Wyckoff Groundwater Treatment Plant: First Quarter 2024 Bioassay Monitoring

PREPARED FOR: Kristen Reed/Washington State Department of Ecology

COPY: Jacob Moersen/U.S. Environmental Protection Agency

Nicole Caveny/U.S. Environmental Protection Agency

PREPARED BY: Joy Chen/CH2M HILL Engineers, Inc

Mark Fesler/CH2M HILL Engineers, Inc.

DATE: April 2, 2024

1. Introduction

This technical memorandum summarizes information obtained from the first quarter 2024 sampling event performed at the U.S. Environmental Protection Agency (EPA) Wyckoff/Eagle Harbor Superfund Site (the Site) groundwater treatment plant (GWTP) located at 5350 Creosote Place NE, Bainbridge Island, Washington. CH2M HILL Engineers, Inc. (CH2M)¹ conducted this sampling event to support the current biomonitoring requirements of the substantive condition as presented in the site's Record of Decision (EPA 2000), hereinafter referred to as "substantive condition".

Sampling was generally conducted in accordance with the final *Quality Assurance Project Plan, Groundwater Treatment Plant Operations and Maintenance* (QAPP; CH2M, 2022). While there were deviations from the QAPP as noted in the Laboratory Quality Data Review section, the data is deemed usable, and the sampling is considered to have met the monitoring requirements of the substantive condition.

The current substantive condition does not include effluent limits for chronic toxicity. Chronic toxicity testing was conducted on the effluent samples per the requirements outlined in the substantive condition. The current substantive condition does not include specific dilution series for chronic toxicity tests. For the mussel larvae chronic toxicity testing conducted during the first quarter 2024 sampling event, 69.7 percent effluent is the highest concentration tested due to the addition of hypersaline brine to achieve a salinity of 30 parts per trillion (ppt) per the *Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms* (EPA/600/R-95/136, 1995).

Due to the recent toxicity observed in the highest test concentrations for the mussel larvae chronic toxicity testing, concurrent tests were conducted (one test using artificial salts and the other test using HSB) during the first quarter 2024 sampling event to evaluate potential toxicity for undiluted sample (i.e. salts) while maintaining comparability of results from this quarter to previous test results (i.e. HSB). 69.7 percent effluent is the highest concentration tested using the HSB for the first quarter 2024 testing.

No statistically significant effects on the survival or development endpoints were observed for all test concentrations, indicating no evidence of the presence of chronic toxicity.

As stated above, the current substantive condition does not include effluent limit for chronic toxicity. The chronic toxicity test requirement section of the substantive condition (Section II.8) specifies the following:

1

 $^{^{}m 1}$ CH2M HILL Engineers, Inc. is now a wholly owned subsidiary of Jacobs Engineering Group Inc.

"EPA and Ecology will evaluate the results to determine whether they indicate the occurrence of chronic toxicity outside the mixing zone. If it appears that this may be occurring, a toxicity evaluation and reduction plan will be prepared within 90 days. The evaluation portion of the plan may include additional toxicity testing if needed to follow up on initial results or gather information for a possible toxicity limit in the future."

The observed results for the chronic developmental endpoint would not trigger this requirement.

2. Sampling and Analysis Results

Biomonitoring samples were collected per the monitoring frequency included in the substantive condition. Samples were collected from a 24-hr. autosampler collection point at the effluent tank of the treatment system. Water samples were collected on January 30, 2024. Chemical testing was conducted on a split of each sample collected for bioassay testing per the substantive condition requirement. The bioassays were performed by EcoAnalysts, Inc. (EcoAnalysts), Port Gamble, Washington, a Washington State Department of Ecology accredited lab. Table 1 lists the sample Laboratory ID and sampling analysis methods. EcoAnalysts sampling analysis report for chronic toxicity testing is provided in Attachment 1.

Table 1. Biological Testing Summary

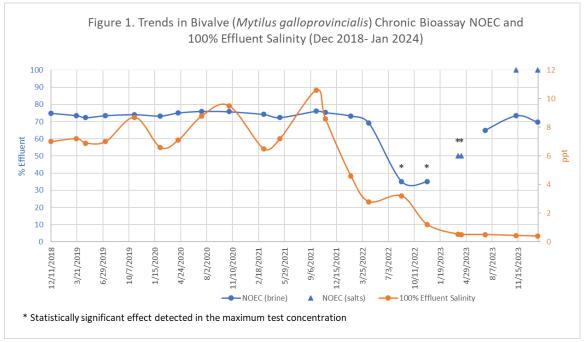
Laboratory	Laboratory ID	Method	Test Type/Descriptor/Species
EcoAnalysts	P240130.03	EPA/600/R-95-136 Method 1005.0;	Chronic/48-hr Survival and
		ASTM E724-89	Development/ <i>Mytilus galloprovincialis</i> (Mussel)
		TOX042.12	(Mussel)

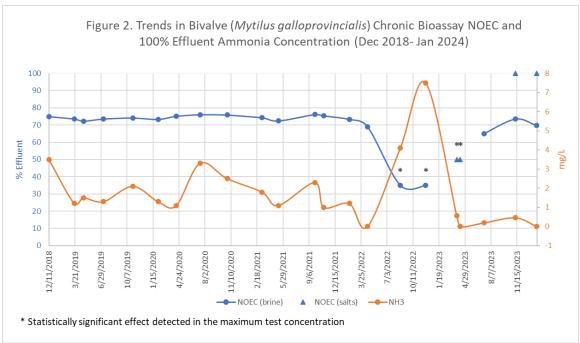
No statistically significant effects were detected in any effluent concentration tested for the survival or development endpoint of the bivalve test. This result indicates a No Observed Effect Concentration of 69.7 percent (the highest concentration tested) of the effluent concentration and a chronic toxic unit of 1.4 for both endpoints. The Effect Concentration expected to affect 50 percent of the organisms (EC50) is greater than 100 percent and 69.7 percent of the effluent concentration, respectively for the salt and HSB adjusted samples, respectively.

3. Laboratory Quality Data Review

A CH2M chemist validated the bioassay results Stage 2A in accordance with the QAPP. The QAPP (CH2M 2022) was cited by EcoAnalysts and the appropriate species of mussel specified in the QAPP was used for the analytical testing.

The data were 100 percent complete, and method and QAPP quality control requirements were met, with the following exceptions noted:


- (1) The QAPP reference toxicant copper sulfate was not used. The reference toxicant utilized was ammonia. A review of the total and unionized ammonia quality control data indicates the ammonia reference toxicant test results were within two standard deviations of the laboratory mean at the time of testing. There is no impact to the data and an addendum to the QAPP to utilize ammonia as reference toxicant was requested in May 2023 after these samples were collected and analyzed.
- (2) Replicate 3 of the 6.25% effluent concentration in the brine test was removed from statistical analysis because the vial was compromised from potential contamination. Test data is considered usable because no statistically significant biological response of the test organisms was not detected at any of the test concentrations.


(3) No significant differences were observed between the laboratory (dilution water) control and brine control indicating that the addition of hypersaline brine did not contribute to any negative biological effects. There was a significant difference between the laboratory (dilution water) control and artificial salts control. Test data is considered usable because both the laboratory (dilution water) control and artificial salts control met EPA test acceptability criteria. In addition, there was no effect in any of the test concentrations, artificial salts did not contribute to any negative biological effects.

4. Trends

A review of bioassay data collected from 2007 through the first quarter of 2024 indicated there were no statistically significant effect detected for the survival endpoint for any test concentrations and species. No statistically significant effect was detected for the sublethal endpoints with the exception for the sampling events from the third quarter of 2022 through second quarter of 2023. For these four sampling events, statistically significant effects were detected in the maximum test concentrations for the developmental endpoint of the chronic bioassay test.

Figure 1 shows the bivalve chronic bioassay NOEC and salinity for the 100 percent effluent samples from December 2018 through January 2024. NOEC for bivalve chronic bioassay tests conducted prior to December 2018 were 70 percent. Hypersaline brine (HSB) with a fixed concentration was used for the salinity adjustment for chronic toxicity testing conducted prior to December 2018, therefore the maximum test concentrations remained the same for that test period. The laboratories that conducted the testing from December 2018 to November 2022 used HSB created at their laboratory (i.e. concentration varies slightly from batch to batch), therefore the resulting maximum test concentrations varies slightly for the different monitoring events. The maximum test concentration for the first and second quarter of 2023 is higher than previous monitoring events as well as third quarter of 2023 (i.e. 100 percent versus ~70 percent) due to the use of artificial sea salts as opposed to HSB. This resulted in a higher NOEC than those reported for the third and fourth quarter of 2022 despite a statistically significant effect was only observed in the maximum test concentration in the samples in all four sampling events. For the first quarter of 2024, concurrent tests were conducted (one test using artificial salts and the other test using HSB) for the split samples (see Figure 1 for NOEC for samples with salinity adjustment using brine and salts). A review of the water quality parameters measured for the bioassay samples indicated the lowest detected salinity levels were detected in the samples collected from the most recent seven sampling events (see Figure 1). While the elevated ammonia concentrations detected in the third and fourth quarter 2022 may have contributed to the observed toxicity during those sampling events, ammonia does not appear to be contributing to the toxicity observed in the monitoring events for the first and second quarter of 2023 (see Figure 2).

5. Overall Assessment

While the current substantive condition does not include specific whole effluent toxicity (WET) limits, the Washington Administrative Code (WAC) 173-205-020 specifies the following:

"Whole effluent toxicity performance standard" means a level of effluent toxicity that is consistently so much lower than is necessary to meet state water quality standards (chapter 173-201A WAC) that no reasonable potential exists to violate the water quality standards. For acute toxicity, the performance standard is the median survival in one hundred percent effluent being equal to or greater than eighty percent and no individual test result showing less than sixty-five percent survival in one hundred percent effluent.

For chronic toxicity, the performance standard is no chronic toxicity test demonstrating a statistically significant difference in response between the control and a test concentration equal to the acute critical effluent concentration. For permittees that are ineligible for an approved mixing zone, the performance standard will equal or be close to equal (in the case of acute toxicity) the water quality-based effluent toxicity limit.

Based on sampling results, the survival and development endpoints of the chronic toxicity test met the WET performance standard because survival rates and proportion normal development were within acceptable limits. Due to the recently observed toxicity from third quarter 2022 through second quarter of 2023, CH2M recommends triggering of an accelerated testing if the next testing meets EPA test acceptability criteria and a statistically significant effect is detected when compared to the lab control. As there are no established chronic toxicity criteria included in the substantive condition, CH2M recommends an accelerated schedule of WET testing to establish whether a pattern of chronic toxicity exists. Consistent with WAC 173-205-090(1)(b), it is recommended that the accelerated testing to be conducted monthly for three months using the same toxicity test as in the routine effluent WET testing where a statistically significant effect is detected.

Due to the deviation of the QAPP quality control requirement for the artificial salts control for the mussel larvae chronic toxicity test, CH2M recommends continued concurrent mussel chronic bioassay testing using both artificial salt and brine for salinity adjustments in 2024 Q2. The following lists the recommended test dilution series:

Brine

Maximum test concentration, 50%, 25%, 12.5%, 6.25%, and control

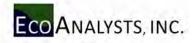
Artificial Salt

100%, Maximum test concentration for the chronic toxicity testing using brine for salinity adjustment, 50%, 25%, 12.5%, 6.25%, and control.

References

ASTM. 1989. Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Saltwater Bivalve Molluscs, E724-89. ASTM International, West Conshohocken, PA.

CH2M HILL Engineers, Inc. (CH2M, now a wholly owned subsidiary of Jacobs Engineering Group Inc.). 2022. *Quality Assurance Project Plan, Groundwater Treatment Plant Operations and Maintenance*. Final. Prepared for Wyckoff/Eagle Harbor Superfund Site, Bainbridge Island, Washington, U.S. Environmental Protection Agency, Region 10, Seattle, Washington. January.


EPA. 1995. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, 1st ed. EPA/600/R-95/136. U.S. Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH.

EPA. 2000. Record of Decision: Wyckoff/Eagle Harbor Superfund Site Soil and Groundwater Operable Units, Bainbridge Island, Washington. EPA/ROD/R10-00/047. U.S. Environmental Protection Agency Region 10, Seattle, WA.

Washington Administrative Code (WAC) 173-205-020, "Definitions." Available at: https://app.leg.wa.gov/WAC/default.aspx?cite=173-205-020

WAC 173-205-090, "Response to noncompliance with whole effluent toxicity limits." Available at: https://app.leg.wa.gov/WAC/default.aspx?cite=173-205-090

Attachment 1
EcoAnalysts Toxicity Testing Results
Wyckoff/Eagle Harbor Superfund Groundwater
Treatment Plant

TOXICITY TESTING RESULTS

WYCKOFF/EAGLE HARBOR SUPERFUND SITE GROUNDWATER TREATMENT PLANT BAINBRIDGE ISLAND, WA

NPDES TOXICITY TESTING: 1ST QUARTER 2024

Prepared for

Jacobs 1100 112th Avenue NE, Suite 400 Bellevue, WA 98004

Prepared by

EcoAnalysts, Inc. PO Box 216 4770 NE View Drive Port Gamble, WA 98364

Contract: 148043868

Jacobs Project Number: 707869CH

EcoAnalysts Report ID: PG1958Q1.01

Submittal Date: February 23, 2024

All testing reported herein was performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and EcoAnalysts is not responsible for use of less than the complete report. The test results summarized in this report apply only to the sample(s) evaluated. This document is uncontrolled when printed or accessed from electronic distribution.

APPROVED BY

Marisa Seibert

Laboratory Manager/ Project Manager

Author(s):

Marisa Seibert

QA Review:

Mary Ann Rempel-Hester

CONTENTS

1.	EXECUTIVE SUMMARY	1
2.	METHODS	
2.1	Sample Collection and Storage	
2.2	Bioassay Testing	
2.3	Organisms for Testing	
2.4	Water for Bioassay Testing	
2.5	Sample Adjustment	
2.6	Data Management and Analysis	
2.7	Quality Assurance/Quality Control	
3.	RESULTS	r
3.1	Mytilus galloprovincialis Test Results	
4.	REFERENCES	C
TADIE		
TABLE	:5	
	-1. Toxicity Test Results Summary	
	-1. Sample Conditions upon Receipt	
	-2. Biological Testing Performed	
Table 2	-3. Salinity Adjustment of Project Samples	3
	-1. Results Summary for Mytilus galloprovincialis Embryo Development Test (Brine)	
	-2. Results Summary for Mytilus galloprovincialis Embryo Development Test (Salt)	
Table 3	-3. Test Condition Summary for Mytilus galloprovincialis Embryo Development Test	8

APPENDICES

Appendix A: Statistical Comparison and Laboratory Documents

Appendix B: Chain-of-Custody and Sample Receipt Forms

ACRONYMS AND ABBREVIATIONS

EC₅₀: Effect Concentration to 50% of test population

EPA: Environmental Protection Agency

LC₅₀: Lethal Concentration to 50% of test population

LOEL: Lowest Observed Effect Level

NOEL: No Observed Effect Level

NPDES: National Pollutant Discharge Elimination System

PMSD: Percent Minimum Significant Difference

QAPP: Quality Assurance Project Plan

QM: Quality Manual

SOP: Standard Operating Procedures

WET: Whole Effluent Toxicity

1. EXECUTIVE SUMMARY

EcoAnalysts conducted Whole Effluent Toxicity (WET) testing as part of the biological compliance monitoring for Wyckoff/Eagle Harbor Superfund Site, in Bainbridge Island, Washington. The objective of this program was to assess the potential toxicity of discharge water to selected aquatic organisms following procedures defined under the facility's Quality Assurance Project Plan (QAPP) (CH2M HILL 2022). The results of the toxicity testing are contained in this report.

The bivalve development was conducted as a side-by-side test, with one aliquot of effluent sample adjusted to test salinity with hypersaline brine, and another aliquot adjusted with artificial salts.

A statistically significant biological response of the test organisms was not detected at the 69.7% (brine, highest concentration achievable) and 100% (salt) effluent sample concentrations, for the proportion survived or proportion normal endpoints (Table 1-1).

Table 1-1. Toxicity Test Results Summary.

	Test	NOEL (%)	LOEL (%)	LC50/EC50 (%)
Changin Daine	<i>Mytilus galloprovincialis</i> 48-Hour Proportion Survived	69.7	>69.7	>69.7
Chronic - Brine	<i>Mytilus galloprovincialis</i> 48-Hour Proportion Normal	69.7	>69.7	>69.7
Chronic - Salt	<i>Mytilus galloprovincialis</i> 48-Hour Proportion Survived	100	>100	>100
Cilionic - Salt	<i>Mytilus galloprovincialis</i> 48-Hour Proportion Normal	100	>100	>100

NOEL = No Observed Effect Level LOEL = Lowest Observed Effect Level

 LC_{50}/EC_{50} = Lethal/Effect Concentration to 50% of test population

2. METHODS

The sample was analyzed for toxicity using criteria outlined in ASTM E724-89 and the Environmental Protection Agency's (EPA) most recently promulgated effluent guidance documents outlined in Section 4.

To evaluate the relative sensitivity of the organisms, reference toxicity tests were performed using standard reference toxicants (Lee 1980).

2.1 Sample Collection and Storage

Jacobs personnel collected two samples on January 30, 2024, which were used to conduct the Bivalve Survival and Development side-by-side test. The samples were transported by EcoAnalysts personnel and received at the laboratory on the same day as collection. The sample temperatures upon receipt were 5.6°C and was 6.2°C. Both samples were within the recommended temperature range since they were received within 4 hours of collection. Samples were composited and used for testing.

Additional sample conditions are summarized in Table 2-1. The samples were held in a walk-in cold room at 4 ± 2 °C in the dark until utilized for testing.

Table 2-1. Sample Conditions upon Receipt

Sample	24052146_1
Laboratory ID	P240130.03
Date/Time sampled	01/30/24; 0935
Date/Time received	01/30/24; 1154
Dissolved Oxygen (mg/L) Recommended: >4.0 mg/L	9.2
Temperature (°C) Recommended: 0 – 6°C	5.6 – 6.2
pH (units) Recommended: 6 – 9	7.5
Conductivity (µS/cm)	798
Salinity (ppt)	0.4
Total Chlorine (mg/L)	0.01
Total Ammonia (mg/L)	0.00

2.2 Bioassay Testing

Bioassay testing for this project consisted of one chronic bioassay. The test conducted in support of this project is summarized in Table 2-2.

Table 2-2. Biological Testing Performed

Test Type	Test Descriptor	Species	Method
Chronic	48-Hour Survival and Development	Mytilus galloprovincialis Mussel	EPA/600/R-95-136 Method 1005.0; ASTM E724-89; TOX042.12

2.3 Organisms for Testing

Adult mussels ($Mytilus\ galloprovincialis$) were obtained from Taylor Shellfish in Shelton, Washington on December 15, 2023. They were delivered via Taylor Shellfish personnel and maintained under ambient seawater flow-through conditions at $12\pm3^{\circ}C$ until utilized for testing. Water quality measurements were collected from transport containers and the overall health of the organisms was visually confirmed by a laboratory technician.

2.4 Water for Bioassay Testing

Seawater diluent used in this study came from the northern Hood Canal at Port Gamble, Washington. This water source has been used successfully on similar bioassay testing programs. Extensive testing on a variety of test species has shown that there is no significant potential for toxicity or bioaccumulation from this water supply. Chemical analysis of each water source is conducted and reviewed on an annual basis.

2.5 Sample Adjustment

The effluent sample 24052146_1 was received at a salinity of 0.4 ppt. The salinity of the effluent sample was increased by the addition of Crystal Sea® MarineMix bioassay grade artificial salt for the salt portion of the side-by-side bivalve test. A separate aliquot was adjusted to the desired test salinity using hypersaline brine for the other half of the side-by-side bivalve test. Table 2-3 summarizes the salinity adjustments performed on the project sample in relation to marine test species.

An artificial salt control sample was created to evaluate any potential negative impacts to the test organisms from the salinity adjustment alone. This sample was designated "Salt Control". A "Brine Control" was also prepared for the bivalve test that included an equal proportion of hypersaline brine added to a mixture of natural seawater (Lab Control) and deionized water. The results of this additional control are discussed in the sections below.

Table 2-3. Salinity Adjustment of Project Samples

Sample ID	Test	Sample Salinity Upon Receipt	Sample Salinity Adjustment (ppt)	Salinity Adjustment Media
24052146_1:	Mytilus galloprovincialis	0.4 nnt	30 ± 2	Hypersaline Brine
Collected 1/30/24	48-Hour Survival and Development	0.4 ppt	50 ± 2	Artificial Salt

2.6 Data Management and Analysis

Endpoint data was calculated for each replicate, and the mean value and standard deviation were determined for each sample concentration. All hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting was reviewed for errors. Review counts were conducted on any apparent outliers.

Statistical comparisons were made according to the EPA guidance. Statistical comparisons were performed using CETIS™ software.

2.7 Quality Assurance/Quality Control

The quality assurance objectives for toxicity testing conducted by the testing laboratory are detailed in the method specific guidance documents and the laboratory's quality manual (QM). These objectives for accuracy and precision involve all aspects of the testing process, including the following:

- Source and Condition of Test Organisms
- Condition of Equipment

- Test Conditions
- Instrument Calibration
- Use of Reference Toxicants
- Record Keeping
- Data Evaluation

The batch of test organisms obtained was evaluated in a reference toxicant test that was run concurrently with the test period to establish the sensitivity of the test organisms. The reference toxicant LC_{50} or EC_{50} should fall within two standard deviations of the historical laboratory mean. Water quality measurements were monitored to ensure that they fell within prescribed limits.

The methods employed in every phase of the toxicity testing program are detailed in the EcoAnalysts Standard Operating Procedures (SOP). All EcoAnalysts staff members receive regular, documented training in all SOPs and test methods. Finally, all data collected and produced because of these analyses were recorded on approved data sheets. If an aspect of a test deviated from protocol, the test was evaluated to determine whether it was valid according to the regulatory agencies responsible for approval of the proposed permitting action.

3. RESULTS

The results of the effluent testing are presented in this section. Statistical comparisons and laboratory documents are provided in Appendix A. Chain-of-custody and sample receipt logs are provided in Appendix B.

3.1 Mytilus galloprovincialis Test Results

The chronic toxicity test with *M. galloprovincialis* was conducted on January 30, 2024, with sample 24052146_1. The test was conducted as a side-by-side exposure with one aliquot of sample adjusted to test salinity with hypersaline brine and a second aliquot adjusted with artificial salts. Both tests met EPA test acceptability criteria of ≥90% proportion normal, ≥50% proportion survived, and <25% Percent Minimum Significant Difference (PMSD). The test conducted with hypersaline brine resulted in 96.7% proportion survived, 94.6% proportion normal, and 2.6% PMSD for proportion normal in the laboratory control. The test conducted with artificial salts resulted in 96.7% proportion survived, 94.4% proportion normal, and 2.5% PMSD for proportion normal in the laboratory control. Mean survival and proportion normal are summarized in Table 3-1 (brine) and Table 3-2 (salt). The test conditions are summarized in Table 3-3.

Concentrations of 6.25, 12.5, 25, 50, and 69.7% effluent were prepared utilizing laboratory water. A 100% test concentration was also included for the test with artificial salts. Sample P240130.03 (received 1/30/24) was used for test initiation. Water quality parameters were within the acceptable limits throughout the duration of the 48-hour static test. Replicate 3 of the 6.25% effluent concentration in the brine test was removed from statistical analysis because the vial was compromised.

No significant differences were observed between the laboratory (dilution water) control and brine control indicating that the addition of hypersaline brine did not contribute to any negative biological effects. There was a significant difference between the laboratory (dilution water) control and artificial salts control. However, since there wasn't an effect in any of the test concentrations, artificial salts did not contribute to any negative biological effects.

The EC $_{50}$ for the ammonia reference toxicant test was 9.2 mg/L total ammonia and was within two standard deviations of the laboratory mean (Table 3-3) at the time of testing. This indicates that the organisms are of a similar sensitivity to those previously tested at the EcoAnalysts laboratory.

Table 3-1. Results Summary for Mytilus galloprovincialis Embryo Development Test (Brine)

Conc. (%)	Mean Proportion Survived (%)	Standard Deviation	NOEL (%)	LOEL (%)	EC ₅₀ Value (%)
Control	96.7	4.1			
Brine Control	98.8	2.5			
6.25	100	0.0			
12.5	99.5	1.0	69.7	>69.7	>69.7
25	96.9	2.9			
50	96.8	6.5			
69.7	96.6	4.1			
Conc. (%)	Mean Proportion Normal (%)	Standard Deviation	NOEL (%)	LOEL (%)	EC ₅₀ Value (%)
Control	94.6	1.0			
Brine Control	93.6	1.5			
6.25	93.8	0.5			
12.5	93.6	1.8	69.7	>69.7	>69.7
25	93.2	1.3			
50	95.1	0.7			
69.7	94.7	1.9			

NOEL = No Observed Effect Level;

LOEL = Lowest Observed Effect Level;

 LC_{50}/EC_{50} = Lethal/Effect Concentration to 50% of test population;

Proportion survived = total counted / stocking density;

Proportion normal = number normal/total counted

Table 3-2. Results Summary for Mytilus galloprovincialis Embryo Development Test (Salt)

Conc. (%)	Mean Proportion Survived (%)	Standard Deviation	NOEL (%)	LOEL (%)	EC ₅₀ Value (%)			
Control	96.7	3.6						
Salt Control	100	0.0						
6.25	96.6	1.1						
12.5	98.0	2.6	100	. 100	> 100			
25	98.0	2.3	100	>100	>100			
50	97.5	2.9						
69.7	96.4	4.2						
100	97.0	2.9						
Conc. (%)	Mean Proportion Normal (%)	Standard Deviation	NOEL (%)	LOEL (%)	EC ₅₀ Value (%)			
Control	94.4	1.1						
Salt Control	92.1	1.9						
6.25	93.9	0.7						
12.5	92.5	2.2	100	. 100	. 100			
25	04.7	0.7	100	>100	>100			
	94.7	0.7						
50	93.8	1.2						

NOEL = No Observed Effect Level;

LOEL = Lowest Observed Effect Level;

 LC_{50}/EC_{50} = Lethal/Effect Concentration to 50% of test population;

Proportion survived = total counted / stocking density;

Proportion normal = number normal/total counted

Table 3-3. Test Condition Summary for Mytilus galloprovincialis Embryo Development Test.

