Second Supplemental Site Characterization Report

Ione Petroleum contamination Site Ione, Washington

for

Washignton State Department of Ecology and Science Applications International Corporation

August 31, 2011

Second Supplemental Site Characterization Report

Ione Petroleum Contamination Site Ione, Washington

for

Washington State Department of Ecology and Science Applications International Corporation

August 31, 2011

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Second Supplemental Site Characterization Report

Ione Petroleum Contamination Site Ione, Washington

File No. 0504-058-01

August 31, 2011

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program 4601 North Monroe Street Spokane, Washington 99205

Attention: Doug Ladwig, PG, PHG, Site Manager

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

ude

Dave Lauder, PE Project Manager

Bruce D. Williams Principal

JRH:JDL:BDW:mlh:cje;tlm http://projects/sites/0050405801/Draft/IoneSiteCharacterizationReport_Supplemental_August2011.docx

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), If provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2011 by GeoEngineers, Inc. All rights reserved.

Table of Contents

	INTRODUCTION	1
2.0	SCOPE OF SERVICES	1
3.0	FIELD ACTIVITIES	2
3.1.	Monitoring Well Installation	2
	3.1.1. Cabin Grill	2
	3.1.2. Vacant Property	2
	Surveying	
3.3.	Groundwater Monitoring	3
4.0	SUBSURFACE CONDITIONS	3
4.1.	Soil Conditions	3
4.2.	Groundwater Conditions	3
	4.2.1. General	3
	4.2.2. Fluid Elevations	3
4.3.	Hydraulic Gradient and Groundwater Flow Direction	4
5.0	SOIL CHEMICAL ANALYTICAL RESULTS	5
5.1.	General	5
	General Cabin Grill	
5.2.		5
5.2.	Cabin Grill	5 5
5.2. 5.3. 6.0	Cabin Grill Vacant Property	5 5 . 5
5.2. 5.3. 6.0 6.1.	Cabin Grill Vacant Property GROUNDWATER CHEMICAL ANALYTICAL RESULTS	5 5 5 5
5.2. 5.3. 6.0 6.1. 6.2.	Cabin Grill Vacant Property GROUNDWATER CHEMICAL ANALYTICAL RESULTS General	5 5 5 5 6
5.2. 5.3. 6.0 6.1. 6.2. 6.3.	Cabin Grill Vacant Property GROUNDWATER CHEMICAL ANALYTICAL RESULTS General Ione Airport	5 5 5 6 6
5.2. 5.3. 6.0 6.1. 6.2. 6.3. 6.4.	Cabin Grill Vacant Property GROUNDWATER CHEMICAL ANALYTICAL RESULTS General Ione Airport Airport Kwik Stop	5 5 5 6 6
5.2. 5.3. 6.0 6.1. 6.2. 6.3. 6.4.	Cabin Grill Vacant Property GROUNDWATER CHEMICAL ANALYTICAL RESULTS	5 5 5 6 6 7
5.2. 5.3. 6.0 6.1. 6.2. 6.3. 6.4. 6.5.	Cabin Grill Vacant Property GROUNDWATER CHEMICAL ANALYTICAL RESULTS	5 5 5 6 6 7 8

Table 1. Summary of Groundwater Level MeasurementsTable 2. Summary of Soil Chemical Analytical Results - Soil SamplesTable 3. Summary of Groundwater Chemical Analytical Results - Monitoring Well Samples

LIST OF FIGURES

Figure 1. Vicinity Map Figure 2. Groundwater Elevations and Flow Direction – August 2011 Figure 3. GRPH and BTEX in Soil Samples Figure 4. GRPH and BTEX in Groundwater Samples

APPENDICES

Appendix A. Boring and Monitoring Well Logs and Field Procedures

Figure A-1 – Key to Exploration Logs

Figures A-2 through A-4 – Logs of Monitoring Wells

Appendix B. Groundwater Monitoring Field Procedures

Table B-1 – Summary of Field Quality Parameters

Appendix C. Laboratory Reports

Appendix D. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

This supplemental report presents results of additional site characterization activities conducted in July and August 2011 at a site referred to as the Ione Petroleum Contamination Site located near Ione, Washington. The approximate location of the site is presented in the Vicinity Map, Figure 1. The site was the subject of previous site characterization activities, the results of which are presented in GeoEngineers' reports titled "Site Characterization Report, Ione Petroleum Contamination Site, Ione, Washington", dated October 14, 2010, "Supplemental Site Characterization Report, Ione Petroleum Contamination Site, Ione, Petroleum Contamination Site, Ione, Petroleum Contamination Site, Ione, Vashington", dated January 3, 2011, and three subsequent Quarterly Groundwater Monitoring Reports, dated: January 25, 2011; May 5, 2011; and June 29, 2011.

Details regarding the site are presented in the previous reports for this project. The results of the previous site characterization and groundwater monitoring efforts indicate that a plume of petroleum-contaminated groundwater (gasoline) is present beneath the site, extending from the Airport Kwik Stop property, downgradient through the Cabin Grill property to undeveloped property (referred to as the Vacant Property) located south and east of the Cabin Grill property.

The activities described in this supplemental report were conducted to provide additional information regarding the nature and extent of petroleum contamination of soil and groundwater at the site, particularly areas downgradient of the Cabin Grill. These activities were prompted by identified data gaps regarding the groundwater flow path and extent of the petroleum plume downgradient of the Cabin Grill.

This report describes the field investigation and chemical analytical results from soil samples collected from the supplemental explorations, and results of an additional round of groundwater sampling of the site monitoring wells. Logs of the new monitoring wells and a description of field procedures during well installation are presented in Appendix A. Detailed descriptions of field procedures during groundwater monitoring are presented in Appendix B. Analytical reports are presented in Appendix C.

2.0 SCOPE OF SERVICES

The purpose of the supplemental activities was to provide additional information regarding groundwater flow direction and the extent of the plume downgradient of the Cabin Grill. Our services were completed in general accordance with Work Assignment No. C110145D-Amendment 1, between Ecology and GeoEngineers. Specific tasks conducted during this phase included:

Drilled, installed, and developed three monitoring wells. The borings were drilled using a hollow-stem auger drill rig to depths ranging from 40 to 50 feet below ground surface (bgs). The monitoring wells were installed at locations identified in consultation with the Washington State Department of Ecology (Ecology) based on results of the previous site characterization and groundwater monitoring activities.

- Submitted soil samples to Anatek Laboratories of Spokane, Washington (Anatek) for analysis of gasoline-range petroleum hydrocarbons (GRPH) using Northwest Method NWTPH-Gx, and volatile organic compounds (VOCs) including benzene, toluene, ethylbenzene and xylenes (BTEX compounds), ethylene dibromide (EDB), 1,2 dicholorethane (EDC), methyl tertiary butyl ether (MTBE) and naphthalene using EPA Method 8260.
- Completed one round of groundwater monitoring including measuring water levels and water quality parameters, and collecting groundwater samples.
- Submitted groundwater samples to Anatek for analysis of GRPH and VOCs.
- Subcontracted a licensed surveyor to record elevations and locations of the supplemental monitoring wells.

3.0 FIELD ACTIVITIES

3.1. Monitoring Well Installation

Three supplemental monitoring wells (MW-13 through MW-15) were advanced at the site between July 26 and July 27, 2011 using a hollow-stem auger drill rig. Ecology and GeoEngineers selected the monitoring well locations based on chemical analytical results and groundwater level information obtained from previous sampling events. Soil samples were collected using a standard penetration test (SPT) sampler. Following installation, the monitoring wells were developed on July 28, 2011 by gently surging and bailing to stabilize the filter pack and formation materials surrounding the well screens. Monitoring well locations are shown on Groundwater Elevations and Flow Direction-August 2011, Figure 2.

3.1.1. Cabin Grill

Monitoring well MW-13 was advanced on the Cabin Grill property to a depth of about 48¹/₂ feet bgs. No sheen was observed and headspace vapors were not detected from soil samples collected from the exploration.

3.1.2. Vacant Property

Monitoring wells MW-14 and M-15 were advanced on the vacant property to depths ranging from 40 to 50 feet bgs. No sheen was observed on soil samples collected from the explorations. Headspace vapors were not detected, with the exception of the soil samples collected from well MW-15 at a depth of about $48\frac{1}{2}$ to 50 feet, where a headspace vapor reading of 22.7 parts per million (ppm) was measured.

3.2. Surveying

Thomas Dean and Hoskins Inc. (TD&H) surveyed the locations and elevations of the supplemental monitoring wells on August 12, 2011. TD&H also re-surveyed the elevations of monitoring wells MW-5 and MW-8. TD&H provided results of their survey in an electronic communication on August 15, 2011, which included coordinates and elevations of the wells.

3.3. Groundwater Monitoring

One round of groundwater monitoring was completed on August 2 through August 4, 2011. Depth to groundwater at the locations of all fifteen wells were measured on August 2, 2011, which was used to calculate groundwater elevations. Groundwater samples were collected from all of the wells except MW-5 between August 3 and August 4, 2011.

4.0 SUBSURFACE CONDITIONS

4.1. Soil Conditions

Subsurface conditions encountered within the supplemental explorations were consistent with the descriptions provided in the previous reports. The sand unit and the silt and clay unit were encountered within the supplemental explorations as described below.

Loose to medium dense sand with variable silt and gravel content was encountered in the supplemental borings. The sand unit extended from the ground surface to depths ranging from about 39 feet bgs in MW-14 to 49½ feet bgs in MW-15. The sand unit encountered in the explorations was consistent with geologic descriptions for the outwash-and alluvially-deposited unconfined aquifer of sand and gravel, as described in the previous reports.

Below the sand unit, soft to medium stiff clay was encountered at all three explorations. The clay unit extended to the depths explored. The clay unit is consistent with the geologic descriptions for the glaciolacustrine-deposited aquitard of silt and clay, as described in the previous reports.

4.2. Groundwater Conditions

4.2.1. General

Fluid (water and petroleum product) levels were measured on August 2, 2011 at the 15 site monitoring wells (MW-1 through MW-15). Fluid elevations were calculated by comparing measured fluid depths to wellhead elevations and are referenced to the North American Vertical Datum of 1988 (NAVD 88). The monuments of wells MW-5 and MW-8 were replaced by a licensed well driller from GeoEngineers during the summer of 2011 to repair damage to those monuments which occurred during the winter of 2010/2011. The well casing for MW-8 was adjusted to accommodate the new monument. The new elevation of the top of the well casing for MW-8 is shown in Summary of Groundwater Level Measurements, Table 1.

Fluid depths and elevations are presented in Table 1. Groundwater elevation data, and interpreted groundwater elevation distribution and flow direction, are graphically presented in Figure 2. Field methods are described in Appendix B.

4.2.2. Fluid Elevations

Depth to groundwater measurements during the August 2, 2011 monitoring event, referenced to the top rim of the PVC well casing, ranged from 14.80 feet in MW-10 to 41.56 feet in MW-15. Groundwater elevations ranged from 2,070.76 feet in MW-10 to 2,078.33 feet in MW-1.

Using an interface probe, petroleum product was measured in monitoring well MW-5 at a depth of about 36.07 feet (Elevation 2,073.21 feet) during the August 2, 2011 monitoring event. Depth to groundwater in MW-5 was about 36.94 feet (Elevation 2,072.34 feet), indicating about 0.87 feet of petroleum product within the well. The relative densities of gasoline and groundwater were used to develop an estimate for the equivalent groundwater elevations at MW-5 (in the absence of petroleum product) in the following equation:

 $GW = (SG \times T) + IE$

where GW = equivalent groundwater elevation;
SG = specific gravity of product (0.75 for gasoline);
T = thickness of product measured in water using oil/water interface probe; and
IE = elevation of water/product interface measured in the well.

This analysis yielded an equivalent groundwater elevation estimate of 2072.99 feet in monitoring well MW-5.

Groundwater elevations increased in the existing site monitoring wells relative to the previous groundwater monitoring event conducted on May 10, 2011. Monitoring well MW-8 was observed to have the most significant change in groundwater elevation, increasing 1.53 feet relative to the previous monitoring event. Monitoring well MW-10 was observed to have the least change in groundwater elevation, increasing 0.43 feet relative to the previous monitoring event. Groundwater elevations on average increased about 1.13 feet relative to the previous monitoring event (May 10, 2011). Additionally, groundwater was measured at higher elevations at all twelve existing monitoring wells than any of the previous monitoring events.

4.3. Hydraulic Gradient and Groundwater Flow Direction

Interpreted groundwater flow direction during the August 2, 2011 groundwater monitoring event generally was east-southeast; away from upland recharge areas to the west and towards the Pend Oreille River to the east. However, the local distribution in groundwater elevation, flow direction and gradient observed at the site was relatively complex. Within the west portion of the site (approximately between monitoring wells MW-1 and MW-8), hydraulic gradient was relatively steep at about 1.6 x 10⁻² feet per foot (about 85 feet per mile) and groundwater flowed east. Within the east portion of the site (approximately between monitoring wells MW-8 and MW-10), hydraulic gradient flattened significantly, averaging about 2.4 x 10⁻³ feet per foot (about 12.7 feet per mile) and groundwater flowed southeast. Variation in hydraulic gradient could be caused by soil permeability variation across the site (an increase in permeability to the east), the geometry of perching layers, and/or Pend Oreille River stage. Converse to groundwater monitoring events conducted in August 2011, indications of a cone of depression centered around the Cabin Grill well and groundwater mounding related to the septic drain field located to the east of the Cabin Grill were not observed. The interpreted flow direction and gradients were similar to those observed during the previous monitoring events. However, within the east portion of the site, the groundwater flow direction appeared to be more easterly than previous monitoring events.

5.0 SOIL CHEMICAL ANALYTICAL RESULTS

5.1. General

During the supplemental investigation, five soil samples were submitted for analysis. A summary of analytical results from soil samples are presented in Summary of Soil Chemical Analytical Results – Soil Samples, Table 2. Copies of original laboratory certificates are included in Appendix C. Exploration locations completed to date where GRPH and BTEX compounds were detected in soil samples at concentrations greater than MTCA Method A cleanup levels for unrestricted land use are presented in GRPH and BTEX in Soil Samples, Figure 3.

5.2. Cabin Grill

Two samples were submitted from well MW-13. Sample MW-13(33.5) was submitted for analysis of VOCs, and sample MW-13(38.5) was submitted for analysis of GRPH. GRPH and BTEX compounds were not detected. Methylene chloride was detected at a concentration of 0.0383 milligrams per kilogram (mg/kg), greater than the Model Toxics Control Act (MTCA) Method A cleanup level for unrestricted land use (0.02 mg/kg). However, the trip blank also contained concentrations of methylene chloride and acetone, common laboratory contaminants. Based on discussions with the laboratory, it is likely that methylene chloride was introduced into the sample at the laboratory, and was not indicative of in-situ conditions. Therefore, the sample was qualified as non-detect for methylene chloride. Practical quantitation limits (PQLs), with the exception of EDB, were reported at concentrations less than MTCA Method A unrestricted land use cleanup levels.

5.3. Vacant Property

Two soil samples were submitted from well MW-14, and one sample was submitted from MW-15. GRPH were not detected in the samples from MW-14 and MW-15. BTEX compounds also were not detected in the VOC sample submitted from MW-14. Methylene chloride was detected in the VOC sample from MW-14 at a concentration of 0.0404 mg/kg, greater than the MTCA Method A cleanup level but was qualified as non-detect for the reason mentioned above. PQLs were reported at concentrations less than MTCA Method A unrestricted land use cleanup levels, with the exception of EDB.

6.0 GROUNDWATER CHEMICAL ANALYTICAL RESULTS

6.1. General

Groundwater samples were collected from monitoring wells MW-1 through MW-4, MW-6 through MW-15 and from the Cabin Grill well between August 3 and 4, 2011 and submitted to Anatek for analysis of GRPH and VOCs.

With the exception of well MW-8, groundwater samples from the monitoring wells were collected using a portable bladder pump consistent with the U.S. Environmental Protection Agency (EPA) low-flow groundwater sampling procedure and summarized in Appendix B of this report. Purge water was retained in 55-gallon drums for subsequent disposal. The sample from well MW-8 was sampled using a small-diameter bailer. The well was not purged before sampling. Typical analytical results for low-flow samples and bailer-collected samples are not comparable.

Contaminant concentrations for bailer-collected samples typically are higher. The sample from the Cabin Grill well was collected from a port located within the Cabin Grill well house. The port is located upstream (before treatment) from the storage tanks and carbon filtration system.

During the August 2011 monitoring event, a laboratory-blind duplicate was collected from monitoring well MW-4 and labeled "Duplicate-1." A trip blank also was collected.

Groundwater analytical results for the groundwater sampling event in August 2011 are provided in Summary of Groundwater Chemical Analytical Results – Monitoring Well Samples, Table 3. Copies of original laboratory certificates are included in Appendix C. Analytical results for GRPH and BTEX also are presented on Figure 2. Exploration locations completed to date where GRPH and BTEX compounds have been detected in groundwater samples at concentrations greater than MTCA Method A cleanup levels are presented in GRPH and BTEX in Groundwater Samples, Figure 4.

6.2. Ione Airport

GRPH and VOCs were not detected in the sample from MW-2. PQLs were reported at concentrations less than the MTCA Method A cleanup levels for groundwater (with the exception of vinyl chloride).

6.3. Airport Kwik Stop

GRPH was detected in the sample from well MW-8 at a concentration of 227,000 micrograms per liter (μ g/L), greater than the MTCA Method A cleanup level (800 μ g/L). BTEX compounds benzene (2,140 μ g/L), ethylbenzene (6,740 μ g/L), toluene (26,700 μ g/L) and total xylenes (39,300 μ g/L) also were detected in the sample from MW-8 at concentrations greater than MTCA Method A cleanup levels of 5 μ g/L, 700 μ g/L, 1,000 μ g/L and 1,000 μ g/L, respectively. Naphthalene also was detected in the sample from MW-8 at a concentration (869 μ g/L), greater than the MTCA Method A cleanup level (160 μ g/L).

1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene also were detected in the groundwater sample from MW-8 at concentrations of 3,560 μ g/L and 1,080 μ g/L, respectively. MTCA Method A cleanup levels have not been established for these contaminants. Well MW-8 is located near, and downgradient of the Airport Kwik Stop fuel dispensers.

GRPH and VOCs were not detected in the samples from MW-1 and MW-7. Wells MW-1 and MW-7 are located upgradient of the Airport Kwik Stop fuel dispensers.

6.4. Cabin Grill

A groundwater sample was not collected from MW-5 because of the previous high concentrations of GRPH and BTEX compounds detected in groundwater samples from monitoring well MW-5 and because free petroleum product was measured during the August 2011 sampling event. The decision to forego sampling in MW-5 was discussed with and approved by Ecology.

GRPH was detected in samples from well MW-6 and the Cabin Grill well at concentrations (21,900 μ g/L and 45,500 μ g/L, respectively) greater than the MTCA Method A cleanup level, and in the samples from wells MW-4 and MW-13 at concentrations (687 μ g/L and 771 μ g/L, respectively) less than the MTCA Method A cleanup level. Benzene was detected in samples from

MW-6, MW-13 and the Cabin Grill well at concentrations (2,560 μ g/L, 7.98 μ g/L and 540 μ g/L, respectively) greater than the MTCA Method A cleanup level, and is the sample from MW-4 at a concentration (3.85 µg/L) less than the MTCA Method A cleanup level. Toluene was detected in the samples from MW-6 and the Cabin Grill well at concentrations (2,130 µg/L and 5,440 µg/L, respectively) greater than the MTCA Method A cleanup level, and in samples from MW-4 and MW-13 at concentrations (45.5 μ g/L and 2.66 μ g/L) less than the MTCA Method A cleanup level. Total xylenes were detected in the samples from MW-6 and the Cabin Grill well at concentrations (3,850 µg/L and 7,710 µg/L, respectively) greater than the MTCA Method A cleanup level, and in the samples from MW-4 and MW-13 at concentrations (138.4 µg/Land 151.7 µg/L, respectively) less than the MTCA Method A cleanup level. Ethylbenzene was detected in the sample from the Cabin Grill well at a concentration (997 µg/L) greater than the MTCA Method A cleanup level, and in the samples from wells MW-4, MW-6 and MW-13 at concentrations (9.36 µg/L, 547 µg/L and 31 µg/L, respectively) less than the MTCA Method A cleanup level. Monitoring wells MW-4, MW-6, MW-13 and the Cabin Grill well are located downgradient of the Airport Kwik Stop fuel dispensers. Naphthalene also was detected in the sample from the Cabin Grill well at a concentration $(244 \,\mu\text{g/L})$ greater than the MTCA Method A cleanup level, and in the samples from MW-6 and MW-13 at concentrations (97.7 µg/L and 16.5 µg/L, respectively) less than the MTCA Method A cleanup level.

1,2,4-trimethylbenzene (237 µg/L, 10.3 µg/L and 967 µg/L) and 1,3,5-trimethylbenzene (192 µg/L, 38.5 µg/L and 433 µg/L) were detected in the groundwater samples from MW-6, MW-13 and the Cabin Grill well, respectively. N-propylbenzene also was detected in the groundwater samples from MW-13 and the Cabin Grill well at concentrations of 3.28 µg/L and 116 µg/L, respectively. Isopropylbenzene (1.61 µg/L), n-butylbenzene (2.05 µg/L) and p-isopropyltoluene (1.14 µg/L) also were detected in the groundwater sample from well MW-13. MTCA Method A cleanup levels have not been established for these contaminants. Other VOCs were not detected. However, the reported PQLs for the non-detect VOCs with established MTCA Method A cleanup levels (with the exception of 1,1,1-trichloroethane) were elevated to greater than the applicable cleanup levels because the high concentrations of BTEX contaminants required dilution of the samples before analyzation.

The duplicate sample (Duplicate-1) from MW-4 contained GRPH and BTEX compounds less than MTCA Method A cleanup levels. Other VOCs were not detected, or were detected at concentrations less than the MTCA Method A cleanup levels. The PQL for vinyl chloride was greater than the MTCA Method A cleanup level.

6.5. Vacant Property

GRPH was detected in the groundwater samples collected from wells MW-3 and MW-15 at concentrations (74,700 μ g/L and 1,660 μ g/L, respectively) greater than the MTCA Method A cleanup level. Benzene, toluene, ethylbenzene and total xylenes were detected at concentrations (5,470 μ g/L, 16,200 μ g/L, 1,700 μ g/L and 9,990 μ g/L, respectively) greater than MTCA Method A cleanup levels in the sample from MW-3. Benzene also was detected in the sample from MW-15 at a concentration (847 μ g/L) greater than the MTCA Method A cleanup level. Ethylbenzene, toluene and total xylenes also were detected in the sample from MW-15 at concentrations (129 μ g/L, 29.8 μ g/L and less than 98.2 μ g/L, respectively) less than the MTCA Method A cleanup levels.

Naphthalene was detected in the sample from MW-15 at a concentrations of 41.9 μ g/L, less than MTCA Method A cleanup level.

1,2,4-trimethylbenzene was detected in the groundwater sample from MW-3 at a concentration of 853 μ g/L. 1,3,5-trimethylbenzene was detected in the groundwater sample from MW-15 at a concentration of 27.0 μ g/L. Other VOCs from the samples from MW-3 and MW-15 were not detected. However, the reported PQLs for the non-detected VOCs with established MTCA Method A cleanup levels were elevated to greater than the applicable cleanup levels because the high concentrations of BTEX contaminants required dilution of the samples before analyzation.

GRPH and VOCs were not detected in the groundwater samples collected from MW-9, MW-10, MW-11 and MW-14. The PQLs for the groundwater samples were below the MTCA Method A cleanup levels (with the exception of vinyl chloride).

7.0 SUMMARY AND CONCLUSIONS

Supplemental soil and groundwater assessment activities were conducted from July 26 through August 4, 2011 for the site located in lone, Washington. Three new groundwater monitoring wells were placed downgradient of the Cabin Grill well to provide more information regarding the lateral extent of petroleum contamination in soil and groundwater associated with the release from the Airport Kwik Stop. Subsurface conditions encountered within the supplemental explorations were consistent with conditions encountered within previous explorations, and consisted of sand underlain by clay.

Groundwater elevations ranged from 0.43 feet to 1.53 feet higher than elevations measured in May 2011. It was noted that the Airport Kwik Stop was vacant during all previous monitoring events. However, during the May 2011 monitoring event repairs were being made to the building, and sometime between the May 2011 monitoring event and the August 2011 monitoring event, the Airport Kwik Stop become operational, including serving food and selling groceries. We understand that the Airport Kwik Stop is not currently selling or storing petroleum. It is possible that increased water use and discharge to the on-site septic system, which we understand is located upgradient of well MW-8, could be contributing to groundwater recharge near MW-8. Increased groundwater recharge could be a contributing factor to the larger groundwater elevation increase measured in MW-8 relative to the other site monitoring wells between the May and August 2011 monitoring events.

About 0.87 feet of petroleum product was measured on the groundwater surface in well MW-5, based on the oil-water interface probe measurements. A disposable bailer also was lowered into MW-5 to sample across the oil-water interface. We measured approximately 8 to 9 inches of floating gasoline product in the bailer sample collected from MW-5. An oil-water interface probe and disposable bailer also were lowered into MW-8 to sample across the oil-water interface. While a distinct oil phase was not observed in the sample collected from MW-8, visual observation indicated that the water contained contaminates at a high enough concentration to affect the clarity of the water, but not high enough to be measured by the interface probe.

Groundwater flow during the August 2011 monitoring event generally was towards the eastsoutheast, under varying hydraulic gradients, ranging between about 1.6×10^{-2} feet per foot (ft/ft) within western portions of the site and about 2.4×10^{-3} ft/ft within eastern portions of the site. This magnitude is consistent with previous measurements at the site. The flow direction within the eastern portions of the site was more easterly than previous measurements.

Soil does not appear to be contaminated at the exploration locations. Results of groundwater monitoring and sampling are summarized by the following:

- GRPH and/or BTEX concentrations exceeded MTCA Method A cleanup levels in groundwater samples from MW-3, MW-6, MW-8, MW-13, MW-15 and the Cabin Grill domestic well. These wells are located downgradient of the Airport Kwik Stop fuel dispensers.
- About 0.87 feet of oil product was measured in well MW-5.
- GRPH and VOCs were not detected in groundwater samples from upgradient wells MW-1 and MW-7.
- GRPH and VOCs were not detected in groundwater samples from cross- and downgradient wells MW-2, MW-9, MW-10, MW-11, MW-12 and MW-14.
- The highest concentration of GRPH detected during the August 2011 event was from the groundwater sample collected from well MW-8 at a concentration of 227,000 µg/L (about 280 times the MTCA Method A cleanup level).
- The highest concentration of benzene detected during the August 2011 event was from the groundwater sample collected from well MW-3 at a concentration of 5,470 µg/L (about 1,094 times the MTCA Method A cleanup level).

The following bulleted items summarize changes in concentrations from the August 2011 monitoring event relative to the previously collected samples (fourth quarterly event) in each site well during the May 2011 sampling event:

- Concentrations of GRPH and BTEX compounds increased in wells MW-3 and MW-4. The concentrations of GRPH and BTEX compounds in MW-3 were the highest measured to date. The concentrations of GRPH and BTEX compounds in MW-4 were the highest since the August 2010 monitoring event. However, measured turbidity levels were significantly higher during sampling of MW-4 than during previous sampling events. The high turbidity levels could be a contributing factor to the increased concentrations of GRPH and BTEX compounds detected in the sample from MW-4 during the August 2011 monitoring event.
- Concentrations of GRPH increased in wells MW-6 and MW-8, while the concentrations of benzene decreased in these wells. The concentrations of GRPH and BTEX compounds in MW-6 were the highest since the August 2010 monitoring event. The concentrations of GRPH, ethylbenzene, toluene and total xylenes in MW-8 were the highest measured to date.
- Concentrations of GRPH, ethylbenzene, toluene and total xylenes increased in the Cabin Grill domestic well (and were the highest recorded to date). The concentration of benzene decreased (and was the lowest concentration recorded to date).

Based on review of all of the sampling events, concentrations of GRPH and BTEX compounds from groundwater samples from the contaminated wells (MW-3, MW-4, MW-5, MW-6, MW-8 and the Cabin Grill domestic well) have not indicated any specific trends.

Results of analytical testing indicate the shallow aquifer underlying the Airport Kwik Stop; Cabin Grill and vacant properties is contaminated with GRPH and VOCs, particularly BTEX compounds. Results also indicate that the leading edge of the plume is located downgradient of well MW-15, which is approximately 1,100 feet southeast of the Airport Kwik Stop fuel dispensers, and that the downgradient edges of the plume are bounded by wells MW-12, MW-14 and MW-10.

Comparison of the ratios of benzene concentrations to GRPH concentrations of the groundwater samples from the contaminated wells indicates that the highest benzene to GRPH ratio was from the groundwater sample from MW-15, indicating that MW-15 might be near the leading edge of the plume. Evaluation of benzene and GRPH concentrations also indicates that the benzene to GRPH ratio is greater in the August 2011 sample from well MW-3, than from the August 2011 samples from MW-6 and the Cabin Grill domestic well. Based on this data, it is possible that a new pulse of relatively fresh petroleum contamination has reached the groundwater surface underlying the Airport Kwik Stop from overlying vadose zone contamination, and is migrating downgradient, with the leading edge of the pulse located near MW-3.

8.0 LIMITATIONS

We have prepared this report for the exclusive use of the Washington State Department of Ecology and their authorized agents for the Ione Petroleum Contamination Site located in Ione, Washington.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to the Appendix D titled "Report Limitations and Guidelines for Use" for additional information pertaining to use of this report.

Table 1

Summary of Groundwater Level Measurements

Ione Petroleum Contamination Ione, Washington

		Top of Casing	Depth to	Groundwater
Well	Date	Elevation ¹	Water ²	Elevation
Number	Measured	(feet)	(feet)	(feet)
MW-1	08/05/10	2,106.45	29.41	2,077.04
	11/10/10	2,106.45	29.40	2,077.05
	02/09/11	2,106.45	29.76	2,076.69
	05/10/11	2,106.45	29.10	2,077.35
	08/02/11	2,106.45	28.12	2,078.33
MW-2	08/05/10	2,109.36	37.54	2,071.82
	11/10/10	2,109.36	37.53	2,071.83
	02/09/11	2,109.36	37.67	2,071.69
	05/10/11	2,109.36	37.02	2,072.34
	08/02/11	2,109.36	35.56	2,073.80
MW-3	08/05/10	2,110.17	38.66	2,071.51
	11/10/10	2,110.17	38.63	2,071.54
	02/09/11	2,110.17	38.73	2,071.44
	05/10/11	2,110.17	38.19	2,071.98
	08/02/11	2,110.17	36.90	2,073.27
MW-4	08/05/10	2,109.31	38.17	2,071.14
	11/10/10	2,109.31	38.14	2,071.17
	02/09/11	2,109.31	38.26	2,071.05
	05/10/11	2,109.31	37.69	2,071.62
	08/02/11	2,109.31	36.36	2,072.95
MW-5	08/05/10	2,109.28	38.57	2,070.71
	11/10/10	2,109.28	37.90/38.51 ³	2,071.23 ⁴
	02/09/11	2,109.28	37.97/38.72 ³	2,071.12 ⁴
	05/10/11	2,109.28	37.50/37.85 ³	2,071.69 ⁴
	08/02/11	2,109.28	36.07/36.94 ³	2072.99 ⁴
MW-6	08/05/10	2,110.34	39.72	2,070.62
	11/10/10	2,110.34	39.68	2,070.66
	02/09/11	2,110.34	39.80	2,070.54
	05/10/11	2,110.34	39.17	2,071.17
	08/02/11	2110.34	38.12	2,072.22
MW-7	08/05/10	2,109.31	36.27	2,073.04
	11/10/10	2,109.31	36.27	2,073.04
	02/09/11	2,109.31	36.38	2,072.93
	05/10/11	2,109.31	35.97	2,073.34
	08/02/11	2109.31	34.66	2,074.65
MW-8	08/05/10	2,109.72	37.93	2,071.79
	11/10/10	2,109.72	37.90	2,071.82

		Top of Casing	Depth to	Groundwater
Well	Date	Elevation ¹	Water ²	Elevation
Number	Measured	(feet)	(feet)	(feet)
MW-8 cont.	02/09/11	2,109.72	38.01	2,071.71
	05/10/11	2,109.72	37.45/37.70 ³	2,072.21 ⁴
	8/2/2011 ⁵	2,109.65	35.91	2,073.74
MW-9	11/10/10	2,109.43	38.43	2,071.00
	02/09/11	2,109.43	38.53	2,070.90
	05/10/11	2,109.43	37.95	2,071.48
	08/02/11	2109.43	37.00	2,072.43
MW-10	11/10/10	2,085.56	15.96	2,069.60
	02/09/11	2,085.56	16.05	2,069.51
	05/10/11	2,085.56	15.23	2,070.33
	08/02/11	2085.56	14.80	2,070.76
MW-11	11/10/10	2,093.44	23.33	2,070.11
	02/09/11	2,093.44	23.43	2,070.01
	05/10/11	2,093.44	22.66	2,070.78
	08/02/11	2093.44	22.00	2,071.44
MW-12	11/10/10	2,108.87	37.98	2,070.89
	02/09/11	2,108.87	38.11	2,070.76
	05/10/11	2,108.87	37.51	2,071.36
	08/02/11	2108.87	36.19	2,072.68
MW-13	08/02/11	2,109.09	36.77	2,072.32
MW-14	08/02/11	2,103.16	31.61	2,071.55
MW-15	08/02/11	2,112.90	41.56	2,071.34

Notes:

¹Top of casing elevation survey performed by Thomas, Dean & Hoskins, Inc. (TD&H). Elevations are referenced to NAVD 88.

 $^{2}\mbox{Depth}$ to water measurements referenced to the top of PVC casing.

³For MW-5, 37.50/37.85, and MW-8, 37.45/37.70 indicates depth to top of free product/depth to groundwater measured using an oil-water interface probe.

⁴Groundwater elevation at MW-5 for the November 2010, February 2011, May 2011, and August 2011 monitoring events, and MW-8 for the May 2011 monitoring event, was calculated using the following equation:

GW = SG x T + IE; where GW = equivalent groundwater elevation, SG = specific gravity of free product (0.75 for gasoline),

T = thickness of product measured in water using oil/water interface probe , IE = elevation of water/product interface measured in the well.

⁵Top of well casing adjusted during repairs to well monument in June 2011. Top of well casing resurveyed by TD&H in August 2011.

http://projects/sites/0050405801/Final/[lone GW Monitoring Tables Q5.xlsx]Table 1

Table 2

Summary of Soil Chemical Analytical Results - Soil Samples $^{\!\!\!\!^1}$

Ione Petroleum Contamination

Ione, Washington

		MTCA Method	Well No.	MM	/-13	MM	/-14	MW-15
		A Cleanup	Sample Number	MW-13 (33.5)	MW-13 (38.5)	MW-14 (28.5)	MW-14 (33.5)	MW-15 (43.5)
Analyte	Unit	Level	Date	07/26/11	07/26/11	07/26/11	07/26/11	07/27/11
GRPH ²	mg/kg	100		NT	<2.5	NT	<2.5	<2.5
Volatile Organic Compounds ³			•				•	
Benzene	mg/kg	0.03		<0.02455	NT	<0.02625	NT	NT
Ethylbenzene	mg/kg	6		<0.02455	NT	<0.02625	NT	NT
Toluene	mg/kg	7		<0.02455	NT	<0.02625	NT	NT
m,p-Xylene	mg/kg	9 ⁴		<0.02455	NT	<0.02625	NT	NT
o-Xylene	mg/kg	9		<0.02455	NT	<0.02625	NT	NT
1,1,1,2-Tetrachloroethane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,1,1-Trichloroethane	mg/kg	2		<0.02455	NT	<0.02625	NT	NT
1,1,2,2-Tetrachloroethane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,1,2-Trichloroethane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,1-Dichloroethane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,1-Dichloroethene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,1-Dichloropropene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,2,3-Trichlorobenzene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,2,3-Trichloropropane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,2,4-Trichlorobenzene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,2,4-Trimethylbenzene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,2-Dibromo-3-chloropropane (DBCP)	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,2-Dibromoethane (EDB)	mg/kg	0.005		<0.02455	NT	<0.02625	NT	NT
1,2-Dichlorobenzene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,2-Dichloroethane (EDC)	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,2-Dichloropropane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,3,5-Trimethylbenzene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
1,3-Dichlorobenzene	mg/kg	NE	1	<0.02455	NT	<0.02625	NT	NT
1,3-Dichloropropane	mg/kg	NE	1 1	<0.02455	NT	<0.02625	NT	NT
1,4-Dichlorobenzene	mg/kg	NE	1	<0.02455	NT	<0.02625	NT	NT
2,2-Dichloropropane	mg/kg	NE	1 1	<0.02455	NT	<0.02625	NT	NT
2-Chlorotoluene	mg/kg	NE	1 1	<0.02455	NT	<0.02625	NT	NT
2-Hexanone	mg/kg	NE	1 1	<0.12275	NT	<0.13125	NT	NT

		MTCA Method	Well No.	MM	V-13	MM	/-14	MW-15
		A Cleanup	Sample Number	MW-13 (33.5)	MW-13 (38.5)	MW-14 (28.5)	MW-14 (33.5)	MW-15 (43.5)
Analyte	Unit	Level	Date	07/26/11	07/26/11	07/26/11	07/26/11	07/27/11
4-Chlorotoluene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Acetone	mg/kg	NE		<0.12275	NT	<0.13125	NT	NT
Acrylonitrile	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Bromobenzene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Bromochloromethane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Bromodichloromethane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Bromoform	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Bromomethane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Carbon disulfide	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Carbon Tetrachloride	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Chlorobenzene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Chloroethane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Chloroform	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Chloromethane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
cis-1,2-Dichloroethene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
cis-1,3-Dichloropropene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Dibromochloromethane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Dibromomethane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Dichlorodifluoromethane	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Hexachlorobutadiene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Isopropylbenzene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Methyl ethyl ketone (MEK)	mg/kg	NE		<0.12275	NT	<0.13125	NT	NT
Methyl isobutyl ketone (MIBK)	mg/kg	NE		<0.12275	NT	<0.13125	NT	NT
Methylene chloride	mg/kg	0.02		<0.0245(u)	NT	<0.02625(u)	NT	NT
Methyl tert buytl ether (MTBE)	mg/kg	0.1		<0.02455	NT	<0.02625	NT	NT
Naphthalene	mg/kg	5		<0.02455	NT	<0.02625	NT	NT
n-Butylbenzene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
n-Propylbenzene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
p-lsopropyltoluene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
sec-Butylbenzene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Styrene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
tert-Butylbenzene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
Tetrachloroethene	mg/kg	0.05		<0.02455	NT	<0.02625	NT	NT
trans-1,2-Dichloroethene	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT
trans-1,3-Dichloropropene	mg/kg	NE	1	<0.02455	NT	<0.02625	NT	NT
Trichloroethene	mg/kg	0.03	1	<0.02455	NT	<0.02625	NT	NT
Trichlorofluoromethane	mg/kg	NE	1	<0.02455	NT	<0.02625	NT	NT

		MTCA Method	Well No.	MM	/-13	MW	/-14	MW-15
		A Cleanup	Sample Number	MW-13 (33.5)	MW-13 (38.5)	MW-14 (28.5)	MW-14 (33.5)	MW-15 (43.5)
Analyte	Unit	Level	Date	07/26/11	07/26/11	07/26/11	07/26/11	07/27/11
Vinyl chloride	mg/kg	NE		<0.02455	NT	<0.02625	NT	NT

Notes:

¹Chemical analyses conducted by Anatek Labs, Inc. located in Spokane, Washington.

