Supplemental Site Characterization Report

Ione Petroleum Contamination Site Ione, Washington

for

Washington State Department of Ecology and Science Applications International Corporation

January 3, 2011

Supplemental Site Characterization Report

Ione Petroleum Contamination Site Ione, Washington

for

Washington State Department of Ecology and Science Applications International Corporation

January 3, 2011

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Supplemental Site Characterization Report

Ione Petroleum Contamination Site Ione, Washington

File No. 0504-058-00

January 3, 2011

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program 4601 North Monroe Street Spokane, Washington 99205

Attention: Doug Ladwig, PG, PHG, Site Manager

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

ach L

Dave Lauder, PE Project Manager

Bruce D. Williams Principal

JRH:JDL:BDW:mlh:cje SP\050405800\loneSiteCharacterizationReport_Supplemental

cc: Glen Vedera, Senior Geologist (1) SAIC

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2010 by GeoEngineers, Inc. All rights reserved.

Table of Contents

1.0	INTRODUCTION	1
2.0	SCOPE OF SERVICES	1
3.0	FIELD ACTIVITIES	2
	Exploratory Borings and Monitoring Well Installation	2
3.2	Transducer Installation	2
4.0	SUBSURFACE CONDITIONS	3
	Soil Conditions Groundwater Conditions	
5.0	SOIL CHEMICAL ANALYTICAL RESULTS	4
	General	4
	Vacant Property	4
6.0	CONCLUSIONS	4
7.0	LIMITATIONS	4

LIST OF TABLES

 Table 1. Summary of Volatile Organic Compounds Analytical Results - Supplemental Exploration

 Phase Soil Samples

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Site Plan
- Figure 3. Exploration Locations
- Figure 4. Cross Section A-A'
- Figure 5. Cross Section B-B'
- Figure 6. Cross Section C-C'

APPENDICES

Appendix A. Boring and Monitoring Well Logs

Figure A-1 – Key to Exploration Logs

Figure A-2 – Log of Hollow-Stem Auger Boring

Figures A-3 through A-6 – Logs of Monitoring Wells

Appendix B. Field Procedures

Appendix C. Laboratory Reports

Appendix D. Survey Data

Appendix E. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

This supplemental report presents results of additional site characterization activities conducted between November 1, 2010 and November 4, 2010 at a site referred to as the lone Petroleum Contamination Site located near lone, Washington. The approximate location of the site is presented in the Vicinity Map, Figure 1. The site was the subject of previous site characterization activities, the results of which are presented in GeoEngineers' report titled "Site Characterization Report, Ione Petroleum Contamination Site, Ione, Washington", dated October 14, 2010.

In addition to the four properties described in the Site Characterization Report, vacant property owned by Mr. John Doyle, located east of the Cabin Grill property, now encompasses the "Site." This property will be included as part of the "Vacant Property" as described in the Site Characterization Report, as Mr. Doyle owns the vacant properties both north and east of the Cabin Grill. The site is located near the intersection of State Route 31 and Greenhouse/Dewitt Roads. The site and areas of interest are shown in the Site Plan, Figure 2.

The activities described in this supplemental report were conducted to provide additional information regarding the nature and extent of petroleum contamination of soil and groundwater at the site, particularly areas cross-gradient and down-gradient of the Cabin Grill, and provide information regarding the characteristics of the unconfined aquifer underlying the site. These activities were prompted by the detection of petroleum hydrocarbons, particularly gasoline-range petroleum hydrocarbons (GRPH) and benzene, toluene, ethylbenzene and total xylenes (BTEX) compounds at concentrations greater than the Model Toxics Control Act (MTCA) Method A cleanup levels in soil and groundwater samples collected from initial cross-gradient and down-gradient monitoring wells MW-3, MW-4 and MW-6.

This report describes the field investigation and chemical analytical results from soil samples collected from the supplemental explorations. Results of groundwater sampling will be presented in the next quarterly groundwater monitoring report for this project. Logs of borings and monitoring wells are presented in Appendix A. Detailed descriptions of field procedures are presented in Appendix B. Analytical reports are presented in Appendix C. Survey data is presented in Appendix D.

2.0 SCOPE OF SERVICES

The purpose of the supplemental activities was to delineate the nature and extent of soil and groundwater contamination cross-gradient and down-gradient of the Cabin Grill. Four groundwater monitoring wells were installed and one exploratory boring was drilled during supplemental field activities. The monitoring wells were installed at locations identified by the Washington State Department of Ecology (Ecology) based on results of the previous site characterization. Specific tasks conducted during this phase included:

- Drilled and abandoned one exploratory boring and drilled, installed, and developed four monitoring wells. The borings were drilled using a hollow-stem auger drill rig to depths ranging from 25 to 50 feet below ground surface (bgs).
- Submitted soil samples to Anatek Laboratories of Spokane, Washington for analysis of GRPH using Northwest Methods NWTPH-Gx, and volatile organic compounds (VOCs) including BTEX, EDB, EDC, MTBE and naphthalene using EPA Method 8260. Two soil samples collected nearest the groundwater table (one above and one below) within each boring were analyzed.
- Subcontracted a licensed surveyor to record elevations and locations of the supplemental boring and monitoring wells.
- Installed groundwater level transducers in monitoring wells MW-3, MW-4 and MW-5. A flow meter also was installed on the distribution line between the Cabin Grill domestic well and the restaurant. The purpose of the transducers and flow meter is to document the potential drawdown effects caused by utilizing the Cabin Grill domestic well on the groundwater table near the monitoring wells.

3.0 FIELD ACTIVITIES

3.1 Exploratory Borings and Monitoring Well Installation

One exploratory boring (B-5) and four supplemental monitoring wells (MW-9 through MW-12) were advanced at the site between November 1, 2010 and November 3, 2010 using a hollow-stem auger drill rig. Ecology selected the exploratory boring and monitoring well locations based on chemical analytical results and groundwater level information obtained from previous sampling events. Soil samples were collected using a standard penetration test (SPT) sampler. Following installation, the monitoring wells were developed on November 4, 2010 by gently surging and bailing to stabilize the filter pack and formation materials surrounding the well screens. Monitoring well and exploratory boring locations are shown on Exploration Locations, Figure 3.

3.1.1 Vacant Property

Monitoring wells MW-9, MW-10 and M-11, and exploratory boring B-5 were advanced on the vacant property to depths ranging from 25 to 50 feet bgs. No sheen was observed and headspace vapors were either not detected or detected at low concentrations (<5 ppm) from soil samples collected from the explorations.

3.1.2 Cabin Grill

Monitoring well MW-12 was advanced on the Cabin Grill property to a depth of about 45 feet bgs. No sheen was observed and headspace vapors were not detected from soil samples collected from the exploration.

3.2 Transducer Installation

The Cabin Grill domestic well was instrumented on December 8, 2010 with a non-invasive ultrasonic flow-meter attached to the exterior surface of the 1-inch diameter PVC pipe located upstream of the pressure tank and filter tanks within the Cabin Grill well house. The flow-meter is a GE Panametrics AT868 with a MadgeTech Process110 Current Recorder datalogger. Data

logging frequency is programmed to record flow at one-minute intervals. Monitoring wells MW-3, MW-4 and MW-5 were instrumented with In-Situ Rugged TROLL 100 pressure transducers set at 41.70, 47.00 and 46.50 feet below top of casing, respectively. Water level pressure transducers are programmed to record depth of water and temperature at one-minute intervals synchronized with the flow-meter on the Cabin Grill domestic well. Additionally, an In-Situ BaroTROLL was installed in MW-3 to record barometric pressure and temperature at one-minute intervals synchronized with the water level pressure transducers and flow-meter and was suspended approximately 2 feet below the top of the casing.

3.3 Surveying

Thomas Dean and Hoskins Inc. (TD&H) surveyed the locations and elevations of the supplemental exploratory boring and monitoring wells on November 10, 2010. Survey data is presented in Appendix D.

4.0 SUBSURFACE CONDITIONS

4.1 Soil Conditions

Subsurface conditions encountered within the supplemental explorations were consistent with the descriptions provided in the Site Characterization Report. The sand unit and the silt and clay unit were encountered within the supplemental explorations as described below.

Loose to medium dense sand with variable silt and gravel content was encountered in the supplemental borings. The sand unit extended from the ground surface to the full depth explored (about 40 feet) in boring B-5, and to depths ranging from about 22 feet bgs in MW-10 to 47 feet bgs in MW-9. The sand unit encountered in the explorations was consistent with geologic descriptions for the outwash-and alluvially-deposited unconfined aquifer of sand and gravel, as described in the Site Characterization Report.

Below the sand unit, soft to stiff silt and clay was encountered at the locations of MW-9 through MW-12. Where encountered, the top of the silt and clay unit was located at depths ranging from about 22 to 47 feet bgs, and extended to the depths explored. The silt and clay unit is consistent with the geologic descriptions for the glaciolacustrine-deposited aquitard of silt and clay, as described in the Site Characterization Report.

Two cross sections, A-A' and B-B', were presented in the Site Characterization Report. Cross Section A-A' has been revised to include results of the supplemental explorations, and is presented in Figure 4, Cross Section A-A'. Cross Section B-B' is presented again in Figure 5. An additional cross section, C-C', was prepared using results of the supplemental explorations, and is presented in Figure 6. Locations of soil and groundwater samples also are shown on the cross sections. The locations of the cross sections are shown in Figure 3.

4.2 Groundwater Conditions

Groundwater was observed at a depth of about $38\frac{1}{2}$ feet bgs in B-5, about 37 feet bgs in MW-9, about 17 feet bgs in MW-10, about 21 feet bgs in MW-11 and about $36\frac{1}{2}$ feet bgs in MW-12 at the time of drilling.

5.0 SOIL CHEMICAL ANALYTICAL RESULTS

5.1 General

During the supplemental investigation, 10 soil samples (two from each exploration) were submitted for analysis. A summary of analytical results from soil samples are presented in Table 1.

5.2 Cabin Grill

5.2.1 Soil Analyses Results

Two samples were submitted from well MW-12. GRPH and VOCs were not detected in either sample. Practical quantitation limits (PQLs) were reported at concentrations less than MTCA Method A unrestricted land use cleanup levels.

5.3 Vacant Property

5.3.1 Soil Analyses Results

Eight soil samples were submitted from boring B-5 and wells MW-10, -11 and -12. GRPH and VOCs were not detected in any of the samples. PQLs were reported at concentrations less than MTCA Method A unrestricted land use cleanup levels.

6.0 CONCLUSIONS

Supplemental soil assessment activities were conducted from November 1 through November 4, 2010 for the site located in lone, Washington. Soil borings and wells were placed cross-gradient and down-gradient of the Cabin Grill well to define the lateral extent of petroleum contamination in soil and groundwater associated with the release from the Airport Kwik Stop. Subsurface conditions encountered within supplemental explorations were consistent with conditions encountered within previous explorations, and consisted of sand underlain by silt and clay. Soil does not appear to be contaminated at the exploration locations. Groundwater quality data will be provided in an upcoming report.

7.0 LIMITATIONS

We have prepared this report for the exclusive use of the Science Applications International Corporation, Washington State Department of Ecology and their authorized agents for the Ione Petroleum Contamination Site located in Ione, Washington.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments should be considered a copy of the original document.

The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to the Appendix E titled "Report Limitations and Guidelines for Use" for additional information pertaining to use of this report.

Table 1

Summary of Volatile Organic Compounds Analytical Results - Supplemental Exploration Phase Soil Samples¹

