-Type CDF	P-Value 0.0627		on(a:5%)	Sv.	
Test Acceptat	- Ogros	1000 90	_	1.7.70	1.545	0.1137	CDF	0.0627	Non-S	ignificant Effe	ct	
Attribute		tat Low	AC L			400						
PMSD	0.154		er	Upper	Overlap	Decision						
	10.00	, ,,		0.25	No	Passes C	riteria					
ANOVA Table												
Source	Sum	Squares		Mean Sq	uare	DF	F Stat	P-Value	Decisi	on(α:5%)		
Between	0.021	56.233		0.021686	9	1	3.167	0.1255	Non-Si	gnificant Effec	ct	
Error Total	0.0410	1093 0.0068488 27799			8	6	-					
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7777	1177				7						
ANOVA Assun		ts										
Attribute	Test		- NACCO	UP TO THE		Test Stat	Critical	P-Value	Decision	on(a:1%)		
Variance				iance Test		58.51	13.75	0.0003		al Variances		
		ce Ratio F		of Variance	Test	53.05	13.75	0.0003		al Variances		
Distribution		son-Darling	1,000	oot.		13.86	47.47	0.0580	The second of	/ariances		
Distribution						0.2124	3.878	0.8925		Distribution		
						0.1427 0.9498	0.3313	1.0000 0.7091		Distribution		
	Kolmogorov-Smirnov D Test Shapiro-Wilk W Normality Test					0.0400				Distribution		
Combined Pro		2.4.750.000.00	42.00				0.0401	0.7031	Holling			
	portion No	mal Sumr	nary	Mana	DEC 1 2	ARCI III	144.0					
Conc-%	portion Nor	mal Sumr	nary	Mean	95% LCL		Median	Min	Max	Std Err	CV%	%Effect
Conc-%	portion Nor Code	mal Sumr Cour 4	nary	0.7002	0.6561	0.7444	Median 0.6991	Min 0.6682	Max 0.7346	0.0139	3.96%	%Effect 0.00%
Conc-%	Code D SC	mal Sumr Cour 4 4	nary	0.7002 0.5995			Median	Min	Max			
Combined Pro Conc-% 0 0 Angular (Corre	Code D SC ected) Trans	rmal Sumr Cour 4 4 formed Si	nary nt umma	0.7002 0.5995 ary	0.6561 0.4247	0.7444 0.7744	Median 0.6991	Min 0.6682	Max 0.7346	0.0139	3.96%	0.00%
Conc-% 0 0 Angular (Corre Conc-%	Code D SC ected) Trans	rmal Sumr Cour 4 4 formed Si	nary nt umma	0.7002 0.5995 ary Mean	0.6561 0.4247 95% LCL	0.7444 0.7744 95% UCL	Median 0.6991 0.5948 Median	Min 0.6682 0.5024	Max 0.7346	0.0139	3.96%	0.00%
Conc-% 0 0 Angular (Corre Conc-%	Code D SC ected) Trans Code	rmal Sumr Cour 4 4 formed Si Cour	nary nt umma	0.7002 0.5995 ary Mean 0.9917	0.6561 0.4247 95% LCL 0.9434	0.7444 0.7744 95% UCL 1.0400	Median 0.6991 0.5948 Median 0.9901	Min 0.6682 0.5024 Min 0.9570	Max 0.7346 0.7062 Max 1.0300	0.0139 0.0550	3.96% 18.33%	0.00% 14.38%
Conc-% Conc-% Conc-% Conc-%	Code D SC ected) Trans Code D SC	rmal Sumr Cour 4 4 formed Si Cour 4 4	nary nt umma	0.7002 0.5995 ary Mean	0.6561 0.4247 95% LCL	0.7444 0.7744 95% UCL	Median 0.6991 0.5948 Median	Min 0.6682 0.5024	Max 0.7346 0.7062 Max	0.0139 0.0550 Std Err	3.96% 18.33% CV%	0.00% 14.38% %Effect
Conc-% Conc-% Conc-% Combined Pro	Code D SC ected) Trans Code D SC	rmal Sumr Cour 4 4 formed Si Cour 4 4	nary nt umma	0.7002 0.5995 ary Mean 0.9917	0.6561 0.4247 95% LCL 0.9434	0.7444 0.7744 95% UCL 1.0400	Median 0.6991 0.5948 Median 0.9901	Min 0.6682 0.5024 Min 0.9570	Max 0.7346 0.7062 Max 1.0300	0.0139 0.0550 Std Err 0.0152	3.96% 18.33% CV% 3.06%	0.00% 14.38% %Effect 0.00%
Conc-% Angular (Corre Conc-% Combined Pro Conc-%	Code D SC Code	formed Si Cour 4 4 formed Si Cour 4 4 mal Detail	mary nt umma nt	0.7002 0.5995 ary Mean 0.9917 0.8876	0.6561 0.4247 95% LCL 0.9434 0.7077	0.7444 0.7744 95% UCL 1.0400 1.0670	Median 0.6991 0.5948 Median 0.9901	Min 0.6682 0.5024 Min 0.9570	Max 0.7346 0.7062 Max 1.0300	0.0139 0.0550 Std Err 0.0152	3.96% 18.33% CV% 3.06%	0.00% 14.38% %Effect 0.00%
Conc-% Angular (Corre Conc-% Combined Pro Conc-%	Code D SC Code D SC Code D SC Code D SC Portion Nor Code D	formed Si Cour 4 4 formed Si Cour 4 4 mal Detail Rep 1 0.691	mary nt umma nt	0.7002 0.5995 ary Mean 0.9917 0.8876 Rep 2 0.7346	0.6561 0.4247 95% LCL 0.9434 0.7077 Rep 3 0.7062	0.7444 0.7744 95% UCL 1.0400 1.0670 Rep 4 0.6682	Median 0.6991 0.5948 Median 0.9901	Min 0.6682 0.5024 Min 0.9570	Max 0.7346 0.7062 Max 1.0300	0.0139 0.0550 Std Err 0.0152	3.96% 18.33% CV% 3.06%	0.00% 14.38% %Effect 0.00%
Conc-% Conc-% Conc-% Combined Pro Conc-%	Code D SC Code D SC Code D SC Code D SC Portion Nor Code D SC	formed Scoundard Address of Coundard Address o	mary int umma it 1 9 5	0.7002 0.5995 ary Mean 0.9917 0.8876	0.6561 0.4247 95% LCL 0.9434 0.7077	0.7444 0.7744 95% UCL 1.0400 1.0670	Median 0.6991 0.5948 Median 0.9901	Min 0.6682 0.5024 Min 0.9570	Max 0.7346 0.7062 Max 1.0300	0.0139 0.0550 Std Err 0.0152	3.96% 18.33% CV% 3.06%	0.00% 14.38% %Effect 0.00%
Conc-% Conc-% Combined Pro	Code D SC Code D SC Code D SC Code D SC Portion Nor Code D SC	formed Scoundard Address of Coundard Address o	mary int umma it 1 9 5	0.7002 0.5995 ary Mean 0.9917 0.8876 Rep 2 0.7346	0.6561 0.4247 95% LCL 0.9434 0.7077 Rep 3 0.7062	0.7444 0.7744 95% UCL 1.0400 1.0670 Rep 4 0.6682	Median 0.6991 0.5948 Median 0.9901	Min 0.6682 0.5024 Min 0.9570	Max 0.7346 0.7062 Max 1.0300	0.0139 0.0550 Std Err 0.0152	3.96% 18.33% CV% 3.06%	0.00% 14.38% %Effect 0.00%
Conc-% 0 0 Angular (Corre Conc-%	Code D SC Code D SC Code D SC Code D SC Portion Nor Code D SC	formed Scoundard Address of Coundard Address o	umma t 1 9 5	0.7002 0.5995 ary Mean 0.9917 0.8876 Rep 2 0.7346	0.6561 0.4247 95% LCL 0.9434 0.7077 Rep 3 0.7062	0.7444 0.7744 95% UCL 1.0400 1.0670 Rep 4 0.6682	Median 0.6991 0.5948 Median 0.9901	Min 0.6682 0.5024 Min 0.9570	Max 0.7346 0.7062 Max 1.0300	0.0139 0.0550 Std Err 0.0152	3.96% 18.33% CV% 3.06%	0.00% 14.38% %Effect 0.00%
Conc-% Conc-% Conc-% Combined Pro Conc-% Conc-% Conc-% Conc-%	Code D SC Code D SC Code D SC Portion Nor Code D SC Code D SC Code D Code D Code D Code D Code D Code D Code	formed Some A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	umma t 1 9 5 5	0.7002 0.5995 ary Mean 0.9917 0.8876 Rep 2 0.7346 0.7062	0.6561 0.4247 95% LCL 0.9434 0.7077 Rep 3 0.7062 0.5071	0.7444 0.7744 95% UCL 1.0400 1.0670 Rep 4 0.6682 0.5024	Median 0.6991 0.5948 Median 0.9901	Min 0.6682 0.5024 Min 0.9570	Max 0.7346 0.7062 Max 1.0300	0.0139 0.0550 Std Err 0.0152	3.96% 18.33% CV% 3.06%	0.00% 14.38% %Effect 0.00%

Report Date: Test Code/ID: 17 Apr-23 15:04 (p 2 of 2) P230328.01 / 04-9403-3749

Bivalve Larval Survival and Development Test

EcoAnalysts

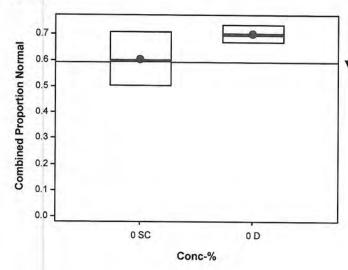
Analysis ID: 00-2533-0787

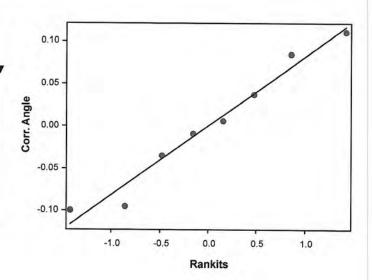
Endpoint: Combined Proportion Normal

CETIS Version: CETISv2.1.4

Analyzed: 17 Apr-23 15:01 Edit Date: 17 Apr-23 14:42

Analysis: Parametric-Two Sample Status Let MD5 Hash: B495C1D26B92C98B4CD6D47AFD606371 Editor ID:


Status Level: 1


1 004-221-689-0

Combined Proportion Normal Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	146/211	155/211	149/211	141/211
0	SC	144/211	149/211	107/211	106/211

Graphics

Report Date: Test Code/ID:

27 Apr-23 14:33 (p 1 of 4) P230328.01 / 04-9403-3749

							Test C	ode/ID:	P230	0328.01 / 04	1-9403-	3740
Bivalve Larva	al Survival and Developm	ent Test									oAnaly	_
Batch ID: Start Date: Ending Date: Test Length:	28 Mar-23 15:46 Pt 30 Mar-23 14:40 St	est Type: rotocol: pecies: exon:	and the second second	95/136 (1995)			Anal Dilu Brin Soul	ent: L	Sarah Zischke Laboratory Sea Crystal Sea Mai Taylor Shellfish	water	Age:	
Sample ID: Sample Date:	44 44 7 44 40 60	ode: aterial:	P230328.01 Treated Grou	Indwater			Proj	ect: \	WEH-031V		- ige.	
		AS (PC):	Ticalca Gro	undwater			Soul		lacobs Wyckoff			
Sample Age:	7.2.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	ient:	Jacobs Wyc	koff		6	Stati	CHI	32823 Salt (ant	1		
Multiple Com	parison Summary					<u> </u>	what so	40 -	saut land	The contract of the contract o		
Analysis ID	Endpoint		arison Meth			1	NOEL	LOEL	TOEL	PMSD	TU	S
17-7276-5074	Combined Proportion Non	na Dunn	ett Multiple Co	mparison Tes	t -		100	>100	-	17.5%	1	
	Proportion Normal	Dunne	ett Multiple Co	mparison Tes	t		100	>100	-2	10.3%	1	1
12-1437-7905	Proportion Survived	Dunne	ett Multiple Co	mparison Tes	t		100	>100		8.76%	1	1
Point Estimat	e Summary											-
Analysis ID	Endpoint	Point	Estimate Me	thod		1	Level	%	95% LCL	95% UCL	TH	
10-1272-2961	Combined Proportion Norr					1		>100	- 33 % LCL	95% UCL	TU <1	1
						1	EC20	>100	-		<1	.,
1						1	EC25	>100	-	4	<1	
						1	EC40	>100	100	-	<1	
44 444 914 914						1	EC50	>100		-	<1	
03-5384-3058	Proportion Normal	Linear	Interpolation	(ICPIN)		1	EC15	>100		-	<1	1
- 1						1	EC20	>100	-	-	<1	
						1	EC25	>100	-		<1	
						1	EC40	>100			<1	
00.0547.0470	B. C. C. C.	b. I. b. I.		-		1	EC50	>100			<1	
08-2517-6479	Proportion Survived	Linear	Interpolation	(ICPIN)			EC15	>100	75		<1	1
						1	EC20	>100	-		<1	
						1	EC25	>100			<1	
						1	EC40	>100			<1	
						1	EC50	>100	-		<1	
Test Acceptab	ility				TAC	Li	mits					
	Endpoint	Attrib	ute	Test Stat	Lower		Upper	Overlap	Decision			
	Proportion Normal		l Resp	0.6119	0.9		<<	Yes	Below Crite	ria		
	Proportion Normal		l Resp	0.6119	0.9		<<	Yes	Below Crite			
	Proportion Survived		l Resp	0.9455	0.5		<<	Yes	Passes Cri	teria		
	Proportion Survived		Resp	0.9455	0.5		<<	Yes	Passes Cri	teria		
17-72/6-50/4	Combined Proportion Norm	a PMSD		0.1754	<<		0.25	No	Passes Cri	teria		

Report Date: Test Code/ID: 27 Apr-23 14:33 (p 2 of 4) P230328.01 / 04-9403-3749

Bivalve Larval Survival and Development Test

EcoAnalysts

Combined	Proportion	Normal	Summary	
----------	------------	--------	---------	--

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	D	4	0.7002	0.6561	0.7444	0.6682	0.7346	0.0139	0.0277		
0	SC	4	0.5995		(200)		10000000			3.96%	0.00%
6.05	90	4		0,4247	0.7744	0.5024	0.7062	0.0550	0.1099	18.33%	14.38%
6.25		4	0.6600	0.5743	0.7456	0.6161	0.7346	0.0269	0.0538	8.15%	5.75%
12.5		4	0.6908	0.6246	0.7569	0.6445	0.7441	0.0208	0.0416	6.02%	1.35%
25		4	0.6694	0.6030	0.7359	0.6114	0.7109	0.0209	0.0417	6.24%	4.40%
50		4	0.6789	0.5926	0.7652	0.6114	0.7441	0.0271	0.0542	7.99%	3.05%
100		4	0.6505	0.6139	0.6871	0.6209	0.6730	0.0115	0.0230	3.54%	7.11%

Proportion Normal Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	D	4	0.6999	0.6075	0.7923	0.6351	0.7525	0.0290	0.0581	8.30%	0.00%
0	SC	4	0.6119	0.5224	0.7013	0.5377	0.6564	0.0281	0.0562	9.18%	12.57%
6.25		4	0.6837	0.6590	0.7085	0.6633	0.6982	0.0078	0.0156	2.28%	2.31%
12.5		4	0.6804	0.6267	0.7340	0.6300	0.7009	0.0169	0.0337	4.96%	2.79%
25		4	0.6856	0.6389	0.7323	0.6482	0.7186	0.0147	0.0294	4.28%	2.05%
50		4	0.6759	0.6336	0.7182	0.6450	0.7040	0.0133	0.0266	3.93%	3.43%
100		4	0.6299	0.5623	0.6975	0.5796	0.6762	0.0213	0.0425	6.75%	10.00%

Proportion Survived Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	D	4	0.9810	0.9346	1.0280	0.9384	1.0000	0.0146	0.0292	2.98%	100000
0	SC	4	0.9455	0.8246	1.0660	0.8389	1.0000				0.00%
6.25		1	0.9514	0.8939			4 3 9 0 0	0.0380	0.0760	8.04%	3.62%
12.5		7	334343		1.0090	0.9194	1.0000	0.0181	0.0362	3.80%	3.02%
10,000		4	0.9822	0.9257	1.0390	0.9289	1.0000	0.0178	0.0356	3.62%	-0.12%
25		4	0.9704	0.9202	1.0210	0.9431	1.0000	0.0158	0.0315	3.25%	1.09%
50		4	0.9822	0.9431	1.0210	0.9479	1.0000	0.0123	0.0246	2.50%	-0.12%
100		4	0.9988	0.9950	1.0030	0.9953	1.0000	0.0012	0.0024	0.24%	-1.81%

Report Date:

27 Apr-23 14:33 (p 3 of 4)

ALCONO TO						Test Cod	le/ID:	P230328.01 / 04-9403-374
Bivalve Larva	I Survival and	Developme	ent Test					EcoAnalysts
Combined Pr	oportion Norm	nal Detail				MD5:	75558110FA	A6653E4FA062C9B56CB3B61
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		102 442 mg1 1	
0	D	0.6919	0.7346	0.7062	0.6682			
0	SC	0.6825	0.7062	0.5071	0.5024			
6.25		0.6161	0.7346	0.6635	0.6256			
12.5		0.7441	0.6967	0.6777	0.6445			
25		0.7109	0.6114	0.6777	0.6777			
50		0.6777	0.6114	0.7441	0.6825			
100		0.6209	0.6730	0.6635	0.6445			
Proportion No	rmal Detail					MD5:	B0585D7FF	BF8132D862044D4E10140BD
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	1.44		51 0102D002044D4L 10140BD
0	D	0.6667	0.7452	0.7525	0.6351			
0	sc	0.6545	0.6564	0.5377	0.5989			
6.25		0.6633	0.6982	0.6931	0.6804			
12.5		0.7009	0.6967	0.6300	0.6939			
25		0.6944	0.6482	0.7186	0.6810			
50		0.6908	0.6450	0.7040	0.6636			
100		0.5796	0.6762	0.6512	0.6126			
Proportion Su	rvived Detail					MD5:	4AEE09CAA	5E6EFB9703AECE9C0CF6D5
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4			
D	D	1.0000	0.9858	0.9384	1.0000			
0	SC	1.0000	1.0000	0.9431	0.8389			
5.25		0.9289	1.0000	0.9573	0.9194			
12.5		1.0000	1.0000	1.0000	0.9289			
25		1.0000	0.9431	0.9431	0.9953			
50		0.9810	0.9479	1.0000	1.0000			
100		1.0000	0.9953	1.0000	1.0000			