²Gasoline analyzed using Northwest Method NWTPH-Gx.

³Volatile organic compounds analyzed using by EPA Methods 8260B/8260C.

⁴Cleanup level for total xylenes is 9 mg/kg.

mg/kg = milligrams per kilogram; NE = not established; MTCA = Model Toxics Control Act; NT = not tested; (u) flag qualifier indicates that due to trip blank contamination, the detected contaminant was qualified as "non-detect". See Appendix C, Data Quality Assessment Summary

http://projects/sites/0050405801/Final/[Ione GW Monitoring Tables Q5.xlsx]Table 2

Table 3

Summary of Groundwater Chemical Analytical Results - Monitoring Well Samples¹

Ione Petroleum Contamination

lone, Washington

		MTCA Method	Well No.			MW-1					MW-2		
		A Cleanup	Sample Number	MW-1-080510	MW-1-111010	MW-1-021611	MW-1-051111	MW-1-080311	MW-2-080610	MW-2-111010	MW-2-021611	MW-2-051111	MW-2-080311
Analyte	Unit	Level	Date	08/05/10	11/10/10	02/16/11	05/11/11	08/03/11	08/06/10	11/10/10	02/16/11	05/11/11	08/03/11
DRPH ²	µg/L	500		<100					<100				
ORPH ²	µg/L	500		<500					<100				
GRPH ³	µg/L	800		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Volatile Organic Compounds ⁴	10												
Benzene	µg/L	5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	700		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	µg/L	1,000		1.81	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m,p-Xylene	µg/L	5		1.93	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
o-Xylene	µg/L	1,000 ⁵		0.89	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	µg/L	200	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	µg/L	NE	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	µg/L	NE	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1-Dichloropropene	µg/L	NE	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-Trichlorobenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-Trichloropropane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-Trichlorobenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-Trimethylbenzene	µg/L	NE		0.62	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dibromo-3-chloropropane (DBCP)	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dibromoethane (EDB)	µg/L	0.01		<0.01	<0.01	<0.01	<0.01	<0.01	0.01	< 0.01	< 0.01	<0.01	<0.01
1,2-Dichlorobenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane (EDC)	µg/L	5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3,5-Trimethylbenzene	µg/L	NE		0.58	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,2-Dichloropropane	µg/L	NE	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Chlorotoluene	µg/L	NE	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Hexanone	µg/L	NE		<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
4-Chlorotoluene	µg/L	NE	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acetone	µg/L	NE	-	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Acrylonitrile	µg/L	NE	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromobenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromochloromethane	µg/L	NE	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromoform	µg/L	NE	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromomethane	µg/L	NE	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon disulfide	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chlorobenzene	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Chloroethane	μg/L	NE	1	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5
Chloroform	µg∕L	NE	1	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5
Chloromethane	μg/L	NE	1	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
cis-1,2-Dichloroethene	μg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

		MTCA Method	Well No.			MW-1					MW-2		
		A Cleanup	Sample Number	MW-1-080510	MW-1-111010	MW-1-021611	MW-1-051111	MW-1-080311	MW-2-080610	MW-2-111010	MW-2-021611	MW-2-051111	MW-2-080311
Analyte	Unit	Level	Date	08/05/10	11/10/10	02/16/11	05/11/11	08/03/11	08/06/10	11/10/10	02/16/11	05/11/11	08/03/11
cis-1,3-Dichloropropene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibromomethane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Isopropylbenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methyl ethyl ketone (MEK)	µg/L	NE		<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Methyl isobutyl ketone (MIBK)	µg/L	NE		<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Methylene chloride	µg/L	5		<2.5	<2.5	0.850	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Methyl tert buytl ether (MTBE)	µg/L	20		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	µg/L	160		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
n-Butylbenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
n-Propylbenzene	µg/L	NE		0.55	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
p-lsopropyltoluene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
sec-Butylbenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Styrene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
tert-Butylbenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene	µg/L	5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene	µg/L	5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	µg/L	NE] [<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Vinyl chloride	µg/L	0.2] [<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<0.5	<0.5	<0.5
Dissolved Lead ⁵	µg/L	15] [<1					<1				
Lead [®]	µg/L	15] [<1	<1				<1	<1			

		MTCA Method	Well No.			MW-3					MW-4				MW-5	
		A Cleanup	Sample Number	MW-3-080610	MW-3-111010	MW-3-021611	MW-3-051111	MW-3-080311	MW-4-080610	MW-4-111010	MW-4-021711	MW-4-051111	MW-4-080311	MW-5-080610	MW-5-111010	MW-5-021711
Analyte	Unit	Level	Date	08/06/10	11/11/10	02/16/11	05/11/11	08/03/11	08/06/10	11/11/10	02/17/11	05/11/11	08/03/11	08/06/10	11/11/10	02/17/11
DRPH ²	µg/L	500		<100					<100					<100		
ORPH ²	µg/L	500		<500					<500					<500		
GRPH ³	µg/L	800		24,500	20,200	24,200	40,300	74,700	4,940	1,190	359	394	687	188,000	80,600	110,000
Volatile Organic Compounds ⁴	10						· · ·		,							
Benzene	µg/L	5		2,680	1,940	1,980	2,460	5,470	21.3	9.36	1.27 (J) ^{7,8}	1.19	3.85	2,210	525	1,010
Ethylbenzene	µg/L	700	1	831	314 (u) ⁹	647	963	1,700	80.6	7.04 (u) ⁹	1.34 (J) ^{7,8}	1.82	9.36	3,210	2120 (u)	2,200
Toluene	µg/L	1,000	1	3,330	2870 (u) ⁹	3,350	4,980	16,200	462	78.3 (u) ⁹	11.8 (J) ^{7,8}	9.12	45.5	37,900	8420 (u)	13,800
m,p-Xylene	µg/L	4 9 9 9 5		1,940	1680 (u) ⁹	2,230	3,110	6,830	425	94.5 (u) ⁹	16.8 ^{7,8}	30.4	74.8	13,900	9330 (u)	9,080
o-Xylene	µg/L	1,000 ⁵		615	653	771	1,280	3,160	189	55.6	16.6 (J) ^{7,8}	31.1	63.6	5,510	3,360	3,840
1,1,1,2-Tetrachloroethane	µg/L	NE		<50	<5	<100	<50	<500	188	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,1,1-Trichloroethane	µg/L	200		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,1,2,2-Tetrachloroethane	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,1,2-Trichloroethane	µg/L	NE	1 I	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,1-Dichloroethane	µg/L	NE	1 1	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,1-Dichloroethene	µg/L	NE	1 1	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,1-Dichloropropene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,2,3-Trichlorobenzene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,2,3-Trichloropropane	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,2,4-Trichlorobenzene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,2,4-Trimethylbenzene	µg/L	NE		305	259	353	363	853	154	24.9	1.82	15.7	19.2	2,000	1,060	2,250
1,2-Dibromo-3-chloropropane (DBCP)	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,2-Dibromoethane (EDB)	µg/L	0.01		<50	<5	<100	<50	<500	<5	<5	<0.01	<0.01	<0.5	<500	<250	<25
1,2-Dichlorobenzene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,2-Dichloroethane (EDC)	µg/L	5		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,2-Dichloropropane	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,3,5-Trimethylbenzene	µg/L	NE		<50	136	171	168	<500	68.3	19.3	10.2	9.57	10.9	968	376	850
1,3-Dichlorobenzene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,3-Dichloropropane	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
1,4-Dichlorobenzene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
2,2-Dichloropropane	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
2-Chlorotoluene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
2-Hexanone	µg/L	NE		<250	<25	<500	<250	<2500	<25	<25	<2.5	<2.5	<0.5	<2,500	<1,250	<125
4-Chlorotoluene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Acetone	µg/L	NE		<250	<25	<500	<250	<2500	36.0	<25	<2.5	<2.5	3.52	<2,500	<1,250	<125
Acrylonitrile	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Bromobenzene	µg/L	NE	<u> </u> [<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Bromochloromethane	µg/L	NE	<u> </u> [<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Bromodichloromethane	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Bromoform	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Bromomethane	µg/L	NE	ļ	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Carbon disulfide	µg/L	NE	l l	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Carbon Tetrachloride	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Chlorobenzene	µg/L	NE	ļ [<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Chloroethane	µg/L	NE	ļ	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Chloroform	µg/L	NE	ļ	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Chloromethane	µg/L	NE	ļ	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
cis-1,2-Dichloroethene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25

		MTCA Method	Well No.			MW-3					MW-4				MW-5	
		A Cleanup	Sample Number	MW-3-080610	MW-3-111010	MW-3-021611	MW-3-051111	MW-3-080311	MW-4-080610	MW-4-111010	MW-4-021711	MW-4-051111	MW-4-080311	MW-5-080610	MW-5-111010	MW-5-021711
Analyte	Unit	Level	Date	08/06/10	11/11/10	02/16/11	05/11/11	08/03/11	08/06/10	11/11/10	02/17/11	05/11/11	08/03/11	08/06/10	11/11/10	02/17/11
cis-1,3-Dichloropropene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Dibromochloromethane	µg/L	NE	1	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Dibromomethane	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Dichlorodifluoromethane	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Hexachlorobutadiene	µg/L	NE	1	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Isopropylbenzene	µg/L	NE	1	104	<5	<100	<50	<500	6.39	<5	<0.5	<0.5	<0.5	945	<250	118
Methyl ethyl ketone (MEK)	µg/L	NE	1	<250	<25	<500	<250	<2500	<25	<25	<2.5	<2.5	<2.5	<2,500	<1,250	<125
Methyl isobutyl ketone (MIBK)	µg/L	NE	1	<250	<25	<500	<250	<2500	<25	<25	<2.5	<2.5	<2.5	<2,500	<1,250	<125
Methylene chloride	µg/L	5	1	<250	<25	<500	<250	<2500	<25	<25	<2.5	<2.5	<2.5	<2,500	<1,250	<125
Methyl tert buytl ether (MTBE)	µg/L	20	1	<50	<5	<100	<50	<500	<25	<5	<0.5	<0.5	<0.5	<500	<250	<25
Naphthalene	µg/L	160		80.1	84.3	107	109	<500	10.3	<5	0.89 (J) ^{7,8}	0.75	0.96	<500	<250	364
n-Butylbenzene	µg/L	NE	1	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	0.60	<500	<250	94.6
n-Propylbenzene	µg/L	NE	1	92.2	<5	<100	61.2	<500	15.1	<5	<0.5	0.53	0.51	691	<250	346
p-lsopropyltoluene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	0.54	0.63	0.56	<500	<250	<25
sec-Butylbenzene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Styrene	µg/L	NE	1	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
tert-Butylbenzene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Tetrachloroethene	µg/L	5	1	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
trans-1,2-Dichloroethene	µg/L	NE	1	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
trans-1,3-Dichloropropene	µg/L	NE		<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Trichloroethene	µg/L	5	1	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Trichlorofluoromethane	µg/L	NE]	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Vinyl chloride	µg/L	0.2	1	<50	<5	<100	<50	<500	<5	<5	<0.5	<0.5	<0.5	<500	<250	<25
Dissolved Lead ⁵	µg/L	15	1	<1					<1					<1		
Lead ^o	µg/L	15	1	<1	<1				<1	<1				<1		

		MTCA Method	Well No.			MW-6					MW-7		
		A Cleanup	Sample Number	MW-6-080610	MW-6-111010	MW-6-021711	MW-6-051111	MW-6-080311	MW-7-080610	MW-7-111010	MW-7-021611	MW-7-051111	MW-7-080311
Analyte	Unit	Level	Date	08/06/10	11/11/10	02/17/11	05/11/11	08/03/11	08/06/10	11/11/10	02/16/11	05/11/11	08/03/11
DRPH ²	µg/L	500		<100					<100				
ORPH ²	µg/L	500		<500					<500				
GRPH ³	µg/L	800		76,400	16,600	15,600	6,850	21,900	<100	<100	<100	<100	<100
Volatile Organic Compounds ⁴	10			•		,							
Benzene	µg/L	5		9,880	3,900	3,820	2,560	557	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	700		1,640	873 (u) ⁹	628	325	547	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	µg/L	1,000		14,400	466 (u) ⁹	262	642	2,130	<0.5	<0.5	<0.5	<0.5	<0.5
m,p-Xylene	µg/L			5,180	1410 (u) ⁹	656	530	2,170	<0.5	<0.5	<0.5	<0.5	<0.5
o-Xylene	µg/L	1,000 ⁵		2,720	1,280	1,250	360	1,680	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	µg/L	200		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	µg/L	NE		<250	<125	<100	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
1,1-Dichloroethene	μg/L	NE		<250	<125	<100	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-Dichloropropene	µg/L	NE		<250	<125	<100	<50	<50	<0.5	< 0.5	<0.5	<0.5	<0.5
1,2,3-Trichlorobenzene	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	< 0.5	< 0.5
1,2,3-Trichloropropane	⊭a, = μg/L	NE		<250	<125	<100	<50	<50	<0.5	< 0.5	<0.5	< 0.5	< 0.5
1,2,4-Trichlorobenzene	μg/L	NE		<250	<125	<100	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-Trimethylbenzene	μg/L	NE		376	162	<100	62.8	237	<0.5	< 0.5	<0.5	<0.5	<0.5
1,2-Dibromo-3-chloropropane (DBCP)	μg/L	NE		<250	<125	<100	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-Dibromoethane (EDB)	μg/L	0.01		<250	<125	<100	<50	<50	<0.01	<0.01	<0.01	<0.01	< 0.01
1,2-Dichlorobenzene	μg/L	NE		<250	<125	<100	<50	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane (EDC)	μg/L	5		<250	<125	<100	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
1,2-Dichloropropane	μg/L	NE		<250	<125	<100	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-Trimethylbenzene	μg/L	NE		<250	193	<100	59.1	192	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-Dichlorobenzene	μg/L	NE		<250	<125	<100	<50	<50	< 0.5	< 0.5	< 0.5	<0.5	<0.5
1,3-Dichloropropane	μg/L	NE		<250	<125	<100	<50	<50	<0.5	< 0.5	<0.5	<0.5	< 0.5
1,4-Dichlorobenzene	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	< 0.5
2,2-Dichloropropane	μg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	< 0.5	< 0.5	< 0.5
2-Chlorotoluene	μg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	< 0.5	< 0.5	< 0.5
2-Hexanone	μg/L	NE		<250	<625	<500	<250	<250	<2.5	<2.5	<2.5	<2.5	<2.5
4-Chlorotoluene	μg/L	NE		<250	<125	<100	<50	<50	<0.5	< 0.5	<0.5	<0.5	<0.5
Acetone	μg/L	NE		<1,250	<625	<500	<250	<250	2.93	<2.5	<2.5	<2.5	<2.5
Acrylonitrile	μg/L	NE		<250	<125	<100	<50	<50	< 0.5	<0.5	<0.5	<0.5	< 0.5
Bromobenzene	μg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	< 0.5	< 0.5	< 0.5
Bromochloromethane	μg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	μg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Bromoform	μg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Bromomethane	μg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon disulfide	μg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	μg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Chlorobenzene	μg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroethane	μg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroform	μg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Chloromethane		NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethene	μg/L μg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5

		MTCA Method	Well No.			MW-6					MW-7		
		A Cleanup	Sample Number	MW-6-080610	MW-6-111010	MW-6-021711	MW-6-051111	MW-6-080311	MW-7-080610	MW-7-111010	MW-7-021611	MW-7-051111	MW-7-080311
Analyte	Unit	Level	Date	08/06/10	11/11/10	02/17/11	05/11/11	08/03/11	08/06/10	11/11/10	02/16/11	05/11/11	08/03/11
cis-1,3-Dichloropropene	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Dibromomethane	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Isopropylbenzene	µg/L	NE		466	162	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Methyl ethyl ketone (MEK)	µg/L	NE		<1,250	<625	<500	<250	<250	<2.5	<2.5	<2.5	<2.5	<2.5
Methyl isobutyl ketone (MIBK)	µg/L	NE		<1,250	<625	<500	<250	<250	<2.5	<2.5	<2.5	<2.5	<2.5
Methylene chloride	µg/L	5		<1,250	<625	<500	<250	<250	<2.5	<2.5	<2.5	<2.5	<2.5
Methyl tert buytl ether (MTBE)	µg/L	20		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	µg/L	160		<250	200	147	59.0	97.7	<0.5	<0.5	<0.5	<0.5	<0.5
n-Butylbenzene	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
n-Propylbenzene	µg/L	NE		312	144	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
p-lsopropyltoluene	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
sec-Butylbenzene	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Styrene	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
tert-Butylbenzene	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene	µg/L	5		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethene	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene	µg/L	NE		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene	µg/L	5		<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	µg/L	NE] [<250	<125	<100	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Vinyl chloride	µg/L	0.2] [<250	<125	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5
Dissolved Lead ⁵	µg/L	15] [<1					<1				
Lead ⁶	µg/L	15		<1	<1				<1	<1			

		MTCA Method	Well No.		M	N-8			M	N-9			MW	/-10	P
		A Cleanup	Sample Number	MW-8-080610	MW-8-111010	MW-8-021711	MW-8-080311	MW-9-111010	MW-9-021611	MW-9-051111	MW-9-080311	MW-10-111010	MW-10-021711	MW-10-051111	MW-10-080311
Analyte	Unit	Level	Date	08/06/10	11/11/10	02/17/11	08/03/11	11/11/10	02/16/11	05/11/11	08/03/11	11/11/10	02/17/11	05/11/11	08/03/11
DRPH ²	µg/L	500		<100											
ORPH ²	µg/L	500		<500											
GRPH ³	μg/L	800		14,800	12,000	13,400	227.000	<100	<100	<100	<100	<100	<100	<100	<100
Volatile Organic Compounds ⁴	P6/ -	000		1,000	12,000	10,100	221,000	100	100	100	100	1200	100	100	1200
Benzene	µg/L	5		2,620	2,670	3,280	2,140	0.50	<0.5	<0.5	<0.5	0.50	<0.5	<0.5	<0.5
Ethylbenzene	μg/L	700		334	321	421	6,740	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5
Toluene	µg/L	1,000		1.750	1360 (u) ⁹	2.010	26,700	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5
m,p-Xylene	μg/L			902	756	1,490	27,200	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5
o-Xylene	µg/L	1,000 ⁵		403	187	548	12,100	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5
1,1,1-Trichloroethane	μg/L	200		<25	<50	<50	<500	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-Tetrachloroethane	μg/L	NE		<25	<50	<50	<500	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2-Trichloroethane	μg/L	NE	1	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	μg/L	NE	1	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethene	μg/L	NE	1	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1-Dichloropropene	μg/L	NE	_	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1.2.3-Trichlorobenzene	μg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,3-Trichloropropane	μg/L	NE	-	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-Trichlorobenzene	μg/L	NE	-	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-Trimethylbenzene	μg/L μg/L	NE	-	186	112	<50 191	3,560	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dibromo-3-chloropropane (DBCP)		NE	-	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	µg/L	0.01	-	<25	<50	<50	<500	<0.01	<0.5	<0.01	<0.01	<0.5	<0.01	<0.01	<0.01
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	µg/L	NE	_	<25	<50	<50	<500		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
1,2-Dichloroethane (EDC)	µg/L	5	-	<25	<50	<50	<500	<0.5 <0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
, , , ,	µg/L	NE S	-	<25	<50	<50	<500	<0.5	<0.5	<0.5					<0.5
1,2-Dichloropropane	µg/L	NE	_	70.7	94.2	85.7	1,080	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	µg/L	NE	-	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5
1,3-Dichloropropane	µg/L	NE	-	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5	< 0.5
1,4-Dichlorobenzene	μg/L μg/L	NE	-	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
		NE	-	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,2-Dichloropropane 2-Chlorotoluene	µg/L	NE	-	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Hexanone	µg/L	NE	-	<125	<250	<250	<2500	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
4-Chlorotoluene	μg/L μg/L	NE	-	<25	<50	<250	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acetone		NE	-	<125	<250	<250	<2500	< 2.5	<0.5	< 2.5	<2.5	<0.5	<0.5	< 2.5	< 2.5
Acrylonitrile	µg/L	NE	_	<25	<50	<250	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	µg/L		-	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5
Bromobenzene Bromochloromethane	µg/L	NE	_	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5
	µg/L	NE	_										<0.5		
Bromodichloromethane	µg/L	NE	4	<25	<50	<50	<500	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
Bromoform	µg/L	NE	-	<25	<50	<50	<500	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
Bromomethane	µg/L	NE	-	<25	<50	<50	<500	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5
Carbon disulfide	µg/L	NE	-	<25	<50	<50	<500	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5
Carbon Tetrachloride	µg/L	NE	4	<25	<50	<50	<500	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
Chlorobenzene	µg/L	NE	4	<25	<50	<50	<500	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5
Chloroethane	µg/L	NE	4	<25	<50	<50	<500	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5
Chloroform	µg/L	NE	4	<25	<50	<50	<500	0.54	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5
Chloromethane	µg/L	NE	4	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethene	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

		MTCA Method	Well No.		MV	V-8			MV	V-9			MM	/-10	
		A Cleanup	Sample Number	MW-8-080610	MW-8-111010	MW-8-021711	MW-8-080311	MW-9-111010	MW-9-021611	MW-9-051111	MW-9-080311	MW-10-111010	MW-10-021711	MW-10-051111	MW-10-080311
Analyte	Unit	Level	Date	08/06/10	11/11/10	02/17/11	08/03/11	11/11/10	02/16/11	05/11/11	08/03/11	11/11/10	02/17/11	05/11/11	08/03/11
cis-1,3-Dichloropropene	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibromomethane	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Isopropylbenzene	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methyl ethyl ketone (MEK)	µg/L	NE		<125	<250	<250	<2500	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Methyl isobutyl ketone (MIBK)	µg/L	NE		<125	<250	<250	<2500	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Methylene chloride	µg/L	5		<125	<250	<250	<2500	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Methyl tert buytl ether (MTBE)	µg/L	20		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	0.60	0.59	<0.5	<0.5
Naphthalene	µg/L	160		<25	72.3	<50	869	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
n-Butylbenzene	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
n-Propylbenzene	µg/L	NE		37.1	60.8	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
p-lsopropyltoluene	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
sec-Butylbenzene	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Styrene	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
tert-Butylbenzene	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene	µg/L	5		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethene	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene	µg/L	NE		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene	µg/L	5		<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	µg/L	NE]	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Vinyl chloride	µg/L	0.2]	<25	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dissolved Lead ⁵	µg/L	15]	<1											
Lead ^o	µg/L	15]	<1	<1			<1				<1			

		MTCA Method	Well No.		MW	-11			MV	V-12		MW-13	MW-14	MW-15
		A Cleanup	Sample Number	MW-11-111010	MW-11-021711	MW-11-050000	MW-11-080311	MW-12-111010	MW-12-021711	MW-12-051211	MW-12-080311	MW-13-080411	MW-14-080411	MW-15-080411
Analyte	Unit	Level	Date	11/11/10	02/17/11	05/11/11	08/03/11	11/11/10	02/17/11	05/12/11	08/03/11	08/04/11	08/04/11	08/04/11
DRPH ²	µg/L	500												
ORPH ²	µg/L	500												
GRPH ³	µg/L	800		<100	140	<100	<100	<100	126	<100	<100	771	<100	1,660
Volatile Organic Compounds ⁴		•				•								
Benzene	µg/L	5		0.50	<0.5	<0.5	<0.5	0.50	<0.5	<0.5	<0.5	7.98	<0.5	847
Ethylbenzene	µg/L	700		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	31.0	<0.5	129
Toluene	µg/L	1,000		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.66	<0.5	29.8
m,p-Xylene	µg/L	4 000 5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	77.9	<0.5	<25
o-Xylene	µg/L	1,000 5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	73.8	<0.5	73.2
1,1,1,2-Tetrachloroethane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,1,1-Trichloroethane	µg/L	200		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,1,2,2-Tetrachloroethane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,1,2-Trichloroethane	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,1-Dichloroethane	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,1-Dichloroethene	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,1-Dichloropropene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,2,3-Trichlorobenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,2,3-Trichloropropane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,2,4-Trichlorobenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,2,4-Trimethylbenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	10.3	<0.5	<25
1,2-Dibromo-3-chloropropane (DBCP)	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<25
1,2-Dibromoethane (EDB)	µg/L	0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.5	<0.01	<25
1,2-Dichlorobenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,2-Dichloroethane (EDC)	µg/L	5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,2-Dichloropropane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,3,5-Trimethylbenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	35.8	<0.5	27.0
1,3-Dichlorobenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,3-Dichloropropane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
1,4-Dichlorobenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
2,2-Dichloropropane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
2-Chlorotoluene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
2-Hexanone	µg/L	NE		<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<125
4-Chlorotoluene	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Acetone	µg/L	NE	1	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<125
Acrylonitrile	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Bromobenzene	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Bromochloromethane	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Bromodichloromethane	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Bromoform	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Bromomethane	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Carbon disulfide	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Carbon Tetrachloride	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Chlorobenzene	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Chloroethane	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Chloroform	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<25
Chloromethane	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
cis-1,2-Dichloroethene	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25

		MTCA Method	Well No.		MW	/-11			MM	/-12		MW-13	MW-14	MW-15
		A Cleanup	Sample Number	MW-11-111010	MW-11-021711	MW-11-050000	MW-11-080311	MW-12-111010	MW-12-021711	MW-12-051211	MW-12-080311	MW-13-080411	MW-14-080411	MW-15-080411
Analyte	Unit	Level	Date	11/11/10	02/17/11	05/11/11	08/03/11	11/11/10	02/17/11	05/12/11	08/03/11	08/04/11	08/04/11	08/04/11
cis-1,3-Dichloropropene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Dibromochloromethane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Dibromomethane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Dichlorodifluoromethane	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Hexachlorobutadiene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Isopropylbenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.61	<0.5	<25
Methyl ethyl ketone (MEK)	µg/L	NE		<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<125
Methyl isobutyl ketone (MIBK)	µg/L	NE		<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<125
Methylene chloride	µg/L	5		<2.5	<2.5	<2.5	<2.5	<2.5	0.72	<2.5	<2.5	<2.5	<2.5	<125
Methyl tert buytl ether (MTBE)	µg/L	20		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Naphthalene	µg/L	160		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	16.5	<0.5	41.9
n-Butylbenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.05	<0.5	<25
n-Propylbenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.28	<0.5	<25
p-lsopropyltoluene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.14	<0.5	<25
sec-Butylbenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Styrene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
tert-Butylbenzene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Tetrachloroethene	µg/L	5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
trans-1,2-Dichloroethene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
trans-1,3-Dichloropropene	µg/L	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Trichloroethene	µg/L	5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Trichlorofluoromethane	µg/L	NE	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Vinyl chloride	µg/L	0.2		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<25
Dissolved Lead ⁵	µg/L	15												
Lead ^o	µg/L	15		<1				<1						

		MTCA Method	Well No.			Cabin Well			Duplicate-1 (MW-4)	Duplicate-1 (MW-6)	Duplicate-1 (MW-4)	Duplicate-1 (MW-4)	Duplicate-1 (MW-4)
		A Cleanup	Sample Number	Cabin Well-080610	101209043-001	110221034-014	110513012-012	Cabin Grill-080411	80610	10112036-013	110221034-013	110513012-011	110805029-016
Analyte	Unit	Level	Date	08/06/10	12/08/10	02/21/11	05/12/11	08/04/11	08/06/10	11/11/10	02/17/11	05/12/11	08/04/11
DRPH ²	µg/L	500		<100					<100				
0RPH ²	µg/L	500		<500					<500				
GRPH ³	µg/L	800		40,000	26,100	21,500	14,000	45,500	4,920	10,800	476	467	708
Volatile Organic Compounds ⁴	rð/-			,	,	,	_ ,,		.,				
Benzene	µg/L	5		770	227	440	540	143	21.6	4,530	1.98 (J) ^{7,8}	1.09	3.57
Ethylbenzene	µg/L	700		877	592	517	414	997	81.5	258	2.00 (J) ^{7,8}	1.62	9.67
Toluene	µg/L	1,000		4,920	3,640	2,210	982	5,440	472	430 (u) ⁹	18.7 (J) ^{7,8}	7.97	41.8
m,p-Xylene	µg/L	5		2,600	1,930	1,710	985	5,140	419	1,570	24.3 ⁷	27.5	75.7
o-Xylene	µg/L	1,0005		1,390	1,090	1,080	687	2,570	194	1,650	21.17	28.2	63.7
1,1,1,2-Tetrachloroethane	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	µg/L	200		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	µg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,1-Dichloroethane	µg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,1-Dichloroethene	µg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,1-Dichloropropene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,2,3-Trichlorobenzene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,2,3-Trichloropropane	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,2,4-Trichlorobenzene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,2,4-Trimethylbenzene	µg/L	NE		369	289	216	99	967	148	<50	1.61	14.2	18.7
1,2-Dibromo-3-chloropropane (DBCP)	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,2-Dibromoethane (EDB)	µg/L	0.01		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.01	<0.5
1,2-Dichlorobenzene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,2-Dichloroethane (EDC)	µg/L	5		<50	<0.5	<50	<25	<100	<5	116	<0.5	<0.5	<0.5
1,2-Dichloropropane	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,3,5-Trimethylbenzene	µg/L	NE	1	199	192	159	107	433	65.0	72.9	8.05	8.88	10.7
1,3-Dichlorobenzene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,3-Dichloropropane	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	µg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
2,2-Dichloropropane	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
2-Chlorotoluene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
2-Hexanone	µg/L	NE		<250	<2.5	<250	<125	<500	<2.5	<250	<2.5	<2.5	<2.5
4-Chlorotoluene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Acetone	µg/L	NE		<250	9.7	<250	<125	<500	34.8	<250	<2.5	<2.5	<2.5
Acrylonitrile	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Bromobenzene	µg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Bromochloromethane	µg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Bromodichloromethane	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Bromoform	µg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Bromomethane	µg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Carbon disulfide	µg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Carbon Tetrachloride	µg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Chlorobenzene	µg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Chloroethane	µg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Chloroform	μg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Chloromethane	μg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
cis-1,2-Dichloroethene	µg/L	NE	1	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5

		MTCA Method	Well No.			Cabin Well			Duplicate-1 (MW-4)	Duplicate-1 (MW-6)	Duplicate-1 (MW-4)	Duplicate-1 (MW-4)	Duplicate-1 (MW-4)
		A Cleanup	Sample Number	Cabin Well-080610	101209043-001	110221034-014	110513012-012	Cabin Grill-080411	80610	10112036-013	110221034-013	110513012-011	110805029-016
Analyte	Unit	Level	Date	08/06/10	12/08/10	02/21/11	05/12/11	08/04/11	08/06/10	11/11/10	02/17/11	05/12/11	08/04/11
cis-1,3-Dichloropropene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Dibromochloromethane	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Dibromomethane	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Dichlorodifluoromethane	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Hexachlorobutadiene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
lsopropylbenzene	µg/L	NE		<50	29.9	<50	<25	<100	6.12	<50	<0.5	<0.5	<0.5
Methyl ethyl ketone (MEK)	µg/L	NE		<250	4.73	<250	<125	<500	<2.5	<250	<2.5	<2.5	<2.5
Methyl isobutyl ketone (MIBK)	µg/L	NE		<250	<2.5	<250	<125	<500	<2.5	<250	<2.5	<2.5	<2.5
Methylene chloride	µg/L	5		<250	<2.5	<250	<125	<500	<2.5	<250	<2.5	<2.5	<2.5
Methyl tert buytl ether (MTBE)	µg/L	20		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.6
Naphthalene	µg/L	160		147	410	92.8	92.3	244	7.54	50.7	1.12 (J) ^{7,8}	0.75	1.06
n-Butylbenzene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	0.60
n-Propylbenzene	µg/L	NE		88.1	70	<50	43.9	116	14.7	<50	<0.5	<0.5	0.50
p-lsopropyltoluene	µg/L	NE		<50	2.59	<50	<25	<100	<5	<50	<0.5	0.60	0.51
sec-Butylbenzene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Styrene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
tert-Butylbenzene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Tetrachloroethene	µg/L	5		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
trans-1,2-Dichloroethene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene	µg/L	NE		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Trichloroethene	µg/L	5		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Trichlorofluoromethane	µg/L	NE]	<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Vinyl chloride	µg/L	0.2		<50	<0.5	<50	<25	<100	<5	<50	<0.5	<0.5	<0.5
Dissolved Lead ⁵	µg/L	15]	<1	<0.5				<1				
Lead ⁶	µg/L	15		<1	<1				<1	<1			

Notes:

¹Chemical analyses conducted by Anatek Labs, Inc. located in Spokane, Washington.

²Diesel and Lube Oil analyzed using Northwest Method NWTPH-Dx.

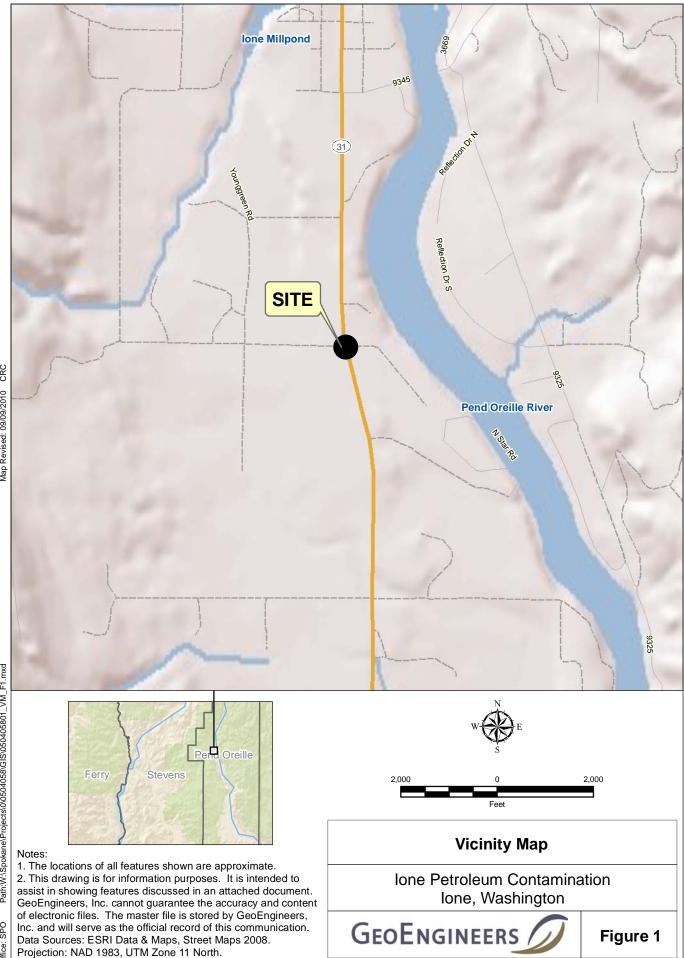
³Gasoline analyzed using Northwest Method NWTPH-Gx.

⁴Volatile organic compounds analyzed using by EPA Methods 8260B/8260C.

 5 Cleanup level for total xylenes is 1,000 µg/L.

⁶Lead and dissolved lead analyzed using by EPA Method 200.8. Note that laboratory reports are in units of mg/L and are converted to μ g/L in this table.

⁷ VOC results reported from RBCA volatiles list due to discrepancy between the RBCA volatiles list and the full 8260C list. Reported result is the higher of the two reported values.


⁸(J) Flag qualifier indicates an estimated value. See Appendix B Data Quality Assessment Summary.