Ione Petroleum Contamination Ione, Washington

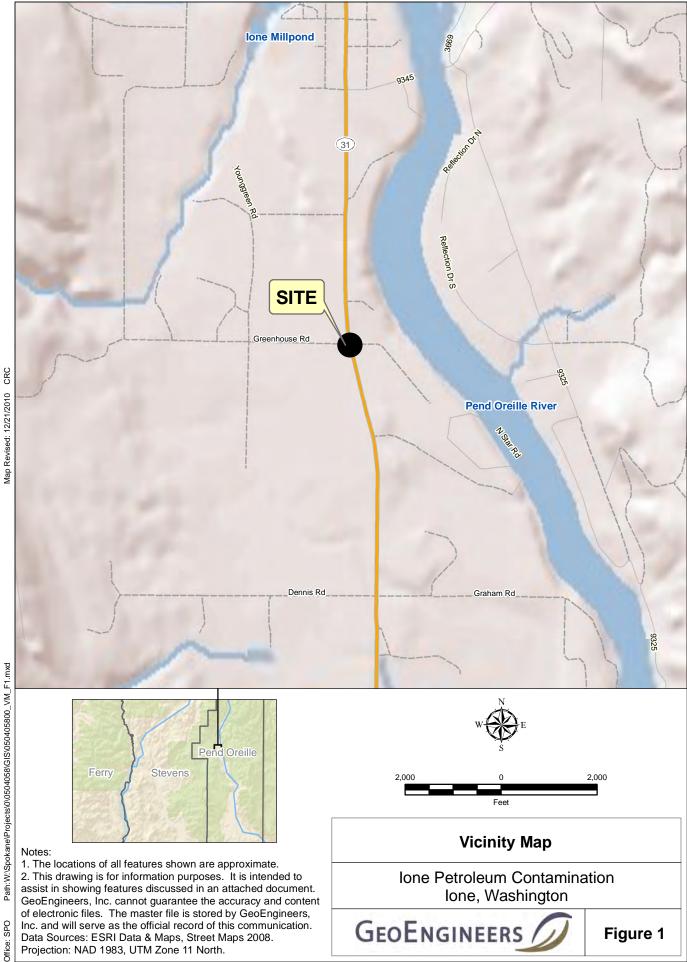
			MTCA	Sample Number	101105046-003	101105046-003	101105046-006	101105046-006	101105046-010	101105046-010	101105046-015	101105046-015	101105046-020	101105046-020
			Method A	Date	11/01/10	11/01/10	11/02/10	11/02/10	11/02/10	11/02/10	11/03/10	11/03/10	11/03/10	11/03/10
	Analyte	Units	Cleanup Level	Boring Number Depth	MW-9 33.5	MW-9 38.5	MW-10 13.5	MW-10 18.5	MW-11 18.5	MW-11 23.5	MW-12 33.5	MW-12 38.5	B-5 33.5	B-5 38.5
GRPH ²		mg/kg	30		<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Volatile Orga	anic Compounds [°]				I			I	1	1				<u> </u>
1,1,1,2-Tetra	achloroethane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,1,1-Trichlo	roethane	mg/kg	2		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,1,2,2-Tetra	chloroethane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,1,2-Trichlo	roethane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,1-Dichloroe	ethane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,1-Dichloroe	ethene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,1-Dichlorop	oropene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,2,3-Trichlo	robenzene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,2,3-Trichlo	ropropane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,2,4-Trichlo	robenzene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,2,4-Trimeth	hylbenzene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,2-Dibromo-	-3-chloropropane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,2-Dibromoe	ethane (EDB)	mg/kg	0.005		NA	<0.001	<0.001	NA	<0.001	NA	<0.001	NA	<0.001	NA
1,2-Dichlorot	benzene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,2-Dichloroe	ethane (EDC)	mg/kg	NE		NA	<0.005	<0.005	NA	<0.005	NA	<0.005	NA	<0.005	NA
1,2-Dichlorop	propane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,3,5-Trimeth	hylbenzene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,3-Dichlorot	benzene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,3-Dichlorop	propane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
1,4-Dichlorob	benzene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
2,2-Dichlorop	propane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
2-Chlorotolue	ene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
2-Hexanone		mg/kg	NE		NA	<.1005	<.10675	NA	<.1085	NA	<.11475	NA	<0.11725	NA
4-Chlorotolue	ene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Acetone		mg/kg	NE		NA	<.1005	<.10675	NA	<.1085	NA	<.11475	NA	<0.11725	NA
Acrylontrile		mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Benzene		mg/kg	0.03		NA	<0.005	<0.005	NA	<0.005	NA	<0.005	NA	<0.005	NA
Bromobenze	ne	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Bromochloro	methane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Bromodichlo	romethane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Bromoform		mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Bromometha	ane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Carbon disulf	fide	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Carbon Tetra	achloride	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Chlorobenzer	ne	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Chloroethane	e	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Chloroform		mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Chlorometha	ine	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
cis-1,2-Dichlo	oroethene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
cis-1,3-Dichlo	oropropene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Dibromochlo	romethane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Dibromometh	hane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA

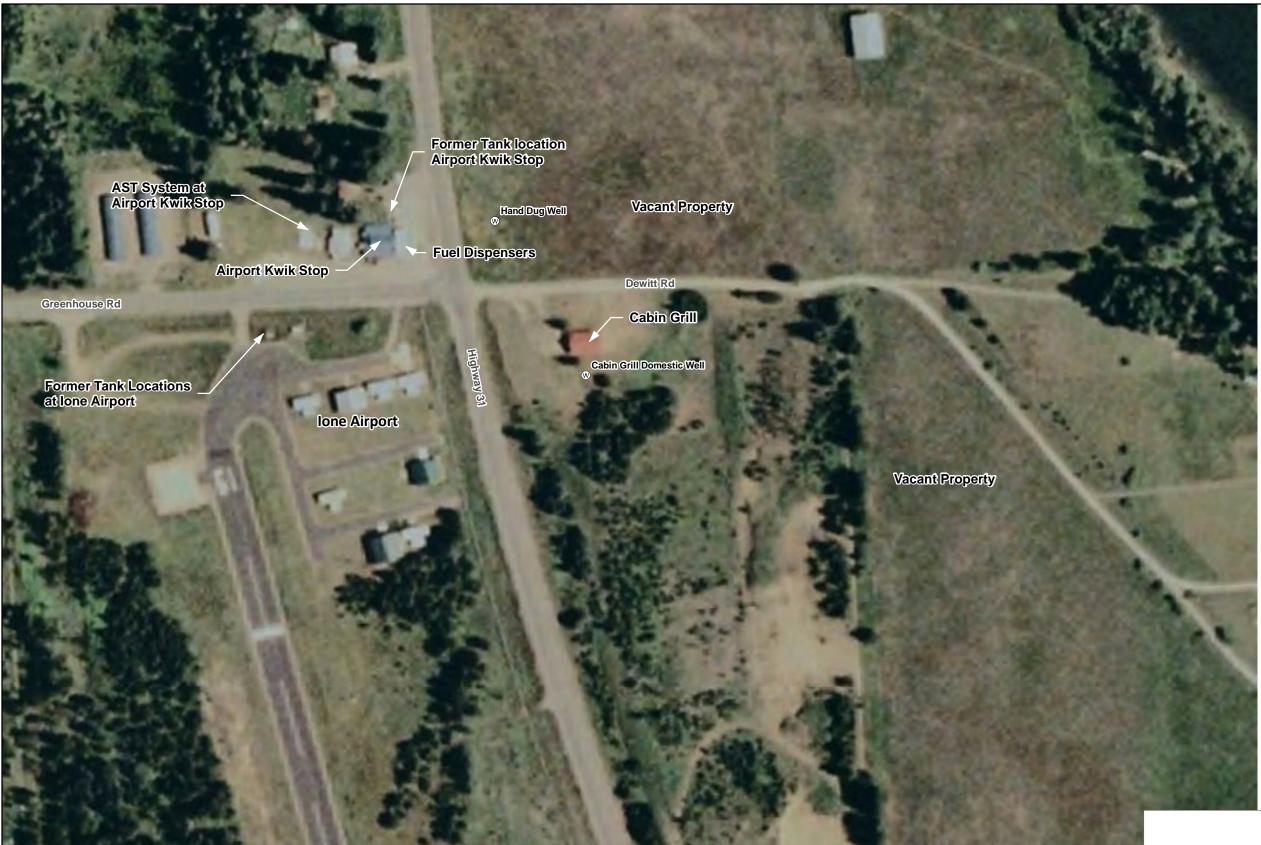
		MTCA	Sample Number	101105046-003	101105046-003	101105046-006	101105046-006	101105046-010	101105046-010	101105046-015	101105046-015	101105046-020	101105046-020
		Method A	Date	11/01/10	11/01/10	11/02/10	11/02/10	11/02/10	11/02/10	11/03/10	11/03/10	11/03/10	11/03/10
Analyte	Units	Cleanup Level	Boring Number Depth	MW-9 33.5	MW-9 38.5	MW-10 13.5	MW-10 18.5	MW-11 18.5	MW-11 23.5	MW-12 33.5	MW-12 38.5	B-5 33.5	B-5 38.5
Dichlorodifluoromethane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Ethylbenzene	mg/kg	6		NA	<0.005	<0.005	NA	<0.005	NA	<0.005	NA	<0.005	NA
Hexachlorobutadiene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Isopropylbenzene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
m,p-Xylene	mg/kg	9 ⁴		NA	<0.01	<0.01	NA	<0.01	NA	<0.01	NA	<0.01	NA
Methyl ethyl ketone (MEK)	mg/kg	NE		NA	<.1005	<.10675	NA	<.1085	NA	<.11475	NA	<0.11725	NA
Methyl isobutyl ketone (MIBK)	mg/kg	NE		NA	<.1005	<.10675	NA	<.1085	NA	<.11475	NA	<0.11725	NA
Methylene chloride	mg/kg	0.02		NA	<0.02	<0.02	NA	<0.02	NA	<0.02	NA	<0.02	NA
Methylt buytl ether (MTBE)	mg/kg	0.1		NA	<0.01	<0.01	NA	<0.01	NA	<0.01	NA	<0.01	NA
Naphthalene	mg/kg	5		NA	<0.005	<0.005	NA	<0.005	NA	<0.005	NA	<0.005	NA
n-Butylbenzene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
n-Propylbenzene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
o-Xylene	mg/kg	9 ⁴		NA	<0.005	<0.005	NA	<0.005	NA	<0.005	NA	<0.005	NA
p-lsopropyltoluene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
sec-Butylbenzene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Styrene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
tert-Butylbenzene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Tetrachloroethene	mg/kg	0.05		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Toluene	mg/kg	7		NA	<0.005	<0.005	NA	<0.005	NA	<0.005	NA	<0.005	NA
trans-1,2-Dichloroethene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
trans-1,3-Dichloropropene	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Trichloroethene	mg/kg	0.03		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Trichlorofluoromethane	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA
Vinyl chloride	mg/kg	NE		NA	<.0201	<.02135	NA	<.0217	NA	<.02295	NA	<.02345	NA

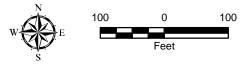
Notes:

¹Chemical analyses conducted by Anatek Labs, Inc. located in Spokane, Washington.

²Gasoline-range petroleum hydrocarbons (GRPH) analyzed using Northwest Method NWTPH-Gx.


³Volatile organic compounds analyzed using EPA Method 8260B.


⁴MTCA Method A cleanup level is 9 mg/kg for total xylenes (concentration of m,p-xylene + concentration of o-xylene)


mg/kg = milligrams per kilogram; NE = not established; MTCA = Model Toxics Control Act; NA = not analyzed

The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

<u>Legend</u>

W	Existing Water Well

Site Plan

Ione Petroleum Contamination lone, Washington

Figure 2

Reference: Bing Maps aerial from ESRI, Online Data Resource Center. ESRI Data & Maps, Street Maps 2008

1. The locations of all features shown are approximate.

Notes:

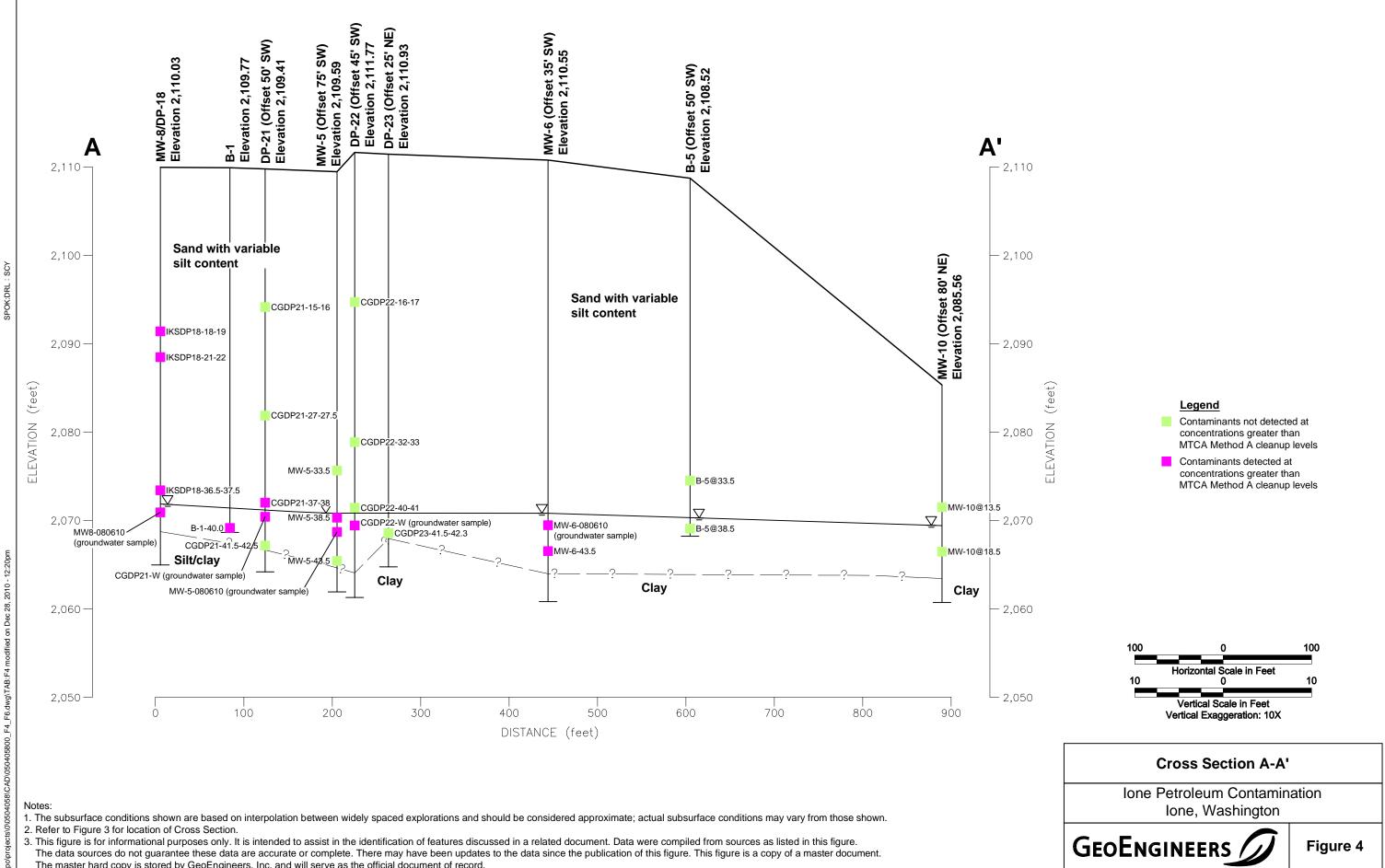
2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Direct-Push Boring Number and Approximate Location

