

Remedial Investigation Report

7602 and 7702 River Road East Puyallup, Washington

Farallon PN: 2220-008

June 28, 2024

Prepared by:

Fam Haynes

Sara Haynes, R.E.P.A. Associate Environmental Scientist/Engineer

Reviewed by:

Pete Kingston, L.G. Principal Geologist

For: REDCO Development LLC Four Embarcadero Center, Suite 1400 San Francisco, California 94111 Submitted by: Farallon Consulting, L.L.C. 1809 7th Avenue Seattle, Washington 98101

TABLE OF CONTENTS

ACRON	IYMS A	ND ABBREVIATIONS	iii
1.0	INTRO	DUCTION	1-1
	1.1	PURPOSE AND OBJECTIVE	
	1.2	REPORT ORGANIZATION	
2.0		ERTY DESCRIPTION AND BACKGROUND	
	2.1	PROPERTY DESCRIPTION	
	2.2	HISTORICAL PROPERTY USE	
	2.3	FUTURE PROPERTY USE	
	2.4	TOPOGRAPHY	
	2.5	GEOLOGY AND HYDROGEOLOGY	
	2.6	SURFACE WATER BODIES	
	2.7	ECOLOGICAL SETTING	
	2.8	CULTURAL RESOURCES	
	2.9	VULNERABLE POPULATIONS AND OVERBURDENED COMMUNITIES	
	2.10	CLIMATE CHANGE	
		2.10.1 Sea Level Rise	
		2.10.2 Flooding	
		2.10.3 Wildfires	
		2.10.4 Landslides and Erosion	
		2.10.5 Drought	2-7
3.0	REME	DIAL INVESTIGATION	3-1
0.0	3.1	MEDIA AND CONSTITUENTS OF POTENTIAL CONCERN	
	3.2	PREVIOUS INVESTIGATIONS	
	0.2	3.2.1 2016 Geotechnical Investigation	
		3.2.2 2022 Phase I Environmental Site Assessment	
		3.2.3 2022 Phase II Environmental Site Assessment	
	3.3	DATA GAPS	
	3.4	FIELD PROGRAM	
	5.4	3.4.1 Utility Locating	
		3.4.2 Boring Advancement and Sample Collection	
		3.4.3 Groundwater Monitoring Well Installation and Development	
		3.4.4 Groundwater Monitoring	
		3.4.5 Soil Gas Sample Collection	
		3.4.6 Laboratory Analyses	
	3.5	REMEDIAL INVESTIGATION RESULTS	
	5.5		
		3.5.1 Soil Analytical Results	
		3.5.2 Groundwater Analytical Results	
		3.5.3 Soil Gas Analytical Results	3-10
4.0	CONC	EPTUAL SITE MODEL	4-1
	4.1	MEDIA AND CONSTITUENTS OF CONCERN	

	4.2	CONFIRMED AND SUSPECTED SOURCES OF COCS	
	4.3	EXPOSURE PATHWAYS AND RECEPTORS	
		4.3.1 Soil to Groundwater	
		4.3.2 Groundwater Direct Contact	4-2
		4.3.3 Groundwater to Surface Water	4-3
		4.3.4 Soil Gas to Air	
5.0	CLEAN	UP STANDARDS	5-1
	5.1	PROPOSED CLEANUP LEVELS	5-1
	5.2	PROPOSED POINTS OF COMPLIANCE	5-1
	5.3	APPLICABLE LOCAL, STATE, AND FEDERAL LAWS	5-1
		· · · _ · _ · , _ · · , _ · _ · · _ · · · _ · · · _ · · · · _ · · · · · · _ ·	
6.0	PLANN	IED WORK	6-1
7.0	BIBLIO	GRAPHY	7-1
8.0	LIMITA	TIONS	8-1
	8.1	GENERAL LIMITATIONS	8-1
	8.2	LIMITATION ON RELIANCE BY THIRD PARTIES	

FIGURES

Figure 1	Property Vicinity	Мар
----------	-------------------	-----

- Figure 2 Property Plan
- Figure 3 Groundwater Elevation Contours, September 15, 2023
- Figure 4 Groundwater Elevation Contours, May 16, 2024
- Figure 5 Soil Analytical Results for TPH
- Figure 6 Soil Analytical Results for Arsenic
- Figure 7 Groundwater Analytical Results for TPH
- Figure 8 Groundwater Analytical Results for Arsenic
- Figure 9 Soil Gas Concentrations for Methane

TABLES

- Table 1Groundwater Elevations
- Table 2Soil Analytical Results for TPH and BTEX
- Table 3
 Soil Analytical Results for Halogenated VOCs
- Table 4Soil Analytical Results for PAHs
- Table 5Soil Analytical Results for Metals

- Table 6
 Groundwater Analytical Results for GRO and BTEX
- Table 7Groundwater Analytical Results for DRO and ORO with and without Silica GelCleanup
- Table 8
 Groundwater Analytical Results for Halogenated VOCs
- Table 9Groundwater Analytical Results for PAHs
- Table 10Water Quality Parameters
- Table 11
 Soil Vapor Analytical Results

APPENDICES

- Appendix A Boring Logs
- Appendix B Ecology TEE Form
- Appendix C Vulnerable Popoulation and Overburdened Community Evaluation
- Appendix D Climate Change Evaluation
- Appendix E Laboratory Analytical Results

ACRONYMS AND ABBREVIATIONS

AST	aboveground storage tank
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and total xylenes
COC	constituent of concern
COPC	constituent of potential concern
DAHP	Washington State Department of Archaeology and Historic Preservation
DRO	total petroleum hydrocarbons as diesel-range organics
Ecology	Washington State Department of Ecology
EPA	U.S. Environmental Protection Agency
F&B	Friedman & Bruya, Inc.
Farallon	Farallon Consulting, L.L.C.
GRO	total petroleum hydrocarbons as gasoline-range organics

HVOC	halogenated volatile organic compound
LEL	lower explosive limit
µg/I	micrograms per liter
MTCA	Washington State Model Toxics Control Act Cleanup Regulation
NAVD88	North American Vertical Datum of 1988
NFA	No Further Action
ORO	total petroleum hydrocarbons as oil-range organics
PAH	polycyclic aromatic hydrocarbons
PID	photoionization detector
Property	7602 and 7702 River Road East in Puyallup, Washington
Site	The area where hazardous substances originating on or associated with the Property have come to be located at concentrations exceeding applicable cleanup levels.
TEE	Terrestrial Ecological Evaluation
UST	underground storage tank
VOC	volatile organic compound
WAC	Washington Administrative Code

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this Remedial Investigation Report (RI Report) on behalf of REDCO Development LLC (REDCO) to provide the results of the remedial investigation for the property at 7602 and 7702 River Road East in Puyallup, Washington (herein referred to as the Property) (Figure 1). This RI Report was prepared in accordance with the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), as established in Chapter 173-340 of the Washington Administrative Code (WAC 173-340). The Property is part of a broader Site, which is defined under MTCA and its implementing regulations as established in WAC 173-340 as comprising the area where hazardous substances originating on or associated with the Property have come to be located at concentrations exceeding applicable cleanup levels.

Current operations at the Property include automotive sales and public self-storage, Historical operations included an unpermitted wood waste landfill, known as the Corliss Wood Waste Landfill, formerly operated on the Property from approximately May 1974 through November 1976. In 1974, the wood waste landfill caught fire and local agencies directed wood waste landfill activities to cease. The remedial investigation was conducted by Farallon and others in multiple phases between 2016 and 2024 to evaluate whether current and/or historical operations resulted in the release of hazardous substances and to adequately characterize contamination.

Based on the results of the remedial investigation, groundwater is the only affected media of concern at the Site. Dissolved arsenic was detected at concentrations exceeding the MTCA cleanup level in groundwater samples collected from two monitoring wells at the Site. Therefore, arsenic in groundwater is a constituent of concern (COC) for the Site. However, dissolved arsenic was detected at concentrations less than the MTCA cleanup level during the most recent groundwater monitoring event conducted in February 2024.

Polar organics have been detected in groundwater at concentrations exceeding screening levels. However, the total organic carbon values detected in groundwater beneath the property confirms that a significant amount of naturally occurring polar organic material (i.e., untreated wood waste) is present in groundwater beneath the Property. The detected concentrations of total polar organics are entirely the result of organic material and not the degradation of petroleum hydrocarbons. Therefore, DRO and ORO are not considered to be COCs for the Site. Since methane gas is not a hazardous substance, it does not qualify as a

COC. However, based on methane concentrations detected at the Property, methane mitigation is likely necessary if future development occurs on the Property.

This RI Report provides sufficient data for use in evaluating potentially feasible cleanup alternatives for the Site. The evaluation and selection process for cleanup action alternatives will be provided in a forthcoming Feasibility Study and Cleanup Action Plan. Following completion of a cleanup action at the Site, REDCO plans to request a No Further Action (NFA) determination from the Washington State Department of Ecology (Ecology).

1.1 PURPOSE AND OBJECTIVE

In accordance with WAC 173-340-350, the purpose of the remedial investigation is to adequately characterize a contaminated site, including the distribution of hazardous substances and the threat they pose to human health and the environment. The results from the remedial investigation will enable the establishment of cleanup standards and the development of and evaluation of cleanup action alternatives in accordance with WAC 173-340-351.

1.2 REPORT ORGANIZATION

The report has been organized into the following sections:

- Section 2, Property Description and Background, presents relevant background information pertaining to the Property, including a description of its location and features, a summary of current and historical uses of the Property and surrounding area, geology and hydrogeology, ecological settings, cultural resources, vulnerable populations, and climate change.
- Section 3, Remedial Investigation, presents the media and constituents of potential concern (COPCs), which generally comprise the hazardous substances, pollutants, and contaminants that are investigated during an initial investigation, a summary of scope and results of previous investigations conducted at the Property, data gaps, a description of the field program, and the results of the investigations.
- Section 4, Conceptual Site Model, provides a summary of the conceptual site model for the Property, including a summary of COCs and confirmed and suspected contaminated areas and media, and exposure pathways and receptors.
- Section 5, Cleanup Standards, provides proposed cleanup levels; proposed points of compliance; and applicable local, state, and federal laws.

- Section 6, Planned Work, provides a description of work planned for the Property following completion of this RI Report.
- Section 7, Bibliography, provides a list of the documents cited in this RI Report.
- Section 8, Limitations, provides Farallon's standard limitations associated with this RI Report.

2.0 PROPERTY DESCRIPTION AND BACKGROUND

This section provides a description of the location and features of the Property and relevant background information, including current and historical uses of the Property and surrounding area.

2.1 PROPERTY DESCRIPTION

The Property consists of Pierce County Parcel Nos. 0420202079, 0420202080, and 0420202081, which total 7.67 acres of land developed with two general areas of operation (Figure 2). The northwestern portion of the Property, comprising Pierce County Parcel No. 0420202079, is developed with In-and-Out Auto Sales, a used car sales lot, which includes a one-story 720-square-foot office building (Sales Building) and a one-story 1,680-square-foot garage building (Garage Building), each constructed in 1968. The Sales Building is used for office purposes and the Garage Building is used for automotive maintenance and minor painting operations. An aboveground hydraulic lift is present in the western portion of the Garage Building; however, evidence of a former in-ground hydraulic lift was observed in the same location in addition to an in-ground trench covered with a steel plate. A fill pipe for an underground storage tank (UST) was observed east of the Garage Building.

The central and southern portions of the Property, comprising Pierce County Parcel Nos. 0420202080 and 0420202081, are developed with a public self-storage facility known as Puyallup River Self Storage that includes approximately 10 buildings ranging in size from 800 to 2,400 square feet constructed in 1988 (Storage Buildings), and a manufactured home used as an office (Mobile Home) with an attached 1,632-square-foot canopy constructed in 1988 on the eastern portion of the Property. The Mobile Home was vacant and was most recently used for office purposes. The remaining portions of the public self-storage storage facility consists of unpaved parking and storage areas.

The only underground utility servicing the Property is electric, which is provided by Puget Sound Energy via power drops from overhead power lines along the northern and western Property boundaries. Stormwater on the Property generally infiltrates the ground surface; however, a storm drain situated in the east-central portion of the Property reportedly discharges to a ditch along 76th Avenue East, west of the Property. There is no natural gas, sewer, or water service at the Property. The Sales Building and Mobile Home are connected to an on-site septic system situated east-adjoining the Sales Building. Water is obtained from a water aboveground storage tank (AST) situated adjacent to the Mobile Home and

water is supplied to the Sales Building and Mobile Home via underground piping. The water AST is refilled as needed via a water truck.

The Property is bounded by River Road East followed by the Puyallup River to the north; commercial properties, a wetland, and a trailer park to the east; residential properties to the south and southwest; and 76th Avenue East followed by residential properties and an auto repair facility and auto dealership to the west.

According to Pierce County Planning & Public Works and Title 18A of the Pierce County Code, the Property and surrounding properties are zoned "MUD – Mixed Use Districts," which includes areas for commercial, office, and multifamily developments along major transit routes.

2.2 HISTORICAL PROPERTY USE

Historically, the Property was largely undeveloped with a single-family residence present on the northeastern portion of the Property from the early 1930s through the mid-1940s. The northwestern portion of the Property was developed in 1968 with the Sales and Garage Buildings. The residence on the northeastern portion of the Property appeared demolished between the late 1950s and early 1970s. The Storage Buildings and Mobile Home were constructed in 1988.

A historical unpermitted wood waste landfill, known as the Corliss Wood Waste Landfill, formerly operated on the Property from approximately May 1974 through November 1976. In 1974, the wood waste landfill caught fire and local agencies directed wood waste landfill activities to cease. The approximate extent of the former wood waste landfill is shown on Figure 2.

2.3 FUTURE PROPERTY USE

Currently there are no redevelopment plans for the Property. It will continue to be used predominantly as a storage lot with a used car sales lot on the northwestern portion of the Property. Any future development would be subject to local land use codes and regulations. Specifically, a future development would be required to mitigate methane soil gas vapor intrusion into any future buildings to protect human health and the environment.

2.4 TOPOGRAPHY

The Property topography is relatively flat at an elevation of approximately 36 feet North American Vertical Datum of 1988 (NAVD88). Regional topography is generally flat, with a slight slope downward to the west-northwest.

2.5 GEOLOGY AND HYDROGEOLOGY

The Property and surrounding area are situated in the Puget Lowland physiographic province, which is a Quaternary-deposited, broad, low-lying trough situated between the Cascade Mountain range to the east, the Olympic Mountain range to the northwest, and Willapa Hills to the southwest. The geology in the vicinity of the Property consists of alluvial deposits of loose, stratified fluvial silt, sand, and gravel associated with the Puyallup River valley.

During subsurface investigations conducted at the Property, untreated wood waste was encountered at a maximum depth of 16 feet below ground surface (bgs) in the southern portion of the Property, and a depth of 11.5 feet bgs in the northern portion of the Property. The untreated wood waste consisted of untreated lumber, limbs, logs, and wood shavings. The wood waste was underlain by fine to coarse sands with silt and gravel observed to the maximum explored depth of 25 feet bgs. Wood waste was not encountered in the northwestern portion of the Property beneath the used car sales lot. Boring and test pit logs are included in Appendix A.

Groundwater was encountered during drilling at depths ranging from approximately 5 to 16 feet bgs. The depth to groundwater measured in monitoring wells during monitoring events ranged from 11.12 to 17.37 feet bgs (Table 1). Based on groundwater elevations calculated using synoptic measurements collected from September 15, 2023 through May 16, 2024, the interpreted groundwater flow direction is to the north toward the Puyallup River, which is consistent with other groundwater monitoring events (Figures 3 and 4).

2.6 SURFACE WATER BODIES

The Puyallup River is situated approximately 0.03 mile north of the Property across River Road East.

2.7 ECOLOGICAL SETTING

A Terrestrial Ecological Evaluation (TEE) is required by WAC 173-340-7490 at any property where there has been a release of hazardous substances to soil. The regulation requires that one of the following actions be taken:

- Document a TEE exclusion using the criteria presented in WAC 173-340-7491;
- Conduct a simplified TEE in accordance with WAC 173-340-7492; or
- Conduct a Property-specific TEE in accordance with WAC 173-340-7493.

Based on the criteria for TEE exclusion in WAC 173-340-7491(1)(c), the Property is excluded from a TEE because concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709. No further consideration of terrestrial ecological impacts is required under MTCA. The completed Ecology TEE form for the Property is provided in Appendix B.

2.8 CULTURAL RESOURCES

The Washington Information System for Architectural and Archaeological Records Data, managed by the Washington State Department of Archaeology and Historic Preservation (DAHP), was reviewed for the presence of historic and prehistoric cultural resources. No historic or prehistoric cultural resources have been documented either on or adjacent to the Property; however, the Property is situated in a very high-risk area for encountering cultural resources as determined by DAHP's predictive model.

2.9 VULNERABLE POPULATIONS AND OVERBURDENED COMMUNITIES

Farallon conducted an evaluation of potential impacts to likely vulnerable populations and overburdened communities in the vicinity of the Property in accordance with *Implementation Memorandum No. 25: Identifying Likely Vulnerable Populations and Overburdened Communities under the Cleanup Regulations* dated January 2024, prepared by Ecology (2024) (Implementation Memorandum No. 25). The purpose of this evaluation is to identify and reduce the impact of environmental and health disparities in Washington State and improve the health of Washington State residents, and to support Ecology's determinations regarding site prioritization, cleanup decisions, and site hazard rankings. Farallon has performed the assessment required by MTCA and Implementation Memorandum No. 25 and, as more fully discussed below, has determined that vulnerable populations and overburdened communities in the vicinity of the Property have not been impacted by

contamination at this Property and that the proposed cleanup action will mitigate potential exposure to environmental harms.

Implementation Memorandum No. 25 indicates that the potentially exposed population includes a likely vulnerable population or overburdened community if the population meets any of the following criteria:

- The potentially exposed population is located in a census tract that ranks a 9 or 10 on the Environmental Health Disparities Index from the Washington State Department of Heath's Environmental Health Disparities Map (EHD Map);
- The potentially exposed population is located in a census tract that is at or above the 80th Washington State percentile of the Demographic Index from the U.S. Environmental Protection Agency's (EPA) Environmental Justice Screening and Mapping Tool (EJ Screening Tool); or
- The potentially exposed population is located in a census tract that is at or above the 80th Washington State percentile of the Supplemental Demographic Index from the EJ Screening Tool.

Farallon used the EPA EJ Screening Tool and the EHD Map to evaluate whether vulnerable populations are present in the vicinity of the Property. The Property is located within Census Tract 53053073408, which is in the 33rd Washington State percentile of the Demographic Index and 48th Washington State percentile of the Supplemental Demographic Index from the EJ Screening Tool (Appendix C). According to the EHD Map, the Site is located in an area that ranks 8 on the Environmental Health Disparities Index (Appendix C).

Based on the overall rank of 8 on the Environmental Health Disparities Index and Demographic Index and Supplemental Demographic Index state percentiles less than 80, vulnerable populations and overburdened communities are not likely part of the potentially impacted population. Therefore, the proposed cleanup action at the Property will protect human health and the environment and eliminate the potential exposure of hazardous substances attributed to the Property to all human receptors, including vulnerable populations and overburdened communities.

2.10 CLIMATE CHANGE

In accordance with WAC 173-340-350(6)(f), Farallon evaluated current and projected local and regional climatological characteristics to determine whether any could potentially affect the migration of hazardous substances or the resilience of cleanup action alternatives for

the Property. According to Ecology's Sustainable Remediation: Climate Change Resiliency and Green Remediation dated November 2017, revised January 2023 (Ecology 2017) (Ecology Climate Guidance), sea level rise, flooding, extreme precipitation, wildfires, landslides and erosion, and drought are the climate-related impacts that generally pose the highest potential risk for upland cleanup sites.

Based on the location of the Property in a highly developed area in Puyallup, and the elevation of the Property with respect to sea level, current and projected local and regional climatological characteristics are not anticipated to affect the migration of hazardous substances or the resilience of the cleanup action at the Property. A summary of the climate change evaluation is presented in the following sections.

2.10.1 Sea Level Rise

The Property is located at an elevation of approximately 36 feet NAVD88. Therefore, sea level rise may affect the migration of hazardous substances or the resilience of the cleanup action at the Property.

2.10.2 Flooding

Farallon reviewed Federal Emergency Management Agency flood maps for the vicinity of the Property, which indicate that the Property is in an area of 0.2 percent annual chance of flood hazard (Appendix D). Farallon reviewed the Pierce County PublicGIS Map for the Property, which indicates that the Property is within a potential wetland review area and portions of the Property are within a regulated floodplain (Appendix D). Therefore, climate changes to precipitation may cause increased flooding at the Property that would affect the migration of hazardous substances or the resilience of the cleanup action at the Property.

2.10.3 Wildfires

The Ecology Climate Guidance indicates that increased risk of wildfires is a potential climaterelated hazard in areas proximate to fuel sources such as forests and grasslands. Due to the location of the Property in a highly developed area, fuel sources for wildfires are not present and the risk of wildfires is unlikely.

2.10.4 Landslides and Erosion

The Property is in a relatively flat and highly developed area, with no steep slopes in proximity to the Property that could create a landslide or erosion hazard. Therefore, the risk of landslides and erosion is low.

2.10.5 Drought

The Ecology Climate Guidance indicates that cleanup sites vulnerable to drought include groundwater sites vulnerable to a lowered water table, sediment sites in drought-prone waterbodies, and mines and landfills reliant on rain to maintain vegetative cover for slope stability. Groundwater elevations have remained relatively stable at the Property and the Property does not appear to be vulnerable to a lowered water table; however, limited data is available for historical groundwater elevations at the Property. Drought is not considered to be a likely climate-related impact for the Property.

3.0 REMEDIAL INVESTIGATION

The remedial investigation was conducted in accordance with the provisions of WAC 173-340-350 to adequately characterize contamination at the Site, including the distribution of hazardous substances and the threat they pose to human health and the environment. The remedial investigation was conducted in several phases between September 2016 and May 2024, with hydrogeological and chemical analytical data from the early phases used to refine the scope of later phases of the remedial investigation.

This section presents the media and COPCs for the Site, a summary of the environmental investigations conducted at the Site, and the results.

3.1 MEDIA AND CONSTITUENTS OF POTENTIAL CONCERN

Farallon selected the media of potential concern and the COPCs for the Property based on historical operations conducted on the Property, including automotive maintenance operations conducted on the northwestern portion of the Property and historical wood waste landfill operations conducted on the remaining portions of the Property. The media of potential concern identified for the remedial investigation were soil, soil gas, and groundwater. The COPCs evaluated for the remedial investigation consisted of:

- Total petroleum hydrocarbons as diesel-range organics, as oil-range organics, and as gasoline-range organics (DRO, ORO, and GRO, respectively);
- Volatile organic compounds (VOCs);
- Polycyclic aromatic hydrocarbons (PAHs); and
- Metals.

Methane gas is not listed or designated under any of the statutory provisions of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980. Therefore, it is not considered to be a hazardous substance. However, as part of the remedial investigation, methane gas was evaluated to ensure the protection of human health and the environment.

3.2 PREVIOUS INVESTIGATIONS

Previous environmental investigations conducted at the Property by others since 2016 are summarized in the following sections. Sample locations are shown on Figure 2.

3.2.1 2016 Geotechnical Investigation

In 2016, South Sound Geotechnical Consulting conducted a geotechnical investigation to assess the subsurface conditions for construction of a new gravel parking storage area on the southern portion of the Property. The geotechnical investigation consisted of the advancement of test pits TP-1 through TP-4 to depths ranging from 6 to 11.5 feet bgs (Figure 2). Fill material was encountered from 4 to 8 feet bgs and consisted of wood debris (including lumber, limbs, logs, and wood shavings) with silt, sand, and minor amounts of plastic and metal. Fill with gravelly sand with silt and wood debris was observed underlying the wood debris to the maximum depth explored of 11.5 feet bgs. No environmental samples were collected during the geotechnical investigation.

3.2.2 2022 Phase I Environmental Site Assessment

In September 2022, BBG Assessments, LLC (2022) prepared a draft Phase I Environmental Site Assessment (Phase I ESA) for the Property, which identified the following recognized environmental conditions in connection with the Property:

- A fill pipe indicative of a UST observed on the eastern exterior of the Garage Building.
- Indications of a former in-ground hydraulic lift observed inside the Garage Building. Although the former lift had been decommissioned and a concrete patch was observed during the site reconnaissance, hydraulic fluid and potential subsurface components were potentially associated with the hydraulic lift.
- The potential release of hazardous substances associated with long-term automotive operations since at least the 1990s.
- A septic system situated proximate to the buildings on the northwestern portion of the Property used during long-term automotive operations.

In addition to the recognized environmental conditions, the Phase I ESA indicated that a non-operating historical landfill was formerly located on the Property in 1974. The Phase I ESA indicated that there had been no violations or releases to the subsurface reported for the landfill and it was not expected to represent a significant environmental concern.

3.2.3 2022 Phase II Environmental Site Assessment

In October 2022, BBG Assessments, LLC conducted a limited subsurface investigation to evaluate the recognized environmental conditions identified in the Phase I ESA. The scope of work included conducting a ground-penetrating radar survey near the Garage Building to evaluate the subsurface around the vent pipe for the presence of a UST and advancing five borings, B-1 through B-5, on the northwestern portion of the Property to a maximum depth of 24 feet bgs to collect soil and reconnaissance groundwater samples.

The borings were advanced in the vicinity of the Garage Building and septic system situated east of the Sales Building. No anomalies indicating the potential presence of a UST were identified during the ground-penetrating radar survey. VOCs were not detected in soil samples using a photoionization detector. Groundwater was encountered at depths ranging from 17 to 20 feet bgs in the borings advanced.

Soil samples were collected at depths ranging from 4 to 16 feet bgs and submitted for laboratory analysis of VOCs, PAHs, GRO, and DRO. Reconnaissance groundwater samples were collected from four of the five borings and were submitted for laboratory analysis of VOCs, PAHs, GRO, and DRO. VOCs, PAHs, and total petroleum hydrocarbons were detected in soil samples at concentrations less than their respective MTCA Method A cleanup levels (Figure 5; Tables 2 through 4). None of the COPCs were identified at concentrations exceeding the laboratory reporting limit in the reconnaissance groundwater samples analyzed (Figure 7; Tables 6 through 8).

Based on these results of the subsurface investigation, BBG Assessments, LLC determined that historical Property use had not significantly impacted soil or groundwater.

3.3 DATA GAPS

One of Farallon's key objectives was to compile and evaluate historical data generated by others and identify data gaps. The previous investigations did not investigate potential releases of COPCs associated with the historical wood waste landfill, which was considered to be a data gap.

3.4 FIELD PROGRAM

Farallon's remedial investigation field program was conducted between August 2023 and May 2024 to address the data gap listed above. A summary of the field program is provided below. Sampling locations are shown on Figure 2.

3.4.1 Utility Locating

The Northwest Utility Notification Center located public utilities on and in the vicinity of the Property. Linescape of Washington, LLC of Seattle, Washington conducted a private utility locate at the Property. In addition, each boring location was cleared to depths of up to 5 feet bgs using a vacuum truck to verify that no utilities were present prior to using mechanical drilling equipment.

3.4.2 Boring Advancement and Sample Collection

Nine borings were advanced between August and September 2023 (Figure 2). Borings FB-1 through FB-3 were advanced on August 12, 2023, and borings FMW-01 through FMW-05 and FB-4 were advanced on September 11 and 12, 2023. Borings were advanced for collection of soil and reconnaissance groundwater samples, and installation of groundwater monitoring wells. Drilling services were provided by Anderson Environmental Contracting, LLC of Kelso, Washington and Holt Services, Inc. of Edgewood, Washington.

Borings were advanced using a direct-push drill rig and were continuously sampled using 5foot-long probe rods lined with disposable polyvinyl chloride or acetate liners that were removed and cut to reveal the sample in the driven interval. Soil samples were described in general accordance with the Unified Soil Classification System, and screened in the field for potential visual and olfactory evidence of contamination, and by headspace analysis using a photoionization detector (PID) to detect the presence of VOCs. The PID readings, the Unified Soil Classification System symbol, and visual and olfactory observations for the samples were recorded on boring logs. Boring logs are provided in Appendix A.

Upon reaching total depth, reconnaissance groundwater samples were collected from borings FB-1 through FB-3. The reconnaissance groundwater samples were collected using a temporary well and a peristaltic pump with dedicated tubing. The tubing intake was placed at the approximate middle portion of the water column in each monitoring well. After water turbidity had cleared to acceptable levels, groundwater samples were collected directly from the pump outlet tubing and placed into laboratory-prepared sample containers.

Soil and reconnaissance groundwater samples retained for laboratory analysis were collected in laboratory-supplied containers, placed on ice, and transported to Friedman & Bruya, Inc. of Seattle, Washington (F&B) for potential laboratory analysis as described in Section 3.5.6, Laboratory Analysis.

3.4.3 Groundwater Monitoring Well Installation and Development

Five monitoring wells, FMW-01 through FMW-05, were installed at the Property in September 2023 (Figure 2). Monitoring wells were constructed in accordance with the Minimum Standards for Construction and Maintenance of Wells as established in WAC 173-160. The monitoring wells were constructed using 2-inch-diameter polyvinyl chloride casing with 10 feet of 0.010-inch slotted pre-pack screen. Screen intervals were placed at intervals ranging from depths of 10 to 20 or 15 to 25 feet bgs, depending on the depth to groundwater at each location. Each monitoring well was completed at grade with a traffic-rated flush-mounted steel monument.

The monitoring wells were developed using a submersible pump to surge and purge each well following completion of well installation. Each monitoring well was developed until the majority of fine-grained sediment had been removed from the well screen and adjacent sand pack. The locations and elevations of monitoring wells FMW-01 through FMW-05 were surveyed by Apex Engineering LLC of Tacoma, Washington using the NAVD88 and Washington State Plane North Zone. Monitoring well construction details are provided in Appendix A.

3.4.4 Groundwater Monitoring

Groundwater monitoring events were conducted in September 2023, February 2024, and May 2024. During each groundwater monitoring event, well caps were opened, and groundwater levels were allowed to equilibrate to atmospheric conditions for at least 45 minutes. The depth to groundwater in each monitoring well was then measured to the nearest 0.01 foot using an electronic water level meter (Table 1).

Groundwater samples were collected in accordance with EPA low-flow sampling procedures. Purging and sampling for each monitoring well was performed using a peristaltic pump and dedicated silicone and polyethylene tubing, at flow rates ranging from approximately 100 to 300 milliliters per minute. The tubing intake was placed at the approximate middle portion of the water column in each monitoring well.

During purging, water quality was monitored using a YSI Pro DSS water-quality system equipped with a flow-through cell. The water-quality parameters temperature, pH, specific conductance, dissolved oxygen, oxidation-reduction potential, and turbidity were monitored and recorded at approximately 3-minute intervals during purging (Table 10). Following purging, groundwater samples were collected from the pump outlet tubing located upstream

of the flow-through cell, and placed directly into laboratory-prepared sample containers. Groundwater samples were placed on ice in a cooler and transported under standard chainof-custody protocols for F&B for laboratory analysis as described in Section 3.4.6, Laboratory Analysis.

3.4.5 Soil Gas Sample Collection

Multiple sampling points were used to evaluate methane concentrations, including temporary soil gas monitoring points, monitoring wells, and a soil gas vapor pin. These different types of sampling points are constructed differently and results may not be comparable.

The three soil temporary soil gas monitoring points (SG-1 through SG-3) were installed using a direct-push drill rig to a depth of 8 feet bgs in August 2023 (Figure 2). The temporary soil gas monitoring points were constructed using 0.75-inch-diameter Schedule 40 polyvinyl chloride casing and 0.010-inch slotted screens. Soil gas monitoring points were screened between 3 and 8 feet bgs. The borehole annulus surrounding each monitoring point screen was filled with a filter pack consisting of clean 10/20 sand placed from the base of the screen to approximately 1 foot above the screened interval. Following installation, each soil gas monitoring point was fitted with a ball valve assembly to facilitate soil gas monitoring.

In February 2024, a subslab soil gas vapor pin (VP-1) was installed in the Garage Building on the northwestern portion of the Property to evaluate whether methane was present in the occupied building on the Property that was closest to the former wood waste landfill (Figure 2). The vapor pin was flush-mounted with the existing floor surface and was installed using a hand-held rotary hammer drill equipped with an approximately 1-inch-diameter drill bit. The intake for the vapor pin is directly beneath the building slab.

Monitoring wells FMW-01 through FMW-05 were constructed using 2-inch-diameter polyvinyl chloride casing with 10 feet of 0.010-inch slotted pre-pack screen. Screen intervals were placed at intervals ranging from depths of 10 to 20 or 15 to 25 feet bgs within and beneath the wood waste.

Methane in soil gas was measured from the three temporary soil gas monitoring points SG-1 through SG-3 in August 2023, from monitoring wells FMW-01 through FMW-05 in September 2023, and from monitoring wells FMW-01 through FMW-05 and the soil gas vapor pin VP-1 in February and May 2024. Generally, there was limited exposed screen interval in monitoring wells FMW-01 through FMW-04 due to elevated groundwater elevations.

The soil gas monitoring points were screened for methane gas using a Landtec GEM2000 landfill gas meter to evaluate methane concentrations in soil gas in accordance with the *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action* dated March 2022 and ASTM E2993-16 *Standard Guide for Evaluating Potential Hazard as a Result of Methane in the Vadose Zone* dated December 27, 2016 (ASTM International 2016).

Each soil gas monitoring point location was purged using the GEM2000 at a rate of approximately 300 cubic centimeters per minute. Monitoring point casing volumes were calculated using depth-to-water measurements. Readings for methane, carbon dioxide, oxygen, and nitrogen were recorded for every quarter-volume of soil monitoring point casing purged. Readings were recorded every quarter-volume of casing purged until a total of 3 casing volumes were purged or until readings stabilized.

3.4.6 Laboratory Analyses

Samples collected during the remedial investigation were submitted to F&B under standard chain of custody protocols. This section presents the laboratory analytical methods used for each media investigated during the remedial investigation.

3.4.6.1 <u>Soil</u>

Soil samples collected during the field program were analyzed for one or more of the following analytes:

- DRO and ORO by Northwest Method NWTPH-Dx;
- GRO by Northwest Method NWTPH-Gx;
- VOCs, including benzene, toluene, ethylbenzene, and total xylenes (BTEX) and halogenated VOCs (HVOCs) by EPA Method 8260D;
- PAHs by EPA Method 8270E; and
- Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) by EPA Methods 6020B.

3.4.6.2 <u>Groundwater</u>

Groundwater samples collected during the field program were analyzed for one or more of the following analytes:

• DRO and ORO by Northwest Method NWTPH-Dx, with and without Silica Gel Cleanup;

- GRO by Northwest Method NWTPH-Gx;
- VOCs, including BTEX and HVOCs, by EPA Method 8260D;
- Total and dissolved metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) by EPA Methods 200.8 and 6020B; and
- Total organic carbon by Standard Method 5310C.

3.4.6.3 Soil Gas

Soil gas samples collected during the field program were not submitted for laboratory analysis; field measurements were collected for methane, carbon dioxide, oxygen, and nitrogen.

3.5 REMEDIAL INVESTIGATION RESULTS

The following sections summarize the results from the investigations that together constitute the remedial investigation for the Site. The results are presented in Tables 1 through 11 and are shown on Figures 4 through 9. Boring logs are provided in Appendix A. Laboratory analytical reports are provided in Appendix E.

3.5.1 Soil Analytical Results

The laboratory analytical results for soil samples collected during the subsurface investigation were compared with MTCA Method A soil cleanup levels for unrestricted land use based on the current and planned future use of the Property.

Soil samples were analyzed from soil that was present beneath the wood waste. COPCs, including DRO, ORO, GRO, VOCs, PAHS, and metals, were less than the MTCA Method A cleanup levels in the soil samples analyzed (Figures 5 and 6; Tables 2 through 5).

3.5.2 Groundwater Analytical Results

Groundwater analytical results are compared with MTCA Method A groundwater cleanup levels for unrestricted land. The MTCA cleanup level for arsenic was the natural background concentration for arsenic in the Puget Sound lowlands of 8 micrograms per liter (µg/I).

3.5.2.1 August 2023 Analytical Results

Arsenic, DRO, and ORO were the only COPCs detected at concentrations exceeding the MTCA cleanup levels in reconnaissance groundwater samples analyzed. GRO, VOCs, PAHs,

and the remaining metals were less than the MTCA Method A cleanup levels in the reconnaissance groundwater samples analyzed (Figures 7 and 8; Tables 6 through 9).

Dissolved arsenic was detected at concentrations of 10.5 and 12.3 μ g/l in reconnaissance groundwater samples collected from borings FB-1 and FB, respectively, slightly exceeding the natural background concentration of 8 μ g/l for the Puget Sound lowlands (Figure 8; Table 9). DRO and ORO were detected at concentrations of 2,200 and 7,400 μ g/l, respectively, exceeding the MTCA Method A cleanup level of 500 μ g/l in the reconnaissance groundwater sample collected from boring FB-3 (Figure 7; Table 7). The reconnaissance groundwater sample collected from boring FB-3 was analyzed with and without silica gel cleanup to evaluate whether DRO and ORO detections were a result of organic interference due to the presence of untreated wood waste present beneath the Property. After reanalysis of the sample following silica gel cleanup, DRO and ORO were detected at concentrations of 700 and 2,900 μ g/l (Figure 7; Table 7).

Reconnaissance groundwater samples are collected from open borings with limited to no development prior to sampling. This typically results in increased sample turbidity, which can bias detected chemical concentrations high, particularly for metals and hydrophobic organic compounds. Groundwater samples collected from properly installed and developed monitoring wells are considered to be most representative of groundwater quality. In September 2023, Farallon installed monitoring wells FMW-01 through FMW-05 to collect representative groundwater samples and confirm the August 2023 results.

3.5.2.2 September 2023 Analytical Results

Dissolved arsenic was detected at concentrations exceeding the MTCA cleanup level in the groundwater samples collected from monitoring wells FMW-01 and FMW-02. Dissolved arsenic concentrations were less than the MTCA cleanup level in the remaining groundwater samples analyzed. The remaining metals either were detected at concentrations less than the MTCA Method A cleanup levels or were reported non-detect at the laboratory practical quantitation limit in the remaining groundwater samples analyzed (Figure 8; Table 9).

Groundwater samples were analyzed with and without silica gel cleanup to evaluate whether DRO and ORO detections were a result of organic interference due to the presence of untreated wood waste present beneath the Property. DRO and/or ORO were detected at concentrations exceeding the MTCA Method A cleanup level in the groundwater samples collected from monitoring wells FMW-03 and FMW-04 when analyzed without silica gel cleanup. However, DRO and ORO were reported non-detect at the laboratory practical

quantitation limit following silica gel cleanup in all groundwater samples analyzed (Figure 7; Table 7). Based on these data, the untreated wood waste is biasing DRO and ORO analytical results.

3.5.2.3 February 2024 Analytical Results

Dissolved arsenic was detected at concentrations less than the MTCA cleanup level in the groundwater samples collected from monitoring wells in February 2024 (Figure 8; Table 9).

Groundwater samples were analyzed with and without silica gel cleanup to evaluate whether DRO and ORO detections were a result of organic interference due to the presence of untreated wood waste present beneath the Property. DRO and/or ORO were detected at concentrations less than the MTCA Method A cleanup level in the groundwater samples collected from monitoring wells when analyzed without silica gel cleanup. However, DRO and ORO were reported non-detect at the laboratory practical quantitation limit following silica gel cleanup in all groundwater samples analyzed (Figure 7; Table 7).

In addition, the groundwater samples were analyzed for total organic carbon to quantify naturally occurring organics in groundwater beneath the Property. Total organic carbon was detected in monitoring wells at concentrations ranging from 10.9 to 32.6 mg/L.

The table below from the textbook *Organic Geochemistry of Natural Waters* by E.M. Thurman (1985) provides typical total organic carbon ranges for a variety of different water sources. According to this reference, the typical total organic carbon concentration for groundwater is 700 parts per million. The total organic carbon concentrations detected in groundwater beneath the Property is equivalent to the typical total organic carbon concentrations for marsh and bog water, which contain much larger quantities of organic material than are typically found in groundwater.

Water	Typical Total Organic Carbon (Range)
Bog	33 ppm (10 to 60)
Marsh	17 ppm (10 to 60)
Eutropic lake	12 ppm
Oligotrophic lake	2.2 ppm
River	7.0 ppm (1 to 10)
Precipitation	1.1 ppm
Ground Water	700 ppb
Sea Water	500 ppb

Waste Water	up to 1000 ppm
Process Waters	very wide range
Drinking Water	100 ppb to 10 ppm
Purified Water	1 ppb to 500 ppb
Ultrapure Water	0.1 ppb to 10 ppb

Notes: ppm = parts per million ppb = parts per billion

These results indicate that the total organic carbon concentration in groundwater beneath the Property is significantly higher than the typical total organic carbon concentrations in groundwater. As stated in *Water Quality Assessments – A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring – Second Edition* (World Health Organization 1996), total organic carbon values higher than 2 mg/L in groundwater result from the presence of natural organic matter. The total organic carbon value detected in groundwater beneath the Property confirms that a significant amount of naturally occurring polar organic material (i.e., untreated wood waste) is present in groundwater beneath the Property. Therefore, the detected concentrations of total polar organics are entirely the result of organic material and not the degradation of petroleum hydrocarbons.

3.5.3 Soil Gas Analytical Results

The results from methane soil gas monitoring are shown on Figure 9 and included in Table 11. The concentrations of methane were compared with the LEL, which is 5 percent.

Methane concentrations have exceeded the LEL in seven of the nine soil gas sampling points. The highest concentration of methane was 68.2 percent in soil gas sampling point FMW-04 on the western portion of the Property. All of the detections were in soil gas sampling points located within untreated wood waste in the former landfill. Based on these data, the untreated wood waste was determined to be producing methane gas.

Methane was not detected in vapor pin VP-1 located in the Garage Building. This demonstrated that the methane has not migrated from the former landfill into the occupied buildings on the Property.

4.0 CONCEPTUAL SITE MODEL

This section provides a summary of the conceptual site model derived from the results of the remedial investigation. Included in this section is a discussion of COCs, media of concern, confirmed and suspected sources, the nature and extent of contamination, exposure pathways and receptors, and proposed cleanup standards. The conceptual site model is used as a basis for developing technically feasible cleanup action alternatives and selecting a final cleanup action in accordance with applicable MTCA regulations.

The conceptual site model will be refined throughout the cleanup action process as additional information becomes available.

4.1 MEDIA AND CONSTITUENTS OF CONCERN

The COCs are defined as the hazardous substances that have been detected at concentrations exceeding MTCA cleanup levels. Based on the results of the remedial investigation, groundwater is the only affected media of concern at the Site. COPCs were detected at concentrations less than the MTCA cleanup levels in all soil samples analyzed. Therefore, soil is not considered to be a medium of concern.

Dissolved arsenic was detected at concentrations exceeding the MTCA cleanup level in groundwater samples collected from two monitoring wells at the Site. Therefore, arsenic in groundwater is a COC for the Site. However, dissolved arsenic was detected at concentrations less than the MTCA cleanup level during the most recent groundwater monitoring event conducted in February 2024.

Polar organics have been detected in groundwater at concentrations exceeding screening levels. However, the total organic carbon values detected in groundwater beneath the property confirms that a significant amount of naturally occurring polar organic material (i.e., untreated wood waste) is present in groundwater beneath the Property. The detected concentrations of total polar organics are entirely the result of organic material and not the degradation of petroleum hydrocarbons. Therefore, DRO and ORO are not considered to be COCs for the Site.

Since methane gas is not a hazardous substance, it does not qualify as a COC for the Property. However, based on methane concentrations detected at the Property, methane mitigation is likely necessary if future development occurs on the Property.

www.farallonconsulting.com

4.2 CONFIRMED AND SUSPECTED SOURCES OF COCS

Sources of arsenic in groundwater and methane in soil gas are related to untreated wood waste in the former landfill that is present on the Property. Decomposing organic materials creates anaerobic conditions that can result in mobilization of naturally occurring arsenic and production of methane.

4.3 EXPOSURE PATHWAYS AND RECEPTORS

The exposure risks associated with the presence of COCs at the Site are identified as human health. This section presents the evaluation and conclusions pertaining to the exposure pathways at the Site.

4.3.1 Soil to Groundwater

Based on the remedial investigation results, none of the COPCs detected in soil at concentrations exceeding MTCA cleanup levels protective of groundwater were detected at concentrations exceeding MTCA cleanup levels in groundwater at the Site. The soil to groundwater pathway is considered incomplete for the Site.

Reducing conditions may be mobilizing naturally occurring arsenic, However, concentrations of dissolved arsenic were less than the MTCA cleanup level during the most recent groundwater monitoring event conducted in February 2024.

4.3.2 Groundwater Direct Contact

The human exposure pathway for soil and groundwater at the Site is the direct contact pathway, which comprises both the dermal contact and ingestion pathways.

No groundwater supply-wells that are used for potable water are present in the vicinity of the Site. Ingestion of groundwater is an incomplete exposure pathway, and does not pose a human health risk. As part of implementation of the cleanup action, arsenic-contaminated groundwater may be exposed and potentially present an exposure risk. Future receptors to potential contaminants in groundwater primarily consist of construction workers through the ingestion and dermal exposure pathways. The cleanup action alternatives selected for evaluation in the Feasibility Study will include groundwater monitoring.

4.3.3 Groundwater to Surface Water

Laboratory analytical results for groundwater samples collected down-gradient from known impacts at the Site and up-gradient from the Puyallup River confirm that the groundwater to surface water pathway is incomplete for the Site.

4.3.4 Soil Gas to Air

Arsenic is not volatile and the soil gas to indoor air pathway is not complete.

Since methane gas is not a hazardous substance, it does not qualify as a COC for the Property. However, methane can present a risk to human health. The potential for an unacceptable vapor intrusion risk from methane gas intruding into future structures is present at the Site, and for potential explosion hazard and/or short-term inhalation of methane gas by construction workers during future redevelopment activities. Based on methane concentrations detected at the Property, methane mitigation is likely necessary to mitigate the soil gas to air pathway if future development occurs on the Property.

5.0 CLEANUP STANDARDS

Cleanup standards apply to a release of a hazardous substance at a site and include 1) cleanup levels for hazardous substances present at the Site; 2) the location where these cleanup levels must be met (i.e., point of compliance); and 3) other regulatory requirements that apply to the Site because of the type of action and/or location of the Site (i.e., applicable state and federal laws). Cleanup standards are identified for each hazardous substances at a site and the specific areas or pathways where humans and the environment can become exposed to these substances. The cleanup action alternatives evaluated in the feasibility study must meet the selected cleanup standards for the Site.

In accordance with WAC 173-340-700, this section provides the proposed cleanup standards for the Site.

5.1 PROPOSED CLEANUP LEVELS

Preliminary cleanup levels were established for the remedial investigation based on the potential exposure pathways and receptors (identified in Section 4.3) to identify a conservative basis for defining the extent of contamination for each COC and medium of concern. Proposed cleanup levels for the Site have been developed in accordance with MTCA to be protective of human health and the environment.

The proposed cleanup level for arsenic is 8 μ g/l, the natural background concentration for the Puget Sound lowlands.

5.2 PROPOSED POINTS OF COMPLIANCE

The points of compliance are the locations at which cleanup levels for the COCs must be attained to meet the requirements of MTCA.

In accordance with WAC 173-340-720(8), the point of compliance for groundwater is defined as the uppermost level of the saturated zone extending vertically to the lowest depth at the Site that potentially could be impacted by COCs.

5.3 APPLICABLE LOCAL, STATE, AND FEDERAL LAWS

Pursuant to WAC 173-340-710, the cleanup action will comply with applicable local, state, and federal laws. The local, state, and federal laws that are anticipated to be the applicable requirements for a cleanup action, and encompass applicable regulatory guidelines, are:

• MTCA (WAC 173-340);

- The Water Quality Standards for Groundwaters of the State of Washington (WAC 173-200);
- Washington State Solid Waste Management Laws and Regulations (RCW 70.95; WAC 173-351 and 173-304);
- Accreditation of Environmental Laboratories (WAC 173-50);
- The Occupational Safety and Health Act (Part 1910 of Title 29 of the Code of Federal Regulations [29 CFR 1910] and WAC 296-62);
- The State Environmental Policy Act (RCW 43.21; WAC 197-11 and 173-802);
- Maximum Contaminant Levels, National Primary Drinking Water Regulations (WAC 246-290-310 and 46 CFR 141);
- Safety Standards for Construction Work (WAC 296-155);
- Minimum Standards for Construction and Maintenance of Wells (WAC 173-160); and
- Applicable local permits and ordinances indicated by Tacoma-Pierce County Health Department Environmental Health Code.

6.0 PLANNED WORK

This RI Report provides sufficient data for use in evaluating potentially feasible cleanup alternatives for the Site. The evaluation and selection process for cleanup action alternatives will be provided in a forthcoming Feasibility Study and Cleanup Action Plan. The Feasibility Study will screen cleanup technologies, evaluate technically feasible cleanup alternatives, and identify a preferred cleanup alternative for the Site that meets MTCA requirements.

7.0 BIBLIOGRAPHY

- ASTM International. 2016. ASTM E2993-16 Standard Guide for Evaluating Potential Hazard as a Result of Methane in the Vadose Zone. Revised November 29. December 27.
- BBG Assessments, LLC. 2022a. Draft Phase I Environmental Site Assessment, 7602-7702 River Road, Puyallup, Washington 98371. Prepared for Zenith IOS, LLC. September 9.
- -----. 2022b. Phase II Limited Environmental Site Assessment, 7602-7702 River Road, Puyallup, Washington 98371. Prepared for Zenith IOS, LLC. October 17.

City of Puyallup. No Date. Critical Areas App. <<u>https://experience.arcgis.com/experience/94f2b2acd1dd454d87e72c83ce3d0e2</u> <u>f/</u>>. (June 24, 2024.)

- Farallon Consulting, L.L.C. (Farallon). 2023a. Letter Regarding Summary of Subsurface Investigation, 7602 and 7702 River Drive East, Puyallup, Washington. From Michael Ysaguirre and Pete Kingston. To Jason Freise, REDCO Development LLC, 7702 River Road Parcel A Owner LLC, 7702 River Road Parcel B Owner LLC, 7702 River Road Parcel C Owner LLC, and BLKB-REDCO 7702 River Road LLC. October 18.
- 2023b. Phase I Environmental Site Assessment Report, 7602 and 7702 River Road East, Puyallup, Washington. Prepared for REDCO Development LLC, 7702 River Road Parcel A Owner LLC, 7702 River Road Parcel B Owner LLC, 7702 River Road Parcel C Owner LLC, and BLKB-REDCO 7702 River Road LLC. October 18.
- Pierce County Assessor-Treasurer. No Date. Property and Zoning Information for Parcel Nos. 0420202079, 0420202080, and 0420202081. <<u>https://atip.piercecountywa.gov/app/v2/parcelSearch/search</u>>. (April 30, 2024.)
- Pierce County Council. 2024. Pierce County Code, Chapter 18A.10, Zone Classifications. <<u>https://pierce.county.codes/PCC/18A.10</u>>. (April 30, 2024.)
- South Sound Geotechnical Consulting. 2016. Report of Geotechnical Engineering Services, Puyallup River Road Self Storage Expansion, Puyallup, Washington. Prepared for Eric Corliss. September 8.

Thurman, E.M. 1985. Organic Geochemistry of Natural Waters. Matinus Ninhoff/Dr W. Junk.

- U.S. Environmental Protection Agency. No Date. Environmental Justice Screening and Mapping Tool Search. <<u>https://ejscreen.epa.gov/mapper/</u>>. (June 17, 2024.)
- Washington State Department of Archaeology and Historic Preservation. No Date. Washington Information System for Architectural and Archaeological Records Data Search. <<u>https://wisaard.dahp.wa.gov/</u>>. (June 17, 2024.)
- ——. No Date. Predictive Model Map Search.
 https://wisaard.dahp.wa.gov/portal/home/webmap/viewer.html?useExisting=1&la

 yers=ee1a6001961948babddb2dafc7316250
 . (June 17, 2024.)
- Washington State Department of Ecology. 2017. Sustainable Remediation: Climate Change Resiliency and Green Remediation. Publication No. 17-09-052. Revised January 2023. November.
- ——. 2022. Guidance for Evaluating Vapor Intrusion in Washington State, Investigation and Remedial Action. Publication No. 09-09-047. March.
- -----. 2023. *Guidance for Silica Gel Cleanup in Washington State*. Publication No. 22-09-059. November.
- -----. 2024. Implementation Memorandum No. 25: Identifying Likely Vulnerable Populations and Overburdened Communities Under the Cleanup Regulations. January.
- Washington State Department of Health. No Date. Washington Environmental Health Disparities Map Search. <<u>https://fortress.wa.gov/doh/wtnibl/WTNIBL/</u>>. (June 17, 2024.)
- World Health Organization. 1996. Water Quality Assessments A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring – Second Edition.

8.0 LIMITATIONS

8.1 GENERAL LIMITATIONS

The conclusions contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location. The conclusions contained herein are subject to the following inherent limitations:

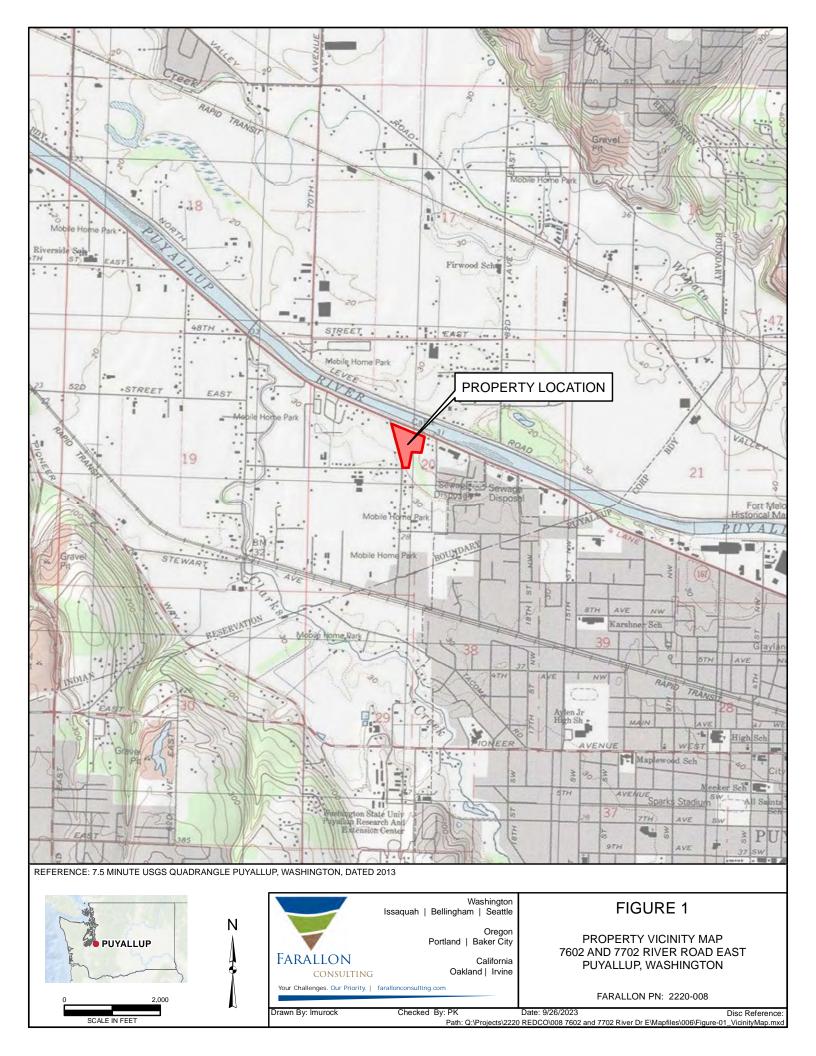
- Accuracy of Information. Farallon obtained, reviewed, and evaluated certain information used in this report/assessment from sources that were believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy or authenticity. Should the information upon which Farallon relied prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.
- Reconnaissance and/or Characterization. Farallon performed a reconnaissance and/or characterization of the Site that is the subject of this report/assessment to document current conditions. Farallon focused on areas deemed more likely to exhibit hazardous materials conditions. Contamination may exist in other areas of the Site that were not investigated or were inaccessible. Site activities beyond Farallon's control could change at any time after the completion of this report/assessment.

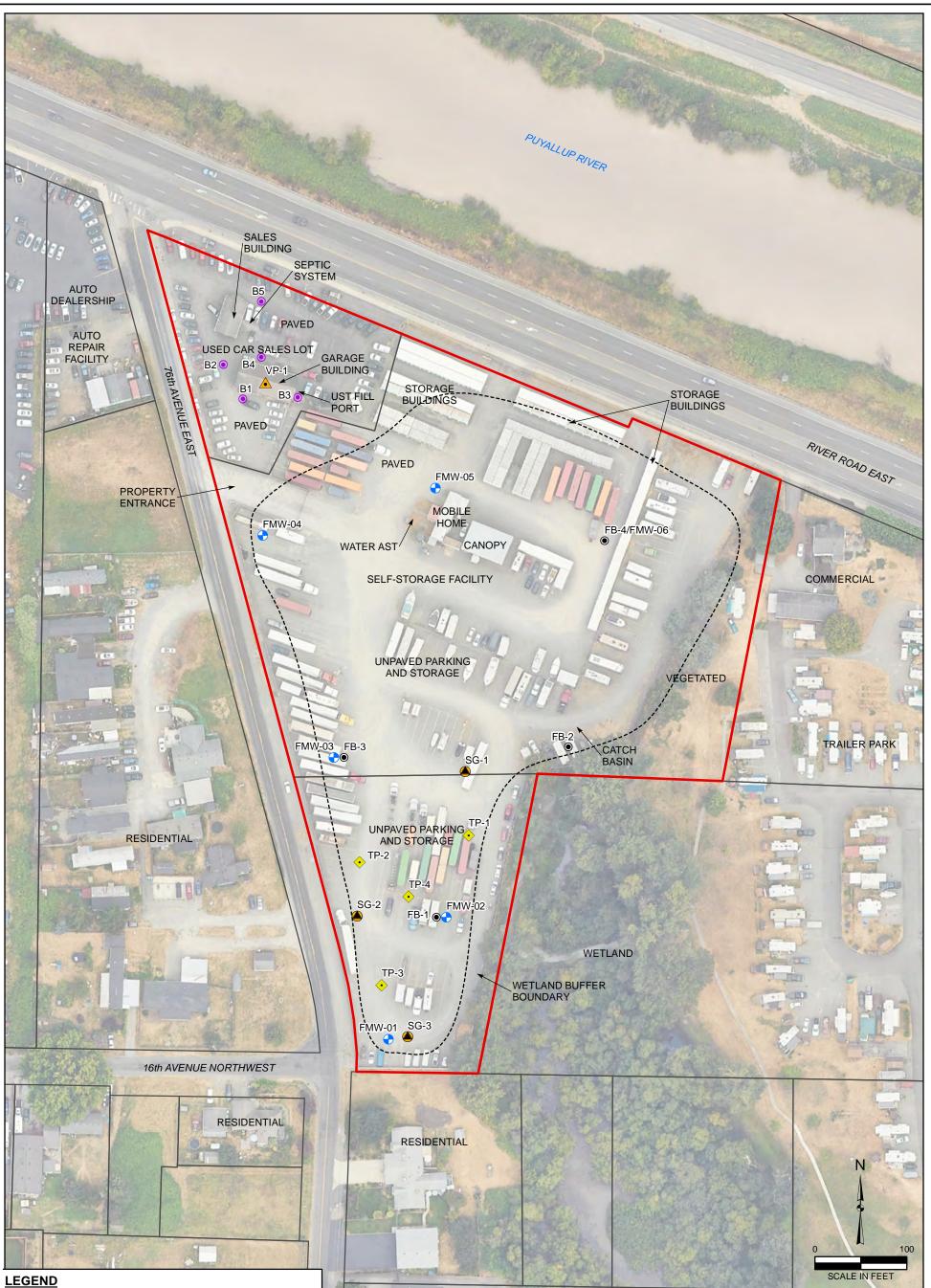
For the foregoing reasons, Farallon cannot and does not warrant or guarantee that the Site is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions can be considered valid only as of the date of the report.

This report/assessment has been prepared in accordance with the contract for services between Farallon and REDCO Development LLC, and currently accepted industry standards. No other warranties, representations, or certifications are made.

8.2 LIMITATION ON RELIANCE BY THIRD PARTIES

Reliance by third parties is prohibited. This report/assessment has been prepared for the exclusive use of REDCO Development LLC to address the unique needs of REDCO Development LLC at the Property at a specific point in time.




This is not a general grant of reliance. No one other than REDCO Development LLC may rely on this report unless Farallon agrees in advance to such reliance in writing. Any unauthorized use, interpretation, or reliance on this report/assessment is at the sole risk of that party and Farallon will have no liability for such unauthorized use, interpretation, or reliance.