Test Duration / Type	48-Hour; Static				
Species	Mytilu	s galloprovincialis			
Supplier	Та	ylor Shellfish			
Date acquired		12/15/23			
Test Dates	1/3	0/24 – 2/1/24			
Age at test initiation Recommended: <4-hour embryos		<4 hours			
Sample(s) used:	240521	46_1; P240130.03			
Holding Time at Initiation: Recommended: < 36 hours		7 hours			
Test Procedures	EPA/600/R-95-136, N	Nethod 1005.0; SOP: TOX042.12			
Test location	EcoAnalys	sts, Port Gamble, WA			
Control water / Diluent	0.45 μm-filtered, North Hood Canal seawater				
Test Lighting	16 hour light / 8 hour dark				
Test Chamber	30	-mL Chamber			
Exposure volume		10 mL			
Organisms/replicate	Recommended: 150 –300	Actual: 262			
Replicates/treatment		4			
Concentration/treatment		5, 50, and 69.7% (brine) . 50, 69.7 and 100% (salt)			
Feeding		None			
Test solution renewal		None			
Test Water Quality					
Test Dissolved Oxygen	Recommended: > 4.0 mg/L	Actual: 7.7 – 8.7 mg/L (brine), 7.8 – 8.1 mg/L (salt)			
Test Temperature	Recommended: 16 ± 1°C	Actual: 15.3 – 17.3 °C (brine), 15.5 – 17.4 °C (salt)			
Test pH	Recommended: 7 – 9	Actual: 7.6 – 8.2 (brine), 7.6 – 8.3 (salt)			
Test Salinity	Recommended: 30 ± 2 ppt	Actual: 28 – 29 ppt (brine), 28 – 30 ppt (salt)			
Control performance standard (Survival, Normal shell development, PMSD)	Recommended: ≥50% survival, ≥90% normal development, <25% PMSD	Actual: Brine: 96.7% survival, 94.6% normal development, 2.6% PMSD; Salt: 96.7% survival, 94.4% normal development, 2.5% PMSD			
Reference Toxicant Date		1/30/24			
Reference Toxicant EC ₅₀	9.2 mg	:/L total ammonia			
Laboratory Mean EC ₅₀	7.1 mg	:/L total ammonia			
Acceptable Range EC ₅₀ (± 2 SD)	3.9 – 12.9 mg/L to	otal ammonia (within range)			
Deviations from Test Protocol	Brine 6.25% Replic	cate 3 removed from analysis			

4. REFERENCES

- ASTM. 1989. Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Saltwater Bivalve Molluscs, E724-89. ASTM International, West Conshohocken, PA.
- CETIS. 2022. CETIS™ Comprehensive Environmental Toxicity Information System User's Guide. Tidepool Scientific Software. McKinleyville, CA.
- CH2M HILL. 2022. Quality Assurance Project Plan, Groundwater Treatment Plant Operations and Maintenance, Final. Wyckoff/Eagle Harbor Superfund Site. Bainbridge Island, Washington.
- USEPA. 1995. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine Organisms and Estuarine Organisms, First Edition. EPA-600-R-95-136.

Toxicity Testing Results Wyckoff/Eagle Harbor Superfund Site Groundwater Treatment Plant

APPENDIX A

STATISTICAL COMPARISONS AND LABORATORY DOCUMENTS

Report ID PG1958Q1.01 EcoAnalysts, Inc.

Toxicity Testing Results Wyckoff/Eagle Harbor Superfund Site Groundwater Treatment Plant

APPENDIX A.1

MYTILUS GALLOPROVINCIALIS 48-HOUR SURVIVAL AND DEVELOPMENT TEST

STATISTICAL COMPARISON AND LABORATORY DATA SHEETS

Report ID PG1958Q1.01 EcoAnalysts, Inc.

Report Date: Test Code/ID: 22 Feb-24 12:07 (p 1 of 2) P240130.03BC / 19-6883-4716

WARD WES A							Tes	t Code	/ID:	P24013	30.03BC / 19	-6883-4	71
Bivalve Larva	l Survival and	Develop	ment Test								Ec	oAnaly	sts
Batch ID:	13-6318-1280	r = +3	Test Type:	Development-S	Survival		1.0	Analyst	: Da	Danielle Mulligan			
Start Date:	30 Jan-24 16:	10	Protocol: EPA/600/R-95/136 (1995) Diluent:		: La	boratory Sea	water						
Ending Date:	01 Feb-24 15:	21	Species:	Mytilus gallopri	ovincialis		H	Brine:	Evaporated Seawater				
Test Length:	47h	- 10	Taxon:	Bivalvia				Source				Age: <	<4r
Sample ID:	18-6559-3037		Code:	P240130.03BC			13	roject	· W	yckoff Eagle	Harbor GWI	P 2024	W
	30 Jan-24 09:	green a	Material:	Treated Groun	dwater			Source	: Ja	cobs Wyckof	f		
	30 Jan-24 11;	54 (CAS (PC):					Station	: 24	052146_1			
Sample Age:			Client:	Jacobs Wycko	ff								
	arison Summa	iry											
Analysis ID	Endpoint			parison Method			P-Val			ison Result			
	Proportion No			Variance t Two			0.163			ntrol passed	The second second		
STATE OF	Proportion Su	12:4	Equa	Variance t Two	-Sample Te	st	0.770	8 B	Brine Co	ntrol passed	proportion s	urvived	
	parison Sumn	nary	725										
Analysis ID	Endpoint Drangdian No.	en di		parison Method			√ NOEL	_	OEL	TOEL	PMSD	TU	. 14
16-1866-4626				rroni Adj t Test			69.7		69.7		2.58%	1.4	
16-5011-6400		rvived	Bonfe	erroni Adj t Test			69.7	>	69.7		9.25%	1.4	
Point Estimat													
Analysis ID	Endpoint	and t		Estimate Meth	TYPE -		✓ Level			95% LCL	95% UCL	_	
20-2099-4460	Proportion No	rmal	Linea	r Interpolation (I	CPIN)		✓ EC25		69.7			<1.4	
11-1031-6784	Proportion Sur	ningd	1) terms	e liste en el estir e di	COLLIN		✓ EC50		69.7	***	(Appel	<1.4	_
11-1031-0704	Fiopolition Sui	iviveu	Linea	r Interpolation (I	CPIN)		√ EC25 √ EC50		69.7 69.7		-	<1.4	
Test Acceptat	oility					1.00						2301	-
Analysis ID	Endpoint		Attrib	iute	Test Stat	67.43	Limits), ionion	Desistan			
08-5822-2281		rmal	0,000,000	ol Resp	0.9461	0.9	Uppe <<		verlap				_
00-0022-2201	Proportion No			ol Resp	0.9364	0.9	<<		es	Passes C Passes C			
16-1866-4626				ol Resp	0.9461	0.9	<<		es	Passes C			
20-2099-4460				ol Resp	0.9461	0.9	<<		es	Passes C			
11-1031-6784				ol Resp	0.9666	0.5	<<		es	Passes C			
13-9281-0414	Proportion Sur	rvived		ol Resp	0.9666	0.5	<<		es	Passes C			
	Proportion Sur	rvived		ol Resp	0.9876	0.5	<<		es	Passes C			
16-5011-6400	Proportion Sur	rvived	Contro	ol Resp	0.9666	0.5	<<	Y	es	Passes C	riteria		
Proportion No	ormal Summar	у											Ī
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	S	td Err	Std Dev	CV%	%Effe	ct
0	D	4	0.946		0.9612	0.9341	0.956		.0048	0.0095	1.00%	0.00%	,
0	BC	4	0.936		0.9602	0.9233	0.951	7 0	.0075	0.0150	1.60%	1.02%	,
6.25		3	0.937		0.9496	0.9326	0.941	4 0	.0027	0.0047	0.50%	0.86%	
12.5		4	0.935		0.9637	0.9097	0.950	4 0	.0089	0.0177	1.90%	1.12%	9
25		4	0.932		0.9538	0.9139	0.945		.0067	0.0134	1.44%	1.44%	,
50		4	0.951		0.9616	0.9418	0.956		.0032	0.0065	0.68%	-0.569	6
69.7		4	0.947	2 0.9165	0.9779	0.9190	0.962	7 0	.0096	0.0193	2,04%	-0.139	6
Proportion Su			43.0	4 2 k 8 2 m	June 1995								
Conc-%	Code	Count					Max	_	td Err	Std Dev	CV%	%Effe	_
0	D	4	0.966		1.0320	0.9160	1.000		.0205	0.0410	4.25%	0.00%	
0	BC	4	0.987		1.0270	0.9504	1.000		.0124	0.0248	2.51%	-2.179	
6.25		3	1.000		1.0000	1.0000	1.000		.0000	0.0000	0.00%	-3.469	
12.5		4	0.995		1.0100	0.9809	1.000		.0048	0.0095	0.96%	-2.969	
25		4	0.968		1.0150	0.9313	1.000		.0147	0.0293	3.02%	-0.209	
50		4	0.967		1.0710	0.8702	1.000		.0324	0.0649	6.71%	-0.109	
69.7		4	0.965	6 0.9008	1.0300	0.9198	1.000	0	.0204	0.0408	4.22%	0.10%)

Report Date: Test Code/ID: 22 Feb-24 12:07 (p 2 of 2) P240130.03BC / 19-6883-4716

						Test Code/ID:	P240130.03BC / 19-6883-4716
Bivalve Larval	Survival and	Developmen	nt Test				EcoAnalysts
Proportion No	rmal Detail					MD5: F940	D12F01CA89A5B3FA16B01601E5ECE
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		
0	D	0.9438	0.9341	0.9564	0.9500		
0	BC	0.9237	0.9233	0.9517	0.9468		
6.25		0.9398	0.9414	0.9326			
12.5		0.9097	0.9416	0.9401	0.9504		
25		0.9139	0.9377	0.9455	0.9325		
50		0.9418	0.9530	0.9544	0.9561		
69.7		0.9190	0.9544	0.9627	0.9529		
Proportion Sur	rvived Detail					MD5: 36D6	6E136B1BB4042928204B65A5D1F23
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		
0	D	0.9504	1.0000	1.0000	0.9160		
0	BC	0.9504	1.0000	1.0000	1.0000		
6.25		1.0000	1.0000	1.0000			
12.5		1.0000	0.9809	1.0000	1.0000		
25		0.9313	0.9809	1.0000	0.9618		
50		1.0000	1.0000	1.0000	0.8702		
69.7		0.9427	1.0000	0.9198	1.0000		
Proportion No	rmal Binomia	ıls					
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		
0	D	235/249	255/273	263/275	228/240		
0	BC	230/249	265/287	256/269	267/282		
6.25		250/266	257/273	249/267			
12.5		252/277	242/257	267/284	268/282		
25		223/244	241/257	260/275	235/252		
50		259/275	284/298	251/263	218/228		
69.7		227/247	251/263	232/241	263/276		
Proportion Sur	rvived Binom	ials					
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		
0	D	249/262	262/262	262/262	240/262		
0	BC	249/262	262/262	262/262	262/262		
6.25		262/262	262/262	262/262			
12.5		262/262	257/262	262/262	262/262		
25		244/262	257/262	262/262	252/262		
50		262/262	262/262	262/262	228/262		
69.7		247/262	262/262	241/262	262/262		

Report Date: Test Code/ID: 22 Feb-24 12:07 (p 1 of 7) P240130.03BC / 19-6883-4716

Rivalve I arval								est C	ode/ID:	1 24013	0.03BC / I	9-6883-471
Divalve Laivai	Survival and [Developme	nt Test								E	coAnalysts
Analysis ID:	16-1866-4626	En	dpoint:	Proportion N	ormal			CET	S Versio	n: CETISv2	.1.4	
	22 Feb-24 12:0	3 Ana	alysis:	Parametric-N	fultiple Compa	arison		State	ıs Level:	1		
	22 Feb-24 12:0				8E20B839E1		385	Edit	or ID:	003-841-	189-5	
Batch ID:	13-6318-1280	Tes	t Type:	Development	t-Survival			Anal	vst: D	anielle Mulliga	in	
Start Date:	30 Jan-24 16:10		tocol:	The state of the state of the	5/136 (1995)			Dilu	0	aboratory Sea		
Ending Date:	01 Feb-24 15:2		ecies:	Mytilus gallor	The state of the state of			Brin		vaporated Sea		
Test Length:			on:	Bivalvia	St. W. Science			Sou		aylor Shellfish		Age: <4
Sample ID:	18-6559-3037	Co	de:	P240130.03E	BC .			Proj	ect: W	Vyckoff Eagle I	Harbor GW	TP 2024/M
Sample Date:	30 Jan-24 09:3		terial:	Treated Grou				Soul		acobs Wyckof		6.45.20.11
Receipt Date:			S (PC):	Treated City	, 15710101			Stati		4052146_1		
Sample Age:			ent:	Jacobs Wyck	off			Stati	OII. Z	4032140_1		
Data Transform			200-1		****	NOEL	10	ci .	TOEL	Toy Units	Men	PMSD
Angular (Correc		Alt Hyp C > T			-	69.7	>69		TOEL	Tox Units	0.02439	2.58%
Bonferroni Ad						20.7					0.02.100	2.0070
	vs Conc-%	d	f Test S	Stat Critical	MSD	P-Type	P-V	alue	Decisio	on(α:5%)		
Dilution Water	6.25	5	0.851		0.05392	CDF	_	000		gnificant Effect		
Dilution water	12.5	6	1.105		0.03392	CDF		112		gnificant Effect		
	25	6	1.457	(3),747	0.04992	CDF		082		gnificant Effect		
	50	6	-0.600		0.04992	CDF		000		gnificant Effect		
	69.7	6	-0.23		0.04992	CDF		000		gnificant Effect		
Test Acceptab	ility Criteria	TAC	Limits									
Attribute	Test Stat		Uppe	r Overlag	Decision							
Control Resp	0.9461	0.9	<<	Yes	Passes C	riteria						
ANOVA Table												
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-V	/alue	Decisio	on(α:5%)		
Between	0.005104	6	0.001		5	1.35	0.2	914		gnificant Effec		
Error	0.012858		0.000		17	.,,	-	2.0	.05.7.559			
Total	0.017962	6		200	22	-						
ANOVA Assum	nptions Tests											
Attribute	Test				Test Stat	Critical	P-V	/alue	Decisio	on(α:1%)		
Variance	Bartlett E	quality of Va	ariance T	Test	5.335	15.09	0.3	764	Equal \	/ariances		
		quality of V			1.132	4.336		812		/ariances		
		ne Equality			0.3019	4.437		046		/ariances		
Distribution		-Darling A2		00.10.00	1.077	3.878		081		ormal Distribut	ion	
					0.9658	2.576	0.3			Distribution	871	
Distribution	D'Agostin	o Kurtosis					0.0			Distribution		
Distribution		o Kurtosis			2.107	2.576		JJ 1				
Distribution	D'Agostin	o Skewnes	s Test	bus Test	2.107 5.372	2.576 9.21						
Distribution	D'Agostin D'Agostin	o Skewnes o-Pearson	s Test K2 Omni	ibus Test	5.372	9.21	0.0	681	Normal	Distribution	ion	
Distribution	D'Agostin D'Agostin Kolmogor	o Skewnes	s Test K2 Omni D Test				0.0		Normal Non-No		ion	
	D'Agostin D'Agostin Kolmogoi Shapiro-V	o Skewnes o-Pearson ov-Smirnov Vilk W Norn	s Test K2 Omni D Test		5.372 0.2114	9.21 0.2097	0.0	681 090	Normal Non-No	Distribution ormal Distribut	ion	
Proportion No	D'Agostin D'Agostin Kolmogoi Shapiro-V	o Skewnes o-Pearson ov-Smirnov Vilk W Norn	s Test K2 Omni D Test	st	5.372 0.2114 0.9021	9.21 0.2097 0.88	0.0	681 090 280	Normal Non-No	Distribution ormal Distribut	cv%	%Effect
Proportion No Conc-%	D'Agostin D'Agostin Kolmogoi Shapiro-V	o Skewnes o-Pearson rov-Smirnov Vilk W Norr	s Test K2 Omni D Test nality Te	st 95% LC	5.372 0.2114 0.9021	9.21 0.2097 0.88	0.0 0.0 0.0	681 090 280	Normal Non-No Normal	Distribution ormal Distribution Distribution Std Err		%Effect 0.00%
Proportion No Conc-% 0	D'Agostin D'Agostin Kolmogor Shapiro-V ormal Summary Code	o Skewnes o-Pearson rov-Smirnov Vilk W Norn	s Test K2 Omni D Test nality Te	95% LC 1 0.9309	5.372 0.2114 0.9021 SL 95% UCL	9.21 0.2097 0.88 Median	0.0 0.0 0.0 Mir 0.9	681 090 280	Normal Non-No Normal	Distribution prmal Distributi Distribution Std Err 0.0048	CV%	
Proportion No Conc-% 0 6.25	D'Agostin D'Agostin Kolmogor Shapiro-V ormal Summary Code	o Skewnes o-Pearson rov-Smirnov Vilk W Norr Count	K2 Omni D Test nality Te Mean	95% LC 1 0.9309 9 0.9263	5.372 0.2114 0.9021 SL 95% UCL 0.9612	9.21 0.2097 0.88 Median 0.9469	0.0 0.0 0.0 Mir 0.9	681 090 280 1 341	Normal Non-Normal Normal Max 0.9564	Distribution ormal Distribution Distribution Std Err 0.0048 0.0027	CV%	0.00% 0.86%
Proportion No Conc-% 0 6.25 12.5	D'Agostin D'Agostin Kolmogor Shapiro-V ormal Summary Code	o Skewnes o-Pearson rov-Smirnov Vilk W Norr Count 4 3	K2 Omni D Test nality Te Mean 0.946 0.937 0.935	95% LC 1 0.9309 9 0.9263 5 0.9073	5.372 0.2114 0.9021 SL 95% UCL 0.9612 0.9496 0.9637	9.21 0.2097 0.88 Median 0.9469 0.9398 0.9409	0.0 0.0 0.0 Mir 0.9 0.9	681 090 280 341 326 097	Normal Non-No Normal Max 0.9564 0.9414 0.9504	Std Err 0.0048 0.0027 0.0089	CV% 1.00% 0.50% 1.90%	0.00% 0.86% 1.12%
Proportion No	D'Agostin D'Agostin Kolmogor Shapiro-V ormal Summary Code	o Skewnes o-Pearson rov-Smirnov Vilk W Norr Count 4 3 4	K2 Omni D Test nality Te Mean 0.946 0.937	95% LC 1 0.9309 9 0.9263 5 0.9073 4 0.9111	5.372 0.2114 0.9021 SL 95% UCL 0.9612 0.9496	9.21 0.2097 0.88 Median 0.9469 0.9398	0.0 0.0 0.0 Mir 0.9 0.9 0.9	681 090 280 1 341 326	Max 0.9564 0.9414	Std Err 0.0048 0.0027 0.0089 0.0067	CV% 1.00% 0.50%	0.00% 0.86%

Report Date: Test Code/ID:

22 Feb-24 12:07 (p 2 of 7) P240130.03BC / 19-6883-4716

Bivalve Larval Survival and Development Test

EcoAnalysts

Analysis ID: 16-1866-4626 Endpoint: Proportion Normal

CETIS Version:

CETISv2.1.4

Analyzed: Edit Date:

22 Feb-24 12:03 22 Feb-24 12:02 Analysis: Parametric-Multiple Comparison MD5 Hash: A74253BF098E20B839E1A95914D9D385 Status Level: Editor ID:

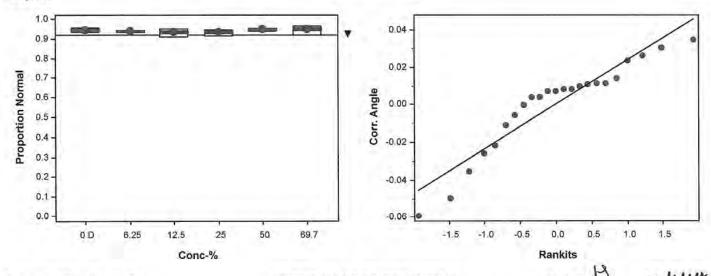
003-841-189-5

Angular	(Corrected)	Transformed	Summary
---------	-------------	-------------	---------

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	D	4	1.3370	1.3040	1.3700	1.3380	1.3110	1.3600	0.0105	1.57%	0.00%
6.25		3	1.3190	1.2950	1.3430	1.3230	1.3080	1.3260	0.0056	0.73%	1.34%
12.5		4	1.3160	1.2600	1.3710	1.3250	1.2660	1.3460	0.0174	2.64%	1.61%
25		4	1.3090	1.2670	1.3500	1.3130	1.2730	1.3350	0.0131	2.00%	2.12%
50		4	1.3490	1.3250	1.3720	1.3540	1.3270	1.3600	0.0073	1.09%	-0.87%
69.7		4	1.3420	1.2760	1.4070	1.3540	1.2820	1.3760	0.0205	3.05%	-0.34%

Proportion Normal Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	0.9438	0.9341	0.9564	0.9500
6.25		0.9398	0.9414	0,9326	
12.5		0.9097	0.9416	0.9401	0.9504
25		0.9139	0.9377	0.9455	0.9325
50		0.9418	0.9530	0.9544	0.9561
69.7		0.9190	0.9544	0.9627	0.9529


Angular (Corrected) Transformed Detail

Code	Rep 1	Rep 2	Rep 3	Rep 4	
D	1.3310	1.3110	1.3600	1.3450	
	1.3230	1.3260	1.3080		
	1.2660	1.3270	1.3240	1.3460	
	1.2730	1.3190	1.3350	1.3080	
	1.3270	1.3520	1.3560	1.3600	
	1.2820	1.3560	1.3760	1.3520	
		D 1.3310 1.3230 1.2660 1.2730 1.3270	D 1.3310 1.3110 1.3230 1.3260 1.2660 1.3270 1.2730 1.3190 1.3270 1.3520	D 1.3310 1.3110 1.3600 1.3230 1.3260 1.3080 1.2660 1.3270 1.3240 1.2730 1.3190 1.3350 1.3270 1.3520 1.3560	D 1.3310 1.3110 1.3600 1.3450 1.3230 1.3260 1.3080 1.2660 1.3270 1.3240 1.3460 1.2730 1.3190 1.3350 1.3080 1.3270 1.3520 1.3560 1.3600

Proportion Normal Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	235/249	255/273	263/275	228/240	
6.25		250/266	257/273	249/267		
12.5		252/277	242/257	267/284	268/282	
25		223/244	241/257	260/275	235/252	
50		259/275	284/298	251/263	218/228	
69.7		227/247	251/263	232/241	263/276	

Graphics

Report Date: Test Code/ID: 22 Feb-24 12:07 (p 3 of 7) P240130.03BC / 19-6883-4716

										1631	ooderib.	1 2701	0.0000	13-0000-471
Bivalve Larva	l Sur	vival and D	evelop	men	t Test								4	EcoAnalysts
Analysis ID:	08-5	822-2281		End	ooint:	Pro	portion Norr	mal		CE	TIS Version	CETISV	2.1.4	
Analyzed:	22 F	eb-24 12:05	5		ysis:		ametric-Two	the state of the state of the state of		and the same of th	atus Level:	1		
Edit Date:	22 F	eb-24 12:02	2	MD5	Hash:	BE	7D7424747	734BD8D489	921A36256	946 Ed	itor ID:	003-841	-189-5	
Batch ID:	13-6	318-1280		Test	Type:	Dev	elopment-S	urvival		An	alyst: Da	nielle Mulliga	an	
Start Date:	30 J	an-24 16:10			ocol:		V600/R-95/					oratory Sea		
Ending Date:				Spe	0000		ilus gallopro					aporated Se		
Test Length:		CD 24 10.21		Taxo			alvia	VIIICIAIIS				lor Shellfish		Age: <4
	4/11	21.501115		laxu	711.	6.0	2000			30	urce. Ta	/ioi oneillisi		Age. \4
Sample ID:		559-3037		Cod			0130.03BC				2 (1 10) 11 2 2	ckoff Eagle		WTP 2024/V
Sample Date:					rial:	Tre	ated Ground	dwater				cobs Wyckot	Ħ	
Receipt Date:				CAS	(PC):					Sta	ation: 240	052146_1		
Sample Age:	7h (5	5.6 °C)		Clie	nt:	Jac	obs Wyckof	f						
Data Transfor	rm		Alt F	lyp					Comparis	son Resu	t			PMSD
Angular (Corre	ected)		C > T						Brine Cor	ntrol passe	d proportion	normal endp	oint	1.82%
Equal Variand	ce t T	wo-Sample	Test											
Control I	vs	Control II		df	Test :	Stat	Critical	MSD	P-Type	P-Value	Decision	ı(α:5%)		
Dilution Water	5	Brine Con	trol	6	1.067		1.943	0.0363	CDF	0.1635	Non-Sign	ificant Effec	t	
Test Acceptal	bility	Criteria	т	AC L	mite									
Attribute		Test Stat			Uppe	r	Overlap	Decision						
Control Resp		0.9461	0.9		<<		Yes	Passes C	riteria					
Control Resp		0.9364	0.9		<<		Yes	Passes C						
ANOVA Table		1.42	-			-		of Children Care						
Source		Sum Squ	ares		Mean	Sai	are	DF	F Stat	P-Value	Decision	(a:5%)		
Between	-	0.0007948			0.000			1	1.139	0.3270		ificant Effec	t	
Error		0.0041879			0.000			6		(4,44,7				
Total		0.0049827						7	-					
ANOVA Assu	mptic	ns Tests												
Attribute		Test						Test Stat	Critical	P-Value	Decision	(a:1%)		
Variance		Levene Ed	ruality i	of Va	riance '	Test		3.624	13.75	0.1056	Equal Va			
v dilailoc		Mod Leve					Test	3.327	13.75	0.1030	Equal Va			
		Variance I			, valla		1001	2.183	47.47	0.5378	Equal Va			
Distribution		Anderson-		1000	Fact			0.5108	3.878	0.2001		Distribution		
DISTRIBUTION		Kolmogori						0.2304	0.3313	0.2686		Distribution		
		Shapiro-W				st		0.8677	0.6451	0.1431		Distribution		
Proportion N	orma		7.12.4.01			100		7.77	The state of	- CC /C1				
Conc-%	Jillia	Code	Cour	nt.	Mear		95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0		BC	4	ii.	0.936		0.9125	0.9602	0.9353	0.9233	0.9517	0.0075	1.60%	1.02%
0		D	4		0.946		0.9309	0.9612	0.9353	0.9233	0.9564	0.0075	1.00%	0.00%
Angular (Cor	racta		-	umm				7	270.753		3-75-70	100-5-60	70.5698	11.32.90
	recte				ary Mear		05% 1.01	05% 1101	Median	Min	May	Q44 E	CV9/	0/ E#act
Conc-%		Code	Cour	it			95% LCL	95% UCL	4-10-20-21	Min	Max	Std Err	CV%	%Effect
0		BC D	4		1.317		1.2680	1.3660 1.3700	1.3140 1.3380	1.2900	1.3490 1.3600	0.0155 0.0105	2.35% 1.57%	1.49% 0.00%
	0.000	7 1 1 2 1 1 1	7	_	1.007	×	1.0010	1.07.00	1.0000	1.0110	1.0000	0.0100	1.57 70	0.0070
Proportion N	orma		12.0		2.3		1671.4	200						
Conc-%		Code	Rep		Rep		Rep 3	Rep 4				-		
0		BC	0.923		0.923		0.9517	0.9468						
0		D	0.943	38	0.934	1	0.9564	0.9500						

