FINAL SITE INVESTIGATION REPORT

FORMER PLANTERS HOTEL SITE 400 S SIXTH STREET SUNNYSIDE, WASHINGTON

Prepared for

PORT OF SUNNYSIDE

June 30, 2021 Project No. 0346.11.02

Prepared by Maul Foster & Alongi, Inc. 3140 NE Broadway Street, Portland, OR 97232

FINAL SITE INVESTIGATION REPORT

FORMER PLANTERS HOTEL SITE SUNNYSIDE, WASHINGTON

The material and data in this report were prepared under the supervision and direction of the undersigned.

MAUL FOSTER & ALONGI, INC.

Dana Domenighini Staff Environmental Scientist

06-30-2021

David Weatherby, LG Senior Geologist

CONTENTS

TAB	BLES AND ILLUSTRATIONS	IV
ACI	Cronyms and abbreviations	V
1	INTRODUCTION 1.1 PROJECT OBJECTIVE 1.2 SCOPE OF WORK	1 1 1
2	BACKGROUND 2.1 SITE LOCATION, HISTORY, AND DESCRIPTION 2.2 GEOLOGY AND HYDROGEOLOGY 2.3 PREVIOUS ENVIRONMENTAL ASSESSMENT	2 2 2 2
3	SITE INVESTIGATION ACTIVITIES 3.1 PREPARATORY ACTIVITIES 3.2 ASSESSMENT ACTIVITIES 3.3 WASTE HANDLING AND DISPOSAL	3 3 4 5
4	LABORATORY ANALYSIS	5
5	ANALYTICAL RESULTS 5.1 SOIL ANALYTICAL RESULTS 5.2 GROUNDWATER ANALYTICAL RESULTS	7 7 7
6	CONCLUSIONS AND RECOMMENDATIONS	8
LIMI	MITATIONS	
REF	FERENCES	
TAB	BLES	
FIG	GURES	
APF	PENDIX A BORING LOGS	
APF	PENDIX B STANDARD OPERATING PROCEDURES	
APF	PENDIX C INADVERTENT DISCOVERY PLAN	
APF	PENDIX D PHOTOGRAPH LOG	
APF	PENDIX E FIELD SAMPLING DATA SHEETS	
APF	PENDIX F LABORATORY ANALYTICAL REPORTS	
APF	PENDIX G DATA VALIDATION MEMORANDUM	

TABLES AND ILLUSTRATIONS

FOLLOWING REPORT:

TABLES

- 5-1 SOIL ANALYTICAL RESULTS
- 5-2 GROUNDWATER ANALYTICAL RESULTS

FIGURES

- 1-1 PROPERTY LOCATION
- 2-1 PROPERTY OVERVIEW
- 3-1 INVESTIGATION LOCATIONS
- 5-1 SOIL AND GROUNDWATER EXCEEDANCES

ACRONYMS AND ABBREVIATIONS

bgs below ground surface

cPAH carcinogenic polycyclic aromatic hydrocarbon

CUL cleanup level

Ecology Department of Ecology (Washington)

ESA environmental site assessment

GeoEngineers GeoEngineers, Inc.

EPA U.S. Environmental Protection Agency

HASP health and safety plan
IDP inadvertent discovery plan
IDW investigation-derived waste
MFA Maul Foster & Alongi, Inc.
MTCA Model Toxics Control Act
PAH polycyclic aromatic hydrocarbon

PID photoionization detector

the Property former Planters Hotel Site; 400 S Sixth Street, Sunnyside,

Washington

QAPP quality assurance project plan REC recognized environmental condition

SAP sampling and analysis plan
SIM selective ion monitoring
SOP standard operating procedure
TEC toxicity equivalent concentration

TEF toxic equivalency factor TEQ toxicity equivalent

TPH total petroleum hydrocarbon UST underground storage tank VOC volatile organic compound

INTRODUCTION

Maul Foster & Alongi, Inc., (MFA) prepared this report on behalf of the Port of Sunnyside to present the results of the site investigation conducted at the former Planters Hotel site located at 400 S Sixth Street in Sunnyside, Washington (the Property; Figure 1-1).

1.1 Project Objective

In December 2020, a Phase I environmental site assessment (ESA) was conducted for the Property and identified recognized environmental conditions (RECs) associated with two former underground storage tanks (USTs) and potential off-site sources of contamination. These RECs are discussed further in Section 2.3.

The objective of this project was to characterize the nature and extent of soil and shallow groundwater contamination associated with the RECs identified during the Phase I ESA to determine if further action is required at the Property. To achieve this objective, chemical data from the investigation activities described in this report were screened against Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A or Method B cleanup levels (CULs).

1.2 Scope of Work

To accomplish the above objective, the scope of work described in the Sampling and Analysis Plan and Quality Assurance Project Plan (SAP/QAPP; MFA, 2021) was followed. The scope of work included the following general tasks:

- Advancing eight soil borings, four at the location of the former USTs, and four near the Property boundaries, to assess off-site RECs.
- Collecting soil and groundwater samples from the borings.
- Laboratory analysis of the soil and groundwater samples for petroleum hydrocarbons and associated constituents.
- Preparing this report discussing the above activities, the analytical results, and the nature and extent of contamination as it relates to the previously identified RECs.

2.1 Site Location, History, and Description

The Property is located in section 25, township 10 north, range 22 east of the Willamette Meridian in Sunnyside, Washington (Figure 1-1). The Property is comprised of approximately 0.31 acres and is located at the southeast corner of S Sixth Street and Decatur Avenue (Yakima County tax lots 22102524512 and 22102524511).

The Property currently contains a 3,152-square-foot unoccupied commercial building constructed in 1971 (Figure 2-1). The most recent building occupant was a KFC restaurant franchise. The Property was occupied by the Planters Hotel from the early 1900s to the late 1960s; the hotel used two USTs at the location shown on Figure 2-1 that were removed in 2015.

2.2 Geology and Hydrogeology

Exploratory borings from the Property were logged by GeoEngineers, Inc. (GeoEngineers), in 2019. Subsurface soils on the Property consist of silt with sand and occasional gravel, sand with silt, and silt to approximately 16 feet below ground surface (bgs). According to GeoEngineers' report, groundwater was encountered at the Property at 6.5 to 12 feet bgs (GeoEngineers, 2019).

MFA encountered similar site soils and depth to groundwater as described in the GeoEngineers' logs during the site investigation (summarized in Section 3.2.1 below). Boring logs are included in Appendix A.

The topography at the Property and the vicinity is generally level; the Property elevation is approximately 747 feet above mean sea level. The nearest surface water is Snipes Mountain Lateral, an irrigation canal flowing approximately 0.30 miles southwest of the Property. The Yakima River flows approximately 6 miles south of the Property. Based on topography and surface water features, the direction of groundwater flow regionally and locally is inferred to be south-southwest.¹

2.3 Previous Environmental Assessment

In December 2020, a Phase I ESA was conducted for the Property and identified the following RECs (MFA, 2020):

Depth-to-groundwater measurements were recorded at each reconnaissance boring during the site investigation. However, since the depths were measured in an open boring relative to the ground surface (rather than a completed monitoring well with a surveyed measure point elevation) and the project schedule would not allow for standby time to ensure water levels had achieved a static level, the measurements were not used to determine a site-specific groundwater flow direction.

- In 2015, two USTs associated with the former hotel were removed from the Property, at which time the 3,800-gallon UST contained 600 gallons of heavy oil and the 1,100-gallon UST contained 200 gallons of water impacted by petroleum. Analysis of soil samples collected from the bottom of the UST excavation detected diesel- and heavy-oil-range total petroleum hydrocarbon (TPH), total naphthalenes, and polycyclic aromatic hydrocarbons (PAHs) at concentrations greater than the MTCA CULs. Analysis of reconnaissance groundwater samples collected from borings in the UST excavation detected diesel exceedances of the MTCA CUL as well as total naphthalenes and PAHs below MTCA CULs and did not detect heavy oil or carcinogenic PAHs (cPAHs).
- Several sites listed in Ecology's cleanup site database are located within a quarter mile of
 the Property. These include Valley Dry Cleaners, Cascade Natural Gas, and Commercial
 Tire (Figure 2-1). These sites have not received No Further Action determinations and are
 either awaiting cleanup or are listed as cleanup started, and therefore have the potential to
 have impacted the Property. Contaminants generally associated with these operations
 include gasoline-, diesel-, and heavy-oil-range TPH, volatile organic compounds (VOCs;
 included solvents), and PAHs.

3 SITE INVESTIGATION ACTIVITIES

Site investigation activities performed to complete the scope of work identified in Section 1.2 included subsurface borings and collection of soil and groundwater samples for chemical analysis. This section presents the scope of work conducted to accomplish these activities.

3.1 Preparatory Activities

Site Health and Safety Plan. MFA prepared a site-specific health and safety plan (HASP) for the proposed activities. The HASP was prepared in general accordance with the Occupational Safety and Health Act and the Washington Administrative Rules. A copy of the HASP was maintained on-site for use by MFA staff during the field activities.

Underground Utility Location. Prior to beginning the field investigation work, underground utilities were located and marked using the Washington Utility Notification Center. Prior to drilling, a private utility locate was conducted by Geophysical Survey, LLC, on April 5, 2021, to locate potential underground utilities or structures in the vicinity of each proposed boring location. A representative of MFA oversaw the private utility locate activities. Underground utility locates were conducted in accordance with MFA standard operating procedure (SOP) 18 (see Appendix B).

Property Access and Work Notification. MFA notified the Port of Sunnyside of the work schedule.

Inadvertent Discovery Plan for Cultural Resources. MFA implemented an Inadvertent Discovery Plan (IDP) provided by Ecology that outlined procedures to follow if cultural or archaeological materials were encountered during the investigation. A copy of the IDP is provided in Appendix C.

The IDP was reviewed with subcontractors prior to commencement of the field work. No cultural resources or archaeological artifacts were encountered during the investigation.

3.2 Assessment Activities

A representative of MFA oversaw the drilling subcontractor and collected soil and groundwater samples for chemical analysis. A photograph log is included as Appendix D. The assessment activities were performed in general accordance with the SAP/QAPP.

3.2.1 Soils Assessment

On April 6 and 7, 2021, eight borings (GP01 through GP08) were advanced using a direct-push drilling rig by Pacific Soil and Water, Inc., of Tualatin, Oregon. The drilling was conducted in accordance with SOP 7 (Appendix B). The boring locations are shown on Figure 3-1. The following is the rationale for each boring location:

- GP01, GP02, and GP04—Located west, north, and south of the former USTs to assess the nature and extent of UST-related contamination.
- GP03—Located in the former UST excavation to assess the nature and extent of UST-related contamination. The original intent was to place the boring immediately east of the former UST excavation, but due to access limits from the adjacent alleyway, the boring was placed in the former excavation.
- GP05 through GP08—Located in the northwest, northeast, southeast, and southwest corners of the Property. These borings assessed if off-site RECs have impacted the Property.

GP05 was advanced to 15 feet bgs and all other borings were advanced to 20 feet bgs. Continuous soil cores were retrieved for each boring using a 2-inch-diameter, 5-foot-long soil coring device. Lithologic logging and field screening was conducted on each core segment in accordance with SOP 2 (Appendix B). In general, the subsurface lithology consisted of soft-to-firm silt, with variable amounts of sand. Groundwater was encountered at approximately 6 to 8.5 feet bgs. Boring logs are included in Appendix A.

Soil cores were field screened for the presence of VOCs in accordance with SOP 3 (Appendix B), using a photoionization detector (PID) and for petroleum hydrocarbons using a sheen test. Visual and olfactory observations were also documented. Indicators of contamination were observed in only one of the eight borings (GP03), at a depth of 6 feet bgs. These indicators included a petroleum-like odor, sheen, and a PID reading of 53.8 parts per million. No olfactory or visual impacts were detected in soils collected from the remaining borings advanced at the Property, and PID readings ranged from only 0 to 2.8 parts per million.

One soil sample was collected from each boring at the soil-water interface as shown on the boring logs. Soil sample depths generally ranged from 5.5 feet to 8 feet bgs. Field sampling data sheets for

the soil samples are included in Appendix E. Samples were prepared, handled, and documented in accordance with SOPs 4 and 5 (Appendix B).

3.2.2 Groundwater Assessment

One groundwater sample was collected from each boring. A temporary well, consisting of new polyvinyl chloride factory-slotted screen (10 feet in length) with a polyvinyl chloride riser was installed in each boring to facilitate groundwater sample collection. Prior to sample collection, groundwater was purged from the temporary well using a peristaltic pump.

Visual and olfactory observations were also documented. Field evidence of contamination (petroleum-like odor and sheen) was observed in the groundwater sample collected from boring GP03. No olfactory or visual impacts were detected in groundwater collected from the other borings. Field sampling data sheets for the groundwater samples are included in Appendix E. Groundwater sampling and water-level measurements from each of the borings were conducted in accordance with SOPs 7, 9, and 13 (Appendix B).

3.3 Waste Handling and Disposal

Wastes generated during drilling activities consisted of soil and purge water investigation-derived waste (IDW). The driller provided Washington State Department of Transportation approved 55-gallon drums for IDW storage on-site. Approximately 15 gallons of water and 20 gallons of soil cuttings were generated during the investigation. The water and soil were placed in separate drums on the south side of the building on the Property. After chemical analysis and waste profiling, IDW will be disposed of at a permitted facility. Disposable sampling equipment and personal protective equipment was disposed of as solid waste.

4 LABORATORY ANALYSIS

Soil and groundwater samples collected during field activities were submitted to Apex Laboratories, LLC, of Tigard, Oregon, under standard chain-of-custody procedures and were analyzed for the following:

- Gasoline-range TPH by Northwest TPH Method NWTPH-Gx
- Diesel- and lube-oil-range TPH by Northwest TPH Method NWTPH-Dx
- VOCs by U.S. Environmental Protection Agency (EPA) Method 8260D
- 1,2-Dibromomethane and vinyl chloride by EPA Method 8260D selective ion monitoring (SIM)
- PAHs by EPA Method 8270E SIM

Analytical results were reviewed for usability and were qualified consistent with EPA procedures and appropriate laboratory and method-specific guidelines, and a data validation memorandum was prepared to document the review. The laboratory analytical report and the data validation memorandum are provided in Appendices F and G, respectively.

Consistent with Washington Administrative Code 173-340-708(8), mixtures of cPAHs are considered as single hazardous substances when evaluating compliance with CULs such that the toxicity of a particular congener is expressed relative to the most toxic congener (i.e., benzo(a)pyrene). The toxicity of cPAHs as a group was assessed using a toxic equivalency approach. Each congener in the group is assigned a toxic equivalency factor (TEF) describing the toxicity of that congener relative to the toxicity of the reference compound, benzo(a)pyrene. For example, a congener that is equal in toxicity to benzo(a)pyrene would have a TEF of 1.0. Similarly, a congener that is half as toxic as benzo(a)pyrene would have a TEF of 0.5, and so on. Multiplying the concentration of a congener by its TEF produces the concentration of cPAH that is equivalent in toxicity to the congener concentration of concern, known as the toxicity equivalent concentration (TEC). Computing the TEC for each congener (Ci in the equation below) in a sample, followed by summing all TEC values, permits expression of all congener concentrations in terms of a total cPAH toxicity equivalent (TEQ) (i.e., cPAH TEQ):

cPAH TEQ =
$$\sum_{i=1}^{k}$$
 Ci x TEFi

cPAH TEQs were qualified and calculated as follows:

- Congeners qualified as non-detect and flagged with a "U" are used in the TEQ calculation at one-half the associated value.
- Congeners qualified as estimated and flagged with a "J" are used without modification in the TEQ calculation.
- Congeners qualified as non-detect with an estimated limit (i.e., flagged with a "UJ") are used in the TEQ calculation at one-half the associated value.
- If all congeners in a chemical group are undetected, the group sum is reported as undetected.

Consistent with Ecology Implementation Memorandum No. 4, the diesel- and lube-oil-range TPH results were summed for a total detection value and were calculated as follows (Ecology, 2004):

- Diesel and lube-oil results qualified as non-detect and flagged with a U are used in the total calculation at one-half the associated value.
- Diesel and lube-oil results qualified as estimated and flagged with a J are used in the total calculation without modification.

Consistent with Washington Administrative Code 173-340-900 Table 740-1, the CUL for naphthalenes is based on the total value for naphthalene, 1-methylnaphthalene, and 2-

methylnaphthalene. The values for those three compounds are summed to compare to the Method A CUL. If a compound is not detected, one-half the associated value is used.

5 ANALYTICAL RESULTS

The sections below summarize the soil and groundwater analytical results presented in Tables 5-1 and 5-2, respectively. Sample results were screened against MTCA Method A CULs for unrestricted land use. Where MTCA Method A CULs were not available, the results were screened against MTCA Method B CULs for cancer or noncancer, whichever value is lower.

5.1 Soil Analytical Results

Petroleum hydrocarbons, VOCs, and PAHs were detected above laboratory reporting limits in multiple soil samples. Results are summarized as follows:

- **Gasoline-range TPH**—Gasoline-range TPH was detected in a single sample, GP03-S-6 at boring GP03, at a concentration of 3,130 milligrams per kilogram, which exceeded the MTCA CUL.
- **Diesel- and lube-oil-range TPH**—The detected concentrations of diesel- and lube-oil-range TPH in sample GP03-S-6 exceeded the MTCA CUL. Diesel was not detected in any other boring. Lube oil was detected in soil at three other borings, GP01, GP02, and GP06, at concentrations one to two orders of magnitude less than the CUL.
- VOCs—Benzene, naphthalene, tetrachloroethene, and total xylenes were detected in sample GP03-S-6 at concentrations that exceeded the MTCA CULs. Other VOCs were detected in the sample at concentrations less than the CULs. VOCs were not detected in any other boring.
- PAHs—Benzo(a)pyrene and the cPAH TEQ were detected at concentrations that exceeded the MTCA CULs in samples GP02-S-8 and GP03-S-6. Detections of 1-methylnaphthalene and total naphthalenes in GP03-S-6 also exceeded the MTCA CULs. PAHs were detected in sample GP01-S-5.5 and GP06-S-7.5 at concentrations many orders of magnitude less than the CULs. PAHs were not detected at the remaining borings.

Sample locations exhibiting soil CUL exceedances are presented in Figure 5-1.

5.2 Groundwater Analytical Results

Diesel- and lube-oil-range TPH, the diesel + lube-oil sum, and 1-methylnaphthalene and 2-methylnaphthalene were detected at concentrations that exceeded the MTCA CULs in sample GP03-GW-15. Diesel- and lube-oil-range TPH were detected at borings GP01 and GP02 at concentrations less than the MTCA CULs and were not detected in any other boring. 1-methylnaphthalene and 2-methylnaphthalene were not detected in any other boring. No other chemicals were detected at

 $R: \o 346.11\ Port\ of\ Sunnyside \\ \o Document \o 02_2021.06.30\ Final\ Site\ Investigation\ Report \\ \o Report\ Af-Former\ Planters\ Hotel\ Final\ Site\ Investigation\ Report\ Af-Former\ Planters\ Hotel\ Final\ Final$

concentrations above the MTCA CULs. Sample locations exhibiting groundwater CUL exceedances are presented in Figure 5-1.

6 CONCLUSIONS AND RECOMMENDATIONS

The site investigation analytical results support the following conclusions as they relate to the previously identified RECs.

Former USTs. Petroleum hydrocarbons, VOCs, and PAHs were detected in soil and groundwater collected in the vicinity of the former USTs. Concentrations exceeding MTCA CULs were identified within the former UST excavation (boring location GP03) and north of the excavation (boring location GP02), with the highest concentrations detected in GP03. Lube oil and PAHs were detected west of the excavation at concentrations orders of magnitude less than CULs, while the boring to the south of the UST excavation was non-detect for petroleum and associated constituents. Based on the distribution of borings with CUL exceedances, the extent of soil and groundwater with CUL exceedances has not been fully delineated to the north (soil) and east (soil and groundwater) of the former UST excavation. Since the direction of groundwater flow is likely to the south, and since GP03 was placed within the former UST excavation, the expectation is that the extent of soil and groundwater with CUL exceedances likely does not extend far beyond borings GP02 and GP03.

Off-Site RECs. Sources of contamination at off-site RECs were assessed at the Property perimeter borings GP05 through GP08. Analytical results for soil and groundwater samples from these borings did not identify chemicals at concentrations above MTCA CULs, nor were field indicators of contamination observed. Based on these findings, these off-site sources of contamination are not current RECs for the Property.

Based on the findings provided in this site investigation report, MFA recommends conducting a supplemental subsurface investigation to further evaluate the magnitude and extent of impacts north and east of the former UST excavation.

LIMITATIONS

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

REFERENCES

Ecology. 2004. Memorandum (re: determining compliance with Method A cleanup levels for diesel and heavy oil) to file. Implementation memorandum #4. Prepared by T. Nord, Washington State Department of Ecology. June.

GeoEngineers. 2019. Soil and groundwater assessment, former Don Copp site, 400 S 6th Street, Sunnyside, Washington. GeoEngineers, Inc. June 26.

MFA. 2020. Phase I environmental site assessment, 400 S 6th Street, Sunnyside, Washington 98944. Prepared for Port of Sunnyside. Maul Foster & Alongi, Inc., Vancouver, Washington. December 18.

MFA. 2021. Sampling and analysis plan and quality assurance project plan, 400 S Sixth Street, Sunnyside, Washington. Prepared for Port of Sunnyside. Maul Foster & Alongi, Inc., Portland, Oregon. February 12.

TABLES

Location	-	GP01	GP02	GP03	GP04	GP05	G	P06	GP07	GP08
Sample Name	A 4T C A A (D(1)	GP01-S-5.5	GP02-S-8	GP03-S-6	GP04-S-8	GP05-S-6	GP06-S-7.5	GP06-S-7.5-DUP	GP07-S-6	GP08-S-6
Collection Date	MTCA A/B ⁽¹⁾	4/6/2021	4/7/2021	4/7/2021	4/7/2021	4/6/2021	4/6/2021	4/6/2021	4/6/2021	4/7/2021
Collection Depth (ft bgs)		5.5	8	6	8	6	7.5	7.5	6	6
TPH (mg/kg)										
Gasoline Range Hydrocarbons	100 ^(a)	3.5 U	3.33 U	3,130 J	4.06 U	3.14 U	2.83 U	3.94 U	4.26 U	3.41 U
Diesel Range Hydrocarbons	2,000	11.8 U	12.3 U	17,900 J	12.2 U	12.4 U	11.3 U	11.4 U	12.5 U	12.3 U
Lube Oil Range Hydrocarbons	2,000	29.9 J	119	16,000 J	24.5 U	24.8 U	22.6 U	34.2 J	25.1 U	24.6 U
Diesel + Lube Oil Range Hydrocarbons ^(b)	2,000	35.8 J	125	33,900 J	24.5 U	24.8 U	22.6 U	39.9 J	25.1 U	24.6 U
VOCs (mg/kg)								•		
1,1,1,2-Tetrachloroethane	38	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
1,1,1-Trichloroethane	2,000	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
1,1,2,2-Tetrachloroethane	5	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
1,1,2-Trichloroethane	18	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
1,1-Dichloroethane	180	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
1,1-Dichloroethene	4,000	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
1,1-Dichloropropene	NV	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
1,2-Dibromoethane	0.005	1.4 U	1.33 U	401 U	1.62 U	1.26 U	1.13 U	1.57 U	1.7 U	1.37 U
1,2,3-Trichlorobenzene	64	0.175 U	0.166 U	2 U	0.203 U	0.157 U	0.142 U	0.197 U	0.213 U	0.171 U
1,2,3-Trichloropropane	0.0063	0.035 U	0.0333 U	0.802 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
1,2,4-Trichlorobenzene	34	0.175 U	0.166 U	2 U	0.203 U	0.157 U	0.142 U	0.197 U	0.213 U	0.171 U
1,2,4-Trimethylbenzene	800	0.035 U	0.0333 U	46	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
1,2-Dibromo-3-chloropropane	1	0.175 U	0.166 U	2 U	0.203 U	0.157 U	0.142 U	0.197 U	0.213 U	0.171 U
1,2-Dichlorobenzene	7,200	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
1,2-Dichloroethane	11	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
1,2-Dichloropropane	27	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
1,3,5-Trimethylbenzene	800	0.035 U	0.0333 U	13	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
1,3-Dichlorobenzene	NV	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
1,3-Dichloropropane	1600	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
1,4-Dichlorobenzene	190	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
2,2-Dichloropropane	NV	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
2-Butanone	48,000	0.35 U	0.333 U	4 U	0.406 U	0.314 U	0.283 U	0.394 U	0.426 U	0.341 U
2-Chlorotoluene	1,600	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
2-Hexanone	400	0.35 U	0.333 U	4.01 U	0.406 U	0.314 U	0.283 U	0.394 U	0.426 U	0.341 U
4-Chlorotoluene	NV	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
4-IsopropyItoluene	NV	0.035 U	0.0333 U	2.92 J	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
4-Methyl-2-pentanone	6,400	0.35 U	0.333 U	4.01 U	0.406 U	0.314 U	0.283 U	0.394 U	0.426 U	0.341 U
Acetone	72,000	0.7 U	0.665 U	8.02 U	0.811 U	0.629 U	0.566 U	0.787 U	0.852 U	0.683 U
Acrylonitrile	2	0.07 U	0.0665 U	0.802 U	0.0811 U	0.0629 U	0.0566 U	0.0787 U	0.0852 U	0.0683 U
Benzene	0.03	0.007 U	0.00665 U	0.152 J	0.00811 U	0.00629 U	0.00566 U	0.00787 U	0.00852 U	0.00683 U

Location		GP01	GP02	GP03	GP04	GP05	G	P06	GP07	GP08
Sample Name	ATO (10(1)	GP01-S-5.5	GP02-S-8	GP03-S-6	GP04-S-8	GP05-S-6	GP06-S-7.5	GP06-S-7.5-DUP	GP07-S-6	GP08-S-6
Collection Date	MTCA A/B ⁽¹⁾	4/6/2021	4/7/2021	4/7/2021	4/7/2021	4/6/2021	4/6/2021	4/6/2021	4/6/2021	4/7/2021
Collection Depth (ft bgs)		5.5	8	6	8	6	7.5	7.5	6	6
Bromobenzene	640	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
Bromodichloromethane	16	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
Bromoform	130	0.07 U	0.0665 U	0.802 U	0.0811 U	0.0629 U	0.0566 U	0.0787 U	0.0852 U	0.0683 U
Bromomethane	110	0.7 U	0.665 U	8 U	0.811 U	0.629 U	0.566 U	0.787 U	0.852 U	0.683 U
Carbon disulfide	8,000	0.35 U	0.333 U	4 U	0.406 U	0.314 U	0.283 U	0.394 U	0.426 U	0.341 U
Carbon tetrachloride	14	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
Chlorobenzene	1,600	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
Chlorobromomethane	NV	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
Chloroethane	NV	0.35 U	0.333 U	4 U	0.406 U	0.314 U	0.283 U	0.394 U	0.426 U	0.341 U
Chloroform	32	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
Chloromethane	NV	0.175 U	0.166 U	2 U	0.203 U	0.157 U	0.142 U	0.197 U	0.213 U	0.171 U
cis-1,2-Dichloroethene	160	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
cis-1,3-Dichloropropene	NV	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
Dibromochloromethane	12	0.07 U	0.0665 U	0.802 U	0.0811 U	0.0629 U	0.0566 U	0.0787 U	0.0852 U	0.0683 U
Dibromomethane	800	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
Dichlorodifluoromethane (Freon 12)	16,000	0.07 U	0.0665 U	2 UJ	0.0811 U	0.0629 U	0.0566 U	0.0787 U	0.0852 U	0.137 UJ
Ethylbenzene	6	0.0175 U	0.0166 U	2	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
Hexachlorobutadiene	13	0.07 U	0.0665 U	0.802 U	0.0811 U	0.0629 U	0.0566 U	0.0787 U	0.0852 U	0.0683 U
Isopropylbenzene	8,000	0.035 U	0.0333 U	0.734 J	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
m,p-Xylene	NV	0.035 U	0.0333 U	12	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
Methyl tert-butyl ether	0.1	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
Methylene chloride	0.2	0.35 U	0.333 U	4 U	0.406 U	0.314 U	0.283 U	0.394 U	0.426 U	0.341 U
Naphthalene	5	0.07 U	0.0665 U	132	0.0811 U	0.0629 U	0.0566 U	0.0787 U	0.0852 U	0.0683 U
n-Butylbenzene	4,000	0.035 U	0.0333 U	5 J	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
n-Propylbenzene	8,000	0.0175 U	0.0166 U	3	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
o-Xylene	16,000	0.0175 U	0.0166 U	5	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
sec-Butylbenzene	8,000	0.035 U	0.0333 U	1	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
Styrene	16,000	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
tert-Butylbenzene	8,000	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
Tetrachloroethene	0.05	0.0175 U	0.0166 U	0.284 J	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
Toluene	7	0.035 U	0.0333 U	0.969	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
trans-1,2-Dichloroethene	1,600	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
trans-1,3-Dichloropropene	NV	0.035 U	0.0333 U	0.401 U	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
Trichloroethene	0.03	0.0175 U	0.0166 U	0.2 U	0.0203 U	0.0157 U	0.0142 U	0.0197 U	0.0213 U	0.0171 U
Trichlorofluoromethane (Freon 11)	24,000	0.07 U	0.0665 U	0.802 U	0.0811 U	0.0629 U	0.0566 U	0.0787 U	0.0852 U	0.0683 U

Location		GP01	GP02	GP03	GP04	GP05	G	P06	GP07	GP08
Sample Name		GP01-S-5.5	GP02-S-8	GP03-S-6	GP04-S-8	GP05-S-6	GP06-S-7.5	GP06-S-7.5-DUP	GP07-S-6	GP08-S-6
Collection Date	MTCA A/B ⁽¹⁾	4/6/2021	4/7/2021	4/7/2021	4/7/2021	4/6/2021	4/6/2021	4/6/2021	4/6/2021	4/7/2021
Collection Depth (ft bgs)		5.5	8	6	8	6	7.5	7.5	6	6
Vinyl chloride	0.67	7 U	6.65 U	200 U	8.11 U	6.29 U	5.66 U	7.87 U	8.52 U	6.83 UJ
Xylenes (total) ^(c)	9	70 U	66.5 U	17	0.0406 U	0.0314 U	0.0283 U	0.0394 U	0.0426 U	0.0341 U
PAHs (mg/kg)										•
1-Methylnaphthalene	34	0.0135	0.119 U	105	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
2-Methylnaphthalene	320	0.0192	0.119 U	186	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Acenaphthene	4,800	0.00616 U	0.119 U	13.2 U	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Acenaphthylene	NV	0.00616 U	0.119 U	2.46 U	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Anthracene	24,000	0.00616 U	0.313	5.86 U	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Benzo(a)anthracene	NV	0.00677 J	1.24	4.43	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Benzo(a)pyrene	0.1	0.00659 J	0.963	3.04	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Benzo(b)fluoranthene	NV	0.00803 J	1.18 J	0.868 J	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Benzo(ghi)perylene	NV	0.0188	0.551	1.72	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Benzo(k)fluoranthene	NV	0.00616 U	0.535 J	0.232 U	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Chrysene	NV	0.00877 J	1.27	5.86	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Dibenzo(a,h)anthracene	NV	0.00616 U	0.119 U	0.317 J	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Dibenzofuran	80	0.00616 U	0.119 U	4.56 U	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Fluoranthene	3,200	0.00616 U	2.20	1.56	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Fluorene	3,200	0.00616 U	0.119 U	9.43	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Indeno(1,2,3-cd)pyrene	NV	0.0105 J	0.692	0.584	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Naphthalene	5	0.0109 J	0.119 U	25.0	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
Phenanthrene	NV	0.0102 J	1.51	36.9	0.00646 U	0.00599 U	0.00805 J	0.00583 U	0.00628 U	0.00618 U
Pyrene	2,400	0.00616 U	1.60	11.2	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U
cPAH TEQ ^{(d)(2)}	0.1	0.0098	1.35	3.73	ND	ND	ND	ND	ND	ND
Naphthalene (total) ^(e)	5	0.0436 J	0.119 U	316	0.00646 U	0.00599 U	0.00573 U	0.00583 U	0.00628 U	0.00618 U

NOTES:

Shading (color key below) indicates values that exceed screening criteria; non-detects ("U" or "UJ") were not compared with screening criteria.

Method A or B. The lower of the Method B cancerous or noncancerous values applied when Method A was not available.

cPAH TEQ = carcinogenic PAH toxicity equivalence.

ft bgs = feet below ground surface.

J = estimated value.

mg/kg = milligrams per kilogram.

MTCA = Motel Toxics Control Act.

ND = non-detect.

NV = no value.

PAH = polycyclic aromatic hydrocarbon.

TPH = total petroleum hydrocarbons.

U = Result is non-detect to-detection limit.

UJ = Result is non-detect with an estimated detection limit.

VOC = volatile organic compound.

 $^{(a)}$ TPH gasoline range hydrocarbon with no detectable benzene value.

(b) Diesel + Lube Oil Range Hydrocarbons are the sum of diesel range hydrocarbon and oil range hydrocarbon where non-detect results are included at one-half the detection limit; when all results are non-detect, the highest detection limit is

(c) Total xylene is the sum of o-xylene and m,p-xylene where non-detect results are included at one-half the detection limit; when all results are non-detect, the highest detection limit is used.

^(d)cPAH TEQ values are based on toxic equivalence factors.

(e)Total naphthalene is the sum of 1-methylnaphthalene, 2-methylnaphtalene, and naphthalene where non-detect results are included at one-half the detection limit; when all results are non-detect, the highest detection limit is used.

REFERENCES:

(1)Washington State Department of Ecology—Cleanup Levels and Risk Calculation Master Table. February 2021.

⁽²⁾Washington Ecology Evaluating the Human Heath Toxicity of Carcinogenic PAHs Using Toxicity Equivalence Factors. 2015.

Location		GF	201	GP02	GP03	GP04	GP05	GP06	GP07	GP08
Sample Name	MTCA A/B ⁽¹⁾	GP01-GW-15	GP01-GW-15- DUP	GP02-GW-15	GP03-GW-15	GP04-GW-15	GP05-GW-12	GP06-GW-15	GP07-GW-15	GP08-GW-15
Collection Date		4/6/2021	4/6/2021	4/7/2021	4/7/2021	4/7/2021	4/6/2021	4/6/2021	4/6/2021	4/7/2021
Collection Depth (ft bgs)		15	15	15	15	15	12	15	15	15
TPH (mg/L)										
Gasoline Range Hydrocarbon	1.0 ^(a)	0.05 U	0.05 U	0.05 U	0.388	0.05 U				
Diesel Range Hydrocarbons	0.5	0.0408 U	0.0412 U	0.0392 U	1.66	0.0417 U	0.0449 U	0.0396 U	0.0435 U	0.0412 U
Lube Oil Range Hydrocarbons	0.5	0.232	0.235	0.0786 J	0.935 J	0.0833 U	0.0899 U	0.0792 U	0.0870 U	0.0825 U
Diesel + Lube Oil Range Hydrocarbons ^(b)	0.5	0.252	0.256	0.0982 J	2.60 J	0.0833 U	0.0899 U	0.0792 U	0.0870 U	0.0825 U
VOCs (ug/L)										
1,1,1,2-Tetrachloroethane	1.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,1-Trichloroethane	16,000	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2,2-Tetrachloroethane	0.22	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1,2-Trichloroethane	0.77	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethane	7.7	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1-Dichloroethene	400	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1-Dichloropropene	NV	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	6.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,3-Trichloropropane	0.00038	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	1.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene	80	0.5 U	0.5 U	0.5 U	6.51	0.5 U				
1,2-Dibromo-3-chloropropane	0.055	5 UJ	5 UJ	5 UJ	2.5 U	5 UJ	2.5 U	2.5 U	5 UJ	2.5 U
1,2-Dichlorobenzene	720	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloroethane	5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2-Dichloropropane	1.2	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,3,5-Trimethylbenzene	80	0.5 U	0.5 U	0.5 U	1.93	0.5 U				
1,3-Dichlorobenzene	NV	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dichloropropane	160	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	8.1	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
2,2-Dichloropropane	NV	1 UJ	1 UJ	1 UJ	0.5 U	1 UJ	0.5 U	0.5 U	1 UJ	0.5 U
2-Butanone	4,800	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
2-Chlorotoluene	160	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Hexanone	40	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Chlorotoluene	NV	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4-Isopropyltoluene	NV	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4-Methyl-2-pentanone	640	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	7,200	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Acrylonitrile	0.081	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Location		GF	201	GP02	GP03	GP04	GP05	GP06	GP07	GP08
Sample Name	MTCA A/B ⁽¹⁾ 5 64 0.71	GP01-GW-15	GP01-GW-15- DUP	GP02-GW-15	GP03-GW-15	GP04-GW-15	GP05-GW-12	GP06-GW-15	GP07-GW-15	GP08-GW-15
Collection Date	1	4/6/2021	4/6/2021	4/7/2021	4/7/2021	4/7/2021	4/6/2021	4/6/2021	4/6/2021	4/7/2021
Collection Depth (ft bgs)	1	15	15	15	15	15	12	15	15	15
Benzene	5	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Bromobenzene	64	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromodichloromethane	0.71	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	5.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	11	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Carbon disulfide	800	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Carbon tetrachloride	0.63	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	160	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chlorobromomethane	NV	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	NV	5 U	5 U	5 U	5 UJ	5 U	5 UJ	5 UJ	5 U	5 UJ
Chloroform	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	NV	2.5 U	2.5 U	2.5 U	5 UJ	2.5 U	5 UJ	5 UJ	2.5 U	5 UJ
cis-1,2-Dichloroethene	16	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
cis-1,3-Dichloropropene	NV	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.52	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	80	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane (Freon 12)	1,600	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	700	0.25 U	0.25 U	0.25 U	0.46 J	0.25 U				
Hexachlorobutadiene	0.56	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Isopropylbenzene	800	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
m,p-Xylene	NV	0.5 U	0.5 U	0.5 U	2.37	0.5 U	0.781 J	0.5 U	0.5 U	0.5 U
Methyl tert-butyl ether	20	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Naphthalene	160	2 U	2 U	2 U	32.2 J	2 U	2 U	2 U	2 U	2 U
n-Butylbenzene	400	0.5 U	0.5 U	0.5 U	0.595 J	0.5 U				
n-Propylbenzene	800	0.25 U	0.25 U	0.25 U	0.365 J	0.25 U				
o-Xylene	1,600	0.25 U	0.25 U	0.25 U	1.02	0.25 U	0.265 J	0.25 U	0.25 U	0.25 U
sec-Butylbenzene	800	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	1,600	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	800	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene	5	0.5 U	0.5 U	0.4 U	0.2 U	0.4 U	0.2 U	0.2 U	0.4 U	0.2 U
Toluene	1,000	0.5 U	0.5 U	0.5 U	0.583 J	0.5 U	1.02	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	160	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
trans-1,3-Dichloropropene	NV	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Location		GF	P01	GP02	GP03	GP04	GP05	GP06	GP07	GP08
Sample Name	MTCA A/B ⁽¹⁾	GP01-GW-15	GP01-GW-15- DUP	GP02-GW-15	GP03-GW-15	GP04-GW-15	GP05-GW-12	GP06-GW-15	GP07-GW-15	GP08-GW-15
Collection Date	1	4/6/2021	4/6/2021	4/7/2021	4/7/2021	4/7/2021	4/6/2021	4/6/2021	4/6/2021	4/7/2021
Collection Depth (ft bgs)	1	15	15	15	15	15	12	15	15	15
Trichloroethene	5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trichlorofluoromethane (Freon 11)	2,400	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total) ^(c)	1,000	1 U	1 U	1 U	3.39	1 U	1.05 J	1 U	1 U	1 U
VOCs by EPA 8260D SIM (ug/kg)		1	1	1	1			l .	1	
1,2-Dibromoethane	0.01	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Vinyl chloride	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
PAHs (ug/L)										
1-Methylnaphthalene	1.5	0.0444 U	0.046 U	0.0421 U	42.2	0.0417 U	0.0455 U	0.0426 U	0.0444 U	0.0435 U
2-Methylnaphthalene	32	0.0444 U	0.046 U	0.0421 U	56.9	0.0417 U	0.0455 U	0.0426 U	0.0444 U	0.0435 U
Acenaphthene	960	0.0222 U	0.023 U	0.0211 U	3.68 U	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Acenaphthylene	NV	0.0222 U	0.023 U	0.0211 U	0.526 U	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Anthracene	4,800	0.0222 U	0.023 U	0.0211 U	0.526 U	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Benzo(a)anthracene	NV	0.0222 U	0.023 U	0.0211 U	0.0532	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Benzo(a)pyrene	0.1	0.0222 U	0.023 U	0.0211 U	0.0211 U	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Benzo(b)fluoranthene	NV	0.0222 U	0.023 U	0.0211 U	0.0211 U	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Benzo(ghi)perylene	NV	0.0222 U	0.023 U	0.0211 U	0.0211 U	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Benzo(k)fluoranthene	NV	0.0222 U	0.023 U	0.0211 U	0.0211 U	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Chrysene	NV	0.0222 U	0.023 U	0.0211 U	0.0616	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Dibenzo(a,h)anthracene	NV	0.0222 U	0.023 U	0.0211 U	0.0211 U	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Dibenzofuran	16	0.0222 U	0.023 U	0.0211 U	0.948	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Fluoranthene	640	0.0222 U	0.023 U	0.0211 U	0.0473	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Fluorene	640	0.0222 U	0.023 U	0.0211 U	2.06	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Indeno(1,2,3-cd)pyrene	NV	0.0222 U	0.023 U	0.0211 U	0.0211 U	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
Naphthalene	160	0.0444 U	0.0486 J	0.0421 U	13.9	0.0417 U	0.09 J	0.0426 U	0.0546 J	0.0435 U
Phenanthrene	NV	0.0222 U	0.023 U	0.0211 U	4.07	0.0208 U	0.0227 U	0.0213 U	0.0253 J	0.0217 U
Pyrene	480	0.0222 U	0.023 U	0.0211 U	0.287	0.0208 U	0.0227 U	0.0213 U	0.0222 U	0.0217 U
cPAH TEQ ^{(d)(2)}	0.1	ND	ND	ND	0.0207	ND	ND	ND	ND	ND
Naphthalene (total) ^(e)	160	0.0444 U	0.0946 J	0.0421 U	113	0.0417 U	0.136 J	0.0426 U	0.099 J	0.0435 U

NOTES:

Shading (color key below) indicates values that exceed screening criteria; non-detects ("U" or "UJ") were not compared with screening criteria.

Method A or B. The lower of the Method B cancerous or noncancerous values applied when Method A was not available.

cPAH TEQ = carcinogenic PAH toxicity equivalence.

ft bgs = feet below ground surface.

J = estimated value.

mg/L = milligrams per liter.

MTCA = Motel Toxics Control Act.

ND = non-detect.

NV = no value.

PAH = polycyclic aromatic hydrocarbon.

TPH = total petroleum hydrocarbons.

U = Result is non-detect to detection limit.

UJ = Result is non-detect with an estimated detection limit.

ug/kg = micrograms per kilogram.

ug/L = micrograms per liter.

VOC = volatile organic compound.

 $\ensuremath{^{\text{(a)}}}\text{TPH}$ gasoline range hydrocarbon with no detectable benzene value.

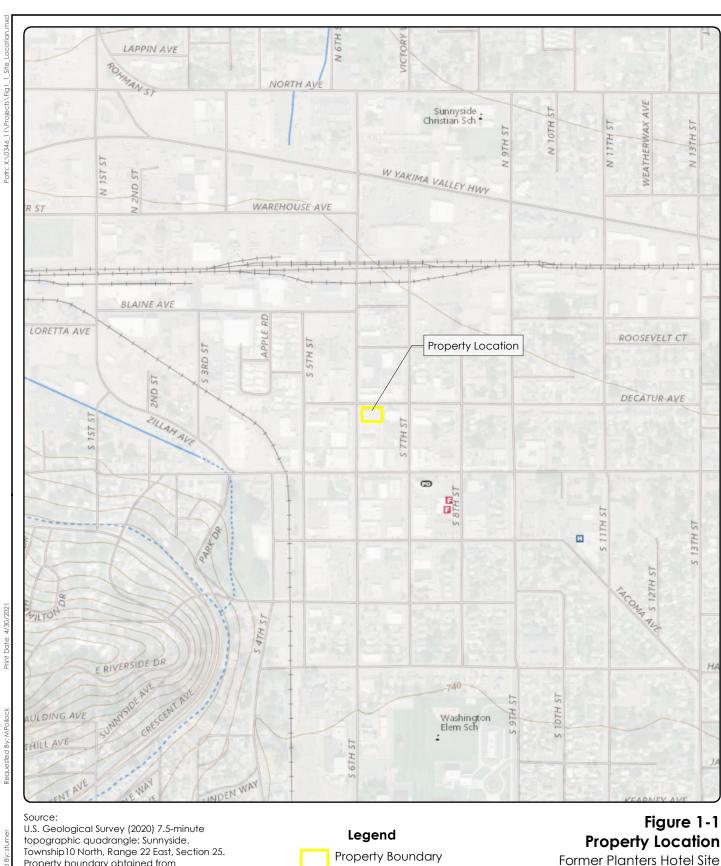
(b) Diesel + Lube Oil Range Hydrocarbons are the sum of diesel range hydrocarbon and oil range hydrocarbon where non-detect results are included at one-half the detection limit; when all results are non-detect, the highest detection limit is used.

(c) Total xylene is the sum of o-xylene and m,p-xylene where non-detect results are included at one-half the detection limit; when all results are non-detect, the highest detection limit is used.

^(d)cPAH TEQ values are based on toxic equivalence factors.

(e) Total naphthalene is the sum of 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene where non-detect results are included at one-half the detection limit; when all results are non-detect, the highest detection limit is used.

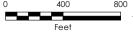
REFERENCES:

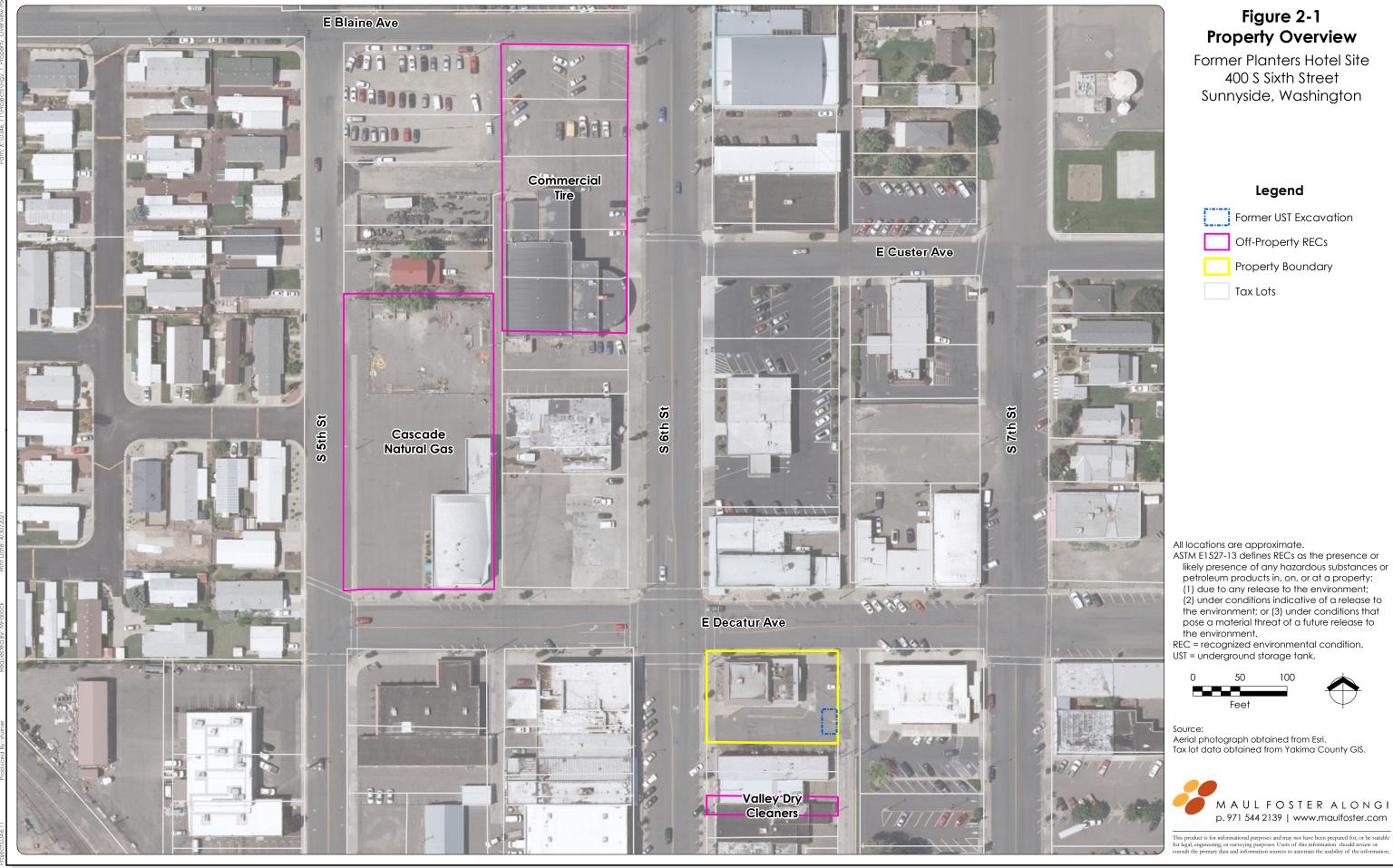

(1) Washington State Department of Ecology—Cleanup Levels and Risk Calculation Master Table. February 2021.

⁽²⁾Washington Ecology Evaluating the Human Heath Toxicity of Carcinogenic PAHs Using Toxicity Equivalence Factors. 2015.

0346.11.02, 6/30/2021, Tf_FormerPlanterHotel_April2021 Page 4 of 4

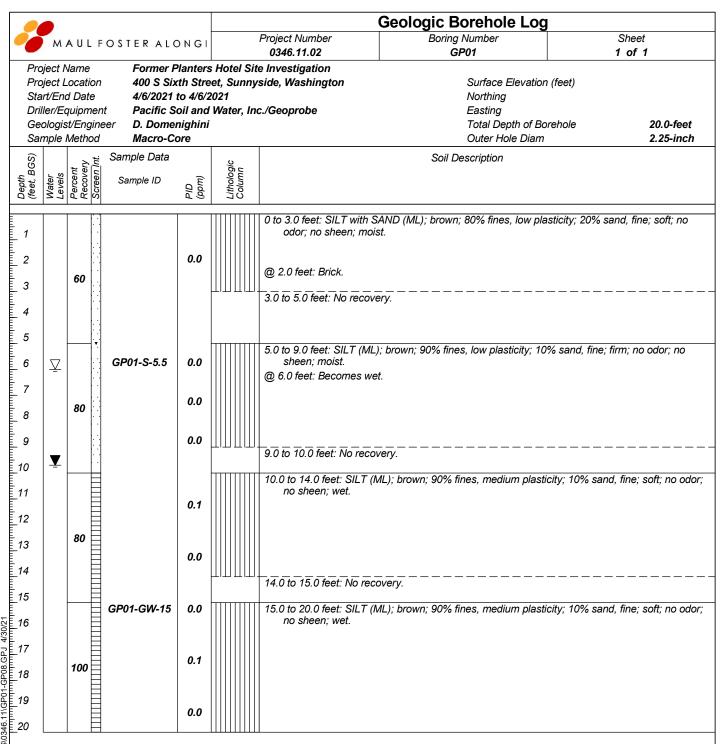
FIGURES




Township 10 North, Range 22 East, Section 25. Property boundary obtained from Yakima County GIS.

400 S Sixth Street Sunnyside, Washington

likely presence of any hazardous substances or



APPENDIX A BORING LOGS

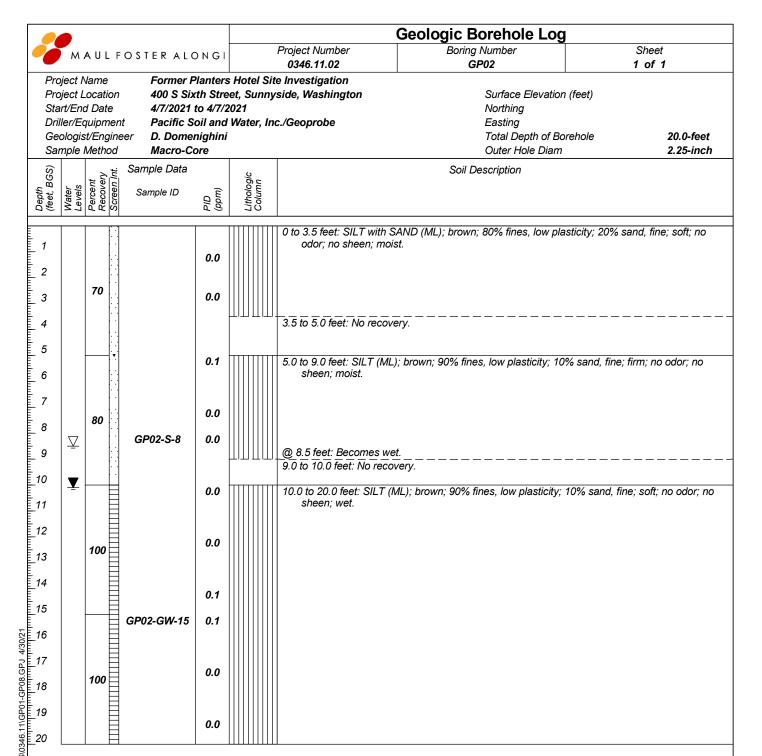
NOTES:

1) bgs = below ground surface. 2) PID = photoionization detector. 3) ppm = parts per million.

Borehole Completion Details

0 to 20.0 feet bgs: 2.25-inch borehole.

Reconnaissance Well Completion Details


Temporary polyvinyl chloride screen from 10.0 to 20.0 feet bgs, indicated by dashed graphic in the screen interval column.

Borehole Abandonment Details

0 to 20.0 feet bgs: Bentonite chips hydrated with potable water.

🛂 Water level at 6.0 feet bgs at time of drilling. 🔻 Water level measurement at 9.70 feet bgs, measured after temporary well installation.

MFA BOREHOLE W/RECON SCREEN W:\GINT\GINT\WPROJECTS\0346.11\GP01-GP08.GPJ

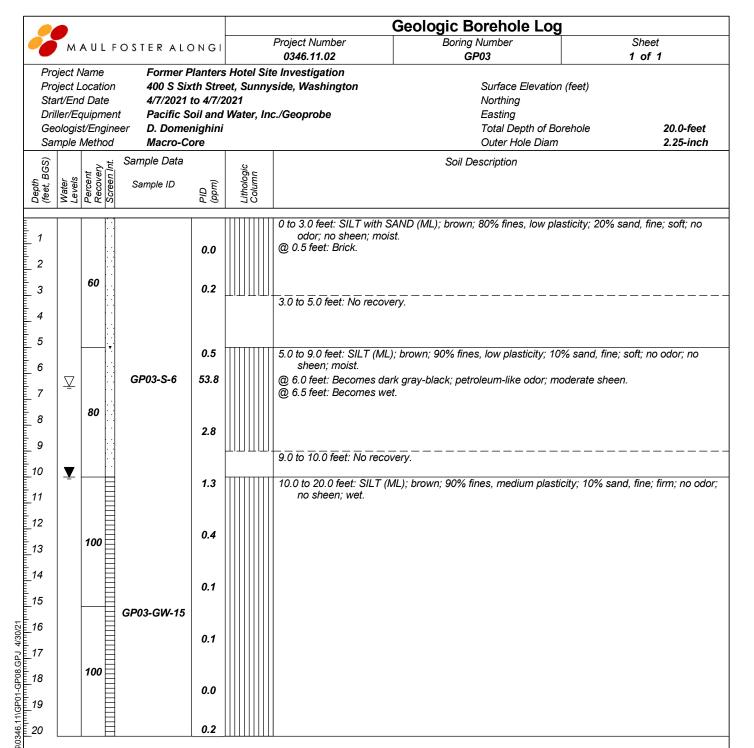
NOTES:

1) bgs = below ground surface. 2) PID = photoionization detector. 3) ppm = parts per million.

