Wyckoff Groundwater Treatment Plant: Fourth Quarter 2023 Bioassay Monitoring

PREPARED FOR: Hun Seak/Washington State Department of Ecology

Kristen Reed/Washington State Department of Ecology

COPY: Jacob Moersen/U.S. Environmental Protection Agency

Nicole Caveny/U.S. Environmental Protection Agency

PREPARED BY: Joy Chen/CH2M HILL Engineers, Inc

Mark Fesler/CH2M HILL Engineers, Inc.

DATE: January 4, 2024

1. Introduction

This technical memorandum summarizes information obtained from the fourth quarter 2023 sampling event performed at the U.S. Environmental Protection Agency (EPA) Wyckoff/Eagle Harbor Superfund Site (the Site) groundwater treatment plant (GWTP) located at 5350 Creosote Place NE, Bainbridge Island, Washington. CH2M HILL Engineers, Inc. (CH2M)¹ conducted this sampling event to support the current biomonitoring requirements of the Site's National Pollutant Discharge Elimination System (NPDES).

Sampling was generally conducted in accordance with the final *Quality Assurance Project Plan, Groundwater Treatment Plant Operations and Maintenance* (QAPP; CH2M, 2022). While there were deviations from the QAPP as noted in the Laboratory Quality Data Review section, the data is deemed usable, and the sampling is considered to have met the monitoring requirements of the NPDES permit.

The current NPDES permit does not include effluent limits for acute or chronic toxicity. Both acute and chronic toxicity testing were conducted on the effluent samples collected on October 3, 2023 and November 8, 2023 per the requirements outlined in the NPDES permit.

The current NPDES permit does not include specific dilution series for chronic toxicity tests. With the exception of the first and second quarter of 2023, all previous mussel larvae chronic toxicity testing were conducted with hypersaline brine (HSB) addition to achieve a salinity of 30 parts per trillion (ppt) per the *Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms* (EPA/600/R-95/136, 1995). The highest test concentration for these HSB adjusted samples therefore were less than 100% (ranged from approximately 69 to 76%). Mussel larvae chronic toxicity testing conducted for the first and second quarter of 2023 used samples adjusted with artificial salts only.

Due to the recent toxicity observed in the highest test concentrations for the mussel larvae chronic toxicity testing, concurrent tests were conducted (one test using artificial salts and the other test using HSB) during the fourth quarter 2023 sampling event to evaluate potential toxicity for undiluted sample (i.e. salts) while maintaining comparability of results from this quarter to previous test results (i.e. HSB). 73.5 percent effluent is the highest concentration tested using the HSB for the fourth quarter 2023 testing.

For the acute toxicity bioassay (estuarine fish), no statistically significant effects on survival were detected for any concentration tested. This result indicates the median lethal concentration to cause 50% mortality (LC50) in the test population is greater than 100 percent of the effluent concentration and

1

 $^{^{}m 1}$ CH2M HILL Engineers, Inc. is now a wholly owned subsidiary of Jacobs Engineering Group Inc.

an acute toxic unit (TU) of less than 1.0. No statistically significant effects on the survival or development endpoints were observed for all test concentrations for the mussel larvae chronic toxicity testing, indicating no evidence of the presence of chronic toxicity.

As stated above, the current NPDES permit does not include effluent limit for acute or chronic toxicity. The acute toxicity test requirement section of the permit (Section I.5) specifies the following:

"If the test demonstrates the presence of acute toxicity, EPA will undertake the following actions as needed to determine the source of toxicity:

- (a) Chemical analysis.
- (b) Evaluation of treatment processes and chemicals used.
- (c) Physical inspection of facility for proper operation of treatment units, spills, etc.
- (d) Examination of records.
- (e) Interviews with plant personnel to determine if toxicant releases occurred through spills, unusual operating conditions, etc.

If any toxicity remains after conducting the above steps, additional monitoring or treatment may be required."

The chronic toxicity test requirement section of the permit (Section II.8) specifies the following:

"EPA and Ecology will evaluate the results to determine whether they indicate the occurrence of chronic toxicity outside the mixing zone. If it appears that this may be occurring, a toxicity evaluation and reduction plan will be prepared within 90 days. The evaluation portion of the plan may include additional toxicity testing if needed to follow up on initial results or gather information for a possible toxicity limit in the future."

The observed results for the acute and chronic endpoints would not trigger these requirements.

2. Sampling and Analysis Results

Bioassay samples were collected per the monitoring frequency included in the NPDES permit. Samples were collected from a 24-hr. autosampler composite collection point at the effluent discharge point of the treatment system. One composite water sample was collected on October 3, 2023, for acute toxicity testing, and another sample collected on November 8, 2023, for chronic toxicity testing. Chemical testing was conducted in conjunction with each sample collected for bioassay testing for performance and NPDES compliance requirements. The bioassay analyses were performed by EcoAnalysts, Inc. (EcoAnalysts), of Port Gamble, Washington, a Washington State Department of Ecology accredited lab. Table 1 lists the sample Laboratory ID and sampling analysis methods. EcoAnalysts sampling analyses report for acute toxicity and chronic toxicity testing are provided in Attachments 1 and 2, respectively.

Table 1. Biological Testing Summary

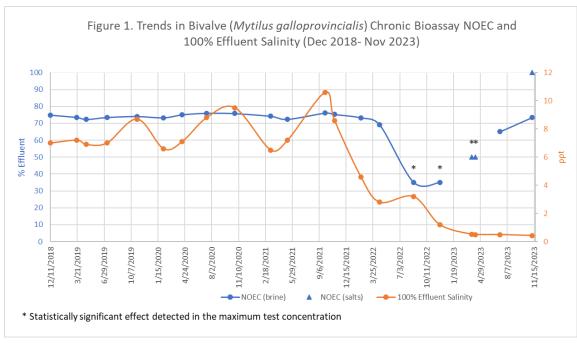
Laboratory	Laboratory ID	Method	Test Type/Descriptor/Species
EcoAnalysts	P231003.08	EPA-821-R-02-012; Test Method 2006.0; EPA/600/4-90/027F; SOP TOX013.08	Acute/96-hr Survival/ <i>Menidia beryllina</i> (Inland Silverside)
EcoAnalysts	P231108.01	EPA/600/R-95-136 Method 1005.0; ASTM E724-89 TOX042.12	Chronic/48-hr Survival and Development/ <i>Mytilus galloprovincialis</i> (Mussel)

For the acute toxicity bioassay (estuarine fish), no statistically significant effects on survival were detected for any concentration tested (i.e. LC50 is greater than 100 percent of the effluent concentration and TU is less than 1.0). For the mussel larvae chronic toxicity testing, no statistically significant effects were detected in any effluent concentration tested for the survival or development endpoint. This result indicates a No Observed Effect Concentration (NOEC) of 100 percent (TU is less than 1.0) and 73.5 percent (the highest concentration tested; TU is 1.4 for both endpoints) of the effluent concentration for the salts and HSB adjusted samples, respectively. The Effect Concentration expected to affect 50 percent of the organisms (EC50) is greater than 100 percent and 73.5 percent of the effluent concentration, respectively for the salts and HSB adjusted samples, respectively.

3. Laboratory Quality Data Review

A CH2M chemist validated the bioassay results Stage 2A in accordance with the CH2M 2022 QAPP. This QAPP was cited by EcoAnalysts and the appropriate species of estuarine fish and mussel specified in the QAPP were used for the analytical testing.

The data were 100 percent complete, and method and QAPP quality control requirements were met, with the following exceptions noted:


- (1) The QAPP reference toxicant copper sulfate was not used. The reference toxicant utilized was ammonia. A review of the total and unionized ammonia quality control data indicates the ammonia reference toxicant test results were within two standard deviations of the laboratory mean at the time of testing. There is no impact to the data and an addendum to the QAPP to utilize ammonia as reference toxicant was requested in May 2023 after these samples were collected and analyzed.
- (2) Artificial Salts Proportion Normal for the mussel larvae chronic toxicity test was significantly lower (2.0 percent) relative to the laboratory (dilution water) control (98.2 percent). Since no toxicity was observed in any test concentrations, indicating artificial salts did not contribute to any negative biological effects, therefore there is no impact to the test concentrations.

4. Trends

A review of bioassay data collected from 2007 through the fourth quarter of 2023 indicated there were no statistically significant effect detected for the survival endpoint for any test concentrations and species. No statistically significant effect was detected for the sublethal endpoints with the exception for the sampling events from the third quarter of 2022 through second quarter of 2023. For these four sampling events, statistically significant effects were detected in the maximum test concentrations for the developmental endpoint of the chronic bioassay test.

Figure 1 shows the bivalve chronic bioassay NOEC and salinity for the 100 percent effluent samples from December 2018 through November 2023. NOEC for bivalve chronic bioassay tests conducted prior to December 2018 were 70 percent. Hypersaline brine (HSB) with a fixed concentration was used for the salinity adjustment for chronic toxicity testing conducted prior to December 2018, therefore the maximum test concentrations remained the same for that test period. The laboratories that conducted the testing from December 2018 to November 2022 used HSB created at their laboratory (i.e. concentration varies slightly from batch to batch), therefore the resulting maximum test concentrations varies slightly for the different monitoring events. The maximum test concentration for the first and second quarter of 2023 is higher than previous monitoring events as well as third quarter of 2023 (i.e. 100 percent versus ~70 percent) due to the use of artificial sea salts as opposed to HSB. This resulted in a higher NOEC than those reported for the third and fourth quarter of 2022 despite a statistically significant effect was only observed in the maximum test concentration in the samples in all four

sampling events. For the fourth quarter of 2023, concurrent tests were conducted (one test using artificial salts and the other test using HSB) for the split samples (see Figure 1 for NOEC for samples with salinity adjustment using brine and salts). A review of the water quality parameters measured for the bioassay samples indicated the lowest detected salinity levels were detected in the samples collected from the most recent six sampling events (see Figure 1). While the elevated ammonia concentrations detected in the third and fourth quarter 2022 may have contributed to the observed toxicity during those sampling events, ammonia does not appear to be contributing to the toxicity observed in the monitoring events for the first and second quarter of 2023 (see Figure 2).

5. Overall Assessment

While the current NPDES permit does not include specific whole effluent toxicity (WET) limits, the Washington Administrative Code (WAC) 173-205-020 specifies the following:

"Whole effluent toxicity performance standard" means a level of effluent toxicity that is consistently so much lower than is necessary to meet state water quality standards (chapter 173-201A WAC) that no reasonable potential exists to violate the water quality standards. For acute toxicity, the performance standard is the median survival in one hundred percent effluent being equal to or greater than eighty percent and no individual test result showing less than sixty-five percent survival in one hundred percent effluent. For chronic toxicity, the performance standard is no chronic toxicity test demonstrating a statistically significant difference in response between the control and a test concentration equal to the acute critical effluent concentration. For permittees that are ineligible for an approved mixing zone, the performance standard will equal or be close to equal (in the case of acute toxicity) the water quality-based effluent toxicity limit.

Based on sampling results, the acute toxicity test met the WET performance standard because survival rates were within acceptable limits. The survival and development endpoints of the chronic toxicity test met the WET performance standard because survival rates and proportion normal development were within acceptable limits. Due to the recently observed toxicity from third quarter 2022 through second quarter of 2023, CH2M recommends triggering of an accelerated testing if the next testing meets EPA test acceptability criteria and a statistically significant effect is detected when compared to the lab control. As there are no established chronic toxicity criteria included in the permit, CH2M recommends an accelerated schedule of WET testing to establish whether a pattern of chronic toxicity exists. Consistent with WAC 173-205-090(1)(b), it is recommended that the accelerated testing to be conducted monthly for three months using the same toxicity test as in the routine effluent WET testing where a statistically significant effect is detected.

Due to the deviation of the QAPP quality control requirement for the Artificial Salts Proportion Normal for the mussel larvae chronic toxicity test, CH2M recommends continued concurrent mussel chronic bioassay testing using both artificial salt and brine for salinity adjustments in 2024 Q1. The following lists the recommended test dilution series:

Brine

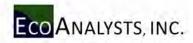
Maximum test concentration, 50%, 25%, 12.5%, 6.25%, and control

Artificial Salt

100%, Maximum test concentration for the chronic toxicity testing using brine for salinity adjustment, 50%, 25%, 12.5%, 6.25%, and control.

6. References

ASTM. 1989. Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Saltwater Bivalve Molluscs, E724-89. ASTM International, West Conshohocken, PA.


CH2M HILL Engineers, Inc. (CH2M, now a wholly owned subsidiary of Jacobs Engineering Group Inc.). 2022. *Quality Assurance Project Plan, Groundwater Treatment Plant Operations and Maintenance*. Final. Prepared for Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington, U.S. Environmental Protection Agency, Region 10, Seattle, Washington. January.

EPA. 1995. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, 1st ed. EPA/600/R-95/136. U.S. Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH.

Washington Administrative Code (WAC) 173-205-020, "Definitions." Available at: https://app.leg.wa.gov/WAC/default.aspx?cite=173-205-020

WAC 173-205-090, "Response to noncompliance with whole effluent toxicity limits." Available at: https://app.leg.wa.gov/WAC/default.aspx?cite=173-205-090

Attachment 1
EcoAnalysts Toxicity Testing Results for
Wyckoff/Eagle Harbor Superfund Groundwater
Treatment Plant

TOXICITY TESTING RESULTS

WYCKOFF/EAGLE HARBOR SUPERFUND SITE GROUNDWATER TREATMENT PLANT BAINBRIDGE ISLAND, WA

NPDES TOXICITY TESTING: 4TH QUARTER 2023

Prepared for

Jacobs 1100 112th Avenue NE, Suite 400 Bellevue, WA 98004

Prepared by

EcoAnalysts, Inc. PO Box 216 4770 NE View Drive Port Gamble, WA 98364

Contract: 68HE0318D0004 Task Order No: 68HE0722F0011

EcoAnalysts Report ID: PG1799Q4.01

Submittal Date: December 15, 2023

All testing reported herein was performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and EcoAnalysts is not responsible for use of less than the complete report. The test results summarized in this report apply only to the sample(s) evaluated. This document is uncontrolled when printed or accessed from electronic distribution.

APPROVED BY

Marisa Seibert

Laboratory Manager/ Project Manager

Author(s):

Marisa Seibert

QA Review:

Mary Ann Rempel-Hester

Danielle Mulligan

CONTENTS

1.	EXECUTIVE SUMMARY	1
2.	METHODS	
2.1	Sample Collection and Storage	
2.2	Bioassay Testing	
2.3	Organisms for Testing	3
2.4	Water for Bioassay Testing	3
2.5	Sample Adjustment	3
2.6	Data Management and Analysis	2
2.7	Quality Assurance/Quality Control	
3.	RESULTS	
3.1	Inland Silverside (Menidia beryllina) Acute Test Results	
3.2	Mytilus galloprovincialis Test Results	
4.	REFERENCES	11
TABLE	ES Control of the con	
Table 1	-1. Toxicity Test Results Summary	1
Table 2	-1. Sample Conditions upon Receipt	2
Table 2	-2. Biological Testing Performed	3
	-3. Salinity Adjustment of Project Samples	
Table 3	-1. Endpoint Summary for the <i>Menidia beryllina</i> Acute Test	5
Table 3	-2. Test Condition Summary for <i>Menidia beryllina</i> Acute Test	6
Table 3	-3. Results Summary for Mytilus galloprovincialis Embryo Development Test (Brine)	8
Table 3	-4. Results Summary for Mytilus galloprovincialis Embryo Development Test (Salt)	<u>9</u>
Table 3	-5. Test Condition Summary for Mytilus galloprovincialis Embryo Development Test	10

APPENDICES

Appendix A: Statistical Comparison and Laboratory Documents

Appendix B: Chain-of-Custody and Sample Receipt Forms

ACRONYMS AND ABBREVIATIONS

ABS: Aquatic BioSystems

EC₅₀: Effect Concentration to 50% of test population

EPA: Environmental Protection Agency

LC₅₀: Lethal Concentration to 50% of test population

LOEL: Lowest Observed Effect Level

NOEL: No Observed Effect Level

NPDES: National Pollutant Discharge Elimination System

PMSD: Percent Minimum Significant Difference

QAPP: Quality Assurance Project Plan

QM: Quality Manual

SOP: Standard Operating Procedures

WET: Whole Effluent Toxicity

1. EXECUTIVE SUMMARY

EcoAnalysts conducted Whole Effluent Toxicity (WET) testing as part of the biological compliance monitoring for Wyckoff/Eagle Harbor Superfund Site, in Bainbridge Island, Washington. The objective of this program was to assess the potential toxicity of discharge water to selected aquatic organisms following procedures defined under the facility's Quality Assurance Project Plan (QAPP) (CH2M HILL 2022). The results of the toxicity testing are contained in this report.

The bivalve development was conducted as a side-by-side test, with one aliquot of effluent sample adjusted to test salinity with hypersaline brine, and another aliquot adjusted with artificial salts.

No statistically significant biological responses of the test organisms were detected in the 96-hour acute test as well as at the highest test concentrations (100% and 73.5% effluent) for any of the chronic endpoints tested (Table 1-1).

Table 1-1. Toxicity Test Results Summary.

	Test	NOEL (%)	LOEL (%)	LC50/EC50 (%)
Acute	<i>Menidia beryllina</i> 96-Hour Survival	100	>100	>100
Chronic -	Mytilus galloprovincialis 48-Hour Proportion Survived	73.5	>73.5	>73.5
Brine	Brine 48-Hour Proportion Survived Mytilus galloprovincialis 48-Hour Proportion Normal	73.5	>73.5	>73.5
Chronic -	<i>Mytilus galloprovincialis</i> 48-Hour Proportion Survived	100	>100	>100
Salt	<i>Mytilus galloprovincialis</i> 48-Hour Proportion Normal	100	>100	>100

NOEL = No Observed Effect Level LOEL = Lowest Observed Effect Level

LC₅₀/EC₅₀ = Lethal/Effect Concentration to 50% of test population

2. METHODS

The sample was analyzed for toxicity using criteria outlined in the United States Environmental Protection Agency (USEPA) document *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (EPA-821-R-02-012), which is the most recently promulgated version of *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*, (EPA/600/4-90/027F), and ASTM E724-89 and the Environmental Protection Agency's (EPA) most recently promulgated effluent guidance documents outlined in Section 4.

To evaluate the relative sensitivity of the organisms, reference toxicity tests were performed using standard reference toxicants (Lee 1980).

2.1 Sample Collection and Storage

Jacobs personnel collected a sample on October 3, 2023, which was used for the *Menidia beryllina* acute test. A second round of sampling was collected on November 8, 2023, which was used to conduct the Bivalve Survival and Development side-by-side test. The samples were transported by EcoAnalysts personnel and received at the laboratory on the same day as collection. The sample temperature upon receipt for the October sample was 5.1°C and was 3.6°C for the sample collected in November. Both samples were within the recommended temperature range.

