APPENDIX B CITY OF SEATTLE REGRADE AND REGIONAL FILLING RECORDS

REMEDIAL INVESTIGATION WORK PLAN

Block 79 East Site 701, 739, 753 9th Avenue North Seattle, Washington

Farallon PN: 397-035

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT BLOCK 43 DEVELOPMENT PROJECT SOUTH LAKE UNION NEIGHBORHOOD SEATTLE, WASHINGTON

Prepared for City Investors XX LLC June 14, 2012

HWA GEOSCIENCES INC.

- · Geotechnical Engineering
- Hydrogeology
- · Geoenvironmental Services
- · Inspection & Testing

TABLE OF CONTENTS

	<u>Page</u>
1.0 INTRODUCTION	1
1.1 SITE LOCATION AND DESCRIPTION	1
1.2 OBJECTIVES AND SCOPE OF WORK	1
1.3 Former Property Uses and Previous Environmental	
Investigations	2
1.4 RECENT DEMOLITION ACTIVITIES, HYDRAULIC LIFT REMOVAL, AND	
OTHER RELATED ACTIVITIES	4
2.0 FIELD ACTIVITIES	
2.1 SOIL SAMPLE COLLECTION	6
2.2 GROUND WATER SAMPLE COLLECTION	7
2.3 FIELD SCREENING INSTRUMENTS	8
2.4 DECONTAMINATION METHODS	
2.5 Investigation-Derived Waste	8
2.6 Subsurface Hydrogeologic Conditions	
3.0 CHEMICAL ANALYSES AND QUALITY CONTROL REVIEW	11
3.1 CHEMICAL ANALYSES	
3.2 Quality Control Review	12
4.0 CHEMICAL ANALYSES RESULTS	14
4.1 Analytical Results	14
4.1.1 CLEANUP AND SCREENING LEVELS	
4.1.2 ANALYTICAL RESULTS FOR SOIL SAMPLES	15
4.1.3 ANALYTICAL RESULTS FOR GROUND WATER SAMPLES	18
5.0 SUMMARY AND CONCLUSIONS	
5.1 CONSTRUCTION / EXCAVATION RECOMMENDATIONS	
5.2 CONSTRUCTION / WATER DISPOSAL RECOMMENDATIONS	
5.3 CONSTRUCTION HEALTH AND SAFETY	
5.4 REGULATORY COMPLIANCE	
6.0 REFERENCES	
7.0 LIMITATIONS	27
LIST OF TABLES	
Table 1: Ground Water Elevations and Field Parameters from Existing Monito Wells	oring
Table 2: Analytical Results for Organic Compounds in Soil Samples	
Table 3: Analytical Results for Metals in Soil Samples	
Table 4: Analytical Results for Organic Compounds in Ground Water SampleTable 5: Analytical Results for Metals in Ground Water Samples	S

LIST OF FIGURES

Figure 1: Vicinity Map

Figure 2: Site and Exploration Plan

Figure 3: Historical and Recent Soil Sample Locations and MTCA Method A

Exceedances

Figure 4: Historical and Recent Ground Water Sample Locations and MTCA Method

A Exceedances

LIST OF APPENDICES

APPENDIX A: PHASE II ESA WORK PLAN APPENDIX B: BORING AND TEST PIT LOGS

APPENDIX C: ANALYTICAL LABORATORY REPORTS AND CHAIN-OF-CUSTODY

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT BLOCK 43 DEVELOPMENT PROJECT SOUTH LAKE UNION NEIGHBORHOOD SEATTLE, WASHINGTON

1.0 INTRODUCTION

This report presents the results of the HWA GeoSciences Inc. (HWA) Phase II Environmental Site Assessment (ESA) conducted for City Investors XX LLC ("the Client"), at the Block 43 Development Project in the South Lake Union neighborhood of Seattle, Washington. HWA's work for this project was authorized under a master services agreement with City Investors XX LLC dated May 2, 2012.

1.1 SITE LOCATION AND DESCRIPTION

HWA understand that the Client plans to redevelop Block 43 and construct a multi-story, mixed-use building with multiple levels of underground parking. These activities will be performed at a property in Seattle's South Lake Union neighborhood known as "Block 43" (the "Site"). The two adjoining blocks to the south are also slated for redevelopment, and are known as Block 44 and Block 45. Figure 1 shows these properties and surrounding areas. Several small parcels comprise the Site. Figure 2 shows Block 43 and historic and recent environmental sampling locations.

The Site is approximately 53,869 square feet in size and is mostly vacant as existing buildings were previously demolished. Current use of the Site includes construction laydown and storage, and an active retail biofuel station (with above-ground fuel storage tanks) at the northeast corner of the Site. The Site is located at 601 Westlake Avenue North, in Seattle, Washington and is bounded on the south by Mercer Street, on the east by Westlake Avenue North, on the north by Broad Street, and by 9th Avenue North on the west.

1.2 OBJECTIVES AND SCOPE OF WORK

The objectives of this Phase II ESA were to investigate and evaluate the potential presence of soil or ground water contamination beneath the Site, and use this information to support planned property development and construction activities, including: health and safety concerns during construction, construction delays, soil disposal mass/volume and associated disposal costs, handling and disposal of contaminated soil and ground water, and other activities identified by the Client.

HWA's scope of work to fulfill these objectives included:

- Reviewing background data and previous environmental reports pertaining to the Site, including files at the Washington Department of Ecology (Ecology) Northwest Regional Office in Bellevue, Washington;
- Preparing a phase II work plan, including a sampling and analysis plan and health and safety plan;
- Assessing the status of fill ports of two underground storage tanks located in the central portion of the Site;
- Advancing 13 soil borings at various locations to collect soil and ground water samples for chemical analysis;
- Excavating 11 test pits at various locations to provide additional visibility of subsurface soil conditions, locate former hydraulic lifts, and to collect soil samples for chemical analysis;
- Collecting ground water elevation data and samples from five existing monitoring wells;
- Submitting selected soil and ground water samples to an analytical laboratory to quantify potential concentrations of various chemical constituents in the samples;
- Reviewing the results of filed activities, chemical analyses results, and evaluating
 this information and data with respect to Washington State Department of
 Ecology (Ecology) cleanup levels and to results from previous environmental
 investigations; and,
- Preparing this report describing the activities and findings from this assessment.

1.3 FORMER PROPERTY USES AND PREVIOUS ENVIRONMENTAL INVESTIGATIONS

Former property uses reportedly include an automobile wrecking yard in the southwest portion of the Site, and a retail gasoline station in the northeast portion of the Site (at the location of the current retail biofuel station). Most recent use of the Site included an automobile sales and service facility, including vehicle refueling operations and fuel storage. Site investigations conducted to date, among them Kane Environmental, Inc. (May 2003) identified petroleum hydrocarbon constituents in soil and ground water beneath the Site. The highest concentrations appear to be in the northeast portion of the Site. Other relatively lower concentrations are located in the west, central and south portions of the Site. Some petroleum concentrations are also present in ground water beneath the Site.

At least four site investigations and/or sampling activities have been performed at the Site since 2000 to evaluate subsurface hydrogeologic conditions and/or chemical concentrations in soil and/or ground water. The following paragraphs in this section summarize the results of these investigations. Soil boring and monitoring well locations where chemicals were detected at concentrations exceeding Model Toxics Control Act (MTCA) cleanup levels are shown on Figure 3.

A Phase II environmental site assessment and a supplemental Phase II investigation were performed by Kane Environmental, Inc. (Kane), results of which are described in their reports dated May 2, 2003 and May 15, 2003, respectively. These investigations included collecting discrete soil and ground water samples from borings GEO-8 through GEO-17 advanced at or near the Site. Six additional borings were completed as monitoring wells labeled KMW-1 through KMW-6. Chemical analyses results for soil and ground water samples from these investigations indicated that concentrations of petroleum hydrocarbons, mostly in the gasoline range, and concentrations of volatile constituents of gasoline were present in ground water in the northeast portion of the Site (a historic gasoline station) and the central/south-central portion of the Site near three underground storage tanks [USTs]).

A Phase I environmental site assessment was performed by Environmental Partners Inc. (EPI), results of which are described in their report dated August 23, 2000. The report identified the following as historical or current uses of the Site:

- Historic use of the northeast portion of the Site as a gasoline station;
- Four existing USTs from 500 to 1,000 gallons each used to store heating oil and/or bunker C oil; six existing above-ground storage tanks (ASTs) from 150 to 300 gallons each used to store water, new or used motor oil, anti-freeze, and/or hydraulic oil; and several hydraulic lifts. The majority of these features appear to be located in the central and south portions of the Site, both east and west of the former alley located in the central portion of the Site in a north-south orientation.

A limited Phase II investigation was performed by EPI, results of which are described in their report dated June 2000. The investigation by EPI included soil and ground water sampling at approximately 13 locations primarily in the central and south portions of the Site in the vicinity of the USTs, ASTs and hydraulic lifts. Analytical results identified concentrations of oil-range total petroleum hydrocarbons (TPH) in three soil samples and concentrations of benzene in six ground water samples that exceeded MTCA cleanup levels in-place at the time the report was prepared.

A limited Phase II investigation was performed by GeoEngineers, Inc. (GEI), results of which are described in their report dated April 18, 2011. The investigation included advancing four soil borings, one boring near the each of the four property corners. GEI collected soil samples from each boring and submitted them for geotechnical testing and chemical analysis. Chemical analyses included quantification of:

- Gasoline-range TPH (TPHg), diesel -range TPH (TPHd), and lube oil-range TPH (TPHo);
- Benzene, toluene, ethylbenzene, and xylenes (BTEX);

- Volatile organic compounds (VOCs);
- Polycyclic aromatic hydrocarbons (PAHs); and,
- Polychlorinated biphenyls (PCBs)

Chemical analysis results indicate that TPHg concentrations exceeding MTCA Method A cleanup level were detected in soil samples collected from boring B-43-4 at 7.5 feet and 10 feet below ground surface (bgs). Concentrations of other constituents did not exceed MTCA Method A or B cleanup levels.

Monitoring wells were installed by GEI in three of the four borings and are currently located on-site near the northeast, southeast, and southwest corners of the property. GEI collected samples from two of the GEI monitoring wells (B-43-1 and B-43-2) and from two existing monitoring wells (KMW-3 and KMW-6) formerly installed by Kane in 2000. Chemical analysis results for ground water samples indicate TPHg and/or TPHd concentrations in each of the ground water samples, with TPHg and TPHd concentrations exceeding MTCA Method A cleanup levels in the samples collected from KMW-6 and B-43-2, respectively.

1.4 RECENT DEMOLITION ACTIVITIES, HYDRAULIC LIFT REMOVAL, AND OTHER RELATED ACTIVITIES

Except for the existing biofuels station located in the northeast portion of the Site, all existing buildings and almost all surface features (building foundations, etc) were demolished and removed from the Site from June to November 2009. Demolition activities included removal of most of the underground storage tanks (USTs), aboveground storage tanks (ASTs), and hydraulic lifts used by the former automobile dealership during automobile servicing.

During Phase II activities HWA located two UST fill ports that were visible at ground surface in the central portion of the Site and attempted to remove the caps to assess the status and/or contents of the ASTs. HWA filed representatives were able to remove only one of the fill port caps. A steel tape was lowered into the fill port and contacted refusal at a depth of about 42 inches below ground surface (bgs). The end of the tape showed a residue of dark liquid assumed to be petroleum but the tape itself was relatively clean indicating that free-phase/liquid petroleum was generally absent. The shallow depth of refusal and hard resistance encountered by the tape indicates that the UST was likely abandoned in-place using an inert, solid material such as cement slurry (now hardened). The fill port cap was reattached and attempts were made to access the other UST fill port but the cap could not be removed. It is assumed that the second UST is also abandoned in-placed in a similar manner to the other UST.

Demolition activities included removing several hydraulic lifts from the service building on the west portion of the Site. The location of at least seven hydraulic lifts are shown on

figures included in the limited phase II investigation report prepared by Environmental Partners Inc. in 2000 (EPI, 2000). Figures in the EPI (2000) report are of limited use however since they only show a portion of the building, and the building and other potential reference points are now absent. This data gap posed a problem for HWA in terms of evaluating soil and/or groundwater conditions in the vicinity of the former lifts where hydraulic oil was used for lift operation. Discussions between HWA representatives and Mr. Boe McGee of HNTB who was on site during demolition indicated that the orientation of the lifts shown on the EPI (2000) figures was shifted approximately 90 degrees. Photos forwarded to HWA by Mr. McGee were of limited use, and did not clarify the former lift locations. HWA was successful in locating one hydraulic lift during test pit excavations at TP-4 (see Figure 2) The portions of the hydraulic lift that were exposed during excavation included an intact hydraulic ram and a concrete footing underlying the lift. Soil samples were collected adjacent to and at the base of the lift. The lift was left in-place for removal during future Site development. A photograph of the in-place ram is included on the test pit log included in Appendix B.

2.0 FIELD ACTIVITIES

Field activities associated with HWA's Phase II assessment were performed in May 2012. The program consisted of 13 direct-push soil probe borings, 11 test pits, and sampling soil and ground water. Boring locations from Phase II ESA activities and selected sampling locations from previous environmental investigations are shown on Figure 2. A copy of the Phase II ESA work plan is included in Appendix A and describes field activities, field sampling and laboratory methods, and other planned activities performed during the Phase II ESA. These activities and methodologies are summarized below.

2.1 SOIL SAMPLE COLLECTION

HWA contracted ESN Northwest of Lacey, Washington (ESN), a licensed drilling contractor, to advance soil borings at the Site. Thirteen soil borings were advanced on May 8 and 9, 2012 to depths of up to 20 feet below ground surface (bgs). Soil boring locations are shown on Figure 2.

ESN employed a mobile, direct-push, drive-point sampling device (e.g., Geoprobe) to collect soil and ground water samples. The device consists of a truck-mounted, hydraulic drive assembly that advances 2-inch-diameter steel rods into the ground using a hydraulic impact driver. Soil samples were collected using a stainless-steel sampler equipped with a high-density polyethylene (HDPE) liner. Continuous soil sampling was performed from ground surface to the total depth of exploration at each boring.

Gary Merlino Construction, the Client's general contractor, excavated test pits at the Site. The test pits were excavated on May 10, 2012 using a track-mounted excavator. Test pit locations are shown on Figure 2. HWA collected discrete grab samples at depths of up to 11.5 feet bgs in the test pits based on field observations and field screening of soil samples.

Soil samples were placed in labeled laboratory-provided sample containers using nitrile gloves and clean stainless steel spoons. Soil samples for volatile organic compound (VOC) analysis were collected in accordance with EPA 5035A methodology. Samples were placed in a cooler with "blue ice" for transport to the laboratory under chain-of-custody protocol.

HWA collected up to four soil samples from each soil boring and up to two from each test pit. Soil samples selected for analyses were typically collected at the soil-ground water interface and/or to assess shallow fill soils, typically three to six feet bgs. Soil samples were field screened using a photo ionization detector (PID) to evaluate potential

concentrations of petroleum hydrocarbons in the samples. Field observations, soil conditions and other pertinent information was recorded on boring logs and test pit logs to document subsurface hydrogeologic conditions encountered during field activities. Copies of boring logs and test pit logs are included in Appendix B.

2.2 GROUND WATER SAMPLE COLLECTION

HWA collected ground water samples from eight of the soil borings using low flow sample methods in accordance with the sampling and analysis plan. Ground water was encountered at depths of 7.5 to 15 feet bgs. Samples were collected from temporary PVC slotted screens and casing placed into the borehole and removed subsequent to sample collection. Ground water samples were collected using a peristaltic pump. New pump tubing was used for each sample.

HWA also collected ground water samples from five on-site monitoring wells (B43-1, B43-2, B43-4, KMW-3 and KMW-6) on May 11, 2012. Ground water elevation data and field parameter measurements are included in Table 1.

Water samples collected for dissolved metals analysis were filtered using dedicated disposable 0.45-micron filters at the time of sample collection. Water samples were filtered (for analysis of dissolved metals) to avoid artificially biasing the sample results due to sample turbidity, which is common in ground water samples collected from direct push borings and undeveloped monitoring wells where ground water samples can not be collected without some entrained soil particles. Total metals concentrations in these samples are typically artificially elevated due to leaching of metals from the soil by the nitric acid used as a sample preservative. The MTCA allows filtered ground water samples in cases where "a properly constructed monitoring well cannot be sufficiently developed to provide low turbidity water samples." The dissolved analyses are also more likely to represent the water quality of construction dewatering effluent after settling or filtration to meet turbidity requirements for discharge to storm drain or surface water.

Water samples collected for polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were filtered at the time of sample collection using dedicated, disposable, 1-micron filters. These filters were used to reduce water sample turbidity and obtain water samples more characteristic of ground water conditions. According to the EPA, particles up to 1 micron are mobile in the subsurface and particles of this size occur in monitoring well water samples from a properly constructed and developed monitoring well (EPA, 1996).

Samples were collected after pH, conductivity, temperature, and dissolved oxygen field readings from periodic monitoring had stabilized, or after repeated purges of the well volume in the event of low-permeability soils.

Samples were collected directly into the sample containers provided by the laboratory, and placed in a cooler with blue ice for transport to the laboratory under chain-of-custody protocol.

2.3 FIELD SCREENING INSTRUMENTS

HWA conducted field screening of soil from the borings for the presence of volatile organic vapors using a Mini-Rae PGM 75 photoionization detector (PID). Visual indications of contamination and odor were also noted. Although the PID is not capable of quantifying or identifying specific organic compounds, this instrument is capable of measuring relative concentrations of a variety of organic vapors with ionization potentials less than the energy of the ultraviolet source (in this case, 10.6 eV). The PID is useful for providing qualitative information with respect to the presence and relative concentration of organic vapors. PID readings are shown on the boring logs.

The PID was calibrated with 100 parts per million isobutylene standard at the beginning of the day. Fifty to 100 milliliters of soil from a discrete depth were placed in a plastic bag, sealed, and permitted to sit at least 10 minutes prior to analyzing the vapor in the sample bag. The bag was then perforated by the PID sample tip to obtain the reading. Samples were screened with the PID when sufficient sample volume was available. Field PID sample screening depths and concentration values were recorded on the boring logs.

2.4 DECONTAMINATION METHODS

To prevent potential cross-contamination of samples, ESN cleaned drilling rods between each boring. All sampling equipment was decontaminated prior to use with detergent solution, potable water, and deionized water.

2.5 Investigation-Derived Waste

Soil cuttings and decontamination water from the field activities were placed in steel drums and stored at the Site pending analytical results, for disposal during Site excavation and cleanup. Disposable personal protective equipment (e.g., nitrile gloves) was discarded off-site as solid waste.

2.6 SUBSURFACE HYDROGEOLOGIC CONDITIONS

Background geologic information for the subject property was obtained from a map entitled *Composite Geologic Map of the Sno-King Area, Central Puget Lowland,*

Washington (Booth, et al., 2004). According to the map, surficial soils in the vicinity of the subject property are primarily modified land sourced from re-graded lake deposits and ice-contact deposits (a combination of till and coarser outwash materials).

Recent soil borings advanced by GeoEngineers in 2011 also provide information regarding subsurface hydrogeologic conditions below the Site. Four borings were advanced near each of the property corners in 2011 to collect soil samples for geotechnical and environmental testing. The soil borings were relatively deep, ranging from approximately 60 to 80 feet bgs. Soils encountered in the GEI borings indicate that the Site is underlain by fill deposits from ground surface to depths ranging from 17 to 25 feet bgs. The fill generally consisted of very loose to medium dense silty sand with variable gravel content, and gravel with varying amounts of sand and fines. Fill deposits overlie recent silt, clay and granular deposits. The recent deposits are underlain by glacially-consolidated soils.

Based on HWA's observations at the subject property, soil at the Site typically consisted of up to 20 feet of silty sand or sandy silt fill containing wood, construction debris and/or other uncontrolled deposits. Pea gravel backfill was encountered in borings along the east side of the Site (B43-B5, B43-B6, B43-B7, and B43-B8). This backfill was reportedly associated with backfilling of the basements of the former buildings subsequent to demolition. Suspected concrete slabs and/or footings were encountered from 4 feet to 12 feet bgs in borings B43-B8 and B43-B11, and in test pits B43-TP8, B43-TP9, and B43-TP10. The slabs were not penetrated and underlying soils were not recovered or sampled. Medium-dense, silty sand and sandy silt (likely recent alluvial deposits or re-graded ice-contact deposits, was encountered at depths below 10 feet bgs, although the possibility of these materials being fill cannot be ruled out. Ground water was encountered in borings and test pits ranging from depths of approximately 7.5 to 15 feet bgs. Soil boring logs and test pit logs are included in Appendix B.

GEI installed ground water monitoring wells in three of the four borings advanced in 2011. HWA collected water elevation data from the three monitoring wells installed by GEI and from the two monitoring wells installed by Kane in 2003 that are still present at the Site (KMW-3 and KMW-6). Ground water was encountered at depths ranging from approximately 7.7 to 15.9 feet below top of casing (TOC). HWA also collected ground water levels at monitoring wells installed on Block 44 and 45, located south of the Site. Based on survey information for the monitoring wells and HWA's water elevation data, the inferred direction of shallow ground water flow in this limited area is to the east-southeast at a gradient of approximately 0.003 foot per foot. The inferred direction of groundwater flow based on HWA's Phase II data is illustrated on Figure 2. These data are somewhat conflicting with what would be expected based on local Site topography, which slopes gently to the north and east. Based on local Site topography the ground water gradient would be expected to be to the northeast, towards Lake Union. This apparent lack of consistency may be a function of local variations in ground water flow

patterns resulting from recent construction in the area, which included installation of numerous new underground utilities along Mercer Street as well as construction of underground parking facilities for many of the new buildings in the south Lake Union neighborhood. One example of this was the abundance of pea gravel encountered in soil borings advanced by HWA during Phase II field activities.

3.0 CHEMICAL ANALYSES AND QUALITY CONTROL REVIEW

3.1 CHEMICAL ANALYSES

Soil and ground water samples were submitted to OnSite Analytical Laboratories (OnSite) of Redmond, Washington for chemical analysis to evaluate concentrations of TPH, metals, selected VOCs, PAHs and PCBs. Chemical analysis methods performed on the soil and/or ground water samples included:

- Hydrocarbon identification (HCID) scan using Ecology method NWTPH-HCID.
- Total petroleum hydrocarbons in the gasoline range (TPHg) using Ecology method NWTPH-G.
- Total petroleum hydrocarbons in the diesel range (TPHd) and oil range (TPHo) using Ecology method NWTPH-Dx with silica gel/acid cleanup.
- Resource Conservation and Recovery Act (RCRA) total metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver) using Environmental Protection Agency (EPA) method 6010B/7471A (for soil samples only).
- Toxicity characteristic leaching procedure (TCLP) for selected metals (for soil samples only)
- RCRA dissolved metals using EPA method 200.8/7470A (for ground water samples only).
- Benzene, toluene, ethylbenzene and xylenes (BTEX) using EPA method 8021B;
- Selected VOCs: methyl-tertiary butyl ether (MTBE); ethylene dibromide (EDB); and 1,2-dichloroethane (EDC) using EPA method 8260.
- Polynuclear aromatic hydrocarbons (PAHs) using EPA method 8270D/SIM.
- Polychlorinated Biphenyls (PCBs) using EPA method 8082.

Copies of final laboratory reports including chain-of custody documents are included in Appendix C.

3.2 QUALITY CONTROL REVIEW

HWA reviewed quality control results of the analytical data. Surrogate recoveries, method blanks, laboratory duplicates, spike blanks, and spike blank duplicates were all within control limits with the following exceptions:

- Surrogate recovery was outside of control limits due to co-elution of analytes in water sample B43-1-GW. Reanalysis of the sample yielded similar results.
- Some VOC detection limits were raised above MTCA cleanup levels for soil samples B43-B1-10, B43-B12-3 and water sample B43-B10-10 due to necessary dilution of those samples.
- HCID detection limits in ground water samples B43-B1-GW, B43-B3-GW, B43-B5-GW, B43-B9-GW, B43-B10-GW, B43-KMW-6-GW, and B43-DUP-GW and soil samples B43-B11-6.5, B43-B12-3, B43-B12-11, B43-B9-3, B43-B10-19, B43-B11-2.5, B43-B11-6.5, B43-B12-3, B43-B12-11, B43-TP1-1.5, B43-TP2-3, B43-TP2-8, B43-TP3-5, B43-TP3-8, B43-TP4-9, B43-TP6-4, B43-TP7-6 were elevated due to interference.
- Hydrocarbons in the gasoline range impacted the diesel range result in soil sample B43-B1-10.
- The diesel range hydrocarbon practical quantitation limit is elevated in soil samples B43-B8-6, B43-B9-3, B43-B10-19, B43-B11-2.5, B43-B11-6.5, B43-TP1-1.5, B43-TP2-3, B43-TP2-8, B43-TP3-5, B43-TP3-8, B43-TP4-9, B43-TP5-6, B43-TP5-10, B43-TP6-4, B43-TP7-6 due to interferences present in the sample.
- Surrogate Standard 4-Bromofluorobenzene is outside control limits for sample B43-B10-19 due to co-eluting non-target analytes.
- The water sample B43-B9-GW was extracted 2 days out of holding time for PAH analysis.
- Soil samples B43-B9-3, B43-TP6-4 and B43-TP11-5 had one surrogate recovery out of control limits. This is within laboratory allowances as long as the recovery is sufficient (above 10%). All recoveries were above 10%.

- Hydrocarbons in the lube oil range are impacting the diesel range result in soil samples B43-B12-3, B43-B12-11, B43-TP11-5. The diesel results are likely to be biased high due to the overlap interference.
- Surrogate recovery data is not available due to the necessary dilution of samples B43-B12-3 and B43-TP6-4.

OnSite did not flag any other results with qualifiers which would indicate that a given result was suspect. Laboratory method blank analyses were all below detection limits except as noted above. The trip blanks did not contain any volatile organic compounds above laboratory detection limits.

The analyses of the soil samples and water samples collected on May 8, 9, and 11, 2012 were determined to be acceptable for their intended use.

4.0 CHEMICAL ANALYSES RESULTS

4.1 ANALYTICAL RESULTS

Analytical results for soil and ground water samples are described in subsequent sections of this report. Analytical results were compared to Ecology cleanup levels and/or screening levels to provide City Investors XX LLC with information regarding how the cleanup/screening levels may affect future Site development activities (soil disposal, dewatering, etc.) Analytical results for soil samples are summarized in Tables 2 and 3. Analytical results for ground water samples are summarized in Tables 4 and 5. Copies of final laboratory reports including chain-of custody documents are included in Appendix C.

4.1.1 CLEANUP AND SCREENING LEVELS

Laboratory analytical data were compared to the MTCA Method A and/or Method B cleanup levels, as well as MTCA End Use Criteria, primarily for disposal characterization, but also as presumptive cleanup levels (Method A and B) for Site cleanup reporting.

Method A values are intended to be protective of all exposure pathways, but are only provided for a limited list of contaminants. The Method B soil values shown are for the "soil direct contact (ingestion)" pathway. Method B soil values for the "protection of ground water" pathway require Site-specific risk calculations, and are not provided herein. Both Method A and B levels are unlikely to be used at the same site.

MTCA Method A levels are intended to provide conservative values, typically for voluntary or routine cleanups. MTCA states that the Method A values "should not automatically be used to define cleanup levels that must be met for financial, real estate, insurance coverage or placement, or similar transactions or purposes. Exceedances of the values in this table do not necessarily mean the soil/water must be restored to these levels at a site".

MTCA Method B cleanup levels are the universal cleanup levels that typically employ risk-based cleanup levels, and likewise do not necessarily trigger any cleanup action. Cleanup levels for a particular site are determined after evaluating appropriate exposure pathway endpoints (e.g., drinking water, non-potable ground water, surface water, soil, wildlife, etc.) based on site use, contaminant distribution, etc. The actual clean up standard is then based on the calculated cleanup levels, measured at the point of compliance.

Excavated soils that require off site disposal but do not contain contaminants exceeding cleanup levels may still require disposal at a facility licensed to treat, recycle or dispose contaminated soils, as many fill sites will not accept soils with detectable concentrations of contaminants.

MTCA End Use Criteria are provided in the Ecology *Guidance for Remediation of Petroleum Contaminated Sites* (Ecology, 2011). These criteria provide guidelines and limitations for reuse of soils with petroleum hydrocarbons and related compounds at concentrations below cleanup levels. Criteria for unrestricted use of soils are generally lower than cleanup levels.

4.1.2 ANALYTICAL RESULTS FOR SOIL SAMPLES

Analytical results for soil samples collected from soil borings and test pits are summarized in Tables 1 through 5, and described below. Detected concentrations listed in the tables are compared to MTCA Method A and B cleanup levels, which are designed for unrestricted land use. Detected concentrations are shown in the table, and are shown in bold type where the concentration exceeds a MTCA cleanup level.

Soil sample locations from the HWA Phase II assessment and from historical investigations are illustrated on Figure 3. Figure 4 shows sampling locations from the HWA Phase II assessment and from historical investigations where concentrations of certain constituents exceeded MTCA Method A cleanup levels.

The following data observations were made based on the analytical results for the samples collected and analyzed during the HWA Phase II assessment:

- TPH detected in the soil samples collected from soil borings and test pits were primarily limited to the diesel and heavy oil ranges. TPH concentrations appeared to be more prevalent in the northeast portion of the Site in the vicinity of the historic gasoline station, and in the southwest portion of the Site in the vicinity of USTs and hydraulic lifts associated with the former car dealership.
- TPHg concentrations were detected in only two soil samples. One sample contained a relatively small concentration that did not exceed the MTCA Method A cleanup level. The other sample, collected from boring B43-B1 at a depth of 10 feet bgs, contained 1,500 milligrams per kilogram (mg/kg) TPHg, exceeding the MTCA Method A cleanup level. Boring B43-B1 was advanced in the northeast portion of the Site beneath the central part of the existing Propel Biofuels station. This station is at the same general location as a former gasoline station. TPHg concentrations exceeding MTCA Method A cleanup levels (in soil

and ground water) were detected during previous investigations (Kane, 2003; GEI, 2012).

- TPHd and/or TPHo concentrations were detected in several soil samples, some of which exceeded the MTCA Method A cleanup levels. TPHd concentrations exceeded cleanup levels in 4 of the 35 samples submitted for HCID analysis. TPHd concentrations ranged from 110 mg/kg to 7,200 mg/kg. The only concentration exceeding the MTCA Method A cleanup level was the 7,200 mg/kg detected in sample B-43-B12-3, which was collected from boring B-12 at a depth of 3 feet bgs.
- TPHo concentrations were detected in 17 of the 35 samples submitted for HCID analysis. Detected concentrations ranged from 140 mg/kg in sample B43-TP5-10 to 41,000 mg/kg in sample B43-TP6-4. Concentrations exceeding the MTCA Method A cleanup level were detected in samples collected from borings B-11 and B-12, and from test pits TP-3, TP-4 and TP-6.
- Several different metals were detected in soil samples. The most common metals
 detected in soil included barium, chromium, and lead. Arsenic, cadmium,
 mercury, selenium, and silver were not detected or were limited to a single
 detection. Metals concentrations exceeding MTCA Method A cleanup levels
 were detected in two samples: B43-B12-3 (cadmium and lead) and B43-TP7-6
 (lead).
- Total chromium was detected in all 34 soil samples, at concentrations ranging from 17 to 80 μg/kg, most of which potentially exceed the MTCA Method A cleanup level for chromium+VI (19 mg/kg), but not for the more commonly occurring chromium+III (2,000 mg/kg). The analytical method used measures total (VI+III) chromium, and is used in most cases where there is no reason to suspect the presence of chromium +VI, as is the case at this Site.
- Lead was detected at concentrations exceeding the Method A cleanup level of 250 mg/kg in two samples: 520 mg/kg in sample B43-B12-3, and 340 mg/kg in sample B43-TP7-6. Several other samples had lead exceeding the Dangerous Waste screening criterion of 100 mg/kg. Dangerous waste classification for metals is determined by Toxicity Characteristic Leaching Procedure (TCLP) analysis, per Chapter 173-303 WAC. TCLP involves analysis of a leached extract of the sample. The Dangerous Waste criterion for lead is 5 mg/L in the leachate. Because the TCLP procedure involves a sample dilution factor of 20, there is a minimum total metal concentration in soil (i.e., 100 mg/kg for lead) that could theoretically result in a TCLP concentration exceeding the Dangerous Waste criterion. HWA selected the three soil samples with the highest total lead

concentrations and submitted these samples for TCLP analysis. Results indicated Site soils do not classify as Dangerous Waste for lead.

- Cadmium was detected at a concentration of 12 mg/kg in sample B43-12-3, exceeding the Method A cleanup level of 2 mg/kg.
- Selected VOCs were analyzed in response to positive detections of TPHg in soil samples, and included BTEX, MTBE, EDB, and EDC. Concentrations of these VOCs were detected in only 1 of the 5 samples submitted for analysis. Detected concentrations did not exceed MTCA Method A cleanup levels.
- cPAH concentrations were detected at relatively low concentrations in the samples submitted for chemical analysis. cPAH analysis was performed in response to positive detection of TPHd and/or TPHo in the HCID analyses. None of the detected concentrations of cPAHs exceeded the MTCA Method A cleanup levels for individual or total cPAH concentrations.
- Concentrations of PCBs were not detected in any of the samples submitted for chemical analysis, except for a relatively small quantity of Aroclor 1264 detected in one sample (B43-TP7-6) at a concentration well below cleanup level.

In summary, several soil samples contained concentrations of TPHg, TPHd, TPHo, lead, cadmium, and/or cPAHs that exceed MTCA Method A cleanup levels. The majority of these samples were collected from shallow fill soils (2.5 to 10 feet bgs) located in the northeast and southwest portions of the Site, and one sample located in the northwest portion of the Site.

Based on HWA's understanding of future property development plans, the soil containing these concentrations will be excavated and transported off site to a licensed facility for recycling and/or disposal. Borings and test pit excavations encountered wood waste, concrete foundations, reinforced concrete, and other demolition debris, either historic or recent. These materials do not pose an environmental concern but are expected to require additional time in terms of excavation and handling (e.g., the possible cement-filled USTs described in Section 1.4). Borings and test pit excavations encountered basement foundations at depths of 10 to 12 feet bgs at some locations, and we understand from previous environmental reports that ASTs were located in basements of the previous buildings. There is a potential for encountering petroleum-impacted soil below the basement foundations at some locations, but based on the relatively small sizes of the USTs and the presence of the floor slabs beneath them the potential for a large volume of petroleum-impacted soil beneath the basement floor slabs appears to be relatively small.

4.1.3 ANALYTICAL RESULTS FOR GROUND WATER SAMPLES

Analytical results for ground water samples collected from soil borings and monitoring wells are summarized in Tables 6 and 7, and described below. Detected concentrations listed in the tables are compared to MTCA Method A and B cleanup levels, which are designed for unrestricted land use. Detected concentrations are shown in the table, and are shown in bold type where the concentration exceeds the MTCA cleanup level.

Figure 2 shows ground water sample locations from the HWA Phase II assessment and from historical investigations. Figure 4 shows ground water sampling locations from the HWA Phase II assessment and from historical investigations where concentrations of certain constituents exceeded MTCA Method A cleanup levels.

The following data observations were made based on the analytical results for ground water samples collected and analyzed during the HWA Phase II assessment:

- Fourteen samples were submitted for HCID analysis. TPHd and TPHo concentrations were not detected. TPHg concentrations were detected in 8 samples. Six of the detected concentrations exceeded the MTCA Method A cleanup level, and ranged from 1,300 μg/L to 5,300 μg/L. TPHg concentrations exceeding cleanup levels were detected at borings B43-B1, B43-B2, B43-B5, and B43-B10, and at monitoring well KMW-6. These locations are generally located in the northeast and southwest portions of the Site, and generally confirm the nature and extent of TPH concentrations in ground water detected in previous investigations (Kane, 2003; GEI, 2012). The predominance of TPHg and benzene (see below) in ground water at the Site, where these compounds were generally not detected in soils, suggests a mostly dissolved phase gasoline-range ground water plume, possibly located off-site, or originating on site from a source area not yet sampled or discovered.
- Thirteen samples were submitted for dissolved metals analysis. Dissolved metals were generally not detected or detected at low concentrations. Barium, cadmium, chromium, mercury, selenium and silver were either not detected or were not detected at concentrations exceeding MTCA Method A cleanup levels. Dissolved lead concentrations were detected in only two samples. One of these, the dissolved lead concentration of 20 μg/L in sample B43-B4-GW, exceeded the MTCA Method A cleanup level. Arsenic concentrations were detected in 9 of the 13 samples at concentrations ranging from 3.9 μg/L to 110 μg/L. The detected concentration of 110 μg/L in sample B43-B1-GW is almost ten times the value of the next highest concentration (15 μg/L) and in that respect is a statistical outlier with respect to the data set for dissolved metals and is not considered representative. Seven of the arsenic concentrations exceeded the MTCA Method

18

A cleanup level. Arsenic concentrations are believed to be present in ground water as a result of arsenic in the shallow fill partitioning to ground water due to reducing conditions in shallow ground water within the fill soils. Increased solubility and mobility of naturally occurring metals (including arsenic) in ground water under reducing conditions has been well documented in the literature (Ferguson and Johnson, 2006). Reducing conditions in ground can be caused by decomposition of naturally occurring organic material (peat and woody debris), emplaced organic waste or debris, and/or organic contaminants (e.g., petroleum hydrocarbons), all of which can produce a low oxygen (anaerobic) environment under reducing conditions. This type of environment tends to mobilize naturally-occurring metals which would otherwise remain insoluble. This is supported by the general absence of detected arsenic in Site soils: one detection out of 34 soil samples, and at a concentration that did not exceed the cleanup level.

- Selected VOCs were detected in several of the ground water samples. Benzene was the only constituent detected at concentrations exceeding MTCA Method A cleanup levels. Benzene concentrations exceeding MTCA Method A cleanup level were detected at 1,100 μ g/L in sample B43-B1-GW collected beneath the central portion of the Propel Biofuels station in the northeast portion of the Site, and at 16 μ g/L in sample B43-B9-GW collected in the central portion of the Site near the location of USTs associated with the former car dealership.
- Naphthalenes were not detected in ground water samples at concentrations exceeding the MTCA Method A cleanup level for total naphthalenes.

In summary, HWA collected ground water samples from selected borings and existing monitoring wells at the subject property to quantify concentrations of TPH, dissolved metals, selected VOCs, and other constituents in ground water and to compare the nature and extent of these concentrations to those detected during previous investigations. Analytical results and data evaluation results from these activities provide the following observations:

Concentrations of TPHg, TPHd, benzene, dissolved arsenic, and/or dissolved lead were detected in 11 of the 13 ground water samples at concentrations exceeding MTCA Method A cleanup levels. Samples containing these concentrations included:

- B43-B1-GW, B43-B2-GW, B43-B3-GW, B43-B4-GW and B43-KMW-6 collected from the northeast portion of the Site.
- B43-B5-GW and B43-B8-GW collected from the east portion of the Site;

- B43-B9-GW and B43-KMW6-GW collected from the southwest portion of the Site; and,
- B43-B10-GW collected from the northwest portion of the Site.

These concentrations were detected in samples collected from shallow ground water in the fill soils. A ground water sample was also collected from GEI monitoring well B43-4, which is completed in the lower regional aquifer. Petroleum hydrocarbons, dissolved metals, and other constituents were not detected in the sample collected from well B43-4.

Arsenic in ground water may be a natural or area background condition (Ferguson and Johnson, 2006), and soil samples collected above the elevation of ground water generally did not contain arsenic concentrations exceeding the detection limit.

Dissolved lead was detected above the MTCA Method A cleanup level in sample B43-B4-GW, but elevated lead concentrations were not detected in soil samples analyzed from that location. Lead in ground water was also not associated with TPHg detections in soil or ground water. These results indicate that the dissolved lead concentration may be associated with impacted fill elsewhere at the Site, as elevated lead concentrations were detected in soil samples collected at other locations.

A TPHg concentration exceeding the MTCA Method A cleanup level was detected in ground water sample B43-B5-GW collected near the east property boundary (see Figure 4). However, TPH concentrations were not detected in soil samples collected at that location. These results may indicate that the TPHg concentrations in ground water in the vicinity of boring B43-B5 may be associated with an off-site or unidentified source.

A TPHg concentration of 710 μ /L (below cleanup level) was detected in the sample collected from shallow monitoring well B-43-2 located near the southwest corner of the property. TPHd and TPHo concentrations were not detected in this sample. In contrast, a sample collected by GEI in the first quarter of 2012 contained a TPHd concentration 2,760 μ g/L (see Figure 4). This well is located in the southwest corner of the Site, at an assumed upgradient location relative to the remainder of the Site. Nearby, presumed upgradient previous borings GEO-18 and GEO-19 did not contain any TPH in soil or water above reporting limits. These results suggest a localized source

5.0 SUMMARY AND CONCLUSIONS

HWA performed a Phase II assessment at the Site for the purpose of evaluating the nature and extent of known and/or suspected constituents of concern in soil and ground water prior to redevelopment of the Site. The results of previous investigations indicated that concentrations of petroleum hydrocarbons and other constituents were present in soil and ground water, and that these constituents were generally located in the northeast and southwest portions of the Site based on historic and recent Site uses.

Field activities included advancing 13 soil borings to collect soil and ground water samples, excavating 11 test pits to evaluate subsurface hydrogeologic conditions, locate former hydraulic lifts, and collect soil samples, and collecting ground water samples from 5 shallow monitoring wells and from 1 relatively deep ground water monitoring well.

Selected soil and ground water samples were submitted for chemical analyses to evaluate concentrations of TPHg, TPHd, TPHo, selected VOCs, cPAHs, naphthalenes, total metals, dissolved metals, and/or PCBs in soil and/or ground water samples.

Analytical results indicate that concentrations of TPHg, TPHd, TPHo, benzene, total lead, and/or cPAHs were detected in 7 of 34 soil samples submitted for chemical analysis. Concentrations appear to be relatively low and are likely attributable to historic land use activities or deposits of uncontrolled fill placed at the Site during early stages of Site development and filling of the south portion of Lake Union. Based on HWA's understanding of future property development plans, the soil containing these concentrations will be excavated and transported off site to a licensed facility for recycling and/or disposal.

Analytical results indicate that concentrations of TPHg, benzene, dissolved arsenic, and/or dissolved lead were detected in ground water samples at concentrations exceeding MTCA Method A cleanup levels. Ground water samples collected from shallow monitoring wells KMW-6 and B-43-2 contained concentrations of TPHg, TPHd, benzene, dissolved arsenic and/or dissolved lead that exceeded MTCA Method A cleanup levels. The sample collected from the deeper monitoring well, B-43-4, did not contain analyte concentrations exceeding MTCA Method A cleanup levels.

A TPHg concentration of 710 μ g/L was detected in the ground water sample collected from shallow monitoring well B-43-2 located near the southwest corner of the property. In contrast, a sample collected by GEI in the first quarter of 2012 contained a TPHd concentration 2,760 μ g/L (see Figure 4). These conflicting analytical results indicate that the TPHd concentration, and to a lesser extent the TPHg concentration, may potentially represent on-site migration of TPH concentrations in shallow ground water from an

unidentified or unknown source, presumably at an off-site location. Regular sampling of well B-43-2 and/or additional investigation near and upgradient of well B-43-2 may provide information regarding the nature and source of the TPH concentrations.

5.1 CONSTRUCTION / EXCAVATION RECOMMENDATIONS

Construction bid or contract documents (e.g., plans and specifications) should include analytical results and provisions for contaminated soil handling, treatment/disposal, and health and safety requirements. HWA is providing, under separate cover, a Construction Contingency Plan that will summarize these elements.

Excavated soils should be disposed at a facility licensed to dispose, treat, or recycle contaminated soil, e.g., thermal desorption, asphalt or cement incorporation, or Subtitle D landfill disposal. Property owners at all receiving sites should be notified of the results of this study and any additional testing information available at that time.

We understand approximately 75,000 cubic yards (in place) or around 127,500 tons of soil will be excavated for underground parking and require export and off-site disposal. HWA prepared a cost estimate for soil disposal costs based on the results of this Phase II study and the previous investigations (HWA, 2012). The HWA estimate assumed three categories of soil for off-site disposal, as follows:

- Off-site disposal at a "clean" fill site: a facility that meets Ecology end use criteria Class I for unrestricted use (TPHG <5 mg/kg, TPHD <25 mg/kg, TPHO <100 mg/kg, Metals < Method A cleanup levels).
- Off-site disposal at permitted "Class II" fill site: Specifically, the CEMEX Everett facility licensed to accept soils meeting the following permit criteria (TPH-G <100 mg/kg, TPHD, O < 460 mg/kg, Metals < Method A).
- Off-site disposal at permitted RCRA Subtitle D landfill, e.g., Allied Waste or Waste Management (TPH > Class II criteria, Metals < Method A or pass TCLP criteria).

5.2 CONSTRUCTION / WATER DISPOSAL RECOMMENDATIONS

Based on findings of this and previous studies, ground water pumped for construction dewatering is likely to contain elevated concentrations of petroleum hydrocarbons and metals, in addition to varying amount of suspended solids and turbidity (depending on the methods used to extract the water).

Construction bid or contract documents (e.g., plans and specifications) should include all analytical results and provisions for contaminated water handling, treatment/disposal, and health and safety requirements. HWA is providing, under separate cover, a Construction Contingency Plan that will summarize these elements.

Dewatering effluent disposal options include 1) discharge to the storm drainage system (which drains to nearby Lake Union) or 2) discharge to sanitary sewer. Both options have discharge criteria, and require permitting and monitoring. Permitting for sanitary sewer is through King County Industrial Waste Division (KCIWD). Permitting for storm/surface water is through Ecology. Discharge to sanitary sewer under permit has much higher allowable water quality criteria than discharge to storm system, although quantities are limited seasonally (generally under 25,000 gallons per day in winter). Site ground water will likely meet KCIWD discharge limits after pumping and storage (without treatment) therefore this option may be appropriate for localized "hot spots" of contaminated ground water to avoid more costly treatment.

Preliminary discharge criteria are provided below, subject to HWA verifying the surface water criteria for Lake Union.

Selected Water Discharge Permit Criteria (μg/L unless otherwise indicated)

	Sanitary Sewer KCIWD (May – Oct)	Storm Drain*
TPH-G	100 ppm as FOG	800
TPH-D,O	100 ppm as FOG	500
Benzene	70	5
Toluene	1400	1300
Ethylbenzene	1700	530
Xylenes	2200	1600
Arsenic	1000 (avg) 4000 (max)	190
Lead	2000 (avg) 8000 (max)	55.6**
Other criteria	No visible sheen	No visible sheen,
		pH between 6.5 and 8.5
Solids/turbidity	7 ml/L settleable solids	25 NTU
Other contaminants	Meet King County	Meet Storm Drain discharge criteria
	requirements	

^{*} Based on Surface Water Standards, Ch. 173-201A WAC, or MTCA Method A ground water, where no Surface Water Standard

Dewatering discharge will likely require storage, testing, and some form of settling, filtration, or treatment to meet storm/surface water quality criteria, foremost of which is turbidity. Additional filtration or treatment (e.g., granular activated carbon) for environmental contaminants (e.g., petroleum, metals) may be need to meet criteria for storm/surface water.

5.3 CONSTRUCTION HEALTH AND SAFETY

HWA recommends that appropriate health and safety measures be taken during excavation in areas where contaminated soils, ground water, or vapors may be present.

^{**} Preliminary value based on Ecology Lake Union General Boatyard Permit, 2007

HWA Project No. 2012-046-22 June 14, 2012

These measures may include, but are not limited to, preparation of a Site-specific health and safety plan, air monitoring, Site control/access, protective and decontamination measures, worker training, certification, and medical monitoring. We recommend an industrial hygienist or health and safety specialist be consulted to determine the applicability of these requirements. Construction specifications should include all available analytical results including this and other available reports.

5.4 REGULATORY COMPLIANCE

Due to the planned removal of nearly all soil on the property down to depths of 30 feet or so, well below ground water level, it is very likely that a complete property cleanup under MTCA can be achieved, resulting in a "No Further Action" (NFA) letter. NFA status may help facilitate redevelopment, financing, or property transactions, and would be best achieved at this Site by entering Ecology's Voluntary Cleanup Program (VCP). Sites may enter the VCP at any stage of investigation or cleanup, with Ecology providing technical assistance and issuing written opinions on planned investigations or cleanups as requested by the property owner. Cleanups performed under the VCP must be substantially equivalent to Ecology-conducted or Ecology-supervised cleanups, which includes the process of performing a remedial investigation, feasibility study, cleanup action plan, cleanup, confirmation and compliance monitoring. Criteria for attaining NFA status will likely include collecting soil confirmation samples, as well as conducing post-cleanup ground water monitoring, for at least one year.

6.0 REFERENCES

- Ecology, 2011, Guidance for Remediation of Petroleum Contaminated Sites, Toxics Cleanup Program, Publication No. 10-09-057, September, 2011.
- EPA, 1996, Low-Flow (Minimal Drawdown) Ground Water Sampling Procedures, EPA/540/S-95/504, April, 1996.
- Environmental Partners, Inc, 2000a, Limited Phase II Investigation, Pacific Lincoln Mercury, 601 Westlake Avenue North, June 27, 2000.
- Environmental Partners, Inc, 2000b, *Phase I Site Assessment, Pacific Lincoln Mercury,* 601 Westlake Avenue North, August 23, 2000.
- Ferguson, E, and Johnson, K, 2006, *Naturally Occurring Arsenic in Ground Water from Glacial Deposits in King County, Washington*, National Ground Water Association Naturally Occurring Contaminants Conference, February 6, 2006.
- GeoEngineers, 2012, Limited Subsurface Environmental Characterization Block 43 South Lake Union Development, April 18, 2012.
- HWA GeoSciences Inc. 2012, Estimated Soil Disposal Costs, Block 43 South Lake Union Development Project, Seattle, Washington, June 3, 2012.
- Kane Environmental, Inc., 2003a, *Phase II Environmental Site Assessment, 535 and 601 Westlake Avenue North*, May 2, 2003.
- Kane Environmental, Inc., 2003b, Supplemental Phase II Soil and Groundwater Results, 601 Westlake Avenue North, May 15, 2003.
- Troost et al., 2005, *The Geologic Map of Seattle, a Progress Report*, Published by the Seattle-Area Geologic Mapping Project.
- Washington State Department of Ecology, *Natural Background Soil Metals Concentrations in Washington State*, Toxics Cleanup Program, Publication No. 94115, Charles San Juan, October 1994.
- Washington Department of Ecology, *Dangerous Waste Regulation, Chapter 173-303 WAC*, May 10, 2000.

HWA Project No. 2012-046-22 June 14, 2012

Washington State Department of Ecology, *Model Toxics Control Act Cleanup Regulation*, *Chapter 173-340 WAC*, Publication No. 94-06, November, 2007.

7.0 LIMITATIONS

We have prepared this report for use by City Investors XX LLC., in design of a portion of this project. These data and report should be provided to prospective contractors for their bidding or estimating purposes, but the conclusions and interpretations presented should not be construed as a warranty of the subsurface conditions. The conclusions expressed by HWA are based solely on material referenced in this report. Observations were made under the conditions stated. Within the limitations of scope, schedule and budget, our assessment was performed in accordance with generally accepted professional consulting principles and practices in the area at the time the report was prepared. No warranty, expressed or implied, is made. Experience has shown that subsurface soil and ground water conditions can vary significantly over small distances. It is always possible that contamination may exist in areas that were not sampled. If, during future Site operations, subsurface conditions are encountered which vary appreciably from those described herein, HWA should be notified for review of the recommendations of this report, and revision of such if necessary. We are not responsible for the impacts of any changes in environmental standards, practices or regulation subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

This firm does not practice or consult in the field of safety engineering. We do not direct the contractor's operations, and we cannot be responsible for the safety of personnel other than our own on the Site; the safety of others is the responsibility of the contractor. The contractor should notify the owner if he/she considers any of the recommended actions presented herein unsafe.

We appreciate the opportunity to provide professional services to City Investors XX LLC on this project. Please feel free to call us at (425) 774-0106 if you have any questions or need more information.

Sincerely,

HWA GEOSCIENCES INC.

VANCE ATKINS

Vance Atkins, LG, LHG Senior Hydrogeologist Jeffrey S. Thompson LG, LEG Senior Environmental Geologist

Arnie Sugar, LG, LHG President

TABLE 1
GROUND WATER ELEVATIONS AND FIELD PARAMETERS FROM EXISTING MONITORING WELLS
BLOCK 43 DEVELOPMENT PROJECT, SOUTH LAKE UNION NEIGHBORHOOD, SEATTLE, WA

					Field Pa	arameters	
Sample ID	Water Depth (ft bgs)	TOC Elevation	Water Level Elevation	рН	Conductivity (ms/cm)	Dissolved Oxygen (mg/L)	Temperature (deg C)
GeoProbe Borings							
B43-B1-GW	12	N/A	N/A	6.65	2.63	1.91	15.8
B43-B3-GW	15	N/A	N/A	6.6	1.82	0.21	14.8
B43-B4-GW	8	N/A	N/A	6.86	1.2	0.18	14.1
B43-B5-GW	7.5	N/A	N/A	6.58	1.8	0.3	13.8
B43-B8-GW	10	N/A	N/A	7.94	0.745	1.86	13.7
B43-B9-GW	10	N/A	N/A	6.35	1.6	0.28	12.9
B43-B10-GW	15	N/A	N/A	NM	NM	NM	NM
B43-B12-GW	13	N/A	N/A	6.82	2.55	0.22	14.9
	Water Depth (ft TOC)						
Monitoring Wells							
B43-1-GW	10.6	30.37	19.77	6.67	2.15	0.75	13.1
B43-2-GW	15.94	37.08	21.14	6.55	1.87	0.34	14
B43-KMW3-GW	11.35	34	22.65	6.78	1.47	0.26	13.6
B43-4-GW ¹	11.15	29.98	18.83	7.49	1.106	0.19	16
B43-KMW6-GW	7.72	29.98	22.26	6.62	1.63	0.25	15

Notes:

ft bgs: feet below ground surface ft TOC: feet below top of casing

1. Top of casing elevations provided by GeoEngineers (2012). Vertical datum: NAVD 88.

2. Top of casing elevation assumed to be equivalent to KMW-6. Well completed in regional aquifer and not included in ground water gradient evaluations.

ms/cm: millisiemens per centimeter

mg/L: milligrams per liter deg C: degrees Celsius N/A: not applicable NM: not measured

TABLE 2

ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS IN SOIL SAMPLES **BLOCK 43 DEVELOPMENT PROJECT** SOUTH LAKE UNION NEIGHBORHOOD, SEATTLE, WA

		Tota	al Petroleum	Hydroc	arhone	Vola	tilo Organic	Compounds I	by EDA 826	np 1					Nanthalonos	and cPAHs by E	DA 8270D/SIM ¹					PCBs by EPA 8082
	Sample		i retroleum	l Hydroc	arbons	Voia	lile Organic			I	Nambaba	O Madhad	4 Mathed	Danna (a)	Napthalenes			Danna [a]	Indona(4.2.2.a.d)	Dibanela ki		0002
0 1 10	Depth (ft	HCID	Casalina	Discol	Heaver Oi	Banzana	Taluana	Ethyl-	m,p-	a Vulana	Naphtha-	2-Methyl- naphthalene	1-Methyl-	Benzo[a]	Charana	Benzo[b]	Benzo[j,k] fluoranthene		Indeno(1,2,3-c,d)	Dibenz[a,h] anthracene	cPAH TEC⁵	Aroclor 1254
Sample ID	bgs)	Scan	Gasonne	Diesei	neavy Oi	I Benzene	Toluene	benzene	Xylene	o-Xylene	lene	парпипанене	naphthalene	anthracene	Chrysene	fluoranthene	nuorantnene	pyrene	pyrene	anthracene	CPAR IEC	Arocior 1254
GeoProbe Boring									1					T		T	1					
B43-B1-10	10-12	GDO	1,500	1,400	520	0.14	<0.50	0.5	0.29	<0.10	0.13	2.2	1.4	0.037	0.035	0.036	0.0087	0.019	0.012	<0.0077	0.02872	<0.058
B43-B1-14	14-16	ND																				
B43-B2-4	4-5	0		<29	160						<0.0077	0.0083	<0.0077	0.01	0.014	0.017	ND	0.0099	0.01	<0.0077	0.01274	<0.058
B43-B2-8	8-9	ND																				
B43-B3-3	3-4	ND																				
B43-B3-6	6-8	ND																				
B43-B4-4	4-5	ND																				
B43-B4-5	5-6	ND																				
B43-B5-4	4-5	ND																				
B43-B5-6	6-7	ND		.00	040						0.0004	2 22 4	0.040	2.24=	2 2 2 2	0.040	.0.0070	2 2 4 4	0.0000	.0.0076	0.04500	.0.055
B43-B8-6	6-8	0		<98	610						0.0081	0.034	0.018	0.017	0.027	0.019	<0.0073	0.011	0.0082	<0.0073	0.01569	<0.055
B43-B9-3	3-4	0		<150	720						0.2	0.16	0.068	0.042	0.061	0.036	0.011	0.021	0.017	<0.0079	0.03221	<0.060
B43-B9-10	10-12	ND				1																
B43-B10-15	15-16	ND	44	470	040	10.00000	0.0050	0.045	0.007	0.007	0.000	<0.0078	10.0070	0.048	0.007	0.007	0.040	0.000	0.040	<0.0078	0.03767	<0.058
B43-B10-19 B43-B11-2.5	19-20 2.5-4	GO	44	<79	310	<0.00096	0.0052	0.015	0.027	0.037	0.089 0.086	<0.0078 0.085	<0.0078 0.059		0.037	0.037	0.012 0.12	0.026	0.016			<0.058 <0.057
		0		<260 <1000	1,000	_				-		0.085		0.34	0.3 0.072	0.4		0.33 0.039	0.31	0.049	0.4549 0.05858	
B43-B11-6.5 B43-B12-3	6.5-8 6-4	O DO			3,800 16,000	<0.062	<0.31	<0.062	0.40	<0.062	0.034 0.52	0.029	0.013 0.17	0.061 0.36	0.072	0.061 0.29	0.018 0.24	0.039	0.04 0.18	0.0086 <0.041	0.05858	<0.057 <0.061
B43-B12-3	11-12	DO		7,200	540	<0.002	<0.0047	<0.002	0.12 <0.0019	<0.002	0.043	0.031	0.17	0.046	0.076	0.069	0.24	0.29	0.044	0.012	0.4022	<0.056
Test Pits	11-12	DO		230	540	<0.00094	<0.0047	<0.00094	<0.0019	<0.00094	0.043	0.031	0.015	0.046	0.076	0.069	0.019	0.049	0.044	0.012	0.00076	<0.056
	1.5	_	ı	.050	4 500						0.4=	0.40	0.054	0.040	0.0=0	0.04=	0.040	2.22=	0.000	.0.0077	0.04400	.0.050
B43-TP1-1.5	1.5 9	0		<350	1,500	1					0.17	0.12	0.054	0.048	0.073	0.047	0.012	0.027	0.028	<0.0077	0.04123	<0.058
B43-TP1-9	3	ND		-740	0.400						0.004	0.032	0.040	0.038	0.045	0.040	0.044	0.00	0.007	<0.0078	0.04405	<0.062
B43-TP2-3	3	0		<740	2,100	_					0.034		0.018		0.045	0.049	0.014	0.03	0.037		0.04425	
B43-TP2-8 B43-TP3-5	<u>8</u> 5	0		<63	240	+					<0.0074 0.0093	<0.0074 0.012	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074 0.0084	0.04720	<0.056 <0.061
B43-TP3-5 B43-TP3-8		0		<220	1,100	+						0.012	<0.0081 <0.0080	0.031 0.02	0.034	0.042 0.023	0.013 0.013	0.034	0.036 0.02	<0.0080	0.04738 0.02586	<0.060
B43-TP4-5	<u>8</u>	0		<360 <56	1,700 280					-	0.011	0.011	<0.0080		0.026 <0.0092	0.023	<0.0092	0.018 < 0.0092	<0.002	<0.0080		<0.069
B43-TP4-9	9	0		<1500	8,900	_			-		0.021 0.13	0.014	<0.0092 0.049	0.01 0.049	0.0092	0.0097	<0.0092 0.016	0.0092	0.0092	<0.0092 0.015	0.00197 0.05184	<0.065
B43-1P4-9 B43-TP5-6	6	0		<1500 <59	270	-	1	 	-	 	0.13	0.11	0.049 <0.0079	<0.049	0.074	0.043 <0.0079	<0.016	<0.0079	0.058 <0.0079	<0.015	0.05184	<0.065
B43-TP5-6 B43-TP5-10	10	0	-	<59 <33	140	+	 	 		_	0.028	0.014 <0.0079	<0.0079	<0.0079	0.014	<0.0079	<0.0079	<0.0079	<0.0079	<0.0079 <0.0079	0.00014	<0.059 <0.059
B43-TP6-10	4	0	-	<11000			 	 		_	0.02	0.82	0.33	<0.0079 1.1	0.0094	0.0079	<0.0079	0.0079	<0.0079	<0.0079	0.00094	<0.059
B43-TP6-4 B43-TP6-6	6	ND		×11000	41,000						0.77	0.02	0.33	1.1	0.51	0.000	<0.030	0.24	<0.030	<u> </u>	0.3639	<0.057
B43-TP7-6	6	О		<310	1.200	+				-	0.03	0.031	0.015	0.034	0.046	0.042	0.013	0.03	0.027	0.0082	0.04288	0.092
B43-TP-11-5	5	DO		110	580	<0.0013	<0.0065	<0.0013	<0.0026	<0.0013	0.03	0.031	0.015	0.034	0.046	0.042	<0.003	0.03	0.027	<0.0082	0.04288	<0.092
B43-TP-11-5	9	ND		110	300	<u> </u>	<u>~0.0005</u>	<u> </u>	~0.0020	~0.0013	0.31	0.000	0.052	0.013	0.020	0.02	\0.00 8 3	0.013	0.012	<u> </u>	0.01036	\0.010
	D Classian I s		100/30 ⁴	2.002	2.000	0.02	 	-	0.4	-4-1\		F (4=4c1)			<u> </u>		0.4 (TE	C) ⁵			I	4 (4-4-1)
MTCA Method A/		vei /-		2,000	2,000	0.03	7	6	9 (to			5 (total)		-			0.1 (TE					1 (total)
CEMEX fill site co			100	460	460	0.03	7	6	9 (to			5 (total)					0.1 (TE					1 (total)
Class II end use	criteria		30	200	200	0.03	7	6	9 (to	otal)		5 (total)					0.1 (TE	C) 3				0.04

Notes:

ft bgs: feet below ground surface HCID: hydrocarbon identification

HCID detections: G = Gasoline Range, D = Diesel Range, O -= Lube Oil Range, ND = Not Detected

<: Not detected at laboratory's reporting limit

Bold - Analyte Detected

Bold/Highlighted - Analyte detected above MTCA soil cleanup level

Blank - Sample was not analyzed for this constituent

- Only detected VOCs and PAHs shown; see Appendix C for complete list of compounds analyzed
 Washington Model Toxics Control Act Method A (Table 740-1) soil cleanup level for unrestricted land use, shown for reference only
- Washington Model Toxics Control Act Method B (CLARC) soil cleanup level, shown for reference only
 These cleanup levels may not apply at this site, and are provided as a screening level indication of the environmental quality of the site only.
- 4. The MTCA Method A soil cleanup level for gasoline mixtures without benzene and if the total of ethylbenzene, toluene, plus xylenes is less than 1% of the gasoline mixture is 100 mg/kg. The soil cleanup level for all other gasoline mixtures is 30
- 5. Toxicity Equivalent Concentration of carcinogenic polynuclear aromatic hydrocarbons (cPAHs) per WAC 173-340-708(e)

TABLE 3 ANALYTICAL RESULTS FOR METALS IN SOIL SAMPLES BLOCK 43 DEVELOPMENT PROJECT SOUTH LAKE UNION NEIGHBORHOOD, SEATTLE, WA

			Total	Metals by E			P Metals by E 010B/7470A(
	Sample Depth									
Sample ID	(ft bgs)	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Barium	Cadmium	Lead
GeoProbe Borings										
B43-B1-10	10-12	<12	94	<0.58	34	63	<0.29			
B43-B1-14	14-16	<11	42	<0.57	30	<5.7	<0.29			
B43-B2-4	4-5	<12	90	<0.58	32	44	<0.29			
B43-B2-8	8-9	<12	75	< 0.59	37	11	<0.29			
B43-B3-3	3-4	<12	95	<0.58	46	31	<0.29			
B43-B3-6	6-8	<12	93	<0.59	42	11	<0.29			
B43-B4-4	4-5	<11	83	<0.57	51	<5.7	<0.28			
B43-B4-5	5-6	<11	84	<0.57	37	41	<0.29			
B43-B5-4	4-5	<11	83	<0.57	38	<5.7	<0.28			
B43-B5-6	6-7	<11	110	< 0.57	41	110	<0.28			
B43-B8-6	6-8	13	120	<0.55	17	65	<0.28			
B43-B9-3	3-4	<12	250	1	24	120	< 0.30			
B43-B9-10	10-12	<11	45	< 0.57	28	<5.7	<0.29			
B43-B10-15	15-16	<12	65	<0.58	33	65	<0.29			
B43-B10-19	19-20	<12	46	<0.58	30	<5.8	<0.29			
B43-B11-2.5	2.5-4	<11	110	<0.57	28	50	<0.29			
B43-B11-6.5	6.5-8	<11	98	< 0.57	36	59	<0.29			
B43-B12-3	6-4	<12	240	12	65	520	0.64	0.94	0.12	0.43
B43-B12-11	11-12	<11	110	0.94	42	36	<0.28			
Test Pits	<u> </u>			•	•		•			•
B43-TP1-1.5	1.5	<12	170	0.69	43	130	<0.29			
B43-TP1-9	9	<12	63	<0.58	47	<5.8	<0.29			
B43-TP2-3	3	<12	160	< 0.62	69	23	<0.31			
B43-TP2-8	8	<11	45	<0.56	46	<5.6	<0.28			
B43-TP3-5	5	<12	97	<0.61	52	44	<0.30			
B43-TP3-8	8	<12	130	<0.60	51	27	< 0.30			
B43-TP4-5	5	<14	170	< 0.69	80	15	< 0.34			
B43-TP4-9	9	<13	180	1.2	57	170	< 0.33			
B43-TP5-6	6	<12	180	<0.59	52	61	<0.30			
B43-TP5-10	10	<12	110	<0.59	63	7	<0.29			
B43-TP6-4	4	<11	260	0.63	19	230	<0.29	0.66	<0.020	0.99
B43-TP6-6	6	<11	120	<0.57	61	<5.7	<0.28			
B43-TP7-6	6	<12	200	1.2	46	340	<0.31	0.85	<0.020	<0.20
B43-TP-11-5	5	<14	83	<0.70	40	20	<0.35		2.020	1
B43-TP11-9	9	<12	140	<0.60	64	<6	<0.30			1
MTCA Method A/B Clear	•	20	16,000 ³	2	19/2,000 4	250	2			
Dangerous Waste Criter		20	10,000		13/2,000	230		100	1	5
Background Metals ⁶	ia	7	255	1	48	24	0.07	100		ı ü
Dackground wetals		1	255	I	40	24	0.07			

Notes:

ft bgs: feet below ground surface

<: Not detected at laboratory's reporting limit

Bold - Analyte Detected

Bold/Highlighted - Analyte detected above MTCA soil cleanup level

Blank - Sample was not analyzed for this constituent

- 1. Only detected metals shown; see Appendix C for complete list of metals analyzed
- 2. Washington Model Toxics Control Act Method A (Table 740-1) soil cleanup level for unrestricted land use, shown for reference only
- 3. Washington Model Toxics Control Act Method B (CLARC) soil cleanup level, shown for reference only
- These cleanup levels may not apply at this site, and are provided as a screening level indication of the environmental quality of the site only.
- 4. The Method A soil cleanup levels for Chromium are 19 mg/kg for Cr VI and 2000 mg/kg for Cr III. Analyses are for total chromium. Geochemical conditions on site would not likely cause oxidation to hexavalent chromium having a cleanup level of 19 mg/kg
- 5. Dangerous Waste Criteria Dangerous Waste limit shown for TCLP results, Chapter 173-303 WAC
- 6. Background metals concentrations per *Natural Background Soil Metals Concentrations in Washington State* (Ecology, 1994) for the Puget Sound area No other analytes were detected above laboratory reporting limits (see Appendix C for complete list of compounds analyzed).

TABLE 4
ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS IN GROUND WATER SAMPLES
BLOCK 43 DEVELOPMENT PROJECT, SOUTH LAKE UNION NEIGHBORHOOD, SEATTLE, WA

		Total	Total Petroleum Hydrocarbons				olatiles by E	PA 8260B	and EDB b	11 ¹	Naphthalenes by EPA 8270D/SIM (ug/L)			
	Water Depth				Heavy				Ethyl-	m,p-	0-	Naphtha-	2-Methyl-	1-Methyl-
Sample ID	(ft bgs)	HCID	Gasoline	Diesel	Oil	MTBE	Benzene	Toluene	benzene	Xylene	Xylene	lene	naphthalene	naphthalene
GeoProbe Borings														
B43-B1-GW	12	G	2300			<10	1100	<50	110	110	<10	1.4	0.69	1.3
B43-B3-GW	15	G	5300			<2	<2	<10	190	78	5.3	1.1	0.26	0.24
B43-B4-GW	8	ND												
B43-B5-GW	7.5	G	1900			<2	1.4	1.4	3.3	13	0.43	0.61	<0.12	0.45
B43-B8-GW	10	ND												
B43-B9-GW	10	G	<400			0.22	16	6.6	36	32	5.5	12	35	22
B43-B10-GW	15	G	1500			<0.20	0.64	4.1	2.4	6.3	7.9			
B43-B12-GW	13	ND												
	Water Depth													
Monitoring Wells	(ft TOC)													
B43-1-GW	10.6	ND												
B43-2-GW	15.94	G	710			<0.20	3.9	<1	0.33	10	0.42	1.3	<0.10	0.18
B43-KMW3-GW	11.35	ND												
B43-4-GW	11.15	ND												
B43-KMW6-GW	7.72	G	1400			<0.20	1.8	1.6	3.1	3.8	0.3	0.44	0.36	1.7
B43-DUP-GW (duplicate of KMW6)	7.72	G	1300			<0.20	1.8	1.6	3	3.3	0.28	0.38	0.41	1.9
MTCA Method A/B Cleanup Level	2,3		800/1000 4	500	500	20	5	1000	700	1000	(total)		160 (total)	
KCIWD discharge limits		100 ppm FOG					70	1400	1700	2200	(total)	3820	•	
Surface Water standards 5			500				2.2	1300	530					

Notes:

ft bgs: feet below ground surface HCID: hydrocarbon identification

HCID detections: G = Gasoline Range, D = Diesel Range, O -= Lube Oil Range, ND = Not Detected

<: Not detected at laboratory's reporting limit

Bold - Analyte Detected

Bold/Highlighted - Analyte detected above MTCA ground water cleanup level

Blank - Sample was not analyzed for this constituent

- 1. Only detected VOCs shown; see Appendix C for complete list of VOCs analyzed
- 2. Washington Model Toxics Control Act Method A (Table 720-1) ground water cleanup level, for reference only
- 3. Washington Model Toxics Control Act Method B (CLARC) soil cleanup level, for reference

these cleanup levels may not apply at this site, and are provided as a screening level indication of the environmental quality of the site only.

- 4. The MTCA Method A ground water cleanup level for gasoline mixtures without benzene is 1000 μg/kg. The ground water cleanup level for all other gasoline mixtures is 800 μg/kg.
- 5. Based on human health surface water / fresh water criteria per Clean Water Act §304, or if no CWA criteria, MTCA Method B surface water cleanup levels, or if no surface water criteria, MTCA Ground water cleanup levels, or laboratory practical quantitation limit if lower than standard shown.

KCIWD - King County Industrial Waste Division discharge limits for sanitary sewer

TABLE 5
ANALYTICAL RESULTS FOR METALS IN GROUND WATER SAMPLES
BLOCK 43 DEVELOPMENT PROJECT, SOUTH LAKE UNION NEIGHBORHOOD, SEATTLE, WA

	Dissolv	ed Metals	by EPA 200.8/	7470A ¹
Sample ID	Arsenic	Barium	Chromium	Lead
GeoProbe Borings				
B43-B1-GW	110	92	<10	<1
B43-B3-GW	<3	53	<10	<1
B43-B4-GW	4	67	<10	20
B43-B5-GW	<3	79	<10	<1
B43-B8-GW	6.7	<25	12	<1
B43-B9-GW	30	73	<10	<1
B43-B10-GW				
B43-B12-GW	7.3	87	<10	1.5
Monitoring Wells				
B43-1-GW	3.9	170	<10	<1
B43-2-GW	15	88	<10	<1
B43-KMW3-GW	<3	38	<10	<1
B43-4-GW	<3	<25	<10	<1
B43-KMW6-GW	8.7	62	<10	<1
B43-DUP-GW (duplicate of KMW6)	8.7	61	<10	<1
MTCA Method A/B Cleanup Level ^{2,3}	5	3200 ³	50	15
KCIWD discharge limits	4000 ⁴		5000 ⁴	4000 ⁴
Surface Water standards ⁵	190	1000	57	55.6 ⁶

Notes:

ft bgs: feet below ground surface

<: Not detected at laboratory's reporting limit

ft TOC: feet below top of casing

Bold: Analyte Detected

Bold/Highlighted: Analyte detected above MTCA ground water cleanup level

Blank (no info/data): Sample was not analyzed for this constituent

- 1. Only detected metals shown; see Appendix C for complete list of metals analyzed
- 2. Washington Model Toxics Control Act Method A (Table 720-1) ground water cleanup level, for reference only
- 3. Washington Model Toxics Control Act Method B (CLARC) soil cleanup level, for
 These cleanup levels may not apply at this site, and are provided as a screening level indication of the environmental quality of the site only.
- 4. Maximum daily
- 5. Based on Surface Water Standard, Aquatic Life, Fresh/Chronic, Ch. 173-201A WAC, or Surface Water Standard, Human Health, Fresh Water, Clean Water Act §304
- 6. Ecology Lake Union general boatyard permit, 2007

KCIWD - King County Industrial Waste Division discharge limits for sanitary sewer

Date: 6/9/2012 Source: King County iMAP - Property Information (http://www.metrokc.gov/GIS/iMAP)

HWA GEOSCIENCES INC.

VICINITY MAP

PHASE II ENVIRONMENTAL SITE ASSESSMENT BLOCK 43 - SOUTH LAKE UNION DEVELOPMENT PROJECT SEATTLE, WASHINGTON FIGURE NO.

1

PROJECT NO. **2012-046**

Legend

Soil boring completed by HWA GeoSciences, Inc (2012)

B43-TP10

Test pit completed by HWA GeoSciences, Inc (2012)

B-43-4

Boring completed by GeoEngineers Inc. (2012)

K-MW-7

Monitoring Well completed Kane Environmental, Inc. (2003)

GEO-10

SB-5

Boring completed Kane Environmental, Inc. (2003)

Boring completed by Environmental Partners, Inc (2000)

Inferred direction of ground water flow (as measured by HWA on 5/11/12)

Notes:

- 1. The locations of all features shown are approximate.
- This drawing is for information purposes. It is intended to assist in showing features discussed in the attached document. HWA GeoSciences, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by HWA GeoSciences, Inc. and will serve as the official record of this communication.

Reference: Base drawing provided by GeoEngineers, Inc. (2012)

HWA GEOSCIENCES INC.

PHASE II ENVIRONMENTAL SITE ASSESSMENT
BLOCK 43 DEVELOPMENT PROJECT
SOUTH LAKE UNION NEIGHBORHOOD
SEATTLE, WA

SITE AND EXPLORATION PLAN DRAWN BY EFK
CHECK BY VA PROJECT #

DATE:
06-06-12 TASK 0001

Legend

Exceedances of MTCA Method A Cleanup Levels for soil in soil samples

3'	Approximate sample depth in feet below ground surface
Gas	Gasoline-range petroleum hydrocarbons
Diesel	Diesel-range petroleum hydrocarbons
Oil	Heavy Oil-range petroleum hydrocarbons
Benzene	Benzene
Lead	Total lead
cPAH	Carcinogenic polycyclic aromatic hydrocarbons

Notes:

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in the attached document. HWA GeoSciences, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by HWA GeoSciences, Inc. and will serve as the official record of this communication.

Reference: Base drawing provided by GeoEngineers, Inc. (2012)

PHASE II ENVIRONMENTAL SITE ASSESSMENT BLOCK 43 DEVELOPMENT PROJECT SOUTH LAKE UNION NEIGHBORHOOD SEATTLE, WA

HISTORICAL AND RECENT SOIL SAMPLE LOCATIONS AND MTCA METHOD A EXCEEDANCES

DRAWN BY EFK
CHECK BY VA PROJECT #

DATE:
06-06-12 TASK 0001

Legend

Exceedances of MTCA Method A Cleanup Levels in groundwater samples

Gas	Gasoline-range petroleum hydrocarbons
Benzene	Benzene (Aromatic hydrocarbon)
Ethylbenzene	Ethylbenzene (Aromatic hydrocarbon)
Xylenes	Xylenes, total (Aromatic hydrocarbon)
Arsenic	Arsenic, Dissolved
Lead	Lead, Dissolved

Notes:

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in the attached document. HWA GeoSciences, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by HWA GeoSciences, Inc. and will serve as the official record of this communication.

Reference: Base drawing provided by GeoEngineers, Inc. (2012)

PHASE II ENVIRONMENTAL SITE ASSESSMENT
BLOCK 43 DEVELOPMENT PROJECT
SOUTH LAKE UNION NEIGHBORHOOD
SEATTLE, WA

HISTORICAL AND RECENT GROUND WATER SAMPLE LOCATIONS AND MTCA METHOD A EXCEEDANCES

DRAWN BY EFK
CHECK BY VA
DATE: 2012-046-22
TASK 0001

BASE MAP PROVIDED BY: Client

APPENDIX A PHASE II ESA WORK PLAN

PHASE II INVESTIGATION WORK PLAN

VULCAN BLOCK 43 601 WESTLAKE AVENUE NORTH SEATTLE, WASHINGTON

Prepared for: City Investors XX, LLC c/o Vulcan Inc. 505 Union Street, Suite 900 Seattle, WA 98104

HWA Project No. 2012-046-22

April 25, 2012

21312 30TH Dr. SE, #110 BOTHELL, WA 98021 (425) 774-0106

TABLE OF CONTENTS

1.0 INTRODUCTION	3
1.1 Purpose	
1.2 Project Stakeholders	
1.3 SITE LOCATION	4
1.4 SITE BACKGROUND	4
2.0 SCOPE OF WORK AND SCHEDULE	
3.0 FIELD EXPLORATION AND SAMPLING ACTIVITIES	
3.1 UNDERGROUND UTILITY LOCATIONS	
3.2 SOIL BORINGS	6
3.3 TEST PITS AND SAMPLING	
3.4 GROUND WATER SAMPLING	7
4.0 CHEMICAL ANALYSIS OF SOIL AND GROUND WATER SAMPLES	
5.0 HEALTH AND SAFETY	

TABLES

FIGURES

Figure 1: Site Location Map

Figure 2: Proposed Boring and Test Pit Locations

APPENDICES

Appendix A: Sampling and Analysis Plan Appendix B: Health and Safety Plan

PHASE II INVESTIGATION WORK PLAN

VULCAN BLOCK 43 601 WESTLAKE AVENUE NORTH SEATTLE, WASHINGTON

1.0 INTRODUCTION

This Phase II investigation work plan ("Work Plan") describes the scope of work, methods, procedures, and other information to be used by HWA GeoSciences Inc. (HWA) during Phase II investigation activities at Block 43 in the South Lake Union neighborhood of Seattle, Washington, hereafter referred to as the "site". Site location is shown on Figure 1.

This SAP was prepared for City Investors XX, LLC in response to its Master Services Agreement with HWA for environmental consulting services at the site dated April 25, 2012. HWA prepared this plan in accordance with our understanding of the project, and Chapter 173-340-820 WAC in the Washington State Model Toxics Control Act (MTCA) Cleanup Regulations.

1.1 Purpose

The purpose of this work plan is to describe the methods and procedures that will be used during field and laboratory activities to ensure that data quality objectives for the project are met. Data objectives are to provide field and analytical data of sufficient quality to fulfill MTCA requirements for investigation and cleanup of contaminated sites.

1.2 Project Stakeholders

Companies playing a significant role in the development and/or environmental investigation activities at the site are listed below, along with their role in the project and the contact names and phone numbers for their representatives.

Company and its Role	Contact Information for Company
	Representative
Owner	
City Investors XX LLC, c/o Vulcan Inc.	Jim Broadlick 206-342-2059 (primary contact)
505 Union St, #900	Julie DeDonato 206-342-2409 (alternate
Seattle, WA 98107	contact), (206) 351-9657 (cell)
Construction Company and Test Pit Excavator	
Merlino Construction Co.	
9125 10th Ave S.	Mike Hebert 206-762-9125 (office) 206-255-
Seattle, WA 98108	5443 (cell)
Environmental Consultant	
HWA Geosciences Inc.	Jeff Thompson, Project Manager 425-774-0106

21312 39th Dr. SE, #110	(ext. 233), 206-794-3113 (cell)
Bothell, WA 98021	Vance Atkins, Project Geologist 425-774-0106
,	(ext. 230), 206-794-3124 (cell)
Geotechnical Consultant	
GeoEngineers, Inc.	
8410 154th Avenue NE	Matt Smith, Project Manager 425-861-6072
Redmond, WA 98052	Dan Chao, Project Geologist - 425-861-6000
Drilling Contractor	
Environmental Services Network	
1210 Eastside St. SE, # 200	Driller: Don 360-870-4515
Olympia, WA 98501	Coordinator: Anisa Handen (360) 459-4670
Analytical Laboratory	David Baumeister 425-883-3881 (primary
OnSite Environmental	contact)
14648 NE 95th Street	Blair Goodrow 425-883-3881 (alternate
Redmond, WA 98052	contact), 206-963-8475 (cell)
Propel Biofuels Station	Mr. Nai Chao, Facility Manager
609 Westlake Avenue North	206-262-8825 (office) (206) 658-5688 (cell)
Seattle, WA 98109	

1.3 Site Location

The site includes one city block, referred to as Block 43, in the South Lake Union neighborhood of Seattle, Washington. The street address of one parcel within the block is used as the site location by default. The default site address is 601 Westlake Avenue North, Seattle, Washington. The site is bounded on the south by Mercer Street, on the east by Westlake Avenue North, on the north by Broad Street, and on the west by 9th Avenue North. A site plan showing the streets and site boundaries is shown on Figure 1.

1.4 Site Background

City Investors XX LLC owns the subject property and plans to construct one building at the site containing retail space, commercial offices, multi-family residential units, and underground parking stalls. Soil at the site will be excavated from property line to property line to depths ranging from 20 to 25 feet below ground surface (bgs). Excavated soil will be disposed of at a licensed disposal facility depending on the type of soil and potential concentrations of petroleum hydrocarbons and/or other constituents.

Former property uses included automobile sales and service, including vehicle refueling operations and fuel storage. Site investigations conducted to date, among them Kane Environmental, Inc. (May 2003) identified petroleum hydrocarbon constituents in soil and ground water beneath the site. The highest concentrations appear to be in the northeast portion of the site. Other relatively lower concentrations are located in the west, central and south portions of the site. Some petroleum concentrations in the ground water appear to occur in the absence of similar concentrations in soil. These conditions may represent unidentified and localized areas of soil contamination not identified in previous investigations, USTs or associated piping still in-place beneath the property that represent

represent on-going sources, or migration of impacted ground water beneath the site from an off-site source.

Recent activities at the site include demolishing 2 buildings that were part of the former car sales and service facility, and advancing geotechnical and environmental borings. Four environmental borings located near the property corners were converted to groundwater monitoring wells in March 2012.

2.0 SCOPE OF WORK AND SCHEDULE

2.1 Scope of Work

The scope of work for Phase II environmental activities includes:

- Preparing this work plan, which includes a sampling and analysis plan (SAP) and a health and safety plan (HASP).
- Utilizing the services of public utility locators and a private utility locating service to mark the approximate locations of underground utilities near the vicinity of proposed boring and test pit locations.
- Advancing approximately 12 direct-push probes to collect soil and ground water samples beneath the site.
- Excavate approximately 10 test pits to evaluate subsurface hydrogeologic conditions and collect soil samples beneath the site.
- Purge and sample four existing ground water monitoring wells.
- Submit select soil and ground water samples from borings and test pits for laboratory analysis
- Evaluate the data collected during field activities and laboratory analytical results.
- Prepare a written report describing the results of field activities, analytical results, data evaluation activities, and our conclusions and recommendations.

These activities are described in subsequent sections of this work plan.

2.2 Project Schedule

We anticipate the field activities described herein are scheduled to begin on May 8, 2012 and will require approximately 5 business days. Chemical analysis of soil and groundwater samples are expected to require one to two weeks, possibly more depending on the type and quantity of follow-up analyses that are required. Data evaluation and report preparation activities will require approximately three to four weeks. The anticipated date for HWA to submit its final report to the client describing the results of our activities is June 30, 2012.

3.0 FIELD EXPLORATION AND SAMPLING ACTIVITIES

3.1 Underground Utility Locations

In an attempt to avoid contacting underground utilities during field activities the approximate location of underground utilities in the vicinity of soil boring and test pit locations will be identified and marked on ground surface. HWA will contact the Utilities Underground Location Center (UULC) ten days or less prior to intrusive field activities. Because public utility locators only mark their utilities that are within the public rights-of-way, HWA will also subcontract a private locating service (APS, Inc.) to locate and mark the approximate locations of underground utilities that are near proposed boring and test pit locations within the site boundaries. PVC and concrete utilities can not be located, and interference from foundations, footings, metal or other subsurface objects can interfere with accurate location marking and utility identification. HWA will not be held liable in any way for damage to utilities or other underground structures not defined or located for HWA by the owner or by the Utilities Underground Location Center.

3.2 Soil Borings

All borings will be drilled and installed according to Ecology Minimum Standards for Construction and Maintenance of Wells (Chapter 173-160 WAC). HWA will employ a drilling contractor licensed in Washington State to collect soil and groundwater samples using a truck-mounted, direct-push sampling device. The device consists of a hydraulic drive assembly mounted on either a pickup truck or tractor. Steel pipe (1.25-2 inch diameter) is driven into the ground using a hydraulic impact driver, then withdrawn. Soil cores within a glycol modified polyethylene terephthalate (PETG) inner sleeve can then be retrieved from the sampler and removed for logging and sampling.

Soil borings will be advanced to depths of approximately 20 to 25 feet bgs, the depth of refusal, or the depth of groundwater, whichever is less. Boring locations are shown on Figure 2. Soil exploration activities will include collecting continuous core samples (whenever possible) from ground surface to the total depth of exploration.

Borings will be backfilled from the bottom of the boring to ground surface using bentonite chips that will be hydrated at ground surface.

3.3 Test Pits and Sampling

Test pits will be excavated using a backhoe or trackhoe at or near the locations shown on Figure 2. Nine test pits are currently planned. Test pit excavations will extend to the depth of the excavator arm (approximately 12 feet bgs), the depth of refusal, or the depth of groundwater, whichever is less. Test pits will be backfilled using the excavated soil which will be lightly compacted using the excavator bucket.