Report Date: Test Code/ID:

Editor ID:

22 Feb-24 12:07 (p 4 of 7) P240130.03BC / 19-6883-4716

Bivalve Larval Survival and Development Test

EcoAnalysts

Analysis ID: 08-5822-2281

Endpoint: Proportion Normal

CETIS Version: CETISv2.1.4

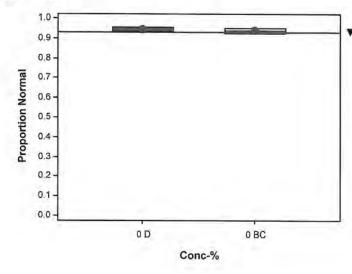
Analyzed: Edit Date: 22 Feb-24 12:05 22 Feb-24 12:02

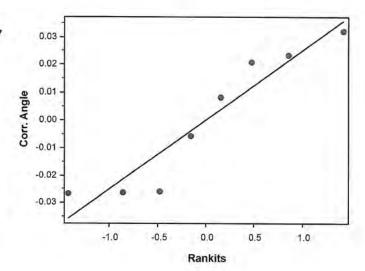
Analysis: Parametric-Two Sample

MD5 Hash: BE57D742474734BD8D48921A36256946

Status Level:

003-841-189-5


Angular (Corrected) Transformed Detail


Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	BC	1.2910	1.2900	1.3490	1.3380	
0	D	1.3310	1.3110	1.3600	1.3450	

Proportion Normal Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	BC	230/249	265/287	256/269	267/282
0	D	235/249	255/273	263/275	228/240

Graphics

Report Date: Test Code/ID: 22 Feb-24 12:07 (p 5 of 7) P240130.03BC / 19-6883-4716

Analyzed: 22 Fel Edit Date: 22 Fel Batch ID: 13-63: Start Date: 30 Jar Ending Date: 01 Fel Test Length: 47h Sample ID: 18-65: Sample Date: 30 Jar Receipt Date: 30 Jar Receipt Date: 30 Jar Sample Age: 7h (5.6) Data Transform Angular (Corrected) Bonferroni Adj t Tes Control vs Dilution Water Test Acceptability C Attribute	11-6400 b-24 12:04 b-24 12:02 18-1280 n-24 16:10 b-24 15:21 59-3037 n-24 09:35 n-24 11:54 6 °C)	End Ana MDS Test Prof Spe Taxe Cod Mate	point:	22-5-09-12	tiple Compa 956DE2BE5 curvival 136 (1995) ovincialis		LOE >69	Analy Dilue Brine Sour Proje Sour Statio	yst: Dent: Le: E		1.4 189-5 n vater water	
Analyzed: 22 Fel Edit Date: 22 Fel Batch ID: 13-63: Start Date: 30 Jar Ending Date: 01 Fel Test Length: 47h Sample ID: 18-65: Sample Date: 30 Jar Receipt Date: 30 Jar Receipt Date: 30 Jar Sample Age: 7h (5.6) Data Transform Angular (Corrected) Bonferroni Adj t Tes Control vs Dilution Water Test Acceptability C Attribute	b-24 12:04 b-24 12:02 18-1280 n-24 16:10 b-24 15:21 59-3037 n-24 09:35 n-24 11:54 6 °C) st Conc-% 6.25 12.5 25 50 69.7	Ana MDS Test Prof Spe Tax Cod Matt CAS Clie Alt Hyp C > T df 5 6 6	ysis: F F F F F F F F F	Parametric-Mul 31C2B66CA089 Development-S EPA/600/R-95/ Mytilus gallopro Bivalvia P240130.03BC Treated Ground Jacobs Wyckof	tiple Compa 956DE2BE5 curvival 136 (1995) ovincialis	695EA5097	LOE	Analy Dilue Brine Sour Proje Sour Statio	is Level: or ID: yst: D int: L e: E ce: T ect: V ce: J on: 2	1 003-841-1 vanielle Mulligar aboratory Seave vaporated Seave aylor Shellfish vyckoff Eagle H acobs Wyckoff 4052146_1	189-5 n vater water darbor GW	TP 2024/W
Edit Date: 22 Fel Batch ID: 13-63: Start Date: 30 Jar Ending Date: 01 Fel Test Length: 47h Sample ID: 18-65: Sample Date: 30 Jar Receipt Date: 30 Jar Receipt Date: 37h (5.6) Data Transform Angular (Corrected) Bonferroni Adj t Test Control vs Dilution Water Test Acceptability C Attribute	b-24 12:02 18-1280 n-24 16:10 b-24 15:21 59-3037 n-24 09:35 n-24 11:54 6 °C) et Conc-% 6.25 12.5 25 50 69.7	Test Prof Spe Tax Cod Matt CAS Clie Alt Hyp C > T	trype: It rype: It ry	31C2B66CA089 Development-S EPA/600/R-95/ Mytilus gallopro Bivalvia P240130.03BC Freated Ground Jacobs Wyckof	956DE2BE5 urvival 136 (1995) ovincialis dwater	695EA5097	LOE	Analy Dilue Brine Sour Proje Sour Statio	or ID: yst: D yst: D ce: E ce: T cet: V ce: J ce: J TOEL	003-841-1 Danielle Mulligar aboratory Seave vaporated Seave aylor Shellfish Vyckoff Eagle H acobs Wyckoff 4052146_1 Tox Units	n vater water darbor GW	TP 2024/W
Batch ID: 13-63: Start Date: 30 Jar Ending Date: 01 Fel Test Length: 47h Sample ID: 18-65: Sample Date: 30 Jar Receipt Date: 30 Jar Sample Age: 7h (5.6) Data Transform Angular (Corrected) Bonferroni Adj t Test Control vs Dilution Water Test Acceptability C Attribute	18-1280 n-24 16:10 b-24 15:21 59-3037 n-24 09:35 n-24 11:54 6 °C) st Conc-% 6.25 12.5 25 50 69.7	Test Prof Spe Tax Cod Matr CAS Clie Alt Hyp C > T	t Type: It tocol: It tocol	Development-S EPA/600/R-95/ Mytilus gallopro Bivalvia P240130.03BC Freated Ground Jacobs Wyckof	urvival 136 (1995) vincialis dwater	NOEL	LOE	Analy Dilue Brine Sour Proje Sour Statio	yst: Dent: Le: Ece: Toet: Vice: Jon: 2	anielle Mulligar aboratory Seav vaporated Seav aylor Shellfish Vyckoff Eagle H acobs Wyckoff 4052146_1	n vater water darbor GW	TP 2024/W
Start Date: 30 Jar Ending Date: 01 Fel Test Length: 47h Sample ID: 18-658 Sample Date: 30 Jar Receipt Date: 30 Jar Sample Age: 7h (5.6) Data Transform Angular (Corrected) Bonferroni Adj t Test Control vs Dilution Water Test Acceptability C Attribute	n-24 16:10 b-24 15:21 59-3037 n-24 09:35 n-24 11:54 6 °C) st Conc-% 6.25 12.5 25 50 69.7	Prof Spe Tax Cod Matr CAS Clie Alt Hyp C > T	rocol: I cies:	EPA/600/R-95/ Mytilus gallopro Bivalvia P240130.03BC Treated Ground Jacobs Wyckof	136 (1995) ovincialis dwater			Dilue Brine Sour Proje Sour Statio	ent: L e: E ce: T ect: V ce: J on: 2	aboratory Seave vaporated Seave aylor Shellfish Vyckoff Eagle Hacobs Wyckoff 4052146_1 Tox Units	vater water darbor GW	PMSD
Ending Date: 01 Fel Test Length: 47h Sample ID: 18-655 Sample Date: 30 Jar Receipt Date: 30 Jar Sample Age: 7h (5.6 Data Transform Angular (Corrected) Bonferroni Adj t Test Control vs Dilution Water Test Acceptability C Attribute	59-3037 n-24 09:35 n-24 11:54 6 °C) est Conc-% 6.25 12.5 25 50 69.7	Prof Spe Tax Cod Matr CAS Clie Alt Hyp C > T	rocol: I cies:	EPA/600/R-95/ Mytilus gallopro Bivalvia P240130.03BC Treated Ground Jacobs Wyckof	136 (1995) ovincialis dwater			Dilue Brine Sour Proje Sour Statio	ent: L e: E ce: T ect: V ce: J on: 2	aboratory Seave vaporated Seave aylor Shellfish Vyckoff Eagle Hacobs Wyckoff 4052146_1 Tox Units	vater water darbor GW	TP 2024/W
Test Length: 47h Sample ID: 18-65: Sample Date: 30 Jar Receipt Date: 30 Jar Receipt Date: 7h (5.6 Data Transform Angular (Corrected) Bonferroni Adj t Test Control vs Dilution Water Test Acceptability C Attribute	59-3037 n-24 09:35 n-24 11:54 6 °C) st Conc-% 6.25 12.5 25 50 69.7	Spe Tax Cod Matr CAS Clie Alt Hyp C>T df 5 6 6 6	cies: fon: le: fon: le: fon: le: fon: fon:	Mytilus gallopro Bivalvia P240130.03BC Freated Ground Jacobs Wyckof	ovincialis Iwater			Brine Sour Proje Sour Statio	e: E ce: T ect: V ce: J on: 2	vaporated Sear aylor Shellfish Vyckoff Eagle H acobs Wyckoff 4052146_1 Tox Units	water larbor GW	TP 2024/W
Test Length: 47h Sample ID: 18-65: Sample Date: 30 Jar Receipt Date: 30 Jar Receipt Date: 7h (5.6 Data Transform Angular (Corrected) Bonferroni Adj t Test Control vs Dilution Water Test Acceptability C Attribute	59-3037 n-24 09:35 n-24 11:54 6 °C) st Conc-% 6.25 12.5 25 50 69.7	Cod Mate CAS Clie Alt Hyp C>T	e: I erial: i (PC): nt:	Bivalvia P240130.03BC Freated Ground Jacobs Wyckof	iwater f			Proje Sour Statio	ce: Tect: Vice: Ji con: 2	aylor Shellfish Vyckoff Eagle H acobs Wyckoff 4052146_1 Tox Units	farbor GW	TP 2024/W
Sample Date: 30 Jar Receipt Date: 30 Jar Receipt Date: 30 Jar Rample Age: 7h (5.6 Data Transform Angular (Corrected) Bonferroni Adj t Tes Control vs Dilution Water Test Acceptability C Attribute	n-24 09:35 n-24 11:54 6 °C) est Conc-% 6.25 12.5 25 50 69.7	Mate CAS Clie Alt Hyp C > T df 5 6 6	erial: ; (PC): nt: Test St	Treated Ground Jacobs Wyckof	iwater f			Sour	ce: Jon: 2	acobs Wyckoff 4052146_1 Tox Units	MSDu	PMSD
Sample Date: 30 Jar Receipt Date: 30 Jar Receipt Date: 30 Jar Rample Age: 7h (5.6 Data Transform Angular (Corrected) Bonferroni Adj t Tes Control vs Dilution Water Test Acceptability C Attribute	n-24 09:35 n-24 11:54 6 °C) est Conc-% 6.25 12.5 25 50 69.7	Mate CAS Clie Alt Hyp C > T df 5 6 6	erial: ; (PC): nt: Test St	Treated Ground Jacobs Wyckof	iwater f			Sour	ce: Jon: 2	acobs Wyckoff 4052146_1 Tox Units	MSDu	PMSD
Receipt Date: 30 Jar Sample Age: 7h (5.6) Data Transform Angular (Corrected) Bonferroni Adj t Tes Control vs Dilution Water Test Acceptability C Attribute	n-24 11:54 6 °C) st Conc-% 6.25 12.5 25 50 69.7	CAS Clie Alt Hyp C > T df 5 6 6	Test St	Jacobs Wyckof	f			Statio	on: 2	4052146_1 Tox Units	MSDu	
Sample Age: 7h (5.6 Data Transform Angular (Corrected) Bonferroni Adj t Tes Control vs Dilution Water Test Acceptability C Attribute	6 °C) st Conc-% 6.25 12.5 25 50 69.7	Clie Alt Hyp C > T df 5 6 6	Test St	at Critical	1			L	TOEL	Tox Units		
Data Transform Angular (Corrected) Bonferroni Adj t Tes Control vs Dilution Water Test Acceptability C Attribute	Conc-% 6.25 12.5 25 50 69.7	Alt Hyp C > T df 5 6 6	Test St	at Critical	1							
Angular (Corrected) Bonferroni Adj t Tes Control vs Dilution Water Test Acceptability C Attribute	Conc-% 6.25 12.5 25 50 69.7	C > T df 5 6 6	-1.275	22-5-09-12	I							
Bonferroni Adj t Tes Control vs Dilution Water Test Acceptability C	Conc-% 6.25 12.5 25 50 69.7	df 5 6	-1.275	22-5-09-12	e.l.	00.7	- 00	.,	1.00	1.0	0.00001	3,2370
Control vs Dilution Water Test Acceptability C Attribute	Conc-% 6.25 12.5 25 50 69.7	5 6 6	-1.275	22-5-09-12								
Dilution Water Test Acceptability C Attribute	6.25 12.5 25 50 69.7	5 6 6	-1.275	22-5-09-12	MED	D.T	n.v.	al	D	m/m/F0/3		
Test Acceptability C Attribute	12.5 25 50 69.7	6	2.00	2.567	MSD 0.2299	P-Type CDF	1.00	alue		on(α:5%) gnificant Effect		
Test Acceptability C Attribute	25 50 69.7	6		2.567	0.2129	CDF	1.00			gnificant Effect		
Test Acceptability C Attribute	50 69.7	12	0.1535	2.567	0.2129	CDF	1.00			gnificant Effect		
Test Acceptability C Attribute	69.7	0	-0.3594	A. A. A. A. A.	0.2129	CDF	1.00			gnificant Effect		
Attribute	ritoria	6	0.03023		0.2129	CDF	1.00			gnificant Effect		
Attribute	litelia	TAC L	imite		V			9121	101.2	*) W 1 5 - 18-10		
Cartes Dates	Test Stat		Upper	Overlap	Decision							
Control Resp	0.9666	0.5	<<	Yes	Passes Cr	iteria						
ANOVA Table												
Source	Sum Squar	res	Mean S	Square	DF	F Stat	P-V	alue	Decisio	on(a:5%)		
F-10-11-1	0.0493728		0.0098	-7	5	0.718	0.61	88		gnificant Effect		
Error	0.233814		0.0137		17	500 (5)	2.3	100	General.	311111111111111111111111111111111111111		
	0.283187		AVE 4.6.		22	-						
ANOVA Assumption	s Tests											
Attribute	Test				Test Stat	Critical	P-V	alue	Decisio	on(a:1%)		
Variance	Bartlett Equ	ality of Va	riance Te	est	54.8	15.09	<1.0	E-05	Unequa	al Variances		
	Levene Equ				4.292	4.336	0.01		A	/ariances		
	Mod Leven				1.008	4.437	0.44			/ariances		
	Anderson-D			921/921	0.6206	3.878	0.10			Distribution		
	D'Agostino				0.1493	2.576	0.88			Distribution		
	D'Agostino				1.474	2.576	0.14			Distribution		
	D'Agostino-			us Test	2.194	9.21	0.33			Distribution		
	Kolmogorov			40 1000	0.1522	0.2097	0.17			Distribution		
	Shapiro-Wil				0.9259	0.88	0.08			Distribution		
Proportion Survived	Summary											
		Count	Mean	95% LCL	95% UCL	Median	Min		Max	Std Err	CV%	%Effect
0	D	4	0.9666	0.9013	1.0000	0.9835	0.91		1.0000	0.0205	4.25%	0.00%
6.25		3	1.0000	1.0000	1.0000	1.0000	1.00	000	1.0000	0.0000	0.00%	-3.46%
12.5		4	0.9952	0.9800	1.0000	1.0000	0.98	309	1.0000	0.0048	0.96%	-2.96%
25		4	0.9685	0.9219	1.0000	0.9714	0.93		1.0000	0.0147	3.02%	-0.20%
		4	0.9676		1.0000	1.0000	0.87		1.0000	0.0324	6.71%	-0.10%
50			0.9656		1.0000	0.9809	0.07	20	110000	0.0024	J.1 170	U. 10 /0

Report Date: Test Code/ID: 22 Feb-24 12:07 (p 6 of 7) P240130.03BC / 19-6883-4716

Bivalve Larval Survival and Development Test

EcoAnalysts

Analysis ID: 16-5011-6400

Endpoint: Proportion Survived

CETIS Version:

Analyzed: 22 Feb-24 12:04 Edit Date: 22 Feb-24 12:02 Analysis: Parametric-Multiple Comparison
MD5 Hash: 81C2B66CA08956DE2BE5695EA5097439

Status Level:

Editor ID:

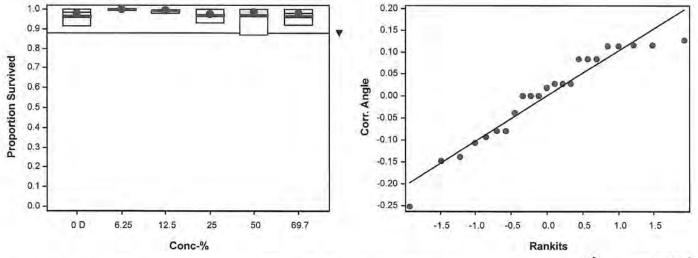
CETISv2.1.4 1 003-841-189-5

Angular (Corrected) Transformed Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	D	4	1.4260	1.2110	1.6400	1.4750	1.2770	1.5400	0.0674	9.46%	0.00%
6.25		3	1.5400	1.5390	1.5410	1.5400	1.5400	1.5400	0.0000	0.00%	-8.01%
12.5		4	1.5130	1.4270	1.5990	1.5400	1.4320	1.5400	0.0269	3.56%	-6.12%
25		4	1.4130	1.2550	1.5710	1.4030	1.3060	1.5400	0.0496	7.02%	0.89%
50		4	1.4550	1.1870	1.7240	1.5400	1.2020	1.5400	0.0844	11.60%	-2.09%
69.7		4	1.4230	1.2070	1.6400	1.4700	1.2840	1.5400	0.0680	9.56%	0.18%

Proportion Survived Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	0.9504	1.0000	1.0000	0.9160
6.25		1.0000	1.0000	1.0000	
12.5		1.0000	0.9809	1.0000	1.0000
25		0.9313	0.9809	1.0000	0.9618
50		1.0000	1.0000	1.0000	0.8702
69.7		0.9427	1.0000	0.9198	1.0000


Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.3460	1.5400	1,5400	1.2770
6.25		1.5400	1.5400	1.5400	
12.5		1.5400	1.4320	1.5400	1.5400
25		1.3060	1.4320	1.5400	1.3740
50		1.5400	1.5400	1.5400	1.2020
69.7		1.3290	1.5400	1.2840	1.5400

Proportion Survived Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	249/262	262/262	262/262	240/262	
6,25		262/262	262/262	262/262		
12.5		262/262	257/262	262/262	262/262	
25		244/262	257/262	262/262	252/262	
50		262/262	262/262	262/262	228/262	
69.7		247/262	262/262	241/262	262/262	

Graphics

Convergent Rounding (4 sf)

CETIS™ v2.1.4.6 x64 (003-841-189-5)

a Mara

Report Date: Test Code/ID: 22 Feb-24 12:07 (p 7 of 7) P240130.03BC / 19-6883-4716

										Test	Codenib.	1 2401	30.03BC /	19-0003-47
Bivalve Larva	I Surv	vival and D	evelop	men	t Test								I	EcoAnalyst
Analysis ID:	13-92	281-0414		Endp	point:	Prop	ortion Surv	rived		CE	TIS Version	: CETISV	2.1.4	
Analyzed:	22 Fe	b-24 12:05		Anal	ysis:		metric-Two			St	atus Level:	1	77.7	
Edit Date:	22 Fe	b-24 12:02		MD5	Hash:	52BI	DD65087D	82905B17C	FFDB855A	024A Ec	litor ID:	003-841	-189-5	
Batch ID:	13-63	18-1280	1	Test	Type:	Deve	elopment-S	urvival		Ar	alyst: Da	nielle Mullig	an	
Start Date:	30 Ja	n-24 16:10			ocol:		/600/R-95/					oratory Sea		
Ending Date:	01 Fe	b-24 15:21		Spec	ies:		us gallopro			Br		aporated Se		
Test Length:				Taxo		Biva	2.72			100		ylor Shellfish		Age: <4
Sample ID:	18-65	559-3037		Code	e:	P240	0130.03BC			Pr	oject: Wy	ckoff Eagle	Harbor GV	VTP 2024A
Sample Date:	30 Ja	n-24 09:35		Mate	rial:	Trea	ted Ground	lwater				cobs Wycko		
Receipt Date:	30 Ja	n-24 11:54		CAS	(PC):							052146_1		
Sample Age:	7h (5	.6 °C)		Clier	100	Jaco	bs Wyckof	f				-		
Data Transfor	m		Alt H	lyp					Comparis	son Resu	lt			PMSD
Angular (Corre	cted)		C > T								d proportion	survived en	dpoint	5.96%
Equal Variano	e t Tv	vo-Sample	Test											
Control I	vs	Control II		df	Test S	Stat	Critical	MSD	P-Type	P-Value	Decision	n(a:5%)		
Dilution Water		Brine Cont	trol	6	-0.792	22	1.943	0.1613	CDF	0.7708	Non-Sigr	ificant Effec	et -	
Test Acceptat	oility (Criteria	т/	AC Li	mite									
Attribute		Test Stat			Uppe	r .	Overlap	Decision						
Control Resp		0.9666	0.5		<<		Yes	Passes Ci	riteria					
Control Resp		0.9876	0.5		<<		Yes	Passes Ci	2.27					
ANOVA Table														
Source		Sum Squa	ares		Mean	Squa	are	DF	F Stat	P-Value	Decision	ı(a:5%)		
Between		0.0086525	i		0.008	6525		1	0.6275	0.4584	Non-Sign	ificant Effect	:t	
Error		0.082732			0.013	7887		6			323 731			
Total		0.0913845						7						
ANOVA Assur	mptio	ns Tests												
Attribute		Test						Test Stat	Critical	P-Value	Decision	n(a:1%)		
Variance		Levene Eq	quality o	of Var	riance 1	Test		2.195	13.75	0.1890	Equal Va	Equal Variances		
		Mod Lever	ne Equa	ality o	of Varia	nce T	est	1.635	13.75	0.2483	3 Equal Variances			
		Variance F	Ratio F	F Test				1.939	47.47	0.6003	Equal Va	Equal Variances		
Distribution		Anderson-	Darling	A2 T	est			0.6526	3.878	0.0889	Normal D	Normal Distribution		
		Kolmogoro	Kolmogorov-Smirnov D Test 0.29		0.297	0.3313	0.0363	Normal D	Distribution					
		Shapiro-W	ilk W N	Norma	ality Te	st		0.8404	0.6451	0.0761	Normal [Distribution		
Proportion Su	ırvive	d Summar	У											
Conc-%		Code	Coun	it	Mean		95% LCL			Min	Max	Std Err	CV%	%Effect
0		BC	4		0.987		0.9481	1.0000	1.0000	0.9504	1.0000	0.0124	2.51%	-2.17%
0		D	4		0.966	6	0.9013	1.0000	0.9835	0.9160	1.0000	0.0205	4,25%	0.00%
Angular (Corr	ected) Transform	med Su	ımm	ary									
Conc-%		Code	Coun	t	Mean		95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0		BC	4		1.491	0	1.3370	1.6460	1.5400	1.3460	1.5400	0.0484	6.50%	-4.61%
0		D	4		1.426	0	1.2110	1.6400	1.4750	1.2770	1.5400	0.0674	9.46%	0.00%
		d Detail												
Proportion Su	ırvive	u Detail												
Proportion Su Conc-%	ırvive	Code	Rep 1	1	Rep 2		Rep 3	Rep 4						
	urvive		Rep 1		Rep 2		Rep 3	Rep 4 1.0000						

Report Date: Test Code/ID: 22 Feb-24 12:07 (p 8 of 7) P240130.03BC / 19-6883-4716

Bivalve Larval Survival and Development Test

EcoAnalysts

Analysis ID: 13-9281-0414

Endpoint: Proportion Survived

CETIS Version:

ECOAnalyst

Analyzed: 22 Feb-24 12:05

Analysis: Parametric-Two Sample

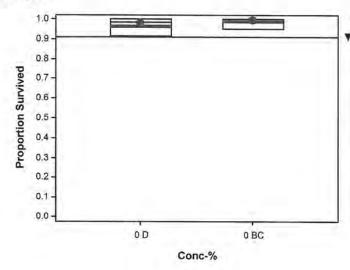
MD5 Hash: 52BDD65087D82905B17CFFDB855A024A Editor ID:

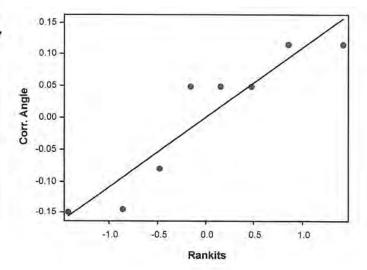
Status Level:

CETISv2.1.4 1 003-841-189-5

Angular (Corrected) Transformed Detail

22 Feb-24 12:02


Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	BC	1.3460	1.5400	1.5400	1.5400
0	D	1.3460	1.5400	1.5400	1.2770


Proportion Survived Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	BC	249/262	262/262	262/262	262/262	
0	D	249/262	262/262	262/262	240/262	

Graphics

Edit Date:

Report Date:

22 Feb-24 12:07 (p 1 of 4)

. 6. 70.00	A Date of the Land	27.						Test C	ode/ID:	P240130	.03BC / 1	9-6883-471
Bivalve Larva	al Survival and D	evelopmen	t Test								E	coAnalysts
Analysis ID:	20-2099-4460	End	point: P	oportion Norn	nal			CET	IS Version	: CETISv2.	1.4	
Analyzed:	22 Feb-24 12:04	200	**************************************	near Interpola	and the second second			Stat	us Level:	1		
Edit Date:	22 Feb-24 12:02	MD5	Hash: A	74253BF098E	20B839E1	A95914D	9D385	Edit	or ID:	003-841-1	89-5	
Batch ID:	13-6318-1280	Test	Type: De	evelopment-S	urvival			Ana	lyst: Da	nielle Mulligar		
Start Date:	30 Jan-24 16:10	Prot	ocol: El	PA/600/R-95/	136 (1995)			Dilu	ent: La	boratory Seaw	ater	
	01 Feb-24 15:21	Spe	cies: M	ytilus gallopro	vincialis			Brin		aporated Seav	water	
Test Length:	47h	Taxo	on: Bi	valvia				Sou	rce: Ta	ylor Shellfish		Age: <4h
Sample ID:	18-6559-3037	Cod	e: P	240130.03BC				Proj	ect: W	yckoff Eagle H	arbor GW	/TP 2024/W
	: 30 Jan-24 09:35			eated Ground	water			Sou		cobs Wyckoff		
	: 30 Jan-24 11:54		(PC):	and the Control				Stat	ion: 24	052146_1		
Sample Age:	7h (5.6 °C)	Clie	nt: Ja	cobs Wyckof	f							
Linear Interp	olation Options											
X Transform	Y Transform			Resamples			ethod					
Log(X+1)	Linear	9551	129	200	Yes	T	wo-Poin	t Interp	oolation			
Test Accepta	bility Criteria	TAC L	imits									
Attribute	Test Stat	Lower	Upper	Overlap	Decision	1						
Control Resp	0.9461	0.9	<<	Yes	Passes C	riteria						
Point Estima	tes											
Level %	95% LCL	95% UCL	Tox Unit	ts 95% LCL	95% UCL							
EC25 >69.	7	-	<1.4	440								
EC50 >69.	7 —		<1.4	4								
Proportion N	formal Summary				Calculate	d Variate	(A/B)				Isoto	nic Variate
Conc-%	Code	Count	Mean	Median	Min	Max	CV	1%	%Effect	ΣΑ/ΣΒ	Mean	%Effect
0	D	4	0.9461	0.9469	0.9341	0.9564	9.000	00%	0.00%	981/1037	0.9460	0.00%
6.25		3	0.9379	0.9398	0.9326	0.9414		0%	0.86%	756/806	0.9410	0.53%
12.5		4	0.9355	0.9409	0.9097	0.9504		90%	1.12%	1029/1100		0.53%
25		4	0.9324	0.9351	0.9139	0.9455		4%	1.44%	959/1028		0.53%
50 60 7		4	0.9513	0.9537	0.9418	0.9561		8%	-0.56%	1012/1064		0.53%
69.7		4	0.9472	0.9536	0.9190	0.9627	2.0	14%	-0.13%	973/1027	0.9410	0.53%
Proportion N		- T T	- P. S.	NOTE OF	50 V							
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4							
0	D	0.9438	0.9341	0.9564	0.9500							
6.25		0.9398	0,9414	0.9326								
12.5		0.9097	0.9416	0.9401	0.9504							
25		0.9139	0.9377	0.9455	0.9325							
50		0.9418	0.9530	0.9544	0.9561							
69.7		0.9190	0.9544	0.9627	0.9529							
Proportion N	lormal Binomials											
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4							
0	D	235/249	255/273	263/275	228/240							
6.25		250/266	257/273	249/267								
12.5		252/277	242/257	267/284	268/282							
25		223/244	241/257	260/275	235/252							
50		259/275	284/298	251/263	218/228							

263/276

227/247 251/263 232/241

69.7

Report Date:

22 Feb-24 12:07 (p 2 of 4)

Test Code/ID:

P240130.03BC / 19-6883-4716

Bivalve Larval Survival and Development Test

EcoAnalysts

Analysis ID: Analyzed:

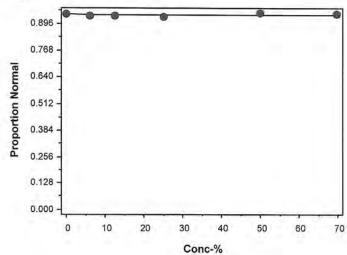
20-2099-4460

Proportion Normal Endpoint:

Linear Interpolation (ICPIN)

CETIS Version:

CETISv2.1.4


Edit Date:

22 Feb-24 12:04 22 Feb-24 12:02 Analysis: MD5 Hash: A74253BF098E20B839E1A95914D9D385

Status Level: Editor ID:

003-841-189-5

Graphics

Report Date: Test Code/ID: 22 Feb-24 12:07 (p 3 of 4) P240130.03BC / 19-6883-4716

									rest (Jode/ID:		P240130	JUSBC /	19-6883-4/1
Bivalve	Larva	l Survival and D	evelopme	nt Test									- 1	coAnalysts
Analysi Analyze Edit Da	alyzed: 22 Feb-24 12:04 Analysis: Linear			Linear Interpola	oportion Survived lear Interpolation (ICPIN) C2B66CA08956DE2BE5695EA5097439				TIS Version tus Level tor ID:	3.14	CETISv2. 1 003-841-1			
Batch I Start Da Ending Test Le	ate: Date:	13-6318-1280 30 Jan-24 16:10 01 Feb-24 15:21 47h	Pro Spe	Test Type: Development-Survival Protocol: EPA/600/R-95/136 (1995) Species: Mytilus galloprovincialis Taxon: Bivalvia			Dili Bri	uent: L ne: E	abor Evapo	elle Mulligar ratory Seaw orated Seav or Shellfish	ater	Age: <4		
Receipt	Date: t Date:	18-6559-3037 30 Jan-24 09:35 30 Jan-24 11:54 7h (5.6 °C)		erial: 6 (PC):	P240130.03BC Treated Ground Jacobs Wyckof	dwater			So	oject: V urce: J		off Eagle Harbor GWTP 202 os Wyckoff		
Linear I	Interpo	lation Options												
X Trans	sform	Y Transform	See	d	Resamples	Exp 95%	CL	Method	1					
Log(X+	1)	Linear	108	6935	200	Yes		Two-Po	int Inter	polation				
Test Ac	ceptab	oility Criteria	TAC L	imits						n 422 a 4 b				
Attribut	te	Test Stat		Upper	Overlap	Decision								
Control	Resp	0.9666	0.5	<<	Yes	Passes C	riteria							
Point E	stimate	es												
Level	%	95% LCL	95% UCL	Tox Ur	nits 95% LCL	95% UCL								
EC25	>69.7		***	<1.4		_								
EC50	>69.7	12	***	<1.4		_								
Proport	tion Su	rvived Summary	y			Calculate	d Vari	ate(A/B)					Isoto	nic Variate
Conc-%	6	Code	Count	Mean	Median	Min	Max		cv%	%Effec	et	ΣΑ/ΣΒ	Mean	%Effect
0		D	4	0.9666	C 10 27.77	0.9160	1.00	000 4	.25%	0.00%	7.77	1013/1048	0.9873	0.00%
6.25			3	1.0000		1.0000	1.00		0.00%	-3.46%		786/786	0.9873	0.00%
12.5			4	0.9952	0.000	0.9809	1.00		.96%	-2.96%		1043/1048		0.00%
25 50			4	0.9685	166.4 (17.6)	0.9313	1.00		3.02%	-0.20%		1015/1048		1.90%
69.7			4	0.9676	13215	0.8702	1.00		5.71%	-0.10%		1014/1048		2.00%
09.7			4	0.9656	0.9809	0.9198	1.00	000 4	.22%	0.10%		1012/1048	0.9656	2.20%
Proport	tion Su	rvived Detail												
Conc-%	6	Code	Rep 1	Rep 2	Rep 3	Rep 4								
0		D	0.9504	1.0000	1.0000	0.9160								
6.25			1.0000	1,0000	1.0000									
12.5			1.0000	0.9809	1.0000	1.0000								
25			0.9313	0.9809	1.0000	0.9618								
			1.0000	1.0000	1.0000	0.8702								
50			0.0407	1.0000	0.9198	1.0000								
	-		0.9427	1.0000	-30100									
69.7	tion Su	rvived Binomial		1.0000										
69.7 Proport		rvived Binomial Code		Rep 2	Rep 3	Rep 4								
69.7 Proport Conc-%			s	14.2.2	Rep 3									
69.7 Proport Conc-%		Code	s Rep 1	Rep 2	Rep 3 2 262/262	Rep 4								
69.7 Proport Conc-% 0 6.25		Code	Rep 1 249/262	Rep 2 262/26	Rep 3 2 262/262 2 262/262	Rep 4								
50 69.7 Proport Conc-% 0 6.25 12.5 25		Code	s Rep 1 249/262 262/262	Rep 2 262/26 262/26	Rep 3 2 262/262 2 262/262 2 262/262	Rep 4 240/262								
69.7 Proport Conc-% 0 6.25 12.5		Code	Rep 1 249/262 262/262 262/262	Rep 2 262/26 262/26 257/26	Rep 3 2 262/262 2 262/262 2 262/262 2 262/262	Rep 4 240/262 262/262								

Report Date: Test Code/ID:

Editor ID:

22 Feb-24 12:07 (p 4 of 4) P240130.03BC / 19-6883-4716

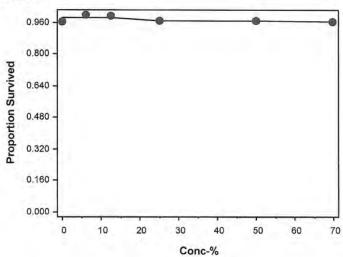
Bivalve Larval Survival and Development Test

EcoAnalysts

Analysis ID: 11-1031-6784

Endpoint: Proportion Survived

CETIS Version:


Analyzed: 22 Feb-24 12:04 **Edit Date:** 22 Feb-24 12:02

Linear Interpolation (ICPIN) Analysis: MD5 Hash: 81C2B66CA08956DE2BE5695EA5097439

CETISv2.1.4 Status Level: 1

003-841-189-5

Graphics

Sample Date: 30 Jan-24 09:35

Start Date:

End Date:

Report Date:

22 Feb-24 12:03 (p 1 of 1)

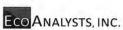
EcoAnalysts

Test Code/ID: P240130.03BC / 19-6883-4716

Bivalve Larval Survival and Development Test

01 Feb-24 15:21

30 Jan-24 16:10 Species: Mytilus galloprovincialis


Protocol: EPA/600/R-95/136 (1995)

Material: Treated Groundwater

Sample Code: P240130.03BC

Sample Source: Jacobs Wyckoff Sample Station: 24052146_1

Conc-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	BC	1	9	262	249	249	230	
0	BC	2	5	262	287	287	265	
0	ВС	3	24	262	269	269	256	
0	BC	4	6	262	282	282	267	
0	D	1	10	262	249	249	235	
0	D	2	2	262	273	273	255	
0	D	3	25	262	275	275	263	
0	D	4	15	262	240	240	228	
6.25		1	12	262	266	266	250	
6.25		2	8	262	273	273	257	
6.25		3	27	262	267	267	249	
12.5		1	13	262	277	277	252	
12.5		2	18	262	257	257	242	
12.5		3	21	262	284	284	267	
12.5		4	7	262	282	282	268	
25		1	19	262	244	244	223	
25		2	3	262	257	257	241	
25		3	26	262	275	275	260	
25		4	11	262	252	252	235	
50		1	4	262	275	275	259	
50		2	23	262	298	298	284	
50		3	16	262	263	263	251	
50		4	20	262	228	228	218	
69.7		1	1	262	247	247	227	
69.7		2	17	262	263	263	251	
69.7		3	22	262	241	241	232	
69.7		4	14	262	276	276	263	

Version V.2

GENERAL

1	GENERAL	
Client	Jacobs Wyckoff	
Project	Wyckoff Eagle Harbor GWTP 2024/WA	
Project Number	PG1958	
Project Manager	M. Seibert	Note: input lowest and highest decimal for temp
Date Sample Received	1/30/2024	
Test type	48-Hour Chronic Toxicity Using Bivalve Larvae	
Matrix	Liquid	
Test Acceptability	≥90% normal shell development, ≥50% survival (mussels) or ≥70% survival (oysters), MSD <25%	TEST S
Test Start Date	01/30/24	TES
Test Species	Mytilus spp.	
Organism Batch	TS121523.01	
Organism Acquired	12/15/2023	
Organism Acclimation	46	
Organism Age	<4 hr old embryos	
Test Protocol	TOX 042	
Test Location	Incubator 1	
Light Intensity	50-100 foot candles	
Light Cycle	16L:8D	Salinity Adjustment CSMM Batch #
Water Description	0.45 um filtered seawater	62123
Organisms per Replicate	150 - 300	
Test Chamber Size	30 mL	Formalin Lot #
Exposure Volume	10 mL	230724-07
Test Dissolved Oxygen	> 4.0	
Test Temperature	16 ± 1	Rose Bangel Batch #
Test Salinity	30 ± 2	5135
Test pH	8 ± 1	
_		

1	est Parameters	
	Min	Max
DO	4.0	
Temp	15	17
Salinity	28	32
рН	7	9

TEST START TIME/INIT: 1610 TEST END TIME/INIT:

CLIENT SAMPLE ID	LAB ID
24052146-1	P240130.03

C	oncentrations
1	Control
2	Brine Control
3	6.25%
4	12.5%
5	25%
6	50%
7	69.7%
8	
9	

Only red chara	cters and green	cells are chan	geable.			
			ORGANISM	CLIENT	CLIENT SAMPLE ID	DATE
			M. sp.	Jacobs Wyckoff	24052146-1	1/30/24
Volume per Co	ncentration (mls	s) -	200			
Test Paramete	rs	ppt				
Salinity of Brin	е	98.00				
Salinity of Sam	ple	0.40				
Test Salinity		30.00				
				Test Dilution Pr	eparation (List highe	st to lowest!)
Salinity Adjusti	ment Multiplier =		0.44	Concentration	Amount of Adjusted	Amount of
		grams added		(%)	Sample (gms.)	Seawater (gms.
mls. Sample*	600.00	599.1		69.7	204.2	0.0
mls. Brine	261.18	280.4		50.00	146.6	57.7
				25.00	73.3	131.0
*Adjust volume	so C16>F19	879.46		12.50	36.6	167.6
Post Adjustme	nt Concentration	n (%) =	69.67	6.25	18.3	185.9
					0.0	204.2
					479.07	
Brine Control	Preparation					
S	Salinity Adjustme	ent	highest	Amount Brine	Amount DI	Amount Seawate
Sample Number/Name	Multiplier	Volume BC	concentration	(grams)	(grams)	(grams)
24052146-1	0.44	200	69.7	63.8	134.6	5.9
Workshoot Pr	eparation Date	/ Initiale				
1/30/2024	MS MS	/ Illitials				
Dilution Prepa	aration Date / In	itials				
1/30/2024	MS					

V.2	CLIENT	Jacobs Wyckoff	DATE RECEIVED	1/30/24	PROTOCOL	TOX 042
	PROJECT	coff Eagle Harbor GWTP 2024/WA	TEST START DATE	1/30/24	PROJECT MANAGER	M. Seibert
	CLIENT SAMPLE ID	24052146-1	TEST END DATE	2/1/24	SPECIES	Mytilus spp.
	LAB SAMPLE ID	P240130.03	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300

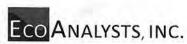
48-Hour C	Chronic	Toxicity	Using	Bivalve	Larvae
-----------	---------	----------	-------	---------	--------

		DO (mg/L)	TEMP (°C)	SALINITY (ppt)	pH
	Concentration (%)	> 4.0	15 - 17	28 - 32	7 - 9
Day 0	Control	0.8 880	Dtatizz	28	D 79 7.7
Stock	Brine Control	8-3	17.3	29	7.9
Date 1/30/24	6.25%	8-7	16.6	28	7.8
Time 1415	12.5%	8.7	ile-7	28	7-8
Tech RG	25%	8-7	14-8	28	7.7
Meter # 9/8	50%	8-4	17-2	29	7.6
, -	69.7%	8.4	@ 4517.3	29	7-4
Day 1	Control		25.9 3		
Surrogate	Brine Control		15.9		
Date 02/32/24	6.25%		15.9 ③		
Time 0101	12.5%		15.9 3		
Tech SR	25%		25.9		
Meter# T16	50%		25.9		
	69.7%		15.9		
Day 2	Control	8.0	15.6	29	7.9
Surrogate	Brine Control	7.7	15.6	29	7.8
Date 2/1/24	6.25%	7.9	15.4	85	7.9
Time 1454	12.5%	7.9	15.6	28	8.0
Tech VG	25%	7.9	15.5	28	8.0
Meter# &	50%	7.4	15.3	29	8.1
	69.7%	8.0	15.6	29	8.2

3 Temp blank used - SR 02/32/24

1 Remode D water - LG 130 180 P. Checked temp. Ms 1/30

V.2	CLIENT	Jacobs Wyckoff	DATE RECEIVED	1/30/24	PROTOCOL	TOX 042
	PROJECT	Wyckoff Eagle Harbor GWTP 2024/WA	TEST START DATE	1/30/24	PROJECT MANAGER	M. Seibert
	CLIENT SAMPLE ID	24052146-1	TEST END DATE	2/1/24	SPECIES	Mytilus spp.
	LAB SAMPLE ID	P240130.03	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300


48-Hour Chronic Toxicity Using Bivalve Larvae

SPAWNING METHOD Heat Shock		INITIAL SPAWNING TIME 12:29	FINAL SPAWNING TIME 13:25	
MALES 4	FEMALES 6	SPERM VIABILITY Good	EGG CONDITION Good	
BEGIN FERTILIZATION 13:25		END FERTILIZATION 14:54	CONDITION OF EMBRYOS Good	

TIME OF INITIATION	INITIALS	

EMBRYO DENSITY CALCULATIONS

# of embryos i	n 1 mL of 100X diluted en	nbryo stock	# embryos in original stock = # of embryos in diluted stock x 100
Count 1	Count 2 M	lean	
	400 384	392	39200
ercentage of	embryo stock needed = 2	700 embryos per 1 mL/# embr	os in original stock
	0.07		
	0.07		
		ve total volume = percentage o	f embro stock needed * 40 mL (or desired volume of embryo stock)
mL of egg stoc	k to add to FSW to achiev		f embro stock needed * 40 mL (or desired volume of embryo stock) desired volume of embryo stock) with FSW = final embryo stock

CLIENT		Jacobs Wyckoff	DATE RECEIVED	1/30/24	PROTOCOL	TOX 042
PROJECT W	yckoff Eagle Harbor	GWTP 2024/WA	TEST START DATE	1/30/24	PROJECT MANAGER	M. Seibert
CLIENT SAM	PLE ID	24052146-1	TEST END DATE	2/1/24	SPECIES	Mytilus spp.
LAB SAMPLE	ID	P240130.03	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300

48-Hour Chronic Toxicity Using Bivalve Larvae

Concentration (%)	REP	Normal	Abnormal	Date	Tech	Comments/QA Counts
	1	265		2/13/24	WALL	
	2	264		2/13/24	Marie	X=242
Stanling Dancita	3	266		2/13/24	MARLY	A
Stocking Density	4	246		2/13/24	MARLE	
	5	255		2/13/24	MARLY	
	6	276		2/13/24	MARH	
	1	235	14	2/18/24	me	
Control	2	255	18	2/13/24	me	
Control	3	243	12	2/13/24	me	
	4	NB	12	2/13/24	me	
	1	230	19	2/2/24	me	C/A MANUEN 235 A 21 D=0.
Brine Control	2	265	n	2/13/24	Mic	
Billie Control	3	250	13	2/13/24	me	
	4	267	15	Us by	me	
	1	250	16	2/13/24	me	
6.25%	2	257	16	Us m	me	la company de la
0.23%	3	0	251	2/13/24	mu	will compromited. Drug from state. Mk 2/13
	4	249	18	2/13/24	MK	
	1	252	25	2/13/24	MK	04 MARGE 260 N 22A
12.5%	2	242	15	2/13/21	mu	D= 1.19.
12.576	3	267	17	2/13/24	MIC	
	4	268	14	213/24	mu	
	1	ws	21	2/13/24	MK	
25%	2	241	10	2/13/24	me	
2370	3	260	15	2/13/24	mk	
	4	235	17	2/13/24	me	
	1	259	16	2/7/24	me	
50%	2	284	14	2/13/24	MK	
3070	3	251	12	2/13/24	me	
	4	218	10	2/13/24	mu	
	1	227	20	2/7/24	mk	DAMANU 228 N 19A
69.7%	2	251	12	2/13/24	MK	A=0.4%
03.770	3	232	9	2/13/24	me	
	4	263.	13	2/13 /m	mel	

CETIS Summary Report

Report Date: Test Code/ID: 20 Feb-24 17:45 (p 1 of 3) P240130.03SC / 08-4830-1359

								ode/ID:	1 - 10 10	0.038C/08	7000	
Bivalve Larva	al Survival and Devel	opment Test								Ed	oAnaly	
Batch ID: Start Date: Ending Date: Test Length:	03-0659-8360 30 Jan-24 16:07 01 Feb-24 15:20 47h	Test Type: Protocol: Species: Taxon:	Development EPA/600/R-5 Mytilus gallo Bivalvia			Diluent: Brine:		Danielle Mulligan Laboratory Seawater Crystal Sea Marine Mix Taylor Shellfish		Age:		
Sample ID:	06-0001-8496	Code:	P240130.03	SC.			Droi	40 - A			1	V.
the harmon has been been	30 Jan-24 09:35	Material:	Treated Gro				Proje		Vyckoff Eagle I		P 2024	1/VV
	30 Jan-24 11:54	CAS (PC):	Ticalca Gio	ulidwatei			Sour		acobs Wyckoff			
Sample Age:		Client:	Jacobs Wyc	koff			Stau	on: 2	4052146_1			
Single Compa	arison Summary											_
Analysis ID	Endpoint	Com	parison Meth	od			P-Value	Comps	rison Result			
06-1083-4347	Proportion Normal			vo-Sample Tes	t	_	0.0326				nol.	
	Proportion Survived			Two-Sample 1			0.0326		ntrol failed pro introl passed p			1
Multiple Com	parison Summary	2003	na farantesa	901	-	0.0400	Sait Oc	miror passed p	roportion su	vived		
Analysis ID	Endpoint	Comp	arison Meth	od		1	NOEL	LOEL	TOEL	PMSD	TU	
09-0655-3543	Proportion Normal				•	100	>100	TOEL	2.5%	1	5	
	Proportion Survived		Dunnett Multiple Comparison Test Steel Many-One Rank Sum Test				100	>100		7.94%	1	
Point Estimat	e Summary			200-200-0	-					7.5-770		
Analysis ID	Endpoint	Point	Estimate Me	thod		./	Level	%	95% LCL	05% 1101	~	
V4 50 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Proportion Normal		Interpolation			_	EC15	>100	95% LCL	95% UCL	TU <1	_ 5
	77 77 C - 2 C - 3	2,1,00	interpolation	(IOI III)			EC20	>100		-		
							EC25	>100			<1	
						1	EC40	>100			<1	
									-		<1	
15-5364-4792	Proportion Survived	Linco	- Intomalation	/ICDIAIS	_	_	EC50	>100		725	<1	_
10-0004-4732	r roportion Survived	Linear	Interpolation	(ICPIN)		1	EC15	>100	(Fee)		<1	- 4
							0.44			10.7		
						1		>100	F .	***	<1	
						1	EC25	>100	=	_	<1 <1	
						111	EC25 EC40	>100 >100				
						111	EC25	>100		-	<1	
Test Acceptat	oility	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				インノン	EC25 EC40 EC50	>100 >100	_	_	<1 <1	
Analysis ID	Endpoint	Attrib	ute	Test Stat		インノン	EC25 EC40 EC50	>100 >100		_	<1 <1	
Analysis ID	Endpoint Proportion Normal	- 100	ute ol Resp	Test Stat	TAC	インノン	EC25 EC40 EC50	>100 >100 >100			<1 <1	
Analysis ID 06-1083-4347	Endpoint Proportion Normal Proportion Normal	Contro		2 3 2 1 2 3 N T	TAC Lower	インノン	EC25 EC40 EC50 mits Upper	>100 >100 >100 Overla	 Decision		<1 <1	
Analysis ID 06-1083-4347 09-0655-3543	Endpoint Proportion Normal Proportion Normal Proportion Normal	Contro	ol Resp	0.9209	TAC Lower 0.9	インノン	EC25 EC40 EC50 mits Upper	>100 >100 >100 >100 Overlap	Decision Passes Cr	iteria	<1 <1	
Analysis ID 06-1083-4347 09-0655-3543 20-8186-9544	Endpoint Proportion Normal Proportion Normal Proportion Normal Proportion Normal	Contro Contro	ol Resp ol Resp	0.9209 0.9442	TAC Lower 0.9 0.9	インノン	EC25 EC40 EC50 mits Upper	>100 >100 >100 >100 Overlar Yes Yes	Decision Passes Cr Passes Cr Passes Cr	iteria	<1 <1	
Analysis ID 06-1083-4347 09-0655-3543 20-8186-9544	Endpoint Proportion Normal Proportion Normal Proportion Normal	Contro Contro Contro	ol Resp ol Resp ol Resp	0.9209 0.9442 0.9442	TAC Lower 0.9 0.9 0.9	インノン	EC25 EC40 EC50 mits Upper << <<	>100 >100 >100 Overlap Yes Yes Yes	Decision Passes Cr	iteria iteria iteria iteria	<1 <1	
Analysis ID 06-1083-4347 09-0655-3543 20-8186-9544	Endpoint Proportion Normal Proportion Normal Proportion Normal Proportion Normal	Contro Contro Contro Contro	ol Resp ol Resp ol Resp ol Resp	0.9209 0.9442 0.9442 0.9442	TAC Lower 0.9 0.9 0.9 0.9	インノン	EC25 EC40 EC50 mits Upper	>100 >100 >100 Overla Yes Yes Yes Yes	Decision Passes Cr Passes Cr Passes Cr Passes Cr Passes Cr Passes Cr	iteria iteria iteria iteria iteria	<1 <1	
Analysis ID 06-1083-4347 09-0655-3543 20-8186-9544 04-1777-5456	Endpoint Proportion Normal Proportion Normal Proportion Normal Proportion Normal Proportion Survived	Contro Contro Contro Contro Contro	ol Resp ol Resp ol Resp ol Resp ol Resp	0.9209 0.9442 0.9442 0.9442	TAC Lower 0.9 0.9 0.9 0.9	インノン	EC25 EC40 EC50 mits Upper << << << << << << <<	>100 >100 >100 Overla Yes Yes Yes Yes Yes	Decision Passes Cr Passes Cr Passes Cr Passes Cr	riteria riteria riteria riteria riteria riteria	<1 <1	