Additional sample conditions are summarized in Table 2-1. The samples were held in a walk-in cold room at 4 ± 2 °C in the dark until utilized for testing.

Table 2-1. Sample Conditions upon Receipt

Sample	100323	110823
Laboratory ID	P231003.08	P231108.01
Date/Time sampled	10/03/23; 0114	11/08/23; 0115
Date/Time received	10/03/23; 1305	11/08/23; 1220
Dissolved Oxygen (mg/L) Recommended: >4.0 mg/L	8.5	9.6
Temperature (°C) Recommended: 0 – 6°C	5.1	3.6
pH (units) Recommended: 6 – 9	7.5	7.3
Conductivity (µS/cm)	1008	909
Salinity (ppt)	0.5	0.432
Total Chlorine (mg/L)	0.01	0.03
Total Ammonia (mg/L)	0.592	0.458

2.2 Bioassay Testing

Bioassay testing for this project consisted of one chronic bioassay. The test conducted in support of this project is summarized in Table 2-2.

Table 2-2. Biological Testing Performed

Test Type	Test Descriptor	Species	Method
Acute	96-Hour Survival	<i>Menidia beryllina</i> Inland Silverside	EPA-821-R-02-012; Test Method 2006.0; EPA/600/4-90/027F; SOP TOX013.08
Chronic	48-Hour Survival and Development	Mytilus galloprovincialis Mussel	EPA/600/R-95-136 Method 1005.0; ASTM E724-89; TOX042.12

2.3 Organisms for Testing

Adult mussels ($Mytilus\ galloprovincialis$) were obtained from Taylor Shellfish in Shelton, Washington on November 6, 2023. They were delivered via Taylor Shellfish personnel and maintained under ambient seawater flow-through conditions at $12\pm3^{\circ}C$ until utilized for testing. $Menidia\ beryllina$ (inland silversides) were purchased from Aquatic BioSystems Inc. (ABS) in Fort Collins, Colorado. ABS is a commercial supplier of test organisms that are used routinely for toxicity testing. Water quality measurements were collected from transport containers and the overall health of the organisms was visually confirmed by a laboratory technician.

2.4 Water for Bioassay Testing

Seawater diluent used in this study came from the northern Hood Canal at Port Gamble, Washington. This water source has been used successfully on similar bioassay testing programs. Extensive testing on a variety of test species has shown that there is no significant potential for toxicity or bioaccumulation from this water supply. Chemical analysis of each water source is conducted and reviewed on an annual basis.

2.5 Sample Adjustment

The effluent sample 100323 was received at a salinity of 0.5 ppt and sample 110823 was received at a salinity of 0.432 ppt. The salinity of the effluent sample was increased by the addition of Crystal Sea® MarineMix bioassay grade artificial salt for the *M. beryllina* and the salt portion of the side-by-side bivalve test. A separate aliquot was adjusted to the desired test salinity using hypersaline brine for the other half of the side-by-side bivalve test. Table 2-3 summarizes the salinity adjustments performed on the project sample in relation to marine test species.

An artificial salt control sample was created to evaluate any potential negative impacts to the test organisms from the salinity adjustment alone. This sample was designated "Salt Control". A "Brine Control" was also prepared for the bivalve test that included an equal proportion of hypersaline brine added to a mixture of natural seawater (Lab Control) and deionized water. The results of this additional control are discussed in the sections below.

Table 2-3. Salinity Adjustment of Project Samples

Sample ID Test 100323: Collected Menidia beryllina		Sample Salinity Upon Receipt	Sample Salinity Adjustment (ppt)	Salinity Adjustment Media		
100323: Collected 10/03/23	<i>Menidia beryllina</i> 96-Hour Survival	0.5 ppt	30 ± 2	Artificial Salt		
110823: Collected	Mytilus galloprovincialis	0.4 nnt	30 ± 2	Hypersaline Brine		
11/08/23	48-Hour Survival and Development	0.4 ppt	30 ± 2	Artificial Salt		

2.6 Data Management and Analysis

Endpoint data was calculated for each replicate, and the mean value and standard deviation were determined for each sample concentration. All hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting was reviewed for errors. Review counts were conducted on any apparent outliers.

Statistical comparisons were made according to the EPA guidance. Statistical comparisons were performed using CETIS™ software.

2.7 Quality Assurance/Quality Control

The quality assurance objectives for toxicity testing conducted by the testing laboratory are detailed in the method specific guidance documents and the laboratory's quality manual (QM). These objectives for accuracy and precision involve all aspects of the testing process, including the following:

- Source and Condition of Test Organisms
- Condition of Equipment
- Test Conditions
- Instrument Calibration
- Use of Reference Toxicants
- Record Keeping
- Data Evaluation

The batch of test organisms obtained was evaluated in a reference toxicant test that was run concurrently with the test period to establish the sensitivity of the test organisms. The reference toxicant LC_{50} or EC_{50} should fall within two standard deviations of the historical laboratory mean. Water quality measurements were monitored to ensure that they fell within prescribed limits.

The methods employed in every phase of the toxicity testing program are detailed in the EcoAnalysts Standard Operating Procedures (SOP). All EcoAnalysts staff members receive regular, documented training in all SOPs and test methods. Finally, all data collected and produced because of these analyses were recorded on approved data sheets. If an aspect of a test deviated from protocol, the test was evaluated to determine whether it was valid according to the regulatory agencies responsible for approval of the proposed permitting action.

3. RESULTS

The results of the effluent testing are presented in this section. Statistical comparisons and laboratory documents are provided in Appendix A. Chain-of-custody and sample receipt logs are provided in Appendix B.

3.1 Inland Silverside (Menidia beryllina) Acute Test Results

The acute toxicity test with *M. beryllina* was initiated on October 3, 2023. The test met the control acceptability criteria of ≥90% mean survival with a mean control survival of 95%. Mean survival for all treatments is summarized in Table 3-1. The test conditions are summarized in Table 3-2.

Concentrations of 6.25, 12.5, 25, 50, and 100% effluent were prepared utilizing laboratory water. Sample 100323 (received 10/03/23) was used for test initiation and test solution renewals at 48-hours.

Water quality parameters were within the acceptable limits throughout the duration of the 96-hour static-renewal test. The test chamber for 50% replicate 3 was partially spilled during water quality measurements on Day 2, and 4 fish were lost. These fish were removed from the statistical analysis.

There was no significant difference observed between the laboratory control and the salt control indicating that artificial salts should not have contributed to any negative biological effects, if observed.

The LC_{50} for the copper chloride reference-toxicant test was 165.7 μ g Cu/L. These results were within two standard deviations of the laboratory mean at the time of testing (Table 3-5). This indicates that the organisms obtained from this supplier were of similar sensitivity to those previously tested at the EcoAnalysts laboratory.

Table 3-1. Endpoint Summary for the Menidia beryllina Acute Test

	100323								
Conc. (%)	Mean Survival (%) Standard Deviation		NOEL (%)	LOEL (%)	LC ₅₀ Value (%)				
Control (0)	95.0	5.8							
Salt Control	95.0	5.8							
6.25	90.0	14.1							
12.5	87.5	12.6	100	>100	>100				
25	95.0	10.0							
50	91.7	16.7							
100	97.5	5.0							

NOEL = No Observed Effect Level

LOEL = Lowest Observed Effect Level

 LC_{50} = Lethal Concentration to 50% of test population

Table 3-2. Test Condition Summary for Menidia beryllina Acute Test

	Test Duration / Type	96-hour / Static-Renewal
Species		Menidia beryllina
Supplier		Aquatic Biosystems
Date acquired	I	10/03/23
Test Dates		10/03/23 – 10/07/23
Age at test in	itiation (Recommended: 9 - 14 days)	9 Days
Samples used	:	100323; P231003.08
-	ng Time at Initiation: ed: <36 hours; Not to exceed 72 hours	16 hours
Test Procedures		EPA-821-R-02-012, Test Method 2006.0; EPA/600/4-90/027F; SOP TOX013.08
Test location		EcoAnalysts Port Gamble Laboratory
Control water	/ Diluent	0.45 μm-filtered, North Hood Canal seawater
Test Lighting		16 hour light / 8 hour dark
Test Chamber	-	12 oz. Plastic Chamber
Exposure volu	ume	250 mL
Replicates/tre	eatment	4
Concentration	n/treatment	6.25, 12.5, 25, 50, 100%
Organisms/re	plicate	10
Feeding		0.1 mL concentrated Artemia nauplii daily
Test solution	renewal	Day 2
Test Dissolved	d Oxygen (Recommended: ≥4.0 mg/L)	6.1 – 8.4 mg/L
Test Tempera	ture (Recommended: 20 \pm 1°C)	18.7 – 20.4°C
Test Salinity (Recommended: 30 \pm 2 ppt)	28 – 32 ppt
Test pH (Rang	ge not specified) Targeted Range: 6 – 9 units	7.6 – 8.3 units
Quality Assur	ance	
•	rmance standards ommended): ≥ 90%	95.0%; meets acceptability criterion
Reference To	xicant Date	10/03/23
6	Reference Toxicant LC ₅₀	165.7 μg/L copper
Survival	Laboratory Mean LC ₅₀ ; Range LC ₅₀ (±2 SD)	227.5 (129 – 401 μg/L copper)
Deviations fro	om Test Protocol	4 fish lost from 50% replicate 3

3.2 Mytilus galloprovincialis Test Results

The chronic toxicity test with *M. galloprovincialis* was conducted on November 8, 2023 with sample 110823. The test was conducted as a side-by-side exposure with one aliquot of sample adjusted to test salinity with hypersaline brine and a second aliquot adjusted with artificial salts. Both tests met EPA test acceptability criteria of ≥90% proportion normal, ≥50% proportion survived, and <25% Percent Minimum Significant Difference (PMSD). The test conducted with hypersaline brine resulted in 98.7% proportion survived, 97.9% proportion normal, and 2.1% PMSD for proportion normal in the laboratory control. The test conducted with artificial salts resulted in 97.2% proportion survived, 98.2% proportion normal, and 1.5% PMSD for proportion normal in the laboratory control. Mean survival and proportion normal are summarized in Table 3-3 (brine) and Table 3-4 (salt). The test conditions are summarized in Table 3-5.

Concentrations of 6.25, 12.5, 25, 50, and 73.5% effluent were prepared utilizing laboratory water. A 100% test concentration was also included for the test with artificial salts. Sample P231108.01 (received 11/08/23) was used for test initiation. Water quality parameters were within the acceptable limits throughout the duration of the 48-hour static test.

No significant differences were observed between the laboratory (dilution water) control and brine control indicating that the addition of hypersaline brine did not contribute to any negative biological effects. However, there was a significant difference between the laboratory (dilution water) control and artificial salts control. However, since there wasn't an affect in any of the test concentrations, artificial salts did not contribute to any negative biological effects.

An interrupted dose response occurred in the brine test for survival, where the 12.5% concentration was significantly different than the control, but no other concentration was. As the % effect was low (8%), the result was deemed anomalous and the higher NOEL/LOEL pair was selected for reporting.

The EC $_{50}$ for the ammonia reference toxicant test was 9.3 mg/L total ammonia and was within two standard deviations of the laboratory mean (Table 3-2) at the time of testing. This indicates that the organisms are of a similar sensitivity to those previously tested at the EcoAnalysts laboratory.

Table 3-3. Results Summary for Mytilus galloprovincialis Embryo Development Test (Brine)

Conc. (%)	Mean Proportion Survived (%)	Standard Deviation	NOEL (%)	LOEL (%)	EC ₅₀ Value (%)	
Control	98.7	2.6				
Brine Control	98.4	2.1				
6.25	98.5	2.0				
12.5	90.9	1.6	73.5	>73.5	>73.5	
25	99.4	1.2				
50	97.6	4.4				
73.5	97.7	2.2				
Conc. (%)	Mean Proportion Normal (%)	Standard Deviation	NOEL (%)	LOEL (%)	EC ₅₀ Value (%)	
Control	97.9	1.8				
Brine Control	96.2	2.1				
6.25	98.2	1.2				
12.5	97.3	0.7	73.5	>73.5	>73.5	
25	98.3	0.7				
50	97.8	0.4				
			1	1	1	

NOEL = No Observed Effect Level;

LOEL = Lowest Observed Effect Level;

 LC_{50}/EC_{50} = Lethal/Effect Concentration to 50% of test population;

Proportion survived = total counted / stocking density;

Proportion normal = number normal/total counted

Table 3-4. Results Summary for Mytilus galloprovincialis Embryo Development Test (Salt)

Conc. (%)	Mean Proportion Survived (%)	Standard Deviation	NOEL (%)	LOEL (%)	EC ₅₀ Value (%)		
Control	97.2	3.6					
Salt Control	92.3	6.5					
6.25	97.3	4.0					
12.5	98.4	3.2	100	. 100	>100		
25	94.8	8.5	100	>100	>100		
50	98.4	3.2					
73.5	98.2	2.1					
100	99.1	1.0					
Conc. (%)	Mean Proportion Normal (%)	Standard Deviation	NOEL (%)	LOEL (%)	EC ₅₀ Value (%)		
Control	98.2	0.5					
Salt Control	2.0	2.1					
6.25	98.1	0.7					
12.5	97.3	0.8	400	. 100	. 100		
25	97.6	0.4	100	>100	>100		
50	97.0	1.7					
	37.0	1					
73.5	98.0	0.5					

NOEL = No Observed Effect Level;

LOEL = Lowest Observed Effect Level;

 LC_{50}/EC_{50} = Lethal/Effect Concentration to 50% of test population;

Proportion survived = total counted / stocking density;

Proportion normal = number normal/total counted

Table 3-5. Test Condition Summary for Mytilus galloprovincialis Embryo Development Test.

Test Duration / Type	48-Hour; Static					
Species	Mytilus gal	loprovincialis				
Supplier	Taylor	Shellfish				
Date acquired	11/	06/23				
Test Dates	11/08/23 – 11/10/23					
Age at test initiation Recommended: <4-hour embryos	<4 hours					
Sample(s) used:	110823; I	P231108.01				
Holding Time at Initiation: Recommended: < 36 hours	15	hours				
Test Procedures	EPA/600/R-95-136, Meth	od 1005.0; SOP: TOX042.12				
Test location	EcoAnalysts, P	ort Gamble, WA				
Control water / Diluent	0.45 μm-filtered, Nor	th Hood Canal seawater				
Test Lighting	16 hour light / 8 hour dark					
Test Chamber	30-mL	Chamber				
Exposure volume	10 mL					
Organisms/replicate	Recommended: 150 –300	Actual: 254				
Replicates/treatment		4				
Concentration/treatment), and 73.5% (brine) 73.5 and 100% (salt)				
Feeding	N	one				
Test solution renewal	N	one				
Test Water Quality						
Test Dissolved Oxygen	Recommended: > 4.0 mg/L	Actual: 7.8 – 8.5 mg/L (brine), 7.8 – 8.7 mg/L (salt)				
Test Temperature	Recommended: 16 ± 1°C	Actual: 15.9 – 16.8 °C (brine), 15.6 – 16.8 °C (salt)				
Test pH	Recommended: 7 – 9	Actual: 7.6 – 8.3 (brine), 7.7 – 8.2 (salt)				
Test Salinity	Recommended: 30 ± 2 ppt	Actual: 29 – 31 ppt (brine), 30 – 32 ppt (salt)				
Control performance standard (Survival, Normal shell development, PMSD)	Recommended: ≥50% survival, ≥90% normal development, <25% PMSD	Actual: Brine: 98.7% survival, 97.9% normal development, 2.1% PMSD; Salt: 97.2% survival, 98.2% normal development, 1.5% PMSD				
Reference Toxicant Date	11/	08/23				
Reference Toxicant EC ₅₀	9.3 mg/L to	otal ammonia				
Laboratory Mean EC ₅₀	7.0 mg/L to	otal ammonia				
Acceptable Range EC ₅₀ (± 2 SD)	3.8 – 12.9 mg/L total	ammonia (within range)				
Deviations from Test Protocol	Salt Control Pr	oportion Normal				

4. REFERENCES

- ASTM. 1989. Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Saltwater Bivalve Molluscs, E724-89. ASTM International, West Conshohocken, PA.
- CETIS. 2022. CETIS™ Comprehensive Environmental Toxicity Information System User's Guide. Tidepool Scientific Software. McKinleyville, CA.
- CH2M HILL. 2022. Quality Assurance Project Plan, Groundwater Treatment Plant Operations and Maintenance, Final. Wyckoff/Eagle Harbor Superfund Site. Bainbridge Island, Washington.
- USEPA. 1995. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine Organisms and Estuarine Organisms, First Edition. EPA-600-R-95-136.
- USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. EPA-821-R-02-012.
- USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fourth Edition. EPA/600/4-90/027F.

Toxicity Testing Results Wyckoff/Eagle Harbor Superfund Site Groundwater Treatment Plant

APPENDIX A

STATISTICAL COMPARISONS AND LABORATORY DOCUMENTS

Report ID PG1799Q4.01 EcoAnalysts, Inc.

Toxicity Testing Results Wyckoff/Eagle Harbor Superfund Site Groundwater Treatment Plant

APPENDIX A.1

MENIDIA BERYLLINA 96-HOUR SURVIVAL TEST

STATISTICAL COMPARISON AND LABORATORY DATA SHEETS

Report ID PG1799Q4.01 EcoAnalysts, Inc.