Unless unexpected or unusual subsurface conditions are encountered, we anticipate submitting one to two soil samples from each test pit for chemical analysis. Samples

selected for chemical analysis will be placed in new, unused sample containers provided by the analytical laboratory. Samples will be delivered to the analytical laboratory within 24 hours of sampling and will employ proper chain-of-custody procedures for identification, tracking and handling of the samples.

Test pits will be photographed and logged by an HWA field representative who will record subsurface hydrogeologic conditions on a test pit log, collect samples from the excavated soil, and record pertinent information on the logs, including: stratigraphy, sample depth, ground water occurrence, total depth of exploration, and visual or other indications of environmental contamination in soil or groundwater.

3.4 Ground Water Sampling

Ground water samples will be collected from direct-push borings and from the four existing on-site monitoring wells. Monitoring wells are located near the four property corners and the locations are shown on Figure 2. Ground water samples will be collected from soil borings and monitoring wells using a peristaltic pump. New pump tubing will be used at each location.

Ground water will be purged from each boring or monitoring well prior to sample collection to obtain groundwater samples that are representative of the formation water. Purging and sampling will be performed using low-flow methods and a peristaltic pump.

3.5 Investigation-Derived Waste (IDW)

Soil cuttings, decontamination water, and other investigation-derived waste (IDW) will be temporarily stored at the site in steel drums until disposed of off site at an approved disposal or recycling facility designated by the owner. IDW containers will be labeled with pertinent information sufficient to identify the contents, site location, and data that the IDW was generated.

4.0 CHEMICAL ANALYSIS OF SOIL AND GROUND WATER SAMPLES

HWA will submit soil and ground water samples to OnSite Environmental, Inc. of Redmond, Washington for chemical analysis. A standard (5 to 10 days) turn-around time (TAT) will be used unless special circumstances require a shorter TAT.

Chemical analysis of soil and groundwater samples is based on recent and historical data for soil and groundwater samples previously collected at the site. These data indicate the following potential constituents of concern (PCOCs) in soil and/or groundwater beneath the site:

- Total petroleum hydrocarbons (TPH) in the gasoline, diesel, and/or heavy oil ranges;
- Specific gasoline constituents: BTEX, EDB, EDC, MTBE;

- Volatile organic compounds (VOC);
- Total and/or dissolved metals; and,
- Total and/or dissolved polycyclic aromatic hydrocarbons (PAH).

PCOCs have been detected in soil and/or groundwater beneath the site. The occurrence of PCOCs is not consistent in terms of media, depth, location or other parameters. Some constituents appear to occur or are known to occur with other compounds, such as BTEX with TPHg, or PAHs with TPHd or TPHo.

Based on these conditions soil and groundwater samples will be submitted for initial analyses to confirm the presence or absence of certain constituents and then resubmitted if associated compounds are suspected. Initial and subsequent analyses are described below.

4.1 Chemical Analysis of Soil Samples

4.1.1 Initial (first round) Analyses

All soil samples will be submitted for the following initial (first-round) analysis:

- TPH identification scan using Ecology Method NWTPH-HCID;
- Total RCRA Metals using EPA 6000/7000 series methods.

4.1.2 Subsequent (second round) Analyses

Follow-up analyses may be required based on analytical results from initial analyses

Soil samples will be resubmitted for one or more of the following analyses pending initial analytical results:

- If NWTPH-HCID results are positive for TPHg, then the sample will be resubmitted for analysis of BTEX/EDB/EDB/MTBE.
- If NWTPH-HCID results are positive for TPHd and/or TPHo, then the sample will be resubmitted for analysis of PAH.
- If total metals analysis is positive and at a high concentration that may potentially warrant special handling or disposal practices, then the sample will be resubmitted for TCLP metals analysis.

Subsequent analyses and/or TCLP testing may result in a total turnaround time of more than two weeks.

Specific sample collection and handling methods are described in the Sampling and Analysis Plan (SAP) included in Appendix A.

5.0 HEALTH AND SAFETY

HWA personnel conducting this field program are required to follow the health and safety protocol presented in the HWA site specific Health and Safety Plan (HASP). The HASP is included in Appendix B.

Subcontractors and other authorized visitors to the site are responsible for their own health and safety and their own site-specific health and safety plan. The Health and Safety Plan will be made available to subcontractors and other site visitors who request to view it. Health and Safety precautions will be communicated to subcontractors by HWA personnel in site safety briefings at the beginning of each field day. To acknowledge review and comprehension of this plan, HWA personnel must sign the appropriate section included in the back of the document.

Date: 6/9/2012 Source: King County iMAP - Property Information (http://www.metrokc.gov/GIS/iMAP)

HWA GEOSCIENCES INC.

VICINITY MAP

PHASE II ENVIRONMENTAL SITE ASSESSMENT BLOCK 43 - SOUTH LAKE UNION DEVELOPMENT PROJECT SEATTLE, WASHINGTON FIGURE NO.

1

PROJECT NO. **2012-046**

PROPOSED BORING AND TEST PIT LOCATIONS

PHASE II ENVIRONMENTAL INVESTIGATION BLOCK 43 – SOUTH LAKE UNION DEVELOPMENT CITY INVESTORS XX, LLC FIGURE NO.

2012-046-22

WORK PLAN APPENDIX A SAMPLING AND ANALYSIS PLAN

SAMPLING AND ANALYSIS PLAN

Vulcan Block 43, South Lake Union Neighborhood 601 Westlake Avenue North, Seattle, Washington

Prepared for: City Investors XX, LLC c/o Vulcan Inc. 505 Union Street, Suite 900 Seattle, WA 98104

HWA Project No. 2012-046-22

May 6, 2012

21312 30TH Dr. SE, #110 BOTHELL, WA 98021 (425) 774-0106

TABLE OF CONTENTS

INTRODUCTION	1
PURPOSE	1
SITE LOCATION	1
SCOPE OF THIS SAMPLING AND ANALYSIS PLAN	1
SAMPLING METHODS AND PROCEDURES	1
Soil Sampling	2
Field Screening of Soil Samples	
Ground Water Sampling	
Test Pits and Sampling	3
Equipment Decontamination Procedures	4
FIELD DOCUMENTATION AND CHAIN-OF-CUSTODY PROCEDURES	4
Field Documentation	4
Soil Boring/Test Pit and Sample Identification Numbering System	5
Pertinent Sample Information	5
Chain-Of-Custody Records	6
Collection Methods for Soil Samples being submitted for VOC Analysis (EPA Method 5035)	6
CHEMICAL ANALYSIS OF SOIL AND GROUND WATER SAMPLES	8
Chemcial Analysis of Soil Samples	8
Intial (first round) Analyses	8
Subsequent (second round) Analyses	9
Chemical Analysis of Ground Water Samples	9
Intial (first round) Analyses	9
Subsequent (second round) Analyses	9
QUALITY ASSURANCE/QUALITY CONTROL	.10
Data Evaluation	.11

Tables

Table 1: Sampling and Analysis Matrix for Soil Samples
Table 2: Sampling and Analysis Matrix for Ground Water Samples

Figures

Figure 1: Site Location Map

Figure 2: Proposed Boring and Test Pit Locations

Appendices

Appendix A:

1.0 INTRODUCTION

This sampling and analysis plan (SAP) is Appendix A to the HWA Geosciences Inc. (HWA) Phase II Investigation Work Plan (Work Plan). This SAP describes the field and laboratory methods for collecting and analyzing soil and ground water samples collected during HWA's Phase II Investigation at Block 43 in the South Lake Union neighborhood of Seattle, Washington (the site). The site includes one city block. Site location is shown on Figure 1.

This SAP was prepared for City Investors XX, LLC ("Owner") in response to its Master Services Agreement with HWA for environmental consulting services dated April 25, 2012. HWA prepared this plan in accordance with our understanding of the project, and Chapter 173-340-820 WAC in the Washington State Model Toxics Control Act (MTCA) Cleanup Regulations. The body of this plan outlines our field sampling and laboratory analytical methods.

2.0 PURPOSE

The purpose of this SAP is to describe the procedures that will be used during field and laboratory activities to ensure that data quality objectives for the project are met. Data quality objectives are to provide accurate quantification of potential constituents of concern in soil and/or ground water beneath the site prior to development by the Owner.

3.0 SITE LOCATION

The site includes one city block, referred to as Block 43, in the South Lake Union neighborhood of Seattle, Washington. The street address of one parcel within the block is used as the site location by default. The default site address is 601 Westlake Avenue North, Seattle, Washington. The site is bounded on the south by Mercer Street, on the east by Westlake Avenue North, on the north by Broad Street, and on the west by 9th Avenue North. A site plan showing the streets and site boundaries is shown on Figure 1.

4.0 SCOPE OF THIS SAMPLING AND ANALYSIS PLAN

The scope of this SAP includes:

- Describing locations where and how soil and/or ground water samples will be collected
- Documentation methods to be used during field activities, sampling activities, and sampling handling/transport activities;
- Sample collection methods and containers;

These activities are described in subsequent sections of this work plan.

5.0 SAMPLING METHODS AND PROCEDURES

5.1 Soil Sampling

Field activities will be supervised by an HWA geologist or engineer. Soil borings will be logged by an HWA field representative who will record subsurface hydrogeologic conditions on a soil boring log, collect samples from the recovered soil cores, and record pertinent information on the soil boring logs, including: soil sample depths, stratigraphy, ground water occurrence, ground water sample depth, total depth of exploration, and visual or other indications of environmental contamination in soil or ground water. HWA will field screen select samples for organic vapors by headspace analysis using a photoionization detector (PID). For each boring, samples with the highest level of organic vapors and/or most discernible visual/olfactory contamination will be shipped to the laboratory for chemical analysis. In the absence of field screening indications, the sample immediately above the level of ground water will be submitted for analysis.

Unless unexpected or unusual subsurface conditions are encountered, we anticipate submitting one to two soil samples from each boring and/or test pit for chemical analysis. Samples selected for chemical analysis will be placed in new, unused sample containers provided by the analytical laboratory. Samples will be delivered to the analytical laboratory within 24 hours of sampling and will employ proper chain-of-custody procedures for identification, tracking and handling of the samples.

5.2 Field Screening of Soil Samples

HWA will screen soil samples using a photoionization detector (PID) headspace analysis. Although the PID is not capable of quantifying or identifying specific organic compounds, this instrument is capable of measuring relative concentrations of a variety of organic vapors. The HWA field representative will place approximately two ounces of soil in a resealable (i.e. Ziploc) plastic bag with ample air headspace. After allowing the sample to rest for up to five minutes at ambient temperature, the sampler will agitate the sample for ten seconds, insert the PID probe through a small opening in the plastic bag, and record the highest reading within ten seconds.

5.3 Ground Water Sampling

One ground water sample will be collected (if present and of sufficient volume) from the bottom of each boring prior to backfilling. Ground water samples will not be collected from test pits. Ground water samples will be collected by installing either a temporary retractable stainless-steel sampling screen, or a temporary ¾-inch-diameter PVC well screen (0.010-inch slot) in the borehole. Ground water from soil borings will be collected using a peristaltic pump and Teflon-lined polyethylene tubing lowered into the screen. New Teflon-lined polyethylene tubing will be used for each ground water sample.

Ground water samples will also be collected from the four existing on-site monitoring wells. Monitoring wells are located near the four property corners and the locations are shown on Figure 2. Ground water samples will be collected from soil borings and monitoring wells using a peristaltic pump. New pump tubing will be used at each location.

Ground water will be purged from each boring or monitoring well prior to sample collection to obtain ground water samples that are representative of the formation water. Purging will be performed using low-flow methods and a peristaltic pump. Ground water levels will be measured to the nearest 0.01-foot during purging using a decontaminated electronic well probe. Prior to collection of ground water samples, the sampling points wells will be purged by pumping a small volume of water to ensure sampled water represents aquifer conditions. The volume pumped will be determined in the field based on stabilization of field parameters: specific conductance, dissolved oxygen, and pH. Sampling points will be purged by very slowly lowering semi-rigid polyethylene tubing to a depth corresponding to roughly the midpoint of the screen, securing the tubing to prevent vertical movement, connecting it to a peristaltic pump, and then pumping at a rate not to exceed 0.5 liters/minute (0.13 gallons/minute). At a minimum, two pump and tubing volumes will be purged (1/2" I.D. tubing = 0.010 gallon/lineal foot, 0.17" I.D. tubing = 0.001 gallon/lineal foot = 5 ml/lineal foot). Samples will be collected once the parameter values have stabilized over the course of three sets of measurements as follows:

 $\begin{array}{ll} \text{specific conductance} & 10 \ \mu\text{S/cm} \\ \text{dissolved oxygen} & 2 \ \text{mg/L} \\ \text{pH} & 0.1 \end{array}$

If a sampling point can be pumped dry prior to reaching the desired purge volume, it will be allowed to recover prior to sampling, using the minimum time between purging and sampling that would allow collection of sufficient sample volume. Samples will be pumped directly into the appropriate containers, as provided by the laboratory. A Field Data Sampling Sheet (provided in Appendix A) will be filled out for each sample. New tubing will be used at each location.

All organics and TPH samples will be filtered through a disposable 1-micron filter. The filters will attach directly to the discharge tube of the sampling pump. The filter must be changed between sample points, or more frequently if clogging occurs. Samples that have been field-filtered or that require laboratory filtering must be noted on the Chain-of-Custody forms in the comments section. The laboratory will note which samples require filtering on the individual bottle labels.

5.4 Test Pits and Sampling

Test pits will be excavated using a backhoe or trackhoe at or near the locations shown on Figure 2. Nine test pits are currently planned.

Unless unexpected or unusual subsurface conditions are encountered, we anticipate submitting one to two soil samples from each test pit for chemical analysis. Soil samples will be collected from the excavator bucket. Care will be taken not to collect soil sample adjacent to the sides or bottom of the bucket or to touch the sides or bottom of the bucket with the sampling utensil. A stainless steel sampling utensil will be used, and will be cleaned prior to collecting each sample using standard decontamination procedures.

HWA will field screen select soil samples for organic vapors by headspace analysis using a photoionization detector (PID). For each boring, samples with the highest level of organic vapors and/or most discernible visual/olfactory contamination will be shipped to the laboratory for

chemical analysis. In the absence of field screening indications, the sample immediately above the level of ground water will be submitted for analysis.

Samples selected for chemical analysis will be placed in new, unused sample containers provided by the analytical laboratory. Samples will be delivered to the analytical laboratory within 24 hours of sampling and will employ proper chain-of-custody procedures for identification, tracking and handling of the samples.

5.5 Equipment Decontamination Procedures

HWA will use the following standard environmental decontamination procedures to minimize the potential for cross-contamination of samples. Decontamination procedures will be used to clean field equipment and/or sampling utensils prior to each use and/or between borings as appropriate. Standard decontamination procedures will include:

- 1. Wash in detergent-potable water solution
- 2. Wash/rinse using potable water
- 3. Rinse using deionized or distilled water.

The drilling contractor will steam-clean probe rods and other down-hole equipment and tooling between prior to advancing each boring.

6.0 FIELD DOCUMENTATION AND CHAIN-OF-CUSTODY PROCEDURES

The following sections describe the recording system for documenting all site field activities, and the sample chain-of-custody program.

6.1 Field Documentation

Field documentation will be sufficient to record the general, daily activities that are performed during the Phase II investigation as well as specific activities such as describing soil observed in a sidewall of a test pit.

Daily field logs will be completed for each day that field activities are performed, and will include but not be limited to: start time, objectives/scope, HWA and subcontractor field personnel and visitors, standby time or unexpected conditions.

Boring logs will be completed for each boring regardless of whether or not the boring is completed. Boring logs will include soil description, field-screening results, depth of soil sample(s) selected for chemical analysis, whether ground water was encountered and/or sampled, potential presence of environmental contamination, boring termination depth, and/or other information believed to be pertinent by the field representative.

Test pit logs will be completed for each test pit. Test pit logs will include soil description, field-screening results, depth of soil sample(s) selected for chemical analysis, ground water occurrence,

potential presence of environmental contamination, termination depth, and/or other information believed to be pertinent by the field representative.

A well sampling sheet will be completed for each monitoring well where ground water is gauged and/or sampled.

Examples of field documentation sheets are included in Appendix A to this plan.

6.2 Soil Boring/Test Pit and Sample Identification Numbering System

Soil borings have been assigned temporary identification numbers for planning purposes. Soil boring locations and identification numbers are shown on Figure 2. Soil borings will be assigned final designations in the field. This will allow flexibility in boring designation to prevent out-of-sequence designations, and in the event that borings are added or removed from the work plan in the course of the investigation.

Soil borings will be numbered in numerical order using the designation:

B43-BX

where 'X' is the boring ID number.

Test pits will be numbered in numerical order using the designation:

B43-TPX

where 'X' is the test pit ID number.

Boring and/or test pit ID numbers will be recorded on all field logs.

Soil samples will be designated with the boring or test pit number followed by the designation "SO" for soil, then followed by the sample depth (in feet). For example, a soil sample collected from 10 feet bgs at boring B-2 would be assigned sample identification number B43-B2-SO-10. The depth designation is for the approximate depth at which the sample was collected, as measured by the depth of the sample interval and the distance of the sample from the bottom of the soil core. Sample intervals and depths shall be denoted in the field logs and/or sampling forms.

Ground water samples will be numbered using the designation:

B43-BX-GW

where 'X' is the boring ID number.

6.3 Pertinent Sample Information

Following sample collection, field personnel will affix labels to each sample container. Samplers

will use waterproof ink, plastic bags, or clear tape to ensure labels remain legible even when wet. Samplers will record the following information on the labels:

- Project name and number
- Sample identification number
- Date and time of collection
- Required test methods
- Name of sample collector

6.4 Chain-Of-Custody Records

The objective of the chain-of-custody program is to allow the tracking of possession and handling of individual samples from the time of field collection through laboratory analysis. Once a sample is collected, it becomes part of the chain-of-custody process. A sample is "in custody" when (1) it is in someone's possession, (2) it is within visual proximity of that person, (3) it is in that person's possession, but locked up and sealed (e.g., during transport), or (4) it is in a designated secure sample storage area. Sampling staff will complete a chain-of-custody record which will accompany each batch of samples. The record will contain the following information:

- Project name and number
- Names of sampling team members
- Requested testing program
- Required turnaround time
- Sample number
- Date and time collected
- Sample type
- Number of containers
- Special Instructions
- Signatures of persons involved in the chain of possession

When sample custody is transferred to another individual, the samples must be relinquished by the present custodian and received by the new custodian. This will be recorded at the bottom of the chain-of-custody report where the persons involved will sign, date and note the time of transfer.

Sampling team members will keep sample coolers in locked vehicles while not in active use or visual range. If couriers are used to transport samples, chain of custody seals will be affixed to sample coolers.

Collection Methods for Soil Samples being submitted for VOC Analysis (EPA Method 5035)

Bottle Type	Method	Holding Time
(1) tarred VOA (non-preserved)*	NWTPH-G / 5035A	14 days

I	(1) tarred VOA (non-preserved)	VOCs / 5035A	48 hrs @4 ⁰ C then
	(2) tarred VOAs w/stir bar (low		14 days freeze at lab
	level)**		-
	(1) 4 oz. glass jar (moisture)		

^{* -} if sample containers can not be delivered to lab within 48 hours, OnSite will provide methanol-preserved vials

COLLECT 5 GRAMS OF SOIL PER VOA

VOAs are pre-weighed (tarred) at the lab

- Do not add any labels, tape, etc.
- Keep the same cap with each VOA
- Minimize methanol loss: check cap tightness, minimize open times, etc.
- Weigh VOAs on day of sampling (field or office)
- Visual check for methanol loss check all VOAs prior to sampling for consistency, reference marks when full
- Discard any suspect VOAs, note weights (w/o soil) on COC, methanol levels, etc. in field notebook

Collect Core Sample

- In place soils, surficial or excavation sidewall (<4' deep) scrape off to fresh soils w/ clean stainless steel spoon, take core sample
- Backhoe bucket scrape off to fresh soils w/ clean stainless steel spoon, take core sample
- Split spoon core immediately after opening split spoon, if using liners, core from middle liner or inside end of outer liners (top one is usually slough)
- Geoprobe liner slice open acetate liner, core immediately after opening

Soil types:

- Cohesive granular use core
- Cemented (e.g. till) break up with stainless steel spoon, place in VOA & cap as soon as possible
- Non cohesive (won't stay in core) place in VOA & cap as soon as possible

Extrude core into VOA

- Wipe threads with clean tissue or dry wipe
- Cap VOA
- Label ball point pen (e.g., write in the rain) only, no markers

Note in field notebook:

- Soil type, moisture
- Any bias e.g., gravels, organics (avoid both in core sample)
- Weather (temp, humidity, wind)
- Coring method used
- Preservation and storage method used

^{** -} if sample containers can not be delivered to lab within 48 hours, OnSite will provide sodium bisulphate-preserved vials

Note on COC:

• Empty vial weight

<u>Health and Safety issues</u> - Methanol is toxic and flammable

- Skin contact (use gloves), inhalation hazards (ensure adequate ventilation)
- Check shipping restrictions

<u>Cross contamination</u>: Methanol has a high affinity for VOCs (hence its use as a preservative and extraction solvent) and will adsorb VOCs from other sources, e.g., exhaust fumes, spray paint, sharpie, markers, etc.

7.0 CHEMICAL ANALYSIS OF SOIL AND GROUND WATER SAMPLES

HWA will submit soil and ground water samples to OnSite Environmental, Inc. of Redmond, Washington for chemical analysis. A standard (5 to 10 days) turn-around time (TAT) will be used unless special circumstances require a shorter TAT.

Chemical analysis of soil and ground water samples is based on recent and historical data for soil and ground water samples previously collected at the site. These data indicate the following potential constituents of concern (PCOCs) in soil and/or ground water beneath the site:

- Total petroleum hydrocarbons (TPH) in the gasoline, diesel, and/or heavy oil ranges;
- Specific gasoline constituents: BTEX, EDB, EDC, MTBE;
- Volatile organic compounds (VOC);
- Total and/or dissolved metals; and,
- Total and/or dissolved polycyclic aromatic hydrocarbons (PAH).

PCOCs have been detected in soil and/or ground water beneath the site. The occurrence of PCOCs is not consistent in terms of media, depth, location or other parameters. Some constituents appear to occur or are known to occur with other compounds, such as BTEX with TPHg, or PAHs with TPHd or TPHo.

Based on these conditions soil and ground water samples will be submitted for initial analyses to confirm the presence or absence of certain constituents and then resubmitted if associated compounds are suspected. Initial and subsequent analyses are described below.

7.1 Chemical Analysis of Soil Samples

7.1.1 Initial (first round) Analyses

All soil samples will be submitted for the following initial (first-round) analysis:

- TPH identification scan using Ecology Method NWTPH-HCID;
- Total RCRA Metals using EPA 6000/7000 series methods.

7.1.2 Subsequent (second round) Analyses

Follow-up analyses may be required based on analytical results from initial analyses

Soil samples will be resubmitted for one or more of the following analyses pending initial analytical results:

- If NWTPH-HCID results are positive for TPHg, then the sample will be resubmitted for analysis of BTEX/EDB/EDB/MTBE.
- If NWTPH-HCID results are positive for TPHd and/or TPHo, then the sample will be resubmitted for analysis of PAH.
- If total metals analysis is positive and at a high concentration that may potentially warrant special handling or disposal practices, then the sample will be resubmitted for TCLP metals analysis.

7.2 Chemical Analysis of Ground Water Samples

7.2.1 Initial (first round) Analyses

Ground water samples will be submitted for the following initial (first-round) analyses:

- TPH identification scan using Ecology Method NWTPH-HCID;
- Dissolved RCRA Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver)* using EPA Method 6010/7470A;

In addition, ground water samples collected from monitoring wells will be submitted for PAH using EPA Method 8270D/SIM during initial analysis.

7.2.2 Subsequent (second round) Analyses

Follow-up analyses may be required based on analytical results from initial analyses. Ground water samples will be resubmitted for one or more of the following analyses pending initial analytical results:

- If NWTPH-HCID results are positive for TPHg, then the sample will be resubmitted for analysis of TPH-Gx, and the volatile constituents BTEX/EDB/EDB/MTBE.
- If the volatile constituents are detected then a full VOC analysis using EPA Method 8260 will be performed.
- If NWTPH-HCID results are positive for TPHd and/or TPHo, then the sample will be resubmitted for analysis of TPH-Dx (with silica gel/acid cleanup) and PAH.

Ground water samples will be submitted to the analytical laboratory for one or more of the following analyses:

* Both filtered (dissolved) and unfiltered (total) metals samples will be collected. The filtered sample will be submitted initially. The total metals sample can be filtered if turbid, by initially collecting in an unpreserved poly bottle, allowing to settle in the cooler, then decanting into the preserved bottle or pumping through a 0.045 micron filter.

A sampling and analysis matrix for soil and ground water is shown in Table 1. The sampling and analysis matrix contains information on initial and subsequent analyses, sample container types and quantities, preservatives, and holding times.

After collection, the samples will be labeled, chilled in a cooler to 4°C, and shipped to OnSite for chemical analysis. Samples will be submitted for standard laboratory turnaround time (5-10 days).

8.0 QUALITY ASSURANCE/QUALITY CONTROL

Samples will be collected and analyzed with sufficient quality assurance/quality control (QA/QC) to ensure representative and reliable results. The overall QA objective for this investigation is to ensure that all laboratory and field data on which decisions are based are technically sound, statistically valid, and properly documented. There are two parts to the QA/QC program for this project: field and laboratory.

Field QA/QC includes proper documentation of field activities and sampling/handling procedures, as described in Section 2.5. Field QA/QC samples will consist of the following:

Soil: none

Ground Water: 1 trip blank per water sample shipment (analysis for TPH-Gas/BTEX)

1 field duplicate for ground water, if sample volume is sufficient

<u>Field Duplicates</u> are used to confirm analytical results from a given sample point. Duplicate samples are collected in the field using a matching set of laboratory-supplied bottles and sampling from the selected well, as requested. Each duplicate should be sampled by alternating between the regular and the duplicate sample bottles, proceeding in the designated sampling order (VOCs first). The location where the duplicate is collected must be identified on the field sampling data sheet. All duplicates shall be blind-labeled (i.e., the well designation is not listed on the sample bottle or Chain-of-Custody form). Once a duplicate is collected, it is handled and shipped in the same manner as the rest of the samples. Duplicate results will be reported in the laboratory results as separate samples, using the designation DUP-(#).

<u>Split samples</u> are collected when a location is sampled with a third party. Split samples are not anticipated for this investigation.

<u>Trip blanks</u> are used to detect contamination that may be introduced in bottle preparation, in transit to or from the sampling site, or in the field. Trip blanks are samples of volatile-organic-free, laboratory-quality water (Type II reagent grade) that are prepared at the laboratory. They remain with the sample bottles while in transit to the site, during sampling, and during the return trip to the laboratory. Trip blank sample bottles are not opened at any time during this process. Trip

blanks are to be reported in the laboratory results as separate samples, using the designation TB-(#). Each sample cooler that includes bottles for VOC analysis must include a trip blank, whether it was requested or not.

<u>Field blanks</u> are used to detect contamination that may be introduced in the field. Field blanks are not anticipated for this investigation.

<u>Equipment blanks</u> are used to detect residue from decontaminated equipment. <u>Equipment blanks are</u> not anticipated for this investigation.

Laboratory QA/QC analyses provide information about accuracy, precision, and detection limits. Method-specific QA/QC samples may include the following, depending on the analysis:

- Method blanks
- Duplicates
- Instrument calibration verification standards
- Laboratory control samples
- Surrogate spiked samples
- Performance evaluation QC check samples

Data Evaluation

Data evaluation will include checking holding times, method blank results, surrogate recovery results, field and laboratory duplicate results, completeness, detection limits, laboratory control sample results, and Chain-of-Custody forms.

Table 1 - Sampling and Analysis Matrix for Soil Samples Block 43 Phase II Investigation Seattle, Washington

Initial Analytical Testing	Follow-up Analytical Testing	Sample Media and Containers
SOIL	SOIL	SOIL SAMPLES
Submit all samples for: NWTPH-HCID Total RCRA metals	If HCID is pos for TPHg, then submit sample(s) for analysis of: NWTPH-Gx BTEX, MTBE, EDB, EDC, Naphthalenes	Two 8oz jars, and four 40mL VOA vials (pre-weighted) per sample. Two of the VOA vials will be with a stir bar and two will be without a stir bar.
	If HCID is pos for TPHd, then submit sample(s) for analysis of: NWTPH-Dx (with silica gel/acid cleanup) BTEX Naphthalenes Carcinogenic PAHs	
	If HCID is pos for TPHo, then submit sample(s) for analysis of: NWTPH-Dx (with silica gel/acid cleanup) Naphthalenes Carcinogenic PAHs PCBs	
	If total metals analysis exceeds RCRA disposal requirements then submit sample for analysis of: Total RCRA metals using TCLP Method	

Table 2 - Sampling and Analysis Matrix for Ground Water Samples Block 43 Phase II Investigation Seattle, Washington

Initial Analytical Testing	Follow-up Analytical Testing	Sample Media and Containers
GROUND WATER	GROUND WATER	GROUND WATER SAMPLES
Submit all samples for: NWTPH-HCID Dissolved RCRA metals	If HCID is pos for TPHg, then submit sample(s) for analysis of: NWTPH-Gx	NWTPH-HCID and NWTPH-Dx (2) 500ml amber (HCL preserved)
(field filtered) PAHs (field filtered)	 BTEX, MTBE, EDB, EDC, Naphthalenes 	Total RCRA Metals EPA 200.8/7470A (1) 500ml Poly (Nitric preserved)
	If HCID is pos for TPHd, then submit sample(s) for analysis of: NWTPH-Dx (with silica gel/acid	NWTPH-Gx (2) 40mL VOA (HCL preserved)
	cleanup) BTEX Naphthalenes	Volatiles EPA 8260B (BTEX, MTBE, EDC) (3) 40mL VOA (HCL preserved)
	 Carcinogenic PAHs 	EDB EPA 8011 (2) 40mL VOA (HCL preserved)
	If HCID is pos for TPHo, then submit sample(s) for analysis of: NWTPH-Dx (with silica gel/acid cleanup)	Naphthalenes and Carcinogenic PAHs EPA 8270D/SIM (2) 1 Liter amber (unpreserved)
	 NWTPH-Dx (with silica gel/acid cleanup) Naphthalenes 	PCBs EPA 8082 (2) 1 Liter amber (unpreserved)
	Carcinogenic PAHsPCBs	

SAMPLING AND ANALYSIS PLAN APPENDIX A

FIELD FORMS AND CHAIN OF CUSTODY RECORD

HWA GEOSCIENCES INC.

21312 30th Drive SE, Suite 110, Bothell, Washington 98021-7010 Tel 425.774.0106 Fax 425.774.2714 www.hwageo.com

and Laboratory Anaylsis Request Chain of Custody

Ž	Ď
Ω	
ij	- !!!
<u>್</u>	İ

TROUDO NAME:		#				$\ _{ ightarrow}$	ANALYSIS REQUESTED	YSI	SR	EQ	JES	IE E	D					
SAMPLERS NAME:		PHONE:																TURNAROUND TIME
HWA CONTACT:		PHONE:																☐ DAYS
			# On		·····					-11				***************************************		.,)	☐ STANDARD
HWA SAMPLE ID DATE TI	TIME MATRIX	IX LAB ID	BOTTLE														EDI	REMARKS
																		,
							************************				**********							Market Company
					-				******									
								<u> </u>										
											-							
						<u> </u>	_											
				ļ						_								
														-				
								_										
								-			_		-					
PRINT NAME	SIGN	SIGNATURE		8	COMPANY	~					DATE			I S	m			REMARKS
Relinquished by:			***														_	
Received by:																		
Relinquished by:															ļ			
Received by:																		

HWA GEOSCIENCES INC. 21312 30th Drive SE, Suite 110, Bothell, WA 98021

Tel: 425-774-0106 / Fax: 425-774-2714

FIELD SAMPLING DATA SHEET

Project	Name:									Well Nu	ımber:_			
Project	Number:_									Sample	Numbe	er:		
Project	Location:									Weather	:			
Client/	Contact:													
WELI	L MONIT	ORL						1				T		
Time	Pump De	epth	Dept Wa			easuring nt (TOC		Measuri Point Elev		Water l Eleva			ons in Well se Volume)	(2" dia=0.163 gal/1 (4" dia=0.653 gal/1
						(200	<u>- , </u>					(0000		· ·
WELL	L PURGI	NG:		•					_					
Time	Method	Gal	llons	Ca	ise ume	pН	C	onductivity	Ten	perature		olved /gen		
				VOI	unic						UAY	gen		
									-		-			
									1		-			
												ļ		
WELL	L SAMPL	ING												
Time	Sampling Method		Samp Analy			ntainer umber		Container Volume	Cont Ty		Field Fi (Y/I		Preservativ	ve Iced (Y/N)
	Wictilod		Anary	7 51 5	111	umoci		Volume	1 <u>y</u>	рс	(1/1	1)		
COM	MENTS/I	VOT	ES:			(Includ	e ed	uipment use	ed: Bai	lers. Filte	ers. Wel	ll Probe	e. pH/Conduc	ctivity, Meter, etc.)
001/11	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 0 1				(1110100		1 mp mone as c		1015, 1 110	10, 110	11100	o, pris condu	

WORK PLAN APPENDIX B

HEALTH AND SAFETY PLAN
For HWA use only – available upon request

APPENDIX B BORING AND TEST PIT LOGS

RELATIVE DENSITY OR CONSISTENCY VERSUS SPT N-VALUE

	COHESIONLESS S	OILS		COHESIVE SOIL	S
Density	N (blows/ft)	Approximate Relative Density(%)	Consistency	N (blows/ft)	Approximate Undrained Shear Strength (psf)
Very Loose	0 to 4	0 - 15	Very Soft	0 to 2	<250
Loose	4 to 10	15 - 35	Soft	2 to 4	250 - 500
Medium Dense	10 to 30	35 - 65	Medium Stiff	4 to 8	500 - 1000
Dense	30 to 50	65 - 85	Stiff	8 to 15	1000 - 2000
Very Dense	over 50	85 - 100	Very Stiff	15 to 30	2000 - 4000
			Hard	over 30	>4000

USCS SOIL CLASSIFICATION SYSTEM

	MAJOR DIVISIONS		G	ROUP DESCRIPTIONS	
Coarse	Gravel and Gravelly Soils	Clean Gravel		GW	Well-graded GRAVEL
Grained Soils		(little or no fines)	60	GP	Poorly-graded GRAVEL
	More than 50% of Coarse	Gravel with Fines (appreciable	600	GM	Silty GRAVEL
	Fraction Retained on No. 4 Sieve	amount of fines)		GC	Clayey GRAVEL
	Sand and	Clean Sand		SW	Well-graded SAND
More than	Sandy Soils	(little or no fines)		SP	Poorly-graded SAND
on No.	50% or More of Coarse	Sand with Fines (appreciable		SM	Silty SAND
Size	Fraction Passing No. 4 Sieve	amount of fines)		SC	Clayey SAND
Fine	Silt			ML	SILT
Grained Soils	and Clay	Liquid Limit Less than 50%		CL	Lean CLAY
00.00	July			OL	Organic SILT/Organic CLAY
	Silt		Ш	МН	Elastic SILT
50% or More Passing	and Clay	Liquid Limit 50% or More		СН	Fat CLAY
No. 200 Sieve Size	3.2,			ОН	Organic SILT/Organic CLAY
	Highly Organic Soils		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PT	PEAT

TEST SYMBOLS

	IESISI	INIDOLS
%F	Percent Fines	
AL	Atterberg Limits:	PL = Plastic Limit LL = Liquid Limit
CBR	California Bearing R	atio
CN	Consolidation	
DD	Dry Density (pcf)	
DS	Direct Shear	
GS	Grain Size Distribution	on
K	Permeability	
MD	Moisture/Density Re	lationship (Proctor)
MR	Resilient Modulus	
PID	Photoionization Devi	ice Reading
PP	Pocket Penetromete Approx. Compr	er ressive Strength (tsf)
SG	Specific Gravity	
TC	Triaxial Compression	n
TV	Torvane Approx. Shear	Strength (tsf)
UC	Unconfined Compre	ssion
	SAMPLE TYPE	SYMBOLS
\square	2.0" OD Split Spoon	(SPT)
X	2.0 OD Opin Opoon	(01 1)

X	(140 lb. hammer with 30 in. drop)
	Shelby Tube
	3-1/4" OD Split Spoon with Brass Rings
\bigcirc	Small Bag Sample
	Large Bag (Bulk) Sample
	Core Run
	Non-standard Penetration Test (3.0" OD split spoon)

GROUNDWATER SYMBOLS

Groundwater Level (measured at time of drilling)

Groundwater Level (measured in well or open hole after water level stabilized)

COMPONENT DEFINITIONS

COMPONENT	SIZE RANGE
Boulders	Larger than 12 in
Cobbles	3 in to 12 in
Gravel Coarse gravel Fine gravel	3 in to No 4 (4.5mm) 3 in to 3/4 in 3/4 in to No 4 (4.5mm)
Sand Coarse sand Medium sand Fine sand	No. 4 (4.5 mm) to No. 200 (0.074 mm) No. 4 (4.5 mm) to No. 10 (2.0 mm) No. 10 (2.0 mm) to No. 40 (0.42 mm) No. 40 (0.42 mm) to No. 200 (0.074 mm)
Silt and Clay	Smaller than No. 200 (0.074mm)

PROPORTION RANGE	DESCRIPTIVE TERMS
< 5%	Clean
5 - 12%	Slightly (Clayey, Silty, Sandy)
12 - 30%	Clayey, Silty, Sandy, Gravelly
30 - 50%	Very (Clayey, Silty, Sandy, Gravelly)
Components are arranged in order of increasing quantities.	

COMPONENT PROPORTIONS

NOTES: Soil classifications presented on exploration logs are based on visual and laboratory observation. Soil descriptions are presented in the following general order:

Density/consistency, color, modifier (if any) GROUP NAME, additions to group name (if any), moisture content. Proportion, gradation, and angularity of constituents, additional comments. (GEOLOGIC INTERPRETATION)

Please refer to the discussion in the report text as well as the exploration logs for a more complete description of subsurface conditions.

MOISTURE CONTENT

DRY	Absence of moisture, dusty, dry to the touch.
MOIST WET	Damp but no visible water. Visible free water, usually soil is below water table.

Vulcan Block 43
City Investors XX, LLC
601 Westlake Avenue North
Seattle, Washington

LEGEND OF TERMS AND SYMBOLS USED ON EXPLORATION LOGS

BORING: B43-B01

PAGE: 1 of 1

BORING: B43-B02

PAGE: 1 of 1

DRILLING COMPANY: ESN Northwest SURFACE ELEVATION: **±** feet DATE STARTED: 5/8/2012 DRILLING METHOD: GeoProbe CASING ELEVATION **±** feet DATE COMPLETED: 5/8/2012 SAMPLING METHOD: 48" Macrocore Sampler with HDPE liner LOGGED BY: J. Thompson LOCATION: Southwest corner, Propel parcel PEN. RESISTANCE (blows/6 inches) USCS SOIL CLASS SAMPLE NUMBER GROUNDWATER PID (ppm) ▲ Blows per foot SYMBOL DEPTH (feet) DESCRIPTION 50 10 20 30 40 Asphalt GP Angular gravel (Base Coarse) SM Medium dense, brown silty SAND with GRAVEL (FILL), dry. SP Grading silty SAND to SAND SM .2 Medium dense, brown to red-brown, silty SAND, wet, trace fine gravel and clay, perched water. 5 Grading gray 10 10 Wood debris ML Hard gray-brown sandy SILT, trace fine gravel to coarse SM sand, wet. SM Medium dense gray silty SAND, trace gravel, wet, hydrocarbon odor. ∇ 15 Fine gray silty SAND Boring completed to 16 feet bgs. Ground water encountered at 12 feet bgs. Ground water sample collected from temporary screen set from 15 - 20 feet bgs. Boring backfilled with hydrated bentonite chips. 20 20 25 25 20 100 Water Content (%) Plastic Limit Liquid Limit Natural Water Content NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

Vulcan Block 43
City Investors XX, LLC
601 Westlake Avenue North
Seattle, Washington

BORING: B43-B03

PAGE: 1 of 1

BORING: B43-B04

PAGE: 1 of 1

BORING: B43-B05

PAGE: 1 of 1

DRILLING COMPANY: ESN Northwest SURFACE ELEVATION: **±** feet DATE STARTED: 5/8/2012 DRILLING METHOD: GeoProbe CASING ELEVATION **±** feet DATE COMPLETED: 5/8/2012 SAMPLING METHOD: 48" Macrocore Sampler with HDPE liner LOGGED BY: J. Thompson LOCATION: Northeast corner, Parcel B PEN. RESISTANCE (blows/6 inches) USCS SOIL CLASS SAMPLE NUMBER GROUNDWATER PID (ppm) ▲ Blows per foot SYMBOL DEPTH (feet) DESCRIPTION 50 10 20 30 40 Medium dense, brown gravelly SAND with debris (glass and plastic) dry to moist. Limited recovery. 5 Loose to medium dense, brown SAND with fine gravel, moist. Loose pea GRAVEL backfill. Move boring 8 feet northwest of original location. Encounter same materials. Boring completed to 10 feet bgs. Ground water not encountered. Boring backfilled with hydrated bentonite chips. 15 20 20 25 25 100 Water Content (%) Plastic Limit Liquid Limit Natural Water Content NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

Vulcan Block 43
City Investors XX, LLC
601 Westlake Avenue North
Seattle, Washington

BORING: **B43-B06**

PAGE: 1 of 1

DRILLING COMPANY: ESN Northwest SURFACE ELEVATION: **±** feet DATE STARTED: 5/8/2012 DRILLING METHOD: GeoProbe CASING ELEVATION DATE COMPLETED: 5/8/2012 **±** feet SAMPLING METHOD: 48" Macrocore Sampler with HDPE liner LOGGED BY: J. Thompson LOCATION: East side, Parcel B PEN. RESISTANCE (blows/6 inches) USCS SOIL CLASS SAMPLE NUMBER GROUNDWATER PID (ppm) ▲ Blows per foot SYMBOL DEPTH (feet) DESCRIPTION 40 50 10 20 30 Loose to medium dense, brown SAND, trace fine gravel, dry to moist. Medium dense, brown gravelly SAND, trace sitl and clay, Loose pea GRAVEL backfill. Boring completed to 8 feet bgs. Ground water not encountered. Boring backfilled with hydrated bentonite chips. 10 15 20 20 25 25 100 Water Content (%) Plastic Limit Liquid Limit Natural Water Content NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

Vulcan Block 43
City Investors XX, LLC
601 Westlake Avenue North
Seattle, Washington

BORING: B43-B07

PAGE: 1 of 1

BORING: B43-B08

PAGE: 1 of 1

BORING: B43-B09

PAGE: 1 of 1

BORING: B43-B10

PAGE: 1 of 1

BORING: B43-B11

PAGE: 1 of 1

BORING: B43-B12

PAGE: 1 of 1

DRILLING COMPANY: ESN Northwest SURFACE ELEVATION: **±** feet DATE STARTED: 5/9/2012 DRILLING METHOD: GeoProbe CASING ELEVATION **±** feet DATE COMPLETED: 5/9/2012 SAMPLING METHOD: 48" Macrocore Sampler with HDPE liner LOGGED BY: D. Coltrane LOCATION: East center. Parcel E PEN. RESISTANCE (blows/6 inches) USCS SOIL CLASS SAMPLE NUMBER GROUNDWATER PID (ppm) ▲ Blows per foot SYMBOL DEPTH (feet) DESCRIPTION 40 50 10 20 30 Medium dense, olive gray, silty SAND with gravel (FILL), trace brick and glass debris, dry to moist. Medium dense, gray silty SAND, moist. Geofabric over loose pea GRAVEL backfill. Boring completed to 8 feet bgs. Ground water not encountered. Boring backfilled with hydrated bentonite chips. 10 15 20 20 25 25 100 Water Content (%) Plastic Limit Liquid Limit Natural Water Content NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

Vulcan Block 43
City Investors XX, LLC
601 Westlake Avenue North
Seattle, Washington

BORING: B43-B13

PAGE: 1 of 1

LOG OF TEST PIT B43-TP01

PAGE: 1 of 1

EXCAVATION COMPANY: Gary Merlino Construction EXCAVATING EQUIPMENT: Komatsu PC78 Trackhoe SURFACE ELEVATION: **±** Feet **USCS SOIL CLASS** SAMPLE NUMBER MOISTURE CONTENT(%) OTHER TESTS DEPTH (feet) SYMBOL **DESCRIPTION** GΡ Dense gray angular GRAVEL (FILL), dry. Medium dense, dark gray silty SAND with gravel (FILL), trace debris (brick and pipe), dry to moist. Slight hydrocarbon odor. **%** 2.3 Medium dense, red brown to brown silty SAND and GRAVEL, occasional oxidation or mottling, moist. % 2.8 Test pit completed to 11 feet bgs. Ground water not encountered. 12-Test pit backfilled with excavated material and bucket compacted. 15LOCATION: Southwest property corner DATE COMPLETED: 5/10/12 LOGGED BY: V. Atkins

TEST PIT PHOTO

NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

Vulcan Block 43
City Investors XX, LLC
601 Westlake Avenue North
Seattle, Washington

LOG OF TEST PIT B43-TP02

PAGE: 1 of 1

EXCAVATION COMPANY: Gary Merlino Construction LOCATION: West side Parcel C, former hydraulic lift area DATE COMPLETED: 5/10/12 EXCAVATING EQUIPMENT: Komatsu PC78 Trackhoe SURFACE ELEVATION: LOGGED BY: V. Atkins **±** Feet **USCS SOIL CLASS** SAMPLE NUMBER MOISTURE CONTENT(%) OTHER TESTS DEPTH (feet) **TEST PIT PHOTO** SYMBOL **DESCRIPTION** GΡ Dense gray angular GRAVEL (FILL), dry. Medium dense, dark gray silty SAND with gravel (FILL), trace debris (brick and pipe), dry to moist. Slight hydrocarbon odor. **%** 3-5 Medium dense, gray- brown silty SAND with GRAVEL, with sandy SILT layers, moist, occasional wet seams. Concrete and wood debris. % 3-8 Sidewalls caving. Test pit completed to 11 feet bgs. Ground water not encountered. 12-Test pit backfilled with excavated material and bucket compacted. 15-NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

Vulcan Block 43
City Investors XX, LLC
601 Westlake Avenue North
Seattle, Washington

LOG OF TEST PIT B43-TP03

PAGE: 1 of 1

EXCAVATING EQUIPMENT: Komatsu PC78 Trackhoe SURFACE ELEVATION: **±** Feet **USCS SOIL CLASS** SAMPLE NUMBER MOISTURE CONTENT(%) OTHER TESTS DEPTH (feet) SYMBOL **DESCRIPTION** GP Dense, gray angular GRAVEL (FILL), dry. GM Very dense, gray silty GRAVEL (FILL) with concrete debris. SM Medium dense, gray to brown silty SAND with gravel (FILL), trace debris, dry to moist. In-place hydraulic lift encountered in west end of test pit. Lift surrounded by fine gravel backfill and extendeds to 9 feet bgs. Lift was left in place and is located 22' north and 8' east of GEI well B-43-2. Clay pipe **%** 4-5 Woody debris layer **%** 4-9 Large concrete debris or footing. Test pit completed to 10.5 feet bgs. Ground water not encountered. Test pit backfilled with excavated material and bucket 12compacted.

LOCATION: Center Parcel C, former hydraulic lift area

DATE COMPLETED: 5/10/12 LOGGED BY: V. Atkins

TEST PIT PHOTO

NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

EXCAVATION COMPANY: Gary Merlino Construction

Vulcan Block 43
City Investors XX, LLC
601 Westlake Avenue North
Seattle, Washington

LOG OF TEST PIT B43-TP04

PAGE: 1 of 1

PROJECT NO.: 2012-046-22 FIGURE: B-4

15-

EXCAVATION COMPANY: Gary Merlino Construction EXCAVATING EQUIPMENT: Komatsu PC78 Trackhoe SURFACE ELEVATION: **±** Feet **USCS SOIL CLASS** SAMPLE NUMBER MOISTURE CONTENT(%) OTHER TESTS DEPTH (feet) SYMBOL **DESCRIPTION** GP Angular GRAVEL (FILL), dry. GM Dense brown, silty SAND and GRAVEL (FILL), dry to moist. Medium dense, gray silty SAND (FILL), with debris (brick), moist, slight hydrocarbon odor. Medium dense, gray silty SAND, with wood debris, moist. **%** 5-6 Medium dense, gray silty SAND to sandy SILT, moist with occasional wet seams. Large concrete debris. Occasional dense gray-brown silty SAND layers **%** 5-10 Test pit completed to 10.5 feet bgs. Ground water not encountered. Test pit backfilled with excavated material and bucket 12compacted. 15LOCATION: Center Parcel C, former hydraulic lift area DATE COMPLETED: 5/10/12

LOGGED BY: V. Atkins

TEST PIT PHOTO

NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

Vulcan Block 43
City Investors XX, LLC
601 Westlake Avenue North
Seattle, Washington

LOG OF TEST PIT B43-TP05

PAGE: 1 of 1

EXCAVATION COMPANY: Gary Merlino Construction EXCAVATING EQUIPMENT: Komatsu PC78 Trackhoe SURFACE ELEVATION: **±** Feet **USCS SOIL CLASS** SAMPLE NUMBER MOISTURE CONTENT(%) OTHER TESTS DEPTH (feet) SYMBOL **DESCRIPTION** GP Dense, gray angular GRAVEL (FILL), dry. Dense, gray silty SAND (FILL) with debris (brick). SM Grading medium dense, brown to red-brown silty SAND, Rebar and metal debris Caving at 4 feet **%** 6-4 Woody debris layer Stiff, gray SILT with sand and clay, moist. **%** 6-6 Concrete debris Test pit completed to 9.5 feet bgs. Ground water not encountered. Test pit backfilled with excavated material and bucket compacted. 12-15LOCATION: East Parcel C, former hydraulic lift area

DATE COMPLETED: 5/10/12 LOGGED BY: V. Atkins

TEST PIT PHOTO

NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

Vulcan Block 43
City Investors XX, LLC
601 Westlake Avenue North
Seattle, Washington

LOG OF TEST PIT B43-TP06

PAGE: 1 of 1

LOG OF TEST PIT B43-TP07

PAGE: 1 of 1

EXCAVATION COMPANY: Gary Merlino Construction LOCATION: Southwest parcel B EXCAVATING EQUIPMENT: Komatsu PC78 Trackhoe DATE COMPLETED: 5/10/12 SURFACE ELEVATION: **±** Feet LOGGED BY: V. Atkins **USCS SOIL CLASS** SAMPLE NUMBER MOISTURE CONTENT(%) OTHER TESTS DEPTH (feet) **TEST PIT PHOTO** SYMBOL **DESCRIPTION** GP Angular GRAVEL (FILL) Medium dense, brown SAND with silt (FILL), dry to moist. Caving. Concrete rubble. Concrete slab at 4 feet bgs. Test pit completed to 4 feet bgs. Ground water not encountered. Test pit backfilled with excavated material and bucket compacted. 6 12-15-NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

Vulcan Block 43
City Investors XX, LLC
601 Westlake Avenue North
Seattle, Washington

LOG OF TEST PIT B43-TP08

PAGE: 1 of 1

EXCAVATION COMPANY: Gary Merlino Construction LOCATION: West side Parcel B EXCAVATING EQUIPMENT: Komatsu PC78 Trackhoe DATE COMPLETED: 5/10/12 SURFACE ELEVATION: **±** Feet LOGGED BY: V. Atkins **USCS SOIL CLASS** SAMPLE NUMBER MOISTURE CONTENT(%) OTHER TESTS DEPTH (feet) SYMBOL **TEST PIT PHOTO DESCRIPTION** GP Angular GRAVEL (FILL) Medium dense, yellow-brown SAND with silt (FILL), dry to Concrete rubble. Concrete slab at 4 feet bgs. Test pit completed to 4 feet bgs. Ground water not encountered. Test pit backfilled with excavated material and bucket compacted. 6 12-15-NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

Vulcan Block 43 City Investors XX, LLC 601 Westlake Avenue North Seattle, Washington LOG OF TEST PIT B43-TP09

PAGE: 1 of 1

EXCAVATION COMPANY: Gary Merlino Construction LOCATION: Center Parcel B EXCAVATING EQUIPMENT: Komatsu PC78 Trackhoe DATE COMPLETED: 5/10/12 SURFACE ELEVATION: **±** Feet LOGGED BY: V. Atkins **USCS SOIL CLASS** SAMPLE NUMBER MOISTURE CONTENT(%) OTHER TESTS DEPTH (feet) SYMBOL **TEST PIT PHOTO DESCRIPTION** GP Angular GRAVEL (FILL) Medium dense, yellow-brown SAND with silt (FILL), dry to Concrete rubble. Concrete slab at 4 feet bgs. Test pit completed to 4 feet bgs. Ground water not encountered. Test pit backfilled with excavated material and bucket compacted. 6 12-15 -NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

Vulcan Block 43
City Investors XX, LLC
601 Westlake Avenue North
Seattle, Washington

LOG OF TEST PIT B43-TP10

PAGE: 1 of 1

PROJECT NO.: 2012-046-22 FIGURE: B-10

EXCAVATION COMPANY: Gary Merlino Construction

EXCAVATION EQUIPMENT: Komatsu PC78 Trackhoe

SURFACE ELEVATION:

LOCATION: North center Parcel C

DATE COMPLETED: 5/10/12

LOGGED BY: V. Atkins

TEST PIT PHOTO

NOTE: This log of subsurface conditions applies only at the specified location and on the date indicated and therefore may not necessarily be indicative of other times and/or locations.

Vulcan Block 43
City Investors XX, LLC
601 Westlake Avenue North
Seattle, Washington

LOG OF TEST PIT B43-TP11

PAGE: 1 of 1

PROJECT NO.: 2012-046-22 FIGURE: B-11

APPENDIX C ANALYTICAL LABORATORY REPORTS

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 21, 2012

Jeff Thompson HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2012-046-22

Laboratory Reference No. 1205-065

Dear Jeff:

Enclosed are the analytical results and associated quality control data for samples submitted on May 8, 2012.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Project: 2012-046-22

Case Narrative

Samples were collected on May 8, 2012 and received by the laboratory on May 8, 2012. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx (water) Analysis

The surrogate recovery is outside of the control limits on the high-end due to the co-elution of non-target analytes in sample B43-B1-GW. The sample was re-extracted and re-analyzed with similar results.

BTEX, EDB, EDC, and MTBE EPA 8260B (soil) Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Some MTCA Method A cleanup levels are non-achievable for sample B43-B1-10 due to the necessary dilution of the sample.

BTEX, EDC, and MTBE EPA 8260B (water) Analysis

Some MTCA Method A cleanup levels are non-achievable for sample B43-B1-10 due to the necessary dilution of the sample.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 2012-046-22

NWTPH-HCID (with acid/silica gel clean-up)

Matrix: Soil

Onits. mg/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B1-10					
Laboratory ID:	05-065-01					
Gasoline Range Organics	Detected	23	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	Detected	58	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil	Detected	120	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	B43-B1-14					
Laboratory ID:	05-065-02					
Gasoline Range Organics	ND	23	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	57	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil Range Organics	ND	110	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				
Client ID:	B43-B2-4					
Laboratory ID:	05-065-04					
Gasoline Range Organics	ND	23	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	58	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil	Detected	120	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	B43-B2-8					
Laboratory ID:	05-065-05					
Gasoline Range Organics	ND	24	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	59	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil Range Organics	ND	120	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	B43-B3-3					
Laboratory ID:	05-065-06					
Gasoline Range Organics	ND	23	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	58	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil Range Organics	ND	120	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits			<u></u>	
o-Terphenyl	85	50-150				
	30	00 100				

Project: 2012-046-22

NWTPH-HCID (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

units. Ing/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B3-6					
Laboratory ID:	05-065-07					
Gasoline Range Organics	ND	24	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	59	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil Range Organics	ND	120	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	B43-B4-4					
Laboratory ID:	05-065-09					
Gasoline Range Organics	ND	23	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	57	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil Range Organics	ND	110	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	B43-B4-5					
Laboratory ID:	05-065-10					
Gasoline Range Organics	ND	23	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	57	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil Range Organics	ND	120	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				
Client ID:	B43-B5-4					
Laboratory ID:	05-065-11					
Gasoline Range Organics	ND	23	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	57	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil Range Organics	ND	110	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	127	50-150				
, ,						
Client ID:	B43-B5-6					
Laboratory ID:	05-065-12					
Gasoline Range Organics	ND	23	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	57	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil Range Organics	ND	110	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				
=						

Date of Report: May 21, 2012 Samples Submitted: May 8, 2012 Laboratory Reference: 1205-065 Project: 2012-046-22

NWTPH-HCID (with acid/silica gel clean-up)

Matrix: Soil

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B43-B8-6	. 42	motriou	1 Topulou	Analyzou	riugo
Laboratory ID:	05-065-14					
Gasoline Range Organics	ND	22	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	55	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil	Detected	110	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	118	50-150				

Project: 2012-046-22

NWTPH-HCID QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Analyte	Result	PQL	Method	Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0509S1					
Gasoline Range Organics	ND	20	NWTPH-HCID	5-9-12	5-9-12	_
Diesel Range Organics	ND	50	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil Range Organics	ND	100	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	133	50-150				

Date of Report: May 21, 2012 Samples Submitted: May 8, 2012 Laboratory Reference: 1205-065 Project: 2012-046-22

NWTPH-HCID (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

3 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B1-GW					
Laboratory ID:	05-065-03					
Gasoline Range Organics	Detected	0.12	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	0.66	NWTPH-HCID	5-9-12	5-9-12	U1
Lube Oil Range Organics	ND	0.49	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	B43-B3-9w					
Laboratory ID:	05-065-08					
Gasoline Range Organics	Detected	0.12	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	0.90	NWTPH-HCID	5-9-12	5-9-12	U1
Lube Oil Range Organics	ND	0.46	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	B43-B4-GW					
Laboratory ID:	05-065-13					
Gasoline Range Organics	ND	0.13	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	0.31	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil Range Organics	ND	0.50	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
•						
A II . .						
Client ID:	B43-B5-GW					
Laboratory ID:	05-065-15					
Gasoline Range Organics	Detected	0.12	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	0.73	NWTPH-HCID	5-9-12	5-9-12	U1
Lube Oil Range Organics	ND -	0.47	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				

Project: 2012-046-22

NWTPH-HCID QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

J (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0509W1					
Gasoline Range Organics	ND	0.10	NWTPH-HCID	5-9-12	5-9-12	
Diesel Range Organics	ND	0.25	NWTPH-HCID	5-9-12	5-9-12	
Lube Oil Range Organics	ND	0.40	NWTPH-HCID	5-9-12	5-9-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

Project: 2012-046-22

NWTPH-Gx

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B1-10					
Laboratory ID:	05-065-01					
Gasoline	1500	52	NWTPH-Gx	5-15-12	5-15-12	0
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limitation Fluorobenzene 77 68-124

Project: 2012-046-22

NWTPH-Gx QUALITY CONTROL

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0515S1					
Gasoline	ND	5.0	NWTPH-Gx	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	68-124				

					Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-13	33-04								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:				•				•		•
Fluorobenzene						99 105	68-124			

Project: 2012-046-22

NWTPH-Gx

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B1-GW					
Laboratory ID:	05-065-03					
Gasoline	2300	400	NWTPH-Gx	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	131	73-121				Q
Client ID:	B43-B3-GW					
Laboratory ID:	05-065-08					
Gasoline	5300	400	NWTPH-Gx	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	73-121				
Client ID:	B43-B5-GW					
Laboratory ID:	05-065-15					
Gasoline	1900	100	NWTPH-Gx	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	73-121				

Project: 2012-046-22

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0515W2					
Gasoline	ND	100	NWTPH-Gx	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	73-121				

					Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-12	26-03								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						81 81	73-121			

Project: 2012-046-22

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B1-10					
Laboratory ID:	05-065-01					
Diesel Range Organics	1400	29	NWTPH-Dx	5-15-12	5-15-12	М
Lube Oil	520	58	NWTPH-Dx	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	B43-B2-4					
Laboratory ID:	05-065-04					
Diesel Range Organics	ND	29	NWTPH-Dx	5-15-12	5-16-12	
Lube Oil	160	58	NWTPH-Dx	5-15-12	5-16-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	B43-B8-6					
Laboratory ID:	05-065-14					
Diesel Range Organics	ND	98	NWTPH-Dx	5-15-12	5-15-12	U1
Lube Oil	610	55	NWTPH-Dx	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				

Project: 2012-046-22

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0515S2					
Diesel Range Organics	ND	25	NWTPH-Dx	5-15-12	5-15-12	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	117	50-150				

			Pe	cent	Recovery		RPD	
Analyte	Res	sult	Red	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	05-06	65-14						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	U1
Lube Oil	551	429				25	NA	
Surrogate:								
o-Terphenyl			107	90	50-150			

Project: 2012-046-22

VOLATILES by EPA 8260B

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B1-10					
Laboratory ID:	05-065-01					
Methyl t-Butyl Ether	ND	0.10	EPA 8260	5-14-12	5-14-12	
Benzene	0.14	0.10	EPA 8260	5-14-12	5-14-12	
1,2-Dichloroethane	ND	0.10	EPA 8260	5-14-12	5-14-12	
Toluene	ND	0.50	EPA 8260	5-14-12	5-14-12	
1,2-Dibromoethane	ND	0.10	EPA 8260	5-14-12	5-14-12	
Ethylbenzene	0.50	0.10	EPA 8260	5-14-12	5-14-12	
m,p-Xylene	0.29	0.20	EPA 8260	5-14-12	5-14-12	
o-Xylene	ND	0.10	EPA 8260	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limit.

Dibromofluoromethane 98 63-127

Toluene-d8 112 65-129

4-Bromofluorobenzene 104 55-121

Project: 2012-046-22

VOLATILES by EPA 8260B QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0514S1					
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	5-14-12	5-14-12	
Benzene	ND	0.0010	EPA 8260	5-14-12	5-14-12	
1,2-Dichloroethane	ND	0.0010	EPA 8260	5-14-12	5-14-12	
Toluene	ND	0.0050	EPA 8260	5-14-12	5-14-12	
1,2-Dibromoethane	ND	0.0010	EPA 8260	5-14-12	5-14-12	
Ethylbenzene	ND	0.0010	EPA 8260	5-14-12	5-14-12	
m,p-Xylene	ND	0.0020	EPA 8260	5-14-12	5-14-12	
o-Xylene	ND	0.0010	EPA 8260	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	63-127				
Toluene-d8	97	65-129				
4-Bromofluorobenzene	102	55-121				

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	514S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0441	0.0454	0.0500	0.0500	88	91	70-130	3	19	
Benzene	0.0448	0.0449	0.0500	0.0500	90	90	70-125	0	15	
Trichloroethene	0.0507	0.0484	0.0500	0.0500	101	97	70-122	5	14	
Toluene	0.0485	0.0483	0.0500	0.0500	97	97	73-120	0	16	
Chlorobenzene	0.0517	0.0527	0.0500	0.0500	103	105	74-120	2	12	
Surrogate:										
Dibromofluoromethane					97	99	63-127			
Toluene-d8					103	101	65-129			
4-Bromofluorobenzene					103	102	55-121			

Project: 2012-046-22

VOLATILES by EPA 8260B

Matrix: Water Units: ug/L

omis. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B1-GW					
Laboratory ID:	05-065-03					
Methyl t-Butyl Ether	ND	10	EPA 8260	5-14-12	5-14-12	
Benzene	1100	10	EPA 8260	5-14-12	5-14-12	
1,2-Dichloroethane	ND	100	EPA 8260	5-14-12	5-14-12	
Toluene	ND	50	EPA 8260	5-14-12	5-14-12	
Ethylbenzene	110	10	EPA 8260	5-14-12	5-14-12	
m,p-Xylene	110	20	EPA 8260	5-14-12	5-14-12	
o-Xylene	ND	10	EPA 8260	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	89	68-120				
Toluene-d8	85	73-120				
4-Bromofluorobenzene	90	65-120				
Client ID:	B43-B3-GW					
Laboratory ID:	05-065-08					
Methyl t-Butyl Ether	ND	2.0	EPA 8260	5-14-12	5-14-12	
Benzene	ND	2.0	EPA 8260	5-14-12	5-14-12	
1,2-Dichloroethane	ND	20	EPA 8260	5-14-12	5-14-12	
Toluene	ND	10	EPA 8260	5-14-12	5-14-12	
Ethylbenzene	190	2.0	EPA 8260	5-14-12	5-14-12	
m,p-Xylene	78	4.0	EPA 8260	5-14-12	5-14-12	
o-Xylene	5.3	2.0	EPA 8260	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	87	68-120				
Toluene-d8	88	73-120				
4-Bromofluorobenzene	88	65-120				
Client ID:	B43-B5-GW					
Laboratory ID:	05-065-15					
Methyl t-Butyl Ether	ND	0.20	EPA 8260	5-14-12	5-14-12	
Benzene	1.4	0.20	EPA 8260	5-14-12	5-14-12	
1,2-Dichloroethane	ND	2.0	EPA 8260	5-14-12	5-14-12	
Toluene	1.4	1.0	EPA 8260	5-14-12	5-14-12	
Ethylbenzene	3.3	0.20	EPA 8260	5-14-12	5-14-12	
m,p-Xylene	1.3	0.40	EPA 8260	5-14-12	5-14-12	
o-Xylene	0.43	0.20	EPA 8260	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	86	68-120				
Toluene-d8	93	73-120				
	50					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 2012-046-22

VOLATILES by EPA 8260B QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0514W1					
Methyl t-Butyl Ether	ND	0.20	EPA 8260	5-14-12	5-14-12	
Benzene	ND	0.20	EPA 8260	5-14-12	5-14-12	
1,2-Dichloroethane	ND	2.0	EPA 8260	5-14-12	5-14-12	
Toluene	ND	1.0	EPA 8260	5-14-12	5-14-12	
Ethylbenzene	ND	0.20	EPA 8260	5-14-12	5-14-12	
m,p-Xylene	ND	0.40	EPA 8260	5-14-12	5-14-12	
o-Xylene	ND	0.20	EPA 8260	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	90	68-120				
Toluene-d8	86	73-120				
4-Bromofluorobenzene	85	65-120				

					Per	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	14W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.38	9.34	10.0	10.0	94	93	70-130	0	11	
Benzene	9.39	9.79	10.0	10.0	94	98	75-123	4	8	
Trichloroethene	9.60	9.69	10.0	10.0	96	97	80-113	1	9	
Toluene	9.91	10.0	10.0	10.0	99	100	80-113	1	8	
Chlorobenzene	11.1	11.0	10.0	10.0	111	110	80-115	1	8	
Surrogate:										
Dibromofluoromethane					86	93	68-120			
Toluene-d8					84	85	73-120			
4-Bromofluorobenzene					83	85	65-120			

Project: 2012-046-22

PAHs by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B1-10					
Laboratory ID:	05-065-01					
Naphthalene	0.13	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
2-Methylnaphthalene	2.2	0.077	EPA 8270/SIM	5-17-12	5-21-12	
1-Methylnaphthalene	1.4	0.077	EPA 8270/SIM	5-17-12	5-21-12	
Benzo[a]anthracene	0.037	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Chrysene	0.035	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Benzo[b]fluoranthene	0.036	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Benzo(j,k)fluoranthene	0.0087	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Benzo[a]pyrene	0.019	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Indeno(1,2,3-c,d)pyrene	0.012	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Dibenz[a,h]anthracene	ND	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	79	43 - 109				
Pyrene-d10	90	38 - 128				
Terphenyl-d14	93	33 - 119				

Project: 2012-046-22

PAHs by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B2-4					
Laboratory ID:	05-065-04					
Naphthalene	ND	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
2-Methylnaphthalene	0.0083	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
1-Methylnaphthalene	ND	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Benzo[a]anthracene	0.010	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Chrysene	0.014	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Benzo[b]fluoranthene	0.017	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Benzo(j,k)fluoranthene	ND	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Benzo[a]pyrene	0.0099	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Indeno(1,2,3-c,d)pyrene	0.010	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Dibenz[a,h]anthracene	ND	0.0077	EPA 8270/SIM	5-17-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	43 - 109				
Pyrene-d10	90	38 - 128				
Terphenyl-d14	104	33 - 119				

Project: 2012-046-22

PAHs by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B8-6					
Laboratory ID:	05-065-14					
Naphthalene	0.0081	0.0073	EPA 8270/SIM	5-17-12	5-18-12	
2-Methylnaphthalene	0.034	0.0073	EPA 8270/SIM	5-17-12	5-18-12	
1-Methylnaphthalene	0.018	0.0073	EPA 8270/SIM	5-17-12	5-18-12	
Benzo[a]anthracene	0.017	0.0073	EPA 8270/SIM	5-17-12	5-18-12	
Chrysene	0.027	0.0073	EPA 8270/SIM	5-17-12	5-18-12	
Benzo[b]fluoranthene	0.019	0.0073	EPA 8270/SIM	5-17-12	5-18-12	
Benzo(j,k)fluoranthene	ND	0.0073	EPA 8270/SIM	5-17-12	5-18-12	
Benzo[a]pyrene	0.011	0.0073	EPA 8270/SIM	5-17-12	5-18-12	
Indeno(1,2,3-c,d)pyrene	0.0082	0.0073	EPA 8270/SIM	5-17-12	5-18-12	
Dibenz[a,h]anthracene	ND	0.0073	EPA 8270/SIM	5-17-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	43 - 109				
Pyrene-d10	82	38 - 128				
Terphenyl-d14	105	33 - 119				

Project: 2012-046-22

PAHs by EPA 8270D/SIM QUALITY CONTROL (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0517S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	5-17-12	5-17-12	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	5-17-12	5-17-12	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	5-17-12	5-17-12	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	5-17-12	5-17-12	
Chrysene	ND	0.0067	EPA 8270/SIM	5-17-12	5-17-12	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	5-17-12	5-17-12	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	5-17-12	5-17-12	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	5-17-12	5-17-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	5-17-12	5-17-12	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	5-17-12	5-17-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	43 - 109				
Pyrene-d10	87	38 - 128				
Terphenyl-d14	88	33 - 119				

						Pei	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	F	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											_
Laboratory ID:	SB05	517S1									
	SB	SBD	SB	SBD	S	В	SBD				
Naphthalene	0.0654	0.0644	0.0833	0.0833	7	9	77	43 - 108	2	27	
Benzo[a]anthracene	8080.0	0.0796	0.0833	0.0833	9	7	96	63 - 116	1	12	
Chrysene	0.0760	0.0747	0.0833	0.0833	9	1	90	67 - 118	2	12	
Benzo[b]fluoranthene	0.0726	0.0726	0.0833	0.0833	8	7	87	58 - 127	0	20	
Benzo(j,k)fluoranthene	0.0759	0.0727	0.0833	0.0833	9	1	87	42 - 134	4	26	
Benzo[a]pyrene	0.0647	0.0624	0.0833	0.0833	7	8	75	55 - 111	4	19	
Indeno(1,2,3-c,d)pyrene	0.0699	0.0700	0.0833	0.0833	8	4	84	60 - 125	0	20	
Dibenz[a,h]anthracene	0.0745	0.0722	0.0833	0.0833	8	9	87	62 - 125	3	19	
Surrogate:											
2-Fluorobiphenyl					7	6	83	43 - 109			
Pyrene-d10					8	9	88	38 - 128			
Terphenyl-d14					8	8	86	33 - 119			

Project: 2012-046-22

NAPTHALENES by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B1-GW					
Laboratory ID:	05-065-03					
Naphthalene	1.4	0.13	EPA 8270/SIM	5-14-12	5-16-12	
2-Methylnaphthalene	0.69	0.13	EPA 8270/SIM	5-14-12	5-16-12	
1-Methylnaphthalene	1.3	0.13	EPA 8270/SIM	5-14-12	5-16-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	38 - 105				
Pyrene-d10	83	37 - 121				
Terphenyl-d14	79	32 - 112				
Client ID:	B43-B3-GW					
Laboratory ID:	05-065-08					
Naphthalene	1.1	0.12	EPA 8270/SIM	5-14-12	5-16-12	
2-Methylnaphthalene	0.26	0.12	EPA 8270/SIM	5-14-12	5-16-12	
1-Methylnaphthalene	0.24	0.12	EPA 8270/SIM	5-14-12	5-16-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	91	38 - 105				
Pyrene-d10	101	37 - 121				
Terphenyl-d14	100	32 - 112				
Client ID:	B43-B5-GW					
Laboratory ID:	05-065-15					
Naphthalene	0.61	0.12	EPA 8270/SIM	5-14-12	5-16-12	
2-Methylnaphthalene	ND	0.12	EPA 8270/SIM	5-14-12 5-14-12	5-16-12 5-16-12	
• •	0.45	0.12	EPA 8270/SIM			
1-Methylnaphthalene		Control Limits	EFA 02/U/SIIVI	5-14-12	5-16-12	
Surrogate:	Percent Recovery					
2-Fluorobiphenyl	63	38 - 105				
Pyrene-d10	90	37 - 121				
Terphenyl-d14	94	32 - 112				

Project: 2012-046-22

NAPTHALENES by EPA 8270D/SIM QUALITY CONTROL (with silica gel clean-up)

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0514W1					
Naphthalene	ND	0.10	EPA 8270/SIM	5-14-12	5-15-12	
2-Methylnaphthalene	ND	0.10	EPA 8270/SIM	5-14-12	5-15-12	
1-Methylnaphthalene	ND	0.10	EPA 8270/SIM	5-14-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	38 - 105				
Pyrene-d10	92	37 - 121				
Terphenyl-d14	98	32 - 112				

D-4-

						Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level		Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB05	14W1									
	SB	SBD	SB	SBD		SB	SBD				
Naphthalene	0.386	0.336	0.500	0.500		77	67	38 - 110	14	35	
Acenaphthylene	0.443	0.401	0.500	0.500		89	80	47 - 120	10	30	
Acenaphthene	0.433	0.387	0.500	0.500		87	77	46 - 113	11	26	
Fluorene	0.448	0.426	0.500	0.500		90	85	58 - 104	5	25	
Phenanthrene	0.487	0.463	0.500	0.500		97	93	61 - 99	5	19	
Anthracene	0.465	0.445	0.500	0.500		93	89	55 - 122	4	19	
Fluoranthene	0.509	0.481	0.500	0.500	•	102	96	58 - 129	6	18	
Pyrene	0.520	0.483	0.500	0.500	•	104	97	57 - 126	7	25	
Benzo[a]anthracene	0.481	0.450	0.500	0.500		96	90	51 - 124	7	18	
Chrysene	0.510	0.478	0.500	0.500	•	102	96	53 - 123	6	20	
Benzo[b]fluoranthene	0.506	0.476	0.500	0.500	,	101	95	53 - 126	6	18	
Benzo(j,k)fluoranthene	0.505	0.482	0.500	0.500	•	101	96	51 - 126	5	23	
Benzo[a]pyrene	0.508	0.478	0.500	0.500	•	102	96	52 - 127	6	21	
Indeno(1,2,3-c,d)pyrene	0.495	0.464	0.500	0.500		99	93	49 - 123	6	26	
Dibenz[a,h]anthracene	0.503	0.468	0.500	0.500	•	101	94	39 - 125	7	31	
Benzo[g,h,i]perylene	0.485	0.448	0.500	0.500		97	90	40 - 125	8	30	
Surrogate:											
2-Fluorobiphenyl						77	<i>7</i> 5	38 - 105			
Pyrene-d10						98	93	37 - 121			
Terphenyl-d14						103	102	32 - 112			

Project: 2012-046-22

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B1-10					
Laboratory ID:	05-065-01					
Aroclor 1016	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.058	EPA 8082	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	110	42-123				
Client ID:	B43-B2-4					
Laboratory ID:	05-065-04					
Aroclor 1016	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.058	EPA 8082	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	98	42-123				
Client ID:	B43-B8-6					
Laboratory ID:	05-065-14					
Aroclor 1016	ND	0.055	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.055	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.055	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.055	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.055	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.055	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.055	EPA 8082	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	107	42-123				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 2012-046-22

PCBs by EPA 8082 QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
_aboratory ID:	MB0518S1					
Aroclor 1016	ND	0.050	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.050	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.050	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.050	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.050	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.050	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.050	EPA 8082	5-18-12	5-18-12	

Surrogate: Percent Recovery Control Limits
DCB 115 42-123

					Source	Pei	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-0	99-04									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.600	0.605	0.500	0.500	ND	120	121	44-125	1	15	
Surrogate:											
DCB						100	105	42-123			

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	05-065-01 B43-B1-10					
Arsenic	ND	12	6010B	5-17-12	5-17-12	
Barium	94	2.9	6010B	5-17-12	5-17-12	
Cadmium	ND	0.58	6010B	5-17-12	5-17-12	
Chromium	34	0.58	6010B	5-17-12	5-17-12	
Lead	63	5.8	6010B	5-17-12	5-17-12	
Mercury	ND	0.29	7471A	5-16-12	5-16-12	
Selenium	ND	12	6010B	5-17-12	5-17-12	
Silver	ND	0.58	6010B	5-17-12	5-17-12	
_ab ID: Client ID:	05-065-02 B43-B1-14					
Arsenic	ND	11	6010B	5-17-12	5-17-12	
Barium	42	2.9	6010B	5-17-12	5-17-12	
Cadmium	ND	0.57	6010B	5-17-12	5-17-12	
Chromium	30	0.57	6010B	5-17-12	5-17-12	
_ead	ND	5.7	6010B	5-17-12	5-17-12	
Mercury	ND	0.29	7471A	5-16-12	5-16-12	
Selenium	ND	11	6010B	5-17-12	5-17-12	
Silver	ND	0.57	6010B	5-17-12	5-17-12	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

	. ,			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-065-04					
Client ID:	B43-B2-4					
Arsenic	ND	12	6010B	5-17-12	5-17-12	
Barium	90	2.9	6010B	5-17-12	5-17-12	
Cadmium	ND	0.58	6010B	5-17-12	5-17-12	
Chromium	32	0.58	6010B	5-17-12	5-17-12	
Lead	44	5.8	6010B	5-17-12	5-17-12	
Mercury	ND	0.29	7471A	5-16-12	5-16-12	
Selenium	ND	12	6010B	5-17-12	5-17-12	
Silver	ND	0.58	6010B	5-17-12	5-17-12	
Lab ID:	05-065-05					
Client ID:	B43-B2-8					
Arsenic	ND	12	6010B	5-17-12	5-17-12	
Barium	75	2.9	6010B	5-17-12	5-17-12	
Cadmium	ND	0.59	6010B	5-17-12	5-17-12	
Chromium	37	0.59	6010B	5-17-12	5-17-12	
Lead	11	5.9	6010B	5-17-12	5-17-12	
Mercury	ND	0.29	7471A	5-16-12	5-16-12	
Selenium	ND	12	6010B	5-17-12	5-17-12	
Silver	ND	0.59	6010B	5-17-12	5-17-12	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

	. ,			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-065-06					
Client ID:	B43-B3-3					
Arsenic	ND	12	6010B	5-17-12	5-17-12	
Barium	95	2.9	6010B	5-17-12	5-17-12	
Cadmium	ND	0.58	6010B	5-17-12	5-17-12	
Chromium	46	0.58	6010B	5-17-12	5-17-12	
Lead	31	5.8	6010B	5-17-12	5-17-12	
Mercury	ND	0.29	7471A	5-16-12	5-16-12	
Selenium	ND	12	6010B	5-17-12	5-17-12	
Silver	ND	0.58	6010B	5-17-12	5-17-12	
Lab ID:	05-065-07					
Client ID:	B43-B3-6					
Arsenic	ND	12	6010B	5-17-12	5-17-12	
Barium	93	2.9	6010B	5-17-12	5-17-12	
Cadmium	ND	0.59	6010B	5-17-12	5-17-12	
Chromium	42	0.59	6010B	5-17-12	5-17-12	
Lead	11	5.9	6010B	5-17-12	5-17-12	
Mercury	ND	0.29	7471A	5-16-12	5-16-12	
Selenium	ND	12	6010B	5-17-12	5-17-12	
Silver	ND	0.59	6010B	5-17-12	5-17-12	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-065-09					
Client ID:	B43-B4-4					
Arsenic	ND	11	6010B	5-17-12	5-17-12	
Barium	83	2.8	6010B	5-17-12	5-17-12	
Cadmium	ND	0.57	6010B	5-17-12	5-17-12	
Chromium	51	0.57	6010B	5-17-12	5-17-12	
Lead	ND	5.7	6010B	5-17-12	5-17-12	
Mercury	ND	0.28	7471A	5-16-12	5-16-12	
Selenium	ND	11	6010B	5-17-12	5-17-12	
Silver	ND	0.57	6010B	5-17-12	5-17-12	
Lab ID:	05-065-10					
Client ID:	B43-B4-5					
Arsenic	ND	11	6010B	5-17-12	5-17-12	
Barium	84	2.9	6010B	5-17-12	5-17-12	
Cadmium	ND	0.57	6010B	5-17-12	5-17-12	
Chromium	37	0.57	6010B	5-17-12	5-17-12	
Lead	41	5.7	6010B	5-17-12	5-17-12	
Mercury	ND	0.29	7471A	5-16-12	5-16-12	
Selenium	ND	11	6010B	5-17-12	5-17-12	
Silver	ND	0.57	6010B	5-17-12	5-17-12	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

	99 (FF)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-065-11					
Client ID:	B43-B5-4					
Arsenic	ND	11	6010B	5-17-12	5-17-12	
Barium	83	2.8	6010B	5-17-12	5-17-12	
Cadmium	ND	0.57	6010B	5-17-12	5-17-12	
Chromium	38	0.57	6010B	5-17-12	5-17-12	
Lead	ND	5.7	6010B	5-17-12	5-17-12	
Mercury	ND	0.28	7471A	5-16-12	5-16-12	
Selenium	ND	11	6010B	5-17-12	5-17-12	
Silver	ND	0.57	6010B	5-17-12	5-17-12	
Lab ID:	05-065-12					
Client ID:	B43-B5-6					
Arsenic	ND	11	6010B	5-17-12	5-17-12	
Barium	110	2.8	6010B	5-17-12	5-17-12	
Cadmium	ND	0.57	6010B	5-17-12	5-17-12	
Chromium	41	0.57	6010B	5-17-12	5-17-12	
Lead	110	5.7	6010B	5-17-12	5-17-12	
Mercury	ND	0.28	7471A	5-16-12	5-16-12	
Selenium	ND	11	6010B	5-17-12	5-17-12	
Silver	ND	0.57	6010B	5-17-12	5-17-12	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-065-14					
Client ID:	B43-B8-6					
Arsenic	13	11	6010B	5-17-12	5-17-12	
Barium	120	2.8	6010B	5-17-12	5-17-12	
Cadmium	ND	0.55	6010B	5-17-12	5-17-12	
Chromium	17	0.55	6010B	5-17-12	5-17-12	
Lead	65	5.5	6010B	5-17-12	5-17-12	
Mercury	ND	0.28	7471A	5-16-12	5-16-12	
Selenium	ND	11	6010B	5-17-12	5-17-12	
Silver	ND	0.55	6010B	5-17-12	5-17-12	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 5-16&17-12

Date Analyzed: 5-16&17-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0516S1&MB0517SM1

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 5-16&17-12

Date Analyzed: 5-16&17-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-065-11

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	73.3	80.2	9	2.5	
Cadmium	ND	ND	NA	0.50	
Chromium	33.6	34.8	4	0.50	
Lead	ND	ND	NA	5.0	
Mercury	ND	ND	NA	0.25	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted: 5-16&17-12
Date Analyzed: 5-16&17-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-065-11

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	87.6	88	87.0	87	1	
Barium	100	175	102	169	96	3	
Cadmium	50.0	45.8	92	45.6	91	0	
Chromium	100	128	94	124	90	3	
Lead	250	223	89	221	89	1	
Mercury	0.500	0.510	102	0.506	101	1	
Selenium	100	92.1	92	91.7	92	0	
Silver	25.0	20.6	82	20.4	82	1	

Project: 2012-046-22

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water
Units: ug/L (ppb)

	0 (11 /			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-065-03 B43-B1-GW					
Arsenic	110	3.0	200.8		5-18-12	
Barium	92	25	200.8		5-16-12	
Cadmium	ND	4.0	200.8		5-16-12	
Chromium	ND	10	200.8		5-16-12	
Lead	ND	1.0	200.8		5-16-12	
Mercury	ND	0.50	7470A		5-10-12	
Selenium	ND	5.0	200.8		5-16-12	
Silver	ND	10	200.8		5-16-12	
Lab ID:	05-065-08 B43-B3-GW					
Arsenic	ND	3.0	200.8		5-16-12	
Barium	53	25	200.8		5-16-12	
Cadmium	ND	4.0	200.8		5-16-12	
Chromium	ND	10	200.8		5-16-12	
Lead	ND	1.0	200.8		5-16-12	
Mercury	ND	0.50	7470A		5-10-12	
Selenium	ND	5.0	200.8		5-16-12	
Silver	ND	10	200.8		5-16-12	

Date

Date

Date of Report: May 21, 2012 Samples Submitted: May 8, 2012 Laboratory Reference: 1205-065

Project: 2012-046-22

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water
Units: ug/L (ppb)

Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-065-13			•	_	
Client ID:	B43-B4-GW					
Arsenic	4.0	3.0	200.8		5-18-12	
Barium	67	25	200.8		5-16-12	
Cadmium	ND	4.0	200.8		5-16-12	
Chromium	ND	10	200.8		5-16-12	
Lead	20	1.0	200.8		5-16-12	
Mercury	ND	0.50	7470A		5-10-12	
Selenium	ND	5.0	200.8		5-16-12	
Silver	ND	10	200.8		5-16-12	
Lab ID:	05-065-15					
Client ID:	B43-B5-GW					
Arsenic	ND	3.0	200.8		5-16-12	
Barium	79	25	200.8		5-16-12	
Cadmium	ND	4.0	200.8		5-16-12	
Chromium	ND	10	200.8		5-16-12	
Lead	ND	1.0	200.8		5-16-12	
Mercury	ND	0.50	7470A		5-10-12	
Selenium	ND	5.0	200.8		5-16-12	
Silver	ND	10	200.8		5-16-12	

Project: 2012-046-22

DISSOLVED METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed: 5-16&18-12

Matrix: Water
Units: ug/L (ppb)

Lab ID: MB0516D2

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Barium	200.8	ND	25
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Selenium	200.8	ND	5.0
Silver	200.8	ND	10

Project: 2012-046-22

DISSOLVED MERCURY EPA 7470A METHOD BLANK QUALITY CONTROL

Date Analyzed: 5-10-12

Matrix: Water
Units: ug/L (ppb)

Lab ID: MB0510D1

Analyte Method Result PQL

Mercury 7470A **ND** 0.50

Project: 2012-046-22

DISSOLVED METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 5-16&18-12

Matrix: Water
Units: ug/L (ppb)

Lab ID: 05-065-03

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	105	108	3	3.0	
Barium	91.6	91.4	0	25	
Cadmium	ND	ND	NA	4.0	
Chromium	ND	ND	NA	10	
Lead	ND	ND	NA	1.0	
Selenium	ND	ND	NA	5.0	
Silver	ND	ND	NA	10	

Project: 2012-046-22

DISSOLVED MERCURY EPA 7470A DUPLICATE QUALITY CONTROL

Date Analyzed: 5-10-12

Matrix: Water
Units: ug/L (ppb)

Lab ID: 05-028-01

Sample Duplicate

Analyte Result Reput Reput Flags

Mercury ND ND NA 0.50

Project: 2012-046-22

DISSOLVED METALS EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed: 5-16&18-12

Matrix: Water
Units: ug/L (ppb)

Lab ID: 05-065-03

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	200	315	105	318	107	1	
Barium	200	290	99	296	102	2	
Cadmium	200	211	106	211	106	0	
Chromium	200	191	95	219	109	14	
Lead	200	192	96	195	97	1	
Selenium	200	221	110	224	112	2	
Silver	200	183	91	186	93	2	

Project: 2012-046-22

DISSOLVED MERCURY EPA 7470A MS/MSD QUALITY CONTROL

Date Analyzed: 5-10-12

Matrix: Water
Units: ug/L (ppb)

Lab ID: 05-028-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	12.5	12.1	97	12.2	98	1	

Project: 2012-046-22

EDB by **EPA** 8011

Matrix: Water
Units: ug/L (ppb)

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	B43-B1-GW						
Laboratory ID:	05-065-03						
EDB	ND	0.0096	EPA 8011	5-21-12	5-21-12		
Surrogate:	Percent Recovery	Control Limits					
TCMX	71	31-144					
Client ID:	B43-B3-GW						
Laboratory ID:	05-065-08						
EDB	ND	0.0097	EPA 8011	5-21-12	5-21-12		
Surrogate:	Percent Recovery	Control Limits					
TCMX	113	31-144					
Client ID:	B43-B5-GW						
Laboratory ID:	05-065-15						
EDB	ND	0.0097	EPA 8011	5-21-12	5-21-12		
Surrogate:	Percent Recovery	Control Limits					
TCMX	78	31-144					

Project: 2012-046-22

EDB by EPA 8011 QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0521W1					
EDB	ND	0.010	EPA 8011	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
TCMX	101	31-144				

					Source	Pei	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB05	521W1									
	SB	SBD	SB	SBD		SB	SBD				
EDB	0.100	0.0966	0.100	0.100	N/A	100	97	78-122	3	8	
Surrogate:											
TCMX						121	108	31-144			

% MOISTURE

Date Analyzed: 5-9-12

Client ID	Lab ID	% Moisture
B43-B1-10	05-065-01	13
B43-B1-14	05-065-02	12
B43-B2-4	05-065-04	13
B43-B2-8	05-065-05	15
B43-B3-3	05-065-06	14
B43-B3-6	05-065-07	15
B43-B4-4	05-065-09	12
B43-B4-5	05-065-10	13
B43-B5-4	05-065-11	12
B43-B5-6	05-065-12	12
B43-B8-6	05-065-14	9

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

Chain of Custody

Page / of 2

Reviev	Received	Reling	Received	Reling	Received	Relinquished		0	ع	∞	7	0	S	4	w	N		Lab ID	Sampled by:	4	Project Name:	2	Company:		
Reviewed/Date .	ved	Relinquished	/ed	Relinquished	red	uished		B43-84-5	D43-84-4	1243-13-9W	843-83-6	843-83-3	843-82-	843-82-	7343-81-	B43-81-	1343-W-	Sar	ATICAL	J. JHOMP SOM	2	2012 - 043-	Aus		Analytical Labo
				pit PM	ant Page	Ca a	Signature		+	8			4	4,	de de	14	10 8	Sample Identification		2	Swell 43	22		Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98
			4													-2	12							.com	050
			,				-	(_	_		-		-	5/8/12	**	Date Sampled]		Star	2 Days	Sam		
Reviewed/Date			299	Spealy	Speedy	Hus	Company	1145	1130	25	1100	1050	1020	1015	200	28	248	Time Sampled			ndard (7 Days	ays	Same Day	(Chec	Turnarour (in work
/Date			()	messons	Speany messengen			Soil	2,08	Water	~		_	Soil	hater	<	3/8	Matrix	(other)		Standard (7 Days) (TPH analysis 5 Days)	3 Days	☐ 1 Day	(Check One)	(In working days)
				No	ier			N	6	ī	6	4	4	4	2	6	6	No. of Cont.			sis 5 Days)	days	Лау		
			5/8	3/5	5-8-12	5/2/1	Date	4									×	NWTPI	H-HCIE						La
			2	2/2	12	ir				\otimes					8		8	NWTP) IEA				-	Laboratory
			6	4:	w	à	Time							8			8	NWTP	H-Dx	(AC	uls		(- 1	
			40	Oh.	12	N				8					\otimes		8	Volatile		DI	Ex, M	TRE,	EDBE	DC	Nu
						1				((2)				enated o		s 8260B		7377		nbe
Chromatograms with final report 🔽		G	1	7	5	A	Comments/Special Instructions			8		-		(\times)	\otimes		8	(with lo	w-leve	PAHs	w-level)	ATHI	ALENE	200	7
togran		0	7	Field Filked	5	4-chure	ents/S							×			8			Nap	himale	ene	>	\exists	
ns with		Added SIMIL	_	T	Follow-up and	,	pecial										0	Organo	ochlorir	ne Pest	icides 80)81A			
final r		5	-	7	3	3	Instru											Organo	phosph	norus Pe	esticides	8270D/	SIM		
eport [Ě	_	8	5	8	uction											Chlorin	nated A	cid He	rbicides	8151A			
1		7.	1	7	30	remaining	co	-		1					1		\times		RCRA N						
	`	4		,	1												1	100	MTCA N	/letals					
		7	ゴ		500	101													oil and	grease) 1664			-	
		(1)	1		7	volume				X					X			Dis		CRI	Α .	eta	ds		05
		1			needlee	conta				8					8			-	DRI	100	level			>	-06
					leed	tanc														JECO ST					65
					~	Co		-	-		1-			~		1	1	% Moi	isture						

Data Package: Level III | Level IV |

Electronic Data Deliverables (EDDs)

Chain of Custody

Page 2 of 2

Same Day (Check One) (Check O
EDC MTBE 8260B SIM NAPHTHALENES ON 1 NAPHTHALENES ON 1 NAPHTHALENES Cides 8081A Sticides 8270D/SIM Dicides 8151A
cides 8081A sticides 8270D/SIM bicides 8151A
cides 8081A sticides 8270D/SIM bicides 8151A
cides 8081A sticides 8270D/SIM bicides 8151A
sticides 8270D/SIM bicides 8151A 1664 LA Medals level EPA 8011
1664 A Medals level EPA 8011)
A Melals level EPA 8011)
A Melals level EPA 8011)
A Melals level EPA 8011)
level EPA 8011)
-

Data Package: Level III | Level IV |

Electronic Data Deliverables (EDDs) [].