Borehole Completion Details

0 to 20.0 feet bgs: 2.25-inch borehole.

Reconnaissance Well Completion Details


Temporary polyvinyl chloride screen from 10.0 to 20.0 feet bgs, indicated by dashed graphic in the screen interval column.

Borehole Abandonment Details

0 to 20.0 feet bgs: Bentonite chips hydrated with potable water.

∠ Water level at 8.5 feet bgs at time of drilling.

✓ Water level measurement at 10.10 feet bgs, measured after temporary well installation.

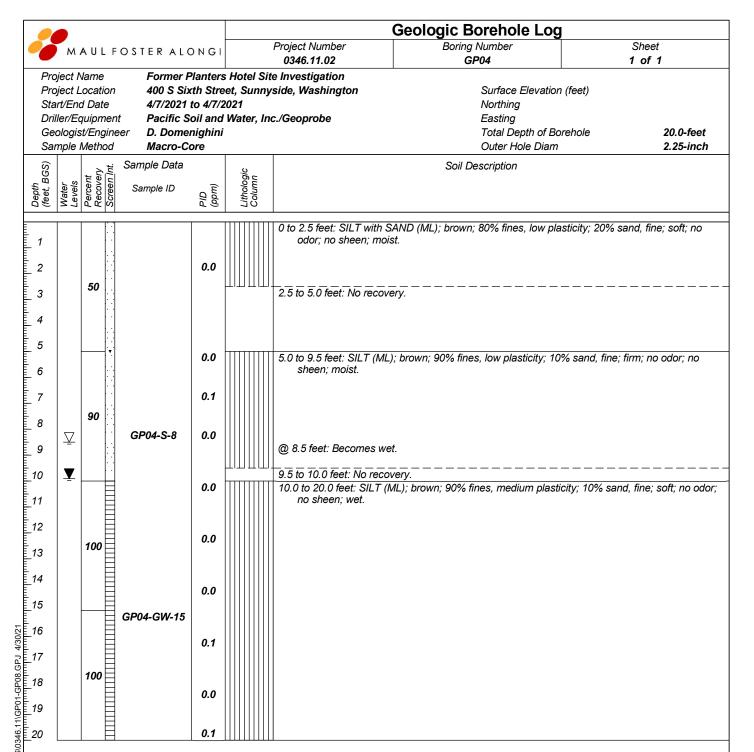
NOTES:

1) bgs = below ground surface. 2) PID = photoionization detector. 3) ppm = parts per million.

Borehole Completion Details

0 to 20.0 feet bgs: 2.25-inch borehole.

Reconnaissance Well Completion Details


Temporary polyvinyl chloride screen from 10.0 to 20.0 feet bgs, indicated by dashed graphic in the screen interval column.

Borehole Abandonment Details

0 to 20.0 feet bgs: Bentonite chips hydrated with potable water.

🛂 Water level at 6.5 feet bgs at time of drilling. 🔻 Water level measurement at 10.0 feet bgs, measured after temporary well installation.

MFA BOREHOLE W/RECON SCREEN W:\GINT\GINTWPROJECTS\0346.11\GP01-GP08.GPJ

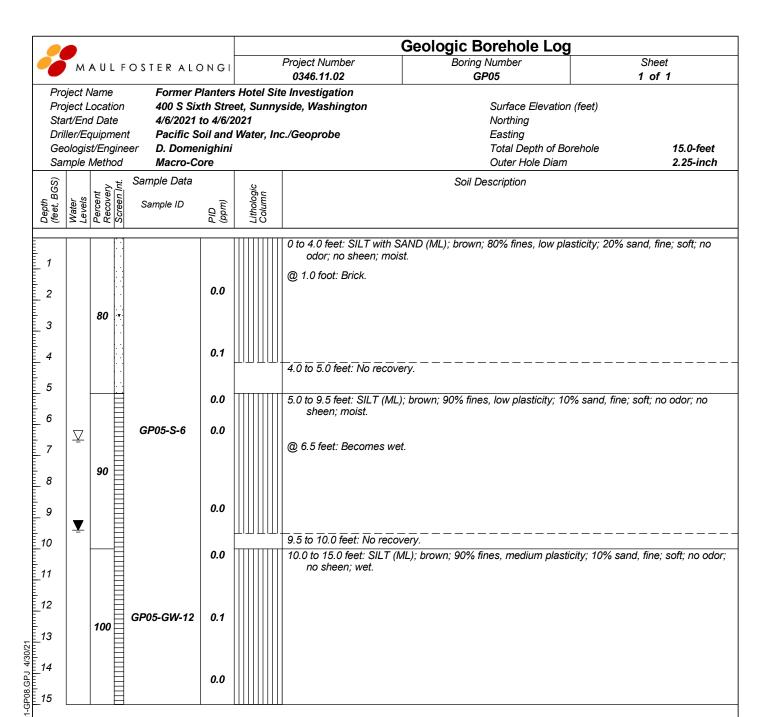
NOTES:

1) bgs = below ground surface. 2) PID = photoionization detector. 3) ppm = parts per million.

Borehole Completion Details

0 to 20.0 feet bgs: 2.25-inch borehole.

Reconnaissance Well Completion Details


Temporary polyvinyl chloride screen from 10.0 to 20.0 feet bgs, indicated by dashed graphic in the screen interval column.

Borehole Abandonment Details

0 to 20.0 feet bgs: Bentonite chips hydrated with potable water.

🛂 Water level at 8.5 feet bgs at time of drilling. 🔻 Water level measurement at 9.90 feet bgs, measured after temporary well installation.

MFA BOREHOLE W/RECON SCREEN W:\GINT\GINT\MPROJECTS\0346.11\GP01-GP08.GPJ

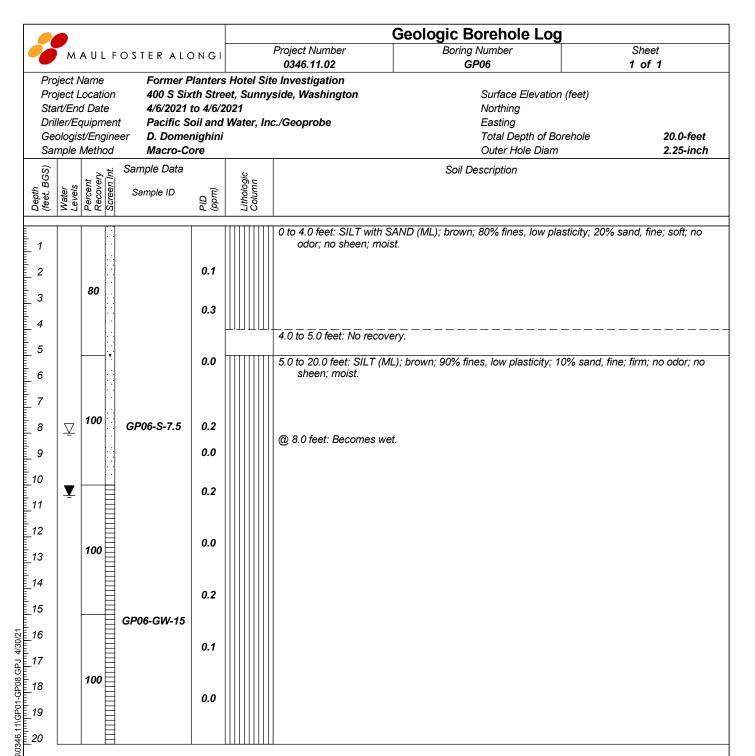
NOTES:

1) bgs = below ground surface. 2) PID = photoionization detector. 3) ppm = parts per million.

Borehole Completion Details

0 to 15.0 feet bgs: 2.25-inch borehole.

Reconnaissance Well Completion Details


Temporary polyvinyl chloride screen from 5.0 to 15.0 feet bgs, indicated by dashed graphic in the screen interval column.

Borehole Abandonment Details

0 to 15.0 feet bgs: Bentonite chips hydrated with potable water.

🗵 Water level at 6.5 feet bgs at time of drilling. 👤 Water level measurement at 9.40 feet bgs, measured after temporary well installation.

MFA BOREHOLE W/RECON SCREEN W:\GINT\GINTW/PROJECTS\0346.11\GP01-GP08.GPJ

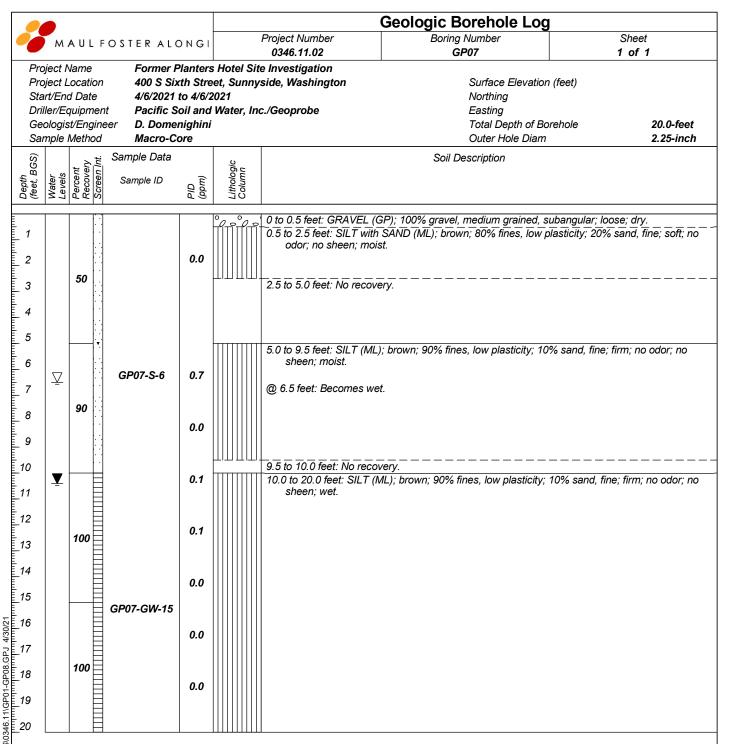
NOTES:

1) bgs = below ground surface. 2) PID = photoionization detector. 3) ppm = parts per million.

Borehole Completion Details

0 to 20.0 feet bgs: 2.25-inch borehole.

Reconnaissance Well Completion Details


Temporary polyvinyl chloride screen from 10.0 to 20.0 feet bgs, indicated by dashed graphic in the screen interval column.

Borehole Abandonment Details

0 to 20.0 feet bgs: Bentonite chips hydrated with potable water.

Water level at 8.0 feet bgs at time of drilling.

 Water level measurement at 10.40 feet bgs, measured after temporary well installation.

Total Depth = 20.0 feet bgs

NOTES:

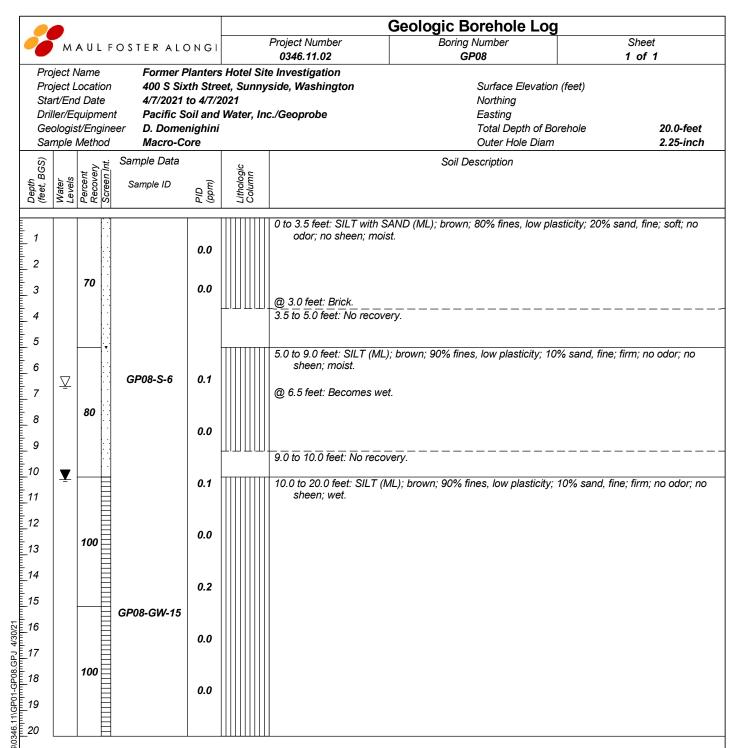
1) bgs = below ground surface. 2) PID = photoionization detector. 3) ppm = parts per million.

Borehole Completion Details

0 to 20.0 feet bgs: 2.25-inch borehole.

Reconnaissance Well Completion Details

Temporary polyvinyl chloride screen from 10.0 to 20.0 feet bgs, indicated by dashed graphic in the screen interval column.


Borehole Abandonment Details

0 to 20.0 feet bgs: Bentonite chips hydrated with potable water.

∠ Water level at 6.5 feet bgs at time of drilling.

↓ Water level measurement at 10.40 feet bgs, measured after temporary well installation.

MFA BOREHOLE W/RECON SCREEN W:\GINT\GINTWPROJECTS\0346.11\GP01-GP08.GPJ

Total Depth = 20.0 feet bgs

NOTES:

1) bgs = below ground surface. 2) PID = photoionization detector. 3) ppm = parts per million.

Borehole Completion Details

0 to 20.0 feet bgs: 2.25-inch borehole.

Reconnaissance Well Completion Details

Temporary polyvinyl chloride screen from 10.0 to 20.0 feet bgs, indicated by dashed graphic in the screen interval column.

Borehole Abandonment Details

0 to 20.0 feet bgs: Bentonite chips hydrated with potable water.

∠ Water level at 6.5 feet bgs at time of drilling.

✓ Water level measurement at 10.10 feet bgs, measured after temporary well installation.

APPENDIX B STANDARD OPERATING PROCEDURES

Date: 3/9/2021

Revision Number: 0.1

SCOPE AND APPLICATION

This standard operating procedure (SOP) describes the methods for observing and documenting the physical characteristics of unconsolidated geologic materials (soil and sediment) encountered during field investigations. If a Maul Foster & Alongi, Inc. (MFA) project requires hard rock drilling and description of rock core or cuttings, procedures for describing rock should be specified in a project-specific sampling and analysis plan (SAP).

EQUIPMENT AND MATERIALS REQUIRED

The following materials are necessary for this procedure:

- Blank field forms (e.g., boring logs) for documenting observations
- Dry-erase board
- Camera
- Munsell soil color chart (where required)
- MFA field logging checklist

METHODOLOGY

When the project-specific SAP specifies additional or different requirements for lithologic logging, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used. MFA uses a combination of the Unified Soil Classification System (USCS) and the ASTM International method D2487 for describing and classifying soil and sediment by visual and manual examination. Before beginning fieldwork, verify with the project manager the logging standard to be used.

Logging Process:

The objective of lithologic logging is to document the physical characteristics of soil and sediment encountered and the changes in characteristics with depth. Typically, changes with depth will define the strata encountered. Therefore, each stratum encountered should be identified and the following characteristics described in the order given:

- Depth interval of each stratum to the nearest tenth of a foot below ground surface
- USCS classification Group Name and Symbol
- Color, using the Munsell color chart
- Grain-size distribution, as percentages of fines (silt and clay combined), sand, and gravel
- Percentages of larger gravels (cobbles and boulders) if present.
- Consistency when the content of fines is 50 percent or greater
- Density when the combined percentage of sand and gravel is 50 percent or greater
- Sand and gravel grain shapes
- Chemical odors, if noticeable
- Structures, if present (e.g., laminae, pores)
- Presence of organic matter (e.g., roots, leaves, twigs, wood fragments)
- Moisture content as "dry," "moist," or "wet"
- If possible, a description of the origin of each stratum (e.g., fill, alluvium)

Date: 3/9/2021

Revision Number: 0.1

SCOPE AND APPLICATION

This standard operating procedure (SOP) describes the use of a photoionization detector (PID) to field screen soil for evidence of organic vapors. The PID measures the organic vapor concentration in parts per million, is not compound-specific.

Never rely on a stand-alone PID reading to identify organic chemical contamination in soil. Always collect multiple PID readings (e.g., at multiple depths along the length of a soil core), since it is the relative difference in concentration between multiple readings (e.g., a sudden increase in concentration at a certain depth interval) that is the typical indictor of contamination. Additionally, PID readings should always be accompanied by observation of the soil samples for other indictors of contamination, such as soil staining or chemical odors, so that these multiple lines of evidence can be used together to identify potential organic chemical contamination in the field.

EQUIPMENT AND MATERIALS REQUIRED

The following materials are necessary for this procedure:

- Personal protective equipment (as specified in the health and safety plan)
- PID with calibration gas
- Ziploc®-type bags
- Field forms or notebook for documenting PID readings

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) specifies additional or different requirements for organic vapor field screening, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

The electron volt (eV) rating for the PID lamp (e.g., 9.8, 10.6, 11.7) must be greater than the ionization potential (in eV) of a compound in order for the PID to detect the compound. A lamp of at least 9.8 eV should be used for petroleum hydrocarbons. A lamp of at least 10.6 eV should be used for typical chlorinated alkenes. If the project health and safety plan does not specify the lamp size, verify the compatibility of the lamp size with the anticipated compounds expected to be present in soil prior to the field activities, and confirm with the project manager.

General Procedure:

Calibration:

- The PID should be calibrated daily (or more frequently, as needed).
- Calibrate the PID according to the manufacturer's instructions.
- Document the calibration activities and results in the field notebook.

Measuring organic vapor content:

- Place a representative volume (generally, a "handful") of freshly exposed soil into a Ziploc-type bag.
- Seal the bag and gently knead the bag to loosen the soil.
- Let the bag set for several minutes to allow organic vapors, if present, to volatilize from the soil into the headspace of the bag.

Field Screening for VOCs in Soil SOP Number 3 Page 2

- Partially open the bag so that the tip of the PID intake tube can be inserted into the bag but is not in contact with the soil, then close the bag seal around the intake tube.
- Record the PID measurement and document results in the field notes or boring log.

Static Sheen Test Procedure and Observations:

Sheen Test Procedure:

- Following the PID screen discussed above, add enough water to cover the soil in the container.
- Observe the water for signs of discoloration/sheen and characterize per the table below.

When static sheen testing is required or when making observations of a water surface the following table presents descriptions to be used (consistent with Department of Ecology Guidance)¹.

No Sheen (NS)	No visible sheen on the water surface
Slight Sheen (SS)	Light, colorless, dull sheen; spread is irregular, not rapid. Natural organic oils or iron bacteria in the soil may produce a slight sheen.
Moderate Sheen (MS)	Pronounced sheen over limited area; probably has some color/iridescence; spread is irregular, may be rapid; sheen does not spread over entire water surface.
Heavy Sheen (HS)	Heavy sheen with pronounced color/iridescence; spread is rapid; the entire water surface is covered with sheen.
Biogenic Film (BF)	False positive results may be generated by the presence of decaying organic matter and iron bacteria, which can produce a rainbow-like sheen similar to an oil sheen. These sheens, unlike oil sheens, can typically be broken up creating platy or blocky fragments when agitated or disturbed. Biogenic films can also be foamy.

¹ Department of Ecology. 2016. Guidance for remediation of petroleum contaminated sites. June.

Date: 3/9/2021

Revision Number: 0.1

SCOPE AND APPLICATION

This standard operating procedure (SOP) describes the use of hand tools for obtaining surface and subsurface soil samples for physical and/or chemical analysis. For other projects where mechanical equipment is used (e.g., drill rig or excavator), it may be possible to obtain the sample manually, for example by grabbing soil directly from a drilled soil core or excavator bucket, thereby precluding the need for hand tools.

EQUIPMENT AND MATERIALS REQUIRED

The following materials are necessary for this procedure:

- Personal protective equipment (as specified in the Health and Safety Plan)
- Tools appropriate for the conditions that may be encountered (e.g., spoon, trowel, shovel, hand auger); tools constructed of stainless steel are preferred.
- Stainless steel bowls
- Tape measure with increments in feet and tenths of a foot.
- Laboratory-supplied sample containers
- Laboratory chain-of-custody form and cooler with ice.
- Equipment decontamination supplies if sampling equipment will be reused between sample locations (see SOP 1 for equipment decontamination procedures).
- Field forms or notebook for documenting the sampling procedures.

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) specifies additional or other requirements for soil sampling, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

General Procedure:

- Don gloves as specified in the Health and Safety Plan; replace gloves with new gloves after each sample is collected.
- Clear the ground surface of brush, root mat, grass, leaves, and other debris.
- Use the selected hand tool to remove soil to the targeted sample depth. Use a measuring tape to verify that the sample depth is correct and record the depth in the field notebook or boring log.
- Describe and document the soil lithology in accordance with SOP 2.
- If the sample volume requirement is small (generally one or two 8-ounce jars), the soil can be placed directly into the sample container. This can be done manually; however, if the gloves have become soiled during excavation, don new gloves before collecting the sample.
- If the sample volume requirement is large, or composite sample collection is required, collect the soil and homogenize in a decontaminated stainless-steel bowl or a dedicated Ziploc® bag and then manually transfer the sample to the sample container. If the gloves have become soiled during excavation, don new gloves before collecting the samples.

Surface and Subsurface Soil Sampling Using Hand Tools SOP Number 4 Page 2

- Before sample collection, and to the extent possible, remove organic debris, anthropogenic material (e.g., brick, metal, glass), and gravels larger than 4 millimeters, unless a project-specific SAP directs otherwise.
- When sampling for gasoline-range total petroleum hydrocarbons (gasoline) or volatile organic compounds (VOCs), a subsample will be obtained from a discrete portion of the collected sample. To minimize the potential loss of volatiles during sampling, the subsample shall not be composited or homogenized. The sample container for gasoline and/or VOC analysis will be filled first if additional containers are necessary for other analysis. Specific procedures for collecting samples for gasoline and/or VOC analysis using the U.S. Environmental Protection Agency Method 5035 are specified in SOP 5.
- The sampling device and field equipment will be decontaminated between sample locations in accordance with SOP 1. Alternatively, new, disposable equipment can be used to collect each sample to preclude the need for equipment decontamination.

Backfilling Sample Locations:

Backfill in accordance with federal and state regulations (e.g., Oregon bentonite requirements per OAR 690-240-0035). Otherwise, manual excavations can be backfilled with excess soil remaining after sample collection, unless the project-specific SAP requires a different backfill procedure.

Date: 3/9/2021

Revision Number: 0.1

SCOPE AND APPLICATION

This standard operating procedure (SOP) describes the methods for obtaining soil samples for chemical analysis for gasoline-range petroleum hydrocarbons (gasoline) and volatile organic compounds (VOCs) by U.S. Environmental Protection Agency Method 5035A.

EQUIPMENT AND MATERIALS REQUIRED

The following materials are necessary for this procedure:

- Sampling equipment (e.g., Terra Core SamplerTM or similar sampler capable of collecting a 5-gram soil sample).
- Laboratory-supplied sample containers:
 - Preweighed and labeled 40-milliliter volatile organic analysis (VOA) vials, including preservative (typically methanol)
 - Two-ounce jar for percent total solids/moisture (if required, confirm with the laboratory)
- Laboratory chain-of-custody form and cooler with ice.
- Equipment decontamination supplies if sampling equipment will be reused between sample locations (see SOP 1 for equipment decontamination procedures).
- Field forms or notebook for documenting the sampling procedures.

METHODOLOGY

When the site-specific sampling and analysis plan (SAP) specifies additional or different requirements for soil sampling, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

Laboratory Analytical Considerations:

- VOCs must be analyzed within 14 days of sample collection.
- Samples must be maintained at less than 4°±2°C.
- Discrete VOC samples may be composited at the laboratory.

General Procedure:

- When using the Terra Core Sampler, seat the plunger in the handle.
- Collect the sample by pushing the sampler into the soil until the soil has filled the sampler.
- Remove the sampler and confirm that the soil in it is flush with the mouth of the sampler.
- Wipe all debris from the outside of the sampler. Remove any excess collected soil that extends beyond
 the mouth of the sampler.
- Rotate the plunger handle 90 degrees until it is aligned with the slots in the body of the sampler. Place
 the mouth of the sampler into the sample container and extrude the sample into the sample container
 by pushing the plunger down. Hold the sample at an angle when extruding to minimize splashing of
 the preservative.
- Immediately remove any soil or debris from the threads of the vial and place the lid on the vial.

EPA Method 5035 Soil Sampling SOP Number 5 Page 2

- Gently swirl the vial (do not shake) to allow the preservative to uniformly penetrate and wet the soil.
- Repeat process for each additional sample container.
- If required by the laboratory, fill a 2-ounce container to capacity for percent total solids determination.

Date: 3/9/2021

Revision Number: 0.1

SCOPE AND APPLICATION

This standard operating procedure (SOP) describes the use of a push probe (i.e., GeoprobeTM) to observe subsurface conditions and collect samples of various environmental media (e.g., soil, sediment, groundwater, soil vapor) for laboratory analysis. Push-probe drilling is generally not suitable for soils with gravel/rock clast larger than about 4 inches in diameter. If gravelly/rocky soils are expected at the project site, consider use of the sonic drilling method described in SOP 8.

Push-probe drilling can be used for a variety of purposes, including:

- Retrieving cores to document subsurface soil or sediment conditions and to obtain samples for physical and/or chemical evaluation
- Sampling soil vapors, using temporary well points
- Collecting reconnaissance groundwater samples from temporary well screens
- Installing permanent monitoring wells

EQUIPMENT AND MATERIALS REQUIRED

The following equipment and materials are necessary for this procedure:

- Push-probe drill rig and operator provided by a subcontractor to MFA. Ensure that the subcontractor is licensed to perform the drilling work.
- Sampling equipment appropriate for the media to be sampled (e.g., water level meter, pumps, hand tools, and pump tubing).
- Laboratory-supplied sample containers.
- Traffic cones, measuring tape, buckets.
- Department of Transportation (DOT)-approved containers (e.g., 55-gallon drum) for storing excess soil and decontamination water; the drums are typically provided by the drilling subcontractor.
- Boring log form and notebook.
- Equipment decontamination supplies if sampling equipment will be reused between sample locations (see SOP 1 for equipment decontamination procedures).
- Personal protective equipment (as required by the project health and safety plan).

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) provides additional or different requirements for push-probe drilling, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

Utility Locate:

- Before beginning the fieldwork, assess the proposed drilling location(s) for the presence of overhead and underground utilities, and adjust the locations, as needed, to avoid identified utilities.
- See SOP 18 for the utility locating procedures.

Push-Probe Drilling Process:

- The push-probe drilling rig is equipped with a soil sampling device that retrieves a continuous soil core. A combination of static force and percussion is used to drive the soil sampler into unconsolidated geologic material. A plastic liner placed inside the sampler contains the soil core and permits its removal from the sampler for examination. The sampler is driven into the subsurface, typically in 4- or 5-foot intervals, depending on the length of the sampling device. When each interval depth is reached, the soil sampler is removed from the ground, and the liner is removed to facilitate soil observation and sampling.
- This process is repeated for each soil sample interval until the targeted boring depth is reached.
- Ensure that the drilling subcontractor decontaminates all subsurface equipment before and after each boring. Document the decontamination procedures in the field notebook. Store decontamination water in DOT-approved containers for later off-site disposal.

Logging and Soil Sampling Process:

- Remove the soil core from the sampler for field screening, description, and sampling.
- Describe the lithology in accordance with SOP 2.
- Confirm the required depth interval(s) for soil sample collection and field screening with the MFA project manager, or conduct the work in accordance with the SAP. The sample interval may require adjustment based on core recovery, soil stratigraphy and characteristics, and evidence of contamination. Confirm any adjustments to the sample intervals with the project manager.
- If the project requires field screening for organic vapor, conduct it in accordance with SOP 3.
- If the project requires laboratory analyses for gasoline-range petroleum hydrocarbons or volatile organic compounds, conduct the sampling in accordance with SOP 5.
- Contain all soil core remaining after sample collection in DOT-approved containers for later off-site disposal. See SOP 1 for drum storage, labeling, and documentation procedures.

Reconnaissance Groundwater Sampling Process:

- Typically, reconnaissance groundwater samples are collected at the first occurrence of groundwater in a boring. Confirm the required depth and procedures for groundwater sample collection with the MFA project manager, or conduct the work in accordance with the SAP. If the project requires use of the low-flow sampling method, refer to SOP 9 for the low-flow sampling procedures.
- Reconnaissance groundwater samples are collected using a decontaminated stainless steel or disposable, temporary polyvinyl chloride well screen placed in the boring. If the soils in the boring are fine-grained and may cause excessive turbidity in groundwater, consider using a filter pack around the screen to reduce turbidity. Alternatively, purging the well screen of groundwater prior to sample collection may also reduce the turbidity. See SOP 9 for purging procedures.
- Purging and sampling will be conducted using a peristaltic pump unless otherwise specified in the SAP.
 New tubing will be used for each boring. Field parameters (e.g., temperature, conductivity, and pH) will be recorded in accordance with SOP 9 during purging and sampling.

Monitoring Well Installation:

• If the project requires installation of a monitoring well in the boring, refer to SOP 11 for the well installation procedures. Confirm the procedures with the MFA project manager.

Push-Probe Drilling SOP Number 7 Page 3

Borehole Abandonment Process:

- Abandon each borehole in accordance with local and state regulations/procedures. The abandonment will be performed by the drilling subcontractor.
- The abandonment procedure typically consists of backfilling the boring with granular bentonite and hydrating the bentonite with potable water.
- If the boring was advanced through concrete or asphalt, backfill the boring to about 6 inches below grade to allow for placement of asphalt or concrete in the remaining 6 inches to match the surface conditions.

Date: 3/9/2021

Revision Number: 0.1

SCOPE AND APPLICATION

This standard operating procedure (SOP) describes use of the low-flow sampling method for collection of reconnaissance groundwater samples from borings and groundwater samples from monitoring wells. The method uses low pumping rates during purging and sample collection to minimize water-level drawdown and hydraulic stress at the well-aquifer interface.

EQUIPMENT AND MATERIALS REQUIRED

The following materials are necessary for this procedure:

- Personal protective equipment (as specified in the health and safety plan)
- Water quality meter (e.g., Oakton, YSI Inc. multiparameter meter)
- Turbidity meter
- Water-level meter
- Peristaltic pump and tubing
- Laboratory-supplied sample containers
- Laboratory chain-of-custody form and cooler with ice
- Filter if dissolved analyses will be performed
- Well construction logs documenting the screen depth and interval for all wells to be sampled
- Equipment decontamination supplies if sampling equipment will be reused between sample locations (see SOP 1 for equipment decontamination procedures)
- 5-gallon buckets with lids
- Department of Transportation-approved storage containers (e.g., drums, totes)
- Groundwater field sampling datasheet and notebook

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) provides additional or different requirements for low-flow groundwater sampling, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

General Sampling Procedure:

Water Level Measurement

- Water-level measurement procedures are described in detail in SOP 13.
- Open the well cap to allow the water level to equilibrate (approximately ten minutes).
- Measure the water level in the well, using an electronic water-level meter to the nearest 0.01 foot to determine the depth to groundwater below the top of the well casing.
- If light nonaqueous-phase liquid (LNAPL)is present (typically indicated by a dark, oily sheen on the top of the water level meter), discuss with the MFA project manager how to proceed.

Low-Flow Groundwater Sampling SOP Number 9 Page 2

Purging

- If the water level is above the top of the well screen, place the end of the sample tubing in the middle of the well screen interval. If the water level is below the top of the screen, place the end of the sample tubing at the midpoint between the water level and the bottom of the well screen.
- Typical low-flow sampling pumping rates range from 0.1 to 0.5 liters per minute, depending on the hydrogeologic characteristics at the site. The objective of the rate selected is to minimize excessive drawdown (<0.3 feet) of the water level.
- Measure water quality parameters (dissolved oxygen, pH, electrical conductivity, turbidity, and temperature) using a flow-through cell connected to the discharge end of the peristaltic pump tubing. Purging will be considered complete when the water quality parameters stabilize per the following for three consecutive readings taken over 3-minute intervals (consistent with EPA guidance)¹:

Dissolved Oxygen (10% for values greater than 0.5 mg/L, if three Dissolved Oxygen values are less than 0.5 mg/L, consider the values as stabilized),

Specific Conductance (3%),
Temperature (3%),
pH (± 0.1 unit),
Oxidation/Reduction Potential (±10 millivolts).

- Document the purge procedures, including pumping rates, water quality parameter measurements, and the water level during purging, on the groundwater field sampling datasheet.
- Place purge water in Department of Transportation-approved containers (e.g., 55-gallon drum) stored on site. See SOP 1 for drum storage, labeling, and documentation procedures.

Sample Collection

- Following the purging process, collect groundwater samples in laboratory-supplied containers.
- Confirm the laboratory analytical methods and sample container requirement with the MFA project
 manager or project chemist. If analysis for gasoline-range petroleum hydrocarbons or volatile organic
 compounds (VOCs) is proposed, fill the sample containers for gasoline and VOC analysis before filling
 sample containers for other analytical methods.

Low Yield (Alternate Method

- If drawdown of the water table cannot be avoided by reducing the pumping rate, and the well goes dry during purging, discontinue pumping and water quality parameter measurements.
- Collect the groundwater sample after the water level above the well bottom recovers to 90 percent of the prepurge water level. For example, if the water level was 10 feet above the well bottom before purging, begin sampling when the water level has recovered to 9 feet or more above the well bottom.
- If the water column volume is insufficient to meet the sample volume requirement, allow the water level to again recover to 90 percent before continuing sampling. Repeat this procedure until all sample containers are filled.

¹ EPA. 2017. Low stress (low flow) purging and sampling procedure for the collection of groundwater samples from monitoring wells. September 19.

Date: 3/9/2021

Revision Number: 0.1

SCOPE AND APPLICATION

This standard operating procedure (SOP) describes the methods for obtaining groundwater level measurements and light nonaqueous-phase liquid (LNAPL) measurements from monitoring wells. Measurement may be collected as an independent event or in conjunction with groundwater sampling or sampling of removed LNAPL.

EQUIPMENT AND MATERIALS REQUIRED

The following materials are necessary for this procedure:

- Personal protective equipment (as specified in the health and safety plan)
- Equipment decontamination supplies if equipment will be reused between well locations (see SOP 1 for equipment decontamination procedures)
- Field notebook
- Water-level meter or oil/water interface probe if water levels and LNAPL levels will be measured
- Bailers or tape/paste to confirm LNAPL detections if required; see SOP 10 for procedures for managing LNAPL when removing LNAPL from a well

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) provides additional or different requirements for water-level and LNAPL measurements, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

General Sampling Procedure:

Review well construction details and historical groundwater and LNAPL levels and thicknesses if available.

During groundwater sampling events, measurements should be collected before, during, and after purging and sampling. During purging and low-flow sampling, water-level measurements are conducted to ensure that drawdown is not occurring. Low-flow sampling methods are described in SOP 9. The following procedures should be followed when collecting groundwater-level and LNAPL measurements from wells.

Water Level Measurement

- 1. Test the water-level meter to ensure proper instrument response. This can be accomplished by immersing the probe tip in a small container of water.
- 2. Open the well cover and cap and allow the water level to equilibrate with atmospheric pressure for several minutes so that a static water level is attained. Audible air movement into or out of the well upon loosening of the well cap is an indication that the water level is not in equilibrium with atmospheric pressure.
- 3. Locate the measurement reference point at the top of the well casing. Typically, this is a small notch in the casing or a point marked with a pen. If no measure point is present, measure the water level from the north side of the casing and note the result in the field notebook.
- 4. Lower the water-level meter probe into the well casing until the probe signal indicates that water has been contacted.

Monitoring Well—Water Elevation SOP Number 13 Page 2

- 5. Observe the depth-to-water (DTW) reading from the measurement reference point at the top of the well casing to the nearest 0.01 foot. Over the course of about a minute, raise and re-lower the probe and observe the resulting DTW reading. If the reading remains unchanged to within 0.01 foot, this is an indication that the water level has equilibrated with atmospheric pressure; the reading can then be recorded in the field notebook as the static water level reading. If the reading changes, allow more time for the water level to become static.
- 6. If the work scope or SAP requires measurement of the depth-to-bottom (DTB), lower the probe to the bottom of the well and record the DTB reading from the reference point to the nearest 0.01 foot.
- 7. Remove the probe and decontaminate the probe and the portion of the probe tape inserted into the well casing.

Water Level and LNAPL Measurement

- 1. Repeat above steps 1 through 7.
- 2. Lower the interface probe into the well casing until the probe signal indicates that LNAPL has been contacted. Typically, the interface probe will signal by a repeating beep when LNAPL is present. A steady signal indicates that LNAPL is absent and that the probe is recording the DTW.
- 3. Observe the LNAPL reading as described in step 5 above until a static reading to the nearest 0.01 foot is achieved, and record the reading in the field notebook.
- 4. Lower the probe until a steady signal indicates that water has been contacted. Observe the water-level reading as described in step 5 above to confirm a static water level, and record the reading in the field notebook.
- 5. If LNAPL is detected in a well with no prior history of LNAPL presence, or the LNAPL thickness is greater than in prior observations, verify the presence and thickness using an alternative technique (e.g., bailer, tape, and water/petroleum colorimetric paste). See SOP 10 for procedures for managing LNAPL when removing LNAPL from a well.
- 6. Remove the interface probe and decontaminate the probe and the portion of the probe tape inserted into the well casing.

Date: 3/9/2021

Revision Number: 0.1

SCOPE AND APPLICATION

This standard operating procedure (SOP) describes the practices for locating underground utilities. Refer to the MFA health and safety plan (HASP) for additional information regarding communication procedures to be followed when an inadvertent utility strike occurs, as well as regarding methods for mitigating hazards during a utility strike.

EQUIPMENT AND MATERIALS REQUIRED

The following materials are necessary for this procedure:

- Personal protective equipment (as specified in the HASP)
- Marking materials (e.g., marking paint, stakes, flags)
- Field documentation materials

METHODOLOGY

When the project-specific sampling and analysis plan (SAP) specifies additional or different requirements for underground utility locates, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

Before Conducting Utility Locates:

- Ensure that the locate will be conducted reasonably soon before the excavation work begins, e.g., within 48 hours. There may be project-specific conditions, e.g., weather and/or ground features that could cause markings to fade, which would require scheduling of the excavation work sooner than 48 hours after the locate.
- Clearly define the boundary of the work and the locations of all proposed excavations. Prepare a map of the project area showing the excavation locations.
- Interview site managers/property owners and obtain plans or drawings, if available, showing on-site
 utilities.
- For project work that will not take place in the public right-of-way, ensure that the public rights-of-way nearest to the project are identified and communicated during the one-call notification.
- Identify the township and range of the project area. This information can be easily attained by a quick email to MFA's GIS Exchange.
- If feasible, conduct a site visit to identify site conditions that could cause fading or disruption of marking paint. Such conditions could include gravel or ground sensitive to erosion and high traffic.
- Check the weather forecast to assess the potential for snow or rain to make marking utilities difficult or cause the markings to fade.

One-Call Utility Notification:

- If possible, initiate the one-call utility notification at least one week before the proposed work begins.
- Include a map or GPS coordinates when submitting the notification.
- Before conducting any excavation activities, confirm with each public utility that the utility locate has been completed.

- On remote or complicated sites, consider meeting public locators on site.
- Document the one-call ticket number and results in the project files.
- Provide the one-call ticket number to subcontractors who will be doing the excavations.

Private Utility Locate:

- Conduct the private utility locate only after confirmation that the public utility locate has been
 completed and all public utilities have been marked and the results reviewed by MFA staff who will be
 overseeing the excavations.
- Meet the private locator on site and participate in the entire private utility locate. Be engaged in the process, ask questions, and take time to walk the site thoroughly with the locator.
- Bring a copy of the one-call utility ticket and results of the one-call utility locater to check against the utility markings on the ground.
- If possible, have a site/property representative knowledgeable of on-site utilities participate in the private utility locate.
- If paint alone may not suffice to ensure clear marking of utilities, add vertical markers such as stakes or flags.
- Visually assess the area of the proposed excavation(s) to identify features potentially indicative of buried utilities. Have the private utility locator examine each feature identified below to assess the presence of buried utilities.
 - Examine adjacent public rights-of-way where public utilities have been marked for evidence of
 utilities that may extend onto the project site.
 - Identify nearby light poles, telephone poles, electrical utility poles, or other overhead utility poles with wires or conductors that run from the overhead utility, down the pole, and into the ground.
 - Identify the location of gas meters, water meters, or other aboveground junction boxes for evidence of utilities extending from these features into the ground.
 - Examine asphalt and concrete ground surfaces for discontinuities in the surface indicative of utility installations. Discontinuities may include recent patches of asphalt or concrete inlaid within older concrete or asphalt surfaces.
 - Identify manholes and catch basins indicative of buried storm or sanitary sewer pipes. Open manholes to examine the orientation of associated pipes to assess whether the utilities may be present near proposed excavations.
 - Identify tank ports and vent pipes.
 - Identify irrigation systems and associated features such as valve boxes and controllers.
 - Identify any other signs indicating the presence of buried utilities.
 - Be wary of utility marks that suddenly begin or dead end.

Preparing to Perform Subsurface Activities after a Locate:

- Ensure that the markings are still visible when the work begins.
- Adjust locations, as needed, to avoid identified utilities, or use alternative methods such as nonmechanical excavation means (i.e., manual excavation or air-knifing) to a minimum depth of 5 feet.

Table APWA UNIFORM COLOR CODE

7.1.17.1.11.1.0.0.11.0.0.11.1.0.0.11.1.0.0.11.1.0.0.11.1.1.0.11.1.1.0.11.1.1.0.11.1.1.0.11.1.1.0.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
	WHITE—Proposed Excavation
	PINK—Temporary Survey Markings
	RED—Electric Power Lines, Cables, Conduit and Lighting Cables
	YELLOW—Gas, Oil, Steam, Petroleum or Gaseous Materials
	ORANGE—Communication, Alarm or Signal Lines, Cables or Conduit
	BLUE—Potable Water
	PURPLE—Reclaimed Water, Irrigation and Slurry Lines
	GREEN—Sewers and Drain Lines
Source: Uniform Color Codes, ANSI Standard Z535.1. American Public Works Association. Revised 1999.	

APPENDIX C INADVERTENT DISCOVERY PLAN

PLAN AND PROCEDURES FOR THE UNANTICIPATED DISCOVERY OF CULTURAL RESOURCES AND HUMAN SKELETAL REMAINS¹

PROJECT TITLE: Former Planters Hotel, Sunnyside

COUNTY WASHINGTON: Yakima

400 South 6th Street, Sunnyside, WA 98944 Parcel 24511 SE¼ of the NW¼ of Section 25 Township 10 North, Range 22 East Willamette Principal Meridian Yakima County, Washington Long, Lat: -120.0128, 46.3249

1. INTRODUCTION

The following Inadvertent Discovery Plan (IDP) outlines procedures to perform in the event of discovering archaeological materials or human remains, in accordance with state and federal laws.

2. RECOGNIZING CULTURAL RESOURCES

A cultural resource discovery could be prehistoric or historic. Examples include:

- a. An accumulation of shell, burned rocks, or other food related materials.
- b. Bones or small pieces of bone.
- c. An area of charcoal or very dark stained soil with artifacts.
- d. Stone tools or waste flakes (i.e. an arrowhead. or stone chips).
- e. Clusters of tin cans or bottles, logging or agricultural equipment that appears to be older than 50 years.
- f. Buried railroad tracks, decking, or other industrial materials.

When in doubt, assume the material is a cultural resource.

3. ON-SITE RESPONSIBILITIES

STEP 1: *Stop Work*. If any employee, contractor or subcontractor believes that he or she has uncovered a cultural resource at any point in the project, all work must stop immediately. Notify the appropriate party(s). Leave the surrounding area untouched, and provide a demarcation adequate to provide the total security, protection, and integrity of the discovery. The discovery location must be secured at all times by a temporary fence or other onsite security.

STEP 2: *Notify Archaeological Monitor or Licensed Archaeologist*. If there is an Archaeological Monitor for the project, notify that person. If there is a monitoring plan in

¹ If you need this document in a format for the visually impaired, call Water Quality Reception at Ecology, (360) 407-6600. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

place, the monitor will follow the outlined procedure.

STEP 3: *Notify the Project Manager* of this project and contact the Ecology Staff Project Manager, or other applicable contacts:

Project Manager: Ecology Staff Project Manager

Name: Bob Desgrosellier
Phone: (509) 728-3455 (cell)
Name: Jill Scheffer
Phone: 509-571-4162

Email: Bob.Desgrosellier@yakimawa.gov Email: sche461@ecy.wa.gov

Assigned Alternates:

Assigned Project Manager Alternate:	Ecology Cultural Resource Specialist
Name:	(Alternate):
Phone:	Name:
Email:	Phone:
	email:

The Project Manager or applicable staff will make all calls and necessary notifications. **If human remains are encountered**, treat them with dignity and respect at all times. Cover the remains with a tarp or other materials (not soil or rocks) for temporary protection and to shield them from being photographed. **Do not call 911 or speak with the media. Do not take pictures unless directed to do so by DAHP. See Section 5.**

4. FURTHER CONTACTS AND CONSULTATION

A. Project Manager's Responsibilities:

- *Protect Find*: The Project Manager is responsible for taking appropriate steps to protect the discovery site. All work will stop immediately in a surrounding area adequate to provide for the complete security of location, protection, and integrity of the resource. Vehicles, equipment, and unauthorized personnel will not be permitted to traverse the discovery site. Work in the immediate area will not resume until treatment of the discovery has been completed following provisions for treating archaeological/cultural material as set forth in this document.
- *Direct Construction Elsewhere on-Site*: The Project Manager may direct construction away from cultural resources to work in other areas prior to contacting the concerned parties.
- *Contact Senior Staff*: If the Senior Staff person has not yet been contacted, the Project Manager must do so.

B. Senior Staff Responsibilities:

• *Identify Find*: The Senior Staff (or a delegated Cultural Resource Specialist), will ensure that a qualified professional archaeologist examines the area to determine if there is an archaeological find.

- o If it is determined not to be of archaeological, historical, or human remains, work may proceed with no further delay.
- If it is determined to be an archaeological find, the Senior Staff or Cultural Resource Specialist will continue with all notifications.
- If the find may be human remains or funerary objects, the Senior Staff or Cultural Resource Specialist will ensure that a qualified physical anthropologist examines the find. If it is determined to be human remains, the procedure described in Section 5 will be followed.
- *Notify DAHP*: The Senior Staff (or a delegated Cultural Resource Specialist) will contact the involved federal agencies (if any) and the Washington Department of Archaeology and Historic Preservation (DAHP).
- *Notify Tribes*: If the discovery may be of interest to Native American Tribes, the DAHP and Ecology Supervisor or Coordinator will coordinate with the interested and/or affected tribes.

General Contacts

Federal Agencies:

State Agencies:

Agency:	Agency:
Name	Name
Title	Title
Number	Number
Email	Email

Department of Archaeology and Historic Preservation:

Dr. Allyson Brooks	Rob Whitlam, Ph.D.
State Historic Preservation Officer	Staff Archaeologist
360-586-3066	360-586-3050
Assigned Alternate:	Assigned Alternate:

The DAHP or appropriate Ecology Staff will contact the interested and affected Tribes for a specific project.

Tribes consulted on this project are:

Tribe: Confederated Tribes and Bands of	Tribe: Confederated Tribes and Bands of
the Yakama Nation	the Yakama Nation
Name: Johnson Meninick	Name: Noah Oliver
Title: Program Manager, Yakama Nation Cultural Resources Program	Title: Archaeologist
Phone: 509-865-5121 ext. 4737	Phone: 509-865-5121 ext. 4756
Email: Johnson_Meninick@yakama.com	Email: Noah_Oliver@yakama.com

Tribe: Confederated Tribes and Bands of	Tribe: Confederated Tribes and Bands of
the Yakama Nation	the Yakama Nation
Name: Jessica Lally	Name: Corrine Camuso
Title: Archaeologist (alternate contact)	Title: Archaeologist
Phone: 509-865-5121 ext. 4766	Phone: 509-865-5121 ext. 4776
Email: Jessica_Lally@yakama.com	Email: Corrine_Camuso@yakama.com
Tribe: Confederated Tribes and Bands of	Tribe: Confederated Tribes and Bands of
the Yakama Nation	the Yakama Nation

Further Activities

- Archaeological discoveries will be documented as described in Section 6.
- Construction in the discovery area may resume as described in Section 7.

5. SPECIAL PROCEDURES FOR THE DISCOVERY OF HUMAN SKELETAL MATERIAL

Any human skeletal remains, regardless of antiquity or ethnic origin, will at all times be treated with dignity and respect. Do not take photographs by any means, unless you are pre-approved to do so.

If the project occurs on federal lands or receives federal funding (e.g., national forest or park, military reservation) the provisions of the Native American Graves Protection and Repatriation Act of 1990 apply, and the responsible federal agency will follow its provisions. Note that state highways that cross federal lands are on an easement and are not owned by the state.

If the project occurs on non-federal lands, the Project Manager will comply with applicable state and federal laws, and the following procedure:

A. In all cases you must notify a law enforcement agency or Medical Examiner/Coroner's Office:

In addition to the actions described in Sections 3 and 4, the Project Manager will immediately notify the local law enforcement agency or medical examiner/coroner's office.

The Medical Examiner/Coroner (with assistance of law enforcement personnel) will determine if the remains are human, whether the discovery site constitutes a crime scene, and will then notify DAHP.

Enter contact information below:

Yakima County non-emergency police - (509) 575-6200

Jim Curtice Yakima County Coroner 128 N 2nd Street Yakima, WA 98902 Phone: 509-574-1610

B. Participate in Consultation:

Per RCW 27.44.055, RCW 68.50, and RCW 68.60, DAHP will have jurisdiction over non-forensic human remains. Ecology staff will participate in consultation.

Further Activities:

- Documentation of human skeletal remains and funerary objects will be agreed upon through the consultation process described in RCW 27.44.055, RCW 68.50, and RCW 68.60.
- When consultation and documentation activities are complete, construction in the discovery area may resume as described in Section 7.

6. DOCUMENTATION OF ARCHAEOLOGICAL MATERIALS

Archaeological deposits discovered during construction will be assumed eligible for inclusion in the National Register of Historic Places under Criterion D until a formal Determination of Eligibility is made.

Project staff will ensure the proper documentation and field assessment will be made of any discovered cultural resources in cooperation with all parties: the federal agencies (if any), DAHP, Ecology, affected tribes, and a contracted consultant (if any).

All prehistoric and historic cultural material discovered during project construction will be recorded by a professional archaeologist on a cultural resource site or isolate form using standard and approved techniques. Site overviews, features, and artifacts will be photographed; stratigraphic profiles and soil/sediment descriptions will be prepared for minimal subsurface exposures. Discovery locations will be documented on scaled site plans and site location maps.

Cultural features, horizons and artifacts detected in buried sediments may require further evaluation using hand-dug test units. Units may be dug in controlled fashion to expose features, collect samples from undisturbed contexts, or to interpret complex stratigraphy. A test excavation unit or small trench might also be used to determine if an intact occupation surface is present. Test units will be used only when necessary to gather information on the nature, extent, and integrity of subsurface cultural deposits to evaluate the site's significance. Excavations will be conducted using state-of-the-art techniques for controlling provenience, and the chronology of ownership, custody and location recorded with precision.

Spatial information, depth of excavation levels, natural and cultural stratigraphy, presence or absence of cultural material, and depth to sterile soil, regolith, or bedrock will be recorded for each probe on a standard form. Test excavation units will be recorded on unit-level forms, which include plan maps for each excavated level, and material type, number, and vertical provenience (depth below surface and stratum association where applicable) for all artifacts recovered from the level. A stratigraphic profile will be drawn

for at least one wall of each test excavation unit.

Sediments excavated for purposes of cultural resources investigation will be screened through 1/8-inch mesh, unless soil conditions warrant ½-inch mesh.

All prehistoric and historic artifacts collected from the surface and from probes and excavation units will be analyzed, catalogued, and temporarily curated. Ultimate disposition of cultural materials will be determined in consultation with the federal agencies (if any), DAHP, Ecology and the affected tribes.

Within 90 days of concluding fieldwork, a technical report describing any and all monitoring and resultant archaeological excavations will be provided to the Project Manager, who will forward the report for review and delivery to Ecology, the federal agencies (if any), DAHP, and the affected tribe(s).

If assessment activity exposes human remains (burials, isolated teeth, or bones), the process described in Section 5 will be followed.

7. PROCEEDING WITH WORK

Work outside the discovery location may continue while documentation and assessment of the cultural resources proceed. A professional archaeologist must determine the boundaries of the discovery location. In consultation with Ecology, DAHP and any affected tribes, the Project Manager will determine the appropriate level of documentation and treatment of the resource. If there is a federal nexus, Section 106 consultation and associated federal laws will make the final determinations about treatment and documentation.

Work may continue at the discovery location only after the process outlined in this plan is followed and the Project Manager, DAHP, any affected tribes, Ecology (and the federal agencies, if any) determine that compliance with state and federal law is complete.

8. RECIPIENT/PROJECT PARTNER RESPONSIBILITY

The Project Recipient/Project Partner is responsible for developing an IDP. The IDP must be immediately available onsite, be implemented to address any discovery, and be available by request by any party. The Project Manager and staff will review the IDP during a project kickoff or pre-construction meeting.

We recommend that you print images in color for accuracy.

You see chipped stone artifacts.

- Glass-like material
- Angular
- "Unusual" material for area
- "Unusual" shape
- Regularity of flaking
- Variability of size

You see ground or pecked stone artifacts.

- Striations or scratching
- Unusual or unnatural shapes
- Unusual stone
- Etching
- Perforations
- Pecking
- Regularity in modifications
- Variability of size, function, and complexity

You see bone or shell artifacts.

- Often smooth
- Unusual shape
- Carved
- Often pointed if used as a tool
- Often wedge shaped like a "shoehorn"

You see bone or shell artifacts.

- Often smooth
- Unusual shape
- Perforated
- Variability of size

You see fiber or wood artifacts.

- Wet environments needed for preservation
- Variability of size, function, and complexity
- Rare

You see historic period artifacts.

You see strange, different or interesting looking dirt, rocks, or

- Human activities leave traces in the ground that may or may not have artifacts associated with them
- "Unusual" accumulations of rock (especially fire-cracked rock)
- "Unusual" shaped accumulations of rock (e.g., similar to a fire ring)
- Charcoal or charcoal-stained soils
- Oxidized or burnt-looking soils
- Accumulations of shell
- Accumulations of bones or artifacts
- Look for the "unusual" or out of place (e.g., rock piles or accumulations in areas with few rock)

ECY 070-560

You see strange, different or interesting looking dirt, rocks, or

- "Unusual" accumulations of rock (especially fire-cracked rock)
- "Unusual" shaped accumulations of rock (e.g., similar to a fire ring)
- Look for the "unusual" or out of place (e.g., rock piles or accumulations in areas with few rock)

You see strange, different or interesting looking dirt, rocks, or

Implement the IDP / UDP if ...

You see historic foundations or buried structures.

10

APPENDIX D PHOTOGRAPH LOG

Project Name: Former Planters Hotel Site

Project Number: 0346.11.02

Location: 400 S Sixth Street, Sunnyside, Washington

Photo No. 1.

