

Remedial Investigation, Focused Feasibility Study, and Cleanup Action Plan

3245 158th Avenue Southeast Bellevue, Washington

Farallon PN: 2403-008

October 4, 2024

Prepared by:

Yusuf Pehlivan, L.G. Senior Geologist

Reviewed by:

Suzy Stumpf, P.E. Principal Engineer

For: IS Property Investments LLC 411 1st Avenue South, Suite 650 Seattle, Washington 98104 Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

TABLE OF CONTENTS

ACRONYMS AND ABBREVIATIONSiv					
1.0	INTRO	DDUCTION	1-1		
	1.1	PURPOSE	1-2		
	1.2	REPORT ORGANIZATION	1-2		
2.0		ERTY DESCRIPTION AND BACKGROUND	2₋1		
2.0	2.1	PROPERTY DESCRIPTION			
	2.2	FUTURE PROPERTY USE			
	2.2	HISTORICAL PROPERTY USE			
	2.3	CURRENT AND HISTORICAL USES OF SURROUNDING AREA			
	2.4	2.4.1 North			
		2.4.2 East			
		2.4.2 Last			
		2.4.4 West			
	2.5	REGULATORY STATUS			
	2.5	GEOLOGY AND HYDROGEOLOGY			
	2.0	GROUNDWATER USE			
	2.7	VULNERABLE POPULATIONS AND OVERBURDENED COMMUNITIES			
	2.0 2.9	CLIMATE CHANGE	-		
	2.9	2.9.1 Sea Level Rise			
		2.9.1 Sea Level Rise			
		2.9.3 Wildfires			
		2.9.4 Landslides and Erosion			
		2.9.4 Landslides and Erosion			
			2-9		
3.0	REMEDIAL INVESTIGATION				
	3.1	REMEDIAL INVESTIGATION FIELD PROGRAM	-		
		3.1.1 Subsurface Utility Location			
		3.1.2 Boring Advancement and Monitoring Well Installation	3-2		
		3.1.3 Monitoring Well Development	3-3		
		3.1.4 Groundwater Monitoring	3-3		
		3.1.5 Soil Gas Monitoring Point Installation	3-4		
		3.1.6 Soil Gas and Ambient Air Monitoring	3-5		
		3.1.7 Passive Soil Gas Survey			
		3.1.8 Management of investigation-Derived Waste	3-6		
	3.2	REMEDIAL INVESTIGATION RESULTS	3-6		
		3.2.1 Geology and Hydrogeology	3-6		
		3.2.2 Soil Analytical Results			
		3.2.3 Groundwater Analytical Results			
		3.2.4 Soil Gas and Ambient Air Sampling Results			
4.0	001101				
4.0	4.1	EPTUAL SITE MODEL CONFIRMED AND SUSPECTED SOURCES			
	-+.⊥				

	4.2	AFFECTED ENVIRONMENTAL MEDIA	4-1		
	4.3	TRANSPORT PATHWAYS	4-2		
		4.3.1 Soil to Groundwater	4-2		
		4.3.2 Soil/Groundwater to Air			
		4.3.3 Groundwater to Surface Water and Sediment			
	4.4	POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS			
		4.4.1 Soil Direct Contact			
		4.4.2 Groundwater Ingestion/Drinking Water Beneficial Use			
		4.4.3 Vapor Intrusion			
		4.4.4 Terrestrial Ecological Evaluation	4-4		
	4.5	CONSTITUENTS OF CONCERN			
	4.6	CLEANUP STANDARDS	4-4		
5.0	FOCUSED FEASIBILITY STUDY				
0.0	5.1	TECHNOLOGY SCREENING			
	5.2	SELECTED CLEANUP ACTION			
	5.3	THRESHOLD CRITERIA			
	••••				
6.0	CLEANUP ACTION PLAN				
	6.1	DESCRIPTION OF CLEANUP ACTION			
	6.2	POTENTIALLY APPLICABLE LOCAL, STATE, AND FEDERAL LAWS	6-2		
		6.2.1 Washington State Model Toxics Control Act Cleanup Regulation	6-2		
		6.2.2 State Environmental Policy Act			
		6.2.3 Solid and Hazardous Waste Management			
		6.2.4 Construction Stormwater General Permit			
		6.2.5 City of Bellevue Grading Permit			
		6.2.6 Worker Safety Regulations			
		6.2.7 Washington State Water Well Construction Regulations			
		6.2.8 Historical and Cultural Resource Protection			
	6.3	COMPONENTS OF THE CLEANUP ACTION			
		6.3.1 Permitting and Safety			
		6.3.2 Groundwater Monitoring Well Decommissioning			
		6.3.3 Shoring	6-4		
		6.3.4 Soil Excavation and Disposal			
		6.3.5 Vapor Mitigation Measures			
		6.3.6 Unforeseen Conditions			
	6.4	COMPLIANCE MONITORING			
		6.4.1 Protection Monitoring			
		6.4.2 Performance Monitoring			
	0 5	6.4.3 Confirmational Monitoring			
	6.5	CLEANUP ACTION REPORT	6-9		
7.0	REFEF	RENCES	7-1		
8.0	LIMITATIONS				
0.0	8.1	GENERAL LIMITATIONS			
	8.2	LIMITATION ON RELIANCE BY THIRD PARTIES			
	0.2				

FIGURES

- Figure 1 Property Vicinity Map
- Figure 2 Property Plan
- Figure 3 Groundwater Elevation Contours for May 2024
- Figure 4 Soil Analytical Results for Petroleum Hydrocarbons
- Figure 5 Soil Analytical Results for Halogenated VOCs
- Figure 6 Groundwater Analytical Results for Petroleum Hydrocarbons
- Figure 7 Groundwater Analytical Results for Halogenated VOCs
- Figure 8 Soil Gas Analytical Results for Petroleum Hydrocarbons and Benzene
- Figure 9A Passive Soil Gas Concentrations for Total Petroleum Hydrocarbons
- Figure 9B Passive Soil Gas Concentrations for Benzene
- Figure 9C Passive Soil Gas Concentrations for Naphthalenes
- Figure 9D Passive Soil Gas Concentrations for PCE
- Figure 10 Property Plan with Proposed Excavation Area
- Figure 11 Property Plan with Estimated Vapor Barrier Extent

TABLES

- Table 1Groundwater Elevations
- Table 2 Soil Analytical Results for TPH and BTEX
- Table 3
 Soil Analytical Results for Volatile Organic Compounds
- Table 4
 Soil Analytical Results for Metals
- Table 5 Groundwater Analytical Results for TPH and BTEX
- Table 6Groundwater Analytical Results for Halogenated VOCs
- Table 7Soil Gas Analytical Results for Petroleum Hydrocarbons
- Table 8 Soil Gas Analytical Results for VOCs
- Table 9
 Ambient Air Analytical Results for Petroleum Hydrocarbons
- Table 10 Ambient Air Analytical Results for VOCs

APPENDICES

- Appendix A Preliminary Development Plans
- Appendix B Boring Logs
- Appendix C EJ Screening Tool and EHD Map Community Reports
- Appendix D Laboratory Analytical Reports
- Appendix E Ecology Correspondence
- Appendix F Site-Specific Soil Gas Screening Level Calculations
- Appendix G Laboratory Discussion Regarding Soil Gas Results
- Appendix H Ecology TEE Form
- Appendix I Vapor Barrier Specifications
- Appendix J Engineering QA/QC Inspection Checklists

ACRONYMS AND ABBREVIATIONS

bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and total xylenes
CAP	cleanup action plan
COC	constituent of concern
DRO	diesel-range organics
Ecology	Washington State Department of Ecology
EHD Map	Washington State Department of Heath's Environmental Health Disparities Map
EJ Screening Tool	Environmental Justice Screening and Mapping Tool
EJ Screening Tool EPA	Environmental Justice Screening and Mapping Tool U.S. Environmental Protection Agency
-	
EPA	U.S. Environmental Protection Agency
EPA Farallon	U.S. Environmental Protection Agency Farallon Consulting, L.L.C.
EPA Farallon FEMA	U.S. Environmental Protection Agency Farallon Consulting, L.L.C. Federal Emergency Management Agency
EPA Farallon FEMA FFS	U.S. Environmental Protection Agency Farallon Consulting, L.L.C. Federal Emergency Management Agency focused feasibility study

MTCA	Washington State Model Toxics Control Act Cleanup Regulation
NFA	No Further Action Determination
PCS	petroleum contaminated soil
Phase I ESA	Phase I Environmental Site Assessment
PLIA	Pollution Liability Insurance Agency
QA/QC	quality assurance/quality control
RI	remedial investigation
RIFFSCAP	Remedial Investigation, Focused Feasibility Study, and Cleanup Action Plan
TEE	Terrestrial Ecological Evaluation
ТРН	total petroleum hydrocarbons
UST	underground storage tank
VCP	Ecology Voluntary Cleanup Program
VOC	volatile organic compound
WAC	Washington Administrative Code

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this Remedial Investigation, Focused Feasibility Study Report, and Cleanup Action Plan (collectively referred to as the RIFFSCAP) on behalf of IS Property Investments LLC (IS Property Investments) for the property at 3245 158th Avenue Southeast in Bellevue, Washington (herein referred to as the Property) (Figures 1 and 2). The RIFFSCAP was prepared in accordance with the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Revised Code of Washington (RCW) 70A.305 and its implementing regulation in Chapter 173-340 of the Washington Administrative Code (WAC).

The Site, as defined under MTCA, comprises the area where hazardous substances have come to be located at concentrations exceeding applicable cleanup levels. Based on the RI, the Site includes the western and southern portions of the Property proximate to the Property boundary and does not extend beyond the boundaries of the Property. IS Property Investments will prepare an application to enroll the Site in Ecology's Expedited Voluntary Cleanup Program (VCP) concurrently with this RIFFSCAP.

Farallon conducted an RI at the Property in 2023 and 2024 to assess for potential hazardous substances in soil, soil gas, and groundwater associated with historical operations at and adjacent to the Property. The constituents of concern (COCs) identified for the Site consist of hazardous substances detected at concentrations exceeding applicable MTCA cleanup levels in soil and/or soil gas. Based on the results from the RI, total petroleum hydrocarbons (TPH) as gasoline-range organics (GRO) is retained as a COC for soil and TPH is retained as a COC for soil gas. Soil containing GRO at concentrations exceeding the MTCA Method A cleanup level has been classified as petroleum-contaminated soil (PCS).

The suspected source of soil contamination is the former fuel service station that historically operated on the western portion of the Property (Figure 2). No other source areas of contamination were identified during the RI that may be contributing to the TPH impacts detected in soil gas on the western and southern portions of the Property. The planned cleanup action will consist of excavation and off-Property disposal of PCS identified on the western portion of the Property proximate to the former fuel service station and installation of chemical-resistant vapor barrier to mitigate the potential vapor intrusion pathway.

Based on the results from the remedial investigation, sufficient data have been obtained to demonstrate that the proposed cleanup action for the Site will constitute a permanent

cleanup action to the maximum extent practicable in accordance with MTCA and current and future land use.

1.1 PURPOSE

In accordance with WAC 173-340-350, the purpose of the RI is to adequately characterize contamination at the Site, including the distribution of hazardous substances and the threat they pose to human health and the environment. The results from the RI enabled the establishment of cleanup standards and the development of and evaluation of cleanup action alternatives. The completed RI provides sufficient data to develop a technically feasible cleanup alternative.

The purpose of the FFS was to develop and evaluate cleanup action alternatives to facilitate selection of a cleanup action in accordance with WAC 173-340-351 through 173-340-370. The FFS was conducted to screen available remediation technologies and identify a set of technically feasible and practicable cleanup action alternatives for evaluation in accordance with the requirements for cleanup actions established in WAC 173-340-360(3) and the expectations for cleanup action alternatives as specified in WAC 173-340-370.

The purpose of the CAP is to describe the selected cleanup action alternative for the Site. The CAP was prepared in accordance with WAC 173-340-360 through 173-340-380. The objective of the planned cleanup action is to protect human health and the environment and meet MTCA requirements to obtain a No Further Action (NFA) determination from Ecology's Expedited VCP.

1.2 REPORT ORGANIZATION

This RIFFSCAP has been organized into the following sections:

- Section 2, Property Description and Background, presents relevant background information pertaining to the Property, including a description of its location and features and a summary of current and historical uses of the Property and surrounding area.
- Section 3, Remedial Investigation, provides a summary of the remedial investigation field program conducted at the Property and presents the analytical results for soil gas, soil, and groundwater samples collected at the Property.
- Section 4, Conceptual Site Model, discusses the COCs, media of concern, screening and/or cleanup levels for the cleanup action, confirmed and suspected source areas,

nature and extent of contamination, contaminant fate and transport, exposure pathways and receptors, and cleanup standards for the Property.

- Section 5, Focused Feasibility Study, provides a summary of the FFS conducted for the Property impacted by petroleum hydrocarbons in shallow soil, installation of a long-term vapor barrier system to mitigate the potential soil gas to indoor air pathways, and recording of an environmental covenant to require continued use of vapor mitigation measures.
- Section 6, Cleanup Action Plan, describes the work elements of the selected cleanup action and vapor mitigation measures, including health and safety protocols, soil removal activities, and performance and confirmation monitoring, and discusses the implementation of institutional and engineered controls and compliance monitoring.
- Section 7, References, lists the documents used in preparing this RIFFSCAP.
- Section 8, Limitations, provides the limitations associated with this RIFFSCAP.

2.0 PROPERTY DESCRIPTION AND BACKGROUND

This section provides a description of the Property and relevant background information, including current and historical uses of the Property and surrounding area, and a description of the local geology and hydrogeology.

2.1 PROPERTY DESCRIPTION

The Property consists of King County Parcel No. 2329000030, which totals 3.95 acres of land developed with a three-story, 69,731-square-foot commercial office building constructed in 1985. Remaining areas of the Property consist of paved parking and landscaped areas (Figure 2). The building on the Property is currently vacant. According to the King County Department of Assessments, the Property is owned by I-90 Bellevue I Investments.

The Property is bounded by a bank and an Embassy Suites hotel to the north, 158th Avenue Southeast followed by a commercial office building to the east, and Southeast Eastgate Way, followed by Interstate 90 (I-90) to the south and west (Figure 2).

According to the City of Bellevue Map Viewer, the Property and surrounding properties to the north and east are zoned "OLB2" for office and limited business use such as offices, hotels, motels, eating establishments, and retail sales. Properties to the west are zoned "CB" for community business use including multifamily residential development. Properties immediately south of I-90 are zoned "NMU" for neighborhood mixed use, including a mix of retail, service, office, and residential uses.

According to topographic maps reviewed by Farallon, the Property is at an elevation of approximately 333 feet above mean sea level, and Property topography is relatively flat. The Property is located near the high point between Lake Washington to the west and Lake Sammamish to the east, and regional topography generally slopes down to the west and east.

2.2 FUTURE PROPERTY USE

Planned redevelopment of the Property will include demolition of the existing building and construction of multifamily townhomes with up to 77 residential units across 15 buildings constructed at and above ground level. A stormwater detention vault also will be installed in the central portion of the Property to a depth of approximately 10 feet below ground surface

(bgs). Remaining subsurface work likely will be limited to installation of utility infrastructure. Preliminary development plans are included in Appendix A.

2.3 HISTORICAL PROPERTY USE

Farallon reviewed documents pertaining to historical uses of the Property during a Phase I Environmental Site Assessment, which was conducted for the Property between October 2023 and March 2024, which was summarized in Farallon's *Phase I Environmental Site Assessment Report* dated March 26, 2024 (Farallon 2024) (Phase I ESA Report). According to documents reviewed during the Phase I ESA, the Property was largely undeveloped prior to the mid-1940s, and was developed with the southwestern portion of the former Bellevue Airfield by 1950. Historical aerial photographs and maps of the former Bellevue Airfield indicate that a fuel service station, former Carter Oil Gasoline Service Station, existed on the western portion of the Property between approximately the late 1950s to the early 1970s, but was removed by the late 1970s (Figure 2). The Bellevue Airfield was reportedly shut down in 1983, and the existing building on the Property was constructed in 1985. The Property has remained largely unchanged from 1985 to the present, and the Property building has been occupied by various commercial businesses including telecommunications companies. The Property building has been vacant since 2020.

Based on the findings of the Phase I ESA, the known and potential release of hazardous substances associated with historical gasoline service station and/or aircraft fueling and maintenance activities conducted on and/or proximate to the Property were identified as a recognized environmental condition in connection with the Property.

2.4 CURRENT AND HISTORICAL USES OF SURROUNDING AREA

This section summarizes the current and historical uses of the properties adjoining and surrounding the Property (Figure 2). Additional information is provided below for adjoining and surrounding properties that have documented releases, remedial actions, and/or where hazardous substances may have been used and stored based on historical land use.

The current and historical land uses for adjoining and surrounding properties were evaluated as part of a Phase I Environmental Site Assessment conducted for the Property by Farallon between September and October 2023, which was summarized in Farallon's Phase I ESA Report.

2.4.1 North

The Property is bounded to the north by Key Bank, which was constructed in 2011, and to the northeast by an Embassy Suites hotel, which was constructed in 1990, respectively. North-adjoining properties were largely undeveloped prior to the mid-1940s, and the former Bellevue Airfield was constructed on and northeast of the Property by 1950. Prior to the construction of Key Bank and the Embassy Suites hotel, two fuel service stations and portions of the Bellevue Airfield operated on the north- and northeast-adjoining properties (Figure 2).

The former Shell Byron Ohrt fuel service station, at 3225 158th Avenue Southeast, was historically located north of the Property, in the southwestern corner of the existing Embassy Suites hotel parking lot (Figure 2). This former service station was the location of leaking underground storage tanks (USTs), with confirmed releases of gasoline, diesel, other petroleum products, benzene, and halogenated pesticides to soil and was enrolled in the Washington States Pollution Liability Insurance Agency's (PLIA) Petroleum Technical Assistance Program under Project Identification No. PNW088. The former Shell service station is listed in Ecology's contaminated sites database as Facility Site ID No. 56989873 and Cleanup Site ID No. 9759. The facility reportedly operated as a fuel service station from approximately 1964 to 1990. Eight USTs ranging in size from 550 to 8,000 gallons and a concrete sump were removed from the facility during decommissioning, and a remedial excavation was conducted to depths of up to 17 feet bgs to remove contaminated soil. Following excavation activities, a localized area of PCS was left in place at a depth of approximately 17 feet bgs beneath the former concrete sump in the southeastern portion of the facility, and beneath the former pump islands in the northern portion of the facility at a depth of 5 feet bgs. Five groundwater monitoring wells were installed on the facility between 2017 and 2019, and groundwater monitoring events conducted between 2017 and 2020 confirmed that constituents of concern were not present in groundwater at concentrations exceeding MTCA cleanup levels. Groundwater was encountered in monitoring wells at depths between approximately 30 to 35 feet bgs, and was interpreted to flow to the north. Following completion of the groundwater monitoring events, a NFA determination was issued for the facility by PLIA in 2021.

A former Texaco- and Shell-branded gasoline service station operated at 3240 156th Avenue Southeast, north of the Property at the location of the existing Key Bank, from approximately the 1970s until the late 2000s, when the property was redeveloped. The facility was identified as the location of confirmed releases of gasoline, benzene, and other petroleum

products to soil. The facility was enrolled in Ecology's VCP under VCP Identification No. NW2350 and listed in Ecology's contaminated sites database as Facility Site ID No. 7687549 and Cleanup Site ID No. 7757. Cleanup activities, including remedial excavation, were conducted during removal of the first generation of UST in 1992, during removal of a hydraulic hoist in 2000, and during removal of the second generation USTs in 2010. Remedial excavation activities extended to depths of up to 17 feet bgs. Ecology's documents indicated that soil at the limits of the UST excavations did not contain petroleum products at concentrations exceeding MTCA cleanup levels. Groundwater reportedly was not encountered during UST removal activities, and groundwater was not evaluated. An NFA determination was issued for the facility under Ecology's Voluntary Cleanup Program (VCP) in 2011.

The runway of the former Bellevue Airfield extended onto the northeast-adjoining property, which is currently developed with the Embassy Suites hotel. The former Bellevue Airfield operated from approximately the mid-1940s until the early 1980s, when it was redeveloped with the existing buildings.

2.4.2 East

East-adjoining properties were largely undeveloped prior to the mid-1940s, when the former Bellevue Airfield was constructed. Airfield facilities, including hangars, offices, outbuildings, and presumed fueling and maintenance facilities, were present on east-adjoining properties between approximately the mid-1940s until the early 1980s, when the airfield was redeveloped with the existing office buildings. East-adjoining properties have remained largely unchanged from the 1980s to the present.

2.4.3 South

US Highway 10 was constructed south of the Property between the late 1930s and early 1940s, and properties south of the highway remained largely undeveloped until the late 1960s. US Highway 10 was replaced by I-90 in the 1960s, and I-90 was expanded in the 1970s. Various commercial buildings and offices were constructed south of I-90 during the same time period. South-adjoining properties remained largely unchanged from the 1970s to the present.

2.4.4 West

West-adjoining properties were largely undeveloped until the construction of I-90 in the 1960s. Properties to the northwest were developed with various commercial buildings, restaurants, and the existing auto dealerships between the 1960s and the present.

2.5 REGULATORY STATUS

IS Property Investments and Farallon initiated discussions with Ecology's Expedited VCP personnel in November 2023 to determine whether the Site would be eligible for the Program. Ecology indicated that the Site would be eligible and could be enrolled in the program once an RI report was prepared summarizing Site conditions. Ecology has provided informal technical assistance on components of the RI conducted to date and the scope of work for the RI. The planned cleanup action has been developed based on the technical assistance provided by Ecology.

2.6 GEOLOGY AND HYDROGEOLOGY

The Puget Sound region is underlain by Quaternary sediments deposited by multiple glacial episodes. Deposition occurred during glacial advances and retreats, which created the existing subsurface conditions. The regional sediments consist primarily of interlayered and/or sequential deposits of alluvial clays, silts, and sands that typically are situated over deposits of glacial till that consist of silty sand to sandy silt with gravel. Outwash sediments consisting of sands, silts, clays, and gravels were deposited by rivers, streams, and post-glacial lakes during the glacial retreats and have been largely over-consolidated by the overriding ice sheets.

Prior to Farallon's RI, a geotechnical investigation was conducted on the Property in October 2023, which consisted of advancing four borings to depths of approximately 20 feet bgs and installing a permanent monitoring well (B-2) in one of the borings (Figure 2). Monitoring well B-2 was constructed with 2-inch, schedule 40 polyvinyl chloride well casing screened between 10 and 20 feet bgs and was completed at the surface with a flush-mounted traffic-rated well monument. Soil conditions encountered during the geotechnical investigation consisted of 0 to 4 feet of dense fill soil comprised of sandy silt with gravel overlying dense sand and silt with varying amounts of gravel interpreted as glacial till.

Based on field observations during Farallon's RI, soil beneath the Property consists of approximately 0 to 5 feet of sandy silt underlain by dense sand with varying amounts of silt and gravel, interpreted as glacial till to the maximum explored depth of 40 feet bgs. Boring

logs describing soil conditions encountered beneath the Property are presented in Appendix B.

Based on depth to groundwater measurements collected between October 2023 and May 2024 in monitoring wells installed during the geotechnical investigation and Farallon's RI, groundwater is encountered at depths of approximately 11 to 24 feet bgs with significant seasonal variability and has been interpreted to flow to the north (Figure 3). Groundwater elevations have been observed to be highest in February during the wet season, and lowest in October just prior to the start of the wet season.

The nearest federally designated wetlands were identified less than 0.1 mile west of the Property within the I-90 corridor. The nearest surface water body were identified as Phantom Lake, approximately 0.8 mile north of the Property, and Lake Sammamish, approximately 1.1 miles east of the Property.

2.7 GROUNDWATER USE

The City of Bellevue water is acquired through the Cascade Water Alliance, which purchases water from the City of Seattle. The water is sourced from the Cedar River and South Fork Tolt River watersheds. There are no drinking water supply wells on or in the vicinity of the Property.

2.8 VULNERABLE POPULATIONS AND OVERBURDENED COMMUNITIES

Farallon conducted an evaluation of potential impacts to likely vulnerable populations and overburdened communities in the vicinity of the Property in accordance with *Implementation Memorandum No. 25: Identifying Likely Vulnerable Populations and Overburdened Communities under the Cleanup Regulations* dated January 2024, prepared by Ecology (2024) (Implementation Memorandum No. 25). The purpose of this evaluation is to identify and reduce the impact of environmental and health disparities in Washington State and improve the health of Washington State residents, and to support Ecology's determinations regarding site prioritization, cleanup decisions, and site hazard rankings. Farallon has performed the assessment required by MTCA and Implementation Memorandum No. 25 and, as more fully discussed below, has determined that vulnerable populations and overburdened communities in the vicinity of the Property have not been impacted by contamination at this Property and that the proposed cleanup action will mitigate potential exposure to environmental harms.

Implementation Memorandum No. 25 indicates that the potentially exposed population includes a likely vulnerable population or overburdened community if the population meets any of the following criteria:

- The potentially exposed population is located in a census tract that ranks a 9 or 10 on the Environmental Health Disparities Index from the Washington State Department of Heath's Environmental Health Disparities Map (EHD Map);
- The potentially exposed population is located in a census tract that is at or above the 80th Washington State percentile of the Demographic Index from the U.S. Environmental Protection Agency's (EPA's) Environmental Justice Screening and Mapping Tool (EJ Screening Tool); or
- The potentially exposed population is located in a census tract that is at or above the 80th Washington State percentile of the Supplemental Demographic Index from the EJ Screening Tool.

Farallon used the EPA EJ Screening Tool and the EHD Map to evaluate whether vulnerable populations are present in the vicinity of the Property. The Property is located within Census Tract 53033023403, which is in the 47th Washington State percentile of the Demographic Index and 25th Washington State percentile of the Supplemental Demographic Index from the EJ Screening Tool (Appendix C). According to the EHD Map, the Site is located in an area that ranks 4 on the Environmental Health Disparities Index (Appendix C).

Based on the overall rank of 4 on the Environmental Health Disparities Index and Demographic Index and Supplemental Demographic Index state percentiles less than 80, vulnerable populations and overburdened communities are not likely part of the potentially impacted population. Therefore, the proposed cleanup action at the Property will protect human health and the environment and eliminate the potential exposure of hazardous substances attributed to the Property to all human receptors, including vulnerable populations and overburdened communities.

2.9 CLIMATE CHANGE

In accordance with WAC 173-340-350(6)(f), Farallon evaluated current and projected local and regional climatological characteristics to determine whether these characteristics could affect the migration of hazardous substances or the resilience of cleanup action alternatives for the Block 38 West Site. According to Ecology's *Sustainable Remediation: Climate Change Resiliency and Green Remediation* dated November 2017, revised January 2023 (Ecology

2017) (Ecology Climate Guidance), sea level rise, flooding, extreme precipitation, wildfires, landslides and erosion, and drought are the climate-related impacts that generally pose the highest potential risk for upland cleanup sites.

Based on this evaluation and the location of the Property in a highly developed area in Bellevue, current and projected local and regional climatological characteristics are not anticipated to affect the migration of hazardous substances or the resilience of cleanup action alternatives at the Property. A summary of this evaluation is presented in the following sections.

2.9.1 Sea Level Rise

The Property is located at an elevation of approximately 333 feet North American Vertical Datum of 1988, and is approximately 5 miles from the nearest marine body of water. According to the Ecology Climate Guidance, high projections estimate up to 4 feet of sea level rise by the year 2100. Due to the elevation of the Property, sea level rise is not expected to affect the migration of hazardous substances or the resilience of cleanup action alternatives at the Property.

2.9.2 Flooding

Farallon reviewed Federal Emergency Management Agency (FEMA) flood maps for the area in the vicinity of the Property, which indicated that the Property is in an area of minimal flood hazard. As described above, sea level rise is not expected to affect the Property, and inundation due to sea level rise is not a concern. In addition, the surrounding public rightsof-way and current and planned future uses of the Property implement stormwater infrastructure to prevent flooding due to heavy precipitation. Based on these conditions, flooding is not likely to affect the migration of hazardous substances or the resilience of cleanup action alternatives at the Property.

2.9.3 Wildfires

The Ecology Climate Guidance indicates that increased risk of wildfires is a potential climaterelated hazard in areas proximate to fuel sources such as forests or grasslands. Due to the location of the Property in a highly developed area of Bellevue, fuel sources for wildfires are limited, and risk of wildfires is unlikely.

2.9.4 Landslides and Erosion

The Property is located in a relatively flat and highly developed area of Bellevue, with minimal exposed ground surface that could create a landslide or erosion hazard. Due to local topography and extensive development covering much of the ground surface in the vicinity of the Property, the risk of landslides and erosion is extremely low.

2.9.5 Drought

The Ecology Climate Guidance indicates that cleanup sites vulnerable to drought include groundwater sites vulnerable to a lowered water table, sediment sites in drought-prone waterbodies, and mines and landfills reliant on rain to maintain vegetative cover for slope stability. Due to the distance of the Property from the nearest surface water body, shallow groundwater elevations may be influenced by precipitation. However, shallow groundwater is not used at the Property, and the planned cleanup action for the Property does not rely on precipitation to maintain vegetative cover. The remaining drought concerns are not applicable to the Property. Based on the conditions of the Property, drought is not considered to be a potential climate-related impact for the Property.

3.0 REMEDIAL INVESTIGATION

The RI was conducted by Farallon and others at the Property in accordance with the provisions of WAC 173-340-350(6) to evaluate whether releases of hazardous substances associated with historical and current operations at the Property and adjacent properties have impacted soil gas, soil, and/or groundwater at the Property. The RI was conducted in several phases between October 2023 and July 2024, with hydrogeological, soil gas, soil, and groundwater analytical data from the early phases used to refine the scope of later phases of the RI. This section presents a summary of the RI field program and results for each phase of investigation.

3.1 REMEDIAL INVESTIGATION FIELD PROGRAM

The RI field program was conducted to collect data necessary to adequately characterize the Property for the purpose of developing and evaluating cleanup action alternatives by addressing the recognized environmental condition identified in the Phase I ESA Report. The RI field program was comprised of work elements, including utility reconnaissance, discrete soil gas and ambient air sampling, a passive soil gas survey, soil sample collection, monitoring well installation and development, groundwater monitoring, and management of investigation-derived waste. Boring, soil gas, and monitoring well locations are presented on Figure 2.

The following sections describe the main elements of the RI completed by Farallon at the Property. The main elements of the RI field program included:

- Subsurface utility locating prior to conducting field activities;
- Installing three temporary and eight permanent soil gas monitoring points;
- Conducting a passive soil gas survey;
- Advancing 11 borings;
- Installing and developing three monitoring wells, and developing an existing geotechnical monitoring well;
- Conducting a survey of the monitoring well network to confirm monitoring well locations and top-of-casing elevation;
- Performing five soil gas and/or ambient air monitoring events between October 2023 and July 2024; and

www.farallonconsulting.com

 Performing four groundwater monitoring events between October 2023 and May 2024, which included measurement of groundwater levels and collection of groundwater samples from monitoring wells on the Property for laboratory analysis for petroleum hydrocarbons and/or volatile organic compounds (VOCs).

The components of the RI field program are described in the following sections.

3.1.1 Subsurface Utility Location

Linescape, LLC of Seattle, Washington performed private utility locate surveys before each subsurface investigation and identified underground utilities in the vicinity of each of the proposed investigation locations. Utility Underground Notification Center located public utilities in the vicinity of the Property prior to each phase of ground disturbance.

3.1.2 Boring Advancement and Monitoring Well Installation

Between October 2023 and February 2024, Farallon advanced a total of 11 borings (FB-01 through FB-11) and installed four permanent groundwater monitoring wells (FMW-01 through FMW-04) on the Property. The borings and monitoring wells were completed to evaluate whether hazardous substances were present in soil and/or groundwater at concentrations exceeding MTCA cleanup levels proximate to former fuel service station and airfield operational areas (Figure 2). The borings and wells were advanced to depths of up to 40 feet bgs by Anderson Environmental Contracting (AEC) of Kelso, Washington using a sonic drill rig.

During drilling, a Farallon geologist observed subsurface conditions and recorded observations on boring logs, including soil types encountered, visual and olfactory evidence of soil contamination, and qualitative measurement of volatile organic vapors in soil using a photoionization detector. Soil samples retained for potential laboratory analysis were submitted to F&B under standard chain-of-custody protocols for analysis of one or more of the following:

- Total petroleum hydrocarbons as diesel-range and oil-range organics (DRO and ORO) by Northwest Method NWTPH-Dx;
- GRO by Northwest Method NWTPH-Gx; and
- VOCs by EPA Method 8260D.

Monitoring wells FMW-01 through FMW-04 were constructed using 10 or 15 feet of 0.010inch slotted screen placed to intersect the surface of the first-encountered groundwater-

bearing zone observed during drilling. The screened interval was placed in a silica sand filter pack, which extended from the bottom of the screened interval to approximately 1 foot above the top of the screened interval. A bentonite seal was installed above the filter pack to a depth of approximately 2 feet bgs, and the borings were backfilled to ground surface with a concrete mix. The monitoring wells were completed at the surface with a watertight locking cap and flush-mounted traffic-rated well monument. Boring logs and monitoring wells construction details are provided in Appendix B. Following installation, the monitoring wells also were professionally surveyed for location and elevation by Apex Engineering, Inc. of Tacoma, Washington, a Washington State-licensed surveyor.

3.1.3 Monitoring Well Development

Monitoring wells FMW-01 through FMW-03 were developed after installation using surging and purging techniques until water purged from the wells appeared clear. Low groundwater production was observed immediately following installation, and monitoring well FMW-01 frequently purged dry during development. Monitoring well FMW-04 installed by Farallon, and geotechnical monitoring well B-2, Installed by Terra Associates Inc. prior to the RI field program either were dry or contained only endcap water and were not developed at the time of installation.

Groundwater elevations were observed to rise following completion of the first groundwater monitoring event in October 2023, and additional well development activities were conducted at new monitoring well FMW-01 and existing geotechnical monitoring well B-2 between October 2023 and January 2024 following a rise in groundwater elevations. Additional well development activities included surging and purging a total of approximately 235 gallons of water from FMW-01, and approximately 20 gallons of water from B-2. The additional monitoring well development was conducted following completion of the first groundwater monitoring event in October 2023 to remove any suspended solids and confirm that samples collected from these monitoring wells were representative of subsurface conditions. Monitoring well purge water was placed into 55-gallon steel drums pending off-Property disposal.

3.1.4 Groundwater Monitoring

Farallon conducted a total of four groundwater monitoring events on the Property in October 2023, December 2023, February 2024, and May 2024. The groundwater monitoring events included measuring groundwater elevations and collecting groundwater samples from one or more monitoring wells on the Property. Monitoring well FMW-01 was sampled during all

four monitoring events; monitoring well B-2 was sampled during the October 2023, December 2023, and May 2024 monitoring events; and monitoring wells FMW-02 and FMW-03 were sampled during the October 2023 and May 2024 monitoring events. Monitoring well FMW-04 was dry during each monitoring event and was not sampled during the RI.

During each groundwater monitoring event, Farallon field personnel removed the locking well cap from each monitoring well and allowed groundwater levels to equilibrate to atmospheric pressure for at least 20 minutes. The depth to groundwater was then measured to the nearest 0.01 foot using a water level meter from the top of the well casing. Groundwater samples were collected from the monitoring wells in accordance with standard EPA low-flow groundwater sampling procedures. During purging, temperature, pH, specific conductance, dissolved oxygen, oxidation-reduction potential, and turbidity were monitored to determine when stabilization of these parameters occurred. Following stabilization of the parameters, groundwater samples were collected directly from the low-flow pump outlet. Groundwater samples were transported to F&B under standard chain-of-custody protocols for analysis of one or more of the following:

- GRO by Northwest Method NWTPH-Gx;
- DRO and ORO by Northwest Method NWTPH-Dx;
- VOCs by EPA Method 8260D.

3.1.5 Soil Gas Monitoring Point Installation

A total of three temporary (SG-01 through SG-03) and eight permanent (SG-04 through SG-11) soil gas monitoring points were installed on the Property during the RI to evaluate the potential presence hazardous substances in the subsurface and to evaluate the potential for vapor intrusion for future buildings constructed on the Property. Permanent soil gas monitoring points SG-04 through SG-07 were installed proximate to temporary monitoring points SG-01 through SG-03 to provide repeatable sampling points and evaluate the potential for laboratory and/or sampling interference for samples collected from SG-01 through SG-03. Permanent soil gas monitoring points SG-04 the potential points SG-04 through SG-08 through SG-08 through SG-11 were installed across the remainder of the Property to evaluate the potential presence of hazardous substances in soil gas across the Property. The locations of the temporary and permanent soil gas monitoring points are shown on Figure 2.

Soil gas monitoring points were installed by AEC and Holt Services, Inc, of Edgewood, Washington (Holt) to depths of approximately 5 feet bgs, except for SG-07, which was

installed to a depth of 10 feet bgs. Soil gas monitoring points consisted of a 6-inch stainlesssteel screen set in a sand filter pack which was connected to the surface by 0.25-inch polyethylene tubing. The annulus above the sand filter pack in each soil gas monitoring point was sealed with hydrated bentonite chips, and each permanent monitoring point was completed at the surface with a traffic-rated monument. Following sample collection, the temporary soil gas probes were abandoned with bentonite chips and completed at the surface with concrete to match the surrounding grade.

3.1.6 Soil Gas and Ambient Air Monitoring

Discrete soil gas sampling events were conducted on the Property in October 2023, December 2023, February 2024, April 2024, and July 2024. During each sampling event, discrete soil gas samples were collected from one or more monitoring points in accordance with Farallon's standard operating procedures for soil gas sampling and Ecology's *Guidance for Evaluating Vapor Intrusion in Washington State, Investigation and Remedial Action* dated March 2022 (Ecology 2009) (Vapor Intrusion Guidance). The soil gas samples were collected using a 1-liter Summa canister equipped with a 200-milliliter per minute flow controller. Soil gas samples were submitted to F&B under standard chain-of-custody protocols for analysis of air-phase hydrocarbons (APH) by Method MA-APH and VOCs by EPA Method T0-15.

In addition to soil gas sampling, an ambient air sample was collected in the western portion of the Property proximate to the former Carter Oil-branded fuel service station in February 2024 to evaluate whether soil gas analytical results were influenced by ambient conditions. The ambient air sample was collected using a 6-liter Summa canister equipped with an 8hour flow regulator placed in the approximate breathing zone in the western portion of the Property at the approximate location shown on Figure 2. The ambient air sample was submitted to F&B under standard chain-of-custody protocols for analysis of APH by Method MA-APH and VOCs by EPA Method TO-15.

3.1.7 Passive Soil Gas Survey

Farallon conducted a passive soil gas survey in the western portion of the Property proximate to the former Carter Oil-branded fuel service station between December 11 and 15, 2023. The purpose of the passive soil gas survey was to identify potential source areas of petroleum hydrocarbons and/or HVOCs identified in soil, groundwater, and/or soil gas during previous phases of investigation, and to evaluate whether previous soil gas sampling results were representative of subsurface conditions.

The passive soil gas survey consisted of installing 35 passive soil gas samples to depths of approximately 3 feet bgs in a 25- by 25-foot grid pattern in the western portion of the Property (Figure 2). Borings for the passive soil gas survey were advanced by Holt Services, Inc. of Edgewood, Washington using a handheld rotohammer drill. Passive soil gas samplers were placed into each boring upon reaching total depth and were left in the ground for approximately 3 days prior to retrieval. Upon retrieval, passive soil gas samplers were transported to Amplified Geochemical Imaging, LLC of Newark, Delaware under standard chain of custody protocols for analysis of TPH and VOCs using a modified version of EPA Method 8260. Borings advanced for the passive soil gas survey were backfilled with bentonite chips and completed at the surface with concrete to match the surrounding grade.

3.1.8 Management of investigation-Derived Waste

Soil cuttings, decontamination water, monitoring well purge water, and other wastewater generated during the RI were temporarily stored in labeled 55-gallon steel drums on the Property pending profiling for off-Property disposal.

3.2 REMEDIAL INVESTIGATION RESULTS

This section presents the results of the RI field program performed by Farallon, including a description of the Property geology and hydrogeology; and soil gas, soil, and groundwater analytical results. Select laboratory analytical results for soil gas, ambient air, soil, and groundwater are summarized on Figures 4 through 9 and in Tables 2 through 10. Laboratory analytical reports are included in Appendix D.

3.2.1 Geology and Hydrogeology

As described in Section 2.6, the general stratigraphy encountered in borings advanced on the Property consists of 0 to 5 feet of sandy silt underlain by dense sand with varying amounts of silt and gravel, interpreted as glacial till to the maximum explored depth of 40 feet bgs. Groundwater was encountered intermittently during drilling at depths exceeding 20 feet bgs and was interpreted to consist of one or more perched layers. Significant seasonal variability in groundwater elevations was observed during the RI, and groundwater elevations increased following installation of the monitoring wells. Based on depth to groundwater measurements collected between October 2023 and May 2024 in monitoring wells installed during Farallon's RI, groundwater is encountered at depths of approximately 11 to 24 feet bgs with significant seasonal variability and has been interpreted to flow to the north (Figure 3).

3.2.2 Soil Analytical Results

GRO was the only analyte detected in soil at concentrations exceeding the MTCA Method A cleanup level. GRO was detected at concentrations exceeding the MTCA Method A cleanup level in two soil samples collected from monitoring well FMW-01 at depths of 5 and 10 feet bgs (Figure 4; Table 2). GRO was reported non-detect at the laboratory practical quantitation limit (PQL) in the soil sample collected from monitoring well FMW-01 at a depth of 15 feet bgs, and in all other soil samples analyzed. During drilling, impacts of GRO were not observed to be in contact with groundwater. The extent of GRO impacts was bounded vertically and laterally by borings FB-05 through FB-08 (Figure 10).

DRO was detected at a concentration less than the MTCA Method A cleanup level in a single soil sample collected from monitoring well FMW-01 at a depth of 5 feet bgs (Figure 4; Table 2). The laboratory analytical report indicated that the chromatographic pattern for the detection of DRO did not resemble the fuel standard used for quantitation, indicating that the detection of DRO may be the result interference from other petroleum hydrocarbons such as GRO. DRO and ORO were reported non-detect at the laboratory PQL in all other soil samples analyzed.

Ethylbenzene and xylenes were detected at low concentrations, less than MTCA Method A cleanup levels in soil samples collected from monitoring well FMW-01 at depths of 5 and 10 feet bgs. Ethylbenzene and xylenes were reported non-detect at the laboratory PQL in all other soil samples analyzed (Table 2). Remaining petroleum-related VOCs either were reported non-detect at the laboratory PQL or were detected at concentrations less than MTCA cleanup levels (Tables 2 through 4).

Tetrachloroethene (PCE) was detected at a concentration less than the MTCA Method A cleanup level in a single soil sample collected from monitoring well FMW-01 at a depth of 20 feet bgs. PCE and remaining HVOCs were reported non-detect at the laboratory PQL in all remaining soil samples analyzed (Figure 5; Table 3).

Soil analytical results indicate that exceedances of GRO are limited to shallow soil in the vicinity of monitoring well FMW-01, proximate to the former Carter Oil-branded fuel service station and have been laterally delineated within the Property boundary. Exceedances of hazardous substances were not identified in any other soil samples collected on the Property.

3.2.3 Groundwater Analytical Results

As discussed in Section 3.1.4, Groundwater Monitoring, Farallon conducted a total of four groundwater monitoring events on the Property between October 2023 and May 2024. Analytical results for groundwater samples collected during the RI are summarized in the following sections.

3.2.3.1 <u>Petroleum Hydrocarbons</u>

DRO and ORO were detected at concentrations exceeding the MTCA Method A cleanup level in monitoring well B-2 during the October 2023 groundwater monitoring event (Figure 6; Table 5). The groundwater sample collected from monitoring well B-2 during the October 2023 groundwater monitoring event was a grab groundwater sample of suspected endcap water and was collected without prior well development due to the limited volume of water in the well. In addition, the sample chromatographic pattern was flagged as not resembling the fuel standard used for quantitation, indicating that detections of DRO and ORO likely were not representative of a release of DRO and ORO to groundwater. Groundwater elevations increased between October and December 2023, and additional monitoring well development was conducted a monitoring well B-2 as described in Section 3.1.3, Monitoring Well Development. DRO and ORO were reported non-detect at the laboratory PQL in monitoring well B-2 during the December 2023 and May 2024 groundwater monitoring events, indicating that the groundwater sample collected in October 2023 is not representative of groundwater conditions. In addition, no source of DRO and ORO was identified in soil during the RI. DRO and ORO also were reported non-detect at the laboratory PQL in the remaining groundwater samples collected on the Property (Figure 6; Table 5).

GRO and benzene, toluene, ethylbenzene, and xylenes (BTEX) were reported non-detect at the laboratory PQL in all groundwater samples analyzed, indicating that impacts of GRO in shallow soil proximate to FMW-01 are not impacting groundwater (Figure 6; Table 5).

3.2.3.2 <u>HVOCs</u>

PCE was detected at a concentration slightly exceeding the MTCA Method A cleanup level in the groundwater sample collected from monitoring well FMW-01 during the October 2023 groundwater monitoring event (Figure 7; Table 6). Following additional monitoring well development activities conducted between November 2023 and January 2024, PCE was detected at concentrations at or less than the MTCA Method A cleanup level during the December 2023, February 2024, and May 2024 groundwater monitoring events. The reduction in PCE concentrations following additional well development indicates that

exceedance during the October 2023 monitoring event may have been attributed to suspended solids in the water column resulting from insufficient well development activities and likely was not representative of groundwater conditions. In addition, no source of PCE was detected in soil samples collected on the Property (Figure 5; Table 3).

PCE was detected at a concentration less than the MTCA Method A cleanup level in FMW-02 during the October 2023 and May 2024 groundwater monitoring events and was reported non-detect at the laboratory PQL in the remaining groundwater samples analyzed (Figure 7; Table 6).

Trichloroethene (TCE) was detected at concentrations less than the MTCA Method A cleanup level in groundwater samples collected from FMW-01 in October and December 2023, and was reported non-detect at the laboratory PQL in the remaining groundwater samples analyzed (Figure 7; Table 6).

Remaining HVOCs were reported non-detect at the laboratory PQL in all groundwater samples analyzed (Figure 7; Table 6).

3.2.4 Soil Gas and Ambient Air Sampling Results

Based on discussions with Ecology and the analytical laboratory regarding the range and concentrations of detected aliphatic and aromatic petroleum hydrocarbons, Farallon compared soil gas analytical results for TPH to a calculated Site-specific soil gas screening level in accordance with Ecology's Vapor Intrusion Guidance. TPH analytical results for soil gas samples collected from soil gas probes SG-05, SG-06, and SG-08 through SG-11 between February and July 2024 were used to calculate Site-specific soil gas screening levels for TPH. Calculated TPH screening levels ranged from 2,606 micrograms per cubic meter (μ g/m³) in SG-06 in February 2024 to 90,667 μ g/m³ in SG-09 and SG-10 in April 2024. Soil gas analytical results for TPH collected during the RI were compared to a screening level of 2,606 μ g/m³, which was the most conservative of the calculated soil gas screening levels for TPH.

Soil gas analytical results for SG-04, located proximate to PCS associated with the former Carter Oil fuel service station in the western portion of the Property were not used to calculate Site-specific soil gas screening levels since the source of soil gas impacts will be removed during the cleanup action. Correspondence between Farallon and Ecology regarding the use of a Site-Specific soil gas screening level for TPH is presented in Appendix E, and soil gas screening level calculations are included in Appendix F.

The initial discrete soil gas sampling event in October 2023 included collection of soil gas samples from temporary soil gas probes SG-01 through SG-03. TPH and benzene were detected at concentrations exceeding the Site-specific soil gas screening level for TPH and the Method B screening level for a residential land use for benzene in all three soil gas samples, with the highest concentrations detected in soil gas probe SG-02, which was located proximate to the former Carter Oil-branded fuel service station where a release of GRO was confirmed to soil (Figure 7; Table 7).

Additional discrete soil gas samples were collected from soil gas probes SG-04 through SG-06 and SG-08 through SG-11 between December 2023 and July 2024 to evaluate the representativeness of soil gas results from temporary probes SG-01 through SG-03, and to evaluate the distribution of hazardous substances in soil gas across the remainder of the Property. TPH was detected at concentrations exceeding the Site-specific soil gas screening level in soil gas samples collected from SG-04 and SG-05 in December 2023 and from SG-04, SG-06, SG-08, and SG-09 in July 2024. Benzene was detected at a concentration less than the MTCA Method B subslab soil gas screening level for a residential exposure scenario at SG-08 in July 2024 and was reported non-detect in the remaining soil gas samples collected from soil gas monitoring points SG-04 through SG-11, indicating that detections of benzene in SG-01 through SG-03 were not representative of subsurface conditions (Figure 7; Table 7).

Elevated concentrations of TPH in soil gas samples collected from SG-01 and SG-03 during the October 2023 soil gas sampling event, and from SG-05 during the December 2023 soil gas sampling event were interpreted to be the result of laboratory interference and are not considered to be representative of subsurface conditions. According to the analytical laboratory, high concentrations of TPH in soil gas in Summa canisters collected from soil gas monitoring points SG-02 and SG-04 likely caused results from the remaining samples, which were extracted and analyzed concurrently, to be biased high. Documentation from the analytical laboratory describing why these soil gas analytical results should not be considered representative of subsurface conditions is included in Appendix G. Subsequent soil gas samples collected from soil gas monitoring points SG-05, SG-06, and SG-08 through SG-11 analyzed independently of SG-04 contained significantly lower concentrations of TPH in soil gas. In addition, as described in Sections 3.2.2 and 3.2.3, no source of TPH was identified in soil or groundwater samples collected proximate to soil gas monitoring points SG-03, and SG-05 through SG-11 (Figure 4; Table 2).

Acrolein, bromodichloromethane, and/or chloroform were detected at concentrations exceeding MTCA Method B screening levels for residential exposure in one or more soil gas samples collected from SG-08 through SG-11. These compounds are commonly attributed to sampling and/or laboratory interference and are not considered representative of subsurface conditions. In addition, none of these compounds were detected in soil samples collected during installation of the soil gas probes. Remaining VOCs either were detected at concentrations less than MTCA Method B screening levels, where established, or were reported non-detect at laboratory PQLs.

3.2.4.1 Ambient Air Sampling Results

Ambient air analytical results indicated that benzene and naphthalene were detected at concentrations slightly exceeding the MTCA Method B indoor air cleanup level for residential exposure. The calculated value for TPH also exceeded the MTCA Method B indoor air cleanup level due to reporting limits for APH exceeding the MTCA Method B indoor air cleanup level. Detections of TPH and benzene in outdoor ambient are suspected to be the result of proximity to I-90 and emissions from vehicles.

3.2.4.2 Passive Soil Gas Survey Results

Passive soil gas results indicated that elevated concentrations of TPH and naphthalene were detected in soil gas in a localized area in the western portion of the Property proximate to monitoring well FMW-01 and the former Carter Oil-branded fuel service station (Figures 9A and 9C). Benzene also was detected at elevated concentrations in two passive soil gas sampling locations in the western portion of the Property (Figure 9B). PCE was detected in a single passive soil gas sample at a low concentration in the western corner of the Property, west of monitoring well FMW-01 (Figure 9D). Passive soil gas results were used to support selection of boring locations and soil gas monitoring points during subsurface investigation activities.

4.0 CONCEPTUAL SITE MODEL

This section provides a summary of the conceptual site model derived from the results of the RI. Included in this section is a discussion of COCs, confirmed and suspected source areas, affected environmental media, contaminant fate and transport, and exposure pathways and receptors. The conceptual site model is used as a basis for developing technically feasible cleanup action alternatives and selecting a final cleanup action in accordance with applicable MTCA regulations.

4.1 CONFIRMED AND SUSPECTED SOURCES

The results of the RI confirm that historical operations of the Carter Oil-branded fuel service station resulted in releases of petroleum hydrocarbons to soil in the western portion of the Property. No other confirmed sources of hazardous substances have been identified in soil on the Property. Detections of TPH in soil gas in the western portion of the Property are attributed to operations at the former Carter Oil-branded fuel service station. No confirmed source has been identified for detections of TPH in soil gas across the remainder of the Property. Detections of TPH in soil gas across the remainder of the Property. Detections of TPH in soil gas across the remainder of the Property. Detections of TPH in soil gas across the remainder of the Property may be attributed to residual impacts of petroleum hydrocarbons in soil on north-adjoining properties, the potential presence of shallow fill material across portions of the Property, and/or associated with historical airfield activities. Detections of petroleum hydrocarbons on soil were limited to soil samples collected proximate to the former Carter Oil-branded fuel service station on the western portion of the Property.

Section 2.4 provides a summary of historical releases of hazardous substances and subsequent cleanup actions on north-adjoining properties, including the releases of petroleum products to soil as a result of historical fuel service station operations on north-adjoining properties.

4.2 AFFECTED ENVIRONMENTAL MEDIA

Soil is a medium of concern on the Property based on GRO being detected in soil at concentrations exceeding the MTCA Method A cleanup level.

Groundwater has been eliminated as a medium of concern due hazardous substances, including DRO, ORO, GRO, and VOCs, either being reported non-detect at the laboratory PQL or being detected at concentrations less than MTCA cleanup levels in representative groundwater samples collected on the Property. Although DRO, ORO, and PCE were detected in groundwater at concentrations exceeding MTCA Method A cleanup levels during the

October 2023 groundwater monitoring event, these samples were considered to not be representative of subsurface conditions, and subsequent groundwater samples did not contain exceedances of these compounds.

Indoor air has been retained as a potential medium of concern, based on the presence of TPH in soil gas at concentrations exceeding the Site-specific soil gas screening level beneath portions of the Property. The planned cleanup action will include removal of PCS that is suspected to be a potential source of soil gas impacts, and planned redevelopment of the Property will include the installation of a chemical-resistant vapor barrier rated for TPH and VOCs beneath portions of the future building foundations, if necessary, pending additional post-cleanup action soil gas monitoring. Installation of a chemical-resistant vapor barrier, if necessary, will eliminate the potential vapor intrusion exposure pathway for future building occupants.

4.3 TRANSPORT PATHWAYS

Hazardous substances in soil and/or soil gas at the Site have the potential to migrate through natural mechanisms that may result in exposure to human and ecological receptors. The primary potential migration pathways at the Site are the following.

4.3.1 Soil to Groundwater

Based on the RI results, the soil-to-groundwater pathway is incomplete. Petroleum hydrocarbons detected at concentrations exceeding MTCA Method A cleanup levels in soil were not observed to be in contact with groundwater, and petroleum hydrocarbons were reported non-detect at the laboratory PQL in all representative groundwater samples collected on the Property. HVOCs were reported non detect at the laboratory PQL, and HVOCs either were reported non-detect at the laboratory PQL or were detected at concentrations less than MTCA cleanup levels in groundwater samples collected.

The planned cleanup action for the Site will remove soil containing GRO at concentrations exceeding the MTCA Method A cleanup level from within the limits of the Property, eliminating the soil to groundwater pathway from the Property.

4.3.2 Soil/Groundwater to Air

Volatile compounds in soil have the potential to volatilize to the vapor phase and intrude into nearby structures. Based on the soil and soil gas data collected during the RI, the COCs present in soil and/or soil gas have the potential to volatilize to indoor air. The planned cleanup action for the Site will remove soil containing GRO at concentrations exceeding the

MTCA Method A cleanup level, which will eliminate a potential source of soil gas impacts at the Site. The soil/soil gas pathway to air is considered potentially complete.

4.3.3 Groundwater to Surface Water and Sediment

The groundwater to surface water pathway is considered incomplete since there are no MTCA exceedances of COCs in groundwater, and since the nearest surface water features are at least 0.8 mile away from the Property.

4.4 POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS

The exposure risks associated with the presence of hazardous substances in soil and/or soil gas at the Site are identified as human health and terrestrial ecological receptors. This subsection presents the evaluation and conclusions pertaining to the exposure pathways at the Site.

4.4.1 Soil Direct Contact

The direct contact pathway for soil currently is considered incomplete due to the presence of asphalt pavement over soil containing GRO at concentrations exceeding MTCA Method A cleanup levels. However, the soil direct contact pathway would be considered complete if the pavement was removed, or if soil was disturbed during redevelopment activities or subsurface utility work. The proposed cleanup action, including excavation of all soil containing GRO at concentrations exceeding MTCA Method A cleanup levels will eliminate the direct contact pathway for soil on the Property.

4.4.2 Groundwater Ingestion/Drinking Water Beneficial Use

Based on the results from the RI and interim actions, the groundwater contact and/or ingestion exposure pathway is incomplete at the Site. No hazardous substances were detected in groundwater at concentrations exceeding MTCA Method A cleanup levels. Therefore, groundwater is not retained as a medium of concern for the Site.

4.4.3 Vapor Intrusion

Based on the RI soil gas results, there is a potential vapor intrusion risk from TPH, which was detected at concentrations exceeding Site-specific soil gas screening levels protective of indoor air in soil gas samples on the southern portion of the Property. The cleanup action includes the installation of a chemical resistant vapor barrier, if post-cleanup soil gas sampling indicates that TPH in soil gas remains at concentrations exceeding Site-specific screening levels protective of indoor air following completion of the cleanup action.

4.4.4 Terrestrial Ecological Evaluation

A Terrestrial Ecological Evaluation (TEE) is required by WAC 173-340-7490 at any property where there has been a release of hazardous substances to soil. The regulation requires that one of the following actions be taken:

- Document a TEE exclusion using the criteria presented in WAC 173-340-7491;
- Conduct a simplified TEE in accordance with WAC 173-340-7492; or
- Conduct a property-specific TEE in accordance with WAC 173-340-7493.

Based on the criteria for TEE exclusion in WAC 173-340-7491(1)(c), the Property is excluded from a TEE because there are fewer than 1.5 acres of contiguous undeveloped land on the Property or within 500 feet of any area of the Property, and the Property is not contaminated with any of the hazardous substances listed in WAC 173-340-7491(1)(c)(ii). No further consideration of terrestrial ecological impacts is required under MTCA. The Ecology TEE form for the Property is provided in Appendix H.

4.5 CONSTITUENTS OF CONCERN

The COCs for the Property consist of hazardous substances exceeding MTCA cleanup levels that have been detected in soil and/or groundwater. GRO was identified as the only COC for soil on the Property.

As discussed above in Section 4.2, no COCs were detected in groundwater at concentrations exceeding the MTCA Method A cleanup levels. Based on the results from the RI, no hazardous substances were retained as COCs for groundwater.

TPH has been identified as a potential COC for indoor air based on exceedances of the Sitespecific screening level for soil gas.

4.6 CLEANUP STANDARDS

Cleanup levels are established based on the potential exposure pathways and receptors (identified in Section 4.2) to identify a conservative basis for defining the extent of contamination for each hazardous substance and medium at a site. The cleanup standards for the Property have been established in accordance with WAC 173-340-700 through 173-340-750 to be protective of human health and the environment.

MTCA Method A cleanup levels for unrestricted land use are appropriate cleanup levels for soil at the Property due to the limited number of COCs in soil and the planned residential

www.farallonconsulting.com

use of the Property. GRO is the only COC identified in soil, and the proposed cleanup level for GRO in soil is 100 milligrams per kilogram since benzene has not been detected in soil on the Property.

The proposed cleanup level for COCs in indoor air is the MTCA Method B Indoor Air Cleanup Level for residential exposure for TPH: 86 micrograms per cubic meter ($\mu g/m^3$).

5.0 FOCUSED FEASIBILITY STUDY

This section provides a summary of an Focused Feasibility Study (FFS) to select and implement a preferred cleanup alternative for soil, soil gas, and indoor air at the Property in accordance with WAC 173-340-350(8). The FFS is intended to provide sufficient information to select a preferred cleanup action alternative under the Expedited VCP. The cleanup action will be conducted during redevelopment of the Property.

Existing structures on the Property will be demolished to allow for regrading to support future development activities. The future development plan includes construction of up to 77 residential townhome units in 15 buildings with slab-on-grade foundations.

The FFS identifies the cleanup technologies appropriate for the COCs and affected media and a preferred cleanup action.

5.1 TECHNOLOGY SCREENING

The RI identified GRO in soil and TPH in soil gas at concentrations exceeding the MTCA Method A cleanup level and/or Site-specific soil gas screening level. The source of soil impacts on the Property is associated with operation of a former Carter Oil-branded fuel service station on the western portion of the Property, and soil gas impacts on the Property are suspected to be associated with the former fuel service stations on and/or in the vicinity of the Property and/or former airfield operations.

Multiple remedial technologies are appropriate to remediate PCS and mitigate the potential for vapor intrusion. These technologies include excavation, soil vapor extraction, chemical-resistant vapor barriers, subslab depressurization systems, and passive venting systems. Based on the localized extent of PCS in the western portion of the Property, impacts of TPH in soil gas in the western and southern portions of the Property, and slab-on-grade construction of future buildings on the Property, excavation of PCS and installation of chemical-resistant vapor barriers is the most feasible and cost effective cleanup alternative for the Property with the shortest restoration time frame. Based on the complete removal of the source of soil contamination and installation of a chemical resistant vapor barrier to mitigate the potential vapor intrusion exposure pathway, no further evaluation of other remedial technologies is necessary.

The planned redevelopment foundations will be slab-on-grade and will not require mass excavation of soil and/or interception of the groundwater table. Construction of the new

foundations at the Property will incorporate a chemical-resistant vapor barrier designed to prevent direct contact with HVOCs in soil gas and groundwater, eliminating the potential for future vapor intrusion into the finished structure.

Residual impacts of TPH in soil gas suspected to be the result of historical Property operations may remain on the Property following completion of the cleanup action. Any exposure pathway from soil gas to indoor air associated with residual impacts of TPH in soil gas beneath the Property will be mitigated by the vapor barrier system installed below building foundations proximate to impacts of TPH in soil gas. The selected cleanup alternative will include installation of a chemical-resistant vapor barrier designed to meet the requirements of MTCA and Ecology's Vapor Intrusion Guidance to ensure protection of human health and the environment until soil gas screening levels are attained for the Site, and institutional controls such as recording an environmental covenant to integrity and/or maintenance of vapor mitigation measures on the Property.

Institutional controls are measures undertaken to limit or prohibit activities that may interfere with the integrity of a cleanup action or that could result in adverse exposure to hazardous substances at the Property and are implemented in accordance with WAC 173-340-440. Institutional controls can be effective protective measures, preventing exposure to impacted soil gas, and are considered to be readily implementable at the Property at a significantly lower cost than active cleanup technologies. Institutional controls that were evaluated for the FFS included an environmental covenant requiring vapor mitigation measures to be implemented on the Property, consistent with residential land use and screening and/or cleanup levels. The environmental covenant would require that vapor mitigation measures be installed and maintained on the Property as long as a potential vapor intrusion risk exists for Property buildings.

5.2 SELECTED CLEANUP ACTION

Sufficient information is presented in this RIFFSCAP to select, design, and implement a permanent cleanup action at the Property that is protective of human health and the environment. Based on the RI data and assessment of practical remedial alternatives in light of redevelopment of the Property, the selected cleanup action will include (a) excavation of all PCS in the western portion of the Property; (b) installation of permanent vapor barriers beneath future Property buildings where a potential risk of vapor intrusion has been identified to eliminate the potential for any future vapor intrusion into indoor air;

and (c) the recording of an environmental covenant to require continued use of vapor mitigation measures.

Residual impacts of TPH in soil gas following completion of the cleanup action will remain isolated beneath the vapor barriers incorporated into the new building foundations.

No active dewatering is planned during redevelopment activities, other than management of surface water from storm events during construction. Stormwater will be collected at a low point on the Property or in a temporary sump location, pumped to a holding tank, and treated as necessary to meet discharge requirements prior to discharging to either the stormwater or sanitary sewer line. Construction stormwater treatment system performance will be monitored throughout the period of redevelopment to ensure discharge criteria are met.

5.3 THRESHOLD CRITERIA

The selected cleanup action for the Property will meet threshold requirements for cleanup actions identified under WAC 173-340-360 to be protective of human health and the environment, comply with cleanup standards, and provide for compliance monitoring as appropriate. Excavation and off-Property disposal of PCS is suitable to eliminate transport and exposure pathways, and installation of vapor mitigation system will eliminate any potential future migration of soil gas to indoor air at the Property.

6.0 CLEANUP ACTION PLAN

This section presents a description of the proposed cleanup action, the components of the cleanup action, and a discussion of compliance monitoring; and summarizes the primary activities and technical elements of the cleanup action, including contaminated soil excavation activities, vapor intrusion mitigation, performance and confirmation monitoring, waste disposal, and documentation.

6.1 DESCRIPTION OF CLEANUP ACTION

The selected cleanup action includes the excavation and off-Property disposal of all PCS on the western portion of the Property. In addition, chemical-resistant vapor barriers may be installed beneath new building foundations if soil containing petroleum hydrocarbons is left in place at concentrations less than MTCA Method A cleanup levels but exceeding screening levels for potential vapor intrusion established in Ecology's Vapor Intrusion Guidance, or if post-cleanup soil gas monitoring indicates that TPH remains in soil gas at concentrations exceeding the Site-specific screening level. Excavation of PCS will be conducted in advance of Property redevelopment, and vapor barriers will be installed as necessary during Property redevelopment. Figure 11 shows the conceptual layout of future development and vapor barrier extent.

The cleanup action will include the following primary activities:

- Obtaining necessary permits, including a grading permit for cleanup action excavation activities.
- Updating the existing Property-specific health and safety plan for cleanup action activities.
- Decommissioning monitoring wells on the Property in advance of cleanup and redevelopment activities.
- Implementing temporary erosion and sedimentation control measures.
- Preparing a soil management plan to describe procedures for sampling, handling, and disposal of PCS during the cleanup action, and petroleum-impacted soil that may be encountered during Property redevelopment.
- Documenting the installation of a chemical-resistant vapor barrier as needed for each building foundation requiring vapor mitigation measures during redevelopment with quality assurance/quality control (QA/QC) checklists, and performing a smoke

test on the completed vapor barriers post-rebar installation and prior to the pouring of the concrete foundation. The vapor barrier will be designed and installed to eliminate the potential threat of vapor intrusion into the newly constructed buildings.

• Recording an environmental covenant on the Property.

6.2 POTENTIALLY APPLICABLE LOCAL, STATE, AND FEDERAL LAWS

The cleanup action must comply with applicable local, state, and federal laws (WAC 173-340-710). The potentially applicable local, state, and federal laws for the cleanup action are provided below.

6.2.1 Washington State Model Toxics Control Act Cleanup Regulation

The MTCA statute (Chapter 70A.305 RCW) is the primary law that governs cleanup of contaminated sites in the state of Washington. The MTCA cleanup regulation (WAC 173-340) specifies criteria for the evaluation and conduct of a cleanup action. It requires that cleanup actions protect human health and the environment, meet environmental standards in other applicable laws, and provide for monitoring to confirm compliance with cleanup levels.

For cleanup actions involving containment of hazardous substances, MTCA has requirements that must be met for the cleanup action to be considered in compliance with soil cleanup standards. These include implementing a compliance monitoring program that is designed to ensure the long-term integrity of the containment system and applying institutional controls where appropriate to the affected areas (WAC 173-340-440).

6.2.2 State Environmental Policy Act

The State Environmental Policy Act (SEPA) (WAC 197-11) and the SEPA procedures (WAC 173-802) provide the framework for state agencies to evaluate the environmental consequences of a project and ensure appropriate measures are taken to mitigate environmental impacts. Completion of a SEPA checklist may be required to obtain a City of Bellevue grading permit for Property redevelopment. According to the City of Bellevue, a SEPA checklist will not be required to conduct cleanup action excavation activities in advance of Property redevelopment due to the limited size and scope of the proposed cleanup action excavation.

6.2.3 Solid and Hazardous Waste Management

The Washington Dangerous Waste Regulations (WAC 173-303) would apply if dangerous wastes are generated, and U.S. Department of Transportation and Washington State

Department of Transportation regulations regarding transport of hazardous materials (49 CFR Parts 171-180) would apply if regulated material is transported off-site as part of the cleanup action. No Dangerous Waste is expected to be generated during the cleanup action. The Washington Solid Waste Handling Standards (WAC 173-350) regulate handling, treatment, or off-site disposal of nonhazardous solid waste.

6.2.4 Construction Stormwater General Permit

Cleanup action excavation activities are not anticipated to require a National Pollutant Discharge Elimination System (NPDES) Construction Stormwater General Permit since dewatering and discharge to the waters of the State of Washington is not anticipated to be necessary. A Construction Stormwater General Permit may be necessary for Property redevelopment activities since the construction area for Property redevelopment will be greater than 1 acre in size.

6.2.5 City of Bellevue Grading Permit

A grading permit from the City of Bellevue will be required for the cleanup action because of excavation and backfilling associated the removal of PCS. Substantive requirements of the grading permits include erosion control, which is addressed by implementation of best management practices in accordance with a project-specific temporary erosion and sediment control plan. A separate grading permit will be obtained from the City of Bellevue for Property redevelopment.

6.2.6 Worker Safety Regulations

The Occupational Safety and Health Administration (29 CFR 1910.120) and Washington Industrial Safety and Health Act (WAC 296-62) govern worker safety during the cleanup action. Compliance would be achieved through preparation and implementation of sitespecific health and safety plan(s) with appropriate controls, worker training and certifications, and occupational monitoring.

6.2.7 Washington State Water Well Construction Regulations

Monitoring wells will be installed and decommissioned as part of the cleanup action in accordance with the Minimum Standards for Construction and Maintenance of Wells (WAC 173-160).

6.2.8 Historical and Cultural Resource Protection

As required by state law, appropriate measures will be taken to evaluate the potential presence of historical, archaeological, or cultural resources during the cleanup action.

6.3 COMPONENTS OF THE CLEANUP ACTION

The following sections describe the main components of the cleanup action.

6.3.1 Permitting and Safety

The cleanup action includes obtaining permits and authorizations required by state and local jurisdictions. A City of Bellevue grading permit will be obtained prior to commencing the cleanup action.

A HASP that includes protection monitoring and measures to minimize potential short-term exposure during the excavation will be prepared to protect personnel during cleanup activities that involve potential exposure to hazardous materials (WAC 173-340-820). The HASP will comply with the requirements of the Occupational Safety and Health Administration and the Washington Industrial Safety and Health Act.