Report Date: Test Code/ID: 25 Oct-23 12:29 (p 1 of 1) P231003.08M.b. / 05-3541-5024

Inland City	ido OC L A	- 0	17				- 10	est Code/ID:	P2	51003	3.08M.b. / 05	5 W 8 - 0	-
	side 96-h Acut	77 - 20 - 12 10	Year A	A1107 - 1977							Ec	oAnaly	ysts
Batch ID:	13-4916-0729		and the second second	Survival (96h)				Analyst:	Marisa Se	eibert			
Start Date:	03 Oct-23 17:	3.3	Protocol:	EPA/821/R-02	-012 (2002)			Diluent:	Laboratory Seawater				
	07 Oct-23 16:	21	Species:	Menidia berylli	na			Brine:	Crystal Se	ea Ma	rine Mix		
Test Length:	95h		Taxon:	: Actinopterygii				Source:	Aquatic B	iosyst	ems, CO	Age:	9d
Sample ID:	10-8719-6579		Code:	P231003.08M.	b.			Project:	Wyckoff E	Eagle I	Harbor GWT	P 2023	3/W
	03 Oct-23 01:		Material:	Treated Groun	dwater			Source:	Jacobs W	yckof	f		
The Carry of the second of the	03 Oct-23 13:	05	CAS (PC):					Station:	100323				
Sample Age:	16h		Client:	Jacobs Wycko	off								
Multiple Com	parison Sumn	nary											
Analysis ID	Endpoint			parison Method		×	/ NOE	100		EL	PMSD	TU	, F
19-6960-0762	96h Proportion	n Survive	d Steel	Many-One Rank	k Sum Test		100	>100	- 1500		20.6%	1	
Point Estimat	e Summary												
Analysis ID	Endpoint			Estimate Meth			/ Leve		95%	LCL	95% UCL	TU	
19-3255-6303	96h Proportion	n Survive	d Linea	r Interpolation (I	CPIN)		EC1				440	<1	
							EC2	2.00				<1	
							EC2					<1	
							EC4					<1	
•11.0	and the same of th						EC5	0 >100			-	<1	
Test Acceptal			240.20				Limits						
Analysis ID	Endpoint	-	Attrib		Test Stat		Upp		lap Dec	ision			
	96h Proportion 96h Proportion			ol Resp	0.95	0.9	<<	Yes			7776-37-57		
			u Contro	ol Resp	0.95	0.9	<<	Yes	Pas	ses Cı	riteria		
96h Proportio Conc-%	Code		. Maai	050/ 1 01	050/ 1101		100	2.42			ar an	7.00	
0	D	Coun 4	t Mean 0.950			Min	Max	0.00		_	CV%	%Eff	-
0	SC	4	0.950		1.0420 1.0420	0.9000	1.00		9955		6.08%	0.009	
6.25	00	4	0.900		1.1250	0.7000	1.00				6.08% 15.71%	0.009	
12.5		4	0.875		1.0750	0.7000	1.00				14.38%	5.269 7.899	
25		4	0.950		1.1090	0.8000	1.00				10.53%	0.009	
50		4	0.916		1.1820	0.6667	1.00				18.18%	3.519	
100		4	0.975		1.0550	0.9000	1.00				5.13%	-2.63	
96h Proportio	n Survived De	etail						MD5: 5DB	1FEEBBD4	461E0	435C8FDAI	06004F	37
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4								
0	D	1.000	0 1.0000		0.9000								
0	SC	1.000	0 1.0000		0.9000								
6.25		1.000	0.9000		1.0000								
12.5		0.900	0.900		0.7000								
25		1.000			1.0000								
50		1.000			1.0000								
100		1.000			1.0000								
96h Proportio	n Survived Bir	nomials											_
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4								
0	D	10/10		9/10	9/10								
0	sc	10/10		9/10	9/10								
6.25		10/10		7/10	10/10								
12.5		9/10	9/10	10/10	7/10								
25		10/10	8/10	10/10	10/10								
50		10/10	10/10	4/6	10/10								
100		10/10		9/10	10/10								
7.5													

CETIS Analytical Report

Report Date: Test Code/ID: 25 Oct-23 12:30 (p 1 of 2) P231003.08M.b. / 05-3541-5024

							16	st Code/I	D:	P23100	3.08M.b. /	05-3541-502
Inland Silvers	side 96-h Acute	Survival	Test									EcoAnalyst
Analysis ID:	06-8614-6850	E	ndpoint:	96h Proportion	Survived			CETIS Ve	rsion:	CETISV	214	
Analyzed:	25 Oct-23 12:2	29 A	nalysis:	Nonparametric		le		Status Le		1	2.1.7	
Edit Date:	25 Oct-23 12:2	21 N	ID5 Hash:	8F3C26FE85F	66BFDE2E	DE5FD24		Editor ID:		003-841	1-189-5	
Batch ID:	13-4916-0729	Т	est Type:	Survival (96h)				Analyst:	Maris	sa Seibert		
Start Date:	03 Oct-23 17:4		rotocol:	EPA/821/R-02	-012 (2002)			Diluent:		ratory Se		
Ending Date:	07 Oct-23 16:2	21 S	pecies:	Menidia berylli				Brine:		tal Sea Ma		
Test Length:	95h	T	axon:	Actinopterygii				Source:			tems, CO	Age: 9d
Sample ID:	10-8719-6579	C	ode:	P231003.08M.	b.			Project:	Wyc	koff Fagle	Harbor GV	VTP 2023/V
Sample Date:	03 Oct-23 01:1	4 N	laterial:	Treated Groun	dwater			Source:		bs Wycko		· · · LUZUI
Receipt Date:	03 Oct-23 13:0	5 C	AS (PC):				-	Station:	1003	The state of the state of		
Sample Age:	16h	C	lient:	Jacobs Wycko	off							
Data Transfor	m	Alt Hy	р			Compari	son Res	sult				PMSD
Angular (Corre	cted)	C > T				Salt Cont	trol pass	ed 96h pr	oportion	survived	endpoint	8.47%
Wilcoxon Ran	k Sum Two-Sa	ample Tes	t						-			
Control I	vs Control	II .	df Test S	Stat Critical	Ties	P-Type	P-Val	ue Dec	cision(c	a:5%)		
Dilution Water	Salt Conf	trol	6 18		3	Exact	0.757	2.5		icant Effec	ot	
Test Acceptab	oility Criteria	TAC	Limits									
Attribute	Test Star	t Lower	Uppe	Overlap	Decision							
Control Resp	0.95	0.9	<<	Yes	Passes C	riteria			_	_		
Control Resp	0.95	0.9	<<	Yes	Passes C	10.71						
ANOVA Table	1				2,5,000							
Source	Sum Squ	uares	Mean	Square	DF	F Stat	P-Val	ue Dec	cision(c	x:5%)		
Between	0		0		1	0	1.000	-	Non-Significant Effect			
Error	0.053118	7	0.0088	3531	6				The Digital Care Care Care Care Care Care Care Care			
Total	0.053118	57			7							
ANOVA Assun	nptions Tests											
Attribute	Test				Test Stat	Critical	P-Val	ue Dec	ision(a	x:1%)		
Variance	Variance	Ratio F Te	est		1	47.47	1.000		al Varia			
Distribution		-Darling A			1.422	3.878	0.000			al Distribut	ion	
		rov-Smirno			0.3252	0.3313	0.012	7 Nor	mal Dis	tribution		
	Shapiro-V	Wilk W No	rmality Tes	st.	0.6647	0.6451	0.000	9 Non	-Norma	al Distribut	ion	
96h Proportion	n Survived Sur	nmary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max		Std Err	CV%	%Effect
0	D	4	0.9500	0.8581	1.0000	0.9500	0.900			0.0289	6.08%	0.00%
0	SC	4	0.9500		1.0000	0.9500	0.900			0.0289	6.08%	0.00%
Angular (Corre	ected) Transfor	rmed Sum	mary									7.20
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	,	Std Err	CV%	%Effect
0		4	1.3310		1.4800	1.3310	1.249			0.0471	7.07%	0.00%
,	D				4 4000					0.0471	7.07%	0.00%
	D SC	4	1.3310	1.1810	1.4800	1.3310	1.249	1.41		0.0111	1.01 /0	
0		4	1.3310	1.1810	1.4800	1.3310	1.249	7 1.41		0.0171	7.0776	2302.1
) 96h Proportion	sc	4	1.3310 Rep 2			1.3310	1.249	7 1.41		0.017	7.0776	23/25/1
) 96h Proportior Conc-%	SC n Survived Det	4 ail		Rep 3	Rep 4	1.3310	1.249	7 1.41		5.5771	7.0776	
0 96h Proportion Conc-% 0	SC n Survived Det Code	4 ail Rep 1	Rep 2	Rep 3	Rep 4	1.3310	1.249	7 1.41			7.0770	
0 96h Proportior Conc-% 0	SC n Survived Det Code D	4 ail Rep 1 1.0000 1.0000	Rep 2 1.0000 1.0000	Rep 3 0.9000	Rep 4 0.9000	1.3310	1.2490	7 1.41			7.0776	
0 96h Proportior Conc-% 0	SC n Survived Det Code D SC	4 ail Rep 1 1.0000 1.0000	Rep 2 1.0000 1.0000	Rep 3 0.9000 0.9000	Rep 4 0.9000 0.9000	1.3310	1.243	1.41		0.047	1.07%	
0 96h Proportion Conc-% 0 0 Angular (Corre	SC Code D SC ected) Transfor	4 ail Rep 1 1.0000 1.0000	Rep 2 1.0000 1.0000	Rep 3 0.9000 0.9000	Rep 4 0.9000	1.3310	1.249	1.41			7.07%	

CETIS Analytical Report

Report Date: Test Code/ID:

25 Oct-23 12:30 (p 2 of 2) P231003.08M.b. / 05-3541-5024

Inland Silverside 96-h Acute Survival Test

EcoAnalysts

Analysis ID: 06-8614-6850

Endpoint: 96h Proportion Survived

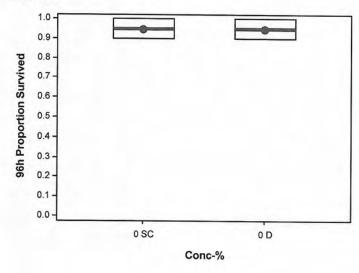
CETIS Version:

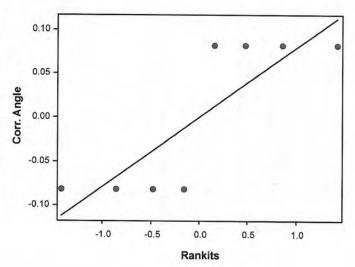
CETISv2.1.4

Analyzed: **Edit Date:**

25 Oct-23 12:29 25 Oct-23 12:21 Analysis: Nonparametric-Two Sample

Status Level: MD5 Hash: 8F3C26FE85F66BFDE2E0DE5FD24D2868 Editor ID:


003-841-189-5


1

96h Proportion Survived Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	10/10	10/10	9/10	9/10	
0	SC	10/10	10/10	9/10	9/10	

Graphics

Report Date: Test Code/ID: 25 Oct-23 12:29 (p 1 of 1)

P231003.08M.b. / 05-3541-5024

Inland Silverside 96-h Acute Survival Test

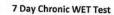
EcoAnalysts

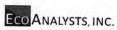
Start Date:

03 Oct-23 17:43

Species: Menidia beryllina

Sample Code: P231003.08M.b.


End Date: 07 Oct-23 16:21 Sample Date: 03 Oct-23 01:14


Protocol: EPA/821/R-02-012 (2002)
Material: Treated Groundwater

Sample Source: Jacobs Wyckoff

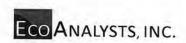
Sample Station: 100323

Conc-%	Code	Rep	Pos	# Exposed	24h Survival	48h Survival	72h Survival	96h Survival	Notes
0	D	1	4	10	10	10	10	10	110.00
0	D	2	13	10	10	10	10	10	
0	D	3	11	10	10	10	10	9	
0	D	4	19	10	9	9	9	9	
0	SC	1	22	10	10	10	10	10	
0	sc	2	1	10	10	10	10	10	
0	SC	3	6	10	10	10	10	9	
0	SC	4	10	10	10	10	9	9	
6.25		1	21	10	10	10	10	10	
6.25		2	8	10	10	9	9	9	
6.25		3	25	10	8	7	7	7	
6.25		4	16	10	10	10	10	10	
12.5		1	15	10	9	9	9	9	
12.5	-	2	23	10	9	9	9	9	
12.5		3	27	10	10	10	10	10	
12.5	9	4	18	10	10	8	7	7	
25		1	9	10	10	10	10	10	
25		2	5	10	9	8	8	8	
25		3	26	10	10	10	10	10	
25		4	14	10	10	10	10	10	
50		1	12	10	10	10	10	10	
50		2	28	10	10	10	10	10	
50		3	3	6	4	4	4	4	
50		4	24	10	10	10	10	10	
100		1	20	10	10	10	10	10	
100		2	7	10	10	10	10	10	
100		3	17	10	9	9	9	9	
100		4	2	10	10	10	10	10	

GENERAL

Version V.3	GENERAL
Client	Jacobs Wyckoff
Project	Wyckoff Eagle Harbor GWTP 2023/WA
Project Number	PG1799
Project Manager	M. Seibert
Date Sample Received	10/3/2023
Test type	96-Hour Acute Toxicity with Menidia
Matrix	Liquid
Test Acceptability	≥ 90% average survival of control
Test Start Date	10/03/23
Test Species	Menidia beryllina
Organism Batch	AB\$100323
Organism Acquired	10/3/2023
Organism Acclimation	0
Organism Age	9 days
Test Protocol	TOX 013
Test Location	Bath 4
Light Intensity	50-100 foot candles
Light Cycle	16L:8D
Water Description	0.45 um filtered seawater
Organisms per Replicate	10
Test Chamber Size	1207.40
Exposure Volume	250 mL
Feeding Information	0.1 mL Artemia daily
Test Dissolved Oxygen	>4.0
Test Temperature	20 ± 1
Test Salinity	30 ± 2
Test pH	7.5 ± 1.5

	Test Parameters				
		Min	Max		
Note: input lowest and highest decimal for temp	DO	4.0			
	Temp	18.5	21.4		
	Salinity	28	32		
	pH	6	9		

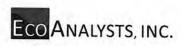

TEST START TIME/INIT: 1743 TEST END TIME/INIT: 1021

LIENT SAMPLE ID	LAB ID	
100323	P231003.08	

Concentrations Control Salt Control 6.25% 12.5% 25% 50% 100%

Food Batch ID	7
281729.0	0
CSMM Batch #	
62123.00	5

Treatment	Rep	Chamber
Control	1	18
Control	2	25
Control	3	6
Control	4	12
Salt Control	1	8
Salt Control	2	22
Salt Control	3	21
Salt Control	4	17
6.25%	1	24
6.25%	2	26
6.25%	3	10
6.25%	4	28
12.5%	1	4
12.5%	2	23
12.5%	3	15
12.5%	4	11
25%	1	5
25%	2	20
25%	3	9
25%	4	16
50%	1	1
50%	2	27
50%	3	2
50%	4	14
100%	1	7
100%	2	19
100%	3	13
100%	4	3

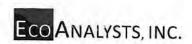

	_		_
7	۲.	_	î
٠			
		-	

/3	CLIENT		Jacobs Wyckoff	DATE RECEIVED	10/3/23	PROTOCOL	TOX 013
	PROJECT	Wyckoff Eagle	Harbor GWTP 2023/WA	TEST START DATE	10/3/23	PROJECT MANAGER	M. Seibert
	CLIENT SA	MPLE ID	100323	TEST END DATE	10/7/23	SPECIES	Menidia beryllina
	LAB SAMP	LE ID	P231003.08	MATRIX	Liquid	NO. OF ORGANISMS	10

96-Hour Acute Toxicity with Menidia

		DO (mg/L)	TEMP (°C)	SALINITY (ppt)	рН
ites	Concentration (%)	>4.0	19 - 21	28 - 32	6-9
Day 0	Control	D 8.07.6	18.9	32	7.8
Stock	Salt Control	8.2	19.2	30	87
Date 10/3/23	6.25%	7.6	19.4	32	7.7
Time (520	12.5%	7.8	19.1	-32	7.7
Tech MS	25%	0798.0	18.9	03/32	7.1
Meter # 8	50%	~ 8.0	18.7	31	77
	100%	Q7.8.4	18.9	31	7.6
Day 1	Control	@73 7.1	0,9.8 19.6	37	7.8
Rep 1	Salt Control	٦.0	19.9	29	8.1
Date [0/4/23	6.25%	7.0	19.5	31	7.9
Time 0953	12.5%	6.9	19.7	31	7.9
Tech J1	25%	7.0	19.7		8.0
Meter # 9	50%	7.0	19.7	31	6.8
	100%	7.0	19.8	30	0.8
Day 2	Control	6.3	19.9	31	7.8
Rep 2	Salt Control	6.8	19.6	29	8.0
Date 10/05/23	6.25%	6.8	19.7	31	7.9
Time 1034	12.5%	6.7	19.5	31	8.0
Tech SR	25%	6.6	19.6	31	8.1
Meter#8	50%	6.5	29.6	30	8.2
	100%	6.6	19.6	30	8.3
Day 2	Control	7.5	20.4	28	7.9
Renewal Stock	Salt Control	7.5	20.3	30	8.2
Date 10/05/23	6.25%	7.6	20.3	29	7.9
Time 1522	12.5%	7.6	20.3	29	7.9
Tech SR	25%	7.7	20.3	29	29
Meter # 9	50%	7.7	20.3	29	7.8
	100%	7.8	20.2	30	7.8

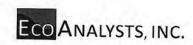
OMR-MS 10/3 (2) IE-MS 10/3,11 10/4/23



CLIENT	Jacobs Wyckoff	DATE RECEIVED	10/3/23	PROTOCOL	TOX 013
PROJECT U	Off Eagle Harbor GWTP 2023/WA	TEST START DATE	10/3/23	PROJECT MANAGER	M. Seibert
CLIENT SAMP	.E ID 100323	TEST END DATE	10/7/23	SPECIES	Menidia beryllina
LAB SAMPLE I	P231003.08	MATRIX	Liquid	NO. OF ORGANISMS	10

96-Hour Acute Toxicity with Menidia

Day 3	Control	6.8	19.7	29	7.8
Rep 3	Salt Control	7.0	29.7	2.9	8.0
Date 10/06/23	6.25%	7.0	19.7	29	7.9
Time 1039	12.5%	6.9	29.7	21	8.0
Tech 5R	25%	6.7	19.7	21	8.0
Meter # 8	50%	7.0	19.7	29	8.1
	100%	6.8	19.7	30	8.2
Day 4	Control	(0.3	20.1	29	7.8
Rep 4	Salt Control	6.2	20.2	29	7.9
Date 1017123 Time 1105	6.25%	(0.1	20.1	29	7.9
Time 1105	12.5%	6.2	20.1	29	8.0
Tech NL	25%	6.2	20.2	29	8.1
Meter # 8	50%	6.2	20.	29 30	8.2
	100%	6.1	20.1	30	8.3



	_
_	5.
	_

3	In antiques	The second secon				
	CLIENT	Jacobs Wyckoff	DATE RECEIVED	10/3/23	PROTOCOL	TOX 013
	PROJECT	Wyckoff Eagle Harbor GWTP 2023/WA	TEST START DATE	10/3/23	PROJECT MANAGER	M. Seibert
	CLIENT SAMPLE ID	100323	TEST END DATE	10/7/23	SPECIES	Menidia beryllina
	LAB SAMPLE ID	P231003.08	MATRIX	Liquid	NO. OF ORGANISMS	10

bbreviation Key:				30-noui	Acute Tox	icity with	i wenidia		
B = No Body		D	ay 1		Day 2		Day 3		Day 4
3 = Found Body		Date	10/4/23	Date	20105123	Date	10/06/23	Date	1017
= Stranded		Time	1015	Time	1533	Time	1058	Time	1621
		Tech	11	Tech	SR	Tech	SR	Tech	W
Concentration (%)	REP	Alive	Dead	Alive	Dead	Alive	Dead	Alive	Dead
	1	10	0	10	0	10	0	10	0
Control 3	2	10	0	10	0	10	Q	10	0
	3	10	0	10	0	10	0	9	1
	4	9	1	9	0	9	0	9	0
	1	10	0	10	0	10	0	10	0
Salt Control	2	10	0	10	0	10	0	10	0
Suit Control	3	01	0	10	0	10	0	9	1
	4	10	0	10	0	1	1NB	9	0
	1	10	0	10	0	10	0	10	0
6.25%	2	10	0	9	1	9	0	9	0
0.2370	3	8	2	7	1	7	0	٦	6
	4	10	0	10	0	10	0	10	0
	1	9	1	9	0	9	0	9	6
12.5%	2	9	1	9	Q	9	0	9	0
12.570	3	10	0	10	0	20	0	10	6
	4	10	0	8	2	7	0	٦	0
	1	10	0	10	0	10	0	10	0
25%	2	9	1	8	1	8	0	8	0
.4215	3	10	0	10	0	10	.0	10	0
	4	10	Ò	10	0	10	0	10	0
	1	10	ð	19	0	10	0	16	6
50%	2	10	0	10	Q	10	9	10	0
5-5-4	3	8	2	4	4ºNB	4	0	4	0
	4	10	0	10	0	10	0	10	0