 μ g/L - micrograms per liter; mg/L = milligrams per liter; NE = not established; MTCA = Model Toxics Control Act

http://projects/sites/0050405801/Final/[lone GW Monitoring Tables Q5.xlsx]Table 3

CRC Map Revised: 09/09/2010

Path:W:\Spokane\Projects\0\0504058\GIS\050405801_VM_F1.mxd Office: SPO

Sec. 1		分野网	<u>9</u> 0 8	🛛 🔀 🕐								
Sec.	Altroot	l Kiwik Sta		11	MW-7	Ś	\$	2				
Contract of the	7-mben			194	2074.65 Forr	ner Tank loo		, S		2		
a service and	10	S S		X i i	Airp	ort Kwik St	op		6	ÿ		
AS	r System a	,				/ Hand	Dug Well	Vacant Prop	oerty 🦯			
Air	ort Kwik S	top			ф _{мw-8}	/ 🖤				VIW-9		
		Φ			2,073.7	4	MW-3 2,073.27		/ 4	072.43		10.00
. The second	1 March	MW-1				•			· · · ·	1000		» • • • • •
and the second	"Miller	2,078.33	Fuel Dis	pensers		D	ewitt Rd	Dewitt R	Rd 🥇		200	States of the local division in which the
2702 Gre	enhouse Rd			eenn	ouse Rd			-	1			Contractory of the local division of the loc
					MW-2			<u> </u>	1	and set a		State of the local division of the
15 -		•	- i - L		÷2,073.8	2	MW-5 / / / / / / / / / / / / / / / / / / /					CONTRACTOR .
					1.1 4 19							A COMPANY OF THE OWNER OF
	And in case of the local division of the loc						Cal	bin Grill Domestic W	Vell			A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE
A LONG					1110			bin Grill Domestic W	Vell	TEL M		A State
Former Tank	Locations		-	1	11		⊕ _∞ Cai	bin Grill Domestic V	Vell		Magazia	
Former Tank at Ione Airpo	Locations rt		5	r			⊕ _w Cai	bin Grill Domestic W	113	M a	Vacant Prop	perty Still
Former Tank at Ione Airpo	Locations rt		1	ſ			⊕ _© Cai	bin Grill Domestic W	M	N-6 2.22	Vacant Prop	perty Still
Former Tank at Ione Airpo	Locations rt		lone	Airport		E	Ψ ŵ	bin Grill Domestic W	Mī 2;02	N43 2.22	Vacant Prop	Inato
Former Tank at Ione Airpo	Locations rt		lone	Airport		Highv		bin Grill Domestic W	Mī 2;02	N-6 2.22	Vacant Prop	III NO.
Former Tank at Ione Airpo	rt	Benzene E	100	-	Total Xylenes	Highway	Ψ ŵ	bin Grill Domestic W	MT 2,07	N-3 2.22	Vacant Prop	Inato
Former Tank at Ione Airpo ^{Well Number}	rt	Benzene Et (µg/L)	100	-	Total Xylenes (μg/L)	Highway 31		bin Grill Domestic W	Mī 2;02	N+3 2:22	Vacant Prop	Inato
at lone Airpo	GRPH I	(μg/L) <0.5	thylbenzene (μg/L) <0.5	Toluene		Highway 31		bin Grill Domestic W	Mī 2;02	N-6 2.22	Vacant Prop	MW-14
Well Number MW-1 MW-2	GRPH Γ (μg/L) <100 <100	(μg/L) <0.5 <0.5	thylbenzene (μg/L) <0.5 <0.5	Toluene (μg/L) <0.5 <0.5	(μg/L) <1.0 <1.0	Highway 31			Mī 2;02	N-3 2.22	Vacant Prop	MW-14 2,071.55
Well Number MW-1 MW-2 MW-3	GRPH (µg/L) <100 <100 74,700	(μg/L) <0.5 <0.5 5,470	thylbenzene (μg/L) <0.5 <0.5 1700	Toluene (μg/L) <0.5 <0.5 16,200	(μg/L) <1.0 <1.0 9,990	Highway 31		NIV-12	Mī 2;02	N-6 2.22	Vacant Prop	MW-14
Well Number MW-1 MW-2 MW-3 MW-4	GRPH ((µg/L) (<100 (<100 (74,700 (687 ((μg/L) <0.5 <0.5 5,470 3.85	thylbenzene (μg/L) <0.5 <0.5 1700 9.36	Toluene (μg/L) <0.5 <0.5 16,200 45.5	(μg/L) <1.0 <1.0 9,990 138.4	Highway 31	♥ ŵ MW43 2,072,65		Mī 2;02	N-6 2.22	Vacant Prop	MW-14 2,071.55
Well Number MW-1 MW-2 MW-3 MW-4 MW-5	GRPH п (µg/L) (<100 (<100 (74,700 (687 (NA ((μg/L) <0.5 <0.5 5,470 3.85 NA	thylbenzene (μg/L) <0.5 <0.5 1700 9.36 NA	Toluene (μg/L) <0.5 <0.5 16,200 45.5 ΝΑ	(μg/L) <1.0 <1.0 9,990 138.4 NA	Highway 31	♥ ŵ MW43 2,072,65	NIV-12	Mī 2;02	N-6 2.22	Vacant Prop	MW-14 2,071.55
Well Number MW-1 MW-2 MW-3 MW-4 MW-5 MW-6	GRPH [(μg/L) <100 <100 74,700 687 ΝΑ 21,900	(μg/L) <0.5 5,470 3.85 NA 557	thylbenzene (μg/L) <0.5 <0.5 1700 9.36 ΝΑ 547	Toluene (μg/L) <0.5 <0.5 16,200 45.5	(μg/L) <1.0 <1.0 9,990 138.4 NA 3,850	Highway 31	♥ ŵ MW43 2,072,65	NIV-12	Mī 2;02	N-6 2.22	Vacant Prop	MW-14 2,071.55
Well Number MW-1 MW-2 MW-3 MW-4 MW-5	GRPH п (µg/L) (<100 (<100 (74,700 (687 (NA ((μg/L) <0.5 <0.5 5,470 3.85 NA	thylbenzene (μg/L) <0.5 <0.5 1700 9.36 NA	Toluene (μg/L) <0.5 <0.5 16,200 45.5 ΝΑ 2,130	(μg/L) <1.0 <1.0 9,990 138.4 NA	Highway	♥ ŵ MW43 2,072,65	NIV-12	Mī 2;02	N-6 2.22	Vacant Prop	MW-14 2,071.55
Well Number MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 MW-7	GRPH (μg/L) I <100	(μg/L) <0.5 <.05 5,470 3.85 NA 557 <.05	thylbenzene (μg/L) <0.5 <0.5 1700 9.36 ΝΑ 547 <0.5	Toluene (μg/L) <0.5 <0.5 16,200 45.5 ΝΑ 2,130 <0.5	(μg/L) <1.0 <9,990 138.4 NA 3,850 <1.0	Highway 31	♥ ŵ MW43 2,072,65	NIV-12	Mī 2;02	N-6 2.22	Vacant Prop	MW-14 2,071.55
Well Number MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 MW-7 MW-8	GRPH I (µg/L) I <100	(μg/L) <0.5 <.05 5,470 4.385 .08 .08 .05 .05 .01 .01 .01 .01 .01 .01 .01 .01	thylbenzene (μg/L) <0.5 <0.5 1700 9.36 9.36 ΝΑ 547 <0.5 <0.5	Toluene (μg/L) <0.5 <0.5 16,200 45.5 ΛΑ 45.5 λΝΑ 2,130 <0.5 26,700	(μg/L) <1.0 <9,990 138.4 NA 3,850 <1.0 39,300	Highway 31	♥ ŵ MW43 2,072,65	NIV-12	Mī 2;02	N-6 2.22		MW-14 2,071.55
Well Number MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 MW-7 MW-8 MW-9	GRPH I (µg/L) I <100	(μg/L) <	thylbenzene (μg/L) <0.5 <0.5 1700 9.36 NA 547 <0.5 6,740 <0.5	Toluene (μg/L) <0.5 <0.5 16,200 45.5 NA 2,130 <0.5 26,700 <0.5	(μg/L) <1.0 <1.0 9,990 138.4 NA 3,850 <1.0 39,300 <1.0	Highway	♥ ŵ MW43 2,072,65	NIV-12	Mī 2;02	N-6 2.22	WW415 2,071.34	MW-14 2,071.55
Well Number MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 MW-7 MW-8 MW-9 MW-10	GRPH I (µg/L) I <100	(μg/L) <	thylbenzene (μg/L) <0.5 <0.5 1700 9.36 NA 547 <0.5 6,740 <0.5 <0.5	Toluene (μg/L) <0.5 <0.5 16,200 45.5 NA 2,130 <0.5 26,700 <0.5 <26,700	(μg/L) <1.0 <1.0 9,990 138.4 NA 3,850 <1.0 39,300 <1.0 <1.0	Highway 31	♥ ŵ MW43 2,072,65	NIV-12	Mi 2;02	W-6 2.22	MW-15	MW-14 2,071.55
Well Number MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 MW-7 MW-8 MW-9 MW-10 MW-11 MW-12 MW-13	GRPH (µg/L) I <100	(μg/L) <0.5	thylbenzene (μg/L) <0.5 <0.5 1700 9.36 9.36 NA 547 <0.5 6,740 <0.5 <0.5 <0.5 <0.5 <0.5	Toluene (μg/L) <0.5 <0.5 16,200 45.5 NA 45.5 NA 2,130 <0.5 26,700 <0.5 <0.5 <0.5 <0.5 <0.5	(μg/L) <1.0 <9,990 138.4 NA 3,850 <1.0 39,300 <1.0 <1.0 <1.0 <1.0 <1.0	Highway 31	♥ ŵ MW43 2,072,65	NIV-12	Mi 2;02	N-6 2.22	MW-15	MW-14 2,071.55
Well NumberMW-1MW-2MW-3MW-3MW-6MW-6MW-7MW-8MW-9MW-10MW-11MW-12MW-13MW-14	GRPH (µg/L) I <100	(μg/L) <	thylbenzene (μg/L) <0.5 <0.5 1700 9.36 NA 9.36 NA 547 <0.5 6,740 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Toluene (μg/L) <0.5 <0.5 16,200 45.5 NA 45.5 NA 2,130 <0.5 26,700 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	(μg/L) <1.0 <9,990 138.4 NA 3,850 <1.0 39,300 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Highway 31	♥ ŵ MW43 2,072,65	NIV-12	Mi 2;02	N-6 2.22	MW-15	MW-14 2,071.55
Well NumberMW-1MW-2MW-3MW-4MW-5MW-6MW-7MW-8MW-9MW-10MW-11MW-12MW-13MW-14MW-15	GRPH I (µg/L) I <100	(μg/L) <	thylbenzene (μg/L) <0.5 <0.5 1700 9.36 NA 9.36 NA 547 <0.5 6,740 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	Toluene (μg/L) <0.5	(μg/L) <1.0 <1.0 9,990 138.4 NA 3,850 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	Highway	♥ ŵ MW43 2,072,65	NIV-12	Mi 2;02	N-6 2.22	MW-15	MW-14 2,071.55
Well NumberMW-1MW-2MW-3MW-3MW-6MW-6MW-7MW-8MW-9MW-10MW-11MW-12MW-13MW-14	GRPH I (µg/L) I <100	(μg/L) <	thylbenzene (μg/L) <0.5 <0.5 1700 9.36 NA 9.36 NA 547 <0.5 6,740 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Toluene (μg/L) <0.5 <0.5 16,200 45.5 NA 45.5 NA 2,130 <0.5 26,700 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	(μg/L) <1.0 <9,990 138.4 NA 3,850 <1.0 39,300 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Highway 31	♥ ŵ MW43 2,072,65	NIV-12	Mi 2;02	W-6 2.22	MW-15	MW-14 2,071.55
(μg/L) <	thylbenzene (μg/L) <0.5 <0.5 1700 9.36 NA 9.36 NA 547 <0.5 6,740 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Toluene (μg/L) <0.5 <0.5 16,200 45.5 NA 45.5 NA 2,130 <0.5 26,700 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	(μg/L) <1.0 <9,990 138.4 NA 3,850 <1.0 39,300 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Highway 31	♥ ŵ MW43 2,072,65	NIV-12	Mi 2;02	W-6 2.22	MW-15	MW-14 2,071.55		
(μg/L) <	thylbenzene (μg/L) <0.5 <0.5 1700 9.36 NA 9.36 NA 547 <0.5 6,740 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Toluene (μg/L) <0.5 <0.5 16,200 45.5 NA 45.5 NA 2,130 <0.5 26,700 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	(μg/L) <1.0 <9,990 138.4 NA 3,850 <1.0 39,300 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Highway 31	♥ ŵ MW43 2,072,65	NIV-12	Mi 2;02	W-6 2.22	MW-15	MW-14 2,071.55		

ESRI Data & Maps, Street Maps 2008

Notes:

Notes:
1. The locations of all features shown are approximate.
2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
3. Elevations are referenced in NAVD 88.
4. The equivalent (true) groundwater elevation at MW-5 and MW-8 as showing calculated to account for the presence of the free product using the following equation: GW = SG X T + IE; where GW = equivalent groundwater elevation SG = specific gravity of free product (0.75) for gasoline; T = thickness of product measured in well using oil/water interface probe; IE =elevation of water/product interface measured in the well.
5. NA = Not Analyzed

Legend

 \oplus

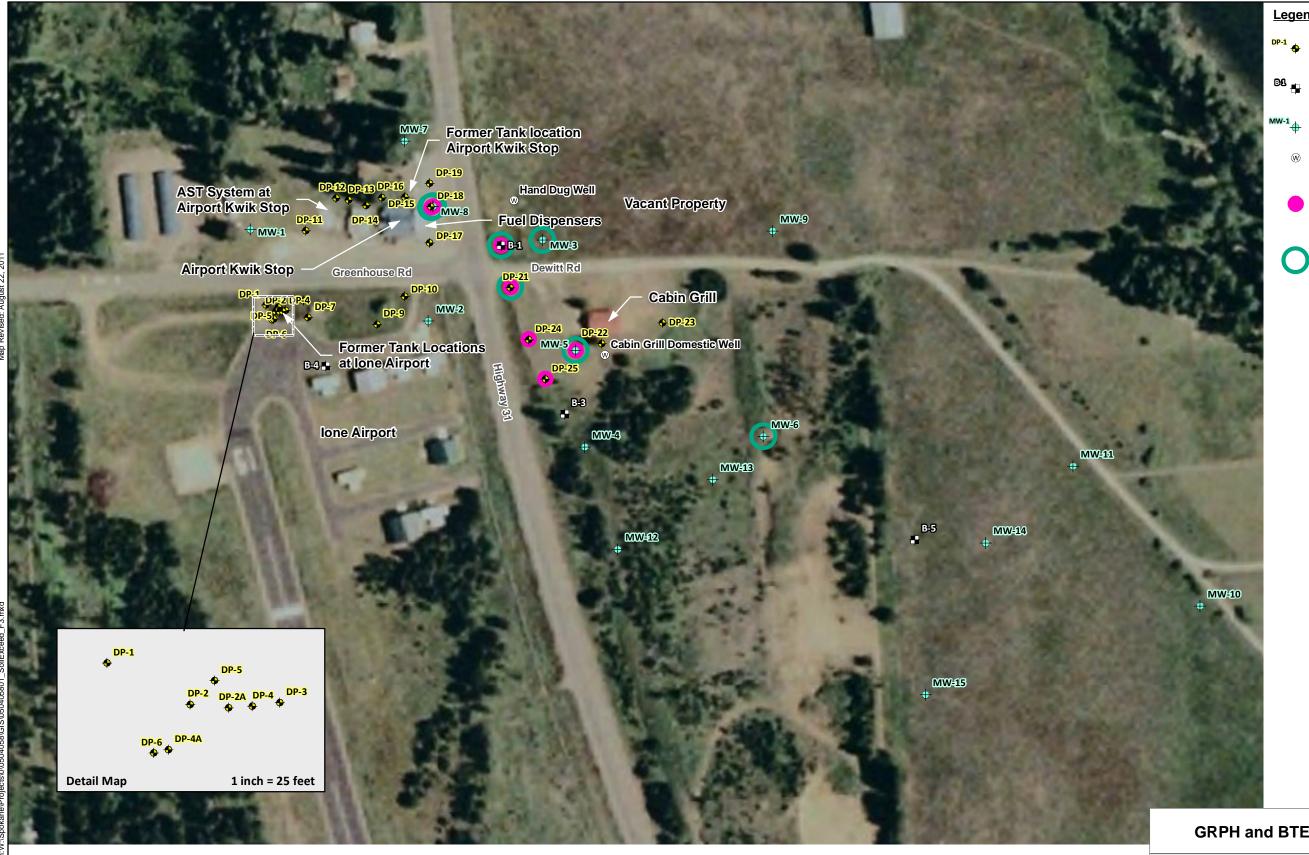
W

MW-1

Approximate Location of Monitoring Well and Groundwater Elevation on August 2, 2011 Approximate Location of

Direct-Push Boring

Approximate Groundwater 2077 Elevation Contour (0.5-Foot Interval)


Interpreted Groundwater Flow Direction

Groundwater Elevations and Flow Direction - August 2011

Ione Petroleum Contamination lone, Washington

GEOENGINEERS

Figure 2

Reference: Bing Maps aerial from ESRI, Online Data Resource Center. ESRI Data & Maps, Street Maps 2008

1. The locations of all features shown are approximate.

Notes:

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

<u>Legend</u>

W

Direct-Push Boring Number and Approximate Location

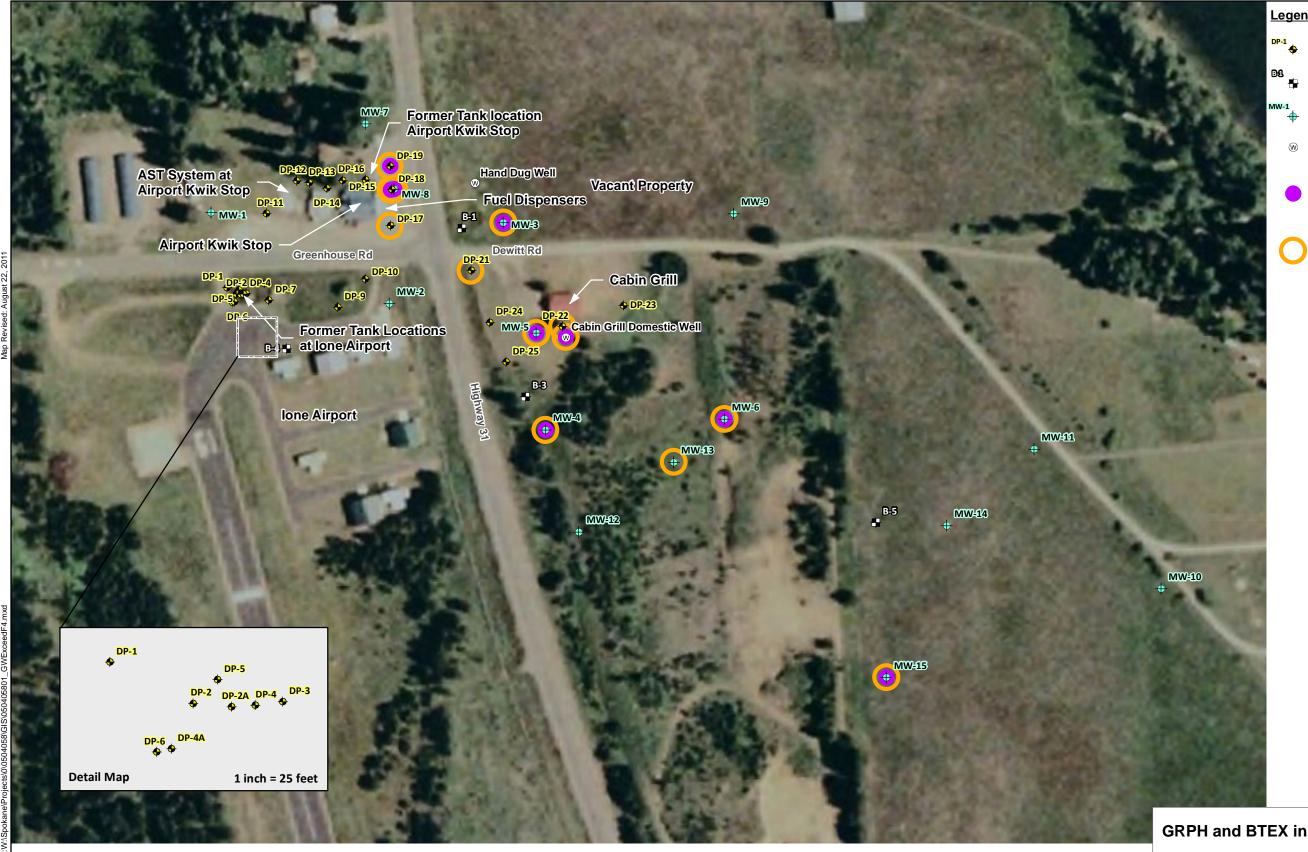
Hollow-Stem Auger Boring Number and Approximate Location

Monitoring Well Number and Approximate Location

Existing Water Well

GRPH Detected in Soil Samples at Concentrations Greater Than MTCA Method A Cleanup Levels.

BTEX Detected in Soil Samples at Concentrations Greater Than MTCA Method A Cleanup Levels.


GRPH and BTEX in Soil Samples

150

Ione Petroleum Contamination Ione, Washington

Figure 3

Reference: Bing Maps aerial from ESRI, Online Data Resource Center. ESRI Data & Maps, Street Maps 2008

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Notes:

<u>Legend</u>

Approximate Location of Direct-Push Boring

Approximate Location of Exploration

Approximate Location of Monitoring Well

Existing Water Well

GRPH Detected in Groundwater Samples at Concentrations Greater Than MTCA Method A Cleanup Levels.

BTEX Detected in Groundwater Samples at Concentrations Greater Than MTCA Method A Cleanup Levels.

GRPH and BTEX in Groundwater Samples

150

Ione Petroleum Contamination Ione, Washington

Figure 4

APPENDIX A BORING AND MONITORING WELL LOGS AND FIELD PROCEDURES

Field Explorations

GeoEngineers contacted the One-Call Utility Notification Center, in accordance with Washington State law, and the Pend Oreille County Public Utility District (PUD) before drilling.

Following clearance of utilities, subsurface conditions at the Site were explored from July 26 through 27, 2011 by:

- Advancing three borings and collecting soil samples;
- Installing three new monitoring wells in the borings.

The approximate exploration locations are shown in Figure 2.

Soil Sampling from Borings

Soil borings were completed using hollow-stem auger (HSA) drilling techniques by a licensed driller. Subsurface soil samples were obtained using standard penetration test (SPT) samplers.

Each boring was continuously monitored by a geologist from our firm who observed and classified the soil encountered, and prepared a detailed log of each boring. Soil encountered in the borings was classified in the field in general accordance with ASTM International (ASTM) D-2488, the Standard Practice for Classification of Soils, Visual-Manual Procedure, which is summarized in Figure A-1. Preservation of VOC samples was completed in accordance with Ecology Memo 5, document number 04-09-087. Sample containers were labeled and placed into an ice chest containing ice/ice packs. Soil samples for VOCs analyses were obtained consistent with EPA Method 5035A. Chain-of-custody procedures were followed during transport of the soil samples.

Sampling equipment was decontaminated between each sampling attempt for either drilling method. Samples were obtained using either a decontaminated soil knife or new, clean nitrile glove and placed into 4-ounce glass sample jars with Teflon lids and preserved volatile organic analysis (VOA) vials.

Samples were placed in a cooler with ice and delivered to the analytical laboratory; standard chainof-custody procedures were observed during transport of the samples to the laboratory.

Field Screening Methods

A GeoEngineers field geologist performed field screening tests on selected soil samples from the explorations. Field screening results were used to aid in the selection of soil samples for chemical analysis. Screening methods included (1) visual examination; (2) water sheen screening; and (3) headspace vapor screening using a photo-ionization detector (PID).

Monitoring Well Construction, Development, and Surveying

Monitoring wells MW-13 through MW-15 were constructed in accordance with WAC 173-160, Section 400, Washington State Resource Protection Well Construction Standards. Monitoring well installation was observed by a GeoEngineers field geologist, who maintained a detailed log of the materials and depths of the well. Well construction details, including the depths of the well screen and filter packs are shown on Logs of Monitoring Wells, Figures A-2 through A-4.

The three monitoring wells were constructed using 2-inch-diameter polyvinyl chloride (PVC) well casing. The annular space in each well was sealed between the top of the filter pack and the ground surface with bentonite to prevent infiltration of groundwater into the well bore from shallower zones. A lockable compression-type cap was installed in the top of the PVC well casing. A flush-mount monument equipped with a watertight cover was installed to protect the PVC well casing. A concrete surface seal was placed around the monument at the ground surface to divert surface water away from the well location.

Monitoring wells MW-13 through MW-15 were developed on July 28, 2011 to remove water introduced into the well during drilling, stabilize the filter pack and formation materials surrounding the well screen, and restore the hydraulic connection between the well screen and the surrounding soil. Each well screen was gently surged and water was removed with a surge block and disposable bailer several times during the development process.

The elevation of the top of each monitoring well casing and the ground surface of each well was surveyed by Thomas Dean and Hoskins Inc., on August 12, 2011. A survey reference notch was established on the north side of each monitoring well casing. Horizontal locations of wells are referenced to the NAD83 datum. Elevations are referenced to NAVD88 datum.

Decontamination Procedures

The objective of the decontamination procedure is to minimize the potential for crosscontamination between sample locations.

A designated decontamination area was established for decontamination of drilling equipment and reusable sampling equipment. Drilling equipment was cleaned using high-pressure/low-volume cleaning equipment.

Sampling equipment was decontaminated in accordance with the following procedures before each sampling attempt or measurement.

- 1. Brush equipment with a nylon brush to remove large particulate matter.
- 2. Rinse with potable tap water.
- 3. Wash with non-phosphate detergent solution (Liquinox® and potable tap water).
- 4. Rinse with potable tap water.
- 5. Rinse with distilled water.

Handling of Investigation-Derived Waste

Investigation Derived Waste (IDW), which consists of mainly drill cuttings and decontamination/purge water, typically was placed in DOT-approved 55-gallon drums. Each drum was labeled with the project name, exploration number, general contents, and date. The drummed IDW was stored onsite pending analysis and disposal.

Disposable items, such as sample tubing, disposable bailers, bailer line, gloves and protective overalls, paper towels, etc., were placed in plastic bags after use and deposited in trash receptacles for disposal.

м	AJOR DIVIS	IONS	SYM	BOLS	TYPICAL
				LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50%	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
SOILS			m	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
			hip	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY
н	GHLY ORGANIC S	SOILS	<u></u>	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS
of blo	2.4 Sta She Pis Dir D	ect-Push k or grab orded for drive to advance sa	barrel tion Test en sample	ers as th 2 inches	(or
and o	lrop. ' indicates sa	See exploratio	-		-

DDITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL		
GRAPH	LETTER	DESCRIPTIONS		
	сс	Cement Concrete		
	AC	Asphalt Concrete		
	CR	Crushed Rock/ Quarry Spalls		
	TS	Topsoil/ Forest Duff/Sod		

- Measured groundwater level in exploration, well, or piezometer
- Groundwater observed at time of exploration
- Perched water observed at time of exploration
- Measured free product in well or piezometer

Graphic Log Contact

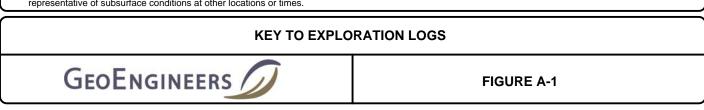
Distinct contact between soil strata or geologic units Approximate location of soil strata

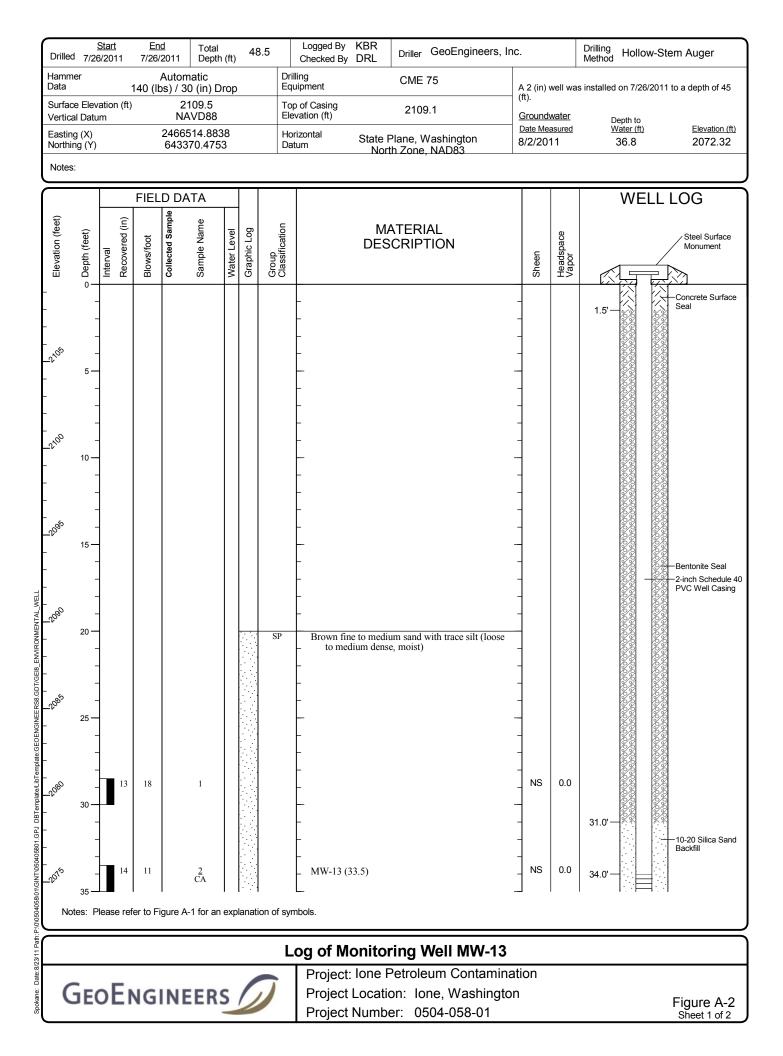
change within a geologic soil unit

Material Description Contact

- Distinct contact between soil strata or geologic units
- Approximate location of soil strata change within a geologic soil unit

Laboratory / Field Tests


Percent fi	nes
------------	-----

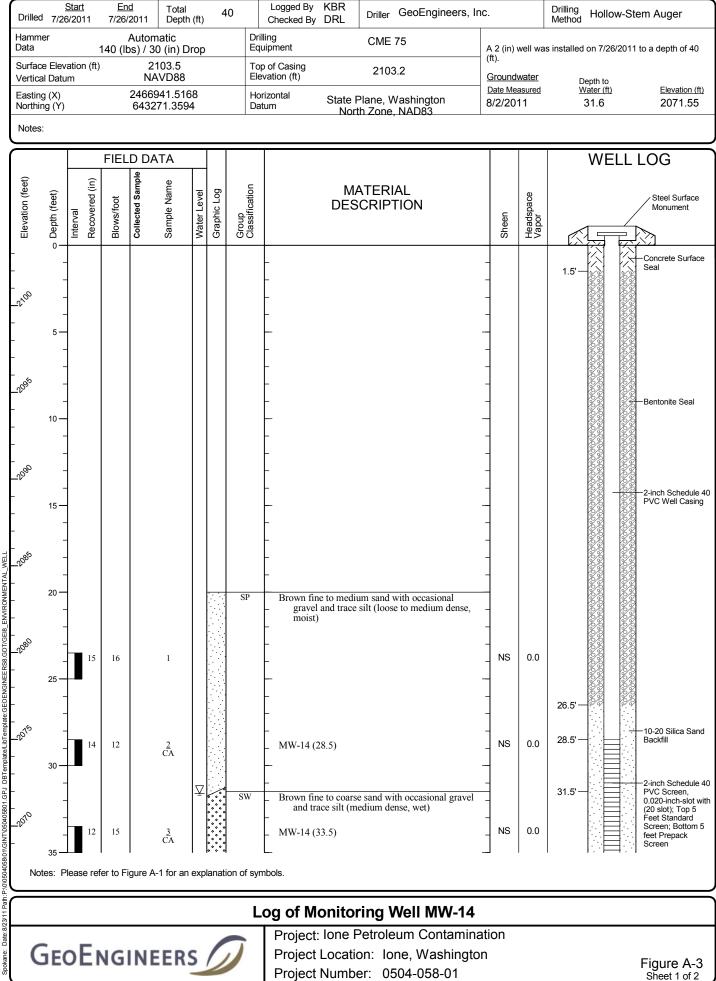

- **Atterberg limits**
- Chemical analysis
- Laboratory compaction test Consolidation test
- **Direct shear**
- Hydrometer analysis
- **Moisture content**
- Moisture content and dry density
- Organic content
- Permeability or hydraulic conductivity Pocket penetrometer
- Sieve analysis Triaxial compression
- Unconfined compression
- Vane shear

Sheen Classification

- No Visible Sheen
- Slight Sheen
- Moderate Sheen **Heavy Sheen**
- Not Tested

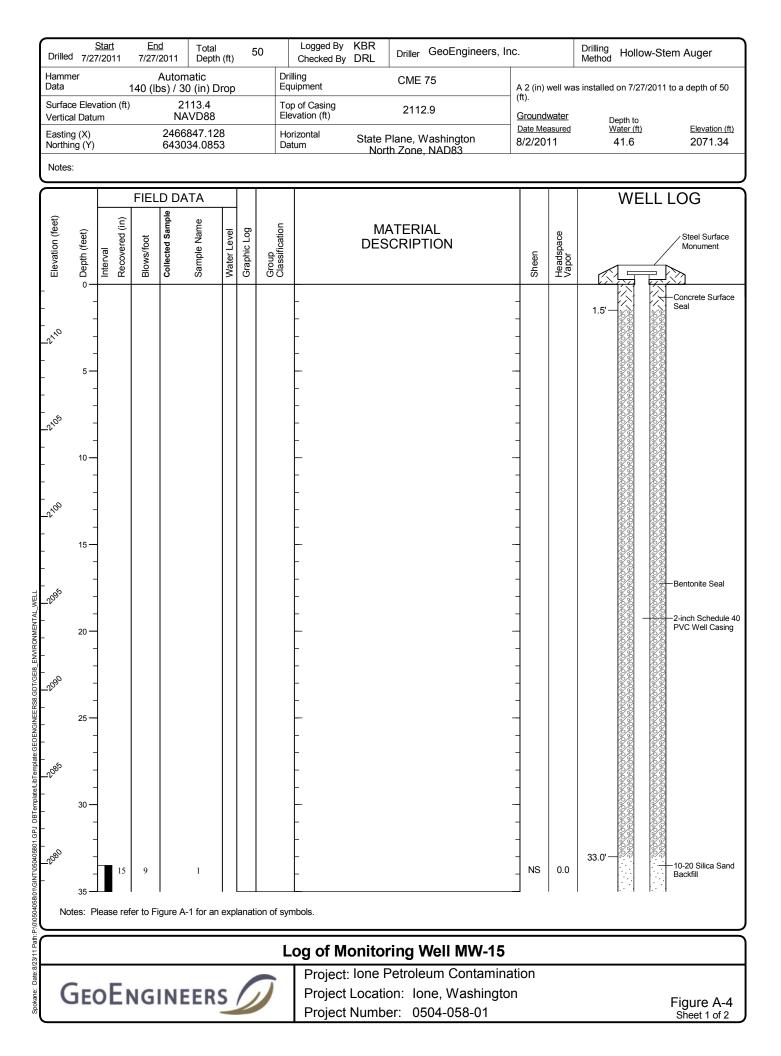
er understanding of subsurface conditions. plorations were made; they are not warranted to be Descriptions on the logs apply only at the specific exploration locations and at the time the exp representative of subsurface conditions at other locations or times.

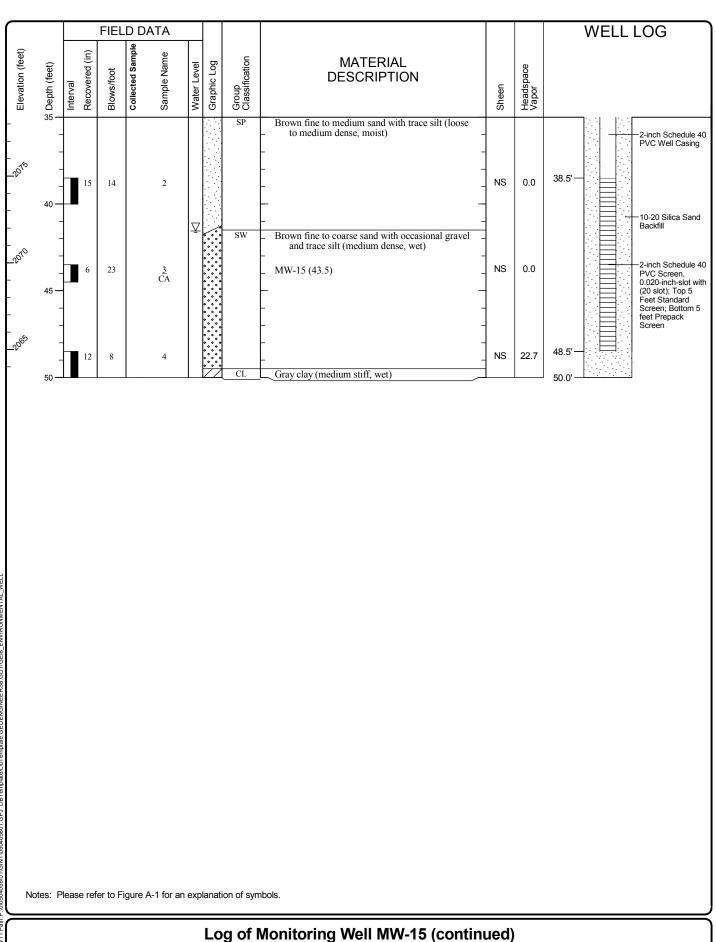
\bigcap			FIEL	D D	ATA							WELL LOG
Elevation (feet)	양 Depth (feet) I	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	
-	-					Ţ		SW	Brown fine to coarse sand with occasional gravel and trace silt (medium dense, wet)			10-20 Silica Sand Backfill
_2010 - - -	40 	10	28		3 CA				_ MW-13 (38.5)	NS	0.0	2-inch Schedule 40 PVC Screen, 0.020-inch-slot with (20 slot); Top 5 Feet Standard Screen; Bottom 5 feet Prepack Screen
- 206 - -	9 - 45 - -	13	5		4			CL	Gray clay (medium stiff, wet)	NS	0.0	44.0'-
-	-						V /					48.5'


Notes: Please refer to Figure A-1 for an explanation of symbols.

GEOENGINEERS

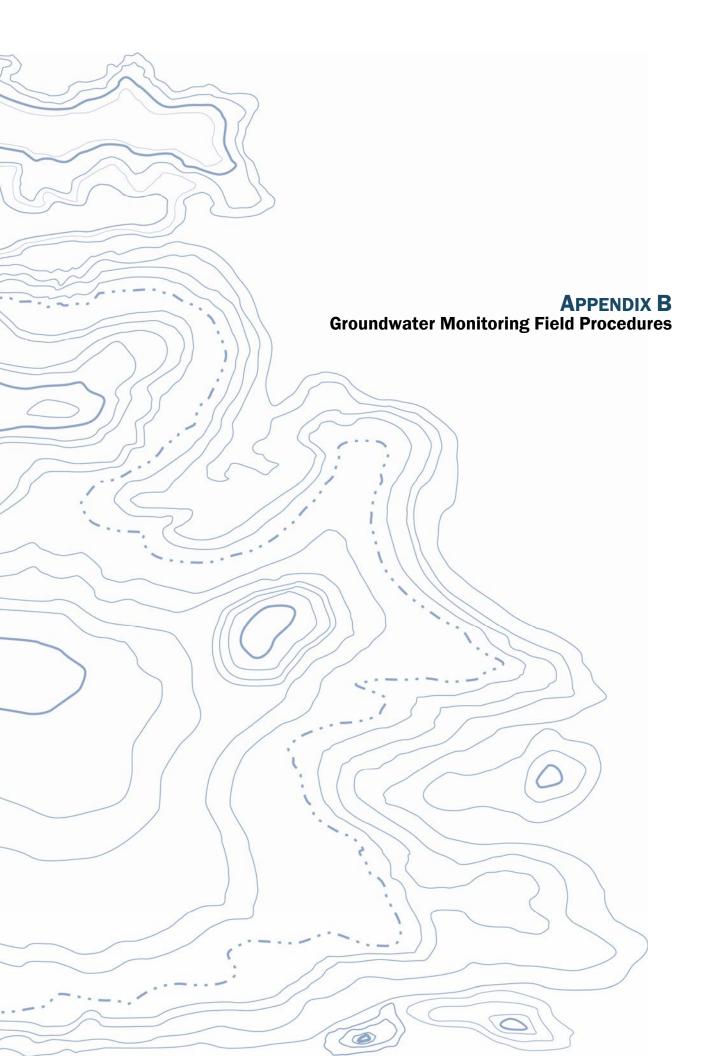
Log of Monitoring Well MW-13 (continued)


Project: Ione Petroleum Contamination Project Location: Ione, Washington Project Number: 0504-058-01


Figure A-2 Sheet 2 of 2

50405801 GP. ted ted Date: 8/23/1

ſ					FIEL	D DA	TA							WELL LOG
	Elevation (feet)	양 Depth (feet) l	Interval	Recovered (in)	Blows/foot	Collected Sample	Sample Name	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	
- - -	000	- - - 40 —		12	2		4			CL	Gray clay (soft, wet)	NS	0.0	38.5'
DT/GEI8_ENVIRONMENTAL_WELL														
ate/LibTemplate:GEOENGINEERS8.G														
Path:P:0050405801/GINT050405801.GPJ DBTemplate/LIbTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_WELL														
	Notes: Please refer to Figure A-1 for an explanation of symbols.													
									LO	y of I	Nonitoring Well MW-14 (continu Project: Ione Petroleum Contaminati			
Spokane: Date:8/23/11	G	ΒE	οE	N	IG	INE	ER	S		1	Project Location: Ione, Washington Project Number: 0504-058-01	011		Figure A-3 Sheet 2 of 2



Project: Ione Petroleum Contamination Project Location: Ione, Washington Project Number: 0504-058-01

Figure A-4 Sheet 2 of 2

GEOENGINEERS /

APPENDIX B GROUNDWATER MONITORING FIELD PROCEDURES

General

The sampling methods used by GeoEngineers during the August 2011 sampling event generally conformed to the work plan dated April 9, 2010.

