

Cleanup Action Plan

Eatonville Landfill Eatonville, Washington

Facility Site ID No. 85933/Cleanup Site ID No. 15271

January 2025

Prepared by: Washington State Department of Ecology

Washington Department of Ecology Contact: Sam Meng Southwest Region – Toxics Cleanup Program P.O. Box 47775, Olympia, WA 98504-7775 This page intentionally left blank.

Contents

Executive Summary	1
Background	1
Cleanup Action	2
1 Introduction	
2 Site Description and Background	
2.1 Site Setting	
2.1 Site Setting	
2.2.1 Cultural Use	-
2.2.1 Cultural Use	
2.2.2 Private and Public Use	
2.3 Reflection Areas	
2.3.2 Wetland Area	
2.4 Previous Studies	
2.4.1 Pre-Remedial Investigation (1996–2021)	
2.4.2 Remedial Investigation (2021–2023)	
2.4.3 Post-Remedial Investigation (2023)	
2.5 Human Health and Environmental Risks	
2.5.1 Media	
2.5.2 Exposure Pathways	
2.5.3 Potentially Exposed Human Populations	
2.5.4 Potentially Exposed Ecological Receptors	
2.5.5 Potential Impacts of Climate Change	
2.6 Cleanup Standards	
2.6.1 Contaminants of Concern	
2.6.2 Cleanup Levels	
2.7 Points of Compliance	
2.7.1 Soil	
2.7.2 Groundwater	
2.7.3 Surface Water	14
3 Considered Remedial Alternatives	15
3.1 Development of Remedial Alternatives	15
3.2 Evaluation of Remedial Alternatives	15
3.3 Remedy Selection	17
4 Description of the Cleanup Action	19
4.1 Site Description	
4.1 Site Description 4.2 Selected Cleanup Action	
4.2.1 Landfill Area	
4.2.1 Californi Area	
4.2.2 Wetand Alea	
4.3.1 Protection Monitoring	
	∠⊥

4.3	3.2 Performance Monitoring	
4.3	3.3 Confirmation Monitoring	
4.3	3.4 Adaptive Management	
4.4	Vegetation, Restoration, and Mitigation	
4.5	Applicable Local, State, and Federal Laws	
4.5	5.1 Applicable or Relevant and Appropriate Requirements	
4.5	5.2 Permits and Exemptions	
4.6	Cultural Resources	
4.7	Public Participation	
4.8	Tribal Engagement	
4.9	Schedule for Implementation	
5 Re	eferences	

Tables

- Table 2-1. Contaminants of Concern for Soil, Groundwater, and Surface Water
- Table 2-2. Cleanup Levels for Soil, Groundwater, and Surface Water
- Table 3-1. Restoration Timeframes for Each Media
- Table 5-1. Applicable Federal, State, and Local Laws

Figures

- Figure 1-1. Vicinity Map
- Figure 1-2. Site Map
- Figure 2-1. Conceptual Site Model
- Figure 2-2. Remediation Areas and RI/FS Sample Locations
- Figure 2-3. Remediation Areas
- Figure 2-4. Selected Remedy Cross Section A-A'

Appendices

- Appendix A Former Eatonville Landfill Wetland Delineation Addendum, Updated
- Appendix B Former Eatonville Landfill Waste Characterization Results

This page intentionally left blank.

Abbreviations and Acronyms

ARAR	applicable or relevant and appropriate requirement
Bgs	below ground surface
CFR	Code of Federal Regulations
CLARC	Cleanup Levels and Risk Calculation
COC	contaminant of concern
CSM	Conceptual Site Model
CUL	cleanup level
CWA	Clean Water Act
DAHP	Department of Archaeology and Historic Preservation
dCAP	draft Cleanup Action Plan
DRO	diesel-range organics
DU	decision unit
Ecology	Washington State Department of Ecology
EPA	U.S Environmental Protection Agency
FS	feasibility study
ft	feet or foot
GRO	gasoline-range organics
IC	institutional control
IDP	Inadvertent Discovery Plan
Landfill Area	the former municipal waste landfill on the Site
MNA	monitored natural attenuation
MTCA	Model Toxics Control Act
OMMP	Operations, Maintenance, and Monitoring Plan
ORO	oil-range organics
PBDE	polybrominated diphenyl ether
PCB	polychlorinated biphenyl
PCP	Pentachlorophenol
PLP	Potentially Liable Person
POC	point of compliance
Property	a 6.3-acre rectangular parcel of land owned by Weyerhaeuser Company (Weyerhaeuser) (Tax Parcel No. 0416201007)
RCW	Revised Code of Washington
RI	remedial investigation
RI/FS	remedial investigation/feasibility study

SEPA	State Environmental Policy Act
Site	the Former Eatonville Landfill near Eatonville, Washington
SL	screening level
SVOC	semivolatile organic compound
TEE	Terrestrial Ecological Evaluation
total cPAHs	total carcinogenic polycyclic aromatic hydrocarbons
Town	Town of Eatonville
TPH	total petroleum hydrocarbons
USACE	U.S. Army Corps of Engineers
VOC	volatile organic compound
WAC	Washington Administrative Code
Wetland Area	the area beyond the toe of the landfill on the Site
Weyerhaeuser	Weyerhaeuser Company

Executive Summary

This document presents the draft Cleanup Action Plan (dCAP) for the Former Eatonville Landfill (Site) located near Eatonville, Washington. This dCAP was prepared by the Washington State Department of Ecology (Ecology) in collaboration with Weyerhaeuser Company (Weyerhaeuser) and the Town of Eatonville (Town), who Ecology has determined to be Potentially Liable Persons (PLPs) for the Site. The dCAP has been prepared to meet the requirements of the Model Toxics Control Act (MTCA) administered by Ecology under Chapter 173-340 of the Washington Administrative Code (WAC). This dCAP describes Ecology's final remedy for the Site and the requirements that must be met during the cleanup action itself.

Background

The Site is composed of a former municipal waste landfill (referred to as the "Landfill Area") and the area beyond the toe of the landfill (referred to as the "Wetland Area"), which contains limited solid wastes that have migrated away from the Landfill Area, receives stormwater and spring runoff from the landfill and the surrounding bluff, and has natural springs that discharge to the Wetland Area at various points along the bluff. The source of contamination at the Site is municipal household and other wastes that were dumped during and after the active landfilling period. Over time, limited wastes (i.e., tires and large metal debris) have migrated beyond the landfill prism into the Wetland Area. Separately, after landfill closure, recreational firearm shooting/target practice was conducted at the Site.

A 2017 investigation conducted by the Washington Department of Fish and Wildlife of the surrounding watershed identified the landfill as a potential source of polybrominated diphenyl ethers (PBDEs or BDEs) adversely affecting steelhead trout (*Oncorhynchus mykiss*) in the Mashel and Nisqually Rivers (O'Neill et al., 2020). Following the September 2020 release of the Washington Department of Fish and Wildlife's investigation results, the Nisqually Indian Tribe notified Ecology about potential releases of PBDEs to the Nisqually River from various sources within the watershed, including the Site (Bellon and Gavin, 2020). Weyerhaeuser and the Town agreed to further investigate the Site for PBDEs and other possible contaminants (Weyerhaeuser, 2020). The remedial investigation (RI) took place between 2021 and 2022 and included surface water, groundwater, and soil sampling and analysis for a suite of potential contaminants, including PBDEs.

Contaminants of concern (COCs) identified in Site media (soil, groundwater, and surface water) during the RI include the following:

- Metals. Arsenic, cadmium, chromium, copper, hexavalent chromium, iron, lead, nickel, and zinc
- Semivolatile Organic Compounds (SVOCs). Pentachlorophenol (PCP) and total carcinogenic polycyclic aromatic hydrocarbons (cPAHs)
- Total Petroleum Hydrocarbons (TPH). Gasoline range organics (GRO) and diesel-range/residual-range organics (DRO/ORO)

Cleanup levels (CULs) were developed as part of the combined RI and feasibility study (RI/FS) (GSI, 2024a) for the above-listed COCs. These CULs take into consideration the active pathways between media and the different receptor scenarios (human health and ecological) that have been shown to be active at the Site.

Cleanup Action

The final cleanup action for the Site includes two distinct parts (by area) as a result of their specific impacts and ecological conditions:

- 1. Full waste (approximately 21,500 cubic yards) and impacted soil (approximately 1,800 cubic yards) removal from the Landfill Area and restoration/mitigation of impacted wetlands beneath the waste prism and at the toe of the Landfill Area.
- 2. Removal of wastes, containment, monitored natural attenuation (MNA), and institutional controls (ICs) for the Wetland Area.

This combined cleanup action meets the MTCA requirements for the Site and was determined to be permanent to the maximum extent practicable. Additionally, this cleanup action prevents harm to the existing healthy and high value wetland ecosystem.

Institutional controls will be part of the cleanup action for the protection of human health. Access to the Wetland Area will be restricted until soils impacted by TPH-GRO naturally attenuate below direct contact CULs. The use of Site groundwater for human consumption will be restricted until concentrations of upgradient hexavalent chromium are below CULs. In addition, zinc will attenuate below CULs over time after the sources are removed. The use of surface water for human consumption will be restricted in the Landfill Area until upgradient concentrations of hexavalent chromium attenuate or drop below the CUL. An Operations, Maintenance, and Monitoring Plan (OMMP) will be developed to maintain and evaluate ICs until concentrations are found to be below CULs for human use.

A standard point of compliance (POC) for Landfill Area and Wetland Area soils will be used at the Site. Following waste and soil removal (combined, 23,300 cubic yards), this soil POC will extend from the ground surface to a depth of 15 feet (ft) below ground surface (bgs) (based on human exposure through direct contact), 6 ft (for screening based on ecological exposure), and in the soils throughout the Site (for groundwater protection). Standard POCs will also be used for groundwater and surface water. The soil, groundwater, and surface water CULs at their respective POCs will be met throughout the Site within reasonable restoration timeframes after completion of the cleanup action.

The overall restoration timeframe for the Site is 10 years, with Landfill Area soil expected to be restored immediately after waste and impacted soil removal to the maximum extent practicable. COCs in Wetland Area soil, Site groundwater, and Site surface water are expected to be below CULs within 10 years as a result of MNA and the removal of source materials associated with the landfill and fugitive wastes in the Wetland Area. Compliance monitoring, including protection, performance, and confirmation monitoring, will be performed to ensure the remedy has been completed and continues to perform as designed. If COCs are still above CULs at the end of the expected restoration timeframe, additional cleanup actions will be considered under an adaptive management plan.

1 Introduction

This document is the draft Cleanup Action Plan (dCAP) for the Former Eatonville Landfill (Site) located near Eatonville, Washington. It was prepared by the Washington State Department of Ecology (Ecology) in collaboration with Weyerhaeuser Company (Weyerhaeuser) and the Town of Eatonville (Town), who Ecology has determined to be Potentially Liable Persons (PLPs) for the Site. The Site is identified by Ecology using Facility Site ID No. 85933 and Cleanup Site ID No. 15271. The Site is located within and centered around the extents of a 6.3-acre rectangular parcel of land owned by Weyerhaeuser Company (Weyerhaeuser) (Tax Parcel No. 0416201007) (Property) adjoining Nisqually State Park property managed by Washington State Parks and Recreation Commission (State Parks). Figures 1-1 and 1-2 show the location of the Site and its setting within Nisqually State Park. A dCAP is required as part of the site cleanup process under Washington Administrative Code (WAC) Chapter 173-340, Model Toxics Control Act (MTCA) Cleanup Regulations. The purpose of the dCAP is to identify the proposed cleanup action (also known as remedial action) for the Site and to provide an explanatory document for public review. More specifically, this dCAP:

- Describes the Site setting, historical use, and current conditions.
- Summarizes the cleanup action alternatives considered in the remedy selection process.
- Summarizes the selected final cleanup actions and the rationale behind their selection.
- Describes the selected final cleanup action for the Site and the rationale for its selection.
- Identifies Site-specific cleanup levels (CULs) and points of compliance (POCs) for each contaminant of concern (COC), media (soil, groundwater, and surface water), and Site area (Landfill Area and Wetland Area).
- Identifies state/federal laws that are applicable or relevant and appropriate requirements (ARARs) for the cleanup action.
- Identifies residual contamination remaining on the Site post implementation of the cleanup action and the restrictions on future use/activities that will be put into place to ensure the continued protection of human and ecological health.
- Discusses restoration timeframes and compliance monitoring requirements.
- Establishes an adaptive management plan for the final cleanup action if groundwater is not likely to attenuate below CULs at the POC within the anticipated restoration timeframes.
- Presents the schedule for implementing the dCAP.

Ecology has made a preliminary determination that a cleanup conducted in conformance with this dCAP will comply with the requirements for selection of a remedy under WAC 173-340-360. Ecology has selected this remedy because it will be protective of human health and the environment. Furthermore, the selected remedy is consistent with the State of Washington's preference for permanent solutions, as stated in Revised Code of Washington (RCW) 70.105D.030(1)(b). However, all Tribal and public input will be considered before finalizing this dCAP.

This page intentionally left blank.

2 Site Description and Background

The following sections provide a discussion of the Site's setting, history, areas, previous studies, human health and environmental risks, relevant COCs, and cleanup standards and POCs. Additional details concerning the Site description and background are presented in the draft RI/FS (GSI, 2024a)

2.1 Site Setting

The Site, defined as the area where the cleanup action will take place, is situated between the Puget Sound Lowland to the west and north and the Mount Rainier foothills to the east (Figures 1-1 and 1-2). The Site is contained within the 460,172-acre Nisqually River watershed (Figures 1-1 and 1-2). The Site is located upon a bluff north of the Mashel River. Natural slopes in the vicinity of the landfill are as steep as 1.5H:1V, and the slopes give way to vertical cliffs further from the Site. Anthropogenic landfill deposits of household and other wastes within the "Landfill Area" were placed on top of the natural slopes resulting in slopes as steep as 1H:1V. The steep bluff gives way to a flat region of land referred to as the "Wetland Area" that eventually transitions to the Mashel River floodplain and riverbanks.

The delineated wetlands south of the toe of the landfill receive stormwater runoff, along with spring and seep discharges at various points along the toe of the landfill, resulting in variably saturated soil conditions. Per the 2022 wetland delineation, the area is assumed to be a jurisdictional wetland covering 4.84 acres within the Site (Figure 1-2) (PHS, 2022). Additional delineation work in 2023 showed that areas immediately adjacent to the upgradient portions of the Weyerhaeuser property and the former borrow pit area did not contain any delineated wetlands (Confluence, 2024; Appendix A). The resource value of the wetland was also determined through the wetland rating process, using the Washington State Wetland Rating System for Western Washington (Hruby, 2014), which assesses wetland functions and values, sensitivity to disturbance, rarity, and irreplaceability (Confluence, 2024; Appendix A). The wetland was rated as Category I, and is, therefore, identified as a wetland of high conservation value (Confluence, 2024; Appendix A).

Surface waters from the Site have the potential to discharge to the Mashel River channel via an unnamed creek forming within the wetlands downgradient of the Site and flowing to the south-southwest when sufficient water is present. Surface water from the spring and seeps at the base of the landfill present largely as sheet flow discharge into the Wetland Area with discharge volumes varying significantly based on season. Stormwater either infiltrates in place or crosses the Wetland Area, mainly as sheet flow, and infiltrates within the Wetland Area or flows into the unnamed creek that that forms past the property line.

Groundwater at the Site is present within a shallow unconfined aquifer that may present as seeps or springs at the ground surface in some locations. Water supply wells located near the Site beneficially use water from the aquifer. However, these wells are not likely to be impacted by the Site as a result of the groundwater flow direction in the area. Groundwater at the Site is estimated to flow to the south-southwest toward the Mashel River and may present as surface water or remain in the unconfined shallow groundwater zone within the wetlands. A 3- to 5-foot (ft) thick lens of perched groundwater is present at shallow depths of approximately 22 to 25 ft below ground surface (bgs) overlying a fine-grained unit in the Vashon Formation upgradient of the landfill. Although the vertical and lateral extent of the perched groundwater was not delineated, it appears to emerge on the west side of the slope at the edge of the landfill as a spring. Figure 2-1 shows a conceptual site model (CSM) of the Site.

2.2 Historical Site Use

The following sections detail the cultural, private, and public use of the Site.

2.2.1 Cultural Use

The Site is centrally situated within the Nisqually River watershed, in the area where the Nisqually Indian Tribe—and its ancestors, the Squalli-absch—have resided for more than 10,000 years. The Nisqually Indian Tribe had established several villages in the basin, including a major village near the Mashel River (Nisqually Indian Tribe, 2021). The Nisqually Indian Tribe is a federally recognized sovereign nation and a successor-ininterest to the bands and Tribes who were signatories to the 1854 Treaty of Medicine Creek. See United States v. Washington, 384 F. Supp. 312, 367–68 (W.D. Wash. 1974), aff'd 520 F.2d 676 (9th Cir. 1975), cert. denied, 423 U.S. 1086, 96 S. Ct. 877 (1976); see *also* Treaty of Medicine Creek, 10 Stat. 1132 (1854). The Treaty of Medicine Creek recognizes the Nisqually Indian Tribe's sovereign right to self-governance and self-determination and guarantees the Nisqually Indian Tribe the reserved "right of taking fish, at all usual and accustomed grounds and stations [(U&A)], ... together with the privilege of hunting, gathering roots and berries, and pasturing their horses on open and unclaimed lands[.]" 10 Stat. 1132, Art. 3.

2.2.2 Private and Public Use

Weyerhaeuser Timber Company acquired the land encompassing what is now Nisqually State Park by 1915. Their holdings were intermittently harvested for timber from 1915 to 2010, when the land was sold to State Parks (Trost, 2021). Weyerhaeuser retained ownership of the Property, which currently falls outside of Nisqually State Park. The Town of Eatonville (Town) leased the Property from Weyerhaeuser between November 1950 and March 1, 1980, for use as a municipal landfill (Tacoma-Pierce County Health Department, 2010; Weyerhaeuser, 2014; Ecology, 2021). The landfill was unlined and received municipal household and other wastes during operations. Additionally, tires, appliances, and car bodies were placed at the Property either during operation of the landfill or through illegal dumping after the landfill closure. The landfill was burned and treated several times to reduce rodent infestation (Tacoma-Pierce County Health Department, 2010). The nature of landfilling and burn activities was not closely monitored and/or documented, and operational details are limited.

The Property has been vacant and undeveloped since the closure of the landfill in 1980 (Parametrix, 1996; Tacoma-Pierce County Health Department, 2010). During closure of the landfill, a barrier of tree stumps and snags was placed at the upslope landfill ridge to restrict vehicle access; however, illegal dumping may have occurred, and firearm use did occur, after closure (Parametrix, 1996; GSI, 2024a).

In 2010, 1,230 acres of the land surrounding the Property was officially designated as Nisqually State Park (Fields, 2010). Before and during development of the state park, firearm use at the former borrow pit and Landfill Area was likely ongoing, as evidenced by the large amount of firearm related materials found throughout these areas. Unsanctioned shooting activities are still suspected to occur on occasion, given the apparent age, condition, and quantity of shooting evidence at the Site (GSI, 2024a).

2.3 Remediation Areas

Two distinct remediation areas of the Site were established for the purpose of creating distinct units for the design, implementation, and evaluation of the cleanup action:

- 1. Landfill Area
- 2. Wetland Area

Figure 2-2 shows these two remediation areas. The following sections describe these remediation areas for the purpose of implementing the cleanup action at the Site. Remedies are presented for each area, as described in the Remedial Investigation and Feasibility Study (RI/FS) (GSI, 2024a) and in Section 3 of this dCAP, because of their unique impacts and risks.

2.3.1 Landfill Area

The Landfill Area refers to the portion of the Site containing the waste prism, along the slope and inclusive of the interface between the waste prism and the Wetland Area. Also included in the Landfill Area is a small lobe ("toe") of delineated wetland along the waste prism/Wetland Area interface that has zinc impacts.

2.3.2 Wetland Area

The Wetland Area refers to the portions of the Site between the toe of the landfill and downgradient/downhill end of the Site delineated as wetlands or on the flanks of the delineated wetland. To assist with developing and studying alternatives, the RI/FS assumed that the delineated and inferred wetlands at the Site are jurisdictional, per the U.S. Army Corps of Engineers (USACE) *Wetland Delineation Manual* (USACE, 1987) and the *Regional Supplement to the USACE Wetland Delineation Manual*: *Western Mountains, Valleys, and Coast Region* (USACE, 2010). Additionally, the remedial alternatives in the feasibility study (FS) were designed with this designation in mind and intended to comply with all applicable state and federal regulations at the time the cleanup action is implemented.

The Wetland Area has a well-established root mass and canopy, and the presence of healthy flora provides a natural protective cover over soils and minimizes erosional processes. This type of ecological structure stabilizes contaminants such as metals through natural biological processes (Yan et al., 2020; Bhat et al., 2022). Access to the Wetland Area by humans is also difficult as a result of the steepness of the Landfill Area slope and the softness of soils at the base of the landfill, which serve as natural barriers to frequent and prolonged human use.

2.4 Previous Studies

Previous studies at the Site were conducted over three distinct phases of investigation. These phases of investigation include:

- 1. Pre-remedial investigation from 1996 to 2021
- 2. Remedial investigation (RI) from 2021 to 2023 (GSI, 2024a)
- 3. Post-remedial investigation waste characterization in 2023 (GSI, 2024b; Appendix B)

The work done during these phases of investigation and their respective field events are described in the sections below. Figure 2-2 shows the locations of different activities from previous investigations.

2.4.1 Pre-Remedial Investigation (1996–2021)

Several investigations were conducted at the Site between 1996 and 2021, including:

- 1996. Surface water and seep sampling was performed for biological parameters (biological oxygen demand, N-ammonia, chloride, and sulfate) and metals (iron, manganese, and zinc) (Parametrix, 1996).
- 2013. Twenty-seven test pits were excavated on the upper portion of the landfill to determine the geologic conditions underlying the landfill and to assess the types and compositions of wastes present (PES, 2013).

- 2017. Eleven co-located water and biofilm samples were collected within the Mashel and Nisqually Rivers and analyzed for polybrominated diphenyl ethers (PBDEs) (O'Neill et al., 2020). The findings indicated that the Site is not likely to be a contributing source of PBDEs to the Mashel River.
- January 2021. Sampling of surface water at seepage points along the toe of the landfill was performed. Metals (lead and zinc) were detected above the applicable MTCA screening levels (SLs) for (Aquatic Life: Fresh Water/Chronic, 173-201A WAC) in four samples. Volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and PBDEs were not detected in any samples.

2.4.2 Remedial Investigation (2021–2023)

The RI was completed during several different field deployments between 2021 and 2023, including:

- Dry Season Event (September and November 2021). The dry season event was conducted to delineate the waste prism, collect geotechnical data, assess whether methane was present with the landfill, assess the chemical condition of the former borrow pit adjacent to the Site, and evaluate potential seasonal effects on water quality and groundwater/surface water interactions.
- Wet Season Event (January and February 2022). The wet season event was conducted to evaluate soil
 conditions in the Wetland Area and potential seasonal effects on water quality and groundwater/surface
 water interactions. This event also included a partial wetland delineation, land survey, and geophysical
 survey to characterize the extents of the waste prism.
- Step-out Investigation (August 2022). Soil samples collected at additional step-out locations in the Wetland Area were intended to further delineate metals concentrations.
- Terrestrial Ecological Evaluation (September 2022). Consistent with WAC 173-340-7493, a Site-specific Terrestrial Ecological Evaluation (TEE) Weight of Evidence approach was implemented to evaluate whether adverse impacts from COCs to Wetland Area soils have adverse effects on the ecological condition (plants, animals, and soil biota). No adverse effects were observed. The study also developed site-specific screening levels of metals protective of terrestrial ecological receptors in the Wetland Area.
- Site Feature Survey (May 2023). A Site feature survey was conducted to better understand the connection of the unnamed creek to the Mashel River, delineate the extent of fugitive wastes in the Wetland Area, and document evidence of shooting activities.

2.4.3 Post-Remedial Investigation (2023)

After the RI was completed, additional data collection was undertaken to characterize Site wastes for disposal in support of the development of a future remedial design. This waste characterization effort was conducted to inform the classification of wastes associated with the Site for disposal. These wastes included waste prism materials, native soils beneath the waste prism, and wetland soils from the zinc impacted lobe. In total, 17 test pits were completed and 5 wetland soil samples were collected. Findings indicate that the materials proposed for removal during the cleanup action do not qualify as federal hazardous wastes per 40 Code of Federal Regulations (CFR) § 261 based on the chemical and characteristic testing results (GSI, 2024b; Appendix B). No samples exhibited signs of leaching through the Toxicity Characteristic Leaching Procedure or exceeded the Toxic Substances Control Act 15 United States Code § 2605 threshold for polychlorinated biphenyl (PCB) concentrations (GSI, 2024b; Appendix B). Additionally, Landfill Area soils and waste materials do not qualify as Washington State Dangerous Wastes per WAC 173-303-100 as a result of their exemption in WAC 173-303-071(3)(c) (GSI, 2024b; Appendix B).

2.5 Human Health and Environmental Risks

The following sections describe the contamination found at the Site, exposure pathways of concern, potentially exposed human populations and ecological receptors, and the potential impacts of climate change on the environmental risks posed by the Site.

2.5.1 Media

The primary media at the Site that may pose human health and environmental risks are soil, groundwater (which may be expressed as seeps at the toe of the landfill and from the spring near the top of the landfill), and surface water. However, the RI also considered impacts to soil in the Wetland Area from landfill migration pathways, such as soil and waste erosion, wind-blown dust, ambient air from possible residual volatile compounds, and metals related to the recreational shooting of firearms. The following are generalized discussions of the contamination associated with different media at the Site.

Soil in the Landfill Area is contaminated with several COCs that pose risks to human health and/or the ecological condition. These COCs include metals, SVOCs (pentachlorophenol [PCP] and total carcinogenic polycyclic aromatic hydrocarbons [cPAHs]), and total petroleum hydrocarbons (TPH)—gasoline-range organics (GRO) and diesel-range/residual-range organics (DRO/ORO). In the Wetland Area, soil contamination risks to human health are limited to TPH-GRO, while ecological risks in Wetland Area soil are limited to TPH-DRO/ORO.

Site groundwater is contaminated with hexavalent chromium (upgradient source), iron, and zinc. Hexavalent chromium and zinc are risks to human health. Zinc also poses a chronic exposure risk to aquatic life due to the seepage occurring at the base of the landfill. Iron is above Potable Groundwater SL based on aesthetic concern.

Site surface water is contaminated with hexavalent chromium (upgradient source) and zinc. Hexavalent chromium is a risk to human health. Zinc poses a chronic exposure risk to aquatic life.

2.5.2 Exposure Pathways

Cleanup standards, TEE procedures, and a contaminant screening process guided by WAC 173-340-720, -730, -740, -747, and -7490 through -7494 were used to further evaluate migration pathways and media-specific exposure routes identified through the CSM (Figure 2-1).

The human exposure routes for Site COCs are through the following pathways:

- Direct Contact (soil). Future excavation and utility workers, park visitors, and occupational workers.
- Ingestion/Direct Contact (groundwater). Retained as a conservative measure (no beneficial use within 0.5 miles) in accordance with WAC 173-340-720, to protect the potential beneficial uses as a future source of drinking water or other designated uses and protection of surface water beneficial use.
- Ingestion/Direct Contact (surface water). Current and/or future park visitors or occupational workers.
 Other current surface water beneficial use is not known or suspected at or near the Site.

The most probable ecological exposure routes to contaminants originating at the Site are through direct soil contact, bioaccumulation, and groundwater or surface water ingestion and contact. However, the TEE conducted as part of the RI/FS concluded that metals and other contaminants in Wetland Area soils at the Site does not present a risk of significant adverse effects to terrestrial ecological receptors (GSI, 2024a). Surface water that has zinc concentrations exceeding the SL based on protection of aquatic life is limited within the Landfill Area.

The evaluation of the human health and environmental risks posed by the Site have also considered nearby Tribes, vulnerable populations, and overburdened communities and the potential for climate change to impact the cleanup action. The following sections discuss these aspects of the Site and its associated cleanup action.

2.5.3 Potentially Exposed Human Populations

The census tract in which the Site is located (073200) and the two surrounding tracts (073006 and 012510) were assessed per RCW 70A.02.010 and WAC 173-350(5) for vulnerable populations and overburdened communities using Ecology Implementation Memorandum No. 25 (Ecology, 2024). In addition, as the Nisqually Indian Tribe is known to use the Nisqually River, which connects to the Mashel River, the census tract containing the Nisqually Indian Tribe's main settlement (012320) was also similarly assessed.

Vulnerable populations include population groups that are more likely to be at higher risk for poor health outcomes in response to environmental harms, because of the following:

- Adverse Socioeconomic Factors. Unemployment, high housing and transportation costs relative to income, limited access to nutritious food and adequate health care, linguistic isolation, and other factors that negatively affect health outcomes and increase vulnerability to the effects of environmental harms
- Sensitivity Factors. Low birth weight and higher rates of hospitalization

Overburdened communities are defined as geographic areas where vulnerable populations face combined, multiple environmental harms and health impacts.

The Washington State Department of Health's Environmental Health Disparities Map (Washington State Department of Health, 2022) and EPA's EJScreen tool (EPA, 2023) were used to screen the Environmental Health Disparities Index, the Demographic Index, and the Supplemental Demographic Index. The following shows the result of the screening:

- Environmental Health Disparities Index. The Environmental Health Disparities Index is based on 19 indicators across four themes. The themes include environmental exposures, environmental effects, sensitive populations, and socioeconomic factors. The Site's census tract and the two surrounding tracts rank 2 out of 10, and the Nisqually Indian Tribe census tract ranks 4 out of 10. The criteria for a likely overburdened community or vulnerable population is a 9 or 10 out of 10.
- Demographic Index. The demographic index is based on the average of two socioeconomic indicators: low-income and people of color. The Site's census tract ranks in the 43rd percentile for Washington State. The two surrounding tracts rank in the 31st and 32nd percentiles, and the Nisqually Indian Tribe's census tract ranks in the 57th percentile. The criteria for a likely overburdened community or vulnerable population is at or above the 80th percentile.
- Supplemental Demographic Index. The supplemental demographic index is based on the average of five socioeconomic indicators: low-income, unemployment, limited English, less than high school education, and low life expectancy. The Site's census tract ranks in the 47th percentile for Washington State. The two surrounding tracts rank in the 38th and 55th percentiles, and the Nisqually Indian Tribe's census tract ranks in the 50th percentile. The criteria for a likely overburdened community or vulnerable population is at or above the 80th percentile.

Based on these results, the census tracts where the Site is located and in the surrounding vicinity are likely not home to overburdened communities or vulnerable populations. However, the Nisqually Indian Tribe's use of the Nisqually River watershed and its rights and interests in their Tribal lands presents a disproportionate risk for exposure to and contact with contaminants from the Site through contact with environmental media (soil, groundwater, and surface water) and in consumption of species that bioaccumulate contaminants. Therefore, the Nisqually Indian Tribe and members of other Tribes in the area that rely on the watershed may benefit from the implementation of a cleanup at the Site. The Site was historically used by native peoples and is of Tribal significance; these factors will also be considered during the cleanup actions through the Site-specific Inadvertent Discovery Plan (Town of Eatonville and Weyerhaeuser, 2020).

2.5.4 Potentially Exposed Ecological Receptors

Potential ecological receptors were identified based on current and potential future land use. The full suite of current and potential future ecological receptors is identified in the TEE (Appendix D to the RI/FS; GSI, 2024a) and includes the following:

- Terrestrial plants (such as Vine maple [Acer circinatum], red alder [Alnus rubra], and salmonberry [Rubus spectabilis])
- Soil biota (primarily pot worms and earthworms)
- Wildlife (such as American black bear, coyote [Canis latrans], blacktail deer, raccoons [Procyon lotor], Douglas squirrels [Tamiasciurus douglasii], Steller's jay [Cyanocitta stelleri], Cooper's hawk [Accipiter cooperii], and/or sharp-shinned hawk [Accipiter striatus])

The wetland ecosystem is not adequately inundated to support aquatic biota receptors. However, if groundwater impacts were identified and discharged to the surface water of the Mashel River, aquatic biota could be impacted and, therefore, aquatic biota are retained as potential receptors.

2.5.5 Potential Impacts of Climate Change

WAC 173-340-350(6)(f) notes that, based on best available science, the preferred cleanup action proposed for the Site in the RI/FS must consider current and projected local and regional climatological characteristics to determine factors that could affect the migration of hazardous substances or the resilience of cleanup action alternatives. The relevant climate change characteristics of the Site and their potential impacts are discussed below:

- Seasonal Patterns of Rainfall. Depending on the climate models referenced, changes in average annual precipitation in the vicinity of the Site in 2060 range from -2.2 to +6.7 percent (EPA, 2016). Increases in annual average precipitation could lead to erosion along the slope and increased flow along the ravine from the seep, which has the potential to expose hazardous materials in the landfill (if left in place) and mobilize impacted soil.
- Magnitude and Frequency of Extreme Storm Event. The Site ranks in the 83rd percentile for properties currently at flood risk and in the 82nd percentile of properties at flood risk in the next 30 years (EPA, 2023). However, the Site is not currently within a 100-year floodplain (EPA, 2023). In 2060, the change in 100-year storm intensity is projected to increase from between 5.7 and 16.8 percent (EPA, 2016). This increase in storm intensity has the potential to increase erosion at or near the Site and mobilize impacted soil.

Potential for Landslides. The risk of landslides increases with increasing slope angles and high precipitation volumes. The Site is located on a steep slope and along a natural bluff, which may be vulnerable to landslides in the event of high-flow storms. As noted previously, anthropogenic landfill deposits on top of the erosional slope are as steep as 1H:1V, with evidence of ongoing slope instability and debris runout near the toe of the slope.

Other climate indicators were considered, including wildfire potential and temperature extremes, but the impacts of these indicators were relatively low at the Site (U.S. Federal Government, 2023).

2.6 Cleanup Standards

The following sections detail COCs and cleanup standards for each Site media.

2.6.1 Contaminants of Concern

Results of the investigations described in Section 2.4 were screened against Human Health and/or Ecological SLs as part of the RI/FS (GSI, 2024a) to identify a set of COCs for each media evaluated. SLs were derived from the Ecology Cleanup Levels and Risk Calculation (CLARC) Master Table (Ecology, 2023) and the statutes referenced therein. SLs were set to natural background (i.e., Ecology, 1994 and 2022) or practical quantitation limits, where necessary.

Surface water SLs were also applied to groundwater because human health and ecological groundwater exposure scenarios are present where groundwater seeps and daylights at the toe of the landfill.

Table 2-1 shows the soil, groundwater, and surface water COCs identified for the Site. COCs for Site groundwater and surface water are limited to select metals. While the RI indicates the source of the hexavalent chromium is associated with an upgradient background condition, it has been retained as a Site groundwater and surface water COC to ensure restrictions will be in place to prevent human exposure. Iron was identified in the RI/FS as a COC in the groundwater because it was found above the most stringent SLs in the groundwater (300 μ g/L), which is a secondary drinking water standard based on factors other than health effects. The highest iron concentration in the groundwater samples is below the next most stringent standard, which is the MTCA Method B Cleanup Level calculated based on the risk to human health (11,000 μ g/L; CLARC). Therefore, iron is not considered a COC in the groundwater.

For soils, the Site has two distinct sets of COCs, one for the Landfill Area and one for the Wetland Area. For Landfill Area soil, metals, SVOCs, cPAHs, and TPH-GRO and DRO/ORO are identified as COCs. The Wetland Area soil COCs account for the finding of no adverse effects to the terrestrial ecological receptors from the Site-specific TEE, consistent with WAC 173-340-7493. For the Wetland Area soil, zinc and TPH-GRO and DRO/ORO are identified as COCs. Iron was identified in the RI/FS as a COC in the soil because it was found above the SL established for the protection of groundwater. Because iron was eliminated as a COC in the groundwater, it is also eliminated as a COC in the soil.

2.6.2 Cleanup Levels

In accordance with WAC 173-340, Site-specific CULs for soil, groundwater, and surface water COCs were developed based on applicable receptors and exposure pathways as part of the RI/FS (GSI, 2024a). The soil CULs were developed for both the Landfill Area and Wetland Area separately to account for the differences in their pathways based on the CSM and the findings of the TEE (Appendix B to the RI/FS [GSI, 2024a]) that was completed in the Wetland Area. The CULs for soil (by Site remediation area), groundwater, and surface water are summarized in the following sections and in Table 2-2. No air CULs are required for this Site.

2.6.2.1 Soil

Soil CULs for the Landfill Area and Wetland Area of the Site differ because different metals were found to be present above SLs, and the Site-specific TEE resulted in adjusted CULs for zinc in the Wetland Area. The derivation of soil CULs for these two areas are discussed separately in the sections below.

2.6.2.1.1 Landfill Area

Among the soil Human Health and Ecological SLs, the lower, more protective value for pathways shown to be active was selected as the CUL with consideration for natural background concentrations. The CULs were based on the following:

- Soil ecological indicator for plants (cadmium, lead, nickel, zinc) and soil biota (copper, TPH-DRO/ORO)
- Natural background (arsenic, chromium, nickel, and zinc)
- MTCA Method B Protective of Groundwater to Surface Water, Saturated (zinc)
- MTCA Method B Direct Contact, Cancer (PCP, total cPAHs)
- MTCA Method A Unrestricted Land Use (TPH-GRO)

The CULs for these Landfill Area soil COCs are protective of Human Health and Ecological receptors.

2.6.2.1.2 Wetland Area

The TEE Weight of Evidence evaluation work conducted in the Wetland Area provides a basis for developing revised Ecological CULs based on Site-specific conditions for zinc. For the Human Health scenario and all other constituents, the CUL is based on MTCA Human Health and Ecological SLs representative of active pathways. Among the Human Health and Ecological SLs, the lower, more protective value for pathways shown to be active was selected as the CUL with consideration for natural background concentrations. The CULs were based on the following:

- TEE CUL protective of terrestrial ecological receptors (zinc)
- MTCA Method A Unrestricted Land Use (TPH-GRO)
- Soil Ecological Indicator Soil Biota (TPH-DRO/ORO)

These CULs are protective of Human Health and Ecological receptors.

2.6.2.2 Groundwater

Hexavalent chromium and zinc were the only groundwater COCs identified at the Site. Site-wide groundwater CULs for these metals are based on the lowest applicable SLs, namely the following:

- MTCA Method B Cancer CUL (hexavalent chromium)
- WAC 173-201A-240 freshwater chronic aquatic life criteria (zinc)

The CULs for these groundwater COCs at the Site are protective of Human Health and Ecological receptors.

2.6.2.3 Surface Water

Hexavalent chromium and zinc are the only surface water COCs. The Site-wide surface water CULs for these metals are based on the lowest applicable SLs, namely the following:

MTCA Method B Cancer CUL (hexavalent chromium)

WAC 173-201A-240 freshwater chronic aquatic life criteria (zinc)

The CULs for these surface water COCs at the Site are protective of Human Health and Ecological receptors.

2.7 Points of Compliance

Points of compliance are the locations and media where the CULs identified in Section 2.6.2 must be attained. The POCs for the Site have been identified in accordance with the regulatory requirements contained within WAC 173-340-720 through 173-340-740. The POCs for soil, groundwater, and surface water at the Site are shown in Figure 2-3 and are discussed in the following sections.

2.7.1 Soil

A standard POC will be used for soil in both the Landfill Area and Wetland Area. This is where the soil CULs must be attained, consistent with WAC 173-340-740(6). The POC for soil is based on the human exposure via direct contact and ecological considerations based on the TEE. The CULs must be met in soils throughout the two areas of the Site (Figure 2-3) from the ground surface to 15 ft bgs for human exposure and 6 ft bgs for ecological exposure, and the entire saturated soil column for the protection of groundwater.

Following the excavation of wastes and impacted Landfill Area soils to the maximum extents practicable (removal of waste materials and recoverable particulates, visually impacted soils, and soils above CULs), soils will be evaluated across the entirety of the Landfill Area consistent with WAC 173-340-740(7). This ensures potential exposures by humans under future use scenarios (e.g., no development, construction, digging) are limited and provides a point of reference for evaluating the cleanup actions' performance in relation to the human health and ecological exposure scenarios under MTCA. Soil will also be evaluated across the extent of the Wetland Area thought to be impacted by TPH-GRO and TPH-DRO/ORO (Figure 2-3).

2.7.2 Groundwater

For groundwater, a standard POC will be used throughout the Site from the uppermost level of the saturated zone extending vertically to the lowest depth that could potentially be affected (Figure 2-4). The standard groundwater POC is established where the groundwater CULs must be attained, consistent with WAC 173-340-720(8). Groundwater standard POC monitoring locations will be four monitoring wells installed within the central portions of the former landfill waste prism and immediately downgradient of the toe of the landfill to depths thought to be saturated year-round (Figure 2-3). The number of monitoring wells and the locations will be adjusted based on the degree of soil contamination observed during the implementation of the cleanup action and leave surface conditions. These groundwater POC locations will represent the portions of the aquifer beneath the Site where impacts are most likely to be observed.

2.7.3 Surface Water

A standard surface water POC is established for the Site. This POC will be at the downgradient end of the Wetland Area, which integrates spring and seep flows from the Landfill Area and is representative of surface water conditions leaving the Site. The surface water POC is where the surface water CULs must be attained, consistent with WAC 173-340-730(6), in a location where surface water runoff may concentrate along the generalized flow path to the Mashel River (Figure 2-3). This POC serves as an integrator of Site-wide surface water impacts and is the best indicator of any potential migration of Site associated surface water impacts to the Mashel River. Given that a defined channel with consistent flow is not thought to be present in the downgradient portions of the Site in the Wetland Area, data collection for determining compliance with the surface water POC will be designed to allow flexibility in identifying where water is concentrating near the property boundary during different times of year and under different flow conditions.

3 Considered Remedial Alternatives

The following sections discuss the development and evaluation of remedial alternatives for the Site and the selection of the preferred remedial alternative (cleanup action) in the FS.

As part of the FS (GSI, 2024a) and in accordance with WAC 173-340-350(8)(b)(i) and (ii), an initial screening of remedial alternative technologies was completed. Multiple alternatives were evaluated, including consideration of the characteristics and complexity of the Site, current Site conditions, and physical constraints. In accordance with applicable MTCA criteria, the evaluation included at least one permanent alternative and one alternative with a standard POC.

3.1 Development of Remedial Alternatives

The following types of remedial alternatives and technologies were eliminated from further analysis in the initial screening:

- Alternatives or technologies that clearly do not meet the minimum selection requirements in WAC 173-340-360, including alternatives with disproportionate costs in relation to the benefits.
- Alternatives or technologies that are not technically possible to implement on the Site.
- "No action" alternatives that do not involve any cleanup action at the Site.

Two remedial alternatives were then developed for both the Landfill and Wetland Areas of the Site. These alternatives, by area, included the following:

- Landfill Area
 - Alternative 1A Waste and Impacted Soil Removal to the Maximum Practicable Extents
 - Alternative 1B Partial Waste and Soil Removal and Capping
- Wetland Area
 - Alternative 2A Full Impacted Soil Removal
 - Alternative 2B Waste removal, Monitored Natural Attenuation, and Institutional Controls

These area-specific alternatives are believed to address Site-wide surface water and groundwater impacts.

3.2 Evaluation of Remedial Alternatives

The alternatives and process options remaining were determined to be applicable to the Site and were identified for further evaluation. Remedial alternatives were evaluated using the following criteria:

- Protect Human Health and the Environment. Consider the degree to which an alternative meets MTCA cleanup standards, the degree to which the remedy is permanent, and the short-term risk associated with implementing the remedy.
- Comply with Cleanup Standards. For an alternative to be considered viable, the cleanup action must comply with cleanup standards, including the CULs (Section 2.6.2), ARARs (Section 5), and POCs (Section 2.7). These are discussed in detail in the RI/FS, Section 9.1 (CULs), Section 9.3 (POCs), and Section 10.2 (ARARs) (GSI, 2024a).
- Comply with Applicable State and Federal Laws. Cleanup actions under MTCA must comply with applicable state and federal laws deemed relevant as discussed in Section 10.2 of the RI/FS (GSI, 2024a).

 Provide for Compliance Monitoring. Per WAC 173-340-410, compliance monitoring can include protection, performance, or confirmation monitoring. For remedies that propose on-site disposal, isolation, or containment as the selected cleanup action for all or a portion of a site, a long-term monitoring plan is required.

Per WAC 173-340-360(2)(b), cleanup actions that fulfill the threshold requirements must also meet other requirements, including the following:

- Use Permanent Solutions to the Maximum Extent Practicable. To determine whether a cleanup action uses permanent solutions to the maximum extent practicable, the Disproportionate Cost Analysis process shall be used (Section 13.2 of the RI/FS [GSI, 2024a]). The Disproportionate Cost Analysis is used to compare the costs and benefits of alternatives and select the alternative with incremental costs that are proportionate to the incremental benefits. This process defines the remedial action alternatives that are considered permanent to the maximum extent practicable. As outlined in WAC 173-340-360(3), MTCA provides a methodology that considers the following criteria:
 - Protectiveness
 - Permanence
 - Cost
 - Long-term effectiveness
 - Management of short-term risks
 - Implementability
 - Consideration of public concerns and Tribal rights and interests
- Provide for a Reasonable Restoration Timeframe. Per WAC 173-340-360(4), cleanup actions should provide for a reasonable restoration timeline, considering the following factors:
 - Potential risks posed by the Site to human health and the environment.
 - Practicability of achieving a shorter restoration timeframe.
 - Current use of the Site, surrounding areas, and associated resources that are, or may be, affected by releases from the Site.
 - Potential future use of the Site, surrounding areas, and associated resources that are, or may be, affected by releases from the Site.
 - Availability of alternative water supplies.
 - Likely effectiveness and reliability of ICs.
 - Ability to control and monitor migration of hazardous substances from the Site.
 - Toxicity of hazardous substances at the Site.
 - Natural processes that reduce concentrations of hazardous substances and have been documented to occur at the Site or under similar Site conditions.
- Consider Public Concerns and Tribal Rights and Interests. Public concerns shall be considered through the public notice and participation process described in WAC 173-340-600. Tribal rights and interests shall be identified under WAC 173-340-620.

Using all the above-listed criteria, a remedy was selected.

3.3 Remedy Selection

Based on the results of previous investigations and an analysis of remedial alternatives, as presented in the RI/FS (GSI, 2024a), the selected remedial alternatives (referred to as the cleanup action in this document) was developed from Alternatives 1A and 2B.

The Landfill Area remedy (Alternative 1A) represents the most comprehensive remedial alternative to address the contaminant source, impacted soil, and migration of COCs to downstream receptors, assuming removal or control of the source (landfill waste, uncontrolled leachate, and/or indiscriminate sport shooting). The removal of sources (including waste and impacted soil) in the Landfill Area and wastes in the Wetland Area to the maximum extent practicable, and avoidance of impacts to a critical wetland ecosystem, allows for shorter restoration timeframes. Table 3-1 shows the restoration timeframes for each Site area, COC, and media. Removal of contaminated media from the Landfill Area (both waste and soil) will immediately and permanently address soil contamination risks in the Landfill Area. Therefore, landfill soil will be restored immediately following the cleanup action in the Landfill Area.

TPH-GRO in Wetland Area soil presents a direct contact risk to human health. A restrictive convent that identifies the lateral limits and approximate depth of TPH-impacted soil will be placed on portions of the Wetland Area of the Site. TPH-GRO and TPH-DRO/ORO concentrations will be diminished to below the applicable direct contact (TPH-GRO) and ecological soil biota (TPH-DRO/ORO) risk levels via natural attenuation in approximately 10 years or less restoration timeframe after the source is removed from the Landfill Area. The natural attenuation will be monitored. Upon completion of the cleanup action, clean soil will be brought in to bring the wetland back to existing grade and all disturbed areas will be planted with native vegetation. A separate, detailed restoration plan will be prepared with the assistance of Ecology and the USACE. If necessary, additional mitigation measures will be taken to meet the regulatory requirements.

Site-related contaminants in groundwater and surface water at the Site will begin to attenuate after Landfill Area sources and Wetland Area wastes are removed, with a 10-year restoration timeframe. Institutional controls (ICs) will be used to restrict human consumption of groundwater and surface water if the hexavalent chromium is still above its CULs in groundwater and surface water.

This page intentionally left blank.

4 Description of the Cleanup Action

The following sections describe the Site and the cleanup action selected for it.

4.1 Site Description

The Site is identified by Ecology using Facility Site ID No. 85933 and Cleanup Site ID No. 15271. The Site is located within and centered around the extents of a 6.3-acre rectangular parcel of land owned by Weyerhaeuser (Tax Parcel No. 0416201007) adjoining Nisqually State Park. Figures 1-1 and 1-2 show the location of the Site and its setting within Nisqually State Park.

4.2 Selected Cleanup Action

The selected cleanup action technologies by Site area are detailed in the RI/FS (GSI, 2024a) and summarized in the following sections. The cleanup action technologies are shown in Figures 2-3 and 2-4. Figure 2-3 shows the plan view of the cleanup action, and Figure 2-4 shows a cross section of the cleanup action through the center of the former landfill waste prism. The cleanup action boundaries have been selected to encompass all areas of the Property for implementation of the remedy, ICs, POCs, and performance monitoring.

A conceptual design of the remedy for the individual remediation areas (Landfill Area and Wetland Area) is further described below.

4.2.1 Landfill Area

The selected cleanup action for the Landfill Area includes both waste and impacted soil removal and ICs. These two aspects are discussed in the following sections.

4.2.1.1 Waste and Impacted Soil Removal

All waste and the impacted soil beneath the waste prism exceeding CULs in the Landfill Area will be excavated to the maximum extent practicable and disposed of at an off-site facility permitted to receive such waste. It is estimated that approximately 23,300 cubic yards of combined soil and waste will need to be removed. This component of the cleanup action will eliminate the source of contamination and leachate to the Wetland Area. The remaining slope will be cut back, as needed, to a final angle of approximately 2H:1V (Figure 2-4), and benches will be installed (Figure 2-3) to create a stable slope resistant to mass wasting (i.e., downhill movement of soil and rock) and allow for restoration of the ground surface and installation and future removal of the groundwater POC monitoring wells. The final leave surface identified through the performance monitoring program (soil concentrations below Landfill Area CULs) will be covered with matting, topsoil, erosion control material, and/or restoration plantings to allow for the recovery and restoration of the remediated surface. The actual cleanup action in the Landfill Area will be limited to the waste prism, which is shown as a yellow dotted line on Figure 2-3, the area directly above the waste prism, and two small areas that extend off the waste prism to the northwest and southeast. The southeastern lobe at the toe of the waste prism (0.05 acre, or 2,178 square feet), which extends into the delineated wetlands past HA-01D, is impacted by lead and zinc at levels that exceed both Human Health and Ecological SLs and, therefore, present risks to both human and ecological health. The northwestern area (0.062 acre or 2,696 square feet), which extends to the other side of the ravine and up the slope to location HA-X, is an isolated area impacted by lead and zinc, both representing risks to human and ecological health. The eastern lobe that extends to transect H-01F (0.04 acre or 1,744 square feet) is impacted by lead and poses a risk to human health. A total footprint of 1.71 acres or 74,488 square feet is planned for removal. This removal will require

restoration of the delineated wetland footprint when feasible, and/or mitigation depending on the regulatory requirements identified.

4.2.1.2 Institutional Controls

Although the removal of waste and impacted soil will eliminate the site-related impact in the Landfill Area, ICs will be needed to prevent activities that may result in exposure to groundwater due to the presence of (1) hexavalent chromium detected above its CUL in the upgradient perched groundwater, and (2) hexavalent chromium detected above its CUL in surface water as a result of hexavalent chromium CUL exceedances discharging from the upgradient spring. These ICs will be put in place through environmental covenant immediately following the completion of the cleanup action. The environmental covenant will have the following elements:

- 1. Prohibit the use of groundwater and surface water for potable water (Site-wide IC).
- 2. Establish and maintain on-site features, such as signs and/or fencing, to prevent human access to the spring and its flow path.
- Manage, treat, and discharge groundwater and surface water collected during construction or other nonpotable purposes in conformance with an Ecology-approved soil and groundwater management plan. The soil and groundwater management plan will be prepared following entry of the consent decree for the final cleanup action.
- 4. Conduct intrusive activities that involve worker contact with contaminated groundwater and surface water (the spring) using individuals that have the appropriate training and certifications for working on hazardous waste sites and in conformance with a Site-specific health and safety plan.

Institutional controls will be required until concentrations of COCs in the surface water and groundwater at the monitoring points identified in the OMMP are found to be below CULs or trends indicate they will be The specific ICs that will be implemented as part of the cleanup action will be presented in the Engineering Design Report (EDR).

4.2.2 Wetland Area

The selected remedy in the Wetland Area includes waste removal, monitored natural attenuation (MNA), and ICs. These aspects are discussed in the following sections.

4.2.2.1 Waste Removal

Waste that has migrated to the Wetland Area beyond the extent of the landfill waste prism (Figure 2-3) will be removed and disposed of at an off-site facility. Large wastes that can be handled (e.g., tires, car bodies, appliances, etc.) will be removed from the Wetland Area. Waste particles from weathered materials and soils adjacent to wastes will not be removed unless they comprise a significant percentage (>50 percent of volume) of the total soil volume and can be removed via manual methods. Areas disturbed in the wetland will be restored by using clean topsoil to bring the elevation back to existing grade and planting the area with native vegetation.

4.2.2.2 Monitored Natural Attenuation

Soil with elevated metals and TPH concentrations in the Wetland Area, has been determined to have no adverse effect on terrestrial ecological receptors and poses a limited threat to human health. These soils will remain in place to preserve the existing and well-functioning wetland ecosystem. TPH-GRO/DRO concentrations in Wetland Area soil will naturally attenuate following the removal of Landfill Area waste and soil, and Wetland Area waste. The natural attenuation of gasoline and diesel compounds has been

demonstrated through research (Kao and Prosser, 2001; Kampbell et al., 2001; Boopathy, 2004; Eriksson et al., 1998; Ledezma-Villanueva et al., 2016). The rate of natural attenuation will be evaluated through monitoring in MNA. MNA has been accepted for use as a remedial technology at petroleum spill cleanup sites (i.e., Pacific Northwest National Laboratory, 2001; Wisconsin Department of Natural Resources, 2004; EPA, 1999; ITRC, 2018). Concentrations of TPH-DRO/ORO will be monitored until natural attenuation processes have reduced TPH-DRO/RRO concentrations below the CUL. Details of this monitoring are discussed in Section 4.3.

4.2.2.3 Institutional Controls

Based on the TEE (Appendix B to the RI/FS [GSI, 2024a]), contaminant levels in Wetland Area soil do not pose a risk to ecological receptors. However, human contact with Wetland Area soil needs to be controlled due to concentrations of TPH-GRO above direct contact CULs. A Wetland Area IC will be established to limit direct contact with Wetland Area soil in areas with elevated TPH-GRO concentrations (Figures 2-3 and 2-4). The Wetland Area is difficult to access because of steep slopes, dense vegetation, and soft ground, which also deters human access. The environmental covenant will have the following elements:

- 1. Prohibit the use of groundwater and surface water as potable water (Site-wide IC).
- 2. Establish and maintain on-site features, such as signs, to prevent human access to the Wetland Area, up to transect HA-04 and minimize contact with soil contaminated with TPH-GRO.
- 3. Intrusive activities that involve worker contact with TPH-contaminated soil will be conducted by individuals that have the appropriate training and certifications for working on hazardous waste sites and in conformance with a Site-specific health and safety plan.
- 4. TPH-contaminated soil excavated during intrusive activities will be managed, treated, and disposed of in conformance with an Ecology-approved soil and groundwater management plan.

These ICs can be put in place immediately following the completion of the cleanup action. Institutional controls will be required at the monitoring points identified in the OMMP until concentrations of COCs in Wetland Area soil are found to be below CULs or trends indicate they will be. The specific ICs that will be implemented as part of the cleanup action will be presented in the EDR.

4.3 Compliance Monitoring

A compliance monitoring program will be implemented at the Site during and after the cleanup action pursuant to WAC 173-340-410. This program will consist of protection, performance, and confirmation monitoring programs each with a unique set of objectives. Different levels of compliance monitoring will be required in the two Site remediation areas (Landfill Area and Wetland Area). Each of these monitoring programs, and their application to the different Site remediation areas, is described in the following sections. Specific requirements for each of these types of monitoring will be provided in an OMMP and in the Construction Plans and Specifications developed as part of the remedial design process.

4.3.1 Protection Monitoring

Protection monitoring protects human health and the environment during construction and maintenance of the remedy. This monitoring is applicable to both the Landfill Area and the Wetland Area. The specific details of the protection monitoring programs for each Site area will be addressed in the applicable safety, health, and design plans, including the following:

 Site Control Plan. This plan defines how potential conflicts between the cleanup action and the use of State Parks' land and surrounding roadways will be addressed. In addition, this plan will identify zones where cultural resources may be encountered and what level of archaeological monitoring is required in the different zones.

- Health and Safety Plan. This plan outlines necessary human health and safety protocols related to Site work.
- Stormwater Pollution Prevention Plan and Erosion Prevention Plan. This plan details how stormwater and erosion will be managed such that contaminants will not be transported off site. This is an attachment to the Construction Plans and Specifications.
- Contaminated Media Management Plan. This plan describes the protocols used to manage, handle, and dispose of impacted soil, groundwater, surface water, and wastes at the Site during and after the cleanup action. This plan is an attachment to the Construction Plans and Specifications.

Protection monitoring will include the implementation of the following protections:

- Landfill Area. Human health protection will be accomplished using best management practices, including limiting human contact with soils with COC concentrations above CULs, monitoring and enforcing the use of personal protection equipment, dust control, and monitoring down-gradient turbidity in surface water. Ecological protection will be accomplished by limiting soil erosion and migration (i.e., mass wasting) from the Landfill Area into the Wetland Area or surface waters. Erosion from the Landfill Area and turbidity in surface water downgradient of the Landfill Area will be limited, namely the flow path originating at the spring and migrating through the Landfill Area to the Wetland Area (Figure 2-2).
- Wetland Area. Human health protection will be accomplished by limiting human contact with soils with TPH-GRO concentrations above the direct contact CUL. Dust production is not a concern in the Wetland Area, where soil is generally damp or waterlogged and will not be removed. Ecological protection will be accomplished by minimizing soil disturbance when removing waste from the Wetland Area.

4.3.2 Performance Monitoring

Performance monitoring is conducted to assess whether the cleanup action has been successfully implemented and to measure when the CULs for the different media and Site remediation areas are met. Performance monitoring is required for Landfill Area soil and Site groundwater and surface water and the specific components of each performance monitoring program for each Site area/media are described in the following sections. A Performance Monitoring Plan will be developed as part of the Construction Plans and Specifications to detail the scope and schedule of performance monitoring at the Site that will be used to verify that the cleanup action meets its design objectives.

4.3.2.1 Soil Performance Monitoring

Soil performance monitoring will be conducted in the Landfill Area. Performance monitoring of soil in the Landfill Area will be composed of leave surface sampling for arsenic, cadmium, chromium, copper, lead, nickel, zinc, PCP, total polycyclic aromatic hydrocarbons, TPH-GRO, and TPH-DRO/ORO-post-removal of wastes and impacted soil. The top foot of soil post-removal will be sampled to determine if additional removal is necessary to achieve CULs. Sampling will be conducted using a methodology consistent with WAC 173-340-740(7) to characterize soil COC concentrations within the Landfill Area. To provide monitoring coverage across different portions of the Landfill Area, it will be broken into distinct decision units (DUs) during the design process. These DUs will cover the landfill waste prism footprint, the small lobe of land at the base of the landfill that extends into the Wetland Area, and the two radial areas extending to RI sampling locations HA-X and HA-O1f (Figure 2-2). As a result of the mixed till material found at the Site, special consideration must be given to grain size distribution when designing monitoring programs because contaminants concentrate within the fine fraction of soil and not in coarse materials. As a result of this, COC

concentrations may need to be adjusted based on grain size composition of the leave surface. The leave surface may contain large boulders, cobbles, and gravels that are not readily analyzed and are not thought to adsorb significant concentrations of COCs.

Following completion of the Landfill Area removal efforts, sampling will be completed consistent with WAC 173-340-740(7) to determine whether additional removal is warranted. During the RI, reporting limits for several analytes were elevated above screening levels due to various laboratory issues with the soil matrix. These substances will be tested to confirm that the concentrations are below the screening levels. These analytes include hexavalent chromium (metal), 1,2,3-trichloropropane (VOC), dibromochloropropane (VOC), 2,6-dinitrotoluene (SVOC), N-nitrosodimethylamine (SVOC), and N-nitrosodi-n-propylamine (SVOC). Materials and soil planned for use as backfill will be evaluated to ensure that they are below Landfill Area soil CULs before placement. After a leave surface below Landfill Area soil CULs has been established, no additional performance monitoring will be needed in the Landfill Area.

4.3.2.2 Surface Water Performance Monitoring

Surface water performance monitoring will be undertaken at the Site surface water POC. Samples will be collected for dissolved zinc only since the presence of hexavalent chromium above human contact CULs is assumed. Zinc will be monitored to determine the effectiveness of zinc attenuation as a result of source removal. The locations for surface water monitoring will be evaluated and determined after the excavation evaluation and realignment of the springs flow path, as a re-routing of the spring might be needed during the implementation of the Landfill Area remedy.

4.3.2.3 Groundwater Performance Monitoring

Groundwater will be sampled for total hexavalent chromium and zinc after wells have been installed as part of the cleanup action. Hexavalent chromium will be monitored to determine if Site-wide human consumption ICs can be lifted. Zinc will be monitored to evaluate whether seeping groundwater poses a risk to aquatic life living in surface waters. This sampling will require monitoring wells to be installed as part of the cleanup action groundwater POC. Groundwater conditions at the Site are not expected to improve until waste and impacted soil is removed. Sampling will occur at the groundwater POCs, beneath the central portions of the landfill waste prism and immediately downgradient of the toe of the landfill near the boundary with the Wetland Area, from the uppermost level of the saturated zone, which is thought to represent the portions of the aquifer most likely to be impacted. The number of monitoring wells and the locations may be adjusted based on the degree of soil contamination before the implementation of the cleanup action and leave surface conditions. These groundwater POC locations will represent the portions of the aquifer beneath the Site where impacts are most likely to be observed. The selection of monitoring locations and well installation will be detailed in a Groundwater Monitoring Well Installation Work Plan.

The groundwater was not sampled for PCBs during the RI. PCBs will also be tested during groundwater performance monitoring. If the results indicate that PCB concentrations are below the relevant groundwater screening level (0.0943 μ g/L, the PQL from the RI and a surrogate for the surface water Human Health, Consumption of Water + Organism ARAR; GSI, 2024a), PCBs will be removed from the monitoring program.

4.3.3 Confirmation Monitoring

Confirmation monitoring ensures that the remedy continues to be effective after CULs are initially met. Confirmation monitoring and 5-year reviews are required to confirm the performance of the remedy Site wide, including the Landfill Area and Wetland Area. A Confirmation Monitoring Plan will be developed as part of the OMMP. Confirmation monitoring will consist of the following monitoring events for all media (Wetland Area soil, and Site groundwater and surface water):

- Quarterly monitoring for the first year following completion of the cleanup action.
- Semi-annual monitoring for the second and third years following the completion of the cleanup action.
- Annual monitoring for the fourth and fifth years following completion of the cleanup action and annually thereafter until concentrations for all COCs and all media are below CULs.

Five-year periodic reviews will be required pursuant to WAC 173-340-420. For each monitoring event, data for all sampled media and chemical concentration trends will be evaluated to determine if the remedy is functioning as intended. The specific confirmation monitoring tasks involved with evaluating each Site area and media are described in the following sections.

4.3.3.1 Soil Confirmation Monitoring

Soil confirmation monitoring will be conducted as follows in the Landfill Area and Wetland Area:

- Landfill Area. No soil confirmation monitoring in the Landfill Area is proposed because the cleanup action is intended to remove all waste and soil above CULs and only place backfill materials that also meet CULs. Visual monitoring will be conducted to ensure that restoration plantings are establishing on the slope. Routine observations will be made to inspect for erosion and the health of the vegetative cover providing erosion control.
- Wetland Area. Soil confirmation monitoring in the Wetland Area will include soil sampling for TPH-GRO and TPH-DRO/ORO to track the progress of natural attenuation. TPH-GRO and TPH-DRO/ORO concentrations in Wetland Area soil are expected to decline via natural processes following removal of landfill wastes and contaminated soils (Kao and Prosser, 2001; Kampbell et al., 2001; Boopathy, 2004; Eriksson et al., 1998; Ledezma-Villanueva et al., 2016). Sampling will be conducted in the top foot of soil using a methodology consistent with WAC 173-340-740(7) throughout the monitoring area (Figure 2-3). The monitoring area will be broken into two DUs. The first DU will be adjacent to the toe of the landfill (roughly represented by the area between transects HA-01 and HA-02) and the next DU will be further from the landfill (roughly represented by the area between transects HA-03 and HA-04). Sampling will be conducted to obtain average concentrations of TPH-GRO and TPH-DRO/ORO in each DU. The first confirmation monitoring event will set a baseline for the evaluation of natural attenuation processes in the Wetland Area over time. Future monitoring in the Wetland Area may be waived if TPH-GRO and TPH-DRO/ORO concentrations attenuate below CULs.

4.3.3.2 Surface Water Confirmation Monitoring

Surface water confirmation monitoring will be conducted to ensure that Wetland Area soil impacts and seepage from the former landfill are not migrating to surface waters and do not contain COC concentrations above CULs. Dissolved hexavalent chromium and zinc will be sampled at the Site surface water POC and the hexavalent chromium will only be monitored at the Landfill Area surface water POCs (Figure 2-3). Note that monitoring for hexavalent chromium may cease if concentration trends are stable or decreasing because hexavalent chromium impacts are likely from an upgradient source and are not thought to be related to the Site.

4.3.3.3 Groundwater Confirmation Monitoring

Groundwater confirmation monitoring will be conducted to ensure no residual impacts to the groundwater aquifer are occurring from the contamination that originated from the landfill wastes. To assess for residual impacts, Site groundwater will be sampled at the POC for total hexavalent chromium and total zinc. Note that monitoring for hexavalent chromium may cease if concentration trends are stable or decreasing because hexavalent chromium impacts are likely from an upgradient source and are not thought to be related to the Site.

4.3.4 Adaptive Management

Part of the selected cleanup action includes leaving soil in the Wetland Area with iron, zinc, and TPH above the soil-to-groundwater and groundwater-to-surface water SLs because the data do not indicate that this soil will cause wetland area groundwater or surface water CUL exceedances for any of these COCs. TPH-GRO and TPH-DRO/ORO were also above soil human contact and ecological SLs but were not observed in Site groundwater at concentrations above SLs. After the cleanup action has been implemented, adaptive management techniques will be applied in the Wetland Area if it is determined that COCs in groundwater, surface water, and Wetland Area soil will not recover below CULs within the 10-year restoration timeframe. The Wetland Area soil restoration timeframe is based on the MNA of TPH-GRO and TPH-DRO/ORO. The Site groundwater and surface water impacts, except for hexavalent chromium, are thought to be the result of landfill wastes and will likely decline following their removal as part of the cleanup action. The progress of chemical concentration decline in the different Site media will be evaluated through trend analysis performed on data collected as part of the confirmation monitoring program. This confirmation monitoring program will be implemented for all media (groundwater, surface water, and Wetland Area soil). Site data will be reviewed quarterly for the first year, semi-annually for the second and third years, and annually for the fourth year following completion of the cleanup action, and annually thereafter until concentrations for all COCs and all media are below CULs. During 5-year reviews, evaluations of the cleanup actions condition will also be made consistent with WAC 173-340-420.

If recovery is not occurring, or if trends indicate that CULs for specific COCs and media may not be met within the 10-year restoration timeframe, media-specific contingency actions may be taken to address the identified exceedances and prevent remedy failure. If COCs in a specific media are found to not be recovering at rates that will allow for the attainment of CULs within the anticipated restoration timeframe, as assessed by the confirmation monitoring program, the following adaptive management process will be implemented by the PLPs:

- Identify the locations, medias, and COCs that are not projected to recover to concentrations below their
 respective CULs within the anticipated restoration timeframe based on results from the confirmation
 monitoring program. Review of the confirmation monitoring program results will commence after the first
 year of monitoring activities (four quarterly events) is completed to allow for trend analysis.
- Evaluate the CUL exceedances in the context of the Site's CSM and the completed cleanup action.
- Identify if contingency action alternatives are warranted based on the results of the confirmation monitoring program and through discussion with Ecology.
- Develop and evaluate contingency action alternatives.
- Determine if a contingency action is needed to support the cleanup action or if the restoration timeframe for MNA should be extended based on an alternatives analysis pursuant to MTCA.
- Implement the contingency action approved by Ecology and monitor its performance.

The types of contingency actions proposed may include capping, spot removal of soils, the addition of amendments, additional time for MNA, or other remedial technologies. Full documentation, reporting, and any other necessary steps, including communication of any adaptive management needs with Ecology, will be conducted pursuant to MTCA.

4.4 Vegetation, Restoration, and Mitigation

After the cleanup action is complete and the removal areas are graded to final elevations with clean soil, the disturbed areas will be planted with native vegetation per a Restoration Plan. A mix of native trees, shrubs, and herbaceous vegetation will be planted and maintained per a Vegetation and Monitoring Plan, which will

be developed in coordination with Ecology. A separate detailed restoration plan will be prepared in coordination with the USACE pursuant to permit requirements. The need for mitigation of wetland impacts is uncertain at this time. These needs will be identified in consultation with the USACE after a design for the cleanup action has been developed. Typically, mitigation is only needed for permanent impacts to wetlands or their associated buffer. The cleanup action is expected to only temporarily disturb the delineated wetlands during removal of wastes and impacted soil then restore them to their previous condition or better.

4.5 Applicable Local, State, and Federal Laws

Identifying applicable local, state, and federal laws is a requirement of cleanup actions conducted under MTCA per WAC 173-340-710. State and federal laws that are applicable are discussed in the WAC 173-340-710(1) through (8). The exemptions to local and state laws that can be provided under MTCA are detailed in WAC 173-340-710(9). Table 5-1 details the applicable federal, state, and local laws, and the potential for their exemption under MTCA.

4.5.1 Applicable or Relevant and Appropriate Requirements

Applicable requirements are defined in WAC 173-340-710(3). These requirements are legally applicable to the cleanup action and must be considered during the cleanup action (Table 5-1).

Relevant and appropriate requirements for a given cleanup action are evaluated by Ecology using the criteria established in WAC 173-340-710(4). The objective of this evaluation is to identify requirements that, while not legally applicable to the cleanup action, may address similar problems or issues that are relevant and appropriate to use.

During the design and implementation of the cleanup action, additional ARARs may be identified. When identified, these ARARs will be reviewed against the current cleanup action to determine compliance. If the newly identified requirements indicate that the cleanup action is no longer protective of human health and the environment, the need for modification will be evaluated by Ecology.

4.5.2 Permits and Exemptions

Certain permits and procedural requirements may be exempted for cleanup actions performed under a Consent Decree, Order, or Agreed Order per RCW 70A.305.090. Despite their exemption, the substantive requirements of these permits and procedures still need to be met by the cleanup action. This exemption shall not apply if Ecology determines that the exemption would result in the loss of a federal agency's approval necessary for the state to administer any federal law.

The PLPs, directed by Ecology, will consult with the state agencies and local governments to identify potential permits and to obtain written documentation from the consulted agencies regarding the substantive requirements for permits exempted under RCW 70.105D.090. The identification of the permits and procedural requirements subject to exemption, and their substantive requirements as they relate to the planned cleanup action, will be identified by Ecology when implementing the cleanup action for the Site. Ecology will issue a public notice of any permit exemption, proposed to be applied to the cleanup action.

4.6 Cultural Resources

As the cleanup action is being partially funded by an Ecology grant, it must comply with Executive Order 21-02, which mandates that Ecology must consult with the Washington Department of Archaeology and Historic Preservation (DAHP) and avoid or mitigate adverse effects to archaeological sites (State of Washington, 2021). Thus, a preliminary cultural resources assessment was completed in June 2021. The assessment determined that there was a high probability for pre-contact archaeological resources on the top of the terrace and from the toe of the terrace to the river, but there was a low probability of encountering precontact resources on the face of the bluff (AINW, 2021). Previous cultural resource studies at the Site have revealed 30 archaeological resources within the area, including lithic artifacts, 10 historical homesteads, a historical cistern, a historical school/mission house, and historical logging roads (AINW, 2021). One archaeological resource was mapped within the area of potential effects of the Site (AINW, 2021).

During the removal action, groundbreaking will occur in the Landfill Area (the slope) and waste will be removed from the Wetland Area. As documented in the cultural resources assessment, there is a low probability of encountering cultural resources on the slope, where removal will take place; however, there is a higher chance of encountering resources in the Wetland Area, where waste will be removed, but soil will not be removed. Planned work in both remediation areas of the Site indicates a potential to encounter cultural resources during soil and waste removal.

Therefore, prior to construction, the current Inadvertent Discovery Plan (IDP) will be updated to account for construction activities, consistent with WAC 173-340-815 (Ecology, 2020). A cultural resource firm will develop updates to the IDP in consultation with local Tribes and other stakeholders. GSI staff overseeing construction will be familiar with the IDP and will be trained in identification of cultural resources and in the necessary actions required upon discovery of cultural resources. If cultural resources are discovered, work will be stopped until an appropriate discovery boundary can be determined. In addition, a trained archaeologist will be on site for the duration of the removal action to identify any cultural artifacts that may be found.

4.7 Public Participation

Ecology considers public concerns during the cleanup process. Ecology has developed a Site-specific Public Participation Plan (Ecology, 2021), which was reviewed during a public comment period in 2021. The plan describes the process Ecology uses to inform the community about cleanup at the site and to provide notice and opportunity for public review during comment periods.

In accordance with the plan, the Consent Decree implementing the dCAP, the draft RI/FS (GSI, 2024a), and a State Environmental Policy Act (SEPA) checklist will be made available to the public for review and comment for 30 days, and public input will be considered before the dCAP is finalized. This opportunity for public review is intended to elicit the participation of community groups, local governments, Tribes, federal and state agencies, and any other persons or organizations with an interest in the Site. In addition, a public meeting, if requested by 10 or more people, will be held to discuss the selection of the cleanup remedy. After review and consideration of comments received during the public comment period, Ecology will issue a final CAP in accordance with WAC 173-340-380(3). If extensive comments were received, it may be more appropriate to provide a summary of the key issues raised in the dCAP, and a more detailed responsiveness summary prepared and published concurrent with the final dCAP.

4.8 Tribal Engagement

In accordance with the requirement of WAC173-340-620, Ecology will develop a site-specific Tribal Engagement Plan, with the objective of maintaining meaningful engagement with potentially affected Indian Tribes throughout the cleanup process. Ecology worked closely with the Nisqually Indian Tribe, continues to identify and address Tribal interests in advance of finalizing this dCAP, and will continue to do so during its implementation.

4.9 Schedule for Implementation

Public review of the dCAP and the RI/FS may extend until October 2024. Following public comment, the RI/FS and dCAP will be finalized, and remedial engineering design will begin. The draft Engineering Design Report plan is expected to be submitted to Ecology on or before January 2025. The first construction season may begin in May 2025 and end in October 2025. If construction is finished in one season, then the construction completion report and post-cleanup monitoring and reporting will begin and will be finalized in January 2025 and March of 2026, respectively. If a second construction season is required, it will take place between June and October 2026. The construction completion report and baseline long-term monitoring and reporting will occur after the second construction season, if it is required.

Vegetation restoration in the Landfill Area soil will begin immediately following the cleanup action and be monitored until the plants are established. TPH-GRO in Wetland Area soil, which presents the only direct contact risk to human health, will be contained using ICs. TPH-GRO and TPH-DRO/ORO concentrations are expected to diminish to below the applicable direct contact (TPH-GRO) and ecological soil biota (TPH-DRO/ORO) risk levels via natural attenuation within a restoration timeframe of 10 years or less. Site-related contaminants in groundwater and surface water will begin to attenuate after Landfill Area and Wetland Area sources are removed and are expected to recover with a restoration timeframe of 10 years.

5 References

- AINW. 2021. Former Eatonville Landfill, Pierce County, Washington, Preliminary Cultural Resources Assessment. Memorandum from Teresa Trost to Josh Bale. June 14, 2021.
- Bellon, M., and M. Gavin. 2020. Sources of PBDEs and Other Contaminants Affecting Nisqually Steelhead. Cascadia Law Group on Behalf of Nisqually Tribe. July 6, 2020.
- Bhat, S.A., O. Bashir, S.A. U.I. Haq, T. Amin, A. Rafiq, M. Ali, J.H.P. Americo-Pinheiro, and F. Sher. 2022.
 "Phytoremediation of Heavy Metals in Soil and Water: An Eco-Friendly, Sustainable and Multidisciplinary Approach." *Chemosphere*, Volume 303, Part 1, September, 134788. Available at https://doi.org/10.1016/j.chemosphere.2022.134788.
- Boopathy, R. 2004. "Anaerobic Biodegradation of No. 2 Diesel Fuel in Soil: a Soil Column Study." Bioresource Technology, 94(2), pp. 143-151.
- Confluence. 2024. Former Eatonville Landfill Wetland Delineation Addendum, Updated. Prepared by Confluence Environmental Company. January 9, 2024.
- Ecology. 1994. Natural Background Soil Metals Concentrations in Washington State. Washington State Department of Ecology. October 1994.
- Ecology. 2020. Inadvertent Discovery Plan Plan and Resources for the Discovery of Cultural Resources and Human Skeletal Remains. Former Eatonville Landfill, Parcel #0416201007. December 2020.
- Ecology. 2021. Agreed Order No. DE 20072 between Weyerhaeuser Company, the Town of Eatonville, and State of Washington, Department of Ecology. Prepared by the Washington State Department of Ecology. Signed August 23, 2021.
- Ecology. 2022. Natural Background Groundwater Arsenic Concentrations in Washington State. Study Results. Ecology Publication No. 14-09-044. January 2022.
- Ecology. 2023. Cleanup Levels and Risk Calculation (CLARC). Prepared by the Washington State Department of Ecology. Updated January 2023.
- Ecology. 2024. Implementation Memorandum No. 25: Identifying Likely Vulnerable Populations and Overburdened Communities under the Cleanup Regulations. Prepared by Kristopher Grinnell of the Washington State Department of Ecology. Publication number 24-09-044. Available at <u>https://apps.ecology.wa.gov/publications/SummaryPages/2409044.html. January 2024</u>.
- EPA. 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. OSWER Directive 9200.4-17P. April.
- EPA. 2016. Climate Resilience Evaluation and Awareness Tool (CREAT) Climate Scenarios Projection Map. Latest Update: Current version: 3.0; July 2016. Available at <u>https://epa.maps.arcgis.com/apps/MapSeries/index.html?appid=3805293158d54846a29f750d6</u> <u>3c6890e&platform#map</u>.
- EPA. 2023. EJScreen: Environmental Justice Screening and Mapping Tool. Last updated on November 14, 2023. Available at https://www.epa.gov/ejscreen.
- Eriksson, M., A. Swartling, G. Dalhammar, J. Fäldt, and A.K. Borg-Karlson. 1998. "Biological Degradation of Diesel Fuel in Water and Soil Monitored with Solid-Phase Micro-Extraction and GC-MS." *Applied Microbiology and Biotechnology* 50, pp. 129-134.

- Fields, N. 2010. Nisqually State Park Management Plan. Available at <u>https://parks.state.wa.us/DocumentCenter/View/1521/Nisqually-Management-Plan-PDF</u>.
- GSI. 2024a. Remedial Investigation/Feasibility Study, Former Eatonville Landfill. Prepared by GSI Water Solutions, Inc. February 2024.
- GSI. 2024b. Former Eatonville Landfill Waste Characterization Results Technical Memorandum. Sent to Washington State Department of Ecology and Tacoma-Pierce County Health Department. Prepared by GSI Water Solutions, Inc. January 11, 2024.
- Hruby, T. 2014. Washington State Wetland Rating System for Western Washington, 2014 Update. Washington State Department of Ecology, Olympia. Publication # 14-06-029.
- ITRC. 2018. TPH Risk Evaluation at Petroleum-Contaminated Sites. TPHRisk-1. Washington, D.C.: Interstate Technology & Regulatory Council, TPH Risk Evaluation Team. Available online at <u>https://tphrisk-1.itrcweb.org</u>.
- Kampbell, D., J. Hansen, B. Henry, J. Hicks. 2001. Natural Attenuation of Fuel Hydrocarbons at Multiple Air Force Base Demonstration Sites. Presentation at First International Congress on Petroleum Contaminated Soils, Sediments, & Water, London, UK. August 2001.
- Kao, C. and J. Prosser. 2001. "Evaluation of Natural Attenuation Rate at a Gasoline Spill Site." *Journal of Hazardous Materials* 82(3):275-90. May 2001.
- Ledezma-Villanueva, A., J.M. Adame-Rodríguez, I.A. O'Connor-Sánchez, J.F. Villarreal-Chiu, and E.T. Aréchiga-Carvajal. 2016. "Biodegradation Kinetic Rates of Diesel-Contaminated Sandy Soil Samples by Two Different Microbial Consortia." *Annals of Microbiology* 66, pp. 197-206.
- Nisqually Indian Tribe. 2021. Heritage, Culture, Land, and History. Available at <u>http://www.nisqually-nsn.gov/index.php/heritage/</u>.
- O'Neill, S., A. Carey, and W. Hobbs. 2020. Persistent Organic Pollutant Sources and Pathways to Juvenile Steelhead Trout in the Nisqually River. Washington Department of Fish and Wildlife. April 2020.
- Pacific Northwest National Laboratory. 2001. Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA) – Programmatic, Technical, and Regulatory Issues. Prepared for the U.S. Department of Energy by K.M Krupka and W.J. Martin. July.
- Parametrix. 1996. Site Investigation and Preliminary Economic Analysis for Corrective Action Alternatives. November 1996.
- PES. 2013. Preliminary Alternative Landfill Cover Rehabilitation Evaluation, Eatonville Landfill. Prepared by PES Environmental, Inc. April 23, 2013.
- PHS. 2022. Wetland Delineation for the Eatonville Landfill Property, Pierce County, Washington. Pacific Habitat Services. March 9, 2022.
- State of Washington. 2021. Executive Order 21-02, Archaeological and Cultural Resources. April 7, 2021.
- Tacoma-Pierce County Health Department. 2010. Closed Landfill Report. December 2010.
- Town of Eatonville and Weyerhaeuser. 2020. *Inadvertent Discovery Plan: Plan and Procedures for the Discovery of Cultural Resources and Human Skeletal Remains*. Former Eatonville Landfill, ECY 070-560. December 2020.

- Trost, T. 2021. Former Eatonville Landfill, Pierce County, Washington: Preliminary Cultural Resources Assessment. Archaeological Investigations Northwest, Inc. Prepared for GSI Water Solutions, Inc. June 14, 2021.
- U.S. Federal Government. 2023. U.S. Climate Resilience Toolkit Climate Explorer. Available at https://crt-climate-explorer.nemac.org.
- USACE. 1987. Corps of Engineers, Wetlands Delineation Manual. Final Report. Wetlands Research Program Technical Report Y-87-1. U.S. Army Corps of Engineers, Waterways Experiment Station. January 1987.
- USACE. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0). ERDC/EL TR-10-3. Wetlands Regulatory Assistance Program. U.S. Army Corps of Engineers, Engineer Research and Development Center, May 2010.
- Washington State Department of Health. 2022. Washington Environmental Health Disparities Map. Available at <u>https://doh.wa.gov/data-and-statistical-reports/washington-tracking-network-wtn/washington-</u> <u>environmental-health-disparities-map</u>.
- Weyerhaeuser. 2014. Letter from Sara Kendall, Vice-President, Corporate Affairs & Sustainability at Weyerhaeuser Company, to Mike Schaub, Mayor of the Town of Eatonville. RE: Town of Eatonville Dump; SE1/4 of NE1/4 of Section 20, Township 16 North, Range 4 East of W.M. in Pierce County, Washington. March 25, 2014.
- Weyerhaeuser. 2020. Letter RE: Former Eatonville Landfill Response to Ecology. Prepared by Carol Wiseman, Remediation Manager, Weyerhaeuser Company. October 13, 2020.
- Wisconsin Department of Natural Resources. 2004. Naturally Occurring Biodegradation as a Remedial Action Option for Soil Contamination. Wisconsin Department of Natural Resources Bureau for Remediation and Redevelopment. Interim Guidance (Revised) PUBL-SW-515-95, September.
- Yan, A., Y. Wang, S. Tan, M. Yusof, S. Ghosh, and Z. Chen. 2020. "Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land." *Frontiers in Plant Science*. April 2020.

Tables

Contor	inant of Concern	S	oil	Groundwater	Surface Water	
Contam	inant of Concern	Landfill Area	Wetland Area	Groundwater	Surface water	
	Arsenic X —		—	—		
	Cadmium	Х	—	-	—	
	Chromium	Х	—	-	—	
Matala	Copper	Х	—	—	—	
Metals	Hexavalent Chromium	-	—	X1	X ¹	
	Lead	Х	—	—	—	
	Nickel	Х	—	_	—	
	Zinc	Х	X ²	Х	X	
SVOCs	PCP	Х	—	—	—	
3V0CS	Total cPAHs	Х	_	_	—	
TPH	GRO	Х	Х	_	—	
iPh	DRO/ORO	Х	X	—	—	

Table 2-1. Contaminants of Concern for Soil, Groundwater, and Surface Water

Notes

¹ Hexavalent chromium is not thought to be the result of Site impacts and restoration may take longer.

² Zinc will only be evaluated in Wetland Area soil if surface water and groundwater zinc concentrations are not recovering.

— = not applicable

cPAH = carcinogenic polycyclic aromatic hydrocarbon

DRO/ORO = Diesel-Range and Residual-Range Organics

GRO = gasoline-range organics

PCP = pentachlorophenol

SVOC = semivolatile organic compound

TPH = total petroleum hydrocarbon

Table 2-2. Cleanup Levels for Soil, Groundwater, and Surface Water

			Landfill Area Soil		Wetland Area Soil	Soil Ground			Surface Water
	Contaminant	CUL (mg/kg)	Basis	CUL (mg/kg)	Basis	CUL (µg/L)	Basis	CUL (µg/L)	Basis
	Arsenic	7	MTCA Method B Direct Contact, Cancer; and Statewide 90th Percentile Natural Background	_	Not a COC	_	Not a COC	_	Not a COC
	Cadmium	4	Soil Ecological Indicator - Plants	_	Not a COC	-	Not a COC	_	Not a COC
	Chromium	42	Soil Ecological Indicator - Plants and Soil Biota, and Statewide 90th Percentile Natural Background	_	Not a COC	_	Not a COC	_	Not a COC
	Copper	50	Soil Ecological Indicator - Soil Biota	_	Not a COC	_	Not a COC	-	Not a COC
Metals	Hexavalent Chromium ¹	_	_	_	-	0.046	MTCA Method B Cancer	0.13	MTCA Method B Cancer
2	Lead	50	Soil Ecological Indicator, Plants	_	Not a COC	-	Not a COC	_	Not a COC
	Nickel	38	Soil Ecological Indicator - Plants, and Statewide 90th Percentile Natural Background	_	Not a COC	_	Not a COC	_	Not a COC
	Zinc ²	86	MTCA Method B Protective of Groundwater to Surface Water, Saturated; Soil Ecological Indicator - Plants, and Statewide 90th Percentile Natural Background	5,480	TEE pCUL	100	WAC Criteria for Aquatic Life - Freshwater Chronic	100	WAC Criteria for Aquatic Life - Freshwater Chronic
SVOCs	Pentachlorophenol (PCP)	2.5	MTCA Method B Direct Contact, Cancer	_	Not a COC	_	Not a COC	_	Not a COC
SVC	Total cPAHs	0.19	MTCA Method B Direct Contact, Cancer	_	Not a COC	_	– Not a COC		Not a COC
	Gasoline Range Organics (TPH- GRO)	30	MTCA Method A Unrestricted Land Use	30	MTCA Method A Unrestricted Land Use	_	Not a COC	_	Not a COC
ТРН	Diesel/Oil Range Organics (TPH- DRO/ORO)	200	Soil Ecological Indicator - Soil Biota	200	Soil Ecological Indicator - Soil Biota	_	Not a COC	Ι	Not a COC

Notes

¹ The Landfill Area surface water points of compliance are specific to hexavalent chromium and their associated institutional controls.

VOC = volatile organic compound

WAC = Washington Administrative Code

² Zinc will only be evaluated in Wetland Area soil if surface water and groundwater zinc concentrations are not recovering.

- = not available or not applicableMTCA = Model Toxics Control Actµg/L = micrograms per literNA = screening level is not applicableCOC = contaminant of concernPCB = Polychlorinated biphenylCUL = cleanup levelSVOC = semivolatile organic compoundCWA = Clean Water ActTEE = Terrestrial Ecological EvaluationDRO/ORO = diesel and oil range organicsTPH = total petroleum hydrocarbon

GRO = gasoline range organics

mg/kg = milligrams per kilogram

М	latrix	Contaminant of Concern	Remedial Action	Restoration Timeframe
Soil	Landfill Area	Arsenic Cadmium Chromium Copper Lead Nickel Zinc PCP PAHs PCBs TPH	Landfill soil/waste removal	Immediately after waste and impacted soil removal
	Wetland Area	TPH-GRO and TPH- DRO/ORO	Wetland area waste removal, landfill soil/waste removal, and natural attenuation	10 years
		Zinc ¹	Wetland area waste removal, landfill soil/waste removal, and natural attenuation	10 years
Groundwater		Hexavalent Chromium ² Zinc	Wetland area waste removal and landfill soil/waste removal	10 years
Surface Water		Hexavalent Chromium ² Zinc	Wetland area waste removal and landfill soil/waste removal	10 years

Table 3-1. Restoration Timeframes for Each Media

Notes

¹ Zinc will only be evaluated in Wetland Area soil if surface water and groundwater zinc concentrations are not recovering.

 2 Hexavalent chromium is not thought to be the result of Site impacts and restoration may take longer.

PAH = polycyclic aromatic hydrocarbon

PCB = polychlorinated biphenyl

PCP - pentachlorophenol

TPH-GRO = total petroleum hydrocarbons gasoline range organics

TPH-DRO/ORO = total petroleum hydrocarbons diesel range organics and oil range organics

Table 5-1. Applicable Federal, State, and Local Laws

	Requirement	Citation	
	Federal Water Pollution Control Act (Clean Water Act)	33 USC 1251 et seq.	Regulates the discharge of contaminants into waters of the
	NPDES Program	40 CFR 122	Limits the discharge of contaminants into surface waters o
	Water Quality Standards	40 CFR 131	Provides guidance for states to establish criteria for discha
	Clean Water Act Section 404	33 USC 1344	Regulates the discharge of dredged and fill material into wa
	Safe Drinking Water Act	42 USC 300f et seq.	Defines MCLs for drinking water.
	National Primary and Secondary Drinking Water Regulations	40 CFR 141, 143	Establishes contaminant levels in drinking water (primary N
	National Historic Preservation Act Section 106	16 USC 470 et seq.	Federal legislation for the preservation of historic and arch
	NEPA	42 USC 4321 et seq.	Requires all branches of government to give consideration
	Wetland Protection Policy/The NEPA Rule	EPA Executive Order 11990	Requires federal agencies to take action to avoid adversely
	Clean Water Act Section 404	33 USC 1344	Regulates permitting requirements for construction project
	Resource Conservation and Recovery Act	42 USC 6901 et seq.	Framework for proper management of hazardous and non-
	Identification and Listing of Hazardous Waste; Standards Applicable to Generators of Hazardous Waste; Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities; Land Disposal Restrictions	40 CFR 261, 262, 264, 268	Solid waste designations and disposal facilities standards.
	Standards Applicable to Transporters of Hazardous Waste	40 CFR 263	Solid waste transportation requirements.
ra	Transportation: Hazardous Materials Regulations	49 CFR Subchapter C	Solid waste transportation requirements.
Federal	General Information, Regulations, and Definitions; Hazardous Materials Table, Special Provisions, Hazardous Materials Communications, Emergency Response Information, Training Requirements, and Security Plans; Shippers - General Requirements for Shipments and Packaging	49 CFR 171, 172, 173, 177	General Information, Regulations, and Definitions; Hazardo Response Information, Training Requirements, and Securit
	Federal Endangered Species Act	16 USC 1531 et seq.	List of threatened and endangered species and requirement
	Interagency Cooperation - Endangered Species Act of 1973, as Amended	50 CFR 402	Interagency cooperation to avoid take of listed species and states.
	Federal Water Pollution Control Act (Clean Water Act)	33 USC 1251 et seq.	Establishes the basic structure for regulating discharges of surface waters.
	NPDES	40 CFR 122	Permit program that addresses water pollution by regulatin
	Water Quality Standards	40 CFR 131	Provisions of state, territorial, authorized tribal or federal la which that condition will be protected or achieved.
	Section 404(b)(1) Guidelines for Specification of Disposal Sites for Dredged or Fill Material	40 CFR 230	Restore and maintain the chemical, physical, and biologica material.
	Federal Clean Air Act	42 USC 7401 et seq.	Defines EPA's responsibilities for protecting and improving
	National Primary and Secondary Ambient Air Quality Standards; Standards of Performance for New Stationary Sources; National Emission Standards for Hazardous Air Pollutants; National Emission Standards for Hazardous Air Pollutants for Source Categories	40 CFR 50, 60, 61, 63	Air pollutant standards.