Description

Looking south across the former underground storage tank (UST) excavation.

Approximate location of boring GP01 indicated by arrow.

Photo No. 2.

Description

Drilling at boring GP02, looking east.

Project Name: Former Planters Hotel Site

Project Number: 0346.11.02

Location: 400 S Sixth Street, Sunnyside, Washington

Photo No. 3.

Description

Sampling at boring location GP03 located in the UST excavation, looking east.

Photo No. 4.

Description

View of drilling at boring GP04 south of the former UST excavation, looking southeast.

Project Name: Former Planters Hotel Site

Project Number: 0346.11.02

Location: 400 S Sixth Street, Sunnyside, Washington

Photo No. 5.

Description

Boring location GP05 located along the southern property boundary, looking southeast.

Photo No. 6.

Description

Drilling at location GP06, looking west.

Project Name: Former Planters Hotel Site

Project Number: 0346.11.02

Location: 400 S Sixth Street, Sunnyside, Washington

Photo No. 7.

Description

Boring location GP07 located in the northwest corner of the Property, looking south.

Photo No. 8.

Description

View of drilling at boring location GP08, looking northeast.

APPENDIX E FIELD SAMPLING DATA SHEETS

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-

Soil Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP01
Project Number	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/6/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP01-S-5.5
Sub Area		Sample Depth	5.5
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(7) Grab	Soil	Discrete	0.0	12:50:00 PM	2 oz. soil	
					4 oz. soil	
					8 oz. soil	1
					Other	2
					Total Containers	3

~ wiiipio = 05011p010110	SILT (ML); brown; 90% fines, low plasticity, firm; 10% sand, fine; no odor; no sheen; moist.		
General Sampling Comments	Grab sample collected from 5.0 to 6.0 feet below ground surface.		

Sampling Method Code:

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-

Soil Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP02
Project Number	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/7/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP02-S-8
Sub Area		Sample Depth	8
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(7) Grab	Soil	Discrete	0.1	09:15:00 AM	2 oz. soil	
					4 oz. soil	
					8 oz. soil	1
					Other	2
					Total Containers	3

2011p10 2 00011p110111	SILT (ML); brown; 90% fines, low plasticity, firm; 10% sand, fine; no odor; no sheen; moist.

Grab sample collected from 7.5 to 8.5 feet below ground surface.

Sampling Method Code:

General Sampling Comments

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-

Soil Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP03
Project Number	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/7/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP03-S-6
Sub Area		Sample Depth	6
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(7) Grab	Soil	Discrete	53.8	11:15:00 AM	2 oz. soil	
					4 oz. soil	
					8 oz. soil	1
					Other	2
					Total Containers	3

sumple Beschiption.	SILT (ML); brown; 90% fines, low plasticity, soft; 10% sand, fine; petroleum-like odor; moderate sheen; moist.

General Sampling Comments

Grab sample collected from 5.5 to 6.5 feet below ground surface.

Sampling Method Code:

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-

Soil Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP04
Project Number	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/7/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP04-S-8
Sub Area		Sample Depth	8
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(7) Grab	Soil	Discrete	0.0	08:25:00 AM	2 oz. soil	
					4 oz. soil	
					8 oz. soil	1
					Other	2
					Total Containers	3

Sample Description:	SILT (ML); brown; 90% fines, low plasticity, firm; 10% sand, fine; no odor; no sheen; moist.
General Sampling Comments	Grab sample collected from 7.5 to 8.5 feet below ground surface.

Sampling Method Code:

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-

Soil Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP05
Project Number	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/6/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP05-S-6
Sub Area		Sample Depth	6
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(7) Grab	Soil	Discrete	0.0	11:30:00 AM	2 oz. soil	
					4 oz. soil	
					8 oz. soil	1
					Other	2
					Total Containers	3

SILT (ML); brown; 90% fines, low plasticity, soft; 10% sand, fine; no odor; no

	sheen; moist.
General Sampling Comments	Grab sample collected from 5.5 to 6.5 feet below ground surface.

Sampling Method Code:

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-

Soil Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP06
Project Number	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/6/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP06-S-7.5
Sub Area		Sample Depth	7.5
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(7) Grab	Soil	Discrete	0.2	03:35:00 PM	2 oz. soil	
					4 oz. soil	
					8 oz. soil	1
					Other	2
					Total Containers	3

Sample Description: SILT (ML); brown; 90% fines, low plasticity, firm; 10% sand, fine; no odor; no sheen; moist.

General Sampling Comments

Grab sample collected from 7.0 to 8.0 feet below ground surface. Field duplicate sample GP06-S-7.5-DUP also collected.

Sampling Method Code:

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-

Soil Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP07
Project Number	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/6/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP07-S-6
Sub Area		Sample Depth	6
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(7) Grab	Soil	Discrete	0.7	02:10:00 PM	2 oz. soil	
					4 oz. soil	
					8 oz. soil	1
					Other	2
					Total Containers	3

Sample Description:	SILT (ML); brown; 90% fines, low plasticity, firm; 10% sand, fine; no odor; no sheen; moist.
General Sampling Comments	Grab sample collected from 5.5 to 6.5 feet below ground surface.

Sampling Method Code:

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-

Soil Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP08
Project Number	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/7/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP08-S-6
Sub Area		Sample Depth	6
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(7) Grab	Soil	Discrete	0.1	10:10:00 AM	2 oz. soil	
					4 oz. soil	
					8 oz. soil	1
					Other	2
					Total Containers	3

Sample Description:	SILT (ML); brown; 90% fines, low plasticity, firm; 10% sand, fine; no odor; no sheen; moist.		
General Sampling Comments	Grab sample collected from 5.5 to 6.5 feet below ground surface.		

Sampling Method Code:

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP01
Project #	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/6/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP01-GW-15
Sub Area		Sample Depth	15
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
4/6/2021	12:45	20		9.7		10.3	1.68

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump									
Final Field Parameters	01:08:00 PM			8.00	15.9	1,435			Very turbid

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:

Very turbid; no sheen; no odor.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	01:10:00 PM	VOA-Glass	5	No
			Amber Glass	4	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	9	

General Sampling Comments

Began purging at 12:58.

Reconnaissance groundwater sample. Field duplicate GP01-GW-15-DUP collected. Screen set from 10.0 to 20.0 feet below ground surface.

Turbidity was out of range on meter.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP02
Project #	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/7/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP02-GW-15
Sub Area		Sample Depth	15
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
4/7/2021	09:30	20		10.1		9.9	1.61

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump									
Final Field Parameters	09:48:00 AM			8.42	15.6	942.5			52.1 NTU

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:

Slightly cloudy; no odor; no sheen.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	09:50:00 AM	VOA-Glass	5	No
			Amber Glass	4	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	9	

General Sampling Comments

Began purging at 09:35

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP03
Project #	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/7/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP03-GW-15
Sub Area		Sample Depth	15
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
4/7/2021	11:30	20		10.0		10.0	1.63

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump									
Final Field Parameters	11:48:00 AM			8.29	15.7	788.1			71 NTU

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:

Slightly cloudy; slight sheen; slight petroleum-like odor.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	11:50:00 AM	VOA-Glass	5	No
·			Amber Glass	4	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	9	

General Sampling Comments

Began purging at 11:35

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP04
Project #	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/7/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP04-GW-15
Sub Area		Sample Depth	15
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
4/7/2021	08:40	20		9.9		10.1	1.65

 $(0.75" = 0.023 \; \text{gal/ft}) \; (1" = 0.041 \; \text{gal/ft}) \; (1.5" = 0.092 \; \text{gal/ft}) \; (2" = 0.163 \; \text{gal/ft}) \; (3" = 0.367 \; \text{gal/ft}) \; (4" = 0.653 \; \text{gal/ft}) \; (6" = 1.469 \; \text{gal/ft}) \; (8" = 2.611 \;$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump									
Final Field Parameters	08:57:00 AM			8.45	15.6	690.1			49 NTU

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Clear; no sheen; no odor.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	09:00:00 AM	VOA-Glass	5	No
			Amber Glass	4	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	9	

General Sampling Comments

Began purging at 08:42

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP05
Project #	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/6/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP05-GW-12
Sub Area		Sample Depth	12
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
4/6/2021	11:45	15		9.4		5.6	0.91

 $(0.75" = 0.023 \; \text{gal/ft}) \; (1" = 0.041 \; \text{gal/ft}) \; (1.5" = 0.092 \; \text{gal/ft}) \; (2" = 0.163 \; \text{gal/ft}) \; (3" = 0.367 \; \text{gal/ft}) \; (4" = 0.653 \; \text{gal/ft}) \; (6" = 1.469 \; \text{gal/ft}) \; (8" = 2.611 \;$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump									
Final Field Parameters	12:02:00 PM			8.11	16.2	1,376			30.8 NTU

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Oı	ıalitv	Obser	vations:
----------	--------	-------	----------

lear.	no	sheen;	no	odor
Jicai,	110	SHOULI,	\mathbf{n}	ouoi.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	12:05:00 PM	VOA-Glass	5	No
			Amber Glass	4	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	9	

General Sampling Comments

Began purging at 11:50

Reconnaissance groundwater sample. Screen set from 5.0 to 15.0 feet below ground surface. Location very slow to recharge from tight silt at this depth.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP06
Project #	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/6/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP06-GW-15
Sub Area		Sample Depth	15
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
4/6/2021	15:54	20		10.4		9.6	1.56

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump									
Final Field Parameters	04:13:00 PM			8.23	17.0	1,060			66.3 NTU

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:

Slightly cloudy; no sheen; no odor.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	04:15:00 PM	VOA-Glass	5	No
·			Amber Glass	4	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	9	

General Sampling Comments

Began purging at 16:00

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP07
Project #	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/6/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP07-GW-15
Sub Area		Sample Depth	15
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
4/6/2021	14:35	20		10.4		9.6	1.56

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump									
Final Field Parameters	02:55:00 PM			8.44	16.0	721.3			Very turbid

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:

Very turbid; no sheen; no odor.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	03:00:00 PM	VOA-Glass	5	No
			Amber Glass	4	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	9	

General Sampling Comments

Began purging at 14:40

Reconnaissance groundwater sample. Screen set from 10.0 to 20.0 feet below ground surface. Turbidity was out of range on meter.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	Port of Sunnyside	Sample Location	GP08
Project #	0346.11.02	Sampler	D. Domenighini
Project Name	Former Planter's Hotel	Sampling Date	4/7/2021
Sampling Event	April 2021 - Site Investigation	Sample Name	GP08-GW-15
Sub Area		Sample Depth	15
FSDS QA:	C. Busch; 4/27/2021	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
4/7/2021	10:25	20		10.1		9.9	1.61

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump									
Final Field Parameters	10:43:00 AM	·		8.34	15.5	711			Very turbid

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:

Very turbid; no sheen; no odor.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	10:45:00 AM	VOA-Glass	5	No
·			Amber Glass	4	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	9	

General Sampling Comments

Began purging at 10:28

Reconnaissance groundwater sample. Screen set from 10.0 to 20.0 feet below ground surface. Turbidity was out of range on meter.

APPENDIX F LABORATORY ANALYTICAL REPORTS

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, April 22, 2021 David Weatherby Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A1D0263 - Former Planter's Hotel Site - 0346.11.02

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A1D0263, which was received by the laboratory on 4/7/2021 at 5:40:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler	Receipt	Information
	-	

(See Cooler Receipt Form for details)

 Cooler #1
 2.3 degC
 Cooler #2
 0.5 degC

 Cooler #3
 1.3 degC
 Cooler #4
 3.6 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 1 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GP01-S-5.5	A1D0263-01	Soil	04/06/21 12:50	04/07/21 17:40
GP02-S-8	A1D0263-02	Soil	04/07/21 09:15	04/07/21 17:40
GP03-S-6	A1D0263-03	Soil	04/07/21 11:15	04/07/21 17:40
GP04-S-8	A1D0263-04	Soil	04/07/21 08:25	04/07/21 17:40
GP05-S-6	A1D0263-05	Soil	04/06/21 11:30	04/07/21 17:40
GP06-S-7.5	A1D0263-06	Soil	04/06/21 15:35	04/07/21 17:40
GP06-S-7.5-DUP	A1D0263-07	Soil	04/06/21 15:35	04/07/21 17:40
GP07-S-6	A1D0263-08	Soil	04/06/21 14:10	04/07/21 17:40
GP08-S-6	A1D0263-09	Soil	04/07/21 10:10	04/07/21 17:40
GP01-GW-15	A1D0263-10	Water	04/06/21 13:10	04/07/21 17:40
GP01-GW-15-DUP	A1D0263-11	Water	04/06/21 13:10	04/07/21 17:40
GP02-GW-15	A1D0263-12	Water	04/07/21 09:50	04/07/21 17:40
GP03-GW-15	A1D0263-13	Water	04/07/21 11:50	04/07/21 17:40
GP04-GW-15	A1D0263-14	Water	04/07/21 09:00	04/07/21 17:40
GP05-GW-12	A1D0263-15	Water	04/06/21 12:05	04/07/21 17:40
GP06-GW-15	A1D0263-16	Water	04/06/21 16:15	04/07/21 17:40
GP07-GW-15	A1D0263-17	Water	04/06/21 15:00	04/07/21 17:40
GP08-GW-15	A1D0263-18	Water	04/07/21 10:45	04/07/21 17:40
040721TB	A1D0263-19	Water	04/07/21 00:00	04/07/21 17:40

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Planter's Hotel Site

Project Number: 0346.11.02
Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocar	bons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP01-S-5.5 (A1D0263-01)				Matrix: Soil		Batch:	1040332	
Diesel	ND	11.8	25.0	mg/kg dry	1	04/10/21 03:59	NWTPH-Dx	
Oil	29.9	23.7	50.0	mg/kg dry	1	04/10/21 03:59	NWTPH-Dx	J
Surrogate: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50-150 %	6 I	04/10/21 03:59	NWTPH-Dx	
GP02-S-8 (A1D0263-02)				Matrix: Soil		Batch:	1040332	
Diesel	ND	12.3	25.0	mg/kg dry	1	04/10/21 04:20	NWTPH-Dx	
Oil	119	24.6	50.0	mg/kg dry	1	04/10/21 04:20	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 93 %	Limits: 50-150 %	6 1	04/10/21 04:20	NWTPH-Dx	
GP03-S-6 (A1D0263-03)		Matrix: Soil Batch: 1040332						
Diesel	17900	1140	2280	mg/kg dry	100	04/09/21 23:12	NWTPH-Dx	F-15
Oil	16000	2280	4560	mg/kg dry	100	04/09/21 23:12	NWTPH-Dx	F-16
Surrogate: o-Terphenyl (Surr)		Re	covery: %	Limits: 50-150 %	6 100	04/09/21 23:12	NWTPH-Dx	S-01
GP04-S-8 (A1D0263-04)				Matrix: Soil		Batch:	1040332	
Diesel	ND	12.2	25.0	mg/kg dry	1	04/09/21 23:53	NWTPH-Dx	
Oil	ND	24.5	50.0	mg/kg dry	1	04/09/21 23:53	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 81 %	Limits: 50-150 %	6 I	04/09/21 23:53	NWTPH-Dx	
GP05-S-6 (A1D0263-05)				Matrix: Soil		Batch:	1040332	
Diesel	ND	12.4	25.0	mg/kg dry	1	04/10/21 00:14	NWTPH-Dx	
Oil	ND	24.8	50.0	mg/kg dry	1	04/10/21 00:14	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 62 %	Limits: 50-150 %	6 I	04/10/21 00:14	NWTPH-Dx	
GP06-S-7.5 (A1D0263-06)				Matrix: Soil		Batch:	1040449	
Diesel	ND	11.3	25.0	mg/kg dry	1	04/14/21 00:30	NWTPH-Dx	
Oil	ND	22.6	50.0	mg/kg dry	1	04/14/21 00:30	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 89 %	Limits: 50-150 %	6 1	04/14/21 00:30	NWTPH-Dx	
GP06-S-7.5-DUP (A1D0263-07RE1)				Matrix: Soil		Batch: 1040449		
Diesel	ND	11.4	25.0	mg/kg dry	1	04/14/21 08:57	NWTPH-Dx	
Oil	34.2	22.8	50.0	mg/kg dry	1	04/14/21 08:57	NWTPH-Dx	J
Surrogate: o-Terphenyl (Surr)		Reco	very: 83 %	Limits: 50-150 %	6 I	04/14/21 08:57	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Planter's Hotel Site

Project Number: 0346.11.02
Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or Oil	Hydrocar	bons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP07-S-6 (A1D0263-08)				Matrix: Soil		Batch:	1040449	
Diesel	ND	12.5	25.1	mg/kg dry	1	04/14/21 01:31	NWTPH-Dx	
Oil	ND	25.1	50.1	mg/kg dry	1	04/14/21 01:31	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 70 %	Limits: 50-150 %	6 1	04/14/21 01:31	NWTPH-Dx	
GP08-S-6 (A1D0263-09)				Matrix: Soil	Matrix: Soil		1040449	
Diesel	ND	12.3	25.0	mg/kg dry	1	04/14/21 01:52	NWTPH-Dx	
Oil	ND	24.6	50.0	mg/kg dry	1	04/14/21 01:52	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 87%	Limits: 50-150 %	6 1	04/14/21 01:52	NWTPH-Dx	
GP01-GW-15 (A1D0263-10)			Matrix: Water		er	Batch:	1040261	
Diesel	ND	0.0408	0.0816	mg/L	1	04/09/21 01:22	NWTPH-Dx LL	
Oil	0.232	0.0816	0.163	mg/L	1	04/09/21 01:22	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 74%	Limits: 50-150 %	6 I	04/09/21 01:22	NWTPH-Dx LL	
GP01-GW-15-DUP (A1D0263-11)		Ma		Matrix: Wat	er	Batch:	1040261	
Diesel	ND	0.0412	0.0825	mg/L	1	04/09/21 01:42	NWTPH-Dx LL	
Oil	0.235	0.0825	0.165	mg/L	1	04/09/21 01:42	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 71%	Limits: 50-150 %	6 I	04/09/21 01:42	NWTPH-Dx LL	
GP02-GW-15 (A1D0263-12)				Matrix: Wat	er	Batch:	1040261	
Diesel	ND	0.0392	0.0784	mg/L	1	04/09/21 02:02	NWTPH-Dx LL	
Oil	0.0786	0.0784	0.157	mg/L	1	04/09/21 02:02	NWTPH-Dx LL	J
Surrogate: o-Terphenyl (Surr)		Recover	ry: 84%	Limits: 50-150 %	6 I	04/09/21 02:02	NWTPH-Dx LL	
GP03-GW-15 (A1D0263-13)				Matrix: Wat	er	Batch:	1040261	
Diesel	1.66	0.0388	0.0777	mg/L	1	04/09/21 02:22	NWTPH-Dx LL	F-13
Oil	0.935	0.0777	0.155	mg/L	1	04/09/21 02:22	NWTPH-Dx LL	F-16
Surrogate: o-Terphenyl (Surr)		Recover	ry: 64%	Limits: 50-150 %	6 1	04/09/21 02:22	NWTPH-Dx LL	
GP04-GW-15 (A1D0263-14)				Matrix: Water		Batch: 1040261		
Diesel	ND	0.0417	0.0833	mg/L	1	04/09/21 02:43	NWTPH-Dx LL	
Oil	ND	0.0833	0.167	mg/L	1	04/09/21 02:43	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 80 %	Limits: 50-150 %	6 I	04/09/21 02:43	NWTPH-Dx LL	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: **0346.11.02**Project Manager: **David Weatherby**

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or Oil l	Hydrocar	bons by NWTPI	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP05-GW-12 (A1D0263-15)				Matrix: Wate	r	Batch:	1040261	
Diesel	ND	0.0449	0.0899	mg/L	1	04/09/21 03:03	NWTPH-Dx LL	
Oil	ND	0.0899	0.180	mg/L	1	04/09/21 03:03	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recovery	v: 94 %	Limits: 50-150 %	1	04/09/21 03:03	NWTPH-Dx LL	
GP06-GW-15 (A1D0263-16)					Matrix: Water		Batch: 1040261	
Diesel	ND	0.0396	0.0792	mg/L	1	04/09/21 03:23	NWTPH-Dx LL	
Oil	ND	0.0792	0.158	mg/L	1	04/09/21 03:23	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recovery	v: 85 %	Limits: 50-150 %	1	04/09/21 03:23	NWTPH-Dx LL	
GP07-GW-15 (A1D0263-17)				Matrix: Water		Batch: 1040261		
Diesel	ND	0.0435	0.0870	mg/L	1	04/09/21 03:43	NWTPH-Dx LL	
Oil	ND	0.0870	0.174	mg/L	1	04/09/21 03:43	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recovery	v: 88 %	Limits: 50-150 %	1	04/09/21 03:43	NWTPH-Dx LL	
GP08-GW-15 (A1D0263-18)				Matrix: Water		Batch: 1040261		
Diesel	ND	0.0412	0.0825	mg/L	1	04/09/21 04:03	NWTPH-Dx LL	
Oil	ND	0.0825	0.165	mg/L	1	04/09/21 04:03	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Recovery	v: 84 %	Limits: 50-150 %	1	04/09/21 04:03	NWTPH-Dx LL	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP01-S-5.5 (A1D0263-01)				Matrix: Soil		Batch:	1040368	
Gasoline Range Organics	ND	3.50	7.00	mg/kg dry	50	04/12/21 12:24	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 103 %	Limits: 50-150 %	5 1	04/12/21 12:24	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			91 %	50-150 %	5 I	04/12/21 12:24	NWTPH-Gx (MS)	
GP02-S-8 (A1D0263-02)				Matrix: Soil		Batch	1040368	
Gasoline Range Organics	ND	3.33	6.65	mg/kg dry	50	04/12/21 13:18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 101 %	Limits: 50-150 %	5 1	04/12/21 13:18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %	50-150 %	5 1	04/12/21 13:18	NWTPH-Gx (MS)	
GP03-S-6 (A1D0263-03)				Matrix: Soil		Batch	1040426	
Gasoline Range Organics	3130	40.1	80.2	mg/kg dry	500	04/13/21 16:54	NWTPH-Gx (MS)	F-09
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	y: 116 %	Limits: 50-150 %	5 <i>1</i>	04/13/21 16:54	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	5 1	04/13/21 16:54	NWTPH-Gx (MS)	
GP04-S-8 (A1D0263-04)		Matrix: Soil Batch: 1040368						
Gasoline Range Organics	ND	4.06	8.11	mg/kg dry	50	04/12/21 16:00	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 103 %	Limits: 50-150 %	5 1	04/12/21 16:00	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			94 %	50-150 %	5 1	04/12/21 16:00	NWTPH-Gx (MS)	
GP05-S-6 (A1D0263-05)				Matrix: Soil		Batch	1040368	
Gasoline Range Organics	ND	3.14	6.29	mg/kg dry	50	04/12/21 16:27	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 104 %	Limits: 50-150 %	5 I	04/12/21 16:27	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			94 %	50-150 %	5 1	04/12/21 16:27	NWTPH-Gx (MS)	
GP06-S-7.5 (A1D0263-06)				Matrix: Soil		Batch	1040368	
Gasoline Range Organics	ND	2.83	5.66	mg/kg dry	50	04/12/21 16:54	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 102 %	Limits: 50-150 %	5 I	04/12/21 16:54	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			94 %	50-150 %	5 1	04/12/21 16:54	NWTPH-Gx (MS)	
GP06-S-7.5-DUP (A1D0263-07)				Matrix: Soil		Batch: 1040368		
Gasoline Range Organics	ND	3.94	7.87	mg/kg dry	50	04/12/21 17:20	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 102 %	Limits: 50-150 %	5 I	04/12/21 17:20	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			95 %	50-150 %	5 1	04/12/21 17:20	NWTPH-Gx (MS)	
GP07-S-6 (A1D0263-08)				Matrix: Soil		Potob	: 1040368	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: 0346.11.02
Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP07-S-6 (A1D0263-08)				Matrix: Soil		Batch:	1040368	
Gasoline Range Organics	ND	4.26	8.52	mg/kg dry	50	04/12/21 18:41	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	94 %	Limits: 50-150 % 50-150 %		04/12/21 18:41 04/12/21 18:41	NWTPH-Gx (MS) NWTPH-Gx (MS)	
GP08-S-6 (A1D0263-09)				Matrix: Soil		Batch:	: 1040426	
Gasoline Range Organics	ND	3.41	6.83	mg/kg dry	50	04/13/21 16:27	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	y: 105 % 95 %	Limits: 50-150 % 50-150 %		04/13/21 16:27 04/13/21 16:27	NWTPH-Gx (MS) NWTPH-Gx (MS)	
GP01-GW-15 (A1D0263-10)				Matrix: Wate	er	Batch	: 1040359	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	04/12/21 13:08	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	v: 102 % 105 %	Limits: 50-150 % 50-150 %		04/12/21 13:08 04/12/21 13:08	NWTPH-Gx (MS) NWTPH-Gx (MS)	
GP01-GW-15-DUP (A1D0263-11)		Matrix: Water Batch: 1040359		: 1040359				
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	04/12/21 15:23	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	7: 104 % 106 %	Limits: 50-150 % 50-150 %		04/12/21 15:23 04/12/21 15:23	NWTPH-Gx (MS) NWTPH-Gx (MS)	
GP02-GW-15 (A1D0263-12)				Matrix: Wate	r	Batch:	: 1040359	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	04/12/21 15:50	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	7: 101 % 106 %	Limits: 50-150 % 50-150 %		04/12/21 15:50 04/12/21 15:50	NWTPH-Gx (MS) NWTPH-Gx (MS)	
GP03-GW-15 (A1D0263-13)				Matrix: Wate	er	Batch:	: 1040359	
Gasoline Range Organics	0.388	0.0500	0.100	mg/L	1	04/12/21 14:02	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	v: 113 % 104 %	Limits: 50-150 % 50-150 %		04/12/21 14:02 04/12/21 14:02	NWTPH-Gx (MS) NWTPH-Gx (MS)	
		Matrix: Water		r	Batch:	: 1040359		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	04/12/21 16:17	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery	7: 102 % 106 %	Limits: 50-150 % 50-150 %		04/12/21 16:17 04/12/21 16:17	NWTPH-Gx (MS) NWTPH-Gx (MS)	
GP05-GW-12 (A1D0263-15)				Matrix: Wate	or	Batch	: 1040359	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: 0346.11.02

Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons (B	enzene th	rough Naphtha	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP05-GW-12 (A1D0263-15)				Matrix: Water		Batch:	1040359	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	04/12/21 16:44	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery.	: 102 %	Limits: 50-150 %	1	04/12/21 16:44	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			104 %	50-150 %	I	04/12/21 16:44	NWTPH-Gx (MS)	
GP06-GW-15 (A1D0263-16)				Matrix: Water		Batch: 1040359		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	04/12/21 17:11	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery.	: 104 %	Limits: 50-150 %	1	04/12/21 17:11	NWTPH-Gx (MS)	
I,4-Difluorobenzene (Sur)			104 %	50-150 %	I	04/12/21 17:11	NWTPH-Gx (MS)	
GP07-GW-15 (A1D0263-17)				Matrix: Wate	er	Batch	1040359	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	04/12/21 17:38	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery.	: 101 %	Limits: 50-150 %	I	04/12/21 17:38	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	1	04/12/21 17:38	NWTPH-Gx (MS)	
GP08-GW-15 (A1D0263-18)	-			Matrix: Wate	er	Batch: 1040359		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	04/12/21 18:05	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery.	: 102 %	Limits: 50-150 %	1	04/12/21 18:05	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	1	04/12/21 18:05	NWTPH-Gx (MS)	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 8 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

		Jiatile Olyan	ic Compound	us by EFA 02	.500			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP01-S-5.5 (A1D0263-01)				Matrix: Soil	1	Batch:	1040368	
Acetone	ND	700	1400	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Acrylonitrile	ND	70.0	140	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Benzene	ND	7.00	14.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Bromobenzene	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Bromochloromethane	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Bromodichloromethane	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Bromoform	ND	70.0	140	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Bromomethane	ND	700	700	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
2-Butanone (MEK)	ND	350	700	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
n-Butylbenzene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
sec-Butylbenzene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
tert-Butylbenzene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Carbon disulfide	ND	350	700	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Carbon tetrachloride	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Chlorobenzene	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Chloroethane	ND	350	700	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Chloroform	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Chloromethane	ND	175	350	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
2-Chlorotoluene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
4-Chlorotoluene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Dibromochloromethane	ND	70.0	140	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	175	350	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Dibromomethane	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
1,2-Dichlorobenzene	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
1,3-Dichlorobenzene	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
1,4-Dichlorobenzene	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Dichlorodifluoromethane	ND	70.0	140	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
,1-Dichloroethane	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
,2-Dichloroethane (EDC)	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
,1-Dichloroethene	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
eis-1,2-Dichloroethene	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
rans-1,2-Dichloroethene	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
,2-Dichloropropane	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 9 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting	 _		Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP01-S-5.5 (A1D0263-01)				Matrix: Soil		Batch:	1040368	
1,3-Dichloropropane	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
2,2-Dichloropropane	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
1,1-Dichloropropene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
cis-1,3-Dichloropropene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
trans-1,3-Dichloropropene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Ethylbenzene	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Hexachlorobutadiene	ND	70.0	140	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
2-Hexanone	ND	350	700	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Isopropylbenzene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
4-Isopropyltoluene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Methylene chloride	ND	350	700	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	350	700	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Naphthalene	ND	70.0	140	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
n-Propylbenzene	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Styrene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
1,1,2-Tetrachloroethane	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Tetrachloroethene (PCE)	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Toluene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
1,2,3-Trichlorobenzene	ND	175	350	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
1,2,4-Trichlorobenzene	ND	175	350	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
1,1,1-Trichloroethane	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
1,1,2-Trichloroethane	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Trichloroethene (TCE)	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Trichlorofluoromethane	ND	70.0	140	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
1,2,3-Trichloropropane	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
,2,4-Trimethylbenzene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
,3,5-Trimethylbenzene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
n,p-Xylene	ND	35.0	70.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
o-Xylene	ND	17.5	35.0	ug/kg dry	50	04/12/21 12:24	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 100 %	Limits: 80-120 %	1	04/12/21 12:24	5035A/8260D	
Toluene-d8 (Surr)			100 %	80-120 %	1	04/12/21 12:24	5035A/8260D	

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project:

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

Former Planter's Hotel Site

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP01-S-5.5 (A1D0263-01)				Matrix: Soil		Batch:	1040368	
Surrogate: 4-Bromofluorobenzene (Surr)		Recov	ery: 101 %	Limits: 79-120 %	1	04/12/21 12:24	5035A/8260D	
GP02-S-8 (A1D0263-02)				Matrix: Soil		Batch:	1040368	
Acetone	ND	665	1330	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Acrylonitrile	ND	66.5	133	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Benzene	ND	6.65	13.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Bromobenzene	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Bromochloromethane	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Bromodichloromethane	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Bromoform	ND	66.5	133	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Bromomethane	ND	665	665	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
2-Butanone (MEK)	ND	333	665	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
n-Butylbenzene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
sec-Butylbenzene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
tert-Butylbenzene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Carbon disulfide	ND	333	665	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Carbon tetrachloride	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Chlorobenzene	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Chloroethane	ND	333	665	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Chloroform	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Chloromethane	ND	166	333	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
2-Chlorotoluene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
4-Chlorotoluene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Dibromochloromethane	ND	66.5	133	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	166	333	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Dibromomethane	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,2-Dichlorobenzene	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,3-Dichlorobenzene	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,4-Dichlorobenzene	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Dichlorodifluoromethane	ND	66.5	133	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,1-Dichloroethane	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,1-Dichloroethene	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
cis-1,2-Dichloroethene	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 11 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Vo	olatile Organ	ic Compound	ls by EPA 82	60D			
	Sample	Detection	Reporting			Date	_	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP02-S-8 (A1D0263-02)				Matrix: Soil	1	Batch:	1040368	
trans-1,2-Dichloroethene	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,2-Dichloropropane	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,3-Dichloropropane	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
2,2-Dichloropropane	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,1-Dichloropropene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
cis-1,3-Dichloropropene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
trans-1,3-Dichloropropene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Ethylbenzene	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Hexachlorobutadiene	ND	66.5	133	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
2-Hexanone	ND	333	665	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Isopropylbenzene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
4-Isopropyltoluene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Methylene chloride	ND	333	665	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	333	665	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Naphthalene	ND	66.5	133	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
n-Propylbenzene	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Styrene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Tetrachloroethene (PCE)	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Toluene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,2,3-Trichlorobenzene	ND	166	333	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,2,4-Trichlorobenzene	ND	166	333	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,1,1-Trichloroethane	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,1,2-Trichloroethane	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Trichloroethene (TCE)	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
Trichlorofluoromethane	ND	66.5	133	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,2,3-Trichloropropane	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,2,4-Trimethylbenzene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
1,3,5-Trimethylbenzene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
m,p-Xylene	ND	33.3	66.5	ug/kg dry	50	04/12/21 13:18	5035A/8260D	
o-Xylene	ND	16.6	33.3	ug/kg dry	50	04/12/21 13:18	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 12 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP02-S-8 (A1D0263-02)				Matrix: Soil		Batch:	Batch: 1040368	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 102 %	Limits: 80-120 %	1	04/12/21 13:18	5035A/8260D	
Toluene-d8 (Surr)			100 %	80-120 %		04/12/21 13:18	5035A/8260D	
4-Bromofluorobenzene (Surr)			104 %	79-120 %	<i>I</i>	04/12/21 13:18	5035A/8260D	
GP03-S-6 (A1D0263-03)		Matrix: Soil		Batch:	Batch: 1040426			
Acetone	ND	8020	16000	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Acrylonitrile	ND	802	1600	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Benzene	152	80.2	160	ug/kg dry	500	04/13/21 16:54	5035A/8260D	J
Bromobenzene	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Bromochloromethane	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Bromodichloromethane	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Bromoform	ND	802	1600	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Bromomethane	ND	8020	8020	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
2-Butanone (MEK)	ND	4010	8020	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
n-Butylbenzene	4720	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	M-02
sec-Butylbenzene	1290	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
tert-Butylbenzene	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Carbon disulfide	ND	4010	8020	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Carbon tetrachloride	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Chlorobenzene	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Chloroethane	ND	4010	8020	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Chloroform	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Chloromethane	ND	2000	4010	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
2-Chlorotoluene	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
4-Chlorotoluene	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Dibromochloromethane	ND	802	1600	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	2000	4010	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Dibromomethane	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,2-Dichlorobenzene	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,3-Dichlorobenzene	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,4-Dichlorobenzene	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Dichlorodifluoromethane	ND	1600	1600	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,1-Dichloroethane	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SP03-S-6 (A1D0263-03)				Matrix: Soi	<u> </u>	Batch:	1040426	
1,2-Dichloroethane (EDC)	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,1-Dichloroethene	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
cis-1,2-Dichloroethene	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
trans-1,2-Dichloroethene	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,2-Dichloropropane	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,3-Dichloropropane	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
2,2-Dichloropropane	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,1-Dichloropropene	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
cis-1,3-Dichloropropene	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
trans-1,3-Dichloropropene	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Ethylbenzene	2220	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Hexachlorobutadiene	ND	802	1600	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
2-Hexanone	ND	4010	8020	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Isopropylbenzene	734	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	J
4-Isopropyltoluene	2920	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	M-02
Methylene chloride	ND	4010	8020	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	4010	8020	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
n-Propylbenzene	2980	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Styrene	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Tetrachloroethene (PCE)	284	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	J
Toluene	969	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,2,3-Trichlorobenzene	ND	2000	4010	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,2,4-Trichlorobenzene	ND	2000	4010	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,1,1-Trichloroethane	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,1,2-Trichloroethane	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Trichloroethene (TCE)	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Trichlorofluoromethane	ND	802	1600	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
,2,3-Trichloropropane	ND	802	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
1,2,4-Trimethylbenzene	45500	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
,3,5-Trimethylbenzene	12600	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 14 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP03-S-6 (A1D0263-03)				Matrix: Soil		Batch:	1040426	
Vinyl chloride	ND	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
m,p-Xylene	11700	401	802	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
o-Xylene	5110	200	401	ug/kg dry	500	04/13/21 16:54	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	1	04/13/21 16:54	5035A/8260D	
Toluene-d8 (Surr)			104 %	80-120 %	1	04/13/21 16:54	5035A/8260D	
4-Bromofluorobenzene (Surr)			97 %	79-120 %	1	04/13/21 16:54	5035A/8260D	
GP03-S-6 (A1D0263-03RE1)				Matrix: Soil		Batch:	1040492	
Naphthalene	132000	8020	16000	ug/kg dry	5000	04/14/21 15:57	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 100 %	Limits: 80-120 %	1	04/14/21 15:57	5035A/8260D	
Toluene-d8 (Surr)			104 %	80-120 %	1	04/14/21 15:57	5035A/8260D	
4-Bromofluorobenzene (Surr)			100 %	79-120 %	1	04/14/21 15:57	5035A/8260D	
GP04-S-8 (A1D0263-04)		Matrix: Soil Batch: 1040368						
Acetone	ND	811	1620	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Acrylonitrile	ND	81.1	162	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Benzene	ND	8.11	16.2	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Bromobenzene	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Bromochloromethane	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Bromodichloromethane	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Bromoform	ND	81.1	162	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Bromomethane	ND	811	811	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
2-Butanone (MEK)	ND	406	811	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
n-Butylbenzene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
sec-Butylbenzene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
tert-Butylbenzene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Carbon disulfide	ND	406	811	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Carbon tetrachloride	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Chlorobenzene	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Chloroethane	ND	406	811	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Chloroform	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Chloromethane	ND	203	406	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
2-Chlorotoluene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
4-Chlorotoluene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

3140 NE Broadway Street

Portland, OR 97232

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project: Former Planter's Hotel Site
Project Number: 0346.11.02

Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

		olatile Organ	ic Compoun	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP04-S-8 (A1D0263-04)				Matrix: Soi	l	Batch:	1040368	
Dibromochloromethane	ND	81.1	162	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	203	406	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Dibromomethane	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,2-Dichlorobenzene	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,3-Dichlorobenzene	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,4-Dichlorobenzene	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Dichlorodifluoromethane	ND	81.1	162	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,1-Dichloroethane	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,1-Dichloroethene	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
cis-1,2-Dichloroethene	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
trans-1,2-Dichloroethene	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,2-Dichloropropane	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,3-Dichloropropane	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
2,2-Dichloropropane	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,1-Dichloropropene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
cis-1,3-Dichloropropene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
trans-1,3-Dichloropropene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Ethylbenzene	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Hexachlorobutadiene	ND	81.1	162	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
2-Hexanone	ND	406	811	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Isopropylbenzene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
4-Isopropyltoluene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Methylene chloride	ND	406	811	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	406	811	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Naphthalene	ND	81.1	162	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
n-Propylbenzene	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Styrene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,1,2-Tetrachloroethane	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Tetrachloroethene (PCE)	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Toluene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 16 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: **0346.11.02**Project Manager: **David Weatherby**

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP04-S-8 (A1D0263-04)				Matrix: Soil		Batch:	1040368	
1,2,3-Trichlorobenzene	ND	203	406	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,2,4-Trichlorobenzene	ND	203	406	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,1,1-Trichloroethane	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,1,2-Trichloroethane	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Trichloroethene (TCE)	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Trichlorofluoromethane	ND	81.1	162	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,2,3-Trichloropropane	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,2,4-Trimethylbenzene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
1,3,5-Trimethylbenzene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
m,p-Xylene	ND	40.6	81.1	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
o-Xylene	ND	20.3	40.6	ug/kg dry	50	04/12/21 16:00	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	1	04/12/21 16:00	5035A/8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	04/12/21 16:00	5035A/8260D	
4-Bromofluorobenzene (Surr)			101 %	79-120 %	1	04/12/21 16:00	5035A/8260D	
GP05-S-6 (A1D0263-05)				Matrix: Soil		Batch:	1040368	
Acetone	ND	629	1260	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Acrylonitrile	ND	62.9	126	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Benzene	ND	6.29	12.6	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Bromobenzene	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Bromochloromethane	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Bromodichloromethane	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Bromoform	ND	62.9	126	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Bromomethane	ND	629	629	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
2-Butanone (MEK)	ND	314	629	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
n-Butylbenzene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
sec-Butylbenzene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
tert-Butylbenzene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Carbon disulfide	ND	314	629	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Carbon tetrachloride	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Chlorobenzene	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Chloroethane	ND	314	629	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Chloroform	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Chloromethane	ND	157	314	ug/kg dry	50	04/12/21 16:27	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 17 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP05-S-6 (A1D0263-05)				Matrix: Soil	I	Batch: 1040368		
2-Chlorotoluene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
4-Chlorotoluene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Dibromochloromethane	ND	62.9	126	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	157	314	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Dibromomethane	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,2-Dichlorobenzene	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,3-Dichlorobenzene	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,4-Dichlorobenzene	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Dichlorodifluoromethane	ND	62.9	126	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,1-Dichloroethane	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,1-Dichloroethene	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
cis-1,2-Dichloroethene	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
trans-1,2-Dichloroethene	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,2-Dichloropropane	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,3-Dichloropropane	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
2,2-Dichloropropane	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,1-Dichloropropene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
cis-1,3-Dichloropropene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
trans-1,3-Dichloropropene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Ethylbenzene	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Hexachlorobutadiene	ND	62.9	126	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
2-Hexanone	ND	314	629	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Isopropylbenzene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
4-Isopropyltoluene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Methylene chloride	ND	314	629	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	314	629	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Naphthalene	ND	62.9	126	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
n-Propylbenzene	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Styrene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
,1,2,2-Tetrachloroethane	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 18 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: 0346.11.02
Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

		olatile Organ	ic Compou	nds by EPA 826	UD			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP05-S-6 (A1D0263-05)				Matrix: Soil		Batch:	1040368	
Tetrachloroethene (PCE)	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Toluene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,2,3-Trichlorobenzene	ND	157	314	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,2,4-Trichlorobenzene	ND	157	314	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,1,1-Trichloroethane	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,1,2-Trichloroethane	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Trichloroethene (TCE)	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Trichlorofluoromethane	ND	62.9	126	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,2,3-Trichloropropane	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,2,4-Trimethylbenzene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
1,3,5-Trimethylbenzene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
m,p-Xylene	ND	31.4	62.9	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
o-Xylene	ND	15.7	31.4	ug/kg dry	50	04/12/21 16:27	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	1	04/12/21 16:27	5035A/8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	04/12/21 16:27	5035A/8260D	
4-Bromofluorobenzene (Surr)			101 %	79-120 %	I	04/12/21 16:27	5035A/8260D	
GP06-S-7.5 (A1D0263-06)				Matrix: Soil		Batch:	1040368	
Acetone	ND	566	1130	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Acrylonitrile	ND	56.6	113	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Benzene	ND	5.66	11.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Bromobenzene	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Bromochloromethane	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Bromodichloromethane	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Bromoform	ND	56.6	113	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Bromomethane	ND	566	566	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
2-Butanone (MEK)	ND	283	566	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
n-Butylbenzene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
sec-Butylbenzene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
tert-Butylbenzene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Carbon disulfide	ND	283	566	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Carbon tetrachloride	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Chlorobenzene	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Chloroethane	ND	283	566	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Chroroculane	עויי	203	500	ug/ ng ui y	50	0 12. 21 10.0 F	2 022.2 0200D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 19 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
P06-S-7.5 (A1D0263-06)				Matrix: Soil	I	Batch: 1040368		
Chloroform	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Chloromethane	ND	142	283	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
2-Chlorotoluene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
4-Chlorotoluene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Dibromochloromethane	ND	56.6	113	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	142	283	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Dibromomethane	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,2-Dichlorobenzene	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,3-Dichlorobenzene	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,4-Dichlorobenzene	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Dichlorodifluoromethane	ND	56.6	113	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,1-Dichloroethane	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,1-Dichloroethene	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
cis-1,2-Dichloroethene	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
trans-1,2-Dichloroethene	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,2-Dichloropropane	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,3-Dichloropropane	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
2,2-Dichloropropane	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,1-Dichloropropene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
cis-1,3-Dichloropropene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
trans-1,3-Dichloropropene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Ethylbenzene	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Hexachlorobutadiene	ND	56.6	113	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
2-Hexanone	ND	283	566	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
sopropylbenzene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
l-Isopropyltoluene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Methylene chloride	ND	283	566	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
-Methyl-2-pentanone (MiBK)	ND	283	566	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Vaphthalene	ND	56.6	113	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
-Propylbenzene	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
tyrene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: **0346.11.02**Project Manager: **David Weatherby**

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP06-S-7.5 (A1D0263-06)				Matrix: Soil		Batch:	1040368	
1,1,1,2-Tetrachloroethane	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Tetrachloroethene (PCE)	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Toluene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,2,3-Trichlorobenzene	ND	142	283	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,2,4-Trichlorobenzene	ND	142	283	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,1,1-Trichloroethane	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,1,2-Trichloroethane	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Trichloroethene (TCE)	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Trichlorofluoromethane	ND	56.6	113	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,2,3-Trichloropropane	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,2,4-Trimethylbenzene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
1,3,5-Trimethylbenzene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
m,p-Xylene	ND	28.3	56.6	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
o-Xylene	ND	14.2	28.3	ug/kg dry	50	04/12/21 16:54	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 101 %	Limits: 80-120 %	1	04/12/21 16:54	5035A/8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	04/12/21 16:54	5035A/8260D	
4-Bromofluorobenzene (Surr)			102 %	79-120 %	1	04/12/21 16:54	5035A/8260D	
GP06-S-7.5-DUP (A1D0263-07)				Matrix: Soil		Batch:	1040368	
Acetone	ND	787	1570	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Acrylonitrile	ND	78.7	157	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Benzene	ND	7.87	15.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Bromobenzene	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Bromochloromethane	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Bromodichloromethane	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Bromoform	ND	78.7	157	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Bromomethane	ND	787	787	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
2-Butanone (MEK)	ND	394	787	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
n-Butylbenzene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
sec-Butylbenzene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
tert-Butylbenzene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Carbon disulfide	ND	394	787	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Carbon tetrachloride	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
		27	,					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 21 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date	_ 	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP06-S-7.5-DUP (A1D0263-07)				Matrix: Soil	1	Batch:	1040368	
Chlorobenzene	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Chloroethane	ND	394	787	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Chloroform	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Chloromethane	ND	197	394	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
2-Chlorotoluene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
4-Chlorotoluene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Dibromochloromethane	ND	78.7	157	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	197	394	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Dibromomethane	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,2-Dichlorobenzene	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,3-Dichlorobenzene	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,4-Dichlorobenzene	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Dichlorodifluoromethane	ND	78.7	157	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,1-Dichloroethane	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,1-Dichloroethene	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
cis-1,2-Dichloroethene	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
trans-1,2-Dichloroethene	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,2-Dichloropropane	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,3-Dichloropropane	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
2,2-Dichloropropane	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,1-Dichloropropene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
cis-1,3-Dichloropropene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
trans-1,3-Dichloropropene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Ethylbenzene	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Hexachlorobutadiene	ND	78.7	157	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
2-Hexanone	ND	394	787	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
sopropylbenzene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
l-Isopropyltoluene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Methylene chloride	ND	394	787	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
l-Methyl-2-pentanone (MiBK)	ND	394	787	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Naphthalene	ND	78.7	157	ug/kg dry	50	04/12/21 17:20	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 22 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: 0346.11.02
Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP06-S-7.5-DUP (A1D0263-07)				Matrix: Soil		Batch:	1040368	
n-Propylbenzene	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Styrene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Tetrachloroethene (PCE)	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Toluene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,2,3-Trichlorobenzene	ND	197	394	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,2,4-Trichlorobenzene	ND	197	394	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,1,1-Trichloroethane	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,1,2-Trichloroethane	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Trichloroethene (TCE)	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Trichlorofluoromethane	ND	78.7	157	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,2,3-Trichloropropane	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,2,4-Trimethylbenzene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
1,3,5-Trimethylbenzene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
m,p-Xylene	ND	39.4	78.7	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
o-Xylene	ND	19.7	39.4	ug/kg dry	50	04/12/21 17:20	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 102 %	Limits: 80-120 %	I	04/12/21 17:20	5035A/8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	04/12/21 17:20	5035A/8260D	
4-Bromofluorobenzene (Surr)			101 %	79-120 %	1	04/12/21 17:20	5035A/8260D	
GP07-S-6 (A1D0263-08)				Matrix: Soil		Batch:	1040368	
Acetone	ND	852	1700	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Acrylonitrile	ND	85.2	170	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Benzene	ND	8.52	17.0	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Bromobenzene	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Bromochloromethane	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Bromodichloromethane	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Bromoform	ND	85.2	170	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Bromomethane	ND	852	852	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
2-Butanone (MEK)	ND	426	852	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
n-Butylbenzene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
sec-Butylbenzene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
tert-Butylbenzene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 23 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street Portland, OR 97232 Project: Former Planter's Hotel Site

Project Number: **0346.11.02**Project Manager: **David Weatherby**

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP07-S-6 (A1D0263-08)				Matrix: Soi	I	Batch: 1040368		
Carbon disulfide	ND	426	852	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Carbon tetrachloride	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Chlorobenzene	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Chloroethane	ND	426	852	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Chloroform	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Chloromethane	ND	213	426	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
2-Chlorotoluene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
4-Chlorotoluene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Dibromochloromethane	ND	85.2	170	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	213	426	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Dibromomethane	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,2-Dichlorobenzene	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,3-Dichlorobenzene	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,4-Dichlorobenzene	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Dichlorodifluoromethane	ND	85.2	170	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,1-Dichloroethane	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,1-Dichloroethene	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
cis-1,2-Dichloroethene	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
trans-1,2-Dichloroethene	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,2-Dichloropropane	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,3-Dichloropropane	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
2,2-Dichloropropane	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,1-Dichloropropene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
cis-1,3-Dichloropropene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
trans-1,3-Dichloropropene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Ethylbenzene	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Hexachlorobutadiene	ND	85.2	170	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
?-Hexanone	ND	426	852	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
sopropylbenzene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1-Isopropyltoluene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Methylene chloride	ND	426	852	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	426	852	ug/kg dry	50	04/12/21 18:41	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 24 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: 0346.11.02
Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoui	nds by EPA 826	טט			
	Sample	Detection	Reporting	** .	5	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP07-S-6 (A1D0263-08)				Matrix: Soil		Batch:	1040368	
Methyl tert-butyl ether (MTBE)	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Naphthalene	ND	85.2	170	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
n-Propylbenzene	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Styrene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Tetrachloroethene (PCE)	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Toluene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,2,3-Trichlorobenzene	ND	213	426	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,2,4-Trichlorobenzene	ND	213	426	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,1,1-Trichloroethane	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,1,2-Trichloroethane	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Trichloroethene (TCE)	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Trichlorofluoromethane	ND	85.2	170	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,2,3-Trichloropropane	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,2,4-Trimethylbenzene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
1,3,5-Trimethylbenzene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
m,p-Xylene	ND	42.6	85.2	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
o-Xylene	ND	21.3	42.6	ug/kg dry	50	04/12/21 18:41	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	1	04/12/21 18:41	5035A/8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	04/12/21 18:41	5035A/8260D	
4-Bromofluorobenzene (Surr)			103 %	79-120 %	1	04/12/21 18:41	5035A/8260D	
GP08-S-6 (A1D0263-09)				Matrix: Soil		Batch:	1040426	
Acetone	ND	683	1370	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Acrylonitrile	ND	68.3	137	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Benzene	ND	6.83	13.7	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Bromobenzene	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Bromochloromethane	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Bromodichloromethane	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Bromoform	ND	68.3	137	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Bromomethane	ND	683	683	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
2-Butanone (MEK)	ND	341	683	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
n-Butylbenzene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 25 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project:

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

Former Planter's Hotel Site

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SP08-S-6 (A1D0263-09)				Matrix: Soil	I	Batch:	1040426	
sec-Butylbenzene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
tert-Butylbenzene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Carbon disulfide	ND	341	683	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Carbon tetrachloride	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Chlorobenzene	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Chloroethane	ND	341	683	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Chloroform	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Chloromethane	ND	171	341	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
2-Chlorotoluene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
4-Chlorotoluene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Dibromochloromethane	ND	68.3	137	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	171	341	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Dibromomethane	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,2-Dichlorobenzene	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,3-Dichlorobenzene	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,4-Dichlorobenzene	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Dichlorodifluoromethane	ND	137	137	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,1-Dichloroethane	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,1-Dichloroethene	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
cis-1,2-Dichloroethene	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
trans-1,2-Dichloroethene	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,2-Dichloropropane	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,3-Dichloropropane	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
2,2-Dichloropropane	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,1-Dichloropropene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
eis-1,3-Dichloropropene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
rans-1,3-Dichloropropene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Ethylbenzene	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Hexachlorobutadiene	ND	68.3	137	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
-Hexanone	ND	341	683	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
sopropylbenzene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
-Isopropyltoluene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 26 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Planter's Hotel Site

Project Number: 0346.11.02
Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP08-S-6 (A1D0263-09)				Matrix: Soil		Batch:	1040426	
Methylene chloride	ND	341	683	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	341	683	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Naphthalene	ND	68.3	137	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
n-Propylbenzene	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Styrene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Tetrachloroethene (PCE)	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Toluene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,2,3-Trichlorobenzene	ND	171	341	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,2,4-Trichlorobenzene	ND	171	341	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,1,1-Trichloroethane	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,1,2-Trichloroethane	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Trichloroethene (TCE)	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Trichlorofluoromethane	ND	68.3	137	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,2,3-Trichloropropane	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,2,4-Trimethylbenzene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
1,3,5-Trimethylbenzene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
m,p-Xylene	ND	34.1	68.3	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
o-Xylene	ND	17.1	34.1	ug/kg dry	50	04/13/21 16:27	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 100 %	Limits: 80-120 %	1	04/13/21 16:27	5035A/8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	04/13/21 16:27	5035A/8260D	
4-Bromofluorobenzene (Surr)			101 %	79-120 %	1	04/13/21 16:27	5035A/8260D	
GP01-GW-15 (A1D0263-10RE1)				Matrix: Wate	r	Batch:	1040556	
Acetone	ND	10.0	20.0	ug/L	1	04/16/21 07:53	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	04/16/21 07:53	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	04/16/21 07:53	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	04/16/21 07:53	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	04/16/21 07:53	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 27 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP01-GW-15 (A1D0263-10RE1)				Matrix: Wa	ater	Batch:	1040556	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	04/16/21 07:53	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	04/16/21 07:53	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 07:53	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	04/16/21 07:53	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	04/16/21 07:53	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	5.00	5.00	ug/L	1	04/16/21 07:53	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 07:53	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 07:53	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 07:53	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	04/16/21 07:53	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	04/16/21 07:53	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 07:53	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 07:53	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 07:53	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	04/16/21 07:53	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
2,2-Dichloropropane	ND	1.00	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	04/16/21 07:53	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	04/16/21 07:53	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	04/16/21 07:53	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 28 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street Portland, OR 97232 Project: Former Planter's Hotel Site