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 25, 2012

Jeff Thompson HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2012-046-22

Laboratory Reference No. 1205-078

Dear Jeff:

Enclosed are the analytical results and associated quality control data for samples submitted on May 9, 2012.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 2012-046-22

Case Narrative

Samples were collected on May 8 and 9, 2012 and received by the laboratory on May 9, 2012. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx (soil) Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The chromatogram for sample B43-B10-19 is similar to mineral spirits.

BTEX, EDB, EDC, and MTBE EPA 8260B (soil) Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Some MTCA Method A cleanup levels are non-achievable for sample B43-B12-3 due to the necessary dilution of the sample.

Surrogate Standard 4-Bromofluorobenzene is outside control limits for sample B43-B10-19 due to co-eluting non-target analytes.

PAHs EPA 8270D/SIM (water) Analysis

The sample B43-B9-GW was extracted 2 days out of holding time.

PAHs EPA 8270D/SIM (soil) Analysis

Sample B43-B9-3 had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-HCID (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Offits. Hig/L (ppiff)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B8-GW			-		
Laboratory ID:	05-078-01					
Gasoline Range Organics	ND	0.11	NWTPH-HCID	5-14-12	5-14-12	
Diesel Range Organics	ND	0.27	NWTPH-HCID	5-14-12	5-14-12	
Lube Oil Range Organics	ND	0.43	NWTPH-HCID	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	B43-B9-GW					
Laboratory ID:	05-078-04					
Gasoline Range Organics	Detected	0.11	NWTPH-HCID	5-14-12	5-14-12	
Diesel Range Organics	ND	0.47	NWTPH-HCID	5-14-12	5-14-12	U1
Lube Oil Range Organics	ND	0.44	NWTPH-HCID	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	B43-B10-GW					
Laboratory ID:	05-078-07					
Gasoline Range Organics	Detected	0.064	NWTPH-HCID	5-14-12	5-14-12	
Diesel Range Organics	ND	1.5	NWTPH-HCID	5-14-12	5-14-12	U1
Lube Oil Range Organics	ND	0.26	NWTPH-HCID	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	B43-B12-GW					
Laboratory ID:	05-078-12					
Gasoline Range Organics	ND	0.11	NWTPH-HCID	5-14-12	5-14-12	
Diesel Range Organics	ND	0.28	NWTPH-HCID	5-14-12	5-14-12	
Lube Oil Range Organics	ND	0.44	NWTPH-HCID	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				

Project: 2012-046-22

NWTPH-HCID QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0514W1					
Gasoline Range Organics	ND	0.10	NWTPH-HCID	5-14-12	5-14-12	
Diesel Range Organics	ND	0.25	NWTPH-HCID	5-14-12	5-14-12	
Lube Oil Range Organics	ND	0.40	NWTPH-HCID	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

NWTPH-HCID (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B43-B9-3				7u.y_0 u	
Laboratory ID:	05-078-02					
Gasoline Range Organics	ND	24	NWTPH-HCID	5-14-12	5-14-12	
Diesel Range Organics	ND	280	NWTPH-HCID	5-14-12	5-14-12	U1
Lube Oil	Detected	120	NWTPH-HCID	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				
011 15	D 40 D0 40					
Client ID:	B43-B9-10					
Laboratory ID:	05-078-03					
Gasoline Range Organics	ND	23	NWTPH-HCID	5-14-12	5-14-12	
Diesel Range Organics	ND	57	NWTPH-HCID	5-14-12	5-14-12	
Lube Oil Range Organics	ND .	110	NWTPH-HCID	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	B43-B10-15					
Laboratory ID:	05-078-05					
Gasoline Range Organics	ND	23	NWTPH-HCID	5-14-12	5-14-12	
Diesel Range Organics	ND	58	NWTPH-HCID	5-14-12	5-14-12	
Lube Oil Range Organics	ND	120	NWTPH-HCID	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				
Client ID:	B43-B10-19					
Laboratory ID:	05-078-06					
Gasoline Range Organics	Detected	23	NWTPH-HCID	5-14-12	5-14-12	
Diesel Range Organics	ND	130	NWTPH-HCID	5-14-12	5-14-12	U1
Lube Oil	Detected	120	NWTPH-HCID	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
Client ID:	B43-B11-2.5					
Laboratory ID:	05-078-08					
Gasoline Range Organics	ND	23	NWTPH-HCID	5-14-12	5-14-12	
Diesel Range Organics	ND	190	NWTPH-HCID	5-14-12	5-14-12	U1
Lube Oil	Detected	120	NWTPH-HCID	5-14-12	5-14-12	5.
Surrogate:	Percent Recovery	Control Limits		J	J . 1 12	
o-Terphenyl	114	50-150				
	- · ·					

NWTPH-HCID (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
B43-B11-6.5					
05-078-09					
ND	23	NWTPH-HCID	5-14-12	5-14-12	
ND	830	NWTPH-HCID	5-14-12	5-14-12	U1
Detected	110	NWTPH-HCID	5-14-12	5-14-12	
Percent Recovery	Control Limits				
122	50-150				
B43-B12-3					
	410	NWTPH-HCID	5-14-12	5-14-12	U1
		_			01
				_	
		111111111111111111111111111111111111111	0 11 12	0 11 12	
•					
	00 700				
ND	72	NWTPH-HCID	5-14-12	5-14-12	U1
Detected	56	NWTPH-HCID	5-14-12	5-14-12	
Detected	110	NWTPH-HCID	5-14-12	5-14-12	
Percent Recovery	Control Limits				
	B43-B11-6.5	B43-B11-6.5 05-078-09 23 ND 830 Detected 110 Percent Recovery 122 Control Limits 50-150 B43-B12-3 05-078-10 410 ND 410 Detected 61 Detected 120 Percent Recovery 141 Control Limits 50-150 B43-B12-11 05-078-11 50-150 B43-B12-11 05-078-11 72 Detected 56	B43-B11-6.5 05-078-09 23 NWTPH-HCID ND 830 NWTPH-HCID Detected 110 NWTPH-HCID Percent Recovery 122 Control Limits 50-150 B43-B12-3 05-078-10 WTPH-HCID NWTPH-HCID ND 2 120 NWTPH-HCID NWTPH-HCID NWTPH-HCID Percent Recovery 141 50-150 Control Limits 50-150 B43-B12-11 05-078-11 ND 72 NWTPH-HCID ND 72 NWTPH-HCID NWTPH-HCID Detected 56 NWTPH-HCID	Result PQL Method Prepared B43-B11-6.5 05-078-09 05-078-09 05-078-09 05-078-09 05-078-09 05-14-12 05-14-12 05-14-12 05-14-12 05-14-12 05-078-10 05-078-10 05-078-10 05-078-10 05-078-10 05-078-10 05-078-10 05-078-10 05-078-10 05-078-12 05-078-12 05-078-12 05-078-11	Result PQL Method Prepared Analyzed B43-B11-6.5 05-078-09 Secondary 100 Analyzed ND 23 NWTPH-HCID 5-14-12 5-14-12 ND 830 NWTPH-HCID 5-14-12 5-14-12 Detected 110 NWTPH-HCID 5-14-12 5-14-12 Percent Recovery 122 50-150 Analyzed Analyzed B43-B12-3 05-14-12 NWTPH-HCID 5-14-12 5-14-12 Detected 61 NWTPH-HCID 5-14-12 5-14-12 Detected 120 NWTPH-HCID 5-14-12 5-14-12 Percent Recovery 141 50-150 NWTPH-HCID 5-14-12 5-14-12 B43-B12-11 05-078-11 50-150 NWTPH-HCID 5-14-12 5-14-12 ND 72 NWTPH-HCID 5-14-12 5-14-12 Detected 56 NWTPH-HCID 5-14-12 5-14-12

NWTPH-HCID QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0514S1					
Gasoline Range Organics	ND	20	NWTPH-HCID	5-14-12	5-14-12	
Diesel Range Organics	ND	50	NWTPH-HCID	5-14-12	5-14-12	
Lube Oil Range Organics	ND	100	NWTPH-HCID	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-078-02 B43-B9-3					
Arsenic	ND	12	6010B	5-11-12	5-14-12	
Barium	250	3.0	6010B	5-11-12	5-14-12	
Cadmium	1.0	0.60	6010B	5-11-12	5-14-12	
Chromium	24	0.60	6010B	5-11-12	5-14-12	
Lead	120	6.0	6010B	5-11-12	5-14-12	
Mercury	ND	0.30	7471A	5-16-12	5-16-12	
Selenium	ND	12	6010B	5-11-12	5-14-12	
Silver	ND	0.60	6010B	5-11-12	5-14-12	
Lab ID:	05-078-03 B43-B9-10					
Arsenic	ND	11	6010B	5-11-12	5-14-12	
Barium	45	2.9	6010B	5-11-12	5-14-12	
Cadmium	ND	0.57	6010B	5-11-12	5-14-12	
Chromium	28	0.57	6010B	5-11-12	5-14-12	
Lead	ND	5.7	6010B	5-11-12	5-14-12	
Mercury	ND	0.29	7471A	5-16-12	5-16-12	
Selenium	ND	11	6010B	5-11-12	5-14-12	
Silver	ND	0.57	6010B	5-11-12	5-14-12	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Silver

Units: mg/kg (ppm)

ND

	0 0 11 /			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	05-078-05 B43-B10-15					
Arsenic	ND	12	6010B	5-11-12	5-14-12	
Barium	65	2.9	6010B	5-11-12	5-14-12	
Cadmium	ND	0.58	6010B	5-11-12	5-14-12	
Chromium	33	0.58	6010B	5-11-12	5-14-12	
Lead	6.5	5.8	6010B	5-11-12	5-14-12	
Mercury	ND	0.29	7471A	5-16-12	5-16-12	
Selenium	ND	12	6010B	5-11-12	5-14-12	
Silver	ND	0.58	6010B	5-11-12	5-14-12	
Lab ID: Client ID:	05-078-06 B43-B10-19					
Arsenic	ND	12	6010B	5-11-12	5-14-12	
Barium	46	2.9	6010B	5-11-12	5-14-12	
Cadmium	ND	0.58	6010B	5-11-12	5-14-12	
Chromium	30	0.58	6010B	5-11-12	5-14-12	
Lead	ND	5.8	6010B	5-11-12	5-14-12	
Mercury	ND	0.29	7471A	5-16-12	5-16-12	
Selenium	ND	12	6010B	5-11-12	5-14-12	

6010B

5-11-12

5-14-12

0.58

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Chromium

Lead

Mercury

Selenium

Silver

36

59

ND

ND

ND

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-078-08					
Client ID:	B43-B11-2.5					
Arsenic	ND	11	6010B	5-11-12	5-14-12	
Barium	110	2.9	6010B	5-11-12	5-14-12	
Cadmium	ND	0.57	6010B	5-11-12	5-14-12	
Chromium	28	0.57	6010B	5-11-12	5-14-12	
Lead	50	5.7	6010B	5-11-12	5-14-12	
Mercury	ND	0.29	7471A	5-16-12	5-16-12	
Selenium	ND	11	6010B	5-11-12	5-14-12	
Silver	ND	0.57	6010B	5-11-12	5-14-12	
Lab ID:	05-078-09					
Client ID:	B43-B11-6.5					
Arsenic	ND	11	6010B	5-11-12	5-14-12	
Barium	98	2.9	6010B	5-11-12	5-14-12	
Cadmium	ND	0.57	6010B	5-11-12	5-14-12	

6010B

6010B

7471A

6010B

6010B

5-11-12

5-11-12

5-16-12

5-11-12

5-11-12

5-14-12

5-14-12

5-16-12

5-14-12

5-14-12

0.57

5.7

0.29

11

0.57

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Lead

Mercury

Selenium

Silver

36

ND

ND

ND

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-078-10					
Client ID:	B43-B12-3					
Arsenic	ND	12	6010B	5-11-12	5-14-12	
Barium	240	3.1	6010B	5-11-12	5-14-12	
Cadmium	12	0.61	6010B	5-11-12	5-14-12	
Chromium	65	0.61	6010B	5-11-12	5-14-12	
Lead	520	6.1	6010B	5-11-12	5-14-12	
Mercury	0.64	0.31	7471A	5-16-12	5-16-12	
Selenium	ND	12	6010B	5-11-12	5-14-12	
Silver	ND	0.61	6010B	5-11-12	5-14-12	
Lab ID:	05-078-11					
Client ID:	B43-B12-11					
Arsenic	ND	11	6010B	5-11-12	5-14-12	
Barium	110	2.8	6010B	5-11-12	5-14-12	
Cadmium	0.94	0.56	6010B	5-11-12	5-14-12	
Chromium	42	0.56	6010B	5-11-12	5-14-12	

6010B

7471A

6010B

6010B

5-11-12

5-16-12

5-11-12

5-11-12

5-14-12

5-16-12

5-14-12

5-14-12

5.6

0.28

11

0.56

Project: 2012-046-22

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted: 5-11-12
Date Analyzed: 5-11-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0511SM1

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

Project: 2012-046-22

TOTAL METALS EPA 7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 5-16-12
Date Analyzed: 5-16-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0516S1

Analyte Method Result PQL

Mercury 7471A **ND** 0.25

Project: 2012-046-22

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 5-11-12
Date Analyzed: 5-11-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-108-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	56.4	53.8	5	2.5	
Cadmium	ND	ND	NA	0.50	
Chromium	44.0	39.4	11	0.50	
Lead	ND	ND	NA	5.0	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

Project: 2012-046-22

TOTAL METALS EPA 7471A DUPLICATE QUALITY CONTROL

Date Extracted: 5-16-12
Date Analyzed: 5-16-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-065-11

Sample Duplicate

Analyte Result Result RPD PQL Flags

Mercury ND ND NA 0.25

Project: 2012-046-22

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted: 5-11-12
Date Analyzed: 5-11-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-108-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	93.9	94	93.5	93	0	
Barium	100	169	113	164	108	3	
Cadmium	50.0	49.3	99	48.9	98	1	
Chromium	100	145	100	141	97	2	
Lead	250	248	99	243	97	2	
Selenium	100	99.9	100	97.4	97	3	
Silver	25.0	21.9	88	21.8	87	0	

TOTAL METALS EPA 7471A MS/MSD QUALITY CONTROL

Date Extracted: 5-16-12 Date Analyzed: 5-16-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-065-11

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.500	0.510	102	0.506	101	1	

Project: 2012-046-22

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

	3 (11 /			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-078-01 B43-B8-GW					
Arsenic	6.7	3.0	200.8		5-18-12	
Barium	ND	25	200.8		5-16-12	
Cadmium	ND	4.0	200.8		5-16-12	
Chromium	12	10	200.8		5-16-12	
Lead	ND	1.0	200.8		5-16-12	
Mercury	ND	0.50	7470A		5-10-12	
Selenium	ND	5.0	200.8		5-16-12	
Silver	ND	10	200.8		5-16-12	
Lab ID:	05-078-04 B43-B9-GW					
Arsenic	30	3.0	200.8		5-18-12	
Barium	73	25	200.8		5-16-12	
Cadmium	ND	4.0	200.8		5-16-12	
Chromium	ND	10	200.8		5-16-12	
Lead	ND	1.0	200.8		5-16-12	
Mercury	ND	0.50	7470A		5-10-12	
Selenium	ND	5.0	200.8		5-16-12	
Silver	ND	10	200.8		5-16-12	

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	05-078-12 B43-B12-GW					
Arsenic	7.3	3.0	200.8		5-18-12	
Barium	87	25	200.8		5-16-12	
Cadmium	ND	4.0	200.8		5-16-12	
Chromium	ND	10	200.8		5-16-12	
Lead	1.5	1.0	200.8		5-16-12	
Mercury	ND	0.50	7470A		5-10-12	
Selenium	ND	5.0	200.8		5-16-12	
Silver	ND	10	200.8		5-16-12	

DISSOLVED METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed: 5-16&18-12

Matrix: Water Units: ug/L (ppb)

MB0516D2 Lab ID:

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Barium	200.8	ND	25
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Selenium	200.8	ND	5.0
Silver	200.8	ND	10

Project: 2012-046-22

DISSOLVED MERCURY EPA 7470A METHOD BLANK QUALITY CONTROL

Date Analyzed: 5-10-12

Matrix: Water
Units: ug/L (ppb)

Lab ID: MB0510D1

Analyte Method Result PQL

Mercury 7470A **ND** 0.50

DISSOLVED METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 5-16&18-12

Matrix: Water Units: ug/L (ppb)

05-065-03 Lab ID:

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	105	108	3	3.0	
Barium	91.6	91.4	0	25	
Cadmium	ND	ND	NA	4.0	
Chromium	ND	ND	NA	10	
Lead	ND	ND	NA	1.0	
Selenium	ND	ND	NA	5.0	
Silver	ND	ND	NA	10	

Project: 2012-046-22

DISSOLVED MERCURY EPA 7470A DUPLICATE QUALITY CONTROL

Date Analyzed: 5-10-12

Matrix: Water
Units: ug/L (ppb)

Lab ID: 05-028-01

Sample Duplicate

Analyte Result Result RPD PQL Flags

Mercury ND ND NA 0.50

DISSOLVED METALS EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed: 5-16&18-12

Matrix: Water Units: ug/L (ppb)

05-065-03 Lab ID:

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	200	315	105	318	107	1	
Barium	200	290	99	296	102	2	
Cadmium	200	211	106	211	106	0	
Chromium	200	191	95	219	109	14	
Lead	200	192	96	195	97	1	
Selenium	200	221	110	224	112	2	
Silver	200	183	91	186	93	2	

DISSOLVED MERCURY EPA 7470A MS/MSD QUALITY CONTROL

Date Analyzed: 5-10-12

Matrix: Water Units: ug/L (ppb)

Lab ID: 05-028-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	12.5	12.1	97	12.2	98	1	

Project: 2012-046-22

NWTPH-Gx/BTEX

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank 050912					
Laboratory ID:	05-078-13					
Benzene	ND	1.0	EPA 8021	5-11-12	5-11-12	
Toluene	ND	1.0	EPA 8021	5-11-12	5-11-12	
Ethyl Benzene	ND	1.0	EPA 8021	5-11-12	5-11-12	
m,p-Xylene	ND	1.0	EPA 8021	5-11-12	5-11-12	
o-Xylene	ND	1.0	EPA 8021	5-11-12	5-11-12	
Gasoline	ND	100	NWTPH-Gx	5-11-12	5-11-12	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Fluorobenzene 76 73-121

Project: 2012-046-22

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0511W1					
Benzene	ND	1.0	EPA 8021	5-11-12	5-11-12	
Toluene	ND	1.0	EPA 8021	5-11-12	5-11-12	
Ethyl Benzene	ND	1.0	EPA 8021	5-11-12	5-11-12	
m,p-Xylene	ND	1.0	EPA 8021	5-11-12	5-11-12	
o-Xylene	ND	1.0	EPA 8021	5-11-12	5-11-12	
Gasoline	ND	100	NWTPH-Gx	5-11-12	5-11-12	

Surrogate: Percent Recovery Control Limits Fluorobenzene 77 73-121

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-06	69-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	NA	NA	NA	30	
Surrogate:											
Fluorobenzene						<i>7</i> 5	<i>7</i> 5	73-121			
MATRIX SPIKES											
Laboratory ID:	05-06	69-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	50.0	49.5	50.0	50.0	ND	100	99	82-120	1	8	
Toluene	50.8	50.2	50.0	50.0	ND	102	100	84-119	1	8	
Ethyl Benzene	51.1	50.5	50.0	50.0	ND	102	101	84-122	1	9	
m,p-Xylene	51.2	50.8	50.0	50.0	ND	102	102	85-121	1	9	
o-Xylene	51.1	50.6	50.0	50.0	ND	102	101	84-121	1	9	
Surrogate:		 									
Fluorobenzene						99	96	73-121			

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B9-GW					_
Laboratory ID:	05-078-04					
Gasoline	ND	400	NWTPH-Gx	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	73-121				
Client ID:	B43-B10-GW					
Laboratory ID:	05-078-07					
Gasoline	1500	400	NWTPH-Gx	5-21-12	5-21-12	_
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0521W1					
Gasoline	ND	100	NWTPH-Gx	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	73-121				

				Source	Perc	ent	Recovery		RPD	
Res	sult	Spike	Level	Result	Recov	very	Limits	RPD	Limit	Flags
05-17	72-02									
ORIG	DUP									
ND	ND	NA	NA		NA	١.	NA	NA	30	
					89	90	73-121			
	05-17 ORIG		05-172-02 ORIG DUP	05-172-02 ORIG DUP	Result Spike Level Result 05-172-02 ORIG DUP	Result Spike Level Result Record 05-172-02 ORIG DUP	Result Spike Level Result Recovery 05-172-02 ORIG DUP ND ND NA NA	Result Spike Level Result Recovery Limits 05-172-02 ORIG DUP ND ND NA NA NA NA NA NA NA	Result Spike Level Result Recovery Limits RPD 05-172-02 ORIG DUP ND NA NA <td>Result Spike Level Result Recovery Limits RPD Limit 05-172-02 ORIG DUP NA NA NA NA NA NA 30</td>	Result Spike Level Result Recovery Limits RPD Limit 05-172-02 ORIG DUP NA NA NA NA NA NA 30

Project: 2012-046-22

NWTPH-Gx

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B10-19					
Laboratory ID:	05-078-06					
Gasoline	44	11	NWTPH-Gx	5-21-12	5-21-12	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	68-124				

NWTPH-Gx QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0521S1					
Gasoline	ND	5.0	NWTPH-Gx	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	68-124				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-19	93-02								
	ORIG	DUP				·				
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	_
Surrogate:										
Fluorobenzene						100 95	68-124			

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B43-B9-3		ou		7.11.0.J_00	u.go
Laboratory ID:	05-078-02					
Diesel Range Organics	ND	150	NWTPH-Dx	5-19-12	5-21-12	U1
Lube Oil	720	60	NWTPH-Dx	5-19-12	5-21-12	0.
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	B43-B10-19					
Laboratory ID:	05-078-06					
Diesel Range Organics	ND	79	NWTPH-Dx	5-19-12	5-21-12	U1
Lube Oil	310	59	NWTPH-Dx	5-19-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				
Client ID:	B43-B11-2.5					
Laboratory ID:	05-078-08					
Diesel Range Organics	ND	260	NWTPH-Dx	5-19-12	5-21-12	U1
Lube Oil	1000	57	NWTPH-Dx	5-19-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	117	50-150				
Client ID:	B43-B11-6.5					
Laboratory ID:	05-078-09					
Diesel Range Organics	ND	1000	NWTPH-Dx	5-19-12	5-22-12	U1
Lube Oil	3800	290	NWTPH-Dx	5-19-12	5-22-12	01
Surrogate:	Percent Recovery	Control Limits	IIII DX	0 10 12	O ZZ 1Z	
o-Terphenyl	121	50-150				
Client ID:	B43-B12-3					
Laboratory ID:	05-078-10					
	7200	240	NWTPH-Dx	<i></i>	5 04 40	N.I.
Diesel Range Organics Lube Oil	16000	310 610	NWTPH-DX	5-19-12 5-10-12	5-21-12	N
Surrogate:	Percent Recovery	Control Limits	INVV I CU-DX	5-19-12	5-21-12	
o-Terphenyl		50-150				S
	-					
Client ID:	B43-B12-11					
Laboratory ID:	05-078-11					
Diesel Range Organics	230	28	NWTPH-Dx	5-19-12	5-22-12	N
Lube Oil	540	56	NWTPH-Dx	5-19-12	5-22-12	
Surrogate: o-Terphenyl	Percent Recovery 107	Control Limits 50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0519S1					
Diesel Range Organics	ND	25	NWTPH-Dx	5-19-12	5-21-12	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-19-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	05-18	39-01						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			98	87	50-150			

Project: 2012-046-22

4-Bromofluorobenzene

VOLATILES by EPA 8260B

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B9-GW					_
Laboratory ID:	05-078-04					
Methyl t-Butyl Ether	0.22	0.20	EPA 8260	5-17-12	5-17-12	
Benzene	16	0.20	EPA 8260	5-17-12	5-17-12	
1,2-Dichloroethane	ND	2.0	EPA 8260	5-17-12	5-17-12	
Toluene	6.6	1.0	EPA 8260	5-17-12	5-17-12	
Ethylbenzene	36	0.20	EPA 8260	5-17-12	5-17-12	
m,p-Xylene	32	0.40	EPA 8260	5-17-12	5-17-12	
o-Xylene	5.5	0.20	EPA 8260	5-17-12	5-17-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	86	68-120				
Toluene-d8	84	73-120				

65-120

88

VOLATILES by EPA 8260B

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B10-GW					
Laboratory ID:	05-078-07					
Methyl t-Butyl Ether	ND	0.20	EPA 8260	5-17-12	5-17-12	
Benzene	0.64	0.20	EPA 8260	5-17-12	5-17-12	
1,2-Dichloroethane	ND	2.0	EPA 8260	5-17-12	5-17-12	
Toluene	4.1	1.0	EPA 8260	5-17-12	5-17-12	
Ethylbenzene	2.4	0.20	EPA 8260	5-17-12	5-17-12	
m,p-Xylene	6.3	0.40	EPA 8260	5-17-12	5-17-12	
o-Xylene	7.9	0.20	EPA 8260	5-17-12	5-17-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	87	68-120				
Toluene-d8	84	73-120				
4-Bromofluorobenzene	86	65-120				

Project: 2012-046-22

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0517W1					
Methyl t-Butyl Ether	ND	0.20	EPA 8260	5-17-12	5-17-12	
Benzene	ND	0.20	EPA 8260	5-17-12	5-17-12	
1,2-Dichloroethane	ND	2.0	EPA 8260	5-17-12	5-17-12	
Toluene	ND	1.0	EPA 8260	5-17-12	5-17-12	
Ethylbenzene	ND	0.20	EPA 8260	5-17-12	5-17-12	
m,p-Xylene	ND	0.40	EPA 8260	5-17-12	5-17-12	
o-Xylene	ND	0.20	EPA 8260	5-17-12	5-17-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	89	68-120				
Toluene-d8	84	73-120				
4-Bromofluorobenzene	84	65-120				

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	17W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	8.69	8.49	10.0	10.0	87	85	70-130	2	11	
Benzene	9.22	9.32	10.0	10.0	92	93	75-123	1	8	
Trichloroethene	9.26	9.52	10.0	10.0	93	95	80-113	3	9	
Toluene	9.25	9.60	10.0	10.0	93	96	80-113	4	8	
Chlorobenzene	10.6	10.8	10.0	10.0	106	108	80-115	2	8	
Surrogate:										
Dibromofluoromethane					89	91	68-120			
Toluene-d8					82	84	73-120			
4-Bromofluorobenzene					83	86	65-120			

VOLATILES by EPA 8260B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B10-19					
Laboratory ID:	05-078-06					
Methyl t-Butyl Ether	ND	0.00096	EPA 8260	5-18-12	5-18-12	
Benzene	ND	0.00096	EPA 8260	5-18-12	5-18-12	
1,2-Dichloroethane	ND	0.00096	EPA 8260	5-18-12	5-18-12	
Toluene	0.0052	0.0048	EPA 8260	5-18-12	5-18-12	
1,2-Dibromoethane	ND	0.00096	EPA 8260	5-18-12	5-18-12	
Ethylbenzene	0.015	0.00096	EPA 8260	5-18-12	5-18-12	
m,p-Xylene	0.027	0.0019	EPA 8260	5-18-12	5-18-12	
o-Xylene	0.037	0.00096	EPA 8260	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	63-127				
Toluene-d8	100	65-129				
4-Bromofluorobenzene	137	55-121				Q

VOLATILES by EPA 8260B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B12-3					·
Laboratory ID:	05-078-10					
Benzene	ND	0.062	EPA 8260	5-18-12	5-18-12	
Toluene	ND	0.31	EPA 8260	5-18-12	5-18-12	
Ethylbenzene	ND	0.062	EPA 8260	5-18-12	5-18-12	
m,p-Xylene	ND	0.12	EPA 8260	5-18-12	5-18-12	
o-Xylene	ND	0.062	EPA 8260	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	90	63-127				
Toluene-d8	94	65-129				
4-Bromofluorobenzene	102	55-121				

VOLATILES by EPA 8260B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B12-11					
Laboratory ID:	05-078-11					
Benzene	ND	0.00094	EPA 8260	5-18-12	5-18-12	
Toluene	ND	0.0047	EPA 8260	5-18-12	5-18-12	
Ethylbenzene	ND	0.00094	EPA 8260	5-18-12	5-18-12	
m,p-Xylene	ND	0.0019	EPA 8260	5-18-12	5-18-12	
o-Xylene	ND	0.00094	EPA 8260	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	88	63-127				
Toluene-d8	92	65-129				
4-Bromofluorobenzene	93	55-121				

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0518S1					
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	5-18-12	5-18-12	
Benzene	ND	0.0010	EPA 8260	5-18-12	5-18-12	
1,2-Dichloroethane	ND	0.0010	EPA 8260	5-18-12	5-18-12	
Toluene	ND	0.0050	EPA 8260	5-18-12	5-18-12	
1,2-Dibromoethane	ND	0.0010	EPA 8260	5-18-12	5-18-12	
Ethylbenzene	ND	0.0010	EPA 8260	5-18-12	5-18-12	
m,p-Xylene	ND	0.0020	EPA 8260	5-18-12	5-18-12	
o-Xylene	ND	0.0010	EPA 8260	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	63-127				
Toluene-d8	101	65-129				
4-Bromofluorobenzene	107	55-121				

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Spike Level Recovery		Limits	RPD	Limit	Flags	
SPIKE BLANKS										
Laboratory ID:	SB05	518S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0394	0.0397	0.0500	0.0500	79	79	70-130	1	19	
Benzene	0.0438	0.0434	0.0500	0.0500	88	87	70-125	1	15	
Trichloroethene	0.0486	0.0486	0.0500	0.0500	97	97	70-122	0	14	
Toluene	0.0477	0.0507	0.0500	0.0500	95	101	73-120	6	16	
Chlorobenzene	0.0517	0.0507	0.0500	0.0500	103	101	74-120	2	12	
Surrogate:										
Dibromofluoromethan	ne				93	94	63-127			
Toluene-d8					96	105	65-129			
4-Bromofluorobenzen	e				102	104	55-121			

Project: 2012-046-22

cPAHs by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B9-3					
Laboratory ID:	05-078-02					
Naphthalene	0.20	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
2-Methylnaphthalene	0.16	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
1-Methylnaphthalene	0.068	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]anthracene	0.042	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Chrysene	0.061	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[b]fluoranthene	0.036	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Benzo(j,k)fluoranthene	0.011	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]pyrene	0.021	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Indeno(1,2,3-c,d)pyrene	0.017	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Dibenz[a,h]anthracene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	45	43 - 109				
Pyrene-d10	35	38 - 128				Q
Terphenyl-d14	50	33 - 119				

Project: 2012-046-22

cPAHs by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B10-19					
Laboratory ID:	05-078-06					
Naphthalene	0.089	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
2-Methylnaphthalene	ND	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
1-Methylnaphthalene	ND	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]anthracene	0.048	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Chrysene	0.037	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[b]fluoranthene	0.037	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Benzo(j,k)fluoranthene	0.012	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]pyrene	0.026	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Indeno(1,2,3-c,d)pyrene	0.016	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Dibenz[a,h]anthracene	ND	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	56	43 - 109				
Pyrene-d10	56	38 - 128				
Terphenyl-d14	61	33 - 119				

Project: 2012-046-22

cPAHs by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B11-2.5					
Laboratory ID:	05-078-08					
Naphthalene	0.086	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
2-Methylnaphthalene	0.085	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
1-Methylnaphthalene	0.059	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]anthracene	0.34	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Chrysene	0.30	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[b]fluoranthene	0.40	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Benzo(j,k)fluoranthene	0.12	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]pyrene	0.33	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Indeno(1,2,3-c,d)pyrene	0.31	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Dibenz[a,h]anthracene	0.049	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	43 - 109				
Pyrene-d10	52	38 - 128				
Terphenyl-d14	65	33 - 119				

Project: 2012-046-22

cPAHs by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B11-6.5					
Laboratory ID:	05-078-09					
Naphthalene	0.034	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
2-Methylnaphthalene	0.029	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
1-Methylnaphthalene	0.013	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]anthracene	0.061	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Chrysene	0.072	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[b]fluoranthene	0.061	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Benzo(j,k)fluoranthene	0.018	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]pyrene	0.039	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Indeno(1,2,3-c,d)pyrene	0.040	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Dibenz[a,h]anthracene	0.0086	0.0076	EPA 8270/SIM	5-22-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	56	43 - 109				
Pyrene-d10	47	38 - 128				
Terphenyl-d14	59	33 - 119				

cPAHs by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B12-3					_
Laboratory ID:	05-078-10					
Naphthalene	0.52	0.041	EPA 8270/SIM	5-22-12	5-24-12	
2-Methylnaphthalene	0.50	0.041	EPA 8270/SIM	5-22-12	5-24-12	
1-Methylnaphthalene	0.17	0.041	EPA 8270/SIM	5-22-12	5-24-12	
Benzo[a]anthracene	0.36	0.041	EPA 8270/SIM	5-22-12	5-24-12	
Chrysene	0.52	0.041	EPA 8270/SIM	5-22-12	5-24-12	
Benzo[b]fluoranthene	0.29	0.041	EPA 8270/SIM	5-22-12	5-24-12	
Benzo(j,k)fluoranthene	0.24	0.041	EPA 8270/SIM	5-22-12	5-24-12	
Benzo[a]pyrene	0.29	0.041	EPA 8270/SIM	5-22-12	5-24-12	
Indeno(1,2,3-c,d)pyrene	0.18	0.041	EPA 8270/SIM	5-22-12	5-24-12	
Dibenz[a,h]anthracene	ND	0.041	EPA 8270/SIM	5-22-12	5-24-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	44	43 - 109				
Pyrene-d10	56	38 - 128				
Terphenyl-d14	40	33 - 119				

Project: 2012-046-22

cPAHs by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B12-11					_
Laboratory ID:	05-078-11					
Naphthalene	0.043	0.0075	EPA 8270/SIM	5-22-12	5-23-12	
2-Methylnaphthalene	0.031	0.0075	EPA 8270/SIM	5-22-12	5-23-12	
1-Methylnaphthalene	0.015	0.0075	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]anthracene	0.046	0.0075	EPA 8270/SIM	5-22-12	5-23-12	
Chrysene	0.076	0.0075	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[b]fluoranthene	0.069	0.0075	EPA 8270/SIM	5-22-12	5-23-12	
Benzo(j,k)fluoranthene	0.019	0.0075	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]pyrene	0.049	0.0075	EPA 8270/SIM	5-22-12	5-23-12	
Indeno(1,2,3-c,d)pyrene	0.044	0.0075	EPA 8270/SIM	5-22-12	5-23-12	
Dibenz[a,h]anthracene	0.012	0.0075	EPA 8270/SIM	5-22-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	59	43 - 109				
Pyrene-d10	61	38 - 128				
Terphenyl-d14	69	33 - 119				

Project: 2012-046-22

cPAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
						_
Laboratory ID:	MB0522S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Chrysene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	43 - 109				
Pyrene-d10	87	38 - 128				
Terphenyl-d14	87	33 - 119				

cPAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL (with silica gel clean-up)

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	522S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0721	0.0696	0.0833	0.0833	87	84	43 - 108	4	27	
Benzo[a]anthracene	0.0845	0.0834	0.0833	0.0833	101	100	63 - 116	1	12	
Chrysene	0.0739	0.0726	0.0833	0.0833	89	87	67 - 118	2	12	
Benzo[b]fluoranthene	0.0705	0.0695	0.0833	0.0833	85	83	58 - 127	1	20	
Benzo(j,k)fluoranthene	0.0699	0.0688	0.0833	0.0833	84	83	42 - 134	2	26	
Benzo[a]pyrene	0.0684	0.0673	0.0833	0.0833	82	81	55 - 111	2	19	
Indeno(1,2,3-c,d)pyrene	0.0743	0.0712	0.0833	0.0833	89	85	60 - 125	4	20	
Dibenz[a,h]anthracene	0.0721	0.0711	0.0833	0.0833	87	85	62 - 125	1	19	
Surrogate:										
2-Fluorobiphenyl					88	84	43 - 109			
Pyrene-d10					88	88	38 - 128			
Terphenyl-d14					85	85	33 - 119			

Project: 2012-046-22

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

Onits. Hig/rtg (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B9-3					
Laboratory ID:	05-078-02					
Aroclor 1016	ND	0.060	EPA 8082	5-23-12	5-23-12	
Aroclor 1221	ND	0.060	EPA 8082	5-23-12	5-23-12	
Aroclor 1232	ND	0.060	EPA 8082	5-23-12	5-23-12	
Aroclor 1242	ND	0.060	EPA 8082	5-23-12	5-23-12	
Aroclor 1248	ND	0.060	EPA 8082	5-23-12	5-23-12	
Aroclor 1254	ND	0.060	EPA 8082	5-23-12	5-23-12	
Aroclor 1260	ND	0.060	EPA 8082	5-23-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	88	42-123				
Client ID:	B43-B10-19					
Laboratory ID:	05-078-06					
Aroclor 1016	ND	0.058	EPA 8082	5-23-12	5-23-12	
Aroclor 1221	ND	0.058	EPA 8082	5-23-12	5-23-12	
Aroclor 1232	ND	0.058	EPA 8082	5-23-12	5-23-12	
Aroclor 1242	ND	0.058	EPA 8082	5-23-12	5-23-12	
Aroclor 1248	ND	0.058	EPA 8082	5-23-12	5-23-12	
Aroclor 1254	ND	0.058	EPA 8082	5-23-12	5-23-12	
Aroclor 1260	ND	0.058	EPA 8082	5-23-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	104	42-123				
Client ID:	B43-B11-2.5					
Laboratory ID:	05-078-08					
Aroclor 1016	ND	0.057	EPA 8082	5-23-12	5-23-12	
Aroclor 1221	ND	0.057	EPA 8082	5-23-12	5-23-12	
Aroclor 1232	ND	0.057	EPA 8082	5-23-12	5-23-12	
Aroclor 1242	ND	0.057	EPA 8082	5-23-12	5-23-12	
Aroclor 1248	ND	0.057	EPA 8082	5-23-12	5-23-12	
Aroclor 1254	ND	0.057	EPA 8082	5-23-12	5-23-12	
Aroclor 1260	ND	0.057	EPA 8082	5-23-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	103	<i>4</i> 2-123				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 2012-046-22

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

omis. mg/rtg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B11-6.5					
Laboratory ID:	05-078-09					
Aroclor 1016	ND	0.057	EPA 8082	5-23-12	5-23-12	
Aroclor 1221	ND	0.057	EPA 8082	5-23-12	5-23-12	
Aroclor 1232	ND	0.057	EPA 8082	5-23-12	5-23-12	
Aroclor 1242	ND	0.057	EPA 8082	5-23-12	5-23-12	
Aroclor 1248	ND	0.057	EPA 8082	5-23-12	5-23-12	
Aroclor 1254	ND	0.057	EPA 8082	5-23-12	5-23-12	
Aroclor 1260	ND	0.057	EPA 8082	5-23-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	100	42-123				
Client ID:	B43-B12-3					
Laboratory ID:	05-078-10					
Aroclor 1016	ND	0.061	EPA 8082	5-23-12	5-23-12	
Aroclor 1221	ND	0.061	EPA 8082	5-23-12	5-23-12	
Aroclor 1232	ND	0.061	EPA 8082	5-23-12	5-23-12	
Aroclor 1242	ND	0.061	EPA 8082	5-23-12	5-23-12	
Aroclor 1248	ND	0.061	EPA 8082	5-23-12	5-23-12	
Aroclor 1254	ND	0.061	EPA 8082	5-23-12	5-23-12	
Aroclor 1260	ND	0.061	EPA 8082	5-23-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	58	42-123				
Client ID:	B43-B12-11					
Laboratory ID:	05-078-11					
Aroclor 1016	ND	0.056	EPA 8082	5-23-12	5-23-12	
Aroclor 1221	ND	0.056	EPA 8082	5-23-12	5-23-12	
Aroclor 1232	ND	0.056	EPA 8082	5-23-12	5-23-12	
Aroclor 1242	ND	0.056	EPA 8082	5-23-12	5-23-12	
Aroclor 1248	ND	0.056	EPA 8082	5-23-12	5-23-12	
Aroclor 1254	ND	0.056	EPA 8082	5-23-12	5-23-12	
Aroclor 1260	ND	0.056	EPA 8082	5-23-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				

DCB 101 42-123

Project: 2012-046-22

PCBs by EPA 8082 QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0523S1					
Aroclor 1016	ND	0.050	EPA 8082	5-23-12	5-23-12	
Aroclor 1221	ND	0.050	EPA 8082	5-23-12	5-23-12	
Aroclor 1232	ND	0.050	EPA 8082	5-23-12	5-23-12	
Aroclor 1242	ND	0.050	EPA 8082	5-23-12	5-23-12	
Aroclor 1248	ND	0.050	EPA 8082	5-23-12	5-23-12	
Aroclor 1254	ND	0.050	EPA 8082	5-23-12	5-23-12	
Aroclor 1260	ND	0.050	EPA 8082	5-23-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits
DCB 92 42-123

Analyte	Re	sult	Spike	Level	Source Result		rcent covery	Recovery Limits	RPD	RPD Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-2	15-04									
•	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.462	0.425	0.500	0.500	ND	92	85	44-125	8	15	
Surrogate:											
DCB						85	81	42-123			

EDB by EPA 8011

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B9-GW					
Laboratory ID:	05-078-04					
EDB	ND	0.0096	EPA 8011	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
TCMX	68	31-144				
Client ID:	B43-B10-GW					
Laboratory ID:	05-078-07					
EDB	ND	0.0095	EPA 8011	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
TCMX	40	31-144				

Project: 2012-046-22

EDB by EPA 8011 QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0521W1					
EDB	ND	0.010	EPA 8011	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
TCMX	101	31-144				

					Source	Pei	rcent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB05	521W1									
	SB	SBD	SB	SBD		SB	SBD				
EDB	0.100	0.0966	0.100	0.100	N/A	100	97	78-122	3	8	
Surrogate:											
TCMX						121	108	31-144			

NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-B9-GW					·
Laboratory ID:	05-078-04					
Naphthalene	12	1.0	EPA 8270/SIM	5-17-12	5-18-12	
2-Methylnaphthalene	35	1.0	EPA 8270/SIM	5-17-12	5-18-12	
1-Methylnaphthalene	22	1.0	EPA 8270/SIM	5-17-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	38 - 105				
Pyrene-d10	75	37 - 121				
Terphenyl-d14	83	32 - 112				

NAPHTHALENES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0517W1					
Naphthalene	ND	0.10	EPA 8270/SIM	5-17-12	5-17-12	
2-Methylnaphthalene	ND	0.10	EPA 8270/SIM	5-17-12	5-17-12	
1-Methylnaphthalene	ND	0.10	EPA 8270/SIM	5-17-12	5-17-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	89	38 - 105				
Pyrene-d10	88	37 - 121				
Terphenyl-d14	95	32 - 112				

		_				rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Red	covery	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	17W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.400	0.376	0.500	0.500	80	75	38 - 110	6	35	
Acenaphthylene	0.370	0.336	0.500	0.500	74	67	47 - 120	10	30	
Acenaphthene	0.394	0.358	0.500	0.500	79	72	46 - 113	10	26	
Fluorene	0.423	0.385	0.500	0.500	85	77	58 - 104	9	25	
Phenanthrene	0.431	0.395	0.500	0.500	86	79	61 - 99	9	19	
Anthracene	0.398	0.362	0.500	0.500	80	72	55 - 122	9	19	
Fluoranthene	0.436	0.400	0.500	0.500	87	80	58 - 129	9	18	
Pyrene	0.440	0.405	0.500	0.500	88	81	57 - 126	8	25	
Benzo[a]anthracene	0.496	0.450	0.500	0.500	99	90	51 - 124	10	18	
Chrysene	0.434	0.394	0.500	0.500	87	79	53 - 123	10	20	
Benzo[b]fluoranthene	0.430	0.393	0.500	0.500	86	79	53 - 126	9	18	
Benzo(j,k)fluoranthene	0.454	0.404	0.500	0.500	91	81	51 - 126	12	23	
Benzo[a]pyrene	0.432	0.388	0.500	0.500	86	78	52 - 127	11	21	
Indeno(1,2,3-c,d)pyrene	0.432	0.380	0.500	0.500	86	76	49 - 123	13	26	
Dibenz[a,h]anthracene	0.437	0.397	0.500	0.500	87	79	39 - 125	10	31	
Benzo[g,h,i]perylene	0.432	0.386	0.500	0.500	86	77	40 - 125	11	30	
Surrogate:										
2-Fluorobiphenyl					85	76	38 - 105			
Pyrene-d10					88	79	37 - 121			
Terphenyl-d14					90	80	32 - 112			

% MOISTURE

Date Analyzed: 5-11-12

Client ID	Lab ID	% Moisture
B43-B9-3	05-078-02	16
B43-B9-10	05-078-03	12
B43-B10-15	05-078-05	14
B43-B10-19	05-078-06	14
B43-B11-2.5	05-078-08	13
B43-B11-6.5	05-078-09	13
B43-B12-3	05-078-10	18
B43-B12-11	05-078-11	11

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.
- Z The sample chromatogram is similar to mineral spirits.
- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- **RPD Relative Percent Difference**

Chain of Custody

Page	
ge	
_	7
of	-
	1

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	10 BUSB/2 - 3	9 B43-811 - 6.5	8 TH3811 - 2.5	7 1343-810 - 500	6 1342-810-15	5 343-810 - 15	4 B43-87-GW	3 1343-89-10	2 3438-3	1 D4388-Qu	Lab ID Sample Identification	Sampled by:	THOMOSUM	Project Name: SCK43	Cir- of c-cr	Company: Aug	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
Reviewed/Date					282	Ana	Company	W 1105 S 6	1040 5 6	1030 S C	1100 W	3 8 056	595 S 8	930 W 13	83, 5 6	5/8/n 82 5 6	5/8/12 1540 W 14	Date Time No. of Sampled Sampled Matrix Cont.	(other)		Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	☐ Same Day ☐ 1 Day	Turnaround Request (in working days) Om (Check One)
					3/3/12/14/5	2/2/12 1412	Date Time	8	× ×	x X	8	× × × × × × × × × × × × × × × × × × ×	3	8	×	× ×	X	NWTP NWTP NWTP Volatile	H-Gx H-Dx es 826	OB 87	EX E s 8260B	ED!	,	oratory N
Chromatograms with final report		(X) Table of the Charles	College Calaba Sala	Forcer - w /maysos	me good	ARCHIUG Remaining	Comments/Special Instructions	8	X	× × ×		8	8	× ×	2	X X	* * * * * * * * * * * * * * * * * * * *	(with le PAHs PAHs PCBs Organ Chloric Total F TCLP HEM	8082 sochlori- pphosp mated A RCRA I Metals (oil and	ne Pest horus Po Acid Her Metals Metals	w-level) c P1 icides 8 esticides rbicides	081A 8270D/ 8151A	/SIM	umber: 05-078
								-			8	1 3 ×		8	~		1	NA		8CEN	E8 2	EPA-	827	0

h	0	
9.		-
		h
	5	2
	V.	
1	Z	

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relfrquished Ca Ca	Signature				1/	2	13 TRUP BLOWN 050512	12 BUS-BIL-6W	11-218-6481	Lab ID Sample Identification	ATICAT	Froger manager:	Uncar Brock 45	2012 -046 - 22	Company: Awa- Project Number:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (426) 883-3881 • www.onsite-env.com
					4								_		5/9/12	Date Sampled			Sta	2 Days	Sa	m N
Reviewed/Date					0	Hura	Company						1	1230	5111 2	Time d Sampled	(0		Standard (7 Days) (TPH analysis 5 Days)	Days	Same Day	(Check One)
ate					R)							F	3	S	Matrix	(other)		(TPH analysis	3 Days	1 Day	i Request ig days)
													w	N	0	No. of Cont.			5 Days)	/s		
					1/3/	(16/5	Date	-	-				14	8	X	NWTP		BTEX o	nly d	526	0	Lab
					2	4							X			NWTP	H-Gx	BET				Laborato
					14	NI	Time								\otimes	NWTP	H-Dx					2
					1	4										Volatile			*****			Number:
					_ 1			_	+									Volatile				_be
Chromatograms with final report							Comr		-						0	(with lo	w-lev	8270D/ el PAHs)				100
natogr					6	0	Comments/Special Instructions	+	-						(2)	PCBs		2P97	s + N	apht	natema	S
ams w					47		Spec/	-	+	-					0			ne Pesti	cides 8	081A		
ith fina					9	2	ial Ins	+	+	-	-							horus Pe			/SIM	0
al repo		0			,	20	tructi	-	+							Chlorin	nated /	Acid Her	bicides	8151A		5
ă			Li.			(1)	ons	+	+	-		-			X	Total F	RCRAI	Vetals				0
			0.5			77		+	+			-			^	Total N	итса	Metals				N
						added shalls		+	+			-				TCLP	Metals		-		7	
						10		+	-							HEM (oil and	grease	1664			-
					\	龙		4						X		Dis	500	USD	Ry	21/	NEW	000
																		- 1	-			0
										اشا												~
															X	% Mo	isture					00

Data Package: Level III

Level IV

Electronic Data Deliverables (EDDs)

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 25, 2012

Jeff Thompson HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2012-046-22

Laboratory Reference No. 1205-099

Dear Jeff:

Enclosed are the analytical results and associated quality control data for samples submitted on May 10, 2012.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 2012-046-22

Case Narrative

Samples were collected on May 10, 2012 and received by the laboratory on May 10, 2012. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PAHs EPA 8270D/SIM Analysis

Sample B43-TP6-4 had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 2012-046-22

NWTPH-HCID (with acid/silica gel clean-up)

Matrix: Soil

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B43-TP1-1.5				7 <u>7</u>	90
Laboratory ID:	05-099-01					
Gasoline Range Organics	ND	23	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	220	NWTPH-HCID	5-15-12	5-15-12	U1
Lube Oil	Detected	120	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				
Client ID:	B43-TP1-9					
Laboratory ID:	05-099-02					
Gasoline Range Organics	ND	23	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	58	NWTPH-HCID	5-15-12	5-15-12	
Lube Oil Range Organics	ND	120	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				
Client ID:	B43-TP2-3					
Laboratory ID:	05-099-03					
Gasoline Range Organics	ND	25	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	670	NWTPH-HCID	5-15-12	5-15-12	U1
Lube Oil	Detected	120	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	124	50-150				
Client ID:	B43-TP2-8					
	05-099-04					
Laboratory ID: Gasoline Range Organics	ND	22	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND ND	69	NWTPH-HCID	5-15-12 5-15-12	5-15-12 5-15-12	U1
Lube Oil	Detected	110	NWTPH-HCID	5-15-12 5-15-12	5-15-12 5-15-12	O1
Surrogate:	Percent Recovery	Control Limits	NVV II II-IICID	J-1J-1Z	3-13-12	
o-Terphenyl	119	50-150				
о-тегрпенут	113	30-130				
Client ID:	B43-TP3-5					
Laboratory ID:	05-099-05					
Gasoline Range Organics	ND	24	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	87	NWTPH-HCID	5-15-12	5-15-12	U1
Lube Oil	Detected	120	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				
• •						

Project: 2012-046-22

NWTPH-HCID (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Units: mg/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP3-8					
Laboratory ID:	05-099-06					
Gasoline Range Organics	ND	24	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	150	NWTPH-HCID	5-15-12	5-15-12	U1
Lube Oil	Detected	120	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	113	50-150				
Client ID:	B43-TP4-5					
Laboratory ID:	05-099-07					
Gasoline Range Organics	ND	28	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	69	NWTPH-HCID	5-15-12	5-15-12	
Lube Oil	Detected	140	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
, ,						
Client ID:	B43-TP4-9					
Laboratory ID:	05-099-08					
Gasoline Range Organics	ND	26	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	500	NWTPH-HCID	5-15-12 5-15-12	5-15-12 5-15-12	U1
Lube Oil	Detected	130	NWTPH-HCID	5-15-12 5-15-12	5-15-12 5-15-12	O1
Surrogate:	Percent Recovery	Control Limits	NW II II-IICID	3-13-12	3-13-12	
o-Terphenyl	103	50-150				
о-теприенуі	103	30-130				
Client ID:	B43-TP5-6					
Laboratory ID:	05-099-09					
Gasoline Range Organics	ND	24	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND ND	59	NWTPH-HCID	5-15-12 5-15-12	5-15-12 5-15-12	
Lube Oil	Detected	120	NWTPH-HCID	5-15-12 5-15-12	5-15-12 5-15-12	
Surrogate:	Percent Recovery	Control Limits	NW IFII-IICID	5-15-12	3-13-12	
o-Terphenyl	111	50-150				
о-тегрпенуі	111	30-130				
Client ID:	D42 TDE 40					
Client ID:	B43-TP5-10					
Laboratory ID:	05-099-10	0.4	NIM/TDL: LIQID	F 4F 40	E 4E 40	
Gasoline Range Organics	ND	24	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND Detected	59	NWTPH-HCID	5-15-12	5-15-12	
Lube Oil	Detected	120	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	114	50-150				

NWTPH-HCID (with acid/silica gel clean-up)

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP6-4					
Laboratory ID:	05-099-11					
Gasoline Range Organics	ND	43	NWTPH-HCID	5-15-12	5-15-12	U1
Diesel Range Organics	ND	9300	NWTPH-HCID	5-15-12	5-15-12	U1
Lube Oil	Detected	120	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	121	50-150				
Oll at ID	D 40 TD0 0					
Client ID:	B43-TP6-6					
Laboratory ID:	05-099-12					
Gasoline Range Organics	ND	46	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	110	NWTPH-HCID	5-15-12	5-15-12	
Lube Oil Range Organics	ND	230	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	123	50-150				
Client ID:	B43-TP7-6					
••	05-099-13					
Laboratory ID:			NACTOLLLIOID	- 15 10	- I - I - I - I - I - I - I - I - I - I	
Gasoline Range Organics	ND	25	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	200	NWTPH-HCID	5-15-12	5-15-12	U1
Lube Oil	Detected	120	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	127	50-150				

NWTPH-HCID QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0515S4					
Gasoline Range Organics	ND	20	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	50	NWTPH-HCID	5-15-12	5-15-12	
Lube Oil Range Organics	ND	100	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	124	50-150				

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	05-099-01 B43-TP1-1.5					
Arsenic	ND	12	6010B	2-21-12	2-22-12	
Barium	170	2.9	6010B	2-21-12	2-22-12	
Cadmium	0.69	0.58	6010B	2-21-12	2-22-12	
Chromium	43	0.58	6010B	2-21-12	2-22-12	
Lead	130	5.8	6010B	2-21-12	2-22-12	
Mercury	ND	0.29	7471A	2-16-12	2-16-12	
Selenium	ND	12	6010B	2-21-12	2-22-12	
Silver	ND	0.58	6010B	2-21-12	2-22-12	
Lab ID: Client ID:	05-099-02 B43-TP1-9					
Arsenic	ND	12	6010B	2-21-12	2-22-12	
Barium	63	2.9	6010B	2-21-12	2-22-12	
Cadmium	ND	0.58	6010B	2-21-12	2-22-12	
Chromium	47	0.58	6010B	2-21-12	2-22-12	
Lead	ND	5.8	6010B	2-21-12	2-22-12	
Mercury	ND	0.29	7471A	2-16-12	2-16-12	
Selenium	ND	12	6010B	2-21-12	2-22-12	
Silver	ND	0.58	6010B	2-21-12	2-22-12	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-099-03					
Client ID:	B43-TP2-3					
Arsenic	ND	12	6010B	2-21-12	2-22-12	
Barium	160	3.1	6010B	2-21-12	2-22-12	
Cadmium	ND	0.62	6010B	2-21-12	2-22-12	
Chromium	69	0.62	6010B	2-21-12	2-22-12	
Lead	23	6.2	6010B	2-21-12	2-22-12	
Mercury	ND	0.31	7471A	2-16-12	2-16-12	
Selenium	ND	12	6010B	2-21-12	2-22-12	
Silver	ND	0.62	6010B	2-21-12	2-22-12	
Lab ID:	05-099-04					
Client ID:	B43-TP2-8					
Arsenic	ND	11	6010B	2-21-12	2-22-12	
Barium	45	2.8	6010B	2-21-12	2-22-12	
Cadmium	ND	0.56	6010B	2-21-12	2-22-12	
Chromium	46	0.56	6010B	2-21-12	2-22-12	
Lead	ND	5.6	6010B	2-21-12	2-22-12	
Mercury	ND	0.28	7471A	2-16-12	2-16-12	
Selenium	ND	11	6010B	2-21-12	2-22-12	
Silver	ND	0.56	6010B	2-21-12	2-22-12	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-099-05					
Client ID:	B43-TP3-5					
Arsenic	ND	12	6010B	2-21-12	2-22-12	
Barium	97	3.0	6010B	2-21-12	2-22-12	
Cadmium	ND	0.61	6010B	2-21-12	2-22-12	
Chromium	52	0.61	6010B	2-21-12	2-22-12	
Lead	44	6.1	6010B	2-21-12	2-22-12	
Mercury	ND	0.30	7471A	2-16-12	2-16-12	
Selenium	ND	12	6010B	2-21-12	2-22-12	
Silver	ND	0.61	6010B	2-21-12	2-22-12	
Lab ID:	05-099-06					
Client ID:	B43-TP3-8					
Arsenic	ND	12	6010B	2-21-12	2-22-12	
Barium	130	3.0	6010B	2-21-12	2-22-12	
Cadmium	ND	0.60	6010B	2-21-12	2-22-12	
Chromium	51	0.60	6010B	2-21-12	2-22-12	
Lead	27	6.0	6010B	2-21-12	2-22-12	
Mercury	ND	0.30	7471A	2-16-12	2-16-12	
Selenium	ND	12	6010B	2-21-12	2-22-12	
Silver	ND	0.60	6010B	2-21-12	2-22-12	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-099-07					
Client ID:	B43-TP4-5					
Arsenic	ND	14	6010B	2-21-12	2-22-12	
Barium	170	3.4	6010B	2-21-12	2-22-12	
Cadmium	ND	0.69	6010B	2-21-12	2-22-12	
Chromium	80	0.69	6010B	2-21-12	2-22-12	
Lead	15	6.9	6010B	2-21-12	2-22-12	
Mercury	ND	0.34	7471A	2-16-12	2-16-12	
Selenium	ND	14	6010B	2-21-12	2-22-12	
Silver	ND	0.69	6010B	2-21-12	2-22-12	
Lab ID:	05-099-08					
Client ID:	B43-TP4-9					
Arsenic	ND	13	6010B	2-21-12	2-22-12	
Barium	180	3.3	6010B	2-21-12	2-22-12	
Cadmium	1.2	0.65	6010B	2-21-12	2-22-12	
Chromium	57	0.65	6010B	2-21-12	2-22-12	
Lead	170	6.5	6010B	2-21-12	2-22-12	
Mercury	ND	0.33	7471A	2-16-12	2-16-12	
Selenium	ND	13	6010B	2-21-12	2-22-12	
Silver	ND	0.65	6010B	2-21-12	2-22-12	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-099-09					
Client ID:	B43-TP5-6					
Arsenic	ND	12	6010B	2-21-12	2-22-12	
Barium	180	3.0	6010B	2-21-12	2-22-12	
Cadmium	ND	0.59	6010B	2-21-12	2-22-12	
Chromium	52	0.59	6010B	2-21-12	2-22-12	
Lead	61	5.9	6010B	2-21-12	2-22-12	
Mercury	ND	0.30	7471A	2-16-12	2-16-12	
Selenium	ND	12	6010B	2-21-12	2-22-12	
Silver	ND	0.59	6010B	2-21-12	2-22-12	
Lab ID:	05-099-10					
Client ID:	B43-TP5-10					
Arsenic	ND	12	6010B	2-21-12	2-22-12	
Barium	110	2.9	6010B	2-21-12	2-22-12	
Cadmium	ND	0.59	6010B	2-21-12	2-22-12	
Chromium	63	0.59	6010B	2-21-12	2-22-12	
Lead	7.0	5.9	6010B	2-21-12	2-22-12	
Mercury	ND	0.29	7471A	2-16-12	2-16-12	
Selenium	ND	12	6010B	2-21-12	2-22-12	
Silver	ND	0.59	6010B	2-21-12	2-22-12	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-099-11					
Client ID:	B43-TP6-4					
Arsenic	ND	11	6010B	2-21-12	2-22-12	
Barium	260	2.9	6010B	2-21-12	2-22-12	
Cadmium	0.63	0.57	6010B	2-21-12	2-22-12	
Chromium	19	0.57	6010B	2-21-12	2-22-12	
Lead	230	5.7	6010B	2-21-12	2-22-12	
Mercury	ND	0.29	7471A	2-16-12	2-16-12	
Selenium	ND	11	6010B	2-21-12	2-22-12	
Silver	ND	0.57	6010B	2-21-12	2-22-12	
Lab ID:	05-099-12					
Client ID:	B43-TP6-6					
Arsenic	ND	11	6010B	2-21-12	2-22-12	
Barium	120	2.8	6010B	2-21-12	2-22-12	
Cadmium	ND	0.57	6010B	2-21-12	2-22-12	
Chromium	61	0.57	6010B	2-21-12	2-22-12	
Lead	ND	5.7	6010B	2-21-12	2-22-12	
Mercury	ND	0.28	7471A	2-16-12	2-16-12	
Selenium	ND	11	6010B	2-21-12	2-22-12	
Silver	ND	0.57	6010B	2-21-12	2-22-12	

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-099-13					
Client ID:	B43-TP7-6					
Arsenic	ND	12	6010B	2-21-12	2-22-12	
Barium	200	3.1	6010B	2-21-12	2-22-12	
Cadmium	1.2	0.61	6010B	2-21-12	2-22-12	
Chromium	46	0.61	6010B	2-21-12	2-22-12	
Lead	340	6.1	6010B	2-21-12	2-22-12	
Mercury	ND	0.31	7471A	2-16-12	2-16-12	
Selenium	ND	12	6010B	2-21-12	2-22-12	
Silver	ND	0.61	6010B	2-21-12	2-22-12	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 2-16&21-12

Date Analyzed: 2-16&22-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0516S2&MB0521SM2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 2-16&21-12
Date Analyzed: 2-16&22-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-099-02

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	54.2	53.3	2	2.5	
Cadmium	ND	ND	NA	0.50	
Chromium	40.3	37.4	8	0.50	
Lead	ND	ND	NA	5.0	
Mercury	ND	ND	NA	0.25	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

Project: 2012-046-22

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted: 2-16&21-12
Date Analyzed: 2-16&22-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-099-02

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	92.2	92	94.5	94	3	
Barium	100	151	97	153	99	2	
Cadmium	50.0	47.7	95	47.9	96	0	
Chromium	100	130	90	130	89	0	
Lead	250	232	93	232	93	0	
Mercury	0.500	0.496	99	0.505	101	2	
Selenium	100	90.8	91	89.3	89	2	
Silver	25.0	20.7	83	20.7	83	0	

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B43-TP1-1.5	. 42	Motriou	Tropulou	Allalyzou	i iugo
Laboratory ID:	05-099-01					
Diesel Range Organics	ND	350	NWTPH-Dx	5-20-12	5-21-12	U1
Lube Oil	1500	58	NWTPH-Dx	5-20-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits			-	
o-Terphenyl	101	50-150				
Client ID:	B43-TP2-3					
Laboratory ID:	05-099-03					
Diesel Range Organics	ND	740	NWTPH-Dx	5-20-12	5-21-12	U1
Lube Oil	2100	62	NWTPH-Dx	5-20-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	77	50-150				
Client ID:	B43-TP2-8					
Laboratory ID:	05-099-04					
Diesel Range Organics	ND	63	NWTPH-Dx	5-20-12	5-21-12	U1
Lube Oil	240	56	NWTPH-Dx	5-20-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	B43-TP3-5					
Laboratory ID:	05-099-05					
Diesel Range Organics	ND	220	NWTPH-Dx	5-20-12	5-21-12	U1
Lube Oil	1100	61	NWTPH-Dx	5-20-12	5-21-12	01
Surrogate:	Percent Recovery	Control Limits	IIII DX	0 20 12	0 21 12	
o-Terphenyl	77	50-150				
Client ID:	B43-TP3-8					
Laboratory ID:	05-099-06					
•	ND	360	NWTPH-Dx	5-20-12	5-21-12	U1
Diesel Range Organics Lube Oil	1700	60	NWTPH-Dx	5-20-12 5-20-12	5-21-12 5-21-12	O I
Surrogate:	Percent Recovery	Control Limits	INVVIIII-DA	J-2U-12	J-Z 1-1Z	
o-Terphenyl	87	50-150				
Client ID:	B43-TP4-5					
Laboratory ID:	05-099-07					
Diesel Range Organics	ND	56	NWTPH-Dx	5-20-12	5-21-12	U1
Lube Oil	280	69	NWTPH-Dx	5-20-12	5-21-12	51
Surrogate:	Percent Recovery	Control Limits		0 20 12	0 21 12	
o-Terphenyl	71	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP4-9					
Laboratory ID:	05-099-08					
Diesel Range Organics	ND	1500	NWTPH-Dx	5-20-12	5-21-12	U1
Lube Oil	8900	330	NWTPH-Dx	5-20-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	B43-TP5-6					
Laboratory ID:	05-099-09					
Diesel Range Organics	ND	59	NWTPH-Dx	5-20-12	5-21-12	U1
Lube Oil	270	59	NWTPH-Dx	5-20-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				
Client ID:	B43-TP5-10					
Laboratory ID:	05-099-10					
Diesel Range Organics	ND	33	NWTPH-Dx	5-20-12	5-21-12	U1
Lube Oil	140	59	NWTPH-Dx	5-20-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				
Client ID:	B43-TP6-4					
Laboratory ID:	05-099-11					
Diesel Range Organics	ND	11000	NWTPH-Dx	5-20-12	5-22-12	U1
Lube Oil	41000	1200	NWTPH-Dx	5-20-12	5-22-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
, ,						
Client ID:	B43-TP7-6					
Laboratory ID:	05-099-13					
Diesel Range Organics	ND	310	NWTPH-Dx	5-20-12	5-21-12	U1
Lube Oil	1200	61	NWTPH-Dx	5-20-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0520S1					
Diesel Range Organics	ND	25	NWTPH-Dx	5-20-12	5-21-12	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-20-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	Recovery Limits RPD	Limit	Flags		
DUPLICATE								
Laboratory ID:	05-09	94-02						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil	306	281				9	NA	
Surrogate:								
o-Terphenyl			92	89	50-150			
Laboratory ID:	05-09	99-04						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	U1
Lube Oil	218	161				30	NA	
Surrogate:								
o-Terphenyl			91	87	50-150			

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP1-1.5					_
Laboratory ID:	05-099-01					
Naphthalene	0.17	0.0077	EPA 8270/SIM	5-22-12	5-23-12	
2-Methylnaphthalene	0.12	0.0077	EPA 8270/SIM	5-22-12	5-23-12	
1-Methylnaphthalene	0.054	0.0077	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]anthracene	0.048	0.0077	EPA 8270/SIM	5-22-12	5-23-12	
Chrysene	0.073	0.0077	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[b]fluoranthene	0.047	0.0077	EPA 8270/SIM	5-22-12	5-23-12	
Benzo(j,k)fluoranthene	0.012	0.0077	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]pyrene	0.027	0.0077	EPA 8270/SIM	5-22-12	5-23-12	
Indeno(1,2,3-c,d)pyrene	0.028	0.0077	EPA 8270/SIM	5-22-12	5-23-12	
Dibenz[a,h]anthracene	ND	0.0077	EPA 8270/SIM	5-22-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	58	43 - 109				
Pyrene-d10	49	38 - 128				
Terphenyl-d14	62	33 - 119				

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP2-3					
Laboratory ID:	05-099-03					
Naphthalene	0.034	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
2-Methylnaphthalene	0.032	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
1-Methylnaphthalene	0.018	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]anthracene	0.038	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Chrysene	0.045	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[b]fluoranthene	0.049	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Benzo(j,k)fluoranthene	0.014	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]pyrene	0.030	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Indeno(1,2,3-c,d)pyrene	0.037	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Dibenz[a,h]anthracene	ND	0.0078	EPA 8270/SIM	5-22-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	<i>4</i> 5	43 - 109				
Pyrene-d10	41	38 - 128				
Terphenyl-d14	47	33 - 119				

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
B43-TP2-8					
05-099-04					
ND	0.0074	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0074	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0074	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0074	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0074	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0074	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0074	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0074	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0074	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0074	EPA 8270/SIM	5-22-12	5-23-12	
Percent Recovery	Control Limits				
53	43 - 109				
48	38 - 128				
58	33 - 119				
	B43-TP2-8 05-099-04 ND	B43-TP2-8 05-099-04 0.0074 ND 0.0074 Percent Recovery Control Limits 53 43 - 109 48 38 - 128	B43-TP2-8 05-099-04 ND 0.0074 EPA 8270/SIM Percent Recovery Control Limits 53 43 - 109 48 38 - 128	Result PQL Method Prepared B43-TP2-8 05-099-04 5-22-12 ND 0.0074 EPA 8270/SIM 5-22-12	Result PQL Method Prepared Analyzed B43-TP2-8 05-099-04 5-099-04 5-22-12 5-23-12 ND 0.0074 EPA 8270/SIM 5-22-12 5-23-12 ND 0.0074

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
B43-TP3-5					
05-099-05					
0.0093	0.0081	EPA 8270/SIM	5-24-12	5-24-12	
0.012	0.0081	EPA 8270/SIM	5-24-12	5-24-12	
ND	0.0081	EPA 8270/SIM	5-24-12	5-24-12	
0.031	0.0081	EPA 8270/SIM	5-24-12	5-24-12	
0.034	0.0081	EPA 8270/SIM	5-24-12	5-24-12	
0.042	0.0081	EPA 8270/SIM	5-24-12	5-24-12	
0.013	0.0081	EPA 8270/SIM	5-24-12	5-24-12	
0.034	0.0081	EPA 8270/SIM	5-24-12	5-24-12	
0.036	0.0081	EPA 8270/SIM	5-24-12	5-24-12	
0.0084	0.0081	EPA 8270/SIM	5-24-12	5-24-12	
Percent Recovery	Control Limits				
87	43 - 109				
76	38 - 128				
86	33 - 119				
	B43-TP3-5 05-099-05 0.0093 0.012 ND 0.031 0.034 0.042 0.013 0.034 0.036 0.0084 Percent Recovery 87 76	B43-TP3-5 05-099-05 0.0081 0.012 0.0081 ND 0.0081 0.031 0.0081 0.034 0.0081 0.013 0.0081 0.013 0.0081 0.034 0.0081 0.036 0.0081 0.0084 0.0081 Percent Recovery Control Limits 87 43 - 109 76 38 - 128	B43-TP3-5 05-099-05 0.0093 0.0081 EPA 8270/SIM 0.012 0.0081 EPA 8270/SIM ND 0.0081 EPA 8270/SIM 0.031 0.0081 EPA 8270/SIM 0.034 0.0081 EPA 8270/SIM 0.013 0.0081 EPA 8270/SIM 0.034 0.0081 EPA 8270/SIM 0.034 0.0081 EPA 8270/SIM 0.036 0.0081 EPA 8270/SIM 0.0084 0.0081 EPA 8270/SIM Percent Recovery Control Limits 87 43 - 109 76 38 - 128	Result PQL Method Prepared B43-TP3-5 05-099-05 5-24-12 0.0093 0.0081 EPA 8270/SIM 5-24-12 0.012 0.0081 EPA 8270/SIM 5-24-12 ND 0.0081 EPA 8270/SIM 5-24-12 0.031 0.0081 EPA 8270/SIM 5-24-12 0.034 0.0081 EPA 8270/SIM 5-24-12 0.013 0.0081 EPA 8270/SIM 5-24-12 0.034 0.0081 EPA 8270/SIM 5-24-12 0.034 0.0081 EPA 8270/SIM 5-24-12 0.036 0.0081 EPA 8270/SIM 5-24-12 0.0084 0.0081 EPA 8270/SIM 5-24-12 Percent Recovery Control Limits 87 43 - 109 76 38 - 128	Result PQL Method Prepared Analyzed B43-TP3-5 05-099-05 5-24-12 5-24-12 0.0093 0.0081 EPA 8270/SIM 5-24-12 5-24-12 0.012 0.0081 EPA 8270/SIM 5-24-12 5-24-12 ND 0.0081 EPA 8270/SIM 5-24-12 5-24-12 0.031 0.0081 EPA 8270/SIM 5-24-12 5-24-12 0.034 0.0081 EPA 8270/SIM 5-24-12 5-24-12 0.013 0.0081 EPA 8270/SIM 5-24-12 5-24-12 0.034 0.0081 EPA 8270/SIM 5-24-12 5-24-12 0.034 0.0081 EPA 8270/SIM 5-24-12 5-24-12 0.036 0.0081 EPA 8270/SIM 5-24-12 5-24-12 0.0084 0.0081 EPA 8270/SIM 5-24-12 5-24-12 Percent Recovery Control Limits 5-24-12 5-24-12 5-24-12 87 43 - 109 76 38 - 128 38 - 128 38 - 128

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP3-8					
Laboratory ID:	05-099-06					
Naphthalene	0.011	0.0080	EPA 8270/SIM	5-24-12	5-24-12	
2-Methylnaphthalene	0.011	0.0080	EPA 8270/SIM	5-24-12	5-24-12	
1-Methylnaphthalene	ND	0.0080	EPA 8270/SIM	5-24-12	5-24-12	
Benzo[a]anthracene	0.020	0.0080	EPA 8270/SIM	5-24-12	5-24-12	
Chrysene	0.026	0.0080	EPA 8270/SIM	5-24-12	5-24-12	
Benzo[b]fluoranthene	0.023	0.0080	EPA 8270/SIM	5-24-12	5-24-12	
Benzo(j,k)fluoranthene	0.013	0.0080	EPA 8270/SIM	5-24-12	5-24-12	
Benzo[a]pyrene	0.018	0.0080	EPA 8270/SIM	5-24-12	5-24-12	
Indeno(1,2,3-c,d)pyrene	0.020	0.0080	EPA 8270/SIM	5-24-12	5-24-12	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270/SIM	5-24-12	5-24-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	92	43 - 109				
Pyrene-d10	89	38 - 128				
Terphenyl-d14	81	33 - 119				

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
B43-TP4-5					·
05-099-07					
0.021	0.0092	EPA 8270/SIM	5-22-12	5-23-12	
0.014	0.0092	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0092	EPA 8270/SIM	5-22-12	5-23-12	
0.010	0.0092	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0092	EPA 8270/SIM	5-22-12	5-23-12	
0.0097	0.0092	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0092	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0092	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0092	EPA 8270/SIM	5-22-12	5-23-12	
ND	0.0092	EPA 8270/SIM	5-22-12	5-23-12	
Percent Recovery	Control Limits				
75	43 - 109				
70	38 - 128				
84	33 - 119				
	B43-TP4-5 05-099-07 0.021 0.014 ND 0.010 ND 0.0097 ND ND ND ND ND ND Percent Recovery 75 70	B43-TP4-5 05-099-07 0.0092 0.014 0.0092 ND 0.0092 Percent Recovery Control Limits 75 43 - 109 70 38 - 128	B43-TP4-5 05-099-07 0.021 0.0092 EPA 8270/SIM 0.014 0.0092 EPA 8270/SIM ND 0.0092 EPA 8270/SIM Percent Recovery Control Limits 75 43 - 109 70 38 - 128	Result PQL Method Prepared B43-TP4-5 05-099-07 5-22-12 0.021 0.0092 EPA 8270/SIM 5-22-12 0.014 0.0092 EPA 8270/SIM 5-22-12 ND 0.0092 EPA 8270/SIM 5-22-12 Percent Recovery Control Limits 75 43 - 109 70 38 - 128	Result PQL Method Prepared Analyzed B43-TP4-5 05-099-07 5-29-12 5-23-12 0.021 0.0092 EPA 8270/SIM 5-22-12 5-23-12 0.014 0.0092 EPA 8270/SIM 5-22-12 5-23-12 ND 0.0092

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP4-9					
Laboratory ID:	05-099-08					
Naphthalene	0.13	0.0087	EPA 8270/SIM	5-22-12	5-23-12	
2-Methylnaphthalene	0.11	0.0087	EPA 8270/SIM	5-22-12	5-23-12	
1-Methylnaphthalene	0.049	0.0087	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]anthracene	0.049	0.0087	EPA 8270/SIM	5-22-12	5-23-12	
Chrysene	0.074	0.0087	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[b]fluoranthene	0.043	0.0087	EPA 8270/SIM	5-22-12	5-23-12	
Benzo(j,k)fluoranthene	0.016	0.0087	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]pyrene	0.033	0.0087	EPA 8270/SIM	5-22-12	5-23-12	
Indeno(1,2,3-c,d)pyrene	0.058	0.0087	EPA 8270/SIM	5-22-12	5-23-12	
Dibenz[a,h]anthracene	0.015	0.0087	EPA 8270/SIM	5-22-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	43 - 109				
Pyrene-d10	97	38 - 128				
Terphenyl-d14	67	33 - 119				

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP5-6					
Laboratory ID:	05-099-09					
Naphthalene	0.028	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
2-Methylnaphthalene	0.014	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
1-Methylnaphthalene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]anthracene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Chrysene	0.014	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[b]fluoranthene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Benzo(j,k)fluoranthene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]pyrene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Dibenz[a,h]anthracene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	43 - 109				
Pyrene-d10	56	38 - 128				
Terphenyl-d14	70	33 - 119				

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP5-10					
Laboratory ID:	05-099-10					
Naphthalene	0.020	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
2-Methylnaphthalene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
1-Methylnaphthalene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]anthracene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Chrysene	0.0094	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[b]fluoranthene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Benzo(j,k)fluoranthene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]pyrene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Dibenz[a,h]anthracene	ND	0.0079	EPA 8270/SIM	5-22-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	43 - 109				
Pyrene-d10	58	38 - 128				
Terphenyl-d14	72	33 - 119				

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP6-4					
Laboratory ID:	05-099-11					
Naphthalene	0.77	0.038	EPA 8270/SIM	5-22-12	5-25-12	
2-Methylnaphthalene	0.82	0.038	EPA 8270/SIM	5-22-12	5-25-12	
1-Methylnaphthalene	0.33	0.038	EPA 8270/SIM	5-22-12	5-25-12	
Benzo[a]anthracene	1.1	0.038	EPA 8270/SIM	5-22-12	5-25-12	
Chrysene	0.51	0.038	EPA 8270/SIM	5-22-12	5-25-12	
Benzo[b]fluoranthene	0.088	0.038	EPA 8270/SIM	5-22-12	5-25-12	
Benzo(j,k)fluoranthene	ND	0.038	EPA 8270/SIM	5-22-12	5-25-12	
Benzo[a]pyrene	0.24	0.038	EPA 8270/SIM	5-22-12	5-25-12	
Indeno(1,2,3-c,d)pyrene	ND	0.038	EPA 8270/SIM	5-22-12	5-25-12	
Dibenz[a,h]anthracene	ND	0.038	EPA 8270/SIM	5-22-12	5-25-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	48	43 - 109				
Pyrene-d10	30	38 - 128				Q
Terphenyl-d14	41	33 - 119				

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP7-6					
Laboratory ID:	05-099-13					
Naphthalene	0.030	0.0082	EPA 8270/SIM	5-22-12	5-25-12	
2-Methylnaphthalene	0.031	0.0082	EPA 8270/SIM	5-22-12	5-25-12	
1-Methylnaphthalene	0.015	0.0082	EPA 8270/SIM	5-22-12	5-25-12	
Benzo[a]anthracene	0.034	0.0082	EPA 8270/SIM	5-22-12	5-25-12	
Chrysene	0.046	0.0082	EPA 8270/SIM	5-22-12	5-25-12	
Benzo[b]fluoranthene	0.042	0.0082	EPA 8270/SIM	5-22-12	5-25-12	
Benzo(j,k)fluoranthene	0.013	0.0082	EPA 8270/SIM	5-22-12	5-25-12	
Benzo[a]pyrene	0.030	0.0082	EPA 8270/SIM	5-22-12	5-25-12	
Indeno(1,2,3-c,d)pyrene	0.027	0.0082	EPA 8270/SIM	5-22-12	5-25-12	
Dibenz[a,h]anthracene	0.0082	0.0082	EPA 8270/SIM	5-22-12	5-25-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	44	43 - 109				
Pyrene-d10	42	38 - 128				
Terphenyl-d14	55	33 - 119				

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0522S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Chrysene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	43 - 109				
Pyrene-d10	87	38 - 128				
Terphenyl-d14	87	33 - 119				
Laboratory ID:	MB0524S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	5-24-12	5-24-12	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	5-24-12	5-24-12	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	5-24-12	5-24-12	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	5-24-12	5-24-12	
Chrysene	ND	0.0067	EPA 8270/SIM	5-24-12	5-24-12	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	5-24-12	5-24-12	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	5-24-12	5-24-12	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	5-24-12	5-24-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	5-24-12	5-24-12	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	5-24-12	5-24-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	97	43 - 109				
Pyrene-d10	81	38 - 128				

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM SB/SBD QUALITY CONTROL (with silica gel clean-up)