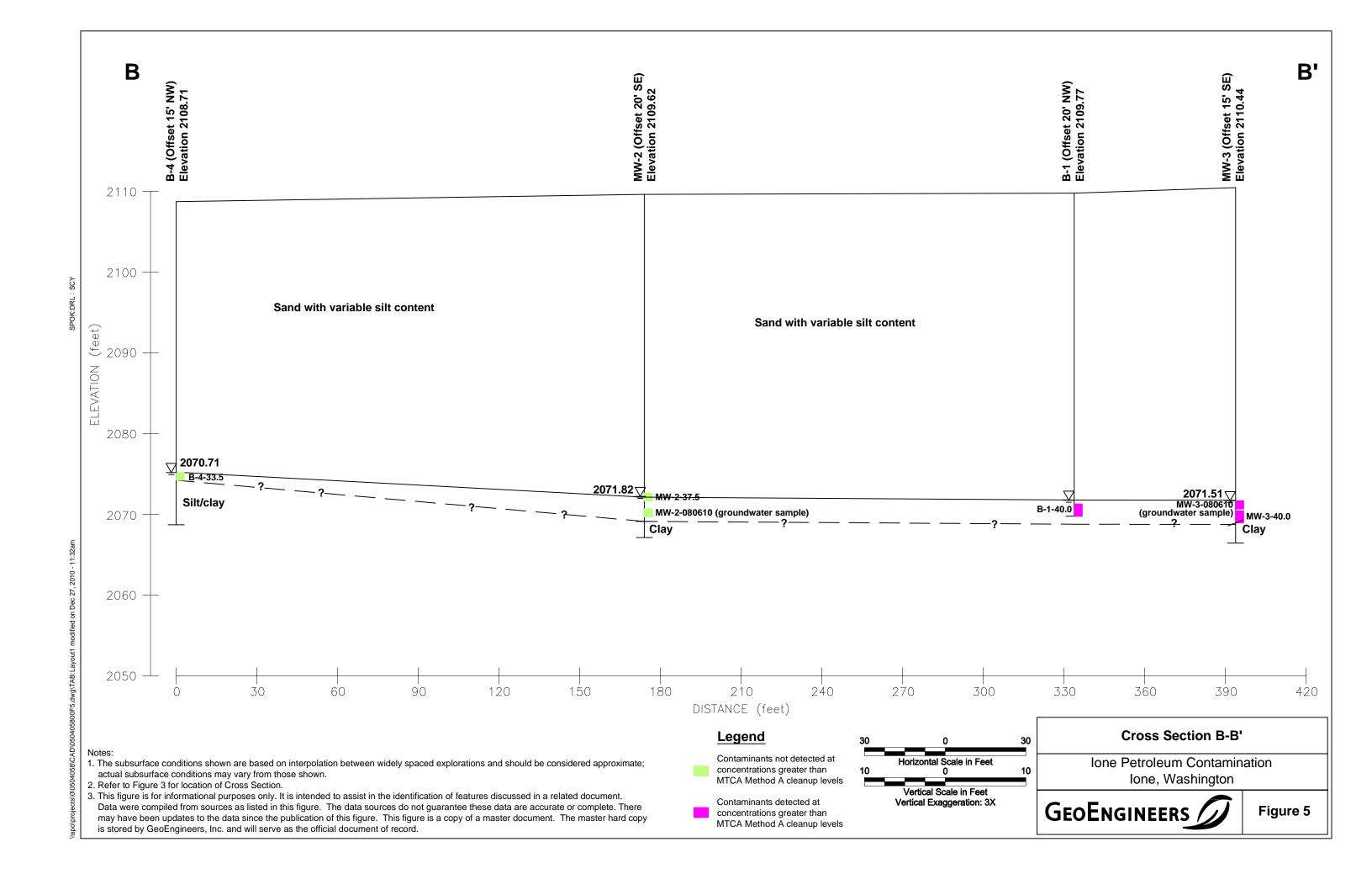
Hollow-Stem Auger Boring Number and Approximate Location

Monitoring Well Number and Approximate Location

Existing Water Well


Cross Section

Exploration Locations


Ione Petroleum Contamination Ione, Washington

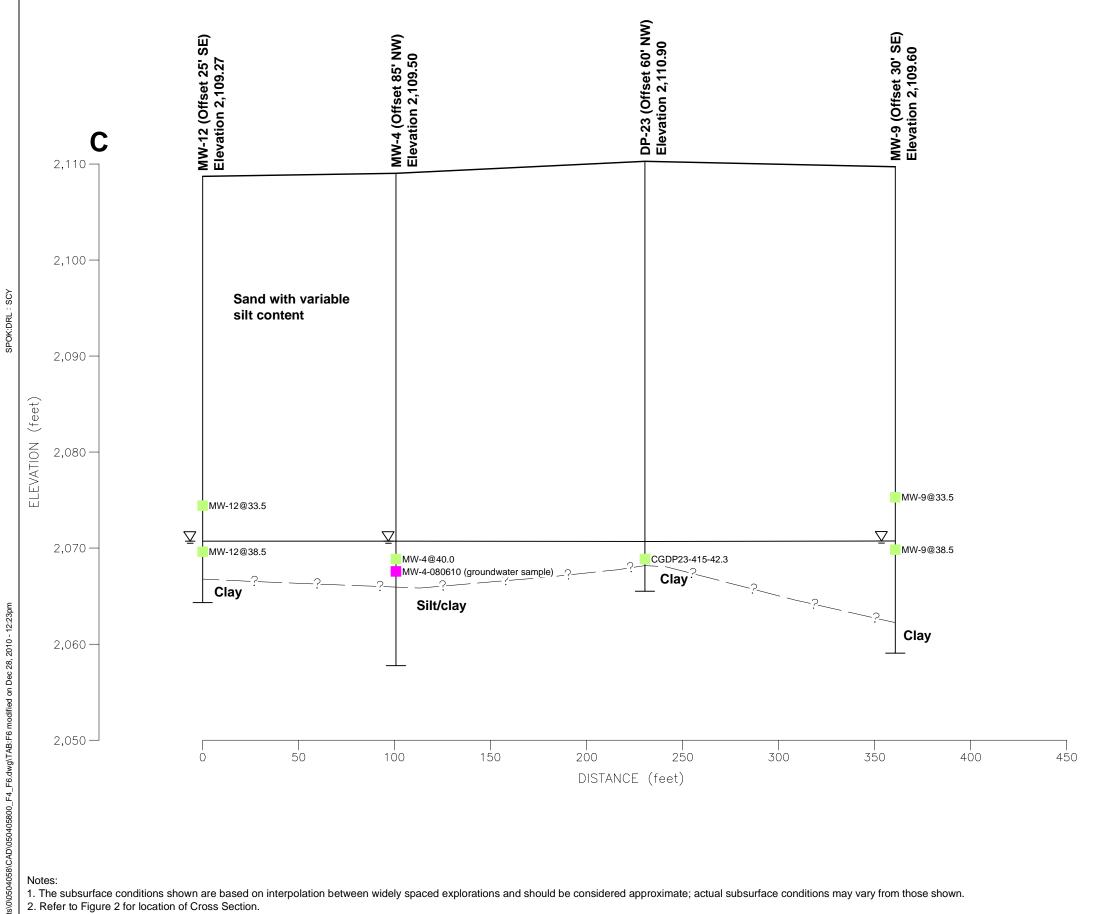
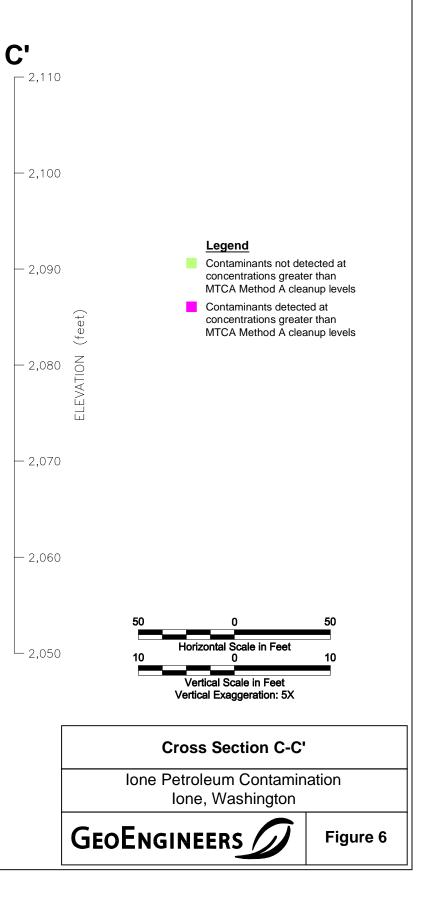
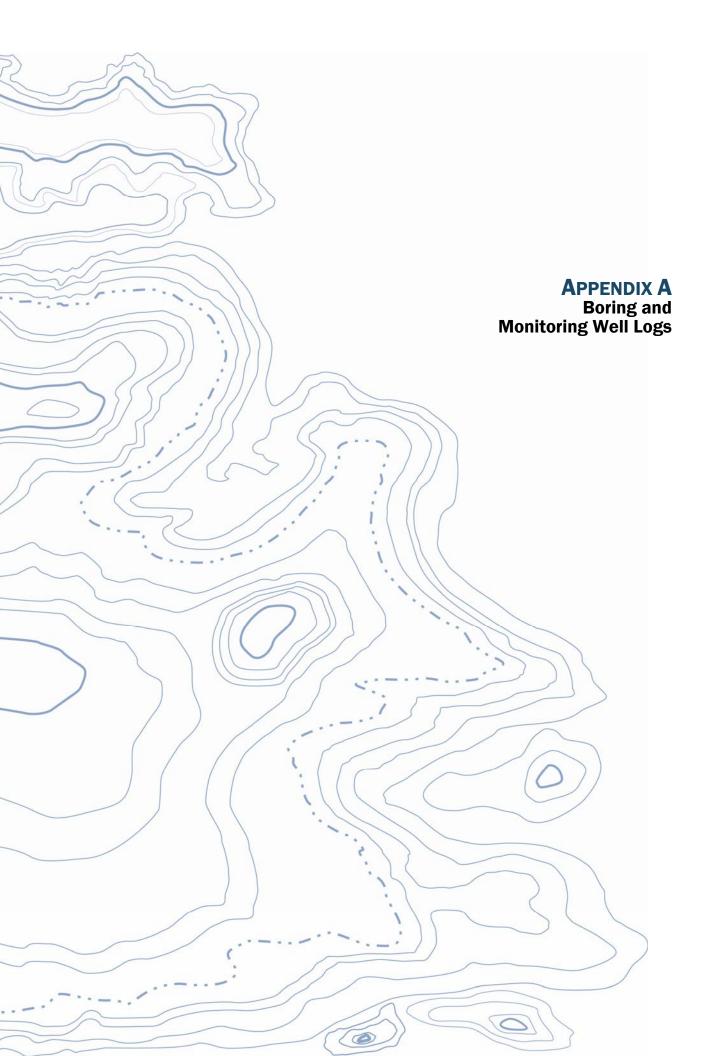

GEOENGINEERS

Figure 3



The master hard copy is stored by GeoEngineers, Inc. and will serve as the official document of record.



3. This figure is for informational purposes only. It is intended to assist in the identification of features discussed in a related document. Data were compiled from sources as listed in this figure. The data sources do not guarantee these data are accurate or complete. There may have been updates to the data since the publication of this figure. This figure is a copy of a master document. The master hard copy is stored by GeoEngineers, Inc. and will serve as the official document of record.

		IL CLASSIF			
N	IAJOR DIVISI	ONS	SYMB GRAPH	OLS LETTER	TYPICAL DESCRIPTIONS
	GRAVEL	CLEAN GRAVELS	000	GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES
COARSE GRAINED SOILS	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES
	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
00120	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50%	SAND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS
ETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
FINE GRAINED SOILS				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY
	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50	CL		INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
			h	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
			huh	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY
Н	IGHLY ORGANIC	SOILS	<u></u>	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS
of blo dista	2.4 Sta She Pis Pis Dird Sub Count is record Sub Sta She She She She She She She She	r Symbol De inch I.D. split I ndard Penetrat elby tube ton ect-Push k or grab orded for driver to advance sat See exploration	oarrel tion Test (i n samplers mpler 12 in	SPT) s as the nches (d	or
and o A "P' drill ا	' indicates sa	mpler pushed	using the	weight	of the

DITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	сс	Cement Concrete
	AC	Asphalt Concrete
	CR	Crushed Rock/ Quarry Spalls
	TS	Topsoil/ Forest Duff/Sod

- Measured groundwater level in exploration, well, or piezometer
- Groundwater observed at time of exploration
- Perched water observed at time of exploration
- Measured free product in well or piezometer

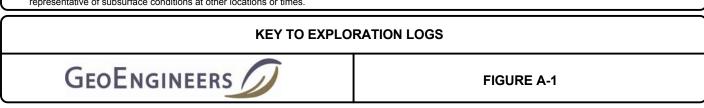
Graphic Log Contact

- Distinct contact between soil strata or geologic units Approximate location of soil strata
- change within a geologic soil unit

Material Description Contact

- Distinct contact between soil strata or geologic units
- Approximate location of soil strata change within a geologic soil unit

Laboratory / Field Tests


P	erc	ent	fines	;

- Atterberg limits Chemical analysis
- Laboratory compaction test Consolidation test
- **Direct shear**
- Hydrometer analysis
- Moisture content
- Moisture content and dry density
- Organic content Permeability or hydraulic conductivity
- Pocket penetrometer
- Sieve analysis
- Triaxial compression
- Unconfined compression
- Vane shear

Sheen Classification

- No Visible Sheen
- Slight Sheen
- Moderate Sheen Heavy Sheen
- Not Tested

er understanding of subsurface conditions. were made; they are not warranted to be representative of subsurface conditions at other locations or times.