6.3.2 Groundwater Monitoring Well Decommissioning

Monitoring wells on the Property will be decommissioned in accordance with the Minimum Standards for Construction and Maintenance of Wells (WAC 173-160) prior to the start of the cleanup action.

6.3.3 Shoring

The planned excavation is anticipated to extend to a depth of 12 feet bgs and will require a 1-foot to 1-foot slope to maintain the sidewalls of the excavation. Additional shoring is not anticipated to be necessary to facilitate cleanup action excavation activities. A geotechnical engineer will confirm excavation sloping and backfill requirements prior to conducting the cleanup action excavation.

6.3.4 Soil Excavation and Disposal

GRO has been detected at concentrations exceeding the MTCA Method A cleanup level in a localized area of shallow soil in the western portion of the Property to a depth of approximately 12 feet bgs (Figure 10). Cleanup action excavation activities will consist of excavation and off-Property disposal of all PCS in the western portion of the Property for disposal at an approved Subtitle D disposal facility selected by IS Property Investments.

Compliance soil samples will be collected from the base and sidewalls of the excavation area. Farallon anticipates that up to 300 tons of PCS will be removed from the Property during cleanup action excavation activities.

6.3.5 Vapor Mitigation Measures

The cleanup action excavation is expected to remove all PCS that is a source of TPH in soil gas in the western portion of the Property. TPH also has been detected in soil gas at concentrations exceeding Site-specific soil gas screening levels in the western and southern portions of the Property. The source of TPH in soil gas across the remainder of the Property has not been identified but may be attributable to residual petroleum impacts from fuel service stations and/or historical airfield operations on and in the vicinity of the Property.

Chemical-resistant vapor barrier will be installed beneath buildings within the localized area where TPH is detected in soil gas at concentrations exceeding the Site-specific soil gas screening level during post-cleanup soil gas monitoring. Prior to the installation of the vapor barrier, a round of soil gas monitoring will be conducted to evaluate whether vapor mitigation measures are still necessary following removal of the TPH source in soil. Vapor barriers will be installed during construction of the new residential buildings, as warranted. The vapor barrier will mitigate the risk of exposure of TPH in soil gas and eliminate the potential vapor intrusion to indoor air exposure pathway. The estimated extent of vapor barriers based on existing soil gas data is presented on Figure 11. The final extent of vapor barriers will be determined based on the results of post-cleanup soil gas monitoring. The specification for the vapor barrier and quality assurance measures required during installation of the vapor barrier are summarized in the sections below.

6.3.5.1 Vapor Barrier Installation

The vapor barrier system design comprises a 20-millimeter high-density polyethylene liner that will extend under horizontal foundation slabs of the buildings. The vapor barrier currently proposed is a 20-millimeter Drago Wrap Vapor Intrusion Barrier (Drago Wrap) from Stego Industries, LLC of San Clemente, California (Appendix I) or approved equivalent. Per ASTM International Standard E1745, Drago Wrap is specifically engineered to mitigate petroleum hydrocarbons, which are the only identified COC for the Property. Drago Wrap is a multi-layered plastic extrusion that meets the standards of ASTM E1745 for water vapor retarders in contact with soil or granular fill under concrete slabs. Drago Wrap will be installed per the manufacturer's specifications (Appendix I).

6.3.5.2 Vapor Barrier Quality Assurance and Testing

Installation of a chemical-resistant vapor barrier for each building foundation during redevelopment will be documented with QA/QC checklists, and the performance of smoke tests on the completed vapor barrier post-rebar installation and prior to the pouring of the concrete foundation (Appendix J).

6.3.6 Unforeseen Conditions

Unforeseen conditions may be encountered during grading and excavation at a formerly developed property with a history of various uses. Unforeseen conditions that may be encountered during implementation of the cleanup action include but are not limited to discovery of USTs or contaminated media previously not identified by sampling conducted during the RI.

In the event that a UST(s) is encountered during construction excavation, the General Contractor will temporarily suspend excavation activities proximate to the UST and immediately notify IS Property Investments and Farallon as soon as possible after the encounter. Each UST encountered will be permanently decommissioned by excavation and removal in accordance with Washington State Underground Storage Tank Regulations (WAC 173-360) and Ecology Guidance. A certified specialty subcontractor selected by the General Contractor will provide a UST Decommissioner to conduct the UST decommissioning and removal activities, which will include inerting and rinsing the interior of the UST, as necessary, and removing the UST from the Property for recycling.

At the request of IS Property Investments, Farallon will support the permitting and inspection activities required for permanent decommissioning of USTs encountered during construction excavation. Farallon will provide a Washington State-certified UST Assessor to observe the UST decommissioning activities and will perform performance and/or confirmation soil sampling at the limits of soil excavation related to removal of the UST in accordance with Ecology regulations. Confirmation soil samples will be collected from the UST excavation and submitted for analysis for appropriate constituents based on field observations, Ecology Guidance, and regulatory requirements. Farallon will complete the *Underground Storage Tank – Site Check/Site Assessment Checklist* form (Ecology 1999) and submit it to Ecology following receipt of the confirmation soil sample analytical data. The results from the UST decommissioning activities will be incorporated into the Cleanup Action Closure Report that will be prepared for the Property.

If field observations indicate the presence of potentially contaminated soil, groundwater, and/or stormwater related to USTs, or other potentially affected media during construction excavation, excavation work will stop pending characterization of the potentially contaminated media and development of an appropriate treatment and/or disposal alternative by Farallon to be approved by IS Property Investments. The General Contractor will direct the appropriate subcontractor(s) to implement the selected treatment and/or disposal remedy. Following characterization and delineation of contaminated media, the media will be removed or remediated to the maximum extent practicable.

6.4 COMPLIANCE MONITORING

Three types of compliance monitoring have been identified for cleanup actions performed under MTCA (WAC 173-340-410): protection monitoring, performance monitoring, and confirmational monitoring. A paraphrased purpose for each is presented below (WAC 173-340-410[1]):

- **Protection Monitoring** confirms whether human health and the environment are adequately protected during the cleanup action;
- **Performance Monitoring** confirms that the cleanup action has attained screening levels or other performance standards necessary to demonstrate compliance with a permit or the substantive requirements of other laws; and
- **Confirmational Monitoring** confirms the long-term effectiveness of the cleanup action once screening levels or other performance standards have been attained.

6.4.1 Protection Monitoring

The existing Property-specific HASP will be updated for the cleanup action and will meet the minimum requirements for such a plan identified in federal (29 CFR 1910.120 and 1926) and state (WAC 173-340-810 and 296) regulations. The HASP will identify all known physical, chemical, and biological hazards; hazard monitoring protocols; and administrative and engineering controls required to mitigate the identified hazards. Protection monitoring will be performed in accordance with the HASP.

Workers involved in the cleanup action who will encounter potentially impacted soil will have completed 40-Hour Hazardous Waste Operations and Emergency Response (HAZWOPER) training in accordance with 29 CFR 1910.120 and will have completed Annual 8-Hour HAZWOPER refresher training, as needed.

6.4.2 Performance Monitoring

Performance monitoring will provide soil analytical results to refine, classify, and/or identify the presence of hazardous substances exceeding cleanup levels within the cleanup action excavation area. Soil samples collected during the RI confirm that GRO is present at concentrations exceeding MTCA Method A cleanup areas in a localized area in the western portion of the Property proximate to monitoring well FMW-01. Additional performance soil samples may be collected if field screening observations indicate that hazardous substances may extend beyond the anticipated limits of the cleanup action excavation.

Performance monitoring will involve collecting in-situ soil samples for laboratory analysis to quantify concentrations of hazardous substances in soil. Discrete soil samples will be collected from the cleanup action excavation area to serve as confirmation samples where screening levels are attained.

Soil samples collected for performance monitoring, confirmation monitoring, to support soil profiling and disposal, and clean soil imported for backfill will be analyzed for one or more of the following:

- GRO by Northwest Method NWTPH-Gx;
- DRO and ORO by Northwest Method NWTPH-Dx; and
- BTEX by EPA Method 8260D.

The performance and confirmation soil samples will be analyzed on an appropriate turnaround schedule to prevent delays in the cleanup action excavation schedule. The procedures for soil sample collection (e.g., frequency, location) and sample handling are described in the following sections.

6.4.3 Confirmational Monitoring

Confirmational monitoring for soil will consist of collecting in-situ soil samples from the base and sidewalls of the excavation area to confirm whether hazardous substances are present at concentrations exceeding screening levels. Performance monitoring soil sample locations will be used as confirmation soil sampling points in cases where the analytical results for the performance soil samples confirm that concentrations of hazardous substances less than the cleanup levels have been attained at the limits of the cleanup action excavation. Confirmation soil samples will be collected from the final lateral and vertical limits of the excavation at the rate of at least one soil sample from the base of the excavation and at

least two soil samples from each of the four sidewalls of the excavation, including sidewall samples at depths of approximately 5 and 10 feet bgs.

Following completion of cleanup activities, Farallon will conduct additional soil gas monitoring to evaluate whether TPH remains in soil gas at concentrations exceeding the Site-specific soil gas screening level which would necessitate the installation of vapor barriers to mitigate the potential for vapor intrusion into future Property buildings.

If vapor barriers are necessary, confirmation monitoring for planned vapor barriers will consist of documenting the installation and testing of the vapor barrier with QA/QC checklists, and the performance of smoke tests on the completed vapor barrier post-rebar installation and prior to the pouring of the concrete foundation. The vapor barrier QA/QC checklist and smoke testing procedures are included in Appendix J.

Confirmational groundwater monitoring will not be conducted since groundwater is not a medium of concern for the Site.

6.5 CLEANUP ACTION REPORT

Following completion of cleanup action excavation activities, a Cleanup Action Report will be prepared to document that the cleanup action has met the requirements for an NFA determination for the Property. The Cleanup Action Report will include a summary of the results from the cleanup action conducted at the Property, and will provide the technical basis supporting a request for the NFA determination. The Cleanup Action Report will include the following elements:

- A summary of the characterization and remediation completed at the Property;
- Plan maps and summary tables documenting confirmation sampling results;
- Conclusions regarding the effectiveness of the cleanup; and
- A request for an NFA determination for the Site from Ecology under the Expedited VCP.

7.0 REFERENCES

City of Bellevue Information Technology. No Date. Map Viewer.<<u>https://cobgis.maps.arcgis.com/apps/webappviewer/index.html?id=e1748</u> <u>172d4f34f1eb3710032a351cd57</u>> (May 8, 2024.)

- Eklund, Bart. 2020. Problematic Compounds in Vapor Intrusion Investigations. January 2020 Vapor Intrusion News. January. <<u>https://www.vaporpin.com/august-radon-news/problematiccompounds/</u>> (September 13, 2024).
- Farallon Consulting, LLC (Farallon). 2024. Phase I Environmental Site Assessment Report, 3245 158th Avenue Southeast, Bellevue, Washington. March 26.
- Federal Emergency Management Agency. 2020. *FEMA Flood Map Service Center*. <<u>https://msc.fema.gov/portal/search?AddressQuery=3245%20158th%20Avenue%</u> <u>20Northeast%2C%20bellevue</u>>. (May 31, 2024).
- Galster, Richard W. and William T. Laprade. 1991. Geology of Seattle, Washington, United States of America. August 1.

King County Department of Assessments. 2023. Property Information for Parcel No. 2329000030. <<u>https://blue.kingcounty.com/Assessor/eRealProperty/Dashboard.aspx?ParcelNbr=</u> 2329000030>. (May 4, 2024.)

- Freeman, Paul. 2023. *Abandoned & Little-Known Airfields*. <<u>Abandoned & Little-Known</u> <u>Airfields: Washington, Seattle area (airfields-freeman.com)</u>>. (May 4, 2024.)
- Stratum Group. 2017. Report, Environmental Site Assessment, Phase I, Verizon Office Building, 3245 158th Avenue Southeast, King County Parcel 2329000030, Bellevue, Washington 98008. February 17.
- Terra Associates, Inc. 2023. Draft Geotechnical Report, Intracorp 158th Townhomes, 3245 158th Avenue Southeast, Bellevue, Washington. October 26.
- Washington State Department of Ecology (Ecology). 1991. Guidance for Site Checks and Site Assessments for Underground Storage Tanks. Publication No. 90-52. Revised April 2003.

- ——. 1994. Natural Background Soil Metals Concentrations in Washington State. Publication No. 010-158. Revised October 2018.
- ——. 1999. Site Check/Site Assessment Checklist for Underground Storage Tanks. Publication No. 010-158. Revised October 2018.
- ——. 2009. Guidance for Evaluating Vapor Intrusion in Washington State: Investigation and Remedial Action. Publication No. 09-09-047. Revised March 2022. January.
- ——. 2010. Guidance for Remediation of Petroleum Contaminated Sites. Publication No. 10-09-057. Revised June 2016. November.
- -----. 2016a. Cleanup Action Plan Checklist. Publication No. 16-09-008. May.
- -----. 2016b. Feasibility Study Checklist. Publication No. 16-09-007. May.
- ——. 2016c. Remedial Investigation Checklist. Publication No. 16-09-006. Revised June 2020. May.
- ——. 2017. Sustainable Remediation: Climate Change Resiliency and Green Remediation, revised January 2023. November.——. 2024. Implementation Memorandum No. 25: Identifying Likely Vulnerable Populations and Overburdened Communities under the Cleanup Regulations. Publication No. 24-09-044. January.
- Washington State Department of Health. 2024. Washington Environmental Health Disparities Map. <<u>https://fortress.wa.gov/doh/wtnibl/WTNIBL/</u>>. (May 31, 2024.)

8.0 LIMITATIONS

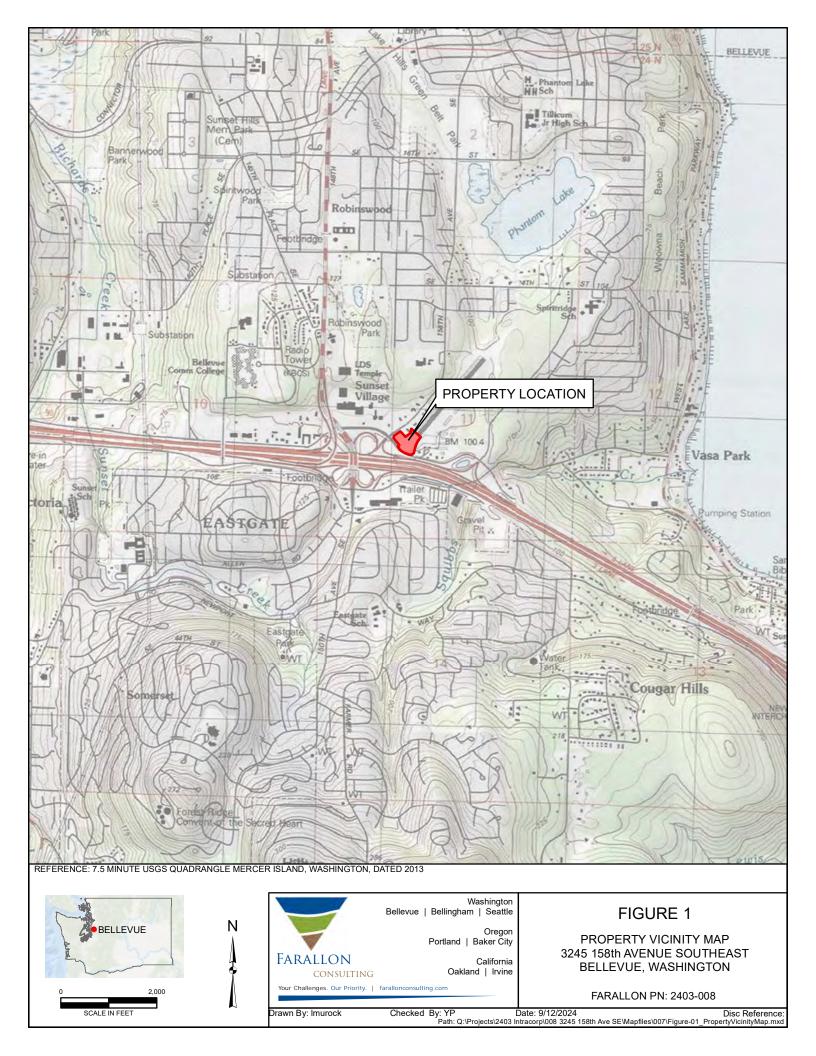
8.1 GENERAL LIMITATIONS

The conclusions contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location. The conclusions contained herein are subject to the following inherent limitations:

- Accuracy of Information. Farallon obtained, reviewed, and evaluated certain information used in this report/assessment from sources that were believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy or authenticity. Should the information upon which Farallon relied prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.
- Reconnaissance and/or Characterization. Farallon performed a reconnaissance and/or characterization of the Site that is the subject of this report/assessment to document current conditions. Farallon focused on areas deemed more likely to exhibit hazardous materials conditions. Contamination may exist in other areas of the Site that were not investigated or were inaccessible. Site activities beyond Farallon's control could change at any time after the completion of this report/assessment.

For the foregoing reasons, Farallon cannot and does not warrant or guarantee that the Site is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions can be considered valid only as of the date of the report.

This report/assessment has been prepared in accordance with the contract for services between Farallon and IS Property Investments, and currently accepted industry standards. No other warranties, representations, or certifications are made.


8.2 LIMITATION ON RELIANCE BY THIRD PARTIES

Reliance by third parties is prohibited. This report/assessment has been prepared for the exclusive use of IS Property Investments to address the unique needs of IS Property Investments at the Property at a specific point in time.

FIGURES

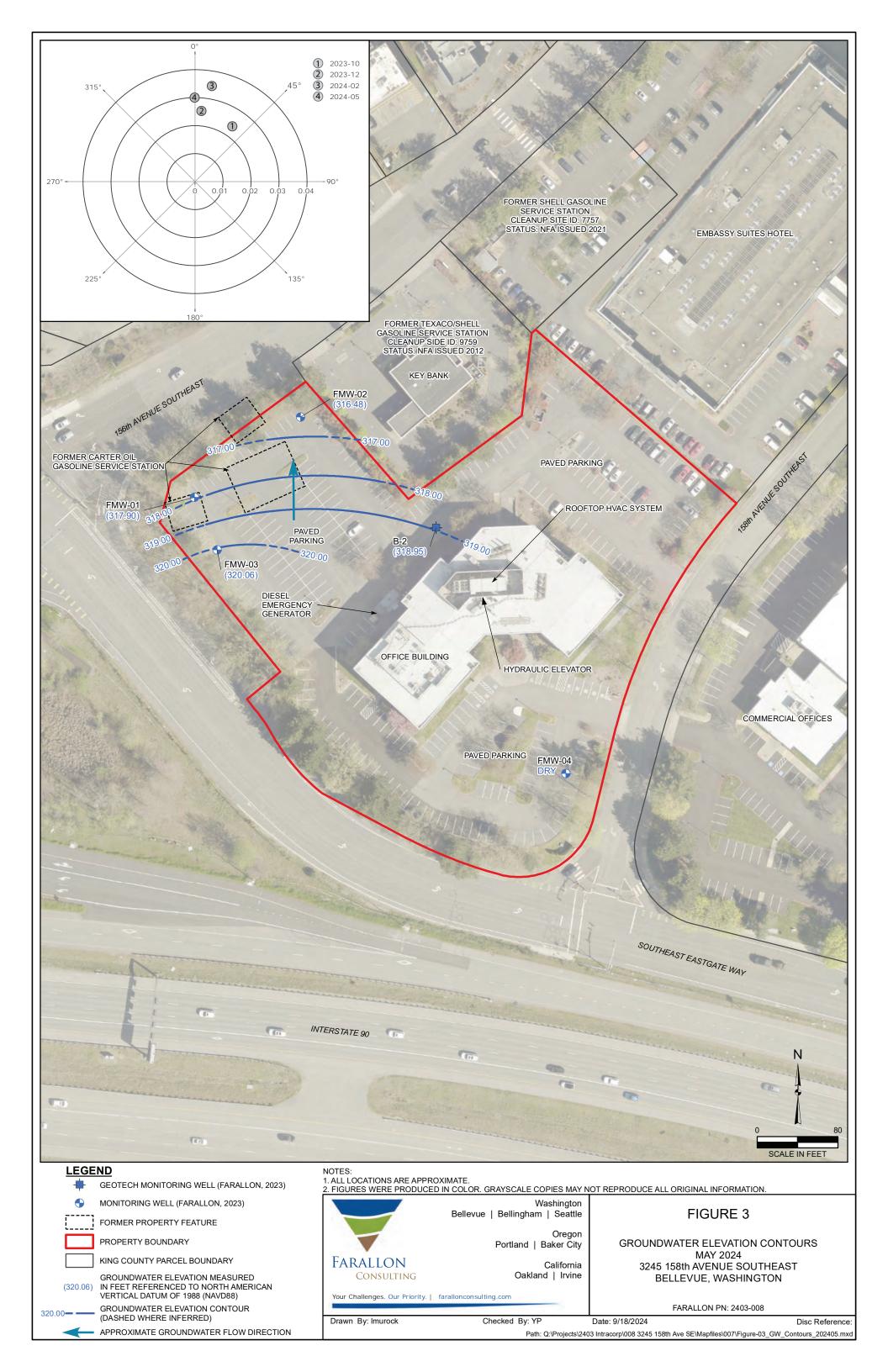
REMEDIAL INVESTIGATION AND CLEANUP ACTION PLAN 3245 158th Avenue Southeast Bellevue, Washington

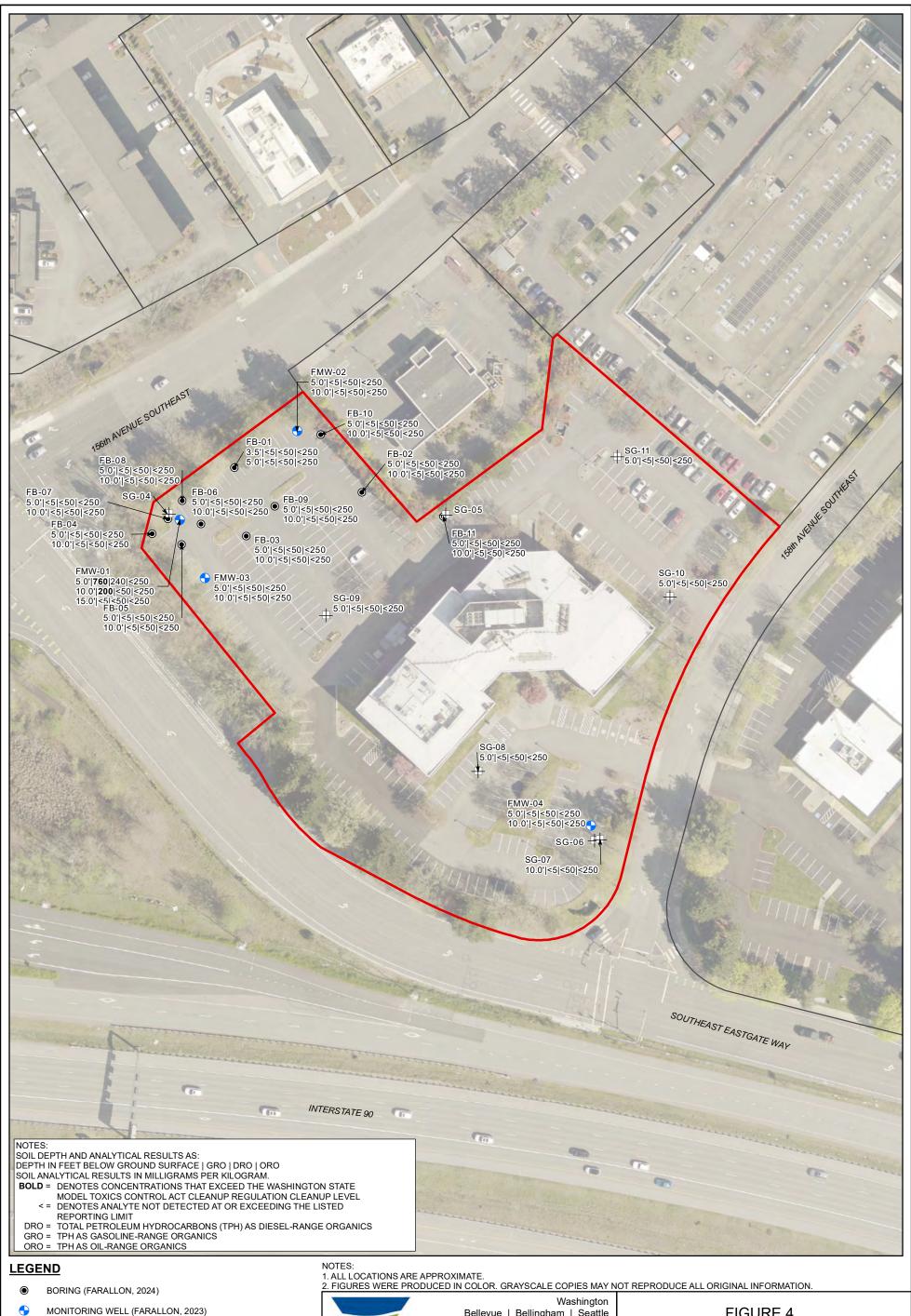
Farallon PN: 2403-008

۲	BORING (FARALLON, 2023)
---	-------------------------

- MONITORING WELL (FARALLON, 2023) \bullet
- ÷ GEOTECH MONITORING WELL (TERRA, 2023)
- ♣ SOIL GAS PROBE (FARALLON, 2023)
- TEMPORARY SOIL GAS SAMPLING LOCATION (FARALLON, 2023) +
- FORMER PROPERTY FEATURE

PROPERTY BOUNDARY


KING COUNTY PARCEL BOUNDARY

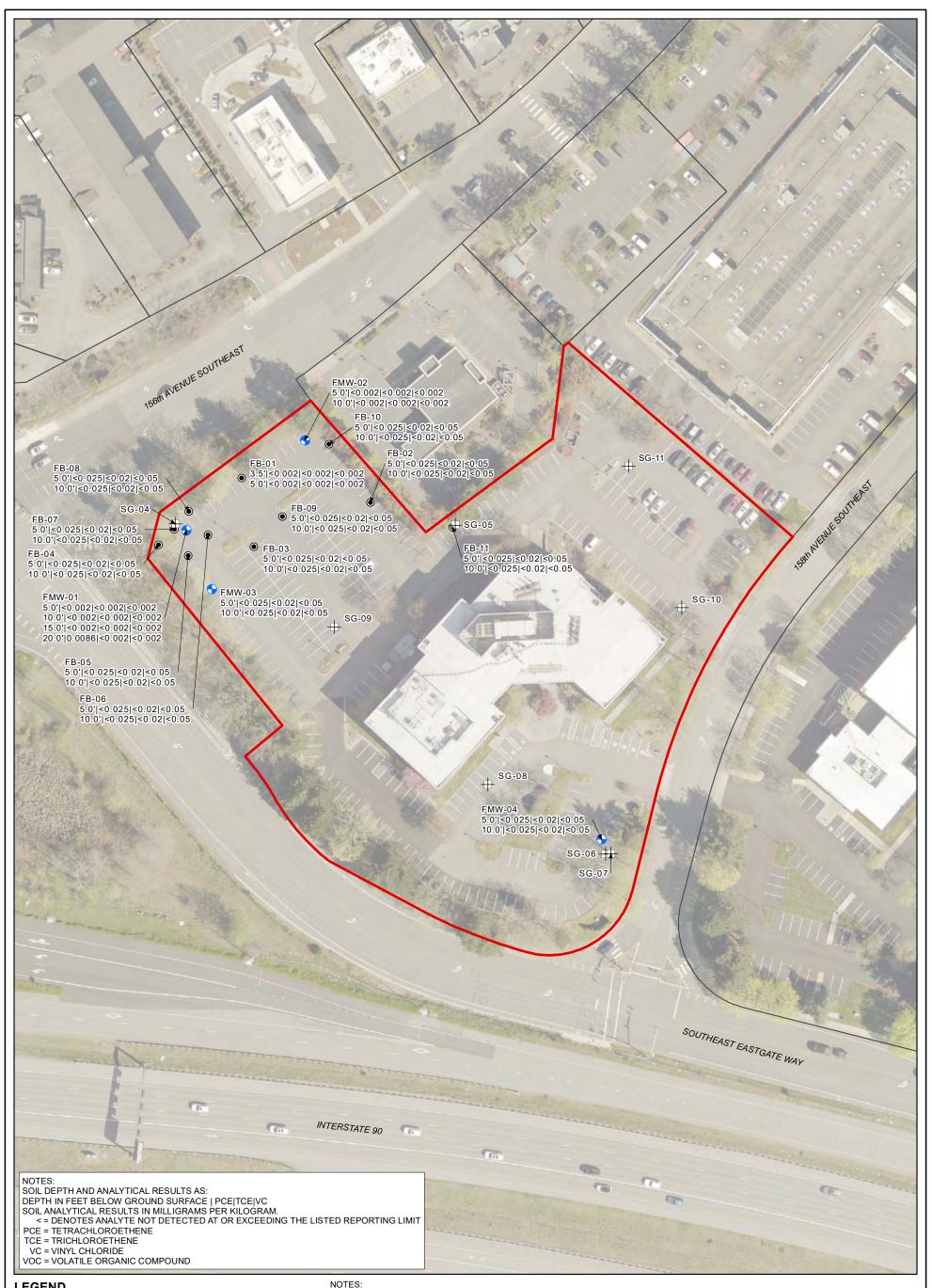

NOTES:

0

2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

		Washingto Bellevue Bellingham Seat		IRE 2
N A		Orego Portland Baker C	ity PROPER	RTY PLAN
	FARALLON Consulting	Californ Oakland Irvii	ia BELLEVUE, V	IUE SOUTHEAST VASHINGTON
70	5	llonconsulting.com	FARALLON	PN: 2403-008
SCALE IN FEET	Drawn By: Imurock	Checked By: YP	Date: 9/18/2024	

SOIL GAS SAMPLING LOCATION (FARALLON, 2024)


0

SCALE I

PROPERTY BOUNDARY

KING COUNTY PARCEL BOUNDARY

	2. FIGURES WERE PRODUCED I	N COLOR. GRAYSCALE COPIES MAY	NOT REPRODUCE ALL URIGINA	LINFORMATION.
N		Washington Bellevue Bellingham Seattle	FIC	GURE 4
Å		Oregon Portland Baker City	-	ICAL RESULTS FOR HYDROCARBONS
Ĩ	FARALLON Consulting	California Oakland Irvine	3245 158th AV	ENUE SOUTHEAST E, WASHINGTON
► 80	Your Challenges. Our Priority. fa	arallonconsulting.com	FARALLO	DN PN: 2403-008
	Drawn By: Imurock	Checked By: YP	Date: 9/12/2024	Disc Reference:
N FEET		Path: 0	Q:\Projects\2403 Intracorp\008 3245 158	8th Ave SE\Mapfiles\007\Figure-04_Soil_TPH.mxd

- ۲ BORING (FARALLON, 2024)
- \bullet MONITORING WELL (FARALLON, 2023)
- + SOIL GAS SAMPLING LOCATION (FARA

PROPERTY BOUNDARY

KING COUNTY PARCEL BOUNDARY

NOTES:	
1. ALL LOCATIONS ARE APPROXIMATE.	

2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

	N		Washington Bellevue Bellingham Seattle	FIGU	JRE 5
LLON, 2024)			Oregon Portland Baker City		AL RESULTS FOR
	Ť	FARALLON Consulting	California Oakland Irvine	3245 158th AVE	IATED VOCs NUE SOUTHEAST WASHINGTON
0	R 80	Your Challenges. Our Priority. fara	llonconsulting.com	FARALLON	PN: 2403-008
		Drawn By: jjones	Checked By: YP	Date: 9/20/2024	Disc Reference:
SCALE IN FE	EI		Path: Q:	Projects\2403 Intracorp\008 3245 158th Av	ve SE\Mapfiles\007\Figure-05_Soil_HVOC.mxd

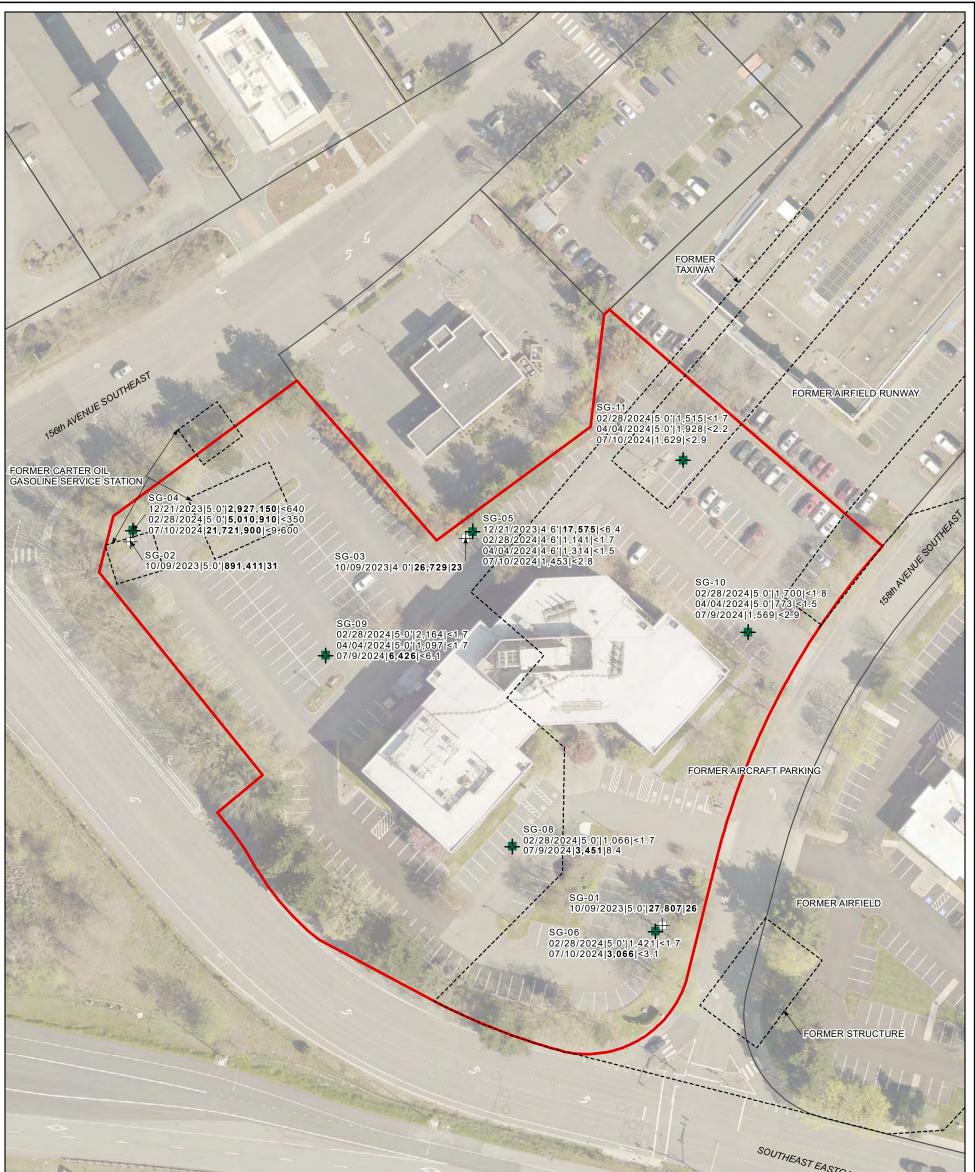
PROPERTY BOUNDARY

KING COUNTY PARCEL BOUNDARY

Ν

SCALE IN FEET

8


0

	Drawn By: Imurock	Checked By: YP	Date: 9/12/2024	Disc Reference
0	Your Challenges. Our Priority.	farallonconsulting.com	FARALLON	N PN: 2403-008
	FARALLON CONSULTING	Oregon Portland Baker City California Oakland Irvine	PETROLEUM F 3245 158th AVE	ALYTICAL RESULTS FOR HYDROCARBONS INUE SOUTHEAST WASHINGTON
		Washington Bellevue Bellingham Seattle	FIG	URE 6
	2. FIGURES WERE PRODUCED	IN COLOR. GRAYSCALE COPIES MAY N	IOT REPRODUCE ALL ORIGINAL	INFORMATION.

Path: Q:\Projects\2403 Intracorp\008 3245 158th Ave SE\Mapfiles\007\Figure-06_GW_TPH.mxd

	ERSTATE 90	
NOTES: DATE SAMPLED AND ANALYTICAL RESULTS AS: SAMPLE DATE PCE TCE VINYL CHLORIDE GROUNDWATER ANALYTICAL RESULTS IN MICROGRAMS PER LITER. BOLD = DENOTES CONCENTRATIONS THAT EXCEED THE WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION CLEANUP LEVEL < = DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE LISTED REPORTING LIMIT HVOC = HALOGENATED VOLATILE ORGANIC COMPOUND PCE = TETRACHLOROETHENE TCE = TRICHLOROETHENE		
	NOTES: 1. ALL LOCATIONS ARE APPROXIMATE. 2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NO	OT REPRODUCE ALL ORIGINAL INFORMATION.
 GEOTECH MONITORING WELL (FARALLON, 2023) MONITORING WELL (FARALLON, 2023) 	Washington Bellevue Bellingham Seattle	FIGURE 7
PROPERTY BOUNDARY N KING COUNTY PARCEL BOUNDARY Image: Country parcel boundary	Consulting Oregon Portland Baker City California Oakland Irvine	GROUNDWATER ANALYTICAL RESULTS FOR HALOGENATED VOCs 3245 158th AVENUE SOUTHEAST BELLEVUE, WASHINGTON
0 80	Your Challenges. Our Priority. farallonconsulting.com	FARALLON PN: 2403-008
SCALE IN FEET		Date: 9/12/2024 Disc Reference: rojects/2403 Intracoro/008 3245 158th Ave SE\Mapfiles\007\Figure-07 GW HVOC.mxd

and the second second			THEAST EASTGATE WAY
NOTES: SOIL GAS SAMPLE DEPTH AND ANALYTICAL RESULTS AS: SAMPLE DATE DEPTH IN FEET BELOW GROUND SURFACE TOTAL PE HYDROCARBONS BENZENE	TROLEUM	E .	and the second s
SOIL GAS ANALYTICAL RESULTS IN MICROGRAMS PER CUBIC METER. BOLD = DENOTES CONCENTRATIONS THAT EXCEED THE WASHINGTO CONTROL ACT CLEANUP REGULATION CLEANUP LEVEL < = DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE LI		INTERSTATE 90	(T) (T)
LEGEND SOIL GAS PROBE (FARALLON, 2023)	NOTES: 1. ALL LOCATIONS ARE APPROXI 2. FIGURES WERE PRODUCED IN		REPRODUCE ALL ORIGINAL INFORMATION.
TEMPORARY SOIL GAS SAMPLING LOCATION (FARALLON, 2023)		Washington Bellevue Bellingham Seattle	FIGURE 8
PROPERTY BOUNDARY N KING COUNTY PARCEL BOUNDARY Image: Country Parcel Boundary	FARALLON	Oregon Portland Baker City California Oakland Irvine	SOIL GAS ANALYTICAL RESULTS FOR PETROLEUM HYDROCARBONS 3245 158th AVENUE SOUTHEAST
070		allonconsulting.com	BELLEVUE, WASHINGTON FARALLON PN: 2403-008
SCALE IN FEET	Drawn By: jjones	,	e: 9/18/2024 Disc Reference

PASSIVE SOIL GAS SAMPLE LOCATION (FARALLON, 2023)	TPH CONCENTRATION		N	
BORING (FARALLON, 2023)	- 11,800 (μg/m ³)		٨	
MONITORING WELL (FARALLON, 2023)				
GEOTECH MONITORING WELL (TERRA, 2023)	-		0	40
SOIL GAS SAMPLING LOCATION (FARALLON, 2023)	55.2 (μg/m³)		SCALE IN FEET	⊐
TEMPORARY SOIL GAS SAMPLING LOCATION (FARALLON, 2023)		Washington		
C PROPOSED EXTENT OF PASSIVE SOIL GAS SURVEY		Bellevue Bellingham Seattle	FIGURE 94	4
FORMER PROPERTY FEATURE		Oregon	PASSIVE SOIL GAS CONC	ENTRATIONS
PROPERTY BOUNDARY		Portland Baker City	FOR TOTAL PETROLEUM HY	
KING COUNTY PARCEL BOUNDARY	FARALLON	California	SOIL GAS SAMPLING LO 3245 158th AVENUE SO	
	Consulting	Oakland Irvine	BELLEVUE, WASHIN	
SOIL GAS ANALYTICAL RESULTS IN MICROGRAMS PER CUBIC METER (µg/m ³)	Your Challenges. Our Priority.	farallonconsulting.com		
TPH = TOTAL PETROLEUM HYDROCARBONS 1. ALL LOCATIONS ARE APPROXIMATE.			FARALLON PN: 2403	-008
2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY	Drawn By: Imurock	Checked By: YP	Date: 9/12/2024	Disc Reference:
NOT REPRODUCE ALL ORIGINAL INFORMATION.		Path: Q:\/	Projects\2403 Intracorp\008 3245 158th Ave SE\Mapfil	es\007\Figure-09A_PSG-TPH.mxd

Γ

- PASSIVE SOIL GAS SAMPLE LOCATION (FARALLON, 2023)
- $oldsymbol{O}$ BORING (FARALLON, 2023)
- MONITORING WELL (FARALLON, 2023)
- + GEOTECH MONITORING WELL (TERRA, 2023)
- ÷ SOIL GAS SAMPLING LOCATION (FARALLON, 2023)
- + TEMPORARY SOIL GAS SAMPLING LOCATION (FARALLON, 2023)

PROPOSED EXTENT OF PASSIVE SOIL GAS SURVEY

PROPERTY BOUNDARY

KING COUNTY PARCEL BOUNDARY

NOTES: SOIL GAS ANALYTICAL RESULTS IN MICROGRAMS PER CUBIC METER (µg/m³) 1. ALL LOCATIONS ARE APPROXIMATE. 2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

	BENZENE CONCENTRATION 82.1 (μg/m ³) 12.4 (μg/m ³)		N 0 40 SCALE IN FEET
)	FARALLON CONSULTING	Washington Bellevue Bellingham Seattle Oregon Portland Baker City California Oakland Irvine	FIGURE 9B PASSIVE SOIL GAS CONCENTRATIONS FOR BENZENE SOIL GAS SAMPLING LOCATIONS 3245 158th AVENUE SOUTHEAST BELLEVUE, WASHINGTON
	Your Challenges. Our Priority.	farallonconsulting.com	FARALLON PN: 2403-008
	Drawn By: Imurock	Checked By: YP Path: Q:\Proje	Date: 9/12/2024 Disc Reference: cts/2403 Intracorp\008 3245 158th Ave SE\Mapfiles\007\Figure-09B_PSG-Benzene.mxd

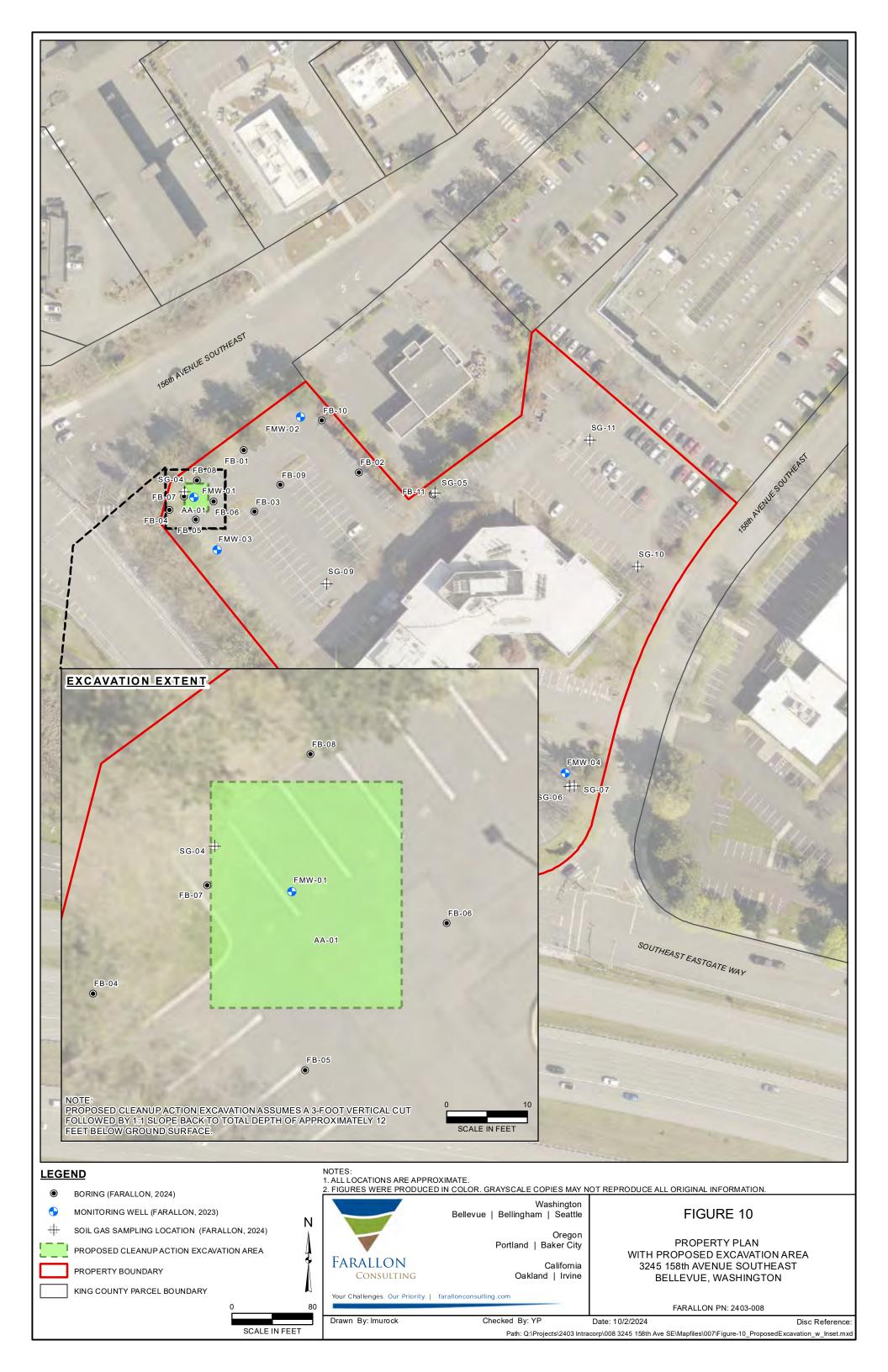
- ✤ PASSIVE SOIL GAS SAMPLE LOCATION (FARALLON, 2023)
- BORING (FARALLON, 2023)
- MONITORING WELL (FARALLON, 2023)
- GEOTECH MONITORING WELL (TERRA, 2023)
- SOIL GAS SAMPLING LOCATION (FARALLON, 2023)
- + TEMPORARY SOIL GAS SAMPLING LOCATION (FARALLON, 2023)
- PROPOSED EXTENT OF PASSIVE SOIL GAS SURVEY

PROPERTY BOUNDARY

KING COUNTY PARCEL BOUNDARY

NOTES:

SOIL GAS ANALYTICAL RESULTS IN MICROGRAMS PER CUBIC METER (µg/m³) 1. ALL LOCATIONS ARE APPROXIMATE. 2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.


	NAPHTHALENE CONCENTRATIC 92.9 (μg/m ³) 4.33377e-10 (μg/m		0 40 SCALE IN FEET
5)		Washington Bellevue Bellingham Seattle	FIGURE 9C
	-	Oregon Portland Baker City	PASSIVE SOIL GAS CONCENTRATIONS FOR NAPHTHALENES
	FARALLON Consulting	California Oakland Irvine	SOIL GAS SAMPLING LOCATIONS 3245 158th AVENUE SOUTHEAST BELLEVUE, WASHINGTON
	Your Challenges. Our Priority. fa	arallonconsulting.com	FARALLON PN: 2403-008
ĺ	Drawn By: Imurock	,	Date: 9/12/2024 Disc Reference 3 Intracorp\008 3245 158th Ave SE\Mapfiles\007\Figure-09C_PSG-Naphthalenes.m:

÷

 PASSIVE SOIL GAS SAMPLE LOCATION (FARALLON, 2023) BORING (FARALLON, 2023) MONITORING WELL (FARALLON, 2023) GEOTECH MONITORING WELL (TERRA, 2023) 	PCE CONCENTRATION 1.62 (µg/m ³)		N 0 40	
SOIL GAS SAMPLING LOCATION (FARALLON, 2023)	2.08225e-16 (µg/m ²	3)	SCALE IN FEET	
+ TEMPORARY SOIL GAS SAMPLING LOCATION (FARALLON, 2023)		Washington		
PROPOSED EXTENT OF PASSIVE SOIL GAS SURVEY		Bellevue Bellingham Seattle	FIGURE 9D	
FORMER PROPERTY FEATURE		Oregon	PASSIVE SOIL GAS CONCENTRAT	TIONS
PROPERTY BOUNDARY		Portland Baker City	FOR PCE	
KING COUNTY PARCEL BOUNDARY	FARALLON	California	SOIL GAS SAMPLING LOCATIO	
NOTES: SOIL GAS ANALYTICAL RESULTS IN	Consulting	Oakland Irvine	3245 158th AVENUE SOUTHEA BELLEVUE, WASHINGTON	51
MICROGRAMS PER CUBIC METER (µg/m³) PCE = TETRACHLOROETHENE	Your Challenges. Our Priority. fai	rallonconsulting.com	FARALLON PN: 2403-008	
1. ALL LOCATIONS ARE APPROXIMATE. 2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY	Drawn By: Imurock	Checked By: YP	Date: 9/12/2024	Disc Reference:
NOT REPRODUCE ALL ORIGINAL INFORMATION.		Path: Q:\F	Projects\2403 Intracorp\008 3245 158th Ave SE\Mapfiles\007\Figur	re-09D_PSG-PCE.mxd

I EGEND

LEGE	ND		NOTES: 1. ALL LOCATIONS ARE APPRO	XIMATE.		
+	SOIL GAS PROBE (FARALLON, 2023)		2. FIGURES WERE PRODUCED	IN COLOR. GRAYSCALE COPIES MAY N	IOT REPRODUCE ALL ORIGINAL INF	ORMATION.
+	TEMPORARY SOIL GAS SAMPLING LOCATION (FARALLON, 2023)			Washington Bellevue Bellingham Seattle	FIGUF	RE 11
	PROPOSED EXTENT OF VAPOR BARRIER	N N	-	Oregon Portland Baker City	PROPOSED DEVELO	PMENT PLANS WITH
	PROPOSED CLEANUP ACTION EXCAVATION AREA	Á	Farallon	California	ESTIMATED EXTENT O 3245 158th AVENI	UE SOUTHEAST
	PROPOSED STORMWATER DETENTION VAULT		CONSULTING	Oakland Irvine	BELLEVUE, W	ASHINGTON
	PROPERTY BOUNDARY	0 70		and the second and the se	FARALLON P	N: 2403-008
	KING COUNTY PARCEL BOUNDARY	SCALE IN FEET	Drawn By: Imurock Pat	Checked By: YP th: Q:\Projects\2403 Intracorp\008 3245 158th Ave	Date: 10/2/2024 SE\Mapfiles\007\Figure-11_ProposedVaporE	Disc Reference: Barrier\Figure-11_ProposedVaporBarrier.aprx

TABLES

REMEDIAL INVESTIGATION AND CLEANUP ACTION PLAN 3245 158th Avenue Southeast Bellevue, Washington

Farallon PN: 2403-008

Table 1Groundwater Elevations3245 158th Avenue SoutheastBellevue, WashingtonFarallon PN: 2403-008

Location	Total Well Depth (feet bgs) ¹	Screened Interval (feet bgs) ¹	Top of Casing Elevation (feet NAVD88) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet NAVD88) ²
				10/31/2023	19.22	314.89
B-2	20.00	15 - 20	334.11	12/21/2023	17.60	316.51
D-2	20.00	13 - 20	554.11	2/5/2024	14.48	319.63
				5/6/2024	15.16	318.95
				10/31/2023	22.86	311.35
FMW-01	37.00	22 - 37	334.21	12/21/2023	17.96	316.25
	37.00			2/5/2024	14.36	319.85
				5/6/2024	16.31	317.90
		21 - 31		10/31/2023	24.51	311.03
FMW-02	31.00		335.54	12/21/2023	21.02	314.52
FIVIV-02	51.00			2/5/2024	17.69	317.85
				5/6/2024	19.06	316.48
				10/31/2023	20.67	313.00
FMW-03	27.00	17 - 27	333.67	12/21/2023	15.89	317.78
FIVIV-03	27.00	17 - 27	333.07	2/5/2024	11.20	322.47
				5/6/2024	13.61	320.06
				10/31/2023	DRY	NA
	24.00	14 04	220.06	12/21/2023	DRY	NA
FMW-04	24.00	14 - 24	329.96	2/5/2024	23.40	306.56
				5/6/2024	23.42	306.54

Notes:

¹ In feet below ground surface.

² In feet above mean sea level.

³ In feet below top of well casing.

bgs = below ground surface NA = not applicable NAVD88 = North American Vertical Datum of 1988 NS = not surveyed

Table 2Soil Analytical Results for TPH and BTEX3245 158th Avenue SoutheastBellevue, WashingtonFarallon PN: 2403-008

						Analytical F	Results (milligra	ms per kilogran	n)	
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	DRO ²	ORO ²	GRO ³	Benzene⁴	Toluene⁴	Ethylbenzene ⁴	Xylenes ⁴
•	FB-01-3.5	3.5	10/23/2023	< 50	< 250	< 5	< 0.001	< 0.001	< 0.001	0.031
FB-01	FB-01-5.0	5.0	10/23/2023	< 50	< 250	< 5	< 0.001	< 0.001	< 0.001	< 0.003
	FB-02-5.0	5.0	10/24/2023	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
FB-02	FB-02-10.0	10.0	10/24/2023	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
	FB-03-5.0	5.0	10/24/2023	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
FB-03	FB-03-10.0	10.0	10/24/2023	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
	FB-04-5.0	5.0	2/19/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
FB-04	FB-04-10.0	10.0	2/19/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
	FB-05-5.0	5.0	2/19/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
FB-05	FB-05-10.0	10.0	2/19/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
	FB-06-5.0	5.0	2/19/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
FB-06	FB-06-10.0	10.0	2/19/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
	FB-07-5.0	5.0	2/19/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
FB-07	FB-07-10.0	10.0	2/19/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
	FB-08-5.0	5.0	2/19/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
FB-08	FB-08-10.0	10.0	2/19/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
	FB-09-5.0	5.0	2/19/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
FB-09	FB-09-10.0	10.0	2/19/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
ED 40	FB-10-5.0	5.0	2/20/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
FB-10	FB-10-10.0	10.0	2/20/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
	FB-11-5.0	5.0	2/20/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
FB-11	FB-11-10.0	10.0	2/20/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
	FMW-01-5.0	5.0	10/23/2023	240 x	< 250	760	< 0.001	< 0.001	0.050	0.3558
FMW-01	FMW-01-10.0	10.0	10/23/2023	< 50	< 250	200	< 0.001	< 0.001	0.0061	0.0294
	FMW-01-15.0	15.0	10/23/2023	< 50	< 250	< 5	< 0.001	< 0.001	< 0.001	< 0.003
FMW-02	FMW-02-5.0	5.0	10/23/2023	< 50	< 250	< 5	< 0.001	< 0.001	< 0.001	< 0.003
	FMW-02-10.0	10.0	10/23/2023	< 50	< 250	< 5	< 0.001	< 0.001	< 0.001	< 0.003
FMW-03	FMW-03-5.0	5.0	10/24/2023	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
FIVIVY-U3	FMW-03-10.0	10.0	10/24/2023	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
FMW-04	FMW-04-5.0	5.0	10/24/2023	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
	FMW-04-10.0	10.0	10/24/2023	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15
MTCA Method A	Cleanup Levels for Soil⁵	j		2,000	2,000	30/100 ⁶	0.03	7	6	9

Table 2 Soil Analytical Results for TPH and BTEX 3245 158th Avenue Southeast **Bellevue, Washington** Farallon PN: 2403-008

				Analytical Results (milligrams per kilogram)							
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes⁴	
SG-07	SG-07-10.0	10.0	2/20/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15	
SG-08	SG-08-5.0	5.0	2/20/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15	
SG-09	SG-09-5.0	5.0	2/20/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15	
SG-10	SG-10-5.0	5.0	2/20/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15	
SG-11	SG-11-5.0	5.0	2/20/2024	< 50	< 250	< 5	< 0.03	< 0.05	< 0.05	< 0.15	
MTCA Method A	Cleanup Levels for Soil⁵			2,000	2,000	30/100 ⁶	0.03	7	6	9	

NOTES:

Results in **bold** and highlighted yellow denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8260D.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁶Cleanup level is 30 milligrams per kilogram if benzene is detected and 100 milligrams per kilogram if benzene is not detected.

BTEX = benzene, toluene, ethylbenzene and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

ORO = TPH as oil-range organics

x = the sample chromatographic pattern does not resemble the fuel standard used for quantitation

Table 3Soil Analytical Results for Volatile Organic Compounds3245 158th Avenue SoutheastBellevue, WashingtonFarallon PN: 2403-008

					Analytical I	Results (mi	lligrams per	[·] kilogram) ²	
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	Naphthalene
FB-01	FB-01-3.5	3.5	10/23/2023	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.01
10 01	FB-01-5.0	5.0	10/23/2023	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.01
FB-02	FB-02-5.0	5.0	10/24/2023	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
	FB-02-10.0	10.0	10/24/2023	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
FB-03	FB-03-5.0	5.0	10/24/2023	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
1 8 88	FB-03-10.0	10.0	10/24/2023	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
FB-04	FB-04-5.0	5.0	2/19/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
15 01	FB-04-10.0	10.0	2/19/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
FB-05	FB-05-5.0	5.0	2/19/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
1 8 00	FB-05-10.0	10.0	2/19/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
FB-06	FB-06-5.0	5.0	2/19/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
1 8 00	FB-06-10.0	10.0	2/19/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
FB-07	FB-07-5.0	5.0	2/19/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
18 01	FB-07-10.0	10.0	2/19/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
FB-08	FB-08-5.0	5.0	2/19/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
1 8 00	FB-08-10.0	10.0	2/19/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
FB-09	FB-09-5.0	5.0	2/19/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
1 8 00	FB-09-10.0	10.0	2/19/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
FB-10	FB-10-5.0	5.0	2/20/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
1010	FB-10-10.0	10.0	2/20/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
FB-11	FB-11-5.0	5.0	2/20/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
10-11	FB-11-10.0	10.0	2/20/2024	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
_	FMW-01-5.0	5.0	10/23/2023	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.038
FMW-01	FMW-01-10.0	10.0	10/23/2023	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.027
	FMW-01-15.0	15.0	10/23/2023	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.01
	FMW-01-20.0	20.0	10/23/2023	0.0086	< 0.002	< 0.002	< 0.002	< 0.002	
FMW-02	FMW-02-5.0	5.0	10/23/2023	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.01
	FMW-02-10.0	10.0	10/23/2023	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.01
ITCA Cleanup Le	vels for Soil ³			0.05	0.03	160 ⁴	1,600 ⁴	0.67 ⁴	5.0
FMW-03	FMW-03-5.0	5.0	10/24/2023	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
	FMW-03-10.0	10.0	10/24/2023	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
	FMW-04-5.0	5.0	10/24/2023	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
FMW-04	FMW-04-10.0	10.0	10/24/2023	< 0.025	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
ITCA Cleanup Le	vels for Soil ³		-	0.05	0.03	160 ⁴	1,600 ⁴	0.67 ⁴	5.0

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8260D. Only detected and select analytes shown in table; see lab report for full list of analytes.
 ³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁴Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State MTCA, Standard Method B Formula Values for Soil from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

Table 4 Soil Analytical Results for Metals 3245 158th Avenue Southeast Bellevue, Washington Farallon PN: 2403-008

				Analytical Results (milligrams per kilogram) ²								
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	
FMW-01	FMW-01-5.0	5.0	10/23/2023	1.48	29.8	< 1	15.6	1.19	< 1	< 1	< 1	
FMW-04	FMW-04-5.0	5.0	10/24/2023	1.14	17.8	< 1	9.78	1.00	< 1	< 1	< 1	
MTCA Cleanup Levels for Soil ³				20	16,000 ⁴	2	2,000	250	2	400 ⁴	400 ⁴	

NOTES:

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Methods 6020B.
 ³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013, unless otherwise noted.

Table 5 Groundwater Analytical Results for TPH and BTEX 3245 158th Avenue Southeast Bellevue, Washington Farallon PN: 2403-008

					Analytical F	Results (microgr	ams per liter)		
Sample Location	Sample Date	Sample Identification	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
			Monitoring V	Vell Groundwate	r Samples				
	10/31/2023	GEOTECH-1-103123	860 x	930 x	< 100	< 0.35	< 1	< 1	< 3
B-2	12/21/2023	B-2-122123	< 50	< 250	< 100	< 0.35	< 1	< 1	< 3
	5/6/2024	B-2-050624	< 50	< 250	< 100	< 0.35	< 1	< 1	< 3
	10/31/2023	FMW-01-103123	< 50	< 250	< 100	< 0.35	< 1	< 1	< 3
FMW-01	12/21/2023	FMW-01-122123	< 50	< 250	< 100	< 0.35	< 1	< 1	< 3
	5/6/2024	FMW-01-050624	< 50	< 250	< 100	< 0.35	< 1	< 1	< 3
FMW-02	10/31/2023	FMW-02-103123	< 50	< 250	< 100	< 0.35	< 1	< 1	< 3
	5/6/2024	FMW-02-050624	< 50	< 250	< 100	< 0.35	< 1	< 1	< 3
FMW-03	10/31/2023	FMW-03-103123	< 50	< 250	< 100	< 0.35	< 1	< 1	< 3
	5/6/2024	FMW-03-050624	< 50	< 250	< 100	< 0.35	< 1	< 1	< 3
MTCA Method A Cleanup Level for Groundwater ⁴		500	500	800/1,000 ⁵	5	1,000	700	1,000	

NOTES:

Results in **bold** and highlighted yellow denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or above the reporting limit listed.

¹Analyzed by Northwest Method NWTPH-Dx.

²Analyzed by Northwest Method NWTPH-Gx.

³Analyzed by U.S. Environmental Protection Agency Method 8260D.

⁴Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section

900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013.

⁵Cleanup level is 800 micrograms per liter if benzene is detected and 1,000 micrograms per liter if benzene is not detected.

BTEX = benzene, toluene, ethylbenzene, and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

ORO = TPH as oil-range organics

x = the sample chromatographic pattern does not resemble the fuel standard used for quantitation

Table 6Groundwater Analytical Results for Halogenated VOCs3245 158th Avenue SoutheastBellevue, WashingtonFarallon PN: 2403-008

				Analyti	cal Results (microgr	ams per liter) ¹	
Sample Location	Sample Date	Sample Identification	PCE	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride
	-	Monitor	ing Well Grou	ndwater Samp	les		
	10/31/2023	GEOTECH-1-103123	< 1	< 0.5	< 1	< 1	< 0.02
B-2	12/21/2023	B-2-122123	< 1	< 0.5	< 1	< 1	< 0.02
	5/6/2024	B-2-050624	< 1	< 0.5	< 1	< 1	< 0.02
	10/31/2023	FMW-01-103123	6.4	0.65	< 1	< 1	< 0.02
FMW-01	12/21/2023	FMW-01-122123	5.0	0.58	< 1	< 1	< 0.02
	2/5/2024	FMW-01-020524	3.6	< 0.5	< 1	< 1	< 0.02
	5/6/2024	FMW-01-050624	4.2	< 0.5	< 1	< 1	< 0.02
FMW-02	10/31/2023	FMW-02-103123	1.8	< 0.5	< 1	< 1	< 0.02
FIVIVV-02	5/6/2024	FMW-02-050624	1.7	< 0.5	< 1	< 1	< 0.02
	10/31/2023	FMW-03-103123	< 1	< 0.5	< 1	< 1	< 0.02
FMW-03	5/6/2024	FMW-03-050624	< 1	< 0.5	< 1	< 1	< 0.02
ITCA Cleanup Levels for Groundwater ²			5	5	16 ³	160 ³	0.2

NOTES:

Results in **bold** and highlighted yellow denote concentrations exceeding applicable cleanup levels. < denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8260D. Only detected and select analytes shown in table; see lab report for full list of analytes.

²Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

³Washington State Model Toxics Control Act Cleanup Regulation Cleanup Levels and Risk Calculations, Standard Method B Values for Groundwater, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

PCE = tetrachloroethene TCE = trichloroethene VOC = volatile organic compound

Table 7 Soil Gas Analytical Results for Petroleum Hydrocarbons 3245 158th Avenue Southeast **Bellevue, Washington** Farallon PN: 2403-008

							Analytical	Results (microgr	ams per cub	ic meter)		
					Non-ca	rcinogenic Pet	roleum Compo	ounds		Carcinogenic Pet	roleum Compounds	
Sample Location	Sample Date	Sample Identification	Sample Depth ¹	C5-C8 Aliphatics ²	C9-C12 Aliphatics ²	C9-C10 Aromatics ²	Toluene ³	Ethylbenzene ³	Total Xylenes ³	Benzene ³	Naphthalene ³	Total Petroleum Hydrocarbons ⁴
SG-01	10/9/2023	SG-01-5.0	5.0	14,000	7,900	< 1,000	< 310	830	4,390 E	26	< 11	27,807
SG-02	10/9/2023	SG-02-5.0	5.0	290,000	580,000	19,000	< 310	110	2,100	31	< 11	891,411
SG-03	10/9/2023	SG-03-4.0	4.0	17,000	< 1,100	1,700 x	< 320	990	6,300 E	DE 23 < 11		26,729
	12/21/2023	SG-04-122123	5.0	890,000	2,000,000	< 50,000	< 15,000	< 870	3,200	< 640 < 520		2,927,150
SG-04	2/28/2024	SG-04-022824	5.0	1,200,000	3,700,000	99,000	< 8,300	< 480	7,200	< 350	< 290	5,010,910
	7/10/2024	SG-04-071024	5.0	6,200,000	15,000,000	< 750,000	< 230,000	< 13,000	< 39,000	< 9,600	< 2,200	21,721,900
	12/21/2023	SG-05-122123	4.6	2,900	14,000	< 970	< 290	< 17	< 51	< 6.4 J	< 2 J	17,575
SC 05	2/28/2024	SG-05-022824	4.6	530	520	< 130	< 40	< 2.3	< 6.9	< 1.7	< 1.4	1,141
SG-05	4/4/2024	SG-05-040424	4.6	590	610	< 180	< 36	< 2.1	< 6.3	< 1.5	< 1.3	1,314
	7/10/2024	SG-05-071024	5.0	830	470	< 220	< 66	< 3.8	< 11.4	< 2.8	0.64	1,453
SG-06	2/28/2024	SG-06-022824	5.0	550	780	< 130	< 40	< 2.3	< 6.9	< 1.7	< 1.4	1,421
39-00	7/10/2024	SG-06-071024	5.0	1,900	1,000	< 240	< 72	< 4.2	< 12.5	< 3.1	< 0.70	3,066
SG-08	2/28/2024	SG-08-022824	5.0	500	470	< 130	< 40	< 2.3	8.2	< 1.7	< 1.4	1,066
39-00	7/9/2024	SG-08-070924	5.0	2,000	1,100	< 500	< 150	< 8.7	< 25.7	8.4	< 1.5	3,451
	2/28/2024	SG-09-022824	5.0	970	1,100	< 130	< 39	< 2.3	7.0	< 1.7	< 1.4	2,164
SG-09	4/4/2024	SG-09-040424	5.0	870	< 200	< 200	< 41	< 2.3	< 7.0	< 1.7	< 1.4	1,097
	7/9/2024	SG-09-070924	5.0	3,100	3,000	< 470	< 140	< 8.3	< 25.3	< 6.1	< 1.4	6,426
	2/28/2024	SG-10-022824	5.0	710	890	< 140	< 41	< 2.4	6.8	< 1.8	< 1.4	1,700
SG-10	4/4/2024	SG-10-040424	5.0	580	< 170	< 170	< 35	< 2	< 6	< 1.5	< 1.2	773
	7/9/2024	SG-10-070924	5.0	930	480	< 230	< 69	< 4	< 12	< 2.9	< 0.68	1,569
	2/28/2024	SG-11-022824	5.0	610	810	< 130	< 41	< 2.3	6.3	< 1.7	< 1.4	1,515
SG-11	4/4/2024	SG-11-040424	5.0	800	970	< 250	< 51	< 3	< 8.9	< 2.2	< 1.8	1,928
7/10/2024 SG-11-071024 5.0				850	620	< 230	< 69	< 4	< 12	< 2.9	< 0.68	1,629
MTCA Method B S	TCA Method B Site-Specific Subslab Soil Gas Screening Level ⁵											2,606
MTCA Method B S	TCA Method B Subslab Soil Gas Screening Level - Residential Exposure ⁶									11	2.5	1,500
MTCA Method B S	A Method B Subslab Soil Gas Screening Level for a Commercial Worker ⁶									50	11	13,000

NOTES: Results in **bold** and highlighted in yellow denote concentrations exceeding the site-specific total petroleum hydrocarbon screening level or Method B standard screening levels for carcinogenic compounds.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by Massachusetts Department of Environmental Protection Method MA-APH.

³Analyzed by U.S. Environmental Protection Agency Method TO-15.

⁴Sum of all non-carcinogenic and carcinogenic petroleum compounds. Non-detected values summed at 1/2 the reporting limit.

⁵Calculation of a site-specific total petroleum hydrocarbon soil gas screening level conducted in accordance with the Washington State Department of

Ecology's Guidance for Evaluating Vapor Intrusion in Washington State, Publication No. 09-09-047, Final March 2022.