FIGURES

REMEDIAL INVESTIGATION REPORT 7602 and 7702 River Road East Puyallup, Washington

Farallon PN: 2220-008

- SOIL VAPOR PROBE (FARALLON, 2024)
- ۵ SOIL GAS SAMPLE (FARALLON, 2023)
- ۲ BORING (FARALLON, 2023)
- ۲ BORING (BBG, 2022)
- Ð MONITORING WELL (FARALLON, 2023)
- \diamond TEST PIT (GEOTECHNICAL CONSULTING, 2016)
- ! ____ APPROXIMATE EXTENT OF FORMER WOOD WASTE LANDFILL

PROPERTY BOUNDARY

PIERCE COUNTY PARCEL BOUNDARY

NOTES: ALL LOCATIONS ARE APPROXIMATE.
 FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION. Washington Issaquah | Bellingham | Seattle FIGURE 2

Portland	Oregon Baker City	
	California	

Oakland | Irvine

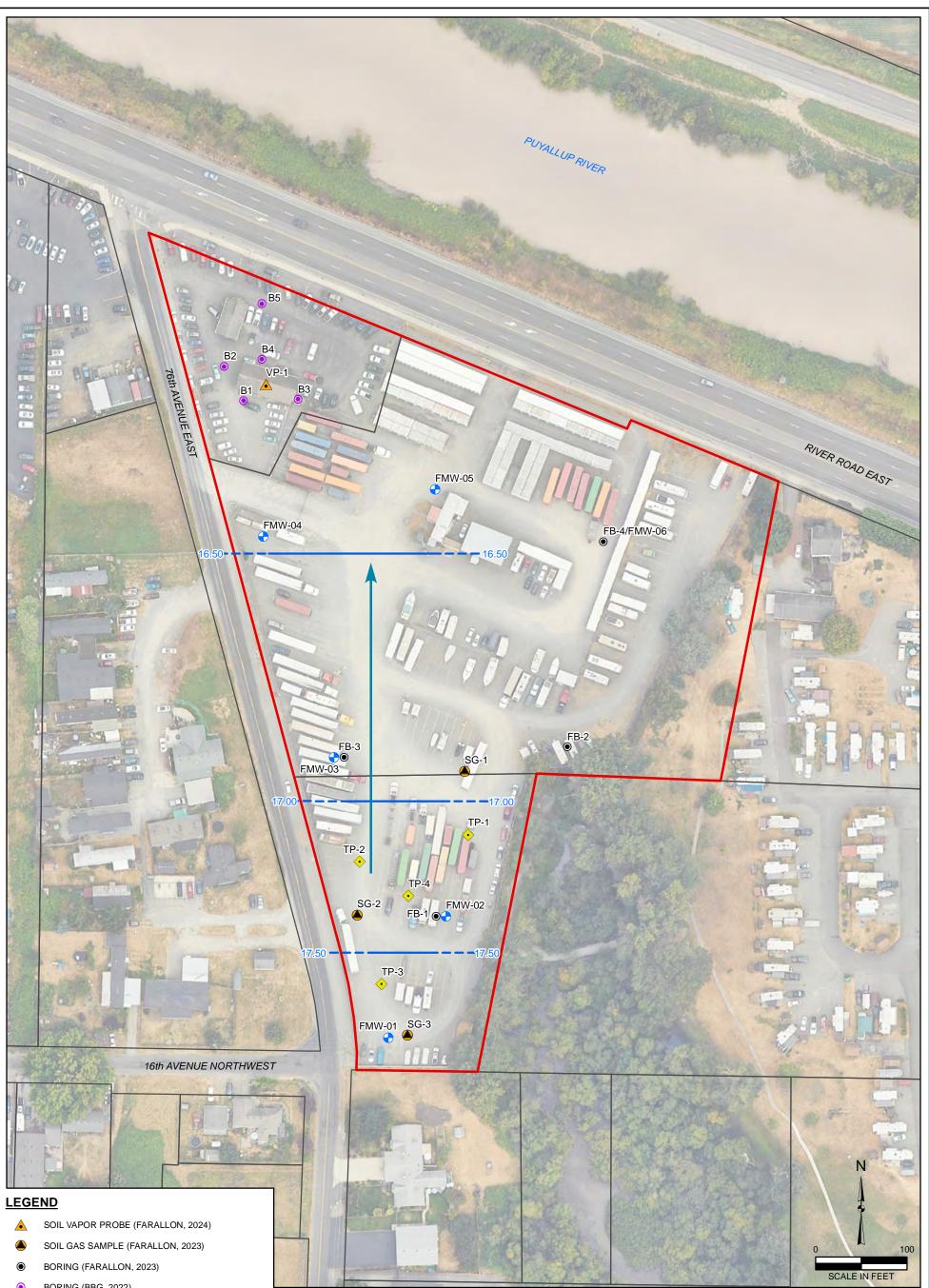
Your Challenges. Our Priority. | farallonconsulting.com

FARALLON

Drawn By: chartman

Consulting

FARALLON PN: 2220-008


PROPERTY PLAN 7602 AND 7702 RIVER ROAD EAST

PUYALLUP, WASHINGTON

Checked By: SH Date: 6/25/2024

Disc Reference:

Path: Q:\Projects\2220 REDCO\008 7602 and 7702 River Dr E\Mapfiles\010\Figure-02_PropertyPlan.mxd

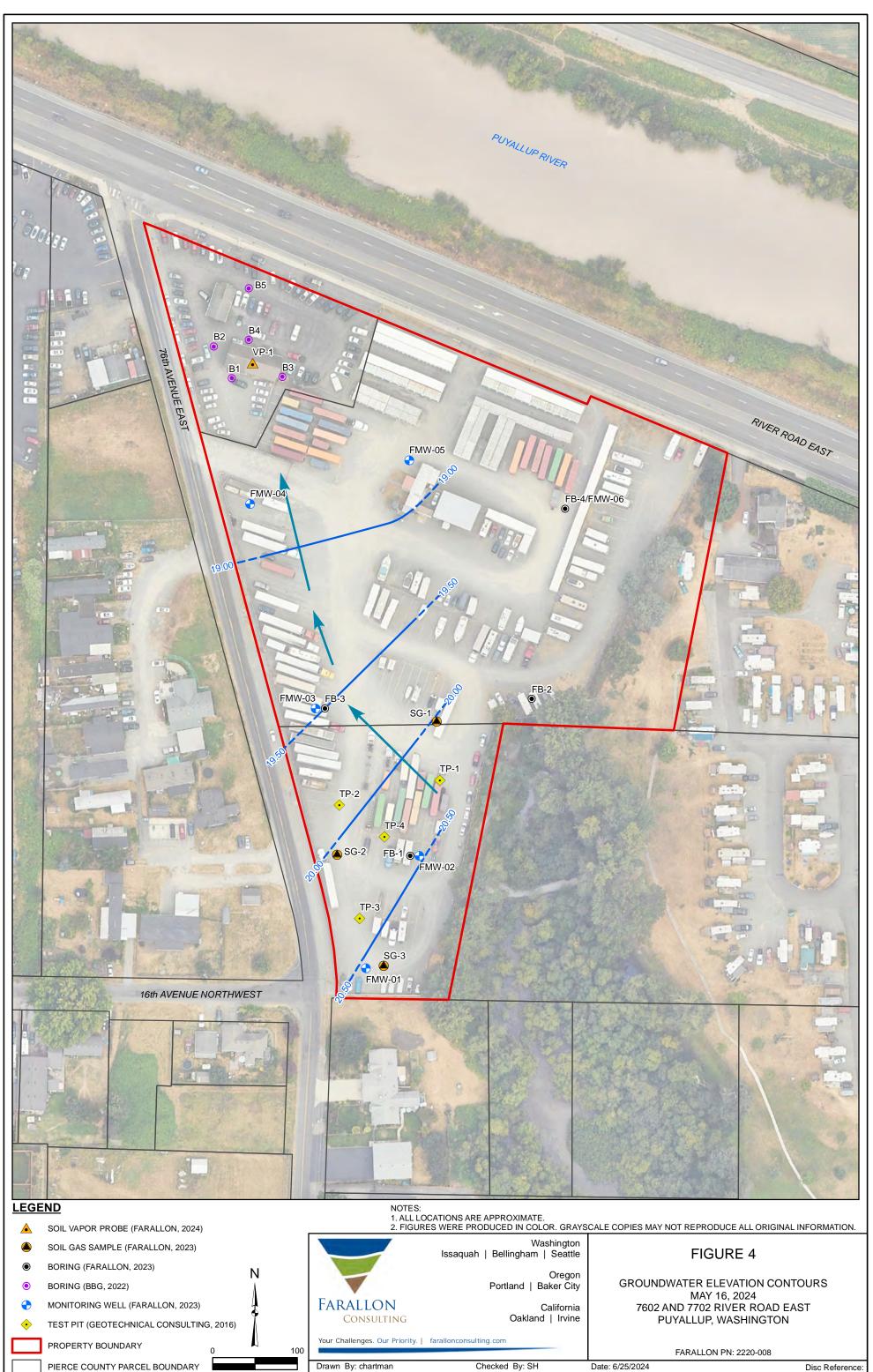


17.50 ---

- $oldsymbol{O}$ BORING (BBG, 2022)
- MONITORING WELL (FARALLON, 2023)
- \diamondsuit TEST PIT (GEOTECHNICAL CONSULTING, 2016)

PROPERTY BOUNDARY

PIERCE COUNTY PARCEL BOUNDARY

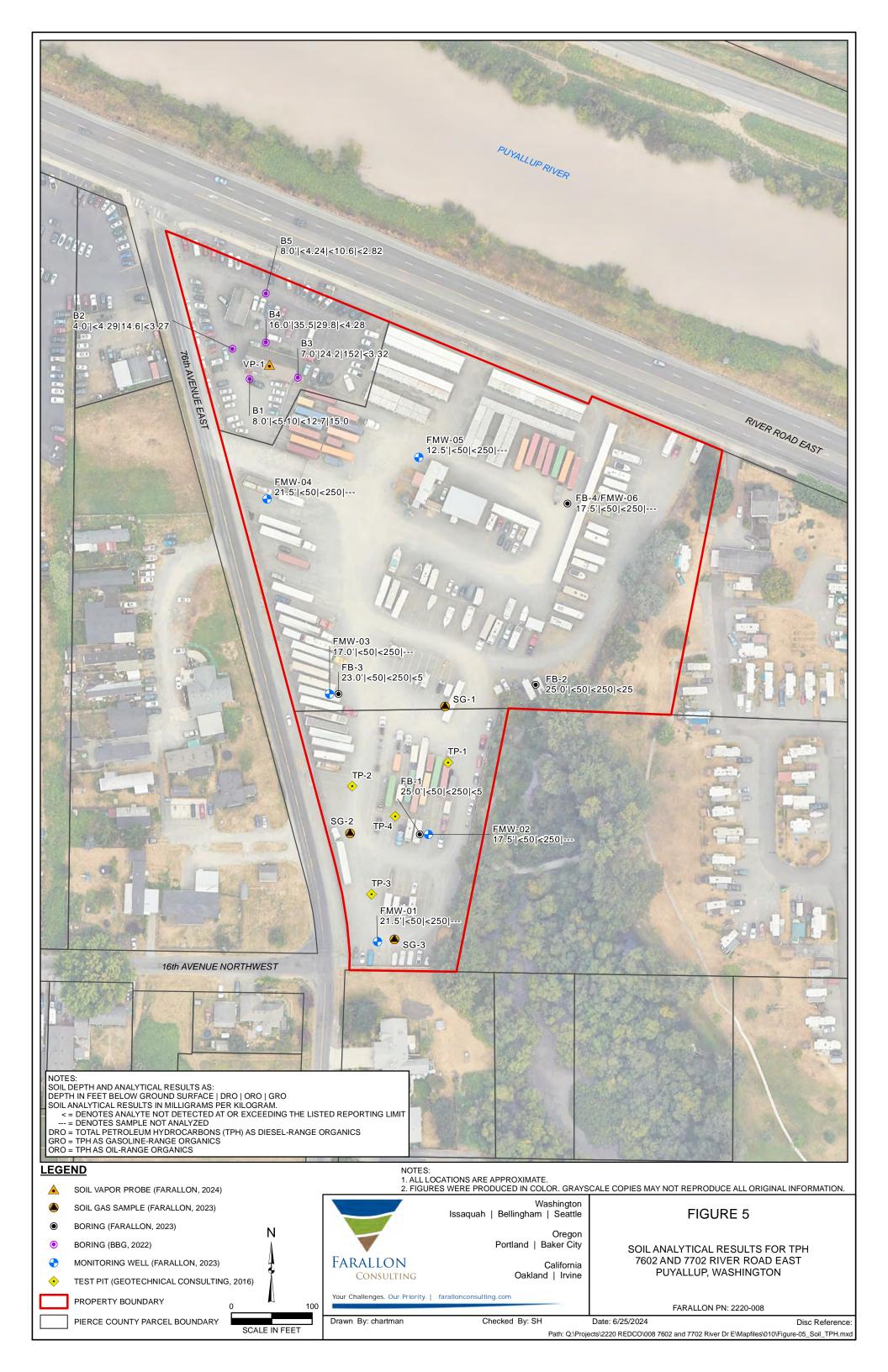


GROUNDWATER ELEVATION CONTOUR (DASHED WHEN INFERRED)

APPROXIMATE GROUNDWATER FLOW DIRECTION

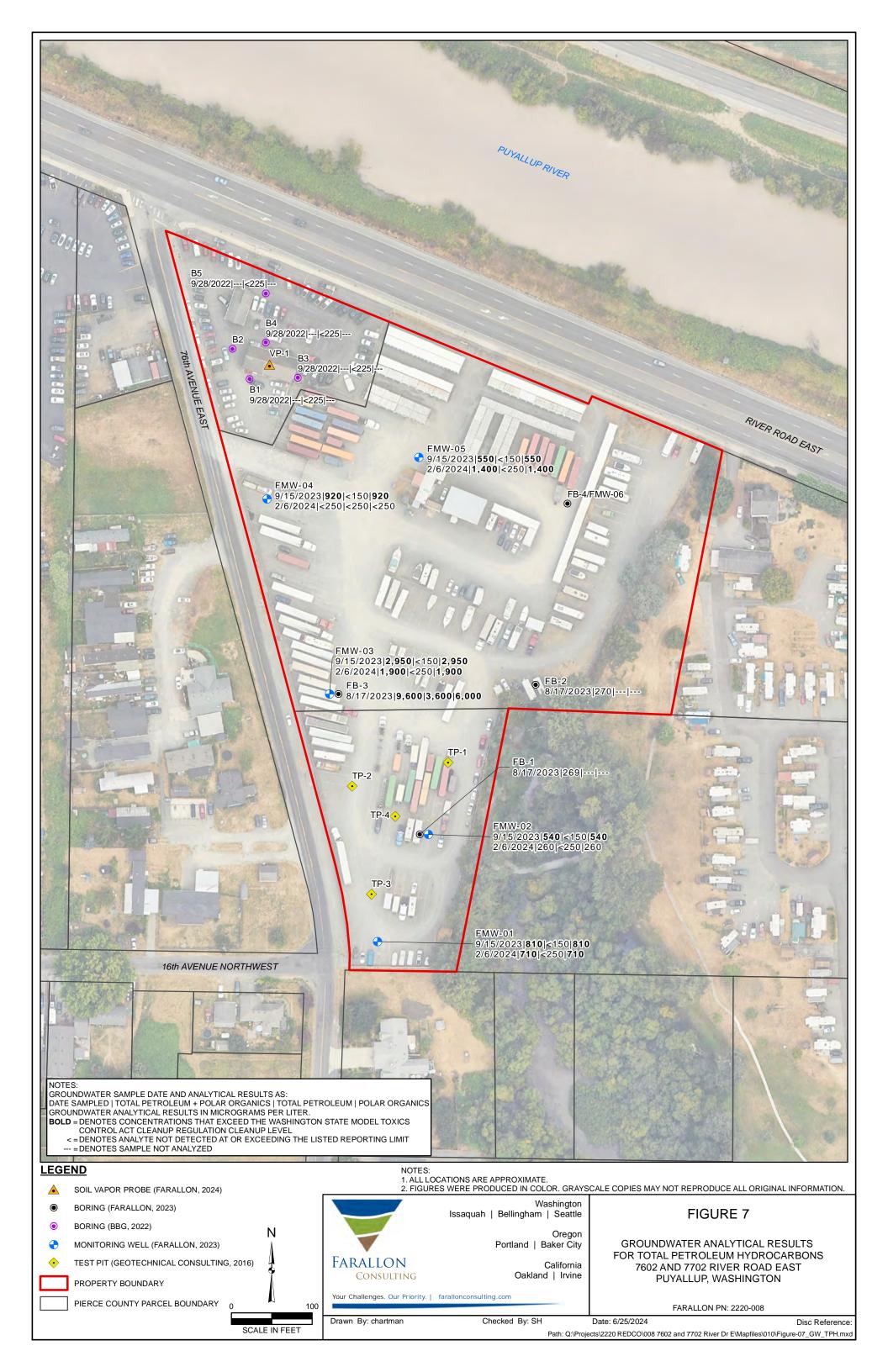
NOTES: 1. ALL LOCATIONS ARE APPROXIMATE. 2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

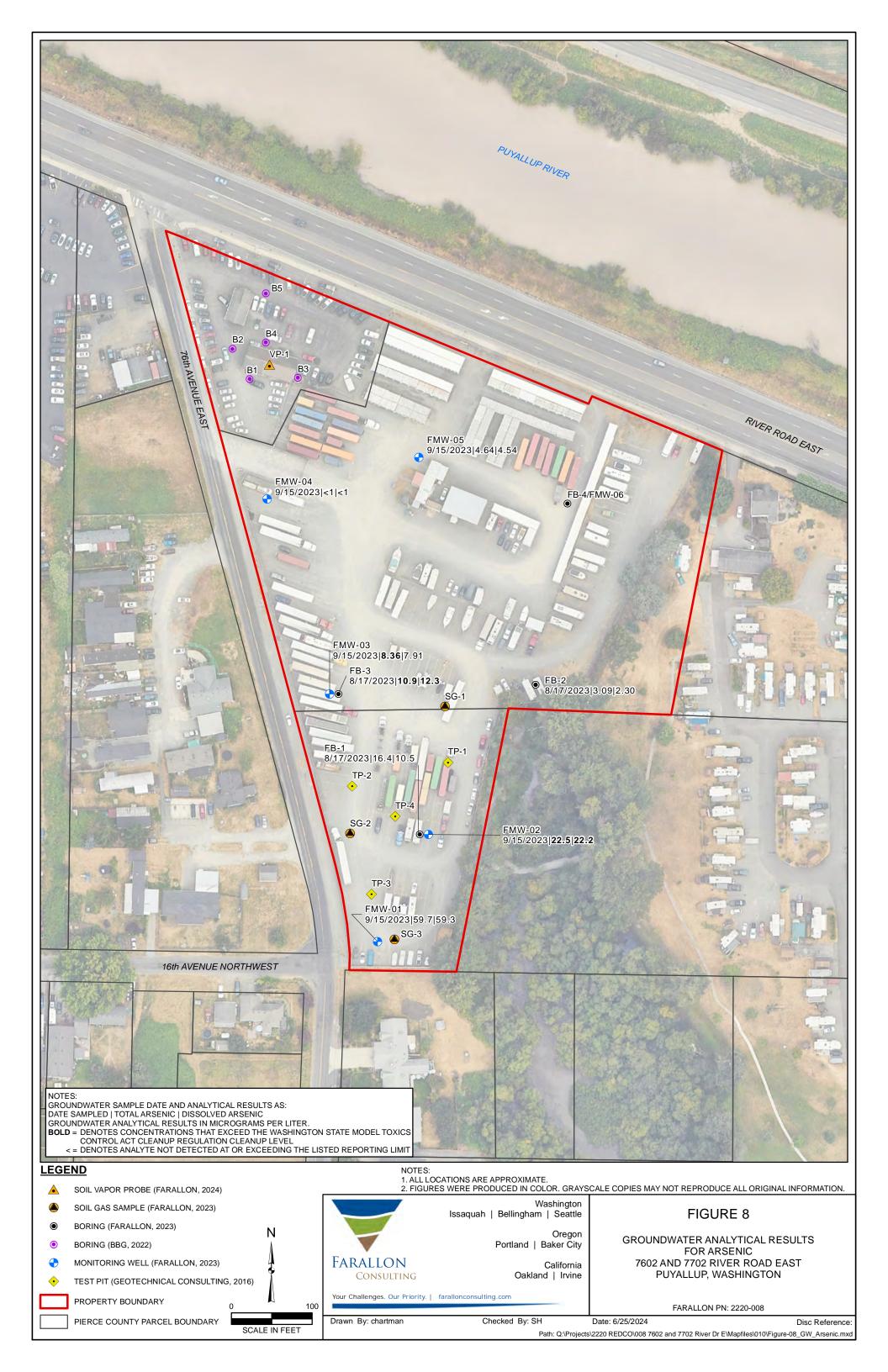
	Path: Q:\Projects\2220 RE	DCO\008 7602 and 7702 River Dr E\Mapfiles\010\Figure-03 GW Contours 202309.mxd
Drawn By: chartman	Checked By: PK	Date: 6/25/2024 Disc Reference:
		FARALLON PN: 2220-008
Your Challenges. Our Priority. f	arallonconsulting.com	
FARALLON Consulting	California Oakland Irvine	SEPTEMBER 15, 2023 7602 AND 7702 RIVER ROAD EAST PUYALLUP, WASHINGTON
	Oregon Portland Baker City	GROUNDWATER ELEVATION CONTOURS
	Washington Issaquah Bellingham Seattle	FIGURE 3

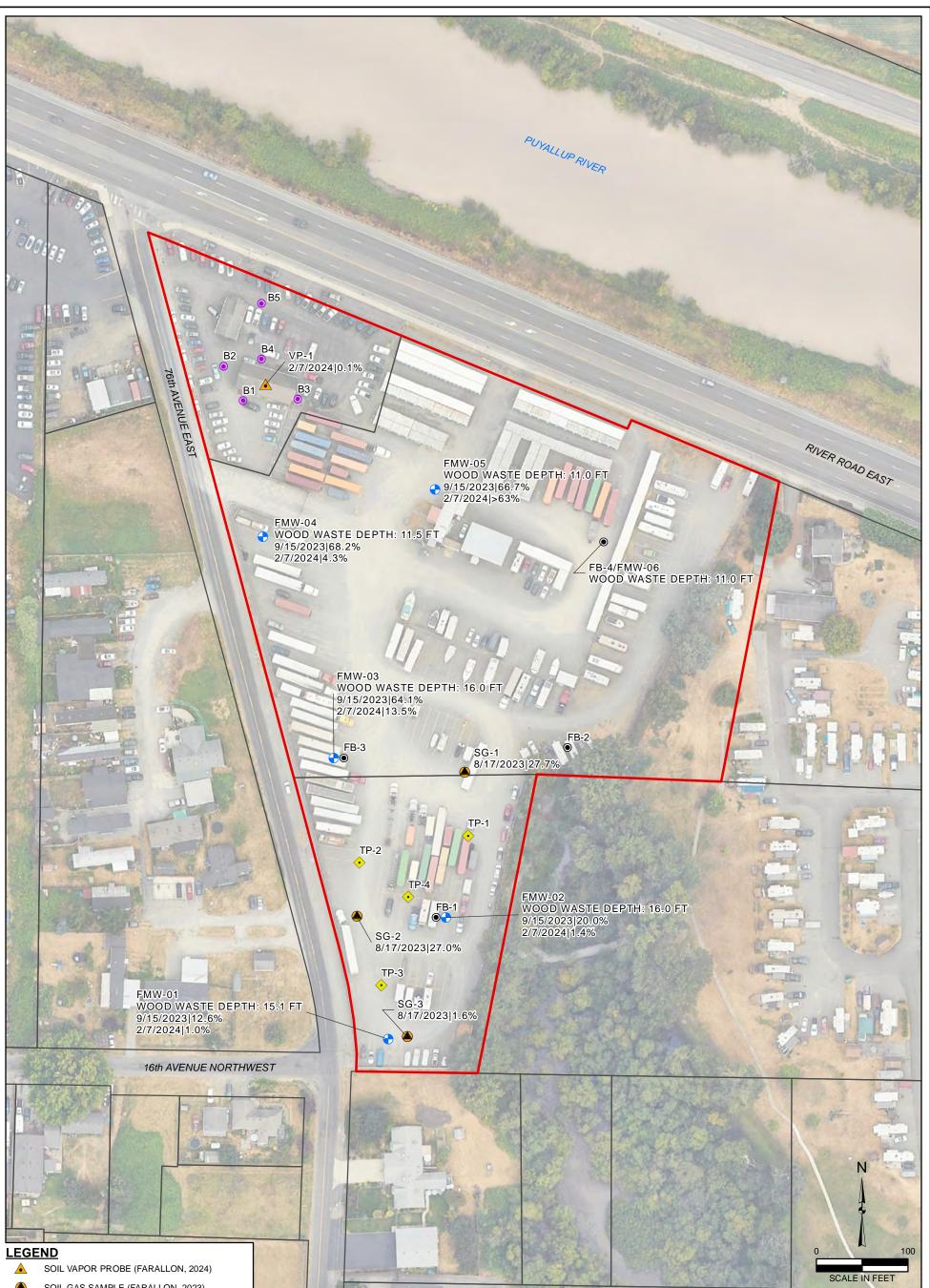


PIERCE COUNTY PARCEL BOUNDARY

SCALE IN FEET


Disc Reference:


Path: Q:\Projects\2220 REDCO\008 7602 and 7702 River Dr E\Mapfiles\010\Figure-04_GW_Elevation_20240516.mxd



NOTES: SOIL DEPTH AND ANALYTICAL RESULTS AS: DEPTH IN FEET BELOW GROUND SURFACE ARSENIC SOIL ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM. < = DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE LIST	TED REPORTING LIMIT	
LEGEND	NOTES:	
SOIL VAPOR PROBE (FARALLON, 2024)	1. ALL LOCATIONS ARE APPROXIMATE.	CALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.
SOIL GAS SAMPLE (FARALLON, 2023)	Washington Issaquah Bellingham Seattle	FIGURE 6
BORING (FARALLON, 2023)	Oregon	
BORING (BBG, 2022)	Oregon Portland Baker City	SOIL ANALYTICAL RESULTS FOR ARSENIC
MONITORING WELL (FARALLON, 2023)	FARALLON California	7602 AND 7702 RIVER ROAD EAST
◆ TEST PIT (GEOTECHNICAL CONSULTING, 2016)	CONSULTING Oakland Irvine	PUYALLUP, WASHINGTON
PROPERTY BOUNDARY 0 100	Your Challenges. Our Priority. farallonconsulting.com	FARALLON PN: 2220-008
PIERCE COUNTY PARCEL BOUNDARY		Date: 6/25/2024 Disc Reference:

- ۵ SOIL GAS SAMPLE (FARALLON, 2023)
- ۲ BORING (FARALLON, 2023)
- ۲ BORING (BBG, 2022)
- MONITORING WELL (FARALLON, 2023)
- \cdot TEST PIT (GEOTECHNICAL CONSULTING, 2016)

PROPERTY BOUNDARY

PIERCE COUNTY PARCEL BOUNDARY

NOTES:

WOOD WASTE DEPTH IN FEET BELOW GROUND SURFACE. SOIL VAPOR MEASUREMENT DATE AND ANALYTICAL RESULTS AS: DATE MEASURED | METHANE CONCENTRATION METHANE CONCENTRATIONS IN PERCENT. > = DENOTES CONCENTRATION EXCEEDS FIELD INSTRUMENT CALIBRATION RANGE.

NOTES: 1. ALL LOCATIONS ARE APPROXIMATE. 2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

	Washington Issaquah Bellingham Seattle	FIGURE 9	
-	Oregon Portland Baker City	SOIL GAS CONCENTRATIONS FOR METHAN	E
FARALLON Consulting	California Oakland Irvine	7602 AND 7702 RIVER ROAD EAST PUYALLUP, WASHINGTON	
Your Challenges. Our Priority.	farallonconsulting.com	FARALLON PN: 2220-008	
Drawn By: chartman	Checked By: SH	Date: 6/25/2024 Disc Re	eference:
	Path: Q:\Projects	2220 REDCO\008 7602 and 7702 River Dr E\Mapfiles\010\Figure-09 SV Met	thane.mxd

TABLES

REMEDIAL INVESTIGATION REPORT 7602 and 7702 River Road East Puyallup, Washington

Farallon PN: 2220-008

Table 1Groundwater Elevations7602 and 7702 River Road EastPuyallup, WashingtonFarallon PN: 2220-008

Location	Total Well Depth (feet bgs) ¹	Screened Interval (feet bgs) ¹	Top of Casing Elevation (feet NAVD88) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet NAVD88) ²
				9/15/2023	15.77	17.80
FMW-01	25.0	15.0 - 25.0	33.57	2/6/2024	11.79	21.78
				5/16/2024	13.04	20.53
				9/15/2023	16.94	17.30
FMW-02	25.0	15.0 - 25.0	34.24	2/6/2024	12.53	21.71
				5/16/2024	13.75	20.49
				9/15/2023	16.77	16.86
FMW-03	25.0	15.0 - 25.0	33.63	2/6/2024	12.69	20.94
				5/16/2024	14.19	19.44
				9/15/2023	15.43	16.47
FMW-04	25.0	15.0 - 25.0	31.90	2/6/2024	11.12	20.78
				5/16/2024	13.05	18.85
				9/15/2023	17.37	16.38
FMW-05	20.0	10.0 - 20.0	33.75	2/6/2024	13.57	20.18
				5/16/2024	14.94	18.81

Notes:

¹ In feet below ground surface.

² In feet above mean sea level.

³ In feet below top of well casing.

bgs = below ground surface NAVD88 = North American Vertical Datum of 1988

Table 2Soil Analytical Results for TPH and BTEX7602 and 7702 River Road EastPuyallup, WashingtonFarallon PN: 2220-008

						-	Analytical R	tesults (milligra	ms per kilogram	ı)	
			Sample Depth								
Sample Location	Sampled By	Sample Identification	(feet) ¹	Sample Date	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene⁴	Ethylbenzene ⁴	Xylenes ⁴
B1	BBG	B1-S1-8	8.0	9/28/2022	< 5.10	< 12.7	15.0	< 0.00159	< 0.00797	< 0.00399	< 0.0104
B2	BBG	B2-S1-4	4.0	9/28/2022	< 4.29	14.6	< 3.27	< 0.00131	< 0.00657	< 0.00329	< 0.00854
Dz	BBG	B2-S2-7	7.0	9/28/2022	24.2	152	< 3.32	< 0.00134	< 0.00671	< 0.00335	< 0.00872
B3	BBG	B3-S1-16	16.0	9/28/2022	< 4.99	< 12.5	< 3.81	< 0.00153	< 0.00766	< 0.00383	< 0.00996
B4	BBG	B4-S1-16	16.0	9/28/2022	35.5	29.8	< 4.28	< 0.00186	< 0.00929	< 0.00466	< 0.0121
B5	BBG	B5-S1-8	8.0	9/28/2022	< 4.24	< 10.6	< 2.82	< 0.00112	< 0.00562	< 0.00281	< 0.00731
FB-1	Farallon	FB-1-25.0	25.0	8/17/2023	< 50	< 250	< 5	< 0.001	< 0.01	< 0.001	< 0.003
FB-2	Farallon	FB-2-25.0	25.0	8/17/2023	< 50	< 250	< 25	< 0.001	< 0.01	< 0.001	0.0023
FB-3	Farallon	FB-3-23.0	23.0	8/17/2023	< 50	< 250	< 5	0.0020	< 0.01	0.0014	0.0150
FMW-01	Farallon	FMW-01-21.5	21.5	9/11/2023	< 50	< 250					
FMW-02	Farallon	FMW-02-17.5	17.5	9/11/2023	< 50	< 250					
FMW-03	Farallon	FMW-03-17.0	17.0	9/12/2023	< 50	< 250					
FMW-04	Farallon	FMW-04-21.5	21.5	9/11/2023	< 50	< 250					
FMW-05	Farallon	FMW-05-12.5	12.5	9/12/2023	< 50	< 250					
FMW-06	Farallon	FMW-06-17.5	17.5	9/12/2023	< 50	< 250					
MTCA Method A	Cleanup Levels	s for Soil ⁵			2,000	2,000	30/100 ⁶	0.03	7	6	9

NOTES:

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

- denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8260D.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁶Cleanup level is 30 milligrams per kilogram if benzene is detected and 100 milligrams per kilogram if benzene is not detected.

BBG = BBG Assessments, LLC
BTEX = benzene, toluene, ethylbenzene and xylenes
DRO = total petroleum hydrocarbons (TPH) as diesel-range organics
Farallon = Farallon Consulting, L.L.C.
GRO = TPH as gasoline-range organics
ORO = TPH as oil-range organics

Table 3 Soil Analytical Results for Halogenated VOCs 7602 and 7702 River Road East **Puyallup**, Washington Farallon PN: 2220-008

						Analyti	cal Results (milligr	ams per kilogram) ²	
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Sample Date	PCE	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride
B1	BBG	B1-S1-8	8.0	9/28/2022	< 0.00399	< 0.00159	< 0.00399	< 0.00797	< 0.00399
B2	BBG	B2-S1-4	4.0	9/28/2022	< 0.00329	< 0.00131	< 0.00329	< 0.00657	< 0.00329
DZ	BBG	B2-S2-7	7.0	9/28/2022	< 0.00335	< 0.00134	< 0.00335	< 0.00671	< 0.00335
B3	BBG	B3-S1-16	16.0	9/28/2022	< 0.00383	< 0.00153	< 0.00383	< 0.00766	< 0.00383
B4	BBG	B4-S1-16	16.0	9/28/2022	< 0.00466	< 0.00186	< 0.00466	< 0.00929	< 0.00466
B5	BBG	B5-S1-8	8.0	9/28/2022	< 0.00281	< 0.00112	< 0.00281	< 0.00562	< 0.00281
FB-1	Farallon	FB-1-25.0	25.0	8/17/2023	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
FB-2	Farallon	FB-2-25.0	25.0	8/17/2023	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
FB-3	Farallon	FB-3-23.0	23.0	8/17/2023	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
MTCA Cleanup Le	evels for Soil ³	-			0.05	0.03	160 ⁴	1,600 ⁴	0.67 ⁴
MTCA Method B (Degrees Celsius ⁴	ITCA Method B Cleanup Levels for Soil Protective of Groundwater Vadose @ 13						0.079	0.52	0.0017
MTCA Method B (Cleanup Levels	for Soil Protective of G	roundwater Sat	urated ⁴	0.0028	0.0015	0.0052	0.032	0.00009

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8260D.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁴Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State MTCA, Standard Method B Formula Values for Soil from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-uptools/CLARC

BBG = BBG Assessments, LLC Farallon = Farallon Consulting, L.L.C.

PCE = tetrachloroethene

TCE = trichloroethene

VOC = volatile organic compound

Table 4 Soil Analytical Results for PAHs 7602 and 7702 River Road East Puyallup, Washington Farallon PN: 2220-008

												Α	nalytical Re	esults (mil	ligrams pe	r kilogram)	2						
									1	Non-Carcin	ogenic PAH	s								Carcinoge	nic PAHs		
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Sample Date	Naphthalene	1-Methylnaphthalene	2-Methyinaphthalene	Total Naphthalenes ³	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene
B1	BBG	B1-S1-8	8.0	9/28/2022	< 0.0255	< 0.0255	< 0.0255	< 0.0765	< 0.00765	< 0.00765	< 0.00765	< 0.00765	< 0.00765	< 0.00765	0.0134	< 0.00765	< 0.00765	< 0.00765	< 0.00765	< 0.00765	< 0.00765	< 0.00765	< 0.00765
B2	BBG	B2-S1-4	4.0	9/28/2022	< 0.0214	< 0.0214	< 0.0214	< 0.0642	< 0.00643	< 0.00643	< 0.00643	< 0.00643	< 0.00643	< 0.00643	< 0.00643	< 0.00643	< 0.00643	< 0.00643	< 0.00643	< 0.00643	< 0.00643	< 0.00643	< 0.00643
DZ	BBG	B2-S2-7	7.0	9/28/2022	< 0.0215	< 0.0215	< 0.0215	< 0.0645	< 0.00646	< 0.00646	< 0.00646	< 0.00646	< 0.00646	< 0.00646	< 0.00646	< 0.00646	< 0.00646	< 0.00646	< 0.00646	< 0.00646	< 0.00646	< 0.00646	< 0.00646
B3	BBG	B3-S1-16	16.0	9/28/2022	< 0.0250	< 0.0250	< 0.0250	< 0.0750	< 0.00749	< 0.00749	< 0.00749	< 0.00749	< 0.00749	< 0.00749	< 0.00749	< 0.00749	< 0.00749	< 0.00749	< 0.00749	< 0.00749	< 0.00749	< 0.00749	< 0.00749
B4	BBG	B4-S1-16	16.0	9/28/2022	0.0288	0.0558	0.0787	0.1633	< 0.00798	< 0.00798	< 0.00798	< 0.00798	0.0131	0.00804	0.0697	0.0126	< 0.00798	0.0115	< 0.00798	< 0.00798	0.0193	< 0.00798	< 0.00798
B5	BBG	B5-S1-8	8.0	9/28/2022	< 0.0212	< 0.0212	< 0.0212	< 0.0636	< 0.00637	< 0.00637	< 0.00637	< 0.00637	< 0.00637	< 0.00637	< 0.00637	< 0.00637	< 0.00637	< 0.00637	< 0.00637	< 0.00637	< 0.00637	< 0.00637	< 0.00637
FB-1	Farallon	FB-1-25.0	25.0	8/17/2023	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
FB-2	Farallon	FB-2-25.0	25.0	8/17/2023	< 0.05	< 0.05	< 0.05	< 0.15	< 0.05	< 0.05	< 0.05	< 0.05	0.050	< 0.05	0.076	0.087	< 0.05	< 0.05	< 0.05	< 0.05	0.079	< 0.05	< 0.05
FB-3	Farallon	FB-3-23.0	23.0	8/17/2023	0.012	0.023	0.029	0.064	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.022	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MTCA Method	A Cleanup Leve	el for Soil ⁶					•	5	4,800 ⁷	NE	24,000 ⁷	NE	3,200 ⁷	3,200 ⁷	NE	2,400 ⁷							
	MTCA Method B Levels for Soil Protective of Groundwater Vadose @ 13 Degrees Celsius ⁷				4.5	0.082	1.7	NE	49	NE	1,100	NE	630	51	NE	330							
MTCA Method	ITCA Method B Levels for Soil Protective of Groundwater Saturated ⁷				0.24	0.0042	0.088	NE	2.5	NE	57	NE	32	2.6	NE	16							

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8270E/8270E SIM.

³Sum of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene.

⁴Total carcinogenic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁵For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁶Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses,

Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁷Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State MTCA, Standard Method B Formula Values for Soil from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-

Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

BBG = BBG Assessments, LLC

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

Farallon = Farallon Consulting, L.L.C.

NE = not established

PAHs = polycyclic aromatic hydrocarbons

TEC = toxic equivalent concentration

Table 4Soil Analytical Results for PAHs7602 and 7702 River Road EastPuyallup, WashingtonFarallon PN: 2220-008

 Total

 cPAHs

 TEC^{4,5}

 < 0.0058</td>

 < 0.0049</td>

 < 0.0049</td>

 < 0.0048</td>

 < 0.0076</td>

 0.038

 < 0.0076</td>

 0.11

 3.9

 0.19

Table 5 Soil Analytical Results for Metals 7602 and 7702 River Road East Puyallup, Washington Farallon PN: 2220-008

						Analytical	Results (mil	ligrams per	kilogram) ²		
Sample	Comula Identification	Sample Depth	Samula Data	Aroonio	Barium	Codmium	Chromium	Lood	Maxaumi	Colonium	Cilver
Location	Sample Identification	(feet) ¹	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
FB-1	FB-1-25.0	25.0	8/17/2023	< 1	16.4	< 1	6.32	1.11	< 1	< 1	< 1
FB-2	FB-2-25.0	25.0	8/17/2023	1.02	16.0	< 1	8.34	3.03	< 1	< 1	< 1
FB-3	FB-3-23.0	23.0	8/17/2023	1.85	24.7	< 1	5.03	1.28	< 1	< 1	< 1
FMW-01	FMW-01-21.5	21.5	9/11/2023	< 1	35.5	< 1	12.5	2.15	< 1	< 1	< 1
FMW-02	FMW-02-17.5	17.5	9/11/2023	3.87	53.5	< 1	12.7	3.14	< 1	< 1	< 1
FMW-03	FMW-03-17.0	17.0	9/12/2023	3.01	52.3	< 1	13.9	8.37	< 1	< 1	< 1
FMW-04	FMW-04-21.5	21.5	9/11/2023	3.55	70.1	< 1	14.5	3.88	< 1	< 1	< 1
FMW-05	FMW-05-12.5	12.5	9/12/2023	2.82	29.4	< 1	14.3	6.31	< 1	< 1	< 1
FMW-06	FMW-06-17.5	17.5	9/12/2023	1.71	20.3	< 1	10.0	1.05	< 1	< 1	< 1
MTCA Cleanup Lev	els for Soil ³			20	16,000 ⁴	2	2,000	250	2	400 ⁴	400 ⁴
MTCA Method B Cle Degrees Celsius⁵	eanup Levels for Soil Protective	idose @ 13	2.9	1,600	0.69	480,000	3,000	2.1	5.20	14	
MTCA Method B Cle								0.26	0.69		

NOTES:

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Methods 6020B.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013 unless otherwise noted.

⁴Washington State Department of Ecology Cleanup Levels and Risk Calculations, under the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

⁵Washington State Cleanup Levels and Risk Calculations under the Washington State MTCA, Standard Method B Formula Values for Soil from CLARC Master spreadsheet updated May 2019, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-

Table 6 Groundwater Analytical Results for GRO and BTEX 7602 and 7702 River Road East Puyallup, Washington Farallon PN: 2220-008

				Analytical Results (micrograms per liter)									
Sample				NWTPH-Gx ¹	NWTPH-Gx ¹ EPA Method 8260D ²								
Location	Sampled By	Sample Date	Sample Identification	GRO	Benzene	Toluene	Ethylbenzene	Xylenes					
Reconnaissance Boring Groundwater Samples													
B1	BBG	9/28/2022	B1-W1	< 100	< 1.00	< 1.00	< 1.00	< 3.00					
B3	BBG	9/28/2022	B3-W1	< 100	< 1.00	< 1.00	< 1.00	< 3.00					
B4	BBG	9/28/2022	B4-W1	< 100	< 1.00	< 1.00	< 1.00	< 3.00					
B5	BBG	9/28/2022	B5-W1	< 100	< 1.00	< 1.00	< 1.00	< 3.00					
FB-1	Farallon	8/17/2023	FB-1-081723	< 100	< 0.35	< 1	< 1	< 3					
FB-2	Farallon	8/17/2023	FB-2-081723	< 100	< 0.35	< 1	< 1	< 3					
FB-3	Farallon	8/17/2023	FB-3-081723	< 100	< 0.35	5.0	< 1	< 3					
TCA Method	A Cleanup Le	vel for Groundwa	ater ³	800/1,000 ⁴	5	1,000	700	1,000					

NOTES:

< denotes analyte not detected at or above the reporting limit listed.

¹Analyzed by Northwest Method NWTPH-Gx.

²Analyzed by U.S. Environmental Protection Agency Method 8260D.

³Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the

⁴Cleanup level is 800 micrograms per liter if benzene is detected and 1,000 micrograms per liter if benzene is not detected.

BBG = BBG Assessments, LLC BTEX = benzene, toluene, ethylbenzene, and xylenes Farallon = Farallon Consulting, L.L.C. GRO = total petroleum hydrocarbons (TPH) as gasoline-range organics

Table 7Groundwater Analytical Results for DRO and ORO with and without Silica Gel Cleanup7602 and 7702 River Road EastPuyallup, WashingtonFarallon PN: 2220-008

						Analytical Resu	ults (microgran	ns per liter)		
					NWTPH-Dx	1	NWT	PH-Dx with Sili	ca Gel ¹	
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	ORO	Total Petroleum + Polar Organics	DRO	ORO	Total Petroleum	Total Polar Organics ²
			Rec	onnaissance Bo	oring Groundwa	iter Samples				·
B1	BBG	9/28/2022	B1-W1				< 200	< 250	< 225	
B3	BBG	9/28/2022	B3-W1				< 200	< 250	< 225	
B4	BBG	9/28/2022	B4-W1				< 200	< 250	< 225	
B5	BBG	9/28/2022	B5-W1				< 200	< 250	< 225	
FB-1	Farallon	8/17/2023	FB-1-081723	79 x	< 380	269				
FB-2	Farallon	8/17/2023	FB-2-081723	120	< 300	270				
FB-3	Farallon	8/17/2023	FB-3-081723	2,200 x	7,400	9,600	700 ×	2,900	3,600	6,000
				Monitoring Wel	I Groundwater	Samples				
				Backgrou	nd Monitoring V	Vell				
	Farallon	9/15/2023	FMW-01-091523	360 x	450 x	810	< 50	< 250	< 150	810
FMW-01	Farallon	2/6/2024	FMW-1-020624			710 x			< 250	710
	•			Existing	Monitoring Wel	ls		•	-	•
	Farallon	9/15/2023	FMW-02-091523	210 x	330 x	540	< 50	< 250	< 150	540
FMW-02	Farallon	2/6/2024	FMW-2-020624			260 x			< 250	260
FMW-03	Farallon	9/15/2023	FMW-03-091523	750 x	2,200 ×	2,950	< 50	< 250	< 150	2,950
FIVIV-03	Farallon	2/6/2024	FMW-3-020624			1,900 x			< 250	1,900
FMW-04	Farallon	9/15/2023	FMW-04-091523	260 x	660 x	920	< 50	< 250	< 150	920
FIVIVV-04	Farallon	2/6/2024	FMW-4-020624			< 250			< 250	< 250
FMW-05	Farallon	9/15/2023	FMW-05-091523	180 x	370 x	550	< 50	< 250	< 150	550
	Farallon	2/6/2024	FMW-5-020624			1,400 ×			< 250	1,400
TCA Method	A Method A Cleanup Level for Groundwater ⁴				500	500	500	500	500	500
reening Lev	ning Level for Sites with No Detectable Petroleum Hydrocarbons ⁵			NE	NE	NE	NE	NE	NE	NE

NOTES:

Results in **bold** denote concentrations exceeding screening levels prior to background adjustments.

Results in **bold** and highlighted yellow denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or above the reporting limit listed.

- denotes sample not analyzed or not applicable.

¹Analyzed by Northwest Method NWTPH-Dx or NWTPH-Dx treated with a silica gel cleanup procedure prior to analysis. Total petroleum values for 2023 samples are the sum of DRO and ORO, using half of the reporting limit in the summation for non-detect results. Total petroleum values for 2024 samples were quantified by the laboratory as a hydrocarbon range of C10 to C36 (diesel and oil ranges).

²Total Polar Organics is calculated by subtracting "Total Petroleum" from "Total Petroleum + Polar Organics". Background Polar Organics represents values from selected background well.
 ³Polar Organics (polar metabolites) concentration is calculated by subtracting "Total Petroleum" from "Total Petroleum + Polar Organics", and then subtracting "Background Polar Organics".
 ⁴Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013.

⁵Washington State Department of Ecology, *Guidance for Silica Gel Cleanup in Washington State*, Publication No. 22-09-059, revised November 2023.

BBG = BBG Assessments, LLC

DRO = total petroleum hydrocarbons (TPH

Farallon = Farallon Consulting, L.L.C.

NA = not applicable

NE = not established

ORO = TPH as oil-range organics x = the sample chromatographic pattern

does not

resemble the fuel standard used for

Table 8Groundwater Analytical Results for Halogenated VOCs7602 and 7702 River Road EastPuyallup, WashingtonFarallon PN: 2220-008

				Analytical Results (micrograms per liter) ¹								
Sample Location	Sampled By	Sample Date	Sample Identification	PCE	ТСЕ	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride				
	<u> </u>		Reconnaissance		ndwater Samp							
B1	BBG	9/28/2022	B1-W1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00				
B3	BBG	9/28/2022	B3-W1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00				
B4	BBG	9/28/2022	B4-W1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00				
B5	BBG	9/28/2022	B5-W1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00				
FB-1	Farallon	8/17/2023	FB-1-081723	< 1	< 0.5	< 1	< 1	< 0.02				
FB-2	Farallon	8/17/2023	FB-2-081723	< 1	< 0.5	< 1	< 1	< 0.02				
FB-3	Farallon	8/17/2023	FB-3-081723	< 1	< 0.5	< 1	< 1	< 0.02				
MTCA Cleanu	p Levels for Gr	oundwater ²		5	5	16 ³	160 ³	0.2				

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8260D.

²Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater,

Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

³Washington State Model Toxics Control Act Cleanup Regulation Cleanup Levels and Risk Calculations, Standard Method B Values for Groundwater, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC BBG = BBG Assessments, LLC

Farallon = Farallon Consulting, L.L.C.

PCE = tetrachloroethene

TCE = trichloroethene

VOC = volatile organic compound

Table 9Groundwater Analytical Results for PAHs7602 and 7702 River Road EastPuyallup, WashingtonFarallon PN: 2220-008

												Analytical	Results (n	nicrogram	s per liter)	1							
								N	on-Carcino	ogenic PA	Hs								Carcinoge	enic PAHs			
Sample Location	Sampled By	Sample Date	Sample	Vaphthalene	I-Methylnaphthalene	2-Methylnaphthalene	Fotal Naphthalenes ²	Acenaphthene	Acenaphthylene	Anthracene	3enzo(g,h,i)Perylene	Iuoranthene	luorene	Phenanthrene	yrene	3enzo(a)Pyrene	3enzo(a)Anthracene	3enzo(b)Fluoranthene	3enzo(j,k)Fluoranthene	Chrysene	Jibenzo(a,h)Anthracene	ndeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
								Reco	nnaissanc	e Boring (Groundwat	er Sample	s										
B1	BBG	9/28/2022	B1-W1	< 0.250	< 0.250	< 0.250	< 0.750	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.100	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.038
B3	BBG	9/28/2022	B3-W1	< 0.250	< 0.250	< 0.250	< 0.750	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.100	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.038
B4	BBG	9/28/2022	B4-W1	< 0.250	< 0.250	< 0.250	< 0.750	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.100	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.038
B5	BBG	9/28/2022	B5-W1	< 0.250	< 0.250	< 0.250	< 0.750	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.100	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.038
MTCA Metho	d A Cleanup Lev	el for Groundwate	er ⁵				160	960 ⁶	NE	4,800 ⁶	NE	640 ⁶	640 ⁶	NE	480 ⁶								0.1

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8270E/SIM.

 $^2\mbox{Sum}$ of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene.

³Total carcinogenic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁴For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁵Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁶Washington State Model Toxics Control Act Cleanup Regulation Cleanup Levels and Risk Calculations, Standard Method B Values for Groundwater,

https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

cPA⊦ NE = ₽AH

TEC = toxic equivalent concentration

BBG = BBG Assessments, LLC

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

NE = not established

PAHs = polycyclic aromatic hydrocarbons

Table 10 Water Quality Parameters 7602 and 7702 River Road East Puyallup, Washington Farallon PN: 2220-008

				Water	Quality Paramete	ers		Electron Receptors	Available Organic Carbon
Monitoring Well	Date	Sample Identification	Temperature ¹ (degrees Celsius)	Specific Conductivity ¹ (mS/cm)	pH ¹ (Standard Units)	Turbidity ¹ (NTU)	Oxidation-Reduction Potential ¹ (millivolts)	Dissolved Oxygen ¹ (mg/L)	Total Organic Carbon ² (mg/L)
FMW-01	2/6/2024	FMW-1-020624	12.8	0.454	6.75	61.49	-80.4	0.23	19.4
FMW-02	2/6/2024	FMW-2-020624	12.5	0.262	6.48	10.73	-11.7	0.25	11.5
FMW-03	2/6/2024	FMW-3-020624	12.7	0.300	6.18	5.79	29.6	0.28	32.6
FMW-04	2/6/2024	FMW-4-020624	12.1	0.436	6.55	26.48	-20.2	0.21	10.9
FMW-05	2/6/2024	FMW-5-020624	11.8	0.339	6.31	21.48	21.8	0.31	25.4

NOTE:

¹Field collected parameter using multimeter. ²Analyzed by standard method 5310C.

mS/cm = milliSiemens per centimeter mg/L = milligrams per liter NTU = nephelometric turbidity units

Table 11 Soil Vapor Analytical Results 7602 and 7702 River Road East Puyallup, Washington Farallon PN: 2220-008

							Analytica	al Results			
				Surface Water		Fi	eld Measuren	surements (percent) ²			
Sample Location	Sample Depth (feet) ¹	Sample Date	Depth to Groundwater (feet bgs)	Elevation at Puyallup River (feet)	Barometric Pressure (in Hg)	Methane	Oxygen	Carbon Dioxide	Nitrogen ³		
FMW-01	15.0 - 25.0	9/15/2023	15.74			12.6	0.0	22.5	64.8		
FMW-02	15.0 - 25.0	9/15/2023	16.90			20.0	0.0	21.9	58.1		
FMW-03	15.0 - 25.0	9/15/2023	16.75			64.1	0.0	41.0	0.0		
FMW-04	15.0 - 25.0	9/15/2023	15.34			68.2	0.0	32.4	0.0		
	10.0 - 20.0	9/15/2023	17.32			66.7	0.0	38.0	0.0		
FMW-05	10.0 - 20.0	2/7/2024	13.65			> 63 E	0.0	38.7	0.0		
	10.0 - 20.0	5/16/2024	14.94		29.81	> 65.3 E	0.2	35.1	0.0		
SG-1	3.0 - 8.0	8/17/2023			29.83	27.7	0.0	26.0	46.2		
SG-2	3.0 - 8.0	8/17/2023			29.83	27.0	0.0	23.1	49.9		
SG-3	3.0 - 8.0	8/17/2023			29.81	1.6	12.9	4.9	80.5		
VP-1		2/7/2024				0.1	8.2	7.8	83.9		
V [2-1		5/16/2024			29.81	0.0	3.4	11.9	84.6		

NOTES:

¹Depth in feet below ground surface.

²Field methane results obtained using Landtec GEM2000 field instrument.

 $^{3}\mbox{The}$ nitrogen results were reported as "Balance" on the Landtec GEM2000 field instrument.

--- = not analyzed/not reported/not applicable

bgs = below ground surface

E = beyond calibration range of field instrument

in Hg = inches of mercury

APPENDIX A BORING LOGS

REMEDIAL INVESTIGATION REPORT 7602 and 7702 River Road East Puyallup, Washington

Farallon PN: 2220-008

FARALLON CONSULTING	Lo	og of Boring	: F	B-1		Page 1 of 1	I
Client:REDCO Development, LLC.Project:7602 and 7702 River Rd ELocation:Puyallup, WAFarallon PN:2220-008Logged By:B. LukkariReviewed By:Y. Pehlivan	Date/Time Started: Date/Time Completed: Drilling Company: Drilling Method: Drilling Equipment: Drilling Operator: Sampler Type:	8/17/23 1516 8/17/23 1535 AEC Direct Push 7822Dt Blake Phillips 5' Macrocore	Borir	ng Diai	neter (ir	9 (ft bgs): 17.52 a): 3.0 (ft bgs): 25.0	2
Depth (ft bgs) Sample Interval Sample Sample Interval	scription	SC SC SC	USCS Graphic	Water Level	% Recovery PID (ppmv)	Sample ID	Sample Analyzed
0 		FiLi	-		30		
5.0 - 6.5': Wood, wood debris and organics with som 6.5 - 10.0': No Recovery.		wc			30		
10 10.0 - 10.5': Wood, wood debris and organics with s 10.5 - 15.0': No Recovery.	ome gravel.	WE			5		
15 15.0 - 15.5': Wood, wood debris and organics with s 15.5 - 20.0': No Recovery.	ome sand.		-	¥	5		
20 - 20.0 - 23.0': Well graded SAND with gravel, dark bro	own, wet, no odor.	sw			60		
25 23.0 - 25.0': No Recovery.					0.6	FB-1-081723 FB-1-25.0	x x

	Completion Informati	on	
Temporary Well Casing Diameter (in):	NA	Surface Seal:	NA
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA

	FARALLON CONSULTING	Log of Bo	ring:	F	В-2	2		Page 1 of 1	1
Loc Far Loç	nt: REDCO Development, LLC. ject: 7602 and 7702 River Rd E ation: Puyallup, WA allon PN: 2220-008 ged By: B. Lukkari iewed By: Y. Pehlivan	Date/Time Started:8/17/23 1313Date/Time Completed:8/17/23 1337Drilling Company:AECDrilling Method:Direct PushDrilling Equipment:7822DtDrilling Operator:Blake PhillipsSampler Type:5' Macrocore		Bori	ng Di	iame	ter (in)	(ft bgs): 19.71 : 3.0 ft bgs): 25.0	1
Depth (ft bgs)	Lithologic De	scription	nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed
0 - - 5 -	0.0 - 5.0': No Recovery. 5.0 - 6.0': Wood, some gravel. 6.0 - 10.0': No Recovery.		 WD			20			
- - 10 - - -	10.0 - 14.5': Organic material, organic debris with s	ome gravel, wet.	OL OL			90			
15 - - - -	14.5 - 15.0': No Recovery. 15.0 - 15.5': Organic material, organic debris, some 15.5 - 20.0': No Recovery.	gravel.				10			
20 - - - - 25 -	20.0 - 21.0': Well graded SAND, fine to medium sa 21.0 - 25.0': No Recovery.	nd, dark brown, wet, no odor.	- sw		•	20	2.9	FB-2-081723 FB-2-25.0	x x

	Completion Information	on	
Temporary Well Casing Diameter (in):	NA	Surface Seal:	NA
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y : NA

FARALLON CONSULTING	Log of Bo	oring:	FB	-3		Page 1 of 1	
Client:REDCO Development, LLC.Project:7602 and 7702 River Rd ELocation:Puyallup, WAFarallon PN:2220-008Logged By:B. LukkariReviewed By:Y. Pehlivan	Date/Time Started:8/17/23 1605Date/Time Completed:8/17/23 1720Drilling Company:AECDrilling Method:Direct PushDrilling Equipment:7822DtDrilling Operator:Blake PhillipsSampler Type:5' Macrocore		Depth t Boring Total B	Diame	ter (in)		
Depth (ft bgs) Sample Interval Rithologic Des	scription	nscs	USCS Graphic	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed
0 0.0 - 1.0': Wood, wood debris and organics. 1.0 - 5.0': No Recovery.		WD		20			
5 5.0 - 7.0': Wood, wood debris and organics with som 7.0 - 10.0': No Recovery.	ne silt.	WD		40			
10 10.0 - 11.5': Wood, wood debris with some gravel. 11.5 - 15.0': No Recovery.		WD		30	5.9	FB-3-10.0	
15 15.0 - 16.0': SILT with wood and organics, dark gray 16.0 - 20.0': No Recovery.	/, wet.		300 3	20			
20 20.0 - 24.5': Well graded SAND, fine to medium san	nd, dark brown, wet.			90	2.0	FB-3-20.0 FB-3-23.0	x
25 24.5 - 25.0': No Recovery.						FB-3-081723	x

	Completion Information	on	
Temporary Well Casing Diameter (in):	NA	Surface Seal:	NA
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA

Client:REDCO Development, ELC.Data and the construction of the sector of the sec		FARALLON	Lo	og of	f B	ori	ng:	FMW-0	1	Page	1 of 1
Project: 7602 and 7702 River Rd E Location: Puyallup, WA Drilling Company: Holt Services Total Boring Depth (ft bgs): 25 Farallon PN: 2220-008 Drilling Method: Direct Push Constructed Well Depth (ft bgs): 25 Logged By: M. Ysaguirre Drilling Operator: Grady Green Grady Green Reviewed By: Y. Pehlivan Sampler Type: 5' Macrocore	Client:	REDCO Development, LLC.	Date/Time Started:	9/11/23	0850)		Depth to Water A	TD (f	t bgs):	15.0
Location: Puyallup, WA Drilling Method: Direct Push Constructed Well Depth (ft bgs): 25 Farallon PN: 2220-008 Drilling Equipment: 7822Dt Drilling Operator: Grady Green Reviewed By: Y. Pehlivan Sampler Type: 5' Macrocore	Project:	7602 and 7702 River Rd E	Date/Time Completed:	9/11/23	1015	5		Boring Diameter	(in):		3.0
Farallon PN: 2220-008 Drilling Method: Direct Push Constructed Well Depth (ft bgs): 25 Logged By: M. Ysaguirre Drilling Operator: Grady Green Reviewed By: Y. Pehlivan Sampler Type: 5' Macrocore	Locatio	n: Puyallup, WA	Drilling Company:	Holt Se	rvices	5		Total Boring Dep	oth (ft	bgs):	25.0
Logged By: M. Ysaguirre Drilling Equipment: 7822Dt Drilling Operator: Grady Green Reviewed By: Y. Pehlivan Sampler Type: 5' Macrocore		· · ·	Drilling Method:	Direct F	Push			Constructed Wel	l Dep	th (ft bgs):	25.0
Reviewed By: Y. Pehlivan Sampler Type: 5' Macrocore			Drilling Equipment:	7822Dt							
	Logged	By: M. Ysaguirre	Drilling Operator:	Grady (Green	I					
Lithologic Description	Review	ed By: Y. Pehlivan	Sampler Type:	5' Macr	ocore)					
Depth Sampl Sampl Sampl	pth (f mple	Lithologic Descrip	otion	nscs	USCS Graphic	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	-	uction

0	0.0 - 0.2': Loose surface gravel. Air knifed to 5.0' to clear for utilities.	FILL						Cement
	5.0': Fill material (100% fill). Slight organic odor, loose smaller rocks, wood debris. 5.0 - 6.0': Rock (80% rock, 10% sand, 10% silt), fine sand, moist, smaller rocks, wood debris, slight organic odor. 6.0 - 10.0': No Recovery.	FILL RK		20	0.4			Bentonite
	10.0 - 11.0': Wood (100% wood), black, moist, some organic material, organic odor, rocks present. 11.0 - 15.0': No Recovery.	 wd 		20	0.3			Weter Lovel
	15.0 - 15.1': Wood (100% wood), black, wet, some organic material, organic odor, rocks present. 15.1 - 20.0': No Recovery.	 . wD	* ~*	5	0.2			Water Level
	20.0 - 23.0': Poorly graded SAND with silt (90% sand, 10% silt), fine sand, dark gray, wet, no odor, no sheen. Wood debris between 20.0 - 20.1'.	SP- SM		60	0.2	FMW-01-21.5	x	
25	23.0 - 25.0': No Recovery.							