Our spilled during wa - SR 10105/23

CLIENT	Jacobs Wyckoff	DATE RECEIVED	10/3/23	PROTOCOL	TOV 012
PROJECT	Wyckoff Eagle Harbor GWTP 2023/WA	1.6.1.2.26.36.36.37.37.5		PROJECT MANAGER	TOX 013
CLIENT SAMPLE ID		TEST END DATE	10/3/23		M. Seibert Menidia beryllina
LAB SAMPLE ID	P231003.08	7.557.27160.357	2 2 2 3 1	NO. OF ORGANISMS	10

bbreviation Key:				96-Hour	Acute Tox	icity with	Menidia .		
B = No Body		D	ay 1	1	Day 2	D	ay 3		Day 4
B = Found Body		Date	10/4/23	Date	10/05/23	Date	20106123	Date	1017
Γ = Stranded		Time	1015	Time	1533	Time	1058	Time	1621
	_	Tech	JI	Tech	5R	Tech	SR	Tech	M
Concentration (%)	REP	Alive	Dead	Alive	Dead	Alive	Dead	Alive	Dead
	1	0	0	10	0	10	0	10	0
100%	2	10	6	10	0	10	0	10	0
10070	3	9	OINB	9	0	9	0	G	8
	4	10	0	10	0	10	0	11)	0
Feed (Init.)	АМ	0	M	11	0844	11	0838	SR	
0.1 mL Artemia daily	РМ				TOTAL TOTAL				

	×	3	
ſ		1	١
		-	

CLIENT		Jacobs Wyckoff	DATE RECEIVED	10/3/23	PROTOCOL	TOX 013
PROJECT	Wyckoff Eagle	Harbor GWTP 2023/WA	TEST START DATE		PROJECT MANAGER	M. Seibert
CLIENT SAM	PLE ID	100323	TEST END DATE	10/7/23	SPECIES	Menidia beryllina
LAB SAMPLE	ID	P231003.08	MATRIX	Liquid	NO. OF ORGANISMS	10

			96-Hour Acute Toxici	ty with Menidia	
Day of Test	Concentration	Vol. Effluent Sample Added (mL)	Vol. Diluent Added (mL)	Total Volume (mL)	Diluent Type
	0%	0	1000	1000	
	Salt Control	#VALUE!	#VALUE!	1000	
	6.25%	62.5	937.5	1000	
0	12.5%	125	875	1000	
	25%	250	750	1000	
	50%	500	500	1000	
	100%	1000	0	1000	

Day of Test	Concentration	Vol. Effluent Sample Added (mL)	Vol. Diluent Added (mL)	Total Volume (mL)
	0%	0	800	800
	Salt Control	#VALUE!	#VALUE!	800
	6.25%	50	750	800
2	12.5%	100	700	800
	25%	200	600	800
	50%	400	400	800
	100%	800	0	800

Test Dilution Prep

Date	Balance ID	Sample ID (P#)	Water Batch ID	Initials
10/3/23	#7	P231003.08	FSW100323.0	18
10105123	7	P231003.08	1,20 m = 10 m = 10 m = 10 m = 10	SR

FSW

ORGANISM RECEIPT LOG

Organis	3/23		ime: 1200		Batch No.	0323.0	ol
A 100 CONTRACTOR		a bu	pylline	V	1 1/0000		1
Source /	Supplier:						
	Agu	atri	B108	nstum	8		
No. Orde	red:		o. Received				
	30		690		Source Batch Collection date	natch date, etc.):
Condition	of Organ	isms:	1	Approximat	e Size or Age:	,	
	0 -	1	0	Days from hat	ch, life stage, size	class, etc.):	
	6,000	7			9 days		
Shipper:			В	of L (Traci	(ing No.))	
UPS)			12 FAI	e 73P di	9112	0.5210
Condition	of Contain	ner:				7017	4206
	4000		R	eceived By	: W		1
			Cond. or				
Container	D.O. (mg/L)	Temp. (°C)	Sal.)	На	# Dead	% Dead*	Tech.
Container	1		(Sal.)	pH (Units		% Dead*	(Initials)
Container	(mg/L)	(°C)	Sal.)	pH (Units	8	_	The state of the s
	(mg/L)	(°C)	Sai.) (melude Units)	pH (Units		% Dead* —— 3.5%	(Initials)
	(mg/L)	(°C)	Sai.) (melude Units)	pH (Units	8	_	(Initials)
	(mg/L)	(°C)	Sai.) (melude Units)	pH (Units	8	_	(Initials)
2	(mg/L) 15.6 19.2	(°C) U.1 U.1	Sai.) (melude Units)	pH (Units	8	_	(Initials)
	(mg/L) 15.6 19.2	(°C) U.1 U.1	Sai.) (melude Units)	pH (Units	8	_	(Initials)

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

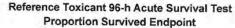
Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

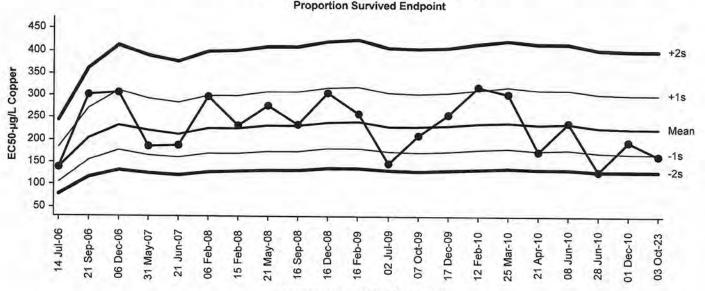
ORGANISM HISTORY

SPECIES: Menidia beryllina	
SEEGLES. Wernald Deryllind	
AGE: 8 day	
LIFE STAGE: Juvenile	
HATCH DATE: 9/24/2023	
BEGAN FEEDING: Immediately	
FOOD: Rotifers, Artemia sp.	
Water Chemistry Record: Current	Range
TEMPERATURE: 24°C	23-26 °C
SALINITY/CONDUCTIVITY: 25 ppt	23-27 ppt
TOTAL HARDNESS (as CaCO ₃):	
TOTAL ALKALINITY (as CaCO ₃): 155 mg/l	150-200 mg/l
pH:7.93	7.60-8.00
Comments:	
Facility Supervisor	9

Reference Toxicant 96-h Acute Survival Test

All Matching Labs


Test Type: Survival


Protocol: EPA/821/R-02-012 (2002) Organism: Menidia beryllina Endpoint: Proportion Survived

Material: Source:

Copper

Reference Toxicant-REF

Lognormal Cumulative Mean Plot

Mean: 227.5 Sigma: NA

Count: 20 CV: 29.00%

-1s Warning Limit: +1s Warning Limit: 302

-2s Action Limit: 129 +2s Action Limit: 401

Qualit	Quality Control Data										
Point	Year	Month	Day	Time	QC Dat						
1	2006	Jul	14	15:30	138.8						
2		Sep	21	17:00	301.5						
2		Dan	^	45.00	2000						

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2006	Jul	14	15:30	138.8	-88.68	-1.741	(-)		12-3489-2800	05-4639-7387	NewFields
2		Sep	21	17:00	301.5	74.03	0.9932				13-4184-0272	
3		Dec	6	15:30	306.3	78.84	1.049	(+)			14-1844-9693	
4	2007	May	31	18:00	185.8	-41.65	-0.7129				07-8998-8487	
5		Jun	21	17:00	187.9	-39.6	-0.6742				09-2989-1578	A CARLO CONTRACTOR
6	2008	Feb	6	16:00	298.9	71.41	0.9623				02-2843-3056	
7			15	16:30	232.3	4.847	0.07432			02-3273-3535	02-4532-0088	NewFields
3		May	21	13:00	277.7	50.26	0.7037			09-4275-9770	06-5552-2016	NewFields
9		Sep	16	14:00	234.5	6.985	0.1066				05-6930-9029	
0		Dec	16	0:00	306.7	79.24	1.054	(+)		14-9978-8744	16-1416-6951	NewFields
11	2009	Feb	16	17:50	259.8	32,29	0.4679			04-7138-1635	03-2527-8796	NewFields
12		Jul	2	15:30	148.7	-78.77	-1.498	(-)			02-5341-7743	
13		Oct	7	16:00	209.6	-17.88	-0.2885			09-2813-8584	10-4729-1377	NewFields
14		Dec	17	17:00	258.8	31.33	0.4548			08-9947-0669	06-8788-0639	NewFields
15	2010	Feb	12	15:50	319.7	92.2	1.199	(+)			11-4810-9360	
16		Mar	25	15:40	305.4	77.97	1.039	(+)		01-9529-2111	16-5352-1628	NewFields
17		Apr	21	14:30	175.7	-51.72	-0.9094				11-8587-2436	
18		Jun	8	15:00	239.1	11.67	0.1763				01-7499-5876	
9			28	18:35	128.9	-98.57	-2.002	(-)	(-)		14-9318-8371	
20		Dec	1	17:00	198.2	-29.31	-0.4862		COV.		14-1520-5779	
21	2023	Oct	3	17:05	165.7	-61.76	-1.117	(-)			14-5140-9073	
												Annual Control of the

CETIS Summary Report

Report Date: Test Code/ID: 14 Dec-23 14:06 (p 1 of 1) P220110:117 / 08-1424-5683

Reference To	xicant 96-h Ac	ute Surv	vival Test									Ec	oAnalysts
Batch ID: Start Date: Ending Date: Test Length:	17-0645-1239 03 Oct-23 17: 07 Oct-23 15: 94h	05	Test Type: Protocol: Species: Taxon:	Survival EPA/821/R-02 Menidia berylli Actinopterygii				Dilu Brit	ient: ne:	Marisa Seibert Laboratory Seawater Not Applicable Aquatic Biosystems, CO		vater	Age: 9d
Sample ID: Sample Date:	16-0405-5557 10 Jan-22		Code: Material:	P220110.117 Copper					24 10 10 10 10 10		erence Toxic	-10 A	
Receipt Date:			CAS (PC):	Соррег				10.77			erence Toxic 0110.117	ant	
Sample Age:			Client:	Internal Lab				Sta	uon.	F220	3110.117		
Multiple Com	parison Summ	nary											_
Analysis ID	Endpoint		Comp	parison Method	0		1	NOEL	LOEL	5.1	TOEL	PMSD	
21-0621-4474	Proportion Sur	vived	Steel	Many-One Ranl	Sum Test			125	250		176.8	16.9%	
Point Estimat	e Summary												
Analysis ID	Endpoint		Point	Estimate Meth	od		1	Level	µg/L		95% LCL	95% UCL	
14-5140-9073	Proportion Sur	vived	Linea	r Interpolation (I	CPIN)		1	EC15	108.9		34.68	154.4	
								EC20	127.7		55.39	151.4	
								EC25	133.4		70.39	156.7	
								EC40	152		114.5	171.9	
								EC50	165.7		130.4	183.5	
Proportion Su	rvived Summ	ary											
Conc-µg/L	Code	Coun	t Mean	95% LCL	95% UCL	Min		Max	Std E	rr	Std Dev	CV%	%Effect
0	D	4	1.000		1.0000	1.0000	Ŧ	1.0000	0.000	0	0.0000	0.00%	0.00%
31.25		4	0.975	41.25.25.	1.0550	0.9000		1.0000	0.025	0	0.0500	5.13%	2.50%
62.5		4	0.950		1.1090	0.8000		1.0000	0.0500	0	0.1000	10.53%	5.00%
125		4	0.825		1.2010	0.5000		1.0000	0.118	1	0.2363	28.64%	17.50%
250		4	0.025		0.1046	0.0000		0.1000	0.025	0	0.0500	200.00%	97.50%
500		4	0.000	0.0000	0.0000	0.0000	_0	0.0000	0.000	0	0.0000	***	100.00%
Proportion Su	rvived Detail							MD	5: AFD3	3B05	C60E1133F	СГ9ВА7СВ	3FC4C07
Conc-µg/L	Code	Rep 1		Rep 3	Rep 4								
0	D	1.000		2007.000	1.0000								
31.25		1.000		0.9000	1.0000								
62.5		1.000	0 1.0000	0.8000	1.0000								
125		1.000	0.5000	1.0000	0.8000								
250		0.100	0.0000	0.0000	0.0000								
500		0.000	0.0000	0.0000	0.0000								
Proportion Su	rvived Binomi	als											
Conc-µg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4								
)	D	10/10	10/10	10/10	10/10								
31.25		10/10	10/10	9/10	10/10								
52.5		10/10	10/10	8/10	10/10								
125		10/10	5/10	10/10	8/10								
120					and the second second								
250		1/10	0/10	0/10	0/10								

Report Date: Test Code/ID: 25 Oct-23 13:05 (p 1 of 1) P220110.117 / 08-1424-5683

EcoAnalysts

Reference Toxicant 96-h Acute Survival Test

03 Oct-23 17:05 07 Oct-23 15:33

Species: Menidia beryllina

Protocol: EPA/821/R-02-012 (2002)

Sample Date: 10 Jan-22

Start Date:

End Date:

Material: Copper

Sample Code: P220110.117

Sample Source: Reference Toxicant

Sample Station: P220110.117

				-		
Conc-µg/L	Code	Rep	Pos	# Exposed	# Survived	Notes
0	D	1	2	10	10	110100
0	D	2	5	10	10	
0	D	3	23	10	10	
0	D	4	15	10	10	
31.25	7 7	1	10	10	10	
31.25		2	22	10	10	
31.25		3	11	10	9	
31.25		4	6	10	10	
62.5		1	16	10	10	
62.5		2	21	10	10	
62.5		3	9	10	8	
62.5		4	24	10	10	
125		1	17	10	10	
125		2	18	10	5	
125		3	1	10	10	
125		4	20	10	8	
250		1	8	10	1	
250		2	19	10	0	
250		3	13	10	0	
250		4	14	10	0	
500		1	12	10	0	
500		2	4	10	0	
500		3	7	10	0	
500		4	3	10	0	

96-Hour Menidia Copper Reference Toxicant Test

Toxicant:	Copper Chloride
Ref Tox ID:	P220110.117
Protocol:	TOX099
Replicates:	4

Date Test Started:	10/3/2023
Date Test Ended:	10/7/2023
Matrix:	Liquid
Species:	Menidia beryllina
No. of Org. per Chamber:	10

Toxicant: Copper Chloride	Lot #:	Date Prepared	1:10/3/23	Initials: UG		
(400,000 ug Cu/L CuCl2)	MKCK7155	Renewal: 10	105123			
Target Concentration: 500 ug/L	Quantity of Stock Ta	arget: 2.5 mL	Quantity of Diluent Target: 2000 m			
	Serial D	Dilute by 50%				

	Conc.	Meter #:	DO (mg/L) (>4.6)	Meter #:	Temp (°C) (20±1°C)	Meter #:	Salinity (ppt) (30±2ppt)	Meter #:	pH (7-9)	
Day 0 (Stock)	Control	8	7.3	В	19.0	8	32	8	77	
Date: 10/3/23	31.25	7.5			19.0		32	1	77	
Time: 1505	62.5		7.6		70.1		32		77	
Technician: MS	125		7.6		18.8		32		7.7	
	250		7.6	M	19.0		32		7.7	
	500	7.6		19.4			32		7.7	
			Day 1		Day 2		Day 3		Day 4	
Temperature (OLD)		(D+	5.8 18.8		19.4		19, 2			
Temperature (NEW))				18.6					
Feed: 0.1mL Arte (Time/Init.)	emia AM PM		DM 0915		71 08N3		10838	SR	0820	
Day 4	Control	8	6.6	8	20.3	8	28	8	7.7	
Date: 10/7/23	31.25		6.5		20.2		28		7.8	
Time:\058	62.5	(é.5 (e.le			20.1		28		7.8	
Replicate No.: \	125				20.0		28		7.8	
Technician: NL	250		6.7		20.2		28		7.9	
	500			IL 1						

Start Time:	1705 65/51
End Time:	1533 NV
Test Acceptability:	≥90% survival in control

01E1110/4/20

Test Location:	Bath 3	
Dilution Water Batch:	FSW 100323.0)(
Supplier:	Aquatic BioS	Systems
Organism Batch:	AB5100823.01	Age: 9 da
Chamber Size/Type:	12 oz. (
Exposure Volume:	250 m	L

96-Hour Menidia Copper Reference Toxicant Test

Toxicant:	Copper Chloride	Date Test Started:	10/3/2023
Ref Tox ID:	P220110.117	Date Test Ended:	10/7/2023
Species:	Americamysis bahia	M. M. 15 1 - 115	10,0000

		Day 1	I receive	Day 2	olia be	Day 3		Day 4		
Concentration	Rep	Date: 10 34		Date: 10/5/2023 Time: 1205		Date: 10/06/23 Time: 1021		Date: 10/ Time: 15/	7/23	
		# Alive	# Dead	# Alive	# Dead	# Alive	# Dead	# Alive	# Dead	
	1	(0	0	10	0	10	0	10	0	
Control	2	lo	O	10	0	10	0	10	0	
130,005	3	10	0	10	0	10	0	10	0	
	4	10	O	10	0	10	0	(0	0	
	1	10	0	10	0	20	0	10	()	
31.25	2	10	0	10	0	10	0	10	Ŏ	
	3	10	0	10	0	9	1	9	0	
	4	10	0	10	0	10	a	10	0	
	1	18	0	10	0	10	0	10	0	
62.5	2	10	0	10	0	10	0	10	0	
62.5	3	8	2	8	0	8	0	8	0	
	4	10	0	10	0	10	0	10	0	
	1	10	0	10	0	10	0	10	0	
125	2	5	5	5	0	5	0	5	0	
120	3	10	0	10	0	10	0	1Ô	0	
	4	8	2	8	0	8	0	8	0	
	1	1	9		0	1	9	1	0	
250	2	2	8	0	1			V = 10		
	3	0	10						_	
	4	1	9	0					-	
	1	0	10	_						
500	2	0	10							
300	3	0	10							
	4	0	10	_						
INIT	IALS:	11		TW		51	e sig	NL	,	

1 IE - 6 10/3/23

1	24
2	11
2 3 4 5 6 7	9
44	23
5	5
6	16
7	22
8	2
9	8
10	6
11	13
12	18
13	12
14	17
15	1
16	4
17	21
18	14
19	19
20	10
21 22	3
	3 20
23	15
24	7

Pt: P220110.117

Toxicity Testing Results Wyckoff/Eagle Harbor Superfund Site Groundwater Treatment Plant

APPENDIX A.2

MYTILUS GALLOPROVINCIALIS 48-HOUR SURVIVAL AND DEVELOPMENT TEST

STATISTICAL COMPARISON AND LABORATORY DATA SHEETS

Report ID PG1799Q4.01 EcoAnalysts, Inc.