			SYME	BOLS	TYPICAL
M	AJOR DIVIS	IONS	GRAPH	LETTER	DESCRIPTIONS
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
00.20	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50%	SAND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
SOILS			min	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
			Hiph	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY
н	GHLY ORGANIC	SOILS	<u>3.8.2</u> 3.8.2	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS
of blo	2.4 Sta She Pis Dire Count is rece proves required nce noted).	r Symbol D -inch I.D. split ndard Penetra elby tube ton ect-Push k or grab orded for drive to advance si See exploratio	barrel ation Test en sample ampler 12	(SPT) ers as th ∄ inches	(or
A "D'	indicates s	ampler pushed	d using th	e weigh	t of the

DDITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL					
GRAPH	LETTER	DESCRIPTIONS					
	сс	Cement Concrete					
	AC	Asphalt Concrete					
	CR	Crushed Rock/ Quarry Spalls					
	TS	Topsoil/ Forest Duff/Sod					

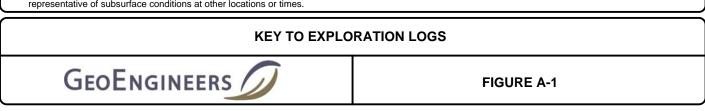
- Measured groundwater level in exploration, well, or piezometer
- Groundwater observed at time of exploration
- Perched water observed at time of exploration
- Measured free product in well or piezometer

Graphic Log Contact

Distinct contact between soil strata or geologic units
 Approximate location of soil strata change within a geologic soil unit

Material Description Contact

- Distinct contact between soil strata or geologic units
- ____ Approximate location of soil strata change within a geologic soil unit


Laboratory / Field Tests

- Percent fines
- Atterberg limits
- Chemical analysis
- P Laboratory compaction test
- 6 Consolidation test
- Direct shear
- Hydrometer analysis
- Moisture content Moisture content and dry density
- Organic content
- Permeability or hydraulic conductivity
- Pocket penetrometer
- Sieve analysis
- Triaxial compression Unconfined compression
- Vane shear

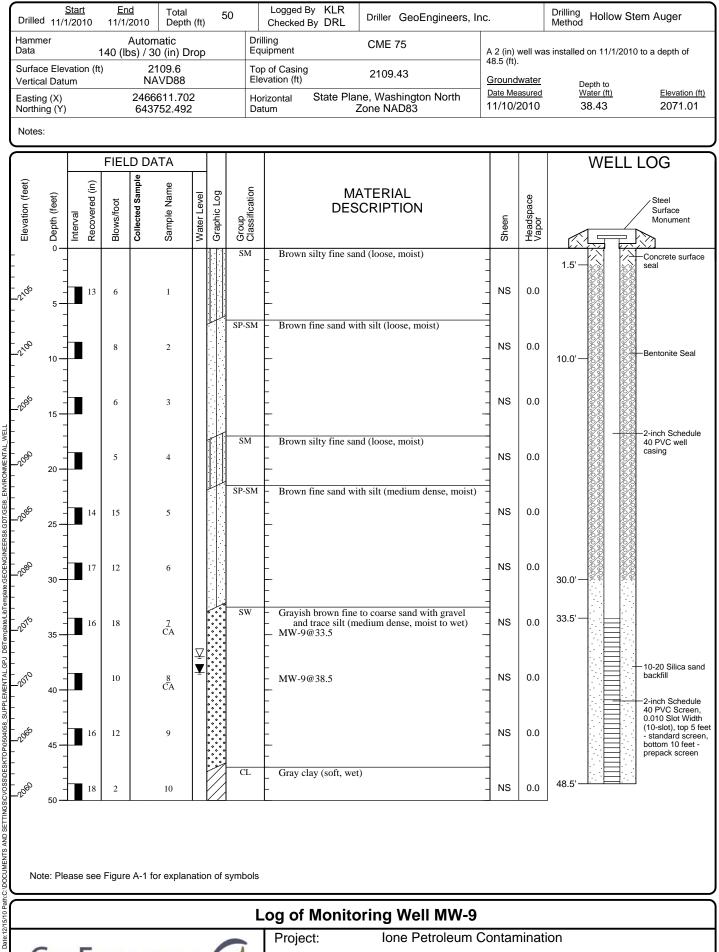
Sheen Classification

- No Visible Sheen
- Slight Sheen
- Moderate Sheen Heavy Sheen
- Not Tested

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Drilled <u>Start</u> Drilled 11/3/201	<u>End</u> 0 11/3/201	Total 10 Depth (f	t) 40		Logged By KLR Checked By DRL Driller GeoEngineers, Inc.				Drilling Method Hollow Stem Auger	
Surface Elevation Vertical Datum	ft)	2108.5 NAVD88		Han Data	Imer		Drilling Equipr	nent	CME 75	
Easting (X) Northing (Y)	24	466829.296 43264.847		Sys Dati	stem State Plane, Washington North Zone NAD83			dwater easure	Depth to <u>d Water (ft)</u> <u>Elevation (ft)</u>	
Notes:							11/3/2	2010	38.5	
Elevation (feet) Depth (feet) Interval	Blows/foot Collected Sample	e el	water Level Graphic Log Group	Classification	MATERIAL DESCRIPTION			pace (ppm)	REMARKS	
	Blows/foot	Samp Testin	Graph	Classi			Sheen	Headspace Vapor (ppm)		
- 0 					Brown fine sand with silt (medium dense, moi	ist)				
Reference of the second	5 13	1		-	-	- -	0.0	NS	Began sampling at approximately 23½ foot depth	
	6 12	2		SP	Grayish brown fine to medium sand with trace silt (medium dense, moist)		0.0	NS		
 - 2 ^{0¹⁵}	6 9	$\frac{3}{CA}$		SP	Brown fine sand with trace silt (loose, moist)	-	0.0	NS	B-5@33.5	
35 - 35 Note: Please se	Figure A-1		n of symbo	ls	-	-	Ţ		1	
					Log of Boring B-5					
GeoE	NGIN	NEERS	Ø	Ì	Project:Ione PetroleuProject Location:Ione, WashingProject Number:0504-058-00			mina	ation Figure A-2 Sheet 1 of 2	

Elevation (feet)	ଝ Depth (feet) 	Interval Recovered (in)	Blows/foot	Collected Sample	ATA Sample Name Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
- - - - - - -			23		4 CA	Ţ		SW	Grayish brown fine to coarse sand with gravel and trace silt (medium dense, wet)	0.0	NS	B-5@38.5


:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD Path.c:/DOCUMENTS AND SETTINGS/CVOSS/DESKT0P/0504058_SUPPLEMENTAL.GPJ_DBTemplate/LibTemplate okane: Date:12/15/10

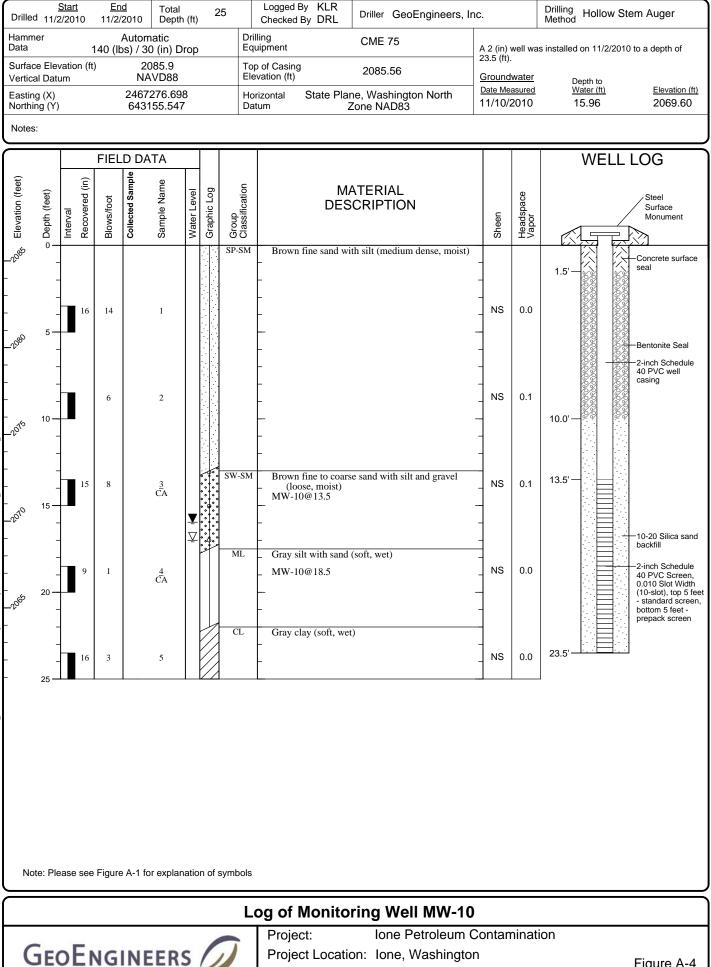
Note: Please see Figure A-1 for explanation of symbols

Log of Boring B-5 (continued)

Project:Ione Petroleum ContaminationProject Location:Ione, WashingtonProject Number:0504-058-00Figure A-2
Sheet 2 of 2

Project Location: Ione, Washington

0504-058-00


Project Number:

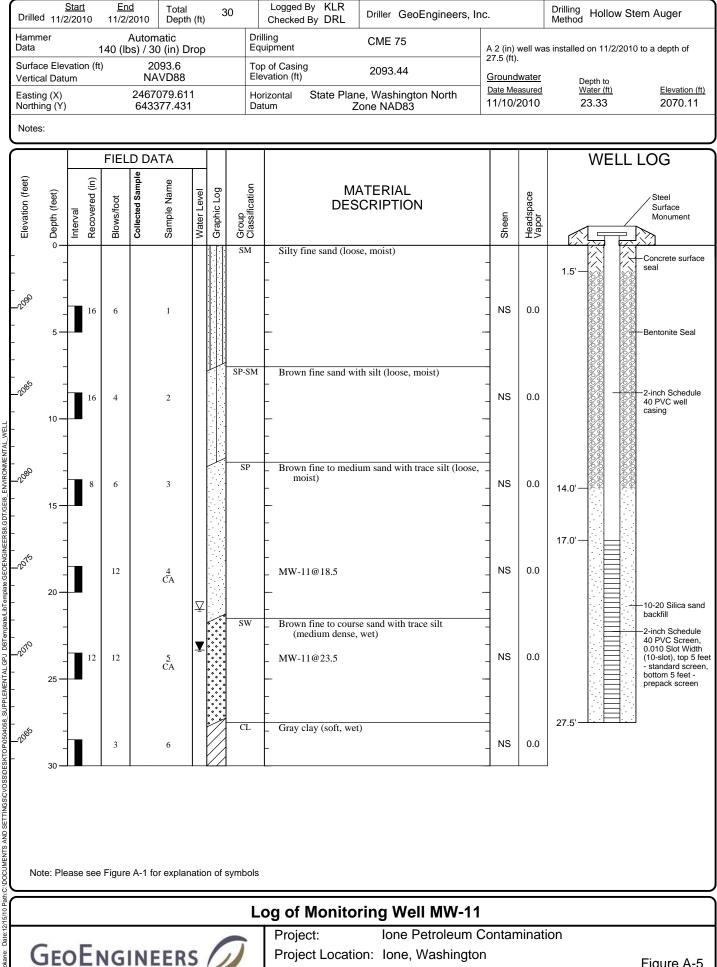
GEOENGINEERS

N FI

FMFNTAL GP.I

Figure A-3 Sheet 1 of 1

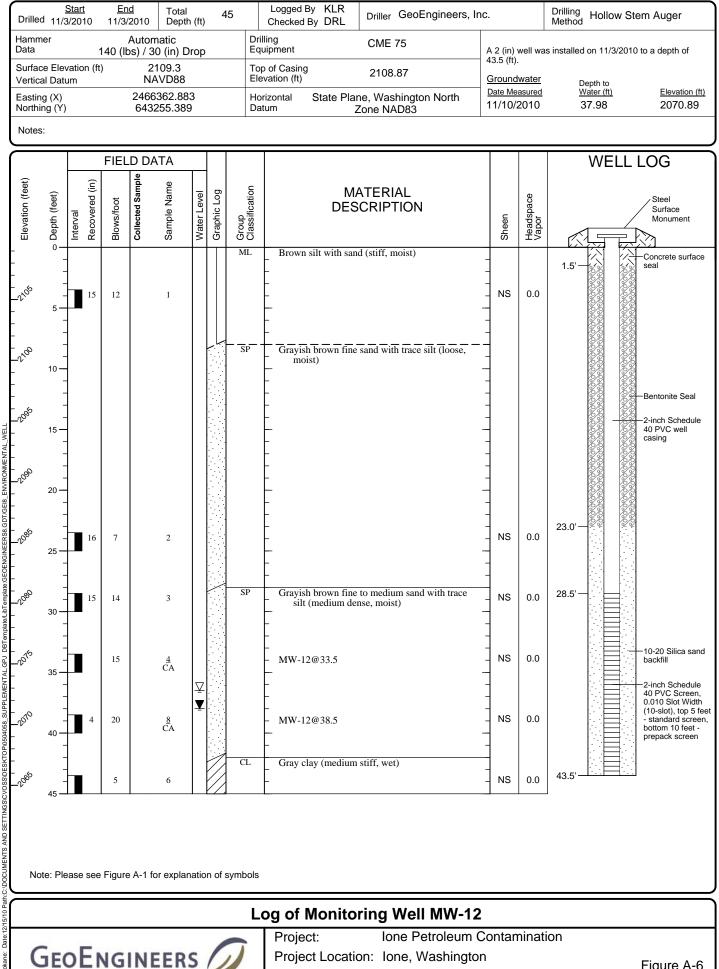
Project Number:


0504-058-00

E Ş Date: 12/1

VFL

RONMENTAL


Figure A-4 Sheet 1 of 1

Project Number:

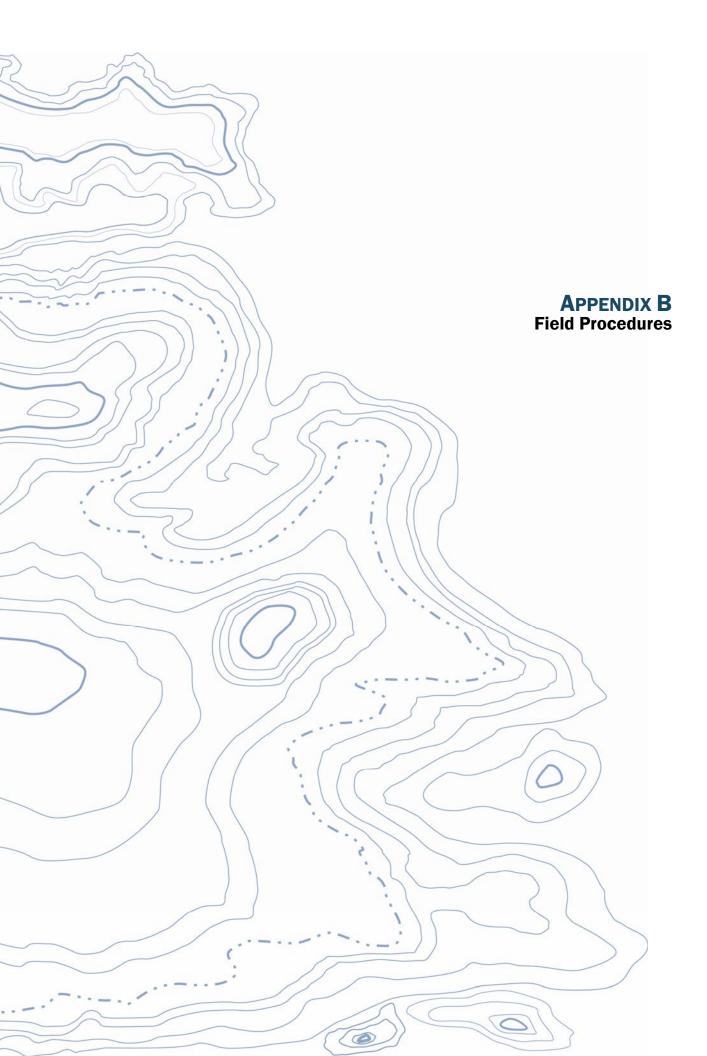

0504-058-00

Figure A-5 Sheet 1 of 1

Project Location: Ione, Washington Project Number: 0504-058-00

Figure A-6 Sheet 1 of 1

APPENDIX B FIELD PROCEDURES

Field Explorations

GeoEngineers contacted the One-Call Utility Notification Center, in accordance with Washington State law, and the Pend Oreille County Public Utility District (PUD) before drilling.

Following clearance of utilities, subsurface conditions at the Site were explored from November 1 to November 3, 2010 by:

- Advancing one exploratory boring and obtaining soil samples;
- Installing four new monitoring wells from which soil samples were collected.

The approximate exploration locations are shown in Figure 3.

Soil Sampling from Borings

Soil borings were completed using hollow-stem auger (HSA) drilling techniques by a licensed driller. Subsurface soil samples were obtained using standard penetration test (SPT) samplers.

Each boring was continuously monitored by a geologist from our firm who observed and classified the soil encountered, and prepared a detailed log of each boring. Soil encountered in the borings was classified in the field in general accordance with ASTM International (ASTM) D-2488, the Standard Practice for Classification of Soils, Visual-Manual Procedure, which is summarized in Figure A-1. A Log of hollow-stem boring is presented in Figures A-2. Preservation of VOC samples was completed in accordance with Ecology Memo 5, document number 04-09-087. Sample containers were labeled and placed into an ice chest containing ice/ice packs. Soil samples for VOCs analyses were obtained consistent with EPA Method 5035A. Chain-of-custody procedures were followed during transport of the soil samples.

Sampling equipment was decontaminated between each sampling attempt for either drilling method. Samples were obtained using either a decontaminated soil knife or new, clean nitrile glove and placed into 4-ounce glass sample jars with Teflon lids.

Samples were placed in a cooler with ice and delivered to the analytical laboratory; standard chainof-custody procedures were observed during transport of the samples to the laboratory.

Field Screening Methods

A GeoEngineers field geologist performed field screening tests on selected soil samples from the explorations. Field screening results were used to aid in the selection of soil samples for chemical analysis. Screening methods included (1) visual examination, (2) water sheen screening, and (3) headspace vapor screening using a photo-ionization detector (PID).

Monitoring Well Construction, Development, and Surveying

Monitoring wells MW-9 through MW-12 were constructed in accordance with WAC 173-160, Section 400, Washington State Resource Protection Well Construction Standards. Monitoring well installation was observed by a GeoEngineers field geologist, who maintained a detailed log of the

materials and depths of the well. Well construction details, including the depths of the well screen and filter packs are shown on Logs of Monitoring Wells, Figures A-3 through A-6.

The four monitoring wells were constructed using 2-inch-diameter polyvinyl chloride (PVC) well casing. The annular space in each well was sealed between the top of the filter pack and the ground surface with bentonite to prevent infiltration of groundwater into the well bore from shallower zones. A lockable compression-type cap was installed in the top of the PVC well casing. A flush-mount above-grade monument equipped with a watertight cover was installed to protect the PVC well casing. A concrete surface seal was placed around the monument at the ground surface to divert surface water away from the well location.

Monitoring wells MW-9 through MW-12 were developed on November 4, 2010 to remove water introduced into the well during drilling, stabilize the filter pack and formation materials surrounding the well screen, and restore the hydraulic connection between the well screen and the surrounding soil. Each well screen was gently surged and water was removed with a surge block and disposable bailer several times during the development process.

The elevation of the top of each monitoring well casing and the ground surface of each well was surveyed by Thomas Dean and Hoskins Inc., on November 10, 2010. A survey reference notch was established on the north side of each monitoring well casing. Horizontal locations of wells are referenced to the NAD 83 datum. Elevations are referenced to NAVD88 datum.

Decontamination Procedures

The objective of the decontamination procedure is to minimize the potential for crosscontamination between sample locations.

A designated decontamination area was established for decontamination of drilling equipment and reusable sampling equipment. Drilling equipment was cleaned using high-pressure/low-volume cleaning equipment.

Sampling equipment was decontaminated in accordance with the following procedures before each sampling attempt or measurement.

- 1. Brush equipment with a nylon brush to remove large particulate matter.
- 2. Rinse with potable tap water.
- 3. Wash with non-phosphate detergent solution (Liquinox® and potable tap water).
- 4. Rinse with potable tap water.
- 5. Rinse with distilled water.

Handling of Investigation-Derived Waste

Investigation Derived Waste (IDW), which consists of mainly drill cuttings and decontamination/purge water, typically was placed in DOT-approved 55-gallon drums. Each drum was labeled with the project name, exploration number, general contents, and date. The drummed IDW was stored onsite pending analysis and disposal.

Disposable items, such as sample tubing, disposable bailers, bailer line, gloves and protective overalls, paper towels, etc., were placed in plastic bags after use and deposited in trash receptacles for disposal.

APPENDIX C LABORATORY REPORTS

DATA Quality Assessment Summary NWTPH-Gx Volatile Organic Compounds (VOCs) by EPA 8260B

Anatek Laboratory SDG	Samples Validated (Bold indicates the sample was qualified)
101105046 (soil samples)	MW-9 @ 28.5, MW-9 @ 33.5, MW-9 @ 38.5, MW-9 @ 43.5, MW-10 @ 8.5, MW-10 @ 13.5, MW-10 @ 18.5, MW-10 @23.5, MW-11 @ 13.5, MW-11 @ 18.5, MW-11 @ 23.5, MW-11 @ 28.5, MW-12 @ 23.5, MW-12 @ 28.5, MW-12 @ 33.5, MW-12 @ 38.5, MW-12 @ 43.5, B-5 @ 23.5, B-5 @ 28.5, B-5 @ 33.5, B-5 @ 38.5

This report documents the results of an EPA level 2b data validation of analytical data from the analyses of soil samples and the associated laboratory and field quality control (QC) samples. The review included the following:

- Chain of Custody
- Holding Times
- Surrogates
- Method and Trip Blanks
- Laboratory Control Samples
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates

Data Package Completeness

Anatek Labs, Inc., located in Spokane, Washington, analyzed the samples evaluated as part of this data validation review. The laboratory provided all required deliverables for the validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and all identified anomalies were discussed in the case narrative.

The following sections discuss the data. Based on the review, qualification of the laboratory data was performed in association with holding time outliers and method blank contamination.

OBJECTIVE

The objective of the data validation was to review laboratory analytical procedures and quality control (QC) results to evaluate whether:

- The samples were analyzed using well-defined and acceptable methods that provide detection limits below applicable regulatory criteria;
- The precision and accuracy of the data are well defined and sufficient to provide defensible data; and

The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The environmental samples were analyzed by one or more of the analytical methods listed in the title of this appendix.

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in the USEPA Contract Laboratory Program *National Functional Guidelines for Inorganic Data Review* (USEPA 2002) and USEPA Contract Laboratory Program *National Functional Guidelines for Organic Data Review* (USEPA 2008).

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. There were no anomalies noted on the COC forms; proper COC protocols appear to have been followed for this sampling event.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits.

Method and Trip Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency.

If a compound was found at a measurable concentration in the method blank, an "action level" for this compound was assigned to the associated batch samples by multiplying the concentration by five. This action level is then multiplied by any dilutions the sample may have gone through in the laboratory extraction process.

Trip Blanks are carried with the field sampler to and from the site, and these are analyzed to ensure that the transportation environment does not introduce measurable concentrations of the

analytes of interest. Trip Blanks are usually analyzed at the frequency of one per every sample cooler.

None of the analytes of interest were detected above the reporting limits in any of the method or trip blanks.

Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Because the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery (%R) is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample") is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spike sample".

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses and the %R/RPD values were within the proper control limits.

Laboratory Control Samples/ Laboratory Control Sample Duplicates (LCS/LCSD)

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Field Replicates/Duplicates

Field duplicate samples were not collected for the supplemental soil samples.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values.

Precision was acceptable, as demonstrated by the laboratory duplicate, LCS/LCSD and MS/MSD RPD and absolute difference values.

No data points were qualified as estimated for any reason.

The data are acceptable for use as qualified.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: GEO ENGINEERS Address: 523 E 2ND SPOKANE, WA 99202 Attn: DAVE LAUDER

Batch #: Project Name:

101105046 IONE, WA 0504-058-00

Analytical Results Report

ample Number lient Sample ID latrix omments	101105046-003 MW-9 @ 38.5 Soil		Sampling Date Sampling Time Sample Locatio	1:		Date/Time Re Extraction Da		11/5/2010	3:50 PM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Met	hod	Qualifie
1,1,1,2-Tetrach	nloroethane	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA	8260B	
1,1,1-Trichloro	ethane	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA	8260B	
1,1,2,2-Tetrach	nloroethane	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA	8260B	
1,1,2-Trichloro	ethane	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8	8260B	
1,1-Dichloroeth	nane	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8	8260B	
1,1-Dichloroeth	nene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8	8260B	
1,1-dichloropro	pene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA a	8260B	
1,2,3-Trichlorol	benzene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8	8260B	
1,2,3-Trichloro	propane	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA a	8260B	
1,2,4-Trichlorol	benzene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8	8260B	
1,2,4-Trimethyl	benzene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8	8260B	
1,2-Dibromo-3-	-chloropropane(DBCP)	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8	8260B	
1,2-Dibromoeth	nane	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8	8260B	
1,2-Dichlorobe	nzene	ND	mg/kg	0.0201	11/14/2010	WOZ		8260B	
1,2-Dichloroeth	nane	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8	8260B	
1,2-Dichloropro	opane	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8	8260B	
1,3,5-Trimethyl	benzene	ND	mg/kg	0.0201	11/14/2010	WOZ		8260B	
1,3-Dichlorobe	nzene	ND	mg/kg	0.0201	11/14/2010	WOZ		8260B	
1,3-Dichloropro		ND	mg/kg	0.0201	11/14/2010	WOZ		8260B	
1,4-Dichlorobe	,	ND	mg/kg	0.0201	11/14/2010	WOZ		3260B	
2,2-Dichloropro	pane	ND	mg/kg	0.0201	11/14/2010	WOZ		8260B	
2-Chlorotoluen		ND	mg/kg	0.0201	11/14/2010	WOZ		B260B	
2-hexanone		ND	mg/kg	0.1005	11/14/2010	WOZ		8260B	
4-Chlorotoluen	е	ND	mg/kg	0.0201	11/14/2010	WOZ		3260B	
Acetone		ND	mg/kg	0.1005	11/14/2010	WOZ		3260B	
Acrylonitrile		ND	mg/kg	0.0201	11/14/2010	WOZ		3260B	
Benzene		ND	mg/kg	0.0201	11/14/2010	WOZ		3260B	
Bromobenzene		ND	mg/kg	0.0201	11/14/2010	WOZ		3260B	
Bromochlorome		ND	mg/kg	0.0201	11/14/2010	WOZ		3260B	
Bromodichloro		ND	mg/kg	0.0201	11/14/2010	WOZ		3260B	
Bromoform		ND	mg/kg	0.0201	11/14/2010	WOZ		3260B	
Bromomethane		ND	mg/kg	0.0201	11/14/2010	WOZ		3260B	
Carbon disulfid		ND	mg/kg	0.0201	11/14/2010	WOZ		3260B	
Carbon Tetrach		ND	mg/kg	0.0201	11/14/2010	WOZ		3260B	