Report Date: Test Code/ID: 20 Feb-24 17:45 (p 2 of 3) P240130.03SC / 08-4830-1359

							1 GOL C	oue/ID.	P24013	10.035670	18-4830-135
Bivalve Larva	I Survival and	Developme	ent Test								coAnalyst
Proportion No	ormal Summa	ry									11111111111111
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	D	4	0.9442	0.9269	0.9615	0.9319	0.9544	0.0054	0.0109	1.15%	0.00%
0	SC	4	0.9209	0.8916	0.9503	0.8949	0.9377	0.0092	0.0185	2.00%	2.46%
6.25		4	0.9387	0.9279	0.9496	0.9289	0.9444	0.0034	0.0068	0.73%	0.58%
12.5		4	0.9251	0.8906	0.9595	0.9048	0.9544	0.0108	0.0216	2.34%	2.02%
25		4	0.9469	0.9354	0.9585	0.9363	0.9524	0.0036	0.0073	0.77%	-0.29%
50		4	0.9375	0.9183	0.9567	0.9200	0.9476	0.0060	0.0121	1.29%	0.71%
69.7		4	0.9448	0.9368	0.9529	0.9378	0.9496	0.0025	0.0051	0.54%	-0.07%
100		4	0.9505	0.9216	0.9793	0.9274	0.9717	0.0091	0.0181	1.91%	-0.67%
Proportion Su	rvived Summ	ary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	D	4	0.9666	0.9095	1.0240	0.9198	1.0000	0.0179	0.0359	3.71%	0.00%
0	SC	4	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	-3.46%
6.25		4	0.9656	0.9478	0.9835	0.9542	0.9809	0.0056	0.0112	1.16%	0.10%
12.5		4	0.9800	0.9393	1.0210	0.9466	1.0000	0.0128	0.0256	2.61%	-1.38%
25		4	0.9800	0.9431	1.0170	0.9580	1.0000	0.0116	0.0232	2.37%	-1.38%
50		4	0.9752	0.9293	1.0210	0.9466	1.0000	0.0144	0.0288	2.95%	-0.89%
69.7		4	0.9637	0.8964	1.0310	0.9198	1.0000	0.0212	0.0423	4.39%	0.30%
100		4	0.9695	0.9232	1.0160	0.9427	1.0000	0.0145	0.0291	3.00%	-0.30%
Proportion No	ormal Detail						MD	5: A8ED07	9D90F89A7I	F8752D76E	33DD45227
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
0	D	0.9319	0.9544	0.9522	0.9382						
0	SC	0.9223	0.9377	0.9288	0.8949						
6.25		0.9289	0.9400	0.9416	0.9444						
12.5		0.9274	0.9544	0.9048	0.9137						
25		0.9482	0.9509	0.9524	0.9363						
50		0.9401	0.9422	0.9476	0.9200						
69.7		0.9451	0.9469	0.9496	0.9378						
100		0.9530	0.9498	0.9274	0.9717						
Proportion Su	rvived Detail	272.330		237.7	7050 04		MD	5: CFB4F2	4B0402BD0	25200242	446505442
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		IVID	o. Orbarz	+D3432DD9,	1000C3A34	HOFUFA43
0	D	1.0000	0.9198	0.9580	0.9885						
0	sc	1.0000	1.0000	1.0000	1.0000						
6.25	2.3	0.9656	0.9542	0.9809	0.9618						
12.5		0.9466									
25			1.0000	1.0000	0.9733						
		0.9580	1.0000	0.9618	1.0000						
50		1.0000	1.0000	0.9466	0.9542						
69.7		1.0000	0.9351	1.0000	0.9198						
100		1 0000			THE RESERVE OF THE PARTY OF THE						

1.0000

0.9885

0.9466

0.9427

100

12.5

25

50

69.7

100

Report Date: Test Code/ID: 20 Feb-24 17:45 (p 3 of 3) P240130.03SC / 08-4830-1359

Bivalve Larval Survival and Development Test

248/262

251/262

262/262

262/262

262/262

262/262

262/262

262/262

245/262

262/262

252/262

248/262

262/262

259/262 248/262

EcoAnalysts

Proportion N	ormal Binomia	als				
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	260/279	230/241	239/251	243/259	
0	SC	261/283	271/289	261/281	247/276	
6.25		235/253	235/250	242/257	238/252	
12.5		230/248	251/263	247/273	233/255	
25		238/251	271/285	240/252	250/267	
50		251/267	261/277	235/248	230/250	
69.7		258/273	232/245	264/278	226/241	
100		284/298	246/259	230/248	240/247	
Proportion Su	urvived Binom	ials			41	
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	262/262	241/262	251/262	259/262	
0	SC	262/262	262/262	262/262	262/262	
6.25		253/262	250/262	257/262	252/262	

255/262

262/262

250/262

241/262

247/262

Report Date: Test Code/ID: 20 Feb-24 17:45 (p 1 of 10) P240130.03SC / 08-4830-1359

Bivalve Larva	al Sur	vival and D	evelop	men	t Test										EcoAnalysts
Analysis ID: Analyzed: Edit Date:	20 F	083-4347 eb-24 17:38 eb-24 17:29		Ana	lysis:		etric-Tw	mal o Sample 3C686406B2	50B7042C		CETIS Status		CETISV 1 004-244		
Batch ID:	03-0	659-8360		Test	Type:	Develop	ment-S	Survival		-	Analyst	h Dani	elle Mullig	an	
Start Date:	30 J	an-24 16:07						(136 (1995)			Diluent		ratory Sea		
Ending Date:	01 F	eb-24 15:20		37.35				ovincialis	Brine:				tal Sea Ma		
Test Length:	47h			Taxo		Bivalvia		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Source	100	or Shellfish		Age: <4
Sample ID:	06-0	001-8496		Cod	e:	P24013	0.0350	;		F	roject	· Wyc	koff Fagle	Harbor GI	NTP 2024/W
Sample Date:	30 J	an-24 09:35				Treated	Groun	dwater			Source		bs Wycko		2024/11
Receipt Date:	30 J	an-24 11:54		CAS	(PC):			100000			Station		2146_1		
Sample Age:	7h (5	5.6 °C)		Clie	200	Jacobs	Wycko	ff							
Data Transfor	rm		Alt H	ур					Compari	son Res	ult				PMSD
Angular (Corre	ected)		C > T									rtion norm	al endpoir	it	2.03%
Equal Variance	ce t T	wo-Sample	Test												
Control I	vs	Control II	0.750	df	Test S	tat Cri	itical	MSD	P-Type	P-Vali	ие г	Decision(a:5%\		
Dilution Water		Salt Contro	ol*	6	2.253		943	0.03969	CDF	0.0326		Significant			
Test Acceptab	bility	Criteria	т/	AC Li	mita								-		
Attribute		Test Stat	Lowe		Upper	Ov	erlap	Decision							
Control Resp		0.9209	0.9		<<	Ye		Passes C	riteria				_		_
Control Resp		0.9442	0.9		<<	Ye	C,	Passes C	36076						
ANOVA Table	()											_			
Source		Sum Squa	ires		Mean	Square		DF	F Stat	P-Vali	ue D	Decision(7:5%)		
Between	-	0.0042333			0.0042		_	1	5.074	0.0652			icant Effec	+	
Error		0.0050058			0.0008			6	0.07	0.000.		on Olgini.	ioani Liioc		
Total		0.0092391						7							
ANOVA Assur	mptio	ns Tests													
Attribute		Test						Test Stat	Critical	P-Valu	ue D	Decision(7:1%)		
Variance		Levene Eq	uality o	of Var	iance T	est		0.1036	13.75	0.7585		qual Varia			
		Mod Lever						0.0552	13.75	0.822	7	qual Varia			
		Variance F	Ratio F	Test				1.99	47.47	0.5862		qual Varia			
Distribution		Anderson-	Darling	A2 T	est			0.2899	3.878	0.6427	7 N	Iormal Dis	stribution		
		Kolmogoro						0.1956	0.3313	0.5854		lormal Dis	stribution		
		Shapiro-W	ilk W N	lorma	ality Tes	t		0.9407	0.6451	0.6176	5 N	lormal Dis	stribution		
Proportion No	ormal	Summary													
Conc-%		Code	Coun	t	Mean			95% UCL		Min	N	lax	Std Err	CV%	%Effect
0		D	4		0.9442		269	0.9615	0.9452	0.9319	9 0	.9544	0.0054	1.15%	0.00%
0		SC	4		0.9209	0.8	916	0.9503	0.9255	0.8949	9 0	.9377	0.0092	2.00%	2.46%
Angular (Corre	ected) Transform	ned Su	ımma	ary										
Conc-%	11	Code	Coun	t	Mean	959	% LCL	95% UCL	Median	Min	N	lax	Std Err	CV%	%Effect
0		D	4		1.3330	1.2	950	1.3710	1.3350	1.3070	1	.3550	0.0118	1.77%	0.00%
0		SC	4		1.2870	1.2	340	1.3400	1.2940	1.2410		.3190	0.0167	2.59%	3.45%
Proportion No	ormal	Detail													
Conc-%		Code	Rep 1		Rep 2	Re	р3	Rep 4							
0 ,		D	0.9319	_	0.9544		522	0.9382						_	
		SC	0.9223		0.9377		288	0.8949							

Report Date: Test Code/ID:

20 Feb-24 17:45 (p 2 of 10) P240130.03SC / 08-4830-1359

EcoAnalysts

Bivalve Larval Survival and Development Test Analysis ID:

06-1083-4347

Endpoint: Proportion Normal

Parametric-Two Sample Analysis:

CETIS Version:

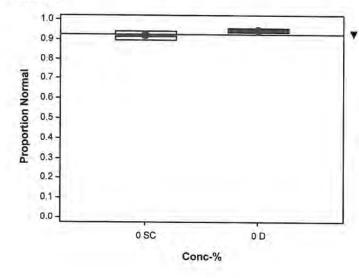
CETISv2.1.4

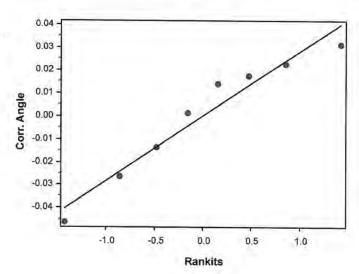
Analyzed: 20 Feb-24 17:38 Edit Date: 20 Feb-24 17:29

MD5 Hash: 8592D4BBD28C686406B250B7042C76D2

Status Level: Editor ID:

004-244-315-2


Angular (Corrected) Transformed Detail


Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	1.3070	1.3550	1.3500	1.3200	
0	SC	1.2880	1.3190	1.3010	1.2410	

Proportion Normal Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	260/279	230/241	239/251	243/259
0	SC	261/283	271/289	261/281	247/276

Graphics

Report Date: Test Code/ID: 20 Feb-24 17:45 (p 3 of 10) P240130.03SC / 08-4830-1359

								163					0-4030-133
Bivalve Larva	al Su	vival and [Developme	nt Test									coAnalyst
Analysis ID:	09-0	655-3543	En	dpoint:	Proportion No	ormal			CETIS Vers	ion.	CETISv2		
Analyzed:	20 F	eb-24 17:4		alysis:	Parametric-C		atments		Status Leve	2.34	1	1.7	
Edit Date:	20 F	eb-24 17:29			EDBAE943D						004-244-	315-2	
Batch ID:	03-0	659-8360	Tes	st Type:	Development	-Survival			Analyst:	Danie	elle Mulliga		
Start Date:		an-24 16:07		tocol:	EPA/600/R-9				Diluent:		ratory Seav		
Ending Date:				ecies:	Mytilus gallop								
Test Length:		CO 24 10.20		con:	Bivalvia	TOVITCIAIIS			Brine:		al Sea Mar	ine Mix	- CO / 2-8
- 27 10 10 2	7.0	05 1.71 05	Tal	KOII.	Divaivia			- '	Source:	Taylo	r Shellfish		Age: <4
Sample ID:		001-8496		de:	P240130.03S				Project:		off Eagle H		TP 2024/V
Sample Date:				terial:	Treated Grou	ndwater			Source:	Jacol	os Wyckoff		
Receipt Date:				S (PC):	And Live				Station:	2405	2146_1		
Sample Age:	7h (5.6 °C)	Cli	ent:	Jacobs Wyck	off							
Data Transfor	rm		Alt Hyp				NOEL	LOEL	TOEL	V	Tox Units	MSDu	PMSD
Angular (Corre	ected		C > T				100	>100			1	0.02361	2.50%
Dunnett Multi	iple C	Comparisor	Test										
Control	vs	Conc-%	d	f Test S	tat Critical	MSD	P-Type	P-Val	ue Decis	sion(o	ı:5%)		
Dilution Water		6,25	6	0.6182	(55)5) (5-5840 P-840)	0.04799	CDF	0.629			cant Effect		
- Francis III and		12.5	6	1.899	2.448	0.04799	CDF	0.029		7	cant Effect		
		25	6	-0.290		0.04799	CDF	0.133	3/ 145910		cant Effect		
		50	6	0.7249		0.04799	CDF	0.580			cant Effect		
		69.7	6	-0.043	100	0.04799	CDF	0.868			cant Effect		
		100	6	-0.823	640.13.2	0.04799	CDF	0.979			cant Effect		
Test Acceptal	hility	Criteria	1,210	200	90.78	13/7/12/52	351	0.07.0		J.griiii	CONT ENDOL		
Attribute		Test Stat		Limits Upper	Overlap	Decision							
Control Resp	-	0.9442	0.9	<<	Yes	Passes C	ritorio						
3 3 3 3 3		0.5742	0.5	33	165	rasses C	illeria			_			
ANOVA Table		Own Error		601.03	7	-							
Source		Sum Squ			Square	DF	F Stat	P-Val		sion(a			
Between		0.0071623	9-	0.0011	17.5	6	1.553	0.210	2 Non-S	Signifi	cant Effect		
Error	_	0.0161451		0.0007	688	21	23						
Total		0.0233073	3			27							
ANOVA Assu	mptic	ons Tests											
Attribute		Test				Test Stat	Critical	P-Val	ue Decis	ion(a	:1%)		
Variance	- 1	Bartlett Ed	quality of Va	ariance T	est	8.474	16.81	0.205		Varia			
			quality of Va			1.274	3.812	0.311		Varia			
		Mod Lever	ne Equality	of Variar	ice Test	1.105	3.812	0.392	3 Equa	Varia			
Distribution					ice Test		3,812 3,878						
Distribution		Anderson-	ne Equality Darling A2 Kurtosis 1	Test	ice Test	0.6745	3.878	0.078	3 Norm	al Dis	tribution		
Distribution		Anderson- D'Agostino	Darling A2	Test Test	ice Test	0.6745 1.124	3.878 2.576	0.078	Norm Norm	al Dis	tribution tribution		
Distribution		Anderson- D'Agostino D'Agostino	Darling A2 Kurtosis To Skewness	Test Test Test		0.6745 1.124 0.6371	3.878 2.576 2.576	0.078 0.260 0.524	Norm Norm Norm	al Dis al Dis al Dis	tribution tribution tribution		
Distribution		Anderson- D'Agostino D'Agostino D'Agostino	Darling A2 Kurtosis To Skewness b-Pearson I	Test Fest S Test K2 Omnik		0.6745 1.124 0.6371 1.67	3.878 2.576 2.576 9.21	0.0783 0.2609 0.5240 0.4339	Norm Norm Norm Norm Norm	al Dis al Dis al Dis al Dis	tribution tribution tribution tribution		
Distribution		Anderson- D'Agostino D'Agostino D'Agostino Kolmogoro	Darling A2 Kurtosis To Skewness	Test Test S Test K2 Omnib D Test	ous Test	0.6745 1.124 0.6371	3.878 2.576 2.576	0.0783 0.2609 0.5240 0.4339 0.1209	Norm Norm Norm Norm Norm Norm Norm	al Dis al Dis al Dis al Dis al Dis	tribution tribution tribution tribution tribution		
	orma	Anderson- D'Agostino D'Agostino D'Agostino Kolmogoro Shapiro-W	Darling A2 o Kurtosis To o Skewness o-Pearson I ov-Smirnov Vilk W Norn	Test Test S Test K2 Omnib D Test	ous Test	0.6745 1.124 0.6371 1.67 0.1474	3.878 2.576 2.576 9.21 0.1914	0.0783 0.2609 0.5240 0.4339	Norm Norm Norm Norm Norm Norm Norm	al Dis al Dis al Dis al Dis al Dis	tribution tribution tribution tribution		
Proportion No	orma	Anderson- D'Agostino D'Agostino D'Agostino Kolmogoro Shapiro-W	Darling A2 b Kurtosis I b Skewnes: b-Pearson I bov-Smirnov Jilk W Norn	Test Fest s Test K2 Omnit D Test nality Tes	ous Test	0.6745 1.124 0.6371 1.67 0.1474 0.953	3.878 2.576 2.576 9.21 0.1914 0.8975	0.078 0.260 0.524 0.433 0.120 0.235	Norm Norm Norm Norm Norm Norm Norm	al Dis al Dis al Dis al Dis al Dis al Dis	tribution tribution tribution tribution tribution tribution	CVe	0/ E#=
Proportion No Conc-%	orma	Anderson- D'Agostino D'Agostino D'Agostino Kolmogoro Shapiro-W	Darling A2 Discrepance Discrep	Test Fest S Test K2 Omnik D Test hality Tes Mean	ous Test t 95% LCI	0.6745 1.124 0.6371 1.67 0.1474 0.953	3.878 2.576 2.576 9.21 0.1914 0.8975	0.078 0.260 0.524 0.433 0.120 0.235	Norm Norm Norm Norm Norm Norm Norm Max	al Dis al Dis al Dis al Dis al Dis al Dis	tribution tribution tribution tribution tribution tribution	CV%	%Effect
Proportion No Conc-%	orma	Anderson- D'Agostino D'Agostino D'Agostino Kolmogoro Shapiro-W	Darling A2 Discrepance of Kurtosis To Skewness Dependent of Count Count	Test Fest S Test C2 Omnik D Test nality Tes Mean 0.9442	95% LCI	0.6745 1.124 0.6371 1.67 0.1474 0.953 - 95% UCL 0.9615	3.878 2.576 2.576 9.21 0.1914 0.8975 Median 0.9452	0.078: 0.260: 0.524: 0.433: 0.120: 0.235: Min	3 Norm 9 Norm 10 Norm 11 Norm 1 Max 9 0.954	al Disi al Disi al Disi al Disi al Disi al Disi	tribution tribution tribution tribution tribution tribution tribution	1.15%	0.00%
Proportion No Conc-% 0 6.25	orma	Anderson- D'Agostino D'Agostino D'Agostino Kolmogoro Shapiro-W	Darling A2 Controls To Skewness Department of	Test Fest S Test C2 Omnib D Test hality Tes Mean 0.9442 0.9387	95% LCI 0.9269 0.9279	0.6745 1.124 0.6371 1.67 0.1474 0.953 - 95% UCL 0.9615 0.9496	3.878 2.576 2.576 9.21 0.1914 0.8975 Median 0.9452 0.9408	0.0783 0.2600 0.5240 0.4333 0.1200 0.235 Min 0.9319 0.9289	3 Norm 9 Norm 1 Norm 1 Norm 1 Max 9 0.954	al Disi al Disi al Disi al Disi al Disi al Disi	tribution tribution tribution tribution tribution tribution Std Err 0.0054 0.0034	1.15% 0.73%	0.00% 0.58%
Proportion No Conc-% 0 5.25 12.5	orma	Anderson- D'Agostino D'Agostino D'Agostino Kolmogoro Shapiro-W	Darling A2 o Kurtosis T o Skewness o-Pearson I ov-Smirnov //ilk W Norn Count 4 4 4	Test Fest STest C2 Omnit D Test hality Tes Mean 0.9442 0.9387 0.9251	95% LCI 0.9269 0.9279 0.8906	0.6745 1.124 0.6371 1.67 0.1474 0.953 95% UCL 0.9615 0.9496 0.9595	3.878 2.576 2.576 9.21 0.1914 0.8975 Median 0.9452 0.9408 0.9206	0.0783 0.2600 0.5240 0.4333 0.1200 0.235 Min 0.9289 0.9040	3 Norm 9 Norm 1 Norm 1 Norm 1 Norm Max 9 0.954 9 0.954 3 0.954	al Disi al Disi al Disi al Disi al Disi al Disi	tribution tribution tribution tribution tribution tribution tribution Std Err 0.0054 0.0034 0.0108	1.15% 0.73% 2.34%	0.00% 0.58% 2.02%
Proportion No Conc-% 0 3.25 12.5 25	orma	Anderson- D'Agostino D'Agostino D'Agostino Kolmogoro Shapiro-W	Darling A2 o Kurtosis T o Skewness o-Pearson I ov-Smirnov //ilk W Norm Count 4 4 4 4	Test Fest S Test C Omnit D Test nality Tes Mean 0.9442 0.9387 0.9251 0.9469	95% LCI 0.9269 0.9279 0.8906 0.9354	0.6745 1.124 0.6371 1.67 0.1474 0.953 - 95% UCL 0.9615 0.9496 0.9595 0.9585	3.878 2.576 2.576 9.21 0.1914 0.8975 Median 0.9452 0.9408 0.9206 0.9495	0.078: 0.2600 0.5240 0.433: 0.1200 0.235: Min 0.9319 0.9040 0.936:	3 Norm 9 Norm 1	al Disi al Disi al Disi al Disi al Disi al Disi	tribution tribution tribution tribution tribution tribution tribution Std Err 0.0054 0.0034 0.0108 0.0036	1.15% 0.73% 2.34% 0.77%	0.00% 0.58% 2.02% -0.29%
Proportion Notice Conc-% 0 6.25 12.5 25 50	orma	Anderson- D'Agostino D'Agostino D'Agostino Kolmogoro Shapiro-W	Darling A2 o Kurtosis T o Skewness o-Pearson I ov-Smirnov //ilk W Norm Count 4 4 4 4	Test Fest S Test C2 Omnik D Test nality Tes Mean 0.9442 0.9387 0.9251 0.9469 0.9375	95% LCI 0.9269 0.9279 0.8906 0.9354 0.9183	0.6745 1.124 0.6371 1.67 0.1474 0.953 95% UCL 0.9615 0.9496 0.9595 0.9585 0.9567	3.878 2.576 2.576 9.21 0.1914 0.8975 Median 0.9452 0.9408 0.9206 0.9495 0.9412	0.0783 0.2600 0.5240 0.4333 0.1200 0.235 Min 0.9289 0.9040	3 Norm 9 Norm 1 Norm 1 Norm 1 Norm 1 Norm 1 Norm 1 Norm 2 0.954 3 0.954 3 0.952	al Disi al Disi al Disi al Disi al Disi al Disi	tribution tribution tribution tribution tribution tribution tribution Std Err 0.0054 0.0034 0.0108	1.15% 0.73% 2.34%	0.00% 0.58% 2.02%
Proportion No Conc-% 0 6.25 12.5 25	orma	Anderson- D'Agostino D'Agostino D'Agostino Kolmogoro Shapiro-W	Darling A2 o Kurtosis T o Skewness o-Pearson I ov-Smirnov //ilk W Norm Count 4 4 4 4	Test Fest S Test C Omnit D Test nality Tes Mean 0.9442 0.9387 0.9251 0.9469	95% LCI 0.9269 0.9279 0.8906 0.9354 0.9183	0.6745 1.124 0.6371 1.67 0.1474 0.953 - 95% UCL 0.9615 0.9496 0.9595 0.9585	3.878 2.576 2.576 9.21 0.1914 0.8975 Median 0.9452 0.9408 0.9206 0.9495	0.078: 0.2600 0.5240 0.433: 0.1200 0.235: Min 0.9319 0.9040 0.936:	3 Norm 9 Norm 1 Norm 1 Norm 1 Norm 1 Norm 1 Norm 2 0.954 9 0.954 3 0.952 0 0.947	al Disi al Disi al Disi al Disi al Disi al Disi 4 4 4 4 4	tribution tribution tribution tribution tribution tribution tribution Std Err 0.0054 0.0034 0.0108 0.0036	1.15% 0.73% 2.34% 0.77%	0.00% 0.58% 2.02% -0.29%

Report Date: Test Code/ID:

20 Feb-24 17:45 (p 4 of 10) P240130.03SC / 08-4830-1359

Bivalve Larval Survival and Development Test EcoAnalysts

Analysis ID: 09-0655-3543

Endpoint: Proportion Normal

CETIS Version:

CETISv2.1.4

Analyzed: 20 Feb-24 17:41 **Edit Date:** 20 Feb-24 17:29

Analysis: Parametric-Control vs Treatments MD5 Hash: EDBAE943D5835730FDDC3062F5D56BB4 Editor ID:

Status Level:

004-244-315-2

Angular	(Corrected)	Transformed Summary	
---------	-------------	---------------------	--