Comments

the United States, including wetlands.

s of the United States.

harge of contaminants into state waters.

waters of the United States, including wetlands.

y MCLs are enforceable, secondary MCLs are recommended).

chaeological sites.

on to the environment prior to undertaking any federal action that affects the environment.

ely impacted wetlands wherever possible.

ects in wetlands that result in changes in the area's bottom elevation.

on-hazardous solid waste.

rdous Materials Table, Special Provisions, Hazardous Materials Communications, Emergency urity Plans; Shippers

nents for preparing and implementing plans for their recovery.

nd for issuing permits for otherwise prohibited activities; provides for cooperation with

of pollutants into the waters of the United States and regulating quality standards for

ting point source pollution discharging to waters of the United States. I law approved by EPA that describe the desired condition of a water body and the means by

ical integrity of waters of the United States through the control of discharges of dredged or fill

ng the nation's air quality and the stratospheric ozone layer.

Table 5-1. Applicable Federal, State, and Local Laws

	Requirement	Citation	
	Washington Hazardous Waste Cleanup - MTCA	RCW 70A.305, WAC 173-340	Outlines methodology for establishing and implementing cl
	Washington State Water Pollution Control Act	RCW 90.48	Aims to reduce discharge of pollutants to surface waters of
	Water Quality Standards for Surface Waters of the State of Washington	WAC 173-201A	Establishes water quality standards for contaminants of co
-	Water Quality Standards for Groundwaters of the State of Washington	WAC 173-200	Establishes water quality standards for contaminants of co
	Washington State Department of Health - Group A Public Water Supplies	WAC 246-290	Defines basic regulatory requirements and protects the he
	Maximum contaminant levels (MCLs) and Secondary MCLs (SMCLs)	WAC 246-290-310	Defines contaminant levels in drinking water (primary MCL
_	Washington NPDES Permit Program	WAC 173-220	Limits the discharge of contaminants into surface waters of
	Washington Sediment Management Standards	WAC 173-204	Aims to reduce and ultimately eliminate adverse effects on contamination.
	Washington MTCA	RCW 70.105D, RCW 70A.305, WAC 173-340	MTCA funds and directs the investigation, cleanup, and pre
	Washington Department of Ecology 401 Water Quality Certification	RCW 90.48	For federally regulated wetlands, a Section 401 Water Qua of or discharge to wetlands.
	Washington Solid Waste Handling Standards	WAC 173-350	County governments and local health departments develop Management program supports local governments with te
	Washington Criteria for Municipal Solid Waste Landfills	WAC 173-351	Establishes minimum statewide standards for all municipa
	Washington Hazardous Waste Management	RCW 70.105, RCW 70A.300	Establishes statewide framework for the planning, regulati pollution and conserve the natural, economic, and energy
	Land Disposal Restrictions	WAC 173-303-140	Encourages the best management practices for dangerous
	Treatment, Storage, or Disposal of Dangerous Waste	WAC 173-303-141	Encourages the best management practices for dangerous
	State Patrol - Transportation of Hazardous Materials	WAC 446-50	Regulates the safe transportation of hazardous materials,
Q	Washington State Environmental Policy Act (SEPA)	RCW 43.21C,	Requires evaluation of environmental impacts, alternatives
State		Chapter 197-11 WAC	43.21C.031).
07	Watershed Restoration Project Regulations	RCW 89.08.450-510	Required permitting for projects involving watershed restor
	State Water Pollution Control Act, NPDES Regulations	RCW 90.48, Chapter 173-220 WAC	Criteria for discharge of pollutants and other wastes into st
	Washington Department of Fish and Wildlife Hydraulic Project Approval	RCW 77.55	Applies to projects near state waters that will use, divert, o
	State Water Code and Water Rights	RCW 90.03, 90.04	Promotes the use of the public waters in a fashion which p state's public waters and the retention of waters within stre and rights.
	Protection of Withdrawal Facilities Associated with Groundwater Rights; Water Rights; Protection of Upper Aquifer Zones	WAC 173-150, 152, 154	Establishes and sets forth the policies, framework, and progroundwater as it pertains to the water withdrawal facilities
	Solid Waste Standards - Reduction and Recycling	RCW 70.95.215	Provides framework for separation, recycling, and reductio
	Deputies of Department - State Solid Waste Management Plan - Assistance - Coordination - Tire Recycling	RCW 70.95.260	Requirements for tire recycling.
	Landfilling Standards	WAC 173-304-460	Landfill performance standards including prevention of gro
	Washington State Forest Practices Rules	Title 222 WAC	Requirements for timber harvesting, pre-commercial thinni applications under the Forest Practices Act (chapter 76.09
	Forest Practices Act	RCW 76.09	The Forest Practices Act rules are designed to protect publ industry.
	Washington State Parks and Recreation Commission Real Property Agreement		The Real Property Agreement serves to provide access right
	Minimum Standards for Construction and Maintenance of Wells	WAC 173-160	Any monitoring wells installed, modified, or removed during
	Regulation and Licensing of Well Contractors and Operators	WAC 173-162	Drilling subcontractors will be licensed in accordance with
	Washington State Executive Order 05-05	GEO 05-05	Requires archeological and cultural resource review by Depundergoing Federal Section 106 review.

Comments

cleanup levels for surface water, groundwater, soil, and sediments.

of the state.

concern in surface waters of the state.

concern in groundwaters of the state.

health of consumers using public drinking water supplies.

ICLs are enforceable, secondary MCLs are recommended).

s of the United States.

on biological resources and significant threats to human health from surface sediment

prevention of sites that are contaminated by hazardous substances.

uality certification under the federal Clean Water Act may be required for the Project for filling

elop solid waste regulations and management plans, while the State's Solid Waste n technical assistance and guidance.

ipal solid waste landfills.

ation, control, and management of hazardous waste which will prevent land, air, and water gy resources of the state.

ous wastes.

ous wastes.

ls, hazardous waste, and radioactive waste materials upon the public highways

ves, and mitigation measures (i.e. Environmental Impact Statement as outlined in RCW

toration.

state surface waters.

obstruct, or change the natural flow or bed.

h provides for obtaining maximum net benefits arising from both diversionary uses of the streams and lakes in sufficient quantity and quality to protect instream and natural values

procedures of the Department of Ecology in regard to the protection of the availability of ties of holders of groundwater rights.

tion of waste delivered to a solid waste facility.

groundwater contaminations and requirements for allowable landfill gas concentrations.

nning, road construction, fertilization, forest chemical application and other forest practices .09 RCW) and Stewardship of Non-industrial Forests and Woodlands (chapter 76.13 RCW).

ublic resources such as water quality and fish habitat while maintaining a viable timber

ights to Washington State Parks and Recreation Commission owned lands.

ing the remedial action will comply with these standards.

th these regulations.

Department of Archaeology and Historic Preservation for capital construction projects not

Table 5-1. Applicable Federal, State, and Local Laws

	Requirement	Citation	
	Pierce County Code: Wetlands	Title 18E.30	County code designed to avoid impacts to wetlands due to
	Pierce County Code: Regulated Fish and Wildlife Species and Habitat Conservation Areas	Title 18E.40	Identifies regulated fish and wildlife species, habitat, and r
	Pierce County Code: Grading	Title 17A.30	Outlines slope grading, excavation, and fill requirements.
	Excavation Standards; Fill Standards; Soil Engineering Stability	Section 010, 020, 030	Grading and filling completed at the site will be regulated t
Local	Pierce County Code: Forest Practices	Title 18H	Establishes the minimum standards and requirements ass with Chapter 76.09 RCW.
Ľ	Class IV - General Forest Practices Permit	Section 10, 040	This Title is directly related to specific subsections in Chapt
	Pierce County Code: Development Regulations – Critical Areas	Title 18E	Protects critical areas of Pierce County from the impacts of
	Land Use Permit with Wetland and Fish and Wildlife Reviews	Section 10, 070	Required when there are critical areas on the property.
	Pierce County Code: Shoreline Management	Title 18S	Provides a comprehensive review of development on shore 18S.
	Shoreline Substantial Development Permit (SD)	Section 10, 065	Required for shoreline development.

Notes

CFR = Code of Federal Regulations

EPA = U.S. Environmental Protection Agency

MCL = maximum contaminant level

MTCA = Model Toxics Control Act

NEPA = National Environmental Policy Act

NPDES = National Pollutant Discharge Elimination System

NTC = Nisqually Tribal Code

RCW = Revised Code of Washington

USC = United States Code

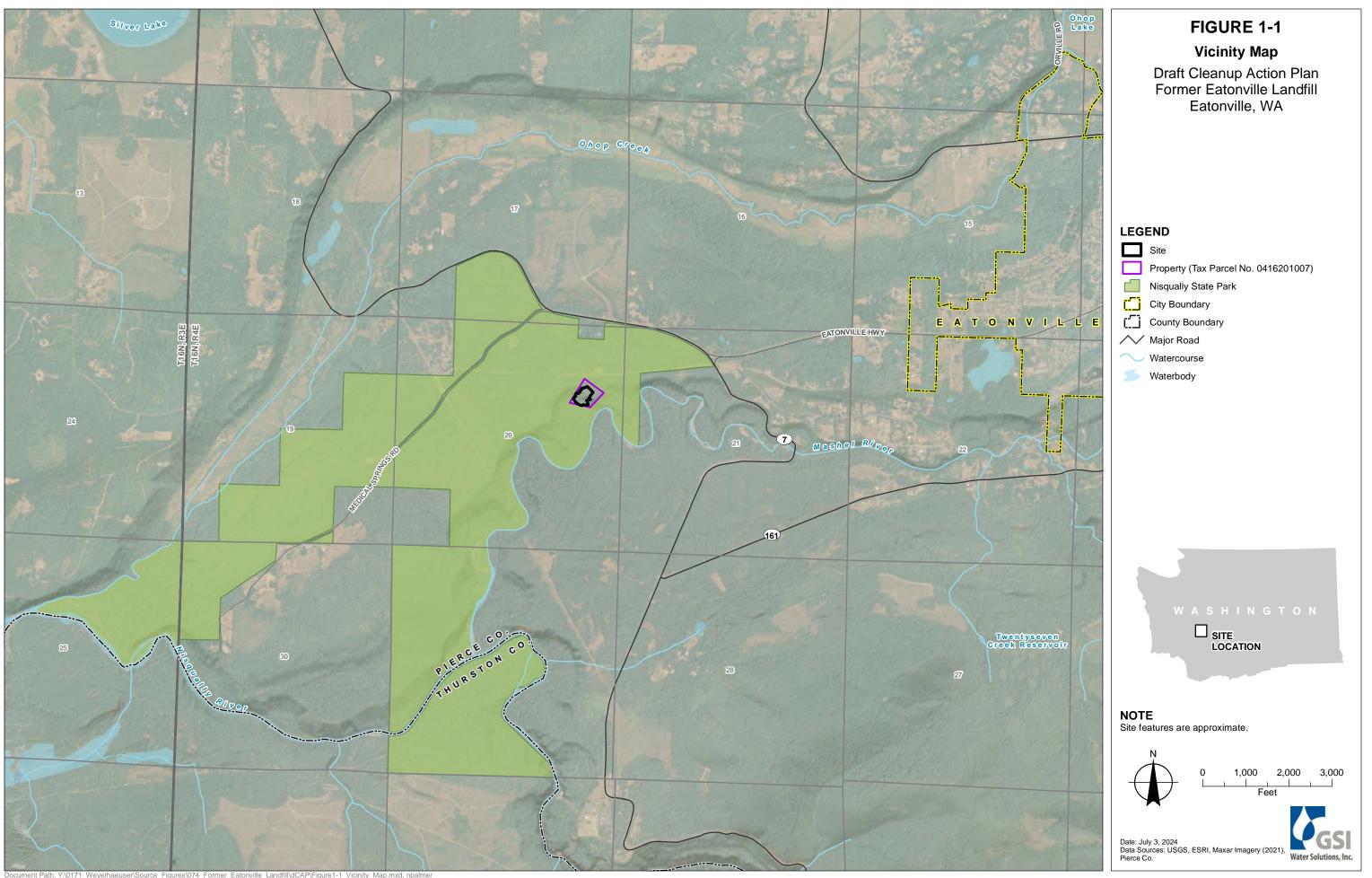
WAC = Washington Administrative Code

Comments

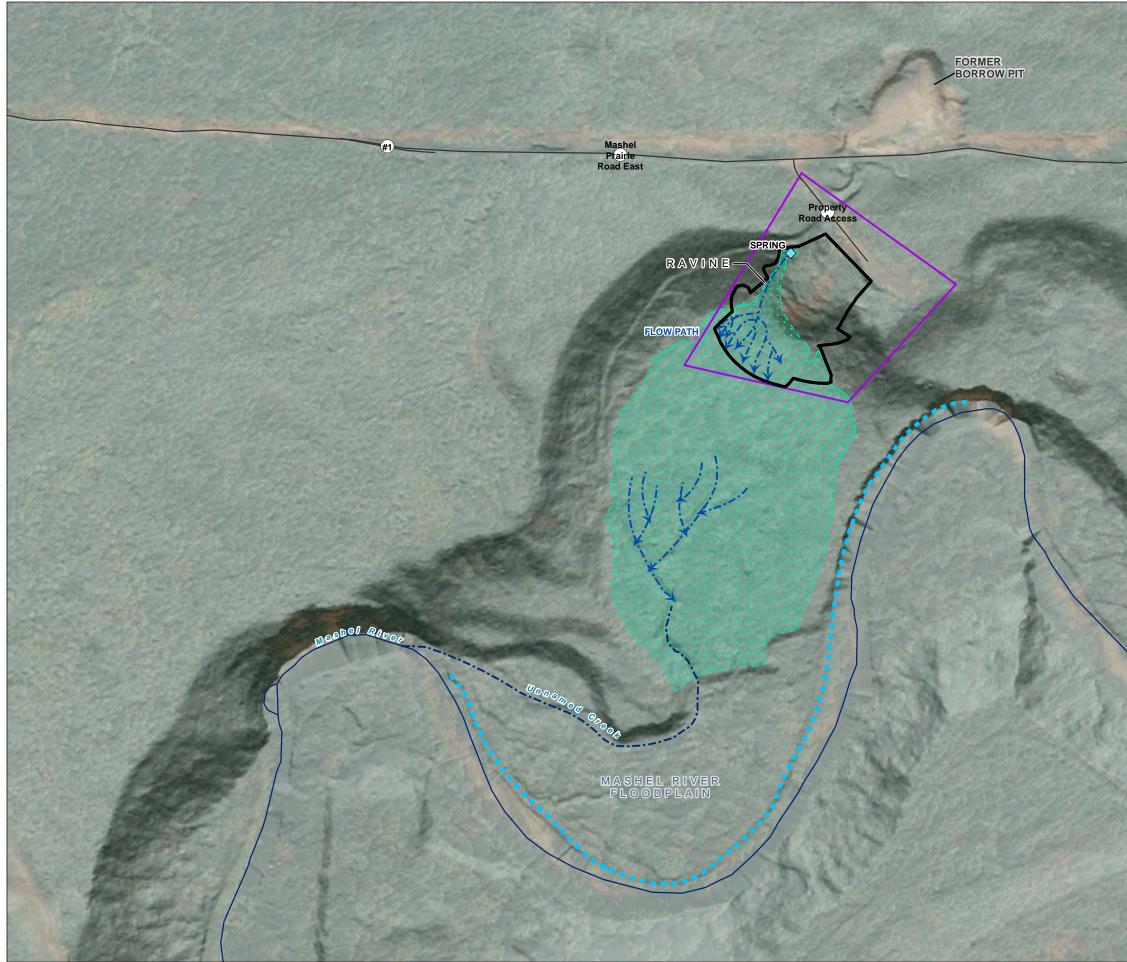
to development.

nd mitigation measures.

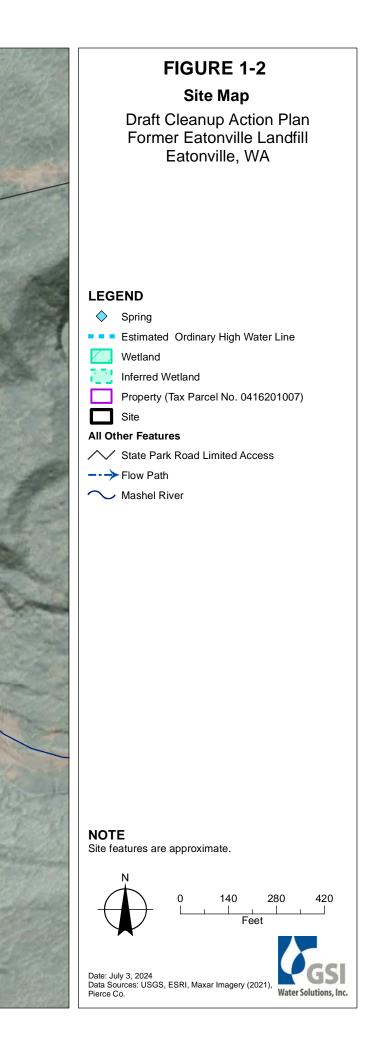
ed through the County standards.

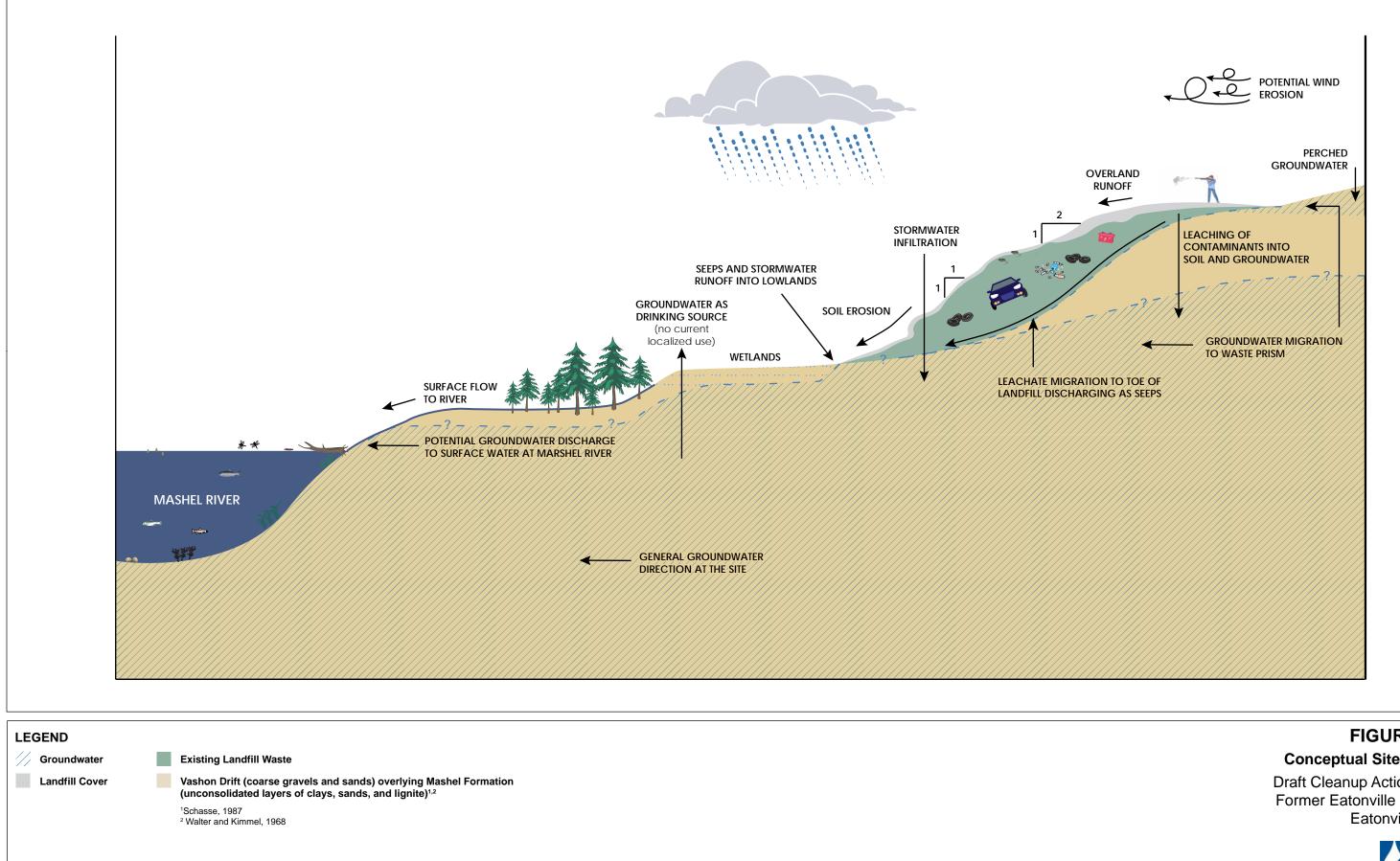

associated with local government review and jurisdiction over Forest Practices in accordance

apter 76.09 RCW and its rules.


of development.

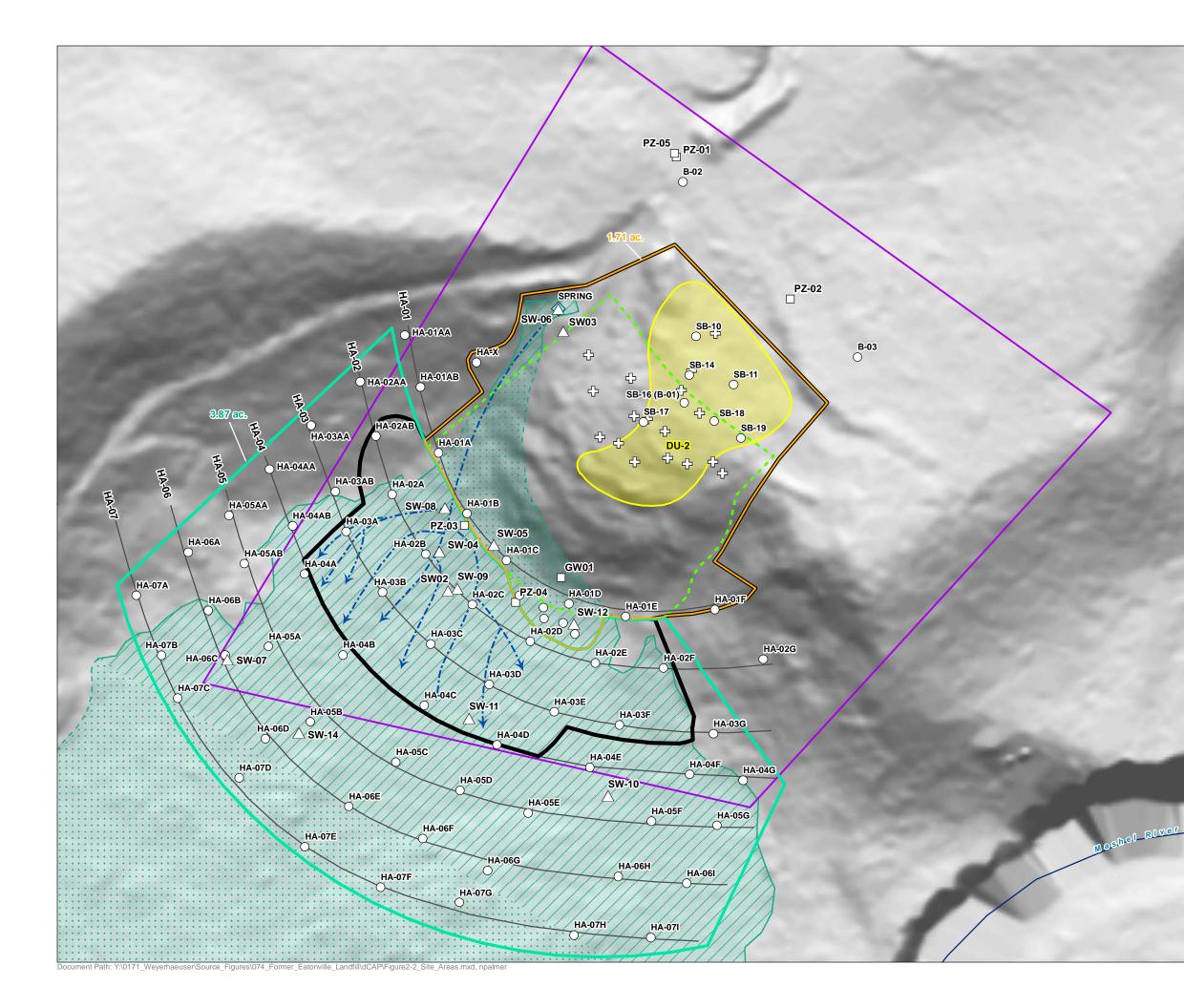
norelines to ensure compliance with the Shoreline Management Act and Pierce County Code

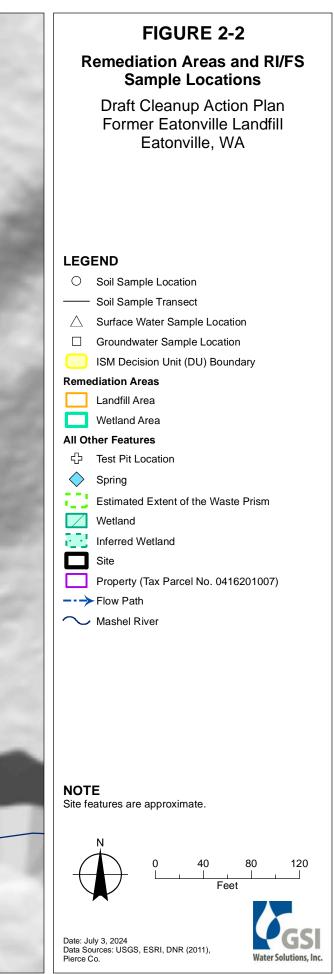

Figures

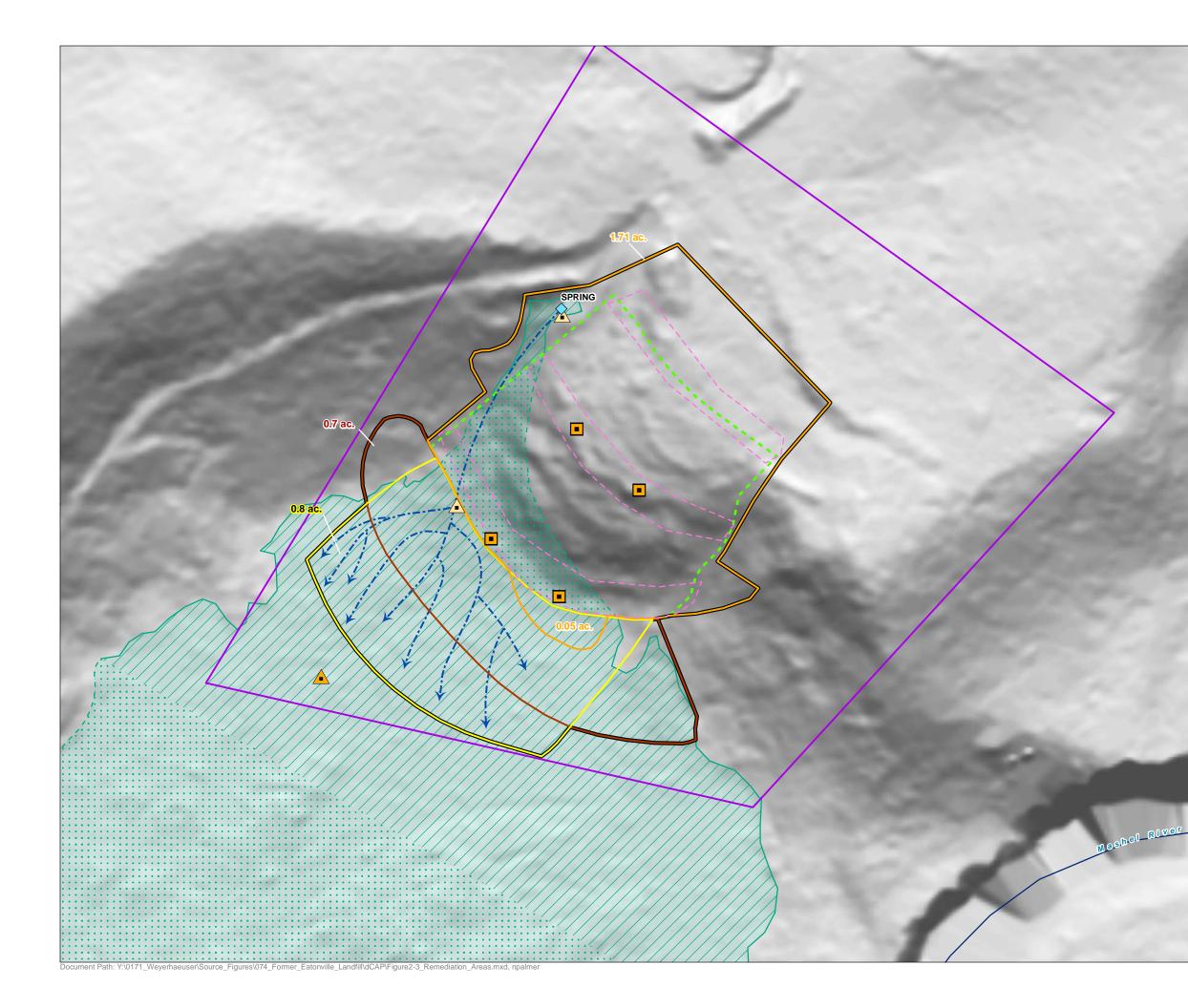


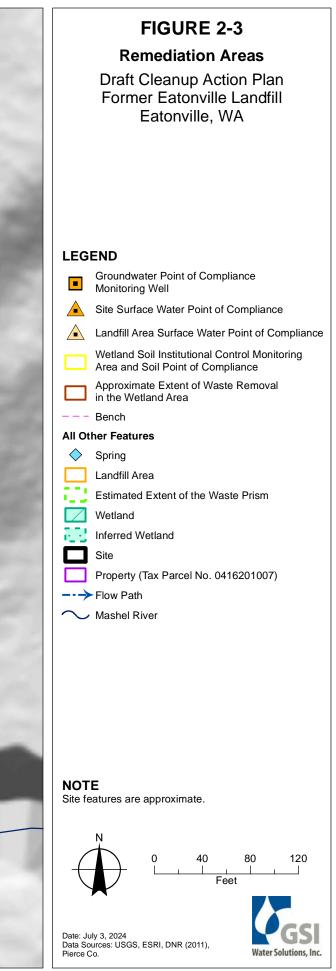
Document Path: Y:\0171_Weyerhaeuser\Source_Figures\074_Former_Eatonville_Landfill\dCAP\Figure1-1_Vicinity_Map.mxd, npalmer

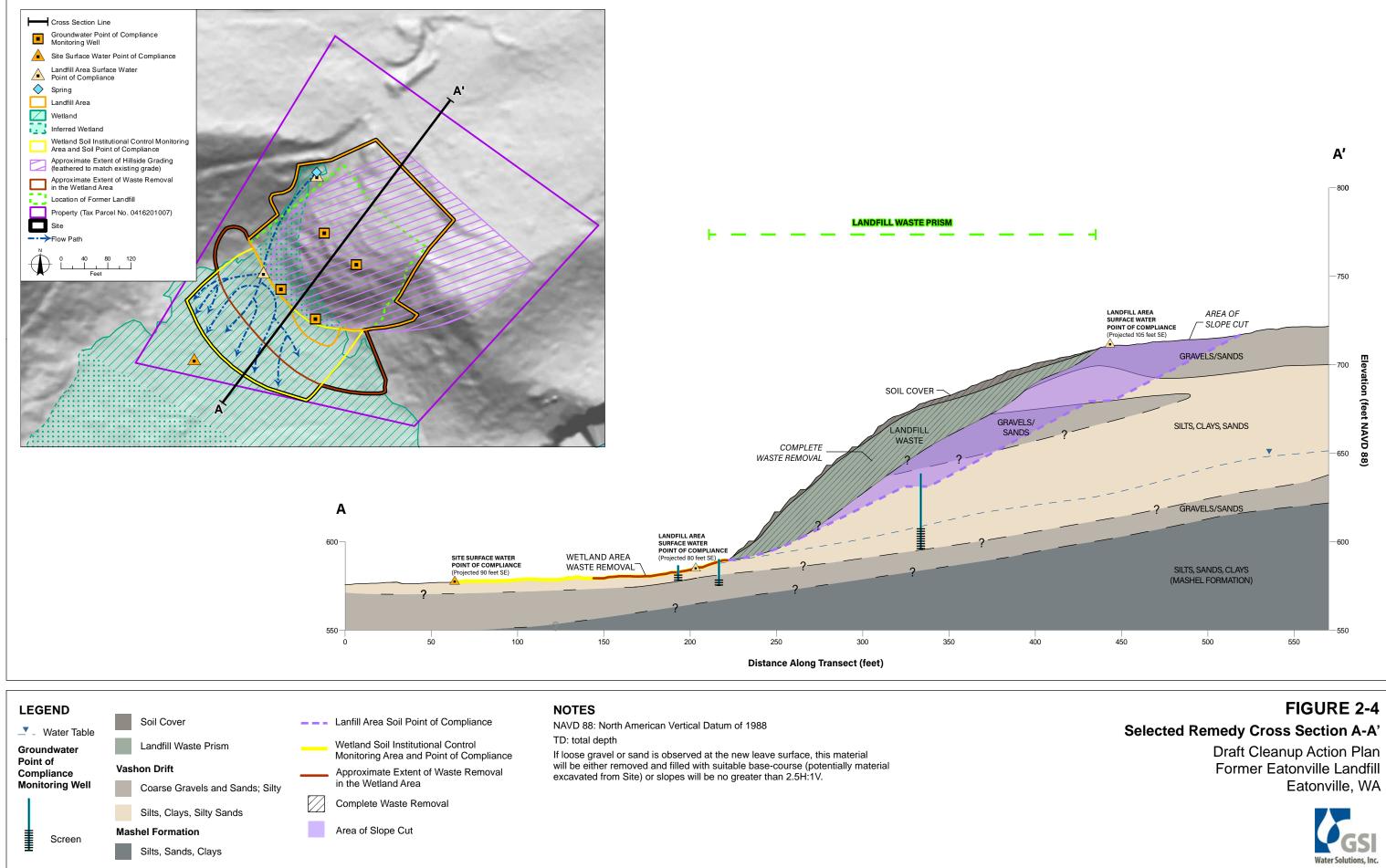
Document Path: Y:\0171_Weyerhaeuser\Source_Figures\074_Former_Eatonville_Landfill\dCAP\Figure1-2_Site_Map.mxd, npalmer




NOTE Figure is not to scale. Data sources: Vecteezy (2023)


FIGURE 2-1 Conceptual Site Model


Draft Cleanup Action Plan Former Eatonville Landfill Eatonville, WA



APPENDICES

-APPENDIX A-

Former Eatonville Landfill Wetland Delineation Addendum, Updated

To: Benjamin Johnson, GSI Water Solutions, Inc.

From: Kerrie McArthur, PWS, CERP

McAthen Quere fate Date: January 9, 2024

Re: Former Eatonville Landfill Wetland Delineation Addendum, Updated

Attachments: Figures Wetland Rating Form Wetland Data Forms

In 2022, Pacific Habitat Services, Inc. (PHS) conducted a wetland delineation at the Former Eatonville Landfill property. The findings of their delineation are detailed in their wetland delineation report (PHS 2022). The former landfill is on property owned by the Weyerhaeuser Company which is surrounded by Nisqually State Park property. The study area defined in the wetland delineation report included the Weyerhaeuser property and parts of Nisqually State Park. PHS delineated 1 wetland, identified as Wetland A. This technical memorandum has been prepared to document the rating of Wetland A and to determine the presence and extent of wetlands within the current study area, which has been expanded to include additional land on Nisqually State Park property around the former landfill on Weyerhaeuser property.

WETLAND RATING

On October 10, 2023, Confluence Environmental Company (Confluence) conducted a site visit to assess the resource value of Wetland A by determining the wetland rating using the Washington State Wetland Rating System for Western Washington (Hruby 2014). This rating system is based on the wetland functions and values, sensitivity to disturbance, rarity, and irreplaceability.

The completed wetland rating form is attached, and findings are summarized in Table 1.

Ī									
		Approx.			Wetland Rating				
	Wetland ID	Size (acres)	Hydrogeomorphic Classification	Cowardin Classification	Water Quality	Hydrology	Habitat	Total	Category
	Wetland A	13	Depressional and Slope	Palustrine forested	8	5	9	22	*

Table 1. Summary of wetland characteristics

* Wetland A is a Category I wetland based on special characteristics. Wetland A has been identified as a Wetland of high conservation value (see wetland rating form)

PHS (2022) describes the portion of Wetland A within their defined study area as a 4.84-acre slope wetland. Wetland A, in its entirety, is much larger; it extends down the slope beyond the study area and into the valley associated with an unnamed tributary of the Mashel River and the Mashel River (GSI Water Solutions, Inc., 2023; Figure 1). As shown on Figure 1, PHS delineated the boundary of Wetland A within their study area with the exception of a segment that was covered by landfill debris. This segment of the wetland boundary was inferred based on survey topography, LiDAR topography, and comparison of the wetland boundary on each side of the debris pile. The inferred boundary of Wetland A outside of the PHS (2022) study area is documented in the remedial investigation/feasibility study for the Former Eatonville Landfill site (GSI Water Solutions, Inc., 2023). The total area of Wetland A, including the delineated and inferred portions, is approximately 13 acres. The non-delineated portion of the wetland is a combination of slope and depressional hydrogeomorphic classification.

WETLAND INVESTIGATION

On December 20, 2023, Confluence conducted a site investigation to determine the presence and extent of critical areas within the expanded study area on Nisqually State Park property (Figure 2).

Confluence identified wetlands and delineated their boundaries using the methods described by the U.S. Army Corps of Engineers (Corps) in the Corps of Engineers Wetlands Delineation Manual (Corps 1987) and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Corps 2010). Figure 2 shows the locations of test plots and soil probes. Wetland data forms are attached.

No wetlands were identified within the expanded study area on Nisqually State Park property. However, there is a potential seep wetland outside of the study area approximately 50 feet to the east. Figure 2 shows a point where this potential wetland is closest to the study area. This wetland was not delineated.

REFERENCES

- Corps (U.S. Army Corps of Engineers). 1987. Corps of Engineers wetlands delineation manual. Corps Environmental Laboratory, Waterways Experiment Station, Vicksburg, Mississippi. Technical Report Y-87-1.
- Corps. 2010. Regional supplement to the Corps of Engineers wetland delineation manual: western mountains, valleys, and coast region. U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi. ERDC/EL TR-08-13.
- Corps. 2020. National wetland plant list, version 3.5 [online document]. Corps Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire. Available at: https://wetland-plants.sec.usace.army.mil/ nwpl_static/v34/home/home.html.
- GSI Water Solutions, Inc. 2023. Final remedial investigation/feasibility study: Former Eatonville Landfill. Prepared for Weyerhaeuser Company and the Town of Eatonville by GSI Water Solutions, Inc., Portland, Oregon.
- Hruby, T. 2014. Washington State wetland rating system for western Washington, 2014 update. Washington State Department of Ecology, Olympia. Publication # 14-06-029.
- PHS (Pacific Habitat Services, Inc.). 2022. Wetland delineation for the Eatonville landfill property, Pierce County, Washington. Prepared for GSI Water Solutions, Inc., Portland, Oregon, by Pacific Habitat Services, Inc., Wilsonville, Oregon.

GSI Water Solutions_001444\001444.001_Former Eatonville Landfill for Weyerhaeuser\Reports\Wetland Addendum

Figures

nent Path: Y:\0171_Weyerhaeuser\Source_Figures\074_Waste_Characterization_Memo\Permitting_Maps\Figure1-2_Site_Map.mxd, irr

FIGURE 1

Site Map

Former Eatonville Landfill Eatonville, WA

LEGEND

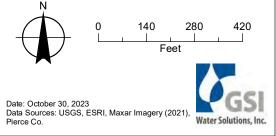
Wetland

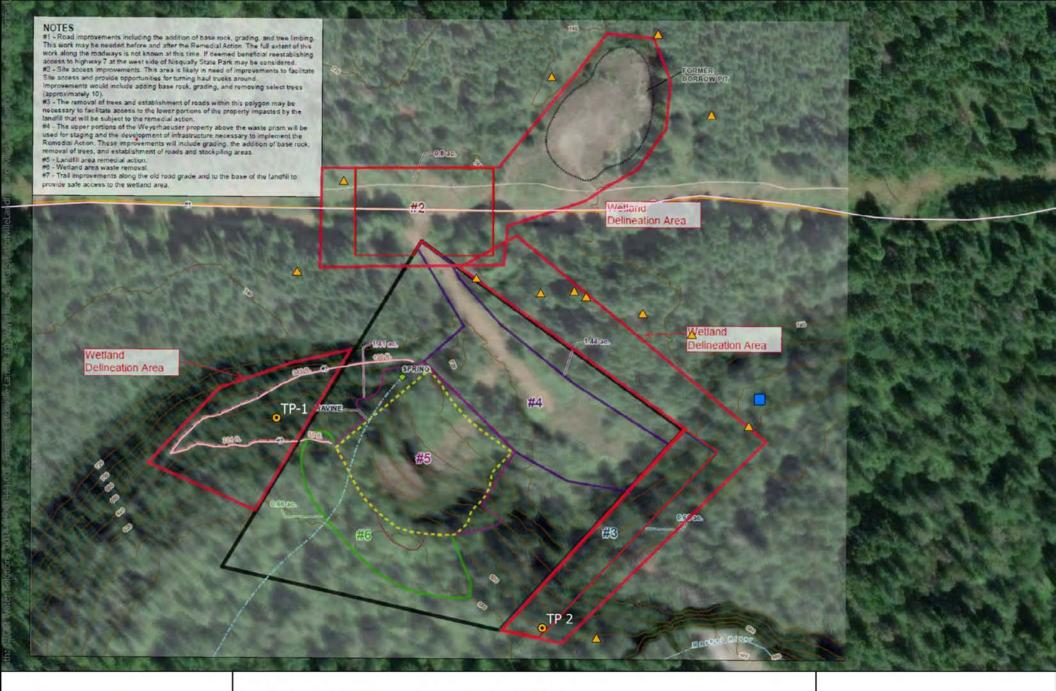
Inferred Wetland

Estimated Extent of the Landfill

Weyerhaeuser Property

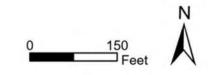

Former Borrow Pit


Nisqually State Park


Flow Path

── Mashel River

C Unnamed Creek



Test Plots
 Potential Wetland Seep
 Expanded Study Area

Figure 2. Location of Test Plot and Soil Probes

Wetland Rating Form

RATING SUMMARY – Western Washington

Name of wetland (or ID #): Wetland A	Date of site	e visit: <u>10/10/</u> 23
Rated by Kerrie McArthur	_ Trained by Ecology?_X YesNo	Date of training <u>6/2014</u>

HGM Class used for rating Depressional Wetland has multiple HGM classes? X Y ____N

NOTE: Form is not complete without the required figures (figures can be combined). Source of base aerial photo/map _ESRI

OVERALL WETLAND CATEGORY | (based on functions or special characteristics X)

1. Category of wetland based on FUNCTIONS

Category I – Total score = 23 - 27

X Category II – Total score = 20 - 22

Category III – Total score = 16 - 19

Category IV – Total score = 9 - 15

FUNCTION	V	provii Vater Juality		Hy	/drolog	gic H		abita	t	
Circle the appropriate ratings										
Site Potential	(H)	М	L	Н	(M)	L	\square	М	L	
Landscape Potential	Н	\mathbb{M}	L	Н	м (\bigcirc	H	М	L	
Value	H	М	L	Н	M	L	H	М	L	TOTAL
Score Based on Ratings		8			5			9		22

Score for each function based on three ratings (order of ratings is not important) 9 = H, H, H 8 = H, H, M 7 = H, H, L 7 = H, M, M

6 = H, M, L 6 = M, M, M 5 = H, L, L 5 = M, M, L 4 = M, L, L 3 = L, L, L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY		
Estuarine	Ι	II	
Wetland of High Conservation Value	I		
Bog	I		
Mature Forest	I		
Old Growth Forest		Ι	
Coastal Lagoon	Ι	II	
Interdunal	III	III IV	
None of the above			

Maps and figures required to answer questions correctly for Western Washington Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	1
Hydroperiods	D 1.4, H 1.2	2
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	2
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	2
Map of the contributing basin	D 4.3, D 5.3	3
1 km Polygon: Area that extends 1 km from entire wetland edge - including polygons for accessible habitat and total habitat	H 2.1, H 2.2, H 2.3	4
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	5
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	6

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including polygons for accessible habitat and total habitat	H 2.1, H 2.2, H 2.3	
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and total habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and total habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

NO – go to 2

YES – the wetland class is **Tidal Fringe** – go to 1.1

1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

NO – Saltwater Tidal Fringe (Estuarine)

YES – Freshwater Tidal Fringe If your wetland can be classified as a Freshwater Tidal Fringe use the forms for Riverine wetlands. If it is Saltwater Tidal Fringe, it is an Estuarine wetland and is not scored. This method cannot be used to score functions for estuarine wetlands.

2. The entire wetland unit is flat, and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

NO - go to 3

YES - The wetland class is Flats

tf your wetland can be classified as a Flats wetland, use the form for **Depressional** wetlands.

3. Does the entire wetland unit **meet all** of the following criteria?

The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size,

At least 30% of the open water area is deeper than 6.6 ft (2 m).

NO – go to 4

YES – The wetland class is Lake Fringe (Lacustrine Fringe)

- 4. Does the entire wetland unit **meet all** of the following criteria?
 - The wetland is on a slope (slope can be very gradual),

The water flows through the wetland in one direction (unidirectional) and usually comes from seeps.

- It may flow subsurface, as sheet flow, or in a swale without distinct banks,
- _____The water leaves the wetland **without being impounded**.

NO - go to 5

YES – The wetland class is Slope

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep). Wetland name or number <u>A</u>

- 5. Does the entire wetland unit **meet all** of the following criteria?
 - ____The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river,

____The overbank flooding occurs at least once every 2 years.

NO – go to 6 **YES** – The wetland class is **Riverine NOTE**: The Riverine unit can contain depressions that are filled with water when the river is not flooding

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? This means that any outlet, if present, is higher than the interior of the wetland.

NO – go to 7

YES – The wetland class is Depressional

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched but has no obvious natural outlet.

NO – go to 8

YES – The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit being rated	HGM class to use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

DEPRESSIONAL AND FLATS WETLANDS	
Water Quality Functions - Indicators that the site functions to improve water quality	
D 1.0. Does the site have the potential to improve water quality?	
D 1.1. Characteristics of surface water outflows from the wetland:	
Wetland is a depression or flat depression (QUESTION 7 on key) with no surface water leaving it (no outlet).	
points = 3	
Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing outlet.	2
points = 2	
Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing points = 1	
Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch. points = 1	
D 1.2. <u>The soil 2 in. below the surface (or duff layer)</u> is true clay or true organic (use NRCS definitions). Yes = 4 No = 0	4
D 1.3. Characteristics and distribution of persistent plants (Emergent, Scrub-shrub, and/or Forested Cowardin classes):	
Wetland has persistent, ungrazed plants > 95% of area points = 5	
Wetland has persistent, ungrazed plants > ½ of area points = 3	5
Wetland has persistent, ungrazed plants $\geq 1/10$ of area points = 1	5
Wetland has persistent, ungrazed plants $<^{1}/_{10}$ of area points = 0	
D 1.4. <u>Characteristics of seasonal ponding or inundation</u> :	
This is the area that is ponded for at least 2 months. See description in manual.	
Area seasonally ponded is > ½ total area of wetland points = 4	2
Area seasonally ponded is \geq ¼ total area of wetland points = 2	
Area seasonally ponded is < ¼ total area of wetland points = 0	l
Total for D 1 Add the points in the boxes above	13
Total for D 1 Add the points in the boxes above	
Total for D 1 Add the points in the boxes above Rating of Site Potential If score is: X12-16 = H 6-11 = M 0-5 = L Record the rating on the	
Total for D 1 Add the points in the boxes above Rating of Site Potential If score is: X12-16 = H 6-11 = M 0-5 = L Record the rating on the D 2.0. Does the landscape have the potential to support the water quality function of the site?	first page
Total for D 1 Add the points in the boxes above Rating of Site Potential If score is: X12-16 = H 6-11 = M 0-5 = L Record the rating on the D 2.0. Does the landscape have the potential to support the water quality function of the site? D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0	first page 0
Total for D 1 Add the points in the boxes above Rating of Site Potential If score is: X12-16 = H 6-11 = M 0-5 = L Record the rating on the D 2.0. Does the landscape have the potential to support the water quality function of the site? D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0 D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0 D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0	first page 0 0
Total for D 1 Add the points in the boxes above Rating of Site Potential If score is: X12-16 = H 6-11 = M 0-5 = L Record the rating on the D 2.0. Does the landscape have the potential to support the water quality function of the site? D D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0 D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0 D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0 D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3?	first page 0 0
Total for D 1 Add the points in the boxes above Rating of Site Potential If score is: X12-16 = H 6-11 = M 0-5 = L Record the rating on the D 2.0. Does the landscape have the potential to support the water quality function of the site? D D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0 D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0 D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0 D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3?	first page 0 0 0
Total for D 1 Add the points in the boxes above Rating of Site Potential If score is: X12-16 = H 6-11 = M 0-5 = L Record the rating on the D 2.0. Does the landscape have the potential to support the water quality function of the site? D D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0 D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0 D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0 D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3? Yes = 1 No = 0	first page 0 0 0 1 1
Total for D 1 Add the points in the boxes above Rating of Site Potential If score is: X12-16 = H 6-11 = M 0-5 = L Record the rating on the D 2.0. Does the landscape have the potential to support the water quality function of the site? D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0 D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0 D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0 D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3? Source_landfill debris Yes = 1 No = 0 Total for D 2 Add the points in the boxes above Add the points in the boxes above	first page 0 0 0 1 1
Add the points in the boxes above Add the points in the boxes above Rating of Site Potential If score is:X12-16 = H6-11 = M0-5 = L Record the rating on the D 2.0. Does the landscape have the potential to support the water quality function of the site? D D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0 D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0 D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0 D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3? Sourcelandfill debris Yes = 1 No = 0 Total for D 2 Add the points in the boxes above Rating of Landscape Potential If score is:3 or 4 = HX 1 or 2 = M0 = L Record the rating on the D 3.0. Is the water quality improvement provided by the site valuable to society? Society? Society?	first page 0 0 1 first page
Total for D 1 Add the points in the boxes above Rating of Site Potential If score is: X12-16 = H 6-11 = M 0-5 = L Record the rating on the D 2.0. Does the landscape have the potential to support the water quality function of the site? D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0 D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0 D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0 D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3? Source_landfill debris Yes = 1 No = 0 Total for D 2 Add the points in the boxes above Add the points in the boxes above	first page 0 0 0 1 1
Total for D 1 Add the points in the boxes above Rating of Site Potential If score is: X12-16 = H6-11 = M0-5 = L Record the rating on the D 2.0. Does the landscape have the potential to support the water quality function of the site? D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0 D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0 D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0 D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3? Sourcelandfill debris Yes = 1 No = 0 Total for D 2 Add the points in the boxes above Rating of Landscape Potential If score is:3 or 4 = H X_1 or 2 = M0 = L Record the rating on the D 3.0. Is the water quality improvement provided by the site valuable to society? D 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the	first page 0 0 1 first page
Total for D 1 Add the points in the boxes above Rating of Site Potential If score is: X12-16 = H6-11 = M0-5 = L Record the rating on the D 2.0. Does the landscape have the potential to support the water quality function of the site? D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0 D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0 D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0 D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3? Sourcelandfill debris Yes = 1 No = 0 Total for D 2 Add the points in the boxes above Rating of Landscape Potential If score is:3 or 4 = H X_1 or 2 = M0 = L Record the rating on the D 3.0. Is the water quality improvement provided by the site valuable to society? D 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list?	first page 0 0 1 first page
Total for D 1 Add the points in the boxes above Rating of Site Potential If score is: X12-16 = H6-11 = M0-5 = L Record the rating on the D 2.0. Does the landscape have the potential to support the water quality function of the site? D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0 D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0 D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0 D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3? Sourcelandfill debris Yes = 1 No = 0 Total for D 2 Add the points in the boxes above Rating of Landscape Potential If score is:3 or 4 = H X_1 or 2 = M0 = L Record the rating on the D 3.0. Is the water quality improvement provided by the site valuable to society? D 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0 D 3.2. Is the wetland in a basin or sub-basin where an aquatic resource is on the 303(d) list? Yes = 1 No = 0	first page 0 0 1 first page
Total for D 1 Add the points in the boxes above Rating of Site Potential If score is:	first page 0 0 1 1 first page 1 1

DEPRESSIONAL AND FLATS WETLANDS			
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream degradation			
D 4.0. Does the site have the potential to reduce flooding and erosion?			
D 4.1. <u>Characteristics of surface water outflows from the wetland</u> : Wetland is a depression or flat depression with no surface water leaving it (no outlet) points = 4 Wetland has an intermittently flowing stream/ditch, OR highly constricted permanently flowing outlet points = 2 Wetland is a flat depression (question 7 on key), whose outlet is a permanently flowing ditch points = 1 Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing points = 0	2		
D 4.2. Depth of storage during wet periods: Estimate the height of ponding above the bottom of the outlet. For wetlands with no outlet, measure from the surface of permanent water or if dry, the deepest part. Marks of ponding are 3 ft or more above the surface or bottom of outlet points = 7 Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet	5		
D 4.3. <u>Contribution of the wetland to storage in the watershed</u> : Estimate the ratio of the area of upstream basin contributing surface water to the area of the wetland unit itself. The area of the basin is less than 10 times the area of the unit The area of the basin is 10 to 100 times the area of the unit The area of the basin is more than 100 times the area of the unit Entire wetland is in the Flats class	3		
Total for D 4Add the points in the boxes above	10		
Rating of Site Potential If score is: 12-16 = H X 6-11 = M 0-5 = L Record the rating on the	first page		
D 5.0. Does the landscape have the potential to support hydrologic functions of the site?	-		
D 5.1. Does the wetland receive stormwater discharges? Yes = 1 No = 0	0		
D 5.2. Is >10% of the area within 150 ft of the wetland in land uses that generate excess runoff? Yes = 1 No = 0	0		
D 5.3. Is more than 25% of the contributing basin of the wetland covered with intensive human land uses (residential at >1 residence/ac, urban, commercial, agriculture, etc.)? Yes = 1 No = 0			
Total for D 5 Add the points in the boxes above			
Rating of Landscape Potential If score is:3 = H I or 2 = M X_0 = L Record the rating on the	first page		
D 6.0. Are the hydrologic functions provided by the site valuable to society?			
 D 6.1. Is the unit in a landscape that has flooding problems? Choose the description that best matches conditions around the wetland unit being rated. Do not add points. <u>Choose the highest score if more than one condition is met</u>. The wetland captures surface water that would otherwise flow downgradient into areas where flooding has damaged human or natural resources (e.g., houses or salmon redds): Flooding occurs in a sub-basin that is immediately downgradient of unit. Surface flooding problems are in a sub-basin farther downgradient. Flooding from groundwater is an issue in the sub-basin. The existing or potential outflow from the wetland is so constrained by human or natural conditions that the water stored by the wetland cannot reach areas that flood. <i>Explain why</i> points = 0 There are no problems with flooding downstream of the wetland. 	1		
D 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan? Yes = 2 No = 0	0		
Total for D 6 Add the points in the boxes above	1		
Rating of Value If score is: $_2-4 = H _X_1 = M \0 = L$ Record the rating on the	first page		

These questions apply to wet	ands of all HGM classes.	
HABITAT FUNCTIONS - Indicators that site functions to pr	rovide important habitat	
H 1.0. Does the site have the potential to provide habitat?		
H 1.1. Structure of plant community: Indicators are Cowardin classes a Cowardin plant classes in the wetland. Up to 10 patches may be of ¼ ac if the unit is at least 2.5 ac, or more than 10% of the unit Aquatic bed Emergent K Scrub-shrub (areas where shrubs have > 30% cover) K Forested (areas where trees have > 30% cover) K Forested (areas where trees have > 30% cover) If the unit has a Forested class, check if: K The Forested class has 3 out of 5 strata (canopy, sub-canop each cover 20% within the Forested polygon	e combined for each class to meet the threshold t if it is smaller than 2.5 ac. 4 structures or more: points = 4 3 structures: points = 2 2 structures: points = 1 1 structure: points = 0	2
H 1.2. Hydroperiods		
Check the types of water regimes (hydroperiods) present within more than 10% of the wetland if the unit is < 2.5 ac, or ¼ ac if th descriptions of hydroperiods). Permanently flooded or inundated	-	
	3 types present: points = 3	3
Occasionally flooded or inundated	2 types present: points = 1	
X_Saturated only	1 type present: $points = 0$	
 X_Permanently flowing stream or river in, or adjacent to, the	wetland	
Xntermittently or seasonally flowing stream in, or adjacent		
Lake Fringe wetland	2 points	
Freshwater tidal wetland	2 points	
H 1.3. Richness of plant species		
Count the number of plant species in the wetland that cover at	I	
Different patches of the same species can be combined to meet	-	2
name the species. Do not include Eurasian milfoil, reed canary		
If you counted: > 19 species	points = 2	
5 - 19 species	points = 1	
< 5 species	points = 0	
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among the classes and unvegetated areas (can include open water or n have four or more plant classes or three classes and open water	nudflats) is high, moderate, low, or none. If you	
\bigcirc		3
None = 0 points Low = 1 point	Moderate = 2 points	
All three diagrams in this row are High = 3 points		

5. Special habitat features:		
Check the habitat features that are present in the wetlan	d. The number of checks is the number of points.	
$X_{\rm Large, downed, woody debris within the wetland (> 4$	4 in. diameter and 6 ft long).	
X Standing snags (dbh > 4 in.) within the wetland		
Undercut banks are present for at least 6.6 ft (2 m) a over open water or a stream (or ditch) in, or contigu	nd/or overhanging plants extend at least 3.3 ft (1 m) ous with the wetland, for at least 33 ft (10 m)	
X Stable steep banks of fine material that might be use	ed by beaver or muskrat for denning (> 30 degree	
slope) OR signs of recent beaver activity are present where wood is exposed)	: (cut shrubs or trees that have not yet weathered	5
X_A t least ¼ ac of thin-stemmed persistent plants or w	oody branches are present in areas that are	
permanently or seasonally inundated (structures for		
X Invasive plants cover less than 25% of the wetland a	rea in every stratum of plants (see H 1.1 above for the	
list of strata and H 1.5 in the manual for the list of a	ggressive plant species)	
tal for H 1	Add the points in the boxes above	15

Rating of Site Potential If score is: <u>X</u>15-18 = H ____7-14 = M ____0-6 = L

Record the rating on the first page

H 2.0. Does the landscape have the po	tential to support the habitat functions of the signal	ite?	
	habitat polygons accessible from the wetland. habitat <u>88</u> + [(% moderate and low intensity land us 1 km polygon = 832 acres Low/Moderate = 91 acres Undisturbed = 733 acres	tes)/2] <u>5</u> = <u>93</u> % points = 3 points = 2 points = 1 points = 0	3
H 2.2. Total habitat in 1 km Polygon arour	habitat <u>88</u> +[(% moderate and low intensity land us ches es		3
H 2.3. Land use intensity in 1 km Polygon: > 50% of 1 km Polygon is high inter ≤ 50% of 1 km Polygon is high inter	sity land use High = 8	points = (- 2) points = 0	0
Total for H 2	Add the poir	nts in the boxes above	6
Rating of Landscape Potential If score is:	<u>_X</u> 4-6 = H1-3 = M<1 = L	R ecord the rating on th	he first pag

H 3.0. Is the habitat provided by the site valuable to society?		
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? Choose only that applies to the wetland being rated. Site meets ANY of the following criteria: X It has 3 or more Priority Habitats within 100 m (see next page) -X It provides habitat for Threatened or Endangered species (any plant or animal on the st	points = 2	2
 It is mapped as a location for an individual WDFW Priority Species It is a Wetland of High Conservation Value as determined by the Department of Natura It has been categorized as an important habitat site in a local or regional comprehensiv Shoreline Master Plan, or in a watershed plan Site has 1 or 2 Priority Habitats (listed on next page) within 100 m Site does not meet any of the criteria above 	al Resources data	-
Rating of Value If score is: X 2 = H 1 = M 0 = L	Record the rating on	the first page

WDFW Priority Habitats

See complete descriptions of Priority Habitats listed by WDFW, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008 (current year, as revised). <u>Priority Habitat and Species List</u>.¹³³ This list was updated for consistency with guidance from WDFW.

This question is independent of the land use between the wetland unit and the Priority Habitat. All vegetated wetlands are by definition a Priority Habitat but are not included in this list because they are addressed by this rating system.

Count how many of the following Priority Habitats are within 330 ft (100 m) of the wetland unit:

- --- Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- <u>X</u> **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife. This habitat automatically counts if mapped on the PHS online map within 100m of the wetland. If not mapped, a determination can be made in the field.
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- Fresh Deepwater: Lands permanently flooded with freshwater, including environments where surface water is permanent and often deep, so that water, rather than air, is the principal medium within which the dominant organisms live. Substrate does not support emergent vegetation. Do not select if Instream habitat is also present, or if the entire Deepwater feature is included in the wetland unit being rated (such as a pond with a vegetated fringe).
- ---- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- Instream: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources. Do not select if Fresh Deepwater habitat is also present.
- Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore.
- Old-growth/Mature forests: <u>Old-growth west of Cascade crest</u> Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in. (81 cm) diameter at breast height (dbh) or > 200 years of age. <u>Mature forests</u> Stands with average diameters exceeding 21 in. (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.

 ¹³³ http://wdfw.wa.gov/publications/00165/wdfw00165.pdf
 Wetland Rating System for Western WA: 2014 Update
 Rating Form – Version 2, July 2023

Wetland name or number <u>A</u>

- Oregon White Oak: Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important. For single oaks or oak stands <0.4 ha in urban areas, <u>WDFW's</u> <u>Management Recommendations for Oregon White Oak</u>¹³⁴ provides more detail for determining if they are Priority Habitats
- X **Riparian:** The area adjacent to freshwater aquatic systems with flowing or standing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- X Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in. (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in. (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.
- Talus: Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie.

 ¹³⁴ https://wdfw.wa.gov/publications/00030/wdfw00030.pdf
 Wetland Rating System for Western WA: 2014 Update
 Rating Form – Version 2, July 2023

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the category when the appropriate criteria are met.	
SC 1.0. Estuarine wetlands Does the wetland meet the following criteria for Estuarine wetlands? — The dominant water regime is tidal, — Vegetated, and	
 With a salinity greater than 0.5 ppt Yes – Go to SC 1.1 (10 = Not an estuarine wetland) 	
SC 1.1. Is the wetland within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151? Yes = Category I No – Go to SC 1.2	Cat. I
SC 1.2. Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?	
— The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 10% cover of non-native plant species. If non-native species are Spartina, see chapter 4.8 in the manual.	Cat. I
— At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un- mowed grassland.	Cat. II
— The wetland has at least two of the following features: tidal channels, depressions with open water, or contiguous freshwater wetlands. Yes = Category I No = Category II	
 SC 2.0. Wetlands of High Conservation Value (WHCV) SC 2.1. Does the wetland overlap with any known or historical rare plant or rare & high-quality ecosystem polygons on the WNHP Data Explorer?¹³⁵ SC 2.2. Does the wetland have a rare plant species, rare ecosystem (e.g., plant community), or high-quality common ecosystem that may qualify the site as a WHCV? Contact WNHP for resources to help determine the presence of these elements. 	Cat. I
Yes – <u>Submit data to WA Natural Heritage Program for determination</u> , ¹³⁶ Go to SC 2.3 No = Not a WHCV SC 2.3. Did WNHP review the site within 30 days and determine that it has a rare plant or ecosystem that meets their criteria? Yes = Category I No = Not a WHCV	
SC 3.0. Bogs	
Does the wetland (or any part of the unit) meet both the criteria for soils and vegetation in bogs? Use the key below. If you answer YES, you will still need to rate the wetland based on its functions. SC 3.1. Does an area within the wetland unit have organic soil horizons, either peats or mucks, that compose 16 in or more of the first 32 in. of the soil profile? Yes – Go to SC 3.3 No – Go to SC 3.2 SC 3.2. Does an area within the wetland unit have organic soils, either peats or mucks, that are less than 16 in, deep over bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on top of a lake or pond? Yes – Go to SC 3.3 No = Not a bog SC 3.3. Does an area with peats or mucks have more than 70% cover of mosses at ground level, AND at least a 30% cover of plant species listed in Table 4? Yes = Category I bog No – Go to SC 3.4 NOTE: If you are uncertain about the extent of mosses in the understory, you may substitute that criterion by measuring the pH of the water that seeps into a hole dug at least 16 in. deep. If the pH is less than 5.0 and the plant species in Table 4 are present, the wetland is a bog.) Cat. I
SC 3.4. Is an area with peats or mucks forested (> 30% cover) with Sitka spruce, subalpine fir, western red cedar, western hemlock, lodgepole pine, quaking aspen, Engelmann spruce, or western white pine, AND any of the species (or combination of species) listed in Table 4 provide more than 30% of the cover under the canopy? Yes = Category I bog No = Not a bog	

 ¹³⁵ https://www.dnr.wa.gov/NHPdata
 ¹³⁶ https://www.dnr.wa.gov/Publications/amp_nh_sighting_form.pdf
 Wetland Rating System for Western WA: 2014 Update
 Rating Form – Version 2, July 2023

SC 4.0. Forested Wetlands		
Does the wetland have at least <u>1 contiguous acre</u> of forest that meets one of these criteria for the WA Department of Fish and Wildlife's forests as Priority Habitats? <i>If you answer YES, you will still need to rate the wetland based on its functions.</i>		
— Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered		
canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) that are at least 200 years of		
age OR have a diameter at breast height (dbh) of 32 in. (81 cm) or more.		
— Mature forests (west of the Cascade Crest): Stands where the largest trees are 80- 200 years old OR the capacity that make up the capacity have an eventee diameter (dbb) eventing 21 in (52 cm).		
species that make up the canopy have an average diameter (dbh) exceeding 21 in. (53 cm).	.	
Yes = Category I No = Not a forested wetland for this section	> Cat. I	
SC 5.0. Wetlands in Coastal Lagoons		
Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?		
 The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks 		
— The lagoon in which the wetland is located contains ponded water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom)		
— The lagoon retains some of its surface water at low tide during spring tides		
Yes – Go to SC 5.1 No = Not a wetland in a coastal lagoon	Cat. I	
SC 5.1. Does the wetland meet all of the following three conditions?	Cal. I	
— The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of aggressive, opportunistic plant species (see list of species in H 1.5 in the manual).		
— At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un- mowed grassland.		
— The wetland is larger than $1/_{10}$ ac (4350 ft ²)		
Yes = Category I No = Category II		
SC 6.0. Interdunal Wetlands		
Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)? <i>If</i> you answer YES, you will still need to rate the wetland based on its habitat functions. In practical terms that means the following geographic areas:		
 Long Beach Peninsula: Lands west of SR 103 		
Grayland-Westport: Lands west of SR 105	Cat I	
— Ocean Shores-Copalis: Lands west of SR 115 and SR 109 and Ocean Shores Blvd SW, including lands west		
of E. Oceans Shores Blvd SW.		
Yes – Go to SC 6.1 No = Not an interdunal wetland for rating	, Cat. II	
SC 6.1. Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form (rates H,H,H or H,H,M		
for the three aspects of function)? Yes = Category I No – Go to SC 6.2		
SC 6.2. Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger?	Cat. III	
Yes = Category II No – Go to SC 6.3 SC 6.3 Letter unit between 0.1 and 1 co. or is it in a massic of water and that is between 0.1 and 1 co.		
SC 6.3. Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and 1 ac? Yes = Category III No = Category IV	Cat. IV	
Category of wetland based on Special Characteristics		
If you answered No for all types, enter "Not Applicable" on Summary Form	I	

Wetland Data Forms

This page intentionally left blank.

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: Eatbouville Land fill	City/County: Ealonville Pierce Contry Sampling Date: 17170173
	Estonville State: WA Sampling Point: TP-2
Investigator(s): <u>IRS</u> AHM	Section, Township, Range: STOTIGN ROHE
Landform (hillslope, terrace, etc.):	Local relief (concave, convex, none): <u>hoいそ</u> Slope (%): <u></u>
Subregion (LRR): A Lat:	46. 85881 Long: 122.32174 Datum: WGS-84
Soil Map Unit Name: Barneston gravelly ash	ny loavse savidy loam NWI classification: hone
Are climatic / hydrologic conditions on the site typical for this time of ye	
Are Vegetation, Soil, or Hydrology significantly	disturbed? Are "Normal Circumstances" present? Yes No
Are Vegetation, Soil, or Hydrology naturally pro	blematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing	sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes No 🗸		
Hydric Soil Present?	Yes No	Is the Sampled Area	
Wetland Hydrology Present?	Yes No	within a Wetland?	Yes No
Remarks:			

VEGETATION - Use scientific names of plants.

Tree Stratum (Plot size:)	Absolute		it Indicator	Dominance Test worksheet:
$\frac{1}{1.00}$		Species	Z <u>Status</u> Facu	Number of Dominant Species
	- 70_			That Are OBL, FACW, or FAC
2. Alder			FAL	Total Number of Dominant
				Species Across All Strata: (B)
4		-		Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 10 ¹)	85	= Total C	over	That Are OBL, FACW, or FAC:(A/B)
1. Sword fern	90		FALL	Prevalence Index worksheet:
2 salmonberry			FAC	Total % Cover of: Multiply by:
3. elderberry)	10			OBL species x 1 =
			- PRUI	FACW species x 2 =
F.	·		•	FAC species x 3 =
5	101			FACU species x 4 =
Herb Stratum (Plot size:)		= Total C	over	UPL species x 5 =
1				Column Totals: (A) (B)
2				
3				Prevalence Index = B/A =
				Hydrophytic Vegetation Indicators:
4				1 - Rapid Test for Hydrophytic Vegetation
5,			·	2 - Dominance Test is >50%
6				3 - Prevalence Index is ≤3.0 ¹
7 8				 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
9,				5 - Wetland Non-Vascular Plants ¹
10				Problematic Hydrophytic Vegetation ¹ (Explain)
11				¹ Indicators of hydric soil and wetland hydrology must
		= Total Co		be present, unless disturbed or problematic
Woody Vine Stratum (Plot size: 3)		= Total Co	ver	
1,				Haday also dia
2			_	Hydrophytic Vegetation
		= Total Co		Present? Yes No
% Bare Ground in Herb Stratum			VCI	
Remarks:				
TP-2 dug on slope	ripros-	entir	e of	area 3

Sampling Point: TP-2

Depth Matrix	depth needed to document the indicator or confirm	
	Redox Features	-
inches) Color (moist) %	Color (moist) % Type ¹ Loc ²	Texture Remarks
0-3		DUTT
3-12 10XR411 10	0 0	gravely loam
		5)
		· · · · · · · · · · · · · · · · · · ·
		Grains. ² Location: PL=Pore Lining, M=Matrix.
Type: C=Concentration, D=Depletion,	RM=Reduced Matrix, CS=Covered or Coated Sand G o all LRRs, unless otherwise noted.)	Indicators for Problematic Hydric Soils ³ :
		2 cm Muck (A10)
Histosol (A1)	Sandy Redox (S5) Stripped Matrix (S6)	Red Parent Material (TF2)
Histic Epipedon (A2) Black Histic (A3)	Loamy Mucky Mineral (F1) (except MLRA 1	
Hydrogen Sulfide (A4)	Loamy Gleyed Matrix (F2)	Other (Explain in Remarks)
Depleted Below Dark Surface (A11		
Thick Dark Surface (A12)	Redox Dark Surface (F6)	³ Indicators of hydrophytic vegetation and
Sandy Mucky Mineral (S1)	Depleted Dark Surface (F7)	wetland hydrology must be present,
Sandy Gleyed Matrix (S4)	Redox Depressions (F8)	unless disturbed or problematic,
Restrictive Layer (if present):		
Туре:		
Depth (inches):		Hydric Soil Present? Yes No
Wetland Hydrology Indicators:		
Wetland Hydrology Indicators:		Secondary Indicators (2 or more required)
Netland Hydrology Indicators:	Water-Stained Leaves (B9) (except	Water-Stained Leaves (B9) (MLRA 1, 2,
Vetland Hydrology Indicators: Primary Indicators (minimum of one red	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B)	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
Vetland Hydrology Indicators: Primary Indicators (minimum of one rea Surface Water (A1)	Water-Stained Leaves (B9) (except	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10)
Vetland Hydrology Indicators: Primary Indicators (minimum of one rea Surface Water (A1) High Water Table (A2)	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13)	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Vetland Hydrology Indicators: Primary Indicators (minimum of one rea Surface Water (A1) High Water Table (A2) Saturation (A3)	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11)	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9
Vetland Hydrology Indicators: Primary Indicators (minimum of one rea Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	 Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Reference 	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 poots (C3) Geomorphic Position (D2)
Vetland Hydrology Indicators: Primary Indicators (minimum of one red Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	 Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Ro Presence of Reduced Iron (C4) 	 Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3)
Vetland Hydrology Indicators: Primary Indicators (minimum of one red Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	 Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Ro Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C 	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5)
Wetland Hydrology Indicators: Primary Indicators (minimum of one red	 Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Ro Presence of Reduced Iron (C4) 	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 Soots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Wetland Hydrology Indicators: Primary Indicators (minimum of one red Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	 Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Ro Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C Stunted or Stressed Plants (D1) (LRR 	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5)
Vetland Hydrology Indicators: Primary Indicators (minimum of one real Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6)	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Ro Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C Stunted or Stressed Plants (D1) (LRR Other (Explain in Remarks)	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 Soots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Vetland Hydrology Indicators: Primary Indicators (minimum of one real Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surf Field Observations:	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Ro Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C Stunted or Stressed Plants (D1) (LRR ery (B7) Other (Explain in Remarks) face (B8)	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 Soots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Wetland Hydrology Indicators: Primary Indicators (minimum of one regover the second	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Rd Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C Stunted or Stressed Plants (D1) (LRR ery (B7) Other (Explain in Remarks) face (B8) No Depth (inches):	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 Soots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Wetland Hydrology Indicators: Primary Indicators (minimum of one regover the second	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Ro Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C Stunted or Stressed Plants (D1) (LRR ery (B7) Other (Explain in Remarks) face (B8)	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 Soots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Wetland Hydrology Indicators: Primary Indicators (minimum of one regover the second	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Ro Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C Stunted or Stressed Plants (D1) (LRR Other (Explain in Remarks) face (B8) No Depth (inches): No Depth (inches):	 Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A)
Wetland Hydrology Indicators: Primary Indicators (minimum of one regoverned) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surf Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Rd Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (0 Stunted or Stressed Plants (D1) (LRR ery (B7) Other (Explain in Remarks) face (B8) No Depth (inches):	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) estland Hydrology Present? Yes No
Wetland Hydrology Indicators: Primary Indicators (minimum of one regoverned) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surf Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Ro Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C Stunted or Stressed Plants (D1) (LRR Vo Depth (inches): No Depth (inches):	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) estland Hydrology Present? Yes No
Wetland Hydrology Indicators: Primary Indicators (minimum of one regovername) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surf Field Observations: Surface Water Present? Yes Saturation Present? Yes Saturation Present? Yes Saturation Present? Yes Saturation Present? Yes Describe Recorded Data (stream gauge) Stream gauge)	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Rd Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (0 Stunted or Stressed Plants (D1) (LRR ery (B7) Other (Explain in Remarks) face (B8) No Depth (inches):	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) etland Hydrology Present? Yes No
Wetland Hydrology Indicators: Primary Indicators (minimum of one regovername) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surf Field Observations: Surface Water Present? Yes Saturation Present? Yes Saturation Present? Yes Saturation Present? Yes Saturation Present? Yes Describe Recorded Data (stream gauge) Stream gauge)	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Rd Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (0 Stunted or Stressed Plants (D1) (LRR ery (B7) Other (Explain in Remarks) face (B8) No Depth (inches):	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) etland Hydrology Present? Yes No
Wetland Hydrology Indicators: Primary Indicators (minimum of one regovername) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surf Field Observations: Surface Water Present? Yes Saturation Present? Yes Saturation Present? Yes Saturation Present? Yes Saturation Present? Yes Describe Recorded Data (stream gauge) Stream gauge)	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Rd Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (0 Stunted or Stressed Plants (D1) (LRR ery (B7) Other (Explain in Remarks) face (B8) No Depth (inches): No Depth (inches): No Depth (inches):	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) etland Hydrology Present? Yes No
High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surf Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Rd Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (0 Stunted or Stressed Plants (D1) (LRR ery (B7) Other (Explain in Remarks) face (B8) No Depth (inches): No Depth (inches): No Depth (inches):	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C3 Second State Content of California State Content of Califor
Wetland Hydrology Indicators: Primary Indicators (minimum of one regovername) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Image Sparsely Vegetated Concave Surf Field Observations: Surface Water Present? Yes Saturation Present? Yes Describe Recorded Data (stream gauge) Describe Recorded Data (stream gauge)	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Rd Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (0 Stunted or Stressed Plants (D1) (LRR ery (B7) Other (Explain in Remarks) face (B8) No Depth (inches): No Depth (inches): No Depth (inches):	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Saturation Visible on Aerial Imagery (C9) Saturation (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

Project/Site: <u>Eatonville landfill</u>	Cit	y/County: Eatur	N.112 Rievie La Sampling Date: 121761
pplicant/Owner: GSI WATCH solutions 1 To	own of Eg	fonville	State: WA Sampling Point:
vestigator(s): 125. AHM			nge: 520716204E
andform (hillslope, terrace, etc.):			сопvex, none): Slope (%):
ubregion (LRR): _A			Long: 12:2.32:314 Datum: WGS-84
il Map Unit Name: Kapowsin gravell	u lan m		NWI classification: N ∾ r €
e climatic / hydrologic conditions on the site typical for)		
/			1
re Vegetation, Soil, or Hydrology			'Normal Circumstances" present? Yes No 🗸
re Vegetation, Soil, or Hydrology	_ naturally proble	matic? (If ne	eeded, explain any answers in Remarks.)
UMMARY OF FINDINGS – Attach site ma	ip showing sa	ampling point l	ocations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes			
Hydric Soil Present? Yes		Is the Sampled within a Wetlar	
Wetland Hydrology Present? Yes	No	within a wetta	
Remarks: TP-1 adjalerit to			
EGETATION – Use scientific names of pl			1
Tree Stratum (Plot size: 30)		ominant Indicator pecies? Status	Dominance Test worksheet:
(Edge	30	FAL	Number of Dominant Species That Are OBL, FACW, or FAC: (A)
2. Par leaf Maric	3050	1 FACU	
Drug fir	25	FALV	Total Number of Dominant Species Across All Strata:
			Percent of Deminent Species
	_105 =	Total Cover	Percent of Dominant Species That Are OBL, FACW, or FAC: 25% (A/B)
Sapling/Shrub Stratum (Plot size: 0)	90	J FALV	Prevalence Index worksheet:
		V FAC	Total % Cover of: Multiply by:
			OBL species x 1 =
			FACW species x 2 =
			FAC species x 3 =
2 (90 =	Total Cover	FACU species x 4 =
lerb Stratum (Plot size: 3 (UPL species x 5 =
• 			Column Totals: (A) (B)
· <u></u>			Prevalence Index = B/A =
			Hydrophytic Vegetation Indicators:
·			1 - Rapid Test for Hydrophytic Vegetation
•			2 - Dominance Test is >50%
			3 - Prevalence Index is ≤3.0 ¹
•			 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
v			5 - Wetland Non-Vascular Plants ¹
0			Problematic Hydrophytic Vegetation ¹ (Explain)
1.			¹ Indicators of hydric soil and wetland hydrology must
	<u> </u>	otal Cover	be present, unless disturbed or problematic.
Voody Vine Stratum (Plot size: 5 ()			
1			Hydrophytic
·			Vegetation Present? Yes No
% Bare Ground in Herb Stratum	= T	otal Cover	
Domaska			
TP dug on slope represen	hive 21	aren 7	

SOIL

Sampling Point: TP-1

Depth	Matrix	to the dep	th needed to docun Redo	x Features			
inches)	Color (moist)	%	Color (moist)	%	Type'	Loc ²	Texture Remarks
)- 1							Duft/Mulch 112 AVK
	1-1/2 212	10.6					Sardygravel w/ gracel 1-
-16	10YR212	00					Saragy are up graver 1-
					-		
				_			
			S				
Type: C=Co	ncentration D=Der	letion RM	Reduced Matrix, CS	S=Covered	or Coate	d Sand G	rains. ² Location: PL=Pore Lining, M=Matrix.
			LRRs, unless other				Indicators for Problematic Hydric Soils ³ :
Histosol (Sandy Redox (,		2 cm Muck (A10)
	pedon (A2)		Stripped Matrix				Red Parent Material (TF2)
Black His	• • •		Loamy Mucky N) (except	MLRA 1)	
	n Sulfide (A4)		Loamy Gleyed				Other (Explain in Remarks)
	Below Dark Surfac	ce (A11)	Depleted Matrix		/		<u> </u>
	rk Surface (A12)		Redox Dark Su				³ Indicators of hydrophytic vegetation and
	ucky Mineral (S1)		Depleted Dark		7)		wetland hydrology must be present,
	eyed Matrix (S4)		Redox Depress		.,		unless disturbed or problematic.
	ayer (if present):			()			
	hes):						Hydric Soil Present? Yes No
Remarks:							
YDROLOG	GY Irology Indicators	:					
YDROLO(Wetland Hyd	Irology Indicators		d; check all that app	(y)			Secondary Indicators (2 or more required)
YDROLOO Vetland Hyd Primary Indic	Irology Indicators			ly) iined Leave	es (B9) (e	except	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2
YDROLOO Vetland Hyd Primary Indic Surface N	Irology Indicators ators (minimum of e Water (A1)		Water-Sta	Sec. 1	. , .	xcept	
YDROLOO Vetland Hyd Primary Indic Surface V High Wat	Irology Indicators ators (minimum of Water (A1) ter Table (A2)		Water-Sta MLRA	ined Leav 1, 2, 4A, a	. , .	xcept	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B)
YDROLOO Vetland Hyd Primary Indic Surface V High Wal Saturatio	Irology Indicators <u>ators (minimum of e</u> Water (A1) ter Table (A2) m (A3)		Water-Sta MLRA Salt Crust	iined Leave 1, 2, 4A, a (B11)	and 4B)	xcept	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10)
YDROLOO Vetland Hyd Primary Indic Surface V High Wal Saturatio Water Ma	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) n (A3) arks (B1)		Water-Sta MLRA Salt Crust Aquatic In	ined Leave 1, 2, 4A, a (B11) vertebrate	and 4B) es (B13)	except	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
YDROLOO Vetland Hyd Primary Indic Surface V High Wal Saturatio Water Ma Sedimen	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B2)		Water-Sta MLRA Salt Crust Aquatic In Hydrogen	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Od	and 4B) es (B13) dor (C1)	·	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C
YDROLOO Vetland Hyd Primary Indic Surface N High Wal Saturatio Water Ma Sedimen Drift Dep	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3)		Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized	ined Leave 1, 2, 4A, a (B11) wertebrate Sulfide Oo Rhizosphe	and 4B) es (B13) dor (C1) eres along	Living Ro	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C pots (C3) Geomorphic Position (D2)
YDROLOO Vetland Hyd Yrimary Indic Surface N High Wal Saturatio Saturatio Water Ma Sedimen Drift Dep Algal Ma	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) nn (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4)		Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized Presence	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oo Rhizosphe of Reduce	and 4B) es (B13) dor (C1) eres along ed Iron (C	Living Ro 4)	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3)
YDROLOO Vetland Hyd Primary Indic Surface N High Wat Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5)		Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent In	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oo Rhizosphe of Reduce	and 4B) dor (C1) eres along ed Iron (C ion in Tille	Living Ro 4) d Soils (C	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5)
YDROLOO Vetland Hyd Primary Indic Surface N High Wat Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) nn (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4)		Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized Presence Recent In Stunted o	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oo Rhizosphe of Reduce on Reducti r Stressed	and 4B) dor (C1) eres along ed Iron (C ion in Tille I Plants (C	Living Ro 4) d Soils (C	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C bots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A)
YDROLOO Vetland Hyd Primary Indic Surface V High Wat Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatic	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial	one require	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized Presence Recent In Stunted o 7) Other (Ex	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oo Rhizosphe of Reduce	and 4B) dor (C1) eres along ed Iron (C ion in Tille I Plants (C	Living Ro 4) d Soils (C	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5)
YDROLOO Vetland Hyd Primary Indic Surface V High Wat Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatic	Irology Indicators ators (minimum of a Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6)	one require	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized Presence Recent In Stunted o 7) Other (Ex	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oo Rhizosphe of Reduce on Reducti r Stressed	and 4B) dor (C1) eres along ed Iron (C ion in Tille I Plants (C	Living Ro 4) d Soils (C	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C bots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A)
YDROLOC Vetland Hyd Surface V High Wal Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatic Sparsely	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial	one require	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized Presence Recent In Stunted o 7) Other (Ex	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oo Rhizosphe of Reduce on Reducti r Stressed	and 4B) dor (C1) eres along ed Iron (C ion in Tille I Plants (C	Living Ro 4) d Soils (C	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C bots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A)
YDROLOC Vetland Hyd Surface V High Wal Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatic Sparsely	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations:	one require Imagery (B ve Surface (Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized Presence Recent In Stunted o 7) Other (Ex	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oc Rhizosphe of Reduce on Reducti r Stressed plain in Re	and 4B) dor (C1) eres along ed Iron (C- ion in Tille Plants (D emarks)	Living Ro 4) d Soils (C 01) (LRR /	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C bots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A)
YDROLOO Vetland Hyd Primary Indic Surface N High Wate Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface Sparsely Field Observious	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present?	one require Imagery (B ve Surface (Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irro Stunted o 7) Other (Ex B8) No X Depth (ir	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oo Rhizosphe of Reduce on Reducti r Stressed plain in Re	and 4B) es (B13) dor (C1) eres along ed Iron (C- ion in Tille Plants (D emarks)	Living Ro 4) d Soils (C 01) (LRR /	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C bots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A)
YDROLOC Vetland Hyd Primary Indic Surface V High Wal Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatic Sparsely Field Observ Surface Water	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present?	Imagery (B ve Surface (Yes Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o 7) Other (Ex B8) No X Depth (ir No X Depth (ir	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oc Rhizosphe of Reduce of Reduce plain in Re plain in Re mches):	and 4B) es (B13) dor (C1) eres along ed Iron (C- ion in Tille I Plants (D emarks)	Living Ro 4) d Soils (C 01) (LRR /	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C bots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
YDROLOC Vetland Hyd Primary Indic Surface N High Wal Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatio Sparsely Field Obsern Surface Water Nater Table Saturation Pr Includes cap	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present? Present?	Imagery (B ve Surface (Yes Yes Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irr Stunted o 7) Other (Ex B8) No X Depth (ir No X Depth (ir No X Depth (ir	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oc Rhizosphe of Reduce of Reduce plain in Re nches): nches):	and 4B) dor (C1) eres along ed Iron (C- tion in Tille Plants (D emarks)	Living Ro 4) d Soils (C D1) (LRR /	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C bots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) tland Hydrology Present? Yes No
YDROLOO Vetland Hyd Primary Indic Surface V High Wat Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface Saturation Surface Water Saturation Pr (includes cap	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present? Present?	Imagery (B ve Surface (Yes Yes Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o 7) Other (Ex B8) No X Depth (ir No X Depth (ir	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oc Rhizosphe of Reduce of Reduce plain in Re nches): nches):	and 4B) dor (C1) eres along ed Iron (C- tion in Tille Plants (D emarks)	Living Ro 4) d Soils (C D1) (LRR /	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C bots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) tland Hydrology Present? Yes No
YDROLOO Vetland Hyd Primary Indic Surface V High Wat Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface Saturation Surface Water Saturation Pr (includes cap	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present? Present?	Imagery (B ve Surface (Yes Yes Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irr Stunted o 7) Other (Ex B8) No X Depth (ir No X Depth (ir No X Depth (ir	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oc Rhizosphe of Reduce of Reduce plain in Re nches): nches):	and 4B) dor (C1) eres along ed Iron (C- tion in Tille Plants (D emarks)	Living Ro 4) d Soils (C D1) (LRR /	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C bots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) tland Hydrology Present? Yes No
YDROLOO Vetland Hyd Primary Indic Surface V High Wat Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface Saturation Surface Water Saturation Pr (includes cap	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present? Present?	Imagery (B ve Surface (Yes Yes Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irr Stunted o 7) Other (Ex B8) No X Depth (ir No X Depth (ir No X Depth (ir	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oc Rhizosphe of Reduce of Reduce plain in Re nches): nches):	and 4B) dor (C1) eres along ed Iron (C- tion in Tille Plants (D emarks)	Living Ro 4) d Soils (C D1) (LRR /	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C bots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) tland Hydrology Present? Yes No
YDROLOC Vetland Hyd Primary Indic Surface V High Wal Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatic Sparsely Field Observ Surface Water Vater Table Saturation Pr includes cap Describe Rec	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present? Present?	Imagery (B ve Surface (Yes Yes Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irr Stunted o 7) Other (Ex B8) No X Depth (ir No X Depth (ir No X Depth (ir	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oc Rhizosphe of Reduce of Reduce plain in Re nches): nches):	and 4B) dor (C1) eres along ed Iron (C- tion in Tille Plants (D emarks)	Living Ro 4) d Soils (C D1) (LRR /	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C bots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) tland Hydrology Present? Yes No
YDROLOC Vetland Hyd Primary Indic Surface V High Wal Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatic Sparsely Field Observ Surface Water Vater Table Saturation Pr includes cap Describe Rec	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present? Present?	Imagery (B ve Surface (Yes Yes Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irr Stunted o 7) Other (Ex B8) No X Depth (ir No X Depth (ir No X Depth (ir	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oc Rhizosphe of Reduce of Reduce plain in Re nches): nches):	and 4B) dor (C1) eres along ed Iron (C- tion in Tille Plants (D emarks)	Living Ro 4) d Soils (C D1) (LRR /	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C bots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) tland Hydrology Present? Yes No
YDROLOC Vetland Hyd Primary Indic Surface N High Wal Saturatio Water Ma Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatic Sparsely Field Observ Surface Water Saturation Pr includes cap Describe Rec	Irology Indicators ators (minimum of e Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present? Present?	Imagery (B ve Surface (Yes Yes Yes	Water-Sta MLRA Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irr Stunted o 7) Other (Ex B8) No X Depth (ir No X Depth (ir No X Depth (ir	ined Leave 1, 2, 4A, a (B11) vertebrate Sulfide Oc Rhizosphe of Reduce of Reduce plain in Re nches): nches):	and 4B) dor (C1) eres along ed Iron (C- tion in Tille Plants (D emarks)	Living Ro 4) d Soils (C D1) (LRR /	Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C bots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) C6) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) tland Hydrology Present? Yes No

-APPENDIX B------

Former Eatonville Landfill Waste Characterization Results

This page intentionally left blank.

TECHNICAL MEMORANDUM

Former Eatonville Landfill Waste Characterization Results

То:	Sam Meng, State of Washington Department of Ecology Keith Johnston, Tacoma-Pierce County Health Department
From:	Benjamin Johnson, GSI Water Solutions, Inc. Braedon Warner, GSI Water Solutions, Inc. Luke Thies, Weyerhaeuser Company Seth Boettcher, Town of Eatonville
Attachments:	 Table 1 – Test Pit and Wetland Sample Locations Table 2 – Metals and pH Results Table 3 – TCLP Metal Results Table 4 – PCB Results Table 5 – SVOC Results Table 6 – TPH Results Table 7 – VOC Metal Results Figure 1 – Test Pit and Sampling Locations Attachment A – Test Pit Photo Logs Attachment B – Test Pit Soil Logs Attachment C – Laboratory Reports
Date:	January 11, 2024

1. Executive Summary

This Waste Characterization Results technical memorandum (TM) concerns the Former Eatonville Landfill (Site), owned by Weyerhaeuser Company (Weyerhaeuser) near State Route 7 in unincorporated Pierce County, Washington, and adjacent to Nisqually State Park. The Site is composed of a former municipal waste landfill and the area beyond the toe of the landfill (referred to as the "Wetland Area") where wastes and select contaminants have migrated over time.

In October 2023, test pitting and wetland soil sampling were completed at the Site to evaluate the composition of the waste prism and the quality of soils and interbedded materials present for disposal. The wastes identified were primarily municipal household solid wastes and were largely comingled with cover soils from the surface to the native soils at the base of the waste prism. Large wastes (i.e., car bodies, tires, and appliances) were most predominant near the surface of the Site and were largely absent in the waste prism. At depth, large concrete blocks were found at several locations. Surface soils, interbedded materials, native soils, and wetland soils chemically and characteristically evaluated do not qualify as federal

hazardous wastes per 40 Code of Federal Regulations (CFR) § 261.4(b)(3) based on the chemical and characteristic testing results or exceeded the Toxic Substances Control Act (TSCA) 15 United States Code (USC) § 2605 threshold for polychlorinated biphenyl (PCB) concentrations. Additionally, the soils and interbedded materials do not qualify as Washington State Dangerous Wastes per Washington Administrative Code (WAC) 173-303-100 due to their exemption in WAC 173-303-071(3)(c). Based on these findings, all wastes, soils, and interbedded materials at the Site may be accepted as "Special Waste" if submitted under a Waste Disposal Authorization (WDA) without any additional designations.