Groundwater Elevations

GeoEngineers measured depth to groundwater relative to the monitoring well casing rims on August 2, 2011 using an electric water level indicator. Product and groundwater depths at the location of monitoring wells MW-5 and MW-8 were measured using an oil-water interface probe; measurement of free product thickness (if present) was also conducted using disposable bailers at the locations of wells MW-3, MW-4, MW-5, MW-6, MW-8 and MW-15. The probe of the water level indicator was decontaminated between wells. Groundwater elevations were calculated by subtracting the depth to the water table from the casing rim elevations. Groundwater elevations measured on August 2, 2011 are presented in Table 1 and Figure 2. The equivalent groundwater elevation at the location of MW-5 was calculated using the measurements of the top of the free product and the groundwater table obtained from the interface probe and the equation presented in the **Fluid Elevations** section of this report. A specific gravity of 0.75 (approximate specific gravity of gasoline) was used in the calculation.

Groundwater Sampling

GeoEngineers obtained groundwater samples for chemical analysis from monitoring wells MW-1 through MW-4 and MW-6 through MW-15 and the Cabin Grill domestic well on August 3 and 4, 2011.

Before sampling, VOCs in the well headspace were measured with a PID by first inserting the PID into the well casing and immediately after removal of the well cap. PID readings are posted in Table B-1. Measurement of free product was only performed at those well locations where PID measurements indicated the presence of VOCs greater than 10 ppm.

Groundwater purging and sampling conducted at the monitoring wells was performed consistent with the EPA's low-flow groundwater sampling procedure with the exception of well MW-8. A portable bladder pump was used for groundwater purging and sampling. During purging activities, water quality parameters, including pH, conductivity, temperature, turbidity, and oxidation-reduction potential, were measured using a Troll 9500 multi-parameter meter equipped with a flow-through cell. The meter was calibrated on a daily basis in a manner consistent with manufacturer procedures. Groundwater samples were collected once (1) water quality parameters were stabilized. Water quality parameter stabilization criteria include the following:

- Turbidity: ±10 percent for values greater than 5 NTU;
- Oxidation reduction potential: ±10 percent;
- Conductivity: ±3 percent;
- pH: ±0.1 unit; and

GEOENGINEERS

Temperature: ±3 degrees.

Due to a dent within the casing of well MW-8, the portable pump could not be lowered into the well. Therefore, groundwater was sampled form MW-8 using a small-diameter (pencil) bailer. The well was not purged before collecting the sample. Additionally, turbidity was measured at a significantly higher level in well MW-4 than during previous sampling events.

Water quality parameters at the time of sampling are presented in Summary of Field Quality Parameters, Table B-1.

The groundwater samples were transferred in the field to laboratory-prepared containers and kept cool during transport to the testing laboratory. The sample containers were filled completely to eliminate headspace in the container. Chain-of-custody procedures were observed from the time of sample collection to delivery to the testing laboratory.

Quality control/quality assurance (QA/QC) samples collected during the August 2011 sampling event included a trip blank, and duplicate sample from monitoring well MW-4, labeled Duplicate-1.

Decontamination Procedures

The objective of the decontamination procedure is to minimize the potential for crosscontamination between sample locations. Sampling equipment was decontaminated in accordance with the work plan.

Table B-1

Summary of Field Quality Parameters

Ione Petroleum Contamination

lone, Washington

Sample	Date		Specific Conductivity	Turbidity	Dissolved Oxygen	Temperature	ORP	Well Headspace PID Readings
Number	Sampled	рН	(mS/m)	(NTU)	(mg/L)	(°C)	(mV)	(ppm)
MW-1	08/05/10	7.36	319.1	1.01	6.99	14.82	95	0.0
	11/10/10	7.09	54.0	4.02	9.12	8.02	363	0.0
	02/16/11	6.75	58.2	10.0	10.53	8.17	268	0.0
	05/11/11	7.40	30.46	8.5	8.39	10.09	105	0.0
	08/03/11	7.28	31.1	9.8	8.30	8.85	239	0.0
MW-2	08/06/10	6.98	46.0	0.00	3.66	14.66	95	13.6
	11/10/10	6.62	67.7	0.00	4.24	9.15	373	0.0
	02/16/11	6.56	71.0	5.68	4.07	9.29	278	0.0
	05/11/11	7.01	35.52	12.09	5.54	11.67	82	0.0
	08/03/11	7.07	34.86	13.12	5.69	10.53	214	0.0
MW-3	08/06/10	6.76	717.3	0.09	0.02	15.16	-107	19.8
	11/10/10	6.45	101.0	0.00	0.00	9.27	-127	0.0
	02/16/11	6.30	57.8	7.34	0.00	8.98	-149	0.0
	05/12/11	6.70	69.91	13.68	0.14	10.32	-117	10.3
	08/04/11	6.66	78.01	6.40	0.48	10.45	-22	18.9
MW-4	08/06/10	7.50	356.0	4.38	0.17	14.88	-72	2,100
	11/10/10	6.95	81.1	0.00	2.66	8.97	196	575
	02/17/11	6.73	99.9	3.12	0.00	8.79	273	575
	05/12/11	7.07	43.26	36.75	0.86	9.55	57	1,212
	08/04/11	7.08	40.82	78.28	2.25	11.75	202	1,158
MW-5	08/06/10	6.85	606.4	0.00	NR	17.16	29	2,400
	11/10/10	6.61	92.3	0.00	0.00	9.50	108	4,800
	02/17/11	6.93	91.4	0.00	0.00	8.84	94	4,800
	05/10/11	NA	NA	NA	NA	NA	NA	1,657
	08/04/11	NA	NA	NA	NA	NA	NA	1,425
MW-6	08/05/10	6.74	757.9	16.70	0.49	14.97	-27	0.3
	11/10/10	6.52	100.0	0.00	0.00	9.14	-38	0.0
	02/17/11	6.37	109.0	8.57	0.00	8.90	-75	0.0
	05/12/11	6.83	62.09	17.19	0.67	9.76	-13	37.2
	08/04/11	6.96	61.46	16.26	1.46	10.39	-18	0.0
MW-7	08/06/10	7.36	329.8	6.39	1.13	14.01	-57	1.2
	11/10/10	6.83	60.1	9.21	0.00	8.11	-20	0.0

Sample Number	Date Sampled	рН	Specific Conductivity (mS/m)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	ORP (mV)	Well Headspace PID Readings (ppm)
MW-7 cont.	02/16/11	6.80	61.7	3.84	0.00	7.83	-14	0.0
	05/11/11	7.34	28.87	13.57	0.00	9.79	-39	0.0
	08/03/11	7.07	31.11	8.93	7.06	9.86	-39	0.0
MW-8	08/06/10	6.66	508.6	0.00	NR	14.96	24	2,150
	11/10/10	6.38	90.4	0.00	0.00	9.52	-8	1,280
	02/17/11	6.72	79.3	0.00	0.00	8.57	15	1,280
	05/10/11	NA	NA	NA	NA	NA	NA	1,570
	08/04/11	NA	NA	NA	NA	NA	NA	1,817
MW-9	11/10/10	7.15	55.4	8.16	7.53	8.37	244	0.0
	02/16/11	6.99	57.8	11.12	9.51	8.12	251	0.0
	05/11/11	7.50	26.68	26.44	8.11	9.95	36	0.0
	08/03/11	7.43	30.11	1.75	8.38	10.03	239	0.0
MW-10	11/10/10	7.08	69.9	4.12	1.44	8.95	48	0.0
	02/16/11	6.89	79.2	0.00	0.00	8.20	226	0.0
	05/11/11	7.33	23.28	12.30	8.82	8.61	35	0.0
	08/03/11	7.13	27.75	17.17	6.98	11.37	285	0.0
MW-11	11/10/10	7.19	55.9	0.00	7.94	8.86	236	0.0
	02/17/11	7.00	65.2	8.34	10.72	8.73	283	0.0
	05/11/11	7.46	26.43	29.57	8.92	9.64	55	0.0
	08/03/11	7.41	25.23	10.36	9.12	9.16	282	0.0
MW-12	11/10/10	7.06	76.0	0.00	8.03	8.82	242	0.9
	02/17/11	6.93	74.3	8.12	11.81	8.54	297	0.9
	05/12/11	7.27	32.62	14.7	7.96	7.2	128	4.7
	08/03/11	7.31	33.41	11.1	8.48	12.09	307	0.0
MW-13	08/04/11	7.00	47.94	15.46	2.43	10.36	124	0.0
MW-14	08/04/11	7.28	30.92	13.59	9.03	10.57	239	0.0
MW-15	08/04/11	6.95	44.92	18.10	6.03	10.61	219	11.2

Notes:

NA= not analyzed

NR = not reported due to instrument error - readings were outside normal range and therefore not reported.

http://projects/sites/0050405801/Final/[lone GW Monitoring Tables Q5.xlsx]Table B-1

APPENDIX C LABORATORY REPORTS

DATA QUALITY ASSESSMENT SUMMARY

NWTPH-Gx,

VOLATILE ORGANIC COMPOUNDS (VOCS) BY EPA 8260C

Anatek Laboratory SDG	Samples Validated (Bold indicates the sample was qualified)
110801007 (soil samples)	MW-13 (33.5) , MW-13 (38.5), MW-14 (28.5) , MW-14 (33.5), MW-15 (43.5), TRIP BLANK
110805029 (water samples)	MW-1-080311, MW-2-080311, MW-3-080411, MW-4-080411, MW-6-080411, MW-7-080311, MW-8-080411, MW-9-080311, MW-10-080311, MW-11-080311, MW-12-080311, MW-13-080411, MW-14-080411, MW-15-080411, DUPLICATE-1-080311, CABIN GRILL-080411, TRIP BLANK

This report documents the results of an EPA level 2a data validation of analytical data from the analyses of water samples and the associated laboratory and field quality control (QC) samples. The review included the following:

- Chain of Custody
- Holding Times
- Surrogates
- Method and Trip Blanks
- Laboratory Control Samples
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates

I. DATA PACKAGE COMPLETENESS

Anatek Labs, Inc., located in Spokane, Washington, analyzed the samples evaluated as part of this data validation review. The laboratory provided all required deliverables for the validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and all identified anomalies were discussed in the case narrative.

The following sections discuss the data. Based on the review, qualification of the laboratory data was performed in association with trip blank contamination.

OBJECTIVE

The objective of the data validation was to review laboratory analytical procedures and quality control (QC) results to evaluate whether:

- The samples were analyzed using well-defined and acceptable methods that provide detection limits below applicable regulatory criteria;
- The precision and accuracy of the data are well defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The environmental samples were analyzed by one or more of the analytical methods listed in the title of this appendix.

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in the USEPA Contract Laboratory Program *National Functional Guidelines for Inorganic Data Review* (USEPA 2002) and USEPA Contract Laboratory Program *National Functional Guidelines for Organic Data Review* (USEPA 2008).

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. There were no anomalies noted on the COC forms; proper COC protocols appear to have been followed for this sampling event.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits.

Method and Trip Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency.

If a compound was found at a measurable concentration in the method blank, an "action level" for this compound was assigned to the associated batch samples by multiplying the concentration by five. This action level is then multiplied by any dilutions the sample may have gone through in the laboratory extraction process.

Trip Blanks are carried with the field sampler to and from the site, and these are analyzed to ensure that the transportation environment does not introduce measurable concentrations of the analytes of interest. Trip Blanks are usually analyzed at the frequency of one per every sample cooler.

SDG 110801007: (Volatiles) The trip blank acquired on 7/26/11 reported positive results for acetone and methylene chloride, both common laboratory contaminants. For this reason, the methylene chloride results were qualified as not detected (U) in the associated field samples MW-13 (33.5) and MW-14 (28.5). There were no positive results for acetone in either of the associated field samples, no action was required.

Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Because the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery (%R) is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample") is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spike sample".

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses and the %R/RPD values were within the proper control limits.

Laboratory Control Samples/ Laboratory Control Sample Duplicates (LCS/LCSD)

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Field Replicates/Duplicates

Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates the RPD is used as the criteria for assessing precision, unless one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

SDG 110805029: (Volatiles & NWTPH-Gx) One set of field duplicates, MW-4-080311 and DUPLICATE-1-080311, was submitted with this SDG. All of the precision requirements were met for all target analytes.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values. Precision was acceptable, as demonstrated by the laboratory duplicate, LCS/LCSD and MS/MSD RPD and absolute difference values.

Data were qualified as not detected because of trip blank contamination.

In general, the data are acceptable for use as qualified.

CASE NARRATIVE

Lab Name: Anatek Labs, Inc.

Project Tracking No.: Ione, WA 0504-058-00 Anatek Batch: 110801007

Project Summary: Three soil samples were received and analyzed for NWTPH-Gx by method NWTPHG. Two soil samples were received and analyzed for VOC's by 8260C. One trip blank was received and analyzed for VOC by 8260C. The VOC's and the Trip Blank were extracted using EPA Method 5035.

QA/QC Checks

Parameters	Yes / No	Exceptions / Deviations
Sample Holding Time Valid?	Y	NĂ
Surrogate Recoveries Valid?	Y	NA
QC Sample(s) Recoveries Valid?	Y	NA
Method Blank(s) Valid?	Y	NA
Trip Blank Valid	Ν	Methylene Chloride and Acetone detected (See
		Comments)
Tune(s) Valid?	Y	NA
Internal Standard Responses Valid?	Y	NA
Initial Calibration Curve(s) Valid?	Y	NA
Continuing Calibration(s) Valid?	Y	NA
Comments	Y	See comments section

1. Temperature Requirements

One cooler was hand delivered to the laboratory. The temperature of the samples in the cooler was 2.9° C. The samples were received on ice.

۰.

2. Holding Time Requirements

No problems encountered.

3. GC/MS Tune Requirements

No problems encountered.

4. Calibration Requirements

No problems encountered.

5. Surrogate Recovery Requirements

No problems encountered.

6. QC Sample (LCS/MS/MSD) Recovery Requirements

No problems were encountered.

7. Method Blank Requirements

The method blanks were non-detect for all analytes. No problems encountered.

8. Internal Standard(s) Response Requirements

No problems encountered.

9. Comments

The trip blank had methylene chloride detected at 47.5 ppb and acetone was detected at 570 ppb. Both samples that were analyzed had a methylene chloride detection of about 40 ppb. The lab has concluded that the contamination from the samples came from methanol vials that were contaminated in the laboratory either before or after sampling.

I certify that this data package is in compliance with the terms and conditions of the contract. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee.

Approved by: Kathleen a. Lattles

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

Batch #: Project Name: 110801007 IONE PETROLEUM CONT. 0504-058-00

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110801007-003 MW-13 (38.5) Soil		Sampling Date Sampling Time Sample Locatio	9:		ate/Time Rec xtraction Dat		7/29/2011	4:20 PM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Met	thod	Qualifier
Gasoline		ND	ug/kg	2500	8/2/2011	WOZ	NWT	rphg	
%moisture		9	Percent		8/2/2011	WOZ	%mo	bisture	
			Surrogate	Data					
Sample Number Surrogate S 4-Bromofluor			Method NWTPHG		Per	cent Recover 74.9	у	Control I 70-13	
Sample Number Client Sample ID Matrix Comments	110801007-007 MW-14 (33.5) Soil		Sampling Date Sampling Time Sample Locatio	1:		ate/Time Rec xtraction Dat		7/29/2011	4:20 PM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Me	thod	Qualifier
Gasoline		ND	ug/kg	2500	8/2/2011	WOZ	NW	rphg	
%moisture		12.8	Percent		8/2/2011	WOZ	%mc	oisture	
			Surrogate	Data					
Sample Number	110801007-007								
Surrogate S			Method		Per	cent Recover	у	Control I	
4-Bromofluor	obenzene		NWTPHG			85.1		70-1:	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Batch #: Project Name:	110801007 IONE PETROLEUM CONT. 0504-058-00
Attn:	DAVE LAUDER		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110801007-011 MW-15 (43.5) Soil		Sampling Date Sampling Time Sample Locatio	11		ate/Time Reco xtraction Date		4:20 PM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifier
Gasoline		ND	ug/kg	2500	8/2/2011	woz	NWTPHG	
%moisture		10.5	Percent		8/2/2011	WOZ	%moisture	
			Surrogate	Data				
mple Number	110801007-011						1.000000.0000	
Surrogate S 4-Bromofluor			Method NWTPHG		Per	cent Recovery 87.4	/ Control I 70-13	

Authorized Signature

Kathleen a. Sattles

Kathy Sattler, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

Batch #: Project Name:

110801007 IONE PETROLEUM CONT. 0504-058-00

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110801007-002 MW-13 (33.5) Soil	_	Sampling Date Sampling Time Sample Locati	9 9:1		Date/Time Re Extraction Da		4:20 PM
Parameter		Result	Units	PQL	Analysis Dat	te Analyst	Method	Qualifier
1,1,1,2-Tetrach	loroethane	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,1,1-Trichloro	ethane	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,1,2,2-Tetrach	loroethane	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,1,2-Trichloro		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,1-Dichloroeth		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,1-Dichloroeth	nene	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,1-dichloropro	pene	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,2,3-Trichloro	-	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,2,3-Trichloro		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,2,4-Trichloro	, .	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,2,4-Trimethy		ND	mg/kg	0.02455	8/1/2011	woz	EPA 8260B	
1.2-Dibromo-3	-chloropropane(DBCP)	ND	mg/kg	0.02455	8/1/2011	woz	EPA 8260B	
1,2-Dibromoetl		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,2-Dichlorobe		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,2-Dichloroeth		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,2-Dichloropro		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,3,5-Trimethy	•	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,3-Dichlorobe		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,3-Dichloropro		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
1,4-Dichlorobe	•	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
2,2-Dichloropro		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
2-Chlorotoluen	•	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
2-hexanone		ND	mg/kg	0.12275	8/1/2011	WOZ	EPA 8260B	
4-Chlorotoluen	ie	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
Acetone		ND	mg/kg	0.12275	8/1/2011	WOZ	EPA 8260B	
Acrylonitrile		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
Benzene		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
Bromobenzen	e	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
Bromochlorom		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
Bromodichloro	methane	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
Bromoform		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
Bromomethan	e	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
Carbon disulfic		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	
Carbon Tetrac		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110801007
Address:	523 E 2ND	Project Name:	IONE PETROLEUM CONT.
Attn:	SPOKANE, WA 99202 DAVE LAUDER		0504-058-00

Analytical Results Report

ample Number lient Sample ID atrix omments	110801007-002 MW-13 (33.5) Soil	S	iampling Date iampling Time iample Locatio	9:1		Date/Time Re Extraction Da		7/29/2011	4:20 PM
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Meti	hod	Qualifie
Chlorobenzene	3	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
Chloroethane	-	ND		0.02455	8/1/2011	woz	EPA 8	260B	
Chloroform		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
Chloromethane	e	ND	mg/kg	0.02455	8/1/2011	woz	EPA 8	260B	
cis-1,2-dichlor	bethene	ND		0.02455	8/1/2011	WOZ	EPA 8	260B	
cis-1,3-Dichlor	opropene	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
Dibromochloro	methane	ND	mg/kg	0.02455	8/1/2011	woz	EPA 8	260B	
Dibromometha	ine	ND	mg/kg	0.02455	8/1/2011	woz	EPA 8	260B	
Dichlorodifluor	omethane	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
Ethylbenzene		ND		0.02455	8/1/2011	WOZ	EPA 8	260B	
Hexachlorobut	adiene	ND	mg/kg	0.02455	8/1/2011	woz	EPA 8	260B	
Isopropylbenze	ene	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
m+p-Xylene		ND		0.02455	8/1/2011	woz	EPA 8	260B	
Methyl ethyl ke	etone (MEK)	ND	mg/kg	0.12275	8/1/2011	WOZ	EPA 8	260B	
	I ketone (MIBK)	ND	mg/kg	0.12275	8/1/2011	WOZ	EPA 8	260B	
Methylene chlo	oride	0.0383	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	W
methyl-t-butyl o	ether (MTBE)	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
Naphthalene		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
n-Butylbenzen	e	ND	mg/kg	0.02455	8/1/2011	woz	EPA 8	260B	
n-Propylbenze	ne	ND	mg/kg	0.02455	8/1/2011	woz	EPA 8	260B	
o-Xylene		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
p-isopropyltolu	ene	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
sec-Butylbenz		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
Styrene		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
tert-Butylbenze	ene	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
Tetrachloroeth		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
Toluene		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
trans-1,2-Dich	loroethene	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	260B	
trans-1,3-Dich	loropropene	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	3260B	
Trichloroethen		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	3260B	
Trichloroflouro	methane	ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	3260B	
Vinyl Chloride		ND	mg/kg	0.02455	8/1/2011	WOZ	EPA 8	3260B	
%moisture		3.8	Percent		8/2/2011	WOZ	%moi	sture	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202	Batch #: Project Name:	110801007 IONE PETROLEUM CONT. 0504-058-00
Attn:	DAVE LAUDER		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110801007-002 MW-13 (33.5) Soil	S	Sampling Date Sampling Time Sample Locatio	7/26/2011 9:15 AM n	Date/Time Recei Extraction Date	ved 7/29/2011	4:20 PM
Parameter		Result	Units	PQL Analysi	s Date Analyst	Method	Qualifier
			Surrogate	Data			
ample Number	110801007-002		Surrogate	Data			
ample Number Surrogate S			Surrogate Method	Data	Percent Recovery	Control	Limits
ample Number Surrogate S 1,2-Dichlorol	tandard				Percent Recovery 99.6	Control 70-1:	
Surrogate S	tandard benzene-d4		Method	3	-		30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

 Batch #:
 110801007

 Project Name:
 IONE PETROLEUM CONT. 0504-058-00

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110801007-006 MW-14 (28.5) Soil		Sampling Date Sampling Time Sample Locati	ə 1:3		Date/Time Re Extraction Da	-	1 4:20 PM
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Method	Qualifier
1,1,1,2-Tetracl	hloroethane	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,1,1-Trichloro	ethane	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,1,2,2-Tetracl	hloroethane	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,1,2-Trichloro	ethane	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,1-Dichloroet	hane	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,1-Dichloroet	hene	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,1-dichloropro		ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,2,3-Trichloro	benzene	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,2,3-Trichloro		ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,2,4-Trichloro	• •	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,2,4-Trimethy		ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1.2-Dibromo-3	-chloropropane(DBCP)	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,2-Dibromoet	hane	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,2-Dichlorobe	enzene	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,2-Dichloroet	hane	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,2-Dichloropr	opane	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,3,5-Trimethy	lbenzene	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,3-Dichlorobe	enzene	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,3-Dichloropr	opane	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
1,4-Dichlorobe	enzene	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
2,2-Dichloropr	opane	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
2-Chlorotoluer	ne	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
2-hexanone		ND	mg/kg	0.13125	8/1/2011	WOZ	EPA 8260B	
4-Chlorotoluer	ne	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
Acetone		ND	mg/kg	0.13125	8/1/2011		EPA 8260B	
Acrylonitrile		ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
Benzene		ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
Bromobenzen	e	ND	mg/kg	0.02625	8/1/2011		EPA 8260B	
Bromochloron	nethane	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
Bromodichloro	omethane	ND	mg/kg	0.02625	8/1/2011		EPA 8260B	
Bromoform		ND	mg/kg	0.02625	6 8/1/2011		EPA 8260B	
Bromomethan	e	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
Carbon disulfi	de	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
Carbon Tetrac	chloride	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA 8260B	
Chlorobenzen	IC	ND	mg/kg	0.02625	5 8/1/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

 Batch #:
 110801007

 Project Name:
 IONE PETROLEUM CONT. 0504-058-00

Analytical Results Report

ample Number lient Sample ID atrix comments	110801007-006 MW-14 (28.5) Soil	S	ampling Date ampling Time ample Locatio	1:3		Date/Time Re Extraction Da		7/29/2011	4:20 PM
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Me	thod	Qualifie
Chloroethane	///-	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
Chloroform		ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
Chloromethan	9	ND		0.02625	8/1/2011	WOZ	EPA	8260B	
cis-1,2-dichlor	pethene	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
cis-1,3-Dichlor		ND		0.02625	8/1/2011	WOZ	EPA	8260B	
Dibromochloro		ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
Dibromometha	ine	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
Dichlorodifluor	omethane	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
Ethylbenzene		ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
Hexachlorobut	adiene	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
Isopropylbenz	ene	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
m+p-Xylene		ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
Methyl ethyl ke	etone (MEK)	ND	mg/kg	0.13125	8/1/2011	WOZ	EPA	8260B	
Methyl isobuty	l ketone (MIBK)	ND	mg/kg	0.13125	8/1/2011	WOZ		8260B	
Methylene chl		0.0404	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	W
methyl-t-butyl	ether (MTBE)	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
Naphthalene	• •	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
n-Butylbenzen	e	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
n-Propylbenze	ne	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
o-Xylene		ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
p-isopropyltolu	iene	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
sec-Butylbenz	ene	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
Styrene		ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
tert-Butylbenz	ene	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
Tetrachloroeth	ene	ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
Toluene		ND	mg/kg	0.02625	8/1/2011	WOZ	EPA	8260B	
trans-1,2-Dich	loroethene	ND	mg/kg	0.02625	8/1/2011	WOZ		8260B	
trans-1,3-Dich	loropropene	ND	mg/kg	0.02625		WOZ		8260B	
Trichloroether	e	ND	mg/kg	0.02625	8/1/2011	WOZ		8260B	
Trichloroflour	omethane	ND	mg/kg	0.02625		WOZ		8260B	
Vinyl Chloride		ND	mg/kg	0.02625	8/1/2011	WOZ		8260B	
%moisture		9.9	Percent		8/2/2011	WOZ	%m	oisture	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202	Batch #: Project Name:	110801007 IONE PETROLEUM CONT. 0504-058-00
Attn:	DAVE LAUDER		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110801007-006 MW-14 (28.5) Soil	San	npling Date npling Time nple Location	7/26/2011 1:30 PM	Date/Time Rec Extraction Dat		2011 4:20 PM
Parameter		Result	Units	PQL Analys	sis Date Analyst	Method	Qualifier
		:	Surrogate	Data			
ampie Number	110801007-006	•	Surrogate	Data			
ample Number Surrogate S			Surrogate	Data	Percent Recover	y Coi	ntrol Limits
ample Number Surrogate S 1,2-Dichlorol	tandard	:	-	Data	Percent Recover 98.8	ry Coi	ntrol Limits 70-130
Surrogate S	tandard benzene-d4	:	Method	Data		ry Coi	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

 Batch #:
 110801007

 Project Name:
 IONE PETROLEUM CONT. 0504-058-00

Analytical Results Report

ample Number Ilient Sample ID latrix Comments	110801007-013 TRIP BLANK Soil		Sampling Date Sampling Time Sample Locatic			ate/Time Re xtraction Da		7/29/2011	4:20 PM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Me	ethod	Qualifie
1,1,1,2-Tetrach	loroethane	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,1,1-Trichloro	ethane	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,1,2,2-Tetrach	loroethane	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,1,2-Trichloro	ethane	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,1-Dichloroeth	ane	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,1-Dichloroeth	iene	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,1-dichloropro	pene	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,2,3-Trichloro	benzene	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,2,3-Trichloro		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,2,4-Trichloro	benzene	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,2,4-Trimethy	benzene	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,2-Dibromo-3-	-chloropropane(DBCP)	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,2-Dibromoet		ND	mg/kg	0.025	8/1/2011	woz	EPA	8260B	
1,2-Dichlorobe		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,2-Dichloroeth		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,2-Dichloropro		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,3,5-Trimethy		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1.3-Dichlorobe	nzene	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1,3-Dichloropro	opane	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
1 4-Dichlorobe	nzene	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
2,2-Dichloropro	opane	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
2-Chlorotoluen	e	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
2-hexanone		ND	mg/kg	0.125	8/1/2011	WOZ	EPA	8260B	
4-Chlorotoluen	e	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Acetone		0.570	mg/kg	0.125	8/1/2011	WOZ	EPA	8260B	
Acrylonitrile		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Benzene		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Bromobenzene	•	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Bromochlorom	ethane	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Bromodichloro	methane	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Bromoform		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Bromomethane	e	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Carbon disulfic	le	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Carbon Tetrac	hloride	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Chlorobenzene		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: GEO ENGINEERS Address: 523 E 2ND SPOKANE, WA 99202 Attn: DAVE LAUDER
 Batch #:
 110801007

 Project Name:
 IONE PETROLEUM CONT. 0504-058-00

Analytical Results Report

mple Number ent Sample ID trix mments	110801007-013 TRIP BLANK Soil	:	Sampling Date Sampling Time Sample Locatic			ate/Time Re xtraction Da		7/29/2011	4:20 PM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Ме	thod	Qualifie
Chloroethane		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Chloroform		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Chloromethane	9	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
cis-1,2-dichloro	bethene	ND	mg/kg	0.025	8/1/2011	WÓZ	EPA	8260B	
cis-1,3-Dichlor		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Dibromochloro		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Dibromometha		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Dichlorodifluor	omethane	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Ethylbenzene		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Hexachlorobut	adiene	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Isopropylbenze	ene	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
m+p-Xylene		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Methyl ethyl ke	etone (MEK)	ND	mg/kg	0.125	8/1/2011	WOZ	EPA	8260B	
• •	ketone (MIBK)	ND	mg/kg	0.125	8/1/2011	WOZ	EPA	8260B	
Methylene chlo	oride	0.0475	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
methyl-t-butyl e	ether (MTBE)	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Naphthalene		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
n-Butylbenzen	e	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
n-Propylbenze	ne	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
o-Xylene		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
p-isopropyitolu	ene	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
sec-Butylbenzo		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Styrene		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
tert-Butylbenze	ne	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Tetrachloroeth		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Toluene		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
trans-1,2-Dichl	oroethene	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
trans-1,3-Dichl		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Trichloroethen		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Trichloroflouro	methane	ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	
Vinyl Chloride		ND	mg/kg	0.025	8/1/2011	WOZ	EPA	8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202	Batch #: Project Name:	110801007 IONE PETROLEUM CONT. 0504-058-00
Attn:	DAVE LAUDER		
		5 +	

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110801007-013 TRIP BLANK Soil		Sampling Date Sampling Time Sample Locatio			ate/Time Recei traction Date	ved 7/29/2011	4:20 PM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
			Surrogate	Data				
ample Number	110801007-013	<u></u>						
Surrogate S	tandard		Method		Per	cent Recovery	Control	Limits
1,2-Dichlorol	penzene-d4		EPA 8260	3		97.6	70-1	30
4-Bromofluorobenzene			EPA 82608	3	96.4		70-1	30
Toluene-d8		EPA 8260B			100.8	70-1	70-130	

Authorized Signature

Kathlen a. Sattles

Kathy Sattler, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

W Analyte was detected in both the sample and the associated trip blank

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Glient.	OLO ENGINEERIO

Address:

Attn:

523 E 2ND SPOKANE, WA 99202 DAVE LAUDER Batch #: Project Name: 110801007 IONE PETROLEUM CONT. 0504-058-00

Analytical Results Report

Quality Control Data

ab Control Sample				4/ D		Draw Dete	Analysis Date
Parameter	LCS Result	Units	LCS Spike	%Rec	AR %Rec	Prep Date	-
Trichloroethene	0.00896	mg/kg	0.01	89.6	73-124	8/1/2011	8/1/2011
Toluene	0.00889	mg/kg	0.01	88.9	77-123	8/1/2011	8/1/2011
Tetrachloroethene	0.00841	mg/kg	0.01	84.1	68-130	8/1/2011	8/1/2011
o-Xylene	0.00964	mg/kg	0.01	96.4	77-121	8/1/2011	8/1/2011
Ethylbenzene	0.00860	mg/kg	0.01	86.0	76-124	8/1/2011	8/1/2011
Chlorobenzene	0.00945	mg/kg	0.01	94.5	78-119	8/1/2011	8/1/2011
Benzene	0.00904	mg/kg	0.01	90.4	83-127	8/1/2011	8/1/2011
1.1-Dichloroethene	0.0101	mg/kg	0.01	101.0	77-138	8/1/2011	8/1/2011

Method Blank

Parameter	Result	Units	PQL	Prep Date	Analysis Date
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,1,1-Trichloroethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,1,2-Trichloroethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,1-Dichloroethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,1-Dichloroethene	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,1-dichloropropene	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,2,3-Trichlorobenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,2,3-Trichloropropane	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,2,4-Trichlorobenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,2,4-Trimethylbenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
1.2-Dibromo-3-chloropropane(DBCP)	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,2-Dibromoethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,2-Dichlorobenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,2-Dichloroethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,2-Dichloropropane	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,3,5-Trimethylbenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,3-Dichlorobenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,3-Dichloropropane	ND	mg/kg	0.005	8/1/2011	8/1/2011
1,4-Dichlorobenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
2,2-Dichloropropane	ND	mg/kg	0.005	8/1/2011	8/1/2011
2-Chlorotoluene	ND	mg/kg	0.005	8/1/2011	8/1/2011

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS		Batch #:	110801007
Address:	523 E 2ND		Project Name:	IONE PETROLEUM CONT.
	SPOKANE, WA 99202			0504-058-00
Attn:	DAVE LAUDER			
		Analytical Results Repo	rt	

Quality Control Data

Method Blank					
Parameter	Result	Units	PQL	Prep Date	Analysis Date
2-hexanone	ND	mg/kg	0.025	8/1/2011	8/1/2011
4-Chlorotoluene	ND	mg/kg	0.005	8/1/2011	8/1/2011
Acetone	ND	mg/kg	0.025	8/1/2011	8/1/2011
Acrylonitrile	ND	mg/kg	0.005	8/1/2011	8/1/2011
Benzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
Bromobenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
Bromochloromethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
Bromodichloromethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
Bromoform	ND	mg/kg	0.005	8/1/2011	8/1/2011
Bromomethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
Carbon disulfide	ND	mg/kg	0.005	8/1/2011	8/1/2011
Carbon Tetrachloride	ND	mg/kg	0.005	8/1/2011	8/1/2011
Chlorobenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
Chloroethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
Chloroform	ND	mg/kg	0.005	8/1/2011	8/1/2011
Chloromethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
cis-1,2-dichloroethene	ND	mg/kg	0.005	8/1/2011	8/1/2011
cis-1,3-Dichloropropene	ND	mg/kg	0.005	8/1/2011	8/1/2011
Dibromochloromethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
Dibromomethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
Dichlorodifluoromethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
Ethylbenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
Hexachlorobutadiene	ND	mg/kg	0.005	8/1/2011	8/1/2011
Isopropylbenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
m+p-Xylene	ND	mg/kg	0.005	8/1/2011	8/1/2011
Methyl ethyl ketone (MEK)	ND	mg/kg	0.025	8/1/2011	8/1/2011
Methyl isobutyl ketone (MIBK)	ND	mg/kg	0.025	8/1/2011	8/1/2011
Methylene chloride	ND	mg/kg	0.025	8/1/2011	8/1/2011
methyl-t-butyl ether (MTBE)	ND	mg/kg	0.005	8/1/2011	8/1/2011
Naphthalene	ND	mg/kg	0.005	8/1/2011	8/1/2011
n-Butylbenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
n-Propylbenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
o-Xylene	ND	mg/kg	0.005	8/1/2011	8/1/2011
p-isopropyltoluene	ND	mg/kg	0.005	8/1/2011	8/1/2011
sec-Butylbenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011
Styrene	ND	mg/kg	0.005	8/1/2011	8/1/2011
tert-Butylbenzene	ND	mg/kg	0.005	8/1/2011	8/1/2011

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110801007					
Address:	523 E 2ND	Project Name:	IONE PETROLEUM CONT.					
	SPOKANE, WA 99202		0504-058-00					
Attn:	DAVE LAUDER							
Analytical Results Report								

Quality Control Data

Method Blank					
Parameter	Result	Units	PQL	Prep Date	Analysis Date
Tetrachloroethene	ND	mg/kg	0.005	8/1/2011	8/1/2011
Toluene	ND	mg/kg	0.005	8/1/2011	8/1/2011
trans-1,2-Dichloroethene	ND	mg/kg	0.005	8/1/2011	8/1/2011
trans-1,3-Dichloropropene	ND	mg/kg	0.005	8/1/2011	8/1/2011
Trichloroethene	ND	mg/kg	0.005	8/1/2011	8/1/2011
Trichloroflouromethane	ND	mg/kg	0.005	8/1/2011	8/1/2011
Vinyl Chloride	ND	mg/kg	0.005	8/1/2011	8/1/2011

AR Acceptable Range ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110801007
Address:	523 E 2ND	Project Name:	IONE PETROLEUM CONT.
	SPOKANE, WA 99202		0504-058-00
Attn:	DAVE LAUDER		
	Analytical Resul	ts Report	
	Quality Contro	ol Data	

Lab Control Sample									
Parameter	LCS Res	ult Units	LCS Spi	ke %F	tec A	R %Rec	Pre	ep Date	Analysis Date
Gasoline	26.4	mg/k	22	120	0.0	70-130	8/	2/2011	8/2/2011
Matrix Spike						****			
Sample Number Parameter		Sample Result	MS Result	Units	MS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
110801007-007 Gasoline		ND	20.1	mg/kg	22	91.4	70-130	8/2/2011	8/2/2011
Matrix Spike Duplicate	MSD		MSD			A			
Parameter	Result	Units	Spike	%Rec	%RF			Prep Date	Analysis Date
Gasoline	21.9	mg/kg	22	99.5	8.6) 0-2	20 8	8/2/2011	8/2/2011
Method Blank									
Parameter		Res	ult	Un	its	PQL		Prep Date	Analysis Date
Gasoline		ND	i i	mg/ł	g	2.5		8/2/2011	8/2/2011

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Login Report

Customer Name:	GEO ENGINEERS	3		Order II	D: 110805029
	523 E 2ND			Order Dat	e: 8/5/2011
	SPOKANE	W	A 99202		
Contact Name	DAVE LAUDER			Project Name: IONE	PETROLEUM
Comment				CON 058-0	TAMINATION 0504-
ooninient.				000	
Sample #: 110805	029-001 Customer S	ample #: MW	-1-080311	an a	
Recv'd:	Collector: KR4	NDALL	Date Collected	: 8/3/2011	
Quantity: 1	Matrix: Wate	er	Date Received	: 8/5/2011 10:40:00 A	
Comment:					
Test		Lab	Method	Due Date	Priority
TPHG-NW-SPO		S	NWTPHG	8/12/2011	<u>Normal (6-10 Days)</u>
VOLATILES 8260		S	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>
Sample #: 110805	029-002 Customer S	ample #: MW	-2-080311	-	
Recv'd:	Collector: KR/	NDALL	Date Collected	: 8/3/2011	
Quantity: 1	Matrix: Wate	ər	Date Received	: 8/5/2011 10:40:00 A	
Comment:					
Test		Lab	Method	Due Date	Priority
TPHG-NW-SPO		S	NWTPHG	8/12/2011	<u>Normal (6-10 Days)</u>
VOLATILES 8260		S	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>
Sample #: 110805	029-003 Customer S	ample #: MW	/-3-080311		
Recv'd: 🗸	Collector: K R/	ANDALL	Date Collected	I: 8/3/2011	
Quantity: 1	Matrix: Wat	er	Date Received	: 8/5/2011 10:40:00 A	
Comment:					
Test		Lab	Method	Due Date	Priority
TPHG-NW-SPO		S	NWTPHG	8/12/2011	<u>Normal (6-10 Days)</u>
VOLATILES 8260		S	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>