Report Date: Test Code/ID: 14 Dec-23 14:23 (p 1 of 3)

200							Test C	ode/ID:	P2311	08.01BC / 1	8-5572-0	054
Bivalve Larv	al Survival and Devel	opment Test								and the same	coAnaly	
Batch ID: Start Date: Ending Date Test Length:	15-1536-2742 08 Nov-23 15:50 : 10 Nov-23 14:01 : 46h	Test Type: Protocol: Species: Taxon:	Species: Mytilus galloprovincialis				Dilu Brir	ent: L	Marisa Seibert Laboratory Sea Frozen Seawat Faylor Shellfish	water er	Age:	
Sample ID:	02-4638-8827	Code: P231108.01BC					Pro					
	: 08 Nov-23 01:15	Material:	Treated Gr	oundwater					Nyckoff Eagle		TP 2023	/VV
Receipt Date	: 08 Nov-23 12:20	CAS (PC):						37.7	lacobs Wyckof 10823	1		
Sample Age:	15h	Client:	Jacobs Wy	ckoff			Otal		10023			
Single Comp	parison Summary					-			_			_
Analysis ID	Endpoint	Comp	arison Met	hod			P-Value	Comp	orinon Decul			
13-9060-0578	Proportion Normal			wo-Sample Te	st	-	0.1151		arison Result			,
	Proportion Survived			wo-Sample Te			0.1151		Control passed			
	parison Summary			TO GATTIPIO TO	J.	-	0.5711	bine C	Control passed	proportion	survived	116
Analysis ID	Endpoint	Come				1	arabe.					
	Proportion Normal		Comparison Method				73.5	LOEL	TOEL	PMSD	TU	
	Proportion Survived		Dunnett Multiple Comparison Test					>73.5	-	2.06%	1.4	113
		Dunnett Multiple Comparison Test					73.5	>73.5	1-4	3.88%	1.4	
Point Estima	te Summary											
Analysis ID	Endpoint		Estimate M			1	Level	%	95% LCL	95% UCL	TU	S
06-7464-2626	Proportion Normal	Linear	Interpolation	(ICPIN)		1	EC15	>73.5			<1.4	7
						1	EC20	>73.5	-		<1.4	
						1	EC25	>73.5	=	***	<1.4	
						1	EC40	>73.5			<1.4	
11 5000 0000	D					1	EC50	>73.5	1990	-	<1.4	
11-5239-8639	Proportion Survived	Linear	Interpolation	(ICPIN)		1	EC15	>73.5	(ce)		<1.4	-
						1	EC20	>73.5	-	-	<1.4	
						1	EC25	>73.5			<1.4	
						1	EC40	>73.5			<1.4	
	22478					V	EC50	>73.5	(444)	Carine .	<1.4	
Test Acceptat	2000				TAC	Li	mits					
	THE LONG OF STREET	Attribu	ite	Test Stat	Lower		Upper	Overlap	Decision			
	Proportion Normal	Contro	Resp	0.9789	0.9	=	<<	Yes	Passes Cr	iteria		-
	Proportion Normal	Control Resp 0.9789 0.9					<<	Yes	Passes Cr	310,53		
3-9060-0578	Proportion Normal	Control Resp 0.9789 0.9					<<	Yes	Passes Cri	2.10724		
0 7000 5555	Proportion Normal	Contro	Resp	0.9618	0.9		<<	Yes	Passes Cri			
8-/899-9229	Proportion Survived	Contro	Resp	0.9872	0.5		<<	Yes	Passes Cri	The state of the s		
4 5000 5000	Proportion Survived	Contro	Resp	0.9843	0.5		<<	Yes	Passes Cri			
	Proportion Survived	Control	Resp	0.9872	0.5		<<	Yes	Passes Cri			
0-/561-26/2	Proportion Survived	Control	Control Resp 0.9872 0.5				<<	Yes	Passes Cri			

Report Date: Test Code/ID:

14 Dec-23 14:23 (p 2 of 3) P231108.01BC / 18-5572-0546

			1 1 1 1 1	-
	Eco	Anni	Section.	-

- valve Larva	al Survival and	Developm	ent lest							E	coAnalysts
Proportion N	ormal Summa	ry									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	0/ 54
0	D	4	0.9789	0.9498	1.0080	0.9544	0.9961	0.0091	0.0183		%Effect
0	BC	4	0.9618	0.9287	0.9949	0.9356	0.9799	0.0091	0.0183	1.87%	0.00%
6.25		4	0.9822	0.9625	1.0020	0.9641	0.9918	0.0062	0.0208	2.16%	1.74%
12.5		4	0.9730	0.9616	0.9843	0.9654	0.9823	0.0002	0.0124	1.26%	-0.34%
25		4	0.9833	0.9717	0.9949	0.9759	0.9928	0.0036		0.73%	0.60%
50		4	0.9783	0.9715	0.9852	0.9723	0.9821	0.0037	0.0073	0.74%	-0.45%
73.5		4	0.9771	0.9559	0.9982	0.9627	0.9920	0.0021	0.0043	0.44% 1.36%	0.06%
Proportion Su	rvived Summ	ary					000 3099	12.44.44	0.0100	1.0076	0.1076
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	D	4	0.9872	0.9465	1.0280	0.9488	1.0000	0.0128	0.0256	2.59%	
0	BC	4	0.9843	0.9515	1.0170	0.9567	1.0000	0.0103	0.0206	2.09%	0.00%
6.25		4	0.9852	0.9540	1.0170	0.9567	1.0000	0.0098	0.0200		0.30%
12.5		4	0.9085	0.8827	0.9342	0.8898	0.9291	0.0081	0.0162	1.99%	0.20%
25		4	0.9941	0.9753	1.0130	0.9764	1.0000	0.0059	0.0102	1.78%	7.98%
50		4	0.9764	0.9053	1.0470	0.9094	1.0000	0.0223	0.0447		-0.70%
73.5		4	0.9774	0.9422	1.0130	0.9488	1.0000	0.0111	0.0221	4.57% 2.26%	1.10% 1.00%
Proportion No	rmal Detail						MD	5: 35B7970	CE6C31F7E		
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4			. 0001010	020031172	LI 740330	DE / SOFB40
0	D	0.9763	0.9888	0.9961	0.9544						
D	BC	0.9770	0.9547	0.9799	0.9356						
3.25		0.9918	0.9849	0.9641	0.9881						
12.5		0.9739	0.9703	0.9823	0.9654						
25		0.9759	0.9847	0.9798	0.9928						
50		0.9821	0.9723	0.9806	0.9784						

Proportion S	urvived Detail					MD5: 72C8EA5E8B2F88229FC3E1CEC4F8C916
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	40223, 30213234, 80318
0	D	1.0000	1.0000	1.0000	0.9488	
0	BC	1.0000	0.9567	0.9803	1.0000	

0.9698

0.9920

6.25 0.9567 1.0000 0.9882 0.9961 12.5 0.9055 0.9291 0.8898 0.9094 25 1.0000 1.0000 0.9764 1.0000 50 1.0000 0.9961 1.0000 0.9094 73.5 0.9724 0.9488 1.0000 0.9882

0.9838

0.9627

73.5

Proportion Survived Detail

CETIS Summary Report

Report Date:

14 Dec-23 14:23 (p 3 of 3)

EcoAnalysts

Test Code/ID: P231108.01BC / 18-5572-0546

Bivalve Larval Surviva	and Development Test
------------------------	----------------------

Proportion	Normal	Rinomiala
rioportion	Normal	Binomiais

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	288/295	265/268	256/257	230/241	
0	BC	255/261	232/243	244/249	247/264	
6.25		241/243	261/265	242/251	250/253	
12.5		224/230	229/236	222/226	223/231	
25		283/290	257/261	243/248	277/279	
50		274/279	246/253	253/258	226/231	
73.5		243/247	232/241	257/265	249/251	

Proportion Survived Binomials

		IGIO				
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	254/254	254/254	254/254	241/254	
0	BC	254/254	243/254	249/254	254/254	
6.25		243/254	254/254	251/254	253/254	
12.5		230/254	236/254	226/254	231/254	
25		254/254	254/254	248/254	254/254	
50		254/254	253/254	254/254	231/254	
73.5		247/254	241/254	254/254	251/254	

Start Date:

End Date:

Report Date:

08 Dec-23 13:04 (p 1 of 1)

EcoAnalysts

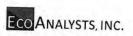
Test Code/ID:

P231108.01BC / 18-5572-0546

Bivalve	Larval	Survival	and	Development	Test
---------	--------	----------	-----	-------------	------

08 Nov-23 15:50

10 Nov-23 14:01 Sample Date: 08 Nov-23 01:15


Species: Mytilus galloprovincialis Protocol: EPA/600/R-95/136 (1995) Material: Treated Groundwater

Sample Code: P231108.01BC Sample Source: Jacobs Wyckoff

Sample Station: 110823

Conc-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Name of the last o
0	BC	1	19	254	261	261	255	Notes
0	BC	2	15	254	243	243	232	
0	BC	3	11	254	249	249	244	
0	BC	4	12	254	264	264	247	
0	D	1	20	254	295	295	288	
0	D	2	16	254	268	268	265	*
0	D	3	13	254	257	257	256	
0	D	4	3	254	241	241	230	
6.25		1	5	254	243	243	241	
6.25		2	24	254	265	265	261	
6.25		3	2	254	251	251	242	
6.25		4	27	254	253	253	250	
12.5		1	26	254	230	230	224	
12.5		2	25	254	236	236	229	
12.5		3	10	254	226	226	222	
12.5		4	23	254	231	231	223	
25		1	6	254	290	290	283	
25		2	21	254	261	261	257	
25		3	7	254	248	248	243	
25		4	28	254	279	279	277	
50		1	4	254	279	279	274	
50		2	1	254	253	253	246	
50		3	17	254	258	258	253	
50		4	9	254	231	231	226	
73.5	1	1	18	254	247	247	243	
73.5		2	8	254	241	241	232	
73.5		3	22	254	265	265	257	
73.5		4	14	254	251	251	249	

Version V.2

GENERAL

1 V.2	GENERAL
Client	Jacobs Wyckoff
Project	Wyckoff Eagle Harbor GWTP 2023/WA
Project Number	PG1799
Project Manager	M. Seibert
Date Sample Received	11/8/2023
Test type	48-Hour Chronic Toxicity Using Bivalve Larvae
Matrix	Liquid
Test Acceptability	≥90% normal shell development, ≥50% survival (mussels) or ≥70% survival (oysters), MSD <25%
Test Start Date	11/08/23
Test Species	Mytilus spp.
Organism Batch	TS110623
Organism Acquired	11/6/2023
Organism Acclimation	2
Organism Age	<4 hr old embryos
Test Protocol	TOX 042
Test Location	Incubator 1
Light Intensity	50-100 foot candles
Light Cycle	16L:8D
Water Description	0.45 um filtered seawater
Organisms per Replicate	150 - 300
Test Chamber Size	30 mL
Exposure Volume	10 mL
Test Dissolved Oxygen	>4.0
Test Temperature	16 ± 1
Test Salinity	30 ± 2
Test pH	8±1
_	

	Test Parameters		
		Min	Max
	DO	4.0	
Note: input lowest and highest decimal for temp	Temp	15	17
	Salinity	28	32
	рН	7	9

TEST START TIME/INIT: 1550 Mg
TEST END TIME/INIT: 1401 NC

CLIENT SAMPLE ID	LAB ID
110823	P231108.01

Salinity Adjustment CSMM Batch # NA

Formalin Lot # 220304-50

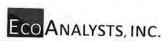
Rose Bangel Batch # 5135

(Concentrations
1	Control
2	BRINE Control
3	6.25%
4	12.5%
5	25%
6	50%
7	73.5%
8	

P 231108.01

Only red chara	acters and green	cells are chan	geable.			
			ORGANISM	CLIENT	CLIENT SAMPLE ID	DATE
			M.sp.	Jacobs-Wyckoff		11/8/23
Volume per Co	oncentration (ml	s) -	200			
Test Paramete	ers	ppt				
Salinity of Brine		112.00				
Salinity of Sample		0.50				
Test Salinity		30.00				
				Test Dilution Pr	eparation (List highe	st to lowest!)
Salinity Adjust	ment Multiplier =		0.36	Concentration	Amount of Adjusted	Amount of
		grams added		(%)	Sample (gms.)	Seawater (gms.
mls. Sample*	350.00	349.5		73.50	204.1	0.1
mls. Brine	125.91	136.5		50.00	138.9	65.4
				25.00	69.4	134.8
Adjust volume so C16>F19		486.02		12.50	34.7	169.5
Post Adjustme	nt Concentration	1 (%) =	73.54	6.25	17.4	186.9
					0.0	204.2
					464.49	
Brine Control	Preparation					
S	alinity Adjustme	nt	highest	Amount Brine	Amount DI	Amount Seawate
Sample Number/Name	Multiplier	Volume BC	concentration	(grams)	(grams)	(grams)
	0.36	200	73.5	56.2	141.5	6.6
Norksheet Pr	eparation Date	/ Initials				
11/8/2023	MS MS	IIIILIAIS				
The second second second second	ration Date / In	itials				
1/8/2023	MS					

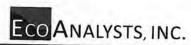
CLIENT	Jacobs Wyckoff	DATE RECEIVED	11/9/12	PROTOCOL	Section 1
DDOIECT		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	11/6/23	PROTOCOL	TOX 042
PROJECT	Wyckoff Eagle Harbor GWTP 2023/WA	TEST START DATE	11/8/23	PROJECT MANAGER	M. Seibert
CLIENT SAMPLE ID	110823	TEST END DATE	11/10/23	SPECIES	Mytilus spp.
LAB SAMPLE ID	P231108.01	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300


48-Hour Chronic Toxicity Using Bivalve Larvae

SPAWNING METHOD Heat Shock MALES 7 BEGIN FERTILIZATION 1348		INITIAL SPAWNING TIME 1250	FINAL SPAWNING TIME 1348 EGG CONDITION Good CONDITION OF EMBRYOS Good	
		SPERM VIABILITY Good		
		END FERTILIZATION 1550		

TIME OF INITIATION	INITIALS	-
15:50	MS	

EMBRYO DENSITY CALCULATIONS


# of embryos	of embryos in 1 mL of 100X diluted embryo stock ount 1 Count 2 Mean		tock # embryos in origi	inal stock = # of embryos in diluted stock x 100
Count 1			V 100 (200)	The state of the s
	275	238	256.5 25650	
CONTRACTOR OF				
ercentage o	of embryo stock ne	eded = 2700 e	nbryos per 1 mL/# embryos in original stock	
ercentage o	of embryo stock ne	eded = 2700 e	nbryos per 1 mL/# embryos in original stock	
ercentage o		eded = 2700 e	abryos per 1 mL/# embryos in original stock	
	0.11			
nL of egg sto	0.11 ock to add to FSW to	to achieve tot	volume = percentage of embro stock needed * 40 mL (or desired volume of embryo stock)
mL of egg sto	0.11 ock to add to FSW to	to achieve tot		or desired volume of embryo stock) k) with FSW = final embryo stock
mL of egg sto	0.11 ock to add to FSW to	to achieve tot	volume = percentage of embro stock needed * 40 mL (or desired volume of embryo stock) k) with FSW = final embryo stock

CLIENT	lacobe Minter		CALL OF		
A CONTRACTOR OF THE PARTY OF TH		DATE RECEIVED	11/8/23	PROTOCOL	TOX 042
PROJECT WWC Koff Eagle	e Harbor GWTP 2023/WA	TEST START DATE	11/8/23	PROJECT MANAGER	M. Seibert
CLIENT SAMPLE ID	110823	TEST END DATE	11/10/23	SPECIES	Mytilus spp.
LAB SAMPLE ID	P231108.01	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300

	4	8-Hour Chronic	Toxicity Using Bival	ve Larvae	
		DO (mg/L)	TEMP (°C)	SALINITY (ppt)	рН
	Concentration (%)	> 4.0	15 - 17	28 - 32	7-9
Day 0	Control	8.3	15.9	30	7.6
Stock	BRINE Control	8.2	16:1	31	7.9
Date 11/8/23	6.25%	8.3	16.1	30	7.8
Time 1450	12.5%	8.4		30	7.7
Tech)((25%	8.4	16.2	30	7.7
Meter# 7	50%	8.4	16.3	29	The second second
	73.5%	8.5	14.3	29	7.6
Day 1	Control		16.8	2	1.0
Surrogate	BRINE Control		16.8		
Date 11/09 /23	6.25%		26.8		
Time 1639	12.5%		26.8		
Tech 5 R	25%		16.8		
Meter # T16	50%		16.8		
	73.5%	7-7-	26.8		
Day 2	Control	7.9	16.3 0	31	8.3
Surrogate	BRINE Control	7.9	14.3 0	30	8.1
Date 11 10 23	6.25%	7.8	16.3 6		8.0
ime 1359	12.5%	7.8	16.3 O	30 30	8.0
ech NL	25%	7.9	16.3 0	30	8.0
Meter # 9 KW	50%	7.9	14.3 6	29	8.1
11.11	73.5%	7.9	16.3 0	29	08-18-2

OTemp blank used-NL11/10/23 Om. R.-NL11/10/23

CLIENT	Incohe Wheele off	DATE DECEMEN	20.11		
		DATE RECEIVED	11/8/23	PROTOCOL	TOX 042
PROJECT Wyckoff Eagle Harb	or GWTP 2023/WA	TEST START DATE	11/8/23	PROJECT MANAGER	M. Seibert
CLIENT SAMPLE ID	110823	TEST END DATE	11/10/23	The state of the s	Mytilus spp.
LAB SAMPLE ID	P231108.01	MATRIX		NO. OF ORGANISMS	150 - 300

	48-Hour	Chronic	Toxicity	Using	Bivalve	Larvae
--	---------	---------	-----------------	-------	----------------	--------