2. Objective

The objective of this technical memorandum (TM) is to present the results of waste characterization efforts completed in October 2023 at the Site. A series of 17 test pits (TPs) in the upper waste prism were excavated to further categorize and evaluate:

- 1. The types of waste and interbedded fill/cover soil and fine waste materials (interbedded materials).
- 2. The quality of soil at the contact between the waste prism and native surface (native soil).
- 3. The quality of wetland soil proposed for removal at the base of the former landfill.

This TM details the results of the test pitting, waste material classification, and waste characterization sampling and a preliminary effort to classify the wastes for possible disposal at landfills as part of future remedial action (RA) at the Site. The waste classification is based on chemical results and the types of waste streams present within the waste prism and the nature of native soil at the base of the former landfill waste prism and in the Wetland Area.

3. Regulated Landfill Outreach

Selection of a final disposal facility (or facilities) is a complex process that must weigh a variety of factors, including, but not limited to, county requirements, state and federal regulations, capacity of waste facilities, anticipated waste streams and waste characteristics, transport distances and carbon footprint, pricing, and flow controls (EPA, 1995). There are currently several Subtitle D landfills that may be viable options for the disposal of waste streams and soils anticipated to be generated during a future RA at the Site. However, the Pierce County Recycling, Composting and Disposal (LRI) landfill, operated by Waste Connections, Inc., is the closest landfill (19.25 miles) to the Site. The LRI landfill and Tacoma-Pierce County Health Department use the WDA process to determine whether wastes may be disposed of in county-permitted disposal facilities as "special waste."¹

Further consultation will be needed during development of the Cleanup Action Plan and the Engineering Design Report to select the final disposal facility. This TM outlines test pitting observations and analytical results to support these discussions. However, this characterization effort may need to be supplemented to meet the different needs of the facilities being considered for the disposal of waste streams generated through the removal of the waste prism and impacted soils during the RA.

4. Test Pitting and Wetland Soil Sampling

Seventeen test pits were excavated into the accessible portions of the upper waste prism (delineated on Figure 1 as the anticipated test pitting area) to the deepest extent possible or to native soil material. Two test pits (TP-16 and TP-17) were not sampled because no waste was present beneath the surface, indicating that the waste prism does not extend that far upslope. At the other 15 test pits, the 0 to 1 foot below ground

¹ The Tacoma-Pierce County Health Department WDA process and WDA application for contractors and consultants are explained here: https://www.tpchd.org/healthy-places/waste-management/waste-disposal-authorization.

surface (bgs) surface soil interval, interbedded material intervals within the waste prism, and native soil beneath the waste prism were sampled, if encountered.

Surface soils were not collected in locations other than the test pits, as their composition was nearly indistinguishable from interbedded materials below 1 foot bgs. Additionally, interbedded materials were more homogenous and comingled than anticipated; therefore, interbedded material samples were routinely taken at approximately 5 feet intervals except where impacts or significant wastes were encountered. In addition to the samples collected at test pit locations, five wetland soil samples were collected at the base of the landfill in an area proposed for removal in the Feasibility Study (FS) remedial alternatives for the Site.

Native soil was only encountered at six test pit locations (TP-04, TP-05, TP-06, TP-09, TP-10, and TP-15) in the anticipated test pitting area (Figure 1). However, due to the steep slope and limited reach of the excavator, the completion of test pits was not possible at the most downslope extent of the anticipated test pitting area or in the lower portions of the waste prism itself. Soil erosion best management practices (BMPs), including straw wattles and matting, were used over disturbed surfaces upon test pitting completion. The following sections describe waste and soil classification.

4.1 Waste Composition

The types of anthropogenic waste observed in the test pits were generally composed of household wastes, including plastics, metals, glass, textiles, concrete, and tires. The approximate extents of these wastes are shown as a yellow dashed line in Figure 1. Soil, cobbles, and boulders were a significant component of the waste prisms composition, and generally made up between 30 to 70 percent of the waste prisms composition, with some test pits having up to 90 percent soil. Cover soil was anticipated to occur in discrete identifiable beds (interbedded material) during the planning process, but these distinct beds were not encountered during test pitting.

The wastes encountered during the test pitting are described below:

- Metals. Metal wastes included automobile bodies and parts, appliances, and small unidentified metal fragments. Orange and black oxidized metallic slag material was encountered in test pits below 10 to 15 feet. Large metal objects occurring primarily near the surface may be readily sorted and recycled during the RA.
- Tires. Tires were scattered throughout the landfill, including at the toe of the landfill and at the upslope end of the Wetland Area. During test pitting, tires were primarily encountered at the surface, but were also present to depths of approximately 10 to 15 feet bgs in some test pits. Tires were often present in stacked layers, but, in general, tires did not make up more than 10 percent of all wastes encountered in a test pit. Tires may be readily sorted and recycled during the RA.
- Plastic. Plastic wastes were abundant in the upper 10 to 15 feet bgs of the prism and were
 predominantly disintegrated household wastes. The household wastes include general house wares,
 such as kitchen supplies, toys, product containers, garbage bags, and unidentified wrappings. Up to
 approximately 70 percent of wastes encountered in the pits were household plastic materials, and they
 were mainly concentrated near the surface of each test pit between 0 to 10 feet bgs.
- Glass. Glass containers, likely also from household waste, were a minor component of the waste prism (less than 20 percent of encountered waste materials) but were present at all test pit locations and depths.
- Textiles. Household wastes such as clothes, carpet, woven fabrics, clothes, and rope were encountered in test pits throughout the prism. While textiles accounted for generally less than 15 percent of encountered waste materials, these textiles covered large surface areas and provided a structural fabric that stabilized other disintegrated materials present in the waste prism.

 Concrete. Large, 3 to 4 feet concrete slabs and rebar were encountered below 10 to 15 feet bgs in most test pits. Concrete was generally more prevalent in the central and north side of the waste prism, where concrete slabs were stacked atop one another and caused early refusal at TP-09. Rusted, oxidized, and melted slag material was comingled with concrete material.

No drums, wood waste, or hazardous/regulated wastes (i.e., batteries, containers with liquid contents, or freon-containing devices) were encountered in the sampled test pits. Waste was not encountered within wetland soil samples themselves, although they were near surficial debris such as tires.

4.2 Soil Classification

Test pits and wetland soil samples were systematically logged using the United Soil Classification System (USCS) (codes provided below), photographed, and sampled. Attachment A includes photograph logs for wetland samples and all test pits. Attachment B includes soil field forms for test pits and wetland samples.

4.2.1 Test Pit Soils

The following are generalized descriptions of surface soil, interbedded materials, and native soils encountered in the test pits:

- Surface Soil. Surface soil was typically rooty, brown, moist, loose, sandy gravels (GW) with 10 to 30
 percent waste. Aside from the moisture content and presence of plant roots, there were no discernable
 soil development horizons or changes in waste concentrations between surface sediments and the
 interbedded materials described below.
- Interbedded Materials. Interbedded soils were brown, dry, loose sandy gravel and gravelly sands (GW, SW) with 10 to 70 percent comingled wastes, as previously described. Rounded boulders up to 3 feet in diameter were encountered, but the gravels encountered were typically less than 6 inches in diameter. No distinct soil beds were found within the test pits.
- Native Soils. Native soils were distinct from waste prism soils and did not contain wastes. Test pits and depths where native soil was encountered are shown on Figure 1. Three distinct forms of native soil were encountered:
 - Light gray, indurated, dry, coarse sandy gravel (GW) with silt; bedded with a friable and chippy matrix of fines. This soil type was encountered at TP-05 (4 feet bgs), 06 (7 feet bgs), 15 (8 feet bgs), 16 (surface), and 17 (surface).
 - Light gray-brown, moist, indurated but friable, well-sorted medium-coarse and angular granitic sand (SP) comprising native saprolite. This soil type was encountered in TP-04 (9 feet bgs) and TP-10 (12 feet bgs).
 - Purple, moist, indurated and clast-supported sandy and firmly cemented conglomerate (GW) with 0.5-inch rounded clasts. This soil type was encountered in TP-08 (8 feet bgs).

4.2.2 Wetland Soils

All wetland soils were organic-rich, wet, soft, dark purple, silty sand and silt. WS-04 was collected through the center of a tire. These characteristics are similar to samples previously collected in this area.

5. Chemical Data Evaluation

Aside from the adjustment in sampling intervals as described Section 4, surface soil, interbedded materials, native soils, and wetland soils were analyzed following the approach described in the Waste Characterization Approach Technical Memorandum (Approach Memo) (GSI, 2023a). Surface soil interbedded material, native soil, and wetland soil samples were prescreened for semivolatile organic compounds (SVOCs)/total petroleum hydrocarbons (TPH) and volatile organic compound (VOC) impacts. SVOCs and TPH impacts were prescreened using sheen tests and visual/olfactory indicators. Several samples (TP-08 from 4-5 and 12 to

13 feet bgs, TP-07 from 14 to 15 feet bgs, and TP-01 from 10 to 11 feet bgs) yielded a thin, grey sheen (see Attachment B). VOCs were prescreened using a photoionization detector (PID) (see Attachment B). No samples exceeded the 10.0 parts per million (ppm) threshold for VOC sampling. The highest PID detection was 3.0 ppm at TP-09 from the 11 to 12 feet bgs sample. However, some surface soil, interbedded material, and wetland soil samples were collected opportunistically for SVOC and VOC analysis to verify the screening assumptions.

All native soil samples were run for SVOCs (U.S. Environmental Protection Agency [EPA] Method 8270E), VOCs (EPA Method 8260D), and diesel/gas range TPH (NWTPH-Dx/Gx) regardless of their prescreening results. Wetland samples WS-1 and WS-5 were electively run for gas-range TPH despite negative prescreening results to confirm whether TPH-Gx exceedances identified during the Remedial Investigation (RI) were still present. Per the Approach Memo, VOCs were only run in waste prism samples if a positive PID screening occurred; however, the 4.0 to 15.0 feet bgs interval from Test Pit 7 was analyzed for VOCs electively to confirm their absence. All samples were run for PCBs (EPA Method 8082A), total metals (EPA Method 6020B), and the toxicity characteristic leaching protocol (TCLP) (EPA Method 1311/6020B) for the eight Resource Conservation and Recovery Act (RCRA)-regulated metals. All surface soil, interbedded materials, and native soil samples were tested for pH (EPA Method 9045D). Samples were not collected from the opportunistic TP-16 and TP-17 above the waste prism. No sampleable free liquids were encountered. Attachment C contains the laboratory reports associated with this work.

Of the 59 samples collected, the following 36 were analyzed (Table 1):

- Landfill:
 - 4 samples of surface soil
 - 21 samples of interbedded material
 - 6 samples of native soil
- Wetland: 5 samples of wetland soil

Soil analytical results were evaluated against the following regulatory levels and thresholds:

- Metals. 40 CFR § 261.24 and its associated regulatory levels for the TCLP method.
- PCBs. TSCA threshold value of (15 USC § 2605)

The TSCA PCB screening levels set by 15 USC § 2605, hazardous characteristic regulatory levels set by 40 CFR § 261, and the TCLP criteria set by 40 CFR § 261 used for the purposes of characterizing interbedded materials and soil are described in the Approach Memo (GSI, 2023a). The TCLP 20-times rule was used to screen metals, SVOC, and VOC results against toxicity characteristic criteria. This rule is commonly used when profiling landfill wastes for compounds that are unlikely to leach and are unaffected by changes in pH.

Additional archived sample material is available for both run and unrun samples. These may be analyzed to satisfy sampling requirements given the volume of comingled soil and wastes in the prism.

5.1 Waste Prism Sample Results

Metals, PCBs, SVOCs, and TPH were detected in the waste prism, which is composed of surface soil and interbedded material samples. The following are summaries of the results for waste prism samples by analytical group:

Hazardous Characteristics:

 No waste prism samples were analyzed for ignitability as they did not appear to be composed of combustible materials.

- No waste prism samples were analyzed using the paint filter test as they did not appear to be wet or saturated.
- The corrosivity characteristic was evaluated in all waste prism samples and none of the pH values measured were out of range (2 to 13 Standard Units).
- Metals:
 - All samples from the waste prism (surface soil and interbedded material samples) had detections of arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), silver (Ag), zinc (Zn), and mercury (Hg). Selenium (Se) was only detected in TP-01 from 10.0 to 11.0 feet bgs (Table 2).
 - Pb, Cd, and Hg results exceeded the 20-times TCLP screening value in some samples (Table 2).

No samples exceeded the 40 CFR § 261 TCLP criteria for any metals including those (Pb, Cd, and Hg) that exceeded the 20-times TCLP screening performed in Table 2 (Table 3). This indicates that despite the prescreening results the surface soil and interbedded material samples are not leaching significant concentrations of Pb, Cd, and Hg and are not demonstrating a hazardous characteristic.

- PCBs:
 - PCBs were detected in every sample, and Aroclors 1254 and 1260 were the primary contributors to the Total PCBs concentrations (Table 4).
 - No samples exceeded the Total PCB TSCA screening value of 50,000 micrograms per kilogram (µg/kg).
- SVOCs: Both samples (TP-01 10 to 11 feet bgs and TP-07 14 to 15 feet bgs) tested for SVOCs had detections for PAHs. However, no values exceeded screening criteria, including Total cPAH (Table 5).
- **TPH:** Heavy oil-range hydrocarbons were detected in all samples analyzed, with values ranging from 1,000 to 1,780 milligrams per kilogram (mg/kg) (Table 6).
- VOCs: No VOCs (EPA Method 8260D) were detected in the TP-07 sample (14.0 to 15.0 feet bgs) (Table 7).

5.2 Native Soil Sample Results

Metals, PCBs, SVOCs, and TPH were detected in native soils beneath the waste prism. The following are summaries of the results of for native soil samples by analytical group:

- Hazardous Characteristics:
 - No native soil samples were analyzed for ignitability as they did not appear to be composed of combustible materials.
 - No native soil samples were analyzed using the paint filter test as they did not appear to be wet or saturated.
 - The corrosivity characteristic was evaluated in all native soil samples and none of the pH values measured were out of range (2 to 13 Standard Units).
- Metals:
 - All native soil samples had detections of As, Ba, Cr, Cu, Pb, Ni, and Zn.
 - Cd was detected in all samples except TP-04 (9.0 to 10.0 feet bgs) and TP-05 (4.0 to 5.0 feet bgs) (Table 2).
 - Se was not detected in any sample.
 - Ag was only detected in TP-06 (9.0 to 10.0 feet bgs) and TP-15 (9.0 to 10.0 feet bgs).
 - Hg was only detected in TP-06 (9.0 to 10.0 feet bgs), TP-08 (12.0 to 13.0 feet bgs), and TP-15 (9.0 to 10.0 feet bgs).

- Pb was the only metal to exceed the 20-times screening value (TP-06, 9.0 to 10.0 feet bgs) in native soil.
- No native soil samples exceeded the 40 CFR § 261 TCLP criteria for any metals (Table 3).
- PCBs:
 - PCBs were detected in 3 out 6 samples: TP-06 (9.0 to 10.0 feet bgs), TP-08 (12.0 to 13.0 feet bgs), and TP-15 (9.0 to 10.0 feet bgs) (Table 4). Aroclors 1254 and 1260 were the primary contributors to the Total PCB concentrations.
 - No samples exceeded the Total PCB screening value of 50,000 μg/kg.
- SVOCs:
 - TP-04 (9.0 to 10.0 feet bgs) was the only sample that did not have SVOC detections. All other samples tested had detections of various SVOCs.
 - No samples exceeded screening criteria (Table 5).
- TPH: Heavy oil range hydrocarbons were detected in 3 out of 6 samples: TP-06 (9.0 to 10.0 feet bgs), TP-08 (12.0 to 13.0 feet bgs), and TP-15 (9.0 to 10.0 feet bgs) (Table 6), with values ranging from 120 to 2,550 mg/kg.
- VOCs: VOCs (EPA Method 8260D) were not detected in any samples (Table 7).

5.3 Wetland Soil Sample Results

Metals and PCBs were detected in wetland soil samples. The following are summaries of the results for wetland soil samples by analytical group:

- Hazardous Characteristics:
 - No wetland soil samples were analyzed for ignitability as they did not appear to be composed primarily of combustible materials.
 - No wetland soil samples were analyzed using the paint filter test as they did not appear to be fully saturated.
 - The corrosivity characteristic was not evaluated in the wetland soil samples but the pH of these soils are not anticipated to significantly differ from the pH values seen in waste prism surface soil/interbedded material and native soils.
- Metals:
 - All native soils samples had detections of As, Ba, Cd, Cr, Cu, Pb, Ni, and Zn (Table 2).
 - Se was only detected in WS-05 (0.0 to 2.0 feet bgs).
 - Ag and Hg were not detected in any wetland soil samples.
 - No samples exceeded the 40 CFR § 261 TCLP criteria or 20-times screening level for any metals (Tables 2 and 3).
- PCBs: Aroclor 1260 was detected in 1 out 5 samples (WS-04, from 0.0 to 2.0 feet bgs), but it did not exceed the Total PCB screening value of 50,000 µg/kg (Table 4).
- SVOCs: SVOCs were not analyzed in wetland soil samples.
- TPH: TPH was not detected in either sample (WS-01 and WS-05) (Table 6).
- VOCs: VOCs were not analyzed in wetland soil samples.

6. Disposal Classification and Approach

Using data collected from the test pits and the results of the material/soil characterization efforts, wastes were classified with respect to the different disposal processes and facilities being considered for this project.

6.1 Physical Considerations for Waste Handling and Disposal

Wastes must be evaluated to determine future handling with respect to size, composition, and the potential for comingling with other waste types. The considerations for waste handling include (but are not limited to) the following:

- Size. Known large wastes include car bodies, which currently appear limited to the base of the landfill, large concrete slabs and boulders at depth. Larger, heavier equipment may be required for the removal of large wastes such as concrete slabs during the RA process. These large wastes may be sorted and disposed, recycled, or repurposed separately to support the use of sustainable and environmentally friendly remediation practices.
- Composition. If wastes of similar composition have settled together, these wastes are more easily separated and compacted during removal and transportation to a disposal facility. The waste encountered was largely disintegrated and diluted with cover soils. It is unlikely that a significant degree of sorting will be possible during disposal.
- Comingling. Large, recyclable materials such as car bodies and tires are present, but these recyclable
 materials are largely comingled with other types of waste and soil. Smaller intact recyclable materials,
 such as glass and metal fragments, are likely too difficult to sort from disintegrated plastics and soil.

For these reasons, most of the waste and soils will likely be disposed of en masse and will not undergo complete sorting. Waste that can be reliably sorted (i.e., concrete slabs, car bodies, tires, and boulders) may be sorted and managed in a unique manner during the RA to support the use of green and environmentally friendly remediation practices. Specialized equipment may be required to remove large debris deeper within the waste prism. Grizzly bars and other means of separating large materials for finer unsortable materials may be used to aide in the separation of large wastes for interbedded materials. Approaches to waste handling, sorting, and disposal will be further evaluated after a waste designation is completed through the remedial design process.

6.2 Characterization for Disposal

The WDA process for disposal requires a minimum of 10 analytical samples for each 2,000 cubic yards (CY) of waste to be disposed of in Tacoma-Pierce County disposal facilities. For each additional 500 CY of waste above 2,000 CY, another sample will be required. Section 12.2.1 of the draft RI/FS states that up to 1,800 CY of impacted soil (interbedded material) may be removed from the landfill and sent offsite for disposal (GSI, 2023b). However, based on the observations made during the test pitting, the volume of interbedded materials and soil in the waste prism is higher than previously envisioned and may require confirmation sampling as more representative disposal volumes are established. It is estimated that, at most, 3,000 CY of surface soil and 3,250 CY of native material at the base of the landfill will need to be removed and disposed of to meet cleanup levels and ensure geotechnical stability of the RA.

By combining the surface and interbedded materials during disposal, this test pit sample suite supports 9,500 CY for disposal. Since the composition of the waste prism was homogenous during the test pitting, additional sampling may not be necessary to increase this disposal allotment. However, native soil was not encountered frequently enough to meet sampling requirements for the anticipated removal volume during the RA and may require confirmation sampling in the future. In addition, due to the sampling constraints posed by the steep slope, it is anticipated that confirmation sampling of downslope wastes and native materials will be required concurrent with removal action. The five samples collected from impacted wetland soil provide sufficient characterization for removal of an estimated 235 CY of soil to a depth of 2 feet bgs in that area.

6.2.1 Disposal Designations

The following sections provide the waste designations proposed for sortable solid wastes and soils and interbedded materials.

6.2.1.1 Sortable Solid Wastes

Sortable solid wastes include large metal objects (car bodies, appliances, etc.), tires, and large boulders. As previously stated in Section 4.1, any recyclable materials (scrap metals and tires) may be recycled at an acceptable facility, as feasible. Massive and natural solid materials such as boulders may be sorted and disposed of or repurposed at the Site or within Nisqually State Park. None of these materials would be considered hazardous or subject to chemical characterization to allow for their disposal or reuse. However, because of the massive size of some of these materials, special considerations to their handling and disposal may need to be made during the remedial design process and in consultation with the receiving disposal facility. These actions may help to avoid rejection of oversized materials, disposal cost markups associated with handling large debris at disposal facilities and provide beneficial reuse or recycling opportunities.

6.2.1.2 Soils and Interbedded Materials

The soils (surface, native, and wetland) and interbedded materials planned for removal are anticipated to be classified as "special waste" based on their submission through the WDA process. There is no indication that any soils or interbedded materials are characteristic hazardous wastes per 40 CFR § 261.4(b)(3) based on the hazardous characteristic and chemical testing results presented in Tables 2 to 6. No samples exceeded the TSCA 15 USC § 2605 total PCB threshold concentration of 50,000 μ g/kg with most samples being an order of magnitude or more below this threshold concentration.

Additionally, the need for a dangerous waste determination, per WAC 173-303-100 was evaluated. However, the principal component of the landfill waste prism is municipal solid waste (household wastes). The soil and interbedded materials proposed for disposal as part of this project are excluded from this dangerous waste determination procedure along with the wastes per WAC 173-303-071(3)(c) which states:

Household wastes, including household waste that has been collected, transported, stored, or disposed. Wastes that are residues from or are generated by the management of household wastes (e.g., leachate, ash from burning of refuse-derived fuel) are not excluded by this provision. "Household wastes" means any waste material (including, but not limited to, garbage, trash, and sanitary wastes in septic tanks) derived from households (including single and multiple residences, hotels and motels, bunkhouses, ranger stations, crew quarters, campgrounds, picnic grounds, and day-use recreation areas). A resource recovery facility managing municipal solid waste will not be deemed to be treating, storing, disposing of, or otherwise managing dangerous wastes for the purposes of regulation under this chapter...

If designation is required, a determination will be made using the chemical results presented in this TM through consultation with the Washington State Department of Ecology. Additional confirmation sampling may be needed during the removal of wastes and soil from the lower portions of the landfill where test pitting could not be performed due to access constraints and safety concern.

7. References

- EPA. 1995. Flow Controls and Municipal Solid Waste. Prepared by the U.S. Environmental Protection Agency (EPA) Office of Solid Waste Municipal and Industrial Solid Waste Division. March 1995.
- GSI. 2023a. Former Eatonville Landfill Waste Characterization Approach Technical Memorandum. Prepared by GSI Water Solutions, Inc. October 6, 2023.
- GSI. 2023b. DRAFT Remedial Investigation/Feasibility Study, Former Eatonville Landfill. State of Washington Department of Ecology Facility Site ID No. 85933/Cleanup Site ID No. 15271. Prepared for Weyerhaeuser Company and the Town of Eatonville. Prepared by GSI Water Solutions, Inc. December 2023 (work in progress).

Tables

This page intentionally left blank.

Table 1. Test Pit and Wetland Sample Locations

			Coordi	nates	
Location/Sample ID ¹	Analyzed?	Easting	Northing	Latitude	Longitude
Surface Soil					
SS-01-0.0-1.0-20231010	N	1184525.45	561919.5636	46.859797	-122.322557
SS-02-0.0-1.0-20231010	N	1184608.482	561853.8551	46.859623	-122.322219
SS-03-0.0-1.0-20231010	N	1184591.674	561860.7058	46.85964	-122.322287
SS-04-0.0-1.0-20231010	N	1184630.335	561857.3111	46.859633	-122.322132
SS-05-0.0-1.0-20231011	Y	1184638.971	561847.2829	46.859606	-122.322096
SS-06-0.0-1.0-20231011	Ŷ	1184522.358	561948.6699	46.859877	-122.322572
SS-07-0.0-1.0-20231011	N	1184532.275	561876.7304	46.85968	-122.322526
SS-08-0.0-1.0-20231011	N	1184562.231	561895.832	46.859735	-122.322408
SS-09-0.0-1.0-20231011	Y	1184559.093	561929.8946	46.859828	-122.322423
SS-10-0.0-1.0-20231011	N	1184618.99	561898.3678	46.859745	-122.322181
SS-11-0.0-1.0-20231012	N	1184562.357	561855.7252	46.859625	-122.322403
SS-11-0.0-1.0-20231012	N	1184548.577	561870.3386	46.859664	-122.322403
SS-13-0.0-1.0-20231012	N	1184572.255	561895.0145	46.859733	-122.322367
	Y	1184588.966	561882.3203	46.859699	-122.322307
S-14-0.0-1.0-20231012	N	1184588.966	561882.3203	46.859804	-122.322299
S-15-0.0-1.0-20231012	IN IN	1104003.130	201320.0250	40.009604	-122.322240
Pit Interbedded Material P 01 IM 5 0 6 0 20231010	Y	1184525.45	561010 5626	16 950707	100 200557
P-01-IM-5.0-6.0-20231010			561919.5636	46.859797	-122.322557
P-01-IM-8.0-9.0-20231010	N Y	1184525.45	561919.5636	46.859797	-122.322557
P-01-IM-10.0-11.0-20231010		1184525.45	561919.5636	46.859797	-122.322557
P-02-IM-4.0-5.0-20231010	Y	1184608.482	561853.8551	46.859623	-122.322219
P-02-IM-9.0-10.0-20231010	N	1184608.482	561853.8551	46.859623	-122.322219
P-02-IM-14.0-15.0-20231010	Y	1184608.482	561853.8551	46.859623	-122.322219
P-03-IM-4.0-5.0-20231010	N	1184591.674	561860.7058	46.85964	-122.322287
P-03-IM-9.0-10.0-20231010	Y	1184591.674	561860.7058	46.85964	-122.322287
P-03-IM-14.0-15.0-20231010	Y	1184591.674	561860.7058	46.85964	-122.322287
P-04-IM-4.0-5.0-20231010	Y	1184630.335	561857.3111	46.859633	-122.322132
P-06-IM-4.0-5.0-20231011	N	1184522.358	561948.6699	46.859877	-122.322572
P-07-IM-4.0-5.0-20231011	Ν	1184532.275	561876.7304	46.85968	-122.322526
P-07-IM-9.0-10.0-20231011	Y	1184532.275	561876.7304	46.85968	-122.322526
P-07-IM-14.0-15.0-20231011	Y	1184532.275	561876.7304	46.85968	-122.322526
P-08-IM-4.0-5.0-20231011	Y	1184562.231	561895.832	46.859735	-122.322408
P-09-IM-4.0-5.0-20231011	N	1184559.093	561929.8946	46.859828	-122.322423
P-09-IM-9.0-10.0-20231011	N	1184559.093	561929.8946	46.859828	-122.322423
P-09-IM-11.0-12.0-20231011	Y	1184559.093	561929.8946	46.859828	-122.322423
P-10-IM-4.0-5.0-20231011	N	1184618.99	561898.3678	46.859745	-122.322181
P-10-IM-9.0-10.0-20231011	Y	1184618.99	561898.3678	46.859745	-122.322181
P-11-IM-4.0-5.0-20231012	Y	1184562.357	561855.7252	46.859625	-122.322403
P-11-IM-9.0-10.0-20231012	N	1184562.357	561855.7252	46.859625	-122.322403
P-11-IM-14.0-15.0-20231012	Y	1184562.357	561855.7252	46.859625	-122.322403
P-12-IM-4.0-5.0-20231012	N	1184548.577	561870.3386	46.859664	-122.32246
P-12-IM-9.0-10.0-20231012	Y	1184548.577	561870.3386	46.859664	-122.32246
P-12-IM-13.0-14.0-20231012	Ŷ	1184548.577	561870.3386	46.859664	-122.32246
P-13-IM-4.0-5.0-20231012	N	1184572.255	561895.0145	46.859733	-122.322367
P-13-IM-9.0-10.0-20231012	Y	1184572.255	561895.0145	46.859733	-122.322367
P-13-IM-14.0-15.0-20231012	Y	1184572.255	561895.0145	46.859733	-122.322367
P-14-IM-4.0-5.0-20231012	N	1184588.966	561882.3203	46.859699	-122.322299
P-14-IM-9.0-10.0-20231012	Y	1184588.966	561882.3203	46.859699	-122.322299
P-14-IM-14.0-15.0-20231012	Y	1184588.966	561882.3203	46.859699	-122.322299
P-15-IM-4.0-5.0-20231012	Y	1184603.136	561920.0226	46.859804	-122.322246
P-16 ³	-	1184611.956	561935.4983	46.859847	-122.322240
P-16 P-17 ³		1184632.736	561955.4985	46.859938	-122.322213
		1104032.130	301900.2243	40.009900	-122.322133
	V	1194620 225	561957 2444	16 950622	100 200120
P-04-NS-9.0-10.0-20231010	Y Y	1184630.335	561857.3111	46.859633	-122.322132
P-05-NS-4.0-5.0-20231011		1184638.971	561847.2829	46.859606	-122.322096
P-06-NS-9.0-10.0-20231011	Y	1184522.358	561948.6699	46.859877	-122.322572
P-08-NS-12.0-13.0-20231011	Y	1184562.231	561895.832	46.859735	-122.322408
P-10-NS-12.0-13.0-20231011	Y	1184618.99	561898.3678	46.859745	-122.322181
P-15-NS-9.0-10.0-20231012	Y	1184603.136	561920.0226	46.859804	-122.322246

WS-01-0.0-2.0-10102023	Y	1184461.796	561739.439	46.8593	-122.322795
WS-02-0.0-2.0-10102023	Y	1184482.904	561728.8714	46.859272	-122.322709
WS-03-0.0-2.0-10102023	Y	1184483.605	561719.2622	46.859246	-122.322705
WS-04-0.0-2.0-10102023	Y	1184500.087	561715.5079	46.859236	-122.322639
WS-05-0.0-2.0-10102023	Y	1184510.44	561705.8193	46.859211	-122.322597

Notes

Samples representative of the spread of physical properties observed were chosen for analysis. Samples that were not analyzed remain in frozen archive.

¹ "SS" Soil, "TP" Test Pit / "IM" Interbedded Material, and "NS" Native soil samples of the same numeral were taken from the same location.

² Coordinates are projected in NAD 83 (2011) State Plane Washington South FIPS 4602 (US feet). Latitude and longitude values are presented in decimal degrees. Easting and Northing values are presented using US feet.

 $^{\rm 3}$ These exploratory test pits were not sampled at any interval.

— = not applicable

ft = feet

FIPS = Federal Information Processing Standards

N = no

NAD 83 = North American Datum of 1983

Y = yes

Table 2. Metals and pH Results

	nd pH Results										E6020B						E9045D
		Screening Crit	eria			Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Nickel	Selenium	Silver	Zinc	Mercury	Æ
						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	SU
				Soil Sc	reening Levels												
				40 CFR and 261 Re	gulatory Level	_	_	_	_	_	_	_	-	_	_	_	2.0 to 13.0
				TCLP 20x Preso	reening Value	100	2,000	20	100	_	100	_	20	100	_	4	_
Location	Aroo	Dete	OC Sample Type	Grab/Composite	Depth		1	,					<u> </u>		-		
	Area	Date	QC Sample Type	Grab/ Composite	(ft)												
Surface Soil / Interbed					I											1	
SS-05	Surface Soil	10/11/2023	Primary	Composite	0.0-1.0	3.95	97.6	1.29	21.8	47.5	97.5	54.3	0.584 U	0.254	428	0.278	6.60
SS-06	Surface Soil	10/11/2023	Primary	Composite	0.0-1.0	5.38	135	1.12	23.5	116	188	26.7	0.560 U	0.349	323	0.741	7.60
SS-09	Surface Soil	10/11/2023	Primary	Composite	0.0-1.0	5.23	152	3.20	21.5	107	171	25.2	0.659 U	0.556	535	0.740	7.30
SS-14	Surface Soil	10/12/2023	Primary	Composite	0.0-1.0	3.29	101	4.77	25.4	69.5	187	30.9	0.604 U	0.350	628	0.454	6.80
TP-01	Interbedded Material Sample	10/10/2023	Primary	Composite	5.0-6.0	6.56	158	2.16	33.8	102	229	34.1	0.661 U	0.747	565	0.765	7.70
	Interbedded Material Sample	10/10/2023	Primary	Composite	10.0-11.0	4.01	113	4.18	16.8	179	153	17.3	0.819 J	0.162 J	330	0.252	7.80
TP-02	Interbedded Material Sample	10/10/2023	Primary	Composite	4.0-5.0	20.4	194	3.16	65.6	286	862	85.8	0.639 U	26.0	815	16.3	7.30
19-02	Interbedded Material Sample	10/10/2023	Primary	Composite	14.0-15.0	8.10	166	5.51	39.1	341	646	60.6	0.634 U	1.41	1,610	0.856	7.20
	Interbedded Material Sample	10/10/2023	Primary	Composite	9.0-10.0	11.9	600	2.60	31.0	238	2,240	49.8	0.606 U	0.588	1,680	0.667	7.20
TP-03	Interbedded Material Sample	10/10/2023	Primary	Composite	14.0-15.0	7.20	352	6.49	45.2	668	1,030	76.0	0.641 U	2.69	2,010	0.569	7.40
TP-04	Interbedded Material Sample	10/10/2023	Primary	Composite	4.0-5.0	5.24	122	0.911	31.9	85.7	88.1	43.9	0.558 U	0.585	436	0.588	7.30
TP-07	Interbedded Material Sample	10/11/2023	Primary	Composite	9.0-10.0	5.76	135	1.83	27.8	98.5	172	37.3	0.562 U	0.290	656	0.817	7.50
11-01	Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	10.7	619	1.71	47.0	208	278	73.0	0.605 U	0.712	453	0.405	7.50
TP-08	Interbedded Material Sample	10/11/2023	Primary	Composite	4.0-5.0	10.1	200	20.9	79.8	208	310	74.6	0.588 U	0.657	1,100	1.57	7.50
TP-09	Interbedded Material Sample	10/11/2023	Primary	Composite	11.0-12.0	8.07	180	15.1	31.5	373	269	51.5	0.632 U	0.975	1,040	0.853	7.30
TP-10	Interbedded Material Sample	10/11/2023	Primary	Composite	9.0-10.0	6.01	146	6.59	54.8	208	573	98.0	0.670 U	0.404	1,740	2.57	_
TP-11	Interbedded Material Sample	10/12/2023	Primary	Composite	4.0-5.0	5.71	105	1.80	28.7	98.7	98.7	31.7	0.585 U	0.133 J	387	0.266	7.80
	Interbedded Material Sample	10/12/2023	Primary	Composite	14.0-15.0	4.54	107	2.21	30.1	175	247	28.4	0.602 U	0.418	585	0.569	7.40
TP-12	Interbedded Material Sample	10/12/2023	Primary	Composite	9.0-10.0	8.59	142	2.74	38.5	295	272	37.0	0.622 U	0.411	805	1.22	7.50
	Interbedded Material Sample	10/12/2023	Primary	Composite	13.0-14.0	5.41	106	3.22	26.2	196	270	29.0	0.619 U	0.420	596	0.514	7.60
TP-13	Interbedded Material Sample	10/12/2023	Primary	Composite	9.0-10.0	3.26	96.9	1.08	14.2	41.4	65.9	14.9	0.614 U	0.301	177	0.263	7.80
	Interbedded Material Sample	10/12/2023	Primary	Composite	14.0-15.0	19.3	149	6.04	37.6	724	339	52.6	0.620 U	1.19	4,950	0.554	7.50
TP-14	Interbedded Material Sample	10/12/2023	Primary	Composite	9.0-10.0	14.4	145	8.49	58.2	341	350	36.4	0.582 U	0.715	1,310	0.596	7.40
	Interbedded Material Sample	10/12/2023	Primary	Composite	14.0-15.0 4.0-5.0	6.55	210	8.88	81.6	401	408	253	0.676 U	1.06	1,730	0.893	7.70
TP-15 Native Soil Sample	Interbedded Material Sample	10/12/2023	Primary	Composite	4.0-5.0	3.80	124	2.74	31.1	113	181	26.2	0.573 U	0.339	584	1.39	7.40
TP-04	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	1.16 J	32.5	0.121 U	4.76	14.0	4.06	2.36 J	0.606 U	0.121 U	29.7	0.0485 U	7.70
TP-04 TP-05	Native Soil Sample	10/10/2023	Primary	Composite	4.0-5.0	2.17	52.5	0.121 U 0.116 U	4.76	22.1	4.06 5.57	17.4	0.606 U 0.579 U	0.121 U 0.116 U	30.6	0.0485 U 0.0464 U	7.30
TP-05	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	6.89	476	5.32	28.2	22.1	833	30.9	0.661 U	1.05	2,230	0.0484 0	7.60
TP-08	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	2.02	51.9	0.247	10.7	23.8	25.4	11.5	0.569 U	0.114 U	2,230 195	0.0501 J	7.80
TP-10	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	2.95	44.6	0.156 J	3.47	17.3	6.45	3.69	0.579 U	0.114 U	34.9	0.0463 U	7.50
TP-15	Native Soil Sample	10/12/2023	Primary	Composite	9.0-10.0	3.08	95.8	0.469	14.2	32.1	34.5	26.3	0.579 U	0.466	179	0.261	7.90
Wetland Soil Sample		,,,															
WS-01	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	4.26	77.3	1.68	8.88	33.8	41.6	19.7	1.04 U	0.208 U	2,460	0.0834 U	_
WS-02	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	3.85	58.5	1.42	11.3	23.1	41.8	11.0	0.922 U	0.184 U	2,070	0.0737 U	_
WS-03	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	2.61	52.9	0.651	8.75	15.7	38.4	10.3	0.930 U	0.186 U	1,380	0.0744 U	_
WS-04	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	2.77 J	49.8	0.444 J	9.08	38.5	12.6	11.6	1.86 U	0.372 U	685	0.149 U	
WS-05	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	5.23	105	0.602 J	10.7	84.7	24.0	12.7	1.66 J	0.312 U	1,300	0.125 U	
Notes																	

CFR = Code of Federal Regulations

ft = foot or feet

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. mg/kg = milligrams per kilogram

QC = quality control

SU = standard units

TCLP = Toxic Characteristic Leaching Procedure

U = Result not detected above the referenced laboratory detection limit

Table 3. IC	CLP Metal Results								E60	20B			
		Screening C	riteria			Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
						mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
			40 C	Soil Screer FR and 261 Regula	<u> </u>	5	100	1	5	5	0.2	1	5
Location	Area	Date	QC Sample Type	Grab/	Depth (ft)	_							_
Surface Soil ,	/ Interbedded Material Sample			Composite									
SS-05	Surface Soil	10/11/2023	Primary	Composite	0.0-1.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.126	0.00375 U	0.0500 U	0.0500 U
SS-06	Surface Soil	10/11/2023	Primary	Composite	0.0-1.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0329 J	0.00375 U	0.0500 U	0.0500 U
SS-09	Surface Soil	10/11/2023	Primary	Composite	0.0-1.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U	0.00375 U	0.0500 U	0.0500 U
SS-14	Surface Soil	10/12/2023	Primary	Composite	0.0-1.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0798	0.00375 U	0.0500 U	0.0500 U
TP-01	Interbedded Material Sample	10/10/2023	Primary	Composite	5.0-6.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0742	0.00375 U	0.0500 U	0.0500 U
IP-01	Interbedded Material Sample	10/10/2023	Primary	Composite	10.0-11.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U	0.00375 U	0.0500 U	0.0500 U
TP-02	Interbedded Material Sample	10/10/2023	Primary	Composite	4.0-5.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.205	0.00375 U	0.0500 U	0.0500 U
19-02	Interbedded Material Sample	10/10/2023	Primary	Composite	14.0-15.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.183	0.00375 U	0.0500 U	0.0500 U
TD 00	Interbedded Material Sample	10/10/2023	Primary	Composite	9.0-10.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.795	0.00375 U	0.0500 U	0.0500 U
TP-03	Interbedded Material Sample	10/10/2023	Primary	Composite	14.0-15.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	3.25	0.00375 U	0.0500 U	0.0500 U
TP-04	Interbedded Material Sample	10/10/2023	Primary	Composite	4.0-5.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U	0.00375 U	0.0500 U	0.0500 U
	Interbedded Material Sample	10/11/2023	Primary	Composite	9.0-10.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U	0.00375 U	0.0500 U	0.0500 U
TP-07	Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0622	0.00375 U	0.0500 U	0.0500 U
TP-08	Interbedded Material Sample	10/11/2023	Primary	Composite	4.0-5.0	0.0500 U	2.50 U	0.0836 J	0.0500 U	0.0663	0.00375 U	0.0500 U	0.0500 U
TP-09	Interbedded Material Sample	10/11/2023	Primary	Composite	11.0-12.0	0.0500 U	2.50 U	0.0822 J	0.0500 U	0.254	0.00375 U	0.0500 U	0.0500 U
TP-10	Interbedded Material Sample	10/11/2023	Primary	Composite	9.0-10.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.272	0.00375 U	0.0500 U	0.0500 U
	Interbedded Material Sample	10/12/2023	Primary	Composite	4.0-5.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U	0.00375 U	0.0500 U	0.0500 U
TP-11	Interbedded Material Sample	10/12/2023	Primary	Composite	14.0-15.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0394 J	0.00375 U	0.0500 U	0.0500 U
	Interbedded Material Sample	10/12/2023	Primary	Composite	9.0-10.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.111	0.00375 U	0.0500 U	0.0500 U
TP-12	Interbedded Material Sample	10/12/2023	Primary	Composite	13.0-14.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0372 J	0.00375 U	0.0500 U	0.0500 U
	Interbedded Material Sample	10/12/2023	Primary	Composite	9.0-10.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U	0.00375 U	0.0500 U	0.0500 U
TP-13	Interbedded Material Sample	10/12/2023	Primary	Composite	14.0-15.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.348	0.00375 U	0.0500 U	0.0500 U
	Interbedded Material Sample	10/12/2023	Primary	Composite	9.0-10.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.251	0.00375 U	0.0500 U	0.0500 U
TP-14	Interbedded Material Sample	10/12/2023	Primary	Composite	14.0-15.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0793	0.00375 U	0.0500 U	0.0500 U
TP-15	Interbedded Material Sample	10/12/2023	Primary	Composite	4.0-5.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.511	0.00375 U	0.0500 U	0.0500 U
Native Soil S	ample								1	 			
TP-04	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U	0.00375 U	0.0500 U	0.0500 U
TP-05	Native Soil Sample	10/11/2023	Primary	Composite	4.0-5.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U	0.00375 U	0.0500 U	0.0500 U
TP-06	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	3.49	0.00375 U	0.0500 U	0.0500 U
TP-08	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U	0.00375 U	0.0500 U	0.0500 U
TP-10	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0515	0.00375 U	0.0500 U	0.0500 U
TP-15	Native Soil Sample	10/12/2023	Primary	Composite	9.0-10.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U	0.00375 U	0.0500 U	0.0500 U
Wetland Soil WS-01	Sample Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U	0.00375 U	0.0500 U	0.0500 U
WS-01 WS-02	Wetland Soil Sample	10/10/2023	-		0.0-2.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U	0.00375 U	0.0500 U	0.0500 U
			Primary	Grab	-					0.0250 U		0.0500 U	0.0500 U
WS-03 WS-04	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	0.0500 U	2.50 U	0.0500 U	0.0500 U		0.00375 U 0.00375 U		
	Wetland Soil Sample	, ,	Primary	Grab	0.0-2.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U		0.0500 U	0.0500 U
WS-05	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	0.0500 U	2.50 U	0.0500 U	0.0500 U	0.0250 U	0.00375 U	0.0500 U	0.0500 U

Notes CFR = Code of Federal Regulations

ft = foot or feet

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. mg/L = milligrams per liter

QC = quality control

TCLP = Toxic Characteristic Leaching Procedure

 U = Result not detected above the referenced laboratory detection limit

Table / PCB Results

	ults					CALC				E8082A			
						1, GB	1016	1221	1232	1242	1248	1254	8
						o	10	12	15	12	15	12	Ţ
		Screening	Criteria			ota 02	o	or	G	or	or	e L	5
							Aroclor 1260						
						GSI Total PCB Aroclors (U=1/2) 2020	Ar						
						µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
				Soil Sc	reening Levels								
				TSCA 1	L5 USC § 2605	50,000	_	_		_	_	_	_
Location	Area	Date	QC Sample Type	Grab/Composite	Depth (ft)								
face Soil / Interbed	dded Material Sample				()								
SS-05	Surface Soil	10/11/2023	Primary	Composite	0.0-1.0	138	17.2 U	5.81 U	26.6 U	22.1 U	5.81 U	74.3	25.2
SS-06	Surface Soil	10/11/2023	Primary	Composite	0.0-1.0	181	5.35 U	128	39.6				
SS-09	Surface Soil	10/11/2023	Primary	Composite	0.0-1.0	108	12.2 U	12.2 U	27.7 U	12.2 U	12.2 U	36.1	33.8
SS-14	Surface Soil	10/12/2023	Primary	Composite	0.0-1.0	133	6.07 U	6.07 U	12.1 U	6.07 U	21.5 U	63.5	43.9
TP-01	Interbedded Material Sample	10/10/2023	Primary	Composite	5.0-6.0	533	6.45 U	450	67.0				
11 01	Interbedded Material Sample	10/10/2023	Primary	Composite	10.0-11.0	133	5.78 U	5.78 U	5.78 U	85.0	5.78 U	5.78 U	33.9
TP-02	Interbedded Material Sample	10/10/2023	Primary	Composite	4.0-5.0	1,124	30.4 U	30.4 U	30.4 U	730	30.4 U	269	64.1
	Interbedded Material Sample	10/10/2023	Primary	Composite	14.0-15.0	1,173 J	29.0 U	29.0 U	29.0 U	767	29.0 U	301	47.3 J
TP-03	Interbedded Material Sample	10/10/2023	Primary	Composite	9.0-10.0	1,658	29.2 U	1,570	29.2 U				
	Interbedded Material Sample	10/10/2023	Primary	Composite	14.0-15.0	82.4 J	5.63 U	5.63 U	5.63 U	10.7 J	5.63 U	46.7	13.7
TP-04	Interbedded Material Sample	10/10/2023	Primary	Composite	4.0-5.0	95.4	11.0 U	11.0 U	35.2 U	15.0 U	12.6 U	40.1	12.9
TP-07	Interbedded Material Sample	10/11/2023	Primary	Composite	9.0-10.0	219	29.2 U	10.8 U	78.7 U	40.3 U	23.3 U	74.2	53.6
	Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	104	5.73 U	5.73 U	11.5 U	5.73 U	18.5 U	52.8	27.9
TP-08	Interbedded Material Sample	10/11/2023	Primary	Composite	4.0-5.0	368	94.7 U	24.2 U	155 U	126 U	79.3 U	90.3 U	82.9
TP-09	Interbedded Material Sample	10/11/2023	Primary	Composite	11.0-12.0	210	20.8 U	5.86 U	52.4 U	27.4 U	46.3 U	70.0 U	98.8
TP-10	Interbedded Material Sample	10/11/2023	Primary	Composite	9.0-10.0	237	34.0 U	23.1 U	91.5 U	46.8 U	31.4 U	82.3	40.9
TP-11	Interbedded Material Sample	10/12/2023	Primary	Composite	4.0-5.0	82.8	11.1 U	11.1 U	28.5 U	14.6 U	11.1 U	24.3	20.3
	Interbedded Material Sample	10/12/2023	Primary	Composite	14.0-15.0	289	5.89 U	5.89 U	5.89 U	112	5.89 U	129	36.4
TP-12	Interbedded Material Sample	10/12/2023	Primary	Composite	9.0-10.0	653	56.9 U	298	426 U				
	Interbedded Material Sample	10/12/2023	Primary	Composite	13.0-14.0	605	5.64 U	422	169				
TP-13	Interbedded Material Sample	10/12/2023	Primary	Composite	9.0-10.0	117	10.9 U	5.47 U	22.4 U	11.7 U	14.0 U	62.7	22.4
	Interbedded Material Sample	10/12/2023	Primary	Composite	14.0-15.0	135	5.92 U	5.92 U	5.92 U	67.3	5.92 U	38.1	17.8
TP-14	Interbedded Material Sample	10/12/2023	Primary	Composite	9.0-10.0	260	25.4 U	5.68 U	45.7 U	30.5 U	26.7 U	57.9	135
	Interbedded Material Sample	10/12/2023	Primary	Composite	14.0-15.0	172	6.24 U	6.24 U	6.24 U	54.8	6.24 U	78.4	26.6
TP-15 ive Soil Sample	Interbedded Material Sample	10/12/2023	Primary	Composite	4.0-5.0	99.4	10.8 U	5.39 U	20.2 U	14.0 U	32.1 U	32.4	25.8
TP-04	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	18.9 U	5.40 U	5.40 U	5.40 U	5.40 U	5.40 U	5.40 U	5.40 U
TP-04	Native Soil Sample	10/11/2023	Primary	Composite	4.0-5.0	20.1 U	5.75 U	5.75 U	5.75 U	5.75 U	5.75 U	5.75 U	5.75 U
TP-06	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	30.8	5.94 U	13.0					
TP-08	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	36.3	5.28 U	10.9	10.0				
TP-10	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	18.6 U	5.30 U	5.30 U	5.30 U	5.30 U	5.30 U	5.30 U	5.30 U
TP-15	Native Soil Sample	10/12/2023	Primary	Composite	9.0-10.0	35.7 J	5.53 U	5.53 U	5.53 U	8.63 J	5.53 U	13.2	5.53 U
tland Soil Sample					2010					2.307			
WS-01	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	34.2 U	9.77 U	9.77 U	9.77 U	9.77 U	9.77 U	9.77 U	9.77 U
WS-02	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	31.2 U	8.91 U	8.91 U	8.91 U	8.91 U	8.91 U	8.91 U	8.91 U
WS-03	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	30.8 U	8.80 U	8.80 U	8.80 U	8.80 U	8.80 U	8.80 U	8.80 U
	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	74.1 J	16.3 U	25.2 J					
WS-04													

µg/kg = micrograms per kilogram CFR = Code of Federal Regulations

ft = foot or feet

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

PCB = polychlorinated biphenyl

QC = quality control

TSCA 15 USC § 2605 = Toxic Substance Control Act 15 United States Code § 2605

U = Result not detected above the referenced laboratory detection limit

						CALC														E8270E													
		Screening Cr	iteria			GSI Total cPAH (U=1/2) 2020	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Hexachlorobutadiene	Naphthalene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3&4-Methylphenol Coelution	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-O-Cresol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline
				Soil Scre	ening Levels	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/I
			TC	P 20x Prescr	-	,	- 1	- 1	-	150,000	10,000	-	- 1	8,000,000	40,000	-	-	-	2,600	- 1	-	_	-	4,000,000	_	-	4,000,000	<u> </u>		-	_	-	- 1
ocation	Area	Date	QC Sample Type	Grab/ Composite	Depth (ft)		_																										
face Soil /	Interbedded Mater	ial Sample					1	T	1		T	-	1															-					
TP-01	Interbedded Material Sample	10/10/2023	Primary	Composite	10.0-11.0	68.9 J	154 U	154 U	154 U	154 U	154 U	124 U	124 U	309 U	309 U	309 U	309 U	1,540 U	617 U	617 U	61.7 U	309 U	124 U	154 U	1,240 U	617 U	154 U	1,240 U	1,240 U	1,540 U	154 U	617 U	154
TP-07	Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	169 J	185 U	185 U	185 U	185 U	185 U	148 U	148 U	371 U	371 U	371 U	371 U	1,850 U	739 U	739 U	73.9 U	371 U	148 U	185 U	1,480 U	739 U	185 U	1,480 U	1,480 U	1,850 U	185 U	739 U	185
ive Soil Sa	l mple	I I							<u> </u>						<u> </u>								<u> </u>			<u> </u>			<u> </u>				<u> </u>
TP-04	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	1.57 U	3.71 U	3.71 U	3.71 U	3.71 U	3.71 U	2.97 U	2.97 U	7.43 U	7.43 U	7.43 U	7.43 U	37.1 U	14.8 U	14.8 U	1.48 U	7.43 U	2.97 U	3.71 U	29.7 U	14.8 U	3.71 U	29.7 U	29.7 U	37.1 U	3.71 U	14.8 U	3.71
TP-05	Native Soil Sample	10/11/2023	Primary	Composite	4.0-5.0	5.78 J	3.67 U	3.67 U	3.67 U	3.67 U	3.67 U	2.95 U	2.95 U	7.36 U	7.36 U	7.36 U	7.36 U	36.7 U	14.7 U	14.7 U	1.47 U	7.36 U	2.95 U	3.67 U	29.5 U	14.7 U	3.67 U	29.5 U	29.5 U	36.7 U	3.67 U	14.7 U	3.67
TP-06	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	6.77 J	15.9 U	15.9 U	15.9 U	15.9 U	15.9 U	24.5 J	12.7 U	31.9 U	31.9 U	31.9 U	31.9 U	159 U	63.5 U	63.5 U	6.35 U	31.9 U	12.7 U	15.9 U	127 U	63.5 U	15.9 U	127 U	127 U	159 U	15.9 U	63.5 U	15.9
TP-08	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	408 J	366 U	366 U	366 U	366 U	366 U	293 U	293 U	733 U	733 U	733 U	733 U	3,660 U	1,460 U	1,460 U	146 U	733 U	293 U	366 U	2,930 U	1,460 U	366 U	2,930 U	2,930 U	3,660 U	366 U	1,460 U	366
TP-10	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	1.55 U	3.67 U	3.67 U	3.67 U	3.67 U	3.67 U	2.94 U	2.94 U	7.35 U	7.35 U	7.35 U	7.35 U	36.7 U	14.7 U	14.7 U	1.47 U	7.35 U	2.94 U	3.67 U	29.4 U	14.7 U	4.18 J	29.4 U	29.4 U	36.7 U	3.67 U	14.7 U	3.67
	Native Soil											•				28.7 U			57.2 U														14.3

|--|

							E8270E												70E																
		Screening C	riteria			4-Chlorophenyl phenyl ether	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Aniline	Anthracene	Azobenzene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	Benzyl alcohol	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	Bis(2-Ethylhexyl) Phthalate	Butyl benzyl phthalate	Chrysene	Di(2-Ethylhexyl)Adipate	Dibenz(a,h)anthracene	Dibenzofuran	Dibutyl phthalate	Diethyl phthalate	Dimethyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene
				Soil Scre	ening Levels	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
			TCL	P 20x Prescr	-	-	- 1	_	_	-	-	- 1	_	_ [- 1	_	-	<u> </u>	l –	_	-	- 1	-	_	_		- 1	_]	_	_	-	-	_	-
Location	Area	Date	QC Sample	Grab/	Depth (ft)																														
Surface Soi	/ Interbedded Materi	al Sample	Туре	Composite																															
TP-01	Interbedded Material Sample	10/10/2023	Primary	Composite	10.0-11.0	154 U	1,240 U	617 U	61.7 U	61.7 U	309 U	61.7 U	154 U	61.7 U	92.7 U	92.7 U	100.0 J	92.7 U	7,740 U	309 U	154 U	154 U	927 U	617 U	61.7 U	1,540 U	61.7 U	61.7 U	617 U	617 U	617 U	617 U	61.7 U	61.7 U	61.7 U
TP-07	Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	185 U	1,480 U	739 U	73.9 U	73.9 U	371 U	73.9 U	185 U	73.9 U	133 J	118 J	148 U	111 U	9,280 U	371 U	185 U	185 U	1,110 U	739 U	73.9 U	1,850 U	148 U	73.9 U	739 U	739 U	739 U	739 U	73.9 U	73.9 U	73.9 U
Native Soil	•																																		
TP-04	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	3.71 U	29.7 U	14.8 U	1.48 U	1.48 U	7.43 U	1.48 U	3.71 U	1.48 U	2.23 U	2.23 U	1.48 U	2.23 U	186 U	7.43 U	3.71 U	3.71 U	22.3 U	14.8 U	1.48 U	37.1 U	1.48 U	1.48 U	14.8 U	14.8 U	14.8 U	14.8 U	1.48 U	1.48 U	1.48 U
TP-05	Native Soil Sample	10/11/2023	Primary	Composite	4.0-5.0	3.67 U	29.5 U	14.7 U	1.47 U	1.47 U	14.7 U	1.47 U	3.67 U	3.11	4.55	4.56	2.49 J	2.21 U	184 U	7.36 U	3.67 U	3.67 U	22.1 U	14.7 U	3.54	36.7 U	1.47 U	1.47 U	14.7 U	14.7 U	14.7 U	14.7 U	4.20	1.47 U	1.47 U
TP-06	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	15.9 U	127 U	63.5 U	6.35 U	6.35 U	31.9 U	6.35 U	15.9 U	6.35 U	9.55 U	9.55 U	6.91 J	9.55 U	797 U	31.9 U	15.9 U	15.9 U	95.5 U	63.5 U	8.65 J	159 U	6.35 U	6.35 U	63.5 U	63.5 U	63.5 U	63.5 U	6.68 J	6.35 U	6.35 U
TP-08	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	366 U	2,930 U	1,460 U	146 U	146 U	733 U	146 U	366 U	146 U	348 J	262 J	146 U	220 U	18,300 U	733 U	366 U	366 U	2,200 U	1,460 U	146 U	3,660 U	146 U	146 U	1,460 U	1,460 U	1,460 U	1,460 U	146 U	146 U	146 U
TP-10	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	3.67 U	29.4 U	14.7 U	1.47 U	1.47 U	14.7 U	1.47 U	3.67 U	1.47 U	2.20 U	2.20 U	1.47 U	2.20 U	184 U	7.35 U	3.67 U	3.67 U	63.6	14.7 U	1.47 U	36.7 U	1.47 U	1.47 U	14.7 U	14.7 U	14.7 U	14.7 U	1.47 U	1.47 U	1.47 U
TP-15	Native Soil Sample	10/12/2023	Primary	Composite	9.0-10.0	14.3 U	115 U	57.2 U	5.72 U	10.6 J	28.7 U	5.72 U	14.3 U	27.2	56.5	58.3	40.5	26.8	718 U	28.7 U	14.3 U	14.3 U	86.0 U	57.2 U	37.3	143 U	7.12 J	5.72 U	57.2 U	57.2 U	57.2 U	57.2 U	5.72 U	5.72 U	5.72 U

|--|

										-					E827(ЭЕ									
		Screening C	riteria			Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Nitrobenzene	N-Nitrosodimethylamine	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Pyridine	1,2-Dinitrobenzene	1,3-Dinitrobenzene	1,4-Dinitrobenzene	2,3,4,6-Tetrachlorophenol	2,3,5,6-Tetrachlorophenol	Bis(2-chloro-1-methylethyl) ether	Carbazole
						µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
			TO		ening Levels		00.000			40.000				0.000.000		1	<u>г</u>	100.000		1		1			
			QC Sample	P 20x Prescre Grab/			60,000	—	—	40,000		—	—	2,000,000		—		100,000	—		_		—		—
Location	Area	Date	Туре	Composite	Depth (ft)																				
Surface Soil /	Interbedded Materi	al Sample		-						1					•	1	1			•		I			
TP-01	Interbedded Material Sample	10/10/2023	Primary	Composite	10.0-11.0	309 U	154 U	68.1 J	154 U	617 U	154 U	154 U	154 U	617 U	61.7 U	124 U	71.3 J	309 U	1,540 U	1,540 U	1,540 U	309 U	309 U	154 U	92.7 U
TP-07	Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	371 U	185 U	148 U	185 U	739 U	185 U	185 U	185 U	739 U	73.9 U	148 U	73.9 U	371 U	1,850 U	1,850 U	1,850 U	371 U	371 U	185 U	111 U
Native Soil Sa	mple																								
TP-04	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	7.43 U	3.71 U	1.48 U	3.71 U	14.8 U	3.71 U	3.71 U	3.71 U	14.8 U	1.48 U	2.97 U	1.48 U	7.43 U	37.1 U	37.1 U	37.1 U	7.43 U	7.43 U	3.71 U	2.23 U
TP-05	Native Soil Sample	10/11/2023	Primary	Composite	4.0-5.0	7.36 U	3.67 U	2.42 J	3.67 U	14.7 U	3.67 U	3.67 U	3.67 U	14.7 U	2.03 J	2.95 U	4.17	7.36 U	36.7 U	36.7 U	36.7 U	7.36 U	7.36 U	3.67 U	2.21 U
TP-06	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	31.9 U	15.9 U	6.35 U	15.9 U	63.5 U	15.9 U	15.9 U	15.9 U	63.5 U	13.8	12.7 U	7.49 J	31.9 U	159 U	159 U	159 U	31.9 U	31.9 U	15.9 U	9.55 U
TP-08	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	733 U	366 U	146 U	366 U	1,460 U	366 U	366 U	366 U	1,460 U	146 U	293 U	146 U	733 U	3,660 U	3,660 U	3,660 U	733 U	733 U	366 U	220 U
TP-10	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	7.35 U	3.67 U	1.47 U	3.67 U	14.7 U	3.67 U	3.67 U	3.67 U	14.7 U	1.47 U	2.94 U	1.47 U	7.35 U	36.7 U	36.7 U	36.7 U	7.35 U	7.35 U	3.67 U	2.20 U
TP-15	Native Soil Sample	10/12/2023	Primary	Composite	9.0-10.0	28.7 U	14.3 U	33.2	14.3 U	57.2 U	14.3 U	14.3 U	14.3 U	57.2 U	13.6	11.5 U	5.72 U	28.7 U	143 U	143 U	143 U	28.7 U	28.7 U	14.3 U	8.60 U

Former Eatonville Landfill Waste Characterization Results

Table 5. SVOC Results

Notes

µg/kg = micrograms per kilogram

CFR = Code of Federal Regulations

cPAH = carcinogenic polycyclic aromatic hydrocarbon

ft = foot or feet

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

QC = quality control

SVOC = semivolatile organic compound

TCLP = Toxic Characteristic Leaching Procedure

U = Result not detected above the referenced laboratory detection limit

Former Eatonville Landfill Waste Characterization Results

Table 6. TPH	Results							
						NWTF	PH_Dx	NWTPH_Gx
		Screening C	riteria			Heavy Oil Range Hydrocarbons	Diesel	Gasoline
						mg/kg	mg/kg	mg/kg
Location	Area	Date	QC Sample Type	Grab/Composite	Depth (ft)			
Surface Soil / I	nterbedded Material Sample		•				1	I
TP-01	Interbedded Material Sample	10/10/2023	Primary	Composite	10.0-11.0	1,000	107 U	3.40 U
TP-07	Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	1,780	111 U	2.54 U
Native Soil San	nple		1				L	
TP-04	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	22.4 U	11.2 U	2.90 U
TP-05	Native Soil Sample	10/11/2023	Primary	Composite	4.0-5.0	21.6 U	10.8 U	2.53 U
TP-06	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	120	11.1 U	2.57 U
TP-08	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	2,550	541 U	2.30 U
TP-10	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	22.4 U	11.2 U	2.94 U
TP-15	Native Soil Sample	10/12/2023	Primary	Composite	9.0-10.0	209	10.6 U	3.29 U
Wetland Soil Sa	ample						1	
WS-01	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	_	-	7.30 U
WS-05	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	_	_	12.3 U

Notes

ft = foot or feet

mg/kg = milligrams per kilogram

QC = quality control

TCLP = Toxic Characteristic Leaching Procedure

TPH = total petroleum hydrocarbons

U = Result not detected above the referenced laboratory detection limit

	. VOC Metal Results					CALC														E8260	D												
		Screening	Criteria			GSI Total Xylenes (U=1/2) 2020	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chlorotoluene	4-Chlorotoluene	Acetone	Acrylonitrile	Benzene	Bromobenzene	Bromodichloromethane	Bromoform
						µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
				Soil Scre	ening Levels	;			<u> </u>				<u> </u>				<u> </u>											<u> </u>					
			тс	LP 20x Prescr	eening Value	-	_	_	_	_	_	14,000	_	_	_	_	_	_	10,000	_	—	_	_	150,000	_	_	_	_	_	10,000	—		_
Locatio n	Area	Date	QC Sample Type	Grab/ Composite	Depth (ft)																												
Surface S	Soil / Interbedded Mater	ial Sample						_					_			-				-													
TP-07	Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	19.0 U	12.7 U	12.7 U	25.4 U	12.7 U	12.7 U	12.7 U	25.4 U	127 U	25.4 U	127 U	25.4 U	12.7 U	12.7 U	12.7 U	25.4 U	12.7 U	25.4 U	12.7 U	25.4 U	25.4 U	25.4 U	1,020 U	50.9 U	5.09 U	12.7 U	25.4 U	50.9 U
Native Sc	oil Sample							1					1							1													
TP-04	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	21.8 U	14.5 U	14.5 U	29.0 U	14.5 U	14.5 U	14.5 U	29.0 U	145 U	29.0 U	145 U	29.0 U	14.5 U	14.5 U	14.5 U	29.0 U	14.5 U	29.0 U	14.5 U	29.0 U	29.0 U	29.0 U	1,160 U	58.0 U	5.80 U	14.5 U	29.0 U	58.0 U
TP-05	Native Soil Sample	10/11/2023	Primary	Composite	4.0-5.0	18.9 U	12.6 U	12.6 U	25.3 U	12.6 U	12.6 U	12.6 U	25.3 U	126 U	25.3 U	126 U	25.3 U	12.6 U	12.6 U	12.6 U	25.3 U	12.6 U	25.3 U	12.6 U	25.3 U	25.3 U	25.3 U	1,010 U	50.6 U	5.06 U	12.6 U	25.3 U	50.6 U
TP-06	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	19.3 U	12.9 U	12.9 U	25.7 U	12.9 U	12.9 U	12.9 U	25.7 U	129 U	25.7 U	129 U	25.7 U	12.9 U	12.9 U	12.9 U	25.7 U	12.9 U	25.7 U	12.9 U	25.7 U	25.7 U	25.7 U	1,030 U	51.5 U	5.15 U	12.9 U	25.7 U	51.5 U
TP-08	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	17.3 U	11.5 U	11.5 U	23.0 U	11.5 U	11.5 U	11.5 U	23.0 U	115 U	23.0 U	115 U	23.0 U	11.5 U	11.5 U	11.5 U	23.0 U	11.5 U	23.0 U	11.5 U	23.0 U	23.0 U	23.0 U	922 U	46.1 U	4.61 U	11.5 U	23.0 U	46.1 U
TP-10	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	22.0 U	14.7 U	14.7 U	29.4 U	14.7 U	14.7 U	14.7 U	29.4 U	147 U	29.4 U	147 U	29.4 U	14.7 U	14.7 U	14.7 U	29.4 U	14.7 U	29.4 U	14.7 U	29.4 U	29.4 U	29.4 U	1,180 U	58.9 U	5.89 U	14.7 U	29.4 U	58.9 U
TP-15	Native Soil Sample	10/12/2023	Primary	Composite	9.0-10.0	24.7 U	16.5 U	16.5 U	32.9 U	16.5 U	16.5 U	16.5 U	32.9 U	165 U	32.9 U	165 U	32.9 U	16.5 U	16.5 U	16.5 U	32.9 U	16.5 U	32.9 U	16.5 U	32.9 U	32.9 U	32.9 U	1,320 U	65.9 U	6.59 U	16.5 U	32.9 U	65.9 U

	VOC Metal Results																	E8260D)												
		Screening	Criteria			Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Dibromochloropropane	Dibromomethane	Dichlorodifluoromethane	Ethylbenzene	Ethylene dibromide	Hexachlorobutadiene	Isopropylbenzene	Methyl ethyl ketone	Methyl Isobutyl Ketone	Methyl tert-butyl ether	Methylene chloride	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-lsopropyltoluene	sec-Butylbenzene
						µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
				Soil Scre	ening Levels													<u></u>			<u> </u>			<u></u>	<u></u>	<u></u>	<u></u>			<u></u>	
			тс	CLP 20x Prescre	ening Value	—	_	10,000	2,000,000	-	120,000	_	_	_	_	_	-	-	_	_	10,000	_	4,000,000	-	-	_	-	_	_	_	_
Locatio n	Area	Date	QC Sample Type	Grab/ Composite	Depth (ft)																										
Surface S	oil / Interbedded Mater	ial Sample																													
TP-07	Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	509 U	254 U	25.4 U	12.7 U	254 U	25.4 U	127 U	12.7 U	25.4 U	50.9 U	127 U	25.4 U	50.9 U	12.7 U	25.4 U	50.9 U	25.4 U	254 U	254 U	25.4 U	254 U	102 U	25.4 U	12.7 U	25.4 U	25.4 U
Native So	l Sample		1	1				-							ŀ	E.															
TP-04	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	580 U	290 U	29.0 U	14.5 U	290 U	29.0 U	145 U	14.5 U	29.0 U	58.0 U	145 U	29.0 U	58.0 U	14.5 U	29.0 U	58.0 U	29.0 U	290 U	290 U	29.0 U	290 U	116 U	29.0 U	14.5 U	29.0 U	29.0 U
TP-05	Native Soil Sample	10/11/2023	Primary	Composite	4.0-5.0	506 U	253 U	25.3 U	12.6 U	253 U	25.3 U	126 U	12.6 U	25.3 U	50.6 U	126 U	25.3 U	50.6 U	12.6 U	25.3 U	50.6 U	25.3 U	253 U	253 U	25.3 U	253 U	101 U	25.3 U	12.6 U	25.3 U	25.3 U
TP-06	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	515 U	257 U	25.7 U	12.9 U	257 U	25.7 U	129 U	12.9 U	25.7 U	51.5 U	129 U	25.7 U	51.5 U	12.9 U	25.7 U	51.5 U	25.7 U	257 U	257 U	25.7 U	257 U	103 U	25.7 U	12.9 U	25.7 U	25.7 U
TP-08	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	461 U	230 U	23.0 U	11.5 U	230 U	23.0 U	115 U	11.5 U	23.0 U	46.1 U	115 U	23.0 U	46.1 U	11.5 U	23.0 U	46.1 U	23.0 U	230 U	230 U	23.0 U	230 U	92.2 U	23.0 U	11.5 U	23.0 U	23.0 U
TP-10	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	589 U	294 U	29.4 U	14.7 U	294 U	29.4 U	147 U	14.7 U	29.4 U	58.9 U	147 U	29.4 U	58.9 U	14.7 U	29.4 U	58.9 U	29.4 U	294 U	294 U	29.4 U	294 U	118 U	29.4 U	14.7 U	29.4 U	29.4 U
TP-15	Native Soil Sample	10/12/2023	Primary	Composite	9.0-10.0	659 U	329 U	32.9 U	16.5 U	329 U	32.9 U	165 U	16.5 U	32.9 U	65.9 U	165 U	32.9 U	65.9 U	16.5 U	32.9 U	65.9 U	32.9 U	329 U	329 U	32.9 U	329 U	132 U	32.9 U	16.5 U	32.9 U	32.9 U

	VOC Metal Results						1					E8260D			1			
		Screening	Criteria			Styrene	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	Trichloroethene	Trichlorofluoromethane	Vinyl chloride	2-Hexanone	M,P-Xylene	0-Xylene	Bromochloromethane
						µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
					ning Levels		-		-						-		-	-
				LP 20x Prescree	_	_		14,000	—	—		10,000		4,000			—	_
Locatio n	Area	Date	QC Sample Type	Grab/ Composite	Depth (ft)													
Surface So	oil / Interbedded Mater	ial Sample	-				T		1						1	1		1
TP-07	Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	25.4 U	25.4 U	12.7 U	25.4 U	12.7 U	25.4 U	12.7 U	50.9 U	12.7 U	509 U	25.4 U	12.7 U	25.4 U
Native Soi	l Sample		1		1		г		1				1		1	-	-	1
TP-04	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	29.0 U	29.0 U	14.5 U	29.0 U	14.5 U	29.0 U	14.5 U	58.0 U	14.5 U	580 U	29.0 U	14.5 U	29.0 U
TP-05	Native Soil Sample	10/11/2023	Primary	Composite	4.0-5.0	25.3 U	25.3 U	12.6 U	25.3 U	12.6 U	25.3 U	12.6 U	50.6 U	12.6 U	506 U	25.3 U	12.6 U	25.3 U
TP-06	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	25.7 U	25.7 U	12.9 U	25.7 U	12.9 U	25.7 U	12.9 U	51.5 U	12.9 U	515 U	25.7 U	12.9 U	25.7 U
TP-08	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	23.0 U	23.0 U	11.5 U	23.0 U	11.5 U	23.0 U	11.5 U	46.1 U	11.5 U	461 U	23.0 U	11.5 U	23.0 U
TP-10	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	29.4 U	29.4 U	14.7 U	29.4 U	14.7 U	29.4 U	14.7 U	58.9 U	14.7 U	589 U	29.4 U	14.7 U	29.4 U
TP-15	Native Soil Sample	10/12/2023	Primary	Composite	9.0-10.0	32.9 U	32.9 U	16.5 U	32.9 U	16.5 U	32.9 U	16.5 U	65.9 U	16.5 U	659 U	32.9 U	16.5 U	32.9 U

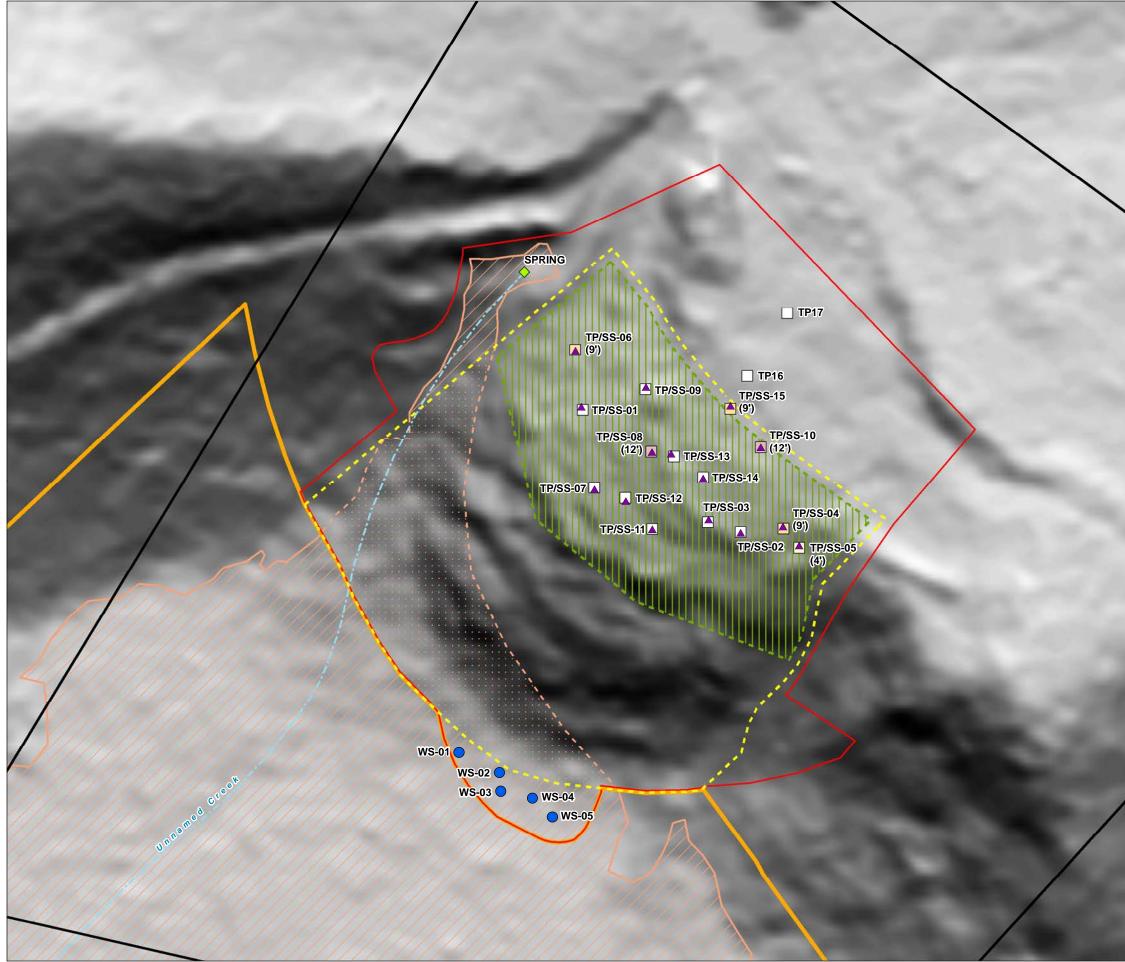
Former Eatonville Landfill Waste Characterization Results

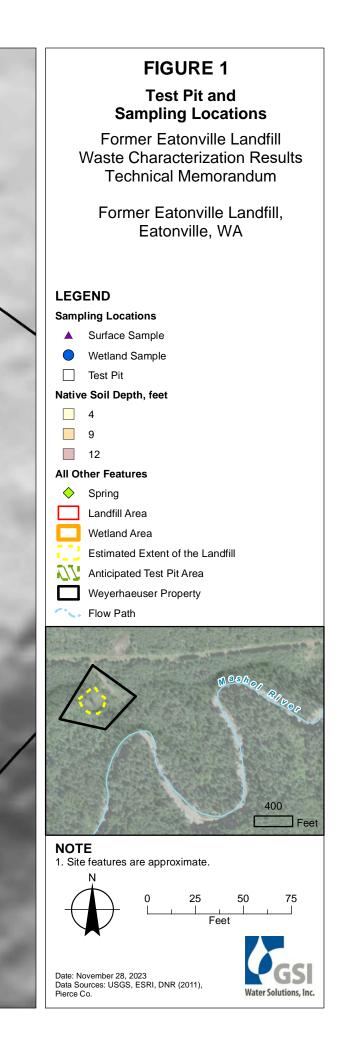
Notes

µg/kg = micrograms per kilogram

ft = foot or feet

QC = quality control


TCLP = Toxic Characteristic Leaching Procedure


U = Result not detected above the referenced laboratory detection limit

VOC = volatile organic compound

Figure

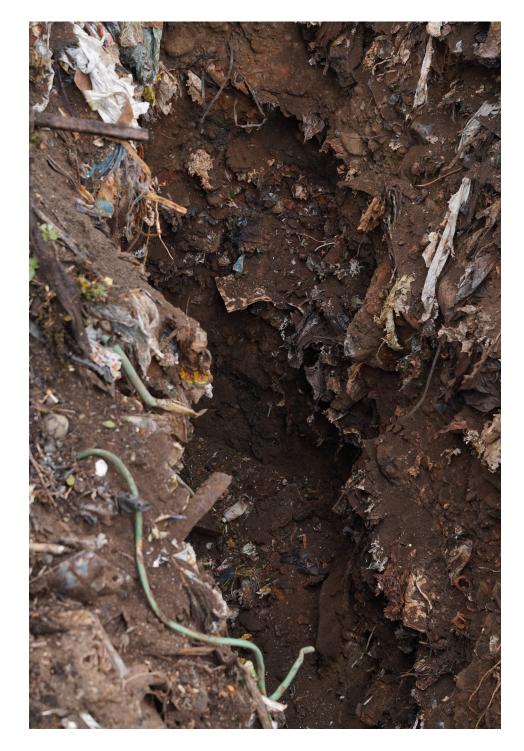
This page intentionally left blank.

Attachment A

Test Pit Photo Logs

This page intentionally left blank.

Test Pit 1 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA



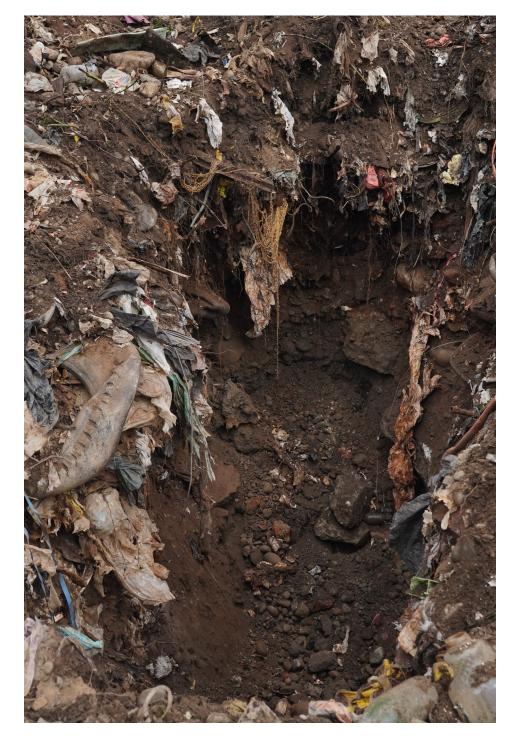
Test Pit 2 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Test Pit 3 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Test Pit 4 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Test Pit 5 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Test Pit 6 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA



Test Pit 7 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Test Pit 8 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Test Pit 9 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Test Pit 10 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Test Pit 11 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Test Pit 12 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Test Pit 13 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Test Pit 14 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Test Pit 15 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Wetland Sample 1 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Wetland Sample 2 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Wetland Sample 3 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Wetland Sample 4 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Wetland Sample 5 Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA

Attachment B

Test Pit Soil Logs

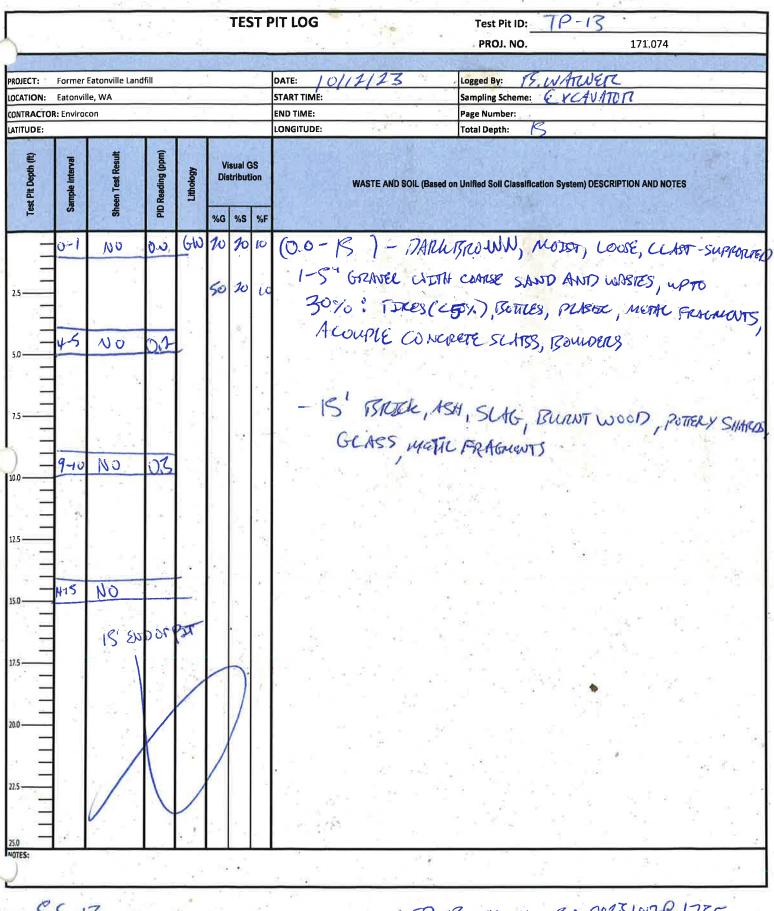
This page intentionally left blank.

1300			-	JRFACE S	OIL SAMPLIN	ig da		Control of the other		
Project N Former E		andfill	Project Number: 171.0	74	Location: Eatonville La	ndfill	Investig	ation Unit	: (IU):	Date: /0//0122
Weather		Non-		140		_	npling Pe	rsonnel:	15 WARNER 13.	TOHASUN
Depth So	unding M	ethod:		NA	-	Sam	pling Equ	ipment:	FOR POST HOLEN	
Target Co	ordinates	(NAD 83):	Easting:		1 101 1	a la la.		Source:	NA	
	2		Northing:	1011 Co.	CLIBARA		Height (f	t)/Time:	NA	and the second second
1 2 100	- marine				SUMMAR		0			1 5 5 5 5 5
Station ID	Time	Coordi Latitude	nates Longitude	Water Depth (ft)	Recovered Thickness (in)	< OLW?	Accepted?	< Photo?	Notes	Sample Interval
WS-02	0		14 - C - 1		24		Lange and		Notes	(in)
1. 1	111	the second se	FDELO MA					7	e a ver negativ ta A	0-24
WS-01	850	SAME AS F	JECO MAPS	NA	24	- C - 10	V	19 AL		0-29
	<u> </u>			100					2	54
WS #:	c)	s, ft = feet, OLW = ov	erlying water	A Stranger		Attempt	#.	To the second		and the second se
		test								
Descriptio	DAT	tion (%G/S/F): ()	et soft ora	moc for	Odor/Sheen/W	0-13	e/Visual	Impacts: Then	NO ONREA LOGHT GREY, IT	N-pientes
Descriptio	on: DAT IVE SI	tion (%G/S/F): 0 UL PURERELLI ZFY AND (TR	et soft ora	nde fize	ASDER 10.	0-13	e/Visual	Impacts: Then	NO ONROM LIGHT GREN, IN	N-KOMUD
Description CYPAN Imment Sampled	on: DAT IVE SI	CLPWRREIN ZTY AND GR	et soft ora	o CLAS-	14 SDUT (0. 201), 10/80	ھ - (5 /1 ن imple ID	: WS-9	Then	NO 0.1987 LIGHT GREY, IR -2=-70602023	N-KOMAD
Description ORAN Domment Sampled WS #:	0 ^{n:} DAN 62 SI 8: <u>8/N):</u>	Ch. PURREINS ZTY AND GR	GT SOFT ORA WHEN SANT	o CLAS-	14524 (0. 201), 10/80 Se	ھ - (ت /i ن imple ID Attempt	: (J); :: (J);-();	Then 2-0.0	-20-70602023	N-KOMAD
Description ORAM Imment Sampled WS #: Grain Size Description	on: DAT S: V/N): Distribut On: DA	しん Pい R R L い こ下り AND (FR) ion (%G/S/F): 0 ,	Sample Time: 8) (1.25-1 140 . ct-6445	14 SDIF (0. 201), 10/80 Se Odor/Sheen/W	ی - (ت /۱ پ imple ID Attempt	: (J)-(: (J)-() : #: e/Visual	Then 2-0.0 Impacts: E-11.cc	2010202023	
Description ORAN Imment Sampled WS #: Grain Size Description M&I Comment	on: DAN SCE SI SCE SI SCE Distribut Distribut SCE SCE SCE SCE SCE SCE SCE SCE	IN PURERE IN ZFY AND OF ion (%G/S/F): O WE PURPLE SANT (1.2-	50,5097,0RA 102169 5227 Sample Time: 8 1 20 180 -, WEI FOFT 201) 5/80	0 CL 25-1 740 1 OT-BANS 1 KS	14 SDIF (0. 201), 10/30 [Se [Odor/Sheen/W 2 RPC4SDD	ッー(ご // o mple ID Attempt oodwast すい可	: WS-9 #: e/Visual HLANC	Then 2-0-0 Impacts: E-RCC	128417 GREY, IT -20-7002023 NA- 0-0 000 15, THEN CIDUTG	uey Szury
Description ORAN Imment Sampled WS #: Grain Size Description M&A Comment Sampled WS #:	s: V/N): Distribut Distribut S: V/N): S: V/N):	IN PURPARE IN ZFY AND OF ion (%G/S/F): O WE PURPLE SANT (1.2-	Sample Time: 8) (1.25-1 140 . ct-6445	14 SDIF (0. 201), 10/80 [Se [Odor/Sheen/W C RACHSDD	ッー(ご // o Attempte ID Attempte f いり f	: [2] ::	Then 2-0.0 Impacts: E R.C.	12647 GREY, IT	uey Szury
Description ORAN Imment Sampled WS #: Grain Size Description M&(Comment Sampled WS #: Grain Size	vie DAM vie Si vie S	IN PURERE IN ZFY AND OF ion (%G/S/F): O WE PURPLE SANT (1.2-	50,5097,0RA 102169 5227 Sample Time: 8 1 20 180 -, WEI FOFT 201) 5/80	0 CL 25-1 740 1 OT-BANS 1 KS	14 SDIF (0. 201), 10/30 [0dor/Sheen/W C RFC4SDD	ッー(ご // o Attempte ID Attempte でいりし	: [2] ::	Then 2-0.0 Impacts: E R.C.	128417 GREY, IT -20-7002023 NA- 0-0 000 15, THEN CIDUTG	uey Szury
Description ORAN Imment Sampled WS #: Grain Size Description M&A Comment Sampled WS #:	vie DAM vie Si vie S	IN PURPARE IN ZFY AND OF ion (%G/S/F): O WE PURPLE SANT (1.2-	50,5097,0RA 102169 5227 Sample Time: 8 1 20 180 -, WEI FOFT 201) 5/80	0 CL 25-1 740 1 OT-BANS 1 KS	14 SDIF (0. 201), 10/80 [Se [Odor/Sheen/W C RACHSDD	ッー(ご // o Attempte ID Attempte でいりし	: [2] ::	Then 2-0.0 Impacts: E R.C.	128417 GREY, IT -20-7002023 NA- 0-0 000 15, THEN CIDUTG	uey Szury
Description ORAN Imment Sampled WS #: Grain Size Description M&(Comment Sampled WS #: Grain Size	on: DAM S: V/N): Distribut S: V/N): Distribut n: Distribut n:	IN PURPARE IN ZFY AND OF ion (%G/S/F): O WE PURPLE SANT (1.2-	50,5097,0RA 102169 5227 Sample Time: 8 1 20 180 -, WEI FOFT 201) 5/80	0 CL 25-1 740 1 OT-BANS 1 KS	14 SDIF (0. 201), 10/80 [Se [Odor/Sheen/W C RACHSDD	ッー(ご // o Attempte ID Attempte でいりし	: [2] ::	Then 2-0.0 Impacts: E R.C.	128417 GREY, IT -20-7002023 NA- 0-0 000 15, THEN CIDUTG	uey Szury
Description ORAN Imment Sampled WS #: Grain Size Description Sampled WS #: Grain Size Description	on: DAM S: V/N): Distribut S: V/N): Distribut s: S: S: S: S: S: S: S: S: S: S	In PURREIN ZFY AND (TR ion (%G/S/F): 0 NC PURPLE SANT (1.2- ion (%G/S/F): 1	50,5097,0RA 102169 5227 Sample Time: 8 1 20 180 -, WEI FOFT 201) 5/80	0 CL 25-1 740 1 ET-BAMS 1 ES 850	44 SDEAT (0. 201), 10/80 Sa Odor/Sheen/W C RAC4S DD Sa Odor/Sheen/W	e - (ジ /i o Attempt oodwast すいす Attempt oodwast	: [] :: [Then 2-0.0 Impacts: E R.C.	128417 GREY, IT -20-7002023 NA- 0-0 000 15, THEN CIDUTG	uey Szury
Description () (2A, N)) mment Sampled (WS #: Grain Size Description Sampled WS #: Grain Size Description Comment	on: DAM S: V/N): Distribut n: Distribut n: S: V/N): S: V/N):	In PUR REINS ZFY AND (FR ion (%G/S/F): 01 RA PURPLE SANT (1.2-	Sample Time:	0 CL 25-1 740 1 CT-6445 1 KS 850 SA	14 SDEF (0. 201), 10/80 [Se [Odor/Sheen/W C RFC4S DD [Se]Odor/Sheen/W Sa MPLE INFORM	ی - (ت ار ن Attempt oodwast ک س آ ا Attempt oodwast	:: [] :: [] :: [] :: [] :: [] :: [] :: [] :: []	Then 2-0.0 Impacts: E R.C.	128417 GREY, IT	ee sary 5
Description () (2A, N)) mment Sampled (WS #: Grain Size Description Sampled WS #: Grain Size Description Comment	on: DAM S: V/N): Distribut S: V/N): Distribut s: S: S: S: S: S: S: S: S: S: S	In PAREAL IN ZFY AND (TR ion (%G/S/F): 0 NC PUTPLE SANT (1.2- ion (%G/S/F): 1 Ion (%G/S/F): 1	Sample Time: Sample Time: Sample Time: Sample Time: Time	0 CL 25-1 740 1 CT-6445 1 KS 850 SA	44 SDEAT (0. 201), 10/80 Sa Odor/Sheen/W C RAC4S DD Sa Odor/Sheen/W	ی - (ت ار ن Attempt oodwast ک س آ ا Attempt oodwast	:: [] :: [] :: [] :: [] :: [] :: [] :: [] :: []	Then 2-0.0 Impacts: E R.C.	128417 GREY, IT -20-7002023 NA- 0-0 000 15, THEN CIDUTG	ee sary 5
Description () (2A, N)) mment Sampled (WS #: Grain Size Description Sampled WS #: Grain Size Description Comment	on: DAM S: V/N): Distribut n: Distribut n: S: V/N): S: V/N):	In PUR REINS ZFY AND (FR ion (%G/S/F): 01 RA PURPLE SANT (1.2-	Sample Time: Sample Time: Sample Time: Sample Time: Time Sample Time: Time	0 CL 25-1 740 1 CT-6445 1 KS 850 SA	14 SDEF (0. 201), 10/80 [Se [Odor/Sheen/W C RFC4S DD [Se]Odor/Sheen/W Sa MPLE INFORM	ی - (ت ار ن Attempt oodwast ک س آ ا Attempt oodwast	:: [] :: [] :: [] :: [] :: [] :: [] :: [] :: []	Then 2-0.0 Impacts: E R.C.	128417 GREY, IT	ee sary 5
Description () (2A, N)) mment Sampled (WS #: Grain Size Description Sampled WS #: Grain Size Description Comment	on: DAM S: V/N): Distribut n: Distribut n: S: V/N): S: V/N):	In PAREAL IN ZFY AND (TR ion (%G/S/F): 0 NC PUTPLE SANT (1.2- ion (%G/S/F): 1 Ion (%G/S/F): 1	Sample Time: Sample Time: Sample Time: Sample Time: Time Sample Time: Time	0 CL 25-1 740 1 CT-6445 1 KS 850 SA	14 SDEF (0. 201), 10/80 [Se [Odor/Sheen/W C RFC4S DD [Se]Odor/Sheen/W Sa MPLE INFORM	ی - (ت ار ن Attempt oodwast ک س آ ا Attempt oodwast	:: [] :: [] :: [] :: [] :: [] :: [] :: [] :: []	Then 2-0.0 Impacts: E R.C.	128417 GREY, IT	ee saay 5
Description () (2A, N)) mment Sampled (WS #: Grain Size Description Sampled WS #: Grain Size Description Comment	on: DAM S: V/N): Distribut n: Distribut n: S: V/N): S: V/N):	100 (%G/S/F): 0 100 (%G/S/F): 0 100 (%G/S/F): 0 100 (%G/S/F): 1 100 (%G/S/F): 1 100 (%G/S/F): 1 100 (%G/S/F): 1	Sample Time: Sample Time: Sample Time: Sample Time: Sample Time: Time Sample Time: Sample Time:	0 CL 25-1 740 1 CT-6445 1 KS 850 SA	14 SDEF (0. 201), 10/80 [Se [Odor/Sheen/W C RFC4S DD [Se]Odor/Sheen/W Sa MPLE INFORM	ی - (ت ار ن Attempt oodwast ک س آ ا Attempt oodwast	:: [] :: [] :: [] :: [] :: [] :: [] :: [] :: []	Then 2-0.0 Impacts: E R.C.	128417 GREY, IT	eey saay

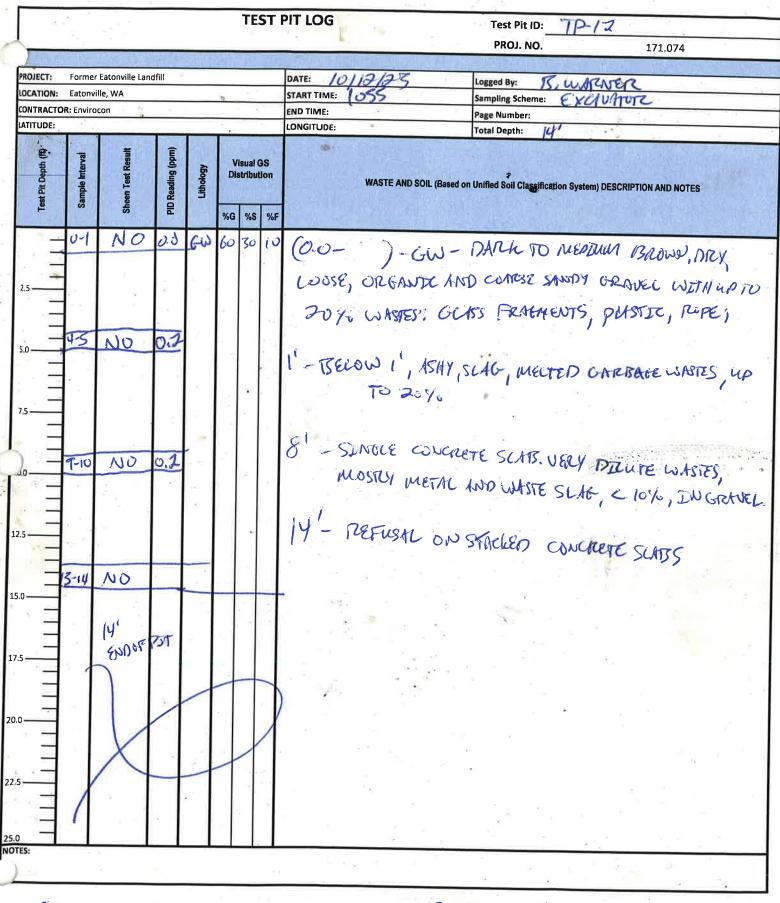
it.