Customer	Name:	GEO ENGIN	EERS			Order II): 110805029
		523 E 2ND				Order Date	e: 8/5/2011
		SPOKANE		WA	99202		
Contact	Name:	DAVE LAUD	ER			Project Name: IONE	
Com	nment:					058-0	TAMINATION 0504-)1
Sample #:	1108050)29-004 Cust	omer Sample #:	MW-4	4-080311		
Recv'd:	\checkmark	Collector:	K RANDALL		Date Collected:	: 8/3/2011	
Quantity:	1	Matrix:	Water		Date Received:	8/5/2011 10:40:00 A	
Comment:							
Test				Lab	Method	Due Date	Priority
TPHG-NW-	-SPO			S	NWTPHG	8/12/2011	Normal (6-10 Days)
VOLATILE				s	EPA 8260B	8/15/2011	Normal (6-10 Days)
Sample #	110805	029-005 Cust	omer Sample #	• M\A/-f	6-080311		
Sample #:						0/0/0044	
Recv'd:	\checkmark	Collector:			Date Collected		
Quantity:	1	Matrix:	Water		Date Received	: 8/5/2011 10:40:00 A	
Comment:							
Test				Lab	Method	Due Date	Priority
TPHG-NW	-SPO			S	NWTPHG	8/12/2011	<u>Normal (6-10 Days)</u>
VOLATILE	S 8260			S	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>
Sample #:	110805	029-006 Cust	omer Sample #	: MW-	7-080311		
Recv'd:	~	Collector	K RANDALL		Date Collected	: 8/3/2011	
Quantity:	1	Matrix:	Water		Date Received	: 8/5/2011 10:40:00 A	
Comment:							
							Delasity
Test		<u> </u>		Lab	Method	Due Date 8/12/2011	Priority
TPHG-NW				S	NWTPHG EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u> Normal (6-10 Days)
VOLATILE	5 8260			S		0/10/2011	<u>Normai (0-10 Days/</u>
Sample #:	110805	029-007 Cust	omer Sample #	: MW-	8-080311		
Recv'd:	\checkmark	Collector	: K RANDALL		Date Collected	I: 8/3/2011	
Quantity:	1	Matrix:	Water		Date Received	I: 8/5/2011 10:40:00 A	
Comment	:						
Test				Lab	Method	Due Date	Priority
TPHG-NW	I-SPO		,	S	NWTPHG	8/12/2011	Normal (6-10 Days)
VOLATILE				S	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>

Customer Name: GEO ENGINE	ERS		Order IE	110805029
523 E 2ND			Order Date	e: 8/5/2011
SPOKANE	V	IA 99202		
Contact Name: DAVE LAUDE	R		Project Name: IONE	PETROLEUM
Comment:			CON 058-0	FAMINATION 0504-
O OIIIIIOIII				
Sample #: 110805029-008 Custom	ner Sample #: MV	V-9-080311		
Recv'd: 🖌 Collector:	K RANDALL	Date Collected:	8/3/2011	
Quantity: 1 Matrix:	Water	Date Received:	8/5/2011 10:40:00 A	
Comment:				
Test	Lab	Method	Due Date	Priority
TPHG-NW-SPO	S	NWTPHG	8/12/2011	<u>Normal (6-10 Days)</u>
VOLATILES 8260	S	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>
Sample #: 110805029-009 Custon	ner Sample #: MV	V-10-080311		
Recv'd: 🗸 Collector:	K RANDALL	Date Collected:	8/3/2011	
Quantity: 1 Matrix:	Water	Date Received:	8/5/2011 10:40:00 A	
Comment:				
Test	Lab	Method	Due Date	Priority
Test TPHG-NW-SPO	S	NWTPHG	8/12/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260	S S	NWTPHG	8/12/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260	S S	NWTPHG EPA 8260B	8/12/2011 8/15/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-010 Custor	S S mer Sample #: MV	NWTPHG EPA 8260B W-11-080311	8/12/2011 8/15/2011 : 8/3/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-010 Custor Recv'd: Collector:	S S mer Sample #: M\ K RANDALL	NWTPHG EPA 8260B W-11-080311 Date Collected	8/12/2011 8/15/2011 : 8/3/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-010 Custor Recv'd: I Collector: Quantity: 1 Matrix:	S S mer Sample #: M\ K RANDALL	NWTPHG EPA 8260B W-11-080311 Date Collected	8/12/2011 8/15/2011 : 8/3/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-010 Custor Recv'd: ☑ Collector: Quantity: 1 Matrix: Comment:	S S mer Sample #: M\ K RANDALL Water	NWTPHG EPA 8260B W-11-080311 Date Collected Date Received	8/12/2011 8/15/2011 : 8/3/2011 : 8/5/2011 10:40:00 A	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-010 Custor Recv'd: ✔ Collector: Quantity: 1 Matrix: Comment: Test	S S mer Sample #: M K RANDALL Water Lab	NWTPHG EPA 8260B N-11-080311 Date Collected Date Received Method	8/12/2011 8/15/2011 : 8/3/2011 : 8/5/2011 10:40:00 A Due Date	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-010 Custor Recv'd: Collector: Quantity: 1 Matrix: Comment: Test TPHG-NW-SPO VOLATILES 8260	S S mer Sample #: M K RANDALL Water <u>Lab</u> S S	NWTPHG EPA 8260B W-11-080311 Date Collected Date Received Method NWTPHG	8/12/2011 8/15/2011 : 8/3/2011 : 8/5/2011 10:40:00 A <u>Due Date</u> 8/12/2011	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-010 Custor: Quantity: 1 Matrix: Comment: Test TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-011 Custor: Comment:	S S mer Sample #: M K RANDALL Water <u>Lab</u> S S	NWTPHG EPA 8260B W-11-080311 Date Collected Date Received Method NWTPHG EPA 8260B	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A <u>Due Date</u> 8/12/2011 8/15/2011	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-010 Custor Recv'd: ✓ Collector: Quantity: 1 Matrix: Comment: TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-011 Custor	S S mer Sample #: MV K RANDALL Water Lab S S mer Sample #: M	NWTPHG EPA 8260B W-11-080311 Date Collected Date Received Method NWTPHG EPA 8260B W-12-080311	8/12/2011 8/15/2011 : 8/3/2011 : 8/5/2011 10:40:00 A <u>Due Date</u> 8/12/2011 8/15/2011 : 8/3/2011	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-010 Custor Recv'd: ✓ Collector: Quantity: 1 Matrix: Comment: Test TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-011 Custor Recv'd: ✓ Collector:	S S mer Sample #: M K RANDALL Water Lab S S mer Sample #: M K RANDALL	NWTPHG EPA 8260B W-11-080311 Date Collected Date Received Method NWTPHG EPA 8260B W-12-080311 Date Collected	8/12/2011 8/15/2011 : 8/3/2011 : 8/5/2011 10:40:00 A <u>Due Date</u> 8/12/2011 8/15/2011 : 8/3/2011	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-010 Custor Recv'd: ✓ Collector: Quantity: 1 Matrix: Comment: ✓ TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-011 Custor Recv'd: ✓ Collector: Quantity: 1 Matrix: Comment: ✓ Collector: Quantity: 1 Matrix: Comment: ✓ Collector:	S S mer Sample #: M K RANDALL Water Lab S S mer Sample #: M K RANDALL	NWTPHG EPA 8260B W-11-080311 Date Collected Date Received Method NWTPHG EPA 8260B W-12-080311 Date Collected	8/12/2011 8/15/2011 : 8/3/2011 : 8/5/2011 10:40:00 A <u>Due Date</u> 8/12/2011 8/15/2011 : 8/3/2011	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-010 Custor Recv'd: ✓ Collector: Quantity: 1 Matrix: Comment: ✓ TPHG-NW-SPO VOLATILES 8260 ✓ ✓ Sample #: 110805029-011 Custor Recv'd: ✓ Collector: Quantity: 1 Matrix:	S S mer Sample #: M K RANDALL Water S S mer Sample #: M K RANDALL Water	NWTPHG EPA 8260B W-11-080311 Date Collected Date Received Method NWTPHG EPA 8260B W-12-080311 Date Collected Date Received	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A <u>Due Date</u> 8/12/2011 8/15/2011 8/15/2011 8/5/2011 10:40:00 A	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days) Normal (6-10 Days)

Customer Nan	ne: GEO E	ENGINE	ERS			Order II	D: 110805029
	523 E	2ND				Order Dat	e: 8/5/2011
	SPOK	ANE		WA	99202		
Contact Nan	ne: DAVE	LAUDE	R			Project Name: IONE	PETROLEUM TAMINATION 0504-
Comme	nt:					058-0	
		1.000					
Sample #: 110	305029-012	Custor	ner Sample #:	MW-	13-080411		
Recv'd: 🔽	Co	llector:	K RANDALL		Date Collected:	8/4/2011	
Quantity: 1	Ма	trix:	Water		Date Received:	8/5/2011 10:40:00 A	
Comment:							
Test				Lab	Method	Due Date	Priority
TPHG-NW-SPO				S	NWTPHG	8/12/2011	Normal (6-10 Days)
VOLATILES 826	50			s	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>
Sample #: 110	805029-013	Custor	mer Sample #:	MW-	14-080411	- Anna	
-		llector:	K RANDALL		Date Collected	: 8/4/2011	
Recv'd: Quantity: 1	-	trix:	Water		Date Received:		
Quantity: 1 Comment:	1410		VVIICI		Buto Notoriou		
Comment.							
Test				Lab	Method	Due Date	Priority
TPHG-NW-SPC				S	NWTPHG	8/12/2011	<u>Normal (6-10 Days)</u>
VOLATILES 826	50			S	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>
Sample #: 110	805029-014	Custor	mer Sample #	: MW-	15-080411		
Recv'd:] Co	llector:	K RANDALL		Date Collected	: 8/4/2011	
Quantity: 1	Ма	atrix:	Water		Date Received	: 8/5/2011 10:40:00 A	
Comment:							
Test				Lab	Method	Due Date	Priority
Test TPHG-NW-SPC)			Lab S	Method NWTPHG	Due Date 8/12/2011	Priority <u>Normal (6-10 Days)</u>
<u></u>							
TPHG-NW-SPC VOLATILES 82		Custo	mer Sample #	S S	NWTPHG	8/12/2011	Normal (6-10 Days)
TPHG-NW-SPC VOLATILES 82 Sample #: 110	50 805029-015	Custo	mer Sample # K RANDALL	S S	NWTPHG EPA 8260B	8/12/2011 8/15/2011	Normal (6-10 Days)
TPHG-NW-SPC VOLATILES 82 Sample #: 110 Recv'd:	60 805029-015			S S	NWTPHG EPA 8260B IIN GRILL-080411	8/12/2011 8/15/2011 : 8/4/2011	Normal (6-10 Days)
TPHG-NW-SPC VOLATILES 82 Sample #: 110 Recv'd:	60 805029-015	oilector:	K RANDALL	S S	NWTPHG EPA 8260B BIN GRILL-080411 Date Collected	8/12/2011 8/15/2011 : 8/4/2011	Normal (6-10 Days)
TPHG-NW-SPC VOLATILES 82 Sample #: 110 Recv'd: Quantity: 1 Comment:	60 805029-015	oilector:	K RANDALL	S S : CAE	NWTPHG EPA 8260B SIN GRILL-080411 Date Collected Date Received	8/12/2011 8/15/2011 : 8/4/2011 : 8/5/2011 10:40:00 A	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u>
TPHG-NW-SPC VOLATILES 82 Sample #: 110 Recv'd: Quantity: 1 Comment: Test	50 805029-015] Co Ma	oilector:	K RANDALL	S S : CAE	NWTPHG EPA 8260B IN GRILL-080411 Date Collected Date Received Method	8/12/2011 8/15/2011 : 8/4/2011 : 8/5/2011 10:40:00 A Due Date	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority
TPHG-NW-SPC VOLATILES 82 Sample #: 110 Recv'd: Quantity: 1 Comment:	50 805029-015] Cc Ma	oilector:	K RANDALL	S S : CAE	NWTPHG EPA 8260B SIN GRILL-080411 Date Collected Date Received	8/12/2011 8/15/2011 : 8/4/2011 : 8/5/2011 10:40:00 A	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u>

Customer Name: GEO ENGINEERS			Order II	D: 110805029
523 E 2ND			Order Date	e: 8/5/2011
SPOKANE	W	۹ 99202		
Contact Name: DAVE LAUDER		Р	roject Name: IONE	PETROLEUM
Comment:			CON 058-0	TAMINATION 0504- 01
Sample #: 110805029-016 Customer Sample #	: DUF	PLICATE-1		
Recv'd: 🗹 Collector: K RANDALL		Date Collected:	8/4/2011	
Quantity: 1 Matrix: Water		Date Received:	8/5/2011 10:40:00 A	
Comment:				x
Test	Lab	Method	Due Date	Priority
TPHG-NW-SPO	S	NWTPHG	8/12/2011	Normal (6-10 Days)
VOLATILES 8260	s	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>
Sample #: 110805029-017 Customer Sample # Recv'd: Collector: K RANDALL Quantity: 1 Matrix: Water Comment: TRIP BLANKS HAVE VERY SMALL A		Date Collected: Date Received: Date Received: OF HEADSPACE	8/4/2011 8/5/2011 10:40:00 A	
Test	Lab	Method	Due Date	Priority
TPHG-NW-SPO	S	NWTPHG	8/12/2011	<u>Normal (6-10 Days)</u>
VOLATILES 8260	S	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>
SAMPLE	CON	DITION RECORD	D	
Samples received in a cooler?			Yes	
Samples received intact?			Yes	
What is the temperature inside the cooler?			4.2	
Samples received with a COC?			Yes	
Samples received within holding time?			Yes	
Are all sample bottles properly preserved?			Yes	
Are VOC samples free of headspace?			Yes	
Is there a trip blank to accompany VOC samp	les?		Yes	
Labels and chain agree?			Yes	

 1382. Atturars Drive, Moscow ID 83843 (200) 883-3309 FAX 883-9346 0 504 E Spregue Ste D, Spokane WA 99202 (500) 883-3309 FAX 883-9446 0 504 E Spregue Ste D, Spokane WA 99202 (500) 883-3309 FAX 883-4435 54 Au 58 au 74 Au 704 C 704 C		Chain of Custody Record	110801 007 CEEQE Last 8/11/2011 1st SAMP 7/26/2011 1st RCVD 7/29/2011
Gue Engine Louder Proper Induct 3 E July 2 E July 2 E July<	Labs, 0 1282 Alturas I Inc. 0 504 E Sprague	~ ~ ~	ONE PETROLEUM CONT. 0504-058-)0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Project Marager Dave Lander	Please refer to our normal turn around times at
State Zir. Qr. Dr. Email Acterest: 5.5-31.5 State Transaction \Im 5.5-31.5 Surper Namo 6 fr \Im 5.5-31.6 Surper Namo 6 fr \Im 5.5-31.7 Surper Namo 6 fr \Im 5.5-31.7 Surper Namo 6 fr \Im 5.5-32.5 Surper 1 1 \Im Surper 1 \Im \Im Surper 1 1 \Im Surper 1	2	Project Name & #: Love Btrokome Cant. 0504-058-00	http://www.anateklabs.com/services/guidelines/reporting.asp
36.7-3145 36.7-3145 36.7-3145 36.7-3145 36.7-3145 36.7-3145 36.7-3145 26.7-3145 26.7-3145 26.7-3145 26.7-3145 26.7-3145 26.7-3145 26.7-3145 26.7-3145 26.7-3145 26.7-3145 26.7-3145 26.7-3145 26.7-3145 27.74 26.75 26.75 26.75 26.75 27.74 27.77 27.74 27.77 2.74	State Zin WA	Email Address: The nuber of the orgine	*All rush order
Zd-7:126 Sample Name & glone. Zd-7:126 Sample Description Contraction Sample Name & glone. restricts List Analyses Requested (245) Table 23:5) Table 11 Container 23:5) Table 12:5 Table 11 Container 23:5 Table 12:5 Table 11 Container 23:5 Table 12:5 Table 13:5 Li 23:5 Table 11 Container 23:5 Table 12:4 Li 23:5 Table 11:1 Container	2 312 5		prior approved.
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	227-3126		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Privide Sample Description	List Analyses Requested	Note Special Instructions/Comments
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Piespirative.	
terimenten sampling Dater Trie kater, $\frac{2}{8}$ $\frac{8}{8}$ $\frac{2}{3}$ $\frac{2}{38}$ $\frac{2}{38$		ornutov et	2000-1000-1000-1000-1000-1000- 2000-1000-1
	Sampling Date/Time	TWN qmas c 10 %	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(285) 726/11 O100		
	33.5/ 7/24/11 29.15	~	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	138.5) FIENII		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(43.5) 7/24/11		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 <u>11</u>		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(22(5) H24(1	- >	
36-5 Hault 1350 H H H H H (33-5) H2HL H35 1 1 H H H (33-5) H2HL H35 1 1 H H Labels & Chains Agree? (33-5) H2HL H35 1 H H Labels & Chains Agree? (33-5) H2HL 1205 1 H H Containers Seated? (43-5) H2HL 1206 1 H H Containers Seated? (43-5) H2HL 1206 Containers Seated? Y Printigram Someture Connamers Containers Seated? Y (41-5) H120 Hut Containers Seated? Y Kaun Rondult Received Intact? Containers Seated? Y Kallus Software Software Date & Time DDD Kallus Software Match Hack Hau Date & Time Kallus Fallur Hut Hack H2D Preservative DDD Kallus Fallur Hut Hack H2D Preservative DD Kaun Software Hack Hack Hack Hack<	(335) Truli		inspection Crecklist
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(38-5) <u>Hauli</u>		$\overline{\mathcal{N}}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(33-S) HZHU		Labels & Chains Agree?
(146.5) H CzH 12.00 J 1 1 Frinted Italia Scinature Company Detee Time Kewin Rondult Kewin Rondult Company Detee Time Kellu Sciller Putlu Mudelk Lulus 1/1 1620 Kellu Sciller Putlu Mudelk Lulus 1/2/1 1620	147 5) 7/2 1/1	×	Containers Sealed?
Printed trans Printed trans Scienture Low Result Result Result Kessin Rombart Result Kessin Rombart Result Kessin Rombart Result Kessin Rombart Result Kuhlu Scinture Antella Nuller Multella Antella Nuller Multella Antella	14.5) HEH		VOC Head Space?
Printed traines such and the such that the such that the such and the such and the such a such as the such as			1
Kerin Kandul Area Kurk 1974 1977 1984			
Actin Souther Marker Marke	Keyin Kondill	11 11 11 11 11 11 11 11 11 11 11 11 11	
	Kaller Satisf	ATTIC CULU AND	anti okishishi
	uished by		
	ad by		
red by	uished by		Inspected by <u>I w</u>
	red try		

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER				Batch Projec	#: t Name:		PETROLEU AMINATION	
		Ana	lytical Res	ults	Report				
Sample Number Client Sample ID Matrix Comments	110805029-001 MW-1-080311 Water		Sampling Date Sampling Time Sample Locatio	1	/3/2011 0:30 AM	Date/Tim Extractio	e Receive n Date	d 8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis I	Date Analy	rst l	Method	Qualifier
Gasoline		ND	ug/L	100	8/8/201	1 WO	Z N	WTPHG	
			Surrogate	Data	L				
Sample Number Surrogate 4-Bromofiue	110805029-001 Standard probenzene		Method NWTPHG			Percent Re 96.4		Control 70-1	
Sample Number Client Sample ID Matrix Comments	110805029-002 MW-2-080311 Water		Sampling Date Sampling Time Sample Locatio	1	/3/2011 1:20 AM	Date/Tim Extractio	e Receive n Date	d 8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis I	Date Analy	/st	Method	Qualifier
Gasoline		ND	ug/L	100	8/8/201	1 WO	Z N	IWTPHG	
		- 4400	Surrogate	Data	Ì				
Sample Number Surrogate 4-Bromoflue	110805029-002 Standard orobenzene		Method NWTPHG			Percent Re 94.7		Control 70-	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS				Batch #:		10805029	
Address:	523 E 2ND				Project N		ONE PETROLI	
	SPOKANE, WA 99202)58-01	011 0004
Attn:	DAVE LAUDER							
		Ana	lytical Res	ults I	Report			
Sample Number	110805029-003		Sampling Date	8/	/3/2011 [Date/Time F	Received 8/5/201	11 10:40 AN
Client Sample ID	MW-3-080311		Sampling Time		:12 PM E	Extraction D	Date	
Matrix Comments	Water		Sample Locatio	n				
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Method	Qualifie
Gasoline		74700	ug/L	1000	8/8/2011	WOZ	NWTPHG	
			Surrogate	Data				
ample Number	110805029-003							
Surrogate	Standard		Method		Pe	rcent Reco		rol Limits
4-Bromofluc	probenzene		NWTPHG			97.2	7	'0-130
Sample Number	110805029-004		Sampling Date	8/	/3/2011 [Date/Time F	Received 8/5/201	11 10:40 AN
Client Sample ID	MW-4-080311		Sampling Time		:21 PM E	Extraction [Date	
Matrix	Water		Sample Locatio	n				
Comments							,	
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Method	Qualifie
Gasoline		687	ug/L	100	8/8/2011	WOZ	NWTPHG	
			Surrogate	Data	L			
ample Number	110805029-004		****				_ 1.004	
Surrogate			Method		Pe	rcent Reco	•	rol Limits
4-Bromoflue	orobenzene		NWTPHG			99.2	7	70-130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Batch #: Project Name:	110805029 IONE PETROLEUM CONTAMINATION 0504- 058-01
------------------------------	--	---------------------------	--

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110805029-005 MW-6-080311 Water		Sampling Date Sampling Time Sample Locatio	3:		Date/Time Reco Extraction Date		10:40 AM
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Method	Qualifier
Gasoline		21900	ug/L	1000	8/9/2011	WOZ	NWTPHG	
			Surrogate	Data				
ample Number Surrogate S 4-Bromofluor			Method NWTPHG		Pe	ercent Recovery 106.7	y Control 70-	
Sample Number Client Sample ID Matrix Comments	110805029-006 MW-7-080311 Water		Sampling Date Sampling Time Sample Locatio	12		Date/Time Reco		10:40 AM
Parameter		Result	Units	PQL	Analysis Da	ite Analyst	Method	Qualifier
Gasoline		ND	ug/L	100	8/8/2011	WOZ	NWTPHG	
			Surrogate	Data				
Sample Number Surrogate S 4-Bromofluor			Method NWTPHG		Pe	ercent Recover 99.5	-	I Limits 130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS				Batch #	:	1108050	29	
Address:	523 E 2ND				Project			TROLEU	
	SPOKANE, WA 99202							MINATION	0504-
Attn:	DAVE LAUDER						058-01		
		Ana	lytical Res	ults I	Report				
Sample Number Client Sample ID Matrix Comments	110805029-007 MW-8-080311 Water		Sampling Date Sampling Time Sample Locatio	5:	3/2011 25 PM	Date/Time Extraction		8/5/2011	10:40 AN
Parameter		Result	Units	PQL	Analysis Da	ate Analyst	Me	thod	Qualifie
Gasoline	A. (1.)/0 ² 100	227000	ug/L	10000	8/9/2011	woz	NW	TPHG	- ¹⁷
ample Number Surrogate 4-Bromoflue			Method NWTPHG		Ρ	ercent Reco 99.3	overy	Control 70-1	
	440005000 000			0	3/2011	Date/Time	Beasivad	8/5/2011	10:40 AN
Sample Number Client Sample ID Matrix Comments	110805029-008 MW-9-080311 Water		Sampling Date Sampling Time Sample Locatio	12	2:41 PM	Extraction		0/0/2011	
Parameter		Result	Units	PQL	Analysis Da	ate Analysi	: Me	thod	Qualifie
Gasoline		ND	ug/L	100	8/8/2011	WOZ	NW	TPHG	
			Surrogate	e Data					
ample Number	110805029-008								
Surrogate	Standard		Method		P	ercent Reco	overy	Control	
4-Bromoflu	orobenzene		NWTPHG			103.8		70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER				Batch #: Project I	Name:		TROLEU	
Aun.		Ana	lytical Res	ults	Report				
Sample Number Client Sample ID Matrix Comments	110805029-009 MW-10-080311 Water		Sampling Date Sampling Time Sample Locatio	2		Date/Time Extraction		8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Ме	thod	Qualifier
Gasoline		ND	ug/L	100	8/8/2011	WOZ	NW	TPHG	
			Surrogate	Data	1				
ample Number	110805029-009								
Surrogate			Method NWTPHG		P	ercent Reco 104.0	overy	Control 70-1	
4-Bromonuo	probenzene		NWIFIG			104.0		70-	130
Sample Number Client Sample ID Matrix Comments	110805029-010 MW-11-080311 Water		Sampling Date Sampling Time Sample Locatio	1	5/3/2011 :45 PM	Date/Time Extraction		8/5/2011	10:40 AN
Parameter		Result	Units	PQL	Analysis Da	te Analys	Me	thod	Qualifie
Gasoline		ND	ug/L	100	8/8/2011	WOZ	NW	TPHG	
			Surrogate	Data					
Sample Number	110805029-010								
Surrogate	Standard		Method		P	ercent Reco	overy	Control 70-	
	orobenzene		NWTPHG			104.3			

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER				Batch #: Project Na	ame: I	I 10805029 ONE PETROLEI CONTAMINATIO 058-01	
		Ana	lytical Res	ults I	Report			
Sample Number Client Sample ID Matrix Comments	110805029-011 MW-12-080311 Water		Sampling Date Sampling Time Sample Locatio	3:		ate/Time R xtraction D		10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Gasoline		ND	ug/L	100	8/9/2011	WOZ	NWTPHG	
			Surrogate	Data				
Surrogate	110805029-011 Standard probenzene		Method NWTPHG		Per	cent Reco 104.3		I Limits -130
Surrogate	Standard			1	/4/2011 D		70- Received 8/5/2011	-130
Surrogate 4-Bromofluc Sample Number Client Sample ID Matrix	Standard probenzene 110805029-012 MW-13-080411	Result	NWTPHG Sampling Date Sampling Time	1	/4/2011 D	104.3 ate/Time F xtraction I	70- Received 8/5/2011	-130
4-Bromoflue Sample Number Client Sample ID Matrix Comments	Standard probenzene 110805029-012 MW-13-080411	Result 771	NWTPHG Sampling Date Sampling Time Sample Locatio	1 n	/4/2011 D 1:31 AM E	104.3 ate/Time F xtraction I	Received 8/5/2011 Date	-130
Surrogate 4-Bromoflue Sample Number Client Sample ID Matrix Comments Parameter	Standard probenzene 110805029-012 MW-13-080411		NWTPHG Sampling Date Sampling Time Sample Locatio Units	1 n PQL 100	/4/2011 D 1:31 AM E Analysis Date 8/9/2011	104.3 ate/Time F xtraction I	70 Received 8/5/2011 Date Method	-130
Surrogate 4-Bromoflue Sample Number Client Sample ID Matrix Comments Parameter	Standard probenzene 110805029-012 MW-13-080411		NWTPHG Sampling Date Sample Locatio Units ug/L	1 n PQL 100	/4/2011 D 1:31 AM E Analysis Date 8/9/2011	104.3 ate/Time F xtraction I	70 Received 8/5/2011 Date <u>Method</u> NWTPHG	-130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS				Batch #	•	1108050)29		
Address:	523 E 2ND SPOKANE, WA 99202				· · · , · · · · · · · · · · · · · · · · · · ·		IONE PETROLEUM CONTAMINATION 0504 058-01			
Attn:	DAVE LAUDER						058-01			
		Ana	lytical Res	ults	Report					
Sample Number Client Sample ID Matrix Comments	110805029-013 MW-14-080411 Water		Sampling Date Sampling Time Sample Locatio	8	/4/2011 :51 AM	Date/Time Extraction		8/5/2011	10:40 AN	
Parameter		Result	Units	PQL	Analysis Da	ate Analys	t Me	thod	Qualifie	
Gasoline		ND	ug/L	100	8/9/2011	WOZ	NW	TPHG		
			Surrogate	Data	1					
ample Number	110805029-013									
Surrogate 4-Bromoflue		Method NWTPHG			Percent Recover 98.8		overy	y Control Limits 70-130		
Sample Number Client Sample ID Matrix Comments	110805029-014 MW-15-080411 Water		Sampling Date Sampling Time Sample Locatio	1	/4/2011 0:16 AM	Date/Time Extraction		8/5/2011	10:40 AN	
Parameter		Result	Units	PQL	Analysis Da	ate Analys	t Me	ethod	Qualifie	
Gasoline		1660	ug/L	100	8/9/2011	WOZ	NW	TPHG		
			Surrogate	Data						
Sample Number	110805029-014									
Surrogate					Р	ercent Rec 97.2	overy	Control 70-1		
4-Bromoflue	propenzene		NWTPHG			97.2		70-1	30	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER				Batch #: Project Na	ame: IO CC	0805029 NE PETROLEU DNTAMINATION 8-01	
		Ana	lytical Res	ults I	Report			
Sample Number Client Sample ID Matrix Comments	110805029-015 CABIN GRILL-080411 Water		Sampling Date Sampling Time Sample Locatio	4		ate/Time Rei straction Dat		10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Gasoline		45500	ug/L	1000	8/9/2011	WOZ	NWTPHG	
			Surrogate	Data				
Sample Number Surrogate 4-Bromofiu	110805029-015 Standard orobenzene		Method NWTPHG		Per	ent Recove 97.3	ry Control 70-1	
Sample Number Client Sample ID Matrix	110805029-016 DUPLICATE-1 Water		Sampling Date Sampling Time Sample Locatio	1		ate/Time Re straction Da		10:40 AM
Comments								
Comments Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
		Result 708	Units ug/L	PQL 100	Analysis Date 8/9/2011	Analyst WOZ	Method NWTPHG	Qualifier
Parameter				100	8/9/2011			Qualifier
Parameter Gasoline Sample Number	110805029-016		ug/L Surrogate	100	8/9/2011	WOZ	NWTPHG	
Parameter Gasoline Sample Number Surrogate			ug/L	100	8/9/2011		NWTPHG	Limits

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: GEO ENGINEERS Address: 523 E 2ND SPOKANE, WA 99202 Attn: DAVE LAUDER Batch #: 110805 Project Name: IONE P CONTA

110805029 IONE PETROLEUM CONTAMINATION 0504-058-01

Analytical Results Report

Authorized Signature

Kathleen a. Sottles

Kathy Sattler, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

Batch #: 110805029 Project Name: IONE PETF CONTAMIN

IONE PETROLEUM CONTAMINATION 0504-058-01

Analytical Results Report

ample Number Client Sample ID Aatrix Comments	110805029-001 MW-1-080311 Water		Sampling Date Sampling Time Sample Location	1		Date/Time Re Extraction Da		8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Met	hod	Qualifier
1,1,1,2-Tetrach	loroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
1,1,1-Trichloroe	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
1,1,2,2-Tetrach	loroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
1,1,2-Trichloro	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
1,1-Dichloroeth	ane	ND	ug/L	0.5	8/10/2011	WOZ	EPA (3260B	
1,1-Dichloroeth	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
1,1-dichloropro	pene	ND	ug/L	0.5	8/10/2011	WOZ	EPA (3260B	
1,2,3-Trichlorol	penzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
1,2,3-Trichloro	propane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	3260B	
1,2,4-Trichlorol	penzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
1,2,4-Trimethyl	benzene	ND	ug/L	0.5	8/10/2011	woz	EPA	3260B	
	chloropropane(DBCP)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
1,2-Dibromoeth		ND	ug/L	0.5	8/10/2011	woz	EPA 8	3260B	
1,2-Dichlorobe		ND	ug/L	0.5	8/10/2011	woz	EPA 8	3260B	
1,2-Dichloroeth		ND	ug/L	0.5	8/10/2011	woz	EPA i	3260B	
1,2-Dichloropro	pane	ND	ug/L	0.5	8/10/2011	WOZ	EPA (3260B	
1,3,5-Trimethy	benzene	ND	ug/L	0.5	8/10/2011	woz	EPA a	3260B	
1,3-Dichlorobe		ND	ug/L	0.5	8/10/2011	WOZ	EPA a	3260B	
1,3-Dichloropro		ND	ug/L	0.5	8/10/2011	woz	EPA	3260B	
1,4-Dichlorobe	•	ND	ug/L	0.5	8/10/2011	WOZ	EPA	3260B	
2,2-Dichloropro	pane	ND	ug/L	0.5	8/10/2011	WOZ	EPA (3260B	
2-Chlorotoluen	•	ND	ug/L	0.5	8/10/2011	WOZ	EPA a	8260B	
2-hexanone		ND	ug/L	2.5	8/10/2011	WOZ	EPA 3	8260B	
4-Chlorotoluen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	3260B	
Acetone		ND	ug/L	2.5	8/10/2011	WOZ	EPA a	3260B	
Acrylonitrile		ND	ug/L	0.5	8/10/2011	WOZ	EPA 3	8260B	
Benzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromobenzene	•	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromochlorom		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromodichloro		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromoform		ND	ug/L	0.5	8/10/2011	WOZ	EPA -	8260B	
Bromomethane	e	ND	ug/L	0.5	8/10/2011	WOZ		8260B	
Carbon disulfic		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Carbon Tetrac		ND	ug/L	0.5	8/10/2011	WOZ		8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address:	523 E 2ND	Project Name:	IONE PETROLEUM CONTAMINATION 0504-
Attn:	SPOKANE, WA 99202 DAVE LAUDER		058-01

Analytical Results Report

ample Number lient Sample ID latrix omments	110805029-001 MW-1-080311 Water		Sampling Date Sampling Time Sample Locatio	1		Date/Time Re Extraction Da		8/5/2011	10:40 AN
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Metl	hod	Qualifie
Chlorobenzene	€	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Chloroethane		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Chloroform		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Chloromethane	Ð	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
cis-1,2-dichloro	pethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
cis-1,3-Dichlor		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Dibromochloro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Dibromometha	ine	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Dichlorodifluor	omethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Ethylbenzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Hexachlorobut	adiene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Isopropylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
m+p-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Methyl ethyl ke	etone (MEK)	ND	ug/L.	2.5	8/10/2011	WOZ	EPA 8	260B	
Methyl isobuty	l ketone (MIBK)	ND	ug/L	2.5	8/10/2011	WOZ.	EPA 8	260B	
Methylene chic	oride	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8	260B	
methyl-t-butyl o	ether (MTBE)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Naphthalene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
n-Butylbenzen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
n-Propylbenze	ne	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
o-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
p-isopropyltolu	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
sec-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Styrene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
tert-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Tetrachloroeth		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Toluene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
trans-1,2-Dichl	loroethene	ND	ug/L	0.5	8/10/2011		EPA 8	3260B	
trans-1,3-Dichl	loropropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Trichloroethen	е	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Trichloroflouro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Vinyl Chloride		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Batch #: Project Nam	110805029 e: IONE PETROLEUM CONTAMINATION 0504- 058-01
		Analytical Results Report	

Sample Number Client Sample ID Matrix Comments	110805029-001 MW-1-080311 Water	s	Sampling Date Sampling Time Sample Locatio	10		tte/Time Receiv traction Date	/ed 8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
			Surrogate					
Sample Number	110805029-001		. <u></u> .					
Surrogate S	tandard		Method		Perc	ent Recovery	Control	Limits
1,2-Dichlorot	enzene-d4		EPA 8260E	;		100.4	70- 1	130
4-Bromofluor	obenzene		EPA 8260E	1		96.0	70 -1	130
Toluene-d8			EPA 8260E	•		98.4	70-1	130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

Sample Number 110805029-002 Client Sample ID MW-2-080311 Matrix Water Comments			Sampling Date Sampling Time Sample Locatio	1		Date/Time Received 8/5/2011 Extraction Date		8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Ме	thod	Qualifie
1,1,1,2-Tetracl	loroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,1,1-Trichloro	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,1,2,2-Tetracl	nloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,1,2-Trichloro	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,1-Dichloroetl	nane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,1-Dichloroeth	nene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,1-dichloropro	pene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,2,3-Trichloro	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,2,3-Trichloro	propane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,2,4-Trichloro	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,2,4-Trimethy	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,2-Dibromo-3	-chloropropane(DBCP)	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,2-Dibromoet	hane	ND	ug/L.	0.5	8/10/2011	WOZ	EPA	8260B	
1,2-Dichlorobe	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,2-Dichloroet	nane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,2-Dichloropro	opane	ND	ug/L.	0.5	8/10/2011	WOZ	EPA	8260B	
1,3,5-Trimethy	lbenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,3-Dichlorobe	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,3-Dichloropre	opane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,4-Dichlorobe	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
2,2-Dichloropre	opane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
2-Chlorotoluen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
2-hexanone		ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
4-Chlorotoluen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Acetone		ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
Acrylonitrile		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Benzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromobenzene	9	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromochlorom	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromodichloro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromoform		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromomethan	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Carbon disulfic	le	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Carbon Tetrac	hloride	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Chlorobenzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

ample Number lient Sample ID atrix omments	110805029-002 MW-2-080311 Water		Sampling Date Sampling Time Sample Locatio	1		Date/Time Re Extraction Da		8/5/2011	10:40 AN
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Me	thod	Qualifie
Chloroethane		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Chloroform		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Chloromethane	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
cis-1,2-dichlord	pethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
cis-1,3-Dichlor	opropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Dibromochloro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Dibromometha	ne	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Dichlorodifluor	omethane	ND	ug/L	0.5	8/10/2011	woz	EPA	8260B	
Ethylbenzene		ND	ug/L	0.5	8/10/2011	woz	EPA	8260B	
Hexachlorobut	adiene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Isopropylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
m+p-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Methyl ethyl ke	otone (MEK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
Methyl isobutyl	ketone (MIBK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
Methylene chlo	oride	ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Naphthalene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
n-Butylbenzen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
n-Propyibenze	ne	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
o-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
p-isopropyltolu	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
sec-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Styrene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
tert-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Tetrachloroeth	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Toluene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
trans-1,2-Dichl	oroethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
trans-1,3-Dichl	oropropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Trichloroethen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Trichloroflouro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Vinyl Chloride		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER		Batch Proje	ı #: ct Name:)29 ETROLEU MINATION	
		Analytical Resu	Its Report				
Sample Number Client Sample ID Matrix Comments	110805029-002 MW-2-080311 Water	Sampling Date Sampling Time Sample Locatior	8/3/2011 11:20 AM	Date/Time Extractior	Received Date	8/5/2011	10:40 AM
Parameter		Result Units	PQL Analysis	Date Analys	st Me	ethod	Qualifier
		Surrogate	Data				
Sample Number	110805029-002						
Surrogate	Standard	Method		Percent Rec	overy	Control	Limits
1,2-Dichlore	obenzene-d4	EPA 8260B		99.2		70-1	30
4-Bromoflu	probenzene	EPA 8260B		98.0		70-1	30
Toluene-d8		EPA 8260B		98.0		70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01
	2,112 2,00210		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110805029-003 MW-3-080311 Water		1 5		/3/2011 Date/Time Received 8/5/2011 :12 PM Extraction Date			8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Me	thod	Qualifier
1,1,1,2-Tetracl	hloroethane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,1,1-Trichloro	ethane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,1,2,2-Tetracl	hloroethane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,1,2-Trichloro	ethane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,1-Dichloroet	hane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,1-Dichloroet	hene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,1-dichloropro	opene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,2,3-Trichloro	benzene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,2,3-Trichloro	propane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,2,4-Trichloro	benzene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,2,4-Trimethy	lbenzene	853	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,2-Dibromo-3	-chloropropane(DBCP)	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,2-Dibromoet	hane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,2-Dichlorobe	inzene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,2-Dichloroet	hane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,2-Dichloropro	opane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,3,5-Trimethy	Ibenzene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,3-Dichlorobe	nzene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,3-Dichloropre	opane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
1,4-Dichlorobe	inzene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
2,2-Dichloropre	opane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
2-Chlorotoluen	ne	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
2-hexanone		ND	ug/L	2500	8/10/2011	WOZ	EPA	8260B	
4-Chlorotoluen	ie	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Acetone		ND	ug/L	2500	8/10/2011	WOZ	EPA	8260B	
Acrylonitrile		ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Benzene		5470	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Bromobenzene	e	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Bromochlorom	lethane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Bromodichloro	methane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Bromoform		ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Bromomethan	e	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Carbon disulfic	le	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Carbon Tetrac	hloride	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Chlorobenzene	e	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01
,			