Report Date: Test Code/ID: 27 Apr-23 13:20 (p 1 of 3) P230328.01 / 04-9403-3749

Bivalve Lar	val Su	rvival and I	Develop	omer	t Test									EcoAnalys
Analysis ID		7276-5074		End	point:	Combined Pro	portion Norr	mal		CETIS V	ersion	CETISV		
Analyzed:	27	Apr-23 13:19	9	Ana		Parametric-Co				Status Le		1	2.1.4	
Edit Date:	17	Apr-23 14:42	2	MD		4025593621A			F751	Editor ID		004-221	-689-0	
Batch ID:	02-	5396-5048		Test	Type: I	Development-S	Survival			Analyst:	Sar	ah Zischke		
Start Date:	28 1	Mar-23 15:4	6			EPA/600/R-95				Diluent:		oratory Sea	water	
Ending Date	: 30 1	Mar-23 14:4	0			Mytilus gallopr				Brine:		stal Sea Ma		
Test Length	: 47h			Tax		Bivalvia	C.10180808			Source:		lor Shellfish		Age:
Sample ID:	12-0	0776-7817		Cod	e: F	230328.01				Project:	WE	H-031V		1.000
Sample Dat	e: 28 M	Mar-23 01:3	8	Mate	erial:	reated Groun	dwater			Source:		obs Wycko	ff	
Receipt Dat	e: 28 M	Mar-23 13:10	0	CAS	(PC):		2.17.55.5			Station:	328			
Sample Age	: 14h	(2.3 °C)		Clie		lacobs Wycko	ff				020			
Data Transf	orm		Alt H	lyp				NOEL	LOE	I TO	EL	Tox Unit	e Menu	PMSD
Angular (Cor	rected)	C > T	_				100	>100			1	0.1052	17.54%
Dunnett Mu	tiple (Comparison	1 Test					1142				•	0.1032	17,047
Control	vs	Conc-%	1,1,200	df	Test St	at Critical	MSD	P-Type	P-Va	luo Da	cicles	E0/\		
Salt Control		6.25		6	-1.374	2.407	0.1078	CDF	0.994		cision(
		12.5		6	-2.102	2.407	0.1078	CDF	0.999	433		ficant Effection		
		25		6	-1.589	2.407	0.1078	CDF	0.996	27.	1 1 1 1 Table 1	ficant Effec		
		50		6	-1.825	2.407	0.1078	CDF	0.998	1170		ficant Effec		
		100		6	-1.134	2.407	0.1078	CDF	0.988			ficant Effec		
Test Accept	ability	Criteria	-			1000			3.59		Oigin	nount Ence		
Attribute		Test Stat			mits Upper	Overlap	Decision							
PMSD		0.1754	<<		0.25	No	Passes C		_					
ANOVA Tab	_	501100	-		0.20	110	1 43363 0	interia						_
Source	е	Sum San	01.00		Acres 2		200							
Between	_	Sum Squ		_	Mean S		DF	F Stat	P-Va		cision(
Error		0.0218131			0.00436		5	1.087	0.400	9 No	n-Signi	ficant Effec	t	
Total	_	0.0722498			0.00401	39	18	2						
				_			23							
ANOVA Ass	ımptıc													
Attribute	_	Test		_			Test Stat	Critical	P-Va	lue De	cision(a:1%)		
/ariance		Bartlett Ed					6.705	15.09	0.243	85 Equ	ual Vari	iances		
		Levene Ed					4.421	4.248	0.008			ariances		
55.1.31		Mod Lever				e Test	3.771	4.248	0.016	4 Equ	ual Vari	ances		
Distribution		Anderson-					0.2684	3.878	0.710	6 Nor	mal Di	stribution		
		D'Agostino					0.4139	2.576	0.678			stribution		
		D'Agostino					0.2287	2.576	0.819			stribution		
		D'Agostino				s Test	0.2236	9.21	0.894			stribution		
		Kolmogoro					0.1125	0.2056	0.614			stribution		
		Shapiro-W	ilk W N	orma	lity Test		0.9752	0.884	0.794			stribution		
Combined P	roport	ion Normal	Summ	ary										
Conc-%		Code	Count		Mean	95% LCL	95% UCL	Median	Min	Max	×	Std Err	CV%	%Effec
)		SC	4		0.5995	0.4247	0.7744	0.5948	0.502			0.0550	18.33%	0.00%
5.25			4		0.6600	0.5743	0.7456	0.6445	0.616			0.0269	8.15%	-10.089
2.5			4		0.6908	0.6246	0.7569	0.6872	0.644			0.0208	6.02%	-15.229
25			4		0.6694	0.6030	0.7359	0.6777	0.611			0.0208		
50			4		0.6789	0.5926	0.7652	0.6801					6.24%	-11.66%
00			4		0.6505				0.611			0.0271	7.99%	-13.249
27			4		0.0000	0.6139	0.6871	0.6540	0.620	9 0.67	/30	0.0115	3.54%	-8.50%

Report Date: Test Code/ID: 27 Apr-23 13:20 (p 2 of 3) P230328.01 / 04-9403-3749

Bivalve Larval Survival and Development Test

EcoAnalysts

Analysis ID: 17-7276-5074 Analyzed: 27 Apr-23 13:19

Endpoint: Combined Proportion Normal

Analysis: Parametric-Control vs Treatments

CETIS Version:

n: CETISv2.1.4

Edit Date: 17 Apr-23 14:42

MD5 Hash: 4025593621A1937B2F3EC7A1D523F751

Status Level: 1 Editor ID: 00

004-221-689-0

Angular (Corrected) Transformed Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	SC	4	0.8876	0.7077	1.0670	0.8823	0.7878	0.9979	0.0565	12.73%	0.00%
6.25		4	0.9491	0.8572	1.0410	0.9322	0.9026	1.0300	0.0289	6.08%	-6.93%
12.5		4	0.9818	0.9097	1.0540	0.9773	0.9320	1.0400	0.0227	4.61%	-10.61%
25		4	0.9588	0.8886	1.0290	0.9671	0.8977	1.0030	0.0221	4.60%	-8.02%
50		4	0.9693	0.8766	1.0620	0.9696	0.8977	1.0400	0.0291	6.01%	-9.21%
100		4	0.9384	0.9000	0.9767	0.9420	0.9075	0.9620	0.0120	2.57%	-5.72%

Combined Proportion Normal Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	SC	0.6825	0.7062	0.5071	0.5024	
6.25		0.6161	0.7346	0.6635	0.6256	
12.5		0.7441	0.6967	0.6777	0.6445	
25		0.7109	0.6114	0.6777	0.6777	
50		0.6777	0.6114	0.7441	0.6825	
100		0.6209	0.6730	0.6635	0.6445	

Angular (Corrected) Transformed Detail

Code	Rep 1	Rep 2	Rep 3	Rep 4
sc	0.9722	0.9979	0.7925	0.7878
	0.9026	1.0300	0.9520	0.9124
	1.0400	0.9875	0.9671	0.9320
	1.0030	0.8977	0.9671	0.9671
	0.9671	0.8977	1.0400	0.9722
	0.9075	0.9620	0.9520	0.9320
		SC 0.9722 0.9026 1.0400 1.0030 0.9671	SC 0.9722 0.9979 0.9026 1.0300 1.0400 0.9875 1.0030 0.8977 0.9671 0.8977	SC 0.9722 0.9979 0.7925 0.9026 1.0300 0.9520 1.0400 0.9875 0.9671 1.0030 0.8977 0.9671 0.9671 0.8977 1.0400

Combined Proportion Normal Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	SC	144/211	149/211	107/211	106/211	_
6.25		130/211	155/211	140/211	132/211	
12.5		157/211	147/211	143/211	136/211	
25		150/211	129/211	143/211	143/211	
50		143/211	129/211	157/211	144/211	
100		131/211	142/211	140/211	136/211	

Graphics

Report Date: Test Code/ID: 27 Apr-23 13:16 (p 1 of 2) P230328.01 / 04-9403-3749

_	-							Te	st Code/ID:		P23	30328.01	04-9403-374
Bivalv	e Larva	I Survival and D	Developme	ent Test									EcoAnalyst
Analys Analyz Edit Da	ed:	10-1272-2961 27 Apr-23 13:15 17 Apr-23 14:42	. An	ndpoint: nalysis: D5 Hash:	Combined Prop Linear Interpola 4025593621A1	ation (ICPI	N)		CETIS Vers Status Leve Editor ID:		CETISV 1 004-221		
Batch	ID:	02-5396-5048	Te	st Type:	Development-S	Survival			Analyst	Carab	. Zinabla		
Start D	ate:	28 Mar-23 15:46		otocol:	EPA/600/R-95/						Zischke		
Ending	Date:	30 Mar-23 14:40		ecies:	Mytilus gallopro				A CONTRACTOR OF THE PARTY OF TH		atory Sea al Sea Ma		
Test Le	ength:	47h		xon:	Bivalvia	1,11,2,3,12					r Shellfish		Ago
Sample	e ID:	12-0776-7817	· ·	de:	D000000 04	_							Age:
	0.1	28 Mar-23 01:38		aterial:	P230328.01 Treated Ground	huntor				0,000	-031V		
		28 Mar-23 13:10		S (PC):	rreated Ground	Iwater					s Wycko	f	
		14h (2.3 °C)		ent:	Jacobs Wyckof	f			Station:	32823	5.		
Linear	Interpo	lation Options									_		_
X Trans	diam'r.	Y Transform	Se Se	ed	Resamples	Exp 95%	6 CL M	ethod					
Log(X+	1)	Linear	10	59744	200	Yes		2006/20	terpolation	_			
Point E	stimate	es				2.4		and a street of	- Proposition	-			
Level	%	95% LCL	95% UCI	L Tox U	nits 95% LCL	95% UCI							
EC15	>100		644	<1	-							_	
EC20	>100	-		<1		1222							
EC25	>100		***	<1		.==							
EC40	>100	-	***	<1	-	-							
EC50	>100		-	<1		_							
	1	portion Normal	Summary	ý		Calculate	d Variate((A/B)				Isoto	nic Variate
Conc-%	6	Code	Count	Mean	Median	Min	Max	CV%	%Effe	ct :	ΣΑ/ΣΒ	Mean	%Effect
0		SC	4	0.5995	0.5948	0.5024	0.7062	18.33	% 0.00%		506/844	0.6597	0.00%
6.25			4	0.6600	4.000	0.6161	0.7346	8.15%	1 11222	% !	557/844	0.6597	0.00%
12.5 25			4	0.6908	- 200	0.6445	0.7441	6.02%			583/844	0.6597	0.00%
50			4	0.6694		0.6114	0.7109	6.24%			565/844	0.6597	0.00%
100			4	0.6789		0.6114	0.7441	7.99%			573/844	0.6597	0.00%
	and Dra	nowlon Named	-	0.0000	0.0540	0.6209	0.6730	3.54%	-8.50%	6	549/844	0.6505	1.39%
Conc-%	No. of Ac	portion Normal		1245	1.2.4	200							
0	0	Code	Rep 1	Rep 2	Rep 3	Rep 4							
6.25		SC	0.6825	0.7062		0.5024							
12.5			0.6161	0.7346		0.6256							
25			0.7441	0.6967		0.6445							
50			0.7109	0.6114		0.6777							
100			0.6777	0.6114		0.6825							
	1.02	THE PARTY OF THE	0.6209	0.6730	0.6635	0.6445							
		portion Normal											
Conc-%		Code	Rep 1	Rep 2	Rep 3	Rep 4							
0		SC	144/211	149/21		106/211							
5.25			130/211	155/21		132/211							
12.5			157/211	147/21		136/211							
25			150/211	129/21		143/211							
			143/211	129/21	1 157/211	444/044							
50 100			131/211	142/21		144/211 136/211							