4.6

Energy 1	1.1.1	165 131 25	SI	URFACE S	OIL SAMPLIN	NG DA	TA SHE	EET		Martin Carlo
Project Na			Project Number:		Location:		Investiga	ation Unit	(IU):	Date:
the second se	tonville La		171.0)74	Eatonville La	_				10/10/23
	Condition	Contraction of the second				_	npling Per			a linson
epth Sol	unding Me	thod:	Easting:	NA		Sam	pling Equi	Source:	POST-HOLETE NA	×
arget Co	ordinates	(NAD 83):	Northing:		•	Gauge	Height (ft		NA	
	• - 2 . M	1.19.5 8.8		145 J. 1 56 J.	SUMMAR		5			Hard States
Station ID	÷	-		Water	Recovered	ذ٨	Accepted?	Photo?		
Itio	e	Coordi	nates	Depth	Thickness	ŚMIO	Ac	Phe	1	Sample Interval
Sta	Time	Latitude	Longitude] (ft)	(in)	1	\checkmark	×	Notes	(in)
1405	140	SAMP A	TARGET	0.7	24		\bigvee		1	0-21
15504	Gus	SA		15	24		V	- 1. 	×	0-2'
\$-3	8.20	SAL		1.8'	20		V.	- 4 <u>8</u>		0-2
irain Size escriptic PANUM pmment	Distribution: DA GREA S:	25 ion (%G/S/F); () にんわしみのひ いろにかいい)	LESS UNT	127 ANTO	JE GANDE	4 CCA SAX	te/Visual イム S) Bによ	w.L.	U, WET, SOFT,	
irain Size escriptic DACA pmment ampled (/S #: rain Size	vin: PA GCA s: V/N): Distributi	on (%G/S/F); () (21, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20	2 01284187 しんぷう ひんり Sample Time: 	-750	I SCIGNITU ORGANIC Si Odor/Sheen/W	oodwast ۲ کی کی کی مصلح ۲ ۲	te/Visual 1945) 13663 2: (25- t#:	27 m	4), WET, SUFT,	\$
irain Size Descriptic DMM mment mment ampled VS #: irain Size Descriptic	V/N): Distribution:	on (%G/S/F); () (2)、クレネークび (~円(2~いい) (~円(2~いい) 9 on (%G/S/F):	2 01284187 しんぷう ひんり Sample Time: 	-750	I SCIGNITU ORGANIC Si Odor/Sheen/W	oodwast ۲ کی کی کی مصلح ۲ ۲	te/Visual 1945) 13663 2: (25- t#:	27 m	4),WET,SET,	\$
irain Size rescription photo pmment ampled vs #: irain Size rescription omment ampled (//s #:	V/N): V/N): V/N): V/N): V/N): V/N): S: V/N): S: V/N): S: V/N): S: V/N): S: V/N): S: V/N): S: V/N): S: V/N): S: V/N): S: V/N): S: V/N): S: S: V/N): S: S: S: S: S: S: S: S: S: S	on (%G/S/F); () (21, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20	2 01284187 しんぷう ひんり Sample Time: 	-750	SCIGNITU ORGANIC SI Odor/Sheen/W	ample ID Attemp Attemp Attemp	te/Visual 754 5) 7366 1366 1366 1366 1366 1367 1366 1367 1366 1367 1366 1366	05-C	4),WET,SET,	\$
Descriptic Dimment iampled VS #: Grain Size Comment ampled VS #: irain Size	Y/N): Y/N): Y/N): Y/N): Distributi Distributi	on (%G/S/F); () (21, 22, 22, 22, 22, 22, 22, 22, 22, 22,	Sample Time:	750 500002 0 8305	SCIGNITU ORGANIC SI Odor/Sheen/W FA TAU SI Odor/Sheen/W	ample ID Attemp /oodwass	te/Visual 754 5) 7366 1366 1366 1366 1366 1367 1366 1367 1366 1367 1366 1367 1366 1367 1366 1366	Impacts:	4), WET, SAFT,	\$ ~ 910 190
rain Size escriptic ph//// mment ampled /S #: rain Size escriptic S(-10	V/N): Distributi n: V/N): Distributi n: Distributi n: Distributi	on (%G/S/F); () (2) () () () () () () () () () () () () ()	Sample Time:	750 500002 0 8305	SCIGNITU ORGANIC SI Odor/Sheen/W FA TAU SI Odor/Sheen/W	ample ID Attemp /oodwass	te/Visual 754 5) 7366 1366 1366 1366 1366 1367 1366 1367 1366 1367 1366 1367 1366 1367 1366 1366	Impacts:	4), WET, SET,	\$ ~ 919 190
irain Size escriptic phm mment ampled (/S #: irain Size escriptic omment ampled (/S #: rain Size escriptic SC-10 omment	V/N): Distributi S: V/N): Distributi n: Distributi n: Official S: Control S: S: Control S: S: Control S: S: Control S: S: Control S: S: Control S: S: S: S: S: S: S: S: S: S:	on (%G/S/F): 0 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	Sample Time:	520 50000 0 50000 0 520 520 520	SCIGNITU ORGANIC Si Odor/Sheen/W F & TACC Si Odor/Sheen/W DIT U/ORGN	ample ID Attemp /oodwast	te/Visual $754 \leq i$ $754 \leq i$ $754 \leq i$ $754 \leq i$ $154 \leq i$	05-C Impacts: 1-0.0- Impacts:	4), WET, SET,	\$ ~ ?10 ~ ?10
irain Size escriptic phili mment ampled /S #: irain Size escriptic omment escriptic SC-10 omment	V/N): V/N): V/N): V/N): Distributi n: V/N): Distributi n: V/N): Official V/N): V/	on (%G/S/F): () (2) () () () () () () () () () () () () ()	Sample Time:	750 50002 0 8505 -15 520 520 520 520 520 520 520	SCIGNITU ORGANIC SEGANIC SE Odor/Sheen/W DI UCRGN DI UCRGN SE MPLE INFORM	ample ID Attempt /oodwast /oodwast /oodwast /oodwast	te/Visual $754 \leq i$ $754 \leq i$ $754 \leq i$ $1364 \leq i$	05-C Impacts: 1-0.0- Impacts:	4), WET, SET,	RED RED WER, SAND,
rain Size escriptio phm mment ampled (/S #: rain Size escriptio omment ss #: rain Size escriptio Stat	V/N): V/N): V/N): V/N): V/N): V/N): V/N): S: V/N): Sample	on (%G/S/F): () (2) () () () () () () () () () () () () ()	Sample Time:	750 50002 0 8505 -15 520 520 520 520 520 520 520	SCIGNITU ORGANIC Si Odor/Sheen/W F & TACC Si Odor/Sheen/W DIT U/ORGN	ample ID Attempt /oodwast /oodwast /oodwast /oodwast	te/Visual $754 \leq i$ $754 \leq i$ $754 \leq i$ $1364 \leq i$	05-C Impacts: 1-0.0- Impacts:	4), WET, SET,	RED RED WER, SAND,
irain Size escriptic phone pho	V/N): V/N): Distribution: V/N): Distribution: V/N): Distribution: V/N): Samples: Sample	on (%G/S/F): () (2) () () () () () () () () () () () () ()	Sample Time:	750 50002 0 8505 -15 520 520 520 520 520 520 520	SCIGNITU ORGANIC SEGANIC SE Odor/Sheen/W DI UCRGN DI UCRGN SE MPLE INFORM	ample ID Attempt /oodwast /oodwast /oodwast /oodwast	te/Visual $754 \leq i$ $754 \leq i$ $754 \leq i$ $1364 \leq i$	05-C Impacts: 1-0.0- Impacts:	4), WET, SET,	RED RED WER, SAND,
irain Size escriptic phm mment ampled vs #: irain Size escriptic omment ampled (/S #: irain Size escriptic Stat	V/N): V/N): Distribution: V/N): Distribution: V/N): Distribution: V/N): Samples: Sample	on (%G/S/F): 0 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	Sample Time:	750 50002 0 8505 -15 520 520 520 520 520 520 520	SCIGNITU ORGANIC SEGANIC SE Odor/Sheen/W DI UCRGN DI UCRGN SE MPLE INFORM	ample ID Attempt /oodwast /oodwast /oodwast /oodwast	te/Visual $754 \leq i$ $754 \leq i$ $754 \leq i$ $1364 \leq i$	Horacts:	4), WET, SET,	REP PED WER, SAND,

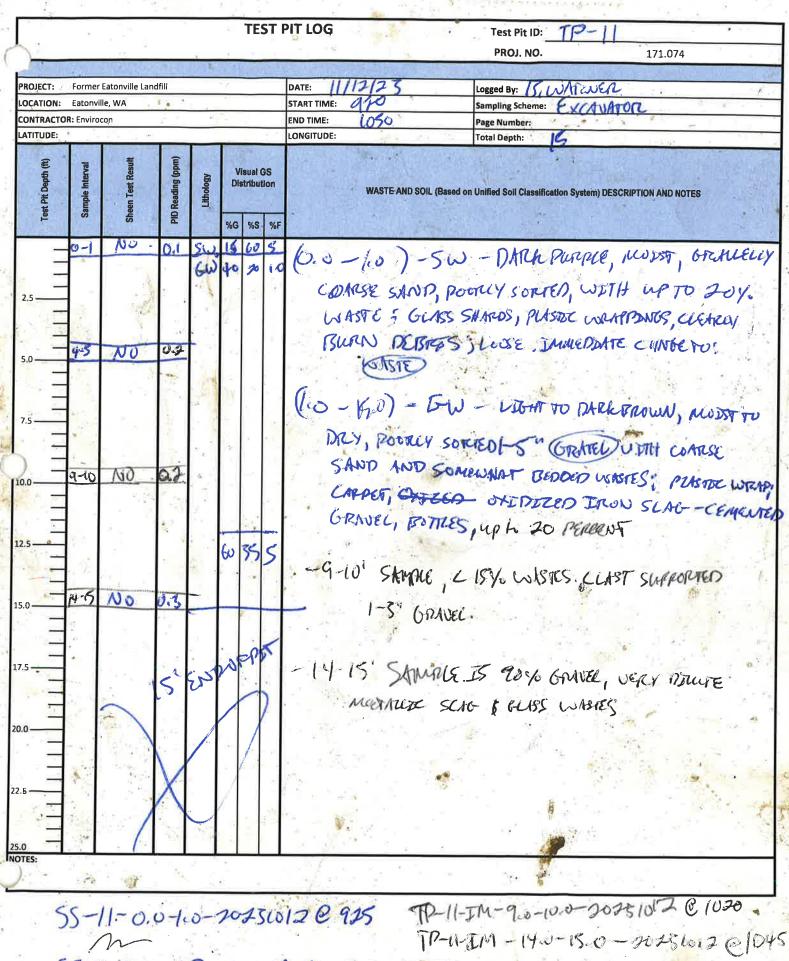

					TEST	PIT LOG	Test Pit ID: <u>TP-15</u> PROJ. NO. 171.074
				Steel.	200.02		111.0/4
DJECT:		Eatonville Lan	dfill	-	-	DATE: 10/17/7-3	Logged By: 15, WARNER
ATION:	Eatonvill		_	_	-	START TIME: 1410	Sampling Scheme: EXCANATOR
ITUDE:	R: Enviroc	on				END TIME: 1450	Page Number:
HODE:	-		1	-	100 M	LONGIT UDE:	Total Depth: 101
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lithology	Visual GS Distribution	WASTE AND	SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES
	01	NO	1.3		60 30 5		
	¥-5	NO 101 9	0.2	±:	30 10 5 55 40 5 5T	- BELOW I' CARPET, HOSON (S-U-10.01) BUT Press	GW - DARCH BROWN, MUDIST CLAST- ANDRY GRANEL 1 -5", ANTOWASTES) , UP TO 4076 PLASTER WRAP, LARGE MENAL APPLDANCE, BOTTLES, LARGE MENAL APPLDANCE, BOTTLES, C, BOULDERS UP TO 1.5") - GW - LIBOUT GREY, INDURATED AFSCE COATISE SANDY GRAVEL WITH DED, NO WASTE MATERDAL; DRY AND NATIONE SOST
-			12	. 1	3		
-							
		6-			100		
		1.1	~ 1	10 - L			
_			2.1	- 1°	* I S	1.0 ×	
		_					A Read Barrier Contraction of the Contraction of th
- C			20-		in je k	State State State	
						2 M 1	

55-15-0.0-1.0-207-51012-e 900 TP-15-IM-4.0-5-0-20231012 @ 1430 TP-15-NS-9-0-100-20231012 @ 14456-courserED VOAS(2)

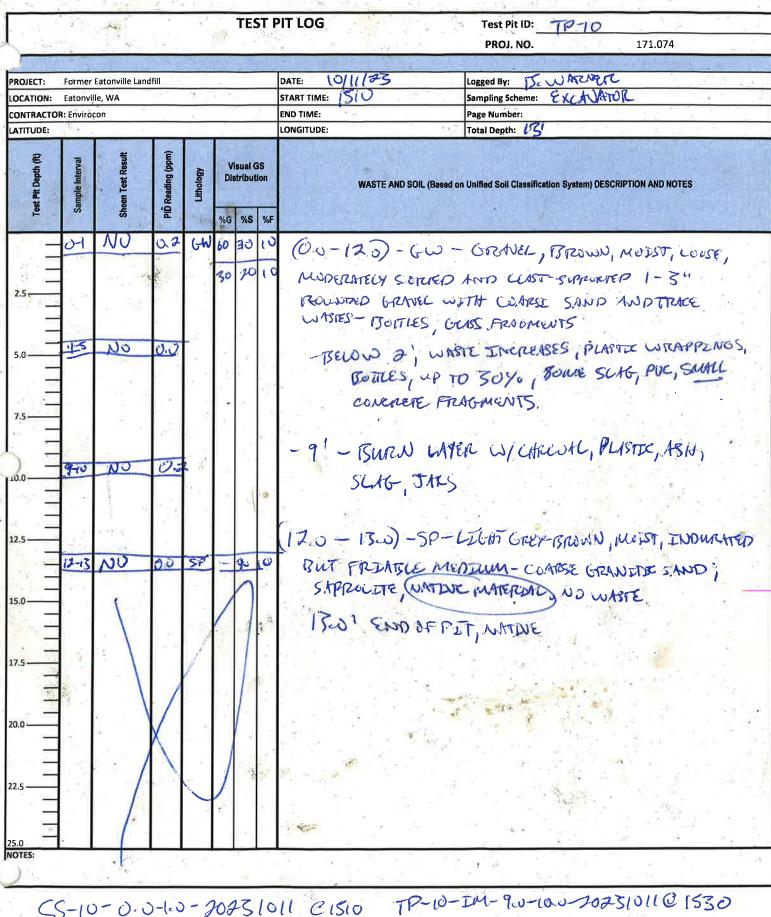

JECT: Former Eatonville Landfill ATION: Eatonville, WA						n 8	PROJ. NO.	171.074			
UECT		Contra di la	1611	1		1.1.1.1.1.1.1.7.7	Logged By: B, WATZNER				
			dtill			DATE: 0/17/75					
	-			7		START TIME: 505		IATOR			
ITRACTOR	. Enviroa	2011				END TIME: 1530	Page Number:				
I ODE:	1000	100 8188			T		Total Depth: 15				
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lithology	Visual GS Distribution %G %S %	WASTE AND SOI	L (Based on Unified Soll Classification System)	DESCRIPTION AND NOTES			
<u> </u>	0-1	NO	02	GW	40 20 10	0 (0,0-RD)	-GW- DARK BRO	WW. MUDET, LOUSE,			
1	-	100	Ť	4	일수		WIDER GRAVEL WIT				
	1	2.5	125	125	2)		2 2				
				1.1	121.2	round se	DICTED WOTH WASTES	, ISOIRES, METH			
-		1000		4 1		APPRIDANCE	S, 25% TORES, Hose	S PLASTIC WRADS			
	4-5	NU	0A		$ ^{M_{n-1}} _{n-1} = ^{\infty}$	· · · · · · · · · · · · · · · · · · ·		and the second second			
1 - 2 - <u>1 - 1</u>	10	Same in the	100	13.6	1. 18 1	-SI WD -	30% PLASTIC WITCH AG, BRITCH MATERIA	A 10 1 10 10 10 10			
	10	199.20	- a.			J 007 /0	>0% PLASTIC WTCH	PS WITH ASK			
	[]	2.1	31	1.5		FRON SO	AG BRACK MAN	and and a			
	(° .	- 26		1 1			, mare mattergy	us(?)			
		a e	3	F 7				1 A A			
-		and the second sec	1 1	1.1		196		1			
*	7-10	NÖ	0,3			-12' CONCRETE	SLATE	· 20 1 12 1 2 .			
					N - 12	and the second second	State and state	52			
-	- E	1. J.		1. 1		3.4.4	States of the states of the				
	1		1 7	1 - 1		- 19' - All	WATE IS SLAG, GL	Let Apil Suma			
		- × .	4 7	()		(En A	10,04	Trendry (NOA) IS ALT			
_		1 1 2 2	1 /	()		3 DC4	GMENTS	and a set of the			
_	1	200	2			a start s	S. March 1 1st	La Serie La			
-	14-15	NO	0.2	F 1		1 1 1 1 1 N		14 1 to 1			
_		- 10		Freed		and the second second	a a constant a second				
	1	9.57	R.a.M		5	1 a.c. 1 a.c.	2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S 2.16			
		dir.	500	FPJ	Vá	a state of the		2 5 33			
		15,81	2.1 -				in the second second	A STATE OF A STATE			
			100		1-h	1. 1. 1. 3					
	S. 1		1-1		r V	n an start in		Contraction of the second s			
-	1			1	A	and the second se	A Star Contract				
		× 1	1.1								
·,			1	1			1				
		X		i X			5 B				
	1					1. N. 1. N	A				
-	. I	1									
		1		/ I		· · · · · ·		2 See			
		1811 - III	1	6 I		The second se	1 - C - C - C - C - C - C - C - C - C -	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			
-						L					
			5								
	_			_							
-					¥.						
(11 11	1989 11 M	. N	0	0 00	101208,50	TP-14-IM-14-0-1				

1P-14-IM-9.0-10.0-20231012 @ 1315

1.1



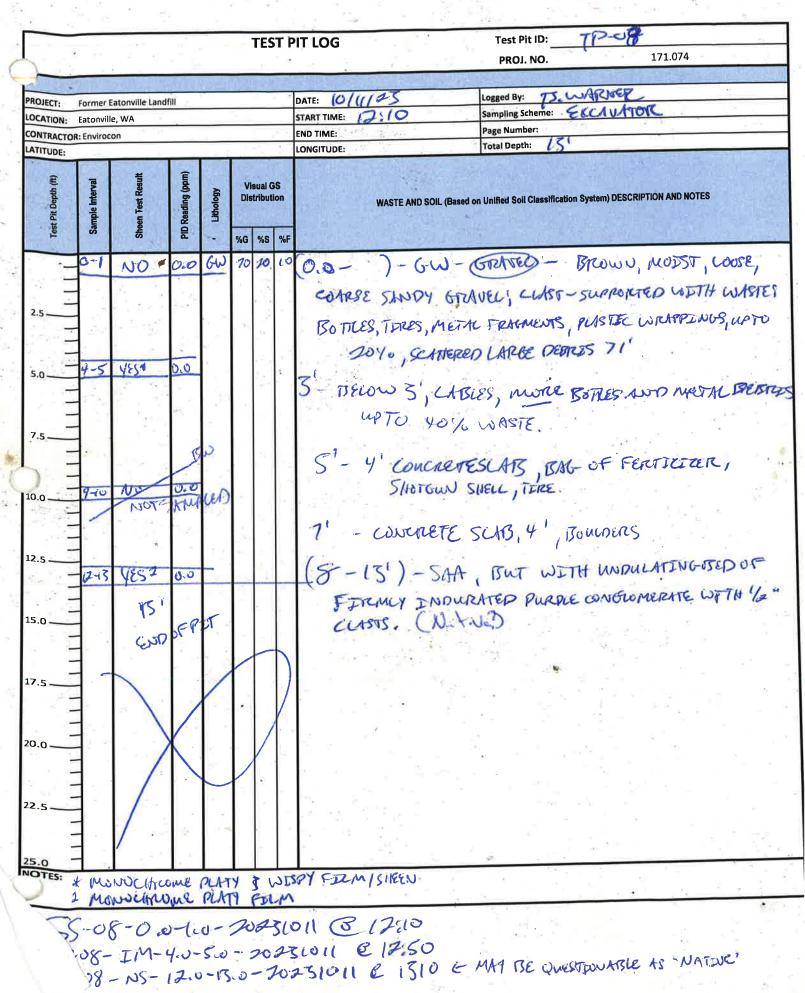
SS-13-0.0-1.0-20231012 C845 TP-13-IM-14.0-13.0-20231012C1255 TP-13-IM-4.0-50-20231012C 1205 TP-13-IM-9.0-1000-20231012C 1220



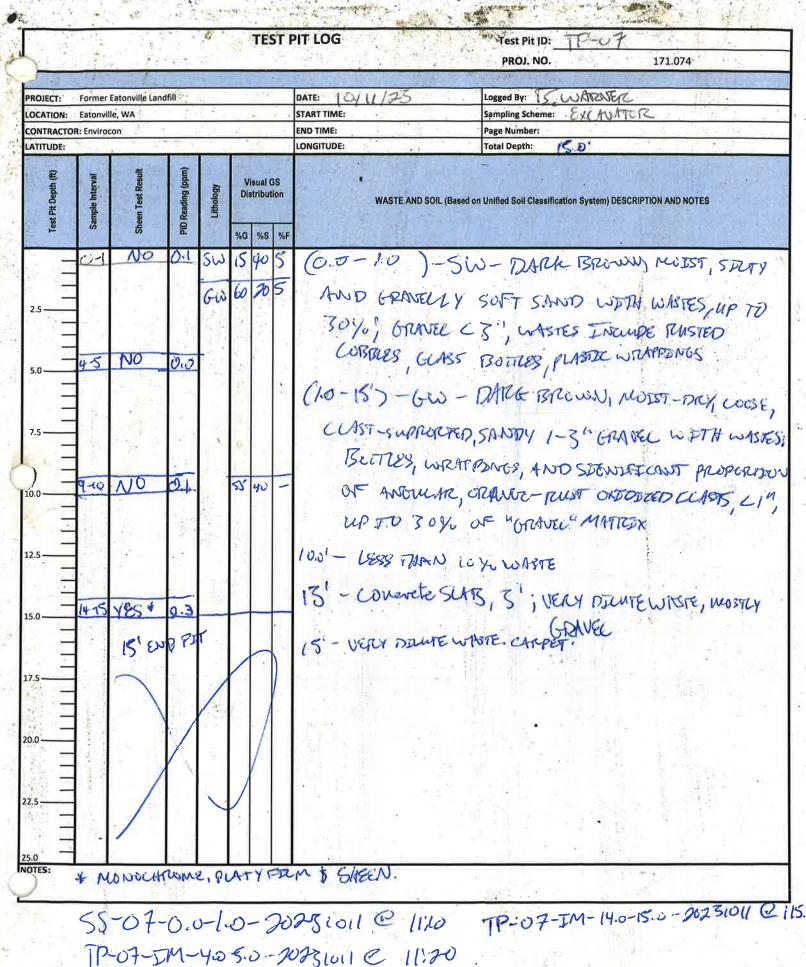
35-12-0.0-1.0-202510126/055 TP-12-IM-4.050-2023101201120 TP-12-IM-9.0-10.0-2023101201120 TP-12-IM-9.0-10.0-2023101201135

55-12-0.0-1-0-20231012 @ 1055 TP72-IM-150-14-0-202310120150

SS-11-JM TP-11- IM-42-5-2-20231012 @ 945

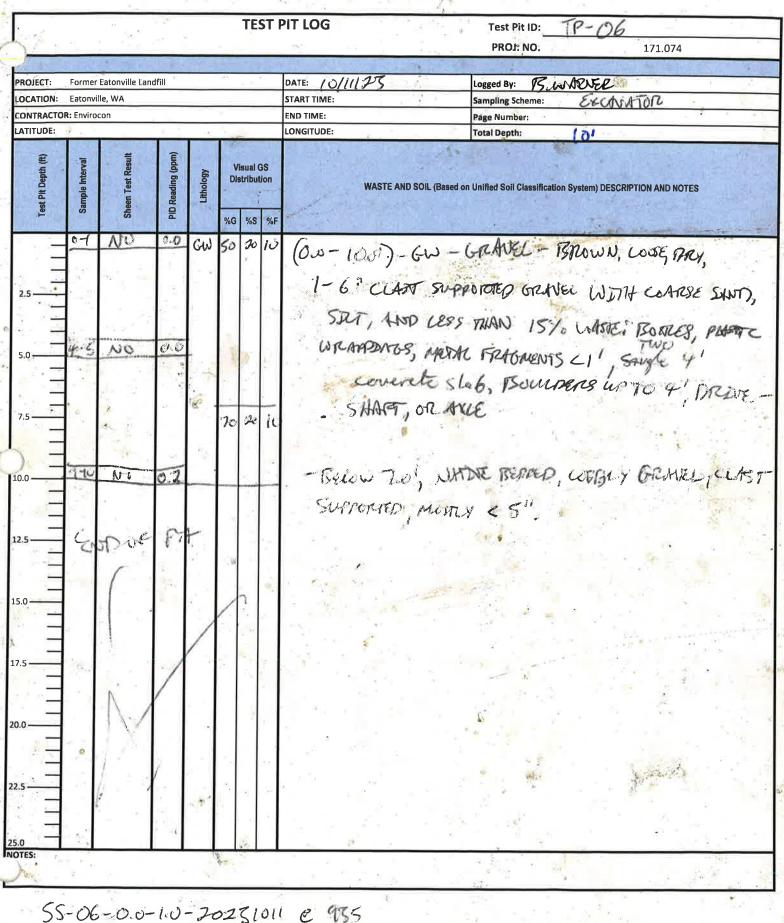


TP-10-4.0-5.0-20251011@1520 TP-1


TP-10-NS- 12-13- 20251011@ 1545

ROJECT: DCATION: ONTRACTO	Eatonvil		1fill				DATE: 10/11/25 Logged By: 5.WATENER START TIME: 535 1415 Sampling Scheme: ExcANATOR END TIME: Page Number: ONGITUDE: Tatel Death: 42 (1)
Lest Pit Depth (ft)	Sample Interval	Sheen Test Result	D Reading (ppm)	Visual GS Distribution			LONGITUDE: Total Depth: パス. い WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES
2.5	57	<u>N0</u> N0	0.1	Cw With	%G %S 40 30 € 20 (∪	1 22	(OLO-4.07-GW- GRAVED- BIRDWN, MODER, SANDY GRAVEL WETH WASTES, MOSTER GLASS FRAGMEN PLASTER WIRDAPPENDES, SOME METALLIC OBJECT ~~11. 5'-3' CONCRETE SLATES, CATTLES, 40% WASTE
.0	970	NO	00	1.000			(4.0-) - MATTE - 760% CONCRETE, PLASTIC, BRIELE FRATOMENT, GLASS EN 6W MATTRIX. MULTIPLE STACKED 3' CONCLARETE SLATSS
5 0 1 5		1.1	223	Dor	TET O	and the second se	9'- STEEL-LINED FILE-BRIGHS AND CHARCOAL, SOIL IS DARMER, CONCRETE SLAPS ON ALMOSTEVERY BUCKET 10-17' - STACLED CONCRETE AND METAL SLAG, CHARGERD WOOD.
0		/					121 REFUSIA ON SELLISS

7P-09-IM-9-10-20231011 @ 1430



14.2

TP-07-IM-9.0-10.0-20251011 C11:30

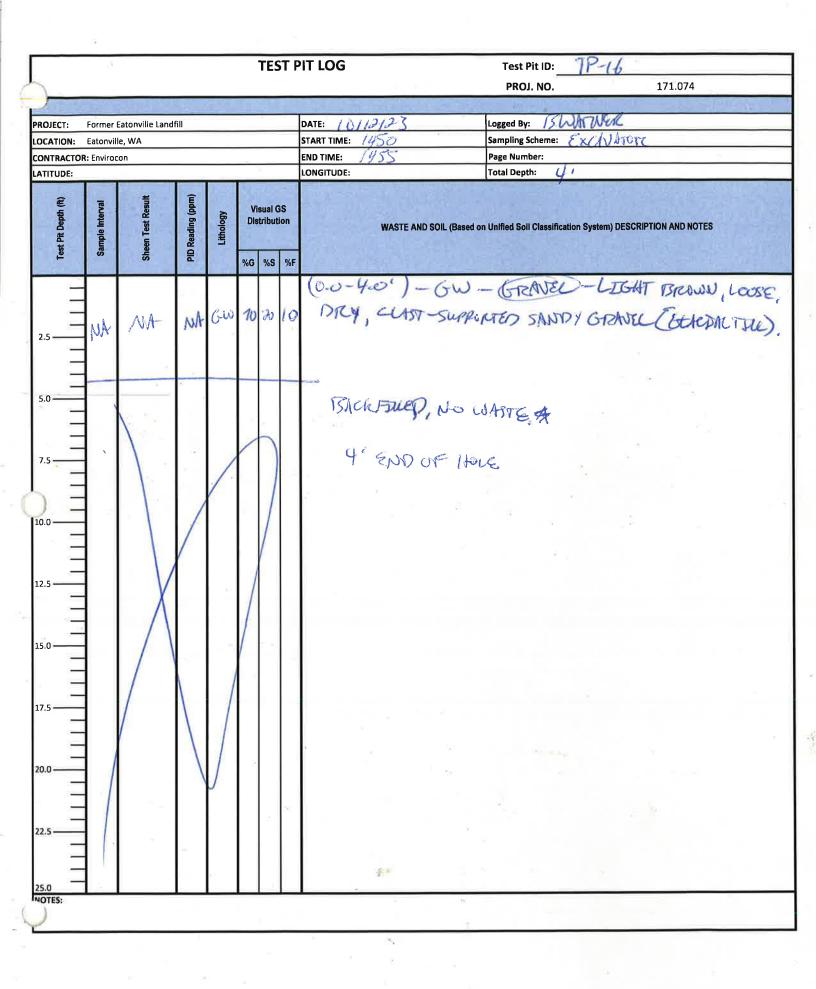
80

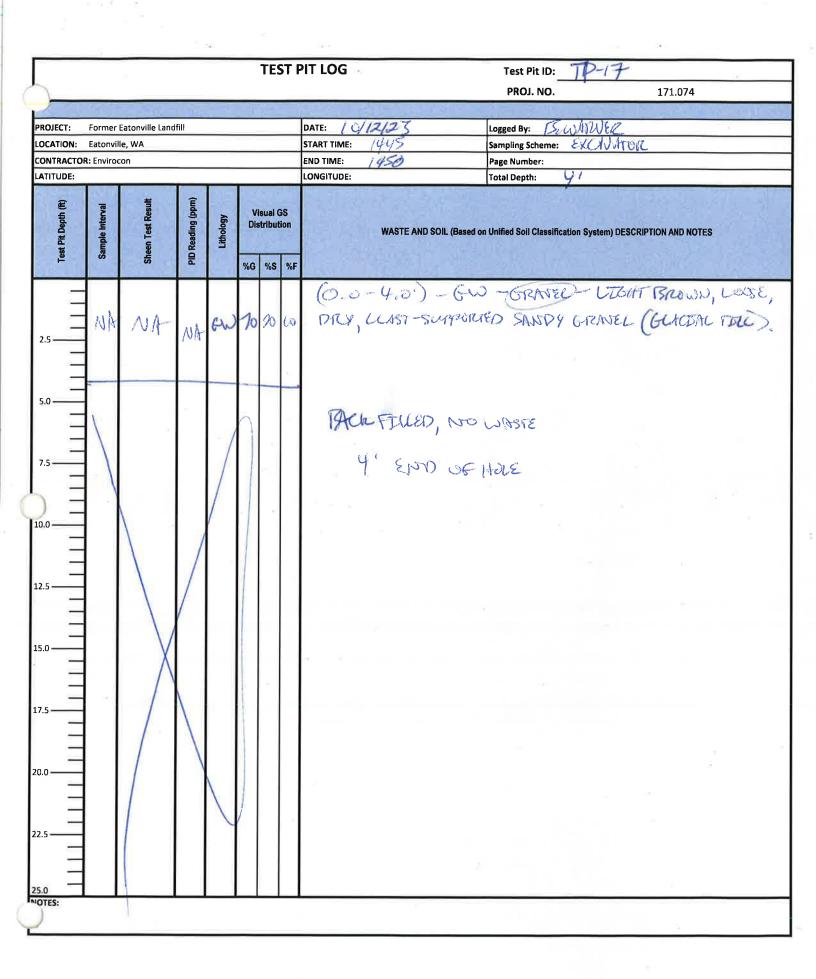
TP-06-IN-9-20-20251011 & 455 TP-06-IN-9-20-20251011 & 10200 TP-06-NS-9010-0-20251011 & 10215 -7 MITTED USCOMMENTERAST

Sile -	14		1.1.2		TE	EST F	PIT LOG	Test Pit ID:	TP-05	k
1	-	-				-		PROJ. NO.	171.	074
JECT:	Former	Eatonville Land	fill			1	DATE: 10/11/22	Logged By:	SWHIWER	
ATION:	Eatonvill			16 1	-		START TIME: CSS		EXIAVATOR	
	R: Enviroc		a gar		3			Page Number:	B. CONTRACTOR	
TUDE:					ý		LONGITUDE:	Total Depth:	2 - 14 No. 1	
Fest Pit Depth (ft)	Sample Interval	Sheen Tëst Result	PID Reading (ppm)	Lithology	Visual Distribu		WASTE AND SOIL	(Based on Unified Soil Classifi	cation System) DESCRIPTION AN	ID NÔTES
-	<u>⊚~1</u>	ND	م 2،2	2.5	%G %S	-	The share - The I		N: 000 V	
-	-	4 1 1 1		(11)	50 K		(0.0-) - 6	m T GRANER	-) - Israhum), DAUL
_						<	MUDET STUTY	AND COARE	SHUDY GRAN	a word
		·					65 10574	NATU (1)	N 7. 1190 00	NE AND
-	с. С	12	12.00		2. a.	*	AS', WS74 W	17 5 [4 50%	e), iso mas, re	w pres
-	17	TOU	0.0	6.20	To Fe	Sic	IN POTER MES	AL PLASTIC L	JEAPPENESS' CI	AST-Suppor
	4.3	6		a		ALCONT.	Louise per	MAR KONTIG	MUSTLY 2-8	
۰. ۲	Ē.	12	~ ~	Face	1	- °,		CATUCC	, Marsher 2 - 3	711
-	100	5 6,	V 7	d la	22	- 25	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1	1	1		18			4 - WE WINSTE,	NATIONE WAT	MA	E. Cibla
	John Martin		$(\mathbf{x}_{i},\mathbf{x}_{i})$	2			,			a, cym-
	200	Server and	1		A		SUPERVER	Take, Bleuk	DILY, DESTIM	utly iserted
	1				1.1		BELEW LAA	STE .	,	P 3 - ,
	5, 9,	8 A 2					5'END OF PET			13 the second
1	-14			1	1	5		1. 4	1 M	att a
	1		- 5	12-	1	÷.,		the set of the set of the set	3	City.
1	1.00	1.2.8	32	1	10 -			Taat aas	152.4	
		1 2- 10	1		1			a - 1 - 1	1 1 1 A 1 A 1 A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-			1	- sin-		1-21		8 - Par 1 2		
-			21		-	2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		P
		ne /	2.1	14		-		·		1
2.	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		**	- C		a Kalasi A			
-		me a		- 75				2013 and	e 🔬 👘 🖓	
-	100	1		1	2		20	and the goal		1 1 - 1 - 1
	3	1	•	1	- 3				and the second	· · · · ·
<u> </u>		10 m	0	1				12.	24	
-	1	- 812		10.0	-			27 × ****		here's a
_	6.1	5/45 G			40					
_	Ca F	A.0		24		1			N	1
	-	5 d	1990 F.	12		1				1. PO
	(e	- 2		1		옥장				
S:			-		5	1 4				
2						1	(1		
C	C-/	K-m	15-1) -	2.5	27	1011 6.835		a	
.)	2 4.		14 1		-		1			

LOCATION: Eatonville, WA CONTRACTOR: Envirocon LATITUDE: SEE STEEN MAPS LONGITUDE: 1600 Page N LATITUDE: SEE STEEN MAPS LONGITUDE: Total D Waste AND SOIL (Based on Unified Waste AND SOIL (Based on Unified 2.5	Logged By: B. WARNER Sampling Scheme: EXCAVATOR Page Number: Total Depth: 101 Julified Soil Classification System) DESCRIPTION AND NOTES Julified Soil Classification System) DESCRIPTION AND NOTES ISTRONN, MODST, GRAVELLY WOSE 8. GEDANEL JS, GRAVELLY WOSE 8. GEDANEL JS, I'- 12°, ROWSDED PLASTFC SHEERDING, EDECTICLE DSTED METAL, ISOTILES, SOME TITLES 6 TIMES, LARDE MERALITE APPLIANCE WEEL, FERTILIZER,	TART TIME: 1 ND TIME: 1 DNGITUDE: CATSL	GS tion %F	Distributi	Lithology	PID Reading (ppm)	Sheen Test Result	onville, WA wirocon	DN: Eaton NCTOR: Envir DE: Iexual and a second Iexual and a seco	LOCATIO CONTRAC LATITUDI
LOCATION: Extonville, WA START TIME: 5 ± 5 Sampli CONTRACTOR: Environ Normal Start Time: 5 ± 5 Sampli CONTRACTOR: Environ Normal Start Time: 5 ± 5 Sampli CONTRACTOR: Environ Normal Start Time: 5 ± 5 Sampli LATITUDE: 4 ± 5 To EUN MAY >> LONGITUDE: Total D Total D Total D Total D Total D Total D Sampli Samp	Sampling Scheme: Exc A V A TOK- Page Number: Total Depth: 101 Jnified Soil Classification System) DESCRIPTION AND NOTES ISTED NODERT, GRAVELLY WOSE S. GEDANEL JS, GRAVELLY WOSE S. GEDANEL JS, I'' - 12", ROWSDED. PLASTIFC SHEERDING, EDECTICLE DESTED MERAL, ISO THES, SOME TITLES I TIMES, LARDE MERALITE APPLIANCE WHELE, FERTILIZER,	TART TIME: 1 ND TIME: 1 DNGITUDE: CATSL	GS tion %F	Distributi	Lithology	PID Reading (ppm)	Sheen Test Result	onville, WA wirocon	DN: Eaton NCTOR: Envir DE: Iexual and a second Iexual and a seco	LOCATIO CONTRAC LATITUDI
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Page Number: Total Depth: 101 Juiffed Soil Classification System) DESCRIPTION AND NOTES JUIFfed Soil Classification System) DESCRIPTION AND NOTES ISTED NODEST, GRAVELLY WOSE S. GERAVEL JS, I'- 12°, ROWSDED PLASTIFC SHEERDING, EDECTICIC DESTED MERAL, ISO THES, SOME FITTES I TIMES, LARDE MERALIZE APPLIANCE WHEN, FERTILIZER,	ND TIME: DNGITUDE: CATSL	GS tion %F	Distributi	Lithology	PID Reading (ppm) Lithology	Sheen Test Result	virocon	ICTOR: Envil	CONTRAC
LATITUDE: $\zeta \zeta \zeta$ ζ $\zeta \zeta \zeta$ $\zeta \zeta \zeta \zeta $	Juinted Soil Classification System) DESCRIPTION AND NOTES TSTEWN, MODST, GRAVELLY WOSE 8. GRAVEL IS I" - 12", ROWDOD PLASTFC SHEERDIG, EDECTICIC DSTED METAL, TSOTILES, SOME TITLES CTINES, LARDE MEMMITE APPLIANCE WEE, FERTILIZER,	ONGITUDE: (O.O - SAND WASTE CATSL	GS tion %F	Distributi	Lithology	PID Reading (ppm) Lithology	Sheen Test Result	Sample Interval	Sample Interval	la kevi
$\frac{1}{25} = \frac{1}{100} 1$	TSTEDNON, MODST, GRAVELLY WOSE 8. GRAVEL IS I" - 12", ROWNDED PLASTIFC SHEET DNG, EDECTTOR DSTED METAL, TSOTILES, SOME TITLES LARDE METALIZER WELL, FERTILIZER	SAND WASTE CATSL	%F	Distributi	Lithology %	1. 199				Test Pit Depth (ft)
$\frac{6-1}{NO} \frac{1}{NO} \frac{1}{SW} \frac{1}{20} \frac{1}{SG} \frac{1}{SW} \frac{1}{SW}$	8. GRAVEL IS 1" - 12", ROWSDED. PLASTIEC SHEERDING, EDECTICIC DITED METAL, ISOTHES, SOME TITLES & TITLES, LARDE METALITE APPLIANE EVELE, FERTILIZER,	SAND WASTE CATSL	5	40.4		0.1 51	NU	1 1	_0-1	R. 4
2.5 5.0 4.5 NO 0.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	8. GRAVEL IS 1" - 12", ROWSDED. PLASTIEC SHEERDING, EDECTICIC DITED METAL, ISOTHES, SOME TITLES & TITLES, LARDE METALITE APPLIANE EVELE, FERTILIZER,	SAND WASTE CATSL						18		
5.0 45 NO 010 5.0 45 NO 010 7.5 70 Yo, PLA CATSLE, LARGE TWDST 8' -BUNDLE OF S-L 9' Slab of conene (90' -1ml) - LIGHT BROW SILTY SAND ENP FRI 15.0 100 12.5	PLASTIFC SHEETENG, EDECTICIC DETED METAL, ISOTILES, SOME TITLES 6 TITLES, LARGE METALITE APPLOANCE EVELE, FERTILIZER,	WASTE CATSL						A. 2.	-	
5.0 45 NO 010 5.0 45 NO 010 7.5 70 Yo, PLA CATSLE, LARGE TWDST 8' -BUNDLE OF S-L 9' Slab of conene (90' -1ml) - LIGHT BROW SILTY SAND ENP FRI 15.0 100 12.5	PLASTIFC SHEETENG, EDECTICIC DETED METAL, ISOTILES, SOME TITLES 6 TITLES, LARGE METALITE APPLOANCE EVELE, FERTILIZER,					₽.	2.1	2 . A . 36	-	2.5 —
$\frac{7.5}{10.0} = \frac{9+0}{9+0} \xrightarrow{NO} 0 \xrightarrow{10.1} SP \xrightarrow{10.1} 0 \xrightarrow{10.1} SP \xrightarrow{10.1} 0 \xrightarrow{10.1} SP \xrightarrow{10.1} 0 \xrightarrow{10.1} SP \xrightarrow{10.1} 0 10.$	- TITES, LARDE METALITE APPEDANCE Wete, FERTILIZER,							1.2	1	· .
$\frac{75}{100} = \frac{940}{940} \times \frac{100}{100} \times \frac{9}{100} \times$	- TITES, LARDE METALITE APPEDANCE Wete, FERTILIZER,		0			3	-	-	-	19 12 (m) X
$\frac{75}{100} = \frac{9+0}{9+0} \xrightarrow{NO} 0 \xrightarrow{10} 150} \xrightarrow{SP} 0 \xrightarrow{10} 30} \xrightarrow{SP} 0 $	- TITES, LARDE METALITE APPEDANCE Wete, FERTILIZER,					0.0	10	SN	4-9	5.0
7.5 9-10 NO OI SP 0 50 20 12.5 12	· TITLES, LARDE METALITE APPEDANCe evete, FERTILIZER,			1 - 1			1.1		<u>1</u>	
12.5 12.5 15.0 17.5	and the second	-1SI	- 6	1.0		4 ···			-	1
12.5 12.5 15.0 17.5	and the second		- 0	: 17		-	2.		_	7.5-
12.5 12.5 15.0 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 18.0 19.0 10.0	and the second	and the second se	1-1	1 ere	12	17 A		3 1		1
12.5 12.5 15.0 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 18.0 19.0 10.0	and the second		30	150	00	c	10 1		-	15
12.5 13.0 17.5		Carrie States	1	1.11			NU	0 1	- 7-1	.0.0
12.5 15.0 17.5 1		12.1	6-1-1	100		2		1	1	
12.5 15.0 17.5 1	DON, WEU SCICLED SLIDHILY CEMU	(90 -	100	1	THE Y	13 D	Server .	~		N
15.0 17.5	TARIE in I LARGE AR CONTLI	SELTY	111	1	1	ST. Cal	N			.2.5 —
	יווייין אייין א	THAN THE	5-	1.		3	11	1		
	HIDIE SAPROLITE, ROTTEN GRAN	and and	-	An	/	1 1 1	100	1.3	-	
	Surrace	111	Part -	1	11	1	100	1	5 A	5.0
	Luce .	-n- La Maria	4	6	+1	1	1	- 845		Niel.
		- 14 M	1 3	1.	-	1	1 1]		200
		Var Territor	1.1	-	1	1	12.5	· 0		7.5
		1. 10 Mar 1997	2	125	1	/		1.	-	
	and the second se		10 2	CHARTER OF	1-15	1	1	1 - S =	-	1 5
E VIE		Sec. 1914		-		X	1	1		0.0
		and a start		1		4/	1	a bay		
	and the state of the state of the state	12 State 12	200		1	1	1/	1 5	- · · ·	
	and the second	·		1	nX	2	1.	1		25
	and the second se				141			1	100 C .	1
	and the second se		100			5	1	1.00	_	1 2
25.0	a an los attack at a market	a second	2.122	$\mathcal{A}_{i}^{(1)}$		1	1		(h) (h)	.0
NOTES:	and the second sec	ALC: N.	13	- 3	1 3		1 A.	1		DTES:

TP-04-IM-9.0-10-20231010 @ 1525 TP-04-JM-9.0-10-20231010 @ 1525


)	2.24	1	A.C.	1	TE	STI	PIT LOG Test Pit ID:
ROJECT:	Former	Eatonville Land	ifill :	1.5		74,	DATE: 10/10/23 Logged By: S.WYCNER
CATION:	Eatonvil	1 E +				1	START, TIME: 1755 Sampling Scheme: EXCIVATOR
ONTRACTOR	a (1997) Al Francisco (1997)		5-11-1	<u>.</u>		1	END TIME: 1450 Page Number:
TITUDE:	1.0	1.1.1	100	-	3		LONGITUDE: Total Depth:
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lithology	Visual Distribu %G %S	ition	WASTE AND SOIL (Based on Unified Sofi Classification System) DESCRIPTION AND NOTES
-	0-1-	NÖ	00	GHN	60 50) ((0.0-5.0) GW - GRAVED - WIGHT BROWN, SOFT/LOC
			-	0,00	1		
	2.	2 Kg 12 g		$\{ i_{i} \}_{i \in I}^{d} \}$		4	DRY, SECTY GRAVEL WETH WHOTE AND BOULDERS UP TH
.5	(† 114) 19	144	i iteli	2.1	110	12	. Stand and a stand and apply
8- <u>-</u>	Č.,	24 	1	in 1		÷	3' COBRES CLAST SUPPORTED 2-8" WASTE DS
· · · ·				- 3 ⁸ -	1991	9H-1	THITTO MON AND AND AND AND AND AND AND AND AND AN
.0	4-5	NO	02	in .	1996 1 1 1	-	TWISTED METAL, CISY, PLASTIC, BOTTLES. TIRES CS
.0	1. 10	Ser Sector	1.8.1	1	3 4		IGRY LACE IN
	×.,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 24	27	10 60	-	VERY LOOSE, LOTS OF SLOUIGHINE
	NH	. A 10		SW	1.1.19	6.2	
5	1	7 94	1	Bar		10	
	5.18	1997 - 1945 Alexandre - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 1997 - 1997		4			(S.e- K.c) SW-DARK PROWN, MUDST, LOOSE,
	1.	15.2.14	1200	ee	12 3	-	
- A	9-10	NO	0,0		de la	1	GRAVELLY GOARSE SAND, POORLY SORTED WITH
0				2 6	12		
		5.5	÷	1.0			< 20% WASTE MATERDAL, PLASTOC, METAL, ASH. PLASTOC
	-4	1 3	6 ³	- 642	×.,		
5	1.5		1.00		2012		WRAPPINGS UP TO 3'LONG, BOTTLES, 25% TIRES
5 s. 	1.5	1111	15	- 5-	20 10	-	
1953		- 34	a) (C	100	~	2	
. (HIS	NO	1	-	1	\mathbb{C}_{∞}	- TELOW 13', VERY GLEAN GRAVELLY SAND, WOTH ONLY
0	TIS		- 20.2	6.5	100		
-	post [1	2.873	28	1	h 5	63" GLASS FRAGMENTS, AND BRUCK FRAGMENTS,
24	10	1 A 1	397 - 52	÷.,	1		
5	15.	5. 1.	•		/ 1		WELDED, ITEUN OFENERE FROTEMENTS, 20 YO WASTE
-		~ 1	60.0125) 1034	-	1		
	201	\sim	8.19	1.			the second state of the second se
-	10. -						
) <u> </u>		1. 1. 1.	X	1.1	100		비슷한 그 동생은 것 없었다. 성장님은 김성이는 것을 받는 것이 했다.
1	.Xc	8 M - M	\wedge	a la	1	38	- matrices
	- 1	/		1,224	1	1	전쟁 것이 귀엽에서 전성한 것을 하는 것이 없는 것 것같아요. 한
5		1.			19 6	² Brei N	다 가는 말을 깨끗해 많이 가 많은 것 것이 없다. 그는 것이 없다.
1	5.8	15	1917	V		1	성행되고 못했다. 김 도망이 있는 것이 아파 것으로 가지 않는 것이 있는 것이 것.
x		1	- 0 X	100	1.03	° 1	
10-			- 4	2 E -	(6)	6.7	그는 것 않는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 없다.
ES:				10 A.			
			25				


SS-03-000-10-20231010 @ 1355 TP-03-IM-14-15-2023 610 @ 1430 TP-03-IM-40-50-20251010 @ 1410 TP-03-IM-90-10-0-20231010 @ 1420

ROJECT:	Former	Eatonville Land	dfill		1077 - 1 		DATE: 10/10/25	PROJ. NO.	171.074 WU
	Eatonvil			÷.	- 3		START TIME: 1245		CAUATOR
ONTRACTOR	: Envirod	on 🦢 👳	· 3::/*-	4	0	59	END TIME: 1340	Page Number:	
ATITUDE:			1	1		- 100 6	LONGITUDE:	Total Depth:	
Test Pit Depth (ft)	Sample Interval	, Sheen Test Result	PID Reading (ppm)	Lithology	Visual G Distribut %G %S	ion	WASTE AND SOIL (B	lased on Unified Soil Classification Sy	stem) DESCRIPTION AND NOTES
B1.	0-1	NQ	0.7	S₽		10	Control DOM	1 17/2 01 24 1 10	WITCE SEFT DORNU
n 🗍				Aug. 199. 10	75 99)			WIST, SOFT, ORGAN
2.5	1 42	1. 17		WATE	30 15		RICH POORCY SO	RIED MEDIUM	1-CONTRES SAND
2,3 	14		1.27			-14			
			0	4				ound cravely	ROOTS, METAL FRATO
5.0	4-5	NO	0.0	47.13		-	GLASS (SW)		
- 1. <u></u>		1 34	22	е — е	1.16	8	Ma- Co-Gr	-6.0-2.23	1010
	16	1.1				5			A STATE OF A STATE
7.5	~~·		34	Gin	55 10		(1.0'-7.0) WAST	E PRENDISK 1	SARA BROWN, DRY - MA
(N =	2 3 W		8.5	1	-		a contraction of the second se		NEWMENTE PLASTIC, MU
0.0	9=10	NO	0.0		1.5		Mary portor	Ray Consig I	FUISILE, ME
_	-		1 C	1		4	ICUSTY DEISTUS	BICKER FLOUDER	13, GLACS, ALMOSTENTLY
alt in	an Ste	1.00	33			1	VEISTAS ZI DEAT	METER . < 12% +	nies. kitchen Sinte
2.5	antin .	- 2 - - 08	199 ⁴	×.,	1 R.,		Contraction and a second	1.0.1	0
<u>45</u>		a È c	×	\mathbb{R}^{2}			(70-150) G	RAVEL (10)	MICH TIZOWN, DRY-DAM
5.0	14-15	NO	0.0		605			A 194	
	1.4	-78	100	-HEFAL V	1. S. 1.	*	POOTLY & SORT	ED GRAVEL, 1-1	6" ROWNDER, WATH
-		540 C. S.		12	1		BOTTLES RASSTE	METAC FRADMENT	S AND PISCULOTED
7.5			- 3			21			
· =			2 ²		* •		14 C	y soll, HAASe	TARES, WHATE IS UP TO
	- 1		2	1.			50% BOTTLES.		4
0.0	5			5	A	2		in the second	
Ξ		1	X.	0	ען			- 41	ry (40%) PLASIDE
2.5		/	0	2	1	s".	SUPERTONG H	2 M 11-13'	
		1 w	201		2120	e.			
_ =		V				÷.	WITH LAS	ARTE STRAVERY, CL	BT-SUPPORTED 2-8"
DTES:	2						- IN CAL DL	MULC PIELE OF GA	ARGAGE IN STRUCTU
					257				

		1.5 x .			TEST	PIT LOG	2	Test Pit ID:	TP-1	-12 V.F	
		3.30		9 S.		- 1 - K	2 2 × 100	PROJ. NO.		171.074	1 2.
	문서법			1.15	1.511.4 12					Section 18	and of the
DJECT:	Former	Eatonville Land	fill		and the set	DATE: /	V10173	Logged By:	S, WARNER	14	1. 10
ATION:	Eatonvil	le, WA			100	START TIME:	10:30	Sampling Scheme	" ExCAVAT	OR	1.0
NTRACTO	R: Enviro	on			n - 18093-190	END TIME:	11:30	Page Number:	1 (A)	 In 	
ITUDE:	588	FREU	DM	APS		LONGITUDE:	2	Total Depth:		ą.	· · · · ·
Test Pit Depth (ft)	Şample Interval -	 Sheen Test Result 	PID.Reading (ppm)	Lithology	Visual GS Distribution	a series and	WASTE AND SC)IL (Based on Unified Soil Classi	fication System) DESC	RIPTION AND NOTES	3
12	01	NO	Ø	Mikis	25 50	5 (0.0-		Soil With	la l		
1		1	0		1	16	braida	dry Fires	to Sard	1.cge	= boild
5	- 8 -		34	*	- *	e 1. 197 ×	42 06	Job. pins	fire	\$ 114	6 For
	12	-×			1 × 1						
10 L-	1.1	P = 100(0	10	×	1		Concle	de y Crispo	T, Conce	te Parlan	<[D, 101.
-	Sec.			- 8	1 4 2		a successive sets			1. The second se	a stand
) <u> </u>	SIL C	NO	Ø	1		19	()	= 4.0' Co	ocato	5/ 26	
in the second	-		PE	1 1. A		- es		NATING IN	-Crore	CLUDD Chi	15
的亡			19.00	10	-12	8 G	17-6	1- IW1 -5.0.	0.0-0-03	1012 - 1	05
		ast .	*1 [*]		25 60 3	160		the state of the	in a star	194 - L. A. 1	1.
1.5	89	NO	0	208 T	0 00 00	5 2.0	-10.0.	Simsl.r	to be	JC .	
	1-0	10.0		ning v	200	C	27 o Thee	de Conce	1.11	Vision	Sec. 1
- U	770	NO	A		6 J.**			VALUE (L)	Diedryth	G - & faces	Coil
)	10-1	Y05 .		Se 28	1. 1. 1. 13	C. C	25.0 1.5	ge Concoc	Je 51-	n these	6
18. <u></u>	Heart -	100	-		. es	1 1 200		the inter	14.5		0
-	1		-	10000000	-	-		she what;	us u	mit	7
5 <u>1</u> 1 1	-	1. 18	10.00	S. N			TOIL	- Im- 9:0 -1	0-2.2	31010 0	llio
	N	1			5,5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-01	- Thus both	0. U. a. a.		el a
1	1		ł			C	210.0 G	mater	to. Sa	e bh-12	srs .
w -	1.1			10		10.0	-120			1	121
)	NJ .		50	X	3010	1	12.0	Sime u	- two into	100 55 h	7-24-6
	X	X	$ \mathcal{N} $	X			TIG	0-2120	0-12	rae b	and des
0	Se . 1	4		24	105	-				5	1.00
	-		- 4	۰.			7 / - 1m	encrete.	Contraction of Relative	a make	
T -	1					· · ·	TO-1	Immocalor SI	11.0-2-3	3/010	CIIZS
-		^R de ren	\sim	8		1. 1. S. S.	051.41	1 monocolor 51	heen		
e			1	.0		8 8 K					
)	1.		à.			5	N. Lile	sail not	Cocant.	502	1 2 70
		2 - 22 - 10	\$ P	12		1	4	10 × 24	<i>.</i>	3.8° - Sp	ALC: NO
Ĥ	×	5. 91	1.0			2	2.		i i	< 8	
- N-	12	- 1 T		8	1.		1		- 1- y 1		
and and				14 - A	15	a		< 4 × 8			Sug
19 - 19				1	100	Se 8	· · · ·	5.2			
	200	· · ·	$< \frac{2}{3}$							1 A.	
ES:			C.X.					A A	F. C	1 8	
				6 ·	100 Sec. 1	. 2Ga	-		20 2 3		
· · · ·			n		1		- 1 - C				

TP-01-IM 8.0-6.0 -20231010 @ 1055 TP-01-IM 8.0-90-20231010 @ 1110

This page intentionally left blank.

Attachment C

Laboratory Reports

This page intentionally left blank.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, November 10, 2023 Ben Johnson GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209

RE: A3J1366 - Eatonville Landfill Characterization - 00171.074.008

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3J1366, which was received by the laboratory on 10/13/2023 at 1:00:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>pnerenberg@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

			Cooler Receipt Information
Acceptable Receipt Ter	nperatu	<u>re is less t</u>	nan, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.
			(See Cooler Receipt Form for details)
Cooler #1	2.9	degC	Cooler #2 3.3 degC
Cooler #3	4.1	degC	
			-

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions	Project:	Eatonville Landfill Characterization	
55 SW Yamhill St, Ste 300	Project Number:	00171.074.008	Report ID:
Portland, OR 97209	Project Manager:	Ben Johnson	A3J1366 - 11 10 23 1227

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO			
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
WS-01-0.0-2.0-10102023	A3J1366-01	Soil	10/10/23 08:50	10/13/23 13:00
WS-02-0.0-2.0-1010-2023	A3J1366-02	Soil	10/10/23 08:40	10/13/23 13:00
WS-03-0.0-2.0-10102023	A3J1366-03	Soil	10/10/23 08:20	10/13/23 13:00
WS-04-0.0-2.0-10102023	A3J1366-04	Soil	10/10/23 08:05	10/13/23 13:00
WS-05-0.0-2.0-10102023	A3J1366-05	Soil	10/10/23 07:50	10/13/23 13:00
TP-01-IM-10.0-11.0-20231010	A3J1366-06	Soil	10/10/23 11:25	10/13/23 13:00
TP-04-NS-9.0-10.0-20231010	A3J1366-07	Soil	10/10/23 15:45	10/13/23 13:00
TP-05-NS-4.0-5.0-20231011	A3J1366-08	Soil	10/11/23 08:45	10/13/23 13:00
TP-06-NS-9.0-10.0-20231011	A3J1366-09	Soil	10/11/23 10:15	10/13/23 13:00
TP-08-NS-12.0-13.0-20231011	A3J1366-10	Soil	10/11/23 13:10	10/13/23 13:00
TP-10-NS-12.0-13.0-20231011	A3J1366-11	Soil	10/11/23 15:45	10/13/23 13:00
TP-15-NS-9.0-10.0-20231012	A3J1366-12	Soil	10/12/23 14:45	10/13/23 13:00
TP-15-IM-4.0-5.0-20231012	A3J1366-13	Soil	10/12/23 14:30	10/13/23 13:00
TP-07-IM-14.0-15.0-20231011	A3J1366-14	Soil	10/11/23 11:55	10/13/23 13:00
TP-08-IM-4.0-5.0-20231011	A3J1366-15	Soil	10/11/23 12:50	10/13/23 13:00
TP-07-IM-9.0-10.0-20231011	A3J1366-16	Soil	10/11/23 11:30	10/13/23 13:00
TP-14-IM-14.0-15.0-20231012	A3J1366-17	Soil	10/12/23 13:25	10/13/23 13:00
TP-13-IM-14.0-15.0-20231012	A3J1366-18	Soil	10/12/23 12:35	10/13/23 13:00
TP-12-IM-9.0-10.0-20231012	A3J1366-19	Soil	10/12/23 11:30	10/13/23 13:00
TP-11-IM-4.0-5.0-20231012	A3J1366-20	Soil	10/12/23 09:45	10/13/23 13:00
TP-10-IM-9.0-10.0-20231011	A3J1366-21	Soil	10/11/23 15:30	10/13/23 13:00
TP-09-IM-11.0-12.0-20231011	A3J1366-22	Soil	10/11/23 14:50	10/13/23 13:00
SS-06-0.0-1.0-20231011	A3J1366-23	Soil	10/11/23 09:35	10/13/23 13:00
SS-05-0.0-1.0-20231011	A3J1366-24	Soil	10/11/23 08:35	10/13/23 13:00
TP-04-IM-4.0-5.0-20231010	A3J1366-25	Soil	10/10/23 15:25	10/13/23 13:00
TP-03-IM-14.0-15.0-20231010	A3J1366-26	Soil	10/10/23 14:30	10/13/23 13:00
TP-02-IM-4.0-5.0-20231010	A3J1366-27	Soil	10/10/23 12:55	10/13/23 13:00
TP-01-IM-5.0-6.0-20231010	A3J1366-28	Soil	10/10/23 10:55	10/13/23 13:00

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

 Project Manager:
 Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
TP-01-IM-10.0-11.0-20231010 (A3J1366	6-06RE1)			Matrix: Soil		Batch:	23J0850	
Diesel	ND	107	215	mg/kg dry	10	10/24/23 14:49	NWTPH-Dx	
Oil	1000	215	429	mg/kg dry	10	10/24/23 14:49	NWTPH-Dx	Q-4
Surrogate: o-Terphenyl (Surr)		Recov	very: 80 %	Limits: 50-150 %	5 10	10/24/23 14:49	NWTPH-Dx	S-0.
TP-04-NS-9.0-10.0-20231010 (A3J1366	5-07)			Matrix: Soil		Batch:	23J0850	
Diesel	ND	11.2	22.4	mg/kg dry	1	10/23/23 23:28	NWTPH-Dx	
Oil	ND	22.4	44.8	mg/kg dry	1	10/23/23 23:28	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recon	very: 72 %	Limits: 50-150 %	5 1	10/23/23 23:28	NWTPH-Dx	
TP-05-NS-4.0-5.0-20231011 (A3J1366-(08)			Matrix: Soil		Batch:	23J0954	
Diesel	ND	10.8	21.6	mg/kg dry	1	10/25/23 20:59	NWTPH-Dx	
Oil	ND	21.6	43.2	mg/kg dry	1	10/25/23 20:59	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recon	very: 80 %	Limits: 50-150 %	5 1	10/25/23 20:59	NWTPH-Dx	
TP-06-NS-9.0-10.0-20231011 (A3J1366	i-09RE1)			Matrix: Soil		Batch:	23J0954	
Diesel	ND	11.1	22.2	mg/kg dry	1	10/26/23 08:49	NWTPH-Dx	
Oil	120	22.2	44.5	mg/kg dry	1	10/26/23 08:49	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 90 %	Limits: 50-150 %	5 I	10/26/23 08:49	NWTPH-Dx	
TP-08-NS-12.0-13.0-20231011 (A3J136	6-10)			Matrix: Soil		Batch:	23J0954	
Diesel	ND	541	1080	mg/kg dry	50	10/25/23 22:10	NWTPH-Dx	
Oil	2550	1080	2160	mg/kg dry	50	10/25/23 22:10	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Red	covery: %	Limits: 50-150 %	5 50	10/25/23 22:10	NWTPH-Dx	S-0.
TP-10-NS-12.0-13.0-20231011 (A3J136	6-11)			Matrix: Soil		Batch:	23J0954	
Diesel	ND	11.2	22.4	mg/kg dry	1	10/25/23 22:57	NWTPH-Dx	
Dil	ND	22.4	44.9	mg/kg dry	1	10/25/23 22:57	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recon	very: 75 %	Limits: 50-150 %	5 I	10/25/23 22:57	NWTPH-Dx	
FP-15-NS-9.0-10.0-20231012 (A3J1366	3-12RE1)			Matrix: Soil		Batch:	23J0954	
Diesel	ND	10.6	21.3	mg/kg dry	1	10/26/23 09:30	NWTPH-Dx	
Oil	209	21.3	42.5	mg/kg dry	1	10/26/23 09:30	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recon	very: 86 %	Limits: 50-150 %	5 I	10/26/23 09:30	NWTPH-Dx	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

 Project Manager:
 Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
TP-07-IM-14.0-15.0-20231011 (A3J1366-14RE1)				Matrix: Soil		Batch:							
Diesel	ND	111	222	mg/kg dry	10	10/26/23 10:12	NWTPH-Dx						
Oil	1780	222	445	mg/kg dry	10	10/26/23 10:12	NWTPH-Dx						
Surrogate: o-Terphenyl (Surr)		Reco	very: 75 %	Limits: 50-150 %	10	10/26/23 10:12	NWTPH-Dx	S-05					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
WS-01-0.0-2.0-10102023 (A3J1366-01)				Matrix: Soil		Batch	: 23J0806	
Gasoline Range Organics	ND	7.30	14.6	mg/kg dry	50	10/20/23 16:02	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 110 %	Limits: 50-150 %	1	10/20/23 16:02	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	1	10/20/23 16:02	NWTPH-Gx (MS)	
WS-05-0.0-2.0-10102023 (A3J1366-05)				Matrix: Soil		Batch	: 23J0806	
Gasoline Range Organics	ND	12.3	24.7	mg/kg dry	50	10/20/23 16:28	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 108 %	Limits: 50-150 %	1	10/20/23 16:28	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	1	10/20/23 16:28	NWTPH-Gx (MS)	
TP-01-IM-10.0-11.0-20231010 (A3J1366	-06)			Matrix: Soil		Batch	: 23J0806	
Gasoline Range Organics	ND	3.40	6.80	mg/kg dry	50	10/20/23 16:54	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 106 %	Limits: 50-150 %	1	10/20/23 16:54	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	1	10/20/23 16:54	NWTPH-Gx (MS)	
TP-04-NS-9.0-10.0-20231010 (A3J1366-	.07)			Matrix: Soil		Batch: 23J0806		
Gasoline Range Organics	ND	2.90	5.80	mg/kg dry	50	10/20/23 17:19	NWTPH-Gx (MS)	_
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 104 %	Limits: 50-150 %	1	10/20/23 17:19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	1	10/20/23 17:19	NWTPH-Gx (MS)	
TP-05-NS-4.0-5.0-20231011 (A3J1366-0	8)			Matrix: Soil		Batch: 23J0806		
Gasoline Range Organics	ND	2.53	5.06	mg/kg dry	50	10/20/23 17:45	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 102 %	Limits: 50-150 %	1	10/20/23 17:45	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	1	10/20/23 17:45	NWTPH-Gx (MS)	
ГР-06-NS-9.0-10.0-20231011 (A3J1366-	09)			Matrix: Soil		Batch: 23J0806		
Gasoline Range Organics	ND	2.57	5.15	mg/kg dry	50	10/20/23 18:11	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 105 %	Limits: 50-150 %	1	10/20/23 18:11	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	1	10/20/23 18:11	NWTPH-Gx (MS)	
FP-08-NS-12.0-13.0-20231011 (A3J1366	5-10)			Matrix: Soil		Batch	: 23J0806	
Gasoline Range Organics	ND	2.30	4.61	mg/kg dry	50	10/20/23 18:36	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 102 %	Limits: 50-150 %	1	10/20/23 18:36	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		-	100 %	50-150 %	1	10/20/23 18:36	NWTPH-Gx (MS)	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons (E	enzene th	nrough Naphtha	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-10-NS-12.0-13.0-20231011 (A3J136	6-11)			Matrix: Soil		Batch	23J0806	
Gasoline Range Organics	ND	2.94	5.89	mg/kg dry	50	10/20/23 19:02	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 100 %	Limits: 50-150 %	1	10/20/23 19:02	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	1	10/20/23 19:02	NWTPH-Gx (MS)	
TP-15-NS-9.0-10.0-20231012 (A3J1366	-12)			Matrix: Soil		Batch	: 23J0806	
Gasoline Range Organics	ND	3.29	6.59	mg/kg dry	50	10/20/23 19:28	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 101 %	Limits: 50-150 %	1	10/20/23 19:28	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	1	10/20/23 19:28	NWTPH-Gx (MS)	
TP-07-IM-14.0-15.0-20231011 (A3J1366	6-14)			Matrix: Soil		Batch	23J0806	
Gasoline Range Organics	ND	2.54	5.09	mg/kg dry	50	10/20/23 19:54	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 101 %	Limits: 50-150 %	1	10/20/23 19:54	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			100 %	50-150 %	1	10/20/23 19:54	NWTPH-Gx (MS)	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

1	V	olatile Organi	ic Compound	ts by EPA 82	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-04-NS-9.0-10.0-20231010 (A3J1366-07)			Matrix: Soil	1	Batch:	23J0806	
Acetone	ND	1160	1160	ug/kg dry	50	10/20/23 17:19	5035A/8260D	ICV-02
Acrylonitrile	ND	58.0	116	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Benzene	ND	5.80	11.6	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Bromobenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Bromochloromethane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Bromodichloromethane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Bromoform	ND	58.0	116	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Bromomethane	ND	580	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
2-Butanone (MEK)	ND	290	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
n-Butylbenzene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
sec-Butylbenzene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
tert-Butylbenzene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Carbon disulfide	ND	290	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Carbon tetrachloride	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Chlorobenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Chloroethane	ND	290	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Chloroform	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Chloromethane	ND	145	290	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
2-Chlorotoluene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
4-Chlorotoluene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Dibromochloromethane	ND	58.0	116	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	145	290	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Dibromomethane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,2-Dichlorobenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,3-Dichlorobenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,4-Dichlorobenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Dichlorodifluoromethane	ND	58.0	116	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,1-Dichloroethane	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,1-Dichloroethene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
cis-1,2-Dichloroethene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
trans-1,2-Dichloroethene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: Eatonville Landfill Characterization
Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
TP-04-NS-9.0-10.0-20231010 (A3J1366-07)				Matrix: Soi	I	Batch:	23J0806				
1,2-Dichloropropane	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
1,3-Dichloropropane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
2,2-Dichloropropane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
1,1-Dichloropropene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
cis-1,3-Dichloropropene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
trans-1,3-Dichloropropene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
Ethylbenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
Hexachlorobutadiene	ND	58.0	116	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
2-Hexanone	ND	580	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
Isopropylbenzene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
4-Isopropyltoluene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
Methylene chloride	ND	290	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
4-Methyl-2-pentanone (MiBK)	ND	290	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
Methyl tert-butyl ether (MTBE)	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
Naphthalene	ND	116	232	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
n-Propylbenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
Styrene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
1,1,1,2-Tetrachloroethane	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
1,1,2,2-Tetrachloroethane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
Tetrachloroethene (PCE)	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
Toluene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
1,2,3-Trichlorobenzene	ND	145	290	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
1,2,4-Trichlorobenzene	ND	145	290	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
1,1,1-Trichloroethane	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
1,1,2-Trichloroethane	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
Trichloroethene (TCE)	ND	14.5	29.0	ug/kg dry ug/kg dry	50	10/20/23 17:19	5035A/8260D				
Trichlorofluoromethane	ND	58.0	116	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
1,2,3-Trichloropropane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D				
1,2,4-Trimethylbenzene	ND	29.0	58.0	ug/kg dry ug/kg dry	50	10/20/23 17:19	5035A/8260D				
1,3,5-Trimethylbenzene	ND	29.0	58.0	ug/kg dry ug/kg dry	50	10/20/23 17:19	5035A/8260D				
Vinyl chloride	ND	14.5	29.0	ug/kg dry ug/kg dry	50 50	10/20/23 17:19	5035A/8260D				
m,p-Xylene	ND	29.0	29.0 58.0	ug/kg dry ug/kg dry	50	10/20/23 17:19	5035A/8260D				
o-Xylene	ND	29.0 14.5	29.0	ug/kg dry ug/kg dry	50	10/20/23 17:19	5035A/8260D				

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u>

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	V	oraule Organ	ic compou	nds by EPA 826	עט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-04-NS-9.0-10.0-20231010 (A3J1366-0	07)			Matrix: Soil		Batch:	23J0806	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %	1	10/20/23 17:19	5035A/8260D	
Toluene-d8 (Surr)			96 %	80-120 %	1	10/20/23 17:19	5035A/8260D	
4-Bromofluorobenzene (Surr)			105 %	79-120 %	1	10/20/23 17:19	5035A/8260D	
TP-05-NS-4.0-5.0-20231011 (A3J1366-08	3)			Matrix: Soil		Batch:	23J0806	
Acetone	ND	1010	1010	ug/kg dry	50	10/20/23 17:45	5035A/8260D	ICV-02
Acrylonitrile	ND	50.6	101	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Benzene	ND	5.06	10.1	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Bromobenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Bromochloromethane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Bromodichloromethane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Bromoform	ND	50.6	101	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Bromomethane	ND	506	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
2-Butanone (MEK)	ND	253	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
n-Butylbenzene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
sec-Butylbenzene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
tert-Butylbenzene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Carbon disulfide	ND	253	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Carbon tetrachloride	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Chlorobenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Chloroethane	ND	253	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Chloroform	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Chloromethane	ND	126	253	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
2-Chlorotoluene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
4-Chlorotoluene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Dibromochloromethane	ND	50.6	101	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	126	253	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Dibromomethane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2-Dichlorobenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,3-Dichlorobenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,4-Dichlorobenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Dichlorodifluoromethane	ND	50.6	101	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1-Dichloroethane	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-05-NS-4.0-5.0-20231011 (A3J1366-08)				Matrix: Soil	1	Batch:	23J0806	
1,2-Dichloroethane (EDC)	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1-Dichloroethene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
cis-1,2-Dichloroethene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
trans-1,2-Dichloroethene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2-Dichloropropane	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,3-Dichloropropane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
2,2-Dichloropropane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1-Dichloropropene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
cis-1,3-Dichloropropene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
trans-1,3-Dichloropropene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Ethylbenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Hexachlorobutadiene	ND	50.6	101	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
2-Hexanone	ND	506	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Isopropylbenzene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
4-Isopropyltoluene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Methylene chloride	ND	253	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	253	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Naphthalene	ND	101	202	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
n-Propylbenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Styrene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Tetrachloroethene (PCE)	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Toluene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2,3-Trichlorobenzene	ND	126	253	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2,4-Trichlorobenzene	ND	126	253	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1,1-Trichloroethane	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1,2-Trichloroethane	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Trichloroethene (TCE)	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Trichlorofluoromethane	ND	50.6	101	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2,3-Trichloropropane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2,4-Trimethylbenzene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u>

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-05-NS-4.0-5.0-20231011 (A3J1366-0	8)			Matrix: Soil		Batch:	23J0806	
1,3,5-Trimethylbenzene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Vinyl chloride	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
m,p-Xylene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
o-Xylene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %	1	10/20/23 17:45	5035A/8260D	
Toluene-d8 (Surr)			97 %	80-120 %	1	10/20/23 17:45	5035A/8260D	
4-Bromofluorobenzene (Surr)			104 %	79-120 %	1	10/20/23 17:45	5035A/8260D	
TP-06-NS-9.0-10.0-20231011 (A3J1366-	09)			Matrix: Soil		Batch:	23J0806	
Acetone	ND	1030	1030	ug/kg dry	50	10/20/23 18:11	5035A/8260D	ICV-02
Acrylonitrile	ND	51.5	103	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Benzene	ND	5.15	10.3	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Bromobenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Bromochloromethane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Bromodichloromethane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Bromoform	ND	51.5	103	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Bromomethane	ND	515	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
2-Butanone (MEK)	ND	257	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
n-Butylbenzene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
sec-Butylbenzene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
tert-Butylbenzene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Carbon disulfide	ND	257	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Carbon tetrachloride	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Chlorobenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Chloroethane	ND	257	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Chloroform	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Chloromethane	ND	129	257	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
2-Chlorotoluene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
4-Chlorotoluene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Dibromochloromethane	ND	51.5	103	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	129	257	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Dibromomethane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-06-NS-9.0-10.0-20231011 (A3J1366	5-09)			Matrix: Soil Batch: 23J0806				
1,2-Dichlorobenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,3-Dichlorobenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,4-Dichlorobenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Dichlorodifluoromethane	ND	51.5	103	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,1-Dichloroethane	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,1-Dichloroethene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
cis-1,2-Dichloroethene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
trans-1,2-Dichloroethene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,2-Dichloropropane	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,3-Dichloropropane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
2,2-Dichloropropane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,1-Dichloropropene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
cis-1,3-Dichloropropene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
trans-1,3-Dichloropropene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Ethylbenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Hexachlorobutadiene	ND	51.5	103	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
2-Hexanone	ND	515	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Isopropylbenzene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
4-Isopropyltoluene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Methylene chloride	ND	257	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	257	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Naphthalene	ND	103	206	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
n-Propylbenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Styrene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Tetrachloroethene (PCE)	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Toluene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,2,3-Trichlorobenzene	ND	129	257	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,2,4-Trichlorobenzene	ND	129	257	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,1,1-Trichloroethane	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: **Eatonville Landfill Characterization** Project Number: 00171.074.008

Project Manager: Ben Johnson

Report ID: A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		<u>v</u>	•	nds by EPA 826		D-4:		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-06-NS-9.0-10.0-20231011 (A3J1366-	6-NS-9.0-10.0-20231011 (A3J1366-09)			Matrix: Soil		Batch:	23J0806	
1,1,2-Trichloroethane	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Trichloroethene (TCE)	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Trichlorofluoromethane	ND	51.5	103	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,2,3-Trichloropropane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,2,4-Trimethylbenzene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,3,5-Trimethylbenzene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Vinyl chloride	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
m,p-Xylene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
o-Xylene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 103 %	Limits: 80-120 %	1	10/20/23 18:11	5035A/8260D	
Toluene-d8 (Surr)			96 %	80-120 %	1	10/20/23 18:11	5035A/8260D	
4-Bromofluorobenzene (Surr)			105 %	79-120 %	1	10/20/23 18:11	5035A/8260D	
P-08-NS-12.0-13.0-20231011 (A3J1366-10)			Matrix: Soil		Batch: 23J0806			
Acetone	ND	922	922	ug/kg dry	50	10/20/23 18:36	5035A/8260D	ICV-0
Acrylonitrile	ND	46.1	92.2	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Benzene	ND	4.61	9.22	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Bromobenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Bromochloromethane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Bromodichloromethane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Bromoform	ND	46.1	92.2	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Bromomethane	ND	461	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
2-Butanone (MEK)	ND	230	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
n-Butylbenzene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
sec-Butylbenzene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
tert-Butylbenzene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Carbon disulfide	ND	230	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Carbon tetrachloride	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Chlorobenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Chloroethane	ND	230	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Chloroform	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Chloromethane	ND	115	230	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
2-Chlorotoluene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
TP-08-NS-12.0-13.0-20231011 (A3J13)	66-10)			Matrix: Soil	1	Batch:	23J0806		
4-Chlorotoluene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
Dibromochloromethane	ND	46.1	92.2	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
1,2-Dibromo-3-chloropropane	ND	115	230	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
1,2-Dibromoethane (EDB)	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
Dibromomethane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
1,2-Dichlorobenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
1,3-Dichlorobenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
1,4-Dichlorobenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
Dichlorodifluoromethane	ND	46.1	92.2	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
1,1-Dichloroethane	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
1,2-Dichloroethane (EDC)	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
1,1-Dichloroethene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
cis-1,2-Dichloroethene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
trans-1,2-Dichloroethene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
1,2-Dichloropropane	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
1,3-Dichloropropane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
2,2-Dichloropropane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
1,1-Dichloropropene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
cis-1,3-Dichloropropene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
trans-1,3-Dichloropropene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
Ethylbenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
Hexachlorobutadiene	ND	46.1	92.2	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
2-Hexanone	ND	461	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
Isopropylbenzene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
4-Isopropyltoluene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
Methylene chloride	ND	230	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
4-Methyl-2-pentanone (MiBK)	ND	230	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
Methyl tert-butyl ether (MTBE)	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
Naphthalene	ND	92.2	184	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
n-Propylbenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
Styrene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
1,1,1,2-Tetrachloroethane	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D		
1,1,2,2-Tetrachloroethane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D		

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: **00171.074.008**

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-08-NS-12.0-13.0-20231011 (A3J1366	3-10)			Matrix: Soil		Batch:	23J0806	
Tetrachloroethene (PCE)	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Toluene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,2,3-Trichlorobenzene	ND	115	230	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,2,4-Trichlorobenzene	ND	115	230	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,1,1-Trichloroethane	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,1,2-Trichloroethane	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Trichloroethene (TCE)	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Trichlorofluoromethane	ND	46.1	92.2	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,2,3-Trichloropropane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,2,4-Trimethylbenzene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,3,5-Trimethylbenzene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Vinyl chloride	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
m,p-Xylene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
o-Xylene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %	1	10/20/23 18:36	5035A/8260D	
Toluene-d8 (Surr)			96 %	80-120 %	1	10/20/23 18:36	5035A/8260D	
4-Bromofluorobenzene (Surr)			104 %	79-120 %	1	10/20/23 18:36	5035A/8260D	
TP-10-NS-12.0-13.0-20231011 (A3J1366	<u>5-11)</u>			Matrix: Soil		Batch:	23J0806	
Acetone	ND	1180	1180	ug/kg dry	50	10/20/23 19:02	5035A/8260D	ICV-02
Acrylonitrile	ND	58.9	118	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Benzene	ND	5.89	11.8	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Bromobenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Bromochloromethane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Bromodichloromethane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Bromoform	ND	58.9	118	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Bromomethane	ND	589	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
2-Butanone (MEK)	ND	294	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
n-Butylbenzene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
sec-Butylbenzene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
tert-Butylbenzene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Carbon disulfide	ND	294	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Carbon tetrachloride	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

	Re	epo	rt l	D:	
A3J1	366 -	11	10	23	1227

ANALYTICAL SAMPLE RESULTS

	Vc	olatile Organ	ic Compound	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-10-NS-12.0-13.0-20231011 (A3J1366-11)				Matrix: Soil	1	Batch:	23J0806	
Chlorobenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Chloroethane	ND	294	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Chloroform	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Chloromethane	ND	147	294	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
2-Chlorotoluene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
4-Chlorotoluene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Dibromochloromethane	ND	58.9	118	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	147	294	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Dibromomethane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,2-Dichlorobenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,3-Dichlorobenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,4-Dichlorobenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Dichlorodifluoromethane	ND	58.9	118	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,1-Dichloroethane	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,1-Dichloroethene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
cis-1,2-Dichloroethene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
trans-1,2-Dichloroethene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,2-Dichloropropane	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,3-Dichloropropane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
2,2-Dichloropropane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,1-Dichloropropene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
cis-1,3-Dichloropropene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
trans-1,3-Dichloropropene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Ethylbenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Hexachlorobutadiene	ND	58.9	118	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
2-Hexanone	ND	589	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Isopropylbenzene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
4-Isopropyltoluene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Methylene chloride	ND	294	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	294	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions	
55 SW Yamhill St, Ste 300)

Portland, OR 97209

Project: **Eatonville Landfill Characterization** Project Number: 00171.074.008

Project Manager: Ben Johnson

Report ID: A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
TP-10-NS-12.0-13.0-20231011 (A3J1366	-11)			Matrix: Soil		Batch:	23J0806				
Naphthalene	ND	118	235	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
n-Propylbenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
Styrene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
1,1,1,2-Tetrachloroethane	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
1,1,2,2-Tetrachloroethane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
Tetrachloroethene (PCE)	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
Toluene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
1,2,3-Trichlorobenzene	ND	147	294	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
1,2,4-Trichlorobenzene	ND	147	294	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
1,1,1-Trichloroethane	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
1,1,2-Trichloroethane	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
Trichloroethene (TCE)	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
Trichlorofluoromethane	ND	58.9	118	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
1,2,3-Trichloropropane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
1,2,4-Trimethylbenzene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
1,3,5-Trimethylbenzene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
Vinyl chloride	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
m,p-Xylene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
o-Xylene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D				
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	rry: 103 %	Limits: 80-120 %	1	10/20/23 19:02	5035A/8260D				
Toluene-d8 (Surr)			96 %	80-120 %	1	10/20/23 19:02	5035A/8260D				
4-Bromofluorobenzene (Surr)			103 %	79-120 %	1	10/20/23 19:02	5035A/8260D				
TP-15-NS-9.0-10.0-20231012 (A3J1366-	12)			Matrix: Soil		Batch: 2	23J0806				
Acetone	ND	1320	1320	ug/kg dry	50	10/20/23 19:28	5035A/8260D	ICV-02			
Acrylonitrile	ND	65.9	132	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Benzene	ND	6.59	13.2	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Bromobenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Bromochloromethane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Bromodichloromethane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Bromoform	ND	65.9	132	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Bromomethane	ND	659	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
2-Butanone (MEK)	ND	329	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D				

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Eatonville Landfill Characterization
Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Repo</u>	rt l	D:	
A3J1366 - 11	10	23	1227

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
TP-15-NS-9.0-10.0-20231012 (A3J1366-12)				Matrix: Soil	1	Batch:	23J0806				
n-Butylbenzene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
sec-Butylbenzene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
tert-Butylbenzene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Carbon disulfide	ND	329	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Carbon tetrachloride	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Chlorobenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Chloroethane	ND	329	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Chloroform	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Chloromethane	ND	165	329	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
2-Chlorotoluene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
4-Chlorotoluene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Dibromochloromethane	ND	65.9	132	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,2-Dibromo-3-chloropropane	ND	165	329	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,2-Dibromoethane (EDB)	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Dibromomethane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,2-Dichlorobenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,3-Dichlorobenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,4-Dichlorobenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Dichlorodifluoromethane	ND	65.9	132	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,1-Dichloroethane	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,2-Dichloroethane (EDC)	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,1-Dichloroethene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
cis-1,2-Dichloroethene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
trans-1,2-Dichloroethene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,2-Dichloropropane	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,3-Dichloropropane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
2,2-Dichloropropane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,1-Dichloropropene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
cis-1,3-Dichloropropene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
trans-1,3-Dichloropropene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Ethylbenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Hexachlorobutadiene	ND	65.9	132	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
2-Hexanone	ND	659	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D				

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
TP-15-NS-9.0-10.0-20231012 (A3J1366-1	2)			Matrix: Soil		Batch:	23J0806				
Isopropylbenzene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
4-Isopropyltoluene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Methylene chloride	ND	329	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
4-Methyl-2-pentanone (MiBK)	ND	329	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Methyl tert-butyl ether (MTBE)	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Naphthalene	ND	132	264	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
n-Propylbenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Styrene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,1,1,2-Tetrachloroethane	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,1,2,2-Tetrachloroethane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Tetrachloroethene (PCE)	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Toluene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,2,3-Trichlorobenzene	ND	165	329	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,2,4-Trichlorobenzene	ND	165	329	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,1,1-Trichloroethane	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,1,2-Trichloroethane	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Trichloroethene (TCE)	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Trichlorofluoromethane	ND	65.9	132	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,2,3-Trichloropropane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,2,4-Trimethylbenzene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
1,3,5-Trimethylbenzene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Vinyl chloride	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
m,p-Xylene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
o-Xylene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D				
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 102 %	Limits: 80-120 %	1	10/20/23 19:28	5035A/8260D				
Toluene-d8 (Surr)			96 %	80-120 %	I	10/20/23 19:28	5035A/8260D				
4-Bromofluorobenzene (Surr)			104 %	79-120 %	1	10/20/23 19:28	5035A/8260D				
				Matrix: Soil		Batch: 23J0806					
Acetone	ND	1020	1020	ug/kg dry	50	10/20/23 19:54	5035A/8260D	ICV-0			
Acrylonitrile	ND	50.9	1020	ug/kg dry	50	10/20/23 19:54	5035A/8260D				
Benzene	ND	5.09	10.2	ug/kg dry	50	10/20/23 19:54	5035A/8260D				
Bromobenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D				