		Well Constructi	on Information		
Monument Type:	Flush Mount	Filter Pack:	12/20 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (in):	2.0	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	15.0 - 25.0	Boring Abandonment:	NA	Unique Well ID: BP-803	

		FARALLON	L	og o	fВ	ori	ng:	FMW-0		e 1 of 1
Clie	ent:	REDCO Development, LLC.	Date/Time Started:	9/11/23	1030)		Depth to Water A	ATD (ft bgs):	16.0
Pro	ject:	7602 and 7702 River Rd E	Date/Time Completed	I: 9/11/23	1208	5		Boring Diameter	(in):	3.0
Loc	cation	: Puyallup, WA	Drilling Company:	Holt Se	rvices	6		Total Boring Dep	oth (ft bgs):	25.0
		n PN: 2220-008	Drilling Method:	Direct F	Push			Constructed Wel	l Depth (ft bgs): 25.0
			Drilling Equipment:	7822Dt						
Log	gged	By: M. Ysaguirre	Drilling Operator:	Grady (Green	I				
Rev	viewe	d By: Y. Pehlivan	Sampler Type:	5' Macr	ocore	1				
Depth (ft bgs)	Sample Interval	Lithologic Descrip	tion	nscs	USCS Graphic	% Recovery	PID (ppmv)	Sample ID	Const	g/Well ruction tails

	0.0 - 0.1': Loose surface gravel. Air knifed to 5.0' to clear for utilities.	FILL						Cement
								Bentonite
	5.0 - 6.0': Wood (100% wood), black, moist, some organic material, organic odor. 6.0 - 10.0': No Recovery.	WD		20	0.4			
	10.0 - 11.0': Wood (100% wood), black, moist, some organic material, organic odor. 11.0 - 15.0': No Recovery.	wD ,		20	0.6			
	15.0 - 16.0': Wood (100% wood), black, moist, some organic material, organic odor. 16.0 - 17.5': Poorly graded SAND with silt (90% sand, 10% silt), fine sand, dark gray, wet, no odor.	WD SP- SM	La	50	1.1			Water Level
	17.5 - 20.0': No Recovery.		×./././		0.4	FMW-02-17.5	x	Screen
	 20.0 - 20.5': Poorly graded SAND with silt (90% sand, 10% silt), fine sand, dark gray, wet, no odor. 20.5 - 22.5': Poorly graded SAND (95% sand, 5% gravel), coarse sand, fine gravel, dark gray, wet, no odor. 22.5 - 25.0': No Recovery. 	SP- SM		50	0.2 0.3	FMW-02-22.5		
25								

Monument Type:	Flush Mount
Casing Diameter (in):	2.0
Screen Slot Size (in):	0.010
Screened Interval (ft bgs):	15.0 - 25.0

Well Construction Information

Filter Pack:12/20 SandGround Surface Elevation (ft):Surface Seal:CementTop of Casing Elevation (ft):Annular Seal:BentoniteSurveyed Location: X: NABoring Abandonment:NAUnique Well ID: BP-804

NA Y: NA

NA

FARAL CONS	LON ULTING	Log o	f B	ori	ng:	FMW-03	3	Page	1 of 2
Client: REDCO Develop	ment, LLC. Date/Time Start	ted: 9/11/23	1323			Depth to Water A	TD (ft	t bgs):	16.0
Project: 7602 and 7702 F	iver Rd E	pleted: 9/12/23	1146	i		Boring Diameter (in):		3.0
Location: Puyallup, WA	Drilling Compa	ny: Holt Se	rvices	5		Total Boring Dept	h (ft	bgs):	25.0
Farallon PN: 2220-008	Drilling Method	I: Direct I	Push			Constructed Well	Dept	th (ft bgs):	25.0
1 aranon FN. 2220-008	Drilling Equipm	nent: 7822D1							
Logged By: M. Ysaguirre	Drilling Operate	or: Grady	Green						
Reviewed By: Y. Pehlivan	Sampler Type:	5' Macı	ocore						
Depth (ft bgs) Sample Interval	ologic Description	nscs	USCS Graphic	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Boring Constru Deta	uction

0	0.0 - 0.1': Loose surface gravel. Air knifed to 5.0' to clear for utilities.	FILL		Cement
-	\bigvee			
				Bentonite
5	5.0 - 7.0': Wood (100% wood), black, moist, some organic material, organic odor.	WD 40	3.5	
-	7.0 - 10.0': No Recovery.			
10	10.0 - 12.0': Wood (100% wood), black, moist, some organic material, organic odor.	WD 40	1.8	
	12.0 - 15.0': No Recovery.			

		Well Constructi	on Information		
Monument Type:	Flush Mount	Filter Pack:	12/20 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (in):	2.0	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	15.0 - 25.0	Boring Abandonment:	NA	Unique Well ID: BP-805	

Farallo Loggeo	on: Puyallup, WA on PN: 2220-008	Date/Time Started: Date/Time Completed Drilling Company: Drilling Method: Drilling Equipment: Drilling Operator: Sampler Type:	9/11/23 9/12/23 Holt Se Direct F 7822Dt Grady (5' Macr	3 1146 ervices Push Green		-	Depth to Water A Boring Diameter Fotal Boring Dep Constructed Well	(in): th (ft l	bgs): bgs):	age 2 of 2 16.0 3.0 25.0 gs): 25.0
Depth (ft bgs) Sample Interval	Lithologic Descrip	tion	uscs	USCS Graphic	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Con	ing/Well struction Details
20	 15.0 - 16.0': Wood (100% wood), black, moist, son organic odor. 16.0 - 17.0': Silty SAND (80% sand, 20% silt), fine odor. 17.0 - 20.0': No Recovery. 20.0 - 20.5': Silty SAND (80% sand, 20% silt), fine odor. 20.5 - 22.0': Poorly graded SAND (90% sand, 10% fine gravel, dark gray/ black, wet, no odor. 22.0 - 22.5': Poorly graded SAND with gravel (60% coarse sand, fine and coarse gravel, dark gray/ bla 22.5 - 25.0': No Recovery. 	sand, gray, wet, no sand, gray, wet, no gravel), coarse sand,	WD SM SM SP SP		40	2.30.20.20.0	FMW-03-17.0	x		Water Lev Sand Pact Screen

	Well Construction Information											
Monument Type:	Flush Mount	Filter Pack:	12/20 Sand	Ground Surface Elevation (ft):	NA							
Casing Diameter (in):	2.0	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA							
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA							
Screened Interval (ft bgs):	15.0 - 25.0	Boring Abandonment:	NA	Unique Well ID: BP-805								

	FARALLON	L	og o	f B	ori	ng:	FMW-04	1	Page	1 of 1
Clier	t: REDCO Development, LLC.	Date/Time Started:	9/11/23	1400)		Depth to Water A	TD (ft	bgs):	5.0
Proje	ect: 7602 and 7702 River Rd E	Date/Time Completed	: 9/11/23	1520)		Boring Diameter ((in):		3.0
Loca	tion: Puyallup, WA	Drilling Company:	Holt Se	rvices	5		Total Boring Dept	th (ft	bgs):	25.0
	illon PN: 2220-008	Drilling Method: Drilling Equipment:	Direct F 7822Dt				Constructed Well	Dept	th (ft bgs):	25.0
Logo	ed By: M. Ysaguirre	Drilling Operator:	Grady (ı					
Revi	ewed By: Y. Pehlivan	Sampler Type:	5' Macr	ocore	•					
pth (ft	Lithologic Descrip	otion	nscs	USCS Graphic	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Boring Constru Deta	uction

	0.0 - 0.1': Loose surface gravel. Air knifed to 5.0' to clear for utilities.	FILL						Cement
								Bentonite
5-	5.0 - 7.0': Wood (100% wood), dark brown, wet between 5.0 to 5.5', moist between 5.5 to 7.0', slight organic odor. Trace gravel present.	WD	40	4.5				▼ Water Level
	7.0 - 10.0': No Recovery.							
	10.0 - 11.5': Wood (100% wood), dark brown, wet, slight organic odor. 11.5 - 15.0': No Recovery.	wd 	30	2.3				
	15.0 - 20.0': No Recovery.		 0					
20								Sand Pack Screen
	 20.0 - 22.0': Silty SAND (80% sand, 20% silt), fine sand, dark gray, wet, no odor. Wood debris between 20.0 - 20.1'. 22.0 - 23.5': Poorly graded SAND with silt (90% sand, 10% silt), fine sand, 	SM SP-	70	0.3	FMW-04-21.5	x		
	dark gray, wet, no odor. Lense of coarse sand and fine gravel at 22.5'. 23.5 - 25.0': No Recovery.	SP- SM		0.3				
25							<u>. H . </u>	

Monument Type:	Flush Mount
Casing Diameter (in):	2.0
Screen Slot Size (in):	0.010
Monument Type: Casing Diameter (in): Screen Slot Size (in): Screened Interval (ft bgs):	15.0 - 25.0

Well Construction InformationFilter Pack:12/20 Sand

Cement

NA

Bentonite

Surface Seal:

Annular Seal:

Boring Abandonment:

Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location: X: NA Unique Well ID: BP-806

NA Y: NA

NA

		FARALLON	L	og o	fВ	ori	ng:	FMW-05	5	Page	1 of 1
Clie	ent:	REDCO Development, LLC.	Date/Time Started:	9/12/23	0730)		Depth to Water A	۲D (f	t bgs):	10.0
Pro	ject:	7602 and 7702 River Rd E	Date/Time Completed	: 9/12/23	0900)		Boring Diameter (in):		3.0
Loc	ation	ո: Puyallup, WA	Drilling Company:	Holt Se	rvices	6		Total Boring Dept	h (ft	bgs):	25.0
		n PN: 2220-008	Drilling Method: Drilling Equipment:	Direct F 7822Dt				Constructed Well	Dep	oth (ft bgs):	20.0
Log	ged	By: M. Ysaguirre	Drilling Operator:	Grady (Green	I					
Rev	viewe	d By: Y. Pehlivan	Sampler Type:	5' Macr	ocore	9					
Depth (ft bgs)	Sample Interval	Lithologic Descrip	tion	SSSU	USCS Graphic	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Boring Constru Deta	uction

	0.0 - 0.1': Loose surface gravel. Air knifed to 5.0' to clear for utilities.	FILL						Cement
								Bentonite
5	5.0 - 8.0': Wood (100% wood), black, moist, slight organic odor, some organic material, small rocks, trash debris.	WD		60	0.5			
	8.0 - 10.0': No Recovery.	+	\times		1.6			×
	10.0 - 11.0': Wood (100% wood), black, moist, slight organic odor, some organic material, small rocks, trash debris. 11.0 - 12.5': Silty SAND (75% sand, 25% silt), fine sand, dark gray, wet, no	WD SM		50	0.2			▪ Water Level
	11.0 - 12.5 : Silty SAND (75% sand, 25% silt), line sand, dark gray, wet, no odor 12.5 - 15.0': No Recovery.				0.1	FMW-05-12.5	x	
	15.0 - 17.5': Silty SAND (75% sand, 25% silt), fine sand, dark gray, wet, no odor.	SM		60	0.1			
	17.5 - 18.0': Poorly graded SAND (90% sand, 10% gravel), coarse sand, fine gravel, dark gray, wet, no odor. 18.0 - 20.0': No Recovery.	SP			0.1	FMW-05-17.5		Sand Pack Screen
	20.0 - 23.5': Poorly graded SAND (90% sand, 10% gravel), coarse sand, fine gravel, dark gray, wet, no odor.	SM		70	0.0	FMW-05-22.5		Bentonite Plug
25	23.5 - 25.0': No Recovery.	+						

Well Construction Information						
Monument Type:	Flush Mount	Filter Pack:	12/20 Sand	Ground Surface Elevation (ft):	NA	
Casing Diameter (in):	2.0	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA	
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA	
Screened Interval (ft bgs):	10.0 - 20.0	Boring Abandonment:	NA	Unique Well ID: BP-807		

FARALLON CONSULTING	Log of Bori	ring: FMW-06 / FB-4 Page 1 of 1
Client: REDCO Development, LLC.	Date/Time Started: 9/12/23 0910	Depth to Water ATD (ft bgs): 11.0
Project: 7602 and 7702 River Rd E	Date/Time Completed: 9/12/23 1010	Boring Diameter (in): 3.0
Location: Puyallup, WA	Drilling Company: Holt Services	Total Boring Depth (ft bgs): 25.0
Farallon PN: 2220-008	Drilling Method: Direct Push	
Faralloll FN: 2220-008	Drilling Equipment: 7822Dt	
Logged By: M. Ysaguirre	Drilling Operator: Grady Green	
Reviewed By: Y. Pehlivan	Sampler Type: 5' Macrocore	
Depth (ft bgs) Sample Interval Fithologic Des	cription	USCS Graphic USCS Graphic Water Level % Recovery PID (ppmv) DID (ppmv) Sample Analyzed

	0.0 - 0.1': Loose surface gravel. Air knifed to 5.0' to clear for utilities.	FILL					
5			,				
	5.0 - 7.5': Wood (100% wood), black, moist, some organic material, slight organic odor.	WD		50	7.5		
	7.5 - 10.0': No Recovery.				1.7		
10	10.0 - 11.0': Wood (100% wood), black, moist, slight organic odor, some organic material.	wD		80	1.8		
	11.0 - 14.0': Poorly graded SAND with silt (90% sand, 10% silt), fine sand, gray, wet, no odor.	SP- SM		-	0.7	FMW-06-12.5	
-/ \	14.0 - 15.0': No Recovery.						
15	15.0 - 16.0': Poorly graded SAND with silt (90% sand, 10% silt), fine sand, gray, wet, no odor.	SP- SM		70	1.3		
	16.0 - 18.5': Poorly graded SAND (100% sand), coarse sand, gray, wet, no odor.	SP			1.0	FMW-06-17.5	x
	18.5 - 20.0': No Recovery.				1.0	FINING-00-17.5	
20	20.0 - 22.0': Poorly graded SAND (90% sand, 10% gravel), coarse sand, fine gravel, dark gray/ black, wet, no odor.	SP		80	0.1		
	22.0 - 24.0': Silty SAND (65% sand, 35% silt), fine sand, dark gray, wet, no odor. Wood debris between 22.5 to 23.5'.	SM					
25	24.0 - 25.0': No Recovery.				0.1	FMW-06-24.0	

Completion Information						
Temporary Well Casing Diameter (in):	NA	Surface Seal:	NA			
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA			
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA			

point source solutions	Client:BBGBORINGProject:7602 River Road EastBoring No. B1Address:7602 River Road East, Puyallup, WAPage:1 of 1	i LOG
Drilling Start Date:9/28/22Drilling End Date:9/28/22Drilling Company:Point Source SolutionsDrilling Method:Direct PushDrilling Equipment:Geoprobe DT22Driller:JRLogged By:KF	Boring Depth (ft):24Boring Diameter (in):2.25Sampling Method(s):Direct PushDTW During Drilling (ft):20DTW After Drilling (ft):16.91Ground Surface Elev. (ft):N/ALocation (Lat, Long):47.20819, -122.32919	
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
0 	(0') Poorly graded SAND with gravel (SP); coarse grained, some coarse gravel, no staining, no odor	0
	(4') As Above	0 - 5
DP 0.60	(8') As Above	0 B1-S1-8
	(12') As Above	0
15— DP 0.40	(16') SILT (ML); dark grayish brown, no staining, organic odor	0 - 15
	(20') Poorly graded SAND (SP); dark gray, no staining, organic odor	0 - 20
	(24') Boring terminated	25
NOTES: Hole precleared on 9/27/22 by	y GPRS. Water sample B1-W1 collected at 16.91-17.0 ft bgs.	

point source solutions	Client: BBG Project: 7602 River Road East Address: 7602 River Road East, Puyallup, WA	BORING LOG Boring No. B2 Page: 1 of 1
Drilling Start Date:9/28/22Drilling End Date:9/28/22Drilling Company:Point Source SolutionsDrilling Method:Direct PushDrilling Equipment:Geoprobe DT22Driller:JRLogged By:KF	DTW During Drilling (ft): N/A DTW After Drilling (ft): N/A Ground Surface Elev. (ft): N/A	ect Push
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Time Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
	(0') Asphalt (0.5') Poorly graded SAND with gravel (SP); coarse grained, sor staining, no odor (4') As Above (7') Asphalt: and gravel (8') Boring terminated, hard refusal at 8'. Third attempt made in a	0 B2-S2-7
NOTES: Hole precleared on 9/27/22 b	y GPRS.	

point source solutions	Client: BBG Project: 7602 River Road East Address: 7602 River Road East, Puyallup, WA	BORING LOG Boring No. B3 Page: 1 of 1
Drilling Start Date:9/28/22Drilling End Date:9/28/22Drilling Company:Point Source SolutionsDrilling Method:Direct PushDrilling Equipment:Geoprobe DT22Driller:JRLogged By:KF	DTW During Drilling (ft):20.0DTW After Drilling (ft):16.0Ground Surface Elev. (ft):N/A	ct Push 0 0
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Sample Type Time Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	MEASURE (mpd) Lab Sample Lab Sample DEPTH (ft)
0DP 0.40 	(0') Poorly graded GRAVEL with sand (GP); coarse grained, son staining, no odor	ne coarse sand, no
	(4') As Above	0 - 5 - 5
- DP 0.20	(8') As Above	0
	(12') No Recovery	_ _ _ 15
	(16') Poorly graded SAND (SP); moist, dark gray, no staining, no	o odor 0 83-51- 16 -
	(19') SILT (ML); wet, gray, no staining, no odor (20') Boring terminated	
25 NOTES: Hole precleared on 9/27/22 b	y GPRS. Water sample B3-W1 collected at 16.0-16.5 ft bgs.	25

point source solutions	Client:BBGBORINGProject:7602 River Road EastBoring No. B4Address:7602 River Road East, Puyallup, WAPage:1 of 1	i LOG
Drilling Start Date:9/28/22Drilling End Date:9/28/22Drilling Company:Point Source SolutionsDrilling Method:Direct PushDrilling Equipment:Geoprobe DT22Driller:JRLogged By:KF	Boring Depth (ft):24Boring Diameter (in):2.25Sampling Method(s):Direct PushDTW During Drilling (ft):20DTW After Drilling (ft):17.06Ground Surface Elev. (ft):N/ALocation (Lat, Long):47.20831, -122.32913	
+ 2 U Z COLLECT		MEASURE
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Time Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
0 DP 2.40	(0') Poorly graded SAND with gravel (SP); coarse grained, some coarse gravel, no staining, no odor	0
	(4') As Above (8') No Recovery	0 - 5
10	(12') Poorly graded SAND with gravel (SP); coarse grained, some coarse gravel, gray, no staining, no odor	0 ^{B4-S1-} 16 – – – – – – – – – – – – – – – – – – –
DP 0.40	(16') SILT (ML); dark grayish brown, no staining, organic odor	0
	(20') As Above: no staining, organic odor, wet	0 -20
	(24') Boring terminated	
25		25
	GPRS. Water sample B4-W1 collected at 17.06-17.5 ft bgs.	

point source solutions	Client:BBGBORINGProject:7602 River Road EastBoring No.B5Address:7602 River Road East, Puyallup, WAPage:1 of 1	LOG
Drilling Start Date:9/28/22Drilling End Date:9/28/22Drilling Company:Point Source SolutionsDrilling Method:Direct PushDrilling Equipment:Geoprobe DT22Driller:JRLogged By:KF	Boring Depth (ft):24Boring Diameter (in):2.25Sampling Method(s):Direct PushDTW During Drilling (ft):17DTW After Drilling (ft):17.90Ground Surface Elev. (ft):N/ALocation (Lat, Long):47.20848, -122.32916	
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Time Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
	(0') Asphalt (0.5') Poorly graded SAND with gravel (SP); coarse grained, some coarse gravel	0
	(4') As Above	0 - 5
- DP 0.20	(8') As Above	0 B5-S1-8 10
	(12') No Recovery	0
	(16') No Recovery	0 - 15
	(20') No Recovery: wet liner	0 20
	(24') Boring terminated	25
NOTES: Hole precleared on 9/27/22 by	GPRS. Water sample B5-W1 collected at 17.9-18.0 ft bgs.	

FARALLON CONSULTING	Log of Bor	ing:	S	G-	1		Pag	le 1 of 1	
Client: REDCO Development, LLC.	Date/Time Started: 8/17/23 0911		Dept	th to	Wate	r ATD ((ft bgs):	NA	
Project: 7602 and 7702 River Rd E	Date/Time Completed: 8/17/23 0940	Boring Diameter (in):				:	3.0		
Location: Puyallup, WA	Drilling Company: AEC		Total Boring Depth (ft bgs):			ft bgs):	8		
Farallon PN: 2220-008	Drilling Method: Direct Push								
	Drilling Equipment: 7822Dt								
Logged By: B. Lukkari	Drilling Operator: Blake Phillips								
Reviewed By: Y. Pehlivan	Sampler Type: 5' Macrocore								
Depth (ft bgs) Sample Interval Cithologic Des	scription	uscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Samp	le ID	Sample Analyzed

0		0.0 - 5.0': Fill, gravel, wood, metal, rubber debris.	FILL	\otimes	C			
-1								
-								
	V							
	Ν							
	$\left \right $							
-1/								
_								
5-		5.0 - 7.5': Fill, gravel.	FILL		5)		
1								
							SG-1	х
-11								
	V							
	l							
	Λ							
-1								
				XXX				
		7.5 - 8.0': No Recovery.						

Completion Information									
Temporary Well Casing Diameter (in):	NA	Surface Seal:	NA						
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA						
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA						

		FARALLON	L	og of Boring	g:	SG	6-2	2		Pag	e 1 of 1	1
Clie	ent:	REDCO Development, LLC.	Date/Time Started:	8/17/23 0955	De	pth t	o W	atei	ATD	(ft bgs):	NA	
Pro	ojec	t: 7602 and 7702 River Rd E	Date/Time Completed	: 8/17/23 1022	Bo	Boring Diameter (in):					3.0	
Lo	cati	on: Puyallup, WA	Drilling Company:	AEC	То	tal B	orin	g D	epth (f	t bgs):	8	
		on PN: 2220-008	Drilling Method:	Direct Push								
			Drilling Equipment:	7822Dt								
Lo	gge	d By: B. Lukkari	Drilling Operator:	Blake Phillips								
Rev	viev	wed By: Y. Pehlivan	Sampler Type:	5' Macrocore								
Depth (ft bgs)	Sample Interval	Lithologic Des	scription		USCS		water Level	% Recovery	PID (ppmv)	Samp	le ID	Sample Analyzed

SG-2 X

Completion Information									
Temporary Well Casing Diameter (in):	NA	Surface Seal:	NA						
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA						
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA						

FARALLON CONSULTING	Lo	og of Borir	ng:	S	G-	3		Pag	e 1 of 1	
Client: REDCO Development, LLC.	Date/Time Started:	8/17/23 1141		Dept	h to ۱	Nate	r ATD ((ft bgs):	NA	
Project: 7602 and 7702 River Rd E	Date/Time Completed:	8/17/23 1155		Borir	ng Di	amet	er (in):		3.0	
Location: Puyallup, WA	Drilling Company:	AEC	Total Boring Depth (ft bgs			t bgs):	8			
Farallon PN: 2220-008	Drilling Method:	Direct Push								
Faralion FN: 2220-000	Drilling Equipment:	7822Dt								
Logged By: B. Lukkari	Drilling Operator:	Blake Phillips								
Reviewed By: Y. Pehlivan	Sampler Type:	5' Macrocore								
Depth (ft bgs) Sample Interval Tithologic Des	cription		USCS	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Samp	le ID	Sample Analyzed

0		0.0 - 5.0': Fill, gravel, wood, metal, rubber debris.	FILL	0		
-						
	V					
	Λ					
	$ \rangle$					
5		5.0 - 6.0': Fill, gravel.	FILL	20		
					SG-3	х
-	V	6.0 - 8.0': No Recovery.				
	V					
	A					
-						
	$ \rangle$					

N
٨
Y: NA

APPENDIX B ECOLOGY TEE FORM

REMEDIAL INVESTIGATION REPORT 7602 and 7702 River Road East Puyallup, Washington

Farallon PN: 2220-008

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to <u>https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation</u>.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name:

Facility/Site Address:

Facility/Site No:	
-------------------	--

VCP Project No.:

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name:
Title:

Organization:
Verson (Contemported to the evaluation)

Mailing address:
State:

City:
State:

Phone:
Fax:

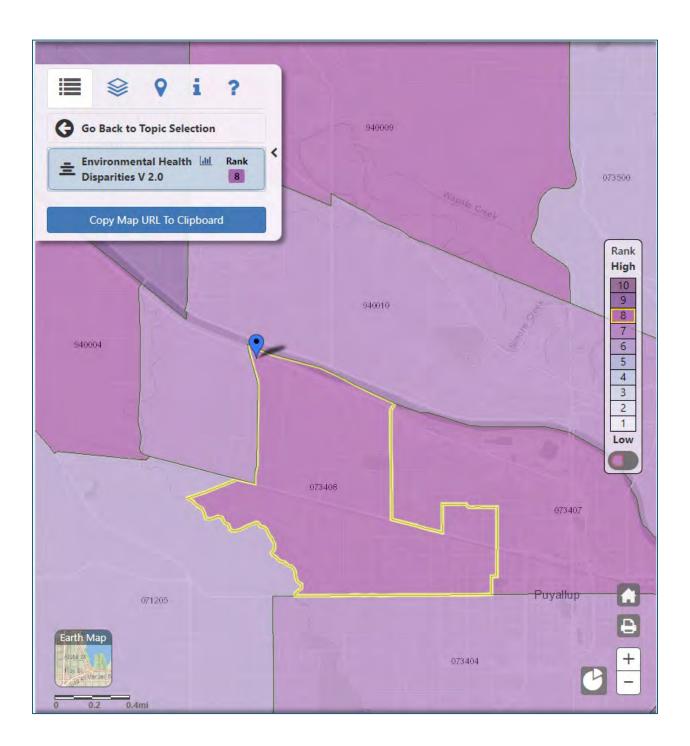
Step 3: DOC	CUMENT EVALUATION TYPE AND RESULTS		
A. Exclusion	from further evaluation.		
1. Does the	Site qualify for an exclusion from further evaluation?		
ו 🗆 א	es If you answered "YES," then answer Question 2.		
	No or If you answered " NO" or "UNKNOWN," then skip to Step 3B of this form.		
2. What is th	e basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.		
Point of Co	ompliance: WAC 173-340-7491(1)(a)		
	All soil contamination is, or will be,* at least 15 feet below the surface.		
	All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.		
Barriers to	Exposure: WAC 173-340-7491(1)(b)		
	All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.		
Undevelop	ped Land: WAC 173-340-7491(1)(c)		
	There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.		
	For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.		
Backgrour	nd Concentrations: WAC 173-340-7491(1)(d)		
	Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.		
 * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. * "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. 			
# "Contiguous"	undeveloped land is an area of undeveloped land that is not divided into smaller areas of nsive paving, or similar structures that are likely to reduce the potential use of the overall area		

B	8. Simplified evaluation.				
1.	Does the S	Site qualify for a simplified evaluation?			
	□ Y	es If you answered "YES," then answer Question 2 below.			
	🗌 N Unkn	o or If you answered " NO " or " UNKNOWN, " then skip to Step 3C of this form.			
2.	Did you co	onduct a simplified evaluation?			
	□ Y	es If you answered "YES," then answer Question 3 below.			
	🗌 N	o If you answered " NO ," then skip to Step 3C of this form.			
3.	Was furthe	er evaluation necessary?			
	□ Y	es If you answered "YES," then answer Question 4 below.			
	□ N	o If you answered "NO," then answer Question 5 below.			
4.	lf further e	valuation was necessary, what did you do?			
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.			
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.			
5.	If no furthe to Step 4 o	er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.			
	Exposure A	Analysis: WAC 173-340-7492(2)(a)			
		Area of soil contamination at the Site is not more than 350 square feet.			
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.			
	Pathway A	nalysis: WAC 173-340-7492(2)(b)			
		No potential exposure pathways from soil contamination to ecological receptors.			
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)			
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.			
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.			
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.			
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.			

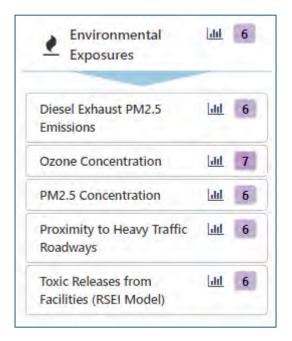
C.	the proble	ific evaluation. A site-specific evaluation process consists of two parts: (1) formulating m, and (2) selecting the methods for addressing the identified problem. Both steps nsultation with and approval by Ecology. <i>See</i> WAC 173-340-7493(1)(c).
1.	Was there	a problem? See WAC 173-340-7493(2).
	ו 🗌	(es If you answered "YES," then answer Question 2 below.
		No If you answered " NO ," then identify the reason here and then skip to Question 5 below:
		No issues were identified during the problem formulation step.
		While issues were identified, those issues were addressed by the cleanup actions for protecting human health.
2.	What did	you do to resolve the problem? See WAC 173-340-7493(3).
		Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below.
		Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>
3.		ducted further site-specific evaluations, what methods did you use? hat apply. See WAC 173-340-7493(3).
		Literature surveys.
		Soil bioassays.
		Wildlife exposure model.
		Biomarkers.
		Site-specific field studies.
		Weight of evidence.
		Other methods approved by Ecology. If so, please specify:
4.	What was	the result of those evaluations?
		Confirmed there was no problem.
		Confirmed there was a problem and established site-specific cleanup levels.
5.		already obtained Ecology's approval of both your problem formulation and resolution steps?
	ר 🗌	If so, please identify the Ecology staff who approved those steps:
		No

Step 4: SUBMITTAL

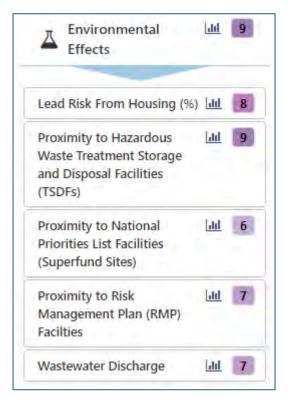
Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.


If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. People with hearing loss can call 711 for Washington Relay Service. People with a speech disability can call 877-833-6341.

APPENDIX C VULNERABLE POPULATION AND OVERBURDENED COMMUNITY EVALUATION


REMEDIAL INVESTIGATION REPORT 7602 and 7702 River Road East Puyallup, Washington

Farallon PN: 2220-008


Washington State Department of Health's Environmental Health Disparities Map Results Census Tract 53053073408

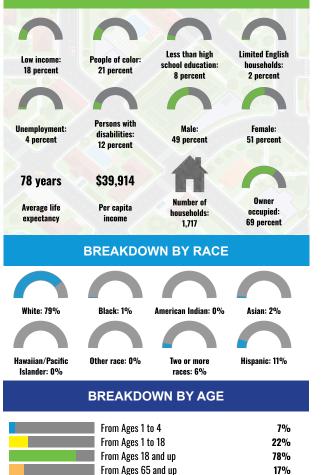
Washington State Department of Health's Environmental Health Disparities Map Results Census Tract 53053073408

SEPA EJScreen Community Report

This report provides environmental and socioeconomic information for user-defined areas, and combines that data into environmental justice and supplemental indexes.

Puyallup, WA

A3 Landscape



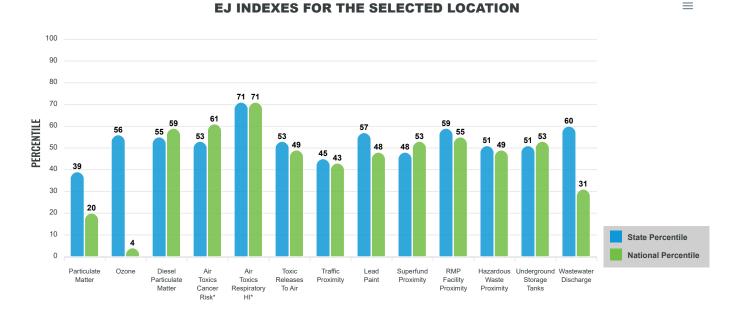
LANGUAGES SPOKEN AT HOME

LANGUAGE	PERCENT
English	89%
Spanish	8%
Other Indo-European	1%
Tagalog (including Filipino)	1%
Other Asian and Pacific Island	1%
Total Non-English	11%

Tract: 53053073408 Population: 4,268 Area in square miles: 1.09

COMMUNITY INFORMATION

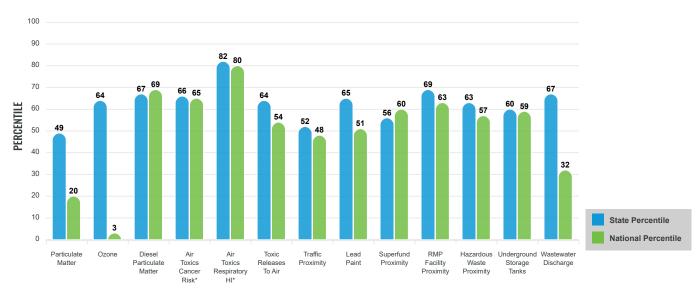
LIMITED ENGLISH SPEAKING BREAKDOWN


Speak Spanish	48%
Speak Other Indo-European Languages	52%
Speak Asian-Pacific Island Languages	0%
Speak Other Languages	0%

Notes: Numbers may not sum to totals due to rounding. Hispanic population can be of any race. Source: U.S. Census Bureau, American Community Survey (ACS) 2017-2021. Life expectancy data comes from the Centers for Disease Control.

Environmental Justice & Supplemental Indexes

The environmental justice and supplemental indexes are a combination of environmental and socioeconomic information. There are thirteen EJ indexes and supplemental indexes in EJScreen reflecting the 13 environmental indicators. The indexes for a selected area are compared to those for all other locations in the state or nation. For more information and calculation details on the EJ and supplemental indexes, please visit the EJScreen website.


EJ INDEXES

The EJ indexes help users screen for potential EJ concerns. To do this, the EJ index combines data on low income and people of color populations with a single environmental indicator.

SUPPLEMENTAL INDEXES

The supplemental indexes offer a different perspective on community-level vulnerability. They combine data on percent low-income, percent linguistically isolated, percent less than high school education, percent unemployed, and low life expectancy with a single environmental indicator.

SUPPLEMENTAL INDEXES FOR THE SELECTED LOCATION

These percentiles provide perspective on how the selected block group or buffer area compares to the entire state or nation.

 \equiv

Report for Tract: 53053073408

EJScreen Environmental and Socioeconomic Indicators Data

SELECTED VARIABLES	VALUE	STATE AVERAGE	PERCENTILE IN STATE	USA AVERAGE	PERCENTILE IN USA	
POLLUTION AND SOURCES						
Particulate Matter (µg/m ³)	6.93	7.02	44	8.08	19	
Ozone (ppb)	51.9	49.8	68	61.6	3	
Diesel Particulate Matter (µg/m ³)	0.411	0.355	66	0.261	84	
Air Toxics Cancer Risk* (lifetime risk per million)	30	27	37	25	52	
Air Toxics Respiratory HI*	0.5	0.39	74	0.31	92	
Toxic Releases to Air	990	1,800	58	4,600	59	
Traffic Proximity (daily traffic count/distance to road)	77	190	49	210	50	
Lead Paint (% Pre-1960 Housing)	0.39	0.23	76	0.3	65	
Superfund Proximity (site count/km distance)	0.094	0.18	50	0.13	65	
RMP Facility Proximity (facility count/km distance)	0.47	0.4	76	0.43	75	
Hazardous Waste Proximity (facility count/km distance)	1.2	1.6	63	1.9	64	
Underground Storage Tanks (count/km ²)	7.1	6.3	75	3.9	84	
Wastewater Discharge (toxicity-weighted concentration/m distance)	0.00013	0.024	71	22	32	
SOCIOECONOMIC INDICATORS						
Demographic Index	19%	28%	33	35%	31	
Supplemental Demographic Index	10%	12%	48	14%	35	
People of Color	21%	32%	36	39%	39	
Low Income	18%	24%	44	31%	33	
Unemployment Rate	4%	5%	47	6%	47	
Limited English Speaking Households	2%	4%	57	5%	62	
Less Than High School Education	8%	8%	65	12%	52	
Under Age 5	7%	6%	68	6%	69	
Over Age 64	17%	16%	58	17%	55	
Low Life Expectancy	19%	18%	67	20%	51	

*Diesel particulate matter, air toxics cancer risk, and air toxics respiratory hazard index are from the EPA's Air Toxics Data Update, which is the Agency's ongoing, comprehensive evaluation of air toxics in the United States. This effort aims to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that the air toxics data presented here provide broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. Cancer risks and hazard indices from the Air Toxics Data to greate are reported to one significant figure and any additional significant figures here are due to rounding. More information on the Air Toxics Data Update can be found at: https://www.epa.gov/haps/air-toxics-data-update.

Sites reporting to EPA within defined area:

Superfund	0
Hazardous Waste, Treatment, Storage, and Disposal Facilities	0
Water Dischargers	5
Air Pollution	0
Brownfields	0
Toxic Release Inventory	0

Other community features within defined area:

Schools	
Hospitals	
Places of Worship 0	

Other environmental data:

Air Non-attainment	Yes
Impaired Waters	Yes

Selected location contains American Indian Reservation Lands*	Yes
Selected location contains a "Justice40 (CEJST)" disadvantaged community	No
Selected location contains an EPA IRA disadvantaged community	Yes

Report for Tract: 53053073408

EJScreen Environmental and Socioeconomic Indicators Data

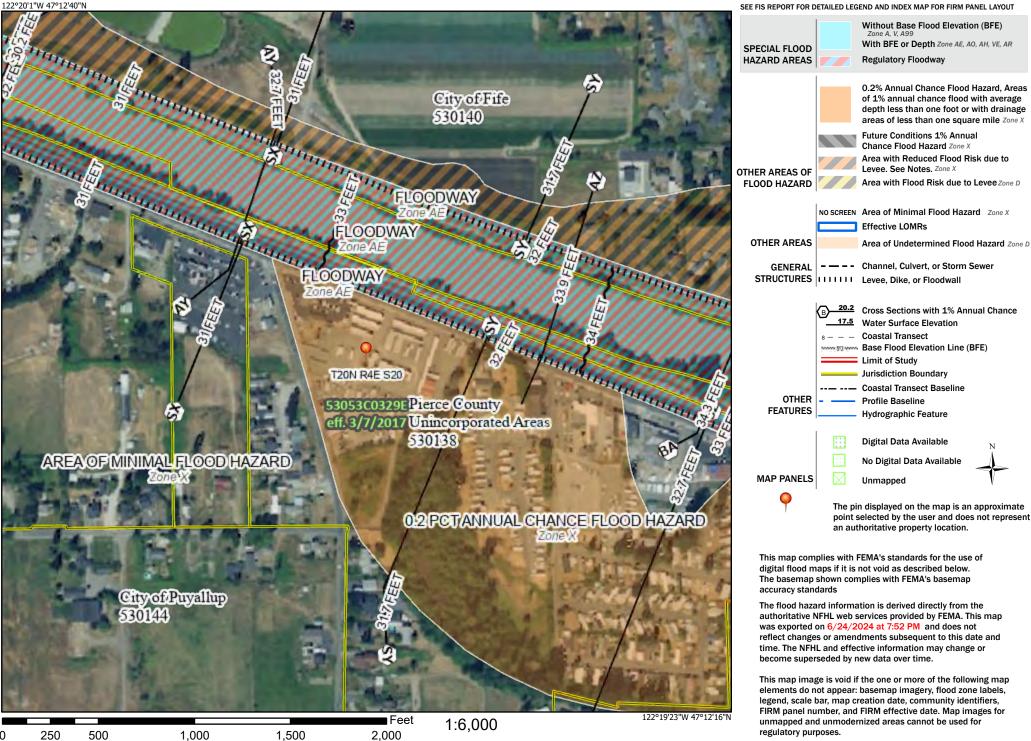
HEALTH INDICATORS					
INDICATOR	VALUE	STATE AVERAGE	STATE PERCENTILE	US AVERAGE	US PERCENTILE
Low Life Expectancy	19%	18%	67	20%	51
Heart Disease	5.3	5.3	51	6.1	35
Asthma	10.3	10.5	39	10	64
Cancer	6.7	6.3	62	6.1	62
Persons with Disabilities	10.8%	13.1%	38	13.4%	38

CLIMATE INDICATORS					
INDICATOR	VALUE	STATE AVERAGE	STATE PERCENTILE	US AVERAGE	US PERCENTILE
Flood Risk	41%	11%	94	12%	94
Wildfire Risk	0%	12%	0	14%	0

CRITICAL SERVICE GAPS						
INDICATOR VALUE STATE AVERAGE STATE PERCENTILE US AVERAGE US PERCENTILE						
Broadband Internet	9%	9%	63	14%	43	
Lack of Health Insurance	4%	6%	33	9%	27	
Housing Burden	No	N/A	N/A	N/A	N/A	
Transportation Access	Yes	N/A	N/A	N/A	N/A	
Food Desert	No	N/A	N/A	N/A	N/A	

Report for Tract: 53053073408

APPENDIX D CLIMATE CHANGE EVALUATION


REMEDIAL INVESTIGATION REPORT 7602 and 7702 River Road East Puyallup, Washington

Farallon PN: 2220-008

National Flood Hazard Layer FIRMette

Legend

Basemap Imagery Source: USGS National Map 2023

Pierce County PublicGIS Map

Disclaimer: The map features are approximate and have not been surveyed. Additional features not yet mapped may be present. Pierce County assumes no liability for variations ascertained by formal survey.

Environmental	Wetlands
FIRM Panels	Unconfirmed
	Yes
	No
Floodways	
	Potential Wetland Review
Regulated Floodplain 2017	
1% Annual Chance Flood	
X BEHIND LEVEE	Parcel
0.2 PCT	
X (SHADED)	Tax Parcels
Coastal High Hazard Areas	
See King County FIRM	

Wetlands

County Wetlands Inventory

Wetlands Delineation

- Delineated
- --- Verified
- Unverified

APPENDIX E LABORATORY ANALYTICAL RESULTS

REMEDIAL INVESTIGATION REPORT 7602 and 7702 River Road East Puyallup, Washington

Farallon PN: 2220-008

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 21, 2023

Pete Kingston, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Kingston:

Included are the results from the testing of material submitted on September 15, 2023 from the 2220-008, F&BI 309213 project. There are 28 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0921R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 15, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 2220-008, F&BI 309213 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
309213 -01	FMW-01-091523
309213 -02	FMW-02-091523
309213 -03	FMW-03-091523
309213 -04	FMW-04-091523
309213 -05	FMW-05-091523

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/23 Date Received: 09/15/23 Project: 2220-008, F&BI 309213 Date Extracted: 09/15/23 Date Analyzed: 09/18/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
FMW-01-091523 ³⁰⁹²¹³⁻⁰¹	<50	<250	111
FMW-02-091523 ³⁰⁹²¹³⁻⁰²	<50	<250	124
FMW-03-091523 ³⁰⁹²¹³⁻⁰³	<50	<250	111
FMW-04-091523 309213-04	<50	<250	113
$\underset{\scriptstyle 309213\text{-}05}{\text{FMW-}05\text{-}091523}$	<50	<250	116
Method Blank ^{03-2205 MB}	<50	<250	135

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/23 Date Received: 09/15/23 Project: 2220-008, F&BI 309213 Date Extracted: 09/15/23 Date Analyzed: 09/18/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
FMW-01-091523 ³⁰⁹²¹³⁻⁰¹	360 x	450 x	128
FMW-02-091523 309213-02	210 x	330 x	124
FMW-03-091523 ³⁰⁹²¹³⁻⁰³	750 x	2,200 x	114
FMW-04-091523 309213-04	260 x	660 x	119
$\underset{309213-05}{\text{FMW-05-091523}}$	180 x	370 x	123
Method Blank ^{03-2205 MB}	<50	<250	138

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-01-091523 09/15/23 09/15/23 09/16/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 309213-01 309213-01.234 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic Barium Cadmium Lead Mercury Selenium Silver	$59.7 \\ 592 \\ <1 \\ 1.05 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <$		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	FMW-01-091523	Client:	Farallon Consulting, LLC
Date Received:	09/15/23	Project:	2220-008, F&BI 309213
Date Extracted:	09/15/23	Lab ID:	309213-01 x20
Date Analyzed:	09/20/23	Data File:	309213-01 x20.088
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Chromium	Concentration ug/L (ppb) <20		

 $\mathbf{5}$

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-02-091523 09/15/23 09/15/23 09/16/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 309213-02 309213-02.235 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic Barium Cadmium Lead Mercury Selenium Silver	22.5 394 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	FMW-02-091523	Client:	Farallon Consulting, LLC
Date Received:	09/15/23	Project:	2220-008, F&BI 309213
Date Extracted:	09/15/23	Lab ID:	309213-02 x20
Date Analyzed:	09/20/23	Data File:	309213-02 x20.089
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Chromium	Concentration ug/L (ppb) <20		

7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-03-091523 09/15/23 09/15/23 09/16/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 309213-03 309213-03.236 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic Barium Cadmium Lead Mercury	8.36 54.1 <1 <1 <1		
Selenium Silver	<1 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-03-091523 09/15/23 09/20/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 309213-03 x10 309213-03 x10.141 ICPMS2 SP
Analyte: Chromium	Concentration ug/L (ppb) <10		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-04-091523 09/15/23 09/15/23 09/16/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 309213-04 309213-04.237 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Barium	58.3		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-05-091523 09/15/23 09/15/23 09/16/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 309213-05 309213-05.238 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	4.64		
Barium	98.3		
Cadmium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	FMW-05-091523	Client:	Farallon Consulting, LLC
Date Received:	09/15/23	Project:	2220-008, F&BI 309213
Date Extracted:	09/15/23	Lab ID:	309213-05 x10
Date Analyzed:	09/19/23	Data File:	309213-05 x10.057
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Chromium	Concentration ug/L (ppb) <10		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 09/15/23 09/15/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 I3-716 mb I3-716 mb.153 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-01-091523 09/15/23 09/15/23 09/16/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 309213-01 309213-01.221 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	59.3		
Barium	576		
Cadmium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	FMW-01-091523	Client:	Farallon Consulting, LLC
Date Received:	09/15/23	Project:	2220-008, F&BI 309213
Date Extracted:	09/15/23	Lab ID:	309213-01 x20
Date Analyzed:	09/20/23	Data File:	309213-01 x20.084
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Chromium	Concentration ug/L (ppb) <20		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-02-091523 09/15/23 09/15/23 09/16/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 309213-02 309213-02.224 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic Barium Cadmium Lead Mercury Selenium Silver	22.2 383 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client ID:	FMW-02-091523	Client:	Farallon Consulting, LLC
Date Received:	09/15/23	Project:	2220-008, F&BI 309213
Date Extracted:	09/15/23	Lab ID:	309213-02 x20
Date Analyzed:	09/20/23	Data File:	309213-02 x20.087
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Chromium	Concentration ug/L (ppb) <20		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-03-091523 09/15/23 09/15/23 09/16/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 309213-03 309213-03.225 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic Barium Cadmium Lead Mercury Selenium Silver	7.91 50.7 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-03-091523 09/15/23 09/15/23 09/19/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 309213-03 x10 309213-03 x10.048 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)	operator.	51
Chromium	<10		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-04-091523 09/15/23 09/15/23 09/16/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 309213-04 309213-04.226 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Barium	58.1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-05-091523 09/15/23 09/15/23 09/16/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 309213-05 309213-05.227 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic Barium Cadmium Lead Mercury Selenium Silver	$\begin{array}{c} 4.54 \\ 95.8 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client ID:	FMW-05-091523	Client:	Farallon Consulting, LLC
Date Received:	09/15/23	Project:	2220-008, F&BI 309213
Date Extracted:	09/15/23	Lab ID:	309213-05 x10
Date Analyzed:	09/19/23	Data File:	309213-05 x10.127
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Chromium	Concentration ug/L (ppb) <10		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 09/15/23 09/15/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 309213 I3-716 mb I3-716 mb.153 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/23 Date Received: 09/15/23 Project: 2220-008, F&BI 309213

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 30	9173-05 (Matri	x Spike)	Silica Gel				
				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	<50	116	112	50 - 150	4
Laboratory Code: La	aboratory Conti	ol Sampl	e Silica Gel				
			Percent				
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria	_		
Diesel Extended	ug/L (ppb)	2,500	104	65 - 151	_		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/23 Date Received: 09/15/23 Project: 2220-008, F&BI 309213

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 30	09173-05 (Matri	x Spike)					
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Diesel Extended	ug/L (ppb)	2,500	<50	120	116	50 - 150	3
Laboratory Code: L	aboratory Contr	ol Sampl	e Percent				
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria	_		
Diesel Extended	ug/L (ppb)	2,500	104	65 - 151	_		

Laboratory Code: 309173-05 (Matrix Spike)

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/23 Date Received: 09/15/23 Project: 2220-008, F&BI 309213

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 309213-01 x20 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	50.6	95 b	95 b	75 - 125	0 b
Barium	ug/L (ppb)	50	609	139 b	161 b	75 - 125	$15 \mathrm{b}$
Cadmium	ug/L (ppb)	5	<20	90	89	75 - 125	1
Chromium	ug/L (ppb)	20	<20	92	96	75 - 125	4
Lead	ug/L (ppb)	10	<20	53 vo	53 vo	75 - 125	0
Mercury	ug/L (ppb)	5	<20	82	88	75 - 125	7
Selenium	ug/L (ppb)	5	<20	101	69 vo	75 - 125	38 vo
Silver	ug/L (ppb)	5	<20	59 vo	61 vo	75 - 125	3

Laboratory Code: Laboratory Control Sample

Laboratory Co	Laboratory Code. Laboratory Control Sample						
			Percent				
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Arsenic	ug/L (ppb)	10	96	80-120			
Barium	ug/L (ppb)	50	95	80-120			
Cadmium	ug/L (ppb)	5	96	80-120			
Chromium	ug/L (ppb)	20	93	80-120			
Lead	ug/L (ppb)	10	95	80-120			
Mercury	ug/L (ppb)	5	98	80-120			
Selenium	ug/L (ppb)	5	101	80-120			
Silver	ug/L (ppb)	5	89	80-120			

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/23 Date Received: 09/15/23 Project: 2220-008, F&BI 309213

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 309213-01 x20 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	50.6	95 b	95 b	75 - 125	0 b
Barium	ug/L (ppb)	50	609	139 b	161 b	75 - 125	15 b
Cadmium	ug/L (ppb)	5	<20	90	89	75 - 125	1
Chromium	ug/L (ppb)	20	<20	92	96	75 - 125	4
Lead	ug/L (ppb)	10	<20	53 vo	53 vo	75 - 125	0
Mercury	ug/L (ppb)	5	<20	82	88	75 - 125	7
Selenium	ug/L (ppb)	5	<20	101	69 vo	75 - 125	38 vo
Silver	ug/L (ppb)	5	<20	59 vo	61 vo	75 - 125	3

Laboratory Code: Laboratory Control Sample

Laboratory Co	Laboratory Code: Laboratory Control Sample							
			Percent					
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria				
Arsenic	ug/L (ppb)	10	96	80-120				
Barium	ug/L (ppb)	50	95	80-120				
Cadmium	ug/L (ppb)	5	96	80-120				
Chromium	ug/L (ppb)	20	93	80-120				
Lead	ug/L (ppb)	10	95	80-120				
Mercury	ug/L (ppb)	5	98	80-120				
Selenium	ug/L (ppb)	5	101	80-120				
Silver	ug/L (ppb)	5	89	80-120				

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Friedman & Bruya, Inc. Relinquished by: Ph. (206) 285-8282 Received by: Relinquished by: Relinquished by:			FMW-05-091523 05	FMW-04-091523 04	FMW-03.091523 03	FMW-02-091523 02	Fmw-01-091523 01	Sample ID La		PhoneEmail <u>pkings</u> r	City, State, ZIP Issayuch, WA	Company <u>Farallon Consulting</u> Address 975 5th Ave NW	213 Peter Kin
SIGNATURE		_	 i				A-C 9/15/23	Lab ID Date Sampled		Email pringstracharally cursuiting wind Project specific RLs? -	75027	€ P	
			1220	1135	1050	1010	0410	Time d Sampled		hng win Project	REMARKS	- To R	SAMPI
Michael Yseguire NUM AN Phan	_		j j				H ₂ O	Sample 7 Type J		specific RLs?		Read East	SAMPLE CHAIN OF CUSTO
PRINT NAME Yseguire Phan			X	×	×	×	ω Χ΄	And whoot Silver NWTPH-Dx get NWTPH-Gx		- Yes / No		River	
COMPANY Ful Ful Ful	Samples		×				H H	BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 CBs EPA 8082 CBs EPA 8082	ANALYSES REQUESTED	The project	INVOICE TO	PO + 8 م0 - 2220 - 8	ODY ME 09
NY DATE TIME 9/15/23 1337 1/15/23 1337	s received at 4 °C					Super Concert	NW TPH-DX analysis	Notes		 Archive samples Other Default: Dispose after 30 days 	SAMPLE DISPOSAL	Standard turnaround RUSH 24 hr TPT Rush charges authorized by:	-15-23 L3 Page # 1 of 1 I

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

February 16, 2024

Pete Kingston, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Kingston:

Included are the results from the testing of material submitted on February 8, 2024 from the 2220-008, F&BI 402106 project. There are 20 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Farallon Data, Sara Haynes FLN0216R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 8, 2024 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 2220-008, F&BI 402106 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
402106 -01	FMW-1-020624
402106 -02	FMW-2-020624
402106 -03	FMW-3-020624
402106 -04	FMW-4-020624
402106 -05	FMW-5-020624

The samples were sent to Fremont Analytical for total organic carbon analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/16/24 Date Received: 02/08/24 Project: 2220-008, F&BI 402106 Date Extracted: 02/09/24 Date Analyzed: 02/09/24

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx Extended to Include Motor Oil Range Compounds

Results Reported as ug/L (ppb)

		Surrogate
Sample ID	Diesel Extended	(% Recovery)
Laboratory ID	(C ₁₀ -C ₃₆)	(Limit 50-150)
FMW-1-020624 402106-01	710 x	112
FMW-2-020624 402106-02	260 x	104
FMW-3-020624 402106-03	1,900 x	99
FMW-4-020624 402106-04	<250	98
$\underset{402106-05}{\text{FMW-5-020624}}$	1,400 x	104
Method Blank 04-336 MB2	<250	108

ENVIRONMENTAL CHEMISTS

Date of Report: 02/16/24 Date Received: 02/08/24 Project: 2220-008, F&BI 402106 Date Extracted: 02/12/24 Date Analyzed: 02/12/24

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx Extended to Include Motor Oil Range Compounds Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Extended (C10-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
FMW-1-020624 402106-01	<250	113
FMW-2-020624 402106-02	<250	114
FMW-3-020624 402106-03	<250	104
FMW-4-020624 402106-04	<250	105
FMW-5-020624 402106-05	<250	107
Method Blank 04-336 MB2	<250	114

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	FMW-1-020624 02/08/24 02/14/24 02/14/24 Water	Client: Project: Lab ID: Data File: Instrument:	Farallon Consulting, LLC 2220-008, F&BI 402106 402106-01 402106-01.088 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	2.7		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	FMW-2-020624 02/08/24 02/14/24 02/14/24 Water	Client: Project: Lab ID: Data File: Instrument:	Farallon Consulting, LLC 2220-008, F&BI 402106 402106-02 402106-02.089 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	1.5		

 $\mathbf{5}$

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	FMW-3-020624 02/08/24 02/14/24 02/14/24 Water	Client: Project: Lab ID: Data File: Instrument:	Farallon Consulting, LLC 2220-008, F&BI 402106 402106-03 402106-03.090 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		

Arsenic

6.3

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	FMW-4-020624 02/08/24 02/14/24 02/14/24 Water	Client: Project: Lab ID: Data File: Instrument:	Farallon Consulting, LLC 2220-008, F&BI 402106 402106-04 402106-04.091 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	2.4		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	FMW-5-020624 02/08/24 02/14/24 02/14/24 Water	Client: Project: Lab ID: Data File: Instrument:	Farallon Consulting, LLC 2220-008, F&BI 402106 402106-05 402106-05.096 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	2.6		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 02/14/24 02/14/24 Water wg/L (mpb)	Client: Project: Lab ID: Data File: Instrument:	Farallon Consulting, LLC 2220-008, F&BI 402106 I4-116 mb I4-116 mb.086 ICPMS2 SP
Analyte: Arsenic	ug/L (ppb) Concentration ug/L (ppb) <1	Operator:	Sr

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted:	FMW-1-020624 02/08/24 02/08/24	Client: Project: Lab ID:	Farallon Consulting, LLC 2220-008, F&BI 402106 402106-01
Date Analyzed:	02/08/24	Data File:	402106-01.184
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		

Arsenic

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-2-020624 02/08/24 02/08/24 02/08/24 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 402106 402106-02 402106-02.185 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		51
Arsenic	2.5		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-3-020624 02/08/24 02/08/24 02/08/24 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 402106 402106-03 402106-03.186 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)	Operator.	51
Arsenic	8.4		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	FMW-4-020624	Client:	Farallon Consulting, LLC
Date Received:	02/08/24	Project:	2220-008, F&BI 402106
Date Extracted:	02/08/24	Lab ID:	402106-04
Date Analyzed:	02/08/24	Data File:	402106-04.187
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb)		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-5-020624 02/08/24 02/08/24 02/08/24 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument:	Farallon Consulting, LLC 2220-008, F&BI 402106 402106-05 402106-05.188 ICPMS2 SP
Onits.	Concentration	Operator:	51
Analyte:	ug/L (ppb)		
Arsenic	8.9		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Farallon Consulting, LLC
Date Received:	NA	Project:	2220-008, F&BI 402106
Date Extracted:	02/08/24	Lab ID:	I4-99 mb
Date Analyzed:	02/08/24	Data File:	I4-99 mb.049
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte: Arsenic	Concentration ug/L (ppb) <1	oporation	

ENVIRONMENTAL CHEMISTS

Date of Report: 02/16/24 Date Received: 02/08/24 Project: 2220-008, F&BI 402106

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	80	92	65 - 151	14

ENVIRONMENTAL CHEMISTS

Date of Report: 02/16/24 Date Received: 02/08/24 Project: 2220-008, F&BI 402106

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel							
			Percent	Percent			
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)	
Diesel Extended	ug/L (ppb)	2,500	84	92	65 - 151	9	

ENVIRONMENTAL CHEMISTS

Date of Report: 02/16/24 Date Received: 02/08/24 Project: 2220-008, F&BI 402106

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code	: 402106-05 ((Matrix Sp	oike)				
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	2.6	74 b	70 b	75-125	6 b

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	89	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 02/16/24 Date Received: 02/08/24 Project: 2220-008, F&BI 402106

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code	e: 402092-01	(Matrix Sp	ike)				
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	13	95 b	97 b	75-125	2 b

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	95	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

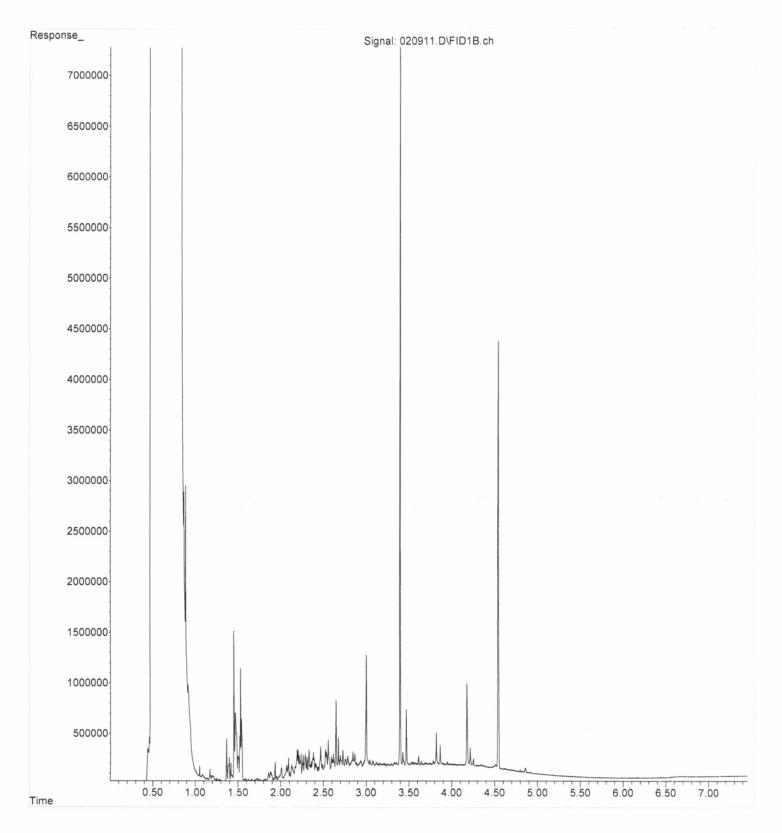
lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

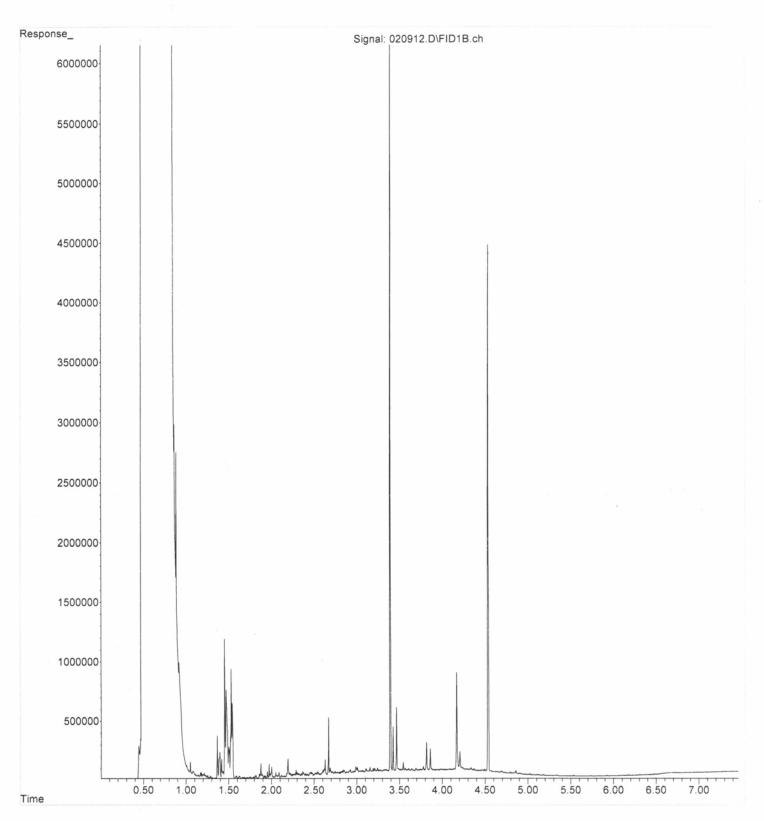
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

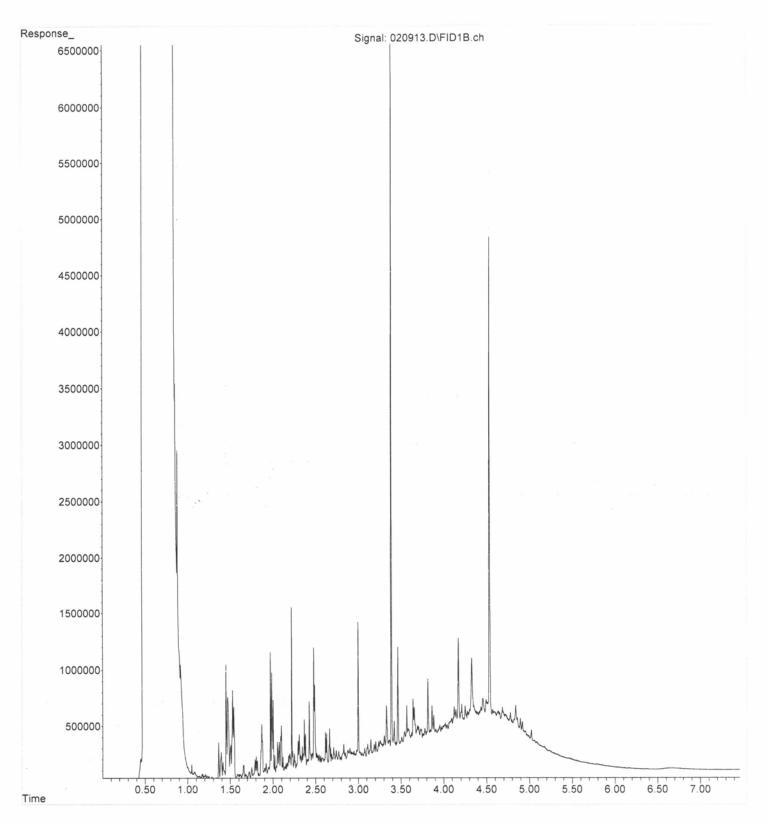
ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

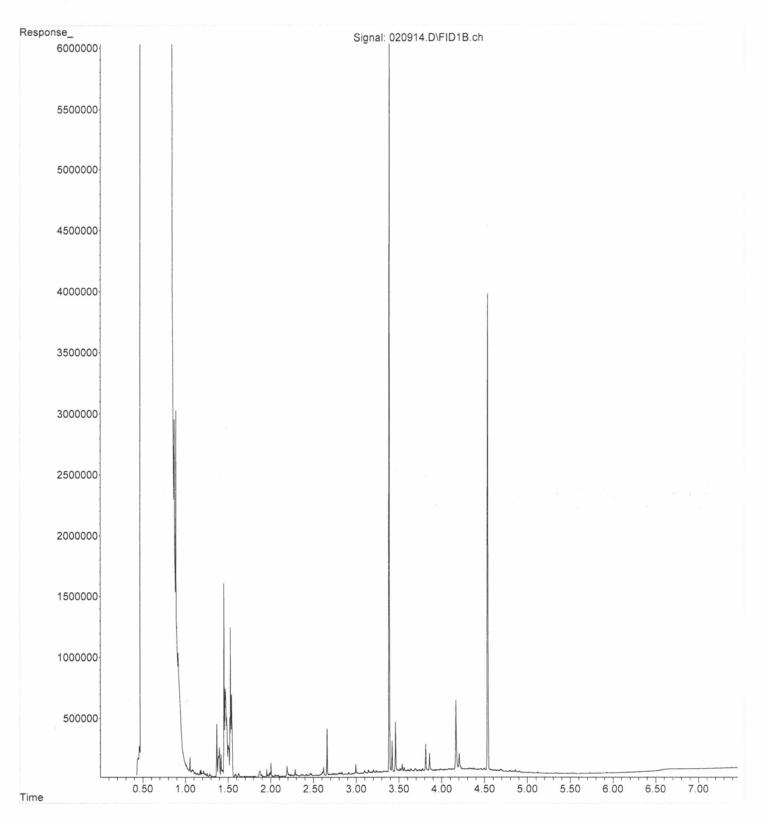

vo - The value reported fell outside the control limits established for this analyte.