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	D	4	1.3330	1.2950	1.3710	1.3350	1.3070	1.3550	0.0118	1.77%	0.00%
6.25		4	1,3210	1.2990	1.3430	1.3250	1.3010	1.3330	0.0070	1.06%	0.91%
12.5		4	1.2960	1.2270	1.3650	1.2850	1.2570	1.3560	0.0216	3.34%	2.79%
25		4	1.3390	1.3140	1.3640	1.3440	1.3160	1.3510	0.0079	1.19%	-0.43%
50		4	1.3190	1.2800	1.3570	1.3260	1.2840	1.3400	0.0121	1.84%	1.07%
69.7		4	1.3340	1.3160	1.3510	1.3360	1.3190	1.3440	0.0055	0.83%	-0.06%
100		4	1.3490	1.2820	1.4170	1.3490	1,2980	1.4020	0.0212	3.14%	-1.21%

Proportion Normal Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	0.9319	0.9544	0.9522	0.9382	
6.25		0.9289	0.9400	0.9416	0.9444	
12.5		0.9274	0.9544	0.9048	0.9137	
25		0.9482	0.9509	0.9524	0.9363	
50		0.9401	0.9422	0.9476	0.9200	
69.7		0.9451	0.9469	0.9496	0.9378	
100		0.9530	0.9498	0.9274	0.9717	

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	1.3070	1.3550	1.3500	1.3200	
6.25		1.3010	1.3230	1.3270	1.3330	
12.5		1.2980	1.3560	1.2570	1.2730	
25		1.3410	1.3470	1.3510	1.3160	
50		1.3230	1.3280	1.3400	1.2840	
69.7		1.3340	1.3380	1.3440	1.3190	
100		1.3520	1.3450	1.2980	1.4020	

Proportion Normal Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	260/279	230/241	239/251	243/259	
6.25		235/253	235/250	242/257	238/252	
12.5		230/248	251/263	247/273	233/255	
25		238/251	271/285	240/252	250/267	
50		251/267	261/277	235/248	230/250	
69.7		258/273	232/245	264/278	226/241	
100		284/298	246/259	230/248	240/247	

Report Date:

20 Feb-24 17:45 (p 5 of 10) P240130.03SC / 08-4830-1359

Test Code/ID:

EcoAnalysts

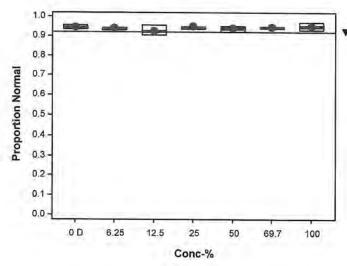
Bivalve Larval Survival and Development Test

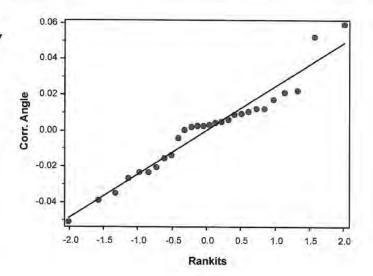
09-0655-3543 Endpoint: Proportion Normal

Analyzed: 20 Feb-24 17:41 Edit Date: 20 Feb-24 17:29 Analysis:

Parametric-Control vs Treatments MD5 Hash: EDBAE943D5835730FDDC3062F5D56BB4 Editor ID:

CETIS Version:


CETISv2.1.4


Status Level:

004-244-315-2

Graphics

Analysis ID:

Report Date: Test Code/ID: 20 Feb-24 17:45 (p 6 of 10) P240130.03SC / 08-4830-1359

Bivalve Larva	Surviv	al and D	evelop	men	t Test								EcoAnalysts
Analysis ID:	04-177			End		Proportion Su			CET	TIS Version:	CETISV	2.1.4	
Analyzed:	20 Feb	-24 17:38	3	Anal	ysis:	Parametric-Tv	vo Sample		Stat	tus Level:	1		
Edit Date:	20 Feb	-24 17:29	9	MD5	Hash:	00825521AF5	9237F1F178	8873E549E	377 Edit	tor ID:	004-244	-315-2	
Batch ID:	03-065	9-8360		Test	Type:	Development-	Survival		Ana	lyst: Dar	ielle Mullig	an	
Start Date:	30 Jan-	24 16:07		Prot	ocol:	EPA/600/R-95	5/136 (1995)				oratory Sea		
Ending Date:	01 Feb	-24 15:20)	Spec		Mytilus gallop			Brin		stal Sea Ma		
Test Length:	47h			Taxo	on:	Bivalvia			Sou		lor Shellfish		Age: <4
Sample ID:	06-000	1-8496		Code	e:	P240130.03S	C		Pro	ject: Wy	ckoff Eagle	Harbor GV	VTP 2024/M
Sample Date:	30 Jan-	24 09:35		Mate	erial:	Treated Groun	ndwater				obs Wycko		and agreemen
Receipt Date:	30 Jan-	24 11:54		CAS	(PC):				Stat		52146 1		
Sample Age:	7h (5.6	°C)		Clier	nt:	Jacobs Wycko	off		-	244	92/NJ=0		
Data Transfor	m		Alt H	qv				Compari	son Result				PMSD
Angular (Corre	ected)		C > T	_						proportion su	rvived end	point	4.99%
Unequal Varia	ance t T	wo-Sami	ple Tes	t									177
Control I		ontrol II	7.4		Test S	tat Critical	MSD	P-Type	P-Value	Decision	(a:5%)		
Dilution Water		alt Contr		3	-2.265		0.132	CDF	0.9458		ficant Effec	t	_
Test Acceptab	oility Cri	teria											
Attribute	100	est Stat			mits Upper	Overlap	Decision						
Control Resp	- 1		0.5		<<	Yes	Passes C	ritoria					
Control Resp		9666	0.5		<<	Yes	Passes C	1377.14					
ANOVA Table							2.00	. 20.91					
Source	s	um Squa	ares		Mean	Square	DF	F Stat	P-Value	Decision	(a:5%)		
Between		0322488			0.0322		1	5.129	0.0641		ficant Effec	4	
Error		0377248			0.0062		6	0.120	0,0041	Non-oigh	ncant Lifet		
Total	0	0699737	,				7						
ANOVA Assur	nptions	Tests											
Attribute		est					Test Stat	Critical	P-Value	Decision	(a:1%)		
Variance	L	evene Eq	uality o	f Var	iance T	est	15.35	13.75	0.0078	Unequal \			
		lod Lever					15.34	13.75	0.0078	Unequal \			
		ariance F					02027	75-12-	0.00,0	Indetermin			
Distribution	A	nderson-	Darling	A2 T	est		0.5285	3.878	0.1811	Normal Di	stribution		
		olmogoro					0.25	0.3313	0.1599	Normal Di	en all market and		
	S	hapiro-W	ilk W N	lorma	ality Tes	t	0.9205	0.6451	0.4336	Normal Di			
Proportion Su	rvived	Summar	у										
Conc-%	C	ode	Count	ť	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	D		4		0.9666	0.9095	1.0000	0.9733	0.9198	1.0000	0.0179	3.71%	0.00%
0	S	С	4		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	-3.46%
Angular (Corre	ected) 1	ransform	ned Su	mma	ary								
Conc-%	C	ode	Count	t	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	D	L II	4		1.4130	1.2340	1.5910	1.4140	1.2840	1.5400	0.0561	7.94%	0.00%
0	S	C	4		1.5400		1.5400	1.5400	1.5400	1.5400	0.0000	0.00%	-8.99%
Proportion Su	rvived	Detail											
Conc-%	C	ode	Rep 1		Rep 2	Rep 3	Rep 4						
		241											
O Proportion Su Conc-% O O	S	C Detail ode		0		1.5390 Rep 3 0.9580							

Analyst: M QAMSUS

Report Date: Test Code/ID: 20 Feb-24 17:45 (p 7 of 10) P240130.03SC / 08-4830-1359

Bivalve Larval Survival and Development Test

EcoAnalysts

Analysis ID: 04-1777-5456

Endpoint: Proportion Survived

CETIS Version:

CETISv2.1.4

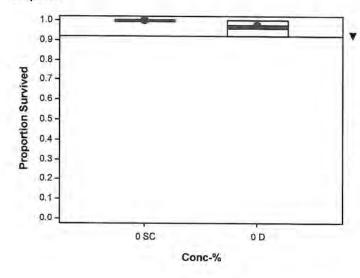
Analyzed: 20 Feb-24 17:38 Edit Date: 20 Feb-24 17:29

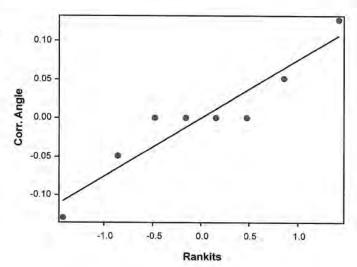
Analysis: Parametric-Two Sample **MD5 Hash:** 00825521AF59237F1F1788873E549B77

Status Level:

Editor ID:

1 004-244-315-2


Angular (Corrected) Transformed Detail


Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.5400	1.2840	1.3640	1.4640
0	SC	1.5400	1.5400	1.5400	1.5400

Proportion Survived Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	262/262	241/262	251/262	259/262	
0	SC	262/262	262/262	262/262	262/262	

Graphics

Report Date: Test Code/ID:

20 Feb-24 17:45 (p 8 of 10) P240130.03SC / 08-4830-1359

Divolve Laure		ALL THE R	ALLOW THE THE	7-48	-				-	esic	odeno:		P24013	0.035070	8-4830-13
Bivalve Larva	CV.	TOTAL CONTRACT	evelopme	nt Test										E	coAnalys
		897-6287		dpoint:		ortion Sur				CET	IS Versio	n:	CETISv2	.1.4	
Analyzed:		eb-24 17:4		alysis:			-Control vs			Stat	tus Level:		1		
Edit Date:	20 F	eb-24 17:29	9 MD	5 Hash:	03B1	72A8E4A	5CBD6CED	01A944456	SECE	Edit	tor ID:		004-244-	315-2	
Batch ID:	03-0	659-8360	Tes	t Type:	Deve	lopment-S	Survival			Ana	lyst: D)aniel	le Mulliga	n	
Start Date:	30 J	an-24 16:07		tocol:			136 (1995)						tory Sea		
Ending Date:	01 F	eb-24 15:20	O Spe	ecies:		us gallopro				Brin			Sea Mai		
Test Length:	47h			on:	Bival								Shellfish	IIIC IIIIX	Age: <
Sample ID:	06-0	001-8496	Cod	le.	POAN	130.03SC	Y-1			Deal		3.00	Carlo Car	1-4-014	
Sample Date:				terial:		ed Groun								Harbor GW	IP 2024/
Receipt Date:				S (PC):	Tical	ed Gibuin	uwatei						Wyckoff		
Sample Age:			Clie		Jacol	bs Wycko	ff			Stat	ion: 2	4052	146_1		
Data Transform	14,117		Alt Hyp			30 111000		HOEL			TAE!				Various .
Angular (Corre	_		C > T		_			NOEL 100	>10		TOEL	1	Tox Units		PMSD
ect a late in the								100	>10	0		-		0.07678	7.94%
Steel Many-Or						2.00		22.7							
	vs	Conc-%	di	1.0		Critical	Ties	P-Type	_	alue	Decisio				
Dilution Water		6.25	6	17		10	0	CDF	0.76				ant Effect		
		12.5	6	20		10	1	CDF	0.96				ant Effect		
		25	6	20.5		10	2	CDF	0.97			Electronic and	ant Effect		
		50	6	19		10	1	CDF	0.92			2000	ant Effect		
		69.7	6	18.5		10	2	CDF	0.89				ant Effect		
		100	6	18		10	2	CDF	0.85	571	Non-Sig	gnifica	ant Effect		
Test Acceptab	ility	Criteria	TACL	imits											
Attribute		Test Stat	Lower	Upper	r)	Overlap	Decision								
Control Resp		0.9666	0.5	<<		Yes	Passes C	riteria							
ANOVA Table															
Source		Sum Squ	ares	Mean	Squa	re	DF	F Stat	P-V	alue	Decisio	on(a:	5%)		
Between		0.0154108	3	0.002	5685		6	0.2363	0.95	96		_	ant Effect		
Error		0.228305		0.0108	8717		21				10-70-feb		11,-10-30		
Total		0.243716					27								
ANOVA Assum	nptic	ons Tests													
Attribute		Test					Test Stat	Critical	P-V	alue	Decisio	onla.	1%)		
Variance			quality of Va	riance T	est		4.403	16.81	0.62		Equal V	_			
			quality of Va				5.556	3.812	0.00		Unequa				
			ne Equality			est	4.623	3.812	0.00		Unequa				
Distribution			Darling A2			C.	1.243	3.878	0.00		1		Distribution	nn.	
			Kurtosis T				4.364	2.576	1.3E				Distribution		
			Skewness				0.01439	2.576	0.98		Normal			200	
		4.50	-Pearson k		bus Te	est	19.04	9.21	7.3E				Distribution	on	
			ov-Smirnov			41	0.1764	0.1914	0.02		Normal				
			ilk W Norm		st		0.8902	0.8975	0.00				Distribution	on	
Proportion Sur	rvive	ed Summar	v										ratifow.		
Conc-%	. 1403	Code	Count	Mean		95% LCL	95% UCL	Median	Min		Max		itd Err	CV%	%Effect
)		D	4	0.9666		0.9095	1.0000	0.9733	0.91		1.0000	_	.0179	3.71%	0.00%
6.25			4	0.9656		0.9478	0.9835	0.9637	0.95		0.9809		.0056		
12.5			4	0.9800		0.9393	1,0000	0.9911	0.94					1.16%	0.10%
25			4	0.9800		0.9431	1.0000	0.9873			1.0000		.0128	2.61%	-1.38%
50			4	0.9752		0.9293	1.0000		0.95		1.0000		.0116	2.37%	-1.38%
69.7								0.9847	0.94		1.0000		.0144	2.95%	-0.89%
100			4	0.9637		0.8964	1.0000	0.9784	0.91		1.0000		.0212	4.39%	0.30%
100			4	0.9695	0 (0.9232	1.0000	0.9676	0.94	27	1.0000	0	.0145	3.00%	-0.30%

Report Date: Test Code/ID:

20 Feb-24 17:45 (p 9 of 10) P240130.03SC / 08-4830-1359

Bivalve Larval Survival and Development Test

EcoAnalysts

Analysis ID:	04-3897-6287
Analyzed:	20 Feb-24 17:41

Endpoint: Proportion Survived

Nonparametric-Control vs Treatments

CETIS Version:

CETISv2.1.4

Edit Date: 20 Feb-24 17:29 Analysis: MD5 Hash: 03B172A8E4A5CBD6CED01A944456ECE

Status Level: Editor ID:

004-244-315-2

Angular (Correcte	d) Transformed	Summary
-------------------	----------------	---------

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	D	4	1.4130	1.2340	1.5910	1.4140	1.2840	1.5400	0.0561	7.94%	0.00%
6.25		4	1.3860	1.3340	1.4390	1.3790	1.3550	1.4320	0.0164	2.37%	1.87%
12.5		4	1.4560	1.2950	1.6170	1.4950	1.3380	1.5400	0.0505	6.93%	-3.05%
25		4	1.4550	1.2980	1.6110	1.4850	1.3640	1.5400	0.0493	6.78%	-2.95%
50		4	1.4430	1.2650	1.6210	1.4780	1.3380	1.5400	0.0560	7.76%	-2.14%
69.7		4	1.4190	1.1970	1.6420	1.4640	1.2840	1.5400	0.0700	9.86%	-0.44%
100		4	1.4180	1.2550	1.5800	1.4010	1.3290	1.5400	0.0511	7.21%	-0.33%

Proportion Survived Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.0000	0.9198	0.9580	0.9885
6.25		0.9656	0.9542	0.9809	0.9618
12.5		0.9466	1.0000	1.0000	0.9733
25		0.9580	1.0000	0.9618	1.0000
50		1.0000	1.0000	0.9466	0.9542
69.7		1.0000	0.9351	1.0000	0.9198
100		1.0000	0.9885	0.9466	0.9427

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	1.5400	1.2840	1.3640	1.4640	
6.25		1.3840	1.3550	1.4320	1.3740	
12.5		1.3380	1.5400	1.5400	1.4070	
25		1.3640	1.5400	1.3740	1.5400	
50		1.5400	1.5400	1.3380	1.3550	
69.7		1.5400	1.3130	1.5400	1.2840	
100		1.5400	1.4640	1.3380	1.3290	

Proportion Survived Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	D	262/262	241/262	251/262	259/262	
6.25		253/262	250/262	257/262	252/262	
12.5		248/262	262/262	262/262	255/262	
25		251/262	262/262	252/262	262/262	
50		262/262	262/262	248/262	250/262	
69.7		262/262	245/262	262/262	241/262	
100		262/262	259/262	248/262	247/262	

Report Date: Test Code/ID:

20 Feb-24 17:45 (p 10 of 10) P240130.03SC / 08-4830-1359

Bivalve Larval Survival and Development Test

EcoAnalysts

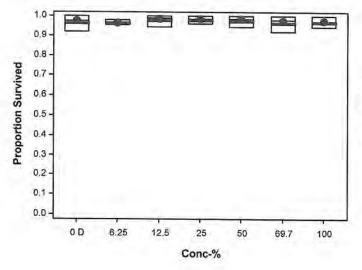
Analysis ID: 04-3897-6287

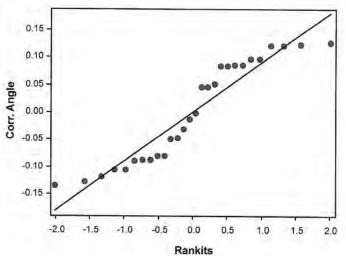
Endpoint: Proportion Survived

Nonparametric-Control vs Treatments

CETIS Version:

CETISv2.1.4


Analyzed: **Edit Date:**


20 Feb-24 17:41 20 Feb-24 17:29 Analysis: MD5 Hash: 03B172A8E4A5CBD6CED01A944456ECE

Status Level: Editor ID:

004-244-315-2

Graphics

Page 48 of 78

Report Date: Test Code/ID: 20 Feb-24 17:45 (p 1 of 4) P240130.03SC / 08-4830-1359

_								T	est Code/II):	P24013	0.03SC /	08-4830-135
Bivalv	e Larva	al Survival and D	evelopmer	nt Test									EcoAnalyst
	sis ID:	20-8186-9544		point:	Proportion Norr	mal			CETIS Ve	rsion:	CETISv2	1.4	
Analyz		20 Feb-24 17:40			Linear Interpola				Status Le		1		
Edit D	ate:	20 Feb-24 17:29) MD	5 Hash:	EDBAE943D58	35730FDD	C3062	2F5D56BB4	Editor ID:		004-244-3	315-2	
Batch		03-0659-8360			Development-S				Analyst:	Dani	ielle Mulliga	1	
Start [30 Jan-24 16:07		tocol:	EPA/600/R-95/	136 (1995)			Diluent:	Labo	ratory Seav	vater	
		01 Feb-24 15:20	12.07		Mytilus gallopro	vincialis			Brine:	Crys	tal Sea Mar	ine Mix	
Test L	ength:	47h	Tax	on:	Bivalvia				Source:	Taylo	or Shellfish		Age: <4
Sampl		06-0001-8496	Cod	e: I	P240130.03SC				Project:	Wyc	koff Eagle H	larbor G\	VTP 2024/W
		30 Jan-24 09:35			Treated Ground	lwater			Source:	Jaco	bs Wyckoff		
		30 Jan-24 11:54	CAS	(PC):					Station:	2405	2146_1		
Sampl	e Age:	7h (5.6 °C)	Clie	nt: .	Jacobs Wyckoff	•							
Linear	Interpo	olation Options											
	sform	Y Transform	See	d	Resamples	Exp 95%	CL	Method					
Log(X+	-1)	Linear	4704	117	200	Yes		Two-Point	Interpolation	ń			
Test A	cceptat	oility Criteria	TAC L	imits									
Attribu	ite	Test Stat	Lower	Upper	Overlap	Decision							
Contro	Resp	0.9442	0.9	<<	Yes	Passes C	riteria	Ç.,			-		
Point I	Estimat	20								_			
Level	%	95% LCL	95% UCL	Tox Un	its 95% LCL	059/ 1101							
EC15	>100		OCL	<1		95% UCL							
EC20	>100		_	<1	-2								
EC25	>100			<1									
EC40	>100			<1		2							
EC50	>100	-		<1	-	44							
Propoi	rtion No	ormal Summary				Calculated	l Varia	ate(A/B)				Isoto	nic Variate
Conc-9	%	Code	Count	Mean	Median	Min	Max		%F1	fect	ΣΑ/ΣΒ	Mean	%Effect
)		D	4	0.9442	0.9452	0.9319	0.95				972/1030	0.9437	0.00%
3.25			4	0.9387	0.9408	0.9289	0.94			14/50	950/1012	0.9406	0.33%
12.5			4	0.9251	0.9206	0.9048	0.95	76 772 0			961/1039	0.9406	0.33%
25			4	0.9469	0.9495	0.9363	0.95	24 0.77			999/1055	0.9406	0.33%
50			4	0.9375	0.9412	0.9200	0.94			%	977/1042	0.9406	0.33%
39.7			4	0.9448	0.9460	0.9378	0.94	96 0.54	% -0.0	7%	980/1037	0.9406	0.33%
100			4	0.9505	0.9514	0.9274	0.97	17 1.91	% -0.6	7%	1000/1052	0.9406	0.33%
Salara Van	tion No	ormal Detail											
ropor		0-4-	Rep 1	Rep 2	Rep 3	Rep 4							
	6	Code	TOP !										
Propor Conc-9	/6	D	0.9319	0.9544	0.9522	0.9382							
Conc-9	/6				0.9522 0.9416	0.9382 0.9444							
Conc-9 0 3.25	<u>/6</u>		0.9319	0.9544									
Conc-9 3.25 12.5	/6		0.9319 0.9289	0.9544 0.9400	0.9416	0.9444							
Conc-9 5.25 12.5 25	/6		0.9319 0.9289 0.9274	0.9544 0.9400 0.9544	0.9416 0.9048	0.9444 0.9137							
Conc-9	/o		0.9319 0.9289 0.9274 0.9482	0.9544 0.9400 0.9544 0.9509	0.9416 0.9048 0.9524	0.9444 0.9137 0.9363							

Report Date: Test Code/ID:

20 Feb-24 17:45 (p 2 of 4) P240130.03SC / 08-4830-1359

Bivalve Larval Survival and Development Test

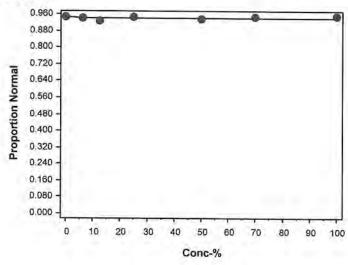
EcoAnalysts

Analysis ID: 20-8186-9544 Analyzed: 20 Feb-24 17:40 **Endpoint:** Proportion Normal

CETIS Version:

CETISv2.1.4

Edit Date: 20 Feb-24 17:29 Analysis: Linear Interpolation (ICPIN) MD5 Hash: EDBAE943D5835730FDDC3062F5D56BB4 Editor ID:


Status Level:

004-244-315-2

Proportion Normal Binomials

Code	Rep 1	Rep 2	Rep 3	Rep 4
D	260/279	230/241	239/251	243/259
	235/253	235/250	242/257	238/252
	230/248	251/263	247/273	233/255
	238/251	271/285	240/252	250/267
	251/267	261/277	235/248	230/250
	258/273	232/245	264/278	226/241
	284/298	246/259	230/248	240/247
		D 260/279 235/253 230/248 238/251 251/267 258/273	D 260/279 230/241 235/253 235/250 230/248 251/263 238/251 271/285 251/267 261/277 258/273 232/245	D 260/279 230/241 239/251 235/253 235/250 242/257 230/248 251/263 247/273 238/251 271/285 240/252 251/267 261/277 235/248 258/273 232/245 264/278

Graphics

Report Date: Test Code/ID: 20 Feb-24 17:45 (p 3 of 4) P240130.03SC / 08-4830-1359

Bivalv	e Larva	I Survival and D	evelopmer	nt Test					est code/iL		F240130		EcoAnalysts
Analys	is ID:	15-5364-4792 20 Feb-24 17:40	End	point: I	Proportion Surv				CETIS Ver	sion:	CETISv2.		EcoAnalysis
Analyzed: 20 Feb-24 17:40 Edit Date: 20 Feb-24 17:29		0.000		Linear Interpola 03B172A8E4A5			14456ECE	Status Lev Editor ID:	vel:	1 004-244-3	315-2		
Batch	ID:	03-0659-8360	Tes	Type: [Development-S	urvival			Analyst:	Dan	ielle Mulligar	1	
Start D	ate:	30 Jan-24 16:07	Prof	tocol: E	EPA/600/R-95/	136 (1995)			Diluent:	7 7	oratory Seaw		
		01 Feb-24 15:20	Spe	cies: N	Mytilus gallopro	vincialis			Brine:	Crys	tal Sea Mari	ine Mix	
Test L	ength:	47h	Tax	on: E	Bivalvia				Source:		or Shellfish		Age: <4h
Sampl		06-0001-8496	Cod	e: F	P240130.03SC				Project:	Wyc	koff Eagle H	larbor G\	NTP 2024/M
-0.0		30 Jan-24 09:35			Freated Ground	water			Source:	Jaco	bs Wyckoff		
		30 Jan-24 11:54		(PC):					Station:	2405	52146_1		
Sampl	e Age:	7h (5.6 °C)	Clie	nt:	lacobs Wyckoff	F)							
Linear	Interpo	olation Options											
X Tran	22.01.2	Y Transform	See	d	Resamples	Exp 95%	CL	Method					
Log(X+	1)	Linear	2986	575	200	Yes		Two-Point	Interpolation	1			
Test A	cceptal	oility Criteria	TAC L	imits									
Attribu	te	Test Stat	Lower	Upper	Overlap	Decision							
Contro	Resp	0.9666	0.5	<<	Yes	Passes C	riteria						
Point E	stimat	es											
Level	%	95% LCL	95% UCL	Tox Un	its 95% LCL	95% UCL							
EC15	>100			<1	-								
EC20	>100	()		<1									
EC25	>100		-	<1									
EC40	>100		-	<1	-								
EC50	>100			<1									
Propor	tion Su	irvived Summary	/			Calculated	Varia	ite(A/B)				Isoto	nic Variate
Conc-	6	Code	Count	Mean	Median	Min	Max	CV9	% %Ef	fect	ΣΑ/ΣΒ	Mean	%Effect
)		D	4	0.9666	0.9733	0.9198	1.00	00 3.71	% 0.00	%	1013/1048	0.9735	0.00%
5.25			4	0.9656	0.9637	0.9542	0.98	09 1.16	0.10	%	1012/1048	0.9735	0.00%
12.5			4	0.9800	0.9911	0.9466	1.00	00 2.61	% -1.38	3%	1027/1048	0.9735	0.00%
25			4	0.9800	0.9873	0.9580	1.00			3%	1027/1048	0.9735	0.00%
50			4	0.9752	0.9847	0.9466	1.00			9%	1022/1048	0.9735	0.00%
69.7 100			4	0.9637	0.9784	0.9198	1.00				1010/1048		0.71%
	D.	- Colonia	4	0.9695	0.9676	0.9427	1.00	00 3.00	-0.30	0%	1016/1048	0.9666	0.71%
		rvived Detail	E0.0 k	Second.	40.7-2								
Conc-%	0	Code	Rep 1	Rep 2	Rep 3	Rep 4							
)		D	1.0000	0.9198	0.9580	0.9885							
5.25			0.9656	0.9542	0.9809	0.9618							
12.5			0.9466	1.0000	1.0000	0.9733							
			0.9580	1.0000	0.9618	1.0000							
			1.0000	1 0000	0.9466	0.9542							
50				1.0000									
25 50 59.7 100			1.0000	0.9351 0.9885	1.0000	0.9198 0.9427							