⁶Washington State Model Toxics Control Act Cleanup Regulation Cleanup Levels and Risk Calculations, Standard Method B Values for Subslab Soil Gas Screening Level and

Screening Level for Commercial Worker, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

E = result exceeded calibration range of instrument and is an estimate

--- denotes not applicable

J = concentration reported below standard reporting limit; result is an estimate

x = the sample chromatographic pattern does not resemble the fuel standard used for quantitation

Table 8 Soil Gas Analytical Results for Volatile Organic Compounds 3245 158th Avenue Southeast Bellevue, Washington Farallon PN: 2403-008

				Analy	tical Results	(micrograms	s per cubic m	eter) ²	Analytical Result (percent) ³
Sample Location	Sample Date	Sample Identification	Sample Depth (feet) ¹	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	Helium
SG-01	10/9/2023	SG-01-5.0	5.0	< 280	< 4.4	< 16	< 16	< 10	
SG-02	10/9/2023	SG-02-5.0	5.0	< 280	< 4.4	< 16	< 16	< 10	
SG-03	10/9/2023	SG-03-4.0	4.0	< 290	< 4.6	< 17	< 17	< 11	
	12/21/2023	SG-04-122123	5.0	< 14,000	< 210	< 790	< 790	< 510	
SG-04	2/28/2024	SG-04-022824	5.0	< 7,500	< 120	< 440	< 440	< 280	< 0.6
	7/10/2024	SG-04-071024	5.0	< 200,000	< 3,200	< 12,000	< 12,000	< 7,700	
	12/21/2023	SG-05-122123	4.6	< 260	< 4.2	< 15	< 15	< 5.3 J	
SG-05	2/28/2024	SG-05-022824	4.6	< 36	< 0.57	< 2.1	< 2.1	< 1.4	< 0.6
36-05	4/4/2024	SG-05-040424	4.6	< 33	< 0.52	< 1.9	< 1.9	< 1.2	
	7/10/2024	SG-05-071024	4.6	< 59	< 0.94	< 3.4	< 3.4	< 2.2	
SG-06	2/28/2024	SG-06-022824	5.0	< 36	< 0.57	< 2.1	< 2.1	< 1.4	< 0.6
SG-00	7/10/2024	SG-06-071024	5.0	< 65	< 1	< 3.8	< 3.8	< 2.5	
00.00	2/28/2024	SG-08-022824	5.0	< 36	< 0.57	< 2.1	< 2.1	< 1.4	< 0.6
SG-08	7/9/2024	SG-08-070924	5.0	< 140	< 2.1	< 7.9	< 7.9	< 5.1	
	2/28/2024	SG-09-022824	5.0	< 35	< 0.56	< 2.1	< 2.1	< 1.3	< 0.6
SG-09	4/4/2024	SG-09-040424	5.0	< 37	< 0.58	< 2.1	< 2.1	< 1.4	
	7/9/2024	SG-09-070924	5.0	< 130	< 2	< 7.5	< 7.5	< 4.9	
	2/28/2024	SG-10-022824	5.0	< 37	< 0.59	< 2.2	< 2.2	< 1.4	< 0.6
SG-10	4/4/2024	SG-10-040424	5.0	< 31	< 0.49	< 1.8	< 1.8	< 1.2	
	7/9/2024	SG-10-070924	5.0	< 62	< 0.99	< 3.6	< 3.6	< 2.4	
	2/28/2024	SG-11-022824	5.0	< 37	< 0.58	< 2.1	< 2.1	< 1.4	< 0.6
SG-11	4/4/2024	SG-11-040424	5.0	< 46	< 0.73	< 2.7	< 2.7	< 1.7	
	7/10/2024	SG-11-071024	5.0	< 62	< 0.99	< 3.6	< 3.6	< 2.4	
ethod B Soil	Gas Screening Le	vel-Residential Expo	sure ⁴	320	11	610	610	9.5	NE
		vel for a Commercial		1,500	95	5,200	5,200	44	NE

NOTES:

Results in **bold** and highlighted in yellow denote concentrations exceeding applicable screening levels.

NE = not established

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below surface.

²Analyzed by U.S. Environmental Protection Agency Method TO-15. Only detected analytes shown in table; see lab reports for full list of analytes. ³Analyzed by ASTM Method D1946.

⁴Washington State Model Toxics Control Act Cleanup Regulation Cleanup Levels and Risk Calculations, Standard Method B Values for Sub-Slab Soil Gas Screening

Table 9 Air Analytical Results for Petroleum Hydrocarbons 3245 158th Avenue Southeast Bellevue, Washington Farallon PN: 2403-008

					Analytical Results (micrograms per cubic meter)							
					Non-carcinogenic Petroleum Compounds					Carcinogenic Pet		
Sample Location	Sample Type	Sample Date	Sample Identification	C5-C8 Aliphatics ¹	C9-C12 Aliphatics ¹	C9-C10 Aromatics ¹	Toluene ²	Ethylbenzene ²	Total ² Xylenes ² Benzene ² Nap		Naphthalene ²	Total Petroleum Hydrocarbons ³
AA-01	Outdoor Ambient Air	2/5/2024	AA-01-020524	74 J	< 2.5 J	< 2.5 J	< 7.5	< 0.43	< 1.3	0.51	0.089 J	82
MTCA Method B I	ITCA Method B Indoor Air Cleanup Level - Residential Exposure ⁴									0.32	0.0735	46
MTCA Method B Indoor Air Screening Level for a Commercial Worker ⁴										1.5	0.344	390

NOTES:

Results in **bold** and highlighted yellow denote concentrations exceeding one or more cleanup/screening levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by Massachusetts Department of Environmental Protection Method MA-APH.

²Analyzed by U.S. Environmental Protection Agency Method TO-15.

³Sum of all non-carcinogenic and carcinogenic petroleum compounds. Non-detected values summed at 1/2 the reporting limit.

⁴Washington State Model Toxics Control Act Cleanup Regulation Cleanup Levels and Risk Calculations, Standard Method B Values for Indoor Air and Screening Levels for

Commercial Worker, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

J = result is an estimate

Table 10 Air Analytical Results for Volatile Organic Compounds 3245 158th Avenue Southeast Bellevue, Washington Farallon PN: 2403-008

				Analytical Results (micrograms per cubic meter) ¹								
Sample Location	Sample Type	Sample Identification	Sample Date	Tetrachloroethene	Trichloroethene	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride				
AA-01	Outdoor Ambient Air	2/5/2024	AA-01-020524	< 6.8	< 0.11	< 0.4	< 0.4	< 0.26				
Method B Indoor Air Cleanup Level - Residential Exposure ²				9.62	0.334	18.3	18.3	0.284				
Method B Indoor Air Screening Level for a Commercial Worker ²				44.9	2.85	156	156	1.33				

NOTES:

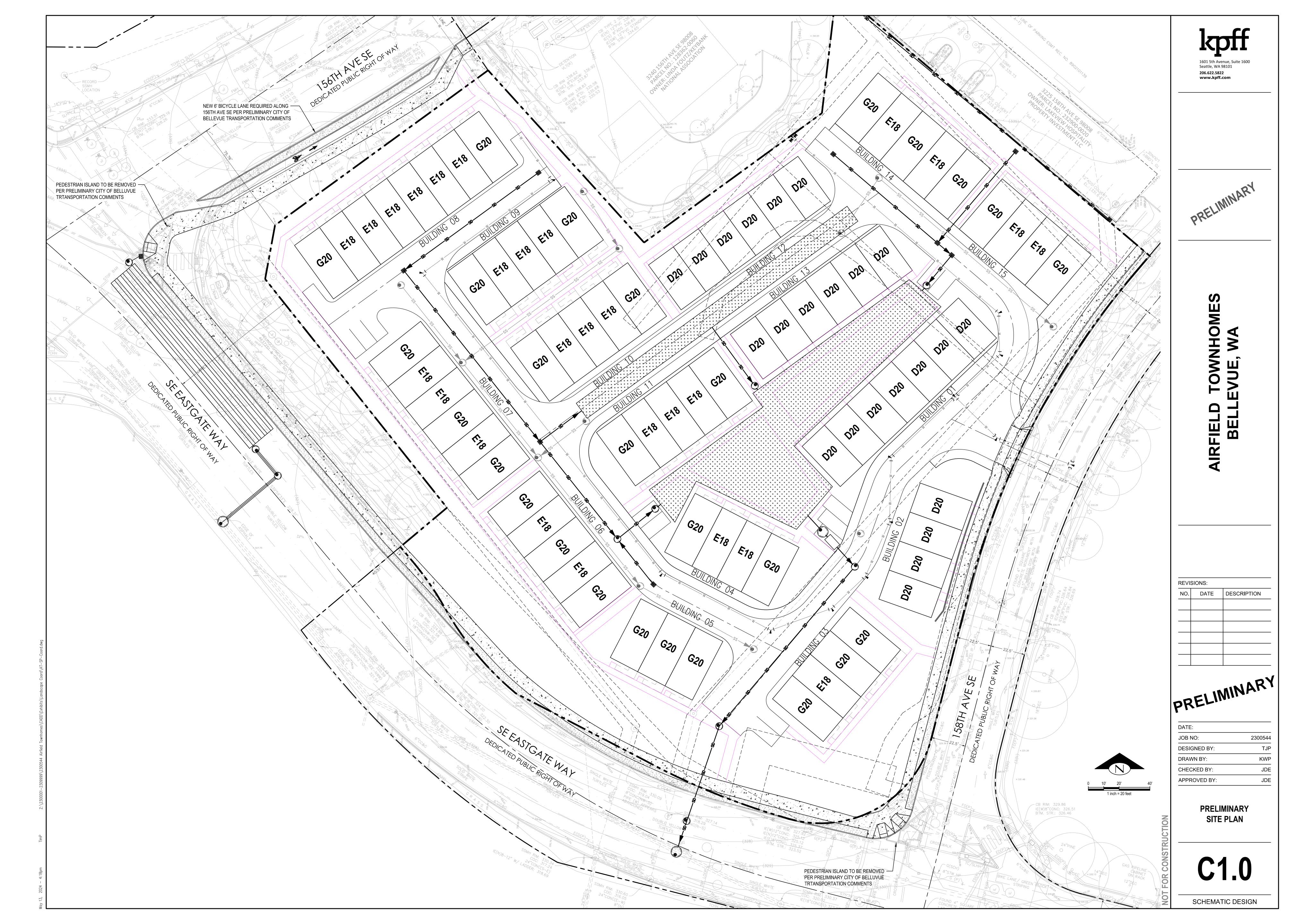
Results in **bold** and highlighted yellow denote concentrations exceeding one or more cleanup/screening levels.

J = result is an estimate

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method TO-15. Only detected and select analytes shown in table; see lab report for full list of analytes.

²Washington State Model Toxics Control Act Cleanup Regulation Cleanup Levels and Risk Calculations, Standard Method B


Values for Indoor Air and Screening Levels for Commercial Worker, https://ecology.wa.gov/Regulations-Permits/Guidance-

technical-assistance/Contamination-clean-up-tools/CLARC

APPENDIX A PRELIMINARY DEVELOPMENT PLANS

REMEDIAL INVESTIGATION AND CLEANUP ACTION PLAN 3245 158th Avenue Southeast Bellevue, Washington

Farallon PN: 2403-008

APPENDIX B BORING LOGS

REMEDIAL INVESTIGATION AND CLEANUP ACTION PLAN 3245 158th Avenue Southeast Bellevue, Washington

Farallon PN: 2403-008

		FARALLON	L	og of Bori	ng:	F	B-(01		Pag	e 1 of 1	
Clie	ent:	IS Property Investments LLC	Date/Time Started:	10/23/23 @ 1314		Dept	h to	Wate	r ATD	(ft bgs):	NE	
Pro	oject	t: 3245 158th Ave SE	Date/Time Completed:	10/23/23 @ 1402		Bori	ng Di	amet	er (in):	1	3.75	
	-	on: Bellevue, WA	Drilling Company:	AEC		Tota	l Bor	ing D	epth (t bgs):	20.0	
			Drilling Method:	Sonic								
		2100 000	Drilling Equipment:	Terrasonic								
Log	ggeo	d By: A. Osman	Drilling Operator:	Cole Pickering								
Rev	view	ved By: Y. Pehlivan	Sampler Type:	5.0' PE								
Depth (ft bgs)	Cepth (ft bgs) Sample Interval Lithologic Description			nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Samp	le ID	Sample Analyzed	

0	0.0-1.5': Poorly graded SAND (90% sand, 10% gravel), fine and medium sand, fine gravel, gray-brown, dry, no odor, no staining.	SP	100			
-	1.5-3.0': Silty SAND (50% sand, 40% silt, 10% gravel), fine to coarse sand and gravel, dark brown, dry, slight sweet odor, no staining.	ML				
	3.0-7.0': Poorly graded SAND (90% sand, 10% gravel), fine and medium sand, fine gravel, gray-brown, dry, no odor, no staining.	SP		1.2	FB-01-3.5	x
5-			100	0.0	FB-01-5.0	x
	7.0-15.0': Poorly graded SAND with gravel (75% sand, 20% gravel, 5% silt), fine and medium sand, fine gravel, gray, dry, no odor, no staining.	SP				
			100	0.0	FB-01-10.0	
	15.0-20.0': Silty SAND with gravel (65% sand, 20% silt, 15% gravel), fine to coarse sand, fine gravel, gray-brown, dry, no odor, no staining.	ML	100	0.0	FB-01-15.0	
20				0.2	FB-01-20.0	

Completion Information										
Temporary Well Casing Diameter (in):	NA	Surface Seal:	Concrete							
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA							
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA							

		FARALLON CONSULTING	L	og of Bori	ng:	F	B-()2		Page 1 of 1	1
Far Log	ojec cati rallo gge	·····	Date/Time Started: Date/Time Completed: Drilling Company: Drilling Method: Drilling Equipment: Drilling Operator: Sampler Type:	10/23/23 @ 1309 10/24/23 @ 1210 AEC Sonic Terrasonic Cole Pickering 5.0' PE		Borir	ng Dia	amet	er (in):	(ft bgs): NE 3.75 t bgs): 20.0	
Depth (ft bgs)	Sample Interval	Lithologic De	scription		uscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed
0 - - - - - - - - - - - - - - - - - - -		 0.0-5.0': Sandy SILT (50% silt, 40% sand, 10% graves slight organic odor, no staining. 5.0-7.5': Poorly graded SAND with silt (80% sand, 1 gray, dry, no odor, no staining. 7.5-10.0': Silty SAND (70% sand, 20% silt, 10% graves brown, dry, no odor, no staining. 	0% silt, 10% gravel), fine	sand and gravel,	ML SP- SM			100	0.0	FB-02-5.0	x
10 -		10.0-12.5': Silty SAND (70% sand, 20% silt, 10% gr gray-brown, dry, no odor, no staining. 12.5-20.0': Poorly graded SAND with silt (80% sand and coarse gravel, gray-brown, dry, no odor, no sta	I, 10% silt, 10% gravel), m		SM SP- SM			100	0.0	FB-02-10.0	x
15 -								100	0.2	FB-02-15.0 FB-02-20.0	

Completion Information										
Temporary Well Casing Diameter (in):	NA	Surface Seal:	Concrete							
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA							
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA							

	-	FARALLON	Lo	og of Bori	ng:	F	B-(03		Page 1 of 1	
Clie Pro		·····	Date/Time Started: Date/Time Completed:	10/23/23 @ 1036 10/24/23 @ 1140					r ATD (er (in):	ft bgs): 17.0 3.75	
	-	on: Bellevue, WA	Drilling Company:	AEC		Total	Bori	ing D	epth (f	t bgs): 20.0	
		on PN: 2403-008	Drilling Method:	Sonic							
Log	gge	d By: A. Osman	Drilling Equipment: Drilling Operator:	Terrasonic Cole Pickering							
Rev	viev	wed By: Y. Pehlivan	Sampler Type:	5.0' PE							
Depth (ft bgs)	Sample Interval	Lithologic Des	scription		nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed
0 - - - - - - - - - - - - - - - - - - -		0.0-5.0': Silty SAND (65% sand, 30% silt, 5% grave dry, no odor, no staining. 5.0-10.0': Silty SAND with gravel (45% sand, 35% s gravel, gray, dry, no odor, no staining. 10.0-12.5': Silty SAND with gravel (65% sand, 20% fine gravel, brown, dry, no odor, no staining.	ilt, 20% gravel), fine sand,	fine and coarse	SM			100	0.1	FB-03-5.0 FB-03-10.0	x
- - - - - - - - - - - - - - - - - - -		12.5-14.0': Poorly graded SAND with silt (80% sand sand, fine and coarse gravel, brown, dry, no odor, n 14.0-17.0': Silty SAND (75% sand, 15% silt, 10% gr dry, no odor, no staining. 17.0-20.0': Silty SAND (70% sand, 20% silt, 10% gr brown, wet, no odor, no staining.	o staining. avel), fine sand and grave	l, light brown,	SP- SM SM		¥	100	0.2	FB-03-15.0	
_									0.8	FB-03-20.0	

Completion Information											
Temporary Well Casing Diameter (in):	NA	Surface Seal:	Concrete								
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA								
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA								

	-	FARALLON	Lo	og of Borir	ng:	F	B-()4		Pag	le 1 of 1	
Clie	ent:	IS Property Investments LLC	Date/Time Started:	2/19/24 @ 0940	l	Deptl	h to V	Vater	ATD (ft bgs):	15.0	
Pro	jec	t: 3245 158th Ave SE	Date/Time Completed:	2/19/24 @ 1013	I	Borin	ıg Dia	amet	ər (in):		3.75	
-	-	on: Bellevue, WA	Drilling Company:	AEC		Total	Bori	ng D	epth (f	t bgs):	20.0	
		on PN: 2403-008	Drilling Method:	Sonic								
Tare	anc	2403-000	Drilling Equipment:	Terrasonic								
Log	ge	d By: A. Osman	Drilling Operator:	Cole Pickering								
Rev	viev	ved By: Y. Pehlivan	Sampler Type:	5.0' PE								
Depth (ft bgs)	Sample Interval	Lithologic Des	scription		uscs	USCS Graphic	Water Level	% Recovery	(vmqq) Ole	Samp	le ID	Sample Analyzed

0	0.0-0.3': Asphalt.	AC	332833288	100			
	0.3-5.0': Cleared for utilities. Soil not logged.	,					
5-	5.0-6.0': Poorly graded SAND with silt (80% sand, 10% silt, 10% gravel), medium sand, fine gravel, light brown, dry, no odor, no staining. 6.0-9.5': Silty SAND (70% sand, 20% silt, 10% gravel), fine and medium sand, fine gravel,	SP- SM SM		100	0.0	FB-04-5.0	x
	brown, dry, no odor, no staining.						
10	9.5-10.0': Silty SAND with gravel (60% sand, 25% gravel, 15% silt), fine and medium sand, fine and coarse gravel, brown, dry, no odor, no staining.	SM SM		100	0.3	FB-04-10.0	x
	10.0-14.0': Silty SAND (70% sand, 20% silt, 10% gravel), fine and medium sand, fine and coarse gravel, brown, dry, no odor, no staining.						
15	14.0-15.0': Silty SAND with gravel (60% sand, 20% silt, 20% gravel), fine and medium sand, fine gravel, brown, dry, no odor, no staining.	SM		z			
-	15.0-17.5': Silty SAND with gravel (70% sand, 15% silt, 15% gravel), fine and medium sand, fine and coarse gravel, brown, moist, no odor, no staining.	SM		50	0.2	FB-04-15.0	
	17.5-20.0': No Recovery.				0.0	FB-04-17.5	
20			<u> </u>				

Completion Information									
Temporary Well Casing Diameter (in):	NA	Surface Seal:	Concrete						
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA						
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA						

FARALLON	Lo	og of Boring:	F	B-()5		Pag	e 1 of 1	
Client: IS Property Investments LLC	Date/Time Started:	2/19/24 @ 1037	Dept	h to \	Nate	r ATD ((ft bgs):	15.0	
Project: 3245 158th Ave SE	Date/Time Completed: 2	2/19/24 @ 1115	Borir	ng Di	amet	er (in):		3.75	
Location: Bellevue, WA	Drilling Company:	AEC	Tota	l Bori	ing D	epth (f	t bgs):	20.0	
Farallon PN: 2403-008	Drilling Method:	Sonic							
Faranon FN. 2403-006	Drilling Equipment:	Terrasonic							
Logged By: A. Osman	Drilling Operator:	Cole Pickering							
Reviewed By: Y. Pehlivan	Sampler Type:	5.0' PE							
Depth (ft bgs) Sample Interval Sample S	scription	nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Samp	le ID	Sample Analyzed

0	0.0-0.3': Asphalt.	AC	ikkaiikka	100			
	0.3-5.0': Cleared for utilities. Soil not logged.						
5	5.0-7.0': Silty SAND (70% sand, 20% silt, 10% gravel), fine and medium sand, fine gravel, gray-brown with orange mottling, dry, no odor, no staining.	SM		100	0.0	FB-05-5.0	×
	7.0-10.0': Poorly graded SAND with silt (80% sand, 10% silt, 10% gravel), fine and medium sand, fine and coarse gravel, brown, dry, no odor, no staining.	SP- SM					
	10.0-15.0': Silty SAND (70% sand, 20% silt, 10% gravel), fine and medium sand, fine gravel, brown, dry, no odor, no staining.	SM		100	0.0	FB-05-10.0	x
	15.0-17.5': Silty SAND (60% sand, 30% silt, 10% gravel), fine and medium sand, fine and coarse gravel, brown, moist, no odor, no staining.	SM		100	0.0	FB-05-15.0	
	17.5-20.0': Well-graded SAND with silt (80% sand, 10% silt, 10% gravel), fine to coarse sand, fine gravel, brown, moist, no odor, no staining.	SW- SM					
20					0.0	FB-05-20.0	

Completion Information									
Temporary Well Casing Diameter (in):	NA	Surface Seal:	Concrete						
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA						
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA						

FARALLON CONSULTING	Log o	f Boring:	F	B-(06		Pag	je 1 of 1	
Client: IS Property Investments LLC	Date/Time Started: 2/19/24	@ 1157	Dept	h to \	Wate	r ATD ((ft bgs):	17.0	
Project: 3245 158th Ave SE	Date/Time Completed: 2/19/24	@ 1230	Bori	ng Di	amet	er (in):		3.75	
Location: Bellevue, WA	Drilling Company: AEC		Tota	l Bori	ing D	epth (f	t bgs):	20.0	
Farallon PN: 2403-008	Drilling Method: Sonic								
Falailoii FN. 2403-000	Drilling Equipment: Terraso	onic							
Logged By: A. Osman	Drilling Operator: Cole Pi	ckering							
Reviewed By: Y. Pehlivan	Sampler Type: 5.0' PE								
Depth (ft bgs) Sample Interval Sample Sample	cription	SCS	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Samp	ile ID	Sample Analyzed

0	\setminus	0.0-0.3': Asphalt.	AC		100			
-		0.3-4.0': Cleared for utilities. Soil not logged.						
- 5-		4.0-6.0': Silty SAND (80% sand, 10% silt, 10% gravel), fine and medium sand, fine gravel, brown, dry, no odor, no staining.	SM		100	0.0	FB-06-5.0	x
-		6.0-17.0': Silty SAND (70% sand, 20% silt, 10% gravel), fine and medium sand, fine gravel, brown, dry, no odor, no staining.	SM					
- 10 - - -					100	0.0	FB-06-10.0	×
15 -					100	0.0	FB-06-15.0	
		17.0-20.0': Silty SAND (70% sand, 20% silt, 10% gravel), fine to coarse sand, fine gravel, brown, wet, no odor, no staining.	SM	¥		0.0	FB-06-16.5	
20 –						0.0	FB-06-20.0	

Completion Information								
Temporary Well Casing Diameter (in):	NA	Surface Seal:	Concrete					
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA					
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA					

FARALLON CONSULTING	Lo	og of Bori	ng:	FE	3-07	7	Page 1 of 1
Client:IS Property Investments LLCProject:3245 158th Ave SELocation:Bellevue, WAFarallon PN:2403-008Logged By:A. OsmanReviewed By:Y. Pehlivan	Date/Time Started: Date/Time Completed: Drilling Company: Drilling Method: Drilling Equipment: Drilling Operator: Sampler Type:	2/19/24 @ 1338 2/19/24 @ 1410 AEC Sonic Terrasonic Cole Pickering 5.0' PE	l	Boring	g Dian	neter (ii	D (ft bgs): 14.5 n): 3.75 n (ft bgs): 20.0
Depth (ft bgs) Sample Interval Sample Sample Dest	scription		NSCS	USCS Graphic	Water Level	% Kecovery PID (ppmv)	Sample ID and Sample Sa
0 0.0-5.0': Cleared to 5.0' bgs for utilities. Soil not logg 5 5.0-14.5': Silty SAND with gravel (65% sand, 20% g fine and coarse gravel, brown, dry, moist at 10.0' bg 10 10 11 14.5-15.0': Silty SAND with gravel (65% sand, 20% g gravel, brown, wet, no odor, no staining. 15.0-18.0': Silty SAND (55% sand, 35% silt, 10% gravel, brown, wet, no odor, no staining. 18.0-20.0': Silty SAND with gravel (65% sand, 20% g gravel, brown, wet, no odor, no staining.	ravel, 15% silt), fine and n s, no odor, no staining. gravel, 15% silt), fine to co avel), fine and medium sa	parse sand and nd, fine and	SM SM SM		1 1	00 0.0 00 0.0 00 0.0 0.0	0 FB-07-10.0 X 0 FB-07-14.0
20		medium sand,	SM			0.6	6 FB-07-20.0

Completion Information								
Temporary Well Casing Diameter (in):	NA	Surface Seal:	Concrete					
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA					
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA					

		FARALLON	L	og of Bor	ing:	F	B-()8		Page 1 of 1	
Clie		1 7 -	Date/Time Started: Date/Time Completed:	2/19/24 @ 1427 2/19/24 @ 1501					r ATD (er (in):	ft bgs): 13.0 3.75	
Pro Loc	-	t: 3245 158th Ave SEon: Bellevue, WA	Drilling Company:	AEC			-			t bgs): 20.0	
		on PN: 2403-008	Drilling Method:	Sonic							
		d By: A. Osman	Drilling Equipment:	Terrasonic Cole Pickering							
		ved By: Y. Pehlivan	Drilling Operator: Sampler Type:	5.0' PE							
Depth (ft bgs)	Sample Interval	Lithologic Des	scription		nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed
0		0.0-5.0': Cleared to 5.0' bgs for utilities. Soil not logo	jed.					100			
		 5.0-13.0': Silty SAND (65% sand, 25% silt, 10% gratbrown, dry, no odor, no staining. 13.0- 15.0': Well-graded SAND with silt (80% sand, sand, fine gravel, brown, moist, no odor, no staining 15.0-20.0': Silty SAND (65% sand, 25% silt, 10% gratbrown, moist no odor, no staining 	10% silt, 10% gravel), fine	e and coarse	SM SW- SM SM		×	100	0.1	FB-08-5.0 FB-08-10.0	×
		brown, moist, no odor, no staining.	,,	,					0.0	FB-08-20.0	

Completion Information								
Temporary Well Casing Diameter (in):	NA	Surface Seal:	Concrete					
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA					
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA					

FARALLON CONSULTING	Lo	og of Boring	: F	B-()9		Pag	e 1 of 1	
Client: IS Property Investments LLC	Date/Time Started:	2/19/24 @ 1547	Dept	h to \	Wate	r ATD ((ft bgs):	20.0	
Project: 3245 158th Ave SE	Date/Time Completed:	2/19/24 @ 1613	Bori	ng Di	amet	er (in):		3.75	
Location: Bellevue, WA	Drilling Company:	AEC	Tota	l Bori	ing D	epth (f	t bgs):	20.0	
Farallon PN: 2403-008	Drilling Method:	Sonic							
Taranon FN: 2403-006	Drilling Equipment:	Terrasonic							
Logged By: A. Osman	Drilling Operator:	Cole Pickering							
Reviewed By: Y. Pehlivan	Sampler Type:	5.0' PE							
Depth (ft bgs) Sample Interval Sample Sample Dest	cription	SSS	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Samp	le ID	Sample Analyzed

0	0.0-0.3': Asphalt.	AC		100			
-\\	0.3-4.3': Cleared to 4.3' bgs for utilities. Soil not logged.						
X							
1/\							
-/							
5-	4.3-8.0': Silty SAND (70% sand, 20% silt, 10% gravel), fine and medium sand, fine and coarse gravel, brown, dry, no odor, no staining.	SM	: ; ;	100	0.0	FB-09-5.0	v
			ilili	100	0.0	FB-09-5.0	х
$ \rangle \rangle$!!!!				
1							
$-\Lambda$	8.0-10.0': Poorly graded SAND with silt (85% sand, 10% gravel, 5% silt), fine and medium	SP-					
_//	sand, fine and coarse gravel, gray-brown, dry, no odor, no staining.	SM					
10							
	10.0-19.5': Silty SAND (60% sand, 30% silt, 10% gravel), fine and medium sand, fine and coarse gravel, brown, dry, no odor, no staining.	SM	ilili	100	0.0	FB-09-10.0	Х
	oodise gravel, brown, ary, no oder, no stanning.		:::::				
- V			iii				
			iii				
/ \							
			iii				
15 -				100	0.0	FB-09-15.0	
-\							
			ilili				
X			!!!!				
1/\							
- /			ilili				
20	19.5-20.0': Poorly graded SAND (90% sand, 10% gravel), medium and coarse sand, brown, dry, moist, no odor, no staining.	SP	–		0.0	FB-09-20.0	
		1			0.0	FB-09-20.0	

Completion Information								
Temporary Well Casing Diameter (in):	NA	Surface Seal:	Concrete					
Temporary Well Screened Interval (ft bgs):	NA	Ground Surface Elevation (ft):	NA					
Boring Abandonment:	Bentonite	Surveyed Location: X: NA	Y: NA					

	FARALLON	L	og of Boring	g: F	В-′	10		Pag	ge 1 of 1	
Client	IS Property Investments LLC	Date/Time Started:	2/20/24 @ 0904	Dept	th to \	Wate	r ATD (ft bgs):	15.5	
Proje	ct: 3245 158th Ave SE	Date/Time Completed:	2/20/24 @ 0929	Bori	ng Di	amet	er (in):		3.75	
-	cation: Bellevue, WA Drilling Company: AEC				Total Boring Depth (ft bgs): 20.0					
	on PN: 2403-008	Drilling Method:	Sonic							
i aran	UIT II. 2405-000	Drilling Equipment:	Terrasonic							
Logge	ed By: A. Osman	Drilling Operator:	Cole Pickering							
Revie	wed By: Y. Pehlivan	Sampler Type:	5.0' PE							
Depth (ft bgs) Sample Interval	Lithologic Des	scription		USCS USCS Graphic	Water Level	% Recovery	PID (ppmv)	Samp	ole ID	Sample Analyzed

0	0.0-0.3': Asphalt.	AC	12624262	10)		
	0.3-5.0': Cleared to 5.0' bgs for utilities. Soil not logged.						
5	5.0-6.5': Silty SAND (50% sand, 40% silt, 10% gravel), fine and medium sand, fine gravel, brown, moist, slight organic odor, no staining.	SM		10	0.0	FB-10-5.0	x
	6.5-8.0': Silty SAND (60% sand, 30% silt, 10% gravel), fine and medium sand, fine gravel, brown, dry, no odor, no staining.	SM					
	8.0-10.0': Silty SAND (70% sand, 20% silt, 10% gravel), fine and medium sand, fine gravel, brown, dry, no odor, no staining.	SM					
	10.0-15.0': Silty SAND (70% sand, 25% silt, 5% gravel), fine and medium sand, fine gravel, brown, dry, no odor, no staining.	SM		100	0.1	FB-10-10.0	x
	15.0-20.0': Silty SAND (50% sand, 40% silt, 10% gravel), fine and medium sand, fine gravel, brown, dry, moist at 15.5' bgs, no odor, no staining.	SM		▼ 100	0.1	FB-10-15.0	
20					0.0	FB-10-20.0	

Completion Information										
Concrete										
:): NA										
Y: NA										
(ft										

	FARALLON	L	og of Borir	ng:	F	B-´	11		Рас	ge 1 of 1	
Client:	IS Property Investments LLC	Date/Time Started:	2/20/24 @ 1034	I	Dept	h to \	Nate	r ATD ((ft bgs):	17.5	
Project:	3245 158th Ave SE	Date/Time Completed:	2/20/24 @ 1116	I	Borir	ng Dia	amet	er (in):		3.75	
Location:	Bellevue, WA	Drilling Company:	AEC	Total Boring Depth (epth (f	(ft bgs): 20.0		
Farallon I		Drilling Method:	Sonic								
		Drilling Equipment:	Terrasonic								
Logged B	By: A. Osman	Drilling Operator:	Cole Pickering								
Reviewed	By: Y. Pehlivan	Sampler Type:	5.0' PE								
Depth (ft bgs) Sample Interval	Lithologic Des	scription		uscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Samp	ile ID	Sample Analyzed

0	0.0-0.3': Asphalt.	AC	100			
	0.3-4.0': Cleared to 5.0' bgs for utilities. Soil not logged.					
5-	4.0-5.5': Silty SAND (75% sand, 15% silt, 10% gravel), fine and medium sand, fine gravel, brown, dry, no odor, no staining.	SM	100	0.0	FB-11-5.0	x
	5.5-7.5': Silty SAND (65% sand, 25% silt, 10% gravel), fine and medium sand, fine gravel, brown, dry, no odor, no staining.	SM				
	7.5-9.0': Silty SAND (75% sand, 15% silt, 10% gravel), fine and medium sand, fine gravel, brown, dry, no odor, no staining. 9.0-10.0': Silty SAND (65% sand, 25% silt, 10% gravel), fine and medium sand, fine gravel,	SM				
10	red-brown, dry, no odor, no staining. 10.0-11.5': Silty SAND (75% sand, 15% silt, 10% gravel), fine and medium sand, fine gravel, brown, dry, no odor, no staining.	SM	100	0.0	FB-11-10.0	x
	11.5-15.0': Silty SAND (50% sand, 40% silt, 10% gravel), fine and medium sand, fine and coarse gravel, gray-brown, dry, no odor, no staining.	SM				
	15.0-17.5': Silty SAND (75% sand, 15% silt, 10% gravel), fine and medium sand, fine gravel, brown, moist, no odor, no staining.	SM	100	0.0	FB-11-17.0	
	17.5-20.0': Well-graded SAND with silt (80% sand, 10% silt, 10% gravel), fine to coarse sand, fine and coarse gravel, brown, wet, no odor, no staining.	SW- SM				
20				0.0	FB-11-20.0	

Completion Information										
Temporary Well Casing Diameter (in): NA	Surface Seal: Concrete									
Temporary Well Screened Interval (ft bgs): NA	Ground Surface Elevation (ft): NA									
Boring Abandonment: Bentonite	Surveyed Location: X: NA Y: NA									

		FARALLON	L	og of	fΒ	ori	ng:	FMW-01	1	Page	1 of 1
Clie	ent:	IS Property Investments LLC	Date/Time Started:	10/23/2	3@0)852		Depth to Water A	TD (fi	t bgs):	22.0
Pro	ject:	3245 158th Ave SE	Date/Time Completed:	10/23/2	3@1	150		Boring Diameter ((in):		3.75
Loc	ation	: Bellevue, WA	Drilling Company:	AEC				Total Boring Dept	th (ft	bgs):	40.0
		PN: 2403-008	Drilling Method:	Sonic				Constructed Well	Dept	th (ft bgs):	37.0
			Drilling Equipment:	Terra S	onic						
Log	gged E	By: A. Osman	Drilling Operator:	Cole Pie	ckerin	g					
Rev	viewe	d By: Y. Pehlivan	Sampler Type:	5.0' PE							
Depth (ft bgs)	Sample Interval	Lithologic Descrip	tion	nscs	USCS Graphic	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Boring Constru Deta	uction

0	0.0-0.3': Asphalt. Airknife to 4.5' bgs for utilities.	AC		100				
	0.3-5.0': Silty SAND with gravel (50% sand, 30% silt, 20% gravel), fine sand, fine and coarse gravel, gray, dry, strong petroleum odor, no staining.	SM						Concrete
5	5.0-13.0': Silty SAND with gravel (50% sand, 30% silt, 20% gravel), fine to coarse sand, fine gravel, gray, dry, strong petroleum odor, no staining.	SM			1171. 2 1763. 3	FMW-01-5.0 FMW-01-10.0	x x	
	13.0-16.5': Well-graded SAND with silt and gravel (65% sand, 25% gravel, 10% silt), fine to coarse sand, fine gravel, gray, petroleum odor, no staining.	SW- SM		100	1.9	FMW-01-15.0	x	Bentonite
	16.5-20.0': Silty SAND with gravel (65% sand, 20% silt, 15% gravel), fine to coarse sand, fine gravel, gray-brown, moist, no odor, no staining.	SM						
20	20.0-22.0': Silty SAND (60% sand, 30% silt, 10% gravel), fine and medium sand, fine gravel, gray-brown, moist, no odor, no staining.	SM		100	0.6	FMW-01-20.0		¥
25	22.0-25.0': Silty SAND (55% sand, 35% silt, 10% gravel), fine to coarse sand, brown, moist, no odor, no staining.	SM						Water Level
25	25.0-26.0': Well-graded SAND with gravel (60% sand, 40% gravel), fine to coarse sand, fine gravel, gray-brown, dry, no odor, no staining.	SW SM	-	100	0.0	FMW-01-25.0		Sandpack
30	26.0-33.0': Silty SAND with gravel (60% sand, 20% silt, 20% gravel), fine to coarse sand and gravel, brown, dry, no odor, no staining.			100	0.0	FMW-01-30.0		Screen
35	33.0-36.0': Poorly graded SAND with gravel (80% sand, 15% gravel, 5% silt), fine and medium sand, fine gravel, brown, dry, moist at 35.0' bgs, no odor, no staining.	SP		100	0.0	FMW-01-35.0		
	36.0-40.0': Silty SAND with gravel (70% sand, 15% silt, 15% gravel), fine and medium sand, fine gravel, brown, moist, dry at 37.5' bgs, no odor, no staining.	SM						Bentonite
40				-	0.0	FMW-01-40.0		

Monument Type:	Flush
Casing Diameter (in):	2.0
Screen Slot Size (in):	0.010
Screened Interval (ft bgs):	22.0-37.0

Well Construction Information

Filter Pack:

Surface Seal:

Annular Seal:

Sand Concrete Bentonite Boring Abandonment: NA

Ground Surface Elevation (ft): 334.66 Top of Casing Elevation (ft): 334.21 Surveyed Location: X: 1318811.89 Y: 214401.03 Unique Well ID: NA

FARALLON CONSULTING	L	og o	f Bo	ori	ng:	FMW-02	2	P	age 1 of 1
Client:IS Property Investments LLCProject:3245 158th Ave SELocation:Bellevue, WAFarallon PN:2403-008Logged By:A. OsmanReviewed By:Y. Pehlivan	Date/Time Started: Date/Time Completed: Drilling Company: Drilling Method: Drilling Equipment: Drilling Operator: Sampler Type:	10/23/2 10/23/2 AEC Sonic Terra S Cole Pie	3 @ 1 onic ckering	529		Depth to Water A Boring Diameter (Total Boring Dept Constructed Well	in): h (ft	bgs):	26.0 3.75 35.0 35. 0
Lithologic Descrip		nscs	USCS Graphic	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Con	ing/Well struction Details
0 0.0-5.0': Silty SAND (60% sand, 30% silt, 10% grav fine gravel, dark brown, dry, no odor, no staining.	rel), fine to coarse sand,	SM		100					Concrete
5 5.0-10.0': Silty SAND (60% sand, 30% silt, 10% gra sand, fine gravel, gray, dry, petroleum odor from 5.		SM		100	0.2	FMW-02-5.0	x		
10 10.0-14.0': Silty SAND (70% sand, 20% silt, 10% g sand, fine and coarse gravel, gray, dry, no odor, no	staining.	SM		100	0.0	FMW-02-10.0	x		Bentonite
15 14.0-15.0': Poorly graded SAND (90% sand, 10% g dry, no odor, no staining. 15.0-20.0': Silty SAND (70% sand, 20% silt, 10% g sand, fine and coarse gravel, gray, dry, no odor, no	ravel), fine and medium	SP SM		100	0.0	FMW-02-15.0			
20 20.0-25.0': Poorly graded SAND (85% sand, 10% g medium sand, fine gravel, gray-brown, moist, no oc		SP		100	0.0	FMW-02-20.0			Sandpack Screen
25 25.0-26.0': Poorly graded SAND (95% sand, 5% gr coarse sand, fine and coarse gravel, brown, wet, no 26.0-31.0': Silty SAND (55% sand, 40% silt, 5% gra sand, fine gravel, gray-brown, wet, no odor, no stai	o odor, no staining. avel), fine and medium	SP SP		100	0.0	FMW-02-25.0			▼ Water Level
30 31.0-35.0': Silty SAND (70% sand, 20% silt, 10% g sand, fine and coarse gravel, brown, moist, no odor		SM		100	0.0	FMW-02-30.0			Bentonite
35 -			•••		0.0	FMW-02-35.0			

Monument Type:	Flush
Casing Diameter (in):	2.0
Screen Slot Size (in):	0.010
Screened Interval (ft bgs):	21.0-31.0

Well Construction Information

Filter Pack:

Surface Seal:

Annular Seal:

Sand Concrete Bentonite Boring Abandonment: NA

Ground Surface Elevation (ft): 336.05 Top of Casing Elevation (ft): 335.54 Surveyed Location: X: 1318917.13 Y: 214480.56 Unique Well ID: NA

FARALLON CONSULTING	L	og of	В	ori	ng:	FMW-03	3	Pa	age 1 of 1
Client:IS Property Investments LLOProject:3245 158th Ave SELocation:Bellevue, WAFarallon PN:2403-008Logged By:A. Osman	Date/Time Completed Drilling Company: Drilling Method: Drilling Equipment: Drilling Operator:	AEC Sonic Terra So Cole Pic	3 @ 1	004		Depth to Water A Boring Diameter (Total Boring Dept Constructed Well	(in): :h (ft l	ogs):	20.0 3.75 30.0 js): 27.0
Reviewed By: Y. Pehlivan	Sampler Type:	5.0' PE	USCS Graphic	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Cons	ing/Well struction)etails
0 0.0-4.0': Silty SAND (50% sand, 40% silt, 10% sand, fine gravel, brown, dry, slight organic oc		SM		100	0.0				Concrete
4.0-6.5': Poorly graded SAND with silt and gra 10% silt), fine sand and gravel, light brown, dr 6.5-8.0': Poorly graded SAND with gravel (859 sand, fine and coarse gravel, brown, dry, no o	y, no odor, no staining. % sand, 15% gravel), medium dor, no staining.	SP- SM SP		100	1.3	FMW-03-5.0	x		
10 8.0-9.0': Poorly graded SAND with silt and gra 10% silt), fine sand and gravel, light brown, dr 9.0-10.0': Silty SAND (75% sand, 15% silt, 10 gravel, brown, dry, no odor, no staining. 10.0-14.0': No Recovery.	y, no odor, no staining.	SP- SM SM	<u></u> .	20	0.1	FMW-03-10.0	x		Bentonite
15 15 15 15 16.5-19.0': Poorly graded SAND with gravel (8 and medium sand, fine gravel, brown, dry, no 16.5-19.0': Poorly graded SAND (85% sand, 1 sand, fine and coarse gravel, brown, dry, no	odor, no staining. 10% gravel, 5% silt), fine	SP SP		100	0.5	FMW-03-15.0		· · · · · · · · · · · · · · · · · · ·	Sandpack Screen
20 19.0-20.0': Silty SAND (60% sand, 30% silt, 1 sand, fine gravel, brown, wet, no odor, no stai 20.0-25.0': Sandy SILT with gravel (55% silt, 3 sand, fine and coarse gravel, brown, moist, no	ning. 30% sand, 15% gravel), fine	SM / ML		100	0.1 1.0	FMW-03-19.0 FMW-03-20.0			▼ Water Level
25 25.0-30.0': Silty SAND with gravel (45% sand, and medium sand, fine gravel, brown, moist, r		SM		100	0.5	FMW-03-25.0			
30					0.0	FMW-03-30.0			Bentonite

Monument Type:	Flush
Casing Diameter (in):	2.0
Screen Slot Size (in):	0.010
Screened Interval (ft bgs):	17.0-27.0

Well Construction Information

Filter Pack:SandSurface Seal:ConcreteAnnular Seal:BentoniteBoring Abandonment:NA

Ground Surface Elevation (ft):334.19Top of Casing Elevation (ft):333.67Surveyed Location:X: 1318834.46Y: 214348.93Unique Well ID:NA

		FARALLON	Lo	og of	fВ	ori	ng:	FMW-04		e 1 of 1
Clie	ent:	IS Property Investments LLC	Date/Time Started:	10/23/2	3 @ ⁻	1158		Depth to Water A	TD (ft bgs):	16.0
Pro	ject:	3245 158th Ave SE	Date/Time Completed:	10/24/2	3@^	1431		Boring Diameter	(in):	3.75
	-	n: Bellevue, WA	Drilling Company:	AEC				Total Boring Dep	th (ft bgs):	30.0
		n PN: 2403-008	Drilling Method:	Sonic				Constructed Wel	l Depth (ft bgs	: 24.0
			Drilling Equipment:	Terra S	onic					
Log	gged	By: A. Osman	Drilling Operator:	Cole Pie	ckerir	g				
Rev	viewe	ed By: Y. Pehlivan	Sampler Type:	5.0' PE						
Depth (ft bgs)	Sample Interval	Lithologic Descrip	tion	USCS	USCS Graphic	% Recovery	PID (ppmv)	Sample ID	Const	g/Well ruction tails

0	0.0-2.0': Sandy SILT (60% silt, 35% sand, 5% gravel), fine sand and gravel, brown, dry, organic odor, no staining.	ML	100				
	2.0-10.0': Silty SAND (60% sand, 30% silt, 10% gravel), fine to coarse sand, fine gravel, light brown, dry, no odor, no staining.	SM		0.0			Concrete
5			100	0.6	FMW-04-5.0	x	
							Bentonite
	10.0-17.0': Silty SAND (50% sand, 45% silt, 5% gravel), fine to coarse sand and gravel, brown, dry, wet at 16.0', no odor, no staining.	SM	100	0.1	FMW-04-10.0	x	
15			100	0.0	FMW-04-15.0		Sandpack Screen
	17.0-17.5': Poorly graded SAND (100% sand), medium and coarse sand,	SP		0.0	1 10.0		▼ Water Level
20	brown, wet, no odor, no staining. 17.5-23.5': SILT (100% silt), gray-brown, orange mottling at 21.0' bgs, gray at 22.0' bgs, wet, no odor, no staining.	ML	100	0.1	FMW-04-20.0		
	23.5-27.0': Well-graded SAND with silt and gravel (75% sand, 15% gravel, 10% silt), fine to coarse sand, fine gravel, brown, moist, no odor, no staining.	SW- SM	100	0.0	FMW-04-25.0		
	27.0-30.0': Silty SAND with gravel (65% sand, 20% silt, 15% gravel), fine to coarse sand, fine gravel, brown, moist, no odor, no staining.	SM					Bentonite
30				0.1	FMW-04-30.0		

Monument Type:	Flush
Casing Diameter (in):	2.0
Screen Slot Size (in):	0.010
Screened Interval (ft bgs):	14.0-24.0

Well Construction Information Sand

NA

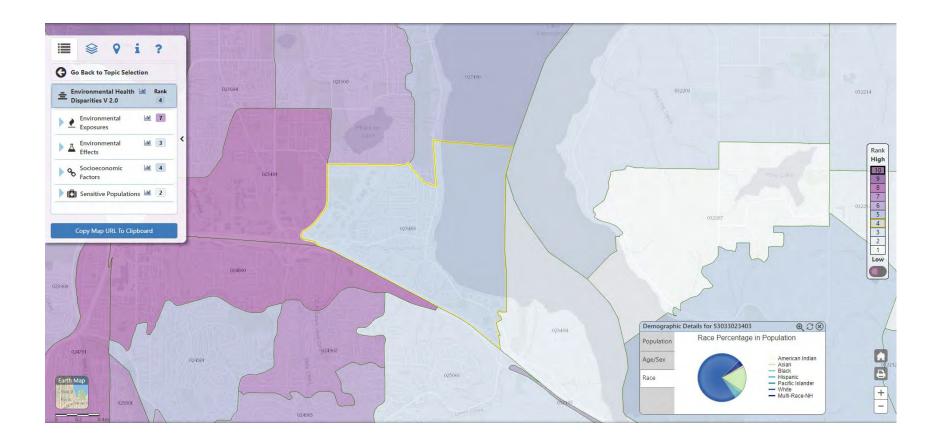
Filter Pack:

Surface Seal:

Annular Seal:

Boring Abandonment:

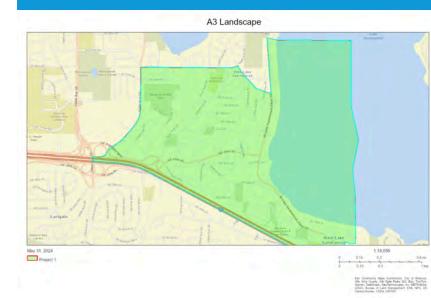
Ground Surface Elevation (ft): Concrete Top of Casing Elevation (ft): Bentonite Surveyed Location: X: 1319179.91 Y: 214127.44 Unique Well ID: NA


330.45

329.96

APPENDIX C EJ SCREENING TOOL AND EHD MAP COMMUNITY REPORTS

REMEDIAL INVESTIGATION AND CLEANUP ACTION PLAN 3245 158th Avenue Southeast Bellevue, Washington


Farallon PN: 2403-008

EJScreen Community Report

This report provides environmental and socioeconomic information for user-defined areas, and combines that data into environmental justice and supplemental indexes.

Bellevue, WA

LANGUAGES SPOKEN AT HOME

LANGUAGE	PERCENT
English	69%
Spanish	5%
French, Haitian, or Cajun	2%
German or other West Germanic	1%
Russian, Polish, or Other Slavic	3%
Other Indo-European	6%
Korean	1%
Chinese (including Mandarin, Cantonese)	6%
Tagalog (including Filipino)	1%
Other Asian and Pacific Island	5%
Total Non-English	31%

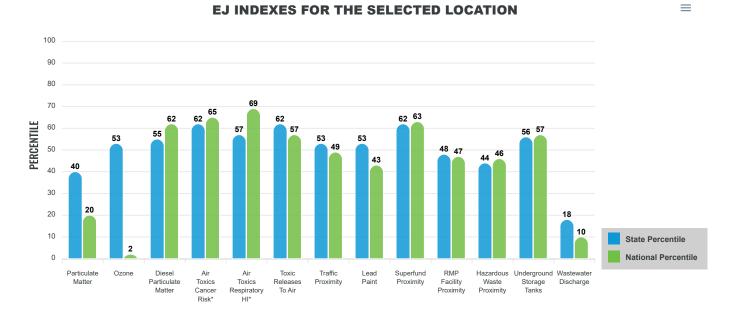
Tract: 53033023403 Population: 4,094 Area in square miles: 2.05

€PA

COMMUNITY INFORMATION Limited English Less than high Low income: People of color: school education: households: 10 percent **39 percent 3** percent 4 percent Persons with Unemployment: Male: Female: disabilities: 6 percent **48** percent 52 percent **12** percent \$75,309 83 years Owner Number of **Average life** Per capita occupied: households: expectancy income 75 percent 1 477 **BREAKDOWN BY RACE** White: 61% Black: 1% American Indian: 0% Asian: 26% Hispanic: 7% Hawaiian/Pacific Other race: 0% Two or more Islander: 0% races: 4% **BREAKDOWN BY AGE**

From Ages 1 to 4	6%
From Ages 1 to 18	22%
From Ages 18 and up	78%
From Ages 65 and up	15%

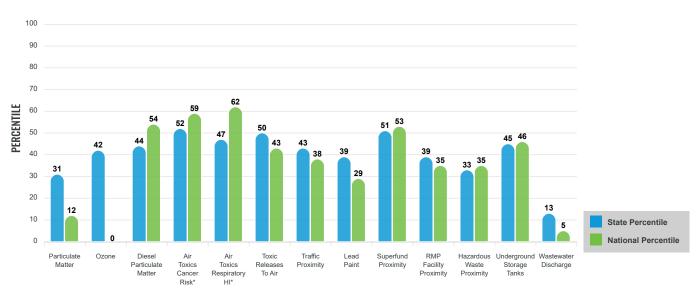
LIMITED ENGLISH SPEAKING BREAKDOWN


Speak Spanish	0%
Speak Other Indo-European Languages	42%
Speak Asian-Pacific Island Languages	58%
Speak Other Languages	0%

Notes: Numbers may not sum to totals due to rounding. Hispanic population can be of any race. Source: U.S. Census Bureau, American Community Survey (ACS) 2017-2021. Life expectancy data comes from the Centers for Disease Control.

Environmental Justice & Supplemental Indexes

The environmental justice and supplemental indexes are a combination of environmental and socioeconomic information. There are thirteen EJ indexes and supplemental indexes in EJScreen reflecting the 13 environmental indicators. The indexes for a selected area are compared to those for all other locations in the state or nation. For more information and calculation details on the EJ and supplemental indexes, please visit the EJScreen website.


EJ INDEXES

The EJ indexes help users screen for potential EJ concerns. To do this, the EJ index combines data on low income and people of color populations with a single environmental indicator.

SUPPLEMENTAL INDEXES

The supplemental indexes offer a different perspective on community-level vulnerability. They combine data on percent low-income, percent linguistically isolated, percent less than high school education, percent unemploved, and low life expectancy with a single environmental indicator.

SUPPLEMENTAL INDEXES FOR THE SELECTED LOCATION

These percentiles provide perspective on how the selected block group or buffer area compares to the entire state or nation.

Report for Tract: 53033023403

 \equiv

EJScreen Environmental and Socioeconomic Indicators Data

SELECTED VARIABLES	VALUE	STATE AVERAGE	PERCENTILE IN STATE	USA AVERAGE	PERCENTILE IN USA
POLLUTION AND SOURCES					
Particulate Matter (µg/m ³)	6.74	7.02	36	8.08	15
Ozone (ppb)	49.4	49.8	50	61.6	1
Diesel Particulate Matter (µg/m ³)	0.336	0.355	52	0.261	75
Air Toxics Cancer Risk* (lifetime risk per million)	30	27	37	25	52
Air Toxics Respiratory HI*	0.4	0.39	39	0.31	70
Toxic Releases to Air	1,000	1,800	59	4,600	60
Traffic Proximity (daily traffic count/distance to road)	160	190	69	210	69
Lead Paint (% Pre-1960 Housing)	0.15	0.23	52	0.3	42
Superfund Proximity (site count/km distance)	0.12	0.18	59	0.13	73
RMP Facility Proximity (facility count/km distance)	0.15	0.4	44	0.43	45
Hazardous Waste Proximity (facility count/km distance)	0.34	1.6	39	1.9	44
Underground Storage Tanks (count/km ²)	4.3	6.3	65	3.9	74
Wastewater Discharge (toxicity-weighted concentration/m distance)	6.8E-07	0.024	15	22	7
SOCIOECONOMIC INDICATORS					
Demographic Index	24%	28%	47	35%	41
Supplemental Demographic Index	7%	12%	25	14%	19
People of Color	39%	32%	67	39%	57
Low Income	10%	24%	22	31%	17
Unemployment Rate	6%	5%	64	6%	62
Limited English Speaking Households	4%	4%	71	5%	72
Less Than High School Education	3%	8%	29	12%	22
Under Age 5	6%	6%	56	6%	56
Over Age 64	15%	16%	50	17%	47
Low Life Expectancy	15%	18%	16	20%	11

*Diesel particulate matter, air toxics cancer risk, and air toxics respiratory hazard index are from the EPA's Air Toxics Data Update, which is the Agency's ongoing, comprehensive evaluation of air toxics in the United States. This effort aims to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that the air toxics data presented here provide broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. Cancer risks and hazard indices from the Air Toxics Data update are reported to one significant figure and any additional significant figures here are due to rounding. More information on the Air Toxics Data Update can be found at: https://www.epa.gov/haps/air-toxics-data-update.

Sites reporting to EPA within defined area:

Superfund	0
Hazardous Waste, Treatment, Storage, and Disposal Facilities	0
Water Dischargers	11
Air Pollution	0
Brownfields	0
Toxic Release Inventory	0

Other community features within defined area:

Schools	2
Hospitals)
Places of Worship	1

Other environmental data:

Air Non-attainment	No
Impaired Waters	Yes

Selected location contains American Indian Reservation Lands*	No
Selected location contains a "Justice40 (CEJST)" disadvantaged community	No
Selected location contains an EPA IRA disadvantaged community	No

Report for Tract: 53033023403

EJScreen Environmental and Socioeconomic Indicators Data

HEALTH INDICATORS								
INDICATOR VALUE STATE AVERAGE STATE PERCENTILE US AVERAGE US PERCENTILE								
Low Life Expectancy	15%	18%	16	20%	11			
Heart Disease	4.7	5.3	34	6.1	22			
Asthma	8.6	10.5	4	10	15			
Cancer	7.4	6.3	79	6.1	78			
Persons with Disabilities	11.7%	13.1%	44	13.4%	44			

CLIMATE INDICATORS							
INDICATOR	VALUE	VALUE STATE AVERAGE STATE PERCENTILE US AVERAGE US PERCENTILE					
Flood Risk	5%	11%	46	12%	39		
Wildfire Risk	0%	12%	0	14%	0		

CRITICAL SERVICE GAPS								
INDICATOR VALUE STATE AVERAGE STATE PERCENTILE US AVERAGE US PERCENTILE								
Broadband Internet	1%	9%	17	14%	12			
Lack of Health Insurance	5%	6%	49	9%	39			
Housing Burden	No	N/A	N/A	N/A	N/A			
Transportation Access	No	N/A	N/A	N/A	N/A			
Food Desert	No	N/A	N/A	N/A	N/A			

Report for Tract: 53033023403

www.epa.gov/ejscreen

APPENDIX D LABORATORY ANALYTICAL REPORTS

REMEDIAL INVESTIGATION AND CLEANUP ACTION PLAN 3245 158th Avenue Southeast Bellevue, Washington

Farallon PN: 2403-008

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

June 5, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the amended results from the testing of material submitted on March 1, 2024 from the 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024 project. The case narrative was expanded.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0314R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

March 14, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on March 1, 2024 from the 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024 project. There are 25 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0314R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 1, 2024 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
403024 -01	SG-04-022824
403024 -02	SG-09-022824
403024 -03	SG-05-022824
403024 -04	SG-11-022824
403024 -05	SG-10-022824
403024 -06	SG-08-022824
403024 -07	SG-06-022824

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The MA-APH concentrations in samples F&B 403204-02 through -07 were qualifed due to contamination. The samples were pressurized and screened in order after receipt by the laboratory. Carryover from the source level concentrations observed in sample 403024-01 likely affected the remaining samples in the data set and the affected concentrations were qualified accordingly.

The TO-15 calibration standard for ethanol exceeded the acceptance criteria. The compound was not detected, therefore this did not represent an out of control condition, and were qualified with a "k" qualifier.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID:	SG-04-022824	Client:		Farallon Consulting, LLC
Date Received:	03/01/24	Project:		3245 154th Ave SE, Bellevue, WA 2403-008
Date Collected:	02/28/24	Lab ID:		403024-01 1/1100
Date Analyzed:	03/06/24	Data Fi	le:	030521.D
Matrix:	Air	Instrum	nent:	GCMS8
Units:	ug/m3	Operato	or:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 100	70	130	
	Concentration			

	Concentration
Compounds:	ug/m3
APH EC5-8 aliphatic	
APH EC9-12 aliphat	ics 3,700,000
APH EC9-10 aromat	ics 99,000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-09-022824 03/01/24 02/28/24 03/14/24 Air ug/m3	Client Projec Lab II Data I Instru Opera	t: D: File: ment:	Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 403024-02 1/5.2 031317.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics 970 lc			

APH EC5-8 aliphatics	970 Ic
APH EC9-12 aliphatics	1,100 lc
APH EC9-10 aromatics	<130

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-05-022824 03/01/24 02/28/24 03/05/24 Air ug/m3	Client Projec Lab II Data Instru Opera	et: D: File: ament:	Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 403024-03 1/5.3 030519.D GCMS8 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 99	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 520 lc			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-11-022824 03/01/24 02/28/24 03/05/24 Air ug/m3	Client Projec Lab II Data I Instru Opera	et: D: File: ument:	Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 403024-04 1/5.4 030518.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 97	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha				

APH EC9-12 aliphatics	810 lc
APH EC9-10 aromatics	<130

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-10-022824 03/01/24 02/28/24 03/05/24 Air ug/m3	Clien Projec Lab I Data Instru Opera	ct: D: File: ument:	Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 403024-05 1/5.5 030517.D GCMS8 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

APH EC9-10 aromatics <140

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

 $470 \ \rm lc$

<130

APH EC9-12 aliphatics

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-08-022824 03/01/24 02/28/24 03/05/24 Air ug/m3	Client Projec Lab II Data I Instru Opera	t: D: File: ment:	Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 403024-06 1/5.3 030516.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 98	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics 500 lc			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-06-022824 03/01/24 02/28/24 03/05/24 Air ug/m3	Clien Projec Lab I Data Instru Opera	ct: D: File: ument:	Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 403024-07 1/5.3 030515.D GCMS8 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 99	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

APH EC9-10 aromatics <130

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix:	Method Blank Not Applicable Not Applicable 03/05/24 Air	Client Projec Lab I Data Instru	et: D:	Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 04-0498 mb 030511.D GCMS8
Units:	ug/m3	Opera	ator:	bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-04-022824 03/01/24 02/28/24 03/06/24 Air ug/m3	Lab Dat Inst	ent: ject: o ID: a File: trument: erator:	Farallon Consulting 3245 154th Ave SE, 403024-01 1/1100 030521.D GCMS8 bat		2403-008
	%	Lower	Upper			
Surrogates:	Recovery		Limit:			
4-Bromofluorobenz			130			
		centration		_		ntration
Compounds:	ug/m3	8 ppbv	Compo	unds:	ug/m3	ppbv
Propene	<1,300	< 770	1 9 Die	hloropropane	<250	<55
Dichlorodifluorome			1,2-Dic 1,4-Dic		<200 <400	<110
Chloromethane	<4,100			rimethylpentane	37,000	7,900
F-114	<2,300			l methacrylate	<4,500	<1,100
Vinyl chloride	<280		Heptar	•	<4,500	<1,100
1,3-Butadiene	<49			dichloromethane	<74	<11
Butane	<5,200			proethene	<120	<22
Bromomethane	<4,300	,		Dichloropropene	<1,000	<220
Chloroethane	<2,900			yl-2-pentanone	<9,000	<2,200
Vinyl bromide	<480			,3-Dichloropropene	<500	<110
Ethanol		<4,400 k	Toluen	· · · ·	<8,300	<2,200
Acrolein	<130			richloroethane	<60	<11
Pentane	<6,500		2-Hexa		<4,500	<1,100
Trichlorofluoromet			Tetrac	hloroethene	<7,500	<1,100
Acetone	<5,200		Dibron	nochloromethane	<94	<11
2-Propanol	<9,500			promoethane (EDB)	<85	<11
1,1-Dichloroethene	<440	<110		benzene	<510	<110
trans-1,2-Dichloroe	thene <440	<110	Ethylb	enzene	<480	<110
Methylene chloride	<38,000	<11,000	1,1,2,2	Tetrachloroethane	<150	<22
t-Butyl alcohol (TB	A) <13,000	<4,400	Nonan	e	<5,800	<1,100
3-Chloropropene	<3,400	<1,100	Isoprop	oylbenzene	<11,000	<2,200
CFC-113	<1,700	<220	2-Chlo	rotoluene	<5,700	<1,100
Carbon disulfide	<6,900			benzene	6,400	1,300
Methyl t-butyl ethe				ltoluene	11,000	2,300
Vinyl acetate	<7,700		m,p-Xy		7,200	1,600
1,1-Dichloroethane			o-Xyler		<480	<110
cis-1,2-Dichloroeth			Styren		<940	<220
Hexane	<3,900		Bromo		<2,300	<220
Chloroform	<54		•	chloride	<57	<11
Ethyl acetate	<7,900			rimethylbenzene	<5,400	<1,100
Tetrahydrofuran	<650			rimethylbenzene	29,000	5,900
2-Butanone (MEK)				hlorobenzene	<660	<110
1,2-Dichloroethane				hlorobenzene	<250	<42
1,1,1-Trichloroetha				hlorobenzene	<660 <820	<110 <110
Carbon tetrachlorid Benzene	le <350 <350		1,2,4-1 Naphtl	richlorobenzene	<820 <290	<110 <55
Cyclohexane	<7,600		1	nlorobutadiene	<290 <230	<00 <22
Cyclollexalle	< <i>1</i> ,000	~4,200	Tiexact	norobutatiene	~200	~44

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-09-022 03/01/24 02/28/24 03/14/24 Air ug/m3	2824	Client Projec Lab II Data I Instru Opera	t: D: File: ment:	Farallon Consulting, 1 3245 154th Ave SE, B 403024-02 1/5.2 031317.D GCMS8 bat		A 2403-008
		%	Lower	Upper	•		
Surrogates:	Re	ecovery:	Limit:	Limit:	:		
4-Bromofluorobenz	ene	99	70	130			
		C	, <u>,</u> .			C	, ,·
0			ntration	0	l		entration
Compounds:		ug/m3	ppbv	Comp	ounds:	ug/m3	ppbv
Propene		<6.3	<3.6	1.2-Di	chloropropane	<1.2	< 0.26
Dichlorodifluorome	thane	<5.1	<1	1,4-Di		<1.9	< 0.52
Chloromethane		<19	< 9.4		Frimethylpentane	27	5.8
F-114		<11	<1.6		vl methacrylate	<21	<5.2
Vinyl chloride		<1.3	< 0.52	Hepta		<21	<5.2
1,3-Butadiene		< 0.23	< 0.1		odichloromethane	2.8	0.42
Butane		28	12		oroethene	< 0.56	< 0.1
Bromomethane		<20	<5.2		B-Dichloropropene	<4.7	<1
Chloroethane		<14	<5.2		hyl-2-pentanone	<43	<10
Vinyl bromide		<2.3	< 0.52		1,3-Dichloropropene	<2.4	< 0.52
Ethanol		<39	<21	Toluer		<39	<10
Acrolein		< 0.6	< 0.26		Frichloroethane	< 0.28	< 0.052
Pentane		<31	<10	2-Hex		<21	<5.2
	Trichlorofluoromethane		<2.1		chloroethene	<35	<5.2
Acetone		<12 <25	<10		mochloromethane	0.93	0.11
2-Propanol		<45	<18		bromoethane (EDB)	< 0.4	< 0.052
1,1-Dichloroethene		<2.1	< 0.52		obenzene	<2.4	< 0.52
trans-1,2-Dichloroe		<2.1	< 0.52	Ethyll	oenzene	<2.3	< 0.52
Methylene chloride		<180	<52	1,1,2,2	2-Tetrachloroethane	< 0.71	< 0.1
t-Butyl alcohol (TB	A)	<63	<21	Nonar	ne	<27	<5.2
3-Chloropropene		<16	< 5.2	Isopro	pylbenzene	<51	<10
CFC-113		<8	<1	2-Chlo	orotoluene	<27	<5.2
Carbon disulfide		<32	<10	Propy	lbenzene	<26	<5.2
Methyl t-butyl ethe	er (MTBE)	<37	<10	•	yltoluene	<26	<5.2
Vinyl acetate		<37	<10	m,p-X		7.0	1.6
1,1-Dichloroethane		<2.1	< 0.52	o-Xyle	ene	<2.3	< 0.52
cis-1,2-Dichloroethe	ene	<2.1	< 0.52	Styrer		<4.4	<1
Hexane		<18	<5.2	Bromo		<11	<1
Chloroform		12	2.4		l chloride		<0.052 k
Ethyl acetate		<37	<10		Frimethylbenzene	<26	<5.2
Tetrahydrofuran		<3.1	<1		Frimethylbenzene	<26	$<\!5.2$
2-Butanone (MEK)		<31	<10		chlorobenzene	<3.1	< 0.52
1,2-Dichloroethane	· ,	< 0.21	< 0.052	,	chlorobenzene	<1.2	< 0.2
1,1,1-Trichloroetha		<2.8	< 0.52		chlorobenzene	<3.1	< 0.52
Carbon tetrachlorid	le	<1.6	< 0.26		Frichlorobenzene	<3.9	< 0.52
Benzene		<1.7	< 0.52		thalene	<1.4	< 0.26
Cyclohexane		<36	<10	Hexac	chlorobutadiene	<1.1	< 0.1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-05-0228 03/01/24 02/28/24 03/05/24 Air ug/m3	324	Client Projec Lab II Data Instru Opera	et: D: File: ument:	Farallon Consulting, 3245 154th Ave SE, E 403024-03 1/5.3 030519.D GCMS8 bat		2403-008
		%	Lower	Upper			
Surrogates:	Rec	overy:	Limit:	Limit:			
4-Bromofluorobenz		99	70	130			
		Conce	ntration			Conce	ntration
Compounds:	ı	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D		-0.4	-0 F	1 0 D'	1.1	1.0	-0.00
Propene	41	< 6.4	<3.7		chloropropane	<1.2	<0.26
Dichlorodifluorome Chloromethane	thane	<5.2	<1.1	1,4-Di		<1.9	< 0.53
F-114		<20 <11	<9.5 <1.6		Frimethylpentane	<25 <22	<5.3 <5.3
F-114 Vinyl chloride		<11 <1.4	<1.6 <0.53	Hepta	l methacrylate	<22 <22	<0.3 <5.3
1,3-Butadiene		<0.23	<0.55 <0.11		dichloromethane	< 0.36	<0.053
Butane		<25	<0.11		oroethene	$< 0.50 \\ < 0.57$	<0.055
Bromomethane		<23 <21	<5.3		-Dichloropropene	<0.57	<0.11
Chloroethane		<14	<5.3		nyl-2-pentanone	<43	<11
Vinyl bromide		<2.3	< 0.53		1,3-Dichloropropene	<2.4	< 0.53
Ethanol		<40 k	<21 k	Toluer		< <u>4</u> 0	<11
Acrolein		<0.61	<0.26		Trichloroethane	< 0.29	< 0.053
Pentane		<31	<11	2-Hexa		<22	<5.3
Trichlorofluoromet	hane	<12	<2.1		hloroethene	<36	<5.3
Acetone	inanio	<25	<11		nochloromethane	< 0.45	< 0.053
2-Propanol		<46	<19		bromoethane (EDB)	< 0.41	< 0.053
1,1-Dichloroethene		<2.1	< 0.53		benzene	<2.4	< 0.53
trans-1,2-Dichloroe		<2.1	< 0.53		enzene	<2.3	< 0.53
Methylene chloride		<180	<53		-Tetrachloroethane	< 0.73	< 0.11
t-Butyl alcohol (TB		<64	<21	Nonan		<28	<5.3
3-Chloropropene		<17	<5.3	Isopro	pylbenzene	<52	<11
CFC-113		<8.1	<1.1	2-Chlo	rotoluene	<27	<5.3
Carbon disulfide		<33	<11	Propyl	benzene	<26	<5.3
Methyl t-butyl ethe	er (MTBE)	<38	<11	4-Ethy	ltoluene	<26	<5.3
Vinyl acetate		<37	<11	m,p-Xy	ylene	<4.6	<1.1
1,1-Dichloroethane		<2.1	< 0.53	o-Xyle	ne	<2.3	< 0.53
cis-1,2-Dichloroeth	ene	<2.1	< 0.53	Styren		<4.5	<1.1
Hexane		<19	<5.3	Bromo		<11	<1.1
Chloroform		0.28	0.058		l chloride	< 0.27	< 0.053
Ethyl acetate		<38	<11		Trimethylbenzene	<26	<5.3
Tetrahydrofuran		3.5	1.2		rimethylbenzene	<26	<5.3
2-Butanone (MEK)		<31	<11		chlorobenzene	<3.2	< 0.53
1,2-Dichloroethane		< 0.21	< 0.053		chlorobenzene	<1.2	< 0.2
1,1,1-Trichloroetha		<2.9	< 0.53		chlorobenzene	<3.2	<0.53
Carbon tetrachlorie	de	<1.7	< 0.26		richlorobenzene	<3.9	< 0.53
Benzene		<1.7	< 0.53		halene	<1.4	< 0.26
Cyclohexane		<36	<11	Hexac	hlorobutadiene	<1.1	< 0.11