25%	3	257 247	7	12.7	NL N	
	1	283	8	1217	NL	
	3	222	4	127	NL	
12.5%	2	229		1217	NL	6 M A= 0/.
	1	250 224	3 6	12/7	NL	0A: 228 12/8 6 M A= 0/.
	3	242	9	1217	NL	
6.25%	2	261	4	11/26/23	46	
	1	241	2	11/26/23	4	
	4	247	17	11.16.23	MARLE	
BRINE Control	3	244	5	(1.16.23	MANLE	
	2	332	6	11.16.23	MANU	
	4	230	ļ!	11.16.23	MARU	
	3	256	1	11.16.23	MANH	QA: 257 128 A=07.
Control	2	265	3	1.16.23	Marie	
	1	288	7	11.16.23	Myns	
	6	253		116.23	MARLE	
	5	242		11.16.23	MARCH	
Stocking Density	4			Committee and the second second second	MARUS	
C	3	254		11.16.73	Mint	
	2	258		11.16.23	MANUE	X=2535
	1 REP	264	Abnormal	Date	Tech	Comments/QA Cour

CETIS Summary Report

Report Date:

14 Dec-23 13:48 (p 1 of 3)

							Test Co	ode/ID:	P23110	08.01SC / 0	0-7776-	3026
Bivalve Larva	al Survival and Devel	opment Test	11					1000000			coAnaly	_
Batch ID:	19-3718-7221	Test Type:	Development	-Survival			Anal	unt. I	Andre Callert		7.51.11.11.12	,010
Start Date:	08 Nov-23 15:50	Protocol:	EPA/600/R-9				Dilu	5.00	Marisa Seibert			
Ending Date:	10 Nov-23 14:01	Species:	Mytilus gallop				Brin		aboratory Sea			
Test Length:	46h	Taxon:	Bivalvia	or over to tall 5			Sour		Crystal Sea Ma Taylor Shellfish		Age:	
Sample ID:	06-0086-2324	Code:	P231108.01S	SC.				10-45				-140
Sample Date:	: 08 Nov-23 01:15	Material:	Treated Grou	177			Proje		Vyckoff Eagle		TP 2023	3/W
	: 08 Nov-23 12:20	CAS (PC):	ricated Grou	indivater			Sour	2.24	acobs Wyckof	T.		
Sample Age:		Client:	Jacobs Wyck	off			Stati	on:	10823			
Single Compa	arison Summary		4 12 17									_
Analysis ID	Endpoint	Comr	arison Metho	od.			P-Value	0				
10-1809-4788	Proportion Normal		Variance t Tw	1 4 1 1	nt	-			rison Result		-	S
	Proportion Survived		Variance t Tw				<1.0E-05		ntrol failed pro			1
	parison Summary	Lquai	variance t TW	o-Sample Te	SI.	_	0.1516	Salt Co	ntrol passed p	roportion su	irvived	1
Analysis ID	Endpoint	0	20002 44400									
	Proportion Normal		arison Metho			V	NOEL	LOEL	TOEL	PMSD	TU	S
	Proportion Survived		Dunnett Multiple Comparison Test Steel Many-One Rank Sum Test				100	>100		1.48%	1	1
7 1 1 1 1 1 1 1 1	4.000	Steel	Many-One Rar	nk Sum Test			100	>100		8.73%	1	1
Point Estimat	e Summary											
Analysis ID	Endpoint	Point	Estimate Met	hod		1	Level	%	95% LCL	95% UCL	TU	
01-8548-5736	Proportion Normal	Linear	Interpolation (ICPIN)		1		>100		30 /8 OCL	<1	1
						1		>100	444	_	<1	
						1	EC25	>100	(404)		<1	
						1		>100			<1	
							EC50	>100	150		<1	
21-2959-4880	Proportion Survived	Linear	Interpolation (ICPIN)		_	EC15	>100	(444)		<1	1
			T. 100 D. 0				EC20	>100			<1	
							EC25	>100		-	<1	
						1	EC40	>100	=		<1	
						1	EC50	>100	32		<1	
Test Acceptab	oility				TAC	Lie	mite					_
Analysis ID	Endpoint	Attribu	ute	Test Stat	Lower		Upper	Overlag	Decision			
	Proportion Normal	Contro	Resp	0.9819	0.9		<<	Yes	Passes Cr	iteria	_	_
	Proportion Normal	Contro	Resp	0.9819	0.9		<<	Yes	Passes Cr			
10-1809-4788	Proportion Normal	Contro	Resp	0.01994	0.9		<<	Yes	Below Crite			
	Proportion Normal	Contro	Resp	0.9819	0.9		<<	Yes	Passes Cr			
		Contro										
12-3806-8469	Proportion Survived	Contro	A. 1500000	0.9232	0.5		<<	Yes				
12-3806-8469	Proportion Survived Proportion Survived		Resp	10 10 10 10 W of 10 W	0.5 0.5		<< <<	Yes Yes	Passes Cr	iteria		
12-3806-8469 21-1756-9394	Proportion Survived	Contro	l Resp l Resp	0.9232				Yes Yes Yes		iteria iteria		

Report Date:

14 Dec-23 13:48 (p 2 of 3)

-	2.3.7		 		OULU
		_			
			 0.4	200	hair a To

						Test Co	ode/ID:	P231108.01SC / 00-7776-302			
Bivalve Larval Survival and Development Test										Ed	oAnalysts
Proportion No	rmal Summa	ry									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	D	4	0.9819	0.9734	0.9904	0.9767	0.9887	0.0027	0.0053	0.54%	0.00%
0	SC	4	0.0199	-0.0135	0.0534	0.0084	0.0514	0.0105	0.0210	105.43%	97.97%
6.25		4	0.9811	0.9708	0.9914	0.9721	0.9871	0.0032	0.0065	0.66%	0.09%
12.5		4	0.9727	0.9608	0.9847	0.9662	0.9832	0.0038	0.0075	0.77%	0.94%
25		4	0.9756	0.9696	0.9816	0.9715	0.9805	0.0019	0.0037	0.38%	0.65%
50		4	0.9698	0.9431	0.9964	0.9509	0.9916	0.0084	0.0168	1.73%	1.24%
73.5		4	0.9804	0.9722	0.9885	0.9770	0.9879	0.0026	0.0051	0.52%	
100		4	0.9815	0.9751	0.9880	0.9766	0.9857	0.0020	0.0031	0.42%	0.16%
Proportion Sur	rvived Summ	ary								777,50-25	0.0170
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	D	4	0.9715	0.9142	1.0290	0.9252	1.0000	0.0180	0.0360	3.71%	
0	SC	4	0.9232	0.8197	1.0270	0.8425	1.0000	0.0325	0.0651		0.00%
6.25		4	0.9734	0.9093	1.0380	0.9134	1.0000	0.0202	0.0403	7.05%	4.96%
12.5		4	0.9843	0.9341	1.0340	0.9370	1.0000	0.0158	0.0403	4.14%	-0.20%
25		4	0.9478	0.8131	1.0830	0.8228	1.0000	0.0423	0.0315	3.20%	-1.32%
50		4	0.9843	0.9341	1.0340	0.9370	1.0000	0.0423		8.93%	2.43%
73.5		4	0.9823	0.9482	1.0160	0.9567	1.0000	0.0107	0.0315	3.20%	-1.32%
100		4	0.9911	0.9747	1.0080	0.9803	1.0000	0.0052	0.0214	2.18% 1.04%	-1.11% -2.03%
Proportion Nor	mal Detail								F516365AB		
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		IVIDS	. 2000468	F5 10305AB	99085434AI	-FD/42E
0	D	0.9787	0.9887	0.9767	0.9836			_			
0	SC	0.0514	0.0113	0.0086	0.0084						
6.25		0.9810	0.9841	0.9721							
12.5		0.9685			0.9871						
25			0.9832	0.9731	0.9662						
50		0.9715	0.9761	0.9805	0.9743						
		0.9916	0.9700	0.9509	0.9665						
73.5		0.9772	0.9794	0.9770	0.9879						
100		0.9839	0.9800	0.9857	0.9766						
Proportion Sur	vived Detail						MD5:	F51E3D9	FBFEE11B5	D88909B3F	4965444
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		200	2000			
)	D	0.9252	1.0000	1.0000	0.9606						
0	SC	0.8425	1.0000	0.9134	0.9370						
5.25		1.0000	0.9921	0.9882	0.9134						
12.5		1.0000	0.9370								
		1.0000	0.8370	1.0000	1.0000						

25

50

73.5

100

0.9685

0.9370

1.0000

0.9803

0.8228

1.0000

0.9567

0.9843

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

0.9724

1.0000

CETIS Summary Report

Report Date: Test Code/ID:

14 Dec-23 13:48 (p 3 of 3) P231108.01SC / 00-7776-3026

Bivalve Larval Survival and Development Test

EcoAnalysts

. roportion it	ormal Binomia	15				
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	230/235	262/265	252/258	240/244	
0	SC	11/214	3/265	2/232	2/238	
6.25		258/263	248/252	244/251	229/232	
12.5		277/286	234/238	253/260	257/266	
25		239/246	204/209	251/256	265/272	
50		236/238	259/267	252/265	260/269	
73.5		257/263	238/243	255/261	244/247	
100		245/249	245/250	275/279	250/256	

Proportion Survived	Binomials
---------------------	-----------

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	235/254	254/254	254/254	244/254	
0	sc	214/254	254/254	232/254	238/254	
6.25		254/254	252/254	251/254	232/254	
12.5		254/254	238/254	254/254	254/254	
25		246/254	209/254	254/254	254/254	
50		238/254	254/254	254/254	254/254	
73.5		254/254	243/254	254/254	247/254	
100		249/254	250/254	254/254	254/254	

Report Date:

14 Dec-23 13:50 (p 1 of 1)

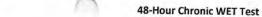
EcoAnalysts

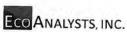
Test Code/ID:

Bivalve Larval Survival and Development Test

P231108.01SC / 00-7776-3026

Start Date: End Date:


08 Nov-23 15:50 10 Nov-23 14:01 Species: Mytilus galloprovincialis Protocol: EPA/600/R-95/136 (1995)


Sample Code: P231108.01SC Sample Source: Jacobs Wyckoff

Sample Date: 08 Nov-23 01:15 Material: Treated Groundwater

Sample Station: 110823

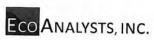
Conc-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	News
0	D	1	1	254	235	235	230	Notes
0	D	2	26	254	265	265	262	
0	D	3	21	254	258	258	252	
0	D	4	5	254	244	244	240	
0	SC	1	18	254	214	214	11	
0	SC	2	32	254	265	265	3	
0	SC	3	17	254	232	232	2	
0	SC	4	28	254	238	238	2	
6.25		1	8	254	263	263	258	
6.25		2	27	254	252	252	248	
6.25		3	14	254	251	251	244	
6.25		4	29	254	232	232	229	
12.5		1	19	254	286	286	277	
12.5		2	30	254	238	238	234	
12.5		3	23	254	260	260	253	
12.5		4	9	254	266	266	257	
25		1	20	254	246	246	239	
25		2	6	254	209	209	204	
25		3	7	254	256	256	251	
25		4	11	254	272	272	265	
50		1	24	254	238	238	236	
50		2	12	254	267	267	259	
50		3	13	254	265	265	252	
50		4	2	254	269	269	260	
73.5		1	10	254	263	263	257	
73.5		2	4	254	243	243	238	
73.5		3	25	254	261	261	255	
73.5		4	16	254	247	247	244	
100		1	15	254	249	249	245	
100		2	22	254	250	250	245	
100		3	3	254	279	279	275	
100		4	31	254	256	256	250	

GENERAL

Version V.2	GENERAL
Client	Jacobs Wyckoff
Project	Wyckoff Eagle Harbor GWTP 2023/WA
Project Number	PG1799
Project Manager	M. Seibert
Date Sample Received	11/8/2023
Test type	48-Hour Chronic Toxicity Using Bivalve Larvae
Matrix	Liquid
Test Acceptability	≥90% normal shell development, ≥50% survival (mussels) or ≥70% survival (oysters), MSD <25%
Test Start Date	11/08/23
Test Species	Mytilus spp.
Organism Batch	TS110623
Organism Acquired	11/6/2023
Organism Acclimation	2
Organism Age	<4 hr old embryos
Test Protocol	TOX 042
Test Location	Incubator 1
Light Intensity	50-100 foot candles
Light Cycle	16L:8D
Water Description	0.45 um filtered seawater
Organisms per Replicate	150 - 300
Test Chamber Size	30 mL
Exposure Volume	10 mL
Test Dissolved Oxygen	>4.0
Test Temperature	16±1
Test Salinity	30 ± 2
Test pH	8±1

Test Parameters Min Max DO 4.0 Note: input lowest and highest Temp 15 17 decimal for temp Salinity 28 32 pH 7 9

> TEST START TIME/INIT: TEST END TIME/INIT:


CLIENT SAMPLE ID	LAB ID		
110823	P231108.01		

Salinity Adjustment CSMM Batch # 62123

Formalin Lot # 220304-50

Rose Bangel Batch # 5135

(Concentrations
1	Control
2	SALT Control
3	6.25%
4	12.5%
5	25%
6	50%
7	73.5%
8	100%
9	

CLIENT	Jacobs Wyckoff	DATE RECEIVED	11/8/23	PROTOCOL	TOX 042
PROJECT	Wyckoff Eagle Harbor GWTP 2023/WA	TEST START DATE	11/8/23	PROJECT MANAGER	M. Seibert
CLIENT SAMPLE	ID 110823	TEST END DATE	11/10/23	SPECIES	Mytilus spp.
LAB SAMPLE ID	P231108.01	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300

	48-Hour Chronic Toxicity Using Bivalve Larvae									
Day of Test	Concentration	Vol. Effluent Sample		Diluent Type	FSW					
	0%	0	200.0	200						
	SALT Control	#VALUE!	#VALUE!	200						
	6.25%	12.5	187.5	200						
0	12.5%	25	175.0	200						
	25%	50	150.0	200						
	50%	100	100.0	200						
	73.5%	147	53.0	200						
	100%	200	0.0	200						

st Dilution P				
Date	Balance ID	Sample ID (P#)	Water Batch ID	Initials
1/8/23	#7	P231108.01	FSW110873.01	NQ

CLIENT	Jacobs Wyckoff	DATE RECEIVED	11/8/23	PROTOCOL	TOX 042
PROJECT	Wyckoff Eagle Harbor GWTP 2023/WA	TEST START DATE	11/8/23	PROJECT MANAGER	M. Seibert
CLIENT SAMPLE ID	110823	TEST END DATE	11/10/23	SPECIES	Mytilus spp.
LAB SAMPLE ID	P231108.01	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300

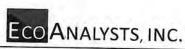
48-Hour Chronic Toxicity Using Bivalve Larvae

SPAWNING METHOD Heat Shock		INITIAL SPAWNING TIME 1250	FINAL SPAWNING TIME 1348		
MALES 7	FEMALES 4	SPERM VIABILITY Good	EGG CONDITION Good		
BEGIN FERTILIZATION 1348		END FERTILIZATION 1550	CONDITION OF EMBRYOS Good		

TIME OF INITIATION	INITIALS	
15:50	MS	

EMBRYO DENSITY CALCULATIONS

of embryos in 1 mL of 100X diluted embryo stock		embryo stock	# embryos in original stock = # of embryos in diluted stock x 100
Count 1	Count 2	Mean	
	275 238	256.5	25650
rcentage o	f embryo stock needed	= 2700 embryos per 1 mL/# embr	ryos in original stock
	fembryo stock needed	= 2700 embryos per 1 mL/# emb	ryos in original stock
		= 2700 embryos per 1 mL/# emb	ryos in original stock
	0.11		
L of egg sto	0.11	eve total volume = percentage o	of embro stock needed * 40 mL (or desired volume of embryo stock)
nL of egg sto	0.11	eve total volume = percentage o	of embro stock needed * 40 mL (or desired volume of embryo stock)
L of egg sto	0.11	eve total volume = percentage o	

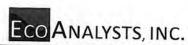

.2 CLIENT		Jacobs Wyckoff	DATE RECEIVED	11/8/22	PROTOCOL	TOV 040
2201202			CALLED AND AND AND AND AND AND AND AND AND AN	11/0/23	PROTOCOL	TOX 042
PROJECT	Wyckoff Eagle	Harbor GWTP 2023/WA	TEST START DATE	11/8/23	PROJECT MANAGER	M. Seibert
CLIENT SAI	MPLE ID	110823	TEST END DATE	11/10/23	SPECIES	Mytilus spp.
LAB SAMPLE ID P231108.01		MATRIX	Liquid	NO. OF ORGANISMS	150 - 300	

		O Have Chart		·	150
	4		Toxicity Using Biva		
	Concentration (%)	DO (mg/L)	TEMP (°C)	SALINITY (ppt)	pH
Day 0	Control	8.3	15 - 17	28 - 32	7-9
Stock			16:7	30	7.8
	SALT Control	8.2	16.8	36	8.2
Date 11/8/23 Time 1458	6.25%	8.2	16.8	31	7.9
Time 1450	12.5%	8.3	16.7	31	7.8
Tech MS	25%	8.4	16.5	31	7.8
Meter# 7	50%	8.5	16.3	31 31 31	77
	73.5%	8.6	16.3	31	77
	100%	8.7	15.6	31 31	7.7
Day 1	Control		16.8		
Surrogate	SALT Control		26.8		
Date 11/09/23	6.25%		26.8		
Time 1639	12.5%		26.8		
Tech SR	25%		16.8		
Meter # 40 F16	50%		16.8		
	73.5%		16.8		
	100%		16.8		
Day 2	Control	8.0	16.3 @	31	79
Surrogate	SALT Control	79	16.3 0	30	7.9
Date 11 110/23	6.25%	7.9		31	79
Time 1354	12.5%	79	16.3	30	79
Tech NL	25%	19	16.3 (b) 16.3 (c)	30 30	8.0
Meter# on Mu	50%	79	16.3	20	8.1
1,1,14	73.5%	7.8	16.3 (2)	30 31	8.2
			1		

@ IE-SR 12/09/23

100%

@ Temp blank used-NL11/10/23



CLIENT	lanch - Mr. J. CC	Te			
Garage Contract Contr		DATE RECEIVED	11/8/23	PROTOCOL	TOX 042
	larbor GWTP 2023/WA	TEST START DATE	11/8/23	PROJECT MANAGER	M. Seibert
CLIENT SAMPLE ID	110823	TEST END DATE	11/10/23	The second of th	Mytilus spp.
LAB SAMPLE ID	P231108.01	MATRIX		NO. OF ORGANISMS	150 - 300

48-Hour Chronic Toxicity Using	Bivalve	Larvae
--------------------------------	---------	--------