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	522S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0721	0.0696	0.0833	0.0833	87	84	43 - 108	4	27	
Benzo[a]anthracene	0.0845	0.0834	0.0833	0.0833	101	100	63 - 116	1	12	
Chrysene	0.0739	0.0726	0.0833	0.0833	89	87	67 - 118	2	12	
Benzo[b]fluoranthene	0.0705	0.0695	0.0833	0.0833	85	83	58 - 127	1	20	
Benzo(j,k)fluoranthene	0.0699	0.0688	0.0833	0.0833	84	83	42 - 134	2	26	
Benzo[a]pyrene	0.0684	0.0673	0.0833	0.0833	82	81	55 - 111	2	19	
Indeno(1,2,3-c,d)pyrene	0.0743	0.0712	0.0833	0.0833	89	85	60 - 125	4	20	
Dibenz[a,h]anthracene	0.0721	0.0711	0.0833	0.0833	87	85	62 - 125	1	19	
Surrogate:										
2-Fluorobiphenyl					88	84	43 - 109			
Pyrene-d10					88	88	38 - 128			
Terphenyl-d14					85	85	33 - 119			

Project: 2012-046-22

cPAHs plus NAPHTHALENES by EPA 8270D/SIM MS/MSD QUALITY CONTROL (with silica gel clean-up)

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											_
Laboratory ID:	05-09	99-05									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0809	0.0768	0.0833	0.0833	0.00762	88	83	39 - 110	5	21	
Benzo[a]anthracene	0.103	0.0990	0.0833	0.0833	0.0255	93	88	43 - 127	4	21	
Chrysene	0.0920	0.0872	0.0833	0.0833	0.0282	77	71	41 - 133	5	19	
Benzo[b]fluoranthene	0.0942	0.0815	0.0833	0.0833	0.0347	71	56	40 - 132	14	25	
Benzo(j,k)fluoranthene	0.0832	0.0729	0.0833	0.0833	0.0103	88	75	35 - 132	13	25	
Benzo[a]pyrene	0.0951	0.0873	0.0833	0.0833	0.0276	81	72	37 - 131	9	26	
Indeno(1,2,3-c,d)pyrene	0.106	0.0948	0.0833	0.0833	0.0297	92	78	39 - 134	11	23	
Dibenz[a,h]anthracene	0.0886	0.0828	0.0833	0.0833	0.00690	98	91	40 - 137	7	21	
Surrogate:											
2-Fluorobiphenyl						91	90	43 - 109			
Pyrene-d10						80	79	38 - 128			
Terphenyl-d14						88	89	33 - 119			

Project: 2012-046-22

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP1-1.5					
Laboratory ID:	05-099-01					
Aroclor 1016	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.058	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.058	EPA 8082	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	112	42-123				
Client ID:	B43-TP2-3					
Laboratory ID:	05-099-03					
Aroclor 1016	ND	0.062	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.062	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.062	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.062	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.062	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.062	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.062	EPA 8082	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	83	42-123				
Client ID:	B43-TP2-8					
Laboratory ID:	05-099-04					
Aroclor 1016	ND	0.056	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.056	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.056	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.056	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.056	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.056	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.056	EPA 8082	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	98	42-123				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 2012-046-22

PCBs by EPA 8082

Matrix: Soil

DCB

Units: mg/Kg (ppm)

omis. mg/rtg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP3-5					
Laboratory ID:	05-099-05					
Aroclor 1016	ND	0.061	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.061	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.061	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.061	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.061	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.061	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.061	EPA 8082	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	98	42-123				
Client ID:	B43-TP3-8					
Laboratory ID:	05-099-06					
Aroclor 1016	ND	0.060	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.060	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.060	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.060	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.060	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.60	EPA 8082	5-18-12	5-18-12	U1
Aroclor 1260	ND	0.60	EPA 8082	5-18-12	5-18-12	U1
Surrogate:	Percent Recovery	Control Limits				
DCB	105	42-123				
Client ID:	B43-TP4-5					
Laboratory ID:	05-099-07					
Aroclor 1016	ND	0.069	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.069	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.069	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.069	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.069	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.069	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.069	EPA 8082	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

42-123

101

Project: 2012-046-22

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP4-9					
Laboratory ID:	05-099-08					
Aroclor 1016	ND	0.065	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.065	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.065	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.065	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.065	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.065	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.065	EPA 8082	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	104	42-123				
Client ID:	B43-TP5-6					
Laboratory ID:	05-099-09					
Aroclor 1016	ND	0.059	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.059	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.059	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.059	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.059	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.059	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.059	EPA 8082	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	102	42-123				
Client ID:	B43-TP5-10					
Laboratory ID:	05-099-10					
Aroclor 1016	ND	0.059	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.059	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.059	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.059	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.059	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.059	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.059	EPA 8082	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	105	42-123				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP6-4					
Laboratory ID:	05-099-11					
Aroclor 1016	ND	0.057	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.057	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.057	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.057	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.057	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.057	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.057	EPA 8082	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	66	42-123				
Client ID:	B43-TP7-6					
Laboratory ID:	05-099-13					
Aroclor 1016	ND	0.061	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.061	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.061	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.061	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.061	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	0.092	0.061	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.061	EPA 8082	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
DCB	101	42-123				

Project: 2012-046-22

PCBs by EPA 8082 QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0518S1					
Aroclor 1016	ND	0.050	EPA 8082	5-18-12	5-18-12	
Aroclor 1221	ND	0.050	EPA 8082	5-18-12	5-18-12	
Aroclor 1232	ND	0.050	EPA 8082	5-18-12	5-18-12	
Aroclor 1242	ND	0.050	EPA 8082	5-18-12	5-18-12	
Aroclor 1248	ND	0.050	EPA 8082	5-18-12	5-18-12	
Aroclor 1254	ND	0.050	EPA 8082	5-18-12	5-18-12	
Aroclor 1260	ND	0.050	EPA 8082	5-18-12	5-18-12	
Surrogato:	Parcent Pacayory	Control Limits				

Surrogate: Percent Recovery Control Limits
DCB 115 42-123

Analyte	Re	sult	Spike	Level	Source Result		rcent overv	Recovery Limits	RPD	RPD Limit	Flags
MATRIX SPIKES			<u> </u>				<u> </u>				
Laboratory ID:	05-0	99-04									
•	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.600	0.605	0.500	0.500	ND	120	121	44-125	1	15	
Surrogate:											
DCB						100	105	42-123			

% MOISTURE

Date Analyzed: 5-15-12

Client ID	Lab ID	% Moisture
B43-TP1-1.5	05-099-01	14
B43-TP1-9	05-099-02	14
B43-TP2-3	05-099-03	19
B43-TP2-8	05-099-04	10
B43-TP3-5	05-099-05	18
B43-TP3-8	05-099-06	17
B43-TP4-5	05-099-07	27
B43-TP4-9	05-099-08	23
B43-TP5-6	05-099-09	15
B43-TP5-10	05-099-10	15
B43-TP6-4	05-099-11	13
B43-TP6-6	05-099-12	12
B43-TP7-6	05-099-13	19

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

Chain of Custody

Page / of 2

	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Ca Ca	Signature	10 1347-TPS-10	9 By3-175-6	8 Dus-104-9	7 043-504-5	6 1343-10-3-8	S B45-703-5	4 B42-T02-8	3 Bus 102-3	2 743501-9.	(BY3501-1.5	Lab ID Sample Identification	Sampled by:	Froject Manager.	Project Name:	Project Number:	Company:	Phone: (425) 883-3881 • www.onsite-env.com	14648 NE 95th Street • Redmond, WA 98052
Data Package: Level III Level IV	Reviewed/Date			1 000	Spar	2895	Awa	Company	1 000 1	1355	1140	30	300	1019	375	540	1 25.3	5/10/2 800 S	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	☐ Same Day ☐ 1 Day	(Check One)	(in working days)
Electronic Data Deliverables (EDDs)				>/10112 1600	210.12 /000	1210	1/8/1	-		50	38	8	\ 86	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \		8	NWTF NWTF Volati	PH-Gx PH-Dx les 82	/BTEX	Days)	В			
	Chromatograms with final report						A) Added 5/17/12-03 (STA)		Comments/Special Instructions		98	38		88		\ \ \		88	(with PAHs) PCBs Organ Organ Chlor Total Total	s 8082 s 8082 nochlo nophos inated MTCA	phorus Acid H Metals Metals	low-leve	8081A s 8270D. s 8151A	/SIM	enc	5
				7					~		-	-	-	-		-	-	7	5 % N	loistur	е					

Chain of Custody

Received by	Relinquished by	Received by	Melinquished by	Received by Van	Relinquished by Uc G	Signature								13 PHS-TR-2-6	12 1343-TO6-6	11 1343-786-4	Lab ID Sample Identification	Campieo by:	J. TILLAPSON	Project Manager:	Project Name:	Project Number:	Company:	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
		1900 N	Spalin	200	Amp	Company								1 300 S 6	1240 5 4	5/10/2 1230 S 6	Date Time # of Sampled Sampled Matrix Cont.	(other)		Standard (7 working days) (TPH analysis 5 working days	2 Day 3 Day	Same Day 1 Day	(Check One)	Turnaround Request (in working days)
		5/18/12 140	5.1012 /600	5/10/12 14/15	5/10/12 1415	Date Time								X & X	*	8	NWTF NWTF Volatil Halog Semiv	PH-Gx PH-Dx les by enated volatile	8260 d Vola	B atiles by 8270D	/ SIM			Laboratory Number:
		(8) Added 51,71,2,08 (8) 4	VOIVAC	HON MI H		Comments/Special Instructions:									*		PCBs Pestic Herbic Total I	by 80 dides becides to RCRA Metal by 166	82 y 808 by 81 Meta	31A 51A	prahe		Requested Analysis	05-099
	Received by		088 5/18/12 160 (8) Added 5/17/12-25 C	2 Jan 5,10,12 /600 (2) A	Jan 5ph 5/0/2 /415 * Only in NOA viais cimit O Spar 5/0/2 /600 & Added 5/17/12-28 (5	Jan Jan 5ph 5/10/12 1415 * Only in 1/04 1/01/2-28 (5)	Signature Company Date Time Comments/Special Instructions: Ok & Hup 5/10/12 1415 Van 5/10/12 1/15 * Only in WA vials - Limit Spaly 5/10/12 1/1000 & Added 5/17/12-08 (S	Signature Company Date Time Comments/Special Instructions: Ch. C. Hup Sply 5/10/12 14/15 Van Sply 5/10/12 1/4/5 Sply 5/10/12 1/600 A Added S/17/12-08 (S)	Signature Company Date Time Comments/Special Instructions: Sport S	Signature Company Company Date Time Comments/Special Instructions: Spany Signature Company Company Date Time Comments/Special Instructions: Spany Signature Company Che Comments Special Instructions: Che Comments Special Instructions: Special Special Instructions: S	Signature Company C	Signature Company Che Com Have Splin Sp	Signature Company C	Spanice Company Date Time Commons. Special Instructions: Spanice 1200 Special Company 1415	5/10/2 1240 S H / 8 (S) 14 14 15 16 16 16 16 16 16 16	Sample Identification Sample Centification Gother) The sample dentification Simple dentification Simple Sample dentification Simple dentification	Simple Contact of working days) The party of the simple Contact of working days) Th	Sindada (7 working days) (TPH analysis 5 working days) (TPH	Same Day Same D	Requested Analysis Sample logical by Sample logic				

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Client Copy

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 25, 2012

Jeff Thompson HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2012-046

Laboratory Reference No. 1205-112

Dear Jeff:

Enclosed are the analytical results and associated quality control data for samples submitted on May 11, 2012.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 2012-046

Case Narrative

Samples were collected on May 10, 2012 and received by the laboratory on May 11, 2012. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PAHs EPA 8270D/SIM Analysis

Sample B43-TP11-5 had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-HCID (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP11-5					
Laboratory ID:	05-112-02					
Gasoline Range Organics	ND	28	NWTPH-HCID	5-14-12	5-14-12	_
Diesel Range Organics	Detected	70	NWTPH-HCID	5-14-12	5-14-12	N
Lube Oil	Detected	140	NWTPH-HCID	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	113	50-150				
Client ID:	B43-TP11-9					
Laboratory ID:	05-112-03					
Gasoline Range Organics	ND	24	NWTPH-HCID	5-14-12	5-14-12	
Diesel Range Organics	ND	60	NWTPH-HCID	5-14-12	5-14-12	
Lube Oil Range Organics	ND	120	NWTPH-HCID	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				

Project: 2012-046

NWTPH-HCID QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

3 3 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0514S1					
Gasoline Range Organics	ND	20	NWTPH-HCID	5-14-12	5-14-12	
Diesel Range Organics	ND	50	NWTPH-HCID	5-14-12	5-14-12	
Lube Oil Range Organics	ND	100	NWTPH-HCID	5-14-12	5-14-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				

Project: 2012-046

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	05-112-02 B43-TP11-5					
Arsenic	ND	14	6010B	2-21-12	2-22-12	
Barium	83	3.5	6010B	2-21-12	2-22-12	
Cadmium	ND	0.70	6010B	2-21-12	2-22-12	
Chromium	40	0.70	6010B	2-21-12	2-22-12	
_ead	20	7.0	6010B	2-21-12	2-22-12	
Mercury	ND	0.35	7471A	2-16-12	2-16-12	
Selenium	ND	14	6010B	2-21-12	2-22-12	
Silver	ND	0.70	6010B	2-21-12	2-22-12	
_ab ID: Client ID:	05-112-03 B43-TP11-9					
Arsenic	ND	12	6010B	2-21-12	2-22-12	
Barium	140	3.0	6010B	2-21-12	2-22-12	
Cadmium	ND	0.60	6010B	2-21-12	2-22-12	
Chromium	64	0.60	6010B	2-21-12	2-22-12	
_ead	ND	6.0	6010B	2-21-12	2-22-12	
Mercury	ND	0.30	7471A	2-16-12	2-16-12	
Selenium	ND	12	6010B	2-21-12	2-22-12	
Silver	ND	0.60	6010B	2-21-12	2-22-12	

Project: 2012-046

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 2-16&21-12

Date Analyzed: 2-16&22-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0516S2&MB0521SM2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

Project: 2012-046

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 2-16&21-12
Date Analyzed: 2-16&22-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-099-02

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	54.2	53.3	2	2.5	
Cadmium	ND	ND	NA	0.50	
Chromium	40.3	37.4	8	0.50	
Lead	ND	ND	NA	5.0	
Mercury	ND	ND	NA	0.25	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

Project: 2012-046

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted: 2-16&21-12
Date Analyzed: 2-16&22-12

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-099-02

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	92.2	92	94.5	94	3	
Barium	100	151	97	153	99	2	
Cadmium	50.0	47.7	95	47.9	96	0	
Chromium	100	130	90	130	89	0	
Lead	250	232	93	232	93	0	
Mercury	0.500	0.496	99	0.505	101	2	
Selenium	100	90.8	91	89.3	89	2	
Silver	25.0	20.7	83	20.7	83	0	

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Prepared	Date Analyzed	Flags
Client ID:	B43-TP11-5					
Laboratory ID:	05-112-02					
Diesel Range Organics	110	35	NWTPH-Dx	5-23-12	5-23-12	N
Lube Oil	580	70	NWTPH-Dx	5-23-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0523S1					
Diesel Range Organics	ND	25	NWTPH-Dx	5-23-12	5-23-12	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-23-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				

			Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Re	covery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	05-21	15-03						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			116	105	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 2012-046

PAHs by EPA 8270D/SIM (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP11-5					
Laboratory ID:	05-112-02				_	
Naphthalene	0.37	0.0093	EPA 8270/SIM	5-22-12	5-24-12	
2-Methylnaphthalene	0.088	0.0093	EPA 8270/SIM	5-22-12	5-24-12	
1-Methylnaphthalene	0.052	0.0093	EPA 8270/SIM	5-22-12	5-24-12	
Benzo[a]anthracene	0.019	0.0093	EPA 8270/SIM	5-22-12	5-24-12	
Chrysene	0.026	0.0093	EPA 8270/SIM	5-22-12	5-24-12	
Benzo[b]fluoranthene	0.020	0.0093	EPA 8270/SIM	5-22-12	5-24-12	
Benzo(j,k)fluoranthene	ND	0.0093	EPA 8270/SIM	5-22-12	5-24-12	
Benzo[a]pyrene	0.013	0.0093	EPA 8270/SIM	5-22-12	5-24-12	
Indeno(1,2,3-c,d)pyrene	0.012	0.0093	EPA 8270/SIM	5-22-12	5-24-12	
Dibenz[a,h]anthracene	ND	0.0093	EPA 8270/SIM	5-22-12	5-24-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	45	43 - 109				
Pyrene-d10	35	38 - 128				Q
Terphenyl-d14	41	33 - 119				

Project: 2012-046

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
						_
Laboratory ID:	MB0522S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Chrysene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	5-22-12	5-23-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	43 - 109				
Pyrene-d10	87	38 - 128				
Terphenyl-d14	87	33 - 119				

PAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL (with silica gel clean-up)

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Reco	Recovery		RPD	Limit	Flags
SPIKE BLANKS										_
Laboratory ID:	SB05	522S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0721	0.0696	0.0833	0.0833	87	84	43 - 108	4	27	
Benzo[a]anthracene	0.0845	0.0834	0.0833	0.0833	101	100	63 - 116	1	12	
Chrysene	0.0739	0.0726	0.0833	0.0833	89	87	67 - 118	2	12	
Benzo[b]fluoranthene	0.0705	0.0695	0.0833	0.0833	85	83	58 - 127	1	20	
Benzo(j,k)fluoranthene	0.0699	0.0688	0.0833	0.0833	84	83	42 - 134	2	26	
Benzo[a]pyrene	0.0684	0.0673	0.0833	0.0833	82	81	55 - 111	2	19	
Indeno(1,2,3-c,d)pyrene	0.0743	0.0712	0.0833	0.0833	89	85	60 - 125	4	20	
Dibenz[a,h]anthracene	0.0721	0.0711	0.0833	0.0833	87	85	62 - 125	1	19	
Surrogate:										
2-Fluorobiphenyl					88	84	43 - 109			
Pyrene-d10					88	88	38 - 128			
Terphenyl-d14					85	85	33 - 119			

BTEX EPA 8260B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-TP11-5					_
Laboratory ID:	05-112-02					
Benzene	ND	0.0013	EPA 8260	5-17-12	5-18-12	
Toluene	ND	0.0065	EPA 8260	5-17-12	5-18-12	
Ethylbenzene	ND	0.0013	EPA 8260	5-17-12	5-18-12	
m,p-Xylene	ND	0.0026	EPA 8260	5-17-12	5-18-12	
o-Xylene	ND	0.0013	EPA 8260	5-17-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	63-127				
Toluene-d8	99	65-129				
4-Bromofluorobenzene	99	55-121				

BTEX EPA 8260B QUALITY CONTROL

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0518S1					
Benzene	ND	0.0010	EPA 8260	5-18-12	5-18-12	
Toluene	ND	0.0050	EPA 8260	5-18-12	5-18-12	
Ethylbenzene	ND	0.0010	EPA 8260	5-18-12	5-18-12	
m,p-Xylene	ND	0.0020	EPA 8260	5-18-12	5-18-12	
o-Xylene	ND	0.0010	EPA 8260	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	63-127				
Toluene-d8	101	65-129				
4-Bromofluorobenzene	107	55-121				

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										_
Laboratory ID:	SB05	518S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0394	0.0397	0.0500	0.0500	79	79	70-130	1	19	
Benzene	0.0438	0.0434	0.0500	0.0500	88	87	70-125	1	15	
Trichloroethene	0.0486	0.0486	0.0500	0.0500	97	97	70-122	0	14	
Toluene	0.0477	0.0507	0.0500	0.0500	95	101	73-120	6	16	
Chlorobenzene	0.0517	0.0507	0.0500	0.0500	103	101	74-120	2	12	
Surrogate:										
Dibromofluoromethane	Э				93	94	63-127			
Toluene-d8					96	105	65-129			
4-Bromofluorobenzene	Э				102	104	55-121			

Project: 2012-046

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
B43-TP11-5					
05-112-02					
ND	0.070	EPA 8082	5-18-12	5-18-12	
ND	0.070	EPA 8082	5-18-12	5-18-12	
ND	0.070	EPA 8082	5-18-12	5-18-12	
ND	0.070	EPA 8082	5-18-12	5-18-12	
ND	0.070	EPA 8082	5-18-12	5-18-12	
ND	0.070	EPA 8082	5-18-12	5-18-12	
ND	0.070	EPA 8082	5-18-12	5-18-12	
	B43-TP11-5 05-112-02 ND ND ND ND ND ND	B43-TP11-5 05-112-02 ND 0.070 ND 0.070	B43-TP11-5 05-112-02 ND 0.070 EPA 8082 ND 0.070 EPA 8082	Result PQL Method Prepared B43-TP11-5 05-112-02 05-112-02 ND 0.070 EPA 8082 5-18-12 ND 0.070 EPA 8082 5-18-12	B43-TP11-5 05-112-02 ND 0.070 EPA 8082 5-18-12 5-18-12 ND 0.070 EPA 8082 5-18-12 5-18-12

Surrogate: Percent Recovery Control Limits DCB 106 42-123

Project: 2012-046

PCBs by EPA 8082 QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
METHOD BLANK							
Laboratory ID:	MB0518S1						
Aroclor 1016	ND	0.050	EPA 8082	5-18-12	5-18-12		
Aroclor 1221	ND	0.050	EPA 8082	5-18-12	5-18-12		
Aroclor 1232	ND	0.050	EPA 8082	5-18-12	5-18-12		
Aroclor 1242	ND	0.050	EPA 8082	5-18-12	5-18-12		
Aroclor 1248	ND	0.050	EPA 8082	5-18-12	5-18-12		
Aroclor 1254	ND	0.050	EPA 8082	5-18-12	5-18-12		
Aroclor 1260	ND	0.050	EPA 8082	5-18-12	5-18-12		
•	5 15	0					

Surrogate: Percent Recovery Control Limits DCB 115 42-123

Analyte	Re	sult	Spike	Level	Source Result		rcent overy	Recovery Limits	RPD	RPD Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-09	99-04									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.600	0.605	0.500	0.500	ND	120	121	44-125	1	15	
Surrogate:											
DCB						100	105	42-123			

% MOISTURE

Date Analyzed: 5-14-12

Client ID	Lab ID	% Moisture
B43-TP11-5	05-112-02	28
B43-TP11-9	05-112-03	16

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

HWA GEOSCIENCES INC.

21312 30th Drive SE, Suite 110, Bothell, Washington 98021-7010 Tel 425.774.0106 Fax 425.774.2714 www.hwageo.com www.hwageo.com

and Laboratory Anaylsis Request Chain of Custody

PAGE:	DATE:
-	4
	6
of 1	7

Received by:	Relinquished by:	Received by:	Relinquished by:	PRINT NAME				1	_						HOL-CAS	BUS-TRI	B43-141-3	HWA SAMPLE ID	HWA CONTACT: 1	SAMPLERS SIGNATURE:
7	-	France.	by Chrissi	m									/	,	1-9	2-	in			SIGNATU
7. YOU'S		sro Guzan	T												+		110/12	DATE	TOSOMORT	RE:
	Course	Arm	isk												14500	540	1430	TIME	700	200
7	2	2	(*	SIGNATURE											+	_	Soic	MATRIX		
			THE	RE										,	ىر	N	7	LABID	PHONE:	DATE:
4			A												16	16	96	# OF BOTTLE		
0	8	She	T/w	co			1								X	X	\	Muri		HCID M-
200	rechn	ody in	HWA GED	COMPANY														NWT		
117	-580	essen	(1													\otimes		PAHS		
	4	201	ciences													S S		BTER	82	60
5/11/12	5-11-12	5-11-12	5/11/1	DATE																
2 //	11/	-	7 =	TIME														9 0	01/	200
15	ごうち	CAN	MOO	m												_	X	HOL	D	Jua
				REMARKS			(5	3							1 An	1 70	To	EDD	hr	して
				ARKS			TO MARKET	2						1	Aposo And	brume For	12 CH	REMARKS	DAYS	TURNAROUND TIME
						1	₹								250000	Ĭ,	المراسات	XS T	j	TIME

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 25, 2012

Jeff Thompson HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2012-046-22

Laboratory Reference No. 1205-119

Dear Jeff:

Enclosed are the analytical results and associated quality control data for samples submitted on May 11, 2012.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 2012-046-22

Case Narrative

Samples were collected on May 11, 2012 and received by the laboratory on May 11, 2012. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-HCID (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

,				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-1-GW					
Laboratory ID:	05-119-01					
Gasoline Range Organics	ND	0.12	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	0.29	NWTPH-HCID	5-15-12	5-15-12	
Lube Oil Range Organics	ND	0.46	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				
Client ID:	B43-2-GW					
Laboratory ID:	05-119-02					
Gasoline Range Organics	Detected	0.11	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	0.28	NWTPH-HCID	5-15-12	5-15-12	
Lube Oil Range Organics	ND	0.46	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	118	50-150				
Client ID:	B43-K-MW3-GW					
Laboratory ID:	05-119-03					
Gasoline Range Organics	ND	0.11	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	0.27	NWTPH-HCID	5-15-12	5-15-12	
Lube Oil Range Organics	ND	0.44	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
Client ID:	B43-4-GW					
Laboratory ID:	05-119-04					
Gasoline Range Organics	ND	0.12	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	0.29	NWTPH-HCID	5-15-12	5-15-12	
Lube Oil Range Organics	ND	0.47	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	118	50-150				
Client ID:	B43-KMW-6-GW					
Laboratory ID:	05-119-05					
Gasoline Range Organics	Detected	0.12	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	0.49	NWTPH-HCID	5-15-12	5-15-12	U1
Lube Oil Range Organics	ND	0.48	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				

NWTPH-HCID (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B43-DUP-GW					
Laboratory ID:	05-119-06					
Gasoline Range Organics	Detected	0.11	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	0.49	NWTPH-HCID	5-15-12	5-15-12	U1
Lube Oil Range Organics	ND	0.45	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				

NWTPH-HCID QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0515W1					
Gasoline Range Organics	ND	0.10	NWTPH-HCID	5-15-12	5-15-12	
Diesel Range Organics	ND	0.25	NWTPH-HCID	5-15-12	5-15-12	
Lube Oil Range Organics	ND	0.40	NWTPH-HCID	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				

NWTPH-Gx/BTEX

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TRIP BLANK					
Laboratory ID:	05-119-07					
Benzene	ND	1.0	EPA 8021	5-15-12	5-15-12	
Toluene	ND	1.0	EPA 8021	5-15-12	5-15-12	
Ethyl Benzene	ND	1.0	EPA 8021	5-15-12	5-15-12	
m,p-Xylene	ND	1.0	EPA 8021	5-15-12	5-15-12	
o-Xylene	ND	1.0	EPA 8021	5-15-12	5-15-12	
Gasoline	ND	100	NWTPH-Gx	5-15-12	5-15-12	
Currenter	Doroont Doooyou	Control Limita				

Surrogate: Percent Recovery Control Limits Fluorobenzene 83 73-121

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0515W1					
Benzene	ND	1.0	EPA 8021	5-15-12	5-15-12	
Toluene	ND	1.0	EPA 8021	5-15-12	5-15-12	
Ethyl Benzene	ND	1.0	EPA 8021	5-15-12	5-15-12	
m,p-Xylene	ND	1.0	EPA 8021	5-15-12	5-15-12	
o-Xylene	ND	1.0	EPA 8021	5-15-12	5-15-12	
Gasoline	ND	100	NWTPH-Gx	5-15-12	5-15-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	73-121				
Laboratory ID:	MB0517W2					
Benzene	ND	1.0	EPA 8021	5-17-12	5-17-12	
Toluene	ND	1.0	EPA 8021	5-17-12	5-17-12	
Ethyl Benzene	ND	1.0	EPA 8021	5-17-12	5-17-12	
m,p-Xylene	ND	1.0	EPA 8021	5-17-12	5-17-12	
o-Xylene	ND	1.0	EPA 8021	5-17-12	5-17-12	
Gasoline	ND	100	NWTPH-Gx	5-17-12	5-17-12	
Surrogate:	Percent Recovery	Control Limits				
_, ,		70.404				

73-121 Fluorobenzene 92

Analyte	Re	sult	Spike	Level	Source Result		rcent overy	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE			<u> </u>								
Laboratory ID:	05-12	26-01									
•	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	NA	NA	NA	30	
Surrogate:		·									
Fluorobenzene						81	82	73-121			
MATRIX SPIKES											
Laboratory ID:	05-12	26-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	52.1	50.4	50.0	50.0	ND	104	101	82-120	3	8	
Toluene	53.1	52.8	50.0	50.0	ND	106	106	84-119	1	8	
Ethyl Benzene	52.9	54.6	50.0	50.0	ND	106	109	84-122	3	9	
m,p-Xylene	52.8	54.4	50.0	50.0	ND	106	109	85-121	3	9	
o-Xylene	51.8	54.1	50.0	50.0	ND	104	108	84-121	4	9	
Surrogate:											
Fluorobenzene						94	96	73-121			

Project: 2012-046-22

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-119-01 B43-1-GW					
Arsenic	3.9	3.0	200.8		5-18-12	
Barium	170	25	200.8		5-16-12	
Cadmium	ND	4.0	200.8		5-16-12	
Chromium	ND	10	200.8		5-16-12	
Lead	ND	1.0	200.8		5-16-12	
Mercury	ND	0.50	7470A		5-16-12	
Selenium	ND	5.0	200.8		5-16-12	
Silver	ND	10	200.8		5-16-12	
Lab ID:	05-119-02 B43-2-GW					
Arsenic	15	3.0	200.8		5-18-12	
Barium	88	25	200.8		5-16-12	
Cadmium	ND	4.0	200.8		5-16-12	
Chromium	ND	10	200.8		5-16-12	
Lead	ND	1.0	200.8		5-16-12	
Mercury	ND	0.50	7470A		5-16-12	
Selenium	ND	5.0	200.8		5-16-12	
Silver	ND	10	200.8		5-16-12	

Project: 2012-046-22

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

	3 (11)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-119-03					
Client ID:	B43-K-MW3-GW					
Arsenic	ND	3.0	200.8		5-16-12	
Barium	38	25	200.8		5-16-12	
Cadmium	ND	4.0	200.8		5-16-12	
Chromium	ND	10	200.8		5-16-12	
Lead	ND	1.0	200.8		5-16-12	
Mercury	ND	0.50	7470A		5-16-12	
Selenium	ND	5.0	200.8		5-16-12	
Silver	ND	10	200.8		5-16-12	
Lab ID:	05-119-04					
Client ID:	B43-4-GW					
Arsenic	ND	3.0	200.8		5-16-12	
Barium	ND	25	200.8		5-16-12	
Cadmium	ND	4.0	200.8		5-16-12	
Chromium	ND	10	200.8		5-16-12	
Lead	ND	1.0	200.8		5-16-12	
Mercury	ND	0.50	7470A		5-16-12	
Selenium	ND	5.0	200.8		5-16-12	
Silver	ND	10	200.8		5-16-12	

Date

5-16-12

Date

Date of Report: May 25, 2012 Samples Submitted: May 11, 2012 Laboratory Reference: 1205-119

Project: 2012-046-22

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-119-05					
Client ID:	B43-KMW-6-GW					
Arsenic	8.7	3.0	200.8		5-18-12	
Barium	62	25	200.8		5-16-12	
Cadmium	ND	4.0	200.8		5-16-12	
Chromium	ND	10	200.8		5-16-12	
Lead	ND	1.0	200.8		5-16-12	
Mercury	ND	0.50	7470A		5-16-12	
Selenium	ND	5.0	200.8		5-16-12	
Silver	ND	10	200.8		5-16-12	
Lab ID:	05-119-06					
Client ID:	B43-DUP-GW					
Arsenic	8.7	3.0	200.8		5-18-12	
Barium	61	25	200.8		5-16-12	
Cadmium	ND	4.0	200.8		5-16-12	
Chromium	ND	10	200.8		5-16-12	
Lead	ND	1.0	200.8		5-16-12	
Mercury	ND	0.50	7470A		5-16-12	
Selenium	ND	5.0	200.8		5-16-12	

200.8

10

ND

Silver

DISSOLVED METALS EPA 200.8 METHOD BLANK QUALITY CONTROL

Date Analyzed: 5-16&18-12

Matrix: Water Units: ug/L (ppb)

MB0516D2 Lab ID:

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Barium	200.8	ND	25
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Selenium	200.8	ND	5.0
Silver	200.8	ND	10

Project: 2012-046-22

DISSOLVED MERCURY EPA 7470A METHOD BLANK QUALITY CONTROL

Date Analyzed: 5-16-12

Matrix: Water
Units: ug/L (ppb)

Lab ID: MB0516D1

Analyte Method Result PQL

Mercury 7470A **ND** 0.50

DISSOLVED METALS EPA 200.8 DUPLICATE QUALITY CONTROL

Date Analyzed: 5-16&18-12

Matrix: Water Units: ug/L (ppb)

05-065-03 Lab ID:

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	105	108	3	3.0	
Barium	91.6	91.4	0	25	
Cadmium	ND	ND	NA	4.0	
Chromium	ND	ND	NA	10	
Lead	ND	ND	NA	1.0	
Selenium	ND	ND	NA	5.0	
Silver	ND	ND	NA	10	

Project: 2012-046-22

DISSOLVED MERCURY EPA 7470A DUPLICATE QUALITY CONTROL

Date Analyzed: 5-16-12

Matrix: Water
Units: ug/L (ppb)

Lab ID: 05-119-01

Sample Duplicate

Analyte Result Result RPD PQL Flags

Mercury ND ND NA 0.50

DISSOLVED METALS EPA 200.8 MS/MSD QUALITY CONTROL

Date Analyzed: 5-16&18-12

Matrix: Water Units: ug/L (ppb)

05-065-03 Lab ID:

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	200	315	105	318	107	1	
Barium	200	290	99	296	102	2	
Cadmium	200	211	106	211	106	0	
Chromium	200	191	95	219	109	14	
Lead	200	192	96	195	97	1	
Selenium	200	221	110	224	112	2	
Silver	200	183	91	186	93	2	

DISSOLVED MERCURY EPA 7470A MS/MSD QUALITY CONTROL

Date Analyzed: 5-16-12

Matrix: Water Units: ug/L (ppb)

Lab ID: 05-119-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	12.5	10.5	84	10.4	83	1	

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-2-GW					
Laboratory ID:	05-119-02					
Gasoline	710	100	NWTPH-Gx	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	73-121				
Client ID:	B43-KMW-6-GW					
Laboratory ID:	05-119-05					
Gasoline	1400	100	NWTPH-Gx	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	73-121				
Client ID:	B43-DUP-GW					
Laboratory ID:	05-119-06					
Gasoline	1300	100	NWTPH-Gx	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	73-121				

Project: 2012-046-22

NWTPH-Gx QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0521W1					
Gasoline	ND	100	NWTPH-Gx	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	73-121				

					Source	Perce		Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recov	ery/	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-17	72-02									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		NA	١	NA	NA	30	
Surrogate:											
Fluorobenzene						89	90	73-121			

Project: 2012-046-22

4-Bromofluorobenzene

VOLATILES by EPA 8260B

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-2-GW					_
Laboratory ID:	05-119-02					
Methyl t-Butyl Ether	ND	0.20	EPA 8260	5-18-12	5-18-12	
Benzene	3.9	0.20	EPA 8260	5-18-12	5-18-12	
1,2-Dichloroethane	ND	1.0	EPA 8260	5-18-12	5-18-12	
Toluene	ND	1.0	EPA 8260	5-18-12	5-18-12	
Ethylbenzene	0.33	0.20	EPA 8260	5-18-12	5-18-12	
m,p-Xylene	10	0.40	EPA 8260	5-18-12	5-18-12	
o-Xylene	0.42	0.20	EPA 8260	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	87	68-120				
Toluene-d8	84	73-120				

65-120

84

Project: 2012-046-22

VOLATILES by EPA 8260B

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-KMW-6-GW					_
Laboratory ID:	05-119-05					
Methyl t-Butyl Ether	ND	0.20	EPA 8260	5-18-12	5-18-12	
Benzene	1.8	0.20	EPA 8260	5-18-12	5-18-12	
1,2-Dichloroethane	ND	1.0	EPA 8260	5-18-12	5-18-12	
Toluene	1.6	1.0	EPA 8260	5-18-12	5-18-12	
Ethylbenzene	3.1	0.20	EPA 8260	5-18-12	5-18-12	
m,p-Xylene	3.8	0.40	EPA 8260	5-18-12	5-18-12	
o-Xylene	0.30	0.20	EPA 8260	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	85	68-120				
Toluene-d8	94	73-120				
4-Bromofluorobenzene	87	65-120				

Project: 2012-046-22

VOLATILES by EPA 8260B

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-DUP-GW					
Laboratory ID:	05-119-06					
Methyl t-Butyl Ether	ND	0.20	EPA 8260	5-18-12	5-18-12	
Benzene	1.8	0.20	EPA 8260	5-18-12	5-18-12	
1,2-Dichloroethane	ND	1.0	EPA 8260	5-18-12	5-18-12	
Toluene	1.6	1.0	EPA 8260	5-18-12	5-18-12	
Ethylbenzene	3.0	0.20	EPA 8260	5-18-12	5-18-12	
m,p-Xylene	3.3	0.40	EPA 8260	5-18-12	5-18-12	
o-Xylene	0.28	0.20	EPA 8260	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	88	68-120				
Toluene-d8	93	73-120				
4-Bromofluorobenzene	86	65-120				

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0518W1					
Methyl t-Butyl Ether	ND	0.20	EPA 8260	5-18-12	5-18-12	
Benzene	ND	0.20	EPA 8260	5-18-12	5-18-12	
1,2-Dichloroethane	ND	1.0	EPA 8260	5-18-12	5-18-12	
Toluene	ND	1.0	EPA 8260	5-18-12	5-18-12	
Ethylbenzene	ND	0.20	EPA 8260	5-18-12	5-18-12	
m,p-Xylene	ND	0.40	EPA 8260	5-18-12	5-18-12	
o-Xylene	ND	0.20	EPA 8260	5-18-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	68-120				
Toluene-d8	87	73-120				
4-Bromofluorobenzene	91	65-120				

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rece	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	18W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	8.53	8.18	10.0	10.0	85	82	70-130	4	11	
Benzene	9.11	8.85	10.0	10.0	91	89	75-123	3	8	
Trichloroethene	9.41	8.99	10.0	10.0	94	90	80-113	5	9	
Toluene	9.32	9.16	10.0	10.0	93	92	80-113	2	8	
Chlorobenzene	10.7	10.6	10.0	10.0	107	106	80-115	1	8	
Surrogate:										
Dibromofluoromethane					89	91	68-120			
Toluene-d8					84	84	73-120			
4-Bromofluorobenzene					84	86	65-120			

Project: 2012-046-22

NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-2-GW					
Laboratory ID:	05-119-02					
Naphthalene	1.3	0.10	EPA 8270/SIM	5-17-12	5-18-12	
2-Methylnaphthalene	ND	0.10	EPA 8270/SIM	5-17-12	5-18-12	
1-Methylnaphthalene	0.18	0.10	EPA 8270/SIM	5-17-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	38 - 105				
Pyrene-d10	86	37 - 121				
Terphenyl-d14	76	32 - 112				

NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-KMW-6-GW					
Laboratory ID:	05-119-05					
Naphthalene	0.44	0.11	EPA 8270/SIM	5-17-12	5-18-12	
2-Methylnaphthalene	0.36	0.11	EPA 8270/SIM	5-17-12	5-18-12	
1-Methylnaphthalene	1.7	0.11	EPA 8270/SIM	5-17-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	38 - 105				
Pyrene-d10	83	37 - 121				
Terphenyl-d14	87	32 - 112				

Project: 2012-046-22

NAPHTHALENES by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-DUP-GW					
Laboratory ID:	05-119-06					
Naphthalene	0.38	0.11	EPA 8270/SIM	5-17-12	5-18-12	
2-Methylnaphthalene	0.41	0.11	EPA 8270/SIM	5-17-12	5-18-12	
1-Methylnaphthalene	1.9	0.11	EPA 8270/SIM	5-17-12	5-18-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	38 - 105				
Pyrene-d10	77	37 - 121				
Terphenyl-d14	80	32 - 112				

NAPHTHALENES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0517W1					
Naphthalene	ND	0.10	EPA 8270/SIM	5-17-12	5-17-12	
2-Methylnaphthalene	ND	0.10	EPA 8270/SIM	5-17-12	5-17-12	
1-Methylnaphthalene	ND	0.10	EPA 8270/SIM	5-17-12	5-17-12	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	89	38 - 105				
Pyrene-d10	88	37 - 121				
Terphenyl-d14	95	32 - 112				

Project: 2012-046-22

NAPHTHALENES by EPA 8270D/SIM SB/SBD QUALITY CONTROL (with silica gel clean-up)

Matrix: Water Units: ug/L

					Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	17W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.400	0.376	0.500	0.500	80	75	38 - 110	6	35	
Acenaphthylene	0.370	0.336	0.500	0.500	74	67	47 - 120	10	30	
Acenaphthene	0.394	0.358	0.500	0.500	79	72	46 - 113	10	26	
Fluorene	0.423	0.385	0.500	0.500	85	77	58 - 104	9	25	
Phenanthrene	0.431	0.395	0.500	0.500	86	79	61 - 99	9	19	
Anthracene	0.398	0.362	0.500	0.500	80	72	55 - 122	9	19	
Fluoranthene	0.436	0.400	0.500	0.500	87	80	58 - 129	9	18	
Pyrene	0.440	0.405	0.500	0.500	88	81	57 - 126	8	25	
Benzo[a]anthracene	0.496	0.450	0.500	0.500	99	90	51 - 124	10	18	
Chrysene	0.434	0.394	0.500	0.500	87	79	53 - 123	10	20	
Benzo[b]fluoranthene	0.430	0.393	0.500	0.500	86	79	53 - 126	9	18	
Benzo(j,k)fluoranthene	0.454	0.404	0.500	0.500	91	81	51 - 126	12	23	
Benzo[a]pyrene	0.432	0.388	0.500	0.500	86	78	52 - 127	11	21	
Indeno(1,2,3-c,d)pyrene	0.432	0.380	0.500	0.500	86	76	49 - 123	13	26	
Dibenz[a,h]anthracene	0.437	0.397	0.500	0.500	87	79	39 - 125	10	31	
Benzo[g,h,i]perylene	0.432	0.386	0.500	0.500	86	77	40 - 125	11	30	
Surrogate:										
2-Fluorobiphenyl					85	76	38 - 105			
Pyrene-d10					88	79	37 - 121			
Terphenyl-d14					90	80	32 - 112			

EDB by EPA 8011

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-2-GW					_
Laboratory ID:	05-119-02					
EDB	ND	0.0095	EPA 8011	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
TCMX	88	31-144				
Client ID:	B43-KMW-6-GW					
Laboratory ID:	05-119-05					
EDB	ND	0.0096	EPA 8011	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
TCMX	92	31-144				
Client ID:	B43-DUP-GW					
Laboratory ID:	05-119-06					
EDB	ND	0.0096	EPA 8011	5-21-12	5-21-12	_
Surrogate:	Percent Recovery	Control Limits				
TCMX	92	31-144				

EDB by EPA 8011 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0521W1					
EDB	ND	0.010	EPA 8011	5-21-12	5-21-12	
Surrogate:	Percent Recovery	Control Limits				
TCMX	101	31-144				

					Source	Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB05	SB0521W1									
	SB	SBD	SB	SBD		SB	SBD				
EDB	0.100	0.0966	0.100	0.100	N/A	100	97	78-122	3	8	
Surrogate:											
TCMX						121	108	31-144			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

Page / of

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		Turnaround Request (in working days)														15	9						
Company: Hwy Project Number: Zoil - Oyl - Zo Project Name: Blocic 43 Project Manager: J. Thompson Sampled by:	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (TPH analysis 5 Days)				-HCID	NWTPH-Gx/BTEX	GX	Dx	Volatiles 8260B RIEX, EDC, NTSE Halogenated Volatiles 8260B	ated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level)	NAPHTHALENES ON	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Tetal RCRA Metals	CA Metals	etals	HEM (oil and grease) 1664	DB 8011			
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	No. of Cont.	NWTPH	NWTPH	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogen	Semivol (with lov PAHs 82	PCBs 8082	Organoc	Organop	Chlorina	Total RC	Total MT	TCLP Metals	HEM (oi	12			% Moisture
1 B-43-1-9w	5/11/12	90.5	w	14	1											1							
2 B43-2-9w		1015	1	1	/	1	8		(3)		6	Ò				1				8			
2 B43-2-9w 3 K-mw3-9w		1145		1	/											7							
4 B43-4- au		1333		13	1											1					-		
5 B43-12 Mu-cs - an		1400		14	1		\otimes	(X		Q	0				1				X			
6 B43- Dup- qu	1	0800		14	1		\otimes		8		Q	0				1			(X)			
5 B43-12 Mu-cs - an 6 B43- Dup- an	J/n/n	-	1	2		1																	
				-						1											+		
Relinquished C4	Company			1					Comm	ents/Sp	ecial	Instr	uction	IS							3		
Received 13 A		Aus						1440		-	LL. Comments									רנות			
Relinquished That		people			-	1770			for form - Up.														
Received Received		DIE .				5/11/12 1543		2															
Relinquished		Coc			4	Ш	0	1.		,		(5	10	Puc	1	ST	7	112	4	9		
Received))	1	,				
Reviewed/Date		Reviewed/Date									Chroma	tograms	s with	final r	eport								
Det	n Dankson I	and the Fill I at	D W Lave					3 5			7												

Property Location

Former American Linen Supply 700 Dexter Avenue North Seattle, Washington

FIGURE

Site-Wide Exploration Location Map

Former American Linen Supply 700 Dexter Avenue North Seattle, Washington

FIGURE

1413.001.02.003 141300102003_RIFS_7 WRH DRAWING NUMBER

12/19

Geologic Cross Section D-D'

Former American Linen Supply 700 Dexter Avenue North Seattle, Washington

FIGURE

1413.001.02.003 141300102003_RIFS_9-17

WRH

REVIEWED BY

12/19

JOB NUMBER DRAWING NUMBER

DATE

Geologic Cross Section E-E' Former American Linen Supply

700 Dexter Avenue North Seattle, Washington

FIGURE

1413.001.02.003 141300102003_RIFS_9-17

WRH

REVIEWED BY

12/19

JOB NUMBER DRAWING NUMBER

DATE

Geologic Cross Section F-F' Former American Linen Supply 700 Dexter Avenue North

FIGURE

1413.001.02.003 141300102003_RIFS_9-17

WRH

12/19

REVIEWED BY

DATE

TABLE 4-2
WATER LEVEL MEASUREMENTS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	TOC			Depth to	Groundwater
	Elevation ^a		Time of	Water	Elevation ^a
Well ID	(ft)	Date	Measure	(ft)	(ft)
Shallow					
		3/21/2019	-	21.01	34.75
		3/27/2019	-	20.88	34.88
		12/5/2019	13:55	24.88	30.88
		3/19/2020	13:51	22.35	33.41
DMW-1S	55.76	3/26/2020	-	22.37	33.39
		5/11/2020	10:20	23.28	32.48
		7/13/2020	14:27	24.33	31.43
		9/2/2020	9:34	24.99	30.77
		2/1/2021	10:00	21.41	34.35
		3/19/2020	13:48	22.89	32.85
		5/11/2020	10:26	23.76	31.98
DMW-2S	55.74	7/13/2020	14:31	24.72	31.02
		9/2/2020	9:41	24.34	31.40
		2/1/2021	10:05	21.53	34.21
		3/19/2020	13:58	22.28	39.26
	61.54	5/11/2020	10:14	22.51	39.03
DMW-4S		7/13/2020	14:51	23.11	38.43
		9/2/2020	9:30	24.18	37.36
		2/1/2021	10:18	21.48	40.06
		3/19/2020	13:38	28.91	37.17
		5/11/2020	9:50	29.28	36.80
DMW-6	66.08	7/13/2020	14:15	29.91	36.17
		9/2/2020	9:49	30.40	35.68
		2/1/2021	11:02	28.30	37.78
		3/20/2019	-	16.11	19.66
		3/26/2019	-	16.21	19.56
		7/16/2019	17:21	16.85	18.92
		12/5/2019	8:21	18.89	16.88
HMW-1S	35.77	1/13/2020	10:25	22.80	12.97
1 1101000-10	55.77	3/19/2020	14:41	24.53	11.24
		5/11/2020	9:29	26.44	9.33
		7/13/2020	11:01	dry well	
		9/2/2020	8:40	dry well	
		2/1/2021	11:26	20.78	15.99

	TOC			Depth to	Groundwater	
	Elevationa		Time of	Water	Elevation ^a	
Well ID	(ft)	Date	Measure	(ft)	(ft)	
		3/19/2019	-	21.68	25.64	
		3/26/2019	-	24.21	23.11	
		7/16/2019	15:19	23.98	23.34	
		12/5/2019	11:28	25.87	21.45	
	47.00	1/13/2020	9:32	23.45	23.87	
HMW-2S	47.32	3/19/2020	15:46	24.98	22.34	
		5/11/2020	12:47	25.82	21.50	
		7/13/2020	11:38	26.61	20.71	
		9/2/2020	10:53	26.11	21.21	
		2/1/2021	10:44	21.95	25.37	
		3/19/2020	13:17	33.25	25.29	
		5/11/2020	12:08	33.61	24.93	
HMW-9S	58.54	7/13/2020	13:05	33.94	24.60	
		9/2/2020	10:41	34.08	24.46	
		2/1/2021	10:30	31.78	26.76	
		3/19/2020	15:00	26.37	24.72	
		5/11/2020	13:01	27.11	23.98	
HMW-10S	51.09	7/13/2020	11:54	27.83	23.26	
		9/2/2020	11:05	27.97	23.12	
		2/1/2021	10:56	23.91	27.18	
		3/19/2020	14:23	35.50	9.27	
		5/11/2020	9:10	37.15	7.62	
HMW-11S	44.77	7/13/2020	11:07	37.80	6.97	
		9/2/2020	8:37	38.07	6.70	
		2/1/2021	11:16	32.53	12.24	
HMW-17S	57.35	2/1/2021	9:32	24.98	32.37	
HMW-18S	57.44	2/1/2021	9:52	25.75	31.69	
HMW-19S	61.08	2/1/2021	10:05	30.44	30.64	
HMW-20S	56.49	2/1/2021	10:41	29.73	26.76	
HMW-21S	37.92	2/1/2021	11:32	25.52	12.40	
HMW-22S	38.58	2/1/2021	11:31	26.40	12.18	
		3/26/2019	-	21.94	30.63	
		7/17/2019	12:40	27.02	25.55	
		10/21/2019	-	30.16	22.41	
		1/13/2020	-	29.30	23.27	
MW-154	52.57	3/19/2020	10:54	29.10	23.47	
		5/11/2020	-	29.44	23.13	
		7/13/2020	-	30.05	22.52	
		9/3/2020	-	29.15	23.42	
		2/1/2021	-	22.04	30.53	

	TOC			Depth to	Groundwater
	Elevation ^a		Time of	Water	Elevation ^a
Well ID	(ft)	Date	Measure	(ft)	(ft)
		3/26/2019	11:37	17.20	26.85
		10/21/2019	-	24.54	19.51
		1/13/2020	-	22.55	21.50
	44.05	3/19/2020	8:37	23.10	20.95
MW-155		5/11/2020	-	24.31	19.74
		7/13/2020	-	25.17	18.88
		9/3/2020	-	24.55	19.50
		2/1/2021	-	inaccessible	
		10/21/2019	_	28.17	31.69
		1/13/2020	-	27.85	32.01
		3/19/2020	11:28	23.83	36.03
MW-305	59.86	5/11/2020	-	25.26	34.60
		7/13/2020	-	26.44	33.42
		9/3/2020	-	27.31	32.55
		2/1/2021	_	21.23	38.63
Intermediate	- A				00.00
		10/21/2019	-	26.19	17.45
	43.64	1/13/2020	-	24.10	19.54
BB-8		5/11/2020	_	26.62	17.02
		7/13/2020	_	27.60	16.04
		2/1/2021	-	15.33	28.31
		3/19/2020	13:44	25.39	30.45
		5/11/2020	10:34	25.99	29.85
DMW-3IA	55.84	7/13/2020	14:41	26.68	29.16
		9/2/2020	9:44	26.36	29.48
		2/1/2021	10:09	22.90	32.94
		3/19/2020	13:27	31.50	28.50
		5/11/2020	10:07	32.21	27.79
HC-4	60.00	7/13/2020	14:56	33.12	26.88
		9/2/2020	9:24	33.42	26.58
		2/1/2021	10:33	30.37	29.63
		3/20/2019	-	18.61	28.95
		3/26/2019	13:39	19.11	28.45
		7/16/2019	15:44	24.28	23.28
		12/5/2019	11:40	27.83	19.73
		1/13/2020	9:32	25.48	22.08
118484 014	47.50	3/19/2020	15:29	27.29	20.27
HMW-2IA	47.56	4/10/2020	10:14	27.59	19.97
		5/11/2020	12:55	28.27	19.29
		7/13/2020	11:30	28.86	18.70
		9/2/2020	11:03	27.53	20.03
		9/3/2020	11:57	27.52	20.04
		2/1/2021	10:53	19.55	28.01

	TOC			Donth to	Groundwater	
	Elevation			Depth to Water	Elevation ^a	
Well ID	(ft)	Date	Time of Measure	(ft)	(ft)	
WOII ID	(1-7)	3/19/2019	-	23.71	31.07	
		3/26/2019	10:51	23.99	30.79	
		7/16/2019	16:29	28.11	26.67	
		12/5/2019	12:14	30.82	23.96	
		1/13/2020	9:24	29.86	24.92	
HMW-3IA	54.78	3/19/2020	15:52	29.54	25.24	
T IIVIVV-SIA	34.70	4/10/2020				
			12:53	29.70	25.08	
		5/11/2020	12:21	30.05	24.73	
		7/13/2020	13:48	30.58	24.20	
		9/2/2020	11:50	30.27	24.51	
		2/1/2021	10:00	24.59	30.19	
		3/19/2020	16:13	33.43	27.84	
	04.07	5/11/2020	11:58	34.25	27.02	
HMW-6IA	61.27	7/13/2020	13:33	36.05	25.22	
		9/2/2020	10:24	35.53	25.74	
		2/1/2021	10:13	33.25	28.02	
	58.21	3/19/2020	13:06	34.18	24.03	
		5/11/2020	12:14	34.48	23.73	
HMW-9IA		7/13/2020	13:14	34.95	23.26	
		9/2/2020	10:46	34.91	23.30	
		2/1/2021	10:35	30.89	27.32	
HMW-20IA	56.47	2/1/2021	10:39	27.77	28.70	
		3/26/2019	16:02	18.62	18.80	
		7/17/2019	14:49	18.97	18.45	
		7/30/2019	11:25	19.18	18.24	
		10/21/2019	-	20.44	16.98	
MW-119	37.42	1/13/2020	-	22.31	15.11	
		3/19/2020	9:03	28.14	9.28	
		5/11/2020	-	29.32	8.10	
		7/13/2020	-	29.96	7.46	
		2/1/2021	-	24.79	12.63	
		3/26/2019	11:20	21.12	31.22	
		7/17/2019	12:35	30.16	22.18	
		10/21/2019	-	33.98	18.36	
		1/13/2020	-	32.90	19.44	
MW-146	52.34	3/19/2020	10:59	33.66	18.68	
		5/11/2020	-	33.90	18.44	
		7/13/2020	-	34.35	17.99	
		9/3/2020	-	31.90	20.44	
		2/1/2021	-	22.24	30.10	
		Z1 11ZUZ 1	_	44.4	50.10	

	TOC			Depth to	Groundwater
	Elevation ^a		Time of	Water	Elevation ^a
Well ID	(ft)	Date	Measure	(ft)	(ft)
		10/21/2019	-	30.04	29.44
		1/13/2020	-	29.63	29.85
		3/19/2020	10:43	28.75	30.73
MW-306	59.48	5/11/2020	-	29.29	30.19
		7/13/2020	-	29.98	29.50
		9/3/2020	-	30.39	29.09
		2/1/2021	-	26.39	33.09
		10/21/2019	-	27.08	22.10
		1/13/2020	-	25.80	23.38
MW-315	49.18	3/19/2020	11:21	27.24	21.94
10100-313	49.10	5/11/2020	-	28.12	21.06
		7/13/2020	-	28.65	20.53
		2/1/2021	-	22.31	26.87
		10/21/2019	-	23.69	17.21
		1/13/2020	-	25.57	15.33
MW-325	40.90	3/19/2020	9:23	31.64	9.26
10100-020		5/11/2020	-	33.31	7.59
		7/13/2020	-	34.03	6.87
		2/1/2021	-	28.79	12.11
Intermediate	e В				
		3/20/2019	-	19.29	19.13
		3/26/2019	15:18	19.47	18.95
		5/16/2019	13:23	19.22	19.20
		7/17/2019	14:00	19.87	18.55
		7/17/2019	14:32	19.89	18.53
		8/15/2019	17:05	20.25	18.17
		12/5/2019	8:11	21.91	16.51
HMW-1IB	38.42	1/13/2020	10:27	20.79	17.63
		3/19/2020	14:37	28.58	9.84
		4/10/2020	11:19	29.39	9.03
		5/11/2020	9:26	29.90	8.52
		7/13/2020	10:56	30.57	7.85
		9/2/2020	8:53	30.78	7.64
		9/10/2020	11:15	30.78	7.64
		2/1/2021	11:22	25.55	12.87

	TOC			Depth to	Groundwater
	Elevation ^a		Time of	Water	Elevation ^a
Well ID	(ft)	Date	Measure	(ft)	(ft)
		3/20/2019	-	27.50	19.73
		3/26/2019	-	27.32	19.91
		7/16/2019	15:09	28.29	18.94
		12/5/2019	11:35	30.51	16.72
		1/13/2020	9:33	31.02	16.21
HMW-2IB	47.00	3/12/2020	13:37	36.15	11.08
HIVIVV-ZID	47.23	3/19/2020	15:35	36.33	10.90
		4/10/2020	9:18	37.11	10.12
		5/11/2020	12:50	37.68	9.55
		7/13/2020	11:41	38.41	8.82
		9/2/2020	15:48	38.43	8.80
		2/1/2021	10:49	33.32	13.91
		3/19/2019	-	29.50	29.03
		3/26/2019	16:54	30.21	28.32
		7/17/2019	11:53	33.10	25.43
		12/5/2019	11:59	35.08	23.45
		1/13/2020	9:28	34.20	24.33
HMW-4IA	58.53	3/19/2020	16:07	33.70	24.83
		4/10/2020	12:57	33.79	24.74
		5/11/2020	12:02	34.11	24.42
		7/13/2020	13:22	34.71	23.82
		9/2/2020	12:57	34.56	23.97
		2/1/2021	10:23	30.68	27.85
		3/19/2020	16:02	34.60	26.39
		5/11/2020	12:32	35.09	25.90
HMW-5IB	60.99	7/13/2020	13:40	35.72	25.27
		9/2/2020	10:21	35.75	25.24
		2/1/2021	10:07	31.47	29.52
		3/19/2020	16:36	34.87	26.74
		5/11/2020	11:52	35.22	26.39
HMW-6IB	61.61	7/13/2020	13:31	36.01	25.60
		9/2/2020	10:27	36.48	25.13
		2/1/2021	10:15	33.86	27.75
		3/19/2020	16:41	35.61	25.77
		5/11/2020	11:48	36.10	25.28
HMW-7IB	61.38	7/13/2020	13:26	36.87	24.51
·		9/2/2020	10:31	37.11	24.27
		2/1/2021	10:17	34.54	26.84
		3/19/2020	16:45	36.69	24.09
		5/11/2020	12:05	37.08	23.70
HMW-8IB	60.78	7/13/2020	13:19	37.62	23.16
		9/2/2020	10:38	37.49	23.29
		2/1/2021	10:27	33.26	27.52

	TOC			Depth to	Groundwater
	Elevation ^a		Time of	Water	Elevation ^a
Well ID	(ft)	Date	Measure	(ft)	(ft)
		3/19/2020	11:51	36.54	21.35
		5/11/2020	12:11	37.15	20.74
HMW-9IB	57.89	7/13/2020	13:08	37.60	20.29
		9/2/2020	10:44	36.60	21.29
		2/1/2021	10:33	29.99	27.90
		3/19/2020	14:26	33.50	9.41
		5/11/2020	9:17	35.06	7.85
HMW-11IB	42.91	7/13/2020	11:11	35.81	7.10
		9/2/2020	8:35	36.06	6.85
		2/1/2021	11:13	30.61	12.30
HMW-15IB	58.33	9/2/2020	7:55	40.54	17.79
I IIVIVV-I JID	50.55	2/1/2021	10:20	39.61	18.72
HMW-16IB	56.80	9/2/2020	10:17	39.57	17.23
T IIVIVV - TOID	00.00	2/1/2021	9:27	33.08	23.72
		3/26/2019	11:16	26.36	25.49
		7/17/2019	12:30	31.53	20.32
		10/21/2019	-	36.23	15.62
	51.85	1/13/2020	-	34.45	17.40
MW-147		3/19/2020	11:04	37.68	14.17
		5/11/2020	-	38.56	13.29
		7/13/2020	-	38.50	13.35
		9/3/2020	-	34.71	17.14
		2/1/2021	-	27.75	24.10
		3/26/2019	11:40	24.21	19.70
		10/21/2019	-	26.92	16.99
		1/13/2020	-	28.07	15.84
MW-148	43.91	3/19/2020	11:12	32.80	11.11
		5/11/2020	-	33.80	10.11
		7/13/2020	-	34.47	9.44
		9/3/2020	-	34.43	9.48
		2/1/2021 10/21/2019	-	inaccessible 41.65	10.56
		1/13/2020	-		18.56
		3/19/2020	10:36	41.55 43.34	18.66 16.87
MW-307	60.21	5/11/2020	10.30	43.34 43.90	16.87 16.31
10100-007	00.21	7/13/2020		43.90 44.69	15.52
		9/3/2020		44.09	15.74
		2/1/2021		42.38	17.83
		10/21/2019	_	31.72	17.72
		1/13/2020	-	32.70	16.74
		3/19/2020	9:35	37.66	11.78
MW-316	49.44	5/11/2020	-	38.95	10.49
		7/13/2020	-	39.74	9.70
		2/1/2021	-	35.07	14.37
		Z/ 1/2U2 I		55.07	17.01

	TOC			Depth to	Groundwater
	Elevation ^a		Time of	Water	Elevation ^a
Well ID	(ft)	Date	Measure	(ft)	(ft)
Deep					
		3/26/2019	15:29	19.99	18.32
		5/16/2019	13:38	19.56	18.75
		7/16/2019	17:38	20.06	18.25
		7/17/2019	13:05	20.13	18.18
FMW-129	38.31	7/30/2019	12:22	20.34	17.97
1 10100-129	30.31	10/21/2019	-	21.54	16.77
		1/13/2020	-	24.49	13.82
		3/19/2020	-	-	-
		5/11/2020	-	29.20	9.11
		7/13/2020	-	29.80	8.51
		3/20/2019	-	20.33	17.72
		3/26/2019	14:22	20.34	17.71
		5/16/2019	13:10	19.90	18.15
		7/16/2019	17:32	20.28	17.77
		7/17/2019	14:09	20.32	17.73
		7/30/2019	12:21	20.50	17.55
		8/15/2019	16:20	20.60	17.45
		12/5/2019	8:41	25.56	12.49
HMW-1D	38.05	1/13/2020	10:24	23.40	14.65
HIVIVV-1D		3/9/2020	16:30	28.29	9.76
		3/19/2020	14:30	28.53	9.52
		4/10/2020	11:17	29.29	8.76
		5/11/2020	9:23	29.55	8.50
		7/13/2020	10:51	30.39	7.66
		9/2/2020	8:43	30.40	7.65
		9/16/2020	8:25	30.48	7.57
		9/16/2020	8:51	30.45	7.60
		2/1/2021	11:18	26.78	11.27
		3/19/2019	-	27.98	19.25
		3/26/2019	13:02	26.48	20.75
		5/16/2019	12:42	27.95	19.28
		7/16/2019	15:56	28.66	18.57
		8/15/2019	15:27	29.17	18.06
		12/5/2019	11:44	30.52	16.71
		1/13/2020	9:34	30.31	16.92
HMW-2D	47.23	3/12/2020	10:12	35.94	11.29
I IIVIV V -ZD	77.20	3/19/2020	15:41	36.06	11.17
		3/27/2020	-	36.04	11.19
		4/10/2020	10:15	36.75	10.48
		5/11/2020	12:53	37.18	10.05
		7/13/2020	11:34	37.84	9.39
		9/2/2020	11:02	37.94	9.29
		9/3/2020	11:37	37.95	9.28
		2/1/2021	10:47	33.53	13.70

	TOC			Depth to	Groundwater
	Elevation		т	Water	Elevation ^a
Well ID	(ft)	Date	Time of Measure	(ft)	(ft)
WOII ID	(1-)	3/19/2019	-	38.90	17.50
		3/26/2019	10:35	38.77	17.63
		7/16/2019			. —
		12/5/2019	17:04 12:07	39.11	17.29 16.80
				39.60	
		1/13/2020	9:26	39.62	16.78
		3/12/2020	12:08	41.82	14.58
1 IN 41 A / O D	50.40	3/19/2020	15:56	41.86	14.54
HMW-3D	56.40	3/27/2020	-	42.29	14.11
		4/10/2020	12:55	42.43	13.97
		5/11/2020	12:24	42.57	13.83
		7/13/2020	13:45	43.31	13.09
		9/2/2020	10:15	43.26	13.14
		9/2/2020	11:54	43.31	13.09
		9/2/2020	12:17	43.29	13.11
		2/1/2021	9:56	42.15	14.25
		3/19/2020	16:32	46.89	14.60
		5/11/2020	11:54	47.65	13.84
HMW-6D	61.49	7/13/2020	13:36	48.39	13.10
		9/2/2020	10:25	48.48	13.01
		2/1/2021 10:11 47.25			14.24
		3/19/2020	13:10	43.55	14.59
		5/11/2020	12:16	44.46	13.68
HMW-9D	58.14	7/13/2020	13:11	45.17	12.97
		9/2/2020	10:48	45.09	13.05
		2/1/2021	10:37	42.95	15.19
		3/19/2020	14:55	39.97	11.06
		3/25/2020	-	40.32	10.71
		5/11/2020	13:03	41.37	9.66
HMW-10D	51.03	7/13/2020	11:50	42.14	8.89
		9/2/2020	11:07	42.33	8.70
		2/1/2021	10:58	37.53	13.50
		9/2/2020	8:55	27.49	8.37
HMW-12D	35.86	2/1/2021	11:20	23.35	12.51
HMW-13D	45.08	2/1/2021	11:06	33.40	11.68
	.0.00	9/2/2020	8:29	36.34	9.77
HMW-14D	46.11	2/1/2021	11:10	33.12	12.99
		10/21/2019		27.47	16.65
		1/13/2020		28.75	15.37
MW-105	44.12	5/11/2020		33.01	
10100-103	44.1∠		-		11.11
		7/13/2020	-	33.82	10.30
		2/1/2021	-	31.11	13.01

Well ID	TOC Elevation ^a (ft)	Date	Time of Measure	Depth to Water (ft)	Groundwater Elevation ^a (ft)
	. ,	3/26/2019	11:10	34.43	17.56
		7/17/2019	12:23	34.62	17.37
		10/21/2019	-	35.25	16.74
		1/13/2020	-	35.56	16.43
MW-106	51.99	3/19/2020	8:27	38.23	13.76
		5/11/2020	-	38.87	13.12
		7/13/2020	-	39.58	12.41
		2/1/2021	-	37.82	14.17
		3/26/2019	-	36.85	17.50
		7/17/2019	12:45	37.11	17.24
		10/21/2019	-	37.60	16.75
		1/13/2020	-	38.80	15.55
MW-153	54.35	3/19/2020	10:49	40.14	14.21
		5/11/2020	-	40.67	13.68
		7/13/2020	-	41.55	12.80
		9/3/2020	-	41.37	12.98
		2/1/2021	-	40.15	14.20
		10/21/2019	-	24.22	16.75
		1/13/2020	-	26.40	14.57
MW-326	40.97	3/19/2020	9:17	31.50	9.47
10100-020	40.81	5/11/2020	-	32.44	8.53
		7/13/2020	-	33.37	7.60
		2/1/2021	-	29.85	11.12

Notes:

a. Elevations referenced to North American Vertical Datum of 1988 (NAVD88).

ft = feet.

TOC = Top of Casing.

TABLE 5-2 SUMMARY OF EXPLORATIONS SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

							Eleva	ation ^g		Well S	Screen		Bottom	of Boring			
Boring/Well ID	Status ^a	Logs? ^f	Well Tag	Northing	Easting	Date Completed	Surface (ft)	TOC (ft)	Top of Screen Depth (ft)	Bottom of Screen Depth (ft)	Top of Screen Elevation ^g (ft)	Bottom of Screen Elevation ^g (ft)	Depth (ft)	Elevation ^g (ft)	Well Casing Diameter (in)	Grab Groundwater? ^{f,h}	Report Reference
SOIL BORING	SS																
B-215	-	Y	-	231782.5	1268432.7	09/13/17	53.95	-	-	-	-	-	95	-41.05	-	N	PES Environmental 2019
B-404	-	Y	-	231557.3	1268925.5	04/02/70	39.50	-	-	-	-	-	68.4	-28.90	-	N	Shannon & Wilson 1971
B-414	-	Y	-	231686.9	1268874.9	04/09/70	43.52	-	-	-	-	-	62.4	-18.88	-	N	Shannon & Wilson 1971
B-432	-	Y	-	231771.9	1268871.5	04/28/70	36.35	-	-	-	-	-	73.5	-37.15	-	N	Shannon & Wilson 1971
B-434	-	Y	-	231547.7	1268855.6	04/30/70	42.73	-	-	-	-	-	63	-20.27	-	N	Shannon & Wilson 1971
GP-7	-	Y	-	231566.4	1268321.0	05/14/12	58.53	-	-	-	-	-	11	47.53	-	-	Shannon & Wilson 2012
GP-8	-	Y	-	231600.2	1268321.4	05/14/12	58.33	-	-	-	-	-	12	46.33	-	-	Shannon & Wilson 2012
GP-9	-	Y	-	231641.5	1268303.4	05/14/12	58.00	-	-	-	-	-	19	39.00	-	-	Shannon & Wilson 2012
21417-MB1	-	Υ	-	231725.7	1268417.2	05/12/17	55.43	-	-	-	-	-	10.2	45.23	-	N	Shannon & Wilson 2018b
21417-MB2	-	Y	-	231691.4	1268428.0	05/12/17	54.72	-	-	-	-	-	10	44.72	-	N	Shannon & Wilson 2018b
21417-MB3	-	Υ	-	231536.5	1268405.4	05/12/17	58.63	-	-	-	-	-	29	29.63	-	N	Shannon & Wilson 2018b
21417-MB4	-	Y	-	231529.1	1268457.1	05/12/17	57.24	-	15	25	42.24	32.24	25	32.24	1	Y	Shannon & Wilson 2018b
21417-MB5	-	Y	-	231634.5	1268567.3	05/12/17	51.91	-	-	-	-	-	10	41.91	-	N	Shannon & Wilson 2018b
21417-MB6	-	Υ	-	231702.7	1268671.1	05/11/17	48.22	-	-	-	-	-	15	33.22	-	N	Shannon & Wilson 2018b
21417-MB7	-	Y	-	231595.5	1268688.0	05/11/17	47.38	-	-	-	-	-	12	35.38	-	N	Shannon & Wilson 2018b
21417-MB8	-	Y	-	231713.1	1268726.6	05/11/17	45.28	-	-	-	-	-	28	17.28	-	N	Shannon & Wilson 2018b
21417-MB9	-	Y	-	231675.5	1268902.0	05/11/17	39.05	-	15	25	24.05	14.05	25	14.05	1	Y	Shannon & Wilson 2018b
21417-MB10	-	Y	-	231628.1	1268906.6	05/11/17	38.08	-	20	30	18.08	8.08	30	8.08	1	Y	Shannon & Wilson 2018b
21417-MB11	-	Y	-	231588.5	1268904.0	05/11/17	39.04	-	15	25	24.04	14.04	25	14.04	1	Y	Shannon & Wilson 2018b
MBB-1	-	Y	-	231703.2	1268422.6	02/27/20	55.02	-	32	37	23.02	18.02	40	15.02	2	Y	Hart Crowser RI
MBB-2	-	Y	-	231687.6	1268418.4	02/27/20	55.45	-	32	37	23.45	18.45	40	15.45	2	Y	Hart Crowser RI
MBB-3	-	Y	-	231679.0	1268431.0	02/27/20	54.84	-	32	37	22.84	17.84	40	14.84	2	Y	Hart Crowser RI
MBB-4	-	Υ	-	231685.4	1268438.5	02/27/20	54.61	-	32	37	22.61	17.61	40	14.61	2	Y	Hart Crowser RI
MBB-5	-	Y	-	231669.7	1268575.9	03/02/20	50.53	-	32	37	18.53	13.53	40	10.53	2	Y	Hart Crowser RI
MBB-6	-	Y	-	231665.2	1268588.9	03/03/20	50.33	-	25	30	25.33	20.33	40	10.33	2	Y	Hart Crowser RI
MBB-7	-	Y	-	231704.9	1268625.5	02/25/20	49.41	-	27	32	22.41	17.41	40	9.41	2	Y	Hart Crowser RI
MBB-8	-	Y	-	231658.2	1268630.3	02/26/20	49.66	-	27	32	22.66	17.66	40	9.66	2	Y	Hart Crowser RI
MBB-9	-	Y	-	231652.0	1268676.8	02/26/20	47.55	-	27	32	20.55	15.55	40	7.55	2	Y	Hart Crowser RI
MBB-10	-	Y	-	231698.9	1268686.2	02/26/20	49.66	-	35	40	14.66	9.66	40	9.66	2	Y	Hart Crowser RI
MBB-11	-	Y	-	231668.8	1268866.8	03/04/20	46.42	-	-	-	-	-	35	11.42	-	N	Hart Crowser RI
MBB-12	-	Y	-	231696.9	1268907.2	03/04/20	33.69	-	27	32	6.69	1.69	35	-1.31	2	Y	Hart Crowser RI
MBB-13	-	Y	-	231671.4	1268913.6	03/04/20	35.98	-	30	35	5.98	0.98	35	0.98	2	Y	Hart Crowser RI
MBB-14	-	Y	-	231635.2	1268863.7	03/03/20	47.15	-	-	-	-	-	35	12.15	-	N	Hart Crowser RI
MBB-15	-	Y	-	231638.1	1268912.6	03/04/20	37.73	-	30	35	7.73	2.73	35	2.73	2	Y	Hart Crowser RI
MBB-16	-	Y	-	231702.0	1268460.8	09/02/20	53.70	-	30	40	23.7	13.7	40.4	13.30	-	Y	Hart Crowser RI
MBB-17	-	Y	-	231591.6	1268507.7	09/01/20	54.88	-	-	-	-	-	31.5	23.38	-	N	Hart Crowser RI
MBB-18	-	Y	-	231636.5	1268579.6	09/01/20	51.33	-	-	-	-	-	20.8	30.53	-	N	Hart Crowser RI

							Eleva	ation ^g		Well	Screen		Bottom (of Boring			
Boring/Well ID	Status ^a	Logs? ^f	Well Tag	Northing	Easting	Date Completed	Surface (ft)	TOC (ft)	Top of Screen Depth (ft)	Bottom of Screen Depth (ft)	Top of Screen Elevation ⁹ (ft)	Bottom of Screen Elevation ⁹ (ft)	Depth (ft)	Elevation ⁹ (ft)	Well Casing Diameter (in)	Grab Groundwater? ^{f,h}	Report Reference
MBB-19	-	Υ	-	231595.4	1268589.9	09/01/20	51.68	-	-	-	-	-	20.8	30.88	-	N	Hart Crowser RI
MBB-20	-	Y	-	231693.1	1268688.0	09/02/20	47.53	-	-	-	-	-	20.5	27.03	-	N	Hart Crowser RI
MBB-21	-	Y	-	231570.0	1268696.9	09/02/20	47.60	-	-	-	-	-	20.9	26.70	-	N	Hart Crowser RI
MBB-22	-	Υ	-	231639.0	1268767.4	09/21/20	42.05	-	-	-	-	-	36.5	5.55	-	N	Hart Crowser RI
MBB-23	-	Υ	-	231689.5	1268760.4	09/21/20	47.18	-	-	-	-	-	35.8	11.38	-	N	Hart Crowser RI
MBB-24	-	Υ	-	231640.9	1268449.0	09/09/20	54.10	-	30	40	24.1	14.1	40.4	13.70	-	Y	Hart Crowser RI
MBB-25	-	Υ	-	231525.0	1268366.1	10/30/20	58.63	-	30	40	28.63	18.63	40	18.63	-	Y	Hart Crowser RI
MBB-26	-	Υ	-	231500.3	1268385.4	10/29/20	58.79	-	30	40	28.79	18.79	40	18.79	-	Y	Hart Crowser RI
MBGW-1	-	Υ	-	231717.9	1268814.4	03/06/19	39.95	-	20	30	19.95	9.95	30	9.95	2	Y	Hart Crowser RI
MBGW-2	-	Υ	-	231675.9	1268809.6	03/04/19	46.11	-	20	30	26.11	16.11	81	-34.89	2	Y	Hart Crowser RI
MBGW-3	-	Υ	-	231688.0	1268669.1	03/07/19	47.77	-	16	26	31.77	21.77	28	19.77	2	Y	Hart Crowser RI
MBGW-4	-	Y	-	231686.8	1268722.5	03/06/19	47.30	-	-	-	-	-	25	22.30	-	N	Hart Crowser RI
MBGW-5	-	Υ	-	231683.8	1268585.2	03/11/19	49.87	-	20	30	29.87	19.87	76.5	-26.63	2	Y	Hart Crowser RI
MBGW-6	-	Υ	-	231694.9	1268490.7	03/14/19	52.50	-	20	30	32.5	22.5	30.5	22.00	2	Y	Hart Crowser RI
MBGW-7	-	Y	-	231624.5	1268489.7	03/06/19	53.76	-	30	40	23.76	13.76	75.3	-21.54	2	Y	Hart Crowser RI
MBGW-8	-	Υ	-	231577.5	1268709.9	03/15/19	47.08	-	15	25	32.08	22.08	76.5	-29.42	2	Y	Hart Crowser RI
MBGW-9	-	Υ	-	231553.8	1268464.9	03/13/19	56.84	-	20	30	36.84	26.84	31.5	25.34	2	Y	Hart Crowser RI
MBGW-10	-	Υ	-	231523.6	1268494.8	03/13/19	55.25	-	20	30	35.25	25.25	30.9	24.35	2	Y	Hart Crowser RI
MBGW-11	-	Υ	-	231510.4	1268442.2	03/12/19	57.55	-	35	45	22.55	12.55	50	7.55	2	Y	Hart Crowser RI
MBGW-12	-	Υ	-	231726.0	1268449.4	03/15/19	54.00	-	17.5	27.5	36.5	26.5	30.9	23.10	2	Y	Hart Crowser RI
MBGW-13	-	Υ	-	231693.1	1268435.0	03/14/19	54.72	-	20	30	34.72	24.72	31.5	23.22	2	Y	Hart Crowser RI
MBGW-14	-	Υ	-	231615.6	1268872.1	03/06/19	46.09	-	20	30	26.09	16.09	30	16.09	2	Y	Hart Crowser RI
MBGW-15	-	Y	-	231568.7	1268885.7	03/11/19	40.87	-	20	30	20.87	10.87	81	-40.13	2	Y	Hart Crowser RI
MBGW-16	-	Υ	-	231546.5	1268567.1	03/14/19	52.14	-	20	30	32.14	22.14	75.5	-23.36	2	Y	Hart Crowser RI
MBPP-1	-	Y	-	231635.9	1268801.4	03/05/19	45.28	-	-	-	-	-	30	15.28	-	N	Hart Crowser RI
MBPP-2	-	Y	-	231575.5	1268828.3	03/05/19	44.46	-	-	-	-	-	30	14.46	-	N	Hart Crowser RI
MBPP-3	-	Y	-	231593.9	1268746.6	03/06/19	45.89	-	-	-	-	-	30	15.89	-	N	Hart Crowser RI
MBPP-4	-	Y	-	231619.1	1268667.7	03/07/19	48.34	-	-	-	-	-	18	30.34	-	N	Hart Crowser RI
MBPP-5	-	Y	-	231721.9	1268693.2	03/07/19	45.92	-	18	28	27.92	17.92	28	17.92	2	Y	Hart Crowser RI
MBPP-6	-	Y	-	231604.6	1268569.5	03/08/19	52.26	-	-	-	-	-	30	22.26	-	N	Hart Crowser RI
MBPP-7	-	Y	-	231725.5	1268551.4	03/08/19	49.77	-	-	-	-	-	23	26.77	-	N	Hart Crowser RI
MBPP-8	-	Y	-	231588.6	1268424.6	03/08/19	57.52	-	-	-	-	-	30	27.52	-	N	Hart Crowser RI

							Eleva	ntion ^g		\McII 9	Screen		Bottom	of Boring			
/							Eleva	auon*		vveils	Top of	Bottom of	Dottom	of Boring	Well		
									Top of	Bottom of	Screen	Screen			Casing		
Boring/Well		,				Date			Screen	Screen	Elevation ^g	Elevation ^g		Elevation ^g	Diameter	Grab	
ID	Status	Logs? [†]	Well Tag	Northing	Easting	Completed	Surface (ft)	TOC (ft)	Depth (ft)	Depth (ft)	(ft)	(ft)	Depth (ft)	(ft)	(in)	Groundwater? ^{f,h}	Report Reference
MONITORING	WELLS																
Shallow	ı		ı			1	ı		ı	1		ı			ı	1	
BB-10	D	Υ	-	231732.0	1268341.6	08/29/97	57.40	-	29	39	28.4	18.4	60.5	-3.10	2	N	Black & Veatch 1998
HMW-1S	-	Υ	BLI532	231663.1	1268917.0	03/06/19	36.01	35.73	20	30	16.01	6.01	31.5	4.51	2	N	Hart Crowser RI
HMW-2S	-	Υ	BLR924	231667.7	1268683.1	03/13/19	47.39	47.28	19.8	29.8	27.59	17.59	30	17.39	2	N	Hart Crowser RI
HMW-9S	-	Υ	BLZ189	231607.5	1268475.2	03/02/20	55.39	58.54	25	35	30.39	20.39	40	15.39	2	N	Hart Crowser RI
HMW-10S	-	Υ	BLZ193	231564.8	1268682.5	03/03/20	48.21	51.09	24.7	34.7	23.51	13.51	40	8.21	2	N	Hart Crowser RI
HMW-11S	-	Υ	BLZ195	231575.0	1268889.2	02/24/20	41.47	44.77	25	35	16.47	6.47	40	1.47	2	N	Hart Crowser RI
HMW-17S	-	Υ	BMP351	231712.9	1268386.3	09/03/20	57.21	57.35	35	45	22.21	12.21	45.5	11.71	2	N	Hart Crowser RI
HMW-18S	-	Υ	BMP352	231676.5	1268386.9	09/03/20	57.61	57.44	35	45	22.61	12.61	45.3	12.31	2	N	Hart Crowser RI
HMW-19S	-	Υ	BMP353	231643.0	1268383.9	09/08/20	58.20	61.08	35	45	23.2	13.2	46.4	11.80	2	N	Hart Crowser RI
HMW-20S	-	Υ	BMP354	231637.0	1268512.5	09/08/20	53.81	56.49	25	35	28.81	18.81	35.8	18.01	2	N	Hart Crowser RI
HMW-21S	-	Υ	BMP373	231626.2	1268924.2	10/20/20	38.17	37.92	30	40	8.17	-1.83	41.5	-3.33	2	N	Hart Crowser RI
HMW-22S	-	Υ	BMP374	231592.8	1268923.7	10/22/20	38.75	38.58	27	37	11.75	1.75	38.5	0.25	2	N	Hart Crowser RI
MW-154	-	N	BKF350	231736.0	1268482.2	03/30/18	53.22	52.57	25	35	28.22	18.22	35	18.22	2	N	PES Environmental 2019
MW-155	-	N	BKF354	231735.4	1268717.5	04/10/18	44.47	44.05	20	30	24.47	14.47	30	14.47	2	N	PES Environmental 2019
Intermediate A	١																
BB-5	D	Υ	-	231594.4	1268646.9	09/03/97	49.48	-	30	40	19.48	9.48	78	-28.52	2	N	Black & Veatch 1998
BB-8	-	Υ	-	231762.7	1268707.1	06/06/97	43.72	43.69	30	40	13.72	3.72	78.5	-34.78	2	N	Black & Veatch 1998
BB-8A	D	N	-	231763.5	1268720.0	-	43.36	-	-	40.3	-	3.06	-	-	-	N	DOF 2009 ^b
HMW-2IA	-	Υ	-	231646.6	1268697.0	03/08/19	45.55	47.51	34.8	44.8	10.75	0.75	46	-0.45	2	N	Hart Crowser RI
HMW-3IA	-	Υ	BLR925	231681.8	1268425.8	03/15/19	55.02	54.75	34.8	44.8	20.22	10.22	45.5	9.52	2	N	Hart Crowser RI
HMW-6IA	-	Υ	BLZ185	231552.5	1268379.7	03/02/20	58.65	61.27	37.5	47.5	21.15	11.15	50	8.65	2	N	Hart Crowser RI
HMW-9IA	-	Υ	BLZ190	231610.7	1268480.4	02/28/20	55.26	58.21	36.7	46.7	18.56	8.56	50	5.26	2	N	Hart Crowser RI
HMW-20IA	-	Υ	BMP356	231634.1	1268516.1	09/09/20	53.83	56.47	41	51	12.83	2.83	51.3	2.53	2	N	Hart Crowser RI
MW-114	Α	Υ	BHS768	231656.1	1268537.7	12/10/12	42.43	45.84	35	45	7.43	-2.57	45	-2.57	2	N	SoundEarth Strategies 2013
MW-117	D	Υ	BHS885	231643.7	1268343.7	12/10/12	57.78	56.9	40	55	17.78	2.78	45.5	12.28	2	N	SoundEarth Strategies 2013
MW-118	D	Υ	BIC079	231491.4	1268503.4	03/21/13	54.50	52.91	40	50	14.5	4.5	55.5	-1.00	2	N	SoundEarth Strategies 2013
MW-119	-	Υ	BIC080	231653.1	1268925.2	03/21/13	37.59	37.42	35	45	2.59	-7.41	45	-7.41	2	N	SoundEarth Strategies 2013
MW-146	-	N	BKF349	231735.7	1268490.1	03/30/18	52.86	52.34	39.8	49.8	13.06	3.06	50	2.86	2	N	PES Environmental 2019
MW-315	-	N	BMF570	231538.6	1268645.5	09/11/19	49.56	49.18	37.5	47.4	12.06	2.16	48	1.56	2	N	PES Environmental 2019
MW-325	-	N	BMF585	231553.5	1268886.3	09/11/19	41.42	40.9	34.5	44.5	6.92	-3.08	44.7	-3.28	2	N	PES Environmental 2019
Intermediate B	3					<u> </u>	l.		<u> </u>	<u> </u>				<u> </u>	l.		
HMW-1IB	-	Υ	BLR917	231653.1	1268903.5	03/13/19	38.29	38.38	54.3	64.3	-16.01	-26.01	65.5	-27.21	2	N	Hart Crowser RI
HMW-2IB	-	Υ	BLR923	231653.0	1268687.0	03/12/19	47.41	47.19	52.8	62.8	-5.39	-15.39	66.5	-19.09	2	N	Hart Crowser RI
HMW-4IA ^c	-	Υ	BLI162	231558.7	1268409.6	03/07/19	58.70	58.53	50	60	8.7	-1.3	81.5	-22.80	2	N	Hart Crowser RI
HMW-5IB	-	Y	BLZ188	231613.0	1268382.8	02/28/20	58.44	60.99	49.7	59.7	8.74	-1.26	70	-11.56	2	N	Hart Crowser RI
HMW-6IB	-	Y	BLZ186	231548.1	1268380.8	03/03/20	58.67	61.61	50	60	8.67	-1.33	70	-11.33	2	N	Hart Crowser RI
HMW-7IB	-	Y	BLZ159	231522.5	1268383.3	03/02/20	58.69	61.38	49.7	59.7	8.99	-1.01	70	-11.31	2	N	Hart Crowser RI
HMW-8IB	-	Y	BLZ158	231559.1	1268433.8	03/02/20	57.97	60.78	50.5	60.5	7.47	-2.53	70	-12.03	2	N	Hart Crowser RI
HMW-9IB	-	Y	BLZ191	231604.9	1268480.1	02/28/20	55.36	57.89	57	67	-1.64	-11.64	70	-14.64	2	N	Hart Crowser RI
HMW-11IB	-	Y	BLZ196	231565.1	1268891.7	02/24/20	39.70	42.91	44.9	54.9	-5.17	-15.17	70	-30.30	2	N	Hart Crowser RI
HMW15IB		Y	BMP316	231512.3	1268389.5	07/16/20	58.86	58.33	64	73	-5.14	-14.14	76.5	-17.64	2	N	Hart Crowser RI
HMW16IB		Υ	BMP315	231724.0	1268386.5	07/14/20	57.02	56.8	55	65	2.02	-7.98	76.5	-17.04	2	N	Hart Crowser RI
MW-147	<u>-</u>	Y	BKF351	231724.0	1268498.0	04/02/18	52.49	51.85	70	80	-17.51	-27.51	80	-19.46	2	N	PES Environmental 2019
MW-148	<u>-</u>	Υ	BKF353	231734.0	1268722.0	04/02/18	44.29	43.91	70	80	-25.71	-35.71	80.5	-36.21	2	N	PES Environmental 2019
19199-140	ļ	Υ	BMF569	231734.0	1268641.6	09/09/19	44.29 49.71	49.44	59.8	69.8	-25.71 -10.09	-35.71	70	-20.29	2	N N	PES Environmental 2019

							Eleva	tion ^g		Well	Screen		Bottom o	of Boring			
Boring/Well						Date			Top of Screen	Bottom of Screen	Top of Screen Elevation ⁹	Bottom of Screen Elevation ⁹	(2)	Elevation ^g	Well Casing Diameter	Grab	
ID	Status ^a	Logs? ¹	Well Tag	Northing	Easting	Completed	Surface (ft)	TOC (ft)	Depth (ft)	Depth (ft)	(ft)	(ft)	Depth (ft)	(ft)	(in)	Groundwater? ^{f,h}	Report Reference
Deep																	
FMW-129	-	Υ	BIE085	231708.1	1268874.6	05/16/14	38.64	38.31	84.2	89.2	-45.56	-50.56	119	-80.36	2	Y	Farallon ^d
HMW-1D	-	Υ	BLI197	231641.8	1268907.5	03/04/19	38.07	37.99	80	90	-41.93	-51.93	90	-51.93	2	N	Hart Crowser RI
HMW-2D	-	Υ	BLI198	231659.8	1268696.2	03/06/19	47.34	47.19	80	90	-32.66	-42.66	90	-42.66	2	N	Hart Crowser RI
HMW-3D	-	Υ	BLI199	231676.0	1268409.0	03/06/19	56.56	56.37	80	90	-23.44	-33.44	90	-33.44	2	N	Hart Crowser RI
HMW-6D	-	Υ	BLZ187	231551.3	1268382.8	03/02/20	58.58	61.49	79.7	89.7	-21.12	-31.12	90	-31.42	2	N	Hart Crowser RI
HMW-9D	-	Υ	BLZ192	231609.9	1268484.4	02/28/20	55.32	58.14	79.7	89.7	-24.38	-34.38	90	-34.68	2	N	Hart Crowser RI
HMW-10D	-	Υ	BLZ194	231565.5	1268686.2	03/05/20	48.16	51.03	79	89	-30.84	-40.84	90	-41.84	2	N	Hart Crowser RI
HMW12D	-	Υ	BMP290	231704.6	1268915.3	07/16/20	33.52	35.86	82	92	-48.48	-58.48	100.3	-66.78	2	N	Hart Crowser RI
HMW13D	-	Υ	BMP318	231638.7	1268802.4	07/23/20	45.30	45.08	89.5	99.5	-44.2	-54.2	100.9	-55.60	2	N	Hart Crowser RI
HMW14D	-	Υ	BMP317	231576.9	1268800.7	07/20/20	46.35	46.11	70	80	-23.65	-33.65	81.5	-35.15	2	N	Hart Crowser RI
MW-105	-	Υ	BCK018	231763.7	1268695.3	08/10/12	45.59	44.69	130	140	-84.41	-94.41	140	-94.41	2	N	SoundEarth Strategies 2013
MW-106	-	Υ	BCK019	231721.8	1268488.0	08/15/12	52.90	51.99	130	140	-77.1	-87.1	140	-87.10	2	N	SoundEarth Strategies 2013
MW-140	-	Υ	BKA301	231782.8	1268511.9	08/31/17	50.32	50.2	129.5	139.5	-79.18	-89.18	140	-89.68	2	N	PES Environmental 2019
MW-153	-	Υ	BKF348	231737.1	1268440.3	03/29/18	54.84	54.35	120	130	-65.16	-75.16	130	-75.16	2	N	PES Environmental 2019
MW-326	-	Υ	BLR750	231552.7	1268889.6	09/10/19	41.31	40.97	90	100	-48.69	-58.69	100	-58.69	2	N	PES Environmental 2019
PB-9	-	Υ	-	231759.8	1268445.0	07/15/96	53.60	-	62	77	-8.4	-23.4	100.1	-46.50	0.75	N	HWA ^e

Notes:

- a."D" represents decommissioned and "A" represents abandoned.
- b. No boring log or report discussing the well installation was available. The DOF 2009 report notes that they designated this well as BB-8A because it was an unknown well next to BB-8.