Report Date: Test Code/ID:

27 Apr-23 13:16 (p 2 of 2) P230328.01 / 04-9403-3749

Bivalve Larval Survival and Development Test

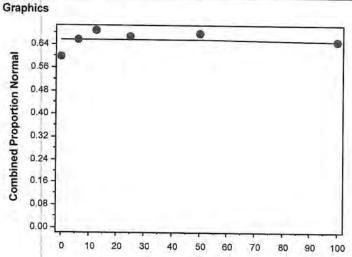
EcoAnalysts

Analysis ID: 10-1272-2961

Endpoint: Combined Proportion Normal

CETIS Version:

CETISv2.1.4


1

Analyzed: **Edit Date:** 27 Apr-23 13:15 17 Apr-23 14:42

Analysis: Linear Interpolation (ICPIN) MD5 Hash: 4025593621A1937B2F3EC7A1D523F751

Status Level: Editor ID:

004-221-689-0

Conc-%

CETIS Test Data Worksheet

Start Date:

End Date:

Report Date:

17 Apr-23 14:57 (p 1 of 1)

Test Code/ID:

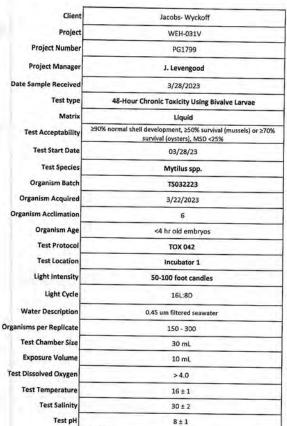
P230328.01 / 04-9403-3749

EcoAnalysts

Bivalve Larval Survival and Development Test

28 Mar-23 15:46 30 Mar-23 14:40

Species: Mytilus galloprovincialis Protocol: EPA/600/R-95/136 (1995) Sample Code: P230328.01 Sample Source: Jacobs Wyckoff


Sample Date: 28 Mar-23 01:38 Material: Treated Groundwater

Sample Station: 32823

Tr. Clinical		100	E HE C	material.	Treated Groundwater		Sample Sta	ition: 32823
Conc-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	D	1	5	211	219	219	146	Notes
0	D	2	13	211	208	208	155	
0	D	3	21	211	198	198	149	
0	D	4	19	211	222	222	141	
0	sc	1	20	211	220	220	144	
0	SC	2	27	211	227	227	149	
0	SC	3	11	211	199	199	107	
0	SC	4	10	211	177	177	106	
6.25		1	15	211	196	196	130	
6.25		2	28	211	222	222	155	
6.25		3	17	211	202	202	140	
6.25		4	2	211	194	194	132	
12.5		1	3	211	224	224	157	
12.5	11.55	2	16	211	211	211	147	
12.5		3	6	211	227	227	143	
12.5		4	23	211	196	196	136	
25		1	12	211	216	216	150	
25	11.77	2	7	211	199	199	129	
25		3	8	211	199	199	143	
25		4	18	211	210	210	143	
50		1	14	211	207	207	143	
50	11	2	26	211	200	200	129	
50		3	25	211	223	223	157	
50	T.	4	24	211	217	217	144	
100		1	1	211	226	226	131	
100		2	4	211	210	210	142	
100		3	22	211	215	215	140	
100		4	9	211	222	222	136	

Note: input lowest and highest decimal for temp

Salinity

1	est Parameters	
	Min	Max
DO	4.0	
Temp	15	17
Salinity	28	32
рН	7	9

TEST START TIME/INIT: 1546 MS/DM
TEST END TIME/INIT: 1440 MV

CLIENT SAMPLE ID	LAB ID		
32823	P230328.01		

Salinity Adjustment CSMM
Batch #
OHCGE 304

Formalin Lot #
220304-50

Rose Bangel Batch #

0	oncentrations
1	Control
2	Salt Control
3	6.25%
4	12.5%
5	25%
6	50%
7	100%
8	
9	A

Treatment	Rep	Chambe		
Control	1			
Control	2			
Control	3			
Control	4			
Salt Control	1			
Salt Contro	2			
Salt Control	3			
Salt Control	4			
6.25%	1			
6.25%	2			
6.25%	3			
6.25%	4			
12.5%	1			
12.5%	2			
12.5%	3			
12.5%	4			
25%	1			
25%	2			
25%	3			
25%	4			
50%	1			
50%	2			
50%	3			
50%	4			
100%	1			
100%	2			
100%	3			
100%	4			
	1			
	2			
	3			
	4			
	1			
	2			
	3			
	4			

ECO ANALYSTS, INC.

48-Hour Chronic WET Test

.2	CLIENT	Jacobs- Wyckoff	DATE RECEIVED	3/28/23	PROTOCOL	TOX 042
	PROJECT	WEH-031V	TEST START DATE	3/28/23	PROJECT MANAGER	J. Levengood
	CLIENT SAMPLE ID	32823	TEST END DATE	3/30/23	SPECIES	Mytilus spp.
	LAB SAMPLE ID	P230328.01	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300

48-Hour Chronic Toxicity Using Bivalve Larvae

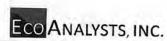
Day of Test	Concentration	Vol. Effluent Sample Added (mL)	Vol. Diluent Added (mL)	Total Volume (mL)	Diluent Type	FSW
	0%	0	200.0	200		
	Salt Control	#VALUE!	#VALUE!	200		
	6.25%	12.5	187.5	200		
0	12.5%	25.00	175.00	200		
	25%	50	150.0	200		
	50%	100	100.0	200		
	100%	200	0.0	200		

Test Dilution Prep

Date	Balance ID	Sample ID (P#)	Water Batch ID	Initials
3/20/23	5	P130328.01	F4N 037873.02	DW

48-Hour Chronic WET Test

LAB SAMPLE ID	P230328.01	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300
CLIENT SAMPLE ID	32823	TEST END DATE	3/30/23	SPECIES	Mytilus spp.
PROJECT	WEH-031V	TEST START DATE	3/28/23	PROJECT MANAGER	J. Levengood
CLIENT	Jacobs- Wyckoff	DATE RECEIVED	3/28/23	PROTOCOL	TOX 042

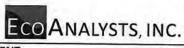

48-Hour Chronic Toxicity Using Bivalve Larvae

SPAWNING METHOD Heat Shock		AL SPAWNING TIME 1259	FINAL SPAWNING TIME 1353	
MALES 3	FEMALES 4	SPERM VIABILITY	EGG CONDITION GOOD	
BEGIN FERTILIZATION 1353	END	FERTILIZATION 1545	CONDITION OF EMBRYOS	

TIME OF INITIATION	INITIALS	
15:46	DM/MS	

EMBRYO DENSITY CALCULATIONS

# of embryos i	n 1 mL of 100X dilu	uted embryo	stock	# embryos in original stock = # of embryos in diluted stock x 100
Count 1	Count 2	Mean		
	191	245	218	21800
ercentage of	embryo stock nee	ded = 2500 er	mbryos per 1 mL/# embr	vos in original stock
	embryo stock nee	ded = 2500 er	mbryos per 1 mL/# embr	yos in original stock
		ded = 2500 er	mbryos per 1 mL/# embr	yos in original stock
(0.11			
nL of egg stock	to add to FSW to	achieve tota	l volume = percentage o	f embro stock needed * 40 mL (or desired volume of embryo stock)
mL of egg stock	to add to FSW to	achieve tota	l volume = percentage o	f embro stock needed * 40 mL (or desired volume of embryo stock)
mL of egg stock	to add to FSW to	achieve tota	l volume = percentage o	


48-Hour Chronic WET Test

2 CLIENT	Jacobs- Wyckoff	DATE RECEIVED	3/28/23	PROTOCOL	TOYOU
PROJECT		TEST START DATE	- 2000	PROJECT MANAGER	TOX 042
CLIENT SAMPLE ID		TEST END DATE	3/30/23		J. Levengood Mytilus spp.
LAB SAMPLE ID	P230328.01	MATRIX		NO. OF ORGANISMS	150 - 300

48-Hour Chronic	Toxicity	Using	Bivalve	Larvae
-----------------	----------	-------	---------	--------

		DO (mg/L)	TEMP (°C)	SALINITY (ppt)	pH
E-WO	Concentration (%)	> 4.0	15 - 17	28 - 32	7-9
Day 0	Control	0.7	0143	3	79
Stock	Salt Control	8.3	0 16.3	30	78
Date 3/28/23	6.25%	8.3	0 16.3	3	20
Time 1500	12.5%	8.3 8.3	(D) (4.3	31	70
Tech DM	25%	8.3	0 16.3	30	78
Meter #	50%	9.3	0 16.3	30	78
111111111111111111111111111111111111111	100%	8.4	16.3	29	7.7
Day 1	Control		0 15.4		141
Surrogate	Salt Control		0 15.4		
Date 3/29/23	6.25%		0 15.4		
Time 0920	12.5%		0 15.4		
Tech 52	25%		0 15.4		
Meter # 116	50%		0 15.4		
	100%		0 15.4		
Day 2	Control	7.8	015.6	31	7.9
Surrogate	Salt Control	7.9	Q 15.6	30	7.8
Date 3/30/23	6.25%	8.0	0 15.6	31	8.0
Time 1418	12.5%	8.0	0 15.6	31	8.1
Tech 52	25%	8.0	0 15.6	30	8.2
Meter# 8	50%	8.0	0 15.6	30	8.3
	100%	8.1	0 15.6	29	8.4