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

Report ID:	
A3J1366 - 11 10 23	1227

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
TP-07-IM-14.0-15.0-20231011 (A3J1366-14	4)			Matrix: Soil	1	Batch:	23J0806			
Bromochloromethane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
Bromodichloromethane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
Bromoform	ND	50.9	102	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
Bromomethane	ND	509	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
2-Butanone (MEK)	ND	254	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
n-Butylbenzene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
sec-Butylbenzene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
tert-Butylbenzene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
Carbon disulfide	ND	254	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
Carbon tetrachloride	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
Chlorobenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
Chloroethane	ND	254	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
Chloroform	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
Chloromethane	ND	127	254	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
2-Chlorotoluene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
4-Chlorotoluene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
Dibromochloromethane	ND	50.9	102	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
1,2-Dibromo-3-chloropropane	ND	127	254	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
1,2-Dibromoethane (EDB)	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
Dibromomethane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
1,2-Dichlorobenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
1,3-Dichlorobenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
1,4-Dichlorobenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
Dichlorodifluoromethane	ND	50.9	102	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
1,1-Dichloroethane	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
1,2-Dichloroethane (EDC)	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
1,1-Dichloroethene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
cis-1,2-Dichloroethene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
trans-1,2-Dichloroethene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
1,2-Dichloropropane	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
1,3-Dichloropropane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
2,2-Dichloropropane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			
1,1-Dichloropropene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D			

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project:Eatonville Landfill CharacterizationProject Number:00171.074.008Project Manager:Ben Johnson

Re	po	rt I	D:	
A3J1366 -	11	10	23	1227

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	DD			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-07-IM-14.0-15.0-20231011 (A3J1366	-14)			Matrix: Soil		Batch:	23J0806	
cis-1,3-Dichloropropene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
trans-1,3-Dichloropropene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Ethylbenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Hexachlorobutadiene	ND	50.9	102	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
2-Hexanone	ND	509	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Isopropylbenzene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
4-Isopropyltoluene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Methylene chloride	ND	254	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	254	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Naphthalene	ND	102	204	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
n-Propylbenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Styrene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Tetrachloroethene (PCE)	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Toluene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,2,3-Trichlorobenzene	ND	127	254	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,2,4-Trichlorobenzene	ND	127	254	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,1,1-Trichloroethane	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,1,2-Trichloroethane	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Trichloroethene (TCE)	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Trichlorofluoromethane	ND	50.9	102	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,2,3-Trichloropropane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,2,4-Trimethylbenzene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,3,5-Trimethylbenzene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Vinyl chloride	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
m,p-Xylene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
o-Xylene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 102 %	Limits: 80-120 %	1	10/20/23 19:54	5035A/8260D	
Toluene-d8 (Surr)			97 %	80-120 %	1	10/20/23 19:54	5035A/8260D	
4-Bromofluorobenzene (Surr)			103 %	79-120 %	1	10/20/23 19:54	5035A/8260D	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: Eatonville Landfill Characterization
Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	/Is by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
WS-01-0.0-2.0-10102023 (A3J1366-01)) Matrix: Soil			Batch:	23J0900	C-07		
Aroclor 1016	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Aroclor 1221	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Aroclor 1232	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Aroclor 1242	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Aroclor 1248	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Aroclor 1254	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Aroclor 1260	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 65 %	Limits: 60-125 %	5 1	10/24/23 18:14	EPA 8082A	
WS-02-0.0-2.0-1010-2023 (A3J1366-02)			Matrix: Soil		Batch:	23J0900	C-07	
Aroclor 1016	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Aroclor 1221	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Aroclor 1232	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Aroclor 1242	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Aroclor 1248	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Aroclor 1254	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Aroclor 1260	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 75 %	Limits: 60-125 %	5 1	10/24/23 19:25	EPA 8082A	
WS-03-0.0-2.0-10102023 (A3J1366-03)				Matrix: Soil		Batch:	C-07	
Aroclor 1016	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Aroclor 1221	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Aroclor 1232	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Aroclor 1242	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Aroclor 1248	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Aroclor 1254	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Aroclor 1260	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 70 %	Limits: 60-125 %	5 1	10/24/23 20:00	EPA 8082A	
WS-04-0.0-2.0-10102023 (A3J1366-04)				Matrix: Soil		Batch:	23J0900	C-07
Aroclor 1016	ND	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	
Aroclor 1221	ND	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	
Aroclor 1232	ND	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u>

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		-	ted Bipheny	-		5		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
WS-04-0.0-2.0-10102023 (A3J1366-04)				Matrix: Soil		Batch:	23J0900	C-07
Aroclor 1242	ND	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	
Aroclor 1248	ND	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	
Aroclor 1254	ND	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	
Aroclor 1260	25.2	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	J
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 40 %	Limits: 60-125 %	1	10/24/23 21:11	EPA 8082A	S-03
WS-05-0.0-2.0-10102023 (A3J1366-05RE	1)			Matrix: Soil		Batch:	23J1014	C-07
Aroclor 1016	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Aroclor 1221	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Aroclor 1232	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Aroclor 1242	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Aroclor 1248	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Aroclor 1254	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Aroclor 1260	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 73 %	Limits: 60-125 %	1	10/26/23 18:41	EPA 8082A	
TP-01-IM-10.0-11.0-20231010 (A3J1366-0	P-01-IM-10.0-11.0-20231010 (A3J1366-06)			Matrix: Soil		Batch: 23J1014		C-07
Aroclor 1016	ND	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	
Aroclor 1221	ND	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	
Aroclor 1232	ND	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	
Aroclor 1242	85.0	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	P-09
Aroclor 1248	ND	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	
Aroclor 1254	ND	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	
Aroclor 1260	33.9	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 90 %	Limits: 60-125 %	1	10/26/23 19:16	EPA 8082A	
TP-04-NS-9.0-10.0-20231010 (A3J1366-0	7)			Matrix: Soil		Batch: 23J1014		C-07
Aroclor 1016	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	
Aroclor 1221	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	
Aroclor 1232	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	
Aroclor 1242	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	
Aroclor 1248	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	
Aroclor 1254	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	rls by EPA 8082	Α			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-04-NS-9.0-10.0-20231010 (A3J1366-0	7)			Matrix: Soil		Batch: 23J1014		C-07
Aroclor 1260	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 89 %	Limits: 60-125 %	1	10/26/23 19:52	EPA 8082A	
IP-05-NS-4.0-5.0-20231011 (A3J1366-08)		Matrix: Soil		Batch: 2	23J1014	C-07		
Aroclor 1016	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Aroclor 1221	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Aroclor 1232	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Aroclor 1242	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Aroclor 1248	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Aroclor 1254	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Aroclor 1260	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 84 %	Limits: 60-125 %	1	10/26/23 20:27	EPA 8082A	
P-06-NS-9.0-10.0-20231011 (A3J1366-0	9)			Matrix: Soil		Batch: 23J1014		C-07
Aroclor 1016	ND	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Aroclor 1221	ND	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Aroclor 1232	ND	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Aroclor 1242	ND	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Aroclor 1248	ND	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Aroclor 1254	ND	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Aroclor 1260	13.0	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 88 %	Limits: 60-125 %	1	10/26/23 21:03	EPA 8082A	
P-08-NS-12.0-13.0-20231011 (A3J1366-	10)			Matrix: Soil	Matrix: Soil		Batch: 23J1014	
Aroclor 1016	ND	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	
Aroclor 1221	ND	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	
Aroclor 1232	ND	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	
Aroclor 1242	ND	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	
Aroclor 1248	ND	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	
Aroclor 1254	10.9	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	P-12
Aroclor 1260	12.2	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 91 %	Limits: 60-125 %	1	10/26/23 21:38	EPA 8082A	
	11)			Matrix: Soil		Batch: 2	2 14 04 4	C-07

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: Eatonville Landfill Characterization
Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	/Is by EPA 8082	A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-10-NS-12.0-13.0-20231011 (A3J136	NS-12.0-13.0-20231011 (A3J1366-11)			Matrix: Soil		Batch:	23J1014	C-07
Aroclor 1016	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Aroclor 1221	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Aroclor 1232	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Aroclor 1242	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Aroclor 1248	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Aroclor 1254	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Aroclor 1260	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 81 %	Limits: 60-125 %	1	10/26/23 22:49	EPA 8082A	
P-15-NS-9.0-10.0-20231012 (A3J1366-12)		Matrix: Soil		Batch:	23J1014	C-07		
Aroclor 1016	ND	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	
Aroclor 1221	ND	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	
Aroclor 1232	ND	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	
Aroclor 1242	8.63	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	J
Aroclor 1248	ND	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	
Aroclor 1254	13.2	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	P-12
Aroclor 1260	ND	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 75 %	Limits: 60-125 %	1	10/26/23 23:24	EPA 8082A	
TP-15-IM-4.0-5.0-20231012 (A3J1366-	13)			Matrix: Soil		Batch: 23J1014		C-07
Aroclor 1016	ND	10.8	10.8	ug/kg dry	1	10/27/23 00:00	EPA 8082A	
Aroclor 1221	ND	5.39	10.8	ug/kg dry	1	10/27/23 00:00	EPA 8082A	
Aroclor 1232	ND	20.2	20.2	ug/kg dry	1	10/27/23 00:00	EPA 8082A	R-02
Aroclor 1242	ND	14.0	14.0	ug/kg dry	1	10/27/23 00:00	EPA 8082A	R-02
Aroclor 1248	ND	32.1	32.1	ug/kg dry	1	10/27/23 00:00	EPA 8082A	R-02
Aroclor 1254	32.4	5.39	10.8	ug/kg dry	1	10/27/23 00:00	EPA 8082A	P-12
Aroclor 1260	25.8	5.39	10.8	ug/kg dry	1	10/27/23 00:00	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Recov	ery: 106 %	Limits: 60-125 %	1	10/27/23 00:00	EPA 8082A	
TP-07-IM-14.0-15.0-20231011 (A3J136	6-14)			Matrix: Soil		Batch: 23J1014		C-07
Aroclor 1016	ND	5.73	11.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	
Aroclor 1221	ND	5.73	11.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	
Aroclor 1232	ND	11.5	11.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions				
55 SW Yamhill St, Ste 300				
Portland, OR 97209				

Project: Eatonville Landfill Characterization
Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	/Is by EPA 8082	A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-07-IM-14.0-15.0-20231011 (A3J136	6-14)			Matrix: Soil		Batch:	23J1014	C-07
Aroclor 1242	ND	5.73	11.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	
Aroclor 1248	ND	18.5	18.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	R-02
Aroclor 1254	52.8	5.73	11.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	P-12
Aroclor 1260	27.9	5.73	11.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 96 %	Limits: 60-125 %	1	10/27/23 00:35	EPA 8082A	
TP-08-IM-4.0-5.0-20231011 (A3J1366-	15RE1)			Matrix: Soil		Batch:	23J1014	C-07
Aroclor 1016	ND	94.7	94.7	ug/kg dry	1	10/27/23 11:05	EPA 8082A	R-02
Aroclor 1221	ND	24.2	24.2	ug/kg dry	1	10/27/23 11:05	EPA 8082A	R-02
Aroclor 1232	ND	155	155	ug/kg dry	1	10/27/23 11:05	EPA 8082A	R-02
Aroclor 1242	ND	126	126	ug/kg dry	1	10/27/23 11:05	EPA 8082A	R-02
Aroclor 1248	ND	79.3	79.3	ug/kg dry	1	10/27/23 11:05	EPA 8082A	R-02
Aroclor 1254	ND	90.3	90.3	ug/kg dry	1	10/27/23 11:05	EPA 8082A	R-02, Q-42
Aroclor 1260	82.9	5.51	11.0	ug/kg dry	1	10/27/23 11:05	EPA 8082A	Q-42
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 103 %	Limits: 60-125 %	1	10/27/23 11:05	EPA 8082A	
TP-07-IM-9.0-10.0-20231011 (A3J1366	5-16)			Matrix: Soil		Batch: 23J1015		C-07
Aroclor 1016	ND	29.2	29.2	ug/kg dry	1	10/26/23 19:35	EPA 8082A	R-02
Aroclor 1221	ND	10.8	10.8	ug/kg dry	1	10/26/23 19:35	EPA 8082A	
Aroclor 1232	ND	78.7	78.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	R-02
Aroclor 1242	ND	40.3	40.3	ug/kg dry	1	10/26/23 19:35	EPA 8082A	R-02
Aroclor 1248	ND	23.3	23.3	ug/kg dry	1	10/26/23 19:35	EPA 8082A	R-02
Aroclor 1254	74.2	5.38	10.8	ug/kg dry	1	10/26/23 19:35	EPA 8082A	P-12
Aroclor 1260	53.6	5.38	10.8	ug/kg dry	1	10/26/23 19:35	EPA 8082A	P-12, Q-42
Surrogate: Decachlorobiphenyl (Surr)		Recov	ery: 114 %	Limits: 60-125 %	1	10/26/23 19:35	EPA 8082A	
TP-14-IM-14.0-15.0-20231012 (A3J136	6-17)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	
Aroclor 1221	ND	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	
Aroclor 1232	ND	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	
Aroclor 1242	54.8	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	P-12
Aroclor 1248	ND	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	
Aroclor 1254	78.4	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	P-12

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	vis by EPA 8082	Α			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
FP-14-IM-14.0-15.0-20231012 (A3J1366	6-17)			Matrix: Soil		Batch: 2	23J1015	C-07
Aroclor 1260	26.6	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 95 %	Limits: 60-125 %	1	10/26/23 20:45	EPA 8082A	
[P-13-IM-14.0-15.0-20231012 (A3J1366	6-18)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1221	ND	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1232	ND	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1242	67.3	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	P-12
Aroclor 1248	ND	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1254	38.1	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	P-12
Aroclor 1260	17.8	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 97 %	Limits: 60-125 %	1	10/26/23 21:20	EPA 8082A	
[P-12-IM-9.0-10.0-20231012 (A3J1366-	19RE1)			Matrix: Soil Batch: 23J1015		23J1015	C-07	
Aroclor 1016	ND	56.9	114	ug/kg dry	10	10/27/23 11:05	EPA 8082A	
Aroclor 1221	ND	56.9	114	ug/kg dry	10	10/27/23 11:05	EPA 8082A	
Aroclor 1232	ND	56.9	114	ug/kg dry	10	10/27/23 11:05	EPA 8082A	
Aroclor 1242	ND	56.9	114	ug/kg dry	10	10/27/23 11:05	EPA 8082A	
Aroclor 1248	ND	56.9	114	ug/kg dry	10	10/27/23 11:05	EPA 8082A	
Aroclor 1254	298	56.9	114	ug/kg dry	10	10/27/23 11:05	EPA 8082A	P-12
Aroclor 1260	ND	426	426	ug/kg dry	10	10/27/23 11:05	EPA 8082A	R-02
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 106 %	Limits: 60-125 %	10	10/27/23 11:05	EPA 8082A	S-05
FP-11-IM-4.0-5.0-20231012 (A3J1366-2	0)			Matrix: Soil		Batch: 2	23J1015	C-07
Aroclor 1016	ND	11.1	11.1	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1221	ND	11.1	11.1	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1232	ND	28.5	28.5	ug/kg dry	1	10/26/23 22:31	EPA 8082A	R-02
Aroclor 1242	ND	14.6	14.6	ug/kg dry	1	10/26/23 22:31	EPA 8082A	R-02
Aroclor 1248	ND	11.1	11.1	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1254	24.3	5.57	11.1	ug/kg dry	1	10/26/23 22:31	EPA 8082A	P-12
Aroclor 1260	20.3	5.57	11.1	ug/kg dry	1	10/26/23 22:31	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 99 %	Limits: 60-125 %	1	10/26/23 22:31	EPA 8082A	
P-10-IM-9.0-10.0-20231011 (A3J1366-	21)			Matrix: Soil		Batch: 1	23J1015	C-07

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 808	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-10-IM-9.0-10.0-20231011 (A3J1366-2	21)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	34.0	34.0	ug/kg dry	1	10/26/23 23:06	EPA 8082A	R-02
Aroclor 1221	ND	23.1	23.1	ug/kg dry	1	10/26/23 23:06	EPA 8082A	R-02
Aroclor 1232	ND	91.5	91.5	ug/kg dry	1	10/26/23 23:06	EPA 8082A	R-02
Aroclor 1242	ND	46.8	46.8	ug/kg dry	1	10/26/23 23:06	EPA 8082A	R-02
Aroclor 1248	ND	31.4	31.4	ug/kg dry	1	10/26/23 23:06	EPA 8082A	R-02
Aroclor 1254	82.3	6.34	12.7	ug/kg dry	1	10/26/23 23:06	EPA 8082A	P-12
Aroclor 1260	40.9	6.34	12.7	ug/kg dry	1	10/26/23 23:06	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Recov	ery: 111 %	Limits: 60-125 %	6 I	10/26/23 23:06	EPA 8082A	
TP-09-IM-11.0-12.0-20231011 (A3J1366	-22)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	20.8	20.8	ug/kg dry	1	10/26/23 19:00	EPA 8082A	R-02
Aroclor 1221	ND	5.86	11.7	ug/kg dry	1	10/26/23 19:00	EPA 8082A	
Aroclor 1232	ND	52.4	52.4	ug/kg dry	1	10/26/23 19:00	EPA 8082A	R-02
Aroclor 1242	ND	27.4	27.4	ug/kg dry	1	10/26/23 19:00	EPA 8082A	R-02
Aroclor 1248	ND	46.3	46.3	ug/kg dry	1	10/26/23 19:00	EPA 8082A	R-02
Aroclor 1254	ND	70.0	70.0	ug/kg dry	1	10/26/23 19:00	EPA 8082A	R-02
Aroclor 1260	98.8	5.86	11.7	ug/kg dry	1	10/26/23 19:00	EPA 8082A	P-09
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 101 %	Limits: 60-125 %	6 I	10/26/23 19:00	EPA 8082A	
SS-06-0.0-1.0-20231011 (A3J1366-23)				Matrix: Soil		Batch: 23J1015		C-07
Aroclor 1016	ND	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	
Aroclor 1221	ND	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	
Aroclor 1232	ND	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	
Aroclor 1242	ND	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	
Aroclor 1248	ND	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	
Aroclor 1254	128	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	P-10
Aroclor 1260	39.6	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	P-10
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 99 %	Limits: 60-125 %	6 I	10/26/23 19:35	EPA 8082A	
SS-05-0.0-1.0-20231011 (A3J1366-24)				Matrix: Soil		Batch: 23J1015		C-07
Aroclor 1016	ND	17.2	17.2	ug/kg dry	1	10/26/23 20:10	EPA 8082A	R-02
Aroclor 1221	ND	5.81	11.6	ug/kg dry	1	10/26/23 20:10	EPA 8082A	
Aroclor 1232	ND	26.6	26.6	ug/kg dry	1	10/26/23 20:10	EPA 8082A	R-02

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Eatonville Landfill Characterization
Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Folycillorilla	ted bipneny	/Is by EPA 8082	A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SS-05-0.0-1.0-20231011 (A3J1366-24)				Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1242	ND	22.1	22.1	ug/kg dry	1	10/26/23 20:10	EPA 8082A	R-02
Aroclor 1248	ND	5.81	11.6	ug/kg dry	1	10/26/23 20:10	EPA 8082A	
Aroclor 1254	74.3	5.81	11.6	ug/kg dry	1	10/26/23 20:10	EPA 8082A	P-12
Aroclor 1260	25.2	5.81	11.6	ug/kg dry	1	10/26/23 20:10	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 92 %	Limits: 60-125 %	1	10/26/23 20:10	EPA 8082A	
TP-04-IM-4.0-5.0-20231010 (A3J1366-25	RE1)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	11.0	11.0	ug/kg dry	1	10/27/23 09:54	EPA 8082A	
Aroclor 1221	ND	11.0	11.0	ug/kg dry	1	10/27/23 09:54	EPA 8082A	
Aroclor 1232	ND	35.2	35.2	ug/kg dry	1	10/27/23 09:54	EPA 8082A	R-02
Aroclor 1242	ND	15.0	15.0	ug/kg dry	1	10/27/23 09:54	EPA 8082A	R-02
Aroclor 1248	ND	12.6	12.6	ug/kg dry	1	10/27/23 09:54	EPA 8082A	R-02
Aroclor 1254	40.1	5.52	11.0	ug/kg dry	1	10/27/23 09:54	EPA 8082A	P-12
Aroclor 1260	12.9	5.52	11.0	ug/kg dry	1	10/27/23 09:54	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 99 %	Limits: 60-125 %	1	10/27/23 09:54	EPA 8082A	
TP-03-IM-14.0-15.0-20231010 (A3J1366-	3J1366-26)			Matrix: Soil		Batch: 23J1015		C-07
Aroclor 1016	ND	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1221	ND	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1232	ND	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1242	10.7	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	J
Aroclor 1248	ND	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1254	46.7	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	P-12
Aroclor 1260	13.7	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 89 %	Limits: 60-125 %	1	10/26/23 21:20	EPA 8082A	
TP-02-IM-4.0-5.0-20231010 (A3J1366-27	RE1)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1221	ND	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1232	ND	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1242	730	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	P-12
Aroclor 1248	ND	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1254	269	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	P-12

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	/Is by EPA 8082	A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-02-IM-4.0-5.0-20231010 (A3J1366-2	27RE1)			Matrix: Soil	Matrix: Soil		23J1015	C-07
Aroclor 1260	64.1	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 103 %	Limits: 60-125 %	5	10/27/23 10:30	EPA 8082A	
TP-01-IM-5.0-6.0-20231010 (A3J1366-2	28)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1221	ND	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1232	ND	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1242	ND	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1248	ND	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1254	450	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	P-12
Aroclor 1260	67.0	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 91 %	Limits: 60-125 %	1	10/26/23 22:31	EPA 8082A	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GS	SI W	'ate	r So	lutio	ns	
55	sw	Ya	mhi	ll St,	Ste	300
_	-	-				

Portland, OR 97209

Project: **Eatonville Landfill Characterization** Project Number: 00171.074.008

Project Manager: Ben Johnson

Report ID: A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-01-IM-10.0-11.0-20231010 (A3.	J1366-06RE1)			Matrix: Soi	I	Batch:	23J0793	R-04
Acenaphthene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Acenaphthylene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Anthracene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benz(a)anthracene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benzo(a)pyrene	ND	92.7	185	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benzo(b)fluoranthene	ND	92.7	185	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benzo(k)fluoranthene	ND	92.7	185	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benzo(g,h,i)perylene	100	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	J, Q-42
Chrysene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Dibenz(a,h)anthracene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Fluoranthene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Fluorene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Indeno(1,2,3-cd)pyrene	68.1	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	J, Q-42
1-Methylnaphthalene	ND	124	247	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2-Methylnaphthalene	ND	124	247	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Naphthalene	ND	124	247	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Phenanthrene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Pyrene	71.3	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	J, Q-42
Carbazole	ND	92.7	185	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Dibenzofuran	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2-Chlorophenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
4-Chloro-3-methylphenol	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,4-Dichlorophenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,4-Dimethylphenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,4-Dinitrophenol	ND	1540	3090	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	1540	3090	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2-Methylphenol	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
3+4-Methylphenol(s)	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2-Nitrophenol	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
4-Nitrophenol	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Pentachlorophenol (PCP)	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Phenol	ND	124	247	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions					
55 SW Yamhill St, Ste 300					
Portland, OR 97209					

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sem	nivolatile Org	anic Compo	unds by EPA	8270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-01-IM-10.0-11.0-20231010 (A3J1	1366-06RE1)			Matrix: Soi	I	Batch:	23J0793	R-04
2,3,5,6-Tetrachlorophenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,4,5-Trichlorophenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,4,6-Trichlorophenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	927	1850	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Butyl benzyl phthalate	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Diethylphthalate	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Dimethylphthalate	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Di-n-butylphthalate	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Di-n-octyl phthalate	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
N-Nitrosodimethylamine	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
N-Nitrosodiphenylamine	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Hexachlorobenzene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Hexachlorobutadiene	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Hexachlorocyclopentadiene	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Hexachloroethane	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2-Chloronaphthalene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
1,2,4-Trichlorobenzene	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
4-Bromophenyl phenyl ether	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Aniline	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
4-Chloroaniline	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2-Nitroaniline	ND	1240	2470	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
3-Nitroaniline	ND	1240	2470	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
4-Nitroaniline	ND	1240	2470	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Nitrobenzene	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,4-Dinitrotoluene	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,6-Dinitrotoluene	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benzoic acid	ND	7740	15400	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benzyl alcohol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Org	janic Comp	ounds by EPA 8	270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-01-IM-10.0-11.0-20231010 (A3J136	6-06RE1)			Matrix: Soil		Batch:	23J0793	R-04
Isophorone	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Azobenzene (1,2-DPH)	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	1540	3090	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
3,3'-Dichlorobenzidine	ND	1240	2470	ug/kg dry	40	10/23/23 13:41	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	1540	3090	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
1,3-Dinitrobenzene	ND	1540	3090	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
1,4-Dinitrobenzene	ND	1540	3090	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Pyridine	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
1,2-Dichlorobenzene	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
1,3-Dichlorobenzene	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
1,4-Dichlorobenzene	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 90 %	Limits: 37-122 %	40	10/23/23 13:41	EPA 8270E	S-05
2-Fluorobiphenyl (Surr)			102 %	44-120 %	40	10/23/23 13:41	EPA 8270E	S-05
Phenol-d6 (Surr)			85 %	33-122 %	40	10/23/23 13:41	EPA 8270E	S-05
p-Terphenyl-d14 (Surr)			103 %	54-127 %	40	10/23/23 13:41	EPA 8270E	S-05
2-Fluorophenol (Surr)			74 %	35-120 %	40	10/23/23 13:41	EPA 8270E	S-05
2,4,6-Tribromophenol (Surr)			106 %	39-132 %	40	10/23/23 13:41	EPA 8270E	S-05
TP-04-NS-9.0-10.0-20231010 (A3J1366	6-07RE2)			Matrix: Soil	Matrix: Soil Batch: 23J07		Batch: 23J0793	
Acenaphthene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Acenaphthylene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Anthracene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benz(a)anthracene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benzo(a)pyrene	ND	2.23	4.45	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benzo(b)fluoranthene	ND	2.23	4.45	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benzo(k)fluoranthene	ND	2.23	4.45	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benzo(g,h,i)perylene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Chrysene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Dibenz(a,h)anthracene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Fluoranthene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Fluorene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
1-Methylnaphthalene	ND	2.97	5.93	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2-Methylnaphthalene	ND	2.97	5.93	ug/kg dry	1	10/24/23 18:23	EPA 8270E	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions				
55 SW Yamhill St, Ste 300				
Portland, OR 97209				

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-04-NS-9.0-10.0-20231010 (A3J13	366-07RE2)			Matrix: Soi	I	Batch:	23J0793	
Naphthalene	ND	2.97	5.93	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Phenanthrene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Pyrene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Carbazole	ND	2.23	4.45	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Dibenzofuran	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2-Chlorophenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
4-Chloro-3-methylphenol	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,4-Dichlorophenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,4-Dimethylphenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,4-Dinitrophenol	ND	37.1	74.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	37.1	74.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2-Methylphenol	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
3+4-Methylphenol(s)	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2-Nitrophenol	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
4-Nitrophenol	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Pentachlorophenol (PCP)	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Phenol	ND	2.97	5.93	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,4,5-Trichlorophenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,4,6-Trichlorophenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	22.3	44.5	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Butyl benzyl phthalate	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Diethylphthalate	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Dimethylphthalate	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Di-n-butylphthalate	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Di-n-octyl phthalate	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
N-Nitrosodimethylamine	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
N-Nitrosodiphenylamine	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

L		-		ounds by EPA 8	, 2 , VL			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-04-NS-9.0-10.0-20231010 (A3J130	04-NS-9.0-10.0-20231010 (A3J1366-07RE2)			Matrix: Soil		Batch:	23J0793	
Hexachlorobenzene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Hexachlorobutadiene	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Hexachlorocyclopentadiene	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Hexachloroethane	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2-Chloronaphthalene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
1,2,4-Trichlorobenzene	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
4-Bromophenyl phenyl ether	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Aniline	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
4-Chloroaniline	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2-Nitroaniline	ND	29.7	59.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
3-Nitroaniline	ND	29.7	59.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
4-Nitroaniline	ND	29.7	59.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Nitrobenzene	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,4-Dinitrotoluene	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,6-Dinitrotoluene	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benzoic acid	ND	186	371	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benzyl alcohol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Isophorone	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Azobenzene (1,2-DPH)	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	37.1	74.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
3,3'-Dichlorobenzidine	ND	29.7	59.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	37.1	74.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
1,3-Dinitrobenzene	ND	37.1	74.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
1,4-Dinitrobenzene	ND	37.1	74.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Pyridine	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
1,2-Dichlorobenzene	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
1,3-Dichlorobenzene	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
1,4-Dichlorobenzene	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recov	ery: 112 %	Limits: 37-122 %	1	10/24/23 18:23	EPA 8270E	
2-Fluorobiphenyl (Surr)			101 %	44-120 %	1	10/24/23 18:23	EPA 8270E	
Phenol-d6 (Surr)			115 %	33-122 %	1	10/24/23 18:23	EPA 8270E	
p-Terphenyl-d14 (Surr)			95 %	54-127 %	1	10/24/23 18:23	EPA 8270E	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-04-NS-9.0-10.0-20231010 (A3J1366	-07RE2)			Matrix: Soil		Batch: 2	23J0793	
Surrogate: 2-Fluorophenol (Surr)		Recov	very: 93 %	Limits: 35-120 %	1	10/24/23 18:23	EPA 8270E	
2,4,6-Tribromophenol (Surr)			118 %	39-132 %	I	10/24/23 18:23	EPA 8270E	
TP-05-NS-4.0-5.0-20231011 (A3J1366-()8RE2)			Matrix: Soil		Batch: 2	23J0901	
Acenaphthene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Acenaphthylene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Anthracene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benz(a)anthracene	3.11	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benzo(a)pyrene	4.55	2.21	4.41	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benzo(b)fluoranthene	4.56	2.21	4.41	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benzo(k)fluoranthene	ND	2.21	4.41	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benzo(g,h,i)perylene	2.49	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	J
Chrysene	3.54	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Dibenz(a,h)anthracene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Fluoranthene	4.20	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Fluorene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Indeno(1,2,3-cd)pyrene	2.42	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	J
l-Methylnaphthalene	ND	2.95	5.88	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2-Methylnaphthalene	ND	2.95	5.88	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Naphthalene	ND	2.95	5.88	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Phenanthrene	2.03	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	J
Pyrene	4.17	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Carbazole	ND	2.21	4.41	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Dibenzofuran	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2-Chlorophenol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
4-Chloro-3-methylphenol	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,4-Dichlorophenol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,4-Dimethylphenol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,4-Dinitrophenol	ND	36.7	73.6	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
,6-Dinitro-2-methylphenol	ND	36.7	73.6	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
-Methylphenol	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
+4-Methylphenol(s)	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2-Nitrophenol	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions				
55 SW Yamhill St, Ste 300				
Portland, OR 97209				

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-05-NS-4.0-5.0-20231011 (A3J13	66-08RE2)			Matrix: Soi	il	Batch:	23J0901	
4-Nitrophenol	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Pentachlorophenol (PCP)	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Phenol	ND	2.95	5.88	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,4,5-Trichlorophenol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,4,6-Trichlorophenol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	22.1	44.1	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Butyl benzyl phthalate	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Diethylphthalate	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Dimethylphthalate	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Di-n-butylphthalate	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Di-n-octyl phthalate	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
N-Nitrosodimethylamine	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
N-Nitrosodiphenylamine	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Hexachlorobenzene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Hexachlorobutadiene	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Hexachlorocyclopentadiene	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Hexachloroethane	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2-Chloronaphthalene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
1,2,4-Trichlorobenzene	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
4-Bromophenyl phenyl ether	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Aniline	ND	14.7	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
4-Chloroaniline	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2-Nitroaniline	ND	29.5	58.8	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
3-Nitroaniline	ND	29.5	58.8	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
4-Nitroaniline	ND	29.5	58.8	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Nitrobenzene	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
				2 2 7				

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions				
55 SW Yamhill St, Ste 300				
Portland, OR 97209				

Project: Eatonville Landfill Characterization
Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Org	anic Comp	ounds by EPA 8	270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-05-NS-4.0-5.0-20231011 (A3J1366-	NS-4.0-5.0-20231011 (A3J1366-08RE2) Matrix: Soil Batch: 23J0901		23J0901					
2,4-Dinitrotoluene	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,6-Dinitrotoluene	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benzoic acid	ND	184	367	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benzyl alcohol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Isophorone	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Azobenzene (1,2-DPH)	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	36.7	73.6	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
3,3'-Dichlorobenzidine	ND	29.5	58.8	ug/kg dry	1	10/26/23 15:25	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	36.7	73.6	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
1,3-Dinitrobenzene	ND	36.7	73.6	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
1,4-Dinitrobenzene	ND	36.7	73.6	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Pyridine	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
1,2-Dichlorobenzene	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
1,3-Dichlorobenzene	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
1,4-Dichlorobenzene	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 94 %	Limits: 37-122 %	1	10/26/23 15:25	EPA 8270E	
2-Fluorobiphenyl (Surr)			91 %	44-120 %	1	10/26/23 15:25	EPA 8270E	
Phenol-d6 (Surr)			95 %	33-122 %	1	10/26/23 15:25	EPA 8270E	
p-Terphenyl-d14 (Surr)			88 %	54-127 %	1	10/26/23 15:25	EPA 8270E	
2-Fluorophenol (Surr)			77 %	35-120 %	1	10/26/23 15:25	EPA 8270E	
2,4,6-Tribromophenol (Surr)			109 %	39-132 %	1	10/26/23 15:25	EPA 8270E	
TP-06-NS-9.0-10.0-20231011 (A3J1366	P-06-NS-9.0-10.0-20231011 (A3J1366-09RE1)			Matrix: Soil		Batch: 23J0901		
Acenaphthene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Acenaphthylene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Anthracene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benz(a)anthracene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benzo(a)pyrene	ND	9.55	19.1	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benzo(b)fluoranthene	ND	9.55	19.1	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benzo(k)fluoranthene	ND	9.55	19.1	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benzo(g,h,i)perylene	6.91	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	J
Chrysene	8.65	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	J
Dibenz(a,h)anthracene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Fluoranthene	6.68	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	J

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-06-NS-9.0-10.0-20231011 (A3J1	P-06-NS-9.0-10.0-20231011 (A3J1366-09RE1)			Matrix: Soi	I	Batch:	23J0901	
Fluorene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
1-Methylnaphthalene	ND	12.7	25.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2-Methylnaphthalene	ND	12.7	25.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Naphthalene	24.5	12.7	25.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	J
Phenanthrene	13.8	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Pyrene	7.49	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	J
Carbazole	ND	9.55	19.1	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Dibenzofuran	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2-Chlorophenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4-Chloro-3-methylphenol	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,4-Dichlorophenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,4-Dimethylphenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,4-Dinitrophenol	ND	159	319	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	159	319	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2-Methylphenol	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
3+4-Methylphenol(s)	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2-Nitrophenol	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4-Nitrophenol	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Pentachlorophenol (PCP)	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Phenol	ND	12.7	25.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,4,5-Trichlorophenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,4,6-Trichlorophenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	95.5	191	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Butyl benzyl phthalate	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Diethylphthalate	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Dimethylphthalate	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Di-n-butylphthalate	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Di-n-octyl phthalate	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
N-Nitrosodimethylamine	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions				
55 SW Yamhill St, Ste 300				
Portland, OR 97209				

Project: <u>Eatonville Landfill Characterization</u>

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting	-		Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-06-NS-9.0-10.0-20231011 (A3J1	366-09RE1)			Matrix: Soi	I	Batch:	23J0901	
N-Nitrosodiphenylamine	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Hexachlorobenzene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Hexachlorobutadiene	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Hexachlorocyclopentadiene	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Hexachloroethane	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2-Chloronaphthalene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
1,2,4-Trichlorobenzene	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4-Bromophenyl phenyl ether	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Aniline	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4-Chloroaniline	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2-Nitroaniline	ND	127	255	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
3-Nitroaniline	ND	127	255	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4-Nitroaniline	ND	127	255	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Nitrobenzene	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,4-Dinitrotoluene	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,6-Dinitrotoluene	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benzoic acid	ND	797	1590	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benzyl alcohol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Isophorone	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Azobenzene (1,2-DPH)	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	159	319	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
3,3'-Dichlorobenzidine	ND	127	255	ug/kg dry	4	10/25/23 18:23	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	159	319	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
1,3-Dinitrobenzene	ND	159	319	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
1,4-Dinitrobenzene	ND	159	319	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Pyridine	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
1,2-Dichlorobenzene	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
1,3-Dichlorobenzene	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
1,4-Dichlorobenzene	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Orga	anic Comp	ounds by EPA 8	270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-06-NS-9.0-10.0-20231011 (A3J1366	-09RE1)			Matrix: Soil		Batch:	23J0901	
Surrogate: Nitrobenzene-d5 (Surr)		Recover	y: 101 %	Limits: 37-122 %	4	10/25/23 18:23	EPA 8270E	
2-Fluorobiphenyl (Surr)			90 %	44-120 %	4	10/25/23 18:23	EPA 8270E	
Phenol-d6 (Surr)			97 %	33-122 %	4	10/25/23 18:23	EPA 8270E	
p-Terphenyl-d14 (Surr)			98 %	54-127 %	4	10/25/23 18:23	EPA 8270E	
2-Fluorophenol (Surr)			81 %	35-120 %	4	10/25/23 18:23	EPA 8270E	
2,4,6-Tribromophenol (Surr)			110 %	39-132 %	4	10/25/23 18:23	EPA 8270E	
TP-08-NS-12.0-13.0-20231011 (A3J136	6-10RE1)			Matrix: Soil		Batch:	23J0901	R-04
Acenaphthene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Acenaphthylene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Anthracene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Benz(a)anthracene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Benzo(a)pyrene	348	220	439	ug/kg dry	40	10/26/23 03:21	EPA 8270E	J
Benzo(b)fluoranthene	262	220	439	ug/kg dry	40	10/26/23 03:21	EPA 8270E	J
Benzo(k)fluoranthene	ND	220	439	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Benzo(g,h,i)perylene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Chrysene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Dibenz(a,h)anthracene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Fluoranthene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Fluorene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
1-Methylnaphthalene	ND	293	586	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2-Methylnaphthalene	ND	293	586	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Naphthalene	ND	293	586	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Phenanthrene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Pyrene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Carbazole	ND	220	439	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Dibenzofuran	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2-Chlorophenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
4-Chloro-3-methylphenol	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,4-Dichlorophenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,4-Dimethylphenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,4-Dinitrophenol	ND	3660	7330	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	3660	7330	ug/kg dry	40	10/26/23 03:21	EPA 8270E	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Org	anic Compo	unds by EPA	8270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-08-NS-12.0-13.0-20231011 (A3J	1366-10RE1)			Matrix: Soi	I	Batch:	23J0901	R-04
2-Methylphenol	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
3+4-Methylphenol(s)	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2-Nitrophenol	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
4-Nitrophenol	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Pentachlorophenol (PCP)	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Phenol	ND	293	586	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,4,5-Trichlorophenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,4,6-Trichlorophenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	2200	4390	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Butyl benzyl phthalate	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Diethylphthalate	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Dimethylphthalate	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Di-n-butylphthalate	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Di-n-octyl phthalate	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
N-Nitrosodimethylamine	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
N-Nitrosodiphenylamine	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Hexachlorobenzene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Hexachlorobutadiene	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Hexachlorocyclopentadiene	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Hexachloroethane	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2-Chloronaphthalene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
1,2,4-Trichlorobenzene	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
4-Bromophenyl phenyl ether	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Aniline	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
4-Chloroaniline	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2-Nitroaniline	ND	2930	5860	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
					-			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: **Eatonville Landfill Characterization** Project Number: 00171.074.008

Report ID: A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Project Manager: Ben Johnson

	Sample	Detection	Reporting	ounds by EPA 8		Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
TP-08-NS-12.0-13.0-20231011 (A3J136	6-10RE1)			Matrix: Soil		Batch:	23J0901	R-04	
3-Nitroaniline	ND	2930	5860	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
4-Nitroaniline	ND	2930	5860	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
Nitrobenzene	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
2,4-Dinitrotoluene	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
2,6-Dinitrotoluene	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
Benzoic acid	ND	18300	36600	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
Benzyl alcohol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
Isophorone	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
Azobenzene (1,2-DPH)	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
Bis(2-Ethylhexyl) adipate	ND	3660	7330	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
3,3'-Dichlorobenzidine	ND	2930	5860	ug/kg dry	40	10/26/23 03:21	EPA 8270E	Q-52	
1,2-Dinitrobenzene	ND	3660	7330	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
1,3-Dinitrobenzene	ND	3660	7330	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
1,4-Dinitrobenzene	ND	3660	7330	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
Pyridine	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
1,2-Dichlorobenzene	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
1,3-Dichlorobenzene	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
1,4-Dichlorobenzene	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E		
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 80 %	Limits: 37-122 %	40	10/26/23 03:21	EPA 8270E	S-05	
2-Fluorobiphenyl (Surr)			101 %	44-120 %	40	10/26/23 03:21	EPA 8270E	S-05	
Phenol-d6 (Surr)			84 %	33-122 %	40	10/26/23 03:21	EPA 8270E	S-05	
p-Terphenyl-d14 (Surr)			101 %	54-127 %	40	10/26/23 03:21	EPA 8270E	S-05	
2-Fluorophenol (Surr)			84 %	35-120 %	40	10/26/23 03:21	EPA 8270E	S-05	
2,4,6-Tribromophenol (Surr)			219 %	39-132 %	40	10/26/23 03:21	EPA 8270E	S-05	
TP-10-NS-12.0-13.0-20231011 (A3J136	6-11RE2)			Matrix: Soil	Matrix: Soil		Batch: 23J0901		
Acenaphthene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E		
Acenaphthylene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E		
Anthracene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E		
Benz(a)anthracene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E		
Benzo(a)pyrene	ND	2.20	4.41	ug/kg dry	1	10/26/23 15:59	EPA 8270E		
Benzo(b)fluoranthene	ND	2.20	4.41	ug/kg dry	1	10/26/23 15:59	EPA 8270E		
Benzo(k)fluoranthene	ND	2.20	4.41	ug/kg dry	1	10/26/23 15:59	EPA 8270E		
Benzo(g,h,i)perylene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E		

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions	
55 SW Yamhill St, Ste 30	0

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

 Project Manager:
 Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sem		anic Compou	unus dy EPA	02/UE			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-10-NS-12.0-13.0-20231011 (A3J	1366-11RE2)			Matrix: Soil Batch: 23		23J0901		
Chrysene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Dibenz(a,h)anthracene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Fluoranthene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Fluorene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
1-Methylnaphthalene	ND	2.94	5.87	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2-Methylnaphthalene	ND	2.94	5.87	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Naphthalene	ND	2.94	5.87	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Phenanthrene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Pyrene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Carbazole	ND	2.20	4.41	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Dibenzofuran	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2-Chlorophenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
4-Chloro-3-methylphenol	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,4-Dichlorophenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,4-Dimethylphenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,4-Dinitrophenol	ND	36.7	73.5	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	36.7	73.5	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2-Methylphenol	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
3+4-Methylphenol(s)	4.18	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	J
2-Nitrophenol	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
4-Nitrophenol	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Pentachlorophenol (PCP)	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Phenol	ND	2.94	5.87	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,4,5-Trichlorophenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,4,6-Trichlorophenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Bis(2-ethylhexyl)phthalate	63.6	22.0	44.1	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Butyl benzyl phthalate	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Diethylphthalate	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Dimethylphthalate	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Di-n-butylphthalate	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions				
55 SW Yamhill St, Ste 300				
Portland, OR 97209				

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-10-NS-12.0-13.0-20231011 (A3J	1366-11RE2)			Matrix: Soi	I	Batch:	23J0901	
Di-n-octyl phthalate	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
N-Nitrosodimethylamine	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
N-Nitrosodiphenylamine	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Hexachlorobenzene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Hexachlorobutadiene	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Hexachlorocyclopentadiene	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Hexachloroethane	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2-Chloronaphthalene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
1,2,4-Trichlorobenzene	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
4-Bromophenyl phenyl ether	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Aniline	ND	14.7	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
4-Chloroaniline	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2-Nitroaniline	ND	29.4	58.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
3-Nitroaniline	ND	29.4	58.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
4-Nitroaniline	ND	29.4	58.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Nitrobenzene	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,4-Dinitrotoluene	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,6-Dinitrotoluene	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Benzoic acid	ND	184	367	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Benzyl alcohol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Isophorone	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Azobenzene (1,2-DPH)	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	36.7	73.5	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
3,3'-Dichlorobenzidine	ND	29.4	58.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	36.7	73.5	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
1,3-Dinitrobenzene	ND	36.7	73.5	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
1,4-Dinitrobenzene	ND	36.7	73.5	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Pyridine	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-10-NS-12.0-13.0-20231011 (A3J136	6-11RE2)			Matrix: Soil		Batch:	23J0901	
1,2-Dichlorobenzene	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
1,3-Dichlorobenzene	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
1,4-Dichlorobenzene	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 96 %	Limits: 37-122 %	1	10/26/23 15:59	EPA 8270E	
2-Fluorobiphenyl (Surr)			88 %	44-120 %	1	10/26/23 15:59	EPA 8270E	
Phenol-d6 (Surr)			99 %	33-122 %	1	10/26/23 15:59	EPA 8270E	
p-Terphenyl-d14 (Surr)			90 %	54-127 %	1	10/26/23 15:59	EPA 8270E	
2-Fluorophenol (Surr)			79 %	35-120 %	1	10/26/23 15:59	EPA 8270E	
2,4,6-Tribromophenol (Surr)			111 %	39-132 %	1	10/26/23 15:59	EPA 8270E	
P-15-NS-9.0-10.0-20231012 (A3J1366-12RE1)		A3J1366-12RE1)			Matrix: Soil Batch: 23J0			
Acenaphthene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Acenaphthylene	10.6	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	J
Anthracene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Benz(a)anthracene	27.2	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Benzo(a)pyrene	56.5	8.60	17.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Benzo(b)fluoranthene	58.3	8.60	17.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Benzo(k)fluoranthene	26.8	8.60	17.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	M-05
Benzo(g,h,i)perylene	40.5	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Chrysene	37.3	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Dibenz(a,h)anthracene	7.12	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	J
Fluoranthene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Fluorene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Indeno(1,2,3-cd)pyrene	33.2	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
1-Methylnaphthalene	ND	11.5	22.9	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2-Methylnaphthalene	ND	11.5	22.9	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Naphthalene	ND	11.5	22.9	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Phenanthrene	13.6	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
yrene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Carbazole	ND	8.60	17.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Dibenzofuran	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2-Chlorophenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
4-Chloro-3-methylphenol	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sem	nivolatile Org	janic Compoi	unds by EPA	8270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-15-NS-9.0-10.0-20231012 (A3J13	366-12RE1)			Matrix: Soi	I	Batch:	23J0901	
2,4-Dichlorophenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,4-Dimethylphenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,4-Dinitrophenol	ND	143	287	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	143	287	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2-Methylphenol	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
3+4-Methylphenol(s)	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2-Nitrophenol	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
4-Nitrophenol	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Pentachlorophenol (PCP)	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Phenol	ND	11.5	22.9	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,4,5-Trichlorophenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,4,6-Trichlorophenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	86.0	172	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Butyl benzyl phthalate	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Diethylphthalate	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Dimethylphthalate	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Di-n-butylphthalate	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Di-n-octyl phthalate	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
N-Nitrosodimethylamine	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
N-Nitrosodiphenylamine	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Hexachlorobenzene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Hexachlorobutadiene	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Hexachlorocyclopentadiene	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Hexachloroethane	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2-Chloronaphthalene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
1,2,4-Trichlorobenzene	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
4-Bromophenyl phenyl ether	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: **00171.074.008**

Project Manager: Ben Johnson

Report	t I	D:	
A3J1366 - 11 1	0	23	1227

ANALYTICAL SAMPLE RESULTS

	Sen	involatile Orga	anic compo	ounds by EPA 8	2100			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-15-NS-9.0-10.0-20231012 (A3J1366	-12RE1)			Matrix: Soil		Batch:	23J0901	
4-Chlorophenyl phenyl ether	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Aniline	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
4-Chloroaniline	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2-Nitroaniline	ND	115	229	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
3-Nitroaniline	ND	115	229	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
4-Nitroaniline	ND	115	229	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Nitrobenzene	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,4-Dinitrotoluene	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,6-Dinitrotoluene	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Benzoic acid	ND	718	1430	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Benzyl alcohol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Isophorone	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Azobenzene (1,2-DPH)	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	143	287	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
3,3'-Dichlorobenzidine	ND	115	229	ug/kg dry	4	10/25/23 21:22	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	143	287	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
1,3-Dinitrobenzene	ND	143	287	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
1,4-Dinitrobenzene	ND	143	287	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Pyridine	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
1,2-Dichlorobenzene	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
1,3-Dichlorobenzene	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
1,4-Dichlorobenzene	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recove	ery: 74 %	Limits: 37-122 %	4	10/25/23 21:22	EPA 8270E	
2-Fluorobiphenyl (Surr)			79 %	44-120 %	4	10/25/23 21:22	EPA 8270E	
Phenol-d6 (Surr)			80 %	33-122 %	4	10/25/23 21:22	EPA 8270E	
p-Terphenyl-d14 (Surr)			98 %	54-127 %	4	10/25/23 21:22	EPA 8270E	
2-Fluorophenol (Surr)			75 %	35-120 %	4	10/25/23 21:22	EPA 8270E	
2,4,6-Tribromophenol (Surr)			86 %	39-132 %	4	10/25/23 21:22	EPA 8270E	
TP-07-IM-14.0-15.0-20231011 (A3J1366	5-14)			Matrix: Soil		Batch:	23J0901	R-04
Benzo(g,h,i)perylene	ND	148	297	ug/kg dry	40	10/24/23 21:43	EPA 8270E	
Dibenz(a,h)anthracene	ND	148	297	ug/kg dry	40	10/24/23 21:43	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	148	297	ug/kg dry	40	10/24/23 21:43	EPA 8270E	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-07-IM-14.0-15.0-20231011 (A3.	J1366-14RE1)			Matrix: Soi	1	Batch:	23J0901	R-04
Acenaphthene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Acenaphthylene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Anthracene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Benz(a)anthracene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Benzo(a)pyrene	133	111	222	ug/kg dry	20	10/26/23 03:54	EPA 8270E	J
Benzo(b)fluoranthene	118	111	222	ug/kg dry	20	10/26/23 03:54	EPA 8270E	J
Benzo(k)fluoranthene	ND	111	222	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Chrysene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Fluoranthene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Fluorene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
1-Methylnaphthalene	ND	148	296	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2-Methylnaphthalene	ND	148	296	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Naphthalene	ND	148	296	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Phenanthrene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Pyrene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Carbazole	ND	111	222	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Dibenzofuran	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2-Chlorophenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
4-Chloro-3-methylphenol	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,4-Dichlorophenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,4-Dimethylphenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,4-Dinitrophenol	ND	1850	3710	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	1850	3710	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2-Methylphenol	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
3+4-Methylphenol(s)	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2-Nitrophenol	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
4-Nitrophenol	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Pentachlorophenol (PCP)	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Phenol	ND	148	296	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,4,5-Trichlorophenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,4,6-Trichlorophenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Org	janic Compo	unds by EPA	8270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-07-IM-14.0-15.0-20231011 (A3J1	366-14RE1)			Matrix: Soi	I	Batch:	23J0901	R-04
Bis(2-ethylhexyl)phthalate	ND	1110	2220	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Butyl benzyl phthalate	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Diethylphthalate	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Dimethylphthalate	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Di-n-butylphthalate	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Di-n-octyl phthalate	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
N-Nitrosodimethylamine	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
N-Nitrosodiphenylamine	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Hexachlorobenzene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Hexachlorobutadiene	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Hexachlorocyclopentadiene	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Hexachloroethane	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2-Chloronaphthalene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
1,2,4-Trichlorobenzene	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
4-Bromophenyl phenyl ether	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Aniline	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
4-Chloroaniline	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2-Nitroaniline	ND	1480	2960	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
3-Nitroaniline	ND	1480	2960	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
4-Nitroaniline	ND	1480	2960	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Nitrobenzene	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,4-Dinitrotoluene	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,6-Dinitrotoluene	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Benzoic acid	ND	9280	18500	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Benzyl alcohol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Isophorone	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Azobenzene (1,2-DPH)	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	1850	3710	ug/kg dry	20	10/26/23 03:54	EPA 8270E	

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
TP-07-IM-14.0-15.0-20231011 (A3J1366-14RE1)			Matrix: Soil			Batch: 23J0901		R-04			
3,3'-Dichlorobenzidine	ND	1480	2960	ug/kg dry	20	10/26/23 03:54	EPA 8270E				
1,2-Dinitrobenzene	ND	1850	3710	ug/kg dry	20	10/26/23 03:54	EPA 8270E				
1,3-Dinitrobenzene	ND	1850	3710	ug/kg dry	20	10/26/23 03:54	EPA 8270E				
1,4-Dinitrobenzene	ND	1850	3710	ug/kg dry	20	10/26/23 03:54	EPA 8270E				
Pyridine	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E				
1,2-Dichlorobenzene	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E				
1,3-Dichlorobenzene	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E				
1,4-Dichlorobenzene	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E				
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 80 %	Limits: 37-122 %	20	10/26/23 03:54	EPA 8270E				
2-Fluorobiphenyl (Surr)			94 %	44-120 %	20	10/26/23 03:54	EPA 8270E				
Phenol-d6 (Surr)			79 %	33-122 %	20	10/26/23 03:54	EPA 8270E				
p-Terphenyl-d14 (Surr)			89 %	54-127 %	20	10/26/23 03:54	EPA 8270E				
2-Fluorophenol (Surr)			81 %	35-120 %	20	10/26/23 03:54	EPA 8270E				
2,4,6-Tribromophenol (Surr)			152 %	39-132 %	20	10/26/23 03:54	EPA 8270E	S-06			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions					
55 SW Yamhill St, Ste 300					
Portland, OR 97209					

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
WS-01-0.0-2.0-10102023 (A3J1366-01)				Matrix: Soi	I					
Batch: 23J1022										
Arsenic	4.26	1.04	2.08	mg/kg dry	10	10/27/23 10:52	EPA 6020B			
Barium	77.3	1.04	2.08	mg/kg dry	10	10/27/23 10:52	EPA 6020B			
Cadmium	1.68	0.208	0.417	mg/kg dry	10	10/27/23 10:52	EPA 6020B			
Chromium	8.88	1.04	2.08	mg/kg dry	10	10/27/23 10:52	EPA 6020B			
Copper	33.8	2.08	4.17	mg/kg dry	10	10/27/23 10:52	EPA 6020B			
Lead	41.6	0.208	0.417	mg/kg dry	10	10/27/23 10:52	EPA 6020B			
Mercury	ND	0.0834	0.167	mg/kg dry	10	10/27/23 10:52	EPA 6020B			
Nickel	19.7	2.08	4.17	mg/kg dry	10	10/27/23 10:52	EPA 6020B			
Selenium	ND	1.04	2.08	mg/kg dry	10	10/27/23 10:52	EPA 6020B			
Silver	ND	0.208	0.417	mg/kg dry	10	10/27/23 10:52	EPA 6020B			
Zinc	2460	4.17	8.34	mg/kg dry	10	10/27/23 10:52	EPA 6020B	Q-42		
WS-02-0.0-2.0-1010-2023 (A3J1366-02)				Matrix: Soi	I					
Batch: 23J1022										
Arsenic	3.85	0.922	1.84	mg/kg dry	10	10/27/23 11:18	EPA 6020B			
Barium	58.5	0.922	1.84	mg/kg dry	10	10/27/23 11:18	EPA 6020B			
Cadmium	1.42	0.184	0.369	mg/kg dry	10	10/27/23 11:18	EPA 6020B			
Chromium	11.3	0.922	1.84	mg/kg dry	10	10/27/23 11:18	EPA 6020B			
Copper	23.1	1.84	3.69	mg/kg dry	10	10/27/23 11:18	EPA 6020B			
Lead	41.8	0.184	0.369	mg/kg dry	10	10/27/23 11:18	EPA 6020B			
Mercury	ND	0.0737	0.147	mg/kg dry	10	10/27/23 11:18	EPA 6020B			
Nickel	11.0	1.84	3.69	mg/kg dry	10	10/27/23 11:18	EPA 6020B			
Selenium	ND	0.922	1.84	mg/kg dry	10	10/27/23 11:18	EPA 6020B			
Silver	ND	0.184	0.369	mg/kg dry	10	10/27/23 11:18	EPA 6020B			
Zinc	2070	3.69	7.37	mg/kg dry	10	10/27/23 11:18	EPA 6020B			
WS-03-0.0-2.0-10102023 (A3J1366-03)				Matrix: Soi	I					
Batch: 23J1022										
Arsenic	2.61	0.930	1.86	mg/kg dry	10	10/27/23 11:23	EPA 6020B			
Barium	52.9	0.930	1.86	mg/kg dry	10	10/27/23 11:23	EPA 6020B			
Cadmium	0.651	0.186	0.372	mg/kg dry	10	10/27/23 11:23	EPA 6020B			
Chromium	8.75	0.930	1.86	mg/kg dry	10	10/27/23 11:23	EPA 6020B			
Copper	15.7	1.86	3.72	mg/kg dry	10	10/27/23 11:23	EPA 6020B			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Eatonville Landfill Characterization
Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Total Meta	nis by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
WS-03-0.0-2.0-10102023 (A3J1366-03)				Matrix: Soi	I			
Lead	38.4	0.186	0.372	mg/kg dry	10	10/27/23 11:23	EPA 6020B	
Mercury	ND	0.0744	0.149	mg/kg dry	10	10/27/23 11:23	EPA 6020B	
Nickel	10.3	1.86	3.72	mg/kg dry	10	10/27/23 11:23	EPA 6020B	
Selenium	ND	0.930	1.86	mg/kg dry	10	10/27/23 11:23	EPA 6020B	
Silver	ND	0.186	0.372	mg/kg dry	10	10/27/23 11:23	EPA 6020B	
Zinc	1380	3.72	7.44	mg/kg dry	10	10/27/23 11:23	EPA 6020B	
WS-04-0.0-2.0-10102023 (A3J1366-04)				Matrix: Soi	1			
Batch: 23J1022								
Arsenic	2.77	1.86	3.72	mg/kg dry	10	10/27/23 11:28	EPA 6020B	J
Barium	49.8	1.86	3.72	mg/kg dry	10	10/27/23 11:28	EPA 6020B	
Cadmium	0.444	0.372	0.743	mg/kg dry	10	10/27/23 11:28	EPA 6020B	J
Chromium	9.08	1.86	3.72	mg/kg dry	10	10/27/23 11:28	EPA 6020B	
Copper	38.5	3.72	7.43	mg/kg dry	10	10/27/23 11:28	EPA 6020B	
Lead	12.6	0.372	0.743	mg/kg dry	10	10/27/23 11:28	EPA 6020B	
Mercury	ND	0.149	0.297	mg/kg dry	10	10/27/23 11:28	EPA 6020B	
Nickel	11.6	3.72	7.43	mg/kg dry	10	10/27/23 11:28	EPA 6020B	
Selenium	ND	1.86	3.72	mg/kg dry	10	10/27/23 11:28	EPA 6020B	
Silver	ND	0.372	0.743	mg/kg dry	10	10/27/23 11:28	EPA 6020B	
Zinc	685	7.43	14.9	mg/kg dry	10	10/27/23 11:28	EPA 6020B	
WS-05-0.0-2.0-10102023 (A3J1366-05)				Matrix: Soi	1			
Batch: 23J1022								
Arsenic	5.23	1.56	3.12	mg/kg dry	10	10/27/23 11:34	EPA 6020B	
Barium	105	1.56	3.12	mg/kg dry	10	10/27/23 11:34	EPA 6020B	
Cadmium	0.602	0.312	0.625	mg/kg dry	10	10/27/23 11:34	EPA 6020B	J
Chromium	10.7	1.56	3.12	mg/kg dry	10	10/27/23 11:34	EPA 6020B	
Copper	84.7	3.12	6.25	mg/kg dry	10	10/27/23 11:34	EPA 6020B	
Lead	24.0	0.312	0.625	mg/kg dry	10	10/27/23 11:34	EPA 6020B	
Mercury	ND	0.125	0.250	mg/kg dry	10	10/27/23 11:34	EPA 6020B	
Nickel	12.7	3.12	6.25	mg/kg dry	10	10/27/23 11:34	EPA 6020B	
Selenium	1.66	1.56	3.12	mg/kg dry	10	10/27/23 11:34	EPA 6020B	J
Silver	ND	0.312	0.625	mg/kg dry	10	10/27/23 11:34	EPA 6020B	
Zinc	1300	6.25	12.5	mg/kg dry	10	10/27/23 11:34	EPA 6020B	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: **00171.074.008**

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
ГР-01-IM-10.0-11.0-20231010 (АЗЈ [,]	1366-06)			Matrix: Soi	I					
Batch: 23J1022										
Arsenic	4.01	0.631	1.26	mg/kg dry	10	10/27/23 11:39	EPA 6020B			
Barium	113	0.631	1.26	mg/kg dry	10	10/27/23 11:39	EPA 6020B			
Cadmium	4.18	0.126	0.252	mg/kg dry	10	10/27/23 11:39	EPA 6020B			
Chromium	16.8	0.631	1.26	mg/kg dry	10	10/27/23 11:39	EPA 6020B			
Copper	179	1.26	2.52	mg/kg dry	10	10/27/23 11:39	EPA 6020B			
Lead	153	0.126	0.252	mg/kg dry	10	10/27/23 11:39	EPA 6020B			
Mercury	0.252	0.0505	0.101	mg/kg dry	10	10/27/23 11:39	EPA 6020B			
Nickel	17.3	1.26	2.52	mg/kg dry	10	10/27/23 11:39	EPA 6020B			
Selenium	0.819	0.631	1.26	mg/kg dry	10	10/27/23 11:39	EPA 6020B	J		
Silver	0.162	0.126	0.252	mg/kg dry	10	10/27/23 11:39	EPA 6020B	J		
Zinc	330	2.52	5.05	mg/kg dry	10	10/27/23 11:39	EPA 6020B			
ГР-04-NS-9.0-10.0-20231010 (АЗЈ1	366-07)			Matrix: Soi	I					
Batch: 23J1022										
Arsenic	1.16	0.606	1.21	mg/kg dry	10	10/27/23 11:44	EPA 6020B	J		
Barium	32.5	0.606	1.21	mg/kg dry	10	10/27/23 11:44	EPA 6020B			
Cadmium	ND	0.121	0.243	mg/kg dry	10	10/27/23 11:44	EPA 6020B			
Chromium	4.76	0.606	1.21	mg/kg dry	10	10/27/23 11:44	EPA 6020B			
Copper	14.0	1.21	2.43	mg/kg dry	10	10/27/23 11:44	EPA 6020B			
Lead	4.06	0.121	0.243	mg/kg dry	10	10/27/23 11:44	EPA 6020B			
Mercury	ND	0.0485	0.0970	mg/kg dry	10	10/27/23 11:44	EPA 6020B			
Nickel	2.36	1.21	2.43	mg/kg dry	10	10/27/23 11:44	EPA 6020B	J		
Selenium	ND	0.606	1.21	mg/kg dry	10	10/27/23 11:44	EPA 6020B			
Silver	ND	0.121	0.243	mg/kg dry	10	10/27/23 11:44	EPA 6020B			
Zinc	29.7	2.43	4.85	mg/kg dry	10	10/27/23 11:44	EPA 6020B			
TP-05-NS-4.0-5.0-20231011 (A3J13	66-08)			Matrix: Soi	I					
Batch: 23J1022										
Arsenic	2.17	0.579	1.16	mg/kg dry	10	10/27/23 11:49	EPA 6020B			
Barium	52.3	0.579	1.16	mg/kg dry	10	10/27/23 11:49	EPA 6020B			
Cadmium	ND	0.116	0.232	mg/kg dry	10	10/27/23 11:49	EPA 6020B			
Chromium	12.6	0.579	1.16	mg/kg dry	10	10/27/23 11:49	EPA 6020B			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
TP-05-NS-4.0-5.0-20231011 (A3J1366-08)				Matrix: Soi	I					
Copper	22.1	1.16	2.32	mg/kg dry	10	10/27/23 11:49	EPA 6020B			
Lead	5.57	0.116	0.232	mg/kg dry	10	10/27/23 11:49	EPA 6020B			
Mercury	ND	0.0464	0.0927	mg/kg dry	10	10/27/23 11:49	EPA 6020B			
Nickel	17.4	1.16	2.32	mg/kg dry	10	10/27/23 11:49	EPA 6020B			
Selenium	ND	0.579	1.16	mg/kg dry	10	10/27/23 11:49	EPA 6020B			
Silver	ND	0.116	0.232	mg/kg dry	10	10/27/23 11:49	EPA 6020B			
Zinc	30.6	2.32	4.64	mg/kg dry	10	10/27/23 11:49	EPA 6020B			
TP-06-NS-9.0-10.0-20231011 (A3J1366-09)				Matrix: Soi	1					
Batch: 23J1022										
Arsenic	6.89	0.661	1.32	mg/kg dry	10	10/27/23 11:54	EPA 6020B			
Barium	476	0.661	1.32	mg/kg dry	10	10/27/23 11:54	EPA 6020B			
Cadmium	5.32	0.132	0.264	mg/kg dry	10	10/27/23 11:54	EPA 6020B			
Chromium	28.2	0.661	1.32	mg/kg dry	10	10/27/23 11:54	EPA 6020B			
Copper	2210	1.32	2.64	mg/kg dry	10	10/27/23 11:54	EPA 6020B			
Mercury	0.207	0.0528	0.106	mg/kg dry	10	10/27/23 11:54	EPA 6020B			
Nickel	30.9	1.32	2.64	mg/kg dry	10	10/27/23 11:54	EPA 6020B			
Selenium	ND	0.661	1.32	mg/kg dry	10	10/27/23 11:54	EPA 6020B			
Silver	1.05	0.132	0.264	mg/kg dry	10	10/27/23 11:54	EPA 6020B			
Zinc	2230	2.64	5.28	mg/kg dry	10	10/27/23 11:54	EPA 6020B			
TP-06-NS-9.0-10.0-20231011 (A3J1366-09F	RE1)			Matrix: Soi	I					
Batch: 23J1022										
Lead	833	1.32	2.64	mg/kg dry	100	10/31/23 23:37	EPA 6020B			
TP-08-NS-12.0-13.0-20231011 (A3J1366-10))			Matrix: Soi	1					
Batch: 23J1022										
Arsenic	2.02	0.569	1.14	mg/kg dry	10	10/27/23 11:59	EPA 6020B			
Barium	51.9	0.569	1.14	mg/kg dry	10	10/27/23 11:59	EPA 6020B			
Cadmium	0.247	0.114	0.228	mg/kg dry	10	10/27/23 11:59	EPA 6020B			
Chromium	10.7	0.569	1.14	mg/kg dry	10	10/27/23 11:59	EPA 6020B			
Copper	23.8	1.14	2.28	mg/kg dry	10	10/27/23 11:59	EPA 6020B			
Lead	25.4	0.114	0.228	mg/kg dry	10	10/27/23 11:59	EPA 6020B			
Mercury	0.0501	0.0455	0.0911	mg/kg dry	10	10/27/23 11:59	EPA 6020B	J		

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
TP-08-NS-12.0-13.0-20231011 (A3J1366-1	0)			Matrix: Soi	I					
Nickel	11.5	1.14	2.28	mg/kg dry	10	10/27/23 11:59	EPA 6020B			
Selenium	ND	0.569	1.14	mg/kg dry	10	10/27/23 11:59	EPA 6020B			
Silver	ND	0.114	0.228	mg/kg dry	10	10/27/23 11:59	EPA 6020B			
Zinc	195	2.28	4.55	mg/kg dry	10	10/27/23 11:59	EPA 6020B			
TP-10-NS-12.0-13.0-20231011 (A3J1366-1	1)			Matrix: Soi	I					
Batch: 23J1022										
Arsenic	2.95	0.579	1.16	mg/kg dry	10	10/27/23 12:15	EPA 6020B			
Barium	44.6	0.579	1.16	mg/kg dry	10	10/27/23 12:15	EPA 6020B			
Cadmium	0.156	0.116	0.232	mg/kg dry	10	10/27/23 12:15	EPA 6020B	J		
Chromium	3.47	0.579	1.16	mg/kg dry	10	10/27/23 12:15	EPA 6020B			
Copper	17.3	1.16	2.32	mg/kg dry	10	10/27/23 12:15	EPA 6020B			
Lead	6.45	0.116	0.232	mg/kg dry	10	10/27/23 12:15	EPA 6020B			
Mercury	ND	0.0463	0.0927	mg/kg dry	10	10/27/23 12:15	EPA 6020B			
Nickel	3.69	1.16	2.32	mg/kg dry	10	10/27/23 12:15	EPA 6020B			
Selenium	ND	0.579	1.16	mg/kg dry	10	10/27/23 12:15	EPA 6020B			
Silver	ND	0.116	0.232	mg/kg dry	10	10/27/23 12:15	EPA 6020B			
Zinc	34.9	2.32	4.63	mg/kg dry	10	10/27/23 12:15	EPA 6020B			
TP-15-NS-9.0-10.0-20231012 (A3J1366-12				Matrix: Soi						
Batch: 23J1022										
Arsenic	3.08	0.579	1.16	mg/kg dry	10	10/27/23 12:20	EPA 6020B			
Barium	95.8	0.579	1.16	mg/kg dry	10	10/27/23 12:20	EPA 6020B			
Cadmium	0.469	0.116	0.232	mg/kg dry	10	10/27/23 12:20	EPA 6020B			
Chromium	14.2	0.579	1.16	mg/kg dry	10	10/27/23 12:20	EPA 6020B			
Copper	32.1	1.16	2.32	mg/kg dry	10	10/27/23 12:20	EPA 6020B			
Lead	34.5	0.116	0.232	mg/kg dry	10	10/27/23 12:20	EPA 6020B			
Mercury	0.261	0.0463	0.0927	mg/kg dry	10	10/27/23 12:20	EPA 6020B			
Nickel	26.3	1.16	2.32	mg/kg dry	10	10/27/23 12:20	EPA 6020B			
Selenium	ND	0.579	1.16	mg/kg dry	10	10/27/23 12:20	EPA 6020B			
Silver	0.466	0.116	0.232	mg/kg dry	10	10/27/23 12:20	EPA 6020B			
Zinc	179	2.32	4.63	mg/kg dry	10	10/27/23 12:20	EPA 6020B			
TP-15-IM-4.0-5.0-20231012 (A3J1366-13)				Matrix: Soi						

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Total Meta	lls by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-15-IM-4.0-5.0-20231012 (A3J1366-13)				Matrix: Soi	I			
Batch: 23J1022								
Arsenic	3.80	0.573	1.15	mg/kg dry	10	10/27/23 12:25	EPA 6020B	
Barium	124	0.573	1.15	mg/kg dry	10	10/27/23 12:25	EPA 6020B	
Cadmium	2.74	0.115	0.229	mg/kg dry	10	10/27/23 12:25	EPA 6020B	
Chromium	31.1	0.573	1.15	mg/kg dry	10	10/27/23 12:25	EPA 6020B	
Copper	113	1.15	2.29	mg/kg dry	10	10/27/23 12:25	EPA 6020B	
Lead	181	0.115	0.229	mg/kg dry	10	10/27/23 12:25	EPA 6020B	
Mercury	1.39	0.0458	0.0916	mg/kg dry	10	10/27/23 12:25	EPA 6020B	
Nickel	26.2	1.15	2.29	mg/kg dry	10	10/27/23 12:25	EPA 6020B	
Selenium	ND	0.573	1.15	mg/kg dry	10	10/27/23 12:25	EPA 6020B	
Silver	0.339	0.115	0.229	mg/kg dry	10	10/27/23 12:25	EPA 6020B	
Zinc	584	2.29	4.58	mg/kg dry	10	10/27/23 12:25	EPA 6020B	
TP-07-IM-14.0-15.0-20231011 (A3J1366-14)			Matrix: Soi				
Batch: 23J0999								
Arsenic	10.7	0.605	1.21	mg/kg dry	10	10/26/23 08:41	EPA 6020B	Q-42
Barium	619	0.605	1.21	mg/kg dry	10	10/26/23 08:41	EPA 6020B	Q-42
Cadmium	1.71	0.121	0.242	mg/kg dry	10	10/26/23 08:41	EPA 6020B	
Chromium	47.0	0.605	1.21	mg/kg dry	10	10/26/23 08:41	EPA 6020B	Q-42
Copper	208	1.21	2.42	mg/kg dry	10	10/26/23 08:41	EPA 6020B	Q-42
Lead	278	0.121	0.242	mg/kg dry	10	10/26/23 08:41	EPA 6020B	
Mercury	0.405	0.0484	0.0969	mg/kg dry	10	10/26/23 08:41	EPA 6020B	
Nickel	73.0	1.21	2.42	mg/kg dry	10	10/26/23 08:41	EPA 6020B	Q-42
Selenium	ND	0.605	1.21	mg/kg dry	10	10/26/23 08:41	EPA 6020B	
Silver	0.712	0.121	0.242	mg/kg dry	10	10/26/23 08:41	EPA 6020B	
Zinc	453	2.42	4.84	mg/kg dry	10	10/26/23 08:41	EPA 6020B	Q-42
TP-08-IM-4.0-5.0-20231011 (A3J1366-15)				Matrix: Soi	I			
Batch: 23J0999								
Arsenic	10.1	0.588	1.18	mg/kg dry	10	10/26/23 08:57	EPA 6020B	
Barium	200	0.588	1.18	mg/kg dry	10	10/26/23 08:57	EPA 6020B	
Cadmium	20.9	0.118	0.235	mg/kg dry	10	10/26/23 08:57	EPA 6020B	
Chromium	79.8	0.588	1.18	mg/kg dry	10	10/26/23 08:57	EPA 6020B	
Copper	208	1.18	2.35	mg/kg dry	10	10/26/23 08:57	EPA 6020B	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Eatonville Landfill Characterization
Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Total Meta	Is by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-08-IM-4.0-5.0-20231011 (A3J1366-15)				Matrix: Soi	I			
Lead	310	0.118	0.235	mg/kg dry	10	10/26/23 08:57	EPA 6020B	
Mercury	1.57	0.0470	0.0940	mg/kg dry	10	10/26/23 08:57	EPA 6020B	
Nickel	74.6	1.18	2.35	mg/kg dry	10	10/26/23 08:57	EPA 6020B	
Selenium	ND	0.588	1.18	mg/kg dry	10	10/26/23 08:57	EPA 6020B	
Silver	0.657	0.118	0.235	mg/kg dry	10	10/26/23 08:57	EPA 6020B	
Zinc	1100	2.35	4.70	mg/kg dry	10	10/26/23 08:57	EPA 6020B	
TP-07-IM-9.0-10.0-20231011 (A3J1366-16)				Matrix: Soi				
Batch: 23J0999								
Arsenic	5.76	0.562	1.12	mg/kg dry	10	10/26/23 09:02	EPA 6020B	
Barium	135	0.562	1.12	mg/kg dry	10	10/26/23 09:02	EPA 6020B	
Cadmium	1.83	0.112	0.225	mg/kg dry	10	10/26/23 09:02	EPA 6020B	
Chromium	27.8	0.562	1.12	mg/kg dry	10	10/26/23 09:02	EPA 6020B	
Copper	98.5	1.12	2.25	mg/kg dry	10	10/26/23 09:02	EPA 6020B	
Lead	172	0.112	0.225	mg/kg dry	10	10/26/23 09:02	EPA 6020B	
Mercury	0.817	0.0450	0.0900	mg/kg dry	10	10/26/23 09:02	EPA 6020B	
Nickel	37.3	1.12	2.25	mg/kg dry	10	10/26/23 09:02	EPA 6020B	
Selenium	ND	0.562	1.12	mg/kg dry	10	10/26/23 09:02	EPA 6020B	
Silver	0.290	0.112	0.225	mg/kg dry	10	10/26/23 09:02	EPA 6020B	
Zinc	656	2.25	4.50	mg/kg dry	10	10/26/23 09:02	EPA 6020B	
TP-14-IM-14.0-15.0-20231012 (A3J1366-17	')			Matrix: Soi	l			
Batch: 23J0999								
Arsenic	6.55	0.676	1.35	mg/kg dry	10	10/26/23 09:17	EPA 6020B	
Barium	210	0.676	1.35	mg/kg dry	10	10/26/23 09:17	EPA 6020B	
Cadmium	8.88	0.135	0.270	mg/kg dry	10	10/26/23 09:17	EPA 6020B	
Chromium	81.6	0.676	1.35	mg/kg dry	10	10/26/23 09:17	EPA 6020B	
Copper	401	1.35	2.70	mg/kg dry	10	10/26/23 09:17	EPA 6020B	
Lead	408	0.135	0.270	mg/kg dry	10	10/26/23 09:17	EPA 6020B	
Mercury	0.893	0.0541	0.108	mg/kg dry	10	10/26/23 09:17	EPA 6020B	
Nickel	253	1.35	2.70	mg/kg dry	10	10/26/23 09:17	EPA 6020B	
Selenium	ND	0.676	1.35	mg/kg dry	10	10/26/23 09:17	EPA 6020B	
Silver	1.06	0.135	0.270	mg/kg dry	10	10/26/23 09:17	EPA 6020B	
Zinc	1730	2.70	5.41	mg/kg dry	10	10/26/23 09:17	EPA 6020B	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: **00171.074.008**

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Sampla Datation Departing Data										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note		
TP-13-IM-14.0-15.0-20231012 (A3J1366-18	3)			Matrix: Soil	1					
Batch: 23J0999										
Arsenic	19.3	0.620	1.24	mg/kg dry	10	10/26/23 09:22	EPA 6020B			
Barium	149	0.620	1.24	mg/kg dry	10	10/26/23 09:22	EPA 6020B			
Cadmium	6.04	0.124	0.248	mg/kg dry	10	10/26/23 09:22	EPA 6020B			
Chromium	37.6	0.620	1.24	mg/kg dry	10	10/26/23 09:22	EPA 6020B			
Copper	724	1.24	2.48	mg/kg dry	10	10/26/23 09:22	EPA 6020B			
Lead	339	0.124	0.248	mg/kg dry	10	10/26/23 09:22	EPA 6020B			
Mercury	0.554	0.0496	0.0992	mg/kg dry	10	10/26/23 09:22	EPA 6020B			
Nickel	52.6	1.24	2.48	mg/kg dry	10	10/26/23 09:22	EPA 6020B			
Selenium	ND	0.620	1.24	mg/kg dry	10	10/26/23 09:22	EPA 6020B			
Silver	1.19	0.124	0.248	mg/kg dry	10	10/26/23 09:22	EPA 6020B			
TP-13-IM-14.0-15.0-20231012 (A3J1366-18	3RE1)			Matrix: Soil						
Batch: 23J0999										
Zine	4950	24.8	49.6	mg/kg dry	100	11/09/23 14:29	EPA 6020B			
TP-12-IM-9.0-10.0-20231012 (A3J1366-19)	1			Matrix: Soil						
Batch: 23J0999										
Arsenic	8.59	0.622	1.24	mg/kg dry	10	10/26/23 09:27	EPA 6020B			
Barium	142	0.622	1.24	mg/kg dry	10	10/26/23 09:27	EPA 6020B			
Cadmium	2.74	0.124	0.249	mg/kg dry	10	10/26/23 09:27	EPA 6020B			
Chromium	38.5	0.622	1.24	mg/kg dry	10	10/26/23 09:27	EPA 6020B			
Copper	295	1.24	2.49	mg/kg dry	10	10/26/23 09:27	EPA 6020B			
Lead	272	0.124	0.249	mg/kg dry	10	10/26/23 09:27	EPA 6020B			
Mercury	1.22	0.0497	0.0995	mg/kg dry	10	10/26/23 09:27	EPA 6020B			
Nickel	37.0	1.24	2.49	mg/kg dry	10	10/26/23 09:27	EPA 6020B			
Selenium	ND	0.622	1.24	mg/kg dry	10	10/26/23 09:27	EPA 6020B			
Silver	0.411	0.124	0.249	mg/kg dry	10	10/26/23 09:27	EPA 6020B			
Zinc	805	2.49	4.97	mg/kg dry	10	10/26/23 09:27	EPA 6020B			
TP-11-IM-4.0-5.0-20231012 (A3J1366-20)				Matrix: Soil	1					
Batch: 23J0999										
Arsenic	5.71	0.585	1.17	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Barium	105	0.585	1.17	mg/kg dry	10	10/26/23 09:33	EPA 6020B			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
TP-11-IM-4.0-5.0-20231012 (A3J1366-20)				Matrix: Soi	I					
Cadmium	1.80	0.117	0.234	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Chromium	28.7	0.585	1.17	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Copper	98. 7	1.17	2.34	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Lead	98. 7	0.117	0.234	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Mercury	0.266	0.0468	0.0936	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Nickel	31.7	1.17	2.34	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Selenium	ND	0.585	1.17	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Silver	0.133	0.117	0.234	mg/kg dry	10	10/26/23 09:33	EPA 6020B	J		
Zinc	387	2.34	4.68	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
TP-10-IM-9.0-10.0-20231011 (A3J1366-21)				Matrix: Soi	I					
Batch: 23J0999										
Arsenic	6.01	0.670	1.34	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Barium	146	0.670	1.34	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Cadmium	6.59	0.134	0.268	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Chromium	54.8	0.670	1.34	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Copper	208	1.34	2.68	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Lead	573	0.134	0.268	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Mercury	2.57	0.0536	0.107	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Nickel	98.0	1.34	2.68	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Selenium	ND	0.670	1.34	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Silver	0.404	0.134	0.268	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Zinc	1740	2.68	5.36	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
TP-09-IM-11.0-12.0-20231011 (A3J1366-22	2)			Matrix: Soi	I					
Batch: 23J0999										
Arsenic	8.07	0.632	1.26	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Barium	180	0.632	1.26	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Cadmium	15.1	0.126	0.253	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Chromium	31.5	0.632	1.26	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Copper	373	1.26	2.53	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Lead	269	0.126	0.253	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Mercury	0.853	0.0505	0.101	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Nickel	51.5	1.26	2.53	mg/kg dry	10	10/26/23 09:44	EPA 6020B			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300

Portland, OR 97209

Eatonville Landfill Characterization Project: Project Number: 00171.074.008 Project Manager: Ben Johnson

Report ID: A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
TP-09-IM-11.0-12.0-20231011 (A3J1366-2	22)	Matrix: Soil								
Selenium	ND	0.632	1.26	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Silver	0.975	0.126	0.253	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Zinc	1040	2.53	5.05	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
SS-06-0.0-1.0-20231011 (A3J1366-23)				Matrix: Soil	I					
Batch: 23J0999										
Arsenic	5.38	0.560	1.12	mg/kg dry	10	10/26/23 10:20	EPA 6020B			
Barium	135	0.560	1.12	mg/kg dry	10	10/26/23 10:20	EPA 6020B			
Cadmium	1.12	0.112	0.224	mg/kg dry	10	10/26/23 10:20	EPA 6020B			
Chromium	23.5	0.560	1.12	mg/kg dry	10	10/26/23 10:20	EPA 6020B			
Copper	116	1.12	2.24	mg/kg dry	10	10/26/23 10:20	EPA 6020B			
Lead	188	0.112	0.224	mg/kg dry	10	10/26/23 10:20	EPA 6020B			
Mercury	0.741	0.0448	0.0897	mg/kg dry	10	10/26/23 10:20	EPA 6020B			
Nickel	26.7	1.12	2.24	mg/kg dry	10	10/26/23 10:20	EPA 6020B			
Selenium	ND	0.560	1.12	mg/kg dry	10	10/26/23 10:20	EPA 6020B			
Silver	0.349	0.112	0.224	mg/kg dry	10	10/26/23 10:20	EPA 6020B			
Zinc	323	2.24	4.48	mg/kg dry	10	10/26/23 10:20	EPA 6020B			
SS-05-0.0-1.0-20231011 (A3J1366-24)				Matrix: Soi	I					
Batch: 23J0999										
Arsenic	3.95	0.584	1.17	mg/kg dry	10	10/26/23 10:26	EPA 6020B			
Barium	97.6	0.584	1.17	mg/kg dry	10	10/26/23 10:26	EPA 6020B			
Cadmium	1.29	0.117	0.234	mg/kg dry	10	10/26/23 10:26	EPA 6020B			
Chromium	21.8	0.584	1.17	mg/kg dry	10	10/26/23 10:26	EPA 6020B			
Copper	47.5	1.17	2.34	mg/kg dry	10	10/26/23 10:26	EPA 6020B			
Lead	97.5	0.117	0.234	mg/kg dry	10	10/26/23 10:26	EPA 6020B			
Mercury	0.278	0.0467	0.0935	mg/kg dry	10	10/26/23 10:26	EPA 6020B			
Nickel	54.3	1.17	2.34	mg/kg dry	10	10/26/23 10:26	EPA 6020B			
Selenium	ND	0.584	1.17	mg/kg dry	10	10/26/23 10:26	EPA 6020B			
Silver	0.254	0.117	0.234	mg/kg dry	10	10/26/23 10:26	EPA 6020B			
Zinc	428	2.34	4.67	mg/kg dry	10	10/26/23 10:26	EPA 6020B			
TP-04-IM-4.0-5.0-20231010 (A3J1366-25))			Matrix: Soil						

Batch: 23J0999

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note	
TP-04-IM-4.0-5.0-20231010 (A3J1366-25)				Matrix: Soi	l				
Arsenic	5.24	0.558	1.12	mg/kg dry	10	10/26/23 10:31	EPA 6020B		
Barium	122	0.558	1.12	mg/kg dry	10	10/26/23 10:31	EPA 6020B		
Cadmium	0.911	0.112	0.223	mg/kg dry	10	10/26/23 10:31	EPA 6020B		
Chromium	31.9	0.558	1.12	mg/kg dry	10	10/26/23 10:31	EPA 6020B		
Copper	85.7	1.12	2.23	mg/kg dry	10	10/26/23 10:31	EPA 6020B		
Lead	88.1	0.112	0.223	mg/kg dry	10	10/26/23 10:31	EPA 6020B		
Mercury	0.588	0.0446	0.0893	mg/kg dry	10	10/26/23 10:31	EPA 6020B		
Nickel	43.9	1.12	2.23	mg/kg dry	10	10/26/23 10:31	EPA 6020B		
Selenium	ND	0.558	1.12	mg/kg dry	10	10/26/23 10:31	EPA 6020B		
Silver	0.585	0.112	0.223	mg/kg dry	10	10/26/23 10:31	EPA 6020B		
Zinc	436	2.23	4.46	mg/kg dry	10	10/26/23 10:31	EPA 6020B		
TP-03-IM-14.0-15.0-20231010 (A3J1366-26	;)			Matrix: Soi					
Batch: 23J0999									
Arsenic	7.20	0.641	1.28	mg/kg dry	10	10/26/23 10:36	EPA 6020B		
Barium	352	0.641	1.28	mg/kg dry	10	10/26/23 10:36	EPA 6020B		
Cadmium	6.49	0.128	0.256	mg/kg dry	10	10/26/23 10:36	EPA 6020B		
Chromium	45.2	0.641	1.28	mg/kg dry	10	10/26/23 10:36	EPA 6020B		
Copper	668	1.28	2.56	mg/kg dry	10	10/26/23 10:36	EPA 6020B		
Mercury	0.569	0.0513	0.103	mg/kg dry	10	10/26/23 10:36	EPA 6020B		
Nickel	76.0	1.28	2.56	mg/kg dry	10	10/26/23 10:36	EPA 6020B		
Selenium	ND	0.641	1.28	mg/kg dry	10	10/26/23 10:36	EPA 6020B		
Silver	2.69	0.128	0.256	mg/kg dry	10	10/26/23 10:36	EPA 6020B		
Zinc	2010	2.56	5.13	mg/kg dry	10	10/26/23 10:36	EPA 6020B		
TP-03-IM-14.0-15.0-20231010 (A3J1366-20	RE1)			Matrix: Soi					
Batch: 23J0999									
Lead	1030	1.28	2.56	mg/kg dry	100	10/26/23 11:33	EPA 6020B		
TP-02-IM-4.0-5.0-20231010 (A3J1366-27)				Matrix: Soi	I				
Batch: 23J0999									
Arsenic	20.4	0.639	1.28	mg/kg dry	10	10/26/23 10:41	EPA 6020B		
Barium	194	0.639	1.28	mg/kg dry	10	10/26/23 10:41	EPA 6020B		
Cadmium	3.16	0.128	0.255	mg/kg dry	10	10/26/23 10:41	EPA 6020B		

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u>

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
TP-02-IM-4.0-5.0-20231010 (A3J1366-27)				Matrix: Soi	I					
Chromium	65.6	0.639	1.28	mg/kg dry	10	10/26/23 10:41	EPA 6020B			
Copper	286	1.28	2.55	mg/kg dry	10	10/26/23 10:41	EPA 6020B			
Nickel	85.8	1.28	2.55	mg/kg dry	10	10/26/23 10:41	EPA 6020B			
Selenium	ND	0.639	1.28	mg/kg dry	10	10/26/23 10:41	EPA 6020B			
Silver	26.0	0.128	0.255	mg/kg dry	10	10/26/23 10:41	EPA 6020B			
Zinc	815	2.55	5.11	mg/kg dry	10	10/26/23 10:41	EPA 6020B			
TP-02-IM-4.0-5.0-20231010 (A3J1366-27R	E1)			Matrix: Soi	I					
Batch: 23J0999										
Lead	862	1.28	2.55	mg/kg dry	100	10/26/23 11:38	EPA 6020B			
Mercury	16.3	0.511	1.02	mg/kg dry	100	10/26/23 11:38	EPA 6020B			
TP-01-IM-5.0-6.0-20231010 (A3J1366-28)				Matrix: Soi	I					
Batch: 23J0999										
Arsenic	6.56	0.661	1.32	mg/kg dry	10	10/26/23 10:46	EPA 6020B			
Barium	158	0.661	1.32	mg/kg dry	10	10/26/23 10:46	EPA 6020B			
Cadmium	2.16	0.132	0.264	mg/kg dry	10	10/26/23 10:46	EPA 6020B			
Chromium	33.8	0.661	1.32	mg/kg dry	10	10/26/23 10:46	EPA 6020B			
Copper	102	1.32	2.64	mg/kg dry	10	10/26/23 10:46	EPA 6020B			
Nickel	34.1	1.32	2.64	mg/kg dry	10	10/26/23 10:46	EPA 6020B			
Selenium	ND	0.661	1.32	mg/kg dry	10	10/26/23 10:46	EPA 6020B			
Silver	0.747	0.132	0.264	mg/kg dry	10	10/26/23 10:46	EPA 6020B			
Zinc	565	2.64	5.29	mg/kg dry	10	10/26/23 10:46	EPA 6020B			
TP-01-IM-5.0-6.0-20231010 (A3J1366-28R	E1)			Matrix: Soi						
Batch: 23J0999										
Lead	229	0.132	0.264	mg/kg dry	10	10/26/23 10:57	EPA 6020B			
Mercury	0.765	0.0529	0.106	mg/kg dry	10	10/26/23 10:57	EPA 6020B			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
WS-01-0.0-2.0-10102023 (A3J1366-01)				Matrix: So	oil					
Batch: 23J0933										
Arsenic	ND	0.0500	0.100	mg/L	10	10/24/23 16:44	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/24/23 16:44	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/24/23 16:44	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/24/23 16:44	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/24/23 16:44	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/24/23 16:44	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/24/23 16:44	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/24/23 16:44	1311/6020B			
WS-02-0.0-2.0-1010-2023 (A3J1366-02)				Matrix: So	oil					
Batch: 23J0933										
Arsenic	ND	0.0500	0.100	mg/L	10	10/24/23 16:49	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/24/23 16:49	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/24/23 16:49	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/24/23 16:49	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/24/23 16:49	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/24/23 16:49	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/24/23 16:49	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/24/23 16:49	1311/6020B			
WS-03-0.0-2.0-10102023 (A3J1366-03)				Matrix: So	bil					
Batch: 23J0933										
Arsenic	ND	0.0500	0.100	mg/L	10	10/24/23 16:54	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/24/23 16:54	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/24/23 16:54	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/24/23 16:54	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/24/23 16:54	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/24/23 16:54	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/24/23 16:54	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/24/23 16:54	1311/6020B			
				Matrix: So	oil					

Batch: 23J0933

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	TCLP Metals by EPA 6020B (ICPMS)									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
WS-04-0.0-2.0-10102023 (A3J1366-04)				Matrix: So	oil					
Arsenic	ND	0.0500	0.100	mg/L	10	10/24/23 16:59	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/24/23 16:59	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/24/23 16:59	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/24/23 16:59	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/24/23 16:59	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/24/23 16:59	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/24/23 16:59	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/24/23 16:59	1311/6020B			
				Matrix: So	oil					
Batch: 23J0987										
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 16:16	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/25/23 16:16	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 16:16	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 16:16	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/25/23 16:16	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 16:16	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 16:16	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 16:16	1311/6020B			
TP-01-IM-10.0-11.0-20231010 (A3J1366-0	6)			Matrix: So	oil					
Batch: 23J0987										
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 16:42	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/25/23 16:42	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 16:42	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 16:42	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/25/23 16:42	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 16:42	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 16:42	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 16:42	1311/6020B			
TP-04-NS-9.0-10.0-20231010 (A3J1366-07	7)			Matrix: So	pil					
Batch: 23J0987										
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 16:47	1311/6020B			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
TP-04-NS-9.0-10.0-20231010 (A3J1	1366-07)			Matrix: So	bil					
Barium	ND	2.50	5.00	mg/L	10	10/25/23 16:47	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 16:47	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 16:47	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/25/23 16:47	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 16:47	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 16:47	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 16:47	1311/6020B			
TP-05-NS-4.0-5.0-20231011 (A3J13	366-08)			Matrix: So	bil					
Batch: 23J0987										
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 16:52	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/25/23 16:52	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 16:52	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 16:52	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/25/23 16:52	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 16:52	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 16:52	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 16:52	1311/6020B			
TP-06-NS-9.0-10.0-20231011 (A3J1	1366-09)			Matrix: So	bil					
Batch: 23J0987										
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 16:57	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/25/23 16:57	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 16:57	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 16:57	1311/6020B			
Lead	3.49	0.0250	0.0500	mg/L	10	10/25/23 16:57	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 16:57	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 16:57	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 16:57	1311/6020B			
TP-08-NS-12.0-13.0-20231011 (A3J	J1366-10)			Matrix: So	bil					
Batch: 23J0987										
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 17:02	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/25/23 17:02	1311/6020B			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: **00171.074.008**