Project Number: **0346.11.02**Project Manager: **David Weatherby**

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	c Compou	nds by EPA 826	0D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP01-GW-15 (A1D0263-10RE1)				Matrix: Wate	er	Batch:	1040556	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	04/16/21 07:53	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	04/16/21 07:53	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	04/16/21 07:53	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	04/16/21 07:53	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	04/16/21 07:53	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	04/16/21 07:53	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.500	0.500	ug/L	1	04/16/21 07:53	EPA 8260D	R-06
Toluene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/16/21 07:53	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/16/21 07:53	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	04/16/21 07:53	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	04/16/21 07:53	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	04/16/21 07:53	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	04/16/21 07:53	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	04/16/21 07:53	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	04/16/21 07:53	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 112 %	Limits: 80-120 %	1	04/16/21 07:53	EPA 8260D	
Toluene-d8 (Surr)			97 %	80-120 %	1	04/16/21 07:53	EPA 8260D	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	04/16/21 07:53	EPA 8260D	
GP01-GW-15-DUP (A1D0263-11RE1)				Matrix: Wate	er	Batch:	1040556	
Acetone	ND	10.0	20.0	ug/L	1	04/16/21 08:21	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	04/16/21 08:21	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	04/16/21 08:21	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:21	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 29 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GP01-GW-15-DUP (A1D0263-11RE1)				Matrix: Wa	ater	Batch:	1040556	
Bromoform	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	04/16/21 08:21	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	04/16/21 08:21	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	04/16/21 08:21	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:21	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	04/16/21 08:21	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	04/16/21 08:21	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	5.00	5.00	ug/L	1	04/16/21 08:21	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:21	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:21	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:21	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	04/16/21 08:21	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	04/16/21 08:21	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 08:21	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 08:21	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 08:21	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	04/16/21 08:21	EPA 8260D	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
2,2-Dichloropropane	ND	1.00	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:21	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 30 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

 3140 NE Broadway Street
 Project Number: 0346.11.02
 Report ID:

 Portland, OR 97232
 Project Manager: David Weatherby
 A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	compou	nds by EPA 826	טט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP01-GW-15-DUP (A1D0263-11RE1)				Matrix: Wate	r	Batch:	1040556	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	04/16/21 08:21	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	04/16/21 08:21	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	04/16/21 08:21	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	04/16/21 08:21	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	04/16/21 08:21	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:21	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	04/16/21 08:21	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	04/16/21 08:21	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.500	0.500	ug/L	1	04/16/21 08:21	EPA 8260D	R-06
Toluene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/16/21 08:21	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/16/21 08:21	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	04/16/21 08:21	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	04/16/21 08:21	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	04/16/21 08:21	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	04/16/21 08:21	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	04/16/21 08:21	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	04/16/21 08:21	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	112 %	Limits: 80-120 %	1	04/16/21 08:21	EPA 8260D	
Toluene-d8 (Surr)			97 %	80-120 %	1	04/16/21 08:21	EPA 8260D	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	04/16/21 08:21	EPA 8260D	
GP02-GW-15 (A1D0263-12RE1)	Matrix: Water Batch: 1040556							
Acetone	ND	10.0	20.0	ug/L	1	04/16/21 08:49	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	04/16/21 08:49	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	04/16/21 08:49	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:49	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 31 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
P02-GW-15 (A1D0263-12RE1)				Matrix: Wa	ater	Batch:	1040556	
Bromochloromethane	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	04/16/21 08:49	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	04/16/21 08:49	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	04/16/21 08:49	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:49	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	04/16/21 08:49	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	04/16/21 08:49	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	5.00	5.00	ug/L	1	04/16/21 08:49	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:49	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:49	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:49	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	04/16/21 08:49	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	04/16/21 08:49	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 08:49	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 08:49	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 08:49	EPA 8260D	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1	04/16/21 08:49	EPA 8260D	
.,3-Dichloropropane	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
,2-Dichloropropane	ND	1.00	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
is-1,3-Dichloropropene	ND	0.500	1.00	ug/L ug/L	1	04/16/21 08:49	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 32 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 8260	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP02-GW-15 (A1D0263-12RE1)		,		Matrix: Water	r	Batch:	1040556	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:49	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	04/16/21 08:49	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	04/16/21 08:49	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	04/16/21 08:49	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	04/16/21 08:49	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	04/16/21 08:49	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	04/16/21 08:49	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	04/16/21 08:49	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	04/16/21 08:49	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.400	0.400	ug/L	1	04/16/21 08:49	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/16/21 08:49	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/16/21 08:49	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	04/16/21 08:49	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	04/16/21 08:49	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	04/16/21 08:49	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	04/16/21 08:49	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 08:49	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L ug/L	1	04/16/21 08:49	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L ug/L	1	04/16/21 08:49	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)			v: 112 %	Limits: 80-120 %	I	04/16/21 08:49	EPA 8260D	
Toluene-d8 (Surr)			98 %	80-120 %		04/16/21 08:49	EPA 8260D	
4-Bromofluorobenzene (Surr)			105 %	80-120 %		04/16/21 08:49	EPA 8260D	
GP03-GW-15 (A1D0263-13)				Matrix: Water	r	Batch:	1040359	
Acetone	ND	10.0	20.0	ug/L	1	04/12/21 14:02	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L ug/L	1	04/12/21 14:02	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP03-GW-15 (A1D0263-13)				Matrix: Wa	ater	Batch: 1040359		
Benzene	ND	0.100	0.200	ug/L	1	04/12/21 14:02	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	04/12/21 14:02	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	04/12/21 14:02	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	04/12/21 14:02	EPA 8260D	
n-Butylbenzene	0.595	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	J
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	04/12/21 14:02	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 14:02	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	04/12/21 14:02	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
Chloromethane	ND	5.00	5.00	ug/L	1	04/12/21 14:02	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	04/12/21 14:02	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 14:02	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 14:02	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 14:02	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	04/12/21 14:02	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	04/12/21 14:02	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 14:02	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 14:02	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 14:02	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	04/12/21 14:02	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
,2-Dichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 34 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
P03-GW-15 (A1D0263-13)				Matrix: Wate	er	Batch:	1040359	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
Ethylbenzene	0.460	0.250	0.500	ug/L	1	04/12/21 14:02	EPA 8260D	J
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	04/12/21 14:02	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	04/12/21 14:02	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	04/12/21 14:02	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	04/12/21 14:02	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
Naphthalene	32.2	2.00	4.00	ug/L	1	04/12/21 14:02	EPA 8260D	Q-01
n-Propylbenzene	0.365	0.250	0.500	ug/L	1	04/12/21 14:02	EPA 8260D	J
Styrene	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	04/12/21 14:02	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	04/12/21 14:02	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	04/12/21 14:02	EPA 8260D	
Toluene	0.583	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	J
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/12/21 14:02	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/12/21 14:02	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	04/12/21 14:02	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	04/12/21 14:02	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	04/12/21 14:02	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	04/12/21 14:02	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
1,2,4-Trimethylbenzene	6.51	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
,3,5-Trimethylbenzene	1.93	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
n,p-Xylene	2.37	0.500	1.00	ug/L	1	04/12/21 14:02	EPA 8260D	
o-Xylene	1.02	0.250	0.500	ug/L	1	04/12/21 14:02	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	6 I	04/12/21 14:02	EPA 8260D	
Toluene-d8 (Surr)			96 %	80-120 %	6 I	04/12/21 14:02	EPA 8260D	
4-Bromofluorobenzene (Surr)			93 %	80-120 %	ó I	04/12/21 14:02	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 35 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

 3140 NE Broadway Street
 Project Number: 0346.11.02
 Report ID:

 Portland, OR 97232
 Project Manager: David Weatherby
 A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

			ic Compound	LI A 0				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP04-GW-15 (A1D0263-14RE1)				Matrix: Wa	nter	Batch:	1040556	
Acetone	ND	10.0	20.0	ug/L	1	04/16/21 09:16	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L ug/L	1	04/16/21 09:16	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L ug/L	1	04/16/21 09:16	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L ug/L	1	04/16/21 09:16	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L ug/L	1	04/16/21 09:16	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L ug/L	1	04/16/21 09:16	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L ug/L	1	04/16/21 09:16	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	04/16/21 09:16	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	04/16/21 09:16	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 09:16	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	04/16/21 09:16	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	04/16/21 09:16	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	5.00	5.00	ug/L	1	04/16/21 09:16	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 09:16	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 09:16	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 09:16	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	04/16/21 09:16	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	04/16/21 09:16	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 09:16	EPA 8260D	
sis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 09:16	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 09:16	EPA 8260D	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1	04/16/21 09:16	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 36 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP04-GW-15 (A1D0263-14RE1)				Matrix: Wate	r	Batch: 1040556		
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
2,2-Dichloropropane	ND	1.00	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	04/16/21 09:16	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	04/16/21 09:16	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	04/16/21 09:16	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	04/16/21 09:16	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	04/16/21 09:16	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	04/16/21 09:16	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	04/16/21 09:16	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	04/16/21 09:16	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	04/16/21 09:16	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.400	0.400	ug/L	1	04/16/21 09:16	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/16/21 09:16	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/16/21 09:16	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	04/16/21 09:16	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	04/16/21 09:16	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	04/16/21 09:16	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	04/16/21 09:16	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	04/16/21 09:16	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	04/16/21 09:16	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 110 %	Limits: 80-120 %	5 1	04/16/21 09:16	EPA 8260D	
Toluene-d8 (Surr)			98 %	80-120 %	5 I	04/16/21 09:16	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 37 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: 0346.11.02
Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP04-GW-15 (A1D0263-14RE1)				Matrix: Wate	er	Batch:	1040556	
Surrogate: 4-Bromofluorobenzene (Surr)		Recovery	: 105 %	Limits: 80-120 %	1	04/16/21 09:16	EPA 8260D	
GP05-GW-12 (A1D0263-15)			Matrix: Water		Batch:	Batch: 1040359		
Acetone	ND	10.0	20.0	ug/L	1	04/12/21 16:44	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	04/12/21 16:44	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	04/12/21 16:44	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	04/12/21 16:44	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	04/12/21 16:44	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	04/12/21 16:44	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	04/12/21 16:44	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 16:44	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	04/12/21 16:44	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
Chloromethane	ND	5.00	5.00	ug/L	1	04/12/21 16:44	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	04/12/21 16:44	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 16:44	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 16:44	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 16:44	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	04/12/21 16:44	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	04/12/21 16:44	EPA 8260D	
1.1-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 16:44	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 16:44	EPA 8260D	
ois 1,2 Diemorocaiene	עויי	0.200	0.700	ug/L	1	J., 12, 21 10.11	L 0200D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 38 of 147

3140 NE Broadway Street

Portland, OR 97232

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project Number: **0346.11.02**

Project:

Project Manager: David Weatherby

Former Planter's Hotel Site

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP05-GW-12 (A1D0263-15)				Matrix: W	ater	Batch: 1040359		
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 16:44	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	04/12/21 16:44	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	04/12/21 16:44	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	04/12/21 16:44	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	04/12/21 16:44	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	04/12/21 16:44	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	04/12/21 16:44	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	04/12/21 16:44	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	04/12/21 16:44	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	04/12/21 16:44	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	04/12/21 16:44	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	04/12/21 16:44	EPA 8260D	
Toluene	1.02	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/12/21 16:44	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/12/21 16:44	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	04/12/21 16:44	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	04/12/21 16:44	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	04/12/21 16:44	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	04/12/21 16:44	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	
m,p-Xylene	0.781	0.500	1.00	ug/L	1	04/12/21 16:44	EPA 8260D	J
o-Xylene	0.265	0.250	0.500	ug/L	1	04/12/21 16:44	EPA 8260D	J

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 39 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Comm1-	Datastic ::	Donosti			Date		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP05-GW-12 (A1D0263-15)				Matrix: Wate	ər	Batch:	1040359	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 102 %	Limits: 80-120 %	6 I	04/12/21 16:44	EPA 8260D	
Toluene-d8 (Surr)			99 %	80-120 %	6 I	04/12/21 16:44	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	6 I	04/12/21 16:44	EPA 8260D	
GP06-GW-15 (A1D0263-16)		Matrix: Water		Batch:	1040359			
Acetone	ND	10.0	20.0	ug/L	1	04/12/21 17:11	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	04/12/21 17:11	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	04/12/21 17:11	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	04/12/21 17:11	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	04/12/21 17:11	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	04/12/21 17:11	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	04/12/21 17:11	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 17:11	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	04/12/21 17:11	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
Chloromethane	ND	5.00	5.00	ug/L	1	04/12/21 17:11	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	04/12/21 17:11	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 17:11	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 17:11	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 17:11	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	04/12/21 17:11	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	04/12/21 17:11	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 40 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
SP06-GW-15 (A1D0263-16)				Matrix: Wa	ater	Batch:	1040359	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 17:11	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 17:11	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 17:11	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	04/12/21 17:11	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	04/12/21 17:11	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	04/12/21 17:11	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	04/12/21 17:11	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	04/12/21 17:11	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	04/12/21 17:11	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	04/12/21 17:11	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	04/12/21 17:11	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	04/12/21 17:11	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	04/12/21 17:11	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	04/12/21 17:11	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/12/21 17:11	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/12/21 17:11	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	04/12/21 17:11	EPA 8260D	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	04/12/21 17:11	EPA 8260D	
Crichloroethene (TCE)	ND	0.200	0.400	ug/L	1	04/12/21 17:11	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	04/12/21 17:11	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 41 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GP06-GW-15 (A1D0263-16)				Matrix: Wate	r	Batch:	1040359	_
m,p-Xylene	ND	0.500	1.00	ug/L	1	04/12/21 17:11	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	04/12/21 17:11	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 102 %	Limits: 80-120 %	1	04/12/21 17:11	EPA 8260D	
Toluene-d8 (Surr)			97 %	80-120 %	1	04/12/21 17:11	EPA 8260D	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	I	04/12/21 17:11	EPA 8260D	
GP07-GW-15 (A1D0263-17RE1)				Matrix: Wate	r	Batch:	1040556	
Acetone	ND	10.0	20.0	ug/L	1	04/16/21 09:44	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	04/16/21 09:44	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	04/16/21 09:44	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	04/16/21 09:44	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	04/16/21 09:44	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	04/16/21 09:44	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	04/16/21 09:44	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 09:44	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	04/16/21 09:44	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	04/16/21 09:44	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	5.00	5.00	ug/L	1	04/16/21 09:44	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 09:44	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 09:44	EPA 8260D	
1.4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/16/21 09:44	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L ug/L	1	04/16/21 09:44	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP07-GW-15 (A1D0263-17RE1)				Matrix: Wa	ater	Batch:	1040556	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	04/16/21 09:44	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	04/16/21 09:44	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 09:44	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 09:44	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/16/21 09:44	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	04/16/21 09:44	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
2,2-Dichloropropane	ND	1.00	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	04/16/21 09:44	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	04/16/21 09:44	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	04/16/21 09:44	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	04/16/21 09:44	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	04/16/21 09:44	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	04/16/21 09:44	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	04/16/21 09:44	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	04/16/21 09:44	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	04/16/21 09:44	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.400	0.400	ug/L	1	04/16/21 09:44	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/16/21 09:44	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/16/21 09:44	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	04/16/21 09:44	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	04/16/21 09:44	EPA 8260D	
Frichloroethene (TCE)	ND	0.200	0.400	ug/L	1	04/16/21 09:44	EPA 8260D	
Frichlorofluoromethane	ND	1.00	2.00	ug/L	1	04/16/21 09:44	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 43 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

		_	-	nds by EPA 826		Dete		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP07-GW-15 (A1D0263-17RE1)				Matrix: Wate	r	Batch:	1040556	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	04/16/21 09:44	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	04/16/21 09:44	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 111 %	Limits: 80-120 %	1	04/16/21 09:44	EPA 8260D	
Toluene-d8 (Surr)			98 %	80-120 %	1	04/16/21 09:44	EPA 8260D	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	04/16/21 09:44	EPA 8260D	
GP08-GW-15 (A1D0263-18)				Matrix: Wate	r	Batch:	1040359	
Acetone	ND	10.0	20.0	ug/L	1	04/12/21 18:05	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	04/12/21 18:05	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	04/12/21 18:05	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	04/12/21 18:05	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	04/12/21 18:05	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	04/12/21 18:05	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	04/12/21 18:05	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 18:05	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	04/12/21 18:05	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
Chloromethane	ND	5.00	5.00	ug/L	1	04/12/21 18:05	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	04/12/21 18:05	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 18:05	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 18:05	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 44 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP08-GW-15 (A1D0263-18)				Matrix: Wa	ater	Batch:	1040359	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 18:05	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	04/12/21 18:05	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	04/12/21 18:05	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 18:05	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 18:05	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 18:05	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	04/12/21 18:05	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	04/12/21 18:05	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	04/12/21 18:05	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	04/12/21 18:05	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	04/12/21 18:05	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	04/12/21 18:05	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	04/12/21 18:05	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	04/12/21 18:05	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	04/12/21 18:05	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	04/12/21 18:05	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	04/12/21 18:05	EPA 8260D	
Гoluene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/12/21 18:05	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/12/21 18:05	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	04/12/21 18:05	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	04/12/21 18:05	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	04/12/21 18:05	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 45 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street Portland, OR 97232 Project: Former Planter's Hotel Site

Project Number: 0346.11.02
Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	٧	olatile Organic	Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP08-GW-15 (A1D0263-18)				Matrix: Wate	r	Batch:	1040359	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	04/12/21 18:05	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	04/12/21 18:05	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	04/12/21 18:05	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	: 104 %	Limits: 80-120 %	1	04/12/21 18:05	EPA 8260D	
Toluene-d8 (Surr)			98 %	80-120 %	1	04/12/21 18:05	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	04/12/21 18:05	EPA 8260D	
040721TB (A1D0263-19)				Matrix: Wate	r	Batch:	1040359	
Acetone	ND	10.0	20.0	ug/L	1	04/12/21 12:14	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	04/12/21 12:14	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	04/12/21 12:14	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	04/12/21 12:14	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	04/12/21 12:14	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	04/12/21 12:14	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	04/12/21 12:14	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 12:14	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	04/12/21 12:14	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
Chloromethane	ND	5.00	5.00	ug/L	1	04/12/21 12:14	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	04/12/21 12:14	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
40721TB (A1D0263-19)				Matrix: Wa	ater	Batch:	1040359	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 12:14	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 12:14	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/12/21 12:14	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	04/12/21 12:14	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	04/12/21 12:14	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 12:14	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 12:14	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/12/21 12:14	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	04/12/21 12:14	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	04/12/21 12:14	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	04/12/21 12:14	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	04/12/21 12:14	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	04/12/21 12:14	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	04/12/21 12:14	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
Naphthalene	ND	2.00	4.00	ug/L	1	04/12/21 12:14	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	04/12/21 12:14	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	04/12/21 12:14	EPA 8260D	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	04/12/21 12:14	EPA 8260D	
etrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	04/12/21 12:14	EPA 8260D	
oluene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/12/21 12:14	EPA 8260D	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/12/21 12:14	EPA 8260D	
1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	04/12/21 12:14	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 47 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	60D					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
040721TB (A1D0263-19)				Matrix: Wate	er	Batch:	EPA 8260D EPA 8260D EPA 8260D EPA 8260D			
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	04/12/21 12:14	EPA 8260D			
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	04/12/21 12:14	EPA 8260D			
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	04/12/21 12:14	EPA 8260D			
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D			
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D			
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D			
m,p-Xylene	ND	0.500	1.00	ug/L	1	04/12/21 12:14	EPA 8260D			
o-Xylene	ND	0.250	0.500	ug/L	1	04/12/21 12:14	EPA 8260D			
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	5 1	04/12/21 12:14	EPA 8260D			
Toluene-d8 (Surr)			99 %	80-120 %	1	04/12/21 12:14	EPA 8260D			
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	04/12/21 12:14	EPA 8260D			

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 48 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	VOI	atile Organic C	ompound	s by EPA 8260	2 SINI			
	Sample	Detection	Reporting	** .	5	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GP01-S-5.5 (A1D0263-01)				Matrix: Soil		Batch:	1040641	
1,2-Dibromoethane (EDB)	ND	1.40	2.80	ug/kg dry	100	04/19/21 14:52	5035A/8260D SIM	
Vinyl chloride	ND	7.00	14.0	ug/kg dry	100	04/19/21 14:52	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	y: 102 %	Limits: 80-120 %	ó 1	04/19/21 14:52	5035A/8260D SIM	
Toluene-d8 (Surr)			100 %	80-120 %	6 I	04/19/21 14:52	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			92 %	79-120 %	6 I	04/19/21 14:52	5035A/8260D SIM	
GP02-S-8 (A1D0263-02)				Matrix: Soil		Batch:	1040641	
1,2-Dibromoethane (EDB)	ND	1.33	2.66	ug/kg dry	100	04/19/21 15:19	5035A/8260D SIM	
Vinyl chloride	ND	6.65	13.3	ug/kg dry	100	04/19/21 15:19	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	y: 102 %	Limits: 80-120 %	6 I	04/19/21 15:19	5035A/8260D SIM	
Toluene-d8 (Surr)			99 %	80-120 %	ó I	04/19/21 15:19	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			92 %	79-120 %	ó 1	04/19/21 15:19	5035A/8260D SIM	
GP04-S-8 (A1D0263-04)				Matrix: Soil		Batch:	1040641	
1,2-Dibromoethane (EDB)	ND	1.62	3.24	ug/kg dry	100	04/19/21 15:46	5035A/8260D SIM	
Vinyl chloride	ND	8.11	16.2	ug/kg dry	100	04/19/21 15:46	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	y: 103 %	Limits: 80-120 %	ó I	04/19/21 15:46	5035A/8260D SIM	
Toluene-d8 (Surr)			100 %	80-120 %	6 I	04/19/21 15:46	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			93 %	79-120 %	6 I	04/19/21 15:46	5035A/8260D SIM	
GP05-S-6 (A1D0263-05)				Matrix: Soil		Batch:	1040641	
1,2-Dibromoethane (EDB)	ND	1.26	2.52	ug/kg dry	100	04/19/21 16:39	5035A/8260D SIM	
Vinyl chloride	ND	6.29	12.6	ug/kg dry	100	04/19/21 16:39	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	y: 104 %	Limits: 80-120 %	6 I	04/19/21 16:39	5035A/8260D SIM	
Toluene-d8 (Surr)			100 %	80-120 %		04/19/21 16:39	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			92 %	79-120 %	6 I	04/19/21 16:39	5035A/8260D SIM	
GP06-S-7.5 (A1D0263-06)			Matrix: Soil Batch: 1040641			1040641		
1,2-Dibromoethane (EDB)	ND	1.13	2.26	ug/kg dry	100	04/19/21 17:06	5035A/8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Vol	atile Organic C	ompound	s by EPA 8260D	SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP06-S-7.5 (A1D0263-06)				Matrix: Soil		Batch:	1040641	
Vinyl chloride	ND	5.66	11.3	ug/kg dry	100	04/19/21 17:06	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 104 %	Limits: 80-120 %	1	04/19/21 17:06	5035A/8260D SIM	
Toluene-d8 (Surr)			100 %	80-120 %	1	04/19/21 17:06	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			92 %	79-120 %	I	04/19/21 17:06	5035A/8260D SIM	
GP06-S-7.5-DUP (A1D0263-07)				Matrix: Soil		Batch:	1040641	
1,2-Dibromoethane (EDB)	ND	1.57	3.15	ug/kg dry	100	04/19/21 17:32	5035A/8260D SIM	
Vinyl chloride	ND	7.87	15.7	ug/kg dry	100	04/19/21 17:32	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 103 %	Limits: 80-120 %	1	04/19/21 17:32	5035A/8260D SIM	
Toluene-d8 (Surr)			100 %	80-120 %	1	04/19/21 17:32	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			92 %	79-120 %	1	04/19/21 17:32	5035A/8260D SIM	
GP07-S-6 (A1D0263-08)		Matrix: Soil		Batch:	1040641			
1,2-Dibromoethane (EDB)	ND	1.70	3.41	ug/kg dry	100	04/19/21 17:59	5035A/8260D SIM	
Vinyl chloride	ND	8.52	17.0	ug/kg dry	100	04/19/21 17:59	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 103 %	Limits: 80-120 %	1	04/19/21 17:59	5035A/8260D SIM	
Toluene-d8 (Surr)			100 %	80-120 %	1	04/19/21 17:59	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			92 %	79-120 %	1	04/19/21 17:59	5035A/8260D SIM	
SP08-S-6 (A1D0263-09)				Matrix: Soil		Batch:	1040641	
1,2-Dibromoethane (EDB)	ND	1.37	2.73	ug/kg dry	100	04/19/21 18:26	5035A/8260D SIM	
Vinyl chloride	ND	6.83	13.7	ug/kg dry	100	04/19/21 18:26	5035A/8260D SIM	Q-42
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 103 %	Limits: 80-120 %	1	04/19/21 18:26	5035A/8260D SIM	
Toluene-d8 (Surr)			100 %	80-120 %	1	04/19/21 18:26	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			93 %	79-120 %	1	04/19/21 18:26	5035A/8260D SIM	
SP01-GW-15 (A1D0263-10)				Matrix: Wate	er	Batch:	1040427	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	04/13/21 13:33	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	04/13/21 13:33	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 100 %	Limits: 80-120 %	1	04/13/21 13:33	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 50 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	VOI	aule Organic C	ompound	ls by EPA 8260	ואופ ח			
	Sample	Detection	Reporting	** .	5 .11	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GP01-GW-15 (A1D0263-10)				Matrix: Wate	er	Batch:	Batch: 1040427	
Surrogate: Toluene-d8 (Surr)		Recover	ry: 86 %	Limits: 80-120 %	6 I	04/13/21 13:33	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			88 %	80-120 %	6 1	04/13/21 13:33	EPA 8260D SIM	
GP01-GW-15-DUP (A1D0263-11)					er	Batch:	1040427	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	04/13/21 13:59	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	04/13/21 13:59	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery): 102 %	Limits: 80-120 %	6 I	04/13/21 13:59	EPA 8260D SIM	
Toluene-d8 (Surr)			86 %	80-120 %	6 I	04/13/21 13:59	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			88 %	80-120 %	6 1	04/13/21 13:59	EPA 8260D SIM	
GP02-GW-15 (A1D0263-12)				Matrix: Wate	er	Batch:	1040427	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	04/13/21 14:53	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	04/13/21 14:53	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery): 101 %	Limits: 80-120 %	6 I	04/13/21 14:53	EPA 8260D SIM	
Toluene-d8 (Surr)			86 %	80-120 %	6 I	04/13/21 14:53	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			87 %	80-120 %	6 1	04/13/21 14:53	EPA 8260D SIM	
GP03-GW-15 (A1D0263-13)				Matrix: Wate	er	Batch: 1040427		
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	04/13/21 15:19	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	04/13/21 15:19	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery): 102 %	Limits: 80-120 %	6 I	04/13/21 15:19	EPA 8260D SIM	
Toluene-d8 (Surr)			86 %	80-120 %	6 I	04/13/21 15:19	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			86 %	80-120 %	6 1	04/13/21 15:19	EPA 8260D SIM	
GP04-GW-15 (A1D0263-14)				Matrix: Wate	er	Batch:	1040427	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	04/13/21 15:46	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	04/13/21 15:46	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	y: 101 %	Limits: 80-120 %	6 I	04/13/21 15:46	EPA 8260D SIM	
Toluene-d8 (Surr)			81 %	80-120 %	6 I	04/13/21 15:46	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			87 %	80-120 %	6 I	04/13/21 15:46	EPA 8260D SIM	
GP05-GW-12 (A1D0263-15)				Matrix: Wate	er	Batch:	1040427	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	04/13/21 16:13	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	04/13/21 16:13	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	y: 102 %	Limits: 80-120 %	6 I	04/13/21 16:13	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: **0346.11.02**Project Manager: **David Weatherby**

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Vol	atile Organic C	ompound	s by EPA 8260D	SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP05-GW-12 (A1D0263-15)	1100011	2		Matrix: Wate			1040427	110103
Surrogate: Toluene-d8 (Surr)		Recover	ry: 87%	Limits: 80-120 %		04/13/21 16:13	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			87 %	80-120 %	1	04/13/21 16:13	EPA 8260D SIM	
GP06-GW-15 (A1D0263-16)				Matrix: Wate	r	Batch:	1040427	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	04/13/21 16:39	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	04/13/21 16:39	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 102 %	Limits: 80-120 %	1	04/13/21 16:39	EPA 8260D SIM	
Toluene-d8 (Surr)			81 %	80-120 %	1	04/13/21 16:39	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			87 %	80-120 %	1	04/13/21 16:39	EPA 8260D SIM	
GP07-GW-15 (A1D0263-17)				Matrix: Wate	r	Batch:	1040427	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	04/13/21 17:06	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	04/13/21 17:06	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 105 %	Limits: 80-120 %	1	04/13/21 17:06	EPA 8260D SIM	
Toluene-d8 (Surr)			81 %	80-120 %	1	04/13/21 17:06	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			88 %	80-120 %	1	04/13/21 17:06	EPA 8260D SIM	
GP08-GW-15 (A1D0263-18)				Matrix: Wate	r	Batch:	1040427	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	04/13/21 17:33	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	04/13/21 17:33	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 105 %	Limits: 80-120 %	1	04/13/21 17:33	EPA 8260D SIM	
Toluene-d8 (Surr)			86 %	80-120 %	1	04/13/21 17:33	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			87 %	80-120 %	1	04/13/21 17:33	EPA 8260D SIM	
040721TB (A1D0263-19)				Matrix: Wate	r	Batch:	1040427	V-01
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	04/13/21 13:06	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	04/13/21 13:06	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	ry: 99 %	Limits: 80-120 %	1	04/13/21 13:06	EPA 8260D SIM	
Toluene-d8 (Surr)			87 %	80-120 %	1	04/13/21 13:06	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			87 %	80-120 %	1	04/13/21 13:06	EPA 8260D SIM	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 52 of 147

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Come 1-	Datastic ::	Donosti			Date		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
GP01-S-5.5 (A1D0263-01RE1)				Matrix: Soil		Batch:	1040302	
Acenaphthene	ND	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	
Acenaphthylene	ND	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	
Anthracene	ND	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	
Benz(a)anthracene	6.77	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	J
Benzo(a)pyrene	6.59	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	J
Benzo(b)fluoranthene	8.03	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	J
Benzo(k)fluoranthene	ND	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	
Benzo(g,h,i)perylene	18.8	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	
Chrysene	8.77	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	J
Dibenz(a,h)anthracene	ND	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	
Fluoranthene	ND	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	
Fluorene	ND	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	10.5	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	J
1-Methylnaphthalene	13.5	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	
2-Methylnaphthalene	19.2	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	
Naphthalene	10.9	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	J
Phenanthrene	10.2	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	J
Pyrene	ND	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	
Dibenzofuran	ND	6.16	12.3	ug/kg dry	1	04/12/21 10:32	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 75 %	Limits: 44-120 %	1	04/12/21 10:32	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			69 %	54-127 %	1	04/12/21 10:32	EPA 8270E SIM	
P02-S-8 (A1D0263-02)				Matrix: Soil		Batch:	1040302	
Acenaphthene	ND	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Acenaphthylene	ND	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Anthracene	313	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Benz(a)anthracene	1240	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Benzo(a)pyrene	963	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Benzo(b)fluoranthene	1180	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	M-0
Benzo(k)fluoranthene	535	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	M-0
Benzo(g,h,i)perylene	551	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Chrysene	1270	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 53 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Polyard	mane myurc	Carbons (P	AHs) by EPA 82	., OE OIIVI			
	Sample	Detection	Reporting	** .	D.1	Date	W 4 45 5	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP02-S-8 (A1D0263-02)				Matrix: Soil		Batch:	1040302	
Fluoranthene	2200	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Fluorene	ND	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	692	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
1-Methylnaphthalene	ND	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
2-Methylnaphthalene	ND	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Naphthalene	ND	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Phenanthrene	1510	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Pyrene	1600	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Dibenzofuran	ND	119	239	ug/kg dry	20	04/09/21 14:23	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 79 %	Limits: 44-120 %	20	04/09/21 14:23	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			86 %	54-127 %	20	04/09/21 14:23	EPA 8270E SIM	
GP03-S-6 (A1D0263-03)				Matrix: Soil		Batch:		
Acenaphthene	ND	13200	13200	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	R-02
Acenaphthylene	ND	2460	2460	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	R-02
Anthracene	ND	5860	5860	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	R-02
Benz(a)anthracene	4430	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	
Benzo(a)pyrene	3040	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	
Benzo(b)fluoranthene	868	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	M-05
Benzo(k)fluoranthene	ND	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	
Benzo(g,h,i)perylene	1720	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	
Chrysene	5860	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	
Dibenz(a,h)anthracene	317	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	J
Fluoranthene	1560	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	
Fluorene	9430	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	584	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	
1-Methylnaphthalene	105000	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	
2-Methylnaphthalene	186000	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	
Naphthalene	25000	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	
Phenanthrene	36900	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	
Pyrene	11200	232	465	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	
Dibenzofuran	ND	4560	4560	ug/kg dry	40	04/09/21 14:48	EPA 8270E SIM	R-02
Surrogate: 2-Fluorobiphenyl (Surr)		Recovi	ery: 186 %	Limits: 44-120 %	40	04/09/21 14:48	EPA 8270E SIM	S-05

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 54 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Proje

3140 NE Broadway Street Portland, OR 97232 Project: Former Planter's Hotel Site

Project Number: 0346.11.02
Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	C1	Datastia	D			Dete		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP03-S-6 (A1D0263-03)				Matrix: Soil		Batch:	1040302	
Surrogate: p-Terphenyl-d14 (Surr)		Reco	very: 85 %	Limits: 54-127 %	40	04/09/21 14:48	EPA 8270E SIM	S-05
GP04-S-8 (A1D0263-04)				Matrix: Soil		Batch:	1040302	
Acenaphthene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Acenaphthylene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Anthracene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Benz(a)anthracene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Benzo(a)pyrene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Chrysene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Fluoranthene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Fluorene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
1-Methylnaphthalene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
2-Methylnaphthalene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Naphthalene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Phenanthrene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Pyrene	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Dibenzofuran	ND	6.46	12.9	ug/kg dry	1	04/09/21 20:16	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 92 %	Limits: 44-120 %	1	04/09/21 20:16	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			93 %	54-127 %	1	04/09/21 20:16	EPA 8270E SIM	
GP05-S-6 (A1D0263-05)				Matrix: Soil		Batch:	1040302	
Acenaphthene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Acenaphthylene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Anthracene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Benz(a)anthracene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Benzo(a)pyrene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 55 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Polyard	omatic Hydro	carbons (P	AHs) by EPA 82	70E SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP05-S-6 (A1D0263-05)				Matrix: Soil		Batch:	1040302	
Chrysene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Fluoranthene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Fluorene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
1-Methylnaphthalene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
2-Methylnaphthalene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Naphthalene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Phenanthrene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Pyrene	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Dibenzofuran	ND	5.99	12.0	ug/kg dry	1	04/09/21 20:41	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 95 %	Limits: 44-120 %	1	04/09/21 20:41	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			91 %	54-127 %	1	04/09/21 20:41	EPA 8270E SIM	
GP06-S-7.5 (A1D0263-06)				Matrix: Soil		Batch: 1040302		
Acenaphthene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Acenaphthylene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Anthracene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Benz(a)anthracene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Benzo(a)pyrene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Chrysene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Fluoranthene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Fluorene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
1-Methylnaphthalene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
2-Methylnaphthalene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Naphthalene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Phenanthrene	8.05	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	J
Pyrene	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 56 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project: Former Planter's Hotel Site

3140 NE Broadway Street Portland, OR 97232 Project Number: **0346.11.02**Project Manager: **David Weatherby**

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

		omatic Hydro	,			ъ.		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP06-S-7.5 (A1D0263-06)				Matrix: Soil		Batch:	1040302	
Dibenzofuran	ND	5.73	11.5	ug/kg dry	1	04/09/21 21:07	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 92 %	Limits: 44-120 %		04/09/21 21:07	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			95 %	54-127 %	1	04/09/21 21:07	EPA 8270E SIM	
GP06-S-7.5-DUP (A1D0263-07)				Matrix: Soil		Batch:	1040302	
Acenaphthene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Acenaphthylene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Anthracene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Benz(a)anthracene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Benzo(a)pyrene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Chrysene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Fluoranthene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Fluorene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
1-Methylnaphthalene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
2-Methylnaphthalene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Naphthalene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Phenanthrene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Pyrene	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Dibenzofuran	ND	5.83	11.7	ug/kg dry	1	04/12/21 10:06	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 86 %	Limits: 44-120 %	1	04/12/21 10:06	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			78 %	54-127 %	1	04/12/21 10:06	EPA 8270E SIM	
GP07-S-6 (A1D0263-08)		_		Matrix: Soil		Batch:	1040302	
Acenaphthene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Acenaphthylene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Anthracene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Benz(a)anthracene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Benzo(a)pyrene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 57 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Polyard	omatic Hydro	carbons (P	AHs) by EPA 82	70E SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SP07-S-6 (A1D0263-08)				Matrix: Soil		Batch:	1040302	
Benzo(k)fluoranthene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Chrysene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Fluoranthene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Fluorene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
1-Methylnaphthalene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
2-Methylnaphthalene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Naphthalene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Phenanthrene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Pyrene	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Dibenzofuran	ND	6.28	12.6	ug/kg dry	1	04/12/21 09:41	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 90 %	Limits: 44-120 %	1	04/12/21 09:41	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			84 %	54-127 %	1	04/12/21 09:41	EPA 8270E SIM	
P08-S-6 (A1D0263-09)				Matrix: Soil		Batch:	1040302	
Acenaphthene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Acenaphthylene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Anthracene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Benz(a)anthracene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Benzo(a)pyrene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Chrysene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Fluoranthene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Fluorene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
ndeno(1,2,3-cd)pyrene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
l-Methylnaphthalene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
2-Methylnaphthalene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Naphthalene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 58 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Polyard	omatic Hydroca	rbons (P	AHs) by EPA 82	70E SIM			
	Sample		Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP08-S-6 (A1D0263-09)				Matrix: Soil		Batch:	1040302	
Phenanthrene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Pyrene	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Dibenzofuran	ND	6.18	12.4	ug/kg dry	1	04/09/21 12:16	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recovery	: 81%	Limits: 44-120 %	1	04/09/21 12:16	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			84 %	54-127 %	1	04/09/21 12:16	EPA 8270E SIM	
GP01-GW-15 (A1D0263-10)				Matrix: Wate	Matrix: Water Batch: 1040310			
Acenaphthene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Acenaphthylene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Anthracene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Benz(a)anthracene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Benzo(a)pyrene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Chrysene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Fluoranthene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Fluorene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
1-Methylnaphthalene	ND	0.0444	0.0889	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
2-Methylnaphthalene	ND	0.0444	0.0889	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Naphthalene	ND	0.0444	0.0889	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Phenanthrene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Pyrene	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Dibenzofuran	ND	0.0222	0.0444	ug/L	1	04/09/21 19:51	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recovery	: 78 %	Limits: 44-120 %	1	04/09/21 19:51	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			84 %	50-134 %	1	04/09/21 19:51	EPA 8270E SIM	
GP01-GW-15-DUP (A1D0263-11)				Matrix: Wate	r	Batch:	1040310	
Acenaphthene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Acenaphthylene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Anthracene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Benz(a)anthracene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 59 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Polyare	omatic Hydro	carbons (P	AHs) by EPA 82	TUE SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP01-GW-15-DUP (A1D0263-11)				Matrix: Wate	er	Batch:	1040310	
Benzo(a)pyrene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Chrysene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Fluoranthene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Fluorene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
1-Methylnaphthalene	ND	0.0460	0.0920	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
2-Methylnaphthalene	ND	0.0460	0.0920	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Naphthalene	0.0486	0.0460	0.0920	ug/L	1	04/12/21 10:57	EPA 8270E SIM	J
Phenanthrene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Pyrene	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Dibenzofuran	ND	0.0230	0.0460	ug/L	1	04/12/21 10:57	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 83 %	Limits: 44-120 %	1	04/12/21 10:57	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			79 %	50-134 %	1	04/12/21 10:57	EPA 8270E SIM	
GP02-GW-15 (A1D0263-12)				Matrix: Wate	er	Batch:	1040310	
Acenaphthene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Acenaphthylene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Anthracene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Benz(a)anthracene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Benzo(a)pyrene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Chrysene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Fluoranthene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Fluorene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
1-Methylnaphthalene	ND	0.0421	0.0842	ug/L	1	04/12/21 11:22	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 60 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GP02-GW-15 (A1D0263-12)				Matrix: Wate	r	Batch:	1040310	
2-Methylnaphthalene	ND	0.0421	0.0842	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Naphthalene	ND	0.0421	0.0842	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Phenanthrene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Pyrene	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Dibenzofuran	ND	0.0211	0.0421	ug/L	1	04/12/21 11:22	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recover	ry: 82 %	Limits: 44-120 %	1	04/12/21 11:22	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			84 %	50-134 %	1	04/12/21 11:22	EPA 8270E SIM	
GP03-GW-15 (A1D0263-13)				Matrix: Wate	r	Batch:	1040310	
Acenaphthene	ND	3.68	3.68	ug/L	1	04/12/21 15:36	EPA 8270E SIM	R-02
Acenaphthylene	ND	0.526	0.526	ug/L	1	04/12/21 15:36	EPA 8270E SIM	R-02
Anthracene	ND	0.526	0.526	ug/L	1	04/12/21 15:36	EPA 8270E SIM	R-02
Benz(a)anthracene	0.0532	0.0211	0.0421	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Benzo(a)pyrene	ND	0.0211	0.0421	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	0.0211	0.0421	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	0.0211	0.0421	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	0.0211	0.0421	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Chrysene	0.0616	0.0211	0.0421	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	0.0211	0.0421	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Fluoranthene	0.0473	0.0211	0.0421	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Fluorene	2.06	0.0211	0.0421	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	0.0211	0.0421	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Naphthalene	13.9	0.0421	0.0842	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Phenanthrene	4.07	0.0211	0.0421	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Pyrene	0.287	0.0211	0.0421	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Dibenzofuran	0.948	0.0211	0.0421	ug/L	1	04/12/21 15:36	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recover	ry: 84 %	Limits: 44-120 %	1	04/12/21 15:36	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			86 %	50-134 %	1	04/12/21 15:36	EPA 8270E SIM	
GP03-GW-15 (A1D0263-13RE1)				Matrix: Wate	r	Batch:	1040310	
1-Methylnaphthalene	42.2	0.842	1.68	ug/L	20	04/12/21 20:39	EPA 8270E SIM	
2-Methylnaphthalene	56.9	0.842	1.68	ug/L	20	04/12/21 20:39	EPA 8270E SIM	
				Matrix: Wate				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 61 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street Portland, OR 97232 Project: Former Planter's Hotel Site

Project Number: **0346.11.02**Project Manager: **David Weatherby**

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Polyar	omane mydro	carbons (P	AHs) by EPA 82	IVE SIN			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP04-GW-15 (A1D0263-14)				Matrix: Wate	r	Batch:	1040310	
Acenaphthene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Acenaphthylene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Anthracene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Benz(a)anthracene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Benzo(a)pyrene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Chrysene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Fluoranthene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Fluorene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
1-Methylnaphthalene	ND	0.0417	0.0833	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
2-Methylnaphthalene	ND	0.0417	0.0833	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Naphthalene	ND	0.0417	0.0833	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Phenanthrene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Pyrene	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Dibenzofuran	ND	0.0208	0.0417	ug/L	1	04/12/21 16:01	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recov	ery: 72 %	Limits: 44-120 %	1	04/12/21 16:01	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			83 %	50-134 %	1	04/12/21 16:01	EPA 8270E SIM	
GP05-GW-12 (A1D0263-15)				Matrix: Wate	r	Batch:	1040310	
Acenaphthene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Acenaphthylene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Anthracene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Benz(a)anthracene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Benzo(a)pyrene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Chrysene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 62 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: 0346.11.02
Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Polyard	omatic Hydroca	rpons (P	AHs) by EPA 82	/UE SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP05-GW-12 (A1D0263-15)				Matrix: Wate	er	Batch:	: 1040310	
Fluoranthene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Fluorene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
1-Methylnaphthalene	ND	0.0455	0.0909	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
2-Methylnaphthalene	ND	0.0455	0.0909	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Naphthalene	0.0900	0.0455	0.0909	ug/L	1	04/12/21 16:26	EPA 8270E SIM	J
Phenanthrene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Pyrene	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Dibenzofuran	ND	0.0227	0.0455	ug/L	1	04/12/21 16:26	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recovery	: 59 %	Limits: 44-120 %	1	04/12/21 16:26	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			79 %	50-134 %	I	04/12/21 16:26	EPA 8270E SIM	
GP06-GW-15 (A1D0263-16)				Matrix: Wate	er	Batch:	: 1040310	
Acenaphthene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Acenaphthylene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Anthracene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Benz(a)anthracene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Benzo(a)pyrene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Chrysene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Fluoranthene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Fluorene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
1-Methylnaphthalene	ND	0.0426	0.0851	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
2-Methylnaphthalene	ND	0.0426	0.0851	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Naphthalene	ND	0.0426	0.0851	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Phenanthrene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Pyrene	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Dibenzofuran	ND	0.0213	0.0426	ug/L	1	04/12/21 16:52	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recovery	v: 64 %	Limits: 44-120 %	1	04/12/21 16:52	EPA 8270E SIM	
3 4 7 . (/								

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: **0346.11.02**Project Manager: **David Weatherby**

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP06-GW-15 (A1D0263-16)				Matrix: Wat	er	Batch:	1040310	
Surrogate: p-Terphenyl-d14 (Surr)		Recovery	: 83 %	Limits: 50-134 %	6 I	04/12/21 16:52	EPA 8270E SIM	
GP07-GW-15 (A1D0263-17)				Matrix: Wat	er	Batch:	1040310	
Acenaphthene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Acenaphthylene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Anthracene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Benz(a)anthracene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Benzo(a)pyrene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Chrysene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Fluoranthene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Fluorene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
1-Methylnaphthalene	ND	0.0444	0.0889	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
2-Methylnaphthalene	ND	0.0444	0.0889	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Naphthalene	0.0546	0.0444	0.0889	ug/L	1	04/12/21 17:17	EPA 8270E SIM	J
Phenanthrene	0.0253	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	J
Pyrene	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Dibenzofuran	ND	0.0222	0.0444	ug/L	1	04/12/21 17:17	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recovery	95 %	Limits: 44-120 %	6 I	04/12/21 17:17	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			85 %	50-134 %	6 1	04/12/21 17:17	EPA 8270E SIM	
GP08-GW-15 (A1D0263-18)				Matrix: Wat	er	Batch:	1040310	
Acenaphthene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Acenaphthylene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Anthracene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Benz(a)anthracene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Benzo(a)pyrene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 64 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

	Polyar	omatic Hydroca	arbons (P	AHs) by EPA 82	270E SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP08-GW-15 (A1D0263-18)				Matrix: Wate	er	Batch:	1040310	
Chrysene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Fluoranthene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Fluorene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
1-Methylnaphthalene	ND	0.0435	0.0870	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
2-Methylnaphthalene	ND	0.0435	0.0870	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Naphthalene	ND	0.0435	0.0870	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Phenanthrene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Pyrene	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Dibenzofuran	ND	0.0217	0.0435	ug/L	1	04/12/21 17:42	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recover	y: 87 %	Limits: 44-120 %	5 1	04/12/21 17:42	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			83 %	50-134 %	5 I	04/12/21 17:42	EPA 8270E SIM	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 65 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: **0346.11.02**Project Manager: **David Weatherby**

Report ID: A1D0263 - 04 22 21 1248

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
GP01-S-5.5 (A1D0263-01)				Matrix: So	il	Batch:	1040303		
% Solids	79.6	1.00	1.00	%	1	04/12/21 07:51	EPA 8000D		
GP02-S-8 (A1D0263-02)				Matrix: So	il	Batch:	1040303		
% Solids	79.1	1.00	1.00	%	1	04/12/21 07:51	EPA 8000D		
GP03-S-6 (A1D0263-03)				Matrix: So	il	Batch:	1040303		
% Solids	85.0	1.00	1.00	%	1	04/12/21 07:51	EPA 8000D		
GP04-S-8 (A1D0263-04)				Matrix: So	il	Batch:	1040303		
% Solids	77.3	1.00	1.00	%	1	04/12/21 07:51	EPA 8000D		
GP05-S-6 (A1D0263-05)				Matrix: So	il	Batch:	1040303		
% Solids	79.7	1.00	1.00	%	1	04/12/21 07:51	EPA 8000D		
GP06-S-7.5 (A1D0263-06)				Matrix: So	il	Batch:	1040303		
% Solids	85.8	1.00	1.00	%	1	04/12/21 07:51	EPA 8000D		
GP06-S-7.5-DUP (A1D0263-07)				Matrix: So	il	Batch:	1040303		
% Solids	84.6	1.00	1.00	%	1	04/12/21 07:51	EPA 8000D		
GP07-S-6 (A1D0263-08)				Matrix: So	il	Batch:	1040303		
% Solids	78.7	1.00	1.00	%	1	04/12/21 07:51	EPA 8000D	<u> </u>	
GP08-S-6 (A1D0263-09)				Matrix: So	il	1 04/12/21 07:51 EPA 8000D Batch: 1040303			
% Solids	79.5	1.00	1.00	%	1	04/12/21 07:51	EPA 8000D		

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 66 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		Di	esel and/c	r Oil Hyd	rocarbor	s by NW	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040261 - EPA 3510C (F	uels/Acid	Ext.)					Wat	er				
Blank (1040261-BLK1)			Prepared	: 04/08/21 1	10:59 Ana	lyzed: 04/09	/21 02:22					
NWTPH-Dx LL												
Diesel	ND	0.0364	0.0727	mg/L	1							
Oil	ND	0.0727	0.145	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50	-150 %	Dili	ution: 1x					
LCS (1040261-BS1)			Prepared	: 04/08/21 1	10:59 Anal	lyzed: 04/09	/21 02:43					
NWTPH-Dx LL												
Diesel	0.332	0.0400	0.0800	mg/L	1	0.500		66	59-115%			
Surr: o-Terphenyl (Surr)		Recov	ery: 101 %	Limits: 50	-150 %	Dili	ution: 1x					
LCS Dup (1040261-BSD1)			Prepared	: 04/08/21 1	10:59 Anal	lyzed: 04/09	/21 03:03					Q-1
NWTPH-Dx LL												
Diesel	0.372	0.0400	0.0800	mg/L	1	0.500		74	59-115%	11	30%	
Surr: o-Terphenyl (Surr)		Recov	ery: 102 %	Limits: 50	-150 %	Dili	ution: 1x					
Batch 1040332 - EPA 3546 (Fi	uels)						Soil					
Blank (1040332-BLK1)			Prepared	: 04/09/21 1	13:05 Ana	lyzed: 04/09	/21 23:12					
NWTPH-Dx												
Diesel	ND	9.09	18.2	mg/kg w	et 1							
	ND ND	9.09 18.2	18.2 36.4	mg/kg w								
Diesel		18.2			et 1	 Dili	 ution: Ix					
Diesel Oil		18.2	36.4 very: 93 %	mg/kg we	et 1 -150 %	 Dili lyzed: 04/09						
Diesel Oil Surr: o-Terphenyl (Surr)		18.2	36.4 very: 93 %	mg/kg we	et 1 -150 %							_
Diesel Oil Surr: o-Terphenyl (Surr) LCS (1040332-BS1)		18.2	36.4 very: 93 %	mg/kg we	et 1 -150 %			104				
Diesel Oil Surr: o-Terphenyl (Surr) LCS (1040332-BS1) NWTPH-Dx	ND	18.2 Reco	36.4 wery: 93 % Prepared	mg/kg wo Limits: 50	et 1 -150 % 13:05 Anal	lyzed: 04/09	/21 23:33					
Diesel Oil Surr: o-Terphenyl (Surr) LCS (1040332-BS1) NWTPH-Dx Diesel	ND	18.2 Reco	36.4 Prepared 20.0 20.0 20.4 20	mg/kg we Limits: 50 : 04/09/21 1 mg/kg we Limits: 50	et 1 -150 % 13:05 Anal et 1 -150 %	lyzed: 04/09	 ution: 1x					
Diesel Oil Surr: o-Terphenyl (Surr) LCS (1040332-BS1) NWTPH-Dx Diesel Surr: o-Terphenyl (Surr) Duplicate (1040332-DUP2) OC Source Sample: GP05-S-6 (A	ND 130	18.2 Reco	36.4 Prepared 20.0 20.0 20.4 20	mg/kg we Limits: 50 : 04/09/21 1 mg/kg we Limits: 50	et 1 -150 % 13:05 Anal et 1 -150 %	lyzed: 04/09 125 Dila	 ution: 1x					
Diesel Oil Surr: o-Terphenyl (Surr) LCS (1040332-BS1) NWTPH-Dx Diesel Surr: o-Terphenyl (Surr) Duplicate (1040332-DUP2)	ND 130	18.2 Reco	36.4 Prepared 20.0 20.0 20.4 20	mg/kg we Limits: 50 : 04/09/21 1 mg/kg we Limits: 50	et 1 -150 % 13:05 Anai et 1 -150 %	lyzed: 04/09 125 Dila	 ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	r Oil Hyd	rocarbor	s by NW1	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits		RPD Limit	Notes
Batch 1040332 - EPA 3546 (F	uels)						Soil					
Duplicate (1040332-DUP2)			Prepared	1: 04/09/21	13:09 Ana	lyzed: 04/10	/21 00:34					
QC Source Sample: GP05-S-6 (A	1D0263-05)											
Surr: o-Terphenyl (Surr)		Reco	overy: 63 %	Limits: 50	-150 %	Dilt	ution: 1x					
Duplicate (1040332-DUP4)			Prepared	1: 04/09/21	13:05 Ana	lyzed: 04/12	/21 09:06					
QC Source Sample: Non-SDG (A	1D0211-01R1	E2)										
Diesel	ND	23.2	46.3	mg/kg di	ry 2		ND				30%	
Oil	464	46.3	92.6	mg/kg di	ry 2		492			6	30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 69 %	Limits: 50	-150 %	Dilı	ution: 2x					S-05

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 68 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	r Oil Hyd	rocarbor	ns by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040449 - EPA 3546 (F	uels)						Soil					
Blank (1040449-BLK1)			Prepared	1: 04/13/21	3:16 Ana	lyzed: 04/13	/21 23:50					
NWTPH-Dx												
Diesel	ND	9.09	25.0	mg/kg w	et 1							
Oil	ND	18.2	50.0	mg/kg w	et 1							
Surr: o-Terphenyl (Surr)		Reco	overy: 95 %	Limits: 50	-150 %	Dil	ution: 1x					
LCS (1040449-BS1)			Prepared	1: 04/13/21	3:16 Ana	lyzed: 04/14	/21 00:10					
NWTPH-Dx												
Diesel	113	10.0	20.0	mg/kg w	et 1	125		91	73-115%			
Surr: o-Terphenyl (Surr)		Reco	very: 100 %	Limits: 50	-150 %	Dil	ution: 1x					
Duplicate (1040449-DUP1)			Prepared	1: 04/13/21	3:16 Ana	lyzed: 04/14	/21 00:51					
QC Source Sample: GP06-S-7.5 (A1D0263-06	<u>)</u>										
NWTPH-Dx												
Diesel	ND	11.4	25.0	mg/kg dı	y 1		ND				30%	
Oil	ND	22.7	50.0	mg/kg dı	y 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 94%	Limits: 50	-150 %	Dill	ution: 1x					
Duplicate (1040449-DUP2)			Prepared	1: 04/13/21	9:26 Ana	lyzed: 04/14	/21 03:33					
QC Source Sample: Non-SDG (A	1D0494-01)											
Diesel	ND	12.1	24.3	mg/kg dı	y 1		ND				30%	
Oil	ND	24.3	48.5	mg/kg dı	y 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 69 %	Limits: 50	-150 %	Dil	ution: 1x					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 69 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolin	ne Range H	ydrocarbo	ons (Ben	zene thro	ugh Naph	thalene)	by NWTF	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040359 - EPA 5030B							Wat	er				
Blank (1040359-BLK1)			Prepare	d: 04/12/21	08:00 Ana	lyzed: 04/12	/21 11:47					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 102 %	Limits: 5	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			105 %	50	0-150 %		"					
LCS (1040359-BS2)			Prepare	d: 04/12/21	08:00 Ana	lyzed: 04/12	/21 11:19					
NWTPH-Gx (MS)												
Gasoline Range Organics	0.445	0.0500	0.100	mg/L	1	0.500		89	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 109 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50	0-150 %		"					
Duplicate (1040359-DUP1)			Prepared	d: 04/12/21	09:00 Ana	lyzed: 04/12	/21 13:35					
QC Source Sample: GP01-GW-15	(A1D0263-1	<u>10)</u>										
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 102 %	Limits: 5	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			105 %	50	0-150 %		"					
Duplicate (1040359-DUP2)			Prepared	d: 04/12/21	09:00 Ana	lyzed: 04/12	/21 20:47					
OC Source Sample: Non-SDG (A1	D0350-08)											
Gasoline Range Organics	ND	0.100	0.100	mg/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 101 %	Limits: 5	0-150 %	Dilt	ution: 1x	<u> </u>				
1,4-Difluorobenzene (Sur)			104 %	50	0-150 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 70 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