1 word Tump Blank-DM - 3/28/23, sz 3/29/23, sz 3/30/23

48-Hour Chronic WET Test

CLIENT	Jacobs- Wyckoff	DATE RECEIVED	3/28/23 PROTOCOL	TOX 042
PROJECT	WEH-031V	TEST START DATE	3/28/23 PROJECT MANAGER	J. Levengood
CLIENT SAMPLE ID	32823	TEST END DATE	3/30/23 SPECIES	Mytilus spp.
LAB SAMPLE ID	P230328.01	MATRIX	Liquid NO. OF ORGANISMS	150 - 300

48-Hour Chronic Toxicity Using Bivalve Larvae

Concentration (%)	REP	Normal	Abnormal	Date	Tech	Comments/QA Counts
	1	108		4/6/23	MK	
	2	204		4/6/23	MK	
Stanking Donaite	3	228		4/(0/23	MK	
Stocking Density	4	215		4/10/23	MK	-1
	5	230		4/10/23	MK	
	6	218		4/6/23	MK	
	1	140	73	4/4/23	MK	Orig 5.00/ 0=3
Control	2	155	53	4/6/23	MK	NU NU
Control	3	149	49	4/6/23	MK	
	4	141	81	4/6/23	MK	
	1	144	710	4/10/23	MS	
Salt Cantual	2	149	78	4113123	NL	
Salt Control	3	167	92	4/13	NL	
	4	106	71	4/13	NL	
	1	130	100	4/10/23	MS	
6.25%	2	155	67	4/13	NL	QA 153N/GeA 701:701. A=01.
0.23%	3	140	62	4/13	NL	707-107- 2-07-
	4	132	62	413	NL	
	1	157	6	4/10/23	MS	
12.5%	2	147	64	4/13	NL	
22.070	3	143	84	4/13	NL	142N/87 A GA 52
	4	136	66	43	NL	
	1	150	66	4/10/23	MS	
25%	2	129	04370	4/13	NL	
	3	143	56	4/13	NL	
	4	143	61	4/13	NL	
	1	143	64	4/10/23	MS	
50%	2	129		4/13	NL	
	3	157	1010	4(13	NL	
	4	144	73	4/13	M	
	1	131	95	4/10/23	ANS	
100%	2	OH40-142	075-48	41/3	N	
	3	140	75	413	NL	
	4	134	80	413	N	

OLE-NL4113

4

2

17 May-22

Report Date:

17 Apr-23 15:34 (1 of 1)

Bivalve Larval Survival and Development Test

All Matching Labs

+1s

Mean

-15

-2s

Mar-23

28

27 Mar-23

Test Type: Development-Survival Protocol:

EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis Endpoint: Combined Proportion Normal

Material: Source:

Dec-22

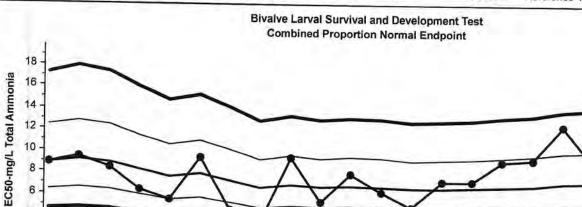
30 Nov-22

13 Jan-23

09 Feb-23

00-8572-7368 10-5325-0783 EcoAnalysts

20-3891-7103 06-7296-3936 EcoAnalysts


00-9622-9067 21-3408-3763 EcoAnalysts

13-8989-7877 05-5295-3514 EcoAnalysts

02-2233-3890 16-3797-4494 EcoAnalysts

Total Ammonia

Reference Toxicant-REF

Sep-22

20

Sep-22

28

21 Lognormal Cumulative Mean Plot

Oct-22

Mean: Sigma:

21 Jun-22

03 Jun-22

7.015 NA

28 Jun-22

28 Jul-22

10 Aug-22

Count: 20 CV: 34.30%

24 Aug-22

02 Sep-22

-1s Warning Limit: 5.03 +1s Warning Limit:

24 Oct-22

Oct-22

27

-2s Action Limit: 3.6 +2s Action Limit: 13.7

Feb-23

Mar-23

Quality Control Data Point Year Month Day Time QC Data Delta Sigma Warning Action Test ID Analysis ID Laboratory 1 2022 May 17 16:11 8.853 1.839 0.6974 11-5935-3112 11-7802-4839 EcoAnalysts 2 3 Jun 16:12 9.446 2.431 0.8914 08-5591-8618 16-7793-8354 EcoAnalysts 3 21 17:46 8.368 1.353 0.5284 03-7983-1979 17-5961-0612 EcoAnalysts 4 28 16:05 6.362 -0.6526-0.292608-5637-7603 04-5931-5430 EcoAnalysts 5 Jul 28 15:55 5.431 -1.583-0.766319-6544-8440 11-0281-7196 EcoAnalysts 6 Aug 10 16:57 9.323 2.308 0.8521 20-5736-9281 08-2934-0504 EcoAnalysts 24 16:43 4.439 -2.576-1.371(-) 10-4871-9595 11-0042-4049 EcoAnalysts 8 Sep 2 14:54 3.311 -3.703-2.249(-) 16-0701-8534 00-0124-1152 EcoAnalysts 9 20 16:02 9.267 2.253 0.8343 11-7896-9547 00-7476-6700 EcoAnalysts 10 28 16:31 5.182 -1.833-0.907310-3818-0354 11-9896-8834 EcoAnalysts 11 Oct 21 14:16 7.804 0.7898 0.3196 05-2022-4267 03-4308-3965 EcoAnalysts 12 24 15:17 6.15 -0.8648-0.394201-4864-2336 19-5269-5566 EcoAnalysts 13 27 17:02 4.776 -2.239-1.152(-) 12-4527-0974 13-7457-7890 EcoAnalysts 14 Nov 30 14:32 7.166 0.151 0.06382 11-2220-4195 10-4569-3704 EcoAnalysts 15 Dec 7 17:43 7.159 0.1442 0.06097 19-4874-8030 20-9525-0017 EcoAnalysts 16 2023 Jan 13 15:30 9.078 2.063 0.7723 14-2219-3979 18-3945-1944 EcoAnalysts

17

18

19

20

21

Feb

Mar

9

17

14

27

28

15:28

14:30

15:15

9.246

12.4

8.955

16:54 4.818

15:46 5.455

2.232

5.383

1.941

-2.197

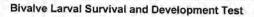
-1.56

0.8275

1.706

0.7317

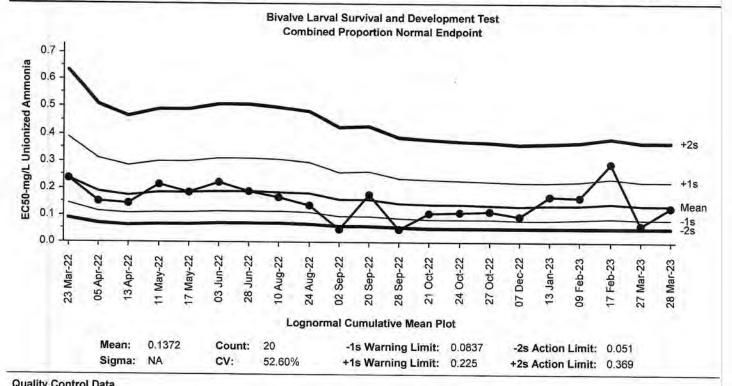
-1.125


-0.7534

(+)

(-)

Report Date:


17 Apr-23 15:36 (1 of 1)

All Matching Labs

Test Type: Development-Survival Organism: Mytilus galloprovincialis Material: Unionized Ammonia

Protocol: EPA/600/R-95/136 (1995) Endpoint: Combined Proportion Normal Source: Reference Toxicant-REF

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2022	Mar	23	15:30	0.2359	0.09862	1.095	(+)		18-9877-4146	02-7793-3754	EcoAnalysts
2		Apr	5	15:09	0.1515	0.01422	0.1993				00-2065-3937	
3			13	15:38	0.1448	0.00755	0.1083				13-3543-8688	
4		May	11	15:54	0.2152	0.07796	0.9095				04-7446-5371	
5			17	16:11	0.185	0.04777	0.6039				00-4551-7197	
6		Jun	3	16:12	0.2219	0.08469	0.9718				20-5427-8206	
7			28	16:05	0.188	0.05078	0.6365				00-8378-9623	
3		Aug	10	16:57	0.1651	0.0279	0.3742				12-5640-2017	
9			24	16:43	0.1359	-0.00138	-0.02037				07-1760-4646	
10		Sep	2	14:54	0.04851	-0.08873	-2.103	(-)	(-)		09-4475-1376	
11			20	16:02	0.1767	0.0395	0.5114			13-8303-2046	02-4939-5521	EcoAnalysts
12			28	16:31	0.04973	-0.08751	-2.052	(-)	(-)	14-4835-8902	06-7637-8760	EcoAnalysts
13		Oct	21	14:16	0.1071	-0.03016	-0.5016			20-9426-4253	15-1656-6246	EcoAnalysts
14			24	15:17	0.1096	-0.02765	-0.4549			18-7734-9147	06-4748-9707	EcoAnalysts
15			27	17:02	0.1156	-0.02165	-0.3472			01-3898-0369	19-9850-5740	EcoAnalysts
16	3.00	Dec	7	17:43	0.09634	-0.04091	-0.7156			15-6747-3203	15-5237-0673	EcoAnalysts
17	2023	Jan	13	15:30	0.1703	0.03308	0.4366			14-6111-3358	19-5184-9524	EcoAnalysts
18		Feb	9	15:28	0.1664	0.02912	0.389				00-9866-2896	
19			17	14:30	0.2912	0.154	1.521	(+)			00-4535-0428	
20		Mar	27		-1	-0.07375	-1.559	(-)		01-2022-2925	11-3364-1842	EcoAnalysts
21			28	15:46	0.1275	-0.00977	-0.1493				10-2993-2407	