Analytical Results Report

Sample Number Client Sample ID /latrix Comments	110805029-003 MW-3-080311 Water		Sampling Date Sampling Time Sample Locatio	4		ate/Time Re xtraction Da		8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Me	thod	Qualifier
Chloroethane		ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Chloroform		ND	ug/L	500	8/10/2011	woz	EPA	8260B	
Chloromethane	9	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
cis-1,2-dichloro	pethene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
cis-1,3-Dichlor	opropene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Dibromochloro	methane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Dibromometha	ine	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Dichlorodifluor	omethane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Ethylbenzene		1700	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Hexachlorobut	adiene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Isopropylbenze	ene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
m+p-Xylene		6830	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Methyl ethyl ke	etone (MEK)	ND	ug/L	2500	8/10/2011	WOZ	EPA	8260B	
Methyl isobutyl	l ketone (MIBK)	ND	ug/L	2500	8/10/2011	WOZ	EPA	8260B	
Methylene chic	oride	ND	ug/L	2500	8/10/2011	WOZ	EPA	8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Naphthalene		ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
n-Butylbenzen	e	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
n-Propylbenze	ne	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
o-Xylene		3160	ug/L	500	8/10/2011	WOZ	EPA	8260B	
p-isopropyltolu	ene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
sec-Butylbenze	ene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Styrene		ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
tert-Butylbenze	ene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Tetrachloroeth	ene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Toluene		16200	ug/L	500	8/10/2011	WOZ	EPA	8260B	
trans-1,2-Dichl	oroethene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
trans-1,3-Dichl	oropropene	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Trichloroethene	e	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Trichloroflouror	methane	ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	
Vinyl Chloride		ND	ug/L	500	8/10/2011	WOZ	EPA	8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER		Batch Projec	t Name:	110805029 IONE PETROLEUM CONTAMINATION 0504- 058-01	
		Analytical Res	ults Report			
Sample Number Client Sample ID Matrix Comments	110805029-003 MW-3-080311 Water	Sampling Date Sampling Time Sample Locatio	8/3/2011 4:12 PM n	Date/Time F Extraction I		i 10:40 AM
Parameter		Result Units	PQL Analysis I	Date Analyst	Method	Qualifier
		Surrogate	Data			
Sample Number	110805029-003					
Surrogate	Standard	Method		Percent Reco	very Contro	ol Limits
1,2-Dichlor	obenzene-d4	EPA 8260E	3	98.4	70	-130
4-Bromofiu	orobenzene	EPA 8260E	3	96.8	70	-130
Toluene-d8		EPA 8260E	3	98.8	70	-130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

Sample Number110805029-004Client Sample IDMW-4-080311MatrixWaterComments		Sampling Date 8/3/2011 Date/Time Received 8/5/2011 Sampling Time 2:21 PM Extraction Date Sample Location				/2011	10:40 AM		
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method		Qualifier
1,1,1,2-Tetrach	loroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	B	
1,1,1-Trichloroe	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	B	
1,1,2,2-Tetrach	loroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	B	
1,1,2-Trichloroe	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	B	
1,1-Dichloroeth	ane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	B	
1,1-Dichloroeth	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	B	
1,1-dichloropro	pene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	в	
1,2,3-Trichlorol	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	В	
1,2,3-Trichlorop	oropane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	B	
1,2,4-Trichlorol		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	В	
1,2,4-Trimethyl	benzene	19.2	ug/L	0.5	8/10/2011	WOZ	EPA 8260	В	
1,2-Dibromo-3-	chloropropane(DBCP)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	в	
1,2-Dibromoeth	nane	ND	ug/L	0.5	8/10/2011	woz	EPA 8260	в	
1,2-Dichlorober	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	B	
1,2-Dichloroeth	ane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	B	
1,2-Dichloropro	pane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	В	
1,3,5-Trimethyl	benzene	10.9	ug/L	0.5	8/10/2011	WOZ	EPA 8260	B	
1,3-Dichlorober	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	B	
1,3-Dichloropro		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	В	
1,4-Dichlorobei	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	в	
2,2-Dichloropro	pane	ND	ug/L	0.5	8/10/2011	woz	EPA 8260	в	
2-Chlorotoluen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	B	
2-hexanone		ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260	В	
4-Chlorotoluen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	В	
Acetone		3.52	ug/L	2.5	8/10/2011	WOZ	EPA 8260	В	
Acrylonitrile		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260		
Benzene		3.85	ug/L	0.5	8/10/2011	WOZ	EPA 8260	в	
Bromobenzene	•	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260	В	
Bromochloromo	ethane	ND	ug/L	0.5	8/10/2011	woz	EPA 8260	В	
Bromodichloror	nethane	ND	ug/L	0.5	8/10/2011	woz	EPA 8260		
Bromoform		ND	ug/L	0.5	8/10/2011	woz	EPA 8260	в	
Bromomethane	•	ND	ug/L	0.5	8/10/2011	woz	EPA 8260	в	
Carbon disulfid		ND	ug/L	0.5	8/10/2011	woz	EPA 8260	в	
Carbon Tetrach	nloride	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260		
Chlorobenzene		ND	ug/L	0.5	8/10/2011	woz	EPA 8260		

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address:	523 E 2ND SPOKANE, WA 99202	Project Name:	IONE PETROLEUM CONTAMINATION 0504-
Attn:	DAVE LAUDER		058-01

Analytical Results Report

Sample Number Client Sample ID /latrix Comments	110805029-004 MW-4-080311 Water		Sampling Date Sampling Time Sample Locatio	2		ate/Time Re straction Da		8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Met	hod	Qualifier
Chloroethane		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Chloroform		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Chloromethan	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
cis-1,2-dichlore	pethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
cis-1,3-Dichlor	opropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Dibromochloro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Dibromometha	ine	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Dichlorodifluor	omethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Ethylbenzene		9.36	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Hexachlorobut	adiene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Isopropylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
m+p-Xylene		74.8	ug/L	2.5	8/10/2011	WOZ	EPA 8	3260B	
Methyl ethyl ke	etone (MEK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8	3260B	
Methyl isobuty	l ketone (MIBK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8	3260B	
Methylene chlo	oride	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8	3260B	
methyl-t-butyl	ether (MTBE)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Naphthalene		0.96	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
n-Butylbenzen	e	0.60	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
n-Propylbenze	ne	0.51	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
o-Xylene		63.6	ug/L	2.5	8/10/2011	WOZ	EPA 8	3260B	
p-isopropyltolu	ene	0.56	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
sec-Butylbenz	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Styrene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
tert-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Tetrachloroeth	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Toluene		45.5	ug/L	2.5	8/10/2011	WOZ	EPA 8	3260B	
trans-1,2-Dich	loroethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
trans-1,3-Dichl	loropropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Trichloroethen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Trichloroflouro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	
Vinyl Chloride		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	3260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER			ch #: ject Name:	11080502 IONE PET CONTAMI 058-01		
		Analytical Res	ults Repo	rt			
Sample Number Client Sample ID Matrix Comments	110805029-004 MW-4-080311 Water	Sampling Date Sampling Time Sample Locatio	2:21 PM	Date/Time Extractior		8/5/2011	10:40 AM
Parameter		Result Units	PQL Analys	sis Date Analys	t Meth	od	Qualifier
		Surrogate	e Data				
Sample Number	110805029-004						
Surrogate	Standard	Method		Percent Rec	overy	Control L	imits
1,2-Dichlore	obenzene-d4	EPA 82608	3	100.8		70-13	0
4-Bromoflue	orobenzene	EPA 8260	3	100.0		70-13	0
Toluene-d8		EPA 82608	3	101.2		70-13	0

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110805029-005 MW-6-080311 Water		Sampling Date Sampling Time Sample Locatio	3		ate/Time Re xtraction Da		3/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Meth	bd	Qualifier
1,1,1,2-Tetracl	nloroethane	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,1,1-Trichloro	ethane	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,1,2,2-Tetracl	nloroethane	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,1,2-Trichloro	ethane	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,1-Dichloroet	nane	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,1-Dichloroeth	nene	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,1-dichloropro	pene	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,2,3-Trichloro	benzene	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,2,3-Trichloro	propane	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,2,4-Trichloro	benzene	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,2,4-Trimethy	lbenzene	237	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,2-Dibromo-3	-chloropropane(DBCP)	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,2-Dibromoetl	hane	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,2-Dichlorobe	nzene	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,2-Dichloroeth	nane	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,2-Dichloropro	opane	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,3,5-Trimethy	lbenzene	192	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,3-Dichlorobe	nzene	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,3-Dichloropro	opane	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
1,4-Dichlorobe	nzene	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
2,2-Dichloropro	opane	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
2-Chlorotoluen	e	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
2-hexanone		ND	ug/L	250	8/11/2011	WOZ	EPA 82	60B	
4-Chlorotoluen	e	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
Acetone		ND	ug/L	250	8/11/2011	WOZ	EPA 82	60B	
Acrylonitrile		ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
Benzene		557	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
Bromobenzene	e	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
Bromochlorom	ethane	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
Bromodichloro	methane	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
Bromoform		ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
Bromomethane	9	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
Carbon disulfic	le	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
Carbon Tetrac	hloride	ND	ug/L	50	8/11/2011	WOZ	EPA 82	60B	
Chlorobenzene	e	ND	ug/L	50	8/11/2011	WOZ	EPA 82		

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: G	EO ENGINEERS	Batch #:	110805029
S	23 E 2ND POKANE, WA 99202 IAVE LAUDER		IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

ample Number lient Sample ID atrix omments	110805029-005 MW-6-080311 Water		Sampling Date Sampling Time Sample Locatio	3:		ate/Time Re straction Da		8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Me	ethod	Qualifier
Chloroethane		ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Chloroform		ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Chloromethane	e	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
cis-1,2-dichlord	bethene	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
cis-1,3-Dichlor	opropene	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Dibromochloro	methane	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Dibromometha	ne	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Dichlorodifluor	omethane	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Ethylbenzene		547	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Hexachlorobut	adiene	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Isopropylbenze	ene	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
m+p-Xylene		2170	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Methyl ethyl ke	tone (MEK)	ND	ug/L	250	8/11/2011	WOZ	EPA	8260B	
• •	ketone (MIBK)	ND	ug/L	250	8/11/2011	WOZ	EPA	8260B	
Methylene chic		ND	ug/L	250	8/11/2011	WOZ	EPA	8260B	
methyl-t-butyl e		ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Naphthalene	. ,	97.7	ug/L	50	8/11/2011	WOZ	EPA	8260B	
n-Butylbenzen	9	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
n-Propylbenze	ne	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
o-Xylene		1680	ug/L	50	8/11/2011	WOZ	EPA	8260B	
p-isopropyltolu	ene	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
sec-Butylbenze	ene	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Styrene		ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
tert-Butylbenze	ne	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Tetrachloroeth	ene	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Toluene		2130	ug/L	50	8/11/2011	WOZ	EPA	8260B	
trans-1,2-Dichl	oroethene	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
trans-1,3-Dichl	oropropene	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Trichloroethen		ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Trichloroflouro	methane	ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	
Vinyl Chloride		ND	ug/L	50	8/11/2011	WOZ	EPA	8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER			Batch #: Project Name:		110805029 IONE PETROLEUM CONTAMINATION 0504- 058-01		
		Analytical Res	ults Report	:				
Sample Number Client Sample ID Matrix Comments	110805029-005 MW-6-080311 Water	Sampling Date Sampling Time Sample Locatio	3:31 PM	Date/Time Extractior	Received Date	8/5/2011	10:40 AM	
Parameter		Result Units	PQL Analysis	s Date Analys	st Me	thod	Qualifier	
		Surrogate	e Data					
Sample Number	110805029-005							
Surrogate	Standard	Method		Percent Rec	overy	Control	Limits	
1,2-Dichloro	obenzene-d4	EPA 8260B		99.6		70-130		
4-Bromoflue	probenzene	EPA 8260	3	100.0		70-130		
Toluene-d8		EPA 8260	3	95.6		70-1	30	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110805029-006 MW-7-080311 Water		Sampling Date Sampling Time Sample Locatio	1		Date/Time Re Extraction Da		8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Me	ethod	Qualifier
1,1,1,2-Tetracl	hloroethane	ND	ug/l.	0.5	8/10/2011	WOZ	EPA	8260B	
1,1,1-Trichloro		ND	ug/L	0.5	8/10/2011			8260B	
1,1,2,2-Tetracl		ND	ug/L	0.5	8/10/2011			8260B	
1,1,2-Trichloro		ND	ug/L	0.5	8/10/2011			8260B	
1,1-Dichloroet		ND	ug/L	0.5	8/10/2011			8260B	
1,1-Dichloroeti		ND	ug/L	0.5	8/10/2011	WOZ		8260B	
1,1-dichloropro		ND	ug/L	0.5	8/10/2011			8260B	
1,2,3-Trichloro	•	ND	ug/L	0.5	8/10/2011			8260B	
1,2,3-Trichloro		ND	ug/L	0.5	8/10/2011			8260B	
1,2,4-Trichloro	• •	ND	ug/L	0.5	8/10/2011			8260B	
1,2,4-Trimethy		ND	ug/L	0.5	8/10/2011			8260B	
•	-chloropropane(DBCP)	ND	ug/L	0.5	8/10/2011			8260B	
1,2-Dibromoet		ND	ug/L	0.5	8/10/2011			8260B	
1,2-Dichlorobe		ND	ug/L	0.5	8/10/2011			8260B	
1.2-Dichloroeth		ND	ug/L	0.5	8/10/2011			8260B	
1,2-Dichloropro		ND	ug/L	0.5	8/10/2011		EPA	8260B	
1,3,5-Trimethy		ND	ug/L	0.5	8/10/2011	woz	EPA	8260B	
1,3-Dichlorobe		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,3-Dichloropro	opane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
1,4-Dichlorobe	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
2,2-Dichloropro	opane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
2-Chlorotoluen	ie	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
2-hexanone		ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
4-Chlorotoluen	le	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Acetone		ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
Acrylonitrile		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Benzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromobenzene	9	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromochlorom	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromodichloro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromoform		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Bromomethane	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Carbon disulfic	le	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Carbon Tetrac	hloride	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Chlorobenzene	e	ND	ug/L	0.5	8/10/2011	woz	EPA	8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address:	523 E 2ND SPOKANE, WA 99202	Project Name:	IONE PETROLEUM CONTAMINATION 0504-
Attn:	DAVE LAUDER		058-01

Analytical Results Report

ample Number lient Sample ID latrix omments	110805029-006 MW-7-080311 Water		Sampling Date Sampling Time Sample Locatio	1:		ate/Time Re xtraction Da		10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Chloroethane		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Chloroform		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Chloromethane	3	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
cis-1,2-dichlord	pethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
cis-1,3-Dichlor	opropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Dibromochloro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Dibromometha	ine	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Dichlorodifluor	omethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Ethylbenzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Hexachlorobut	adiene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Isopropylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
m+p-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Methyl ethyl ke	etone (MEK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
Methyl isobutyl	ketone (MIBK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
Methylene chic	oride	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Naphthalene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
n-Butylbenzene	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
n-Propylbenze	ne	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
o-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
p-isopropyltolu	ene	ND	ug/L.	0.5	8/10/2011	WOZ	EPA 8260B	
sec-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Styrene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
tert-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Tetrachloroeth	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Toluene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
trans-1,2-Dichl	oroethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
trans-1,3-Dichl	oropropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Trichloroethene	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Trichloroflouro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Vinyl Chloride		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER			Batch #: 110805029 Project Name: IONE PETROLEUM CONTAMINATION 0 058-01			
		Analytical Resu	ults Report				
Sample Number Client Sample ID Matrix Comments	110805029-006 MW-7-080311 Water	Sampling Date Sampling Time Sample Location	8/3/2011 12:07 PM n	Date/Time Extraction		8/5/2011	10:40 AM
Parameter		Result Units	PQL Analysis	Date Analys	t Me	ethod	Qualifier
		Surrogate	Data				
Sample Number	110805029-006						
Surrogate	Standard	Method		Percent Rec	overy	Control	Limits
1,2-Dichloro	obenzene-d4	EPA 8260B		100.4		70-1	30
4-Bromofiu	orobenzene	EPA 8260B		99.2		70-1	30
Toluene-d8		EPA 8260B		100.4		70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01
,			

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110805029-007 MW-8-080311 Water		Sampling Date Sampling Time Sample Locatio	5		ate/Time Re straction Da		8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Met	hod	Qualifier
1,1,1,2-Tetrack	loroethane	ND	ug/L	500	8/11/2011	woz	EPA 8	3260B	
1,1,1-Trichloro		ND	ug/L	500	8/11/2011	woz		3260B	
1,1,2,2-Tetracl		ND	ug/L	500	8/11/2011	WOZ		3260B	
1,1,2-Trichloro		ND	ug/L	500	8/11/2011	WOZ		3260B	
1,1-Dichloroet		ND	ug/L	500	8/11/2011	WOZ		3260B	
1,1-Dichloroeth		ND	ug/L	500	8/11/2011	WOZ		3260B	
1,1-dichloropro		ND	ug/L	500	8/11/2011	WOZ		3260B	
1,2,3-Trichloro	•	ND	ug/L	500	8/11/2011	WOZ		3260B	
1,2,3-Trichloro		ND	ug/L	500	8/11/2011	WOZ		3260B	
1,2,4-Trichloro		ND	ug/L	500	8/11/2011	WOZ		3260B	
1,2,4-Trimethy		3560	ug/L	500	8/11/2011	WOZ		3260B	
· · · ·	-chloropropane(DBCP)	ND	ug/L	500	8/11/2011	WOZ		3260B	
1,2-Dibromoet		ND	ug/L	500	8/11/2011	WOZ		3260B	
1,2-Dichlorobe		ND	ug/L	500	8/11/2011	WOZ		3260B	
1,2-Dichloroeti		ND	ug/L	500	8/11/2011	WOZ		3260B	
1,2-Dichloropro		ND	ug/L	500	8/11/2011	WOZ		3260B	
1,3,5-Trimethy		1080	ug/L	500	8/11/2011	WOZ		3260B	
1,3-Dichlorobe		ND	ug/L	500	8/11/2011	WOZ		3260B	
1,3-Dichloropro		ND	ug/L	500	8/11/2011	WOZ		3260B	
1,4-Dichlorobe	•	ND	ug/L	500	8/11/2011	woz		3260B	
2,2-Dichloropro		ND	ug/L	500	8/11/2011	WOZ		3260B	
2-Chlorotoluen		ND	ug/L	500	8/11/2011	WOZ	EPA 8	3260B	
2-hexanone		ND	ug/L	2500	8/11/2011	WOZ	EPA 8	3260B	
4-Chlorotoluen	e	ND	ug/L	500	8/11/2011	WOZ	EPA 8	3260B	
Acetone		ND	ug/L	2500	8/11/2011	WOZ	EPA (3260B	
Acrylonitrile		ND	ug/L	500	8/11/2011	WOZ	EPA 8	3260B	
Benzene		2140	ug/L	500	8/11/2011	WOZ	EPA 8	3260B	
Bromobenzene	9	ND	ug/L	500	8/11/2011	WOZ	EPA 8	3260B	
Bromochlorom	ethane	ND	ug/L	500	8/11/2011	WOZ	EPA 8	3260B	
Bromodichloro	methane	ND	ug/L	500	8/11/2011	WOZ	EPA 8	3260B	
Bromoform		ND	ug/L	500	8/11/2011	WOZ	EPA 8	3260B	
Bromomethane	e	ND	ug/L	500	8/11/2011	WOZ	EPA 8	3260B	
Carbon disulfic	le	ND	ug/L	500	8/11/2011	WOZ	EPA 8	3260B	
Carbon Tetrac	hloride	ND	ug/L	500	8/11/2011	WOZ	EPA 8	3260B	
Chlorobenzene	e	ND	ug/L	500	8/11/2011	WOZ	EPA 8	3260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address:	523 E 2ND SPOKANE, WA 99202	Project Name:	IONE PETROLEUM CONTAMINATION 0504-
Attn:	DAVE LAUDER		058-01

Analytical Results Report

ample Number lient Sample ID atrix omments	110805029-007 MW-8-080311 Water		Sampling Date Sampling Time Sample Locatio	5:		ate/Time Re straction Da	· · · · · · · · · · · · · · · ·	10:40 AN
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
Chloroethane		ND	ug/L	500	8/11/2011	woz	EPA 8260B	
Chloroform		ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Chloromethane	e	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
cis-1,2-dichlord	bethene	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
cis-1,3-Dichlor	opropene	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Dibromochloro	methane	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Dibromometha	ne	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Dichlorodifluor	omethane	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Ethylbenzene		6740	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Hexachlorobut	adiene	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Isopropylbenze	ene	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
m+p-Xylene		27200	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Methyl ethyl ke	tone (MEK)	ND	ug/L	2500	8/11/2011	WOZ	EPA 8260B	
Methyl isobutyl	ketone (MIBK)	ND	ug/L	2500	8/11/2011	WOZ	EPA 8260B	
Methylene chic	oride	ND	ug/L	2500	8/11/2011	WOZ	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Naphthalene		869	ug/L	500	8/11/2011	WOZ	EPA 8260B	
n-Butylbenzene	B	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
n-Propylbenzei	ne	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
o-Xylene		12100	ug/L	500	8/11/2011	WOZ	EPA 8260B	
p-isopropyltolu	ene	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
sec-Butylbenze	ene	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Styrene		ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
tert-Butylbenze	ene	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Tetrachloroeth	ene	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Toluene		26700	ug/L	500	8/11/2011	WOZ	EPA 8260B	
trans-1,2-Dichl	oroethene	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
trans-1,3-Dichl	oropropene	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Trichloroethene	e	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Trichloroflouror	methane	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Vinyl Chloride		ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER			Batch #: 110805029 Project Name: IONE PETROLEUM CONTAMINATION 050 058-01		
		Analytical Res	sults Rep	ort		
Sample Number Client Sample ID Matrix Comments	110805029-007 MW-8-080311 Water	Sampling Date Sampling Tim Sample Locat	e 5:25 PN		Received 8/5/201 Date	1 10:40 AM
Parameter		Result Units	PQL Anal	lysis Date Analys	st Method	Qualifier
		Surrogat	e Data			
Sample Number	110805029-007					
Surrogate	Standard	Method		Percent Rec	overy Conti	rol Limits
1,2-Dichlore	obenzene-d4	EPA 8260	B	99.2	7	0-130
4-Bromoflue	probenzene	EPA 8260	B	100.4	7	0-130
Toluene-d8		EPA 8260	B	96.0	7	0-130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address:	523 E 2ND SPOKANE, WA 99202	Project Name:	IONE PETROLEUM CONTAMINATION 0504-
Attn:	DAVE LAUDER		058-01

Analytical Results Report

Sample Number Client Sample ID	110805029-008 MW-9-080311		Sampling Date Sampling Time			ate/Time Re xtraction Da		1 10:40 AM
Matrix	Water		Sample Locatio	n				
Comments								
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,1,1,2-Tetrach	loroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,1-Trichloro	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,2,2-Tetrach	loroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,2-Trichloro	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-Dichloroeth	nane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-Dichloroeth	iene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-dichloropro	pene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,3-Trichlorol	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,3-Trichloro	propane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,4-Trichlorol	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,4-Trimethyl	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dibromo-3-	-chloropropane(DBCP)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dibromoeth	nane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichlorobe	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichloroeth	nane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichloropro	opane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3,5-Trimethyl	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3-Dichlorobe	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3-Dichloropro	opane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,4-Dichlorober	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2,2-Dichloropro	opane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2-Chlorotoluen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2-hexanone		ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
4-Chlorotoluen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Acetone		ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
Acrylonitrile		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Benzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromobenzene	;	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromochlorom	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromodichloro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromoform		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromomethane)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Carbon disulfid	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Carbon Tetrach	nloride	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Chlorobenzene	3	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01
Attn:	DAVE LAODEN		

Analytical Results Report

mple Number ient Sample ID atrix omments	110805029-008 MW-9-080311 Water		Sampling Date Sampling Time Sample Locatio	1:		ate/Time Re xtraction Da		8/5/2011	10:40 AN
Parameter		Result	Units	PQL	Analysis Date	Analyst	Me	thod	Qualifie
Chloroethane		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Chloroform		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Chloromethane	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
cis-1,2-dichloro	pethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
cis-1,3-Dichlor	opropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Dibromochloro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Dibromometha	ine	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Dichlorodifluor	omethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Ethylbenzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Hexachlorobut	adiene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Isopropylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
m+p-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Methyl ethyl ke	etone (MEK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
• •	I ketone (MIBK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
Methylene chlo	oride	ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Naphthalene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
n-Butylbenzen	е	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
n-Propylbenze		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
o-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
p-isopropyltolu	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
sec-Butylbenze		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Styrene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
tert-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Tetrachloroeth		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Toluene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
trans-1,2-Dichl	oroethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
trans-1,3-Dichl	oropropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Trichloroethen	• •	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Trichloroflouro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Vinyl Chloride		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER				Batch Proje	ı #: ct Name	: IONI	805029 E PETR ITAMIN/ 01		
		Ana	lytical Res	ults	Report					
Sample Number Client Sample ID Matrix Comments	110805029-008 MW-9-080311 Water	<u>6,13 00,000,000</u>	Sampling Date Sampling Time Sample Locatio	1	/3/2011 2:41 PM		ime Recei tion Date	ved 8/5	5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis	Date An	alyst	Method		Qualifier
			Surrogate	Data						
Sample Number Surrogate 1,2-Dichlord	110805029-008 Standard obenzene-d4		Method EPA 8260B				Recovery 9.6	C	control L 70-13	

EPA 8260B

EPA 8260B

Certifications held by Anatek Labs (D: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0095

4-Bromofluorobenzene

Toluene-d8

70-130

70-130

96.8

100.0

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01
Aun			

Analytical Results Report

Sample Number110805029-009Client Sample IDMW-10-080311MatrixWaterComments		Sampling Date Sampling Time Sample Locatio	2		Date/Time Re Extraction Da		10:40 AM
Parameter	Result	Units	PQL	Analysis Date	ə Analyst	Method	Qualifier
1,1,1,2-Tetrachloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,1-Trichloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,2-Trichloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-Dichloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-Dichloroethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-dichloropropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,3-Trichlorobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,3-Trichloropropane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,4-Trichlorobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,4-Trimethylbenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dibromo-3-chloropropane(DBCP)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dibromoethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichlorobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichloropropane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3,5-Trimethylbenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3-Dichlorobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3-Dichloropropane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,4-Dichlorobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2,2-Dichloropropane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2-Chlorotoluene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2-hexanone	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
4-Chlorotoluene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Acetone	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
Acrylonitrile	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromochloromethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromodichloromethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromoform	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromomethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Carbon disulfide	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Carbon Tetrachloride	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Chlorobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address:	523 E 2ND SPOKANE, WA 99202	Project Name:	IONE PETROLEUM CONTAMINATION 0504-
Attn:	DAVE LAUDER		058-01

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110805029-009 MW-10-080311 Water		Sampling Date Sampling Time Sample Locatio	2		ate/Time Re straction Da		8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Me	thod	Qualifier
Chloroethane		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Chloroform		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Chloromethan	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
cis-1,2-dichlor	oethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
cis-1,3-Dichlor	opropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Dibromochloro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Dibromometha	ine	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Dichlorodifluor	omethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Ethylbenzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Hexachlorobut	adiene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Isopropylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
m+p-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Methyl ethyl ke	etone (MEK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
Methyl isobuty	l ketone (MIBK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
Methylene chlo	oride	ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
methyl-t-butyl	ether (MTBE)	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Naphthalene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
n-Butylbenzen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
n-Propylbenze	ne	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
o-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
p-isopropyltolu	iene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
sec-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Styrene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
tert-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Tetrachloroeth	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Toluene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
trans-1,2-Dichl	loroethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
trans-1,3-Dichl	loropropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Trichloroethen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Trichloroflouro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Vinyl Chloride		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER				Batcł Proje	n #: ct Name:		029 ETROLEU MINATION	
		Ana	lytical Res	ults I	Report				
Sample Number Client Sample ID Matrix Comments	110805029-009 MW-10-080311 Water		Sampling Date Sampling Time Sample Locatio	2:	/3/2011 :45 PM	Date/Time Extraction	Received	8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis	Date Analys	st Mi	ethod	Qualifier
			Surrogate	Data					
Sample Number	110805029-009								
Surrogate 1,2-Dichloro	Standard obenzene-d4		Method EPA 8260E	i		Percent Rec 101.2	overy	Control i 70-1	

EPA 8260B

EPA 8260B

95.2

100.4

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0095

4-Bromofluorobenzene

Toluene-d8

70-130

70-130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

Sample Number 110805029-010 Client Sample ID MW-11-080311 Matrix Water		Sampling Date Sampling Time Sample Locatio	1		ate/Time Re xtraction Da		10:40 AM
Comments							
Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,1,1,2-Tetrachloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,1-Trichloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,2-Trichloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-Dichloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-Dichloroethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-dichloropropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,3-Trichlorobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,3-Trichloropropane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,4-Trichlorobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,4-Trimethylbenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dibromo-3-chloropropane(DBCP)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dibromoethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichlorobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichloropropane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3,5-Trimethylbenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3-Dichlorobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3-Dichloropropane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,4-Dichlorobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2,2-Dichloropropane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2-Chlorotoluene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2-hexanone	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
4-Chlorotoluene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Acetone	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
Acrylonitrile	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromochloromethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromodichloromethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromoform	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromomethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Carbon disulfide	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Carbon Tetrachloride	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Chlorobenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address:	523 E 2ND SPOKANE, WA 99202	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01
Attn:	DAVE LAUDER		

Analytical Results Report

ample Number lient Sample ID atrix omments	110805029-010 MW-11-080311 Water		Sampling Date Sampling Time Sample Locatio	1:		ate/Time Re straction Da		8/5/2011	10:40 AN
Parameter		Result	Units	PQL	Analysis Date	Analyst	Meti	nod	Qualifie
Chloroethane		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Chloroform		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Chloromethane	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
cis-1,2-dichlord	bethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
cis-1,3-Dichlor	opropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Dibromochloro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Dibromometha	ne	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Dichlorodifluor	omethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Ethylbenzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Hexachlorobut	adiene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Isopropylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
m+p-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Methyl ethyl ke	tone (MEK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8	260B	
Methyl isobutyl	ketone (MIBK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8	260B	
Methylene chlo	oride	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8	260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Naphthalene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
n-Butylbenzene	9	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
n-Propylbenzei	ne	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
o-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
p-isopropyltolu	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
sec-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Styrene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
tert-Butylbenze	ine	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Tetrachloroethe	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Toluene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
trans-1,2-Dichl	oroethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
trans-1,3-Dichl	oropropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Trichloroethene	Э	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Trichloroflouro	nethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	
Vinyl Chloride		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER				Batcl Proje	n #: ct Name:		029 PETROLEU MINATION	
		Ana	lytical Res	ults I	Report				
Sample Number Client Sample ID Matrix Comments	110805029-010 MW-11-080311 Water		Sampling Date Sampling Time Sample Locatio	1:	3/2011 45 PM	Date/Time Extraction		8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis	Date Analys	t M	lethod	Qualifier
			Surrogate	Data					
Sample Number Surrogate 1,2-Dichlord 4-Bromoflud	obenzene-d4		Method EPA 8260B EPA 8260B			Percent Rec 98.4 98.4	overy	Control 70-1 70-1	30

EPA 8260B

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0095

Toluene-d8

70-130

98.8

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address:	523 E 2ND	Project Name:	IONE PETROLEUM
Attn:	SPOKANE, WA 99202 DAVE LAUDER		CONTAMINATION 0504- 058-01

Analytical Results Report

Sample Number	110805029-011		Sampling Date	8	/3/2011 [Date/Time Re	ceived 8/5/2011	10:40 AM
Client Sample ID	MW-12-080311		Sampling Time	3	:58 PM E	xtraction Da	ite	
Matrix	Water		Sample Locatio	n				
Comments								
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifier
1,1,1,2-Tetracl	nloroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,1-Trichloro		ND	ug/L	0.5	8/10/2011	woz	EPA 8260B	
1,1,2,2-Tetract		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,2-Trichloro		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-Dichloroeth		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-Dichloroeth	nene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-dichloropro		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,3-Trichloro		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,3-Trichloro		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,4-Trichloro		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,4-Trimethy		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
• • •	-chloropropane(DBCP)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dibromoetl		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichlorobe		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichloroeth		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichloropro		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3,5-Trimethy	Ibenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3-Dichlorobe	nzene	ND	ug/L	0.5	8/10/2011	WQZ	EPA 8260B	
1,3-Dichloropro	opane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,4-Dichlorobe	nzene	ND	ug/L	0.5	8/10/2011	woz	EPA 8260B	
2,2-Dichloropro		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2-Chlorotoluen		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2-hexanone		ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
4-Chlorotoluen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Acetone		ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
Acrylonitrile		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Benzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromobenzene	9	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromochlorom	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromodichloro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromoform		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromomethane	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Carbon disulfid	le	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Carbon Tetracl	hloride	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Chlorobenzene	•	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Chlorobenzene	9	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address:	523 E 2ND SPOKANE, WA 99202	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01
Attn:	DAVE LAUDER		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110805029-011 MW-12-080311 Water		Sampling Date Sampling Time Sample Locatio	3		Date/Time Re Extraction Da		8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Met	thod	Qualifier
Chloroethane		ND	ug/L	0.5	8/10/2011	WOZ	EPA (8260B	
Chloroform		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
Chloromethan	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
cis-1,2-dichlore	pethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA (8260B	
cis-1,3-Dichlor	opropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
Dibromochloro	methane	ND	ug/L	0.5	8/10/2011	woz '	EPA a	8260B	
Dibromometha	ine	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Dichlorodifluor	omethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
Ethylbenzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA a	8260B	
Hexachlorobut	adiene	ND	ug/L	0.5	8/10/2011	WOZ	EPA (8260B	
lsopropylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
m+p-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
Methyl ethyl ke	etone (MEK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8	8260B	
Methyl isobuty	ketone (MIBK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8	8260B	
Methylene chlo	oride	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8	8260B	
methyl-t-butyl	ether (MTBE)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
Naphthalene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
n-Butylbenzen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
n-Propylbenze	ne	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
o-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
p-isopropyltolu	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA a	8260B	
sec-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
Styrene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
tert-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA a	8260B	
Tetrachloroeth	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA a	8260B	
Toluene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
trans-1,2-Dichl	loroethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8	8260B	
trans-1,3-Dichl	loropropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA i	8260B	
Trichloroethen	е	ND	ug/L	0.5	8/10/2011	WOZ	EPA (8260B	
Trichloroflouro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA a	8260B	
Vinyl Chloride		ND	ug/L	0.5	8/10/2011	WOZ	EPA a	8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER		Batc Proje	ect Name: I	10805029 ONE PETROLEU CONTAMINATIO 958-01	
		Analytical Res	ults Report	t		
Sample Number Client Sample ID Matrix Comments	110805029-011 MW-12-080311 Water	Sampling Date Sampling Time Sample Locati	e 3:58 PM	Date/Time R Extraction D		10:40 AM
Parameter		Result Units	PQL Analysi	s Date Analyst	Method	Qualifier
		Surrogat	e Data			
Sample Number	110805029-011					
Surrogate	Standard	Method		Percent Recov	ery Contro	Limits
1,2-Dichloro	obenzene-d4	EPA 8260	В	99.6	70-	130
4-Bromoflu	orobenzene	EPA 8260	В	97.6	70-	130
Toluene-d8		EPA 8260	В	100.4	70-	130

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0095

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address:	523 E 2ND	Project Name:	IONE PETROLEUM CONTAMINATION 0504-
Attn:	SPOKANE, WA 99202 DAVE LAUDER		058-01

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110805029-012 MW-13-080411 Water		Sampling Date Sampling Time Sample Locatio	ampling Time 11		Date/Time Received 8/5/2011 Extraction Date		10:40 AM	
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Met	nod	Qualifier
1,1,1,2-Tetrack	hloroethane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,1,1-Trichloro	ethane	ND	ug/l.	0.5	8/11/2011	WOZ	EPA 8	260B	
1,1,2,2-Tetracl	hloroethane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,1,2-Trichloro	ethane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,1-Dichloroet	hane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,1-Dichloroetl	hene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,1-dichloropro	opene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,2,3-Trichloro	benzene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,2,3-Trichloro	propane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,2,4-Trichloro	benzene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,2,4-Trimethy	lbenzene	10.3	ug/L	0.5	8/11/2011	woz	EPA 8	260B	
1,2-Dibromo-3	-chloropropane(DBCP)	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,2-Dibromoet		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,2-Dichlorobe		ND	ug/L	0.5	8/11/2011	woz	EPA 8	260B	
1,2-Dichloroetl	hane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,2-Dichloropro	opane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,3,5-Trimethy	lbenzene	35.8	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,3-Dichlorobe	nzene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,3-Dichloropro	opane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
1,4-Dichlorobe	enzene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
2,2-Dichloropro	opane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
2-Chlorotoluen	10	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
2-hexanone		ND	ug/L	2.5	8/11/2011	WOZ	EPA 8	260B	
4-Chlorotoluen	1e	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Acetone		ND	ug/L	2.5	8/11/2011	WOZ	EPA 8	260B	
Acrylonitrile		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Benzene		7.98	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Bromobenzene	e	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Bromochlorom	ethane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Bromodichloro	methane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Bromoform		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Bromomethan	e	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Carbon disulfic	de	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Carbon Tetrac	hloride	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Chlorobenzene	e	ND	ug/L	0.5	8/11/2011	woz	EPA 8	260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address:	523 E 2ND SPOKANE, WA 99202	Project Name:	CONTAMINATION 0504-
Attn:	DAVE LAUDER		058-01