The bottom of screen depth was assumed based on DOF's measurement of the bottom of the well.

- c. This well was installed as an Intermediate B well rather than an Intermediate A well as suggested in the name.
- d. This well was installed as part of a larger investigation on the AIBS Building Block 43 Site east of the Property.
 - Although a boring log was found on Ecology's database, no report discussing the well installation was available.
- e. This well was installed as part of a larger investigation for the Denny Way combined sewer overflow project.
 - Although a boring log was found, no report discussing the well installation was available.
- f. "Y" represents yes and "N" represents no.
- g. Elevations referenced to North American Vertical Datum of 1988 (NAVD88).
- h. All grab groundwater samples were collected in the shallow aquifer.
- = Data not available or not applicable.
- ft = feet.
- in = inches.

TOC = Top of casing.

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Surface		Sample										
	Elevation ^a	Sample	Depth	Sample Elevation ^a									
Boring ID	(ft)	Date	(ft)	(ft)	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^b	VOCs	Metals	PCBs
			15	38.95			X			X	X		
			25	28.95			X			X			
			35	18.95			X			X	X		
		9/12/2017	45	8.95			X			X	X		
B-215	53.95		55	-1.05			Х			X	X		
			65	-11.05			X			X	Χ		
			75	-21.05			Χ			X	Χ		
		9/13/2017	85	-31.05		<u></u>	Х			Х	Х	<u> </u>	
		3/13/2017	95	-41.05			X			Х	Х		
BB-5	49.48	9/3/1997	15 - 17	34.48 to 32.48	Χ	Х	Χ			Х			
DD-3	49.40	9/3/1997	25 - 27	24.48 to 22.48	Χ	Х	Χ			Х			
BB-8	43.72	6/6/1997	20 - 22	23.72 to 21.72	Χ	Х	Χ			Х			
BB-10	57.40	8/29/1997	15 - 17	42.40 to 40.40	Χ	Х							
			7.5 - 9	30.79 to 29.29	Χ	Х	Χ			Х	Χ		
			15 - 16.5	23.29 to 21.79			Χ			Х	Χ		
HMW-1IB	38.29	3/12/2019	20.5 - 22	17.79 to 16.29			Χ			Х	Χ		
HIVIVV-11D	36.29	3/12/2019	27.5 - 29	10.79 to 9.29	Χ	Х	Х			Х	Х		
			50 - 51.5	-11.71 to -13.21			Χ			Х	Х		
			65 - 65.4	-26.71 to -27.11			Х			X	Х		
			7.5 - 9	39.91 to 38.41	Х	Х	Χ			Х	Х	Х	
			15 - 15.5	32.41 to 31.91			Χ			Х	Χ		
HMW-2IB	47.41	3/12/2019	22.5 - 23.5	24.91 to 23.91	Χ	X	Χ			X	Х		
MIVIVV-ZID	47.41	3/12/2019	30 - 30.5	17.41 to 16.91	•••••		X			X	X		
			45 - 46	2.41 to 1.41	•••••		X			X	Χ		
			65 - 66.5	-17.59 to -19.09	•••••		Χ			X	Χ		
			15 - 16	40.02 to 39.02			Х			Х	Х		
	55.00	0/45/0040	20 - 21	35.02 to 34.02	Χ	Х	Χ		•••••	X	Χ		
HMW-3IA	55.02	3/15/2019	22.5 - 23.5	32.52 to 31.52	X	X	X		•	X	Χ	Х	
			25 - 26	30.02 to 29.02	X	X	Χ		•••••	X	Χ		
			5 - 6	53.70 to 52.70			Х			Х	Х		
118.0047.414	50.70	0/7/0040	7.5 - 8.7	51.20 to 50.00	X	X	Χ	X	X	X	Χ		
HMW-4IA	58.70	3/7/2019	10 - 11	48.70 to 47.70	•		Х			X	Х		
			25 - 26.8	33.70 to 31.90	Χ	X	Χ			X	Χ		

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Surface		Sample										
	Elevation ^a	Sample	Depth	Sample Elevation ^a									
Boring ID	(ft)	Date	(ft)	(ft)	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^b	VOCs	Metals	PCBs
			5 - 6.5	53.44 to 51.94	X	Х	Χ	X	Χ	X	Х	Х	
			10 - 11.5	48.44 to 46.94	X	X	Χ	X	Х	X	X	Х	
HMW-5IB	58.44	2/28/2020	15 - 16.5	43.44 to 41.94	X	Х	X	X	Χ	X	Х	Х	
			20 - 21.5	38.44 to 36.94	X	Х	Χ	X	X	Х	X	X	
			25 - 26.5	33.44 to 31.94	Χ	X	X	Х	Х	X	Х	X	
			5 - 6.5	53.58 to 52.08	Χ	Х	Χ	Х	Х	Х	Х	Х	
			10 - 11.5	48.58 to 47.08	X	Х	Χ	Х	Х	X	Х	Х	
HMW-6D	58.58	3/2/2020	15 - 16.5	43.58 to 42.08	Χ	l X	Χ	Х	Χ	X	Х	X	
			25 - 26.5	33.58 to 32.08	Χ	Х	Х	Х	Χ	Х	Х	X	
			30 - 31.5	28.58 to 27.08	Х	Х	Х	Х	Х	Х	Х	Х	
			5 - 6.5	53.65 to 52.15	Χ	Х	Х	Х	Χ	Х	Х	Х	
			10 - 11.5	48.65 to 47.15	Χ	Х	Х	Х	X	X	Х	Х	
HMW-6IA	58.65	3/2/2020	15 - 16.5	43.65 to 42.15	X	Х	X	X	X	X	X	X	
			20 - 21.5	38.65 to 37.15	Χ	Х	Х	X	Х	X	Х	Х	
			30 - 31.5	28.65 to 27.15	Χ	Х	Х	Х	Х	X	Х	Х	
			5 - 6.5	53.67 to 52.17	Х	Х	Х	Х	Х	Х	Х	Х	
			10 - 11.5	48.67 to 47.17	Χ	X	Χ	X	Χ	X	Х	Х	
HMW-6IB	58.67	3/3/2020	15 - 16.5	43.67 to 42.17	Χ	X	X	Х	Х	X	Х	X	
			20 - 21.5	38.67 to 37.17	X	X	X	Х	Х	X	X	X	
			25 - 26.5	33.67 to 32.17	Χ	X	Χ	Х	Х	X	Х	X	
			5 - 6.5	53.69 to 52.19	Х	Х	Х	Х	Х	Х	Х	Х	
			10 - 11.5	48.69 to 47.19	X	X	Χ	X	X	Х	X	Х	
HMW-7IB	58.69	2/28/2020	15 - 16.5	43.69 to 42.19	X	Х	Χ	Х	X	X	X	X	
			20 - 21.5	38.69 to 37.19	X	Х	Χ	Х	X	X	X	Х	
			25 - 26.5	33.69 to 32.19	X	Х	Χ	Х	X	X	Х	X	
			5 - 6.5	52.97 to 51.47	Х	Х	Х	Х	Х	Х	Х	Х	
			10 - 11.5	47.97 to 46.47	X	X	Χ	X	X	X	Χ	Х	
HMW-8IB	57.97	3/2/2020	15 - 16.5	42.97 to 41.47	X	Х	Χ	X	X	X	Χ	Х	
			20 - 21.5	37.97 to 36.47	Χ	Х	Χ	Х	X	Х	Χ	Х	
			25 - 26.5	32.97 to 31.47	X	X	Χ	X	X	X	X	Χ	
			5 - 6.5	50.32 to 48.82	Х	Х	Х			Х	Х	Х	
			10 - 11.5	45.32 to 43.82	X	X	Χ		•	X	X	Х	
HMW-9D	55.32	2/27/2020	15 - 16.5	40.32 to 38.82	X	X	Χ		•	X	Х	Х	
			20 - 21.5	35.32 to 33.82	X	X	Χ		•••••	X	Χ	Х	······
			25 - 26.5	30.32 to 28.82	Χ	X	Χ		•••••	X	Χ	Χ	

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Surface Elevation ^a	Sample	Sample Depth	Sample Elevation ^a									
Boring ID	(ft)	Date	(ft)	· (ft)	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^b	VOCs	Metals	PCBs
			5 - 6.5	50.26 to 48.76	Χ	Х	Χ			X	Х	X	
			10 - 11.5	45.26 to 43.76	X	Х	Χ			X	X	X	
HMW-9IA	55.26	2/28/2020	15 - 16.5	40.26 to 38.76	Χ	X	Χ			X	X	X	
			20 - 21.5	35.26 to 33.76	Χ	X	X			X	X	X	
			25 - 26.5	30.26 to 28.76	Х	Х	Χ			Х	Х	Х	
			5 - 6.5	50.36 to 48.86	Χ	X	Χ			X	Х	X	
			13 - 14.5	42.36 to 40.86	Χ	X	Χ			X	Х	X	
HMW-9IB	55.36	2/28/2020	15 - 16.5	40.36 to 38.86	Χ	Х	Χ			X	X	X	
			20 - 21.5	35.36 to 33.86	Χ	Х	Χ			X	Х	Х	
			25 - 26.5	30.36 to 28.86	Χ	X	Χ			X	Х	X	
			5 - 6.5	50.39 to 48.89	Χ	Х	Χ			Х	Х	Х	
			14 - 15.5	41.39 to 39.89	Χ	X	Χ			X	Х	X	
HMW-9S	55.39	3/2/2020	17 - 18.5	38.39 to 36.89	Χ	Х	Χ			Х	Х	Х	
			20 - 21.5	35.39 to 33.89	Χ	Х	Χ			Х	Х	Х	
			25 - 26.5	30.39 to 28.89	Χ	Х	Χ			Х	Х	Х	
			5 - 6.5	43.16 to 41.66	Х	Х	Х			Х	Х	Х	
			10 - 11.5	38.16 to 36.66	X	X	X			X	X	X	
HMW-10D	48.16	3/5/2020	15 - 16.5	33.16 to 31.66	X	X	X			X	X	X	
			20 - 21.5	28.16 to 26.66	X	X	X			X	X	X	
			25 - 26.5	23.16 to 21.66	X	X	X			X	Χ	X	
			5 - 6.5	43.21 to 41.71	Х	Х	Х			Х	Х	Х	
			10 - 11.5	38.21 to 36.71	X	X	Χ			X	Χ	X	
HMW-10S	48.21	3/3/2020	15 - 16.5	33.21 to 31.71	X	X	Χ			X	Χ	X	
			20 - 21.5	28.21 to 26.71	X	X	X			X	X	X	
			25 - 26.5	23.21 to 21.71	X	X	X			X	X	X	
			5 - 6.5	34.7 to 33.2	Х	Х	Х			Х	Х	Х	
			10 - 11.5	29.7 to 28.2	X	X	Χ			X	Χ	X	
HMW-11IB	39.70	2/24/2020	15 - 16.5	24.7 to 23.2	X	X	Χ			X	Χ	X	
			20 - 21.5	19.7 to 18.2	X	X	X			X	Χ	X	
			25 - 26.5	14.7 to 13.2	Χ	X	X			X	X	X	
			5 - 6.5	36.47 to 34.97	Х	Х	Х			Х	Х	Х	
			10 - 11.5	31.47 to 29.97	Χ	X	X			X	X	X	
HMW-11S	41.47	2/25/2020	15 - 16.5	26.47 to 24.97	X	1 X	X			X	Χ	X	
			20 - 21.5	21.47 to 19.97	Χ	X	X			X	Χ	X	
			31 - 32.5	10.47 to 8.97	X	X	X			X	X	X	
			5 - 6.25	52.21 to 50.96	X	X	X	Х		X	X	X	Х
			10 - 11.25	47.21 to 45.96	X	X	X	X		T X	X	X	Χ
HMW-17S	57.21	9/3/2020	15 - 16.33	42.21 to 40.88	X	X	X	X		X	X	X	X
	J <u>-</u> 1	3,3,2020	20 - 20.75	37.21 to 36.46	X	X	X	X X		X	X	X	X
			25 - 26	32.21 to 31.21	X	X	X	X		X X	X	X	X

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Surface		Sample										
	Elevation ^a	Sample	Depth	Sample Elevation ^a									
Boring ID	(ft)	Date	(ft)	(ft)	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCsb	VOCs	Metals	PCBs
			5 - 5.8	52.61 to 51.81	X	X	X	X		X	X	X	X
			10 - 11.5	47.61 to 46.11	X	X	Χ	X		Х	X	X	X
HMW-18S	57.61	9/3/2020	15 - 16.5	42.61 to 41.11	X	X	Χ	Х		X	Х	X	Х
			20 - 20.9	37.61 to 36.71	X	X	X	X		X	X	X	X
			25 - 25.8	32.61 to 31.81	X	X	X	X		X	X	X	X
			30 - 31	27.61 to 26.61	Х	Х	Х	Х		Х	Х	Х	Х
			5 - 5.5	53.20 to 52.70	X	Х	Χ	Х		Х	Х	Х	Χ
			10 - 10.75	48.20 to 47.45	Х	X	Χ	Х		Х	Х	Х	X
HMW-19S	58.20	9/8/2020	15 - 16.5	43.20 to 41.70	X	X	Х	X		X	X	X	X
	00.20	0/0/2020	20 - 21.5	38.20 to 36.70	Х	X	Χ	X		Х	Х	Х	Χ
			26 - 26.8	32.20 to 31.40	Х	X	Χ	X		X	X	X	Х
			30 - 30.5	28.20 to 27.70	Х	Х	Х	Х		X	Х	Х	Х
			5 - 5.5	48.81 to 48.31	X	X	Χ	X		Х	Х	X	Х
			10 - 11.5	43.81 to 42.31	X	X	Χ	X		X	X	X	Χ
HMW-20S	53.81	9/8/2020	15 - 16.5	38.81 to 37.31	Х	X	Х	Х		X	Х	X	Χ
111111111111111111111111111111111111111	00.01	3/0/2020	20 - 21.25	33.81 to 32.56	Х	Х	Χ	Х		Х	Х	Х	Χ
			25 - 26.4	28.81 to 27.41	Х	X	Χ	Х		X	Х	X	Χ
			30 - 31	23.81 to 22.81	Х	Х	Х	Х		Х	Х	Х	Х
21417- MB1	55.43	5/12/2017	9	46.43	Х	х	X			х	Х	Х	
21417-	54.72	5/12/2017	1	53.72				Х	Х				
MB2	34.72	3/12/2017	10	44.72	Х	Х	Х			Х	Х		
21417- MB3	58.63	5/12/2017	1	57.63				Х	Х				
21417- MB3	58.63	5/12/2017	20	38.63	Х	Х	Х			х	Х		
21417- MB4	57.24	5/12/2017	24	33.24	X	х	X			Х	X	x	
21417- MB5	51.91	5/12/2017	9	42.91	Х	х	Х			х	х		
21417- MB6	48.22	5/11/2017	9	39.22	Х	Х	Х			Х	Х	х	
21417- MB7	47.38	5/11/2017	11	36.38	Х	х	Х			х	Х		
21417- MB8	45.28	5/11/2017	27	18.28	Х	х	Х			х	Х	х	
21417-	00.05	E/44/201=	13	26.05	Х	Х	Х			Х	Х	Х	
MB9	39.05	5/11/2017	22	17.05	X	X	Χ			X	X	Χ	
21417- MB10	38.08	5/11/2017	28	10.08	Х	х	Х			х	Х	Х	
21417- MB11	39.04	5/11/2017	23	16.04	Х	Х	Х			Х	Х	Х	

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

Boring ID	Surface Elevation ^a (ft)	Sample Date	Sample Depth (ft)	Sample Elevation ^a (ft)	GRO	DRO/HO	втех	cPAHs	PAHs	CVOCs ^b	VOCs	Metals	PCBs
	(15)		5 - 6.5	50.02 to 48.52	Х	Х	X	Х	Х	Х	Х	Х	
			10 - 11.5	45.02 to 43.52	Χ	X	Χ	X	X	X	Χ	Χ	
MBB-1	55.02	2/27/2020	15 - 16.5	40.02 to 38.52	Χ	X	X	X	X	X	Χ	X	
			20 - 21.5	35.02 to 33.52	Χ	X	Χ	X	X	X	Χ	Χ	
			25 - 26.5	30.02 to 28.52	Χ	X	X	X	X	X	X	X	
			5 - 6.5	50.45 to 48.95	Х	Х	Х	Х	Х	Х	Х	Х	
			10 - 11.5	45.45 to 43.95	X	X	X	X	X	X	Х	X	
MBB-2	55.45	2/27/2020	15 - 16.5	40.45 to 38.95	X	Х	Χ	X	Χ	Х	Х	Х	
			20 - 21.5	35.45 to 33.95	Χ	Х	Χ	X	Χ	Х	Х	Х	
			25 - 26.5	30.45 to 28.95	Χ	Х	Χ	X	Χ	Х	Х	Х	
			5 - 6.5	49.84 to 48.34	Х	Х	Х	Х	Х	Х	Х	Х	
			10 - 11.5	44.84 to 43.34	X	X	X	Х	X	X	X	X	
MBB-3	54.84	2/27/2020	15 - 16.5	39.84 to 38.34	X	X	Х	Х	X	X	X	X	
			20 - 21.5	34.84 to 33.34	Χ	X	Χ	X	X	X	X	Χ	
			25 - 26.5	29.84 to 28.34	X	X	Х	X	X	X	Х	X	
			5 - 6.5	49.61 to 48.11	Х	Х	Х	Х	Х	Х	Х	Х	
			10 - 12.5	44.61 to 42.11	Χ	Х	Χ	Х	Χ	Х	Х	Х	
MBB-4	54.61	2/27/2020	15 - 16.5	39.61 to 38.11	Χ	X	Χ	Х	Χ	Х	Х	X	
			20 - 23	34.61 to 31.61	Χ	X	Χ	X	X	X	Х	Х	
			25 - 26.5	29.61 to 28.11	X	X	X	X	X	X	X	X	
			5 - 6.5	45.53 to 44.03	Х	Х	X			Х	Х	Х	
			10 - 11.5	40.53 to 39.03	Χ	X	X			X	Х	Х	
MBB-5	50.53	3/2/2020	15 - 16.5	35.53 to 34.03	Χ	X	Х			Х	Х	Х	
			20 - 21.5	30.53 to 29.03	Χ	X	Х			X	Х	Х	
			25 - 26.5	25.53 to 24.03	Χ	X	Х			Х	Х	Х	
			5 - 6.5	45.33 to 43.83	X	Х	Х			Х	Х	Х	
			10 - 11.5	40.33 to 38.83	Χ	X	X			X	Х	Х	
MBB-6	50.33	3/3/2020	15 - 16.5	35.33 to 33.83	Х	X	X			Х	Х	Х	
			20 - 21.5	30.33 to 28.83	Χ	Х	Х			Х	Х	Х	
			25 - 26.5	25.33 to 23.83	Χ	Х	Х			Х	Х	Х	
			5 - 6.5	44.41 to 42.91	Х	Х	Χ			Х	Х	Х	
			10 - 11.5	39.41 to 37.91	Χ	Х	Х			Х	Х	Х	
MBB-7	49.41	2/25/2020	15 - 16.5	34.41 to 32.91	Χ	X	Х			X	Х	Х	
			20 - 21.5	29.41 to 27.91	Χ	X	Х			X	Х	Х	
			25 - 26.5	24.41 to 22.91	Χ	Х	Χ			Х	Х	Х	
			7 - 7.5	42.66 to 42.16	Х	Х	Х			Х	Х	Х	
			10 - 11.5	39.66 to 38.16	Χ	X	Х			X	Х	Х	
MBB-8	49.66	2/26/2020	15 - 16.5	34.66 to 33.16	Χ	X	X			Х	Х	X	
			20 - 21.5	29.66 to 28.16	Χ	X	X			X	Х	Х	
			25 - 26.5	24.66 to 23.16	Χ	Х	Х			Х	Х	Х	

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

Boring ID City Ci	Metals X X X X X X X X X	PCBs
MBB-9 47.55 2/26/2020 5.5 - 7 42.05 to 40.55 X X X X X X X X X X X X X X X X X X	X X X X X	PCBs
MBB-9 47.55 2/26/2020 10 - 11.5 37.55 to 36.05 X X X X X 20 - 21.5 27.55 to 26.05 X X X X X 20 - 21.5 27.55 to 26.05 X X X X 25 - 26.5 22.55 to 21.05 X X X X	X X X X	
MBB-9 47.55 2/26/2020 10 - 11.5 37.55 to 36.05 X X X X X X 20 - 21.5 27.55 to 26.05 X X X X X X 25 - 26.5 22.55 to 21.05 X X X X X	X X X X	
20 - 21.5 27.55 to 26.05 X X X X X X X X X X X X X X X X X X X	X X X	
25 - 26.5 22.55 to 21.05 X X X X X X	X X X	
25 - 26.5 22.55 to 21.05 X X X X X X	X X X	
5 0 5 14 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X	
5 - 6.5 44.66 to 43.16 X X X X X	X	
MBB-10 49.66 2/26/2020 15 - 16.5 34.66 to 33.16 X X X X	X	
	X	
25 - 26.5 24.66 to 23.16 X X X X X	X	
15 - 16.5 31.42 to 29.92	Х	
MBB-11 46.42 3/4/2020 20 - 21.5 26.42 to 24.92	X	
25 - 26.5 21.42 to 19.92	X	
15 - 16.5 18.69 to 17.19	Х	
MBB-12 33.69 3/4/2020 20 - 21.5 13.69 to 12.19	Х	
25 - 26.5 8.69 to 7.19	X	
15 - 16.5 20.98 to 19.48	Х	
MBB-13 35.98 3/4/2020 20 - 21.5 15.98 to 14.48	Х	
25 - 26.5 10.98 to 9.48	X	
5 - 6.5 42.15 to 40.65 X X X		
l		
MBB-14 47.15 3/3/2020 15 - 16.5 32.15 to 30.65 X X X		
20 - 21.5 27.15 to 25.65 X X X		
25 - 26.5 22.15 to 20.65 X X X		
5 - 6.5 32.73 to 31.23 X X X		
MBB-15 37.73 3/4/2020 15 - 16.5 22.73 to 21.23 X X X		
20 - 21.5 17.73 to 16.23 X X X		
25 - 26.5 12.73 to 11.23 X X X		
5 - 5.5 48.70 to 48.20 X X X X X X	Х	Х
MRD 46 53.70 0/0/2020 10 - 11.5 43.70 to 42.20 X X X X X X	X	Х
MBB-16 53.70 9/2/2020 15 - 15.5 38.70 to 38.20 X X X X X X	X	Χ
20 - 20.9 33.70 to 32.80 X X X X X X	X	X
5 - 6 49.88 to 48.88 X X X X X X	Х	Х
MRD 47 54.00 0/4/2020 10 - 10.75 44.88 to 44.13 X X X X X X X	X	X
MBB-17 54.88 9/1/2020 15 - 16 39.88 to 38.88 X X X X X X X	X	X
25 - 25.9	X	X

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Surface		Sample										
	Elevation ^a	Sample	Depth	Sample Elevation ^a									
Boring ID	(ft)	Date	(ft)	(ft)	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^b	VOCs	Metals	PCBs
			5 - 6.5	46.33 to 44.83	Χ	X	Х	X		X	Χ	X	Х
MBB-18	51.33	9/1/2020	10 - 10.9	41.33 to 40.43	Χ	Х	Х	Х		Х	Χ	X	Х
IVIDD-10	01.00	3/1/2020	15 - 16.4	36.33 to 34.93	Χ	X	Х	X		X	Χ	X	Х
			20 - 20.75	31.33 to 30.58	Х	Х	Х	Х		Х	Х	Х	Х
			5 - 5.8	46.68 to 45.88	X	X	Х	X		X	X	Х	Х
MBB-19	51.68	9/1/2020	10 - 11	41.68 to 40.68	Χ	X	X	Х		Х	Χ	Х	Х
I WIDD-19	31.00	9/1/2020	15 - 15.4	36.68 to 36.28	Χ	Х	Χ	Х		Х	Χ	Х	Х
			20 - 20.8	31.68 to 30.88	X	X	X	X		X	X	Х	Χ
			5 - 6.5	42.53 to 41.03	X	Х	Х	Х		Х	Χ	Х	Х
MBB-20	47.53	9/2/2020	10 - 11.5	37.53 to 36.03	X	X	Х	Х		X	Χ	Х	Х
IVIDD-20	47.55	9/2/2020	15 - 16.33	32.53 to 31.2	X	X	Х	Х		Х	Χ	Х	Х
			20 - 20.5	27.53 to 27.03	Х	Х	Х	Х		Х	Χ	Х	Х
			5 - 5.8	42.60 to 41.80	Χ	Х	Х	Х		Х	Χ	Х	Х
MBB-21	47.60	9/2/2020	10 - 11.5	37.60 to 36.10	Χ	Х	Χ	Х		Х	Χ	Х	Х
I WIDD-Z I	47.00	9/2/2020	15 - 15.9	32.60 to 31.70	Х	X	Χ	Х		Х	Χ	Х	Х
			20 - 20.9	27.60 to 26.70	Х	Х	Х	Х		Х	Χ	Х	Х
			5 - 6	37.05 to 36.05	Х	Х	Х	Х		Х	Х	Х	Х
			15 - 16.25	27.05 to 25.8	Х	X	Χ	X		Х	Χ	Х	Х
MBB-22	42.05	9/21/2020	20 - 21.3	22.05 to 20.75	Х	X	Х	Х		Х	Х	Х	Х
			25 - 26.3	17.05 to 15.75	Х	X	Х	Х		Х	Χ	Х	Х
			30 - 30.5	12.05 to 11.55	Х	Х	Х	Х		Х	Х	Х	Х
			5 - 6.2	42.18 to 40.98	Х	Х	Х	Х		Х	Х	Х	Х
			10 - 11.1	37.18 to 36.08	Χ	X	X	X		Х	Χ	X	Х
MBB-23	47.18	9/21/2020	15 - 16.25	32.18 to 30.93	X	Х	Х	Х		Х	Χ	Х	Х
IVIDD-23	47.10	9/2 1/2020	20 - 21.3	27.18 to 25.88	X	X	Х	Х		Х	X	Х	Х
			25 - 26	22.18 to 21.18	X	X	Х	Х		Х	Χ	Х	Х
			30 - 31	17.18 to 16.18	Χ	Х	Х	Х		Х	Χ	Х	Х
			5 - 6.5	49.10 to 47.60	Х	Х	Х	Х		Х	Х	Х	Х
			10 - 11.4	44.10 to 42.70	X	X	X	Х		Х	X	Х	X
MBB-24	54.10	9/9/2020	15 - 16.5	39.10 to 37.60	Χ	X	X	Х		Х	Χ	Х	Х
ividd-∠4	34.10	9/9/2020	20 - 21	34.10 to 33.10	Χ	X	Χ	Х		Х	Χ	X	Х
			25 - 25.8	29.10 to 28.30	Χ	X	Х	Х		Х	Χ	Х	Х
			30 - 31	24.10 to 23.10	X	Х	X	Х		Х	Χ	Х	Х

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Surface		Sample										
	Elevation ^a	Sample	Depth	Sample Elevation ^a									
Boring ID	(ft)	Date	(ft)	(ft)	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^b	VOCs	Metals	PCBs
			5 - 5.5	53.63 to 53.13				X					
			9.5 - 10.5	49.13 to 48.13				X					
			14.5 - 15.4	44.13 to 43.23				X					
MBB-25	58.63	10/30/2020	19.5 - 20.5	39.13 to 38.13				Х					
22 20	00.00	10,00,2020	24.5 - 25.5	34.13 to 33.13				Х					
			29.5 - 30.5	29.13 to 28.13				X					
			34.5 - 35.5	24.13 to 23.13				X					
			39.5 - 40	19.13 to 18.63				X					
			5.25 - 5.5	53.54 to 53.29				Х	Х	<u> </u>			
			9.5 - 10.5	49.29 to 48.29				X	Х				
			14.5 - 15.5	44.29 to 43.29				Х	Х				
MBB-26	58.79	10/29/2020	19.5 - 20.5	39.29 to 38.29				Х	Х				
IVIBB-20	58.79	10/29/2020	24.5 - 25.5	34.29 to 33.29				Х	Х				
			29.5 - 30.5	29.29 to 28.29				Х	Х				
			34.5 - 35.5	24.29 to 23.29				Х	Х				
			39.5 - 40	19.29 to 18.79				Х	Х				
			4 - 5	35.95 to 34.95	Х	Х	Х			Х	Х	Х	
			12.5 - 13.5	27.45 to 26.45			Χ			X	Χ		
MBGW-1	39.95	3/6/2019	17 - 18	22.95 to 21.95	Χ	X	X			X	Χ	Χ	•••••
			23.5 - 25	16.45 to 14.95	Χ	Х	Χ	Х	Х	Х	Χ		•••••
			28 - 30	11.95 to 9.95			Χ			Х	Χ		•••••
			5 - 6.5	41.11 to 39.61	Х	Х							
			10 - 11.5	36.11 to 34.61	X	X	Χ			X	Χ		
MBGW-2	46.11	3/4/2019	12.5 - 14	33.61 to 32.11	X	X	Х			Х	Χ	Χ	
			25 - 26.5	21.11 to 19.61	X	X	Χ	X	X	Х	X	Χ	
			30 - 31.5	16.11 to 14.61	X	X	Χ	X	Х	X	X	Χ	
			4 - 5	43.77 to 42.77	Х	X							
			7 - 8	40.77 to 39.77	Χ	X	X			X	X	Χ	
			9 - 10	38.77 to 37.77	Χ	X	X	İ		X	Χ		······
MBGW-3	47.77	3/7/2019	12 - 13	35.77 to 34.77	Χ	X	X	X	X	X	Χ	X	
			24 - 25	23.77 to 22.77	X	X	Χ			X	Χ	Χ	
			25 - 26	22.77 to 21.77	X	X	Χ	X	Χ	X	X		
			26	21.77	X	X	Χ	X	X	X	X		

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Surface Elevation ^a	_	Sample										
Boring ID	(ft)	Sample Date	Depth (ft)	Sample Elevation ^a	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^b	VOCs	Metals	PCBs
Doning ID	(11)	Date	2 - 3	(ft) 45.30 to 44.30	GRU	DKO/HO	DIEA	CPARS	PARS	CVOCS	VOCS	X	PCDS
			4 - 5	43.30 to 42.30	X	X						X	
			7 - 8	40.30 to 39.30	X	X	X			X	X	X	
MBGW-4	47.30	3/6/2019	9 - 10	38.30 to 37.30		······	X			X	X		
			12 - 13	35.30 to 34.30	X	X	X			X	X		
			24 - 25	23.30 to 22.30	X	X	X			X	X	X	
			10 - 11	39.87 to 38.87	Х	Х	Х			Х	Х		
			15 - 16.5	34.87 to 33.37	X	X	X			X	Χ		
MBGW-5	49.87	3/11/2019	20 - 21	29.87 to 28.87		·	Χ			X	X		
			27.5 - 29	22.37 to 20.87	X	X	Χ			X	X	X	
			45 - 46.5	4.87 to 3.37	X	X	X			X	X		
			10 - 10.7	42.5 to 41.8	Х	Х	Х			Х	Х	Х	
			15 - 15.7	37.5 to 36.8		†	Χ			X	X		
MBGW-6	52.50	3/14/2019	20 - 20.75	32.5 to 31.75			Χ			Х	Χ		
			30 - 30.5	22.5 to 22	X	X	Χ			X	X		
			10 - 11.5	43.76 to 42.26								Х	
MECALZ	50.70	0/0/0040	17.5 - 18.75	36.26 to 35.01		†						Х	
MBGW-7	53.76	3/6/2019	30 - 30.5	23.76 to 23.26			Χ			Х	Х		
			40 - 40.5	13.76 to 13.26						<u> </u>		Х	
			10 - 11.5	37.08 to 35.58	Χ	Х	Х			Х	Х		
MBGW-8	47.08	3/15/2019	15 - 16.5	32.08 to 30.58			Х			Х	X		
MBGW-8	47.08	3/15/2019	25 - 26	22.08 to 21.08	Χ	Х	X			Х	Х	Х	
			35 - 35.7	12.08 to 11.38			Х			Х	Х		
			10 - 10.5	46.84 to 46.34	Х	Х	Х			Х	Х	Х	
			15 - 15.8	41.84 to 41.04	X	X	Х			Х	Х		
MBGW-9	56.84	3/13/2019	20 - 21.25	36.84 to 35.59			X			Х	Х		
			25 - 25.5	31.84 to 31.34	Χ	X	Χ			Х	Χ		
			30 - 31.5	26.84 to 25.34	Χ	Х	Χ			X	Х		
			10 - 10.9	45.25 to 44.35	Х	X	Х			Х	Х	Х	
			15 - 16.2	40.25 to 39.05	Χ	Х	Х			Х	Χ		
MBGW-10	55.25	3/13/2019	20 - 21.25	35.25 to 34			Χ			Х	Χ		
			25 - 25.7	30.25 to 29.55	Χ	X	Χ			Х	Χ		
			30 - 30.8	25.25 to 24.45	Х	Х	Х			Х	Х		
MBGW-11	57.55	3/12/2019	5 - 6.5	52.55 to 51.05	Χ	Х	Χ			Х	Χ	Х	
ויייט טטייו	37.33	3/12/2019	10 - 11	47.55 to 46.55	Х	Х	Х			Х	Х		

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

Boring ID	Surface Elevation ^a (ft)	Sample Date	Sample Depth (ft)	Sample Elevation ^a (ft)	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^b	VOCs	Metals	PCBs
			5 - 5.75	49 to 48.25	Х	Х	Χ			Х	Х	Х	
MBGW-12	54.00	3/15/2019	20 - 21	34 to 33			X			X	Х		
IVIDGVV-12	34.00	3/13/2019	25 - 25.5	29 to 28.5	Χ	X	X			X	Х		
			30 - 30.8	24 to 23.2			Χ			X	X		
			5 - 6.5	49.72 to 48.22	Χ	Х	Χ			Х	Х		
			7.5 - 8.75	47.22 to 45.97			Χ			X	Х		
MBGW-13	54.72	3/14/2019	10 - 11.5	44.72 to 43.22	Х	Х	Χ			X	Х		
INIDGW-13	34.72	3/14/2019	12.5 - 14	42.22 to 40.72			X			X	Х		
			15 - 15.8	39.72 to 38.92	Х	Х	X			X	Х		
			20 - 20.6	34.72 to 34.12	Χ		Χ			X	Х		
			9 - 10	37.09 to 36.09	Χ	Х	Χ			Х	Х		
MBGW-14	46.09	3/6/2019	13.5 - 15	32.59 to 31.09			Χ			X	Х		
IVIDGVV-14	40.09	3/0/2019	18 - 20	28.09 to 26.09	Χ	Х	X			Х	Х		
			28 - 30	18.09 to 16.09	Χ	Х	Χ			Х	Х		
MBGW-15	40.87	3/8/2019	20 - 21.25	20.87 to 19.62								Х	
			10 - 10.8	42.14 to 41.34	Χ	Х	Χ			Х	Х		
MBGW-16	52.14	3/8/2019	15 - 16.4	37.14 to 35.74	Χ	Х	Χ			X	Х		
INIDGW-10	32.14	3/6/2019	20 - 20.8	32.14 to 31.34	Χ								
			30 - 31	22.14 to 21.14	Χ	Х	Χ			X	X		
			8 - 10	37.28 to 35.28								Х	
MBPP-1	45.28	3/5/2019	19 - 20	26.28 to 25.28	Χ	Х	Χ			X	Х		
			24 - 25	21.28 to 20.28	Χ	X	Χ			X	X		
			9 - 10	35.46 to 34.46	Χ	Х	Χ			X	Х	Х	
MBPP-2	44.46	3/5/2019	19 - 20	25.46 to 24.46	X	X	X			X	Х		
			26.5 - 28	17.96 to 16.46	Χ		Х			X	Х		
			9 - 10	36.89 to 35.89	Χ	Х	Χ			Х	Х		
MBPP-3	45.89	3/6/2019	19 - 20	26.89 to 25.89	Χ	Х	Χ			X	Х		
			24 - 25	21.89 to 20.89	Χ		Χ			Х	Х	Х	

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Surface Elevation ^a	Sample	Sample Depth	Sample Elevation ^a									
Boring ID	(ft)	Date	(ft)	(ft)	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^b	VOCs	Metals	PCBs
			2 - 3	46.34 to 45.34			X			X	X		
	40.04	0/7/00/0	9 - 10	39.34 to 38.34	X	X	X			X	X	X	
MBPP-4	48.34	3/7/2019	14 - 15	34.34 to 33.34			X			X	X		
			16 - 17	32.34 to 31.34			X			X	X		
			17 - 18	31.34 to 30.34	X	X	X			X	X		
			8 - 10	37.92 to 35.92	X	Х	X			X	X		
MDDD 5	45.00	0/7/0040	14 - 15	31.92 to 30.92	X	X	X			X	X		
MBPP-5	45.92	3/7/2019	16.5 - 18	29.42 to 27.92			X			X	X		
			19 - 20	26.92 to 25.92	X		X			X	X		
			24 - 25	21.92 to 20.92	X	X	X			X	X	Х	
			7 - 8	45.26 to 44.26	X	X	X			X	X		
			9 - 10	43.26 to 42.26	X					X	X		
			12 - 13	40.26 to 39.26	X	X	X			X	X		
MBPP-6	52.26	3/8/2019	14 - 15	38.26 to 37.26		ļ	X			X	X		
			17 - 18	35.26 to 34.26	X	X	X			X	X		
			19 - 20	33.26 to 32.26			X			X	X		
			24 - 25	28.26 to 27.26			X			X	X		
			29 - 30	23.26 to 22.26	X	X	X			X	X		
			4 - 5	45.77 to 44.77	X	X	X			X	X	X	
MBPP-7	49.77	3/8/2019	14 - 15	35.77 to 34.77			X			X	X		
			22 - 23	27.77 to 26.77	X	Х	Х			Х	Х		
			9 - 10	48.52 to 47.52	X	X	X			X	X		
MBPP-8	57.52	3/8/2019	14 - 15	43.52 to 42.52	X	X	X			X	X	X	
			21 - 22.5	36.52 to 35.02			X			X	X		
			29 - 30	28.52 to 27.52	X	X	Х			Х	Х		
			10	35.59		ļ				X	X		
		8/6/2012	20	25.59		<u></u>				X	X		
			30	15.59						X	X		
		8/8/2012	40	5.59		ļ				X	X		
			50	-4.41						X	X		
			60	-14.41						X	X		
MW-105	45.59	8/9/2012	70	-24.41						X	X		
	.5.55		80	-34.41		<u> </u>		ļ		X	X		
			90	-44.41						Х	X		
			100	-54.41		ļ				X	X		
		8/10/2012	110	-64.41						Х	Х		
		5/ 15/2012	120	-74.41		<u> </u>				<u>X</u>	X		
			130	-84.41						X	Χ		
			138	-92.41						Х	Х		

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Surface Elevation ^a	Sample	Sample Depth	Sample Elevation ^a									
Boring ID	(ft)	Date	(ft)	(ft)	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^b	VOCs	Metals	PCBs
Dorning 1D	(11)	Date	10	42.90	O. to	Ditonio	DILX	01 7 11 10	17410	X	X	Wotalo	1 020
			20	32.90	•••••				•••••	X	X		•••••
			30	22.90	•••••				•••••	X	Χ		•••••
		8/14/2012	40	12.90						X	X		
			50	2.90						X	Χ		
			60	-7.10						Х	Χ		
NAV 400	50.00		70	-17.10						Х	Χ		
MW-106	52.90		80	-27.10						Х	Χ		
			90	-37.10						X	Χ		
		0/45/0040	100	-47.10						Х	Χ		
		8/15/2012	110	-57.10					•••••	Х	Χ		
			120	-67.10	•••••				• • • • • • • • • • • • • • • • • • • •	X	Х		•••••
			130	-77.10	•••••				•	Х	X		
			140	-87.10						Х	X		
			15	27.43						Х	Х		
			25	17.43						Х	X		
MW-114	42.43	12/10/2012	35	7.43						Х	Х		
			40	2.43						Х	Х		
			45	-2.57						Х	Х		
			10	47.78						Х	Х		
			20	37.78						X	Х		
MW-117	57.78	2/4/2013	30	27.78						X	Х		
			40	17.78						X	X		
			50	7.78						X	Х		
			10	44.50						Х	Χ		
			20	34.50						X	Χ		
MW-118	54.50	3/21/2013	30	24.50						X	Χ		
			40	14.50						Х	Х		
			50	4.50						Х	Х		
			10	27.66						Х	Х		
MW-119	37.66	3/21/2013	20	17.66						X	X		
14144-119	37.00	3/2 1/2013	30	7.66						Х	Χ		
			40	-2.34						Х	Х		

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Surface Elevation ^a		Sample Depth	0 5 (; a									
Boring ID	(ft)	Sample Date	(ft)	Sample Elevation ^a (ft)	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^b	VOCs	Metals	PCBs
Borning ID	(11)	Date	15	35.32	GINO	DIXO/ITO	X	CFAIIS	FALIS	X		ivietais	FCDS
			25	25.32		·	X			X			
			35	15.32		······	X			X			
			45	5.32		·······	Х			X		X X X X X X X X X X X X X X X X X X X	
		8/30/2017	55	-4.68		†·····	X			X			
MW-140	50.32		65	-14.68		·	Χ			X	Χ		
			75	-24.68	•••••	·	Χ			X			
			90	-39.68	•••••	·	Χ			X	Χ	X X X X X X X X X X X X X X X X X X X	
			110	-59.68	•••••	·	Χ			X	Χ		
		8/31/2017	130	-79.68		·	Χ			X	X X X X X X X X X X X X X X X X X X X		
			140	-89.68		·	Χ			X	Χ		
			10	42.49			Х			Х	Х		
			20	32.49			Χ			Х	X		
			30	22.49		······	Χ			Х	Х		
	50.40	1/0/0040	40	12.49		······	Χ			X			
MW-147	52.49	4/2/2018	50	2.49		†····	X			X	X X X X X X X X X X X X X X X X X X X		
			60	-7.51		†····	Х			X			
		l	70	-17.51		<u> </u>	X			X	Χ		
		l	80	-27.51		<u> </u>	Χ			X	Χ		
			11	33.29			Х			Х	Х		
			20	24.29			Χ			Х	X		
			30	14.29			X			Х	X		
MW-148	44.29	4/9/2018	40	4.29			Χ			X	Х		
10100-140	44.29	4/9/2016	50	-5.71			Х			Х	Х		
			60	-15.71			Χ			Х	Х		
			70	-25.71			Χ			Х	Х		
			80	-35.71			Х			Х	Х		
			10	44.84			Х			Х			
			20	34.84			Χ			X	X		
			30	24.84			Х			X	X		
		3/27/2018	40	14.84			Χ			Х			
			50	4.84			Х			Х	Х		
MW-153	54.84		61	-6.16			Х			X X	Х		
			70	-15.16			X X				Χ		
			80	-25.16			Х			X	Х		
		3/28/2018	90	-35.16			Х			X	X		
			110	-55.16			X X X X			X X X	X		
		3/29/2018	130	-75.16			Х			X	Χ		

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Surface Elevation ^a	Sample	Sample Depth	Sample Elevation ^a									
Boring ID	(ft)	Date	(ft)	(ft)	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^b	VOCs	Metals	PCBs
2011119 12	(11)	2 4.15	5	44.73	0.10	2110/110	X	5.75		X	X	otalio	. 020
			10	39.73			Χ			X	X		
			15	34.73			Χ			Х	Χ		
			20	29.73			Χ			Х	Χ		
			25	24.73			Χ			Х	Χ		
		0/0/0040	30	19.73		†	X			Х	Χ		
B 80 84 0 4 0	40.70	9/9/2019	35	14.73		†	Χ			Х	X		
MW-316	49.73		40	9.73		·	Χ			X	Χ		
			45	4.73			Χ			Х	Х		
			50	-0.27			Χ			Х	Χ		
			55	-5.27			Х			Х	Χ		
			60	-10.27			Χ			Х	Χ		
		0/40/2040	65	-15.27			Χ			Х	Χ		
		9/10/2019	70	-20.27			Х			Х	Х		
			5	36.31			Х			Х	Χ		
			10	31.31			Χ			Х	Χ		
			15	26.31			Х			Х	Χ		
			20	21.31			Χ			Х	Χ		
			25	16.31			Χ			Х	Χ		
			30	11.31			Χ			Х	Χ		
			35	6.31			Χ			Х	Χ		
		9/9/2019	40	1.31			Χ			Х	Χ		
		9/9/2019	45	-3.69			Χ			Х	X		
MW-326	41.31		50	-8.69			Χ			Х	X		
10100-320	41.51		55	-13.69			Χ			Х	Χ		
			60	-18.69			Χ			Х	X		
			65	-23.69			Χ			Х	Χ		
			70	-28.69			Χ			Х	X		
			75	-33.69			Χ			X	Χ		
			80	-38.69			Χ			Х	Χ		
			85	-43.69			Χ			Х	Χ		
		9/10/2019	90	-48.69			Χ			Х	Χ		
		3,10,2013	95	-53.69			X			Х	Χ		
			100	-58.69			Χ			Х	Х		

TABLE 5-3
SOIL SAMPLING AND ANALYSIS SUMMARY
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

Boring ID	Surface Elevation ^a (ft)	Sample Date	Sample Depth (ft)	Sample Elevation ^a (ft)	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^b	VOCs	Metals	PCBs
		E/40/0040	0 - 7	58.53 to 51.53	Х		Х					Х	
GP-7	58.53	5/12/2012	7 - 11	51.53 to 47.53	Х		Х		•	•		Х	
GP-8	58.33	5/14/2012	0 - 7	58.33 to 51.33	Х		Х					Х	
GF-6	30.33	5/14/2012	7 - 12	51.33 to 46.33	Х		Х					Х	
		5/14/2012	0 - 7	58.00 to 51.00	Х		Х					Х	
GP-9	58.00	5/14/2012	7 - 14	51.00 to 44.00	Х		Χ					Х	
	"	5/14/2012	14 - 19	44.00 to 39.00	Х		Χ					Х	

Notes:

a. Elevations relative to North American Vertical Datum of 1988 (NAVD88).

b. A note on terminology: for the purposes of this report, we use the term CVOCs

to refer to the volatile compound tetrachloroethene and its degradation products, trichloroethene,

cis- and trans-1,2-dichloroethene, and vinyl chloride. We use the term BTEX to refer

to the volatile aromatic compounds benzene, toluene, ethylbenzene, and

xylenes. All other volatile organic compounds, including chlorinated

compounds such as 1,1,1-trichloroethane and 1,1-dichloroethane, are referred to as VOCs.

Table shows sampling relevant to Seattle DOT Mercer Parcels Site. Other sampling done at

American Linen site is presented in PES Environmental (2019).

BTEX = Benzene, toluene, ethylbenzene, and xylenes.

cPAHs = Carcinogenic polycyclic aromatic hydrocarbons.

CVOCs = Chlorinated volatile organic compounds.

DRO = Diesel-range petroleum hydrocarbons.

ft = feet.

GRO = Gasoline-range petroleum hydrocarbons.

HO = Heavy oil-range petroleum hydrocarbons.

PAHs = Polycyclic aromatic hydrocarbons.

PCBs = Polychlorinated biphenyls.

VOCs = Volatile organic compounds.

TABLE 5-5 SOIL RESULTS FOR SEMI-VOLATILE ORGANIC COMPOUNDS SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

								Carcino	genic Semi-Vola	itile Organic Con	npounds		
Boring/Well ID	Sample Date	Sample Type	Surface Elevation (ft)	Sample Depth (ft)	Sample Elevation (ft)	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno (1,2,3- cd) pyrene	cPAHs-TEQ
			(11)			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
						SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E
				Analy	tical Method	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM
						SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM
21417-MB2	5/12/2017	N	54.72	1	53.72	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0322 U
21417-MB3	5/12/2017	N	58.63	1	57.63	0.0393	0.0399	0.0505	0.0382 U	0.0462	0.0382 U	0.0382 U	0.0551
HMW-4IA	3/7/2019	N	58.70	7.5	51.20	1.5	0.1 U	1.17	0.1 U	2.3	0.1 U	0.1 U	0.36
				5 - 6.5	53.44 to 51.94	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				10 - 11.5	48.44 to 46.94	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
HMW-5IB	2/28/2020	N	58.44	15 - 16.5	43.44 to 41.94	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				20 - 21.5	38.44 to 36.94	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				25 - 26.5	33.44 to 31.94	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 6.5	53.58 to 52.08	0.085	0.076	0.11	0.05 U	0.13	0.05 U	0.05 U	0.098
				10 - 11.5	48.58 to 47.08	0.083	0.064	0.088	0.05 U	0.11	0.05 U	0.05 U	0.083
HMW-6D	3/2/2020	N	58.58	15 - 16.5	43.58 to 42.08	0.066	0.05 U	0.066	0.05 U	0.092	0.05 U	0.05 U	0.017
				25 - 26.5	33.58 to 32.08	0.071	0.05 U	0.08	0.05 U	0.1	0.05 U	0.05 U	0.019
				30 - 31.5	28.58 to 27.08	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 6.5	53.65 to 52.15	0.051	0.05 U	0.058	0.05 U	0.072	0.05 U	0.05 U	0.014
				10 - 11.5	48.65 to 47.15	0.082	0.06	0.086	0.05 U	0.1	0.05 U	0.05 U	0.079
HMW-6IA	3/2/2020	N	58.65	15 - 16.5	43.65 to 42.15	0.089	0.065	0.08	0.05 U	0.12	0.05 U	0.05 U	0.084
				20 - 21.5	38.65 to 37.15	0.05 U	0.05 U	0.05 U	0.05 U	0.065	0.05 U	0.05 U	0.0036
				30 - 31.5	28.65 to 27.15	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 6.5	53.67 to 52.17	0.068	0.05 U	0.06	0.05 U	0.087	0.05 U	0.05 U	0.016
				10 - 11.5	48.67 to 47.17	0.068	0.051	0.068	0.05 U	0.088	0.05 U	0.05 U	0.067
HMW-6IB	3/3/2020	N	58.67	15 - 16.5	43.67 to 42.17	0.084	0.057	0.069	0.05 U	0.1	0.05 U	0.05 U	0.075
				20 - 21.5	38.67 to 37.17	0.05 U	0.05 U	0.057	0.05 U	0.071	0.05 U	0.05 U	0.0092
				25 - 26.5	33.67 to 32.17	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 6.5	53.69 to 52.19	0.085	0.068	0.099	0.05 U	0.13	0.05 U	0.05 U	0.089
				10 - 11.5	48.69 to 47.19	0.06	0.05 U	0.072	0.05 U	0.088	0.05 U	0.05 U	0.017
HMW-7IB	2/28/2020	N	58.69	15 - 16.5	43.69 to 42.19	0.76	0.29	0.59	0.17	0.75	0.05 U	0.051	0.44
				20 - 21.5	38.69 to 37.19	0.052	0.05 U	0.074	0.05 U	0.085	0.05 U	0.05 U	0.016
				25 - 26.5	33.69 to 32.19	0.088	0.054	0.066	0.05 U	0.12	0.05 U	0.05 U	0.072
				5 - 6.5	52.97 to 51.47	0.086	0.066	0.094	0.05 U	0.12	0.05 U	0.05 U	0.086
				10 - 11.5	47.97 to 46.47	0.11	0.085	0.11	0.05 U	0.14	0.05 U	0.05 U	0.11
HMW-8IB	3/2/2020	N	57.97	15 - 16.5	42.97 to 41.47	0.093	0.063	0.09	0.05 U	0.12	0.05 U	0.05 U	0.084
				20 - 21.5	37.97 to 36.47	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.003 U
				25 - 26.5	32.97 to 31.47	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U

			Cf					Carcino	genic Semi-Vola	tile Organic Con	npounds		
Boring/Well ID	Sample Date	Sample Type	Surface Elevation (ft)	Sample Depth (ft)	Sample Elevation (ft)	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno (1,2,3- cd) pyrene	cPAHs-TEQ
			(11)			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
						SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E
				Analyt	ical Method	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM
						SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIN
				5 - 6.25	52.21 to 50.96	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0097 U
				10 - 11.25	47.21 to 45.96	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0097 U
HMW-17S	9/3/2020	N	57.21	15 - 16.33	42.21 to 40.88	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				20 - 20.75	37.21 to 36.46	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				25 - 26	32.21 to 31.21	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				5 - 5.8	52.61 to 51.81	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0097 U
				10 - 11.5	47.61 to 46.11	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
HMW-18S	9/3/2020	N	57.61	15 - 16.5	42.61 to 41.11	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
	0.012020	••	07.01	20 - 20.9	37.61 to 36.71	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				25 - 25.8	32.61 to 31.81	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				30 - 31	27.61 to 26.61	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				5 - 5.5	53.20 to 52.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				10 - 10.75	48.20 to 47.45	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
HMW-19S	9/8/2020	N	58.20	15 - 16.5	43.20 to 41.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
	3/0/2020		30.20	20 - 21.5	38.20 to 36.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				26 - 26.8	32.20 to 31.40	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				30 - 30.5	28.20 to 27.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 5.5	48.81 to 48.31	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				10 - 11.5	43.81 to 42.31	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
HMW-20S	9/8/2020	N	53.81	15 - 16.5	38.81 to 37.31	0.011	0.01 U	0.01 U	0.01 U	0.011	0.01 U	0.01 U	0.0016
200	0,0,2020		00.01	20 - 21.25	33.81 to 32.56	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				25 - 26.4	28.81 to 27.41	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				30 - 31	23.81 to 22.81	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 6.5	50.02 to 48.52	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				10 - 11.5	45.02 to 43.52	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
MBB-1	2/27/2020	N	55.02	15 - 16.5	40.02 to 38.52	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				20 - 21.5	35.02 to 33.52	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				25 - 26.5	30.02 to 28.52	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 6.5	50.45 to 48.95	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
		N		10 - 11.5	45.45 to 43.95	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
MBB-2	2/27/2020	.,	55.45	15 - 16.5	40.45 to 38.95	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
			22.10	20 - 21.5	35.45 to 33.95	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
		FD		_00		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
		N		25 - 26.5	30.45 to 28.95	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 6.5	49.84 to 48.34	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				10 - 11.5	44.84 to 43.34	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
MBB-3	2/27/2020	N	54.84	15 - 16.5	39.84 to 38.34	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				20 - 21.5	34.84 to 33.34	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				25 - 26.5	29.84 to 28.34	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U

								Carcino	genic Semi-Vola	tile Organic Con	npounds		
Boring/Well ID	Sample Date	Sample Type	Surface Elevation (ft)	Sample Depth (ft)	Sample Elevation (ft)	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno (1,2,3- cd) pyrene	cPAHs-TEQ
			(11)			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
						SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E
				Analy	ical Method	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM
						SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM
				5 - 6.5	49.61 to 48.11	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
1		N				0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
	0.000.000	FD		10 - 12.5	44.61 to 42.11	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
MBB-4	2/27/2020		54.61	15 - 16.5	39.61 to 38.11	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
1		N		20 - 23	34.61 to 31.61	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
1				25 - 26.5	29.61 to 28.11	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 6.5	42.15 to 40.65	0.05 U	0.05 U	0.05 U	0.05 U	0.058	0.05 U	0.05 U	0.0036 U
1				10 - 11.5	37.15 to 35.65	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
MBB-14	3/3/2020	N	47.15	15 - 16.5	32.15 to 30.65	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
ł				20 - 21.5	27.15 to 25.65	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
1				25 - 26.5	22.15 to 20.65	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 6.5	32.73 to 31.23	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
ł				10 - 11.5	27.73 to 26.23	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
MBB-15	3/4/2020	N	37.73	15 - 16.5	22.73 to 21.23	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
ł				20 - 21.5	17.73 to 16.23	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
1				25 - 26.5	12.73 to 11.23	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 5.5	48.70 to 48.20	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
1				10 - 11.5	43.70 to 42.20	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
MBB-16	9/2/2020	N	53.70	15 - 15.5	38.70 to 38.20	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
ł				20 - 20.9	33.70 to 32.80	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 6	49.88 to 48.88	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
1				10 - 10.75	44.88 to 44.13	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
MBB-17	9/1/2020	N	54.88	15 - 16	39.88 to 38.88	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
ł				25 - 25.9	29.88 to 28.98	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 6.5	46.33 to 44.83	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
1				10 - 10.9	41.33 to 40.43	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
MBB-18	9/1/2020	N	51.33	15 - 16.4	36.33 to 34.93	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
1				20 - 20.75	31.33 to 30.58	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 5.8	46.68 to 45.88	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
1				10 - 11	41.68 to 40.68	0.05 U	0.05 U	0.064	0.05 U	0.05	0.05 U	0.05 U	0.0087
MBB-19	9/1/2020	N	51.68	15 - 15.4	36.68 to 36.28	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
1				20 - 20.8	31.68 to 30.88	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 6.5	42.53 to 41.03	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.000 U
l				10 - 11.5	37.53 to 36.03	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
MBB-20	9/2/2020	N	47.53	15 - 16.33	32.53 to 31.2	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.002 U
l				20 - 20.5	27.53 to 27.03	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 5.8	42.60 to 41.80	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
l				10 - 11.5	37.60 to 36.10	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
MBB-21	9/2/2020	N	47.60	15 - 15.9	32.60 to 31.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
i				20 - 20.9	27.60 to 26.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U

			Cf					Carcino	genic Semi-Vola	tile Organic Con	npounds		
Boring/Well ID	Sample Date	Sample Type	Surface Elevation (ft)	Sample Depth (ft)	Sample Elevation (ft)	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno (1,2,3- cd) pyrene	cPAHs-TEQ
			(11)			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
						SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E
				Analyt	ical Method	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM
						SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIN
				5 - 6	37.05 to 36.05	0.2	0.33	0.33	0.13	0.31	0.05 U	0.24	0.42
				15 - 16.25	27.05 to 25.8	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
MBB-22	9/21/2020	N	42.05	20 - 21.3	22.05 to 20.75	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				25 - 26.3	17.05 to 15.75	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				30 - 30.5	12.05 to 11.55	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				5 - 6.2	42.18 to 40.98	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0097 U
				10 - 11.1	37.18 to 36.08	1	1.8	2.3	0.77	1.7	0.22	1.1	2.4
MBB-23	9/21/2020	N	47.18	15 - 16.25	32.18 to 30.93	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
	372.72020			20 - 21.3	27.18 to 25.88	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				25 - 26	22.18 to 21.18	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				30 - 31	17.18 to 16.18	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				5 - 6.5	49.10 to 47.60	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				10 - 11.4	44.10 to 42.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
MBB-24	9/9/2020	N	54.10	15 - 16.5	39.10 to 37.60	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
	0/0/2020		01.10	20 - 21	34.10 to 33.10	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				25 - 25.8	29.10 to 28.30	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				30 - 31	24.10 to 23.10	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 5.5	53.63 to 53.13	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
		N		9.5 - 10.5	49.13 to 48.13	0.091	0.07	0.091	0.05 U	0.095	0.05 U	0.05 U	0.09
				14.5 - 15.4	44.13 to 43.23	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
				19.5 - 20.5	39.13 to 38.13	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
MBB-25	10/30/2020	FD	58.63	10.0 20.0	00.10 10 00.10	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				24.5 - 25.5	34.13 to 33.13	0.25	0.24	0.28	0.12	0.28	0.05 U	0.13	0.32
		N		29.5 - 30.5	29.13 to 28.13	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
		.,		34.5 - 35.5	24.13 to 23.13	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				39.5 - 40	19.13 to 18.63	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5.25 - 5.5	53.54 to 53.29	0.01 U	0.011	0.014	0.01 U	0.01 U	0.01 U	0.01 U	0.013
				9.5 - 10.5	49.29 to 48.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
		N		14.5 - 15.5	44.29 to 43.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				19.5 - 20.5	39.29 to 38.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
MBB-26	10/29/2020		58.79	24.5 - 25.5	34.29 to 33.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
]	29.5 - 30.5	29.29 to 28.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
		FD		_5.0 00.0		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
		N		34.5 - 35.5	24.29 to 23.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				39.5 - 40	19.29 to 18.79	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
MBGW-1	3/6/2019	N	39.95	23.5 - 25	16.45 to 14.95	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.0076 U
MBGW-2	3/4/2019	N	46.11	25 - 26.5	21.11 to 19.61	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.0076 U
				30 - 31.5	16.11 to 14.61	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.0076 U
MBGW-3	3/7/2019	N	47.77	12 - 13	35.77 to 34.77	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.0076 U
.710044-0	3/1/2018	.,	41.11	25 - 26	22.77 to 21.77	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.0076 U

TABLE 5-5 SOIL RESULTS FOR SEMI-VOLATILE ORGANIC COMPOUNDS SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

									No	n Carcinogonic S	Semi-Volatile Org	anic Compound				
		Sample	Surface	Sample	Sample	1-Methyl	2-Methyl		140	n-oaremogenie e	Benzo(g,h,i)	janic Compound				
Boring/Well ID	Sample Date	Туре	Elevation (ft)	Depth (ft)	Elevation (ft)	naphthalene	naphthalene	Acenaphthene	Acenaphthylene	Anthracene	perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
			(11)			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
						SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E
				Analyt	ical Method	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM
						SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM
21417-MB2	5/12/2017	N	54.72	1	53.72	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U
21417-MB3	5/12/2017	N	58.63	1	57.63	0.0382 U	0.0382 U	0.0382 U	0.0382 U	0.0382 U	0.0382 U	0.0981	0.0382 U	0.0382 U	0.0455	0.0939
HMW-4IA	3/7/2019	N	58.70	7.5	51.20	0.1 U	0.1 U	1.06	0.37	0.1 U	0.1 U	4.68	0.1 U	0.1 U	1.97	4.41
				5 - 6.5	53.44 to 51.94	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				10 - 11.5	48.44 to 46.94	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
HMW-5IB	2/28/2020	N	58.44	15 - 16.5	43.44 to 41.94	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				20 - 21.5	38.44 to 36.94	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				25 - 26.5	33.44 to 31.94	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				5 - 6.5	53.58 to 52.08	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.21	0.05 U	0.05 U	0.099	0.24
				10 - 11.5	48.58 to 47.08	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.24	0.05 U	0.05 U	0.3	0.27
HMW-6D	3/2/2020	N	58.58	15 - 16.5	43.58 to 42.08	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.18	0.05 U	0.05 U	0.14	0.21
				25 - 26.5	33.58 to 32.08	-	-	0.05 U	0.05 U	0.077	0.05 U	0.29	0.05 U	0.05 U	0.23	0.29
				30 - 31.5	28.58 to 27.08	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				5 - 6.5	53.65 to 52.15	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.14	0.05 U	0.05 U	0.11	0.15
				10 - 11.5	48.65 to 47.15	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.2	0.05 U	0.05 U	0.23	0.22
HMW-6IA	3/2/2020	N	58.65	15 - 16.5	43.65 to 42.15	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.27	0.05 U	0.05 U	0.11	0.28
				20 - 21.5	38.65 to 37.15	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.14	0.05 U	0.05 U	0.11	0.14
				30 - 31.5	28.65 to 27.15	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				5 - 6.5	53.67 to 52.17	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.17	0.05 U	0.05 U	0.14	0.22 J
				10 - 11.5	48.67 to 47.17	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.2	0.05 U	0.05 U	0.21	0.22 J
HMW-6IB	3/3/2020	N	58.67	15 - 16.5	43.67 to 42.17	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.22	0.05 U	0.05 U	0.11	0.28 J
				20 - 21.5	38.67 to 37.17	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.12	0.05 U	0.05 U	0.095	0.15 J
				25 - 26.5	33.67 to 32.17	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				5 - 6.5	53.69 to 52.19	-	-	0.055	0.05 U	0.05	0.05 U	0.26	0.05 U	0.05 U	0.31	0.3
				10 - 11.5	48.69 to 47.19	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.18	0.05 U	0.05 U	0.079	0.21
HMW-7IB	2/28/2020	N	58.69	15 - 16.5	43.69 to 42.19	-	-	0.05 U	0.05 U	0.057	0.05 U	1.3	0.05 U	0.05 U	0.12	1.4
				20 - 21.5	38.69 to 37.19	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.16	0.05 U	0.05 U	0.065	0.16
				25 - 26.5	33.69 to 32.19	-	-	0.05 U	0.05 U	0.13	0.05 U	0.26	0.05 U	0.05 U	0.18	0.24
				5 - 6.5	52.97 to 51.47	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.25	0.05 U	0.05 U	0.32	0.27
				10 - 11.5	47.97 to 46.47	-	-	0.05	0.05 U	0.061	0.05 U	0.29	0.05 U	0.05 U	0.4	0.37
HMW-8IB	3/2/2020	N	57.97	15 - 16.5	42.97 to 41.47	-	-	0.058	0.05 U	0.09	0.05 U	0.34	0.05 U	0.05 U	0.7	0.36
				20 - 21.5	37.97 to 36.47	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.056	0.05 U	0.05 U	0.055	0.074
				25 - 26.5	32.97 to 31.47	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U

									N-	n Coroinogoais C	Comi Valatila O-	ganic Compound	0			
		Sample	Surface	Sample	Sample	1-Methyl	2-Methyl	<u> </u>	INO	n-Carcinogenic 8	Benzo(g,h,i)	ganic Compound	S	l	<u> </u>	<u> </u>
Boring/Well ID	Sample Date	Туре	Elevation (ft)	Depth (ft)	Elevation (ft)	naphthalene	naphthalene	Acenaphthene	Acenaphthylene	Anthracene	perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
						SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E
				Analyt	ical Method	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM
				,		SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM
				5 - 6.25	52.21 to 50.96	-	-	-	-	-	-	-	-	-	-	-
				10 - 11.25	47.21 to 45.96	-	-	-	-	-	-	-	-	-	-	-
HMW-17S	9/3/2020	N	57.21	15 - 16.33	42.21 to 40.88	-	-	-	-	-	-	-	-	-	-	-
				20 - 20.75	37.21 to 36.46	-	-	-	-	-	-	-	-	-	-	-
				25 - 26	32.21 to 31.21	-	-	-	-	-	-	-	-	-	-	-
				5 - 5.8	52.61 to 51.81	-	-	-	-	-	-		-	-	-	
				10 - 11.5	47.61 to 46.11	-	-	-	-	-	-		-	-	-	
HMW-18S	9/3/2020	N	57.61	15 - 16.5	42.61 to 41.11		-	-	-	-	-	-	-	-	-	
1	0/0/2020	.,	07.01	20 - 20.9	37.61 to 36.71	-	-	-	-	-	-	-	-	-	-	-
				25 - 25.8	32.61 to 31.81		-	-	-	-	-	-	-	-	-	
				30 - 31	27.61 to 26.61	-	-	-	-	-	-	-	-	-	-	-
				5 - 5.5	53.20 to 52.70		-	-	-	-	-	-	-	-	-	
				10 - 10.75	48.20 to 47.45		-	-	-	-	-	-	-	-	-	
HMW-19S	9/8/2020	N	58.20	15 - 16.5	43.20 to 41.70		-	-	-	-	-		-	-	-	
1	0/0/2020		00.20	20 - 21.5	38.20 to 36.70	-	-	-	-	-	-	-	-	-	-	-
				26 - 26.8	32.20 to 31.40	-	-	-	-	-	-	-	-	-	-	-
				30 - 30.5	28.20 to 27.70	-	-	-	-	-	-	-	-	-	-	-
				5 - 5.5	48.81 to 48.31	-	-	-	-	-	-		-	-	-	-
				10 - 11.5	43.81 to 42.31		-	-	-	-	-	-	-	-	-	
HMW-20S	9/8/2020	N	53.81	15 - 16.5	38.81 to 37.31		-	-	-	-	-	-	-	-	-	
	0/0/2020		00.01	20 - 21.25	33.81 to 32.56	-	-	-	-	-	-	-	-	-	-	-
				25 - 26.4	28.81 to 27.41	-	-	-	-	-	-	-	-	-	-	-
				30 - 31	23.81 to 22.81	-	-	-	-	-	-	-	-	-	-	-
				5 - 6.5	50.02 to 48.52		-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				10 - 11.5	45.02 to 43.52		-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-1	2/27/2020	N	55.02	15 - 16.5	40.02 to 38.52	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				20 - 21.5	35.02 to 33.52	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.024	0.01 U	0.01 U
				25 - 26.5	30.02 to 28.52	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				5 - 6.5	50.45 to 48.95		-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
		N		10 - 11.5	45.45 to 43.95	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-2	2/27/2020		55.45	15 - 16.5	40.45 to 38.95	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
	1			20 - 21.5	35.45 to 33.95			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
		FD						0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
		N		25 - 26.5	30.45 to 28.95	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				5 - 6.5	49.84 to 48.34		-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
	0.000.005			10 - 11.5	44.84 to 43.34	ļ	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-3	2/27/2020	N	54.84	15 - 16.5	39.84 to 38.34			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				20 - 21.5	34.84 to 33.34			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
	1		1	25 - 26.5	29.84 to 28.34	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.092	0.01 U	0.01 U

									. No	n-Carcinogenic S	Semi-Volatile Or	anic Compound	s			
Boring/Well ID	Sample Date	Sample	Surface Elevation	Sample	Sample	1-Methyl	2-Methyl				Benzo(g,h,i)					
Bornig/Weii ib	Sample Date	Туре	(ft)	Depth (ft)	Elevation (ft)	naphthalene	naphthalene	Acenaphthene	Acenaphthylene	Anthracene	perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
						mg/kg SW8270E										
							7 7					7 7		7 7		
				Anaiyi	ical Method	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM
	1		1	F 6 F	40.64 to 40.44	- SW0270E3IW	- 3VV62/UE3IIVI									
		N		5 - 6.5	49.61 to 48.11			0.01 U 0.01 U	0.01 U 0.011	0.01 U 0.01 U	0.01 U 0.01 U					
		FD		10 - 12.5	44.61 to 42.11			0.01 U	0.011 0.01 U	0.01 U	0.01 U					
MBB-4	2/27/2020	FU	54.61	15 - 16.5	39.61 to 38.11	 		0.01 U								
		N		20 - 23	34.61 to 31.61	 		0.01 U	0.010	0.01 U	0.01 U					
				25 - 26.5	29.61 to 28.11			0.01 U								
				5 - 6.5	42.15 to 40.65	_	_	0.05 U	0.05 U	0.05 U	0.05 U	0.11	0.05 U	0.05 U	0.09	0.12 J
				10 - 11.5	37.15 to 35.65			0.01 U	0.01 U	0.00 U	0.00 U	0.016	0.01 U	0.028	0.015	0.018
MBB-14	3/3/2020	N	47.15	15 - 16.5	32.15 to 30.65			0.01 U								
				20 - 21.5	27.15 to 25.65	-		0.01 U								
				25 - 26.5	22.15 to 20.65	-	-	0.01 U	0.01							
				5 - 6.5	32.73 to 31.23	-	-	0.01 U								
				10 - 11.5	27.73 to 26.23	-	-	0.01 U								
MBB-15	3/4/2020	N	37.73	15 - 16.5	22.73 to 21.23	-	-	0.01 U								
				20 - 21.5	17.73 to 16.23	-	-	0.01 U								
				25 - 26.5	12.73 to 11.23	-	-	0.01 U								
				5 - 5.5	48.70 to 48.20	-	-	-	-	-	-	-	-	-	-	-
MBB-16	9/2/2020	N	53.70	10 - 11.5	43.70 to 42.20	-	-	-	-	-	-	-	-	-	-	-
WIDD-10	3/2/2020	.,	00.70	15 - 15.5	38.70 to 38.20	-	-	-	-	-	-	-	-	-	-	-
				20 - 20.9	33.70 to 32.80	-	-	-	-	-	-	-	-	-	-	-
				5 - 6	49.88 to 48.88	-	-	-	-	-	-		-	-	-	-
MBB-17	9/1/2020	N	54.88	10 - 10.75	44.88 to 44.13	-	-	-	-	-	-	-	-	-	-	-
				15 - 16	39.88 to 38.88	-	-	-	-	-	-	-	-	-	-	-
				25 - 25.9	29.88 to 28.98	-	-	-	-	-	-	-	-	-	-	-
				5 - 6.5	46.33 to 44.83					-					-	
MBB-18	9/1/2020	N	51.33	10 - 10.9	41.33 to 40.43				-	-						
				15 - 16.4	36.33 to 34.93	-			-	-	-				-	-
				20 - 20.75	31.33 to 30.58	-	-	-	-	-	-	-	-	-	-	-
				5 - 5.8	46.68 to 45.88	-			-	-	-				-	-
MBB-19	9/1/2020	N	51.68	10 - 11	41.68 to 40.68	-				-						
				15 - 15.4	36.68 to 36.28											
				20 - 20.8	31.68 to 30.88	-	-	-	-	-	-	-	-	-	-	-
				5 - 6.5	42.53 to 41.03					-	-	<u> </u>	-		 	ļ
MBB-20	9/2/2020	N	47.53	10 - 11.5	37.53 to 36.03 32.53 to 31.2					-	-	<u> </u>				ļ
1				15 - 16.33 20 - 20.5	27.53 to 27.03	-	-		-	-	·	-	-		-	
				5 - 5.8	42.60 to 41.80	-	-	-	-	-	-	-	-	-	-	-
				10 - 11.5	37.60 to 36.10	<u> </u>	<u>-</u>	<u> </u>				<u> </u>			 	
MBB-21	9/2/2020	N	47.60	15 - 15.9	32.60 to 31.70					-	-				<u> </u>	
1				20 - 20.9	27.60 to 26.70	 	<u>-</u>	<u> </u>		<u> </u>	}	 	<u>-</u>	<u> </u>	 	
	1	i)	ı	20-20.9	21.00 10 20.70				-				-			

									No.	n-Carcinogenic S	Semi-Volatile Oro	ganic Compound	s .			
Boring/Well ID	Sample Date	Sample	Surface Elevation	Sample	Sample	1-Methyl	2-Methyl				Benzo(g,h,i)					
Boring/vveil ID	Sample Date	Type	(ft)	Depth (ft)	Elevation (ft)	naphthalene	naphthalene	Acenaphthene	Acenaphthylene	Anthracene	perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
			. , ,			mg/kg										
						SW8270E										
				Analyt	ical Method	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM	SW8270SIM SW8270ESIM
	1		l	5.0	07.05 : 00.05											
				5-6	37.05 to 36.05	-	-		-	-		<u> </u>	-	-	-	
MBB-22	9/21/2020	N	42.05	15 - 16.25 20 - 21.3	27.05 to 25.8 22.05 to 20.75				-						-	
WIDD-22	9/21/2020	IN.	42.00	25 - 26.3	17.05 to 15.75					-		<u> </u>				
				30 - 30.5	12.05 to 11.55	<u> </u>						<u>-</u>				
	1			5 - 6.2	42.18 to 40.98	-						_				
				10 - 11.1	37.18 to 36.08				_							
				15 - 16.25	32.18 to 30.93											
MBB-23	9/21/2020	N	47.18	20 - 21.3	27.18 to 25.88		-		-	-			-		-	-
				25 - 26	22.18 to 21.18	-	-		-	-	-		-		-	-
				30 - 31	17.18 to 16.18	-	-	-	-	-	-	-	-	-	-	-
				5 - 6.5	49.10 to 47.60	-	-	-	-	-	-	-	-	-	-	-
				10 - 11.4	44.10 to 42.70	-	-	-	-	-	-	-	-	-	-	-
MBB-24	9/9/2020	N	54.10	15 - 16.5	39.10 to 37.60	-	-	-	-	-	-	-	-	-	-	-
IVIDD-24	9/9/2020	IN	34.10	20 - 21	34.10 to 33.10	-	-	-	-	-	-	-	-	-	-	-
				25 - 25.8	29.10 to 28.30	-	-	-	-	-	-	-	-	-	-	-
				30 - 31	24.10 to 23.10	-	-	-	-	-	-	-	-	-	-	-
				5 - 5.5	53.63 to 53.13	-	-	-	-	-	-	-	-	-	-	-
		N		9.5 - 10.5	49.13 to 48.13	-	-	-	-	-	-	-	-	-	-	-
				14.5 - 15.4	44.13 to 43.23			-		-					-	
				19.5 - 20.5	39.13 to 38.13					-						
MBB-25	10/30/2020	FD	58.63					-	-	-	-				-	
				24.5 - 25.5	34.13 to 33.13		-		-	-					-	-
		N		29.5 - 30.5	29.13 to 28.13											
				34.5 - 35.5	24.13 to 23.13											
				39.5 - 40 5.25 - 5.5	19.13 to 18.63 53.54 to 53.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				9.5 - 10.5	49.29 to 48.29	0.01 U										
				14.5 - 15.5	44.29 to 43.29	0.01 U										
		N		19.5 - 20.5	39.29 to 38.29	0.01 U										
MBB-26	10/29/2020		58.79	24.5 - 25.5	34.29 to 33.29	0.01 U										
						0.01 U										
		FD	1	29.5 - 30.5	29.29 to 28.29	0.01 U										
			1	34.5 - 35.5	24.29 to 23.29	0.01 U										
		N		39.5 - 40	19.29 to 18.79	0.01 U										
MBGW-1	3/6/2019	N	39.95	23.5 - 25	16.45 to 14.95	0.1 U										
MBGW-2	3/4/2019	N	46.11	25 - 26.5	21.11 to 19.61	0.1 U										
IVIDGVV-2	3/4/2019	IN .	40.11	30 - 31.5	16.11 to 14.61	0.1 U										
MBGW-3	3/7/2019	N	47.77	12 - 13	35.77 to 34.77	0.1 U										
WIDGW-3	3/1/2019	14	41.11	25 - 26	22.77 to 21.77	0.1 U										

ſ				Surface						No	n-Carcinogenic S	Semi-Volatile Org	ganic Compound	S			
	Boring/Well ID	Sample Date	Sample Type	Elevation (ft)	Sample Depth (ft)	Sample Elevation (ft)	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i) perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
				(11)			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
ı							SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E
				Analyt	ical Method	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	SW8270SIM	
					SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM		

Bold indicates a detected concentration at or above the laboratory reporting limit.

Elevations relative to North American Vertical Datum of 1988 (NAVD88).

- = Data not available or not applicable.

Cpahs-TEQ = Carcinogenic polycyclic aromatic hydrocarbons toxic equivalency.

FD = Field duplicate.

ft = feet.

J = Estimated value.

mg/kg = milligram per kilogram.

N = Primary environmental sample.

U = Not detected at detection limit indicated.