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0095

Monday, January 03, 2011

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

 Batch #:
 10

 Project Name:
 IOI

101105046 IONE, WA 0504-058-00

Analytical Results Report

ample Number lient Sample ID latrix omments	101105046-003 MW-9 @ 38.5 Soil		Sampling Date Sampling Time Sample Locatio	1:		ate/Time Re xtraction Da		3:50 PM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Chlorobenzene	9	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Chloroethane		ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Chloroform		ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Chloromethane	e	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
cis-1,2-dichloro	pethene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
cis-1,3-Dichlor	opropene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Dibromochloro	methane	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Dibromometha	ine	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Dichlorodifluor	omethane	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Ethylbenzene		ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Hexachlorobut	adiene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Isopropylbenze	ene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
m+p-Xylene		ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Methyl ethyl ke	etone (MEK)	ND	mg/kg	0.1005	11/14/2010	WOZ	EPA 8260B	
Methyl isobutyl	l ketone (MIBK)	ND	mg/kg	0.1005	11/14/2010	WOZ	EPA 8260B	
Methylene chlo	oride	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Naphthalene		ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
n-Butylbenzen	e	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
n-Propylbenze	ne	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
o-Xylene		ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
p-isopropyltolu	ene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
sec-Butylbenze	ene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Styrene		ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
tert-Butylbenze	ene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Tetrachloroeth	ene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Toluene		ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
trans-1,2-Dichl	oroethene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
trans-1,3-Dichl	oropropene	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Trichloroethen	e	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Trichloroflouro	methane	ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	
Vinyl Chloride		ND	mg/kg	0.0201	11/14/2010	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER		Batch #: Project Name:	101105046 IONE, WA 0504-058-00
		Analytical Results Re	eport	

Sample Number Client Sample ID Matrix Comments	101105046-003 MW-9 @ 38.5 Soil		Sampling Date Sampling Time Sample Location	1:		ate/Time Receiv xtraction Date	ed 11/5/2010	3:50 PM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
			Surrogate	Data				
ample Number	101105046-003							
ample Number Surrogate S			Method		Per	cent Recovery	Control L	imits
•	tandard		Method EPA 8260B		Per	cent Recovery 103.6	Control L 70-13	
	tandard benzene-d4				Per	-		0

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

Project Name: ION

Batch #:

101105046 IONE, WA 0504-058-00

Analytical Results Report

Sample Number Client Sample ID Matrix	101105046-006 MW-10 @ 13.5 Soil		Sampling Date Sampling Tim Sample Locat	e 11		Date/Time Re Extraction Da		3:50 PM
Comments								
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Method	Qualifie
1,1,1,2-Tetracl	nloroethane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,1,1-Trichloro	ethane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,1,2,2-Tetrack	nloroethane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,1,2-Trichloro	ethane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,1-Dichloroeth	hane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,1-Dichloroeth	nene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,1-dichloropro	opene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,2,3-Trichloro	benzene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,2,3-Trichloro	propane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,2,4-Trichloro	benzene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,2,4-Trimethy	Ibenzene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,2-Dibromo-3	-chloropropane(DBCP)	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,2-Dibromoet	hane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,2-Dichlorobe	nzene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
10 District and				0.00405	44/44/0040	14/07		

1,2,4-Trimethylbenzene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,2-Dibromo-3-chloropropane(DBCP)	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,2-Dibromoethane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,2-Dichlorobenzene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,2-Dichloroethane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,2-Dichloropropane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,3,5-Trimethylbenzene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,3-Dichlorobenzene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,3-Dichloropropane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
1,4-Dichlorobenzene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
2,2-Dichloropropane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
2-Chlorotoluene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
2-hexanone	ND	mg/kg	0.10675	11/14/2010	WOZ	EPA 8260B	
4-Chlorotoluene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Acetone	ND	mg/kg	0.10675	11/14/2010	WOZ	EPA 8260B	
Acrylonitrile	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Benzene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Bromobenzene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Bromochloromethane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Bromodichloromethane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Bromoform	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Bromomethane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Carbon disulfide	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Carbon Tetrachloride	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Chlorobenzene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: GEO ENGINEERS Address: 523 E 2ND SPOKANE, WA 99202 Attn: DAVE LAUDER Batch #: 101 Project Name: ION

101105046 IONE, WA 0504-058-00

Analytical Results Report

ample Number ient Sample ID atrix omments	101105046-006 MW-10 @ 13.5 Soil		Sampling Date Sampling Tim Sample Locat	e 11		ite/Time Re traction Da		3:50 PM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
Chloroethane		ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Chloroform		ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Chloromethane	e	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
cis-1,2-dichloro	bethene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
cis-1,3-Dichlor	opropene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Dibromochloro	methane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Dibromometha	ine	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Dichlorodifluor	omethane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Ethylbenzene		ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Hexachlorobut	adiene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Isopropylbenze	ene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
m+p-Xylene		ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Methyl ethyl ke	etone (MEK)	ND	mg/kg	0.10675	11/14/2010	WOZ	EPA 8260B	
Methyl isobuty	l ketone (MIBK)	ND	mg/kg	0.10675	11/14/2010	WOZ	EPA 8260B	
Methylene chlo	oride	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Naphthalene		ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
n-Butylbenzen	е	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
n-Propylbenze	ne	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
o-Xylene		ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
p-isopropyltolu	ene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
sec-Butylbenze	ene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Styrene		ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
tert-Butylbenze	ene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Tetrachloroeth		ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Toluene		ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
trans-1,2-Dichl	oroethene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
trans-1,3-Dichl	oropropene	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Trichloroethen	e	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Trichloroflouro	methane	ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	
Vinyl Chloride		ND	mg/kg	0.02135	11/14/2010	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER		Batch Projec		105046 IE, WA 0504-058-00
		Analytical Re	sults Report		
Sample Number Client Sample ID Matrix Comments	101105046-006 MW-10 @ 13.5 Soil	Sampling Dat Sampling Tim Sample Locat	e 11:20 AM	Date/Time Rece Extraction Date	
Parameter		Result Units	PQL Analysis	Date Analyst	Method Qualifier
		Surroga	te Data		
ample Number	101105046-006				
Surrogate	Standard	Method		Percent Recovery	Control Limits
1,2-Dichlore	obenzene-d4	EPA 8260)B	103.6	70-130
4-Bromoflue	probenzene	EPA 8260)B	99.2	70-130
Toluene-d8		EPA 8260)B	100.4	70-130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

101105046-010

Sample Number

Batch #: Project Name:

Date/Time Received

101105046 IONE, WA 0504-058-00

11/5/2010 3:50 PM

Analytical Results Report

11/2/2010

Sampling Date

ent Sample ID trix mments	MW-11 @ 18.5 Soil		Sampling Time Sample Locatio		10 PM Ex	traction Da	te	
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
1,1,1,2-Tetrach	loroethane	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,1,1-Trichloro	ethane	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,1,2,2-Tetrack	loroethane	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,1,2-Trichloro	ethane	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,1-Dichloroeth	nane	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,1-Dichloroeth	iene	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,1-dichloropro	pene	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,2,3-Trichloro	benzene	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,2,3-Trichloro	propane	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,2,4-Trichloro	benzene	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,2,4-Trimethy	lbenzene	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,2-Dibromo-3	-chloropropane(DBCP)	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,2-Dibromoet	nane	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,2-Dichlorobe	nzene	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,2-Dichloroeth	nane	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,2-Dichloropro	opane	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,3,5-Trimethy	lbenzene	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,3-Dichlorobe	nzene	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,3-Dichloropro	opane	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
1,4-Dichlorobe	nzene	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
2,2-Dichloropro	opane	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
2-Chlorotoluen	е	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
2-hexanone		ND	mg/kg	0.1085	11/14/2010	WOZ	EPA 8260B	
4-Chlorotoluen	e	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
Acetone		ND	mg/kg	0.1085	11/14/2010	WOZ	EPA 8260B	
Acrylonitrile		ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
Benzene		ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
Bromobenzene	e	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
Bromochlorom	ethane	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
Bromodichloro	methane	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
Bromoform		ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
Bromomethan	e	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
Carbon disulfic	le	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
Carbon Tetrac	hloride	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	
Chlorobenzene	e	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Batch #:

Project Name:

101105046

IONE, WA 0504-058-00

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

Analytical Results Report

ample Number lient Sample ID latrix omments	101105046-010 MW-11 @ 18.5 Soil		Sampling Date Sampling Time Sample Locatio	3:		ate/Time Re ktraction Da		11/5/2010	3:50 PM
		Result	Units	PQL	Analysis Data	Analyst	Ма	thod	Qualifie
Parameter Chloroethane		ND		0.0217	Analysis Date 11/14/2010	WOZ		8260B	Quanne
Chloroform		ND	mg/kg	0.0217		WOZ			
Chloromethane		ND	mg/kg mg/kg	0.0217	11/14/2010 11/14/2010	WOZ		8260B 8260B	
cis-1,2-dichloro		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
cis-1,3-Dichlor		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
Dibromochloro		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
Dibromometha		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
Dichlorodifluor		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
Ethylbenzene	ununu	ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
Hexachlorobuta	adiene	ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
Isopropylbenze		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
m+p-Xylene		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
Methyl ethyl ke	tone (MEK)	ND	mg/kg	0.1085	11/14/2010	WOZ		8260B	
Methyl isobutyl		ND	mg/kg	0.1085	11/14/2010	WOZ		8260B	
Methylene chlo		ND	mg/kg	0.02	11/14/2010	WOZ		8260B	
methyl-t-butyl e		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
Naphthalene		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
n-Butylbenzene	9	ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
n-Propylbenzer		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
o-Xylene		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
p-isopropyltolue	ene	ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
sec-Butylbenze		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
Styrene		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
tert-Butylbenze	ne	ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
Tetrachloroethe		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
Toluene		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
trans-1,2-Dichle	oroethene	ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
trans-1,3-Dichle	oropropene	ND	mg/kg	0.0217	11/14/2010	WOZ	EPA	8260B	
Trichloroethene		ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
Trichloroflouror	methane	ND	mg/kg	0.0217	11/14/2010	WOZ		8260B	
Vinyl Chloride		ND	mg/kg	0.0217	11/14/2010	WOZ	EPA	8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER		Batch Projec		1105046 NE, WA 0504-0	58-00
		Analytical Resu	ılts Report			
Sample Number Client Sample ID Matrix Comments	101105046-010 MW-11 @ 18.5 Soil	Sampling Date Sampling Time Sample Location	11/2/2010 3:10 PM	Date/Time Rec Extraction Dat		3:50 PM
Parameter		Result Units	PQL Analysis	Date Analyst	Method	Qualifier
		Surrogate	Data			
ample Number	101105046-010					
Surrogate	Standard	Method		Percent Recover	y Control	Limits
1,2-Dichloro	benzene-d4	EPA 8260B		101.6	70-1	30
4-Bromofluc	probenzene	EPA 8260B		99.6	70-1	30
Toluene-d8		EPA 8260B		102.4	70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

101105046-015

Sample Number

Batch #: 101 Project Name: ION

Date/Time Received

101105046 IONE, WA 0504-058-00

11/5/2010 3:50 PM

Analytical Results Report

11/3/2010

Sampling Date

ent Sample ID trix mments	MW-12 @ 33.5 Soil		Sampling Time Sample Location		13 AM E	xtraction Da	te	
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,1,1,2-Tetrach	lloroethane	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,1,1-Trichloroe	ethane	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,1,2,2-Tetrach	loroethane	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,1,2-Trichloroe	ethane	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,1-Dichloroeth	ane	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,1-Dichloroeth	ene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,1-dichloropro	pene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,2,3-Trichlorol	penzene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,2,3-Trichloro	propane	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,2,4-Trichlorol	penzene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,2,4-Trimethyl	benzene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,2-Dibromo-3-	chloropropane(DBCP)	ND		0.02295	11/14/2010	WOZ	EPA 8260B	
1,2-Dibromoeth	nane	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,2-Dichlorober	nzene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,2-Dichloroeth	ane	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,2-Dichloropro	pane	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,3,5-Trimethyl	benzene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,3-Dichlorober	nzene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,3-Dichloropro	pane	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
1,4-Dichlorober	nzene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
2,2-Dichloropro	pane	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
2-Chlorotoluen	9	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
2-hexanone		ND	mg/kg	0.11475	11/14/2010	WOZ	EPA 8260B	
4-Chlorotoluen	9	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Acetone		ND		0.11475	11/14/2010	WOZ	EPA 8260B	
Acrylonitrile		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Benzene		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Bromobenzene	•	ND		0.02295	11/14/2010	WOZ	EPA 8260B	
Bromochlorome	ethane	ND		0.02295	11/14/2010	WOZ	EPA 8260B	
Bromodichloror	methane	ND		0.02295	11/14/2010	WOZ	EPA 8260B	
Bromoform		ND		0.02295	11/14/2010	WOZ	EPA 8260B	
Bromomethane		ND		0.02295	11/14/2010	WOZ	EPA 8260B	
Carbon disulfid	e	ND		0.02295	11/14/2010	WOZ	EPA 8260B	
Carbon Tetrach	loride	ND		0.02295	11/14/2010	WOZ	EPA 8260B	
Chlorobenzene		ND	00	0.02295	11/14/2010	WOZ	EPA 8260B	

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0095

Monday, January 03, 2011

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Batch #:

Project Name:

101105046

IONE, WA 0504-058-00

Client: Address:	GEO ENGINEERS 523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