ENVIRONMENTAL CHEMISTS

Date Received:0Date Collected:0Date Analyzed:0Matrix:A	G-11-022824 3/01/24 2/28/24 3/05/24 .ir g/m3	Client Projec Lab II Data I Instru Opera	et: D: File: ument:	Farallon Consulting, 3245 154th Ave SE, E 403024-04 1/5.4 030518.D GCMS8 bat		2403-008
	%	Lower	Upper			
Surrogates:	Recovery:	Limit:	Limit:			
4-Bromofluorobenzene		70	130			
			100			
	Conce	ntration			Conce	ntration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D	- -	2.2	10.01		1.0	-
Propene	<6.5	<3.8		chloropropane	<1.2	<0.27
Dichlorodifluorometha		<1.1	1,4-Di		<1.9	< 0.54
Chloromethane	<20	< 9.7		Frimethylpentane	<25	<5.4
F-114 Vinul ablarida	<11	<1.6		l methacrylate	<22	<5.4
Vinyl chloride	<1.4 <0.24	<0.54 <0.11	Hepta		<22	$< 5.4 \\ 0.24$
1,3-Butadiene Butane	<0.24 <26	<0.11 <11		dichloromethane proethene	1.6 < 0.58	<0.24 <0.11
Bromomethane	<26 <21	<11 <5.4			<0.58 <4.9	<0.11 <1.1
Chloroethane	<14	<5.4 <5.4		-Dichloropropene nyl-2-pentanone	<4.9 <44	<1.1
Vinyl bromide	<2.4	<0.54		1,3-Dichloropropene	$<\!$	<0.54
Ethanol	<2.4 <41 k	<0.54 <22 k	Toluer		<2.5 <41	<0.54 <11
Acrolein	<0.62	<2.2 K <0.27		Trichloroethane	<0.29	< 0.054
Pentane	<32	<0.27	2-Hexa		<0.25	<0.054 <5.4
Trichlorofluorometha		<2.2		hloroethene	<37	<5.4 <5.4
Acetone	<26	<11		nochloromethane	0.60	<0.4 0.070
2-Propanol	<46	<19		bromoethane (EDB)	< 0.41	< 0.054
1,1-Dichloroethene	<2.1	< 0.54		benzene	<2.5	< 0.54
trans-1,2-Dichloroethe		< 0.54		enzene	<2.3	< 0.54
Methylene chloride	<190	<54		-Tetrachloroethane	<0.74	< 0.11
t-Butyl alcohol (TBA)	<65	<22	Nonar		<28	<5.4
3-Chloropropene	<17	<5.4		pylbenzene	<53	<11
CFC-113	<8.3	<1.1		rotoluene	<28	<5.4
Carbon disulfide	<34	<11		benzene	<27	<5.4
Methyl t-butyl ether (MTBE) <39	<11		vltoluene	<27	<5.4
Vinyl acetate	<38	<11	m,p-X	ylene	6.3	1.5
1,1-Dichloroethane	<2.2	< 0.54	o-Xyle	ne	<2.3	< 0.54
cis-1,2-Dichloroethene	e <2.1	< 0.54	Styrer	ie	<4.6	<1.1
Hexane	<19	<5.4	Bromo	form	<11	<1.1
Chloroform	6.4	1.3	Benzy	l chloride	< 0.28	< 0.054
Ethyl acetate	<39	<11	1,3,5-1	Trimethylbenzene	<27	<5.4
Tetrahydrofuran	<3.2	<1.1		Trimethylbenzene	<27	<5.4
2-Butanone (MEK)	<32	<11	,	chlorobenzene	<3.2	< 0.54
1,2-Dichloroethane (E	,	< 0.054		chlorobenzene	<1.2	< 0.21
1,1,1-Trichloroethane	<2.9	< 0.54		chlorobenzene	<3.2	< 0.54
Carbon tetrachloride	<1.7	< 0.27		richlorobenzene	<4	< 0.54
Benzene	<1.7	< 0.54		halene	<1.4	< 0.27
Cyclohexane	<37	<11	Hexac	hlorobutadiene	<1.2	< 0.11

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-10-0228 03/01/24 02/28/24 03/05/24 Air ug/m3	24	Client Projec Lab II Data Instru Opera	et: D: File: ument:	Farallon Consulting, 3245 154th Ave SE, F 403024-05 1/5.5 030517.D GCMS8 bat		2403-008
		%	Lower	Upper			
Surrogates:	Reco	overy:	Limit:	Limit:			
4-Bromofluorobenz		97	70	130			
1 21011011401050112	0110	01		100			
		Conce	ntration			Conce	ntration
Compounds:	ι	ıg/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D				10.01		1.0	
Propene	.1	7.9	4.6		chloropropane	<1.3	<0.28
Dichlorodifluorome	thane	<5.4	<1.1	1,4-Di		<2	< 0.55
Chloromethane		<20	< 9.9		Frimethylpentane	<26	<5.5
F-114 Vincel chloride		<12 <1.4	<1.6 <0.55		l methacrylate	<23 <23	$<\!\!5.5 < \!\!5.5$
Vinyl chloride 1,3-Butadiene		< 0.24	<0.55 <0.11	Hepta	ne odichloromethane	23	$< 5.5 \\ 0.42$
Butane		<0.24 <26	<0.11 <11		oroethene	< 0.59	<0.42
Bromomethane		<20 <21	<5.5		-Dichloropropene	<0.59 <5	<0.11 <1.1
Chloroethane		<15	<5.5		hyl-2-pentanone	<45	<1.1
Vinyl bromide		<2.4	<0.55		1,3-Dichloropropene	<45 <2.5	<0.55
Ethanol		<41 k	<0.55 <22 k	Toluer		<2.5 <41	<0.55
Acrolein		<0.63	<0.28		Frichloroethane	<0.3	< 0.055
Pentane		<32	<11	2-Hexa		<0.5 <23	<5.5
Trichlorofluoromet	hano	<12	<2.2		hloroethene	<37	<5.5 <5.5
Acetone	nane	<26	<11		nochloromethane	1.5	0.18
2-Propanol		<47	<19		bromoethane (EDB)	< 0.42	< 0.055
1,1-Dichloroethene		<2.2	< 0.55		obenzene	<2.5	< 0.55
trans-1,2-Dichloroe		<2.2	< 0.55		oenzene	<2.4	< 0.55
Methylene chloride		<190	<55		-Tetrachloroethane	< 0.76	< 0.11
t-Butyl alcohol (TB		<67	<22	Nonan		<29	< 5.5
3-Chloropropene	/	<17	<5.5	Isopro	pylbenzene	<54	<11
CFC-113		<8.4	<1.1	2-Chlo	orotoluene	<28	< 5.5
Carbon disulfide		<34	<11	Propyl	benzene	<27	< 5.5
Methyl t-butyl ethe	er (MTBE)	<40	<11	4-Ethy	vltoluene	<27	< 5.5
Vinyl acetate		<39	<11	m,p-X	ylene	6.8	1.6
1,1-Dichloroethane		<2.2	< 0.55	o-Xyle	ne	<2.4	< 0.55
cis-1,2-Dichloroeth	ene	<2.2	< 0.55	Styrer		<4.7	<1.1
Hexane		<19	<5.5	Brome		<11	<1.1
Chloroform		9.9	2.0		l chloride	< 0.28	< 0.055
Ethyl acetate		<40	<11		Frimethylbenzene	<27	<5.5
Tetrahydrofuran		<3.2	<1.1		Frimethylbenzene	<27	<5.5
2-Butanone (MEK)		<32	<11	,	chlorobenzene	<3.3	< 0.55
1,2-Dichloroethane	· /	< 0.22	< 0.055		chlorobenzene	<1.3	< 0.21
1,1,1-Trichloroetha		<3	< 0.55		chlorobenzene	<3.3	< 0.55
Carbon tetrachlorie	de	<1.7	<0.28		Frichlorobenzene	<4.1	< 0.55
Benzene		<1.8	< 0.55		halene	<1.4	< 0.28
Cyclohexane		<38	<11	Hexac	hlorobutadiene	<1.2	< 0.11

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-08-0228 03/01/24 02/28/24 03/05/24 Air ug/m3	24	Client Projec Lab II Data Instru Opera	et: D: File: ument:	Farallon Consulting, 3245 154th Ave SE, E 403024-06 1/5.3 030516.D GCMS8 bat		2403-008
		%	Lower	Upper			
Surrogates:	Reco	overy:	Limit:	Limit:			
4-Bromofluorobenz		97	70	130			
1 21011011401050112	0110	0.		100			
		Conce	ntration			Conce	ntration
Compounds:	ι	ıg/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D				10.01			
Propene	.1	< 6.4	<3.7		chloropropane	<1.2	<0.26
Dichlorodifluorome	thane	<5.2	<1.1	1,4-Di		<1.9	< 0.53
Chloromethane		<20	<9.5		rimethylpentane	<25	<5.3
F-114		<11	<1.6		l methacrylate	<22	<5.3
Vinyl chloride		<1.4	< 0.53	Hepta		<22	<5.3
1,3-Butadiene		< 0.23	< 0.11		dichloromethane	4.0	0.60
Butane		<25	<11		Dichlemennen	< 0.57	< 0.11
Bromomethane Chloroethane		<21	<5.3		-Dichloropropene	<4.8	<1.1
		<14	<5.3		nyl-2-pentanone	<43	<11
Vinyl bromide		<2.3	< 0.53		1,3-Dichloropropene	<2.4	< 0.53
Ethanol		68 ca	36 ca	Toluer		<40	<11
Acrolein		< 0.61	<0.26 <11		Trichloroethane	<0.29 <22	< 0.053
Pentane Trichlorofluoromet	h	<31	<11 <2.1	2-Hexa	hloroethene	<22 <36	<5.3
Acetone	nane	<12 <25	< <u>2</u> .1 <11		nochloromethane	<36 2.3	$< 5.3 \\ 0.26$
2-Propanol		<25 <46	<11 <19		bromoethane (EDB)	2.3 <0.41	<0.053
1,1-Dichloroethene		<2.1	<0.53		benzene	<0.41 <2.4	<0.053
trans-1,2-Dichloroe		< 2.1	<0.53		penzene	<2.4 <2.3	<0.53
Methylene chloride		<180	<0.53 <53		-Tetrachloroethane	<0.73	<0.55 <0.11
t-Butyl alcohol (TB		<64	<03 <21	Nonan		<0.73	<5.3
3-Chloropropene	(1)	<17	<5.3		pylbenzene	<52	<0.5 <11
CFC-113		<8.1	<1.1	-	pyloenzene	<02 <27	<5.3
Carbon disulfide		<33	<11		benzene	<26	<5.3
Methyl t-butyl ethe	er (MTBE)	<38	<11		vltoluene	<26	<5.3
Vinyl acetate		<37	<11	m,p-X		5.7	1.3
1,1-Dichloroethane		<2.1	< 0.53	o-Xyle		2.5	0.58
cis-1,2-Dichloroeth		<2.1	< 0.53	Styren		<4.5	<1.1
Hexane		<19	<5.3	Bromo		<11	<1.1
Chloroform		14	2.9		l chloride	< 0.27	< 0.053
Ethyl acetate		<38	<11		Frimethylbenzene	<26	<5.3
Tetrahydrofuran		<3.1	<1.1		Trimethylbenzene	<26	<5.3
2-Butanone (MEK)		<31	<11		chlorobenzene	<3.2	< 0.53
1,2-Dichloroethane		< 0.21	< 0.053		chlorobenzene	<1.2	< 0.2
1,1,1-Trichloroetha	· ,	<2.9	< 0.53		chlorobenzene	<3.2	< 0.53
Carbon tetrachlorie		<1.7	< 0.26		Trichlorobenzene	<3.9	< 0.53
Benzene		<1.7	< 0.53		halene	<1.4	< 0.26
Cyclohexane		<36	<11	Hexac	hlorobutadiene	<1.1	< 0.11

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-06-022824 03/01/24 02/28/24 03/05/24 Air ug/m3	Clien Projec Lab I Data Instru Opera	ct: D: File: ument:	Farallon Consulting, I 3245 154th Ave SE, B 403024-07 1/5.3 030515.D GCMS8 bat		2403-008
	%	Lower	Upper			
Surrogates:	Recovery:	Lower Limit:	Limit:			
4-Bromofluorobenze		70	130			
1 Dromondorobenize	500	10	100			
	Conce	entration			Conce	ntration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
Propene	< 6.4	<3.7		chloropropane	<1.2	< 0.26
Dichlorodifluoromet		<1.1	1,4-Di		<1.9	< 0.53
Chloromethane	<20	<9.5		Trimethylpentane	<25	<5.3
F-114	<11	<1.6		l methacrylate	<22	<5.3
Vinyl chloride	<1.4	< 0.53	Hepta		<22	<5.3
1,3-Butadiene	< 0.23	< 0.11		dichloromethane	< 0.36	< 0.053
Butane	<25	<11		oroethene	< 0.57	< 0.11
Bromomethane	<21	<5.3		-Dichloropropene	<4.8	<1.1
Chloroethane	<14	<5.3		nyl-2-pentanone	<43	<11
Vinyl bromide	<2.3	< 0.53		1,3-Dichloropropene	<2.4	< 0.53
Ethanol	<40 k	<21 k	Toluer		<40	<11
Acrolein	< 0.61	< 0.26		Trichloroethane	< 0.29	< 0.053
Pentane	<31	<11	2-Hexa		<22	<5.3
Trichlorofluorometh		<2.1		hloroethene	<36	<5.3
Acetone	<25	<11		nochloromethane	< 0.45	< 0.053
2-Propanol	<46	<19		bromoethane (EDB)	< 0.41	< 0.053
1,1-Dichloroethene	<2.1	< 0.53		benzene	<2.4	< 0.53
trans-1,2-Dichloroet		< 0.53		oenzene	<2.3	< 0.53
Methylene chloride	<180	<53	1,1,2,2	-Tetrachloroethane	< 0.73	< 0.11
t-Butyl alcohol (TBA		<21	Nonan		<28	<5.3
3-Chloropropene	<17	<5.3	-	pylbenzene	<52	<11
CFC-113	<8.1	<1.1		rotoluene	<27	<5.3
Carbon disulfide	<33	<11		benzene	<26	<5.3
Methyl t-butyl ethe		<11	•	ltoluene	<26	<5.3
Vinyl acetate	<37	<11	m,p-X		<4.6	<1.1
1,1-Dichloroethane	<2.1	< 0.53	o-Xyle		<2.3	< 0.53
cis-1,2-Dichloroethe		< 0.53	Styrer		<4.5	<1.1
Hexane	<19	<5.3	Bromo		<11	<1.1
Chloroform	< 0.26	< 0.053	•	l chloride	< 0.27	< 0.053
Ethyl acetate	<38	<11		Frimethylbenzene	<26	<5.3
Tetrahydrofuran	3.8	1.3		Frimethylbenzene	<26	<5.3
2-Butanone (MEK)	<31 (EDC) <0.91	<11		chlorobenzene	<3.2	< 0.53
1,2-Dichloroethane	. ,	<0.053		chlorobenzene	<1.2	<0.2
1,1,1-Trichloroetha		<0.53		chlorobenzene	<3.2	<0.53
Carbon tetrachlorid		<0.26		richlorobenzene	<3.9	< 0.53
Benzene	<1.7	< 0.53		halene	<1.4	<0.26
Cyclohexane	<36	<11	пехас	hlorobutadiene	<1.1	< 0.11

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 03/05/24 Air ug/m3	Inst	ject:	Farallon Consulting 3245 154th Ave SE 04-0498 mb 030511.D GCMS8 bat	-	A 2403-008
	%	Lower	Upper			
Surrogates:	Recovery:		Limit:			
4-Bromofluorobenz		70	130			
		entration				entration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D	-1.0	<0.7	1 0 D:	.1.1	-0.99	
Propene Dichlorodifluorome	<1.2 ethane <0.99	<0.7 <0.2		chloropropane	<0.23 <0.36	<0.05 <0.1
Chloromethane	<0.99 <3.7	<0.2 <1.8	1,4-Dic			
F-114	< 3.7	<1.8 <0.3		'rimethylpentane	<4.7 <4.1	<1 <1
Vinyl chloride	<0.26		Heptai	l methacrylate	<4.1 <4.1	<1
1,3-Butadiene	< 0.20	<0.1		dichloromethane	<0.067	< 0.01
Butane	<0.044			oroethene	< 0.007	<0.01
Bromomethane	<3.9			-Dichloropropene	<0.11	<0.02 <0.2
Chloroethane	<2.6			yl-2-pentanone	<8.2	<0.2
Vinyl bromide	<0.44	<0.1		1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	<0.44 <7.5 k		Toluen		<0.45	<0.1 <2
Acrolein	<0.11	<0.05		'richloroethane	<0.055	< 0.01
Pentane	<5.9		2-Hexa		<0.055	<0.01
Trichlorofluoromet		< 0.4		hloroethene	<6.8	<1
Acetone	<pre>state <2.2 <4.8</pre>			nochloromethane	<0.085	< 0.01
2-Propanol	<4.0 <8.6			promoethane (EDB)	< 0.085	<0.01 <0.01
1,1-Dichloroethene		<0.1		benzene	<0.46	<0.01
trans-1,2-Dichloroe		<0.1		enzene	<0.40	<0.1 <0.1
Methylene chloride				-Tetrachloroethane	<0.45	<0.12
t-Butyl alcohol (TB			Nonan		<5.2	<0.02
3-Chloropropene	<3.1	<1		pylbenzene	< 9.8	<2
CFC-113	<1.5			rotoluene	<5.2	<1
Carbon disulfide	<6.2	<0.2		benzene	<4.9	<1
Methyl t-butyl ethe		<2		ltoluene	<4.9	<1
Vinyl acetate	<7	<2	m,p-Xy		< 0.87	< 0.2
1,1-Dichloroethane			o-Xylei		< 0.43	< 0.1
cis-1,2-Dichloroeth			Styren		< 0.85	< 0.2
Hexane	<3.5		Bromo		<2.1	< 0.2
Chloroform	< 0.049			chloride	< 0.052	< 0.01
Ethyl acetate	<7.2			rimethylbenzene	<4.9	<1
Tetrahydrofuran	< 0.59			rimethylbenzene	<4.9	<1
2-Butanone (MEK)				chlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane				chlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroetha	· /	< 0.1		chlorobenzene	< 0.6	< 0.1
Carbon tetrachlorie		< 0.05		richlorobenzene	< 0.74	< 0.1
Benzene	< 0.32		Napht		<0.13 j	<0.025 j
Cyclohexane	<6.9			hlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024 Date Extracted: 03/14/24 Date Analyzed: 03/14/24

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

Sample ID Laboratory ID	<u>Helium</u>
SG-04-022824 403024-01	<0.6
SG-09-022824 403024-02	<0.6
$ SG-05-022824 { 403024-03 } $	<0.6
SG-11-022824 403024-04	<0.6
SG-10-022824 403024-05	<0.6
SG-08-022824 403024-06	<0.6
SG-06-022824 403024-07	<0.6
Method Blank	<0.6

04-0526 MB

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 403045-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	2,900	3,000	3
APH EC9-12 aliphatics	ug/m3	610	580	5
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Con	cror bampio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	81	70-130
APH EC9-12 aliphatics	ug/m3	67	111	70-130
APH EC9-10 aromatics	ug/m3	67	102	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 403045-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	190	190	0
Dichlorodifluoromethane	ug/m3	<5.6	<5.6	nm
Chloromethane	ug/m3	<21	<21	nm
F-114	ug/m3	<12	<12	nm
Vinyl chloride	ug/m3	1.7	1.7	0
1,3-Butadiene	ug/m3	34	34	0
Butane	ug/m3	140	130	7
Bromomethane	ug/m3	<22	<22	nm
Chloroethane	ug/m3	<15	<15	nm
Vinyl bromide	ug/m3	<2.5	<2.5	nm
Ethanol	ug/m3	<43	<43	nm
Acrolein	ug/m3	0.85	0.91	7
Pentane	ug/m3	78	81	4
Trichlorofluoromethane	ug/m3	22	19	15
Acetone	ug/m3	57	59	3
2-Propanol	ug/m3	<49	<49	nm
1,1-Dichloroethene	ug/m3	<2.3	<2.3	nm
trans-1,2-Dichloroethene	ug/m3	<2.3	<2.3	nm
Methylene chloride	ug/m3	<200	<200	nm
t-Butyl alcohol (TBA)	ug/m3	<69	<69	nm
3-Chloropropene	ug/m3	<18	<18	nm
CFC-113	ug/m3	<8.7	<8.7	nm
Carbon disulfide	ug/m3	<36	<36	nm
Methyl t-butyl ether (MTBE)	ug/m3	<41	<41	nm
Vinyl acetate	ug/m3	<40	<40	nm
1,1-Dichloroethane	ug/m3	<2.3	<2.3	nm
cis-1,2-Dichloroethene	ug/m3	<2.3	<2.3	nm
Hexane	ug/m3	50	48	4
Chloroform	ug/m3	1.3	1.3	0
Ethyl acetate	ug/m3	<41	<41	nm
Tetrahydrofuran	ug/m3	<3.4	<3.4	nm
2-Butanone (MEK)	ug/m3	<34	<34	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.23	< 0.23	nm
1,1,1-Trichloroethane	ug/m3	6.2	5.9	5
Carbon tetrachloride	ug/m3	<1.8	<1.8	nm
Benzene	ug/m3	25	25	0
Cyclohexane	ug/m3	<39	<39	nm
1,2-Dichloropropane	ug/m3	<1.3	<1.3	nm
1,4-Dioxane	ug/m3	<2.1	<2.1	nm
2,2,4-Trimethylpentane	ug/m3	350	350	0

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 403045-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<23	<23	nm
Heptane	ug/m3	28	28	0
Bromodichloromethane	ug/m3	< 0.38	< 0.38	nm
Trichloroethene	ug/m3	0.67	0.67	0
cis-1,3-Dichloropropene	ug/m3	<5.2	<5.2	nm
4-Methyl-2-pentanone	ug/m3	<47	<47	nm
trans-1,3-Dichloropropene	ug/m3	<2.6	<2.6	nm
Toluene	ug/m3	63	63	0
1,1,2-Trichloroethane	ug/m3	< 0.31	< 0.31	nm
2-Hexanone	ug/m3	<23	<23	nm
Tetrachloroethene	ug/m3	<39	<39	nm
Dibromochloromethane	ug/m3	< 0.49	< 0.49	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.44	< 0.44	nm
Chlorobenzene	ug/m3	<2.6	<2.6	nm
Ethylbenzene	ug/m3	2.5	2.5	0
1,1,2,2-Tetrachloroethane	ug/m3	< 0.78	< 0.78	nm
Nonane	ug/m3	<30	<30	nm
Isopropylbenzene	ug/m3	<56	<56	nm
2-Chlorotoluene	ug/m3	<30	<30	nm
Propylbenzene	ug/m3	<28	<28	nm
4-Ethyltoluene	ug/m3	<28	<28	nm
m,p-Xylene	ug/m3	<5	<5	nm
o-Xylene	ug/m3	<2.5	<2.5	nm
Styrene	ug/m3	<4.9	<4.9	nm
Bromoform	ug/m3	<12	<12	nm
Benzyl chloride	ug/m3	< 0.3	< 0.3	nm
1,3,5-Trimethylbenzene	ug/m3	<28	<28	nm
1,2,4 Trimethylbenzene	ug/m3	<28	<28	nm
1,3-Dichlorobenzene	ug/m3	<3.4	<3.4	nm
1,4-Dichlorobenzene	ug/m3	<1.3	<1.3	nm
1,2-Dichlorobenzene	ug/m3	<3.4	<3.4	nm
1,2,4-Trichlorobenzene	ug/m3	<4.2	<4.2	nm
Naphthalene	ug/m3	<1.5	<1.5	nm
Hexachlorobutadiene	ug/m3	<1.2	<1.2	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Co	ntroi Sample		Damaant	
	D	Q . 1	Percent	A
A	Reporting	Spike	Recovery LCS	Acceptance
Analyte	Units	Level		Criteria
Propene	ug/m3	23	111	70-130
Dichlorodifluoromethane	ug/m3	67	117	70-130
Chloromethane	ug/m3	28	91 102	70-130
F-114	ug/m3	94	106	70-130
Vinyl chloride	ug/m3	35	101	70-130
1,3-Butadiene	ug/m3	30	105	70-130
Butane	ug/m3	32	102	70-130
Bromomethane	ug/m3	52	103	70-130
Chloroethane	ug/m3	36	103	70-130
Vinyl bromide	ug/m3	59	116	70-130
Ethanol	ug/m3	25	140 vo	70-130
Acrolein	ug/m3	31	113	70-130
Pentane	ug/m3	40	103	70-130
Trichlorofluoromethane	ug/m3	76	105	70-130
Acetone	ug/m3	32	116	70-130
2-Propanol	ug/m3	33	115	70 - 130
1,1-Dichloroethene	ug/m3	54	110	70 - 130
trans-1,2-Dichloroethene	ug/m3	54	110	70 - 130
Methylene chloride	ug/m3	94	104	70 - 130
t-Butyl alcohol (TBA)	ug/m3	41	103	70 - 130
3-Chloropropene	ug/m3	42	100	70-130
CFC-113	ug/m3	100	112	70-130
Carbon disulfide	ug/m3	42	107	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	100	70-130
Vinyl acetate	ug/m3	48	99	70-130
1,1-Dichloroethane	ug/m3	55	110	70-130
cis-1,2-Dichloroethene	ug/m3	54	107	70-130
Hexane	ug/m3	48	98	70-130
Chloroform	ug/m3	66	111	70-130
Ethyl acetate	ug/m3	49	99	70-130
Tetrahydrofuran	ug/m3	40	97	70-130
2-Butanone (MEK)	ug/m3	40	105	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	114	70-130
1,1,1-Trichloroethane	ug/m3	74	112	70 - 130
Carbon tetrachloride	ug/m3	85	113	70-130
Benzene	ug/m3	43	104	70-130
Cyclohexane	ug/m3	46	108	70-130
1,2-Dichloropropane	ug/m3	62	111	70-130
1,4-Dioxane	ug/m3	49	112	70-130
2,2,4-Trimethylpentane	ug/m3	63	105	70-130
,, P 0 1 0 0 1 0		00	100	100

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	Some of Sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	108	70-130
Heptane	ug/m3	55	101	70-130
Bromodichloromethane	ug/m3	90	115	70-130
Trichloroethene	ug/m3	73	112	70-130
cis-1,3-Dichloropropene	ug/m3	61	107	70-130
4-Methyl-2-pentanone	ug/m3	55	100	70-130
trans-1,3-Dichloropropene	ug/m3	61	113	70-130
Toluene	ug/m3	51	109	70-130
1,1,2-Trichloroethane	ug/m3	74	115	70-130
2-Hexanone	ug/m3	55	106	70-130
Tetrachloroethene	ug/m3	92	113	70-130
Dibromochloromethane	ug/m3	120	113	70-130
1,2-Dibromoethane (EDB)	ug/m3	100	114	70-130
Chlorobenzene	ug/m3	62	108	70-130
Ethylbenzene	ug/m3	59	111	70-130
1,1,2,2-Tetrachloroethane	ug/m3	93	115	70-130
Nonane	ug/m3	71	112	70-130
Isopropylbenzene	ug/m3	66	113	70-130
2-Chlorotoluene	ug/m3	70	118	70-130
Propylbenzene	ug/m3	66	111	70-130
4-Ethyltoluene	ug/m3	66	109	70-130
m,p-Xylene	ug/m3	120	113	70-130
o-Xylene	ug/m3	59	116	70-130
Styrene	ug/m3	58	102	70-130
Bromoform	ug/m3	140	109	70-130
Benzyl chloride	ug/m3	70	128	70-130
1,3,5-Trimethylbenzene	ug/m3	66	111	70-130
1,2,4-Trimethylbenzene	ug/m3	66	107	70-130
1,3-Dichlorobenzene	ug/m3	81	113	70-130
1,4-Dichlorobenzene	ug/m3	81	111	70-130
1,2-Dichlorobenzene	ug/m3	81	111	70-130
1,2,4-Trichlorobenzene	ug/m3	100	104	70-130
Naphthalene	ug/m3	71	111	70-130
Hexachlorobutadiene	ug/m3	140	111	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code:	403024-07 (Dup	licate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	0	0	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 ${\bf k}-{\bf The}$ calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 17, 2023

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on October 9, 2023 from the 3245 158th Ave SE 2403-008, F&BI 310136 project. There are 15 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN1017R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 9, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 310136 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
310136 -01	SG-01-5.0
310136 -02	SG-02-5.0
310136 -03	SG-03-4.0

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The concentration of several analytes exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-01-5.0 10/09/23 10/09/23 10/14/23 Air ug/m3	Clien Projec Lab I Data Instru Opera	et: D: File: ument:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 310136-01 1/41 101323.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 94	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 7,900			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-02-5.0 10/09/23 10/09/23 10/14/23 Air ug/m3	Client Projec Lab II Data H Instru Opera	t:): File: ment:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 310136-02 1/41 101325.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 92	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			

APH EC5-8 aliphatics	290,000
APH EC9-12 aliphatics	580,000
APH EC9-10 aromatics	19,000

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-03-4.0 10/09/23 10/09/23 10/14/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 310136-03 1/43 101324.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 94	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics 17,000			

APH EC5-8 aliphatics	17,000
APH EC9-12 aliphatics	<1,100
APH EC9-10 aromatics	1,700 x

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 10/13/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 03-2332 MB 101312.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 86	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-01-5.0 10/09/23 10/09/23 10/14/23 Air ug/m3)	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 310136-01 1/41 101323.D GCMS7 bat		
		%	Lower	Upper			
Surrogates:	R	ecovery:	Lower Limit:	Limit:			
4-Bromofluorobenz		94	70	130			
		Conce	ntration			Conce	ntration
Compounds:		ug/m3	ppbv	Comp	ounds:	ug/m3	ppbv
D		000	×1 0	100			.0
Propene	.1	880	510		chloropropane	<9.5	<2
Dichlorodifluorome	thane	<41	<8.2	1,4-Di		<15	<4.1
Chloromethane F-114		<150	<74 <12		Frimethylpentane	<190 <170	<41 <41
		<86	<4.1	-	rl methacrylate		<41 <41
Vinyl chloride 1,3-Butadiene		<10 <1.8	<0.82	Hepta	ne odichloromethane	<170 <2.7	<0.41
Butane		$^{1.0}_{520}$	$< 0.82 \\ 220$		oroethene	<4.4	< 0.41 < 0.82
Bromomethane		<160	<pre><41</pre>		B-Dichloropropene	<37	<8.2
Chloroethane		<100 <110	<41 <41		hyl-2-pentanone	<340	<82
Vinyl bromide		<110	<4.1		1,3-Dichloropropene	<540 <19	<4.1
Ethanol		<310	<160	Toluei		<310	<82
Acrolein		<4.7	<2		Frichloroethane	<2.2	< 0.41
Pentane		<240	<82	2-Hex		<170	<41
Trichlorofluoromet	hane	<92	<16		chloroethene	<280	<41
Acetone	liallo	390	170		mochloromethane	<3.5	< 0.41
2-Propanol		<350	<140		bromoethane (EDB)	<3.2	< 0.41
1,1-Dichloroethene		<16	<4.1		obenzene	<19	<4.1
trans-1,2-Dichloroe		<16	<4.1		oenzene	830	190
Methylene chloride		<1,400	<410		2-Tetrachloroethane	<5.6	< 0.82
t-Butyl alcohol (TB	A)	<500	<160	Nonar	ne	880	170
3-Chloropropene		<130	<41	Isopro	pylbenzene	<400	<82
CFC-113		<63	<8.2	2-Chlo	orotoluene	<210	<41
Carbon disulfide		340	110		lbenzene	<200	<41
Methyl t-butyl ethe	er (MTBE)	<300	<82		yltoluene	<200	<41
Vinyl acetate		<290	<82	m,p-X		3,500 ve	810 ve
1,1-Dichloroethane		<17	<4.1	o-Xyle		890	200
cis-1,2-Dichloroeth	ene	<16	<4.1	Styrer		<35	<8.2
Hexane		<140	<41	Bromo		<85	<8.2
Chloroform		<2	< 0.41		l chloride	<2.1	< 0.41
Ethyl acetate		<300	<82		Frimethylbenzene	<200	<41
Tetrahydrofuran		<24	<8.2		Frimethylbenzene	<200	<41
2-Butanone (MEK)		<240	<82	,	chlorobenzene	<25	<4.1
1,2-Dichloroethane	· · ·	<1.7	< 0.41		chlorobenzene	< 9.4	<1.6
1,1,1-Trichloroetha		<22	<4.1		chlorobenzene Friehlerebenzene	<25	<4.1
Carbon tetrachlorid	ie	<13	<2 × 1		Frichlorobenzene	<30	<4.1
Benzene Cyclohexane		26 < 280	8.1 <82		halene hlorobutadiene	<11 <8.7	<2 <0.82
Cyclollexalle		~400	~04	TIEXad	moroputaulelle	~0.1	~0.04

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-02-5.0 10/09/23 10/09/23 10/14/23 Air ug/m3)	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	Farallon Consulting 3245 158th Ave SE 310136-02 1/41 101325.D GCMS7 bat		
		%	Lower	Upper			
Surrogates:	R	ecovery:	Limit:	Limit:			
4-Bromofluorobenz	ene	90	70	130			
		Conco	ntration			Cone	entration
Compounds:		ug/m3	ppbv	Compo	unds:	ug/m3	ppbv
compounds.		ug/III0	ppu	Compe	Junus.	ug/iii0	ppov
Propene		410	240	1,2-Die	chloropropane	<9.5	<2
Dichlorodifluorome	thane	<41	<8.2	1,4-Die		<15	<4.1
Chloromethane		<150	<74		rimethylpentane	12,000 ve	
F-114		<86	<12		l methacrylate	<170	<41
Vinyl chloride		<10	<4.1	Hepta		<170	<41
1,3-Butadiene		<1.8	< 0.82		dichloromethane	<2.7	< 0.41
Butane		<190	<82		oroethene	<4.4	< 0.82
Bromomethane		<160	<41		-Dichloropropene	<37	<8.2
Chloroethane		<110	<41		nyl-2-pentanone	<340	<82
Vinyl bromide		<18	<4.1		1,3-Dichloropropene	<19	<4.1
Ethanol		<310	<160	Toluer		<310	<82
Acrolein		<4.7	<2		Trichloroethane	<2.2	< 0.41
Pentane		<240	<82	2-Hexa		<170	<41
Trichlorofluoromet	hane	<92	<16		hloroethene	<280	<41
Acetone		450	190		nochloromethane	<3.5	< 0.41
2-Propanol		<350	<140		bromoethane (EDB)	<3.2	< 0.41
1,1-Dichloroethene		<16	<4.1		benzene	<19	<4.1
trans-1,2-Dichloroe		<16	<4.1	•	enzene	110	26
Methylene chloride		<1,400	<410		-Tetrachloroethane	<5.6	< 0.82
t-Butyl alcohol (TB	A)	<500	<160	Nonan		<220	<41
3-Chloropropene		<130	<41		pylbenzene	1,300	260
CFC-113		<63	<8.2		rotoluene	<210	<41
Carbon disulfide		<260	<82		benzene	1,300	270
Methyl t-butyl ethe	er (MTBE)	<300	<82		ltoluene	2,800	570
Vinyl acetate		<290	<82	m,p-Xy		2,100	480
1,1-Dichloroethane		<17	<4.1	o-Xyle		<18	<4.1
cis-1,2-Dichloroethe	ene	<16	<4.1	Styren		<35	<8.2
Hexane		<140	<41	Bromo		<85	<8.2
Chloroform		<2	< 0.41		l chloride	<2.1	< 0.41
Ethyl acetate		<300	<82		rimethylbenzene	<200	<41
Tetrahydrofuran		<24	<8.2		l'rimethylbenzene	8,500 ve	
2-Butanone (MEK)		<240	<82	,	chlorobenzene	<25	<4.1
1,2-Dichloroethane		<1.7	< 0.41		chlorobenzene	< 9.4	<1.6
1,1,1-Trichloroetha		<22	<4.1		chlorobenzene	<25	<4.1
Carbon tetrachlorid	ie	<13	<2		l'richlorobenzene	<30	<4.1
Benzene		31	9.8	Napht		<11	<2
Cyclohexane		<280	<82	пехас	hlorobutadiene	<8.7	< 0.82

ENVIRONMENTAL CHEMISTS

Client Sample ID:SG-03-4.Date Received:10/09/23Date Collected:10/09/23Date Analyzed:10/14/23Matrix:AirUnits:ug/m3	0	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 310136-03 1/43 101324.D GCMS7 bat		
	%	Lower	Upper			
Surrogates: R	ecovery:	Limit:	Limit:			
4-Bromofluorobenzene	93	70	130			
	Conce	ntration			Conce	entration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
Propene	260	150		chloropropane	<9.9	<2.1
Dichlorodifluoromethane	<43	<8.6	1,4-Di		<15	<4.3
Chloromethane	<160	<77		Frimethylpentane	<200	<43
F-114	<90	<13	•	l methacrylate	<180	<43
Vinyl chloride	<11	<4.3	Hepta		<180	<43
1,3-Butadiene	<1.9	<0.86		odichloromethane	<2.9	<0.43
Butane	420	180		oroethene	<4.6	< 0.86
Bromomethane	<170	<43		-Dichloropropene	<39	<8.6
Chloroethane Vinyl bromide	<110 <19	<43 <4.3		hyl-2-pentanone	<350 <20	<86 <4.3
Ethanol	<320	<4.5 <170	Toluer	1,3-Dichloropropene	<320	<4.5 <86
Acrolein	<520 6.1 ca	<170 2.7 ca		Frichloroethane	<2.3	<0.43
Pentane	<250	2.7 ca <86	1,1,2- 2-Hex		<2.5 <180	<0.43 <43
Trichlorofluoromethane	<230 <97	<00 <17		chloroethene	<290	<43 <43
Acetone	280	120		mochloromethane	<3.7	<0.43
2-Propanol	<370	<150		bromoethane (EDB)	<3.3	<0.43
1,1-Dichloroethene	<17	<4.3		obenzene	<20	<4.3
trans-1,2-Dichloroethene	<17	<4.3		oenzene	990	230
Methylene chloride	<1,500	<430		2-Tetrachloroethane	<5.9	< 0.86
t-Butyl alcohol (TBA)	<520	<170	Nonar		720	140
3-Chloropropene	<130	<43		pylbenzene	<420	<86
CFC-113	<66	<8.6		protoluene	<220	<43
Carbon disulfide	<270	<86		lbenzene	<210	<43
Methyl t-butyl ether (MTBE)	<310	<86		yltoluene	<210	<43
Vinyl acetate	<300	<86	m,p-X	ylene	4,700 ve	1,100 ve
1,1-Dichloroethane	<17	<4.3	o-Xyle		1,600	370
cis-1,2-Dichloroethene	<17	<4.3	Styrer	ne	<37	<8.6
Hexane	<150	<43	Bromo		<89	<8.6
Chloroform	<2.1	< 0.43	Benzy	l chloride	<2.2	< 0.43
Ethyl acetate	<310	<86	1,3,5-1	Frimethylbenzene	<210	<43
Tetrahydrofuran	<25	<8.6	1,2,4-7	Frimethylbenzene	<210	<43
2-Butanone (MEK)	<250	<86		chlorobenzene	<26	<4.3
1,2-Dichloroethane (EDC)	<1.7	< 0.43		chlorobenzene	<9.8	<1.6
1,1,1-Trichloroethane	<23	<4.3		chlorobenzene	<26	<4.3
Carbon tetrachloride	<14	<2.1		Frichlorobenzene	<32	<4.3
Benzene	23	7.3		halene	<11	<2.1
Cyclohexane	<300	<86	Hexac	hlorobutadiene	<9.2	< 0.86

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method E Not Appl Not Appl 10/13/23 Air ug/m3	icable	Clien Projec Lab I Data Instru Opera	et: D: File: 1ment:	:: 3245 158th Ave SE 0: 03-2332 MB Yile: 101312.D ment: GCMS7		
		%	Lower	Upper			
Surrogates:	R	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		86	70	130			
			ntration				ntration
Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D		.1.0		1 0 D'			
Propene	. 1	<1.2	< 0.7		chloropropane	< 0.23	< 0.05
Dichlorodifluorome	thane	<0.99	< 0.2	1,4-Di		<0.36	< 0.1
Chloromethane		<3.7	<1.8		Frimethylpentane	<4.7	<1
F-114		<2.1	< 0.3	-	l methacrylate	<4.1	<1
Vinyl chloride		< 0.26	< 0.1	Hepta		<4.1	<1
1,3-Butadiene		< 0.044	< 0.02		odichloromethane	< 0.067	< 0.01
Butane		<4.8	<2		oroethene	< 0.11	< 0.02
Bromomethane		<3.9	<1		-Dichloropropene	< 0.91	< 0.2
Chloroethane		<2.6	<1		hyl-2-pentanone	<8.2	<2
Vinyl bromide		< 0.44	< 0.1		1,3-Dichloropropene	< 0.45	< 0.1
Ethanol		<7.5	<4	Toluer		<7.5	<2
Acrolein		< 0.11	< 0.05		Frichloroethane	< 0.055	< 0.01
Pentane		<5.9 <2.2	<2 <0.4	2-Hex		<4.1	<1
Trichlorofluoromet	nane	<2.2 <4.8	<0.4 <2		chloroethene nochloromethane	<6.8	<1
Acetone 2-Propanol		<4.8 <8.6	<2.5		bromoethane (EDB)	$< 0.085 \\ < 0.077$	<0.01 <0.01
1,1-Dichloroethene		<0.0 <0.4	<0.1		benzene	< 0.46	<0.01
trans-1,2-Dichloroe	thone	<0.4 <0.4	<0.1		Denzene	<0.46 <0.43	<0.1 <0.1
Methylene chloride		$<\!$	<0.1 <10		2-Tetrachloroethane	<0.43 <0.14	<0.02
t-Butyl alcohol (TB		<55 <12	<10 <4	1,1,2,2 Nonar		<5.2	<0.02 <1
3-Chloropropene	n)	<3.1	<1		pylbenzene	< <u>9.2</u> <9.8	<2
CFC-113		< 1.5	<0.2		protoluene	<5.2	<1
Carbon disulfide		<6.2	<2		lbenzene	<4.9	<1
Methyl t-butyl ethe	r (MTBE)	<7.2	<2		yltoluene	<4.9	<1
Vinyl acetate	i (IIIDD)	<7	<2	m,p-X		< 0.87	< 0.2
1,1-Dichloroethane		< 0.4	< 0.1	o-Xyle		< 0.43	< 0.1
cis-1,2-Dichloroethe		< 0.4	< 0.1	Styrer		< 0.85	< 0.2
Hexane		<3.5	<1	Bromo		<2.1	< 0.2
Chloroform		< 0.049	< 0.01		l chloride	< 0.052	< 0.01
Ethyl acetate		<7.2	<2	•	Frimethylbenzene	<4.9	<1
Tetrahydrofuran		< 0.59	< 0.2		Frimethylbenzene	<4.9	<1
2-Butanone (MEK)		<5.9	<2		chlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane		< 0.04	< 0.01	1,4-Di	chlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroetha		< 0.55	< 0.1		chlorobenzene	< 0.6	< 0.1
Carbon tetrachlorid		< 0.31	< 0.05		Frichlorobenzene	< 0.74	< 0.1
Benzene		< 0.32	< 0.1		halene	< 0.26	< 0.05
Cyclohexane		<6.9	<2	Hexac	hlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 10/17/23 Date Received: 10/09/23 Project: 3245 158th Ave SE 2403-008, F&BI 310136

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 310259-01 1/5.0 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	<370	<370	nm
APH EC9-12 aliphatics	ug/m3	<120	<120	nm
APH EC9-10 aromatics	ug/m3	<120	<120	nm

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory Con	or or sumpro		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	74	70-130
APH EC9-12 aliphatics	ug/m3	67	117	70-130
APH EC9-10 aromatics	ug/m3	67	99	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 10/17/23 Date Received: 10/09/23 Project: 3245 158th Ave SE 2403-008, F&BI 310136

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 310259-01 1/5.0 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<6	<6	nm
Dichlorodifluoromethane	ug/m3	<4.9	<4.9	nm
Chloromethane	ug/m3	<19	<19	nm
F-114	ug/m3	<10	<10	nm
Vinyl chloride	ug/m3	<1.3	<1.3	nm
1,3-Butadiene	ug/m3	< 0.22	< 0.22	nm
Butane	ug/m3	<24	<24	nm
Bromomethane	ug/m3	<19	<19	nm
Chloroethane	ug/m3	<13	<13	nm
Vinyl bromide	ug/m3	<2.2	<2.2	nm
Ethanol	ug/m3	1,400	1,400	0
Acrolein	ug/m3	< 0.57	< 0.57	nm
Pentane	ug/m3	<30	<30	nm
Trichlorofluoromethane	ug/m3	<11	<11	nm
Acetone	ug/m3	63	61	3
2-Propanol	ug/m3	<43	<43	nm
1,1-Dichloroethene	ug/m3	<2	<2	nm
trans-1,2-Dichloroethene	ug/m3	<2	<2	nm
Methylene chloride	ug/m3	<170	<170	nm
t-Butyl alcohol (TBA)	ug/m3	<61	<61	nm
3-Chloropropene	ug/m3	<16	<16	nm
CFC-113	ug/m3	<7.7	<7.7	nm
Carbon disulfide	ug/m3	<31	<31	nm
Methyl t-butyl ether (MTBE)	ug/m3	<36	<36	nm
Vinyl acetate	ug/m3	<35	<35	nm
1,1-Dichloroethane	ug/m3	<2	<2	nm
cis-1,2-Dichloroethene	ug/m3	<2	<2	nm
Hexane	ug/m3	<18	<18	nm
Chloroform	ug/m3	< 0.24	< 0.24	nm
Ethyl acetate	ug/m3	<36	<36	nm
Tetrahydrofuran	ug/m3	<2.9	<2.9	nm
2-Butanone (MEK)	ug/m3	<29	<29	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.2	< 0.2	nm
1,1,1-Trichloroethane	ug/m3	<2.7	<2.7	nm
Carbon tetrachloride	ug/m3	<1.6	<1.6	nm
Benzene	ug/m3	<1.6	<1.6	nm
Cyclohexane	ug/m3	<34	<34	nm
1,2-Dichloropropane	ug/m3	<1.2	<1.2	nm
1,4-Dioxane	ug/m3	<1.8	<1.8	nm
2,2,4-Trimethylpentane	ug/m3	<23	<23	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 10/17/23 Date Received: 10/09/23 Project: 3245 158th Ave SE 2403-008, F&BI 310136

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 310259-01 1/5.0 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<20	<20	nm
Heptane	ug/m3	<20	<20	nm
Bromodichloromethane	ug/m3	< 0.34	< 0.34	nm
Trichloroethene	ug/m3	< 0.54	< 0.54	nm
cis-1,3-Dichloropropene	ug/m3	<4.5	<4.5	nm
4-Methyl-2-pentanone	ug/m3	<41	<41	nm
trans-1,3-Dichloropropene	ug/m3	<2.3	<2.3	nm
Toluene	ug/m3	<38	<38	nm
1,1,2-Trichloroethane	ug/m3	< 0.27	< 0.27	nm
2-Hexanone	ug/m3	<20	<20	nm
Tetrachloroethene	ug/m3	<34	<34	nm
Dibromochloromethane	ug/m3	< 0.43	< 0.43	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.38	< 0.38	nm
Chlorobenzene	ug/m3	<2.3	<2.3	nm
Ethylbenzene	ug/m3	<2.2	<2.2	nm
1,1,2,2-Tetrachloroethane	ug/m3	< 0.69	< 0.69	nm
Nonane	ug/m3	<26	<26	nm
Isopropylbenzene	ug/m3	<49	<49	nm
2-Chlorotoluene	ug/m3	<26	<26	nm
Propylbenzene	ug/m3	$<\!\!25$	<25	nm
4-Ethyltoluene	ug/m3	$<\!\!25$	<25	nm
m,p-Xylene	ug/m3	5.5	5.6	2
o-Xylene	ug/m3	<2.2	<2.2	nm
Styrene	ug/m3	<4.3	<4.3	nm
Bromoform	ug/m3	<10	<10	nm
Benzyl chloride	ug/m3	< 0.26	< 0.26	nm
1,3,5-Trimethylbenzene	ug/m3	$<\!\!25$	<25	nm
1,2,4-Trimethylbenzene	ug/m3	$<\!\!25$	<25	nm
1,3-Dichlorobenzene	ug/m3	<3	<3	nm
1,4-Dichlorobenzene	ug/m3	<1.1	<1.1	nm
1,2-Dichlorobenzene	ug/m3	<3	<3	nm
1,2,4-Trichlorobenzene	ug/m3	<3.7	<3.7	nm
Naphthalene	ug/m3	<1.3	<1.3	nm
Hexachlorobutadiene	ug/m3	<1.1	<1.1	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 10/17/23 Date Received: 10/09/23 Project: 3245 158th Ave SE 2403-008, F&BI 310136

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Co	ontroi Sample		Percent	
	Reporting	Spike	Recovery	Accontance
Analyte	Units	Level	LCS	Acceptance Criteria
Propene		23	105	70-130
Dichlorodifluoromethane	ug/m3 ug/m3	$\frac{23}{67}$	$\frac{105}{113}$	70-130
Chloromethane	ug/m3 ug/m3	28	99	70-130
F-114	0	$\frac{28}{94}$	99 111	70-130
	ug/m3	$\frac{94}{35}$		
Vinyl chloride	ug/m3		105	70-130
1,3-Butadiene	ug/m3	30	96 07	70-130
Butane	ug/m3	32 59	97 114	70-130
Bromomethane	ug/m3	52 26	114	70-130
Chloroethane	ug/m3	36	108	70-130
Vinyl bromide	ug/m3	59	124	70-130
Ethanol	ug/m3	25	106	70-130
Acrolein	ug/m3	31	101	70-130
Pentane	ug/m3	40	94	70-130
Trichlorofluoromethane	ug/m3	76	112	70-130
Acetone	ug/m3	32	103	70-130
2-Propanol	ug/m3	33	92	70-130
1,1-Dichloroethene	ug/m3	54	106	70-130
trans-1,2-Dichloroethene	ug/m3	54	101	70-130
Methylene chloride	ug/m3	94	113	70-130
t-Butyl alcohol (TBA)	ug/m3	41	86	70-130
3-Chloropropene	ug/m3	42	93	70-130
CFC-113	ug/m3	100	116	70-130
Carbon disulfide	ug/m3	42	110	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	87	70-130
Vinyl acetate	ug/m3	48	87	70-130
1,1-Dichloroethane	ug/m3	55	101	70-130
cis-1,2-Dichloroethene	ug/m3	54	98	70-130
Hexane	ug/m3	48	90	70-130
Chloroform	ug/m3	66	102	70-130
Ethyl acetate	ug/m3	49	92	70-130
Tetrahydrofuran	ug/m3	40	97	70-130
2-Butanone (MEK)	ug/m3	40	89	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	99	70-130
1,1,1-Trichloroethane	ug/m3	74	101	70-130
Carbon tetrachloride	ug/m3	85	107	70-130
Benzene	ug/m3	43	97	70-130
Cyclohexane	ug/m3	46	87	70-130
1,2-Dichloropropane	ug/m3	62	105	70-130
1,4-Dioxane	ug/m3	49	101	70-130
2,2,4-Trimethylpentane	ug/m3	63	102	70-130
• •	5			

ENVIRONMENTAL CHEMISTS

Date of Report: 10/17/23 Date Received: 10/09/23 Project: 3245 158th Ave SE 2403-008, F&BI 310136

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

		Percent		
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	98	70-130
Heptane	ug/m3	55	98	70 - 130
Bromodichloromethane	ug/m3	90	108	70 - 130
Trichloroethene	ug/m3	73	105	70 - 130
cis-1,3-Dichloropropene	ug/m3	61	108	70 - 130
4-Methyl-2-pentanone	ug/m3	55	105	70 - 130
trans-1,3-Dichloropropene	ug/m3	61	98	70 - 130
Toluene	ug/m3	51	102	70 - 130
1,1,2-Trichloroethane	ug/m3	74	115	70 - 130
2-Hexanone	ug/m3	55	97	70 - 130
Tetrachloroethene	ug/m3	92	120	70 - 130
Dibromochloromethane	ug/m3	120	114	70 - 130
1,2-Dibromoethane (EDB)	ug/m3	100	106	70 - 130
Chlorobenzene	ug/m3	62	111	70 - 130
Ethylbenzene	ug/m3	59	96	70 - 130
1,1,2,2-Tetrachloroethane	ug/m3	93	110	70 - 130
Nonane	ug/m3	71	112	70 - 130
Isopropylbenzene	ug/m3	66	111	70 - 130
2-Chlorotoluene	ug/m3	70	113	70 - 130
Propylbenzene	ug/m3	66	111	70 - 130
4-Ethyltoluene	ug/m3	66	104	70 - 130
m,p-Xylene	ug/m3	120	101	70 - 130
o-Xylene	ug/m3	59	108	70 - 130
Styrene	ug/m3	58	105	70 - 130
Bromoform	ug/m3	140	120	70 - 130
Benzyl chloride	ug/m3	70	98	70 - 130
1,3,5-Trimethylbenzene	ug/m3	66	112	70 - 130
1,2,4-Trimethylbenzene	ug/m3	66	102	70 - 130
1,3-Dichlorobenzene	ug/m3	81	119	70 - 130
1,4-Dichlorobenzene	ug/m3	81	114	70-130
1,2-Dichlorobenzene	ug/m3	81	119	70-130
1,2,4-Trichlorobenzene	ug/m3	100	94	70-130
Naphthalene	ug/m3	71	98	70-130
Hexachlorobutadiene	ug/m3	140	111	70 - 130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

										FORMS\COC\COCTO-15.DOC
								ed by:	Received by:	Fax(206) 283-5044
								Relinquished by:	Relinq	Ph. (206) 285-8282
10/09/23 13:55	F80	<	AWHPHAN	ANN H			had	ed by:	Received by:	Seattle, WA 98108
19-9-23 1355	Finallon	(Bra	narie 1	Å		had	Relinquished by:	Relinq	5500 4th Avenue South
Y DATE TIME	COMPANY		PRINT NAME	PRINT			SIGNATURE	SIC		Friedman & Bruya, Inc.
						IA / SG				
						IA / SG				
0	red at <u>x0</u> °C	les received	Samples			IA / SG				S. 10. 1913
						IA / SG				
						IA / SG				
×.	× ×	4761 00	EAC! 000 042	30.01	ļ	IA / SG	225	9893	03	56-03-4.0
	X	1129	1122-5.0			IA /(SG)	222	9433	Q2	56-62-5,0
	×		10110		11-9-23	IA 7 (SG)	204	tth	01	SG-01-5.0
Notes	7	g) Time	Time ("H		Sampled		ID .	ID	ID ID	Sample Name
APH Heliu	015 Ful F015 BT T015 W		Field Final		Data	Level: LA=Indoor Air		Conistor		
	'EXN 'OCs			- ,	-	Reporting				
UESTED	ANALYSIS REQUESTED		_							SAMPLE INFORMATION
final report delivery Hold (Fee may apply):	J.J.					ties . con	Mercare	hillion	mail <i>iff</i> a	Phone (425) 295 0800 Email yerhine Setter Muraniticz, in
SAMPLE DISPOSAL Default:Clean following	INVOICE TO	INI				- NOTES:	17	18 ASO	ialy !	City, State, ZIP ISSapial, WA 98027
Rush charges authorized by;	2403-008	240	ŝ	Aire	3245 158th Ave 3E	394			2 Nh	Address 975 Stin Alve NW
Standard	PO #		ESS	& ADDF	PROJECT NAME & ADDRESS	PROJE				Company Farallon
Page # of			2/2	ature)	SAMPLERS (signature)	SAMPI		5	hliva	210126 Report To YUSUF Pehlivan
	- 58/60/01		USTODY	N OF C	SAMPLE CHAIN OF CUSTO	SAMPL				311/12/

.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 13, 2023

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the additional results from the testing of material submitted on October 23, 2023 from the 3245 158th Ave SE 2403-008, F&BI 310418 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN1113R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 23, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 310418 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Farallon Consulting, LLC
310418 -01	FMW-01-5.0
310418 -02	FMW-01-10.0
310418 -03	FMW-01-15.0
310418 -04	FMW-01-20.0
310418 -05	FMW-01-25.0
310418 -06	FMW-01-30.0
310418 -07	FMW-01-35.0
310418 -08	FMW-01-40.0
310418 -09	FB-01-3.5
310418 -10	FB-01-5.0
310418 -11	FB-01-10.0
310418 -12	FB-01-15.0
310418 -13	FB-01-20.0
310418 -14	FMW-02-5.0
310418 -15	FMW-02-10.0
310418 -16	FMW-02-15.0
310418 -17	FMW-02-20.0
310418 -18	FMW-02-25.0
310418 -19	FMW-02-30.0
310418 -20	FMW-02-35.0

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-01-20.0 10/23/23 11/09/23 11/09/23 Soil mg/kg (ppm)		Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 310418-04 1/0.5 110908.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 99 97 104	Lower Limit: 84 73 57	Upper Limit: 120 128 146
Compounds:	(Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroeth 1,2-Dichloroethane 1,1,1-Trichloroethan Trichloroethene Tetrachloroethene	ene (EDC)	<0.002 <0.1 <0.002 <0.5 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applical 11/08/23 11/08/23 Soil mg/kg (ppm)		Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 03-2626 mb 1/0.5 110815.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 99 102	Lower Limit: 84 73 57	Upper Limit: 120 128 146
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroeth 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	<0.002 <0.1 <0.002 <0.5 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/13/23 Date Received: 10/23/23 Project: 3245 158th Ave SE 2403-008, F&BI 310418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 311102-02 (Matrix Spike)

Laboratory Code. 511102-02	(main opine)		Sample	Percent	Percent		
		a .1	_ 1	-		A 1	מחת
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2	< 0.05	80	76	10-138	5
Chloroethane	mg/kg (ppm)	2	< 0.5	80	75	10-176	6
1,1-Dichloroethene	mg/kg (ppm)	2	< 0.05	82	88	10-160	7
Methylene chloride	mg/kg (ppm)	2	< 0.5	83	85	10-156	2
trans-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	93	93	14 - 137	0
1,1-Dichloroethane	mg/kg (ppm)	2	< 0.05	91	92	19-140	1
cis-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	94	96	25 - 135	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	< 0.05	85	91	12 - 160	7
1,1,1-Trichloroethane	mg/kg (ppm)	2	< 0.05	97	102	10-156	5
Trichloroethene	mg/kg (ppm)	2	0.13	93	93	21 - 139	0
Tetrachloroethene	mg/kg (ppm)	2	0.024	89	89	20-133	0

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2	85	22 - 139
Chloroethane	mg/kg (ppm)	2	86	10-163
1,1-Dichloroethene	mg/kg (ppm)	2	87	47 - 128
Methylene chloride	mg/kg (ppm)	2	87	10-184
trans-1,2-Dichloroethene	mg/kg (ppm)	2	99	64 - 132
1,1-Dichloroethane	mg/kg (ppm)	2	96	64 - 135
cis-1,2-Dichloroethene	mg/kg (ppm)	2	100	64 - 135
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	91	56 - 135
1,1,1-Trichloroethane	mg/kg (ppm)	2	107	62-131
Trichloroethene	mg/kg (ppm)	2	99	63 - 139
Tetrachloroethene	mg/kg (ppm)	2	92	68-128

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

			Ph. (206) 285-8282	Friedman & Bruwa Inc	FB-01-5.0	FB-01-3.5	FMW-G1-40.0	FMM-01-35.0	FMW-01-30-0	FMW-01-29.0	FMM-01-21.0	FMW-01-15.0	FMW-01-10.0	FMM-01-5,0	Sample ID		Phone (4 25) 745 0 100 E	City, State, ZIP ISAQUM	Address 975 5th Ave	Company Torallon	3/04/8
Keceived by:	relinguished by:	Poliner: L J L	Received her	Reliminated hur	101	cq	80	40	8	8	^{cu}	03	02	01 A.E	Lab ID		Email ype With Dually constitution in	V. WA	C NW		Yusuf Peinlinen
		Wart	N N	SIGNATURE	+									10/23/23	Date Sampled		Ulancansatives in	1-0027			5
		ſ	<		1330	1335	8081	1117	1115	0///	1027	1024	1004	6952	Time Sampled			- REMARKS	27160	PROJEC	SAMPLE CHAIN OF CUSTODY
		0	Arp		+									Sil	Sample Type		Project specific RLs? -	ŚŚ	WHIS ISAM AND SE	PROJECT NAME	MPLE CHAIN OF SAMPLERS (signature)
		111	R	PRINT NAME	Ę-									JUI	# of Jars				e		OF ture)
		5	RM	TNA	×	×						×	×	×	NWTPH-Dx	Π	Yes /		M		CUS
		+	Sman	ME	×	×			_			×	×	×	NWTPH-Gx		No				STO
															BTEX EPA 8021				He		DY
					×	×						×	×	×	NWTPH-HCID VOCs EPA 8260	AN	PP	INV	S.		\sim
															PAHs EPA 8270	ALYS		INVOICE TO	2403-008	PO #	
		11	a												PCBs EPA 8082	SES R		E TO	0-	#	
		FB1	Farallor	COMPANY										×	RCRA	ANALYSES REQUESTED					3/2
e d			5	PAN							A				cVOCs	ESTI					
eceived at	•			Y												ΞD	Other Default	Arc	Rush	Sta	128
a a	•																er ılt: D	SAM hive s	charg	ndarc SH	Page #_
1 1 1		10-23-23	EC/22/03	DATE									F	Ŧ			ispos	SAMPLE DISPOSAL Archive samples	es au	X Standard turnaround	ARO
	2	223	23	TE									F	5	X-per YP 10/21/123 Notes A-per YP 11/07/23		e afte	DISP	thoriz	arour	UND
C C			L	1								V.C. MAA		Cont	-per YP Io/24123 ~ Notes -per YP 1/07/23		er 30	JSAL	Rush charges authorized by:	bt	NA Page # 1 of J TURNAROUND TIME
		237	1732	TIME								010	TRA	A.	in,		□ Other Default: Dispose after 30 days		.1		
	1														5		L] '

		1	Friedman & Bruya, Inc.	1	FMW- 02-35.0	FMW- (12-30-0	FMW-02-25.0	FMW-62-20-0	FMW-02-15.0	FMW- 02-10-0	FMW-02-5.0	FB-01-20.0	FB-01-15.0	FB-01-10.0	Sample ID		Phone (475) 295 0800 Email Upon ila Coraller corstiling Project specific RLs? -	City, State, ZIP ISSA (1)	75 St Ave	Company Farallor	Report to Yushf Rehlivan	310418
Received by:	Relinquished by:	Received by:	Relinquished by:	SIC	20	19	18	<i>t1</i>	16	15	14	13	12	II A.E	Lab ID		ailyphilian	ENSO AN W	NW		Nam	
		Run	X	SIGNATURE	Ļ					-Fahi	1423-	13536-	1345-	10 83 23	Date Sampled		Grallonetrall has G	Ţ				70
	(1530	1528	1507	1513	1456		M	W		J	Time Sampled		M Project sp	REMARKS	32.45 1581	PROJECT NAME		SAMPLE CHAIN OF CUSTODY
			Sa		<u> </u>									Soil	Sample Type		ecific RLs	S	SST AR	F NAME	SAMPLERS (signature)	CHAIN
		</td <td>Sarah</td> <td>PRII</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>JU</td> <td># of Jars</td> <td></td> <td>3? - Yes</td> <td></td> <td>R.</td> <td></td> <td>ture)</td> <td>OF</td>	Sarah	PRII	+									JU	# of Jars		3? - Yes		R.		ture)	OF
		2	Katz.	PRINT NAME						×	×				NWTPH-Dx		-		CHI.			CUS
		F	4	AME						×	×				NWTPH-Gx	$\left \right $	No					TOI
															BTEX EPA 8021 NWTPH-HCID	$\left \right $			2			YC
										×	×				VOCs EPA 8260	AN/	AP	, NVI	2403-608			
			-	$\left \right $											PAHs EPA 8270	ALYS	-0	INVOICE TO		PO #		101
San		h	Gira												PCBs EPA 8082	ES R		TO	1 og		-	23/
nple		B	Grallon	OMI												EQUE						~
Samples received at				COMPANY												ANALYSES REQUESTED	□ Other Default	□ Archi	Rush cł	IX Standa		u/ca
ived at <u>5</u> °C		2221221201	10125/23 1732	DATE TIME									Phot for annusis	HGCD: Contact	Notes		□ Other Default: Dispose after 30 days	SAMPLE DISPOSAL	Rush charges authorized by:	X Stándard turnaround	Page # O of Ime	NZ D D

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 30, 2023

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on October 23, 2023 from the 3245 158th Ave SE 2403-008, F&BI 310418 project. There are 19 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN1030R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 23, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 310418 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
310418 -01	FMW-01-5.0
310418 -02	FMW-01-10.0
310418 -03	FMW-01-15.0
310418 -04	FMW-01-20.0
310418 -05	FMW-01-25.0
310418 -06	FMW-01-30.0
310418 -07	FMW-01-35.0
310418 -08	FMW-01-40.0
310418 -09	FB-01-3.5
310418 -10	FB-01-5.0
310418 -11	FB-01-10.0
310418 -12	FB-01-15.0
310418 -13	FB-01-20.0
310418 -14	FMW-02-5.0
310418 -15	FMW-02-10.0
310418 -16	FMW-02-15.0
310418 -17	FMW-02-20.0
310418 -18	FMW-02-25.0
310418 -19	FMW-02-30.0
310418 -20	FMW-02-35.0

The 8260D calibration standard failed the acceptance criteria for several analytes. The data were flagged accordingly.