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
TP-08-NS-12.0-13.0-20231011 (A3J136	6-10)			Matrix: So	bil					
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 17:02	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 17:02	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/25/23 17:02	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 17:02	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 17:02	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 17:02	1311/6020B			
TP-10-NS-12.0-13.0-20231011 (A3J136	6-11)			Matrix: So	bil					
Batch: 23J0987										
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 17:07	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/25/23 17:07	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 17:07	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 17:07	1311/6020B			
Lead	0.0515	0.0250	0.0500	mg/L	10	10/25/23 17:07	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 17:07	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 17:07	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 17:07	1311/6020B			
TP-15-NS-9.0-10.0-20231012 (A3J1366	5-12)			Matrix: So	bil					
Batch: 23J0987										
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 17:13	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/25/23 17:13	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 17:13	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 17:13	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/25/23 17:13	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 17:13	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 17:13	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 17:13	1311/6020B			
TP-15-IM-4.0-5.0-20231012 (A3J1366-1	3)			Matrix: So	bil					
Batch: 23J0987										
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 17:18	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/25/23 17:18	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 17:18	1311/6020B			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Sample Detection Reporting Date											
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note			
TP-15-IM-4.0-5.0-20231012 (A3J1366-13)				Matrix: So	oil						
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 17:18	1311/6020B				
Lead	0.511	0.0250	0.0500	mg/L	10	10/25/23 17:18	1311/6020B				
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 17:18	1311/6020B				
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 17:18	1311/6020B				
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 17:18	1311/6020B				
TP-07-IM-14.0-15.0-20231011 (A3J1366-1	4)			Matrix: So	oil						
Batch: 23J1044											
Arsenic	ND	0.0500	0.100	mg/L	10	10/26/23 16:51	1311/6020B				
Barium	ND	2.50	5.00	mg/L	10	10/26/23 16:51	1311/6020B				
Cadmium	ND	0.0500	0.100	mg/L	10	10/26/23 16:51	1311/6020B				
Chromium	ND	0.0500	0.100	mg/L	10	10/26/23 16:51	1311/6020B				
Mercury	ND	0.00375	0.00700	mg/L	10	10/26/23 16:51	1311/6020B				
Selenium	ND	0.0500	0.100	mg/L	10	10/26/23 16:51	1311/6020B				
Silver	ND	0.0500	0.100	mg/L	10	10/26/23 16:51	1311/6020B				
TP-07-IM-14.0-15.0-20231011 (A3J1366-1	4RE1)			Matrix: So	oil						
Batch: 23J1044											
Lead	0.0622	0.0250	0.0500	mg/L	10	10/27/23 08:11	1311/6020B	Q-41			
TP-08-IM-4.0-5.0-20231011 (A3J1366-15)				Matrix: So	oil						
Batch: 23J1044											
Arsenic	ND	0.0500	0.100	mg/L	10	10/26/23 16:56	1311/6020B				
Barium	ND	2.50	5.00	mg/L	10	10/26/23 16:56	1311/6020B				
Cadmium	0.0836	0.0500	0.100	mg/L	10	10/26/23 16:56	1311/6020B	J			
Chromium	ND	0.0500	0.100	mg/L	10	10/26/23 16:56	1311/6020B				
Mercury	ND	0.00375	0.00700	mg/L	10	10/26/23 16:56	1311/6020B				
Selenium	ND	0.0500	0.100	mg/L	10	10/26/23 16:56	1311/6020B				
Silver	ND	0.0500	0.100	mg/L	10	10/26/23 16:56	1311/6020B				
TP-08-IM-4.0-5.0-20231011 (A3J1366-15R	RE1)			Matrix: So	bil						
Batch: 23J1044											
Lead	0.0663	0.0250	0.0500	mg/L	10	10/27/23 08:16	1311/6020B	Q-4			
TP-07-IM-9.0-10.0-20231011 (A3J1366-16				Matrix: So							

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: **00171.074.008**

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
TP-07-IM-9.0-10.0-20231011 (A3J1366-16	3)			Matrix: So	>il					
Batch: 23J1044										
Arsenic	ND	0.0500	0.100	mg/L	10	10/26/23 17:01	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/26/23 17:01	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/26/23 17:01	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/26/23 17:01	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/26/23 17:01	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/26/23 17:01	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/26/23 17:01	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/26/23 17:01	1311/6020B			
TP-14-IM-14.0-15.0-20231012 (A3J1366-1	17)			Matrix: So	>il					
Batch: 23J1044										
Arsenic	ND	0.0500	0.100	mg/L	10	10/26/23 17:11	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/26/23 17:11	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/26/23 17:11	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/26/23 17:11	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/26/23 17:11	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/26/23 17:11	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/26/23 17:11	1311/6020B			
TP-14-IM-14.0-15.0-20231012 (A3J1366-1	17RE1)			Matrix: So	pil					
Batch: 23J1044										
Lead	0.0793	0.0250	0.0500	mg/L	10	10/27/23 08:21	1311/6020B	Q-41		
TP-13-IM-14.0-15.0-20231012 (A3J1366-1	18)			Matrix: So	pil					
Batch: 23J1044										
Arsenic	ND	0.0500	0.100	mg/L	10	10/26/23 17:16	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/26/23 17:16	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/26/23 17:16	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/26/23 17:16	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/26/23 17:16	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/26/23 17:16	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/26/23 17:16	1311/6020B			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project:Eatonville Landfill CharacterizationProject Number:00171.074.008Project Manager:Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	TCLP Metals by EPA 6020B (ICPMS)									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
ГР-13-ІМ-14.0-15.0-20231012	(A3J1366-18RE1)			Matrix: So	oil					
Batch: 23J1044	·									
Lead	0.348	0.0250	0.0500	mg/L	10	10/27/23 08:27	1311/6020B	Q-41		
TP-12-IM-9.0-10.0-20231012 (/	A3J1366-19RE1)			Matrix: So	oil					
Batch: 23J1044										
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 08:32	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/27/23 08:32	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 08:32	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 08:32	1311/6020B			
Lead	0.111	0.0250	0.0500	mg/L	10	10/27/23 08:32	1311/6020B	Q-41		
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 08:32	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 08:32	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 08:32	1311/6020B			
TP-11-IM-4.0-5.0-20231012 (A	3J1366-20RE1)			Matrix: So	oil					
Batch: 23J1044										
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 08:37	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/27/23 08:37	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 08:37	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 08:37	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/27/23 08:37	1311/6020B	Q-41		
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 08:37	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 08:37	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 08:37	1311/6020B			
ГР-10-IM-9.0-10.0-20231011 (А	A3J1366-21RE1)			Matrix: So	oil					
Batch: 23J1044										
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 08:42	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/27/23 08:42	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 08:42	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 08:42	1311/6020B			
Lead	0.272	0.0250	0.0500	mg/L	10	10/27/23 08:42	1311/6020B	Q-41		
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 08:42	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 08:42	1311/6020B			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project:Eatonville Landfill CharacterizationProject Number:00171.074.008Project Manager:Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 60	20B (ICPMS	3)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-10-IM-9.0-10.0-20231011 (A3J1366-2	1RE1)			Matrix: So	oil			
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 08:42	1311/6020B	
TP-09-IM-11.0-12.0-20231011 (A3J1366-	22)			Matrix: So	oil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 08:47	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 08:47	1311/6020B	
Cadmium	0.0822	0.0500	0.100	mg/L	10	10/27/23 08:47	1311/6020B	J
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 08:47	1311/6020B	
Lead	0.254	0.0250	0.0500	mg/L	10	10/27/23 08:47	1311/6020B	Q-41
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 08:47	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 08:47	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 08:47	1311/6020B	
SS-06-0.0-1.0-20231011 (A3J1366-23)				Matrix: So	oil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 08:53	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 08:53	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 08:53	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 08:53	1311/6020B	
Lead	0.0329	0.0250	0.0500	mg/L	10	10/27/23 08:53	1311/6020B	J, Q-41
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 08:53	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 08:53	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 08:53	1311/6020B	
SS-05-0.0-1.0-20231011 (A3J1366-24)				Matrix: So	bil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 09:08	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 09:08	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 09:08	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 09:08	1311/6020B	
Lead	0.126	0.0250	0.0500	mg/L	10	10/27/23 09:08	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 09:08	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 09:08	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 09:08	1311/6020B	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions						
55 SW Yamhill St, Ste 300						
Portland, OR 97209						

Project: **Eatonville Landfill Characterization** Project Number: 00171.074.008

Project Manager: Ben Johnson

Report ID: A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-04-IM-4.0-5.0-20231010 (A3J1366-25)				Matrix: So	ii			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 09:13	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 09:13	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 09:13	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 09:13	1311/6020B	
Lead	ND	0.0250	0.0500	mg/L	10	10/27/23 09:13	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 09:13	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 09:13	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 09:13	1311/6020B	_
 TP-03-IM-14.0-15.0-20231010 (A3J1366-20	i)			Matrix: So	il			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 09:19	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 09:19	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 09:19	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 09:19	1311/6020B	
Lead	3.25	0.0250	0.0500	mg/L	10	10/27/23 09:19	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 09:19	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 09:19	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 09:19	1311/6020B	
TP-02-IM-4.0-5.0-20231010 (A3J1366-27)				Matrix: So	il			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 09:24	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 09:24	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 09:24	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 09:24	1311/6020B	
Lead	0.205	0.0250	0.0500	mg/L	10	10/27/23 09:24	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 09:24	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 09:24	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 09:24	1311/6020B	
TP-01-IM-5.0-6.0-20231010 (A3J1366-28)				Matrix: So	il			

TP-01-IM-5.0-6.0-20231010 (A3J1366-28)

Batch: 23J1044

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions							
55 SW Yamhill St, Ste 300							

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

 Project Manager:
 Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-01-IM-5.0-6.0-20231010 (A3J1366-28)				Matrix: So	oil			
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 09:29	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 09:29	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 09:29	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 09:29	1311/6020B	
Lead	0.0742	0.0250	0.0500	mg/L	10	10/27/23 09:29	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 09:29	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 09:29	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 09:29	1311/6020B	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions							
55 SW Yamhill St, Ste 300							
Portland, OR 97209							

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

 Project Manager:
 Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Conventio	nal Chemistr	y Parameters	3			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-01-IM-10.0-11.0-20231010 (A3J136	6-06)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.8			pH Units	1	10/19/23 17:19	EPA 9045D	pH_S
pH Temperature (deg C)	22.2			pH Units	1	10/19/23 17:19	EPA 9045D	pH_S
TP-04-NS-9.0-10.0-20231010 (A3J136	6-07)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.7			pH Units	1	10/19/23 17:21	EPA 9045D	pH_S
pH Temperature (deg C)	22.0			pH Units	1	10/19/23 17:21	EPA 9045D	pH_S
			Matrix: Soi	I				
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.3			pH Units	1	10/19/23 17:24	EPA 9045D	pH_S
pH Temperature (deg C)	21.9			pH Units	1	10/19/23 17:24	EPA 9045D	pH_S
TP-06-NS-9.0-10.0-20231011 (A3J136	6-09)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.6			pH Units	1	10/19/23 17:26	EPA 9045D	pH_S
pH Temperature (deg C)	21.8			pH Units	1	10/19/23 17:26	EPA 9045D	pH_S
TP-08-NS-12.0-13.0-20231011 (A3J13	66-10)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.8			pH Units	1	10/19/23 17:27	EPA 9045D	pH_S
pH Temperature (deg C)	21.4			pH Units	1	10/19/23 17:27	EPA 9045D	pH_S
TP-10-NS-12.0-13.0-20231011 (A3J13	66-11)			Matrix: Soil				
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.5			pH Units	1	10/19/23 17:29	EPA 9045D	pH_S
pH Temperature (deg C)	21.4			pH Units	1	10/19/23 17:29	EPA 9045D	pH_S
TP-15-NS-9.0-10.0-20231012 (A3J136	6-12)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.9			pH Units	1	10/19/23 17:30	EPA 9045D	pH_S
pH Temperature (deg C)	22.1			pH Units	1	10/19/23 17:30	EPA 9045D	pH_S
TP-15-IM-4.0-5.0-20231012 (A3J1366-	-13)			Matrix: Soi	1			

Batch: 23J0780

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project:Eatonville Landfill CharacterizationProject Number:00171.074.008Project Manager:Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Conventio	nal Chemistr	y Parameters	5			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-15-IM-4.0-5.0-20231012 (A3J1366-	13)			Matrix: Soi	l			
Soil/Solid pH (measured in H2O)	7.4			pH Units	1	10/19/23 17:31	EPA 9045D	pH_S
pH Temperature (deg C)	22.0			pH Units	1	10/19/23 17:31	EPA 9045D	pH_S
TP-07-IM-14.0-15.0-20231011 (A3J136	6-14)			Matrix: Soil	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.5			pH Units	1	10/19/23 17:36	EPA 9045D	pH_S
pH Temperature (deg C)	21.1			pH Units	1	10/19/23 17:36	EPA 9045D	pH_S
			Matrix: Soi	I				
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.5			pH Units	1	10/19/23 17:37	EPA 9045D	pH_S
pH Temperature (deg C)	20.9			pH Units	1	10/19/23 17:37	EPA 9045D	pH_S
TP-07-IM-9.0-10.0-20231011 (A3J1366	-16)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.5			pH Units	1	10/19/23 17:39	EPA 9045D	pH_S
pH Temperature (deg C)	22.0			pH Units	1	10/19/23 17:39	EPA 9045D	pH_S
TP-14-IM-14.0-15.0-20231012 (A3J136	6-17)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.7			pH Units	1	10/19/23 17:41	EPA 9045D	pH_S
pH Temperature (deg C)	22.1			pH Units	1	10/19/23 17:41	EPA 9045D	pH_S
TP-13-IM-14.0-15.0-20231012 (A3J136	6-18)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.5			pH Units	1	10/19/23 17:43	EPA 9045D	pH_S
pH Temperature (deg C)	22.0			pH Units	1	10/19/23 17:43	EPA 9045D	pH_S
TP-12-IM-9.0-10.0-20231012 (A3J1366	-19)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.5			pH Units	1	10/19/23 17:44	EPA 9045D	pH_S
pH Temperature (deg C)	21.9			pH Units	1	10/19/23 17:44	EPA 9045D	pH_S
TP-11-IM-4.0-5.0-20231012 (A3J1366-2	20)			Matrix: Soil	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.8			pH Units	1	10/19/23 17:46	EPA 9045D	pH_S

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions							
55 SW Yamhill St, Ste 300							
Portland, OR 97209							

Project: Eatonville Landfill Characterization
Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Conventional Chemistry Parameters								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-11-IM-4.0-5.0-20231012 (A3J1366-2	20)			Matrix: Soi	I			
pH Temperature (deg C)	22.0			pH Units	1	10/19/23 17:46	EPA 9045D	pH_S
TP-09-IM-11.0-12.0-20231011 (A3J1366-22)				Matrix: Soi	I			
Batch: 23J0820								
Soil/Solid pH (measured in H2O)	7.3			pH Units	1	10/20/23 13:21	EPA 9045D	pH_S
pH Temperature (deg C)	22.2			pH Units	1	10/20/23 13:21	EPA 9045D	pH_8
SS-06-0.0-1.0-20231011 (A3J1366-23)				Matrix: Soi	1			
Batch: 23J0820								
Soil/Solid pH (measured in H2O)	7.6			pH Units	1	10/20/23 13:24	EPA 9045D	pH_8
pH Temperature (deg C)	22.1			pH Units	1	10/20/23 13:24	EPA 9045D	pH_S
SS-05-0.0-1.0-20231011 (A3J1366-24)				Matrix: Soi	I			
Batch: 23J0820								
Soil/Solid pH (measured in H2O)	6.6			pH Units	1	10/20/23 13:26	EPA 9045D	pH_S
pH Temperature (deg C)	22.0			pH Units	1	10/20/23 13:26	EPA 9045D	pH_9
TP-04-IM-4.0-5.0-20231010 (A3J1366-2	25)			Matrix: Soi	I			
Batch: 23J0820								
Soil/Solid pH (measured in H2O)	7.3			pH Units	1	10/20/23 13:29	EPA 9045D	pH_8
pH Temperature (deg C)	22.1			pH Units	1	10/20/23 13:29	EPA 9045D	pH_S
TP-03-IM-14.0-15.0-20231010 (A3J136	6-26)			Matrix: Soi	I			
Batch: 23J0820								
Soil/Solid pH (measured in H2O)	7.4			pH Units	1	10/20/23 13:31	EPA 9045D	pH_S
pH Temperature (deg C)	22.1			pH Units	1	10/20/23 13:31	EPA 9045D	pH_S
TP-02-IM-4.0-5.0-20231010 (A3J1366-2	27)			Matrix: Soi				
Batch: 23J0820								
Soil/Solid pH (measured in H2O)	7.3			pH Units	1	10/20/23 13:33	EPA 9045D	pH_S
pH Temperature (deg C)	22.9			pH Units	1	10/20/23 13:33	EPA 9045D	pH_9
TP-01-IM-5.0-6.0-20231010 (A3J1366-2	28)			Matrix: Soi	I			
Batch: 23J0820								
Soil/Solid pH (measured in H2O)	7.7			pH Units	1	10/20/23 13:34	EPA 9045D	pH_9
pH Temperature (deg C)	22.2			pH Units	1	10/20/23 13:34	EPA 9045D	pH_S

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300 Portland, OR 97209	Project:Eatonville Landfill CharacterizaProject Number:00171.074.008Project Manager:Ben Johnson	<u>ttion</u> <u>Report ID:</u> A3J1366 - 11 10 23 1227					
ANALYTICAL SAMPLE RESULTS Conventional Chemistry Parameters							

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

 Project Manager:
 Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
WS-01-0.0-2.0-10102023 (A3J1366-01)				Matrix: S		•	23J0745	
% Solids	48.5	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
WS-02-0.0-2.0-1010-2023 (A3J1366-02)				Matrix: S	Soil	Batch:	23J0745	
% Solids	55.6	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
WS-03-0.0-2.0-10102023 (A3J1366-03)				Matrix: S	Soil	Batch:		
% Solids	54.1	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
WS-04-0.0-2.0-10102023 (A3J1366-04)				Matrix: S	Soil	Batch:	23J0745	
% Solids	29.7	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
WS-05-0.0-2.0-10102023 (A3J1366-05)				Matrix: S	Soil	Batch:	23J0745	
% Solids	34.4	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-01-IM-10.0-11.0-20231010 (A3J1366-06)	Matrix: S	Soil	Batch:	23J0745				
% Solids	86.1	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-04-NS-9.0-10.0-20231010 (A3J1366-07)				Matrix: S	Soil	Batch:		
% Solids	88.5	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-05-NS-4.0-5.0-20231011 (A3J1366-08)				Matrix: S	Soil	Batch:		
% Solids	86.6	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-06-NS-9.0-10.0-20231011 (A3J1366-09)				Matrix: S	Soil	Batch:	23J0745	
% Solids	83.5	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-08-NS-12.0-13.0-20231011 (A3J1366-10)			Matrix: S	Soil	Batch:	23J0745	
% Solids	89.6	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-10-NS-12.0-13.0-20231011 (A3J1366-11)			Matrix: S	Soil	Batch:		
% Solids	88.6	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-15-NS-9.0-10.0-20231012 (A3J1366-12)				Matrix: S	Soil	Batch: 23J0745		
% Solids	89.5	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-15-IM-4.0-5.0-20231012 (A3J1366-13)				Matrix: S	Soil	Batch:	23J0745	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

 Project Manager:
 Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight						
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
				Matrix: S			23J0745			
% Solids	90.9	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
TP-07-IM-14.0-15.0-20231011 (A3J1366-14))			Matrix: S	Soil	Batch:				
% Solids	86.4	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
TP-08-IM-4.0-5.0-20231011 (A3J1366-15)	TP-08-IM-4.0-5.0-20231011 (A3J1366-15)					Batch: 23J0745				
% Solids	88.3	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
TP-07-IM-9.0-10.0-20231011 (A3J1366-16)				Matrix: S	Soil	Batch: 23J0745				
% Solids	89.3	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
TP-14-IM-14.0-15.0-20231012 (A3J1366-17)			Matrix: S	Soil	Batch:	23J0745				
% Solids	79.7	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
TP-13-IM-14.0-15.0-20231012 (A3J1366-18)					Soil	Batch:	23J0745			
% Solids	82.3	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
TP-12-IM-9.0-10.0-20231012 (A3J1366-19)				Matrix: S	Soil	Batch:				
% Solids	85.5	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
TP-11-IM-4.0-5.0-20231012 (A3J1366-20)				Matrix: S	Soil	Batch:				
% Solids	87.5	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
TP-10-IM-9.0-10.0-20231011 (A3J1366-21)				Matrix: S	Soil	Batch:	23J0745			
% Solids	78.6	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
TP-09-IM-11.0-12.0-20231011 (A3J1366-22)				Matrix: S	Soil	Batch:	23J0745			
% Solids	84.9	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
SS-06-0.0-1.0-20231011 (A3J1366-23)				Matrix: S	Soil	Batch:	23J0745			
% Solids	92.0	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
SS-05-0.0-1.0-20231011 (A3J1366-24)				Matrix: S	Soil	Batch:				
% Solids	83.4	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
TP-04-IM-4.0-5.0-20231010 (A3J1366-25)				Matrix: S	Soil	Batch:	23J0745			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project:Eatonville Landfill CharacterizationProject Number:00171.074.008Project Manager:Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Percent Dry Weight												
	Sample	Detection	Reporting			Date							
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes					
P-04-IM-4.0-5.0-20231010 (A3J1366-25)				Matrix: So	bil	Batch:							
% Solids	88.4	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D						
TP-03-IM-14.0-15.0-20231010 (A3J1366-26)				Matrix: So	oil	Batch:							
% Solids	83.2	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D						
TP-02-IM-4.0-5.0-20231010 (A3J1366-27)				Matrix: So	bil	Batch: 23J0745							
% Solids	81.7	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D						
TP-01-IM-5.0-6.0-20231010 (A3J1366-28)	[P-01-IM-5.0-6.0-20231010 (A3J1366-28)				oil	Batch: 23J0745							
% Solids	74.1	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D						

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		TCLP E	Extraction by	EPA 1311					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
WS-01-0.0-2.0-10102023 (A3J1366-01)			Matrix: So	il	Batch:	23J0867		
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311		
WS-02-0.0-2.0-1010-2023 (A3J1366-02	2)			Matrix: So	il	Batch:	23J0867		
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311		
WS-03-0.0-2.0-10102023 (A3J1366-03)			Matrix: So	il	Batch:	23J0867		
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311		
WS-04-0.0-2.0-10102023 (A3J1366-04)				Matrix: So	il	Batch: 23J0867			
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311		
WS-05-0.0-2.0-10102023 (A3J1366-05)				Matrix: So	il	Batch: 23J0868			
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311		
				Matrix: So	il	Batch:	23J0868		
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311		
TP-04-NS-9.0-10.0-20231010 (A3J136	6-07)			Matrix: So	il	Batch: 23J0868			
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311		
TP-05-NS-4.0-5.0-20231011 (A3J1366-	-08)			Matrix: So	il	Batch: 23J0868			
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311		
TP-06-NS-9.0-10.0-20231011 (A3J136	6-09)			Matrix: So	il	Batch:	23J0868		
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311		
TP-08-NS-12.0-13.0-20231011 (A3J13)	66-10)			Matrix: So	il	Batch:	23J0868		
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311		
TP-10-NS-12.0-13.0-20231011 (A3J13)	66-11)			Matrix: So	il	Batch: 23J0868			
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311		
TP-15-NS-9.0-10.0-20231012 (A3J136	6-12)			Matrix: So	il	Batch: 23J0868			
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311		
TP-15-IM-4.0-5.0-20231012 (A3J1366-	13)			Matrix: So	il	Batch:	23J0868		

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		TCLP E	Extraction by	EPA 1311					
	Sample	Detection	Reporting	TT •	D'1 (Date		NT (
	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
TP-15-IM-4.0-5.0-20231012 (A3J1366-13				Matrix: So			23J0868		
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311		
TP-07-IM-14.0-15.0-20231011 (A3J1366-	14)			Matrix: So	il	Batch:	23J0904		
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311		
-08-IM-4.0-5.0-20231011 (A3J1366-15)				Matrix: So	il	Batch:	23J0904		
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311		
TP-07-IM-9.0-10.0-20231011 (A3J1366-16)				Matrix: So	il	Batch: 23J0904			
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311		
TP-14-IM-14.0-15.0-20231012 (A3J1366-17)				Matrix: So	il	Batch: 23J0904			
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311		
TP-13-IM-14.0-15.0-20231012 (A3J1366-18)				Matrix: So	il	Batch:	23J0904		
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311		
TP-12-IM-9.0-10.0-20231012 (A3J1366-1	9)			Matrix: So	il	Batch: 23J0904			
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311		
TP-11-IM-4.0-5.0-20231012 (A3J1366-20)			Matrix: So	il	Batch: 23J0904			
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311		
TP-10-IM-9.0-10.0-20231011 (A3J1366-2	1)			Matrix: So	il	Batch: 23J0904			
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311		
TP-09-IM-11.0-12.0-20231011 (A3J1366-	22)			Matrix: So	il	Batch:	23J0904		
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311		
SS-06-0.0-1.0-20231011 (A3J1366-23)				Matrix: So	il	Batch:	23J0904		
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311		
SS-05-0.0-1.0-20231011 (A3J1366-24)				Matrix: So	il	Batch: 23J0904			
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311		
TP-04-IM-4.0-5.0-20231010 (A3J1366-25	5)			Matrix: So		Batch:	23J0904		

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions	
55 SW Yamhill St, Ste 300	
Portland, OR 97209	

Project:Eatonville Landfill CharacterizationProject Number:00171.074.008Project Manager:Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	TCLP Extraction by EPA 1311											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
TP-04-IM-4.0-5.0-20231010 (A3J1366-2	4-IM-4.0-5.0-20231010 (A3J1366-25)				bil	Batch:						
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311					
				Matrix: So	bil	Batch:						
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311					
TP-02-IM-4.0-5.0-20231010 (A3J1366-2	7)			Matrix: Soil Batch: 23J0904			23J0904					
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311					
TP-01-IM-5.0-6.0-20231010 (A3J1366-2	TP-01-IM-5.0-6.0-20231010 (A3J1366-28)			Matrix: Soil Batch: 23J0904			23J0904					
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	or Oil Hyd	Irocarboi	ns by NW	TPH-Dx						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	No	tes
Batch 23J0850 - EPA 3546 (F	uels)						So	il					
Blank (23J0850-BLK1)			Preparec	1: 10/23/23	05:36 Ana	lyzed: 10/2	3/23 21:47						
NWTPH-Dx													
Diesel	ND	10.0	20.0	mg/kg w	ret 1								
Oil	ND	20.0	40.0	mg/kg w	ret 1								
Surr: o-Terphenyl (Surr)		Reco	overy: 83 %	Limits: 50	0-150 %	D	ilution: 1x						
LCS (23J0850-BS1)			Preparec	d: 10/23/23	05:36 Ana	lyzed: 10/2	3/23 22:08						
<u>NWTPH-Dx</u>													
Diesel	107	10.0	20.0	mg/kg w	ret 1	125		86	38-132%				
Surr: o-Terphenyl (Surr)		Reco	overy: 83 %	Limits: 50	0-150 %	D	ilution: 1x						
Duplicate (23J0850-DUP2)			Preparec	d: 10/23/23	05:36 Ana	lyzed: 10/2	4/23 07:54						
QC Source Sample: Non-SDG (A	3J1504-01)												
Diesel	ND	11.7	23.3	mg/kg d	ry 1		ND				30%		
Oil	ND	23.3	46.6	mg/kg d	ry 1		ND				30%		
Surr: o-Terphenyl (Surr)		Reco	overy: 67 %	Limits: 50)-150 %	D	ilution: 1x						
Duplicate (23J0850-DUP3)			Preparec	1: 10/23/23	05:36 Ana	lyzed: 10/2	4/23 15:30						
OC Source Sample: TP-01-IM-10	.0-11.0-2023	1010 (A3J1366	-06RE1)										
NWTPH-Dx													
Diesel	ND	107	214	mg/kg d	ry 10		ND				30%		
Oil	2540	214	429	mg/kg d	ry 10		1000			87	30%		Q-1
Surr: o-Terphenyl (Surr)		Reco	overy: 75 %	Limits: 50	0-150 %	D	ilution: 10x					S-05	
Batch 23J0954 - EPA 3546 (F	uels)						Soi	il					
Blank (23J0954-BLK1)			Prepareo	d: 10/25/23	04:11 Ana	lyzed: 10/2	5/23 07:41						
NWTPH-Dx													
Diesel	ND	10.0	20.0	mg/kg w	ret 1								
Oil	ND	20.0	40.0	mg/kg w	ret 1								
Surr: o-Terphenyl (Surr)		Rece	overy: 92 %	Limits: 50	0-150 %	D	ilution: 1x						
LCS (23J0954-BS1)			Preparec	d: 10/25/23	04:11 Ana	lyzed: 10/2	5/23 08:02						
<u>NWTPH-Dx</u>													

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0954 - EPA 3546 (F	uels)						Soi	il				
LCS (23J0954-BS1)			Prepareo	1: 10/25/23	04:11 Ana	yzed: 10/25	/23 08:02					
Diesel	128	10.0	20.0	mg/kg w	et 1	125		102	38-132%			
Surr: o-Terphenyl (Surr)		Reco	very: 104 %	Limits: 50	-150 %	Dilı	ution: 1x					
Duplicate (23J0954-DUP1)			Prepareo	l: 10/25/23 (04:11 Ana	yzed: 10/25/	/23 08:42					
QC Source Sample: Non-SDG (A	3J1644-01)											
Diesel	ND	10.7	21.4	mg/kg di	y 1		ND				30%	
Oil	ND	21.4	42.8	mg/kg di	y 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 99%	Limits: 50	-150 %	Dilı	ution: 1x					
Duplicate (23J0954-DUP2)			Prepareo	1: 10/25/23	04:11 Ana	yzed: 10/25	/23 10:24					
QC Source Sample: Non-SDG (A	3J1648-02 <u>)</u>											
Diesel	13800	218	436	mg/kg di	y 20		13500			2	30%	
Oil	ND	436	873	mg/kg di	y 20		ND				30%	
Surr: o-Terphenyl (Surr)		R	ecovery: %	Limits: 50	-150 %	Dilı	ution: 20x					S-01

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23J0806 - EPA 5035A							So	il					
Blank (23J0806-BLK1)	Prepared: 10/20/23 08:57 Analyzed: 10/20/23 13:01												
NWTPH-Gx (MS)													
Gasoline Range Organics	ND	2.50	5.00	mg/kg v	vet 50								
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 99%	Limits: 5	0-150 %	Dili	ution: 1x						
1,4-Difluorobenzene (Sur)			101 %	5	0-150 %		"						
LCS (23J0806-BS2)			Prepared	d: 10/20/23	08:57 Anal	yzed: 10/20)/23 11:36						
NWTPH-Gx (MS)													
Gasoline Range Organics	24.0	2.50	5.00	mg/kg v	vet 50	25.0		96	80-120%				
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 101 %	Limits: 5	0-150 %	Dili	ution: 1x						
1,4-Difluorobenzene (Sur)			99 %	5	0-150 %		"						
Duplicate (23J0806-DUP1)			Prepared	d: 10/12/23	15:00 Anal	yzed: 10/20	/23 13:52						
QC Source Sample: Non-SDG (A3	J1466-01)												
Gasoline Range Organics	ND	8.76	17.5	mg/kg d	lry 50		ND				30%		
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 105 %	Limits: 5	0-150 %	Dili	ution: 1x						
1,4-Difluorobenzene (Sur)			102 %	5	0-150 %		"						
Duplicate (23J0806-DUP2)			Prepared	d: 10/17/23	14:00 Anal	yzed: 10/20	/23 21:36						
QC Source Sample: Non-SDG (A3	J1457-01)												
Gasoline Range Organics	6.56	4.44	8.89	mg/kg d	lry 50		6.42			2	30%		
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 105 %	Limits: 5	0-150 %	Dili	ution: 1x						
1,4-Difluorobenzene (Sur)			99 %	5	0-150 %		"						

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: **Eatonville Landfill Characterization** Project Number: 00171.074.008

Project Manager: Ben Johnson

Report ID: A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	D			a ''	~				DEE		
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23J0806 - EPA 5035A	Soil												
Blank (23J0806-BLK1)			Prepared	: 10/20/23 0	8:57 Ana	lyzed: 10/20/	/23 13:01						
5035A/8260D													
Acetone	ND	1000	1000	ug/kg we	t 50							ICV-0	
Acrylonitrile	ND	50.0	100	ug/kg we	t 50								
Benzene	ND	5.00	10.0	ug/kg we	t 50								
Bromobenzene	ND	12.5	25.0	ug/kg we	t 50								
Bromochloromethane	ND	25.0	50.0	ug/kg we	t 50								
Bromodichloromethane	ND	25.0	50.0	ug/kg we									
Bromoform	ND	50.0	100	ug/kg we	t 50								
Bromomethane	ND	500	500	ug/kg we	t 50								
2-Butanone (MEK)	ND	250	500	ug/kg we	t 50								
n-Butylbenzene	ND	25.0	50.0	ug/kg we	t 50								
sec-Butylbenzene	ND	25.0	50.0	ug/kg we									
tert-Butylbenzene	ND	25.0	50.0	ug/kg we	t 50								
Carbon disulfide	ND	250	500	ug/kg we	t 50								
Carbon tetrachloride	ND	25.0	50.0	ug/kg we									
Chlorobenzene	ND	12.5	25.0	ug/kg we	t 50								
Chloroethane	ND	250	500	ug/kg we	t 50								
Chloroform	ND	25.0	50.0	ug/kg we									
Chloromethane	ND	125	250	ug/kg we	t 50								
2-Chlorotoluene	ND	25.0	50.0	ug/kg we	t 50								
4-Chlorotoluene	ND	25.0	50.0	ug/kg we	t 50								
Dibromochloromethane	ND	50.0	100	ug/kg we									
1,2-Dibromo-3-chloropropane	ND	125	250	ug/kg we									
1,2-Dibromoethane (EDB)	ND	25.0	50.0	ug/kg we									
Dibromomethane	ND	25.0	50.0	ug/kg we									
1,2-Dichlorobenzene	ND	12.5	25.0	ug/kg we	t 50								
1,3-Dichlorobenzene	ND	12.5	25.0	ug/kg we									
1,4-Dichlorobenzene	ND	12.5	25.0	ug/kg we									
Dichlorodifluoromethane	ND	50.0	100	ug/kg we									
1,1-Dichloroethane	ND	12.5	25.0	ug/kg we									
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/kg we									
1,1-Dichloroethene	ND	12.5	25.0	ug/kg we									
cis-1,2-Dichloroethene	ND	12.5	25.0	ug/kg we									
trans-1,2-Dichloroethene	ND	12.5	25.0	ug/kg we									

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: **Eatonville Landfill Characterization** Project Number: 00171.074.008

Project Manager: Ben Johnson

Report ID: A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
3atch 23J0806 - EPA 5035A							Soi					
Blank (23J0806-BLK1)			Prepared	: 10/20/23 08	8:57 Ana	yzed: 10/20/	23 13:01					
1,2-Dichloropropane	ND	12.5	25.0	ug/kg wet	50							
1,3-Dichloropropane	ND	25.0	50.0	ug/kg wet	50							
2,2-Dichloropropane	ND	25.0	50.0	ug/kg wet	50							
1,1-Dichloropropene	ND	25.0	50.0	ug/kg wet								
cis-1,3-Dichloropropene	ND	25.0	50.0	ug/kg wet	50							
trans-1,3-Dichloropropene	ND	25.0	50.0	ug/kg wet	50							
Ethylbenzene	ND	12.5	25.0	ug/kg wet	50							
Hexachlorobutadiene	ND	50.0	100	ug/kg wet	50							
2-Hexanone	ND	500	500	ug/kg wet	50							
Isopropylbenzene	ND	25.0	50.0	ug/kg wet	50							
4-Isopropyltoluene	ND	25.0	50.0	ug/kg wet	50							
Methylene chloride	ND	250	500	ug/kg wet	50							
4-Methyl-2-pentanone (MiBK)	ND	250	500	ug/kg wet	50							
Methyl tert-butyl ether (MTBE)	ND	25.0	50.0	ug/kg wet	50							
Naphthalene	ND	100	100	ug/kg wet	50							
n-Propylbenzene	ND	12.5	25.0	ug/kg wet	50							
Styrene	ND	25.0	50.0	ug/kg wet	50							
1,1,1,2-Tetrachloroethane	ND	12.5	25.0	ug/kg wet	50							
1,1,2,2-Tetrachloroethane	ND	25.0	50.0	ug/kg wet	50							
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/kg wet								
Toluene	ND	25.0	50.0	ug/kg wet								
1,2,3-Trichlorobenzene	ND	125	250	ug/kg wet								
1,2,4-Trichlorobenzene	ND	125	250	ug/kg wet	50							
1,1,1-Trichloroethane	ND	12.5	25.0	ug/kg wet								
1,1,2-Trichloroethane	ND	12.5	25.0	ug/kg wet	50							
Trichloroethene (TCE)	ND	12.5	25.0	ug/kg wet								
Trichlorofluoromethane	ND	50.0	100	ug/kg wet								
1,2,3-Trichloropropane	ND	25.0	50.0	ug/kg wet								
1,2,4-Trimethylbenzene	ND	25.0	50.0	ug/kg wet								
1,3,5-Trimethylbenzene	ND	25.0	50.0	ug/kg wet								
Vinyl chloride	ND	12.5	25.0	ug/kg wet								
m,p-Xylene	ND	25.0	50.0	ug/kg wet								
o-Xylene	ND	12.5	25.0	ug/kg wet								

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	8260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							So	il				
Blank (23J0806-BLK1)			Preparec	d: 10/20/23 0	8:57 Ana	lyzed: 10/20)/23 13:01					
Surr: Toluene-d8 (Surr)		Reco	overy: 99%	Limits: 80-	120 %	Dil	ution: 1x					
4-Bromofluorobenzene (Surr)			101 %	79-	120 %		"					
LCS (23J0806-BS1)			Preparec	d: 10/20/23 0	8:57 Ana	lyzed: 10/20)/23 12:02					
5035A/8260D												
Acetone	1720	1000	1000	ug/kg we	t 50	2000		86	80-120%			ICV-0
Acrylonitrile	979	50.0	100	ug/kg we	t 50	1000		98	80-120%			
Benzene	1020	5.00	10.0	ug/kg we	t 50	1000		102	80-120%			
Bromobenzene	1000	12.5	25.0	ug/kg we	t 50	1000		100	80-120%			
Bromochloromethane	975	25.0	50.0	ug/kg we	t 50	1000		98	80-120%			
Bromodichloromethane	1000	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
Bromoform	1070	50.0	100	ug/kg we	t 50	1000		107	80-120%			
Bromomethane	1030	500	500	ug/kg we	t 50	1000		103	80-120%			
2-Butanone (MEK)	1850	250	500	ug/kg we	t 50	2000		92	80-120%			
n-Butylbenzene	1170	25.0	50.0	ug/kg we	t 50	1000		117	80-120%			
sec-Butylbenzene	1000	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
tert-Butylbenzene	979	25.0	50.0	ug/kg we	t 50	1000		98	80-120%			
Carbon disulfide	981	250	500	ug/kg we	t 50	1000		98	80-120%			
Carbon tetrachloride	1130	25.0	50.0	ug/kg we	t 50	1000		113	80-120%			
Chlorobenzene	1010	12.5	25.0	ug/kg we	t 50	1000		101	80-120%			
Chloroethane	1050	250	500	ug/kg we	t 50	1000		105	80-120%			
Chloroform	985	25.0	50.0	ug/kg we	t 50	1000		98	80-120%			
Chloromethane	920	125	250	ug/kg we	t 50	1000		92	80-120%			
2-Chlorotoluene	1080	25.0	50.0	ug/kg we	t 50	1000		108	80-120%			
4-Chlorotoluene	1090	25.0	50.0	ug/kg we	t 50	1000		109	80-120%			
Dibromochloromethane	1070	50.0	100	ug/kg we	t 50	1000		107	80-120%			
1,2-Dibromo-3-chloropropane	942	125	250	ug/kg we	t 50	1000		94	80-120%			
1,2-Dibromoethane (EDB)	1050	25.0	50.0	ug/kg we	t 50	1000		105	80-120%			
Dibromomethane	1000	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
1,2-Dichlorobenzene	1050	12.5	25.0	ug/kg we		1000		105	80-120%			
1,3-Dichlorobenzene	1150	12.5	25.0	ug/kg we	t 50	1000		115	80-120%			
1,4-Dichlorobenzene	1000	12.5	25.0	ug/kg we		1000		100	80-120%			
Dichlorodifluoromethane	930	50.0	100	ug/kg we		1000		93	80-120%			
1,1-Dichloroethane	1000	12.5	25.0	ug/kg we		1000		100	80-120%			

Apex Laboratories

Philip Nevenberg

<u>Report ID:</u> A3J1366 - 11 10 23 1227

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: **Eatonville Landfill Characterization** Project Number: 00171.074.008

Project Manager: Ben Johnson

Report ID: A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							Soi	il				
LCS (23J0806-BS1)			Prepared	: 10/20/23 0	8:57 Ana	yzed: 10/20	/23 12:02					
1,2-Dichloroethane (EDC)	1010	12.5	25.0	ug/kg we	t 50	1000		101	80-120%			
1,1-Dichloroethene	1030	12.5	25.0	ug/kg we	t 50	1000		103	80-120%			
cis-1,2-Dichloroethene	1040	12.5	25.0	ug/kg we	t 50	1000		104	80-120%			
trans-1,2-Dichloroethene	994	12.5	25.0	ug/kg we	t 50	1000		99	80-120%			
1,2-Dichloropropane	1000	12.5	25.0	ug/kg we	t 50	1000		100	80-120%			
1,3-Dichloropropane	1010	25.0	50.0	ug/kg we	t 50	1000		101	80-120%			
2,2-Dichloropropane	1160	25.0	50.0	ug/kg we	t 50	1000		116	80-120%			
1,1-Dichloropropene	1110	25.0	50.0	ug/kg we		1000		111	80-120%			
cis-1,3-Dichloropropene	1220	25.0	50.0	ug/kg we	t 50	1000		122	80-120%			Q-:
trans-1,3-Dichloropropene	1040	25.0	50.0	ug/kg we	t 50	1000		104	80-120%			
Ethylbenzene	1110	12.5	25.0	ug/kg we	t 50	1000		111	80-120%			
Hexachlorobutadiene	1050	50.0	100	ug/kg we	t 50	1000		105	80-120%			
2-Hexanone	1570	500	500	ug/kg we	t 50	2000		78	80-120%			Q-:
Isopropylbenzene	990	25.0	50.0	ug/kg we	t 50	1000		99	80-120%			
4-Isopropyltoluene	990	25.0	50.0	ug/kg we	t 50	1000		99	80-120%			
Methylene chloride	1010	250	500	ug/kg we	t 50	1000		101	80-120%			
4-Methyl-2-pentanone (MiBK)	1880	250	500	ug/kg we	t 50	2000		94	80-120%			
Methyl tert-butyl ether (MTBE)	1040	25.0	50.0	ug/kg we	t 50	1000		104	80-120%			
Naphthalene	840	100	200	ug/kg we	t 50	1000		84	80-120%			
n-Propylbenzene	1060	12.5	25.0	ug/kg we	t 50	1000		106	80-120%			
Styrene	1000	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
1,1,1,2-Tetrachloroethane	1060	12.5	25.0	ug/kg we	t 50	1000		106	80-120%			
1,1,2,2-Tetrachloroethane	977	25.0	50.0	ug/kg we	t 50	1000		98	80-120%			
Tetrachloroethene (PCE)	1110	12.5	25.0	ug/kg we	t 50	1000		111	80-120%			
Toluene	996	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
1,2,3-Trichlorobenzene	1050	125	250	ug/kg we	t 50	1000		105	80-120%			
1,2,4-Trichlorobenzene	1040	125	250	ug/kg we		1000		104	80-120%			
1,1,1-Trichloroethane	1070	12.5	25.0	ug/kg we	t 50	1000		107	80-120%			
1,1,2-Trichloroethane	1020	12.5	25.0	ug/kg we	t 50	1000		102	80-120%			
Trichloroethene (TCE)	1010	12.5	25.0	ug/kg we	t 50	1000		101	80-120%			
Trichlorofluoromethane	1150	50.0	100	ug/kg we	t 50	1000		115	80-120%			
1,2,3-Trichloropropane	1010	25.0	50.0	ug/kg we	t 50	1000		101	80-120%			
1,2,4-Trimethylbenzene	1020	25.0	50.0	ug/kg we	t 50	1000		102	80-120%			
1,3,5-Trimethylbenzene	1010	25.0	50.0	ug/kg we	t 50	1000		101	80-120%			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	s by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							Soi	il				
LCS (23J0806-BS1)			Prepared	1: 10/20/23 0	8:57 Ana	lyzed: 10/20	/23 12:02					
Vinyl chloride	884	12.5	25.0	ug/kg we	t 50	1000		88	80-120%			
m,p-Xylene	2020	25.0	50.0	ug/kg we	t 50	2000		101	80-120%			
o-Xylene	950	12.5	25.0	ug/kg we	t 50	1000		95	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99%	Limits: 80-	120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			99%	79-	120 %		"					
Duplicate (23J0806-DUP1)			Prepared	1: 10/12/23 1	5:00 Ana	lyzed: 10/20	/23 13:52					
OC Source Sample: Non-SDG (A3	<u>J1466-01)</u>											
Acetone	ND	3500	3500	ug/kg dry	50		ND				30%	ICV-
Acrylonitrile	ND	175	350	ug/kg dry	50		ND				30%	
Benzene	ND	17.5	35.0	ug/kg dry	50		ND				30%	
Bromobenzene	ND	43.8	87.6	ug/kg dry	50		ND				30%	
Bromochloromethane	ND	87.6	175	ug/kg dry	50		ND				30%	
Bromodichloromethane	ND	87.6	175	ug/kg dry	50		ND				30%	
Bromoform	ND	175	350	ug/kg dry	50		ND				30%	
Bromomethane	ND	1750	1750	ug/kg dry	50		ND				30%	
2-Butanone (MEK)	ND	876	1750	ug/kg dry	50		ND				30%	
n-Butylbenzene	ND	87.6	175	ug/kg dry	50		ND				30%	
sec-Butylbenzene	ND	87.6	175	ug/kg dry	50		ND				30%	
tert-Butylbenzene	ND	87.6	175	ug/kg dry	50		ND				30%	
Carbon disulfide	ND	876	1750	ug/kg dry	50		ND				30%	
Carbon tetrachloride	ND	87.6	175	ug/kg dry	50		ND				30%	
Chlorobenzene	ND	43.8	87.6	ug/kg dry	50		ND				30%	
Chloroethane	ND	876	1750	ug/kg dry	50		ND				30%	
Chloroform	ND	87.6	175	ug/kg dry	50		ND				30%	
Chloromethane	ND	438	876	ug/kg dry	50		ND				30%	
2-Chlorotoluene	ND	87.6	175	ug/kg dry	50		ND				30%	
4-Chlorotoluene	ND	87.6	175	ug/kg dry	50		ND				30%	
Dibromochloromethane	ND	175	350	ug/kg dry			ND				30%	
1,2-Dibromo-3-chloropropane	ND	438	876	ug/kg dry			ND				30%	
1,2-Dibromoethane (EDB)	ND	87.6	175	ug/kg dry			ND				30%	
Dibromomethane	ND	87.6	175	ug/kg dry			ND				30%	
1.2-Dichlorobenzene	ND	43.8	87.6	ug/kg dry			ND				30%	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
atch 23J0806 - EPA 5035A							Soil					
Duplicate (23J0806-DUP1)			Prepared:	10/12/23 15	5:00 Anal	yzed: 10/20/						
QC Source Sample: Non-SDG (A3J1	1466-01)		1									
1,3-Dichlorobenzene	1400-01) ND	43.8	87.6	ug/kg dry	v 50		ND				30%	
1,4-Dichlorobenzene	ND	43.8	87.6	ug/kg dry			ND				30%	
Dichlorodifluoromethane	ND	43.8	350	ug/kg dry ug/kg dry	, ,		ND				30%	
1,1-Dichloroethane	ND	43.8	87.6	ug/kg dry			ND				30%	
1,2-Dichloroethane (EDC)	ND	43.8	87.6	ug/kg dry	, ,		ND				30%	
1,1-Dichloroethene	ND	43.8	87.6	ug/kg dry ug/kg dry	,		ND				30%	
cis-1,2-Dichloroethene	ND	43.8	87.6	ug/kg dry	,		ND				30%	
trans-1,2-Dichloroethene	ND	43.8	87.6	ug/kg dry			ND				30%	
1,2-Dichloropropane	ND	43.8	87.6	ug/kg dry			ND				30%	
1,3-Dichloropropane	ND	87.6	175	ug/kg dry	,		ND				30%	
2,2-Dichloropropane	ND	87.6	175	ug/kg dry	,		ND				30%	
1,1-Dichloropropene	ND	87.6	175	ug/kg dry	,		ND				30%	
cis-1,3-Dichloropropene	ND	87.6	175	ug/kg dry	, ,		ND				30%	
trans-1,3-Dichloropropene	ND	87.6	175	ug/kg dry	, ,		ND				30%	
Ethylbenzene	ND	43.8	87.6	ug/kg dry	,		ND				30%	
Hexachlorobutadiene	ND	175	350	ug/kg dry	, ,		ND				30%	
2-Hexanone	ND	1750	1750	ug/kg dry			ND				30%	
Isopropylbenzene	ND	87.6	175	ug/kg dry	·		ND				30%	
4-Isopropyltoluene	ND	87.6	175	ug/kg dry	, ,		ND				30%	
Methylene chloride	ND	876	1750	ug/kg dry			ND				30%	
4-Methyl-2-pentanone (MiBK)	ND	876	1750	ug/kg dry			ND				30%	
Methyl tert-butyl ether (MTBE)	ND	87.6	1750	ug/kg dry	, ,		ND				30%	
Naphthalene	ND	350	701	ug/kg dry			ND				30%	
n-Propylbenzene	ND	43.8	87.6	ug/kg dry	, ,		ND				30%	
Styrene	ND	87.6	175	ug/kg dry			ND				30%	
1,1,1,2-Tetrachloroethane	ND	43.8	87.6	ug/kg dry	,		ND				30%	
1,1,2,2-Tetrachloroethane	ND	87.6	175	ug/kg dry	,		ND				30%	
Tetrachloroethene (PCE)	ND	43.8	87.6	ug/kg dry	, ,		ND				30%	
Toluene	ND	43.8 87.6	175	ug/kg dry			ND				30%	
1,2,3-Trichlorobenzene	ND	438	876	ug/kg dry	,		ND				30%	
1,2,4-Trichlorobenzene	ND	438	876 876	ug/kg dry ug/kg dry	, ,		ND				30%	
1,1,1-Trichloroethane	ND	438 43.8	87.6	ug/kg dry ug/kg dry	,		ND ND				30%	
1,1,2-Trichloroethane	ND	43.8	87.6	ug/kg dry ug/kg dry	,		ND ND				30%	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							Soi	l				
Duplicate (23J0806-DUP1)			Prepare	d: 10/12/23 1	5:00 Ana	lyzed: 10/20	/23 13:52					
QC Source Sample: Non-SDG (A3	<u>J1466-01)</u>											
Trichloroethene (TCE)	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND	175	350	ug/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND	87.6	175	ug/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND	87.6	175	ug/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND	87.6	175	ug/kg dr	y 50		ND				30%	
Vinyl chloride	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
m,p-Xylene	ND	87.6	175	ug/kg dr	y 50		ND				30%	
o-Xylene	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 102 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	79-	120 %		"					
OC Source Sample: Non-SDG (A3		1790	1780	/1 1	50		ND				200/	ICV
Acetone	ND	1780	1780	ug/kg dr	y 50		ND				30%	ICV-0
Acrylonitrile	ND	88.9	178	ug/kg dr	y 50		ND				30%	
Benzene	ND	8.89	17.8	ug/kg dr	y 50		ND				30%	
Bromobenzene	ND	22.2	44.4	ug/kg dr			ND				30%	
Bromochloromethane	ND	44.4	88.9	ug/kg dr			ND				30%	
Bromodichloromethane	ND	44.4	88.9	ug/kg dr			ND				30%	
Bromoform	ND	88.9	178	ug/kg dr			ND				30%	
Bromomethane	ND	889	889	ug/kg dr			ND				30%	
2-Butanone (MEK)	ND	444	889	ug/kg dr			ND				30%	
n-Butylbenzene	ND	44.4	88.9	ug/kg dr			ND				30%	
sec-Butylbenzene	ND	44.4	88.9	ug/kg dr			ND				30%	
tert-Butylbenzene	ND	44.4	88.9	ug/kg dr			ND				30%	
Carbon disulfide	ND	444	889	ug/kg dr	y 50		ND				30%	
Carbon tetrachloride	ND	44.4	88.9	ug/kg dr			ND				30%	
Chlorobenzene	ND	22.2	44.4	ug/kg dr			ND				30%	
Chloroethane	ND	444	889	ug/kg dr			ND				30%	
Chloroform	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
Chloromethane	ND	222	444	ug/kg dr	y 50		ND				30%	
2-Chlorotoluene	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Detection	Reporting			Spike	Source		% REC		RPD	
Analyte	Result	Limit	Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 23J0806 - EPA 5035A							Soil	I				
Duplicate (23J0806-DUP2)			Prepared:	: 10/17/23 14	4:00 Anal	yzed: 10/20/	23 21:36					
QC Source Sample: Non-SDG (A3J	1457-01)											
4-Chlorotoluene	ND	44.4	88.9	ug/kg dry	50		ND				30%	
Dibromochloromethane	ND	88.9	178	ug/kg dry	50		ND				30%	
1,2-Dibromo-3-chloropropane	ND	222	444	ug/kg dry			ND				30%	
1,2-Dibromoethane (EDB)	ND	44.4	88.9	ug/kg dry			ND				30%	
Dibromomethane	ND	44.4	88.9	ug/kg dry			ND				30%	
1,2-Dichlorobenzene	ND	22.2	44.4	ug/kg dry			ND				30%	
1,3-Dichlorobenzene	ND	22.2	44.4	ug/kg dry			ND				30%	
1,4-Dichlorobenzene	ND	22.2	44.4	ug/kg dry			ND				30%	
Dichlorodifluoromethane	ND	88.9	178	ug/kg dry			ND				30%	
1,1-Dichloroethane	ND	22.2	44.4	ug/kg dry			ND				30%	
1,2-Dichloroethane (EDC)	ND	22.2	44.4	ug/kg dry			ND				30%	
1,1-Dichloroethene	ND	22.2	44.4	ug/kg dry			ND				30%	
cis-1,2-Dichloroethene	ND	22.2	44.4	ug/kg dry			ND				30%	
trans-1,2-Dichloroethene	ND	22.2	44.4	ug/kg dry			ND				30%	
1,2-Dichloropropane	ND	22.2	44.4	ug/kg dry			ND				30%	
1,3-Dichloropropane	ND	44.4	88.9	ug/kg dry			ND				30%	
2,2-Dichloropropane	ND	44.4	88.9	ug/kg dry			ND				30%	
1,1-Dichloropropene	ND	44.4	88.9	ug/kg dry			ND				30%	
cis-1,3-Dichloropropene	ND	44.4	88.9	ug/kg dry			ND				30%	
trans-1,3-Dichloropropene	ND	44.4	88.9	ug/kg dry			ND				30%	
Ethylbenzene	ND	22.2	44.4	ug/kg dry			ND				30%	
Hexachlorobutadiene	ND	88.9	178	ug/kg dry			ND				30%	
2-Hexanone	ND	889	889	ug/kg dry			ND				30%	
Isopropylbenzene	ND	44.4	88.9	ug/kg dry			ND				30%	
4-Isopropyltoluene	ND	44.4	88.9	ug/kg dry			ND				30%	
Methylene chloride	ND	444	889	ug/kg dry			ND				30%	
4-Methyl-2-pentanone (MiBK)	ND	444	889	ug/kg dry			ND				30%	
Methyl tert-butyl ether (MTBE)	ND	44.4	88.9	ug/kg dry			ND				30%	
Naphthalene	ND	178	355	ug/kg dry			ND				30%	
n-Propylbenzene	ND	22.2	44.4	ug/kg dry			ND				30%	
Styrene	ND ND	44.4	88.9	ug/kg dry ug/kg dry			ND				30%	
1,1,1,2-Tetrachloroethane	ND	44.4 22.2	88.9 44.4	ug/kg dry ug/kg dry			ND				30%	
1,1,2,2-Tetrachloroethane	ND ND	44.4	44.4 88.9	ug/kg dry ug/kg dry			ND ND				30% 30%	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							Soi	1				
Duplicate (23J0806-DUP2)			Preparec	1: 10/17/23 1	4:00 Ana	lyzed: 10/20	/23 21:36					
QC Source Sample: Non-SDG (A3	3 <u>J1457-01)</u>											
Tetrachloroethene (PCE)	ND	22.2	44.4	ug/kg dr	y 50		ND				30%	
Toluene	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
1,2,3-Trichlorobenzene	ND	222	444	ug/kg dr	y 50		ND				30%	
1,2,4-Trichlorobenzene	ND	222	444	ug/kg dr	y 50		ND				30%	
1,1,1-Trichloroethane	ND	22.2	44.4	ug/kg dr	y 50		ND				30%	
1,1,2-Trichloroethane	ND	22.2	44.4	ug/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND	22.2	44.4	ug/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND	88.9	178	ug/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
Vinyl chloride	ND	22.2	44.4	ug/kg dr	y 50		ND				30%	
m,p-Xylene	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
o-Xylene	32.9	22.2	44.4	ug/kg dr	y 50		30.2			8	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			103 %	79-	120 %		"					

Matrix Spike (23J0806-MS1)

Prepared: 10/11/23 11:55 Analyzed: 10/20/23 20:19

QC Source Sample: TP-07-IM-14	4.0-15.0-20231011	(A3J1366-14	<u>1)</u>								
<u>5035A/8260D</u>											
Acetone	1750	1020	1020	ug/kg dry	50	2040	ND	86	36-164%	 	ICV-02
Acrylonitrile	1000	50.9	102	ug/kg dry	50	1020	ND	98	65-134%	 	
Benzene	1070	5.09	10.2	ug/kg dry	50	1020	ND	105	77-121%	 	
Bromobenzene	1040	12.7	25.4	ug/kg dry	50	1020	ND	102	78-121%	 	
Bromochloromethane	1040	25.4	50.9	ug/kg dry	50	1020	ND	102	78-125%	 	
Bromodichloromethane	1030	25.4	50.9	ug/kg dry	50	1020	ND	101	75-127%	 	
Bromoform	1060	50.9	102	ug/kg dry	50	1020	ND	104	67-132%	 	
Bromomethane	1140	509	509	ug/kg dry	50	1020	ND	112	53-143%	 	
2-Butanone (MEK)	1790	254	509	ug/kg dry	50	2040	ND	88	51-148%	 	
n-Butylbenzene	1220	25.4	50.9	ug/kg dry	50	1020	ND	120	70-128%	 	
sec-Butylbenzene	1050	25.4	50.9	ug/kg dry	50	1020	ND	103	73-126%	 	
tert-Butylbenzene	1010	25.4	50.9	ug/kg dry	50	1020	ND	99	73-125%	 	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	-		-						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							Soi					
Matrix Spike (23J0806-MS1)			Prepared	l: 10/11/23 1	1:55 Anal	yzed: 10/20/	/23 20:19					
QC Source Sample: TP-07-IM-14.0	0-15.0-2023	1011 (A3J1366	<u>5-14)</u>									
Carbon disulfide	1020	254	509	ug/kg dry	y 50	1020	ND	100	63-132%			
Carbon tetrachloride	1170	25.4	50.9	ug/kg dry	y 50	1020	ND	115	70-135%			
Chlorobenzene	1040	12.7	25.4	ug/kg dry	y 50	1020	ND	102	79-120%			
Chloroethane	1220	254	509	ug/kg dry	y 50	1020	ND	119	59-139%			
Chloroform	1020	25.4	50.9	ug/kg dry	y 50	1020	ND	101	78-123%			
Chloromethane	993	127	254	ug/kg dry	y 50	1020	ND	97	50-136%			
2-Chlorotoluene	1130	25.4	50.9	ug/kg dry	y 50	1020	ND	111	75-122%			
4-Chlorotoluene	1120	25.4	50.9	ug/kg dry	y 50	1020	ND	110	72-124%			
Dibromochloromethane	1070	50.9	102	ug/kg dry	y 50	1020	ND	105	74-126%			
1,2-Dibromo-3-chloropropane	932	127	254	ug/kg dry	y 50	1020	ND	91	61-132%			
1,2-Dibromoethane (EDB)	1080	25.4	50.9	ug/kg dry	y 50	1020	ND	106	78-122%			
Dibromomethane	1040	25.4	50.9	ug/kg dry	y 50	1020	ND	103	78-125%			
1,2-Dichlorobenzene	1070	12.7	25.4	ug/kg dry	y 50	1020	ND	105	78-121%			
1,3-Dichlorobenzene	1170	12.7	25.4	ug/kg dry	y 50	1020	ND	115	77-121%			
1,4-Dichlorobenzene	1020	12.7	25.4	ug/kg dry	y 50	1020	ND	100	75-120%			
Dichlorodifluoromethane	1040	50.9	102	ug/kg dry		1020	ND	102	29-149%			
1,1-Dichloroethane	1040	12.7	25.4	ug/kg dry	y 50	1020	ND	102	76-125%			
1,2-Dichloroethane (EDC)	1030	12.7	25.4	ug/kg dry		1020	ND	101	73-128%			
1,1-Dichloroethene	1080	12.7	25.4	ug/kg dry		1020	ND	106	70-131%			
cis-1,2-Dichloroethene	1100	12.7	25.4	ug/kg dry	y 50	1020	ND	108	77-123%			
trans-1,2-Dichloroethene	1040	12.7	25.4	ug/kg dry		1020	ND	102	74-125%			
1,2-Dichloropropane	1050	12.7	25.4	ug/kg dry		1020	ND	103	76-123%			
1,3-Dichloropropane	1020	25.4	50.9	ug/kg dry	·	1020	ND	100	77-121%			
2,2-Dichloropropane	1100	25.4	50.9	ug/kg dry		1020	ND	108	67-133%			
1,1-Dichloropropene	1200	25.4	50.9	ug/kg dry	, ,	1020	ND	117	76-125%			
cis-1,3-Dichloropropene	1210	25.4	50.9	ug/kg dry		1020	ND	119	74-126%			Ç
trans-1,3-Dichloropropene	1010	25.4	50.9	ug/kg dry		1020	ND	99	71-130%			
Ethylbenzene	1140	12.7	25.4	ug/kg dry	, ,	1020	ND	112	76-122%			
Hexachlorobutadiene	1230	50.9	102	ug/kg dry	, ,	1020	ND	121	61-135%			
2-Hexanone	1550	509	509	ug/kg dry		2040	ND	76	53-145%			Q-
Isopropylbenzene	1040	25.4	50.9	ug/kg dry		1020	ND	102	68-134%			
4-Isopropyltoluene	1040	25.4	50.9	ug/kg dry		1020	ND	102	73-127%			
Methylene chloride	1040	254	509	ug/kg dry	, ,	1020	ND	102	70-128%			

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Con	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							Soi	I				
Matrix Spike (23J0806-MS1)			Prepared	: 10/11/23 1	1:55 Anal	lyzed: 10/20/2	23 20:19					
QC Source Sample: TP-07-IM-14.0-	15.0-20231	011 (A3J1366	-14)									
4-Methyl-2-pentanone (MiBK)	1900	254	509	ug/kg dry	y 50	2040	ND	93	65-135%			
Methyl tert-butyl ether (MTBE)	1080	25.4	50.9	ug/kg dry	y 50	1020	ND	106	73-125%			
Naphthalene	854	102	204	ug/kg dry	y 50	1020	ND	84	62-129%			
n-Propylbenzene	1100	12.7	25.4	ug/kg dry	y 50	1020	ND	108	73-125%			
Styrene	1030	25.4	50.9	ug/kg dry	y 50	1020	ND	101	76-124%			
1,1,1,2-Tetrachloroethane	1080	12.7	25.4	ug/kg dry	y 50	1020	ND	107	78-125%			
1,1,2,2-Tetrachloroethane	968	25.4	50.9	ug/kg dry	y 50	1020	ND	95	70-124%			
Tetrachloroethene (PCE)	1140	12.7	25.4	ug/kg dry	y 50	1020	ND	112	73-128%			
Toluene	1020	25.4	50.9	ug/kg dry	y 50	1020	ND	100	77-121%			
1,2,3-Trichlorobenzene	1080	127	254	ug/kg dry	y 50	1020	ND	106	66-130%			
1,2,4-Trichlorobenzene	1080	127	254	ug/kg dry	y 50	1020	ND	106	67-129%			
1,1,1-Trichloroethane	1110	12.7	25.4	ug/kg dry	y 50	1020	ND	109	73-130%			
1,1,2-Trichloroethane	1030	12.7	25.4	ug/kg dry	y 50	1020	ND	101	78-121%			
Trichloroethene (TCE)	1090	12.7	25.4	ug/kg dry	y 50	1020	ND	107	77-123%			
Trichlorofluoromethane	1400	50.9	102	ug/kg dry	y 50	1020	ND	137	62-140%			
1,2,3-Trichloropropane	1020	25.4	50.9	ug/kg dry	y 50	1020	ND	100	73-125%			
1,2,4-Trimethylbenzene	1040	25.4	50.9	ug/kg dry	y 50	1020	ND	102	75-123%			
1,3,5-Trimethylbenzene	1040	25.4	50.9	ug/kg dry	y 50	1020	ND	102	73-124%			
Vinyl chloride	979	12.7	25.4	ug/kg dry	y 50	1020	ND	96	56-135%			
m,p-Xylene	2090	25.4	50.9	ug/kg dry	y 50	2040	ND	103	77-124%			
o-Xylene	995	12.7	25.4	ug/kg dry	y 50	1020	ND	98	77-123%			
urr: 1,4-Difluorobenzene (Surr)		Recov	very: 100 %	Limits: 80-	120 %	Dilu	ution: 1x					
Toluene-d8 (Surr)			95 %	80	120 %		"					
4-Bromofluorobenzene (Surr)			101 %	79	120 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	inated Bi	ohenyls	by EPA 8	082A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0900 - EPA 3546							So	il				
Blank (23J0900-BLK1)			Prepared	l: 10/24/23 0	6:45 Anal	yzed: 10/24	/23 17:38					C-0
EPA 8082A												
Aroclor 1016	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1221	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1232	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1242	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1248	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1254	ND	5.00	10.0	ug/kg we								
Aroclor 1260	ND	5.00	10.0	ug/kg we								
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 99%	Limits: 60-	125 %	Dil	ution: 1x					
LCS (23J0900-BS1)			Prepared	l: 10/24/23 0	6:45 Anal	yzed: 10/24	/23 17:56					C-0
EPA 8082A												
Aroclor 1016	200	5.00	10.0	ug/kg we	t 1	250		80	47-134%			
Aroclor 1260	217	5.00	10.0	ug/kg we		250		87	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 94 %	Limits: 60-	125 %	Dil	ution: 1x					
Duplicate (23J0900-DUP1)			Prepared	l: 10/24/23 0	6:45 Anal	vzed: 10/24	/23 18:49					C-0
QC Source Sample: WS-01-0.0-2.0)-10102023	(A3J1366-01)	1			5						
EPA 8082A		<u>(</u>										
Aroclor 1016	ND	10.1	20.1	ug/kg dr	/ 1		ND				30%	
Aroclor 1221	ND	10.1	20.1	ug/kg dr			ND				30%	
Aroclor 1232	ND	10.1	20.1	ug/kg dr			ND				30%	
Aroclor 1242	ND	10.1	20.1	ug/kg dr			ND				30%	
Aroclor 1248	ND	10.1	20.1	ug/kg dr			ND				30%	
Aroclor 1254	ND	10.1	20.1	ug/kg dr			ND				30%	
Aroclor 1260	ND	10.1	20.1	ug/kg dr			ND				30%	
Surr: Decachlorobiphenyl (Surr)			overy: 68 %	Limits: 60-		Dil	ution: 1x				2070	
Matrix Spike (23J0900-MS1)			Prenared	l: 10/24/23 0	6:45 Anal	vzed: 10/24	5/23 00:43					C-0
	1157(07)		Tropuroe									2.0
OC Source Sample: Non-SDG (A3	<u>915/6-07)</u>											
EPA 8082A	225	5 40	10.0	110/1 1	. 1	270		02	47 1240/			
Aroclor 1016	225	5.40	10.8	ug/kg dr		270	ND	83	47-134%			
Aroclor 1260	229	5.40	10.8	ug/kg dr	/ 1	270	ND	85	53-140%			

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polychlorinated Biphenyls by EPA 8082A													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes		
Batch 23J0900 - EPA 3546							Soil							
Matrix Spike (23J0900-MS1)			Prepared	: 10/24/23	06:45 Anal	yzed: 10/25/	/23 00:43					C-07		
QC Source Sample: Non-SDG (A	3J1576-07)													
Surr: Decachlorobiphenyl (Surr)		Reco	very: 100 %	Limits: 6	60-125 %	Dilu	tion: 1x							

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bi	phenyls	by EPA 80)82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1014 - EPA 3546							Soi	il				
Blank (23J1014-BLK1)			Prepare	d: 10/26/23 0	4:52 Ana	lyzed: 10/26	/23 18:41					C-07
EPA 8082A												
Aroclor 1016	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1221	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1232	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1242	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1248	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1254	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1260	ND	5.00	10.0	ug/kg we	t 1							
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 90 %	Limits: 60-	-125 %	Dilt	ution: 1x					
LCS (23J1014-BS1)			Prepare	d: 10/26/23 0	4:52 Ana	lyzed: 10/26	/23 18:59					C-07
EPA 8082A												
Aroclor 1016	186	5.00	10.0	ug/kg we	t 1	250		74	47-134%			
Aroclor 1260	213	5.00	10.0	ug/kg we	t 1	250		85	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 94 %	Limits: 60-	-125 %	Dilt	ution: 1x					
Duplicate (23J1014-DUP1)			Prepare	d: 10/26/23 0	14:52 Ana	lyzed: 10/26	/23 19:52					C-07, PRO
QC Source Sample: Non-SDG (A.	3J1253-02)											
Aroclor 1016	ND	4.83	9.66	ug/kg dr	y 1		ND				30%	
Aroclor 1221	ND	4.83	9.66	ug/kg dr			ND				30%	
Aroclor 1232	ND	4.83	9.66	ug/kg dr			ND				30%	
Aroclor 1242	ND	4.83	9.66	ug/kg dr			ND				30%	
Aroclor 1248	ND	4.83	9.66	ug/kg dr			ND				30%	
Aroclor 1254	ND	4.83	9.66	ug/kg dr			ND				30%	
Aroclor 1260	ND	4.83	9.66	ug/kg dr			ND				30%	
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 82 %	Limits: 60-		Dilt	ution: 1x					
Matrix Spike (23J1014-MS2)			Prepare	d: 10/26/23 (14:52 Ana	lvzed: 10/27	//23 11:58					C-07
QC Source Sample: TP-08-IM-4.0)-5.0-202310	11 (A3J1366-1	1			<u> </u>						
EPA 8082A			<u>,</u>									
Aroclor 1016	245	5.42	10.8	ug/kg dr	y 1	271	ND	90	47-134%			
Aroclor 1260	191	5.42	10.8	ug/kg dr		271	82.9	40	53-140%			Q-0
				0.0			-	-				`

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI	Water	Solutions	

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polychlorinated Biphenyls by EPA 8082A												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits RPD	RPD Limit	Notes		
Batch 23J1014 - EPA 3546							Soil						

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

 Project Manager:
 Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bi	Polychlorinated Biphenyls by EPA 8082A													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes						
Batch 23J1015 - EPA 3546							Soi	I										
Blank (23J1015-BLK1)			Prepared	d: 10/26/23 (4:55 Ana	lyzed: 10/26	5/23 19:00					C-07						
EPA 8082A																		
Aroclor 1016	ND	5.00	10.0	ug/kg we	et 1													
Aroclor 1221	ND	5.00	10.0	ug/kg we	t 1													
Aroclor 1232	ND	5.00	10.0	ug/kg we	et 1													
Aroclor 1242	ND	5.00	10.0	ug/kg we	et 1													
Aroclor 1248	ND	5.00	10.0	ug/kg we	et 1													
Aroclor 1254	ND	5.00	10.0	ug/kg we	et 1													
Aroclor 1260	ND	5.00	10.0	ug/kg we	t 1													
Surr: Decachlorobiphenyl (Surr)		Reco	very: 112 %	Limits: 60	-125 %	Dil	ution: 1x											
LCS (23J1015-BS1)			Prepared	d: 10/26/23 (04:55 Anal	lyzed: 10/26	5/23 19:17					C-07						
EPA 8082A						-												
Aroclor 1016	213	5.00	10.0	ug/kg we	t 1	250		85	47-134%									
Aroclor 1260	241	5.00	10.0	ug/kg we	t 1	250		96	53-140%									
Surr: Decachlorobiphenyl (Surr)		Reco	very: 116 %	Limits: 60	-125 %	Dil	ution: 1x											
Duplicate (23J1015-DUP1)			Prepared	d: 10/26/23 (04:55 Anal	lyzed: 10/26	5/23 20:10					C-07						
QC Source Sample: TP-07-IM-9.0	-10.0-20231	011 (A3J1366-	<u>16)</u>															
EPA 8082A																		
Aroclor 1016	ND	33.8	33.8	ug/kg dr	y 1		ND				30%	R-0						
Aroclor 1221	ND	10.7	10.7	ug/kg dr	y 1		ND				30%							
Aroclor 1232	ND	108	108	ug/kg dr	y 1		ND				30%	R-0						
Aroclor 1242	ND	46.9	46.9	ug/kg dr	y 1		ND				30%	R-0						
Aroclor 1248	ND	33.2	33.2	ug/kg dr	y 1		ND				30%	R-0						
Aroclor 1254	95.7	5.35	10.7	ug/kg dr	y 1		74.2			25	30%	P-1						
Aroclor 1260	74.3	5.35	10.7	ug/kg dr	y 1		53.6			32	30%	P-12, Q-1						
Surr: Decachlorobiphenyl (Surr)		Recon	very: 108 %	Limits: 60	-125 %	Dil	ution: 1x											
Matrix Spike (23J1015-MS2)			Prepareo	d: 10/26/23 (04:55 Ana	lyzed: 10/27	7/23 11:41					C-07						
OC Source Sample: TP-01-IM-5.0	-6.0-202310	<u>10 (A3J1366-2</u>	<u>8)</u>															
EPA 8082A																		
Aroclor 1016	1420	6.70	13.4	ug/kg dr	y 1	335	ND	422	47-134%			E, Q-4						
Aroclor 1260	399	6.70	13.4	ug/kg dr	v 1	335	67.0	99	53-140%									

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polychlorinated Biphenyls by EPA 8082A												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23J1015 - EPA 3546							Soil						
Matrix Spike (23J1015-MS2)			Prepared	: 10/26/23	04:55 Anal	yzed: 10/27	/23 11:41					C-07	
QC Source Sample: TP-01-IM-5.0-	6.0-202310	10 (A3J1366-2	<u>(8)</u>										
Surr: Decachlorobiphenyl (Surr)		Reco	very: 101 %	Limits: 6	50-125 %	Dilı	ution: 1x						

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	emivolatile C	organic (ompoun	as by EP	4 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0793 - EPA 3546							Soi	I				
Blank (23J0793-BLK2)			Prepared:	: 10/20/23 0)4:48 Anal	yzed: 10/23/	/23 10:18					
<u>EPA 8270E</u>												
Acenaphthene	ND	1.33	2.67	ug/kg we								
Acenaphthylene	ND	1.33	2.67	ug/kg we								
Anthracene	ND	1.33	2.67	ug/kg we								
Benz(a)anthracene	ND	1.33	2.67	ug/kg we								
Benzo(a)pyrene	ND	2.00	4.00	ug/kg we								
Benzo(b)fluoranthene	ND	2.00	4.00	ug/kg we	et 1							
Benzo(k)fluoranthene	ND	2.00	4.00	ug/kg we	et 1							
Benzo(g,h,i)perylene	ND	1.33	2.67	ug/kg we								
Chrysene	ND	1.33	2.67	ug/kg we	et 1							
Dibenz(a,h)anthracene	ND	1.33	2.67	ug/kg we								
Fluoranthene	ND	1.33	2.67	ug/kg we								
Fluorene	ND	1.33	2.67	ug/kg we								
Indeno(1,2,3-cd)pyrene	ND	1.33	2.67	ug/kg we								
1-Methylnaphthalene	ND	2.67	5.33	ug/kg we								
2-Methylnaphthalene	ND	2.67	5.33	ug/kg we								
Naphthalene	ND	2.67	5.33	ug/kg we								
Phenanthrene	ND	1.33	2.67	ug/kg we								
Pyrene	ND	1.33	2.67	ug/kg we								
Carbazole	ND	2.00	4.00	ug/kg we								
Dibenzofuran	ND	1.33	2.67	ug/kg we								
2-Chlorophenol	ND	6.67	13.3	ug/kg we								
4-Chloro-3-methylphenol	ND	13.3	26.7	ug/kg we								
2,4-Dichlorophenol	ND	6.67	13.3	ug/kg we								
2,4-Dimethylphenol	ND	6.67	13.3	ug/kg we								
2,4-Dinitrophenol	ND	33.3	66.7	ug/kg we								
4,6-Dinitro-2-methylphenol	ND	33.3	66.7	ug/kg we								
2-Methylphenol	ND	3.33	6.67	ug/kg we								
3+4-Methylphenol(s)	ND	3.33	6.67	ug/kg we								
2-Nitrophenol	ND	13.3	26.7	ug/kg we								
4-Nitrophenol	ND	13.3	26.7	ug/kg we								
Pentachlorophenol (PCP)	ND ND	13.3	26.7 26.7	ug/kg we ug/kg we								
Pentachiorophenol (PCP) Phenol	ND ND	13.3 2.67	26.7 5.33									
				ug/kg we								
2,3,4,6-Tetrachlorophenol	ND	6.67	13.3	ug/kg we	et 1							

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic C	ompoun	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
3atch 23J0793 - EPA 3546							Soi	I				
3lank (23J0793-BLK2)			Prepared	: 10/20/23 0	4:48 Anal	yzed: 10/23	/23 10:18					
2,3,5,6-Tetrachlorophenol	ND	6.67	13.3	ug/kg we	t 1							
2,4,5-Trichlorophenol	ND	6.67	13.3	ug/kg we	t 1							
2,4,6-Trichlorophenol	ND	6.67	13.3	ug/kg we	t 1							
Bis(2-ethylhexyl)phthalate	ND	20.0	40.0	ug/kg we	t 1							
Butyl benzyl phthalate	ND	13.3	26.7	ug/kg we	t 1							
Diethylphthalate	ND	13.3	26.7	ug/kg we	t 1							
Dimethylphthalate	ND	13.3	26.7	ug/kg we	t 1							
Di-n-butylphthalate	ND	13.3	26.7	ug/kg we	t 1							
Di-n-octyl phthalate	ND	13.3	26.7	ug/kg we								
N-Nitrosodimethylamine	ND	3.33	6.67	ug/kg we	t 1							
N-Nitroso-di-n-propylamine	ND	3.33	6.67	ug/kg we								
N-Nitrosodiphenylamine	ND	3.33	6.67	ug/kg we								
Bis(2-Chloroethoxy) methane	ND	3.33	6.67	ug/kg we								
Bis(2-Chloroethyl) ether	ND	3.33	6.67	ug/kg we								
2,2'-Oxybis(1-Chloropropane)	ND	3.33	6.67	ug/kg we	t 1							
Hexachlorobenzene	ND	1.33	2.67	ug/kg we								
Hexachlorobutadiene	ND	3.33	6.67	ug/kg we								
Hexachlorocyclopentadiene	ND	6.67	13.3	ug/kg we								
Hexachloroethane	ND	3.33	6.67	ug/kg we								
2-Chloronaphthalene	ND	1.33	2.67	ug/kg we								
1,2,4-Trichlorobenzene	ND	3.33	6.67	ug/kg we								
4-Bromophenyl phenyl ether	ND	3.33	6.67	ug/kg we								
4-Chlorophenyl phenyl ether	ND	3.33	6.67	ug/kg we								
Aniline	ND	6.67	13.3	ug/kg we								
4-Chloroaniline	ND	3.33	6.67	ug/kg we								
2-Nitroaniline	ND	26.7	53.3	ug/kg we								
3-Nitroaniline	ND	26.7	53.3	ug/kg we								
4-Nitroaniline	ND	26.7	53.3	ug/kg we								
Nitrobenzene	ND	13.3	26.7	ug/kg we								
2,4-Dinitrotoluene	ND	13.3	26.7	ug/kg we								
2.6-Dinitrotoluene	ND	13.3	26.7	ug/kg we								
Benzoic acid	ND	167	333	ug/kg we								
Benzyl alcohol	ND	6.67	13.3	ug/kg we								
Isophorone	ND	3.33	6.67	ug/kg we								

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic C	Compour	nds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0793 - EPA 3546							So	il				
Blank (23J0793-BLK2)			Prepareo	d: 10/20/23 0	4:48 Ana	lyzed: 10/23	/23 10:18					
Azobenzene (1,2-DPH)	ND	3.33	6.67	ug/kg we	t 1							
Bis(2-Ethylhexyl) adipate	ND	33.3	66.7	ug/kg we	t 1							
3,3'-Dichlorobenzidine	ND	26.7	53.3	ug/kg we	t 1							Q-
1,2-Dinitrobenzene	ND	33.3	66.7	ug/kg we	t 1							
1,3-Dinitrobenzene	ND	33.3	66.7	ug/kg we	t 1							
1,4-Dinitrobenzene	ND	33.3	66.7	ug/kg we	t 1							
Pyridine	ND	6.67	13.3	ug/kg we	t 1							
1,2-Dichlorobenzene	ND	3.33	6.67	ug/kg we	t 1							
1,3-Dichlorobenzene	ND	3.33	6.67	ug/kg we	t 1							
1,4-Dichlorobenzene	ND	3.33	6.67	ug/kg we	t 1							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 94 %	Limits: 37-	122 %	Dil	ution: 1x					
2-Fluorobiphenyl (Surr)			88 %	44-	120 %		"					
Phenol-d6 (Surr)			91%	33-	122 %		"					
p-Terphenyl-d14 (Surr)			85 %	54-	127 %		"					
2-Fluorophenol (Surr)			76 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			94 %	39-	132 %		"					
LCS (23J0793-BS2)			Prepareo	d: 10/20/23 0	4:48 Ana	lyzed: 10/23	/23 10:52					
EPA 8270E						-						
Acenaphthene	469	5.32	10.7	ug/kg we	t 4	533		88	40-123%			
Acenaphthylene	504	5.32	10.7	ug/kg we	t 4	533		95	32-132%			
Anthracene	492	5.32	10.7	ug/kg we	t 4	533		92	47-123%			
Benz(a)anthracene	473	5.32	10.7	ug/kg we		533		89	49-126%			
Benzo(a)pyrene	533	8.00	16.0	ug/kg we	t 4	533		100	45-129%			
Benzo(b)fluoranthene	517	8.00	16.0	ug/kg we	t 4	533		97	45-132%			
Benzo(k)fluoranthene	541	8.00	16.0	ug/kg we		533		101	47-132%			
Benzo(g,h,i)perylene	484	5.32	10.7	ug/kg we		533		91	43-134%			
Chrysene	467	5.32	10.7	ug/kg we		533		88	50-124%			
Dibenz(a,h)anthracene	481	5.32	10.7	ug/kg we		533		90	45-134%			
Fluoranthene	523	5.32	10.7	ug/kg we		533		98	50-127%			
Fluorene	463	5.32	10.7	ug/kg we		533		87	43-125%			
Indeno(1,2,3-cd)pyrene	437	5.32	10.7	ug/kg we		533		82	45-133%			
1-Methylnaphthalene	514	10.7	21.3	ug/kg we		533		96	40-120%			
J 1	538	10.7	21.3	ug/kg we		533		101	38-122%			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

 Project Manager:
 Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			mivolatile	-	•	,						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0793 - EPA 3546							So	il				
LCS (23J0793-BS2)			Prepared	I: 10/20/23 0	4:48 Ana	lyzed: 10/23	/23 10:52					
Naphthalene	475	10.7	21.3	ug/kg we	t 4	533		89	35-123%			
Phenanthrene	478	5.32	10.7	ug/kg we	t 4	533		90	50-121%			
Pyrene	525	5.32	10.7	ug/kg we	t 4	533		98	47-127%			
Carbazole	511	8.00	16.0	ug/kg we	t 4	533		96	50-123%			
Dibenzofuran	521	5.32	10.7	ug/kg we	t 4	533		98	44-120%			
2-Chlorophenol	529	26.7	53.2	ug/kg we	t 4	533		99	34-121%			
4-Chloro-3-methylphenol	510	53.2	107	ug/kg we	t 4	533		96	45-122%			
2,4-Dichlorophenol	612	26.7	53.2	ug/kg we	t 4	533		115	40-122%			Q-4
2,4-Dimethylphenol	546	26.7	53.2	ug/kg we	t 4	533		102	30-127%			Q-4
2,4-Dinitrophenol	574	133	267	ug/kg we	t 4	533		108	10-137%			Q-4
4,6-Dinitro-2-methylphenol	538	133	267	ug/kg we	t 4	533		101	29-132%			
2-Methylphenol	603	13.3	26.7	ug/kg we	t 4	533		113	32-122%			Q-4
3+4-Methylphenol(s)	634	13.3	26.7	ug/kg we	t 4	533		119	34-120%			Q-4
2-Nitrophenol	577	53.2	107	ug/kg we	t 4	533		108	36-123%			Q-4
4-Nitrophenol	565	53.2	107	ug/kg we	t 4	533		106	30-132%			
Pentachlorophenol (PCP)	494	53.2	107	ug/kg we	t 4	533		93	25-133%			
Phenol	634	10.7	21.3	ug/kg we	t 4	533		119	34-121%			Q-4
2,3,4,6-Tetrachlorophenol	508	26.7	53.2	ug/kg we	t 4	533		95	44-125%			
2,3,5,6-Tetrachlorophenol	530	26.7	53.2	ug/kg we	t 4	533		99	40-120%			
2,4,5-Trichlorophenol	579	26.7	53.2	ug/kg we	t 4	533		109	41-124%			Q-4
2,4,6-Trichlorophenol	572	26.7	53.2	ug/kg we	t 4	533		107	39-126%			Q-4
Bis(2-ethylhexyl)phthalate	477	80.0	160	ug/kg we	t 4	533		89	51-133%			
Butyl benzyl phthalate	488	53.2	107	ug/kg we		533		92	48-132%			
Diethylphthalate	410	53.2	107	ug/kg we	t 4	533		77	50-124%			
Dimethylphthalate	479	53.2	107	ug/kg we	t 4	533		90	48-124%			
Di-n-butylphthalate	482	53.2	107	ug/kg we		533		90	51-128%			
Di-n-octyl phthalate	498	53.2	107	ug/kg we		533		93	45-140%			
N-Nitrosodimethylamine	392	13.3	26.7	ug/kg we		533		74	23-120%			
N-Nitroso-di-n-propylamine	484	13.3	26.7	ug/kg we		533		91	36-120%			
N-Nitrosodiphenylamine	519	13.3	26.7	ug/kg we		533		97	38-127%			
Bis(2-Chloroethoxy) methane	512	13.3	26.7	ug/kg we		533		96	36-121%			
Bis(2-Chloroethyl) ether	451	13.3	26.7	ug/kg we		533		85	31-120%			
2,2'-Oxybis(1-Chloropropane)	447	13.3	26.7	ug/kg we		533		84	39-120%			
Hexachlorobenzene	500	5.32	10.7	ug/kg we		533		94	45-122%			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: **Eatonville Landfill Characterization** Project Number: 00171.074.008 Project Manager: Ben Johnson

Report ID: A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

1												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0793 - EPA 3546							So	il				
LCS (23J0793-BS2)			Preparec	1: 10/20/23 0	4:48 Ana	lyzed: 10/23	/23 10:52					
Hexachlorobutadiene	473	13.3	26.7	ug/kg we	t 4	533		89	32-123%			
Hexachlorocyclopentadiene	531	26.7	53.2	ug/kg we	t 4	533		100	10-140%			Q-4
Hexachloroethane	459	13.3	26.7	ug/kg we		533		86	28-120%			
2-Chloronaphthalene	524	5.32	10.7	ug/kg we	t 4	533		98	41-120%			
1,2,4-Trichlorobenzene	481	13.3	26.7	ug/kg we	t 4	533		90	34-120%			
4-Bromophenyl phenyl ether	519	13.3	26.7	ug/kg we	t 4	533		97	46-124%			
4-Chlorophenyl phenyl ether	505	13.3	26.7	ug/kg we		533		95	45-121%			
Aniline	363	26.7	53.2	ug/kg we	t 4	533		68	10-120%			Q-:
4-Chloroaniline	404	13.3	26.7	ug/kg we	t 4	533		76	17-120%			
2-Nitroaniline	508	107	213	ug/kg we	t 4	533		95	44-127%			
3-Nitroaniline	449	107	213	ug/kg we	t 4	533		84	33-120%			
4-Nitroaniline	525	107	213	ug/kg we		533		98	51-125%			
Nitrobenzene	529	53.2	107	ug/kg we	t 4	533		99	34-122%			
2,4-Dinitrotoluene	476	53.2	107	ug/kg we	t 4	533		89	48-126%			
2,6-Dinitrotoluene	479	53.2	107	ug/kg we	t 4	533		90	46-124%			
Benzoic acid	883	668	668	ug/kg we	t 4	1070		83	10-140%			
Benzyl alcohol	618	26.7	53.2	ug/kg we	t 4	533		116	29-122%			Q-4
Isophorone	450	13.3	26.7	ug/kg we	t 4	533		84	30-122%			
Azobenzene (1,2-DPH)	481	13.3	26.7	ug/kg we	t 4	533		90	39-125%			
Bis(2-Ethylhexyl) adipate	452	133	267	ug/kg we	t 4	533		85	61-121%			
3,3'-Dichlorobenzidine	1190	107	213	ug/kg we	t 4	1070		111	22-121%			Q-31, Q-
1,2-Dinitrobenzene	514	133	267	ug/kg we	t 4	533		96	44-120%			
1,3-Dinitrobenzene	499	133	267	ug/kg we	t 4	533		93	43-127%			
1,4-Dinitrobenzene	533	133	267	ug/kg we	t 4	533		100	37-132%			
Pyridine	337	26.7	53.2	ug/kg we	t 4	533		63	10-120%			
1,2-Dichlorobenzene	467	13.3	26.7	ug/kg we	t 4	533		88	33-120%			
1,3-Dichlorobenzene	451	13.3	26.7	ug/kg we	t 4	533		85	30-120%			
1,4-Dichlorobenzene	454	13.3	26.7	ug/kg we	t 4	533		85	31-120%			
Surr: Nitrobenzene-d5 (Surr)		Recov	ery: 103 %	Limits: 37-	122 %	Dilı	ution: 4x					
2-Fluorobiphenyl (Surr)			98 %	44-	120 %		"					
Phenol-d6 (Surr)			111 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			<i>99 %</i>	54-	127 %		"					
2-Fluorophenol (Surr)			87 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			112 %	.39-	132 %		"					