 3140 NE Broadway Street
 Project Number:
 0346.11.02
 Report ID:

 Portland, OR 97232
 Project Manager:
 David Weatherby
 A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	lydrocarbo	ons (Benz	ene thro	ugh Naph	thalene)	by NWTF	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040368 - EPA 5035A							Soil					
Blank (1040368-BLK1)			Prepare	d: 04/12/21	09:00 Ana	lyzed: 04/12	/21 11:30					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	1.67	3.33	mg/kg w	ret 50							
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 97 %	Limits: 50	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			91 %	50)-150 %		"					
LCS (1040368-BS2)			Prepare	d: 04/12/21	09:00 Ana	lyzed: 04/12	/21 11:03					
NWTPH-Gx (MS)												
Gasoline Range Organics	24.3	2.50	5.00	mg/kg w	ret 50	25.0		97	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 100 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			94 %	50)-150 %		"					
Duplicate (1040368-DUP1)			Prepare	d: 04/06/21	12:50 Ana	lyzed: 04/12	/21 12:51					
QC Source Sample: GP01-S-5.5 (A1D0263-01)										
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	3.34	6.67	mg/kg d	ry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 104 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			93 %	50)-150 %		"					
Duplicate (1040368-DUP2)			Prepare	d: 04/07/21	09:15 Ana	lyzed: 04/12	/21 13:45					
OC Source Sample: GP02-S-8 (A	1D0263-02)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	3.32	6.63	mg/kg d	ry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 102 %	Limits: 50	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			92 %	50	-150 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 71 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> Project: <u>Former Planter's Hotel Site</u>

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range F	lydrocarbo	ons (Ben	zene thro	igh Naph	thalene) l	y NWT	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040426 - EPA 5035A							Soil					
Blank (1040426-BLK1)			Prepared	d: 04/13/21	09:00 Anal	yzed: 04/13	/21 11:57					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	1.67	3.33	mg/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Recor	very: 102 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			96 %	5	0-150 %		"					
LCS (1040426-BS2)			Prepared	d: 04/13/21	09:00 Anal	yzed: 04/13	/21 11:03					
NWTPH-Gx (MS)												
Gasoline Range Organics	24.1	2.50	5.00	mg/kg v	vet 50	25.0		96	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 99 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			96 %	5	0-150 %		"					
Duplicate (1040426-DUP1)			Prepared	d: 04/08/21	09:05 Anal	yzed: 04/13	/21 18:14					
QC Source Sample: Non-SDG (A1	D0350-01)											
Gasoline Range Organics	376	3.61	7.21	mg/kg d	lry 50		191			65	30%	Q-0
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 129 %	Limits: 5	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			135 %	5	0-150 %		"					
Duplicate (1040426-DUP2)			Prepared	d: 04/08/21	10:30 Anal	yzed: 04/13	/21 19:08					
QC Source Sample: Non-SDG (A1	D0350-03)											
Gasoline Range Organics	ND	19.2	19.2	mg/kg d	lry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 110 %	Limits: 5	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	5	0-150 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 72 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 1040359 - EPA 5030B Water Blank (1040359-BLK1) Prepared: 04/12/21 08:00 Analyzed: 04/12/21 11:47 EPA 8260D ND 10.0 20.0 ug/L Acetone ND 2.00 1 Acrylonitrile 1.00 ug/L Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 1 ug/L Bromochloromethane ND 0.500 1.00 1 ug/L Bromodichloromethane ND 0.500 1.00 1 ug/L Bromoform ND 0.500 1 1.00 ug/L Bromomethane 5.00 ND 5.00 ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 1 ug/L sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 ug/L 1.00 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ---------Chloroform ND 0.500 1.00 ug/L 1 ND 5.00 5.00 Chloromethane 1 ug/L 2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 ND Dibromochloromethane 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 ug/L Dibromomethane ND 0.500 1.00 1 0.500 0.250 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.200 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 73 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040359 - EPA 5030B							Wat	er				
Blank (1040359-BLK1)			Prepared	: 04/12/21	08:00 Anal	yzed: 04/12	/21 11:47					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	2.00	4.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1							
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L ug/L	1							
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L ug/L	1							
m,p-Xylene	ND	0.500	1.00	ug/L	1							
o-Xylene	ND ND	0.250	0.500	ug/L ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)	עוו	Recov		Limits: 80			ution: 1x					

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 74 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040359 - EPA 5030B					Wat	ter						
Blank (1040359-BLK1)			Prepared	1: 04/12/21	08:00 Ana	lyzed: 04/12	/21 11:47					
Surr: Toluene-d8 (Surr)		Reco	overy: 99 %	Limits: 80	0-120 %	Dila	ution: 1x					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					
LCS (1040359-BS1)			Prepared	: 04/12/21	08:00 Ana	lyzed: 04/12	/21 10:48					
EPA 8260D												
Acetone	36.4	10.0	20.0	ug/L	1	40.0		91	80-120%			
Acrylonitrile	19.7	1.00	2.00	ug/L	1	20.0		99	80-120%			
Benzene	18.6	0.100	0.200	ug/L	1	20.0		93	80-120%			
Bromobenzene	19.1	0.250	0.500	ug/L	1	20.0		96	80-120%			
Bromochloromethane	21.3	0.500	1.00	ug/L	1	20.0		106	80-120%			
Bromodichloromethane	22.7	0.500	1.00	ug/L	1	20.0		113	80-120%			
Bromoform	27.9	0.500	1.00	ug/L	1	20.0		139	80-120%			Q-5
Bromomethane	28.3	5.00	5.00	ug/L	1	20.0		142	80-120%			Q-5
2-Butanone (MEK)	36.3	5.00	10.0	ug/L	1	40.0		91	80-120%			
n-Butylbenzene	20.1	0.500	1.00	ug/L	1	20.0		100	80-120%			
sec-Butylbenzene	19.7	0.500	1.00	ug/L	1	20.0		98	80-120%			
tert-Butylbenzene	18.1	0.500	1.00	ug/L	1	20.0		90	80-120%			
Carbon disulfide	18.2	5.00	10.0	ug/L	1	20.0		91	80-120%			
Carbon tetrachloride	25.2	0.500	1.00	ug/L	1	20.0		126	80-120%			Q-5
Chlorobenzene	19.2	0.250	0.500	ug/L	1	20.0		96	80-120%			
Chloroethane	23.1	5.00	5.00	ug/L	1	20.0		115	80-120%			
Chloroform	21.1	0.500	1.00	ug/L	1	20.0		105	80-120%			
Chloromethane	15.0	5.00	5.00	ug/L	1	20.0		75	80-120%			Q-5
2-Chlorotoluene	18.7	0.500	1.00	ug/L	1	20.0		94	80-120%			
4-Chlorotoluene	18.6	0.500	1.00	ug/L	1	20.0		93	80-120%			
Dibromochloromethane	22.6	0.500	1.00	ug/L	1	20.0		113	80-120%			
1,2-Dibromo-3-chloropropane	19.0	2.50	5.00	ug/L	1	20.0		95	80-120%			
1,2-Dibromoethane (EDB)	19.5	0.250	0.500	ug/L	1	20.0		98	80-120%			
Dibromomethane	21.2	0.500	1.00	ug/L	1	20.0		106	80-120%			
1,2-Dichlorobenzene	19.6	0.250	0.500	ug/L	1	20.0		98	80-120%			
1,3-Dichlorobenzene	19.7	0.250	0.500	ug/L	1	20.0		99	80-120%			
1,4-Dichlorobenzene	19.3	0.250	0.500	ug/L	1	20.0		97	80-120%			
Dichlorodifluoromethane	21.5	0.500	1.00	ug/L	1	20.0		108	80-120%			
1,1-Dichloroethane	18.6	0.200	0.400	ug/L	1	20.0		93	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 75 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit Batch 1040359 - EPA 5030B Water

Batch 1040359 - EPA 5030B		Water										
LCS (1040359-BS1)			Prepared:	04/12/21 08	3:00 Ana	lyzed: 04/12/	/21 10:48					
1,2-Dichloroethane (EDC)	20.8	0.200	0.400	ug/L	1	20.0		104	80-120%			
1,1-Dichloroethene	18.6	0.200	0.400	ug/L	1	20.0		93	80-120%			
cis-1,2-Dichloroethene	19.3	0.200	0.400	ug/L	1	20.0		96	80-120%			
trans-1,2-Dichloroethene	19.6	0.200	0.400	ug/L	1	20.0		98	80-120%			
1,2-Dichloropropane	18.7	0.250	0.500	ug/L	1	20.0		94	80-120%			
1,3-Dichloropropane	19.1	0.500	1.00	ug/L	1	20.0		96	80-120%			
2,2-Dichloropropane	17.2	0.500	1.00	ug/L	1	20.0		86	80-120%			
1,1-Dichloropropene	20.2	0.500	1.00	ug/L	1	20.0		101	80-120%			
cis-1,3-Dichloropropene	19.3	0.500	1.00	ug/L	1	20.0		97	80-120%			
trans-1,3-Dichloropropene	19.3	0.500	1.00	ug/L	1	20.0		96	80-120%			
Ethylbenzene	19.1	0.250	0.500	ug/L	1	20.0		96	80-120%			
Hexachlorobutadiene	20.2	2.50	5.00	ug/L	1	20.0		101	80-120%			
2-Hexanone	36.1	5.00	10.0	ug/L	1	40.0		90	80-120%			
Isopropylbenzene	20.7	0.500	1.00	ug/L	1	20.0		104	80-120%			
4-Isopropyltoluene	20.6	0.500	1.00	ug/L	1	20.0		103	80-120%			
Methylene chloride	19.9	5.00	10.0	ug/L	1	20.0		99	80-120%			
4-Methyl-2-pentanone (MiBK)	36.7	5.00	10.0	ug/L	1	40.0		92	80-120%			
Methyl tert-butyl ether (MTBE)	17.5	0.500	1.00	ug/L	1	20.0		87	80-120%			
Naphthalene	20.0	2.00	4.00	ug/L	1	20.0		100	80-120%			
n-Propylbenzene	18.9	0.250	0.500	ug/L	1	20.0		94	80-120%			
Styrene	20.5	0.500	1.00	ug/L	1	20.0		103	80-120%			
1,1,1,2-Tetrachloroethane	21.9	0.200	0.400	ug/L	1	20.0		110	80-120%			
1,1,2,2-Tetrachloroethane	19.0	0.250	0.500	ug/L	1	20.0		95	80-120%			
Tetrachloroethene (PCE)	19.7	0.200	0.400	ug/L	1	20.0		98	80-120%			
Toluene	17.7	0.500	1.00	ug/L	1	20.0		88	80-120%			
1,2,3-Trichlorobenzene	24.8	1.00	2.00	ug/L	1	20.0		124	80-120%			Q-56
1,2,4-Trichlorobenzene	25.2	1.00	2.00	ug/L	1	20.0		126	80-120%			Q-56
1,1,1-Trichloroethane	20.6	0.200	0.400	ug/L	1	20.0		103	80-120%			
1,1,2-Trichloroethane	20.2	0.250	0.500	ug/L	1	20.0		101	80-120%			
Trichloroethene (TCE)	20.9	0.200	0.400	ug/L	1	20.0		104	80-120%			
Trichlorofluoromethane	24.2	1.00	2.00	ug/L	1	20.0		121	80-120%			Q-56
1,2,3-Trichloropropane	19.0	0.500	1.00	ug/L	1	20.0		95	80-120%			
1,2,4-Trimethylbenzene	20.6	0.500	1.00	ug/L	1	20.0		103	80-120%			
1,3,5-Trimethylbenzene	20.9	0.500	1.00	ug/L	1	20.0		104	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 76 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040359 - EPA 5030B							Wat	er				
LCS (1040359-BS1)			Prepared	1: 04/12/21	08:00 Anal	yzed: 04/12/	/21 10:48					
Vinyl chloride	20.0	0.200	0.400	ug/L	1	20.0		100	80-120%			
m,p-Xylene	38.4	0.500	1.00	ug/L	1	40.0		96	80-120%			
o-Xylene	19.0	0.250	0.500	ug/L	1	20.0		95	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 100 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	80	0-120 %		"					
Duplicate (1040359-DUP1)			Prepared	1: 04/12/21	09:00 Anal	yzed: 04/12/	/21 13:35					
OC Source Sample: GP01-GW-15	(A1D0263-	10)										
EPA 8260D		•										
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 77 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Limit Units Dilution RPD Limit Amount Result Limits Limit Notes Batch 1040359 - EPA 5030B Water **Duplicate (1040359-DUP1)** Prepared: 04/12/21 09:00 Analyzed: 04/12/21 13:35 QC Source Sample: GP01-GW-15 (A1D0263-10) 1,2-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.250 0.500 1,3-Dichlorobenzene ug/L 1 ND 30% 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400 1 ND 30% ug/L ---1,2-Dichloroethane (EDC) ND 0.200 0.400 ND ug/L 1 30% 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% ND 0.400 ND 30% cis-1,2-Dichloroethene 0.200 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 ND 30% 2,2-Dichloropropane ug/L 1 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 ND 30% cis-1,3-Dichloropropene ug/L 1 0.500 ug/L trans-1,3-Dichloropropene ND 1.00 1 ND 30% Ethylbenzene ND 0.250 0.500 ug/L 1 ND 30% Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND 30% 2-Hexanone ND ND 30% 5.00 10.0 1 ug/L ND Isopropylbenzene 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 ND 30% 4-Isopropyltoluene ug/L 1 ND ND Methylene chloride 5.00 10.0 ug/L 1 30% 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND ---30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND 30% Naphthalene ND ND 30% 2.00 4.00 ug/L 1 ND 0.250 0.500 ND 30% n-Propylbenzene ug/L 1 ND 0.500 1.00 ND 30% Styrene ug/L 1 1,1,1,2-Tetrachloroethane ND 0.200 0.400 ND 30% ug/L 1 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ug/L 1 ---ND ------30% Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 ND 30% Toluene ND 0.500 1.00 ND 30% ug/L 1 ---1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 ND 30% ND 1.00 2.00 ND 1,2,4-Trichlorobenzene 1 30% ug/L

Apex Laboratories

Philip Merenberg

1,1,1-Trichloroethane

ND

0.200

0.400

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

ND

Philip Nerenberg, Lab Director

Page 78 of 147

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		•	Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040359 - EPA 5030B							Wat	er				
Duplicate (1040359-DUP1)			Prepared	: 04/12/21	09:00 Anal	yzed: 04/12/	/21 13:35					
QC Source Sample: GP01-GW-15	(A1D0263-	<u>10)</u>										
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
n,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 103 %	Limits: 80	0-120 %	Dilı	ution: 1x					_
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
Duplicate (1040359-DUP2) QC Source Sample: Non-SDG (A1	D0350-08)		Prepared	: 04/12/21	09:00 Anal	yzed: 04/12/	/21 20:47					
Acetone	29.0	10.0	20.0	ug/L	1		23.2			23	30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	0.584	0.100	0.200	ug/L	1		0.603			3	30%	
Bromobenzene	ND	0.250	0.500	ug/L	1					-		
Bromochloromethane	ND						ND				30%	
		0.500	1.00	ug/L	1		ND ND				30% 30%	
Bromodichloromethane	ND	0.500 0.500	1.00 1.00	ug/L ug/L								
				ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	_	1 1		ND ND				30% 30%	
Bromoform Bromomethane	ND ND	0.500 0.500	1.00 1.00	ug/L ug/L ug/L	1 1 1	 	ND ND ND	 			30% 30% 30%	
Bromoform Bromomethane 2-Butanone (MEK)	ND ND ND	0.500 0.500 5.00	1.00 1.00 5.00	ug/L ug/L ug/L ug/L	1 1 1 1	 	ND ND ND	 	 	 	30% 30% 30% 30% 30%	
Bromoform Bromomethane -Butanone (MEK) -Butylbenzene	ND ND ND ND	0.500 0.500 5.00 5.00	1.00 1.00 5.00 10.0	ug/L ug/L ug/L ug/L ug/L	1 1 1 1	 	ND ND ND ND	 	 	 	30% 30% 30% 30%	
Bromoform Bromomethane -Butanone (MEK) -Butylbenzene ec-Butylbenzene	ND ND ND ND ND	0.500 0.500 5.00 5.00 0.500	1.00 1.00 5.00 10.0 1.00	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1	 	ND ND ND ND ND ND ND	 	 	 	30% 30% 30% 30% 30% 30% 30%	
Bromoform Bromomethane -Butanone (MEK) -Butylbenzene ec-Butylbenzene ert-Butylbenzene	ND ND ND ND	0.500 0.500 5.00 5.00 0.500	1.00 1.00 5.00 10.0 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1	 	ND ND ND ND ND	 	 	 	30% 30% 30% 30% 30% 30%	
Bromoform Bromomethane I-Butanone (MEK) I-Butylbenzene ec-Butylbenzene ert-Butylbenzene Carbon disulfide	ND ND ND ND ND ND ND ND ND	0.500 0.500 5.00 5.00 0.500 0.500 0.500 5.00	1.00 1.00 5.00 10.0 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1		ND	 	 	 	30% 30% 30% 30% 30% 30% 30% 30%	
Bromoform Bromomethane P-Butanone (MEK) Butylbenzene Butylbenzene Butylbenzene Butylbenzene Carbon disulfide Carbon tetrachloride	ND	0.500 0.500 5.00 5.00 0.500 0.500 0.500 5.00	1.00 1.00 5.00 10.0 1.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1		ND N	 	 	 	30% 30% 30% 30% 30% 30% 30% 30% 30%	
Bromoform Bromomethane -Butanone (MEK) -Butylbenzene ec-Butylbenzene ert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene	ND	0.500 0.500 5.00 5.00 0.500 0.500 0.500 5.00	1.00 1.00 5.00 10.0 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1	 	ND	 	 		30% 30% 30% 30% 30% 30% 30% 30%	
Bromoform Bromomethane I-Butanone (MEK) I-Butylbenzene ec-Butylbenzene ert-Butylbenzene Carbon disulfide	ND N	0.500 0.500 5.00 5.00 0.500 0.500 5.00 0.500 0.500 0.250	1.00 1.00 5.00 10.0 1.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1	 	ND N	 	 		30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 79 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution RPD Limit Amount Result Limits Limit Notes Batch 1040359 - EPA 5030B Water **Duplicate (1040359-DUP2)** Prepared: 04/12/21 09:00 Analyzed: 04/12/21 20:47 QC Source Sample: Non-SDG (A1D0350-08) 2-Chlorotoluene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 4-Chlorotoluene ug/L 1 ND 30% ug/L Dibromochloromethane ND 0.500 1.00 1 ND 30% 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 ND 30% 1,2-Dibromoethane (EDB) ND 0.250 0.500 1 ND 30% ug/L ---ND ND Dibromomethane 0.500 1.00 ug/L 1 30% 1,2-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND ND 30% 1,3-Dichlorobenzene 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.200 0.400 ND 30% ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% ND 0.200 0.400 ND 30% cis-1,2-Dichloroethene ug/L 1 ug/L trans-1,2-Dichloroethene ND 0.200 0.400 1 ND 30% 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND ND 30% 2,2-Dichloropropane 0.500 1.00 1 ug/L ND 1,1-Dichloropropene 0.500 1.00 ug/L 1 ND 30% 0.500 1.00 cis-1,3-Dichloropropene ND ND 30% ug/L 1 trans-1,3-Dichloropropene ND 0.500 ND 30% 1.00 ug/L 1 0.250 30% Q-05 Ethylbenzene ND 0.500 ug/L 1 0.277 *** Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND 30% ND ND 30% 2-Hexanone 5.00 10.0 ug/L 1 ---ND 0.500 1.00 ND 30% Isopropylbenzene ug/L 1 0.2 30% 0.500 1.00 ug/L 1.30 4-Isopropyltoluene 1.31 1 Methylene chloride ND 5.00 10.0 ND 30% ug/L 1 3 4-Methyl-2-pentanone (MiBK) 6.34 5.00 10.0 ug/L 1 ---6.16 ---30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND 30% Naphthalene ND 2.00 4.00 ND 30% ug/L 1 --n-Propylbenzene ND 0.250 0.500 ug/L 1 ND 30% Styrene ND 0.500 1.00 ND 1 30% ug/L

Apex Laboratories

Philip Manherz

1,1,1,2-Tetrachloroethane

ND

0.200

0.400

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

ND

Philip Nerenberg, Lab Director

Page 80 of 147

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040359 - EPA 5030B							Wat	er				
Duplicate (1040359-DUP2)			Prepared	l: 04/12/21	09:00 Ana	lyzed: 04/12	/21 20:47					
QC Source Sample: Non-SDG (A1	D0350-08)											
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Toluene	6.60	0.500	1.00	ug/L	1		6.67			0.9	30%	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
m,p-Xylene	0.721	0.500	1.00	ug/L	1		0.749			4	30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 101 %	Limits: 80	0-120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	0-120 %		"					
Matrix Spike (1040359-MS1)			Prepared	1: 04/12/21	09:00 Ana	lyzed: 04/12	/21 14:29					
QC Source Sample: GP03-GW-15	(A1D0263-	13)										
EPA 8260D												
Acetone	41.5	10.0	20.0	ug/L	1	40.0	ND	104	39-160%			
Acrylonitrile	19.8	1.00	2.00	ug/L	1	20.0	ND	99	63-135%			
Benzene	20.1	0.100	0.200	ug/L	1	20.0	ND	100	79-120%			
Bromobenzene	19.8	0.250	0.500	ug/L	1	20.0	ND	99	80-120%			
Bromochloromethane	22.8	0.500	1.00	ug/L	1	20.0	ND	114	78-123%			
Bromodichloromethane	23.6	0.500	1.00	ug/L	1	20.0	ND	118	79-125%			
Bromoform	28.7	0.500	1.00	ug/L	1	20.0	ND	144	66-130%			Q-54
Bromomethane	30.4	5.00	5.00	ug/L	1	20.0	ND	152	53-141%			Q-54

Apex Laboratories

Philip Nevenberg

2-Butanone (MEK)

n-Butylbenzene

sec-Butylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

94

111

103

56-143%

75-128%

77-126%

Philip Nerenberg, Lab Director

10.0

1.00

1.00

ug/L

ug/L

ug/L

1

1

1

40.0

20.0

20.0

ND

0.595

ND

37.7

22.8

20.7

5.00

0.500

0.500

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 1040359 - EPA 5030B Water Matrix Spike (1040359-MS1) Prepared: 04/12/21 09:00 Analyzed: 04/12/21 14:29 QC Source Sample: GP03-GW-15 (A1D0263-13) tert-Butylbenzene 18.7 0.500 1.00 ug/L 1 20.0 ND 94 78-124% 10.0 20.0 Carbon disulfide 19.4 5.00 ug/L 1 ND 97 64-133% ug/L Carbon tetrachloride 26.9 0.500 1.00 1 20.0 ND 134 72-136% Q-54a Chlorobenzene 20.9 0.250 0.500 ug/L 1 20.0 ND 105 80-120% Chloroethane 26.8 5.00 5.00 1 20.0 ND 134 60-138% ug/L ---22.1 1.00 20.0 ND 110 79-124% Chloroform 0.500 ug/L 1 Q-54k Chloromethane 15.7 5.00 5.00 ug/L 1 20.0 ND 79 50-139% 2-Chlorotoluene 20.5 20.0 ND 103 79-122% 0.500 1.00 ug/L 1 4-Chlorotoluene 19.3 0.500 1.00 ug/L 1 20.0 ND 96 78-122% Dibromochloromethane 23.5 0.500 1.00 ug/L 1 20.0 ND 118 74-126% 1,2-Dibromo-3-chloropropane 20.0 2.50 5.00 ug/L 1 20.0 ND 100 62-128% 1,2-Dibromoethane (EDB) 20.7 0.250 0.500 20.0 ND 104 77-121% ug/L 1 20.0 79-123% Dibromomethane 22.0 0.500 1.00 ug/L 1 ND 110 20.0 21.1 0.250 0.500 ND 105 80-120% 1,2-Dichlorobenzene ug/L 1 ug/L 1,3-Dichlorobenzene 21.0 0.250 0.500 1 20.0 ND 105 80-120% 1.4-Dichlorobenzene 20.6 0.250 0.500 ug/L 1 20.0 ND 103 79-120% ___ Dichlorodifluoromethane 21.8 0.500 1.00 ug/L 1 20.0 ND 109 32-152% 1,1-Dichloroethane 19.5 0.200 20.0 ND 97 77-125% 0.400 1 ug/L 1,2-Dichloroethane (EDC) 20.0 ND 105 73-128% 21.1 0.200 0.400 ug/L 1 0.200 0.400 20.0 1,1-Dichloroethene 19.9 ND 99 71-131% ug/L 1 20.2 0.200 0.400 20.0 ND 101 78-123% cis-1,2-Dichloroethene ug/L 1 0.200 trans-1,2-Dichloroethene 21.0 0.400 ug/L 1 20.0 ND 105 75-124% 1,2-Dichloropropane 19.9 0.250 0.500 ug/L 1 20.0 ND 100 78-122% 20.4 ug/L 20.0 ND 102 80-120% 1,3-Dichloropropane 0.500 1.00 1 19.6 0.500 20.0 98 60-139% 2,2-Dichloropropane 1.00 ug/L 1 ND 22.1 20.0 79-125% 0.500 1.00 ND 110 1,1-Dichloropropene ug/L 1 cis-1,3-Dichloropropene 19.5 0.500 1.00 20.0 ND 98 75-124% ug/L 1 20.0 ND 100 73-127% trans-1,3-Dichloropropene 20.1 0.500 1.00 ug/L 1 Ethylbenzene 21.2 0.250 0.500 ug/L 1 20.0 0.460 104 79-121% Hexachlorobutadiene 21.0 2.50 5.00 1 20.0 ND 105 66-134% ug/L 2-Hexanone 37.0 5.00 10.0 1 40.0 ND 93 57-139% ug/L Isopropylbenzene 22.5 0.500 1.00 20.0 1 ND 113 72-131% ug/L ---4-Isopropyltoluene 23.1 0.500 1.00 ug/L 1 20.0 ND 115 77-127%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 82 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution RPD Limit Amount Result Limits Limit Notes Batch 1040359 - EPA 5030B Water Matrix Spike (1040359-MS1) Prepared: 04/12/21 09:00 Analyzed: 04/12/21 14:29 QC Source Sample: GP03-GW-15 (A1D0263-13) Methylene chloride 20.5 5.00 10.0 ug/L 1 20.0 ND 102 74-124% 5.00 10.0 40.0 4-Methyl-2-pentanone (MiBK) 37.5 ug/L 1 ND 94 67-130% ug/L Methyl tert-butyl ether (MTBE) 18.1 0.500 1.00 1 20.0 ND 90 71-124% Q-01 Naphthalene 59.7 2.00 4.00 ug/L 1 20.0 32.2 137 61-128% 20.2 0.250 0.500 ug/L 1 20.0 0.365 99 76-126% n-Propylbenzene 21.2 0.500 1.00 20.0 ND 106 78-123% Styrene ug/L 1 1,1,1,2-Tetrachloroethane 23.2 0.200 0.400 ug/L 1 20.0 ND 116 78-124% 1,1,2,2-Tetrachloroethane 19.0 0.250 0.500 20.0 ND 95 71-121% ug/L 1 Tetrachloroethene (PCE) 22.8 0.200 0.400 ug/L 1 20.0 ND 114 74-129% Toluene 20.0 0.500 1.00 ug/L 1 20.0 0.583 97 80-121% 1,2,3-Trichlorobenzene 36.3 1.00 2.00 ug/L 1 20.0 ND 181 69-129% Q-54e Q-54h 1,2,4-Trichlorobenzene 35.2 1.00 2.00 20.0 ND 69-130% ug/L 1 176 20.0 74-131% 1,1,1-Trichloroethane 22.4 0.200 0.400 ug/L 1 ND 112 1,1,2-Trichloroethane 20.0 20.8 0.250 0.500 ND 104 80-120% ug/L 1 0.200 0.400 Trichloroethene (TCE) 22.9 ug/L 1 20.0 ND 115 79-123% Trichlorofluoromethane 26.7 1.00 2.00 ug/L 1 20.0 ND 134 65-141% ___ O-54 1,2,3-Trichloropropane 19.1 0.500 1.00 ug/L 1 20.0 ND 95 73-122% 29.4 0.500 20.0 76-124% 1,2,4-Trimethylbenzene 1.00 6.51 115 ug/L 1 1,3,5-Trimethylbenzene 24.5 20.0 1.93 75-124% 0.500 1.00 ug/L 1 113 0.200 0.400 20.0 Vinyl chloride 21.8 ND 109 58-137% ug/L 1 m,p-Xylene 0.500 1.00 40.0 2.37 108 80-121% 45.5 ug/L 1 o-Xylene 21.7 0.250 0.500 ug/L 1 20.0 1.02 103 78-122% Surr: 1,4-Difluorobenzene (Surr) 101 % Dilution: 1x Recovery: Limits: 80-120 % Toluene-d8 (Surr) 94% 80-120 %

80-120 %

93 %

Apex Laboratories

Philip Nevenberg

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 83 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 1040368 - EPA 5035A Soil Blank (1040368-BLK1) Prepared: 04/12/21 09:00 Analyzed: 04/12/21 11:30 5035A/8260D ND 333 ug/kg wet 50 Acetone ND 66.7 50 Acrylonitrile 33.3 ug/kg wet Benzene ND 3.33 6.67 ug/kg wet 50 Bromobenzene ND 8.33 16.7 ug/kg wet 50 Bromochloromethane ND 16.7 33.3 ug/kg wet 50 ND Bromodichloromethane 33.3 ug/kg wet 50 16.7 Bromoform ND 33.3 ug/kg wet 50 66.7 333 Bromomethane ND 333 ug/kg wet 50 2-Butanone (MEK) ND 167 333 ug/kg wet 50 n-Butylbenzene ND 16.7 33.3 50 ug/kg wet sec-Butylbenzene ND 16.7 33.3 ug/kg wet 50 ND tert-Butylbenzene 16.7 33.3 50 ug/kg wet Carbon disulfide ND 167 333 ug/kg wet 50 Carbon tetrachloride ND 33.3 50 16.7 ug/kg wet Chlorobenzene ND 8.33 16.7 ug/kg wet 50 Chloroethane ND 167 333 ug/kg wet 50 ------Chloroform ND 16.7 33.3 ug/kg wet 50 ND 83.3 167 Chloromethane ug/kg wet 50 2-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 4-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 Dibromochloromethane ND 33.3 66.7 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 83.3 167 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 16.7 33.3 ug/kg wet 50 Dibromomethane ND 16.7 33.3 ug/kg wet 50 1,2-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,3-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,4-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 Dichlorodifluoromethane ND 33.3 66.7 ug/kg wet 50 ---1,1-Dichloroethane ND 8.33 16.7 ug/kg wet 50 ug/kg wet 1,2-Dichloroethane (EDC) ND 8.33 16.7 50 1,1-Dichloroethene ND 50 8.33 16.7 ug/kg wet cis-1,2-Dichloroethene ND 8.33 16.7 ug/kg wet 50 8.33 16.7 trans-1,2-Dichloroethene ND ug/kg wet 50

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 84 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 1040368 - EPA 5035A Soil Blank (1040368-BLK1) Prepared: 04/12/21 09:00 Analyzed: 04/12/21 11:30 ND 8.33 16.7 50 1,2-Dichloropropane ug/kg wet ND 16.7 33.3 ug/kg wet 50 1,3-Dichloropropane ------2,2-Dichloropropane ND 16.7 33.3 ug/kg wet 50 1,1-Dichloropropene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 cis-1,3-Dichloropropene ug/kg wet 50 trans-1,3-Dichloropropene ND 16.7 33.3 ug/kg wet 50 Ethylbenzene ND 8.33 16.7 ug/kg wet 50 Hexachlorobutadiene ND 33.3 66.7 ug/kg wet 50 2-Hexanone ND 167 333 ug/kg wet 50 Isopropylbenzene ND 16.7 33.3 ug/kg wet 50 ND 33.3 50 4-Isopropyltoluene 16.7 ug/kg wet Methylene chloride ND 167 333 ug/kg wet 50 ND 4-Methyl-2-pentanone (MiBK) 167 333 ug/kg wet 50 Methyl tert-butyl ether (MTBE) ND 16.7 33.3 ug/kg wet 50 Naphthalene ND 66.7 33.3 ug/kg wet 50 n-Propylbenzene ND 8.33 16.7 ug/kg wet 50 ND 16.7 33.3 Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane ND 8.33 16.7 ug/kg wet 50 ND 1.1.2.2-Tetrachloroethane 33.3 16.7 ug/kg wet 50 ------Tetrachloroethene (PCE) ND 8.33 16.7 ug/kg wet 50 Toluene ND 16.7 33.3 ug/kg wet 50 1,2,3-Trichlorobenzene ND 83.3 167 ug/kg wet 50 1,2,4-Trichlorobenzene ND 83.3 167 50 ug/kg wet 1,1,1-Trichloroethane ND 8.33 16.7 ug/kg wet 50 ND 1,1,2-Trichloroethane 8.33 16.7 50 ug/kg wet ------------Trichloroethene (TCE) ND 8.33 16.7 ug/kg wet 50 Trichlorofluoromethane ND 33.3 66.7 ug/kg wet 50 ---1,2,3-Trichloropropane ND 16.7 33.3 ug/kg wet 50 1,2,4-Trimethylbenzene ND 16.7 33.3 50 ug/kg wet 1,3,5-Trimethylbenzene ND 16.7 33.3 ug/kg wet 50 ND 8.33 Vinyl chloride 16.7 ug/kg wet 50 m,p-Xylene ND 16.7 33.3 ug/kg wet 50

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

Philip Nevenberg

ND

8.33

16.7

Recovery: 100 %

ug/kg wet

Limits: 80-120 %

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dilution: 1x

Philip Nerenberg, Lab Director

Page 85 of 147

50

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040368 - EPA 5035A							Soil					
Blank (1040368-BLK1)			Prepared	: 04/12/21 0	9:00 Ana	lyzed: 04/12	/21 11:30					
Surr: Toluene-d8 (Surr)		Reco	very: 104 %	Limits: 80-	120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			101 %	79-	120 %		"					
LCS (1040368-BS1)			Prepared	: 04/12/21 0	9:00 Ana	lyzed: 04/12	/21 10:36					
5035A/8260D						<u>-</u>						
Acetone	1940	500	1000	ug/kg we	t 50	2000		97	80-120%			
Acrylonitrile	1120	50.0	100	ug/kg we		1000		112	80-120%			
Benzene	1010	5.00	10.0	ug/kg we		1000		101	80-120%			
Bromobenzene	999	12.5	25.0	ug/kg we		1000		100	80-120%			
Bromochloromethane	1040	25.0	50.0	ug/kg we		1000		104	80-120%			
Bromodichloromethane	910	25.0	50.0	ug/kg we		1000		91	80-120%			
Bromoform	922	50.0	100	ug/kg we		1000		92	80-120%			
Bromomethane	1010	500	500	ug/kg we		1000		101	80-120%			
2-Butanone (MEK)	2170	250	500	ug/kg we	t 50	2000		108	80-120%			
n-Butylbenzene	1050	25.0	50.0	ug/kg we	t 50	1000		105	80-120%			
sec-Butylbenzene	1000	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
tert-Butylbenzene	966	25.0	50.0	ug/kg we	t 50	1000		97	80-120%			
Carbon disulfide	977	250	500	ug/kg we	t 50	1000		98	80-120%			
Carbon tetrachloride	971	25.0	50.0	ug/kg we	t 50	1000		97	80-120%			
Chlorobenzene	1040	12.5	25.0	ug/kg we	t 50	1000		104	80-120%			
Chloroethane	877	250	500	ug/kg we	t 50	1000		88	80-120%			
Chloroform	1020	25.0	50.0	ug/kg we		1000		102	80-120%			
Chloromethane	909	125	250	ug/kg we		1000		91	80-120%			
2-Chlorotoluene	1060	25.0	50.0	ug/kg we	t 50	1000		106	80-120%			
4-Chlorotoluene	1010	25.0	50.0	ug/kg we	t 50	1000		101	80-120%			
Dibromochloromethane	880	50.0	100	ug/kg we	t 50	1000		88	80-120%			
1,2-Dibromo-3-chloropropane	832	125	250	ug/kg we	t 50	1000		83	80-120%			
1,2-Dibromoethane (EDB)	1080	25.0	50.0	ug/kg we	t 50	1000		108	80-120%			
Dibromomethane	1070	25.0	50.0	ug/kg we	t 50	1000		107	80-120%			
1,2-Dichlorobenzene	1050	12.5	25.0	ug/kg we		1000		105	80-120%			
1,3-Dichlorobenzene	1060	12.5	25.0	ug/kg we	t 50	1000		106	80-120%			
1,4-Dichlorobenzene	970	12.5	25.0	ug/kg we		1000		97	80-120%			
Dichlorodifluoromethane	948	50.0	100	ug/kg we	t 50	1000		95	80-120%			
,1-Dichloroethane	1050	12.5	25.0	ug/kg we		1000		105	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 86 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution Result RPD Limit Amount Limits Limit Notes Batch 1040368 - EPA 5035A Soil LCS (1040368-BS1) Prepared: 04/12/21 09:00 Analyzed: 04/12/21 10:36 1,2-Dichloroethane (EDC) 1040 12.5 25.0 ug/kg wet 50 1000 104 80-120% 1,1-Dichloroethene 1020 12.5 25.0 ug/kg wet 50 1000 102 80-120% ---------1000 cis-1,2-Dichloroethene 1040 12.5 25.0 ug/kg wet 50 104 80-120% trans-1,2-Dichloroethene 1030 12.5 25.0 ug/kg wet 50 1000 103 80-120% 1050 1000 12.5 25.0 50 105 80-120% 1,2-Dichloropropane ug/kg wet 1,3-Dichloropropane 1080 25.0 50.0 ug/kg wet 50 1000 108 80-120% 50 2,2-Dichloropropane 1120 25.0 50.0 ug/kg wet 1000 112 80-120% 1000 80-120% 1,1-Dichloropropene 1040 25.0 50.0 ug/kg wet 50 104 25.0 50.0 1000 cis-1,3-Dichloropropene 984 ug/kg wet 50 98 80-120% trans-1,3-Dichloropropene 974 25.0 50.0 ug/kg wet 50 1000 97 80-120% Ethylbenzene 102 1020 25.0 50 1000 80-120% 12.5 ug/kg wet 50.0 100 Hexachlorobutadiene 1060 ug/kg wet 50 1000 106 80-120% 2130 250 500 2000 107 80-120% 2-Hexanone ug/kg wet 50 ------Isopropylbenzene 1030 25.0 50.0 ug/kg wet 50 1000 103 80-120% 1010 50.0 50 1000 101 80-120% 4-Isopropyltoluene 25.0 ug/kg wet Methylene chloride 959 250 500 ug/kg wet 50 1000 96 80-120% 2120 250 500 2000 106 80-120% 4-Methyl-2-pentanone (MiBK) ug/kg wet 50 Methyl tert-butyl ether (MTBE) 1060 25.0 50 1000 106 80-120% 50.0 ug/kg wet Naphthalene 1120 50.0 100 1000 112 80-120% ug/kg wet 50 -----n-Propylbenzene 1020 12.5 25.0 ug/kg wet 50 1000 102 80-120% 1100 25.0 50.0 1000 110 80-120% Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane 1020 12.5 25.0 ug/kg wet 50 1000 102 80-120% 1,1,2,2-Tetrachloroethane 1080 25.0 50.0 ug/kg wet 50 1000 108 80-120% Tetrachloroethene (PCE) 1110 12.5 25.0 ug/kg wet 50 1000 111 80-120% Toluene 1010 25.0 50.0 1000 101 80-120% ug/kg wet 50 ------1,2,3-Trichlorobenzene 1130 125 250 ug/kg wet 50 1000 113 80-120% 1,2,4-Trichlorobenzene 1070 125 250 50 1000 107 80-120% ug/kg wet ------1,1,1-Trichloroethane 980 12.5 25.0 ug/kg wet 50 1000 98 80-120%

Apex Laboratories

Philip Nevenberg

1.1.2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

1100

1050

912

1080

1060

1040

12.5

12.5

50.0

25.0

25.0

25.0

25.0

25.0

100

50.0

50.0

50.0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

110

105

91

108

106

104

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

Philip Nerenberg, Lab Director

Page 87 of 147

50

50

50

50

50

50

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

1000

1000

1000

1000

1000

1000

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040368 - EPA 5035A							Soil					
CS (1040368-BS1)			Prepared	1: 04/12/21 0	9:00 Anal	lyzed: 04/12	/21 10:36					
inyl chloride	948	12.5	25.0	ug/kg we	t 50	1000		95	80-120%			
n,p-Xylene	2050	25.0	50.0	ug/kg we	t 50	2000		103	80-120%			
-Xylene	1050	12.5	25.0	ug/kg we	t 50	1000		105	80-120%			
urr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			105 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			100 %	79-	120 %		"					
Ouplicate (1040368-DUP1)			Prepared	l: 04/06/21 1	2:50 Anal	yzed: 04/12	/21 12:51					
OC Source Sample: GP01-S-5.5 (A	A1D0263-01	7										
5035A/8260D												
Acetone	ND	667	1330	ug/kg dr	50		ND				30%	
Acrylonitrile	ND	66.7	133	ug/kg dr	50		ND				30%	
Benzene	ND	6.67	13.3	ug/kg dr	50		ND				30%	
Bromobenzene	ND	16.7	33.4	ug/kg dr	50		ND				30%	
Bromochloromethane	ND	33.4	66.7	ug/kg dr	7 50		ND				30%	
Bromodichloromethane	ND	33.4	66.7	ug/kg dr	50		ND				30%	
Bromoform	ND	66.7	133	ug/kg dr	50		ND				30%	
Bromomethane	ND	667	667	ug/kg dr	50		ND				30%	
-Butanone (MEK)	ND	334	667	ug/kg dr	50		ND				30%	
-Butylbenzene	ND	33.4	66.7	ug/kg dr	50		ND				30%	
ec-Butylbenzene	ND	33.4	66.7	ug/kg dr	50		ND				30%	
ert-Butylbenzene	ND	33.4	66.7	ug/kg dr			ND				30%	
Carbon disulfide	ND	334	667	ug/kg dr	50		ND				30%	
Carbon tetrachloride	ND	33.4	66.7	ug/kg dr	7 50		ND				30%	
Chlorobenzene	ND	16.7	33.4	ug/kg dr	7 50		ND				30%	
Chloroethane	ND	334	667	ug/kg dr			ND				30%	
Chloroform	ND	33.4	66.7	ug/kg dr			ND				30%	
Chloromethane	ND	167	334	ug/kg dr			ND				30%	
-Chlorotoluene	ND	33.4	66.7	ug/kg dr			ND				30%	
-Chlorotoluene	ND	33.4	66.7	ug/kg dr			ND				30%	
Dibromochloromethane	ND	66.7	133	ug/kg dr			ND				30%	
,2-Dibromo-3-chloropropane	ND	167	334	ug/kg dr			ND				30%	
,2-Dibromoethane (EDB)	ND	33.4	66.7	ug/kg dr			ND				30%	
Dibromomethane	ND	33.4	66.7	ug/kg dr			ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 88 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:

Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 1040368 - EPA 5035A Soil **Duplicate (1040368-DUP1)** Prepared: 04/06/21 12:50 Analyzed: 04/12/21 12:51 QC Source Sample: GP01-S-5.5 (A1D0263-01) ug/kg dry 1,2-Dichlorobenzene ND 16.7 33.4 50 ND 30% ND 1,3-Dichlorobenzene 16.7 33.4 ug/kg dry 50 ND 30% 1,4-Dichlorobenzene ND 16.7 33.4 ug/kg dry 50 ND 30% Dichlorodifluoromethane ND 66.7 133 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 16.7 33.4 ug/kg dry 50 ND 30% ---1,2-Dichloroethane (EDC) ND 16.7 33.4 ug/kg dry 50 ND 30% 1,1-Dichloroethene ND 16.7 33.4 50 ND 30% ug/kg dry ND ND 30% cis-1,2-Dichloroethene 16.7 33.4 ug/kg dry 50 trans-1,2-Dichloroethene ND 16.7 33.4 ug/kg dry 50 ND 30% 1,2-Dichloropropane ND 16.7 33.4 ug/kg dry 50 ND 30% 1,3-Dichloropropane ND 33.4 66.7 ug/kg dry 50 ND 30% ND 66.7 30% 2,2-Dichloropropane 33.4 ug/kg dry 50 ND 1,1-Dichloropropene ND 33.4 66.7 ug/kg dry 50 ND 30% ND 33.4 ND 30% cis-1,3-Dichloropropene 66.7 ug/kg dry 50 trans-1,3-Dichloropropene ND 33.4 66.7 ug/kg dry 50 ND 30% Ethylbenzene ND 16.7 33.4 ug/kg dry 50 ND 30% Hexachlorobutadiene ND 66.7 133 ug/kg dry 50 ND 30% ND 334 30% 2-Hexanone 667 50 ND ug/kg dry ND Isopropylbenzene 33.4 66.7 ug/kg dry 50 ND 30% ND 33.4 66.7 50 ND 30% 4-Isopropyltoluene ug/kg dry ND ND Methylene chloride 334 667 ug/kg dry 50 30% 4-Methyl-2-pentanone (MiBK) ND 334 667 ug/kg dry 50 ND ---30% Methyl tert-butyl ether (MTBE) ND 33.4 66.7 ug/kg dry 50 ND 30% Naphthalene ND ND 30% 66.7 133 ug/kg dry 50 ND 16.7 33.4 30% n-Propylbenzene ug/kg dry 50 ND ND 33.4 66.7 ND 30% Styrene ug/kg dry 50 1,1,1,2-Tetrachloroethane ND 16.7 33.4 ND 30% ug/kg dry 50 1,1,2,2-Tetrachloroethane ND 33.4 66.7 ug/kg dry 50 ---ND ------30% Tetrachloroethene (PCE) ND 16.7 33.4 ug/kg dry 50 ND 30% Toluene ND 33.4 66.7 ND 30% ug/kg dry 50 ---1,2,3-Trichlorobenzene ND 167 334 ug/kg dry 50 ND 30% 167 334 1,2,4-Trichlorobenzene ND 50 ND 30% ug/kg dry 1,1,1-Trichloroethane ND 16.7 33.4 ug/kg dry 50 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 89 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040368 - EPA 5035A							Soil					
Duplicate (1040368-DUP1)			Prepared	1: 04/06/21 1	2:50 Anal	yzed: 04/12/	/21 12:51					
QC Source Sample: GP01-S-5.5 (A	A1D0263-01)										
1,1,2-Trichloroethane	ND	16.7	33.4	ug/kg dry	50		ND				30%	
Trichloroethene (TCE)	ND	16.7	33.4	ug/kg dry	7 50		ND				30%	
Trichlorofluoromethane	ND	66.7	133	ug/kg dry	7 50		ND				30%	
1,2,3-Trichloropropane	ND	33.4	66.7	ug/kg dry	7 50		ND				30%	
1,2,4-Trimethylbenzene	ND	33.4	66.7	ug/kg dry	7 50		ND				30%	
1,3,5-Trimethylbenzene	ND	33.4	66.7	ug/kg dry			ND				30%	
Vinyl chloride	ND	16.7	33.4	ug/kg dry	7 50		ND				30%	
m,p-Xylene	ND	33.4	66.7	ug/kg dry	7 50		ND				30%	
o-Xylene	ND	16.7	33.4	ug/kg dry	7 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80-	120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			100 %		120 %		"					
4-Bromofluorobenzene (Surr)			102 %		120 %		"					
QC Source Sample: GP02-S-8 (A	1D0263-02)											
5035A/8260D												
Acetone	ND	663	1330	ug/kg dry	50		ND				30%	
Acrylonitrile	ND	66.3	133	ug/kg dry	7 50		ND				30%	
Benzene	ND	6.63	13.3	ug/kg dry	7 50		ND				30%	
Bromobenzene	ND	16.6	33.2	ug/kg dry	7 50		ND				30%	
Bromochloromethane	ND	33.2	66.3	ug/kg dry	7 50		ND				30%	
Bromodichloromethane				/1 1							30%	
bromodicinoromemane	ND	33.2	66.3	ug/kg dry	7 50		ND				3070	
Bromoform	ND ND	33.2 66.3	66.3 133	ug/kg dry ug/kg dry			ND ND				30%	
Bromoform					50							
Bromoform Bromomethane	ND	66.3	133	ug/kg dry	50 50		ND				30%	
Bromoform Bromomethane 2-Butanone (MEK)	ND ND	66.3 663	133 663	ug/kg dry ug/kg dry	50 50 50 50		ND ND				30% 30%	
Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene	ND ND ND	66.3 663 332	133 663 663	ug/kg dry ug/kg dry ug/kg dry	50 50 50 50 50 50	 	ND ND ND		 		30% 30% 30%	
Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	ND ND ND ND	66.3 663 332 33.2	133 663 663 66.3	ug/kg dry ug/kg dry ug/kg dry ug/kg dry	50 50 50 50 50 50 50 50	 	ND ND ND ND	 	 		30% 30% 30% 30%	
Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene ert-Butylbenzene	ND ND ND ND	66.3 663 332 33.2 33.2	133 663 663 66.3 66.3	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	50 50 50 50 50 50 50 50 50	 	ND ND ND ND	 	 	 	30% 30% 30% 30% 30%	
	ND ND ND ND ND	66.3 663 332 33.2 33.2 33.2	133 663 663 66.3 66.3	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	50 50 50 50 50 50 50 50 50 50	 	ND ND ND ND ND	 	 	 	30% 30% 30% 30% 30% 30%	
Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene sert-Butylbenzene Carbon disulfide Carbon tetrachloride	ND ND ND ND ND ND ND ND ND	66.3 663 332 33.2 33.2 33.2 33.2	133 663 663 66.3 66.3 66.3	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50		ND ND ND ND ND ND ND ND	 	 	 	30% 30% 30% 30% 30% 30% 30%	
Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene ert-Butylbenzene Carbon disulfide	ND	66.3 663 332 33.2 33.2 33.2 33.2 33.2	133 663 663 66.3 66.3 66.3 663	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50		ND		 	 	30% 30% 30% 30% 30% 30% 30% 30%	

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 90 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:

Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 1040368 - EPA 5035A Soil **Duplicate (1040368-DUP2)** Prepared: 04/07/21 09:15 Analyzed: 04/12/21 13:45 QC Source Sample: GP02-S-8 (A1D0263-02) ug/kg dry Chloromethane ND 166 332 50 ND 30% ND 33.2 2-Chlorotoluene 66.3 ug/kg dry 50 ND 30% 4-Chlorotoluene ND 33.2 66.3 ug/kg dry 50 ND 30% Dibromochloromethane ND 66.3 133 ug/kg dry 50 ND 30% 1,2-Dibromo-3-chloropropane ND 166 332 ug/kg dry 50 ND 30% ---ND 33.2 1,2-Dibromoethane (EDB) 66.3 ug/kg dry 50 ND 30% ug/kg dry Dibromomethane ND 33.2 66.3 50 ND 30% ND ND 30% 1,2-Dichlorobenzene 16.6 33.2 ug/kg dry 50 1,3-Dichlorobenzene ND 16.6 33.2 ug/kg dry 50 ND 30% 1,4-Dichlorobenzene ND 16.6 33.2 ug/kg dry 50 ND 30% Dichlorodifluoromethane ND 66.3 133 ug/kg dry 50 ND 30% ND 16.6 33.2 ND 30% 1.1-Dichloroethane ug/kg dry 50 1,2-Dichloroethane (EDC) ND 16.6 33.2 ug/kg dry 50 ND 30% ND 16.6 33.2 ND 30% 1,1-Dichloroethene ug/kg dry 50 33.2 cis-1,2-Dichloroethene ND 16.6 ug/kg dry 50 ND 30% trans-1,2-Dichloroethene ND 16.6 33.2 ug/kg dry 50 ND 30% 1,2-Dichloropropane ND 16.6 33.2 ug/kg dry 50 ND 30% ND 33.2 ND 30% 1,3-Dichloropropane 66.3 50 ug/kg dry ND 2,2-Dichloropropane 33.2 66.3 ug/kg dry 50 ND 30% 33.2 ND 66.3 50 ND 30% 1,1-Dichloropropene ug/kg dry ND 33.2 ND cis-1,3-Dichloropropene 66.3 ug/kg dry 50 30% trans-1,3-Dichloropropene ND 33.2 66.3 ug/kg dry 50 ND ---30% Ethylbenzene ND 16.6 33.2 ug/kg dry 50 ND 30% ND ND 30% Hexachlorobutadiene 66.3 133 ug/kg dry 50 ND 332 663 ND 30% 2-Hexanone ug/kg dry 50 ND 33.2 66.3 ND 30% Isopropylbenzene ug/kg dry 50 ND 33.2 66.3 ND 30% 4-Isopropyltoluene ug/kg dry 50 Methylene chloride ND 332 663 ug/kg dry 50 ---ND 30% 4-Methyl-2-pentanone (MiBK) ND 332 663 ug/kg dry 50 ND 30% Methyl tert-butyl ether (MTBE) ND 33.2 66.3 ND 30% ug/kg dry 50 ---Naphthalene ND 66.3 133 ug/kg dry 50 ND 30% ND 33.2 ND n-Propylbenzene 16.6 50 30% ug/kg dry Styrene ND 33.2 66.3 ug/kg dry 50 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 91 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Cor	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040368 - EPA 5035A							Soil					
Duplicate (1040368-DUP2)			Prepared	: 04/07/21 0	9:15 Anal	lyzed: 04/12/	/21 13:45					
QC Source Sample: GP02-S-8 (A1	1D0263-02)											
1,1,1,2-Tetrachloroethane	ND	16.6	33.2	ug/kg dr	y 50		ND				30%	
1,1,2,2-Tetrachloroethane	ND	33.2	66.3	ug/kg dr	y 50		ND				30%	
Tetrachloroethene (PCE)	ND	16.6	33.2	ug/kg dr	y 50		ND				30%	
Toluene	ND	33.2	66.3	ug/kg dr	y 50		ND				30%	
1,2,3-Trichlorobenzene	ND	166	332	ug/kg dr	y 50		ND				30%	
1,2,4-Trichlorobenzene	ND	166	332	ug/kg dr	y 50		ND				30%	
1,1,1-Trichloroethane	ND	16.6	33.2	ug/kg dr	y 50		ND				30%	
1,1,2-Trichloroethane	ND	16.6	33.2	ug/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND	16.6	33.2	ug/kg dr			ND				30%	
Trichlorofluoromethane	ND	66.3	133	ug/kg dr	y 50		ND				30%	
,2,3-Trichloropropane	ND	33.2	66.3	ug/kg dr	y 50		ND				30%	
,2,4-Trimethylbenzene	ND	33.2	66.3	ug/kg dr			ND				30%	
,3,5-Trimethylbenzene	ND	33.2	66.3	ug/kg dr	y 50		ND				30%	
Vinyl chloride	ND	16.6	33.2	ug/kg dr	y 50		ND				30%	
n,p-Xylene	ND	33.2	66.3	ug/kg dr	y 50		ND				30%	
o-Xylene	ND	16.6	33.2	ug/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 101 %	Limits: 80-	120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			101 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			102 %	<i>7</i> 9-	120 %		"					
Matrix Spike (1040368-MS1)			Prenared	: 04/06/21 1	5:35 Anal	lyzed: 04/12/	/21 17:47					
QC Source Sample: GP06-S-7.5-D	UP (A1D02	63-07)	1			<u>, </u>						
Acetone	3160	787	1570	ug/kg dr	y 50	3150	ND	100	36-164%			
Acrylonitrile	1730	78.7	157	ug/kg dr		1580	ND		65-134%			
Benzene	1580	7.87	15.7	ug/kg dr		1580	ND	100	77-121%			
Bromobenzene	1570	19.7	39.4	ug/kg dr		1580	ND	100	78-121%			
Bromochloromethane	1670	39.4	78.7	ug/kg dr		1580	ND	106	78-125%			
Bromodichloromethane	1440	39.4	78.7	ug/kg dr		1580	ND	91	75-127%			
Bromoform	1430	78.7	157	ug/kg dr		1580	ND		67-132%			
Bromomethane	1720	787	787	ug/kg dr		1580	ND		53-143%			
-Butanone (MEK)	3430	394	787	ug/kg dr		3150	ND		51-148%			
-Butylbenzene	1620	39.4	78.7	ug/kg dr		1580	ND		70-128%			
ec-Butylbenzene	1560	39.4	78.7	ug/kg dr		1580	ND		73-126%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 92 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 1040368 - EPA 5035A Soil Matrix Spike (1040368-MS1) Prepared: 04/06/21 15:35 Analyzed: 04/12/21 17:47 QC Source Sample: GP06-S-7.5-DUP (A1D0263-07) ug/kg dry tert-Butylbenzene 1500 39.4 78.7 50 1580 ND 95 73-125% 394 787 93 Carbon disulfide 1460 ug/kg dry 50 1580 ND 63-132% Carbon tetrachloride 1570 39.4 78.7 ug/kg dry 50 1580 ND 99 70-135% Chlorobenzene 1580 19.7 39.4 ug/kg dry 50 1580 ND 100 79-120% Chloroethane 1480 394 787 ug/kg dry 50 1580 ND 94 59-139% 1590 1580 ND 101 Chloroform 39.4 78.7 ug/kg dry 50 78-123% Chloromethane 1500 197 394 50 1580 ND 95 50-136% ug/kg dry 2-Chlorotoluene 39.4 ND 105 75-122% 1650 78.7 ug/kg dry 50 1580 4-Chlorotoluene 1580 39.4 78.7 ug/kg dry 50 1580 ND 100 72-124% Dibromochloromethane 1360 78.7 157 ug/kg dry 50 1580 ND 86 74-126% 1,2-Dibromo-3-chloropropane 1230 197 394 ug/kg dry 50 1580 ND 78 61-132% 1,2-Dibromoethane (EDB) 39.4 78.7 50 1580 ND 104 78-122% 1630 ug/kg dry Dibromomethane 1610 39.4 78.7 ug/kg dry 50 1580 ND 102 78-125% 1610 19.7 39.4 1580 ND 102 78-121% 1,2-Dichlorobenzene ug/kg dry 50 1,3-Dichlorobenzene 1610 19.7 39.4 ug/kg dry 50 1580 ND 102 77-121% 1.4-Dichlorobenzene 1490 19.7 39.4 ug/kg dry 50 1580 ND 95 75-120% ___ Dichlorodifluoromethane 1490 78.7 157 ug/kg dry 50 1580 ND 95 29-149% 1,1-Dichloroethane 1630 19.7 39.4 1580 ND 103 76-125% 50 ug/kg dry 19.7 1580 ND 73-128% 1,2-Dichloroethane (EDC) 1640 39.4 ug/kg dry 50 104 19.7 39.4 1,1-Dichloroethene 1610 50 1580 ND 102 70-131% ug/kg dry 19.7 1580 ND 105 77-123% cis-1,2-Dichloroethene 1650 39.4 ug/kg dry 50 trans-1,2-Dichloroethene 1600 19.7 39.4 ug/kg dry 50 1580 ND 101 74-125% 1,2-Dichloropropane 1630 19.7 39.4 ug/kg dry 50 1580 ND 104 76-123% 39.4 78.7 ND 106 1,3-Dichloropropane 1670 ug/kg dry 50 1580 77-121% 39.4 78.7 94 67-133% 2,2-Dichloropropane 1490 ug/kg dry 50 1580 ND 1600 39.4 78.7 1580 ND 102 76-125% 1,1-Dichloropropene ug/kg dry 50 cis-1,3-Dichloropropene 1440 39.4 78.7 1580 ND 91 74-126% ug/kg dry 50 71-130% trans-1,3-Dichloropropene 1380 39.4 78.7 ug/kg dry 50 1580 ND 88 Ethylbenzene 1560 19.7 39.4 ug/kg dry 50 1580 ND 99 76-122% Hexachlorobutadiene 1500 78.7 157 1580 ND 95 61-135% ug/kg dry 50 2-Hexanone 3170 394 787 ug/kg dry 50 3150 ND 100 53-145% Isopropylbenzene 39.4 78.7 ND 98 1550 50 1580 68-134% ug/kg dry ---4-Isopropyltoluene 1580 39.4 78.7 ug/kg dry 50 1580 ND 100 73-127%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 93 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> Project: <u>Former Planter's Hotel Site</u>

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 1040368 - EPA 5035A Soil Matrix Spike (1040368-MS1) Prepared: 04/06/21 15:35 Analyzed: 04/12/21 17:47 QC Source Sample: GP06-S-7.5-DUP (A1D0263-07) Methylene chloride 1470 394 787 ug/kg dry 50 1580 ND 94 70-128% 394 787 4-Methyl-2-pentanone (MiBK) 3220 ug/kg dry 50 3150 ND 102 65-135% Methyl tert-butyl ether (MTBE) 1570 39.4 78.7 ug/kg dry 50 1580 ND 100 73-125% Naphthalene 1610 78.7 157 ug/kg dry 50 1580 ND 102 62-129% n-Propylbenzene 1610 19.7 39.4 ug/kg dry 50 1580 ND 102 73-125% 78.7 1580 ND 105 76-124% Styrene 1660 39.4 ug/kg dry 50 1,1,1,2-Tetrachloroethane 1570 19.7 39.4 ug/kg dry 50 1580 ND 99 78-125% 1,1,2,2-Tetrachloroethane 39.4 1580 ND 104 70-124% 1650 78.7 ug/kg dry 50 Tetrachloroethene (PCE) 1620 19.7 39.4 ug/kg dry 50 1580 ND 102 73-128% Toluene 1540 39.4 78.7 ug/kg dry 50 1580 ND 97 77-121% 1,2,3-Trichlorobenzene 1650 197 394 ug/kg dry 50 1580 ND 104 66-130% 197 1,2,4-Trichlorobenzene 1590 394 50 1580 ND 101 67-129% ug/kg dry 1580 97 73-130% 1,1,1-Trichloroethane 1530 19.7 39.4 ug/kg dry 50 ND 1,1,2-Trichloroethane 1660 105 19.7 39.4 1580 ND 78-121% ug/kg dry 50 19.7 39.4 Trichloroethene (TCE) 1600 ug/kg dry 50 1580 ND 101 77-123% Trichlorofluoromethane 1520 78.7 157 ug/kg dry 50 1580 ND 97 62-140% 1,2,3-Trichloropropane 1670 39.4 78.7 ug/kg dry 50 1580 ND 106 73-125% 39.4 78.7 1580 ND 105 75-123% 1,2,4-Trimethylbenzene 1660 50 ug/kg dry 1,3,5-Trimethylbenzene 39.4 1580 ND 105 73-124% 1650 78.7 ug/kg dry 50 19.7 39.4 98 Vinyl chloride 1550 50 1580 ND 56-135% ug/kg dry m,p-Xylene 3130 39.4 78.7 3150 ND 99 77-124% ug/kg dry 50 19.7 o-Xylene 1590 39.4 ug/kg dry 50 1580 ND 101 77-123% 100 % Surr: 1,4-Difluorobenzene (Surr) Dilution: 1x Recovery: Limits: 80-120 % Toluene-d8 (Surr) 102 % 80-120 % 4-Bromofluorobenzene (Surr) 99 % 79-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 94 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 1040426 - EPA 5035A Soil Blank (1040426-BLK1) Prepared: 04/13/21 09:00 Analyzed: 04/13/21 11:57 5035A/8260D ND 333 ug/kg wet 50 Acetone ND 66.7 50 Acrylonitrile 33.3 ug/kg wet Benzene ND 3.33 6.67 ug/kg wet 50 Bromobenzene ND 8.33 16.7 ug/kg wet 50 Bromochloromethane ND 16.7 33.3 ug/kg wet 50 ND Bromodichloromethane 33.3 ug/kg wet 50 16.7 Bromoform ND 33.3 ug/kg wet 50 66.7 333 Bromomethane ND 333 ug/kg wet 50 2-Butanone (MEK) ND 167 333 ug/kg wet 50 n-Butylbenzene ND 16.7 33.3 50 ug/kg wet sec-Butylbenzene ND 16.7 33.3 ug/kg wet 50 ND tert-Butylbenzene 16.7 33.3 50 ug/kg wet Carbon disulfide ND 167 333 ug/kg wet 50 Carbon tetrachloride ND 33.3 50 16.7 ug/kg wet Chlorobenzene ND 8.33 16.7 ug/kg wet 50 Chloroethane ND 167 333 ug/kg wet 50 ------Chloroform ND 16.7 33.3 ug/kg wet 50 ND 83.3 167 Chloromethane ug/kg wet 50 2-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 4-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 Dibromochloromethane ND 33.3 66.7 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 83.3 167 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 16.7 33.3 ug/kg wet 50 Dibromomethane ND 16.7 33.3 ug/kg wet 50 1,2-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,3-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,4-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 Dichlorodifluoromethane ND 66.7 66.7 ug/kg wet 50 ---1,1-Dichloroethane ND 8.33 16.7 ug/kg wet 50 ug/kg wet 1,2-Dichloroethane (EDC) ND 8.33 16.7 50 1,1-Dichloroethene ND 50 8.33 16.7 ug/kg wet cis-1,2-Dichloroethene ND 8.33 16.7 ug/kg wet 50 8.33 16.7 trans-1,2-Dichloroethene ND ug/kg wet 50

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 95 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

% REC RPD Detection Reporting Spike Source Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 1040426 - EPA 5035A Soil Blank (1040426-BLK1) Prepared: 04/13/21 09:00 Analyzed: 04/13/21 11:57 ND 8.33 16.7 50 1,2-Dichloropropane ug/kg wet ND 16.7 33.3 ug/kg wet 50 1,3-Dichloropropane ------2,2-Dichloropropane ND 16.7 33.3 ug/kg wet 50 1,1-Dichloropropene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 cis-1,3-Dichloropropene ug/kg wet 50 trans-1,3-Dichloropropene ND 16.7 33.3 ug/kg wet 50 Ethylbenzene ND 8.33 16.7 ug/kg wet 50 Hexachlorobutadiene ND 33.3 66.7 ug/kg wet 50 2-Hexanone ND 167 333 ug/kg wet 50 Isopropylbenzene ND 16.7 33.3 ug/kg wet 50 ND 33.3 50 4-Isopropyltoluene 16.7 ug/kg wet Methylene chloride ND 167 333 ug/kg wet 50 ND 4-Methyl-2-pentanone (MiBK) 167 333 ug/kg wet 50 Methyl tert-butyl ether (MTBE) ND 16.7 33.3 ug/kg wet 50 Naphthalene ND 33.3 66.7 ug/kg wet 50 n-Propylbenzene ND 8.33 16.7 ug/kg wet 50 ND 16.7 33.3 Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane ND 8.33 16.7 ug/kg wet 50 ND 1.1.2.2-Tetrachloroethane 33.3 16.7 ug/kg wet 50 ------Tetrachloroethene (PCE) ND 8.33 16.7 ug/kg wet 50 Toluene ND 16.7 33.3 ug/kg wet 50 1,2,3-Trichlorobenzene ND 83.3 167 ug/kg wet 50 1,2,4-Trichlorobenzene ND 83.3 167 50 ug/kg wet 1,1,1-Trichloroethane ND 8.33 16.7 ug/kg wet 50 ND 1,1,2-Trichloroethane 8.33 16.7 50 ug/kg wet ------------Trichloroethene (TCE) ND 8.33 16.7 ug/kg wet 50 Trichlorofluoromethane ND 33.3 66.7 ug/kg wet 50 ---

Surr: 1,4-Difluorobenzene (Surr) Recovery: 101 % Limits: 80-120 % Dilution: Ix

16.7

16.7

16.7

8.33

16.7

8.33

33.3

33.3

33.3

16.7

33.3

16.7

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

50

50

50

50

50

50

ND

ND

ND

ND

ND

ND

Apex Laboratories

Philip Nevenberg

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl chloride

m,p-Xylene

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 96 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040426 - EPA 5035A							Soil					
Blank (1040426-BLK1)			Prepared	1: 04/13/21 0	9:00 Anal	lyzed: 04/13	/21 11:57					
Surr: Toluene-d8 (Surr)		Reco	very: 103 %	Limits: 80-	120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			101 %	79-	120 %		"					
LCS (1040426-BS1)			Prepared	1: 04/13/21 0	9:00 Anal	lyzed: 04/13	/21 10:36					
5035A/8260D												
Acetone	1980	500	1000	ug/kg we	t 50	2000		99	80-120%			
Acrylonitrile	1140	50.0	100	ug/kg we	t 50	1000		114	80-120%			
Benzene	1040	5.00	10.0	ug/kg we	t 50	1000		104	80-120%			
Bromobenzene	994	12.5	25.0	ug/kg we	t 50	1000		99	80-120%			
Bromochloromethane	1100	25.0	50.0	ug/kg we	t 50	1000		110	80-120%			
Bromodichloromethane	956	25.0	50.0	ug/kg we	t 50	1000		96	80-120%			
Bromoform	986	50.0	100	ug/kg we	t 50	1000		99	80-120%			
Bromomethane	1070	500	500	ug/kg we	t 50	1000		107	80-120%			
2-Butanone (MEK)	2230	250	500	ug/kg we	t 50	2000		111	80-120%			
n-Butylbenzene	1080	25.0	50.0	ug/kg we	t 50	1000		108	80-120%			
sec-Butylbenzene	1040	25.0	50.0	ug/kg we	t 50	1000		104	80-120%			
ert-Butylbenzene	989	25.0	50.0	ug/kg we	t 50	1000		99	80-120%			
Carbon disulfide	906	250	500	ug/kg we	t 50	1000		91	80-120%			
Carbon tetrachloride	1080	25.0	50.0	ug/kg we	t 50	1000		108	80-120%			
Chlorobenzene	1020	12.5	25.0	ug/kg we	t 50	1000		102	80-120%			
Chloroethane	944	250	500	ug/kg we		1000		94	80-120%			
Chloroform	1050	25.0	50.0	ug/kg we	t 50	1000		105	80-120%			
Chloromethane	894	125	250	ug/kg we	t 50	1000		89	80-120%			
2-Chlorotoluene	1070	25.0	50.0	ug/kg we	t 50	1000		107	80-120%			
4-Chlorotoluene	1040	25.0	50.0	ug/kg we	t 50	1000		104	80-120%			
Dibromochloromethane	927	50.0	100	ug/kg we	t 50	1000		93	80-120%			
1,2-Dibromo-3-chloropropane	843	125	250	ug/kg we	t 50	1000		84	80-120%			
1,2-Dibromoethane (EDB)	1050	25.0	50.0	ug/kg we	t 50	1000		105	80-120%			
Dibromomethane	1040	25.0	50.0	ug/kg we		1000		104	80-120%			
1,2-Dichlorobenzene	1060	12.5	25.0	ug/kg we		1000		106	80-120%			
,3-Dichlorobenzene	1060	12.5	25.0	ug/kg we		1000		106	80-120%			
1,4-Dichlorobenzene	986	12.5	25.0	ug/kg we		1000		99	80-120%			
Dichlorodifluoromethane	787	100	100	ug/kg we		1000		79	80-120%			
1,1-Dichloroethane	1080	12.5	25.0	ug/kg we		1000			80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 97 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

% REC RPD Detection Reporting Spike Source % REC Analyte Result Limit Units Dilution Result RPD Limit Amount Limits Limit Notes Batch 1040426 - EPA 5035A Soil LCS (1040426-BS1) Prepared: 04/13/21 09:00 Analyzed: 04/13/21 10:36 1,2-Dichloroethane (EDC) 1070 12.5 25.0 50 1000 107 80-120% ug/kg wet 1,1-Dichloroethene 1040 12.5 25.0 ug/kg wet 50 1000 104 80-120% --------cis-1,2-Dichloroethene 1090 12.5 25.0 ug/kg wet 50 1000 109 80-120% trans-1,2-Dichloroethene 1060 12.5 25.0 ug/kg wet 50 1000 106 80-120% 1060 12.5 25.0 50 1000 106 80-120% 1,2-Dichloropropane ug/kg wet 1,3-Dichloropropane 1100 25.0 50.0 ug/kg wet 50 1000 110 80-120% 2,2-Dichloropropane 1110 25.0 50.0 ug/kg wet 50 1000 111 80-120% 1000 1,1-Dichloropropene 1050 25.0 50.0 ug/kg wet 50 105 80-120% 971 25.0 50.0 1000 97 cis-1,3-Dichloropropene ug/kg wet 50 80-120% trans-1,3-Dichloropropene 935 25.0 50.0 ug/kg wet 50 1000 93 80-120% Ethylbenzene 104 1040 25.0 50 1000 80-120% 12.5 ug/kg wet 50.0 100 Hexachlorobutadiene 1020 ug/kg wet 50 1000 102 80-120% 250 500 2000 108 80-120% 2-Hexanone 2160 ug/kg wet 50 ------Isopropylbenzene 1040 25.0 50.0 ug/kg wet 50 1000 104 80-120% 1040 50.0 50 1000 104 80-120% 4-Isopropyltoluene 25.0 ug/kg wet Methylene chloride 949 250 500 ug/kg wet 50 1000 95 80-120% 2120 250 500 2000 106 80-120% 4-Methyl-2-pentanone (MiBK) ug/kg wet 50 Methyl tert-butyl ether (MTBE) 1030 25.0 50 1000 103 80-120% 50.0 ug/kg wet Naphthalene 1040 50.0 100 1000 104 80-120% ug/kg wet 50 -----n-Propylbenzene 1060 12.5 25.0 ug/kg wet 50 1000 106 80-120% 1100 25.0 50.0 1000 110 80-120% Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane 1080 12.5 25.0 ug/kg wet 50 1000 108 80-120% 1,1,2,2-Tetrachloroethane 1100 25.0 50.0 ug/kg wet 50 1000 110 80-120% Tetrachloroethene (PCE) 1040 12.5 25.0 ug/kg wet 50 1000 104 80-120% Toluene 1000 25.0 1000 100 80-120% 50.0 ug/kg wet 50 ------1,2,3-Trichlorobenzene 1070 125 250 ug/kg wet 50 1000 107 80-120% 1,2,4-Trichlorobenzene 1040 125 250 50 1000 104 80-120% ug/kg wet ------1,1,1-Trichloroethane 1020 12.5 25.0 ug/kg wet 50 1000 102 80-120% 1.1.2-Trichloroethane 1070 12.5 25.0 50 1000 107 80-120% ug/kg wet Trichloroethene (TCE) 1040 12.5 25.0 ug/kg wet 50 1000 104 80-120% Trichlorofluoromethane 971 50.0 100 50 1000 97 80-120% ug/kg wet

Apex Laboratories

Philip Nevenberg

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

1070

1090

1080

25.0

25.0

25.0

50.0

50.0

50.0

ug/kg wet

ug/kg wet

ug/kg wet

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

107

109

108

80-120%

80-120%

80-120%

Philip Nerenberg, Lab Director

Page 98 of 147

50

50

50

1000

1000

1000

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040426 - EPA 5035A							Soil					
LCS (1040426-BS1)			Prepared	1: 04/13/21 0	9:00 Ana	lyzed: 04/13	/21 10:36					
Vinyl chloride	950	12.5	25.0	ug/kg we	t 50	1000		95	80-120%			
m,p-Xylene	2070	25.0	50.0	ug/kg we	t 50	2000		103	80-120%			
o-Xylene	1040	12.5	25.0	ug/kg we	t 50	1000		104	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			103 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			98 %	79-	120 %		"					
Duplicate (1040426-DUP1)			Prepared	1: 04/08/21 0	9:05 Ana	lyzed: 04/13	/21 18:14					
OC Source Sample: Non-SDG (A1	D0350-01)											
Acetone	ND	721	1440	ug/kg dry	y 50		ND				30%	
Acrylonitrile	ND	180	180	ug/kg dry	y 50		ND				30%	R-0
Benzene	ND	7.21	14.4	ug/kg dry	y 50		ND				30%	
Bromobenzene	ND	18.0	36.1	ug/kg dry	y 50		ND				30%	
Bromochloromethane	ND	36.1	72.1	ug/kg dry	y 50		ND				30%	
Bromodichloromethane	ND	361	361	ug/kg dry	y 50		ND				30%	R-0
Bromoform	ND	72.1	144	ug/kg dry	y 50		ND				30%	
Bromomethane	ND	721	721	ug/kg dry	y 50		ND				30%	
2-Butanone (MEK)	ND	361	721	ug/kg dry	y 50		ND				30%	
n-Butylbenzene	ND	36.1	72.1	ug/kg dry	y 50		ND				30%	
sec-Butylbenzene	ND	36.1	72.1	ug/kg dry	y 50		ND				30%	
tert-Butylbenzene	ND	36.1	72.1	ug/kg dry	y 50		ND				30%	
Carbon disulfide	ND	361	721	ug/kg dry	y 50		ND				30%	
Carbon tetrachloride	ND	36.1	72.1	ug/kg dry	y 50		ND				30%	
Chlorobenzene	ND	433	433	ug/kg dry	y 50		ND				30%	R-0
Chloroethane	ND	361	721	ug/kg dry	y 50		ND				30%	
Chloroform	ND	36.1	72.1	ug/kg dry	y 50		ND				30%	
Chloromethane	ND	180	361	ug/kg dry	y 50		ND				30%	
2-Chlorotoluene	ND	36.1	72.1	ug/kg dry	y 50		ND				30%	
4-Chlorotoluene	ND	36.1	72.1	ug/kg dry	y 50		ND				30%	
Dibromochloromethane	ND	72.1	144	ug/kg dry	y 50		ND				30%	
1,2-Dibromo-3-chloropropane	ND	180	361	ug/kg dry			ND				30%	
1,2-Dibromoethane (EDB)	ND	36.1	72.1	ug/kg dry	y 50		ND				30%	
Dibromomethane	ND	36.1	72.1	ug/kg dry			ND				30%	
1,2-Dichlorobenzene	ND	18.0	36.1	ug/kg dry			ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 99 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 1040426 - EPA 5035A Soil **Duplicate (1040426-DUP1)** Prepared: 04/08/21 09:05 Analyzed: 04/13/21 18:14 QC Source Sample: Non-SDG (A1D0350-01) 1,3-Dichlorobenzene ND 18.0 36.1 50 ND 30% ug/kg dry ND 36.1 1,4-Dichlorobenzene 18.0 ug/kg dry 50 ND 30% Dichlorodifluoromethane ND 144 144 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 18.0 36.1 ug/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 18.0 36.1 ug/kg dry 50 ND 30% ---ND 1,1-Dichloroethene 18.0 36.1 ug/kg dry 50 ND 30% cis-1,2-Dichloroethene ND 18.0 36.1 50 ND 30% ug/kg dry trans-1,2-Dichloroethene ND 30% 18.0 36.1 ug/kg dry 50 ND 1,2-Dichloropropane ND 18.0 36.1 ug/kg dry 50 ND 30% 1,3-Dichloropropane ND 36.1 72.1 ug/kg dry 50 ND 30% 2,2-Dichloropropane ND 36.1 72.1 ug/kg dry 50 ND 30% ND 36.1 72.1 30% 1,1-Dichloropropene ug/kg dry 50 ND cis-1,3-Dichloropropene ND 36.1 72.1 ug/kg dry 50 ND 30% ND 36.1 72.1 ND 30% trans-1,3-Dichloropropene ug/kg dry 50 Ethylbenzene ND 18.0 36.1 ug/kg dry 50 ND 30% Hexachlorobutadiene ND 72.1 144 ug/kg dry 50 ND 30% 2-Hexanone ND 4490 4490 ug/kg dry 50 ND 30% R-02 ND 36.1 72.1 30% Isopropylbenzene 50 ND ug/kg dry 4-Isopropyltoluene ND 36.1 72.1 ug/kg dry 50 ND 30% ND 72.1 Methylene chloride 361 50 ND 30% ug/kg dry 4-Methyl-2-pentanone (MiBK) ND 865 ND R-02 865 ug/kg dry 50 30% Methyl tert-butyl ether (MTBE) ND 36.1 72.1 ug/kg dry 50 ND ---30% Naphthalene ND 72.1 144 ug/kg dry 50 ND 30% ND 36.1 ND 30% n-Propylbenzene 18.0 ug/kg dry 50 ND 36.1 72.1 30% Styrene ug/kg dry 50 ND ND 18.0 36.1 ND 30% 1.1.1.2-Tetrachloroethane ug/kg dry 50 1,1,2,2-Tetrachloroethane ND 288 288 ND 30% R-02 ug/kg dry 50 Tetrachloroethene (PCE) ND 18.0 36.1 ug/kg dry 50 ---ND ---30% ND 36.1 72.1 ug/kg dry 50 ND 30% ND 180 361 ND 30% 1.2.3-Trichlorobenzene ug/kg dry 50 ---1,2,4-Trichlorobenzene ND 180 361 ug/kg dry 50 ND 30% 36.1 1,1,1-Trichloroethane ND 18.0 50 ND 30% ug/kg dry 1,1,2-Trichloroethane ND 18.0 36.1 ug/kg dry 50 ND 30%

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 100 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040426 - EPA 5035A							Soil					
Duplicate (1040426-DUP1)			Prepared	1: 04/08/21 0	9:05 Anal	lyzed: 04/13/	/21 18:14					
QC Source Sample: Non-SDG (A1	D0350-01)											
Trichloroethene (TCE)	ND	18.0	36.1	ug/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND	72.1	144	ug/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND	36.1	72.1	ug/kg dr	y 50		ND				30%	
,2,4-Trimethylbenzene	ND	36.1	72.1	ug/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND	36.1	72.1	ug/kg dr	y 50		ND				30%	
Vinyl chloride	ND	18.0	36.1	ug/kg dr	y 50		ND				30%	
n,p-Xylene	ND	36.1	72.1	ug/kg dr	y 50		ND				30%	
o-Xylene	ND	18.0	36.1	ug/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 102 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			105 %	79-	120 %		"					
QC Source Sample: Non-SDG (A1		767	1530	ua/ka de	50		ND				30%	
Acetone	ND	767	1530	ug/kg dr	y 50		ND				30%	
Acrylonitrile	ND	76.7	153	ug/kg dr	y 50		ND				30%	
Benzene	ND	7.67	15.3	ug/kg dr			ND				30%	
Bromobenzene	ND	19.2	38.3	ug/kg dr	y 50		ND				30%	
Bromochloromethane	ND	38.3	76.7	ug/kg dr	y 50		ND				30%	
Bromodichloromethane	ND	76.7	76.7	ug/kg dr	y 50		ND				30%	
Bromoform	ND	76.7	153	ug/kg dr	y 50		ND				30%	
Bromomethane	ND	767	767	ug/kg dr	y 50		ND				30%	
2-Butanone (MEK)	ND	383	767	ug/kg dr	y 50		ND				30%	
n-Butylbenzene	ND	38.3	76.7	ug/kg dr	y 50		ND				30%	
ec-Butylbenzene	ND	38.3	76.7	ug/kg dr	y 50		ND				30%	
ert-Butylbenzene	ND	38.3	76.7	ug/kg dr	y 50		ND				30%	
Carbon disulfide	ND	383	767	ug/kg dr	y 50		ND				30%	
Carbon tetrachloride	ND	38.3	76.7	ug/kg dr	y 50		ND				30%	
Chlorobenzene	ND	19.2	38.3	ug/kg dr	y 50		ND				30%	
Chloroethane	ND	383	767	ug/kg dr	y 50		ND				30%	
Chloroform	ND	38.3	76.7	ug/kg dr	y 50		ND				30%	
Chloromethane	ND	192	383	ug/kg dr	y 50		ND				30%	
-Chlorotoluene	ND	38.3	76.7	ug/kg dr	y 50		ND				30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 1040426 - EPA 5035A Soil **Duplicate (1040426-DUP2)** Prepared: 04/08/21 10:30 Analyzed: 04/13/21 19:08 QC Source Sample: Non-SDG (A1D0350-03) ug/kg dry 4-Chlorotoluene ND 38.3 76.7 50 ND 30% ND 76.7 Dibromochloromethane 153 ug/kg dry 50 ND 30% 1,2-Dibromo-3-chloropropane ND 192 383 ug/kg dry 50 ND 30% 1,2-Dibromoethane (EDB) ND 38.3 76.7 ug/kg dry 50 ND 30% Dibromomethane ND 38.3 76.7 ug/kg dry 50 ND 30% ---ND 1,2-Dichlorobenzene 19.2 38.3 ug/kg dry 50 ND 30% 1,3-Dichlorobenzene ND 19.2 38.3 50 ND 30% ug/kg dry ND 19.2 ND 30% 1,4-Dichlorobenzene 38.3 ug/kg dry 50 Dichlorodifluoromethane ND 153 153 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 19.2 38.3 ug/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 19.2 38.3 ug/kg dry 50 ND 30% 19.2 1,1-Dichloroethene ND 38.3 ND 30% ug/kg dry 50 cis-1,2-Dichloroethene ND 19.2 38.3 ug/kg dry 50 ND 30% ND 19.2 38.3 ND 30% trans-1,2-Dichloroethene ug/kg dry 50 19.2 1,2-Dichloropropane ND 38.3 ug/kg dry 50 ND 30% 1,3-Dichloropropane ND 38.3 76.7 ug/kg dry 50 ND 30% 2,2-Dichloropropane ND 38.3 76.7 ug/kg dry 50 ND 30% ND 38.3 76.7 ND 30% 1,1-Dichloropropene 50 ug/kg dry ND cis-1,3-Dichloropropene 38.3 76.7 ug/kg dry 50 ND 30% trans-1,3-Dichloropropene ND 38.3 76.7 50 ND 30% ug/kg dry ND 19.2 38.3 ND Ethylbenzene ug/kg dry 50 30% Hexachlorobutadiene ND 76.7 153 ug/kg dry 50 ND ---30% 2-Hexanone ND 383 767 ug/kg dry 50 ND 30% ND 76.7 ND 30% Isopropylbenzene 38.3 ug/kg dry 50 ND 38.3 76.7 30% 4-Isopropyltoluene ug/kg dry 50 ND ND 383 767 ND 30% Methylene chloride ug/kg dry 50 4-Methyl-2-pentanone (MiBK) ND 383 767 ND 30% ug/kg dry 50 Methyl tert-butyl ether (MTBE) ND 38.3 76.7 ug/kg dry 50 ---ND 30% Naphthalene ND 76.7 153 ug/kg dry 50 ND 30% ND 19.2 38.3 ND 30% n-Propylbenzene ug/kg dry 50 ---Styrene ND 38.3 76.7 ug/kg dry 50 ND 30% ND 19.2 38.3 50 ND 30% 1.1.1.2-Tetrachloroethane ug/kg dry 1,1,2,2-Tetrachloroethane ND 38.3 76.7 ug/kg dry 50 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 102 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040426 - EPA 5035A							Soil					
Duplicate (1040426-DUP2)			Prepared	1: 04/08/21 1	0:30 Ana	lyzed: 04/13	/21 19:08					
QC Source Sample: Non-SDG (A1	D0350-03)											
Tetrachloroethene (PCE)	ND	19.2	38.3	ug/kg dr	y 50		ND				30%	
Toluene	ND	38.3	76.7	ug/kg dr	y 50		ND				30%	
1,2,3-Trichlorobenzene	ND	192	383	ug/kg dr	y 50		ND				30%	
1,2,4-Trichlorobenzene	ND	192	383	ug/kg dr	y 50		ND				30%	
,1,1-Trichloroethane	ND	19.2	38.3	ug/kg dr	y 50		ND				30%	
1,1,2-Trichloroethane	ND	19.2	38.3	ug/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND	19.2	38.3	ug/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND	76.7	153	ug/kg dr			ND				30%	
,2,3-Trichloropropane	ND	38.3	76.7	ug/kg dr	y 50		ND				30%	
,2,4-Trimethylbenzene	ND	38.3	76.7	ug/kg dr	y 50		ND				30%	
,3,5-Trimethylbenzene	ND	38.3	76.7	ug/kg dr	y 50		ND				30%	
Vinyl chloride	ND	19.2	38.3	ug/kg dr	y 50		ND				30%	
n,p-Xylene	ND	38.3	76.7	ug/kg dr	y 50		ND				30%	
o-Xylene	ND	19.2	38.3	ug/kg dr			ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 100 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			102 %	79-	-120 %		"					
Matrix Spike (1040426-MS1)			Prepared	d: 04/08/21 1	4:00 Ana	lvzed: 04/13	/21 20:56					
QC Source Sample: Non-SDG (A1	D0350 00)		1			<u>, </u>						
5035A/8260D	D0000-07)											
Acetone	3140	814	1630	ug/kg dr	y 50	3250	ND	97	36-164%			
Acrylonitrile	1760	81.4	163	ug/kg dr		1630	ND	108	65-134%			
Benzene	1600	8.14	16.3	ug/kg dr	•	1630	ND	98	77-121%			
Bromobenzene	1560	20.4	40.7	ug/kg dr		1630	ND	96	78-121%			
Bromochloromethane	1730	40.7	81.4	ug/kg dr	•	1630	ND	107	78-12176			
Bromodichloromethane	1480	40.7	81.4	ug/kg dr		1630	ND	91	75-127%			
Bromoform	1560	81.4	163	ug/kg dr	•	1630	ND	96	67-132%			
Bromomethane	1650	81.4	814	ug/kg dr		1630	ND	101	53-143%			
2-Butanone (MEK)	3420	407	814	ug/kg dr		3250	ND ND	101	51-148%			
-Butylbenzene	1640	40.7	81.4			1630	ND ND	103	70-128%			
•		40.7	81.4 81.4	ug/kg dr		1630	ND ND	98				
ec-Butylbenzene	1600			ug/kg dr					73-126%			
tert-Butylbenzene	1510	40.7	81.4	ug/kg dr	y 50	1630	ND	93	73-125%			

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 1040426 - EPA 5035A Soil Matrix Spike (1040426-MS1) Prepared: 04/08/21 14:00 Analyzed: 04/13/21 20:56 QC Source Sample: Non-SDG (A1D0350-09) ug/kg dry Carbon disulfide 1320 407 814 50 1630 ND 81 63-132% 40.7 1630 Carbon tetrachloride 1650 81.4 ug/kg dry 50 ND 101 70-135% Chlorobenzene 1610 20.4 40.7 ug/kg dry 50 1630 ND 99 79-120% Chloroethane 1480 407 814 ug/kg dry 50 1630 ND 91 59-139% Chloroform 1590 40.7 81.4 ug/kg dry 50 1630 ND 98 78-123% 1630 ND Chloromethane 1370 204 407 ug/kg dry 50 84 50-136% ug/kg dry 2-Chlorotoluene 1670 40.7 81.4 50 1630 ND 103 75-122% 1630 ND 100 4-Chlorotoluene 1630 40.7 81.4 ug/kg dry 50 72-124% Dibromochloromethane 1500 81.4 163 ug/kg dry 50 1630 ND 92 74-126% 1,2-Dibromo-3-chloropropane 1320 204 407 ug/kg dry 50 1630 ND 81 61-132% 1,2-Dibromoethane (EDB) 1620 40.7 81.4 ug/kg dry 50 1630 ND 99 78-122% 40.7 81.4 50 1630 ND 101 78-125% Dibromomethane 1640 ug/kg dry 1630 1,2-Dichlorobenzene 1600 20.4 40.7 ug/kg dry 50 ND 98 78-121% 100 1630 20.4 40.7 1630 ND 77-121% 1,3-Dichlorobenzene ug/kg dry 50 1,4-Dichlorobenzene 1520 20.4 40.7 ug/kg dry 50 1630 ND 94 75-120% Dichlorodifluoromethane 1180 163 163 ug/kg dry 50 1630 ND 73 29-149% ___ O-54i 1,1-Dichloroethane 1640 20.4 40.7 ug/kg dry 50 1630 ND 101 76-125% 20.4 40.7 1630 ND 102 73-128% 1,2-Dichloroethane (EDC) 1660 50 ug/kg dry 1630 ND 93 70-131% 1,1-Dichloroethene 1510 20.4 40.7 ug/kg dry 50 20.4 40.7 104 cis-1,2-Dichloroethene 1680 50 1630 ND 77-123% ug/kg dry trans-1,2-Dichloroethene 1590 1630 ND 98 74-125% 20.4 40.7 ug/kg dry 50 1,2-Dichloropropane 1670 20.4 40.7 ug/kg dry 50 1630 ND 103 76-123% 1,3-Dichloropropane 1690 40.7 81.4 ug/kg dry 50 1630 ND 104 77-121% 40.7 1630 ND 101 67-133% 2,2-Dichloropropane 1640 81.4 ug/kg dry 50 40.7 81.4 1630 76-125% 1,1-Dichloropropene 1560 ug/kg dry 50 ND 96 40.7 74-126% 1480 81.4 1630 ND 91 cis-1,3-Dichloropropene ug/kg dry 50 trans-1,3-Dichloropropene 1410 40.7 81.4 1630 ND 87 71-130% ug/kg dry 50 40.7 ND 97 76-122% Ethylbenzene 1580 20.4 ug/kg dry 50 1630 Hexachlorobutadiene 1510 81.4 163 ug/kg dry 50 1630 ND 93 61-135% 2-Hexanone 3220 407 814 3250 ND 99 53-145% ug/kg dry 50 Isopropylbenzene 1590 40.7 81.4 ug/kg dry 50 1630 ND 98 68-134% 40.7 1630 ND 100 4-Isopropyltoluene 1620 81.4 50 73-127% ug/kg dry ---Methylene chloride 1460 407 814 ug/kg dry 50 1630 ND 89 70-128%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 104 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> Project: <u>Former Planter's Hotel Site</u>

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 1040426 - EPA 5035A Soil Matrix Spike (1040426-MS1) Prepared: 04/08/21 14:00 Analyzed: 04/13/21 20:56 QC Source Sample: Non-SDG (A1D0350-09) 4-Methyl-2-pentanone (MiBK) 3260 407 814 ug/kg dry 50 3250 ND 100 65-135% Methyl tert-butyl ether (MTBE) 40.7 1630 1630 81.4 ug/kg dry 50 ND 101 73-125% Naphthalene 1630 81.4 163 ug/kg dry 50 1630 ND 100 62-129% n-Propylbenzene 1640 20.4 40.7 ug/kg dry 50 1630 ND 101 73-125% 1700 40.7 81.4 ug/kg dry 50 1630 ND 105 76-124% Styrene 1,1,1,2-Tetrachloroethane 1690 20.4 1630 ND 104 78-125% 40.7 ug/kg dry 50 1,1,2,2-Tetrachloroethane 1680 40.7 81.4 ug/kg dry 50 1630 ND 103 70-124% Tetrachloroethene (PCE) 20.4 40.7 1630 ND 95 73-128% 1550 ug/kg dry 50 Toluene 1500 40.7 81.4 ug/kg dry 50 1630 ND 92 77-121% 1,2,3-Trichlorobenzene 1690 204 407 ug/kg dry 50 1630 ND 104 66-130% 1,2,4-Trichlorobenzene 1620 204 407 ug/kg dry 50 1630 ND 100 67-129% 40.7 1,1,1-Trichloroethane 20.4 50 1630 ND 95 73-130% 1550 ug/kg dry 1630 103 78-121% 1,1,2-Trichloroethane 1680 20.4 40.7 ug/kg dry 50 ND Trichloroethene (TCE) 1630 20.4 40.7 1630 ND 100 77-123% ug/kg dry 50 81.4 Trichlorofluoromethane 1610 163 ug/kg dry 50 1630 ND 99 62-140% 1,2,3-Trichloropropane 1680 40.7 81.4 ug/kg dry 50 1630 ND 104 73-125% ___ 1,2,4-Trimethylbenzene 1720 40.7 81.4 ug/kg dry 50 1630 ND 106 75-123% 1,3,5-Trimethylbenzene 1690 40.7 81.4 1630 ND 104 73-124% 50 ug/kg dry Vinyl chloride 20.4 40.7 1630 ND 89 56-135% 1440 ug/kg dry 50 3250 3190 40.7 81.4 98 m,p-Xylene 50 ND 77-124% ug/kg dry 1630 20.4 40.7 1630 ND 100 77-123% o-Xylene ug/kg dry 50 Surr: 1,4-Difluorobenzene (Surr) Recovery: 100 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 100 % 80-120 % 4-Bromofluorobenzene (Surr) 99 % 79-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 105 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 1040492 - EPA 5035A Soil Blank (1040492-BLK1) Prepared: 04/14/21 09:00 Analyzed: 04/14/21 15:03 5035A/8260D ND 333 ug/kg wet 50 Acetone ND 66.7 50 Acrylonitrile 33.3 ug/kg wet Benzene ND 3.33 6.67 ug/kg wet 50 Bromobenzene ND 8.33 16.7 ug/kg wet 50 Bromochloromethane ND 16.7 33.3 ug/kg wet 50 ND Bromodichloromethane 33.3 ug/kg wet 50 16.7 Bromoform ND 33.3 ug/kg wet 50 66.7 333 Bromomethane ND 333 ug/kg wet 50 2-Butanone (MEK) ND 167 333 ug/kg wet 50 n-Butylbenzene ND 16.7 33.3 50 ug/kg wet sec-Butylbenzene ND 16.7 33.3 ug/kg wet 50 ND tert-Butylbenzene 16.7 33.3 50 ug/kg wet Carbon disulfide ND 167 333 ug/kg wet 50 Carbon tetrachloride ND 33.3 50 16.7 ug/kg wet Chlorobenzene ND 8.33 16.7 ug/kg wet 50 Chloroethane ND 167 333 ug/kg wet 50 ------Chloroform ND 16.7 33.3 ug/kg wet 50 ND 83.3 167 Chloromethane ug/kg wet 50 2-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 4-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 Dibromochloromethane ND 33.3 66.7 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 167 167 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 16.7 33.3 ug/kg wet 50 Dibromomethane ND 16.7 33.3 ug/kg wet 50 1,2-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,3-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,4-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 Dichlorodifluoromethane ND 33.3 66.7 ug/kg wet 50 ---1,1-Dichloroethane ND 8.33 16.7 ug/kg wet 50 ug/kg wet 1,2-Dichloroethane (EDC) ND 8.33 16.7 50 1,1-Dichloroethene ND 50 8.33 16.7 ug/kg wet cis-1,2-Dichloroethene ND 8.33 16.7 ug/kg wet 50 8.33 16.7 trans-1,2-Dichloroethene ND ug/kg wet 50

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 106 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

% REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 1040492 - EPA 5035A Soil Blank (1040492-BLK1) Prepared: 04/14/21 09:00 Analyzed: 04/14/21 15:03 ND 8.33 16.7 50 1,2-Dichloropropane ug/kg wet ND 16.7 33.3 ug/kg wet 50 1,3-Dichloropropane ------2,2-Dichloropropane ND 16.7 33.3 ug/kg wet 50 1,1-Dichloropropene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 cis-1,3-Dichloropropene ug/kg wet trans-1,3-Dichloropropene ND 16.7 33.3 ug/kg wet 50 Ethylbenzene ND 8.33 16.7 ug/kg wet 50 Hexachlorobutadiene ND 33.3 66.7 ug/kg wet 50 2-Hexanone ND 167 333 ug/kg wet 50 Isopropylbenzene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 4-Isopropyltoluene ug/kg wet Methylene chloride ND 167 333 ug/kg wet 50 ND 4-Methyl-2-pentanone (MiBK) 167 333 ug/kg wet 50 Methyl tert-butyl ether (MTBE) ND 16.7 33.3 ug/kg wet 50 Naphthalene ND 66.7 33.3 ug/kg wet 50 n-Propylbenzene ND 8.33 16.7 ug/kg wet 50 ND 16.7 33.3 Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane ND 8.33 16.7 ug/kg wet 50 ND 1.1.2.2-Tetrachloroethane 33.3 16.7 ug/kg wet 50 ------Tetrachloroethene (PCE) ND 8.33 16.7 ug/kg wet 50 Toluene ND 16.7 33.3 ug/kg wet 50 1,2,3-Trichlorobenzene ND 83.3 167 ug/kg wet 50 1,2,4-Trichlorobenzene ND 83.3 167 50 ug/kg wet 1,1,1-Trichloroethane ND 8.33 16.7 ug/kg wet 50 16.7 ND 1,1,2-Trichloroethane 8.33 50 ug/kg wet ---------Trichloroethene (TCE) ND 8.33 16.7 ug/kg wet 50 Trichlorofluoromethane ND 33.3 66.7 ug/kg wet 50 ---1,2,3-Trichloropropane ND 16.7 33.3 ug/kg wet 50

Surr: 1,4-Difluorobenzene (Surr) Recovery: 100 % Limits: 80-120 % Dilution: Ix

16.7

16.7

8.33

16.7

8.33

33.3

33.3

16.7

33.3

16.7

ND

ND

ND

ND

ND

Apex Laboratories

Philip Nevenberg

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl chloride

m,p-Xylene

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 107 of 147

50

50

50

50

50

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040492 - EPA 5035A							Soil					
Blank (1040492-BLK1)			Prepared	: 04/14/21 0	9:00 Ana	yzed: 04/14	/21 15:03					
Surr: Toluene-d8 (Surr)		Reco	very: 104 %	Limits: 80-	120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			99 %	79-	120 %		"					
LCS (1040492-BS1)			Prepared	: 04/14/21 0	9:00 Ana	yzed: 04/14	/21 14:09					
5035A/8260D												
Acetone	1890	500	1000	ug/kg we	t 50	2000		95	80-120%			
Acrylonitrile	1130	50.0	100	ug/kg we	t 50	1000		113	80-120%			
Benzene	1040	5.00	10.0	ug/kg we	t 50	1000		104	80-120%			
Bromobenzene	970	12.5	25.0	ug/kg we	t 50	1000		97	80-120%			
Bromochloromethane	1090	25.0	50.0	ug/kg we	t 50	1000		109	80-120%			
Bromodichloromethane	955	25.0	50.0	ug/kg we	t 50	1000		95	80-120%			
Bromoform	1030	50.0	100	ug/kg we	t 50	1000		103	80-120%			
Bromomethane	1100	500	500	ug/kg we	t 50	1000		110	80-120%			
2-Butanone (MEK)	2140	250	500	ug/kg we	t 50	2000		107	80-120%			
n-Butylbenzene	1040	25.0	50.0	ug/kg we	t 50	1000		104	80-120%			
sec-Butylbenzene	990	25.0	50.0	ug/kg we	t 50	1000		99	80-120%			
ert-Butylbenzene	952	25.0	50.0	ug/kg we	t 50	1000		95	80-120%			
Carbon disulfide	882	250	500	ug/kg we	t 50	1000		88	80-120%			
Carbon tetrachloride	1170	25.0	50.0	ug/kg we	t 50	1000		117	80-120%			
Chlorobenzene	994	12.5	25.0	ug/kg we	t 50	1000		99	80-120%			
Chloroethane	960	250	500	ug/kg we	t 50	1000		96	80-120%			
Chloroform	1040	25.0	50.0	ug/kg we		1000		104	80-120%			
Chloromethane	998	125	250	ug/kg we		1000		100	80-120%			
2-Chlorotoluene	1040	25.0	50.0	ug/kg we		1000		104	80-120%			
1-Chlorotoluene	1020	25.0	50.0	ug/kg we		1000		102	80-120%			
Dibromochloromethane	964	50.0	100	ug/kg we		1000		96	80-120%			
,2-Dibromo-3-chloropropane	784	250	250	ug/kg we		1000			80-120%			
,2-Dibromoethane (EDB)	1030	25.0	50.0	ug/kg we		1000			80-120%			
Dibromomethane	1020	25.0	50.0	ug/kg we		1000			80-120%			
,2-Dichlorobenzene	1010	12.5	25.0	ug/kg we		1000			80-120%			
,3-Dichlorobenzene	1020	12.5	25.0	ug/kg we		1000			80-120%			
,4-Dichlorobenzene	920	12.5	25.0	ug/kg we		1000			80-120%			
Dichlorodifluoromethane	924	50.0	100	ug/kg we		1000			80-120%			
,1-Dichloroethane	1100	12.5	25.0	ug/kg we		1000			80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 108 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution Result RPD Limit Amount Limits Limit Notes Batch 1040492 - EPA 5035A Soil LCS (1040492-BS1) Prepared: 04/14/21 09:00 Analyzed: 04/14/21 14:09 1,2-Dichloroethane (EDC) 1050 12.5 25.0 ug/kg wet 50 1000 105 80-120% 1,1-Dichloroethene 1030 12.5 25.0 ug/kg wet 50 1000 103 80-120% --------cis-1.2-Dichloroethene 1080 12.5 25.0 ug/kg wet 50 1000 108 80-120% trans-1,2-Dichloroethene 1050 12.5 25.0 ug/kg wet 50 1000 105 80-120% 1090 12.5 25.0 50 1000 109 80-120% 1,2-Dichloropropane ug/kg wet 1,3-Dichloropropane 1070 25.0 50.0 ug/kg wet 50 1000 107 80-120% 2,2-Dichloropropane 1100 25.0 50.0 ug/kg wet 50 1000 110 80-120% 1000 80-120% 1,1-Dichloropropene 1040 25.0 50.0 ug/kg wet 50 104 25.0 50.0 1000 cis-1,3-Dichloropropene 948 ug/kg wet 50 95 80-120% trans-1,3-Dichloropropene 909 25.0 50.0 ug/kg wet 50 1000 91 80-120% Ethylbenzene 992 99 25.0 50 1000 80-120% 12.5 ug/kg wet 50.0 100 Hexachlorobutadiene 958 ug/kg wet 50 1000 96 80-120% 2090 250 500 2000 105 80-120% 2-Hexanone ug/kg wet 50 ------Isopropylbenzene 992 25.0 50.0 ug/kg wet 50 1000 99 80-120% 1010 50.0 50 1000 101 80-120% 4-Isopropyltoluene 25.0 ug/kg wet Methylene chloride 962 250 500 ug/kg wet 50 1000 96 80-120% 2030 250 500 2000 102 80-120% 4-Methyl-2-pentanone (MiBK) ug/kg wet 50 Methyl tert-butyl ether (MTBE) 1030 25.0 50 1000 103 80-120% 50.0 ug/kg wet Naphthalene 974 50.0 100 1000 97 80-120% ug/kg wet 50 -----n-Propylbenzene 1020 12.5 25.0 ug/kg wet 50 1000 102 80-120% 1060 25.0 50.0 1000 106 80-120% Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane 1140 12.5 25.0 ug/kg wet 50 1000 114 80-120% 1,1,2,2-Tetrachloroethane 1050 25.0 50.0 ug/kg wet 50 1000 105 80-120% Tetrachloroethene (PCE) 999 12.5 25.0 ug/kg wet 50 1000 100 80-120% Toluene 978 25.0 1000 98 80-120% 50.0 ug/kg wet 50 ------1,2,3-Trichlorobenzene 1040 125 250 ug/kg wet 50 1000 104 80-120% 1,2,4-Trichlorobenzene 989 125 250 50 1000 99 80-120% ug/kg wet ---1,1,1-Trichloroethane 1020 12.5 25.0 ug/kg wet 50 1000 102 80-120% 1.1.2-Trichloroethane 1040 12.5 25.0 50 1000 104 80-120% ug/kg wet Trichloroethene (TCE) 1030 12.5 25.0 ug/kg wet 50 1000 103 80-120% Trichlorofluoromethane 947 50.0 100 50 1000 95 80-120% ug/kg wet 1,2,3-Trichloropropane 1020 25.0 50.0 ug/kg wet 50 1000 102 80-120% 1,2,4-Trimethylbenzene 1070 25.0 50.0 ug/kg wet 50 1000 107 80-120%

Apex Laboratories

Philip Nevenberg

1,3,5-Trimethylbenzene

1040

25.0

50.0

ug/kg wet

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

104

80-120%

Philip Nerenberg, Lab Director

Page 109 of 147

50

1000

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040492 - EPA 5035A							Soil					
LCS (1040492-BS1)			Prepared	1: 04/14/21 0	9:00 Ana	lyzed: 04/14	/21 14:09					
Vinyl chloride	991	12.5	25.0	ug/kg we	t 50	1000		99	80-120%			
m,p-Xylene	2000	25.0	50.0	ug/kg we	t 50	2000		100	80-120%			
o-Xylene	1020	12.5	25.0	ug/kg we	t 50	1000		102	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80-	120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			102 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	79-	120 %		"					
Duplicate (1040492-DUP1)			Prepared	1: 04/13/21 1	7:33 Anal	lyzed: 04/14	/21 21:46					ТЕМР
OC Source Sample: Non-SDG (A1	D0544-01)											
Acetone	ND	652	1300	ug/kg dry	50		ND				30%	
Acrylonitrile	ND	65.2	130	ug/kg dry	50		ND				30%	
Benzene	44.8	6.52	13.0	ug/kg dry	50		ND				30%	Q-0
Bromobenzene	ND	16.3	32.6	ug/kg dry	50		ND				30%	
Bromochloromethane	ND	32.6	65.2	ug/kg dry	50		ND				30%	
Bromodichloromethane	ND	32.6	65.2	ug/kg dry	50		ND				30%	
Bromoform	ND	65.2	130	ug/kg dry	50		ND				30%	
Bromomethane	ND	652	652	ug/kg dry	50		ND				30%	
2-Butanone (MEK)	ND	326	652	ug/kg dry	50		ND				30%	
n-Butylbenzene	623	32.6	65.2	ug/kg dry	50		139			127	30%	Q-0
sec-Butylbenzene	204	32.6	65.2	ug/kg dry	50		56.1			114	30%	Q-0
tert-Butylbenzene	ND	32.6	65.2	ug/kg dry	50		ND				30%	
Carbon disulfide	ND	326	652	ug/kg dry	50		ND				30%	
Carbon tetrachloride	ND	32.6	65.2	ug/kg dry	50		ND				30%	
Chlorobenzene	23.5	16.3	32.6	ug/kg dry	50		ND				30%	Q-05,
Chloroethane	ND	326	652	ug/kg dry	50		ND				30%	
Chloroform	ND	32.6	65.2	ug/kg dry	50		ND				30%	
Chloromethane	ND	163	326	ug/kg dry	50		ND				30%	
2-Chlorotoluene	ND	32.6	65.2	ug/kg dry	50		ND				30%	
4-Chlorotoluene	ND	32.6	65.2	ug/kg dry	50		ND				30%	
Dibromochloromethane	ND	65.2	130	ug/kg dry	50		ND				30%	
1,2-Dibromo-3-chloropropane	ND	326	326	ug/kg dry	50		ND				30%	
1,2-Dibromoethane (EDB)	ND	32.6	65.2	ug/kg dry	50		ND				30%	
Dibromomethane	ND	32.6	65.2	ug/kg dry	50		ND				30%	
1,2-Dichlorobenzene	226	16.3	32.6	ug/kg dry	50		88.6			87	30%	Q-0