CETIS Summary Report

Report Date: Test Code/ID: 17 Apr-23 15:32 (p 1 of 1) P220819.38 / 02-2233-3890

								lest	Code/ID:		P22	0819.38 / 02	2-2233-389
Bivalve Larva	al Survival and	Developm	ent Test										oAnalysts
Batch ID: Start Date: Ending Date: Test Length:	02-5396-5048 28 Mar-23 15: 30 Mar-23 14: 47h	46 Pi 45 Si	est Type: rotocol: pecies: axon:	Development-S EPA/600/R-95 Mytilus gallopr Bivalvia	/136 (1995)			Di Br	Analyst: Diluent: Brine: Source:		Sarah Zischke Laboratory Seawater Crystal Sea Marine Mix Taylor Shellfish		
Sample ID: Sample Date: Receipt Date: Sample Age:	19 Aug-22	M.	ode: aterial: AS (PC): ient:	P220819.38 Total Ammonia	a			Project: Source: Station:		Reference Toxicant Reference Toxicant P220819.38			Age:
Multiple Com	parison Summ	nary								_			
Analysis ID	Endpoint		Comr	arison Method	1		1	NOEL	LOEI		OEL	PMSD	
05-2047-3230	Combined Pro	portion Nor		ett Multiple Com		t	-	3.27	6.47		.6	12.5%	- 1
Point Estimat	e Summary			7 11 11 11 11 11 11 11				10.000	40.1		***	12.070	
Analysis ID	Endpoint		Point	Estimate Meth	od		1	Level	mg/L	9	5% LCL	95% UCL	
16-3797-4494	Combined Pro	portion Non	ma Linear	Interpolation (I	CPIN)		_	EC15	3.83		.431	3.973	
				- The second of the				EC20	4.035		.644	4.242	
								EC25	4.248		.877	4.515	
								EC40	4.942	4	.584	5.443	
								EC50	5.455	5 5	.088	6.151	
Test Acceptat	oility					TAC	C Li	mits					
Analysis ID	Endpoint		Attrib		Test Stat			Upper	Overl	lap D	ecision		
05-2047-3230	Combined Pro	portion Norr	na PMSD		0.1246	<<		0.25	No		asses C	riteria	
Combined Pro	oportion Norm	al Summar	у						- 27	==		42018	_
Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min		Max	Std E	rr S	td Dev	CV%	%Effect
0	D	3	0.6698	0.5747	0.7650	0.6351		0.7109	0.022		0383	5.72%	0.00%
1.49		3	0.6967	0.5888	0.8046	0.6588		0.7441	0.025	1 0.	0434	6.23%	-4.01%
3.27		3	0.6825	1 1111111111	0.7649	0.6493		0.7156	0.019	2 0.	0332	4.86%	-1.89%
6.47		3	0.2212		0.3267	0.1943		0.2701	0.024	5 0.	0425	19.21%	66.98%
12.7		3	0.0000	0.000	0.0000	0.0000		0.0000	0.000	0 0.	0000		100.00%
19.1		3	0.0000	0.0000	0.0000	0.0000		0.0000	0.000	0 0.	0000	 -	100.00%
Combined Pro	portion Norm	al Detail						M	D5: 9470	54FFAE	305EC37	7EF7BC67D	B635C3A
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3									
0	D	0.7109	0.6351	0.6635									
1.49		0.6872	0.6588	0.7441									
3.27		0.7156	0.6825	0.6493									
6.47		0.1991	0.1943	0.2701									
12.7		0.0000	0.0000	0.0000									
12.1		0.0000	0.0000	0.0000									
		0.0000	0.0000	0.0000									
19.1	portion Norma	* 10 A A A		0,000									
19.1 Combined Pro	pportion Norma	* 10 A A A		Rep 3									
19.1 Combined Pro Conc-mg/L		al Binomial	s	Rep 3									
19.1 Combined Pro Conc-mg/L	Code	al Binomial Rep 1	s Rep 2	Rep 3									
19.1 Combined Pro Conc-mg/L 0 1.49	Code	Rep 1	Rep 2	Rep 3 1 140/211 1 157/211									
19.1 Combined Pro Conc-mg/L 0 1.49 3.27	Code	Rep 1 150/211 145/211	Rep 2 134/21 139/21 144/21	Rep 3 1 140/211 1 157/211 1 137/211									
19.1	Code	Rep 1 150/211 145/211 151/211	Rep 2 134/21 139/21	Rep 3 1 140/211 1 157/211 1 137/211									

CETIS Summary Report

Report Date: Test Code/ID: 17 Apr-23 15:35 (p 1 of 1) P220819.38UIA / 08-8126-4059

Bivalve Larva	al Survival and	Developm	ont Toot			_	-	lest (code/ID:	P	22081	9.38UIA / 08	3-8126-40
		7										E	coAnalyst
Batch ID: Start Date: Ending Date: Test Length:	02-5396-5048 28 Mar-23 15 30 Mar-23 14 47h	:46 P	est Type: rotocol: pecies: axon:	Development- EPA/600/R-95 Mytilus gallopr Bivalvia	/136 (1995)	136 (1995)		Dili Bri	Diluent: L Brine: C		Sarah Zischke Laboratory Seawater Crystal Sea Marine Mix Taylor Shellfish		
Sample ID: Sample Date: Receipt Date: Sample Age:	19 Aug-22	M C	ode: laterial: AS (PC): lient:	P220819.38UI Unionized Amr				Soi	ırce:	ect: Reference		cant	Age:
Multiple Com	parison Sumn	nary											
Analysis ID	Endpoint		Comp	arison Method	1		1	NOEL	LOEL	то	EL	PMSD	
14-7121-9324	Combined Pro	ett Multiple Com	parison Tes	t		0.074	0.147		043	12.5%			
Point Estimat	e Summary												
Analysis ID	Endpoint		Point	Estimate Meth	od		1	Level	mg/L	950	6 LCL	95% UCL	
10-2993-2407				EC15 EC20 EC25 EC40 EC50	0.0896 0.095 0.1003 0.1166 0.1275	0.00 0.00 0.00 0.00 0.00 0.00	7794 8358 8956 066	0.09299 0.09982 0.1063 0.1261 0.1397					
Test Acceptat	oility					Liv.	2		777	1841		0.1007	
Analysis ID	Endpoint		Attrib	ute	Test Stat			imits Upper	Overla	n De			
14-7121-9324		portion Nor			0.1246	<<	H	0.25	No		Decision Passes Criteria		
Combined Pro					20,44,64		-	3.20	110	1 00	303 0	iliciia	
Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min		Max	Std Er	r Std	Dev	CV%	%Effect
0	D	3	0.6698		0.7650	0.6351	1	0.7109	0.0221			5.72%	0.00%
0.034		3	0.6967	0.5888	0.8046	0.6588		0.7441	0.0251		1000	6.23%	-4.01%
0.074		3	0.6825	0.6001	0.7649	0.6493		0.7156	0.0192		4000	4.86%	-1.89%
0.147		3	0.2212	0.1156	0.3267	0.1943		0.2701	0.0245			19.21%	66.98%
0.23		3	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.00	000		100.009
0.347		3	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000				100.009
Combined Pro	portion Norm	al Detail						MD	5: 50EFI	FC8A110	FEE10	0A4558C2AI	BC20353
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3									
0	D	0.7109	0.6351	0.6635									
0.034		0.6872	0.6588										
0.074		0.7156	0.6825										
0.147		0.1991	0.1943										
0.23		0.0000	0.0000										
0.347		0.0000	0.0000										
Combined Pro	portion Norm	al Binomia	ls				-				-		
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3									
)	D	150/211	134/21										
0.034		145/211	139/21										
0.074		151/211	144/21										
0.147		42/211	41/211										
0.23		0/211	0/211	0/211									
77 R S 1		0/211	0/211	U.L.I									

CETIS Test Data Worksheet

Report Date: Test Code/ID: 17 Apr-23 15:27 (p 1 of 1) P220819.38 / 02-2233-3890

Bivalve Larval Survival and Development Test

EcoAnalysts

Start Date: 28 Mar-23 : End Date: 30 Mar-23 :

Sample Date: 19 Aug-22

28 Mar-23 15:46 Species: Mytilus galloprovincialis 30 Mar-23 14:45 Protocol: EPA/600/R-95/136 (1998)

Protocol: EPA/600/R-95/136 (1995)
Material: Total Ammonia

Sample Code: P220819.38
Sample Source: Reference Toxicant
Sample Station: P220819.38

STANDING MA	1171	-9		materian	Total / Illinoma		Sample Stati	IOII. F220019.30
Conc-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	D	1	16	211	209	209	150	Hoto
0	D	2	3	211	203	203	134	
0	D	3	9	211	211	211	140	
1.49		1	6	211	200	200	145	
1.49		2	13	211	203	203	139	
1.49		3	7	211	219	219	157	
3.27	1	1	15	211	218	218	151	
3.27		2	11	211	206	206	144	
3.27		3	1	211	220	220	137	
6.47		1	17	211	222	222	42	
6.47		2	2	211	204	204	41	
6.47	1. ==	3	18	211	220	220	57	
12.7		1	10	211	176	176	0	
12.7		2	5	211	133	133	0	
12.7		3	14	211	138	138	0	
19.1		1	4	211	111	111	0	
19.1		2	12	211	105	105	0	
19.1		3	8	211	88	88	0	

CETIS Test Data Worksheet

Report Date:

17 Apr-23 15:31 (p 1 of 1)

Test Code/ID:

P220819.38UIA / 08-8126-4059

Bivalve Larval Survival and Development Test

EcoAnalysts

Start Date: 28 Mar-23 15:46 End Date: 30 Mar-23 14:45

Sample Date: 19 Aug-22

Species: Mytilus galloprovincialis
Protocol: EPA/600/R-95/136 (1995)