The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

The 8260D 2,2-dichloropropane calibration standard exceeded the acceptance criteria. The compound was not detected, therefore this did not represent an out of control condition.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/30/23 Date Received: 10/23/23 Project: 3245 158th Ave SE 2403-008, F&BI 310418 Date Extracted: 10/25/23 Date Analyzed: 10/25/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
FMW-01-5.0 310418-01 1/10	760	ip
FMW-01-10.0 310418-02 1/5	200	121
FMW-01-15.0 310418-03	<5	90
FB-01-3.5 310418-09	<5	92
FB-01-5.0 310418-10	<5	90
FMW-02-5.0 310418-14	<5	93
FMW-02-10.0 310418-15	<5	91
Method Blank ^{03-2475 MB}	<5	98

ENVIRONMENTAL CHEMISTS

Date of Report: 10/30/23 Date Received: 10/23/23 Project: 3245 158th Ave SE 2403-008, F&BI 310418 Date Extracted: 10/24/23 Date Analyzed: 10/24/23 and 10/25/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
FMW-01-5.0 310418-01	240 x	<250	84
FMW-01-10.0 310418-02	<50	<250	85
FMW-01-15.0 310418-03	<50	<250	92
FB-01-3.5 310418-09	<50	<250	84
FB-01-5.0 310418-10	<50	<250	84
FMW-02-5.0 ³¹⁰⁴¹⁸⁻¹⁴	<50	<250	83
FMW-02-10.0 310418-15	<50	<250	84
Method Blank ^{03-2542 MB}	<50	<250	82

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-01-5.0 10/23/23 10/25/23 10/25/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 310418-01 310418-01.140 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	1.48		
Barium	29.8		
Cadmium	<1		
Chromium	15.6		
Lead	1.19		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 10/25/23 10/25/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 I3-848 mb I3-848 mb.051 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-01-5.(10/23/23 10/24/23 10/24/23 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2- 310418-01 1/0.5 102415.D GCMS13 MD	
Surrogates: 1,2-Dichloroethane Toluene-d8	- d 4	% Recovery: 100 107	Lower Limit: 84 73	Upper Limit: 120 128	
4-Bromofluorobenz	ene	70	57	146	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	<0.5 ca		loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.002
Vinyl chloride Bromomethane		<0.002 <0.5		ochloromethane comoethane (EDB)	$< 0.05 \\ < 0.005$
Chloroethane		<0.5	Chlorob	. ,	<0.005
Trichlorofluoromet	hane	<0.5	Ethylber		0.050
Acetone		<5 ca		Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.002	m,p-Xyle		0.35
Hexane		< 0.25	o-Xylene	e	0.0058
Methylene chloride		< 0.2	Styrene	11	< 0.05
Methyl t-butyl ethe		< 0.002		vlbenzene	0.44
trans-1,2-Dichloroe 1,1-Dichloroethane		<0.002 <0.002	Bromofo	lbenzene	$< 0.05 \\ 1.2$
2,2-Dichloropropan		<0.002 <0.05 k	Bromobe		< 0.05
cis-1,2-Dichloroeth		< 0.002		imethylbenzene	< 0.05
Chloroform		< 0.05		Fetrachloroethane	< 0.05
2-Butanone (MEK)		<1 ca		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.002	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.002	4-Chloro		< 0.05
1,1-Dichloropropen Carbon tetrachloric		<0.05 <0.05		ylbenzene imethylbenzene	$\begin{array}{c} 0.058 \\ 7.2 \end{array}$
Benzene	ie	<0.05		zlbenzene	0.79
Trichloroethene		< 0.002	•	pyltoluene	1.5
1,2-Dichloropropan	e	< 0.05		lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentance		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	<0.05		ichlorobenzene	<0.25
Toluene trans-1,3-Dichlorop	ronene	<0.001 <0.05	Naphtha	orobutadiene	$< 0.25 \\ 0.038$
1,1,2-Trichloroetha	-	<0.05		ichlorobenzene	<0.25
2-Hexanone		<0.5	1, 2 ,0 11		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-01-10 10/23/23 10/24/23 10/24/23 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator: Lower Limit:	Farallon Consulting, 3245 158th Ave SE 24 310418-02 1/0.5 102409.D GCMS13 MD Upper Limit:	
Surrogates: 1,2-Dichloroethane	-d4	% Recovery: 101	84	120	
Toluene-d8	u i	102	73	128	
4-Bromofluorobenz	ene	123	57	146	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	<0.5 ca	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.002
Vinyl chloride		< 0.002	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.005
Chloroethane	_	< 0.1	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		0.0061
Acetone		<5 ca		Tetrachloroethane	< 0.05
1,1-Dichloroethene Hexane		<0.002 <0.25	m,p-Xyle o-Xylene		$\begin{array}{c} 0.025\\ 0.0044\end{array}$
Methylene chloride		<0.25	Styrene		< 0.05
Methyl t-butyl ethe		<0.22		vlbenzene	0.083
trans-1,2-Dichloroe		< 0.002	Bromofo		< 0.05
1,1-Dichloroethane		< 0.002		lbenzene	0.25
2,2-Dichloropropan		<0.05 k	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.002		imethylbenzene	0.40
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1 ca		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.002	2-Chloro		< 0.05
1,1,1-Trichloroetha 1,1-Dichloropropen		<0.002 <0.05	4-Chloro	ylbenzene	$< 0.05 \\ < 0.05$
Carbon tetrachlorid		<0.05 <0.05		imethylbenzene	<0.05 1.4
Benzene	ie –	<0.001		vlbenzene	0.22
Trichloroethene		< 0.002		pyltoluene	0.18
1,2-Dichloropropan	e	< 0.05		lorobenzene	< 0.05
Bromodichlorometh		< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentane		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.001		orobutadiene	< 0.25
trans-1,3-Dichlorop	-	<0.05	Naphtha 1 2 2 Tra		0.027
1,1,2-Trichloroetha 2-Hexanone	ne	<0.05 <0.5	1,2,3-Tr	ichlorobenzene	< 0.25
2-mexanome		~0.0			

ENVIRONMENTAL CHEMISTS

Compounds:mg/kg (ppm)Compounds:mg/kg (ppm)Dichlorodifluoromethane<0.5 ca1,3-Dichloropropane<0.05Chloromethane<0.5Tetrachloroethene<0.002Vinyl chloride<0.002Dibromochloromethane<0.05Bromomethane<0.51,2-Dibromoethane (EDB)<0.005Chloroethane<0.5Ethylbenzene<0.001Acetone<5 ca1,1,1,2-Tetrachloroethane<0.051,1-Dichloroethene<0.02m,p-Xylene<0.002Hexane<0.25o-Xylene<0.05trans.,2Dichloroethene<0.002Isopropylbenzene<0.05trans.,2Dichloroethene<0.002Bromoform<0.051,1-Dichloroethene<0.002Isopropylbenzene<0.05trans.,2Dichloroethene<0.002n.Propylbenzene<0.051,1-Dichloroethene<0.002n.Propylbenzene<0.051,1-Dichloroethene<0.002n.Propylbenzene<0.051,1-Dichloroethene<0.002n.Propylbenzene<0.051,1-Dichloroethene<0.0021,3,5-Trimethylbenzene<0.052,2-Dichloroptopane<0.051,2,2-Tetrachloroethane<0.052,2-Dichloroethane<0.0022-Chlorotoluene<0.051,1-Trichloroethane<0.0022-Chlorotoluene<0.051,1-Dichloropropane<0.051,2,3-Trichloropropane<0.051,1-Dichloroethane<0.0022-Chlorotoluene<0.051,1-Dichloroethane<0.051,2,4-Trimethylbenzene </th <th>Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:</th> <th>FMW-01-18 10/23/23 10/24/23 10/24/23 Soil mg/kg (ppn</th> <th>5.0 h) Dry Weight</th> <th>Client: Project: Lab ID: Data File: Instrument: Operator:</th> <th>Farallon Consulting, 3245 158th Ave SE 2- 310418-03 1/0.5 102410.D GCMS13 MD</th> <th></th>	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-01-18 10/23/23 10/24/23 10/24/23 Soil mg/kg (ppn	5.0 h) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2- 310418-03 1/0.5 102410.D GCMS13 MD	
Compounds:mg/kg (ppm)Compounds:mg/kg (ppm)Dichlorodifluoromethane<0.5 ca	1,2-Dichloroethane Toluene-d8		98 100	Limit: 84 73	Limit: 120 128	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Compounds:			Compou	nds:	Concentration mg/kg (ppm)
Cis-1,3-Dichloropropene<0.051,2,4-Trichlorobenzene<0.25Toluene<0.001	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloroprop Toluene	hane er (MTBE) thene e ene (EDC) ne e le hane pene	$\begin{array}{c} < 0.5 \\ < 0.002 \\ < 0.5 \\ < 0.1 \\ < 0.5 \\ < 5 \ ca \\ < 0.002 \\ < 0.02 \\ < 0.02 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.005 \ k \\ < 0.002 \\ < 0.002 \\ < 0.005 \\ < 1 \ ca \\ < 0.002 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 1 \\ < 0.05 \\ < 0.05 \\ < 1 \\ < 0.05 \\ < 0.001 \end{array}$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobe 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr Hexachl	loroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene ene ene ene ene ene ene ene ene	$\begin{array}{c} < 0.002 \\ < 0.05 \\ < 0.005 \\ < 0.001 \\ < 0.05 \\ < 0.002 \\ < 0.001 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \end{array}$

ENVIRONMENTAL CHEMISTS

5		1 5		1	
Client Sample ID:	FB-01-3.5		Client:	Farallon Consulting,	LLC
Date Received:	10/23/23		Project:	$3245\ 158$ th Ave SE 24	403-008
Date Extracted:	10/24/23		Lab ID:	310418-09 1/0.5	
Date Analyzed:	10/24/23		Data File:	102411.D	
Matrix:	Soil		Instrument:	GCMS13	
Units:		n) Dry Weight	Operator :	MD	
	0 0 11	/ / 8	-		
~			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	96	84	120	
Toluene-d8		104	73	128	
4-Bromofluorobenz	ene	100	57	146	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
_	.1		_		
Dichlorodifluorome	ethane	<0.5 ca		loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.002
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		< 0.5		romoethane (EDB)	< 0.005
Chloroethane	_	< 0.1	Chlorob		< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylbe		< 0.001
Acetone		<5 ca		Fetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.002	m,p-Xyle		0.031
Hexane		< 0.25	o-Xylene	9	< 0.001
Methylene chloride		< 0.2	Styrene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.002	Isopropy	lbenzene	< 0.05
trans-1,2-Dichloroe	ethene	< 0.002	Bromofo	orm	< 0.05
1,1-Dichloroethane		< 0.002	n-Propy	lbenzene	0.059
2,2-Dichloropropan	e	<0.05 k	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.002		imethylbenzene	< 0.05
Chloroform		< 0.05		Fetrachloroethane	< 0.05
2-Butanone (MEK)		<1 ca		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.002	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.002	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorie	de	< 0.05	1,2,4-Tr	imethylbenzene	0.25
Benzene		< 0.001	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.002	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05	1,2,4-Tr	ichlorobenzene	< 0.25
Toluene		< 0.001		orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.01
1,1,2-Trichloroetha		< 0.05	-	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

5		i 0		1	
Client Sample ID:	FB-01-5.0		Client:	Farallon Consulting,	LLC
Date Received:	10/23/23		Project:	3245 158th Ave SE 24	
Date Extracted:	10/24/23		Lab ID:	310418-10 1/0.5	
Date Analyzed:	10/24/23		Data File:	102412.D	
Matrix:	Soil		Instrument:	GCMS13	
Units:		n) Dry Weight	Operator:	MD	
Onits.	mg/kg (ppn	i) Diy weight	Operator.	MD	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	97	84	120	
Toluene-d8		103	73	128	
4-Bromofluorobenz	ene	102	57	146	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nda	mg/kg (ppm)
Compounds.		mg/kg (ppm)	Compou	inus.	iiig/kg (ppiii)
Dichlorodifluorome	thane	<0.5 ca		loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.002
Vinyl chloride		< 0.002	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	romoethane (EDB)	< 0.005
Chloroethane		< 0.1	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylbe	nzene	< 0.001
Acetone		<5 ca	1,1,1,2-7	Fetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.002	m,p-Xyl	ene	< 0.002
Hexane		< 0.25	o-Xylene	9	< 0.001
Methylene chloride	•	< 0.2	Styrene		< 0.05
Methyl t-butyl ethe		< 0.002	-	ylbenzene	< 0.05
trans-1,2-Dichloroe		< 0.002	Bromofo		< 0.05
1,1-Dichloroethane		< 0.002	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	e	<0.05 k	Bromob		< 0.05
cis-1,2-Dichloroeth	ene	< 0.002	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1 ca	1,2,3-Tr	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.002	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.002	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorid	de	< 0.05	1,2,4-Tr	imethylbenzene	< 0.05
Benzene		< 0.001	sec-Buty	ylbenzene	< 0.05
Trichloroethene		< 0.002	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05		lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentane	one	<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene	-	< 0.001		orobutadiene	< 0.25
trans-1,3-Dichlorop	propene	< 0.05	Naphtha		< 0.01
1,1,2-Trichloroetha		< 0.05	-	ichlorobenzene	< 0.25
2-Hexanone		< 0.5	_,_,		

ENVIRONMENTAL CHEMISTS

5	1	6		1	
Client Sample ID:	FMW-02-5.0)	Client:	Farallon Consulting,	LLC
Date Received:	10/23/23		Project:	3245 158th Ave SE 24	
Date Extracted:	10/24/23		Lab ID:	310418-14 1/0.5	
Date Analyzed:	10/24/23		Data File:	102413.D	
Matrix:	Soil		Instrument:	GCMS13	
Units:) Dry Weight	Operator:	MD	
Onits.	ing/kg (ppin) Dry Weight	Operator.		
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	108	84	120	
Toluene-d8		103	73	128	
4-Bromofluorobenz	ene	100	57	146	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
-	.1		_		
Dichlorodifluorome	ethane	<0.5 ca		loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.002
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		< 0.5		romoethane (EDB)	< 0.005
Chloroethane	_	< 0.1	Chlorob		< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylbe		< 0.001
Acetone		<5 ca		Fetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.002	m,p-Xyl		< 0.002
Hexane		< 0.25	o-Xylene		< 0.001
Methylene chloride		< 0.2	Styrene		< 0.05
Methyl t-butyl ethe		< 0.002		lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.002	Bromofo		< 0.05
1,1-Dichloroethane		< 0.002		lbenzene	< 0.05
2,2-Dichloropropan		<0.05 k	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.002		imethylbenzene	< 0.05
Chloroform		< 0.05		Fetrachloroethane	< 0.05
2-Butanone (MEK)		<1 ca		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.002	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.002	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachloric	de	< 0.05		imethylbenzene	< 0.05
Benzene		< 0.001	·	lbenzene	< 0.05
Trichloroethene		< 0.002		pyltoluene	< 0.05
1,2-Dichloropropan		< 0.05		lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentane		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.001		orobutadiene	< 0.25
trans-1,3-Dichlorop		< 0.05	Naphtha		< 0.01
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-02-10 10/23/23 10/24/23 10/24/23 Soil mg/kg (ppn).0 1) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator: Lower	Farallon Consulting, 3245 158th Ave SE 24 310418-15 1/0.5 102414a.D GCMS13 MD Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	95	84	120	
Toluene-d8		95	73	128	
4-Bromofluorobenz	ene	97	57	146	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	thane	<0.5 ca	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.002
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		<0.5		omoethane (EDB)	< 0.005
Chloroethane		<0.1	Chlorob		< 0.05
Trichlorofluoromet Acetone	hane	<0.5 <5 ca	Ethylber	nzene Fetrachloroethane	<0.001 <0.05
1,1-Dichloroethene		<5 ca <0.002	n,p-Xyle		< 0.002
Hexane		<0.002	o-Xylene		< 0.002
Methylene chloride	•	<0.2	Styrene		< 0.05
Methyl t-butyl ethe		< 0.002		lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.002	Bromofo		< 0.05
1,1-Dichloroethane		< 0.002	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan		<0.05 k	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.002		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1 ca <0.002	1,2,3-1ri 2-Chloro	ichloropropane	$< 0.05 \\ < 0.05$
1,2-Dichloroethane 1,1,1-Trichloroetha		<0.002 <0.002	4-Chlore		<0.05
1,1-Dichloropropen		<0.002		ylbenzene	<0.05
Carbon tetrachlorio		< 0.05		imethylbenzene	< 0.05
Benzene		< 0.001		lbenzene	< 0.05
Trichloroethene		< 0.002	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan		< 0.05	,	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro Toluene	pene	<0.05 <0.001		ichlorobenzene orobutadiene	<0.25 <0.25
trans-1,3-Dichlorop	ronano	<0.001 <0.05	Naphtha		<0.25
1,1,2-Trichloroetha	-	<0.05	-	ichlorobenzene	<0.25
2-Hexanone		<0.5	-,-,0 11		3.20

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 10/24/23 10/24/23 Soil mg/kg (ppn		Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 03-2433 mb 1/0.5 102409.D GCMS11 LM	
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	-d4	98	79	128	
Toluene-d8		94	84	121	
4-Bromofluorobenz	ene	94	84	116	
Compounds:		Concentration	Compou	nde	Concentration
Compounds:		mg/kg (ppm)	Compou		mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5		loropropane	< 0.05
Chloromethane		<0.5		loroethene	< 0.002
Vinyl chloride		<0.002		ochloromethane	< 0.05
Bromomethane Chloroethane		<0.5 <0.1	Chlorobe	omoethane (EDB)	<0.005 <0.05
Trichlorofluoromet	hano	<0.1 <0.5	Ethylber		< 0.001
Acetone	liane	<5 ca		Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.002	m,p-Xyle		< 0.002
Hexane		< 0.25	o-Xylene		< 0.001
Methylene chloride		< 0.2	Styrene		< 0.05
Methyl t-butyl ethe		< 0.002		vlbenzene	< 0.05
trans-1,2-Dichloroe	thene	< 0.002	Bromofo		< 0.05
1,1-Dichloroethane		< 0.002		lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroethe Chloroform	ene	<0.002 <0.05		imethylbenzene Fetrachloroethane	<0.05 <0.05
2-Butanone (MEK)		<0.05 <1 k		ichloropropane	<0.05
1,2-Dichloroethane	(EDC)	<0.002	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.002	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorid	le	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05
Benzene		< 0.001	sec-Buty	vlbenzene	< 0.05
Trichloroethene		< 0.002		pyltoluene	< 0.05
1,2-Dichloropropan		< 0.05		lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	<0.05
4-Methyl-2-pentanc cis-1,3-Dichloroproj		<1 <0.05		omo-3-chloropropane ichlorobenzene	<0.5 <0.25
Toluene	pene	<0.001		orobutadiene	<0.25
trans-1,3-Dichlorop	ropene	< 0.05	Naphtha		< 0.01
1,1,2-Trichloroetha		< 0.05		ichlorobenzene	< 0.25
2-Hexanone		<0.5			

ENVIRONMENTAL CHEMISTS

Date of Report: 10/30/23 Date Received: 10/23/23 Project: 3245 158th Ave SE 2403-008, F&BI 310418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 310395-01 (Duplicate)									
		Samp	le D	Juplicate					
	Reporting Result Result			Result	RPD				
Analyte	Units	(Wet V	Vt) (Wet Wt)	(Limit 20)				
Gasoline	mg/kg (ppm)	<5		<5	nm				
Laboratory Code: L	aboratory Contro	ol Sample	e Percent	t					
	Reporting	Spike	Recover	y Acceptance					
Analyte	Units	Level	LCS	Criteria	_				
Gasoline	mg/kg (ppm)	40	95	70-130					

ENVIRONMENTAL CHEMISTS

Date of Report: 10/30/23 Date Received: 10/23/23 Project: 3245 158th Ave SE 2403-008, F&BI 310418

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

10418-01 (Matrix	x Spike)					
		(Wet wt)	Percent	Percent		
Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Units	Level	Result	MS	MSD	Criteria	(Limit 20)
mg/kg (ppm)	5,000	390	98	102	53 - 141	4
aboratory Contro	ol Sampl	e				
		Percent				
Reporting	Spike	Recovery	y Accepta	ance		
Units	Level	LCS	Crite	ria		
mg/kg (ppm)	5,000	98	71-12	26		
	Reporting Units mg/kg (ppm) aboratory Contro Reporting Units	Únits Level mg/kg (ppm) 5,000 aboratory Control Sampl Reporting Spike Units Level	(Wet wt) Reporting Spike Sample <u>Units Level Result</u> mg/kg (ppm) 5,000 390 aboratory Control Sample Percent Reporting Spike Recovery <u>Units Level LCS</u>	(Wet wt)PercentReportingSpikeSampleRecoveryUnitsLevelResultMSmg/kg (ppm)5,00039098aboratory Control SamplePercentReportingSpikeRecoveryAcceptaUnitsLevelLCSCrite	Reporting UnitsSpike LevelWet wt) Sample Recovery RecoveryPercent Recovery MSDmg/kg (ppm)5,00039098102aboratory Control SamplePercent Reporting UnitsPercent RecoveryRecovery Acceptance Criteria	Reporting UnitsSpike LevelKesultPercent RecoveryPercent RecoveryAcceptance Criteriamg/kg (ppm)5,0003909810253-141aboratory Control SamplePercent ReportingReportingSpikeRecoveryAcceptance CriteriaUnitsLevelLCSCriteria

ENVIRONMENTAL CHEMISTS

Date of Report: 10/30/23 Date Received: 10/23/23 Project: 3245 158th Ave SE 2403-008, F&BI 310418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 310442-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	${ m MS}$	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	92	90	75 - 125	2
Barium	mg/kg (ppm)	50	19.7	92 b	90 b	75 - 125	$2 \mathrm{b}$
Cadmium	mg/kg (ppm)	10	<5	96	95	75 - 125	1
Chromium	mg/kg (ppm)	50	8.45	93	96	75 - 125	3
Lead	mg/kg (ppm)	50	<5	95	93	75 - 125	2
Mercury	mg/kg (ppm	5	<5	96	94	75 - 125	2
Selenium	mg/kg (ppm)	5	<5	98	91	75 - 125	7
Silver	mg/kg (ppm)	10	<5	89	90	75 - 125	1

Laboratory Code: Laboratory Control Sample

Laboratory Co.	uc. Laboratory con	noi bampie	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	88	80-120
Barium	mg/kg (ppm)	50	95	80-120
Cadmium	mg/kg (ppm)	10	97	80-120
Chromium	mg/kg (ppm)	50	106	80-120
Lead	mg/kg (ppm)	50	93	80-120
Mercury	mg/kg (ppm)	5	92	80-120
Selenium	mg/kg (ppm)	5	93	80-120
Silver	mg/kg (ppm)	10	90	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 10/30/23 Date Received: 10/23/23 Project: 3245 158th Ave SE 2403-008, F&BI 310418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 310418-03 (Matrix Spike)

Laboratory Code: 310418-0	3 (Matrix Spike)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	<0.5	72	68	10-142	6
Chloromethane	mg/kg (ppm)	2	< 0.5	93	93	10-126	0
Vinyl chloride	mg/kg (ppm)	2	< 0.05	94	95	10-138	1
Bromomethane	mg/kg (ppm)	2	< 0.5	87	51	10-163	52 vo
Chloroethane	mg/kg (ppm)	2	< 0.5	90	53	10-176	52 vo
Trichlorofluoromethane	mg/kg (ppm)	$\frac{2}{10}$	<0.5	102	117	10-176	14 38 vo
Acetone 1,1-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2	<5 <0.05	79 93	116 98	10-163 10-160	38 VO 5
Hexane	mg/kg (ppm) mg/kg (ppm)	2	<0.05	93 106	98 103	10-160	а З
Methylene chloride	mg/kg (ppm)	2	<0.25	91	87	10-157	4
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	<0.05	104	102	21-145	2
trans-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	104	102	14-137	1
1,1-Dichloroethane	mg/kg (ppm)	2	< 0.05	104	100	19-140	4
2,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	112	110	10-158	2
cis-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	108	104	25-135	4
Chloroform	mg/kg (ppm)	2	< 0.05	98	95	21-145	3
2-Butanone (MEK)	mg/kg (ppm)	10	<1	103	103	19-147	0
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	< 0.05	99	95	12-160	4
1,1,1-Trichloroethane	mg/kg (ppm)	2	< 0.05	110	108	10-156	2
1,1-Dichloropropene	mg/kg (ppm)	2	< 0.05	101	96	17-140	5
Carbon tetrachloride	mg/kg (ppm)	2	< 0.05	123	117	9-164	5
Benzene	mg/kg (ppm)	2	< 0.03	103	99	29-129	4
Trichloroethene	mg/kg (ppm)	$\frac{2}{2}$	< 0.02	103	97	21-139	6
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm)	2	<0.05 <0.05	103 100	100 96	30-135 23-155	3 4
Dibromomethane	mg/kg (ppm) mg/kg (ppm)	2	<0.05	100	96 110	23-155	4
4-Methyl-2-pentanone	mg/kg (ppm)	10	<0.05	105	105	24-155	0
cis-1,3-Dichloropropene	mg/kg (ppm)	2	<0.05	109	105	28-144	3
Toluene	mg/kg (ppm)	2	< 0.05	98	93	35-130	5
trans-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	99	94	26-149	5
1,1,2-Trichloroethane	mg/kg (ppm)	2	< 0.05	96	91	10-205	5
2-Hexanone	mg/kg (ppm)	10	< 0.5	90	83	15-166	8
1,3-Dichloropropane	mg/kg (ppm)	2	< 0.05	101	92	31-137	9
Tetrachloroethene	mg/kg (ppm)	2	< 0.025	99	95	20-133	4
Dibromochloromethane	mg/kg (ppm)	2	< 0.05	102	93	28-150	9
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	< 0.05	99	89	28-142	11
Chlorobenzene	mg/kg (ppm)	2	< 0.05	100	92	32-129	8
Ethylbenzene	mg/kg (ppm)	2	< 0.05	99	92	32-137	7
1,1,1,2-Tetrachloroethane m,p-Xylene	mg/kg (ppm)	$\frac{2}{4}$	<0.05 <0.1	99 100	96 94	31-143 34-136	3 6
o-Xylene	mg/kg (ppm) mg/kg (ppm)	4 2	<0.1	100	94 92	33-134	8
Styrene	mg/kg (ppm)	2	<0.05	98	92 92	35-134	6
Isopropylbenzene	mg/kg (ppm)	2	<0.05	100	93	31-142	7
Bromoform	mg/kg (ppm)	2	< 0.05	93	90	21-156	3
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	100	88	23-146	13
Bromobenzene	mg/kg (ppm)	2	< 0.05	99	88	34-130	12
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	101	90	18-149	12
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	106	93	28-140	13
1,2,3-Trichloropropane	mg/kg (ppm)	2	< 0.05	96	87	25 - 144	10
2-Chlorotoluene	mg/kg (ppm)	2	< 0.05	101	91	31-134	10
4-Chlorotoluene	mg/kg (ppm)	2	< 0.05	97	87	31-136	11
tert-Butylbenzene	mg/kg (ppm)	2	< 0.05	104	93	30-137	11
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	98	87	10-182	12
sec-Butylbenzene p-Isopropyltoluene	mg/kg (ppm)	2 2	<0.05 <0.05	100 103	91 95	23-145 21-149	9 8
1.3-Dichlorobenzene	mg/kg (ppm)	2	<0.05	99	95 90	30-131	8 10
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2 2	<0.05 <0.05	99 99	90 90	30-131 29-129	10
1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2	<0.05	99 102	90 91	31-132	10
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	<0.05	102	91	11-161	9
1.2.4-Trichlorobenzene	mg/kg (ppm)	2	<0.25	100	98	22-142	5 6
Hexachlorobutadiene	mg/kg (ppm)	2	<0.25	99	101	10-142	2
Naphthalene	mg/kg (ppm)	2	< 0.05	99	93	14-157	6
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	105	98	20-144	7
	-						

ENVIRONMENTAL CHEMISTS

Date of Report: 10/30/23 Date Received: 10/23/23 Project: 3245 158th Ave SE 2403-008, F&BI 310418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

ReportingSpikeRecoveryAcceptanceAnalyteUnitsLevelLCSCriteriaChloromethanemg/kg (pm)29027.133Chloromethanemg/kg (pm)29027.133Chloromethanemg/kg (pm)29122.131Chloromethanemg/kg (pm)28610.163Chloromethanemg/kg (pm)29347.128Chloromethanemg/kg (pm)29347.128Rexonmg/kg (pm)210010.166Acotonmg/kg (pm)210343.142Methyl nethor (MTBE)mg/kg (pm)210166.1532.3-Dichloropropanemg/kg (pm)210166.1542.3-Dichloropropanemg/kg (pm)210166.1552.3-Dichloropropanemg/kg (pm)29765.136Chloroformmg/kg (pm)29765.1361.3-Dichloropropanemg/kg (pm)29765.136Chloroformmg/kg (pm)29765.1361.3-Dichloropropanemg/kg (pm)29765.1361.3-Dichloropropanemg/kg (pm)29666.1351.3-Dichloropropanemg/kg (pm)29665.1361.3-Dichloropropanemg/kg (pm)29665.1361.3-Dichloropropanemg/kg (pm)29665.1371.3-Dichloropropanemg/kg (pm)29665.1371.3-Dichlorop				Percent	
Dicklorendthane $mg/kg (ppn)$ 2 67 10-146 Chloromethane $mg/kg (ppn)$ 2 90 27.133 Vanj chloride $mg/kg (ppn)$ 2 82 10-201 Charomethane $mg/kg (ppn)$ 2 88 10-163 Trichloroffluoromethane $mg/kg (ppn)$ 2 86 10-163 Acetone $mg/kg (ppn)$ 2 93 47-122 Methylene chloride $mg/kg (ppn)$ 2 101 60-123 Trans-1,2.Dichloroethane $mg/kg (ppn)$ 2 101 64-132 1.1.Dichloroethane $mg/kg (ppn)$ 2 106 64-133 2.3.Dichloroethane $mg/kg (ppn)$ 2 106 64-133 2.4.Dichloroethane $mg/kg (ppn)$ 2 106 64-133 2.4.Dichloroethane $mg/kg (ppn)$ 2 97 64-139 2.4.Dichloropropane $mg/kg (ppn)$ 2 97 64-139 1.1.Dichloropropane $mg/kg (ppn)$ 2 97		Reporting	Spike	Recovery	Acceptance
Chloromethane mg/kg (ppm) 2 90 27.133 Bronnerhane mg/kg (ppm) 2 82 10-201 Bronnerhane mg/kg (ppm) 2 86 10-163 Trichloromethane mg/kg (ppm) 2 86 10-163 Trichloromethane mg/kg (ppm) 2 103 45-122 Haxane mg/kg (ppm) 2 103 45-122 Hexane mg/kg (ppm) 2 101 66-132 Trisnis L.2 Dichloromethane mg/kg (ppm) 2 101 66-132 1.1 Dichloromethane mg/kg (ppm) 2 101 66-133 1.2 Dichloromethane mg/kg (ppm) 2 107 66-135 1.1 Dichloromethane mg/kg (ppm) 2 97 66-136	Analyte	Units	Level	LCS	Criteria
Vinyl chloridemg/kg (ppn)29122.139Chloroothanemg/kg (ppn)28810-020Chloroothanemg/kg (ppn)28610-163Trichloroflucoronthanemg/kg (ppn)108462.1411.1 Dichloroothanemg/kg (ppn)210341.32Hanomg/kg (ppn)210340.142Hanomg/kg (ppn)210164.132Trichloroflucorothanemg/kg (ppn)210164.132Li Dichloroothanemg/kg (ppn)210164.132Li Dichloroothanemg/kg (ppn)210664.133Chloroothanemg/kg (ppn)210664.135Chloroothanemg/kg (ppn)29761.392.3 Dichloroothanemg/kg (ppn)29766.133Chloroothane (MEK)mg/kg (ppn)29766.136La Dichloroothane (MEK)mg/kg (ppn)29666.136Chloroothane (MEK)mg/kg (ppn)29666.136Carbon tetrachloridemg/kg (ppn)29666.136Carbon tetrachloridemg/kg (ppn)29666.148Carbon tetrachloridemg/kg (ppn)29666.148Carbon tetrachloroothanemg/kg (ppn)29666.148Carbon tetrachloridemg/kg (ppn)29666.148Carbon tetrachloridemg/kg (ppn)29666.148Carbon tetrachloridem					
Broinnethane mg/kg (ppn) 2 82 10-01 Chlorothare mg/kg (ppn) 2 86 10-163 Trichlorothoromethane mg/kg (ppn) 2 93 47-128 Acetone mg/kg (ppn) 2 93 47-128 Methylene chloride mg/kg (ppn) 2 93 10-184 Methylene chloride mg/kg (ppn) 2 93 10-184 Methylene chloride mg/kg (ppn) 2 101 64-125 1-1.Dichlorophane mg/kg (ppn) 2 101 64-135 2-J.Dichlorophane mg/kg (ppn) 2 106 64-135 2-J.Dichlorophane mg/kg (ppn) 2 97 64-136 Chloroform mg/kg (ppn) 2 97 64-136 Chloroform mg/kg (ppn) 2 97 64-136 Carbon tetrachloride mg/kg (ppn) 2 97 64-136 Carbon tetrachloride mg/kg (ppn) 2 96 67-126 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Chlorosthane mg/kg (ppm) 2 88 10-163 Trichlorodizomethane mg/kg (ppm) 10 84 52-141 1.1Dichlorosthene mg/kg (ppm) 2 103 43-142 Methylie chloride mg/kg (ppm) 2 101 60-123 Trichlorodizomethane mg/kg (ppm) 2 101 60-123 Trichlorosthene mg/kg (ppm) 2 101 61-132 1.1Dichlorosthene mg/kg (ppm) 2 101 64-132 2.2Dichlorosyntame mg/kg (ppm) 2 106 64-132 Chloroform method mg/kg (ppm) 2 106 64-132 2.2Dichlorosyntame mg/kg (ppm) 2 106 64-132 Chloroform method mg/kg (ppm) 2 103 62-131 1.2Dichlorosyntame mg/kg (ppm) 2 103 62-131 1.1Dichlorosyntame mg/kg (ppm) 2 103 62-131 1.1Dichlorosyntame mg/kg (ppm) 2 103 62-131 1.1Dichlorosyntame mg/kg (ppm) 2 106 63-139 Benzame mg/kg (ppm) 2 106 63-139 1.2Dichlorosyntame mg/kg (ppm) 2 106 63-139 1.2Dichlorosyntame mg/kg (ppm) 2 106 63-139 1.2Dichlorosyntame mg/kg (ppm) 2 106 64-146 Bromodichlorosyntame mg/kg (ppm) 2 106 64-146 Bromodichlorosyntame mg/kg (ppm) 2 106 64-146 1.2Dichlorosyntame mg/kg (ppm) 2 106 64-146 1.2Dichlorosyntame mg/kg (ppm) 2 106 64-146 1.2Dichlorosyntame mg/kg (ppm) 2 106 64-126 1.1.2Dichlorosyntame mg/kg (ppm) 2 106 64-126 1.1.2Dichlorosyntame mg/kg (ppm) 2 107 65-121 1.2Dichlorosyntame mg/kg (ppm) 2 108 64-124 1.1.2Dichlorosyntame mg/kg (ppm) 2 108 64-124 1.2.Dichloros					
Trichlorodhoromethane mg/kg (ppn) 2 10 10-106 Acetone mg/kg (ppn) 2 93 47-128 Hexane mg/kg (ppn) 2 103 43-142 Methylene chloride mg/kg (ppn) 2 103 43-142 Methylene chloride mg/kg (ppn) 2 101 66-132 1.1.Dichloromethane mg/kg (ppn) 2 101 64-132 2.1.Dichloromethane mg/kg (ppn) 2 106 64-133 Chloroforn mg/kg (ppn) 2 106 64-134 2.9.Dichloropropane mg/kg (ppn) 2 106 64-133 Chloroforn mg/kg (ppn) 2 97 63-139 1.1.Dichloromethane mg/kg (ppn) 2 97 65-136 Carbon tetrachloride mg/kg (ppn) 2 97 65-136 Carbon tetrachloride mg/kg (ppn) 2 96 67-126 Dibromomethane mg/kg (ppn) 2 96 67-126 Carbon tetrachloride mg/kg (ppn) 2 96 66-126					
Acetone mg/kg (ppm) 10 84 52-141 1.1.Dichlorosethene mg/kg (ppm) 2 93 47.128 Hexane mg/kg (ppm) 2 93 10-184 Methyle ethoride mg/kg (ppm) 2 101 66-123 I.1.Dichlorosethane mg/kg (ppm) 2 101 64-132 2.Dichloropopane mg/kg (ppm) 2 100 64-133 2.Dichloropopane mg/kg (ppm) 2 100 64-133 2.Dichloropopane mg/kg (ppm) 2 97 65-135 1.Dichlorosethane mg/kg (ppm) 2 97 65-136 1.Dichlorosethane (BCO) mg/kg (ppm) 2 97 65-136 1.Dichlorosethane mg/kg (ppm) 2 100 66-135 1.Dichlorosethane mg/kg (ppm) 2 106 62-131 1.Dichlorosethane mg/kg (ppm) 2 106 62-132 1.Dichlorosethane mg/kg (ppm) 2 106 62-132 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
1,1-Dichloroethene mg/kc (ppm)29347.128Hexane mg/kc (ppm)210343.142Methyl behr (MTBK) mg/kc (ppm)210160-123trans-1,2-Dichloroethene mg/kc (ppm)210164.1322,2-Dichloroethene mg/kc (ppm)210164.1352,2-Dichloroethene mg/kc (ppm)210664.1352,2-Dichloroethene mg/kc (ppm)210664.135Chloroform mg/kc (ppm)29761.1391,2-Dichloroethane mg/kc (ppm)29765.1361,1-Dichloroethane mg/kc (ppm)210362.1311,2-Dichloroethane mg/kc (ppm)210765.1361,1-Dichloroethane mg/kc (ppm)210461.1451,2-Dichloropropane mg/kc (ppm)210662.1231,1-Dichloroethane mg/kc (ppm)210662.1231,1-Dichloroethane mg/kc (ppm)210662.1231,1-Dichloroethane mg/kc (ppm)210662.1331,2-Dichloropropene mg/kc (ppm)210662.1331,1-Dichloroethane mg/kc (ppm)210662.1321,1-Dichloroethane mg/kc (ppm)210662.1331,1-Dichloroethane mg/kc (ppm)210662.1331,1-Dichloroethane mg/kc (ppm)210662.1331,1-Dichloroethane mg/kc (ppm)					
Hexane m ² /kc (ppm) 2 103 43-142 Methyl t-butyl ether (MTBE) mg/kc (ppm) 2 101 64-132 1,1-Dichlorecthane mg/kc (ppm) 2 101 64-132 2,2-Dichloropopane mg/kc (ppm) 2 101 64-135 2,2-Dichloropopane mg/kc (ppm) 2 106 64-135 2,2-Dichloropopane mg/kc (ppm) 2 97 61-139 2-Butanone (MEK) mg/kc (ppm) 2 97 61-136 2-Dichloropopane mg/kc (ppm) 2 97 61-136 2-Dichloroethane (EDC) mg/kc (ppm) 2 97 61-136 Carbon tetrachloride mg/kc (ppm) 2 97 61-136 Carbon tetrachloride mg/kc (ppm) 2 104 61-145 Berazene mg/kc (ppm) 2 106 64-126 Carbon tetrachloride mg/kc (ppm) 2 106 64-126 Dichoropopane mg/kc (ppm) 2 96 65-131 <td>ricetone</td> <td></td> <td></td> <td></td> <td></td>	ricetone				
Methylene chloride mg/kg (ppm) 2 93 10-184 Wethyl Echyl dehr (MTBE) mg/kg (ppm) 2 101 64-132 1.1-Dichlorovethane mg/kg (ppm) 2 101 64-132 2.2-Dichlorovethane mg/kg (ppm) 2 106 64-135 Chlorodrom mg/kg (ppm) 2 106 64-135 Chlorodrom mg/kg (ppm) 2 97 61-139 2Dichlorovethane (MEK) mg/kg (ppm) 2 97 64-135 1.1-Dichlorovethane (EDC) mg/kg (ppm) 2 97 64-136 Carbon tetrachloride mg/kg (ppm) 2 97 65-136 Trichlorovethane mg/kg (ppm) 2 96 67-126 Dibromomethane mg/kg (ppm) 2 96 67-126 Dibromomethane mg/kg (ppm) 2 96 67-126 Dibromomethane mg/kg (ppm) 2 96 67-128 Trichlorovethane mg/kg (ppm) 2 96 66-126 Utaras-1, 3.Dichloropropene mg/kg (ppm) 2 96 <					
Methyl buryl cher (MTBE) $m_g/kr (ppn)$ 2101 64.132 1,1-Dichlorechane $mg/kr (ppn)$ 2101 64.132 2,2-Dichloryopane $mg/kr (ppn)$ 2106 64.135 cis-1,2-Dichloryopane $mg/kr (ppn)$ 297 61.139 2-Butanone (MEK) $mg/kr (ppn)$ 1090 30.197 2-Dichloryopane $mg/kr (ppn)$ 297 66.139 2-Butanone (MEK) $mg/kr (ppn)$ 297 66.136 1,1.Trichloroethane $mg/kr (ppn)$ 297 66.136 1,1.Trichloryopane $mg/kr (ppn)$ 297 66.136 Carbon tetrachloride $mg/kr (ppn)$ 296 63.139 1,2-Dichloryopane $mg/kr (ppn)$ 296 65.131 1,2-Dichloryopane $mg/kr (ppn)$ 296 65.131 1,1-Dichloryopane $mg/kr (ppn)$ 297 67.128 Vertorowethane $mg/kr (ppn)$ 296 65.131 1,1-2-Trichloryopane $mg/kr (ppn)$ 296 65.121 1,1-2-Trichloryopane $mg/kr (ppn)$ 296 65.121 1,1-2-Trichlo					
trans.12-Dichloroptene $mg/kg (ppm)$ 210164-1322.3.Dichloropropane $mg/kg (ppm)$ 210064-1332.3.Dichloroptene $mg/kg (ppm)$ 210664-133Chloroform $mg/kg (ppm)$ 29761-1392.Butanone (MEK) $mg/kg (ppm)$ 29766-1351.1.1.Trichloropthane (MEK) $mg/kg (ppm)$ 29766-1351.1.1.Prichloropthane (MEK) $mg/kg (ppm)$ 29766-136Carbon tetrachloride $mg/kg (ppm)$ 29765-1361.1.Dichloroptene $mg/kg (ppm)$ 29665-139Benzene $mg/kg (ppm)$ 29665-1391.2.Dichloroptopene $mg/kg (ppm)$ 29666-136Bromodichloromethane $mg/kg (ppm)$ 210666-134Dibromodibane $mg/kg (ppm)$ 29666-136Dibromodibane $mg/kg (ppm)$ 29666-126trans.1, 3-Dichloropropene $mg/kg (ppm)$ 29666-126			2		
1,1.Dichloroethane mg/kg (ppm) 2 101 64.135 2.J.Dichloroethane mg/kg (ppm) 2 106 64.135 Chloroform mg/kg (ppm) 10 90 30.197 1.J.Dichloroethane (BDC) mg/kg (ppm) 2 97 56.135 1,1.Trichloroethane (BDC) mg/kg (ppm) 2 97 66.138 Carbon tetrachloride mg/kg (ppm) 2 97 66.138 Garbon tetrachloride mg/kg (ppm) 2 96 63.138 Trichloroethane mg/kg (ppm) 2 104 61.145 Bronodichloromethane mg/kg (ppm) 2 106 62.123 4.Methyl-2-pentanone mg/kg (ppm) 2 106 65.143 Tolknoorpopane mg/kg (ppm) 2 106 66.143 Tolknoorpopane mg/kg (ppm) 2 106 66.143 Tolknoorpopane mg/kg (ppm) 2 96 66.131 1,1.2-Trichloroepopane mg/kg (ppm) 2 96 66.131 1,1.2-Trichloroepopane mg/kg (ppm) 2 96 <td></td> <td></td> <td></td> <td></td> <td></td>					
cis.1.2.Dichlorothenemg/kg (ppm)210664.135Chloroformmg/kg (ppm)109030.1971.2.Dichlorothane (RDC)mg/kg (ppm)29765.1351.1.Trichlorothane (DC)mg/kg (ppm)210362.1311.1.Dichloropopenemg/kg (ppm)29766.136Carbon tetrachloridemg/kg (ppm)29765.136Carbon tetrachloridemg/kg (ppm)29665.136Trichloropopanemg/kg (ppm)29665.136Dibromothanemg/kg (ppm)29665.143Dibromothanemg/kg (ppm)29665.143Dibromothanemg/kg (ppm)29666.145Tokhoropopanemg/kg (ppm)29666.145Toknemg/kg (ppm)29666.1311.1.2.Trichloropropenemg/kg (ppm)29666.1311.1.2.Trichloropropenemg/kg (ppm)29666.1311.1.2.Trichloropropenemg/kg (ppm)29767.128J-Bichloropropenemg/kg (ppm)29666.1281.3.Dichloropropenemg/kg (ppm)29666.1281.3.Dichloropropenemg/kg (ppm)29362.1311.3.Trichlorothanemg/kg (ppm)29666.1281.3.Dichloropropanemg/kg (ppm)29666.1281.3.Dichloropropanemg/kg (ppm)29667.128Dibromochlorometha	1,1-Dichloroethane	mg/kg (ppm)			64-135
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,2-Dichloropropane	mg/kg (ppm)		110	52-170
2-Butanone (MEK) mg/k_{0}^{2} (ppm) 10 90 30-197 1.2-Dichloroschane (EDC) mg/k_{0} (ppm) 2 97 56-135 1.1-Dichloroschane mg/k_{0} (ppm) 2 97 66-136 Carbon tetrachloride mg/k_{0} (ppm) 2 97 65-136 Trichloroschane mg/k_{0} (ppm) 2 96 63-139 1,2-Dichloropropane mg/k_{0} (ppm) 2 96 63-139 1,2-Dichloropropane mg/k_{0} (ppm) 2 96 67-126 Dibromodichoromethane mg/k_{0} (ppm) 2 96 66-126 tetras.1,3-Dichloropropene mg/k_{0} (ppm) 2 96 66-126 tras.1,3-Dichloropropene mg/k_{0} (ppm) 2 95 65-131 1,1,2-Trichloroschane mg/k_{0} (ppm) 2 97 67-128 tras.1,3-Dichloropropane mg/k_{0} (ppm) 2 97 67-128 J.2-Dichloropropane mg/k_{0} (ppm) 2 94 67-128 Ubiromoch					
1.2. Dichlorosthanemg/kg (ppm)29756.1351.1.1.Trichlorosthanemg/kg (ppm)29764.136Carbon tetrachloridemg/kg (ppm)29764.136Carbon tetrachloridemg/kg (ppm)29765.136Trichlorosthanemg/kg (ppm)29663.1391.2.Dichloropropanemg/kg (ppm)210461.145Bromodichloromethanemg/kg (ppm)210662.1234.Methyl-2-pentanonemg/kg (ppm)210662.1234.Methyl-2-pentanonemg/kg (ppm)29666.126cis.1,3.Dichloropropenemg/kg (ppm)29666.1261.1,1.2.Trichloropropenemg/kg (ppm)29666.1261.1,2.Trichloropropenemg/kg (ppm)29666.1261.3.Dichloropropanemg/kg (ppm)29767.1281.3.Dichloropropanemg/kg (ppm)29668.1281.3.Dichloropropanemg/kg (ppm)29668.1281.3.Dichloropropanemg/kg (ppm)29668.128Dibromosthanemg/kg (ppm)29668.128Dibromosthanemg/kg (ppm)29666.129Chorobenzenemg/kg (ppm)29466.129Dibromosthanemg/kg (ppm)29466.129Dibromosthanemg/kg (ppm)29466.129Dibromosthanemg/kg (ppm)29466.129Di					
1,1-Trichloroethane $m_g/k_g (ppm)$ 210362-1311.1-Dichloropropene $m_g/k_g (ppm)$ 29766-136Carbon tetrachloride $m_g/k_g (ppm)$ 29765-136Princhoreethene $m_g/k_g (ppm)$ 29663-1391.2-Dichloropropane $m_g/k_g (ppm)$ 210461-145Bromodichloromethane $m_g/k_g (ppm)$ 210662-123Dibromomethane $m_g/k_g (ppm)$ 210662-123Dibromomethane $m_g/k_g (ppm)$ 210365-143Toluene $m_g/k_g (ppm)$ 29666-126trans-1,3-Dichloropropene $m_g/k_g (ppm)$ 29666-126trans-1,3-Dichloropropene $m_g/k_g (ppm)$ 29666-126trans-1,3-Dichloropropane $m_g/k_g (ppm)$ 29767-1282.Hexanone $m_g/k_g (ppm)$ 29668-128Dibromochbane (EDB) $m_g/k_g (ppm)$ 29666-129Chlorobenzene $m_g/k_g (ppm)$ 29467-128Ethylbenzene $m_g/k_g (ppm)$ 29467-128Ethylbenzene $m_g/k_g (ppm)$ 29666-129Chlorobenzene $m_g/k_g (ppm)$ 29666-129Chlorobenzene $m_g/k_g (ppm)$ 29667-128Ethylbenzene $m_g/k_g (ppm)$ 29667-129Sytene $m_g/k_g (ppm)$ 29667-129Sytene $m_g/k_g (ppm)$ 296 <td></td> <td></td> <td></td> <td></td> <td></td>					
1.1.Dickhoropropene $m_g/k_f (pm)$ 29764.136Carbon tetracholaride $m_g/k_f (pm)$ 212060.139Benzane $m_g/k_f (pm)$ 29663.130Trichlororehne $m_g/k_f (pm)$ 29663.130Trichlororopane $m_g/k_f (pm)$ 29663.130Bromodichloromethane $m_g/k_f (pm)$ 29663.130Uhromomethane $m_g/k_f (pm)$ 29666.12610:1.3.Dichloropropene $m_g/k_f (pm)$ 29565.1311.1.2.Trichloropropene $m_g/k_f (pm)$ 29565.1311.1.2.Trichloropropene $m_g/k_f (pm)$ 29668.1281.3.Dichloropropene $m_g/k_f (pm)$ 29668.1281.3.Dichloropropene $m_g/k_f (pm)$ 29668.1281.3.Dichloropropane $m_g/k_f (pm)$ 29668.128Dibromochloromethane $m_g/k_f (pm)$ 29466.129Dibromochloromethane $m_g/k_f (pm)$ 29466.129Dibromochloromethane $m_g/k_f (pm)$ 29668.128Dibromochloromethane $m_g/k_f (pm)$ 29666.128Dibromochloromethane $m_g/k_f (pm)$ 29666.129Chlorobenzene $m_g/k_f (pm)$ 29666.128Dibromochloromethane $m_g/k_f (pm)$ 29666.129Chlorobenzene $m_g/k_f (pm)$ 29666.129Chlorobenzene $m_g/k_f (p$					
Benzene mg/k_{C} (ppm)29765-136Trichlorosthene mg/k_{K} (ppm)29663-1391,2-Dichloropropane mg/k_{K} (ppm)210461-145Bromodichloromethane mg/k_{K} (ppm)29662-1234-Methyl-2-pentanone mg/k_{K} (ppm)1010245-145cis-1,3-Dichloropropene mg/k_{K} (ppm)29666-12611,12-Trichloroptopene mg/k_{K} (ppm)29565-1311,2-Trichloroptopene mg/k_{K} (ppm)29362-1311,3-Dichloropropene mg/k_{K} (ppm)29668-1281,3-Dichloroptopene mg/k_{K} (ppm)29668-1281,3-Dichloropropane mg/k_{K} (ppm)29668-128Dibromochloromethane mg/k_{K} (ppm)29668-128Dibromochloromethane mg/k_{K} (ppm)29466-129Chlorobenzene mg/k_{K} (ppm)29466-129Chlorobenzene mg/k_{K} (ppm)29364-1231,1,12-Tetrahloroethane mg/k_{K} (ppm)29364-1231,1,12-Tetrahloroethane mg/k_{K} (ppm)29666-1321,1,12-Tetrahloroethane mg/k_{K} (ppm)29666-1321,1,12-Tetrahloroethane mg/k_{K} (ppm)29666-1291,1,12-Tetrahloroethane mg/k_{K} (ppm)29168-1281,1,12-Tetrahloroethane mg/k_{K} (ppm)2 <td></td> <td></td> <td></td> <td></td> <td></td>					
Trichloroethene mg/kg (ppm) 2 96 63-139 1.2-Dichloropropane mg/kg (ppm) 2 96 67-126 Dibromomethane mg/kg (ppm) 2 96 67-126 Dibromomethane mg/kg (ppm) 2 106 62-123 AMethyl-2-pentanone mg/kg (ppm) 2 103 65-143 Tolluene mg/kg (ppm) 2 95 65-131 1.1.2-Trichloropropene mg/kg (ppm) 2 93 62-131 2-Hexanone mg/kg (ppm) 2 96 68-128 Dibromochloroptopane mg/kg (ppm) 2 96 68-128 Dibromochloromethane mg/kg (ppm) 2 96 68-128 Dibromochloromethane mg/kg (ppm) 2 96 68-128 Dibromochloromethane mg/kg (ppm) 2 94 64-129 Chlorobenzene mg/kg (ppm) 2 94 67-128 Ethylbenzene mg/kg (ppm) 2 96 67-129 Styrene mg/kg (ppm) 2 96 67-129					
1.2-Dickloropropane $mg/kg (ppm)$ 210461-145Bromodichloromethane $mg/kg (ppm)$ 29657.126Dibromomethane $mg/kg (ppm)$ 1010245.1454-Methyl-2-pentanone $mg/kg (ppm)$ 210365.143Toluene $mg/kg (ppm)$ 29666.1261.1.3-Dichloropropene $mg/kg (ppm)$ 29362.1311.1.2-Trichloroethane $mg/kg (ppm)$ 29362.1311.3-Dichloropropane $mg/kg (ppm)$ 29668.1281.3-Dichloropropane $mg/kg (ppm)$ 29668.1281.3-Dichloropropane $mg/kg (ppm)$ 29668.1281.3-Dichloromethane $mg/kg (ppm)$ 29466.129Dibromechloromethane $mg/kg (ppm)$ 29466.129Dibromechloromethane $mg/kg (ppm)$ 29364.1211.2-Dibromoethane (BDB) $mg/kg (ppm)$ 29364.1231.1.1.2-Tetrakhoroethane $mg/kg (ppm)$ 29467.128Ethylbenzene $mg/kg (ppm)$ 29467.129Styrene $mg/kg (ppm)$ 29467.129Styrene $mg/kg (ppm)$ 29467.129Isoprophlenzene $mg/kg (ppm)$ 29467.129Isoprophlenzene $mg/kg (ppm)$ 29168.1280-Xylene $mg/kg (ppm)$ 29168.1281.3.5.Trimethylbenzene $mg/kg (ppm)$ 29168.129					
Bromodichloromethane mg/kg (ppm) 2 96 57.126 Dibromomethane mg/kg (ppm) 2 106 62.123 AMethyl-2 pontanone mg/kg (ppm) 10 102 45.145 cis.1.3.Dichloropropene mg/kg (ppm) 2 96 66.126 trans.1.3.Dichloropropene mg/kg (ppm) 2 95 65.131 1.1.2.Trichloroptopene mg/kg (ppm) 2 96 68.128 2.Hexanone mg/kg (ppm) 2 96 68.128 1.3.Dichloroptopane mg/kg (ppm) 2 96 68.128 Dibromochloromethane mg/kg (ppm) 2 94 67.128 Chlorobenzene mg/kg (ppm) 2 93 64.123 1.1.1.2.Trichaloroethane mg/kg (ppm) 2 94 67.128 Chlorobenzene mg/kg (ppm) 2 93 64.123 1.1.1.2.Tretrachloroethane mg/kg (ppm) 2 94 67.129 Styrene mg/kg (ppm) 2 96 67.129 Isopropylbenzene mg/kg (ppm) 2 96					
Dibromomethane $mg/kg (ppm)$ 210662-1234-Methyl-2-pentanone $mg/kg (ppm)$ 1010245-145cis 1,3-Dichloropropene $mg/kg (ppm)$ 29666-126Trans 1,3-Dichloropropene $mg/kg (ppm)$ 29362-1311,1.2-Trichloroethane $mg/kg (ppm)$ 29362-1312-Hexanone $mg/kg (ppm)$ 29767-1281,3-Dichloropropane $mg/kg (ppm)$ 29668-126Tetrachloroethane $mg/kg (ppm)$ 29767-128Dibromochhoromethane $mg/kg (ppm)$ 29668-129Dibromochhoromethane (EDB) $mg/kg (ppm)$ 29466-129Chlorobenzene $mg/kg (ppm)$ 29364-1231,1,1,2-Tetrachloroethane $mg/kg (ppm)$ 29864-1231,1,1,2-Tetrachloroethane $mg/kg (ppm)$ 29667-128Ethylbenzene $mg/kg (ppm)$ 29667-129Styrene $mg/kg (ppm)$ 29667-129Isopropylbenzene $mg/kg (ppm)$ 29768-128Bromoform $mg/kg (ppm)$ 29168-128Propylbenzene $mg/kg (ppm)$ 29168-128Bromoform $mg/kg (ppm)$ 29168-128J.3-Trinchloropropane $mg/kg (ppm)$ 29168-128I,2-2-Tetrachloroethane $mg/kg (ppm)$ 29168-128I,3-5-Tinethylbenzene $mg/kg (ppm)$ 2					
4-Methyl-2-pentanone $m_g/k_g (ppn)$ 1010245-145cis-1,3-Dichloropropene $m_g/k_g (ppn)$ 210365-143Toluene $m_g/k_g (ppn)$ 29566-126trans-1,3-Dichloropropene $m_g/k_g (ppn)$ 29362-1311,1,2-Trichloropropene $m_g/k_g (ppn)$ 108333-1522-Hexanone $m_g/k_g (ppn)$ 108333-1521,3-Dichloropropane $m_g/k_g (ppn)$ 29668-128Dibromochloromethane $m_g/k_g (ppn)$ 29466-129Chlorobenzene $m_g/k_g (ppn)$ 29466-129Chlorobenzene $m_g/k_g (ppn)$ 29364-1231,1,1,2-Tretrachloroethane $m_g/k_g (ppn)$ 29864-1231,1,1,2-Tetrachloroethane $m_g/k_g (ppn)$ 29667-128Styrene $m_g/k_g (ppn)$ 29667-129Styrene $m_g/k_g (ppn)$ 29667-129Styrene $m_g/k_g (ppn)$ 29666-129Loporophlenzene $m_g/k_g (ppn)$ 29667-129Styrene $m_g/k_g (ppn)$ 29666-128Bromoform $m_g/k_g (ppn)$ 29666-128Bromoform $m_g/k_g (ppn)$ 29168-128Bromoform $m_g/k_g (ppn)$ 29169-1281,1,2,2-Tetrachloroethane $m_g/k_g (ppn)$ 29169-1281,2,2-Trictachloroethane $m_g/k_g (ppn)$ 29					
cis.1.3.Dichloropropene $mg/kg (ppn)$ 210366-143Toluene $mg/kg (ppn)$ 29666-126trans.1.3.Dichloropropene $mg/kg (ppn)$ 29365-1311.1.2.Trichloroethane $mg/kg (ppn)$ 29362-1312.Hexanone $mg/kg (ppn)$ 08333-1521.3.Dichloropropane $mg/kg (ppn)$ 29668-128Dibromochloromethane $mg/kg (ppn)$ 29668-128Dibromochloromethane $mg/kg (ppn)$ 29466-129Chlorobenzene $mg/kg (ppn)$ 29466-129Chlorobenzene $mg/kg (ppn)$ 29864-121n.p.Yylene $mg/kg (ppn)$ 29864-1231,1,1.2.Tetrachloroethane $mg/kg (ppn)$ 29864-1231,1,1.2.Tetrachloroethane $mg/kg (ppn)$ 29667-129Styrene $mg/kg (ppn)$ 29667-129Isoproylbenzene $mg/kg (ppn)$ 29168-128Bromoform $mg/kg (ppn)$ 29168-129I.3.5.Trinetylbenzene $mg/kg (ppn)$ 29168-1291,3.2.2.Tetrachloroethane $mg/kg (ppn)$ 29168-1291,3.5.Trinetylbenzene $mg/kg (ppn)$ 29168-1291,3.5.Trinetylbenzene $mg/kg (ppn)$ 29169-1291,2.2.Tetrachloroethane $mg/kg (ppn)$ 29269-1301,2.3.Trichloroethane $mg/kg (ppn)$ 2<					
Toluene $mg/kg (ppn)$ 29666-126trans-1,3-Dichloropropene $mg/kg (ppn)$ 29565-1311,1,2-Trichloroethane $mg/kg (ppn)$ 29362-1312-Hexanone $mg/kg (ppn)$ 29767-128Tetrachloroethane $mg/kg (ppn)$ 29668-128Dibromochloromethane $mg/kg (ppn)$ 29466-129L2-Dibromochloromethane (DDB) $mg/kg (ppn)$ 29466-129Chlorobenzene $mg/kg (ppn)$ 29364-123L1,1,2-Tetrachloroethane (DDB) $mg/kg (ppn)$ 29864-123m,P,Xylene $mg/kg (ppn)$ 29667-129Styrene $mg/kg (ppn)$ 29667-129Styrene $mg/kg (ppn)$ 29667-129Styrene $mg/kg (ppn)$ 29768-128Bromoform $mg/kg (ppn)$ 29768-1281,3,5-Trimethylbenzene $mg/kg (ppn)$ 29169-1281,3,5-Trimethylbenzene $mg/kg (ppn)$ 29169-1281,2,3-Trichloroothane $mg/kg (ppn)$ 29061-1372-Chlorotoluene $mg/kg (ppn)$ 29669-1281,3,5-Trimethylbenzene $mg/kg (ppn)$ 29669-1281,2,3-Trichloroopane $mg/kg (ppn)$ 29669-1281,2,3-Trimethylbenzene $mg/kg (ppn)$ 29669-1281,2,3-Trimethylbenzene $mg/kg (ppn)$ 29669-	cis-1,3-Dichloropropene		2	103	65-143
1.1.2-Trichloroethane $mg/kg (ppn)$ 29362-1312-Hexanone $mg/kg (ppn)$ 108333.1521.3-Dichloropropane $mg/kg (ppn)$ 29767.128Tetrachloroethene $mg/kg (ppn)$ 29668.128Dibromochloromethane $mg/kg (ppn)$ 29466.129Chlorobenzene $mg/kg (ppn)$ 29364.1231,1.2-Tetrachloroethane (EDB) $mg/kg (ppn)$ 29364.1231,1.1.2-Tetrachloroethane $mg/kg (ppn)$ 29864.1231,1.1.2-Tetrachloroethane $mg/kg (ppn)$ 29864.1231,1.1.2-Tetrachloroethane $mg/kg (ppn)$ 29667.129Styrene $mg/kg (ppn)$ 29467.129Styrene $mg/kg (ppn)$ 29467.129Styrene $mg/kg (ppn)$ 29666-132n-Propylbenzene $mg/kg (ppn)$ 29656-132n-Propylbenzene $mg/kg (ppn)$ 29168.128Bromoform $mg/kg (ppn)$ 29169.1281,2,3-Trichloroopane $mg/kg (ppn)$ 29169.1281,2,3-Trichloroopane $mg/kg (ppn)$ 29269.1231,2,4-Trimethylbenzene $mg/kg (ppn)$ 29269.1284-Chlorotoluene $mg/kg (ppn)$ 29669.1291,2,4-Trinethylbenzene $mg/kg (ppn)$ 29061.1372-Dibronoethane $mg/kg (ppn)$ 29069	Toluene			96	66-126
2-Hexanone $mg/kg (ppm)$ 1083 33.152 1,3-Dichloropropane $mg/kg (ppm)$ 297 67.128 Tetrachloroethene $mg/kg (ppm)$ 2100 55.121 1,2-Dibromochloromethane $mg/kg (ppm)$ 294 66.129 Chlorobenzene $mg/kg (ppm)$ 294 67.128 Ethylbenzene $mg/kg (ppm)$ 293 64.123 1,1,1.2-Tetrachloroethane $mg/kg (ppm)$ 298 64.123 1,1,1.2-Tetrachloroethane $mg/kg (ppm)$ 493 68.128 o-Xylene $mg/kg (ppm)$ 296 67.129 Styrene $mg/kg (ppm)$ 296 67.129 Isopropylbenzene $mg/kg (ppm)$ 296 67.129 Isopropylbenzene $mg/kg (ppm)$ 296 66.132 n-Proylbenzene $mg/kg (ppm)$ 296 66.132 n-Proylbenzene $mg/kg (ppm)$ 291 69.128 1,3.2-Tetrachloroethane $mg/kg (ppm)$ 291 69.128 1,3.3-Trichloropropane $mg/kg (ppm)$ 290 61.137 2-Chlorotoluene $mg/kg (ppm)$ 296 69.128 1,2.2-Tetrachloroethane $mg/kg (ppm)$ 296 69.128 1,2.2-Tetrachloroethane $mg/kg (ppm)$ 290 61.137 2-Chlorotoluene $mg/kg (ppm)$ 296 69.128 1,2.2-Tetrachloroethane $mg/kg (ppm)$ 296 69.128 1,3.3-Trichloropenzene <td></td> <td></td> <td></td> <td></td> <td></td>					
1.3-Dichloropropane $mg/kg (ppm)$ 29767-128Tetrachloroethene $mg/kg (ppm)$ 29668-128Dibromochloromethane $mg/kg (ppm)$ 210055-1211.2-Dibromoethane (EDB) $mg/kg (ppm)$ 29466-129Chlorobenzene $mg/kg (ppm)$ 29364-1231.1,1,2-Tetrachloroethane $mg/kg (ppm)$ 29864-1231.1,1,2-Tetrachloroethane $mg/kg (ppm)$ 29667-129Styrene $mg/kg (ppm)$ 29667-129Styrene $mg/kg (ppm)$ 29667-129Styrene $mg/kg (ppm)$ 29768-128Bromoform $mg/kg (ppm)$ 29168-129n-Propylbenzene $mg/kg (ppm)$ 29168-129Bromoform $mg/kg (ppm)$ 29169-1281.2.3-Trichloroppane $mg/kg (ppm)$ 29169-1281.3.5-Trimethylbenzene $mg/kg (ppm)$ 29356-1431.2.3-Trichloroppane $mg/kg (ppm)$ 29269-1281.2.4-Trimethylbenzene $mg/kg (ppm)$ 28969-1281.2.4-Trimethylbenzene $mg/kg (ppm)$ 29669-1291.2.4-Trimethylbenzene $mg/kg (ppm)$ 29669-1281.2.2-Dichlorobluene $mg/kg (ppm)$ 29769-1281.3.2-Dichlorobenzene $mg/kg (ppm)$ 29669-1281.3.2-Dichlorobenzene $mg/kg (ppm)$ 296 <td></td> <td></td> <td></td> <td></td> <td></td>					
Tetrachloroethene $mg/kg (ppm)$ 29668-128Dibromochloromethane $mg/kg (ppm)$ 210055-1211,2-Dibromochlaro (EDB) $mg/kg (ppm)$ 29466-129Chlorobenzene $mg/kg (ppm)$ 29364-123Ethylbenzene $mg/kg (ppm)$ 29364-121 $m, p, Xylene$ $mg/kg (ppm)$ 29667-128o-Xylene $mg/kg (ppm)$ 29667-129Styrene $mg/kg (ppm)$ 29467-129Isopropylbenzene $mg/kg (ppm)$ 29768-128Bromoform $mg/kg (ppm)$ 29656-132n-Proylbenzene $mg/kg (ppm)$ 29168-129Bromoform $mg/kg (ppm)$ 29168-129Bromoform $mg/kg (ppm)$ 29168-1291,1,2,2-Tetrachloroethane $mg/kg (ppm)$ 29168-1291,2,3-Trichloropropane $mg/kg (ppm)$ 29169-1281,2,3-Trindhoropropane $mg/kg (ppm)$ 29061-1372.C-Horotoluene $mg/kg (ppm)$ 29269-128sec-Butylbenzene $mg/kg (ppm)$ 29669-128sec-Butylbenzene $mg/kg (ppm)$ 29068-128sec-Butylbenzene $mg/kg (ppm)$ 29069-1301,3-Dichlorobenzene $mg/kg (ppm)$ 29069-128sec-Butylbenzene $mg/kg (ppm)$ 29069-1301,3-Dichlorobenzen					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
1.2-Dibromoethane (EDB) $mg/kg (ppm)$ 29466-129Chlorobenzene $mg/kg (ppm)$ 29467-128Ethylbenzene $mg/kg (ppm)$ 29364-1231,1,1.2-Tetrachloroethane $mg/kg (ppm)$ 29864-121 m,p -Xylene $mg/kg (ppm)$ 29864-121 $o-Xylene$ $mg/kg (ppm)$ 29667-129Styrene $mg/kg (ppm)$ 29667-129Isopropylbenzene $mg/kg (ppm)$ 29768-128Bromoform $mg/kg (ppm)$ 29656-132n-Propylbenzene $mg/kg (ppm)$ 29168-129Bromoform $mg/kg (ppm)$ 29168-1291,3,5-Trinethylbenzene $mg/kg (ppm)$ 29169-1291,1,2.2-Tetrachloroethane $mg/kg (ppm)$ 29356-1431,2,3-Trichloropropane $mg/kg (ppm)$ 29061-1372-Chlorotoluene $mg/kg (ppm)$ 29269-1284-Chlorotoluene $mg/kg (ppm)$ 29669-1291,2,4-Trimethylbenzene $mg/kg (ppm)$ 29669-1291,3-Dichlorobenzene $mg/kg (ppm)$ 29469-1301,3-Dichlorobenzene $mg/kg (ppm)$ 29469-1301,3-Dichlorobenzene $mg/kg (ppm)$ 29469-1301,3-Dichlorobenzene $mg/kg (ppm)$ 29469-1301,3-Dichlorobenzene $mg/kg (ppm)$ 29469-130 <td></td> <td></td> <td></td> <td></td> <td></td>					
Chlorobenzene $mg/kg (ppm)$ 29467-128Ethylbenzene $mg/kg (ppm)$ 29364-123 $1,1,1,2$ -Tetrachloroethane $mg/kg (ppm)$ 29864-121 m_p -Xylene $mg/kg (ppm)$ 49368-128 o -Xylene $mg/kg (ppm)$ 29667-129Styrene $mg/kg (ppm)$ 29467-129Isoproylbenzene $mg/kg (ppm)$ 29768-128Bromoform $mg/kg (ppm)$ 29656-132n-Propylbenzene $mg/kg (ppm)$ 29168-129Bromobenzene $mg/kg (ppm)$ 29169-1281,3,5-Trimethylbenzene $mg/kg (ppm)$ 29169-1281,2,3-Tricholroopane $mg/kg (ppm)$ 29356-1432,2,4-Trinethylbenzene $mg/kg (ppm)$ 29269-1284-Chlorotoluene $mg/kg (ppm)$ 29269-1284-Chlorotoluene $mg/kg (ppm)$ 29269-1284-Chlorotoluene $mg/kg (ppm)$ 29469-1201,2,4-Trimethylbenzene $mg/kg (ppm)$ 29469-1301,3-Dichlorobenzene $mg/kg (ppm)$ 29469-1301,3-Dichlorobenzene $mg/kg (ppm)$ 29469-1301,3-Dichlorobenzene $mg/kg (ppm)$ 29369-1271,4-Dichlorobenzene $mg/kg (ppm)$ 29369-1271,4-Dichlorobenzene $mg/kg (ppm)$ 29369-127 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Ethylbenzenemg/kg (ppm)293 64.123 $1,1,1,2$ -Tetrachloroethanemg/kg (ppm)298 64.121 m_p -Xylenemg/kg (ppm)493 68.128 o -Xylenemg/kg (ppm)296 67.129 Styrenemg/kg (ppm)297 68.128 Isopropylbenzenemg/kg (ppm)297 68.128 Bromoformmg/kg (ppm)296 56.132 n -Propylbenzenemg/kg (ppm)291 68.129 Bromobenzenemg/kg (ppm)291 69.128 $1,3,5$ -Trimethylbenzenemg/kg (ppm)291 69.129 $1,2,3$ -Trichloroppanemg/kg (ppm)290 61.137 2 -Chlorotoluenemg/kg (ppm)292 69.128 4-Chlorotoluenemg/kg (ppm)296 69.129 $1,2,4$ -Trimethylbenzenemg/kg (ppm)296 69.129 $1,2,4$ -Trimethylbenzenemg/kg (ppm)296 69.128 4-Chlorotoluenemg/kg (ppm)296 69.129 $1,2,4$ -Trimethylbenzenemg/kg (ppm)296 69.128 see-Butylbenzenemg/kg (ppm)294 69.130 $1,3$ -Dichlorobenzenemg/kg (ppm)290 68.126 $1,4$ -Dichlorobenzenemg/kg (ppm)293 69.127 $1,4$ -Dichlorobenzenemg/kg (ppm)293 69.127 $1,4$ -Dichlorobenzenemg/kg (ppm)293					
1,1,1,2-Tetrachloroethanemg/kg (ppm)29864-121m,p-Xylenemg/kg (ppm)49368-128o-Xylenemg/kg (ppm)29667-129Styrenemg/kg (ppm)29467-129Isopropylbenzenemg/kg (ppm)29768-128Bromoformmg/kg (ppm)29656-132n-Proylbenzenemg/kg (ppm)29168-129Bromobenzenemg/kg (ppm)29169-1281,3,5-Trimethylbenzenemg/kg (ppm)29356-1431,2,2-Tetrachloroethanemg/kg (ppm)29356-1431,2,3-Trichloropropanemg/kg (ppm)29269-1284-Chlorotoluenemg/kg (ppm)29669-1291,2,4-Trimethylbenzenemg/kg (ppm)29669-1271,2,4-Trimethylbenzenemg/kg (ppm)29669-128see-Butylbenzenemg/kg (ppm)29469-130p-Isopropyltoluenemg/kg (ppm)29469-1301,3-Dichlorobenzenemg/kg (ppm)29068-1261,4-Dichlorobenzenemg/kg (ppm)29369-1271,4-Dichlorobenzenemg/kg (ppm)29369-1271,2-Dichlorobenzenemg/kg (ppm)29369-1271,2-Dichlorobenzenemg/kg (ppm)29369-1271,2-Dichlorobenzenemg/kg (ppm)29369-1261,2-Dichlorobenzene <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
o-Xylenemg/kg (ppm)296 $67-129$ Styrenemg/kg (ppm)294 $67-129$ Isopropylbenzenemg/kg (ppm)297 $68-128$ Bromoformmg/kg (ppm)296 $56-132$ n-Propylbenzenemg/kg (ppm)291 $68-129$ Bromobenzenemg/kg (ppm)291 $69-128$ 1,3,5-Trimethylbenzenemg/kg (ppm)293 $56-143$ 1,2,3-Trieholroorehanemg/kg (ppm)290 $61-137$ 2-Chlorotoluenemg/kg (ppm)290 $61-137$ 2-Chlorotoluenemg/kg (ppm)296 $69-128$ 4-Chlorotoluenemg/kg (ppm)296 $69-128$ 1,2,3-Trimethylbenzenemg/kg (ppm)296 $69-128$ 2-Chlorotoluenemg/kg (ppm)296 $69-128$ 4-Chlorotoluenemg/kg (ppm)294 $69-130$ 1,2,4-Trimethylbenzenemg/kg (ppm)294 $69-130$ 1,3-Dichlorobenzenemg/kg (ppm)290 $68-126$ 1,3-Dichlorobenzenemg/kg (ppm)290 $68-126$ 1,2-Dichlorobenzenemg/kg (ppm)293 $69-127$ 1,4-Dichlorobenzenemg/kg (ppm)293 $69-127$ 1,2-Dichlorobenzenemg/kg (ppm)294 $68-126$ 1,2-Dichlorobenzenemg/kg (ppm)294 $68-126$ 1,2-Dichlorobenzenemg/kg (ppm)294 $68-126$ <t< td=""><td></td><td></td><td>4</td><td></td><td></td></t<>			4		
Isopropylbenzene $mg/kg (ppm)$ 29768-128Bromoform $mg/kg (ppm)$ 29656-132n-Propylbenzene $mg/kg (ppm)$ 29168-129Bromobenzene $mg/kg (ppm)$ 29169-1281,3,5-Trimethylbenzene $mg/kg (ppm)$ 29356-1431,2,3-Trichloropane $mg/kg (ppm)$ 29061-1372-Chlorotoluene $mg/kg (ppm)$ 29269-1284-Chlorotoluene $mg/kg (ppm)$ 29669-1291,2,3-Trimethylbenzene $mg/kg (ppm)$ 29061-1372-Chlorotoluene $mg/kg (ppm)$ 29669-1284-Chlorotoluene $mg/kg (ppm)$ 29669-1281,2,4-Trimethylbenzene $mg/kg (ppm)$ 29669-128see-Butylbenzene $mg/kg (ppm)$ 29469-130p-Isopropyltoluene $mg/kg (ppm)$ 29069-1271,4-Dichlorobenzene $mg/kg (ppm)$ 29369-1271,2-Dichlorobenzene $mg/kg (ppm)$ 29369-1271,2-Dichlorobenzene $mg/kg (ppm)$ 29458-1381,2,4-Trichlorobenzene $mg/kg (ppm)$ 29458-1381,2-Dichlorobenzene $mg/kg (ppm)$ 29369-1271,4-Dichlorobenzene $mg/kg (ppm)$ 29458-1381,2-Dichlorobenzene $mg/kg (ppm)$ 29458-1381,2-Dichlorobenzene $mg/kg (ppm)$ 294 <td>o-Xylene</td> <td></td> <td>2</td> <td>96</td> <td>67-129</td>	o-Xylene		2	96	67-129
Bromoformmg/kg (ppm)29656-132n-Propylbenzenemg/kg (ppm)29168-129Bromobenzenemg/kg (ppm)29169-1281,3,5-Trimethylbenzenemg/kg (ppm)29169-1291,1,2,2-Tetrachloroethanemg/kg (ppm)29061-1372.2-Chlorotoluenemg/kg (ppm)29269-1284-Chlorotoluenemg/kg (ppm)29669-1284-Chlorotoluenemg/kg (ppm)29669-1284-Chlorotoluenemg/kg (ppm)29669-1291,2,4-Trimethylbenzenemg/kg (ppm)28969-128sec-Butylbenzenemg/kg (ppm)29469-1301,3-Dichlorobenzenemg/kg (ppm)29068-1271,4-Dichlorobenzenemg/kg (ppm)29068-1261,2-Dichlorobenzenemg/kg (ppm)29068-1261,2-Dichlorobenzenemg/kg (ppm)29369-1271,2-Dichlorobenzenemg/kg (ppm)29458-1381,2,4-Triichorobenzenemg/kg (ppm)29458-1381,2,4-Triichlorobenzenemg/kg (ppm)29369-1271,4-Dichlorobenzenemg/kg (ppm)29458-1381,2,4-Triichlorobenzenemg/kg (ppm)29458-1381,2,4-Triichlorobenzenemg/kg (ppm)29458-1381,2,4-Triichlorobenzenemg/kg (ppm)29369-127 <td></td> <td>mg/kg (ppm)</td> <td></td> <td></td> <td>67-129</td>		mg/kg (ppm)			67-129
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		mg/kg (ppm)			68-128
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
1,3,5-Trimethylbenzenemg/kg (ppm)29169-1291,1,2,2-Tetrachloroethanemg/kg (ppm)29356-1431,2,3-Trichloropopanemg/kg (ppm)29061-1372-Chlorotoluenemg/kg (ppm)29269-1284-Chlorotoluenemg/kg (ppm)29669-1291,2,4-Trimethylbenzenemg/kg (ppm)29669-1291,2,4-Trimethylbenzenemg/kg (ppm)29469-130p-Isopropyltoluenemg/kg (ppm)29469-130j-Stochlorobenzenemg/kg (ppm)29068-1271,4-Dichlorobenzenemg/kg (ppm)29068-1261,2-Dichlorobenzenemg/kg (ppm)29068-1261,2-Dichlorobenzenemg/kg (ppm)29369-1271,4-Dichlorobenzenemg/kg (ppm)29369-1271,4-Dichlorobenzenemg/kg (ppm)29458-1381,2-Jibromo-3-chloropropanemg/kg (ppm)29458-1381,2,4-Trichlorobenzenemg/kg (ppm)29458-1381,2,4-Trichlorobenzenemg/kg (ppm)29458-1381,2,2-Tichlorobenzenemg/kg (ppm)29458-1381,2,4-Trichlorobenzenemg/kg (ppm)29458-1381,2,4-Trichlorobenzenemg/kg (ppm)29458-135Hexachlorobutadienemg/kg (ppm)29350-153Naphthalenemg/kg (ppm)2<					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
4-Chlorotoluene $mg/kg (ppm)$ 287 $67-127$ tert-Butylbenzene $mg/kg (ppm)$ 296 $69-129$ $1,2,4$ -Trimethylbenzene $mg/kg (ppm)$ 289 $69-128$ sec-Butylbenzene $mg/kg (ppm)$ 292 $69-130$ p -Isopropyltoluene $mg/kg (ppm)$ 294 $69-130$ $1,3$ -Dichlorobenzene $mg/kg (ppm)$ 290 $68-126$ $1,2$ -Dichlorobenzene $mg/kg (ppm)$ 290 $68-126$ $1,2$ -Dichlorobenzene $mg/kg (ppm)$ 293 $69-127$ $1,2$ -Dichlorobenzene $mg/kg (ppm)$ 293 $69-127$ $1,2$ -Dichlorobenzene $mg/kg (ppm)$ 294 $58-138$ $1,2$ -Al-Trichlorobenzene $mg/kg (ppm)$ 294 $58-138$ $1,2,4$ -Trichlorobenzene $mg/kg (ppm)$ 295 $64-135$ Hexachlorobutadiene $mg/kg (ppm)$ 293 $50-153$ Naphthalene $mg/kg (ppm)$ 293 $62-128$					
tert-Butylbenzenemg/kg (ppm)29669-129 $1,2,4$ -Trimethylbenzenemg/kg (ppm)28969-128sec-Butylbenzenemg/kg (ppm)29269-130p-Isopropyltoluenemg/kg (ppm)29469-130 $1,3$ -Dichlorobenzenemg/kg (ppm)29068-127 $1,4$ -Dichlorobenzenemg/kg (ppm)29068-126 $1,2$ -Dichlorobenzenemg/kg (ppm)29369-127 $1,2$ -Dichlorobenzenemg/kg (ppm)29369-127 $1,2$ -Dichlorobenzenemg/kg (ppm)29369-127 $1,2$ -Dichlorobenzenemg/kg (ppm)29458-138 $1,2,4$ -Trichlorobenzenemg/kg (ppm)29458-138 $1,2,4$ -Trichlorobenzenemg/kg (ppm)29350-153Hexachlorobutadienemg/kg (ppm)29362-128					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
see-Butylbenzene mg/kg (ppm) 2 92 69-130 p-Isopropyltoluene mg/kg (ppm) 2 94 69-130 1,3-Dichlorobenzene mg/kg (ppm) 2 90 69-130 1,4-Dichlorobenzene mg/kg (ppm) 2 90 68-126 1,2-Dichlorobenzene mg/kg (ppm) 2 93 69-127 1,2-Dichlorobenzene mg/kg (ppm) 2 93 69-127 1,2-Dichlorobenzene mg/kg (ppm) 2 94 58-138 1,2,4-Trichlorobenzene mg/kg (ppm) 2 94 58-138 1,2,4-Trichlorobenzene mg/kg (ppm) 2 95 64-135 Hexachlorobutadiene mg/kg (ppm) 2 93 50-153 Naphthalene mg/kg (ppm) 2 93 62-128					
p-Isopropyloluene mg/kg (ppm) 2 94 69-130 1,3-Dichlorobenzene mg/kg (ppm) 2 90 69-127 1,4-Dichlorobenzene mg/kg (ppm) 2 90 68-126 1,2-Dichlorobenzene mg/kg (ppm) 2 93 69-127 1,2-Dichlorobenzene mg/kg (ppm) 2 93 69-127 1,2-Dichlorobenzene mg/kg (ppm) 2 94 58-138 1,2-Al-Trichlorobenzene mg/kg (ppm) 2 94 58-138 1,2-Al-Trichlorobenzene mg/kg (ppm) 2 95 64-135 Hexachlorobutadiene mg/kg (ppm) 2 93 50-153 Naphthalene mg/kg (ppm) 2 93 62-128					
1,3-Dichlorobenzene mg/kg (ppm) 2 90 69-127 1,4-Dichlorobenzene mg/kg (ppm) 2 90 68-126 1,2-Dichlorobenzene mg/kg (ppm) 2 93 69-127 1,2-Dichlorobenzene mg/kg (ppm) 2 93 69-127 1,2-Dichlorobenzene mg/kg (ppm) 2 94 58-138 1,2-4-Trichlorobenzene mg/kg (ppm) 2 95 64-135 Hexachlorobutadiene mg/kg (ppm) 2 93 50-153 Naphthalene mg/kg (ppm) 2 93 62-128			2		
ng/kg (ppm) 2 93 69-127 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2 94 58-138 1,2,4-Trichlorobenzene mg/kg (ppm) 2 95 64-135 Hexachlorobutadiene mg/kg (ppm) 2 93 50-153 Naphthalene mg/kg (ppm) 2 93 62-128				90	69-127
1,2-Dibromo-3-chloropropane mg/kg (ppm) 2 94 58-138 1,2,4-Trichlorobenzene mg/kg (ppm) 2 95 64-135 Hexachlorobutadiene mg/kg (ppm) 2 93 50-153 Naphthalene mg/kg (ppm) 2 93 62-128				90	68-126
1,2,4-Trichlorobenzene ng/kg (ppm) 2 95 64-135 Hexachlorobutadiene ng/kg (ppm) 2 93 50-153 Naphthalene ng/kg (ppm) 2 93 62-128					
Hexachlorobutadiene mg/kg (ppm) 2 93 50-153 Naphthalene mg/kg (ppm) 2 93 62-128					
Naphthalene mg/kg (ppm) 2 93 62-128					
1,2,5-111CH10r00enzene mg/kg (ppm) 2 96 61-126					
	1,2,3-1 ricillorobenzene	mg/kg (ppm)	Z	90	01-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