TABLE 5-8
SOIL RESULTS FOR INORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

D : ////	0 1	0 1	Surface		0 5 "					Inor	ganic Compo	unds				
Boring/Well ID	Sample Date	Sample Type	Elevation	Sample Depth (ft)	Sample Elevation (ft)	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
ID.	Date	Туре	(ft)	(11)	(11)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Analytical Method	SW6010D SW6020	SW6010D	SW6010D SW6020	SW6010D SW6020	-	SW6010D SW6020	SW6020 SW7471B	-	SW6010D	SW6010D SW6020	-
21417-MB1	5/12/2017	N	55.43	9	46.43	4.78	-	0.192 U	41.2	-	2.43	0.293 U	-	-	-	-
21417-MB4	5/12/2017	N	57.24	24	33.24	6.94	68.9	0.192	35.8	-	40.2	0.298 U	-	1.26	0.093 U	-
21417-MB6	5/11/2017	N	48.22	9	39.22	3.1	43.3	0.168 U	29.1	-	9.18	0.265 U	-	1.3	0.0839 U	-
21417-MB8	5/11/2017	N	45.28	27	18.28	2.69	31.8	0.168 U	29.3	-	2.38	0.276 U	-	0.988	0.0842 U	-
21417-MB9	5/11/2017	N	39.05	13	26.05	4.24	45.5	0.428	31.4	-	19.3	0.291 U	-	1.39	0.0979 U	-
21417-10109	3/11/2017	IN	39.03	22	17.05	5.01	105	0.199 U	39.1	26.3	279	0.453	37.3	1.26	0.0996 U	62.2
21417-MB10	5/11/2017	N	38.08	28	10.08	7.75	42	0.174 U	43.2	-	6.75	0.268 U	-	0.99	0.0872 U	-
21417-MB11	5/11/2017	N	39.04	23	16.04	4.18	101	0.204 U	39.5	-	7.73	0.325 U	-	1.76	0.102 U	-
GP-7	5/12/2012	N	58.53	0 to 7	58.53 to 51.53	-	-	-	-	-	4.19	-	-	-	-	-
GF-7	3/12/2012	IN	30.33	7 to 11	51.53 to 47.53	-	-	-	-	-	1.56	ı	-	-	-	-
GP-8	5/14/2012	N	58.33	0 to 7	58.33 to 51.33	-	-	-	-	-	2.85	-	-	-	-	-
GF-0	3/14/2012	IN	30.33	7 to 12	51.33 to 46.33	-	-	-	-	-	2.31	·	-	-	-	-
				0 - 7	58.00 to 51.00	-	-	-	-	-	2.85	-	-	-	-	-
GP-9	5/14/2012	N	58.00	7 - 14	51.00 to 44.00	-	-	-	-	-	2.64	-	-	-	-	-
				14 - 19	44.00 to 39.00	-	-	-	-	-	1.8	•	-	-	-	-
HMW-2IB	3/12/2019	N	47.41	7.5 - 9	39.91 to 38.41	11 U	72	0.56 U	33	-	10	0.28 U	-	11 U	0.56 U	-
HMW-3IA	3/15/2019	N	55.02	22.5 - 23.5	32.52 to 31.52	12 U	50	0.59 U	39	-	5.9 U	0.29 U	-	12 U	1.2 U	-
				5 - 6.5	53.44 to 51.94	1.55	-	1 U	12.2	-	1.11	1 U	-	-	-	-
				10 - 11.5	48.44 to 46.94	1.31	-	1 U	16	-	1.18	1 U	-	-	-	-
HMW-5IB	2/28/2020	N	58.44	15 - 16.5	43.44 to 41.94	1.26	-	1 U	16.9	-	1.06	1 U	-	-	-	-
				20 - 21.5	38.44 to 36.94	1.03	-	1 U	12.5	-	1.11	1 U	-	-	-	-
				25 - 26.5	33.44 to 31.94	1 U	-	1 U	11.3	-	1 U	1 U	-	-	-	-
				5 - 6.5	53.58 to 52.08	16.4	-	1 U	17.8	-	21.8	1 U	-	-	-	-
				10 - 11.5	48.58 to 47.08	21.8	-	1 U	20.2	-	23.6	1 U	-	-	-	-
HMW-6D	3/2/2020	N	58.58	15 - 16.5	43.58 to 42.08	24.4	-	1 U	21.3	-	21.3	1 U	-	-	-	-
T IIVIVV-0D	3/2/2020		30.30	25 - 26.5	33.58 to 32.08	18	-	1 U	26.4	-	16	1 U	-	-	-	-
				30 - 31.5	28.58 to 27.08	1.61	-	1 U	14.4 J	-	1.69	1 U	-	-	-	-
		FD		30 - 31.3	20.30 to 21.00	1.42	-	1 U	10.8 J	-	1.44	1 U	-	-	-	-
				5 - 6.5	53.65 to 52.15	15.6	-	1 U	18.1	-	20.1	1 U	-	-	-	-
				10 - 11.5	48.65 to 47.15	13.6	-	1 U	19.2	-	16.5	1 U	-	-	-	-
HMW-6IA	3/2/2020	N	58.65	15 - 16.5	43.65 to 42.15	18.6	-	1 U	16	-	20.5	1 U	-	-	-	-
				20 - 21.5	38.65 to 37.15	18.3	-	1 U	30.2	-	13.4	1 U	-	-	-	-
				30 - 31.5	28.65 to 27.15	3.1	-	1 U	19.9	-	4.88	1 U	-	-	-	-

TABLE 5-8
SOIL RESULTS FOR INORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

Davin nAA/all	0	01-	Surface	Committee Donath	O					Inorg	ganic Compo	unds				
Boring/Well ID	Sample Date	Sample Type	Elevation	(ft)	Sample Elevation (ft)	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
i b	Date	Турс	(ft)	(11)	(11)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		N		5 - 6.5	53.67 to 52.17	13.4	-	1 U	17.8	-	18.2	1 U	-	-	-	-
		l IN		10 - 11.5	48.67 to 47.17	15.9	-	1 U	20.6 J	-	26.3 J	1 U	-	-	-	-
HMW-6IB	3/3/2020	FD	58.67	10 - 11.5	40.07 10 47.17	14.9	-	1 U	29.3 J	-	16.1 J	1 U	_	_	-	-
T IIVIVV-OID	0/0/2020		30.07	15 - 16.5	43.67 to 42.17	22.2	-	1 U	19.6	-	19	1 U	_	-	-	-
		N		20 - 21.5	38.67 to 37.17	25.6	-	1 U	20.5	-	18	1 U	_	-	-	-
				25 - 26.5	33.67 to 32.17	2.23	-	1 U	20.3	-	2.08	1 U	-	-	-	-
				5 - 6.5	53.69 to 52.19	15.3	-	1 U	22.4	-	17.4	1 U	_	-	-	-
				10 - 11.5	48.69 to 47.19	13.8	-	1 U	18.4	-	25.2	1 U		-	-	-
HMW-7IB	2/28/2020	N	58.69	15 - 16.5	43.69 to 42.19	19.9	-	1 U	18.3	-	18.2	1 U	-	-	-	-
''''	2/20/2020		00.00	20 - 21.5	38.69 to 37.19	25.6	-	1 U	19.1	-	18.4	1 U		-	-	-
				25 - 26.5	33.69 to 32.19	8.13	-	1 U	18.9 J	-	6.75	1 U	-	-	-	-
		FD		20 - 20.0	00.00 to 02.10	8.49	-	1 U	25.9 J	-	7.93	1 U	-	-	-	-
				5 - 6.5	52.97 to 51.47	21.4	-	1 U	20.8	-	24.8	1 U	-	-	-	-
				10 - 11.5	47.97 to 46.47	19.5	-	1 U	18.3	-	19.1	1 U	-	-	-	-
HMW-8IB	3/2/2020	N	57.97	15 - 16.5	42.97 to 41.47	17.1	-	1 U	19.3	-	19.4	1 U	-	-	-	-
T IIVIVV-OID	0/2/2020		07.57	20 - 21.5	37.97 to 36.47	4.86	-	1 U	14.9	-	5	1 U	-	-	-	-
				25 - 26.5	32.97 to 31.47	1.12	-	1 U	15.1	-	1.38	1 U	_	-	-	-
		FD		20 - 20.0	32.37 10 01.47	1.06	-	1 U	17.9	-	1.49	1 U	-	-	-	-
				5 - 6.5	50.32 to 48.82	1.78	-	1 U	13.6	-	2.8	1 U	-	-	-	-
				10 - 11.5	45.32 to 43.82	1.38	-	1 U	12.4	-	2.17	1 U	-	-	-	-
HMW-9D	2/27/2020	N	55.32	15 - 16.5	40.32 to 38.82	15.3	-	1 U	18.2	-	10.9	1 U	_	-	-	-
				20 - 21.5	35.32 to 33.82	2.55	-	1 U	16	-	2.59	1 U	_	-	-	-
				25 - 26.5	30.32 to 28.82	1.46	-	1 U	12.3	-	1.25	1 U	-	-	-	-
				5 - 6.5	50.26 to 48.76	1.07	-	1 U	15	-	1.27	1 U	_	-	-	-
				10 - 11.5	45.26 to 43.76	1.41	-	1 U	11.3	-	2.52	1 U	-	-	-	-
HMW-9IA	2/28/2020	N	55.26	15 - 16.5	40.26 to 38.76	6.62	-	1 U	16.9	-	14.1	1 U		-	-	-
				20 - 21.5	35.26 to 33.76	1.74	-	1 U	13.2	-	1.32	1 U	-	-	-	-
				25 - 26.5	30.26 to 28.76	1.23	-	1 U	13.1	-	1.2	1 U	-	-	-	
				5 - 6.5	50.36 to 48.86	7.75	-	1 U	17.3	-	7.89	1 U	-	-	-	-
				13 - 14.5	42.36 to 40.86	1.64	-	1 U	10.9	-	1.9	1 U	-	-	-	-
HMW-9IB	2/28/2020	N	55.36	15 - 16.5	40.36 to 38.86	17.8	-	1 U	18.5	-	11.3	1 U	-	-	-	-
				20 - 21.5	35.36 to 33.86	1.6	-	1 U	13.6	-	1.29	1 U	-	-	-	-
				25 - 26.5	30.36 to 28.86	1.26	-	1 U	14.5	-	1.39	1 U	-	-	-	-
				5 - 6.5	50.39 to 48.89	2.64	-	1 U	15.8	-	5.91	1 U	-	-	-	-
				14 - 15.5	41.39 to 39.89	14.5	-	1 U	19.2	-	14.5	1 U	-	-	-	-
HMW-9S	3/2/2020	N	55.39	17 - 18.5	38.39 to 36.89	17.7	-	1 U	14.3	-	17.3	1 U	-	-	-	-
				20 - 21.5	35.39 to 33.89	1.3	-	1 U	11.3	-	1.17	1 U	-	-	-	-
				25 - 26.5	30.39 to 28.89	1.36	-	1 U	13.9	-	1.52	1 U	-	-	-	-

TABLE 5-8
SOIL RESULTS FOR INORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

Danis s/Mall	0	0	Surface	0 I - D 41-	OIElti					Inorg	ganic Compo	unds				
Boring/Well ID	Sample Date	Sample Type	Elevation	Sample Depth (ft)	Sample Elevation (ft)	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
i D	Date	Турс	(ft)	(11)	(11)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				5 - 6.5	43.16 to 41.66	1.76	-	1 U	15.2	-	1.4	1 U	-	-	-	-
		N		10 - 11.5	38.16 to 36.66	1.78	-	1 U	14.1	-	1.38	1 U	_	-	-	-
HMW-10D	3/5/2020		48.16	15 - 16.5	33.16 to 31.66	1.87	-	1 U	15.4	-	1.62	1 U	_	-	-	-
1110100-100	3/3/2020	FD	40.10	10 - 10.5		1.81	-	1 U	17.4	-	1.64	1 U	-	-	-	-
		N		20 - 21.5	28.16 to 26.66	1.31		1 U	15	-	1.48	1 U		-	-	-
		IN.		25 - 26.5	23.16 to 21.66	1.8	-	1 U	20.7	-	1.95	1 U	-	-	-	-
		N		5 - 6.5	43.21 to 41.71	1.83		1 U	17.8	-	1.27	1 U		-	-	-
				10 - 11.5	38.21 to 36.71	1.51		1 U	13.6	-	1.45	1 U		-	-	-
HMW-10S	3/3/2020	FD	48.21	10 - 11.5		1.42		1 U	15	-	1.41	1 U		-	-	-
1111111	0/0/2020		40.21	15 - 16.5	33.21 to 31.71	1.51		1 U	16	-	1.38	1 U		-	-	-
		N		20 - 21.5	28.21 to 26.71	1.32		1 U	17.3	-	1.55	1 U	-	-	-	-
				25 - 26.5	23.21 to 21.71	1.57	-	1 U	18	-	1.16	1 U	-	-	-	-
				5 - 6.5	34.70 to 33.20	2.14		1 U	23.1	-	28.7	1 U		-	-	-
				10 - 11.5	29.70 to 28.20	1.43		1 U	22.8	-	2.73	1 U		-	-	-
HMW-11IB	2/24/2020	N	39.70	15 - 16.5	24.70 to 23.20	3.44	-	1 U	14.5	-	65	1 U	-	-	-	-
				20 - 21.5	19.70 to 18.20	2.69	-	1 U	31.8	-	2.11	1 U	-	-	-	-
				25 - 26.5	14.70 to 13.20	1 U	-	1 U	18.8	-	1.23	1 U	-	-	-	-
				5 - 6.5	36.47 to 34.97	2	-	1 U	23	-	14.4	1 U	-	-	-	-
				10 - 11.5	31.47 to 29.97	1.86		1 U	18.5	-	11	1 U		-	-	_
HMW-11S	2/25/2020	N	41.47	15 - 16.5	26.47 to 24.97	1.27	-	1 U	17.8	-	1.39	1 U	-	-	-	-
				20 - 21.5	21.47 to 19.97	1.72	-	1 U	19.2	-	6.65	1 U	_	-	-	-
				31 - 32.5	10.47 to 8.97	1 U	-	1 U	16	-	1.33	1 U	-	-	-	-
				5 - 6.25	52.21 to 50.96	2.93	-	1 U	24.1	-	4.65	1 U	-	-	-	-
				10 - 11.25	47.21 to 45.96	1.5	-	1 U	13.2	-	2.18	1 U	-	-	-	-
HMW-17S	9/3/2020	N	57.21	15 - 16.33	42.21 to 40.88	1.45	-	1 U	15.4	-	1.6	1 U	-	-	-	-
				20 - 20.75	37.21 to 36.46	1.48	-	1 U	16.6	-	1.53	1 U	-	-	-	-
				25 - 26	32.21 to 31.21	1 U	-	1 U	15.8	-	1.23	1 U	-	-	-	-
				5 - 5.8	52.61 to 51.81	1.19	-	1 U	11.1	-	1.36	1 U	-	-	-	-
				10 - 11.5	47.61 to 46.11	2.9	-	1 U	25.8	-	3.15	1 U	-	-	-	-
HMW-18S	9/3/2020	l _N	57.61	15 - 16.5	42.61 to 41.11	3.01	-	1 U	19.2	-	2.43	1 U	-	-	-	-
1110100-100	3/3/2020	"	37.01	20 - 20.9	37.61 to 36.71	1.39	-	1 U	12	-	1.22	1 U	-	-	-	-
				25 - 25.8	32.61 to 31.81	1.09	-	1 U	13.9	-	1.23	1 U	-	-	-	-
				30 - 31	27.61 to 26.61	1.03	-	1 U	15.5	-	1.54	1 U	-	-	-	-
				5 - 5.5	53.20 to 52.70	2.16	-	1 U	26.2	-	2.33	1 U	-	-	-	-
				10 - 10.75	48.20 to 47.45	1.24	-	1 U	14	-	1.27	1 U	-	-	-	-
HMW-19S	9/8/2020	N N	58.20	15 - 16.5	43.20 to 41.70	3.02	-	1 U	30.7	-	3.29	1 U	-	-	-	-
UINIAN-189	9/0/2020	N	30.20	20 - 21.5	38.20 to 36.70	2.17	-	1 U	31.5	-	2.22	1 U	-	-	-	-
				26 - 26.8	32.20 to 31.40	1.44	-	1 U	20.5	-	1.31	1 U	-	_	_	-
				30 - 30.5	28.20 to 27.70	1.31	-	1 U	38.2	-	1.49	1 U	-	-	-	-

TABLE 5-8
SOIL RESULTS FOR INORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

Daning (MA)	Camania	Camania	Surface	Camania Danth	Sample Elevation					Inorg	ganic Compo	unds				
Boring/Well ID	Sample Date	Sample Type	Elevation	Sample Depth (ft)	(ft)	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
15	Bato	1,700	(ft)	(11)	(11)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				5 - 5.5	48.81 to 48.31	1.57	-	1 U	12.6	-	1.88	1 U		-	-	_
				10 - 11.5	43.81 to 42.31	1.36	-	1 U	9.22	-	4.47	1 U		-	-	-
HMW-20S	9/8/2020	N	53.81	15 - 16.5	38.81 to 37.31	1.55	-	1 U	13.5	-	1.62	1 U		-	-	_
11111111-200	3/0/2020	"	33.01	20 - 21.25	33.81 to 32.56	1.77	-	1 U	15.6	-	1.66	1 U	-	-	-	_
				25 - 26.4	28.81 to 27.41	1.9	-	1 U	29.1	-	2.68	1 U		-	-	-
				30 - 31	23.81 to 22.81	1.32	-	1 U	29.5	-	1.77	1 U	-	-	-	-
				5 - 6.5	50.02 to 48.52	2.38	-	1 U	36.7	-	4.94	1 U	-	-	-	-
				10 - 11.5	45.02 to 43.52	2.69	-	1 U	15.8	-	1.27	1 U	-	-	-	-
MBB-1	2/27/2020	N	55.02	15 - 16.5	40.02 to 38.52	1.29	-	1 U	14.1	-	1.31	1 U	-	-	-	-
				20 - 21.5	35.02 to 33.52	1.23	-	1 U	11.7	-	1.29	1 U	-	-	-	-
				25 - 26.5	30.02 to 28.52	1.56	-	1 U	15.6	-	1.38	1 U	-	-	-	-
				5 - 6.5	50.45 to 48.95	4.5	-	1 U	45.9	-	4.09	1 U	-	-	-	-
		N		10 - 11.5	45.45 to 43.95	1.53	-	1 U	11.2	-	1.11	1 U	-	-	-	-
MBB-2	2/27/2020	.,	55.45	15 - 16.5	40.45 to 38.95	1.27	-	1 U	12.2	-	1.54	1 U	-	-	-	-
WIDD 2	2/21/2020			20 - 21.5	35.45 to 33.95	1.21	-	1 U	11.7	-	1.12	1 U	-	-	-	-
		FD		20 21.0		1.29	-	1 U	10.7	-	1.15	1 U	-	-	-	-
		N		25 - 26.5	30.45 to 28.95	1 U	-	1 U	12	-	1.12	1 U	-	-	-	-
				5 - 6.5	49.84 to 48.34	3.27	-	1 U	34.8	-	2.88	1 U		-	-	-
				10 - 11.5	44.84 to 43.34	1.65	-	1 U	13.6	-	2.3	1 U		-	-	_
MBB-3	2/27/2020	N	54.84	15 - 16.5	39.84 to 38.34	1 U	-	1 U	12.1	-	1.07	1 U		-	-	-
				20 - 21.5	34.84 to 33.34	2.74	-	1 U	9.91	-	1.04	1 U	-	-	-	-
				25 - 26.5	29.84 to 28.34	1.52	-	1 U	15.1	-	1.69	1 U	-	-	-	-
		N		5 - 6.5	49.61 to 48.11	2.44	-	1 U	28.2	-	5.37	1 U	-	-	-	-
				10 - 12.5	44.61 to 42.11	1.39	-	1 U	12.3	-	1.15	1 U	-	-	-	-
MBB-4	2/27/2020	FD	54.61	10 12.0		1.28	-	1 U	14.4	-	1.18	1 U	-	-	-	-
	2,21,2020		01.01	15 - 16.5	39.61 to 38.11	1.16	-	1 U	12.9	-	1.15	1 U	-	-	-	-
		N		20 - 23	34.61 to 31.61	1.44	-	1 U	13.2	-	3.42	1 U	-	-	-	-
				25 - 26.5	29.61 to 28.11	1.47	-	1 U	14.5	-	1.51	1 U	-	-	-	-
				5 - 6.5	45.53 to 44.03	23.2	-	1 U	20.1	-	17.6	1 U	-	-	-	-
				10 - 11.5	40.53 to 39.03	6.56	-	1 U	17.7	-	591	1 U	-	-	-	-
MBB-5	3/2/2020	N	50.53	15 - 16.5	35.53 to 34.03	1.81	-	1 U	14.8	-	1.57	1 U	-	-	-	-
				20 - 21.5	30.53 to 29.03	1.34	-	1 U	12.6	-	1.24	1 U		-	-	-
				25 - 26.5	25.53 to 24.03	1.51	-	1 U	15.2	-	1.29	1 U	-	-	-	-
				5 - 6.5	45.33 to 43.83	21.2	-	1 U	22.7	-	20	1 U	-	-	-	-
				10 - 11.5	40.33 to 38.83	9.18	-	1 U	44.8	-	14.8	1 U	-	-	-	-
MBB-6	3/3/2020	N	50.33	15 - 16.5	35.33 to 33.83	1.84	-	1 U	17.8	-	1.4	1 U	-	-	-	-
				20 - 21.5	30.33 to 28.83	2.08	-	1 U	16.9	-	1.61	1 U	-	-	-	-
				25 - 26.5	25.33 to 23.83	1.6	-	1 U	15.8	-	1.44	1 U		-	-	-

TABLE 5-8
SOIL RESULTS FOR INORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

Danimar/Mall	Camania	Camania	Surface	Causala Danila	Commis Flavotion					Inorg	ganic Compo	unds				
Boring/Well ID	Sample Date	Sample Type	Elevation	Sample Depth (ft)	Sample Elevation (ft)	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
,,,	Baio	1,700	(ft)	(11)	(11)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				5 - 6.5	44.41 to 42.91	2.74	-	1 U	21.1	-	9.26	1 U		-	-	_
				10 - 11.5	39.41 to 37.91	1.37	-	1 U	15.4	-	2.14	1 U		-	-	
MBB-7	2/25/2020	N	49.41	15 - 16.5	34.41 to 32.91	1.43	-	1 U	15.9	-	1.46	1 U		-	-	_
				20 - 21.5	29.41 to 27.91	1 U	-	1 U	16.4	-	1.24	1 U	-	-	-	-
				25 - 26.5	24.41 to 22.91	1.12	-	1 U	17.4	-	1.43	1 U	-	-	-	-
				7 - 7.5	42.66 to 42.16	21.9	-	1 U	18.2	-	12.5	1 U	-	-	-	-
		N		10 - 11.5	39.66 to 38.16	1.75	-	1 U	13.2	-	1.22	1 U	-	-	-	-
MBB-8	2/26/2020		49.66	15 - 16.5	34.66 to 33.16	1.7	-	1 U	19.2 J	-	1.26	1 U	-	-	-	-
	2,20,2020	FD				1.6	-	1 U	15.3 J	-	1.23	1 U	-	-	-	-
		N		20 - 21.5	29.66 to 28.16	1.6	-	1 U	14.3	-	1.3	1 U		-	-	
		.,		25 - 26.5	24.66 to 23.16	1.13	-	1 U	16.3	-	1.31	1 U	-	-	-	-
				5.5 - 7	42.05 to 40.55	9.58	-	1 U	16.7	-	13.4	1 U	-	-	-	-
				10 - 11.5	37.55 to 36.05	1.94	-	1 U	18.8	-	2.11	1 U	-	-	-	-
MBB-9	2/26/2020	N	47.55	15 - 16.5	32.55 to 31.05	1.72	-	1 U	14.7	-	1.22	1 U	-	-	-	-
				20 - 21.5	27.55 to 26.05	1.7	-	1 U	18.1	-	1.24	1 U	-	-	-	-
				25 - 26.5	22.55 to 21.05	1.27	-	1 U	17.3	-	1.31	1 U	-	-	-	-
				5 - 6.5	44.66 to 43.16	1.76	-	1 U	17.3	-	1.72	1 U		-	-	_
				10 - 11.5	39.66 to 38.16	2.32	-	1 U	25.5	-	1.89	1 U		-	-	-
MBB-10	2/26/2020	N	49.66	15 - 16.5	34.66 to 33.16	1.65	-	1 U	17.1	-	1.46	1 U		-	-	_
				20 - 21.5	29.66 to 28.16	1.4	-	1 U	15	-	1.19	1 U		-	-	_
				25 - 26.5	24.66 to 23.16	1.51	-	1 U	20.8	-	1.57	1 U	-	-	-	-
				15 - 16.5	31.42 to 29.92	-	-	_	_	-	5.52	-		-	-	
MBB-11	3/4/2020	N	46.42	20 - 21.5	26.42 to 24.92	-	-		-	-	5.51	-		-	-	
				25 - 26.5	21.42 to 19.92	-	-	-	-	-	15.4	-	-	-	-	-
				15 - 16.5	18.69 to 17.19	-	-		-	-	3.23	-		-	-	-
MBB-12	3/4/2020	N	33.69	20 - 21.5	13.69 to 12.19	-	-		-	-	9	-	-	-	-	
				25 - 26.5	8.69 to 7.19	-	-	-	-	-	1.56	-	-	-	-	-
				15 - 16.5	20.98 to 19.48	-	-	-	-	-	7.71	-	-	-	-	-
MBB-13	3/4/2020	N	35.98	20 - 21.5	15.98 to 14.48	-	-		-	-	9.54	-	-	-	-	-
WIDD-10	0/4/2020		. 33.30	25 - 26.5	10.98 to 9.48	-	-		-	-	1.55	-		-	-	
		FD		25 - 20.5	10.90 to 9.40	-	-	-	-	-	1.51	-	-	-	-	-
				5 - 5.5	48.70 to 48.20	2.62	-	1 U	28.4	-	7.58	1 U	-	-	-	-
MBB-16	9/2/2020	N	53.70	10 - 11.5	43.70 to 42.20	1.56	-	1 U	18.3	-	1.89	1 U		-	-	-
יטו -טטואו	31212020	IN	33.70	15 - 15.5	38.70 to 38.20	1.74	-	1 U	24.8	-	1.3	1 U	_	_	-	_
				20 - 20.9	33.70 to 32.80	1.42	-	1 U	13.7	-	1.17	1 U	-	-	-	-
				5 - 6	49.88 to 48.88	1.71	-	1 U	23.6	-	2.67	1 U	-	-	-	-
MBB-17	9/1/2020	NI NI	54 00	10 - 10.75	44.88 to 44.13	1.75	-	1 U	15	-	4.42	1 U	-	-	-	-
IVIDD- I /	9/1/2020	N	54.88	15 - 16	39.88 to 38.88	3.91	-	1 U	17.5	-	7.13	1 U	-	-	-	-
				25 - 25.9	29.88 to 28.98	1.97	-	1 U	17.7	-	1.75	1 U	-	-	-	-

TABLE 5-8
SOIL RESULTS FOR INORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

Danima (MA)	0	01-	Surface	0	Comple Floories					Inorg	ganic Compo	unds				
Boring/Well ID	Sample Date	Sample Type	Elevation	(ft)	Sample Elevation (ft)	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
i D	Date	Турс	(ft)	(11)	(11)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				5 - 6.5	46.33 to 44.83	14.2	-	1 U	25.5	-	13.5	1 U	-	-	-	-
MBB-18	9/1/2020	N	51.33	10 - 10.9	41.33 to 40.43	6.2	-	1 U	14.4	-	6.61	1 U	-		-	
IVIDD-10	3/1/2020	IN IN	31.33	15 - 16.4	36.33 to 34.93	1.13	-	1 U	12.3	-	1.02	1 U	_		-	
				20 - 20.75	31.33 to 30.58	1.61	-	1 U	16.2	-	1.69	1 U	-	-	-	-
				5 - 5.8	46.68 to 45.88	3.16	-	1 U	19.2	-	4.27	1 U	_	_	-	
MBB-19	9/1/2020	N	51.68	10 - 11	41.68 to 40.68	4.47	-	1 U	15.4	-	55.6	1 U	-	-	-	-
I WIDD-13	3/1/2020	"	31.00	15 - 15.4	36.68 to 36.28	2.01	-	1 U	20.8	-	1.75	1 U	-		-	
				20 - 20.8	31.68 to 30.88	1.7	-	1 U	13.5	-	1.13	1 U	-	-	-	
				5 - 6.5	42.53 to 41.03	2.67	-	1 U	16.6	-	2.02	1 U	-	-	-	
MBB-20	9/2/2020	N	47.53	10 - 11.5	37.53 to 36.03	3.48	-	1 U	19.2	-	5.15	1 U	-	-	-	
IVIDD-20	31212020	IN IN	47.55	15 - 16.33	32.53 to 31.2	1.6	-	1 U	20.6	-	1.54	1 U	-	-	-	-
				20 - 20.5	27.53 to 27.03	1.53	-	1 U	17.2	-	1.5	1 U	-	-	-	-
				5 - 5.8	42.60 to 41.80	2.02	-	1 U	20	-	1.69	1 U	-	-	-	-
MBB-21	9/2/2020	N	47.60	10 - 11.5	37.60 to 36.10	2.21	-	1 U	19.3	-	1.85	1 U	-	-	-	-
IVIDD-21	31212020	IN IN	47.00	15 - 15.9	32.60 to 31.70	1.52	-	1 U	18.3	-	1.4	1 U	-	-	-	-
				20 - 20.9	27.60 to 26.70	1.53	-	1 U	14.3	-	1.46	1 U	-	-	-	-
				5 - 6	37.05 to 36.05	2.71	-	1 U	30.2	-	26.7	1 U	_	_	-	_
				15 - 16.25	27.05 to 25.8	3.08	-	1 U	26.1	-	2.58	1 U	_		-	
MBB-22	9/21/2020	N	42.05	20 - 21.3	22.05 to 20.75	1.63	-	1 U	15.3	-	1.39	1 U	_		-	_
				25 - 26.3	17.05 to 15.75	2.03	-	1 U	24.4	-	1.14	1 U	_		-	_
				30 - 30.5	12.05 to 11.55	1.96	-	1 U	40	-	1.97	1 U	-	-	-	-
				5 - 6.2	42.18 to 40.98	2.57	-	1 U	18.7	-	3.58	1 U	-	-	-	-
				10 - 11.1	37.18 to 36.08	3.98	-	1 U	17.1	-	29.5	1 U	_	_	-	
MBB-23	9/21/2020	N	47.18	15 - 16.25	32.18 to 30.93	2.73	-	1 U	22.4	-	3.6	1 U	-	-	-	
WIBB-23	3/21/2020	"	47.10	20 - 21.3	27.18 to 25.88	2.21	-	1 U	17.7	-	1.99	1 U	-		-	-
				25 - 26	22.18 to 21.18	1.88	-	1 U	16.3	-	1.35	1 U	-	-	-	-
				30 - 31	17.18 to 16.18	1.68	-	1 U	16.2	-	1.36	1 U	-	-	-	-
				5 - 6.5	49.10 to 47.60	2.92	-	1 U	25.9	-	3.32	1 U	-	-	-	-
				10 - 11.4	44.10 to 42.70	1.38	-	1 U	15	-	1.57	1 U	-	-	-	-
MBB-24	9/9/2020	N	54.10	15 - 16.5	39.10 to 37.60	3	-	1 U	25.6	-	3.04	1 U	-	-	-	-
WIDD-24	3/3/2020	IN IN	34.10	20 - 21	34.10 to 33.10	1.05	-	1 U	10.5	-	1.02	1 U	-	-	-	-
				25 - 25.8	29.10 to 28.30	1.38	-	1 U	14.9	-	1.52	1 U	_	-	-	-
				30 - 31	24.10 to 23.10	1 U	-	1 U	14.1	-	1.34	1 U	-	-	-	-
MBGW-1	3/6/2019	N	39.95	4 - 5	35.95 to 34.95	11 U	49	0.57 U	25	-	43	0.28 U	-	11 U	0.57 U	-
IVIDGVV-1	3/0/2019	IN	39.80	17 - 18	22.95 to 21.95	11 U	45	0.57 U	43	-	5.7 U	0.29 U	-	11 U	0.57 U	-
				12.5 - 14	33.61 to 32.11	10 U	47	0.52 U	24	-	8.5	0.26 U	-	10 U	0.52 U	-
MBGW-2	3/4/2019	N	46.11	25 - 26.5	21.11 to 19.61	14 U	130	0.7 U	34	-	23	0.35 U	-	14 U	0.7 U	-
				30 - 31.5	16.11 to 14.61	12 U	46	0.61 U	42	-	6.1 U	0.31 U	-	12 U	0.61 U	-

TABLE 5-8
SOIL RESULTS FOR INORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

Davis solatali	0	0	Surface	Committee Donath	OI- Flti					Inorg	janic Compo	unds				
Boring/Well ID	Sample Date	Sample Type	Elevation	Sample Depth (ft)	Sample Elevation (ft)	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
i D	Date	Турс	(ft)	(11)	(11)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				7 - 8	40.77 to 39.77	11 U	43	0.54 U	32	-	5.4 U	0.27 U	-	11 U	0.54 U	-
MBGW-3	3/7/2019	N	47.77	12 - 13	35.77 to 34.77	11 U	61	0.55 U	40	-	5.5 U	0.27 U	-	11 U	0.55 U	-
				24 - 25	23.77 to 22.77	12 U	42	0.62 U	33	1	6.2 U	0.31 U	-	12 U	0.62 U	-
				2 - 3	45.30 to 44.30	11 U	50	0.56 U	32	-	5.6 U	0.28 U	-	11 U	1.1 U	-
MBGW-4	3/6/2019	N	47.30	4 - 5	43.30 to 42.30	12 U	65	0.58 U	22	-	12	0.29 U	-	12 U	1.2 U	-
IVIDGVV-4	3/0/2019	IN	47.50	7 - 8	40.30 to 39.30	11 U	46	0.54 U	26	-	5.4 U	0.27 U	-	11 U	1.1 U	-
				24 - 25	23.30 to 22.30	12 U	54	0.6 U	36	•	6 U	0.3 U	-	12 U	1.2 U	-
MBGW-5	3/11/2019	N	49.87	27.5 - 29	22.37 to 20.87	11 U	39	0.56 U	25	ı	5.6 U	0.28 U	-	11 U	0.56 U	•
MBGW-6	3/14/2019	N	52.50	10 - 10.7	42.5 to 41.8	11 U	32	0.54 U	21	1	5.4 U	0.27 U	-	11 U	0.54 U	•
				10 - 11.5	43.76 to 42.26	11 U	33	0.54 U	21	-	5.4 U	0.27 U	-	11 U	0.54 U	-
MBGW-7	3/6/2019	N	53.76	17.5 - 18.75	36.26 to 35.01	11 U	37	0.53 U	34	-	5.3 U	0.27 U	-	11 U	0.53 U	-
				40 - 40.5	13.76 to 13.26	11 U	42	0.56 U	36	-	5.6 U	0.28 U	-	11 U	0.56 U	-
MBGW-8	3/15/2019	N	47.08	25 - 26	22.08 to 21.08	11 U	40	0.55 U	36	•	5.5 U	0.27 U	-	11 U	1.1 U	-
MBGW-9	3/13/2019	N	56.84	10 - 10.5	46.84 to 46.34	11 U	43	0.53 U	42	ı	5.3 U	0.26 U	-	11 U	0.53 U	ı
MBGW-10	3/13/2019	N	55.25	10 - 10.9	45.25 to 44.35	11 U	48	0.54 U	44	1	5.4 U	0.27 U	-	11 U	0.54 U	-
MBGW-11	3/12/2019	N	57.55	5 - 6.5	52.55 to 51.05	11 U	68	0.55 U	38	1	10	0.28 U	-	11 U	0.55 U	-
MBGW-12	3/15/2019	N	54.00	5 - 5.75	49 to 48.25	11 U	56	0.57 U	42	ı	5.7 U	0.29 U	-	11 U	1.1 U	1
MBGW-15	3/8/2019	N	40.87	20 - 21.25	20.87 to 19.62	13 U	170	0.66 U	18	ı	6.6 U	0.33 U	-	13 U	0.66 U	1
MBPP-1	3/5/2019	N	45.28	8 - 10	37.28 to 35.28	11 U	81	0.55 U	46	ı	93	0.28 U	-	11 U	0.55 U	1
MBPP-2	3/5/2019	N	44.46	9 - 10	35.46 to 34.46	12 U	100	0.62 U	45	ı	21	0.31 U	-	12 U	0.62 U	•
MBPP-3	3/6/2019	N	45.89	24 - 25	21.89 to 20.89	11 U	35	0.55 U	26	1	5.5 U	0.27 U	-	11 U	0.55 U	•
MBPP-4	3/7/2019	N	48.34	9 - 10	39.34 to 38.34	11 U	48	0.55 U	29	-	5.6	0.27 U	-	11 U	0.55 U	
MBPP-5	3/7/2019	N	45.92	24 - 25	21.92 to 20.92	11 U	49	0.56 U	34	ı	5.6 U	0.28 U	-	11 U	0.56 U	
MBPP-7	3/8/2019	N	49.77	4 - 5	45.77 to 44.77	12 U	200	0.6 U	38	-	6.6	0.3 U	-	12 U	0.6 U	-
MBPP-8	3/8/2019	N	57.52	14 - 15	43.52 to 42.52	16	80	0.63 U	30	-	16	0.32 U	-	13 U	0.63 U	-

Bold indicates a detected concentration at or above the laboratory reporting limit.

Elevations relative to North American Vertical Datum of 1988 (NAVD88).

- = Data not available or applicable.

FD = Field duplicate.
ft = feet.

J = Estimated value.

mg/kg = milligram per kilogram.

N = Primary environmental sample.

U = Not detected at the detection limit indicated.

TABLE 5-9 GROUNDWATER SAMPLING AND ANALYSIS SUMMARY SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

Boring/Well ID	Grab or Monitoring Well? ^a	Groundwater Depth Zone ^b	Surface Elevation ^c (ft)	Sample Depth (ft) ^d	Sample Elevation ^c (ft)	Sample Date	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^e	VOCs	Total Metals	Dissolved Metals
BB-5	MW	IA	49.48	30 to 40	19.48 to 9.48	11/17/1997	Х	Х	Х	2771112		Х	, , , ,		
						6/10/1997	Х	Х				Х			
ļ						6/24/1997			Х			Х			
Į.						1/29/2009	Х		Х			Х			
ļ						5/3/2010						Х	Х		<u> </u>
l						6/2/2011	Х	Х	Х			Х	Х		·
ļ						9/5/2012			Х			Х	Х		·
ļ						12/29/2013			Х			Х	Х		
ļ						6/17/2015						Х			
BB-8	MW	IA	43.72	30 to 40	12.48 to 2.48	3/22/2017			Х			Х	Х		
ļ						6/14/2017			Х			Х	Х		·
ļ						4/11/2018	Х		Х			Х	Х		
ļ						1/23/2019	Х		Х			Х	Х		·
ļ						4/23/2019	Х		Х			Х	Х		
ļ						7/17/2019	Х		Х			Х	Х		
ļ						10/22/2019	Х		Х			Х	Х		1
ļ						1/20/2020	Х		Х			Х	Х		1
ļ						5/12/2020	Х		Х			Х	Х		
						1/29/2009	Х		Х			Х			
BB-8A	MW	IA	43.36	-	-	5/3/2010						Х	Х		
ļ						6/2/2011	Х	Х	Х			Х	Х		
BB-10	MW	S	57.4	29 to 39	28.40 to 18.40	11/13/1997	Х	Х	Х			Х			
						5/23/2014						Х			
ļ						10/20/2015						Х			
ļ						2/2/2016						Х			
ļ						4/10/2017			Х			Х	Х		
ļ						6/23/2017			Х			Х	Х		
ļ						5/1/2019			Х			Х	Х		
ļ						7/16/2019			Х			Х	Х		
FMW-129	MW	D	38.64	84.2 to 89.2	-45.56 to -50.56	10/21/2019	Х		Х			Х	Х		
ļ						11/12/2019						Х			
ļ						1/14/2020			Х			Х	Х		
ļ						2/18/2020						Х			
ļ						3/25/2020						Х			
ļ						4/27/2020						Х			
ļ						5/6/2020			Х			Х	Х		
ļ						5/19/2020		1	 	<u> </u>	<u> </u>	Х			1
HMW-1D	NAVA/	D	38.07	90 to 00	-41.93 to -51.93	3/25/2019	Х	Х	Х			Х	Х		
HIVIVV-ID	MW	D	38.07	80 to 90	-41.93 to -51.93	3/9/2020	Х	Х	Х	<u>†</u>	1	Х	Х	Х	1

Boring/Well ID	Grab or Monitoring Well? ^a	Groundwater Depth Zone ^b	Surface Elevation ^c (ft)	Sample Depth (ft) ^d	Sample Elevation ^c (ft)	Sample Date	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^e	VOCs	Total Metals	Dissolved Metals
HMW-1IB	MW	IB	38.29	54.3 to 64.3	-16.01 to -26.01	3/25/2019	Х	Х	Х			Х	Х		
TIIVIVV-TID	IVIVV	ID .	30.29	34.3 10 04.3	-10.01 to -20.01	3/10/2020	Х	Х	Х			Х	Х	Х	
HMW-1S	MW	S	36.01	20 to 30	16.01 to 6.01	3/25/2019	Х	Х	Х			Х	Х	Х	
11111111111	14144		00.01	20 10 00	10.01 10 0.01	3/11/2020	Х	Х	Х			Х	Χ	Х	Х
HMW-2D	MW	D	47.34	80 to 90	-32.66 to -42.66	3/25/2019	Х	Х	Х			Х	Χ		
25				00 10 00	02.00 to 12.00	3/12/2020	Х	Х	X			Х	Х	Х	
HMW-2IA	MW	IA	45.55	34.8 to 44.8	10.75 to 0.75	3/25/2019	Х	Х	Х			Х	Х		ļ
						3/12/2020	Х	Х	Х			Х	Χ	Х	
HMW-2IB	MW	IB	47.41	52.8 to 62.8	-5.39 to -15.39	3/25/2019	Х	Х	Х	ļ		Х	X		
						3/12/2020	Х	Х	Х			Х	Х	Х	
HMW-2S	MW	s	47.39	19.8 to 29.8	27.59 to 17.59	3/25/2019	Х	Х	Х	ļ		Х	Χ		
						3/12/2020	Х	X	X			Х	Х	Х	
HMW-3D	MW	D	56.56	80 to 90	-23.44 to -33.44	3/25/2019	X	X	X	.		X	X		ļ
						3/13/2020	X	X	X			X	X	Х	
HMW-3IA	MW	IA	55.02	34.8 to 44.8	20.22 to 10.22	3/25/2019	X	X	X	ļ		X	X		ļ
						3/13/2020	X	X	X	V	V	X	X	Х	
HMW-4IA	MW	IB	58.7	50 to 60	8.7 to -1.3	3/25/2019 3/10/2020	X	X	X	X	X	X X	X		ļ
HMW-5IB	MW	ID	58.44	49.7 to 59.7	0.74+- 4.00		X	X	X	X	X	X	X	X	
HMW-6D	MW	IB D	58.44	79.7 to 89.7	8.74 to -1.26 -21.12 to -31.12	3/17/2020 3/16/2020	X	X	X	X	X	X	X	X	
HMW-6IA	MW	IA	58.65	37.5 to 47.5	21.15 to 11.15	3/13/2020	X	X	X	X	X	X	X	X	
HMW-6IB	MW	IB	58.67	50 to 60	8.67 to -1.33	3/13/2020	X	X	X	X	X	X	X	X	
HMW-7IB	MW	IB	58.69	49.7 to 59.7	8.98 to -1.01	3/12/2020	X	X	X	X	X	X	X	X	
HMW-8IB	MW	IB	57.97	50.5 to 60.5	7.47 to -2.53	3/12/2020	X	X	X	X	X	X	X	X	Х
HMW-9D	MW	D	55.32	79.7 to 89.7	-34.38 to -24.38	3/17/2020	^	^X	^X		^	^X	^	^	^
HMW-9IA	MW	IA	55.26	36.7 to 46.7	18.56 to 8.56	3/17/2020	X	X	X			X	X	X	
HMW-9IB	MW	IB	55.36	57 to 67	-1.64 to -11.64	3/19/2020	X	X	X			X	X	X	
HMW-9S	MW	S	55.39	25 to 35	30.39 to 20.39	3/17/2020	X	X	X			X	X	X	
HMW-10D	MW	D	48.16	79 to 89	-30.84 to -40.84	3/16/2020	X	X	X			X	X	X	
HMW-10S	MW	S	48.21	24.7 to 34.7	23.51 to 13.51	3/16/2020	X	X	X			X	X	X	
HMW-11IB	MW	IB	39.7	44.87 to 54.87	-5.17 to -15.17	3/16/2020	X	X	X			X	X	X	
HMW-11S	MW	S	41.47	25 to 35	16.47 to 6.47	3/11/2020	X	X	X			X	X	X	Х
HMW-12D	MW	D	33.52	82 to 92	-48.48 to -58.48	9/10/2020	X	X	X	Х	Х	X	X	X	X
HMW-13D	MW	D	45.3	90 to 100	-44.70 to -54.70	9/10/2020	X	X	X	X	X	X	X	X	X
HMW-14D	MW	D	46.35	70 to 80	-23.65 to -33.65	9/16/2020	X	X	X	X	X	X	X	X	X
HMW-15IB	MW	IB	58.86	64 to 73	-5.14 to -14.14	9/16/2020	X	X	X	X	Х	Х	X	Х	Х
						9/17/2020		X		X	X				
HMW-16IB	MW	IB	57.02	55 to 65	2.02 to -7.98	9/18/2020	Х	<u> </u>	Х	Х	Х	Х	Х	Х	Х
HMW-17S	MW	S	57.7	35 to 45	22.70 to 12.70	9/17/2020	Х	Х	Х	Х	Х	Х	Х	Х	Х
HMW-18S	MW	S	57.46	35 to 45	22.46 to 12.46	9/17/2020	Х	Х	Х	Х	Х	Х	Х	Х	Х
HMW-19S	MW	S	58.41	35 to 45	23.41 to 13.41	9/17/2020	Х	Х	Х	Х	Х	Х	Х	Х	Х
HMW-20IA	MW	IA	53.46	41 to 51	12.46 to 2.46	9/18/2020	Х	Х	Х	Х	Х	Х	Х	Х	Х
HMW-20S	MW	S	53.57	25 to 35	23.57 to 13.57	9/18/2020	Х	Х	Х	Х	Х	Х	Х	Х	Х
HMW-21S	MW	S	38.17	30 to 40	8.17 to -1.83	11/3/2020		Х							

			Surface					1							
	Grab or		Elevation	0 1	0 1										
Boring/Well ID	Monitoring Well? ^a	Groundwater Depth Zone ^b	(ft)	Sample Depth (ft) ^d	Sample Elevation ^c (ft)	Sample Date	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^e	VOCs	Total Metals	Dissolved Metals
HMW-22S	MW	S	38.75	27 to 37	11.75 to 1.75	11/3/2020	GRU	X X	DIEA	CPARS	PARS	CVOCS	VUCS	ivietais	ivietais
21417-MB4	G	S	57.24	15 to 25	42.24 to 32.24	5/12/2017	Х	X	Х			Х	X		1
21417-MB9	G	S	39.05	15 to 25	24.05 to 14.05	5/11/2017	X	X	X			X	X	Х	Х
21417-MB10	G	S	38.08	20 to 30	18.08 to 8.08	5/11/2017	X	X	X			X	X	X	X
21417-IVIB10 21417-MB11	G	S	39.04	15 to 25	24.04 to 14.04	5/11/2017	X	X	X			X	X	X	X
MBB-1	G	S	55.02	32 to 37	23.02 to 18.02	3/3/2020	X	X	X	Х	Х	X	X	X	_ ^
MBB-2	G	S	55.45	32 to 37	23.45 to 18.45	3/3/2020	X	X	X	X	X	X	X	X	
MBB-3	G	S	54.84	32 to 37				X	X	X	X	X	X	X	
	G	S			22.84 to 17.84	3/4/2020	X	X	X	X	X			X	
MBB-4		S	54.61	32 to 37	22.61 to 17.61	3/5/2020				X	Х	X	X		
MBB-5	G		50.53	32 to 37	18.53 to 13.53	3/5/2020	X	X	X			X	X	X	Х
MBB-6	G	S	50.33	25 to 30	25.33 to 20.33	3/5/2020	X	X	X			X	X	X	
MBB-7	G	S	49.41	27 to 32	22.41 to 17.41	3/4/2020	X	X	X			X	X	X	X
MBB-8	G	S	49.66	27 to 32	22.66 to 17.66	2/27/2020	Х	X	X			X	X	X	X
MBB-9	G	S	47.55	27 to 32	20.55 to 15.55	2/28/2020	Х	Х	Х			Х	Х	Х	Х
MBB-10	G	S	49.66	35 to 40	14.66 to 9.66	2/27/2020	Х	Х	Х			Х	Х	Х	Х
MBB-12	G	S	33.69	27 to 32	6.69 to 1.69	3/6/2020								Х	Х
MBB-13	G	S	35.98	30 to 35	5.98 to 0.98	3/9/2020								Х	Х
MBB-15	G	S	37.73	30 to 35	7.73 to 2.73	3/6/2020		Х		Х	Х				
MBB-16	G	S	53.7	30 to 40	23.70 to 17.70	9/3/2020	Х	Х	Х	Х	Х	Х	Х	Х	Х
MBB-24	G	S	54.1	30 to 40	24.10 to 14.10	9/10/2020	Х	Х	Х	Х	Х	Х	Х	Х	Х
MBB-25	G	S	58.63	30 to 40	28.63 to 18.63	10/31/2020				Х	Х				
MBB-26	G	S	58.79	30 to 40	28.79 to 18.79	10/30/2020				Х					
MBGW-1	G	S	39.95	20 to 30	19.95 to 9.95	3/6/2019	Х	X	Х			Х	Х	Х	Х
MBGW-2	G	S	46.11	20 to 30	26.11 to 16.11	3/4/2019	Х	X	Х			Х	Χ		Х
MBGW-3	G	S	47.77	16 to 26	31.77 to 21.77	3/7/2019	Х	Х	Х			Х	Х	Х	Х
MBGW-5	G	S	49.87	20 to 30	29.87 to 19.87	3/15/2019	Х	Х	Х			Х	Х	Х	Х
MBGW-6	G	S	52.5	20 to 30	32.5 to 22.5	3/15/2019	Х	Х	Х			Х	Х	Х	Х
MBGW-7	G	S	53.76	30 to 40	23.76 to 13.76	3/6/2019	Х	Х	Х			Х	Х	Х	Х
MBGW-8	G	S	47.08	15 to 25	32.08 to 22.08	3/19/2019	Х	Х	Х			Х	Х	Х	Х
MBGW-9	G	S	56.84	20 to 30	36.84 to 26.84	3/15/2019	Х	Х	Х			Х	Х	Х	Х
MBGW-10	G	S	55.25	20 to 30	35.25 to 25.25	3/15/2019	Х	Х	Х			Х	Х	Х	Х
MBGW-11	G	S	57.55	35 to 45	22.55 to 12.55	3/15/2019	Х	Х	Х			Х	Х	Х	Х
MBGW-12	G	S	54	17.5 to 27.5	36.5 to 26.5	3/19/2019	Х	Х	Х			Х	Х		
MBGW-13	G	S	54.72	20 to 30	34.72 to 24.72	3/15/2019	Х	Х	Х			Х	Х	Х	Х
MBGW-14	G	S	46.09	20 to 30	26.09 to 16.09	3/6/2019	Х	Х						Х	Х
MBGW-15	G	S	40.87	20 to 30	20.87 to 10.87	3/15/2019	Х	Х	Х			Х	Х	Х	Х
MBGW-16	G	S	52.14	20 to 30	32.14 to 22.14	3/8/2019	Х	Х	Х			Х	Х	Х	Х
MBPP-5	G	S	45.92	18 to 28	27.92 to 17.92	3/7/2019	Х	Х	Х			Х	Х	Х	Х

	Grab or		Surface												
	Monitoring	Groundwater	Elevation ^c	Sample	Sample									Total	Dissolved
Boring/Well ID	Well? ^a	Depth Zone ^b	(ft)	Depth (ft) ^d	Elevation ^c (ft)	Sample Date	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^e	VOCs	Metals	Metals
	G	D	45.59	80	-34.41	8/9/2012						Х	X		ļ
				100	-54.41	8/10/2012						Х	Х		ļ
						8/16/2012						Х	Х		
						9/5/2012			Х			Х	Х		
						12/29/2013			Х			Х	Х		
						4/21/2015						Х			
						6/17/2015						Х			
MW-105						10/27/2015		.				Х			ļ
	MW	D	45.59	130 to 140	-84.48 to -94.48	2/3/2016		ļ				Х			
						4/11/2018	Х	ļ	Х			Х	Х		
						1/23/2019	Χ		Χ			Х	Χ		
						4/23/2019	Х		Х		<u> </u>	Х	X		
						7/17/2019	X X		Х			Х	Х		
						10/22/2019	X		Х			Х	Χ		
						1/20/2020	Х		Χ			Х	Χ		
						5/12/2020	Х		Χ			Х	Χ		
				35	17.9	8/14/2012						Х	Χ		
	G	D	52.9	50	2.9	8/14/2012						Х	Х		
			<u> </u>	90	-37.1	8/15/2012						Х	Χ		
						8/22/2012						Х	Χ		
	MW	D	52.9	130 to 140	-77.1 to -87.1	9/5/2012			Х			Х	Χ		
	10100	D	32.3	130 to 140	-77.110-07.1	12/17/2013			Х			Х	Х		
						10/27/2015						Х			
MW-106						2/2/2016						Х			
10100-100						4/14/2017									
						6/30/2017									
						5/4/2018									
	MW	D	52.9	130 to 140	-77.1 to -87.1	4/26/2019	Х		Х			Х	Х		
						7/19/2019	Х		Х			Х	Х		
						10/18/2019	Х		Х			Х	Х		
						1/14/2020	Х		Х			Х	Х		
						5/6/2020	Х	†	Х	<u> </u>	İ	Х	Х		
MW-114	MW	IA	40.40	35 to 45	7 40 +- 0 57	12/21/2012						Х	Х		
IVIVV-114	IVIVV	IA	42.43	30 10 40	7.43 to -2.57	12/18/2013			Х	<u> </u>	 	Х	Х		
NAV 447	1404/	10	F7 70	40 +- 55	47 70 +- 0 70	2/8/2013						Х	Х		
MW-117	MW	IA	57.78	40 to 55	17.78 to 2.78	12/18/2013	Х	Х	Х			Х	Х		
100/ 446	1.004		54.5	40.1 50	445. 45	3/25/2013						Х	Х		
MW-118	MW	IA	54.5	40 to 50	14.5 to 4.5	12/18/2013	Х	Х	Х		·····	Х	Х		·

	Grab or Monitoring	Groundwater	Surface Elevation ^c	Sample	Sample									Total	Dissolved
Boring/Well ID	Well? ^a	Depth Zone ^b	(ft)	Depth (ft) ^d	Elevation ^c (ft)	Sample Date	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^e	VOCs	Metals	Metals
			, ,	(,		3/25/2013						Х	Х		
						12/19/2013			Х	†		Х	Х		
						4/21/2015						Х			İ
						6/17/2015						Х			İ
						10/20/2015				<u> </u>		Х			
						2/2/2016						Х			
						3/29/2017			Х			Х	Х		
						6/28/2017			Х			Х	Х		
						4/5/2018			Х			Х	Х		
MW-119	MW	IA	37.66	35 to 45	2.59 to -7.41	1/21/2019			Х			Х	Х		
						4/29/2019			Х			Х	Х		
						7/19/2019			Х			Х	Х		
						10/10/2019			Х			Х	Х		
						11/11/2019						Х			
						1/14/2020			Х			Х	Х		
						2/18/2020						Х			
						3/24/2020						Х			
						4/27/2020			Х			Х	Х		
						5/19/2020						Х			
MW-140	MW	D	50.32	129.5 to 139.5	-79.18 to -89.18	9/22/2017			Х			Х	Х		
10100-140	IVIVV	Ь	30.32	129.5 to 159.5	-79.10 to -09.10	4/12/2018	Х		Х			Х	Х		
						4/30/2018	Χ		Х			Х	Х		
						1/22/2019	Х		Х			Х	Х		
						4/24/2019	Х		Х			Х	Х		
MW-146	MW	IA	52.86	39.8 to 49.8	13.06 to 3.06	7/19/2019	Х		Х			Х	Х		
10100-140	IVIVV	IA.	32.00	39.0 10 49.0	13.00 to 3.00	10/14/2019	Х		Х			Х	Х		
						1/24/2020	Х		Х			Х	Х		
						4/30/2020	Х		Х			Х	Х		
						11/10/2020	Х	Х	Х			Х	X		
						5/1/2018	Х		Х			Х	Х		
						1/22/2019	Х		Х			Х	Х		
						4/23/2019	Х		Х			Х	Х		
MW-147	MW	IB	52.49	70 to 80	-17.51 to -27.51	7/18/2019	Х		Х			Х	Х		
10100-147	IVIVV	Ю	32.49	70 10 80	-17.51 10 -27.51	10/14/2019	Х		Х			Х	Х		
						1/24/2020	Х		Х			Х	Х		
						4/29/2020	Х		Х			Х	Х		
						11/10/2020	Х	Х	Х			Х	Х		
						5/1/2018	Х		Х			Х	Х		
						1/23/2019	X X		Х			Х	Х		
						4/26/2019	Х		Х			Х	Х	l	
MW-148	MW	IB	44.29	70 to 80	-25.71 to -35.71	7/22/2019	Х		Х			Х	Х		
						10/16/2019	Х	<u> </u>	Х	Ī		Х	Х		<u> </u>
						1/20/2020	Х	<u> </u>	Х	Ī		Х	Х		<u> </u>
			1			4/30/2020	Х	T	Х	T		Х	Χ	[T

Boring/Well ID	Grab or Monitoring Well? ^a	Groundwater Depth Zone ^b	Surface Elevation ^c (ft)	Sample Depth (ft) ^d	Sample Elevation ^c (ft)	Sample Date	GRO	DRO/HO	BTEX	cPAHs	PAHs	CVOCs ^e	VOCs	Total Metals	Dissolved Metals
Boring/weii iD	wells	Depth Zone	(11)	Deptii (it)	Elevation (II)	5/1/2018	X	DRO/HO	X	CPARS	PARS	X	X	ivietais	ivietais
						1/22/2019	X		X			X	X		
						4/24/2019	X	ļ	^X		ļ	X	X		
MW-153	MW	D	54.84	120 to 130	-65.16 to -75.16	7/22/2019	^ X	ļ	^X		ļ	X	X		
10100-100	IVIVV	Б	34.04	120 to 130	-03.10 to -73.10	10/15/2019	X	ļ	^X		ļ	X	X		
						1/21/2020	^ X	ļ	^X		ļ	X	X		
						4/30/2020	^ X		^X			^X	X		
						4/30/2018	X		X			X	X		+
						1/21/2019	X		X			X	X		
						4/24/2019	X		X			X	X		
MW-154	MW	s	53.22	25 to 35	28.22 to 18.22	7/15/2019	X		X			X	X		
1017	14.44	Ü	00.22	20 10 00	20.22 to 10.22	10/14/2019	X		X			X	X		
						1/21/2020	X		X		ļ	X	X		
						4/30/2020	X		X		ļ	X	X		
						4/27/2018	X		X			X	X		+
						1/21/2019	X		X			X	X		
						4/23/2019	X		X			X	X		
MW-155	MW	s	44.47	20 to 30	24.47 to 14.47	7/23/2019	Х		Х			Х	Χ		
						10/16/2019	Х		Х			Х	Х		·
						1/20/2020	Х		Х			Х	Χ		1
						5/5/2020	Х		Х			Х	Χ		1
						10/3/2019			Х			Х	Х		
MW-315	MW	IA	49.56	37.5 to 47.4	12.06 to 2.16	1/16/2020			Х			Х	Х		1
						4/24/2020			Х			Х	Х		1
						10/2/2019			Х			Х	Х		
1010	1.004	ID.	40.74	50.01.00.0	40.074 00.07	10/3/2019									1
MW-316	MW	IB	49.71	59.8 to 69.8	-10.07 to -20.07	1/16/2020			Х			Х	Х		1
						4/21/2020			Х			Х	Х		1
						10/3/2019			Х			Х	Х		
MW-325	MW	IA	41.42	34.5 to 44.5	6.92 to -3.08	1/17/2020		1	Х	<u> </u>	 	Х	X		1
						4/21/2020		1	Х	<u> </u>	 	Х	Х		1
						10/3/2019			Х			Х	Х		
MW-326	MW	D	41.31	90 to 100	-48.69 to -58.69	1/17/2020			Х		[Х	Х		
						4/21/2020			Х		[Х	Х		

- a. "G" represents grab groundwater from temporary wells and "MW" represents groundwater from permanent monitoring wells.
- b. "S" represents Shallow,"IA" represents Intermediate A, "IB" represents Intermediate B, and "D" represents Deep.
- c. Elevations relative to North American Vertical Datum of 1988 (NAVD88).
- d. Sample depths for grab groundwater samples are approximate.
- e. A note on terminology: for the purposes of this report, we use the term CVOCs to refer to the volatile compound tetrachloroethene and its degradation products, trichloroethene, cis- and trans-1,2-dichloroethene, and vinyl chloride. We use the term BTEX to refer to the volatile aromatic compounds benzene, toluene, ethylbenzene, and xylenes. All other volatile organic compounds, including chlorinated compounds such as 1,1,1-trichloroethane and 1,1-dichloroethane, are referred to as VOCs.

Table shows sampling relevant to Seattle DOT Mercer Parcels Site. Other sampling done at American Linen site is presented in PES Environmental (2019).

BTEX = Benzene, toluene, ethylbenzene, and xylenes.

cPAHs = Carcinogenic polycylic aromatic hydrocarbons.

CVOCs = Chlorinated volatile organic compounds.

DRO = Diesel-range petroleum hydrocarbons.

ft = feet.

GRO = Gasoline-range petroleum hydrocarbons.

HO = Heavy oil-range petroleum hydrocarbons.

PAHs = Polycyclic aromatic hydrocarbons.

VOCs = Volatile organic compounds.

TABLE 5-11 GROUNDWATER RESULTS FOR SEMI-VOLATILE ORGANIC COMPOUNDS SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

									Carcino	genic Semi-Vola	tile Organic Con	npounds		
Boring/Well	Surface Elevation	Sample	Sample Depth	Sample Elevation (ft)	Grab or Monitoring	Sample Date	Benzo(a)	Benzo(a)	Benzo(b)	Benzo(k)		Dibenz(a,h)	Indeno(1,2,3-	
ID	(ft)	Type	(ft)	Cample Lievation (it)	Well?	Cample Date	anthracene	pyrene	fluoranthene	fluoranthene	Chrysene	anthracene	cd)pyrene	cPAHs-TEQ
	()		()				ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
					Ana	lvtical Method	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E
					7 4 10	ny nour mourou	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM
SHALLOW Z	ONE													
HMW-17S	57.21	N	35 to 45	22.21 to 12.21	MW	9/17/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
HMW-18S	57.61	N	35 to 45	22.61 to 12.61	MW	9/17/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
HMW-19S	58.2	N	35 to 45	23.2 to 13.2	MW	9/17/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
HMW-20S	53.81	N	25 to 35	28.81 to 18.81	MW	9/18/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
MBB-1	55.02	N	32 to 37	23.02 to 18.02	G	3/3/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
MBB-2	55.45	N	32 to 37	23.45 to 18.45	G	3/3/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
MBB-3	54.84	N	32 to 37	22.84 to 17.84	G	3/4/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
MBB-4	54.61	N	32 to 37	22.61 to 17.61	G	3/5/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
MBB-15	37.73	N	30 to 35	7.73 to 2.73	G	3/6/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
MBB-16	53.7	N	30 to 40	23.7 to 13.7	G	9/3/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
MBB-24	54.1	N	30 to 40	24.1 to 14.1	G	9/10/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
MBB-25	58.63	N	30 to 40	28.63 to 18.63	G	10/31/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0086 U
MBB-26	58.79	N	30 to 40	28.79 to 18.79	G	10/30/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0086 U
INTERMEDIA	TE A ZONE		•											
HMW-6IA	58.65	N	37.5 to 47.5	21.15 to 11.15	MW	3/13/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-20IA	53.83	N	41 to 51	12.83 to 2.83	MW	9/18/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
INTERMEDIA	TE B ZONE													
HMW-4IA	58.7	N	50 to 60	8.70 to -1.30	MW	3/10/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-5IB	58.44	N	49.7 to 59.7	8.74 to -1.26	MW	3/17/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-6IB	58.67	N	50 to 60	8.67 to -1.33	MW	3/13/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-7IB	58.69	N	49.7 to 59.7	8.99 to -1.01	MW	3/12/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-8IB	57.97	N	50.5 to 60.5	7.47 to -2.53	MW	3/11/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-15IB	58.86	N	64 to 73	-5.14 to -14.14	MW	9/16/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
HMW-16IB	57.02	N	55 to 65	2.02 to -7.98	MW	9/18/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
DEEP ZONE														
HMW-6D	58.58	N	79.9 to 89.7	-21.12 to -31.12	MW	3/16/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-12D	33.52	N	82 to 92	-48.48 to -58.48	MW	9/10/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
HMW-13D	45.3	N	89.5 to 99.5	-44.20 to -54.20	MW	9/10/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
HMW-14D	46.35	N	70 to 80	-23.65 to -33.65	MW	9/16/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U

TABLE 5-11
GROUNDWATER RESULTS FOR SEMI-VOLATILE ORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

										No	on-Carcinogenic	Semi-Volatile Or	ganic Compound	ds			
Boring/Well	Surface Elevation	Sample Type	Sample Depth	Sample Elevation (ft)	Grab or Monitoring	Sample Date	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i) perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
ID	(ft)	Type	(ft)		Well?		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
							ug/L	ug/L	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E	SW8270E
					Ana	lytical Method	SW8270E	SW8270E	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM	SW8270ESIM
SHALLOW Z	ONE								OVV0270LONVI	OVVOZ/OLONVI	OWOZ/ OLONV	OW0270LONVI	OVV0270LOIIVI	OVV0270LOIIVI	OVVOZ/OLONVI	OVV0270LOIIVI	OWOZYOLON
HMW-17S	57.21	N	35 to 45	22.21 to 12.21	MW	9/17/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-18S	57.61	N	35 to 45	22.61 to 12.61	MW	9/17/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-19S	58.2	N	35 to 45	23.2 to 13.2	MW	9/17/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-20S	53.81	N	25 to 35	28.81 to 18.81	MW	9/18/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
MBB-1	55.02	N	32 to 37	23.02 to 18.02	G	3/3/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
MBB-2	55.45	N	32 to 37	23.45 to 18.45	G	3/3/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
MBB-3	54.84	N	32 to 37	22.84 to 17.84	G	3/4/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	2.2	0.04 U	0.04 U
MBB-4	54.61	N	32 to 37	22.61 to 17.61	G	3/5/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
MBB-15	37.73	N	30 to 35	7.73 to 2.73	G	3/6/2020	-	-	0.25	0.04 U	0.04 U	0.04 U	0.04 U	0.098	0.4 U	0.18	0.04 U
MBB-16	53.7	N	30 to 40	23.7 to 13.7	G	9/3/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
MBB-24	54.1	N	30 to 40	24.1 to 14.1	G	9/10/2020	1.6	1.6	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	6	0.04 U	0.04 U
MBB-25	58.63	N	30 to 40	28.63 to 18.63	G	10/31/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
MBB-26	58.79	N	30 to 40	28.79 to 18.79	G	10/30/2020	-	-	-	-	-	-	-	-	-	-	-
INTERMEDIA	TE A ZONE																
HMW-6IA	58.65	N	37.5 to 47.5	21.15 to 11.15	MW	3/13/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-20IA	53.83	N	41 to 51	12.83 to 2.83	MW	9/18/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
INTERMEDIA	TE B ZONE																
HMW-4IA	58.7	N	50 to 60	8.70 to -1.30	MW	3/10/2020	1	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-5IB	58.44	N	49.7 to 59.7	8.74 to -1.26	MW	3/17/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-6IB	58.67	N	50 to 60	8.67 to -1.33	MW	3/13/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-7IB	58.69	N	49.7 to 59.7	8.99 to -1.01	MW	3/12/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-8IB	57.97	N	50.5 to 60.5	7.47 to -2.53	MW	3/11/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-15IB	58.86	N	64 to 73	-5.14 to -14.14	MW	9/16/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-16IB	57.02	N	55 to 65	2.02 to -7.98	MW	9/18/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
DEEP ZONE																	
HMW-6D	58.58	N	79.9 to 89.7	-21.12 to -31.12	MW	3/16/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-12D	33.52	N	82 to 92	-48.48 to -58.48	MW	9/10/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-13D	45.3	N	89.5 to 99.5	-44.20 to -54.20	MW	9/10/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-14D	46.35	N	70 to 80	-23.65 to -33.65	MW	9/16/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	U 80.0	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U

Bold indicates a detected concentration at or above the laboratory reporting limit. Elevations relative to North American Vertical Datum of 1988 (NAVD88).

'- = Data not available or applicable.

cPAHs-TEQ = Carcinogenic polycyclic aromatic hydrocarbons toxic equivalency.

FD = Field duplicate.

ft = feet.

G = Grab groundwater sample.

MW = Monitoring well sample.

N = Primary environmental sample.

U = Not detected at detection limit indicated.

ug/L = microgram per liter.

TABLE 5-13
GROUNDWATER RESULTS FOR INORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Surface				Grab or							Inorg	janic Compo	unds, Dissolv	/ed					
Boring/Well ID	Elevation	Sample	Sample Depth	Sample Elevation (ft)		Sample Date	Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Copper,	Lead,	Mercury,	Nickel,	Selenium,	Silver,	Thallium,	Zinc,
	(ft)	Туре	(ft)		Well?		Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
						L	ug/L	ug/L E200.8	ug/L E200.8	ug/L	ug/L E200.8	ug/L E200.8	ug/L	ug/L E200.8	ug/L SW6020	ug/L	ug/L	ug/L E200.8	ug/L	ug/L
					Ana	alytical Method	-	SW6020	E200.6	-	SW6020	SW6020	-	SW6020	SW7470A	-	E200.8	⊑200.6	-	-
SHALLOW ZONE								3000020			300020	300020		3000020	3W747UA					
21417-MB9	39.05	N	15 to 25	24.05 to 14.05	G	5/11/2017	0.646	1 U	<u> </u>	0.2 U	0.2 U	0.5 U	0.733	0.5 U	0.1 U	3.11	1 U	0.2 U	0.2 U	4.48
21417-MB10	38.08	N	20 to 30	18.08 to 8.08	G	5/11/2017	0.206	1.87		0.2 U	0.2 U	0.5 U	1.01	0.5 U	0.1 U	3.72	1 U	0.2 U	0.2 U	1.56
21417-MB10	39.04	N	15 to 25	24.04 to 14.04	G	5/11/2017	0.206	1.67 1 U	-	0.2 U	0.2 U	0.852	0.5 U	0.5 U	0.1 U	5.12	1 U	0.2 U	0.2 U	1.91
21417-10111	00.04	14	10 10 20			3/25/2019	0.214	-	-	0.2 0	0.2 0	0.052	0.5 0	- 0.5 0	- 0.10	5.12	10	0.2 0	0.2 0	1.91
HMW-1S	36.01	N	20 to 30	16.01 to 6.01	MW	3/11/2020		12.3			1 U	50 U		1 U	1 U		<u>-</u>			<u>-</u>
HMW-2S	47.39	N	19.8 to 29.8	27.59 to 17.59	MW	3/12/2020	_	-	_		- 10	-	<u>-</u>	-	-	_	_	<u> </u>	_	-
HMW-9S	55.39	N N	25 to 35	30.39 to 20.39	MW	3/17/2020	_		_		_		<u>-</u>	_	_	_	_	<u> </u>	_	_
HMW-10S	48.21	N	24.7 to 34.7	23.51 to 13.51	MW	3/16/2020	_		_				_	_	_		_		_	-
HMW-11S	41.47	N	25 to 35	16.47 to 6.47	MW	3/11/2020		2.57		-	1 U	5 U	-	1 U	1 U	-	-		_	-
HMW-17S	57.21	N	35 to 45	22.21 to 12.21	MW	9/17/2020		1.32	-	-	1 U	2.12	-	1 U	1 U	-	-	<u> </u>	_	- -
HMW-18S	57.61	N	35 to 45	22.61 to 12.61	MW	9/17/2020		2.5	-	-	1 U	1 U	-	1 U	1 U	-	-	<u> </u>		
HMW-19S	58.2	N	35 to 45	23.20 to 13.20	MW	9/17/2020	_	1.97		-	1 U	1 U		1 U	1 U	-	-		-	
HMW-20S	53.81	N	25 to 35	28.81 to 18.81	MW	9/18/2020	_	2.03	-	-	1 U	4.26	-	1 U	1 U	-	-		-	-
MBB-1	55.02	N	32 to 37	23.02 to 18.02	G	3/3/2020	_	-	-	-	10	- 4.20	_	-	-	-	-	<u> </u>	-	-
MBB-2	55.45	N	32 to 37	23.45 to 18.45	G	3/3/2020	_			-						-	_	<u> </u>	_	- -
MBB-3	54.84	N	32 to 37	22.84 to 17.84	G	3/4/2020	_			-	-					-	-		-	-
MBB-4	54.61	N	32 to 37	22.61 to 17.61	G	3/5/2020				-	-					-	-		-	-
MBB-5	50.53	N	32 to 37	18.53 to 13.53	G	3/5/2020	_	4.01		-	1 U	1 U	-	1 U	1 U	-	-		-	
MBB-6	50.33	N	25 to 30	25.33 to 20.33	G	3/5/2020	_	4.01	-	-	-	-	_	-	-	-	-	<u> </u>	_	-
MBB-7	49.41	N	27 to 32	22.41 to 17.41	G	3/4/2020		1 U		-	1 U	1 U	_	1 U	1 U	-	-		_	
MBB-8	49.66	N	27 to 32	22.66 to 17.66	G	2/27/2020		1 U		-	1 U	1 U	-	1 U	1 U	-	-			- -
MBB-9	47.55	N	27 to 32	20.55 to 15.55	G	2/28/2020	_	2.37		-	1 U	1 U	<u>-</u>	1 U	1 U		-			- -
MBB-10	49.66	N	35 to 40	14.66 to 9.66	G	2/27/2020	_	3.22		-	1 U	1 U	<u>-</u>	1 U	1 U	-	-			-
MBB-12	33.69	N	27 to 32	6.69 to 1.69	G	3/6/2020	_	14.4	-	-	1 U	1 U	<u>-</u>	1 U	1 U	-	-	<u>-</u>	-	
MBB-13	35.98	N	30 to 35	5.98 to 0.98	G	3/9/2020		41.2		-	1 U	1 U		1 U	1 U	-	-			<u> </u>
MBB-16	53.7	N	30 to 40	23.70 to 13.70	G	9/3/2020		2.6		-	1 U	1.21	<u>-</u>	1 U	1 U	-	-			-
MBB-24	54.1	N N	30 to 40	24.10 to 14.10	G	9/10/2020		7.49	_	_	1 U	1.21 1 U	_	1 U	1 UJ	_	_		_	
MBGW-1	39.95	N	20 to 30	19.95 to 9.95	G	3/6/2019		3 U	25 U	<u> </u>	4 U	10 U		1 U	0.5 UJ	-	5 U	10 U		<u> </u>
MBGW-2	46.11	N	20 to 30	26.11 to 16.11	G	3/4/2019	_	3 U	44	_	4 U	10 U	_	1 U	0.5 U		5 U	10 U		
MBGW-3	47.77	N	16 to 26	31.77 to 21.77	G	3/7/2019	_	3 U	25 U	_	4 U	10 U	_	1 U	0.5 UJ	_	5 U	10 U	_	
MBGW-5	49.87	N	20 to 30	29.87 to 19.87	G	3/15/2019	-	3 U	25 U	_	4 U	10 U	_	1 U	0.5 U	_	5 U	10 U	_	<u> </u>
MBGW-6	52.5	N	20 to 30	32.50 to 22.50	G	3/15/2019	-	3 U	25 U	_	4 U	10 U	_	1 U	0.5 U	-	5 U	10 U	_	_
MBGW-7	53.76	N N	30 to 40	23.76 to 13.76	G	3/6/2019	_	3 U	28	_	4 U	10 U	_	1 U	0.5 UJ	_	5 U	10 U	_	-
MBGW-8	47.08	N	15 to 25	32.08 to 22.08	G	3/19/2019	_	3 U	45	_	4 U	10 U	_	1 U	0.5 U	_	5 U	10 U	_	_
MBGW-9	56.84	N	20 to 30	36.84 to 26.84	G	3/15/2019	_	3 U	25 U	_	4 U	10 U	_	1 U	0.5 U	_	5 U	10 U	_	_
MBGW-10	55.25	N	20 to 30	35.25 to 25.25	G	3/15/2019	-	3 U	26	_	4 U	10 U	_	1 U	0.5 U	_	5 U	10 U	_	_
MBGW-11	57.55	N N	35 to 45	22.55 to 12.55	G	3/15/2019	_	6.9	32		4 U	10 U	_	1 U	0.5 U		5 U	10 U	_	<u> </u>
MBGW-13	54.72	N	20 to 30	34.72 to 24.72	G	3/15/2019		3.3	25 U	<u> </u>	4 U	10 U	<u>-</u>	1 U	0.5 U	<u> </u>	5 U	10 U		
MBGW-14	46.09	N	20 to 30	26.09 to 16.09	G	3/6/2019	_	3.3 3 U	40	<u> </u>	4 U	10 U	<u>-</u>	1 U	0.5 UJ	<u> </u>	5 U	10 U	_	
MBGW-15	40.87	N	20 to 30	20.87 to 10.87	G	3/15/2019	-	3 U	95	_	4 U	10 U	_	1 U	0.5 UJ	-	5 U	10 U	-	-
MBGW-16	52.14	N	20 to 30	32.14 to 22.14	G	3/8/2019	_	3 U	25	<u> </u>	4 U	10 U	<u>-</u>	1 U	0.5 UJ	<u> </u>	5 U	10 U		
MBPP-5	45.92	N	18 to 28	27.92 to 17.92	G	3/7/2019	_	3 U	26		4 U	10 U	<u>-</u>	1 U	0.5 UJ		5 U	10 U	_	-

TABLE 5-13
GROUNDWATER RESULTS FOR INORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Conford				Cuah au							Inorg	janic Compou	ınds, Dissolv	ed					
Boring/Well ID	Surface Elevation	Sample	Sample Depth	Sample Elevation (ft)	Grab or Monitoring	Sample Date	Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Copper,	Lead,	Mercury,	Nickel,	Selenium,	Silver,	Thallium,	Zinc,
, o	(ft)	Туре	(ft)	, ,	Well?	,	Dissolved ug/L	Dissolved ug/L	Dissolved ug/L	Dissolved ug/L	Dissolved ug/L	Dissolved ug/L	Dissolved ug/L	Dissolved ug/L	Dissolved ug/L	Dissolved ug/L	Dissolved ug/L	Dissolved ug/L	Dissolved ug/L	Dissolved
							ug/L	E200.8	E200.8	ug/L	E200.8	E200.8	ug/L	E200.8	SW6020	ug/L	E200.8	E200.8	ug/L	ug/L
					Ana	alytical Method	-	SW6020	L200.0	-	SW6020	SW6020	-	SW6020	SW7470A	-	L200.0	L200.0	-	-
INTERMEDIATI	F A <i>7</i> ONF							0110020			0110020	0110020		0110020	OWITION					
HMW-2IA	45.55	N	34.8 to 44.8	10.75 to 0.75	MW	3/12/2020	_	_	-	_	-	-	_	-	-	-	-	_	_	_
HMW-3IA	55.02	N	34.8 to 44.8	20.22 to 10.22	MW	3/13/2020	-	-	-	-	-	_	-	-	-	-	-	-	-	-
HMW-6IA	58.65	N	37.5 to 47.5	21.15 to 11.15	MW	3/13/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-9IA	55.26	N	36.7 to 46.7	18.56 to 8.56	MW	3/19/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-20IA	53.83	N	41 to 51	12.83 to 2.83	MW	9/18/2020	-	4.39	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
INTERMEDIATI	E B ZONE																			
HMW-1IB	38.29	N	54 to 64.3	-15.71 to -26.01	MW	3/10/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-2IB	47.41	N	52.8 to 62.8	-5.39 to -15.39	MW	3/12/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-4IA	58.7	N	50 to 60	8.70 to -1.30	MW	3/10/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-5IB	58.44	N	49.7 to 59.7	8.74 to -1.26	MW	3/17/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-6IB	58.67	N	50 to 60	8.67 to -1.33	MW	3/13/2020	-	-	ı	-	ı	1	-	ı	ı	ı	ı	-	-	-
HMW-7IB	58.69	N	49.7 to 59.7	8.99 to -1.01	MW	3/12/2020	-	-	•	-	-	1	-	-	-	-	-	-	-	-
HMW-8IB	57.97	N	50.5 to 60.5	7.47 to -2.53	MW	3/11/2020	-	9.67	ı	-	1 U	5 U	-	1 U	1 U	ı	ı	-	-	-
HMW-9IB	55.36	N	57 to 67	-1.64 to -11.64	MW	3/19/2020	-	-	•	-	1	1	-	ı	1	-	1	-	-	-
HMW-11IB	39.7	N	44.87 to 54.87	-5.17 to -15.17	MW	3/16/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		FD					-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-15IB	58.86	N	64 to 73	-5.14 to -14.14	MW	9/16/2020	-	7.66	-	-	1 U	1.52	-	1 U	1 U	-	-	-	-	-
HMW-16IB	57.02	N	55 to 65	2.02 to -7.98	MW	9/18/2020	-	8.23	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	
DEEP ZONE		1	T			T	T			1								T		
HMW-1D	38.07	N	80 to 90	-41.93 to -51.93	MW	3/9/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-2D	47.34	N	80 to 90	-32.66 to -42.66	MW	3/12/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-3D	56.56	N	80 to 90	-23.44 to -33.44	MW	3/13/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-6D	58.58	N	79.9 to 89.7	-21.32 to -21.12	MW	3/16/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-9D	55.32	N FD	79.7 to 89.7	-24.38 to -34.38	MW	3/17/2020	- -	-	- -	-	-	<u>-</u> -	-	-	-	-	-	- -	-	
HMW-10D	48.16	N	79 to 89	-30.84 to -40.84	MW	3/16/2020	_	-	ı	_	-	•	-	-	-	-	-	-	-	-
HMW-12D	33.52	N	82 to 92	-48.48 to -58.48	MW	9/10/2020	-	1.54	ı	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-13D	45.3	N	89.5 to 99.5	-44.2 to -54.2	MW	9/10/2020	-	5.25	ı	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-14D	46.35	N	70 to 80	-23.65 to -33.65	MW	9/16/2020	-	6.05	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-

TABLE 5-13
GROUNDWATER RESULTS FOR INORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	Conform				Crah an							Inc	organic Com	npounds, Tota	il					
Boring/Well ID	Surface Elevation	Sample	Sample Depth	Sample Elevation (ft)	Grab or Monitoring	Sample Date	Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Copper,	Lead, Total	Mercury,	Nickel,	Selenium,	Silver,	Thallium,	Zinc, Total
Bornig/ VVCII 1B	(ft)	Туре	(ft)	Campio Lievation (it)	Well?	Campie Bate	Total	Total	Total	Total	Total	Total	Total		Total	Total	Total	Total	Total	
	. ,						ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
					Ana	alytical Method	-	E200.8	E200.8	-	E200.8	E200.8	-	E200.8	SW6020	-	E200.8	E200.8	_	- 1
								SW6020			SW6020	SW6020		SW6020	SW7470A					
SHALLOW ZON			T	I						<u> </u>				T	· · · · · · · · · · · · · · · · · · ·					
21417-MB9	39.05	N	15 to 25	24.05 to 14.05	G	5/11/2017	0.694	2.88	-	0.2 U	0.2 U	6.59	23.7	123	0.1 U	7.56	1.06	0.2 U	1 U	49.2
21417-MB10	38.08	N	20 to 30	18.08 to 8.08	G	5/11/2017	0.2 U	13.5	-	0.264	0.2 U	27.7	17.2	24.1	0.1 U	11.2	1.92	0.2 U	1 U	20.8
21417-MB11	39.04	N	15 to 25	24.04 to 14.04	G	5/11/2017	0.2 U	6.34	-	0.248	0.353	9.77	13.2	19	0.1 U	14.3	1.02	0.2 U	0.2 U	44.2
HMW-1S	36.01	N	20 to 30	16.01 to 6.01	MW	3/25/2019 3/11/2020		14 13.5	83	-	4.4 U 1 U	11 U		2.7 1 U	0.5 U	-	5.6 U	11 U		
HMW-2S	47.39	N	19.8 to 29.8	27.59 to 17.59	MW	3/11/2020	-	5 U	-	-	1 U	50 U 7.48	-	1 U	1 U	-	-	-	-	 -
HMW-9S	55.39	N	25 to 35	30.39 to 20.39	MW	3/12/2020	-		-	-	 		-	+	1	-	-	-	-	-
HMW-10S	48.21	N	24.7 to 34.7	23.51 to 13.51	MW	3/17/2020	-	5 U 5 U	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-11S	41.47	N	25 to 35	16.47 to 6.47	MW	3/10/2020	-		-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	 -
HMW-17S	57.21	N	35 to 45	22.21 to 12.21	MW	9/17/2020	-	4.14	-	-	1 U	5.81	-	1.65	1 U	-	-	-	-	-
HMW-18S	57.61	N	35 to 45	22.21 to 12.21 22.61 to 12.61	MW	9/17/2020	-	1.57	-	-	1 U	5.45	-	1 U	1 U	-	-	-	-	 -
HMW-19S	58.2	N N	35 to 45	23.20 to 13.20	MW	9/17/2020	-	2.58	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-20S	53.81	N	25 to 35	28.81 to 18.81	MW	9/17/2020	-	1.87	-	-	1 U	1.73	-	1 U	1 U	-	-	-	-	-
MBB-1	55.02	N	32 to 37	23.02 to 18.02	G	3/3/2020	-	2.04	-	-	1 U	4.99	-	1 U	1 U	-	-	-	-	 -
MBB-2	55.45	N	32 to 37	23.45 to 18.45	G	3/3/2020	-	1.02	-	-	1 U	4.06	-	1 U	1 U		-	-	-	-
MBB-3	54.84	N	32 to 37	22.84 to 17.84	G	3/4/2020	-	1 U	-	-	1 U	1.65	-	1 U	1 U		-	-	-	- -
MBB-4	54.61	N	32 to 37	22.61 to 17.61	G	3/5/2020	-	1 U	-	-	1 U	1 U	-	1 U	1 U		-	-	-	- -
MBB-5	50.53	N	32 to 37	18.53 to 13.53	G	3/5/2020	-	2.23	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
MBB-6	50.33	N	25 to 30	25.33 to 20.33	G	3/5/2020	-	4.15	-	-		4.55	-	+	1 U	-	-	-	-	-
MBB-7	49.41	N	27 to 32	22.41 to 17.41	G	3/4/2020	-	3.11 1.09	-	-	1 U	3.35 12.4	-	1 U	1 U 1 U	-	-	-	-	
MBB-8	49.66	N	27 to 32	22.66 to 17.66	G	2/27/2020	-	10.5	-	-	1 U	192	-	7.82	1 U	-	-	-	-	
MBB-9	47.55	N	27 to 32	20.55 to 15.55	G	2/28/2020	-	3.59	-	-	1 U	192	-	1.27	1 U	-	-	-	-	 -
MBB-10	49.66	N	35 to 40	14.66 to 9.66	G	2/27/2020	-	3.32	-	-	1 U		-	1.27 1 U	-	-	-	-	-	
MBB-12	33.69	N	27 to 32	6.69 to 1.69	G	3/6/2020	-	15.8	-	-	1 U	1 U 2.14	-	1 U	1 U	-	-	-	-	
MBB-13	35.98	N	30 to 35	5.98 to 0.98	G	3/9/2020	-	38.1	-	-	1 U		-	1 U	1 U	-	-	-	-	
MBB-16	53.7	N	30 to 30	23.70 to 13.70	G	9/3/2020	-	2.61	-	-	1 U	1.33 1.58	-	1 U	1 U		-	-	-	 -
MBB-16	54.1	N	30 to 40	24.10 to 14.10	G	9/10/2020	-	7.53	-	-	1 U	3.22	-	1 U	1 U	-	-	-	-	-
MBGW-1	39.95	N	20 to 30	19.95 to 9.95	G	3/6/2019		3.3 U	65	 	4.4 U	12		1.7	0.5 U		5.6 U	11 U		+
MBGW-2	46.11	N	20 to 30	26.11 to 16.11	G	3/4/2019		3.3 0	-	 	4.40	-		- 1.7	- 0.5 0		3.00	- 110		
MBGW-3	47.77	N	16 to 26	31.77 to 21.77	G	3/7/2019		5.9	140	-	4.4 U	61		5.1	0.5 U		5.6 U	11 U		
MBGW-5	49.87	N	20 to 30	29.87 to 19.87	G	3/15/2019		130	3200	 	5.8	1500		140	2.2		25	11 U		+ -
MBGW-6	52.5	N	20 to 30	32.50 to 22.50	G	3/15/2019	_	15	200	_	4.4 U	74	_	10	0.5 U		5.6 U	11 U	_	
MBGW-7	53.76	N	30 to 40	23.76 to 13.76	G	3/6/2019	-	130	3500	_	7.5	1700	_	190	2.2		18	11 U		
MBGW-8	47.08	N	15 to 25	32.08 to 22.08	G	3/19/2019	-	37	800	-	4.4 U	360	_	30	0.5 U		5.6 U	11 U	_	-
MBGW-9	56.84	N	20 to 30	36.84 to 26.84	G	3/15/2019	-	71	1900	-	4.4 U	930	_	89	0.88		7.9	11 U	_	
MBGW-10	55.25	N	20 to 30	35.25 to 25.25	G	3/15/2019	-	180	4200	-	6.1	2300	_	200	2.3		20	22 U	_	 -
MBGW-11	57.55	N	35 to 45	22.55 to 12.55	G	3/15/2019	-	14	240	-	4.4 U	86	_	8.9	0.5 U		5.6 U	11 U	_	
MBGW-13	54.72	N	20 to 30	34.72 to 24.72	G	3/15/2019	-	110	1600	-	4.4 U	910	_	110	1.8		9.5	11 U	_	<u> </u>
MBGW-14	46.09	N	20 to 30	26.09 to 16.09	G	3/6/2019	-	6.1	130	<u> </u>	4.4 U	38	_	16	0.5 U		5.6 U	11 U	_	
MBGW-15	40.87	N	20 to 30	20.87 to 10.87	G	3/15/2019	-	35	390	 -	4.4 U	170	_	20	0.5 U		5.6 U	11 U	_	
MBGW-16	52.14	N	20 to 30	32.14 to 22.14	G	3/8/2019	-	210	4600	_	5.3	2400	-	190	1.8	_	31	11 U	_	-
MBPP-5	45.92	N	18 to 28	27.92 to 17.92	G	3/7/2019	-	15	230	-	4.4 U	93	-	9.3	0.5 U		5.6 U	11 U	_	-
											,. , ,			J 0.0	J.U U		J.0 0			

TABLE 5-13
GROUNDWATER RESULTS FOR INORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

	0				Onels an							ln	organic Com	pounds, Tota	al					
Boring/Well ID	Surface Elevation	Sample	Sample Depth	Sample Elevation (ft)	Grab or Monitoring	Sample Date	Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Copper,	Lead, Total	Mercury,	Nickel,	Selenium,	Silver,	Thallium,	Zinc, Total
	(ft)	Туре	(ft)		Well?	·	Total	Total	Total	Total	Total	Total	Total		Total	Total	Total	Total	Total	
							ug/L	ug/L E200.8	ug/L E200.8	ug/L	ug/L E200.8	ug/L E200.8	ug/L	ug/L E200.8	ug/L SW6020	ug/L	ug/L E200.8	ug/L E200.8	ug/L	ug/L
					Ana	alytical Method	-	SW6020	E200.6	-	SW6020	SW6020	-	SW6020	SW7470A	-	E200.6	E200.6	-	-
INTERMEDIATI	E Δ ZONE							300020			300020	3770020		J 3440020	3W7470A					1
HMW-2IA	45.55	l N	34.8 to 44.8	10.75 to 0.75	MW	3/12/2020	_	5.1	_		1 U	1 U	_	1 U	1 U	_	T _ T		Ι -	T -
HMW-3IA	55.02	N	34.8 to 44.8	20.22 to 10.22	MW	3/13/2020	_	4.57	_	_	1 U	1 U	_	1 U	1 U	_	 		_	
HMW-6IA	58.65	N	37.5 to 47.5	21.15 to 11.15	MW	3/13/2020	-	7.84	_	_	1 U	9.31	_	1 U	1 U	_	<u> </u>	_	_	 -
HMW-9IA	55.26	N	36.7 to 46.7	18.56 to 8.56	MW	3/19/2020	-	3	-	-	1 U	3.63	-	1 U	1 U	-	-	-	-	-
HMW-20IA	53.83	N	41 to 51	12.83 to 2.83	MW	9/18/2020	-	4.4	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
INTERMEDIATI	E B ZONE					•						•					,			
HMW-1IB	38.29	N	54 to 64.3	-15.71 to -26.01	MW	3/10/2020	-	1 U	-	-	1 U	5 U	-	1 U	1 U	-	-	-	-	-
HMW-2IB	47.41	N	52.8 to 62.8	-5.39 to -15.39	MW	3/12/2020	-	7.49	-	-	1 U	1.09	-	1 U	1 U	-	-	-	-	-
HMW-4IA	58.7	N	50 to 60	8.70 to -1.30	MW	3/10/2020	-	6.03	-	-	1 U	5 U	-	1 U	1 U	-	-	-	-	-
HMW-5IB	58.44	N	49.7 to 59.7	8.74 to -1.26	MW	3/17/2020	-	5 U	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-6IB	58.67	N	50 to 60	8.67 to -1.33	MW	3/13/2020	-	8.55	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-7IB	58.69	N	49.7 to 59.7	8.99 to -1.01	MW	3/12/2020	-	6.36	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-8IB	57.97	N	50.5 to 60.5	7.47 to -2.53	MW	3/11/2020	-	10.7	-	-	1 U	25.3	-	1 U	1 U	-	-	-	-	-
HMW-9IB	55.36	N	57 to 67	-1.64 to -11.64	MW	3/19/2020	-	2.07	-	-	1 U	1 U	-	1 U	1 U	•	-	-	-	-
HMW-11IB	39.7	N	44.87 to 54.87	-5.17 to -15.17	MW	3/16/2020	-	5 U	-	_	1 U	1 U	-	1 U	1 U	-	-	-	-	-
		FD					-	5 U	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-15IB	58.86	N	64 to 73	-5.14 to -14.14	MW	9/16/2020	-	7.78	-	-	1 U	40.9	-	1 U	1 U	-	-	-	-	-
HMW-16IB	57.02	N	55 to 65	2.02 to -7.98	MW	9/18/2020	-	8.21	-	-	1 U	8.12	-	1 U	1 U	-	-	-	-	
DEEP ZONE																				
HMW-1D	38.07	N	80 to 90	-41.93 to -51.93	MW	3/9/2020	-	2.59	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-2D	47.34	N	80 to 90	-32.66 to -42.66	MW	3/12/2020	-	6.36	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-3D	56.56	N	80 to 90	-23.44 to -33.44	MW	3/13/2020	-	4.69	-	-	1 U	2.29	-	1 U	1 U	-	-	-	-	-
HMW-6D	58.58	N	79.9 to 89.7	-21.32 to -21.12	MW	3/16/2020	-	5.53	-	-	1 U	1.4	-	1 U	1 U	-	-	-	-	-
HMW-9D	55.32	N	79.7 to 89.7	-24.38 to -34.38	MW	3/17/2020	-	7.95	-	-	1 U	1 U	-	1 U	1 U			-		
		FD					-	7.82	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	
HMW-10D	48.16	N	79 to 89	-30.84 to -40.84	MW	3/16/2020	-	5.22	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-12D	33.52	N	82 to 92	-48.48 to -58.48	MW	9/10/2020	-	1.75	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-13D	45.3	N	89.5 to 99.5	-44.2 to -54.2	MW	9/10/2020	-	5.47	-	-	1 U	9.39	-	1 U	1 U	-	-	-	-	-
HMW-14D	46.35	N	70 to 80	-23.65 to -33.65	MW	9/16/2020	-	5.91	-	-	1 U	1.34	-	1 U	1 U	-	-	-	-	

TABLE 5-13
GROUNDWATER RESULTS FOR INORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

		Surface				Grab or							Inc	organic Com	pounds, Tota	ı					
- 1	Boring/Well ID	Elevation	Sample	Sample Depth	Sample Elevation (ft)	Monitoring	Sample Date	Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Copper,	Lead, Total	Mercury,	Nickel,	Selenium,	Silver,	Thallium,	Zinc, Total
- 1	Borning/vveil 1D	/#\	Type	(ft)	Sample Lievation (it)	Well?	Sample Date	Total	Total	Total	Total	Total	Total	Total	Leau, Total	Total	Total	Total	Total	Total	Ziric, Total
		(11)				vven:		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
ſ						A	lantina al Manda a al		E200.8	E200.8		E200.8	E200.8		E200.8	SW6020		E200.8	E200.8		
İ		Analytical M						-	SW6020		-	SW6020	SW6020	-	SW6020	SW7470A	-			- 1	-

Bold indicates a detected concentration at or above the laboratory reporting limit.