Report Date: Test Code/ID: 20 Feb-24 17:45 (p 4 of 4) P240130.03SC / 08-4830-1359

Bivalve Larval Survival and Development Test

EcoAnalysts

Analysis ID: 15-5364-4792 Analyzed: 20 Feb-24 17:40

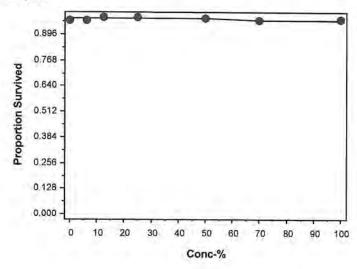
Endpoint: Proportion Survived

d CETIS Version:

CETISv2.1.4

Edit Date:

20 Feb-24 17:40 20 Feb-24 17:29 Analysis: Linear Interpolation (ICPIN)
MD5 Hash: 03B172A8E4A5CBD6CED01A944456ECE


Status Level: Editor ID:

004-244-315-2

Proportion Survived Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	262/262	241/262	251/262	259/262
6.25		253/262	250/262	257/262	252/262
12.5		248/262	262/262	262/262	255/262
25		251/262	262/262	252/262	262/262
50		262/262	262/262	248/262	250/262
69.7		262/262	245/262	262/262	241/262
100		262/262	259/262	248/262	247/262

Graphics

Report Date: Test Code/ID:

20 Feb-24 17:44 (p 1 of 1) P240130.03SC / 08-4830-1359

Bivalve Larval Survival and Development Test

EcoAnalysts

Start Date: 30 Jan-24 16:07 End Date: 01 Feb-24 15:20 Sample Date: 30 Jan-24 09:35

Species: Mytilus galloprovincialis Protocol: EPA/600/R-95/136 (1995) Material: Treated Groundwater

Sample Code: P240130.03SC Sample Source: Jacobs Wyckoff Sample Station: 24052146_1

Conc-%	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	D	1	32	262	279	279	260	110100
0	D	2	3	262	241	241	230	
0	D	3	9	262	251	251	239	
0	D	4	15	262	259	259	243	
0	SC	1	19	262	283	283	261	
0	SC	2	10	262	289	289	271	
0	SC	3	24	262	281	281	261	
0	SC	4	4	262	276	276	247	
6.25	-	1	2	262	253	253	235	
6.25		2	14	262	250	250	235	
6.25		3	18	262	257	257	242	
6.25		4	12	262	252	252	238	
12.5		1	23	262	248	248	230	
12.5		2	26	262	263	263	251	
12.5		3	16	262	273	273	247	
12.5		4	1	262	255	255	233	
25		1	22	262	251	251	238	
25		2	21	262	285	285	271	
25		3	28	262	252	252	240	
25		4	30	262	267	267	250	
50		1	5	262	267	267	251	
50		2	7	262	277	277	261	
50		3	17	262	248	248	235	
50		4	13	262	250	250	230	
69.7		1	31	262	273	273	258	
69.7		2	8	262	245	245	232	
69.7	1	3	27	262	278	278	264	
69.7		4	25	262	241	241	226	
100		1	6	262	298	298	284	
100		2	29	262	259	259	246	
100		3	20	262	248	248	230	
100		4	11	262	247	247	240	

Version V.2

GENERAL

.2	out the same of th	
Client	Jacobs Wyckoff	
Project	Wyckoff Eagle Harbor GWTP 2024/WA	
Project Number	PG1958	
Project Manager	M. Seibert	Note: input lowest and highest decimal for temp
Date Sample Received	1/30/2024	
Test type	48-Hour Chronic Toxicity Using Bivalve Larvae	
Matrix	Liquid	
Test Acceptability	≥90% normal shell development, ≥50% survival (mussels) or ≥70% survival (oysters), MSD <25%	TEST S
Test Start Date	01/30/24	TES
Test Species	Mytilus spp.	
Organism Batch	TS121523.01	
Organism Acquired	12/15/2023	
Organism Acclimation	46	
Organism Age	<4 hr old embryos	
Test Protocol	TOX 042	
Test Location	Incubator 1	
Light Intensity	50-100 foot candles	
Light Cycle	16L:8D	Salinity Adjustment CSMM Batch #
Water Description	0.45 um filtered seawater	62123
Organisms per Replicate	150 - 300	
Test Chamber Size	30 mL	Formalin Lot #
Exposure Volume	10 mL	230724-07
Test Dissolved Oxygen	> 4.0	
Test Temperature	16 ± 1	Rose Bangel Batch #
Test Salinity	30 ± 2	5135
Test pH	8±1	

1	est Parameters	
	Min	Max
DO	4.0	
Temp	15	17
Salinity	28	32
nH	7	9

TEST START TIME/INIT: 1607 LG/MS TEST END TIME/INIT: 1520

CLIENT SAMPLE ID	LAB ID			
24052146-1	P240130.03			

c	oncentrations
1	Control
2	Salt Control
3	6.25%
4	12.5%
5	25%
5	50%
7	69.7%
В	100%
9	

CLIENT	Jacobs Wyckoff	DATE RECEIVED	1/30/24	PROTOCOL	TOX 042
PROJECT	Wyckoff Eagle Harbor GWTP 2024/WA	TEST START DATE	1/30/24	PROJECT MANAGER	M. Seibert
CLIENT SAMPLE ID	24052146-1	TEST END DATE	2/1/24	SPECIES	Mytilus spp.
LAB SAMPLE ID	P240130.03	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300

48-Hour Chronic Toxicity Using Bivalve Larvae

SPAWNING METHOD Heat Shock		INITIAL SPAWNING TIME 12:29	FINAL SPAWNING TIME 13:25	
MALES 4	FEMALES 6	SPERM VIABILITY Good	EGG CONDITION Good	
BEGIN FERTILIZATION 1325		END FERTILIZATION 14:54	CONDITION OF EMBRYOS Good	

INITIALS
LG/MS

EMBRYO DENSITY CALCULATIONS

# of embryos in 1 mL of 100X diluted embryo stock			# embryos in original stock = # of embryos in diluted stock x 100
Count 1	Count 2 Me	an	
	400 384	392	39200
rcentage of	embryo stock needed = 27	00 embryos per 1 ml/# embry	vos in original stock
		00 embryos per 1 mL/# embry	yos in original stock
	embryo stock needed = 27	00 embryos per 1 mL/# embry	yos in original stock
	0.07		
L of egg sto	0.07 k to add to FSW to achieve	total volume = percentage of	f embro stock needed * 40 mL (or desired volume of embryo stock)
L of egg sto	0.07 k to add to FSW to achieve	total volume = percentage of	
L of egg sto	0.07 k to add to FSW to achieve	total volume = percentage of	f embro stock needed * 40 mL (or desired volume of embryo stock)

1.2	CLIENT	Jacobs Wyckoff	DATE RECEIVED	1/30/24	PROTOCOL	TOX 042
	PROJECT	Wyckoff Eagle Harbor GWTP 2024/WA	TEST START DATE	1/30/24	PROJECT MANAGER	M. Seibert
	CLIENT SAMPLE ID	24052146-1	TEST END DATE	2/1/24	SPECIES	Mytilus spp.
	LAB SAMPLE ID	P240130.03	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300

48-Hour Chronic Toxicity Using Bivalve Larvae

Test Parameters		
Salinity of Sample	0.4	
Test Salinity	30	

CSMM Bate	ch Number
	62123

Salinity Adjustment Multiplier	29.6
--------------------------------	------

Coarse salinity adjustment	
mLs. Sample*	1250.0
Grams CSMM	37.0

^{*} Adjust volume so that it equals total volume of sample needed for all dilutions

Fine Salinity Adjustment				
Salinity of coarse-adjusted Sample	30			
Test Salinity	30			
Ratio	1.00			
Grams additional CSMM needed to reach tartget salinity	0			

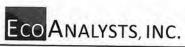
Final salinity	30
i mai summey	30

Salinity Adjustment Date / Initials

1/30/2024 MS

.2	CLIENT	Jacobs Wyckoff	DATE RECEIVED	1/30/24	PROTOCOL	TOX 042
	PROJECT	Wyckoff Eagle Harbor GWTP 2024/WA	TEST START DATE	1/30/24	PROJECT MANAGER	M. Seibert
	CLIENT SAMPLE ID	24052146-1	TEST END DATE	2/1/24	SPECIES	Mytilus spp.
1	LAB SAMPLE ID	P240130.03	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300

48-Hour Chronic Toxicity Using Bivalve Larvae						
Day of Test	Concentration	Vol. Effluent Sample Added (mL)	Vol. Diluent Added (mL)	Total Volume (mL)	Diluent Type	FSW
	0%	0	200.0	200		
	Salt Control	#VALUE!	#VALUE!	200		
	6.25%	12.5	187.5	200		
0	12.5%	25	175.0	200		
	25%	50	150.0	200		
	50%	100	100.0	200		
	69.7%	139.4	60.6	200		
	100%	200	0.0	200		


Test Dilution P	rep			
Date	Balance ID	Sample ID (P#)	Water Batch ID	Initials
113024	7	P240130.03	FSWOBOZYOL	Uo

3.		
1/30/24	PROTOCOL	TOX 042
1/30/24	PROJECT MANAGER	M. Seibert
1.00 100 10	August 1977	

.2 CLIENT	Jacobs Wyckoff DATE RECEIVED	1/30/24	PROTOCOL	TOX 042
PROJECT WWL.off Eagle	Harbor GWTP 2024/WA TEST START DATE	1/30/24	PROJECT MANAGER	M. Seibert
CLIENT SAMPLE ID	24052146-1 TEST END DATE	2/1/24	SPECIES	Mytilus spp.
LAB SAMPLE ID	P240130.03 MATRIX	Liquid	NO. OF ORGANISMS	150 - 300

	4	8-Hour Chroni	Toxicity Using Biv	alve Larvae		
		DO (mg/L)	TEMP (°C)	SALINITY (ppt)	pH	
	Concentration (%)	> 4.0	15 - 17	28 - 32	7-9	
Day 0	Control	7.8	16.3	28	7.6	
Stock	Salt Control	8.1	173	30	8.3	
Date 1/30/24	6.25%	8.1	16,6	28	7.7	
Time 1542	12.5%	8.1	16.4	28	7.7	
Tech UG	25%	8.1	16.5	29	7-	
Meter# 8	50%	81	16.8	29	7.7	
	69.7%	8.1	171	29	7.7	
	100%	1.8	17.4	29	7.7	
Day 1	Control		15.9			
Surrogate	Salt Control		25.9			
Date 01/31/24	6.25%		15.9			
Time 0901	12.5%		25.9			
Tech SR	25%		25.9			
Meter # T16	50%		15.9			
	69.7%		15.9			
	100%		15.9			
Day 2	Control	8.0	15.7	28	7,9	
Surrogate	Salt Control	7.9	15.5	30	8.0	
Date 2/1/24	6.25%	8.1	15.A	29	7.9	
Time 1502	12.5%		15:8	29	8.0	
Tech Us	25%	8.0	15.7	29	8.0	
Meter# 8	50%	7.9	15.9	29	8.2	
	69.7%	8.0	15.9	29	8.2	
	100%	8.1	15.7	30	8.3	

CLIENT	Jacobs Wyckoff	DATE RECEIVED	1/30/24	PROTOCOL	TOX 042
PROJECT Wyckoff Eagle I	Harbor GWTP 2024/WA	TEST START DATE	1/30/24	PROJECT MANAGER	M. Seibert
CLIENT SAMPLE ID	24052146-1	TEST END DATE	2/1/24	SPECIES	Mytilus spp.
LAB SAMPLE ID	P240130.03	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300

48-Hour Chronic	Toxicity	Using	Bivalve	Larvae
-----------------	----------	-------	---------	--------

Concentration (%)	REP	Normal	Abnormal	Date	Tech	Comments/QA Count
	1	265		2/13/24	MANU	
	2	264		2/13/24	MARK	
Stocking Density	3	266		2/13/24	MARCH	X=262
Stocking Density	4	246		2/13/24	MARL	N Y STATE OF THE S
	5	255		2/13/24	MARH	
	6	276		2/13/24	MANH	
	1	260	19	2/7/24	Me	QA MARUN 263N ZIA
Control	2	230	11	2/7/24	MK	D = 0.69.
Control	3	279	12	2/7/24	MC	
	4	243	16	2/7/24	we	
	1	Uel	w	2/7/24	MC	
Salt Control	2	271	18	2/7/24	ime	
Suit Control	3	261	20	2/7/24	ML	
	4	247	29	2/7/24	ML	
	1	275	18	2/7/24	me	
6.25%	2	235	15	2/7/24	mk	
0.2370	3	242	15	217/24	MK	
	4	238	14	2/7/24	me	R L
	1	O 338 230	OH3 18	217/24	MK	
12.5%	2	ODS1 251	Otle 12	2/7/24	Me	
12.370	3	247	26	2/7/24	me	
	4	233	22	2/7/24	me	
	1	075+238	07613	2/2/24	MK	QAMALLY 240 N 15 A
25%	2	271	14	2/8/24	mk	D= 0.7%
2370	3	240	12	2/8/24	me	
	4	250	17	2/8/24	MIL	
	1	0258-251	07516	2/7/24	Me	
50%	2	rel	16	2/8/24	me	
3070	3	235	13	2/8/24	me	
	4	230	20	2/8/24	nue	

Owc. mk 2/7.

² CLIENT		Jacobs Wyckoff	DATE RECEIVED	1/30/24	PROTOCOL	TOX 042
PROJECT	Wyckoff Eagle Harb				PROJECT MANAGER	M. Seibert
CLIENT SA	AMPLE ID	24052146-1	TEST END DATE	The state of the state of	SPECIES	Mytilus spp.
LAB SAM	PLE ID	P240130.03	MATRIX	Liquid	NO. OF ORGANISMS	150 - 300

48-Hour Chronic Toxicity Using Bivalve Larvae

Concentration (%)	REP	Normal	Abnormal	Date	Tech	Comments/QA Counts
	1	258	15	2/7/24	MC	
69.7%	2	232	13	218/24	wa	
03.770	3	264	14	2/8/24	me	
	4	226	15	2/8/24	MIC	
	1	284	14	2/7/24	mu	OAMAU 786N 14A
100%	2	246	13	2/8/24	Me	N=0.0°10
100%	3	230	18	2/8/24	me	
	4	240	7	2/8/24	MIC	

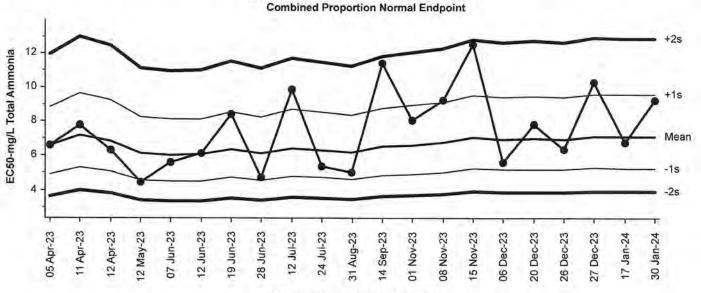
Report Date:

22 Feb-24 11:11 (1 of 1)

Bivalve Larval Survival and Development Test

All Matching Labs

Test Type: Development-Survival


Organism: Mytilus galloprovincialis Protocol: All Protocols

Endpoint: Combined Proportion Normal

Material: Source:

Total Ammonia Reference Toxicant-REF

Bivalve Larval Survival and Development Test

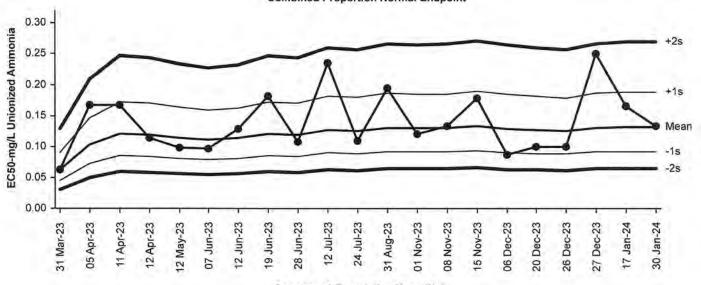
Lognormal Cumulative Mean Plot

Mean: 7.114 20 Count: -1s Warning Limit: 5.28 Sigma: NA 30.40% +1s Warning Limit: 9.58

-2s Action Limit: 3.93 +2s Action Limit: 12.9

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2023	Apr	5	15:18	6.581	-0.5325	-0.2617				07-2069-0121	
2			11	16:37	7.809	0.6957	0.3139			The second second	15-2064-5147	
3			12	15:13	6.298	-0.8151	-0.4093				12-4981-2785	
4		May	12	15:35	4.42	-2.694	-1.601	(-)		02-3839-1595	05-0285-3181	EcoAnalysts
5		Jun	7	16:24	5.621	-1.492	-0.7919			16-8311-5218	04-7873-2197	EcoAnalysts
6			12	18:29	6.154	-0.9595	-0.4874			19-7480-8941	04-9719-6422	EcoAnalysts
7			19	16:20	8.423	1.309	0.5682			16-3224-4662	15-6769-3694	EcoAnalysts
8			28	15:18	4.725	-2.389	-1.376	(-)		10-1014-4768	17-1187-2841	EcoAnalysts
9		Jul	12	12:57	9.89	2.777	1.108	(+)		02-0009-8192	04-6529-8407	EcoAnalysts
10			24	17:06	5.374	-1.739	-0.9432			05-3985-4386	13-9086-0827	EcoAnalysts
11		Aug	31	16:54	5.053	-2.061	-1.15	(-)		16-1472-3265	15-9433-1311	EcoAnalysts
12		Sep	14	13:50	11.43	4.315	1.595	(+)		10-9810-7803	01-3503-3195	EcoAnalysts
13		Nov	1	17:40	8.055	0.9413	0.418			08-2875-4322	08-8063-5388	EcoAnalysts
14			8	15:55	9.251	2.138	0.8838			13-4824-7359	00-4887-4658	EcoAnalysts
15			15	14:38	12.55	5.438	1.91	(+)		04-7650-2671	01-5035-4681	EcoAnalysts
16		Dec	6	17:35	5.604	-1.509	-0.8021			07-4908-4729	09-1248-2427	EcoAnalysts
17			20	15:50	7.826	0.7125	0.3211			21-3057-6259	03-0359-1538	EcoAnalysts
18			26	17:01	6.393	-0.7209	-0.3594			09-3076-3716	00-6627-3829	EcoAnalysts
19			27	16:43	10.27	3.159	1.236	(+)		05-3736-4406	14-3667-2208	EcoAnalysts
20	2024	Jan	17	15:15	6.76	-0.3532	-0.1713			06-5202-1140	06-9659-2949	EcoAnalysts
21			30	16:45	9.227	2.114	0.875			00-0328-6111	17-2839-1252	EcoAnalysts

Report Date: 22 Feb-24 11:13 (1 of 1)


Bivalve Larval Survival and Development Test

All Matching Labs

Test Type: Development-Survival Organism: Mytilus galloprovincialis Material: Unionized Ammonia

Protocol; All Protocols Endpoint: Combined Proportion Normal Source: Reference Toxicant-REF

Bivalve Larval Survival and Development Test Combined Proportion Normal Endpoint

Lognormal Cumulative Mean Plot

 Mean:
 0.1324
 Count:
 20
 -1s Warning Limit:
 0.0928
 -2s Action Limit:
 0.0651

 Sigma:
 NA
 CV:
 36.70%
 +1s Warning Limit:
 0.189
 +2s Action Limit:
 0.27

	Qua	ity	Control	Data
--	-----	-----	---------	------

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2023	Mar	31	16:54	0.06349	-0.0689	-2.067	(-)	(-)	01-2022-2925	11-3364-1842	EcoAnalysts
2		Apr	5	15:18	0.1685	0.03615	0.6791			01-0596-2964	10-8703-5300	EcoAnalysts
3			11	16:37	0.1673	0.03495	0.659			13-1124-3474	18-0348-0749	EcoAnalysts
4			12	15:13	0.1148	-0.0176	-0.4011			18-5662-1396	07-7214-9910	EcoAnalysts
5		May	12	15:35	0.09858	-0.03381	-0.8294			08-2245-0872	03-4589-6060	EcoAnalysts
6		Jun	7	16:24	0.0976	-0.03479	-0.8575			18-8939-1974	09-3314-9652	EcoAnalysts
7			12	18:29	0.1293	-0.00307	-0.06589			09-8773-2984	16-9381-4730	EcoAnalysts
8			19	16:20	0.182	0,04957	0.8945			21-4361-0458	04-8703-0787	EcoAnalysts
9			28	15:18	0.1088	-0.02354	-0.5507			16-9844-0501	06-2488-5585	EcoAnalysts
10		Jul	12	12:57	0.2364	0.104	1.63	(+)		13-3479-3905	05-2583-6446	EcoAnalysts
11			24	17:06	0.1104	-0.022	-0.5112			08-8951-5421	04-1308-9826	EcoAnalysts
12		Aug	31	16:54	0.1956	0.0632	1.098	(+)		07-4158-0358	11-0996-2376	EcoAnalysts
13		Nov	1	17:40	0.1213	-0.01104	-0.245			06-2464-1457	05-4038-7195	EcoAnalysts
14			8	15:55	0.1338	0.00137	0.02897			13-8700-3666	02-0586-1811	EcoAnalysts
15			15	14:38	0.1802	0.04777	0.8666			19-3724-7711	00-4487-8422	EcoAnalysts
16		Dec	6	17:35	0.08732	-0.04507	-1.171	(-)		11-7639-2844	02-1522-3004	EcoAnalysts
17			20	15:50	0.1006	-0.03181	-0.7731			09-2413-6838	00-3830-4602	EcoAnalysts
18			26	17:01	0.09993	-0.03246	-0.7914			07-1075-7212	13-4227-6824	EcoAnalysts
19			27	16:43	0.2498	0.1174	1.786	(+)		21-2709-9990	17-0965-3961	EcoAnalysts
20	2024	Jan	17	15:15	0.1665	0.03411	0.6449			15-5848-1090	20-9766-0257	EcoAnalysts
21			30	16:45	0.134	0.001602	0.03383			12-6773-1386	01-4900-2989	EcoAnalysts

CETIS Summary Report

Report Date: Test Code/ID: 22 Feb-24 11:12 (p 1 of 1) P220819.118 / 00-0328-6111

									Cacilo.		. 2200	10.1107.00	0020011
Bivalve Larva	al Survival and	Developme	ent Test									7.02.11.44	oAnalysts
	13-6318-1280 30 Jan-24 16:4 01 Feb-24 15:3	45 Pro 22 Sp	otocol: ecies:	Development-S EPA/600/R-95/ Mytilus gallopro	/136 (1995)			Dilu Brir	ent: ne:	Labo Evap	sa Seibert pratory Seav		
Test Length:	4/n	la	xon:	Bivalvia				Sou	rce:	Tayl	or Shellfish		Age: <4h
Sample ID:	11-7286-3678	Co	de:	P220819.118				Pro	ject:	Refe	rence Toxic	ant	
Sample Date:	: 19 Aug-22	Ma	terial:	Total Ammonia	3			Sou	rce:	Refe	rence Toxic	ant	
Receipt Date:			S (PC):					Stat	ion:	P220	0819.118		
Sample Age:	529d 17h	Cli	ent:	Internal Lab									
Multiple Com	parison Summ	nary											
Analysis ID	Endpoint		Com	parison Method			/ N	OEL	LOEL		TOEL	PMSD	
00-4889-2852	Combined Pro	portion Norr	na Dunn	ett Multiple Com	parison Tes	t	3.	7	7.2		5.161	10.0%	
Point Estimat	te Summary												
Analysis ID	Endpoint		Point	Estimate Meth	od	3	/ L	evel	mg/L		95% LCL	95% UCL	4
17-2839-1252	Combined Pro	portion Norr	na Trimn	ned Spearman-F	Kärber		E	C50	9.227		9.076	9.381	
Test Acceptal	bility					TAC	Limi	ts					
Analysis ID	Endpoint		Attrib	oute	Test Stat			pper	Overla	ар	Decision		
00-4889-2852	Combined Pro	portion Norr	na PMSI)	0.1001	<<	_	25	No		Passes Ci	riteria	
Combined Pr	oportion Norm	al Summar	y										
Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min	M	ax	Std E	rr	Std Dev	CV%	%Effect
0	D	4	0.950	4 0.8882	1.0130	0.9046	1.	0000	0.019	5	0.0391	4.11%	0.00%
1.12		4	0.920	8 0.8180	1.0240	0.8626	1.	0000	0.0323	3	0.0646	7.01%	3.11%
3.7		4	0,973	3 0.8883	1.0580	0.8931	1.	0000	0.026	7	0.0534	5.49%	-2.41%
7.2		4	0.787		0.8338	0.7443	0.	8092	0.014	7	0.0293	3.72%	17.17%
15		4	0.002		0.0059	0.0000		0038	0.0010	0	0.0019	66.67%	99.70%
24.8		4	0.000	0.0000	0.0000	0.0000	0.	0000	0.000	0	0.0000		100.00%
Combined Pr	oportion Norm	al Detail						ME	5: 828A	228	D8B02667B	AACC19A8	5D547085
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4								
0	D	0.9466	0.904	6 1.0000	0.9504								
1.12		0.8740	0.946	6 1.0000	0.8626								
3.7		1.0000	1.000	0 1.0000	0.8931								
7.2		0.8092	0.744		0.7939								
15		0.0000	0.003		0.0038								
24.8		0.0000	0.000		0.0000								
	an author Mana	37000		, ,,,,,,,	8,4-36								
Conc-mg/L	oportion Norm Code	Rep 1	Rep 2	Rep 3	Rep 4								
0	D	248/262	237/2		249/262					-			
1.12	J	229/262	248/2		226/262								
3.7		263/263	281/2		234/262								
7.2		212/262	195/2		208/262								
15		0/262	1/262		1/262								
24.8		0/262	0/262	0/262	0/262								