Analytical Results Report								
Sample Number Client Sample ID Matrix Comments	101105046-015 MW-12 @ 33.5 Soil	\$	Sampling Date11/3/2010Date/Time Received11/5/2010Sampling Time9:43 AMExtraction DateSample Location					
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
Chloroethane		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Chloroform		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Chloromethan	e	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
cis-1,2-dichlor	oethene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
cis-1,3-Dichlor		ND	mg/kg	0.02295		WOZ	EPA 8260B	
Dibromochlord		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Dibromometha		ND	mg/kg	0.02295		WOZ	EPA 8260B	
Dichlorodifluor	omethane	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Ethylbenzene		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Hexachlorobut	tadiene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Isopropylbenzo		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
m+p-Xylene		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Methyl ethyl ke	etone (MEK)	ND	mg/kg	0.11475		WOZ	EPA 8260B	
	l ketone (MIBK)	ND	mg/kg	0.11475	11/14/2010	WOZ	EPA 8260B	
Methylene chlo		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
methyl-t-butyl		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Naphthalene	· · · · · · · · /	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
n-Butylbenzen	e	ND	mg/kg	0.02295	11/14/2010	woz	EPA 8260B	
n-Propylbenze		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
o-Xylene		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
p-isopropyltolu	iene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
sec-Butylbenz		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Styrene		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
tert-Butylbenze	ene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Tetrachloroeth	ene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
Toluene		ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
trans-1,2-Dich	loroethene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	
trans-1,3-Dich	loropropene	ND	mg/kg	0.02295	11/14/2010	WOZ	EPA 8260B	

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0095

mg/kg

mg/kg

mg/kg

0.02295 11/14/2010

0.02295 11/14/2010

11/14/2010

0.02295

WOZ

WOZ

WOZ

EPA 8260B

EPA 8260B

EPA 8260B

ND

ND

ND

Trichloroethene

Vinyl Chloride

Trichloroflouromethane

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER				Batch #: 101105046 Project Name: IONE, WA 0504-058-			58-00	
		Ana	lytical Resu	ılts	Report				
Sample Number Client Sample ID Matrix Comments	101105046-015 MW-12 @ 33.5 Soil		Sampling Date Sampling Time Sample Location	9	1/3/2010 0:43 AM	Date/Time Extraction	e Received n Date	11/5/2010) 3:50 PM
Parameter		Result	Units	PQL	Analysis	Date Analy	st M	ethod	Qualifie
			Surrogate	Data	1				
ample Number	101105046-015								
Surrogate	Standard		Method			Percent Re	covery	Control	Limits
1,2-Dichlore	obenzene-d4		EPA 8260B			102.0)	70-	130
4-Bromoflue	orobenzene		EPA 8260B			102.0)	70-	130
Toluene-d8			EPA 8260B			104.0		70-	130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

Batch #:

101105046 Project Name: IONE, WA 0504-058-00

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	101105046-020 B-5 @ 33.5 Soil		Sampling Date Sampling Time Sample Locatie	• 1:		ate/Time Re xtraction Da		3:50 PM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
1,1,1,2-Tetrach	loroethane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,1,1-Trichloro	ethane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,1,2,2-Tetrach	nloroethane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,1,2-Trichloro	ethane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,1-Dichloroeth	nane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,1-Dichloroeth	nene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,1-dichloropro	pene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,2,3-Trichlorol	benzene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,2,3-Trichloro	propane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,2,4-Trichlorol	benzene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,2,4-Trimethyl	benzene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,2-Dibromo-3-	chloropropane(DBCP)	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,2-Dibromoeth	nane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,2-Dichlorober	nzene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,2-Dichloroeth	ane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,2-Dichloropro	pane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,3,5-Trimethyl	benzene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,3-Dichlorober	nzene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,3-Dichloropro	pane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
1,4-Dichlorober	nzene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
2,2-Dichloropro	pane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
2-Chlorotoluen	e	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
2-hexanone		ND	mg/kg	0.11725	11/14/2010	WOZ	EPA 8260B	
4-Chlorotoluen	е	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Acetone		ND	mg/kg	0.11725	11/14/2010	WOZ	EPA 8260B	
Acrylonitrile		ND		0.02345	11/14/2010	WOZ	EPA 8260B	
Benzene		ND	0 0	0.02345	11/14/2010	WOZ	EPA 8260B	
Bromobenzene	•	ND		0.02345	11/14/2010	WOZ	EPA 8260B	
Bromochlorome	ethane	ND	00	0.02345	11/14/2010	WOZ	EPA 8260B	
Bromodichloror	methane	ND	0 0	0.02345	11/14/2010	WOZ	EPA 8260B	
Bromoform		ND		0.02345	11/14/2010	WOZ	EPA 8260B	
Bromomethane)	ND		0.02345	11/14/2010	WOZ	EPA 8260B	
Carbon disulfid	e	ND		0.02345	11/14/2010	WOZ	EPA 8260B	
Carbon Tetrach	nloride	ND		0.02345	11/14/2010	WOZ	EPA 8260B	
Chlorobenzene		ND	0 0	0.02345	11/14/2010	WOZ	EPA 8260B	

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0095

Monday, January 03, 2011

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Batch #:

Project Name:

101105046

IONE, WA 0504-058-00

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

Analytical Results Report

ample Number ient Sample ID atrix omments	101105046-020 B-5 @ 33.5 Soil		Sampling Date Sampling Time Sample Location	e 1:8		te/Time Re traction D		3:50 PM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
Chloroethane		ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Chloroform		ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Chloromethane	e	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
cis-1,2-dichloro	bethene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
cis-1,3-Dichlor	opropene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Dibromochloro	methane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Dibromometha	ne	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Dichlorodifluor	omethane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Ethylbenzene		ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Hexachlorobut	adiene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Isopropylbenze	ene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
m+p-Xylene		ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Methyl ethyl ke	tone (MEK)	ND	mg/kg	0.11725	11/14/2010	WOZ	EPA 8260B	
Methyl isobutyl	ketone (MIBK)	ND	mg/kg	0.11725	11/14/2010	WOZ	EPA 8260B	
Methylene chlo	oride	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Naphthalene		ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
n-Butylbenzene	e	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
n-Propylbenzer	ne	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
o-Xylene		ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
p-isopropyltolu	ene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
sec-Butylbenze	ene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Styrene		ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
tert-Butylbenze	ene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Tetrachloroethe	ene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Toluene		ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
trans-1,2-Dichle	oroethene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
trans-1,3-Dichle	oropropene	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Trichloroethene	e	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Trichloroflouror	methane	ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	
Vinyl Chloride		ND	mg/kg	0.02345	11/14/2010	WOZ	EPA 8260B	

Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com

504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER			Batch #: Project Name:		101105046 IONE, WA 0504-058-00		58-00	
		Ana	lytical Resu	ts	Report				
Sample Number Client Sample ID Matrix Comments	101105046-020 B-5 @ 33.5 Soil		Sampling Date Sampling Time Sample Location		1/3/2010 :50 PM	Date/Time Extraction	e Received n Date	11/5/2010	3:50 PM
Parameter		Result	Units F	PQL	Analysis	Date Analy	st Me	ethod	Qualifier
			Surrogate [)ata	I				
ample Number	101105046-020								
Surrogate	Standard		Method			Percent Red	covery	Control	Limits
1,2-Dichlorobenzene-d4			EPA 8260B			102.4		70-1	30
4-Bromoflue	probenzene	EPA 8260B			104.4 70-		70-1	30	
Toluene-d8			EPA 8260B			105.2		70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

Batch #: 101 Project Name: ION

101105046 IONE, WA 0504-058-00

Analytical Results Report

ample Number lient Sample ID latrix comments	101105046-022 TRIP BLANK Liquid		Sampling Date Sampling Time Sample Locatio			te/Time Re traction Da		4:16 PM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,1,1,2-Tetrach	loroethane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,1,1-Trichloroe	ethane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,1,2,2-Tetrach	loroethane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,1,2-Trichloroe	ethane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,1-Dichloroeth	nane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,1-Dichloroeth	iene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,1-dichloropro	pene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,2,3-Trichlorol		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,2,3-Trichlorop	propane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,2,4-Trichlorol	benzene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,2,4-Trimethyl	benzene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,2-Dibromo-3-	chloropropane(DBCP)	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,2-Dibromoeth	nane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,2-Dichlorober	nzene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,2-Dichloroeth	ane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,2-Dichloropro	pane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,3,5-Trimethyl	benzene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,3-Dichlorober	nzene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,3-Dichloropro	pane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
1,4-Dichlorober	nzene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
2,2-Dichloropro	pane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
2-Chlorotoluene	e	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
2-hexanone		ND	mg/kg	0.1	11/14/2010	WOZ	EPA 8260B	
4-Chlorotoluen	e	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Acetone		ND	mg/kg	0.1	11/14/2010	WOZ	EPA 8260B	
Acrylonitrile		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Benzene		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Bromobenzene	•	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Bromochlorome	ethane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Bromodichloror	methane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Bromoform		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Bromomethane)	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Carbon disulfid	e	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Carbon Tetrach	nloride	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Chlorobenzene	•	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Batch #:

Project Name:

101105046

IONE, WA 0504-058-00

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

Analytical Results Report

ample Number ient Sample ID atrix omments	101105046-022 TRIP BLANK Liquid		Sampling Date Sampling Time Sample Locatio			te/Time Re traction Da		4:16 PM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
Chloroethane		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Chloroform		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Chloromethane	e	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
cis-1,2-dichlor	bethene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
cis-1,3-Dichlor	opropene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Dibromochloro	methane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Dibromometha	ne	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Dichlorodifluor	omethane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Ethylbenzene		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Hexachlorobut	adiene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Isopropylbenze	ene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
m+p-Xylene		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Methyl ethyl ke	etone (MEK)	ND	mg/kg	0.1	11/14/2010	WOZ	EPA 8260B	
	ketone (MIBK)	ND	mg/kg	0.1	11/14/2010	WOZ	EPA 8260B	
Methylene chlo	oride	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
methyl-t-butyl	ether (MTBE)	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Naphthalene		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
n-Butylbenzen	е	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
n-Propylbenze	ne	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
o-Xylene		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
p-isopropyltolu	ene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
sec-Butylbenze	ene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Styrene		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
tert-Butylbenze	ene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Tetrachloroeth	ene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Toluene		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
trans-1,2-Dichl	oroethene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
trans-1,3-Dichl	oropropene	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Trichloroethen		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Trichloroflouro	methane	ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	
Vinyl Chloride		ND	mg/kg	0.02	11/14/2010	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

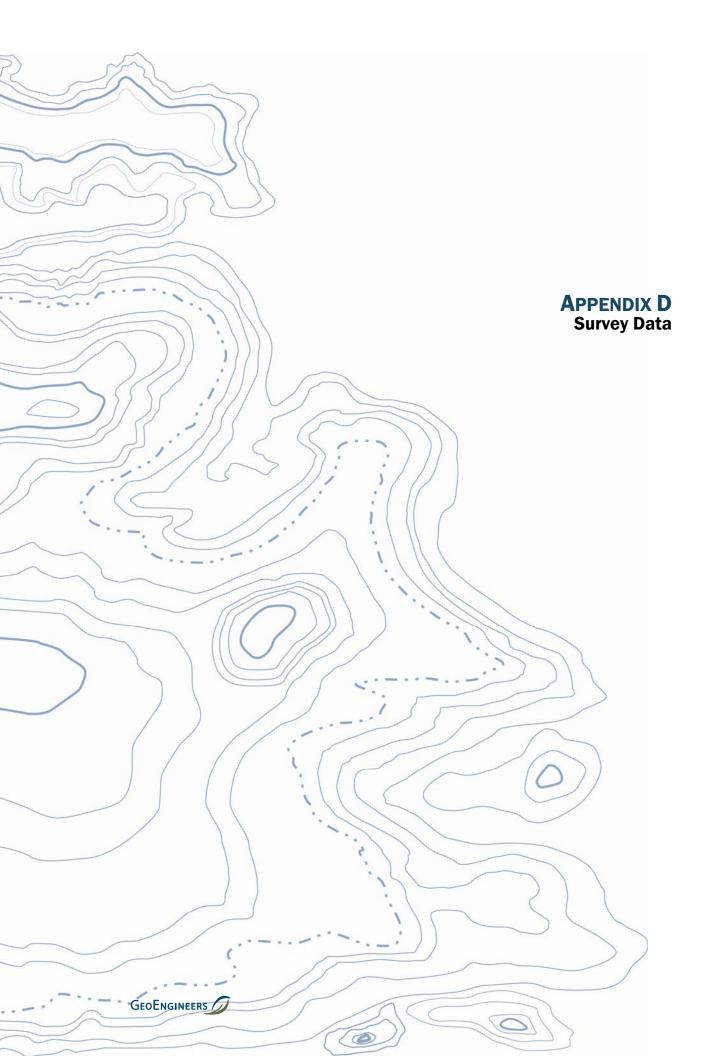
Client:	GEO ENGINEERS	Batch #:	101105046
Address:	523 E 2ND	Project Name:	IONE, WA 0504-058-00
	SPOKANE, WA 99202		
Attn:	DAVE LAUDER		