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:

Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 1040492 - EPA 5035A Soil **Duplicate (1040492-DUP1)** Prepared: 04/13/21 17:33 Analyzed: 04/14/21 21:46 TEMP QC Source Sample: Non-SDG (A1D0544-01) 1,3-Dichlorobenzene ND 16.3 32.6 ug/kg dry 50 ND 30% 39.9 Q-05 1,4-Dichlorobenzene 16.3 32.6 ug/kg dry 50 16.7 82 30% Dichlorodifluoromethane ND 65.2 130 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 16.3 32.6 ug/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 16.3 32.6 ug/kg dry 50 ND 30% ---ND 1,1-Dichloroethene 16.3 32.6 ug/kg dry 50 ND 30% cis-1,2-Dichloroethene ND 16.3 32.6 50 ND 30% ug/kg dry trans-1,2-Dichloroethene ND ND 30% 16.3 32.6 ug/kg dry 50 1,2-Dichloropropane ND 16.3 32.6 ug/kg dry 50 ND 30% 1,3-Dichloropropane ND 32.6 65.2 ug/kg dry 50 ND 30% 2,2-Dichloropropane ND 32.6 65.2 ug/kg dry 50 ND 30% ND 32.6 65.2 30% 1,1-Dichloropropene ug/kg dry 50 ND cis-1,3-Dichloropropene ND 32.6 65.2 ug/kg dry 50 ND 30% ND 32.6 65.2 ND 30% trans-1,3-Dichloropropene ug/kg dry 50 Ethylbenzene ND 16.3 32.6 ug/kg dry 50 ND 30% Hexachlorobutadiene ND 65.2 130 ug/kg dry 50 ND ---30% 2-Hexanone ND 326 652 ug/kg dry 50 ND 30% 32.6 O-05 Isopropylbenzene 70.9 65.2 50 ND 30% ug/kg dry 4-Isopropyltoluene ND 32.6 65.2 ug/kg dry 50 ND 30% ND 652 Methylene chloride 326 50 ND 30% ug/kg dry 4-Methyl-2-pentanone (MiBK) ND ND 326 652 ug/kg dry 50 30% Methyl tert-butyl ether (MTBE) ND 32.6 65.2 ug/kg dry 50 ND ---30% Naphthalene 718 65.2 130 ug/kg dry 50 448 46 30% Q-04 525 159 107 30% Q-04 n-Propylbenzene 16.3 32.6 ug/kg dry 50 ND 32.6 65.2 30% Styrene ug/kg dry 50 ND ND 1,1,1,2-Tetrachloroethane 16.3 32.6 ND 30% ug/kg dry 50 1,1,2,2-Tetrachloroethane ND 32.6 65.2 ND 30% ug/kg dry 50 Tetrachloroethene (PCE) ND 16.3 32.6 ug/kg dry 50 ---ND ---30% ND 32.6 65.2 ug/kg dry 50 ND 30% ND 163 326 ND 30% 1.2.3-Trichlorobenzene ug/kg dry 50 ---1,2,4-Trichlorobenzene ND 163 326 ug/kg dry 50 ND 30% 32.6 1,1,1-Trichloroethane ND 16.3 50 ND 30% ug/kg dry 1,1,2-Trichloroethane ND 16.3 32.6 ug/kg dry 50 ND 30%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 111 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	526UD					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040492 - EPA 5035A							Soil					
Duplicate (1040492-DUP1)			Prepared	1: 04/13/21 1	7:33 Ana	lyzed: 04/14/	/21 21:46					TEMI
QC Source Sample: Non-SDG (A1	D0544-01)											
Trichloroethene (TCE)	ND	16.3	32.6	ug/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND	65.2	130	ug/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND	32.6	65.2	ug/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	121	32.6	65.2	ug/kg dr	y 50		122			0.3	30%	
1,3,5-Trimethylbenzene	ND	32.6	65.2	ug/kg dr	y 50		ND				30%	
Vinyl chloride	ND	16.3	32.6	ug/kg dr	y 50		ND				30%	
m,p-Xylene	ND	32.6	65.2	ug/kg dr	y 50		ND				30%	
o-Xylene	ND	16.3	32.6	ug/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			102 %	79-	120 %		"					
QC Source Sample: Non-SDG (A1												
Acetone	ND	712	1420	ug/kg dr	v 50		ND				30%	
Acrylonitrile	ND	71.2	142	ug/kg dr	y 50		ND				30%	
Benzene	ND	7.12	14.2	ug/kg dr			ND				30%	
Bromobenzene	ND	17.8	35.6	ug/kg dr	y 50		ND				30%	
Bromochloromethane	ND	35.6	71.2	ug/kg dr	y 50		ND				30%	
Bromodichloromethane	ND	35.6	71.2	ug/kg dr	y 50		ND				30%	
Bromoform	ND	71.2	142	ug/kg dr	y 50		ND				30%	
Bromomethane	ND	712	712	ug/kg dr	y 50		ND				30%	
2-Butanone (MEK)	ND	356	712	ug/kg dr	y 50		ND				30%	
n-Butylbenzene	ND	35.6	71.2	ug/kg dr			ND				30%	
sec-Butylbenzene	ND	35.6	71.2	ug/kg dr	y 50		ND				30%	
ert-Butylbenzene	ND	35.6	71.2	ug/kg dr	y 50		ND				30%	
Carbon disulfide	ND	356	712	ug/kg dr	y 50		ND				30%	
Carbon tetrachloride	ND	35.6	71.2	ug/kg dr	y 50		ND				30%	
Chlorobenzene	ND	17.8	35.6	ug/kg dr	y 50		ND				30%	
Chloroethane	ND	356	712	ug/kg dr	y 50		ND				30%	
Chloroform	ND	35.6	71.2	ug/kg dr	y 50		ND				30%	
Chloromethane	ND	178	356	ug/kg dr	y 50		ND				30%	
2-Chlorotoluene	ND	35.6	71.2	ug/kg dr	v 50		ND				30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 1040492 - EPA 5035A Soil **Duplicate (1040492-DUP2)** Prepared: 04/13/21 16:48 Analyzed: 04/14/21 22:40 TEMP QC Source Sample: Non-SDG (A1D0544-04) 4-Chlorotoluene ND 35.6 71.2 ug/kg dry 50 ND 30% 71.2 ND 142 Dibromochloromethane ug/kg dry 50 ND 30% 1,2-Dibromo-3-chloropropane ND 356 356 ug/kg dry 50 ND 30% 1,2-Dibromoethane (EDB) ND 35.6 71.2 ug/kg dry 50 ND 30% Dibromomethane ND 35.6 71.2 ug/kg dry 50 ND 30% ---ND 1,2-Dichlorobenzene 17.8 35.6 ug/kg dry 50 ND 30% ug/kg dry 1,3-Dichlorobenzene ND 17.8 35.6 50 ND 30% ND ND 30% 1,4-Dichlorobenzene 17.8 35.6 ug/kg dry 50 Dichlorodifluoromethane ND 71.2 142 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 17.8 35.6 ug/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 17.8 35.6 ug/kg dry 50 ND 30% 1,1-Dichloroethene ND 17.8 35.6 ND 30% ug/kg dry 50 cis-1,2-Dichloroethene ND 17.8 35.6 ug/kg dry 50 ND 30% ND 17.8 35.6 ND 30% trans-1,2-Dichloroethene ug/kg dry 50 1,2-Dichloropropane ND 17.8 35.6 ug/kg dry 50 ND 30% 1,3-Dichloropropane ND 35.6 71.2 ug/kg dry 50 ND 30% 2,2-Dichloropropane ND 35.6 71.2 ug/kg dry 50 ND 30% ND 35.6 71.2 ND 30% 1,1-Dichloropropene 50 ug/kg dry ND 71.2 cis-1,3-Dichloropropene 35.6 ug/kg dry 50 ND 30% 71.2 trans-1,3-Dichloropropene ND 35.6 50 ND 30% ug/kg dry ND ND Ethylbenzene 17.8 35.6 ug/kg dry 50 30% 71.2 Hexachlorobutadiene ND 142 ug/kg dry 50 ND ---30% 2-Hexanone ND 356 712 ug/kg dry 50 ND 30% ND 71.2 ND 30% Isopropylbenzene 35.6 ug/kg dry 50 ND 35.6 71.2 30% 4-Isopropyltoluene ug/kg dry 50 ND ND 356 712 ND 30% Methylene chloride ug/kg dry 50 4-Methyl-2-pentanone (MiBK) ND 356 712 ND 30% ug/kg dry 50 Methyl tert-butyl ether (MTBE) ND 35.6 71.2 ug/kg dry 50 ---ND 30% Naphthalene ND 71.2 142 ug/kg dry 50 ND 30% ND 17.8 35.6 ND 30% n-Propylbenzene ug/kg dry 50 ---Styrene ND 35.6 71.2 ug/kg dry 50 ND 30% ND 17.8 35.6 50 ND 30% 1.1.1.2-Tetrachloroethane ug/kg dry

Apex Laboratories

Philip Merenberg

1,1,2,2-Tetrachloroethane

ND

35.6

71.2

ug/kg dry

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

ND

Philip Nerenberg, Lab Director

Page 113 of 147

50

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	עטט∠					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040492 - EPA 5035A							Soil					
Duplicate (1040492-DUP2)			Prepared	: 04/13/21 1	6:48 Anal	lyzed: 04/14/	/21 22:40					TEMI
QC Source Sample: Non-SDG (A1	D0544-04)											
Tetrachloroethene (PCE)	ND	17.8	35.6	ug/kg dry	50		ND				30%	
Toluene	ND	35.6	71.2	ug/kg dry	7 50		ND				30%	
1,2,3-Trichlorobenzene	ND	178	356	ug/kg dry	7 50		ND				30%	
1,2,4-Trichlorobenzene	ND	178	356	ug/kg dry	50		ND				30%	
1,1,1-Trichloroethane	ND	17.8	35.6	ug/kg dry	7 50		ND				30%	
1,1,2-Trichloroethane	ND	17.8	35.6	ug/kg dry	50		ND				30%	
Trichloroethene (TCE)	ND	17.8	35.6	ug/kg dry	7 50		ND				30%	
Trichlorofluoromethane	ND	71.2	142	ug/kg dry	7 50		ND				30%	
1,2,3-Trichloropropane	ND	35.6	71.2	ug/kg dry	50		ND				30%	
1,2,4-Trimethylbenzene	ND	35.6	71.2	ug/kg dry			ND				30%	
1,3,5-Trimethylbenzene	ND	35.6	71.2	ug/kg dry			ND				30%	
Vinyl chloride	ND	17.8	35.6	ug/kg dry			ND				30%	
n,p-Xylene	ND	35.6	71.2	ug/kg dry			ND				30%	
o-Xylene	ND	17.8	35.6	ug/kg dry	7 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80-		Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %		120 %		"					
4-Bromofluorobenzene (Surr)			101 %	79-	120 %		"					
Matrix Spike (1040492-MS1)			Prepared	l: 04/09/21 1	1:30 Anal	vzed: 04/15/	/21 02:16					T-02
QC Source Sample: Non-SDG (A1	D0353 01)		1100		1100 11110	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	21 02110					
5035A/8260D	<u>D0333-01)</u>											
Acetone	2740	691	1380	ug/kg dry	7 50	2760	ND	99	36-164%			
Acrylonitrile	1500	69.1	138	ug/kg dry		1380	ND		65-134%			
Benzene	1400	6.91	13.8	ug/kg dry		1380	ND		77-121%			
Bromobenzene	1320	17.3	34.5	ug/kg dry		1380	ND		78-121%			
Bromochloromethane	1470	34.5	69.1	ug/kg dry		1380	ND		78-121% 78-125%			
Bromodichloromethane	1290	34.5	69.1	ug/kg dry		1380	ND		75-127%			
Bromoform	1440	69.1	138	ug/kg dry		1380	ND ND		67-132%			
Bromomethane	1410	691	691			1380	ND ND		53-143%			
		345	691	ug/kg dry								
2-Butanone (MEK)	3030			ug/kg dry		2760	ND ND		51-148%			
n-Butylbenzene	1440	34.5	69.1	ug/kg dry		1380	ND		70-128%			
sec-Butylbenzene	1400	34.5	69.1	ug/kg dry		1380	ND		73-126%			
tert-Butylbenzene	1330	34.5	69.1	ug/kg dry	7 50	1380	ND	96	73-125%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D RPD Detection Reporting Spike Source % REC Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 1040492 - EPA 5035A Soil Matrix Spike (1040492-MS1) Prepared: 04/09/21 11:30 Analyzed: 04/15/21 02:16 T-02 QC Source Sample: Non-SDG (A1D0353-01) Carbon disulfide 1160 345 691 ug/kg dry 50 1380 ND 84 63-132% 1600 69.1 Carbon tetrachloride 34.5 ug/kg dry 50 1380 ND 116 70-135% Chlorobenzene 1370 17.3 34.5 ug/kg dry 50 1380 ND 99 79-120% Chloroethane 1290 345 691 ug/kg dry 50 1380 ND 93 59-139% Chloroform 1370 34.5 69.1 ug/kg dry 50 1380 ND 99 78-123% 345 1380 ND 98 Chloromethane 1360 173 ug/kg dry 50 50-136% ug/kg dry 2-Chlorotoluene 1460 34.5 69.1 50 1380 ND 105 75-122% 69.1 ND 100 4-Chlorotoluene 1390 34.5 ug/kg dry 50 1380 72-124% Dibromochloromethane 1360 69.1 138 ug/kg dry 50 1380 ND 99 74-126% 1,2-Dibromo-3-chloropropane 1160 345 345 ug/kg dry 50 1380 ND 84 61-132% O-54i 1,2-Dibromoethane (EDB) 1460 34.5 69.1 ug/kg dry 50 1380 ND 106 78-122% 1390 34.5 69.1 50 1380 ND 101 78-125% Dibromomethane ug/kg dry 1,2-Dichlorobenzene 1390 17.3 34.5 ug/kg dry 50 1380 ND 100 78-121% 17.3 1410 34.5 1380 ND 102 77-121% 1,3-Dichlorobenzene ug/kg dry 50 34.5 1,4-Dichlorobenzene 1310 17.3 ug/kg dry 50 1380 ND 95 75-120% Dichlorodifluoromethane 1250 69.1 138 ug/kg dry 50 1380 ND 91 29-149% ___ 1,1-Dichloroethane 1450 17.3 34.5 ug/kg dry 50 1380 ND 105 76-125% 1430 17.3 34.5 1380 ND 103 73-128% 1,2-Dichloroethane (EDC) 50 ug/kg dry 1370 1380 99 70-131% 1,1-Dichloroethene 17.3 34.5 ug/kg dry 50 ND 34.5 105 cis-1,2-Dichloroethene 1450 17.3 50 1380 ND 77-123% ug/kg dry trans-1,2-Dichloroethene 1400 34.5 1380 ND 101 74-125% 17.3 ug/kg dry 50 1,2-Dichloropropane 1460 17.3 34.5 ug/kg dry 50 1380 ND 106 76-123% 1,3-Dichloropropane 1480 34.5 69.1 ug/kg dry 50 1380 ND 107 77-121% 69.1 ND 99 67-133% 2,2-Dichloropropane 1370 34.5 ug/kg dry 50 1380 34.5 69.1 102 76-125% 1,1-Dichloropropene 1410 ug/kg dry 50 1380 ND 74-126% 1300 34.5 69.1 1380 ND 94 cis-1,3-Dichloropropene ug/kg dry 50 trans-1,3-Dichloropropene 1240 34.5 69.1 1380 ND 90 71-130% ug/kg dry 50 101 76-122% Ethylbenzene 1390 17.3 34.5 ug/kg dry 50 1380 ND Hexachlorobutadiene 1300 69.1 138 ug/kg dry 50 1380 ND 94 61-135% 2-Hexanone 3000 345 691 2760 ND 109 53-145% ug/kg dry 50 Isopropylbenzene 1400 34.5 69.1 ug/kg dry 50 1380 ND 101 68-134% 34.5 69.1 ND 104 4-Isopropyltoluene 1430 50 1380 73-127% ug/kg dry ---Methylene chloride 1230 345 691 ug/kg dry 50 1380 ND 89 70-128%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 115 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 1040492 - EPA 5035A Soil Matrix Spike (1040492-MS1) Prepared: 04/09/21 11:30 Analyzed: 04/15/21 02:16 T-02 QC Source Sample: Non-SDG (A1D0353-01) 4-Methyl-2-pentanone (MiBK) 2890 345 691 ug/kg dry 50 2760 ND 105 65-135% Methyl tert-butyl ether (MTBE) 69.1 1380 1410 34.5 ug/kg dry 50 ND 102 73-125% Naphthalene 1450 69.1 138 ug/kg dry 50 1380 ND 105 62-129% n-Propylbenzene 1430 17.3 34.5 ug/kg dry 50 1380 ND 103 73-125% 1460 34.5 69.1 ug/kg dry 50 1380 ND 106 76-124% Styrene 1,1,1,2-Tetrachloroethane 1600 1380 ND 78-125% 17.3 34.5 ug/kg dry 50 115 1,1,2,2-Tetrachloroethane 1440 34.5 69.1 ug/kg dry 50 1380 ND 104 70-124% Tetrachloroethene (PCE) 1400 ND 101 73-128% 17.3 34.5 ug/kg dry 50 1380 Toluene 1350 34.5 69.1 ug/kg dry 50 1380 ND 98 77-121% 1,2,3-Trichlorobenzene 1450 173 345 ug/kg dry 50 1380 ND 105 66-130% 1,2,4-Trichlorobenzene 1380 173 345 ug/kg dry 50 1380 ND 100 67-129% 50 1,1,1-Trichloroethane 17.3 34.5 1380 ND 101 73-130% 1400 ug/kg dry 78-121% 1,1,2-Trichloroethane 1460 17.3 34.5 ug/kg dry 50 1380 ND 106 Trichloroethene (TCE) 1390 17.3 34.5 1380 ND 100 77-123% ug/kg dry 50 69.1 Trichlorofluoromethane 1360 138 ug/kg dry 50 1380 ND 98 62-140% 1,2,3-Trichloropropane 1460 34.5 69.1 ug/kg dry 50 1380 ND 105 73-125% ___ 1,2,4-Trimethylbenzene 1490 34.5 69.1 ug/kg dry 50 1380 ND 108 75-123% 1,3,5-Trimethylbenzene 1470 34.5 69.1 1380 ND 73-124% 50 106 ug/kg dry Vinyl chloride 17.3 34.5 1380 ND 95 56-135% 1320 ug/kg dry 50 34.5 69.1 102 m,p-Xylene 2830 50 2760 ND 77-124% ug/kg dry 1420 17.3 34.5 1380 ND 103 77-123% o-Xylene ug/kg dry 50 Surr: 1,4-Difluorobenzene (Surr) Recovery: 101 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 102 % 80-120 % 4-Bromofluorobenzene (Surr) 99 % 79-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 116 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:

Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 1040556 - EPA 5030B Water Blank (1040556-BLK1) Prepared: 04/15/21 17:16 Analyzed: 04/16/21 07:26 EPA 8260D ND 10.0 20.0 ug/L Acetone ND 2.00 1 Acrylonitrile 1.00 ug/L Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 1 ug/L Bromochloromethane ND 0.500 1.00 1 ug/L Bromodichloromethane ND 0.500 1.00 1 ug/L Bromoform ND 0.500 1 1.00 ug/L Bromomethane 5.00 ND 5.00 ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 1 ug/L sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 ug/L 1.00 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ---------Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L 2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 ND Dibromochloromethane 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 5.00 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 ug/L Dibromomethane ND 0.500 1.00 1 0.500 0.250 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.200 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 117 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC RPD Analyte Result Limit Units Dilution Amount Result % REC Limits RPD Limit Notes

Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 1040556 - EPA 5030B							Wat	er				
Blank (1040556-BLK1)			Prepared	: 04/15/21	17:16 Anal	yzed: 04/16/	21 07:26					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	1.00	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	2.00	4.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Tetrachloroethene (PCE)	0.307	0.200	0.400	ug/L	1							B-02,
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1							
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L	1							
m,p-Xylene	ND	0.500	1.00	ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L	1							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 111 % Limits: 80-120 % Dilution: Ix

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 118 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Result Units Dilution RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 1040556 - EPA 5030B Water Blank (1040556-BLK1) Prepared: 04/15/21 17:16 Analyzed: 04/16/21 07:26 Surr: Toluene-d8 (Surr) Recovery: 99% Limits: 80-120 % Dilution: 1x 4-Bromofluorobenzene (Surr) 108 % 80-120 % Prepared: 04/15/21 16:00 Analyzed: 04/16/21 06:32 LCS (1040556-BS1) EPA 8260D Acetone 36.7 10.0 20.0 ug/L 1 40.0 92 80-120% Acrylonitrile 20.6 1.00 2.00 ug/L 1 20.0 103 80-120% Benzene 20.7 0.100 0.200 1 20.0 104 80-120% ug/L Bromobenzene 19.4 0.250 0.500 20.0 97 80-120% ug/L 1 ---Bromochloromethane 24.6 0.500 1.00 1 20.0 123 80-120% Q-56 ug/L 0.500 1.00 20.0 80-120% Bromodichloromethane 214 ug/L 1 107 Bromoform 23.5 0.500 1.00 ug/L 1 20.0 118 80-120% Bromomethane 33.7 5.00 5.00 1 20.0 168 80-120% Q-56 ug/L 2-Butanone (MEK) 38.9 5.00 10.0 ug/L 1 40.0 97 80-120% n-Butylbenzene 19.3 0.500 1.00 ug/L 20.0 96 80-120% 1 -----sec-Butylbenzene 19.7 0.500 1.00 1 20.0 98 80-120% ug/L tert-Butylbenzene 16.9 0.500 1.00 20.0 84 80-120% ug/L 1 Carbon disulfide 19.3 5.00 10.0 ug/L 1 20.0 97 80-120% Carbon tetrachloride 22.9 0.500 1.00 ug/L 1 20.0 114 80-120% Chlorobenzene 20.3 0.250 0.500 ug/L 1 20.0 102 80-120% Chloroethane 27.3 5.00 5.00 20.0 80-120% O-56 1 136 ug/L Chloroform 21.6 0.500 1.00 ug/L 1 20.0 108 80-120% Chloromethane 16.8 2.50 5.00 1 20.0 84 80-120% ug/L 2-Chlorotoluene 19.6 0.500 1.00 ug/L 1 20.0 98 80-120% 4-Chlorotoluene 18.6 0.500 1.00 ug/L 1 20.0 93 80-120% 99 Dibromochloromethane 19.7 0.500 1.00 ug/L 1 20.0 80-120% 1,2-Dibromo-3-chloropropane 15.6 5.00 5.00 ug/L 1 20.0 **78** 80-120% O-55 1,2-Dibromoethane (EDB) 20.0 19.3 0.250 0.500 ug/L 1 97 80-120% Dibromomethane 22.3 0.500 1.00 1 20.0 112 80-120% ug/L 1,2-Dichlorobenzene 19.3 0.250 0.500 ug/L 1 20.0 96 80-120% 1,3-Dichlorobenzene 19.9 0.250 0.500 ug/L 1 20.0 100 80-120% 1,4-Dichlorobenzene 19.7 0.250 0.500 20.0 98 80-120% ug/L 1 Dichlorodifluoromethane 22.5 0.500 1.00 ug/L 1 20.0 112 80-120% 1,1-Dichloroethane 0.200 0.400 20.0 97 80-120% 19.4 ug/L 1

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 119 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040556 - EPA 5030B	Water											
LCS (1040556-BS1)			Prepared	: 04/15/21	16:00 Anal	yzed: 04/16	/21 06:32					
1,2-Dichloroethane (EDC)	20.2	0.200	0.400	ug/L	1	20.0		101	80-120%			
1,1-Dichloroethene	19.9	0.200	0.400	ug/L	1	20.0		99	80-120%			
cis-1,2-Dichloroethene	20.1	0.200	0.400	ug/L	1	20.0		100	80-120%			
trans-1,2-Dichloroethene	21.0	0.200	0.400	ug/L	1	20.0		105	80-120%			
1,2-Dichloropropane	20.4	0.250	0.500	ug/L	1	20.0		102	80-120%			
1,3-Dichloropropane	19.5	0.500	1.00	ug/L	1	20.0		98	80-120%			
2,2-Dichloropropane	14.8	1.00	1.00	ug/L	1	20.0		74	80-120%			Q-55
1,1-Dichloropropene	21.7	0.500	1.00	ug/L	1	20.0		109	80-120%			
cis-1,3-Dichloropropene	17.5	0.500	1.00	ug/L	1	20.0		87	80-120%			
trans-1,3-Dichloropropene	16.7	0.500	1.00	ug/L	1	20.0		83	80-120%			
Ethylbenzene	19.6	0.250	0.500	ug/L	1	20.0		98	80-120%			
Hexachlorobutadiene	17.2	2.50	5.00	ug/L	1	20.0		86	80-120%			
2-Hexanone	32.6	5.00	10.0	ug/L	1	40.0		82	80-120%			
Isopropylbenzene	20.5	0.500	1.00	ug/L	1	20.0		102	80-120%			
4-Isopropyltoluene	20.2	0.500	1.00	ug/L	1	20.0		101	80-120%			
Methylene chloride	21.8	5.00	10.0	ug/L	1	20.0		109	80-120%			
4-Methyl-2-pentanone (MiBK)	34.6	5.00	10.0	ug/L	1	40.0		87	80-120%			
Methyl tert-butyl ether (MTBE)	17.7	0.500	1.00	ug/L	1	20.0		89	80-120%			
Naphthalene	17.8	2.00	4.00	ug/L	1	20.0		89	80-120%			
n-Propylbenzene	18.8	0.250	0.500	ug/L	1	20.0		94	80-120%			
Styrene	21.0	0.500	1.00	ug/L	1	20.0		105	80-120%			
1,1,2-Tetrachloroethane	20.3	0.200	0.400	ug/L	1	20.0		102	80-120%			
1,1,2,2-Tetrachloroethane	17.0	0.250	0.500	ug/L	1	20.0		85	80-120%			
Tetrachloroethene (PCE)	21.4	0.200	0.400	ug/L	1	20.0		107	80-120%			B-02
Toluene	18.7	0.500	1.00	ug/L	1	20.0		93	80-120%			
1,2,3-Trichlorobenzene	23.1	1.00	2.00	ug/L	1	20.0		116	80-120%			
1,2,4-Trichlorobenzene	23.5	1.00	2.00	ug/L	1	20.0		118	80-120%			
1,1,1-Trichloroethane	19.8	0.200	0.400	ug/L	1	20.0		99	80-120%			
1,1,2-Trichloroethane	20.5	0.250	0.500	ug/L	1	20.0		103	80-120%			
Trichloroethene (TCE)	25.0	0.200	0.400	ug/L	1	20.0		125	80-120%			Q-56
Trichlorofluoromethane	23.7	1.00	2.00	ug/L	1	20.0		119	80-120%			
1,2,3-Trichloropropane	18.0	0.500	1.00	ug/L	1	20.0		90	80-120%			
1,2,4-Trimethylbenzene	20.5	0.500	1.00	ug/L	1	20.0		102	80-120%			
1,3,5-Trimethylbenzene	21.2	0.500	1.00	ug/L	1	20.0		106	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		•	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040556 - EPA 5030B							Wat	er				
LCS (1040556-BS1)			Prepared	1: 04/15/21	16:00 Anal	yzed: 04/16/	/21 06:32					
Vinyl chloride	22.6	0.200	0.400	ug/L	1	20.0		113	80-120%			
n,p-Xylene	39.3	0.500	1.00	ug/L	1	40.0		98	80-120%			
o-Xylene	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 108 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	80	0-120 %		"					
Duplicate (1040556-DUP1)			Prepared	1: 04/16/21	08:22 Anal	yzed: 04/16/	/21 10:47					
OC Source Sample: Non-SDG (A1	D0471-01)											_
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2-Dibromo-3-chloropropane	ND	5.00	5.00	ug/L	1		ND				30%	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:

Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution RPD Limit Limit Amount Result Limits Limit Notes Batch 1040556 - EPA 5030B Water **Duplicate (1040556-DUP1)** Prepared: 04/16/21 08:22 Analyzed: 04/16/21 10:47 QC Source Sample: Non-SDG (A1D0471-01) 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.250 0.500 1,4-Dichlorobenzene ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.200 0.400 1 ND 30% ug/L ---ND 0.200 1,1-Dichloroethene 0.400 ug/L 1 ND 30% cis-1,2-Dichloroethene 0.326 0.200 0.400ug/L 1 0.248 27 30% 30% trans-1,2-Dichloroethene ND 0.400 0.200 ug/L 1 ND 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% 2,2-Dichloropropane ND 1.00 1.00 ug/L 1 ND 30% ND 0.500 1.00 ND 30% 1,1-Dichloropropene ug/L 1 cis-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 ND 30% trans-1,3-Dichloropropene ug/L 1 0.250 ug/L Ethylbenzene ND 0.500 1 ND 30% Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND 30% 2-Hexanone ND 5.00 10.0 ug/L 1 ND 30% ND 0.500 ND 30% Isopropylbenzene 1.00 1 ug/L ND 4-Isopropyltoluene 0.500 1.00 ug/L 1 ND 30% ND 10.0 Methylene chloride 5.00 ND 30% ug/L 1 4-Methyl-2-pentanone (MiBK) ND ND 5.00 10.0 ug/L 1 30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND ---30% Naphthalene ND 2.00 4.00 ug/L 1 ND 30% ND 0.500 ND 30% n-Propylbenzene 0.250 ug/L 1 ND 0.500 1.00 ND 30% Styrene ug/L 1 ND 1,1,1,2-Tetrachloroethane 0.200 0.400 ND 30% ug/L 1 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ND 30% ug/L 1 Tetrachloroethene (PCE) B-02 1.86 0.200 0.400 ug/L 1 ---1.83 ---1 30% ND 0.500 1.00 ug/L 1 ND 30% 1,2,3-Trichlorobenzene ND 1.00 2.00 ND 30% ug/L 1 ---1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 ND 30% ND 0.200 0.400 1,1,1-Trichloroethane 1 ND 30% ug/L 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 ND 30%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 122 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040556 - EPA 5030B							Wat	er				
Duplicate (1040556-DUP1)			Prepared	1: 04/16/21	08:22 Ana	yzed: 04/16	/21 10:47					
QC Source Sample: Non-SDG (A1	D0471-01)											
Trichloroethene (TCE)	2.20	0.200	0.400	ug/L	1		2.26			3	30%	Q-54
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
m,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 112 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80	0-120 %		"					
QC Source Sample: Non-SDG (A1	D0471-02)											
EPA 8260D												
Acetone	37.1	10.0	20.0	ug/L	1	40.0	ND	93	39-160%			
Acrylonitrile	20.9	1.00	2.00	ug/L	1	20.0	ND	104	63-135%			
Benzene	21.5	0.100	0.200	ug/L	1	20.0	ND	107	79-120%			
Bromobenzene	19.8	0.250	0.500	ug/L	1	20.0	ND	99	80-120%			
Bromochloromethane	25.2	0.500	1.00	ug/L	1	20.0	ND	126	78-123%			Q-54
Bromodichloromethane	22.6	0.500	1.00	ug/L	1	20.0	ND	113	79-125%			
Bromoform	25.0	0.500	1.00	ug/L	1	20.0	ND	125	66-130%			
Bromomethane	33.0	5.00	5.00	ug/L	1	20.0	ND	165	53-141%			Q-54
2-Butanone (MEK)	37.0	5.00	10.0	ug/L	1	40.0	ND	93	56-143%			
n-Butylbenzene	20.2	0.500	1.00	ug/L	1	20.0	ND	101	75-128%			
sec-Butylbenzene	20.7	0.500	1.00	ug/L	1	20.0	ND	104	77-126%			
tert-Butylbenzene	17.2	0.500	1.00	ug/L	1	20.0	ND	86	78-124%			
Carbon disulfide	20.6	5.00	10.0	ug/L	1	20.0	ND	103	64-133%			
Carbon tetrachloride	25.2	0.500	1.00	ug/L	1	20.0	ND	126	72-136%			
Chlorobenzene	21.0	0.250	0.500	ug/L	1	20.0	ND	105	80-120%			
Chloroethane	26.8	5.00	5.00	ug/L	1	20.0	ND	134	60-138%			Q-54
Chloroform	22.5	0.500	1.00	ug/L	1	20.0	ND	112	79-124%			
Chloromethane	16.2	2.50	5.00	ug/L	1	20.0	ND	81	50-139%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 1040556 - EPA 5030B Water Matrix Spike (1040556-MS1) Prepared: 04/16/21 08:22 Analyzed: 04/16/21 11:42 QC Source Sample: Non-SDG (A1D0471-02) 2-Chlorotoluene 20.0 0.500 1.00 ug/L 1 20.0 ND 100 79-122% 1.00 20.0 4-Chlorotoluene 18.6 0.500 ug/L 1 ND 93 78-122% ug/L Dibromochloromethane 21.2 0.500 1.00 1 20.0 ND 106 74-126% 1,2-Dibromo-3-chloropropane 17.0 5.00 5.00 ug/L 1 20.0 ND 85 62-128% O-54i 1,2-Dibromoethane (EDB) 19.8 0.250 0.500 1 20.0 ND 99 77-121% ug/L Dibromomethane 23.1 1.00 20.0 ND 79-123% 0.500 ug/L 1 116 ug/L 1,2-Dichlorobenzene 20.2 0.250 0.500 1 20.0 ND 101 80-120% 20.5 20.0 ND 103 80-120% 1.3-Dichlorobenzene 0.250 0.500 ug/L 1 1,4-Dichlorobenzene 20.6 0.250 0.500 ug/L 1 20.0 ND 103 79-120% Dichlorodifluoromethane 22.6 0.500 1.00 ug/L 1 20.0 ND 113 32-152% 1,1-Dichloroethane 19.9 0.200 0.400 ug/L 1 20.0 ND 100 77-125% 1,2-Dichloroethane (EDC) 20.3 0.200 0.400 20.0 ND 102 73-128% ug/L 1 20.0 1,1-Dichloroethene 20.3 0.200 0.400 ug/L 1 ND 101 71-131% 20.0 cis-1,2-Dichloroethene 20.4 0.200 0.400 0.268 101 78-123% ug/L 1 ug/L trans-1,2-Dichloroethene 21.5 0.200 0.400 1 20.0 ND 108 75-124% 1,2-Dichloropropane 20.7 0.250 0.500 ug/L 1 20.0 ND 103 78-122% ___ 1,3-Dichloropropane 19.2 0.500 1.00 ug/L 1 20.0 ND 96 80-120% 18.1 20.0 ND 90 60-139% Q-541 2,2-Dichloropropane 1.00 1.00 1 ug/L 22.5 20.0 ND 79-125% 1,1-Dichloropropene 0.500 1.00 ug/L 1 113 0.500 1.00 20.0 cis-1,3-Dichloropropene 16.7 ND 83 75-124% ug/L 1 trans-1,3-Dichloropropene 0.500 20.0 ND 87 73-127% 17.5 1.00 ug/L 1 Ethylbenzene 20.2 0.250 0.500 ug/L 1 20.0 ND 101 79-121% Hexachlorobutadiene 20.2 2.50 5.00 ug/L 1 20.0 ND 101 66-134% 2-Hexanone 32.0 ug/L 40.0 ND 80 57-139% 5.00 10.0 1 0.500 1.00 20.0 ND 105 72-131% Isopropylbenzene 21.0 ug/L 1 20.0 107 21.4 0.500 1.00 ND 77-127% 4-Isopropyltoluene ug/L 1 Methylene chloride 21.9 5.00 10.0 20.0 ND 110 74-124% ug/L 1 40.0 ND 67-130% 4-Methyl-2-pentanone (MiBK) 33.5 5.00 10.0 ug/L 1 84 Methyl tert-butyl ether (MTBE) 17.5 0.500 1.00 ug/L 1 20.0 ND 87 71-124% Naphthalene 19.0 2.00 4.00 ug/L 1 20.0 ND 95 61-128% --n-Propylbenzene 19.4 0.250 0.500 1 20.0 ND 97 76-126% ug/L 0.500 1.00 20.0 ND Q-02, J Styrene 0.596 1 3 78-123% ug/L 1,1,1,2-Tetrachloroethane 21.5 0.200 0.400 ug/L 1 20.0 ND 107 78-124%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 124 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 1040556 - EPA 5030B Water Matrix Spike (1040556-MS1) Prepared: 04/16/21 08:22 Analyzed: 04/16/21 11:42 QC Source Sample: Non-SDG (A1D0471-02) 20.0 1,1,2,2-Tetrachloroethane 18.4 0.250 0.500 ug/L 1 ND 92 71-121% B-02 24.1 0.200 0.400 20.0 Tetrachloroethene (PCE) ug/L 1 1.89 111 74-129% 20.0 80-121% Toluene 18.9 0.500 1.00 ug/L 1 ND 94 1,2,3-Trichlorobenzene 25.8 1.00 2.00 ug/L 1 20.0 ND 129 69-129% 1,2,4-Trichlorobenzene 25.6 1.00 2.00 ug/L 1 20.0 ND 128 69-130% 1,1,1-Trichloroethane 21.2 0.200 0.400 20.0 ND 106 74-131% ug/L 1 20.0 80-120% 1,1,2-Trichloroethane 20.7 0.250 0.500 ug/L 1 ND 103 Trichloroethene (TCE) 27.3 0.400 20.0 2.18 Q-54g 0.200 ug/L 1 126 79-123% 20.0 Trichlorofluoromethane 25.3 1.00 2.00 ug/L 1 ND 126 65-141% 1,2,3-Trichloropropane 17.8 0.500 1.00 ug/L 1 20.0 ND 89 73-122% 1,2,4-Trimethylbenzene 20.5 0.500 1.00 ug/L 1 20.0 ND 103 76-124% 20.0 O-01 1,3,5-Trimethylbenzene 8.02 0.500 1.00 ND 40 75-124% ug/L 1 22.6 0.200 20.0 ND 113 58-137% Vinyl chloride 0.400 ug/L 1 1.00 40.0 m,p-Xylene 40.0 0.500 ND 100 80-121% ug/L 1 0.250 0.500 78-122% o-Xylene 18.7 ug/L Surr: 1,4-Difluorobenzene (Surr) Recovery: 109 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 93 % 80-120 %

80-120 %

93 %

Apex Laboratories

Philip Nevenberg

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 125 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Orga	nic Com	oounds b	y EPA 826	60D SIM					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040427 - EPA 5030B							Wat	er				
Blank (1040427-BLK1)			Prepared	1: 04/13/21	09:00 Ana	lyzed: 04/13	/21 12:39					
EPA 8260D SIM												
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1							
Vinyl chloride	ND	0.0100	0.0200	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80	-120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			80 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			87 %	80	-120 %		"					
LCS (1040427-BS1)			Prepared	1: 04/13/21 (09:00 Ana	lyzed: 04/13	/21 12:05					
EPA 8260D SIM												
1,2-Dibromoethane (EDB)	0.182	0.0100	0.0200	ug/L	1	0.200		91	80-120%			
Vinyl chloride	0.217	0.0100	0.0200	ug/L	1	0.200		109	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 100 %	Limits: 80	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			86 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			87 %	80	-120 %		"					
Duplicate (1040427-DUP1)			Prepared	1: 04/13/21	12:29 Ana	lyzed: 04/13	/21 14:26					
QC Source Sample: GP01-GW-15-	DUP (A1D)	263-11)										
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1		ND				30%	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 102 %	Limits: 80	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			87%	80	-120 %		"					
4-Bromofluorobenzene (Surr)			87 %	80	-120 %		"					
Matrix Spike (1040427-MS1)			Prepared	1: 04/13/21	12:29 Ana	lyzed: 04/13	/21 17:59					
QC Source Sample: GP08-GW-15	(A1D0263-1	8)										
EPA 8260D SIM												
1,2-Dibromoethane (EDB)	0.179	0.0100	0.0200	ug/L	1	0.200	ND	90	77-121%			
Vinyl chloride	0.213	0.0100	0.0200	ug/L	1	0.200	ND	107	58-137%			
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 104 %	Limits: 80	120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			87 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			86 %	80	-120 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vo	latile Orga	nic Comp	ounds b	y EPA 820	60D SIM					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040641 - EPA 5035A							Soil					
Blank (1040641-BLK1)			Prepared	d: 04/19/21 1	1:00 Ana	yzed: 04/19	/21 14:26					
5035A/8260D SIM												
1,2-Dibromoethane (EDB)	ND	0.667	1.33	ug/kg we	t 100							
Vinyl chloride	ND	3.33	6.67	ug/kg we	t 100							
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 104 %	Limits: 80-	-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			92 %	79-	120 %		"					
LCS (1040641-BS1)			Prepared	d: 04/19/21 1	1:00 Ana	yzed: 04/19	/21 13:28					
5035A/8260D SIM												
1,2-Dibromoethane (EDB)	18.2	1.00	2.00	ug/kg we	t 100	20.0		91	80-120%			
Vinyl chloride	16.3	5.00	10.0	ug/kg we	t 100	20.0		81	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 102 %	Limits: 80-	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			92 %	79-	120 %		"					
Duplicate (1040641-DUP1)			Prepared	d: 04/07/21 0	8:25 Ana	lyzed: 04/19	/21 16:12					
QC Source Sample: GP04-S-8 (A1	ID0263-04)											
5035A/8260D SIM												
1,2-Dibromoethane (EDB)	ND	1.40	2.80	ug/kg dr	y 100		ND				30%	
Vinyl chloride	ND	6.99	14.0	ug/kg dr	y 100		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 103 %	Limits: 80-	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			92 %	79-	120 %		"					
Matrix Spike (1040641-MS1)			Prepared	d: 04/07/21 1	0:10 Ana	yzed: 04/19	0/21 18:52					
QC Source Sample: GP08-S-6 (A1	(D0263-09)											
5035A/8260D SIM												
1,2-Dibromoethane (EDB)	24.0	1.37	2.73	ug/kg dr	y 100	27.3	ND	88	78-122%			
Vinyl chloride	15.1	6.83	13.7	ug/kg dr	,	27.3	ND		56-135%			Q-
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 103 %	Limits: 80-			ution: 1x					
Toluene-d8 (Surr)		1.000	101 %		120 %	2	"					
4-Bromofluorobenzene (Surr)			92 %		120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> Project: <u>Former Planter's Hotel Site</u>

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ns (PAH	s) by EPA	8270E S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040302 - EPA 3546							Soil					
Blank (1040302-BLK1)			Prepared	l: 04/09/21 0	7:50 Anal	yzed: 04/09	/21 10:10					
EPA 8270E SIM												
Acenaphthene	ND	4.55	9.09	ug/kg we	t 1							
Acenaphthylene	ND	4.55	9.09	ug/kg we	t 1							
Anthracene	ND	4.55	9.09	ug/kg we	t 1							
Benz(a)anthracene	ND	4.55	9.09	ug/kg we	t 1							
Benzo(a)pyrene	ND	4.55	9.09	ug/kg we	t 1							
Benzo(b)fluoranthene	ND	4.55	9.09	ug/kg we	t 1							
Benzo(k)fluoranthene	ND	4.55	9.09	ug/kg we								
Benzo(g,h,i)perylene	ND	4.55	9.09	ug/kg we	t 1							
Chrysene	ND	4.55	9.09	ug/kg we								
Dibenz(a,h)anthracene	ND	4.55	9.09	ug/kg we	t 1							
Fluoranthene	ND	4.55	9.09	ug/kg we	t 1							
Fluorene	ND	4.55	9.09	ug/kg we	t 1							
Indeno(1,2,3-cd)pyrene	ND	4.55	9.09	ug/kg we								
I-Methylnaphthalene	ND	4.55	9.09	ug/kg we								
2-Methylnaphthalene	ND	4.55	9.09	ug/kg we								
Naphthalene	ND	4.55	9.09	ug/kg we								
Phenanthrene	ND	4.55	9.09	ug/kg we								
Pyrene	ND	4.55	9.09	ug/kg we								
Dibenzofuran	ND	4.55	9.09	ug/kg we								
Surr: 2-Fluorobiphenyl (Surr)		Rece	overy: 98 %	Limits: 44	120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			101 %	54-	127 %		"					
LCS (1040302-BS1)			Prepared	1: 04/09/21 0	7:50 Anal	yzed: 04/09	/21 10:35					
EPA 8270E SIM			1			- ''						
Acenaphthene	727	5.00	10.0	ug/kg we	t 1	800		91	40-123%			
Acenaphthylene	761	5.00	10.0	ug/kg we		800			32-132%			
Anthracene	672	5.00	10.0	ug/kg we		800			47-123%			
Benz(a)anthracene	693	5.00	10.0	ug/kg we		800			49-126%			
Benzo(a)pyrene	682	5.00	10.0	ug/kg we		800			45-129%			
Benzo(b)fluoranthene	621	5.00	10.0	ug/kg we		800			45-132%			
Benzo(k)fluoranthene	635	5.00	10.0	ug/kg we		800			47-132%			
` '	688	5.00	10.0	ug/kg we		800			43-134%			
Benzo(g,h,i)perylene	naa				1 '	000						

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	/drocarbo	ns (PAH	s) by EPA	8270E S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040302 - EPA 3546							Soil					
LCS (1040302-BS1)			Prepared	1: 04/09/21 (07:50 Ana	lyzed: 04/09	/21 10:35					
Dibenz(a,h)anthracene	747	5.00	10.0	ug/kg we	et 1	800		93	45-134%			
Fluoranthene	599	5.00	10.0	ug/kg we	et 1	800		75	50-127%			
Fluorene	669	5.00	10.0	ug/kg we	et 1	800		84	43-125%			
Indeno(1,2,3-cd)pyrene	676	5.00	10.0	ug/kg we	et 1	800		85	45-133%			
1-Methylnaphthalene	671	5.00	10.0	ug/kg we	et 1	800		84	40-120%			
2-Methylnaphthalene	680	5.00	10.0	ug/kg we	et 1	800		85	38-122%			
Naphthalene	659	5.00	10.0	ug/kg we	et 1	800		82	35-123%			
Phenanthrene	668	5.00	10.0	ug/kg we	et 1	800		83	50-121%			
Pyrene	585	5.00	10.0	ug/kg we	et 1	800		73	47-127%			
Dibenzofuran	687	5.00	10.0	ug/kg we	et 1	800		86	44-120%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 94 %	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			91 %	54	-127 %		"					
Duplicate (1040302-DUP1)	1.01004.01		Prepared	1: 04/09/21 (07:50 Ana	lyzed: 04/09	/21 11:26					
QC Source Sample: Non-SDG (A Acenaphthene	ND	317	217	ua/Ira du	y 1		ND				30%	R
=	ND ND	103	317 103	ug/kg dr			ND ND				30%	R
Acenaphthylene Anthracene	ND ND	103	103	ug/kg dr ug/kg dr	•		ND ND				30%	R
Benz(a)anthracene	ND ND	6.41	103	ug/kg dr ug/kg dr			ND ND				30%	IN
	ND ND	6.41	12.8				ND ND				30%	
Benzo(a)pyrene Benzo(b)fluoranthene	ND ND	6.41	12.8	ug/kg dr			ND ND				30%	
Benzo(k)fluoranthene	ND	6.41	12.8	ug/kg dr ug/kg dr			ND				30%	
Benzo(g,h,i)perylene	ND ND	6.41	12.8	ug/kg dr			ND ND				30%	
Chrysene	ND ND	6.41	12.8	ug/kg dr	,		ND ND				30%	
Dibenz(a,h)anthracene	ND ND	6.41	12.8	ug/kg dr ug/kg dr			ND ND				30%	
Fluoranthene	14.9	6.41	12.8	ug/kg dr ug/kg dr			8.11			59	30%	C
Fluorantinene	14.9 ND	94.9	94.9	ug/kg dr			ND				30%	F
Indeno(1,2,3-cd)pyrene	ND ND	6.41	12.8	ug/kg dr			ND ND				30%	
l-Methylnaphthalene	99.1	6.41	12.8	ug/kg dr			53.4			60	30%	(
2-Methylnaphthalene	23.6	6.41	12.8	ug/kg dr ug/kg dr	,		12.3			63	30%	(
Z-Meinymaphinaiene Naphthalene	23.6 ND	28.2	28.2	ug/kg dr ug/kg dr			ND				30%]
Naphthalene Phenanthrene	1950	6.41	12.8	ug/kg dr ug/kg dr			1090			57	30%	(
n nenanunche	1930	0.41	12.0	ug/kg ur	y 1		1090			31	JU /0	

Apex Laboratories

Philip Nevenberg

30.4

253

6.41

6.41

12.8

12.8

ug/kg dry

ug/kg dry

Pyrene

Dibenzofuran

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

59

56

30%

30%

Q-17

Q-17

16.5

142

Philip Nerenberg, Lab Director

Page 129 of 147

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ons (PAH	s) by EPA	8270E S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040302 - EPA 3546							Soil					
Duplicate (1040302-DUP1)			Prepared	1: 04/09/21	07:50 Anal	lyzed: 04/09	/21 11:26					
QC Source Sample: Non-SDG (A1	C1084-01)											
Surr: 2-Fluorobiphenyl (Surr)		Reco	very: 82 %	Limits: 44	!-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			89 %	54	-127 %		"					
Matrix Spike (1040302-MS1)			Prepared	1: 04/09/21	07:50 Anal	yzed: 04/09	/21 12:42					
QC Source Sample: GP08-S-6 (A1	ID0263-09)											
EPA 8270E SIM												
Acenaphthene	854	6.27	12.5	ug/kg dı	y 1	1000	ND	85	40-123%			
Acenaphthylene	892	6.27	12.5	ug/kg dı	y 1	1000	ND	89	32-132%			
Anthracene	793	6.27	12.5	ug/kg dı	y 1	1000	ND	79	47-123%			
Benz(a)anthracene	805	6.27	12.5	ug/kg dı	y 1	1000	ND	80	49-126%			
Benzo(a)pyrene	781	6.27	12.5	ug/kg dı	y 1	1000	ND	78	45-129%			
Benzo(b)fluoranthene	699	6.27	12.5	ug/kg dı	y 1	1000	ND	70	45-132%			
Benzo(k)fluoranthene	725	6.27	12.5	ug/kg dı	y 1	1000	ND	72	47-132%			
Benzo(g,h,i)perylene	796	6.27	12.5	ug/kg dı	y 1	1000	ND	79	43-134%			
Chrysene	832	6.27	12.5	ug/kg dı	y 1	1000	ND	83	50-124%			
Dibenz(a,h)anthracene	849	6.27	12.5	ug/kg dı	y 1	1000	ND	85	45-134%			
Fluoranthene	658	6.27	12.5	ug/kg dı	y 1	1000	ND	66	50-127%			
luorene	778	6.27	12.5	ug/kg dı	y 1	1000	ND		43-125%			
ndeno(1,2,3-cd)pyrene	770	6.27	12.5	ug/kg dı	y 1	1000	ND		45-133%			
-Methylnaphthalene	793	6.27	12.5	ug/kg dı	y 1	1000	ND		40-120%			
-Methylnaphthalene	805	6.27	12.5	ug/kg dı	y 1	1000	ND		38-122%			
Naphthalene	779	6.27	12.5	ug/kg dı	-	1000	ND		35-123%			
henanthrene	780	6.27	12.5	ug/kg dı	y 1	1000	ND	78	50-121%			
Pyrene	638	6.27	12.5	ug/kg dı	•	1000	ND	64	47-127%			
Dibenzofuran	804	6.27	12.5	ug/kg dı	y 1	1000	ND	80	44-120%			
urr: 2-Fluorobiphenyl (Surr)	·	Reco	very: 87%	Limits: 44	-120 %	Dilt	ution: 1x					_
p-Terphenyl-d14 (Surr)			90 %	54	-127 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polyai	romatic Hy	drocarbo	ons (PAH	s) by EPA	8270E S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040310 - EPA 3510C	(Acid Extra	ction)					Wat	er				
Blank (1040310-BLK1)			Prepared	04/09/21	09:52 Anal	yzed: 04/09	/21 15:13					
EPA 8270E SIM												
Acenaphthene	ND	0.0182	0.0364	ug/L	1							
Acenaphthylene	ND	0.0182	0.0364	ug/L	1							
Anthracene	ND	0.0182	0.0364	ug/L	1							
Benz(a)anthracene	ND	0.0182	0.0364	ug/L	1							
Benzo(a)pyrene	ND	0.0182	0.0364	ug/L	1							
Benzo(b)fluoranthene	ND	0.0182	0.0364	ug/L	1							
Benzo(k)fluoranthene	ND	0.0182	0.0364	ug/L	1							
Benzo(g,h,i)perylene	ND	0.0182	0.0364	ug/L	1							
Chrysene	ND	0.0182	0.0364	ug/L	1							
Dibenz(a,h)anthracene	ND	0.0182	0.0364	ug/L	1							
Fluoranthene	ND	0.0182	0.0364	ug/L	1							
Fluorene	ND	0.0182	0.0364	ug/L	1							
ndeno(1,2,3-cd)pyrene	ND	0.0182	0.0364	ug/L	1							
-Methylnaphthalene	ND	0.0364	0.0727	ug/L	1							
2-Methylnaphthalene	ND	0.0364	0.0727	ug/L	1							
Naphthalene	ND	0.0364	0.0727	ug/L	1							
Phenanthrene	ND	0.0182	0.0364	ug/L	1							
Pyrene	ND	0.0182	0.0364	ug/L	1							
Dibenzofuran	ND	0.0182	0.0364	ug/L	1							
Surr: 2-Fluorobiphenyl (Surr)			very: 83 %	Limits: 44	4-120 %	Dilt	ution: 1x					
p-Terphenyl-d14 (Surr)			92 %	50	0-134 %		"					
LCS (1040310-BS1)			Prepared	: 04/09/21	09:52 Anal	yzed: 04/09	/21 15:39					
EPA 8270E SIM												
Acenaphthene	6.42	0.0200	0.0400	ug/L	1	8.00		80	47-122%			
Acenaphthylene	6.62	0.0200	0.0400	ug/L	1	8.00		83	41-130%			
Anthracene	6.75	0.0200	0.0400	ug/L	1	8.00		84	57-123%			
Benz(a)anthracene	7.11	0.0200	0.0400	ug/L	1	8.00		89	58-125%			
Benzo(a)pyrene	7.03	0.0200	0.0400	ug/L	1	8.00		88	54-128%			
Benzo(b)fluoranthene	6.39	0.0200	0.0400	ug/L	1	8.00			53-131%			
Benzo(k)fluoranthene	6.39	0.0200	0.0400	ug/L	1	8.00			57-129%			
Benzo(g,h,i)perylene	7.09	0.0200	0.0400	ug/L	1	8.00			50-134%			
(D),.)P J	,,			B	•	0.00		0,				