Concentration (%)	REP	Normal	Abnormal	Date	Tech	Comments/QA Counts
Stocking Density	1	264		11.16.23	Mary	X = 253.5
	2	258		11.16.23	MANU	X - 63 2.3
	3	254		11.16.23	MANU	
Stocking Density	4	250		11.16.23	MARY	
	5	242		11.16.23	MARH	
	6	253		11.16.23	MARGE	
	1	230	5	11.16.23	Nisnes	
Control	2	262	3	11.16.23	Mary	QA: 262 D= 0/. 12/8
Control	3	252	.6	11.16.23	Marie	3 = 1. 10
	4	240	4	11.16.23	Mark	
	1	0220 11	5-203	41.16.23	MANU	
SALT Control	2	3	262	11-16.23	MAN	
or all control	3	2	230	11-16-23	jugali	
	4	2	236	11.16-23	MARU	
	1	258744W	570	12/8/23	mæ	
6.25%	2	240	4	129/23	TM	QA: 242 1=01. 12/8
	3	249	7	12/8/23	DM	
	4	209	3	12/9/23	TAM	
	1	199	Ø	12/8/23	DIM	TIVE STATE
12.5%	2	234	4	12/8/23	DM	
	3	253	7	12/0/23	MK	
	4	757	9	12/9/13	TOM	
	1	239	7	12/00/23	DM	
25%	2	209	5	12/9/23	DM	
	3	251	5	12/8/23	DM	
	4	V65	7	12973	DIM	
	1	220236	2	1219123	NL	
50%	2	259	8	1219123	NL	
	3	152	13	1219123	NL	
	4	260	9	1219123	NL	

DIE-NL1219/23

CLIENT	Jacobs Wyckoff	DATE RECEIVED	11/0/22	DDOTOCOL	2200000
DROJECT IN 1 CC - 1			11/6/23	PROTOCOL	TOX 042
PROJECT Wyckoff Eagle Hart	oor GWTP 2023/WA	TEST START DATE	11/8/23	PROJECT MANAGER	M. Seibert
CLIENT SAMPLE ID	110823	TEST END DATE	11/10/23		Mytilus spp.
LAB SAMPLE ID	P231108.01	MATRIX		NO. OF ORGANISMS	150 - 300

48-Hour Chronic Toxicity Using Bivalve Larvae

Concentration (%)	REP	Normal 257	Abnormal	Date	Tech	Comments/QA Counts
	1	245	6	1219	NIL	
73.5%	2	238	5	1219	NL	
73.570	3	255	6	17.19	NI.	
	4	244	3	12.10	NI	
	1	245	4	11.16.23	Maria	QA: 249 A=0/, 12/1
100%	2	245	5	11.16.23	MALL	
1	3	275	4	11.16.23	MALL	
	4	250	6	11.16.23	Ment	

Owe 11.16.23 more

Report Date:

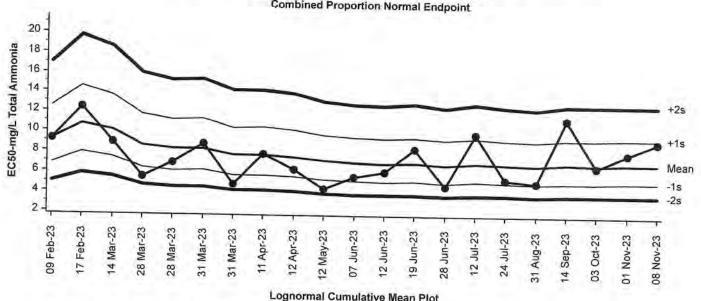
15 Dec-23 11:26 (1 of 1)

All Matching Labs

Bivalve Larval Survival and Development Test

Test Type: Development-Survival

Total Ammonia


Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis Endpoint: Combined Proportion Normal

Material: Source:

Reference Toxicant-REF

Bivalve Larval Survival and Development Test Combined Proportion Normal Endpoint

Lognormal Cumulative Mean Plot

Mean: Sigma:

7.008 NA

Count: 20 CV: 31.20% -1s Warning Limit: 5.17 +1s Warning Limit: 9.5

-2s Action Limit: 3.81 +2s Action Limit: 12.9

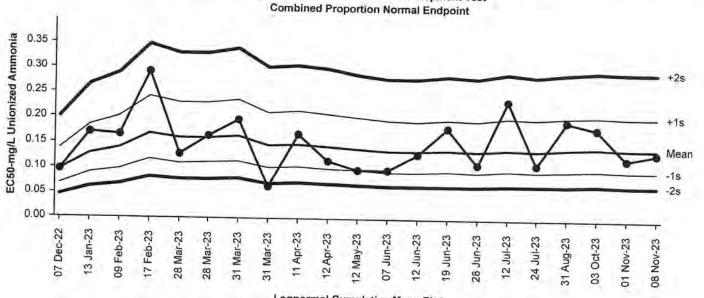
Quali	y Con	trol Data	а									
	13757	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2023	Feb	9	15:28	9.246	2.239	0.9101			00-8572-7368	10-5325-0783	Secretary at the second
2			17	14:30	12.4	5.39	1.873	(+)			06-7296-3936	
3		Mar	14	15:15		1.948	0.8051	9.7			21-3408-3763	
4			28	15:46	5.455	-1.553	-0.8223				16-3797-4494	
5			28	15:47	6.941	-0.06703	-0.03155			01-6969-0938	06-4639-7696	EcoAnalysis
5			31	16:52	8.774	1.766	0.738			21-2826-5425	10-8042-3972	EcoAnalysis
7			31	16:54	4.818	-2.19	-1.23	(-)		13-8989-7877	05-5295-3514	EcoAnalysis
В		Apr	11	16:37	7.809	0.8016	0.3556	1.			15-2064-5147	
9			12	15:13	6.298	-0.7092	-0.3503			21-2394-6995	12-4981-2785	FcoAnalysts
10		May	12	15:35	4.42	-2.588	-1.513	(-)			05-0285-3181	
11		Jun	7	16:24	5.621	-1.386	-0.7237	470		16-8311-5218	04-7873-2197	EcoAnalysis
12			12	18:29	6.154	-0.8536	-0.4265			19-7480-8941	04-9719-6422	EcoAnalysis
13			19	16:20	8.423	1.415	0.6039			16-3224-4662	15-6769-3694	EcoAnalysis
4			28	15:18	4.725	-2.283	-1.294	(-)		10-1014-4768	17-1187-2841	EcoAnalysis
15		Jul	12	12:57	9.89	2.883	1.131	(+)		02-0009-8192	04-6529-8407	EcoAnalysts
16			24	17:06	5.374	-1.634	-0.8714	1.4		05-3985-4386		
17		Aug	31	16:54	5.053	-1.955	-1.074	(-)		16-1472-3265		
8		Sep	14	13:50	11.43	4.421	1.606	(+)		10-9810-7803	01-3503-3195	EcoAnalysis
9		Oct	3	17:04	6.706	-0.3011	-0.1442	3.7		15-2407-3570	09-1135-7427	EcoAnalysis
0		Nov	1	17:40	8.055	1.047	0.4572			08-2875-4322	08-8063 5300	EcoAnalysis
21			8	15:55	9.251	2.244	0.9119			13-4824-7359	00-4887-4658	EcoAnalysts

Report Date:

15 Dec-23 11:31 (1 of 1)

Bivalve Larval Survival and Development Test

All Matching Labs


Test Type: Development-Survival

Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis Endpoint: Combined Proportion Normal

Unionized Ammonia Material: Source: Reference Toxicant-REF

Bivalve Larval Survival and Development Test

Lognormal Cumulative Mean Plot

Mean: Sigma:

0.1418 NA

Count: 20 CV: 37.50% -1s Warning Limit: 0.0987

+1s Warning Limit: 0.204

-2s Action Limit: 0.0687 +2s Action Limit: 0.293

Quality Control Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2022	Dec	7	17:43	0.09634	-0.04551	-1.066	(-)			15-5237-0673	
2	2023	Jan	13	15:30	0.1703	0.02847	0.5039	,,,		14-6111-3359	19-5184-9524	EcoAnalysts
3		Feb	9	15:28	0.1664	0.02451	0.4391			11-1705 0064	00 0000 0000	EcoAnalysis
4			17	14:30	0.2912	0.1494	1.982	(+)		05 9051 1741	00-9866-2896	EcoAnalysts
5		Mar	28	15:46	0.1275	-0.01438		1.5			00-4535-0428	
6			28	15:47	0.1637	0.02182	0.3942				10-2993-2407	
7			31	16:52	0.1949	0.05305	0.8752			14 2227 4000	12-4289-2851	EcoAnalysts
8			31		0.06349	-0.07836	-2.214	- 10	7.1	04 2002 2005	13-8011-4764	EcoAnalysts
9		Apr	11	16:37	0.1673	0.0255	0.4553	(-)	(-)	01-2022-2925	11-3364-1842	EcoAnalysts
10			12	15:13	0.1148	-0.02705	-0.5829			10-1124-34/4	18-0348-0749	EcoAnalysts
11		May	12	15:35	0.09858	-0.04326	-1.002	7.1			07-7214-9910	
12		Jun	7		0.0976	-0.04424	-1.03	(-)			03-4589-6060	
13		7.60	12	18:29	0.1293	-0.01252	-0.2546	(-)		18-8939-1974	09-3314-9652	EcoAnalysts
14			19	16:20	0.182	0.04011					16-9381-4730	
15			28		0.1088	-0.033	0.686			21-4361-0458	04-8703-0787	EcoAnalysts
16		Jul	12	200	0.2364		-0.7294	2-2			06-2488-5585	
17			24		0.1104	0.09451	1.407	(+)		13-3479-3905	05-2583-6446	EcoAnalysts
18		Aug	31		E-110-1	-0.03146	-0.6907			08-8951-5421	04-1308-9826	EcoAnalysts
19		Oct	3		0.1956	0.05375	0.8851			07-4158-0358	11-0996-2376	EcoAnalysts
20			4		0.182	0.04014	0.6865			19-5530-4547	06-1309-3566	EcoAnalysts
21		Nov	1		0.1213	-0.0205	-0.43			06-2464-1457	05-4038-7195	EcoAnalysts
21			8	15:55	0.1338	-0.00809	-0.1617			13-8700-3666	02-0586-1811	EcoAnalysts

CETIS Summary Report

Report Date: Test Code/ID: 15 Dec-23 11:26 (p 1 of 1)

n/ Land	44-04-12	-						Test	t Code/ID	:	/P2	20819.87 / 1	3-4824-735
7.7.7.7.	al Survival and	Develo	pment Test										coAnalysts
Batch ID: Start Date: Ending Date: Test Length:	15-1536-2742 08 Nov-23 15: 10 Nov-23 14:0 46h		Test Type: Protocol: Species: Taxon:	Development EPA/600/R-9 Mytilus gallop Bivalvia	5/136 (1995)	0		D B	nalyst: iluent; rine: ource;	Lat	risa Seibert oratory Se zen Seawa vlor Shellfisi	awater ter	Age:
Sample ID: Sample Date: Receipt Date: Sample Age:	19 Aug-22		Code: Material: CAS (PC): Client:	P220819.87 Total Ammon	ia			S	roject: ource: ation:	Ref	erence Tox erence Tox 20819.87	icant	Age.
Multiple Comp	parison Summ	ary				-	-						
Analysis ID	Endpoint		Comp	arison Metho	d		1	NOEL	1.05			26550	
03-5328-5509	Combined Prop	ortion N	lorma Dunne	ett Multiple Con	nparison Tes	t t	V	<1.88	1.88	-	TOEL	PMSD	S
Point Estimate			10000000			,	-	1.00	1.00	-	-	5.07%	
Analysis ID	Endpoint		Point	Estimate Meth	204								
	Combined Prop	ortion N	lorma Linear	Internalation /	ICDIAI\		✓	Level	mg/L		95% LCL		S
		-150-01 13	omia Emea	interpolation (ICPIN)			EC15	3.133		0.5603	4.826	1
								EC20	4.711		3.135	9.173	
								EC25	6.891		4.003	8.494	
								EC40	8.526		7.943	9.002	
Test Acceptab	ilitu						_	EC50	9.251		8.777	9.699	
							C Li	mits					
	Endpoint	-W-T /V	Attribu	ıte	Test Stat	Lower		Upper	Overl	ар	Decision		
03-5328-5509					0.05066	<<		0.25	No		Passes C	riteria	
Combined Pro	portion Norma	Summ	ary										
Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min		Max	Std E	rr	Std Dev	CV%	%Effect
0	D	4	0.9370	0.8800	0.9940	0.8898		0.9764	0.0179	_	0.0358	3.82%	0.00%
1.88		4	0.7864	0.7373	0.8356	0.7559		0.8150	0.015		0.0309	3.93%	16.07%
2.88		4	0.8248	0.7735	0.8761	0.7992		0.8661	0.0161		0.0322	3.91%	11.97%
7.62		4	0.6900	0.5719	0.8080	0.5866		0.7598	0.0371		0.0742	10.75%	26.37%
12.3		4	0.1358	0.0851	0.1866	0.0945		0.1693	0.0160		0.0319	23.49%	85.50%
24.9		4	0,0020	-0.0016	0.0056	0.0000		0.0039	0.0011		0.0023	115.47%	99.79%
Combined Prop	portion Normal	Detail						ME	05: 251D	FF7	2814FD61	9D88CABF	
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4						,	00000 (D) (DUZDEGO
0	D	0.9449	0.8898	0.9764	0.9370								
1.88		0.7559		0.8150	0.7638								
2.88		0.8346		0.7992	0.7992								
7.62		0.5866	0.7205	0.6929	0.7598								
12.3		0.1496		0.0945									
24.9		0.0039	0,000,000	0.0000	0.1299								
Combined Prop	ortion Normal	Binomi	als	- W WY			-			-	_		
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4								
)	D	240/25			238/254		-	_		_			
1.88		192/25			194/254								
2.88		212/25			203/254								
7.62		149/25											
2.3		38/254	43/254		193/254								
4.9		1/254		24/254	33/254								
		11204	1/254	0/254	0/254								

CETIS Summary Report

Report Date:

15 Dec-23 11:31 (p 1 of 1)

	776-710 IV							Test	Code/ID:	P22081	9.87UIA / 1	3-8700-366
Bivalve Larva	al Survival and	Develop	ment Test								E	coAnalyst
Batch ID: Start Date: Ending Date: Test Length:	15-1536-2742 08 Nov-23 15:5 10 Nov-23 14:0 46h	55 /	Test Type: Protocol: Species: Taxon:	Development- EPA/600/R-99 Mytilus gallop Bivalvia	5/136 (1995)			Dil. Bri	uent: L ne; F	Marisa Seibert Laboratory Sea Frozen Seawat Faylor Shellfish	water er	Age:
Sample ID:	20-9028-6493	- (Code:	P220819.87U	IA			Dro	ject: F	Deference Tail	.00.	-
Sample Date:		1	Material:	Unionized Am					7.7-1-1	Reference Toxi Reference Toxi		
Receipt Date:		(CAS (PC):		11(4)04					220819.87UIA	2,12,0,12	
Sample Age:	446d 16h	(Client:	Internal Lab						220010.07017		
Multiple Com	parison Summa	ary										_
Analysis ID	Endpoint		Comp	arison Metho	d		1	NOEL	LOEL	TOEL	PMSD	
10-1992-8396	Combined Prop	ortion No	rma Dunne	tt Multiple Con	nparison Tes	t		<0.027	0.027		5.07%	
Point Estimat	te Summary								-11.35		702-105	
Analysis ID	Endpoint		Point	Estimate Meth	hod		1	Level		050/ 1 01		
02-0586-1811	Combined Prop	ortion No	rma Linear	Interpolation (CPIN)	_	-	EC15	mg/L 0.0462	95% LCL		
				, and parametry (O. 111)			EC20	0.0462		0.07358	
								EC25	0.1013		0.1299	
								EC40	0.1232	1007.5000	0.1303	
								EC50	0.1338	0.1256	0.1398	
Test Acceptab	oility					TAC		mits			90.959	
Analysis ID	Endpoint		Attribu	ite	Test Stat	Lower	LI	Upper	Overla	p Decision		
10-1992-8396	Combined Prop	ortion No	rma PMSD		0.05066	<<	1	0.25	No	Passes Cr	iteria	
Combined Pro	portion Norma	l Summa	irv		130.00			-0		1 40000 01	iteria	
Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min		Max	Std Err	Dad Da	01/0/	
0	D	4	0.9370		0.9940	0.8898	-	0.9764	0.0179	0.0358	CV%	%Effect
0.027		4	0.7864		0.8356	0.7559		0.8150	0.0175	0.0309	3.82%	0.00%
0.041		4	0.8248	0.7735	0.8761	0.7992		0.8661	0.0161	0.0322	3.91%	16.07% 11.97%
0.109		4	0.6900	0.5719	0.8080	0.5866		0.7598	0.0371	0.0742	10.75%	26.37%
0.172		4	0.1358	0.0851	0.1866	0.0945		0.1693	0.0160	0.0319	23.49%	85.50%
0.335		4	0.0020	-0.0016	0.0056	0.0000		0.0039	0.0011	0.0023	115.47%	99.79%
Combined Pro	portion Normal	Detail						MD	5: A72E8	E08A2FF7E4E	A79060426	
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4					-5-2/2/4/19/9	, ,, 0000 120	1001 47 (4L
0	D	0.9449	0.8898	0.9764	0.9370							
0.027		0.7559	0.8110	0.8150	0.7638							
0.041		0.8346	0.8661	0.7992	0.7992							
0.109		0.5866	0.7205	0.6929	0.7598							
0.172		0.1496	0.1693	0.0945	0.1299							
0.335		0.0039	0.0039	0.0000	0.0000							
Combined Pro	portion Normal	Binomia	ıls									
	Code	Rep 1	Rep 2	Rep 3	Rep 4							
Conc-mg/L		-07			3.417		_					
	D	240/254	226/254	248/254	238/254							
)	D	240/254 192/254			238/254							
0.027	D	192/254	206/254	207/254	194/254							
)).027).041	D	192/254 212/254	206/254 220/254	207/254 203/254	194/254 203/254							
Conc-mg/L 0.027 0.041 0.109 0.172	D	192/254	206/254 220/254	207/254 203/254	194/254							

Report Date: Test Code/ID:

15 Dec-23 11:25 (p 1 of 1) P220819.87 / 13-4824-7359

EcoAnalysts

Bivalve Larval Survival and Development Test Start Date: 08 Nov-23 15:55

Species: Mytilus galloprovincialis Sample Code: P220819.87 End Date: 10 Nov-23 14:00 Protocol: EPA/600/R-95/136 (1995) Sample Source: Reference Toxicant Sample Date: 19 Aug-22 Material: Total Ammonia Sample Station: P220819.87

Conc-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted		# Normal		Notes
0	D	1	18	254	242	242	/	240	1	Notes
0	D	2	6	254	229	229	1	226	/	
0	D	3	16	254	256	256	1	248	1	
0	D	4	22	254	245	245	/	238	/	
√ 1.88		1	9	254	231	231	1	192	/	
1.88	1	2	3	254	247	247	/	206	/	
1.88		3	5	254	252	252	/	207	1	
1.88		4	7	254	242	242	/	194	1	
2.88	1	1	19	254	257	257	/	212	1	
2.88		2	8	254	257	257	1	220	1	
2.88		3	4	254	247	247	1	203	1	
2.88		4	23	254	247	247	1	203	/	
7.62		1	17	254	204	204	/	149	/	
7.62		2	10	254	258	258	/	183	/	
7.62		3	20	254	248	248	/	176	/	
7.62		4	1	254	271	271	-	193	1	
/12.3		1	11	254	251	251	1	38	1	
12.3		2	21	254	239	239	1	43	/	
12.3		3	13	254	202	202	/	24	/	
12.3		4	2	254	256	256	1	33	1	
/24.9		1	14	254	267	267	/	1	1	
24.9		2	12	254	227	227	/	1	/	
24.9	- 1	3	24	254	250	250	1	0	/	
24.9		4	15	254	255	255	/	0	/	