				Friedman & Brussa Inc	FB-01-5-0	FB-01-3.5	FM1W-G1-40.0	FMM-01-35.0	FMW-01-30-0	FMM-01-25.0	FMM-01-21.0	FMW-01-15.0	FMW-01-10.0	FMW-01- 5:0	Sample ID		Phone (425)245 0(10 En	City, State, ZIP ISAQUM	Address PTO 5th Ave	Company Torallon	
montrod by.	Received hv	Relinquished by:	Received hv:	SIG	101	09	80	to	8	R	e4	03	02	OI A.E	Lab ID		Email ype Winer Strallencenselfing in	V. WA	NW		Yusuf Pelulinan
		Work	N N	SIGNATURE	+									10/03/03	Date Sampled		ullincenselfung in	1-0026			7
		ſ	<		1330	1335	8021	1117	1115	0/11	1027	1024	1004	6952	Time Sampled			REMARKS	CHEC -	PROJEC	SAMPLE CHAIN OF CUSTODY
		0	Ang		+									Sei	Sample Type		Project specific RLs? -	íS	WHITS IFAT AND SE	PROJECT NAME	MPLE CHAIN OF SAMPLERS (signature)
		111	20	PRINT NAME										JUI	# of Jars				C C		OF ture)
			8man	TNA	×	×						×	×	×	NWTPH-Dx		Yes /		M		Rus
		+	an	ME	×	×						×	×	×	NWTPH-Gx		No				TO
			1												BTEX EPA 8021				2403-008		DY
					×	×						×	×	×	NWTPH-HCID VOCs EPA 8260	AN	AP	INV	33		\sim
															PAHs EPA 8270	ALYS		INVOICE TO	002	PO #	10
		1	tan												PCBs EPA 8082	ES R		E TO	0	+#	12
	1	FBI	Farallo	COMPANY										×	RCRA Metals	ANALYSES REQUESTED					1/2
đ	\$		5	ANY											0, 2	ESTE					
eceived at																D	Other Default	Arch	tush c	Stan	1 T
ů	-	×	í										_				r It: Di	SAMP	harge	ldard H	Page #_
	y	62323	56/22/03	DATE								F	Ē	F	10 X -		spose	SAMPLE DISPOSAL Archive samples	Rush charges authorized by:	X Standard turnaround □ RIISH	12 Page # 1 of 2 TURNAROUND TIME
		L'A	P.	Е	H								3	7	-per YP 10/24123 ~E Notes		after	ISPO	norize	round	ND T
		7	1732	TIME								Chrine	Anna	mha	S S D		□ Other Default: Dispose after 30 days	SAL	d by:		IME
		N	ß	E								C	5	-te			ays				

		1	Friedman & Bruya, Inc.		FMW- 07-35.0	FMM- (12-30-0	FMW-02-25.0	FMW-62-20-0	FMW-02-15.0	FMW-02-10-0	FMW-02-5.0	FB-01-20.0	FB-01-15.0	FB-01-10.0	Sample ID		Phone (475)295 0800 Email Upply Man Constitutions to be project specific RLs? -	City, State, ZIP ISSANINA	TS ST Are	Company Faraller	Popul To Yusuf Rehlivam	810418
Received by:	Relinquished by:	Received by:	Relinquished by:	SIC	20	19	18	<i>t1</i>	16	15	14	13	12	II A.E	Lab ID		ailypenilian	tase an w	NW		ÍVam	
		Run	X	SIGNATURE	Ļ					-Sahi	1423-	13536-	1345-	10 83 23	Date Sampled	-	Callencorall has a	TT I				70
	(1530	1528	1507	1513	1456		M	J.		J	Time Sampled		M Project sp	REMARKS	3245 1561	PROJECT NAME	SAMPLE	SAMPLE CHAIN OF CUSTODY
			Sa		<u> </u>									Soil	Sample Type		ecific RL	S	SGT ANC	F NAME	SAMPLERS (signature)	CHAIN
		<	Sarah	PRII	+									J	# of Jars		3? - Yes		E.		ture)	OF
		2	Katz	PRINT NAME						×	×				NWTPH-Dx		-		ריו			CUS
		F	13	AME						×	×				NWTPH-Gx		No					TOI
															BTEX EPA 8021 NWTPH-HCID				P			YC
										×	×				VOCs EPA 8260	ANA	AP	INVOICE TO	2403-008			
			-	$\left - \right $				1							PAHs EPA 8270	VLYS	0	OICE	C	PO #		101
San		T	Gira												PCBs EPA 8082	ES R		TO	2 C			22/
nple		B	Grallon	COM												EQUE						~
es re			Γ	COMPANY												ANALYSES REQUESTED	D -	0	Rı	X		R
cei																	□ Other Default	S. Archi	ısh ch	X Standa	/ Pa Tť	2/N2
Samples received at 5 o		1027-271	10/25/23 1-	DATE	F								Phut For A	HED.Cm	Notes		∩ Other Default: Dispose after 30 days	SAMPLE DISPOSAL	Rush charges authorized by:	X Standard turnaround	Page # of TURNAROUND TIME	20
ဂိ		1732	1732	TIME									2 July	the			0 days	F	oy:		ĒŶ)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 1, 2023

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on October 25, 2023 from the 3245 158th Ave SE 2403-008, F&BI 310446 project. There are 20 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN1101R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 25, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 310446 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
310446 -01	FMW-03-5.0
310446 -02	FMW-03-10.0
310446 -03	FMW-03-15.0
310446 -04	FMW-03-19.0
310446 -05	FMW-03-20.0
310446 -06	FMW-03-25.0
310446 -07	FMW-03-30.0
310446 -08	FB-03-5.0
310446 -09	FB-03-10.0
310446 -10	FB-03-15.0
310446 -11	FB-03-20.0
310446 -12	FB-02-5.0
310446 -13	FB-02-10.0
310446 -14	FB-02-15.0
310446 -15	FB-02-20.0
310446 -16	FMW-04-5.0
310446 -17	FMW-04-10.0
310446 -18	FMW-04-15.0
310446 -19	FMW-04-20.0
310446 -20	FMW-04-25.0
310446 -21	FMW-04-30.0

The 8260D carbon tetrachloride calibration standard exceeded the acceptance criteria. The compound was not detected, therefore this did not represent an out of control condition.

The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/23 Date Received: 10/25/23 Project: 3245 158th Ave SE 2403-008, F&BI 310446 Date Extracted: 10/26/23 Date Analyzed: 10/27/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
FMW-03-5.0 310446-01	<5	80
FMW-03-10.0 310446-02	<5	83
FB-03-5.0 310446-08	<5	82
FB-03-10.0 310446-09	<5	81
FB-02-5.0 310446-12	<5	80
FB-02-10.0 310446-13	<5	80
FMW-04-5.0 310446-16	<5	79
FMW-04-10.0 310446-17	<5	81
Method Blank	<5	84

03-2477 MB2

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/23 Date Received: 10/25/23 Project: 3245 158th Ave SE 2403-008, F&BI 310446 Date Extracted: 10/27/23 Date Analyzed: 10/27/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
FMW-03-5.0 ³¹⁰⁴⁴⁶⁻⁰¹	<50	<250	87
FMW-03-10.0 310446-02	<50	<250	89
FB-03-5.0 310446-08	<50	<250	87
FB-03-10.0 310446-09	<50	<250	88
FB-02-5.0 310446-12	<50	<250	87
FB-02-10.0 310446-13	<50	<250	88
FMW-04-5.0 310446-16	<50	<250	87
FMW-04-10.0 310446-17	<50	<250	85
Method Blank ^{03-2583 MB}	<50	<250	82

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-04-5.0 10/25/23 10/26/23 10/26/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 310446-16 310446-16.126 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	1.14		
Barium	17.8		
Cadmium	<1		
Chromium	9.78		
Lead	1.00		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 10/26/23 10/26/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 I3-853 mb I3-853 mb.070 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-03-5.0 10/25/23 10/30/23 10/30/23 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 310446-01 103013.D GCMS4 MD	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 98 96	Lower Limit: 90 86 84	Upper Limit: 109 115 115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometh Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropthane 2,2-Dichloropthane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Trichloroethan 1,1-Dichloropthane 1,1-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane	hane er (MTBE) thene e ene (EDC) ne e le le	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromofo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr	nzene Cetrachloroethane ene Vlbenzene rm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.25 \\ < 0.25 \end{array}$
trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone		<0.05 <0.05 <0.5	Naphtha 1,2,3-Tri	alene ichlorobenzene	<0.05 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-03-1 10/25/23 10/26/23 10/26/23 Soil mg/kg (ppr	0.0 n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 310446-02 102607.D GCMS4 MD	
			Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane Toluene-d8	-d4	98 99	90 86	109	
4-Bromofluorobenz	ene	$\frac{99}{94}$	86 84	115 115	
1 Diomondoi obenz	ene		01	110	a
Common day		Concentration	Common		Concentration
Compounds:		mg/kg (ppm)	Compou	nas:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		< 0.5		oroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane	_	< 0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber		< 0.05
Acetone		<5 ca		etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle		<0.1
Hexane Mathalana abla ida		<0.25	o-Xylene		<0.05
Methylene chloride		<0.5	Styrene	-11	$< 0.05 \\ < 0.05$
Methyl t-butyl ethe trans-1,2-Dichloroe		<0.05 <0.05	Bromofo	vlbenzene	<0.05
1,1-Dichloroethane		< 0.05		lbenzene	<0.05
2,2-Dichloropropan		<0.05	Bromobe		<0.05
cis-1,2-Dichloroeth		<0.05		imethylbenzene	< 0.05
Chloroform	ene	<0.05		etrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorie		<0.05 k		imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop	-	< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	ne	<0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-03-5.0 10/25/23 10/26/23 10/26/23 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 310446-08 102613.D GCMS4 MD	
C		0/ D	Lower	Upper	
Surrogates: 1,2-Dichloroethane	d4	% Recovery: 107	Limit: 90	Limit: 109	
Toluene-d8	-44	107	90 86	105	
4-Bromofluorobenz	ene	97	84	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane	1	<0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		$< 0.05 \\ < 0.05$
Acetone 1,1-Dichloroethene		<5 ca <0.05	1,1,1,2-1 m,p-Xyle	Tetrachloroethane	<0.05
Hexane		<0.05	o-Xylene		<0.1
Methylene chloride	2	<0.5	Styrene		< 0.05
Methyl t-butyl ethe		< 0.05	•	vlbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane 1,1,1-Trichloroetha		<0.05 <0.05	2-Chloro 4-Chloro		$< 0.05 \\ < 0.05$
1,1-Dichloropropen		<0.05 <0.05		ylbenzene	< 0.05
Carbon tetrachlorie		<0.05 k		imethylbenzene	<0.05
Benzene	ac	<0.03		vlbenzene	< 0.05
Trichloroethene		< 0.02	•	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05		lorobenzene	< 0.05
Bromodichlorometl	hane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05	, ,	ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop		< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	ine	<0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		<0.5			

ENVIRONMENTAL CHEMISTS

Date Received:1Date Extracted:1Date Analyzed:1Matrix:S	B-03-10.0 0/25/23 0/26/23 0/26/23 oil oil ng/kg (ppm) Dry Weig	Client: Project: Lab ID: Data File: Instrument: tht Operator:	Farallon Consulting 3245 158th Ave SE 5 310446-09 102614.D GCMS4 MD	
		Lower	Upper	
Surrogates:	% Recove	•	Limit:	
1,2-Dichloroethane-d4		90	109	
Toluene-d8 4-Bromofluorobenzen	e 100	86	115	
4-bromolluorobenzen	e 100	84	115	
	Concentra			Concentration
Compounds:	mg/kg (p	om) Compou	inds:	mg/kg (ppm)
Dichlorodifluorometh	ane <0.5	1,3-Dicł	nloropropane	< 0.05
Chloromethane	< 0.5		loroethene	< 0.025
Vinyl chloride	< 0.05	Dibrom	ochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibi	romoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorob	enzene	< 0.05
Trichlorofluorometha	ne <0.5	Ethylbe	enzene	< 0.05
Acetone	<5 ca		Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	1 2		< 0.1
Hexane	< 0.25	v		< 0.05
Methylene chloride	< 0.5	Styrene		< 0.05
Methyl t-butyl ether (ylbenzene	< 0.05
trans-1,2-Dichloroeth				< 0.05
1,1-Dichloroethane	< 0.05		lbenzene	< 0.05
2,2-Dichloropropane	< 0.05			< 0.05
cis-1,2-Dichloroethene			rimethylbenzene	< 0.05
Chloroform	< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1		richloropropane	< 0.05
1,2-Dichloroethane (E	·		otoluene	< 0.05
1,1,1-Trichloroethane	<0.05 <0.05		otoluene	<0.05 <0.05
1,1-Dichloropropene Carbon tetrachloride	<0.05		tylbenzene •imethylbenzene	< 0.05
Benzene	<0.03 <0.03		ylbenzene	< 0.05
Trichloroethene	<0.02		pyltoluene	< 0.05
1,2-Dichloropropane	<0.02		nlorobenzene	< 0.05
Bromodichloromethar		-	nlorobenzene	< 0.05
Dibromomethane	<0.05	-	lorobenzene	< 0.05
4-Methyl-2-pentanone		-	romo-3-chloropropane	<0.5
cis-1,3-Dichloroproper			richlorobenzene	< 0.25
Toluene	< 0.05		lorobutadiene	< 0.25
trans-1,3-Dichloropro				< 0.05
1,1,2-Trichloroethane			richlorobenzene	< 0.25
2-Hexanone	< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-02-5.0 10/25/23 10/26/23 10/26/23 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 310446-12 102615.D GCMS4 MD	
a .		04 D	Lower	Upper	
Surrogates:	-1.4	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane Toluene-d8	-04	$\frac{100}{103}$	$90\\86$	$\begin{array}{c} 109 \\ 115 \end{array}$	
4-Bromofluorobenz	ene	95	84	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		romoethane (EDB)	< 0.05
Chloroethane	_	< 0.5	Chlorobe		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		< 0.05
Acetone		<5 ca		Tetrachloroethane	< 0.05
1,1-Dichloroethene Hexane		<0.05 <0.25	m,p-Xyle		<0.1 <0.05
Methylene chloride		<0.25 <0.5	o-Xylene Styrene	÷	<0.05
Methyl t-butyl ethe		<0.05	•	vlbenzene	<0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05		lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth		< 0.05	1,3,5-Tri	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorie	de	<0.05 k <0.03		imethylbenzene	<0.05
Benzene Trichloroethene		<0.03 <0.02	-	/lbenzene pyltoluene	$< 0.05 \\ < 0.05$
1,2-Dichloropropan		<0.02		llorobenzene	<0.05
Bromodichlorometl		<0.05		lorobenzene	< 0.05
Dibromomethane	lane	< 0.05		llorobenzene	< 0.05
4-Methyl-2-pentan	one	<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-02-10.0 10/25/23 10/26/23 10/26/23 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2- 310446-13 102616.D GCMS4 MD	
~			Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane Toluene-d8	-d4	$\begin{array}{c} 95 \\ 102 \end{array}$	90 86	$\begin{array}{c} 109 \\ 115 \end{array}$	
4-Bromofluorobenz	ene	102 97	84	115	
1 Dromonaoroboniz	0110		01	110	a
Compounda		Concentration	Company	nda	Concentration
Compounds:		mg/kg (ppm)	Compou	nus.	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane		<0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		< 0.05
Acetone		<5 ca		etrachloroethane	< 0.05
1,1-Dichloroethene Hexane		<0.05 <0.25	m,p-Xyle		<0.1 <0.05
Methylene chloride		<0.25 <0.5	o-Xylene Styrene		< 0.05
Methyl t-butyl ethe		<0.5 <0.05	•	lbenzene	<0.05
trans-1,2-Dichloroe		<0.05	Bromofo		<0.05
1,1-Dichloroethane		<0.05		lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth		< 0.05		imethylbenzene	< 0.05
Chloroform	0110	< 0.05		letrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorie	de	<0.05 k	1,2,4-Tr	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02		pyltoluene	< 0.05
1,2-Dichloropropan		< 0.05	,	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop		<0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	.ne	<0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-04-5.0 10/25/23 10/26/23 10/26/23 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 310446-16 102617.D GCMS4 MD	
C .		0/ D	Lower	Upper	
Surrogates: 1,2-Dichloroethane	d1	% Recovery: 101	Limit: 90	Limit: 109	
Toluene-d8	-04	101	86	105	
4-Bromofluorobenz	ene	97	84	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane		<0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		< 0.05
Acetone 1,1-Dichloroethene		<5 ca <0.05		Tetrachloroethane	<0.05 <0.1
Hexane		<0.05	m,p-Xyle o-Xylene		<0.1
Methylene chloride	`	<0.20	Styrene		<0.05
Methyl t-butyl ethe		< 0.05	•	lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	ie	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane	· /	<0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha 1,1-Dichloropropen		$< 0.05 \\ < 0.05$	4-Chloro	ylbenzene	$< 0.05 \\ < 0.05$
Carbon tetrachlorie		<0.05 <0.05 k		imethylbenzene	<0.05
Benzene	ae	<0.03 K		lbenzene	< 0.05
Trichloroethene		<0.02	•	pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05		lorobenzene	< 0.05
Bromodichlorometl		< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05	, ,	ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop		< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	ne	<0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		<0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-04-10 10/25/23 10/26/23 10/26/23 Soil mg/kg (ppn	0.0 n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 310446-17 102618.D GCMS4 MD	
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	-d4	107	90	109	
Toluene-d8		101	86	115	
4-Bromofluorobenz	ene	99	84	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane	1	<0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		<0.05
Acetone 1,1-Dichloroethene		<5 ca <0.05	1,1,1,2-1 m,p-Xyle	Tetrachloroethane	<0.05 <0.1
Hexane		<0.05	o-Xylene		<0.1
Methylene chloride	x	<0.5	Styrene		< 0.05
Methyl t-butyl ethe		< 0.05	•	vlbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane 1,1,1-Trichloroetha		<0.05	2-Chloro 4-Chloro		<0.05
1,1,1-1 richloropropen		<0.05 <0.05		ylbenzene	$< 0.05 \\ < 0.05$
Carbon tetrachlorie		<0.05 k		imethylbenzene	<0.05
Benzene	ac	<0.03		vlbenzene	< 0.05
Trichloroethene		< 0.02	•	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05		lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop		<0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	ne	<0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		<0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bl: Not Applic 10/26/23 10/26/23 Soil mg/kg (ppr		Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 03-2440 mb 102606.D GCMS4 MD	
a .			Lower	Upper	
Surrogates:	-] 4	% Recovery:	Limit: 90	Limit: 109	
1,2-Dichloroethane Toluene-d8	-04	93 100	90 86	109	
4-Bromofluorobenz	ene	90	84	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane	_	< 0.5	Chlorobe		< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber		< 0.05
Acetone		<5 ca		etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle		<0.1
Hexane Methylene chloride		<0.25 <0.5	o-Xylene Styrene		$< 0.05 \\ < 0.05$
Methyl t-butyl ethe		<0.05	-	lbenzene	<0.05
trans-1,2-Dichloroe		<0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05		lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth		< 0.05	1,3,5-Tri	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorie	ae	<0.05 k <0.03		imethylbenzene	$< 0.05 \\ < 0.05$
Benzene Trichloroethene		< 0.03		vlbenzene pyltoluene	<0.05
1,2-Dichloropropan		< 0.02		lorobenzene	<0.05
Bromodichlorometh		<0.05		lorobenzene	< 0.05
Dibromomethane	lane	< 0.05	,	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/23 Date Received: 10/25/23 Project: 3245 158th Ave SE 2403-008, F&BI 310446

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 31	0442-01 (Duplic	ate)			
		Samp	le D	uplicate	
	Reporting	Resu	lt	Result	RPD
Analyte	Units	(Wet V	Vt) (Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code: La	aboratory Contro	l Sample	e Percent		
	Reporting	Spike	Recover		
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	40	100	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/23 Date Received: 10/25/23 Project: 3245 158th Ave SE 2403-008, F&BI 310446

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	310501-05 (Matri	x Spike)					
Analyte	Reporting Units	Spike Level	Sample Result (Wet Wt)	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	53	111	111	63-146	0
Dieser Extended	ing/kg (ppin)	0,000	00	111	111	00-140	0
Laboratory Code:					111	00-140	0
			le	ţ.		05-140	U
	Laboratory Contr	rol Samp	le Percent	ţ.	tance	05-140	U

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/23 Date Received: 10/25/23 Project: 3245 158th Ave SE 2403-008, F&BI 310446

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 310464-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	86	87	75 - 125	1
Barium	mg/kg (ppm)	50	50.6	109 b	111 b	75 - 125	$2 \mathrm{b}$
Cadmium	mg/kg (ppm)	10	<5	96	96	75 - 125	0
Chromium	mg/kg (ppm)	50	7.64	91	93	75 - 125	2
Lead	mg/kg (ppm)	50	<5	96	95	75 - 125	1
Mercury	mg/kg (ppm	5	<5	93	83	75 - 125	11
Selenium	mg/kg (ppm)	5	<5	85	90	75 - 125	6
Silver	mg/kg (ppm)	10	<5	89	91	75 - 125	2

Laboratory Code: Laboratory Control Sample

U	C C	1	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	86	80-120
Barium	mg/kg (ppm)	50	92	80-120
Cadmium	mg/kg (ppm)	10	93	80-120
Chromium	mg/kg (ppm)	50	103	80-120
Lead	mg/kg (ppm)	50	95	80-120
Mercury	mg/kg (ppm)	5	91	80-120
Selenium	mg/kg (ppm)	5	92	80-120
Silver	mg/kg (ppm)	10	91	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/23 Date Received: 10/25/23 Project: 3245 158th Ave SE 2403-008, F&BI 310446

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 310446-02 (Matrix Spike)

Laboratory Code: 3104	146-02 (Matrix Spike)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	<0.5	50	53	10-142	6
Chloromethane	mg/kg (ppm)	2	< 0.5	77	79	10-126	3
Vinyl chloride	mg/kg (ppm)	2	< 0.05	78	78	10-138	0
Bromomethane	mg/kg (ppm)	2	< 0.5	45	62	10-163	32 vo
Chloroethane	mg/kg (ppm)	2	< 0.5	54	74	10-176	31 vo
Trichlorofluoromethane	mg/kg (ppm)	2	< 0.5	91	86	10-176	6
Acetone	mg/kg (ppm)	10	<5	80	69	10-163	15
1,1-Dichloroethene	mg/kg (ppm)	2	< 0.05	84	84	10-160	0
Hexane	mg/kg (ppm)	2 2	<0.25	94	98 82	10-137	4
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	<0.5 <0.05	82 91	82 93	10-156 21-145	$0 \\ 2$
trans-1,2-Dichloroethene	mg/kg (ppm)	2	<0.05	91 92	93	21-145 14-137	2 1
1,1-Dichloroethane	mg/kg (ppm) mg/kg (ppm)	2	<0.05	92 90	93 91	19-140	1
2,2-Dichloropropane	mg/kg (ppm)	2	<0.05	90 101	102	10-158	1
cis-1,2-Dichloroethene	mg/kg (ppm)	2	<0.05	93	97	25-135	4
Chloroform	mg/kg (ppm)	2	< 0.05	86	87	21-145	1
2-Butanone (MEK)	mg/kg (ppm)	10	<1	85	83	19-147	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	<0.05	88	88	12-160	0
1,1,1-Trichloroethane	mg/kg (ppm)	2	< 0.05	96	99	10-156	3
1,1-Dichloropropene	mg/kg (ppm)	2	< 0.05	88	90	17-140	2
Carbon tetrachloride	mg/kg (ppm)	2	< 0.05	105	108	9-164	3
Benzene	mg/kg (ppm)	2	< 0.03	88	91	29-129	3
Trichloroethene	mg/kg (ppm)	2	< 0.02	92	90	21-139	2
1,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	92	95	30-135	3
Bromodichloromethane	mg/kg (ppm)	2	< 0.05	89	91	23 - 155	2
Dibromomethane	mg/kg (ppm)	2	< 0.05	96	97	23 - 145	1
4-Methyl-2-pentanone	mg/kg (ppm)	10	<1	92	93	24 - 155	1
cis-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	92	97	28-144	5
Toluene	mg/kg (ppm)	2	< 0.05	89	94	35-130	5
trans-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	90	95	26-149	5
1,1,2-Trichloroethane	mg/kg (ppm)	2	< 0.05	91	91	10-205	0
2-Hexanone	mg/kg (ppm)	10 2	<0.5 <0.05	78 92	82 92	15-166 31-137	5 0
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm) mg/kg (ppm)	2	<0.05	92 91	92 91	20-133	0
Dibromochloromethane	mg/kg (ppm)	2	<0.025	95	98 98	20-155	3
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	<0.05	92	94	28-142	2
Chlorobenzene	mg/kg (ppm)	2	<0.05	92	93	32-129	1
Ethylbenzene	mg/kg (ppm)	2	< 0.05	92	93	32-137	1
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	94	95	31-143	1
m,p-Xylene	mg/kg (ppm)	4	< 0.1	92	95	34-136	3
o-Xylene	mg/kg (ppm)	2	< 0.05	94	92	33-134	2
Styrene	mg/kg (ppm)	2	< 0.05	92	92	35-137	0
Isopropylbenzene	mg/kg (ppm)	2	< 0.05	95	93	31-142	2
Bromoform	mg/kg (ppm)	2	< 0.05	87	89	21 - 156	2
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	93	90	23-146	3
Bromobenzene	mg/kg (ppm)	2	< 0.05	91	89	34-130	2
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	94	90	18-149	4
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	97	95	28-140	2
1,2,3-Trichloropropane	mg/kg (ppm)	2	< 0.05	88	85	25-144	3
2-Chlorotoluene	mg/kg (ppm)	2	< 0.05	93	88	31-134	6
4-Chlorotoluene	mg/kg (ppm)	$\frac{2}{2}$	< 0.05	90	87	31-136	3
tert-Butylbenzene 1,2,4-Trimethylbenzene	mg/kg (ppm)	2	<0.05 <0.05	98 92	95 90	30-137 10-182	3 2
	mg/kg (ppm)	2			90 91		2 4
sec-Butylbenzene p-Isopropyltoluene	mg/kg (ppm) mg/kg (ppm)	2 2	<0.05 <0.05	95 97	91 93	23-145 21-149	4
1.3-Dichlorobenzene	mg/kg (ppm)	2	<0.05	94	90	30-131	4
1,4-Dichlorobenzene	mg/kg (ppm)	2	<0.05	94 92	90 90	29-129	4 2
1,2-Dichlorobenzene	mg/kg (ppm)	2	<0.05	92 95	90 92	31-132	2 3
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	<0.05	94	91	11-161	3
1.2.4-Trichlorobenzene	mg/kg (ppm)	2	<0.25	100	92	22-142	8
Hexachlorobutadiene	mg/kg (ppm)	2	<0.25	100	99	10-142	1
Naphthalene	mg/kg (ppm)	2	< 0.05	99	93	14-157	6
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	101	95	20-144	6
	e eur /						

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/23 Date Received: 10/25/23 Project: 3245 158th Ave SE 2403-008, F&BI 310446

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

		~ .1	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2	54	10-146
Chloromethane	mg/kg (ppm)	2	80	27-133
Vinyl chloride	mg/kg (ppm)	2	84	22-139
Bromomethane	mg/kg (ppm)	2	63	10-201
Chloroethane	mg/kg (ppm)	2	72	10-163
Trichlorofluoromethane	mg/kg (ppm)	$\frac{2}{10}$	90 60	10-196
1,1-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2	93	52-141 47-128
Hexane	mg/kg (ppm)	2	99 99	43-142
Methylene chloride	mg/kg (ppm)	2	99 88	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	96	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2	96	64-132
1,1-Dichloroethane	mg/kg (ppm)	2	95	64-135
2,2-Dichloropropane	mg/kg (ppm)	2	105	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2	98	64-135
Chloroform	mg/kg (ppm)	2	91	61-139
2-Butanone (MEK)	mg/kg (ppm)	10	89	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	93	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2	105	62-131
1,1-Dichloropropene	mg/kg (ppm)	2	92	64-136
Carbon tetrachloride	mg/kg (ppm)	2	116	60-139
Benzene	mg/kg (ppm)	2	95	65-136
Trichloroethene	mg/kg (ppm)	2	98	63-139
1,2-Dichloropropane	mg/kg (ppm)	2	97	61-145
Bromodichloromethane	mg/kg (ppm)	2	97	57 - 126
Dibromomethane	mg/kg (ppm)	2	99	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	10	97	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2	103	65-143
Toluene	mg/kg (ppm)	2	94	66-126
trans-1,3-Dichloropropene 1,1.2-Trichloroethane	mg/kg (ppm)	$\frac{2}{2}$	97 94	65-131 62-131
2-Hexanone	mg/kg (ppm)	2 10	94 83	62-131 33-152
1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2	95	67-128
Tetrachloroethene	mg/kg (ppm)	2	93	68-128
Dibromochloromethane	mg/kg (ppm)	2	104	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	94	66-129
Chlorobenzene	mg/kg (ppm)	2	94	67-128
Ethylbenzene	mg/kg (ppm)	2	95	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	97	64-121
m,p-Xylene	mg/kg (ppm)	4	95	68-128
o-Xylene	mg/kg (ppm)	2	96	67-129
Styrene	mg/kg (ppm)	2	95	67-129
Isopropylbenzene	mg/kg (ppm)	2	97	68-128
Bromoform	mg/kg (ppm)	2	96	56-132
n-Propylbenzene	mg/kg (ppm)	2	96	68-129
Bromobenzene	mg/kg (ppm)	2	95	69-128
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	98	69-129
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	100	56 - 143
1,2,3-Trichloropropane	mg/kg (ppm)	2	89	61-137
2-Chlorotoluene	mg/kg (ppm)	2	97	69-128
4-Chlorotoluene	mg/kg (ppm)	$\frac{2}{2}$	92	67-127
tert-Butylbenzene	mg/kg (ppm)	$\frac{2}{2}$	100	69-129
1,2,4-Trimethylbenzene sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2	96 97	69-128 69-130
p-Isopropyltoluene	mg/kg (ppm) mg/kg (ppm)	2	97 100	69-130 69-130
1.3-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2	96	69-130
1,4-Dichlorobenzene	mg/kg (ppm)	2	96 94	68-126
1,2-Dichlorobenzene	mg/kg (ppm)	2	94 100	69-126
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	106	58-138
1.2.4-Trichlorobenzene	mg/kg (ppm)	2	100	64-135
Hexachlorobutadiene	mg/kg (ppm)	2	105	50-153
Naphthalene	mg/kg (ppm)	2	101	62-128
1.2.3-Trichlorobenzene	mg/kg (ppm)	2	103	61-126

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	-1-			Friedman & Bruya, Inc.	TB-US ISV	TP-02-15/	FR-17-10-0	FR-113-5.0	FMW-03-30.0	FMW-03-25.0	FMW-03-20.0	FMW-03-14-0	-	741-02 - 15 0	FMW-03-10.0	FMW-03-5-0		Sample ID		Phone (475) 195 0800 Email upchilisan@furation on sutting time Project specific RLs?	City, State, ZIP Issaguah, WA	Address 975 5th Ave NW	Company Forallon Consulting	Report to Yusut Philipan	944016	
hecerven of .	Received by:	Relinquished by:	Received by:	Relinquished by:		10	0q	08 A-E	07 A-D	06 1	50	04	3	40	02	01 1 - 2	>	Lab ID		Apcintivum@fura	EPOSID UN		Iting			
					TONIATIDE	+										1010-710-0	20110	Date Sampled		Uncon sulting in						S
				Katz W		8511	1116	1108	1000	CGHO	06.20	NACU	8420	th80	CLAN	NOUT	2020	Time Sampled		^W Project sp		REMARKS	3245 158th AVE SE	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
			24	5		1-		-							+	-	Soil	Sample Type		ecific RLs		S	58M AU	NAME	RS (signat	HAIN
			Ш	arah	PH	1								-	+	-	J	# of Jars		? - Yes			C S		ure)	OF C
			H	2	PRINT NAME	F	×	;	<					+	-	×	×	NWTPH-Dx	П				m	1000	Pin	SUS
			M	Ka	NAN	-	×		×	+	-			\top		×	×	NWTPH-Gx		/ No				O	Mont	FOI
			01	N	ME	\vdash	+		+	+				T				BTEX EPA 8021					2		2 h	YY
			Ŷ			-	+		1									NWTPH-HCID	A	-	D	IN	200-50HC		}	10
							>	< >	<							×	×	VOCs EPA 8260	ANALYSES	=	PP	INVOICE TO	0-1	PO #	1	10/25/25
\vdash		+			\square													PAHs EPA 8270	YSE			CEI	800	#		ST a
		S	R	tor														PCBs EPA 8082	SRE			Ó				6
		Intra	F&BI	forallor	COMPANY							U.							REQUESTED							
		C3 1		Z	IPAN														STEL				Ru			Nr
		Samples received			N															fault	Other	S. Archi	sh ch	Standa RUSH	TURN	N2/ 65
		vod																		:: D18	2	SAMPLE DISPOSAL	Rush charges authorized by:	Standard turnaround RUSH	TURNAROUND TIME	#
		F	(0/2	10	D											P	F	× _ Þ	1	pose		E DI	auth	ırnar	ROUI	
		P	(0/25/22	10/25/23	DATE								_	\rightarrow		EX L	P.J.	10/25/22 Notes	:	arte	2	SPO	orize	ound	ND T	of
		Ô		100		-11				Acc 43					34	For Unality	HULD, Cuntuc	tes tes	'	Default: Dispose after 30 days	20	SAL	d by:		IME	сv
			(00)	1003	TIME				10125	at lah (AP)						£.	4			lays						

			rn. (200) 203-0202	Friedman & Bruya, Inc.		FMW-04-25.0	FMW-04-20.0	FMW- 04-15.0	FMW-04-10.0	FMW-04-5.0	FB-02-20.0	AB-12-15.0	FB-02-10.0	FB-02-50	FB-03-20.0	Sample ID		Phone (425) 295 0800 Emaily Minur Hundran Mangar M. Project specific RLs? -	City, State, ZIP ISSOGUAN, WA	Address 975 5th AVE	Company Farallish	Reporto Yusuf Pehlivan	2 interfect
-	Received by:	Relinquished by:	Received by:	Relinquished by:	SIC	20 V	Iq	81	FI	16	15	١́Ч	13	12	II A-E	Lab ID		ailyphiveretus	in, wh arent	2 NW		Invan	
			AN AN	SUC	SIGNATURE	ţ									56/40/01	Date Sampled		lancerthing.	R.				
						tch!	FINI	1400	1350	8461	1218	1215	5101	11101	1140	Time Sampled		M Project s	KEMAKKS	3245	PROJEC	SAMPLE	SAMPLE CHAIN OF CUSTODY
			NHC	Sar		ł									Soul	Sample Type		pecific RLs	5	3245 158m Ave	PROJECT NAME	SAMPLERS (signature)	CHAIN
			7	arah	PRI	F				-			-	-	J	# of Jars				R S		ture)	OF
			R	K	PRINT NAME				×	×			×	×		NWTPH-Dx	Π	Yes /		Ū.		S	CUS
			00	at	JAM				×	×			×	×		NWTPH-Gx		No				2	TO
			6	N	E											BTEX EPA 8021				P)	6	DY
			1													NWTPH-HCID	A			200-90HC	3	50	
									×	×			×	×		VOCs EPA 8260	NAI				P	1	101
					\square											PAHs EPA 8270	ANALYSES		INVOICE TO		P0 #		12/0
		$\hat{\mathcal{D}}$	17	farallor												PCBs EPA 8082	S RE						123
		[day		JIK	MOC					×						RCRA Metals	QUI						5
		C3 1	74	n	COMPANY											0 2	REQUESTED						່⊇
		lece)			Y	-	+	+	1	+	1				1		E	Defa	Archiv Other	Rush	C RUSH		N2105
		Samples received						+	+				-	-			1	Default: Dispose after 30 days	Archive samples	Kush charges authorized by	RUSH	TURNAROUND TIME	59
\vdash		et .	6	10/			+	+	+-			+-		P	韦		1	Dispo	sam	ges a	d tur	#	\$
		Ø	42220,	8275210	DATE									R B	F			ose a	ples	utho	narou	NUC	\mathcal{P}
		å		+	E	H	+			+	+-	+		malipsis	(m)	Notes		fter	hive samples	nzed	Ind	D TIN	0
			(003	1003	TIME									J.		0		30 de	Ê	by:		ME (3
			2	3	ΛE										P			iys					

Friedman & Bruya, Inc. Ph. (206) 285-8282						FMW-04-30.0	Sample ID		Phone(42-5) 275 ()KUV Emailigr huse worked the lither (M Project specific RLs? - Yes	City, state, Zir is sufficient with	mill of a million of the million	Address 975 5th Ave NW	Company Frynallisy	Report To USUF PENINAN	2111111
SI Relinquished by: Received by: Relinquished by: Received by:						21 A-E	Lab ID		iliyahuwww.		LEADU AL	Nie		M	
SIGNATURE						10/24/23	Date Sampled		UISOCANGUITAR (
						1440	Time Sampled		M Project s		REMARKS	3045	PROJEC	SAMPLE	SAMPLE CHAIN OF CUSTODY
Sa						Soil	Sample Type		pecific RLs		SY	3245 158th Ave se	PROJECT NAME	SAMPLERS (signature)	CHAIN
AT TR						S	# of Jars		? - Ye			e SE		0	OF (
							NWTPH-Dx		s / No			(,.		merk	SUS
NAME Katz			 \rightarrow	 	 		NWTPH-Gx		0					2º	[O]
		+		 	 		BTEX EPA 8021 NWTPH-HCID					19		2)	Υ
					 		VOCs EPA 8260	ANA		AP	INVOICE TO	2003-008	H	}	
TID							PAHs EPA 8270	ANALYSES		-	DICE	200	PO #	1	0/2
							PCBs EPA 8082				TO				0/25/24
nple								QUE							2
COMPANY Πρη β Τ mples rec			 	 				REQUESTED	De			Ru			>
company λβ Ι Samples received			 	 					fault	□ Other	. S	sh ch	Stand	Pau	Falrn
0.2			 -	 	 10	t			: Dist	ve san	SAMPLE DISPOSAL	Rush charges authorized by:	🕅 Standard turnaround	Page # of TURNAROUND TIME	
DATE 19/25/23 19/25/23 t					ANG	(H)			oose a	pies	E DIS	autho	ırnaro	ROUN	نر
			 	 	 for an	· R	Notes		fter :		POSA	rized	und	D TIN	
TIME 1003 (003					 analysis	Contact			Default: Dispose after 30 days		F	by:		E	در

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 7, 2023

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on October 31, 2023 from the 3245 158th Ave SE 2403-008, F&BI 310563 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN1107R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 31, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 310563 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
310563 -01	Geotech-1-103123
310563 -02	FMW-02-103123
310563 -03	FMW-01-103123
310563 -04	FMW-03-103123
310563 -05	Trip Blank

The 8260D calibration standard failed the acceptance criteria for several analytes. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/07/23 Date Received: 10/31/23 Project: 3245 158th Ave SE 2403-008, F&BI 310563 Date Extracted: 11/03/23 Date Analyzed: 11/03/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
Geotech-1-103123 310563-01	<100	92
FMW-02-103123 310563-02	<100	94
FMW-01-103123 310563-03	<100	97
FMW-03-103123 310563-04	<100	91
Method Blank ^{03-2491 MB}	<100	94

ENVIRONMENTAL CHEMISTS

Date of Report: 11/07/23 Date Received: 10/31/23 Project: 3245 158th Ave SE 2403-008, F&BI 310563 Date Extracted: 11/02/23 Date Analyzed: 11/02/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
Geotech-1-103123 310563-01	860 x	930 x	90
FMW-02-103123 310563-02	<50	<250	95
FMW-01-103123 ³¹⁰⁵⁶³⁻⁰³	<50	<250	102
FMW-03-103123 310563-04	<50	<250	107
Method Blank ^{03-2610 MB}	<50	<250	102

ENVIRONMENTAL CHEMISTS

Geotech-1-1 10/31/23 11/02/23 11/02/23 Water ug/L (ppb)	103123	Client: Project: Lab ID: Data File: Instrument: Operator:		
-d4 ene	% Recovery: 104 90 94	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
ethane hane er (MTBE) ethene (EDC) ne e de hane one pene	$ \begin{array}{c} <1 \ ca \\ <10 \\ <0.02 \\ <5 \\ <1 \\ <1 \\ <50 \ ca \\ <1 \\ <5 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tr Hexachl Naphtha	oroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene or Vlbenzene or m lbenzene enzene imethylbenzene cetrachloroethane ichloropropane otoluene otoluene ylbenzene imethylbenzene imethylbenzene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene imethylbenzene imethylbenzene imethylbenzene imethylbenzene iorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene alene	$\begin{array}{c} <1 \\ <1 \\ <0.5 \\ <0.01 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
oropene .ne	<0.4 <0.5 <10 k			<1 <1
	10/31/23 11/02/23 Water ug/L (ppb) -d4 ene -d4 ene -thane -thane (EDC) ne e le -e -ane -one pene oropene	$\begin{array}{cccccccc} 11/02/23 \\ 11/02/23 \\ Water \\ ug/L (ppb) \\ & & & & & & & & & & & & & & & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

FMW-02-10 10/31/23 11/02/23 11/02/23 Water ug/L (ppb))3123	Client: Project: Lab ID: Data File: Instrument: Operator:		
-d4 ene	% Recovery: 102 96 99	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
ethane hane er (MTBE) ethene ene (EDC) ne e de hane pene pene	<1 ca <10 <0.02 <5 <1 <1 <50 ca <1 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl	oroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene of Vlbenzene m lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene otoluene ylbenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	
oropene .ne	<0.4 <0.5 <10 k			<1 <1
	10/31/23 11/02/23 Water ug/L (ppb) -d4 ene -d4 ene (thane hane ene (EDC) ne e le hane one pene oropene	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

FMW-01-10 10/31/23 11/02/23 11/02/23 Water ug/L (ppb))3123	Client: Project: Lab ID: Data File: Instrument: Operator:		
-d4 ene	% Recovery: 104 89 94	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
thane hane er (MTBE) othene eene (EDC) ne e de hane pene pene	<1 ca <10 <0.02 <5 <1 <1 <50 ca <1 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <20 k <0.2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl	oroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene of Vlbenzene m lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene jubenzene imethylbenzene otoluene otoluene otoluene otoluene otoluene otoluene otoluene otoluene imethylbenzene imethylbenzene otobenzene lorobenzene lorobenzene ichloropropane ichloropropane	
oropene ne	<0.4 <0.5 <10 k	Naphtha	<1 <1	
	10/31/23 11/02/23 Water ug/L (ppb) -d4 ene -d4 ene (thane hane ene (EDC) ne e le hane one pene oropene	$\begin{array}{cccccccc} 11/02/23 \\ 11/02/23 \\ Water \\ ug/L (ppb) \\ & & & & & & & & & & & & & & & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-03-10 10/31/23 11/02/23 11/02/23 Water ug/L (ppb))3123	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 310563-04 110220.D GCMS11 LM	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 111 91 97	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluoromet Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ine ie de hane one pene propene	$ \begin{array}{c} <1 \ ca \\ <10 \\ <0.02 \\ <5 \\ <1 \\ <1 \\ <50 \ ca \\ <1 \\ <55 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <$	1,3-Dich Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	loropropane loropropane loroethene ochloromethane omoethane (EDB) enzene nzene letrachloroethane ene ene ene ene ene ene ene ene ene	

ENVIRONMENTAL CHEMISTS

Surrogates:% Recovery:1,2-Dichloroethane-d4107Toluene-d8924-Bromofluorobenzene97Concentrationug/L (ppb)Dichlorodifluoromethane<1 caChloromethane<10Vinyl chloride<0.02Bromomethane<1Trichlorofluoromethane<1Acetone<50 ca1,1-Dichloroethene<1	Operator: LM	
Compounds:ug/L (ppb)Dichlorodifluoromethane<1 ca	Lower Upper Limit: Limit: 78 126 84 115 72 130	
Chloromethane<10Vinyl chloride<0.02	n Compounds:	Concentration ug/L (ppb)
Hexane<5Methylene chloride<5	1,3-Dichloropropane Tetrachloroethene Dibromochloromethane 1,2-Dibromoethane (EDB) Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroethane m,p-Xylene o-Xylene Styrene Isopropylbenzene Bromoform n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenzene 1,2,3-Trichloropropane 2-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichloropropane	

ENVIRONMENTAL CHEMISTS

Date of Report: 11/07/23 Date Received: 10/31/23 Project: 3245 158th Ave SE 2403-008, F&BI 310563

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 310563-02 (Duplicate)								
	Reporting	eporting Sample		olicate	RPD			
Analyte	Units	Resu	lt R	esult	(Limit 20)			
Gasoline	ug/L (ppb)	<100	0 <100		nm			
Laboratory Code: La	boratory Conti	rol Sampl	le Percent					
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria	_			
Gasoline	ug/L (ppb)	1,000	100	70-130	-			

ENVIRONMENTAL CHEMISTS

Date of Report: 11/07/23 Date Received: 10/31/23 Project: 3245 158th Ave SE 2403-008, F&BI 310563

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	100	72-139	4

ENVIRONMENTAL CHEMISTS

Date of Report: 11/07/23 Date Received: 10/31/23 Project: 3245 158th Ave SE 2403-008, F&BI 310563

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Percent

Laboratory Code: 310563-02 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	83	30-221
Chloromethane	ug/L (ppb)	10	<10	96	50-150
Vinyl chloride	ug/L (ppb)	10	< 0.02	89	50-150
Bromomethane	ug/L (ppb)	10	<5	79	50-150
Chloroethane	ug/L (ppb)	10	<1	97	50-150
Trichlorofluoromethane	ug/L (ppb)	10	<1	105	50-150
Acetone	ug/L (ppb)	50	<50	48	18-161
1,1-Dichloroethene	ug/L (ppb)	10	<1	90	50-150
Hexane	ug/L (ppb)	10 10	<5 <5	88	50-150
Methylene chloride Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	10	<0 <1	91 91	50-150 50-150
trans-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	10	<1	101	50-150
1,1-Dichloroethane	ug/L (ppb)	10	<1	95	50-150
2,2-Dichloropropane	ug/L (ppb)	10	<1	92	43-171
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	101	10-211
Chloroform	ug/L (ppb)	10	<1	96	50-150
2-Butanone (MEK)	ug/L (ppb)	50	<20	74	10-192
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	108	50 - 150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	98	50 - 150
1,1-Dichloropropene	ug/L (ppb)	10	<1	93	50-150
Carbon tetrachloride	ug/L (ppb)	10	< 0.5	101	50-150
Benzene	ug/L (ppb)	10	<0.35	106	50-150
Trichloroethene	ug/L (ppb)	10	<0.5	102	35-149
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	10 10	<1 <0.5	97 102	50-150 50-150
Dibromomethane	ug/L (ppb) ug/L (ppb)	10	<0.5	102	50-150
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	95	50-150
cis-1,3-Dichloropropene	ug/L (ppb)	10	<0.4	96	50-150
Toluene	ug/L (ppb)	10	<1	104	50-150
trans-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	99	50-150
1,1,2-Trichloroethane	ug/L (ppb)	10	< 0.5	104	50-150
2-Hexanone	ug/L (ppb)	50	<10	91	50 - 150
1,3-Dichloropropane	ug/L (ppb)	10	<1	103	50-150
Tetrachloroethene	ug/L (ppb)	10	1.8	112	50 - 150
Dibromochloromethane	ug/L (ppb)	10	< 0.5	110	50 - 150
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	< 0.01	110	50-150
Chlorobenzene Ethylbenzene	ug/L (ppb) ug/L (ppb)	10 10	<1 <1	102 100	50-150 50-150
1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10	<1	100	50-150 50-150
m,p-Xylene	ug/L (ppb) ug/L (ppb)	20	<2	108	50-150
o-Xylene	ug/L (ppb)	10	<1	97	50-150
Styrene	ug/L (ppb)	10	<1	92	50-150
Isopropylbenzene	ug/L (ppb)	10	<1	93	50-150
Bromoform	ug/L (ppb)	10	<5	110	50-150
n-Propylbenzene	ug/L (ppb)	10	<1	92	50-150
Bromobenzene	ug/L (ppb)	10	<1	102	50-150
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	94	50 - 150
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	109	50-150
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	102	50-150
2-Chlorotoluene	ug/L (ppb)	10	<1	92	50-150
4-Chlorotoluene tert-Butylbenzene	ug/L (ppb)	10 10	<1 <1	95 92	50-150 50-150
1,2,4-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	10	<1	92 92	50-150
sec-Butylbenzene	ug/L (ppb) ug/L (ppb)	10	<1	93	50-150
p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	10	<1	95	50-150
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	99	50-150
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	99	50-150
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	101	50-150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	99	50-150
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	88	50-150
Hexachlorobutadiene	ug/L (ppb)	10	< 0.5	95	50-150
Naphthalene	ug/L (ppb)	10	<1	89	50 - 150
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	95	50 - 150

ENVIRONMENTAL CHEMISTS

Date of Report: 11/07/23 Date Received: 10/31/23 Project: 3245 158th Ave SE 2403-008, F&BI 310563

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	90	85	46-206	6
Chloromethane	ug/L (ppb)	10	103	97	59 - 132	6
Vinyl chloride	ug/L (ppb)	10	105	98	64-142	7
Bromomethane	ug/L (ppb)	10	102	86	50 - 197	17
Chloroethane	ug/L (ppb)	10	113	104	70-130	8
Trichlorofluoromethane	ug/L (ppb)	10	112	101	51-159	10
Acetone	ug/L (ppb)	50	55	51	10-140	8
1,1-Dichloroethene	ug/L (ppb)	10 10	104	100	64-140	4 3
Hexane Methylene chloride	ug/L (ppb) ug/L (ppb)	10	96 101	93 100	54-136 43-134	3 1
Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	10	101	100	70-130	3
trans-1,2-Dichloroethene	ug/L (ppb)	10	117	113	70-130	3
1,1-Dichloroethane	ug/L (ppb)	10	107	103	70-130	4
2.2-Dichloropropane	ug/L (ppb)	10	115	109	64-148	5
cis-1,2-Dichloroethene	ug/L (ppb)	10	116	111	70-130	4
Chloroform	ug/L (ppb)	10	106	102	70-130	4
2-Butanone (MEK)	ug/L (ppb)	50	69	69	47-112	0
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	111	108	70-130	3
1,1,1-Trichloroethane	ug/L (ppb)	10	110	106	70-130	4
1,1-Dichloropropene	ug/L (ppb)	10	95	96	70-130	1
Carbon tetrachloride	ug/L (ppb)	10	112	105	70-130	6
Benzene	ug/L (ppb)	10	109	106	70-130	3
Trichloroethene	ug/L (ppb)	10	104	102	70-130	2
1,2-Dichloropropane	ug/L (ppb)	10	98	95	70-130	3
Bromodichloromethane	ug/L (ppb)	10	100	99	70-130	1
Dibromomethane	ug/L (ppb)	10	105	103	70-130	2
4-Methyl-2-pentanone	ug/L (ppb)	50	92	91	68-130	1
cis-1,3-Dichloropropene Toluene	ug/L (ppb)	10 10	91 106	90 103	69-131	$\frac{1}{3}$
	ug/L (ppb)	10	97	90	70-130 70-130	3 7
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ug/L (ppb) ug/L (ppb)	10	100	90 99	70-130	1
2-Hexanone	ug/L (ppb)	50	87	87	45-138	0
1,3-Dichloropropane	ug/L (ppb)	10	98	94	70-130	4
Tetrachloroethene	ug/L (ppb)	10	115	112	70-130	3
Dibromochloromethane	ug/L (ppb)	10	111	109	60-148	2
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	105	103	70-130	2
Chlorobenzene	ug/L (ppb)	10	102	100	70-130	2
Ethylbenzene	ug/L (ppb)	10	104	102	70-130	2
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	118	116	70-130	2
m,p-Xylene	ug/L (ppb)	20	104	101	70-130	3
o-Xylene	ug/L (ppb)	10	104	101	70-130	3
Styrene	ug/L (ppb)	10	92	92	70-130	0
Isopropylbenzene	ug/L (ppb)	10	102	99	70-130	3
Bromoform	ug/L (ppb)	10	115	106	69-138	8
n-Propylbenzene	ug/L (ppb)	10	94	94	70-130	0
Bromobenzene	ug/L (ppb)	10	100	96	70-130	4
1,3,5-Trimethylbenzene	ug/L (ppb)	10	95	95	70-130	0
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	10 10	106 100	106 99	70-130 70-130	0
2-Chlorotoluene	ug/L (ppb)	10	93	99 95	70-130	2
4-Chlorotoluene	ug/L (ppb)	10	94	92	70-130	2
tert-Butylbenzene	ug/L (ppb)	10	92	91	70-130	1
1,2,4-Trimethylbenzene	ug/L (ppb)	10	96	93	70-130	3
sec-Butylbenzene	ug/L (ppb)	10	96	93	70-130	3
p-Isopropyltoluene	ug/L (ppb)	10	98	96	70-130	2
1,3-Dichlorobenzene	ug/L (ppb)	10	101	100	70-130	1
1,4-Dichlorobenzene	ug/L (ppb)	10	102	100	70-130	2
1,2-Dichlorobenzene	ug/L (ppb)	10	106	105	70-130	1
	ug/L (ppb)	10	104	104	70-130	0
1,2-Dibromo-3-chloropropane						
1,2,4-Trichlorobenzene	ug/L (ppb)	10	98	98	70-130	0
1,2,4-Trichlorobenzene Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	10	106	105	70-130	1
1,2,4-Trichlorobenzene	ug/L (ppb)					

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

		Ph. (206) 285-8282	Friedman & Prussa Inc					Trip Blank	FMN-03-103123	FMW-01-103123	FMW-02-103123	Geotech-1-103/23	Sample ID		Phone (425) 295 VOV Email yohi in Project specific RLs? - Yes / No	City, State, ZIP ISSOQUAN, WA	Address 975 5th Auc	Company Found In	310563 Report to YUSUF Pehlivan
Received by:	l by:	Received by:	Relinquished her					05 AB	04 1	03	02 A-G	01 A-E	Lab ID		mail yphi inm@fund	M, WA 96627	CNW		ilivan
	low	won	SIGNATURE			2			F			20102	Date Sampled		anconsulting is				
								1	1330	9001	1120	1030	Time Sampled		Project	- REMARKS	3045	PROJE	SAMPLE CHAIN OF CUSTO
	, t	Angre						water	⊢			Water	Sample Type		<u>specific RL</u>	RKS	32145 158 Ave SE	PROJECT NAME	MPLE CHAIN OF SAMPLERS (signature)
	ANHPHAN	0	PRINT NAME					ىر	T X	X	X	5 V	Jars of Of0+0R6 NWTPH-Dx		s? - Yes /		e SE		I OF CU;
	+AN	Bman	AME		2				×	×	×	\times	NWTPH-Gx BTEX EPA 8021		No		24	2	USTODY
		-		Samples rec					K	\checkmark	X	X	NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270	ANALYSES	AP	INVOICE TO	ROD-COLA	PO #	io/
	F 36	anallon	COMPANY	receiven at									PCBs EPA 8082	ES REQUESTED		E TO		*	10/31/23
			ANY	 	2° °									ESTED		□ Archiv	Rush cha	X Stand	
	10/31/0	10-31-23	DATE				01 (10)	Added					r			SAMPLE DISPOSAL Archive samples	Rush charges authorized by:	X Standard turnaround	AC2 Page # of
	12315:40	3 1540	TIME				10/31/23	athb					Notes		Dispose after 30 days	POSAL	ized by:	ınd	ofOTIME
															L]

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 2, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on December 22, 2023 from the 3245 158th Ave SE 2403-008, F&BI 312424 project. There are 11 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0102R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 22, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 312424 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Farallon Consulting, LLC</u>
312424 -01	FMW-01-122123
312424 -02	B-2-122123
312424 -03	Trip Blank

The 8260D acetone calibration standard exceeded the acceptance criteria. The compound was not detected, therefore this did not represent an out of control condition.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/24 Date Received: 12/22/23 Project: 3245 158th Ave SE 2403-008, F&BI 312424 Date Extracted: 12/27/23 Date Analyzed: 12/27/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
FMW-01-122123 312424-01	<100	96
B-2-122123 312424-02	<100	89
Method Blank ^{03-2857 MB}	<100	99

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/24 Date Received: 12/22/23 Project: 3245 158th Ave SE 2403-008, F&BI 312424 Date Extracted: 12/26/23 Date Analyzed: 12/26/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL **USING METHOD NWTPH-Dx**

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
FMW-01-122123 ³¹²⁴²⁴⁻⁰¹	<50	<250	98
B-2-122123 312424-02	<50	<250	91
Method Blank 03-2970 MB	<50	<250	108

ENVIRONMENTAL CHEMISTS

FMW-01-12 12/22/23 12/27/23 12/27/23 Water ug/L (ppb)	22123	Client: Project: Lab ID: Data File: Instrument: Operator:		LLC 403-008, F&BI 312424
	% Recovery: 100 100 103	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
hane er (MTBE) thene e ene (EDC) ne e de de nane pone pene		1,3-Dich Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	loropropane oroethene ochloromethane omoethane (EDB) enzene hzene 'etrachloroethane ene 'etrachloroethane ene 'etrachloroethane enzene imethylbenzene 'etrachloroethane chloropropane toluene ylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene iorobenzene lorobenzene lorobenzene iorobenzene omo-3-chloropropane ichlorobenzene orobutadiene alene	$<1 \\ 5.0 \\ <0.5 \\ <0.03 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1$
ne	<0.5 <10 k	1,2,3-Tri	ichlorobenzene	<1
	12/22/23 12/27/23 12/27/23 Water	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