Material: Unionized Ammonia

Sample Code: P220819.38UIA
Sample Source: Reference Toxicant
Sample Station: P220819.38UIA

				The state of the s	17 15 N. B.		Sample Station. P220819.3801A					
Conc-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes				
0	D	1	2	211	209	209	150	Notes				
0	D	2	7	211	203	203	134					
0	D	3	5	211	211	211	140					
0.034		1	11	211	200	200	145					
0.034		2	15	211	203	203	139					
0.034		3	12	211	219	219	157					
0.074		1	4	211	218	218	151					
0.074		2	13	211	206	206	144					
0.074		3	10	211	220	220	137					
0.147		1	6	211	222	222	42					
0.147		2	1	211	204	204	41					
0.147		3	9	211	220	220	57					
0.23		1	17	211	176	176	0					
0.23		2	16	211	133	133	0					
0.23		3	3	211	138	138	0					
0.347		1	14	211	111	111	0					
0.347		2	8	211	105	105	0					
0.347	-	3	18	211	88	88	0					

Un-ionized Ammonia Calculator

CLIENT:	Jacobs Wyckoff	Date of Test:	March 28, 2023
PROJECT:	WEH-031V	Test Type:	Bivalve NH3 RT Dev
COMMENTS:	P2208 19.38		

To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

		Sample	Mod	NH3T (mg/L)	salinity (ppt)	pН	temp (C)	temp (K)	pKa ^s	NH ₃ U (mg/
		Target / Sample Name	1	Actual	Actual	Actual	Actual	Calculated	Calculated	Calculate
onic strength:pKa ⁵		Example 3.5		2.000	10.0	7.5	5.0	278.15	9.2520	0.008
1 9.26	1	1.5		1.49	31	7.9	16.3	289.45	9.2561	0.034
2 9.27	2			3.27	31	7.9	16.3	289.45	9.2561	0.074
3 9.28	3			6.47	31	7.9	16.3	289.45	9.2561	0.147
4 9.29	4	12		12.7	31	7.8	16.3	289.45	9.2561	0.230
5 9.30	5	18		19.1	31	7.8	16.3	289.45	9.2561	0.347
6 9.32	6		TITE!							
7 9.33	7									
8 9.34	8		110							
	9									
3	10									
935	111									
934 - 933 - 932 -	12									
9.31	13									
929	14									1
9.27	15									
925 1 2 3 4 5 6 7	16						-			
$y = 0.0003x^2$	17						-	-		+
+ 0.0091x +	18						-			
9.2502	19									-
	100									-
***	20									+
	21		-				-	-	-	_
	22									-
	23		-							-
	24									-
	25		-							-
	26									-
	27							1		
	28									
	29									_
	30								7	
	31									
	32		1	1						
	33									
	34									
	35									
	36									
	37									
	38				-	15				
	39									
	40									
	41								1	
	42									
	43		7							
	44									

QAV MARH

48 Hour Bivalve Development Reference Toxicant Test

P22008 19.39	Replicates: 3		Study Director:	J. Levengood	Location: M #			
Dilution Water Batch: 5W032823.02	Organism Batch:		Associated Tes	t(s): Various	Organism:	Organism: M.sp.		
Chamber Size/Type: 30 ml shell vial	Exposure Volume 10 ml							
Toxicant: Ammonium Chloride:	Lot #: 22E3154	The contract of the contract o	Date Prepared:	3	Initials:			
Target Concentration See spik	ing worksheet		Quantity of S Farget: See spikin	Stock: ig worksheet	Target:	of Diluent: 200 mL		
See spik	ring worksheet		Actual: See spil	king worksheet	Actual:			
		CDAVA	NINC DAT					
Initial Spawning Time:	Final Spawning Time: 1353	Fertilizat	NING DATA ion Time: 353	No. of Females	: No. 0	of Males:		
Embryo Density (count/mL):	1. 191	2. 2	45	3	Mea	n: 218		
Stocking Volume Calcula	ation: 2500/21000	- 0.11 × 40m	1 = 4 10001	egg Stock M	35.4 mLF	SW		
	3 28 23 WQ Time	e: 1427	ic - 1. Will	Start Time:	1546 Ir	nitials: DM/MS		
0 Hours Date: 7	3 28 23 WQ Time	S. 1.5	тоск 3	Start Time:	1546 Ir	nitials: DM/MS		
0 Hours Date: 3 D.O. (%)	WQ Time	e: PFF	тоск	Start Time:	1546 In	nitials: DM/MS		
0 Hours Date: 7 D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C)	Control 8.1	S. 1.5	тоск 3	Start Time:	1546 Ir	nitials: DM/MS		
0 Hours Date: 3 D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt)	Control 8.1 916.3	1.5 8.3	госк 3 8.3	Start Time:	1546 Ir	18		
CONTRACTOR OF THE PROPERTY OF THE PARTY OF T	Control 8.1 916,3 30 7.9	1.5 8.3 2(4.3 3)	3 8,9 Oll.3	Start Time: 6 8 A 0 1 4.3	12 8,4 016.3	18 9.4 014.3		
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) pH (7.5-9) Day 1 Tempe	Control 8.1 916,3 30 7.9	1.5 8.3 2(4.3 3)	3 8,9 Oll.3	Start Time: 6 8 A 0 1 4.3	12 8,4 016.3	18 O.4 Due.3		
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) pH (7.5-9) Day 1 Tempe (16 ± 1°C)	Control 8.1 9 6.3 30 7.8 rature 15.6	1.5 8.3 2(6.3 3) 7.9	3 8,9 Oll.3	6 84 016.3 31	12 8,4 016.3 31 7.8	18 9.4 216.3 31 7.8		
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) pH (7.5-9) Day 1 Tempe (16 ± 1°C)	Control 8.1 9 6.3 30 7.9 rature 15.6 30 23 WQ Time	1.5 8.3 2(6.3 3) 7.9 716, 52	3 8.3 Ollo3 31	Start Time: 6 8 A 0 1 4.3	12 8,4 D16,3 31 7,8	18 O.4 DVe.3 31 7.0		
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) pH (7.5-9) Day 1 Tempe (16 ± 1°C)	Control 8.1 9 6.3 30 7.9 rature 15.6 30 23 WQ Time	1.5 8.3 2(6.3 31 7.9 716, 52 1426 Lot #: 200	3 8.3 Ollo3 31	6 9.4 014.3 31 7.9 End Time: 1	12 8,4 516.3 31 7.8	18 O.4 DVe.3 31 7.0		
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) pH (7.5-9) Day 1 Tempe (16 ± 1°C) Tempe (16 ± 1°C) Day 2 Tempe (16 ± 1°C) Day 3 Tempe (16 ± 1°C) Day 3	Control 8.1 9 6.3 30 7.9 rature 15.6 30 23 WQ Time	1.5 8.3 2(6.3 31 7.9 716, 52 1426 Lot #: 200	3 8.3 016.3 31 7.9	6 9.4 014.3 31 7.9 End Time: 1	12 8,4 D163 31 7,8	18 O.4 DVe.3 31 7.0		
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) pH (7.5-9) Day 1 Tempe (16 ± 1°C) Final Day Date: 2	Control 8.1 9 6.3 30 7.9 rature 15.6 30 23 WQ Time Formalin Control 7.9	1.5 8.3 2(6.3 3) 7.9 716, 52 2: 1426 Lot#: 200 8'	3 8.3 216.3 31 7.9 504-56 rock	Start Time: 6 9.4 2014.3 31 7.9 End Time: Rose Bengal I	12 8,4 12 8,4 10 10 10 10 10 10 10 10 10 10	18 9.4 31 7.9 18 7.9		
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) pH (7.5-9) Day 1 Tempe (16 ± 1°C) Final Day Date: 7 D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C)	Control 8.1 916.3 30 7.9 rature C) 830 23 WQ Time Formalin Control	1.5 8.3 2(6.3 3) 7.9 716, 52 2: 1426 Lot#: 200 8'	3 8.3 216.3 31 7.9 504-56 rock	Start Time: 6 9.4 2014.3 31 7.9 End Time: Rose Bengal I	12 8,4 12 8,4 10 10 10 10 10 10 10 10 10 10	18 9.4 31 7.9 18 7.9		
D.O. (%) (>4.8 mg/L) Temperature (16 ± 1°C) Salinity (30 ± 2 ppt) pH (7.5-9) Day 1 Tempe (16 ± 1°C)	Control 8.1 9 6.3 30 7.9 rature 15.6 30 23 WQ Time Formalin Control 7.9	1.5 8.3 2(6.3 3) 7.9 716, 52 2: 1426 Lot#: 200 8'	3 8.9 016.3 31 7.9 504-56 TOCK	Start Time: 6 8.4 ©14.3 31 7.9 End Time: Rose Bengal I	12 8,4 016.3 31 7.8 12 12	18 9.4 014.3 31 7.9		

DIE-DM-3/28/23 3 USA TEMP BLOWN-DM-3/28/23, 52 3/29/23, 52 3/30/23

48 Hour Bivalve Development Reference Toxicant Test

P220819.38

Conc.	Rep	Number Normal	Number Abnormal	Date	Initials	
	1	150	59	4/10/23	ms	
Control	2	134	69	4/3/23	SZ	
	3	140	71	4/13/23	SZ	
	1	145	55	4/13/23	52	
1.5	2	139	64	4/13/23	52	
	3	157	62	4/13/23	SZ	
	1	151	67	4/13/23	SZ	
3	2	144	(e2	4/13/23	52	
	3	137	83	4/13/23	52	
	1	42	180	4/13/23	SZ	
6	2	41	163	4/13/23	52	
	3	57	163	4/13/23	52	
	1	0	176	4113/23	52	
12	2	0	133	4/13/23	52	
	3	0	138	4/13/23	52	
	1	0	-M	4/13/23	52	
18	2	0	105	4/13/23	52	
	3	0	88	4/13/23	52	
			g Density	- W 7 6 7 2		
Rep			unt	Ini	it.	
2		16		MK		
3		20		WK		
	Mean:	0 200 2		lalle	•	
QA Count Checks: #1 conc/rep rep # normal (46) # abnormal		ep 1.5 vep3	#3 conc/rep 6 ref # normal 174 # abnormal 174	#4 conc/re # normal _ # abnorma		
Tech. Init. NV	Tech. Init		Tech. InitNL	Tech. Init.		
Calc. QA: Hu 204=0 Drig 150/209=0-72 \Delta=0/.	72% OA=159/	220=72%. 1/219=72 0=0%.	QA49/223 = 2 Orig 42/222= 19	21.		