Analytical Results Report

ample Number lient Sample ID latrix omments	110805029-012 MW-13-080411 Water		Sampling Date Sampling Time Sample Locatio	1		ate/Time Re xtraction Da		8/5/2011	10:40 AN
Parameter		Result	Units	PQL	Analysis Date	Analyst	Metl	hod	Qualifie
Chloroethane		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Chloroform		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Chloromethane	e	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
cis-1,2-dichlord	pethene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
cis-1,3-Dichlor	opropene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Dibromochloro	methane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Dibromometha	ine	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Dichlorodifluor	omethane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Ethylbenzene		31.0	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Hexachlorobut	adiene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Isopropylbenze	ene	1.61	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
m+p-Xylene		77.9	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Methyl ethyl ke	etone (MEK)	ND	ug/L	2.5	8/11/2011	WOZ	EPA 8	260B	
Methyl isobutyl	ketone (MIBK)	ND	ug/L	2.5	8/11/2011	WOZ	EPA 8	260B	
Methylene chic	oride	ND	ug/L	2.5	8/11/2011	WOZ	EPA 8	260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Naphthalene	. ,	16.5	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
n-Butylbenzene	e	2.05	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
n-Propylbenzer	ne	3.28	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
o-Xylene		73.8	ug/L	2.5	8/11/2011	WOZ	EPA 8	260B	
p-isopropyltolu	ene	1.14	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
sec-Butylbenze	ene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Styrene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
tert-Butylbenze	ene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Tetrachloroeth	ene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Toluene		2.66	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
trans-1,2-Dichl	oroethene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
trans-1,3-Dichl	oropropene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Trichloroethene	e	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Trichloroflouror	methane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8	260B	
Vinyl Chloride		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8		

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER				Batch Proje	ı #: ct Name:		029 ETROLEUI MINATION	
		Ana	lytical Res	ults	Report				
Sample Number Client Sample ID Matrix Comments	110805029-012 MW-13-080411 Water		Sampling Date Sampling Time Sample Locatio	1	/4/2011 1:31 AM	Date/Time Extraction	Received	8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis	Date Analy	st Me	ethod	Qualifier
			Surrogate	Data	l				
Sample Number	110805029-012	- <u></u>							
Surrogate	obenzene-d4		Method EPA 8260B EPA 8260B			Percent Rec 100.4 102.8	overy	Control 70-1 70-1	30

EPA 8260B

97.2

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0095

Toluene-d8

70-130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

Sample Number	110805029-013		Sampling Date	8	/4/2011 Da	ate/Time Re	ceived 8/5/2011	10:40 AM
Client Sample ID	MW-14-080411		Sampling Time	8	:51 AM Ex	draction Da	ite	
Matrix	Water		Sample Locatio	n				
Comments								
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,1,1,2-Tetrach	loroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,1-Trichloro	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,2,2-Tetrach	loroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,2-Trichloro	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-Dichloroeth	lane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-Dichloroeth	iene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-dichloropro	pene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,3-Trichlorol	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,3-Trichloro	propane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,4-Trichlorol	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,4-Trimethyl	lbenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dibromo-3-	-chloropropane(DBCP)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dibromoeth	hane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichlorobe	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichloroeth	nane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichloropro	opane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3,5-Trimethyl	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3-Dichlorobe	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3-Dichloropro	opane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,4-Dichlorobe	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2,2-Dichloropro	opane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2-Chlorotoluen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2-hexanone		ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
4-Chlorotoluen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Acetone		ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
Acrylonitrile		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Benzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromobenzene	•	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromochlorom	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromodichloro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromoform		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromomethane	•	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Carbon disulfid	le	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Carbon Tetract	hloride	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Chlorobenzene	•	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

ample Number lient Sample ID latrix omments	110805029-013 MW-14-080411 Water		Sampling Date Sampling Time Sample Locatio	8		Date/Time Re Extraction Da		8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Me	ethod	Qualifier
Chloroethane		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Chloroform		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Chloromethane	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
cis-1,2-dichlore	bethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
cis-1,3-Dichlor	opropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Dibromochloro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Dibromometha	ne	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Dichlorodifluor	omethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Ethylbenzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Hexachlorobut	adiene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
isopropylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
m+p-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Methyl ethyl ke	etone (MEK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
Methyl isobuty	ketone (MIBK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
Methylene chlo	oride	ND	ug/L	2.5	8/10/2011	WOZ	EPA	8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Naphthalene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
n-Butylbenzen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
n-Propylbenze	ne	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
o-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
p-isopropyltolu	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
sec-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Styrene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
tert-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Tetrachloroeth	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Toluene		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
trans-1,2-Dichl	oroethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
trans-1,3-Dichl	oropropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Trichloroethene	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Trichloroflouro	methane	ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	
Vinyl Chloride		ND	ug/L	0.5	8/10/2011	WOZ	EPA	8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER		Batch #: Project Name:	110805029 IONE PETROLEU CONTAMINATION 058-01	
		Analytical Resul	ts Report		
Sample Number Client Sample ID Matrix Comments	110805029-013 MW-14-080411 Water	Sampling Date Sampling Time Sample Location	8/4/2011 Date/Tim 8:51 AM Extraction	ne Received 8/5/2011 on Date	10:40 AM
Parameter		Result Units P	QL Analysis Date Anal	yst Method	Qualifier
		Surrogate D	ata		
Sample Number	110805029-013	· · · · · · · · · · · · · · · · · · ·			
Surrogate	Standard	Method	Percent Re	ecovery Control	Limits
1,2-Dichlore	obenzene-d4	EPA 8260B	99.6	3 70-1	30
4-Bromoflue	probenzene	EPA 8260B	95.2	2 70-1	30
Toluene-d8		EPA 8260B	101.	2 70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

Sample Number	110805029-014		Sampling Date		/4/2011	Date/Time Re	ceived 8/5/201	1 10:40 AM
Client Sample ID	MW-15-080411		Sampling Time			Extraction Da	te	
Matrix	Water		Sample Locatio	n				
Comments								
Parameter		Result	Units	PQL	Analysis Dat	te Analyst	Method	Qualifier
1,1,1,2-Tetracl	nloroethane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,1,1-Trichloro	ethane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,1,2,2-Tetrach	nloroethane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,1,2-Trichloro	ethane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,1-Dichloroeth	nane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,1-Dichloroeth	iene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,1-dichloropro	ppene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,2,3-Trichloro	benzene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,2,3-Trichloro	propane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,2,4-Trichloro	benzene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,2,4-Trimethy	lbenzene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,2-Dibromo-3	-chloropropane(DBCP)	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,2-Dibromoet	hane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,2-Dichlorobe	nzene	ND	ug/L	25	8/11/2011	woz	EPA 8260B	
1,2-Dichloroeth	nane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,2-Dichloropro	opane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,3,5-Trimethy	lbenzene	27.0	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,3-Dichlorobe	nzene	ND	ug/L	25	8/11/2011	woz	EPA 8260B	
1,3-Dichloropro	opane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
1,4-Dichlorobe	nzene	ND	ug/L	25	8/11/2011	woz	EPA 8260B	
2,2-Dichloropro	opane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
2-Chlorotoluen	e	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
2-hexanone		ND	ug/L	125	8/11/2011	woz	EPA 8260B	
4-Chlorotoluen	е	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Acetone		ND	ug/L	125	8/11/2011	WOZ	EPA 8260B	
Acrylonitrile		ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Benzene		847	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Bromobenzene	э	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Bromochlorom	ethane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Bromodichloro	methane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Bromoform		ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Bromomethane	9	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Carbon disulfid	le	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Carbon Tetracl	hloride	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Chlorobenzene	;	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
			-					

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110805029-014 MW-15-080411 Water		Sampling Date Sampling Time Sample Locatio	1		ate/Time Re xtraction Da		10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Chloroethane		ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Chloroform		ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Chloromethane	8	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
cis-1,2-dichloro	pethene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
cis-1,3-Dichlor	opropene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Dibromochloro	methane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Dibromometha	ine	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Dichlorodifluor	omethane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Ethylbenzene		129	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Hexachlorobut	adiene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Isopropylbenze	ene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
m+p-Xylene		ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Methyl ethyl ke	etone (MEK)	ND	ug/L	125	8/11/2011	WOZ	EPA 8260B	
Methyl isobutyl	ketone (MIBK)	ND	ug/L	125	8/11/2011	WOZ	EPA 8260B	
Methylene chic	oride	ND	ug/L	125	8/11/2011	WOZ	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Naphthalene		41.9	ug/L	25	8/11/2011	WOZ	EPA 8260B	
n-Butylbenzen	e	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
n-Propylbenzei	ne	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
o-Xylene		73.2	ug/L	25	8/11/2011	WOZ	EPA 8260B	
p-isopropyltolu	ene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
sec-Butylbenze	ene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Styrene		ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
tert-Butylbenze	ene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Tetrachloroethe	ene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Toluene		29.8	ug/L	25	8/11/2011	WOZ	EPA 8260B	
trans-1,2-Dichl	oroethene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
trans-1,3-Dichl	oropropene	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Trichloroethene	e	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Trichloroflouror	methane	ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	
Vinyl Chloride		ND	ug/L	25	8/11/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER		Batch #: Project Name:	110805029 IONE PETROLEU CONTAMINATION 058-01	
		Analytical Resul	ts Report		
Sample Number Client Sample ID Matrix Comments	110805029-014 MW-15-080411 Water	Sampling Date Sampling Time Sample Location	8/4/2011 Date/Tim 10:16 AM Extractio	e Received 8/5/2011 n Date	10:40 AM
Parameter		Result Units P	QL Analysis Date Analy	st Method	Qualifier
		Surrogate D	ata		
Sample Number	110805029-014	,			
Surrogate	Standard	Method	Percent Re	covery Control	Limits
1,2-Dichlore	benzene-d4	EPA 8260B	101.6	5 70-1	30
4-Bromoflue	probenzene	EPA 8260B	95.6	70-1	30
Toluene-d8		EPA 8260B	96.0	70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

	440007000 047							40.40.414
Sample Number	110805029-015		Sampling Date			ite/Time Re		10:40 AM
Client Sample ID	CABIN GRILL-080411 Water		Sampling Time		:40 PM Ex	traction Da	te	
Matrix Comments	water		Sample Locatio	л				
Comments								
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,1,1,2-Tetrach	nloroethane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,1,1-Trichloro	ethane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,1,2,2-Tetract	nloroethane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,1,2-Trichloro	ethane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,1-Dichloroeth	nane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,1-Dichloroeth	nene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,1-dichloropro	opene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,2,3-Trichloro	benzene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,2,3-Trichloro	propane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,2,4-Trichloro	benzene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,2,4-Trimethy	lbenzene	967	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,2-Dibromo-3-	-chloropropane(DBCP)	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,2-Dibromoeth	hane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,2-Dichlorobe	nzene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,2-Dichloroeth	nane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,2-Dichloropro	opane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,3,5-Trimethyl	Ibenzene	433	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,3-Dichlorobe	nzene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,3-Dichloropro	opane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
1,4-Dichlorobe	nzene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
2,2-Dichloropro	opane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
2-Chlorotoluen	e	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
2-hexanone		ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
4-Chlorotoluen	e	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Acetone		ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Acrylonitrile		ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Benzene		143	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Bromobenzene	•	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Bromochlorom	ethane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Bromodichloro	methane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Bromoform		ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Bromomethane	÷	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Carbon disulfid	e	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Carbon Tetracl	hloride	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Chlorobenzene	e	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

ample Number lient Sample ID atrix omments	110805029-015 CABIN GRILL-080411 Water		Sampling Date Sampling Time Sample Locatio	4		ate/Time Re Extraction Da		10:40 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifie
Chloroethane		ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Chloroform		ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Chloromethane	3	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
cis-1,2-dichloro	pethene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
cis-1,3-Dichlor	opropene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Dibromochloro		ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Dibromometha	ne	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Dichlorodifluor	omethane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Ethylbenzene		997	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Hexachlorobut	adiene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Isopropylbenze	ene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
m+p-Xylene		5140	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Methyl ethyl ke	tone (MEK)	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
	ketone (MIBK)	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
Methylene chlo	oride	ND	ug/L	500	8/11/2011	WOZ	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Naphthalene		244	ug/L	100	8/11/2011	WOZ	EPA 8260B	
n-Butylbenzene	9	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
n-Propylbenze	ne	116	ug/L	100	8/11/2011	WOZ	EPA 8260B	
o-Xylene		2570	ug/L	100	8/11/2011	WOZ	EPA 8260B	
p-isopropyitolu	ene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
sec-Butylbenze	ene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Styrene		ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
tert-Butylbenze	ne	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Tetrachloroethe	ene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Toluene		5440	ug/L	100	8/11/2011	WOZ	EPA 8260B	
trans-1,2-Dichl	oroethene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
trans-1,3-Dichl	oropropene	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Trichloroethene	e	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Trichloroflouror	methane	ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	
Vinyl Chloride		ND	ug/L	100	8/11/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110805029-015 CABIN GRILL-080411 Water		Sampling Date Sampling Time Sample Locatio	4:		Date/Time Recei	ived 8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Method	Qualifier
			Surrogate	Data				
mple Number	110805029-015							
Surrogate S	tandard		Method		Pe	cent Recovery	Control	Limits
1,2-Dichlorobenzene-d4			EPA 8260B			102.4	70-1	30
4-Bromofluorobenzene			EPA 8260B			99.2		30
4-DI 011011001		Toluene-d8 EPA						

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

Sample Number Client Sample ID	110805029-016 DUPLICATE-1		Sampling Date Sampling Time	1		Date/Time Re Extraction Da		10:40 AM
Matrix	Water		Sample Locatio	n				
Comments								
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Method	Qualifier
1,1,1,2-Tetrach	loroethane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
1,1,1-Trichloroe	ethane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
1,1,2,2-Tetrach	nloroethane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
1,1,2-Trichlorod	ethane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
1,1-Dichloroeth	nane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
1,1-Dichloroeth	nene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
1,1-dichloropro	pene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
1,2,3-Trichlorol	benzene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
1,2,3-Trichloro	propane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
1,2,4-Trichlorol		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
1,2,4-Trimethyl		18.7	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
• •	chloropropane(DBCP)	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
1,2-Dibromoeth		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
1,2-Dichlorober		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
1,2-Dichloroeth		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
1,2-Dichloropro		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
1,3,5-Trimethyl		10.7	ug/L	0.5	8/11/2011	woz	EPA 8260B	
1,3-Dichlorober	nzene	ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
1,3-Dichloropro	pane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
1,4-Dichlorober	nzene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
2,2-Dichloropro	pane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
2-Chlorotoluen	e	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
2-hexanone		ND	ug/L	2.5	8/11/2011	WOZ	EPA 8260B	
4-Chlorotoluen	e	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Acetone		ND	ug/L	2.5	8/11/2011	WOZ	EPA 8260B	
Acrylonitrile		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Benzene		3.57	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Bromobenzene)	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Bromochlorom	ethane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Bromodichloror		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Bromoform		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Bromomethane)	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Carbon disulfid		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Carbon Tetrach	nloride	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Chlorobenzene)	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

ample Number Client Sample ID fatrix Comments	110805029-016 DUPLICATE-1 Water					ate/Time Re xtraction Da	10:40 AN	
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
Chloroethane		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Chloroform		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Chloromethane	e	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
cis-1,2-dichloro	bethene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
cis-1,3-Dichlor		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Dibromochloro		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Dibromometha	ne	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Dichlorodifluor	omethane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Ethylbenzene		9.67	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Hexachlorobut	adiene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Isopropylbenze	ene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
m+p-Xylene		75.7	ug/L	2.5	8/11/2011	WOZ	EPA 8260B	
Methyl ethyl ke	tone (MEK)	ND	ug/L	2.5	8/11/2011	WOZ	EPA 8260B	
	ketone (MIBK)	ND	ug/L	2.5	8/11/2011	WOZ	EPA 8260B	
Methylene chlo	oride	ND	ug/L	2.5	8/11/2011	WOZ	EPA 8260B	
methyl-t-butyl e		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Naphthalene		1.06	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
n-Butylbenzen	e	0.60	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
n-Propylbenzer	ne	0.50	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
o-Xylene		63.7	ug/L	2.5	8/11/2011	WOZ	EPA 8260B	
p-isopropyltolu	ene	0.51	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
sec-Butylbenze	ene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Styrene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
tert-Butylbenze	ene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Tetrachloroeth	ene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Toluene		41.8	ug/L	2.5	8/11/2011	WOZ	EPA 8260B	
trans-1,2-Dichl	oroethene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
trans-1,3-Dichl	oropropene	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Trichloroethene	Э	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Trichloroflouror	methane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Vinyl Chloride		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER		Batch # Project	Name: IO CC	110805029 IONE PETROLEUM CONTAMINATION 0504- 058-01	
		Analytical Res	ults Report			
Sample Number Client Sample ID Matrix Comments	110805029-016 DUPLICATE-1 Water	Sampling Date Sampling Time Sample Locatio		Date/Time Rec Extraction Dat		10:40 AM
Parameter		Result Units	PQL Analysis D	ate Analyst	Method	Qualifier
		Surrogate	Data			
Sample Number	110805029-016					
Surrogate	Standard	Method	F	ercent Recover	ry Control L	imits
1,2-Dichlore	obenzene-d4	EPA 8260E	3	96.0	70-13	0
4-Bromoflue	probenzene	EPA 8260E	3	100.4	70-13	0
Toluene-d8		EPA 8260E	3	96.8	70-13	0

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87693; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0095

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	110805029-017 TRIP BLANKS Water		Sampling Date Sampling Time Sample Locatio		/4/2011 Da Ex	10:40 AM		
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,1,1,2-Tetrach	loroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,1-Trichloro	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,2,2-Tetrach	loroethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1,2-Trichloroe	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,1-Dichloroeth	ane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1.1-Dichloroeth	ene	ND	ug/L	0.5	8/10/2011	woz	EPA 8260B	
1,1-dichloropro	pene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,3-Trichlorol	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,3-Trichloro	oropane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,4-Trichlorol	oenzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2,4-Trimethyl	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
	chloropropane(DBCP)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dibromoeth		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichlorobei	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichloroeth		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,2-Dichloropro		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3,5-Trimethyl	benzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3-Dichlorober	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,3-Dichloropro	pane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
1,4-Dichlorober	nzene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2,2-Dichloropro	pane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2-Chlorotoluen	9	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
2-hexanone		ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
4-Chlorotoluen	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Acetone		ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
Acrylonitrile		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Benzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromobenzene	9	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromochlorome	ethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromodichloror	methane	ND	ug/L	0.5	8/10/2011	woz	EPA 8260B	
Bromoform		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Bromomethane	3	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Carbon disulfid	е	ND	ug/L	0.5	8/10/2011	woz	EPA 8260B	
Carbon Tetrach	nloride	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Chlorobenzene	ł	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report

mple Number ent Sample ID trix mments	110805029-017 TRIP BLANKS Water	\$	Sampling Date Sampling Time Sample Locatio			ate/Time Re straction Da		10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Chloroethane		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Chloroform		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Chloromethane	9	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
cis-1,2-dichlord	bethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
cis-1,3-Dichlore	opropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Dibromochloro		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Dibromometha	ne	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Dichlorodifluor	omethane	ND	ug/L	0.5	8/10/2011	woz	EPA 8260B	
Ethylbenzene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Hexachlorobuta	adiene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Isopropylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
m+p-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Methyl ethyl ke	tone (MEK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
Methyl isobutyl	ketone (MIBK)	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
Methylene chlo	ride	ND	ug/L	2.5	8/10/2011	WOZ	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Naphthalene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
n-Butylbenzene	e	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
n-Propylbenzer	ne	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
o-Xylene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
p-isopropyltolu	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
sec-Butylbenze	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Styrene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
tert-Butylbenze	ne	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Tetrachloroethe	ene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Toluene		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
trans-1,2-Dichle	oroethene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
trans-1,3-Dichl	oropropene	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Trichloroethene	Э	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Trichloroflouror	nethane	ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	
Vinyl Chloride		ND	ug/L	0.5	8/10/2011	WOZ	EPA 8260B	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER				Batch #: Project Name:		IONE F	110805029 IONE PETROLEUM CONTAMINATION 0504- 058-01	
		Anal	ytical Res	ults F	Report				
Sample Number Client Sample ID Matrix Comments	110805029-017 TRIP BLANKS Water		Sampling Date Sampling Time Sample Locatio		4/2011	Date/Tir Extracti	ne Receivec on Date	8/5/2011	10:40 AM
Parameter		Result	Units	PQL	Analysis	Date Anal	lyst N	lethod	Qualifier
			Surrogate	Data					
Sample Number	110805029-017								
Surrogate	Standard		Method			Percent R	ecovery	Control	Limits
,	obenzene-d4		EPA 8260E			100	.4	70-1	30
4-Bromofluc	probenzene		EPA 8260B		96.4		4	70-1	30
Toluene-d8			EPA 8260B			99.	6	70-1	30

Authorized Signature

Kathleen a. Sattles

Kathy Sattler, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

W Analyte was detected in both the sample and the associated trip blank

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

Batch #: 110805029 Project Name: IONE PETROLEUM CONTAMINATION 0504-058-01

Analytical Results Report (RBCA Volatiles)

Sample Number Client Sample ID Matrix Comments	110805029-001 MW-1-080311 Water	:	Sampling Date Sampling Time Sample Locatic	1		ate/Time Rece xtraction Date		10:40 AM	
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier	
1,2-Dibromoethane		ND	ug/L	0.01	8/11/2011	WOZ	EPA 8260B		
1,2-Dichloroethane		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B		
Benzene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B		
Ethylbenzene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B		
m+p-Xylene	m+p-Xylene		ug/L	1	8/11/2011	WOZ	EPA 8260B		
methyl-t-butyl ether (MTBE)		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B		
Naphthalene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B		
o-Xylene	o-Xylene		ug/L	0.5	8/11/2011	WOZ	EPA 8260B		
Toluene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B		
			Surrogate	Data					
ample Number	110805029-001								
Surrogate Standard			Method			Percent Recovery		Control Limits	
1,2-Dichlorobenzene-d4			EPA 8260B			99.6		70-130	
4-Bromofluor	obenzene		EPA 8260B			104.0		30	
Toluene-d8		EPA 8260B			119.2			30	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report (RBCA Volatiles)

Sample Number Client Sample ID Matrix Comments	110805029-002 MW-2-080311 Water		Sampling Date Sampling Time Sample Locatio	1		ate/Time Reco straction Date		10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,2-Dibromoet	hane	ND	ug/L	0.01	8/11/2011	WOZ	EPA 8260B	
1,2-Dichloroeth	nane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Benzene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Ethylbenzene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
m+p-Xylene		ND	ug/L	1	8/11/2011	WOZ	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Naphthalene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
o-Xylene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Toluene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
			Surrogate	Data				
mple Number	110805029-002							
Surrogate S	tandard		Method		Perc	ent Recovery	y Control	Limits
1,2-Dichlorob	penzene-d4		EPA 8260B			90.0	70-1	30
4-Bromofluor	obenzene		EPA 8260B			101.6	70-1	30
Toluene-d8			EPA 8260B			99.6	70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report (RBCA Volatiles)

Sample Number Client Sample ID Matrix Comments	110805029-006 MW-7-080311 Water		Sampling Date Sampling Time Sample Locatio	1:		Date/Time Rece Extraction Date		10:40 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifier
1,2-Dibromoet	hane	ND	ug/L	0.01	8/11/2011	WOZ	EPA 8260B	
1,2-Dichloroeth	nane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Benzene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Ethylbenzene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
m+p-Xylene		ND	ug/L	1	8/11/2011	woz	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Naphthalene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
o-Xylene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Toluene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
			Surrogate	Data				
mple Number	110805029-006							
Surrogate St	tandard		Method		Per	cent Recovery	Control	Limits
1,2-Dichlorob	enzene-d4		EPA 8260B			98.0	70-1	30
4-Bromofluor	obenzene		EPA 8260B			102.8	70-1	30
Toluene-d8			EPA 8260B			110.8	70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report (RBCA Volatiles)

Sample Number Client Sample ID Matrix Comments	110805029-008 MW-9-080311 Water		Sampling Date Sampling Time Sample Locatio	1:		ate/Time Rea straction Da		1 10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,2-Dibromoet	hane	ND	ug/L	0.01	8/11/2011	WOZ	EPA 8260B	
1,2-Dichloroeth	nane	ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Benzene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Ethylbenzene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
m+p-Xylene		ND	ug/L	1	8/11/2011	woz	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Naphthalene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
o-Xylene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Toluene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
			Surrogate	Data				
mple Number	110805029-008							
Surrogate St	tandard		Method		Perc	ent Recove	ry Contr	ol Limits
1,2-Dichlorob			EPA 8260B			111.6	-	0-130
4-Bromofluor	obenzene		EPA 8260B			113.2	70	0-130
Toluene-d8			EPA 8260B			108.8	70	0-130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report (RBCA Volatiles)

Sample Number Client Sample ID Matrix Comments	110805029-009 MW-10-080311 Water		Sampling Date Sampling Time Sample Locatio	2		Date/Time Reco Extraction Date		10:40 AN
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifie
1,2-Dibromoet	hane	ND	ug/L	0.01	8/11/2011	WOZ	EPA 8260B	
1,2-Dichloroeth	nane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Benzene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Ethylbenzene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
m+p-Xylene		ND	ug/L	1	8/11/2011	WOZ	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Naphthalene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
o-Xylene		ŃD	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Toluene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
			Surrogate	Data				
mple Number	110805029-009							
Surrogate S	tandard		Method		Per	cent Recovery	Control	Limits
1,2-Dichlorob	enzene-d4		EPA 8260B	5		102.0	70-1	30
4-Bromofluor	obenzene		EPA 8260B	i		102.8	70-1	30
Toluene-d8			EPA 8260B	;		108.4	70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report (RBCA Volatiles)

Sample Number Client Sample ID Matrix Comments	110805029-010 MW-11-080311 Water		Sampling Date Sampling Time Sample Locatio	1:		ate/Time Rece xtraction Date		10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
1,2-Dibromoet	hane	ND	ug/L	0.01	8/11/2011	WOZ	EPA 8260B	
1,2-Dichloroeth	nane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Benzene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Ethylbenzene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
m+p-Xylene		ND	ug/L	1	8/11/2011	WOZ	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Naphthalene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
o-Xylene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Toluene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
		******	Surrogate	Data				
mple Number	110805029-010							
Surrogate S	tandard		Method		Per	cent Recovery	/ Control	Limits
1,2-Dichlorob	enzene-d4		EPA 8260B			100.0	70-	130
4-Bromofluor	obenzene		EPA 8260B			112.4	70-1	130
Toluene-d8			EPA 8260B			108.0	70-1	130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01
ALLEID			

Analytical Results Report (RBCA Volatiles)

Sample Number Client Sample ID Matrix Comments	110805029-011 MW-12-080311 Water		Sampling Date Sampling Time Sample Locatio	3:		ate/Time Re Extraction Da		10:40 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifier
1,2-Dibromoeth	nane	ND	ug/L	0.01	8/11/2011	WOZ	EPA 8260B	
1,2-Dichloroeth	nane	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Benzene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Ethylbenzene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
m+p-Xylene		ND	ug/L	1	8/11/2011	woz	EPA 8260B	
methyl-t-butyl e	other (MTBE)	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Naphthalene		NÐ	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
o-Xylene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Toluene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
		· · · · · · · · · · · · · · · · · · ·	Surrogate	Data				
mple Number	110805029-011							
Surrogate St			Method		Per	cent Recove	ry Control I	_imits
1,2-Dichlorob			EPA 8260B			104.0	70-1:	30
4-Bromofluor	obenzene		EPA 8260B			106.0	70-13	30

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cert0095

EPA 8260B

109.6

Toluene-d8

70-130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report (RBCA Volatiles)

Sample Number Client Sample ID Matrix Comments	110805029-013 MW-14-080411 Water	:	Sampling Date Sampling Time Sample Locatio	8:		ate/Time Red traction Da		10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
1,2-Dibromoet	hane	ND	ug/L	0.01	8/11/2011	WOZ	EPA 8260B	
1,2-Dichloroeth	nane	ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Benzene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Ethylbenzene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
m+p-Xylene		ND	ug/L	1	8/11/2011	WOZ	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Naphthalene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
o-Xylene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Toluene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
			Surrogate	Data			Minde (1997)	
ample Number	110805029-013							· · · · ·
Surrogate St	tandard		Method		Perc	ent Recove	ry Contro	I Limits
1,2-Dichlorob	enzene-d4		EPA 8260B			106.0	70-	130
4-Bromofluor	obenzene		EPA 8260B			96.4	70-	130
Toluene-d8			EPA 8260B			102.0	70-	130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01

Analytical Results Report (RBCA Volatiles)

Sample Number Client Sample ID Matrix Comments	110805029-017 TRIP BLANKS Water		Sampling Date Sampling Time Sample Locatio			te/Time Rece traction Date		10:40 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
1,2-Dibromoet	hane	ND	ug/L	0.01	8/11/2011	WOZ	EPA 8260B	
1,2-Dichloroeth	nane	ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Benzene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Ethylbenzene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
m+p-Xylene		ND	ug/L	1	8/11/2011	WOZ	EPA 8260B	
methyl-t-butyl e	ether (MTBE)	ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
Naphthalene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
o-Xylene		ND	ug/L	0.5	8/11/2011	woz	EPA 8260B	
Toluene		ND	ug/L	0.5	8/11/2011	WOZ	EPA 8260B	
			Surrogate	Data				
mple Number	110805029-017							,
Surrogate St	tandard		Method		Perc	ent Recovery	Control	Limits
1,2-Dichlorob	enzene-d4		EPA 8260B			98.4	70-1	30
4-Bromofluor	obenzene		EPA 8260B			110.8	70-1	30
Toluene-d8			EPA 8260B			102.8	70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: **GEO ENGINEERS** Address: 523 E 2ND SPOKANE, WA 99202 Attn: DAVE LAUDER

Batch #: **Project Name:** 110805029 **IONE PETROLEUM CONTAMINATION 0504-**058-01

Analytical Results Report

Authorized Signature

Kathlern <u>A. Lattler</u> Kathy Sattler, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

Practical Quantitation Limit PQL

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

Batch #: Project Name: | (

110805029 IONE PETROLEUM CONTAMINATION 0504-058-01

Analytical Results Report

Quality Control Data

Lab Control Sample

Parameter	LCS Result	Units	LCS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
Benzene	3.62	ug/L	5	72.4	75-125	8/11/2011	8/11/2011
Chlorobenzene	5.57	ug/L	5	111.4	85-115	8/10/2011	8/10/2011
Ethylbenzene	5.10	ug/L	5	102.0	84-115	8/10/2011	8/10/2011
o-Xylene	5.77	ug/L	5	115.4	83-117	8/10/2011	8/10/2011
Tetrachloroethene	5.14	ug/L	5	102.8	64-132	8/10/2011	8/10/2011
Toluene	5.02	ug/L	5	100.4	76-123	8/10/2011	8/10/2011
Benzene	5.09	ug/L	5	101.8	75-125	8/10/2011	8/10/2011
1,1-Dichloroethene	4.70	ug/L	5	94.0	68-127	8/11/2011	8/11/2011
1,1-Dichloroethene	4.48	ug/L	5	89.6	68-127	8/10/2011	8/10/2011
Chlorobenzene	4.58	ug/L	5	91.6	85-115	8/11/2011	8/11/2011
Ethylbenzene	3.94	ug/L	5	78.8	84-115	8/11/2011	8/11/2011
o-Xylene	4.43	ug/L	5	88.6	83-117	8/11/2011	8/11/2011
Tetrachloroethene	3.53	ug/L	5	70.6	64-132	8/11/2011	8/11/2011
Toluene	3.55	ug/L	5	71.0	76-123	8/11/2011	8/11/2011
Trichloroethene	3.71	ug/L	5	74.2	72-125	8/11/2011	8/11/2011
Trichloroethene	5.20	ug/L	5	104.0	72-125	8/10/2011	8/10/2011

Method Blank

Parameter	Result	Units	PQL	Prep Date	Analysis Date
1,1,1,2-Tetrachloroethane	ND	ug/L	0.5	8/11/2011	8/11/2011
1,1,1,2-Tetrachloroethane	ND	ug/L	0.5	8/10/2011	8/10/2011
1,1,1-Trichloroethane	ND	ug/L	0.5	8/10/2011	8/10/2011
1,1,1-Trichloroethane	ND	ug/L	0.5	8/11/2011	8/11/2011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	8/10/2011	8/10/2011
1,1,2,2-Tetrachloroethane	ND	ug/L	0.5	8/11/2011	8/11/2011
1,1,2-Trichloroethane	ND	ug/L	0.5	8/11/2011	8/11/2011
1,1,2-Trichloroethane	ND	ug/L	0.5	8/10/2011	8/10/2011
1,1-Dichloroethane	ND	ug/L	0.5	8/10/2011	8/10/2011
1,1-Dichloroethane	ND	ug/L	0.5	8/11/2011	8/11/2011
1,1-Dichloroethene	ND	ug/L	0.5	8/10/2011	8/10/2011
1,1-Dichloroethene	ND	ug/L	0.5	8/11/2011	8/11/2011
1,1-dichloropropene	ND	ug/L	0.5	8/10/2011	8/10/2011
1,1-dichloropropene	ND	ug/L	0.5	8/11/2011	8/11/2011

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address:	523 E 2ND SPOKANE, WA 99202	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01
Attn:	DAVE LAUDER	4	

Analytical Results Report

Quality Control Data

Method Blank

Parameter	Result	Units	PQL	Prep Date	Analysis Date
1,2,3-Trichlorobenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
1,2,3-Trichlorobenzene	ND	ug/l_	0.5	8/10/2011	8/10/2011
1,2,3-Trichloropropane	ND	ug/L	0.5	8/11/2011	8/11/2011
1,2,3-Trichloropropane	ND	ug/L	0.5	8/10/2011	8/10/2011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
1,2,4-Trichlorobenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
1,2,4-Trimethylbenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
1,2,4-Trimethylbenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
1,2-Dibromo-3-chloropropane(DBCP)	ND	ug/L	0.5	8/11/2011	8/11/2011
1,2-Dibromo-3-chloropropane(DBCP)	ND	ug/L	0.5	8/10/2011	8/10/2011
1,2-Dibromoethane	ND	ug/L	0.5	8/10/2011	8/10/2011
1,2-Dibromoethane	ND	ug/L	0.5	8/11/2011	8/11/2011
1,2-Dichlorobenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
1,2-Dichlorobenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
1,2-Dichloroethane	ND	ug/L	0.5	8/10/2011	8/10/2011
1,2-Dichloroethane	ND	ug/L	0.5	8/11/2011	8/11/2011
1,2-Dichloropropane	ND	ug/L	0.5	8/10/2011	8/10/2011
1,2-Dichloropropane	ND	ug/L	0.5	8/11/2011	8/11/2011
1,3,5-Trimethylbenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
1,3,5-Trimethylbenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
1,3-Dichlorobenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
1,3-Dichlorobenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
1,3-Dichloropropane	ND	ug/L	0.5	8/10/2011	8/10/2011
1,3-Dichloropropane	ND	ug/L	0.5	8/11/2011	8/11/2011
1,4-Dichlorobenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
1,4-Dichlorobenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
2,2-Dichloropropane	ND	ug/L	0.5	8/10/2011	8/10/2011
2,2-Dichloropropane	ND	ug/L	0.5	8/11/2011	8/11/2011
2-Chlorotoluene	ND	ug/L	0.5	8/11/2011	8/11/2011
2-Chlorotoluene	ND	ug/L	0.5	8/10/2011	8/10/2011
2-hexanone	ND	ug/L	2.5	8/10/2011	8/10/2011
2-hexanone	ND	ug/L	2.5	8/11/2011	8/11/2011
4-Chlorotoluene	ND	ug/L	0.5	8/10/2011	8/10/2011
4-Chlorotoluene	ND	ug/L	0.5	8/11/2011	8/11/2011
Acetone	ND	ug/L	2.5	8/10/2011	8/10/2011
Acetone	ND	ug/L	2.5	8/11/2011	8/11/2011
Acrylonitrile	ND	ug/L	0.5	8/10/2011	8/10/2011

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029			
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01			
Analytical Results Report						

Analytical Results Report

Quality Control Data

Method Blank					
Parameter	Result	Units	PQL	Prep Date	Analysis Date
Acrylonitrile	ND	ug/L	0.5	8/11/2011	8/11/2011
Benzene	ND	ug/L	0.5	8/10/2011	8/10/2011
Benzene	ND	ug/L	0.5	8/11/2011	8/11/2011
Bromobenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
Bromobenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
Bromochloromethane	ND	ug/L	0.5	8/10/2011	8/10/2011
Bromochloromethane	ND	ug/L	0.5	8/11/2011	8/11/2011
Bromodichloromethane	ND	ug/L	0.5	8/11/2011	8/11/2011
Bromodichloromethane	ND	ug/L	0.5	8/10/2011	8/10/2011
Bromoform	ND	ug/L	0.5	8/10/2011	8/10/2011
Bromoform	ND	ug/L	0.5	8/11/2011	8/11/2011
Bromomethane	ND	ug/L	0.5	8/10/2011	8/10/2011
Bromomethane	ND	ug/L	0.5	8/11/2011	8/11/2011
Carbon disulfide	ND	ug/L	0.5	8/10/2011	8/10/2011
Carbon disulfide	ND	ug/L	0.5	8/11/2011	8/11/2011
Carbon Tetrachloride	ND	ug/L	0.5	8/11/2011	8/11/2011
Carbon Tetrachloride	ND	ug/L	0.5	8/10/2011	8/10/2011
Chlorobenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
Chlorobenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
Chloroethane	ND	ug/L	0.5	8/10/2011	8/10/2011
Chloroethane	ND	ug/L	0.5	8/11/2011	8/11/2011
Chloroform	ND	ug/L	0.5	8/11/2011	8/11/2011
Chloroform	ND	ug/L	0.5	8/10/2011	8/10/2011
Chloromethane	ND	ug/L	0.5	8/10/2011	8/10/2011
Chloromethane	ND	ug/L	0.5	8/11/2011	8/11/2011
cis-1,2-dichloroethene	ND	ug/L	0.5	8/10/2011	8/10/2011
cis-1,2-dichloroethene	ND	ug/L	0.5	8/11/2011	8/11/2011
cis-1,3-Dichloropropene	ND	ug/L	0.5	8/10/2011	8/10/2011
cis-1,3-Dichloropropene	ND	ug/L	0.5	8/11/2011	8/11/2011
Dibromochloromethane	ND	ug/L	0.5	8/10/2011	8/10/2011
Dibromochloromethane	ND	ug/L	0.5	8/11/2011	8/11/2011
Dibromomethane	ND	ug/L	0.5	8/10/2011	8/10/2011
Dibromomethane	ND	ug/L	0.5	8/11/2011	8/11/2011
Dichlorodifluoromethane	ND	ug/L	0.5	8/10/2011	8/10/2011
Dichlorodifluoromethane	ND	ug/L	0.5	8/11/2011	8/11/2011
Ethylbenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
Ethylbenzene	ND	ug/L	0.5	8/11/2011	8/11/2011