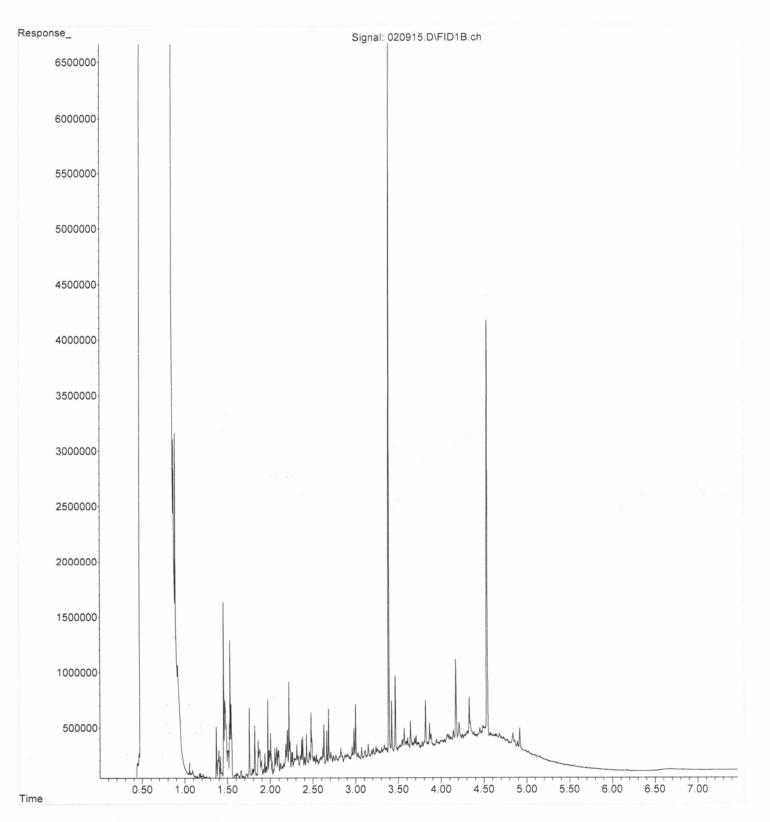
x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


SAMPLERS (signatu PROJECT NAME 3220-008 REMARKS * EPA 200 ** Shuda nefts > Sampled Sampled Sampled Type J/6/24 13225 H20 1/1/3 H20 1/58 H20 1/58 H20 1/272 H		Ph. (206) 285-8282	Friedman & Bruya, Inc.					FAW-5-020624	489020-4-MWJ	FmW-3~ 020624	469000-C-MW7	4290E0-1-MWJ	Sample ID		PhoneEm	ate, ZIP	Address	Commany Forallin	Report To POLC KNOSTON SWA HAMMS	402106
Date Bampled	Received by:	Received by:	Relinquished by:					05 V	04	03		A -	Lab ID		ail a) Frailur msy	NUTION, Straines		_	m Swa Hanna	
SAMPLERS (signature) PROJECT NAME G220-008 REMARKS * E12 2007 Project specific RLs? - 1325 H20 1325 H20 1325 H20 158 H20 158 H20 158 H20 158 H20 5 1642 H20 5 1645 H20 1645 H2		- And	han In.	NIATI DE				I				he/9/0	Date Sampled		tiny.com				S	
ERS (signature) TY NAME D-008 CRS * EPA 20078 MeThy S 3/0 C MeThy S 3/0 C H20 S H20 S			XIIIII					6431	£551	1459	1413	1325	Time Sampled		- Project s	REMAR ** Show	ವುಬ	PROJEC	SAMPLI	SAMPLE
		Mich	Prof.					Hau	HaO	HaQ	HaO	Och	Sample Type		pecific RLs	Merhod S310	100-0	T NAME	ERS (signat	CHAIN
		ell,	100	PRI				S	5	5	5	\mathcal{S}	# of Jars			2			ture)	OF (
PRINT NAME PRINT NAME I C. LI		2 2	LIR.					$\left \right\rangle$	X	\geq	\geq	\times	NWTPH-Dx	Π)s / 1	C09+			M)	SUS
NWTPH-Gx			-Gri	AME	 										Vo	03			M	IOI
					 0														M	YC
Image: Solution of the second seco					 amp									AN			2		2	
Image: Second				┥┝	 103								,	ALY		P OIC	20-90	PO ≉	1	02
FIGURE PAHS EPA 8270 SE FIGURE		F.	5		 rece	•		+						SES]		ETC	30	#		
		BIN	rall		 ived			X		$\overline{\mathbf{x}}$		\mathbf{X}		REQU						hp 80
COMPANY COL XXX total + dissolved As BUESSIE			10	MPA				$\overline{\mathbf{x}}$	Ŕ	$\overline{\mathbf{x}}$	Í			JEST						<u> </u>
NY 4 0				┦┝	 1		-	<u> </u>	\square	, K		—	10 M. O'YANIC CONFOR	Ð	Defa	□ Are	Rush	VSta □ RU		Z
Page # TURN SAMI SAMI CC					 ĥ			+							ult: I	SAN chive her	char	undar ISH	Page ; TUR	F2/K4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2	V	╡┝		+		+	0	R	2	1		1	Dispo	IPLE samp	ges au	d turi	#	7
$\frac{ C }{ C } = \frac{ C }{ C } = $		18/2	c/21	ATE					stend		2 2 2	2/0			se afi	DISP les	ıthori	narou	UND	
$\frac{\text{of } / \text{D TIM}}{\text{und und }}$			~						ect.		14/21		lotes		ter 3	OSA	zed b	nd	of /	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		1002	CB	TIME						ilial	1 MG) days		y:		E	

G


File :P:\Proc_GC14\02-09-24\020911.D
Operator : TL
Acquired : 09 Feb 2024 10:28 am using AcqMethod DX.M
Instrument : GC14
Sample Name: 402106-01
Misc Info :
Vial Number: 11


File :P:\Proc_GC14\02-09-24\020912.D Operator : TL Acquired : 09 Feb 2024 10:40 am using AcqMethod DX.M Instrument : GC14 Sample Name: 402106-02 Misc Info : Vial Number: 12


File :P:\Proc_GC14\02-09-24\020913.D Operator : TL Acquired : 09 Feb 2024 10:52 am using AcqMethod DX.M Instrument : GC14 Sample Name: 402106-03 Misc Info : Vial Number: 13

File :P:\Proc_GC14\02-09-24\020914.D Operator : TL Acquired : 09 Feb 2024 11:03 am using AcqMethod DX.M Instrument : GC14 Sample Name: 402106-04 Misc Info : Vial Number: 14

File :P:\Proc_GC14\02-09-24\020915.D
Operator : TL
Acquired : 09 Feb 2024 11:15 am using AcqMethod DX.M
Instrument : GC14
Sample Name: 402106-05
Misc Info :
Vial Number: 15

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 402106 Work Order Number: 2402136

February 15, 2024

Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 2/8/2024 for the analyses presented in the following report.

Total Organic Carbon by SM 5310C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Original

CLIENT: Project: Work Order:	Friedman & Bruya 402106 2402136	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2402136-001	FMW-1-020624	02/06/2024 1:25 PM	02/08/2024 12:59 PM
2402136-002	FMW-2-020624	02/06/2024 2:13 PM	02/08/2024 12:59 PM
2402136-003	FMW-3-020624	02/06/2024 2:59 PM	02/08/2024 12:59 PM
2402136-004	FMW-4-020624	02/06/2024 3:58 PM	02/08/2024 12:59 PM
2402136-005	FMW-5-020624	02/06/2024 4:42 PM	02/08/2024 12:59 PM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2402136** Date: **2/15/2024**

CLIENT:Friedman & BruyaProject:402106

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

 WO#:
 2402136

 Date Reported:
 2/15/2024

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv CCB - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate HEM - Hexane Extractable Material** ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2402136

 Date Reported:
 2/15/2024

CLIENT:Friedman & BruyaProject:402106						
Lab ID: 2402136-001 Client Sample ID: FMW-1-020624				Collection Matrix: V		2/6/2024 1:25:00 PM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Organic Carbon by SM 5310C				Batch	h ID: R8	9580 Analyst: FG
Total Organic Carbon	19.4	0.700		mg/L	1	2/13/2024 3:05:00 PM
Lab ID: 2402136-002 Client Sample ID: FMW-2-020624				Collection Matrix: W		2/6/2024 2:13:00 PM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Organic Carbon by SM 5310C				Batch	h ID: R8	9580 Analyst: FG
Total Organic Carbon	11.5	0.700		mg/L	1	2/13/2024 4:38:00 PM
Lab ID: 2402136-003 Client Sample ID: FMW-3-020624				Collection Matrix: V		2/6/2024 2:59:00 PM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Organic Carbon by SM 5310C				Batch	h ID: R8	9580 Analyst: FG
Total Organic Carbon	32.6	0.700		mg/L	1	2/13/2024 5:01:00 PM
Lab ID: 2402136-004 Client Sample ID: FMW-4-020624				Collection Matrix: W		2/6/2024 3:58:00 PM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Organic Carbon by SM 5310C				Batch	h ID: R8	9580 Analyst: FG
Total Organic Carbon	10.9	0.700		mg/L	1	2/13/2024 5:24:00 PM

Analytical Report

 Work Order:
 2402136

 Date Reported:
 2/15/2024

CLIENT: Friedman & Bruya Project: 402106					
Lab ID: 2402136-005 Client Sample ID: FMW-5-020624			Collection Matrix: W		2/6/2024 4:42:00 PM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Total Organic Carbon by SM 5310C			Batch	ID: R8	9580 Analyst: FG

	402136 riedman & Bruya	2								QC S	SUMMAI	RY REF	POR
	02106	a								Total Orga	anic Carbo	on by SM	53100
Sample ID: MB-R8958	30 Sar	mpType:	MBLK			Units: mg/L		Prep Dat	e: 2/13/20	24	RunNo: 89	580	
Client ID: MBLKW	Bat	ch ID:	R89580					Analysis Dat	e: 2/13/20	24	SeqNo: 187	70684	
Analyte		Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon			ND	0.700									
Sample ID: 2402136-0	001ADUP Sar	mpType:	DUP			Units: mg/L		Prep Dat	e: 2/13/20	24	RunNo: 89	580	
Client ID: FMW-1-02	20624 Bat	ch ID:	R89580					Analysis Dat	e: 2/13/20	24	SeqNo: 187	70687	
Analyte		Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon			19.7	0.700						19.36	1.89	20	
Sample ID: 2402136-0	001AMS Sar	mpType:	MS			Units: mg/L		Prep Dat	e: 2/13/20	24	RunNo: 89	580	
Client ID: FMW-1-02	20624 Bat	ch ID:	R89580					Analysis Dat	e: 2/13/20	24	SeqNo: 187	70688	
Analyte		Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon			24.3	0.700	5.000	19.36	98.9	41.1	150				
Sample ID: 2402136-0	001AMSD Sar	npType:	MSD			Units: mg/L		Prep Dat	e: 2/13/20	24	RunNo: 89	580	
Client ID: FMW-1-02	20624 Bat	ch ID:	R89580					Analysis Dat	e: 2/13/20	24	SeqNo: 187	70689	
Analyte		Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon			24.2	0.700	5.000	19.36	96.2	41.1	150	24.30	0.557	30	
Sample ID: LCS-R895	5 80 Sar	npType:	LCS			Units: mg/L		Prep Dat	e: 2/13/20	24	RunNo: 89	580	
Client ID: LCSW	Bat	ch ID:	R89580					Analysis Dat	e: 2/13/20	24	SeqNo: 187	70696	
Analyte		Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carbon			5.18	0.700	5.000	0	104	90	116				

Sample Log-In Check List

Client Name: FE	3	Work Order Numb	per: 2402136	
Logged by: Mo	organ Wilson	Date Received:	2/8/2024 1	2:59:00 PM
Chain of Custod	N			
1. Is Chain of Custo		Yes 🖌	No 🗌	Not Present
 How was the sar 		<u>Client</u>		
Z. 11011 1100 110 001				
<u>Log In</u>				
	esent on shipping container/cooler? nts for Custody Seals not intact)	Yes 🖌	No 🗌	Not Present
4. Was an attempt r	made to cool the samples?	Yes 🗹	No 🗌	NA 🗌
5. Were all items re	ceived at a temperature of >2°C to 6°C *	Yes 🖌	No 🗌	
6. Sample(s) in prop	per container(s)?	Yes 🖌	No 🗌	
7. Sufficient sample	volume for indicated test(s)?	Yes 🖌	No 🗌	
8. Are samples prop	perly preserved?	Yes 🖌	No 🗌	
9. Was preservative	added to bottles?	Yes	No 🗹	NA 🗌
10. Is there headspace	ce in the VOA vials?	Yes	No 🗌	NA 🔽
11. Did all samples c	ontainers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
12. Does paperwork	match bottle labels?	Yes 🗹	No 🗌	
13. Are matrices corr	rectly identified on Chain of Custody?	Yes 🗹	No 🗌	
14. Is it clear what an	nalyses were requested?	Yes 🖌	No 🗌	
15. Were all hold time be met?	es (except field parameters, pH e.g.) able to	Yes 🖌	No 🗌	
Special Handling	<u>g (if applicable)</u>			
16. Was client notifi	ed of all discrepancies with this order?	Yes	No 🗌	NA 🗹
Person No	tified: Date:	:		
By Whom:	Via:	eMail Pr	none 🗌 Fax 🛛	In Person
Regarding				
Client Instr	ructions:			
17. Additional remain	rks:			

Item Information

Item #	Temp ⁰C
Sample	4.1

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

											Received by:		Fax (206) 283-5044
SuBCONTRACTER Primon: SuBCONTRACTER POP# SUBCONTRACTER POWER SUBCONTRACTER SUBCONTRACTER SUBCONTRACTER SUBCONTRACTER SUBCONTRACTER SUBCONTRACTER SUBCONTRACTER SUBCONTRACTER SUBLINE SUBCONTRAC		-								1 and	Relinquished by:		Ph. (206) 285-8282
SUBCONTRACTER Primon: Standard Primon: Standard Standard Standard Standard Standard Primon: Standard	1259	2/0)		FAL		ulla	X111 N			Thereins	Received by:	9029	Seattle, WA 98119-2
Michael Erdahl Friemant Fromont Properation of the second	11:00		nd Bruya	Friedman a			ldman	Mac Go		and	Relinquished by:	lest	3012 16th Avenue W
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TIME	DATE	PANY	COMD		NAME	PRINT			GNATURE	IS	Inc.	Friedman & Bruya,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-				-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							+						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							x	+	water	1642	2/6/2024		FMW-5-020624
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							x	+	water	1558	2/6/2024		FMW-4-020624
Michael Erdahl SUBCONTRACTER Friedman and Bruya. Inc. PROJECT NAME/NO. PO# 3012 16th Ave W 402106 Dot Seattle, WA 98119 REMARKS Def G f. 285-8282 merdahl@friedmanandbruya.com REMARKS Dist 1D Sampled Time ANALYSES REQUESTED 1D Sampled Sampled Matrix 2/6/2024 1325 water 1 2/6/2024 1413 water 1							x	-	water	1459	2/6/2024		FMW-3-020624
SUBCONTRACTER Fremont PROJECT NAME/NO. 402106 402106 A02106 PO# RUS A02106 PO# RUS RUS C C ANALYSES REQUESTED ANALYSES REQUESTED Will Will Will Ret Will Ret Will Ret Noist Noist Ret Noist Noist Ret Noist							*	1	water	1413	2/6/2024		FMW-2-020624
SUBCONTRACTER Fremont PROJECT NAME/NO. 402106 A02106 A02106 PO# RUS A02106 PO# RUS C S ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED							x	-	water	1325	2/6/2024		FMW-1-020624
SUBCONTRACTER Fremont PROJECT NAME/NO. 402106 REMARKS EQuIS ANALYSES REQUESTED	'es	Not					by 530c	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
SUBCONTRACTER Fremont PROJECT NAME/NO. 402106 REMARKS EQuIS EQUIS				REQUESTED	ALYSES F	AN							
Michael ErdahlSUBCONTRACTERFriedman and Bruya, Inc.Fremont3012 16th Ave W4021063012 16th Ave WFremont	AL	APLE DISPOS after 30 days amples with instructio	Disp Retu Will	(EQuIS	ARKS		nandbruya.con	VA 98119 erdahl@friedma	attle, V 3282 me	City, State, ZIP <u>S</u> e Phone # (206) 285-8
Michael Erdahl Fremont	by:	ard es authorized l	X Standa RUSH Rush charge	69.mg	P-6		ME/NO.)2106	ECT NA	PROJ	c.	n and Bruya, In h Ave W	iedmaı)12 16t	
	ME	NAROUND TI	TURI				CTER	ONTRA	SUBC Frem		Erdahl	lichael	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 29, 2023

Pete Kingston, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Kingston:

Included are the additional results from the testing of material submitted on August 18, 2023 from the 7602 - 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data, Sara Haynes FLN0829R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 18, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 7602 - 7702 River DR E Puyallup, WA 2220-008, F&BI 308301 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Farallon Consulting, LLC</u>
308301 -01	FB-2-25.0
308301 -02	FB-1-25.0
308301 -03	FB-3-10.0
308301 -04	FB-3-20.0
308301 -05	FB-3-23.0
308301 -06	FB-2-081723
308301 -07	FB-1-081723
308301 -08	FB-3-081723

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/29/23 Date Received: 08/18/23 Project: 7602 - 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301 Date Extracted: 08/21/23 Date Analyzed: 08/25/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
FB-3-081723 ³⁰⁸³⁰¹⁻⁰⁸	700 x	2,900	112
Method Blank 03-2000 MB	<50	<250	114

ENVIRONMENTAL CHEMISTS

Date of Report: 08/29/23 Date Received: 08/18/23 Project: 7602 - 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 1	Laboratory Contr	ol Sample	e Silica Gel			
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	108	100	65 - 151	8

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 ${\bf k}-{\bf The}$ calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

d at to c	Samples received at	ples	Sam		Ì									Received by:	Rec	
c718118	(HP)								-	<				Relinquished by:	Reli	
121-22-1512		B	h	<u> </u>			-+	\leq	É				OPIN	Received by:		Fn. (200) 203-0202
2 50LF &//	2	allar	27			×.	uktar	k	5	000	Ba	all'a	Jullion	Relinquished by:	ı, Inc.	Friedman & Bruya, Inc.
DATE TIME	UNY	COMPANY					ΜĒ	[NA	PRINT NAM	P			SIGNATURE	ß		
					+											•
«	XA	×			×		×	×		(n	57	(2)/(2)	6	20	ELE IS	FB-3-081
	×	×			×			××			QCH	1609		40	564130	F13-1-081
RCRA 8	×	×			×		×	×			Hat	1445		06	56	ER-J-08/723
		×		×	×		×	×		1	501	1647		R	0	FB-3-23,0
					-	1		1		4	ŝ.	1636		04		FB-3-26,0
			<u> </u>		-					· 2	5.1	1627		6)		FB-3-10.0
		×		×	×	-	×		×	I	Soil	1S46		02		FB-1-25.0
A-PK 08/23/23 ME		×	<u> </u>	×	×		×		×	Ţ.	Ę.	1416	9e/17/36	ol A.E	0	61-52-25-0
Notes ;	dissolved metals NWTPH-Dx SG	RCRA 8 METALS	PCBs EPA 8082	PAHs EPA 8270	VOCs EPA 8260	NWTPH-HCID	NWTPH-Gx BTEX EPA 8021	NWTPH-Dx		# of Jars	Sample Type	Time Sampled	Date Sampled	Lab ID	Ð	Sample ID
	ED	REQUESTED		ANALYSES	ANA		$\left\{ \right\}$									
□ Other Default: Dispose after 30 days	Default: Di				4	1		/ No			Project specific RLs? -	Project s	Harin torsulting (010	Official Inclust	Email Officien	Phone 541-224-1925
SAMPLE DISPUSAL hive samples	Arc		TO		J N	\	р 		Pm	Am Line	-	REMARKS		27	Issaquah, WA 98027	City, State, ZIP
Rush charges authorized by:	Rush charge			ROD-OPP	0-1	100	9			Ē	7602 & 7702 River Dr E Puyallup, WA	7602 & 7 Puyallup		a de la companya de l	ve NW	1 10
- Cay	∇ RUSH $\frac{\partial}{\partial - \partial a \gamma}$)	PO #	r P)	 \				PROJECT NAME	PROJEC			llon	Company Thallon
Page # of . / / / / / / / / / / / / / / / / / /	Page #				4	Kalin	1	10	Et al	ature	SAMPLERS (signature)	SAMPLI	S.	va Haynes	Kingston, Sava	Report To Pete Kingston
F2/m2/k2/	N	181/80	0		3	ĸ	0DY	JST	r CL	V OF	CHAIN	SAMPLE CHAIN OF CUSTO	70	×	~	308301

A

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 23, 2023

Pete Kingston, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Kingston:

Included are the results from the testing of material submitted on August 18, 2023 from the 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301 project. There are 46 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data, Sara Haynes FLN0823R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 18, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 7602 and 7702 River DR E Puyallup, WA 2220-008, F&BI 308301 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
308301 -01	FB-2-25.0
308301 -02	FB-1-25.0
308301 -03	FB-3-10.0
308301 -04	FB-3-20.0
308301 -05	FB-3-23.0
308301 -06	FB-2-081723
308301 -07	FB-1-081723
308301 -08	FB-3-081723

The dissolved metals were filtered at Friedman and Bruya. The data were flagged accordingly.

Silver in the 6020B matrix spike failed the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were due to matrix effect.

The 8260D laboratory control sample and laboratory control sample duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

The 8260D calibration standard failed the acceptance criteria for acetone and 2butanone for several samples. The data were flagged accordingly.

The 8260D surrogate toluene-d8 did not meet the laboratory acceptance criteria in one of the water method blanks. The affected compounds were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301 Date Extracted: 08/18/23 Date Analyzed: 08/21/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
FB-2-25.0 308301-01 1/5	<25	112
FB-1-25.0 308301-02	<5	116
FB-3-23.0 308301-05	<5	116
Method Blank ^{03-1645 MB}	<5	100

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301 Date Extracted: 08/21/23 Date Analyzed: 08/21/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
FB-2-081723 308301-06	<100	115
FB-1-081723 ³⁰⁸³⁰¹⁻⁰⁷	<100	111
FB-3-081723 308301-08	<100	117
Method Blank ^{03-1646 MB}	<100	114

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301 Date Extracted: 08/18/23 Date Analyzed: 08/18/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
FB-2-25.0 ³⁰⁸³⁰¹⁻⁰¹	<50	<250	90
FB-1-25.0 $_{308301-02}$	<50	<250	87
FB-3-23.0 308301-05	<50	<250	84
Method Blank ^{03-1997 MB}	<50	<250	84

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301 Date Extracted: 08/21/23 Date Analyzed: 08/21/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
FB-2-081723 308301-06 1/1.2	120 x	<300	109
FB-1-081723 308301-07 1/1.5	79 x	<380	101
FB-3-081723 308301-08	2,200 x	7,400	100
Method Blank 03-2000 MB	<50	<250	108

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-2-081723 f 08/18/23 08/17/23 08/19/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 308301-06 308301-06.327 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	2.30		
Barium	73.4		
Cadmium	<1		
Chromium	4.48		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-1-081723 f 08/18/23 08/17/23 08/19/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 308301-07 308301-07.328 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic Barium Cadmium Lead Mercury Selenium Silver	10.5 118 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	08/18/23 08/18/23 08/21/23 Water ug/L (ppb)	Project: Lab ID: Data File: Instrument: Operator:	2220-008, F&BI 308301 308301-07 x10 308301-07 x10.164 ICPMS2 SP
Analyte:	Concentration ug/L (ppb) <10	operatori	

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-3-081723 f 08/18/23 08/17/23 08/19/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 308301-08 308301-08.331 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	12.3		
Barium	196		
Cadmium	<1		
Chromium	1.66		
Lead	1.20		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank f NA 08/18/23 08/18/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 I3-652 mb I3-652 mb.224 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-2-081723 08/18/23 08/17/23 08/19/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 308301-06 308301-06.337 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)	1	
Arsenic	3.09		
Barium	71.7		
Cadmium	<1		
Chromium	1.54		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-1-081723 08/18/23 08/17/23 08/19/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 308301-07 308301-07.338 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic Barium Cadmium Lead Mercury Selenium Silver	16.4 171 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	FB-1-081723	Client:	Farallon Consulting, LLC
Date Received:	08/18/23	Project:	2220-008, F&BI 308301
Date Extracted:	08/18/23	Lab ID:	308301-07 x5
Date Analyzed:	08/21/23	Data File:	308301-07 x5.088
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)	Operator.	51

Chromium

<5

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-3-081723 08/18/23 08/17/23 08/19/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 308301-08 308301-08.339 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic Barium Cadmium Lead Mercury	10.9 177 <1 <1 <1 <1		
Selenium Silver	<1 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	FB-3-081723	Client:	Farallon Consulting, LLC
Date Received:	08/18/23	Project:	2220-008, F&BI 308301
Date Extracted:	08/18/23	Lab ID:	308301-08 x5
Date Analyzed:	08/21/23	Data File:	308301-08 x5.089
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)	operator.	

<5

Chromium

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 08/18/23 08/18/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 I3-648 mb I3-648 mb.222 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-2-25.0 08/18/23 08/18/23 08/19/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 308301-01 308301-01.324 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	1.02		
Barium	16.0		
Cadmium	<1		
Chromium	8.34		
Lead	3.03		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-1-25.0 08/18/23 08/18/23 08/19/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 308301-02 308301-02.325 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	16.4		
Cadmium	<1		
Chromium	6.32		
Lead	1.11		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-3-23.0 08/18/23 08/18/23 08/19/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 308301-05 308301-05.326 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	1.85		
Barium	24.7		
Cadmium	<1		
Chromium	5.03		
Lead	1.28		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 08/18/23 08/18/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 I3-650 mb I3-650 mb.220 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

FB-2-25.0 08/18/23 08/21/23 08/22/23 Soil mg/kg (ppm	a) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	2220-008, F&BI 3083 308301-01 1/0.5 082212.D GCMS13 MD	
	% Recovery: 94 100 104	Lower Limit: 84 73 57	Upper Limit: 120 128 146	
	Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
hane er (MTBE) thene e ene (EDC) ne e de de nane pone pene	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.002 \\ < 0.5 \\ < 0.1 \\ < 0.5 \\ < 5 \\ < 0.002 \\ < 0.02 \\ < 0.02 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.001 \\ < 0.002 \\ < 0.05 \\ < 0.005 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.05 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	loroethene ochloromethane omoethane (EDB) enzene nzene Tetrachloroethane ene orm lbenzene imethylbenzene fetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene otoluene ylbenzene imethylbenzene imethylbenzene otoluene otoluene otoluene otoluene otoluene imethylbenzene imethylbenzene imethylbenzene imethylbenzene otoluene inobenzene lorobenzene lorobenzene ichloropropane orobutadiene alene	$\begin{array}{c} < 0.05 \\ < 0.002 \\ < 0.05 \\ < 0.005 \\ < 0.001 \\ < 0.05 \\ < 0.001 \\ < 0.05 \\ < 0.0023 \\ < 0.001 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \\ < 0.25 \\ < 0.01 \\ = 0.5 \\ \end{array}$
ne	<0.05 <0.5	1,2, 3-1 1	lemorobenzene	<0.25
	08/18/23 08/21/23 08/22/23 Soil	$\begin{array}{ccccccc} 08/18/23 \\ 08/21/23 \\ 08/22/23 \\ Soil \\ mg/kg (ppm) Dry Weight \\ & & & & & & & & & & & & & & & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-1-25.0 08/18/23 08/21/23 08/21/23 Soil mg/kg (ppm	1) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 2220-008, F&BI 3083 308301-02 1/0.5 082118.D GCMS11 LM	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 106 104 97	Lower Limit: 79 84 84	Upper Limit: 128 121 116	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methyl echloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane	hane er (MTBE) thene e ene (EDC) ne e le hane pene	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.002 \\ < 0.5 \\ < 0.1 \\ < 0.5 \\ < 5 \ ca \\ < 0.002 \\ < 0.02 \\ < 0.02 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.001 \\ < 0.005 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.05 \\ < 0.01 \\ < 0.07 \end{array}$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobe 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexachl	nzene Cetrachloroethane ene vibenzene frm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene vibenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	$\begin{array}{c} < 0.05 \\ < 0.002 \\ < 0.05 \\ < 0.005 \\ < 0.001 \\ < 0.05 \\ < 0.002 \\ < 0.001 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ $
trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone		<0.05 <0.05 <0.5	Naphtha 1,2,3-Tri	alene ichlorobenzene	<0.01 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units: Surrogates:	FB-3-23.0 08/18/23 08/21/23 08/21/23 Soil mg/kg (ppm	n) Dry Weight % Recovery:	Client: Project: Lab ID: Data File: Instrument: Operator: Lower Limit:	Farallon Consulting, 2220-008, F&BI 3083 308301-05 1/0.5 082119.D GCMS11 LM Upper Limit:	
1,2-Dichloroethane	-d4	104	79	128	
Toluene-d8		99	84	121	
4-Bromofluorobenz	ene	94	84	116	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		< 0.5		oroethene	< 0.002
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.005
Chloroethane Trichlorofluoromet	h	<0.1	Chlorobe		< 0.05
Acetone	nane	<0.5 <5 ca	Ethylber 1 1 1 2-7	Setrachloroethane	0.0014 < 0.05
1,1-Dichloroethene		<0.002	m,p-Xyle		0.0094
Hexane		< 0.25	o-Xylene		0.0056
Methylene chloride	•	< 0.2	Styrene		< 0.05
Methyl t-butyl ethe		< 0.002		vlbenzene	< 0.05
trans-1,2-Dichloroe		< 0.002	Bromofo		< 0.05
1,1-Dichloroethane		< 0.002		lbenzene	< 0.05
2,2-Dichloropropan		<0.05	Bromobe		<0.05
cis-1,2-Dichloroeth Chloroform	ene	<0.002 <0.05		imethylbenzene Yetrachloroethane	$< 0.05 \\ < 0.05$
2-Butanone (MEK)		<0.05 <1 ca		ichloropropane	<0.05
1,2-Dichloroethane	(EDC)	< 0.002	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.002	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorie	de	< 0.05		imethylbenzene	< 0.05
Benzene		0.0020		lbenzene	< 0.05
Trichloroethene 1,2-Dichloropropan		<0.002		pyltoluene lorobenzene	$< 0.05 \\ < 0.05$
Bromodichlorometl		<0.05 <0.05		lorobenzene	< 0.05
Dibromomethane	lane	< 0.05		lorobenzene	<0.05
4-Methyl-2-pentan	one	<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.01		orobutadiene	< 0.25
trans-1,3-Dichlorop		< 0.05	Naphtha		0.013
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		<0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 08/21/23 08/21/23 Soil mg/kg (ppn		Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 2220-008, F&BI 3083 03-1946 mb 1/0.5 082116.D GCMS11 LM	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 105 100 98	Lower Limit: 79 84 84	Upper Limit: 128 121 116	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropthane 2,2-Dichloropthane 1,1-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,3-Dichloropthane 4-Methyl-2-pentane cis-1,3-Dichloropto Toluene	hane er (MTBE) ethene e ene (EDC) ne e de de	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.002 \\ < 0.5 \\ < 0.1 \\ < 0.5 \\ < 5 \ ca \\ < 0.002 \\ < 0.02 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.001 \\ < 0.002 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 1 \\ < 0.05 \\ < 0.01 \end{array}$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tri	nzene Fetrachloroethane ene e Vlbenzene orm lbenzene enzene imethylbenzene Fetrachloroethane ichloropropane otoluene	$\begin{array}{c} < 0.05 \\ < 0.002 \\ < 0.05 \\ < 0.005 \\ < 0.001 \\ < 0.05 \\ < 0.002 \\ < 0.001 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \end{array}$
trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone	-	<0.05 <0.05 <0.5	Naphtha 1,2,3-Tri	alene ichlorobenzene	<0.01 <0.25

ENVIRONMENTAL CHEMISTS

ConcentrationConcentrationConcentrationCompounds:ug/L (ppb)Compounds:ug/L (ppb)Dichlorodifluoromethane<11,3-Dichloropropane<1Chloromethane<10Tetrachloroethene<1Vinyl chloride<0.02Dibromochloromethane<0.5Bromomethane<1Chlorobenzene<1Chloroethane<1Chlorobenzene<1Acetone<50 ca1,1,1,2Tetrachloroethane<11,1-Dichloroethene<1m,p-Xylene<2Hexane<5o-Xylene<1Methyl t-butyl ether (MTBE)<1Isopropylbenzene<1trans.1,2-Dichloroethene<1Bromoform<51,1-Dichloroethene<1Bromoform<5<11,2-Dichloroethene<1Bromoform<5<11,1-Dichloroethene<1Bromoform<5<11,2-Dichloroethene<1Bromoform<5<11,2-Dichloroethene<11,3,5-Trimethylbenzene<12,2-Dichloropropane<11,1,2,2'Tetrachloroethane<0.22-Butanone (MEK)<20 ca1,2,3-Trichloropropane<11,1,1-Trichloroethane<14-Chlorotoluene<11,1,1-Trichloroethane<14-Chlorotoluene<11,1,1-Trichloroethane<14-Chlorotoluene<11,1,1-Trichloroethane<14-Chlorotoluene<11,1,1-Trichloroethane<14-Chlorotoluene<11,1,1-T	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units: Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		3 % Recovery: 99 102 95	Client: Project: Lab ID: Data File: Instrument: Operator: Lower Limit: 78 84 72	Farallon Consulting, 2220-008, F&BI 3083 308301-06 082136.D GCMS11 LM Upper Limit: 126 115 130	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Compounds:			Compou	nds:	
1,1,2-Trichloroethane <0.5 1,2,3-Trichlorobenzene <1	Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,2-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropropan Toluene trans-1,3-Dichloropropan	hane er (MTBE) ethene ene (EDC) ne e de hane one pene oropene	$<1 \\ <10 \\ <0.02 \\ <5 \\ <1 \\ <1 \\ <50 \ ca \\ <1 \\ <5 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	1,3-Dich Tetrachl Dibromo 1,2-Dibr Chlorobo Ethylber 1,1,1,2-T m,p-Xylen o-Xylene Isopropy Bromofo n-Propy! Bromobo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexachl Naphtha	loropropane oroethene ochloromethane omoethane (EDB) enzene nzene 'etrachloroethane ene 'e 'lbenzene imethylbenzene imethylbenzene ichloropropane otoluene ylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene otoluene ylbenzene imethylbenzene imethylbenzene imethylbenzene iorobenzene lorobenzene lorobenzene ichloropropane ichloropropane ichloropropane ichloropropane ichloropropane ichlorobenzene omo-3-chloropropane ichlorobenzene orobutadiene alene	

ENVIRONMENTAL CHEMISTS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units: Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		3 % Recovery: 104 100 94	Client: Project: Lab ID: Data File: Instrument: Operator: Lower Limit: 78 84 72	Farallon Consulting, 2220-008, F&BI 3083 308301-07 082137.D GCMS11 LM Upper Limit: 126 115 130	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Compounds:			Compou	nds:	
trans-1,3-Dichloropropene<0.4Naphthalene<11,1,2-Trichloroethane<0.5	Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,2-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropropan Toluene trans-1,3-Dichloropropan	hane er (MTBE) ethene ene (EDC) ne e de hane one pene oropene	$<1 \\ <10 \\ <0.02 \\ <5 \\ <1 \\ <1 \\ <50 \ ca \\ <1 \\ <5 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	1,3-Dich Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xylen o-Xylene Styrene Isopropy Bromofo n-Propy Bromobo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2-Dibr 1,2,4-Tr Hexachl Naphtha	loropropane loroethene ochloromethane omoethane (EDB) enzene nzene Tetrachloroethane ene ene difference imethylbenzene imethylbenzene otoluene otoluene ylbenzene imethylbenzene imethylbenzene imethylbenzene otoluene ylbenzene imethylbenzene imethylbenzene inethylbenzene inethylbenzene inethylbenzene inethylbenzene inethylbenzene inobenzene lorobenzene lorobenzene ichloropropane ichloropropane ichloropropane ichloropropane ichlorobenzene omo-3-chloropropane ichlorobenzene orobutadiene alene	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-3-08172 08/18/23 08/22/23 08/22/23 Water ug/L (ppb)	3	Client: Project: Lab ID: Data File: Instrument: Operator: Lower	Farallon Consulting, 2220-008, F&BI 3083 308301-08 082213.D GCMS13 MD Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane Toluene-d8	-04	91 91	$71\\68$	$132 \\ 139$	
4-Bromofluorobenz	ene	104	$68 \\ 62$	135	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome	ethane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10		loroethene	<1
Vinyl chloride		< 0.02		ochloromethane	< 0.5
Bromomethane		<5		omoethane (EDB)	< 0.01
Chloroethane		<1	Chlorob		<1
Trichlorofluoromet	hane	<1	Ethylber		<1 <1
Acetone 1,1-Dichloroethene		<50 <1	1,1,1,2-1 m,p-Xyle	Tetrachloroethane	<1 <2
Hexane		<5	o-Xylene		<1
Methylene chloride	<u>,</u>	<5	Styrene		<1
Methyl t-butyl ethe		<1	-	lbenzene	<1
trans-1,2-Dichloroe		<1	Bromofo		<5
1,1-Dichloroethane		<1	n-Propy	lbenzene	<1
2,2-Dichloropropan		<1	Bromobe		<1
cis-1,2-Dichloroeth	ene	<1		imethylbenzene	<1
Chloroform		<1		Tetrachloroethane	<0.2
2-Butanone (MEK) 1,2-Dichloroethane		<20 <0.2	1,2,3-1ri 2-Chloro	ichloropropane	<1 <1
1,1,1-Trichloroetha		<0.2	4-Chloro		<1
1,1-Dichloropropen		<1		ylbenzene	<1
Carbon tetrachlorie		< 0.5		imethylbenzene	1.2
Benzene		< 0.35		lbenzene	<1
Trichloroethene		< 0.5	p-Isopro	pyltoluene	3.5
1,2-Dichloropropan		<1		lorobenzene	<1
Bromodichlorometh	nane	< 0.5	,	lorobenzene	<1
Dibromomethane		<1		lorobenzene	<1
4-Methyl-2-pentan		<10		omo-3-chloropropane	<10
cis-1,3-Dichloropro Toluene	herre	<0.4 5.0		ichlorobenzene orobutadiene	<1 <0.5
trans-1,3-Dichlorop	propene	<0.4	Naphtha		<0.5 <1
1,1,2-Trichloroetha		<0.5	_	ichlorobenzene	<1
2-Hexanone		<10	, ,		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 08/21/23 08/21/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 2220-008, F&BI 3083 03-1947 mb 082115.D GCMS11 LM	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 103 68 vo 98	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropropan Toluene trans-1,3-Dichloropropan	hane er (MTBE) ethene eene (EDC) ne e de nane pene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr	nzene Cetrachloroethane ene ene dibenzene orm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene ylbenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	<1 js <1 is <0.5 is 0.011 js lc <1 js <1 js <1 js <1 js <2 js <1 js <2 js <1 js <1 js <5 js <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
1,1,2-Trichloroetha 2-Hexanone		<0.4 js <0.5 js <10 js	-	ichlorobenzene	<1 <1

ENVIRONMENTAL CHEMISTS

		Client: Project: Lab ID: Data File: Instrument: Operator:		
-d4 ene	% Recovery: 97 96 103	Lower Limit: 71 68 62	Upper Limit: 132 139 136	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
thane hane er (MTBE) othene eene (EDC) ne e de hane pene pene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl	oroethene ochloromethane omoethane (EDB) enzene nzene "etrachloroethane ene " dbenzene methylbenzene " dbenzene enzene " methylbenzene otoluene toluene ylbenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane orobutadiene	
ne	<0.4 <0.5 <10	-		<1 <1
	Not Applica 08/21/23 08/22/23 Water ug/L (ppb) -d4 ene -thane -thane (EDC) ne e le ene (EDC) ne e nane one pene oropene	$\begin{array}{cccc} 08/22/23 \\ Water \\ ug/L (ppb) \end{array} \\ & & & & & & & & \\ & & & & & \\ $	Not ApplicableProject: $08/21/23$ Data File: Lab ID: 08/22/23WaterInstrument: ug/L (ppb)Doperator:"waterInstrument: Limit: -d49771ug/L (ppb)Operator:Lower'd Recovery:Limit: Limit: -d49771-d497719668ene10362Concentration ug/L (ppb)Compouthane<1	Not Applicable Project: 2220-008, F&BI 3083 $08/22/23$ Lab ID: $03-1949 \text{ mb}$ $08/22/23$ Data File: $082207.D$ Water Instrument: GCMS13 ug/L (ppb) Operator: MD ************************************

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-2-25.0 08/18/23 08/18/23 08/21/23 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 308301-01 1/25 082118.D GCMS9 VM
Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophe Terphenyl-d14	nol	% Recovery: 73 d 80 d 69 d 113 d	Lower Limit: 10 45 11 50	Upper Limit: 198 117 158 124
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe	ene	$\begin{array}{c} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 0.076 \\ < 0.05 \\ 0.050 \\ 0.087 \\ < 0.05 \\ 0.079 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$		
Benzo(k)fluoranthe Indeno(1,2,3-cd)py Dibenz(a,h)anthra	rene	<0.05 <0.05 <0.05		
Benzo(g,h,i)peryler		< 0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-1-25.0 08/18/23 08/18/23 08/21/23 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 308301-02 1/5 082116.D GCMS9 VM
Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophe Terphenyl-d14	nol	% Recovery: 92 85 72 107	Lower Limit: 10 45 11 50	Upper Limit: 198 117 158 124
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		< 0.01		
2-Methylnaphthale		< 0.01		
1-Methylnaphthale	ene	< 0.01		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		< 0.01		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene	•	< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe		< 0.01		
Benzo(k)fluoranthe		< 0.01		
Indeno(1,2,3-cd)py		< 0.01		
Dibenz(a,h)anthra		< 0.01		
Benzo(g,h,i)peryler	ne	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-3-23.0 08/18/23 08/18/23 08/21/23 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 308301-05 1/5 082113.D GCMS9 VM
Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophe: Terphenyl-d14	nol	% Recovery: 86 81 74 97	Lower Limit: 10 45 11 50	Upper Limit: 198 117 158 124
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		0.012		
2-Methylnaphthale	ene	0.029		
1-Methylnaphthale	ene	0.023		
Acenaphthylene		< 0.01		
Acenaphthene		< 0.01		
Fluorene		< 0.01		
Phenanthrene		0.022		
Anthracene		< 0.01		
Fluoranthene		< 0.01		
Pyrene		< 0.01		
Benz(a)anthracene		< 0.01		
Chrysene		< 0.01		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ene	< 0.01		
Benzo(k)fluoranthe		< 0.01		
Indeno(1,2,3-cd)py		< 0.01		
Dibenz(a,h)anthra		< 0.01		
Benzo(g,h,i)peryler		< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 08/18/23 08/18/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 2220-008, F&BI 308301 03-1993 mb 1/5 081812.D GCMS9 VM
Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophe Terphenyl-d14	% Recovery: 79 84 nol 78 100	Lower Limit: 10 45 11 50	Upper Limit: 198 117 158 124
Compounds:	Concentration mg/kg (ppm)		
Naphthalene	< 0.01		
2-Methylnaphthale	ene <0.01		
1-Methylnaphthale	ene <0.01		
Acenaphthylene	< 0.01		
Acenaphthene	< 0.01		
Fluorene	< 0.01		
Phenanthrene	< 0.01		
Anthracene	< 0.01		
Fluoranthene	< 0.01		
Pyrene	< 0.01		
Benz(a)anthracene	< 0.01		
Chrysene	< 0.01		
Benzo(a)pyrene	< 0.01		
Benzo(b)fluoranthe	ene <0.01		
Benzo(k)fluoranthe			
Indeno(1,2,3-cd)py			
Dibenz(a,h)anthra			
Benzo(g,h,i)peryler			

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 30)8271-14 (Duplic	ate)			
		Samp	le Di	uplicate	
	Reporting	Resu	lt I	Result	RPD
Analyte	Units	(Wet V	Vt) (V	Vet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code: La	aboratory Contro	ol Sample	Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	40	110	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 30)8289-01 (Dupl	icate)			
	Reporting	Sampl	le Dup	olicate	RPD
Analyte	Units	Resul	t Re	esult	(Limit 20)
Gasoline	ug/L (ppb)	<100	<	100	nm
Laboratory Code: La	aboratory Cont	rol Sample	е		
		1	Percent		
	Reporting	Spike	Percent Recovery	Acceptance	
Analyte	Reporting Units			Acceptance Criteria	_

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 30)8301-01 (Matrix	x Spike)					
			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	130	103	103	64-136	0
Laboratory Code: La	aboratory Contr	ol Sampl	e				
			Percent				
	Reporting	Spike	Recovery	v Accepta	ance		
Analyte	Units	Level	LCS	Crite	ria		
Diesel Extended	mg/kg (ppm)	5,000	110	78-12	21		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	100	65 - 151	0

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 308301-07 x10 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	12.6	104 b	85 b	75 - 125	20 b
Barium	ug/L (ppb)	50	105	108 b	96 b	75 - 125	12 b
Cadmium	ug/L (ppb)	5	<10	100	97	75 - 125	3
Chromium	ug/L (ppb)	20	<10	94	96	75 - 125	2
Lead	ug/L (ppb)	10	<10	99	98	75 - 125	1
Mercury	ug/L (ppb)	5	<10	99	98	75 - 125	1
Selenium	ug/L (ppb)	5	<10	87	87	75 - 125	0
Silver	ug/L (ppb)	5	<10	71 vo	76	75 - 125	7

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	100	80-120
Barium	ug/L (ppb)	50	95	80-120
Cadmium	ug/L (ppb)	5	96	80-120
Chromium	ug/L (ppb)	20	96	80-120
Lead	ug/L (ppb)	10	95	80-120
Mercury	ug/L (ppb)	5	92	80-120
Selenium	ug/L (ppb)	5	106	80-120
Silver	ug/L (ppb)	5	95	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 308252-01 (Matrix Spike)

Laboratory Cou	.e. 000202-01	matrix op	(IKC)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	<1	113	111	75 - 125	2
Barium	ug/L (ppb)	50	3.17	95	95	75 - 125	0
Cadmium	ug/L (ppb)	5	<1	96	96	75 - 125	0
Chromium	ug/L (ppb)	20	<1	94	94	75 - 125	0
Lead	ug/L (ppb)	10	<1	94	94	75 - 125	0
Mercury	ug/L (ppb)	5	<1	92	93	75 - 125	1
Selenium	ug/L (ppb)	5	<1	106	107	75 - 125	1
Silver	ug/L (ppb)	5	<1	92	92	75 - 125	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	102	80-120
Barium	ug/L (ppb)	50	95	80-120
Cadmium	ug/L (ppb)	5	95	80-120
Chromium	ug/L (ppb)	20	94	80-120
Lead	ug/L (ppb)	10	94	80-120
Mercury	ug/L (ppb)	5	93	80-120
Selenium	ug/L (ppb)	5	107	80-120
Silver	ug/L (ppb)	5	94	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 308271-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	${ m MS}$	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	99	100	75 - 125	1
Barium	mg/kg (ppm)	50	37.4	91 b	84 b	75 - 125	8 b
Cadmium	mg/kg (ppm)	10	<5	98	95	75 - 125	3
Chromium	mg/kg (ppm)	50	23.4	98 b	97 b	75 - 125	1 b
Lead	mg/kg (ppm)	50	30.7	82 b	80 b	75 - 125	$2 \mathrm{b}$
Mercury	mg/kg (ppm	5	<5	99	94	75 - 125	5
Selenium	mg/kg (ppm)	5	<5	105	101	75 - 125	4
Silver	mg/kg (ppm)	10	<5	84	83	75 - 125	1

1100010001j 000	ic. Laboratory Con	i oi Sampio	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	100	80-120
Barium	mg/kg (ppm)	50	90	80-120
Cadmium	mg/kg (ppm)	10	92	80-120
Chromium	mg/kg (ppm)	50	99	80-120
Lead	mg/kg (ppm)	50	97	80-120
Mercury	mg/kg (ppm)	5	93	80-120
Selenium	mg/kg (ppm)	5	91	80-120
Silver	mg/kg (ppm)	10	94	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 308301-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	< 0.5	39	35	10-142	11
Chloromethane	mg/kg (ppm)	2	< 0.5	61	61	10-126	0
Vinyl chloride	mg/kg (ppm)	2	< 0.05	62	62	10-138	0
Bromomethane	mg/kg (ppm)	$\frac{2}{2}$	<0.5	69	68	10-163	1
Chloroethane	mg/kg (ppm)	2	<0.5	68	66 69	10-176	3 0
Trichlorofluoromethane Acetone	mg/kg (ppm)	2 10	<0.5 <5	69 73	69 77	10-176 10-163	5
1.1-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2	<0.05	66	66	10-163	а 0
Hexane	mg/kg (ppm)	2	<0.05	72	67	10-137	7
Methylene chloride	mg/kg (ppm)	2	<0.25	74	75	10-156	1
Methylete chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	<0.05	81	79 79	21-145	2
trans-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	74	73	14-137	1
1,1-Dichloroethane	mg/kg (ppm)	2	< 0.05	82	83	19-140	1
2,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	78	80	10-158	3
cis-1.2-Dichloroethene	mg/kg (ppm)	2	< 0.05	79	78	25-135	1
Chloroform	mg/kg (ppm)	2	< 0.05	83	84	21-145	1
2-Butanone (MEK)	mg/kg (ppm)	10	<1	76	78	19-147	3
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	< 0.05	92	91	12-160	1
1,1,1-Trichloroethane	mg/kg (ppm)	2	< 0.05	77	77	10-156	0
1,1-Dichloropropene	mg/kg (ppm)	2	< 0.05	84	84	17-140	0
Carbon tetrachloride	mg/kg (ppm)	2	< 0.05	75	75	9-164	0
Benzene	mg/kg (ppm)	2	< 0.03	84	83	29-129	1
Trichloroethene	mg/kg (ppm)	2	< 0.02	74	73	21-139	1
1,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	82	82	30-135	0
Bromodichloromethane	mg/kg (ppm)	2	< 0.05	79	76	23 - 155	4
Dibromomethane	mg/kg (ppm)	2	< 0.05	87	85	23 - 145	2
4-Methyl-2-pentanone	mg/kg (ppm)	10	<1	74	73	24 - 155	1
cis-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	80	80	28-144	0
Toluene	mg/kg (ppm)	2	< 0.05	83	82	35-130	1
trans-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	82	80	26-149	2
1,1,2-Trichloroethane	mg/kg (ppm)	2	< 0.05	89	84	10-205	6
2-Hexanone	mg/kg (ppm)	10	< 0.5	75	73	15-166	3
1,3-Dichloropropane	mg/kg (ppm)	2	< 0.05	88	87	31-137	1
Tetrachloroethene	mg/kg (ppm)	2	< 0.025	86	84	20-133	2
Dibromochloromethane	mg/kg (ppm)	2	< 0.05	75	74	28-150	1 0
1,2-Dibromoethane (EDB)	mg/kg (ppm)	$\frac{2}{2}$	< 0.05	80	80	28-142	
Chlorobenzene	mg/kg (ppm)	2	<0.05 <0.05	83	83	32-129	$0\\2$
Ethylbenzene 1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	<0.05	83 75	81 76	32-137 31-143	2
m,p-Xylene	mg/kg (ppm)	2 4	<0.05	75 81	76 81	34-136	1 0
o-Xylene	mg/kg (ppm) mg/kg (ppm)	$\frac{4}{2}$	<0.1 <0.05	81 80	81 81	33-134	0
Styrene	mg/kg (ppm)	2	<0.05	80	82	35-134	2
Isopropylbenzene	mg/kg (ppm)	2	<0.05	83	81	31-142	2
Bromoform	mg/kg (ppm)	2	<0.05	65	65	21-156	0
n-Propylbenzene	mg/kg (ppm)	2	<0.05	95	88	23-146	8
Bromobenzene	mg/kg (ppm)	2	<0.05	89	83	34-130	7
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	89	83	18-149	7
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	97	90	28-140	7
1,2,3-Trichloropropane	mg/kg (ppm)	2	< 0.05	95	89	25-144	7
2-Chlorotoluene	mg/kg (ppm)	2	< 0.05	89	83	31-134	7
4-Chlorotoluene	mg/kg (ppm)	2	< 0.05	89	83	31-136	7
tert-Butylbenzene	mg/kg (ppm)	2	< 0.05	88	83	30-137	6
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	85	81	10-182	5
sec-Butylbenzene	mg/kg (ppm)	2	< 0.05	88	81	23-145	8
p-Isopropyltoluene	mg/kg (ppm)	2	< 0.05	89	81	21-149	9
1,3-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	87	82	30-131	6
1,4-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	84	81	29-129	4
1,2-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	91	83	31-132	9
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	< 0.5	86	78	11-161	10
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	92	84	22-142	9
Hexachlorobutadiene	mg/kg (ppm)	2	< 0.25	99	90	10-142	10
Naphthalene	mg/kg (ppm)	2	< 0.05	88	82	14-157	7
		2					9