Elevations relative to North American Vertical Datum of 1988 (NAVD88).

- = Data not available or applicable.

B = Compound was detected in the sample and the associated blank.

FD = Field duplicate.

ft = feet.

G = Grab groundwater sample.

J = Estimated value.

MW = Monitoring well sample.

N = Primary environmental sample.

U = Not detected at detection limit indicated.

ug/L = microgram per liter.

TABLE 7-1 BASIS OF SELECTED SCREENING LEVELS SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

Exposure Pathway & Receptor from Conceptual Site Model	Screening Level Basis	Notes
Soil		
Contact with impacted soil by site user or resident.	With the exceptions noted, the Direct Contact values represent the lower of the non-cancer or cancer levels calculated using MTCA Equations 740-1 and 740-2, respectively, using MTCA default assumptions for residential	For PCBs, Direct Contact value is based on the federal Toxic Substances Control Act (TSCA) cleanup action level for PCBs in soil.
	exposure.	The Direct Contact value used for gasoline-range organics (GRO) (1,500 mg/kg) is based on Ecology's 2017 model remedy guidance for sites with petroleum contaminated soil.
		In cases where the natural background for soil is higher than the Direct Contact level, the background level is used as the screening level. For this site, this situation applies to arsenic where the background level of 7.3 mg/kg is used as the screening level for this pathway.
		For total chromium, the Direct Contact value is based on protection from trivalent chromium since there are no historical operations on the Property that would suggest the previous use or release of hexavalent chromium.
Leaching from vadose zone soil to underlying groundwater where the groundwater is assumed to be a potential domestic drinking water	With the exceptions noted, the Protect Drinking Water via Vadose Zone values are developed using the fixed parameter three-phase partitioning model in accordance with WAC 173-340-747(4). Groundwater screening levels used in the model for protection of drinking water were derived using	In cases where the natural background for soil is higher than the Protect Drinking Water via Vadose Zone level, the background level is used as the screening level. For this site, this situation applies to arsenic and cadmium where the respective background levels of 7.3 and 0.77 mg/kg are used as the screening levels for this pathway.
source.	the procedure described below for ingestion of groundwater.	For total chromium, the Protect Drinking Water via Vadose Zone level is based on protection from trivalent chromium since there are no historical operations on the Property that would suggest the previous use or release of hexavalent chromium.
		In cases where the PQL is higher than the Protect Drinking Water via Vadose Zone level, the PQL is used as the screening level. For this site, this situation applies to 1,1,2,2-tetrachloroethane, 1,2-dibromoethane, and trans-1,3-dichloropropene where the PQLs are used as the screening levels for this pathway.
		For total petroleum hydrocarbons, the Protect Drinking Water via Vadose Zone values are based on the MTCA Method A listed values.
Leaching from saturated zone soil to underlying groundwater where the groundwater is assumed to be a potential domestic drinking water	With the exceptions noted, the Protect Drinking Water via Saturated Zone values are developed using the fixed parameter three-phase partitioning model in accordance with WAC 173-340-747(4).	In cases where the natural background for soil is higher than the Protect Drinking Water via Saturated Zone level, the background level is used as the screening level. For this site, this situation applies to arsenic and cadmium where the respective background levels of 7.3 and 0.77 mg/kg are used as the screening levels for this pathway.
source.		For total chromium, the Protect Drinking Water via Saturated Zone level is based on protection from trivalent chromium since there are no historical operations on the Property that would suggest the previous use or release of hexavalent chromium.
		In cases where the PQL is higher than the Protect Drinking Water via Saturated Zone level, the PQL is used as the screening level. For this site, this situation applies to 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,1-dichloroethene, 1,2-dibromoethane, cis-1,3-dichloropropene, methylene chloride, trans-1,3-dichloropropene, vinyl chloride, and selenium where the PQLs are used as the screening levels for this pathway.
		For total petroleum hydrocarbons, the Protect Drinking Water via Saturated Zone values are based on the MTCA Method A listed values.

Exposure Pathway & Receptor from Conceptual Site Model	Screening Level Basis	Notes
Groundwater		
groundwater be developed as a future drinking water source.	With the exceptions noted, the derivation of the ground water screening levels for protection of potable water involved identifying MCLs and calculating levels per MTCA Equations 720-1 and 720-2 (WAC 173-340-720[4][b][iii][A] and -720[4][b][iii][B]) using the toxicity values in the CLARC database (Ecology 2019).	If the ratio of the minimum MCL to the Equation 720-1 value does not exceed 1, then the hazard quotient associated with the MCL does not exceed 1 and the MCL requires no adjustment. If the ratio exceeds 1, the MCL is adjusted to the Equation 720-1 value to achieve a hazard quotient of 1. If the ratio of the minimum MCL to the Equation 720-2 value does not exceed 10, then the cancer risk associated with the MCL does not exceed 1E-5 and the MCL requires no adjustment. If the ratio exceeds 10, the MCL is adjusted to 10 times the Equation 720-2 value to achieve a cancer risk of 1E-5. If an MCL is available but no oral toxicity values are available to evaluate it (e.g., lead), the MCL is used without adjustment. If no MCL is available but an oral toxicity value is available, the minimum of the values from Equations 720-1 and 720-2 is used. If a chemical has no toxicity values and no MCL, there is no screening level for potable water.
		In cases where the natural background for groundwater is higher than the Protect Drinking Water level, the background level is used as the screening level. For this Site, this situation applies to arsenic where the background level of 8 μ g/L is used as the screening level for this pathway (see Appendix F for more information on how 8 μ g/L was selected as the natural background level for arsenic).
		In cases where the PQL is higher than the Protect Drinking Water level, the PQL is used as the screening level. For this Site, this situation applies to cPAHs-TEQ, 1,1,2,2-tetrachloroethane, 1,2,3-trichloropropane, 1,2-dibromo-3-chloropropane, 1,2-dibromoethane, acrylonitrile, cis-1,3-dichloropropene, and trans-1,3-dichloropropene where the PQLs are used as the screening levels for this pathway. For total petroleum hydrocarbons, the Protect Drinking Water levels are based on the MTCA Method
		A listed values.
S .	These screening levels are based on the groundwater values for protection of indoor air and were calculated per Ecology's (2018b and 2018c) guidance.	In cases where the natural background for groundwater is higher than the Protect Indoor Air level, the background level is used as the screening level.

Screening levels provided by Ecology (November 17, 2020).

 μ g/L = micrograms per liter.

CLARC = Cleanup Levels and Risk Calculation.

GRO = Gasoline Range Organics.

MCL = Maximum Contaminant Level.

mg/kg = milligrams per kilogram.

MTCA = Model Toxics Control Act.

PCB = Polychlorinated Biphenyl.

PQL = Practical quantitation limit.

TSCA = Toxic Substances Control Act.

WAC = Washington Administrative Code.

TABLE 7-2a IDENTIFICATION OF CONSTITUENTS OF POTENTIAL CONCERN IN VADOSE ZONE SOIL SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

						Protective						
						of GW			Retained			
C4i44 ^a	Frequency of	Percent	Range of Detected	Average of	Direct Contact ^b	Vadose	Natural Background ^b	Median PQL ^b	as a COPC ^b ?	Frequency of	Percent	Exceedance
Constituent ^a Volatile Organic Compounds (mg/kg)	Detection	Detected	Concentrations	All Samples	Contact ^b	Zone ^b	Background	PQL	COPC ?	Exceedance	Exceeded	Factor
1.1-Dichloroethane	1 / 307	0.3%	0.00317 - 0.00317	0.010	180	0.041	NA	0.001		0 / 307	0%	
'							NA NA	0.001	no		0%	
1,1-Dichloroethene	1 / 307	0.3%	0.000568 - 0.000568	0.011	4000	0.044	NA	0.003	no	0 / 307	-	
1,2,3-Trimethylbenzene	1 / 16	6%	0.00216 - 0.00216	0.0020	800	NA	NA	0.0015	no	0 / 16	0%	
1,2,4-Trimethylbenzene	18 / 301	6%	0.00325 - 15	0.11	800	NA	NA	0.001	no	0 / 301	0%	
1,3,5-Trimethylbenzene	8 / 176	5%	0.00151 - 5.7	0.060	800	NA	NA	0.001	no	0 / 176	0%	
2-Butanone (Methyl Ethyl Ketone)	3 / 73	4%	0.00585 - 0.0223	0.022	48000	NA	NA	0.005	no	0 / 73	0%	
2-Phenylbutane (sec-Butylbenzene)	2 / 176	1%	0.011 - 0.42	0.017	8000	NA	NA	0.001	no	0 / 176	0%	
Acetone	7 / 73	10%	0.0266 - 0.042	0.045	72000	29	NA	0.005	no	0 / 73	0%	
Benzene	5 / 301	2%	0.000566 - 0.011	0.0050	18	0.027	NA	0.0015	no	0 / 301	0%	
Carbon disulfide	4 / 16	25%	0.000247 - 0.0014	0.0048	8000	5	NA	0.001	no	0 / 16	0%	
cis-1,2-Dichloroethene	1 / 307	0.3%	0.00142 - 0.00142	0.010	160	0.078	NA	0.0015	no	0 / 307	0%	
Cymene (p-Isopropyltoluene)	4 / 83	5%	0.0059 - 0.59	0.012	NA	NA	NA	0.001	NSL	0 / 83	0%	
Dibromochloromethane	1 / 301	0.3%	0.0081 - 0.0081	0.0053418	12	0.028	NA	0.0015	no	0 / 301	0%	
Ethylbenzene	17 / 301	6%	0.00213 - 3.9	0.035	8000	5.9	NA	0.0015	no	0 / 301	0%	
Hexane	10 / 73	14%	0.00338 - 0.00978	0.014	4800	69	NA	NA	no	0 / 73	0%	
Isopropylbenzene (Cumene)	6 / 176	3%	0.0062 - 0.97	0.025	8000	NA	NA	0.001	no	0 / 176	0%	
Isopropyltoluene	2 / 93	2%	0.103 - 0.97	0.036	NA	NA	NA	NA	NSL	0 / 93	0%	
m,p-Xylenes	8 / 192	4%	0.011 - 2.5	0.024	NA	NA	NA	NA	NSL	0 / 192	0%	
Methylene chloride	4 / 307	1%	0.00875 - 0.0129	0.0179567	94	0.021	NA	0.0035	no	0 / 307	0%	
Naphthalene	7 / 176	4%	0.00452 - 1.9	0.028	1600	4.5	NA	0.005	no	0 / 176	0%	
n-Butylbenzene	3 / 119	3%	0.055 - 2.2	0.041	4000	NA	NA	0.001	no	0 / 119	0%	
n-Propylbenzene	7 / 176	4%	0.0077 - 3	0.041	8000	NA	NA	0.001	no	0 / 176	0%	
o-Xylene	7 / 192	4%	0.0072 - 0.5	0.0077872	NA	NA	NA	NA	NSL	0 / 192	0%	
tert-Butylbenzene	1 / 176	0.6%	0.018 - 0.018	0.015	8000	NA	NA	0.001	no	0 / 176	0%	
Tetrachloroethene	5 / 307	2%	0.000561 - 0.00305	0.016	480	0.05	NA	0.0015	no	0 / 307	0%	
Toluene	15 / 301	5%	0.00457 - 0.14	0.011	6400	4.5	NA	0.0015	no	0 / 301	0%	
Trichlorofluoromethane (CFC-11)	8 / 301	3%	0.00179 - 0.00358	0.026	24000	NA	NA	0.002	no	0 / 301	0%	
Xylene (total)	12 / 301	4%	0.00846 - 7	0.052	16000	14	NA	0.005	no	0 / 301	0%	
Semi-Volatile Organic Compounds (mg/kg)												
Acenaphthene	4 / 71	6%	0.05 - 1.06	0.030	4800	99	NA	0.005	no	0 / 71	0%	
Acenaphthylene	1 / 71	2%	0.37 - 0.37	0.019	NA	NA	NA	0.005	NSL	0 / 71	0%	
Anthracene	6 / 71	9%	0.05 - 0.13	0.019	24000	2300	NA	0.005	no	0 / 71	0%	
Benzo(a)anthracene	25 / 134	30%	0.011 - 1.5	0.047	NA	NA	NA	0.0034	NSL	0 / 134	0%	
Benzo(a)pyrene	18 / 134	20%	0.011 - 1.8	0.036	0.19	3.9	NA	0.005	YES	4 / 134	3%	9
Benzo(b)fluoranthene	27 / 134	32%	0.014 - 2.3	0.055	NA	NA	NA	0.0035	NSL	0 / 134	0%	
Benzo(k)fluoranthene	4 / 134	2%	0.12 - 0.77	0.021	NA	NA	NA	0.0035	NSL	0 / 134	0%	
Chrysene	29 / 134	35%	0.011 - 2.3	0.064	NA	NA	NA	0.005	NSL	0 / 134	0%	
Dibenz(a,h)anthracene	1 / 134	1%	0.22 _ 0.22	0.014	NA.	NA.	NA NA	0.005	NSL	0 / 134	0%	
	,									,	-	
Fluoranthene	25 / 71	38%	0.016 - 4.68	0.15	3200	630	NA	0.005	no	0 / 71	0%	

Constituent ^a	Frequency of Detection	Percent Detected	Range of Detected Concentrations	Average of All Samples	Direct Contact ^b	Protective of GW Vadose Zone ^b	Natural Background ^b	Median PQL ^b	Retained as a COPC ^b ?	Frequency of Exceedance	Percent Exceeded	Exceedance Factor
Indeno(1,2,3-cd)pyrene	4 / 134	2%	0.051 - 1.1	0.023	NA	NA	NA	0.0034	NSL	0 / 134	0%	
Naphthalene	5 / 71	8%	0.011 - 0.74	0.026	1600	4.5	NA	0.005	no	0 / 71	0%	
Phenanthrene	25 / 71	38%	0.015 - 1.97	0.093	NA	NA	NA	0.005	NSL	0 / 71	0%	
Pyrene	26 / 71	39%	0.01 - 4.41	0.16	2400	650	NA	0.005	no	0 / 71	0%	l
cPAHs-TEQ	29 / 134	33%	0.0016 - 2.4	0.039	0.19	0.45	NA	0.0069	YES	5 / 134	4%	13
Total Petroleum Hydrocarbons (mg/kg)												
Diesel Range Organics	12 / 269	4%	29 - 350	24.4	NA	2000 ^d	NA	15	no	0 / 269	0%	l
Gasoline Range Organics	12 / 254	5%	7.3 - 1200	15.9	1500°	30 ^d	NA	5	YES	8 / 254	3%	40
Total Petroleum Hydrocarbons - Heavy Oils	24 / 269	9%	74.3 - 1100	133	NA	2000 ^d	NA	NA	no	0 / 269	0%	
Diesel Range + Oil Range Organics	28 / 269	10%	29 - 1100	136	NA	2000 ^d	NA	NA	no	0 / 269	0%	
Inorganic Compounds (mg/kg)												
Arsenic	183 / 217	84%	1.03 - 25.6	4.84	0.67	0.34	7.3	0.1	YES	34 / 217	16%	4
Barium	34 / 34	100%	32 - 200	65.8	16000	1600	NA	0.1	no	0 / 34	0%	l
Cadmium	2 / 217	1%	0.192 - 0.428	0.462	80	0.69	0.77	0.1	no	0 / 217	0%	i
Chromium	217 / 217	100%	9.22 - 46	20.6	120000°	480000°	48	0.1	no	0 / 217	0%	l
Copper	1 / 1	100%	26.3 - 26.3	26.3	3200	280	36	0.1	no	0 / 1	0%	
Lead	208 / 227	92%	1.02 - 591	10.6	250	3000	17	0.1	YES	2 / 227	0.90%	2
Mercury	1 / 217	0%	0.453 - 0.453	0.444	24	2.1	0.07	0.02	no	0 / 217	0%	l
Nickel	1 / 1	100%	37.3 - 37.3	37.3	1600	130	38	0.1	no	0 / 1	0%	l
Selenium	5 / 34	15%	1.26 - 1.76	5.07	400	5.2	NA	0.5	no	0 / 34	0%	i
Zinc	1 / 1	100%	62.2 - 62.2	62.2	24000	6000	85	5	no	0 / 1	0%	
Polychlorinated Biphenyls (mg/kg)												l
Aroclor-1242	1 / 57	2%	0.022 - 0.022	0.010	NA	NA	NA	NA	NSL	0 / 57	0%	i
Aroclor-1254	2 / 57	4%	0.022 - 0.026	0.010	NA	NA	NA	NA	NSL	0 / 57	0%	į I
Total PCB Aroclors	3 / 57	5%	0.022 - 0.026	0.011	1	2.7	NA	NA	no	0 / 57	0%	i

- a. Only constituents detected at or above the laboratory reporting limit are provided herein.
- b. Bold value identified the selected screening level to determine if a constituent is retained as a COPC. This value is the lowest protective value unless adjusted for an elevated Natural Background or Median PQL.
- c. The Direct Contact value for gasoline range organics is based on Ecology's 2017 model remedy guidance for sites with petroleum contaminated soil.
- d. The Method A values for total petroleum hydrocarbons were used for for the soil-leaching-to-groundwater pathway as extractable petroleum hydrocarbon (EPH) and volatile petroleum hydrocarbon (VPH) data are unavailable.
- e. Trivalent chromium values for direct contact and leaching are used to represent total chromium as there are no historical operations on the Property that would suggest the previous use or release of hexavalent chromium.

 COPC = Constituent of Potential Concern.

cPAHs-TEQ = Carcinogenic polycyclic aromatic hydrocarbons toxic equivalency.

GW = Groundwater.

mg/kg = milligram per kilogram.

NA = Not applicable.

NSL = No screening level.

PCB = Polychlorinated biphenyl.

PQL = Practical Quantitation Limit.

TABLE 7-2b
IDENTIFICATION OF CONSTITUENTS OF POTENTIAL CONCERN IN SATURATED ZONE SOIL
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

Constituent ^a	Frequency of	Percent Detected	Range of Detected	Average of All Samples	Direct Contact ^b	Protective of GW Saturated Zone ^b	Natural Background ^b	Median PQL ^b	Retained as a	Frequency of	Percent Exceeded	Exceedance Factor
Volatile Organic Compounds (mg/kg)	Detection	Detected	Concentrations	Samples	Contact	Zone	background	PQL	COPC ?	Exceedance	Exceeded	Factor
1,2,4-Trimethylbenzene	1 / 80	1%	0.11 - 0.11	0.00989	800	NA	NA	0.001	no	0 / 80	0%	
1,3,5-Trimethylbenzene	1 / 76	1%	0.03 - 0.03	0.00922	800	NA	NA	0.001	no	0 / 76	0%	
2-Butanone (Methyl Ethyl Ketone)	4 / 52	8%	0.00707 - 0.0237	0.0134	48000	NA	NA	0.005	no	0 / 52	0%	
Acetone	13 / 52	25%	0.0118 - 0.105	0.0299	72000	2.1	NA	0.005	no	0 / 52	0%	
Benzene	1 / 80	1%	0.000517 - 0.000517	0.00350	18	0.0017	NA	0.0015	no	0 / 80	0%	
Carbon disulfide	8 / 45	18%	0.000256 - 0.000436	0.00455	8000	0.27	NA	0.001	no	0 / 45	0%	
Chloroform (Trichloromethane)	1 / 80	1%	0.000914 - 0.000914	0.00865	32	0.0048	NA	0.0015	no	0 / 80	0%	
cis-1,2-Dichloroethene	22 / 97	23%	0.000314 - 0.26	0.0164	160	0.0052	NA	0.0015	YES	4 / 97	4%	50
Cymene (p-lsopropyltoluene)	1 / 54	2%	0.006 - 0.006	0.00235	NA	NA	NA	0.001	NSL	0 / 54	0%	
Ethylbenzene	1 / 80	1%	0.013 - 0.013	0.00829	8000	0.34	NA	0.0015	no	0 / 80	0%	
Hexane	21 / 52	40%	0.000376 - 0.00718	0.00570	4800	1.8	NA	NA	no	0 / 52	0%	
m,p-Xylenes	1 / 13	8%	0.027 - 0.027	0.00717	NA	NA	NA	NA	NSL	0 / 13	0%	
Methylene chloride	7 / 97	7%	0.00885 - 0.035	0.0516	94	0.0015	NA	0.0035	YES	7 / 97	7%	10
Naphthalene	1 / 76	1%	0.036 - 0.036	0.0116	1600	0.24	NA	0.005	no	0 / 76	0%	
n-Propylbenzene	1 / 76	1%	0.0099 - 0.0099	0.00896	8000	NA	NA	0.001	no	0 / 76	0%	
o-Xylene	1 / 13	8%	0.017 - 0.017	0.00448	NA	NA	NA	NA	NSL	0 / 13	0%	
Tetrachloroethene	22 / 97	23%	0.000585 - 8.8	0.187	480	0.0028	NA	0.0015	YES	13 / 97	13%	3143
Toluene	24 / 80	30%	0.00342 - 0.0174	0.0105	6400	0.27	NA	0.0015	no	0 / 80	0%	
Trichloroethene	14 / 97	14%	0.000486 - 0.47	0.0202	12	0.0015	NA	0.0015	YES	7 / 97	7%	313
Trichlorofluoromethane (CFC-11)	12 / 80	15%	0.00156 - 0.00346	0.0122	24000	NA	NA	0.002	no	0 / 80	0%	
Vinyl chloride	10 / 97	10%	0.000344 - 0.0615	0.0119	0.67	0.000089	NA	0.0015	YES	6 / 97	6%	41
Xylene (total)	1 / 80	1%	0.044 - 0.044	0.0100	16000	0.83	NA	0.005	no	0 / 80	0%	
Total Petroleum Hydrocarbons (mg/kg)												
Gasoline Range Organics	1 / 26	4%	26 - 26	3.4	1500°	30 ^d	NA	5	no	0 / 26	0%	
Inorganic Compounds (mg/kg)												
Arsenic	11 / 16	69%	1.03 - 7.75	2.71	0.67	0.017	7.3	0.1	YES	1 / 16	6%	1
Barium	5 / 5	100%	31.8 - 46	40.2	16000	83	NA	0.1	no	0 / 5	0%	
Chromium	16 / 16	100%	10.8 - 43.2	25.7	120000°	24000°	48	0.1	no	0 / 16	0%	
Lead	13 / 16	81%	1.31 - 6.75	2.37	250	150	17	0.1	no	0 / 16	0%	
Selenium	2 / 5	40%	0.988 - 0.99	3.80	400	0.26	NA	0.5	YES	2 / 5	40%	2

- a. Only constituents detected at or above the laboratory reporting limit are provided herein.
- b. Bold value identified the selected screening level to determine if a constituent is retained as a COPC. This value is the lowest protective value unless adjusted for an elevated Natural Background or Median PQL.
- c. The Direct Contact value for gasoline range organics is based on Ecology's 2017 model remedy guidance for sites with petroleum contaminated soil.
- d. The Method A values for total petroleum hydrocarbons were used for the soil-leaching-to-groundwater pathway as extractable petroleum hydrocarbon (EPH) and volatile petroleum hydrocarbon (VPH) data are unavailable.
- e. Trivalent chromium values for direct contact and leaching are used to represent total chromium as there are no historical operations on the Property that would suggest the previous use or release of hexavalent chromium.

 COPC = Constituent of Potential Concern.

GW = Groundwater.

mg/kg = milligram per kilogram.

NA = Not applicable.

NSL = No screening level.

PQL = Practical Quantitation Limit.

TABLE 7-2c IDENTIFICATION OF CONSTITUENTS OF POTENTIAL CONCERN IN GROUNDWATER SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

					Protective	Protective			Retained			
	Frequency of	Percent	Range of Detected	Average of	of Drinking	of Indoor	Natural	Median	as a	Frequency of	Percent	Exceedance
Constituent ^a	Detection	Detected	Concentrations	All Samples	Water ^b	Air ^b	Background ^b	PQL ^b	COPC ^b ?	Exceedance	Exceeded	Factor
Volatile Organic Compounds (ug/L)												
1,1,1-Trichloroethane	1 / 164	1%	0.2 - 0.2	0.809	200	5500	NA	0.5	no	0 / 164	0%	İ
1,1-Dichloroethene	28 / 165	17%	0.249 - 13	1.23	7	130	NA	0.5	YES	1 / 165	1%	1.9
1,2,3-Trichlorobenzene	1 / 158	1%	0.165 - 0.165	0.857	NA	NA	NA	1.5	NSL	0 / 158	0%	İ
1,2,3-Trimethylbenzene	1 / 75	1%	0.139 - 0.139	1.18	80	NA	NA	1	no	0 / 75	0%	İ
1,2,4-Trimethylbenzene	9 / 158	6%	0.225 - 37	1.23	80	240	NA	1	no	0 / 158	0%	İ
1,2-Dichloroethane	1 / 129	1%	7.1 - 7.1	1.10	4.8	4.2	NA	0.5	YES	1 / 129	1%	1.7
1,3,5-Trimethylbenzene	2 / 122	2%	0.141 - 14	1.19	80	NA	NA	1	no	0 / 122	0%	İ
2,2-Dichloropropane	3 / 158	2%	0.161 - 0.161	0.831	NA	NA	NA	0.5	NSL	0 / 158	0%	į į
2-Butanone (Methyl Ethyl Ketone)	1 / 93	1%	25 - 25	13.4	4800	1700000	NA	5	no	0 / 93	0%	į į
2-Phenylbutane (sec-Butylbenzene)	2 / 123	2%	0.159 - 2	1.08	800	NA	NA	1	no	0 / 123	0%	į į
Acetone	37 / 94	39%	1.06 - 1130	46.5	7200	NA	NA	5	no	0 / 94	0%	į į
Benzene	13 / 160	8%	0.108 - 34	1.11	5	2.4	NA	0.5	YES	3 / 160	2%	14.2
Carbon disulfide	14 / 76	18%	0.142 - 6.02	1.33	800	400	NA	0.5	no	0 / 76	0%	İ
Chloroethane	5 / 165	3%	0.369 - 2.01	2.80	NA	19000	NA	0.5	no	0 / 165	0%	į į
Chloroform (Trichloromethane)	9 / 159	6%	0.23 - 0.87	0.829	14	1.2	NA	0.5	no	0 / 159	0%	į į
Chloromethane (Methyl Chloride)	1 / 159	1%	0.161 - 0.161	3.37	NA	150	NA	0.5	no	0 / 159	0%	į į
cis-1,2-Dichloroethene	109 / 186	59%	0.2 - 9100	215	16	NA	NA	0.5	YES	54 / 186	29%	569
Cymene (p-Isopropyltoluene)	2 / 96	2%	1.46 - 3.8	1.28	NA	NA	NA	1	NSL	0 / 96	0%	İ
Diisopropyl ether (DIPE)	3 / 76	4%	0.105 - 0.105	1.10	NA	NA	NA	NA	NSL	0 / 76	0%	İ
Ethylbenzene	7 / 160	4%	0.2 - 24	1.14	700	2800	NA	0.5	no	0 / 160	0%	İ
Hexane	1 / 90	1%	0.371 - 0.371	9.54	480	4.4	NA	NA	no	0 / 90	0%	İ
Isopropylbenzene (Cumene)	2 / 122	2%	0.134 - 6	1.12	800	720	NA	1	no	0 / 122	0%	İ
m,p-Xylenes	5 / 58	9%	0.4 - 27	2.00	NA	NA	NA	NA	NSL	0 / 58	0%	İ
Methylene chloride	1 / 164	1%	76 - 76	4.74	5	1200	NA	1	YES	1 / 164	1%	15.2
Naphthalene	6 / 122	5%	1.01 - 6.9	3.91	160	8.9	NA	0.05	no	0 / 122	0%	İ
n-Butylbenzene	1 / 105	1%	0.162 - 0.162	0.935	400	NA	NA	1	no	0 / 105	0%	İ
n-Propylbenzene	1 / 122	1%	6.9 - 6.9	1.17	800	NA	NA	1	no	0 / 122	0%	İ
o-Xylene	4 / 58	7%	0.2 - 19	1.17	NA	NA	NA	NA	NSL	0 / 58	0%	İ
tert-Butylbenzene	1 / 123	1%	0.3 - 0.3	1.03	800	NA	NA	1	no	0 / 123	0%	1
Tetrachloroethene	93 / 186	50%	0.21 - 8400	78.4	5	24	NA	0.5	YES	53 / 186	28%	1680
Toluene	20 / 160	13%	0.22 - 49	1.53	640	15000	NA	0.5	no	0 / 160	0%	İ
trans-1,2-Dichloroethene	33 / 186	18%	0.158 - 13	1.19	100	NA	NA	0.5	no	0 / 186	0%	İ
Trichloroethene	89 / 186	48%	0.163 - 1200	28.0	4	1.4	NA	0.5	YES	67 / 186	36%	857
Vinyl chloride	69 / 186	37%	0.211 - 7400	223	0.29	0.35	NA	0.2	YES	63 / 186	34%	25517
Xylene (total)	7 / 160	4%	0.562 - 41	2.68	1600	330	NA	0.5	no	0 / 160	0%	

					Protective	Protective			Retained			
	Frequency of	Percent	Range of Detected	Average of	of Drinking	of Indoor	Natural	Median	as a	Frequency of	Percent	Exceedance
Constituent ^a	Detection	Detected	Concentrations	All Samples	Water ^b	Air ^b	Background ^b	PQL⁵	COPC ^b ?	Exceedance	Exceeded	Factor
Semi-Volatile Organic Compounds (ug/L)							J					
1-Methylnaphthalene	1 / 13	8%	1.6 - 1.6	0.31	1.5	NA	NA	0.05	YES	1 / 13	8%	1.1
2-Methylnaphthalene	1 / 13	8%	1.6 - 1.6	0.31	32	NA	NA	0.05	no	0 / 13	0%	
Acenaphthene	1 / 25	4%	0.25 - 0.25	0.029	960	NA	NA	0.05	no	0 / 25	0%	
Fluorene	1 / 25	4%	0.098 - 0.098	0.023	640	NA	NA	0.05	no	0 / 25	0%	
Naphthalene	2 / 25	8%	2.2 - 6	0.51	160	8.9	NA	0.05	no	0 / 25	0%	
Phenanthrene	1 / 25	4%	0.18 - 0.18	0.026	NA	NA	NA	0.05	NSL	0 / 25	0%	
Total Petroleum Hydrocarbons (ug/L)												
Diesel Range Organics	27 / 84	32%	56 - 650	102	500°	NA	NA	110	YES	2 / 84	2%	1.3
Gasoline Range Organics	20 / 115	17%	31.6 - 1600	82.6	800°	NA	NA	250	YES	1 / 115	1%	2
Total Petroleum Hydrocarbons - Heavy Oils	5 / 84	6%	146 - 970	182	500°	NA	NA	NA	YES	1 / 84	1%	1.9
Diesel Range + Oil Range Organics	30 / 84	36%	56 - 970	202	500°	NA	NA	NA	YES	5 / 84	6%	1.9
Inorganic Compounds (ug/L)												
Antimony, Total	1 / 3	33%	0.694 - 0.694	0.298	6	NA	NA	0.2	no	0 / 3	0%	
Arsenic, Total ^d	30 / 37	81%	1.57 - 14	5.2	0.58	NA	8	0.5	YES	5 / 37	14%	1.8
Barium, Total	15 / 15	100%	65 - 4600	1419	2000	NA	NA	0.05	YES	4 / 15	27%	2.3
Beryllium, Total	2 / 3	67%	0.248 - 0.264	0.204	4	NA	NA	0.06	no	0 / 3	0%	
Cadmium, Total	5 / 68	7%	0.353 - 7.5	1.09	5	NA	NA	0.06	YES	4 / 68	6%	1.5
Chromium, Total	43 / 68	63%	1.09 - 2400	163	100	NA	NA	0.2	YES	9 / 68	13%	24
Copper, Total	3 / 3	100%	13.2 - 23.7	18.0	640	NA	NA	0.1	no	0 / 3	0%	
Lead, Total	21 / 68	31%	1.27 - 200	18.0	15	NA	NA	0.06	YES	12 / 68	18%	13.3
Mercury, Total	6 / 68	9%	0.88 - 2.3	0.567	2	0.83	NA	0.15	YES	6 / 68	9%	2.8
Nickel, Total	3 / 3	100%	7.56 - 14.3	11.0	100	NA	NA	0.15	no	0 / 3	0%	
Selenium, Total	9 / 18	50%	1.02 - 31	7.81	50	NA	NA	1	no	0 / 18	0%	
Zinc, Total	3 / 3	100%	20.8 - 49.2	38.1	4800	NA	NA	5	no	0 / 3	0%	
Antimony, Dissolved	3 / 3	100%	0.206 - 0.646	0.355	6	NA	NA	0.2	no	0 / 3	0%	
Arsenic, Dissolved ^e	23 / 40	58%	1.32 - 41.2	4.36	0.58	NA	8	0.5	YES	5 / 40	13%	5.2
Barium, Dissolved	9 / 15	60%	25 - 95	29.1	2000	NA	NA	0.05	no	0 / 15	0%	
Chromium, Dissolved	5 / 40	13%	0.852 - 4.26	3.07	100	NA	NA	0.2	no	0 / 40	0%	
Copper, Dissolved	2 / 3	67%	0.733 - 1.01	0.664	640	NA	NA	0.1	no	0 / 3	0%	
Nickel, Dissolved	3 / 3	100%	3.11 - 5.12	3.98	100	NA	NA	0.15	no	0 / 3	0%	
Zinc, Dissolved	3 / 3	100%	1.56 - 4.48	2.65	4800	NA	NA	5	no	0 / 3	0%	

- a. Only constituents detected at or above the laboratory reporting limit are provided herein.
- b. Bold value identified the selected screening level to determine if a constituent is retained as a COPC. This value is the lowest protective value unless adjusted for an elevated Natural Background or Median PQL.
- c. The Method A values for total petroleum hydrocarbons were used for the protect drinking water pathway as extractable petroleum hydrocarbon (EPH) and volatile petroleum hydrocarbon (VPH) data are unavailable.
- d. Total Arsenic statistics are based on monitoring well results. Grab samples are omitted from the evaluation of Total Arsenic.
- e. See Appendix F for further statistical evaluation.

COPC = Constituent of Potential Concern.

NA = Not applicable.

NSL = No screening level.

PQL = Practical Quantitation Limit.

ug/L = microgram per liter.

TABLE 7-3b

VADOSE ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS

FOR SEMI-VOLATILE ORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

			Surface	Sample	Sample				nogenic Semi-Vola	tile Organic Comp			
Boring/ Well ID	Sample Date	Sample Type	Elevation (ft)	Depth	Elevation (ft)	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno(1,2,3- cd)pyrene	cPAHs-TEQ
			(11)	(ft)	(11)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	NA	0.19	NA	NA	NA	NA	NA	0.19
			Protective	of Groundwa	ter Vadose Zone ^a	NA	3.9	NA	NA	NA	NA	NA	0.45
				Nat	tural Background ^a	NA	NA	NA	NA	NA	NA	NA	NA
					Median PQL ^a	0.0034	0.005	0.0035	0.0035	0.005	0.005	0.0034	0.0069
21417-MB2	5/12/2017	N	54.72	1	53.72	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0322 U
21417-MB3	5/12/2017	N	58.63	1	57.63	0.0393	0.0399	0.0505	0.0382 U	0.0462	0.0382 U	0.0382 U	0.0551
HMW-4IA	3/7/2019	N	58.70	7.5 - 8.7	51.20 to 50.00	1.5	0.1 U	1.17	0.1 U	2.3	0.1 U	0.1 U	0.36
				5 - 6.5	53.44 to 51.94	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				10 - 11.5	48.44 to 46.94	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
HMW-5IB	2/28/2020	N	58.44	15 - 16.5	43.44 to 41.94	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				20 - 21.5	38.44 to 36.94	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				25 - 26.5	33.44 to 31.94	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 6.5	53.58 to 52.08	0.085	0.076	0.11	0.05 U	0.13	0.05 U	0.05 U	0.098
HMW-6D	3/2/2020	N	58.58	10 - 11.5	48.58 to 47.08	0.083	0.064	0.088	0.05 U	0.11	0.05 U	0.05 U	0.083
111111111111111111111111111111111111111	0/2/2020	'`	00.00	15 - 16.5	43.58 to 42.08	0.066	0.05 U	0.066	0.05 U	0.092	0.05 U	0.05 U	0.017
				25 - 26.5	33.58 to 32.08	0.071	0.05 U	0.08	0.05 U	0.1	0.05 U	0.05 U	0.019
				5 - 6.5	53.65 to 52.15	0.051	0.05 U	0.058	0.05 U	0.072	0.05 U	0.05 U	0.014
HMW-6IA	3/2/2020	N	58.65	10 - 11.5	48.65 to 47.15	0.082	0.06	0.086	0.05 U	0.1	0.05 U	0.05 U	0.079
THIVIVY OUT	0/2/2020	'	00.00	15 - 16.5	43.65 to 42.15	0.089	0.065	0.08	0.05 U	0.12	0.05 U	0.05 U	0.084
				20 - 21.5	38.65 to 37.15	0.05 U	0.05 U	0.05 U	0.05 U	0.065	0.05 U	0.05 U	0.0036
				5 - 6.5	53.67 to 52.17	0.068	0.05 U	0.06	0.05 U	0.087	0.05 U	0.05 U	0.016
				10 - 11.5	48.67 to 47.17	0.068	0.051	0.068	0.05 U	0.088	0.05 U	0.05 U	0.067
HMW-6IB	3/3/2020	N	58.67	15 - 16.5	43.67 to 42.17	0.084	0.057	0.069	0.05 U	0.1	0.05 U	0.05 U	0.075
				20 - 21.5	38.67 to 37.17	0.05 U	0.05 U	0.057	0.05 U	0.071	0.05 U	0.05 U	0.0092
				25 - 26.5	33.67 to 32.17	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 6.5	53.69 to 52.19	0.085	0.068	0.099	0.05 U	0.13	0.05 U	0.05 U	0.089
				10 - 11.5	48.69 to 47.19	0.06	0.05 U	0.072	0.05 U	0.088	0.05 U	0.05 U	0.017
HMW-7IB	2/28/2020	N	58.69	15 - 16.5	43.69 to 42.19	0.76	0.29	0.59	0.17	0.75	0.05 U	0.051	0.44
				20 - 21.5	38.69 to 37.19	0.052	0.05 U	0.074	0.05 U	0.085	0.05 U	0.05 U	0.016
				25 - 26.5	33.69 to 32.19	0.088	0.054	0.066	0.05 U	0.12	0.05 U	0.05 U	0.072
				5 - 6.5	52.97 to 51.47	0.086	0.066	0.094	0.05 U	0.12	0.05 U	0.05 U	0.086
				10 - 11.5	47.97 to 46.47	0.11	0.085	0.11	0.05 U	0.14	0.05 U	0.05 U	0.11
HMW-8IB	3/2/2020	N	57.97	15 - 16.5	42.97 to 41.47	0.093	0.063	0.09	0.05 U	0.12	0.05 U	0.05 U	0.084
				20 - 21.5	37.97 to 36.47	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.003 U
				25 - 26.5	32.97 to 31.47	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U

TABLE 7-3b

VADOSE ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS

FOR SEMI-VOLATILE ORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

			Surface	Cample	Comple			Carcir	nogenic Semi-Vola	tile Organic Comp	ounds		
Boring/	Sample	Sample	Elevation	Sample Depth	Sample Elevation	Benzo(a)		Benzo(b)	Benzo(k)		Dibenz(a,h)	Indeno(1,2,3-	DALL TEO
Well ID	Date	Туре	(ft)	(ft)	(ft)	anthracene	Benzo(a) pyrene	fluoranthene	fluoranthene	Chrysene "	anthracene "	cd)pyrene	cPAHs-TEQ
					D: 10 1 1	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
			Dunt notice		Direct Contact ^a	NA NA	0.19	NA NA	NA NA	NA NA	NA NA	NA NA	0.19
			Protective		ter Vadose Zone ^a	NA NA	3.9	NA NA	NA NA	NA NA	NA NA	NA NA	0.45
	_			INA	tural Backgrounda	NA 0.0004	NA 0.005	NA 0.0005	NA 0.0005	NA 0.005	NA 0.005	NA 0.0004	NA 0.0000
	T	İ	İ	F 0.05	Median PQLa	0.0034	0.005	0.0035	0.0035	0.005	0.005	0.0034	0.0069
				5 - 6.25	52.21 to 50.96	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0097 U
HMW-17S	9/3/2020	N	57.21	10 - 11.25	47.21 to 45.96	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0097 U
HIVIVV-173	9/3/2020	I IN	37.21	15 - 16.33	42.21 to 40.88	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				20 - 20.75	37.21 to 36.46	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				25 - 26	32.21 to 31.21	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				5 - 5.8	52.61 to 51.81	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0097 U
HMW-18S	9/3/2020	N	57.61	10 - 11.5	47.61 to 46.11	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
UIVIVV-100	9/3/2020	IN IN	37.01	15 - 16.5	42.61 to 41.11	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				20 - 20.9	37.61 to 36.71	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
	+			25 - 25.8	32.61 to 31.81	0.01 U	0.01 U	0.01 U 0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				5 - 5.5	53.20 to 52.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U 0.00041 U
HMW-19S	HMW-19S 9/8/2020	N	58.20	10 - 10.75	48.20 to 47.45	0.01 U	0.01 U		0.01 U	0.01 U	0.01 U	0.01 U	
				15 - 16.5	43.20 to 41.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
	+			20 - 21.5	38.20 to 36.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 5.5	48.81 to 48.31 43.81 to 42.31	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
HMW-20S	9/8/2020	N	53.81	10 - 11.5	38.81 to 37.31	0.01 U	0.01 U 0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
1110100-200	3/0/2020	'\	33.01	15 - 16.5		0.011		0.01 U	0.01 U	0.011	0.01 U	0.01 U	0.0016
				20 - 21.25 25 - 26.4	33.81 to 32.56	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U 0.00041 U
				5 - 6.5	28.81 to 27.41 50.02 to 48.52	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.00041 U
					45.02 to 43.52	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		0.0006 U
MBB-1	2/27/2020	N	55.02	10 - 11.5	40.02 to 43.52 40.02 to 38.52	0.01 U	0.01 U		0.01 U	·····		0.01 U	
IVIDD-1	2/21/2020	'\	33.02	15 - 16.5	35.02 to 33.52	0.01 U		0.01 U 0.01 U	0.01 U	0.01 U	0.01 U 0.01 U	0.01 U	0.0006 U 0.0006 U
				20 - 21.5 25 - 26.5	30.02 to 33.52	0.01 U	0.01 U 0.01 U	0.01 U	0.01 U	0.01 U 0.01 U	0.01 U	0.01 U 0.01 U	0.0006 U
				5 - 6.5	50.45 to 48.95	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				10 - 11.5	45.45 to 43.95	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
		N		15 - 16.5	40.45 to 38.95	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
MBB-2	2/27/2020		55.45	13 - 10.5		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
		 FD	-	20 - 21.5	35.45 to 33.95	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
		N	-	25 - 26.5	30.45 to 28.95	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
		''		5 - 6.5	49.84 to 48.34	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				10 - 11.5	44.84 to 43.34	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.0006 U
MBB-3	2/27/2020	N	54.84	15 - 16.5	39.84 to 38.34	0.01 U	0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				20 - 21.5	34.84 to 33.34	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				25 - 26.5	29.84 to 28.34	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
		l	1	20 - 20.0	23.04 to 20.34	0.010	1 0.010	0.010	0.010	0.010	0.010	1 0.010	0.0000

TABLE 7-3b

VADOSE ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS

FOR SEMI-VOLATILE ORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

			Surface	Camanda	Camania			Carcir	nogenic Semi-Vola	tile Organic Comp	ounds		
Boring/ Well ID	Sample Date	Sample Type	Elevation	Sample Depth	Sample Elevation	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno(1,2,3- cd)pyrene	cPAHs-TEQ
			(ft)	(ft)	(ft)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	NA	0.19	NA	NA	NA	NA	NA	0.19
			Protective	of Groundwa	ter Vadose Zoneª	NA	3.9	NA	NA	NA	NA	NA	0.45
				Na	tural Background ^a	NA	NA	NA	NA	NA	NA	NA	NA
					Median PQL ^a	0.0034	0.005	0.0035	0.0035	0.005	0.005	0.0034	0.0069
		N		5 - 6.5	49.61 to 48.11	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
		IN		10 - 12.5	44.61 to 42.11	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
MBB-4	2/27/2020	FD	54.61	10 - 12.3	44.01 (0 42.11	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
IVIDD-4	2/2//2020		34.01	15 - 16.5	39.61 to 38.11	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
		N		20 - 23	34.61 to 31.61	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				25 - 26.5	29.61 to 28.11	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 6.5	42.15 to 40.65	0.05 U	0.05 U	0.05 U	0.05 U	0.058	0.05 U	0.05 U	0.0036 U
				10 - 11.5	37.15 to 35.65	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
MBB-14	3/3/2020	N	47.15	15 - 16.5	32.15 to 30.65	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				20 - 21.5	27.15 to 25.65	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				25 - 26.5	22.15 to 20.65	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 6.5	32.73 to 31.23	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				10 - 11.5	27.73 to 26.23	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
MBB-15	3/4/2020	N	37.73	15 - 16.5	22.73 to 21.23	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				20 - 21.5	17.73 to 16.23	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				25 - 26.5	12.73 to 11.23	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
				5 - 5.5	48.70 to 48.20	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
MBB-16	9/2/2020	N	53.70	10 - 11.5	43.70 to 42.20	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
INDB-10	3/2/2020	"	33.70	15 - 15.5	38.70 to 38.20	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				20 - 20.9	33.70 to 32.80	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 6	49.88 to 48.88	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
MBB-17	9/1/2020	N	54.88	10 - 10.75	44.88 to 44.13	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
IWIDD-17	3/1/2020	"	04.00	15 - 16	39.88 to 38.88	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
				25 - 25.9	29.88 to 28.98	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 6.5	46.33 to 44.83	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
MBB-18	9/1/2020	N	51.33	10 - 10.9	41.33 to 40.43	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
55 10	3,1,2020	'`	000	15 - 16.4	36.33 to 34.93	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				20 - 20.75	31.33 to 30.58	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 5.8	46.68 to 45.88	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
MBB-19	9/1/2020	N	51.68	10 - 11	41.68 to 40.68	0.05 U	0.05 U	0.064	0.05 U	0.05	0.05 U	0.05 U	0.0087
55 10	37.11.2020	''	555	15 - 15.4	36.68 to 36.28	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				20 - 20.8	31.68 to 30.88	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U

TABLE 7-3b

VADOSE ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS

FOR SEMI-VOLATILE ORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

			0	0	0			Carcir	nogenic Semi-Vola	tile Organic Comp	oounds		
Boring/ Well ID	Sample Date	Sample Type	Surface Elevation (ft)	Sample Depth (ft)	Sample Elevation (ft)	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno(1,2,3- cd)pyrene	cPAHs-TEQ
			(11)	(11)	(11)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	NA	0.19	NA	NA	NA	NA	NA	0.19
			Protective	of Groundwa	ter Vadose Zone ^a	NA	3.9	NA	NA	NA	NA	NA	0.45
				Nat	ural Background ^a	NA	NA	NA	NA	NA	NA	NA	NA
			_		Median PQL ^a	0.0034	0.005	0.0035	0.0035	0.005	0.005	0.0034	0.0069
				5 - 6.5	42.53 to 41.03	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
MBB-20	9/2/2020	N	47.53	10 - 11.5	37.53 to 36.03	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
WIBB 20	0/2/2020	'`	47.00	15 - 16.33	32.53 to 31.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				20 - 20.5	27.53 to 27.03	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 5.8	42.60 to 41.80	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
MBB-21	9/2/2020	N	47.60	10 - 11.5	37.60 to 36.10	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
I WISS 21	0/2/2020	'`	47.00	15 - 15.9	32.60 to 31.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				20 - 20.9	27.60 to 26.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 6	37.05 to 36.05	0.2	0.33	0.33	0.13	0.31	0.05 U	0.24	0.42
MBB-22	9/21/2020	N	42.05	15 - 16.25	27.05 to 25.8	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
	0,2.,2020	I IN		20 - 21.3	22.05 to 20.75	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				25 - 26.3	17.05 to 15.75	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				5 - 6.2	42.18 to 40.98	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0097 U
				10 - 11.1	37.18 to 36.08	1	1.8	2.3	0.77	1.7	0.22	1.1	2.4
MBB-23	9/21/2020	N	47.18	15 - 16.25	32.18 to 30.93	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				20 - 21.3	27.18 to 25.88	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				25 - 26	22.18 to 21.18	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				5 - 6.5	49.10 to 47.60	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				10 - 11.4	44.10 to 42.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
MBB-24	9/9/2020	N	54.10	15 - 16.5	39.10 to 37.60	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				20 - 21	34.10 to 33.10	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				25 - 25.8	29.10 to 28.30	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				5 - 5.5	53.63 to 53.13	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
		N		9.5 - 10.5	49.13 to 48.13	0.091	0.07	0.091	0.05 U	0.095	0.05 U	0.05 U	0.09
MBB-25	10/30/2020		58.63	14.5 - 15.4	44.13 to 43.23	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.002 U
				19.5 - 20.5	39.13 to 38.13	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
		FD		ļ		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
		N		24.5 - 25.5	34.13 to 33.13	0.25	0.24	0.28	0.12	0.28	0.05 U	0.13	0.32
				5.25 - 5.5	53.54 to 53.29	0.01 U	0.011	0.014	0.01 U	0.01 U	0.01 U	0.01 U	0.013
		l		9.5 - 10.5	49.29 to 48.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
MBB-26	10/29/2020	N	58.79	14.5 - 15.5	44.29 to 43.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				19.5 - 20.5	39.29 to 38.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
				24.5 - 25.5	34.29 to 33.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U

TABLE 7-3b

VADOSE ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS

FOR SEMI-VOLATILE ORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

			Surface	Comple	Comple			Carcir	nogenic Semi-Vola	itile Organic Comp	ounds		
Boring/	Sample	Sample	Elevation	Sample Depth	Sample Elevation	Benzo(a)		Benzo(b)	Benzo(k)		Dibenz(a,h)	Indeno(1,2,3-	
Well ID	Date	Туре	(ft)	(ft)	(ft)	anthracene	Benzo(a) pyrene	fluoranthene	fluoranthene	Chrysene	anthracene	cd)pyrene	cPAHs-TEQ
			(11)	(11)	(it)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	NA	0.19	NA	NA	NA	NA	NA	0.19
			Protective	of Groundwa	ter Vadose Zone ^a	NA	3.9	NA	NA	NA	NA	NA	0.45
				Nat	ural Background ^a	NA	NA	NA	NA	NA	NA	NA	NA
					Median PQL ^a	0.0034	0.005	0.0035	0.0035	0.005	0.005	0.0034	0.0069
MBGW-1	3/6/2019	N	39.95	23.5 - 25	16.45 to 14.95	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.0076 U
MBGW-2	3/4/2019	N	46.11	25 - 26.5	21.11 to 19.61	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.0076 U
MBGW-3	3/7/2019	N	47.77	12 - 13	35.77 to 34.77	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.0076 U

TABLE 7-3b

VADOSE ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS

FOR SEMI-VOLATILE ORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

			O. orford	0	0					Non-Carcinogenio	c Semi-Volatile Or	ganic Compounds				
Boring/ Well ID	Sample Date	Sample Type	Surface Elevation (ft)	Sample Depth (ft)	Sample Elevation (ft)	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i) perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
			(11)	(11)	(11)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	34	320	4800	NA	24000	NA	3200	3200	1600	NA	2400
			Protective	of Groundwa	ter Vadose Zone ^a	NA	NA	99	NA	2300	NA	630	100	4.5	NA	650
				Na	tural Background ^a	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
					Median PQL ^a	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
21417-MB2	5/12/2017	N	54.72	1	53.72	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U	0.0426 U
21417-MB3	5/12/2017	N	58.63	1	57.63	0.0382 U	0.0382 U	0.0382 U	0.0382 U	0.0382 U	0.0382 U	0.0981	0.0382 U	0.0382 U	0.0455	0.0939
HMW-4IA	3/7/2019	N	58.70	7.5 - 8.7	51.20 to 50.00	0.1 U	0.1 U	1.06	0.37	0.1 U	0.1 U	4.68	0.1 U	0.1 U	1.97	4.41
				5 - 6.5	53.44 to 51.94	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				10 - 11.5	48.44 to 46.94	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
HMW-5IB	2/28/2020	N	58.44	15 - 16.5	43.44 to 41.94	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				20 - 21.5	38.44 to 36.94	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				25 - 26.5	33.44 to 31.94	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				5 - 6.5	53.58 to 52.08	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.21	0.05 U	0.05 U	0.099	0.24
HMW-6D	3/2/2020	N	58.58	10 - 11.5	48.58 to 47.08	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.24	0.05 U	0.05 U	0.3	0.27
T IIVIVV-OD	3/2/2020	IN IN	30.30	15 - 16.5	43.58 to 42.08	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.18	0.05 U	0.05 U	0.14	0.21
				25 - 26.5	33.58 to 32.08	-	-	0.05 U	0.05 U	0.077	0.05 U	0.29	0.05 U	0.05 U	0.23	0.29
				5 - 6.5	53.65 to 52.15	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.14	0.05 U	0.05 U	0.11	0.15
HMW-6IA	3/2/2020	N	58.65	10 - 11.5	48.65 to 47.15	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.2	0.05 U	0.05 U	0.23	0.22
HIVIVV-OIA	3/2/2020	IN	36.03	15 - 16.5	43.65 to 42.15	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.27	0.05 U	0.05 U	0.11	0.28
				20 - 21.5	38.65 to 37.15	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.14	0.05 U	0.05 U	0.11	0.14
				5 - 6.5	53.67 to 52.17	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.17	0.05 U	0.05 U	0.14	0.22 J
				10 - 11.5	48.67 to 47.17	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.2	0.05 U	0.05 U	0.21	0.22 J
HMW-6IB	3/3/2020	N	58.67	15 - 16.5	43.67 to 42.17	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.22	0.05 U	0.05 U	0.11	0.28 J
				20 - 21.5	38.67 to 37.17	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.12	0.05 U	0.05 U	0.095	0.15 J
				25 - 26.5	33.67 to 32.17	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				5 - 6.5	53.69 to 52.19	-	-	0.055	0.05 U	0.05	0.05 U	0.26	0.05 U	0.05 U	0.31	0.3
				10 - 11.5	48.69 to 47.19	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.18	0.05 U	0.05 U	0.079	0.21
HMW-7IB	2/28/2020	N	58.69	15 - 16.5	43.69 to 42.19	-	-	0.05 U	0.05 U	0.057	0.05 U	1.3	0.05 U	0.05 U	0.12	1.4
				20 - 21.5	38.69 to 37.19	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.16	0.05 U	0.05 U	0.065	0.16
				25 - 26.5	33.69 to 32.19	-	-	0.05 U	0.05 U	0.13	0.05 U	0.26	0.05 U	0.05 U	0.18	0.24
				5 - 6.5	52.97 to 51.47	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.25	0.05 U	0.05 U	0.32	0.27
				10 - 11.5	47.97 to 46.47	-	-	0.05	0.05 U	0.061	0.05 U	0.29	0.05 U	0.05 U	0.4	0.37
HMW-8IB	3/2/2020	N	57.97	15 - 16.5	42.97 to 41.47	-	-	0.058	0.05 U	0.09	0.05 U	0.34	0.05 U	0.05 U	0.7	0.36
				20 - 21.5	37.97 to 36.47	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.056	0.05 U	0.05 U	0.055	0.074
				25 - 26.5	32.97 to 31.47	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U

TABLE 7-3b

VADOSE ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS

FOR SEMI-VOLATILE ORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

			Conford	Camanda	Camania					Non-Carcinogenio	c Semi-Volatile Or	ganic Compounds				
Boring/	Sample	Sample	Surface Elevation	Sample Depth	Sample Elevation	1-Methyl	2-Methyl				Benzo(g,h,i)					_
Well ID	Date	Туре	(ft)	(ft)	(ft)	naphthalene	naphthalene	Acenaphthene	Acenaphthylene	Anthracene	perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	34	320	4800	NA	24000	NA 	3200	3200	1600	NA 	2400
			Protective		ter Vadose Zone ^a	NA NA	NA NA	99	NA NA	2300	NA NA	630	100	4.5	NA NA	650
				Na	tural Background ^a	NA 0.005	NA 0.005	NA 0.005	NA 2.225	NA	NA 0.005	NA 0.005	NA	NA 0.005	NA 2.225	NA 0.005
	1	T	T	F 0.05	Median PQLa	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
				5 - 6.25	52.21 to 50.96	-	-	-	-	-	-	-	-	- -	-	-
HMW-17S	9/3/2020	N	57.21	10 - 11.25 15 - 16.33	47.21 to 45.96 42.21 to 40.88	-	-	-	-	-	-	-	-	<u>-</u>	-	-
111111111111111111111111111111111111111	9/3/2020	l IN	37.21	20 - 20.75	37.21 to 36.46	-	-	-	-	-	- -	 	-	-	-	····
				25 - 26	32.21 to 31.21	-	-	-	-	-		-	-	- 	-	-
				5 - 5.8	52.61 to 51.81		-	-			-	-	<u> </u>		-	
				10 - 11.5	47.61 to 46.11						-	<u>-</u>		<u>-</u>		·····
HMW-18S	9/3/2020	l N	57.61	15 - 16.5	42.61 to 41.11	_	_	-	-	-	-	-	-	-	_	-
	0,0,2020			20 - 20.9	37.61 to 36.71	-	-	-	-	-	-	-	-	-	_	-
				25 - 25.8	32.61 to 31.81	-	-	-	-	-	-	-	-	-	-	-
				5 - 5.5	53.20 to 52.70	-	-	-	-	-	-	-	-	-	-	-
110004 400	0/0/0000		50.00	10 - 10.75	48.20 to 47.45	-	-	-	-	-	-	-	-	-	-	-
HMW-19S	9/8/2020	N	58.20	15 - 16.5	43.20 to 41.70	-	-	-	-	-	-	-	-	-	-	-
				20 - 21.5	38.20 to 36.70	-	-	-	-	-	-	-	-	-	-	-
				5 - 5.5	48.81 to 48.31	-	-	-	-	-	-	-	-	-	-	-
				10 - 11.5	43.81 to 42.31	-	-	-	-	-	-	-	-	-	-	-
HMW-20S	9/8/2020	N	53.81	15 - 16.5	38.81 to 37.31	-	-	-	-	-	-	-	-	-	_	-
				20 - 21.25	33.81 to 32.56	-	_	-	_	-	-		-	-		-
				25 - 26.4	28.81 to 27.41	-	-	-	-	-	-	-	-	-	-	-
				5 - 6.5	50.02 to 48.52	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				10 - 11.5	45.02 to 43.52	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-1	2/27/2020	N	55.02	15 - 16.5	40.02 to 38.52	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				20 - 21.5	35.02 to 33.52	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.024	0.01 U	0.01 U
				25 - 26.5	30.02 to 28.52	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				5 - 6.5	50.45 to 48.95	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
		N		10 - 11.5	45.45 to 43.95	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-2	2/27/2020		55.45	15 - 16.5	40.45 to 38.95	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
		FD	_	20 - 21.5	35.45 to 33.95	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
		N N	-	25 26 5	20 45 to 20 05	-		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
	+	IN		25 - 26.5 5 - 6.5	30.45 to 28.95 49.84 to 48.34	-	-	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U
				10 - 11.5	44.84 to 43.34	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U 0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-3	2/27/2020	N	54.84	15 - 16.5	39.84 to 38.34		-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
55 0			07.04	20 - 21.5	34.84 to 33.34	<u>-</u> -	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				25 - 26.5	29.84 to 28.34	<u>-</u> -	- -	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.092	0.01 U	0.01 U
		<u> </u>		20-20.0	20.04 10 20.04	<u> </u>		1 0.010	0.010	0.010	0.010	0.010	0.010	0.032	1 0.010	0.010

TABLE 7-3b

VADOSE ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS

FOR SEMI-VOLATILE ORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

Registry Registry				0.1		0 1					Non-Carcinogenio	c Semi-Volatile Org	ganic Compounds				
MBB-14 392000 N				Elevation	Depth	Elevation			Acenaphthene	Acenaphthylene	Anthracene		Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
Principle of Recombinate Valence Zener NA NA 99 NA 2000 NA 630 100 4.5 NA NA NA NA NA NA NA NA NA NA NA NA NA				(14)	(11)	(11)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Name Beckground Name N						Direct Contact ^a	34	320	4800		24000			3200		NA	2400
MBB-14 277/2000 N 277/2000				Protective	e of Groundwa	iter Vadose Zoneª	NA	NA	99	NA	2300	NA	630	100	4.5	NA	650
NBB-14 2777000 FD					Na	tural Background ^a	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MBB-14 277/2020 P						Median PQL ^a	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
M88-14 22772020 PD			N		5 - 6.5	49.61 to 48.11	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-16 9 27/2020 N 53.70 15.88 1					10 - 12 5	44 61 to 42 11	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.011	0.01 U	0.01 U
N	MRR-4	2/27/2020	FD	54.61		11.01.0 12.11	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-14 3/3/2020 N 47.15 15.165 22.15 10.265 - 0.01 U 0.01	INIDD 4	2,21,2020		04.01	15 - 16.5	39.61 to 38.11	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-16 9/2/2020 N 5133 7.75 168 2.2 15 16 40.05			N		20 - 23	34.61 to 31.61	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.74	0.01 U	0.01 U
MBB-14 3/3/2020 N 47.15 15-16.5 36.5 0.01 U 0.0					25 - 26.5	29.61 to 28.11	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-14 3/3/2020 N 47.15 15-16.5 32/15 b 2055 0.01 U 0.					5 - 6.5	42.15 to 40.65	-	-	0.05 U	0.05 U	0.05 U	0.05 U	0.11	0.05 U	0.05 U	0.09	0.12 J
MBB-16 9/2/2020 N 53.70 10-115 43.70 to 42.20 N 54.88 10-10.75 54.88 to 48.88 N 10-10.75 N 10-10.75					10 - 11.5	37.15 to 35.65	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.016	0.01 U	0.028	0.015	0.018
MBB-16 9/2/2020 N 5.5 6 48/8 to 44/13	MBB-14	3/3/2020	N	47.15	15 - 16.5	32.15 to 30.65	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-15 3/4/2020 N 37.73					20 - 21.5	27.15 to 25.65	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-15 84/202 P					25 - 26.5	22.15 to 20.65	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01
MBB-15 34/2020 N 37.73 15 - 16.5 22.73 to 21.23 0.01 U					5 - 6.5	32.73 to 31.23	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-16 9/2/2020 N 53.70 10.11:5 43.70 to 42.20					10 - 11.5	27.73 to 26.23	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-16 MBB-17 MBB-18 MBB-18 MBB-18 MBB-19	MBB-15	3/4/2020	N	37.73	15 - 16.5	22.73 to 21.23	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-16 9/2/2020 N 53.70 10-11.5 43.70 to 48.20					20 - 21.5	17.73 to 16.23	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-16 9/2/2020 N 53.70 10 -11.5 43.70 to 42.20					25 - 26.5	12.73 to 11.23	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-18 9/1/2020 N 9/1/					5 - 5.5	48.70 to 48.20	-	-	-	-	-	-	-	-	-	-	-
MBB-17 9/1/2020 N 54.88 10-10.75 44.88 to 44.13	MRR 16	0/2/2020	l N	53.70	10 - 11.5	43.70 to 42.20	-	-	-	-	-	-	-	-	-	-	-
MBB-17 MBB-17 MBB-18 MBB-18 MBB-18 MBB-18 MBB-19 MBB-18	IVIDD-10	9/2/2020	"	33.70	15 - 15.5	38.70 to 38.20	-	-	-	-	-	-	-	-	-	-	-
MBB-17 9/1/2020 N 54.88					20 - 20.9	33.70 to 32.80	-	-	-	-	-	-	-	-	-	-	-
MBB-17 9/1/2020 N 51.68 15-16 39.88 to 38.88					5 - 6	49.88 to 48.88	-	-	-	-	-	-	-	-	-	-	-
MBB-18 9/1/2020 N 51.88	MDD 17	0/1/2020	l N	E4 00	10 - 10.75	44.88 to 44.13	-	-	-	-	-	-	-	-	-	-	-
MBB-18 9/1/2020 N 51.33	IVIDD-17	9/1/2020	IN IN	34.00	15 - 16	39.88 to 38.88	-	-	-	-	-	-	-	-	-	-	-
MBB-18 9/1/2020 N 51.33 10 - 10.9 41.33 to 40.43					25 - 25.9	29.88 to 28.98	-	-	-	-	-	-	-	-	-	-	-
MBB-18 9/1/2020 N 51.33 15 - 16.4 36.33 to 34.93					5 - 6.5	46.33 to 44.83	-	-	-	-	-	-	-	-	-	-	-
MBB-19 9/1/2020 N 51.68 15 - 16.4 36.33 to 34.93 - - - - - - - - -	MDD 40	0/4/2020	N	F4 00	10 - 10.9	41.33 to 40.43	-	-	-	-	-	-	-	-	-	-	-
MBB-19 9/1/2020 N 51.68	MBB-18	9/1/2020	į N	51.33	15 - 16.4	36.33 to 34.93	-	-	-	-	-	-	-	-	-	-	-
MBB-19 9/1/2020 N 51.68 10 - 11 41.68 to 40.68					20 - 20.75	31.33 to 30.58	-	-	-	-	-	-	-	-	-	-	-
MBB-19 9/1/2020 N 51.68 10 - 11 41.68 to 40.68					 		-	-	-	-	-	-	-	-	-	-	-
MBB-19 9/1/2020 N 51.68 15 - 15.4 36.68 to 36.28	MDD 40	0/4/0005		54.00		†·····	-	-	-	-	-	-	-	-	-	-	-
	MBB-19	9/1/2020	N	51.68		†·····	-	-	-	-	-	-	-	-	-	-	-
					20 - 20.8	31.68 to 30.88	-	-	-	-	-	-	-	-	-	-	-

TABLE 7-3b

VADOSE ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS

FOR SEMI-VOLATILE ORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

			Surface	Camania	Camania					Non-Carcinogeni	Semi-Volatile Or	ganic Compounds				
Boring/	Sample	Sample	Elevation	Sample Depth	Sample Elevation	1-Methyl	2-Methyl				Benzo(g,h,i)					
Well ID	Date	Туре	(ft)	(ft)	(ft)	naphthalene	naphthalene	Acenaphthene	Acenaphthylene	Anthracene	perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	34	320	4800	NA	24000	NA	3200	3200	1600	NA	2400
			Protective		ter Vadose Zoneª	NA	NA	99	NA	2300	NA	630	100	4.5	NA	650
				Nat	tural Background ^a	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			ı		Median PQL ^a	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
				5 - 6.5	42.53 to 41.03	-	-	-	-	-	-	-	-	-	-	
MBB-20	9/2/2020	N	47.53	10 - 11.5	37.53 to 36.03	-	-	-	-	-	-	-	-	-	-	-
				15 - 16.33	32.53 to 31.2	-	-	-	-	-	-	-	-	-	-	
				20 - 20.5	27.53 to 27.03	-	-	-	-	-	-	-	-	-	-	-
				5 - 5.8	42.60 to 41.80	-	-	-	-	-	-	-	-	-	-	
MBB-21	9/2/2020	N	47.60	10 - 11.5	37.60 to 36.10	-	-	-	-	-	-	-	-	-	-	
				15 - 15.9	32.60 to 31.70	-	-	-	-	-	-	-	-	-	-	
				20 - 20.9	27.60 to 26.70	-	-	-	-	-	-	-	-	-	-	-
				5 - 6	37.05 to 36.05	-	-	-	-	-	-	-	-	-	-	
MBB-22	9/21/2020	N	42.05	15 - 16.25	27.05 to 25.8	-	-	-	-	-	-	-	-	-	-	
				20 - 21.3	22.05 to 20.75	-	-	-	-	-	-	-	-	-	-	
				25 - 26.3	17.05 to 15.75	-	-	-	-	-	-	-	-	-	-	-
				5 - 6.2	42.18 to 40.98	-	-	-	-		-		-	-	-	
MDD 00	0/04/0000	N.	47.40	10 - 11.1	37.18 to 36.08	-	-		-				-	-		
MBB-23	9/21/2020	N	47.18	15 - 16.25	32.18 to 30.93		-		-				-			ļ
				20 - 21.3	27.18 to 25.88	-	-		-				-			
				25 - 26	22.18 to 21.18	-	-	-	-	-	-	-	-	-	-	-
				5 - 6.5	49.10 to 47.60	-			-			-	-	-		
MBB-24	9/9/2020	N	54.10	10 - 11.4	44.10 to 42.70		-	-	-		-	-	-	-	-	-
IVIDD-24	9/9/2020	l N	34.10	15 - 16.5	39.10 to 37.60				-			-	-	-	-	-
				20 - 21	34.10 to 33.10		-		-	-		-	-		-	-
				25 - 25.8	29.10 to 28.30	-	-	-	-	-	-	-	-	-	-	-
				5 - 5.5	53.63 to 53.13	-	-		-	-		-	-	-		
		N		9.5 - 10.5	49.13 to 48.13		-	-	-	-	-	-	-	-	-	-
MBB-25	10/30/2020		58.63	14.5 - 15.4	44.13 to 43.23	-	-	-	-	-	-	-	-	-	-	-
		 FD	-	19.5 - 20.5	39.13 to 38.13		-	-	-	-	-	-	-	-	-	-
		N	-	24.5.05.5	24 12 +- 22 12	-	-	-	-	-	-	-	-	-	-	
	+	I IN		5.25 - 5.5	34.13 to 33.13 53.54 to 53.29	0.01 U	0.01 U	- 0.01 U	- 0.01 U	- 0.01 U	0.01 U	- 0.01 U	- 0.01 U	0.01 U	- 0.01 U	- 0.01 U
				9.5 - 10.5	49.29 to 48.29			·····			+	†		+		
MBB-26	10/29/2020	N	58.79		44.29 to 43.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
WIDD-20	10,23,2020	'`	00.79		39.29 to 38.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
						0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
			1	24.5 - 25.5	34.29 to 33.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U

TABLE 7-3b

VADOSE ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS

FOR SEMI-VOLATILE ORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

			Surface	Cample	Comple					Non-Carcinogenic	Semi-Volatile Org	ganic Compounds				
Boring/ Well ID	Sample Date	Sample Type	Elevation (ft)	Sample Depth	Sample Elevation (ft)	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i) perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
			(11)	(11)	(11)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	34	320	4800	NA	24000	NA	3200	3200	1600	NA	2400
			Protective	of Groundwa	ater Vadose Zone ^a	NA	NA	99	NA	2300	NA	630	100	4.5	NA	650
				Na	tural Background ^a	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
					Median PQL ^a	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
MBGW-1	3/6/2019	N	39.95	23.5 - 25	16.45 to 14.95	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
MBGW-2	3/4/2019	N	46.11	25 - 26.5	21.11 to 19.61	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
MBGW-3	3/7/2019	N	47.77	12 - 13	35.77 to 34.77	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U

a. Bold value identified the selected screening level to determine if a constituent is retained as a COPC. This value is the lowest protective value unless adjusted for an elevated Natural Background or Median PQL.

Bold indicates a detected concentration at or above the laboratory reporting limit. Highlighted indicates a detected concentration above the screening level. Elevations relative to North American Vertical Datum of 1988 (NAVD88).

- = Data not available or not applicable.

COPC = Constituent of Potential Concern.

cPAHs-TEQ = Carcinogenic polycyclic aromatic hydrocarbons toxic equivalency.

FD = Field duplicate.

ft = feet.

J = Estimated value.

mg/kg = milligram per kilogram.

N = Primary environmental sample.

NA = Not applicable.

PQL = Practical Quantitation Limit.