Start Date:

End Date:

Sample Date: 19 Aug-22

Report Date:

15 Dec-23 11:31 (p 1 of 1)

EcoAnalysts

Test Code/ID:

P220819.87UIA / 13-8700-3666

Bivalve Larval Survival and Development Test

08 Nov-23 15:55 Species: Mytilus galloprovincialis 10 Nov-23 14:00 Protocol: EPA/600/R-95/136 (1995)

Material: Unionized Ammonia

Sample Code: P220819.87UIA

Sample Source: Reference Toxicant Sample Station: P220819.87UIA

		3		22-127-1401-163	nonized Ammonia		Sample Station: P220	819.87UIA
Conc-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	D	1	24	254	242	242	240	Notes
0	D	2	18	254	229	229	226	
0	D	3	4	254	256	256	248	
0	D	4	11	254	245	245	238	
0.027		1	21	254	231	231	192	
0.027		2	15	254	247	247	206	
0.027		3	7	254	252	252	207	
0.027		4	20	254	242	242	194	
0.041		1	22	254	257	257	212	
0.041		2	19	254	257	257	220	
0.041		3	23	254	247	247	203	
0.041		4	14	254	247	247	203	
0.109		1	3	254	204	204	149	
0.109		2	16	254	258	258	183	
0.109		3	1	254	248	248	176	
0.109		4	8	254	271	271	193	
0.172		1	6	254	251	251	38	
0.172		2	5	254	239	239	43	
0.172		3	17	254	202	202	24	
0.172		4	10	254	256	256	33	
0.335		1	9	254	267	267	1	
0.335	1	2	2	254	227	227	1	
0.335		3	13	254	250	250	0	
0.335		4	12	254	255	255	0	

Un-ionized Ammonia Calculator

CLIENT:	Jacobs Wyckoff	Date of Test:	November 9, 2022
PROJECT:	Wyckoff Eagle Harbor GWTP 2023/WA	Test Type:	November 8, 2023
	P220819.87	rest type.	Mytilus galloprovinvialis

To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

	Sample	Mod	NH3T (mg/L)	salinity (ppt)	pН	temp (C)	temp (K)	pKa ^s	NH ₃ U (mg/L
tout a second at a	Target / Sample Name		Actual	Actual	Actual	Actual	Calculated	Calculated	Calculated
lonic strength:pKa ^s	Example 3.5		2,000	10.0	7.5	5.0	278.15	9.2520	0.008
							10.1		
2 9.27 2 3 9.28 3			1.88	31	7.7	/ 16.1 /	289.25	9.2561	0.027
			2.88	31 /	7.7	16.0	289.15	9.2561	0.041
4 9.29 4 5 9.30 5			7.62	31	7.7	16.1	289.25	9.2561	0.109
6 9.32 6			12.3	31	7.7	15.8	288.95	9.2561	0.172
7 9.33 7			24.9	31	7.7 0	15.3	288,45	9.2561	0.335
8 9.34 8						1			
9									
720									
935 935 935									
9304									
930									
928				-					
925									
1 2 3 4 5 5 7 8		-							
$y = 0.0003x^2 + 0.0091x + 17$									
9.2502									
19		- 1							
20									
21									
22		27.1							
23		- 1							
24		1							
25		_ 1				-			
26									
27									-
28		- 1							
29							11		
30									
31	1		-4	_ =			100	- 1	
32									1
33									
34									
35							- 1		
36		-						T - 17	
37									
38 39		-					25	1	
40		-					1-1-1-1		
		-		4					
41		-							
42								4.1	
43									
44	and the same of th								

Ammonia Reference Toxicant Spiking Worksheet

Reference Toxicant ID:

Date Prepared:

Technician Initials:

P220819.87

II/8/23

TS

Biv / Echino NH₃ RT

Assumptions in Model

Stock ammonia concentration is 9,000 mg/L = 9 mg/mL

Date:

10/11/2023

Measurement:

8456.666667

Te	st Solutions						
Measured Concentration	Desired Concentration	Volume	Volume of stock to reach desired concen				
mg/L	mg/L	mL	mL stock to increase				
. 00				SALT WATER			
1.88	1.5	250	10/2	0.067			
2.88	3	250	12000	0.133			
7.62	6	250		0.266			
12.3	12	250		0.532			
24.9	18	250		0.798			
			SECTION 1				

48 Hour Bivalve Development Reference Toxicant Test

Test ID: 922081	9.87	Replie	cates: 4		Study Directo	bort	Loca		1		
Dilution Water	23.01		nism Batch:		Associated Te	est(s):	Orga	INC nism: M.S	D.		
Chamber Size 30 ml sh	ell vial	15	ure Volume 10 ml		000000	14-011		10(-5	1		
Toxicant: Am					Date Prepare	11/8/23	Initia	Initials: MS			
Target Cond	See spikin		sheet		Quantity of Target: See spiki			Quantity of Diluent: Target:			
	See spikin	g work	sheet		Actual: See spiking worksheet Actual: 250 m						
			4	SPAV	VNING DAT	ГА					
Initial Spawnin	ng Time:	Final S Time:	pawning 13 4 B		ition Time:	No. of Females	:	No. of	Males:		
Embryo Density (count	/mL):	1. 2	75	2.	283	3		Mean:	279		
Stocking Volum	me Calculation	on: 270	1/27900	= 0.097	× 40 = 3.	88 ml egg sto	cr : 3	36 12	mL FSW Del.		
0 Hours	Date: ()	18/23	WQ Time	: 1149		Start Time:	555		ials: MS		
		1			STOCK				1.0)		
D O (0()			Control	1.5	3	6	1	12	18		
D.O. (%) (>4.0 mg/L)			8.4	8.2	7.9	7.8	7.	8	7.7		
Temperature (16 ± 1°C)		6.5	16.1	16.0		15	.8	15.3		
Salinity (30 ± 2 ppt)			30	31	31	31	31		31		
pH (6-9)		7	7	7.7	7.7	7.7	7	7	77		
Meter #			8	8	B	8	8	1	8		
Day 1	Temperat (16 ± 1°C)	ure	16.8		Meter#	T16		Initia			
Day 2	Date:	10/23	WQ Time:	1344	NL	End Time: 140	0	Initia	. 13		
			Formalin L	ot #: 220304		Rose Bengal Lot	#.		111		
					TOCK		5i35				
		C	Control	1.5	3	6	1:	2	18		
O.O. (%) >4.0 mg/L)			7.9	7.9	7.9	7.9	7.	9	80		
Temperature (1	6 ± 1°C) 2) 11	008/3	16.3	16.3	16.3	16	3	16.3		
Salinity 30 ± 2 ppt)			30	31	31	31	3		31		
oH 6-9)		-	7.9	7.9	7.9	7.9	7.0	7	70		
/leter#			9	9	9	9	0	1	bi		

OIE-MS WB, NLIVIO DTemp blank used-NLIV/10/23

20 October 2021 Ver.5

48 Hour Bivalve Development Reference Toxicant Test

l or (10. 022 ADID MT
1631	D: P220819.87

	Mean:	241 253 25	3.5	MAN	Щ	
6		242		MATE	H	
4 5		250		MARE	H	
3		254 250		MAR	H	
2		264 258		MAR		
1		264		MAR		
Rep		Cour	nt	Init.		
		Stocking D	Density	1.112/02	10000	1
	4	Ŏ	255	121523	DM	1
18	3	0	250	12/5/23	IMM	-
10	2	1 - 1	206	121523	DM	1
	1	1	244	12/15/23	OM	1
	4	33	223	12/15/23	DM	-
12	3	24	178	12/15/22	ery	-
12	2	43	190	12/14/12	100	-
	1	38	213	12/11/12	NS	-
	4	193	78	12/15/05	R	-
6	3	176	75	12/13/13	19	
3-1	2	183		12/10/23	NT	
	1	11/01	94 55	12/3/3	119	-
	4	203	44	12/13/23	19	
3	3	220	37	12/12/123	18	
	2	212	45	12/10/23	NL	1/A: 2% DM
	4	194	48	12/12/23	19	190/243=78.2
	3	207	45	12/11/23	M	GA: 190 N 53 F 190/243=78.2 1/A: 2% DM
1.5	2	204	41	12/11/23	DM	
	1	192	39	12/10/23	NL	
	4	238		12/10/23	NL	
	3	248	8	12/10/23	NL	10109/ NM
Control	2	226	3	12/10/23	NL	0A: 226 P 1A 226/227=99.6% /A:0.9% DM
	1	240	2	12/10/23	NL	
Conc.	Rep	Number Normal	Number Abnormal	Date	Initials	

ORGANISM RECEIPT LOG

Date:		Tin	ne:			Batch No.						
	6/23		1625	TS 110623.Q								
Organism	:						1477.4	-				
		Myti	ا كدا	SP 6.								
Source / S	upplier:							_				
	-	Taylor	She	116	š4							
No. Order	ed:	No.	Receive	ed:								
14	165	1.	4165	ed: Source Batch: Collection date, hatch date, etc.):								
Condition	of Organis	ms:		App	roximate	Size or Age:						
				(Days	from hatch	o, life stage, size	class, etc.):					
	od					adult						
Shipper:					L (Tracki							
	wher					wher						
ondition	of Contain	er:		Rece	eived By:			-				
60	1				4							
ontainer	D.O. (mg/L)	Temp. (°C)	Cond. Sal. (Include Units	de	pH (Units)	# Dead	% Dead*	Tech.				
1	0	0	0		O °	-	-	UG				
					7-7-							
>10% contact	lab manager											
otes:	Pecheve	1	0	7.1				-				
0	receive	11 dry	-Us	11/1	177							

7/27/15

Organism Receipt Log v1.1

Page __ of __

TAYLOR S SE 130 LYNCH RD, SHI PHONE #: (360) 426-6 WASHINGTON STATE C	HELLFISH FA ELTON WA 98584 178	RMS Harvest Hour	
HARVEST DATE:		Harvest Minute	2
HARVEST AREA:		Refer Date	4100
HARVEST		Refer Hour	
Dept ID.	FARM CODE:	Refer Minute	0
QUANTITY: All Shellstock contain	-/:	Pounds Sacl	KS

Toxicity Testing Results Wyckoff/Eagle Harbor Superfund Site Groundwater Treatment Plant

APPENDIX B

CHAIN-OF-CUSTODY AND SAMPLE RECEIPT FORMS

Report ID PG1799Q4.01 EcoAnalysts, Inc.

Page 1 d.

EcoAnalysts Inc. (REGION COPY)

DateShipped: 10/3/2023

CarrierName: EcoAnalysts (hand delivery)

AirbillNo:

Jacobs, Wyckoff-

Wyckoff Eagle Harbor GWTP 2023/WA

Project Code: WEH-032C

Cooler #: 1 of 1

No: 10-100323-102728-0733

IFD10W2LA0010PXTSDDD2

Contact Name: Daniel Baca

Contact Phone: 661-313-3807

Sample Identifier	CLP Sample No.	Matrix/Sampler	Coll. Method	Analysis/Turnaround (Days)	Tag/Preservative/Bottles	Location	Collection Date/Time	Sample Type
100323		Ground Water/ D. Baca	Composite	ACTOX-CHRTOX(8 Weeks)	N (1)	SP-11	10/03/2023 01:14	Field Sample
		- 4						

	Shipment for Case Complete? N
Special Instructions: 2023 Week40-Q4	Samples Transferred From Chain of Custody#
Analysis Key: ACTOX-CHRTOX=Acute Toxicity, Chronic Toxicity	

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	John DIKOBS	21100	Moto EcoAnalyst	10/3/23 1305	5.1°C P231003.08
			O .		

Page 1 d

EcoAnalysts, Inc. (REGION COPY)

DateShipped: 11/8/2023

CarrierName: EcoAnalysts (hand delivery)

AirbillNo:

Jacobs, Wyckoff-

Wyckoff Eagle Harbor GWTP 2023/WA Project Code: WEH-032D

Cooler #: 1 of 1

No: 10-110823-103825-0744

IFD10W2LA0010PXTSDDD2

Contact Name: Daniel Baca

Contact Phone: 661-313-3807

Sample Identifier	CLP Sample No.	Matrix/Sampler	Coll. Method	Analysis/Turnaround (Days)	Tag/Preservative/Bottles	Location	Collection Date/Time	Sample Type
110823		Ground Water/ D. Baca	Composite	ACTOX-CHRTOX(8 Weeks)	N (1)	SP-11	11/08/2023 01:15	Field Sample
								1

Constitution of a constitution of	Shipment for Case Complete? N
Special Instructions: 2023 Week 45-NovQ4	Samples Transferred From Chain of Custody #
Analysis Key: ACTOX-CHRTOX=Acute Toxicity, Chronic Toxicity	

Items/Reason	Relinquished by (Signature and Organization)		Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	Della a JACOBS	11-8-23 @ 1100	Myes Econnalysts	11/8/23 1220	P231108.01

SAMPLE RECEIPT

Client				Client ID	:			Lab	ID	:	Re	newals			
Jacobarnya	KOP	f 1	00	323			pz	3100	3.	08					
Projec													3,		
wyckopf Ead Harbor Gw	16 17 20	23/ WA													
Date/Time R					Ŧ		10/2	123	15	105			1		+-
Airbill #:							7	NA		70 3					
Shipper Trac Records: (Y/	king	Inform	atio	n Kept fo	r			NA	_						-
Collection Da							101:	3/23		114			- 4:	_	45
Sample Hold (must be ≤3	ing	Time	et i	nitintion				VI 2		117					+-
Condition of							- (5000							-
Type and Cap	_		_		er:		10	LW	oi.			_			+
Total Sample Volume (L):								IOL	//				1		4
Condition of Sampling Container:								6000)	-			- 1		+
Sample Cont	aine	r Approp	riat	te: (Y/N)				4					-		
Custody Seal (Intact/Brok	s In en/	tact: Not Pres	ent)			Ir	itact	-				37		
Frozen Wet of Shipment/Tr	r Bl	ue Ice P	rese	ent During	9			V		-			- 2	-	
Sampler's Na	me	Present	on (COC Form	1	10	10	1	-				- 5		
(Print Name/ Color:	Not	Present)		-	1		aca	_						
	_		55	2,000				Lea /							
	12	AKE TI	1E	FOLLO	W	NG	ME	ASU	RE	MEN	TS UPO	N AR	RIVAL		
LAB ID	Meter #	Temp. (°C) (0-6°C) *	Meter #	Dissolved Oxygen (mg/L)	Meter #	표	Meter #	Cond. (µS/cm)	Meter #	Sal. (ppt)	Hardness (mg CaCO ₃ /L)	Alkalinity (mg CaCO ₃ /L)	Total Chlorine (mg/L)	Total NH3 (mg/L)	Tech
25/013.0B	T21	5.1	8	8.5	8	7.5	В	1008	8	0.5	_	-	10:0	0.592	MS/ DN
					Ш									17-12	
					Ц						122				
													11		4-1
			Щ							d_					
Matic		lanager	or	study di	rec	tor o	f te	mper	atu	res ab	ove 6°C	or ≥3	6 hours	holding	
Notify projections. Client m	t m	be not	ifie	L ASAP.			nt r	roble	ms	comi	olete the	follow			
Notify projections. Client m	t m	DC 1100	me	u ASAF.	le i	ecei		nome			JICIC LITE				- 1
		If the	e a	re samp	le i	ecei	Pt p	лоше	1113			. TOHOW	ing:		
Reason for u	nac	If the	e a	re samp	ole i	recei	br h					. TOHOW	ing:		
Notify projections. Client me. Client notes that the control of the client response.	nac	If there ceptable	re a	re samp				Con	itai	cted b		. TOHOW	ing:		

SAMPLE RECEIPT

Client:				Client ID:				Lab	ID:		Renewals:				
lacobs, wyc	Koff	U	101	323		P	7	3110	R	10					
Project:			-				_	2110	Ų,	01			- :		
MUKOFF EAGLE	Harbo	~	_				_					-			
Date/Time Rec		:				11	1	8/23	1	מגר			-		+
Airbill #:					T			WYC	N	w					
Shipper Trackir Records: (Y/N/	ng Ini	orm	atio	n Kept fo	r			MA							-
Collection Date	/Tim	e:		10		11	1	9/13	n	11					1
Sample Holding (must be ≤36 h	Time lours	e at te	st i	nitiation)				Y	8/C3 01(S						
Condition of Sh								Goo	d				-		
Type and Capac	ity of	San	nple	Containe	er:		-		L cubi						
Total Sample Volume (L):								41	-				1		
Condition of Sampling Container:							_	>000	1				4		
Sample Container Appropriate: (Y/N)							-	V	_				Á	,	1
Custody Seals Intact: (Intact/Broken/Not Present)							n	tact							
Frozen Wet or E Shipment/Trans	Blue I	ce P	rese		3		8	Y					;-		-
Sampler's Name (Print Name/No	e Pres	sent	on (COC Form	:).	Bac	'n				*		
Color:								lear	4						-
	TAK	ETI	HE	FOLLO	W	ING N			RE	MEN	TS UPO	ON AR	RTVA		
	T	-			T				П					1	
LAB ID	Temp.	* (2°9-0)	Meter #	Dissolved Oxygen (mg/L)	Meter #	품	Meter #	Cond. (µS/cm)	Meter #	Sal. (ppt)	Hardness (mg CaCO ₃ /L)	Alkalinity (mg CaCO ₃ /L)	. Total :Chlorine	Total NH3 (mg/L)	Tech
231108.01	2 3.1	o°C.	a	9.6	9	7.3	a	909	a	0.432	_	-	0.03	0.458	Usli
					Ì				Ì					0.45 8	10017
					Ħ										
									H					1	1
Notify project	man	ager	or	study di	re	ctor of	to	mner	 atr	irec ah	101/0 60/	20-52	6 5	en hald)	
me. Client mu	st be	not	ifie	d ASAP.		CLOI UI		mpen	all	ares at	יטעפ פיינו	_ OF ≥3	o noui	s nolding	
	If	the	re a	re samp	ole	receip	tŗ	roble	ms	, com	olete the	e follow	ing:	19.79	
Reason for una								-				10000			
Name of Client	Con	tact	:					Cor	nta	cted by	y:				
lient Respons	ient Response and/or Action to be Tak							Dat	e /	Action	Taken:		•		
									_						
ON-SIC	11/10												•		

11/8 M- al O