01E-52 4/17/23

Ammonia Reference Toxicant Spiking Worksheet

Reference Toxicant ID:	P120819.38	
Date Prepared:	3/20/23	
Technician Initials:	DM	

Biv / Echino NH₃ RT

Assumptions in Model

Stock ammonia concentration is 9,000 mg/L = 9 mg/mL

Date:

3/1/2023

Measurement:

9853.333333

Te	st Solutions	Control of the second second second second						
Measured Concentration	Desired Concentration	Volume mL	Volume of stock to reach desired concentration					
mg/L	mg/L		mL stock to increase					
0.00	Ø	250	SALT WATER					
1.49	1.5	250	0.057					
3.27	3	250	0.114					
6.47	6	250	0.228					
12.7	12	250	0.457					
19.1	18	250	0.685					

MAINTENANCE LOG FOR FLOW-THROUGH CULTURE TUBS

LOCATION: BONG

Organism (A): M-Sp	Batch Number: 7502/623.61	Date Received: 2/16/23	Initial # of Organisms:	10% Mort =
Organism (B): M.Sp	Batch Number: 75126622.0	Date Received: 12/01/2	Initial # of Organisms:	10% Mort =
Organism (C): M.Sp.	Batch Number: TS 032223 . 0	Date Received: 3 22/23	Initial # of Organisms:	10% Mort =
Organism (D): (V S p	Batch Number: TSO32723.0	Date Received: 3/22/23	Initial # of Organisms:	10% Mort =
Organism (E):	Batch Number:	Date Received:	Initial # of Organisms:	10% Mort =

Date		eed I/PM	Organism (A, B, C, D, or E)	D.O.	Temp (°C)	Cond/ Sal	рН	H₂O Change	Organisms appear healthy (Y/N)	# Mort	Cumulative # Mort*	Init.	Comments	
39	-	V	B	8.3	10.4	30	7.9	PT	1	()		N		-
3/2/12	1	~	A	8.3	11.4	30	7.8	FT	7	0	-			-
3/12	1	-	B	8.4	11.(30	7.8	FT	4	0	-	14		1
3114	1	-	A	8.5	11.3	30	7.8	FT	V	0		52		
3/14	_	-	8	8.3	11.7	30	7.8	FT	7	^	1			
3116	-	~	A	7.6	13.5	30	7.7	FT	- -	0		52		
3/16	-	~	R	8.3	13.0	30	7.8	FT	5	0	-	46		
3/19	V	_	A	7.8	117	30		FT		0		4		
3/21/3	1	_	A	8.3	11.8	30	7.7		-Y	0	-	4	V	2
3 32			A	7.0	11.7	30	7.8	FT	7	0		4		
3/23			В	1.0	11.1	50	7-6			0		52		1 2
m 1				7.4				FT	Y	0		52	culture was da	entitled,
Control of the contro	_		C		10.4	31	7.7	44	Y	0	_	52		52-3123123
3/26		~	A	5.0	13.8	30	7.4	77	4	9		4		
110	-	~	K	6.2	13.7	30	7.6	FY	Y	0				
3120 FT = Flow	- thre	Nap	U	8.8	13.9	30	7.6	FT	Y	0	_	16 16		

*For all days of a given batch; if >10% notify lab manager

9/8/2022

Culture Maintenance Log V 1.5

The MS 3/23 By in separate the on 3/23 - MS 3/23

(a) culture was dispatched

MAINTENANCE LOG FOR FLOW-THROUGH CULTURE TUBS

LOCATION: Bath 10

Organism (A):	Batch Number: T 5 03 2223. d	Date Received: 3 122123	Initial # of Organisms:	10% Mort =
Organism (B):	Batch Number: 7 5032223.2		Initial # of Organisms:	10% Mort =
Organism (C): M. 50 (Bath 7	Batch Number: TS 040323, 01	Date Received: 4/3/23	Initial # of Organisms:	10% Mort =
Organism (D):	Batch Number:	Date Received:	Initial # of Organisms:	10% Mort =
Organism (E):	Batch Number:	Date Received:	Initial # of Organisms:	10% Mort =

Date		eed I/PM	Organism (A, B, C, D, or E)	D.O.	Temp (°C)	Cond/ Sal	рН	H₂O Change	Organisms appear healthy (Y/N)	# Mort	Cumulative # Mort*	Init.	Comments	
3/28	-	~	AB	6.3	14.1	30	7.5	FT	4	0	-	Ug		
3/30	-	~	A,G	6.3	145	30	7.6	FT	4	0	-	4		
331	_		A.B	7.3	143	30	7.6	FT	V	0	_			
4/2	1	V	AIB	8.6	13.7	30	7.9	FT	· y	0		M		
414	-	~	A,B	8.5	14.4	30	7,4	FT	γ'	0		4		-
4/4	_	V	-	5.3	13.4	30	7.3	FT	Y	0	-	4		
4/7	-	-	0	8.2	14.3	30	7.3	FT	Y	0	-	Us	spawred, d	d full Har
419	_	V	AIB	, -1	13.9	30	1.8	FT	4	٥	2	NL		- LG 4/5/2
-11-1	-			6.1	1	36	7.5	<u>t</u> +	4	0		N		
4/9		/	В	8.3	13.8	30	7.9	FT	Α,	0	_	4		
lia	-		C	5.2	14.3	30	7.4	FT	4	O		ula		
										-				
FT = Flov	v-thre	ough												

FT = Flow-through
*For all days of a given batch; if >10% notify lab manager

Toxicity Testing Results Wyckoff/Eagle Harbor Superfund Site Groundwater Treatment Plant

APPENDIX B

Chain-of-Custody and Sample Receipt Forms

Report ID PG1799Q1.03 EcoAnalysts, Inc.

Page 1 of 1

EcoAnalysts, Inc. (REGION COPY)

DateShipped: 3/28/2023

CarrierName: EcoAaylists (hand delivery)

AirbillNo:

Jacobs, Wyckoff-

Wyckoff Eagle Harbor GWTP 2023/WA

Project Code: WEH-031V

Cooler #: 1 of 1

No: 10-032823-103023-0678

IFD10W2LA0010PXTSDDD2

Contact Name: Daniel Baca

Contact Phone: 661-313-3807

Sample Identifier	CLP Sample No.	Matrix/Sampler	Coll. Method	Analysis/Turnaround (Days)	Tag/Preservative/Bottles	Location	Collection Date/Time	Sample Type
032823		Ground Water/ D. Baca	Composite	CHRTOX(8 Weeks)	N (1)	SP-11	03/28/2023 01:38	Field Sample

Special Instructions:	2023 Week	13-1st Quarter	Bioassay-Chronic	Toxicity	Bivalve	Test.
00 44:						

SP-11 is our Effluent Sampling Point.

Shipment for Case Complete? N
Samples Transferred From Chain of Custody #

Analysis Key: CHRTOX=Chronic Toxicity

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	Doll a TACOBS	3-28-23	15 the EsoAmbets	3/28/23 13/0	كممحك

SAMPLE RECEIPT

Client: Client ID:							Lab ID:				Re	newals			ALL.	
Jacobs WycKoff 032823							PZ30328.01									
Project	3															
WEH -03	1				-					-				-		
Date/Time R	ecei	ved:					3/28/23 1310									
Airbill #:								wher		.0						
Shipper Track Records: (Y/	king N/N	Inform A)	atio	n Kept fo	r		NA									
Collection Da	te/1	ime:					3/28/23 0138								-	
Sample Holding Time (must be ≤36 hours at test initiation)							Good 600									-
Condition of Shipping Container:							Good									
Type and Capacity of Sample Container:							4L (15),									-
Total Sample Volume (L):								41								
Condition of Sampling Container:								Good								
Sample Conta			oriat	e: (Y/N)			A Green									
Custody Seals (Intact/Broke	en/N	lot Pres					Intact									
Frozen Wet o Shipment/Tra	r Blu ansp	e Ice P	rese	nt Durin	9		Ice									
Sampler's Na	me F	resent	on (OC Form	:	,	David Baca									
(Print Name/ Color:	Not	Present)													
COIOI							Cla	ear								
	TA	KE TH	IE I	FOLLO	WI	NG	ME	ASUI	RE	MENT	S UPO	N ARI	RIVA	11		
		*			П		T		П					_		1
LAB ID	Meter #	Temp. (°C) (0-6°C)	Meter #	Dissolved Oxygen (mg/L)	Meter #	표	Meter #	Cond. (µS/cm)	Meter #	Sal. (ppt)	Hardness (mg CaCO ₃ /L)	Alkalinity (mg CaCO ₃ /L)	Total	(mg/L)	Total NH3 (mg/L)	Tech
230328.01	12(2.3	જ	92	8	7.6	9	1061	8	0.515	_	_	0.05	5	0.553	4
																7
						-										
					\perp		-		IT			1		97		
Notific and																
Notify projec me. Client m	t m	anager be not	or	study di d ASAP.	rec	tor o	of te	mper	atu	res ab	ove 6°0	or ≥3	6 hoi	ırs l	nolding	
Notify projec me. Client m	t m	DE HOL	med	ASAP.										ırs l	nolding	
TO CHELL III	ust	If the	re a	re samp										urs I	nolding	
Reason for u	naco	If the	re a	re samp				roble	ms	, comp	lete the			urs I	nolding	
Notify projections. Client me. Client Reason for unlimited the control of the client Responses to the	naco	If therceptable	re a	re samp	ole	recei	pt p	Cor	ms		lete the			urs I	nolding	