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Analyte Units Level LCS Criteria Dehlordifusromethane mg/kg (pm) 2 69 10-46 Olromethane mg/kg (pm) 2 82 22-133 Viryl chorde mg/kg (pm) 2 82 10-146 Dimomethane mg/kg (pm) 2 82 10-136 Trehlorofilusromethane mg/kg (pm) 2 83 47-128 Actone mg/kg (pm) 2 83 47-128 Methylene chloride mg/kg (pm) 2 93 46-132 Methylene chloride mg/kg (pm) 2 94 60-123 Trans.1.2 Dichloroethane mg/kg (pm) 2 97 64-132 2.2 Dichloroethane mg/kg (pm) 2 97 64-133 2.3 Dichloroethane mg/kg (pm) 2 97 64-133 2.4 Dichloroethane mg/kg (pm) 2 97 64-133 2.4 Dichloroethane mg/kg (pm) 2 97 64-133 2.4 Dichl			a .1	Percent	
$\begin{split} \hline Dichlorodifluoromethane mg/kg (ppm) 2 69 10-146 \\ Chloromethane mg/kg (ppm) 2 82 22-139 \\ Bromomethane mg/kg (ppm) 2 82 10-163 \\ Tichlorodikoromethane mg/kg (ppm) 2 82 10-163 \\ Tichlorodikoromethane mg/kg (ppm) 1 9 98 62-144 \\ Dichloromethane mg/kg (ppm) 1 9 98 62-144 \\ Dichloromethane mg/kg (ppm) 1 9 98 62-144 \\ Dichloromethane mg/kg (ppm) 2 98 10-1164 \\ Methyl benchloromethane mg/kg (ppm) 2 98 10-1164 \\ Methyl benchloromethane mg/kg (ppm) 2 98 10-1184 \\ Methyl benchloromethane mg/kg (ppm) 2 99 66-1132 \\ Dichloromethane mg/kg (ppm) 2 99 66-1132 \\ Dichloromethane mg/kg (ppm) 2 99 66-1132 \\ Dichloromethane mg/kg (ppm) 2 97 66-1133 \\ Dichloromethane mg/kg (ppm) 2 97 66-1133 \\ Dichloromethane mg/kg (ppm) 2 97 66-1133 \\ Dichloromethane mg/kg (ppm) 2 98 66-1131 \\ Dichloromethane mg/kg (ppm) 2 97 66-1133 \\ Dichloromethane mg/kg (ppm) 2 97 66-1133 \\ Dichloromethane mg/kg (ppm) 2 97 66-1134 \\ Dichloromethane mg/kg (ppm) 2 98 66-1144 \\ Dichloromethane mg/kg (p$			-	U U	Acceptance
Chloromethane mg/kg (ppm) 2 77 67133 Winy chloride mg/kg (ppm) 2 82 22.139 Bromomethane mg/kg (ppm) 2 82 100163 Trichlorofucromethane mg/kg (ppm) 2 88 10196 Acetone mg/kg (ppm) 2 88 10196 Acetone mg/kg (ppm) 2 88 10196 Hexane mg/kg (ppm) 2 88 10196 Hexane mg/kg (ppm) 2 88 10196 Hexane mg/kg (ppm) 2 89 43142 Hexane mg/kg (ppm) 2 99 43142 Hexane mg/kg (ppm) 2 99 44142 Hexane mg/kg (ppm) 2 99 44135 Hexane mg/kg (ppm) 2 97 46135 Hexane mg/kg (ppm) 2 98 62131 H.J.H.Trichforeethane mg/kg (ppm) 2 97 46135 Hexane mg/kg (ppm) 2 98 66133 H.J.H.Trichforeethane mg/kg (ppm) 2 97 46136 Hexane mg/kg (ppm) 2 97 46136 Hexane mg/kg (ppm) 2 97 46136 Hexane mg/kg (ppm) 2 98 65131 H.J.H.Trichforeethane mg/kg (ppm) 2 98 65131 H.J.H.Trichforeethane mg/kg (ppm) 2 98 65131 H.J.Dichforeopene mg/kg (ppm) 2 97 66143 Dibromomethane mg/kg (ppm) 2 97 67128 Heynonethane mg/kg (ppm) 2 98 65131 H.J.Dichforeopene mg/kg (ppm) 2 97 67128 Hymomethane mg/kg (ppm) 2 98 68131 H.J.Z.Trichforeothane mg/kg (ppm) 2 97 67128 Hymomethane mg/kg (ppm) 2 98 68131 H.J.Z.Trichforeothane mg/kg (ppm) 2 98 68131 H.J.Z.Trichforeothane mg/kg (ppm) 2 97 67128 Hymome	Analyte	Units	Level	LCS	Criteria
Visyl chordnémg/kg (ppm)28222.139Bromomethanemg/kg (ppm)28710.201Chlorosthanemg/kg (ppm)28810.163Trichloroflocoromethanemg/kg (ppm)109552.1411. J.Dichlorosthanemg/kg (ppm)29313.142Methylene chloridemg/kg (ppm)29310.184Methylene chloridemg/kg (ppm)29310.184Methylene chloridemg/kg (ppm)29064.1351. J.Dichlorosthenemg/kg (ppm)29764.1352. Dichlorosthenemg/kg (ppm)29764.1352. Dichlorosthenemg/kg (ppm)29862.1351. J.Dichlorosthenemg/kg (ppm)29862.1351. J.Dichlorosthenemg/kg (ppm)29862.1351. J.Dichlorosthenemg/kg (ppm)29862.1351. J.Dichlorosthanemg/kg (ppm)29661.145Dichorosthanemg/kg (ppm)29661.145Dichorosthanemg/kg (ppm)29661.145Dichorosthanemg/kg (ppm)29764.1361. J.Dichlorosthanemg/kg (ppm)29661.145Dichorosthanemg/kg (ppm)29661.145Dichorosthanemg/kg (ppm)29661.145Dichorosthanemg/kg (ppm)29765.136 <trr< tr="">1. J.Dichlorosthanemg/kg</trr<>					
Bernmenkhane mg/kg (ppm) 2 87 10-201 Trichlorofucoromethane mg/kg (ppm) 2 82 10-163 Acstone mg/kg (ppm) 2 83 47-128 Hackane mg/kg (ppm) 2 93 43-142 Methylene chloride mg/kg (ppm) 2 93 46-123 Methylene chloride mg/kg (ppm) 2 93 64-132 1. Dichloroethane mg/kg (ppm) 2 93 64-132 1. Dichloroethane mg/kg (ppm) 2 97 64-132 2.2. Dichloroethane mg/kg (ppm) 2 97 64-132 1.1. Dichloroethane mg/kg (ppm) 2 97 64-133 2.2. Dichloropropane mg/kg (ppm) 2 97 64-136 1.1. Dichloropropane mg/kg (ppm) 2 97 64-136 1.1. Dichloropropane mg/kg (ppm) 2 96 61-145 1.1. Dichloropropane mg/kg (ppm) 2 96 61-145					
Chlorosthane mg/kg (ppm) 2 82 10-163 Trichloroftoromsthane mg/kg (ppm) 10 95 52-141 1, Dichlorosthane mg/kg (ppm) 2 83 43-142 Mexane mg/kg (ppm) 2 93 10-184 Methylene chloride mg/kg (ppm) 2 94 60-123 Trans 1.2 Drichlorosthane mg/kg (ppm) 2 90 64-135 1, D. Drichlorosthane mg/kg (ppm) 2 97 64-135 1, D. Drichlorosthane mg/kg (ppm) 2 98 62-135 1, Drichlorosthane (EDC) mg/kg (ppm) 2 98 62-135 1, Drichlorosthane (EDC) mg/kg (ppm) 2 98 62-135 1, Drichlorosthane (EDC) mg/kg (ppm) 2 98 62-136 1, Drichlorosthane mg/kg (ppm) 2 98 62-136 1, Drichlorosthane mg/kg (ppm) 2 90 61-145 Brazone mg/kg (ppm) 2 90 61-145 Brazone mg/kg (ppm) 2 90 61-145<					
Trichlorofluoromethane mg/kg (ppm) 2 88 10-186 Actone mg/kg (ppm) 2 33 47-128 Hexane mg/kg (ppm) 2 33 43-142 Methylene chloride mg/kg (ppm) 2 93 10-184 Methylene chloride mg/kg (ppm) 2 94 60-123 Irrans-1.2-Dichloroethene mg/kg (ppm) 2 97 64-135 2.2-Dichloroethene mg/kg (ppm) 2 93 62-170 2.4-Dichloroethene mg/kg (ppm) 2 97 64-135 2.4-Dichloroethene mg/kg (ppm) 2 97 64-136 1.4-Dichloroethene mg/kg (ppm) 2 97 64-136 1.4-Dichloroethene mg/kg (ppm) 2 97 64-136 1.4-Dichloroethene mg/kg (ppm) 2 97 64-136 1.4-Dichloropropare mg/kg (ppm) 2 97 64-136 Dichloropropare mg/kg (ppm) 2 97 65-136					
Actone mg/kg (ppm) 10 95 52:141 I. Dichlorochene mg/kg (ppm) 2 83 47:128 Hexane mg/kg (ppm) 2 93 10:184 Methylene chloride mg/kg (ppm) 2 94 60:123 Tams I, 2: Dichlorochene mg/kg (ppm) 2 97 64:132 J. Dichlorochene mg/kg (ppm) 2 97 64:132 J. Dichlorochene mg/kg (ppm) 2 97 64:135 J. Dichlorochane mg/kg (ppm) 2 93 62:131 Z-Dichlorochane mg/kg (ppm) 2 97 64:135 J. J. Trichorochane mg/kg (ppm) 2 97 64:136 Carbon tetrachloride mg/kg (ppm) 2 97 64:136 Bezzane mg/kg (ppm) 2 96 67:136 Bezzane mg/kg (ppm) 2 96 67:136 Dirbromophone mg/kg (ppm) 2 96 67:145 Bezzane					
1.1-Dickloroethene mg/kg (ppm) 2 83 47.128 Wethylene chloride mg/kg (ppm) 2 93 43.142 Wethylene chloride mg/kg (ppm) 2 94 60.123 rams. 1, 2-Dichloroethene mg/kg (ppm) 2 97 64.135 2,2-Dichloroethene mg/kg (ppm) 2 95 64.135 2,2-Dichloroethene mg/kg (ppm) 2 93 62.131 1,1-Dickloroethane (MEK) mg/kg (ppm) 2 93 62.131 1,1-Dickloroethane (MEK) mg/kg (ppm) 2 93 62.131 1,1-Dickloroethane (MEK) mg/kg (ppm) 2 92 60.139 Benzene mg/kg (ppm) 2 92 60.139 Benzene mg/kg (ppm) 2 94 67.126 Dichloropropane mg/kg (ppm) 2 94 67.136 Dichloropropane mg/kg (ppm) 2 94 67.145 Dichloropropane mg/kg (ppm) 2 94 67.145 Dichloropropane mg/kg (ppm) 2 94 66.131 <td></td> <td></td> <td></td> <td></td> <td></td>					
Heatner mg/kg (ppm) 2 93 43-142 Wethylene chloride mg/kg (ppm) 2 93 10-184 Methyle L-butyl ether (MTBE) mg/kg (ppm) 2 90 64-132 IDichloroethane mg/kg (ppm) 2 93 52-170 isis.1.2-Dichloropopane mg/kg (ppm) 2 95 64-135 Sloroform mg/kg (ppm) 2 95 64-135 JDichloroethane mg/kg (ppm) 2 96 64-135 JDichloroethane (DC) mg/kg (ppm) 2 97 64-136 JDichloroethane mg/kg (ppm) 2 97 64-136 Sarbon Etrachloride mg/kg (ppm) 2 97 64-136 Carbon Etrachloride mg/kg (ppm) 2 96 61-136 Sarbon Etrachloride mg/kg (ppm) 2 97 64-136 Sarbon Etrachloride mg/kg (ppm) 2 96 61-145 Sarbon Etrachloride mg/kg (ppm) 2 97 64-136<					
Methylene chloride mg/kg (ppm) 2 93 10-184 Wethyl - betyl teber (MTER) mg/kg (ppm) 2 94 64-132 zrans-1, 2- Dichloroethene mg/kg (ppm) 2 97 64-135 2,2-Dichloroethane mg/kg (ppm) 2 95 64-135 2,2-Dichloroethane mg/kg (ppm) 2 97 61-139 2,2-Dichloroethane mg/kg (ppm) 2 93 62-131 1,1-Dichloroethane mg/kg (ppm) 2 93 62-131 1,2-Dichloroethane mg/kg (ppm) 2 97 64-135 2,2-Dichloroethane mg/kg (ppm) 2 92 60-139 Starba tetrachloride mg/kg (ppm) 2 94 67-126 Benzene mg/kg (ppm) 2 94 67-126 Dibromothane mg/kg (ppm) 2 94 67-135 Dibromothane mg/kg (ppm) 2 94 67-145 Dibromothane mg/kg (ppm) 2 97 67-145 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Methyl I-baryl ether (MTBE)mg/kg (ppm)29460-1231.1-Dichloroethanemg/kg (ppm)29764.1321.2-Dichlororopanemg/kg (ppm)29352.170is:1.2-Dichlororopanemg/kg (ppm)29564.1352.2-Dichlororopanemg/kg (ppm)29761.1392-Butoloropanemg/kg (ppm)109430.1972-Dichlororothanemg/kg (ppm)29362.1312-Dichlorosthane (EDC)mg/kg (ppm)29362.1311.1.1-Eichloropenemg/kg (ppm)29260.138Carbon tetrachloridemg/kg (ppm)29661.145Benzenemg/kg (ppm)29661.145Dibromorethanemg/kg (ppm)29661.145Dibromorethanemg/kg (ppm)29162.1231-Dichloropropanemg/kg (ppm)29162.1231-Dichloropropanemg/kg (ppm)29162.1311-Dichloropropanemg/kg (ppm)29162.1311-Dichloropropanemg/kg (ppm)29365.1431-Dichloropropanemg/kg (ppm)29365.1311-Dichloropropanemg/kg (ppm)29666.1311-Dichloropropanemg/kg (ppm)29666.1311-Dichloropropanemg/kg (ppm)29666.1311-Dichloropropanemg/kg (ppm)29767.128Dibromodethane<					
rans.1.2-Dichlorosthane mg/kg (ppm) 2 99 664.135 2.2-Dichlorosthane mg/kg (ppm) 2 97 64.135 1.2-Dichlorosthane (MEK) mg/kg (ppm) 10 94 60.197 1.2-Dichlorosthane (MEK) mg/kg (ppm) 2 97 64.136 2.2-Dichlorosthane (MEK) mg/kg (ppm) 2 98 64.135 1.2-Dichlorosthane (MEK) mg/kg (ppm) 2 97 64.136 1.1-Dichlorosthane (MEK) mg/kg (ppm) 2 97 64.136 1.1-Dichlorosthane (MEK) mg/kg (ppm) 2 97 64.136 1.1-Dichlorosthane mg/kg (ppm) 2 96 61.145 1.2-Dichlorosthane mg/kg (ppm) 2 96 61.145 1.2-Dichlorosthane mg/kg (ppm) 2 96 61.145 1.2-Dichlorosthane mg/kg (ppm) 2 96 65.138 1.2-Dichlorosthane mg/kg (ppm) 2 96 65.136 1.2-Dichlorosthane mg/kg (ppm) 2 97 65.145 1.2-Dichlorosthane mg/kg (ppm) 2 97 65.145 1.2-Dichlorosthane mg/kg (ppm) 2 97 65.145 1.2-Dichlorosthane mg/kg (ppm) 2 97 65.145 1.1-Sichlorosthane mg/kg (ppm) 2 97 65.145 1.1-Sichlorosthane mg/kg (ppm) 2 98 65.131 1.2-Dichlorosthane mg/kg (ppm) 2 97 64.136 1.2-Dichlorosthane mg/kg (ppm) 2 98 66.126 1.2-Dichlorosthane mg/kg (ppm) 2 97 64.136 1.2-Dichlorosthane mg/kg (ppm) 2 97 64.136 1.2-Dichlorosthane mg/kg (ppm) 2 98 66.128 1.2-Dichlorosthane mg/kg (ppm) 2 97 64.128 1.2-Dichlorosthane mg/kg (ppm) 2 98 66.128 1.2-Dichlorosthane mg/kg (ppm) 2 98 66.128 1.2-Dichlorosthane mg/kg (ppm) 2 99 66.128 1.2-Dichlorosthane mg/kg					
1.1-Dichloroptanemg/kg (ppm)29764-1352.2-Dichloroptanemg/kg (ppm)29564-1351.3-Dichlorotethenemg/kg (ppm)109430-1972-Butanone (MEK)mg/kg (ppm)109430-1972-Butanone (MEK)mg/kg (ppm)29362-1311.1.1-Tichlorotethanemg/kg (ppm)29362-1311.1.1-Tichlorotethanemg/kg (ppm)29260-139Carbon tetrachloridemg/kg (ppm)29663-136Dirichlorotethenemg/kg (ppm)29663-136Carbon tetrachloridemg/kg (ppm)29663-136Dirichloroptanemg/kg (ppm)29165-136Dirichloroptanemg/kg (ppm)29165-143Dibromomethanemg/kg (ppm)29165-143Toluenemg/kg (ppm)29865-131I.1.2-Tichloroptopenemg/kg (ppm)210166-129Dibromomethanemg/kg (ppm)210166-129I.1.2-Tichloroptopenemg/kg (ppm)29666-131I.1.2-Tichloroptanemg/kg (ppm)29767-128J.3-Dichloropropanemg/kg (ppm)29767-128J.3-Dichloropropanemg/kg (ppm)29767-128J.3-Dichloropropanemg/kg (ppm)29767-128J.3-Dichloropropanemg/kg (ppm)29666-129Dibromonetha					
2.2.Dichloropropane mg/kg (ppm) 2 93 52-170 sin 1.2.Dichloroperbene mg/kg (ppm) 2 97 61-139 2.Butanone (MEK) mg/kg (ppm) 2 108 56-135 1.1.Dichloroperbane (EDC) mg/kg (ppm) 2 93 62-131 1.1.Dichloroperbane mg/kg (ppm) 2 97 64-136 Carbon tetracholride mg/kg (ppm) 2 97 64-136 Carbon tetracholride mg/kg (ppm) 2 96 63-136 Trichloroptene mg/kg (ppm) 2 96 61-145 Bromodichloromethane mg/kg (ppm) 2 96 61-145 Bromodichloropropene mg/kg (ppm) 2 97 65-143 Dibromomethane mg/kg (ppm) 2 97 65-143 Dibromorethane mg/kg (ppm) 2 97 65-143 Tokene mg/kg (ppm) 2 97 65-143 Dibromorethane mg/kg (ppm) 2 97 65-143 Tokene mg/kg (ppm) 2 97 67-128 <td></td> <td></td> <td></td> <td></td> <td></td>					
is 12-Dichlorosthene mg/kg (ppm) 2 95 64.135 Divoroom mg/kg (ppm) 2 97 64.135 Divorosthane (EDC) mg/kg (ppm) 2 98 62.131 1,1-Dichlorosthane (EDC) mg/kg (ppm) 2 99 64.136 1,1-Dichlorosthane (EDC) mg/kg (ppm) 2 97 64.136 Trichlorosthane mg/kg (ppm) 2 92 66.139 Jacobs tetrachloride mg/kg (ppm) 2 92 66.139 Jacobs tetrachloride mg/kg (ppm) 2 92 66.131 1,2-Dichlorosthane mg/kg (ppm) 2 92 76 64.136 17:120 66.139 Jacobs tetrachloride mg/kg (ppm) 2 94 65.63.139 Jacobs tetrachloride mg/kg (ppm) 2 97 65.143 Divoromethane mg/kg (ppm) 2 101 88 45.145 Divoromethane mg/kg (ppm) 2 101 66.123 Jacobs tetrachloride mg/kg (ppm) 2 97 65.143 Divoromethane mg/kg (ppm) 2 101 66.123 Jacobs tetrachloride mg/kg (ppm) 2 98 65.131 Jacobs tetrachloride mg/kg (ppm) 2 98 65.131 Jacobs tetrachloride mg/kg (ppm) 2 98 65.131 Jacobs tetrachloride mg/kg (ppm) 2 97 67.128 Jabchorosthane mg/kg (ppm) 2 97 67.128 Jabchorosthane mg/kg (ppm) 2 97 67.128 Shylononethane mg/kg (ppm) 2 97 67.129 Shyrone mg/kg (ppm) 2 97 67.129 Shyrone mg/kg (ppm) 2 98 68.128 Jabchorosthane mg/kg (ppm) 2 98 66.132 Jabchorosthane mg/kg (ppm					
Chlorodorm mg/kg (ppm) 2 97 61-139 2-Butanone (MEK) mg/kg (ppm) 2 108 56-135 1.2-Dichloropthane (EDC) mg/kg (ppm) 2 93 62-131 1.1-Dichloropthane mg/kg (ppm) 2 97 66-136 2.1-Dichloroptopene mg/kg (ppm) 2 97 66-139 Benzene mg/kg (ppm) 2 96 66-1145 Chloroptopane mg/kg (ppm) 2 96 66-1145 Bromdichloromethane mg/kg (ppm) 2 97 65-145 Dibromomethane mg/kg (ppm) 2 97 65-145 Dibromomethane mg/kg (ppm) 2 97 65-145 Si-1,3-Dichloropropene mg/kg (ppm) 2 97 65-126 Tarasi 1,3-Dichloropropene mg/kg (ppm) 2 98 65-131 1,1,2-Trichlorocthane mg/kg (ppm) 2 100 68-128 1,1,2-Trichlorocthane mg/kg (ppm) 2 100 68-128 1,1,2-Trichlorocthane mg/kg (ppm) 2 100					
2-butanone (MEK) mg/kg (ppm) 10 94 30-197 1.1.1-Dichloroptane (DC) mg/kg (ppm) 2 93 62-131 1.1.1-Dichloroptane mg/kg (ppm) 2 97 64-136 Carbon tetrachloride mg/kg (ppm) 2 92 60-139 Benzene mg/kg (ppm) 2 85 63-129 I'richloroptopane mg/kg (ppm) 2 94 61-145 Bromodichloroptopane mg/kg (ppm) 2 94 57-126 Dibromothane mg/kg (ppm) 2 91 62-145 Dibromothane mg/kg (ppm) 2 91 63-139 1,2-Dichloroptopene mg/kg (ppm) 2 91 63-131 1,1-2-Trichlorocthane mg/kg (ppm) 2 97 63-132 1,2-2-Dichloroptopane mg/kg (ppm) 2 101 68-132 Dibromochoroptane mg/kg (ppm) 2 93 55-121 1,2-Dichloroptopane mg/kg (ppm) 2 96 66-129					
1.2.Dichloroethane (BCC) mg/kg (ppm) 2 108 56-135 1.1.Dichloropropene mg/kg (ppm) 2 93 66-139 Jarbon tetrachloride mg/kg (ppm) 2 92 60-139 Jarbon tetrachloride mg/kg (ppm) 2 92 60-139 Jarbon tetrachloride mg/kg (ppm) 2 96 61-145 Trichloropropane mg/kg (ppm) 2 94 57-126 Dibromonethane mg/kg (ppm) 2 94 57-126 Dibromonethane mg/kg (ppm) 2 97 65-143 Torichloropropene mg/kg (ppm) 2 97 65-143 Dibromonethane mg/kg (ppm) 2 98 65-131 I.1.2.Trichloropropene mg/kg (ppm) 2 101 62-131 J.2.Dichloropropene mg/kg (ppm) 2 103 66-142 J.2.Dichloropropene mg/kg (ppm) 2 101 62-131 J.2.Dichloropropene mg/kg (ppm) 2 96 66-129 J.3.Dichloropropene mg/kg (ppm) 2 96					
i,1.1-Trichlororethane mg/kg (ppm) 2 93 62-131 Li -Dichloropropene mg/kg (ppm) 2 97 64-136 Carbon tetrachloride mg/kg (ppm) 2 92 60-139 Jenzene mg/kg (ppm) 2 96 66-136 Trichloroethene mg/kg (ppm) 2 96 66-146 Smondichloromethane mg/kg (ppm) 2 94 57-126 Dibromorethane mg/kg (ppm) 2 97 65-143 Oluene mg/kg (ppm) 2 98 65-143 Oluene mg/kg (ppm) 2 101 66-126 trans.1.3-Dichloropropene mg/kg (ppm) 2 101 66-131 1.2-Dirchloropropane mg/kg (ppm) 2 100 68-138 Dibromchloromethane mg/kg (ppm) 2 100 68-128 Dibromchloromethane mg/kg (ppm) 2 96 66-129 J.Dichloropropane mg/kg (ppm) 2 97 67-128 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
1.1-Dichloropropene mg/kg (ppm) 2 97 64-136 Carbon tetrachloride mg/kg (ppm) 2 92 60-139 Benzene mg/kg (ppm) 2 100 65-136 Carbon tetrachloride mg/kg (ppm) 2 96 61-145 Bromodichloropropane mg/kg (ppm) 2 94 57-126 Dibromonethane mg/kg (ppm) 2 97 65-143 Toluene mg/kg (ppm) 2 98 65-131 L1.2-Trichloropropene mg/kg (ppm) 2 98 65-131 L1.2-Trichloropropene mg/kg (ppm) 2 98 65-131 L1.2-Trichloropropene mg/kg (ppm) 2 101 62-133 L1.3-Dichloropropane mg/kg (ppm) 2 103 65-131 L1.3-Dichloropropane mg/kg (ppm) 2 103 65-132 Dibromochloromethane mg/kg (ppm) 2 96 66-129 Dibromochloromethane mg/kg (ppm) 2 97 67-128 Edhylbenzene mg/kg (ppm) 2 97 67-12					
Sarbon tetraichloride mg/kg (ppm) 2 92 60-139 Borzene mg/kg (ppm) 2 100 65-136 Frichloroothene mg/kg (ppm) 2 85 63-136 Somodichloroomethane mg/kg (ppm) 2 94 57-126 Dibromorethane mg/kg (ppm) 2 94 57-126 Dibromorethane mg/kg (ppm) 2 97 65-143 Tolkehtyl-zpentaone mg/kg (ppm) 2 98 65-131 Tolkehtyl-zpentaone mg/kg (ppm) 2 98 65-131 Tolkenoropopane mg/kg (ppm) 2 101 66-126 trans.1.3.Dichloropropane mg/kg (ppm) 2 100 67-128 Fortachoroethane mg/kg (ppm) 2 100 68-128 Dibromochloromethane (EDB) mg/kg (ppm) 2 97 64-123 L, 1.2.Dibromoethane (EDB) mg/kg (ppm) 2 97 64-123 Shybenezne mg/kg (ppm) 2 97 67-128 <td></td> <td></td> <td></td> <td></td> <td></td>					
Benzene $mg/kg (ppm)$ 210065-136Trichloroethene $mg/kg (ppm)$ 28563-139L'Dichloropropane $mg/kg (ppm)$ 29661-145Bromodichloropropane $mg/kg (ppm)$ 29457-126Bromodichloropropane $mg/kg (ppm)$ 29457-126Bromodichloropropane $mg/kg (ppm)$ 29765-143Toluene $mg/kg (ppm)$ 29765-131L1.2-Trichloropropene $mg/kg (ppm)$ 29865-131L1.2-Trichloropropane $mg/kg (ppm)$ 210162-131L1.2-Trichloropropane $mg/kg (ppm)$ 210065-128Dibromochtane $mg/kg (ppm)$ 210065-128Choroberzene $mg/kg (ppm)$ 29767-128Edrybornechtane $mg/kg (ppm)$ 29767-128Dibromochtoromethane $mg/kg (ppm)$ 29767-128Choroberzene $mg/kg (ppm)$ 29767-128Edryborzene $mg/kg (ppm)$ 29767-128Edryborzene $mg/kg (ppm)$ 29767-129Syrene $mg/kg (ppm)$ 29666-129Syrene $mg/kg (ppm)$ 29666-132Syrene $mg/kg (ppm)$ 29767-129Syrene $mg/kg (ppm)$ 29767-129Syrene $mg/kg (ppm)$ 29666-132Looroberzene $mg/kg (ppm)$ 2106 <td></td> <td></td> <td></td> <td></td> <td></td>					
Trichloropthene mg/kg (ppm) 2 85 63-139 1,2-Dichloropropane mg/kg (ppm) 2 96 61-145 Bromodichloromethane mg/kg (ppm) 2 94 57-126 Dibromorethane mg/kg (ppm) 2 94 57-126 Dibromorethane mg/kg (ppm) 2 97 65-143 Toluene mg/kg (ppm) 2 98 65-131 Oluene mg/kg (ppm) 2 101 62-123 Ital. 1,2-Trichloroptopene mg/kg (ppm) 2 101 62-131 2-Hexanone mg/kg (ppm) 2 100 68-128 Dibromochloromethane mg/kg (ppm) 2 100 68-128 Dibromochloromethane mg/kg (ppm) 2 97 67-128 L-2-Dibromochane (EDB) mg/kg (ppm) 2 97 67-128 Ethylbenzene mg/kg (ppm) 2 97 67-128 Styrene mg/kg (ppm) 2 97 67-128 Styrene mg/kg (ppm) 2 97 67-129 Styrene					
1.2-Dickloropropane mg/kg (ppm) 2 96 61.145 Bromodichloromethane mg/kg (ppm) 2 94 57.126 Dibromomethane mg/kg (ppm) 2 101 62.123 14-Methyl-2-pentanone mg/kg (ppm) 2 97 65.143 Isi, 3.Dichloropropene mg/kg (ppm) 2 98 65.131 Iz-Dirkloroptopene mg/kg (ppm) 2 101 66.126 ranse 1.3-Dichloroptopene mg/kg (ppm) 2 100 68.128 Dibromothomethane mg/kg (ppm) 2 100 68.128 Dibromochomethane mg/kg (ppm) 2 97 67.128 Edtrachloroethene mg/kg (ppm) 2 97 67.128 Dibromochomethane (EDB) mg/kg (ppm) 2 97 67.128 Dibromochomethane mg/kg (ppm) 2 97 67.128 Sthylene mg/kg (ppm) 2 97 67.128 Sthylene mg/kg (ppm) 2 97 67.129 Styrene mg/kg (ppm) 2 97 67.129					
homodichlownicthane ng/kg (ppm)29457-126Dibromomethane mg/kg (ppm)210162-123Libethyl-2-pentanone mg/kg (ppm)108945-145ise 1.3-Dichloropropene mg/kg (ppm)29765-143Foluene mg/kg (ppm)210166-126crans-1.3-Dichloropropene mg/kg (ppm)29865-1311.1,2-Trichloropropene mg/kg (ppm)210162-1311.1,2-Trichloropropane mg/kg (ppm)210068-128Eterachloroethane mg/kg (ppm)29067-128Eterachloroethane (EDB) mg/kg (ppm)29666-129Dibromochloromethane mg/kg (ppm)29767-128Ly.2-Ditoromochane mg/kg (ppm)29767-128Shylbenzene mg/kg (ppm)29767-128Shylbenzene mg/kg (ppm)29767-129Sopropylbenzene mg/kg (ppm)29767-129Sopropylbenzene mg/kg (ppm)29567-129Sopropylbenzene mg/kg (ppm)29668-128-ropylbenzene mg/kg (ppm)210369-128-ropylbenzene mg/kg (ppm)210369-128-ropylbenzene mg/kg (ppm)210369-128-ropylbenzene mg/kg (ppm)210067-129Sopropylbenzene mg/kg (ppm)210067-129<					
Dibromonthane $mg/kg (ppm)$ 210162-123L-Methyl-2-pentanone $mg/kg (ppm)$ 108945-145is 1,3-Dichloropropene $mg/kg (ppm)$ 29765-143Foluene $mg/kg (ppm)$ 210166-126rans-1,3-Dichloropropene $mg/kg (ppm)$ 29865-1311, 1,2-Trichloroethane $mg/kg (ppm)$ 210162-1332-Hexanone $mg/kg (ppm)$ 210068-1282-Joichloropropane $mg/kg (ppm)$ 210068-1282-Dibromoethane (EDB) $mg/kg (ppm)$ 29355-1211,2-Dibromoethane (EDB) $mg/kg (ppm)$ 29767-128Chorobenzene $mg/kg (ppm)$ 29764-1231,1,2-Tetrachloroethane $mg/kg (ppm)$ 29767-128Stypene $mg/kg (ppm)$ 29767-129Sopropylbenzene $mg/kg (ppm)$ 29767-129Sopropylbenzene $mg/kg (ppm)$ 29568-128-Xylene $mg/kg (ppm)$ 29568-128Sopropylbenzene $mg/kg (ppm)$ 210369-1291,1,2-Tetrachloroethane $mg/kg (ppm)$ 210369-1291,2,2-Tetrachloroethane $mg/kg (ppm)$ 210169-129Sopropylbenzene $mg/kg (ppm)$ 210169-1291,2,2-Tetrachloroethane $mg/kg (ppm)$ 210169-1291,2,2-Tetrachloroethane $mg/kg (ppm)$ 2					
Hethyl-2-pentanone $mg'kg (ppm)$ 108945-145is 1,3-Dichloropropene $mg'kg (ppm)$ 29765-143foluene $mg'kg (ppm)$ 210166-126rans-1,3-Dichloropropene $mg'kg (ppm)$ 29865-1311,2-Trichloropropane $mg'kg (ppm)$ 210162-1312-Hexanone $mg'kg (ppm)$ 210967-1282-Hexanone $mg'kg (ppm)$ 210068-1283.3-Dichloropropane $mg'kg (ppm)$ 29365-1212-Dibromochane (EDB) $mg'kg (ppm)$ 29767-1282-Dibromochane (EDB) $mg'kg (ppm)$ 29767-1282-blychonechane (EDB) $mg'kg (ppm)$ 29767-1282-blychonechane (EDB) $mg'kg (ppm)$ 29767-1282-blychonechane $mg'kg (ppm)$ 29767-1292-blychonechane $mg'kg (ppm)$ 29767-1292-blychonechane $mg'kg (ppm)$ 29767-1292-blychonechane $mg'kg (ppm)$ 29767-1292-blychonechane $mg'kg (ppm)$ 29767-1293-brinechybenzene $mg'kg (ppm)$ 29767-1293-bryphenzene $mg'kg (ppm)$ 210668-1293-bryphenzene $mg'kg (ppm)$ 210369-1283-bryphenzene $mg'kg (ppm)$ 210466-1433-bryphenzene $mg'kg (ppm)$ 210469-128					
is 1.3-Dichloropropene $mg/kg (ppm)$ 29765-143Foluene $mg/kg (ppm)$ 210166-126Foluene $mg/kg (ppm)$ 29865-131I, 1.2-Trichloroethane $mg/kg (ppm)$ 210162-131J, 1.2-Trichloroethane $mg/kg (ppm)$ 210967-128J, 3-Dichloropropane $mg/kg (ppm)$ 210068-128Dibromochloromethane $mg/kg (ppm)$ 29666-129Dibromochloromethane $mg/kg (ppm)$ 29767-128Dibromochloromethane (EDB) $mg/kg (ppm)$ 29764-121I, 1.2-Tetrachloroethane $mg/kg (ppm)$ 29764-123I, 1.2-Tetrachloroethane $mg/kg (ppm)$ 29767-128Styrene $mg/kg (ppm)$ 29767-129Soproylbenzene $mg/kg (ppm)$ 29767-129Soproylbenzene $mg/kg (ppm)$ 29568-128-Xylene $mg/kg (ppm)$ 29568-128-Toroybenzene $mg/kg (ppm)$ 210668-129Soproylbenzene $mg/kg (ppm)$ 210369-128-Toroybenzene $mg/kg (ppm)$ 210169-128-Toroybenzene $mg/kg (ppm)$ 210169-128-Toroybenzene $mg/kg (ppm)$ 210169-128-Toroybenzene $mg/kg (ppm)$ 210067-127-Toroybenzene $mg/kg (ppm)$ 210067-127 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Foluene $mg/kg (ppm)$ 210166-126rans-1,3-Dichloropropene $mg/kg (ppm)$ 29865-131 $1,1,2$ -Trichloroethane $mg/kg (ppm)$ 210162-1312-Hexanone $mg/kg (ppm)$ 210967-1282-Hexanone $mg/kg (ppm)$ 210068-1281.2-Dichloropropane $mg/kg (ppm)$ 29355-1211.2-Dichoroethane (EDB) $mg/kg (ppm)$ 29666-1292.Dibromochloromethane $mg/kg (ppm)$ 29764-1231.1,1.2-Tetrachloroethane $mg/kg (ppm)$ 29764-1231.1,1.2-Tetrachloroethane $mg/kg (ppm)$ 29567-128Schylbenzene $mg/kg (ppm)$ 29567-129Syrone $mg/kg (ppm)$ 29567-129Syrone $mg/kg (ppm)$ 29568-132Syrone $mg/kg (ppm)$ 210369-1281.3-Trichloroethane $mg/kg (ppm)$ 210369-1281.3-Trimethylbenzene $mg/kg (ppm)$ 211456-1431.3.5-Trimethylbenzene $mg/kg (ppm)$ 210069-1291.3.5-Trimethylbenzene $mg/kg (ppm)$ 210069-1291.2.2-Tetrachloroethane $mg/kg (ppm)$ 29869-1291.3.5-Trimethylbenzene $mg/kg (ppm)$ 210069-1291.4.2-Tetrachloroethane $mg/kg (ppm)$ 29869-1291.5-Dorophorene $mg/kg (ppm)$ 2 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
rans-1,3-Dichloropropene mg/kg (ppm)29865-1311,1,2-Trichloroethane mg/kg (ppm)1092331522-Hexanone mg/kg (ppm)1092331521,3-Dichloropropane mg/kg (ppm)210068-128Dibromochloromethane mg/kg (ppm)29355-1211,2-Dibromoethane (BDB) mg/kg (ppm)29767-128Chlorobenzene mg/kg (ppm)29764-1231,1,1,2-Tetrachloroethane mg/kg (ppm)29764-1231,1,1,2-Tetrachloroethane mg/kg (ppm)29567-129Sopropylbenzene mg/kg (ppm)29568-128Nytlene mg/kg (ppm)29568-128Syromoform mg/kg (ppm)29568-128Sopropylbenzene mg/kg (ppm)210369-1281,1,2,2-Tetrachloroethane mg/kg (ppm)210369-1281,2,3-Trichloropropane mg/kg (ppm)210169-1281,2,3-Trichloropropane mg/kg (ppm)210067-1272,3-Trichloropropane mg/kg (ppm)210069-1281,2,3-Trichloropropane mg/kg (ppm)210169-1281,2,3-Trichloropropane mg/kg (ppm)210067-1272,3-Trichloropropane mg/kg (ppm)210067-1272,3-Trichloropropane mg/kg (ppm)210067-1281,1,2			2		
1,1,2-Trichloroethane $mg/kg (ppm)$ 210162-1312-Hexanone $mg/kg (ppm)$ 109233-1522-Hexanone $mg/kg (ppm)$ 210967-128[s-Dichloropropane $mg/kg (ppm)$ 29355-121[s-Dichloromethane $mg/kg (ppm)$ 29666-129Dibromochloromethane $mg/kg (ppm)$ 29764-123[L,2-Dibromoethane (EDB) $mg/kg (ppm)$ 29764-123[L,1,2-Tetrachloroethane $mg/kg (ppm)$ 29764-123[L,1,2-Tetrachloroethane $mg/kg (ppm)$ 29566-129[L,1,2-Tetrachloroethane $mg/kg (ppm)$ 29764-123[L,1,2-Tetrachloroethane $mg/kg (ppm)$ 29568-128Syptene $mg/kg (ppm)$ 29568-128Syptoplenzene $mg/kg (ppm)$ 29568-128Bromobenzene $mg/kg (ppm)$ 29568-1323romobenzene $mg/kg (ppm)$ 210668-1293romobenzene $mg/kg (ppm)$ 210668-1293romobenzene $mg/kg (ppm)$ 210668-1293romobenzene $mg/kg (ppm)$ 210369-1281,2,2-Trimethylbenzene $mg/kg (ppm)$ 210069-1282,3-Trichloropropane $mg/kg (ppm)$ 210069-1281,2,2-Trimethylbenzene $mg/kg (ppm)$ 29869-1301,3-Dichlorobenzene $mg/kg (ppm)$ 298<					
2-Hexanone mg/kg (ppm) 10 92 33.152 1,3-Dichloropropane mg/kg (ppm) 2 109 67.128 letrachloroethene mg/kg (ppm) 2 93 55.121 1,3-Dichloroptane (EDB) mg/kg (ppm) 2 96 66.129 Chlorobenzene mg/kg (ppm) 2 97 67.128 Sthylbenzene mg/kg (ppm) 2 97 64.123 1,1,1.2-Tetrachloroethane mg/kg (ppm) 2 97 64.123 1,1,1.2-Tetrachloroethane mg/kg (ppm) 2 95 67.129 Styrene mg/kg (ppm) 2 95 68.128 Syropolybenzene mg/kg (ppm) 2 95 68.128 Propylbenzene mg/kg (ppm) 2 90 68.128 Syromoberzene mg/kg (ppm) 2 106 68.129 Propylbenzene mg/kg (ppm) 2 103 69.129 1,3.5-Trimethylbenzene mg/kg (ppm) 2 104 64.131 1,2.2-Tetrachloroethane mg/kg (ppm) 2 114 56.143					
1,3-Dichloropropane mg/kg (ppm) 2 109 67-128 Ferrachloroethene mg/kg (ppm) 2 93 55-121 Dibromochloromethane mg/kg (ppm) 2 93 66-129 L,2-Dibromoethane (EDB) mg/kg (ppm) 2 97 67-128 Ethylbenzene mg/kg (ppm) 2 97 64-123 1, 1, 2-Tetrachloroethane mg/kg (ppm) 2 95 67-129 Styrene mg/kg (ppm) 2 95 67-129 Styrene mg/kg (ppm) 2 95 67-129 Styrene mg/kg (ppm) 2 95 68-128 Bromoform mg/kg (ppm) 2 95 68-128 Styrene mg/kg (ppm) 2 106 68-128 Bromoform mg/kg (ppm) 2 103 69-128 1,3,5-Trimethylbenzene mg/kg (ppm) 2 101 69-129 1,1,2.2-Tetrachloroethane mg/kg (ppm) 2 101 69-128 1,3,5-Trimethylbenzene mg/kg (ppm) 2 101 69-128	2-Hexanone		10	92	33 - 152
Dibromochloromethane mg/kg (ppm) 2 93 55-121 1,2-Dibromoethane (EDB) mg/kg (ppm) 2 96 66-129 Chlorobenzene mg/kg (ppm) 2 97 67-128 Ethylbenzene mg/kg (ppm) 2 97 64-123 1,1,1,2-Tetrachloroethane mg/kg (ppm) 2 95 67-129 Styrene mg/kg (ppm) 2 95 68-128 >-Xylene mg/kg (ppm) 2 95 68-129 Styrene mg/kg (ppm) 2 95 68-129 Styrene mg/kg (ppm) 2 80 56-132 1-Propylbenzene mg/kg (ppm) 2 106 68-129 Bromohorm mg/kg (ppm) 2 103 69-128 1,3,5-Trimethylbenzene mg/kg (ppm) 2 114 56-143 1,2,3-Trichorooptane mg/kg (ppm) 2 100 69-129 1,2,3-Trichorooptane mg/kg (ppm) 2 100 69-128 1,2,	1,3-Dichloropropane		2	109	67-128
1,2-Dibromoethane (EDB) mg/kg (ppm) 2 96 66-129 Chlorobenzene mg/kg (ppm) 2 97 67-128 Ethylbenzene mg/kg (ppm) 2 97 64-123 1,1,1,2-Tetrachloroethane mg/kg (ppm) 2 91 64-123 m,p-Xylene mg/kg (ppm) 2 95 67-129 Styrene mg/kg (ppm) 2 95 68-128 Sopropylbenzene mg/kg (ppm) 2 95 68-129 Isopropylbenzene mg/kg (ppm) 2 80 56-132 -Propylbenzene mg/kg (ppm) 2 106 68-129 Bromobenzene mg/kg (ppm) 2 103 69-128 1,1,2.2-Tetrachloroethane mg/kg (ppm) 2 114 56-143 1,2.2-Tetracholroethane mg/kg (ppm) 2 100 69-128 1,3.5-Trimethylbenzene mg/kg (ppm) 2 101 69-129 1,2.2-Tetrachoroethane mg/kg (ppm) 2 100 67-127 zert-Butylbenzene mg/kg (ppm) 2 100 67-137 </td <td>Tetrachloroethene</td> <td>mg/kg (ppm)</td> <td>2</td> <td>100</td> <td>68-128</td>	Tetrachloroethene	mg/kg (ppm)	2	100	68-128
Chlorobenzene $mg/kg (ppm)$ 297 $67-128$ Sthylbenzene $mg/kg (ppm)$ 297 $64-123$ L1, 1, 2; Pttrachloroethane $mg/kg (ppm)$ 291 $64-121$ $m, p. Xylene$ $mg/kg (ppm)$ 295 $68-128$ > Sytene $mg/kg (ppm)$ 297 $67-129$ sopropylbenzene $mg/kg (ppm)$ 297 $67-129$ sopropylbenzene $mg/kg (ppm)$ 295 $68-128$ armobenzene $mg/kg (ppm)$ 280 $56-132$ armobenzene $mg/kg (ppm)$ 2106 $68-129$ armobenzene $mg/kg (ppm)$ 2103 $69-128$ L, 3, 2-Trinkethylbenzene $mg/kg (ppm)$ 2114 $56-143$ L, 3, 2-Trinkoropropane $mg/kg (ppm)$ 2100 $69-128$ L-Chorotoluene $mg/kg (ppm)$ 2100 $69-128$ L-Chorotoluene $mg/kg (ppm)$ 2100 $69-128$ L-Chorotoluene $mg/kg (ppm)$ 298 $69-130$ L, 2,4-Trimethylbenzene $mg/kg (ppm)$ 298 $69-130$ L, 3-Dichlorobenzene $mg/kg (ppm)$ 298 $69-127$ L, 3-Dichlorobenzene $mg/kg (ppm)$ 2101 $69-127$ L, 4-Dichlorobenzene $mg/kg (ppm)$ 2101 $69-127$ L, 2-Dichlorobenzene $mg/kg (ppm)$ 2101 $69-127$ L, 2-Dichlorobenzene $mg/kg (ppm)$ 2101 $69-127$ L, 2-Dichlorobenzene m	Dibromochloromethane	mg/kg (ppm)	2	93	55 - 121
Ethylbenzene $mg/kg (ppm)$ 297 64.123 $1, 1, 1, 2$ -Tetrachloroethane $mg/kg (ppm)$ 291 64.123 $n_p. Xylene$ $mg/kg (ppm)$ 498 68.128 $b-Xylene$ $mg/kg (ppm)$ 295 67.129 Styrene $mg/kg (ppm)$ 295 68.128 lsopropylbenzene $mg/kg (ppm)$ 295 68.128 Bromoform $mg/kg (ppm)$ 280 56.132 $1-Propylbenzenemg/kg (ppm)210668.129Bromohorzenemg/kg (ppm)210369.1281, 3, 5. Trimethylbenzenemg/kg (ppm)211456.1431, 2, 3. Trichloroporpanemg/kg (ppm)210169.1281, 2, 3. Trichloroporpanemg/kg (ppm)210069.1291, 2, 3. Trichloroporpanemg/kg (ppm)210069.1284. Chlorotoluenemg/kg (ppm)210069.1281, 2, 4. Trimethylbenzenemg/kg (ppm)210069.1281, 4. Dichlorobenzenemg/kg (ppm)29869.1301, 3. Dichlorobenzenemg/kg (ppm)29869.1301, 3. Dichlorobenzenemg/kg (ppm)29768.1281, 4. Dichlorobenzenemg/kg (ppm)210169.1271, 4. Dichlorobenzenemg/kg (ppm)29869.1301, 3. Dichlorobenzenemg/kg (ppm)210169$	1,2-Dibromoethane (EDB)	mg/kg (ppm)		96	66-129
1, 1, 2-Tetrachloroethane $mg/kg (ppm)$ 291 64.121 $n, p. Xylene$ $mg/kg (ppm)$ 498 68.128 $n, p. Xylene$ $mg/kg (ppm)$ 295 67.129 styrene $mg/kg (ppm)$ 297 67.129 sopropylbenzene $mg/kg (ppm)$ 295 68.128 Bromoform $mg/kg (ppm)$ 280 56.132 -Proyblenzene $mg/kg (ppm)$ 2106 68.129 Bromoform $mg/kg (ppm)$ 299 69.128 1, 1, 2, 2-Tetrachloroethane $mg/kg (ppm)$ 2114 56.143 1, 2, 3-Triniethylbenzene $mg/kg (ppm)$ 2114 56.143 1, 2, 3-Trichloropropane $mg/kg (ppm)$ 2100 67.129 2-Chlorotoluene $mg/kg (ppm)$ 298 69.130 2-Steproyhtoluene $mg/kg (ppm)$ 298 69.130 2-Steproyhtoluene $mg/kg (ppm)$ 298 69.130 2-Steproyhtoluene $mg/kg (ppm)$ 2101 69.127 2-Dichlorobenzene $mg/kg (ppm)$ 2101 69.127 2-Dichlorobenzene $mg/kg (ppm)$	Chlorobenzene	mg/kg (ppm)	2	97	67-128
n,p-Xylenemg/kg (ppm)49868-128-Xylenemg/kg (ppm)29567-129Styrenemg/kg (ppm)29767-129sopropylbenzenemg/kg (ppm)29568-128Bromoformmg/kg (ppm)28056-132- Propylbenzenemg/kg (ppm)210668-129Bromobenzenemg/kg (ppm)210369-1281,3,5-Trimethylbenzenemg/kg (ppm)211456-1432,2,3-Trichloropropanemg/kg (ppm)210169-1281-Chorotoluenemg/kg (ppm)210067-127ert-Butylbenzenemg/kg (ppm)210069-1281-Chorotoluenemg/kg (ppm)210069-1281-Chorotoluenemg/kg (ppm)210069-1291,2,4-Trimethylbenzenemg/kg (ppm)29869-1301,2,4-Trimethylbenzenemg/kg (ppm)29869-1301,3-Dichlorobenzenemg/kg (ppm)29869-1301,3-Dichlorobenzenemg/kg (ppm)29869-1271,4-Dichlorobenzenemg/kg (ppm)210169-1271,2-Dichlorobenzenemg/kg (ppm)210169-1271,2-Dichlorobenzenemg/kg (ppm)210358-1381,2,4-Trinlorobenzenemg/kg (ppm)210358-1381,2,4-Trinlorobenzenemg/kg (ppm)210464-1351,2-Dibrono-3-chloropropane <td>Ethylbenzene</td> <td>mg/kg (ppm)</td> <td></td> <td>97</td> <td>64-123</td>	Ethylbenzene	mg/kg (ppm)		97	64-123
by Jene $mg/kg (ppm)$ 29567-129Styrene $mg/kg (ppm)$ 29767-129Styrene $mg/kg (ppm)$ 29568-128Bromoform $mg/kg (ppm)$ 28056-1321-Propylbenzene $mg/kg (ppm)$ 210668-129Bromobarzene $mg/kg (ppm)$ 210369-1281,3,5-Trimethylbenzene $mg/kg (ppm)$ 211456-1431,3,2-Trichoroorbane $mg/kg (ppm)$ 211261-1372-Chlorotoluene $mg/kg (ppm)$ 210069-1281-Chlorotoluene $mg/kg (ppm)$ 210069-1281,2,2-Trimethylbenzene $mg/kg (ppm)$ 210069-1282-Chlorotoluene $mg/kg (ppm)$ 210069-1281-Chlorotoluene $mg/kg (ppm)$ 29869-1301,2,4-Trimethylbenzene $mg/kg (ppm)$ 29869-1301,3-Dichlorobenzene $mg/kg (ppm)$ 29869-1301,3-Dichlorobenzene $mg/kg (ppm)$ 29768-1261,2-Dichlorobenzene $mg/kg (ppm)$ 29869-1271,2-Dichlorobenzene $mg/kg (ppm)$ 210169-1271,2-Dichlorobenzene $mg/kg (ppm)$ 210358-1381,2,4-Trichlorobenzene $mg/kg (ppm)$ 210464-1351,2-Dichlorobenzene $mg/kg (ppm)$ 210464-1351,2-A-Trichlorobenzene $mg/kg (ppm)$ 210464-135<	1,1,1,2-Tetrachloroethane	mg/kg (ppm)		91	64-121
Styrenemg/kg (ppm)29767-129(sopropylbenzenemg/kg (ppm)29568-128Bromoformmg/kg (ppm)28056-132-Proylbenzenemg/kg (ppm)210668-129Bromobenzenemg/kg (ppm)210369-1291,1,2,2-Tetrachloroethanemg/kg (ppm)211456-1431,2,2-Trinethylbenzenemg/kg (ppm)210067-1272-Chlorotoluenemg/kg (ppm)210067-1272-Chlorotoluenemg/kg (ppm)210069-1291,2,4-Tetrachloroethanemg/kg (ppm)210069-1291,2,4-Tetrachloroethanemg/kg (ppm)210069-1291,2,4-Trinethylbenzenemg/kg (ppm)210069-1291,2,4-Trimethylbenzenemg/kg (ppm)29869-1302-Chlorotoluenemg/kg (ppm)29869-1302-Stoproyltoluenemg/kg (ppm)29869-1301,3-Dichlorobenzenemg/kg (ppm)29869-1301,3-Dichlorobenzenemg/kg (ppm)29869-1271,2-Dibromo-3-chloropropanemg/kg (ppm)210169-1271,2-Dibromo-3-chloropropanemg/kg (ppm)210358-1381,2,4-Trichlorobenzenemg/kg (ppm)210464-1351,2-Dibromo-3-chloropropanemg/kg (ppm)210464-1351,2-Dibromo-3-chloropropanemg/kg (ppm)2 <td< td=""><td>n,p-Xylene</td><td>mg/kg (ppm)</td><td></td><td>98</td><td>68-128</td></td<>	n,p-Xylene	mg/kg (ppm)		98	68-128
sopropylbenzene mg/kg (ppm) 2 95 68-128 Bromoform mg/kg (ppm) 2 80 56-132 Propylbenzene mg/kg (ppm) 2 106 68-129 Bromobenzene mg/kg (ppm) 2 103 69-128 1,3,5-Trimethylbenzene mg/kg (ppm) 2 99 69-129 1,1,2,2-Tetrachloroethane mg/kg (ppm) 2 114 56-143 2,3-Trichloropropane mg/kg (ppm) 2 100 69-128 4-Chlorotoluene mg/kg (ppm) 2 101 69-128 4-Chlorotoluene mg/kg (ppm) 2 100 69-128 4-Chlorotoluene mg/kg (ppm) 2 100 69-128 1,2,4-Trimethylbenzene mg/kg (ppm) 2 98 69-129 1,2,4-Trimethylbenzene mg/kg (ppm) 2 98 69-130 1,S-Dichlorobenzene mg/kg (ppm) 2 98 69-130 1,3-Dichlorobenzene mg/kg (ppm) 2 97 68-126 <td>y-Xylene</td> <td>mg/kg (ppm)</td> <td></td> <td>95</td> <td>67-129</td>	y-Xylene	mg/kg (ppm)		95	67-129
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Bromobenzene mg/kg (ppm)210369-128 $i,3,5$ -Trimethylbenzene mg/kg (ppm)29969-129 $i,1,2,2$ -Tetrachloroethane mg/kg (ppm)211456-143 $i,2,3$ -Trichloropropane mg/kg (ppm)211261-1372-Chlorotoluene mg/kg (ppm)210069-1284-Chlorotoluene mg/kg (ppm)210069-1284-Chlorotoluene mg/kg (ppm)210069-129 $i,2,4$ -Trimethylbenzene mg/kg (ppm)29869-130 $i,2,4$ -Trimethylbenzene mg/kg (ppm)29869-130 $i,3$ -Dichlorobenzene mg/kg (ppm)29869-130 $i,3$ -Dichlorobenzene mg/kg (ppm)29869-130 $i,4$ -Dichlorobenzene mg/kg (ppm)29869-127 $i,4$ -Dichlorobenzene mg/kg (ppm)210169-127 $i,4$ -Dichlorobenzene mg/kg (ppm)210169-127 $i,2$ -Artrichlorobenzene mg/kg (ppm)210358-138 $i,2,4$ -Trichlorobenzene mg/kg (ppm)210464-135 $i,2,4$ -Trichlorobenzene mg/kg (ppm)210464-135 $i,2,4$ -Trichlorobenzene mg/kg (ppm)210464-135Naphthalene mg/kg (ppm)210262-128					
1,3,5-Trimethylbenzene $mg'kg (ppm)$ 29969-1291,1,2,2-Tetrachloroothane $mg/kg (ppm)$ 211456-1431,2,3-Trichloroothane $mg/kg (ppm)$ 211261-1372-Chlorotoluene $mg/kg (ppm)$ 210169-1281-Chlorotoluene $mg/kg (ppm)$ 210069-1291-Chlorotoluene $mg/kg (ppm)$ 210069-1281-Chlorotoluene $mg/kg (ppm)$ 29869-1291,2,4-Trimethylbenzene $mg/kg (ppm)$ 29869-1301-Stopropyltoluene $mg/kg (ppm)$ 29869-1301,3-Dichlorobenzene $mg/kg (ppm)$ 29869-1271,4-Dichlorobenzene $mg/kg (ppm)$ 29768-1261,2-Dibromo-3-chloropropane $mg/kg (ppm)$ 210169-1271,2-Dibromo-3-chloropropane $mg/kg (ppm)$ 210358-1381,2,4-Trichlorobenzene $mg/kg (ppm)$ 210464-1354exachlorobutadiene $mg/kg (ppm)$ 210750-153Naphthalene $mg/kg (ppm)$ 210262-128		mg/kg (ppm)			68-129
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
2-Chlorotoluene $mg/kg (ppm)$ 210169-1281-Chlorotoluene $mg/kg (ppm)$ 210067-1271-Chlorotoluene $mg/kg (ppm)$ 210069-1281-Chlorotoluene $mg/kg (ppm)$ 29869-1281,2,4-Trimethylbenzene $mg/kg (ppm)$ 29869-1301-Stopropyltoluene $mg/kg (ppm)$ 29869-1301,3-Dichlorobenzene $mg/kg (ppm)$ 29869-1271,4-Dichlorobenzene $mg/kg (ppm)$ 29768-1261,2-Dichlorobenzene $mg/kg (ppm)$ 210169-1271,2-Dichlorobenzene $mg/kg (ppm)$ 210169-1271,2-Dichlorobenzene $mg/kg (ppm)$ 210358-1381,2,4-Trichlorobenzene $mg/kg (ppm)$ 210464-135Hexachlorobutadiene $mg/kg (ppm)$ 210750-153Naphthalene $mg/kg (ppm)$ 210262-128					
L-Chlorotoluene $mg/kg (ppm)$ 2100 $67-127$ ert-Butylbenzene $mg/kg (ppm)$ 2100 $69-129$ $,,2,4$ -Trimethylbenzene $mg/kg (ppm)$ 298 $69-128$ ec-Butylbenzene $mg/kg (ppm)$ 298 $69-130$ o -Isopropyltoluene $mg/kg (ppm)$ 298 $69-130$ $,3$ -Dichlorobenzene $mg/kg (ppm)$ 298 $69-130$ $,3$ -Dichlorobenzene $mg/kg (ppm)$ 298 $69-130$ $,2$ -Dichlorobenzene $mg/kg (ppm)$ 297 $68-126$ $,2$ -Dichlorobenzene $mg/kg (ppm)$ 2101 $69-127$ $,2$ -Dichlorobenzene $mg/kg (ppm)$ 2103 $58-138$ $,2,4$ -Trichlorobenzene $mg/kg (ppm)$ 2104 $64-135$ $,2,4$ -Trichlorobenzene $mg/kg (ppm)$ 2107 $50-153$ Naphthalene $mg/kg (ppm)$ 2102 $62-128$					
ert-Butylbenzene mg/kg (ppm) 2 100 69-129 .,2,4-Trimethylbenzene mg/kg (ppm) 2 98 69-128 ue-Butylbenzene mg/kg (ppm) 2 98 69-130)-Isopropyltoluene mg/kg (ppm) 2 98 69-130 .,3-Dichlorobenzene mg/kg (ppm) 2 98 69-130 .,4-Dichlorobenzene mg/kg (ppm) 2 98 69-127 .,2-Dichlorobenzene mg/kg (ppm) 2 101 69-127 .,2-Dichlorobenzene mg/kg (ppm) 2 103 58-138 .,2-Dichlorobenzene mg/kg (ppm) 2 104 64-135 .,2-Trichlorobenzene mg/kg (ppm) 2 107 50-153 wapthhalene mg/kg (ppm) 2 102 62-128					
2,2,4-Trimethylbenzene mg/kg (ppm)29869-128 ec -Butylbenzene mg/kg (ppm)29869-130 $-Jsopropyltoluenemg/kg (ppm)29869-1303-Dichlorobenzenemg/kg (ppm)29869-1274-Dichlorobenzenemg/kg (ppm)29768-1262-Dichlorobenzenemg/kg (ppm)210169-1272-Dichlorobenzenemg/kg (ppm)210358-1382,2-Dibromo-3-chloropropanemg/kg (ppm)210464-135lexachlorobutadienemg/kg (ppm)210750-153kaphthalenemg/kg (ppm)210262-128$					
ee-Butylbenzene mg/kg (ppm) 2 98 69-130 -Isopropyltoluene mg/kg (ppm) 2 98 69-130 -Jopropyltoluene mg/kg (ppm) 2 98 69-130 ,3-Dichlorobenzene mg/kg (ppm) 2 98 69-130 ,4-Dichlorobenzene mg/kg (ppm) 2 97 68-126 ,2-Dichlorobenzene mg/kg (ppm) 2 101 69-127 ,2-Dichlorobenzene mg/kg (ppm) 2 103 58-138 ,2,4-Trichlorobenzene mg/kg (ppm) 2 104 64-135 texachlorobutadiene mg/kg (ppm) 2 107 50-153 vaphthalene mg/kg (ppm) 2 102 62-128					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
,3-Dichlorobenzene mg/kg (ppm)29869-127,4-Dichlorobenzene mg/kg (ppm)29768-126,2-Dichlorobenzene mg/kg (ppm)210169-127,2-Dichlorobenzene mg/kg (ppm)210358-138,2,4-Trichlorobenzene mg/kg (ppm)210464-135lexachlorobutadiene mg/kg (ppm)210750-153Vaphthalene mg/kg (ppm)210262-128					
yd-Dichlorobenzene mg/kg (ppm) 2 97 68-126 1,2-Dichlorobenzene mg/kg (ppm) 2 101 69-127 1,2-Dichlorobenzene mg/kg (ppm) 2 103 58-138 1,2,4-Trichlorobenzene mg/kg (ppm) 2 104 64-135 texachlorobutadiene mg/kg (ppm) 2 107 50-153 Naphthalene mg/kg (ppm) 2 102 62-128					
x,2-Dichlorobenzene mg/kg (ppm) 2 101 69-127 x,2-Dibromo-3-chloropropane mg/kg (ppm) 2 103 58-138 x,2,4-Trichlorobenzene mg/kg (ppm) 2 104 64-135 dexachlorobutadiene mg/kg (ppm) 2 107 50-153 Naphthalene mg/kg (ppm) 2 102 62-128					
n,2-Dibromo-3-chloropropane mg/kg (ppm) 2 103 58-138 1,2,4-Trichlorobenzene mg/kg (ppm) 2 104 64-135 Hexachlorobutadiene mg/kg (ppm) 2 107 50-153 Naphthalene mg/kg (ppm) 2 102 62-128					
ng/kg (ppm) 2 104 64-135 Hexachlorobutadiene mg/kg (ppm) 2 107 50-153 Naphthalene mg/kg (ppm) 2 102 62-128					
Hexachlorobutadiene mg/kg (ppm) 2 107 50-153 Naphthalene mg/kg (ppm) 2 102 62-128					
Naphthalene mg/kg (ppm) 2 102 62-128					
1,2,3-Trichlorobenzene mg/kg (ppm) 2 104 61-126	Naphthalene 1.2.3-Trichlorobenzene		2 2	$102 \\ 104$	62-128 61-126

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	86	84	46-206	2
Chloromethane	ug/L (ppb)	10	81	83	59-132	2
Vinyl chloride	ug/L (ppb)	10	97	90	64-142	7
Bromomethane	ug/L (ppb)	10	115	105	50 - 197	9
Chloroethane	ug/L (ppb)	10	106	99	70-130	7
Trichlorofluoromethane	ug/L (ppb)	10	94	93	51-159	1
Acetone	ug/L (ppb)	50	53	36	10-140	38 vo
1,1-Dichloroethene	ug/L (ppb)	10	94	83	64-140	12
Hexane	ug/L (ppb)	10 10	103 100	102 101	54-136 43-134	1
Methylene chloride Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	10	99	97	43-134 70-130	$\frac{1}{2}$
trans-1,2-Dichloroethene	ug/L (ppb)	10	99 108	107	70-130	1
1,1-Dichloroethane	ug/L (ppb)	10	99	107	70-130	1
2.2-Dichloropropane	ug/L (ppb)	10	99 99	125	64-148	23 vo
cis-1,2-Dichloroethene	ug/L (ppb)	10	55 78	125	70-130	25 vo
Chloroform	ug/L (ppb)	10	81	94	70-130	15
2-Butanone (MEK)	ug/L (ppb)	50	52	71	47-112	31 vo
1.2-Dichloroethane (EDC)	ug/L (ppb)	10	102	105	70-130	3
1.1.1-Trichloroethane	ug/L (ppb)	10	92	100	70-130	8
1,1-Dichloropropene	ug/L (ppb)	10	89	94	70-130	5
Carbon tetrachloride	ug/L (ppb)	10	95	98	70-130	3
Benzene	ug/L (ppb)	10	101	105	70-130	4
Trichloroethene	ug/L (ppb)	10	98	100	70-130	2
1,2-Dichloropropane	ug/L (ppb)	10	93	95	70-130	2
Bromodichloromethane	ug/L (ppb)	10	95	103	70-130	8
Dibromomethane	ug/L (ppb)	10	96	98	70-130	$\tilde{2}$
4-Methyl-2-pentanone	ug/L (ppb)	50	97	97	68-130	0
cis-1,3-Dichloropropene	ug/L (ppb)	10	96	99	69-131	3
Toluene	ug/L (ppb)	10	100	105	70-130	5
trans-1,3-Dichloropropene	ug/L (ppb)	10	96	98	70-130	2
1,1,2 Trichloroethane	ug/L (ppb)	10	91	94	70-130	3
2-Hexanone	ug/L (ppb)	50	88	87	45-138	1
1,3-Dichloropropane	ug/L (ppb)	10	91	94	70-130	3
Tetrachloroethene	ug/L (ppb)	10	103	107	70-130	4
Dibromochloromethane	ug/L (ppb)	10	96	100	60-148	4
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	101	105	70-130	4
Chlorobenzene	ug/L (ppb)	10	97	99	70-130	2
Ethylbenzene	ug/L (ppb)	10	103	108	70-130	5
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	96	99	70-130	3
m,p-Xylene	ug/L (ppb)	20	102	106	70-130	4
o-Xylene	ug/L (ppb)	10	101	105	70-130	4
Styrene	ug/L (ppb)	10	97	100	70-130	3
Isopropylbenzene	ug/L (ppb)	10	96	101	70-130	5
Bromoform	ug/L (ppb)	10	97	98	69-138	1
n-Propylbenzene	ug/L (ppb)	10	94	97	70-130	3
Bromobenzene	ug/L (ppb)	10	93	98	70-130	5
1,3,5-Trimethylbenzene	ug/L (ppb)	10	89	94	70-130	5
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	94	97	70-130	3
1,2,3-Trichloropropane	ug/L (ppb)	10	92	94	70-130	2
2-Chlorotoluene	ug/L (ppb)	10	91	96	70-130	5
4-Chlorotoluene	ug/L (ppb)	10	95	96	70-130	1
tert-Butylbenzene	ug/L (ppb)	10	94	96	70-130	2
1,2,4-Trimethylbenzene	ug/L (ppb)	10	85	86	70-130	1
sec-Butylbenzene	ug/L (ppb)	10	93	97	70-130	4
p-Isopropyltoluene	ug/L (ppb)	10	93	98 96	70-130	5
1,3-Dichlorobenzene	ug/L (ppb)	10	91	96 07	70-130	5 4
1,4-Dichlorobenzene	ug/L (ppb)	10	93	97	70-130	
1,2-Dichlorobenzene	ug/L (ppb)	10 10	95	97 95	70-130	2 0
1,2-Dibromo-3-chloropropane	ug/L (ppb)		95 07		70-130	
1,2,4-Trichlorobenzene Hexachlorobutadiene	ug/L (ppb)	10	97	98	70-130	1
nexachiorobutadiene	ug/L (ppb)	10	103	100	70-130	3
Naphthalene	ug/L (ppb)	10	94	92	70-130	2

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

	_	~ -	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	97	105	49-149	8
Chloromethane	ug/L (ppb)	10	84	90	34-143	7
Vinyl chloride	ug/L (ppb)	10	91	99	43-149	8
Bromomethane	ug/L (ppb)	10	102	107	28-182	5
Chloroethane	ug/L (ppb)	10	108	122	59-157	12
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	10	91 66	108 70	59-141 20-139	17 6
1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	$\frac{50}{10}$	97	70 104	20-139 67-138	67
Hexane	ug/L (ppb)	10	97	104	50-161	12
Methylene chloride	ug/L (ppb) ug/L (ppb)	10	98 94	100	29-192	6
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	96	100	70-130	8
trans-1,2-Dichloroethene	ug/L (ppb)	10	92	104	70-130	11
1.1-Dichloroethane	ug/L (ppb)	10	94	105	70-130	11
2,2-Dichloropropane	ug/L (ppb)	10	107	117	71-148	9
cis-1,2-Dichloroethene	ug/L (ppb)	10	97	108	70-130	ů 11
Chloroform	ug/L (ppb)	10	91	103	70-130	12
2-Butanone (MEK)	ug/L (ppb)	50	77	94	50-157	20
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	98	108	70-130	10
1,1,1-Trichloroethane	ug/L (ppb)	10	95	104	70-130	9
1,1-Dichloropropene	ug/L (ppb)	10	93	103	70-130	10
Carbon tetrachloride	ug/L (ppb)	10	92	99	70-130	7
Benzene	ug/L (ppb)	10	103	113	70-130	9
Trichloroethene	ug/L (ppb)	10	101	110	70-130	9
1,2-Dichloropropane	ug/L (ppb)	10	89	99	70-130	11
Bromodichloromethane	ug/L (ppb)	10	89	100	70-130	12
Dibromomethane	ug/L (ppb)	10	93	104	70-130	11
4-Methyl-2-pentanone	ug/L (ppb)	50	94	101	70-130	7
cis-1,3-Dichloropropene	ug/L (ppb)	10	92	103	70-130	11
Toluene	ug/L (ppb)	10	103	103	70-130	0
trans-1,3-Dichloropropene	ug/L (ppb)	10	100	101	70-130	1
1,1,2-Trichloroethane	ug/L (ppb)	10	104	104	70-130	0
2-Hexanone	ug/L (ppb)	50	89	89	66-132	0
1,3-Dichloropropane	ug/L (ppb)	10	99	97	70-130	2
Tetrachloroethene	ug/L (ppb)	10	107	108	70-130	1
Dibromochloromethane	ug/L (ppb)	10	94	94	63-142	0
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	100	101	70-130	1
Chlorobenzene	ug/L (ppb)	10	101	101	70-130	0
Ethylbenzene	ug/L (ppb)	10	104	105	70-130	1
1,1,1,2-Tetrachloroethane m,p-Xylene	ug/L (ppb)	10 20	$99 \\ 104$	$100 \\ 105$	70-130 70-130	1 1
o-Xylene	ug/L (ppb) ug/L (ppb)	20 10	104	105	70-130	1
Styrene	ug/L (ppb) ug/L (ppb)	10	99	99	70-130	0
Isopropylbenzene	ug/L (ppb)	10	99 101	99 104	70-130	3
Bromoform	ug/L (ppb)	10	97	97	50-157	0
n-Propylbenzene	ug/L (ppb)	10	106	104	70-130	2
Bromobenzene	ug/L (ppb)	10	97	98	70-130	1
1,3,5-Trimethylbenzene	ug/L (ppb)	10	102	101	52-150	1
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	102	101	75-140	0
1.2.3-Trichloropropane	ug/L (ppb)	10	100	100	40-153	Ő
2-Chlorotoluene	ug/L (ppb)	10	104	103	70-130	1
4-Chlorotoluene	ug/L (ppb)	10	103	103	70-130	0
tert-Butylbenzene	ug/L (ppb)	10	103	102	70-130	1
1,2,4-Trimethylbenzene	ug/L (ppb)	10	101	100	70-130	1
sec-Butylbenzene	ug/L (ppb)	10	104	104	70-130	0
p-Isopropyltoluene	ug/L (ppb)	10	103	103	70-130	Õ
1,3-Dichlorobenzene	ug/L (ppb)	10	101	101	70-130	0
1,4-Dichlorobenzene	ug/L (ppb)	10	101	101	70-130	0
1,2-Dichlorobenzene	ug/L (ppb)	10	103	102	70-130	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	97	95	70-130	2
1,2,4-Trichlorobenzene	ug/L (ppb)	10	99	96	70-130	3
Hexachlorobutadiene	ug/L (ppb)	10	101	101	70-130	0
Naphthalene	ug/L (ppb)	10	98	96	61-133	2
1.2.3-Trichlorobenzene	ug/L (ppb)	10	98	96	69-143	2

ENVIRONMENTAL CHEMISTS

Date of Report: 08/23/23 Date Received: 08/18/23 Project: 7602 and 7702 River Dr E Puyallup, WA 2220-008, F&BI 308301

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

.