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300 Portland, OR 97209		Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008 Project Manager: Ben Johnson										<u>.</u> 8 1227	
r	QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270E												
		56	mivolatile	Organic C	ompour	ias by EP	A 82/UE						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23J0793 - EPA 3546							Soi						
Duplicate (23J0793-DUP2)			Prepared	: 10/20/23 0	4:48 Ana	lyzed: 10/23	/23 14:14					R-04	
QC Source Sample: TP-01-IM-10	0.0-11.0-20231	010 (A3J1366	-06RE1)										
EPA 8270E													
Acenaphthene	ND	58.5	117	ug/kg dry	40		ND				30%		
Acenaphthylene	ND	58.5	117	ug/kg dry	40		ND				30%		
Anthracene	ND	58.5	117	ug/kg dry	40		ND				30%		
Benz(a)anthracene	ND	58.5	117	ug/kg dry	40		ND				30%		
Benzo(a)pyrene	ND	87.9	176	ug/kg dry	40		ND				30%		
Benzo(b)fluoranthene	ND	87.9	176	ug/kg dry	40		ND				30%		
Benzo(k)fluoranthene	ND	87.9	176	ug/kg dry	40		ND				30%		
Benzo(g,h,i)perylene	ND	58.5	117	ug/kg dry			100			***	30%	Q	
Chrysene	ND	58.5	117	ug/kg dry	40		ND				30%		
Dibenz(a,h)anthracene	ND	58.5	117	ug/kg dry	40		ND				30%		
Fluoranthene	ND	58.5	117	ug/kg dry			ND				30%		
Fluorene	ND	58.5	117	ug/kg dry	40		ND				30%		
Indeno(1,2,3-cd)pyrene	ND	58.5	117	ug/kg dry			68.1			***	30%	Q	
1-Methylnaphthalene	ND	117	234	ug/kg dry	40		ND				30%		
2-Methylnaphthalene	ND	117	234	ug/kg dry			ND				30%		
Naphthalene	ND	117	234	ug/kg dry	40		ND				30%		
Phenanthrene	ND	58.5	117	ug/kg dry	40		ND				30%		
Pyrene	ND	58.5	117	ug/kg dry	40		71.3			***	30%	Q	
Carbazole	ND	87.9	176	ug/kg dry	40		ND				30%		
Dibenzofuran	ND	58.5	117	ug/kg dry	40		ND				30%		
2-Chlorophenol	ND	293	585	ug/kg dry	40		ND				30%		
4-Chloro-3-methylphenol	ND	585	1170	ug/kg dry	40		ND				30%		
2,4-Dichlorophenol	ND	293	585	ug/kg dry	40		ND				30%		
2,4-Dimethylphenol	ND	293	585	ug/kg dry	40		ND				30%		
2,4-Dinitrophenol	ND	1460	2930	ug/kg dry			ND				30%		
4,6-Dinitro-2-methylphenol	ND	1460	2930	ug/kg dry			ND				30%		
2-Methylphenol	ND	146	293	ug/kg dry	40		ND				30%		
3+4-Methylphenol(s)	ND	146	293	ug/kg dry			ND				30%		
2-Nitrophenol	ND	585	1170	ug/kg dry			ND				30%		
4-Nitrophenol	ND	585	1170	ug/kg dry			ND				30%		
Pentachlorophenol (PCP)	ND	585	1170	ug/kg dry			ND				30%		

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

<u> </u>			emivolatile (5		· , ,						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0793 - EPA 3546							Soil	l				
Duplicate (23J0793-DUP2)			Prepared	: 10/20/23 04	4:48 Anal	yzed: 10/23/	23 14:14					R-04
QC Source Sample: TP-01-IM-10.0)-11.0-20231	1010 (A3J1366	5-06RE1)									
Phenol	ND	117	234	ug/kg dry	40		ND				30%	
2,3,4,6-Tetrachlorophenol	ND	293	585	ug/kg dry	40		ND				30%	
2,3,5,6-Tetrachlorophenol	ND	293	585	ug/kg dry			ND				30%	
2,4,5-Trichlorophenol	ND	293	585	ug/kg dry			ND				30%	
2,4,6-Trichlorophenol	ND	293	585	ug/kg dry			ND				30%	
Bis(2-ethylhexyl)phthalate	ND	879	1760	ug/kg dry			ND				30%	
Butyl benzyl phthalate	ND	585	1170	ug/kg dry			ND				30%	
Diethylphthalate	ND	585	1170	ug/kg dry			ND				30%	
Dimethylphthalate	ND	585	1170	ug/kg dry			ND				30%	
Di-n-butylphthalate	ND	585	1170	ug/kg dry			ND				30%	
Di-n-octyl phthalate	ND	585	1170	ug/kg dry			ND				30%	
N-Nitrosodimethylamine	ND	146	293	ug/kg dry			ND				30%	
N-Nitroso-di-n-propylamine	ND	146	293	ug/kg dry			ND				30%	
N-Nitrosodiphenylamine	ND	146	293	ug/kg dry			ND				30%	
Bis(2-Chloroethoxy) methane	ND	146	293	ug/kg dry			ND				30%	
Bis(2-Chloroethyl) ether	ND	146	293	ug/kg dry			ND				30%	
2,2'-Oxybis(1-Chloropropane)	ND	146	293	ug/kg dry			ND				30%	
Hexachlorobenzene	ND	58.5	117	ug/kg dry			ND				30%	
Hexachlorobutadiene	ND	146	293	ug/kg dry			ND				30%	
Hexachlorocyclopentadiene	ND	293	585	ug/kg dry			ND				30%	
Hexachloroethane	ND	146	293	ug/kg dry			ND				30%	
2-Chloronaphthalene	ND	58.5	117	ug/kg dry			ND				30%	
1,2,4-Trichlorobenzene	ND	146	293	ug/kg dry			ND				30%	
4-Bromophenyl phenyl ether	ND	146	293	ug/kg dry			ND				30%	
4-Chlorophenyl phenyl ether	ND	146	293	ug/kg dry			ND				30%	
Aniline	ND	293	585	ug/kg dry			ND				30%	
4-Chloroaniline	ND	146	293	ug/kg dry			ND				30%	
2-Nitroaniline	ND	1170	2340	ug/kg dry			ND				30%	
3-Nitroaniline	ND	1170	2340	ug/kg dry			ND				30%	
4-Nitroaniline	ND	1170	2340	ug/kg dry			ND				30%	
Nitrobenzene	ND	585	1170	ug/kg dry			ND				30%	
2,4-Dinitrotoluene	ND	585	1170	ug/kg dry			ND				30%	
2,6-Dinitrotoluene	ND	585	1170	ug/kg dry			ND				30%	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Not	tes
Batch 23J0793 - EPA 3546							Soi	I					
Duplicate (23J0793-DUP2)			Preparec	1: 10/20/23 0	4:48 Anal	yzed: 10/23/	/23 14:14						R-04
QC Source Sample: TP-01-IM-10.)-11.0-2023	1010 (A3J1366-0	6RE1)										
Benzoic acid	ND	7340	14600	ug/kg dry	y 40		ND				30%		
Benzyl alcohol	ND	293	585	ug/kg dry	y 40		ND				30%		
Isophorone	ND	146	293	ug/kg dry	y 40		ND				30%		
Azobenzene (1,2-DPH)	ND	146	293	ug/kg dry	y 40		ND				30%		
Bis(2-Ethylhexyl) adipate	ND	1460	2930	ug/kg dry	y 40		ND				30%		
3,3'-Dichlorobenzidine	ND	1170	2340	ug/kg dry	y 40		ND				30%		Q-5
1,2-Dinitrobenzene	ND	1460	2930	ug/kg dry	y 40		ND				30%		
1,3-Dinitrobenzene	ND	1460	2930	ug/kg dry	y 40		ND				30%		
1,4-Dinitrobenzene	ND	1460	2930	ug/kg dry	y 40		ND				30%		
Pyridine	ND	293	585	ug/kg dry	y 40		ND				30%		
1,2-Dichlorobenzene	ND	146	293	ug/kg dry	y 40		ND				30%		
1,3-Dichlorobenzene	ND	146	293	ug/kg dry	y 40		ND				30%		
1,4-Dichlorobenzene	ND	146	293	ug/kg dry	y 40		ND				30%		
Surr: Nitrobenzene-d5 (Surr)		Recove	ry: 111 %	Limits: 37-	-122 %	Dilı	ution: 40x					S-05	
2-Fluorobiphenyl (Surr)			120 %	44-	120 %		"					S-05	
Phenol-d6 (Surr)			109 %	33-	122 %		"					S-05	
p-Terphenyl-d14 (Surr)			124 %	54-	127 %		"					S-05	
2-Fluorophenol (Surr)			90 %	35-	120 %		"					S-05	
2,4,6-Tribromophenol (Surr)			122 %	39-	132 %		"					S-05	
Matrix Spike (23J0793-MS2)				1: 10/20/23 0									

EPA 82/0E											
Acenaphthene	798	5.97	12.0	ug/kg dry	4	599	ND	133	40-123%	 	Q-01
Acenaphthylene	858	5.97	12.0	ug/kg dry	4	599	ND	143	32-132%	 	Q-01
Anthracene	816	5.97	12.0	ug/kg dry	4	599	ND	136	47-123%	 	Q-01
Benz(a)anthracene	825	5.97	12.0	ug/kg dry	4	599	ND	138	49-126%	 	Q-01
Benzo(a)pyrene	927	8.98	18.0	ug/kg dry	4	599	ND	155	45-129%	 	Q-01
Benzo(b)fluoranthene	919	8.98	18.0	ug/kg dry	4	599	ND	153	45-132%	 	Q-01
Benzo(k)fluoranthene	913	8.98	18.0	ug/kg dry	4	599	ND	152	47-132%	 	Q-01
Benzo(g,h,i)perylene	849	5.97	12.0	ug/kg dry	4	599	ND	142	43-134%	 	Q-01
Chrysene	812	5.97	12.0	ug/kg dry	4	599	ND	136	50-124%	 	Q-01
Dibenz(a,h)anthracene	846	5.97	12.0	ug/kg dry	4	599	ND	141	45-134%	 	Q-01

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

1				-								
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0793 - EPA 3546							So	il				
Matrix Spike (23J0793-MS2)			Prepared	: 10/20/23 0	4:48 Anal	lyzed: 10/23/	/23 13:07					
QC Source Sample: TP-04-NS-9.0	-10.0-20231	010 (A3J1366-	<u>07RE2)</u>									
Fluoranthene	866	5.97	12.0	ug/kg dry	y 4	599	ND	145	50-127%			Q-(
Fluorene	773	5.97	12.0	ug/kg dry	y 4	599	ND	129	43-125%			Q-(
Indeno(1,2,3-cd)pyrene	788	5.97	12.0	ug/kg dry	y 4	599	ND	132	45-133%			
1-Methylnaphthalene	878	12.0	23.9	ug/kg dry	y 4	599	ND	147	40-120%			Q-(
2-Methylnaphthalene	930	12.0	23.9	ug/kg dry	y 4	599	ND	155	38-122%			Q-(
Naphthalene	819	12.0	23.9	ug/kg dry	y 4	599	ND	137	35-123%			Q-(
Phenanthrene	790	5.97	12.0	ug/kg dry	y 4	599	ND	132	50-121%			Q-(
Pyrene	864	5.97	12.0	ug/kg dry	y 4	599	ND	144	47-127%			Q-(
Carbazole	808	8.98	18.0	ug/kg dry	y 4	599	ND	135	50-123%			Q-(
Dibenzofuran	884	5.97	12.0	ug/kg dry	y 4	599	ND	148	44-120%			Q-(
2-Chlorophenol	903	30.0	59.7	ug/kg dry	y 4	599	ND	151	34-121%			Q-(
4-Chloro-3-methylphenol	884	59.7	120	ug/kg dry	y 4	599	ND	148	45-122%			Q-(
2,4-Dichlorophenol	961	30.0	59.7	ug/kg dry	y 4	599	ND	160	40-122%			Q-41, Q-0
2,4-Dimethylphenol	1090	30.0	59.7	ug/kg dry	y 4	599	ND	182	30-127%			Q-41, Q-0
2,4-Dinitrophenol	887	150	300	ug/kg dry	y 4	599	ND	148	10-137%			Q-41, Q-0
4,6-Dinitro-2-methylphenol	877	150	300	ug/kg dry	y 4	599	ND	146	29-132%			Q-(
2-Methylphenol	1070	15.0	30.0	ug/kg dry	y 4	599	ND	179	32-122%			Q-41, Q-0
3+4-Methylphenol(s)	1060	15.0	30.0	ug/kg dry		599	ND	177	34-120%			Q-41, Q-6
2-Nitrophenol	965	59.7	120	ug/kg dry	y 4	599	ND	161	36-123%			Q-41, Q-0
4-Nitrophenol	912	59.7	120	ug/kg dry	y 4	599	ND	152	30-132%			Q-(
Pentachlorophenol (PCP)	856	59.7	120	ug/kg dry	y 4	599	ND	143	25-133%			Q-(
Phenol	1100	12.0	23.9	ug/kg dry	y 4	599	ND	184	34-121%			Q-41, Q-0
2,3,4,6-Tetrachlorophenol	878	30.0	59.7	ug/kg dry	y 4	599	ND	147	44-125%			Q-(
2,3,5,6-Tetrachlorophenol	926	30.0	59.7	ug/kg dry	y 4	599	ND	155	40-120%			Q-(
2,4,5-Trichlorophenol	984	30.0	59.7	ug/kg dry	y 4	599	ND	164	41-124%			Q-01, Q-4
2,4,6-Trichlorophenol	917	30.0	59.7	ug/kg dry		599	ND	153	39-126%			Q-41, Q-0
Bis(2-ethylhexyl)phthalate	887	89.8	180	ug/kg dry		599	ND	148	51-133%			Q-(
Butyl benzyl phthalate	888	59.7	120	ug/kg dry		599	ND	148	48-132%			Q-(
Diethylphthalate	690	59.7	120	ug/kg dry		599	ND	115	50-124%			
Dimethylphthalate	835	59.7	120	ug/kg dry		599	ND	139	48-124%			Q-(
Di-n-butylphthalate	804	59.7	120	ug/kg dry		599	ND	134	51-128%			Q-(
Di-n-octyl phthalate	935	59.7	120	ug/kg dry		599	ND	156	45-140%			Q-(
N-Nitrosodimethylamine	695	15.0	30.0	ug/kg dry		599	ND	116	23-120%			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0793 - EPA 3546							Soi	il				
Matrix Spike (23J0793-MS2)			Prepared	: 10/20/23 0	4:48 Ana	lyzed: 10/23/	/23 13:07					
QC Source Sample: TP-04-NS-9.0-1	10.0-202310)10 (A3J1366-	07RE2)									
N-Nitroso-di-n-propylamine	820	15.0	30.0	ug/kg dry	4	599	ND	137	36-120%			Q-(
N-Nitrosodiphenylamine	846	15.0	30.0	ug/kg dry	4	599	ND	141	38-127%			Q-(
Bis(2-Chloroethoxy) methane	869	15.0	30.0	ug/kg dry	4	599	ND	145	36-121%			Q-
Bis(2-Chloroethyl) ether	788	15.0	30.0	ug/kg dry	4	599	ND	132	31-120%			Q-
2,2'-Oxybis(1-Chloropropane)	724	15.0	30.0	ug/kg dry	4	599	ND	121	39-120%			Q-(
Hexachlorobenzene	854	5.97	12.0	ug/kg dry	4	599	ND	143	45-122%			Q-
Hexachlorobutadiene	777	15.0	30.0	ug/kg dry	4	599	ND	130	32-123%			Q-
Hexachlorocyclopentadiene	865	30.0	59.7	ug/kg dry	4	599	ND	144	10-140%			Q-41, Q-0
Hexachloroethane	802	15.0	30.0	ug/kg dry	4	599	ND	134	28-120%			Q-
2-Chloronaphthalene	878	5.97	12.0	ug/kg dry	4	599	ND	147	41-120%			Q-
1,2,4-Trichlorobenzene	827	15.0	30.0	ug/kg dry		599	ND	138	34-120%			Q-(
4-Bromophenyl phenyl ether	871	15.0	30.0	ug/kg dry	4	599	ND	145	46-124%			Q-
4-Chlorophenyl phenyl ether	841	15.0	30.0	ug/kg dry	4	599	ND	140	45-121%			Q-
Aniline	586	30.0	59.7	ug/kg dry	4	599	ND	98	10-120%			Q-3
4-Chloroaniline	681	15.0	30.0	ug/kg dry	4	599	ND	114	17-120%			
2-Nitroaniline	865	120	239	ug/kg dry	4	599	ND	144	44-127%			Q-
3-Nitroaniline	674	120	239	ug/kg dry	4	599	ND	113	33-120%			
4-Nitroaniline	840	120	239	ug/kg dry	4	599	ND	140	51-125%			Q-
Nitrobenzene	890	59.7	120	ug/kg dry		599	ND	149	34-122%			Q-
2,4-Dinitrotoluene	807	59.7	120	ug/kg dry	4	599	ND	135	48-126%			Q-I
2,6-Dinitrotoluene	828	59.7	120	ug/kg dry	4	599	ND	138	46-124%			Q-
Benzoic acid	1150	750	1500	ug/kg dry	4	1200	ND	96	10-140%			Q-01
Benzyl alcohol	1000	30.0	59.7	ug/kg dry	4	599	ND	167	29-122%			Q-41, Q-
Isophorone	781	15.0	30.0	ug/kg dry	4	599	ND	130	30-122%			Q-
Azobenzene (1,2-DPH)	793	15.0	30.0	ug/kg dry	4	599	ND	132	39-125%			Q-
Bis(2-Ethylhexyl) adipate	853	150	300	ug/kg dry	4	599	ND	142	61-121%			Q-
3,3'-Dichlorobenzidine	1760	120	239	ug/kg dry	r 4	1200	ND	147	22-121%			Q-31, Q-52 O-1
1,2-Dinitrobenzene	878	150	300	ug/kg dry	4	599	ND	147	44-120%			Q-
1,3-Dinitrobenzene	841	150	300	ug/kg dry		599	ND	140	43-127%			Q-
1,4-Dinitrobenzene	859	150	300	ug/kg dry		599	ND	143	37-132%			Q-
Pyridine	582	30.0	59.7	ug/kg dry		599	ND	97	10-120%			
1.2-Dichlorobenzene	787	15.0	30.0	ug/kg dry		599	ND	131	33-120%			Q-
1,3-Dichlorobenzene	771	15.0	30.0	ug/kg dry		599	ND	129	30-120%			Q-1

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic C	ompour	nds by EP	A 8270E						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Not	es
Batch 23J0793 - EPA 3546							Soi	I					
Matrix Spike (23J0793-MS2)			Prepareo	d: 10/20/23 04	l:48 Ana	lyzed: 10/23	3/23 13:07						
QC Source Sample: TP-04-NS-9.0	10.0-20231	010 (A3J1366-	07RE2)										
1,4-Dichlorobenzene	768	15.0	30.0	ug/kg dry	4	599	ND	128	31-120%				Q-0
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 154 %	Limits: 37-	22 %	Dili	ution: 4x					S-05	
2-Fluorobiphenyl (Surr)			147 %	44-	20 %		"					S-05	
Phenol-d6 (Surr)			176 %	33-1	22 %		"					S-05	
p-Terphenyl-d14 (Surr)			158 %	54-1	27 %		"					S-05	
2-Fluorophenol (Surr)			137 %	35-1	20 %		"					S-05	
2,4,6-Tribromophenol (Surr)			169 %	39-1	32 %		"					S-05	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
atch 23J0901 - EPA 3546							Soi	I				
Blank (23J0901-BLK2)			Prepared	: 10/24/23 0)6:49 Anal	yzed: 10/24	/23 15:35					
<u>EPA 8270E</u>												
Acenaphthene	ND	1.33	2.67	ug/kg we								
Acenaphthylene	ND	1.33	2.67	ug/kg we	et 1							
Anthracene	ND	1.33	2.67	ug/kg we								
Benz(a)anthracene	ND	1.33	2.67	ug/kg we	et 1							
Benzo(a)pyrene	ND	2.00	4.00	ug/kg we	et 1							
Benzo(b)fluoranthene	ND	2.00	4.00	ug/kg we	et 1							
Benzo(k)fluoranthene	ND	2.00	4.00	ug/kg we	et 1							
Benzo(g,h,i)perylene	ND	1.33	2.67	ug/kg we	et 1							
Chrysene	ND	1.33	2.67	ug/kg we	et 1							
Dibenz(a,h)anthracene	ND	1.33	2.67	ug/kg we								
Fluoranthene	ND	1.33	2.67	ug/kg we								
Fluorene	ND	1.33	2.67	ug/kg we	et 1							
Indeno(1,2,3-cd)pyrene	ND	1.33	2.67	ug/kg we								
1-Methylnaphthalene	ND	2.67	5.33	ug/kg we								
2-Methylnaphthalene	ND	2.67	5.33	ug/kg we								
Naphthalene	ND	2.67	5.33	ug/kg we								
Phenanthrene	ND	1.33	2.67	ug/kg we								
Pyrene	ND	1.33	2.67	ug/kg we								
Carbazole	ND	2.00	4.00	ug/kg we								
Dibenzofuran	ND	1.33	2.67	ug/kg we								
2-Chlorophenol	ND	6.67	13.3	ug/kg we								
4-Chloro-3-methylphenol	ND	13.3	26.7	ug/kg we								
2,4-Dichlorophenol	ND	6.67	13.3	ug/kg we								
2,4-Dimethylphenol	ND	6.67	13.3	ug/kg we								
2,4-Dinitrophenol	ND	33.3	66.7	ug/kg we								
4,6-Dinitro-2-methylphenol	ND	33.3	66.7	ug/kg we								
2-Methylphenol	ND	3.33	6.67	ug/kg we								
3+4-Methylphenol(s)	ND	3.33	6.67	ug/kg we								
2-Nitrophenol	ND	13.3	26.7	ug/kg we								
4-Nitrophenol	ND	13.3	26.7	ug/kg we								
Pentachlorophenol (PCP)	ND	13.3	26.7	ug/kg we								
Phenol	ND	2.67	5.33	ug/kg we								
2,3,4,6-Tetrachlorophenol	ND	6.67	13.3	ug/kg we								

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (organic (Joinpour	ius by EP/	α σ2/0E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
3atch 23J0901 - EPA 3546			. <u> </u>				Soi	!				
3lank (23J0901-BLK2)			Prepared	: 10/24/23 0)6:49 Anal	lyzed: 10/24/	23 15:35					
2,3,5,6-Tetrachlorophenol	ND	6.67	13.3	ug/kg we	et 1							
2,4,5-Trichlorophenol	ND	6.67	13.3	ug/kg we	et 1							
2,4,6-Trichlorophenol	ND	6.67	13.3	ug/kg we	et 1							
Bis(2-ethylhexyl)phthalate	ND	20.0	40.0	ug/kg we								
Butyl benzyl phthalate	ND	13.3	26.7	ug/kg we	et 1							
Diethylphthalate	ND	13.3	26.7	ug/kg we	et 1							
Dimethylphthalate	ND	13.3	26.7	ug/kg we								
Di-n-butylphthalate	ND	13.3	26.7	ug/kg we								
Di-n-octyl phthalate	ND	13.3	26.7	ug/kg we								
N-Nitrosodimethylamine	ND	3.33	6.67	ug/kg we								
N-Nitroso-di-n-propylamine	ND	3.33	6.67	ug/kg we								
N-Nitrosodiphenylamine	ND	3.33	6.67	ug/kg we								
Bis(2-Chloroethoxy) methane	ND	3.33	6.67	ug/kg we								
Bis(2-Chloroethyl) ether	ND	3.33	6.67	ug/kg we								
2,2'-Oxybis(1-Chloropropane)	ND	3.33	6.67	ug/kg we								
Hexachlorobenzene	ND	1.33	2.67	ug/kg we								
Hexachlorobutadiene	ND	3.33	6.67	ug/kg we								
Hexachlorocyclopentadiene	ND	6.67	13.3	ug/kg we								
Hexachloroethane	ND	3.33	6.67	ug/kg we								
2-Chloronaphthalene	ND	1.33	2.67	ug/kg we								
1,2,4-Trichlorobenzene	ND	3.33	6.67	ug/kg we								
4-Bromophenyl phenyl ether	ND	3.33	6.67	ug/kg we								
4-Chlorophenyl phenyl ether	ND	3.33	6.67	ug/kg we								
Aniline	ND	6.67	13.3	ug/kg we								
4-Chloroaniline	ND	3.33	6.67	ug/kg we								
2-Nitroaniline	ND	26.7	53.3	ug/kg we								
3-Nitroaniline	ND	26.7	53.3	ug/kg we								
4-Nitroaniline	ND	26.7	53.3	ug/kg we								
Nitrobenzene	ND	13.3	26.7	ug/kg we								
2,4-Dinitrotoluene	ND	13.3	26.7	ug/kg we								
2,6-Dinitrotoluene	ND	13.3	26.7	ug/kg we								
Benzoic acid	ND	15.5	333	ug/kg we								
Benzyl alcohol	ND ND	6.67	13.3	ug/kg we ug/kg we								
Isophorone	ND ND	6.67 3.33	13.3 6.67	ug/kg we ug/kg we								

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic C	ompour	nds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0901 - EPA 3546							Soi	il				
Blank (23J0901-BLK2)			Prepareo	d: 10/24/23 0	6:49 Ana	lyzed: 10/24	/23 15:35					
Azobenzene (1,2-DPH)	ND	3.33	6.67	ug/kg we	t 1							
Bis(2-Ethylhexyl) adipate	ND	33.3	66.7	ug/kg we	t 1							
3,3'-Dichlorobenzidine	ND	26.7	53.3	ug/kg we	t 1							Q-:
1,2-Dinitrobenzene	ND	33.3	66.7	ug/kg we	t 1							
1,3-Dinitrobenzene	ND	33.3	66.7	ug/kg we	t 1							
1,4-Dinitrobenzene	ND	33.3	66.7	ug/kg we	t 1							
Pyridine	ND	6.67	13.3	ug/kg we	t 1							
1,2-Dichlorobenzene	ND	3.33	6.67	ug/kg we	t 1							
1,3-Dichlorobenzene	ND	3.33	6.67	ug/kg we	t 1							
1,4-Dichlorobenzene	ND	3.33	6.67	ug/kg we	t 1							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 95 %	Limits: 37-	122 %	Dili	ution: 1x					
2-Fluorobiphenyl (Surr)			82 %	44-	120 %		"					
Phenol-d6 (Surr)			97 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			82 %	54-	127 %		"					
2-Fluorophenol (Surr)			76 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			97 %	39-	132 %		"					
LCS (23J0901-BS2)			Prepared	d: 10/24/23 0	6:49 Ana	lyzed: 10/24	/23 16:09					
EPA 8270E												
Acenaphthene	541	5.32	10.7	ug/kg we	t 4	533		101	40-123%			
Acenaphthylene	571	5.32	10.7	ug/kg we	t 4	533		107	32-132%			
Anthracene	551	5.32	10.7	ug/kg we	t 4	533		103	47-123%			
Benz(a)anthracene	552	5.32	10.7	ug/kg we	t 4	533		103	49-126%			
Benzo(a)pyrene	628	8.00	16.0	ug/kg we	t 4	533		118	45-129%			
Benzo(b)fluoranthene	610	8.00	16.0	ug/kg we	t 4	533		114	45-132%			
Benzo(k)fluoranthene	636	8.00	16.0	ug/kg we	t 4	533		119	47-132%			
Benzo(g,h,i)perylene	549	5.32	10.7	ug/kg we		533		103	43-134%			
Chrysene	554	5.32	10.7	ug/kg we		533		104	50-124%			
Dibenz(a,h)anthracene	575	5.32	10.7	ug/kg we		533		108	45-134%			
Fluoranthene	581	5.32	10.7	ug/kg we		533		109	50-127%			
Fluorene	526	5.32	10.7	ug/kg we		533		99	43-125%			
Indeno(1,2,3-cd)pyrene	526	5.32	10.7	ug/kg we		533		99	45-133%			
1-Methylnaphthalene	576	10.7	21.3	ug/kg we		533		108	40-120%			
v 1	598	10.7	21.3	0 0								

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0901 - EPA 3546							Soi	1				
LCS (23J0901-BS2)			Prepared	: 10/24/23 0	6:49 Anal	lyzed: 10/24/	/23 16:09					
Naphthalene	535	10.7	21.3	ug/kg we	t 4	533		100	35-123%			
Phenanthrene	531	5.32	10.7	ug/kg we		533		99	50-121%			
Pyrene	577	5.32	10.7	ug/kg we	t 4	533		108	47-127%			
Carbazole	554	8.00	16.0	ug/kg we	t 4	533		104	50-123%			
Dibenzofuran	598	5.32	10.7	ug/kg we	t 4	533		112	44-120%			
2-Chlorophenol	577	26.7	53.2	ug/kg we	t 4	533		108	34-121%			
4-Chloro-3-methylphenol	597	53.2	107	ug/kg we	t 4	533		112	45-122%			
2,4-Dichlorophenol	667	26.7	53.2	ug/kg we		533		125	40-122%			Q-29, Q-
2,4-Dimethylphenol	739	26.7	53.2	ug/kg we	t 4	533		138	30-127%			Q-29, Q-
2,4-Dinitrophenol	656	133	267	ug/kg we	t 4	533		123	10-137%			Q-
4,6-Dinitro-2-methylphenol	613	133	267	ug/kg we	t 4	533		115	29-132%			Q
2-Methylphenol	657	13.3	26.7	ug/kg we		533		123	32-122%			Q-29, Q-
2-Nitrophenol	775	53.2	107	ug/kg we		533		145	36-123%			Q-29, Q-
4-Nitrophenol	607	53.2	107	ug/kg we	t 4	533		114	30-132%			Q
Pentachlorophenol (PCP)	565	53.2	107	ug/kg we	t 4	533		106	25-133%			
Phenol	671	10.7	21.3	ug/kg we	t 4	533		126	34-121%			Q-29, Q-
2,3,4,6-Tetrachlorophenol	591	26.7	53.2	ug/kg we		533		111	44-125%			
2,3,5,6-Tetrachlorophenol	621	26.7	53.2	ug/kg we		533		116	40-120%			
2,4,5-Trichlorophenol	666	26.7	53.2	ug/kg we		533		125	41-124%			Q-29, Q-
2,4,6-Trichlorophenol	643	26.7	53.2	ug/kg we		533		121	39-126%			Q-
Bis(2-ethylhexyl)phthalate	561	80.0	160	ug/kg we		533		105	51-133%			
Butyl benzyl phthalate	568	53.2	107	ug/kg we		533		107	48-132%			
Diethylphthalate	478	53.2	107	ug/kg we		533		90	50-124%			
Dimethylphthalate	581	53.2	107	ug/kg we		533		109	48-124%			
Di-n-butylphthalate	546	53.2	107	ug/kg we		533		102	51-128%			
Di-n-octyl phthalate	590	53.2	107	ug/kg we		533		111	45-140%			
N-Nitrosodimethylamine	440	13.3	26.7	ug/kg we		533		83	23-120%			
N-Nitroso-di-n-propylamine	531	13.3	26.7	ug/kg we		533		100	36-120%			
N-Nitrosodiphenylamine	578	13.3	26.7	ug/kg we		533		108	38-127%			
Bis(2-Chloroethoxy) methane	561	13.3	26.7	ug/kg we		533		105	36-121%			
Bis(2-Chloroethyl) ether	487	13.3	26.7	ug/kg we		533		91	31-120%			
2,2'-Oxybis(1-Chloropropane)	461	13.3	26.7	ug/kg we		533		87	39-120%			
Hexachlorobenzene	574	5.32	10.7	ug/kg we		533		108	45-122%			
Hexachlorobutadiene	526	13.3	26.7	ug/kg we		533		99	32-123%			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

 Project Manager:
 Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Datast	Darra d'			G., 1	C -		0/ 850		סמת	
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0901 - EPA 3546							So	il				
LCS (23J0901-BS2)			Prepareo	d: 10/24/23 0	6:49 Ana	lyzed: 10/24	/23 16:09					
Hexachlorocyclopentadiene	636	26.7	53.2	ug/kg we	t 4	533		119	10-140%			Q-
Hexachloroethane	503	13.3	26.7	ug/kg we	t 4	533		94	28-120%			
2-Chloronaphthalene	582	5.32	10.7	ug/kg we	t 4	533		109	41-120%			
1,2,4-Trichlorobenzene	547	13.3	26.7	ug/kg we	t 4	533		103	34-120%			
4-Bromophenyl phenyl ether	588	13.3	26.7	ug/kg we	t 4	533		110	46-124%			
4-Chlorophenyl phenyl ether	559	13.3	26.7	ug/kg we	t 4	533		105	45-121%			
Aniline	308	26.7	53.2	ug/kg we	t 4	533		58	10-120%			Q-
4-Chloroaniline	399	13.3	26.7	ug/kg we	t 4	533		75	17-120%			
2-Nitroaniline	595	107	213	ug/kg we	t 4	533		112	44-127%			
3-Nitroaniline	464	107	213	ug/kg we	t 4	533		87	33-120%			
4-Nitroaniline	608	107	213	ug/kg we	t 4	533		114	51-125%			
Nitrobenzene	554	53.2	107	ug/kg we	t 4	533		104	34-122%			
2,4-Dinitrotoluene	546	53.2	107	ug/kg we	t 4	533		102	48-126%			
2,6-Dinitrotoluene	563	53.2	107	ug/kg we	t 4	533		106	46-124%			
Benzoic acid	998	668	668	ug/kg we	t 4	1070		94	10-140%			Q-
Benzyl alcohol	645	26.7	53.2	ug/kg we	t 4	533		121	29-122%			Q-
Isophorone	516	13.3	26.7	ug/kg we	t 4	533		97	30-122%			
Azobenzene (1,2-DPH)	530	13.3	26.7	ug/kg we	t 4	533		99	39-125%			
Bis(2-Ethylhexyl) adipate	544	133	267	ug/kg we	t 4	533		102	61-121%			
3,3'-Dichlorobenzidine	1690	107	213	ug/kg we	et 4	1070		158	22-121%			Q-29, Q-3 Q-
1,2-Dinitrobenzene	609	133	267	ug/kg we	t 4	533		114	44-120%			
1,3-Dinitrobenzene	581	133	267	ug/kg we	t 4	533		109	43-127%			
1,4-Dinitrobenzene	600	133	267	ug/kg we	t 4	533		112	37-132%			
Pyridine	354	26.7	53.2	ug/kg we	t 4	533		66	10-120%			
1,2-Dichlorobenzene	513	13.3	26.7	ug/kg we	t 4	533		96	33-120%			
1,3-Dichlorobenzene	495	13.3	26.7	ug/kg we	t 4	533		93	30-120%			
1,4-Dichlorobenzene	506	13.3	26.7	ug/kg we		533		95	31-120%			
Surr: Nitrobenzene-d5 (Surr)		Recov	ery: 105 %	Limits: 37-	-122 %	Dili	ution: 4x					
2-Fluorobiphenyl (Surr)			106 %	44-	120 %		"					
Phenol-d6 (Surr)			116 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			110 %	54-	127 %		"					
2-Fluorophenol (Surr)			94 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			119 %	30_	132 %		"					

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic C	ompou	nds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0901 - EPA 3546							So	il				
LCS (23J0901-BS3)			Prepared	1: 10/24/23 0	6:49 Ana	lyzed: 10/27	/23 10:56					Q-16
EPA 8270E 3+4-Methylphenol(s)	462	13.3	26.7	ug/kg we	t 4	533		87	34-120%			
Duplicate (23J0901-DUP2)			Prepared	l: 10/24/23 0	6:49 Ana	lyzed: 10/24	/23 17:16					PRO
QC Source Sample: Non-SDG (A	3J1259-23)											
Acenaphthene	16.1	13.4	26.8	ug/kg dry	r 10		16.6			3	30%	
Acenaphthylene	ND	13.4	26.8	ug/kg dry	r 10		ND				30%	
Anthracene	ND	13.4	26.8	ug/kg dry	r 10		ND				30%	
Benz(a)anthracene	41.7	13.4	26.8	ug/kg dry	v 10		35.7			15	30%	
Benzo(a)pyrene	75.4	20.1	40.2	ug/kg dry	/ 10		70.3			7	30%	
Benzo(b)fluoranthene	72.3	20.1	40.2	ug/kg dry	/ 10		63.6			13	30%	
Benzo(k)fluoranthene	27.7	20.1	40.2	ug/kg dry	/ 10		22.8			19	30%	
Benzo(g,h,i)perylene	87.8	13.4	26.8	ug/kg dry	/ 10		75.2			15	30%	
Chrysene	59.2	13.4	26.8	ug/kg dry	/ 10		49.3			18	30%	
Dibenz(a,h)anthracene	ND	13.4	26.8	ug/kg dry	/ 10		ND				30%	
Fluoranthene	72.2	13.4	26.8	ug/kg dry	/ 10		61.2			17	30%	
Fluorene	ND	13.4	26.8	ug/kg dry	/ 10		ND				30%	
Indeno(1,2,3-cd)pyrene	72.2	13.4	26.8	ug/kg dry	/ 10		60.9			17	30%	
1-Methylnaphthalene	ND	26.8	53.5	ug/kg dry	/ 10		ND				30%	
2-Methylnaphthalene	ND	26.8	53.5	ug/kg dry	10		ND				30%	
Naphthalene	ND	26.8	53.5	ug/kg dry	/ 10		ND				30%	
Phenanthrene	21.9	13.4	26.8	ug/kg dry	10		20.5			7	30%	
Pyrene	102	13.4	26.8	ug/kg dry	/ 10		84.3			19	30%	
Carbazole	ND	20.1	40.2	ug/kg dry			ND				30%	
Dibenzofuran	ND	13.4	26.8	ug/kg dry	v 10		ND				30%	
2-Chlorophenol	ND	67.0	134	ug/kg dry	10		ND				30%	
4-Chloro-3-methylphenol	ND	134	268	ug/kg dry	v 10		ND				30%	
2,4-Dichlorophenol	ND	67.0	134	ug/kg dry	10		ND				30%	
2,4-Dimethylphenol	ND	67.0	134	ug/kg dry	10		ND				30%	
2,4-Dinitrophenol	ND	334	670	ug/kg dry	v 10		ND				30%	
4,6-Dinitro-2-methylphenol	ND	334	670	ug/kg dry	10		ND				30%	
2-Methylphenol	ND	33.4	67.0	ug/kg dry			ND				30%	
3+4-Methylphenol(s)	ND	33.4	67.0	ug/kg dry	10		ND				30%	
2-Nitrophenol	ND	134	268	ug/kg dry			ND				30%	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	Semivolatile Organic Compounds by EPA 8270E									
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0901 - EPA 3546							Soil	1				
Duplicate (23J0901-DUP2)			Prepared	: 10/24/23 0	6:49 Anal	yzed: 10/24/	/23 17:16					PRO
QC Source Sample: Non-SDG (A3.	J1259-23)											
4-Nitrophenol	ND	134	268	ug/kg dry	/ 10		ND				30%	
Pentachlorophenol (PCP)	ND	134	268	ug/kg dry	/ 10		ND				30%	
Phenol	ND	26.8	53.5	ug/kg dry	/ 10		ND				30%	
2,3,4,6-Tetrachlorophenol	ND	67.0	134	ug/kg dry	/ 10		ND				30%	
2,3,5,6-Tetrachlorophenol	ND	67.0	134	ug/kg dry			ND				30%	
2,4,5-Trichlorophenol	ND	67.0	134	ug/kg dry	/ 10		ND				30%	
2,4,6-Trichlorophenol	ND	67.0	134	ug/kg dry			ND				30%	
Bis(2-ethylhexyl)phthalate	ND	201	402	ug/kg dry			ND				30%	
Butyl benzyl phthalate	ND	134	268	ug/kg dry			ND				30%	
Diethylphthalate	ND	134	268	ug/kg dry			ND				30%	
Dimethylphthalate	ND	134	268	ug/kg dry			ND				30%	
Di-n-butylphthalate	ND	134	268	ug/kg dry			ND				30%	
Di-n-octyl phthalate	ND	134	268	ug/kg dry			ND				30%	
N-Nitrosodimethylamine	ND	33.4	67.0	ug/kg dry			ND				30%	
N-Nitroso-di-n-propylamine	ND	33.4	67.0	ug/kg dry			ND				30%	
N-Nitrosodiphenylamine	ND	33.4	67.0	ug/kg dry			ND				30%	
Bis(2-Chloroethoxy) methane	ND	33.4	67.0	ug/kg dry			ND				30%	
Bis(2-Chloroethyl) ether	ND	33.4	67.0	ug/kg dry			ND				30%	
2,2'-Oxybis(1-Chloropropane)	ND	33.4	67.0	ug/kg dry			ND				30%	
Hexachlorobenzene	ND	13.4	26.8	ug/kg dry			ND				30%	
Hexachlorobutadiene	ND	33.4	67.0	ug/kg dry			ND				30%	
Hexachlorocyclopentadiene	ND	67.0	134	ug/kg dry			ND				30%	
Hexachloroethane	ND	33.4	67.0	ug/kg dry			ND				30%	
2-Chloronaphthalene	ND	13.4	26.8	ug/kg dry			ND				30%	
1,2,4-Trichlorobenzene	ND	33.4	67.0	ug/kg dry			ND				30%	
4-Bromophenyl phenyl ether	ND	33.4	67.0	ug/kg dry			ND				30%	
4-Chlorophenyl phenyl ether	ND	33.4	67.0	ug/kg dry			ND				30%	
Aniline	ND	67.0	134	ug/kg dry			ND				30%	
4-Chloroaniline	ND	33.4	67.0	ug/kg dry			ND				30%	
2-Nitroaniline	ND	268	535	ug/kg dry			ND				30%	
3-Nitroaniline	ND	268	535	ug/kg dry			ND				30%	
4-Nitroaniline	ND	268	535	ug/kg dry			ND				30%	
Nitrobenzene	ND	134	268	ug/kg dry			ND				30%	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic C	Compour	nds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0901 - EPA 3546							Soi	I				
Duplicate (23J0901-DUP2)			Prepared	d: 10/24/23 0	6:49 Ana	lyzed: 10/24	/23 17:16					PRO
QC Source Sample: Non-SDG (A3	<u>J1259-23)</u>											
2,4-Dinitrotoluene	ND	134	268	ug/kg dr	y 10		ND				30%	
2,6-Dinitrotoluene	ND	134	268	ug/kg dr	y 10		ND				30%	
Benzoic acid	ND	1680	3340	ug/kg dr	y 10		ND				30%	
Benzyl alcohol	ND	67.0	134	ug/kg dr	y 10		ND				30%	
Isophorone	ND	33.4	67.0	ug/kg dr	y 10		ND				30%	
Azobenzene (1,2-DPH)	ND	33.4	67.0	ug/kg dr	y 10		ND				30%	
Bis(2-Ethylhexyl) adipate	ND	334	670	ug/kg dr	y 10		ND				30%	
3,3'-Dichlorobenzidine	ND	268	535	ug/kg dr	y 10		ND				30%	Q-52
1,2-Dinitrobenzene	ND	334	670	ug/kg dr	y 10		ND				30%	
1,3-Dinitrobenzene	ND	334	670	ug/kg dr	y 10		ND				30%	
1,4-Dinitrobenzene	ND	334	670	ug/kg dr			ND				30%	
Pyridine	ND	67.0	134	ug/kg dr			ND				30%	
1,2-Dichlorobenzene	ND	33.4	67.0	ug/kg dr	y 10		ND				30%	
1,3-Dichlorobenzene	ND	33.4	67.0	ug/kg dr	y 10		ND				30%	
1,4-Dichlorobenzene	ND	33.4	67.0	ug/kg dr	y 10		ND				30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 84 %	Limits: 37-	122 %	Dili	ution: 10x					
2-Fluorobiphenyl (Surr)			82 %	44-	120 %		"					
Phenol-d6 (Surr)			75 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			84 %	54-	127 %		"					
2-Fluorophenol (Surr)			64 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			64 %	39-	132 %		"					
Matrix Spike (23J0901-MS2)			Prepared	1: 10/24/23 0	6:49 Ana	lyzed: 10/25	/23 17:50					
QC Source Sample: Non-SDG (A3	J1425-01)											
EPA 8270E												
Acenaphthene	574	6.51	13.1	ug/kg dr	y 4	653	ND	88	40-123%			
Acenaphthylene	620	6.51	13.1	ug/kg dr	y 4	653	ND	95	32-132%			
Anthracene	580	6.51	13.1	ug/kg dr	y 4	653	ND	89	47-123%			
Benz(a)anthracene	550	6.51	13.1	ug/kg dr	y 4	653	ND	79	49-126%			
Benzo(a)pyrene	617	9.80	19.6	ug/kg dr	y 4	653	ND	94	45-129%			
Benzo(b)fluoranthene	624	9.80	19.6	ug/kg dr	y 4	653	ND	92	45-132%			
Benzo(k)fluoranthene	635	9.80	19.6	ug/kg dr	y 4	653	ND	97	47-132%			
Benzo(g,h,i)perylene	576	6.51	13.1	ug/kg dr		653	ND	88	43-134%			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0901 - EPA 3546							So	il				
Matrix Spike (23J0901-MS2)			Prepared	: 10/24/23 0)6:49 Ana	lyzed: 10/25	/23 17:50					
QC Source Sample: Non-SDG (A	<u>3J1425-01)</u>											
Chrysene	572	6.51	13.1	ug/kg dr	y 4	653	ND	88	50-124%			
Dibenz(a,h)anthracene	585	6.51	13.1	ug/kg dr	y 4	653	ND	90	45-134%			
Fluoranthene	601	6.51	13.1	ug/kg dr	y 4	653	ND	88	50-127%			
Fluorene	565	6.51	13.1	ug/kg dr	y 4	653	ND	87	43-125%			
Indeno(1,2,3-cd)pyrene	521	6.51	13.1	ug/kg dr	y 4	653	ND	80	45-133%			
1-Methylnaphthalene	636	13.1	26.1	ug/kg dr	y 4	653	ND	97	40-120%			
2-Methylnaphthalene	686	13.1	26.1	ug/kg dr	y 4	653	ND	105	38-122%			
Naphthalene	652	13.1	26.1	ug/kg dr	y 4	653	ND	92	35-123%			
Phenanthrene	596	6.51	13.1	ug/kg dr	y 4	653	ND	86	50-121%			
Pyrene	596	6.51	13.1	ug/kg dr	y 4	653	ND	87	47-127%			
Carbazole	573	9.80	19.6	ug/kg dr	y 4	653	ND	88	50-123%			
Dibenzofuran	636	6.51	13.1	ug/kg dr	y 4	653	ND	97	44-120%			
2-Chlorophenol	701	32.7	65.1	ug/kg dr	y 4	653	ND	107	34-121%			
4-Chloro-3-methylphenol	626	65.1	131	ug/kg dr	y 4	653	ND	96	45-122%			
2,4-Dichlorophenol	780	32.7	65.1	ug/kg dr	y 4	653	ND	119	40-122%			Q-4
2,4-Dimethylphenol	854	32.7	65.1	ug/kg dr	y 4	653	ND	131	30-127%			Q-01, Q-4
2,4-Dinitrophenol	ND	163	327	ug/kg dr	y 4	653	ND		10-137%			Q-01, Q-4
4,6-Dinitro-2-methylphenol	215	163	327	ug/kg dr	y 4	653	ND	33	29-132%			Q-41
2-Methylphenol	827	16.3	32.7	ug/kg dr	y 4	653	ND	127	32-122%			Q-
3+4-Methylphenol(s)	894	16.3	32.7	ug/kg dr	y 4	653	ND	120	34-120%			Q-4
2-Nitrophenol	517	65.1	131	ug/kg dr	y 4	653	ND	79	36-123%			Q-4
4-Nitrophenol	499	65.1	131	ug/kg dr		653	ND	76	30-132%			
Pentachlorophenol (PCP)	657	65.1	131	ug/kg dr		653	ND	23	25-133%			Q-
Phenol	822	13.1	26.1	ug/kg dr		653	ND	126	34-121%			Q-01, Q-4
2,3,4,6-Tetrachlorophenol	606	32.7	65.1	ug/kg dr		653	ND	93	44-125%			
2,3,5,6-Tetrachlorophenol	639	32.7	65.1	ug/kg dr		653	ND	98	40-120%			
2,4,5-Trichlorophenol	683	32.7	65.1	ug/kg dr		653	ND	105	41-124%			
2,4,6-Trichlorophenol	713	32.7	65.1	ug/kg dr		653	ND	109	39-126%			
Bis(2-ethylhexyl)phthalate	597	98.0	196	ug/kg dr		653	ND	91	51-133%			
Butyl benzyl phthalate	602	65.1	131	ug/kg dr		653	ND	92	48-132%			
Diethylphthalate	479	65.1	131	ug/kg dr		653	ND	73	50-124%			
Dimethylphthalate	576	65.1	131	ug/kg dr		653	ND	88	48-124%			
Di-n-butylphthalate	549	65.1	131	ug/kg dr		653	ND	84	51-128%			

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

L			mivolatile	-	-	-						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0901 - EPA 3546							So	il				
Matrix Spike (23J0901-MS2)			Prepared	1: 10/24/23 0	6:49 Ana	lyzed: 10/25	/23 17:50					
QC Source Sample: Non-SDG (A3	<u>J1425-01)</u>											
Di-n-octyl phthalate	651	65.1	131	ug/kg dr	y 4	653	ND	100	45-140%			
N-Nitrosodimethylamine	417	16.3	32.7	ug/kg dr	y 4	653	ND	64	23-120%			
N-Nitroso-di-n-propylamine	616	16.3	32.7	ug/kg dr	y 4	653	ND	94	36-120%			
N-Nitrosodiphenylamine	598	16.3	32.7	ug/kg dr	y 4	653	ND	92	38-127%			
Bis(2-Chloroethoxy) methane	604	16.3	32.7	ug/kg dr	y 4	653	ND	92	36-121%			
Bis(2-Chloroethyl) ether	522	16.3	32.7	ug/kg dr	y 4	653	ND	80	31-120%			
2,2'-Oxybis(1-Chloropropane)	526	16.3	32.7	ug/kg dr	y 4	653	ND	81	39-120%			
Hexachlorobenzene	608	6.51	13.1	ug/kg dr	y 4	653	ND	93	45-122%			
Hexachlorobutadiene	577	16.3	32.7	ug/kg dr	y 4	653	ND	88	32-123%			
Hexachlorocyclopentadiene	123	32.7	65.1	ug/kg dr	y 4	653	ND	19	10-140%			Q-4
Hexachloroethane	461	16.3	32.7	ug/kg dr	y 4	653	ND	71	28-120%			
2-Chloronaphthalene	631	6.51	13.1	ug/kg dr	y 4	653	ND	86	41-120%			
1,2,4-Trichlorobenzene	605	16.3	32.7	ug/kg dr	y 4	653	ND	93	34-120%			
4-Bromophenyl phenyl ether	615	16.3	32.7	ug/kg dr	y 4	653	ND	94	46-124%			
4-Chlorophenyl phenyl ether	592	16.3	32.7	ug/kg dr	y 4	653	ND	91	45-121%			
Aniline	297	32.7	65.1	ug/kg dr	y 4	653	ND	45	10-120%			Q-3
4-Chloroaniline	212	16.3	32.7	ug/kg dr	y 4	653	ND	18	17-120%			Q-3
2-Nitroaniline	628	131	261	ug/kg dr		653	ND	96	44-127%			
3-Nitroaniline	183	131	261	ug/kg dr	y 4	653	ND	28	33-120%			Q-01, Q-31,
4-Nitroaniline	330	131	261	ug/kg dr	y 4	653	ND	50	51-125%			Q-0
Nitrobenzene	605	65.1	131	ug/kg dr	y 4	653	ND	93	34-122%			
2,4-Dinitrotoluene	435	65.1	131	ug/kg dr	y 4	653	ND	67	48-126%			
2,6-Dinitrotoluene	470	65.1	131	ug/kg dr	y 4	653	ND	72	46-124%			
Benzoic acid	1250	818	1630	ug/kg dr		1310	ND	96	10-140%			Q-41,
Benzyl alcohol	811	32.7	65.1	ug/kg dr	y 4	653	ND	124	29-122%			Q-0
Isophorone	540	16.3	32.7	ug/kg dr		653	ND	83	30-122%			
Azobenzene (1,2-DPH)	540	16.3	32.7	ug/kg dr		653	ND	83	39-125%			
Bis(2-Ethylhexyl) adipate	561	163	327	ug/kg dr	y 4	653	ND	86	61-121%			
3,3'-Dichlorobenzidine	ND	131	261	ug/kg dr		1310	ND		22-121%			Q-01, Q-31 Q-5
1,2-Dinitrobenzene	383	163	327	ug/kg dr	y 4	653	ND	59	44-120%			
1,3-Dinitrobenzene	412	163	327	ug/kg dr		653	ND	63	43-127%			
1,4-Dinitrobenzene	305	163	327	ug/kg dr	y 4	653	ND	47	37-132%			
Pyridine	435	32.7	65.1	ug/kg dr		653	ND	67	10-120%			

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Sei	mivolatile	Organic C	Compour	ids by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0901 - EPA 3546							So	il				
Matrix Spike (23J0901-MS2)			Prepared	1: 10/24/23 0	6:49 Ana	lyzed: 10/25	/23 17:50					
QC Source Sample: Non-SDG (A3	J1425-01)											
1,2-Dichlorobenzene	585	16.3	32.7	ug/kg dry	y 4	653	ND	90	33-120%			
1,3-Dichlorobenzene	566	16.3	32.7	ug/kg dry	y 4	653	ND	87	30-120%			
1,4-Dichlorobenzene	568	16.3	32.7	ug/kg dry	y 4	653	ND	87	31-120%			
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 99%	Limits: 37-	-122 %	Dilt	ution: 4x					
2-Fluorobiphenyl (Surr)			96 %	44-	120 %		"					
Phenol-d6 (Surr)			117 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			93 %	54-	127 %		"					
2-Fluorophenol (Surr)			95 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			112 %	39-	132 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	ietals by	EPA 6020	B (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0999 - EPA 3051A							So	il				
Blank (23J0999-BLK1)			Prepared	: 10/25/23 1	3:41 Ana	lyzed: 10/26	/23 08:31					
EPA 6020B												
Arsenic	ND	0.500	1.00	mg/kg we	et 10							
Barium	ND	0.500	1.00	mg/kg we	et 10							
Cadmium	ND	0.100	0.200	mg/kg we	et 10							
Chromium	ND	0.500	1.00	mg/kg we	et 10							
Copper	ND	1.00	2.00	mg/kg we	et 10							
Lead	ND	0.100	0.200	mg/kg we	et 10							
Mercury	ND	0.0400	0.0800	mg/kg we	et 10							
Nickel	ND	1.00	2.00	mg/kg we	et 10							
Selenium	ND	0.500	1.00	mg/kg we	et 10							
Silver	ND	0.100	0.200	mg/kg we	et 10							
Zinc	ND	2.00	4.00	mg/kg we	et 10							
LCS (23J0999-BS1)			Prepared	: 10/25/23 1	3:41 Ana	lyzed: 10/26	6/23 08:36					
EPA 6020B												
Arsenic	49.5	0.500	1.00	mg/kg we	et 10	50.0		99	80-120%			
Barium	51.5	0.500	1.00	mg/kg we	et 10	50.0		103	80-120%			
Cadmium	49.1	0.100	0.200	mg/kg we	et 10	50.0		98	80-120%			
Chromium	50.2	0.500	1.00	mg/kg we	et 10	50.0		100	80-120%			
Copper	51.9	1.00	2.00	mg/kg we	et 10	50.0		104	80-120%			
Lead	50.2	0.100	0.200	mg/kg we	et 10	50.0		100	80-120%			
Mercury	0.952	0.0400	0.0800	mg/kg we	et 10	1.00		95	80-120%			
Nickel	51.4	1.00	2.00	mg/kg we	et 10	50.0		103	80-120%			
Selenium	23.9	0.500	1.00	mg/kg we	et 10	25.0		96	80-120%			
Silver	26.8	0.100	0.200	mg/kg we	et 10	25.0		107	80-120%			
Zinc	49.0	2.00	4.00	mg/kg we	et 10	50.0		98	80-120%			
Duplicate (23J0999-DUP1)			Prepared	: 10/25/23 1	3:41 Ana	lyzed: 10/26	6/23 08:46					
QC Source Sample: TP-07-IM-14	.0-15.0-2023	1011 (A3J1366	-14)									
EPA 6020B												
Arsenic	6.67	0.626	1.25	mg/kg dr	y 10		10.7			46	20%	Q-(
Barium	322	0.626	1.25	mg/kg dr	y 10		619			63	20%	Q-(
Cadmium	1.72	0.125	0.251	mg/kg dr	y 10		1.71			0.4	20%	
Chromium	33.5	0.626	1.25	mg/kg dr	y 10		47.0			34	20%	Q-(

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by I	EPA 602	0B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0999 - EPA 3051A							So	il				
Duplicate (23J0999-DUP1)			Prepared	: 10/25/23 1	3:41 Ana	lyzed: 10/26	/23 08:46					
QC Source Sample: TP-07-IM-14	.0-15.0-2023	1011 (A3J1366	-14)									
Copper	153	1.25	2.51	mg/kg dr	y 10		208			30	20%	Q-0
Lead	311	0.125	0.251	mg/kg dr	y 10		278			11	20%	
Mercury	0.479	0.0501	0.100	mg/kg dr	y 10		0.405			17	20%	
Nickel	63.7	1.25	2.51	mg/kg dr	y 10		73.0			14	20%	
Selenium	ND	0.626	1.25	mg/kg dr	y 10		ND				20%	
Silver	0.610	0.125	0.251	mg/kg dr	y 10		0.712			15	20%	
Zinc	1970	2.51	5.01	mg/kg dr	y 10		453			125	20%	Q-0
Matrix Spike (23J0999-MS1) <u>OC Source Sample: TP-07-IM-14</u>	.0-15.0-2023	1011 (A3J1366	-	. 10/20/20 1	5.11 7 ma	lyzed: 10/26	25 00.51					
<u>EPA 6020B</u>												
Arsenic	64.0	0.607	1.21	mg/kg dr	y 10	60.7	10.7	88	75-125%			
Barium	342	0.607	1.21	mg/kg dr	y 10	60.7	619	-457	75-125%			Q-6
Cadmium	59.8	0.121	0.243	mg/kg dr	y 10	60.7	1.71	96	75-125%			
Chromium	97.8	0.607	1.21	mg/kg dr	y 10	60.7	47.0	84	75-125%			
Copper	246	1.21	2.43	mg/kg dr	y 10	60.7	208	62	75-125%			Q-6
Lead	368	0.121	0.243	mg/kg dr	y 10	60.7	278	148	75-125%			Q-6
Mercury	1.59	0.0485	0.0971	mg/kg dr	y 10	1.21	0.405	97	75-125%			
Nickel	101	1.21	2.43	mg/kg dr	y 10	60.7	73.0	47	75-125%			Q-0
Selenium	28.9	0.607	1.21	mg/kg dr	y 10	30.3	ND	95	75-125%			
Silver	32.2	0.121	0.243	mg/kg dr	v 10	30.3	0.712	104	75-125%			
Silver	32.2	0.121	0.215		10	50.5						

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			iotal N	letals by	EPA 6020	B (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1022 - EPA 3051A							So	il				
Blank (23J1022-BLK1)			Prepared	: 10/26/23 0	9:08 Anal	yzed: 10/27	/23 10:42					
EPA 6020B												
Arsenic	ND	0.500	1.00	mg/kg we	et 10							
Barium	ND	0.500	1.00	mg/kg we	et 10							
Cadmium	ND	0.100	0.200	mg/kg we	et 10							
Chromium	ND	0.500	1.00	mg/kg we	et 10							
Copper	ND	1.00	2.00	mg/kg we	et 10							
Lead	ND	0.100	0.200	mg/kg we	et 10							
Mercury	ND	0.0400	0.0800	mg/kg we	et 10							
Nickel	ND	1.00	2.00	mg/kg we	et 10							
Selenium	ND	0.500	1.00	mg/kg we	et 10							
Silver	ND	0.100	0.200	mg/kg we	et 10							
Zinc	ND	2.00	4.00	mg/kg we	et 10							
LCS (23J1022-BS1)			Prepared	: 10/26/23 0	9:08 Anal	yzed: 10/27	/23 10:47					
EPA 6020B												
Arsenic	48.0	0.500	1.00	mg/kg we	et 10	50.0		96	80-120%			
Barium	50.4	0.500	1.00	mg/kg we	et 10	50.0		101	80-120%			
Cadmium	48.2	0.100	0.200	mg/kg we	et 10	50.0		96	80-120%			
Chromium	48.8	0.500	1.00	mg/kg we	et 10	50.0		98	80-120%			
Copper	50.5	1.00	2.00	mg/kg we	et 10	50.0		101	80-120%			
Lead	50.6	0.100	0.200	mg/kg we	et 10	50.0		101	80-120%			
Mercury	0.956	0.0400	0.0800	mg/kg we	et 10	1.00		96	80-120%			
Nickel	49.0	1.00	2.00	mg/kg we	et 10	50.0		98	80-120%			
Selenium	23.5	0.500	1.00	mg/kg we	et 10	25.0		94	80-120%			
Silver	26.8	0.100	0.200	mg/kg we	et 10	25.0		107	80-120%			
Zinc	49.3	2.00	4.00	mg/kg we	et 10	50.0		99	80-120%			
Duplicate (23J1022-DUP1)			Prepared	: 10/26/23 0	9:08 Anal	yzed: 10/27	/23 10:57					
QC Source Sample: WS-01-0.0-2.	0-10102023	(A3J1366-01)										
EPA 6020B												
Arsenic	3.93	1.01	2.01	mg/kg dr	•		4.26			8	20%	
Barium	78.4	1.01	2.01	mg/kg dr	y 10		77.3			1	20%	
Cadmium	1.52	0.201	0.403	mg/kg dr	y 10		1.68			10	20%	
Chromium	7.63	1.01	2.01	mg/kg dr	y 10		8.88			15	20%	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by I	EPA 6020	B (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1022 - EPA 3051A							So	il				
Duplicate (23J1022-DUP1)			Prepared	: 10/26/23 0	9:08 Anal	yzed: 10/27	/23 10:57					
QC Source Sample: WS-01-0.0-2.0	-10102023	(A3J1366-01)										
Copper	30.5	2.01	4.03	mg/kg dr	y 10		33.8			10	20%	
Lead	42.7	0.201	0.403	mg/kg dr	y 10		41.6			3	20%	
Mercury	ND	0.0806	0.161	mg/kg dr	y 10		ND				20%	
Nickel	17.5	2.01	4.03	mg/kg dr	y 10		19.7			12	20%	
Selenium	ND	1.01	2.01	mg/kg dr	y 10		ND				20%	
Silver	ND	0.201	0.403	mg/kg dr	y 10		ND				20%	
Zinc	3440	4.03	8.06	mg/kg dr	y 10		2460			33	20%	Q-(
Matrix Spike (23J1022-MS1)			Prepared	: 10/26/23 0	9:08 Anal	yzed: 10/27	/23 11:13					
QC Source Sample: WS-01-0.0-2.0	-10102023	(A3J1366-01)										
<u>EPA 6020B</u>												
Arsenic	109	1.07	2.15	mg/kg dr	y 10	107	4.26	97	75-125%			
Barium	183	1.07	2.15	mg/kg dr	y 10	107	77.3	99	75-125%			
Cadmium	105	0.215	0.430	mg/kg dr	y 10	107	1.68	96	75-125%			
Chromium	115	1.07	2.15	mg/kg dr	y 10	107	8.88	98	75-125%			
Copper	146	2.15	4.30	mg/kg dr	y 10	107	33.8	104	75-125%			
Lead	156	0.215	0.430	mg/kg dr	y 10	107	41.6	106	75-125%			
Mercury	2.18	0.0860	0.172	mg/kg dr	y 10	2.15	ND	102	75-125%			
Nickel	125	2.15	4.30	mg/kg dr	y 10	107	19.7	98	75-125%			
Selenium	51.8	1.07	2.15	mg/kg dr	y 10	53.7	ND	96	75-125%			
Silver	59.4	0.215	0.430	mg/kg dr	y 10	53.7	ND	111	75-125%			
Zinc	2530	4.30	8.60	mg/kg dr	y 10	107	2460	58	75-125%			Q-(
Matrix Spike Dup (23J1022-Ms	SD1)		Prepared	: 10/26/23 0	9:08 Anal	yzed: 10/27	/23 12:30					
QC Source Sample: WS-01-0.0-2.0	-10102023	(A3J1366-01)										
EPA 6020B												
Arsenic	106	5.37	10.7	mg/kg dr	y 50	107	ND	98	75-125%	3	20%	
Barium	186	5.37	10.7	mg/kg dr	y 50	107	77.3	101	75-125%	1	20%	
Cadmium	105	1.07	2.15	mg/kg dr	y 50	107	1.68	97	75-125%	0.3	20%	
Chromium	114	5.37	10.7	mg/kg dr	y 50	107	8.88	98	75-125%	0.6	20%	
Copper	147	10.7	21.5	mg/kg dr		107	33.8	105	75-125%	0.8	20%	
Lead	154	1.07	2.15	mg/kg dr		107	41.6	104	75-125%	2	20%	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by I	EPA 6020	B (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1022 - EPA 3051A							So	il				
Matrix Spike Dup (23J1022-M	ISD1)		Prepared	: 10/26/23 0	9:08 Ana	lyzed: 10/27	/23 12:30					
QC Source Sample: WS-01-0.0-2.	.0-10102023	(A3J1366-01)										
Mercury	2.16	0.430	0.860	mg/kg dr	y 50	2.15	ND	101	75-125%	0.9	20%	
Nickel	126	10.7	21.5	mg/kg dr	y 50	107	19.7	99	75-125%	0.2	20%	
Selenium	51.5	5.37	10.7	mg/kg dr	y 50	53.7	ND	96	75-125%	0.5	20%	
Silver	57.1	1.07	2.15	mg/kg dr	y 50	53.7	ND	106	75-125%	4	20%	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	OB (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0933 - EPA 1311/30	15A						Soi	il				
Blank (23J0933-BLK2)			Prepared	10/24/23	13:20 Ana	yzed: 10/24	/23 15:42					
<u>1311/6020B</u>												
Arsenic	ND	0.0500	0.100	mg/L	10							Q-16, TCI
Barium	ND	2.50	5.00	mg/L	10							Q-16, TCI
Cadmium	ND	0.0500	0.100	mg/L	10							Q-16, TCI
Chromium	ND	0.0500	0.100	mg/L	10							Q-16, TCI
Lead	ND	0.0250	0.0500	mg/L	10							Q-16, TCI
Mercury	ND	0.00375	0.00700	mg/L	10							Q-16, TCI
Selenium	ND	0.0500	0.100	mg/L	10							Q-16, TCI
Silver	ND	0.0500	0.100	mg/L	10							Q-16, TCI
LCS (23J0933-BS3)			Prepared	10/24/23	13:20 Ana	yzed: 10/24	/23 15:47					
<u>1311/6020B</u>												
Arsenic	4.97	0.0500	0.100	mg/L	10	5.00		99	80-120%			Q-16, TCI
Barium	10.3	2.50	5.00	mg/L	10	10.0		103	80-120%			Q-16, TCI
Cadmium	1.04	0.0500	0.100	mg/L	10	1.00		104	80-120%			Q-16, TCI
Chromium	5.15	0.0500	0.100	mg/L	10	5.00		103	80-120%			Q-16, TCI
Lead	5.25	0.0250	0.0500	mg/L	10	5.00		105	80-120%			Q-16, TCI
Mercury	0.0973	0.00375	0.00700	mg/L	10	0.100		97	80-120%			Q-16, TCI
Selenium	1.02	0.0500	0.100	mg/L	10	1.00		102	80-120%			Q-16, TCI
Silver	1.07	0.0500	0.100	mg/L	10	1.00		107	80-120%			Q-16, TCI
Duplicate (23J0933-DUP1)			Prepared	10/24/23	13:20 Ana	yzed: 10/24	/23 16:07					
QC Source Sample: Non-SDG (A	3J1257-01RE	2)										
Arsenic	ND	0.0500	0.100	mg/L	10		ND				20%	
Barium	ND	2.50	5.00	mg/L	10		ND				20%	
Cadmium	ND	0.0500	0.100	mg/L	10		ND				20%	
Chromium	ND	0.0500	0.100	mg/L	10		ND				20%	
Lead	ND	0.0250	0.0500	mg/L	10		ND				20%	
Mercury	ND	0.00375	0.00700	mg/L	10		ND				20%	
Selenium	ND	0.0500	0.100	mg/L	10		ND				20%	
Silver	ND	0.0500	0.100	mg/L	10		ND				20%	

Matrix Spike (23J0933-MS1)

Prepared: 10/24/23 13:20 Analyzed: 10/24/23 16:13

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This

analytical report must be reproduced in its entirety.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Page 131 of 156

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP M	letals by	EPA 602	B (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0933 - EPA 1311/301	5A						Soi	il				
Matrix Spike (23J0933-MS1)			Prepared:	10/24/23	13:20 Anal	yzed: 10/24	/23 16:13					
QC Source Sample: Non-SDG (A3	J1257-01RE	2)										
<u>1311/6020B</u>												
Arsenic	4.93	0.0500	0.100	mg/L	10	5.00	ND	99	50-150%			
Barium	10.2	2.50	5.00	mg/L	10	10.0	ND	102	50-150%			
Cadmium	1.01	0.0500	0.100	mg/L	10	1.00	ND	101	50-150%			
Chromium	5.08	0.0500	0.100	mg/L	10	5.00	ND	102	50-150%			
Lead	5.10	0.0250	0.0500	mg/L	10	5.00	ND	102	50-150%			
Mercury	0.0957	0.00375	0.00700	mg/L	10	0.100	ND	96	50-150%			
Selenium	0.993	0.0500	0.100	mg/L	10	1.00	ND	99	50-150%			
Silver	1.10	0.0500	0.100	mg/L	10	1.00	ND	110	50-150%			
Matrix Spike (23J0933-MS2)			Prepared:	10/24/23	13:20 Anal	yzed: 10/24	/23 16:28					
QC Source Sample: Non-SDG (A3	<u>J1432-02)</u>											
<u>1311/6020B</u>												
Arsenic	4.94	0.0500	0.100	mg/L	10	5.00	ND	99	50-150%			CON
Barium	10.2	2.50	5.00	mg/L	10	10.0	ND	102	50-150%			CON
Cadmium	1.04	0.0500	0.100	mg/L	10	1.00	ND	104	50-150%			CON
Chromium	6.93	0.0500	0.100	mg/L	10	5.00	1.79	103	50-150%			CON
Lead	5.13	0.0250	0.0500	mg/L	10	5.00	ND	103	50-150%			CON
Mercury	0.0951	0.00375	0.00700	mg/L	10	0.100	ND	95	50-150%			CON
Selenium	0.983	0.0500	0.100	mg/L	10	1.00	ND	98	50-150%			CON
Silver	1.08	0.0500	0.100	mg/L	10	1.00	ND	108	50-150%			CON

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	0B (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0987 - EPA 1311/3	3015A						Soi	I				
Blank (23J0987-BLK1)			Prepared:	10/25/23	10:53 Anal	lyzed: 10/25	/23 16:05					
<u>1311/6020B</u>												
Arsenic	ND	0.0500	0.100	mg/L	10							TCLP
Barium	ND	2.50	5.00	mg/L	10							TCLP
Cadmium	ND	0.0500	0.100	mg/L	10							TCLP
Chromium	ND	0.0500	0.100	mg/L	10							TCLP
Lead	ND	0.0250	0.0500	mg/L	10							TCLP
Mercury	ND	0.00375	0.00700	mg/L	10							TCLP
Selenium	ND	0.0500	0.100	mg/L	10							TCLP
Silver	ND	0.0500	0.100	mg/L	10							TCLP
LCS (23J0987-BS1)			Prepared:	10/25/23	10:53 Ana	lyzed: 10/25	/23 16:10					
<u>1311/6020B</u>												
Arsenic	5.01	0.0500	0.100	mg/L	10	5.00		100	80-120%			TCLP
Barium	10.1	2.50	5.00	mg/L	10	10.0		101	80-120%			TCLP
Cadmium	1.00	0.0500	0.100	mg/L	10	1.00		100	80-120%			TCLP
Chromium	5.22	0.0500	0.100	mg/L	10	5.00		104	80-120%			TCLP
Lead	5.18	0.0250	0.0500	mg/L	10	5.00		104	80-120%			TCLP
Mercury	0.0950	0.00375	0.00700	mg/L	10	0.100		95	80-120%			TCLP
Selenium	1.03	0.0500	0.100	mg/L	10	1.00		103	80-120%			TCLP
LCS (23J0987-BS2)			Prepared:	10/25/23	10:53 Ana	lyzed: 10/26	/23 10:05					
<u>1311/6020B</u>												
Silver	1.07	0.0500	0.100	mg/L	10	1.00		107	80-120%			Q-16, TCLP
Duplicate (23J0987-DUP1)			Prepared:	10/25/23	10:53 Ana	lyzed: 10/25	/23 16:31					
QC Source Sample: WS-05-0.0	-2.0-10102023 (A3J1366-05)				-						
<u>1311/6020B</u>												
Arsenic	ND	0.0500	0.100	mg/L	10		ND				20%	
Barium	ND	2.50	5.00	mg/L	10		ND				20%	
Cadmium	ND	0.0500	0.100	mg/L	10		ND				20%	
Chromium	ND	0.0500	0.100	mg/L	10		ND				20%	
Lead	ND	0.0250	0.0500	mg/L	10		ND				20%	
Mercury	ND	0.00375	0.00700	mg/L	10		ND				20%	
Selenium	ND	0.0500	0.100	mg/L	10		ND				20%	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP M	letals by	EPA 602	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0987 - EPA 1311/3015	5A						Soi	I				
Duplicate (23J0987-DUP1)			Prepared:	: 10/25/23	10:53 Anal	yzed: 10/25/	/23 16:31					
QC Source Sample: WS-05-0.0-2.0-	-10102023 ((A3J1366-05)										
Silver	ND	0.0500	0.100	mg/L	10		ND				20%	
Matrix Spike (23J0987-MS1)			Prepared:	: 10/25/23	10:53 Anal	yzed: 10/25/	/23 16:36					
QC Source Sample: WS-05-0.0-2.0-	-10102023 ((A3J1366-05)										
<u>1311/6020B</u>												
Arsenic	5.10	0.0500	0.100	mg/L	10	5.00	ND	102	50-150%			
Barium	10.3	2.50	5.00	mg/L	10	10.0	ND	103	50-150%			
Cadmium	1.03	0.0500	0.100	mg/L	10	1.00	ND	103	50-150%			
Chromium	5.27	0.0500	0.100	mg/L	10	5.00	ND	105	50-150%			
Lead	5.31	0.0250	0.0500	mg/L	10	5.00	ND	106	50-150%			
Mercury	0.0971	0.00375	0.00700	mg/L	10	0.100	ND	97	50-150%			
Selenium	1.02	0.0500	0.100	mg/L	10	1.00	ND	102	50-150%			
Silver	1.48	0.0500	0.100	mg/L	10	1.00	ND	148	50-150%			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	0B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1044 - EPA 1311/30	15A						Soi	I				
Blank (23J1044-BLK1)			Prepared	: 10/26/23	10:46 Ana	yzed: 10/26/	/23 16:40					
1311/6020B												
Arsenic	ND	0.0500	0.100	mg/L	10							TCLP
Barium	ND	2.50	5.00	mg/L	10							TCLF
Cadmium	ND	0.0500	0.100	mg/L	10							TCLF
Chromium	ND	0.0500	0.100	mg/L	10							TCLF
Lead	ND	0.0250	0.0500	mg/L	10							TCLF
Mercury	ND	0.00375	0.00700	mg/L	10							TCLF
Selenium	ND	0.0500	0.100	mg/L	10							TCLP
Silver	ND	0.0500	0.100	mg/L	10							TCLF
LCS (23J1044-BS1)			Prepared	: 10/26/23	10:46 Ana	yzed: 10/26/	/23 16:45					
<u>1311/6020B</u>												
Arsenic	5.34	0.0500	0.100	mg/L	10	5.00		107	80-120%			TCLP
Barium	10.4	2.50	5.00	mg/L	10	10.0		104	80-120%			TCLF
Cadmium	1.09	0.0500	0.100	mg/L	10	1.00		109	80-120%			TCLP
Chromium	5.29	0.0500	0.100	mg/L	10	5.00		106	80-120%			TCLP
Mercury	0.102	0.00375	0.00700	mg/L	10	0.100		102	80-120%			TCLP
Selenium	1.04	0.0500	0.100	mg/L	10	1.00		104	80-120%			TCLP
Silver	1.07	0.0500	0.100	mg/L	10	1.00		107	80-120%			TCLF
LCS (23J1044-BS2)			Prepared	: 10/26/23	10:46 Ana	yzed: 10/27	/23 08:06					
<u>1311/6020B</u>												
Lead	5.39	0.0250	0.0500	mg/L	10	5.00		108	80-120%			Q-16, Q-41 TCLF
Duplicate (23J1044-DUP1)			Prepared	: 10/26/23	10:46 Ana	yzed: 10/27	/23 09:44					
QC Source Sample: Non-SDG (A	3J1576-06)											
Arsenic	ND	0.0500	0.100	mg/L	10		ND				20%	COM
Barium	ND	2.50	5.00	mg/L	10		ND				20%	COM
Cadmium	ND	0.0500	0.100	mg/L	10		ND				20%	COM
Chromium	ND	0.0500	0.100	mg/L	10		ND				20%	COM
Lead	ND	0.0250	0.0500	mg/L	10		ND				20%	COM
Mercury	ND	0.00375	0.00700	mg/L	10		ND				20%	COM
Selenium	ND	0.0500	0.100	<u>6</u> L	10		ND					

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	0B (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1044 - EPA 1311/301	5A						So	il				
Duplicate (23J1044-DUP1)			Prepared	: 10/26/23	10:46 Ana	lyzed: 10/27	/23 09:44					
QC Source Sample: Non-SDG (A3	J1576-06)											
Silver	ND	0.0500	0.100	mg/L	10		ND				20%	COM
Matrix Spike (23J1044-MS1)			Prepared	: 10/26/23	10:46 Ana	lyzed: 10/27	/23 09:50					
<u>OC</u> Source Sample: Non-SDG (A3	<u>J1576-06)</u>											
<u>1311/6020B</u>												
Arsenic	5.13	0.0500	0.100	mg/L	10	5.00	ND	103	50-150%			COM
Barium	10.9	2.50	5.00	mg/L	10	10.0	ND	109	50-150%			COM
Cadmium	1.08	0.0500	0.100	mg/L	10	1.00	ND	108	50-150%			COM
Chromium	5.16	0.0500	0.100	mg/L	10	5.00	ND	103	50-150%			COM
Lead	5.49	0.0250	0.0500	mg/L	10	5.00	ND	110	50-150%			COM
Mercury	0.0998	0.00375	0.00700	mg/L	10	0.100	ND	100	50-150%			COM
Selenium	1.03	0.0500	0.100	mg/L	10	1.00	ND	103	50-150%			COM
Silver	1.06	0.0500	0.100	mg/L	10	1.00	ND	106	50-150%			COM

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conven	tional Ch	nemistry	Paramete	rs					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0780 - DI Leach							Soi	I				
Duplicate (23J0780-DUP1)			Prepared	: 10/19/23 1	5:59 Anal	yzed: 10/19	/23 17:14					
QC Source Sample: Non-SDG (A3J1	176-02)											
Soil/Solid pH (measured in H2O)	5.9			pH Unit	s 1		6.1			3	5%	PRO,pH_
pH Temperature (deg C)	22.5			pH Unit	s 1		22.6			0.4	30%	PRO,pH_
Duplicate (23J0780-DUP2)			Prepared	: 10/19/23 1	5:59 Anal	yzed: 10/19	/23 17:41					
QC Source Sample: TP-07-IM-9.0-1	0.0-20231	011 (A3J1366-	-16)									
EPA 9045D												
Soil/Solid pH (measured in H2O)	7.5			pH Unit	s 1		7.5			0.1	5%	pH_
pH Temperature (deg C)	22.1			pH Unit	s 1		22.0			0.5	30%	pH_S
Reference (23J0780-SRM1)			Prepared	: 10/19/23 1	5:59 Anal	yzed: 10/19	/23 17:12					
EPA 9045D												
Soil/Solid pH (measured in H2O)	6.0			pH Unit		6.00		101 9	8.33-101.3	3%		
pH Temperature (deg C)	22.2			pH Unit	s 1	20.0		111	50-200%			
Reference (23J0780-SRM2)			Prepared	: 10/19/23 1	5:59 Anal	yzed: 10/19	/23 17:33					
EPA 9045D												
Soil/Solid pH (measured in H2O)	8.0			pH Unit	s 1	8.00		99	99-101%			
pH Temperature (deg C)	22.2			pH Unit	s 1	20.0		111	50-200%			
Reference (23J0780-SRM3)			Prepared	: 10/19/23 1	5:59 Anal	yzed: 10/19	/23 17:46					
EPA 9045D												
Soil/Solid pH (measured in H2O)	6.0			pH Unit	s 1	6.00		100 9	8.33-101.3	3%		
pH Temperature (deg C)	22.2			pH Unit	s 1	20.0		111	50-200%			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conven	tional Ch	emistry	Paramete	rs					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0820 - DI Leach							Soi	I				
Duplicate (23J0820-DUP1)			Prepared	: 10/20/23 1	2:15 Ana	lyzed: 10/20	/23 13:30					
QC Source Sample: TP-04-IM-4.0-5.	0-202310	10 (A3J1366-2	<u>5)</u>									
<u>EPA 9045D</u>												
Soil/Solid pH (measured in H2O)	7.4			pH Units	: 1		7.3			1	5%	pH_S
pH Temperature (deg C)	22.0			pH Units	1		22.1			0.5	30%	pH_S
Reference (23J0820-SRM1)			Prepared	: 10/20/23 1	2:15 Ana	lyzed: 10/20	/23 13:17					
EPA 9045D												
Soil/Solid pH (measured in H2O)	6.0			pH Units	: 1	6.00		100 9	8.33-101.3	3%		
pH Temperature (deg C)	22.0			pH Units	1	20.0		110	50-200%			
Reference (23J0820-SRM2)			Prepared	: 10/20/23 1	2:15 Ana	lyzed: 10/20	/23 13:35					
EPA 9045D												
Soil/Solid pH (measured in H2O)	8.0			pH Units	: 1	8.00		100	99-101%			
pH Temperature (deg C)	22.1			pH Units	1	20.0		110	50-200%			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0745 - Total Solids (I	Ory Weigh	nt) - 2022					Soi					
Duplicate (23J0745-DUP1)			Prepared	: 10/19/23	09:37 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: Non-SDG (A3	<u>J1419-01)</u>											
% Solids	78.4	1.00	1.00	%	1		79.6			2	10%	
Duplicate (23J0745-DUP2)			Prepared	: 10/19/23	09:37 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: Non-SDG (A3	J1419-02)											
% Solids	77.5	1.00	1.00	%	1		77.6			0.09	10%	
Duplicate (23J0745-DUP3)			Prepared	: 10/19/23	09:37 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: Non-SDG (A3	J1419-03)											
% Solids	76.4	1.00	1.00	%	1		76.5			0.1	10%	
Duplicate (23J0745-DUP4)			Prepared	: 10/19/23	18:06 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: TP-04-NS-9.0-	10.0-202310)10 (A3J1366-0	<u>07)</u>									
EPA 8000D												
% Solids	88.4	1.00	1.00	%	1		88.5			0.02	10%	
Duplicate (23J0745-DUP5)			Prepared	: 10/19/23	18:06 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: TP-05-NS-4.0-	5.0-2023101	11 (A3J1366-08	<u>8)</u>									
<u>EPA 8000D</u> % Solids	84.9	1.00	1.00	%	1		86.6			2	10%	
Duplicate (23J0745-DUP6)			Prepared	: 10/19/23	18:06 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: TP-06-NS-9.0-	10.0-202310)11 (A3J1366-(<u>19)</u>									
EPA 8000D				<i></i>	_		05 -				1001	
% Solids	82.8	1.00	1.00	%	1		83.5			1	10%	
Duplicate (23J0745-DUP7)			Prepared	: 10/19/23	19:06 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: Non-SDG (A3	<u>J1482-01)</u>											
% Solids	74.9	1.00	1.00	%	1		74.5			0.5	10%	
Duplicate (23J0745-DUP8)			Prepared	10/10/02	10.04							

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0745 - Total Solids	(Dry Weigh	nt) - 2022					Soil					
Duplicate (23J0745-DUP8)			Prepared	: 10/19/23	19:06 Ana	yzed: 10/20/	/23 04:36					
QC Source Sample: Non-SDG (A	<u>3J1482-02)</u>											
% Solids	69.1	1.00	1.00	%	1		84.0			20	10%	Q-17

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u>

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

Diesel and/or Oil Hydrocarbons by NWTPH-Dx											
<u>s)</u>				Sample	Default	RL Prep					
Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Soil	NWTPH-Dx	10/10/23 11:25	10/23/23 05:36	10.82g/5mL	10g/5mL	0.92					
Soil	NWTPH-Dx	10/10/23 15:45	10/23/23 05:36	10.09g/5mL	10g/5mL	0.99					
Soil	NWTPH-Dx	10/11/23 08:45	10/25/23 13:05	10.68g/5mL	10g/5mL	0.94					
Soil	NWTPH-Dx	10/11/23 10:15	10/25/23 13:05	10.77g/5mL	10g/5mL	0.93					
Soil	NWTPH-Dx	10/11/23 13:10	10/25/23 13:05	10.31g/5mL	10g/5mL	0.97					
Soil	NWTPH-Dx	10/11/23 15:45	10/25/23 13:05	10.06g/5mL	10g/5mL	0.99					
Soil	NWTPH-Dx	10/12/23 14:45	10/25/23 13:05	10.5g/5mL	10g/5mL	0.95					
Soil	NWTPH-Dx	10/11/23 11:55	10/25/23 16:38	10.41g/5mL	10g/5mL	0.96					
	Soil Soil Soil Soil Soil Soil Soil	s) Matrix Method Soil NWTPH-Dx Soil NWTPH-Dx Soil NWTPH-Dx Soil NWTPH-Dx Soil NWTPH-Dx Soil NWTPH-Dx Soil NWTPH-Dx	s) Matrix Method Sampled Soil NWTPH-Dx 10/10/23 11:25 10/10/23 15:45 Soil NWTPH-Dx 10/10/23 15:45 Soil NWTPH-Dx 10/11/23 08:45 Soil NWTPH-Dx 10/11/23 10:15 Soil NWTPH-Dx 10/11/23 10:15 Soil NWTPH-Dx 10/11/23 13:10 Soil NWTPH-Dx 10/11/23 15:45 Soil NWTPH-Dx 10/11/23 15:45 Soil NWTPH-Dx 10/12/23 14:45	Soil NWTPH-Dx 10/10/23 11:25 10/23/23 05:36 Soil NWTPH-Dx 10/10/23 15:45 10/23/23 05:36 Soil NWTPH-Dx 10/11/23 08:45 10/25/23 13:05 Soil NWTPH-Dx 10/11/23 10:15 10/25/23 13:05 Soil NWTPH-Dx 10/11/23 10:15 10/25/23 13:05 Soil NWTPH-Dx 10/11/23 13:10 10/25/23 13:05 Soil NWTPH-Dx 10/11/23 15:45 10/25/23 13:05	Soil NWTPH-Dx 10/10/23 11:25 10/23/23 05:36 10.82g/5mL Soil NWTPH-Dx 10/10/23 15:45 10/23/23 05:36 10.82g/5mL Soil NWTPH-Dx 10/10/23 15:45 10/23/23 05:36 10.82g/5mL Soil NWTPH-Dx 10/11/23 08:45 10/23/23 05:36 10.09g/5mL Soil NWTPH-Dx 10/11/23 10:15 10/25/23 13:05 10.68g/5mL Soil NWTPH-Dx 10/11/23 10:15 10/25/23 13:05 10.31g/5mL Soil NWTPH-Dx 10/11/23 15:45 10/25/23 13:05 10.31g/5mL Soil NWTPH-Dx 10/11/23 15:45 10/25/23 13:05 10.30g/5mL Soil NWTPH-Dx 10/11/23 15:45 10/25/23 13:05 10.31g/5mL Soil NWTPH-Dx 10/11/23 15:45 10/25/23 13:05 10.5g/5mL Soil NWTPH-Dx 10/12/23 14:45 10/25/23 13:05 10.5g/5mL	Si Sample Default Matrix Method Sampled Prepared Initial/Final Initial/Final Soil NWTPH-Dx 10/10/23 11:25 10/23/23 05:36 10.82g/5mL 10g/5mL Soil NWTPH-Dx 10/10/23 15:45 10/23/23 05:36 10.09g/5mL 10g/5mL Soil NWTPH-Dx 10/11/23 08:45 10/25/23 13:05 10.68g/5mL 10g/5mL Soil NWTPH-Dx 10/11/23 10:15 10/25/23 13:05 10.77g/5mL 10g/5mL Soil NWTPH-Dx 10/11/23 13:10 10/25/23 13:05 10.31g/5mL 10g/5mL Soil NWTPH-Dx 10/11/23 15:45 10/25/23 13:05 10.31g/5mL 10g/5mL Soil NWTPH-Dx 10/11/23 15:45 10/25/23 13:05 10.31g/5mL 10g/5mL Soil NWTPH-Dx 10/11/23 15:45 10/25/23 13:05 10.30g/5mL 10g/5mL Soil NWTPH-Dx 10/11/23 15:45 10/25/23 13:05 10.5g/5mL 10g/5mL Soil NWTPH-Dx 10/12/23 14:45 10/25/23 13:05					

	Gas	oline Range Hydrocart			y 1100 H 11-0A		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0806							
A3J1366-01	Soil	NWTPH-Gx (MS)	10/10/23 08:50	10/10/23 08:50	5.55g/5mL	5g/5mL	0.90
A3J1366-05	Soil	NWTPH-Gx (MS)	10/10/23 07:50	10/10/23 07:50	4.8g/5mL	5g/5mL	1.04
A3J1366-06	Soil	NWTPH-Gx (MS)	10/10/23 11:25	10/10/23 11:25	4.84g/5mL	5g/5mL	1.03
A3J1366-07	Soil	NWTPH-Gx (MS)	10/10/23 15:45	10/10/23 15:45	5.49g/5mL	5g/5mL	0.91
A3J1366-08	Soil	NWTPH-Gx (MS)	10/11/23 08:45	10/11/23 08:45	6.73g/5mL	5g/5mL	0.74
A3J1366-09	Soil	NWTPH-Gx (MS)	10/11/23 10:15	10/11/23 10:15	7.19g/5mL	5g/5mL	0.70
A3J1366-10	Soil	NWTPH-Gx (MS)	10/11/23 13:10	10/11/23 13:10	6.92g/5mL	5g/5mL	0.72
A3J1366-11	Soil	NWTPH-Gx (MS)	10/11/23 15:45	10/11/23 15:45	5.38g/5mL	5g/5mL	0.93
A3J1366-12	Soil	NWTPH-Gx (MS)	10/12/23 14:45	10/12/23 14:45	4.65g/5mL	5g/5mL	1.08
A3J1366-14	Soil	NWTPH-Gx (MS)	10/11/23 11:55	10/11/23 11:55	6.73g/5mL	5g/5mL	0.74

	Volatile Organic Compounds by EPA 8260D												
<u> Prep: EPA 5035A</u>					Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
Batch: 23J0806													
A3J1366-07	Soil	5035A/8260D	10/10/23 15:45	10/10/23 15:45	5.49g/5mL	5g/5mL	0.91						
A3J1366-08	Soil	5035A/8260D	10/11/23 08:45	10/11/23 08:45	6.73g/5mL	5g/5mL	0.74						
A3J1366-09	Soil	5035A/8260D	10/11/23 10:15	10/11/23 10:15	7.19g/5mL	5g/5mL	0.70						
A3J1366-10	Soil	5035A/8260D	10/11/23 13:10	10/11/23 13:10	6.92g/5mL	5g/5mL	0.72						
A3J1366-11	Soil	5035A/8260D	10/11/23 15:45	10/11/23 15:45	5.38g/5mL	5g/5mL	0.93						

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223

	RATORIES					503-718-232. Orelap ID: OR	
<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 3 Portland, OR 97209	300		Project: <u>H</u> Project Number: 0 Project Manager: H		zation	<u>Report ID:</u> A3J1366 - 11 10 23	
		SAMPLE	E PREPARAT	ION INFORMATION			
		Volatile	Organic Comp	ounds by EPA 8260D			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A3J1366-12	Soil	5035A/8260D	10/12/23 14:4	45 10/12/23 14:45	4.65g/5mL	5g/5mL	1.08
A3J1366-14	Soil	5035A/8260D	10/11/23 11::	55 10/11/23 11:55	6.73g/5mL	5g/5mL	0.74
		Polych	lorinated Biphe	enyls by EPA 8082A			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0900			1	1			
A3J1366-01	Soil	EPA 8082A	10/10/23 08::	50 10/24/23 06:45	10.56g/5mL	10g/5mL	0.95
A3J1366-02	Soil	EPA 8082A	10/10/23 08:4	40 10/24/23 06:45	10.1g/5mL	10g/5mL	0.99
A3J1366-03	Soil	EPA 8082A	10/10/23 08::	20 10/24/23 06:45	10.51g/5mL	10g/5mL	0.95
A3J1366-04	Soil	EPA 8082A	10/10/23 08:		10.31g/5mL	10g/5mL	0.97
Batch: 23J1014					-	c	
A3J1366-05RE1	Soil	EPA 8082A	10/10/23 07::	50 10/26/23 04:52	10.13g/5mL	10g/5mL	0.99
A3J1366-06	Soil	EPA 8082A	10/10/23 11:2		10.05g/5mL	10g/5mL	1.00
A3J1366-07	Soil	EPA 8082A	10/10/23 15:4		10.47g/5mL	10g/5mL	0.96
A3J1366-08	Soil	EPA 8082A	10/11/23 08:4		10.04g/5mL	10g/5mL	1.00
A3J1366-09	Soil	EPA 8082A	10/11/23 10:		10.07g/5mL	10g/5mL	0.99
A3J1366-10	Soil	EPA 8082A	10/11/23 13:		10.56g/5mL	10g/5mL	0.95
A3J1366-11	Soil	EPA 8082A	10/11/23 15:		10.64g/5mL	10g/5mL	0.93
A3J1366-12	Soil	EPA 8082A	10/12/23 14:4		10.09g/5mL	10g/5mL	0.99
A3J1366-13	Soil	EPA 8082A	10/12/23 14:		10.2g/5mL	10g/5mL	0.98
A3J1366-14	Soil	EPA 8082A	10/11/23 11::		10.11g/5mL	10g/5mL	0.99
A3J1366-15RE1	Soil	EPA 8082A	10/11/23 12::		10.29g/5mL	10g/5mL	0.97
Batch: 23J1015					-	č	
A3J1366-16	Soil	EPA 8082A	10/11/23 11:	30 10/26/23 04:55	10.4g/5mL	10g/5mL	0.96
A3J1366-17	Soil	EPA 8082A	10/12/23 13:2		10.06g/5mL	10g/5mL	0.90
A3J1366-18	Soil	EPA 8082A	10/12/23 12:		10.26g/5mL	10g/5mL	0.98
A3J1366-19RE1	Soil	EPA 8082A	10/12/23 11:		10.28g/5mL	10g/5mL	0.97
A3J1366-20	Soil	EPA 8082A	10/12/23 09:4		10.25g/5mL	10g/5mL	0.98
3J1366-21	Soil	EPA 8082A	10/11/23 15:		10.04g/5mL	10g/5mL	1.00
3J1366-22	Soil	EPA 8082A	10/11/23 14::		10.04g/5mL	10g/5mL	1.00
A3J1366-23	Soil	EPA 8082A	10/11/23 09:		10.16g/5mL	10g/5mL	0.98
A3J1366-24	Soil	EPA 8082A	10/11/23 08:		10.31g/5mL	10g/5mL	0.98
A3J1366-25RE1	Soil	EPA 8082A	10/10/23 15:2		10.25g/5mL	10g/5mL	0.98
A3J1366-26	Soil	EPA 8082A	10/10/23 14:		10.67g/5mL	10g/5mL	0.98