TABLE 7-3e VADOSE ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS FOR INORGANIC COMPOUNDS SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

			Surface	Sample	Sample					Inorg	ganic Compo	unds				
Boring/ Well ID	Sample Date	Sample Type	Elevation	Depth	Elevation	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
Well ID	Date	Турс	(ft)	(ft)	(ft)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	0.67	16000	80	120000	3200	250	24	1600	400	400	24000
			Protective of	of Groundwat	er Vadose Zone ^a	0.34	1600	0.69	480000	280	3000	2.1	130	5.2	14	6000
				Natu	ural Background ^a	7.3	NA	0.77	48	36	17	0.07	38	NA	NA	85
					Median PQL ^a	0.1	0.1	0.1	0.1	0.1	0.1	0.02	0.1	0.5	0.1	5
21417-MB1	5/12/2017	N	55.43	9	46.43	4.78	•	0.192 U	41.2	•	2.43	0.293 U	-	-	-	-
21417-MB4	5/12/2017	N	57.24	24	33.24	6.94	68.9	0.192	35.8		40.2	0.298 U	-	1.26	0.093 U	-
21417-MB6	5/11/2017	N	48.22	9	39.22	3.1	43.3	0.168 U	29.1	•	9.18	0.265 U	-	1.3	0.0839 U	-
21417-MB9	5/11/2017	Ν	39.05	13	26.05	4.24	45.5	0.428	31.4	-	19.3	0.291 U	-	1.39	0.0979 U	-
21417-10109	3/11/2017	IN	39.03	22	17.05	5.01	105	0.199 U	39.1	26.3	279	0.453	37.3	1.26	0.0996 U	62.2
21417-MB11	5/11/2017	N	39.04	23	16.04	4.18	101	0.204 U	39.5	•	7.73	0.325 U	-	1.76	0.102 U	-
GP-7	5/12/2012	N	58.53	0 - 7	58.53 to 51.53	-	-	-	-	-	4.19	-	-	-	-	-
GF-7	3/12/2012	IN	30.33	7 - 11	51.53 to 47.53	-	-	-	-	-	1.56	-	-	-	-	-
GP-8	5/14/2012	N	58.33	0 - 7	58.33 to 51.33	-	-	-	-	-	2.85	-	-	-	-	-
GF-0	3/14/2012	IN	30.33	7 - 12	51.33 to 46.33	-	-	-	-	-	2.31	-	-	-	-	-
				0 - 7	58.00 to 51.00	-	-	-	-	-	2.85	-	-	-	-	-
GP-9	5/14/2012	N	58.00	7 - 14	51.00 to 44.00	-	-	-	-	-	2.64	-	-	-	-	-
				14 - 19	44.00 to 39.00	-	-	-	-	-	1.8	-	-	-	-	-
HMW-2IB	3/12/2019	N	47.41	7.5 - 9	39.91 to 38.41	11 U	72	0.56 U	33	-	10	0.28 U	-	11 U	0.56 U	-
HMW-3IA	3/15/2019	N	55.02	22.5 - 23.5	32.52 to 31.52	12 U	50	0.59 U	39	-	5.9 U	0.29 U	-	12 U	1.2 U	-
				5 - 6.5	53.44 to 51.94	1.55	-	1 U	12.2	-	1.11	1 U	-	-	-	-
				10 - 11.5	48.44 to 46.94	1.31	-	1 U	16	-	1.18	1 U	-	-	-	-
HMW-5IB	2/28/2020	N	58.44	15 - 16.5	43.44 to 41.94	1.26	-	1 U	16.9	-	1.06	1 U	-	-	-	-
				20 - 21.5	38.44 to 36.94	1.03	-	1 U	12.5	-	1.11	1 U	-	-	-	-
				25 - 26.5	33.44 to 31.94	1 U	-	1 U	11.3	-	1 U	1 U	-	-	-	-
				5 - 6.5	53.58 to 52.08	16.4	-	1 U	17.8	-	21.8	1 U	-	-	-	-
HMW-6D	3/2/2020	N	58.58	10 - 11.5	48.58 to 47.08	21.8	-	1 U	20.2	-	23.6	1 U	-	-	-	-
T IIVIVV-OD	3/2/2020	IN	30.30	15 - 16.5	43.58 to 42.08	24.4	-	1 U	21.3	-	21.3	1 U	-	-	-	-
				25 - 26.5	33.58 to 32.08	18	-	1 U	26.4	-	16	1 U	-	-	-	-
				5 - 6.5	53.65 to 52.15	15.6	-	1 U	18.1	-	20.1	1 U	-	-	-	-
HMW-6IA	3/2/2020	N	58.65	10 - 11.5	48.65 to 47.15	13.6	-	1 U	19.2	-	16.5	1 U	-	-	-	-
TIMW-01A	3/2/2020	IN	30.03	15 - 16.5	43.65 to 42.15	18.6	-	1 U	16	-	20.5	1 U	-	-	-	-
				20 - 21.5	38.65 to 37.15	18.3	•	1 U	30.2	-	13.4	1 U	-	-	-	-
		N		5 - 6.5	53.67 to 52.17	13.4	-	1 U	17.8	-	18.2	1 U	-	-		-
		14]	10 - 11.5	48.67 to 47.17	15.9	-	1 U	20.6 J	-	26.3 J	1 U	-	-	-	-
HMW-6IB	3/3/2020	FD	58.67	10 - 11.3	40.07 to 47.17	14.9	-	1 U	29.3 J	-	16.1 J	1 U	-	-	-	-
I IIVIVV -OID	3/3/2020		30.07	15 - 16.5	43.67 to 42.17	22.2	-	1 U	19.6	-	19	1 U	-	-	-	-
		N		20 - 21.5	38.67 to 37.17	25.6	-	1 U	20.5	-	18	1 U	-	-	-	-
				25 - 26.5	33.67 to 32.17	2.23	-	1 U	20.3	-	2.08	1 U	-	-	-	-

			Surface	Sample	Sample					Inord	ganic Compo	unds				
Boring/	Sample	Sample	Elevation	Depth	Elevation	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
Well ID	Date	Type	(ft)	(ft)	(ft)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	0.67	16000	80	120000	3200	250	24	1600	400	400	24000
			Protective of	of Groundwat	er Vadose Zone ^a	0.34	1600	0.69	480000	280	3000	2.1	130	5.2	14	6000
				Nati	ural Background ^a	7.3	NA	0.77	48	36	17	0.07	38	NA	NA	85
					Median PQL ^a	0.1	0.1	0.1	0.1	0.1	0.1	0.02	0.1	0.5	0.1	5
				5 - 6.5	53.69 to 52.19	15.3	-	1 U	22.4	-	17.4	1 U	-	-	-	-
				10 - 11.5	48.69 to 47.19	13.8	-	1 U	18.4	-	25.2	1 U	-	-	-	-
HMW-7IB	2/28/2020	N	58.69	15 - 16.5	43.69 to 42.19	19.9	-	1 U	18.3	-	18.2	1 U	-	-	-	-
1110100 715	2/20/2020		00.00	20 - 21.5	38.69 to 37.19	25.6	-	1 U	19.1	-	18.4	1 U	-	-	-	-
				25 - 26.5	33.69 to 32.19	8.13	-	1 U	18.9 J	-	6.75	1 U	-	-	-	-
		FD		20 20:0	00.00 to 02.10	8.49	-	1 U	25.9 J	-	7.93	1 U	-	-	-	-
				5 - 6.5	52.97 to 51.47	21.4	-	1 U	20.8	-	24.8	1 U	-	-	-	-
				10 - 11.5	47.97 to 46.47	19.5	-	1 U	18.3	-	19.1	1 U	-	-	-	-
HMW-8IB	3/2/2020	N	57.97	15 - 16.5	42.97 to 41.47	17.1	-	1 U	19.3	-	19.4	1 U	-	-	-	-
				20 - 21.5	37.97 to 36.47	4.86	-	1 U	14.9	-	5	1 U	-	-	-	-
				25 - 26.5	32.97 to 31.47	1.12	-	1 U	15.1	-	1.38	1 U	-	-	-	-
		FD				1.06	-	1 U	17.9	-	1.49	1 U	-	-	-	-
				5 - 6.5	50.32 to 48.82	1.78	-	1 U	13.6	-	2.8	1 U	-	-	-	-
				10 - 11.5	45.32 to 43.82	1.38	-	1 U	12.4	-	2.17	1 U	-	-	-	-
HMW-9D	2/27/2020	N	55.32	15 - 16.5	40.32 to 38.82	15.3	-	1 U	18.2	-	10.9	1 U	-	-	-	-
				20 - 21.5	35.32 to 33.82	2.55	-	1 U	16	-	2.59	1 U	-	-	-	-
				25 - 26.5	30.32 to 28.82	1.46	-	1 U	12.3	-	1.25	1 U	-	-	-	-
				5 - 6.5	50.26 to 48.76	1.07	-	1 U	15	-	1.27	1 U	-	-	-	-
				10 - 11.5	45.26 to 43.76	1.41	-	1 U	11.3	-	2.52	1 U	-	-	-	-
HMW-9IA	2/28/2020	N	55.26	15 - 16.5	40.26 to 38.76	6.62	-	1 U	16.9	-	14.1	1 U	-	-	-	-
				20 - 21.5	35.26 to 33.76	1.74	-	1 U	13.2	-	1.32	1 U	-	-	-	-
				25 - 26.5	30.26 to 28.76	1.23	-	1 U	13.1	-	1.2	1 U	-	-	-	-
				5 - 6.5	50.36 to 48.86	7.75	-	1 U	17.3	-	7.89	1 U	-	-	-	-
				13 - 14.5	42.36 to 40.86	1.64	-	1 U	10.9	-	1.9	1 U	-	-	-	-
HMW-9IB	2/28/2020	N	55.36	15 - 16.5	40.36 to 38.86	17.8	-	1 U	18.5	-	11.3	1 U	-	-	-	-
				20 - 21.5	35.36 to 33.86	1.6	-	1 U	13.6	-	1.29	1 U	-	-	-	-
				25 - 26.5	30.36 to 28.86	1.26	-	1 U	14.5	-	1.39	1 U	-	-		-
				5 - 6.5	50.39 to 48.89	2.64	-	1 U	15.8	-	5.91	1 U		-	-	-
				14 - 15.5	41.39 to 39.89	14.5	-	1 U	19.2	-	14.5	1 U	-	-	-	-
HMW-9S	3/2/2020	N	55.39	17 - 18.5	38.39 to 36.89	17.7	-	1 U	14.3	-	17.3	1 U	-	-	-	-
				20 - 21.5	35.39 to 33.89	1.3		1 U	11.3	-	1.17	1 U	<u> </u>	-	-	-
	1			25 - 26.5	30.39 to 28.89	1.36	-	1 U	13.9	-	1.52	1 U	-	-	-	-
		l		5 - 6.5	43.16 to 41.66	1.76	-	1 U	15.2	-	1.4	1 U		-	-	-
		N		10 - 11.5	38.16 to 36.66	1.78	-	1 U	14.1	-	1.38	1 U	<u> </u>	-	-	-
HMW-10D	3/5/2020	ļ	48.16	15 - 16.5	33.16 to 31.66	1.87	-	1 U	15.4	-	1.62	1 U	<u> </u>	-	-	-
		FD		ļ		1.81	-	1 U	17.4	-	1.64	1 U		-	-	-
		N		20 - 21.5	28.16 to 26.66	1.31	-	1 U	15	-	1.48	1 U	-	-	-	-
				25 - 26.5	23.16 to 21.66	1.8	-	1 U	20.7	-	1.95	1 U	-	-	-	-

			Surface	Sample	Sample					Inord	anic Compo	unds				
Boring/	Sample	Sample	Elevation	Depth	Elevation	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
Well ID	Date	Type	(ft)	(ft)	(ft)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	0.67	16000	80	120000	3200	250	24	1600	400	400	24000
			Protective of	of Groundwat	er Vadose Zone ^a	0.34	1600	0.69	480000	280	3000	2.1	130	5.2	14	6000
				Nati	ural Background ^a	7.3	NA	0.77	48	36	17	0.07	38	NA	NA	85
					Median PQL ^a	0.1	0.1	0.1	0.1	0.1	0.1	0.02	0.1	0.5	0.1	5
		N		5 - 6.5	43.21 to 41.71	1.83	-	1 U	17.8	-	1.27	1 U	-	-	-	-
				10 - 11.5	38.21 to 36.71	1.51	-	1 U	13.6	-	1.45	1 U	-	-	-	-
HMW-10S	3/3/2020	FD	48.21				-	1 U	15	-	1.41	1 U	-	-	-	-
				15 - 16.5	33.21 to 31.71	1.51	-	1 U	16	-	1.38	1 U	-	-	-	-
		N		20 - 21.5	28.21 to 26.71	1.32	-	1 U	17.3	-	1.55	1 U	-	-	-	
				25 - 26.5	23.21 to 21.71	1.57	-	1 U	18	-	1.16	1 U	-	-	-	-
				5 - 6.5	34.7 to 33.2	2.14	-	1 U	23.1	-	28.7	1 U	-	-	-	<u> </u>
HMW-11IB	2/24/2020	N	39.70	10 - 11.5	29.7 to 28.2	1.43	-	1 U	22.8	-	2.73	1 U				-
HIVIVV-111D	2/24/2020	IN	39.70	15 - 16.5 20 - 21.5	24.7 to 23.2 19.7 to 18.2	3.44 2.69		1 U 1 U	14.5 31.8		65 2.11	1 U 1 U		-		-
				25 - 26.5	14.7 to 13.2	2.09 1 U		1 U	18.8		1.23	1 U	-		-	
				5 - 6.5	36.47 to 34.97	2	-	1 U	23		14.4	1 U			-	-
				10 - 11.5	31.47 to 29.97	1.86		1 U	18.5	-	11	1 U	-	-		
HMW-11S	2/25/2020	N	41.47	15 - 16.5	26.47 to 24.97	1.27		1 U	17.8		1.39	1 U				
				20 - 21.5	21.47 to 19.97	1.72	-	1 U	19.2	-	6.65	1 U	-	_	-	-
				5 - 6.25	52.21 to 50.96	2.93	_	1 U	24.1		4.65	1 U	_	_	_	_
				10 - 11.25	47.21 to 45.96	1.5	-	1 U	13.2	-	2.18	1 U	-	-	-	-
HMW-17S	9/3/2020	N	57.21	15 - 16.33	42.21 to 40.88	1.45	-	1 U	15.4	-	1.6	1 U	-	-	-	-
				20 - 20.75	37.21 to 36.46	1.48	-	1 U	16.6	-	1.53	1 U	-	-	-	-
				25 - 26	32.21 to 31.21	1 U	-	1 U	15.8	-	1.23	1 U	-	-	-	-
				5 - 5.8	52.61 to 51.81	1.19	-	1 U	11.1	-	1.36	1 U	-	-		-
				10 - 11.5	47.61 to 46.11	2.9	-	1 U	25.8	-	3.15	1 U	-	-	-	-
HMW-18S	9/3/2020	N	57.61	15 - 16.5	42.61 to 41.11	3.01	-	1 U	19.2	-	2.43	1 U	-	-	-	-
				20 - 20.9	37.61 to 36.71	1.39	-	1 U	12	-	1.22	1 U	-	-	-	-
				25 - 25.8	32.61 to 31.81	1.09	-	1 U	13.9	-	1.23	1 U	-	-	-	-
				5 - 5.5	53.20 to 52.70	2.16	-	1 U	26.2	-	2.33	1 U	-	-	-	-
HMW-19S	9/8/2020	N	58.20	10 - 10.75	48.20 to 47.45	1.24	-	1 U	14	-	1.27	1 U	-	-	-	-
				15 - 16.5	43.20 to 41.70	3.02	-	1 U	30.7	-	3.29	1 U	-	-	-	-
				20 - 21.5	38.20 to 36.70	2.17	-	1 U	31.5	-	2.22	1 U	-	-	-	-
				5 - 5.5	48.81 to 48.31	1.57	-	1 U	12.6	-	1.88	1 U	-	-	-	-
	0/0/0000		50.04	10 - 11.5	43.81 to 42.31	1.36		1 U	9.22	-	4.47	1 U	-	-		<u> </u>
HMW-20S	9/8/2020	N	53.81	15 - 16.5	38.81 to 37.31	1.55	-	1 U	13.5	-	1.62	1 U	-	-	-	ļ <u>-</u>
				20 - 21.25	33.81 to 32.56	1.77	-	1 U	15.6	-	1.66	1 U	-	-	-	<u> </u>
				25 - 26.4	28.81 to 27.41	1.9	-	1 U	29.1		2.68	1 U	-		-	-
				5 - 6.5	50.02 to 48.52	2.38	-	1 U	36.7	-	4.94		-	-		-
MBB-1	2/27/2020	N	55.02	10 - 11.5 15 - 16.5	45.02 to 43.52 40.02 to 38.52	2.69 1.29			15.8	-	1.27	1 U 1 U		<u> </u>		ļ <u>-</u>
IVIDU-1	212112020	IN	33.02	20 - 21.5	35.02 to 33.52	1.29	<u>-</u> -	1 U 1 U	14.1 11.7	<u>-</u> -	1.31 1.29	1 U 1 U	-	-	-	<u>-</u>
				25 - 26.5	30.02 to 28.52	1.23	-	1 U	11.7	-	1.29	1 U	-	-	-	-
				20 - 20.5	JU.UZ IU Z0.JZ	1.00	-	10	10.0	-	1.30	10	-	_	-	

			Surface	Sample	Sample					Inord	ganic Compo	unds				
Boring/	Sample	Sample	Elevation	Depth	Elevation	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
Well ID	Date	Type	(ft)	(ft)	(ft)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	0.67	16000	80	120000	3200	250	24	1600	400	400	24000
			Protective of	of Groundwat	er Vadose Zone ^a	0.34	1600	0.69	480000	280	3000	2.1	130	5.2	14	6000
				Nati	ural Background ^a	7.3	NA	0.77	48	36	17	0.07	38	NA	NA	85
					Median PQL ^a	0.1	0.1	0.1	0.1	0.1	0.1	0.02	0.1	0.5	0.1	5
				5 - 6.5	50.45 to 48.95	4.5	-	1 U	45.9	-	4.09	1 U	-	-	-	-
		N		10 - 11.5	45.45 to 43.95	1.53	-	1 U	11.2	-	1.11	1 U	-	-	-	-
MBB-2	2/27/2020	.,	55.45	15 - 16.5	40.45 to 38.95	1.27	-	1 U	12.2	-	1.54	1 U	-	-	-	-
	2/2//2020		00.10	20 - 21.5	35.45 to 33.95	1.21	-	1 U	11.7	-	1.12	1 U	-	-	-	-
		FD				1.29	-	1 U	10.7	-	1.15	1 U	-	-	-	-
		N		25 - 26.5	30.45 to 28.95	1 U	-	1 U	12	-	1.12	1 U	-	-	-	-
				5 - 6.5	49.84 to 48.34	3.27	-	1 U	34.8	-	2.88	1 U	-	-	-	-
MBB-3	0/07/0000	NI.	54.04	10 - 11.5	44.84 to 43.34	1.65	-	1 U	13.6	-	2.3	1 U	-	-	-	-
IVIDB-3	2/27/2020	N	54.84	15 - 16.5	39.84 to 38.34	1 U	-	1 U	12.1	-	1.07	1 U	-	-	-	-
				20 - 21.5	34.84 to 33.34	2.74	-	1 U	9.91		1.04	1 U			-	-
				25 - 26.5 5 - 6.5	29.84 to 28.34 49.61 to 48.11	1.52 2.44	-	1 U	15.1 28.2	-	1.69 5.37	1 U	-	-	-	-
		N		5 - 6.5	49.01 (0 46.11	1.39	<u>-</u>	1 U	12.3		1.15	1 U				<u>-</u>
		FD		10 - 12.5	44.61 to 42.11	1.28		1 U	14.4		1.18	1 U				
MBB-4	2/27/2020	10	54.61	15 - 16.5	39.61 to 38.11	1.16	······	1 U	12.9		1.15	1 U				
		N		20 - 23	34.61 to 31.61	1.44	-	1 U	13.2	-	3.42	1 U	-	-	-	-
				25 - 26.5	29.61 to 28.11	1.47	-	1 U	14.5	-	1.51	1 U	-	-	-	-
				5 - 6.5	45.53 to 44.03	23.2	-	1 U	20.1	-	17.6	1 U	-	-	-	-
				10 - 11.5	40.53 to 39.03	6.56	-	1 U	17.7	-	591	1 U	-	-	-	-
MBB-5	3/2/2020	N	50.53	15 - 16.5	35.53 to 34.03	1.81	-	1 U	14.8	-	1.57	1 U	-	-	-	-
				20 - 21.5	30.53 to 29.03	1.34	-	1 U	12.6	-	1.24	1 U	-	-	-	-
				25 - 26.5	25.53 to 24.03	1.51	-	1 U	15.2	-	1.29	1 U	-	-	-	-
				5 - 6.5	45.33 to 43.83	21.2	-	1 U	22.7	-	20	1 U	-	-	-	-
				10 - 11.5	40.33 to 38.83	9.18	-	1 U	44.8	-	14.8	1 U	-	-	-	-
MBB-6	3/3/2020	N	50.33	15 - 16.5	35.33 to 33.83	1.84	-	1 U	17.8	-	1.4	1 U	-	-	-	-
				20 - 21.5	30.33 to 28.83	2.08	-	1 U	16.9	-	1.61	1 U	-	-	-	-
				25 - 26.5	25.33 to 23.83	1.6	-	1 U	15.8	-	1.44	1 U	-	-	-	-
				5 - 6.5	44.41 to 42.91	2.74	-	1 U	21.1	-	9.26	1 U	-	-	-	-
MDD 7	0/05/0000		40.44	10 - 11.5	39.41 to 37.91	1.37	-	1 U	15.4	-	2.14	1 U	-	-	-	-
MBB-7	2/25/2020	N	49.41	15 - 16.5	34.41 to 32.91	1.43	-	1 U	15.9	-	1.46	1 U	-	-	-	-
				20 - 21.5	29.41 to 27.91	1 U	-	1 U	16.4	-	1.24	1 U	-	-	-	-
	1			25 - 26.5 7 - 7.5	24.41 to 22.91 42.66 to 42.16	1.12 21.9	-	1 U	17.4 18.2		1.43 12.5	1 U	-	-	-	-
		N		10 - 11.5	39.66 to 38.16	1.75		1 U	13.2		1.22	1 U				ļ <u>-</u>
		14		10 - 11.5	38.00 to 30.10	1.75		1 U	13.2 19.2 J	- -	1.22	1 U				
MBB-8	2/26/2020	FD	49.66	15 - 16.5	34.66 to 33.16	1.6		1 U	15.3 J	-	1.23	1 U			-	
				20 - 21.5	29.66 to 28.16	1.6	<u>-</u>	1 U	14.3	-	1.23	1 U				
		N		25 - 26.5	24.66 to 23.16	1.13		1 U	16.3		1.31	1 U				<u>-</u>

			Surface	Sample	Sample					lnorg	ganic Compo	unds				
Boring/ Well ID	Sample Date	Sample	Elevation	Depth	Elevation	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
well ID	Date	Type	(ft)	(ft)	(ft)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	•		•	•	Direct Contact ^a	0.67	16000	80	120000	3200	250	24	1600	400	400	24000
			Protective of	of Groundwat	er Vadose Zone ^a	0.34	1600	0.69	480000	280	3000	2.1	130	5.2	14	6000
				Nat	ural Background ^a	7.3	NA	0.77	48	36	17	0.07	38	NA	NA	85
					Median PQL ^a	0.1	0.1	0.1	0.1	0.1	0.1	0.02	0.1	0.5	0.1	5
				5.5 - 7	42.05 to 40.55	9.58	-	1 U	16.7	-	13.4	1 U	-	-	-	-
				10 - 11.5	37.55 to 36.05	1.94	-	1 U	18.8	-	2.11	1 U	-	-	-	-
MBB-9	2/26/2020	N	47.55	15 - 16.5	32.55 to 31.05	1.72	-	1 U	14.7	-	1.22	1 U	-	-	-	-
				20 - 21.5	27.55 to 26.05	1.7	-	1 U	18.1	-	1.24	1 U	-	-	-	-
				25 - 26.5	22.55 to 21.05	1.27	-	1 U	17.3	-	1.31	1 U	-	-	-	-
				5 - 6.5	44.66 to 43.16	1.76	-	1 U	17.3	-	1.72	1 U	-	-	-	-
				10 - 11.5	39.66 to 38.16	2.32	-	1 U	25.5	-	1.89	1 U	-	-	-	-
MBB-10	2/26/2020	N	49.66	15 - 16.5	34.66 to 33.16	1.65	-	1 U	17.1	-	1.46	1 U	-	-	-	-
				20 - 21.5	29.66 to 28.16	1.4	-	1 U	15	-	1.19	1 U	-	-	-	-
				25 - 26.5	24.66 to 23.16	1.51	-	1 U	20.8	-	1.57	1 U	-	-	-	-
				15 - 16.5	31.42 to 29.92	-	-	-	-	-	5.52	-	-	-	-	-
MBB-11	3/4/2020	N	46.42	20 - 21.5	26.42 to 24.92	-	-	-	-	-	5.51	-	-	-	-	-
				25 - 26.5	21.42 to 19.92	-	-	-	-	-	15.4	-	-	-	-	-
				15 - 16.5	18.69 to 17.19	-	-	-	-	-	3.23	-	-	-	-	-
MBB-12	3/4/2020	N	33.69	20 - 21.5	13.69 to 12.19	-	-	-	-	-	9	-	-	-	-	-
				25 - 26.5	8.69 to 7.19	-	-	-	-	-	1.56	-	-	-	-	-
				15 - 16.5	20.98 to 19.48	-	-	-	-	-	7.71	-	-	-	-	-
MBB-13	3/4/2020	N	35.98	20 - 21.5	15.98 to 14.48	-	-	-	-	-	9.54	-	-	-	-	-
				25 - 26.5	10.98 to 9.48	-	-	-	-	-	1.55	-	-	-	-	-
		FD				-	-	-	-	-	1.51	-	-	-	-	-
				5 - 5.5	48.70 to 48.20	2.62	-	1 U	28.4	-	7.58	1 U	-	-	-	-
MBB-16	9/2/2020	N	53.70	10 - 11.5	43.70 to 42.20	1.56	-	1 U	18.3	-	1.89	1 U	-	-	-	-
				15 - 15.5	38.70 to 38.20	1.74	-	1 U	24.8	-	1.3	1 U	-	-	-	-
				20 - 20.9	33.70 to 32.80	1.42	-	1 U	13.7	-	1.17	1 U	-	-	-	-
				5 - 6	49.88 to 48.88	1.71	-	1 U	23.6	-	2.67	1 U	-	-	-	-
MBB-17	9/1/2020	N	54.88	10 - 10.75	44.88 to 44.13	1.75	-	1 U	15	-	4.42	1 U	-	-	-	-
				15 - 16	39.88 to 38.88	3.91	-	1 U	17.5	-	7.13	1 U	-	-	-	-
				25 - 25.9	29.88 to 28.98	1.97	-	1 U	17.7	-	1.75	1 U	-	-	-	-
				5 - 6.5	46.33 to 44.83	14.2	-	1 U	25.5	-	13.5	1 U	<u> </u>	-	-	-
MBB-18	9/1/2020	N	51.33	10 - 10.9	41.33 to 40.43	6.2	-	1 U	14.4	-	6.61	1 U	<u> </u>	-	-	-
				15 - 16.4	36.33 to 34.93	1.13	-	1 U	12.3	-	1.02	1 U	-	-	-	-
				20 - 20.75	31.33 to 30.58	1.61	-	1 U	16.2	-	1.69	1 U	-	-	-	-
				5 - 5.8	46.68 to 45.88	3.16	-	1 U	19.2	-	4.27	1 U	-	-	-	-
MBB-19	9/1/2020	N	51.68	10 - 11	41.68 to 40.68	4.47	-	1 U	15.4	-	55.6	1 U	-	-	-	-
				15 - 15.4	36.68 to 36.28	2.01	-	1 U	20.8	-	1.75	1 U		-	-	-
				20 - 20.8	31.68 to 30.88	1.7	-	1 U	13.5	-	1.13	1 U	-	-	-	-

			Surface	Sample	Sample					Inorg	ganic Compo	unds				
Boring/ Well ID	Sample Date	Sample Type	Elevation	Depth	Elevation	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
well iD	Date	Туре	(ft)	(ft)	(ft)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	0.67	16000	80	120000	3200	250	24	1600	400	400	24000
			Protective of	of Groundwat	er Vadose Zone ^a	0.34	1600	0.69	480000	280	3000	2.1	130	5.2	14	6000
				Nati	ural Background ^a	7.3	NA	0.77	48	36	17	0.07	38	NA	NA	85
					Median PQL ^a	0.1	0.1	0.1	0.1	0.1	0.1	0.02	0.1	0.5	0.1	5
				5 - 6.5	42.53 to 41.03	2.67	-	1 U	16.6	-	2.02	1 U	-	-	-	-
MBB-20	0/0/0000	N	47.53	10 - 11.5	37.53 to 36.03	3.48	-	1 U	19.2	-	5.15	1 U	-	-	-	-
IVIBB-20	9/2/2020	IN.	47.53	15 - 16.33	32.53 to 31.2	1.6	-	1 U	20.6	-	1.54	1 U	-	-	-	-
				20 - 20.5	27.53 to 27.03	1.53	-	1 U	17.2	-	1.5	1 U	-	-	-	-
				5 - 5.8	42.60 to 41.80	2.02	-	1 U	20	-	1.69	1 U	-	-	-	-
MBB-21	9/2/2020	N	47.60	10 - 11.5	37.60 to 36.10	2.21	-	1 U	19.3	-	1.85	1 U	-	-	-	-
WIDD-21	3/2/2020	1	47.00	15 - 15.9	32.60 to 31.70	1.52	-	1 U	18.3	-	1.4	1 U	-	-	-	-
				20 - 20.9	27.60 to 26.70	1.53	-	1 U	14.3	-	1.46	1 U	-	-	-	-
				5 - 6	37.05 to 36.05	2.71	-	1 U	30.2	-	26.7	1 U	-	-	-	-
MBB-22	9/21/2020	N	42.05	15 - 16.25	27.05 to 25.8	3.08	-	1 U	26.1	-	2.58	1 U	-	-	-	-
WIDD ZZ	0/21/2020	'`	42.00	20 - 21.3	22.05 to 20.75	1.63	-	1 U	15.3	-	1.39	1 U	-	-	-	-
				25 - 26.3	17.05 to 15.75	2.03	-	1 U	24.4	-	1.14	1 U	-	-	-	-
				5 - 6.2	42.18 to 40.98	2.57	-	1 U	18.7	-	3.58	1 U	-	-	-	-
				10 - 11.1	37.18 to 36.08	3.98	-	1 U	17.1	-	29.5	1 U	-	-	-	-
MBB-23	9/21/2020	N	47.18	15 - 16.25	32.18 to 30.93	2.73	-	1 U	22.4	-	3.6	1 U	-	-	-	-
				20 - 21.3	27.18 to 25.88	2.21	-	1 U	17.7	-	1.99	1 U	-	-	-	-
				25 - 26	22.18 to 21.18	1.88	-	1 U	16.3	-	1.35	1 U	-	-	-	-
				5 - 6.5	49.10 to 47.60	2.92	-	1 U	25.9	-	3.32	1 U	-	-	-	-
				10 - 11.4	44.10 to 42.70	1.38	-	1 U	15	-	1.57	1 U	-	-	-	-
MBB-24	9/9/2020	N	54.10	15 - 16.5	39.10 to 37.60	3	-	1 U	25.6	-	3.04	1 U	-	-	-	-
				20 - 21	34.10 to 33.10	1.05	-	1 U	10.5	-	1.02	1 U	-	-	-	-
				25 - 25.8	29.10 to 28.30	1.38	-	1 U	14.9	-	1.52	1 U	-	-	-	-
MBGW-1	3/6/2019	N	39.95	4 - 5	35.95 to 34.95	11 U	49	0.57 U	25	-	43	0.28 U	-	11 U	0.57 U	-
				17 - 18	22.95 to 21.95	11 U	45	0.57 U	43	-	5.7 U	0.29 U	-	11 U	0.57 U	-
MBGW-2	3/4/2019	N	46.11	12.5 - 14	33.61 to 32.11	10 U	47	0.52 U	24	-	8.5	0.26 U	-	10 U	0.52 U	-
				25 - 26.5	21.11 to 19.61	14 U	130	0.7 U	34	-	23	0.35 U	-	14 U	0.7 U	-
	0/7/0040			7 - 8	40.77 to 39.77	11 U	43	0.54 U	32	-	5.4 U	0.27 U	-	11 U	0.54 U	-
MBGW-3	3/7/2019	N	47.77	12 - 13	35.77 to 34.77	11 U	61	0.55 U	40	-	5.5 U	0.27 U	-	11 U	0.55 U	-
				24 - 25	23.77 to 22.77	12 U	42	0.62 U	33	-	6.2 U	0.31 U	-	12 U	0.62 U	
				2 - 3	45.30 to 44.30	11 U	50	0.56 U	32	-	5.6 U	0.28 U	-	11 U	1.1 U	-
MBGW-4	3/6/2019	N	47.30	4 - 5	43.30 to 42.30	12 U	65	0.58 U	22	-	12	0.29 U	-	12 U	1.2 U	-
				7 - 8	40.30 to 39.30	11 U	46	0.54 U	26	-	5.4 U	0.27 U	-	11 U	1.1 U	-
1100111	0/4/4/00:-	.	50.55	24 - 25	23.30 to 22.30	12 U	54	0.6 U	36	-	6 U	0.3 U	-	12 U	1.2 U	- -
MBGW-6	3/14/2019	N	52.50	10 - 10.7	42.5 to 41.8	11 U	32	0.54 U	21	-	5.4 U	0.27 U	-	11 U	0.54 U	-
MBGW-7	3/6/2019	N	53.76	10 - 11.5	43.76 to 42.26	11 U	33	0.54 U	21	-	5.4 U	0.27 U	-	11 U	0.54 U	-
MDCW	2/45/2012	N.	47.00	17.5 - 18.75	36.26 to 35.01	11 U	37	0.53 U	34	-	5.3 U	0.27 U	-	11 U	0.53 U	-
MBGW-8	3/15/2019	N	47.08	25 - 26	22.08 to 21.08	11 U	40	0.55 U	36 42	-	5.5 U	0.27 U	-	11 U	1.1 U	-
MBGW-9	3/13/2019	N	56.84	10 - 10.5	46.84 to 46.34		43	0.53 U		-	5.3 U	0.26 U	-		0.53 U	-
MBGW-10	3/13/2019	N	55.25	10 - 10.9	45.25 to 44.35	11 U	48	0.54 U	44	-	5.4 U	0.27 U	-	11 U	0.54 U	-

5			Surface	Sample	Sample					Inorg	anic Compo	unds				
Boring/ Well ID	Sample Date	Sample Type	Elevation	Depth	Elevation	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
Well ib	Bate	1 9 P C	(ft)	(ft)	(ft)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	0.67	16000	80	120000	3200	250	24	1600	400	400	24000
			Protective o	f Groundwat	er Vadose Zone ^a	0.34	1600	0.69	480000	280	3000	2.1	130	5.2	14	6000
				Nati	ural Background ^a	7.3	NA	0.77	48	36	17	0.07	38	NA	NA	85
					Median PQL ^a	0.1	0.1	0.1	0.1	0.1	0.1	0.02	0.1	0.5	0.1	5
MBGW-11	3/12/2019	N	57.55	5 - 6.5	52.55 to 51.05	11 U	68	0.55 U	38	-	10	0.28 U		11 U	0.55 U	-
MBGW-12	3/15/2019	N	54.00	5 - 5.75	49 to 48.25	11 U	56	0.57 U	42	-	5.7 U	0.29 U	-	11 U	1.1 U	-
MBGW-15	3/8/2019	N	40.87	20 - 21.25	20.87 to 19.62	13 U	170	0.66 U	18	-	6.6 U	0.33 U		13 U	0.66 U	-
MBPP-1	3/5/2019	N	45.28	8 - 10	37.28 to 35.28	11 U	81	0.55 U	46	-	93	0.28 U		11 U	0.55 U	-
MBPP-2	3/5/2019	N	44.46	9 - 10	35.46 to 34.46	12 U	100	0.62 U	45	-	21	0.31 U	•	12 U	0.62 U	-
MBPP-3	3/6/2019	N	45.89	24 - 25	21.89 to 20.89	11 U	35	0.55 U	26	-	5.5 U	0.27 U		11 U	0.55 U	-
MBPP-4	3/7/2019	N	48.34	9 - 10	39.34 to 38.34	11 U	48	0.55 U	29	-	5.6	0.27 U		11 U	0.55 U	-
MBPP-5	3/7/2019	N	45.92	24 - 25	21.92 to 20.92	11 U	49	0.56 U	34	-	5.6 U	0.28 U	-	11 U	0.56 U	-
MBPP-7	3/8/2019	N	49.77	4 - 5	45.77 to 44.77	12 U	200	0.6 U	38	-	6.6	0.3 U		12 U	0.6 U	-
MBPP-8	3/8/2019	N	57.52	14 - 15	43.52 to 42.52	16	80	0.63 U	30	-	16	0.32 U	-	13 U	0.63 U	-

a. **Bold value** identified the selected screening level to determine if a constituent is retained as a COPC. This value is the lowest protective value unless adjusted for an elevated Natural Background or Median PQL.

Bold indicates a detected concentration at or above the laboratory reporting limit.

Highlighted indicates a detected concentration above the screening level.

Elevations relative to North American Vertical Datum of 1988 (NAVD88).

- = Data not available or not applicable.

COPC = Constituent of Potential Concern.

FD = Field duplicate.

ft = feet.

J = Estimated value.

mg/kg = milligram per kilogram.

N = Primary environmental sample.

NA = Not applicable.

PQL = Practical Quantitation Limit.

TABLE 7-3g SATURATED ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS FOR SEMI-VOLATILE ORGANIC COMPOUNDS SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

			O. of a sec	0	0			Carcinog	enic Semi-Vola	tile Organic (Compounds		
Boring/	0 1 5 1	Sample	Surface	Sample	Sample	Benzo(a)	Benzo(a)	Benzo(b)	Benzo(k)		Dibenz(a,h)	Indeno(1,2,3-	
Well ID	Sample Date	Type	Elevation (ft)	Depth (ft)	Elevation (ft)	anthracene	pyrene	fluoranthene	fluoranthene	Chrysene	anthracene	cd)pyrene	cPAHs-TEQ
			(11)	(11)	(11)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact ^a	NA	0.19	NA	NA	NA	NA	NA	0.19
			Protective of	Groundwater	Saturated Zone ^a	NA	0.19	NA	NA	NA	NA	NA	0.022
				Natu	ıral Background ^a	NA	NA	NA	NA	NA	NA	NA	NA
					Median PQL ^a	0.0034	0.005	0.0035	0.0035	0.005	0.005	0.0034	0.0069
HMW-6D	3/2/2020	N	58.58	30 - 31.5	28.58 to 27.08	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
HMW-6IA	3/2/2020	N	58.65	30 - 31.5	28.65 to 27.15	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0006 U
HMW-18S	9/3/2020	N	57.61	30 - 31	27.61 to 26.61	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
HMW-19S	9/8/2020	N	58.20	26 - 26.8	32.20 to 31.40	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
1110100-193	9/0/2020	IN	30.20	30 - 30.5	28.20 to 27.70	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
HMW-20S	9/8/2020	N	53.81	30 - 31	23.81 to 22.81	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
MBB-22	9/21/2020	N	42.05	30 - 30.5	12.05 to 11.55	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
MBB-23	9/21/2020	N	47.18	30 - 31	17.18 to 16.18	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
MBB-24	9/9/2020	N	54.10	30 - 31	24.10 to 23.10	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				29.5 - 30.5	29.13 to 28.13	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
MBB-25	10/30/2020	N	58.63	34.5 - 35.5	24.13 to 23.13	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
				39.5 - 40	19.13 to 18.63	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00041 U
		N		29.5 - 30.5	29.29 to 28.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
MBB-26	10/29/2020	FD	58.79	29.3 - 30.3	29.29 10 20.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
IVIDD-20	10/29/2020	N	30.79	34.5 - 35.5	24.29 to 23.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
		IN .		39.5 - 40	19.29 to 18.79	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0019 U
MBGW-2	3/4/2019	N	46.11	30 - 31.5	16.11 to 14.61	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.0076 U
MBGW-3	3/7/2019	N	47.77	26	21.77	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.0076 U

TABLE 7-3g
SATURATED ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS FOR SEMI-VOLATILE ORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

			Confess	Camanda	Camania				Non-Ca	rcinogenic Ser	mi-Volatile Orgar	nic Compounds				
Boring/	Sample Date	Sample	Surface Elevation	Sample Depth	Sample Elevation	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i) perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Dyrono
Well ID	,	Type	(ft)	(ft)	(ft)	•	•	<u>'</u>	, ,		1 7			•		Pyrene
					D: + O + a	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
			D 1 11 1	0 1 1	Direct Contact ^a	34	320	4800	NA	24000	NA	3200	3200	1600	NA	2400
			Protective of		Saturated Zone ^a	NA	NA	5	NA	110	NA	32	5.1	0.24	NA	33
				Nati	ıral Background ^a	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
					Median PQL ^a	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
HMW-6D	3/2/2020	N	58.58	30 - 31.5	28.58 to 27.08	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
HMW-6IA	3/2/2020	N	58.65	30 - 31.5	28.65 to 27.15	-	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
HMW-18S	9/3/2020	N	57.61	30 - 31	27.61 to 26.61	ı	ı	1	1	1	ı	1	ı	i	-	-
HMW-19S	9/8/2020	N	58.20	26 - 26.8	32.20 to 31.40	-	-	-	-	-	-	-	-	-	-	-
1110100-193	9/0/2020	IN	30.20	30 - 30.5	28.20 to 27.70	-	-	-	-	-	-	-	-	-	-	-
HMW-20S	9/8/2020	N	53.81	30 - 31	23.81 to 22.81	-	-	-	-	-	-	-	-	-	-	-
MBB-22	9/21/2020	N	42.05	30 - 30.5	12.05 to 11.55	1	1	1	1	-	ı	1	ı	1	-	-
MBB-23	9/21/2020	N	47.18	30 - 31	17.18 to 16.18	-	-	1	-	-	i	-	-	Ī	-	-
MBB-24	9/9/2020	N	54.10	30 - 31	24.10 to 23.10	-	-	-	-	-	-	-	-	-	-	-
				29.5 - 30.5	29.13 to 28.13	-	-	-	-	-	-	-	-	-	-	-
MBB-25	10/30/2020	N	58.63	34.5 - 35.5	24.13 to 23.13	-	-	-	-	-	-	-	-	-	-	-
				39.5 - 40	19.13 to 18.63	-	-	-	-	-	-	-	-	-	-	-
		N		29.5 - 30.5	29.29 to 28.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBB-26	10/29/2020	FD	58.79	29.0 - 30.0	29.29 to 20.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
IVIDD-20	10/29/2020		30.79	34.5 - 35.5	24.29 to 23.29	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
		N		39.5 - 40	19.29 to 18.79	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
MBGW-2	3/4/2019	N	46.11	30 - 31.5	16.11 to 14.61	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
MBGW-3	3/7/2019	N	47.77	26	21.77	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U

a. **Bold value** identified the selected screening level to determine if a

constituent is retained as a COPC. This value is the lowest protective value unless adjusted for an elevated Natural Background or Median PQL.

Elevations relative to North American Vertical Datum of 1988 (NAVD88).

- = Data not available or not applicable.

COPC = Constituent of Potential Concern.

cPAHs-TEQ = Carcinogenic polycyclic aromatic hydrocarbons toxic equivalency.

FD = Field duplicate.

ft = feet.

mg/kg = milligram per kilogram.

N = Primary environmental sample.

NA = Not applicable.

PQL = Practical Quantitation Limit.

TABLE 7-3j
SATURATED ZONE SOIL RESULTS COMPARED TO SCREENING LEVELS FOR INORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

D : /	0 1	0 1	Surface	Sample	Sample				Inorganic C	Compounds			
Boring/ Well ID	Sample Date	Sample Type	Elevation	Depth	Elevation	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
Wolling	Date	1,700	(ft)	(ft)	(ft)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					Direct Contact	0.67	16000	80	120000	250	24	400	400
		F	Protective of	Groundwate	r Saturated Zone	0.017	83	0.035	24000	150	0.1	0.26	0.69
				Na	tural Background	7.3	NA	0.77	48	17	0.07	NA	NA
					Median PQL	0.1	0.1	0.1	0.1	0.1	0.02	0.5	0.1
21417-MB8	5/11/2017	N	45.28	27	18.28	2.69	31.8	0.168 U	29.3	2.38	0.276 U	0.988	0.0842 U
21417-MB10	5/11/2017	N	38.08	28	10.08	7.75	42	0.174 U	43.2	6.75	0.268 U	0.99	0.0872 U
HMW-6D	3/2/2020	N	58.58	30 - 31.5	28.58 to 27.08	1.61	-	1 U	14.4 J	1.69	1 U	-	-
T IIVIVV-OD	3/2/2020	FD	30.30	30 - 31.3	20.30 to 27.00	1.42	-	1 U	10.8 J	1.44	1 U	-	-
HMW-6IA	3/2/2020	Ν	58.65	30 - 31.5	28.65 to 27.15	3.1	ı	1 U	19.9	4.88	1 U	1	ī
HMW-11S	2/25/2020	N	41.47	31 - 32.5	10.47 to 8.97	1 U	-	1 U	16	1.33	1 U	-	-
HMW-18S	9/3/2020	N	57.61	30 - 31	27.61 to 26.61	1.03	ı	1 U	15.5	1.54	1 U	-	-
HMW-19S	9/8/2020	Ν	58.20	26 - 26.8	32.20 to 31.40	1.44	-	1 U	20.5	1.31	1 U	-	-
11111111-195	3/0/2020	IN	30.20	30 - 30.5	28.20 to 27.70	1.31	_	1 U	38.2	1.49	1 U	-	-
HMW-20S	9/8/2020	N	53.81	30 - 31	23.81 to 22.81	1.32	ı	1 U	29.5	1.77	1 U	-	-
MBB-22	9/21/2020	N	42.05	30 - 30.5	12.05 to 11.55	1.96	-	1 U	40	1.97	1 U	-	-
MBB-23	9/21/2020	N	47.18	30 - 31	17.18 to 16.18	1.68	-	1 U	16.2	1.36	1 U	-	-
MBB-24	9/9/2020	N	54.10	30 - 31	24.10 to 23.10	1 U	-	1 U	14.1	1.34	1 U	-	-
MBGW-2	3/4/2019	N	46.11	30 - 31.5	16.11 to 14.61	12 U	46	0.61 U	42	6.1 U	0.31 U	12 U	0.61 U
MBGW-5	3/11/2019	N	49.87	27.5 - 29	22.37 to 20.87	11 U	39	0.56 U	25	5.6 U	0.28 U	11 U	0.56 U
MBGW-7	3/6/2019	N	53.76	40 - 40.5	13.76 to 13.26	11 U	42	0.56 U	36	5.6 U	0.28 U	11 U	0.56 U

a. **Bold value** identified the selected screening level to determine if a constituent is retained as a COPC. This value is the lowest protective value unless adjusted for an elevated Natural Background or Median PQL.

Bold indicates a detected concentration at or above the laboratory reporting limit.

Highlighted indicates a detected concentration above the screening level.

Elevations relative to North American Vertical Datum of 1988 (NAVD88).

- = Data not available or not applicable.

COPC = Constituent of Potential Concern.

FD = Field duplicate.

ft = feet.

J = Estimated value.

mg/kg = milligram per kilogram.

N = Primary environmental sample.

NA = Not applicable.

PQL = Practical Quantitation Limit.

TABLE 7-3I GROUNDWATER RESULTS COMPARED TO SCREENING LEVELS FOR SEMI-VOLATILE ORGANIC COMPOUNDS SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

									Carcinoge	nic Semi-Volatile	e Organic Co	ompounds		
Boring/ Well ID	Sample Type	Surface Elevation (ft)	Sample Depth (ft)	Sample Elevation (ft)	Grab or Monitoring Well?	Sample Date	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene ug/L	Benzo(k) fluoranthene	Chrysene ug/L	Dibenz (a,h)anthracene	Indeno (1,2,3-cd) pyrene	cPAHs- TEQ
					Protective	of Drinking Water ^a	ug/L	ug/L	_	ug/L	_	ug/L	ug/L	ug/L
						ctive of Indoor Air	NA	0.2	NA	NA	NA	NA NA	NA	0.023
						tural Background ^a	NA	NA	NA	NA	NA	NA NA	NA	NA
					iva	Median PQL ^a	NA 0.00	NA 0.00	NA 0.00	NA 0.00	NA 0.00	NA 0.00	NA 0.00	NA 0.05
011411 014 7	2015					Wedian Fige	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.05
SHALLOW ZO	1	T			D 40 A /	0/17/0000						2244		
HMW-17S	N	57.21	35 - 45	22.21 to 12.21	MW	9/17/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
HMW-18S	N	57.61	35 - 45	22.61 to 12.61	MW	9/17/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
HMW-19S	N	58.20	35 - 45	23.20 to 13.20	MW	9/17/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
HMW-20S	N	53.81	25 - 35	28.81 to 18.81	MW	9/18/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
MBB-1	N	55.02	32 - 37	23.02 to 18.02	G	3/3/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
MBB-2	N	55.45	32 - 37	23.45 to 18.45	G	3/3/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
MBB-3	N	54.84	32 - 37	22.84 to 17.84	G	3/4/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
MBB-4	N	54.61	32 - 37	22.61 to 17.61	G	3/5/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
MBB-15	N	37.73	30 - 35	7.73 to 2.73	G	3/6/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
MBB-16	N	53.70	30 - 40	23.70 to 13.70	G	9/3/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
MBB-24	N	54.10	30 - 40	24.10 to 14.10	G	9/10/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
MBB-25	N	58.63	30 - 40	28.63 to 18.63	G	10/31/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0086 U
MBB-26	N	58.79	30 - 40	28.79 to 18.79	G	10/30/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0086 U
INTERMEDIA	TE A ZONE													
HMW-6IA	N	58.65	37.5 - 47.5	21.15 to 11.15	MW	3/13/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-20IA	N	53.83	41 - 51	12.83 to 2.83	MW	9/18/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
INTERMEDIA:	TE B ZONE													
HMW-4IA	N	58.70	50 - 60	8.7 to -1.30	MW	3/10/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-5IB	N	58.44	49.7 - 59.7	8.74 to -1.26	MW	3/17/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-6IB	N	58.67	50 - 60	8.67 to -1.33	MW	3/13/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-7IB	N	58.69	49.7 - 59.7	8.99 to -1.01	MW	3/12/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-8IB	N	57.97	50.5 - 60.5	7.47 to -2.53	MW	3/11/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-15IB	N	58.86	64 - 73	-5.14 to -14.14	MW	9/16/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
HMW-16IB	N	57.02	55 - 65	2.02 to -7.98	MW	9/18/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
DEEP ZONE														
HMW-6D	N	58.58	79.9 - 89.7	-21.32 to -31.12	MW	3/16/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0051 U
HMW-12D	N	33.52	82 - 92	-48.48 to -58.48	MW	9/10/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
HMW-13D	N	45.30	89.5 - 99.5	-44.20 to -54.20	MW	9/10/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U
HMW-14D	N	46.35	70 - 80	-23.65 to -33.65	MW	9/16/2020	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.0068 U

TABLE 7-3I GROUNDWATER RESULTS COMPARED TO SCREENING LEVELS FOR SEMI-VOLATILE ORGANIC COMPOUNDS SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

										Non-Carc	inogenic Semi-	Volatile Orga	anic Compounds	3			
Boring/ Well ID	Sample Type	Surface Elevation (ft)	Sample Depth (ft)	Sample Elevation (ft)	Grab or Monitoring Well?	Sample Date	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo (g,h,i) perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
					Protective of	of Drinking Water ^a	1.5	32	960	NA	4800	NA	640	640	160	NA	480
					Protec	tive of Indoor Air ^a	NA	NA	NA	NA	NA	NA	NA	NA	8.9	NA	NA
					Na	tural Background ^a	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
						Median PQL ^a	0.05	0.05	0.05	0.05	0.05	0.035	0.05	0.05	0.05	0.05	0.035
SHALLOW ZO	ONE																
HMW-17S	N	57.21	35 - 45	22.21 to 12.21	MW	9/17/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-18S	N	57.61	35 - 45	22.61 to 12.61	MW	9/17/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-19S	N	58.20	35 - 45	23.20 to 13.20	MW	9/17/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-20S	N	53.81	25 - 35	28.81 to 18.81	MW	9/18/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
MBB-1	N	55.02	32 - 37	23.02 to 18.02	G	3/3/2020	ı	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
MBB-2	N	55.45	32 - 37	23.45 to 18.45	G	3/3/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
MBB-3	N	54.84	32 - 37	22.84 to 17.84	G	3/4/2020	ı	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	2.2	0.04 U	0.04 U
MBB-4	N	54.61	32 - 37	22.61 to 17.61	G	3/5/2020	ı	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
MBB-15	N	37.73	30 - 35	7.73 to 2.73	G	3/6/2020	-	-	0.25	0.04 U	0.04 U	0.04 U	0.04 U	0.098	0.4 U	0.18	0.04 U
MBB-16	N	53.70	30 - 40	23.70 to 13.70	G	9/3/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
MBB-24	N	54.10	30 - 40	24.10 to 14.10	G	9/10/2020	1.6	1.6	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	6	0.04 U	0.04 U
MBB-25	N	58.63	30 - 40	28.63 to 18.63	G	10/31/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	U 80.0	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
MBB-26	N	58.79	30 - 40	28.79 to 18.79	G	10/30/2020	ı	-	-	1	ı	•	-	•	-	-	-
INTERMEDIA	TE A ZONE																
HMW-6IA	N	58.65	37.5 - 47.5	21.15 to 11.15	MW	3/13/2020	ı	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-20IA	N	53.83	41 - 51	12.83 to 2.83	MW	9/18/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
INTERMEDIA	TE B ZONE																
HMW-4IA	N	58.70	50 - 60	8.7 to -1.30	MW	3/10/2020	ı	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-5IB	N	58.44	49.7 - 59.7	8.74 to -1.26	MW	3/17/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-6IB	N	58.67	50 - 60	8.67 to -1.33	MW	3/13/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-7IB	N	58.69	49.7 - 59.7	8.99 to -1.01	MW	3/12/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-8IB	N	57.97	50.5 - 60.5	7.47 to -2.53	MW	3/11/2020	-	-	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-15IB	N	58.86	64 - 73	-5.14 to -14.14	MW	9/16/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-16IB	N	57.02	55 - 65	2.02 to -7.98	MW	9/18/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U

TABLE 7-3I
GROUNDWATER RESULTS COMPARED TO SCREENING LEVELS FOR
SEMI-VOLATILE ORGANIC COMPOUNDS
SEATTLE DOT MERCER PARCELS SITE
SEATTLE, WASHINGTON

										Non-Carci	inogenic Semi-	Volatile Orga	nic Compounds	3			
Boring/ Well ID	Sample Type	Surface Elevation (ft)	Sample Depth (ft)	Sample Elevation (ft)	Grab or Monitoring Well?	Sample Date	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo (g,h,i) perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
					Protective of	of Drinking Water ^a	1.5	32	960	NA	4800	NA	640	640	160	NA	480
					Protec	tive of Indoor Air ^a	NA	NA	NA	NA	NA	NA	NA	NA	8.9	NA	NA
					Na	tural Background ^a	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
						Median PQL ^a	0.05	0.05	0.05	0.05	0.05	0.035	0.05	0.05	0.05	0.05	0.035
DEEP ZONE																	
HMW-6D	N	58.58	79.9 - 89.7	-21.32 to -31.12	MW	3/16/2020	-	1	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-12D	N	33.52	82 - 92	-48.48 to -58.48	MW	9/10/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-13D	N	45.30	89.5 - 99.5	-44.20 to -54.20	MW	9/10/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U
HMW-14D	N	46.35	70 - 80	-23.65 to -33.65	MW	9/16/2020	0.4 U	0.4 U	0.04 U	0.04 U	0.04 U	0.08 U	0.04 U	0.04 U	0.4 U	0.04 U	0.04 U

a. Bold value identified the selected screening level to determine if a constituent is retained as a COPC. This value is the lowest protective value unless adjusted for an elevated Natural Background or Median PQL.

Bold indicates a detected concentration at or above the laboratory reporting limit.

Highlighted indicates a detected concentration above the screening level.

Elevations relative to North American Vertical Datum of 1988 (NAVD88).

- = Data not available or not applicable.

COPC = Constituent of Potential Concern.

cPAHs-TEQ = Carcinogenic polycyclic aromatic hydrocarbons toxic equivalency.

ft = feet.

G = Grab groundwater sample.

MW = Monitoring well sample.

N = Primary environmental sample.

NA = Not applicable.

PQL = Practical Quantitation Limit.

U = Not detected at detection limit indicated.

ug/L = microgram per liter.

TABLE 7-3n

GROUNDWATER RESULTS COMPARED TO SCREENING LEVELS FOR INORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

												Inor	ganic Compo	unds, Dissol	ved					
Boring/	Sample	Surface Elevation	Sample Depth	Sample Elevation	Grab or Monitoring	Sample	Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Copper,	Lead,	Mercury,	Nickel,	Selenium,	Silver,	Thallium,	Zinc,
Well ID	Туре	(ft)	(ft)	(ft)	Well?	Date	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
		,					ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
				Prot	ective of Drin		6	0.58	2000	4	5	100	640	15	2	100	50	80	0.16	4800
					Protective o		NA	NA	NA	NA	NA	NA	NA	NA	0.83	NA	NA	NA	NA	NA
						Background ^a	NA 0.0	8	NA 0.05	NA 0.00	NA 0.00	NA 0.0	NA 0.4	NA 0.00	NA 0.45	NA 0.45	NA 4	NA 0.05	NA 0.00	NA -
SHALLOW ZON					IV	ledian PQL ^a	0.2	0.5	0.05	0.06	0.06	0.2	0.1	0.06	0.15	0.15	1	0.25	0.02	5
21417-MB9	N	39.05	15 - 25	24.05 to 14.05	G	5/11/2017	0.646	1 U	_	0.2 U	0.2 U	0.5 U	0.733	0.5 U	0.1 U	3.11	1 U	0.2 U	0.2 U	4.48
21417-MB10	N N	38.08	20 - 30	18.08 to 8.08	G	5/11/2017	0.206	1.87	_	0.2 U	0.2 U	0.5 U	1.01	0.5 U	0.1 U	3.72	1 U	0.2 U	0.2 U	1.56
21417-MB10	N N	39.04	15 - 25	24.04 to 14.04	G	5/11/2017	0.214	1 U	_	0.2 U	0.2 U	0.852	0.5 U	0.5 U	0.1 U	5.12	1 U	0.2 U	0.2 U	1.91
						3/25/2019	-	-	_	-	-	-	-	-	-	-	_	-	-	-
HMW-1S	N	36.01	20 - 30	16.01 to 6.01	MW	3/11/2020	-	12.3	-	-	1 U	50 U	-	1 U	1 U	-	-	-	-	-
HMW-2S	N	47.39	19.8 - 29.8	27.59 to 17.59	MW	3/12/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-9S	N	55.39	25 - 35	30.39 to 20.39	MW	3/17/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-10S	N	48.21	24.7 - 34.7	23.51 to 13.51	MW	3/16/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-11S	N	41.47	25 - 35	16.47 to 6.47	MW	3/11/2020	-	2.57	-	-	1 U	5 U	-	1 U	1 U	-	-	-	-	-
HMW-17S	N	57.21	35 - 45	22.21 to 12.21	MW	9/17/2020	-	1.32	-	-	1 U	2.12	-	1 U	1 U	-	-	-	-	
HMW-18S	N	57.61	35 - 45	22.61 to 12.61	MW	9/17/2020	-	2.5	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	
HMW-19S	N	58.2	35 - 45	23.20 to 13.20	MW	9/17/2020	-	1.97	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-20S	N	53.81	25 - 35	28.81 to 18.81	MW	9/18/2020	-	2.03	-	-	1 U	4.26	-	1 U	1 U	-	-	-	-	-
MBB-1	N	55.02	32 - 37	23.02 to 18.02	G	3/3/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
MBB-2	N	55.45	32 - 37	23.45 to 18.45	G	3/3/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	
MBB-3	N	54.84	32 - 37	22.84 to 17.84	G	3/4/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MBB-4	N	54.61	32 - 37	22.61 to 17.61	G	3/5/2020	-	-	-	-	-	-	-	- 4.11	- 4 1 1	-	-	-	-	
MBB-5	N	50.53	32 - 37	18.53 to 13.53	G	3/5/2020	-	4.01	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
MBB-6	N N	50.33	25 - 30	25.33 to 20.33	G	3/5/2020	-	-	-	-	- 4.11	- 4.11	-	4.11	411	-	-	-	-	-
MBB-7 MBB-8	N N	49.41 49.66	27 - 32 27 - 32	22.41 to 17.41 22.66 to 17.66	G G	3/4/2020 2/27/2020	-	1 U	-	-	1 U	1 U 1 U	-	1 U	1 U	-	-	-	-	- -
MBB-9	N N	49.66	27 - 32	20.55 to 15.55	G	2/28/2020	-	2.37	-	-	1 U	1 U	-	1 U	1 U	-	-	-	<u>-</u>	- -
MBB-10	N N	49.66	35 - 40	14.66 to 9.66	G	2/27/2020	-	3.22		_	1 U	1 U	_	1 U	1 U		_		-	- -
MBB-12	N N	33.69	27 - 32	6.69 to 1.69	G	3/6/2020	_	14.4			1 U	1 U	_	1 U	1 U				_	- -
MBB-13	N	35.98	30 - 35	5.98 to 0.98	G	3/9/2020	-	41.2	_	_	1 U	1 U	_	1 U	1 U	_	_	_	_	_
MBB-16	N N	53.7	30 - 40	23.70 to 13.70	G	9/3/2020	-	2.6	_	_	1 U	1.21	_	1 U	1 U	_	_	_	_	_
MBB-24	N	54.1	30 - 40	24.10 to 14.10	G	9/10/2020	-	7.49	-	-	1 U	1 U	-	1 U	1 UJ	-	-	-	-	-
MBGW-1	N	39.95	20 - 30	19.95 to 9.95	G	3/6/2019	-	3 U	25 U	-	4 U	10 U	-	1 U	0.5 UJ	-	5 U	10 U	-	-
MBGW-2	N	46.11	20 - 30	26.11 to 16.11	G	3/4/2019	-	3 U	44	-	4 U	10 U	-	1 U	0.5 U	-	5 U	10 U	-	-
MBGW-3	N	47.77	16 - 26	31.77 to 21.77	G	3/7/2019	-	3 U	25 U	-	4 U	10 U	-	1 U	0.5 UJ	-	5 U	10 U	-	
MBGW-5	N	49.87	20 - 30	29.87 to 19.87	G	3/15/2019	-	3 U	25 U	-	4 U	10 U	-	1 U	0.5 U	-	5 U	10 U	-	-
MBGW-6	N	52.5	20 - 30	32.50 to 22.50	G	3/15/2019	-	3 U	25 U	-	4 U	10 U	-	1 U	0.5 U	-	5 U	10 U	-	-
MBGW-7	N	53.76	30 - 40	23.76 to 13.76	G	3/6/2019	-	3 U	28	-	4 U	10 U	-	1 U	0.5 UJ	-	5 U	10 U	-	-
MBGW-8	N	47.08	15 - 25	32.08 to 22.08	G	3/19/2019	-	3 U	45	-	4 U	10 U	-	1 U	0.5 U	-	5 U	10 U	-	
MBGW-9	N	56.84	20 - 30	36.84 to 26.84	G	3/15/2019	-	3 U	25 U	-	4 U	10 U	-	1 U	0.5 U	-	5 U	10 U	-	
MBGW-10	N	55.25	20 - 30	35.25 to 25.25	G	3/15/2019	-	3 U	26	-	4 U	10 U	-	1 U	0.5 U	-	5 U	10 U	-	
MBGW-11	N	57.55	35 - 45	22.55 to 12.55	G	3/15/2019	-	6.9	32	-	4 U	10 U	-	1 U	0.5 U	-	5 U	10 U	-	-
MBGW-13	N	54.72	20 - 30	34.72 to 24.72	G	3/15/2019	-	3.3	25 U	-	4 U	10 U	-	1 U	0.5 U	-	5 U	10 U	-	-
MBGW-14	N	46.09	20 - 30	26.09 to 16.09	G	3/6/2019	-	3 U	40	-	4 U	10 U	-	1 U	0.5 UJ	-	5 U	10 U	-	

TABLE 7-3n

GROUNDWATER RESULTS COMPARED TO SCREENING LEVELS FOR INORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

		Surface			Grab or							Inorg	ganic Compo	unds, Dissolv	/ed					
Boring/	Sample	Elevation	Sample Depth	Sample Elevation	Monitoring	Sample	Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Copper,	Lead,	Mercury,	Nickel,	Selenium,	Silver,	Thallium,	Zinc,
Well ID	Туре	(ft)	(ft)	(ft)	Well?	Date	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
				Prot	ective of Drin		6	0.58	2000	4	5	100	640	15	2	100	50	80	0.16	4800
					Protective o		NA	NA	NA	NA	NA	NA	NA	NA	0.83	NA	NA	NA	NA	NA
						Background ^a	NA	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1					ledian PQL ^a	0.2	0.5	0.05	0.06	0.06	0.2	0.1	0.06	0.15	0.15	1	0.25	0.02	5
MBGW-15	N	40.87	20 - 30	20.87 to 10.87	G	3/15/2019	-	3 U	95	-	4 U	10 U	-	1 U	0.5 UJ	-	5 U	10 U	-	-
MBGW-16	N	52.14	20 - 30	32.14 to 22.14	G	3/8/2019	-	3 U	25	-	4 U	10 U	-	1 U	0.5 UJ	-	5 U	10 U	-	-
MBPP-5	N	45.92	18 - 28	27.92 to 17.92	G	3/7/2019	-	3 U	26	-	4 U	10 U	-	1 U	0.5 UJ	-	5 U	10 U	-	
INTERMEDIAT	E A ZONE									·	, ,			·						
HMW-2IA	N	45.55	34.8 - 44.8	10.75 to 0.75	MW	3/12/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	
HMW-3IA	N	55.02	34.8 - 44.8	20.22 to 10.22	MW	3/13/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-6IA	N	58.65	37.5 - 47.5	21.15 to 11.15	MW	3/13/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-9IA	N	55.26	36.7 - 46.7	18.56 to 8.56	MW	3/19/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-20IA	N	53.83	41 - 51	12.83 to 2.83	MW	9/18/2020	-	4.39	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	_
INTERMEDIAT	E B ZONE																			
HMW-1IB	N	38.29	54.3 - 64.3	-16.01 to -26.01	MW	3/10/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	_
HMW-2IB	N	47.41	52.8 - 62.8	-5.39 to -15.39	MW	3/12/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-4IA	N	58.7	50 - 60	8.70 to -1.30	MW	3/10/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	_
HMW-5IB	N	58.44	49.7 - 59.7	8.74 to -1.26	MW	3/17/2020	-	•	-	-	-	-	-	-	-	•	•	-	•	-
HMW-6IB	N	58.67	50 - 60	8.67 to -1.33	MW	3/13/2020	-	1	•	-	-	-	-	-	•	•	•	-	•	-
HMW-7IB	N	58.69	49.7 - 59.7	8.99 to -1.01	MW	3/12/2020	-	-	-	-	-	-	-	-			-	-	-	-
HMW-8IB	N	57.97	50.5 - 60.5	7.47 to -2.53	MW	3/11/2020	-	9.67	-	-	1 U	5 U	-	1 U	1 U		-	-	-	-
HMW-9IB	N	55.36	57 - 67	-1.64 to -11.64	MW	3/19/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-11IB	N	39.7	44.87 - 54.87	-5.17 to -15.17	MW	3/16/2020					-	-	-	-	-	-	-	-	-	-
110,004,4515	FD	50.00	04.70	5441 4444	B 43 A /	0/40/0000	-	-	-	-	- 4.11	- 4 50	-	- 411	-	-	-	-	-	-
HMW-15IB	N	58.86	64 - 73	-5.14 to -14.14	MW	9/16/2020	-	7.66	-	-	1 U	1.52	-	1 U	1 U	-	-	-	-	
HMW-16IB	N	57.02	55 - 65	2.02 to -7.98	MW	9/18/2020	-	8.23	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-

TABLE 7-3n

GROUNDWATER RESULTS COMPARED TO SCREENING LEVELS FOR INORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

		Surface			Grab or							Inorg	ganic Compo	unds, Dissol	ved					
Boring/	Sample	Elevation	Sample Depth	Sample Elevation	Monitoring	Sample	Antimony,	Arsenic,	Barium,		Cadmium,	Chromium,	Copper,	Lead,	Mercury,	Nickel,	Selenium,	Silver,	Thallium,	Zinc,
Well ID	Туре	(ft)	(ft)	(ft)	Well?	Date	Dissolved	Dissolved	Dissolved	Dissolved		Dissolved		Dissolved	Dissolved	Dissolved	Dissolved		Dissolved	
		(1-7)					ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
				Prot	tective of Drir	nking Water ^a	6	0.58	2000	4	5	100	640	15	2	100	50	80	0.16	4800
					Protective o	f Indoor Air ^a	NA	NA	NA	NA	NA	NA	NA	NA	0.83	NA	NA	NA	NA	NA
					Natural E	Background ^a	NA	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
					N	ledian PQL ^a	0.2	0.5	0.05	0.06	0.06	0.2	0.1	0.06	0.15	0.15	1	0.25	0.02	5
DEEP ZONE																				
HMW-1D	N	38.07	80 - 90	-41.93 to -51.93	MW	3/9/2020	1	-	-	-	-	1	-	-	-	-	-	-	-	-
HMW-2D	N	47.34	80 - 90	-32.66 to -42.66	MW	3/12/2020	•		-	-		ı	-	-	-	-	-	-	•	-
HMW-3D	N	56.56	80 - 90	-23.44 to -33.44	MW	3/13/2020	-	-	-			-	-	-	-	-	-	-	-	-
HMW-6D	N	58.58	79.9 - 89.7	-21.32 to -31.12	MW	3/16/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-9D	N	55.32	79.7 - 89.7	-24.38 to -34.38	MW	2/47/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HIMIAA-AD	FD	55.32	19.1 - 89.1	-24.38 10 -34.38	IVIVV	3/17/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-10D	N	48.16	79 - 89	-30.84 to -40.84	MW	3/16/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HMW-12D	N	33.52	82 - 92	-48.48 to -58.48	MW	9/10/2020	-	1.54	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-13D	N	45.3	89.5 - 99.5	-44.20 to -54.20	MW	9/10/2020	-	5.25	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-14D	N	46.35	70 - 80	-23.65 to -33.65	MW	9/16/2020	-	6.05	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-

TABLE 7-3n

GROUNDWATER RESULTS COMPARED TO SCREENING LEVELS FOR INORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

												In	organic Com	pounds, Tota	al					
Boring/	Sample	Surface Elevation	Sample Depth	Sample Elevation	Grab or Monitoring	Sample	Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Copper,	Lead,	Mercury,	Nickel,	Selenium,	Silver,	Thallium,	Zinc,
Well ID	Туре	(ft)	(ft)	(ft)	Well?	Date	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
		(11)			776		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
				Prot	ective of Drir	nking Water ^a	6	0.58	2000	4	5	100	640	15	2	100	50	80	0.16	4800
					Protective o	f Indoor Air ^a	NA	NA	NA	NA	NA	NA	NA	NA	0.83	NA	NA	NA	NA	NA
					Natural E	Background ^a	NA	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
					N	ledian PQL ^a	0.2	0.5	0.05	0.06	0.06	0.2	0.1	0.06	0.15	0.15	1	0.25	0.02	5
SHALLOW ZON				T .								ı			ı	T				
21417-MB9	N	39.05	15 - 25	24.05 to 14.05	G	5/11/2017	0.694	2.88	-	0.2 U	0.2 U	6.59	23.7	123	0.1 U	7.56	1.06	0.2 U	1 U	49.2
21417-MB10	N	38.08	20 - 30	18.08 to 8.08	G	5/11/2017	0.2 U	13.5	-	0.264	0.2 U	27.7	17.2	24.1	0.1 U	11.2	1.92	0.2 U	1 U	20.8
21417-MB11	N	39.04	15 - 25	24.04 to 14.04	G	5/11/2017	0.2 U	6.34	-	0.248	0.353	9.77	13.2	19	0.1 U	14.3	1.02	0.2 U	0.2 U	44.2
HMW-1S	N	36.01	20 - 30	16.01 to 6.01	MW	3/25/2019	-	14	83	-	4.4 U	11 U	-	2.7	0.5 U	-	5.6 U	11 U	-	ļ
		47.00	40.0.00.0	07.50 / 47.50	1.04/	3/11/2020	-	13.5	-	-	1 U	50 U	-	1 U	1 U	-	-	-	-	-
HMW-2S	N	47.39	19.8 - 29.8	27.59 to 17.59	MW	3/12/2020	-	5 U	-	-	1 U	7.48	-	1 U	1 U	-	-	-	-	-
HMW-9S	N N	55.39	25 - 35	30.39 to 20.39	MW	3/17/2020	-	5 U	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-10S	N N	48.21	24.7 - 34.7	23.51 to 13.51	MW	3/16/2020	-	5 U	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-11S	N N	41.47	25 - 35	16.47 to 6.47	MW	3/11/2020	-	4.14	-	-	1 U	5.81	-	1.65	1 U	-	-	-	-	-
HMW-17S HMW-18S	N N	57.21 57.61	35 - 45 35 - 45	22.21 to 12.21 22.61 to 12.61	MW MW	9/17/2020	-	1.57 2.58	-	-	1 U	5.45 1 U	-	1 U	1 U	-	-	-	-	-
HMW-19S	N N	58.2	35 - 45 35 - 45	23.20 to 13.20	MW	9/17/2020	-	1.87	-	-	1 U	1.73	-	1 U	1 U	-	-	-	-	-
HMW-20S	N N	53.81	25 - 35	28.81 to 18.81	MW	9/17/2020	_	2.04		_	1 U	4.99		1 U	1 U	-		-	-	
MBB-1	N N	55.02	32 - 37	23.02 to 18.02	G	3/3/2020	_	1.02		_	1 U	4.99	-	1 U	1 U	-	-		-	
MBB-1	N N	55.45	32 - 37	23.45 to 18.45	G	3/3/2020	_	1.02 1 U		_	1 U	1.65		1 U	1 U		-		-	
MBB-3	N N	54.84	32 - 37	22.84 to 17.84	G	3/4/2020		1 U		_	1 U	1.03 1 U	-	1 U	1 U				_	
MBB-4	N	54.61	32 - 37	22.61 to 17.61	G	3/5/2020	_	2.23	_	_	1 U	1 U		1 U	1 U	_			_	
MBB-5	N	50.53	32 - 37	18.53 to 13.53	G	3/5/2020	_	4.15	_	_	1 U	4.55	_	1 U	1 U	_			_	
MBB-6	N	50.33	25 - 30	25.33 to 20.33	G	3/5/2020	-	3.11	_	_	1 U	3.35	_	1 U	1 U	_	_	-	_	_
MBB-7	N N	49.41	27 - 32	22.41 to 17.41	G	3/4/2020	_	1.09	_	_	1 U	12.4	_	1 U	1 U	_	_	_	_	
MBB-8	N	49.66	27 - 32	22.66 to 17.66	G	2/27/2020	-	10.5	_	_	1 U	192	_	7.82	1 U	_	_	-	_	
MBB-9	N	47.55	27 - 32	20.55 to 15.55	G	2/28/2020	-	3.59	_	_	1 U	12	-	1.27	1 U	_	-	-	-	_
MBB-10	N	49.66	35 - 40	14.66 to 9.66	G	2/27/2020	-	3.32	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
MBB-12	N	33.69	27 - 32	6.69 to 1.69	G	3/6/2020	-	15.8	-	-	1 U	2.14	-	1 U	1 U	-	-	-	-	-
MBB-13	N	35.98	30 - 35	5.98 to 0.98	G	3/9/2020	-	38.1	-	-	1 U	1.33	-	1 U	1 U	-	-	-	-	-
MBB-16	N	53.7	30 - 40	23.70 to 13.70	G	9/3/2020	-	2.61	-	-	1 U	1.58	-	1 U	1 U	-	-	-	-	- 1
MBB-24	N	54.1	30 - 40	24.10 to 14.10	G	9/10/2020	-	7.53	-	-	1 U	3.22	-	1 U	1 U	-	-	-	-	-
MBGW-1	N	39.95	20 - 30	19.95 to 9.95	G	3/6/2019	-	3.3 U	65	-	4.4 U	12		1.7	0.5 U	-	5.6 U	11 U	-	
MBGW-2	N	46.11	20 - 30	26.11 to 16.11	G	3/4/2019	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MBGW-3	N	47.77	16 - 26	31.77 to 21.77	G	3/7/2019	-	5.9	140	-	4.4 U	61	-	5.1	0.5 U	-	5.6 U	11 U	-	-
MBGW-5	N	49.87	20 - 30	29.87 to 19.87	G	3/15/2019	-	130	3200	-	5.8	1500	-	140	2.2	-	25	11 U	-	-
MBGW-6	N	52.5	20 - 30	32.50 to 22.50	G	3/15/2019	-	15	200	-	4.4 U	74	-	10	0.5 U	-	5.6 U	11 U	-	
MBGW-7	N	53.76	30 - 40	23.76 to 13.76	G	3/6/2019	-	130	3500	-	7.5	1700	-	190	2.2	-	18	11 U	-	
MBGW-8	N	47.08	15 - 25	32.08 to 22.08	G	3/19/2019	-	37	800	-	4.4 U	360	-	30	0.5 U	-	5.6 U	11 U	-	
MBGW-9	N	56.84	20 - 30	36.84 to 26.84	G	3/15/2019	-	71	1900	-	4.4 U	930	-	89	0.88	-	7.9	11 U	-	
MBGW-10	N	55.25	20 - 30	35.25 to 25.25	G	3/15/2019	-	180	4200	-	6.1	2300	-	200	2.3	-	20	22 U	-	-
MBGW-11	N	57.55	35 - 45	22.55 to 12.55	G	3/15/2019	-	14	240	-	4.4 U	86	-	8.9	0.5 U	-	5.6 U	11 U	-	-
MBGW-13	N	54.72	20 - 30	34.72 to 24.72	G	3/15/2019	-	110	1600	-	4.4 U	910	-	110	1.8	-	9.5	11 U	-	-
MBGW-14	N	46.09	20 - 30	26.09 to 16.09	G	3/6/2019	-	6.1	130	-	4.4 U	38	-	16	0.5 U	-	5.6 U	11 U	-	-

TABLE 7-3n

GROUNDWATER RESULTS COMPARED TO SCREENING LEVELS FOR INORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

		Surface			Grab or		Inorganic Compounds, Total													
Boring/	Sample Type	Elevation	Sample Depth	Sample Elevation (ft)	Monitoring Well?	Sample Date	Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Copper,	Lead,	Mercury,	Nickel,	Selenium,	Silver,	Thallium,	Zinc,
Well ID		(ft)	(ft)				Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
		. ,					ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
				Prot	ective of Drin		6	0.58	2000	4	5	100	640	15	2	100	50	80	0.16	4800
					Protective o		NA NA	NA	NA	NA	NA	NA	NA	NA	0.83	NA	NA	NA	NA	NA
	Natural Background ^a							8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Median PQL							0.5	0.05	0.06	0.06	0.2	0.1	0.06	0.15	0.15	1	0.25	0.02	5
MBGW-15	N	40.87	20 - 30	20.87 to 10.87	G	3/15/2019	-	35	390	-	4.4 U	170	-	20	0.5 U	-	5.6 U	11 U	-	-
MBGW-16	N	52.14	20 - 30	32.14 to 22.14	G	3/8/2019	-	210	4600	-	5.3	2400	-	190	1.8	-	31	11 U	-	-
MBPP-5	N	45.92	18 - 28	27.92 to 17.92	G	3/7/2019	-	15	230	-	4.4 U	93	-	9.3	0.5 U	-	5.6 U	11 U	-	-
INTERMEDIAT	E A ZONE									,							, ,			
HMW-2IA	N	45.55	34.8 - 44.8	10.75 to 0.75	MW	3/12/2020	-	5.1	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-3IA	N	55.02	34.8 - 44.8	20.22 to 10.22	MW	3/13/2020	-	4.57	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	_
HMW-6IA	N	58.65	37.5 - 47.5	21.15 to 11.15	MW	3/13/2020	-	7.84	-	-	1 U	9.31	-	1 U	1 U	-	-	-	-	-
HMW-9IA	N	55.26	36.7 - 46.7	18.56 to 8.56	MW	3/19/2020	-	3	-	-	1 U	3.63	-	1 U	1 U	-	-	-	-	-
HMW-20IA	N	53.83	41 - 51	12.83 to 2.83	MW	9/18/2020	-	4.4	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
INTERMEDIAT	E B ZONE										_									
HMW-1IB	N	38.29	54.3 - 64.3	-16.01 to -26.01	MW	3/10/2020	-	1 U	-	-	1 U	5 U	-	1 U	1 U	-	-	-	-	-
HMW-2IB	N	47.41	52.8 - 62.8	-5.39 to -15.39	MW	3/12/2020	-	7.49	-	-	1 U	1.09	-	1 U	1 U	-	-	-	-	-
HMW-4IA	N	58.7	50 - 60	8.70 to -1.30	MW	3/10/2020	-	6.03	-	-	1 U	5 U	-	1 U	1 U	-	-	-	-	_
HMW-5IB	N	58.44	49.7 - 59.7	8.74 to -1.26	MW	3/17/2020	-	5 U	•	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-6IB	N	58.67	50 - 60	8.67 to -1.33	MW	3/13/2020	-	8.55	•	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-7IB	N	58.69	49.7 - 59.7	8.99 to -1.01	MW	3/12/2020	-	6.36	ı	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-8IB	N	57.97	50.5 - 60.5	7.47 to -2.53	MW	3/11/2020	-	10.7	-	-	1 U	25.3	-	1 U	1 U	-	-	-	-	-
HMW-9IB	N	55.36	57 - 67	-1.64 to -11.64	MW	3/19/2020	-	2.07	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-11IB	N	39.7	44.87 - 54.87	-5.17 to -15.17	MW	3/16/2020	-	5 U	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
LINIAA-1 11D	FD	39.1	44.07 - 04.07	-3.17 10 -13.17	IVIVV	3/16/2020	-	5 U	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-15IB	N	58.86	64 - 73	-5.14 to -14.14	MW	9/16/2020	-	7.78		-	1 U	40.9	-	1 U	1 U	-	-	-	-	-
HMW-16IB	N	57.02	55 - 65	2.02 to -7.98	MW	9/18/2020	-	8.21	-	-	1 U	8.12	-	1 U	1 U	-	-	-	-	-

TABLE 7-3n

GROUNDWATER RESULTS COMPARED TO SCREENING LEVELS FOR INORGANIC COMPOUNDS

SEATTLE DOT MERCER PARCELS SITE

SEATTLE, WASHINGTON

		Courtere		Grab or		Inorganic Compounds, Total														
Boring/	Sample	Surface Elevation	Sample Depth	Sample Elevation	Monitoring	Sample	Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Copper,	Lead,	Mercury,	Nickel,	Selenium,	Silver,	Thallium,	Zinc,
Well ID	Туре	(ft)	(ft)	(ft)	Well?	Date	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Protective of Drinking Water ^a							6	0.58	2000	4	5	100	640	15	2	100	50	80	0.16	4800
					Protective o	of Indoor Air ^a	NA	NA	NA	NA	NA	NA	NA	NA	0.83	NA	NA	NA	NA	NA
	Natural Background ^a							8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Median PQL ^a							0.5	0.05	0.06	0.06	0.2	0.1	0.06	0.15	0.15	1	0.25	0.02	5
DEEP ZONE																				
HMW-1D	N	38.07	80 - 90	-41.93 to -51.93	MW	3/9/2020	-	2.59	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-2D	N	47.34	80 - 90	-32.66 to -42.66	MW	3/12/2020	-	6.36	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-3D	N	56.56	80 - 90	-23.44 to -33.44	MW	3/13/2020	-	4.69	-	-	1 U	2.29	-	1 U	1 U	-	-	-	-	-
HMW-6D	N	58.58	79.9 - 89.7	-21.32 to -31.12	MW	3/16/2020	-	5.53	-	-	1 U	1.4	-	1 U	1 U	-	-	-	-	-
HMW-9D	N	55.32	79.7 - 89.7	-24.38 to -34.38	MW	2/17/2020	-	7.95	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
1110100-9D	FD	33.32	79.7 - 09.7	-24.30 to -34.30	IVIVV	3/17/2020	-	7.82	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-10D	N	48.16	79 - 89	-30.84 to -40.84	MW	3/16/2020	-	5.22	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-12D	N	33.52	82 - 92	-48.48 to -58.48	MW	9/10/2020	-	1.75	-	-	1 U	1 U	-	1 U	1 U	-	-	-	-	-
HMW-13D	N	45.3	89.5 - 99.5	-44.20 to -54.20	MW	9/10/2020	-	5.47	-	-	1 U	9.39	-	1 U	1 U	-	-	-	-	-
HMW-14D	N	46.35	70 - 80	-23.65 to -33.65	MW	9/16/2020	-	5.91	-	-	1 U	1.34	-	1 U	1 U	-	-	-	-	-

TABLE 7-3n GROUNDWATER RESULTS COMPARED TO SCREENING LEVELS FOR INORGANIC COMPOUNDS SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

Curface			Cuah au		Inorganic Compounds, Total															
Boring/	Sample	Surface Elevation	Sample Depth	Sample Elevation	Grab or Monitoring	Sample Date	Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Copper,	Lead,	Mercury,	Nickel,	Selenium,	Silver,	Thallium,	Zinc,
Well ID	Туре		(ft)	(ft)	Well?		Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
(ft)		vveir		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L			
	Protective of Drinking Water ^a					6	0.58	2000	4	5	100	640	15	2	100	50	80	0.16	4800	
	Protective of Indoor Air ^a						NA	NA	NA	NA	NA	NA	NA	NA	0.83	NA	NA	NA	NA	NA
Natural Background ^a						NA	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Median PQL ^a						0.2	0.5	0.05	0.06	0.06	0.2	0.1	0.06	0.15	0.15	1	0.25	0.02	5	

Notes:

a. Bold value identified the selected screening level to determine if a
constituent is retained as a COPC. This value is the lowest protective value
unless adjusted for an elevated Natural Background or Median PQL.

Bold indicates a detected concentration at or above the laboratory reporting limit.

Highlighted indicates a detected concentration above the screening level.

Elevations relative to North American Vertical Datum of 1988 (NAVD88).

- = Data not available or not applicable.

COPC = Constituent of Potential Concern.

FD = Field duplicate.

ft = feet.

G = Grab groundwater sample.

J = Estimated value.

MW = Monitoring well sample.

N = Primary environmental sample.

NA = Not applicable.

PQL = Practical Quantitation Limit.

U = Not detected at detection limit indicated.

ug/L = microgram per liter.

TABLE 7-4a **IDENTIFICATION OF COCs IN SOIL** SEATTLE DOT MERCER PARCELS SITE **SEATTLE, WASHINGTON**

	Vadose Zo	Screening Leve one (less than or e bgs)		Saturated	Screening Leve Zone (greater tha			
COPC	Direct Contact	Protective of Groundwater Vadose Zone	Natural Background	Direct Contact	Protective of Groundwater Saturated Zone	Natural Background	COC?	Rationale
Volatile Organic Compounds cis-1,2-Dichloroethene Methylene Chloride		 	NA NA		X X	NA NA	no no	Constituent associated with groundwater plume originating from nearby site being addressed separately.
								Constituent does not pose an unacceptable direct contact risk.
								2. Constituent does not pose an unacceptable risk to drinking water. Although constituent exceeds screening level in soil indicating it could potentially cause an exceedance of drinking water levels in groundwater, empirical groundwater data indicates that methylene chloride is not a COC in groundwater. This indicates that the soil-to-drinking-water pathway is not complete and methylene chloride in soil does not pose an unacceptable risk to drinking water.
								3. Constituent is a common laboratory contaminant and is likely a false positive.
Tetrachloroethene Trichloroethene Vinyl chloride	 	 	NA NA NA	 	X X X	NA NA NA	no no no	Constituent associated with groundwater plume originating from nearby site being addressed separately. Constituent associated with groundwater plume originating from nearby site being addressed separately. Constituent associated with groundwater plume originating from nearby site being addressed separately.
Semi-Volatile Organic Compounds			107			10.0	110	Constituent accounted with groundwater plante originating from reality one being addressed coparatery.
Benzo(a)pyrene cPAHs-TEQ	X X	 X	NA NA	 		NA NA	yes yes	Retained as COC Retained as COC
Total Petroleum Hydrocarbons Gasoline Range Organics		X	NA			NA	yes	Retained as COC
Inorganic Compounds Arsenic	X	x	X	X	x	x	yes	Retained as COC
Lead Selenium	X 	 	X NA	 	 X	NA	yes no	Retained as COC 1. Constituent does not pose an unacceptable direct contact risk.
								2. Constituent does not pose an unacceptable risk to drinking water. Although constituent exceeds screening level in soil indicating it could potentially cause an exceedance of drinking water levels in groundwater, empirical groundwater data indicates that selenium is not a COC in groundwater. This indicates that the soil-to-drinking-water pathway is not complete and selenium in soil does not pose an unacceptable risk to drinking water. 3. There are no known historical sources or releases of constituent on the Property. The greatest proportion of selenium released to the environment is coal fly ash. Other anthropogenic emission sources of selenium include coal and oil combustion facilities, selenium refining factories, base metal smelting and refining factories, mining and milling operations, and end-product manufacturers (e.g., some semiconductor manufacturers) (ATSDR 2003). None of these activities are known or suspected of having taken place on the property.

Screening levels provided by Ecology (November 17, 2020).

Pink = COC.

X = Maximum detected conctration exceeded available screening level.

-- = Maximum detected concentration below available screening level.

bgs = Below ground surface.

COC = Constituent of Concern.

COPC = Constituent of Potential Concern.

cPAHs-TEQ = Carcinogenic polycyclic aromatic hydrocarbons toxic equivalency.

NA = No screening level available.

TABLE 7-4b **IDENTIFICATION OF COCs IN GROUNDWATER** SEATTLE DOT MERCER PARCELS SITE SEATTLE, WASHINGTON

		Screening Levels			
COPC	Protective of Drinking Water	Protective of Indoor Air	Natual Background	COC?	Rationale
Volatile Organic Compounds					
1,1-Dichloroethene	X		NA	no	Constituent associated with groundwater plume originating from nearby site being addressed separately.
1,2-Dichloroethane	X	X	NA	no	Low frequency of detection (only one sample); low maximum exceedance factor (<1.7x most protective screening level; and never detected in soil).
Benzene	X	X	NA	yes	Retained as COC
cis-1,2-Dichloroethene	X	NA	NA	no	Constituent associated with groundwater plume originating from nearby site being addressed separately.
Tetrachloroethene	X	X	NA	no	Constituent associated with groundwater plume originating from nearby site being addressed separately.
Trichloroethene	X	X	NA	no	Constituent associated with groundwater plume originating from nearby site being addressed separately.
Vinyl chloride	X	X	NA	no	Constituent associated with groundwater plume originating from nearby site being addressed separately.
Methylene Chloride	X	X	NA	no	Frequent lab contaminant and low frequency of detection. Exceedance appears to be an anomaly.
Semi-Volatile Organic Compounds					
1-Methylnaphthalene	X	NA	NA	no	Low frequency of detection, low exceedance factor, and co-occurs with high gasoline range organics (which is a COC).
Total Petroleum Hydrocarbons					
Diesel Range Organics	X	NA	NA	yes	Retained as COC
Gasoline Range Organics	X	NA	NA	yes	Retained as COC
Heavy Oil Range Organics	x	NA	NA	no	Low frequency of detection, low frequency of exceedance, low exceedance factor. Detections appears to be biased high due to grab groundwater sample. Heavy oil was not detected in soil samples from nearby borings, indicating the groundwater exceedance is not associated with a release from the Property, as an on-Property source to groundwater would be expected to have left residual heavy oil in shallow soil as it migrated downward to the water table.
Inorganic Compounds					
Arsenic	X	NA	X	no	Constituent is associated with background conditions.
Barium	X	NA	NA	no	High levels of total metals associated with excess turbidity and are not representative of actual transport/exposure potential.
Cadmium	X	NA	NA	no	High levels of total metals associated with excess turbidity and are not representative of actual transport/exposure potential.
Chromium	X	NA	NA	no	High levels of total metals associated with excess turbidity and are not representative of actual transport/exposure potential.
Lead	X	NA	NA	no	High levels of total metals associated with excess turbidity and are not representative of actual transport/exposure potential.
Mercury	X	X	NA	no	High levels of total metals associated with excess turbidity and are not representative of actual transport/exposure potential.

Screening levels provided by Ecology (November 17, 2020).

Pink = COC.

X = Maximum detected conctration exceeded available screening level.

-- = Maximum detected concentration below available screening level.

COC = Constituent of Concern.

COPC = Constituent of Potential Concern.

NA = No screening level available.

- Solid symbol indicates a detected concentration. Open symbol indicates a non-detect, onehalf the laboratory reporting limit is graphed.
- 2. Screening Level shown is the Natural Background.
- 3. Screening levels provided by Ecology (November 17, 2020).

Seattle DOT Mercer Parcels Site Seattle, Washington

ARSENIC CONCENTRATION VS.
TOTAL SUSPENDED SOLIDS (TSS) IN
GROUNDWATER

19409-04

01/22

Figure

7-6a

- Solid symbol indicates a detected concentration. Open symbol indicates a non-detect, onehalf the laboratory reporting limit is graphed.
- 2. Screening Level shown is the Protective of Drinking Water.
- 3. Screening levels provided by Ecology (November 17, 2020).

Seattle DOT Mercer Parcels Site Seattle, Washington

BARIUM CONCENTRATION VS. TOTAL SUSPENDED SOLIDS (TSS) IN GROUNDWATER

19409-04

01/22

Figure

7-6b

- 1. Solid symbol indicates a detected concentration. Open symbol indicates a non-detect, one-half the laboratory reporting limit is graphed.
- 2. Screening Level shown is the Protective of Drinking Water.
- 3. Screening levels provided by Ecology (November 17, 2020).

Seattle DOT Mercer Parcels Site Seattle, Washington

CADMIUM CONCENTRATION VS. TOTAL SUSPENDED SOLIDS (TSS) IN GROUNDWATER

19409-04

01/22

Figure

7-6c

- 1. Solid symbol indicates a detected concentration. Open symbol indicates a non-detect, one-half the laboratory reporting limit is graphed.
- 2. Screening Level shown is the Protective of Drinking Water.
- 3. Screening levels provided by Ecology (November 17, 2020).

Seattle DOT Mercer Parcels Site Seattle, Washington

CHROMIUM CONCENTRATION VS.
TOTAL SUSPENDED SOLIDS (TSS) IN
GROUNDWATER

19409-04

01/22

Figure

7-6d

- 1. Solid symbol indicates a detected concentration. Open symbol indicates a non-detect, one-half the laboratory reporting limit is graphed.
- 2. Screening Level shown is the Protective of Drinking Water.
- 3. Screening levels provided by Ecology (November 17, 2020).

Seattle DOT Mercer Parcels Site Seattle, Washington

LEAD CONCENTRATION VS. TOTAL SUSPENDED SOLIDS (TSS) IN GROUNDWATER

19409-04

01/22

Figure

7-6e

- 1. Solid symbol indicates a detected concentration. Open symbol indicates a non-detect, one-half the laboratory reporting limit is graphed.
- 2. Screening Level shown is the Protective of Drinking Water.
- 3. Screening levels provided by Ecology (November 17, 2020).

Seattle DOT Mercer Parcels Site Seattle, Washington

MERCURY CONCENTRATION VS. TOTAL SUSPENDED SOLIDS (TSS) IN GROUNDWATER

19409-04

01/22

Figure

7-6f