Laboratory Code: 308287-06 1/5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Ú nits	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	68	70	28-125	3
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	81	82	10-192	1
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	87	88	10-163	1
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	78	79	45-128	1
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	75	75	36-125	0
Fluorene	mg/kg (ppm)	0.83	< 0.01	82	82	48-121	0
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	82	79	46-122	4
Anthracene	mg/kg (ppm)	0.83	< 0.01	81	79	30-144	2
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	84	80	50-150	5
Pyrene	mg/kg (ppm)	0.83	< 0.01	85	77	40-134	10
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	84	81	50 - 150	4
Chrysene	mg/kg (ppm)	0.83	< 0.01	93	90	50 - 150	3
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	83	78	50 - 150	6
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	76	71	50 - 150	7
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	81	77	50 - 150	5
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	78	75	40-140	4
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	83	78	41-136	6
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	77	72	29-139	7

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	85	57-107
2-Methylnaphthalene	mg/kg (ppm)	0.83	99	63-112
1-Methylnaphthalene	mg/kg (ppm)	0.83	105	63-113
Acenaphthylene	mg/kg (ppm)	0.83	93	70-130
Acenaphthene	mg/kg (ppm)	0.83	89	66-112
Fluorene	mg/kg (ppm)	0.83	95	67-117
Phenanthrene	mg/kg (ppm)	0.83	90	70-130
Anthracene	mg/kg (ppm)	0.83	92	70-130
Fluoranthene	mg/kg (ppm)	0.83	92	70-130
Pyrene	mg/kg (ppm)	0.83	93	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	96	70-130
Chrysene	mg/kg (ppm)	0.83	105	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	93	68-120
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	87	67-128
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	89	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	84	67-129
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	86	67-128
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	79	65-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Re	Re	F.11. (200) 203-0202 Re	i, Inc.				FB-3-081723	FB-1-081723	EE-J-08/773	FB-3-23,0	FB-3-26,0	FB-3-10.0	FT3-1-25.0	FB-2-25.0	Sample ID		925	e, ZIP Issaq	, 7	Company Mallon	Report To Port Kingston,	105805		
Received by:	Relinquished by:	Received by:	Relinquished by:	IS			20	40	06	R	24	63	02	of t.E	Lab ID		Email Olda intersulting COM	027			Sava Haynes			
		opm	Sullis	SIGNATURE			t							9e/17/36	Date Sampled		any fund the				2g	70		
			aller -				(20f]	1609	1445	7647	1636	1627	1S46	1416	Time Sampled		Project sp	REMARKS	7602 & 77 Puyallup, V	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTO		
	<	I VIN	Ball				1720	QCH	Hat	Soil	ŝ.	50;1	Soil	Ę.	Sample Type		Project specific RLs? -	-	7602 & 7702 River Dr E Puyallup, WA	(NAME	RS (signat	CHAIN		
			don Lutitari	PRINT NAME			S	S	5	1	4	4	7	Ľ.	# of Jars		· \9	Da			ure) f	OF C		
							×	×	×	×			×	×	NWTPH-Dx		1	, 			2000	(SD)		
		-+ .					×	×	×	$ \times$		<u> </u>	×	×	NWTPH-Gx		No	₩				TODY		
										<u> </u>	1				BTEX EPA 8021 NWTPH-HCID		1		5		N. S.	Y		
	×						×	×	×	×		- 	×	×	VOCs EPA 8260	ANA	1×	INVOICE TO	Soo-ae	י די	2	3		
		<u> </u>								×			×	×	PAHs EPA 8270	ANALYSES		ICE	8	PO #		1		
San	4 	FB	817	7											PCBs EPA 8082	S RE		TO	$ \propto$)				
npl			B	11		COM								×			$ \times$	×	RCRA 8 METALS	REQUESTED				
n St			Б	COMPANY			$ \times$	×	×					,	TOTAL METALS	STEI	D 🗆	[]	R	<u>ج</u> 🗆		/8/		
ecei	F			Y		ļ	×	×	×				<u> </u>		DISSOLVED METALS		Other efault	S/ Archiv	sh ch	RUSH	TU	22		
Samples received at	R P				ļ	ļ	<u> </u>	<u> </u>					ļ	<u> </u>			: Dis	SAMPLE DI Archive samples	arges		Page #	ŧ		
at	8/18		K	DATE					RC								pose a	SAMPLE DISPOSAL hive samples	Rush charges authorized by:	\square Standard turnaround $\sqrt{RUSH} \frac{\partial - \lambda \alpha}{\partial - \lambda \alpha}$	TURNAROUND TIME	<u>t</u>		
++	12	tit.	13				←		RCRA 8						Notes		after	SPOS/	rized	und		me		
Ô		12	1705	TIME											ion		□ Other Default: Dispose after 30 days	Å	by:		ME .	Ke		
•		5	L T T	Ē													VS		<u> </u>			22		

AV1

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 14, 2023

Pete Kingston, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Kingston:

Included are the results from the testing of material submitted on September 12, 2023 from the 7602 and 7702 River Road East 2220-008, F&BI 309145 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0914R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 12, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 7602 and 7702 River Road East 2220-008, F&BI 309145 project. Samples were logged in under the laboratory ID's listed below.

Farallon Consulting, LLC
FMW-01-21.5
FMW-02-17.5
FMW-02-22.5
FMW-04-21.5
FMW-05-12.5
FMW-05-17.5
FMW-05-22.5
FMW-06-12.5
FMW-06-17.5
FMW-06-24.0
FMW-03-17.0
FMW-03-22.0

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/14/23 Date Received: 09/12/23 Project: 7602 and 7702 River Road East 2220-008, F&BI 309145 Date Extracted: 09/13/23 Date Analyzed: 09/13/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
$\underset{309145\cdot01}{\text{FMW-01-21.5}}$	<50	<250	88
$\underset{309145\cdot02}{\text{FMW-02-17.5}}$	<50	<250	90
$\underset{309145\cdot04}{\text{FMW-04-21.5}}$	<50	<250	88
$\underset{309145\cdot05}{\text{FMW-05-12.5}}$	<50	<250	86
$\underset{309145-09}{\text{FMW-06-17.5}}$	<50	<250	87
FMW-03-17.0 309145-11	<50	<250	91
Method Blank ^{03-2191 MB}	<50	<250	99

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-01-21.5 09/12/23 09/13/23 09/13/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 7602 and 7702 River Road East 309145-01 309145-01.043 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	35.5		
Cadmium	<1		
Chromium	12.5		
Lead	2.15		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-02-17.5 09/12/23 09/13/23 09/13/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 7602 and 7702 River Road East 309145-02 309145-02.044 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.87		
Barium	53.5		
Cadmium	<1		
Chromium	12.7		
Lead	3.14		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-04-21.5 09/12/23 09/13/23 09/13/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 7602 and 7702 River Road East 309145-04 309145-04.045 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.55		
Barium	70.1		
Cadmium	<1		
Chromium	14.5		
Lead	3.88		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-05-12.5 09/12/23 09/13/23 09/13/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 7602 and 7702 River Road East 309145-05 309145-05.046 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	2.82		
Barium	29.4		
Cadmium	<1		
Chromium	14.3		
Lead	6.31		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-06-17.5 09/12/23 09/13/23 09/13/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 7602 and 7702 River Road East 309145-09 309145-09.047 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	1.71		
Barium	20.3		
Cadmium	<1		
Chromium	10.0		
Lead	1.05		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-03-17.0 09/12/23 09/13/23 09/13/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 7602 and 7702 River Road East 309145-11 309145-11.048 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	3.01		
Barium	52.3		
Cadmium	<1		
Chromium	13.9		
Lead	8.37		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 09/13/23 09/13/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 7602 and 7702 River Road East I3-703 mb2 I3-703 mb2.042 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/14/23 Date Received: 09/12/23 Project: 7602 and 7702 River Road East 2220-008, F&BI 309145

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	309145-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	104	106	63-146	2
Laboratory Code:	Laboratory Contr	rol Samp	le				
			Percent	t			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	100	77-	123		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/14/23 Date Received: 09/12/23 Project: 7602 and 7702 River Road East 2220-008, F&BI 309145

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 309127-02 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	11.2	91 b	190 b	75 - 125	70 b
Barium	mg/kg (ppm)	50	159	106 b	184 b	75 - 125	$54 \mathrm{b}$
Cadmium	mg/kg (ppm)	10	<5	99	114	75 - 125	14
Chromium	mg/kg (ppm)	50	104	76 b	119 b	75 - 125	44 b
Lead	mg/kg (ppm)	50	104	68 b	131 b	75 - 125	63 b
Mercury	mg/kg (ppm	5	<5	91	108	75 - 125	17
Selenium	mg/kg (ppm)	5	<5	76	89	75 - 125	16
Silver	mg/kg (ppm)	10	<5	93	109	75 - 125	16

Laboratory Code: Laboratory Control Sample

Laboratory Co	uc. Daboratory com	noi bampie					
Percent							
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Arsenic	mg/kg (ppm)	10	97	80-120			
Barium	mg/kg (ppm)	50	102	80-120			
Cadmium	mg/kg (ppm)	10	100	80-120			
Chromium	mg/kg (ppm)	50	113	80-120			
Lead	mg/kg (ppm)	50	102	80-120			
Mercury	mg/kg (ppm)	5	102	80-120			
Selenium	mg/kg (ppm)	5	99	80-120			
Silver	mg/kg (ppm)	10	100	80-120			

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Γ	R	R	Ph. (206) 285-8282	ı, Inc.	—	Fmw - 06-24.0	Fmw - 06 - 17.5	Fmw- 06 - 12,5	Fmw-05-22.5	FMW- 05 - 17.5	Fmw -05 - 12.5	FMW-04-21.5	Fmw-02-22.5	FMW-02-17.5	Fmw-01-21.5	Sample ID		PhoneEmai	City, State, ZIP <u>Issaquah, WA</u>	Company Farallon Consulting Address 975 5th Ave NW	Report To Peter Kingston	r = (m) r a
AMPLE CHAIN OF CUSTODY OP 11,2, λ_2 SamPLE CHAIN OF CUSTODY OP 11,2, λ_2 PROJECT NAME Project specific RLs? - Yes / No ANALYSES REQUEST PCB		eceived by:	elinquished by:	eceived by:	elinquished by:	SI	10	09	80	f0	06	20	0H	٤0	02	A -	Lab ID		llpkingstonet		NW		
AMPLE CHAIN OF CUSTODY OP INTER (signature) PROJECT NAME PO PO The C2 cn λ The C3 The C3 PO Awe: Recad Ec5+ INVOICE TO Project specific RLs? - Yes / No INVOICE TO Time Sampled Type Type Jars INVOICE TO Ammediate Science Jars INVOICE TO Type Jars NWTPH-Dx Sampled Type Jars Type Jars NWTPH-GX Soluc 5 X NWTPH-GX O30 Soluc X PCBs EPA 80021 O400 X NWTPH-HCID YOCS EPA 8200 O400 X Y PCBs EPA 8082 O30 X X Y O30 X X Y O400 X Y Y			Ň	eld.	12 29	GNATURE	ŀ				, ,	9/12/23	1-			9/11/23	Date Sampled		<u> rullonconsultire</u>	027			
F E BTEX EPA 8021 NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID PAHs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 FW X]			1040	C 201	10:25	0830	0820	0755	04H	1140	1130	0930	Time Sampled		ဂ	REMAR	PROJEC 7602 River 1	SAMPLE	SAMPLE
F E BTEX EPA 8021 NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID PAHs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 FW X				NHUI	Micha		i									Sole	Sample Type		pecific RLs	KS	and 77 Read Ec	IRS (signat	CHAIN
Fight End BTEX EPA 8021 NWTPH-HCID NWTPH-HCID NWTPH-HCID NWTPH-HCID POHs EPA 8260 Fight POHs EPA 8082 Fight PCBs EPA 8082 Fight X X X X X X X X X X X X X X X				r TT	e K	PRI	1									Ui	# of Jars		<u>; - Y</u>		510	ure)	OF
FUNCTION BTEX EPA 8021 Image: State of the state of				ana	sagu	NT N		\times				×	\times		X	×	NWTPH-Dx		/ se				SUS
Image: Second state of the se				VG	irre	AME											NWTPH-Gx		No			$ \mathcal{O}_{r}$	
X X X X RCRA 3 Metallo H H H H H H H H				ŀ				 		ļ		_		<u> </u>							22	Ν.,	X
X X X X R RCRA 3 Metalls									<u> </u>									AN		INI	20		
X X X X RCRA 3 Metallo H H H H H H H H		_				$\left - \right $												ALY		/OIC	- oc	4	160
Z COMPAN X X X X RCRA 8 Menuls 14 14 14 14 10 1				81	FL			<u>+</u>			+							SES]		ETC			
IVAT V3 - Ful. Page # 1 of 2 TURNAROUND TIME Standard turnaround KRUSH 24 TAT Rush charges authorized by: Other Other Default: Dispose after 30 days Default: Dispose after 30 days Notes MPANY DATE YATE YARUSH 24 TAT Rush charges authorized by: Default: Dispose after 30 days Notes Notes MPANY DATE YAN XSI 9//21/23 YSI 9//21/23 YSI 9//21/23				LB .	ک	CO		X			+	×	×		×	X		REQU		Ŭ			24
Page # I of 2 TURNAROUND TIME TURNAROUND TIME Standard turnaround XRUSH 24 TAT Rush charges authorized by: SAMPLE DISPOSAL Other				1		MPA]		1	+	San		+				<u>/</u>		JEST			<u> </u>		ļ
Page # 1 of 2 TURNAROUND TIME ndard turnaround SH_24_TAT charges authorized by: SAMPLE DISPOSAL hive samples ner Notes Notes Sreceived at 3 AXE TIME AXE TIME 4/////23 1551						YN			+	nple		+			+			ED	Defa	\square Ard O_{t}	□ Sta X RU Rush		Na
- r.e. VAROUND TIME I turnaround <u>4</u> TAT ges authorized by: IPLE DISPOSAL samples Dispose after 30 days eceived at 3 DATE TIME ASS 9/124 1551 4/123 1551																			ult: I	SAM hive	ndaro SH 2 charg	Page # TURN	
I of 2 UND TIME around AT thorized by: thorized by: olisposal es e after 30 days se after 30 days ved at 3 Notes Notes Notes Notes				q/l	X	Ŀ				ecei)ispos	PLE] sampl	ges au	VARO	- 72
$\begin{array}{c c} \operatorname{of} & 2 \\ TIME \\ \operatorname{ad} by: \\ \operatorname{OSAL} \\ \operatorname{OSAL} \\ \operatorname{OSAL} \\ \end{array}$				124	1 9/12	ATE				ved							z		<u>se aft</u>	DISP	AT AT thoriz	UND	
$\frac{55(1)}{55}$	-			<u> </u>	-	1				at							otes		er 30	OSAL	red by	Μ	
				,22(1551	TIME				r) days				ز

Friedman & Bruya, Inc. Ph. (206) 285-8282				Fmw-03 - 22.0	Fmw-03-17.0	Sample ID		PhoneEma	City, State, ZIP <u>Issaquah, WA 9802</u> 7		Company Facallon Consulting	Report To Peter KingSten	7 MILL (AD 3091
SI Relinquished by: Received by: Relinquished by: Received by:				12 	11 A-E	Lab ID		Email phingstan@futchencersonary.com Project specific RLs? - Yes / No	1, WA 9802	SU (nsuting		5
SIGNATURE)—	9/12/23	Date Sampled		Colorionsition	Ľ				
				1135	1125	Time Sampled		and Project s	REMARKS	River F	PROJECT NAME	SAMPLE	SAMPLE CHAIN OF CUSTO
Michae				1-	Soir	Sample Type		pecific RLs	S	River Read East	PROJECT NAME	SAMPLERS (signature)	CHAIN
PRINT NAME Michael Ysaguire MHUT TRUUNG				1	SI X	NWTPH-Dx		? - Yes /		·		ure)	OF CU:
JAME Ultre						NWTPH-Gx BTEX EPA 8021		No		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		4	STODY
		 				NWTPH-HCID VOCs EPA 8260	ANAI		INVO	2220 - 0222	P		
FW		 Samples				PAHs EPA 8270 PCBs EPA 8082	ANALYSES RE		INVOICE TO	Ŭ K	PO#		09/12/23
COMPANY					×	RLRA 8 Metals	REQUESTED			я –	<u> </u>		2
		received at					D)efault: I	SAMPLE DI	ush charg	□ Standard turna KRUSH <u>24 hr</u>	Page #	NLYN
DATE 9/12/23 9/12/23		م¢ئ €				Notes		Default: Dispose after 30 days	SAMPLE DISPOSAL hive samples	Rush charges authorized by	□ Standard turnaround XRUSH <u>24 hc</u> TAT	Page # of TURNAROUND TIME	S-Ad
TIME <i>'SSI</i> [55]						es.		30 days	;AL	ł by:		IME	د

Pace Analytical® ANALYTICAL REPORT October 17, 2022

BBG Assessment

Sample Delivery Group:	L1541543
Samples Received:	09/30/2022
Project Number:	0522013017
Description:	7602-7703 River Rd
Site:	PUYALLUP, WA
Report To:	Hannah Knapp
	4615 Southwest Freeway
	Suite 400
	Houston, TX 77027

Handligs

Heather J Wagner Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV/SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: **BBG** Assessment

PROJECT: 0522013017

SDG: L1541543

DATE/TIME: 10/17/22 13:13

PAGE: 1 of 58

Тс Ss Cn Śr ʹQc Gl ΆI Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
B1-S1-8 L1541543-01	6
B2-S1-4 L1541543-02	9
B2-S2-7 L1541543-03	12
B3-S1-16 L1541543-04	15
B4-S1-16 L1541543-05	18
B5-S1-8 L1541543-06	21
B1-W1 L1541543-07	24
B3-W1 L1541543-08	26
B4-W1 L1541543-09	28
B5-W1 L1541543-10	30
Qc: Quality Control Summary	32
Total Solids by Method 2540 G-2011	32
Volatile Organic Compounds (GC) by Method NWTPHGX	34
Volatile Organic Compounds (GC/MS) by Method 8260D	36
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	44
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	46
GI: Glossary of Terms	53
Al: Accreditations & Locations	55
Sc: Sample Chain of Custody	56

SDG: L1541543 DATE/TIME: 10/17/22 13:13

=: 13

SAMPLE SUMMARY

B1-S1-8 L1541543-01 Solid			Collected by John Ramus	Collected date/time 09/28/22 10:31	Received dat 09/30/22 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1936186	1	10/04/22 08:02	10/04/22 08:07	СМК	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1937301	25.3	09/28/22 10:31	10/04/22 20:19	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1938713	1	09/28/22 10:31	10/07/22 03:49	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1938026	1	10/06/22 05:57	10/06/22 15:38	JDG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1938034	1	10/06/22 05:02	10/07/22 18:55	JRM	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	
B2-S1-4 L1541543-02 Solid			John Ramus	09/28/22 12:50	09/30/22 10:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1936186	1	10/04/22 08:02	10/04/22 08:07	СМК	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1937301	25	09/28/22 12:50	10/04/22 20:40	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1938713	1	09/28/22 12:50	10/07/22 04:07	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1938026	1	10/06/22 05:57	10/06/22 16:15	JDG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1938034	1	10/06/22 05:02	10/07/22 19:13	JRM	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
B2-S2-7 L1541543-03 Solid			John Ramus	09/28/22 12:54	09/30/22 10:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1936186	1	10/04/22 08:02	10/04/22 08:07	СМК	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1937301	25	09/28/22 12:54	10/04/22 21:00	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1938713	1	09/28/22 12:54	10/07/22 04:26	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1938026	1	10/06/22 05:57	10/06/22 17:08	JDG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1938034	1	10/06/22 05:02	10/06/22 20:00	JMB	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
B3-S1-16 L1541543-04 Solid			John Ramus	09/28/22 14:44	09/30/22 10:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1936186	1	10/04/22 08:02	10/04/22 08:07	СМК	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1937301	25	09/28/22 14:44	10/04/22 21:21	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1938713	1	09/28/22 14:44	10/07/22 04:45	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1938026	1	10/06/22 05:57	10/06/22 15:25	JDG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1938035	1	10/06/22 05:26	10/06/22 17:37	JRM	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
B4-S1-16 L1541543-05 Solid			John Ramus	09/28/22 15:55	09/30/22 10:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1936186	1	10/04/22 08:02	10/04/22 08:07	СМК	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1937301	25	09/28/22 15:55	10/04/22 21:41	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1938713	1.15	09/28/22 15:55	10/07/22 05:04	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1938026	1	10/06/22 05:57	10/06/22 16:42	JDG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1938035	1	10/06/22 05:26	10/06/22 21:05	JRM	Mt. Juliet, TN

PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13 Ср

²Tc

Ss

°Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

B5-S1-8 L1541543-06 Solid			Collected by John Ramus	Collected date/time 09/28/22 17:24	Received dat 09/30/22 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1936191	1	10/04/22 12:07	10/04/22 12:27	СМК	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1937301	25	09/28/22 17:24	10/04/22 22:02	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1938713	1	09/28/22 17:24	10/07/22 05:22	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1938026	1	10/06/22 05:57	10/06/22 15:38	JDG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1938035	1	10/06/22 05:26	10/06/22 17:54	JRM	Mt. Juliet, TN
B1-W1 L1541543-07 GW			Collected by John Ramus	Collected date/time 09/28/22 10:44	Received dat 09/30/22 10:	
		D:1 .:				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1937365	1	10/05/22 05:09	10/05/22 05:09	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method NW1PHGX	WG1937533	1	10/05/22 05:09	10/05/22 05:09	MGF	Mt. Juliet, TN Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC/MS) by Method 82000	WG1937533 WG1937473	1	10/05/22 15:55	10/06/22 19:08	HLJ	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1937473 WG1936774	1	10/05/22 09:30	10/06/22 19:08	AMG	Mt. Juliet, TN
senii volatile Olganic Compounds (GC/MS) by Method 8270E-SiM	WG1930774	I	10/05/22 09.40	10/00/22 14.05	AIMG	Mit. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
B3-W1 L1541543-08 GW			John Ramus	09/28/22 15:10	09/30/22 10:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1937365	1	10/05/22 05:31	10/05/22 05:31	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1937533	1	10/05/22 13:56	10/05/22 13:56	MGF	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1937473	1	10/06/22 09:30	10/06/22 19:34	HLJ	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1936774	1	10/05/22 09:40	10/06/22 14:23	AMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
B4-W1 L1541543-09 GW			John Ramus	09/28/22 16:32	09/30/22 10:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (GC) by Method NWTPHGX	WG1937365	1	10/05/22 05:53	10/05/22 05:53	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1937533	1	10/05/22 14:17	10/05/22 14:17	MGF	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1937473	1	10/06/22 09:30	10/06/22 20:00	HLJ	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1936774	1	10/05/22 09:40	10/06/22 14:40	AMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
B5-W1 L1541543-10 GW			John Ramus	09/28/22 17:36	09/30/22 10:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1937365	1	10/05/22 06:15	10/05/22 06:15	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1937533	1	10/05/22 14:38	10/05/22 14:38	MGF	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1937473	1	10/06/22 09:30	10/06/22 20:26	HLJ	Mt. Juliet, TN

PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13

PAGE: 4 of 58 Ср

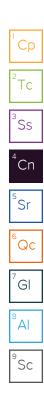
²Tc

Ss

Cn

Sr

Qc


GI

ΆI

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Heather J Wagner Project Manager

Collected date/time: 09/28/22 10:31

SAMPLE RESULTS - 01 L1541543

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	- Ср
Analyte	%			date / time		2
Total Solids	78.5		1	10/04/2022 08:07	WG1936186	Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	15.0		3.91	25.3	10/04/2022 20:19	WG1937301
(S) a,a,a-Trifluorotoluene(FID)	101		77.0-120		10/04/2022 20:19	WG1937301

Volatile Organic Compounds (GC/MS) by Method 8260D

.	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.0797	1	10/07/2022 03:49	WG1938713	
Acrylonitrile	ND		0.0199	1	10/07/2022 03:49	WG1938713	
Benzene	ND		0.00159	1	10/07/2022 03:49	WG1938713	
Bromobenzene	ND		0.0199	1	10/07/2022 03:49	WG1938713	
Bromodichloromethane	ND		0.00399	1	10/07/2022 03:49	WG1938713	
Bromoform	ND		0.0399	1	10/07/2022 03:49	WG1938713	
Bromomethane	ND		0.0199	1	10/07/2022 03:49	WG1938713	
n-Butylbenzene	ND		0.0199	1	10/07/2022 03:49	WG1938713	
sec-Butylbenzene	ND		0.0199	1	10/07/2022 03:49	WG1938713	
tert-Butylbenzene	ND		0.00797	1	10/07/2022 03:49	WG1938713	
Carbon tetrachloride	ND		0.00797	1	10/07/2022 03:49	WG1938713	
Chlorobenzene	ND		0.00399	1	10/07/2022 03:49	WG1938713	
Chlorodibromomethane	ND		0.00399	1	10/07/2022 03:49	WG1938713	
Chloroethane	ND		0.00797	1	10/07/2022 03:49	WG1938713	
Chloroform	ND		0.00399	1	10/07/2022 03:49	WG1938713	
Chloromethane	ND	<u>J3</u>	0.0199	1	10/07/2022 03:49	WG1938713	
2-Chlorotoluene	ND		0.00399	1	10/07/2022 03:49	WG1938713	
4-Chlorotoluene	ND		0.00797	1	10/07/2022 03:49	WG1938713	
1,2-Dibromo-3-Chloropropane	ND	<u>J3</u>	0.0399	1	10/07/2022 03:49	WG1938713	
1,2-Dibromoethane	ND	_	0.00399	1	10/07/2022 03:49	WG1938713	
Dibromomethane	ND		0.00797	1	10/07/2022 03:49	WG1938713	
1,2-Dichlorobenzene	ND		0.00797	1	10/07/2022 03:49	WG1938713	
1,3-Dichlorobenzene	ND		0.00797	1	10/07/2022 03:49	WG1938713	
1,4-Dichlorobenzene	ND		0.00797	1	10/07/2022 03:49	WG1938713	
Dichlorodifluoromethane	ND	<u>C3</u>	0.00399	1	10/07/2022 03:49	WG1938713	
1,1-Dichloroethane	ND		0.00399	1	10/07/2022 03:49	WG1938713	
1,2-Dichloroethane	ND	<u>C3</u>	0.00399	1	10/07/2022 03:49	WG1938713	
1,1-Dichloroethene	ND		0.00399	1	10/07/2022 03:49	WG1938713	
cis-1,2-Dichloroethene	ND		0.00399	1	10/07/2022 03:49	WG1938713	
trans-1,2-Dichloroethene	ND		0.00797	1	10/07/2022 03:49	WG1938713	
1,2-Dichloropropane	ND		0.00797	1	10/07/2022 03:49	WG1938713	
1,1-Dichloropropene	ND		0.00399	1	10/07/2022 03:49	WG1938713	
1,3-Dichloropropane	ND		0.00797	1	10/07/2022 03:49	WG1938713	
cis-1,3-Dichloropropene	ND		0.00399	1	10/07/2022 03:49	WG1938713	
trans-1,3-Dichloropropene	ND		0.00399	1	10/07/2022 03:49	WG1938713 WG1938713	
	ND	C2	0.00399	1	10/07/2022 03:49	WG1938713 WG1938713	
2,2-Dichloropropane	ND	<u>C3</u>			10/07/2022 03:49		
Di-isopropyl ether Ethylbenzene	ND	<u>C3</u>	0.00159	1 1	10/07/2022 03:49	WG1938713 WG1938713	
•							
Hexachloro-1,3-butadiene	ND		0.0399	1	10/07/2022 03:49	WG1938713	
Isopropylbenzene	ND		0.00399	1	10/07/2022 03:49	WG1938713	
p-Isopropyltoluene	ND	<u></u>	0.00797	1	10/07/2022 03:49	WG1938713	
2-Butanone (MEK)	ND	<u>C3</u>	0.159	1	10/07/2022 03:49	WG1938713	
Methylene Chloride 4-Methyl-2-pentanone (MIBK)	ND		0.0399	1	10/07/2022 03:49	WG1938713	
(MDV)	ND		0.0399	1	10/07/2022 03:49	WG1938713	

BBG Assessment

0522013017

L1541543

10/17/22 13:13

6 of 58

Qc

GI

ΆI

B1-S1-8 Collected date/time: 09/28/22 10:31

SAMPLE RESULTS - 01

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	- i (
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND	<u>C3</u>	0.00159	1	10/07/2022 03:49	WG1938713	2
Naphthalene	ND	<u>J3</u>	0.0199	1	10/07/2022 03:49	<u>WG1938713</u>	
n-Propylbenzene	ND		0.00797	1	10/07/2022 03:49	WG1938713	3
Styrene	ND		0.0199	1	10/07/2022 03:49	<u>WG1938713</u>	Ĩ
1,1,1,2-Tetrachloroethane	ND		0.00399	1	10/07/2022 03:49	WG1938713	
1,1,2,2-Tetrachloroethane	ND		0.00399	1	10/07/2022 03:49	<u>WG1938713</u>	4
1,1,2-Trichlorotrifluoroethane	ND		0.00399	1	10/07/2022 03:49	WG1938713	
Tetrachloroethene	ND		0.00399	1	10/07/2022 03:49	<u>WG1938713</u>	5
Toluene	ND		0.00797	1	10/07/2022 03:49	WG1938713	5
1,2,3-Trichlorobenzene	ND		0.0199	1	10/07/2022 03:49	<u>WG1938713</u>	
1,2,4-Trichlorobenzene	ND		0.0199	1	10/07/2022 03:49	WG1938713	6
1,1,1-Trichloroethane	ND	<u>C3</u>	0.00399	1	10/07/2022 03:49	<u>WG1938713</u>	
1,1,2-Trichloroethane	ND		0.00399	1	10/07/2022 03:49	WG1938713	7
Trichloroethene	ND		0.00159	1	10/07/2022 03:49	<u>WG1938713</u>	Í
Trichlorofluoromethane	ND		0.00399	1	10/07/2022 03:49	WG1938713	
1,2,3-Trichloropropane	ND	<u>C3 J3</u>	0.0199	1	10/07/2022 03:49	<u>WG1938713</u>	8
1,2,4-Trimethylbenzene	ND		0.00797	1	10/07/2022 03:49	WG1938713	
1,2,3-Trimethylbenzene	ND		0.00797	1	10/07/2022 03:49	<u>WG1938713</u>	9
1,3,5-Trimethylbenzene	ND		0.00797	1	10/07/2022 03:49	WG1938713	ľ
Vinyl chloride	ND		0.00399	1	10/07/2022 03:49	<u>WG1938713</u>	
Xylenes, Total	ND		0.0104	1	10/07/2022 03:49	WG1938713	
(S) Toluene-d8	108		75.0-131		10/07/2022 03:49	WG1938713	
(S) 4-Bromofluorobenzene	97.8		67.0-138		10/07/2022 03:49	WG1938713	
(S) 1,2-Dichloroethane-d4	78.8		70.0-130		10/07/2022 03:49	WG1938713	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		5.10	1	10/06/2022 15:38	WG1938026
Residual Range Organics (RRO)	ND		12.7	1	10/06/2022 15:38	WG1938026
(S) o-Terphenyl	72.5		18.0-148		10/06/2022 15:38	WG1938026

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00765	1	10/07/2022 18:55	WG1938034
Acenaphthene	ND		0.00765	1	10/07/2022 18:55	WG1938034
Acenaphthylene	ND		0.00765	1	10/07/2022 18:55	WG1938034
Benzo(a)anthracene	ND		0.00765	1	10/07/2022 18:55	<u>WG1938034</u>
Benzo(a)pyrene	ND		0.00765	1	10/07/2022 18:55	WG1938034
Benzo(b)fluoranthene	ND		0.00765	1	10/07/2022 18:55	WG1938034
Benzo(g,h,i)perylene	ND		0.00765	1	10/07/2022 18:55	WG1938034
Benzo(k)fluoranthene	ND		0.00765	1	10/07/2022 18:55	<u>WG1938034</u>
Chrysene	ND		0.00765	1	10/07/2022 18:55	WG1938034
Dibenz(a,h)anthracene	ND		0.00765	1	10/07/2022 18:55	<u>WG1938034</u>
Fluoranthene	ND		0.00765	1	10/07/2022 18:55	WG1938034
Fluorene	ND		0.00765	1	10/07/2022 18:55	WG1938034
Indeno(1,2,3-cd)pyrene	ND		0.00765	1	10/07/2022 18:55	WG1938034
Naphthalene	ND		0.0255	1	10/07/2022 18:55	<u>WG1938034</u>
Phenanthrene	0.0134		0.00765	1	10/07/2022 18:55	WG1938034
Pyrene	ND		0.00765	1	10/07/2022 18:55	<u>WG1938034</u>
1-Methylnaphthalene	ND		0.0255	1	10/07/2022 18:55	WG1938034
2-Methylnaphthalene	ND		0.0255	1	10/07/2022 18:55	WG1938034
2-Chloronaphthalene	ND		0.0255	1	10/07/2022 18:55	<u>WG1938034</u>
(S) p-Terphenyl-d14	74.5		23.0-120		10/07/2022 18:55	WG1938034

ACCOUNT: BBG Assessment PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13 PAGE: 7 of 58

B1-S1-8 Collected date/time: 09/28/22 10:31

SAMPLE RESULTS - 01

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	Ср
Analyte	mg/kg		mg/kg		date / time		
(S) Nitrobenzene-d5	78.5		14.0-149		10/07/2022 18:55	<u>WG1938034</u>	2 Tc
(S) 2-Fluorobiphenyl	82.0		34.0-125		10/07/2022 18:55	<u>WG1938034</u>	10

ACCOUNT:
BBG Assessment

PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13

PAGE: 8 of 58

B2-S1-4

Collected date/time: 09/28/22 12:50

SAMPLE RESULTS - 02 L1541543

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	>
Total Solids	93.3		1	10/04/2022 08:07	WG1936186	2	Тс

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Compounds (GC) by Method NWTPHGX									
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg		date / time				
Gasoline Range Organics-NWTPH	ND		3.27	25	10/04/2022 20:40	WG1937301			
(S) a,a,a-Trifluorotoluene(FID)	92.8		77.0-120		10/04/2022 20:40	WG1937301			

Volatile Organic Compounds (GC/MS) by Method 8260D

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch		
Acetone	ND		0.0657	1	10/07/2022 04:07	WG1938713		
Acrylonitrile	ND		0.0164	1	10/07/2022 04:07	WG1938713		
Benzene	ND		0.00131	1	10/07/2022 04:07	WG1938713		
Bromobenzene	ND		0.0164	1	10/07/2022 04:07	WG1938713		
Bromodichloromethane	ND		0.00329	1	10/07/2022 04:07	WG1938713		
Bromoform	ND		0.0329	1	10/07/2022 04:07	WG1938713		
Bromomethane	ND		0.0164	1	10/07/2022 04:07	WG1938713		
n-Butylbenzene	ND		0.0164	1	10/07/2022 04:07	WG1938713		
sec-Butylbenzene	ND		0.0164	1	10/07/2022 04:07	WG1938713		
tert-Butylbenzene	ND		0.00657	1	10/07/2022 04:07	WG1938713		
Carbon tetrachloride	ND		0.00657	1	10/07/2022 04:07	WG1938713		
Chlorobenzene	ND		0.00329	1	10/07/2022 04:07	WG1938713		
Chlorodibromomethane	ND		0.00329	1	10/07/2022 04:07	WG1938713		
Chloroethane	ND		0.00657	1	10/07/2022 04:07	WG1938713		
Chloroform	ND		0.00329	1	10/07/2022 04:07	WG1938713		
Chloromethane	ND	<u>J3</u>	0.0164	1	10/07/2022 04:07	WG1938713		
2-Chlorotoluene	ND	_	0.00329	1	10/07/2022 04:07	WG1938713		
4-Chlorotoluene	ND		0.00657	1	10/07/2022 04:07	WG1938713		
1,2-Dibromo-3-Chloropropane	ND	<u>J3</u>	0.0329	1	10/07/2022 04:07	WG1938713		
1,2-Dibromoethane	ND	_	0.00329	1	10/07/2022 04:07	WG1938713		
Dibromomethane	ND		0.00657	1	10/07/2022 04:07	WG1938713		
1,2-Dichlorobenzene	ND		0.00657	1	10/07/2022 04:07	WG1938713		
1,3-Dichlorobenzene	ND		0.00657	1	10/07/2022 04:07	WG1938713		
1,4-Dichlorobenzene	ND		0.00657	1	10/07/2022 04:07	WG1938713		
Dichlorodifluoromethane	ND	<u>C3</u>	0.00329	1	10/07/2022 04:07	WG1938713		
1,1-Dichloroethane	ND	_	0.00329	1	10/07/2022 04:07	WG1938713		
1.2-Dichloroethane	ND	C3	0.00329	1	10/07/2022 04:07	WG1938713		
1,1-Dichloroethene	ND	_	0.00329	1	10/07/2022 04:07	WG1938713		
cis-1,2-Dichloroethene	ND		0.00329	1	10/07/2022 04:07	WG1938713		
trans-1,2-Dichloroethene	ND		0.00657	1	10/07/2022 04:07	WG1938713		
1,2-Dichloropropane	ND		0.00657	1	10/07/2022 04:07	WG1938713		
1,1-Dichloropropene	ND		0.00329	1	10/07/2022 04:07	WG1938713		
1,3-Dichloropropane	ND		0.00657	1	10/07/2022 04:07	WG1938713		
cis-1,3-Dichloropropene	ND		0.00329	1	10/07/2022 04:07	WG1938713		
trans-1,3-Dichloropropene	ND		0.00657	1	10/07/2022 04:07	WG1938713		
2,2-Dichloropropane	ND	<u>C3</u>	0.00329	1	10/07/2022 04:07	WG1938713		
Di-isopropyl ether	ND	C3	0.00131	1	10/07/2022 04:07	WG1938713		
Ethylbenzene	ND	_	0.00329	1	10/07/2022 04:07	WG1938713		
Hexachloro-1,3-butadiene	ND		0.0329	1	10/07/2022 04:07	WG1938713		
Isopropylbenzene	ND		0.00329	1	10/07/2022 04:07	WG1938713		
p-lsopropyltoluene	ND		0.00657	1	10/07/2022 04:07	WG1938713		
2-Butanone (MEK)	ND	<u>C3</u>	0.131	1	10/07/2022 04:07	WG1938713		
Methylene Chloride	ND	_	0.0329	1	10/07/2022 04:07	WG1938713		
4-Methyl-2-pentanone (MIBK)	ND		0.0329	1	10/07/2022 04:07	WG1938713		
ACCOUN	Т:		PROJEC	:T:	SDG:		DATE/TIME:	PAGE

BBG Assessment

0522013017

L1541543

ìn Qc GI

ΆI

B2-S1-4 Collected date/time: 09/28/22 12:50

SAMPLE RESULTS - 02

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND	<u>C3</u>	0.00131	1	10/07/2022 04:07	WG1938713	2
Naphthalene	ND	<u>J3</u>	0.0164	1	10/07/2022 04:07	<u>WG1938713</u>	
n-Propylbenzene	ND		0.00657	1	10/07/2022 04:07	WG1938713	3
Styrene	ND		0.0164	1	10/07/2022 04:07	<u>WG1938713</u>	Ĭ
1,1,1,2-Tetrachloroethane	ND		0.00329	1	10/07/2022 04:07	WG1938713	
1,1,2,2-Tetrachloroethane	ND		0.00329	1	10/07/2022 04:07	<u>WG1938713</u>	4
1,1,2-Trichlorotrifluoroethane	ND		0.00329	1	10/07/2022 04:07	WG1938713	
Tetrachloroethene	ND		0.00329	1	10/07/2022 04:07	<u>WG1938713</u>	5
Toluene	ND		0.00657	1	10/07/2022 04:07	WG1938713	5
1,2,3-Trichlorobenzene	ND		0.0164	1	10/07/2022 04:07	<u>WG1938713</u>	
1,2,4-Trichlorobenzene	ND		0.0164	1	10/07/2022 04:07	WG1938713	6
1,1,1-Trichloroethane	ND	<u>C3</u>	0.00329	1	10/07/2022 04:07	<u>WG1938713</u>	
1,1,2-Trichloroethane	ND		0.00329	1	10/07/2022 04:07	WG1938713	7
Trichloroethene	ND		0.00131	1	10/07/2022 04:07	<u>WG1938713</u>	ľ
Trichlorofluoromethane	ND		0.00329	1	10/07/2022 04:07	WG1938713	
1,2,3-Trichloropropane	ND	<u>C3 J3</u>	0.0164	1	10/07/2022 04:07	<u>WG1938713</u>	8
1,2,4-Trimethylbenzene	ND		0.00657	1	10/07/2022 04:07	WG1938713	
1,2,3-Trimethylbenzene	ND		0.00657	1	10/07/2022 04:07	<u>WG1938713</u>	9
1,3,5-Trimethylbenzene	ND		0.00657	1	10/07/2022 04:07	WG1938713	ľ
Vinyl chloride	ND		0.00329	1	10/07/2022 04:07	<u>WG1938713</u>	
Xylenes, Total	ND		0.00854	1	10/07/2022 04:07	WG1938713	
(S) Toluene-d8	106		75.0-131		10/07/2022 04:07	WG1938713	
(S) 4-Bromofluorobenzene	97.9		67.0-138		10/07/2022 04:07	WG1938713	
(S) 1,2-Dichloroethane-d4	79.5		70.0-130		10/07/2022 04:07	WG1938713	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		4.29	1	10/06/2022 16:15	WG1938026
Residual Range Organics (RRO)	14.6		10.7	1	10/06/2022 16:15	WG1938026
(S) o-Terphenyl	52.7		18.0-148		10/06/2022 16:15	WG1938026

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00643	1	10/07/2022 19:13	WG1938034
Acenaphthene	ND		0.00643	1	10/07/2022 19:13	<u>WG1938034</u>
Acenaphthylene	ND		0.00643	1	10/07/2022 19:13	WG1938034
Benzo(a)anthracene	ND		0.00643	1	10/07/2022 19:13	<u>WG1938034</u>
Benzo(a)pyrene	ND		0.00643	1	10/07/2022 19:13	WG1938034
Benzo(b)fluoranthene	ND		0.00643	1	10/07/2022 19:13	<u>WG1938034</u>
Benzo(g,h,i)perylene	ND		0.00643	1	10/07/2022 19:13	WG1938034
Benzo(k)fluoranthene	ND		0.00643	1	10/07/2022 19:13	<u>WG1938034</u>
Chrysene	ND		0.00643	1	10/07/2022 19:13	WG1938034
Dibenz(a,h)anthracene	ND		0.00643	1	10/07/2022 19:13	<u>WG1938034</u>
Fluoranthene	ND		0.00643	1	10/07/2022 19:13	WG1938034
Fluorene	ND		0.00643	1	10/07/2022 19:13	<u>WG1938034</u>
Indeno(1,2,3-cd)pyrene	ND		0.00643	1	10/07/2022 19:13	WG1938034
Naphthalene	ND		0.0214	1	10/07/2022 19:13	<u>WG1938034</u>
Phenanthrene	ND		0.00643	1	10/07/2022 19:13	WG1938034
Pyrene	ND		0.00643	1	10/07/2022 19:13	<u>WG1938034</u>
1-Methylnaphthalene	ND		0.0214	1	10/07/2022 19:13	WG1938034
2-Methylnaphthalene	ND		0.0214	1	10/07/2022 19:13	<u>WG1938034</u>
2-Chloronaphthalene	ND		0.0214	1	10/07/2022 19:13	WG1938034
(S) p-Terphenyl-d14	94.9		23.0-120		10/07/2022 19:13	WG1938034

ACCOUNT: BBG Assessment PROJECT: 0522013017

SDG: L1541543

DA 10/1 PAGE: 10 of 58

B2-S1-4 Collected date/time: 09/28/22 12:50

SAMPLE RESULTS - 02

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch		Ср
Analyte	mg/kg		mg/kg		date / time		l	
(S) Nitrobenzene-d5	94.2		14.0-149		10/07/2022 19:13	<u>WG1938034</u>		2 TC
(S) 2-Fluorobiphenyl	94.5		34.0-125		10/07/2022 19:13	<u>WG1938034</u>		

PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13 Ss

Cn

Qc

GI

Â

B2-S2-7

Collected date/time: 09/28/22 12:54

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	92.9		1	10/04/2022 08:07	WG1936186	Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

Result (drv)	Qualifier	RDL (drv)	Dilution	Analysis	Batch	
				,		4
mg/kg		mg/kg		date / time		[†] Cn
ND		3.32	25	10/04/2022 21:00	WG1937301	
92.2		77.0-120		10/04/2022 21:00	WG1937301	5
		mg/kg ND	mg/kg mg/kg ND 3.32	mg/kg mg/kg ND 3.32 25	mg/kg mg/kg date / time ND 3.32 25 10/04/2022 21:00	mg/kg mg/kg date / time ND 3.32 25 10/04/2022 21:00 WG1937301

Volatile Organic Compounds (GC/MS) by Method 8260D

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch		
Acetone	ND		0.0671	1	10/07/2022 04:26	WG1938713		
Acrylonitrile	ND		0.0168	1	10/07/2022 04:26	WG1938713		
Benzene	ND		0.00134	1	10/07/2022 04:26	WG1938713		
Bromobenzene	ND		0.0168	1	10/07/2022 04:26	WG1938713		
Bromodichloromethane	ND		0.00335	1	10/07/2022 04:26	WG1938713		
Bromoform	ND		0.0335	1	10/07/2022 04:26	WG1938713		
Bromomethane	ND		0.0168	1	10/07/2022 04:26	WG1938713		
n-Butylbenzene	ND		0.0168	1	10/07/2022 04:26	WG1938713		
sec-Butylbenzene	ND		0.0168	1	10/07/2022 04:26	WG1938713		
tert-Butylbenzene	ND		0.00671	1	10/07/2022 04:26	WG1938713		
Carbon tetrachloride	ND		0.00671	1	10/07/2022 04:26	WG1938713		
Chlorobenzene	ND		0.00335	1	10/07/2022 04:26	WG1938713		
Chlorodibromomethane	ND		0.00335	1	10/07/2022 04:26	WG1938713		
Chloroethane	ND		0.00671	1	10/07/2022 04:26	WG1938713		
Chloroform	ND		0.00335	1	10/07/2022 04:26	WG1938713		
Chloromethane	ND	<u>J3</u>	0.0168	1	10/07/2022 04:26	WG1938713		
2-Chlorotoluene	ND	_	0.00335	1	10/07/2022 04:26	WG1938713		
4-Chlorotoluene	ND		0.00671	1	10/07/2022 04:26	WG1938713		
1,2-Dibromo-3-Chloropropane	ND	<u>J3</u>	0.0335	1	10/07/2022 04:26	WG1938713		
1,2-Dibromoethane	ND	_	0.00335	1	10/07/2022 04:26	WG1938713		
Dibromomethane	ND		0.00671	1	10/07/2022 04:26	WG1938713		
1,2-Dichlorobenzene	ND		0.00671	1	10/07/2022 04:26	WG1938713		
1,3-Dichlorobenzene	ND		0.00671	1	10/07/2022 04:26	WG1938713		
1,4-Dichlorobenzene	ND		0.00671	1	10/07/2022 04:26	WG1938713		
Dichlorodifluoromethane	ND	<u>C3</u>	0.00335	1	10/07/2022 04:26	WG1938713		
1,1-Dichloroethane	ND	_	0.00335	1	10/07/2022 04:26	WG1938713		
1,2-Dichloroethane	ND	<u>C3</u>	0.00335	1	10/07/2022 04:26	WG1938713		
1,1-Dichloroethene	ND	_	0.00335	1	10/07/2022 04:26	WG1938713		
cis-1,2-Dichloroethene	ND		0.00335	1	10/07/2022 04:26	WG1938713		
trans-1,2-Dichloroethene	ND		0.00671	1	10/07/2022 04:26	WG1938713		
1,2-Dichloropropane	ND		0.00671	1	10/07/2022 04:26	WG1938713		
1,1-Dichloropropene	ND		0.00335	1	10/07/2022 04:26	WG1938713		
1,3-Dichloropropane	ND		0.00671	1	10/07/2022 04:26	WG1938713		
cis-1,3-Dichloropropene	ND		0.00335	1	10/07/2022 04:26	WG1938713		
trans-1,3-Dichloropropene	ND		0.00671	1	10/07/2022 04:26	WG1938713		
2,2-Dichloropropane	ND	<u>C3</u>	0.00335	1	10/07/2022 04:26	WG1938713		
Di-isopropyl ether	ND	C3	0.00134	1	10/07/2022 04:26	WG1938713		
Ethylbenzene	ND		0.00335	1	10/07/2022 04:26	WG1938713		
Hexachloro-1,3-butadiene	ND		0.0335	1	10/07/2022 04:26	WG1938713		
Isopropylbenzene	ND		0.00335	1	10/07/2022 04:26	WG1938713		
p-lsopropyltoluene	ND		0.00671	1	10/07/2022 04:26	WG1938713		
2-Butanone (MEK)	ND	<u>C3</u>	0.134	1	10/07/2022 04:26	WG1938713		
Methylene Chloride	ND		0.0335	1	10/07/2022 04:26	WG1938713		
4-Methyl-2-pentanone (MIBK)	ND		0.0335	1	10/07/2022 04:26	WG1938713		
ACCOUN	T:		PROJEC	:T:	SDG:		DATE/TIME:	PAGE:

BBG Assessment

PROJECT: 0522013017

L1541543

³Ss ⁴Cn ⁵Sr ⁶Qc

GI

ΆI

B2-S2-7 Collected date/time: 09/28/22 12:54

SAMPLE RESULTS - 03

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	((
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND	<u>C3</u>	0.00134	1	10/07/2022 04:26	WG1938713	2
Naphthalene	ND	<u>J3</u>	0.0168	1	10/07/2022 04:26	<u>WG1938713</u>	
n-Propylbenzene	ND		0.00671	1	10/07/2022 04:26	<u>WG1938713</u>	3
Styrene	ND		0.0168	1	10/07/2022 04:26	<u>WG1938713</u>	J.
1,1,1,2-Tetrachloroethane	ND		0.00335	1	10/07/2022 04:26	<u>WG1938713</u>	
1,1,2,2-Tetrachloroethane	ND		0.00335	1	10/07/2022 04:26	<u>WG1938713</u>	4
1,1,2-Trichlorotrifluoroethane	ND		0.00335	1	10/07/2022 04:26	<u>WG1938713</u>	
Tetrachloroethene	ND		0.00335	1	10/07/2022 04:26	<u>WG1938713</u>	5
Toluene	ND		0.00671	1	10/07/2022 04:26	<u>WG1938713</u>	5
1,2,3-Trichlorobenzene	ND		0.0168	1	10/07/2022 04:26	<u>WG1938713</u>	
1,2,4-Trichlorobenzene	ND		0.0168	1	10/07/2022 04:26	<u>WG1938713</u>	6
1,1,1-Trichloroethane	ND	<u>C3</u>	0.00335	1	10/07/2022 04:26	<u>WG1938713</u>	
1,1,2-Trichloroethane	ND		0.00335	1	10/07/2022 04:26	<u>WG1938713</u>	7
Trichloroethene	ND		0.00134	1	10/07/2022 04:26	<u>WG1938713</u>	,
Trichlorofluoromethane	ND		0.00335	1	10/07/2022 04:26	<u>WG1938713</u>	
1,2,3-Trichloropropane	ND	<u>C3 J3</u>	0.0168	1	10/07/2022 04:26	<u>WG1938713</u>	8
1,2,4-Trimethylbenzene	ND		0.00671	1	10/07/2022 04:26	<u>WG1938713</u>	
1,2,3-Trimethylbenzene	ND		0.00671	1	10/07/2022 04:26	<u>WG1938713</u>	9
1,3,5-Trimethylbenzene	ND		0.00671	1	10/07/2022 04:26	<u>WG1938713</u>	
Vinyl chloride	ND		0.00335	1	10/07/2022 04:26	<u>WG1938713</u>	
Xylenes, Total	ND		0.00872	1	10/07/2022 04:26	WG1938713	
(S) Toluene-d8	104		75.0-131		10/07/2022 04:26	<u>WG1938713</u>	
(S) 4-Bromofluorobenzene	92.2		67.0-138		10/07/2022 04:26	WG1938713	
(S) 1,2-Dichloroethane-d4	76.4		70.0-130		10/07/2022 04:26	WG1938713	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	24.2		4.31	1	10/06/2022 17:08	WG1938026
Residual Range Organics (RRO)	152		10.8	1	10/06/2022 17:08	WG1938026
(S) o-Terphenyl	45.9		18.0-148		10/06/2022 17:08	WG1938026

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00646	1	10/06/2022 20:00	WG1938034
Acenaphthene	ND		0.00646	1	10/06/2022 20:00	WG1938034
Acenaphthylene	ND		0.00646	1	10/06/2022 20:00	WG1938034
Benzo(a)anthracene	ND		0.00646	1	10/06/2022 20:00	WG1938034
Benzo(a)pyrene	ND		0.00646	1	10/06/2022 20:00	WG1938034
Benzo(b)fluoranthene	ND		0.00646	1	10/06/2022 20:00	WG1938034
Benzo(g,h,i)perylene	ND		0.00646	1	10/06/2022 20:00	WG1938034
Benzo(k)fluoranthene	ND		0.00646	1	10/06/2022 20:00	WG1938034
Chrysene	ND		0.00646	1	10/06/2022 20:00	WG1938034
Dibenz(a,h)anthracene	ND		0.00646	1	10/06/2022 20:00	<u>WG1938034</u>
Fluoranthene	ND		0.00646	1	10/06/2022 20:00	WG1938034
Fluorene	ND		0.00646	1	10/06/2022 20:00	WG1938034
ndeno(1,2,3-cd)pyrene	ND		0.00646	1	10/06/2022 20:00	WG1938034
Naphthalene	ND		0.0215	1	10/06/2022 20:00	WG1938034
Phenanthrene	ND		0.00646	1	10/06/2022 20:00	WG1938034
Pyrene	ND		0.00646	1	10/06/2022 20:00	WG1938034
1-Methylnaphthalene	ND		0.0215	1	10/06/2022 20:00	WG1938034
2-Methylnaphthalene	ND		0.0215	1	10/06/2022 20:00	<u>WG1938034</u>
2-Chloronaphthalene	ND		0.0215	1	10/06/2022 20:00	<u>WG1938034</u>
(S) p-Terphenyl-d14	78.6		23.0-120		10/06/2022 20:00	<u>WG1938034</u>

ACCOUNT: BBG Assessment PROJECT: 0522013017

SDG: L1541543

DA

PAGE: 13 of 58

B2-S2-7

SAMPLE RESULTS - 03

Collected date/time: 09/28/22 12:54 L1541543 Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	Ср	
Analyte	mg/kg		mg/kg		date / time			_
(S) Nitrobenzene-d5	70.9		14.0-149		10/06/2022 20:00	<u>WG1938034</u>	² Tc	
(S) 2-Fluorobiphenyl	82.0		34.0-125		10/06/2022 20:00	WG1938034	10	