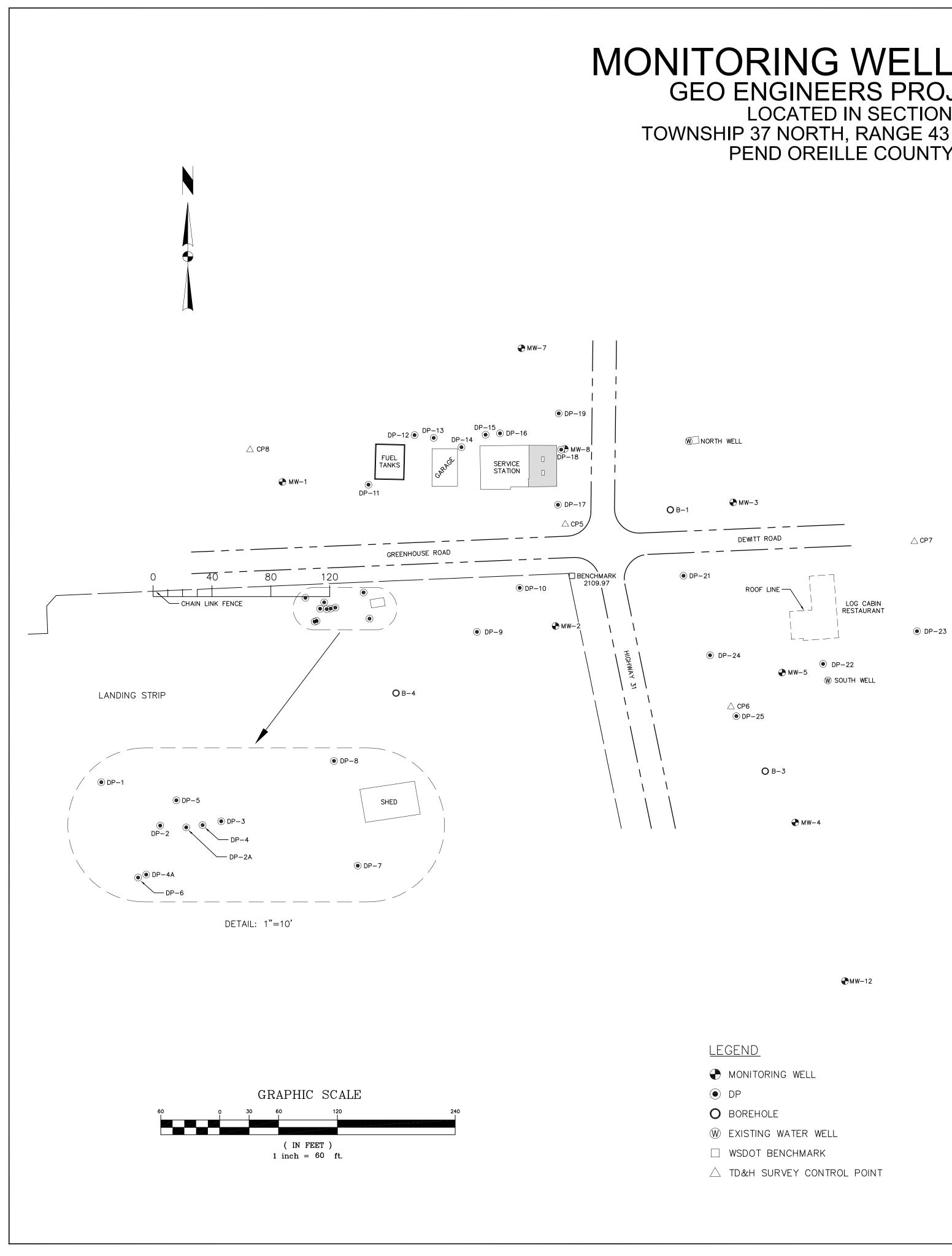
Analytical Results Report

Sample Number Client Sample ID Matrix Comments	101105046-022 TRIP BLANK Liquid		Sampling Date Sampling Time Sample Location	11/3/2010	Date/Time Receiv Extraction Date	ved 11/5/2010	4:16 PM
Parameter		Result	Units	PQL Analysis	Date Analyst	Method	Qualifier
			Surrogate I	Data			
Sample Number	101105046-022						
Surrogate S	tandard		Method		Percent Recovery	Control I	Limits
1,2-Dichlorot	penzene-d4		EPA 8260B		99.2	70-13	30
4-Bromofluor	obenzene		EPA 8260B		102.8	70-13	30
Toluene-d8			EPA 8260B		104.8	70-13	30

Authorized Signature

Kathleen a. lottle,


Kathy Sattler, Lab Manager


MCL EPA's Maximum Contaminant Level

ND Not Detected

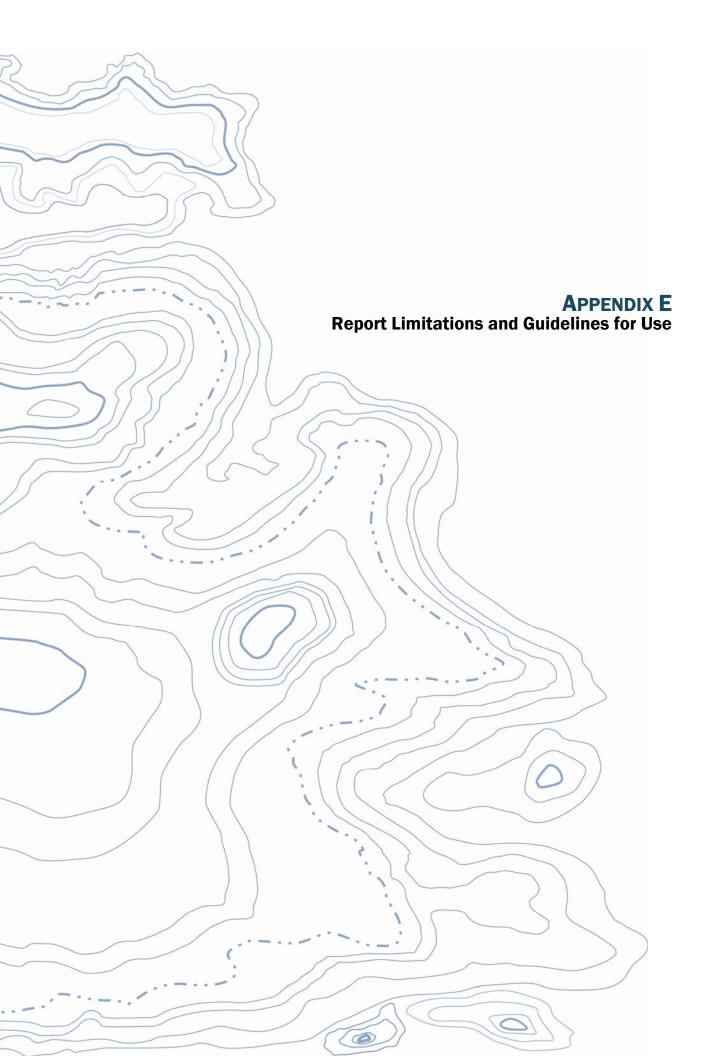
PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

MONITORING WELLS/SITE FEATURES

GEO ENGINEERS PROJECT NO. 0504-058-00 LOCATED IN SECTION 7 AND SECTION 18, TOWNSHIP 37 NORTH, RANGE 43 EAST, WILLAMETTE MERIDIAN, PEND OREILLE COUNTY, IONE, WASHINGTON

₽ М₩-9


●B-5

<u>NOTES</u>

- 1. VERTICAL DATUM FOR THIS SURVEY IS NAVD 88 AT WSDOT ID NO. 7397 (NATIONAL GEODETIC SURVEY PID
- 2. HORIZONTAL DATUM FOR THIS SURVEY IS NAD 83, WA COORDINATES.
- 2. MONITORING WELL ELEVATIONS WERE TAKEN AT GROUN THE NORTHERLY EDGE.
- 3. TD&H SURVEY CONTROL POINTS ARE RANDOMLY LOCA

MW-1MW-2 MW-3 MW-4 MW-5 MW-6 MW-7 MW-8 MW-9 MW-1C MW-11 MW-12 DP-1 DP-2 DP-2A DP-3 DP-4 DP-4A DP-5 DP-6 DP-7DP-8 DP-9 DP-10 DP-11 DP-12 DP-13 DP-14 DP-15 DP-16 DP-17 DP-18 DP-19 DP-21 DP-22 DP-23 DP-24 DP-25 B-1

COORDINATE TABLE STATION NORTHING EASTING RM/020UND TOP OF PVC NW-1 643763.874 2465789.627 2006.649 2008.62 2009.28 NW-2 643617.071 2465078.9667 2109.62 2109.43 2109.43 NW-3 643573.030 2465078.9667 2109.42 2109.43 2109.43 NW-4 643343.243 2465079.736 2109.42 2109.43 2109.72 NW-4 643343.244 2465079.736 2109.43 2109.72 2009.72 NW-9 6433757.34 246507.916 2109.32 2109.43 2009.72 2009.43 NW-10 643357.43 246507.911 20293.65 2009.32 100.43 2009.72 100.42 2009.66 2009.72 100.43 2009.67 2009.72 100.43 2009.72 100.43 2009.72 100.43 2009.72 100.43 100.43 100.43 100.43 100.43 100.43 100.43 100.43 100.43 100.43 100.44 100.43	C SURVEY PID D 5 NAD 83, WASH	L2781). ELEVAT HNGTON STATE /RIM LEVEL ANI	DESIGNATION "L TION=2109.97. PLANE, NORTH D AT THE TOP (ZONE, GROUND		MW−10 €	GEO ENGINEERS PROJECT NO. 0 IONE, WASHINGTON	SITE FEATURES BASE MAP
	STATION MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 MW-7 MW-8 MW-9 MW-10 MW-10 MW-11 MW-12 DP-1 DP-2 DP-2A DP-3 DP-4 DP-4A DP-5 DP-6 DP-7 DP-8 DP-9 DP-10 DP-11 DP-12 DP-10 DP-11 DP-12 DP-13 DP-14 DP-15 DP-14 DP-15 DP-16 DP-17 DP-18 DP-19 DP-22 DP-21 DP-22 DP-23 DP-24 DP-25 B-1 B-3 B-4 B-5 NORTH WELL SOUTH WELL TDH CP5 TDH CP5 TDH CP7 TDH CP8	NORTHING 643763.814 643617.071 643743.030 643416.970 643569.617 643438.242 643899.995 643797.534 643752.492 643155.547 643377.431 643255.389 643645.789 643634.283 643634.283 643634.283 643634.285 643634.285 643634.285 643634.285 643622.255 643641.176 643621.497 643651.204 643651.204 643655.967 643761.042 643611.094 643655.967 643761.042 643811.517 643808.701 643799.221 643740.556 643796.785 643833.661 64368.236 643578.490 643578.490 643548.756 643548.756 643548.756 643264.847 643548.756 643548.756 643548.756 643548.756 643548.756 643548.756 643548.756 643548.756 643548.756 643548.756 643561.645 643720.647 643548.781 643703.032 643796.544	2465789.627 2466067.935 2466248.966 2466312.181 2466298.778 2466586.057 2466033.222 2466077.366 2466611.702 2467276.698 2467079.611 2465362.883 2465813.077 2465828.080 2465834.712 2465843.632 2465834.712 2465843.632 2465832.194 2465872.358 2465987.897 2466031.413 2465987.897 2466031.413 2465972.104 2465996.671 2466071.168 2466996.671 2466071.168 2466073.730 2466071.168 2466073.730 2466071.168 2466198.336 2466340.561 2466340.561 2466252.211 2466073.730 2466275.101 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611 2466281.611	ELEVATION 2106.68 2109.62 2110.44 2109.49 2109.59 2110.55 2109.60 2110.03 2109.65 2085.90 2093.65 2109.27 2108.32 2109.24 2109.27 2109.27 2109.61 2109.62 2109.62 2109.61 2109.62 2109.61 2109.62 2109.61 2109.62 2109.41 2108.82 2108.67 2109.41 2106.00 2107.29 2107.19 2108.14 2109.02 2108.96 2110.09 2108.85 2109.92 2109.41 2109.85 2109.92 2109.41 2109.85 2109.92 2109.41 2109.85 2109.92 2109.77 2109.29 2109.77 2109.29 2109.77 2109.29 2109.77 2109.26 2108.71 2108.52 2111.66 2111.46 2111.08 2109.69 2111.39 2106.68	ELEVATION 2106.45 2109.36 2110.17 2109.31 2109.28 2110.34 2109.31 2109.72 2109.43 2085.56 2093.44		8-00 BY MPR DATE 9/15/10 DESCR REVERSE DP 7 & 8 PATE 11/24/10 DESCR ADDITIONAL WELLS, PATE DATE DATE DATE DESCR ADDITIONAL WELLS, DESCR ADDITIONAL WELLS, DESCR ADDITIONAL WELLS,	THOMAS, DEAN BARNERING BRAT FALLS-BOZEMAN-KALISPELL BRANN BRANN CREAT FALLS-BOZEMAN-KALISPELL CEWISTON

APPENDIX E REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

GeoEngineers has performed this Supplemental Site Characterization of the Ione Petroleum Contamination site located in Ione, Washington in general accordance with the Work Plan, dated April 9, 2010. This report has been prepared for the exclusive use of Science Applications International Corporation, Washington Department of Ecology, their authorized agents and regulatory agencies. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an ESA study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and property. No one except Science Applications International Corporation, Washington State Department of Ecology should rely on this environmental report without first conferring with GeoEngineers. Use of this report is not recommended for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the lone Petroleum Contamination site located in lone, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, it is important not to rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made to the project or property after the date of this report, we recommend that GeoEngineers be given the opportunity to review our interpretations and recommendations. Based on that review, we can provide written modifications or confirmation, as appropriate.

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of our Client. No other party may rely on the product of our services unless we agree to such reliance in advance and in writing. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations Are Always Evolving

Some substances may be present in the vicinity of the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substances, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

Performance of a Phase II ESA is intended to reduce uncertainty regarding the potential for contamination in connection with a property, but no ESA can wholly eliminate that uncertainty. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by man-made events such as construction on or adjacent to the subject property, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Please contact GeoEngineers before applying this report for its intended purpose so that GeoEngineers may evaluate whether changed conditions affect the continued applicability of the report.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other properties or for other on-site uses of the affected soil and/or groundwater. Note that hazardous substances may be present in some of the on-site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject property or reuse of the affected soil or groundwater on-site to evaluate the potential for associated environmental liabilities. We are unable to assume responsibility for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject property to another location or its reuse on-site in instances that we did not know or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the subject property. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an informed opinion about subsurface conditions throughout the property. Actual subsurface conditions may differ, sometimes significantly, from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproduction is acceptable, but separating logs from the report can create a risk of misinterpretation.

Read These Provisions Closely

It is important to recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are less exact than other engineering and natural science disciplines. Without this understanding, there may be expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you need to know more about how these "Report Limitations and Guidelines for Use" apply to your project or property.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants, and no conclusions or inferences should be drawn regarding Biological Pollutants as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.

A Client that desires these specialized services is advised to obtain them from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