CETIS Summary Report

Report Date:

22 Feb-24 11:13 (p 1 of 1)

								Test Co	ode/ID:		P220819.1	18 UIA / 12	-6773-13
Bivalve Larva	al Survival and D	Developmen	t Test									Ec	oAnalyst
Batch ID:	13-6318-1280	Test	Type:	Development-S	Survival			Anal	yst:	Maris	a Seibert		
Start Date:	30 Jan-24 16:45 Protocol:			EPA/600/R-95/136 (1995)				Dilu	7	Labo	ratory Seav	vater	
Ending Date:	01 Feb-24 15:22	2 Spec	cies:	Mytilus gallopro	vincialis			Brin	e:	Evap	orated Sea	water	
Test Length:	47h	Taxo	n:	Bivalvia				Soul	rce:	Taylo	r Shellfish		Age: <4
Sample ID:	17-4418-1481	Code	e:	P220819.118 U	IIA			Proj	ect:	Refer	rence Toxic	ant	
Sample Date:	: 19 Aug-22	Mate	rial:	Unionized Amm	nonia			Sour	rce:	Refer	rence Toxic	ant	
Receipt Date:	: 19 Aug-22	CAS	(PC):					Stati	on:	P220	819.118 UI	A	
Sample Age:	529d 17h	Clier	nt:	Internal Lab									
Multiple Com	parison Summa	ary											
Analysis ID	Endpoint		Comp	arison Method			1	NOEL	LOEL	J. I	TOEL	PMSD	
04-2845-0057	Combined Prop	ortion Norma	Dunne	ett Multiple Comp	parison Test			0.054	0.104	-	0.07494	10.0%	
Point Estimat	te Summary												
Analysis ID	Endpoint		Point	Estimate Metho	od		1	Level	mg/L	1.	95% LCL	95% UCL	
	Combined Prop	ortion Norma						EC50	0.134		0.1318	0.1362	
Test Acceptal	bility					TAC	11	mits					
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower		Upper	Overl	lap	Decision		
04-2845-0057	Combined Proportion Norma PMSD				0.1001	<<		0.25	No		Passes Criteria		
Combined Pr	roportion Norma	I Summary	-										
Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min		Max	Std E	rr	Std Dev	CV%	%Effec
0	D	4	0.9504	0.8882	1.0130	0.9046		1.0000	0.019)5	0.0391	4.11%	0.00%
0.017		4	0.9208	0.8180	1.0240	0.8626		1.0000	0.032	23	0.0646	7.01%	3.11%
0.054		4	0.9733		1.0580	0.8931		1.0000	0.026	57	0.0534	5.49%	-2.41%
0.104		4	0.7872		0.8338	0.7443		0.8092	0.014		0.0293	3.72%	17.17%
0.219		4	0.0029		0.0059	0.0000		0.0038	0.001		0.0019	66.67%	99.70%
0.286		4	0.0000	0.0000	0.0000	0.0000		0.0000	0.000	00	0.0000		100.00
Combined Pr	roportion Norma	l Detail						MD	5: A393	398A6	D58D7143	8FA5E5E49	94C02EE
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4								
0	D	0.9466	0.9046	1.0000	0.9504								
0.017		0.8740	0.9466	1.0000	0.8626								
0.054		1.0000	1.0000	1.0000	0.8931								
0.104		0.8092	0.7443	0.8015	0.7939								
0.219		0.0000	0.0038		0.0038								
0.286		0.0000	0.000	0.0000	0.0000								
Combined Pr	roportion Norma	l Binomials											
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4								
	0	248/262	237/20	32 269/269	249/262								
	D	240/202											
0	U	229/262	248/26		226/262								
0 0.017	D			62 263/263									
0 0.017 0.054	U	229/262	248/26	52 263/263 31 264/264	226/262								
0 0.017 0.054 0.104 0.219	U	229/262 263/263	248/26 281/28	52 263/263 31 264/264	226/262 234/262								

Start Date:

End Date:

Report Date:

22 Feb-24 11:11 (p 1 of 1) P220819.118 / 00-0328-6111

Test Code/ID: P220819.118 / 00-0328-6111

EcoAnalysts

Bivalve Larval Survival and Development Test

01 Feb-24 15:22

30 Jan-24 16:45 Sp

Species: Mytilus galloprovincialis
Protocol: EPA/600/R-95/136 (1995)

Sample Code: P220819.118

Sample Source: Reference Toxicant

Sample Date: 19 Aug-22 Material: Total Ammonia

Sample Station: P220819.118

Conc-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	D	1	24	262	260	260	248	
0	D	2	2	262	254	254	237	
0	D	3	10	262	277	277	269	
0	D	4	21	262	262	262	249	
1.12		1	8	262	248	248	229	
1.12		2	14	262	263	263	248	
1.12		3	5	262	279	279	263	
1.12		4	18	262	239	239	226	
3.7		1	11	262	278	278	263	
3.7		2	22	262	301	301	281	
3.7		3	6	262	276	276	264	
3.7		4	16	262	250	250	234	
7.2		1	19	262	255	255	212	
7.2		2	15	262	243	243	195	
7.2		3	12	262	257	257	210	
7.2		4	9	262	242	242	208	
15		1	17	262	279	279	0	
15		2	20	262	265	265	1	
15	-	3	3	262	258	258	1	
15		4	13	262	267	267	1	
24.8		1	7	262	264	264	0	
24.8		2	4	262	261	261	0	
24.8		3	23	262	271	271	0	
24.8		4	1	262	260	260	0	

Report Date:

22 Feb-24 11:12 (p 1 of 1)

Test Code/ID:

P220819.118 UIA / 12-6773-1386

Bivalve Larval Survival and Development Test

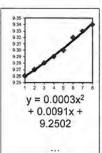
EcoAnalysts

Start Date: End Date: 01 Feb-24 15:22 Sample Date: 19 Aug-22

30 Jan-24 16:45

Species: Mytilus galloprovincialis Protocol: EPA/600/R-95/136 (1995) Material: Unionized Ammonia

Sample Code: P220819.118 UIA Sample Source: Reference Toxicant Sample Station: P220819.118 UIA


Conc-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes
0	D	1	3	262	260	260	248	
0	D	2	19	262	254	254	237	
0	D	3	14	262	277	277	269	
0	D	4	23	262	262	262	249	
0.017		1	24	262	248	248	229	
0.017		2	13	262	263	263	248	
0.017	1. 1	3	12	262	279	279	263	
0.017		4	17	262	239	239	226	
0.054		1	18	262	278	278	263	
0.054		2	1	262	301	301	281	
0.054		3	7	262	276	276	264	
0.054		4	22	262	250	250	234	
0.104		1	15	262	255	255	212	
0.104		2	21	262	243	243	195	
0.104		3	10	262	257	257	210	
0.104		4	5	262	242	242	208	
0.219		1	16	262	279	279	0	
0.219		2	4	262	265	265	1	
0.219		3	11	262	258	258	1	
0.219		4	2	262	267	267	1	
0.286		1	8	262	264	264	0	
0.286		2	9	262	261	261	0	
0.286		3	20	262	271	271	0	
0.286		4	6	262	260	260	0	

Un-ionized Ammonia Calculator

CLIENT:	Jacobs Wyckoff	Date of Test:	January 30, 2024
PROJECT:	Wyckoff Eagle Harbor GWTP 2024/WA	Test Type:	Mytilus galloprovincialis
COMMENTS:	P220819 118		

To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

lonic str	ength:pKa
1	9.26
2	9.27
3	9.28
4	9.29
5	9.30
6	9.32
7	9.33
8	9.34

Sample Target / Sample Name	I	NH3T (mg/L)	I - I	pH ^etus	temp (C)	temp (K)	pKa s	NH ₃ U (mg/l
		Actual	Actual	Actual	Actual	Calculated	Calculated	
Example 3.5		2.000	10.0	7.5	5.0	278.15	9.2520	0.008
1.5		1.12	28	7.7	16.6	289.75	9.2555	0.017
3		3.7	28	7.7	16.4	289.55	9.2555	0.054
6		7.2	28	7.7	16.2	289.35	9.2555	0.104
12		15	28	7.7	16.4	289.55	9.2555	0.104
18		24.8	28	7.6	16.3	289.45		0.219
10		24,0	20	7.0	10.3	289.45	9.2555	0.286
								1/4
1								110
								10-2
								142
	-							
	-							
			-					-
	-							
				-	-			
	-							1
	-							
								+
								1111
				- 1			1	1.11
	- 1							T I
						. 11	1	(1)
					11			
	-	(===						

OH/ Manu

Ammonia Reference Toxicant Spiking Worksheet

Reference Toxicant ID:

P220819.118

Date Prepared:

113012024

Technician Initials:

cs /Ria

Biv / Echino NH₃ RT

Assumptions in Model

Stock ammonia concentration is 9,000 mg/L = 9 mg/mL

Date:

12/27/2023

Measurement:

9600

Te	st Solutions						
Measured Concentration	Desired Concentration	Volume mL	Volume of stock to reach desired concentrati				
mg/L	mg/L		mL stock to increase				
0.00/0-3176	Ø		SALT WATER				
1.59-11.12	1.5	200	0.047				
3.4/3.70	3	200	0.094				
6.33 17.2	6	200	0.188				
-11.3 /15.	12	200	0.375				
17.8 124.8	18	200	0.563				

(NEW PILLMONS, SPW & SAL WAS TOO LON RG 1/30/24

@MC0.280 Kg 1/30/29

48 Hour Bivalve Development Reference Toxicant Test

Test ID: P220819	118	Replica	ates: 4	S	tudy Director	: M. S	eibert	Location	on: Incu	ıbator 1	
Dilution Water	Batch:		sm Batch:		ssociated Tes	t(s): J	acobs	Organi	ism: M.	sp.	
Chamber Size/ 30 ml she	Type:	10/4	re Volume:		Уускоп						
Toxicant: Amn	nonium C	hloride		D	ate Prepared	: 1/30	/24	Initials	: R6	1	
Target Conc		ns: ing works	heet		Quantity of Sarget: See spikin			Quan	tity of	Diluent:	
	See spik	ing works	heet	А	ctual: See spil			Actual		Oml	
				SPAWI	NING DAT	Α					
Initial Spawning		Final Sp Time:	oawning 1325		ization Time: No. of Females:				No. of Males:		
Embryo Density (count	/mL):	1. 40	-	2. 38		3.	- 415	Mean:	392		
Stocking Volun	ne Calcula	ation: 2400			L = 2.76r	nL egi	g slock in	37.24	ML F	SM	
0 Hours	Date:	1/30/24	WQ Time:			Star	t Time: 10	45	Initia	als: MS/RG	
					ТОСК						
D O (0/)			Control	1.5	3		6	1	2	18	
D.O. (%) (>4.0 mg/L)			7-8	7.9	7.9		6.0	8.	D	8.1	
Temperature (L6 ± 1°C)		8-W	16.4	16.0	1	10.2	16	.4	16.3	
Salinity (30 ± 2 ppt)			28	28	28		28	25	8	28	
pH (6-9)		-	1.4	7-7	7.7		7-7	7	7	7.4	
Meter #			8	8	8		8	8		8	
Day 1	Tempe (16 ± 1°	erature C)	15.9		Meter #	Ta	16		Initia	ls: SR	
Day 2	Date:	2/1/24	WQ Time:	1440		End	Time: 15	22	Initia	Is: Ug	
			Formalin I	ot#: 236	724-07		e Bengal Lot #	# :			
				S	ГОСК		,,,,				
			Control	1.5	3		6	13	2	18	
D.O. (%) (>4.0 mg/L)		2	6.9	8.1	8.1		8.1	8.	2	8.1	
Temperature (1	16 ± 1°C)		6.4	14.9	15.3		15.2	14.	8	14.8	
Salinity (30 ± 2 ppt)			29	29	28		29	20		29	
pH (6-9)			7.8	7.9	7.9		7.9	7.	9	7.8	
Meter #			8	8	8	8		8		8	

Os'd 101. Mg/30

@MR- 4 2/1

48 Hour Bivalve Development Reference Toxicant Test

Test 10: P220819, 118

Conc.	Rep	Number Normal	Number Abnormal	Date	Initials
	1	248	12	217/24	DM
Company	2	237	17	24/24	DM
Control	3	249	8	2/3/14	DM
	4	249	13	7/21/24	MARH
	1	229	19	212164	MARH
1.5	2	248	15	2/21/24	MARH
1.5	3	263		2/21/24	MARH
	4	226	16	2121/24	MARIL
	1	263	15	2/21/24	MARK
3	2	281	20	2/21/24	MARY
5	3	264	12	2/21/24	MARIH
	4	234		2/21/24	MARY
	1	212	1(o 43	2/21/24	MARY
6	2	195	48	2/21/24	MARH
6	3	210	47	2/21/24	MANU
	4	20%	34	2/21/24	Manut
	1	0	279	2121/24	Marie
12	2	1	264	2/21/24	WARUS
12	3	1	257	2/21/24	Mary
	4	1	266	2/21/24	MARIS
	1	0	264	2/21/24	MARIA
18	2	0	261	2/21/24	MANU
10	3	O	271	2/21/24	MARLE
	4	0	260	2/21/4	manu
		Stocking	Density		
Rep		Cou		Ini	t.
1		265		MA	M
2		264		Mar	
3 4		266			Ms
5		246		VeW.	
6		255			N
	Mean:	262	e	MA	us

ORGANISM RECEIPT LOG

Date: \2	16/23	Tin	ne: 15	29	13.61						
		·Sp					4				
Source / S											
		aylor	Shi	Vzityls							
No. Ordere		No.	Receive		Soi	urce Batch:					
	165		121	Collection date, hatch date, etc.):							
Condition	of Organis			Approxir	nate Si	ze or Age:					
	Good					ife stage, size					
Shipper:				D 651 /=	Nixe	ed Ac	Ztluk				
(Counc			B of L (T	racking JA	No.)					
condition of	of Contain	er:		Received	Ву:						
	(2001)	J/\	3+1	NC				•			
container	D.O. (mg/L)	Temp. (°C)	Cond. Sal. (Include Units	ie (U	pH nits)	# Dead	% Dead*	Tech. (Initials)			
	vec	eived	dn	1 =				NI			
		10.4	(
>10% contact	lah manana										
	···anager		1								
otes:											
								agi.			

7/27/15

Organism Receipt Log v1.1

Page __ of __

Toxicity Testing Results Wyckoff/Eagle Harbor Superfund Site Groundwater Treatment Plant

APPENDIX B

CHAIN-OF-CUSTODY AND SAMPLE RECEIPT FORMS

Report ID PG1958Q1.01 EcoAnalysts, Inc.

Page 1 of 1

E lalyst, Inc. (Region Copy)

DateShipped: 1/30/2024

CarrierName: EcoAaylists (hand delivery)

AirbillNo:

Jacobs, Wyckoff Eagle Harbor COC

Wyckoff Eagle Harbor GWTP 2024/WA

Project Code: Cooler #: 1

No: 10-013024-110419-0771

Account Code: 2015T10P303DD210W2LA00

Contact Name: Mario Lopez Ramos

Lab#	Sample #	Location	CLP	1-					Conta	me: Mario Lope: ect Phone: 206-7	80-1711
2)	24052146_1		Sample #	Tag	Analyses	Matrix	Collection				
0	27002140_1	SP-11	180	N	Church T	- Land	Collected	Numb	Container	Preservativ	Lab Q
				1.	Chronic Toxicity	Ground	1/30/2024	Cont		е	
						Water		2	1L Cube	<6C	
								- 1			
-						+		7- 1			
						-	1	7 - 1			
-											
				1			1				
-		1					1				
			1 6					-		1	
								-			
1											
1			1								
117				1			4	1			
							1				
								11/11			

Special Instructions: 2024 Week 05 - 1st Quarter Bioassay -Chronic Toxicity Bivalve Test

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY#

18	Relinguished by (Signatu	Date/Time 1/30/2024	Received by (Signa	ture and Organization)	Date/Time	Ta and a second
00	VIIII E	1154	MILP	(-	111-1	Sample Condition Upon Re
		1101	0.00	CloAnaly sty	130127	P240130.039 -5.6°C
					1.5	65 40130 03P-956

① Sample Collected @ 0935 on 1/30/24-MS 1/30
② 1ab #. P240130.03a - temp: 5.6°C
P240130.03b - temp: 6.2°C* temp. Win. range since rood win 4 hrs of collection-ms 1/30

SAMPLE RECEIPT

Client:				Client ID:					Lab I	D:		Re	newals:				
lacobs Myckol	FF	240	52	146-	١		PV	41	0130).(043						
Project:							P							3			
NYCKOFF Eaglo		ba				=	-	_									
GWTP 2024/WA															1		
Date/Time Red	ceiv	red:					430/24 1154										
Airbill #:							N		+								
Shipper Tracki Records: (Y/N	ng /N/	Informa A)	tio	n Kept for			٨	j,	A			* *					
Collection Date	e/T	ime:					1/30	12	40	13	5	-					
Sample Holding Time (must be ≤36 hours at test initiation)								Y									
Condition of Shipping Container:								Good						/4			
Type and Capacity of Sample Container:								IL cubi x 2									
Total Sample Volume (L): Condition of Sampling Container:							ZL Good							-	+=		-
														i	-		
Sample Contai					-		9000							- 1			
Custody Seals (Intact/Broke	Int	act:					intact							- X			
Frozen Wet or Shipment/Tran	Blu	e Ice Pr ort: (Y/	ese N)	ent During			4						,				
Sampler's Nam (Print Name/N	ne F	resent o	on (COC Form	:		Mano Lopez Clear							÷			
Color:															-		
	TA	KE TI	1E	FOLLO	W)	ING				RE	MENT	SUP	ON AF	RRIV	/AL		
	T	*			П			T		П	and the same of		1	T		m	
LAB ID	Meter #	Temp. (°C) (0-6°C)	Meter #	Dissolved Oxygen (mg/L)	Meter #	Hd		Merer #	Cond. (µS/cm)	Meter #	sal. (ppt)	Hardness (mg CaCO ₃ /L)	Alkalinity (mg CaCO ₃ /L)	Potal	Chlorine (mg/L)	Total NH3 (mg/L)	Tecl
			Σ	200	Σ			Σ	ੱਤ	Σ	Sa	포 8	₹ 8		55	to T	
240130.04a	124	5.6	-	_			X		/		1	/	/		1	1	MS
240138.0346		6.2				/			/	Ī	/	/	1/	1	/	/	13
240136.04	-	-	8	9.2	8	7.	56	3-	198	8	0.4		-	0.	01	0.0	12
														0.	- 1		
Notify project								1	L 11								

1	
16.	

Ocorrected Lab 16-Ms 1/30

MAINTENANCE LOG FOR FLOW-THROUGH CULTURE TUBS

LOCATION: Bath 10

Organism (A): M. Sp.	Batch Number: 7511068.01	Date Received: 11.6.23	Initial # of Organisms:	10% Mort =
Organism (B): M. Sp.	Batch Number: 75 (10623.6)	Date Received: 11.6.23	Initial # of Organisms:	10% Mort =
Organism (C): M, Sp	Batch Number 75 215 23.0) A	Date Received: 12 115	Initial # of Organisms: \2\05	10% Mort =
Organism (D): "M.SD	Batch Number 15121573,018		Initial # of Organisms:	10% Mort =
Organism (E):	Batch Number:	Date Received:	Initial # of Organisms:	10% Mort =

Date	Feed AM/PM		Organism (A, B, C, D, or E)	D.O.	Temp (°C)	Cond/ Sal	рН	H₂O Change	Organisms appear healthy (Y/N)	# Mort	Cumulative # Mort*	Init.	Comments
11.23.2	3	X	A	7.3	16.4	30	7.6	FT	Y	-	_	MARH	
V		X	B	7.6	16.6	30	7.7	FT	Y	-	_	MARKI	
11/26	X	~	A	7.3	15.7	32	7.7	77	Y		~	TW	
11/26	X	-	B	7.7	15.6	32	17.7	FT	4		J	TW	1
12/3	_	V	A	_			7	PT	V	_	N-0	NYIG	fed.
12/3	_	\checkmark	B	_	-	-	-	FT	4	-	~	NYLG	fed
2623	-	>	A	6.7	15.3	30	75	R	4	040	6	DM	, ,
21423	-		8	75	154	30	7,6	\$	4	-1	1	M	
2/10	1	~	A	7.9	15,4	30	7.8	FT	y'	0	-	Ug	
2110	1	1	B	7.9	15.4	30	7.9	FT	Х	0	1	4	
12/12		1	A	7.6	16.0	32	7.6	PT	Y	9	-	517	
12/22	-	J	B .	7.9	26.0	31	7.8	FT	Y	0	1	SR	
12/29/23	1	1	A	7.8	15.9	32	7.7	PT	Y	0	-	SR	
12/24/23	•	1	B	7.8 .	15.7	31	7.7	FÎ	٢	0	1	SR	
12/17	1	-	0.	7.7	11,9	31	7.8	FT	Y	0	_	NT	13°C

9/8/2022

Culture Maintenance Log V 1.5

OWC-DM-12/0/23

FT = Flow-through
*For all days of a given batch; if >10% notify lab manager

MAINTENANCE LOG FOR FLOW-THROUGH CULTURE TUBS

LOCATION: BOTHIO

Organism (A): M.SO	Batch Number: TSII 0623.0	Date Received: \\ φ	Initial # of Organisms:	10% Mort =
Organism (B): M.SD	Batch Number: 75(106/23.0)	Date Received: \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Initial # of Organisms:	10% Mort =
Organism (C): W.50	Batch Number: 18 12/523,014		Initial # of Organisms:	10% Mort =
Organism (D): W.S.P	Batch Number: TS121523 A16		Initial # of Organisms:	10% Mort =
Organism (E):	Batch Number:	Date Received:	Initial # of Organisms:	10% Mort =

Date	Feed AM/PM		Organism (A, B, C, D, or E)	D.O.	Temp (°C)	Cond/	рН	H₂O Change	Organisms appear healthy (Y/N)	# Mort	Cumulative # Mort*	Init.	Comments
120	1	-	D	7.7	11.9	31	7.7	FT	V	9	-	NS	
1217	V	-	A	רֹלִ	12.1	31	7.8	PT	y'	0	-	M	
12/12	V	-	В	8.7	2.1	31	7.8	FT	Y	0	-	NU	
12/19		V	A	7.1	15.4	31	7.5	FT	Ý	0		CS	
12/19		V	В	6.9	15.7	31	7.7	FT	Y	0	-	CS	
12/19	11	V	C	6.9	15.1	31	7.5	FT	y	0	-	CS	
12/19		. 1	D	6.8	15.1	31	7.5	FT	Y	0	Stell	CS	
12/20	-	_	c	1.5	15.7	31	7.4	FT	Y	0	-	NL	
12/20	~	-	0	7.1	15.5	31	7.4	PT	N	0	1	NL	
12/21	•	V	A	7.7	11.3	31	7.6	FT	4	0	-	CS	
12/21	i.e.	1	C	7.4	12.4	31	7.4	FT	Y	0	-	CS	
12/21	-	/	D.	7.2	11.6	31	7.5	FT	7	6	1+9	CS	
12/230			A	7.7°	41.3	31	7						
12/23			A	7.7	10.4	30	7.7	FT	1	0	-	T	
12/23	= 10		B	7.7	10.5	30	7.6	FT	7	0	-	IT	

9/8/2022

16-05 12/21, T WWS

FT = Flow-through
*For all days of a given batch; if >10% notify lab manager

MAINTENANCE LOG FOR CULTURES

ORGANISM: M.Sp. LOCATION:

Batch Number: T5121523.01 Date Received: 12/15/23 Initial # of Organisms: 10% mortality =

Date	AM/PI		Tub No.	D.O.	Temp (°C)		рН	H₂O Change	Organisms appear healthy (Y/N)	# Mort (per tub)	¹ Cumulative # Mort*	Init.	Comments
12/24	X	V	B	7.2	1.11	131	7.5	FT	4	0	-	TW	
12/25	-	-	В	7.4	11.4	30	7.6	PT	Y	0	Q		
2/20		V	13	7.3	111.3	30	76	R	4	0	۵	SR	
2128	_	~	В	7.9	12.3	30	7.7	FT	V		_		
2/31	-	0	D	_		30	127 34	The state of		0		CS	
11040	-	~		8.1	9.5	_	-	-			_	40	
1/040	-	~		18.1	1.00					/			Too cold for s
1/04	-	~	В	8.1	10.3	29	72						
17	-	1	R	8.8	10.3	79	7.7	FT	Y	0	6	CS	
/10	-	1	-N	8.3	10.6	-	1.0	+1	Y	0	0	TW	
1	-		В	8,9		30	7.6	FT	4	0	٥	cs	
16	1	_	В		9.5	31	7.8	FT	4	0	0	La	
	-	_	В	8.6	9.7	30	7.8	FT	Y	0	0	CS	
10		-		7.6	10.2		7.8	FT	γ	0	0	GS	
-		1	B	9.8	9.5	30	7.8	FT	Y	0	0	4	
	1		B	8.5	10.3	30	7.8	FT	Y	0		TUL	
27	1	-	B	8-4	10.2	30.	7-8	FT	4	0	0	Ra	
-	- -	-/	B	8.6	11.0	29	7.8	II	1	0	λ		
= Flow-ti	-	/	B	8.6	10.7	29	77	ET	4	6	0	TW	

^{*}For all containers and all days for a given batch; if >10% notify lab manager

1 Cumulative # Mort is the running total of the current day's total mortality + previous cumulative culture mortality since acquired in lab