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

B3-S1-16

Collected date/time: 09/28/22 14:44

SAMPLE RESULTS - 04 L1541543

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	80.1		1	10/04/2022 08:07	WG1936186	Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		3.81	25	10/04/2022 21:21	WG1937301
(S) a,a,a-Trifluorotoluene(FID)	93.0		77.0-120		10/04/2022 21:21	WG1937301

Volatile Organic Compounds (GC/MS) by Method 8260D

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch		
Acetone	ND		0.0766	1	10/07/2022 04:45	WG1938713		
Acrylonitrile	ND		0.0192	1	10/07/2022 04:45	WG1938713		
Benzene	ND		0.00153	1	10/07/2022 04:45	WG1938713		
Bromobenzene	ND		0.0192	1	10/07/2022 04:45	WG1938713		
Bromodichloromethane	ND		0.00383	1	10/07/2022 04:45	WG1938713		
Bromoform	ND		0.0383	1	10/07/2022 04:45	WG1938713		
Bromomethane	ND		0.0192	1	10/07/2022 04:45	WG1938713		
n-Butylbenzene	ND		0.0192	1	10/07/2022 04:45	WG1938713		
sec-Butylbenzene	ND		0.0192	1	10/07/2022 04:45	WG1938713		
tert-Butylbenzene	ND		0.00766	1	10/07/2022 04:45	WG1938713		
Carbon tetrachloride	ND		0.00766	1	10/07/2022 04:45	WG1938713		
Chlorobenzene	ND		0.00383	1	10/07/2022 04:45	WG1938713		
Chlorodibromomethane	ND		0.00383	1	10/07/2022 04:45	WG1938713		
Chloroethane	ND		0.00766	1	10/07/2022 04:45	WG1938713		
Chloroform	ND		0.00383	1	10/07/2022 04:45	WG1938713		
Chloromethane	ND	<u>J3</u>	0.0192	1	10/07/2022 04:45	WG1938713		
2-Chlorotoluene	ND	<u> </u>	0.00383	1	10/07/2022 04:45	WG1938713		
4-Chlorotoluene	ND		0.00766	1	10/07/2022 04:45	WG1938713		
1,2-Dibromo-3-Chloropropane	ND	<u>J3</u>	0.0383	1	10/07/2022 04:45	WG1938713		
I,2-Dibromoethane	ND	<u></u>	0.00383	1	10/07/2022 04:45	WG1938713		
Dibromomethane	ND		0.00766	1	10/07/2022 04:45	WG1938713		
I,2-Dichlorobenzene	ND		0.00766	1	10/07/2022 04:45	WG1938713		
1,3-Dichlorobenzene	ND		0.00766	1	10/07/2022 04:45	WG1938713		
1,4-Dichlorobenzene	ND		0.00766	1	10/07/2022 04:45	WG1938713		
Dichlorodifluoromethane	ND	<u>C3</u>	0.00383	1	10/07/2022 04:45	WG1938713 WG1938713		
1,1-Dichloroethane	ND	<u>C5</u>	0.00383	1	10/07/2022 04:45	WG1938713		
1,2-Dichloroethane	ND	C2	0.00383	1	10/07/2022 04:45			
	ND	<u>C3</u>	0.00383			WG1938713		
1,1-Dichloroethene				1	10/07/2022 04:45	WG1938713		
cis-1,2-Dichloroethene	ND		0.00383	1	10/07/2022 04:45	WG1938713		
trans-1,2-Dichloroethene	ND		0.00766	1	10/07/2022 04:45	WG1938713		
1,2-Dichloropropane	ND		0.00766	1	10/07/2022 04:45	WG1938713		
1,1-Dichloropropene	ND		0.00383	1	10/07/2022 04:45	WG1938713		
1,3-Dichloropropane	ND		0.00766	1	10/07/2022 04:45	WG1938713		
cis-1,3-Dichloropropene	ND		0.00383	1	10/07/2022 04:45	WG1938713		
trans-1,3-Dichloropropene	ND		0.00766	1	10/07/2022 04:45	WG1938713		
2,2-Dichloropropane	ND	<u>C3</u>	0.00383	1	10/07/2022 04:45	WG1938713		
Di-isopropyl ether	ND	<u>C3</u>	0.00153	1	10/07/2022 04:45	WG1938713		
Ethylbenzene	ND		0.00383	1	10/07/2022 04:45	WG1938713		
Hexachloro-1,3-butadiene	ND		0.0383	1	10/07/2022 04:45	WG1938713		
Isopropylbenzene	ND		0.00383	1	10/07/2022 04:45	WG1938713		
p-lsopropyltoluene	ND		0.00766	1	10/07/2022 04:45	WG1938713		
2-Butanone (MEK)	ND	<u>C3</u>	0.153	1	10/07/2022 04:45	WG1938713		
Methylene Chloride	ND		0.0383	1	10/07/2022 04:45	WG1938713		
4-Methyl-2-pentanone (MIBK)	ND		0.0383	1	10/07/2022 04:45	WG1938713		
ACCOUN	T:		PROJEC	т:	SDG:		DATE/TIME:	PAG

BBG Assessment

0522013017

L1541543

15 of 58

Qc

GI

ΆI

B3-S1-16 Collected date/time: 09/28/22 14:44

SAMPLE RESULTS - 04 L1541543

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	(
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND	<u>C3</u>	0.00153	1	10/07/2022 04:45	<u>WG1938713</u>	2
Naphthalene	ND	<u>J3</u>	0.0192	1	10/07/2022 04:45	<u>WG1938713</u>	
n-Propylbenzene	ND		0.00766	1	10/07/2022 04:45	WG1938713	3
Styrene	ND		0.0192	1	10/07/2022 04:45	WG1938713	Ű
1,1,1,2-Tetrachloroethane	ND		0.00383	1	10/07/2022 04:45	WG1938713	
1,1,2,2-Tetrachloroethane	ND		0.00383	1	10/07/2022 04:45	WG1938713	4
1,1,2-Trichlorotrifluoroethane	ND		0.00383	1	10/07/2022 04:45	WG1938713	
Tetrachloroethene	ND		0.00383	1	10/07/2022 04:45	WG1938713	5
Toluene	ND		0.00766	1	10/07/2022 04:45	WG1938713	5
1,2,3-Trichlorobenzene	ND		0.0192	1	10/07/2022 04:45	WG1938713	
1,2,4-Trichlorobenzene	ND		0.0192	1	10/07/2022 04:45	<u>WG1938713</u>	6
1,1,1-Trichloroethane	ND	<u>C3</u>	0.00383	1	10/07/2022 04:45	WG1938713	
1,1,2-Trichloroethane	ND		0.00383	1	10/07/2022 04:45	WG1938713	7
Trichloroethene	ND		0.00153	1	10/07/2022 04:45	WG1938713	Í
Trichlorofluoromethane	ND		0.00383	1	10/07/2022 04:45	WG1938713	
1,2,3-Trichloropropane	ND	<u>C3 J3</u>	0.0192	1	10/07/2022 04:45	WG1938713	8
1,2,4-Trimethylbenzene	ND		0.00766	1	10/07/2022 04:45	WG1938713	
1,2,3-Trimethylbenzene	ND		0.00766	1	10/07/2022 04:45	WG1938713	9
1,3,5-Trimethylbenzene	ND		0.00766	1	10/07/2022 04:45	WG1938713	
Vinyl chloride	ND		0.00383	1	10/07/2022 04:45	WG1938713	
Xylenes, Total	ND		0.00996	1	10/07/2022 04:45	WG1938713	
(S) Toluene-d8	107		75.0-131		10/07/2022 04:45	<u>WG1938713</u>	
(S) 4-Bromofluorobenzene	99.7		67.0-138		10/07/2022 04:45	WG1938713	
(S) 1,2-Dichloroethane-d4	79.2		70.0-130		10/07/2022 04:45	WG1938713	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		4.99	1	10/06/2022 15:25	WG1938026
Residual Range Organics (RRO)	ND		12.5	1	10/06/2022 15:25	WG1938026
(S) o-Terphenyl	72.4		18.0-148		10/06/2022 15:25	WG1938026

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00749	1	10/06/2022 17:37	WG1938035
Acenaphthene	ND		0.00749	1	10/06/2022 17:37	<u>WG1938035</u>
Acenaphthylene	ND		0.00749	1	10/06/2022 17:37	WG1938035
Benzo(a)anthracene	ND		0.00749	1	10/06/2022 17:37	<u>WG1938035</u>
Benzo(a)pyrene	ND		0.00749	1	10/06/2022 17:37	WG1938035
Benzo(b)fluoranthene	ND		0.00749	1	10/06/2022 17:37	<u>WG1938035</u>
Benzo(g,h,i)perylene	ND		0.00749	1	10/06/2022 17:37	WG1938035
Benzo(k)fluoranthene	ND		0.00749	1	10/06/2022 17:37	<u>WG1938035</u>
Chrysene	ND		0.00749	1	10/06/2022 17:37	WG1938035
Dibenz(a,h)anthracene	ND		0.00749	1	10/06/2022 17:37	<u>WG1938035</u>
Fluoranthene	ND		0.00749	1	10/06/2022 17:37	WG1938035
Fluorene	ND		0.00749	1	10/06/2022 17:37	<u>WG1938035</u>
Indeno(1,2,3-cd)pyrene	ND		0.00749	1	10/06/2022 17:37	WG1938035
Naphthalene	ND		0.0250	1	10/06/2022 17:37	<u>WG1938035</u>
Phenanthrene	ND		0.00749	1	10/06/2022 17:37	WG1938035
Pyrene	ND		0.00749	1	10/06/2022 17:37	<u>WG1938035</u>
1-Methylnaphthalene	ND		0.0250	1	10/06/2022 17:37	WG1938035
2-Methylnaphthalene	ND		0.0250	1	10/06/2022 17:37	<u>WG1938035</u>
2-Chloronaphthalene	ND		0.0250	1	10/06/2022 17:37	WG1938035
(S) p-Terphenyl-d14	85.9		23.0-120		10/06/2022 17:37	WG1938035

ACCOUNT: BBG Assessment

PROJECT: 0522013017

SDG: L1541543 DATE/TIME:

PAGE: 16 of 58

B3-S1-16 Collected date/time: 09/28/22 14:44

SAMPLE RESULTS - 04

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	'Ср
Analyte	mg/kg		mg/kg		date / time		
(S) Nitrobenzene-d5	114		14.0-149		10/06/2022 17:37	WG1938035	^{2}Tc
(S) 2-Fluorobiphenyl	83.2		34.0-125		10/06/2022 17:37	WG1938035	

B4-S1-16

Collected date/time: 09/28/22 15:55

SAMPLE RESULTS - 05 L1541543

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	75.2		1	10/04/2022 08:07	WG1936186	Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		4.28	25	10/04/2022 21:41	WG1937301
(S) a,a,a-Trifluorotoluene(FID)	92.2		77.0-120		10/04/2022 21:41	WG1937301

Volatile Organic Compounds (GC/MS) by Method 8260D

	mg/kg		date / time			
	0.0929	1.15	10/07/2022 05:04	WG1938713		
	0.0233	1.15	10/07/2022 05:04	WG1938713		
	0.00186	1.15	10/07/2022 05:04	WG1938713		
	0.0233	1.15	10/07/2022 05:04	WG1938713		
	0.00466	1.15	10/07/2022 05:04	WG1938713		
	0.0466	1.15	10/07/2022 05:04	WG1938713		
	0.0233	1.15	10/07/2022 05:04	WG1938713		
	0.0233	1.15	10/07/2022 05:04	WG1938713		
	0.0233	1.15	10/07/2022 05:04	WG1938713		
	0.00929	1.15	10/07/2022 05:04	WG1938713		
	0.00929	1.15	10/07/2022 05:04	WG1938713		
	0.00466	1.15	10/07/2022 05:04	WG1938713		
	0.00466	1.15	10/07/2022 05:04	WG1938713		
	0.00929	1.15	10/07/2022 05:04	WG1938713		
	0.00466	1.15	10/07/2022 05:04	WG1938713		
<u>J3</u>	0.0233	1.15	10/07/2022 05:04	WG1938713		
	0.00466	1.15	10/07/2022 05:04	WG1938713		
	0.00929	1.15	10/07/2022 05:04	WG1938713		
<u>J3</u>	0.0466	1.15	10/07/2022 05:04	WG1938713		
	0.00466	1.15	10/07/2022 05:04	WG1938713		
	0.00929	1.15	10/07/2022 05:04	WG1938713		
	0.00929	1.15	10/07/2022 05:04	WG1938713		
	0.00929	1.15	10/07/2022 05:04	WG1938713		
	0.00929	1.15	10/07/2022 05:04	WG1938713		
<u>C3</u>	0.00466	1.15	10/07/2022 05:04	WG1938713		
	0.00466	1.15	10/07/2022 05:04	WG1938713		
<u>C3</u>	0.00466	1.15	10/07/2022 05:04	WG1938713		
	0.00466	1.15	10/07/2022 05:04	WG1938713		
	0.00466	1.15	10/07/2022 05:04	WG1938713		
	0.00929	1.15	10/07/2022 05:04	WG1938713		
	0.00929	1.15	10/07/2022 05:04	WG1938713		
	0.00466	1.15	10/07/2022 05:04	WG1938713		
	0.00929	1.15	10/07/2022 05:04	WG1938713		
	0.00466	1.15	10/07/2022 05:04	WG1938713		
	0.00929	1.15	10/07/2022 05:04	WG1938713		
<u>C3</u>	0.00466	1.15	10/07/2022 05:04	WG1938713		
C3	0.00186	1.15	10/07/2022 05:04	WG1938713		
	0.00466	1.15	10/07/2022 05:04	WG1938713		
	0.0466	1.15	10/07/2022 05:04	WG1938713		
	0.00466	1.15	10/07/2022 05:04	WG1938713		
C3						
	<u>C3</u>	0.00929 <u>C3</u> 0.186 0.0466 0.0466	0.00929 1.15 <u>C3</u> 0.186 1.15 0.0466 1.15	0.00929 1.15 10/07/2022 05:04 C3 0.186 1.15 10/07/2022 05:04 0.0466 1.15 10/07/2022 05:04 0.0466 1.15 10/07/2022 05:04 0.0466 1.15 10/07/2022 05:04	0.00929 1.15 10/07/2022 05:04 WG1938713 C3 0.186 1.15 10/07/2022 05:04 WG1938713 0.0466 1.15 10/07/2022 05:04 WG1938713 0.0466 1.15 10/07/2022 05:04 WG1938713 0.0466 1.15 10/07/2022 05:04 WG1938713	0.00929 1.15 10/07/2022 05:04 WG1938713 C.3 0.186 1.15 10/07/2022 05:04 WG1938713 0.0466 1.15 10/07/2022 05:04 WG1938713 0.0466 1.15 10/07/2022 05:04 WG1938713 0.0466 1.15 10/07/2022 05:04 WG1938713

BBG Assessment

0522013017

L1541543

18 of 58

Qc

GI

Â

B4-S1-16 Collected date/time: 09/28/22 15:55

SAMPLE RESULTS - 05

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND	<u>C3</u>	0.00186	1.15	10/07/2022 05:04	WG1938713	2
Naphthalene	ND	<u>J3</u>	0.0233	1.15	10/07/2022 05:04	<u>WG1938713</u>	
n-Propylbenzene	ND		0.00929	1.15	10/07/2022 05:04	<u>WG1938713</u>	3
Styrene	ND		0.0233	1.15	10/07/2022 05:04	<u>WG1938713</u>	
1,1,1,2-Tetrachloroethane	ND		0.00466	1.15	10/07/2022 05:04	<u>WG1938713</u>	
1,1,2,2-Tetrachloroethane	ND		0.00466	1.15	10/07/2022 05:04	<u>WG1938713</u>	4
1,1,2-Trichlorotrifluoroethane	ND		0.00466	1.15	10/07/2022 05:04	<u>WG1938713</u>	
Tetrachloroethene	ND		0.00466	1.15	10/07/2022 05:04	<u>WG1938713</u>	5
Toluene	ND		0.00929	1.15	10/07/2022 05:04	<u>WG1938713</u>	5
1,2,3-Trichlorobenzene	ND		0.0233	1.15	10/07/2022 05:04	<u>WG1938713</u>	1.5
1,2,4-Trichlorobenzene	ND		0.0233	1.15	10/07/2022 05:04	<u>WG1938713</u>	0
1,1,1-Trichloroethane	ND	<u>C3</u>	0.00466	1.15	10/07/2022 05:04	<u>WG1938713</u>	
1,1,2-Trichloroethane	ND		0.00466	1.15	10/07/2022 05:04	<u>WG1938713</u>	E
Trichloroethene	ND		0.00186	1.15	10/07/2022 05:04	<u>WG1938713</u>	
Trichlorofluoromethane	ND		0.00466	1.15	10/07/2022 05:04	<u>WG1938713</u>	- L
1,2,3-Trichloropropane	ND	<u>C3 J3</u>	0.0233	1.15	10/07/2022 05:04	<u>WG1938713</u>	8
1,2,4-Trimethylbenzene	ND		0.00929	1.15	10/07/2022 05:04	<u>WG1938713</u>	- L
1,2,3-Trimethylbenzene	ND		0.00929	1.15	10/07/2022 05:04	<u>WG1938713</u>	9
1,3,5-Trimethylbenzene	ND		0.00929	1.15	10/07/2022 05:04	WG1938713	
Vinyl chloride	ND		0.00466	1.15	10/07/2022 05:04	<u>WG1938713</u>	1
Xylenes, Total	ND		0.0121	1.15	10/07/2022 05:04	WG1938713	
(S) Toluene-d8	107		75.0-131		10/07/2022 05:04	WG1938713	
(S) 4-Bromofluorobenzene	99.5		67.0-138		10/07/2022 05:04	<u>WG1938713</u>	
(S) 1,2-Dichloroethane-d4	79.7		70.0-130		10/07/2022 05:04	WG1938713	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	35.5		5.32	1	10/06/2022 16:42	WG1938026
Residual Range Organics (RRO)	29.8		13.3	1	10/06/2022 16:42	WG1938026
(S) o-Terphenyl	36.8		18.0-148		10/06/2022 16:42	WG1938026

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00798	1	10/06/2022 21:05	WG1938035
Acenaphthene	ND		0.00798	1	10/06/2022 21:05	<u>WG1938035</u>
Acenaphthylene	ND		0.00798	1	10/06/2022 21:05	WG1938035
Benzo(a)anthracene	0.0115		0.00798	1	10/06/2022 21:05	<u>WG1938035</u>
Benzo(a)pyrene	ND		0.00798	1	10/06/2022 21:05	WG1938035
Benzo(b)fluoranthene	ND		0.00798	1	10/06/2022 21:05	WG1938035
Benzo(g,h,i)perylene	ND		0.00798	1	10/06/2022 21:05	WG1938035
Benzo(k)fluoranthene	ND		0.00798	1	10/06/2022 21:05	WG1938035
Chrysene	0.0193		0.00798	1	10/06/2022 21:05	WG1938035
Dibenz(a,h)anthracene	ND		0.00798	1	10/06/2022 21:05	WG1938035
Fluoranthene	0.0131		0.00798	1	10/06/2022 21:05	WG1938035
Fluorene	0.00804		0.00798	1	10/06/2022 21:05	WG1938035
Indeno(1,2,3-cd)pyrene	ND		0.00798	1	10/06/2022 21:05	WG1938035
Naphthalene	0.0288		0.0266	1	10/06/2022 21:05	WG1938035
Phenanthrene	0.0697		0.00798	1	10/06/2022 21:05	WG1938035
Pyrene	0.0126		0.00798	1	10/06/2022 21:05	WG1938035
1-Methylnaphthalene	0.0558		0.0266	1	10/06/2022 21:05	WG1938035
2-Methylnaphthalene	0.0787		0.0266	1	10/06/2022 21:05	WG1938035
2-Chloronaphthalene	ND		0.0266	1	10/06/2022 21:05	WG1938035
(S) p-Terphenyl-d14	72.2		23.0-120		10/06/2022 21:05	<u>WG1938035</u>

ACCOUNT: BBG Assessment PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13 PAGE: 19 of 58

B4-S1-16 Collected date/time: 09/28/22 15:55

SAMPLE RESULTS - 05

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	 'Ср
Analyte	mg/kg		mg/kg		date / time		
(S) Nitrobenzene-d5	90.4		14.0-149		10/06/2022 21:05	<u>WG1938035</u>	2 Tc
(S) 2-Fluorobiphenyl	73.2		34.0-125		10/06/2022 21:05	<u>WG1938035</u>	

DATE/TIME: 10/17/22 13:13

Ss

Cn

Qc

GI

Â

B5-S1-8

Collected date/time: 09/28/22 17:24

SAMPLE RESULTS - 06 L1541543

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.3		1	10/04/2022 12:27	WG1936191	Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Gasoline Range Organics-NWTPH	ND		2.82	25	10/04/2022 22:02	WG1937301
(S) a,a,a-Trifluorotoluene(FID)	92.3		77.0-120		10/04/2022 22:02	WG1937301

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.0562	1	10/07/2022 05:22	WG1938713	
Acrylonitrile	ND		0.0140	1	10/07/2022 05:22	WG1938713	
Benzene	ND		0.00112	1	10/07/2022 05:22	WG1938713	
Bromobenzene	ND		0.0140	1	10/07/2022 05:22	WG1938713	
Bromodichloromethane	ND		0.00281	1	10/07/2022 05:22	WG1938713	
Bromoform	ND		0.0281	1	10/07/2022 05:22	WG1938713	
Bromomethane	ND		0.0140	1	10/07/2022 05:22	WG1938713	
n-Butylbenzene	ND		0.0140	1	10/07/2022 05:22	WG1938713	
sec-Butylbenzene	ND		0.0140	1	10/07/2022 05:22	WG1938713	
tert-Butylbenzene	ND		0.00562	1	10/07/2022 05:22	WG1938713	
Carbon tetrachloride	ND		0.00562	1	10/07/2022 05:22	WG1938713	
Chlorobenzene	ND		0.00281	1	10/07/2022 05:22	WG1938713	
Chlorodibromomethane	ND		0.00281	1	10/07/2022 05:22	WG1938713	
Chloroethane	ND		0.00562	1	10/07/2022 05:22	WG1938713	
Chloroform	ND		0.00281	1	10/07/2022 05:22	WG1938713	
Chloromethane	ND	<u>J3</u>	0.0140	1	10/07/2022 05:22	WG1938713	
2-Chlorotoluene	ND		0.00281	1	10/07/2022 05:22	WG1938713	
4-Chlorotoluene	ND		0.00562	1	10/07/2022 05:22	WG1938713	
1,2-Dibromo-3-Chloropropane	ND	<u>J3</u>	0.0281	1	10/07/2022 05:22	WG1938713	
1,2-Dibromoethane	ND	_	0.00281	1	10/07/2022 05:22	WG1938713	
Dibromomethane	ND		0.00562	1	10/07/2022 05:22	WG1938713	
1,2-Dichlorobenzene	ND		0.00562	1	10/07/2022 05:22	WG1938713	
1,3-Dichlorobenzene	ND		0.00562	1	10/07/2022 05:22	WG1938713	
1,4-Dichlorobenzene	ND		0.00562	1	10/07/2022 05:22	WG1938713	
Dichlorodifluoromethane	ND	<u>C3</u>	0.00281	1	10/07/2022 05:22	WG1938713	
1,1-Dichloroethane	ND	_	0.00281	1	10/07/2022 05:22	WG1938713	
1,2-Dichloroethane	ND	<u>C3</u>	0.00281	1	10/07/2022 05:22	WG1938713	
1,1-Dichloroethene	ND	_	0.00281	1	10/07/2022 05:22	WG1938713	
cis-1,2-Dichloroethene	ND		0.00281	1	10/07/2022 05:22	WG1938713	
trans-1,2-Dichloroethene	ND		0.00562	1	10/07/2022 05:22	WG1938713	
1,2-Dichloropropane	ND		0.00562	1	10/07/2022 05:22	WG1938713	
1,1-Dichloropropene	ND		0.00281	1	10/07/2022 05:22	WG1938713	
1,3-Dichloropropane	ND		0.00562	1	10/07/2022 05:22	WG1938713	
cis-1,3-Dichloropropene	ND		0.00281	1	10/07/2022 05:22	WG1938713	
trans-1,3-Dichloropropene	ND		0.00562	1	10/07/2022 05:22	WG1938713	
2,2-Dichloropropane	ND	<u>C3</u>	0.00281	1	10/07/2022 05:22	WG1938713	
Di-isopropyl ether	ND	C3	0.00112	1	10/07/2022 05:22	WG1938713	
Ethylbenzene	ND	_	0.00281	1	10/07/2022 05:22	WG1938713	
Hexachloro-1,3-butadiene	ND		0.0281	1	10/07/2022 05:22	WG1938713	
Isopropylbenzene	ND		0.00281	1	10/07/2022 05:22	WG1938713	
p-lsopropyltoluene	ND		0.00562	1	10/07/2022 05:22	WG1938713	
2-Butanone (MEK)	ND	<u>C3</u>	0.112	1	10/07/2022 05:22	WG1938713	
Methylene Chloride	ND	_	0.0281	1	10/07/2022 05:22	WG1938713	
4-Methyl-2-pentanone (MIBK)	ND		0.0281	1	10/07/2022 05:22	WG1938713	

BBG Assessment

0522013017

L1541543

10/17/22 13:13

21 of 58

ΆI Sc

Qc

GI

B5-S1-8 Collected date/time: 09/28/22 17:24

SAMPLE RESULTS - 06

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND	<u>C3</u>	0.00112	1	10/07/2022 05:22	WG1938713	²
Naphthalene	ND	<u>J3</u>	0.0140	1	10/07/2022 05:22	<u>WG1938713</u>	ĽĽ
n-Propylbenzene	ND		0.00562	1	10/07/2022 05:22	WG1938713	3
Styrene	ND		0.0140	1	10/07/2022 05:22	<u>WG1938713</u>	Ĩ
1,1,1,2-Tetrachloroethane	ND		0.00281	1	10/07/2022 05:22	WG1938713	
1,1,2,2-Tetrachloroethane	ND		0.00281	1	10/07/2022 05:22	<u>WG1938713</u>	4
1,1,2-Trichlorotrifluoroethane	ND		0.00281	1	10/07/2022 05:22	WG1938713	
Tetrachloroethene	ND		0.00281	1	10/07/2022 05:22	<u>WG1938713</u>	5
Toluene	ND		0.00562	1	10/07/2022 05:22	WG1938713	5
1,2,3-Trichlorobenzene	ND		0.0140	1	10/07/2022 05:22	<u>WG1938713</u>	
1,2,4-Trichlorobenzene	ND		0.0140	1	10/07/2022 05:22	WG1938713	6
1,1,1-Trichloroethane	ND	<u>C3</u>	0.00281	1	10/07/2022 05:22	<u>WG1938713</u>	
1,1,2-Trichloroethane	ND		0.00281	1	10/07/2022 05:22	<u>WG1938713</u>	7
Trichloroethene	ND		0.00112	1	10/07/2022 05:22	<u>WG1938713</u>	ľ (
Trichlorofluoromethane	ND		0.00281	1	10/07/2022 05:22	WG1938713	
1,2,3-Trichloropropane	ND	<u>C3 J3</u>	0.0140	1	10/07/2022 05:22	<u>WG1938713</u>	8
1,2,4-Trimethylbenzene	ND		0.00562	1	10/07/2022 05:22	WG1938713	Ľ
1,2,3-Trimethylbenzene	ND		0.00562	1	10/07/2022 05:22	WG1938713	9
1,3,5-Trimethylbenzene	ND		0.00562	1	10/07/2022 05:22	WG1938713	Ľ
Vinyl chloride	ND		0.00281	1	10/07/2022 05:22	WG1938713	
Xylenes, Total	ND		0.00731	1	10/07/2022 05:22	WG1938713	
(S) Toluene-d8	102		75.0-131		10/07/2022 05:22	WG1938713	
(S) 4-Bromofluorobenzene	97.1		67.0-138		10/07/2022 05:22	WG1938713	
(S) 1,2-Dichloroethane-d4	85.2		70.0-130		10/07/2022 05:22	WG1938713	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Diesel Range Organics (DRO)	ND		4.24	1	10/06/2022 15:38	WG1938026
Residual Range Organics (RRO)	ND		10.6	1	10/06/2022 15:38	WG1938026
(S) o-Terphenyl	60.8		18.0-148		10/06/2022 15:38	WG1938026

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00637	1	10/06/2022 17:54	WG1938035
Acenaphthene	ND		0.00637	1	10/06/2022 17:54	<u>WG1938035</u>
Acenaphthylene	ND		0.00637	1	10/06/2022 17:54	WG1938035
Benzo(a)anthracene	ND		0.00637	1	10/06/2022 17:54	WG1938035
Benzo(a)pyrene	ND		0.00637	1	10/06/2022 17:54	WG1938035
Benzo(b)fluoranthene	ND		0.00637	1	10/06/2022 17:54	WG1938035
Benzo(g,h,i)perylene	ND		0.00637	1	10/06/2022 17:54	WG1938035
Benzo(k)fluoranthene	ND		0.00637	1	10/06/2022 17:54	WG1938035
Chrysene	ND		0.00637	1	10/06/2022 17:54	WG1938035
Dibenz(a,h)anthracene	ND		0.00637	1	10/06/2022 17:54	<u>WG1938035</u>
Fluoranthene	ND		0.00637	1	10/06/2022 17:54	WG1938035
Fluorene	ND		0.00637	1	10/06/2022 17:54	<u>WG1938035</u>
ndeno(1,2,3-cd)pyrene	ND		0.00637	1	10/06/2022 17:54	<u>WG1938035</u>
Naphthalene	ND		0.0212	1	10/06/2022 17:54	<u>WG1938035</u>
Phenanthrene	ND		0.00637	1	10/06/2022 17:54	<u>WG1938035</u>
Pyrene	ND		0.00637	1	10/06/2022 17:54	<u>WG1938035</u>
l-Methylnaphthalene	ND		0.0212	1	10/06/2022 17:54	<u>WG1938035</u>
2-Methylnaphthalene	ND		0.0212	1	10/06/2022 17:54	<u>WG1938035</u>
2-Chloronaphthalene	ND		0.0212	1	10/06/2022 17:54	<u>WG1938035</u>
(S) p-Terphenyl-d14	86.0		23.0-120		10/06/2022 17:54	WG1938035

ACCOUNT: BBG Assessment PROJECT: 0522013017

SDG: L1541543

D 10 PAGE: 22 of 58

B5-S1-8 Collected date/time: 09/28/22 17:24

SAMPLE RESULTS - 06

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	 'Ср
Analyte	mg/kg		mg/kg		date / time		
(S) Nitrobenzene-d5	112		14.0-149		10/06/2022 17:54	<u>WG1938035</u>	2 TC
(S) 2-Fluorobiphenyl	83.0		34.0-125		10/06/2022 17:54	<u>WG1938035</u>	

Ss

Cn

Qc

GI

Â

Collected date/time: 09/28/22 10:44

SAMPLE RESULTS - 07 L1541543

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Gasoline Range Organics-NWTPH	ND		100	1	10/05/2022 05:09	WG1937365	Tc
(S) a,a,a-Trifluorotoluene(FID)	107		78.0-120		10/05/2022 05:09	<u>WG1937365</u>	

Volatile Organic Compounds (GC/MS) by Method 8260D

ug/l ND		ug/l 50.0 50.0 10.0 1.00 1.00 1.00 1.00	1 1 1 1 1 1 1	date / time 10/05/2022 13:35 10/05/2022 13:35 10/05/2022 13:35 10/05/2022 13:35 10/05/2022 13:35	WG1937533 WG1937533 WG1937533 WG1937533	⁵ Sr
ND ND ND ND ND ND ND ND ND		50.0 10.0 1.00 1.00 1.00 1.00	1 1 1 1	10/05/2022 13:35 10/05/2022 13:35 10/05/2022 13:35	WG1937533 WG1937533	⁵ Sr
ND ND ND ND ND ND ND ND		10.0 1.00 1.00 1.00 1.00	1 1 1	10/05/2022 13:35 10/05/2022 13:35	WG1937533	Sr
ND ND ND ND ND ND ND		1.00 1.00 1.00 1.00	1 1	10/05/2022 13:35		
ND ND ND ND ND ND		1.00 1.00 1.00	1		WG1937533	
ND ND ND ND		1.00 1.00		10/0E/2022 12:2E		⁶ Qc
ND ND ND ND		1.00	1	10/05/2022 13:35	WG1937533	
ND ND ND				10/05/2022 13:35	WG1937533	7
ND ND		F 0.0	1	10/05/2022 13:35	WG1937533	΄ GΙ
ND		5.00	1	10/05/2022 13:35	WG1937533	
		1.00	1	10/05/2022 13:35	WG1937533	⁸ Al
ND		1.00	1	10/05/2022 13:35	WG1937533	
110		1.00	1	10/05/2022 13:35	WG1937533	9
ND		1.00	1	10/05/2022 13:35	WG1937533	Sc
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		5.00	1	10/05/2022 13:35	WG1937533	
ND		5.00	1	10/05/2022 13:35	WG1937533	
ND		2.50	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND	<u>C3</u>	5.00	1	10/05/2022 13:35	WG1937533	
ND	_	1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		5.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND	J4	1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35	WG1937533	
ND		1.00	1	10/05/2022 13:35		
	C3					
				10/05/2022 13:35		
	J4					
	<u> </u>			10/05/2022 13:35		
	C3					
	<u> </u>					
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND	ND 5.00 ND 2.50 ND 1.00 ND 1.00 ND 1.00 ND 2.50 ND 1.00 ND 1.	ND 5.00 1 ND 2.50 1 ND 1.00 1 ND 1.00 1 ND C3 5.00 1 ND C3 5.00 1 ND C3 5.00 1 ND 1.00 1 1 <t< td=""><td>ND 5.00 1 10/05/2021335 ND 5.00 1 10/05/2021335 ND 2.50 1 10/05/2021335 ND 1.00 1 10/05/2021335 ND 1.00 1 10/05/2021335 ND C3 5.00 1 10/05/2021335 ND C3 5.00 1 10/05/2021335 ND 1.00 1 10/05/2021335 <t< td=""><td>ND 5.00 1 10/05/2022 13:35 WG1927533 ND 2.50 1 10/05/2022 13:35 WG1937533 ND 1.00 1</td></t<></td></t<>	ND 5.00 1 10/05/2021335 ND 5.00 1 10/05/2021335 ND 2.50 1 10/05/2021335 ND 1.00 1 10/05/2021335 ND 1.00 1 10/05/2021335 ND C3 5.00 1 10/05/2021335 ND C3 5.00 1 10/05/2021335 ND 1.00 1 10/05/2021335 <t< td=""><td>ND 5.00 1 10/05/2022 13:35 WG1927533 ND 2.50 1 10/05/2022 13:35 WG1937533 ND 1.00 1</td></t<>	ND 5.00 1 10/05/2022 13:35 WG1927533 ND 2.50 1 10/05/2022 13:35 WG1937533 ND 1.00 1

ACCOUNT: BBG Assessment

PROJECT: 0522013017

SDG: L1541543

DATE/TIME: 10/17/22 13:13 Ss

B1-W1 Collected date/time: 09/28/22 10:44

SAMPLE RESULTS - 07

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l		date / time		
1,1,1,2-Tetrachloroethane	ND		1.00	1	10/05/2022 13:35	WG1937533	² T
1,1,2,2-Tetrachloroethane	ND		1.00	1	10/05/2022 13:35	WG1937533	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	10/05/2022 13:35	<u>WG1937533</u>	3
Tetrachloroethene	ND		1.00	1	10/05/2022 13:35	WG1937533	ິS:
Toluene	ND		1.00	1	10/05/2022 13:35	<u>WG1937533</u>	
1,2,3-Trichlorobenzene	ND	<u>C4</u>	1.00	1	10/05/2022 13:35	WG1937533	⁴ C
1,2,4-Trichlorobenzene	ND	<u>C4</u>	1.00	1	10/05/2022 13:35	WG1937533	Ŭ
1,1,1-Trichloroethane	ND		1.00	1	10/05/2022 13:35	WG1937533	5
1,1,2-Trichloroethane	ND		1.00	1	10/05/2022 13:35	WG1937533	⁵ S
Trichloroethene	ND		1.00	1	10/05/2022 13:35	WG1937533	
Trichlorofluoromethane	ND		5.00	1	10/05/2022 13:35	WG1937533	⁶ Q
1,2,3-Trichloropropane	ND		2.50	1	10/05/2022 13:35	WG1937533	
1,2,4-Trimethylbenzene	ND		1.00	1	10/05/2022 13:35	WG1937533	7
1,2,3-Trimethylbenzene	ND		1.00	1	10/05/2022 13:35	WG1937533	Í G
1,3,5-Trimethylbenzene	ND		1.00	1	10/05/2022 13:35	WG1937533	
Vinyl chloride	ND		1.00	1	10/05/2022 13:35	WG1937533	⁸ A
Xylenes, Total	ND		3.00	1	10/05/2022 13:35	WG1937533	
(S) Toluene-d8	105		80.0-120		10/05/2022 13:35	WG1937533	9
(S) 4-Bromofluorobenzene	104		77.0-126		10/05/2022 13:35	WG1937533	ι S
(S) 1,2-Dichloroethane-d4	83.4		70.0-130		10/05/2022 13:35	WG1937533	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Diesel Range Organics (DRO)	ND		200	1	10/06/2022 19:08	<u>WG1937473</u>
Residual Range Organics (RRO)	ND		250	1	10/06/2022 19:08	WG1937473
(S) o-Terphenyl	54.2		52.0-156		10/06/2022 19:08	WG1937473

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Anthracene	ND		0.0500	1	10/06/2022 14:05	<u>WG1936774</u>
Acenaphthene	ND		0.0500	1	10/06/2022 14:05	<u>WG1936774</u>
Acenaphthylene	ND		0.0500	1	10/06/2022 14:05	<u>WG1936774</u>
Benzo(a)anthracene	ND		0.0500	1	10/06/2022 14:05	<u>WG1936774</u>
Benzo(a)pyrene	ND		0.0500	1	10/06/2022 14:05	<u>WG1936774</u>
Benzo(b)fluoranthene	ND		0.0500	1	10/06/2022 14:05	<u>WG1936774</u>
Benzo(g,h,i)perylene	ND		0.0500	1	10/06/2022 14:05	<u>WG1936774</u>
Benzo(k)fluoranthene	ND		0.0500	1	10/06/2022 14:05	<u>WG1936774</u>
Chrysene	ND		0.0500	1	10/06/2022 14:05	WG1936774
Dibenz(a,h)anthracene	ND		0.0500	1	10/06/2022 14:05	WG1936774
Fluoranthene	ND		0.100	1	10/06/2022 14:05	WG1936774
Fluorene	ND		0.0500	1	10/06/2022 14:05	WG1936774
Indeno(1,2,3-cd)pyrene	ND		0.0500	1	10/06/2022 14:05	<u>WG1936774</u>
Naphthalene	ND		0.250	1	10/06/2022 14:05	WG1936774
Phenanthrene	ND		0.0500	1	10/06/2022 14:05	<u>WG1936774</u>
Pyrene	ND		0.0500	1	10/06/2022 14:05	WG1936774
1-Methylnaphthalene	ND		0.250	1	10/06/2022 14:05	WG1936774
2-Methylnaphthalene	ND		0.250	1	10/06/2022 14:05	WG1936774
2-Chloronaphthalene	ND		0.250	1	10/06/2022 14:05	WG1936774
(S) Nitrobenzene-d5	133		31.0-160		10/06/2022 14:05	WG1936774
(S) 2-Fluorobiphenyl	99.5		48.0-148		10/06/2022 14:05	WG1936774
(S) p-Terphenyl-d14	79.5		37.0-146		10/06/2022 14:05	WG1936774

ACCOUNT: BBG Assessment PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13

SAMPLE RESULTS - 08 L1541543

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Ср
Analyte	ug/l		ug/l		date / time		2
Gasoline Range Organics-NWTPH	ND		100	1	10/05/2022 05:31	WG1937365	Tc
(S) a,a,a-Trifluorotoluene(FID)	108		78.0-120		10/05/2022 05:31	WG1937365	
(5) 0,0,0 (1111001010101010101010)	100		70.0 120		10/03/2022 03:31	101337303	

Volatile Organic Compounds (GC/MS) by Method 8260D

Arrahar	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁴ Cn
Analyte	ug/l		ug/l	4	date / time	W04007500	
Acetone	ND		50.0	1	10/05/2022 13:56	WG1937533	⁵ Sr
Acrolein	ND		50.0	1	10/05/2022 13:56	WG1937533	51
Acrylonitrile	ND		10.0	1	10/05/2022 13:56	WG1937533	G
Benzene	ND		1.00	1	10/05/2022 13:56	WG1937533	ိုလူင
Bromobenzene	ND		1.00	1	10/05/2022 13:56	WG1937533	
Bromodichloromethane	ND		1.00	1	10/05/2022 13:56	WG1937533	7
Bromoform	ND		1.00	1	10/05/2022 13:56	WG1937533	GI
Bromomethane	ND		5.00	1	10/05/2022 13:56	WG1937533	
n-Butylbenzene	ND		1.00	1	10/05/2022 13:56	WG1937533	Å
sec-Butylbenzene	ND		1.00	1	10/05/2022 13:56	WG1937533	
tert-Butylbenzene	ND		1.00	1	10/05/2022 13:56	<u>WG1937533</u>	9
Carbon tetrachloride	ND		1.00	1	10/05/2022 13:56	<u>WG1937533</u>	Sc
Chlorobenzene	ND		1.00	1	10/05/2022 13:56	<u>WG1937533</u>	
Chlorodibromomethane	ND		1.00	1	10/05/2022 13:56	<u>WG1937533</u>	
Chloroethane	ND		5.00	1	10/05/2022 13:56	<u>WG1937533</u>	
Chloroform	ND		5.00	1	10/05/2022 13:56	<u>WG1937533</u>	
Chloromethane	ND		2.50	1	10/05/2022 13:56	<u>WG1937533</u>	
2-Chlorotoluene	ND		1.00	1	10/05/2022 13:56	WG1937533	
4-Chlorotoluene	ND		1.00	1	10/05/2022 13:56	<u>WG1937533</u>	
1,2-Dibromo-3-Chloropropane	ND	<u>C3</u>	5.00	1	10/05/2022 13:56	WG1937533	
1,2-Dibromoethane	ND		1.00	1	10/05/2022 13:56	WG1937533	
Dibromomethane	ND		1.00	1	10/05/2022 13:56	WG1937533	
1,2-Dichlorobenzene	ND		1.00	1	10/05/2022 13:56	WG1937533	
1,3-Dichlorobenzene	ND		1.00	1	10/05/2022 13:56	WG1937533	
1,4-Dichlorobenzene	ND		1.00	1	10/05/2022 13:56	WG1937533	
Dichlorodifluoromethane	ND		5.00	1	10/05/2022 13:56	WG1937533	
1,1-Dichloroethane	ND		1.00	1	10/05/2022 13:56	WG1937533	
1,2-Dichloroethane	ND		1.00	1	10/05/2022 13:56	WG1937533	
1,1-Dichloroethene	ND		1.00	1	10/05/2022 13:56	WG1937533	
cis-1,2-Dichloroethene	ND	<u>J4</u>	1.00	1	10/05/2022 13:56	WG1937533	
trans-1,2-Dichloroethene	ND		1.00	1	10/05/2022 13:56	WG1937533	
1,2-Dichloropropane	ND		1.00	1	10/05/2022 13:56	WG1937533	
1,1-Dichloropropene	ND		1.00	1	10/05/2022 13:56	WG1937533	
1,3-Dichloropropane	ND		1.00	1	10/05/2022 13:56	<u>WG1937533</u>	
cis-1,3-Dichloropropene	ND		1.00	1	10/05/2022 13:56	WG1937533	
trans-1,3-Dichloropropene	ND		1.00	1	10/05/2022 13:56	<u>WG1937533</u>	
2,2-Dichloropropane	ND		1.00	1	10/05/2022 13:56	WG1937533	
Di-isopropyl ether	ND		1.00	1	10/05/2022 13:56	WG1937533	
Ethylbenzene	ND		1.00	1	10/05/2022 13:56	WG1937533	
Hexachloro-1,3-butadiene	ND	<u>C3</u>	1.00	1	10/05/2022 13:56	WG1937533	
Isopropylbenzene	ND	_	1.00	1	10/05/2022 13:56	WG1937533	
p-lsopropyltoluene	ND		1.00	1	10/05/2022 13:56	WG1937533	
2-Butanone (MEK)	ND		10.0	1	10/05/2022 13:56	WG1937533	
Methylene Chloride	ND	<u>J4</u>	5.00	1	10/05/2022 13:56	WG1937533	
4-Methyl-2-pentanone (MIBK)	ND	_	10.0	1	10/05/2022 13:56	WG1937533	
Methyl tert-butyl ether	ND		1.00	1	10/05/2022 13:56	WG1937533	
Naphthalene	ND	<u>C3</u>	5.00	1	10/05/2022 13:56	WG1937533	
n-Propylbenzene	ND		1.00	1	10/05/2022 13:56	WG1937533	
Styrene	ND		1.00	1	10/05/2022 13:56	WG1937533	

ACCOUNT: BBG Assessment

PROJECT: 0522013017

DATE/TIME: 10/17/22 13:13 Ss

B3-W1 Collected date/time: 09/28/22 15:10

SAMPLE RESULTS - 08

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
1,1,1,2-Tetrachloroethane	ND		1.00	1	10/05/2022 13:56	WG1937533	2
1,1,2,2-Tetrachloroethane	ND		1.00	1	10/05/2022 13:56	WG1937533	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	10/05/2022 13:56	<u>WG1937533</u>	3
Tetrachloroethene	ND		1.00	1	10/05/2022 13:56	WG1937533	
Toluene	ND		1.00	1	10/05/2022 13:56	<u>WG1937533</u>	
1,2,3-Trichlorobenzene	ND	<u>C4</u>	1.00	1	10/05/2022 13:56	WG1937533	4
1,2,4-Trichlorobenzene	ND	<u>C4</u>	1.00	1	10/05/2022 13:56	<u>WG1937533</u>	
1,1,1-Trichloroethane	ND		1.00	1	10/05/2022 13:56	WG1937533	5
1,1,2-Trichloroethane	ND		1.00	1	10/05/2022 13:56	<u>WG1937533</u>	5
Trichloroethene	ND		1.00	1	10/05/2022 13:56	WG1937533	
Trichlorofluoromethane	ND		5.00	1	10/05/2022 13:56	<u>WG1937533</u>	6
1,2,3-Trichloropropane	ND		2.50	1	10/05/2022 13:56	WG1937533	
1,2,4-Trimethylbenzene	ND		1.00	1	10/05/2022 13:56	<u>WG1937533</u>	7
1,2,3-Trimethylbenzene	ND		1.00	1	10/05/2022 13:56	WG1937533	1
1,3,5-Trimethylbenzene	ND		1.00	1	10/05/2022 13:56	<u>WG1937533</u>	
Vinyl chloride	ND		1.00	1	10/05/2022 13:56	WG1937533	8
Xylenes, Total	ND		3.00	1	10/05/2022 13:56	<u>WG1937533</u>	
(S) Toluene-d8	105		80.0-120		10/05/2022 13:56	WG1937533	9
(S) 4-Bromofluorobenzene	103		77.0-126		10/05/2022 13:56	WG1937533	
(S) 1,2-Dichloroethane-d4	84.1		70.0-130		10/05/2022 13:56	WG1937533	L

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Diesel Range Organics (DRO)	ND		200	1	10/06/2022 19:34	WG1937473
Residual Range Organics (RRO)	ND		250	1	10/06/2022 19:34	WG1937473
(S) o-Terphenyl	54.7		52.0-156		10/06/2022 19:34	WG1937473

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Anthracene	ND		0.0500	1	10/06/2022 14:23	WG1936774
Acenaphthene	ND		0.0500	1	10/06/2022 14:23	<u>WG1936774</u>
Acenaphthylene	ND		0.0500	1	10/06/2022 14:23	WG1936774
Benzo(a)anthracene	ND		0.0500	1	10/06/2022 14:23	<u>WG1936774</u>
Benzo(a)pyrene	ND		0.0500	1	10/06/2022 14:23	WG1936774
Benzo(b)fluoranthene	ND		0.0500	1	10/06/2022 14:23	<u>WG1936774</u>
Benzo(g,h,i)perylene	ND		0.0500	1	10/06/2022 14:23	WG1936774
Benzo(k)fluoranthene	ND		0.0500	1	10/06/2022 14:23	WG1936774
Chrysene	ND		0.0500	1	10/06/2022 14:23	WG1936774
Dibenz(a,h)anthracene	ND		0.0500	1	10/06/2022 14:23	WG1936774
Fluoranthene	ND		0.100	1	10/06/2022 14:23	WG1936774
Fluorene	ND		0.0500	1	10/06/2022 14:23	WG1936774
Indeno(1,2,3-cd)pyrene	ND		0.0500	1	10/06/2022 14:23	WG1936774
Naphthalene	ND		0.250	1	10/06/2022 14:23	WG1936774
Phenanthrene	ND		0.0500	1	10/06/2022 14:23	WG1936774
Pyrene	ND		0.0500	1	10/06/2022 14:23	WG1936774
1-Methylnaphthalene	ND		0.250	1	10/06/2022 14:23	WG1936774
2-Methylnaphthalene	ND		0.250	1	10/06/2022 14:23	WG1936774
2-Chloronaphthalene	ND		0.250	1	10/06/2022 14:23	WG1936774
(S) Nitrobenzene-d5	147		31.0-160		10/06/2022 14:23	WG1936774
(S) 2-Fluorobiphenyl	113		48.0-148		10/06/2022 14:23	WG1936774
(S) p-Terphenyl-d14	106		37.0-146		10/06/2022 14:23	WG1936774

ACCOUNT: BBG Assessment PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13

Collected date/time: 09/28/22 16:32

SAMPLE RESULTS - 09 L1541543

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Gasoline Range Organics-NWTPH	ND		100	1	10/05/2022 05:53	<u>WG1937365</u>	Tc
(S) a,a,a-Trifluorotoluene(FID)	107		78.0-120		10/05/2022 05:53	WG1937365	

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁴ Cn
Analyte	ug/l		ug/l		date / time		
Acetone	ND		50.0	1	10/05/2022 14:17	WG1937533	5
Acrolein	ND		50.0	1	10/05/2022 14:17	WG1937533	°Sr
Acrylonitrile	ND		10.0	1	10/05/2022 14:17	WG1937533	
Benzene	ND		1.00	1	10/05/2022 14:17	WG1937533	⁶ Qc
Bromobenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	QC
Bromodichloromethane	ND		1.00	1	10/05/2022 14:17	WG1937533	7
Bromoform	ND		1.00	1	10/05/2022 14:17	WG1937533	GI
Bromomethane	ND		5.00	1	10/05/2022 14:17	WG1937533	
n-Butylbenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	⁸ Al
sec-Butylbenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	
tert-Butylbenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	9
Carbon tetrachloride	ND		1.00	1	10/05/2022 14:17	WG1937533	Sc
Chlorobenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	
Chlorodibromomethane	ND		1.00	1	10/05/2022 14:17	WG1937533	
Chloroethane	ND		5.00	1	10/05/2022 14:17	WG1937533	
Chloroform	ND		5.00	1	10/05/2022 14:17	WG1937533	
Chloromethane	ND		2.50	1	10/05/2022 14:17	WG1937533	
2-Chlorotoluene	ND		1.00	1	10/05/2022 14:17	WG1937533	
4-Chlorotoluene	ND		1.00	1	10/05/2022 14:17	WG1937533	
1,2-Dibromo-3-Chloropropane	ND	<u>C3</u>	5.00	1	10/05/2022 14:17	WG1937533	
1,2-Dibromoethane	ND	_	1.00	1	10/05/2022 14:17	WG1937533	
Dibromomethane	ND		1.00	1	10/05/2022 14:17	WG1937533	
1,2-Dichlorobenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	
1,3-Dichlorobenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	
1,4-Dichlorobenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	
Dichlorodifluoromethane	ND		5.00	1	10/05/2022 14:17	WG1937533	
1,1-Dichloroethane	ND		1.00	1	10/05/2022 14:17	WG1937533	
1,2-Dichloroethane	ND		1.00	1	10/05/2022 14:17	WG1937533	
1,1-Dichloroethene	ND		1.00	1	10/05/2022 14:17	WG1937533	
cis-1,2-Dichloroethene	ND	<u>J4</u>	1.00	1	10/05/2022 14:17	WG1937533	
trans-1,2-Dichloroethene	ND	_	1.00	1	10/05/2022 14:17	WG1937533	
1,2-Dichloropropane	ND		1.00	1	10/05/2022 14:17	WG1937533	
1,1-Dichloropropene	ND		1.00	1	10/05/2022 14:17	WG1937533	
1,3-Dichloropropane	ND		1.00	1	10/05/2022 14:17	WG1937533	
cis-1,3-Dichloropropene	ND		1.00	1	10/05/2022 14:17	WG1937533	
trans-1,3-Dichloropropene	ND		1.00	1	10/05/2022 14:17	WG1937533	
2,2-Dichloropropane	ND		1.00	1	10/05/2022 14:17	WG1937533	
Di-isopropyl ether	ND		1.00	1	10/05/2022 14:17	WG1937533	
Ethylbenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	
Hexachloro-1,3-butadiene	ND	<u>C3</u>	1.00	1	10/05/2022 14:17	WG1937533	
Isopropylbenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	
p-lsopropyltoluene	ND		1.00	1	10/05/2022 14:17	WG1937533	
2-Butanone (MEK)	ND		10.0	1	10/05/2022 14:17	WG1937533	
Methylene Chloride	ND	<u>J4</u>	5.00	1	10/05/2022 14:17	WG1937533	
4-Methyl-2-pentanone (MIBK)	ND	<u> </u>	10.0	1	10/05/2022 14:17	WG1937533	
Methyl tert-butyl ether	ND		1.00	1	10/05/2022 14:17	WG1937533 WG1937533	
		C2					
Naphthalene	ND	<u>C3</u>	5.00	1	10/05/2022 14:17	WG1937533 WC1027522	
n-Propylbenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	
Styrene	ND		1.00	1	10/05/2022 14:17	WG1937533	

ACCOUNT: BBG Assessment

PROJECT: 0522013017

SDG: L1541543

DATE/TIME: 10/17/22 13:13

PAGE: 28 of 58

Ss

B4-W1 Collected date/time: 09/28/22 16:32

SAMPLE RESULTS - 09

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l		date / time		
1,1,1,2-Tetrachloroethane	ND		1.00	1	10/05/2022 14:17	WG1937533	² T(
1,1,2,2-Tetrachloroethane	ND		1.00	1	10/05/2022 14:17	WG1937533	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	10/05/2022 14:17	<u>WG1937533</u>	3
Tetrachloroethene	ND		1.00	1	10/05/2022 14:17	<u>WG1937533</u>	ິS
Toluene	ND		1.00	1	10/05/2022 14:17	<u>WG1937533</u>	
1,2,3-Trichlorobenzene	ND	<u>C4</u>	1.00	1	10/05/2022 14:17	<u>WG1937533</u>	⁴ C
1,2,4-Trichlorobenzene	ND	<u>C4</u>	1.00	1	10/05/2022 14:17	WG1937533	Ŭ
1,1,1-Trichloroethane	ND		1.00	1	10/05/2022 14:17	WG1937533	5
1,1,2-Trichloroethane	ND		1.00	1	10/05/2022 14:17	WG1937533	⁵ Si
Trichloroethene	ND		1.00	1	10/05/2022 14:17	WG1937533	
Trichlorofluoromethane	ND		5.00	1	10/05/2022 14:17	WG1937533	⁶ Q
1,2,3-Trichloropropane	ND		2.50	1	10/05/2022 14:17	WG1937533	
1,2,4-Trimethylbenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	7
1,2,3-Trimethylbenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	ΓG
1,3,5-Trimethylbenzene	ND		1.00	1	10/05/2022 14:17	WG1937533	
Vinyl chloride	ND		1.00	1	10/05/2022 14:17	WG1937533	Å
Xylenes, Total	ND		3.00	1	10/05/2022 14:17	WG1937533	
(S) Toluene-d8	106		80.0-120		10/05/2022 14:17	WG1937533	9
(S) 4-Bromofluorobenzene	106		77.0-126		10/05/2022 14:17	WG1937533	ι S
(S) 1,2-Dichloroethane-d4	86.3		70.0-130		10/05/2022 14:17	WG1937533	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Diesel Range Organics (DRO)	ND		200	1	10/06/2022 20:00	<u>WG1937473</u>
Residual Range Organics (RRO)	ND		250	1	10/06/2022 20:00	WG1937473
(S) o-Terphenyl	56.3		52.0-156		10/06/2022 20:00	WG1937473

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Anthracene	ND		0.0500	1	10/06/2022 14:40	WG1936774
Acenaphthene	ND		0.0500	1	10/06/2022 14:40	WG1936774
Acenaphthylene	ND		0.0500	1	10/06/2022 14:40	WG1936774
Benzo(a)anthracene	ND		0.0500	1	10/06/2022 14:40	WG1936774
Benzo(a)pyrene	ND		0.0500	1	10/06/2022 14:40	WG1936774
Benzo(b)fluoranthene	ND		0.0500	1	10/06/2022 14:40	WG1936774
Benzo(g,h,i)perylene	ND		0.0500	1	10/06/2022 14:40	WG1936774
Benzo(k)fluoranthene	ND		0.0500	1	10/06/2022 14:40	WG1936774
Chrysene	ND		0.0500	1	10/06/2022 14:40	WG1936774
Dibenz(a,h)anthracene	ND		0.0500	1	10/06/2022 14:40	WG1936774
Fluoranthene	ND		0.100	1	10/06/2022 14:40	WG1936774
Fluorene	ND		0.0500	1	10/06/2022 14:40	WG1936774
Indeno(1,2,3-cd)pyrene	ND		0.0500	1	10/06/2022 14:40	WG1936774
Naphthalene	ND		0.250	1	10/06/2022 14:40	WG1936774
Phenanthrene	ND		0.0500	1	10/06/2022 14:40	WG1936774
Pyrene	ND		0.0500	1	10/06/2022 14:40	WG1936774
1-Methylnaphthalene	ND		0.250	1	10/06/2022 14:40	WG1936774
2-Methylnaphthalene	ND		0.250	1	10/06/2022 14:40	WG1936774
2-Chloronaphthalene	ND		0.250	1	10/06/2022 14:40	WG1936774
(S) Nitrobenzene-d5	141		31.0-160		10/06/2022 14:40	WG1936774
(S) 2-Fluorobiphenyl	105		48.0-148		10/06/2022 14:40	WG1936774
(S) p-Terphenyl-d14	105		37.0-146		10/06/2022 14:40	WG1936774

ACCOUNT: BBG Assessment PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13

PAGE: 29 of 58

SAMPLE RESULTS - 10 L1541543

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Gasoline Range Organics-NWTPH	ND		100	1	10/05/2022 06:15	<u>WG1937365</u>	Тс
(S) a,a,a-Trifluorotoluene(FID)	107		78.0-120		10/05/2022 06:15	WG1937365	

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁴ Cn
Analyte	ug/l		ug/l		date / time		
Acetone	ND		50.0	1	10/05/2022 14:38	WG1937533	5
Acrolein	ND		50.0	1	10/05/2022 14:38	WG1937533	⁵Sr
Acrylonitrile	ND		10.0	1	10/05/2022 14:38	WG1937533	
Benzene	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	⁶ Qc
Bromobenzene	ND		1.00	1	10/05/2022 14:38	WG1937533	QC
Bromodichloromethane	ND		1.00	1	10/05/2022 14:38	WG1937533	7
Bromoform	ND		1.00	1	10/05/2022 14:38	WG1937533	í Gl
Bromomethane	ND		5.00	1	10/05/2022 14:38	WG1937533	
n-Butylbenzene	ND		1.00	1	10/05/2022 14:38	WG1937533	8
sec-Butylbenzene	ND		1.00	1	10/05/2022 14:38	WG1937533	A
tert-Butylbenzene	ND		1.00	1	10/05/2022 14:38	WG1937533	0
Carbon tetrachloride	ND		1.00	1	10/05/2022 14:38	WG1937533	Sc
Chlorobenzene	ND		1.00	1	10/05/2022 14:38	WG1937533	
Chlorodibromomethane	ND		1.00	1	10/05/2022 14:38	WG1937533	
Chloroethane	ND		5.00	1	10/05/2022 14:38	WG1937533	
Chloroform	ND		5.00	1	10/05/2022 14:38	WG1937533	
Chloromethane	ND		2.50	1	10/05/2022 14:38	WG1937533	
2-Chlorotoluene	ND		1.00	1	10/05/2022 14:38	WG1937533	
4-Chlorotoluene	ND		1.00	1	10/05/2022 14:38	WG1937533	
1,2-Dibromo-3-Chloropropane	ND	<u>C3</u>	5.00	1	10/05/2022 14:38	WG1937533	
1,2-Dibromoethane	ND		1.00	1	10/05/2022 14:38	WG1937533	
Dibromomethane	ND		1.00	1	10/05/2022 14:38	WG1937533	
1,2-Dichlorobenzene	ND		1.00	1	10/05/2022 14:38	WG1937533	
1,3-Dichlorobenzene	ND		1.00	1	10/05/2022 14:38	WG1937533	
1,4-Dichlorobenzene	ND		1.00	1	10/05/2022 14:38	WG1937533	
Dichlorodifluoromethane	ND		5.00	1	10/05/2022 14:38	WG1937533	
			1.00	1			
1,1-Dichloroethane	ND				10/05/2022 14:38	WG1937533	
1,2-Dichloroethane	ND		1.00	1	10/05/2022 14:38	WG1937533	
1,1-Dichloroethene	ND	14	1.00	1	10/05/2022 14:38	WG1937533	
cis-1,2-Dichloroethene	ND	<u>J4</u>	1.00	1	10/05/2022 14:38	WG1937533	
trans-1,2-Dichloroethene	ND		1.00	1	10/05/2022 14:38	WG1937533	
1,2-Dichloropropane	ND		1.00	1	10/05/2022 14:38	WG1937533	
1,1-Dichloropropene	ND		1.00	1	10/05/2022 14:38	WG1937533	
1,3-Dichloropropane	ND		1.00	1	10/05/2022 14:38	WG1937533	
cis-1,3-Dichloropropene	ND		1.00	1	10/05/2022 14:38	WG1937533	
trans-1,3-Dichloropropene	ND		1.00	1	10/05/2022 14:38	WG1937533	
2,2-Dichloropropane	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	
Di-isopropyl ether	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	
Ethylbenzene	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	
Hexachloro-1,3-butadiene	ND	<u>C3</u>	1.00	1	10/05/2022 14:38	WG1937533	
Isopropylbenzene	ND		1.00	1	10/05/2022 14:38	WG1937533	
p-Isopropyltoluene	ND		1.00	1	10/05/2022 14:38	WG1937533	
2-Butanone (MEK)	ND		10.0	1	10/05/2022 14:38	WG1937533	
Methylene Chloride	ND	<u>J4</u>	5.00	1	10/05/2022 14:38	WG1937533	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	10/05/2022 14:38	<u>WG1937533</u>	
Methyl tert-butyl ether	ND		1.00	1	10/05/2022 14:38	WG1937533	
Naphthalene	ND	<u>C3</u>	5.00	1	10/05/2022 14:38	WG1937533	
n-Propylbenzene	ND		1.00	1	10/05/2022 14:38	WG1937533	
	ND		1.00	1	10/05/2022 14:38	WG1937533	