Client Sample ID: B-2-12 Date Received: 12/22/ Date Extracted: 12/27/ Date Analyzed: 12/27/ Matrix: Water Units: ug/L (23 23 23	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 312424-02 122711.D GCMS11 IJL	LLC 403-008, F&BI 312424
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	% Recovery: 98 102 103	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
Compounds:	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether (MTE trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethene Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane 4-Methyl-2-pentanone cis-1,3-Dichloropropene Toluene trans-1,3-Dichloropropene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy Bromobo 1,3,5-Tr: 1,1,2,2-T 1,2,3-Tr: 2-Chloro 4-Chloro tert-But 1,2,4-Tr: sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tr:	nzene 'etrachloroethane ene '' 'lbenzene frm lbenzene enzene imethylbenzene 'etrachloroethane ichloropropane toluene ylbenzene pyltoluene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	<1 < 1 < 1 < 0.5 < 0.03 < 1 < 1 < 1 < 1 < 2 < 1 < 1 < 2 < 1 < 1
1,1,2-Trichloroethane 2-Hexanone	<0.4 <0.5 <10 k	1,2,3-Tr	<1	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 12/27/23 12/27/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 03-2961 mb 122708.D GCMS11 IJL	LLC 403-008, F&BI 312424
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 98 103 101	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,2-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropropan Toluene trans-1,3-Dichloropropan	hane er (MTBE) ethene eene (EDC) ne e de nane pene	$ \begin{array}{c} <1 \\ <10 \\ <0.02 \\ <5 k \\ <1 \\ <1 \\ <50 \\ <1 \\ <5 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	1,3-Dich Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri 1,2,4-Tri	loropropane oroethene chloromethane omoethane (EDB) enzene nzene 'etrachloroethane ene 'etrachloroethane ene 'etrachloroethane enzene methylbenzene 'etrachloroethane chloropropane toluene ylbenzene imethylbenzene idenzene encel inethylbenzene idenzene ylbenzene imethylbenzene idenzene orobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	$ \begin{array}{c} <1 \\ <1 \\ <1 \\ <0.5 \\ <0.03 \\ <1 \\ <1 \\ <1 \\ <1 \\ <2 \\ <1 \\ <1 \\ <1$
1,1,2-Trichloroetha 2-Hexanone	-	<0.5 <10 k	-	chlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/24 Date Received: 12/22/23 Project: 3245 158th Ave SE 2403-008, F&BI 312424

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 31	2424-01 (Dupli	cate)			
	Reporting	Sampl	le Dup	olicate	RPD
Analyte	Units	Resul	t Re	esult	(Limit 20)
Gasoline	ug/L (ppb)	<100	<	100	nm
Laboratory Code: La	boratory Contr	ol Sampl	e		
			Percent		
	Reporting	Spike	Percent Recovery	Acceptance	
Analyte	Reporting Units	Spike Level		Acceptance Criteria	_

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/24 Date Received: 12/22/23 Project: 3245 158th Ave SE 2403-008, F&BI 312424

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	112	65 - 151	15

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/24 Date Received: 12/22/23 Project: 3245 158th Ave SE 2403-008, F&BI 312424

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Percent

Laboratory Code: 312424-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recoverv	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	85	30-221
Chloromethane	ug/L (ppb)	10	<10	90	50-150
Vinyl chloride	ug/L (ppb)	10	< 0.02	92	50-150
Bromomethane	ug/L (ppb)	10	<5	90	50-150
Chloroethane	ug/L (ppb)	10	<1	91	50-150
Trichlorofluoromethane	ug/L (ppb)	10	<1	82	50 - 150
Acetone	ug/L (ppb)	50	<50	41	18-161
1,1-Dichloroethene	ug/L (ppb)	10	<1	84	50 - 150
Hexane	ug/L (ppb)	10	<5	87	50-150
Methylene chloride	ug/L (ppb)	10	<5	88	50-150
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	87	50-150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	86	50-150
1,1-Dichloroethane 2,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	10 10	<1 <1	87 106	50-150 43-171
cis-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	10	<1	89	43-171 10-211
Chloroform	ug/L (ppb) ug/L (ppb)	10	<1	83	50-150
2-Butanone (MEK)	ug/L (ppb)	50	<20	63	10-192
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<0.2	90	50-150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	88	50-150
1,1-Dichloropropene	ug/L (ppb)	10	<1	85	50-150
Carbon tetrachloride	ug/L (ppb)	10	< 0.5	98	50-150
Benzene	ug/L (ppb)	10	< 0.35	89	50-150
Trichloroethene	ug/L (ppb)	10	0.58	85	35-149
1,2-Dichloropropane	ug/L (ppb)	10	<1	87	50-150
Bromodichloromethane	ug/L (ppb)	10	< 0.5	84	50-150
Dibromomethane	ug/L (ppb)	10	<1	84	50-150
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	87	50 - 150
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	81	50 - 150
Toluene	ug/L (ppb)	10	<1	83	50-150
trans-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	75	50-150
1,1,2-Trichloroethane	ug/L (ppb)	10	< 0.5	81	50-150
2-Hexanone 1.3-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 10	<10 <1	85 82	50-150 50-150
Tetrachloroethene	ug/L (ppb) ug/L (ppb)	10	5.0	82 b	50-150
Dibromochloromethane	ug/L (ppb)	10	< 0.5	76	50-150
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	0.029	84	50-150
Chlorobenzene	ug/L (ppb)	10	<1	80	50-150
Ethylbenzene	ug/L (ppb)	10	<1	86	50-150
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	80	50-150
m,p-Xylene	ug/L (ppb)	20	<2	82	50 - 150
o-Xylene	ug/L (ppb)	10	<1	80	50-150
Styrene	ug/L (ppb)	10	<1	78	50 - 150
Isopropylbenzene	ug/L (ppb)	10	<1	81	50-150
Bromoform	ug/L (ppb)	10	<5	69	50-150
n-Propylbenzene	ug/L (ppb)	10	<1	83	50-150
Bromobenzene	ug/L (ppb)	10 10	<1 <1	81 80	50-150 50-150
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10	<0.2	80 86	50-150 50-150
1,1,2,2-Tetrachloropenne	ug/L (ppb) ug/L (ppb)	10	<0.2	87	50-150
2-Chlorotoluene	ug/L (ppb)	10	<1	82	50-150
4-Chlorotoluene	ug/L (ppb)	10	<1	81	50-150
tert-Butylbenzene	ug/L (ppb)	10	<1	80	50-150
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	80	50 - 150
sec-Butylbenzene	ug/L (ppb)	10	<1	82	50-150
p-Isopropyltoluene	ug/L (ppb)	10	<1	81	50 - 150
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	83	50-150
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	82	50-150
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	80	50 - 150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	79	50-150
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	77	50-150
Hexachlorobutadiene	ug/L (ppb)	10	< 0.5	77	50-150
Naphthalene	ug/L (ppb)	10 10	<1 <1	76 76	50-150 50-150
1,2,3-Trichlorobenzene	ug/L (ppb)	10	~ 1	10	00-100

ENVIRONMENTAL CHEMISTS

Date of Report: 01/02/24 Date Received: 12/22/23 Project: 3245 158th Ave SE 2403-008, F&BI 312424

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Reporting Spike Recovery Recovery Acceptance RPD Analyte upl. (pb) 10 108 103 103 104 1 Dehknomlutomethane upl. (pb) 10 108 103 6104 1 Num Johand upl. (pb) 10 111 111 66.142 0 Num Johand upl. (pb) 10 110 100 77.130 1 Chloredhane upl. (pb) 10 104 104 64.142 0 I.J. Dehknowthane upl. (pb) 10 104 104 64.143 1 I.J. Dehknowthane upl. (pb) 10 104 104 64.143 1 I.J. Dehknowthane upl. (pb) 10 104 104 64.143 1 I.J. Dehknowthane upl. (pb) 10 104 104 64.143 1 I.J. Dehknowthane upl. (pb) 10 104 104 64.143 1 I.J. D	Laboratory Code. Laborato	<i>v</i> 1		Percent	Percent		
$\begin{split} \hline Dehlowedth accome than e & yf , (pp) & 10 & 102 & 103 & 46-306 & 1 & \\ Dehromethan e & yf , (pp) & 10 & 113 & 101 & 64-142 & 5 & \\ Viry't disharde & yf , (pp) & 10 & 113 & 101 & 64-142 & 5 & \\ Dehromethan e & yf , (pp) & 10 & 113 & 101 & 64-142 & 5 & \\ Dehromethan e & yf , (pp) & 10 & 103 & 104 & 51.159 & 1 & \\ Trickhoredthan e & yf , (pp) & 10 & 103 & 104 & 51.159 & 1 & \\ Trickhoredthan e & yf , (pp) & 10 & 103 & 104 & 51.159 & 1 & \\ Dehromethan e & yf , (pp) & 10 & 103 & 104 & 64.140 & 0 & \\ Dehromethan e & yf , (pp) & 10 & 104 & 104 & 64.140 & 0 & \\ Dehromethan e & yf , (pp) & 10 & 107 & 105 & 64.131 & 2 & \\ Dehromethan e & yf , (pp) & 10 & 107 & 105 & 64.131 & 2 & \\ Dehromethan e & yf , (pp) & 10 & 109 & 109 & 70.130 & 0 & \\ Trins - J. Dehromethan e & yf , (pp) & 10 & 109 & 108 & 70.130 & 1 & \\ 1.1 Deklowethan e & yf , (pp) & 10 & 107 & 106 & 70.130 & 1 & \\ 1.2 Deklowethan e & yf , (pp) & 10 & 107 & 108 & 70.130 & 1 & \\ 1.2 Deklowethan e & yf , (pp) & 10 & 107 & 108 & 70.130 & 1 & \\ 1.2 Deklowethan e & yf , (pp) & 10 & 107 & 108 & 70.130 & 3 & \\ Choroforn & yf , (pp) & 10 & 107 & 108 & 70.130 & 3 & \\ Densore & yf , (pp) & 10 & 107 & 108 & 70.130 & 3 & \\ Densore & yf , (pp) & 10 & 107 & 108 & 70.130 & 3 & \\ Densore & yf , (pp) & 10 & 107 & 106 & 70.130 & 2 & \\ Densore & yf , (pp) & 10 & 107 & 106 & 70.130 & 2 & \\ Densore & yf , (pp) & 10 & 107 & 106 & 70.130 & 2 & \\ Densore & yf , (pp) & 10 & 107 & 106 & 70.130 & 3 & \\ Densore & yf , (pp) & 10 & 107 & 106 & 70.130 & 3 & \\ Densore & yf , (pp) & 10 & 97 & 100 & 70.130 & 3 & \\ Densore & yf , (pp) & 10 & 97 & 100 & 70.130 & 3 & \\ Densore & yf , (pp) & 10 & 97 & 100 & 70.130 & 3 & \\ Densore & yf , (pp) & 10 & 97 & 100 & 70.130 & 3 & \\ Dehromethan & yf , (pp) & 10 & 97 & 100 & 70.130 & 3 & \\ Dehromethan & yf , (pp) & 10 & 97 & 100 & 70.130 & 3 & \\ Dehromethan & yf , (pp) & 10 & 97 & 100 & 70.130 & 3 & \\ Dehromethan & yf , (pp) & 10 & 97 & 100 & 70.130 & 3 & \\ Dehromethan & yf , (pp) & 10 & 97 & 100 & 70.130 & 70.130 & 3 & \\ Dehromethan & yf , (pp) & 10 & 97 $		Reporting	Spike	Recovery	Recovery	Acceptance	RPD
$\begin{split} \hline Dehondfluoremethane & up', (pp) & 10 & 102 & 103 & 46-306 & 1 \\ Increase & up', (pp) & 10 & 113 & 101 & 64-142 & 5 \\ Ving't Aborde & up', (pp) & 10 & 113 & 101 & 64-142 & 5 \\ Otherwethane & up', (pp) & 10 & 113 & 101 & 64-142 & 5 \\ Otherwethane & up', (pp) & 10 & 103 & 104 & 51-159 & 1 \\ Trichlorofluoromethane & up', (pp) & 10 & 103 & 104 & 51-159 & 1 \\ Trichlorofluoromethane & up', (pp) & 10 & 103 & 104 & 64-140 & 0 \\ Otherwethane & up', (pp) & 10 & 103 & 104 & 64-140 & 0 \\ Otherwethane & up', (pp) & 10 & 107 & 105 & 64-133 & 2 \\ I.1-Dehatomethane & up', (pp) & 10 & 109 & 109 & 70-130 & 0 \\ Trichlorofluoromethane & up', (pp) & 10 & 109 & 109 & 70-130 & 0 \\ Trichlorofluoromethane & up', (pp) & 10 & 109 & 109 & 70-130 & 0 \\ Trichlorofluoromethane & up', (pp) & 10 & 109 & 108 & 70-130 & 1 \\ I.1-Dehatomethane & up', (pp) & 10 & 109 & 108 & 70-130 & 1 \\ I.1-Dehatomethane & up', (pp) & 10 & 109 & 108 & 70-130 & 1 \\ I.2-Dehatomethane & up', (pp) & 10 & 107 & 108 & 70-130 & 1 \\ I.2-Dehatomethane & up', (pp) & 10 & 107 & 108 & 70-130 & 1 \\ I.2-Dehatomethane & up', (pp) & 10 & 103 & 104 & 70-130 & 3 \\ Otheroform & up', (pp) & 10 & 103 & 104 & 70-130 & 3 \\ Otheroform & up', (pp) & 10 & 103 & 104 & 70-130 & 2 \\ I.2-Dehatomethane & up', (pp) & 10 & 108 & 100 & 70-130 & 2 \\ I.2-Dehatomethane & up', (pp) & 10 & 102 & 104 & 70-130 & 2 \\ I.2-Dehatomethane & up', (pp) & 10 & 102 & 104 & 70-130 & 2 \\ I.2-Dehatomethane & up', (pp) & 10 & 102 & 104 & 70-130 & 2 \\ I.2-Dehatomethane & up', (pp) & 10 & 102 & 104 & 70-130 & 2 \\ I.2-Dehatomethane & up', (pp) & 10 & 102 & 104 & 70-130 & 2 \\ I.2-Dehatomethane & up', (pp) & 10 & 102 & 104 & 70-130 & 3 \\ I.2-Dehatomethane & up', (pp) & 10 & 102 & 104 & 70-130 & 3 \\ I.2-Dehatomethane & up', (pp) & 10 & 102 & 104 & 70-130 & 3 \\ I.2-Dehatomethane & up', (pp) & 10 & 102 & 103 & 70-130 & 3 \\ I.2-Dehatomethane & up', (pp) & 10 & 103 & 70-130 & 3 \\ I.2-Dehatomethane & up', (pp) & 10 & 103 & 70-130 & 3 \\ I.2-Dehatomethane & up', (pp) & 10 & 103 & 70-130 & 3 \\ I.2-Dehatomethane & up', (pp) & $	Analyte		-			-	(Limit 20)
Vingle labelineupf. (pph)1011210761-125Chloreschaneupf. (pph)10110101101101101101Chloreschaneupf. (pph)1010010070.1301Actornupf. (pph)1010461.400121.1-bichloreschaneupf. (pph)1010461.4001010161.331Hexaneupf. (pph)1010010061.33111 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>							1
Besime set of the set							
Chlocochane upf. (pp) 10 10 100 70:130 1 Acton upf. (pp) 10 133 104 51:30 1 Acton upf. (pp) 10 1							
Thichlosofthoomethane upfl (pph) 10 103 104 11.109 12 1.1.Dichlosofthene upfl (pph) 10 104 64.10 0 1.1.Dichlosofthene upfl (pph) 10 101 51.03 1 1.1.Dichlosofthene upfl (pph) 10 106 105 70.130 0 1.1.Dichlosofthane upfl (pph) 10 106 105 70.130 3 2.3.Duchlosopthane upfl (pph) 10 102 132 64.14 71 2.3.Duchlosopthane upfl (pph) 10 107 130 70.130 3 1.3.Dichlosofthane upfl (pph) 10 107 108 70.130 3 1.3.Dichlosofthane (DCO) upfl (pph) 10 102 108 70.130 2 1.4.Dichlosofthane (DCO) upfl (pph) 10 102 101 70.130 2 1.3.Dichlosofthane (DCO) upfl (pph) 10 102 101 70.130 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Action up/L (pph) 50 46 52 10-14 12 Li-Shichorethene up/L (pph) 10 103 110 64-130 1 Hacane up/L (pph) 10 103 100 103 40 Hacane up/L (pph) 10 106 105 7-130 1 Li-Shichorethene up/L (pph) 10 106 7-130 3 3 2.3 Dichorethene up/L (pph) 10 106 103 104 7-130 3 2.3 Dichorethene up/L (pph) 10 106 109 7-130 3 3 2.4 Dichorethene up/L (pph) 10 107 109 7-130 2 2 2.4 Dichorethene up/L (pph) 10 107 109 7-130 2 2 2.4 Dichorethene up/L (pph) 10 106 108 7-130 2 1.1.1 Trichorethene up/L (pph) 10 102 104 7							
1.1-Dichloroschaneug/L (pph)1010410464-1400Hexaneug/L (pph)1010710843.1342Methyl bolyt ehen (MTBD)ug/L (pph)1010710843.1342Lablachoroschaneug/L (pph)1010910870.13011.1-Dichloroschaneug/L (pph)1010910670.13032.3-Dichloroschaneug/L (pph)1010710470.13032.3-Dichloroschaneug/L (pph)1010710470.13032.3-Dichloroschaneug/L (pph)1010710470.13032.3-Dichloroschaneug/L (pph)1010710670.13022.3-Dichloroschaneug/L (pph)1010710570.13022.3-Dichloroschaneug/L (pph)1010710870.13021.1-Dichloroschaneug/L (pph)1010210870.1302Banseneug/L (pph)1010210870.1302Banseneug/L (pph)1010210870.13031.1-Dichloroschaneug/L (pph)1010210070.1304Dibronoschaneug/L (pph)1010210863.13151.1-Dichloroschaneug/L (pph)1010210863.13161.1-Dichloroschaneug/L (pph)1010210363.1316 <tr< td=""><td></td><td>ug/L (ppb)</td><td></td><td></td><td></td><td></td><td></td></tr<>		ug/L (ppb)					
Hexane up/L (pb) 10 109 110 64-136 1 Methyle chorder up/L (pb) 10 105 100 70-130 0 Methyle chorder up/L (pb) 10 106 100 70-130 0 1.12 Dichloroproper up/L (pb) 10 104 70-130 1 1.2. Dichloroproper up/L (pb) 10 102 132 74-148 7 ci.2. Dichloroproper up/L (pb) 10 103 104 70-130 3 Choroform up/L (pb) 10 105 108 70-130 2 1.2. Dichloropropare up/L (pb) 10 106 108 70-130 2 1.2. Dichloropropare up/L (pb) 10 102 101 70-130 2 1.2. Dichloropropare up/L (pb) 10 102 101 70-130 3 1.2. Dichloropropare up/L (pb) 10 102 101 70-130 3 1.							
Methyl totyl terk (MTB) ug/L (pp) 10 107 105 43-134 2 trans-1.2.br.hbrorchane ug/L (pp) 10 106 105 70-130 1 1.1.br.hbrorchane ug/L (pp) 10 106 105 70-130 3 2.2.br.hbrorchane ug/L (pp) 10 107 121 64-14 7 2.2.br.horchane ug/L (pp) 10 107 123 64-14 7 2.Br.hanne (MEK) ug/L (pp) 10 107 105 7.3 8 7.112 19 2.Br.hanne (MEK) ug/L (pp) 10 107 105 7.3 8 7.13 2 2.br.horchane (EUC) ug/L (pp) 10 102 104 70.130 2 2 1.br.horchane ug/L (pp) 10 102 106 70-130 4 2.br.horchane ug/L (pp) 10 102 106 70-130 1 1.br.horchane ug/L (pp) 10							
Methyl burgl other (MTBE) upf. (ppb) 10 109 109 70-130 1 1.1 blehkorothane upf. (ppb) 10 142 132 61-148 7 2.2 blehkorothane upf. (ppb) 10 117 104 70-130 3 2.2 blehkorothane upf. (ppb) 10 107 104 70-130 3 2.2 blehkorothane upf. (ppb) 10 107 104 70-130 3 1.2 blehkorothane (BCO) upf. (ppb) 10 106 109 70-130 0 1.1 blehkorothane upf. (ppb) 10 107 105 70-130 0 1.1 blehkorothane upf. (ppb) 10 107 108 70-130 2 1.1 blehkorothane upf. (ppb) 10 102 104 70-130 2 1.2 blehkorothane upf. (ppb) 10 102 104 70-130 3 1.3 blehkorothane upf. (ppb) 10 102 104 70-130							
transug/L (ppb)1010610570-13012.2 Dichlorophynaneug/L (ppb)1014213264-14872.3 Dichlorophynaneug/L (ppb)1014213264-14873.1 J.D.Chlorophynaneug/L (ppb)1010710470.100101.3 Dichlorophynaneug/L (ppb)1010610970.13031.1 Dichlorophynaneug/L (ppb)1010610970.13021.2 Dichlorophynaneug/L (ppb)1010710670.13021.1 Dichlorophynaneug/L (ppb)1010610870.13021.1 Dichlorophynaneug/L (ppb)1010210670.13021.1 Dichlorophynaneug/L (ppb)1010210670.13021.1 Dichlorophynaneug/L (ppb)1010210670.13031.3 Dichlorophynaneug/L (ppb)1010210670.1304Dibromochlahomenhaneug/L (ppb)1010210670.13031.3 Dichlorophynaneug/L (ppb)1010210670.13031.3 Dichlorophynaneug/L (ppb)1010210670.13031.4 Dibromochlahomenhaneug/L (ppb)1010410570.13031.4 Dibromochlahomenhaneug/L (ppb)1010110570.130101.4 Dibromochlahomenhaneug/L (ppb)10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1.1.Dishborghaneug/L (ppb)1010910670-13032.2.Dishborgorpaneug/L (ppb)1010710470-1303102.3.Dishborgorpaneug/L (ppb)1010710470-130112.3.Dishborgorpaneug/L (ppb)1010710470-13010102.3.Dishborgorpaneug/L (ppb)1010610670-130001.1.Dishborgorpaneug/L (ppb)1010710570-130001.1.Dishborgorpaneug/L (ppb)1010210470-130201.3.Dishborgorpaneug/L (ppb)1010210170-130211.3.Dishborgorpaneug/L (ppb)1010210170-130211.3.Dishborgorpaneug/L (ppb)1010210868-130611.3.Dishborgorpaneug/L (ppb)1010210868-1306111 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
2.2-Dichloropropaneug/L (opb)1014213264.1487csi-J.2-Dichloropetheneug/L (opb)1010710470.13012-Butanone (MKK)ug/L (opb)1010310470.13011.2-Dichloropethane (DC)ug/L (opb)1010610870.13031.2-Dichloropethane (DC)ug/L (opb)1010610870.13021.1-Dichloropethaneug/L (opb)1010710570.1302Carbon totrachlorideug/L (opb)1010210470.13021.2-Dichloropropaneug/L (opb)1010210470.13021.2-Dichloropropaneug/L (opb)1010210470.1303Brownoitchloromethaneug/L (opb)1010210470.1303Horomonethaneug/L (opb)1010210670.1303Horomonethaneug/L (opb)1010210670.1303L-Si-Dichloropropeneug/L (opb)1010210886.1306us-1.3-Dichloropropeneug/L (opb)1010210670.13010L-Si-Dichloropropeneug/L (opb)1010210670.13010L-Si-Dichloropropeneug/L (opb)1010110570.13010L-Si-Dichloropropeneug/L (opb)1010110570.13010L-Si-Dichloropropeneug/L (opb)<							
cis.1.2.Dichlorosthene up/1. (opb) 10 107 104 70.130 1 2.Butanone (MEK) up/1. (opb) 50 73 88 47.112 19 2.Butanone (MEK) up/1. (opb) 10 106 109 70.130 3 1.1.Frichlorosthane up/1. (opb) 10 107 105 70.130 2 Chroton tetrachloride up/1. (opb) 10 122 125 70.130 2 1.3.Dichlorosthane up/1. (opb) 10 122 104 70.130 1 Promodichlorosthane up/1. (opb) 10 102 101 70.130 1 Promodichlorosthane up/1. (opb) 10 102 106 70.130 3 Aththylas pentanone up/1. (opb) 10 102 105 70.130 3 Tolucne up/1. (opb) 10 102 105 70.130 3 1.3.Dichloropropene up/1. (opb) 10 102 105 70.130 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
2-Batanone (MEK) ug/L (ppb) 50 7.3 88 47-112 19 1.2-Dichlorowethane (MCK) ug/L (ppb) 10 106 109 70-130 0 1.1.1-Trichlorowethane ug/L (ppb) 10 107 105 70-130 0 Carbon tetrachloride ug/L (ppb) 10 125 125 70-130 2 Carbon tetrachloride ug/L (ppb) 10 102 104 70-130 2 Enextene ug/L (ppb) 10 102 106 70-130 3 Libchloromyropathane ug/L (ppb) 10 102 106 70-130 3 Horthoromyropathane ug/L (ppb) 10 97 106 70-130 3 Tolacene ug/L (ppb) 10 102 105 70-130 3 Tolacene ug/L (ppb) 10 102 105 70-130 3 Libchlorowethane ug/L (ppb) 10 107 103 70-130 3							
1.2.Dichlorochtane (BCD) ug/L (ppb) 10 106 109 70-130 3 1.1.Drichloropropene ug/L (ppb) 10 107 105 70-130 2 Carbon tetrachoride ug/L (ppb) 10 107 105 70-130 2 Berzene ug/L (ppb) 10 102 104 70-130 2 Trichlorochene ug/L (ppb) 10 102 104 70-130 1 Berzene ug/L (ppb) 10 102 104 70-130 3 Iz-Dichloropropane ug/L (ppb) 10 102 106 70-130 3 Memodichloropropane ug/L (ppb) 10 97 108 70-130 3 Tolace ug/L (ppb) 10 102 105 70-130 3 Tolace ug/L (ppb) 10 102 106 70-130 3 1.3-Dichlorochane ug/L (ppb) 10 101 70-130 3 1.3 1.3-Dichlorochane ug/L (ppb) 10 101 103 70-130 3	Chloroform	ug/L (ppb)	10	103	104	70-130	1
1,1,1-Trachloroschane ug/L (ppb) 10 109 109 70-130 0 Carbon tetrachloride ug/L (ppb) 10 125 125 70-130 0 Carbon tetrachloride ug/L (ppb) 10 106 108 70-130 2 Trichloroschene ug/L (ppb) 10 102 101 70-130 3 Bromodichloromethane ug/L (ppb) 10 102 106 70-130 3 Bromodichloromethane ug/L (ppb) 10 102 106 70-130 3 Bromodichloromethane ug/L (ppb) 10 102 108 68-130 6 Lab.Choloropropene ug/L (ppb) 10 102 103 70-130 3 Tolace ug/L (ppb) 10 102 105 70-130 3 Taras 1, 3: Dichloropropene ug/L (ppb) 10 102 103 70-130 4 Taras 1, 3: Dichloropropene ug/L (ppb) 10 104 105 70-130 4 Taras 1, 3: Dichloropropene ug/L (ppb) 10 <t< td=""><td>2-Butanone (MEK)</td><td>ug/L (ppb)</td><td>50</td><td>73</td><td>88</td><td>47-112</td><td>19</td></t<>	2-Butanone (MEK)	ug/L (ppb)	50	73	88	47-112	19
1,1-Dichloropropene upT, (pph) 10 107 105 70.130 2 Carbon tetrachloride upT, (pph) 10 106 108 70.130 2 Penzene upT, (pph) 10 102 104 70.130 2 1,2-Dichloropropane upT, (pph) 10 102 101 70.130 4 Bromodichloropropane upT, (pph) 10 102 106 70.130 4 ArMethyl 2-pentance upT, (pph) 10 102 108 86.130 6 Cis.1,3-Dichloropropene upT, (pph) 10 102 105 70.130 3 1,1-2.Trichloropropene upT, (pph) 10 102 105 70.130 3 1,1-2.Trichloropropene upT, (pph) 10 101 70.130 3 3 1,1-2.Trichloropropene upT, (pph) 10 101 105 70.130 3 1,2-Dichloropropene upT, (pph) 10 101 105 70.130 3 1,2-Dichloropropene upT, (pph) 10 101			10				
Carbon tetrachloride upI, (ppb) 10 125 125 70-130 0 Benzzne upI, (ppb) 10 106 108 70-130 2 Trichloroethene upI, (ppb) 10 102 104 70-130 1 Bromodichloromethane upI, (ppb) 10 102 106 70-130 3 4-Methyl-2-pentanone upI, (ppb) 10 97 100 70-130 3 Toluene upI, (ppb) 10 98 103 66-131 5 Toluene upI, (ppb) 10 100 100 70-130 3 1.1.2 Trichloroethane upI, (ppb) 10 100 100 70-130 3 1.3.2 bichloropropene upI, (ppb) 10 101 103 70-130 3 1.4.2 Trichloroethane upI, (ppb) 10 101 105 70-130 4 1.3.2 bichloropropane upI, (ppb) 10 101 105 70-130 3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Benzene upfL (pph) 10 106 108 70.130 2 1,2-Dichloropropane upfL (pph) 10 102 101 70.130 1 Bromodichloropromethane upfL (pph) 10 102 106 70.130 3 Ardehyl-zpentance upfL (pph) 10 102 108 86.130 6 Cis-1,3-Dichloropropene upfL (pph) 10 102 105 70.130 3 1,2-Dichloropropene upfL (pph) 10 102 105 70.130 3 1,2-Dichloropropene upfL (pph) 10 102 105 70.130 3 1,2-Dichloropropane upfL (pph) 10 101 105 70.130 3 1,2-Dichloropropane upfL (pph) 10 101 105 70.130 10 1,2-Dichloropropane upfL (pph) 10 101 105 70.130 10 1,2-Dichloropropane upfL (pph) 10 101 105 70.130 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Trichloroetheneug/L (ppb)1010210470-13021.2.Dichloropropaneug/L (ppb)1010210670-1304Bromodichlaromethaneug/L (ppb)109710070-13034-Methyl-2-pentanoneug/L (ppb)109810366-131510 is -3.Dichloropropeneug/L (ppb)1010210570-1303Trans-1.3-Dichloropropeneug/L (ppb)1010010070-13032.Hexanoneug/L (ppb)109810170-13032.Hexanoneug/L (ppb)109710370-13061.J.2-Dirboropropeneug/L (ppb)1010410570-13011.J.2-Dirboropropeneug/L (ppb)1010110370-13011.J.2-Dirboropropeneug/L (ppb)1010110370-13031.J.2-Dirboropropeneug/L (ppb)1010110370-13031.J.2-Dirboropropeneug/L (ppb)1010110370-13031.J.1.2-Tetrachloroethaneug/L (ppb)1010110370-13031.J.1.2-Tetrachloroethaneug/L (ppb)1010310570-13041.J.1.2-Tetrachloroethaneug/L (ppb)1010310770-13041.J.2-Tetrachloroethaneug/L (ppb)1010310770-13041.J.2-Tetrachloroethaneug/L (ppb) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1,2-Dichloropopane ug/L (pb) 10 102 101 70-130 14 Dibromonchhane ug/L (pb) 10 102 106 70-130 34 Alkehyl-2-pantance ug/L (pb) 10 102 108 68-130 6 cis.1.3-Dichloropropene ug/L (pb) 10 102 105 70-130 3 trans-1.3-Dichloropropene ug/L (pb) 10 100 100 70-130 3 1.1.2-Trichloropropane ug/L (pb) 10 98 101 70-130 3 2-Hexanone ug/L (pb) 10 97 108 70-130 1 1.3-Dichloropropane ug/L (pb) 10 97 103 70-130 1 1.2-Dichloropropane ug/L (pb) 10 101 105 70-130 1 1.2-Dichloropropane ug/L (pb) 10 101 103 70-130 3 1.2-Dichloropropane ug/L (pb) 10 101 103 70-130 3 1.2-Dichloropropane ug/L (pb) 10 103 70-130 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Bromodichloromethaneug/l (ppb)1010210670-13044-Methyl-2-pentanoneug/l (ppb)5010210868-1306cis.1.3.bichloropropeneug/l (ppb)109810369-1315Tolueneug/l (ppb)1010210570-13031.1.2.71rchloroethaneug/l (ppb)109810170-13032.Hexanoneug/l (ppb)109710370-13061.3.bichloropropaneug/l (ppb)10979860-14811.3.bichloropropaneug/l (ppb)10979860-14811.2.birbornoethane (EDB)ug/l (ppb)1010110370-13031.2.birbornoethane (EDB)ug/l (ppb)1010110370-13031.1.1.2.Fetrachloroethaneug/l (ppb)1010110370-13031.3.birborpopaneug/l (ppb)1010110370-13031.3.birborpopaneug/l (ppb)1010110370-13031.3.birborpopaneug/l (ppb)1010110370-13031.3.birborpopaneug/l (ppb)1010210370-13031.3.birborpopaneug/l (ppb)1010370-130331.3.birborpopaneug/l (ppb)1010310770-13031.3.birborpopaneug/l (ppb)1010310770-							
Dibromonchane ug/L (pp) 10 97 100 70.130 3 AMethyl-zpatnanoe ug/L (pp) 10 102 108 68-130 6 cis. 1,3-Dichloropropene ug/L (pp) 10 102 105 70-130 3 trans. 1,3-Dichloropropene ug/L (pp) 10 100 100 70-130 3 2.Hexanone ug/L (pp) 50 100 108 45-138 8 1.3-Dichloropropane ug/L (pp) 10 97 103 70-130 1 1.3-Dichloropropane ug/L (pp) 10 97 98 60-148 1 1.3-Dichloropropane ug/L (pp) 10 101 105 70-130 1 1.3-Dichloropropane ug/L (pp) 10 101 103 70-130 3 1.2-Dichlorophanethane ug/L (pp) 10 107 110 70-130 3 1.2-Dichlorophanethane ug/L (pp) 10 103 70-130 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
d.Methyl-2-pentanone upfL (pph) 50 102 108 68-130 6 cisi-1.3-Dichloropropene upfL (pph) 10 102 105 70-130 3 Transe 1.3-Dichloropropene upfL (pph) 10 102 105 70-130 3 1.1.2-Trichloroethane upfL (pph) 10 98 101 70-130 3 2.Hexanone upfL (pph) 10 97 103 70-130 6 1.3-Dichloropropane upfL (pph) 10 97 98 60-148 1 1.2-Dichloroethane upfL (pph) 10 101 103 70-130 2 Dikromochloromethane (DBD) upfL (pph) 10 101 103 70-130 3 1.1.2-Tetrachloroethane upfL (pph) 10 101 103 70-130 3 1.1.2-Tetrachloroethane upfL (pph) 10 103 106 70-130 3 1.1.2-Tetrachloroethane upfL (pph) 10 103 105 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
cis.1.3-Dichloropropene ug/L (pph) 10 98 103 69-131 5 Tolucne ug/L (pph) 10 100 100 70-130 3 trans.1.3-Dichloropropene ug/L (pph) 10 98 101 70-130 3 2-Hexanone ug/L (pph) 10 98 101 70-130 3 2-Hexanone ug/L (pph) 10 97 103 70-130 1 Dibromochloromethane ug/L (pph) 10 104 105 70-130 4 L2-Dibromochane (EDB) ug/L (pph) 10 101 105 70-130 3 1,1,1.2-Tetrachloroethane ug/L (pph) 10 101 103 70-130 3 1,2-Dibromochane ug/L (pph) 10 107 110 70-130 3 1,1,1.2-Tetrachloroethane ug/L (pph) 10 103 106 70-130 3 1,1,1.2-Tetrachloroethane ug/L (pph) 10 103 107 70-130							
trans-13-Dichloropropene ug/L (pp) 10 100 100 70-130 0 1.1-2-Trichloropropane ug/L (pp) 50 100 108 45-138 8 1.3-Dichloropropane ug/L (pp) 10 97 103 70-130 6 Tetrachloropropane ug/L (pp) 10 104 105 70-130 1 Dibromechloromethane ug/L (pp) 10 104 105 70-130 4 L3-Dibromechloromethane (EDB) ug/L (pp) 10 101 103 70-130 3 1,1,1.2-Tetrachloroethane ug/L (pp) 10 107 110 70-130 3 1,1.1.2-Tetrachloroethane ug/L (pp) 10 107 110 70-130 3 1,1.1.2-Tetrachloroethane ug/L (pp) 10 103 106 70-130 3 1,1.1.2-Tetrachloroethane ug/L (pp) 10 103 105 70-130 3 Styrene ug/L (pp) 10 103 107 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1,12-Trichloroethane ug/L (ppb) 10 98 101 70.130 3 2-Hoxanoe ug/L (ppb) 10 97 103 70.130 6 1.3-Dichloropropane ug/L (ppb) 10 97 103 70.130 6 Tetrachloroethane ug/L (ppb) 10 97 98 60.148 1 1.3-Dichloromethane (BDB) ug/L (ppb) 10 101 105 70.130 4 Chlorobenzene ug/L (ppb) 10 101 103 70.130 2 Ethylbenzene ug/L (ppb) 10 101 103 70.130 3 n.h.1.2-Tetrahkoroethane ug/L (ppb) 10 107 110 70.130 3 o-Kylene ug/L (ppb) 10 102 103 70.130 3 3 styrene ug/L (ppb) 10 103 105 70.130 4 Isopropylbenzene ug/L (ppb) 10 103 107 70.130 4 Bromoform ug/L (ppb) 10 103 107 70.130 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
2-Hexanone ug/L (ppb) 50 100 108 45-138 8 1.3-bichloroperpane ug/L (ppb) 10 97 103 70-130 1 Dibromochloromethane ug/L (ppb) 10 97 98 60-148 1 1.2-bitromochloromethane (EDB) ug/L (ppb) 10 101 103 70-130 4 Chlorobenzene ug/L (ppb) 10 101 103 70-130 3 1,1.2-Tetrachloroethane ug/L (ppb) 10 107 110 70-130 3 n.p-Xylene ug/L (ppb) 10 100 103 70-130 3 c.Xylene ug/L (ppb) 10 102 103 70-130 3 Styrene ug/L (ppb) 10 103 107 70-130 4 Isopropylbenzene ug/L (ppb) 10 103 107 70-130 4 Bromoform ug/L (ppb) 10 103 107 70-130 2							
1,3.Dickhloropropane ug/L (ppb) 10 97 103 70-130 6 Dibromochloromethane ug/L (ppb) 10 104 105 70-130 1 Dibromochloromethane ug/L (ppb) 10 101 105 70-130 4 1,2.Dibromoethane (EDB) ug/L (ppb) 10 101 105 70-130 2 Ethylbenzene ug/L (ppb) 10 107 110 70-130 3 n,1,1.2.Tetrakhoroethane ug/L (ppb) 10 103 70-130 3 n,J.1,2.Tetrakhoroethane ug/L (ppb) 10 103 70-130 3 o-Kylene ug/L (ppb) 10 103 70-130 3 Styrene ug/L (ppb) 10 103 70-130 2 Bromoform ug/L (ppb) 10 88 104 70-130 2 Bromoform ug/L (ppb) 10 103 107 70-130 4 Bromoform ug/L (ppb) 10 103 107 70-130 2 Bromoform ug/L (ppb)<							
Tetrachloroethene ug/L (ppb) 10 104 105 70-130 1 Dibromochloromethane (EDB) ug/L (ppb) 10 101 105 70-130 4 Chlorobenzene ug/L (ppb) 10 101 103 70-130 2 Ethylbenzene ug/L (ppb) 10 101 103 70-130 3 1,1,2-Tetrachloroethane ug/L (ppb) 10 100 103 70-130 3 n,p-Xylene ug/L (ppb) 10 102 103 70-130 6 Isopropylbenzene ug/L (ppb) 10 98 104 70-130 2 Isopropylbenzene ug/L (ppb) 10 103 105 70-130 4 Bromoform ug/L (ppb) 10 103 107 70-130 4 Isopropylbenzene ug/L (ppb) 10 103 107 70-130 2 Isopropylbenzene ug/L (ppb) 10 103 105 70-130 3							
Dibromochloromethane ug/L (pp) 10 97 98 60-148 1 1,2-Dibromoethane (EDB) ug/L (pp) 10 101 105 70-130 4 Chlorobenzene ug/L (pp) 10 101 103 70-130 3 Ethylbenzene ug/L (pp) 10 107 110 70-130 3 n,1,1,2-Ettrachloroothane ug/L (pp) 10 102 103 70-130 3 o.Xylene ug/L (pp) 10 102 103 70-130 6 Isopropylbenzene ug/L (pp) 10 98 104 70-130 2 Bromoform ug/L (pp) 10 103 105 70-130 2 I_3.5-Trimethylbenzene ug/L (pp) 10 103 107 70-130 4 1,2,2-Tetrachloroothane ug/L (pp) 10 101 70-130 4 1,3.5-Trimethylbenzene ug/L (pp) 10 103 107 70-130 4							
1,2-Dibromeehane (EDB) ug/L (ppb) 10 101 105 70-130 4 Chlorobenzene ug/L (ppb) 10 101 103 70-130 3 Ethylbenzene ug/L (ppb) 10 107 110 70-130 3 n.j. 1, 2.7 tetrachloroethane ug/L (ppb) 10 100 103 70-130 3 m.p-Xylene ug/L (ppb) 10 102 103 70-130 6 o-Xylene ug/L (ppb) 10 102 103 70-130 6 Isopropylbenzene ug/L (ppb) 10 103 105 70-130 2 Bromoform ug/L (ppb) 10 103 105 70-130 4 1,3,5-Trimehylbenzene ug/L (ppb) 10 103 107 70-130 4 1,2,3-Trinchloropropane ug/L (ppb) 10 103 105 70-130 2 1,2,3-Trinchloropropane ug/L (ppb) 10 102 105 70-130 2 2.Chlorotoluene ug/L (ppb) 10 102 70-130 <	Dibromochloromethane		10	97	98	60-148	1
Ethylbenzene ug/L (ppb) 10 107 110 70-130 3 1,1,1,2-Tetrachloroethane ug/L (ppb) 20 103 106 70-130 3 o-Xylene ug/L (ppb) 20 103 106 70-130 3 o-Xylene ug/L (ppb) 10 102 103 70-130 16 Isopropylbenzene ug/L (ppb) 10 98 104 70-130 2 Bromoform ug/L (ppb) 10 103 105 70-130 2 Bromobenzene ug/L (ppb) 10 103 107 70-130 4 Bromobenzene ug/L (ppb) 10 103 107 70-130 2 1,1,2.2-Tetrachloroethane ug/L (ppb) 10 103 107 70-130 2 1,3.5-Trimethylbenzene ug/L (ppb) 10 103 107 70-130 4 2-Chlorotoluene ug/L (ppb) 10 103 107 70-130 4 2-A-Trimethylbenzene ug/L (ppb) 10 100 104 70-130	1,2-Dibromoethane (EDB)	ug/L (ppb)	10	101	105	70-130	
1, 1, 2-Tetrachloroethaneug/L (ppb)1010010370-1303m.p. Xyleneug/L (ppb)2010310670-1303o-Xyleneug/L (ppb)1010210370-1301Styreneug/L (ppb)109810470-1306Isopropylbenzeneug/L (ppb)10899269-1383n-Propylbenzeneug/L (ppb)1010310770-1304Bromoformug/L (ppb)1010310770-1304Bromobenzeneug/L (ppb)1010170-1302L,3,5-Trinethylbenzeneug/L (ppb)1010310570-13022-Chlorotolueneug/L (ppb)1010310770-13042-Chlorotolueneug/L (ppb)1010310770-13044-Chlorotolueneug/L (ppb)1010310770-13044-Chlorotolueneug/L (ppb)1010010470-13044-Chlorotolueneug/L (ppb)1010010470-13034-Chlorotolueneug/L (ppb)1010110470-13014-Chlorotolueneug/L (ppb)1010110470-13014-Chlorobenzeneug/L (ppb)1010410470-13011,2,4-Trimethylbenzeneug/L (ppb)1010410470-13011,2,4-Trimethylbenzene	Chlorobenzene	ug/L (ppb)	10	101	103	70-130	
m.p.Żylene ug/L (ppb) 20 103 106 70-130 3 o-Xylene ug/L (ppb) 10 102 103 70-130 1 Styrene ug/L (ppb) 10 98 104 70-130 6 Isopropylbenzene ug/L (ppb) 10 98 92 69-138 3 n-Propylbenzene ug/L (ppb) 10 89 92 69-138 3 n-Propylbenzene ug/L (ppb) 10 96 101 70-130 4 Bromobenzene ug/L (ppb) 10 96 101 70-130 2 1,3,5-Trimethylbenzene ug/L (pbb) 10 103 105 70-130 2 1,2,2-Tetrachloroethane ug/L (pbb) 10 103 105 70-130 4 2-Chlorotoluene ug/L (pbb) 10 100 104 70-130 3 4-Chlorotoluene ug/L (pbb) 10 100 104 70-130 3 se							
o-Xylene ug/L (ppb) 10 102 103 70-130 1 Styrene ug/L (ppb) 10 98 104 70-130 6 Isopropylbenzene ug/L (ppb) 10 98 104 70-130 2 Bromoform ug/L (ppb) 10 89 92 69-138 3 n-Propylbenzene ug/L (ppb) 10 103 107 70-130 4 Bromohornzene ug/L (ppb) 10 101 101 70-130 5 1,3,5-Trimethylbenzene ug/L (ppb) 10 103 107 70-130 2 1,2,3-Trithoropropane ug/L (ppb) 10 103 105 70-130 4 2-Chlorotoluene ug/L (ppb) 10 102 105 70-130 3 4-Chlorotoluene ug/L (ppb) 10 100 104 70-130 2 1,2,4-Trimethylbenzene ug/L (ppb) 10 104 70-130 3 3							
Styreneug/L (ppb)109810470-1306Isopropylbenzeneug/L (ppb)1010310570-1302Bromoformug/L (ppb)10899269-1383n-Propylbenzeneug/L (ppb)1010310770-1304Bromobenzeneug/L (ppb)109610170-13051,3,5-Trimethylbenzeneug/L (ppb)1010110170-13021,2,3-Trichloropethaneug/L (ppb)1010310770-13021,2,3-Trichloropethaneug/L (ppb)1010310770-13042-Chlorotolueneug/L (ppb)1010210570-13042-Chlorotolueneug/L (ppb)1010010270-13021,2,4-Trimethylbenzeneug/L (ppb)1010010270-13021,2,4-Trimethylbenzeneug/L (ppb)1010110470-13021,2,4-Trimethylbenzeneug/L (ppb)1010410570-13011,2-Dichlorobenzeneug/L (ppb)1010410470-13021,3-Dichlorobenzeneug/L (ppb)1010410370-13021,2-Dichlorobenzeneug/L (ppb)1010410470-13021,2-Dichlorobenzeneug/L (ppb)1010410470-13021,2-Dichlorobenzeneug/L (ppb)1010410470-130							
Isopropylbenzene ug/L (ppb) 10 103 105 70-130 2 Bromoform ug/L (ppb) 10 89 92 69-138 3 n-Propylbenzene ug/L (ppb) 10 103 107 70-130 4 Bromobenzene ug/L (ppb) 10 96 101 70-130 5 1,3,5-Trimethylbenzene ug/L (ppb) 10 103 105 70-130 2 1,2,3-Trinchorpopane ug/L (ppb) 10 103 105 70-130 4 2-Chlorotoluene ug/L (ppb) 10 103 105 70-130 4 4-Chlorotoluene ug/L (ppb) 10 103 104 70-130 2 1,2,4-Trimethylbenzene ug/L (ppb) 10 100 104 70-130 2 1,2,4-Trimethylbenzene ug/L (ppb) 10 104 104 70-130 2 1,2,4-Trimethylbenzene ug/L (ppb) 10 104 104 70-130 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
n-Propylbenzene ug/L (ppb) 10 103 107 70-130 4 Bromobenzene ug/L (ppb) 10 96 101 70-130 5 J.3.5-Trinethylbenzene ug/L (ppb) 10 101 101 70-130 0 1,1,2,2-Tetrachloroethane ug/L (ppb) 10 103 105 70-130 2 1,2,3-Trichloropropane ug/L (ppb) 10 103 107 70-130 4 2-Chlorotoluene ug/L (ppb) 10 102 105 70-130 4 4-Chlorotoluene ug/L (ppb) 10 102 105 70-130 4 4-Chlorotoluene ug/L (ppb) 10 100 104 70-130 4 tert-Butylbenzene ug/L (ppb) 10 101 104 70-130 2 1,2,4-Trimethylbenzene ug/L (ppb) 10 104 105 70-130 1 p-Isopropylcholuene ug/L (ppb) 10 104 104 70-130							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
1,3.5-Trimethylbenzeneug/L (ppb)1010110170-13001,1,2,2-Tetrachloroethaneug/L (ppb)1010310570-13041,2,3-Trichloropopaneug/L (ppb)1010310770-13042-Chlorotolueneug/L (ppb)1010210570-13034-Chlorotolueneug/L (ppb)1010010470-13042-Chlorotolueneug/L (ppb)1010010470-13021,2,4-Trimethylbenzeneug/L (ppb)1010110470-1303sec-Butylbenzeneug/L (ppb)1010410570-1301p-Isopropyltolueneug/L (ppb)1010410370-13001,3-Dichlorobenzeneug/L (ppb)1010410370-13021,2-Dichlorobenzeneug/L (ppb)1010410370-13021,2-Dichlorobenzeneug/L (ppb)1010410370-13021,2-Dichlorobenzeneug/L (ppb)1010410370-13021,2-Dichlorobenzeneug/L (ppb)1010310170-13021,2-Dichlorobenzeneug/L (ppb)1010310170-13021,2-Dichlorobenzeneug/L (ppb)101019970-13021,2-Dichlorobenzeneug/L (ppb)101019970-13021,2-Dichlorobenzeneug/L (ppb)10101							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ug/L (ppb)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
4-Chlorotolueneug/L (ppb)1010010470-1304tert-Butylbenzeneug/L (ppb)1010010270-13021,2,4-Trimethylbenzeneug/L (ppb)1010110470-1303sec-Butylbenzeneug/L (ppb)1010410570-1301p-Isopropyltolueneug/L (ppb)1010410370-13001,3-Dichlorobenzeneug/L (ppb)1010410370-13021,4-Dichlorobenzeneug/L (ppb)1010410470-13021,2-Dichlorobenzeneug/L (ppb)1010410470-13021,2-Dichlorobenzeneug/L (ppb)1010410470-13021,2-Dichlorobenzeneug/L (ppb)1010310170-13021,2-Dichlorobenzeneug/L (ppb)1010310170-13021,2-Dichlorobenzeneug/L (ppb)1010310170-13021,2-Dichlorobenzeneug/L (ppb)101019970-13021,2,4-Trichlorobenzeneug/L (ppb)101019970-13021,2-Dichlorobenzeneug/L (ppb)101019970-13021,2,4-Trichlorobenzeneug/L (ppb)10999970-13001,2,4-Trichlorobenzeneug/L (ppb)10999970-13001,2,4-Trichlorobenzeneug/L (ppb)109							
tert-Butylbenzeneug/L (ppb)1010010270-13021,2,4-Trimethylbenzeneug/L (ppb)1010110470-1303sec-Butylbenzeneug/L (ppb)1010410570-1301p-Isopropyltolueneug/L (ppb)1010410470-13001,3-Dichlorobenzeneug/L (ppb)1010410370-13011,4-Dichlorobenzeneug/L (ppb)1010210470-13021,2-Dichlorobenzeneug/L (ppb)1010410470-13001,2-Dichlorobenzeneug/L (ppb)1010310170-13021,2-Dichlorobenzeneug/L (ppb)1010310170-13021,2-Dichlorobenzeneug/L (ppb)101019970-13021,2-Dichlorobenzeneug/L (ppb)101019970-13021,2-Dichlorobenzeneug/L (ppb)101019970-1304Hexachlorobutadieneug/L (ppb)101019770-1304							
see-Butylbenzeneug/L (ppb)1010410570-1301p-Isopropyltolueneug/L (ppb)1010410470-13001,3-Dichlorobenzeneug/L (ppb)1010410370-13021,4-Dichlorobenzeneug/L (ppb)1010210470-13021,2-Dichlorobenzeneug/L (ppb)1010410470-13021,2-Dichlorobenzeneug/L (ppb)1010410470-13021,2-Librono-3-chloropropaneug/L (ppb)101019970-13021,2,4-Trichlorobenzeneug/L (ppb)101019970-13021,2,4-Trichlorobenzeneug/L (ppb)101019770-1304							
sec-Butylbenzene ug/L (ppb) 10 104 105 70-130 1 p-Isopropyltoluene ug/L (ppb) 10 104 104 70-130 0 1,3-Dichlorobenzene ug/L (ppb) 10 104 103 70-130 0 1,4-Dichlorobenzene ug/L (ppb) 10 104 103 70-130 2 1,2-Dichlorobenzene ug/L (ppb) 10 104 104 70-130 2 1,2-Dichlorobenzene ug/L (ppb) 10 104 104 70-130 2 1,2-Dichlorobenzene ug/L (ppb) 10 103 101 70-130 2 1,2-Dibromo-3-chloropropane ug/L (ppb) 10 103 101 70-130 2 1,2,4-Trichlorobenzene ug/L (ppb) 10 101 99 70-130 2 1,2,4-Trichlorobenzene ug/L (ppb) 10 99 99 70-130 0 Naphthalene ug/L (ppb) 10 101 97 70-130 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td>							3
p-Isopropylduene ug/L (ppb) 10 104 104 70-130 0 1,3-Dichlorobenzene ug/L (ppb) 10 104 103 70-130 1 1,4-Dichlorobenzene ug/L (ppb) 10 102 104 70-130 2 1,2-Dichlorobenzene ug/L (ppb) 10 102 104 70-130 0 1,2-Dichlorobenzene ug/L (ppb) 10 104 104 70-130 2 1,2-Dichlorobenzene ug/L (ppb) 10 103 101 70-130 2 1,2-Dichlorobenzene ug/L (ppb) 10 103 101 70-130 2 1,2-Jichrono-3-chloropropane ug/L (ppb) 10 101 99 70-130 2 1,2-Jichronobutadiene ug/L (ppb) 10 99 99 70-130 0 Hexachlorobutadiene ug/L (ppb) 10 101 97 70-130 4			10				1
1,4-Dichlorobenzeneug/L (ppb)1010210470-13021,2-Dichlorobenzeneug/L (ppb)1010410470-13001,2-Dibrono-3-chloropropaneug/L (ppb)1010310170-13021,2,4-Trichlorobenzeneug/L (ppb)101019970-13021,2,4-Trichlorobutadieneug/L (ppb)10999970-1300Naphthaleneug/L (ppb)101019770-1304		ug/L (ppb)					
1,2-Dichlorobenzeneug/L (ppb)1010410470-13001,2-Dibrome-3-chloropropaneug/L (ppb)1010310170-13021,2,4-Trichlorobenzeneug/L (ppb)101019970-1302Hexachlorobutadieneug/L (ppb)10999970-1300Naphthaleneug/L (ppb)101019770-1304							
1,2-Dibromo-3-chloropropane ug/L (ppb) 10 103 101 70-130 2 1,2,4-Trichlorobenzene ug/L (ppb) 10 101 99 70-130 2 Hexachlorobutadiene ug/L (ppb) 10 101 99 70-130 0 Naphthalene ug/L (ppb) 10 101 97 70-130 4							
1,2,4-Trichlorobenzeneug/L (ppb)101019970-1302Hexachlorobutadieneug/L (ppb)10999970-1300Naphthaleneug/L (ppb)101019770-1304							
Hexachlorobutadiene ug/L (ppb) 10 99 99 70-130 0 Naphthalene ug/L (ppb) 10 101 97 70-130 4							
Naphthalene u/L (ppb) 10 101 97 70-130 4							
1,2,5-11CHOFODERZERE Ug/L (PDD) 10 101 97 70-130 4							
	1,2,3-1 richlorobenzene	ug/L (ppb)	10	101	97	70-130	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

TURNAROUND TIME Standard turnaround RUSH_ Rush charges authorized by: Archive samples \bigcirc Other \bigcirc Other \square Archive samples \square Other \square Any \square Added af $Ap_{13}/a1/33$ [1] $\square A/33/33$ [1] $\square A/33/33$ [1]	Received by:	Relinquished by: ANH PHAIN ES &	by: Oncon Angie amen Fi	SIGNATURE PRINT NAME COMPANY			Samples received at 4		Trip Blank O3 A-B Water 2	XXXT X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	FMW-01-122123 01 A-G 12/21 23 1112 Water 7 X X Y	Sample ID Lab ID Sampled Sampled Sampled Sampled Sampled Jars NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID VOCs EPA 8270 PAHs EPA 8270 PCBs EPA 8082	ANALYSES REQUESTED	Phone (425) 295 0600 Email inclusion and allow and thing and Project specific RLs? - Yes / No 777)E TO	12 NW 2045 158 AVE SE 2403-008	FAGILIERA PO # PO #	Report To YUSUL Penlivan
			n Fl				amples received at			×.	X	NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270	ANALYSES REQUES	70	INVOICE TO	2402-003	PO #	en l

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 9, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on December 22, 2023 from the 3245 158th Ave SE 2403-008, F&BI 312425 project. There are 13 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0109R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 22, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 312425 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Farallon Consulting, LLC</u>
312425 -01	SG-04-122123
312425 -02	SG-05-122123

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

%LowerUpperSurrogates:Recovery:Limit:4-Bromofluorobenzene9570Concentration	Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-04-122123 12/22/24 12/21/23 01/04/24 Air ug/m3	Client Projec Lab II Data I Instru Opera	et: D: File: ument:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 312425-01 1/2000 010327.D GCMS8 bat
Compounds: ug/m3	4-Bromofluoroben:	Recovery: zene 95 Concentration	Limit:	Limit:	

APH EC5-8 aliphatics	890,000
APH EC9-12 aliphatics	2,000,000
APH EC9-10 aromatics	<50,000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<970

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-05-122123 12/22/24 12/21/23 01/04/24 Air ug/m3	Lab ID: Data File:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 312425-02 1/39 010326.D GCMS8 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 95	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<25

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 01/03/24 Air ug/m3	Project: Lab ID: Data File: Instrument:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 04-0048 mb 010315.D GCMS8 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 93	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-04-12212 12/22/24 12/21/23 01/04/24 Air ug/m3	3	Clien Projec Lab I Data Instru Opera	ct: D: File: ument:	Farallon Consulting 3245 158th Ave SE 312425-01 1/2000 010327.D GCMS8 bat		
		%	Lower	Upper			
Surrogates:	Recov		Limit:	Limit:			
4-Bromofluorobenz		93	70	130			
			entration				ntration
Compounds:	ug	/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D		100	1 100	1 0 D'			100
Propene		,400	<1,400		chloropropane	<460	<100
Dichlorodifluorome		,000	<400	1,4-Die		<720	<200
Chloromethane F-114		400	<3,600 <600		rimethylpentane	28,000	5,900
		200	<600 <200	Hepta	l methacrylate	<8,200 <8,200	<2,000 <2,000
Vinyl chloride 1,3-Butadiene		<88	<200 <40	-	dichloromethane	<0,200 <130	<2,000 <20
Butane	<9	500	<4,000		oroethene	<210	<20 <40
Bromomethane		800	<4,000 <2,000		-Dichloropropene	<1,800	<400
Chloroethane		300	<2,000		nyl-2-pentanone	<16,000	<4,000
Vinyl bromide			<200		1,3-Dichloropropene	<910	<200
Ethanol			<8,000 jl	Toluer		<15,000	<4,000
Acrolein		230	<100		richloroethane	<110	<20
Pentane	<12		<4,000	2-Hexa		<8,200	<2,000
Trichlorofluoromet		500	<800		hloroethene	<14,000	<2,000
Acetone		500	<4,000		nochloromethane	<170 k	<20 k
2-Propanol		000	<7,000		bromoethane (EDB)	<150	<20
1,1-Dichloroethene		790	<200		benzene	<920	<200
trans-1,2-Dichloroe	thene <	790	<200	Ethylb	enzene	<870	<200
Methylene chloride	<69	,000	<20,000	1,1,2,2	-Tetrachloroethane	<270	<40
t-Butyl alcohol (TB	A) <24	000	<8,000	Nonan	e	<10,000	<2,000
3-Chloropropene	<6	300	<2,000		pylbenzene	<20,000	<4,000
CFC-113		100	<400		rotoluene	<10,000	<2,000
Carbon disulfide	<12		<4,000		benzene	<9,800	<2,000
Methyl t-butyl ethe			<4,000		ltoluene	<9,800	<2,000
Vinyl acetate				m,p-Xy		3,200	750
1,1-Dichloroethane		810	<200	o-Xyle		<870	<200
cis-1,2-Dichloroeth		790	<200	Styren		<1,700	<400
Hexane	<'/	000	<2,000	Bromo		<4,100 k	<400 k
Chloroform		<98	<20		l chloride	<100 k	<20 k
Ethyl acetate		000	<4,000		rimethylbenzene	<9,800	<2,000
Tetrahydrofuran		200	<400		rimethylbenzene	<9,800	<2,000
2-Butanone (MEK)		,000 ~91	<4,000		chlorobenzene	<1,200	<200
1,2-Dichloroethane 1,1,1-Trichloroetha		<81 100	<20 <200		chlorobenzene chlorobenzene	<460 <1,200	<76 <200
Carbon tetrachloric		:630	<200 <100		Trichlorobenzene	<1,200 <1,500	<200 <200
Benzene		.030 :640	<100 <200		halene	<520	<200 <100
Cyclohexane		000	<4,000		hlorobutadiene	<430 k	<40 k
c, oronomune	-11		1,000	iioado		100 K	10 1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:SG-05-12212Date Received:12/22/24Date Collected:12/21/23Date Analyzed:01/04/24Matrix:AirUnits:ug/m3	23	Client: Project Lab ID Data F Instru: Operat	::): 'ile: ment:	Farallon Consulting, I 3245 158th Ave SE 24 312425-02 1/39 010326.D GCMS8 bat		
	%	Lower	Upper			
Surrogates: Reco	very:	Limit:	Limit:			
4-Bromofluorobenzene	93	70	130			
		ntration		_		ntration
Compounds: u	ıg/m3	ppbv	Compo	ounds:	ug/m3	ppbv
Propono	<47	<27	19D;	ahlavanvanana	<9	<1.9
Propene Dichlorodifluoromethane	<47 <39	<7.8	1,2-Di 1,4-Di	chloropropane	<14	<1.9 <3.9
	<140	<7.8 <70		Frimethylpentane	<14 <180	<39
F-114	<82	<10 <12		l methacrylate	<160	<39 <39
	<5.3 j	<12 <2 j	Hepta	•	<160	<39
1,3-Butadiene	<1.7	<0.78	-	dichloromethane	<2.6	<0.39
	<190	<78		oroethene	< <u>4.2</u>	<0.55
	<150	<39		-Dichloropropene	<35	<7.8
	<100	<39		nyl-2-pentanone	<320	<78
Vinyl bromide	<17	<3.9		1,3-Dichloropropene	<18	<3.9
•	290 jl	<160 jl	Toluer		<290	<78
Acrolein	<4.5	<1.9		Trichloroethane	<2.1	< 0.39
	<230	<78	2-Hexa		<160	<39
Trichlorofluoromethane	<88	<16		hloroethene	<260	<39
	<190	<78		nochloromethane	<3.3 k	<0.39 k
	<340	<140		bromoethane (EDB)	-0.0 R <3	<0.39
1,1-Dichloroethene	<15	<3.9		benzene	<18	<3.9
trans-1,2-Dichloroethene	<15	<3.9		oenzene	<17	<3.9
	1,400	<390		2-Tetrachloroethane	<5.4	< 0.78
-	<470	<160	Nonar		<200	<39
	<120	<39		pylbenzene	<380	<78
CFC-113	<60	<7.8		protoluene	<200	<39
	<240	<78		benzene	<190	<39
	<280	<78		vltoluene	<190	<39
	70 ca	<78 ca	m,p-X	ylene	<34	<7.8
1,1-Dichloroethane	<16	<3.9	o-Xyle		<17	<3.9
cis-1,2-Dichloroethene	<15	<3.9	Styrer		<33	<7.8
	<140	<39	Bromo		<81 k	<7.8 k
Chloroform	<1.9	< 0.39	Benzy	l chloride	<2 k	<0.39 k
Ethyl acetate	<280	<78		Frimethylbenzene	<190	<39
Tetrahydrofuran	<23	<7.8	1,2,4-7	Frimethylbenzene	<190	<39
2-Butanone (MEK)	<230	<78	1,3-Di	chlorobenzene	<23	<3.9
1,2-Dichloroethane (EDC)	<1.6	< 0.39		chlorobenzene	<8.9	<1.5
1,1,1-Trichloroethane	<21	<3.9	1,2-Di	chlorobenzene	<23	<3.9
Carbon tetrachloride	<12	<1.9	1,2,4-7	Trichlorobenzene	<29	<3.9
	<6.4 j	<2 j		halene	<2 j	<0.95 j
Cyclohexane	<270	<78	Hexac	hlorobutadiene	<8.3 k	<0.78 k

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:Method IDate Received:Not AppDate Collected:Not AppDate Analyzed:01/03/24Matrix:AirUnits:ug/m3	icable	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	Farallon Consulting 3245 158th Ave SE 2 04-0048 mb 010315.D GCMS8 bat		
	%	Lower	Upper			
Surrogates: F	lecovery:	Limit:	Limit:			
4-Bromofluorobenzene	90	70	130			
	C	, , .			C	, , .
Community day		ntration	0	J		ntration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
Propene	<1.2	< 0.7	1,2-Die	chloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	< 0.99	< 0.2	1,4-Die		< 0.36	< 0.1
Chloromethane	<3.7	<1.8		rimethylpentane	<4.7	<1
F-114	<2.1	< 0.3		l methacrylate	<4.1	<1
Vinyl chloride	<0.13 j	<0.05 j	Hepta	-	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	-	dichloromethane	< 0.067	< 0.01
Butane	<4.8	<2		oroethene	< 0.11	< 0.02
Bromomethane	<3.9	<1	cis-1,3	-Dichloropropene	< 0.91	< 0.2
Chloroethane	<2.6	<1		nyl-2-pentanone	<8.2	<2
Vinyl bromide	< 0.44	< 0.1		1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	<7.5 jl	<4 jl	Toluer		<7.5	<2
Acrolein	< 0.11	< 0.05	1, 1, 2-7	richloroethane	< 0.055	< 0.01
Pentane	<5.9	<2	2-Hexa		<4.1	<1
Trichlorofluoromethane	<2.2	< 0.4	Tetrac	hloroethene	< 6.8	<1
Acetone	<4.8	<2	Dibror	nochloromethane	<0.085 k	<0.01 k
2-Propanol	<8.6	<3.5	1,2-Dil	promoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1		benzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylb	enzene	< 0.43	< 0.1
Methylene chloride	<35	<10		-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonan	e	<5.2	<1
3-Chloropropene	<3.1	<1	Isopro	pylbenzene	<9.8	<2
CFC-113	<1.5	< 0.2		rotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propyl	benzene	<4.9	<1
Methyl t-butyl ether (MTBE)	<7.2	<2	4-Ethy	ltoluene	<4.9	<1
Vinyl acetate	<7 ca	<2 ca	m,p-Xy	ylene	< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xyle	ne	< 0.43	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styren	e	< 0.85	< 0.2
Hexane	<3.5	<1	Bromo		<2.1 k	<0.2 k
Chloroform	< 0.049	< 0.01	Benzy	l chloride	< 0.052 k	<0.01 k
Ethyl acetate	<7.2	<2	1,3,5-1	rimethylbenzene	<4.9	<1
Tetrahydrofuran	< 0.59	< 0.2	1,2,4-1	rimethylbenzene	<4.9	<1
2-Butanone (MEK)	<5.9	<2		chlorobenzene	<0.6	< 0.1
1,2-Dichloroethane (EDC)	< 0.04	< 0.01	,	chlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1		chlorobenzene	<0.6	< 0.1
Carbon tetrachloride	< 0.31	< 0.05		richlorobenzene	< 0.74	< 0.1
Benzene	<0.16 j	<0.05 j		halene	<0.052 j	<0.01 j
Cyclohexane	<6.9	<2	Hexac	hlorobutadiene	<0.21 k	<0.02 k

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/24 Date Received: 12/22/23 Project: 3245 158th Ave SE 2403-008, F&BI 312425

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 401006-01 1/5.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	<390	<390	nm
APH EC9-12 aliphatics	ug/m3	180	190	5
APH EC9-10 aromatics	ug/m3	<130	<130	nm

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	83	70-130
APH EC9-12 aliphatics	ug/m3	67	93	70-130
APH EC9-10 aromatics	ug/m3	67	90	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/24 Date Received: 12/22/23 Project: 3245 158th Ave SE 2403-008, F&BI 312425

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 401006-01 1/5.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	33	37	11
Dichlorodifluoromethane	ug/m3	<5.1	<5.1	nm
Chloromethane	ug/m3	<19	<19	nm
F-114	ug/m3	<11	<11	nm
Vinyl chloride	ug/m3	<1.3	<1.3	nm
1,3-Butadiene	ug/m3	5.8	5.8	0
Butane	ug/m3	<25	25	nm
Bromomethane	ug/m3	<20	<20	nm
Chloroethane	ug/m3	<14	<14	nm
Vinyl bromide	ug/m3	<2.3	<2.3	nm
Ethanol	ug/m3	42	47	11
Acrolein	ug/m3	1.0	1.0	0
Pentane	ug/m3	<31	<31	nm
Trichlorofluoromethane	ug/m3	<12	<12	nm
Acetone	ug/m3	39	40	3
2-Propanol	ug/m3	1,700	1,900	11
1,1-Dichloroethene	ug/m3	<2.1	<2.1	nm
trans-1,2-Dichloroethene	ug/m3	<2.1	<2.1	nm
Methylene chloride	ug/m3	<180	<180	nm
t-Butyl alcohol (TBA)	ug/m3	<63	<63	nm
3-Chloropropene	ug/m3	<16	<16	nm
CFC-113	ug/m3	<8	<8	nm
Carbon disulfide	ug/m3	<32	<32	nm
Methyl t-butyl ether (MTBE)	ug/m3	<37	<37	nm
Vinyl acetate	ug/m3	<37	<37	nm
1,1-Dichloroethane	ug/m3	<2.1	<2.1	nm
cis-1,2-Dichloroethene	ug/m3	<2.1	<2.1	nm
Hexane	ug/m3	<18	<18	nm
Chloroform	ug/m3	$<\!0.25$	< 0.25	nm
Ethyl acetate	ug/m3	<37	<37	nm
Tetrahydrofuran	ug/m3	<3.1	<3.1	nm
2-Butanone (MEK)	ug/m3	<31	<31	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.21	< 0.21	nm
1,1,1-Trichloroethane	ug/m3	<2.8	<2.8	nm
Carbon tetrachloride	ug/m3	<1.6	<1.6	nm
Benzene	ug/m3	7.5	7.4	1
Cyclohexane	ug/m3	<36	<36	nm
1,2-Dichloropropane	ug/m3	<1.2	<1.2	nm
1,4-Dioxane	ug/m3	<1.9	<1.9	nm
2,2,4-Trimethylpentane	ug/m3	<24	<24	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/24 Date Received: 12/22/23 Project: 3245 158th Ave SE 2403-008, F&BI 312425