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions	Project: <u>Eatonville Landfill Characterization</u>	<u>l</u>
55 SW Yamhill St, Ste 300	Project Number: 00171.074.008	Report ID:
Portland, OR 97209	Project Manager: Ben Johnson	A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

	Polychlorinated Biphenyls by EPA 8082A										
Prep: EPA 3546					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
A3J1366-27RE1	Soil	EPA 8082A	10/10/23 12:55	10/26/23 04:55	10.07g/5mL	10g/5mL	0.99				
A3J1366-28	Soil	EPA 8082A	10/10/23 10:55	10/26/23 04:55	10.45g/5mL	10g/5mL	0.96				

		Semivolat	ile Organic Compour	nds by EPA 8270E			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0793							
A3J1366-06RE1	Soil	EPA 8270E	10/10/23 11:25	10/20/23 04:49	15.02g/2mL	15g/2mL	1.00
A3J1366-07RE2	Soil	EPA 8270E	10/10/23 15:45	10/20/23 04:49	15.23g/2mL	15g/2mL	0.99
Batch: 23J0901							
A3J1366-08RE2	Soil	EPA 8270E	10/11/23 08:45	10/24/23 06:49	15.69g/2mL	15g/2mL	0.96
A3J1366-09RE1	Soil	EPA 8270E	10/11/23 10:15	10/24/23 06:49	15.04g/2mL	15g/2mL	1.00
A3J1366-10RE1	Soil	EPA 8270E	10/11/23 13:10	10/24/23 06:49	15.23g/5mL	15g/2mL	2.46
A3J1366-11RE2	Soil	EPA 8270E	10/11/23 15:45	10/24/23 06:49	15.36g/2mL	15g/2mL	0.98
A3J1366-12RE1	Soil	EPA 8270E	10/12/23 14:45	10/24/23 06:49	15.58g/2mL	15g/2mL	0.96
A3J1366-14	Soil	EPA 8270E	10/11/23 11:55	10/24/23 06:49	15.62g/5mL	15g/2mL	2.40
A3J1366-14RE1	Soil	EPA 8270E	10/11/23 11:55	10/24/23 06:49	15.62g/5mL	15g/2mL	2.40

Total Metals	by EPA	6020B	(ICPMS)

		1018		e= (:e:e)			
<u> Prep: EPA 3051A</u>					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0999							
A3J1366-14	Soil	EPA 6020B	10/11/23 11:55	10/25/23 13:41	0.478g/50mL	0.5g/50mL	1.05
A3J1366-15	Soil	EPA 6020B	10/11/23 12:50	10/25/23 13:41	0.482g/50mL	0.5g/50mL	1.04
A3J1366-16	Soil	EPA 6020B	10/11/23 11:30	10/25/23 13:41	0.498g/50mL	0.5g/50mL	1.00
A3J1366-17	Soil	EPA 6020B	10/12/23 13:25	10/25/23 13:41	0.464g/50mL	0.5g/50mL	1.08
A3J1366-18	Soil	EPA 6020B	10/12/23 12:35	10/25/23 13:41	0.49g/50mL	0.5g/50mL	1.02
A3J1366-18RE1	Soil	EPA 6020B	10/12/23 12:35	10/25/23 13:41	0.49g/50mL	0.5g/50mL	1.02
A3J1366-19	Soil	EPA 6020B	10/12/23 11:30	10/25/23 13:41	0.47g/50mL	0.5g/50mL	1.06
A3J1366-20	Soil	EPA 6020B	10/12/23 09:45	10/25/23 13:41	0.488g/50mL	0.5g/50mL	1.02
A3J1366-21	Soil	EPA 6020B	10/11/23 15:30	10/25/23 13:41	0.475g/50mL	0.5g/50mL	1.05
A3J1366-22	Soil	EPA 6020B	10/11/23 14:50	10/25/23 13:41	0.466g/50mL	0.5g/50mL	1.07
A3J1366-23	Soil	EPA 6020B	10/11/23 09:35	10/25/23 13:41	0.485g/50mL	0.5g/50mL	1.03
A3J1366-24	Soil	EPA 6020B	10/11/23 08:35	10/25/23 13:41	0.513g/50mL	0.5g/50mL	0.98
A3J1366-25	Soil	EPA 6020B	10/10/23 15:25	10/25/23 13:41	0.507g/50mL	0.5g/50mL	0.99

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Eatonville Landfill Characterization

Project Number: 00171.074.008 Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

Total Metals by EPA 6020B (ICPMS)											
<u>Prep: EPA 3051A</u>					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
A3J1366-26	Soil	EPA 6020B	10/10/23 14:30	10/25/23 13:41	0.469g/50mL	0.5g/50mL	1.07				
A3J1366-26RE1	Soil	EPA 6020B	10/10/23 14:30	10/25/23 13:41	0.469g/50mL	0.5g/50mL	1.07				
A3J1366-27	Soil	EPA 6020B	10/10/23 12:55	10/25/23 13:41	0.479g/50mL	0.5g/50mL	1.04				
A3J1366-27RE1	Soil	EPA 6020B	10/10/23 12:55	10/25/23 13:41	0.479g/50mL	0.5g/50mL	1.04				
A3J1366-28	Soil	EPA 6020B	10/10/23 10:55	10/25/23 13:41	0.51g/50mL	0.5g/50mL	0.98				
A3J1366-28RE1	Soil	EPA 6020B	10/10/23 10:55	10/25/23 13:41	0.51g/50mL	0.5g/50mL	0.98				
Batch: 23J1022											
A3J1366-01	Soil	EPA 6020B	10/10/23 08:50	10/26/23 09:08	0.495g/50mL	0.5g/50mL	1.01				
A3J1366-02	Soil	EPA 6020B	10/10/23 08:40	10/26/23 09:08	0.488g/50mL	0.5g/50mL	1.02				
A3J1366-03	Soil	EPA 6020B	10/10/23 08:20	10/26/23 09:08	0.497g/50mL	0.5g/50mL	1.01				
A3J1366-04	Soil	EPA 6020B	10/10/23 08:05	10/26/23 09:08	0.453g/50mL	0.5g/50mL	1.10				
A3J1366-05	Soil	EPA 6020B	10/10/23 07:50	10/26/23 09:08	0.465g/50mL	0.5g/50mL	1.08				
A3J1366-06	Soil	EPA 6020B	10/10/23 11:25	10/26/23 09:08	0.46g/50mL	0.5g/50mL	1.09				
A3J1366-07	Soil	EPA 6020B	10/10/23 15:45	10/26/23 09:08	0.466g/50mL	0.5g/50mL	1.07				
A3J1366-08	Soil	EPA 6020B	10/11/23 08:45	10/26/23 09:08	0.498g/50mL	0.5g/50mL	1.00				
A3J1366-09	Soil	EPA 6020B	10/11/23 10:15	10/26/23 09:08	0.453g/50mL	0.5g/50mL	1.10				
A3J1366-09RE1	Soil	EPA 6020B	10/11/23 10:15	10/26/23 09:08	0.453g/50mL	0.5g/50mL	1.10				
A3J1366-10	Soil	EPA 6020B	10/11/23 13:10	10/26/23 09:08	0.49g/50mL	0.5g/50mL	1.02				
A3J1366-11	Soil	EPA 6020B	10/11/23 15:45	10/26/23 09:08	0.487g/50mL	0.5g/50mL	1.03				
A3J1366-12	Soil	EPA 6020B	10/12/23 14:45	10/26/23 09:08	0.482g/50mL	0.5g/50mL	1.04				
A3J1366-13	Soil	EPA 6020B	10/12/23 14:30	10/26/23 09:08	0.48g/50mL	0.5g/50mL	1.04				

TCLP Metals by EPA 6020B (ICPMS)

Prep: EPA 1311/30	<u>15A</u>				Sample	Default	RL Prep
ab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0933							
A3J1366-01	Soil	1311/6020B	10/10/23 08:50	10/24/23 13:20	10mL/50mL	10mL/50mL	1.00
A3J1366-02	Soil	1311/6020B	10/10/23 08:40	10/24/23 13:20	10mL/50mL	10mL/50mL	1.00
A3J1366-03	Soil	1311/6020B	10/10/23 08:20	10/24/23 13:20	10mL/50mL	10mL/50mL	1.00
A3J1366-04	Soil	1311/6020B	10/10/23 08:05	10/24/23 13:20	10mL/50mL	10mL/50mL	1.00
Batch: 23J0987							
A3J1366-05	Soil	1311/6020B	10/10/23 07:50	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-06	Soil	1311/6020B	10/10/23 11:25	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-07	Soil	1311/6020B	10/10/23 15:45	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-08	Soil	1311/6020B	10/11/23 08:45	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI W	ater Sol	utio	ns	
55 SW	Yamhill	St,	Ste	300

Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u>

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

		TCL	P Metals by EPA 602	0B (ICPMS)			
Prep: EPA 1311/3015	A				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A3J1366-09	Soil	1311/6020B	10/11/23 10:15	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-10	Soil	1311/6020B	10/11/23 13:10	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-11	Soil	1311/6020B	10/11/23 15:45	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-12	Soil	1311/6020B	10/12/23 14:45	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-13	Soil	1311/6020B	10/12/23 14:30	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
Batch: 23J1044							
A3J1366-14	Soil	1311/6020B	10/11/23 11:55	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-14RE1	Soil	1311/6020B	10/11/23 11:55	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-15	Soil	1311/6020B	10/11/23 12:50	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-15RE1	Soil	1311/6020B	10/11/23 12:50	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-16	Soil	1311/6020B	10/11/23 11:30	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-17	Soil	1311/6020B	10/12/23 13:25	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-17RE1	Soil	1311/6020B	10/12/23 13:25	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-18	Soil	1311/6020B	10/12/23 12:35	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-18RE1	Soil	1311/6020B	10/12/23 12:35	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-19RE1	Soil	1311/6020B	10/12/23 11:30	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-20RE1	Soil	1311/6020B	10/12/23 09:45	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-21RE1	Soil	1311/6020B	10/11/23 15:30	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-22	Soil	1311/6020B	10/11/23 14:50	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-23	Soil	1311/6020B	10/11/23 09:35	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-24	Soil	1311/6020B	10/11/23 08:35	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-25	Soil	1311/6020B	10/10/23 15:25	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-26	Soil	1311/6020B	10/10/23 14:30	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-27	Soil	1311/6020B	10/10/23 12:55	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-28	Soil	1311/6020B	10/10/23 10:55	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00

Conventional Chemistry Parameters

<u> Prep: DI Leach</u>					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0780							
A3J1366-06	Soil	EPA 9045D	10/10/23 11:25	10/19/23 15:59	20.9763g/20mL	20g/20mL	NA
A3J1366-07	Soil	EPA 9045D	10/10/23 15:45	10/19/23 15:59	20.9161g/20mL	20g/20mL	NA
A3J1366-08	Soil	EPA 9045D	10/11/23 08:45	10/19/23 15:59	20.6736g/20mL	20g/20mL	NA
A3J1366-09	Soil	EPA 9045D	10/11/23 10:15	10/19/23 15:59	20.4459g/20mL	20g/20mL	NA
A3J1366-10	Soil	EPA 9045D	10/11/23 13:10	10/19/23 15:59	20.156g/20mL	20g/20mL	NA
A3J1366-11	Soil	EPA 9045D	10/11/23 15:45	10/19/23 15:59	20.701g/20mL	20g/20mL	NA

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u>

Project Number: 00171.074.008 Project Manager: Ben Johnson

Re	epo	rt l	D:	
A3J1366 -	11	10	23	1227

SAMPLE PREPARATION INFORMATION

	Conventional Chemistry Parameters												
Prep: DI Leach					Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
A3J1366-12	Soil	EPA 9045D	10/12/23 14:45	10/19/23 15:59	20.0679g/20mL	20g/20mL	NA						
A3J1366-13	Soil	EPA 9045D	10/12/23 14:30	10/19/23 15:59	20.967g/20mL	20g/20mL	NA						
A3J1366-14	Soil	EPA 9045D	10/11/23 11:55	10/19/23 15:59	20.2564g/20mL	20g/20mL	NA						
A3J1366-15	Soil	EPA 9045D	10/11/23 12:50	10/19/23 15:59	20.6724g/20mL	20g/20mL	NA						
A3J1366-16	Soil	EPA 9045D	10/11/23 11:30	10/19/23 15:59	20.8175g/20mL	20g/20mL	NA						
A3J1366-17	Soil	EPA 9045D	10/12/23 13:25	10/19/23 15:59	20.5433g/20mL	20g/20mL	NA						
A3J1366-18	Soil	EPA 9045D	10/12/23 12:35	10/19/23 15:59	20.8919g/20mL	20g/20mL	NA						
A3J1366-19	Soil	EPA 9045D	10/12/23 11:30	10/19/23 15:59	20.7889g/20mL	20g/20mL	NA						
A3J1366-20	Soil	EPA 9045D	10/12/23 09:45	10/19/23 15:59	20.7956g/20mL	20g/20mL	NA						
Batch: 23J0820													
A3J1366-22	Soil	EPA 9045D	10/11/23 14:50	10/20/23 12:15	20.0364g/20mL	20g/20mL	NA						
A3J1366-23	Soil	EPA 9045D	10/11/23 09:35	10/20/23 12:15	20.0486g/20mL	20g/20mL	NA						
A3J1366-24	Soil	EPA 9045D	10/11/23 08:35	10/20/23 12:15	20.0768g/20mL	20g/20mL	NA						
A3J1366-25	Soil	EPA 9045D	10/10/23 15:25	10/20/23 12:15	20.0842g/20mL	20g/20mL	NA						
A3J1366-26	Soil	EPA 9045D	10/10/23 14:30	10/20/23 12:15	20.0156g/20mL	20g/20mL	NA						
A3J1366-27	Soil	EPA 9045D	10/10/23 12:55	10/20/23 12:15	20.0014g/20mL	20g/20mL	NA						
A3J1366-28	Soil	EPA 9045D	10/10/23 10:55	10/20/23 12:15	20.0192g/20mL	20g/20mL	NA						

Percent Dry Weight											
Prep: Total Solids (Dry Weight) - 2022 Sample											
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 23J0745											
A3J1366-01	Soil	EPA 8000D	10/10/23 08:50	10/19/23 18:06			NA				
A3J1366-02	Soil	EPA 8000D	10/10/23 08:40	10/19/23 18:06			NA				
A3J1366-03	Soil	EPA 8000D	10/10/23 08:20	10/19/23 18:06			NA				
A3J1366-04	Soil	EPA 8000D	10/10/23 08:05	10/19/23 18:06			NA				
A3J1366-05	Soil	EPA 8000D	10/10/23 07:50	10/19/23 18:06			NA				
A3J1366-06	Soil	EPA 8000D	10/10/23 11:25	10/19/23 18:06			NA				
A3J1366-07	Soil	EPA 8000D	10/10/23 15:45	10/19/23 18:06			NA				
A3J1366-08	Soil	EPA 8000D	10/11/23 08:45	10/19/23 18:06			NA				
A3J1366-09	Soil	EPA 8000D	10/11/23 10:15	10/19/23 18:06			NA				
A3J1366-10	Soil	EPA 8000D	10/11/23 13:10	10/19/23 18:06			NA				
A3J1366-11	Soil	EPA 8000D	10/11/23 15:45	10/19/23 18:06			NA				
A3J1366-12	Soil	EPA 8000D	10/12/23 14:45	10/19/23 18:06			NA				
A3J1366-13	Soil	EPA 8000D	10/12/23 14:30	10/19/23 18:06			NA				
A3J1366-14	Soil	EPA 8000D	10/11/23 11:55	10/19/23 18:06			NA				

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Eatonville Landfill Characterization
Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

Prep: Total Solids (Dry Weight) - 2022 Sample Default RL Prep								
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
A3J1366-15	Soil	EPA 8000D	10/11/23 12:50	10/19/23 18:06			NA	
A3J1366-16	Soil	EPA 8000D	10/11/23 11:30	10/19/23 18:06			NA	
A3J1366-17	Soil	EPA 8000D	10/12/23 13:25	10/19/23 18:06			NA	
A3J1366-18	Soil	EPA 8000D	10/12/23 12:35	10/19/23 18:06			NA	
A3J1366-19	Soil	EPA 8000D	10/12/23 11:30	10/19/23 18:06			NA	
A3J1366-20	Soil	EPA 8000D	10/12/23 09:45	10/19/23 18:06			NA	
A3J1366-21	Soil	EPA 8000D	10/11/23 15:30	10/19/23 18:06			NA	
A3J1366-22	Soil	EPA 8000D	10/11/23 14:50	10/19/23 18:06			NA	
A3J1366-23	Soil	EPA 8000D	10/11/23 09:35	10/19/23 18:06			NA	
A3J1366-24	Soil	EPA 8000D	10/11/23 08:35	10/19/23 18:06			NA	
A3J1366-25	Soil	EPA 8000D	10/10/23 15:25	10/19/23 18:06			NA	
A3J1366-26	Soil	EPA 8000D	10/10/23 14:30	10/19/23 18:06			NA	
A3J1366-27	Soil	EPA 8000D	10/10/23 12:55	10/19/23 18:06			NA	
A3J1366-28	Soil	EPA 8000D	10/10/23 10:55	10/19/23 18:06			NA	

TCLP Extraction by EPA 1311							
<u>Prep: EPA 1311 (TC</u>	LP)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0867							
A3J1366-01	Soil	EPA 1311	10/10/23 08:50	10/23/23 16:40	100g/2000.3g	100g/2000g	NA
A3J1366-02	Soil	EPA 1311	10/10/23 08:40	10/23/23 16:40	100g/2000g	100g/2000g	NA
A3J1366-03	Soil	EPA 1311	10/10/23 08:20	10/23/23 16:40	100g/2000.2g	100g/2000g	NA
A3J1366-04	Soil	EPA 1311	10/10/23 08:05	10/23/23 16:40	100g/2000.3g	100g/2000g	NA
Batch: 23J0868							
A3J1366-05	Soil	EPA 1311	10/10/23 07:50	10/23/23 16:40	100g/2000.3g	100g/2000g	NA
A3J1366-06	Soil	EPA 1311	10/10/23 11:25	10/23/23 16:40	100g/2000.5g	100g/2000g	NA
A3J1366-07	Soil	EPA 1311	10/10/23 15:45	10/23/23 16:40	100g/2000.2g	100g/2000g	NA
A3J1366-08	Soil	EPA 1311	10/11/23 08:45	10/23/23 16:40	100g/2000g	100g/2000g	NA
A3J1366-09	Soil	EPA 1311	10/11/23 10:15	10/23/23 16:40	100g/2000.2g	100g/2000g	NA
A3J1366-10	Soil	EPA 1311	10/11/23 13:10	10/23/23 16:40	100g/2000.6g	100g/2000g	NA
A3J1366-11	Soil	EPA 1311	10/11/23 15:45	10/23/23 16:40	100g/2000.2g	100g/2000g	NA
A3J1366-12	Soil	EPA 1311	10/12/23 14:45	10/23/23 16:40	100g/2000.2g	100g/2000g	NA
A3J1366-13	Soil	EPA 1311	10/12/23 14:30	10/23/23 16:40	100g/2000.9g	100g/2000g	NA
Batch: 23J0904							
A3J1366-14	Soil	EPA 1311	10/11/23 11:55	10/24/23 16:30	100g/2000.1g	100g/2000g	NA
					0	0 0	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions	Project:	Eatonville Landfill Characterization	
55 SW Yamhill St, Ste 300	Project Number:	00171.074.008	<u>Report ID:</u>
Portland, OR 97209	Project Manager:	Ben Johnson	A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

TCLP Extraction by EPA 1311							
<u>Prep: EPA 1311 (T</u>	CLP)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A3J1366-15	Soil	EPA 1311	10/11/23 12:50	10/24/23 16:30	100g/2000.2g	100g/2000g	NA
A3J1366-16	Soil	EPA 1311	10/11/23 11:30	10/24/23 16:30	100g/2000g	100g/2000g	NA
A3J1366-17	Soil	EPA 1311	10/12/23 13:25	10/24/23 16:30	100g/2000g	100g/2000g	NA
A3J1366-18	Soil	EPA 1311	10/12/23 12:35	10/24/23 16:30	100g/2000.8g	100g/2000g	NA
A3J1366-19	Soil	EPA 1311	10/12/23 11:30	10/24/23 16:30	100g/2000.9g	100g/2000g	NA
A3J1366-20	Soil	EPA 1311	10/12/23 09:45	10/24/23 16:30	100g/2000.2g	100g/2000g	NA
A3J1366-21	Soil	EPA 1311	10/11/23 15:30	10/24/23 16:30	100g/2000.4g	100g/2000g	NA
A3J1366-22	Soil	EPA 1311	10/11/23 14:50	10/24/23 16:30	100g/2000.6g	100g/2000g	NA
A3J1366-23	Soil	EPA 1311	10/11/23 09:35	10/24/23 16:30	100g/2000.2g	100g/2000g	NA
A3J1366-24	Soil	EPA 1311	10/11/23 08:35	10/24/23 16:30	100g/2000.1g	100g/2000g	NA
A3J1366-25	Soil	EPA 1311	10/10/23 15:25	10/24/23 16:30	100g/2000.2g	100g/2000g	NA
A3J1366-26	Soil	EPA 1311	10/10/23 14:30	10/24/23 16:30	100g/2000.3g	100g/2000g	NA
A3J1366-27	Soil	EPA 1311	10/10/23 12:55	10/24/23 16:30	100g/2000.2g	100g/2000g	NA
A3J1366-28	Soil	EPA 1311	10/10/23 10:55	10/24/23 16:30	100g/2000.4g	100g/2000g	NA

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: Eatonville Landfill Characterization

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1366 - 11 10 23 1227

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
- COMP Analyzed sample is a composite of discrete samples that was performed in the laboratory.
- CONT The Sample Container provided for this analysis was not provided by Apex Laboratories, and has not been verified as part of the Apex Quality System.
 - **E** Estimated Value. The result is above the calibration range of the instrument.
- ICV-02 Estimated Result. Initial Calibration Verification (ICV) failed low.
 - J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- M-05 Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
- P-09 Due to weathering and/or the presence of an unknown mixture of PCB Congeners, the pattern does not match the standard used for calibration. Results are Estimated and based on the closest matching Aroclor.
- P-10 Result estimated due to the presence of multiple PCB Aroclors and/or matrix interference.
- P-12 Result estimated due to the presence of multiple PCB Aroclors and/or PCB congeners not defined as Aroclors.
- **pH_S** Method recommends preparation 'as soon as possible'. See Sample Preparation Information section of report for details. Consult regulator or permit manager to determine the usability of data for intended purpose.
- **PRO** Sample has undergone sample processing prior to extraction and analysis.
- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- Q-16 Reanalysis of an original Batch QC sample.
- Q-17 RPD between original and duplicate sample, or spike duplicates, is outside of established control limits.
- Q-29 Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
- Q-31 Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- Q-43 Matrix Spike recovery is not applicable due to interfering Aroclor(s) in source sample.
- Q-52 Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water S</u> 55 SW Yami Portland, Ol	nill St, Ste 300	Project:Eatonville Landfill CharacterProject Number:00171.074.008Project Manager:Ben Johnson	<u>Report ID:</u> A3J1366 - 11 10 23 1227
Q-54	Daily Continuing Calibration Verification recover results are reported as Estimated Values.	ery for this analyte failed the +/-20% criteria listed in	n EPA method 8260/8270 by +2%. The
Q-54a	Daily Continuing Calibration Verification recover results are reported as Estimated Values.	ery for this analyte failed the +/-20% criteria listed in	n EPA method 8260/8270 by -2%. The
Q-55	Daily CCV/LCS recovery for this analyte was be detection at the reporting level.	elow the +/-20% criteria listed in EPA 8260, however	r there is adequate sensitivity to ensure
Q-56	Daily CCV/LCS recovery for this analyte was a	bove the +/-20% criteria listed in EPA 8260	
Q-65	Spike recovery is estimated due to the high analy	yte concentration of the source sample.	
R-02	The Reporting Limit for this analyte has been ra	ised to account for interference from coeluting organ	nic compounds present in the sample.
R-04	Reporting levels elevated due to preparation and	l/or analytical dilution necessary for analysis.	
S-01	Surrogate recovery for this sample is not availab interference.	ble due to sample dilution required from high analyte	concentration and/or matrix
S-03	Sample re-extract, or the analysis of an associate	ed Batch QC sample, confirms surrogate failure due t	to sample matrix effect.
S-05	Surrogate recovery is estimated due to sample d	ilution required for high analyte concentration and/or	r matrix interference.
S-06	Surrogate recovery is outside of established cont	trol limits.	
TCLP	This batch QC sample was prepared with TCLP	or SPLP fluid from preparation batch 23J0867.	
TCLPa	This batch QC sample was prepared with TCLP	or SPLP fluid from preparation batch 23J0868.	

TCLPb This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 23J0904.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209

Project: Eatonville Landfill Characterization

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1366 - 11 10 23 1227

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED at or above the detection or reporting limit.
ND	Analyte NOT DETECTED at or above the detection or reporting limit.
NR	Result Not Reported
RPD	Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "____ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209

Project: Eatonville Landfill Characterization Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1366 - 11 10 23 1227

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

-For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.

-For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

-Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: <u>Eatonville Landfill Characterization</u>

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1366 - 11 10 23 1227

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

MatrixAnalysisTNI_IDAnalyteTNI_IDAccreditation	<u>Apex Laboratories</u>								
	Matrix	Analysis		Analyte		Accreditation			

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions Eatonville Landfill Characterization Project: 55 SW Yamhill St, Ste 300 Project Number: 00171.074.008 **Report ID:** Portland, OR 97209 Project Manager: Ben Johnson A3J1366 - 11 10 23 1227 • * \$ LUTS OF OFGAURS um Around 10 days (std) 5 days 72 hours 24 hours 24 hours Other Comments Agency/Agent. / NEEN SIREN 155 JCT , HEEN me & Date there H251266 SUE JAKS, I BUR OFFUL TARS, AND 11/2 PAUER OF MEOH VORS Corrosivity (pH) by are kept gnitability (Flash Poil of to make sure that MDL VOCs by EPA Meth ousu × 4 NWTPH-Gx R B, NTPH-Dx (Diesel) Oil Range) 8270E/SIM SVOCs by EPA R EDD with final lab PCB Arocions by EPA X XXX 1 Received By: Signature: Received By: Signature: Apex) CLP by Method 1311 60208 (RCRA 8) Chain of Ct Contra. Apex L Lab Batch Metals by EPA 60208 (RCRA 8 + Cu, Ni, and (QA 4 L Number of Containers 1330 1 ŧĈ Matrix 2 0 0 20 9 27/2 Time C 50 9 7 Sample 5 n (503.679.4543, SE [0 W 23 X ample Date 010 25 10/10/23 0/10/23 26/10/07 1110 11/2 Agency/Agent Time & Date: Agency/Agent 3 NIP! 5 0101 Time & Dat 22 30 2 0 214 10 BAXES UP 12 - WWWT C 1012 8821014 8 0 0 2025101 6 75 WI -1010 2023 F5101 04-0-NS-05-4-0-2.0-10102025 - 4010 202 0 -1010 2023 Suite 900 () 100 8 0010 Sample ID# Ĩ -9-2--07-1-1 -0.0r or Agent: 04-0-0-0-0-07-0.0-50-0 15-01-0.4-20 ŧ \$. MI-90 TW 2 1267URIN BUNB é 1 8 5 07 20 Vame . 19

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>I Water Solutions</u> SW Yamhill St, Ste 300 tland, OR 97209	Project:Eatonville Landfill CharacterizationProject Number:00171.074.008Project Manager:Ben Johnson	<u>Report ID:</u> A3J1366 - 11 10 23 1227
Accurations Accurations Constructions Solons 2 A hours 2 A hours 2 A hours 2 A hours	Comments	AgencyAgent A P- AgencyAgent Time & Date: A AgencyAgent Time & Date:
9952CEU	Korrania Karala Solo Solo Solo Solo Solo Solo Solo S	
Chain of Cu. Cortes autory Name: Corte Laborary Lab Batch # Tarroloca:	Image: Second	CO Receiver By Triff
80.0	Maple Data Sample Time Matrix 111125 1450 500 111125 1450 500 111125 1450 500 111125 1450 500 111125 1450 500 111125 1555 500 111125 1555 500 111125 1555 500 111125 1555 500 111125 1555 500 111125 1555 500 111125 1555 500 111125 1555 500 111125 1555 500 111125 1555 500	AgencyMaete CST The 6 Day. (0/15/4 5, 15 AgencyMaete
Agency, Authoritad Pur, or Agent. Agency, Authoritad Pur, or Agent. Send Lab Report To: Binjami Johnson Address: Report To: Binjami Johnson Address: Pagent Co: Binjami Johnson Address: Care Care Care Care Care Care Care Frank (Care Care Care Care Care Care Care Care Proper Name : Former Care Care Care Care Care Care Proper Name : Former Care Care Care Care Care Care	w Eaconds Landit Wess Charconn - エルールしー1.4.0 - ル - エルール・シー・シー シー・シー・シー シー・シー・シー - エルール・シー・ロー - エルー・シー・レーン - エールー・シー・レーン - エールー・シー・レーン - エールー・シー・レーン	Refrequences By CRAFICO, WARVAR Segmence By Warrange By Segmence

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Sol</u> 55 SW Yamhill Portland, OR	St, Ste 300	Project: Project Number Project Manager	<u>Eatonville Landfill Characterization</u> : 00171.074.008 : Ben Johnson	<u>Report ID:</u> A3J1366 - 11 10 23 1227
	Client: $GST_Mater ?$ Project/Project #: $FOYMeV$? Delivery Info: Date/time received: $ 1\rangle 13 23@$ Delivered by: Apex_Client_ESS Cooler Inspection Date/time inspec Chain of Custody included? Yes Signed/dated by client? Yes Cooler #1 Temperature (°C) Z.9 Custody seals? (Y/N) M Received on ice? (Y/N) M Received on ice? (Y/N) M Temp. blanks? (Y/N) M Ice type: (Gel/Real/Other) Yea Cooler out of temp? (YN) Possible real Green dots applied to out of temperature Out of temperature samples form initiat Sample Inspection: Date/time inspect All samples intact? Yes No_{-} Bottle labels/COCs agree? YesN 1O 10203 MeGH Wars. W22 COC/container discrepancies form initiat Do VOA vials have visible headspace? Comments: Water samples: pH checked: YesNo Additional information: $dateC QA$	Project Manager	: Ben Johnson RECEIPT FORM $Element WO#: A351366 E (and fill) Waste and fill Waste} and fill Waste and fill Waste} and fi$	A3J1366 - 11 10 23 1227 A3J1366 - 11 10 23 1227
		Vitness:	$\frac{11-9.0-10.0-20231012}{5}$ Cooler Inspected by: A JA	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, November 8, 2023 Ben Johnson GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209

RE: A3J1375 - Eatonville Landfill Characterization - 00171.074.008

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3J1375, which was received by the laboratory on 10/16/2023 at 4:55:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>pnerenberg@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information						
Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.						
(See Cooler Receipt Form for details)						
Default Cooler	3.6	degC				

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions	Project:	Eatonville Landfill Characterization	
55 SW Yamhill St, Ste 300	Project Number:	00171.074.008	<u>Report ID:</u>
Portland, OR 97209	Project Manager:	Ben Johnson	A3J1375 - 11 08 23 1632

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION							
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received			
TP-02-IM-14.0-15.0-20231010	A3J1375-01	Soil	10/10/23 13:35	10/16/23 16:55			
TP-03-IM-9.0-10.0-20231010	A3J1375-02	Soil	10/10/23 14:20	10/16/23 16:55			
SS-09-0.0-1.0-20231011	A3J1375-03	Soil	10/11/23 13:55	10/16/23 16:55			
TP-11-IM-14.0-15.0-20231012	A3J1375-04	Soil	10/12/23 10:45	10/16/23 16:55			
TP-12-IM-13.0-14.0-20231012	A3J1375-05	Soil	10/12/23 11:50	10/16/23 16:55			
TP-13-IM-9.0-10.0-20231012	A3J1375-06	Soil	10/12/23 12:20	10/16/23 16:55			
SS-14-0.0-1.020231012	A3J1375-07	Soil	10/12/23 08:50	10/16/23 16:55			
TP-14-IM-9.0-10.020231012	A3J1375-08	Soil	10/12/23 13:15	10/16/23 16:55			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	/Is by EPA 8082	A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-02-IM-14.0-15.0-20231010 (A3J1375-01RE1)				Matrix: Soil		Batch: 23J1016		C-07
Aroclor 1016	ND	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	
Aroclor 1221	ND	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	
Aroclor 1232	ND	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	
Aroclor 1242	767	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	P-09, Q-42
Aroclor 1248	ND	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	
Aroclor 1254	301	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	P-12, Q-4
Aroclor 1260	47.3	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	J
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 95 %	Limits: 60-125 %	5	10/27/23 09:54	EPA 8082A	
TP-03-IM-9.0-10.0-20231010 (A3J1375-	-02RE1)			Matrix: Soil		Batch:	23J1016	C-07
Aroclor 1016	ND	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1221	ND	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1232	ND	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1242	ND	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1248	ND	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1254	1570	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1260	ND	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 96 %	Limits: 60-125 %	5	10/27/23 10:30	EPA 8082A	
SS-09-0.0-1.0-20231011 (A3J1375-03)				Matrix: Soil		Batch:	23J1016	C-07
Aroclor 1016	ND	12.2	12.2	ug/kg dry	1	10/26/23 21:07	EPA 8082A	
Aroclor 1221	ND	12.2	12.2	ug/kg dry	1	10/26/23 21:07	EPA 8082A	
Aroclor 1232	ND	27.7	27.7	ug/kg dry	1	10/26/23 21:07	EPA 8082A	R-02
Aroclor 1242	ND	12.2	12.2	ug/kg dry	1	10/26/23 21:07	EPA 8082A	
Aroclor 1248	ND	12.2	12.2	ug/kg dry	1	10/26/23 21:07	EPA 8082A	
Aroclor 1254	36.1	6.11	12.2	ug/kg dry	1	10/26/23 21:07	EPA 8082A	P-10
Aroclor 1260	33.8	6.11	12.2	ug/kg dry	1	10/26/23 21:07	EPA 8082A	P-10
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 75 %	Limits: 60-125 %	1	10/26/23 21:07	EPA 8082A	
TP-11-IM-14.0-15.0-20231012 (A3J137	5-04)			Matrix: Soil		Batch:	23J1016	C-07
Aroclor 1016	ND	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A	
Aroclor 1221	ND	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A	
Aroclor 1232	ND	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Eatonville Landfill Characterization
Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
TP-11-IM-14.0-15.0-20231012 (A3J1375-04)				Matrix: Soil		Batch: 23J1016		C-07
Aroclor 1242	112	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A	P-12
Aroclor 1248	ND	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A	
Aroclor 1254	129	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A	P-12
Aroclor 1260	36.4	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 83 %	Limits: 60-125 %	1	10/26/23 21:43	EPA 8082A	
TP-12-IM-13.0-14.0-20231012 (A3J1375-05)				Matrix: Soil		Batch: 23J1016		C-07
Aroclor 1016	ND	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A	
Aroclor 1221	ND	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A	
Aroclor 1232	ND	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A	
Aroclor 1242	ND	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A	
Aroclor 1248	ND	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A	
Aroclor 1254	422	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A	P-10
Aroclor 1260	169	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A	P-10
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 121 %	Limits: 60-125 %	1	10/26/23 18:42	EPA 8082A	
TP-13-IM-9.0-10.0-20231012 (A3J1375	-06)			Matrix: Soil		Batch:	23J1016	C-07
Aroclor 1016	ND	10.9	10.9	ug/kg dry	1	10/26/23 19:18	EPA 8082A	
Aroclor 1221	ND	5.47	10.9	ug/kg dry	1	10/26/23 19:18	EPA 8082A	
Aroclor 1232	ND	22.4	22.4	ug/kg dry	1	10/26/23 19:18	EPA 8082A	R-02
Aroclor 1242	ND	11.7	11.7	ug/kg dry	1	10/26/23 19:18	EPA 8082A	R-02
Aroclor 1248	ND	14.0	14.0	ug/kg dry	1	10/26/23 19:18	EPA 8082A	R-02
Aroclor 1254	62.7	5.47	10.9	ug/kg dry	1	10/26/23 19:18	EPA 8082A	P-10
Aroclor 1260	22.4	5.47	10.9	ug/kg dry	1	10/26/23 19:18	EPA 8082A	P-10
Surrogate: Decachlorobiphenyl (Surr)		Recov	ery: 113 %	Limits: 60-125 %	1	10/26/23 19:18	EPA 8082A	
SS-14-0.0-1.020231012 (A3J1375-07))			Matrix: Soil		Batch:	23J1016	C-07
Aroclor 1016	ND	6.07	12.1	ug/kg dry	1	10/26/23 19:55	EPA 8082A	
Aroclor 1221	ND	6.07	12.1	ug/kg dry	1	10/26/23 19:55	EPA 8082A	
Aroclor 1232	ND	12.1	12.1	ug/kg dry	1	10/26/23 19:55	EPA 8082A	
Aroclor 1242	ND	6.07	12.1	ug/kg dry	1	10/26/23 19:55	EPA 8082A	
Aroclor 1248	ND	21.5	21.5	ug/kg dry	1	10/26/23 19:55	EPA 8082A	R-0
Aroclor 1254	63.5	6.07	12.1	ug/kg dry	1	10/26/23 19:55	EPA 8082A	P-1(

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI W</u>	ater Solutions
55 SW	Yamhill St, Ste 300
Portla	nd, OR 97209

Project:Eatonville Landfill CharacterizationProject Number:00171.074.008Project Manager:Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SS-14-0.0-1.020231012 (A3J1375-07)				Matrix: Soil		Batch: 23J1016		C-07
Aroclor 1260	43.9	6.07	12.1	ug/kg dry	1	10/26/23 19:55	EPA 8082A	P-10
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 105 %	Limits: 60-125 %	1	10/26/23 19:55	EPA 8082A	
TP-14-IM-9.0-10.020231012 (A3J137	5-08)			Matrix: Soil		Batch:	23J1016	C-07
Aroclor 1016	ND	25.4	25.4	ug/kg dry	1	10/26/23 20:31	EPA 8082A	R-02
Aroclor 1221	ND	5.68	11.4	ug/kg dry	1	10/26/23 20:31	EPA 8082A	
Aroclor 1232	ND	45.7	45.7	ug/kg dry	1	10/26/23 20:31	EPA 8082A	R-02
Aroclor 1242	ND	30.5	30.5	ug/kg dry	1	10/26/23 20:31	EPA 8082A	R-02
Aroclor 1248	ND	26.7	26.7	ug/kg dry	1	10/26/23 20:31	EPA 8082A	R-02
Aroclor 1254	57.9	5.68	11.4	ug/kg dry	1	10/26/23 20:31	EPA 8082A	P-12
Aroclor 1260	135	5.68	11.4	ug/kg dry	1	10/26/23 20:31	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 556 %	Limits: 60-125 %	1	10/26/23 20:31	EPA 8082A	S-03

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
TP-02-IM-14.0-15.0-20231010 (A3J1375-0	1)			Matrix: Soil	1			
Batch: 23J1033								
Arsenic	8.10	0.634	1.27	mg/kg dry	10	10/27/23 12:46	EPA 6020B	
Barium	166	0.634	1.27	mg/kg dry	10	10/27/23 12:46	EPA 6020B	
Cadmium	5.51	0.127	0.254	mg/kg dry	10	10/27/23 12:46	EPA 6020B	
Chromium	39.1	0.634	1.27	mg/kg dry	10	10/27/23 12:46	EPA 6020B	
Copper	341	1.27	2.54	mg/kg dry	10	10/27/23 12:46	EPA 6020B	
Mercury	0.856	0.0507	0.101	mg/kg dry	10	10/27/23 12:46	EPA 6020B	
Nickel	60.6	1.27	2.54	mg/kg dry	10	10/27/23 12:46	EPA 6020B	
Selenium	ND	0.634	1.27	mg/kg dry	10	10/27/23 12:46	EPA 6020B	
Silver	1.41	0.127	0.254	mg/kg dry	10	10/27/23 12:46	EPA 6020B	
Zinc	1610	2.54	5.07	mg/kg dry	10	10/27/23 12:46	EPA 6020B	
TP-02-IM-14.0-15.0-20231010 (A3J1375-0	1RE2)			Matrix: Soil	1			
Batch: 23J1033								
Lead	646	1.27	2.54	mg/kg dry	100	10/29/23 18:44	EPA 6020B	
TP-03-IM-9.0-10.0-20231010 (A3J1375-02	?)			Matrix: Soil	1			
Batch: 23J1033								
Arsenic	11.9	0.606	1.21	mg/kg dry	10	10/27/23 13:01	EPA 6020B	
Barium	600	0.606	1.21	mg/kg dry	10	10/27/23 13:01	EPA 6020B	
Cadmium	2.60	0.121	0.242	mg/kg dry	10	10/27/23 13:01	EPA 6020B	
Chromium	31.0	0.606	1.21	mg/kg dry	10	10/27/23 13:01	EPA 6020B	
Copper	238	1.21	2.42	mg/kg dry	10	10/27/23 13:01	EPA 6020B	
Mercury	0.667	0.0484	0.0969	mg/kg dry	10	10/27/23 13:01	EPA 6020B	
Nickel	49.8	1.21	2.42	mg/kg dry	10	10/27/23 13:01	EPA 6020B	
Selenium	ND	0.606	1.21	mg/kg dry	10	10/27/23 13:01	EPA 6020B	
Silver	0.588	0.121	0.242	mg/kg dry	10	10/27/23 13:01	EPA 6020B	
Zinc	1680	2.42	4.84	mg/kg dry	10	10/27/23 13:01	EPA 6020B	
ГР-03-IM-9.0-10.0-20231010 (A3J1375-02	RE2)			Matrix: Soil	1			
Batch: 23J1033								
Lead	2240	1.21	2.42	mg/kg dry	100	10/29/23 18:50	EPA 6020B	
SS-09-0.0-1.0-20231011 (A3J1375-03)				Matrix: Soil	ı			
Batch: 23 11033								

Batch: 23J1033

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
SS-09-0.0-1.0-20231011 (A3J1375-03)				Matrix: Soi	I				
Arsenic	5.23	0.659	1.32	mg/kg dry	10	10/27/23 13:17	EPA 6020B		
Barium	152	0.659	1.32	mg/kg dry	10	10/27/23 13:17	EPA 6020B		
Cadmium	3.20	0.132	0.264	mg/kg dry	10	10/27/23 13:17	EPA 6020B		
Chromium	21.5	0.659	1.32	mg/kg dry	10	10/27/23 13:17	EPA 6020B		
Copper	107	1.32	2.64	mg/kg dry	10	10/27/23 13:17	EPA 6020B		
Lead	171	0.132	0.264	mg/kg dry	10	10/27/23 13:17	EPA 6020B		
Mercury	0.740	0.0527	0.105	mg/kg dry	10	10/27/23 13:17	EPA 6020B		
Nickel	25.2	1.32	2.64	mg/kg dry	10	10/27/23 13:17	EPA 6020B		
Selenium	ND	0.659	1.32	mg/kg dry	10	10/27/23 13:17	EPA 6020B		
Silver	0.556	0.132	0.264	mg/kg dry	10	10/27/23 13:17	EPA 6020B		
Zinc	535	2.64	5.27	mg/kg dry	10	10/27/23 13:17	EPA 6020B		
TP-11-IM-14.0-15.0-20231012 (A3J1375-0	04)			Matrix: Soi	I				
Batch: 23J1033									
Arsenic	4.54	0.602	1.20	mg/kg dry	10	10/27/23 13:22	EPA 6020B		
Barium	107	0.602	1.20	mg/kg dry	10	10/27/23 13:22	EPA 6020B		
Cadmium	2.21	0.120	0.241	mg/kg dry	10	10/27/23 13:22	EPA 6020B		
Chromium	30.1	0.602	1.20	mg/kg dry	10	10/27/23 13:22	EPA 6020B		
Copper	175	1.20	2.41	mg/kg dry	10	10/27/23 13:22	EPA 6020B		
Lead	247	0.120	0.241	mg/kg dry	10	10/27/23 13:22	EPA 6020B		
Mercury	0.569	0.0481	0.0962	mg/kg dry	10	10/27/23 13:22	EPA 6020B		
Nickel	28.4	1.20	2.41	mg/kg dry	10	10/27/23 13:22	EPA 6020B		
Selenium	ND	0.602	1.20	mg/kg dry	10	10/27/23 13:22	EPA 6020B		
Silver	0.418	0.120	0.241	mg/kg dry	10	10/27/23 13:22	EPA 6020B		
Zinc	585	2.41	4.81	mg/kg dry	10	10/27/23 13:22	EPA 6020B		
TP-12-IM-13.0-14.0-20231012 (A3J1375-0	05)			Matrix: Soi	I				
Batch: 23J1033									
Arsenic	5.41	0.619	1.24	mg/kg dry	10	10/27/23 13:27	EPA 6020B		
Barium	106	0.619	1.24	mg/kg dry	10	10/27/23 13:27	EPA 6020B		
Cadmium	3.22	0.124	0.248	mg/kg dry	10	10/27/23 13:27	EPA 6020B		
Chromium	26.2	0.619	1.24	mg/kg dry	10	10/27/23 13:27	EPA 6020B		
Copper	196	1.24	2.48	mg/kg dry	10	10/27/23 13:27	EPA 6020B		
Lead	270	0.124	0.248	mg/kg dry	10	10/27/23 13:27	EPA 6020B		

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

		Total Meta	lls by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-12-IM-13.0-14.0-20231012 (A3J1375	i-05)			Matrix: Soi	I			
Mercury	0.514	0.0495	0.0990	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
Nickel	29.0	1.24	2.48	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
Selenium	ND	0.619	1.24	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
Silver	0.420	0.124	0.248	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
Zinc	596	2.48	4.95	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
TP-13-IM-9.0-10.0-20231012 (A3J1375-	06)			Matrix: Soi	I			
Batch: 23J1033								
Arsenic	3.26	0.614	1.23	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Barium	96.9	0.614	1.23	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Cadmium	1.08	0.123	0.246	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Chromium	14.2	0.614	1.23	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Copper	41.4	1.23	2.46	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Lead	65.9	0.123	0.246	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Mercury	0.263	0.0492	0.0983	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Nickel	14.9	1.23	2.46	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Selenium	ND	0.614	1.23	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Silver	0.301	0.123	0.246	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Zinc	177	2.46	4.92	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
SS-14-0.0-1.020231012 (A3J1375-07)				Matrix: Soi	I			
Batch: 23J1033								
Arsenic	3.29	0.604	1.21	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Barium	101	0.604	1.21	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Cadmium	4.77	0.121	0.242	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Chromium	25.4	0.604	1.21	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Copper	69.5	1.21	2.42	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Lead	187	0.121	0.242	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Mercury	0.454	0.0484	0.0967	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Nickel	30.9	1.21	2.42	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Selenium	ND	0.604	1.21	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Silver	0.350	0.121	0.242	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Zinc	628	2.42	4.84	mg/kg dry	10	10/27/23 13:37	EPA 6020B	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions	Project:	Eatonville Landfill Characterization	
55 SW Yamhill St, Ste 300	Project Number:	00171.074.008	<u>Report ID:</u>
Portland, OR 97209	Project Manager:	Ben Johnson	A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-14-IM-9.0-10.020231012 (A3J1375-	08)			Matrix: Soi	I			
Batch: 23J1033								
Arsenic	14.4	0.582	1.16	mg/kg dry	10	10/27/23 13:43	EPA 6020B	
Barium	145	0.582	1.16	mg/kg dry	10	10/27/23 13:43	EPA 6020B	
Cadmium	8.49	0.116	0.233	mg/kg dry	10	10/27/23 13:43	EPA 6020B	
Chromium	58.2	0.582	1.16	mg/kg dry	10	10/27/23 13:43	EPA 6020B	
Copper	341	1.16	2.33	mg/kg dry	10	10/27/23 13:43	EPA 6020B	
Lead	350	0.116	0.233	mg/kg dry	10	10/27/23 13:43	EPA 6020B	
Mercury	0.596	0.0466	0.0931	mg/kg dry	10	10/27/23 13:43	EPA 6020B	
Nickel	36.4	1.16	2.33	mg/kg dry	10	10/27/23 13:43	EPA 6020B	
Selenium	ND	0.582	1.16	mg/kg dry	10	10/27/23 13:43	EPA 6020B	
Silver	0.715	0.116	0.233	mg/kg dry	10	10/27/23 13:43	EPA 6020B	
Zinc	1310	2.33	4.66	mg/kg dry	10	10/27/23 13:43	EPA 6020B	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: **Eatonville Landfill Characterization** Project Number: 00171.074.008

Project Manager: Ben Johnson

Report ID: A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
TP-02-IM-14.0-15.0-20231010 (A3J1375-0	1)			Matrix: So	oil				
Batch: 23J0814									
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 14:01	1311/6020B		
Barium	ND	2.50	5.00	mg/L	10	10/20/23 14:01	1311/6020B		
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 14:01	1311/6020B		
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 14:01	1311/6020B		
Lead	0.183	0.0250	0.0500	mg/L	10	10/20/23 14:01	1311/6020B		
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 14:01	1311/6020B		
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 14:01	1311/6020B		
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 14:01	1311/6020B		
TP-03-IM-9.0-10.0-20231010 (A3J1375-02	:)			Matrix: So	oil				
Batch: 23J0814									
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 14:42	1311/6020B		
Barium	ND	2.50	5.00	mg/L	10	10/20/23 14:42	1311/6020B		
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 14:42	1311/6020B		
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 14:42	1311/6020B		
Lead	0.795	0.0250	0.0500	mg/L	10	10/20/23 14:42	1311/6020B		
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 14:42	1311/6020B		
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 14:42	1311/6020B		
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 14:42	1311/6020B		
SS-09-0.0-1.0-20231011 (A3J1375-03)				Matrix: So	oil				
Batch: 23J0814									
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 14:47	1311/6020B		
Barium	ND	2.50	5.00	mg/L	10	10/20/23 14:47	1311/6020B		
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 14:47	1311/6020B		
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 14:47	1311/6020B		
Lead	ND	0.0250	0.0500	mg/L	10	10/20/23 14:47	1311/6020B		
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 14:47	1311/6020B		
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 14:47	1311/6020B		
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 14:47	1311/6020B		
	4)			Matrix: So	oil				

TP-11-IM-14.0-15.0-20231012 (A3J1375-04)

Batch: 23J0814

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: Eatonville Landfill Characterization
Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note	
TP-11-IM-14.0-15.0-20231012 (A3J1375-0	14)			Matrix: So	oil				
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 14:53	1311/6020B		
Barium	ND	2.50	5.00	mg/L	10	10/20/23 14:53	1311/6020B		
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 14:53	1311/6020B		
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 14:53	1311/6020B		
Lead	0.0394	0.0250	0.0500	mg/L	10	10/20/23 14:53	1311/6020B	J	
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 14:53	1311/6020B		
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 14:53	1311/6020B		
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 14:53	1311/6020B		
TP-12-IM-13.0-14.0-20231012 (A3J1375-0)5)			Matrix: So	>il				
Batch: 23J0814									
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 14:58	1311/6020B		
Barium	ND	2.50	5.00	mg/L	10	10/20/23 14:58	1311/6020B		
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 14:58	1311/6020B		
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 14:58	1311/6020B		
Lead	0.0372	0.0250	0.0500	mg/L	10	10/20/23 14:58	1311/6020B	J	
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 14:58	1311/6020B		
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 14:58	1311/6020B		
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 14:58	1311/6020B		
TP-13-IM-9.0-10.0-20231012 (A3J1375-06	3)			Matrix: So	pil				
Batch: 23J0814									
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 15:03	1311/6020B		
Barium	ND	2.50	5.00	mg/L	10	10/20/23 15:03	1311/6020B		
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 15:03	1311/6020B		
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 15:03	1311/6020B		
Lead	ND	0.0250	0.0500	mg/L	10	10/20/23 15:03	1311/6020B		
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 15:03	1311/6020B		
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 15:03	1311/6020B		
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 15:03	1311/6020B		
SS-14-0.0-1.020231012 (A3J1375-07)				Matrix: So	pil				
Batch: 23J0814									
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 15:08	1311/6020B		

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions	
55 SW Yamhill St, Ste 300)

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

<u>Report ID:</u> A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

Project Manager: Ben Johnson

TCLP Metals by EPA 6020B (ICPMS)								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SS-14-0.0-1.020231012 (A3J1375-07)				Matrix: So	il			
Barium	ND	2.50	5.00	mg/L	10	10/20/23 15:08	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 15:08	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 15:08	1311/6020B	
Lead	0.0798	0.0250	0.0500	mg/L	10	10/20/23 15:08	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 15:08	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 15:08	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 15:08	1311/6020B	
TP-14-IM-9.0-10.020231012 (A3J1375-0	8)			Matrix: So	il			
Batch: 23J0814								
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 15:13	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/20/23 15:13	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 15:13	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 15:13	1311/6020B	
Lead	0.251	0.0250	0.0500	mg/L	10	10/20/23 15:13	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 15:13	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 15:13	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 15:13	1311/6020B	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

 Project Manager:
 Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

		Conventio	nal Chemistr	y Parameters	3			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-02-IM-14.0-15.0-20231010 (A3J137	75-01)			Matrix: Soi	I			
Batch: 23J0703								
Soil/Solid pH (measured in H2O)	7.2			pH Units	1	10/18/23 14:43	EPA 9045D	pH_S
pH Temperature (deg C)	22.3			pH Units	1	10/18/23 14:43	EPA 9045D	pH_S
TP-03-IM-9.0-10.0-20231010 (A3J1375	5-02)			Matrix: Soi	I			
Batch: 23J0703								
Soil/Solid pH (measured in H2O)	7.2			pH Units	1	10/18/23 14:44	EPA 9045D	pH_S
pH Temperature (deg C)	22.2			pH Units	1	10/18/23 14:44	EPA 9045D	pH_S
SS-09-0.0-1.0-20231011 (A3J1375-03)				Matrix: Soi	1			
Batch: 23J0703								
Soil/Solid pH (measured in H2O)	7.3			pH Units	1	10/18/23 14:46	EPA 9045D	pH_S
pH Temperature (deg C)	22.8			pH Units	1	10/18/23 14:46	EPA 9045D	pH_S
TP-11-IM-14.0-15.0-20231012 (A3J137	/5-04)			Matrix: Soi	I			
Batch: 23J0703								
Soil/Solid pH (measured in H2O)	7.4			pH Units	1	10/18/23 14:48	EPA 9045D	pH_S
pH Temperature (deg C)	22.7			pH Units	1	10/18/23 14:48	EPA 9045D	pH_S
TP-12-IM-13.0-14.0-20231012 (A3J137	75-05)			Matrix: Soi	I			
Batch: 23J0703								
Soil/Solid pH (measured in H2O)	7.6			pH Units	1	10/18/23 14:51	EPA 9045D	pH_S
pH Temperature (deg C)	22.1			pH Units	1	10/18/23 14:51	EPA 9045D	pH_S
TP-13-IM-9.0-10.0-20231012 (A3J1375	5-06)			Matrix: Soi	I			
Batch: 23J0703								
Soil/Solid pH (measured in H2O)	7.8			pH Units	1	10/18/23 14:55	EPA 9045D	pH_S
pH Temperature (deg C)	22.1			pH Units	1	10/18/23 14:55	EPA 9045D	pH_S
SS-14-0.0-1.020231012 (A3J1375-07	')			Matrix: Soi	I			
Batch: 23J0703								
Soil/Solid pH (measured in H2O)	6.8			pH Units	1	10/18/23 14:59	EPA 9045D	pH_S
pH Temperature (deg C)	21.9			pH Units	1	10/18/23 14:59	EPA 9045D	pH_S
TP-14-IM-9.0-10.020231012 (A3J137	5-08)			Matrix: Soi	I			
D. (). 00 10700								

Batch: 23J0703

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300 Portland, OR 97209	Project: Project Number: Project Manager:		<u>Report ID:</u> A3J1375 - 11 08 23 1632
	ANALYTICAL SA	MPLE RESULTS	

Conventional Chemistry Parameters									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
TP-14-IM-9.0-10.020231012 (A3J137	5-08)			Matrix: Soi	il				
Soil/Solid pH (measured in H2O) pH Temperature (deg C)	7.4 21.6			pH Units pH Units	1 1	10/18/23 15:03 10/18/23 15:03	EPA 9045D EPA 9045D	pH_S pH_S	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300

Portland, OR 97209

Project:Eatonville Landfill CharacterizationProject Number:00171.074.008Project Manager:Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-02-IM-14.0-15.0-20231010 (A3J1375-01)			Matrix:	Soil	Batch:	23J0679	
% Solids	83.5	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D	
TP-03-IM-9.0-10.0-20231010 (A3J1375-02)			Matrix:	Soil	Batch:	23J0679		
% Solids	83.9	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D	
SS-09-0.0-1.0-20231011 (A3J1375-03)			Matrix:	Soil	Batch:	23J0679		
% Solids	80.7	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D	
TP-11-IM-14.0-15.0-20231012 (A3J1375-04)				Matrix:	Soil	Batch:	23J0679	
% Solids	82.6	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D	
TP-12-IM-13.0-14.0-20231012 (A3J1375-05	i)			Matrix:	Soil	Batch:		
% Solids	84.1	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D	
TP-13-IM-9.0-10.0-20231012 (A3J1375-06)				Matrix:	Soil	Batch:	23J0679	
% Solids	89.0	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D	
SS-14-0.0-1.020231012 (A3J1375-07)				Matrix:	Soil	Batch:	23J0679	
% Solids	81.3	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D	
TP-14-IM-9.0-10.020231012 (A3J1375-08)			Matrix: Soil Batch: 23J0679		23J0679			
% Solids	87.1	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u>

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

		TCLP E	Extraction by	EPA 1311				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-02-IM-14.0-15.0-20231010 (A3J1375-0	1)			Matrix: Soi		•	23J0739	
TCLP Extraction	PREP			N/A	1	10/19/23 15:15	EPA 1311	
TP-03-IM-9.0-10.0-20231010 (A3J1375-02)			Matrix: Soi	il	Batch: 2	23J0739		
TCLP Extraction	PREP			N/A	1	10/19/23 15:15	EPA 1311	
SS-09-0.0-1.0-20231011 (A3J1375-03)				Matrix: Soi	Soil Batch: 23J0739			
TCLP Extraction	PREP			N/A	1	10/19/23 15:15	EPA 1311	
TP-11-IM-14.0-15.0-20231012 (A3J1375-04	1)			Matrix: Soil		Batch: 2	23J0739	
TCLP Extraction	PREP			N/A	1	10/19/23 15:15	EPA 1311	
TP-12-IM-13.0-14.0-20231012 (A3J1375-0	5)			Matrix: Soi	il	Batch: 23J0739		
TCLP Extraction	PREP			N/A	1	10/19/23 15:15	EPA 1311	
TP-13-IM-9.0-10.0-20231012 (A3J1375-06)	·			Matrix: Soi	il	Batch: 23J0739		
TCLP Extraction	PREP			N/A	1	10/19/23 15:15	EPA 1311	
SS-14-0.0-1.020231012 (A3J1375-07)				Matrix: Soi	il	Batch:	23J0739	
TCLP Extraction	PREP			N/A	1	10/19/23 15:15	EPA 1311	
TP-14-IM-9.0-10.020231012 (A3J1375-08)		Matrix: Soi	il	Batch: 2	23J0739			
TCLP Extraction	PREP			N/A	1	10/19/23 15:15	EPA 1311	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bi	phenyls	by EPA 80	082A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1016 - EPA 3546							So	il				
Blank (23J1016-BLK1)			Preparec	1: 10/26/23 0	4:56 Ana	yzed: 10/26	5/23 18:42					C-07
EPA 8082A												
Aroclor 1016	ND	5.00	10.0	ug/kg we	et 1							
Aroclor 1221	ND	5.00	10.0	ug/kg we	et 1							
Aroclor 1232	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1242	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1248	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1254	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1260	ND	5.00	10.0	ug/kg we	t 1							
Surr: Decachlorobiphenyl (Surr)		Recon	very: 101 %	Limits: 60-	-125 %	Dil	ution: 1x					
LCS (23J1016-BS1)			Preparec	1: 10/26/23 0	04:56 Ana	yzed: 10/26	5/23 19:00					C-07
EPA 8082A												
Aroclor 1016	213	5.00	10.0	ug/kg we	t 1	250		85	47-134%			
Aroclor 1260	240	5.00	10.0	ug/kg we		250		96	53-140%			
Surr: Decachlorobiphenyl (Surr)		Recov	very: 103 %	Limits: 60-		Dil	ution: 1x					
Duplicate (23J1016-DUP1)			Preparec	1: 10/26/23 0	04:56 Ana	yzed: 10/26	5/23 19:55					C-07
QC Source Sample: TP-02-IM-14	.0-15.0-2023	1010 (A3J1375	5-01RE1)			-						
<u>EPA 8082A</u>												
Aroclor 1016	ND	5.86	11.7	ug/kg dr	y 1		ND				30%	
Aroclor 1221	ND	5.86	11.7	ug/kg dr			ND				30%	
Aroclor 1232	ND	5.86	11.7	ug/kg dr	y 1		ND				30%	
Aroclor 1242	175	5.86	11.7	ug/kg dr	y 1		767			126	30%	P-09, Q-1
Aroclor 1248	ND	5.86	11.7	ug/kg dr	y 1		ND				30%	
Aroclor 1254	118	5.86	11.7	ug/kg dr			301			87	30%	P-12, Q-1
Aroclor 1260	22.7	5.86	11.7	ug/kg dr			47.3			70	30%	P-12, Q-1
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 78 %	Limits: 60-	-125 %	Dil	ution: 1x					
Matrix Spike (23J1016-MS1)			Preparec	1: 10/26/23 0	04:56 Ana	yzed: 10/26	5/23 21:07					C-07
OC Source Sample: TP-14-IM-9.)-10.020231	1012 (A3J1375										
<u>EPA 8082A</u>												
Aroclor 1016	266	5.48	11.0	ug/kg dr	y 1	274	ND	97	47-134%			
Aroclor 1260	304	5.48	11.0	ug/kg dr	v 1	274	135	61	53-140%			

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	inated B	Biphenyls	by EPA 80	82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1016 - EPA 3546							Soil					
Matrix Spike (23J1016-MS1)			Prepared	: 10/26/23	04:56 Ana	yzed: 10/26	/23 21:07					C-07
QC Source Sample: TP-14-IM-9.0-	10.020231	1012 (A3J1375	<u>5-08)</u>									
Surr: Decachlorobiphenyl (Surr)		Reco	very: 141 %	Limits: 6	50-125 %	Dilı	ution: 1x					S-03

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

				iciais by I		B (ICPMS	<i>.</i> ,					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1033 - EPA 3051A							So	il				
Blank (23J1033-BLK1)			Prepared	: 10/26/23 0	9:28 Ana	lyzed: 10/27	//23 12:36					
EPA 6020B												
Arsenic	ND	0.500	1.00	mg/kg we	et 10							
Barium	ND	0.500	1.00	mg/kg we	et 10							
Cadmium	ND	0.100	0.200	mg/kg we	et 10							
Chromium	ND	0.500	1.00	mg/kg we	et 10							
Copper	ND	1.00	2.00	mg/kg we	et 10							
Lead	ND	0.100	0.200	mg/kg we	et 10							
Mercury	ND	0.0400	0.0800	mg/kg we	et 10							
Nickel	ND	1.00	2.00	mg/kg we	et 10							
Selenium	ND	0.500	1.00	mg/kg we	et 10							
Silver	ND	0.100	0.200	mg/kg we	et 10							
Zinc	ND	2.00	4.00	mg/kg we	et 10							
LCS (23J1033-BS1)			Prepared	: 10/26/23 0	9:28 Ana	lyzed: 10/27	/23 12:41					
EPA 6020B												
Arsenic	48.9	0.500	1.00	mg/kg we	et 10	50.0		98	80-120%			
Barium	51.5	0.500	1.00	mg/kg we	et 10	50.0		103	80-120%			
Cadmium	48.9	0.100	0.200	mg/kg we	et 10	50.0		98	80-120%			
Chromium	49.7	0.500	1.00	mg/kg we	et 10	50.0		99	80-120%			
Copper	51.7	1.00	2.00	mg/kg we	et 10	50.0		103	80-120%			
Lead	53.2	0.100	0.200	mg/kg we	et 10	50.0		106	80-120%			
Mercury	1.01	0.0400	0.0800	mg/kg we	et 10	1.00		101	80-120%			
Nickel	51.4	1.00	2.00	mg/kg we	et 10	50.0		103	80-120%			
Selenium	24.8	0.500	1.00	mg/kg we	et 10	25.0		99	80-120%			
Silver	28.3	0.100	0.200	mg/kg we	et 10	25.0		113	80-120%			
Zinc	49.6	2.00	4.00	mg/kg we	et 10	50.0		99	80-120%			
Duplicate (23J1033-DUP1)			Prepared	: 10/26/23 0	9:28 Ana	lyzed: 10/27	/23 12:51					
QC Source Sample: TP-02-IM-14	.0-15.0-2023	1010 (A3J1375	1			<u> </u>						
EPA 6020B												
Arsenic	7.71	0.648	1.30	mg/kg dr	y 10		8.10			5	20%	
Barium	175	0.648	1.30	mg/kg dr	y 10		166			5	20%	
Cadmium	5.66	0.130	0.259	mg/kg dr	y 10		5.51			3	20%	
Chromium	28.6	0.648	1.30	mg/kg dr			39.1			31	20%	(

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by I	EPA 6020	0B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1033 - EPA 3051A							So	il				
Duplicate (23J1033-DUP1)			Prepared	: 10/26/23 0	9:28 Ana	lyzed: 10/27	/23 12:51					
QC Source Sample: TP-02-IM-14.	0-15.0-2023	1010 (A3J1375	<u>-01)</u>									
Copper	319	1.30	2.59	mg/kg dr	/ 10		341			7	20%	
Lead	539	0.130	0.259	mg/kg dr	/ 10		652			19	20%	
Mercury	0.624	0.0518	0.104	mg/kg dr	/ 10		0.856			31	20%	Q-0-
Nickel	41.8	1.30	2.59	mg/kg dr	/ 10		60.6			37	20%	Q-0-
Selenium	ND	0.648	1.30	mg/kg dr	/ 10		ND				20%	
Silver	1.24	0.130	0.259	mg/kg dr	/ 10		1.41			13	20%	
Zinc	1420	2.59	5.18	mg/kg dr	/ 10		1610			13	20%	
Matrix Spike (23J1033-MS1) QC Source Sample: TP-02-IM-14.	0-15.0-2023	1010 (A3J1375	1	: 10/26/23 0	9:28 Ana	lyzed: 10/27	/23 12:56					
EPA 6020B												
Arsenic	62.5	0.616	1.23	mg/kg dry	/ 10	61.6	8.10	88	75-125%			
Barium	182	0.616	1.23	mg/kg dr	/ 10	61.6	166	25	75-125%			Q-6
Cadmium	63.0	0.123	0.246	mg/kg dr		61.6	5.51	93	75-125%			
Chromium	76.2	0.616	1.23	mg/kg dr	/ 10	61.6	39.1	60	75-125%			Q-6
Copper	325	1.23	2.46	mg/kg dr	/ 10	61.6	341	-25	75-125%			Q-6
Lead	342	0.123	0.246	mg/kg dr	/ 10	61.6	652	-503	75-125%			Q-6
Mercury	1.49	0.0493	0.0985	mg/kg dr	/ 10	1.23	0.856	51	75-125%			Q-6
Nickel	83.8	1.23	2.46	mg/kg dr	/ 10	61.6	60.6	38	75-125%			Q-6
Selenium	28.2	0.616	1.23	mg/kg dr	/ 10	30.8	ND	92	75-125%			
Silver	35.5	0.123	0.246	mg/kg dr	/ 10	30.8	1.41	111	75-125%			
Zinc	4290	2.46	4.93	mg/kg dr	/ 10	61.6	1610	4350	75-125%			E, Q-6

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	0B (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0814 - EPA 1311/30	15A						Soi	il				
Blank (23J0814-BLK1)			Prepared:	10/20/23	10:31 Ana	yzed: 10/20	/23 13:14					
<u>1311/6020B</u>												
Arsenic	ND	0.0500	0.100	mg/L	10							TC
Barium	ND	2.50	5.00	mg/L	10							TC
Cadmium	ND	0.0500	0.100	mg/L	10							TC
Chromium	ND	0.0500	0.100	mg/L	10							TC
Lead	ND	0.0250	0.0500	mg/L	10							TC
Mercury	ND	0.00375	0.00700	mg/L	10							TC
Selenium	ND	0.0500	0.100	mg/L	10							TC
Silver	ND	0.0500	0.100	mg/L	10							TC
LCS (23J0814-BS1)			Prepared:	10/20/23	10:31 Ana	yzed: 10/20	/23 13:19					
<u>1311/6020B</u>												
Arsenic	4.89	0.0500	0.100	mg/L	10	5.00		98	80-120%			TC
Barium	10.8	2.50	5.00	mg/L	10	10.0		108	80-120%			TC
Cadmium	1.01	0.0500	0.100	mg/L	10	1.00		101	80-120%			TC
Chromium	5.09	0.0500	0.100	mg/L	10	5.00		102	80-120%			TC
Lead	5.17	0.0250	0.0500	mg/L	10	5.00		103	80-120%			TC
Mercury	0.0973	0.00375	0.00700	mg/L	10	0.100		97	80-120%			TC
Selenium	0.985	0.0500	0.100	mg/L	10	1.00		99	80-120%			TC
Silver	0.958	0.0500	0.100	mg/L	10	1.00		96	80-120%			TC
Duplicate (23J0814-DUP1)			Prepared:	10/20/23	10:31 Ana	yzed: 10/20	/23 15:44					
QC Source Sample: Non-SDG (A	3J1425-01)											
Arsenic	ND	0.0500	0.100	mg/L	10		ND				20%	
Barium	ND	2.50	5.00	mg/L	10		ND				20%	
Cadmium	ND	0.0500	0.100	mg/L	10		ND				20%	
Chromium	ND	0.0500	0.100	mg/L	10		ND				20%	
Lead	ND	0.0250	0.0500	mg/L	10		ND				20%	
Mercury	ND	0.00375	0.00700	mg/L	10		ND				20%	
Selenium	ND	0.0500	0.100	mg/L	10		ND				20%	
Silver	ND	0.0500	0.100	mg/L	10		ND				20%	

Matrix Spike (23J0814-MS1)

Prepared: 10/20/23 10:31 Analyzed: 10/20/23 15:50

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This

analytical report must be reproduced in its entirety.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Page 21 of 34

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	B (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0814 - EPA 1311/301	5A						So	il				
Matrix Spike (23J0814-MS1)			Prepared	10/20/23	10:31 Anal	yzed: 10/20	/23 15:50					
QC Source Sample: Non-SDG (A3.	<u>J1425-01)</u>											
<u>1311/6020B</u>												
Arsenic	4.98	0.0500	0.100	mg/L	10	5.00	ND	100	50-150%			
Barium	11.4	2.50	5.00	mg/L	10	10.0	ND	114	50-150%			
Cadmium	1.05	0.0500	0.100	mg/L	10	1.00	ND	105	50-150%			
Chromium	5.14	0.0500	0.100	mg/L	10	5.00	ND	103	50-150%			
Lead	5.26	0.0250	0.0500	mg/L	10	5.00	ND	105	50-150%			
Mercury	0.100	0.00375	0.00700	mg/L	10	0.100	ND	100	50-150%			
Selenium	1.01	0.0500	0.100	mg/L	10	1.00	ND	101	50-150%			
Silver	1.04	0.0500	0.100	mg/L	10	1.00	ND	104	50-150%			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conven	tional Ch	emistry	Paramete	rs					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0703 - DI Leach							Soi	I				
Duplicate (23J0703-DUP1)			Prepared	: 10/18/23 1	3:10 Ana	lyzed: 10/18	/23 15:04					
QC Source Sample: TP-14-IM-9.0-10).020231	1012 (A3J1375	5-08)									
<u>EPA 9045D</u> Soil/Solid pH (measured in H2O) pH Temperature (deg C)	7.6 21.8			pH Units pH Units			7.4 21.6			2 0.9	5% 30%	pH_S
Reference (23J0703-SRM1)			Prepared	: 10/18/23 1	3:10 Ana	lyzed: 10/18	/23 14:40					
EPA 9045D												
Soil/Solid pH (measured in H2O)	6.0			pH Units	s 1	6.00		100 9	8.33-101.3	3%		
pH Temperature (deg C)	22.1			pH Units	s 1	20.0		110	50-200%			
Reference (23J0703-SRM2)			Prepared	: 10/18/23 1	3:10 Ana	lyzed: 10/18	/23 15:08					
EPA 9045D												
Soil/Solid pH (measured in H2O)	8.0			pH Units	s 1	8.00		100	99-101%			
pH Temperature (deg C)	22.0			pH Units	s 1	20.0		110	50-200%			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209
 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0679 - Total Solids (Dry	Weigh	nt) - 2022					Soil					
Duplicate (23J0679-DUP1)			Prepared	: 10/18/23	09:27 Anal	yzed: 10/19/	/23 06:40					
QC Source Sample: Non-SDG (A3J13	<u>67-01)</u>											
% Solids	93.6	1.00	1.00	%	1		91.8			2	10%	
Duplicate (23J0679-DUP2)			Prepared	: 10/18/23	09:27 Anal	yzed: 10/19/	/23 06:40					
QC Source Sample: Non-SDG (A3J13	<u>67-02)</u>											
% Solids	94.4	1.00	1.00	%	1		95.4			1	10%	
Duplicate (23J0679-DUP3)			Prepared	: 10/18/23	09:27 Anal	yzed: 10/19/	/23 06:40					
QC Source Sample: Non-SDG (A3J13	<u>67-03)</u>											
% Solids	95.0	1.00	1.00	%	1		94.1			0.9	10%	
Duplicate (23J0679-DUP4)			Prepared	: 10/18/23	09:27 Anal	yzed: 10/19/	/23 06:40					
QC Source Sample: Non-SDG (A3J13	<u>67-04)</u>											
% Solids	93.9	1.00	1.00	%	1		94.1			0.2	10%	
Duplicate (23J0679-DUP5)			Prepared	: 10/18/23	09:27 Anal	yzed: 10/19/	/23 06:40					
QC Source Sample: Non-SDG (A3J13	<u>67-05)</u>											
% Solids	94.1	1.00	1.00	%	1		93.8			0.4	10%	
Duplicate (23J0679-DUP6)			Prepared	: 10/18/23	09:27 Anal	yzed: 10/19/	/23 06:40					
QC Source Sample: Non-SDG (A3J13	<u>67-06)</u>											
% Solids	93.5	1.00	1.00	%	1		93.5			0.07	10%	
Duplicate (23J0679-DUP7)			Prepared	: 10/18/23	16:59 Anal	yzed: 10/19/	/23 06:40					
QC Source Sample: Non-SDG (A3J14	15-01)											
% Solids	91.9	1.00	1.00	%	1		91.9			0.02	10%	
Duplicate (23J0679-DUP8)			Prepared	: 10/18/23	19:04 Anal	yzed: 10/19/	/23 06:40					
QC Source Sample: Non-SDG (A3J14	37-02)											
% Solids	78.3	1.00	1.00	%	1		79.1			1	10%	

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300

Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

SAMPLE PREPARATION INFORMATION

	Polycł	nlorinated Biphenyls I	oy EPA 8082A			
				Sample	Default	RL Prep
Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Soil	EPA 8082A	10/10/23 13:35	10/26/23 04:56	10.31g/5mL	10g/5mL	0.97
Soil	EPA 8082A	10/10/23 14:20	10/26/23 04:56	10.22g/5mL	10g/5mL	0.98
Soil	EPA 8082A	10/11/23 13:55	10/26/23 04:56	10.14g/5mL	10g/5mL	0.99
Soil	EPA 8082A	10/12/23 10:45	10/26/23 04:56	10.28g/5mL	10g/5mL	0.97
Soil	EPA 8082A	10/12/23 11:50	10/26/23 04:56	10.53g/5mL	10g/5mL	0.95
Soil	EPA 8082A	10/12/23 12:20	10/26/23 04:56	10.27g/5mL	10g/5mL	0.97
Soil	EPA 8082A	10/12/23 08:50	10/26/23 04:56	10.14g/5mL	10g/5mL	0.99
Soil	EPA 8082A	10/12/23 13:15	10/26/23 04:56	10.11g/5mL	10g/5mL	0.99
	Soil Soil Soil Soil Soil Soil Soil	MatrixMethodSoilEPA 8082ASoilEPA 8082ASoilEPA 8082ASoilEPA 8082ASoilEPA 8082ASoilEPA 8082ASoilEPA 8082ASoilEPA 8082ASoilEPA 8082A	Matrix Method Sampled Soil EPA 8082A 10/10/23 13:35 Soil EPA 8082A 10/10/23 14:20 Soil EPA 8082A 10/11/23 13:55 Soil EPA 8082A 10/11/23 13:55 Soil EPA 8082A 10/12/23 10:45 Soil EPA 8082A 10/12/23 11:50 Soil EPA 8082A 10/12/23 12:20 Soil EPA 8082A 10/12/23 08:50	Soil EPA 8082A 10/10/23 13:35 10/26/23 04:56 Soil EPA 8082A 10/10/23 14:20 10/26/23 04:56 Soil EPA 8082A 10/11/23 13:55 10/26/23 04:56 Soil EPA 8082A 10/11/23 13:55 10/26/23 04:56 Soil EPA 8082A 10/12/23 10:45 10/26/23 04:56 Soil EPA 8082A 10/12/23 10:45 10/26/23 04:56 Soil EPA 8082A 10/12/23 11:50 10/26/23 04:56 Soil EPA 8082A 10/12/23 12:20 10/26/23 04:56 Soil EPA 8082A 10/12/23 12:20 10/26/23 04:56 Soil EPA 8082A 10/12/23 12:20 10/26/23 04:56 Soil EPA 8082A 10/12/23 08:50 10/26/23 04:56	Matrix Method Sampled Prepared Initial/Final Soil EPA 8082A 10/10/23 13:35 10/26/23 04:56 10.31g/5mL Soil EPA 8082A 10/10/23 14:20 10/26/23 04:56 10.22g/5mL Soil EPA 8082A 10/11/23 13:55 10/26/23 04:56 10.22g/5mL Soil EPA 8082A 10/11/23 13:55 10/26/23 04:56 10.14g/5mL Soil EPA 8082A 10/12/23 10:45 10/26/23 04:56 10.28g/5mL Soil EPA 8082A 10/12/23 11:50 10/26/23 04:56 10.53g/5mL Soil EPA 8082A 10/12/23 12:20 10/26/23 04:56 10.27g/5mL Soil EPA 8082A 10/12/23 12:20 10/26/23 04:56 10.27g/5mL Soil EPA 8082A 10/12/23 08:50 10/26/23 04:56 10.14g/5mL	Matrix Method Sampled Prepared Sample Default Matrix Method Sampled Prepared Initial/Final Initial/Final Soil EPA 8082A 10/10/23 13:35 10/26/23 04:56 10.31g/5mL 10g/5mL Soil EPA 8082A 10/10/23 14:20 10/26/23 04:56 10.22g/5mL 10g/5mL Soil EPA 8082A 10/11/23 13:55 10/26/23 04:56 10.14g/5mL 10g/5mL Soil EPA 8082A 10/12/23 10:45 10/26/23 04:56 10.28g/5mL 10g/5mL Soil EPA 8082A 10/12/23 10:45 10/26/23 04:56 10.28g/5mL 10g/5mL Soil EPA 8082A 10/12/23 11:50 10/26/23 04:56 10.53g/5mL 10g/5mL Soil EPA 8082A 10/12/23 12:20 10/26/23 04:56 10.27g/5mL 10g/5mL Soil EPA 8082A 10/12/23 08:50 10/26/23 04:56 10.14g/5mL 10g/5mL Soil EPA 8082A 10/12/23 08:50 10/26/23 04:56 10.14g/5mL 10g/5mL Soil

	Total Metals by EPA 6020B (ICPMS)												
<u>Prep: EPA 3051A</u>					Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
Batch: 23J1033													
A3J1375-01	Soil	EPA 6020B	10/10/23 13:35	10/26/23 09:28	0.472g/50mL	0.5g/50mL	1.06						
A3J1375-01RE2	Soil	EPA 6020B	10/10/23 13:35	10/26/23 09:28	0.472g/50mL	0.5g/50mL	1.06						
A3J1375-02	Soil	EPA 6020B	10/10/23 14:20	10/26/23 09:28	0.492g/50mL	0.5g/50mL	1.02						
A3J1375-02RE2	Soil	EPA 6020B	10/10/23 14:20	10/26/23 09:28	0.492g/50mL	0.5g/50mL	1.02						
A3J1375-03	Soil	EPA 6020B	10/11/23 13:55	10/26/23 09:28	0.47g/50mL	0.5g/50mL	1.06						
A3J1375-04	Soil	EPA 6020B	10/12/23 10:45	10/26/23 09:28	0.503g/50mL	0.5g/50mL	0.99						
A3J1375-05	Soil	EPA 6020B	10/12/23 11:50	10/26/23 09:28	0.48g/50mL	0.5g/50mL	1.04						
A3J1375-06	Soil	EPA 6020B	10/12/23 12:20	10/26/23 09:28	0.457g/50mL	0.5g/50mL	1.09						
A3J1375-07	Soil	EPA 6020B	10/12/23 08:50	10/26/23 09:28	0.509g/50mL	0.5g/50mL	0.98						
A3J1375-08	Soil	EPA 6020B	10/12/23 13:15	10/26/23 09:28	0.493g/50mL	0.5g/50mL	1.01						

TCLP Metals by EPA 6020B (ICPMS)

Prep: EPA 1311/3015	<u>A</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0814							
A3J1375-01	Soil	1311/6020B	10/10/23 13:35	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00
A3J1375-02	Soil	1311/6020B	10/10/23 14:20	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00
A3J1375-03	Soil	1311/6020B	10/11/23 13:55	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00
A3J1375-04	Soil	1311/6020B	10/12/23 10:45	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00
A3J1375-05	Soil	1311/6020B	10/12/23 11:50	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00
A3J1375-06	Soil	1311/6020B	10/12/23 12:20	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300 Portland, OR 97209		Project:Eatonville Landfill CharacterizationProject Number:00171.074.008Project Manager:Ben Johnson				<u>Report ID:</u> A3J1375 - 11 08 23 1632	
		SAMPL	E PREPARATION I	NFORMATION			
		TCL	P Metals by EPA 602	OB (ICPMS)			
Prep: EPA 1311/3015	<u>A</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A3J1375-07	Soil	1311/6020B	10/12/23 08:50	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00
A3J1375-08	Soil	1311/6020B	10/12/23 13:15	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00
		Cor	ventional Chemistry	Parameters			
Prep: DI Leach					Sample	Default	RL Prep
	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor

Dalch. 2330703							
A3J1375-01	Soil	EPA 9045D	10/10/23 13:35	10/18/23 13:10	20.1005g/20mL	20g/20mL	NA
A3J1375-02	Soil	EPA 9045D	10/10/23 14:20	10/18/23 13:10	20.0094g/20mL	20g/20mL	NA
A3J1375-03	Soil	EPA 9045D	10/11/23 13:55	10/18/23 13:10	20.0698g/20mL	20g/20mL	NA
A3J1375-04	Soil	EPA 9045D	10/12/23 10:45	10/18/23 13:10	20.0131g/20mL	20g/20mL	NA
A3J1375-05	Soil	EPA 9045D	10/12/23 11:50	10/18/23 13:10	20.0084g/20mL	20g/20mL	NA
A3J1375-06	Soil	EPA 9045D	10/12/23 12:20	10/18/23 13:10	20.0126g/20mL	20g/20mL	NA
A3J1375-07	Soil	EPA 9045D	10/12/23 08:50	10/18/23 13:10	20.0317g/20mL	20g/20mL	NA
A3J1375-08	Soil	EPA 9045D	10/12/23 13:15	10/18/23 13:10	20.0303g/20mL	20g/20mL	NA

Percent Dry Weight							
Prep: Total Solids (D	ry Weight) - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0679							
A3J1375-01	Soil	EPA 8000D	10/10/23 13:35	10/18/23 09:27			NA
A3J1375-02	Soil	EPA 8000D	10/10/23 14:20	10/18/23 09:27			NA
A3J1375-03	Soil	EPA 8000D	10/11/23 13:55	10/18/23 09:27			NA
A3J1375-04	Soil	EPA 8000D	10/12/23 10:45	10/18/23 09:27			NA
A3J1375-05	Soil	EPA 8000D	10/12/23 11:50	10/18/23 09:27			NA
A3J1375-06	Soil	EPA 8000D	10/12/23 12:20	10/18/23 09:27			NA
A3J1375-07	Soil	EPA 8000D	10/12/23 08:50	10/18/23 09:27			NA
A3J1375-08	Soil	EPA 8000D	10/12/23 13:15	10/18/23 09:27			NA

TCLP Extraction by EPA 1311							
Prep: EPA 1311 (TCLP) Sample Default RL Prep						RL Prep	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0739 A3J1375-01	Soil	EPA 1311	10/10/23 13:35	10/19/23 15:15	100g/2000.2g	100g/2000g	NA

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions				
55 SW Yamhill St, Ste 300				
Portland, OR 97209				

 Project:
 Eatonville Landfill Characterization

 Project Number:
 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

SAMPLE PREPARATION INFORMATION

TCLP Extraction by EPA 1311							
Prep: EPA 1311 (TCLP)					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A3J1375-02	Soil	EPA 1311	10/10/23 14:20	10/19/23 15:15	100g/2000g	100g/2000g	NA
A3J1375-03	Soil	EPA 1311	10/11/23 13:55	10/19/23 15:15	100g/2000g	100g/2000g	NA
A3J1375-04	Soil	EPA 1311	10/12/23 10:45	10/19/23 15:15	100g/2000.2g	100g/2000g	NA
A3J1375-05	Soil	EPA 1311	10/12/23 11:50	10/19/23 15:15	100g/2000.1g	100g/2000g	NA
A3J1375-06	Soil	EPA 1311	10/12/23 12:20	10/19/23 15:15	100g/2000.8g	100g/2000g	NA
A3J1375-07	Soil	EPA 1311	10/12/23 08:50	10/19/23 15:15	100g/2000.9g	100g/2000g	NA
A3J1375-08	Soil	EPA 1311	10/12/23 13:15	10/19/23 15:15	100g/2000.6g	100g/2000g	NA

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Eatonville Landfill Characterization

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1375 - 11 08 23 1632

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
- **E** Estimated Value. The result is above the calibration range of the instrument.
- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- P-09 Due to weathering and/or the presence of an unknown mixture of PCB Congeners, the pattern does not match the standard used for calibration. Results are Estimated and based on the closest matching Aroclor.
- P-10 Result estimated due to the presence of multiple PCB Aroclors and/or matrix interference.
- P-12 Result estimated due to the presence of multiple PCB Aroclors and/or PCB congeners not defined as Aroclors.
- **pH_S** Method recommends preparation 'as soon as possible'. See Sample Preparation Information section of report for details. Consult regulator or permit manager to determine the usability of data for intended purpose.
- Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- Q-17 RPD between original and duplicate sample, or spike duplicates, is outside of established control limits.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- Q-65 Spike recovery is estimated due to the high analyte concentration of the source sample.
- R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
- S-03 Sample re-extract, or the analysis of an associated Batch QC sample, confirms surrogate failure due to sample matrix effect.
- TCLP This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 23J0739.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209

Project: Eatonville Landfill Characterization

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1375 - 11 08 23 1632

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED at or above the detection or reporting limit.
ND	Analyte NOT DETECTED at or above the detection or reporting limit.
NR	Result Not Reported
RPD	Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "____ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions

55 SW Yamhill St, Ste 300 Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u> Project Number: 00171.074.008

Project Manager: Ben Johnson

<u>Report ID:</u> A3J1375 - 11 08 23 1632

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

-For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.

-For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

-Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: <u>Eatonville Landfill Characterization</u>

Project Number: 00171.074.008 Project Manager: Ben Johnson <u>Report ID:</u> A3J1375 - 11 08 23 1632

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

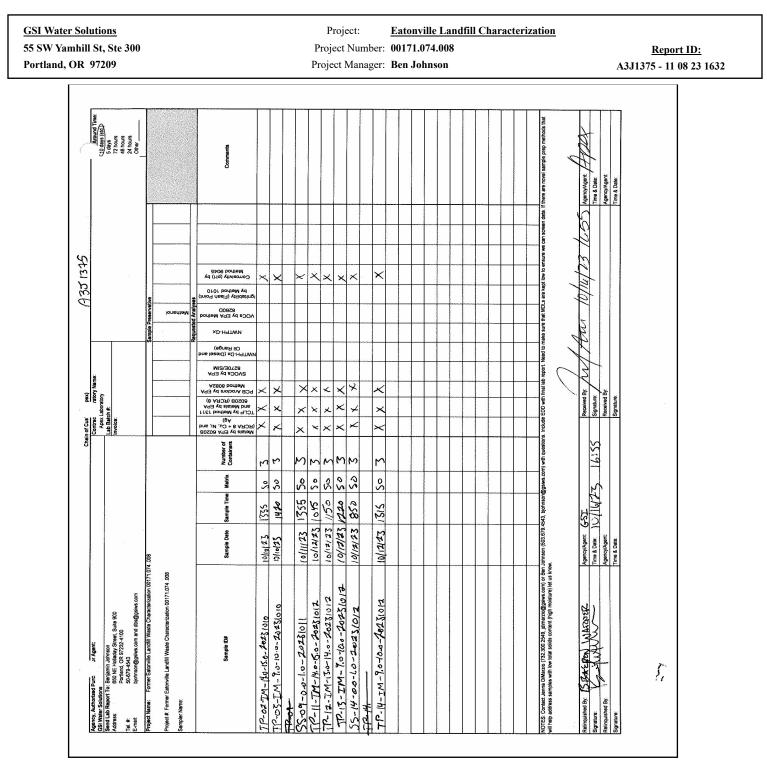
Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories


Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Potenter 9209 Project Manage: Beachmont ALITIST. 108.22.10.22 APEX LABS COOLER RECEIPT FORM ADEX LABS COOLER RECEIPT FORM Clenet: Coll where Y Buttloth	<u>GSI Water Solutions</u> 55 SW Yamhill St, Ste 300	Project: <u>Eato</u> Project Number: 0017	nville Landfill Characterization /1.074.008	Report ID:
Client: GST Water Stuff On S Element WOY: A3 5 1345 Project Project #: [CVMPT Eqt-ONULLE Law of All Water Ample: Part of the Content of the		5		
	Client: GSI Water S Project/Project #: GYMer E Delivery Info: Date/time received: Multiply @ Delivered by: Apex_Client_ESS <u>Cooler Inspection</u> Date/time inspection Chain of Custody included? Yes A Signed/dated by client? Yes A Signed/dated by client? Yes A Cooler #1 Temperature (°C) G. Le Custody seals? (Y/N) A Received on ice? (Y/N) A Received on ice? (Y/N) A Received on ice? (Y/N) A Ice type: (Gel/Real/Other) Yea Condition (In/Out): The Cooler out of temp? (YN) Possible reading Green dots applied to out of temperature Green dots applied to out of temperature inspection: Date/time inspection: Date/time: Date/ti	$\frac{ U+i On S }{ I I I I I I I I$		
DSS PAR PAR Por -		Witness: HOW		Form Y-003 R-01 -

Apex Laboratories

Philip Nevenberg