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029			
Address:	523 E 2ND SPOKANE, WA 99202	Project Name	: IONE PETROLEUM CONTAMINATION 0504- 058-01			
Attn:	DAVE LAUDER		038-01			
Analytical Results Report						

Quality Control Data

Method Blank

Parameter	Result	Units	PQL	Prep Date	Analysis Date
Hexachlorobutadiene	ND	ug/L	0.5	8/10/2011	8/10/2011
Hexachlorobutadiene	ND	ug/L	0.5	8/11/2011	8/11/2011
Isopropylbenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
Isopropyibenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
m+p-Xylene	ND	ug/L	0.5	8/11/2011	8/11/2011
m+p-Xylene	ND	ug/L	0.5	8/10/2011	8/10/2011
Methyl ethyl ketone (MEK)	ND	ug/L	2.5	8/10/2011	8/10/2011
Methyl ethyl ketone (MEK)	ND	ug/L	2.5	8/11/2011	8/11/2011
Methyl isobutyl ketone (MIBK)	ND	ug/L	2.5	8/10/2011	8/10/2011
Methyl isobutyl ketone (MIBK)	ND	ug/L	2.5	8/11/2011	8/11/2011
Methylene chloride	ND	ug/L	2.5	8/10/2011	8/10/2011
Methylene chloride	ND	ug/L	2.5	8/11/2011	8/11/2011
methyl-t-butyl ether (MTBE)	ND	ug/L	0.5	8/11/2011	8/11/2011
methyl-t-butyl ether (MTBE)	ND	ug/L	0.5	8/10/2011	8/10/2011
Naphthalene	ND	ug/L	0.5	8/11/2011	8/11/2011
Naphthalene	ND	ug/L	0.5	8/10/2011	8/10/2011
n-Butylbenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
n-Butylbenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
n-Propylbenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
n-Propylbenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
o-Xylene	ND	ug/L	0.5	8/10/2011	8/10/2011
o-Xylene	ND	ug/L	0.5	8/11/2011	8/11/2011
p-isopropyltoluene	ND	ug/L	0.5	8/10/2011	8/10/2011
p-isopropyltoluene	ND	ug/L	0.5	8/11/2011	8/11/2011
sec-Butylbenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
sec-Butylbenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
Styrene	ND	ug/L	0.5	8/11/2011	8/11/2011
Styrene	ND	ug/L	0.5	8/10/2011	8/10/2011
tert-Butylbenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
tert-Butylbenzene	ND	ug/L	0.5	8/10/2011	8/10/2011
Tetrachloroethene	ND	ug/L	0.5	8/10/2011	8/10/2011
Tetrachloroethene	ND	ug/L	0.5	8/11/2011	8/11/2011
Toluene	ND	ug/L	0.5	8/10/2011	8/10/2011
Toluene	ND	ug/L	0.5	8/11/2011	8/11/2011
trans-1,2-Dichloroethene	ND	ug/L	0.5	8/11/2011	8/11/2011
trans-1,2-Dichloroethene	ND	ug/L	0.5	8/10/2011	8/10/2011
trans-1,3-Dichloropropene	ND	ug/L	0.5	8/10/2011	8/10/2011

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS	Batch #:	110805029
Address: Attn:	523 E 2ND SPOKANE, WA 99202 DAVE LAUDER	Project Name:	IONE PETROLEUM CONTAMINATION 0504- 058-01
	Analytical Resu	ults Report	

Quality Control Data

Method Blank					
Parameter	Result	Units	PQL	Prep Date	Analysis Date
trans-1,3-Dichloropropene	ND	ug/L	0.5	8/11/2011	8/11/2011
Trichloroethene	ND	ug/L	0.5	8/10/2011	8/10/2011
Trichloroethene	ND	ug/L	0.5	8/11/2011	8/11/2011
Trichloroflouromethane	ND	ug/L	0.5	8/10/2011	8/10/2011
Trichloroflouromethane	ND	ug/L	0.5	8/11/2011	8/11/2011
Vinyl Chloride	ND	ug/L	0.5	8/11/2011	8/11/2011
Vinyl Chloride	ND	ug/L	0.5	8/10/2011	8/10/2011

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	GEO ENGINEERS
Address:	523 E 2ND
	SPOKANE, WA 99202
Attn:	DAVE LAUDER

Batch #: 110 Project Name: ION COI

110805029 IONE PETROLEUM CONTAMINATION 0504-058-01

Analytical Results Report

Quality Control Data

Parameter	LCS Result	Units	LCS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
Toluene	0.96	ug/L	1	96.0	76-123	8/11/2011	8/11/2011
o-Xylene	0.85	ug/L	1	85.0	83-117	8/11/2011	8/11/2011
Ethylbenzene	0.89	ug/L	1	89.0	84-115	8/11/2011	8/11/2011
Benzene	0.97	ug/L	1	97.0	75-125	8/11/2011	8/11/2011

Method Blank					
Parameter	Result	Units	PQL	Prep Date	Analysis Date
1,2-Dibromoethane	ND	ug/L	0.01	8/11/2011	8/11/2011
1,2-Dichloroethane	ND	ug/L	0.5	8/11/2011	8/11/2011
Benzene	ND	ug/L	0.5	8/11/2011	8/11/2011
Ethylbenzene	ND	ug/L	0.5	8/11/2011	8/11/2011
m+p-Xylene	ND	ug/L	1	8/11/2011	8/11/2011
methyl-t-butyl ether (MTBE)	ND	ug/L	0.5	8/11/2011	8/11/2011
Naphthalene	ND	ug/L	0.5	8/11/2011	8/11/2011
o-Xylene	ND	ug/L	0.5	8/11/2011	8/11/2011
Toluene	ND	ug/L	0.5	8/11/2011	8/11/2011

 AR
 Acceptable Range

 ND
 Not Detected

 PQL
 Practical Quantitation Limit

 RPD
 Relative Percentage Difference

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	GEO ENGINEERS 523 E 2ND SPOKANE, WA 99202 DAVE LAUDER					tch # oject	: Nam	e:		PETROLE AMINATIC	
	A	nalytica	l Resu	lts Rep	ort						
		Qualit	y Contr	ol Data							
Lab Control Sa	mple										
Parameter		LCS Res	ult Unit	s LCS Sp	ike 🤉	%Rec	AR	%Rec	Pre	ep Date	Analysis Date
Gasoline		0.973	mg/	L 1.1		88.5	70	-130	8/	9/2011	8/9/2011
Gasoline		0.971	mg/	L 1.1		88.3	70	-130	8/	8/2011	8/8/2011
Matrix Spike											
Sample Number	Parameter		Sample Result		Hnit	M ts Spi		Rec	AR %Rec	Prep Date	Analysis Date
110805029-012	Gasoline		771	1.85	mg/			8.1	70-130	8/9/2011	8/9/2011
110805029-001	Gasoline		ND	2.12	mg/				70-130	8/8/2011	8/8/2011
Matrix Spike D	uplicate		······································					·			
D		MSD	1 ! 6 m	MSD	%Re	- 0	(000	AF		Dete	Analysia Data
Parameter Gasoline		Result 1.76	Units mg/L	Spike 1.1	%Re 89.9		6RPD 8.7	%RI 0-2		Prep Date 8/9/2011	Analysis Date 8/9/2011
Gasoline		2.08	mg/L	2.2	94.5		1.9	0-2		8/8/2011	8/8/2011
Method Blank											
Parameter			Res	sult	ι	Inits		PQL		Prep Date	Analysis Date
Gasoline			NE)	m	ıg/L		0.1		8/9/2011	8/9/2011
Gasoline			NC)		ig/L		0.1		8/8/2011	8/8/2011

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

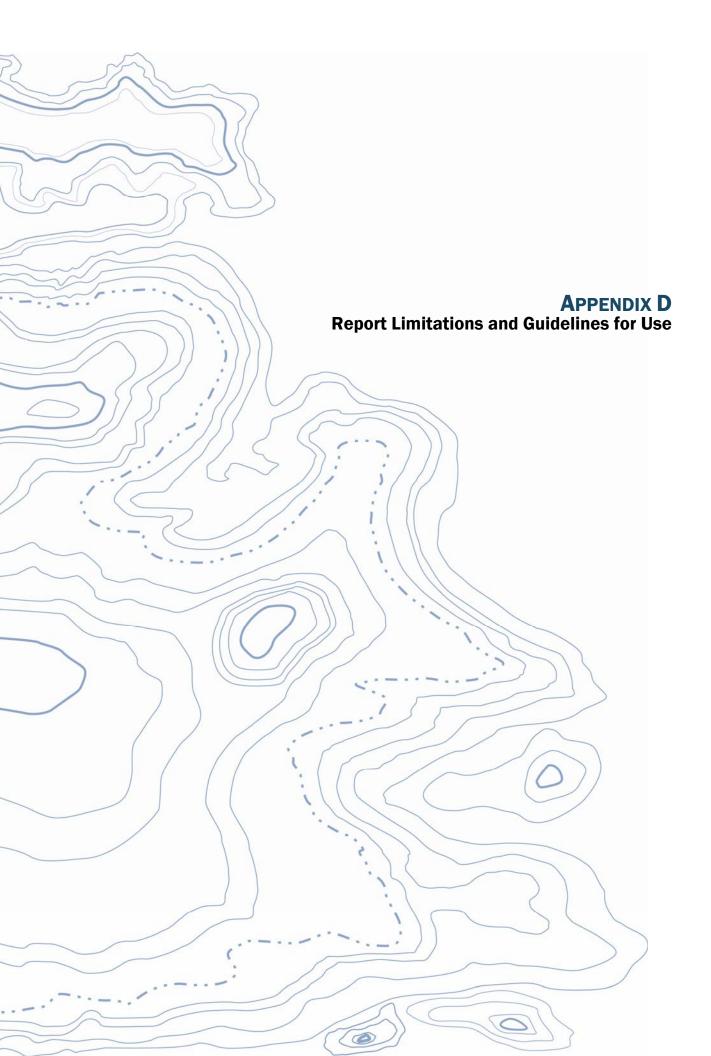
RPD Relative Percentage Difference

Comments:

Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Login Report

Customer Name:	GEO ENGIN	EERS			Order	ID: 110805029
ξ	523 E 2ND				Order Da	te: 8/5/2011
S	SPOKANE		W	/A 99202		
Contact Name:	OAVE LAUD	ER			Project Name: ION	E PETROLEUM
Comment:					CON 058-	NTAMINATION 0504-
Sample #: 11080502	9-001 Custo	mer Sample #	: MV	/-1-080311		
Recv'd:	Collector:	K RANDALL		Date Collected	: 8/3/2011	
Quantity: 1	Matrix:	Water		Date Received:	: 8/5/2011 10:40:00 A	
Comment:						
Test			Lab	Method	Due Date	Priority
TPHG-NW-SPO			S	NWTPHG	8/12/2011	<u>Normal (6-10 Days)</u>
VOLATILES 8260			S	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>
Sample #: 11080502	9-002 Custo	mer Sample #	: MW	/-2-080311		
Recv'd:	Collector:	K RANDALL		Date Collected	: 8/3/2011	
Quantity: 1	Matrix:	Water		Date Received:	8/5/2011 10:40:00 A	
Comment:						
Test			Lab	Method	Due Date	Priority
TPHG-NW-SPO			S	NWTPHG	8/12/2011	Normal (6-10 Days)
VOLATILES 8260			S	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>
Sample #: 11080502	9-003 Custo	mer Sample #	: MW	/-3-080311		
Recv'd:	Collector:	K RANDALL		Date Collected	8/3/2011	
Quantity: 1	Matrix:	Water		Date Received:	8/5/2011 10:40:00 A	
Comment:						
Test			Lab	Method	Due Date	Priority
TPHG-NW-SPO			s	NWTPHG	8/12/2011	Normal (6-10 Days)
VOLATILES 8260			s	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>


Customer Name: GEO ENGINEERS			Order I	D: 110805029
523 E 2ND			Order Dat	te: 8/5/2011
SPOKANE	W	A 99202		
Contact Name: DAVE LAUDER		I	Project Name: IONE	E PETROLEUM ITAMINATION 0504-
Comment:			058-	
Sample #: 110805029-004 Customer Samp	ole #: MV	/-4-080311		
Recv'd: 🔽 Collector: K RAND	ALL	Date Collected:	8/3/2011	
Quantity: 1 Matrix: Water		Date Received:	8/5/2011 10:40:00 A	
Comment:				
Test	Lab	Method	Due Date	Priority
TPHG-NW-SPO	S	NWTPHG	8/12/2011	Normal (6-10 Days)
VOLATILES 8260	S	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>
Sample #: 110805029-005 Customer Samp	ole #: MW	/-6-080311		
Recv'd: 🔽 Collector: K RAND	ALL	Date Collected:	8/3/2011	
Quantity: 1 Matrix: Water		Date Received:	8/5/2011 10:40:00 A	
Comment:				
	Lab	Method	Due Date	Priority
TPHG-NW-SPO	S	NWTPHG	8/12/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260	S S			
TPHG-NW-SPO	S S	NWTPHG	8/12/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260	S S Ne#: MW	NWTPHG EPA 8260B	8/12/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-006 Customer Samp	S S Ne#: MW	NWTPHG EPA 8260B I-7-080311	8/12/2011 8/15/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-006 Customer Samp Recv'd: Collector: K RAND	S S Ne#: MW	NWTPHG EPA 8260B /-7-080311 Date Collected:	8/12/2011 8/15/2011 8/3/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-006 Customer Samp Recv'd: ☑ Collector: K RAND Quantity: 1 Matrix: Water	S S Ne#: MW	NWTPHG EPA 8260B /-7-080311 Date Collected:	8/12/2011 8/15/2011 8/3/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-006 Customer Samp Recv'd: I Collector: K RAND/ Quantity: 1 Matrix: Water Comment:	S S Ne #: MW	NWTPHG EPA 8260B -7-080311 Date Collected: Date Received:	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-006 Customer Samp Recv'd: ☑ Collector: K RAND/ Quantity: 1 Matrix: Water Comment: Test	S S Die #: MW ALL Lab	NWTPHG EPA 8260B /-7-080311 Date Collected: Date Received: Method	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-006 Customer Samp Recv'd: Collector: K RAND Quantity: 1 Matrix: Water Comment: Test TPHG-NW-SPO	S S All Lab S S	NWTPHG EPA 8260B 7-7-080311 Date Collected: Date Received: Method NWTPHG	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-006 Customer Sample Recv'd: ✓ Collector: K RAND/ Quantity: 1 Matrix: Water Comment: ✓ TPHG-NW-SPO VOLATILES 8260	S S ALL Lab S S Sle #: MW	NWTPHG EPA 8260B -7-080311 Date Collected: Date Received: Method NWTPHG EPA 8260B	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-006 Customer Sample Recv'd: ✓ Collector: K RANDA Quantity: 1 Matrix: Water Comment: ✓ TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-007 Customer Sample	S S ALL Lab S S Sle #: MW	NWTPHG EPA 8260B A-7-080311 Date Collected: Date Received: Method NWTPHG EPA 8260B A-8-080311	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-006 Customer Sample Recv'd: ✓ Collector: K RAND/ Quantity: Quantity: 1 Matrix: Water Comment: ✓ TPHG-NW-SPO ✓ VOLATILES 8260 ✓ ✓ ✓ Sample #: 110805029-007 Customer Sample Recv'd: ✓ Collector: K RAND/	S S ALL Lab S S Sle #: MW	NWTPHG EPA 8260B 7-080311 Date Collected: Date Received: Method NWTPHG EPA 8260B 8-080311 Date Collected:	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 8/3/2011	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-006 Customer Sample Recv'd: ✓ Collector: K RAND/ Quantity: 1 Matrix: Water Comment: ✓ ✓ ✓ Test TPHG-NW-SPO ✓ ✓ VOLATILES 8260 ✓ ✓ ✓ Sample #: 110805029-007 Customer Sample ✓ Recv'd: ✓ Collector: K RAND/ Quantity: 1 Matrix: Water	S S ALL Lab S S Sle #: MW	NWTPHG EPA 8260B 7-080311 Date Collected: Date Received: Method NWTPHG EPA 8260B 8-080311 Date Collected:	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 8/3/2011	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-006 Customer Sample Recv'd: ✓ Collector: K RAND/ Quantity: Quantity: 1 Matrix: Water Comment: ✓ ✓ ✓ TPHG-NW-SPO ✓ ✓ ✓ VOLATILES 8260 ✓ ✓ ✓ Sample #: 110805029-007 Customer Sample Recv'd: ✓ Collector: K RAND/ Quantity: Quantity: 1 Matrix: Water Comment: ✓ Collector: K RAND/	S S Die #: MW ALL S S Die #: MW ALL	NWTPHG EPA 8260B 7-080311 Date Collected: Date Received: Method NWTPHG EPA 8260B 8-080311 Date Collected: Date Received:	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 8/3/2011 8/3/2011 8/5/2011 10:40:00 A	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days) Normal (6-10 Days)

Customer Name: GE	O ENGINI	EERS			Order I	D: 110805029
523	3 E 2ND				Order Dat	t e: 8/5/2011
SP	OKANE		W	A 99202		
Contact Name: DA	VE LAUDE	ER		1	Project Name: IONE	E PETROLEUM
Comment:					CON 058-	ITAMINATION 0504- 01
Sample #: 110805029-0	08 Custo	mer Sample #	: MW	-9-080311		
Recv'd:	Collector:	K RANDALL		Date Collected:	8/3/2011	
Quantity: 1	Matrix:	Water		Date Received:	8/5/2011 10:40:00 A	
Comment:						
Test			Lab	Method	Due Date	Priority
TPHG-NW-SPO			s	NWTPHG	8/12/2011	Normal (6-10 Days)
VOLATILES 8260			s	EPA 8260B	8/15/2011	Normal (6-10 Days)
Sample #: 110805029-0	09 Custo	mer Sample #	: MW	-10-080311		
Recv'd: 🔽	Collector:	K RANDALL		Date Collected:	8/3/2011	
Quantity: 1	Matrix:	Water		Date Received:	8/5/2011 10:40:00 A	
Comment:						
Test			Lab	Method	Due Date	Priority
Test TPHG-NW-SPO			Lab S	Method NWTPHG	Due Date 8/12/2011	Priority <u>Normal (6-10 Days)</u>
TPHG-NW-SPO	10 Custo	mer Sample #	S S	NWTPHG	8/12/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260	10 Custor Collector:	mer Sample #	S S	NWTPHG EPA 8260B	8/12/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0		-	S S	NWTPHG EPA 8260B -11-080311	8/12/2011 8/15/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd:	Collector:	K RANDALL	S S	NWTPHG EPA 8260B -11-080311 Date Collected:	8/12/2011 8/15/2011 8/3/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: ☑ Quantity: 1 Comment:	Collector:	K RANDALL	S S MW	NWTPHG EPA 8260B -11-080311 Date Collected: Date Received:	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: ☑ Quantity: 1 Comment: Test	Collector:	K RANDALL	S S MW	NWTPHG EPA 8260B -11-080311 Date Collected: Date Received: Method	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: Quantity: 1 Comment: Test TPHG-NW-SPO	Collector:	K RANDALL	S S MW Lab	NWTPHG EPA 8260B -11-080311 Date Collected: Date Received: Method NWTPHG	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: ☑ Quantity: 1 Comment: Test TPHG-NW-SPO VOLATILES 8260	Collector: Matrix:	K RANDALL Water	S S MW Lab S S	NWTPHG EPA 8260B -11-080311 Date Collected: Date Received: Method	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: Quantity: 1 Comment: Test TPHG-NW-SPO	Collector: Matrix:	K RANDALL	S S MW Lab S S	NWTPHG EPA 8260B -11-080311 Date Collected: Date Received: Method NWTPHG	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: ☑ Quantity: 1 Comment: Test TPHG-NW-SPO VOLATILES 8260	Collector: Matrix:	K RANDALL Water	S S MW Lab S S	NWTPHG EPA 8260B -11-080311 Date Collected: Date Received: Method NWTPHG EPA 8260B	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: ☑ Quantity: 1 Comment: Test TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0	Collector: Matrix: 11 Custor	K RANDALL Water mer Sample #	S S MW Lab S S	NWTPHG EPA 8260B -11-080311 Date Collected: Date Received: Method NWTPHG EPA 8260B -12-080311	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: ☑ Quantity: 1 Comment: Test TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: ☑	Collector: Matrix: 11 Custor Collector:	K RANDALL Water mer Sample # K RANDALL	S S MW Lab S S	NWTPHG EPA 8260B -11-080311 Date Collected: Date Received: Method NWTPHG EPA 8260B -12-080311 Date Collected:	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 8/3/2011	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: ☑ Quantity: 1 Comment: Test TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: ☑ Quantity: 1 Comment:	Collector: Matrix: 11 Custor Collector:	K RANDALL Water mer Sample # K RANDALL	S S MW Lab S S S	NWTPHG EPA 8260B -11-080311 Date Collected: Date Received: Method NWTPHG EPA 8260B -12-080311 Date Collected: Date Received:	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 8/3/2011 8/3/2011 8/5/2011 10:40:00 A	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days) Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: ☑ Quantity: 1 Comment: Test TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: ☑ Quantity: 1 Comment: Test	Collector: Matrix: 11 Custor Collector:	K RANDALL Water mer Sample # K RANDALL	S S Lab S S Lab	NWTPHG EPA 8260B -11-080311 Date Collected: Date Received: Method NWTPHG EPA 8260B -12-080311 Date Collected: Date Received: Method	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 8/3/2011 8/3/2011 8/5/2011 10:40:00 A Due Date	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days) Normal (6-10 Days) Priority
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: ☑ Quantity: 1 Comment: Test TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-0 Recv'd: ☑ Quantity: 1 Comment:	Collector: Matrix: 11 Custor Collector:	K RANDALL Water mer Sample # K RANDALL	S S MW Lab S S S	NWTPHG EPA 8260B -11-080311 Date Collected: Date Received: Method NWTPHG EPA 8260B -12-080311 Date Collected: Date Received:	8/12/2011 8/15/2011 8/3/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 8/3/2011 8/3/2011 8/5/2011 10:40:00 A	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days) Normal (6-10 Days)

Customer Name: G	EO ENGIN	EERS			Order I	D: 110805029
52	23 E 2ND				Order Dat	te: 8/5/2011
SI	POKANE		W	A 99202		
Contact Name: D/	AVE LAUDI	ER			Project Name: IONE	E PETROLEUM
Comment:					CON 058-	ITAMINATION 0504- 01
Sample #: 110805029	012 Custo	mer Sample #	: MW	-13-080411	en antisente se darise a campo s for	ан осно то у стало с то
Recv'd:	Collector:	K RANDALL		Date Collected:	8/4/2011	
Quantity: 1	Matrix:	Water		Date Received:	8/5/2011 10:40:00 A	
Comment:						
Test			Lab	Method	Due Date	Priority
TPHG-NW-SPO			S	NWTPHG	8/12/2011	<u>Normal (6-10 Days)</u>
VOLATILES 8260			S	EPA 8260B	8/15/2011	<u>Normal (6-10 Days)</u>
Sample #: 110805029-	013 Custo	mer Sample #:	: MW	-14-080411		
Recv'd: 🗸	Collector:	K RANDALL		Date Collected:	8/4/2011	
Quantity: 1	Matrix:	Water		Date Received:	8/5/2011 10:40:00 A	
Comment:						
Test			Lab	Method	Due Date	Priority
TPHG-NW-SPO			S	NWTPHG	8/12/2011	Normal (6-10 Days)
TPHG-NW-SPO	-014 Custo	mer Sample #:	S S	NWTPHG	8/12/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260	-014 Custo Collector:	mer Sample #: K RANDALL	S S	NWTPHG EPA 8260B	8/12/2011 8/15/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-		-	S S	NWTPHG EPA 8260B -15-080411	8/12/2011 8/15/2011 8/4/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd:	Collector:	K RANDALL	S S	NWTPHG EPA 8260B -15-080411 Date Collected:	8/12/2011 8/15/2011 8/4/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: Quantity: 1	Collector:	K RANDALL	S S	NWTPHG EPA 8260B -15-080411 Date Collected:	8/12/2011 8/15/2011 8/4/2011	Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: Quantity: 1 Comment:	Collector:	K RANDALL	S S : MW	NWTPHG EPA 8260B -15-080411 Date Collected: Date Received:	8/12/2011 8/15/2011 8/4/2011 8/5/2011 10:40:00 A	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u>
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: Quantity: 1 Comment: Test	Collector:	K RANDALL	S S : MW	NWTPHG EPA 8260B -15-080411 Date Collected: Date Received: Method	8/12/2011 8/15/2011 8/4/2011 8/5/2011 10:40:00 A Due Date	<u>Normal (6-10 Days)</u> <u>Normal (6-10 Days)</u> Priority
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: Quantity: 1 Comment: Test TPHG-NW-SPO	Collector: Matrix:	K RANDALL	S S MW Lab S S	NWTPHG EPA 8260B -15-080411 Date Collected: Date Received: Method NWTPHG	8/12/2011 8/15/2011 8/4/2011 8/5/2011 10:40:00 A Due Date 8/12/2011	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: Quantity: 1 Comment: Test TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-	Collector: Matrix:	K RANDALL Water	S S MW Lab S S	NWTPHG EPA 8260B -15-080411 Date Collected: Date Received: Method NWTPHG EPA 8260B	8/12/2011 8/15/2011 8/4/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: Quantity: 1 Comment: Test TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029-	Collector: Matrix: 015 Custo	K RANDALL Water mer Sample #:	S S MW Lab S S	NWTPHG EPA 8260B -15-080411 Date Collected: Date Received: Method NWTPHG EPA 8260B BIN GRILL-080411	8/12/2011 8/15/2011 8/4/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 8/4/2011	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: ✓ Quantity: 1 Comment: Test TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: ✓	Collector: Matrix: 015 Custo Collector:	K RANDALL Water mer Sample #: K RANDALL	S S MW Lab S S	NWTPHG EPA 8260B -15-080411 Date Collected: Date Received: Method NWTPHG EPA 8260B BIN GRILL-080411 Date Collected:	8/12/2011 8/15/2011 8/4/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 8/4/2011	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: Quantity: 1 Comment: Test TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: Quantity: 1	Collector: Matrix: 015 Custo Collector:	K RANDALL Water mer Sample #: K RANDALL	S S MW Lab S S	NWTPHG EPA 8260B -15-080411 Date Collected: Date Received: Method NWTPHG EPA 8260B BIN GRILL-080411 Date Collected:	8/12/2011 8/15/2011 8/4/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 8/4/2011	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days)
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: ✓ Quantity: 1 Comment: Test TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: ✓ Quantity: 1 Comment:	Collector: Matrix: 015 Custo Collector:	K RANDALL Water mer Sample #: K RANDALL	S S HWW Lab S S : CAE	NWTPHG EPA 8260B -15-080411 Date Collected: Date Received: Method NWTPHG EPA 8260B BIN GRILL-080411 Date Collected: Date Received:	8/12/2011 8/15/2011 8/4/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 8/4/2011 8/5/2011 10:40:00 A	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days) Normal (6-10 Days) Priority
TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: ✓ Quantity: 1 Comment: Test TPHG-NW-SPO VOLATILES 8260 Sample #: 110805029- Recv'd: ✓ Quantity: 1 Comment: Test	Collector: Matrix: 015 Custo Collector:	K RANDALL Water mer Sample #: K RANDALL	S S Lab S S CAE	NWTPHG EPA 8260B -15-080411 Date Collected: Date Received: Date Received: Method NWTPHG EPA 8260B BIN GRILL-080411 Date Collected: Date Received: Method	8/12/2011 8/15/2011 8/4/2011 8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 8/4/2011 8/5/2011 10:40:00 A Due Date	Normal (6-10 Days) Normal (6-10 Days) Priority Normal (6-10 Days) Normal (6-10 Days)

ustomer Name:	GEO ENGINI	EERS			Order I	D: 11080502
	523 E 2ND				Order Dat	te: 8/5/201
	SPOKANE		W	A 99202		
Contact Name:	DAVE LAUDE	ER		Р	roject Name: IONE	EPETROLEUM
Comment:					CON 058-	ITAMINATION 0504- 01
						· · · ·
ample #: 110805	029-016 Custo	mer Sample #:	: DUF	PLICATE-1		
Recv'd:	Collector:	K RANDALL		Date Collected:	8/4/2011	
Quantity: 1	Matrix:	Water		Date Received:	8/5/2011 10:40:00 A	
Comment:						
Test			Lab	Method	Due Date	Priority
TPHG-NW-SPO			S	NWTPHG	8/12/2011	Normal (6-10 Days
VOLATILES 8260			s	EPA 8260B	8/15/2011	Normal (6-10 Days
Recv'd: √ Quantity: 1	Collector: Matrix:	mer Sample #: K RANDALL Water		Date Collected: Date Received:	8/4/2011 8/5/2011 10:40:00 A	
Recv'd: √ Quantity: 1	Collector:	K RANDALL Water		Date Collected: Date Received: OF HEADSPACE		
Recv'd: 🗹 Quantity: 1 Comment: TRIP Test	Collector: Matrix:	K RANDALL Water	MOUNT Lab	Date Collected: Date Received: OF HEADSPACE Method	8/5/2011 10:40:00 A	Priority
Recv'd: Quantity: 1 Comment: TRIP Test TPHG-NW-SPO	Collector: Matrix:	K RANDALL Water	MOUNT Lab S	Date Collected: Date Received: OF HEADSPACE Method NWTPHG	8/5/2011 10:40:00 A Due Date 8/12/2011	Normal (6-10 Days
Recv'd: Quantity: 1 Comment: TRIP Test TPHG-NW-SPO	Collector: Matrix: BLANKS HAVE V	K RANDALL Water ERY SMALL AI	MOUNT Lab S S	Date Collected: Date Received: OF HEADSPACE Method NWTPHG EPA 8260B	8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011	•
Recv'd: 🗹 Quantity: 1 Comment: TRIP Test	Collector: Matrix: BLANKS HAVE V	K RANDALL Water ERY SMALL AI	MOUNT Lab S S	Date Collected: Date Received: OF HEADSPACE Method NWTPHG	8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011	Normal (6-10 Days
Recv'd: Quantity: 1 Comment: TRIP Test TPHG-NW-SPO VOLATILES 8260	Collector: Matrix: BLANKS HAVE V	K RANDALL Water ERY SMALL AI	MOUNT Lab S S	Date Collected: Date Received: OF HEADSPACE Method NWTPHG EPA 8260B	8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011	Normal (6-10 Days
Recv'd: Quantity: 1 Comment: TRIP Test TPHG-NW-SPO VOLATILES 8260	Collector: Matrix: BLANKS HAVE VI	K RANDALL Water ERY SMALL AI	MOUNT Lab S S	Date Collected: Date Received: OF HEADSPACE Method NWTPHG EPA 8260B	8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011	Normal (6-10 Days
Recv'd: Quantity: 1 Comment: TRIP Test TPHG-NW-SPO VOLATILES 8260 Samples rece Samples rece	Collector: Matrix: BLANKS HAVE VI	K RANDALL Water ERY SMALL AI	MOUNT Lab S S	Date Collected: Date Received: OF HEADSPACE Method NWTPHG EPA 8260B	8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 Yes	Normal (6-10 Days
Recv'd: Quantity: 1 Comment: TRIP Test TPHG-NW-SPO VOLATILES 8260 Samples rece Samples rece What is the te	Collector: Matrix: BLANKS HAVE VI BLANKS HAVE VI Sived in a cooler?	K RANDALL Water ERY SMALL AI	MOUNT Lab S S	Date Collected: Date Received: OF HEADSPACE Method NWTPHG EPA 8260B	8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 Yes Yes Yes	Normal (6-10 Days
Recv'd: Quantity: 1 Comment: TRIP Test TPHG-NW-SPO VOLATILES 8260 Samples rece Samples rece What is the te Samples rece	Collector: Matrix: BLANKS HAVE V BLANKS HAVE V Sived in a cooler? Sived in tact?	K RANDALL Water ERY SMALL AI SAMPLE (MOUNT Lab S S	Date Collected: Date Received: OF HEADSPACE Method NWTPHG EPA 8260B	8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 Yes Yes 4.2	Normal (6-10 Days
Recv'd: Quantity: 1 Comment: TRIP Test TPHG-NW-SPO VOLATILES 8260 Samples rece Samples rece Samples rece Samples rece Samples rece Samples rece	Collector: Matrix: BLANKS HAVE V BLANKS HAVE V Suved in a cooler? Suved intact? Suved intact? Suved with a COC? Suved within holding Suved within holding Suved within holding	K RANDALL Water ERY SMALL A SAMPLE (the cooler? g time? preserved?	MOUNT Lab S S	Date Collected: Date Received: OF HEADSPACE Method NWTPHG EPA 8260B	8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 Yes Yes 4.2 Yes 4.2 Yes Yes Yes Yes Yes Yes	Normal (6-10 Days
Recv'd: Quantity: 1 Comment: TRIP Test TPHG-NW-SPO VOLATILES 8260 Samples rece Samples rece Samples rece Samples rece Samples rece Are all sample Are VOC sam	Collector: Matrix: BLANKS HAVE VI BLANKS HAVE VI evod in a cooler? evod intact? emperature inside the evod with a COC? evod with a COC? evod with a COC? evod with a COC? evod with a coc?	K RANDALL Water ERY SMALL AI SAMPLE (the cooler? time? preserved? pace?	MOUNT S S CONI	Date Collected: Date Received: OF HEADSPACE Method NWTPHG EPA 8260B	8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 Yes Yes 4.2 Yes Yes Yes Yes Yes Yes Yes Yes	Normal (6-10 Days
Recv'd: Quantity: 1 Comment: TRIP Test TPHG-NW-SPO VOLATILES 8260 Samples rece Samples rece Samples rece Samples rece Samples rece Are all sample Are VOC sam	Collector: Matrix: BLANKS HAVE VI BLANKS HAVE VI evolution a cooler? evolution a cooler?	K RANDALL Water ERY SMALL AI SAMPLE (the cooler? time? preserved? pace?	MOUNT S S CONI	Date Collected: Date Received: OF HEADSPACE Method NWTPHG EPA 8260B	8/5/2011 10:40:00 A Due Date 8/12/2011 8/15/2011 Yes Yes 4.2 Yes 4.2 Yes Yes Yes Yes Yes Yes	Normal (6-10 Days

Anatek		Chain of	Custoa	of Custody Record		K.		029 CEOE Last	8/15/2011
Inc.	O 1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 S04 E Sprague Ste D, Spokune WA 99202 (509) 838-3999 FAX 838-443.	e, Moscow I. Spokane	ID 83843 WA 99205	r ID 83843 (208) 883-2839 FAX 882-9246 O c WA 99202 (509) 838-3999 FAX 838-4433 O	39 EAX 8 1999 EAX	82-9246 (1	1st SAMP 8/3/2011 1st RCVD 8/5/ ONE PETROLEUM CONTAMINATION 0504-058-01	8/5/2011
Name () (566 Enainee)	Tre.	Project Manager.	anager	Due Laude				Please refet to our normal firm around firstes at	at T
E. 2ª Avc			the lan C	abricher	PoSo	0504-058-01		http://www.anateklabs.com/services/guidelines/reporting.asp	reporting.asp
	Zb: 99202	Email Ad	D U U	Emell Address: DLarbrog georginger.com	ainced-o	5		XNormal *All rush order	Phone Mail
<u>563 - 5</u>		Purchase	Order #	2					Email
365-3126		Sampler	Same & phot	Sampler Name & phone:	-354	1914-15代-586	·		
Provide Sample Description	scription			List Analyses Requested	Request	ed 👘		Note Special Instructions/Comments	mments
		Preservative:		-					
		stanteino emuioV ol	×-9-111	7.05 7 097		,, , , , , , , , , , , , , , , ,	ier neuerisee maa ei is sie een maartikusten teele		
Lab Sample Identification Sampling Date/Time	bate/Time Matrix		IMN	a wa					
	لايا المالما	5	1						
	6-10		× ×				-		
Delicate-1 SHII	V 4521	<u>></u>	X X						
¥	••••••••••••••••••••••••••••••••••••••		<u>×</u> X						
							<u> </u>		
						·			
									and the second secon
								Inspection Checklist	
								Received Intact?	N.
									Z
								Containers Sealed?	z(
								VOC Head Space?	Þ
								Land Leela	
Printed Name	Signature			Company	3	Cate	time	1.11	
Relinquished by Kenin Kond II	X	K	Z	B	- <u>19</u>	8/5/11	1040	Temperature (C): <u>+</u> 2	
Received by KLeuch		Leep	er Jä				10-10	Preservative: <u>Hit</u> it	
Relinculshed by									
Received by				-				Date & Time: <u> </u>	
Relinquisted by						-		nspected By	
Received by					Ţ				

APPENDIX D REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

GeoEngineers has performed this Supplemental Site Characterization of the Ione Petroleum Contamination site located in Ione, Washington in general accordance with the Work Plan, dated April 9, 2010. This report has been prepared for the exclusive use of the Washington Department of Ecology. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an ESA study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and property. No one except the Washington State Department of Ecology should rely on this environmental report without first conferring with GeoEngineers. Use of this report is not recommended for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the lone Petroleum Contamination site located in lone, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, it is important not to rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made to the project or property after the date of this report, we recommend that GeoEngineers be given the opportunity to review our interpretations and recommendations. Based on that review, we can provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of our Client. No other party may rely on the product of our services unless we agree to such reliance in advance and in writing. This is to provide our

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations Are Always Evolving

Some substances may be present in the vicinity of the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substances, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

Performance of a Phase II ESA is intended to reduce uncertainty regarding the potential for contamination in connection with a property, but no ESA can wholly eliminate that uncertainty. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by man-made events such as construction on or adjacent to the subject property, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Please contact GeoEngineers before applying this report for its intended purpose so that GeoEngineers may evaluate whether changed conditions affect the continued applicability of the report.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other properties or for other on-site uses of the affected soil and/or groundwater. Note that hazardous substances may be present in some of the on-site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject property or reuse of the affected soil or groundwater on-site to evaluate the potential for associated environmental liabilities. We are unable to assume responsibility for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject property to another location or its reuse on-site in instances that we did not know or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the subject property. Site exploration

identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an informed opinion about subsurface conditions throughout the property. Actual subsurface conditions may differ, sometimes significantly, from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproduction is acceptable, but separating logs from the report can create a risk of misinterpretation.

Read These Provisions Closely

It is important to recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are less exact than other engineering and natural science disciplines. Without this understanding, there may be expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you need to know more about how these "Report Limitations and Guidelines for Use" apply to your project or property.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants, and no conclusions or inferences should be drawn regarding Biological Pollutants as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.

A Client that desires these specialized services is advised to obtain them from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