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ons (PAH	s) by EPA	8270E SI	М				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040310 - EPA 3510C	(Acid Extra	ction)					Wat	er				
LCS (1040310-BS1)			Prepared	: 04/09/21	09:52 Anal	yzed: 04/09/	/21 15:39					
Dibenz(a,h)anthracene	7.40	0.0200	0.0400	ug/L	1	8.00		93	51-134%			
Fluoranthene	6.28	0.0200	0.0400	ug/L	1	8.00		79	57-128%			
Fluorene	6.26	0.0200	0.0400	ug/L	1	8.00		78	52-124%			
Indeno(1,2,3-cd)pyrene	6.87	0.0200	0.0400	ug/L	1	8.00		86	52-134%			
l-Methylnaphthalene	5.68	0.0400	0.0800	ug/L	1	8.00		71	41-120%			
2-Methylnaphthalene	5.67	0.0400	0.0800	ug/L	1	8.00		71	40-121%			
Naphthalene	5.43	0.0400	0.0800	ug/L	1	8.00		68	40-121%			
Phenanthrene	6.68	0.0200	0.0400	ug/L	1	8.00		83	59-120%			
Pyrene	6.21	0.0200	0.0400	ug/L	1	8.00		78	57-126%			
Dibenzofuran	6.20	0.0200	0.0400	ug/L	1	8.00		77	53-120%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	very: 81 %	Limits: 44	<i>4-120 %</i>	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			90 %	50	0-134 %		"					
EPA 8270E SIM		0.0200				lyzed: 04/09/						
Acenaphthene	7.38	0.0200	0.0400	ug/L	1	8.00		92	47-122%	14	30%	
Acenaphthylene	7.61	0.0200	0.0400	ug/L	1	8.00		95	41-130%	14	30%	
Anthracene	7.29	0.0200	0.0400	ug/L	1	8.00		91	57-123%	8	30%	
Benz(a)anthracene	7.44	0.0200	0.0400	ug/L	1	8.00		93	58-125%	5	30%	
Benzo(a)pyrene	7.38	0.0200	0.0400	ug/L	1	8.00		92	54-128%	5	30%	
Benzo(b)fluoranthene	6.65	0.0200	0.0400	ug/L	1	8.00		83	53-131%	4	30%	
Benzo(k)fluoranthene	6.74	0.0200	0.0400	ug/L	1	8.00		84	57-129%	5	30%	
Benzo(g,h,i)perylene	7.40	0.0200	0.0400	ug/L	1	8.00		93	50-134%	4	30%	
Chrysene	7.49	0.0200	0.0400	ug/L	1	8.00		94	59-123%	5	30%	
Dibenz(a,h)anthracene	7.78	0.0200	0.0400	ug/L	1	8.00		97	51-134%	5	30%	
Fluoranthene	6.47	0.0200	0.0400	ug/L	1	8.00		81	57-128%	3	30%	
Fluorene	6.96	0.0200	0.0400	ug/L	1	8.00		87	52-124%	11	30%	
Indeno(1,2,3-cd)pyrene	7.09	0.0200	0.0400	ug/L	1	8.00		89	52-134%	3	30%	
l-Methylnaphthalene	6.53	0.0400	0.0800	ug/L	1	8.00		82	41-120%	14	30%	
2-Methylnaphthalene	6.56	0.0400	0.0800	ug/L	1	8.00		82	40-121%	15	30%	
Naphthalene	6.30	0.0400	0.0800	ug/L	1	8.00		79	40-121%	15	30%	
Phenanthrene	7.23	0.0200	0.0400	ug/L	1	8.00		90	59-120%	8	30%	
Pyrene	6.37	0.0200	0.0400	ug/L	1	8.00		80	57-126%	3	30%	
Dibenzofuran	7.00	0.0200	0.0400	ug/L	1	8.00		88	53-120%	12	30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM

Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit Batch 1040310 - EPA 3510C (Acid Extraction) Water

LCS Dup (1040310-BSD1)	Prepared: 04/09/21 09:52 Analy	yzed: 04/09/21 16:04	Q-19
Surr: 2-Fluorobiphenyl (Surr)	Recovery: 91 % Limits: 44-120 %	Dilution: 1x	
p-Terphenyl-d14 (Surr)	89 % 50-134 %	"	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 133 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project:

Former Planter's Hotel Site

Project Number: 0346.11.02

Project Manager: David Weatherby

Report ID: A1D0263 - 04 22 21 1248

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 1040303 - Total Solids ([Ory Weigl	nt)					Soil					
Duplicate (1040303-DUP1)			Prepared	: 04/09/21	07:51 Anal	lyzed: 04/12	/21 07:51					
QC Source Sample: Non-SDG (A1	D0221-01)											
% Solids	56.3	1.00	1.00	%	1		57.6			2	10%	
Duplicate (1040303-DUP2)			Prepared	: 04/09/21	07:51 Anal	yzed: 04/12	/21 07:51					
QC Source Sample: GP07-S-6 (A1 EPA 8000D	D0263-08)											
% Solids	78.7	1.00	1.00	%	1		78.7			0.04	10%	
Duplicate (1040303-DUP3)			Prepared	: 04/09/21	07:51 Anal	yzed: 04/12	/21 07:51					
QC Source Sample: Non-SDG (A1)	D0286-01)											
% Solids	84.2	1.00	1.00	%	1		84.5			0.4	10%	
Duplicate (1040303-DUP4)			Prepared	: 04/09/21	20:27 Anal	lyzed: 04/12	/21 07:51					
QC Source Sample: Non-SDG (A1)	D0337-01)											
% Solids	76.3	1.00	1.00	%	1		76.0			0.4	10%	
Duplicate (1040303-DUP5)			Prepared	: 04/09/21	20:27 Anal	lyzed: 04/12	/21 07:51					
QC Source Sample: Non-SDG (A1)	D0371-01)											
% Solids	77.7	1.00	1.00	%	1		77.9			0.2	10%	
Duplicate (1040303-DUP6)			Prepared	: 04/09/21	20:27 Anal	yzed: 04/12	/21 07:51					
QC Source Sample: Non-SDG (A1)	D0378-02)											
% Solids	86.9	1.00	1.00	%	1		87.3			0.4	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 134 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

SAMPLE PREPARATION INFORMATION

		Diesel and	d/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3510C (Fu	els/Acid Ext.)		_		Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1040261							
A1D0263-10	Water	NWTPH-Dx LL	04/06/21 13:10	04/08/21 13:12	980mL/2mL	1000mL/2mL	1.02
A1D0263-11	Water	NWTPH-Dx LL	04/06/21 13:10	04/08/21 13:12	970mL/2mL	1000mL/2mL	1.03
A1D0263-12	Water	NWTPH-Dx LL	04/07/21 09:50	04/08/21 13:12	1020 mL/2 mL	1000mL/2mL	0.98
A1D0263-13	Water	NWTPH-Dx LL	04/07/21 11:50	04/08/21 13:12	1030 mL/2 mL	1000mL/2mL	0.97
A1D0263-14	Water	NWTPH-Dx LL	04/07/21 09:00	04/08/21 13:12	960mL/2mL	1000mL/2mL	1.04
A1D0263-15	Water	NWTPH-Dx LL	04/06/21 12:05	04/08/21 13:12	890mL/2mL	1000mL/2mL	1.12
A1D0263-16	Water	NWTPH-Dx LL	04/06/21 16:15	04/08/21 13:12	1010 mL/2 mL	1000 mL/2 mL	0.99
A1D0263-17	Water	NWTPH-Dx LL	04/06/21 15:00	04/08/21 13:12	920mL/2mL	1000 mL/2 mL	1.09
A1D0263-18	Water	NWTPH-Dx LL	04/07/21 10:45	04/08/21 13:12	970mL/2mL	1000mL/2mL	1.03
Prep: EPA 3546 (Fue	els)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1040332							
A1D0263-01	Soil	NWTPH-Dx	04/06/21 12:50	04/09/21 13:09	10.61g/5mL	10g/5mL	0.94
A1D0263-02	Soil	NWTPH-Dx	04/07/21 09:15	04/09/21 13:09	10.27g/5mL	10g/5mL	0.97
A1D0263-03	Soil	NWTPH-Dx	04/07/21 11:15	04/09/21 13:09	10.32g/5mL	10g/5mL	0.97
A1D0263-04	Soil	NWTPH-Dx	04/07/21 08:25	04/09/21 13:09	10.57g/5mL	10g/5mL	0.95
A1D0263-05	Soil	NWTPH-Dx	04/06/21 11:30	04/09/21 13:09	10.13g/5mL	10g/5mL	0.99
Batch: 1040449							
A1D0263-06	Soil	NWTPH-Dx	04/06/21 15:35	04/13/21 13:16	10.3g/5mL	10g/5mL	0.97
A1D0263-07RE1	Soil	NWTPH-Dx	04/06/21 15:35	04/13/21 13:16	10.37g/5mL	10g/5mL	0.96
		MW/TDII D	04/06/21 14:10	04/13/21 13:16	10.14g/5mL	10g/5mL	0.99
A1D0263-08	Soil	NWTPH-Dx	04/00/21 14:10	04/13/21 13.10	10.14g/JIIL	TOg/JIIIL	0.22

Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1040359							
A1D0263-10	Water	NWTPH-Gx (MS)	04/06/21 13:10	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00
A1D0263-11	Water	NWTPH-Gx (MS)	04/06/21 13:10	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00
A1D0263-12	Water	NWTPH-Gx (MS)	04/07/21 09:50	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00
A1D0263-13	Water	NWTPH-Gx (MS)	04/07/21 11:50	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00
A1D0263-14	Water	NWTPH-Gx (MS)	04/07/21 09:00	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00
A1D0263-15	Water	NWTPH-Gx (MS)	04/06/21 12:05	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

SAMPLE PREPARATION INFORMATION

	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A1D0263-16	Water	NWTPH-Gx (MS)	04/06/21 16:15	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00
A1D0263-17	Water	NWTPH-Gx (MS)	04/06/21 15:00	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00
A1D0263-18	Water	NWTPH-Gx (MS)	04/07/21 10:45	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1040368							
A1D0263-01	Soil	NWTPH-Gx (MS)	04/06/21 12:50	04/06/21 12:50	5.5g/5mL	5g/5mL	0.91
A1D0263-02	Soil	NWTPH-Gx (MS)	04/07/21 09:15	04/07/21 09:15	5.93g/5mL	5g/5mL	0.84
A1D0263-04	Soil	NWTPH-Gx (MS)	04/07/21 08:25	04/07/21 08:25	4.87g/5mL	5g/5mL	1.03
A1D0263-05	Soil	NWTPH-Gx (MS)	04/06/21 11:30	04/06/21 11:30	6.25g/5mL	5g/5mL	0.80
A1D0263-06	Soil	NWTPH-Gx (MS)	04/06/21 15:35	04/06/21 15:35	6.03g/5mL	5g/5mL	0.83
A1D0263-07	Soil	NWTPH-Gx (MS)	04/06/21 15:35	04/06/21 15:35	4.24g/5mL	5g/5mL	1.18
A1D0263-08	Soil	NWTPH-Gx (MS)	04/06/21 14:10	04/06/21 14:10	4.43g/5mL	5g/5mL	1.13
Batch: 1040426							
A1D0263-03	Soil	NWTPH-Gx (MS)	04/07/21 11:15	04/07/21 11:15	4.12g/5mL	5g/5mL	1.21
A1D0263-09	Soil	NWTPH-Gx (MS)	04/07/21 10:10	04/07/21 10:10	5.67g/5mL	5g/5mL	0.88

		Volatile	Organic Compounds	s by EPA 8260D			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1040359							
A1D0263-13	Water	EPA 8260D	04/07/21 11:50	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00
A1D0263-15	Water	EPA 8260D	04/06/21 12:05	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00
A1D0263-16	Water	EPA 8260D	04/06/21 16:15	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00
A1D0263-18	Water	EPA 8260D	04/07/21 10:45	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00
A1D0263-19	Water	EPA 8260D	04/07/21 00:00	04/12/21 09:00	5mL/5mL	5mL/5mL	1.00
Batch: 1040556							
A1D0263-10RE1	Water	EPA 8260D	04/06/21 13:10	04/15/21 17:16	5mL/5mL	5mL/5mL	1.00
A1D0263-11RE1	Water	EPA 8260D	04/06/21 13:10	04/15/21 17:16	5mL/5mL	5mL/5mL	1.00
A1D0263-12RE1	Water	EPA 8260D	04/07/21 09:50	04/15/21 17:16	5mL/5mL	5mL/5mL	1.00
A1D0263-14RE1	Water	EPA 8260D	04/07/21 09:00	04/15/21 17:16	5mL/5mL	5mL/5mL	1.00
A1D0263-17RE1	Water	EPA 8260D	04/06/21 15:00	04/15/21 17:16	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: Former Planter's Hotel Site

Project Number: **0346.11.02**Project Manager: **David Weatherby**

Report ID: A1D0263 - 04 22 21 1248

SAMPLE PREPARATION INFORMATION

		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1040368							
A1D0263-01	Soil	5035A/8260D	04/06/21 12:50	04/06/21 12:50	5.5g/5mL	5g/5mL	0.91
A1D0263-02	Soil	5035A/8260D	04/07/21 09:15	04/07/21 09:15	5.93g/5mL	5g/5mL	0.84
A1D0263-04	Soil	5035A/8260D	04/07/21 08:25	04/07/21 08:25	4.87g/5mL	5g/5mL	1.03
A1D0263-05	Soil	5035A/8260D	04/06/21 11:30	04/06/21 11:30	6.25g/5mL	5g/5mL	0.80
A1D0263-06	Soil	5035A/8260D	04/06/21 15:35	04/06/21 15:35	6.03g/5mL	5g/5mL	0.83
A1D0263-07	Soil	5035A/8260D	04/06/21 15:35	04/06/21 15:35	4.24g/5mL	5g/5mL	1.18
A1D0263-08	Soil	5035A/8260D	04/06/21 14:10	04/06/21 14:10	4.43g/5mL	5g/5mL	1.13
Batch: 1040426							
A1D0263-03	Soil	5035A/8260D	04/07/21 11:15	04/07/21 11:15	4.12g/5mL	5g/5mL	1.21
A1D0263-09	Soil	5035A/8260D	04/07/21 10:10	04/07/21 10:10	5.67g/5mL	5g/5mL	0.88
Batch: 1040492							
A1D0263-03RE1	Soil	5035A/8260D	04/07/21 11:15	04/07/21 11:15	4.12g/5mL	5g/5mL	1.21

		Volatile Org	anic Compounds b	y EPA 8260D SIM			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1040427			-				
A1D0263-10	Water	EPA 8260D SIM	04/06/21 13:10	04/13/21 12:29	5mL/5mL	5mL/5mL	1.00
A1D0263-11	Water	EPA 8260D SIM	04/06/21 13:10	04/13/21 12:29	5mL/5mL	5mL/5mL	1.00
A1D0263-12	Water	EPA 8260D SIM	04/07/21 09:50	04/13/21 12:29	5mL/5mL	5mL/5mL	1.00
A1D0263-13	Water	EPA 8260D SIM	04/07/21 11:50	04/13/21 12:29	5mL/5mL	5mL/5mL	1.00
A1D0263-14	Water	EPA 8260D SIM	04/07/21 09:00	04/13/21 12:29	5mL/5mL	5mL/5mL	1.00
A1D0263-15	Water	EPA 8260D SIM	04/06/21 12:05	04/13/21 12:29	5mL/5mL	5mL/5mL	1.00
A1D0263-16	Water	EPA 8260D SIM	04/06/21 16:15	04/13/21 12:29	5mL/5mL	5mL/5mL	1.00
A1D0263-17	Water	EPA 8260D SIM	04/06/21 15:00	04/13/21 12:29	5mL/5mL	5mL/5mL	1.00
A1D0263-18	Water	EPA 8260D SIM	04/07/21 10:45	04/13/21 12:29	5mL/5mL	5mL/5mL	1.00
A1D0263-19	Water	EPA 8260D SIM	04/07/21 00:00	04/13/21 12:29	5mL/5mL	5mL/5mL	1.00
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1040641							
A1D0263-01	Soil	5035A/8260D SIM	04/06/21 12:50	04/06/21 12:50	5.5g/5mL	5g/5mL	0.91
A1D0263-02	Soil	5035A/8260D SIM	04/07/21 09:15	04/07/21 09:15	5.93g/5mL	5g/5mL	0.84
A1D0263-04	Soil	5035A/8260D SIM	04/07/21 08:25	04/07/21 08:25	4.87g/5mL	5g/5mL	1.03

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

SAMPLE PREPARATION INFORMATION

		Volatile Org	anic Compounds b	y EPA 8260D SIM			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A1D0263-05	Soil	5035A/8260D SIM	04/06/21 11:30	04/06/21 11:30	6.25g/5mL	5g/5mL	0.80
A1D0263-06	Soil	5035A/8260D SIM	04/06/21 15:35	04/06/21 15:35	6.03g/5mL	5g/5mL	0.83
A1D0263-07	Soil	5035A/8260D SIM	04/06/21 15:35	04/06/21 15:35	4.24g/5mL	5g/5mL	1.18
A1D0263-08	Soil	5035A/8260D SIM	04/06/21 14:10	04/06/21 14:10	4.43g/5mL	5g/5mL	1.13
A1D0263-09	Soil	5035A/8260D SIM	04/07/21 10:10	04/07/21 10:10	5.67g/5mL	5g/5mL	0.88

	Polyaromatic I	Hydrocarbons (PAH:	s) by EPA 8270E SI	M		
d Extraction)				Sample	Default	RL Prep
Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Water	EPA 8270E SIM	04/06/21 13:10	04/09/21 09:52	900mL/2mL	1000mL/2mL	1.11
Water	EPA 8270E SIM	04/06/21 13:10	04/09/21 13:56	870mL/2mL	1000 mL/2 mL	1.15
Water	EPA 8270E SIM	04/07/21 09:50	04/09/21 13:56	950mL/2mL	1000 mL/2 mL	1.05
Water	EPA 8270E SIM	04/07/21 11:50	04/09/21 13:56	950mL/2mL	1000mL/2mL	1.05
Water	EPA 8270E SIM	04/07/21 11:50	04/09/21 13:56	950mL/2mL	1000mL/2mL	1.05
Water	EPA 8270E SIM	04/07/21 09:00	04/09/21 13:56	960mL/2mL	1000 mL/2 mL	1.04
Water	EPA 8270E SIM	04/06/21 12:05	04/09/21 13:56	880mL/2mL	1000mL/2mL	1.14
Water	EPA 8270E SIM	04/06/21 16:15	04/09/21 13:56	940mL/2mL	1000mL/2mL	1.06
Water	EPA 8270E SIM	04/06/21 15:00	04/09/21 13:56	900mL/2mL	1000mL/2mL	1.11
Water	EPA 8270E SIM	04/07/21 10:45	04/09/21 13:56	920mL/2mL	1000mL/2mL	1.09
				Sample	Default	RL Prep
Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Soil	EPA 8270E SIM	04/06/21 12:50	04/09/21 07:50	10.2g/5mL	10g/5mL	0.98
Soil	EPA 8270E SIM	04/07/21 09:15	04/09/21 07:50	10.59g/5mL	10g/5mL	0.94
Soil	EPA 8270E SIM	04/07/21 11:15	04/09/21 07:50	10.12g/5mL	10g/5mL	0.99
Soil	EPA 8270E SIM	04/07/21 08:25	04/09/21 07:50	10.02g/5mL	10g/5mL	1.00
Soil	EPA 8270E SIM	04/06/21 11:30	04/09/21 07:50	10.47g/5mL	10g/5mL	0.96
Soil	EPA 8270E SIM	04/06/21 15:35	04/09/21 07:50	10.18g/5mL	10g/5mL	0.98
Soil	EPA 8270E SIM	04/06/21 15:35	04/09/21 07:50	10.13g/5mL	10g/5mL	0.99
Soil	EPA 8270E SIM	04/06/21 14:10	04/09/21 07:50	10.11g/5mL	10g/5mL	0.99
Soil	EPA 8270E SIM	04/07/21 10:10	04/09/21 07:50	10.18g/5mL	10g/5mL	0.98
	Matrix Water Soil Soil Soil Soil Soil Soil Soil Soil	Matrix Method Water EPA 8270E SIM Soil EPA 8270E SIM	Matrix Method Sampled Water EPA 8270E SIM 04/06/21 13:10 Water EPA 8270E SIM 04/06/21 13:10 Water EPA 8270E SIM 04/07/21 09:50 Water EPA 8270E SIM 04/07/21 11:50 Water EPA 8270E SIM 04/07/21 11:50 Water EPA 8270E SIM 04/07/21 09:00 Water EPA 8270E SIM 04/06/21 12:05 Water EPA 8270E SIM 04/06/21 16:15 Water EPA 8270E SIM 04/06/21 15:00 Water EPA 8270E SIM 04/07/21 10:45 Matrix Method Sampled Soil EPA 8270E SIM 04/07/21 10:45 Matrix Method Sampled Soil EPA 8270E SIM 04/07/21 10:45 Soil EPA 8270E SIM 04/07/21 10:45 Soil EPA 8270E SIM 04/06/21 11:30 Soil EPA 8270E SIM 04/06/21 11:30 Soil EPA 8270E SIM 04/06/21 15:35 Soil EPA 8270E SIM 04/06/21 15:35 Soil EPA 8270E SIM 04/06/21 15:35 Soil EPA 8270E SIM 04/06/21 14:10	Matrix Method Sampled Prepared Water EPA 8270E SIM 04/06/21 13:10 04/09/21 09:52 Water EPA 8270E SIM 04/06/21 13:10 04/09/21 13:56 Water EPA 8270E SIM 04/07/21 09:50 04/09/21 13:56 Water EPA 8270E SIM 04/07/21 11:50 04/09/21 13:56 Water EPA 8270E SIM 04/07/21 11:50 04/09/21 13:56 Water EPA 8270E SIM 04/07/21 09:00 04/09/21 13:56 Water EPA 8270E SIM 04/06/21 12:05 04/09/21 13:56 Water EPA 8270E SIM 04/06/21 16:15 04/09/21 13:56 Water EPA 8270E SIM 04/06/21 15:00 04/09/21 13:56 Water EPA 8270E SIM 04/07/21 10:45 04/09/21 07:50 Soil EPA 8270E SIM 04/07/21 09:15 04/09/21 07:50 Soil EPA 8270E SIM 04/07/21 09:15 04/09/21 07:50 Soil EPA 8270E SIM 04/07/21 08:25 04/09/21 07:50 Soil EPA 8270E SIM 04/06/21 11:30 04/09/21 07:50	Matrix Method Sampled Prepared Initial/Final Water EPA 8270E SIM 04/06/21 13:10 04/09/21 09:52 900mL/2mL Water EPA 8270E SIM 04/06/21 13:10 04/09/21 13:56 870mL/2mL Water EPA 8270E SIM 04/07/21 09:50 04/09/21 13:56 950mL/2mL Water EPA 8270E SIM 04/07/21 11:50 04/09/21 13:56 950mL/2mL Water EPA 8270E SIM 04/07/21 11:50 04/09/21 13:56 950mL/2mL Water EPA 8270E SIM 04/07/21 09:00 04/09/21 13:56 950mL/2mL Water EPA 8270E SIM 04/06/21 12:05 04/09/21 13:56 960mL/2mL Water EPA 8270E SIM 04/06/21 16:15 04/09/21 13:56 940mL/2mL Water EPA 8270E SIM 04/06/21 15:00 04/09/21 13:56 900mL/2mL Water EPA 8270E SIM 04/07/21 10:45 04/09/21 13:56 920mL/2mL Water EPA 8270E SIM 04/07/21 10:45 04/09/21 07:50 10.2g/5mL Soil EPA 8270E SIM 04/07/21 09:15 <td> Matrix Method Sampled Prepared Initial/Final Default </td>	Matrix Method Sampled Prepared Initial/Final Default

Percent Dry Weight

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 138 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

SAMPLE PREPARATION INFORMATION

			Percent Dry We	ight			
Prep: Total Solids (Dr	y Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1040303		<u> </u>	<u> </u>		·		
A1D0263-01	Soil	EPA 8000D	04/06/21 12:50	04/09/21 07:51			NA
A1D0263-02	Soil	EPA 8000D	04/07/21 09:15	04/09/21 07:51			NA
A1D0263-03	Soil	EPA 8000D	04/07/21 11:15	04/09/21 07:51			NA
A1D0263-04	Soil	EPA 8000D	04/07/21 08:25	04/09/21 07:51			NA
A1D0263-05	Soil	EPA 8000D	04/06/21 11:30	04/09/21 07:51			NA
A1D0263-06	Soil	EPA 8000D	04/06/21 15:35	04/09/21 07:51			NA
A1D0263-07	Soil	EPA 8000D	04/06/21 15:35	04/09/21 07:51			NA
A1D0263-08	Soil	EPA 8000D	04/06/21 14:10	04/09/21 07:51			NA
A1D0263-09	Soil	EPA 8000D	04/07/21 10:10	04/09/21 07:51			NA
11120200 07	2011	==========	0 0 / . 21 10 . 10	0 05.21 07.51			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

CA L'abbi att	11113
B-02	Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
F-09	Results in the Gasoline Range are impacted by the overlap of a heavier fuel hydrocarbon product.
F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation
F-15	Results for diesel are estimated due to overlap from the reported oil result.
F-16	Results for oil are estimated due to overlap from the reported diesel result.
J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
M-02	Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-02	Spike recovery is outside of established control limits due to matrix interference.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-17	RPD between original and duplicate sample is outside of established control limits.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +1%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +16%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +19%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +22%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +3%. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +4%. The results are reported as Estimated Values.
Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +48%. The results are reported as Estimated Values.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 140 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Former Planter's Hotel Site3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

	, , , , , , , , , , , , , , , , , , , ,
Q-54g	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +5%. The results are reported as Estimated Values.
Q-54h	Daily Continuing Calibration Verification recovery for this analyte failed the \pm -20% criteria listed in EPA method 8260/8270 by \pm 6%. The results are reported as Estimated Values.
Q-54i	Daily Continuing Calibration Verification recovery for this analyte failed the \pm -20% criteria listed in EPA method 8260/8270 by -1%. The results are reported as Estimated Values.
Q-54j	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -2%. The results are reported as Estimated Values.
Q-54k	Daily Continuing Calibration Verification recovery for this analyte failed the \pm -20% criteria listed in EPA method 8260/8270 by -5%. The results are reported as Estimated Values.
Q-541	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -6%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
R-06	Reporting level raised due to possible carryover from a previous sample.
S-01	Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.
S-05	Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
T-02	This Batch QC sample was analyzed outside of the method specified 12 hour analysis window. Results are estimated.
TEMP	Sample(s) received outside of recommended temperature. See Case Narrative.
V-01	Sample aliquot taken from VOA vial with headspace (air bubble greater than 6 mm diameter).

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number:0346.11.02Report ID:Portland, OR 97232Project Manager:David WeatherbyA1D0263 - 04 22 21 1248

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 143 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway Street Project Number: 0346.11.02 Report ID:
Portland, OR 97232 Project Manager: David Weatherby A1D0263 - 04 22 21 1248

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 144 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

						İ	Name and Address of the Owner, where															
Company: MFA	Proje	Project Mgr. DANTO WEATHER BY	OLY W	MET	开	32.6	۲,	Proje	ct Nai	me: 7	から	AĐ	A	1	STER	Project Name: FORMER POARTER'S HOTELPRO	J. J	roject	¥ 084	PLANTER'S HOTETPROJECT#: 0346, 11.67		
Address: 3140 NE BLOPPOWAY, POX	DWAY,	PDX		14	Phone:				ш	mail:	970	2 2	27.7	3 5	3 5	Email: elchoronigh; how moults ster. com	3 %	1 S	ع			Г
Sampled by: DATA DONED GHL	そびえ	<u>-</u> 2) AN	288	ANALYSIS REQUEST	IEST						
Site Location:										ļ	18	_	_			,81V ,1T						
OR (WA)CA								\$DC						(8		, Cd, C b, Hg, I Ag, Na	TCLP	() / /S			
AK ID								DA W			_			3) sirt		R' 26' E' bl	'SS	8) slet	⊒ a∃			
SAMPI F ID	AB ID #	UME	MATRIX	EOE CON.	-HALMN	-HATWN	8790 BLE	8760 RBD	olaH 0528	OOA 0978	MIS 0728	8087 PCB	\$081 Pest	всву ме	Priority M	I, Sb, As, I r, Co, Cu, n, Mo, Ni,	ma i	LCLP Me	WIS			ксріле
GP 01 - S-5.5		12	Ŀ	+	-	17	+		-		1	+	-		1	N O V	اند		×		1	V
GP02-5-8	テ	SHO WITH		_	-				-	1	_	 						T				T
GP03-S-6	루	카 1115			<u> </u>				 			 					1				+-	Т
8-S-nod5	루	5280 HJYH										-									+	Τ
9-5-509B	9	46/21 1130																			-	T
G1500-S-7.5	3	46h 1535																 				T
GP06-5-7.5-DUP		4/4/21 1535																				Τ
GP07-5-6	3	46/21 140																				<u> </u>
GP08-3-6	テ	4/7/4 1010	\rightarrow	>																		
GP01-GW-15	ماه	4/4/21/310	3	Ь	,	<i>'</i>	→			フ									->-			Т
Normal Tt	Normal Turn Around Time (TAT) = 10 Business Days	me (TAT)	= 10 Bu	siness D	ays				2	SPECIAL INSTRUCTIONS:	AL IN	STRU	CLIO	ξij								
TARREST CONTRACTOR	1 Day	2 Day		3 Day																		
IAI Kequestea (circle)	4 DAY	5 DAY		Other:	ä			ī														
	SAMPLES ARE HELD FOR 30 DAYS	LD FOR 30	DAYS						Т													
Signature: Para And	Date: 4hlbou		RECEIVED BY:	The state of the s	9	# -3°	Date:	_	# Si	RELINQUISHED BY: Signature:	OUISH.	ED BY			·	Date:		RECEI ignatur	RECEIVED BY: Signature:	Date:		1
Printed Name: OTHWA OEMEN/G/H-2-1	Time:		Printed Name: U	3	10		Time: Y	} _	Ai	Printed Name	уате:					Time:		Printed Name	Name:	Time:		Г
Company:		Company:	any: Jan	2	}				0	Company:	;;						<u> </u>	Company	у:			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 145 of 147

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Former Planter's Hotel Site

3140 NE Broadway StreetProject Number: 0346.11.02Report ID:Portland, OR 97232Project Manager: David WeatherbyA1D0263 - 04 22 21 1248

W.).		1		(1		1				5	T		1	(3 11 11 ES	-	1	
Company: NIT	Project N	Project Mgr. CHAND NOCHTHER BY	30	3-	里	252	٦	Project Name: 7007.07	T Nam	٦	ξĮ.	d:	- 12	21	16	PANIERS ANTEGROJECT	7	rojec		9		4	
Address: SIYO NE BROT	BRORDWAY	, PDX		Рһопе	ле:				描	Email:	द्भ	3 8	E E	\$ 3	3 3	il Odoment him & mail fragil	3.0	63	کی				
Samuel by O'De C. C.	(2)2552000												, A	Sis	ANALYSIS REQUEST	UEST							
Site Location:					_			-			ıs					,8M ,RT ,			_				<u> </u>
OR WA CA			NEKS							····	ls Full Li			(8)	(£1) sl	Be, Cd, C Pb, Hg, Se, Ag, Va	TCLP	(8)	DN/80				
AK ID	# (A)	IATVO	н-нсі		и-си	LEX	BDW A	Ialo VO	IM PA			189,	Metaly.	у Мета	NI K' Cn' E¢' Ya' Ba'	DISS.	Metals) FC				
SAMPLE ID	DVLE	TIME	MATRI # OF CO		dlmn	JIMN	я 0978			100 10000000000000000000000000000000000		4 2808	4 1808	всву	Priorit	Cr, Co, Mn, Mo,	nZ,V	TCLP	41.S				Archive
GP01-GW-15-0UP	18/1 130 H		3		×-	×-			X-	∀ -									X-				
GP02-GV2-15	47121 CRSD	848																					
Gro3-GW-18	150 150	8																		,			
B1-200-1010	4/7/21 09:00	2002		_																			
GP05-6W-12	4/6/4 1205	1205																					
SP010-615	Sla) Izlalt	SIOI																					
GP07-6W-15	त्राज्य	35							3,55 (6.3)(30.4)														
GP08-GW-15	2401 121th	SHO	->	_	\rightarrow	->			0.0000000	→	\dashv										- 20		
640721773	14/1/21	1	2						$\stackrel{\sim}{+}$	>		_							→				
			·		_					- 3				Ę								_	
Normal Lu	d Time	(IAI) = I() busine	ss Day	, l				<u> </u>		SPECIAL INSTRUCTIONS	SIKU	2	ġ									
TAT Damaged (cirola)	l Day	2 Day	3 Day	ş.																			
	4 DAY	\$ DAY	•	Other:				1															
SAMP	SAMPLES ARE HELD FOR 30 DAYS	FOR 30 DA	YS					П	П								İ						1
RELINQUISHED BY: Signature: Perve Bey	Date:	Signature:) 97		Date:	Jate: VTD	2	S. S.	RELINQ Signature:	RELINQUESHED BY: Signature:	ED BY		5		Date:		RECE	RECEIVED BY: Signature:		I	Date:	
Printed Name: OPALD OGLANGE HIN!	749 T	OMA A		13	1-5	Time:	 [ď	Printed Name	(ame:					Time:	۵.	Printed Name	Name:			Time:	
Company:			<	}				L	0	Company	42							Company:	лу:				
オン		ととなっ	9						_														

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Moonberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project:

Former Planter's Hotel Site

Project Number: 0346.11.02

Project Manager: David Weatherby

Report ID:

A1D0263 - 04 22 21 1248

Client:	MFA				Elem	ent WO#:	41 <u>00263</u>	
Project/	Project #: <u>Forw</u>	ner Plante	er's Note	2 / 0346	.11.02		71000	
Delivery								
Date/time	e received: 4/7	121_@	1740	_ By:				
	d by: ApexC					Senvoy	SDS O	ther
		te/time inspec						
Chain of	Custody included	l? Yes	4 No	Cı	stody seals	Yes		
Signed/da	ated by client?		No					
Signed/da	ated by Apex?	YesX	No					
		Cooler #1	Cooler #2	Cooler #3	Cooler #4	Cooler #5	Cooler #6	Cooler #7
Temperati	ure (°C)			1.3	36		11	
Received	on ice? (Y/N)	<u>Y</u>	_Y		Υ'	www.		
Гетр. bla	mks? (Y/N)	<u>Y</u>	_Y	<u> </u>	<u> </u>		-	
ce type: ((Gel/Real/Other)	real			real	*****		
Condition	:	cand	cod		Ω			
Green dots Out of tem	t of temp? (Y/v)) s applied to out of apperature samples aspection: Date	Possible reason f temperature form initiate	samples?	Yes/No		By: (87))	
Green dots Out of tem Sample In	s applied to out of	Possible rease f temperature f form initiate time inspect	on why: samples? d? Yes/N ed: <u>\(\(\(\(\(\(\(\(\(\(\(\)\)\)\)\)\)</u>	Yes/No) 10 11 @ 9	27	Ву:)	
Green dots Out of tem Sample In All sample	s applied to out of operature samples aspection: Date	Possible rease f temperature form initiate /time inspect	on why:samples? d? Yes/Ned: Y(\$) comments:_	Yes/No (o) (1 @ 9	น)	
Green dots Out of tem Sample In All sample	s applied to out of operature samples spection: Date es intact? Yes	Possible rease f temperature f form initiate /time inspecte No C Yes No	on why:samples? d? Yes/Ned: \(\frac{4}{8} \) comments: Com	Yes/No	น)	
Green dots Out of tem Sample In All sample Bottle labe	s applied to out of operature samples spection: Date es intact? Yes	Possible rease f temperature f form initiate /time inspecte No C Yes No	on why:samples? d? Yes/vied: \(\frac{4}{5} \) comments: Com	Yes/No lo	n			
Green dots Out of tem Sample In All sample Bottle labe	s applied to out of operature samples spection: Date es intact? Yes	Possible rease f temperature f form initiate /time inspecte No C Yes No	on why:samples? d? Yes/vied: \(\frac{4}{5} \) comments: Com	Yes/No lo	n			
Green dots Out of tem Sample In All sample Bottle labe COC/conta	s applied to out of operature samples aspection: Date es intact? Yes	Possible rease f temperature f form initiate /time inspect No C Yes No es form initiate d appropriate	on why:samples? d? Yes/N ed: Yes/N comments:_ Com ed? Yes_ for analys	Yes/No io @ 9 ments: No X is? Yes X	No C			
Green dots Out of tem Sample In All sample Bottle labe COC/conta Containers	s applied to out of operature samples aspection: Date es intact? Yes	Possible rease f temperature f form initiate f time inspecte No C YesK No es form initiate d appropriate neadspace?	on why:samples? d? Yes/N ed: \(\(\) \(\) \(\) \(\) \(\) comments: Com ed? Yes_for analys Yes \(\) \(\)	Yes/No io ments: No X is? Yes X	No C	comments:		
Green dots Out of tem Sample In All sample Bottle labe COC/conta Containers Oo VOA vice Comments	s applied to out of operature samples spection: Date es intact? Yes	Possible rease f temperature form initiate /time inspecte No C Yes No es form initiate d appropriate neadspace? EW-15-DW	on why:samples? d? Yes/viced: \(\lambda \) (8) comments: Com ed? Yes for analys Yes \(\lambda \) + 3/4	Yes/No 10 10 10 10 10 10 10 1	No C	Comments:	U	
Green dots Out of tem Sample In All sample COC/conta Containers Oo VOA vi Comments Vater samp	s applied to out of operature samples aspection: Date es intact? Yes	Possible rease f temperature form initiate fitime inspecto NoC YesNo es form initiate d appropriate neadspace? GW 15 DW YesNo YesNo	on why:samples? d? Yes/d? Yes/d? Yes/domments: Com ed? Yes_for analys Yes \(\frac{1}{2} \) NA	Yes/No fo A @ g ments: No Yes No No No No No No PH Appropri:	NoC	Comments: _	U	
Green dots Out of tem Sample In All sample COC/conta Containers Oo VOA vi Comments Vater samp	s applied to out of operature samples spection: Date es intact? Yes	Possible rease f temperature form initiate fitime inspecto NoC YesNo es form initiate d appropriate neadspace? GW 15 DW YesNo YesNo	on why:samples? d? Yes/d? Yes/d? Yes/domments: Com ed? Yes_ for analys Yes \(\frac{1}{2} \) NA	Yes/No fo A @ g ments: No Yes No No No No No No PH Appropri:	NoC	Comments: _	U	
Green dots Out of tem Sample In All sample Bottle labe COC/conta Containers Oo VOA v. Comments Vater samp comments:	s applied to out of operature samples aspection: Date es intact? Yes	Possible rease f temperature form initiate form initiate from C No C Yes Y No Es form initiate d appropriate meadspace? EW 15-DW Yes No White No C No C No C No C No C No C No C No	on why:samples? d? Yes/d? Yes/d? Yes/domments: Com ed? Yes_ for analys Yes \(\frac{1}{2} \) NA	Yes/No fo A @ g ments: No Yes No No No No No No PH Appropri:	NoC	Comments: _	U	
Green dots Out of tem Sample In All sample Bottle labe COC/conta Containers Oo VOA v. Comments Vater samp comments:	s applied to out of operature samples sapection: Date es intact? Yes	Possible rease f temperature form initiate form initiate from C No C Yes Y No Es form initiate d appropriate meadspace? EW 15-DW Yes No White No C No C No C No C No C No C No C No	on why:samples? d? Yes/d? Yes/d? Yes/domments: Com ed? Yes_ for analys Yes \(\frac{1}{2} \) NA	Yes/No fo A @ g ments: No Yes No No No No No No PH Appropri:	NoC	Comments: _	U	
Green dots Out of tem Sample In All sample Bottle labe COC/conta Containers Oo VOA vi Comments Vater samp omments:	s applied to out of operature samples sapection: Date es intact? Yes Als/COCs agree? Als/COCs agree. Als/C	Possible rease f temperature form initiate form initiate from the inspect of the possible rease form initiate from the initiate dispropriate from the ineadspace? Fig. 15-Dwg. Yes X No. Abely 3 (200) # 2771(on why:samples? d? Yes/N ed: \(\(\) \(Yes/No fo A @ g ments: No Yes No No No No No No PH Appropri:	NoC	Comments: _ .U.L.ALL VO. NO. X. NA 	<u></u>	
Green dots Out of tem Sample In All sample Bottle labe COC/conta Containers Oo VOA v. Comments Vater samp comments:	s applied to out of operature samples sapection: Date es intact? Yes Als/COCs agree? Als/COCs agree. Als/C	Possible rease f temperature form initiate form initiate from the inspect of the possible rease form initiate from the initiate dispropriate from the ineadspace? Fig. 15-Dwg. Yes X No. Abely 3 (200) # 2771(on why:samples? d? Yes/d? Yes/d? Yes/domments: Com ed? Yes_ for analys Yes \(\frac{1}{2} \) NA	Yes/No fo A @ g ments: No Yes No No No NA TBS have	NoC	Comments: _	<u></u>	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

APPENDIX G DATA VALIDATION MEMORANDUM

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

Reference

PROJECT NO. 0346.11.02 | APRIL 23, 2021 | PORT OF SUNNYSIDE

Maul Foster & Alongi, Inc., (MFA) conducted an independent review of the quality of analytical results for groundwater and soil samples collected at the historical Planters Hotel site. The samples were collected on April 6 and 7, 2021.

Apex Laboratories, LLC, (Apex) performed the analyses. Apex report number A1D0263 was reviewed. The analyses performed and samples analyzed are listed below.

Diesel-Range and Oil-Range Hydrocarbons	NWTPH-Dx
Gasoline Range Hydrocarbons	NWTPH-Gx
Percent Dry Weight	EPA 8000D
Polygromatic Hydrocarbons	EPA 8270F-SIM

Polyaromatic Hydrocarbons EPA 8270E-SIM

Volatile Organic Compounds EPA 8260D-SIM

Volatile Organic Compounds EPA 8260D

NOTES

Analysis

EPA = U.S. Environmental Protection Agency.

NWTPH = Northwest Total Petroleum Hydrocarbons.

SIM = Selected Ion Monitoring.

	Samples Analyzed	
	Report A1D0263	
GP01-S-5.5	GP07-S-6	GP05-GW-12
GP02-S-8	GP08-S-6	GP06-GW-15
GP03-S-6	GP01-GW-15	GP07-GW-15
GP04-S-8	GP01-GW-15-DUP	GP08-GW-15
GP05-S-6	GP02-GW-15	040721TB
GP06-S-7.5	GP03-GW-15	1
GP06-S-7.5-DUP	GP04-GW-15	

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of EPA procedures (EPA, 2017) and appropriate laboratory and method-specific guidelines (Apex, 2019; EPA, 1986).

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by the EPA procedures (e.g., NWTPH-Dx).

In report A1D0263, the NWTPH-Gx gasoline range hydrocarbon result from sample GP03-S-6 was flagged by Apex as impacted by the overlap of fuel hydrocarbon product. The results were qualified by the reviewer with a "J" as estimated in the table below.

Report	Sample	Component	Original Result (mg/kg)	Qualified Result (mg/kg)
A1D0263	GP03-S-6	Gasoline Range Hydrocarbons	3,130	3,130 J

NOTES:

J = Result is estimated.

mg/kg = milligrams per kilogram.

In report A1D0263, the NWTPH-Dx diesel-range hydrocarbon result for sample GP03-S-6 was qualified by Apex as an elevated result due to overlap from the reported oil-range hydrocarbon result. The oil-range hydrocarbon result was flagged by Apex as estimated due to overlap from the reported diesel-range hydrocarbon result. The results were qualified by the reviewer with a "J" as estimated in the table below.

Report	Sample	Component	Original Result (mg/kg)	Qualified Result (mg/kg)
A1D0263	CD03 5 /	Diesel-Range Hydrocarbons	17,900	17,900 J
A1D0263	GP03-S-6	Oil-Range Hydrocarbons	16,000	16,000 J

NOTES:

J = Result is estimated.

mg/kg = milligrams per kilogram.

In report A1D0263, the NWTPH-Dx oil-range hydrocarbon result from sample GP03-GW-15 was flagged by Apex as estimated due to overlap from the reported diesel-range hydrocarbon result. The diesel-range hydrocarbon result was flagged by Apex as not resembling the fuel standard used for quantitation. The associated result was reported as diesel-range hydrocarbons; thus, qualification was not required. The oil-range hydrocarbon result was qualified by the reviewer with a "J" as estimated in the table below.

Report	Sample	Component	Original Result (mg/L)	Qualified Result (mg/L)
A1D0263	GP03-GW-15	Oil-Range Hydrocarbons	0.935	0.935 J

NOTES:

J = Result is estimated.

mg/L = milligrams per liter.

In report A1D0263, the EPA Method 8270D-SIM benzo(b)fluoranthene and benzo(k)fluoranthene results from sample GP02-S-8 and the benzo(b)fluoranthene result from sample GP03-S-6 were flagged by Apex as estimated due to insufficient peak separation for structural isomers. The associated results have been qualified by the reviewer with "J" as estimated in the table below.

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
A1D0263	GP02-S-8	Benzo(b)fluoranthene	1,180	1,180 J
		Benzo(k)fluoranthene	535	535 J
	GP03-S-6	Benzo(b)fluoranthene	868	868 J

NOTES:

In report A1D0263, the EPA Method 8260D n-butylbenzene and 4-isopropyltoluene results from GP03-S-6 were flagged by Apex as estimated due to matrix interference. The results have been qualified by the reviewer with "J" as estimated in the table below.

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
A1D0263	GP03-S-6	n-Butylbenzene	4,720	4,720 J
		4-Isopropyltoluene	2,920	2,920 J

NOTES:

The data are considered acceptable for their intended use with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

Apex noted that in report A1D0263, the EPA Method 8260D-SIM analysis from sample 040721TB occurred from an aliquot taken from a VOA vial with headspace greater than a 6-millimeter diameter. The EPA Method 8260D-SIM results from sample 040721TB were qualified with "J" as estimated in the table below.

Report	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
A1D0263	040701TB	1,2-Dibromoethane	0.0100 U	0.0100 UJ
	040721TB	Vinyl chloride	0.0100 U	0.0100 UJ

NOTES:

J = Result is estimated.

ug/kg = microgram per kilogram.

J = Result is estimated.

ug/kg = microgram per kilogram.

U = Result is non-detect.

UJ = Result is non-detect with an estimated reporting limit.

ug/L = micrograms per liter.

Apex noted that both amber glass containers for samples GP07-GW-15 and GP08-GW-15 were received with a pH of 7. The lab acidified these samples on April 8, 2021, within the seven-day hold time. No further action was required.

The remaining samples were preserved and stored appropriately.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch. Where an analyte was detected in a sample and in the associated method blank, the sample result was qualified if the concentration was less than five times the method blank concentration. Method reporting limits (MRLs) were elevated to the concentration detected in the samples, and results were qualified as not detected "U" at the elevated MRL.

According to report A1D0263, the EPA Method 8260D batch 1040556 laboratory method blank (1040556-BLK1) had a tetrachloroethene detection between the detection limit and MRL, at a concentration of 0.307 ug/L. The associated tetrachloroethene results were non-detect; thus, no qualifications were necessary.

The remaining laboratory method blanks were non-detect at the detection limits.

Trip Blanks

One trip blank was submitted with report A1D0263 for EPA Method 8260D analysis. The trip blank was non-detect at the detection limits for all analytes.

Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples.

The reviewer took no action based on minor surrogate outliers or surrogate percent recoveries that were outside of acceptance limits due to dilutions necessary to quantify high concentrations of target analytes present in the samples. The laboratory appropriately documented and qualified surrogate outliers. Associated batch quality assurance/quality control for samples with surrogate outliers was within acceptance limits.

All remaining surrogate recoveries were within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. All MS/MSD samples were extracted and analyzed at the required frequency. When MS/MSD percent recoveries and relative percent difference (RPDs) were outside acceptance limits because of high concentrations of analyte in the sample, and MS/MSD exceedances were flagged by the laboratory because of high concentrations of analyte, no qualifications were made by the reviewer.

The NWTPH-Dx MS/MSD results were not reported in report A1D0263; batch precision and accuracy were evaluated with laboratory duplicate, laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) results.

The EPA Method 8270E-SIM batch 1040310 MS/MSD results were not reported in report A1D0263; batch precision and accuracy were evaluated with laboratory duplicate, LCS and LCSD results.

According to report A1D0263, the EPA Method 8260D batch 1040359 MS (1040359-MS1) bromoform, bromomethane, naphthalene, 1,2,3-trichlorobenzene, and 1,2,4-trichlorobenzene recoveries exceeded the respective upper control limits, at 144 percent, 152 percent, 137 percent, 181 percent, and 176 percent, respectively. Bromoform, bromomethane, 1,2,3-trichlorobenzene, and 1,2,4-trichlorobenzene were non-detect; thus, no qualifications were necessary. The detected sample result was qualified in the table below.

Report	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)	
A1D0263	GP03-GW-15	Naphthalene	32.2	32.2 J	
NOTES: J = Result is estimated. ug/L = micrograms per liter.					

According to report A1D0263, the EPA Method 8260D batch 1040556 MS (1040556-MS1) bromochloromethane, bromomethane, styrene, trichloroethene, and 1,3,5-trimethylbenzene recoveries were outside of acceptable limits, ranging from 3 percent to 165 percent. The source sample was not project related; thus, no qualifications were necessary.

According to report A1D0263, the EPA Method 8260D-SIM batch 1040641 MS (1040641-MS1) vinyl chloride recovery was below the lower acceptance limit of 56 percent, at 55 percent. The detected sample result was qualified in the table below.

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
A1D0263	GP08-S-6	Vinyl Chloride	6.83 U	6.83 UJ

NOTES:

U = Result is non-detect.

ug/kg = micrograms per kilogram.

UJ = Result is non-detect with an estimated detection limit.

All remaining recoveries were within acceptance limits for percent recovery and RPDs.

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results within five times the MRL were not evaluated for precision.

According to report A1D0263, the NWTPH-Gx batch 1040426 laboratory duplicate (1040426-DUP1) gasoline range hydrocarbon RPD exceeded the 30 percent limit, at 65 percent. The source sample was not project related; thus, no qualifications were necessary.

According to report A1D0263, the EPA Method 8260D batch 1040492 laboratory duplicates (1040492-DUP1 and 1040492-DUP2) had multiple RPD exceedances and were received outside of recommended temperature. The source sample was not project related; thus, no qualifications were necessary.

According to report A1D0263, the EPA Method 8270E-SIM batch 1040302 laboratory duplicate (1040302-DUP1) had multiple RPD exceedances. The source sample was not project related; thus, no qualifications were necessary.

All remaining laboratory duplicate RPDs were within acceptance limits.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

An LCS/LCSD is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

According to report A1D0263, the EPA Method 8260D batch 1040359 LCS (1040359-BS1) bromoform, bromomethane, carbon tetrachloride, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene and trichlorofluoromethane recoveries exceeded the upper acceptance limit of 120 percent, at 139 percent, 142 percent, 126 percent, 124 percent, 126 percent, and 121 percent, respectively; and the chloromethane recovery was below the lower acceptance limit of 80 percent, at 75 percent. Bromoform, bromomethane, carbon tetrachloride, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene and trichlorofluoromethane were non-detect in the associated samples; thus, no qualifications were necessary. The associated chloromethane results were qualified in the table below.

Report	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
	GP03-GW-15	Chloromethane -	5.0 U	5.0 UJ
A1D00/3	GP05-GW-12		5.0 U	5.0 UJ
A1D0263	GP06-GW-15		5.0 U	5.0 UJ
	GP08-GW-15		5.0 U	5.0 UJ

NOTES:

U = Result is non-detect.

ug/L = micrograms per liter.

UJ = Result is non-detect with an estimated reporting limit.

According to report A1D0263, the EPA Method 8260D batch 1040426 LCS (1040426-BS1) dichlorodifluoromethane recovery was below the lower acceptance limit of 80 percent, at 79 percent. The associated dichlorodifluoromethane results were qualified in the table below.

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
A1D0263	GP03-S-6	Dichlorodifluoromethane	1,600 U	1,600 UJ
	GP08-S-6		137 U	137 UJ

NOTES:

U = Result is non-detect.

ug/kg = micrograms per kilogram.

UJ = Result is non-detect with an estimated reporting limit.

According to report A1D0263, the EPA Method 8260D batch 1040492 LCS (1040492-BS1) 1,2-dibromo-3-chloropropane recovery was below the lower acceptance limit of 80 percent, at 78 percent. 1,2-Dibromo-3-chloropropane was reported from batch 1040426; thus, no qualifications were necessary.

According to report A1D0263, the EPA Method 8260D batch 1040556 LCS (1040556-BS1) bromochloromethane, bromomethane, chloroethane, and trichloroethene recoveries exceeded the upper acceptance limit of 120 percent, at 123 percent, 168 percent, 136 percent, and 125 percent, respectively; and the 1,2-dibromo-3-chloropropane and 2,2-dichloropropane recoveries were below the lower acceptance limit of 80 percent, at 78 percent and 74 percent, respectively. Bromochloromethane, bromomethane, chloroethane, and trichloroethene were non-detect in the associated samples; thus, no qualifications were necessary. The associated 1,2-dibromo-3-chloropropane and 2,2-dichloropropane results were qualified in the table below.

Report	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
A1D0263	GP01-GW- 15	1,2-Dibromo-3-chloropropane	5.0 U	5.0 UJ
		2,2-Dichloropropane	1.0 U	1.0 UJ
	GP01-GW- 15-DUP	1,2-Dibromo-3-chloropropane	5.0 U	5.0 UJ
		2,2-Dichloropropane	1.0 U	1.0 UJ
	GP02-GW- 15	1,2-Dibromo-3-chloropropane	5.0 U	5.0 UJ
		2,2-Dichloropropane	1.0 U	1.0 UJ
	GP04-GW- 15	1,2-Dibromo-3-chloropropane	5.0 U	5.0 UJ
		2,2-Dichloropropane	1.0 U	1.0 UJ
	GP07-GW- 15	1,2-Dibromo-3-chloropropane	5.0 U	5.0 UJ
		2,2-Dichloropropane	1.0 U	1.0 UJ

NOTES:

U = Result is non-detect.

ug/L = micrograms per liter.

UJ = Result is non-detect with an estimated reporting limit.

All remaining LCS/LCSD results were within acceptance limits for percent recovery and RPD.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. Two primary sample/field duplicate sample pairs were submitted for analysis (GP01-GW-15/GP01-GW-15-DUP and GP06-S-7.5/GP06-S-7.5-DUP). MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL, or 50 percent RPD for results that are greater than five times the MRL. Non-detect data are not used in the evaluation of field duplicate results. All analytes were within the acceptance criteria.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. CCV results were not reported by Apex. Quality control results that were flagged by the laboratory based on CCV exceedances required no action from the reviewer when the results met percent recovery and RPD acceptance criteria.

REPORTING LIMITS

Apex used method detection limits for non-detect results, except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences. Results between the method detection limit and the reporting limit were qualified by Apex with "J" as estimated.

The reviewer confirmed that NWTPH-Gx and EPA Method 8260D soil results were reported with a base dilution factor of 1:50 due to a dilution required for analysis. The EPA Method 8260D-SIM soil results were reported with a base dilution factor of 1:100 due to sensitivity of the method.

In report A1D0263, some of the EPA Method 8270E-SIM and EPA Method 8260D results were flagged by Apex as having raised detection limits and reporting limits due to interferences from coeluting organic compounds in the samples. No qualifications were necessary.

In report A1D0263, the EPA Method 8260D tetrachloroethene results from sample GP01-GW-15 and GP01-GW-15-DUP were flagged by Apex as having raised reporting limits from the method detection limit to the MRL due to possible carryover from the previous sample. No qualifications were necessary.

DATA PACKAGE

The data package was reviewed for transcription errors, omissions, and anomalies.

In the cooler receipt form associated with report A1D0263, the lab noted that one VOA vial from sample GP01-GW-15-DUP and 3 VOA vials from sample 040721TB had headspace, and that sediment was present in all VOA vials for all samples. The validator confirmed that the lab used the VOA vials with the smallest headspace and least amount of sediment; thus, no qualifications were necessary.

No additional issues were found.

Apex. 2019. Quality systems manual. Rev. 7. Apex Laboratories, LLC, Tigard, Oregon. February 11.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2017. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.