ACCOUNT: BBG Assessment

PROJECT: 0522013017

SDG: L1541543

DATE/TIME: 10/17/22 13:13

Ss Cn ⁵Sr [®]Qc ⁷GI ⁸AI

B5-W1 Collected date/time: 09/28/22 17:36

SAMPLE RESULTS - 10

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		L
1,1,1,2-Tetrachloroethane	ND		1.00	1	10/05/2022 14:38	WG1937533	2
1,1,2,2-Tetrachloroethane	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	E
Tetrachloroethene	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	
Toluene	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	2
1,2,3-Trichlorobenzene	ND	<u>C4</u>	1.00	1	10/05/2022 14:38	<u>WG1937533</u>	
1,2,4-Trichlorobenzene	ND	<u>C4</u>	1.00	1	10/05/2022 14:38	<u>WG1937533</u>	
1,1,1-Trichloroethane	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	
1,1,2-Trichloroethane	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	
Trichloroethene	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	
Trichlorofluoromethane	ND		5.00	1	10/05/2022 14:38	<u>WG1937533</u>	
1,2,3-Trichloropropane	ND		2.50	1	10/05/2022 14:38	<u>WG1937533</u>	
1,2,4-Trimethylbenzene	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	1
1,2,3-Trimethylbenzene	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	
1,3,5-Trimethylbenzene	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	4
Vinyl chloride	ND		1.00	1	10/05/2022 14:38	<u>WG1937533</u>	
Xylenes, Total	ND		3.00	1	10/05/2022 14:38	<u>WG1937533</u>	
(S) Toluene-d8	104		80.0-120		10/05/2022 14:38	<u>WG1937533</u>	F
(S) 4-Bromofluorobenzene	103		77.0-126		10/05/2022 14:38	WG1937533	
(S) 1,2-Dichloroethane-d4	83.8		70.0-130		10/05/2022 14:38	WG1937533	L

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Diesel Range Organics (DRO)	ND		200	1	10/06/2022 20:26	WG1937473
Residual Range Organics (RRO)	ND		250	1	10/06/2022 20:26	WG1937473
(S) o-Terphenyl	52.6		52.0-156		10/06/2022 20:26	WG1937473

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Anthracene	ND		0.0500	1	10/06/2022 14:58	<u>WG1936774</u>
Acenaphthene	ND		0.0500	1	10/06/2022 14:58	<u>WG1936774</u>
Acenaphthylene	ND		0.0500	1	10/06/2022 14:58	<u>WG1936774</u>
Benzo(a)anthracene	ND		0.0500	1	10/06/2022 14:58	<u>WG1936774</u>
Benzo(a)pyrene	ND		0.0500	1	10/06/2022 14:58	<u>WG1936774</u>
Benzo(b)fluoranthene	ND		0.0500	1	10/06/2022 14:58	<u>WG1936774</u>
Benzo(g,h,i)perylene	ND		0.0500	1	10/06/2022 14:58	WG1936774
Benzo(k)fluoranthene	ND		0.0500	1	10/06/2022 14:58	<u>WG1936774</u>
Chrysene	ND		0.0500	1	10/06/2022 14:58	WG1936774
Dibenz(a,h)anthracene	ND		0.0500	1	10/06/2022 14:58	<u>WG1936774</u>
Fluoranthene	ND		0.100	1	10/06/2022 14:58	WG1936774
Fluorene	ND		0.0500	1	10/06/2022 14:58	WG1936774
Indeno(1,2,3-cd)pyrene	ND		0.0500	1	10/06/2022 14:58	WG1936774
Naphthalene	ND		0.250	1	10/06/2022 14:58	WG1936774
Phenanthrene	ND		0.0500	1	10/06/2022 14:58	WG1936774
Pyrene	ND		0.0500	1	10/06/2022 14:58	WG1936774
1-Methylnaphthalene	ND		0.250	1	10/06/2022 14:58	WG1936774
2-Methylnaphthalene	ND		0.250	1	10/06/2022 14:58	WG1936774
2-Chloronaphthalene	ND		0.250	1	10/06/2022 14:58	WG1936774
(S) Nitrobenzene-d5	141		31.0-160		10/06/2022 14:58	WG1936774
(S) 2-Fluorobiphenyl	107		48.0-148		10/06/2022 14:58	WG1936774
(S) p-Terphenyl-d14	107		37.0-146		10/06/2022 14:58	WG1936774

ACCOUNT: BBG Assessment PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13

PAGE: 31 of 58

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1541543-01,02,03,04,05

Method Blank (MB)

Method Blank	(IVIB)				
(MB) R3844730-1 1	0/04/22 08:07				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.000				

L1541399-31 Original Sample (OS) • Duplicate (DUP)

L1541399-31 Orig (OS) L1541399-31 10/04						
		t DUP Result		DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	91.0	88.8	1	2.44		10

Laboratory Control Sample (LCS)

(LCS) R3844730-2 10/	/04/22 08:07				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1541543

DATE/TIME: 10/17/22 13:13

PAGE: 32 of 58 GI

Â

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1541543-06

Method Blank (MB)

	10)			
(MB) R3844810-1 10/04	1/22 12:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

L1541561-07 Original Sample (OS) • Duplicate (DUP)

_1541561-07 Origin						
5) L1541561-07 10/04/2	2 12:27 • (DUP) Original Result			2:27 DUP RPD	DUP Qualifior	DUP RPD
nalyte	%	%	Dilution	%	DUP Qualifier	Limits %
Total Solids	81.6	80.5	1	1.34		10

Laboratory Control Sample (LCS)

(LCS) R3844810-2 10/0)4/22 12:27				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

DATE/TIME: 10/17/22 13:13 Тс

Ss

GI

Â

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY

Method Blank (MB)

					· · · · ·
(MB) R3845525-2 10/04	/22 18:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	
TPHG C6 - C12	U		0.848	2.50	
(S) a,a,a-Trifluorotoluene(FID)	92.5			77.0-120	3

Laboratory Control Sample (LCS)

(LCS) R3845525-1 10/04	4/22 17:20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPHG C6 - C12	5.50	5.07	92.2	71.0-124	
(S) a,a,a-Trifluorotoluene(FID)			102	77.0-120	

L1541543-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1541543-01 10/04/2	2 20:19 • (MS) R	3845525-3 10)/05/22 03:08	• (MSD) R3845	525-4 10/05/2	22 03:28						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Gasoline Range Organics-NWTPH	215	15.0	216	198	93.7	85.1	25.3	50.0-150			8.96	27
(S) a,a,a-Trifluorotoluene(FID)					99.2	98.8		77.0-120				

DATE/TIME: 10/17/22 13:13

PAGE: 34 of 58 ⁺Cn

Sr

ີQc

GI

AI

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY L1541543-07,08,09,10

Method Blank (MB)

Method Blank (MB)	د)				r t	1
(MB) R3846008-2 10/05/2	/22 04:47					Ср
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	ug/l		ug/l	ug/l	1	Tc
Gasoline Range Organics-NWTPH	U		31.6	100		3
(S) a,a,a-Trifluorotoluene(FID)	107			78.0-120		ٌSs
					Г	⁴ Cn

Laboratory Control Sample (LCS)

(LCS) R3846008-1 10/05/	/22 03:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5500	6040	110	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			99.6	78.0-120	

Sr

Qc

GI

Â

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY L1541543-07,08,09,10

Method Blank (MB)

MB) R3845339-3 10/05/2	2 09:22					
	MB Result	MB Qualifier	MB MDL	MB RDL		
nalyte	ug/l		ug/l	ug/l		
cetone	U		11.3	50.0		
crolein	U		2.54	50.0		
crylonitrile	U		0.671	10.0		
enzene	U		0.0941	1.00		
romobenzene	U		0.118	1.00		
romodichloromethane	U		0.136	1.00		
romoform	U		0.129	1.00		
romomethane	U		0.605	5.00		
-Butylbenzene	U		0.157	1.00		
ec-Butylbenzene	U		0.125	1.00		
ert-Butylbenzene	U		0.127	1.00		
arbon tetrachloride	U		0.128	1.00		
hlorobenzene	U		0.116	1.00		
Chlorodibromomethane	U		0.140	1.00		
hloroethane	U		0.192	5.00		
hloroform	U		0.111	5.00		
hloromethane	U		0.960	2.50		
Chlorotoluene	U		0.106	1.00		
-Chlorotoluene	U		0.114	1.00		
2-Dibromo-3-Chloropropane			0.276	5.00		
2-Dibromoethane	U		0.126	1.00		
ibromomethane	U		0.122	1.00		
2-Dichlorobenzene	U		0.107	1.00		
3-Dichlorobenzene	U		0.110	1.00		
4-Dichlorobenzene	U		0.120	1.00		
vichlorodifluoromethane	U		0.374	5.00		
1-Dichloroethane	U		0.100	1.00		
,2-Dichloroethane	U		0.0819	1.00		
1-Dichloroethene	U		0.0813	1.00		
is-1,2-Dichloroethene	U		0.188	1.00		
				1.00		
ans-1,2-Dichloroethene	U		0.149			
2-Dichloropropane	U		0.149	1.00		
1-Dichloropropene	U		0.142	1.00		
3-Dichloropropane	U		0.110	1.00		
is-1,3-Dichloropropene	U		0.111	1.00		
ans-1,3-Dichloropropene	U		0.118	1.00		
2-Dichloropropane	U		0.161	1.00		
i-isopropyl ether	U		0.105	1.00		
thylbenzene	U		0.137	1.00		
lexachloro-1,3-butadiene	U		0.337	1.00		

BBG Assessment

PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13

PAGE: 36 of 58

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3845339-3 10/05/2	2 09:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Isopropylbenzene	U		0.105	1.00
p-lsopropyltoluene	U		0.120	1.00
2-Butanone (MEK)	U		1.19	10.0
Methylene Chloride	U		0.430	5.00
4-Methyl-2-pentanone (MIBK)	U		0.478	10.0
Methyl tert-butyl ether	U		0.101	1.00
Naphthalene	U		1.00	5.00
n-Propylbenzene	U		0.0993	1.00
Styrene	U		0.118	1.00
1,1,1,2-Tetrachloroethane	U		0.147	1.00
1,1,2,2-Tetrachloroethane	U		0.133	1.00
1,1,2-Trichlorotrifluoroethane	U		0.180	1.00
Tetrachloroethene	U		0.300	1.00
Toluene	U		0.278	1.00
1,2,3-Trichlorobenzene	U		0.230	1.00
1,2,4-Trichlorobenzene	U		0.481	1.00
1,1,1-Trichloroethane	U		0.149	1.00
1,1,2-Trichloroethane	U		0.158	1.00
Trichloroethene	U		0.190	1.00
Trichlorofluoromethane	U		0.160	5.00
1,2,3-Trichloropropane	U		0.237	2.50
1,2,4-Trimethylbenzene	U		0.322	1.00
1,2,3-Trimethylbenzene	U		0.104	1.00
1,3,5-Trimethylbenzene	U		0.104	1.00
Vinyl chloride	U		0.234	1.00
Xylenes, Total	U		0.174	3.00
(S) Toluene-d8	107			80.0-120
(S) 4-Bromofluorobenzene	97.2			77.0-126
(S) 1,2-Dichloroethane-d4	84.6			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Acetone	25.0	24.4	25.0	97.6	100	19.0-160			2.43	27
Acrolein	25.0	26.4	23.0	106	92.0	10.0-160			13.8	26
Acrylonitrile	25.0	28.6	29.3	114	117	55.0-149			2.42	20
Benzene	5.00	5.95	6.12	119	122	70.0-123			2.82	20

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 BBG Assessment
 0522013017
 L1541543
 10/17/22 13:13
 37 of 58

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3845339-1 10/05/22 08:20 • (LCSD) R3845339-2 10/05/22 08:41

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier		RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Bromobenzene	5.00	4.64	4.60	92.8	92.0	73.0-121			0.866	20	
Bromodichloromethane	5.00	5.17	5.22	103	104	75.0-120			0.962	20	
Bromoform	5.00	4.29	4.71	85.8	94.2	68.0-132			9.33	20	
Bromomethane	5.00	5.16	5.82	103	116	10.0-160			12.0	25	
n-Butylbenzene	5.00	4.00	4.09	80.0	81.8	73.0-125			2.22	20	
sec-Butylbenzene	5.00	4.89	5.10	97.8	102	75.0-125			4.20	20	
tert-Butylbenzene	5.00	4.99	4.94	99.8	98.8	76.0-124			1.01	20	
Carbon tetrachloride	5.00	5.49	5.64	110	113	68.0-126			2.70	20	
Chlorobenzene	5.00	5.55	5.42	111	108	80.0-121			2.37	20	
Chlorodibromomethane	5.00	4.69	4.56	93.8	91.2	77.0-125			2.81	20	
Chloroethane	5.00	5.67	5.66	113	113	47.0-150			0.177	20	
Chloroform	5.00	5.86	5.75	117	115	73.0-120			1.89	20	
Chloromethane	5.00	4.38	4.53	87.6	90.6	41.0-142			3.37	20	
2-Chlorotoluene	5.00	4.82	4.86	96.4	97.2	76.0-123			0.826	20	
4-Chlorotoluene	5.00	4.65	4.60	93.0	92.0	75.0-122			1.08	20	
I,2-Dibromo-3-Chloropropane	5.00	3.88	4.27	77.6	85.4	58.0-134			9.57	20	
l,2-Dibromoethane	5.00	5.18	5.02	104	100	80.0-122			3.14	20	
Dibromomethane	5.00	5.88	5.27	118	105	80.0-120			10.9	20	
,2-Dichlorobenzene	5.00	4.80	4.96	96.0	99.2	79.0-121			3.28	20	
,3-Dichlorobenzene	5.00	4.75	4.89	95.0	97.8	79.0-120			2.90	20	
I,4-Dichlorobenzene	5.00	4.90	5.02	98.0	100	79.0-120			2.42	20	
Dichlorodifluoromethane	5.00	4.37	4.65	87.4	93.0	51.0-149			6.21	20	
,1-Dichloroethane	5.00	5.69	5.83	114	117	70.0-126			2.43	20	
,2-Dichloroethane	5.00	5.10	5.01	102	100	70.0-128			1.78	20	
,1-Dichloroethene	5.00	6.05	6.04	121	121	71.0-124			0.165	20	
cis-1,2-Dichloroethene	5.00	6.24	5.83	125	117	73.0-120	<u>J4</u>		6.79	20	
rans-1,2-Dichloroethene	5.00	5.89	5.97	118	119	73.0-120			1.35	20	
l,2-Dichloropropane	5.00	5.38	5.75	108	115	77.0-125			6.65	20	
I,1-Dichloropropene	5.00	5.89	5.86	118	117	74.0-126			0.511	20	
l,3-Dichloropropane	5.00	5.22	5.04	104	101	80.0-120			3.51	20	
cis-1,3-Dichloropropene	5.00	4.98	4.98	99.6	99.6	80.0-123			0.000	20	
rans-1,3-Dichloropropene	5.00	4.34	4.33	86.8	86.6	78.0-124			0.231	20	
2,2-Dichloropropane	5.00	5.80	5.70	116	114	58.0-130			1.74	20	
Di-isopropyl ether	5.00	5.28	4.98	106	99.6	58.0-138			5.85	20	
Ethylbenzene	5.00	5.58	5.29	112	106	79.0-123			5.34	20	
Hexachloro-1,3-butadiene	5.00	3.49	4.14	69.8	82.8	54.0-138			17.0	20	
sopropylbenzene	5.00	5.43	5.50	109	110	76.0-127			1.28	20	
o-Isopropyltoluene	5.00	4.73	4.84	94.6	96.8	76.0-125			2.30	20	
2-Butanone (MEK)	25.0	25.5	25.3	102	101	44.0-160			0.787	20	
Methylene Chloride	5.00	6.28	6.18	126	124	67.0-120	<u>J4</u>	<u>J4</u>	1.61	20	
ACCOUNT:					OJECT:		SDG:			DATE/TIME:	PA
BBG	Assessment			052	22013017		L154154	3		10/17/22 13:13	38 0

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3845339-1	10/05/22 08:20 • ((LCSD) R3845339-2	10/05/22 08:41

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	1
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
4-Methyl-2-pentanone (MIBK)	25.0	22.5	22.3	90.0	89.2	68.0-142			0.893	20	
Methyl tert-butyl ether	5.00	5.67	5.87	113	117	68.0-125			3.47	20	
Naphthalene	5.00	3.30	3.79	66.0	75.8	54.0-135			13.8	20	
n-Propylbenzene	5.00	4.71	4.69	94.2	93.8	77.0-124			0.426	20	
Styrene	5.00	5.27	5.11	105	102	73.0-130			3.08	20	
1,1,1,2-Tetrachloroethane	5.00	4.99	5.00	99.8	100	75.0-125			0.200	20	
1,1,2,2-Tetrachloroethane	5.00	5.04	4.79	101	95.8	65.0-130			5.09	20	
1,1,2-Trichlorotrifluoroethane	5.00	6.19	6.31	124	126	69.0-132			1.92	20	
Tetrachloroethene	5.00	5.71	5.97	114	119	72.0-132			4.45	20	
Toluene	5.00	4.98	5.00	99.6	100	79.0-120			0.401	20	
1,2,3-Trichlorobenzene	5.00	3.65	4.14	73.0	82.8	50.0-138			12.6	20	
1,2,4-Trichlorobenzene	5.00	3.10	3.60	62.0	72.0	57.0-137			14.9	20	
1,1,1-Trichloroethane	5.00	5.47	5.64	109	113	73.0-124			3.06	20	
1,1,2-Trichloroethane	5.00	5.08	5.28	102	106	80.0-120			3.86	20	
Trichloroethene	5.00	6.10	6.01	122	120	78.0-124			1.49	20	
Trichlorofluoromethane	5.00	5.10	5.40	102	108	59.0-147			5.71	20	
1,2,3-Trichloropropane	5.00	5.07	4.77	101	95.4	73.0-130			6.10	20	
1,2,4-Trimethylbenzene	5.00	4.51	4.60	90.2	92.0	76.0-121			1.98	20	
1,2,3-Trimethylbenzene	5.00	4.61	4.77	92.2	95.4	77.0-120			3.41	20	
1,3,5-Trimethylbenzene	5.00	4.90	4.92	98.0	98.4	76.0-122			0.407	20	
Vinyl chloride	5.00	5.57	5.65	111	113	67.0-131			1.43	20	
Xylenes, Total	15.0	16.7	16.6	111	111	79.0-123			0.601	20	
(S) Toluene-d8				103	101	80.0-120					
(S) 4-Bromofluorobenzene				103	101	77.0-126					
(S) 1,2-Dichloroethane-d4				84.4	87.3	70.0-130					

PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13

PAGE: 39 of 58 Ср

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

L1541543-01,02,03,04,05,06

Method Blank (MB)

(MB) R3847238-3 10/07	/22 03:11					Ср
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	mg/kg		mg/kg	mg/kg		Tc
Acetone	U		0.0365	0.0500		
Acrylonitrile	U		0.00361	0.0125		³ Ss
Benzene	U		0.000467	0.00100		00
Bromobenzene	U		0.000900	0.0125		4
Bromodichloromethane	U		0.000725	0.00250		Cn
Bromoform	U		0.00117	0.0250		
Bromomethane	U		0.00197	0.0125		⁵Sr
n-Butylbenzene	U		0.00525	0.0125		
sec-Butylbenzene	U		0.00288	0.0125		6
tert-Butylbenzene	U		0.00195	0.00500		ँQc
Carbon tetrachloride	U		0.000898	0.00500		
Chlorobenzene	U		0.000210	0.00250		⁷ Gl
Chlorodibromomethane	U		0.000612	0.00250		
Chloroethane	U		0.00170	0.00500		8
Chloroform	U		0.00103	0.00250		Ă١
Chloromethane	U		0.00435	0.0125		
2-Chlorotoluene	U		0.000865	0.00250		°Sc
4-Chlorotoluene	U		0.000450	0.00500		SC
1,2-Dibromo-3-Chloropropan			0.00390	0.0250		
1,2-Dibromoethane	U		0.000648	0.00250		
Dibromomethane	U		0.000750	0.00500		
1,2-Dichlorobenzene	U		0.000425	0.00500		
1,3-Dichlorobenzene	U		0.000600	0.00500		
1,4-Dichlorobenzene	U		0.000700	0.00500		
Dichlorodifluoromethane	U		0.00161	0.00250		
1,1-Dichloroethane	U		0.000491	0.00250		
1,2-Dichloroethane	U		0.000649	0.00250		
1,1-Dichloroethene	U		0.000606	0.00250		
cis-1,2-Dichloroethene	U		0.000734	0.00250		
trans-1,2-Dichloroethene	U		0.00104	0.00500		
1,2-Dichloropropane	U		0.00142	0.00500		
1,1-Dichloropropene	U		0.000809	0.00250		
1,3-Dichloropropane	U		0.000501	0.00500		
cis-1,3-Dichloropropene	U		0.000757	0.00250		
trans-1,3-Dichloropropene	U		0.00114	0.00500		
2,2-Dichloropropane	U		0.00138	0.00250		
Di-isopropyl ether	U		0.000410	0.00100		
Ethylbenzene	U		0.000737	0.00250		
Hexachloro-1,3-butadiene	U		0.00600	0.0250		
Isopropylbenzene	U		0.000425	0.00250		
торгорушениене	0		0.000423	0.00230		

BBG Assessment

0522013017

SDG: L1541543

DATE/TIME: 10/17/22 13:13

PAGE: 40 of 58

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY L1541543-01,02,03,04,05,06

Method Blank (MB)

(MB) R3847238-3 10/07/2	2 03:11			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
p-Isopropyltoluene	U		0.00255	0.00500
2-Butanone (MEK)	U		0.0635	0.100
Methylene Chloride	U		0.00664	0.0250
4-Methyl-2-pentanone (MIBK)	U		0.00228	0.0250
Methyl tert-butyl ether	U		0.000350	0.00100
Naphthalene	U		0.00488	0.0125
n-Propylbenzene	U		0.000950	0.00500
Styrene	0.00293	Ţ	0.000229	0.0125
1,1,1,2-Tetrachloroethane	U		0.000948	0.00250
1,1,2,2-Tetrachloroethane	U		0.000695	0.00250
1,1,2-Trichlorotrifluoroethane	U		0.000754	0.00250
Tetrachloroethene	U		0.000896	0.00250
Toluene	U		0.00130	0.00500
1,2,3-Trichlorobenzene	U		0.00733	0.0125
1,2,4-Trichlorobenzene	U		0.00440	0.0125
1,1,1-Trichloroethane	U		0.000923	0.00250
1,1,2-Trichloroethane	U		0.000597	0.00250
Trichloroethene	U		0.000584	0.00100
Trichlorofluoromethane	U		0.000827	0.00250
1,2,3-Trichloropropane	U		0.00162	0.0125
1,2,4-Trimethylbenzene	U		0.00158	0.00500
1,2,3-Trimethylbenzene	U		0.00158	0.00500
1,3,5-Trimethylbenzene	U		0.00200	0.00500
Vinyl chloride	U		0.00116	0.00250
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	102			75.0-131
(S) 4-Bromofluorobenzene	94.9			67.0-138
(S) 1,2-Dichloroethane-d4	82.5			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3847238-1 10/07		,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Acetone	0.625	0.563	0.628	90.1	100	10.0-160			10.9	31	
Acrylonitrile	0.625	0.539	0.562	86.2	89.9	45.0-153			4.18	22	
Benzene	0.125	0.124	0.129	99.2	103	70.0-123			3.95	20	
Bromobenzene	0.125	0.115	0.122	92.0	97.6	73.0-121			5.91	20	
Bromodichloromethane	0.125	0.113	0.116	90.4	92.8	73.0-121			2.62	20	
							SDG.				PAGE

ACCOUNT: PROJECT: SDG: DATE/TIME: BBG Assessment 0522013017 L1541543 10/17/22 13:13 Тс

Ss

Cn

Sr

Qc

GI

Â

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3847238-1 10/07/22 01:56 • (LCSD) R3847238-2 10/07/22 02:15

	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier		RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Bromoform	0.125	0.125	0.138	100	110	64.0-132			9.89	20	
Bromomethane	0.125	0.106	0.104	84.8	83.2	56.0-147			1.90	20	
n-Butylbenzene	0.125	0.123	0.126	98.4	101	68.0-135			2.41	20	
sec-Butylbenzene	0.125	0.117	0.129	93.6	103	74.0-130			9.76	20	
tert-Butylbenzene	0.125	0.115	0.121	92.0	96.8	75.0-127			5.08	20	
Carbon tetrachloride	0.125	0.101	0.114	80.8	91.2	66.0-128			12.1	20	
Chlorobenzene	0.125	0.116	0.119	92.8	95.2	76.0-128			2.55	20	
Chlorodibromomethane	0.125	0.115	0.128	92.0	102	74.0-127			10.7	20	
Chloroethane	0.125	0.130	0.124	104	99.2	61.0-134			4.72	20	
Chloroform	0.125	0.106	0.108	84.8	86.4	72.0-123			1.87	20	
Chloromethane	0.125	0.107	0.0761	85.6	60.9	51.0-138		<u>J3</u>	33.8	20	
2-Chlorotoluene	0.125	0.116	0.119	92.8	95.2	75.0-124			2.55	20	
4-Chlorotoluene	0.125	0.108	0.113	86.4	90.4	75.0-124			4.52	20	
1,2-Dibromo-3-Chloropropane	0.125	0.100	0.123	80.0	98.4	59.0-130		<u>J3</u>	20.6	20	
1,2-Dibromoethane	0.125	0.116	0.121	92.8	96.8	74.0-128			4.22	20	
Dibromomethane	0.125	0.117	0.124	93.6	99.2	75.0-122			5.81	20	
1,2-Dichlorobenzene	0.125	0.109	0.122	87.2	97.6	76.0-124			11.3	20	
I,3-Dichlorobenzene	0.125	0.114	0.122	91.2	97.6	76.0-125			6.78	20	
1,4-Dichlorobenzene	0.125	0.104	0.118	83.2	94.4	77.0-121			12.6	20	
Dichlorodifluoromethane	0.125	0.0988	0.106	79.0	84.8	43.0-156			7.03	20	
1,1-Dichloroethane	0.125	0.114	0.122	91.2	97.6	70.0-127			6.78	20	
1,2-Dichloroethane	0.125	0.0963	0.104	77.0	83.2	65.0-131			7.69	20	
1,1-Dichloroethene	0.125	0.107	0.117	85.6	93.6	65.0-131			8.93	20	
cis-1,2-Dichloroethene	0.125	0.118	0.125	94.4	100	73.0-125			5.76	20	
trans-1,2-Dichloroethene	0.125	0.114	0.116	91.2	92.8	71.0-125			1.74	20	
1,2-Dichloropropane	0.125	0.122	0.125	97.6	100	74.0-125			2.43	20	
1,1-Dichloropropene	0.125	0.114	0.124	91.2	99.2	73.0-125			8.40	20	
1,3-Dichloropropane	0.125	0.124	0.127	99.2	102	80.0-125			2.39	20	
cis-1,3-Dichloropropene	0.125	0.119	0.122	95.2	97.6	76.0-127			2.49	20	
trans-1,3-Dichloropropene	0.125	0.113	0.117	90.4	93.6	73.0-127			3.48	20	
2,2-Dichloropropane	0.125	0.0986	0.116	78.9	92.8	59.0-135			16.2	20	
Di-isopropyl ether	0.125	0.0953	0.104	76.2	83.2	60.0-136			8.73	20	
Ethylbenzene	0.125	0.121	0.126	96.8	101	74.0-126			4.05	20	
Hexachloro-1,3-butadiene	0.125	0.121	0.128	88.8	101	57.0-150			14.2	20	
Isopropylbenzene	0.125	0.121	0.120	96.8	102	72.0-127			4.84	20	
p-lsopropyltoluene	0.125	0.121	0.127	93.6	102	72.0-127			9.76	20	
2-Butanone (MEK)	0.625	0.498	0.540	79.7	86.4	30.0-160			8.09	24	
Methylene Chloride	0.125	0.120	0.129	96.0	103	68.0-123			7.23	20	
4-Methyl-2-pentanone (MIBK)	0.625	0.526	0.577	84.2	92.3	56.0-123			9.25	20	
Methyl tert-butyl ether	0.025	0.0908	0.109	72.6	92.3 87.2	66.0-132			18.2	20	
meany terr bury enter	5.120	5.0000	0.100	12.0	07.2	00.0 102			10.2	20	
AC	COUNT:			PRO	DJECT:		SDG:			DATE/TIME:	PAGE:
BBG	Assessment			052	2013017		L154154	13		10/17/22 13:13	42 of 58

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY L1541543-01,02,03,04,05,06

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3847238-1 10/07/22 01:56 • (LCSD) R3847238-2 10/07/22 02:15

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Naphthalene	0.125	0.121	0.155	96.8	124	59.0-130		<u>J3</u>	24.6	20	
n-Propylbenzene	0.125	0.117	0.129	93.6	103	74.0-126			9.76	20	
Styrene	0.125	0.112	0.116	89.6	92.8	72.0-127			3.51	20	
1,1,1,2-Tetrachloroethane	0.125	0.115	0.111	92.0	88.8	74.0-129			3.54	20	
1,1,2,2-Tetrachloroethane	0.125	0.103	0.111	82.4	88.8	68.0-128			7.48	20	
1,1,2-Trichlorotrifluoroethane	0.125	0.127	0.148	102	118	61.0-139			15.3	20	
Tetrachloroethene	0.125	0.108	0.118	86.4	94.4	70.0-136			8.85	20	
Toluene	0.125	0.119	0.119	95.2	95.2	75.0-121			0.000	20	
1,2,3-Trichlorobenzene	0.125	0.124	0.143	99.2	114	59.0-139			14.2	20	
1,2,4-Trichlorobenzene	0.125	0.120	0.136	96.0	109	62.0-137			12.5	20	
1,1,1-Trichloroethane	0.125	0.0992	0.107	79.4	85.6	69.0-126			7.57	20	
1,1,2-Trichloroethane	0.125	0.125	0.135	100	108	78.0-123			7.69	20	
Trichloroethene	0.125	0.119	0.119	95.2	95.2	76.0-126			0.000	20	
Trichlorofluoromethane	0.125	0.115	0.115	92.0	92.0	61.0-142			0.000	20	
1,2,3-Trichloropropane	0.125	0.0867	0.112	69.4	89.6	67.0-129		<u>J3</u>	25.5	20	
1,2,4-Trimethylbenzene	0.125	0.118	0.120	94.4	96.0	70.0-126			1.68	20	
1,2,3-Trimethylbenzene	0.125	0.107	0.119	85.6	95.2	74.0-124			10.6	20	
1,3,5-Trimethylbenzene	0.125	0.119	0.122	95.2	97.6	73.0-127			2.49	20	
Vinyl chloride	0.125	0.137	0.130	110	104	63.0-134			5.24	20	
Xylenes, Total	0.375	0.359	0.378	95.7	101	72.0-127			5.16	20	
(S) Toluene-d8				101	101	75.0-131					
(S) 4-Bromofluorobenzene				101	98.9	67.0-138					
(S) 1,2-Dichloroethane-d4				86.1	86.4	70.0-130					

Ср

PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13

PAGE: 43 of 58

QUALITY CONTROL SUMMARY L1541543-07,08,09,10

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

Method Blank (MB)

Method Blank (MB)					
(MB) R3846096-1 10/06/22	2 13:04				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Diesel Range Organics (DRO)	U		66.7	200	
Residual Range Organics (RRO)	U		83.3	250	
(S) o-Terphenyl	59.5			52.0-156	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3846096-2 10/06/22 13:30 • (LCSD) R3846096-3 10/06/22 13:56													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%			
Diesel Range Organics (DRO)	1500	1140	1150	76.0	76.7	50.0-150			0.873	20			
(S) o-Terphenyl				74.5	75.5	52.0-156							

⁴Cn

Sr

Qc

GI

Â

QUALITY CONTROL SUMMARY L1541543-01,02,03,04,05,06

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

Method Blank (MB)

Method Blank (MB)					
(MB) R3845751-1 10/06/22	15:12				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Diesel Range Organics (DRO)	U		1.33	4.00	
Residual Range Organics (RRO)	U		3.33	10.0	
(S) o-Terphenyl	79.1			18.0-148	

Laboratory Control Sample (LCS)

_CS) R3845751-2 10/06/2	22 15:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
iesel Range Organics (DRO)	50.0	41.0	82.0	50.0-150	
(S) o-Terphenyl			86.6	18.0-148	

L1541137-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1541137-01 10/06/22	16:03 • (MS) R3	3845751-3 10/0	06/22 16:15 • (N	ISD) R3845751	-4 10/06/22 16	5:28						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Diesel Range Organics (DRO)	64.3	11.1	53.4	47.6	65.8	56.8	1	50.0-150			11.5	20
(S) o-Terphenyl					65.0	62.8		18.0-148				

DATE/TIME: 10/17/22 13:13 ⁺Cn

Â

QUALITY CONTROL SUMMARY

L1541543-07,08,09,10

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3845462-3 10/00	6/22 05:59				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Anthracene	U		0.0190	0.0500	
Acenaphthene	U		0.0190	0.0500	
Acenaphthylene	U		0.0171	0.0500	
Benzo(a)anthracene	U		0.0203	0.0500	
Benzo(a)pyrene	U		0.0184	0.0500	
Benzo(b)fluoranthene	U		0.0168	0.0500	
Benzo(g,h,i)perylene	U		0.0184	0.0500	
Benzo(k)fluoranthene	U		0.0202	0.0500	
Chrysene	U		0.0179	0.0500	
Dibenz(a,h)anthracene	U		0.0160	0.0500	
Fluoranthene	U		0.0270	0.100	
Fluorene	U		0.0169	0.0500	
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	
Naphthalene	U		0.0917	0.250	
Phenanthrene	U		0.0180	0.0500	
Pyrene	U		0.0169	0.0500	
1-Methylnaphthalene	U		0.0687	0.250	
2-Methylnaphthalene	U		0.0674	0.250	
2-Chloronaphthalene	U		0.0682	0.250	
(S) Nitrobenzene-d5	151			31.0-160	
(S) 2-Fluorobiphenyl	112			48.0-148	
(S) p-Terphenyl-d14	110			37.0-146	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3845462-1 10/0		,				Dee Limite			חחח	
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Anthracene	2.00	2.49	2.09	124	104	67.0-150			17.5	20
Acenaphthene	2.00	2.45	2.13	122	106	65.0-138			14.0	20
Acenaphthylene	2.00	2.51	2.16	126	108	66.0-140			15.0	20
Benzo(a)anthracene	2.00	2.52	2.19	126	109	61.0-140			14.0	20
Benzo(a)pyrene	2.00	2.63	2.29	132	115	60.0-143			13.8	20
Benzo(b)fluoranthene	2.00	2.29	1.99	115	99.5	58.0-141			14.0	20
enzo(g,h,i)perylene	2.00	2.20	1.93	110	96.5	52.0-153			13.1	20
enzo(k)fluoranthene	2.00	2.40	2.10	120	105	58.0-148			13.3	20
hrysene	2.00	2.45	2.12	122	106	64.0-144			14.4	20
Dibenz(a,h)anthracene	2.00	2.28	2.01	114	100	52.0-155			12.6	20
Fluoranthene	2.00	2.54	2.15	127	107	69.0-153			16.6	20

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 BBG Assessment
 0522013017
 L1541543
 10/17/22 13:13
 46 of 58

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3845462-1 10/06/22 05:25 • (LCSD) R3845462-2 10/06/22 05:42

ug/l 2.00 2.00 2.00	ug/l 2.47 2.34	ug/l 2.13 2.06	% 123	% 106	% 64.0-136			%	%
2.00	2.34			106	64.0-136			1/1 Q	20
		2.06	117					14.0	20
2.00	2.42		117	103	54.0-153			12.7	20
	2.43	2.06	122	103	61.0-137			16.5	20
2.00	2.35	1.98	117	99.0	62.0-137			17.1	20
2.00	2.48	2.13	124	106	60.0-142			15.2	20
2.00	2.52	2.11	126	105	66.0-142			17.7	20
2.00	2.61	2.23	131	111	62.0-136			15.7	20
2.00	2.28	1.97	114	98.5	64.0-140			14.6	20
			163	142	31.0-160	<u>J1</u>			
			122	107	48.0-148				
			118	103	37.0-146				
	2.00 2.00 2.00	2.00 2.48 2.00 2.52 2.00 2.61	2.002.482.132.002.522.112.002.612.23	2.00 2.48 2.13 124 2.00 2.52 2.11 126 2.00 2.61 2.23 131 2.00 2.28 1.97 114 163 122	2.00 2.48 2.13 124 106 2.00 2.52 2.11 126 105 2.00 2.61 2.23 131 111 2.00 2.28 1.97 114 98.5 1.11 112 111 112 112	2.002.482.1312410660.0-1422.002.522.1112610566.0-1422.002.612.2313111162.0-1362.002.281.9711498.564.0-14016314231.0-16012210748.0-148	2.002.482.1312410660.0-1422.002.522.1112610566.0-1422.002.612.2313111162.0-1362.002.281.9711498.564.0-14016314231.0-160112210748.0-148	2.002.482.1312410660.0-1422.002.522.1112610566.0-1422.002.612.2313111162.0-1362.002.281.9711498.564.0-14016314231.0-160J112210748.0-148	2.00 2.48 2.13 124 106 60.0-142 15.2 2.00 2.52 2.11 126 105 66.0-142 17.7 2.00 2.61 2.23 131 111 62.0-136 15.7 2.00 2.28 1.97 114 98.5 64.0-140 14.6 1.11 112 112 114 114 114 114 1.11 112 112 114 114 114 114 1.11 112 112 114 <td< td=""></td<>

DATE/TIME: 10/17/22 13:13

PAGE: 47 of 58 Τс

Ss

Cn

Sr

. Qc

GI

AI

QUALITY CONTROL SUMMARY

L1541543-01,02,03

Method Blank (MB)

(MB) R3845776-2 10/0	6/22 13:29				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
Anthracene	U		0.00230	0.00600	
Acenaphthene	U		0.00209	0.00600	³ Ss
Acenaphthylene	U		0.00216	0.00600	
Benzo(a)anthracene	U		0.00173	0.00600	4
Benzo(a)pyrene	U		0.00179	0.00600	Cn
Benzo(b)fluoranthene	U		0.00153	0.00600	
Benzo(g,h,i)perylene	U		0.00177	0.00600	⁵Sr
Benzo(k)fluoranthene	U		0.00215	0.00600	
Chrysene	U		0.00232	0.00600	6
Dibenz(a,h)anthracene	U		0.00172	0.00600	ଁQc
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	⁷ Gl
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	
Naphthalene	U		0.00408	0.0200	8
Phenanthrene	U		0.00231	0.00600	A
Pyrene	U		0.00200	0.00600	
1-Methylnaphthalene	U		0.00449	0.0200	°Sc
2-Methylnaphthalene	U		0.00427	0.0200	
2-Chloronaphthalene	U		0.00466	0.0200	
(S) p-Terphenyl-d14	85.9			23.0-120	
(S) Nitrobenzene-d5	77.0			14.0-149	
(S) 2-Fluorobiphenyl	82.1			34.0-125	

Laboratory Control Sample (LCS)

(LCS) R3845776-1 10/0	6/22 13:11						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	S Qualifier		
Analyte	mg/kg	mg/kg	%	%			
Anthracene	0.0800	0.0678	84.8	50.0-126			
Acenaphthene	0.0800	0.0701	87.6	50.0-120			
Acenaphthylene	0.0800	0.0657	82.1	50.0-120			
Benzo(a)anthracene	0.0800	0.0677	84.6	45.0-120			
Benzo(a)pyrene	0.0800	0.0657	82.1	42.0-120			
Benzo(b)fluoranthene	0.0800	0.0718	89.8	42.0-121			
Benzo(g,h,i)perylene	0.0800	0.0668	83.5	45.0-125			
Benzo(k)fluoranthene	0.0800	0.0663	82.9	49.0-125			
Chrysene	0.0800	0.0731	91.4	49.0-122			
Dibenz(a,h)anthracene	0.0800	0.0685	85.6	47.0-125			
Fluoranthene	0.0800	0.0720	90.0	49.0-129			
	ACCOUNT:			PRO	: SDG:	DATE/TIME:	PAG

BBG Assessment

PROJECT: 0522013017

SDG: L1541543

DATE/TIME: 10/17/22 13:13

PAGE: 48 of 58

QUALITY CONTROL SUMMARY

LCS Qualifier

L1541543-01,02,03

Laboratory Control Sample (LCS)

(LCS) R3845776-1 10/06/22 13:11

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/kg	mg/kg	%	%
Fluorene	0.0800	0.0711	88.9	49.0-120
Indeno(1,2,3-cd)pyrene	0.0800	0.0689	86.1	46.0-125
Naphthalene	0.0800	0.0696	87.0	50.0-120
Phenanthrene	0.0800	0.0712	89.0	47.0-120
Pyrene	0.0800	0.0731	91.4	43.0-123
1-Methylnaphthalene	0.0800	0.0687	85.9	51.0-121
2-Methylnaphthalene	0.0800	0.0698	87.3	50.0-120
2-Chloronaphthalene	0.0800	0.0682	85.3	50.0-120
(S) p-Terphenyl-d14			85.4	23.0-120
(S) Nitrobenzene-d5			83.0	14.0-149
(S) 2-Fluorobiphenyl			87.3	34.0-125

L1541543-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1541543-03 10/06/22 20:00 • (MS) R3845740-1 10/06/22 20:20 • (MSD) R3845740-2 10/06/22 20:40

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Anthracene	0.0862	ND	0.0816	0.0849	94.8	98.5	1	10.0-145			3.88	30	
Acenaphthene	0.0862	ND	0.0753	0.0773	87.4	89.8	1	14.0-127			2.68	27	
Acenaphthylene	0.0862	ND	0.0816	0.0855	94.8	99.3	1	21.0-124			4.64	25	
Benzo(a)anthracene	0.0862	ND	0.0843	0.0880	97.9	102	1	10.0-139			4.25	30	
Benzo(a)pyrene	0.0862	ND	0.0846	0.0882	98.2	102	1	10.0-141			4.11	31	
Benzo(b)fluoranthene	0.0862	ND	0.0666	0.0690	77.3	80.1	1	10.0-140			3.65	36	
Benzo(g,h,i)perylene	0.0862	ND	0.0713	0.0753	80.4	85.0	1	10.0-140			5.44	33	
Benzo(k)fluoranthene	0.0862	ND	0.0675	0.0701	78.4	81.4	1	10.0-137			3.76	31	
Chrysene	0.0862	ND	0.0795	0.0824	88.2	91.5	1	10.0-145			3.59	30	
Dibenz(a,h)anthracene	0.0862	ND	0.0702	0.0719	81.5	83.5	1	10.0-132			2.42	31	
Fluoranthene	0.0862	ND	0.0854	0.0887	99.1	103	1	10.0-153			3.83	33	
Fluorene	0.0862	ND	0.0785	0.0823	91.1	95.5	1	11.0-130			4.69	29	
Indeno(1,2,3-cd)pyrene	0.0862	ND	0.0769	0.0801	89.3	93.0	1	10.0-137			4.12	32	
Naphthalene	0.0862	ND	0.0762	0.0803	88.5	93.3	1	10.0-135			5.23	27	
Phenanthrene	0.0862	ND	0.0744	0.0776	86.4	90.1	1	10.0-144			4.25	31	
Pyrene	0.0862	ND	0.0824	0.0859	93.0	97.1	1	10.0-148			4.22	35	
1-Methylnaphthalene	0.0862	ND	0.0794	0.0832	92.1	96.6	1	10.0-142			4.77	28	
2-Methylnaphthalene	0.0862	ND	0.0796	0.0842	92.4	97.8	1	10.0-137			5.65	28	
2-Chloronaphthalene	0.0862	ND	0.0703	0.0729	81.6	84.6	1	29.0-120			3.61	24	
(S) p-Terphenyl-d14					79.7	75.9		23.0-120					
(S) Nitrobenzene-d5					79.0	79.5		14.0-149					
(S) 2-Fluorobiphenyl					81.5	79.6		34.0-125					
	ACCOUNT:			PRO	JECT:			SDG:		DATE/	TIME:		PAGE:
	BBG Assessment			0522	013017		L1	1541543		10/17/22	2 13:13		49 of 58

Sc

QUALITY CONTROL SUMMARY

L1541543-04,05,06

Method Blank (MB)

MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg 0.00230 0.00600 0.00216 0.00600 0.00216 0.00600 0.00173 0.00600 0.00173 0.00600 0.00174 0.00600 0.00175 0.00600 0.00174 0.00600 0.00175 0.00600 0.00176 0.00600 0.00215 0.00600 0.00215 0.00600 0.00215 0.00600 0.00215 0.00600 0.00222 0.00600
mg/kg mg/kg ng/kg 0.00230 0.00230 0.00600 0.00209 0.00600 0.00216 0.00600 0.00173 0.00600 0.00175 0.00600 0.00175 0.00600 0.00177 0.00600 0.00215 0.00600 0.00215 0.00600 0.00215 0.00600
0.00230 0.00600 0.00209 0.00600 0.00216 0.00600 0.00173 0.00600 0.00179 0.00600 0.00153 0.00600 0.00177 0.00600 0.00215 0.00600 0.00215 0.00600 0.00215 0.00600 0.00215 0.00600
0.00209 0.00600 0.00216 0.00600 0.00173 0.00600 0.00179 0.00600 0.00153 0.00600 0.00177 0.00600 0.00215 0.00600 0.00215 0.00600 0.00215 0.00600 0.00222 0.00600
0.00216 0.00600 0.00173 0.00600 0.00179 0.00600 0.00177 0.00600 0.00215 0.00600 0.00225 0.00600
0.00173 0.00600 0.00179 0.00600 0.00173 0.00600 0.00177 0.00600 0.00215 0.00600 0.00232 0.00600
0.00179 0.00600 0.00153 0.00600 0.00177 0.00600 0.00215 0.00600 0.00232 0.00600
0.00153 0.00600 0.00177 0.00600 0.00215 0.00600 0.00232 0.00600
0.001770.006000.002150.006000.002320.00600
0.002150.006000.002320.00600
0.00232 0.00600
0.00172 0.00600
0.00227 0.00600
0.00205 0.00600
0.00181 0.00600
0.00408 0.0200
0.00231 0.00600
0.00200 0.00600
0.00449 0.0200
0.00427 0.0200
0.00466 0.0200
23.0-120
14.0-149
34.0-125

Laboratory Control Sample (LCS)

(LCS) R3845922-1 10/0	6/22 17:02					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
Anthracene	0.0800	0.0728	91.0	50.0-126		
Acenaphthene	0.0800	0.0743	92.9	50.0-120		
Acenaphthylene	0.0800	0.0752	94.0	50.0-120		
Benzo(a)anthracene	0.0800	0.0731	91.4	45.0-120		
Benzo(a)pyrene	0.0800	0.0644	80.5	42.0-120		
Benzo(b)fluoranthene	0.0800	0.0695	86.9	42.0-121		
Benzo(g,h,i)perylene	0.0800	0.0683	85.4	45.0-125		
Benzo(k)fluoranthene	0.0800	0.0721	90.1	49.0-125		
Chrysene	0.0800	0.0751	93.9	49.0-122		
Dibenz(a,h)anthracene	0.0800	0.0669	83.6	47.0-125		
Fluoranthene	0.0800	0.0745	93.1	49.0-129		
	ACCOUNT:			PRC	ECT: SDG: DATE/TIME:	PAGE:

BBG Assessment

PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13 PAGE: 50 of 58

QUALITY CONTROL SUMMARY

LCS Qualifier

L1541543-04,05,06

Laboratory Control Sample (LCS)

(LCS) R3845922-1 10/06/22 17:02

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits		
Analyte	mg/kg	mg/kg	%	%		
Fluorene	0.0800	0.0729	91.1	49.0-120		
Indeno(1,2,3-cd)pyrene	0.0800	0.0716	89.5	46.0-125		
Naphthalene	0.0800	0.0704	88.0	50.0-120		
Phenanthrene	0.0800	0.0698	87.3	47.0-120		
Pyrene	0.0800	0.0767	95.9	43.0-123		
1-Methylnaphthalene	0.0800	0.0725	90.6	51.0-121		
2-Methylnaphthalene	0.0800	0.0728	91.0	50.0-120		
2-Chloronaphthalene	0.0800	0.0678	84.8	50.0-120		
(S) p-Terphenyl-d14			82.7	23.0-120		
(S) Nitrobenzene-d5			117	14.0-149		
(S) 2-Fluorobiphenyl			85.7	34.0-125		

L1541576-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1541576-05 10/06/22 19:55 • (MS) R3845922-3 10/06/22 20:13 • (MSD) R3845922-4 10/06/22 20:30

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Anthracene	0.0975	ND	ND	0.0730	0.000	74.9	1	10.0-145	<u>J6</u>	<u>J3</u>	200	30	
Acenaphthene	0.0975	ND	0.145	0.127	149	130	1	14.0-127	<u>J5</u>	<u>J5</u>	13.5	27	
Acenaphthylene	0.0975	ND	0.0776	ND	79.6	0.000	1	21.0-124		<u> J3 J6</u>	200	25	
Benzo(a)anthracene	0.0975	ND	0.0815	0.0853	83.6	87.5	1	10.0-139			4.53	30	
Benzo(a)pyrene	0.0975	ND	0.0845	0.0878	86.6	90.0	1	10.0-141			3.82	31	
Benzo(b)fluoranthene	0.0975	ND	0.0771	0.0764	79.1	78.4	1	10.0-140			0.952	36	
Benzo(g,h,i)perylene	0.0975	ND	0.0715	0.0747	73.4	76.6	1	10.0-140			4.33	33	
Benzo(k)fluoranthene	0.0975	ND	0.0731	0.0792	75.0	81.3	1	10.0-137			8.00	31	
Chrysene	0.0975	ND	0.0818	0.0847	79.8	82.8	1	10.0-145			3.51	30	
Dibenz(a,h)anthracene	0.0975	ND	0.0720	0.0748	73.9	76.8	1	10.0-132			3.82	31	
Fluoranthene	0.0975	ND	0.0819	0.0881	84.0	90.4	1	10.0-153			7.31	33	
Fluorene	0.0975	0.150	0.213	0.178	65.0	28.7	1	11.0-130			18.1	29	
Indeno(1,2,3-cd)pyrene	0.0975	ND	0.0758	0.0790	77.8	81.0	1	10.0-137			4.09	32	
Naphthalene	0.0975	0.547	0.595	0.379	48.8	0.000	1	10.0-135		<u>J3 V</u>	44.3	27	
Phenanthrene	0.0975	0.229	0.341	0.249	115	20.0	1	10.0-144		<u>J3</u>	31.4	31	
Pyrene	0.0975	0.0717	0.149	0.121	79.0	50.3	1	10.0-148			20.8	35	
1-Methylnaphthalene	0.0975	1.30	1.40	0.835	100	0.000	1	10.0-142		<u>J3 V</u>	50.7	28	
2-Methylnaphthalene	0.0975	1.86	2.04	1.20	175	0.000	1	10.0-137	$\underline{\vee}$	<u>J3 V</u>	51.4	28	
2-Chloronaphthalene	0.0975	ND	0.0613	0.0669	62.9	68.6	1	29.0-120			8.75	24	
(S) p-Terphenyl-d14					75.8	77.2		23.0-120					
(S) Nitrobenzene-d5					0.000	0.000		14.0-149	<u>J2</u>	<u>J2</u>			
(S) 2-Fluorobiphenyl					55.8	62.7		34.0-125					
	ACCOUNT:			PRO.	JECT:			SDG:		DATE/	TIME:		PAGE:
	BBG Assessment				013017			541543		10/17/2			51 of 58

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

Sc

E: 58

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

QUALITY CONTROL SUMMARY

L1541543-04,05,06

L1541576-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1541576-05 10/06/22 19:55 • (MS) R3845922-3 10/06/22 20:33 • (MSD) R3845922-4 10/06/22 20:30 Spike Amount Original Result MS Result (dry) MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits (dry) (dry) RPD Limits												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%

Sample Narrative:

OS: Surrogate failure due to matrix interference

ACCOUNT: BBG Assessment PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13

PAGE: 52 of 58

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Тс

Ss

Cn

Sr

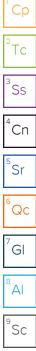
Qc

GI

AI

Sc

Abbreviations and Definitions


Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Qualifier	Description
СЗ	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.
C4	The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Data is likely to show a low bias concerning the result.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
BBG Assessment	0522013017	L1541543	10/17/22 13:13	53 of 58

GLOSSARY OF TERMS

Qualifier	Description
JG	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 0522013017

SDG: L1541543

DATE/TIME: 10/17/22 13:13

PAGE: 54 of 58

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

PROJECT: 0522013017

SDG: L1541543 DATE/TIME: 10/17/22 13:13

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ GI ⁸ AI ⁹ Sc

Company Name/Address:		Billing Info	Billing Information:					Analysis / Container / Preservative Chain of Custody										
BBG Assessment			BBG Acc	counts Pay	able		Pres			1200								ly Page _ of _2
4615 Southwest Freeway Sui Suite 400 Ho Houston. TX 77027 Ho		4615 So Suite 40	uthwest F	reewa	ay	Chk										РЕОРИ	ACC SCIENCE	
		Email To: I	To: hknapp@bbgres.com;						1000		1					MTJ	ULIET, TN	
Hannah Knapp										1	Xr						12065 Lebanon Rd M	ount Juliet, TN 37122
Project Description: 7602-7703 River Rd		City/State Collected:	Puyall	Vyall up, WA Please Circle:							ml/S	IN	-		Yr		constitutes acknowled Pace Terms and Cond https://info.pacelabs.	ia this chain of custody Igment and acceptance of the tions found at: com/hubfs/pas-standard-
Phone:		lient Project # 522013017		Lab Projec	:t #	/A		1-BT	s	1	eOH10	Pres-V	oPres		Oml/S		SDG #	9/593
Collected by (print): John Ramus	Site/Facility PUYALLUE			P.O. #				mb-HC	-NoPre	mb HC	mb/M	nb-No	zClr-No	CI	1eOH1	D057		1
Collected by (signature):	Same I	(Lab MUST Be Day Five	Day					NWTPH-Dx 40mlAmb-HCI-BT	NWTPH-Dx 4ozClr-NoPres	NWTPH-Gx 40mlAmb HCI	NWTPH-Gx 40mlAmb/MeOH10ml/Syr	PAHSIMLVI 40mlAmb-NoPres-WT	SV8270PAHSIM 4o2Clr-NoPres	40mIAmb-HCI	V8260 40mlAmb/MeOH10ml/Syr	Acctnum: DSBBGHTX Template:T216810 Prelogin: P952413		.6810
Immediately Packed on Ice N Y X	Two Da		y (Rad Only) ay (Rad Only)	Date F	Date Results Needed		No. of	XQ-He	XQ-H	H-Gx	H-Gx	WLVI.	'OPAH	40ml	40ml			ther I Wagner
Sample ID	Comp/Grab	Matrix *	Depth	Date		Time	Cntrs	ITWI	TWI	ITWI	IWTE	AHSI	V827	V8260	8260		Shipped Via: F Remarks	edEX Saver Sample # (lab only)
B1-51-8	Grab	SS	8	9/28	122	10:31	4		X	-	X	-	X	>	X			- ol
B2-51-4	21 24	SS	4		11	12:50	1 .		X		X		X	- 24	X			-07
B2-52-7		SS	T		u	12:54	4		X		X	10	X	-	X			- 03
B3-S1-16	64 ×4	SS	16	14	4	14:44	4		X		X		X		X			- 04
B4-51-16	u u	SS	16	u	4	15:55	14		X		X	and	X		X			_05
B5-51-8		SS	8	u	4	17:25	14		X		X		X		V			-06
		SS	-									12.20		1.1	-			0.
_	3 14 21	SS												100				
		SS				1										1940		
		SS												-				
* Matrix: 55 - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:										pH .		Temp		_	Sampl COC Seal Pre COC Signed/A Bottles arri	ccurate:	ecklist NP Y N N
- Orinking Water - Other UPS FedEx Courier			T	racking	# 58	82	-	29	56(Other			Correct bott Sufficient v	les used: olume sent: If Applicabl		
Relinquished by : (Signature)		ate: 9/29/:	Time:	5:04 R	eceived	d by: (Signatu	ire)	-		T	rip Blan	k Receiv	H	ICL / Me	оН	VOA Zero Hea Preservation RAD Screen <	Correct/Che	cked: $\begin{array}{c} Y \\ Y \\ Y \\ Y \\ Y \\ N \end{array}$
Relinquished by : (Signature) Date: Time:		R	eceived	d by: (Signatu	ire)			T	Temp: 5 6°C Bottles Receive					Ut preservation required by Login: Date/Time				
Relinquished by : (Signature)	Da	ate:	Time:			for lab by: (12		,	D	Pate: 9/30	5/20	Time	0.0	39/3	Hold:		Condition? NCF / OK

Company Name/Address:	Billing Inform			ng Information:				T		-	Analysis		Chain of Custody Page 2 of 2					
BBG Assessment				BBG Accounts Payable			Pres				Allalvsis			Leservar			Chain of Custod	ay Page 2 of 2
4615 Southwest Freeway Suite 400 Houston. TX 77027			4615 So Suite 40 Houstor	uthwes 0	t Freev		Chk										- PEOPL	ACC action of the second secon
Report to:		2	Email To: I	nknapp@	bbgres.c	om;		-									MTJ	ULIET, TN
Hannah Knapp								1		1100	Yr	1					12065 Lebanon Rd M Submitting a sample i	fount Juliet, TN 37122 via this chain of custody
Project Description: 7602-7703 River Rd		City/State Collected:	Puyal	Iup	, wr	PT MT C	ircle: CT ET				S/Im(NT			Yr		constitutes acknowled Pace Terms and Condi	dgment and acceptance of the
Phone:	Client Project	: #		Lab Pro	Lab Project # DSBBGHTX-WA		1	CI-BT	s	-	eOH10	PAHSIMLVI 40mlAmb-NoPres-WT	SV8270PAHSIM 4o2Clr-NoPres	a	40mlAmb/MeOH10ml/Syr		SDG #	541543
Collected by (print): John Ramus	Site/Facility I PUYALLUP		-	P.O. #		1	-	H-dm	4ozClr-NoPres	mb HG	mb/M	nb-Nc			1eOH1		A210	
Collected by (signature):		Lab MUST Be ay Five						IOmIA	4ozClr	tomIA	tomIA	IOmIA	IM 40	H-dm	mb/N		Template:T21	16810
Immediately Packed on Ice N Y X	Next Da Two Da Three D		y (Rad Only) ay (Rad Only)	Da			No. of	NWTPH-Dx 40mlAmb-HCI-BT		NWTPH-Gx 40mlAmb HCI	NWTPH-Gx 40mlAmb/MeOH10ml/Syr	MLVI 4	OPAHS	V8260 40mlAmb-HCI	40mlA		Prelogin: P95 PM: 873 - Hea PB:	ther I Wagner
Sample ID	Comp/Grab	Matrix *	Depth	D	ate	Time	Cntrs	NWTP	NWTPH-Dx	NWTP	NWTP	PAHSI	SV827	V8260	V8260		Shipped Via: F Remarks	edEX Saver Sample # (lab only)
-		55							-									
. —		SS					1			-		134		1.24		THE .		Service and
-		GW																
BI-WI	Gras	GW	NA	9/2	8/22	10:44	10	X		X		X		X				-07
B3-W1	te se	GW	NA		•••	15:10	10	X		X		X		X				OR
B4-WI		GW	NA	4	*	16:32	10	X		X		X		X				- 09
B5-W1	* 4	GW	NA	j.	и	17:34	10	X		X		X		X				-10
		GW		**												15.0		
	1 1 1	GW																
* Matrix:	Remarks:				-		1											
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	SS - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay										pH Flow		Temp Othe		_	COC Seal P COC Signed	ple Receipt Ch Present/Intact: //Accurate: rive intact:	NP Y N NP Y N
DW - Drinking Water OT - Other	A second s	amples returned via: _UPS FedEx Courier				ng #		4	688	27	561	771	21				ttles used: volume sent: <u>If Applicab</u> eadspace:	
Relinquished by : (Signature)			Time: Received by: (Signatur							rip Blan		ved:	HCL/Me	оН	Preservati	on Correct/Che <0.5 mR/hr:	ecked: Y N	
Relinquished by : (Signature)	Da	te:	Time			ed by: (Signatu	ure)	-			emp:N		Bott		red:	If preservatio	on required by Log	gin: Date/Time
Relinquished by : (Signature)	Da	te:	Time		Receiv	ed for lab by:	(Signati	ure)	5	C	Date:		Time	e:	NOT	Tigo		Condition: NCF / OK