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 401006-01 1/5.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<21	<21	nm
Heptane	ug/m3	<21	<21	nm
Bromodichloromethane	ug/m3	< 0.35	< 0.35	nm
Trichloroethene	ug/m3	< 0.56	< 0.56	nm
cis-1,3-Dichloropropene	ug/m3	<4.7	<4.7	nm
4-Methyl-2-pentanone	ug/m3	<43	<43	nm
trans-1,3-Dichloropropene	ug/m3	<2.4	<2.4	nm
Toluene	ug/m3	<39	<39	nm
1,1,2-Trichloroethane	ug/m3	< 0.28	< 0.28	nm
2-Hexanone	ug/m3	<21	<21	nm
Tetrachloroethene	ug/m3	<35	<35	nm
Dibromochloromethane	ug/m3	< 0.44	< 0.44	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.4	< 0.4	nm
Chlorobenzene	ug/m3	<2.4	<2.4	nm
Ethylbenzene	ug/m3	<2.3	<2.3	nm
1,1,2,2-Tetrachloroethane	ug/m3	< 0.71	< 0.71	nm
Nonane	ug/m3	<27	<27	nm
Isopropylbenzene	ug/m3	<51	<51	nm
2-Chlorotoluene	ug/m3	$<\!\!27$	<27	nm
Propylbenzene	ug/m3	<26	<26	nm
4-Ethyltoluene	ug/m3	<26	<26	nm
m,p-Xylene	ug/m3	<4.5	<4.5	nm
o-Xylene	ug/m3	<2.3	<2.3	nm
Styrene	ug/m3	<4.4	<4.4	nm
Bromoform	ug/m3	<11	<11	nm
Benzyl chloride	ug/m3	< 0.27	< 0.27	nm
1,3,5-Trimethylbenzene	ug/m3	<26	<26	nm
1,2,4-Trimethylbenzene	ug/m3	<26	<26	nm
1,3-Dichlorobenzene	ug/m3	<3.1	<3.1	nm
1,4-Dichlorobenzene	ug/m3	<1.2	<1.2	nm
1,2-Dichlorobenzene	ug/m3	<3.1	<3.1	nm
1,2,4-Trichlorobenzene	ug/m3	<3.9	<3.9	nm
Naphthalene	ug/m3	<1.4	<1.4	nm
Hexachlorobutadiene	ug/m3	<1.1	<1.1	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/24 Date Received: 12/22/23 Project: 3245 158th Ave SE 2403-008, F&BI 312425

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Co.	ntroi Sample		Percent	
	Poporting	Gnileo	Recovery	Acceptores
Analyte	Reporting Units	Spike Level	LCS	Acceptance Criteria
Propene		23	104	70-130
Dichlorodifluoromethane	ug/m3 ug/m3	$\frac{23}{67}$	$\frac{104}{92}$	70-130
Chloromethane	ug/m3	28	$\frac{92}{103}$	70-130
F-114	ug/m3	$\frac{28}{94}$	103 87	70-130
Vinyl chloride	ug/m3	$\frac{94}{35}$	86	70-130
1,3-Butadiene	0	30 30	80 82	70-130
Butane	ug/m3	$\frac{30}{32}$	82 81	
Bromomethane	ug/m3	$\frac{52}{52}$	95	70-130 70-130
Chloroethane	ug/m3	$\frac{52}{36}$	93 93	
	ug/m3			70-130
Vinyl bromide	ug/m3	59 25	103	70-130
Ethanol	ug/m3	25	31 vo	70-130
Acrolein	ug/m3	31	72	70-130
Pentane	ug/m3	40	94	70-130
Trichlorofluoromethane	ug/m3	76	89 07	70-130
Acetone	ug/m3	32	97 90	70-130
2-Propanol	ug/m3	33	89	70-130
1,1-Dichloroethene	ug/m3	54	93	70-130
trans-1,2-Dichloroethene	ug/m3	54	97 97	70-130
Methylene chloride	ug/m3	94	87	70-130
t-Butyl alcohol (TBA)	ug/m3	41	89	70-130
3-Chloropropene	ug/m3	42	99 92	70-130
CFC-113	ug/m3	100	96 96	70-130
Carbon disulfide	ug/m3	42	89	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	78	70-130
Vinyl acetate	ug/m3	48	65 vo	70-130
1,1-Dichloroethane	ug/m3	55	96	70-130
cis-1,2-Dichloroethene	ug/m3	54	90	70-130
Hexane	ug/m3	48	82	70-130
Chloroform	ug/m3	66	94	70-130
Ethyl acetate	ug/m3	49	121	70-130
Tetrahydrofuran	ug/m3	40	75	70-130
2-Butanone (MEK)	ug/m3	40	84	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	93	70-130
1,1,1-Trichloroethane	ug/m3	74	109	70-130
Carbon tetrachloride	ug/m3	85	121	70-130
Benzene	ug/m3	43	89	70-130
Cyclohexane	ug/m3	46	81	70-130
1,2-Dichloropropane	ug/m3	62	101	70-130
1,4-Dioxane	ug/m3	49	95	70-130
2,2,4-Trimethylpentane	ug/m3	63	95	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/09/24 Date Received: 12/22/23 Project: 3245 158th Ave SE 2403-008, F&BI 312425

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	106	70-130
Heptane	ug/m3	55	95	70-130
Bromodichloromethane	ug/m3	90	122	70-130
Trichloroethene	ug/m3	73	99	70-130
cis-1,3-Dichloropropene	ug/m3	61	107	70-130
4-Methyl-2-pentanone	ug/m3	55	97	70-130
trans-1,3-Dichloropropene	ug/m3	61	119	70-130
Toluene	ug/m3	51	100	70-130
1,1,2-Trichloroethane	ug/m3	74	107	70-130
2-Hexanone	ug/m3	55	86	70-130
Tetrachloroethene	ug/m3	92	111	70-130
Dibromochloromethane	ug/m3	120	137 vo	70-130
1,2-Dibromoethane (EDB)	ug/m3	100	106	70-130
Chlorobenzene	ug/m3	62	111	70-130
Ethylbenzene	ug/m3	59	99	70-130
1,1,2,2-Tetrachloroethane	ug/m3	93	116	70-130
Nonane	ug/m3	71	94	70-130
Isopropylbenzene	ug/m3	66	104	70-130
2-Chlorotoluene	ug/m3	70	110	70-130
Propylbenzene	ug/m3	66	107	70-130
4-Ethyltoluene	ug/m3	66	101	70-130
m,p-Xylene	ug/m3	120	101	70-130
o-Xylene	ug/m3	59	104	70-130
Styrene	ug/m3	58	95	70-130
Bromoform	ug/m3	140	166 vo	70-130
Benzyl chloride	ug/m3	70	150 vo	70-130
1,3,5-Trimethylbenzene	ug/m3	66	105	70-130
1,2,4-Trimethylbenzene	ug/m3	66	101	70-130
1,3-Dichlorobenzene	ug/m3	81	123	70-130
1,4-Dichlorobenzene	ug/m3	81	117	70-130
1,2-Dichlorobenzene	ug/m3	81	118	70-130
1,2,4-Trichlorobenzene	ug/m3	100	123	70-130
Naphthalene	ug/m3	71	103	70-130
Hexachlorobutadiene	ug/m3	140	133 vo	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Fax (206) 283-5044 Received by:	Ph. (206) 285-8282 Relinquished by:	Seattle, WA 98108 Received by:	5500 4th Avenue South Relinquished by:	Friedman & Bruya, Inc.	-12					Contraction of the second seco	50-05-122/23 01 5N 3	56-04-122123 OI SN 9985	Lab Can Sample Name ID I	SAMPLE INFORMATION	Phone (425)295 (1810 Emailing him Of wallen consulting com	City, State, ZIP ISSOUNDA, WA 98027	Address 975 5th Awe NW	Company FUCALIAN	312425 Nuclif Doldinan	
	by:		by: U	SIG							SN 8527		Canister ID		DEMallen	Front				
		land	non	SIGNATURE							HUC	tt b	Flow Cont. ID		consultin					
			ſ	E	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA (SG)	IA (SC)	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)		J.COM	NOTES:	Hec	PROJE	SAMPL	SAMPLE CHAIN OF CUSTODY
			A								2	12/22/23	Date Sampled				3245 158th Ave st	PROJECT NAME & ADDRESS	SAMPLERS (signature)	E CHAII
		An	are	PRI							06-	-30	Initial Vac. ("Hg)				Ame	& AD	ature)	N OF
		ANHPHAN	6	PRINT NAME							£9.61	1416	Field Initial Time				SE	DRESS	Mark D	CUST
		NF	Sman	Æ							51	1	Final Vac. ("Hg)						a	ODY
											1312	CCHI	Field Final Time			IN	2 HC			12
			7				0	-			×	×	TO15 Full Scan	ANAL	P.P	INVOICE TO	2413-008	PO #	- \\	2/22/25
		F8b	arallor	COMPANY	-		Sample						TO15 BTEXN TO15 cVOCs	I SISA'		TO	200			25
		6	lon	ANY			es recai				X	X	APH	REQU			l R	$\overline{\Lambda}$		١
													Helium	ANALYSIS REQUESTED	final r Hold (I	S/ Defaul	ush cha	Standard	Pag TU	l
		12/22/23	12/21/23 1	DATE			red at 19 .00						Notes		final report delivery Hold (Fee may apply):_	SAMPLE DISPOSAL Default:Clean following	Rush charges authorized by:	ard)	Page # of TURNAROUND TIME	
		11:26	1703	TIME									ι Υ			3AL g	ł by:		IME	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

February 12, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on February 6, 2024 from the 3245 158th Ave SE 2403-008, F&BI 402068 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0212R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 6, 2024 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 402068 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
402068 -01	FMW-01-020524
402068 -02	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-01-02 02/06/24 02/07/24 02/07/24 Water ug/L (ppb)	20524	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 402068-01 020717.D GCMS11 MD
Surrogates: 1,2-Dichloroethane Toluene-d8		% Recovery: 98 99	Lower Limit: 78 84 79	Upper Limit: 126 115
4-Bromofluorobenz Compounds:	ene	106 Concentration ug/L (ppb)	72	130
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	<0.02 <1 <1 <5 <1 <1 <1 <1 <0.2 <1 <0.5 3.6		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 02/07/24 02/07/24 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 04-0284 mb 020709.D GCMS11 MD
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane	-d4	113	78	126
Toluene-d8		97	84	115
4-Bromofluorobenz	ene	103	72	130
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride		< 0.02		
Chloroethane		<1		
1,1-Dichloroethene		<1		
Methylene chloride	•	<5		
trans-1,2-Dichloroe	ethene	<1		
1,1-Dichloroethane		<1		
cis-1,2-Dichloroeth	ene	<1		
1,2-Dichloroethane	(EDC)	< 0.2		
1,1,1-Trichloroetha	ne	<1		
Trichloroethene		< 0.5		
Tetrachloroethene		<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/12/24 Date Received: 02/06/24 Project: 3245 158th Ave SE 2403-008, F&BI 402068

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 402068-01 (Matrix Spike)

• · · ·	Reporting	Spike	Sample	Percent Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	10	< 0.02	99	50-150
Chloroethane	ug/L (ppb)	10	<1	96	50 - 150
1,1-Dichloroethene	ug/L (ppb)	10	<1	88	50 - 150
Methylene chloride	ug/L (ppb)	10	<5	91	50 - 150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	94	50 - 150
1,1-Dichloroethane	ug/L (ppb)	10	<1	93	50 - 150
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	94	10-211
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	91	50 - 150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	87	50 - 150
Trichloroethene	ug/L (ppb)	10	< 0.5	88	35 - 149
Tetrachloroethene	ug/L (ppb)	10	3.6	$95 \mathrm{b}$	50 - 150

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Co	noror sampre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	100	99	64-142	1
Chloroethane	ug/L (ppb)	10	97	96	70 - 130	1
1,1-Dichloroethene	ug/L (ppb)	10	90	90	64-140	0
Methylene chloride	ug/L (ppb)	10	97	93	43-134	4
trans-1,2-Dichloroethene	ug/L (ppb)	10	92	95	70 - 130	3
1,1-Dichloroethane	ug/L (ppb)	10	94	94	70 - 130	0
cis-1,2-Dichloroethene	ug/L (ppb)	10	93	93	70-130	0
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	94	93	70 - 130	1
1,1,1-Trichloroethane	ug/L (ppb)	10	89	88	70-130	1
Trichloroethene	ug/L (ppb)	10	93	90	70-130	3
Tetrachloroethene	ug/L (ppb)	10	99	98	70-130	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Rec	Rel	Fn. (200) 289-8282 Rec	ı, Inc.				-				Trip Blank		rmu-01-020524		Sample ID		Phone 425 245 avor Email		te ZIP 975 Ser	Address 975 5th Ara	Company Fainter Con Sulting	Farallan	Report To Yusuf Prhliman	870r0n
Received by:	Relinquished by:	Received by:	inquished by:	SI							OJA-B		OIA-C		Lab ID		ypetilisment tale		Alle Stin IS	· N &	fu:			
		MAN	Relinquished by Mry Wing Mon	SIGNATURE							/\		42161	2/5/21	Date Sampled		Email ypehly when tal allen oursulting . com		I ssequah whyeast					
		N	Nober							e s	1		-	1240	Time Sampled				REMARKS		22	PROJECT NAME	SAMPLE	SAMPLE CHAIN OF CUSTODY
											water			¢	Sample Type		Project specific RLs? - Yes / No		S	i	2245 158th	TNAME	SAMPLERS (signature)	CHAIN
		VIN	Nux - Hanry Ne Ison	PRIN						X	8			3	# of Jars		s? - Ye				Ave		ture) L	OF (
		2	KINCH	PRINT NAME			0	5	C V						NWTPH-Dx		s / N				M N			CSD(
		F	Nais	ME	$\left \right $		Samp		\rightarrow			$\ $	+	_	NWTPH-Gx		0		-	1	7	49à 4		lOD
			or		$\left \right $		0.3		+	<u>`</u>		H	+	_	BTEX EPA 8021 NWTPH-HCID					010	0.74	v .		Y
							recei		f			$ \uparrow$	5	<	HVOCs EPA 8260	ANA		Ha	INVOICE TO		000-5000		1	0
			. "				ved		/	-					PAHs EPA 8270	ANALYSES		9	DICE	C	a	PO #		02/06/24
			TI				at								PCBs EPA 8082	ES R			TO					19(
		17	lalla.	COMPANY			0	/								REQUESTED							V	24
		27	0	PAN			ĉ	/								ESTE	E							32
			Fakillan Cansulting	Y	Π		$\left \right $									D)efau	□ Other	Arc	usu c	RUS	Stan	ЧР	<u> </u>
			t. ay				/	-									lt: D	er	SAMI	marg	H 5	Idard	Page # TURN	
		200	2/5	Dź		/	1			-	AP C						ispos	,	SAMPLE DISPOSAL Archive samples	au	-day	□ Standard turnaround	ARO	
		K	2/5/24	DATE		/					210				Z		e afte)ISP(ZTIOIL	1AT	aroun		•
-		6 I D		I		1					Added at lab AP Od/06/d4				Notes		Default: Dispose after 30 days)SAL	Mush charges authorized by	nd ha	d	Page # of/ TURNAROUND TIME	-
) Leo	2000	TIME	1						lab						days							

1

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

May 7, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the amended results from the testing of material submitted on February 6, 2024 from the 3245 158th Ave SE 2403-008, F&BI 402069 project. Per your request, MA-APH results were reported to the method detection limit.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0216R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

February 16, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on February 6, 2024 from the 3245 158th Ave SE 2403-008, F&BI 402069 project. There are 11 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0216R.DOC

CASE NARRATIVE

This case narrative encompasses samples received on February 6, 2024 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 402069 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
402069 -01	AA-01-020524

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The TO-15 calibration standard did not meet the acceptance criteria for acrolein. The data were flagged accordingly.

The TO-15 calibration standard for several compounds exceeded the acceptance criteria. The compounds were not detected, therefore this did not represent an out of control condition, and were qualified with a "k" qualifier.

All other quality control requirements were acceptable.

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	AA-01-020524 02/06/24 02/05/24 02/13/24 Air ug/m3	Client: Project: Lab ID: Data Fi Instrum Operate	ile: nent:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 402069-01 021317.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 88	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <2.5 j			

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 02/13/24 Air ug/m3	Client: Project Lab ID Data F Instrum Operate	ile: nent:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 04-0304 MB 021312.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 85	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <2.5 j			

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	AA-01-020 02/06/24 02/05/24 02/13/24 Air ug/m3)524	Lab Dat Ins	ent: ject: o ID: ca File: trument: erator:	Farallon Consulting 3245 158th Ave SE 402069-01 021317.D GCMS7 bat		
		%	Lower	Upper			
Surrogates:		covery:	Limit:	Limit:			
4-Bromofluorobenz	ene	92	70	130			
		Conc	entration			Conce	entration
Compounds:		ug/m3	ppbv	Compo	unds:	ug/m3	ppbv
compounds.		ug/mo	ppor	compo	unus.	ug/mo	6621
Propene		<1.2	< 0.7		chloropropane	< 0.23	< 0.05
Dichlorodifluorome	ethane	2.1	0.43	1,4-Dic		< 0.36	< 0.1
Chloromethane		<3.7	<1.8		rimethylpentane	<4.7	<1
F-114		<2.1	< 0.3		l methacrylate	<4.1	<1
Vinyl chloride		< 0.26	< 0.1	Heptar		<4.1	<1
1,3-Butadiene		0.086	0.039		dichloromethane	< 0.067	< 0.01
Butane		<4.8	<2		oroethene	< 0.11	< 0.02
Bromomethane		<3.9	<1		Dichloropropene	< 0.91	< 0.2
Chloroethane		<2.6	<1		nyl-2-pentanone	<8.2	<2
Vinyl bromide		< 0.44	< 0.1		1,3-Dichloropropene	< 0.45	< 0.1
Ethanol		<7.5 k	<4 k	Toluen		<7.5	<2
Acrolein		0.16 ca			richloroethane	< 0.055	< 0.01
Pentane		<5.9	<2	2-Hexa		<4.1	<1
Trichlorofluoromet	hane	<2.2	< 0.4		hloroethene	<6.8	<1
Acetone		<4.8	<2		nochloromethane	< 0.085	< 0.01
2-Propanol		<8.6	<3.5		promoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene		< 0.4	< 0.1		benzene	< 0.46	< 0.1
trans-1,2-Dichloroe		<0.4	< 0.1		enzene	< 0.43	< 0.1
Methylene chloride		<35	<10	1,1,2,2 Nonan	-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TB	A)	<12	<4		-	<5.2	<1
3-Chloropropene CFC-113		<3.1 <1.5	<1 <0.2		pylbenzene rotoluene	<9.8 <5.2	<2 <1
Carbon disulfide		<6.2	<0.2 <2		benzene	< <u>5.2</u> < <u>4.9</u>	<1
Methyl t-butyl ethe	m (MTRF)	<7.2	<2 <2		ltoluene	<4.9	<1
Vinyl acetate	er (mitbl)	<7 k	<2 k	m,p-Xy		<0.87	<0.2
1,1-Dichloroethane		<0.4	<0.1	o-Xylei		<0.43	<0.2
cis-1,2-Dichloroeth		<0.4	<0.1	Styren		<0.45	<0.1
Hexane	ene	<3.5	<1	Bromo		<2.1	< 0.2
Chloroform		0.078	0.016		chloride	<0.052 k	<0.01 k
Ethyl acetate		<7.2	<2		rimethylbenzene	<4.9	<1
Tetrahydrofuran		< 0.59	< 0.2		rimethylbenzene	<4.9	<1
2-Butanone (MEK)		<5.9	<2		chlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane		0.065	0.016		chlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroetha	. ,	< 0.55	< 0.1		chlorobenzene	< 0.6	< 0.1
Carbon tetrachlori		0.41	0.065		richlorobenzene	< 0.74	< 0.1
Benzene		0.51	0.16	Naphtl		0.089 j	0.017 j
Cyclohexane		<6.9	<2		nlorobutadiene	< 0.21	< 0.02

Analysis For Volatile Compounds By Method TO-15

	Date Received: Not Date Collected: Not		Inst	ect:	Farallon Consulting, 3245 158th Ave SE 2 04-0304 MB 021312.D GCMS7 bat																																																																																																																																																										
		0/0	Lower	Unner																																																																																																																																																											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Surrogates:																																																																																																																																																														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	-	70	130																																																																																																																																																											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C	, , .			C																																																																																																																																																									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0			0																																																																																																																																																											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Compounds:	ug/m3	ppbv	Compo	unds:	ug/m3	ppbv																																																																																																																																																								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Propene	<1.2	< 0.7	1,2-Dic	hloropropane	< 0.23	< 0.05																																																																																																																																																								
$\begin{array}{llllllllllllllllllllllllllllllllllll$		e <0.99																																																																																																																																																													
$ \begin{array}{llllllllllllllllllllllllllllllllllll$																																																																																																																																																															
	Vinvl chloride			-	-																																																																																																																																																										
Butane<4.8<2Trichloroethene<0.11<0.02Bromomethane<3.9							< 0.01																																																																																																																																																								
$\begin{array}{llllllllllllllllllllllllllllllllllll$																																																																																																																																																															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bromomethane		<1																																																																																																																																																												
$ \begin{array}{llllllllllllllllllllllllllllllllllll$																																																																																																																																																															
Ethanol $< 7.5 k$ $< 4 k$ Toluene < 7.5 < 2 Acrolein $< 0.11 k$ $< 0.05 k$ $1,1,2$ -Trichloroethane < 0.055 < 0.01 Pentane < 5.9 < 2 2 -Hexanone < 4.1 < 1 Trichlorofluoromethane < 2.2 < 0.4 Tetrachloroethene < 4.8 < 1 Acetone < 4.8 < 2 Dibromochloromethane < 0.085 < 0.01 2-Propanol < 8.6 < 3.5 $1,2$ -Dibromochlaromethane < 0.085 < 0.01 1,1-Dichloroethene < 0.4 < 0.1 Chlorobenzene < 0.46 < 0.1 trans-1,2-Dichloroethene < 0.4 < 0.1 Ethylbenzene < 0.43 < 0.1 Methylene chloride < 35 < 10 $1,1,2,2$ -Tetrachloroethane < 0.43 < 0.1 Methyl alcohol (TBA) < 12 < 4 Nonane < 5.2 < 1 3-Chloropropene < 3.1 < 1 Isopropylbenzene < 9.8 < 2 CFC-113 < 1.5 < 0.2 2 -Chlorotoluene < 5.2 < 1 Carbon disulfide < 6.2 < 2 Propylbenzene < 4.9 < 1 Vinyl acetate $< 7.k$ $< 2 k$ $m,p-Xylene$ < 0.85 < 0.2 1,1-Dichloroethane < 0.4 < 0.1 $< 0.7 k$ $< 2 k$ $< 0.2 k$ $< 0.2 k$ 1,1-Dichloroethane < 0.4 < 0.1 $< 0.7 k$ $< 2 k$ $< 0.2 k$ $< 0.2 k$ $< 0.2 k$ Methyl tether (MTBE) < 7.2 $< 2 k$ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>< 0.1</td>							< 0.1																																																																																																																																																								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					· · · ·																																																																																																																																																										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1.1.2-T	richloroethane		< 0.01																																																																																																																																																								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																																																																																																																																																															
Acetone<4.8<2Dibromochloromethane<0.085<0.012-Propanol<8.6			< 0.4				<1																																																																																																																																																								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																																																																																																																																																															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																																																																																																																																																															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																																																																																																																																																															
Methylene chloride<35<101,1,2,2-Tetrachloroethane<0.14<0.02t-Butyl alcohol (TBA)<12								$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-							$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<1	Isoprop	ovlbenzene		<2	Methyl t-butyl ether (MTBE) <7.2 <2 4 -Ethyltoluene <4.9 <1 Vinyl acetate <7 k <2 km,p-Xylene <0.87 <0.2 1,1-Dichloroethane <0.4 <0.1 o -Xylene <0.43 <0.1 cis-1,2-Dichloroethene <0.4 <0.1 Styrene <0.85 <0.2 Hexane <3.5 <1 Bromoform <2.1 <0.2 Chloroform <0.049 <0.01 Benzyl chloride <0.052 k <0.01 kEthyl acetate <7.2 <2 $1,3,5$ -Trimethylbenzene <4.9 <1 2-Butanone (MEK) <5.9 <2 $1,3$ -Dichlorobenzene <0.6 <0.1 1,2-Dichloroethane <0.55 <0.1 $1,4$ -Dichlorobenzene <0.6 <0.1 1,1,1-Trichloroethane <0.55 <0.1 $1,2$ -Dichlorobenzene <0.6 <0.1 Carbon tetrachloride <0.31 <0.05 $1,2,4$ -Trichlorobenzene <0.74 <0.1 Benzene <0.32 <0.1 Naphthalene <0.073 <0.014			< 0.2					$\begin{array}{llllllllllllllllllllllllllllllllllll$	Carbon disulfide	<6.2	<2	Propyl	benzene	<4.9	<1	Vinyl acetate $<7 k$ $<2 k$ m,p-Xylene <0.87 <0.2 1,1-Dichloroethane <0.4 <0.1 o -Xylene <0.43 <0.1 cis-1,2-Dichloroethene <0.4 <0.1 Styrene <0.85 <0.2 Hexane <3.5 <1 Bromoform <2.1 <0.2 Chloroform <0.049 <0.01 Benzyl chloride $<0.052 k$ $<0.01 k$ Ethyl acetate <7.2 <2 $1,3,5$ -Trimethylbenzene <4.9 <1 2-Butanone (MEK) <5.9 <2 $1,3$ -Dichlorobenzene <0.6 <0.1 1,2-Dichloroethane <0.55 <0.1 $1,2$ -Dichlorobenzene <0.6 <0.1 1,1,1-Trichloroethane <0.55 <0.1 $1,2$ -Dichlorobenzene <0.6 <0.1 Carbon tetrachloride <0.31 <0.05 $1,2,4$ -Trichlorobenzene <0.74 <0.1 Benzene <0.32 <0.1 Naphthalene $<0.073 j$ $<0.014 j$	Methyl t-butyl ether (M	TBE) <7.2	<2			<4.9	<1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<2 k	m,p-Xy	lene	< 0.87	< 0.2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1,1-Dichloroethane	< 0.4	< 0.1			< 0.43	< 0.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cis-1,2-Dichloroethene	< 0.4	< 0.1	Styren	е	< 0.85	< 0.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hexane	<3.5	<1	Bromo	form	<2.1	< 0.2	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Chloroform	< 0.049	< 0.01	Benzyl	chloride	<0.052 k	<0.01 k	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethyl acetate	<7.2	<2	1,3,5-T	rimethylbenzene	<4.9	<1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Tetrahydrofuran	< 0.59	< 0.2	1,2,4 - T	rimethylbenzene	<4.9	<1	1,1,1-Trichloroethane<0.55<0.11,2-Dichlorobenzene<0.6<0.1Carbon tetrachloride<0.31	2-Butanone (MEK)	<5.9	<2	1,3-Dic	hlorobenzene	<0.6	< 0.1	Carbon tetrachloride<0.31<0.051,2,4-Trichlorobenzene<0.74<0.1Benzene<0.32	1,2-Dichloroethane (ED	C) <0.04	< 0.01	1,4-Dic	hlorobenzene	< 0.23	< 0.038	Benzene <0.32 <0.1 Naphthalene <0.073 j <0.014 j			< 0.1					1 0 0	Carbon tetrachloride	< 0.31				< 0.74	< 0.1	Cyclohexane <6.9 <2 Hexachlorobutadiene <0.21 <0.02				-		•			Cyclohexane	<6.9	<2	Hexacl	nlorobutadiene	< 0.21	< 0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																																																																																																																																																															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-																																																																																																																																																														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<1	Isoprop	ovlbenzene		<2																																																																																																																																																								
Methyl t-butyl ether (MTBE) <7.2 <2 4 -Ethyltoluene <4.9 <1 Vinyl acetate <7 k <2 km,p-Xylene <0.87 <0.2 1,1-Dichloroethane <0.4 <0.1 o -Xylene <0.43 <0.1 cis-1,2-Dichloroethene <0.4 <0.1 Styrene <0.85 <0.2 Hexane <3.5 <1 Bromoform <2.1 <0.2 Chloroform <0.049 <0.01 Benzyl chloride <0.052 k <0.01 kEthyl acetate <7.2 <2 $1,3,5$ -Trimethylbenzene <4.9 <1 2-Butanone (MEK) <5.9 <2 $1,3$ -Dichlorobenzene <0.6 <0.1 1,2-Dichloroethane <0.55 <0.1 $1,4$ -Dichlorobenzene <0.6 <0.1 1,1,1-Trichloroethane <0.55 <0.1 $1,2$ -Dichlorobenzene <0.6 <0.1 Carbon tetrachloride <0.31 <0.05 $1,2,4$ -Trichlorobenzene <0.74 <0.1 Benzene <0.32 <0.1 Naphthalene <0.073 <0.014			< 0.2																																																																																																																																																												
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Carbon disulfide	<6.2	<2	Propyl	benzene	<4.9	<1																																																																																																																																																								
Vinyl acetate $<7 k$ $<2 k$ m,p-Xylene <0.87 <0.2 1,1-Dichloroethane <0.4 <0.1 o -Xylene <0.43 <0.1 cis-1,2-Dichloroethene <0.4 <0.1 Styrene <0.85 <0.2 Hexane <3.5 <1 Bromoform <2.1 <0.2 Chloroform <0.049 <0.01 Benzyl chloride $<0.052 k$ $<0.01 k$ Ethyl acetate <7.2 <2 $1,3,5$ -Trimethylbenzene <4.9 <1 2-Butanone (MEK) <5.9 <2 $1,3$ -Dichlorobenzene <0.6 <0.1 1,2-Dichloroethane <0.55 <0.1 $1,2$ -Dichlorobenzene <0.6 <0.1 1,1,1-Trichloroethane <0.55 <0.1 $1,2$ -Dichlorobenzene <0.6 <0.1 Carbon tetrachloride <0.31 <0.05 $1,2,4$ -Trichlorobenzene <0.74 <0.1 Benzene <0.32 <0.1 Naphthalene $<0.073 j$ $<0.014 j$	Methyl t-butyl ether (M	TBE) <7.2	<2			<4.9	<1																																																																																																																																																								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<2 k	m,p-Xy	lene	< 0.87	< 0.2																																																																																																																																																								
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1,1-Dichloroethane	< 0.4	< 0.1			< 0.43	< 0.1																																																																																																																																																								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cis-1,2-Dichloroethene	< 0.4	< 0.1	Styren	е	< 0.85	< 0.2																																																																																																																																																								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hexane	<3.5	<1	Bromo	form	<2.1	< 0.2																																																																																																																																																								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Chloroform	< 0.049	< 0.01	Benzyl	chloride	<0.052 k	<0.01 k																																																																																																																																																								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethyl acetate	<7.2	<2	1,3,5-T	rimethylbenzene	<4.9	<1																																																																																																																																																								
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Tetrahydrofuran	< 0.59	< 0.2	1,2,4 - T	rimethylbenzene	<4.9	<1																																																																																																																																																								
1,1,1-Trichloroethane<0.55<0.11,2-Dichlorobenzene<0.6<0.1Carbon tetrachloride<0.31	2-Butanone (MEK)	<5.9	<2	1,3-Dic	hlorobenzene	<0.6	< 0.1																																																																																																																																																								
Carbon tetrachloride<0.31<0.051,2,4-Trichlorobenzene<0.74<0.1Benzene<0.32	1,2-Dichloroethane (ED	C) <0.04	< 0.01	1,4-Dic	hlorobenzene	< 0.23	< 0.038																																																																																																																																																								
Benzene <0.32 <0.1 Naphthalene <0.073 j <0.014 j			< 0.1																																																																																																																																																												
1 0 0	Carbon tetrachloride	< 0.31				< 0.74	< 0.1																																																																																																																																																								
Cyclohexane <6.9 <2 Hexachlorobutadiene <0.21 <0.02				-		•																																																																																																																																																									
	Cyclohexane	<6.9	<2	Hexacl	nlorobutadiene	< 0.21	< 0.02																																																																																																																																																								

Analysis For Volatile Compounds By Method TO-15

Laboratory Code: 402128-03 1/4.8 (Duplicate)

Analyte	Reporting	Sample	Duplicate	RPD
	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	<360	<360	nm
APH EC9-12 aliphatics	ug/m3	1,300	1,300	0
APH EC9-10 aromatics	ug/m3	<120	<120	nm

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory Con	tion bample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	80	70-130
APH EC9-12 aliphatics	ug/m3	67	101	70-130
APH EC9-10 aromatics	ug/m3	67	87	70-130

Laboratory Code: 402128-03 1/4.8 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<5.8	<5.8	nm
Dichlorodifluoromethane	ug/m3	<4.7	<4.7	nm
Chloromethane	ug/m3	<18	<18	nm
F-114	ug/m3	<10	<10	nm
Vinyl chloride	ug/m3	<1.2	<1.2	nm
1,3-Butadiene	ug/m3	0.31	0.29	7
Butane	ug/m3	<23	<23	nm
Bromomethane	ug/m3	<19	<19	nm
Chloroethane	ug/m3	<13	<13	nm
Vinyl bromide	ug/m3	<2.1	<2.1	nm
Ethanol	ug/m3	150	160	6
Acrolein	ug/m3	1.3	1.1	17
Pentane	ug/m3	<28	<28	nm
Trichlorofluoromethane	ug/m3	<11	<11	nm
Acetone	ug/m3	73	70	4
2-Propanol	ug/m3	3,500	3,500	0
1,1-Dichloroethene	ug/m3	<1.9	<1.9	nm
trans-1,2-Dichloroethene	ug/m3	<1.9	<1.9	nm
Methylene chloride	ug/m3	<170	<170	nm
t-Butyl alcohol (TBA)	ug/m3	$<\!\!58$	<58	nm
3-Chloropropene	ug/m3	<15	<15	nm
CFC-113	ug/m3	<7.4	<7.4	nm
Carbon disulfide	ug/m3	<30	<30	nm
Methyl t-butyl ether (MTBE)	ug/m3	<35	<35	nm
Vinyl acetate	ug/m3	<34	<34	nm
1,1-Dichloroethane	ug/m3	<1.9	<1.9	nm
cis-1,2-Dichloroethene	ug/m3	<1.9	<1.9	nm
Hexane	ug/m3	<17	<17	nm
Chloroform	ug/m3	< 0.23	< 0.23	nm
Ethyl acetate	ug/m3	<35	<35	nm
Tetrahydrofuran	ug/m3	<2.8	<2.8	nm
2-Butanone (MEK)	ug/m3	<28	<28	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.19	< 0.19	nm
1,1,1-Trichloroethane	ug/m3	<2.6	<2.6	nm
Carbon tetrachloride	ug/m3	<1.5	<1.5	nm
Benzene	ug/m3	<1.5	<1.5	nm
Cyclohexane	ug/m3	180	180	0
1,2-Dichloropropane	ug/m3	<1.1	<1.1	nm
1,4-Dioxane	ug/m3	<1.7	<1.7	nm
2,2,4-Trimethylpentane	ug/m3	<22	<22	nm

Laboratory Code: 402128-03 1/4.8 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<20	<20	nm
Heptane	ug/m3	<20	<20	nm
Bromodichloromethane	ug/m3	< 0.32	< 0.32	nm
Trichloroethene	ug/m3	< 0.52	< 0.52	nm
cis-1,3-Dichloropropene	ug/m3	<4.4	<4.4	nm
4-Methyl-2-pentanone	ug/m3	<39	<39	nm
trans-1,3-Dichloropropene	ug/m3	<2.2	<2.2	nm
Toluene	ug/m3	<36	<36	nm
1,1,2-Trichloroethane	ug/m3	< 0.26	< 0.26	nm
2-Hexanone	ug/m3	<20	<20	nm
Tetrachloroethene	ug/m3	<33	<33	nm
Dibromochloromethane	ug/m3	< 0.41	< 0.41	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.37	< 0.37	nm
Chlorobenzene	ug/m3	<2.2	<2.2	nm
Ethylbenzene	ug/m3	3.9	3.8	3
1,1,2,2-Tetrachloroethane	ug/m3	< 0.66	< 0.66	nm
Nonane	ug/m3	<25	<25	nm
Isopropylbenzene	ug/m3	<47	<47	nm
2-Chlorotoluene	ug/m3	$<\!\!25$	<25	nm
Propylbenzene	ug/m3	<24	<24	nm
4-Ethyltoluene	ug/m3	<24	<24	nm
m,p-Xylene	ug/m3	12	11	9
o-Xylene	ug/m3	8.0	7.8	3
Styrene	ug/m3	<4.1	<4.1	nm
Bromoform	ug/m3	<9.9	<9.9	nm
Benzyl chloride	ug/m3	< 0.25	< 0.25	nm
1,3,5-Trimethylbenzene	ug/m3	<24	<24	nm
1,2,4-Trimethylbenzene	ug/m3	<24	<24	nm
1,3-Dichlorobenzene	ug/m3	<2.9	<2.9	nm
1,4-Dichlorobenzene	ug/m3	<1.1	<1.1	nm
1,2-Dichlorobenzene	ug/m3	<2.9	<2.9	nm
1,2,4-Trichlorobenzene	ug/m3	<3.6	<3.6	nm
Naphthalene	ug/m3	2.8	2.0	33 vo
Hexachlorobutadiene	ug/m3	<1	<1	nm

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Co	ontrol Sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Propene	ug/m3	23	87	70-130
Dichlorodifluoromethane	ug/m3	6 7	106	70-130
Chloromethane	ug/m3	28	120	70-130
F-114	ug/m3	2 0 94	116	70-130
Vinyl chloride	ug/m3	35	106	70-130
1,3-Butadiene	ug/m3	30	93	70-130
Butane	ug/m3	32	93	70-130
Bromomethane	ug/m3	52	120	70-130
Chloroethane	ug/m3	36	108	70-130
Vinyl bromide	ug/m3	59	117	70-130
Ethanol	ug/m3	25	89	70-130
Acrolein	ug/m3	31	100	70-130
Pentane	ug/m3	40	93	70-130
Trichlorofluoromethane	ug/m3	76	111	70-130
Acetone	ug/m3	32	105	70-130
2-Propanol	ug/m3	33	100	70-130
1,1-Dichloroethene	ug/m3	54	106	70-130
trans-1,2-Dichloroethene	ug/m3	54	100	70-130
Methylene chloride	ug/m3	94	109	70-130
t-Butyl alcohol (TBA)	ug/m3	41	101	70-130
3-Chloropropene	ug/m3	42	89	70-130
CFC-113	ug/m3	100	111	70-130
Carbon disulfide	ug/m3	42	106	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	97	70-130
Vinyl acetate	ug/m3	48	81	70-130
1,1-Dichloroethane	ug/m3	55	105	70-130
cis-1,2-Dichloroethene	ug/m3	54	100	70-130
Hexane	ug/m3	48	90	70-130
Chloroform	ug/m3	66	107	70-130
Ethyl acetate	ug/m3	49	96	70-130
Tetrahydrofuran	ug/m3	40	95	70-130
2-Butanone (MEK)	ug/m3	40	96	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	106	70-130
1,1,1-Trichloroethane	ug/m3	74	110	70-130
Carbon tetrachloride	ug/m3	85	115	70-130
Benzene	ug/m3	43	96	70-130
Cyclohexane	ug/m3	46	92	70-130
1,2-Dichloropropane	ug/m3	62	110	70-130
1,4-Dioxane	ug/m3	49	106	70-130
2,2,4-Trimethylpentane	ug/m3	63	100	70-130
· · · · · · ·	5			

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory	Control Sample			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	101	70 - 130
Heptane	ug/m3	55	93	70 - 130
Bromodichloromethane	ug/m3	90	116	70 - 130
Trichloroethene	ug/m3	73	112	70 - 130
cis-1,3-Dichloropropene	ug/m3	61	106	70 - 130
4-Methyl-2-pentanone	ug/m3	55	113	70 - 130
trans-1,3-Dichloropropene	ug/m3	61	105	70 - 130
Toluene	ug/m3	51	101	70-130
1,1,2-Trichloroethane	ug/m3	74	119	70-130
2-Hexanone	ug/m3	55	104	70-130
Tetrachloroethene	ug/m3	92	117	70-130
Dibromochloromethane	ug/m3	120	122	70-130
1,2-Dibromoethane (EDB)	ug/m3	100	113	70-130
Chlorobenzene	ug/m3	62	112	70-130
Ethylbenzene	ug/m3	59	97	70-130
1,1,2,2-Tetrachloroethane	ug/m3	93	112	70-130
Nonane	ug/m3	71	102	70-130
Isopropylbenzene	ug/m3	66	105	70 - 130
2-Chlorotoluene	ug/m3	70	107	70 - 130
Propylbenzene	ug/m3	66	108	70 - 130
4-Ethyltoluene	ug/m3	66	104	70 - 130
m,p-Xylene	ug/m3	120	102	70 - 130
o-Xylene	ug/m3	59	105	70-130
Styrene	ug/m3	58	100	70-130
Bromoform	ug/m3	140	122	70-130
Benzyl chloride	ug/m3	70	112	70 - 130
1,3,5-Trimethylbenzene	ug/m3	66	106	70 - 130
1,2,4-Trimethylbenzene	ug/m3	66	99	70 - 130
1,3-Dichlorobenzene	ug/m3	81	116	70 - 130
1,4-Dichlorobenzene	ug/m3	81	113	70 - 130
1,2-Dichlorobenzene	ug/m3	81	116	70 - 130
1,2,4-Trichlorobenzene	ug/m3	100	93	70-130
Naphthalene	ug/m3	71	87	70 - 130
Hexachlorobutadiene	ug/m3	140	111	70 - 130

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

 ${\rm j}$ - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 ${\bf k}-{\bf The}$ calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

 ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

 ${\bf x}$ - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

1102069				SAMPLE CHAIN OF CUSTODY	E CHAI	NOF	CUST	ODY	0	02/06/24	a L	-	l	
Report To Jusuf Petilium	*			SAMPI	SAMPLERS (signature)	nature)]	Pa	Page # of TURNAROUND TIME
Company Farultur Con	Consulting			PROJE	PROJECT NAME & ADDRESS	E & AD)	DRESS			PO#			× Standard RIISH	lard 1
	Nuc Nu			32	3245 158	158th Are	2 5 %		240	2403-008	90		Rush ch	Rush charges authorized by:
City. State. ZIP Issquah wh	wA 9	+2084		NOTES:					IN	INVOICE TO	TO		S	SAMPLE DISPOSAL
Phone <u>UZ5 295 0500</u> Er	nail yze	Email yretium Of scalue consulting com	allur rons +	1.3. C.	- 10 and 10				•	μp			final 1 Hold (final report delivery Hold (Fee may apply):
SAMPLE INFORMATION										ANAL	YSIS	REQI	ANALYSIS REQUESTED	'n
				Ambient Air	2				121 - 1					
Sample Name	Lab	Canister ID	Flow Cont. ID	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Date	Initial Vac.	Field Initial Time	Final Vac.	Field Final Time	TO15 Full S	TO15 BTEX TO15 cVO	APH	Helium	Notes
AA-01-020524	01	37203	05349	(IA) SG	2/5/24		1005.		1815	\times		\times		
				IA / SG										
	/			IA / SG	×									
				IA / SG						6	Sample	los re	1904	ved at 20 °C
				IA / SG.		$\left \right $								
				IA / SG				/					Ĩ.	
				IA / SG									17	
				IA / SG							-			/
Friedman & Bruya, Inc. 5500 4 th Avenue South	Relinqu	Relinquished by:	SIGNATURE	MATURE		PRIN	PRINT NAME	¥ E	~	Fcilia	- COMPANY	ANY		DATE TIME
Seattle, WA 98108	Received by:		N IN	>		01	A S				T Q			
Ph. (206) 285-8282	Relinqu	Relinquished by:												
Fax (206) 283-5044	Received by:	9d by:												
FORMS\COC\COCTO-15.DOC														

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

February 27, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on February 21, 2024 from the 3245 158th Ave SE 2403-008, F&BI 402298 project. There are 40 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0227R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 21, 2024 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 402298 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Farallon Consulting, LLC
402298 -01	FB-04-5.0
402298 -02	FB-04-10.0
402298 -03	FB-04-15.0
402298 -04	FB-04-20.0
402298 -05	FB-05-5.0
402298 -06	FB-05-10.0
402298 -07	FB-05-15.0
402298 -08	FB-05-20.0
402298 -09	FB-06-5.0
402298 -10	FB-06-10.0
402298 -11	FB-06-15.0
402298 -12	FB-06-16.5
402298 -13	FB-06-20.0
402298 -14	FB-07-5.0
402298 -15	FB-07-10.0
402298 -16	FB-07-14.0
402298 -17	FB-07-15.0
402298 -18	FB-07-20.0
402298 -19	FB-08-5.0
402298 -20	FB-08-10.0
402298 -21	FB-08-15.0
402298 -22	FB-08-20.0
402298 -23	FB-09-5.0
402298 -24	FB-09-10.0
402298 -25	FB-09-15.0
402298 -26	FB-09-20.0
402298 -27	FB-10-5.0
402298 -28	FB-10-10.0
402298 -29	FB-10-15.0
402298 -30	FB-10-20.0
402298 -31	FB-11-5.0
402298 -32	FB-11-10.0
402298 -33	FB-11-17.0
402298 -34	FB-11-20.0
402298 -35	SG-07-10.0
402298 -36	SG-08-5.0

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (continued)

<u>Laboratory ID</u>	<u>Farallon Consulting, LLC</u>
402298 -37	SG-09-5.0
402298 -38	SG-10-5.0
402298 -39	SG-11-5.0

The 8260D calibration standard exceeded the acceptance criteria for 1,2,3trichloropropane and carbon tetrachloride. These analytes were not detected in the samples, therefore the data were reported and qualified with a "k" qualifier.

The 8260D matrix spike failed the acceptance criteria for dichlorodifluoromethane. The laboratory control sample passed the acceptance criteria, therefore the data were reported.

The 8260D acetone matrix spike and duplicate precision failed the acceptance criteria. This analyte was not detected in the samples, therefore the data were acceptable.

The 8260D 1,2-dichloroethane-d4 surrogate in sample FB-08-10.0 exceeded the acceptance criteria. No target analytes were detected in this sample, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298 Date Extracted: 02/23/24 Date Analyzed: 02/23/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
FB-04-5.0 402298-01	<5	95
FB-04-10.0 402298-02	<5	101
$\operatorname{FB-05-5.0}_{402298-05}$	<5	99
FB-05-10.0 402298-06	<5	96
FB-06-5.0 402298-09	<5	98
FB-06-10.0 402298-10	<5	92
FB-07-5.0 402298-14	<5	97
FB-07-10.0 402298-15	<5	99
FB-08-5.0 402298-19	<5	94
FB-08-10.0 402298-20	<5	97

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298 Date Extracted: 02/23/24 Date Analyzed: 02/23/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
FB-09-5.0 402298-23	<5	98
FB-09-10.0 402298-24	<5	101
FB-10-5.0 402298-27	<5	97
FB-10-10.0 402298-28	<5	97
$\substack{\textbf{FB-11-5.0}\\ 402298-31}$	<5	98
FB-11-10.0 402298-32	<5	95
$\begin{array}{c} \mathrm{SG} ext{-}07 ext{-}10.0 \\ \mathrm{402298 ext{-}35} \end{array}$	<5	101
$ SG-08-5.0 { 402298-36 } $	<5	94
SG-09-5.0 402298-37	<5	94
$\begin{array}{c} { m SG-10-5.0} \\ { m 402298-38} \end{array}$	<5	97

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298 Date Extracted: 02/23/24 Date Analyzed: 02/23/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
$\begin{array}{c} \text{SG-11-5.0} \\ \scriptscriptstyle 402298-39 \end{array}$	<5	98
Method Blank 04-231 MB	<5	97
Method Blank 04-232 MB	<5	101

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298 Date Extracted: 02/22/24 Date Analyzed: 02/22/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
FB-04-5.0 402298-01	<50	<250	93
FB-04-10.0 402298-02	<50	<250	96
FB-05-5.0 $402298-05$	<50	<250	98
FB-05-10.0 402298-06	<50	<250	95
FB-06-5.0 402298-09	<50	<250	96
FB-06-10.0 402298-10	<50	<250	99
FB-07-5.0 $402298-14$	<50	<250	100
FB-07-10.0 402298-15	<50	<250	97
FB-08-5.0 402298-19	<50	<250	101
FB-08-10.0 402298-20	<50	<250	102

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298 Date Extracted: 02/22/24 Date Analyzed: 02/22/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
FB-09-5.0 402298-23	<50	<250	97
FB-09-10.0 402298-24	<50	<250	93
FB-10-5.0 402298-27	<50	<250	98
FB-10-10.0 402298-28	<50	<250	101
FB-11-5.0 402298-31	<50	<250	101
FB-11-10.0 402298-32	<50	<250	102
SG-07-10.0 402298-35	<50	<250	93
SG-08-5.0 402298-36	<50	<250	100
SG-09-5.0 402298-37	<50	<250	100
$\begin{array}{c} { m SG-10-5.0} \\ { m 402298-38} \end{array}$	<50	<250	104

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298 Date Extracted: 02/22/24 Date Analyzed: 02/22/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
SG-11-5.0 402298-39	<50	<250	104
Method Blank ^{04-381 MB}	<50	<250	95
Method Blank ^{04-382 MB}	<50	<250	99

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-04-5.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 402298-01 022211.D GCMS4 MD	
a .			Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit: 114	
1,2-Dichloroethane Toluene-d8	9-04	$\frac{102}{95}$	$\frac{86}{86}$	$114 \\ 115$	
4-Bromofluorobenz	æne	95 104	80 83	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylbenzene		< 0.05
Acetone		<5	1,1,1,2-Tetrachloroethane		< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xylene		< 0.1
Hexane		< 0.25	o-Xylene	e	< 0.05
Methylene chloride		< 0.5	Styrene		< 0.05
Methyl t-butyl ethe		< 0.05		lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromoform		< 0.05
1,1-Dichloroethane		< 0.05	n-Propylbenzene		< 0.05
2,2-Dichloropropar		< 0.05	Bromobenzene		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	<0.05
2-Butanone (MEK)		<1	1,2,3-1r 2-Chloro	ichloropropane	<0.05
1,2-Dichloroethane 1,1,1-Trichloroetha		<0.05 <0.05	4-Chlore		<0.05 <0.05
1,1-Dichloropropen		<0.05 <0.05		ylbenzene	<0.05
Carbon tetrachlori		<0.05 k		imethylbenzene	<0.05
Benzene	ue	<0.03 K		vlbenzene	< 0.05
Trichloroethene		< 0.02	•	pyltoluene	< 0.05
1,2-Dichloropropar	ie	< 0.05		lorobenzene	< 0.05
Bromodichloromet		< 0.05		lorobenzene	< 0.05
Dibromomethane	liulio	< 0.05	· · ·	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene	-	< 0.05		orobutadiene	< 0.25
trans-1,3-Dichloro	oropene	< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	-	< 0.05		ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-04-10.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppm	.) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 402298-02 022212.D GCMS4 MD	
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	e-d4	103	86	114	
Toluene-d8	, di	99	86	115	
4-Bromofluorobenz	zene	102	83	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane	1	< 0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		<0.05
Acetone 1,1-Dichloroethene		<5 <0.05	1,1,1,2-Tetrachloroethane m,p-Xylene		<0.05 <0.1
Hexane		<0.05	o-Xylene		<0.1
Methylene chloride		<0.5	Styrene		< 0.05
Methyl t-butyl ether (MTBE)		< 0.05	•	vlbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromoform		< 0.05
1,1-Dichloroethane	•	< 0.05	n-Propylbenzene		< 0.05
2,2-Dichloropropan		< 0.05	Bromobenzene		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane 1,1,1-Trichloroetha	. ,	<0.05 <0.05	2-Chloro 4-Chloro		$< 0.05 \\ < 0.05$
1,1-Dichloropropen		<0.05		ylbenzene	<0.05
Carbon tetrachlori		<0.05 k		imethylbenzene	<0.05
Benzene	ue	<0.03		vlbenzene	< 0.05
Trichloroethene		< 0.02		pyltoluene	< 0.05
1,2-Dichloropropan	ne	< 0.05		lorobenzene	< 0.05
Bromodichloromet	hane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorog		<0.05	Naphtha 1 2 2 Tra		<0.05
1,1,2-Trichloroetha 2-Hexanone	une	$< 0.05 \\ < 0.5$	1,2,3-1r	ichlorobenzene	< 0.25
2-mexanone		~0.0			

ENVIRONMENTAL CHEMISTS

	Received: 02/21/24 Extracted: 02/22/24 Analyzed: 02/22/24 x: Soil mg/kg (ppm)) Dry Weight	Project: Lab ID: Data File: Instrument: Operator:	3245 158th Ave SE 24 402298-05 022213.D GCMS4 MD	LLC 403-008
Lower Upper					
Surrogates: % Recovery: Limit: Limit:					
1,2-Dichloroethane-d4 96 86 114					
Toluene-d8 100 86 115 4-Bromofluorobenzene 108 83 116					
4-Bromonuorobenzene 108 85 116	nonuorobenzene	108	00	110	
					Concentration
Compounds: mg/kg (ppm) Compounds: mg/kg (ppm)	ounds:	mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluoromethane <0.5 1,3-Dichloropropane <0.05	orodifluoromethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane <0.5 Tetrachloroethene <0.025	omethane				
Vinyl chloride <0.05 Dibromochloromethane <0.05	chloride	< 0.05	Dibromo	chloromethane	< 0.05
Bromomethane <0.5 1,2-Dibromoethane (EDB) <0.05	omethane	< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane <0.5 Chlorobenzene <0.05	bethane	< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluoromethane <0.5 Ethylbenzene <0.05	orofluoromethane	< 0.5	Ethylber	nzene	< 0.05
Acetone <5 1,1,1,2-Tetrachloroethane <0.05		<5			< 0.05
1,1-Dichloroethene <0.05 m,p-Xylene <0.1	chloroethene				< 0.1
Hexane <0.25 o-Xylene <0.05			-		< 0.05
Methylene chloride <0.5 Styrene <0.05					
Methyl t-butyl ether (MTBE) <0.05 Isopropylbenzene <0.05					
trans-1,2-Dichloroethene <0.05 Bromoform <0.05					
1,1-Dichloroethane <0.05 n-Propylbenzene <0.05					
2,2-Dichloropropane <0.05 Bromobenzene <0.05					
cis-1,2-Dichloroethene <0.05 1,3,5-Trimethylbenzene <0.05					
Chloroform <0.05 1,1,2,2-Tetrachloroethane <0.05					
2-Butanone (MEK) <1 1,2,3-Trichloropropane <0.05					
1,2-Dichloroethane (EDC)<0.052-Chlorotoluene<0.051,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,					
1,1,1-Trichloroethane <0.05 4-Chlorotoluene <0.05					
1,1-Dichloropropene<0.05tert-Butylbenzene<0.05Carbon tetrachloride<0.05 k					
Benzene <0.03 k 1,2,4-1 Hinterhylbenzene <0.05 k 20.05 k 20.05				•	
Denzene<0.03sec-Butynenzene<0.05Trichloroethene<0.02			-		
1,2-Dichloropropane<0.02p-isopropytoidene<0.051,3-Dichlorobenzene<0.05					
Bromodichloromethane <0.05 1,4-Dichlorobenzene <0.05			· · ·		
Dibromomethane <0.05 1,2-Dichlorobenzene <0.05					
4-Methyl-2-pentanone <1 1,2-Dibromo-3-chloropropane <0.5					
cis-1,3-Dichloropropene <0.05 1,2,4-Trichlorobenzene <0.25					
Toluene<0.05Hexachlorobutadiene<0.25					
trans-1,3-Dichloropropene <0.05 Naphthalene <0.05					
1,1,2-Trichloroethane <0.05 1,2,3-Trichlorobenzene <0.25			_		
2-Hexanone <0.5					

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-05-10.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 402298-06 022214.D GCMS4 MD	
Course materia		0/ D	Lower	Upper	
Surrogates: 1,2-Dichloroethane	-d4	% Recovery: 102	Limit: 86	Limit: 114	
Toluene-d8	-44	94	86	114 115	
4-Bromofluorobenz	ene	101	83	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane	1	< 0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		<0.05
Acetone 1,1-Dichloroethene		<5 <0.05	1,1,1,2-1 m,p-Xyle	Tetrachloroethane	<0.05 <0.1
Hexane		<0.05	o-Xylene		<0.1
Methylene chloride		<0.5	Styrene		< 0.05
Methyl t-butyl ether (MTBE)		< 0.05	•	vlbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propylbenzene		< 0.05
2,2-Dichloropropan		< 0.05	Bromobenzene		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane 1,1,1-Trichloroetha		<0.05	2-Chloro 4-Chloro		<0.05
1,1,1-1 richloropropen		<0.05 <0.05		ylbenzene	$< 0.05 \\ < 0.05$
Carbon tetrachlori		<0.05 k		imethylbenzene	<0.05
Benzene	ac	<0.03		vlbenzene	< 0.05
Trichloroethene		< 0.02	•	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05		lorobenzene	< 0.05
Bromodichloromet	hane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop		<0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	ine	<0.05	1,2,3-Tr	ichlorobenzene	<0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-06-5.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 402298-09 022215.D GCMS4 MD	
Course materia		0/ Decomorna	Lower	Upper Limit:	
Surrogates: 1,2-Dichloroethane	-d4	% Recovery: 96	Limit: 86	114	
Toluene-d8	-44	98 98	86	115	
4-Bromofluorobenz	ene	102	83	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		<0.5		omoethane (EDB)	< 0.05
Chloroethane	1	<0.5	Chlorob		< 0.05
Trichlorofluoromet Acetone	nane	<0.5 <5	Ethylbenzene 1,1,1,2-Tetrachloroethane		$< 0.05 \\ < 0.05$
1,1-Dichloroethene		<0.05	m,p-Xylene		<0.05
Hexane		<0.05	o-Xylene		<0.05
Methylene chloride		<0.5	Styrene		< 0.05
Methyl t-butyl ether (MTBE)		< 0.05	•	vlbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane	:	< 0.05	n-Propylbenzene		< 0.05
2,2-Dichloropropan		< 0.05	Bromobenzene		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane 1,1,1-Trichloroetha		<0.05 <0.05	2-Chloro 4-Chloro		$< 0.05 \\ < 0.05$
1,1-Dichloropropen		<0.05 <0.05		ylbenzene	<0.05
Carbon tetrachlorio		<0.05 k		imethylbenzene	<0.05
Benzene	ac	<0.03		vlbenzene	< 0.05
Trichloroethene		< 0.02	•	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05		lorobenzene	< 0.05
Bromodichlorometh	hane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop		<0.05	Naphtha 1 2 2 Ter		<0.05
1,1,2-Trichloroetha 2-Hexanone	ine	<0.05 <0.5	1,2,3-Tr	ichlorobenzene	< 0.25
2-mexamone		~0.0			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-06-10.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 402298-10 022216.D GCMS4 MD	
C .			Lower	Upper	
Surrogates: 1,2-Dichloroethane	- d 4	% Recovery: 106	Limit: 86	Limit: 114	
Toluene-d8	-04	98	86	$114 \\ 115$	
4-Bromofluorobenz	ene	109	83	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane		<0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		< 0.05
Acetone 1,1-Dichloroethene		<5 <0.05		Tetrachloroethane	<0.05 <0.1
Hexane		<0.05	m,p-Xyle o-Xylene		<0.1
Methylene chloride	2	<0.20	Styrene		<0.05
Methyl t-butyl ethe		< 0.05	•	lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropar	ie	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		<0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha 1,1-Dichloropropen		<0.05 <0.05	4-Chloro	ylbenzene	$< 0.05 \\ < 0.05$
Carbon tetrachlori		<0.05 k		imethylbenzene	<0.05
Benzene	ue	<0.03 K		lbenzene	< 0.05
Trichloroethene		<0.08	•	pyltoluene	< 0.05
1,2-Dichloropropar	ie	< 0.05		lorobenzene	< 0.05
Bromodichloromet		< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop		< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	ine	<0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-07-5.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 402298-14 022217.D GCMS4 MD	
C		0/ D	Lower	Upper	
Surrogates: 1,2-Dichloroethane	-d4	% Recovery: 101	Limit: 86	Limit: 114	
Toluene-d8	-44	96	86	114 115	
4-Bromofluorobenz	ene	107	83	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane	1	<0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		<0.05
Acetone 1,1-Dichloroethene		<5 <0.05	1,1,1,2-1 m,p-Xyle	Fetrachloroethane	<0.05 <0.1
Hexane		<0.05	o-Xylene		<0.1
Methylene chloride	2	<0.5	Styrene		< 0.05
Methyl t-butyl ethe		< 0.05	•	vlbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane 1,1,1-Trichloroetha		<0.05 <0.05	2-Chloro 4-Chloro		$< 0.05 \\ < 0.05$
1,1-Dichloropropen		<0.05 <0.05		ylbenzene	<0.05
Carbon tetrachlorio		<0.05 k		imethylbenzene	<0.05
Benzene	ac	<0.03		vlbenzene	< 0.05
Trichloroethene		< 0.02	•	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05		lorobenzene	< 0.05
Bromodichlorometh	hane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		<0.05		orobutadiene	< 0.25
trans-1,3-Dichlorog		<0.05	Naphtha 1 2 2 Tra		<0.05
1,1,2-Trichloroetha 2-Hexanone	me	<0.05 <0.5	1,2,3-1r	ichlorobenzene	< 0.25
2-110Aa110110		~0.0			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-07-10.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppm	h) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 402298-15 022218.D GCMS4 MD	
			Lower	Upper	
Surrogates:	1.	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	e-d4	98	86	114	
Toluene-d8 4-Bromofluorobenz	2010	$94\\107$	$\frac{86}{83}$	$115\\116$	
4-Dromonuorobenz	lene	107	00	110	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene	9	< 0.05
Methylene chloride		< 0.5	Styrene		< 0.05
Methyl t-butyl ethe		< 0.05		vlbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05		lbenzene	< 0.05
2,2 Dichloropropar		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		letrachloroethane	<0.05
2-Butanone (MEK)		<1	1,2,3-1ri 2-Chloro	ichloropropane	<0.05
1,2-Dichloroethane 1,1,1-Trichloroetha		$< 0.05 \\ < 0.05$	4-Chloro		$< 0.05 \\ < 0.05$
1,1-Dichloropropen		<0.05 <0.05		ylbenzene	<0.05
Carbon tetrachlori		<0.05 k		imethylbenzene	<0.05
Benzene	ue	<0.03 K		zlbenzene	< 0.05
Trichloroethene		< 0.02		pyltoluene	< 0.05
1,2-Dichloropropar	ne.	< 0.05		lorobenzene	< 0.05
Bromodichloromet		< 0.05		llorobenzene	< 0.05
Dibromomethane		< 0.05		llorobenzene	< 0.05
4-Methyl-2-pentan	one	<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorog	propene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ine	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-08-5.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 402298-19 022219.D GCMS4 MD	
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	-d4	⁵⁶ Recovery. 101	86 Elimit.	114	
Toluene-d8	ui	93	86	115	
4-Bromofluorobenz	ene	103	83	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		<0.5		omoethane (EDB)	< 0.05
Chloroethane	h	<0.5	Chlorob		<0.05
Trichlorofluoromet Acetone	nane	<0.5 <5	Ethylber	retrachloroethane	$< 0.05 \\ < 0.05$
1,1-Dichloroethene		<0.05	m,p-Xyle		<0.05
Hexane		<0.05	o-Xylene		<0.05
Methylene chloride	9	< 0.5	Styrene	-	< 0.05
Methyl t-butyl ethe		< 0.05	•	lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05		lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-1ri 2-Chloro	ichloropropane	< 0.05 < 0.05
1,2-Dichloroethane 1,1,1-Trichloroetha		<0.05 <0.05	4-Chlore		<0.05
1,1-Dichloropropen		<0.05		ylbenzene	<0.05
Carbon tetrachlorio		<0.05 k		imethylbenzene	< 0.05
Benzene		< 0.03		vlbenzene	< 0.05
Trichloroethene		< 0.02	•	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05		lorobenzene	< 0.05
Bromodichlorometh	hane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		<0.05		orobutadiene	<0.25
trans-1,3-Dichlorop		<0.05	Naphtha 1 2 2 Trai		$< 0.05 \\ < 0.25$
1,1,2-Trichloroetha 2-Hexanone	me	<0.05 <0.5	1,2,3-1r	ichlorobenzene	~ 0.20
2-11CAA110110		~0.0			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-08-10.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 402298-20 022220.D GCMS4 MD	
C .			Lower	Upper	
Surrogates: 1,2-Dichloroethane	d 4	% Recovery: 116 vo	Limit: 86	Limit: 114	
Toluene-d8	9-04	95	86	$114 \\ 115$	
4-Bromofluorobenz	zene	100	83	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane		<0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		< 0.05
Acetone 1,1-Dichloroethene		<5 <0.05		Fetrachloroethane	<0.05 <0.1
Hexane		<0.05 <0.25	m,p-Xyle o-Xylene		<0.1
Methylene chloride	2	<0.5	Styrene		<0.05
Methyl t-butyl ethe		< 0.05	•	lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropar		< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha 1,1-Dichloropropen		<0.05 <0.05	4-Chloro	ylbenzene	<0.05 <0.05
Carbon tetrachlori		<0.05 <0.05 k		imethylbenzene	<0.05
Benzene	ue	<0.03 K		vlbenzene	< 0.05
Trichloroethene		< 0.02	-	pyltoluene	< 0.05
1,2-Dichloropropar	ne	< 0.05		lorobenzene	< 0.05
Bromodichloromet	hane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop		< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	ine	<0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		<0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID:FB-09-5.0Client:Farallon Consulting, LLCDate Received:02/21/24Project:3245 158th Ave SE 2403-0Date Extracted:02/22/24Lab ID:402298-23Date Analyzed:02/22/24Data File:02221.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:MD	08
Lower Upper	
Surrogates: % Recovery: Limit: Limit:	
1,2-Dichloroethane-d4 100 86 114	
Toluene-d8 98 86 115 4-Bromofluorobenzene 109 83 116	
4-Bromonuorobenzene 109 85 116	
	ncentration
Compounds: mg/kg (ppm) Compounds: mg	g/kg (ppm)
Dichlorodifluoromethane <0.5 1,3-Dichloropropane	< 0.05
Chloromethane <0.5 Tetrachloroethene	< 0.025
Vinyl chloride <0.05 Dibromochloromethane	< 0.05
Bromomethane <0.5 1,2-Dibromoethane (EDB)	< 0.05
Chloroethane <0.5 Chlorobenzene	< 0.05
Trichlorofluoromethane <0.5 Ethylbenzene	< 0.05
Acetone <5 1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene <0.05 m,p-Xylene	< 0.1
Hexane <0.25 o-Xylene	< 0.05
Methylene chloride <0.5 Styrene	< 0.05
Methyl t-butyl ether (MTBE) <0.05 Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene <0.05 Bromoform	< 0.05
1,1-Dichloroethane <0.05 n-Propylbenzene	< 0.05
2,2-Dichloropropane <0.05 Bromobenzene	< 0.05
cis-1,2-Dichloroethene <0.05 1,3,5-Trimethylbenzene	< 0.05
Chloroform <0.05 1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK) <1 1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC) <0.05	<0.05
1,1,1-Trichloroethane<0.054-Chlorotoluene1,1-Dichloropropene<0.05	<0.05
1,1-Dichloropropene<0.05tert-ButylbenzeneCarbon tetrachloride<0.05 k	<0.05 <0.05
Benzene <0.03 sec-Butylbenzene	<0.05 <0.05
Derizene<0.03Sec-DutyibenzeneTrichloroethene<0.02	<0.05 <0.05
1,2-Dichloropropane<0.02p-isopropyriordene1,3-Dichlorobenzene	<0.05 <0.05
Bromodichloromethane <0.05 1,4-Dichlorobenzene	<0.05 <0.05
Dibromomethane <0.05 1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone <1 1,2-Dibromo-3-chloropropane	<0.05
cis-1,3-Dichloropropene <0.05 1,2,4-Trichlorobenzene	<0.25
Toluene<0.05Hexachlorobutadiene	<0.25
trans-1,3-Dichloropropene <0.05 Naphthalene	< 0.05
1,1,2-Trichloroethane <0.05 1,2,3-Trichlorobenzene	< 0.25
2-Hexanone <0.5	

ENVIRONMENTAL CHEMISTS

Lower Upper
Surrogates: % Recovery: Limit: Limit:
1,2-Dichloroethane-d410486114Toluene-d89686115
101uene-do50501154-Bromofluorobenzene10083116
Concentration Concentration
Compounds: mg/kg (ppm) Compounds: mg/kg (ppm)
Dichlorodifluoromethane<0.51,3-Dichloropropane<0.05
Chloromethane <0.5 Tetrachloroethene <0.025
Vinyl chloride<0.05Dibromochloromethane<0.05
Bromomethane <0.5 1,2-Dibromoethane (EDB) <0.05
Chloroethane <0.5 Chlorobenzene <0.05
Trichlorofluoromethane <0.5 Ethylbenzene <0.05
Acetone <5 1,1,1,2-Tetrachloroethane <0.05
1,1-Dichloroethene <0.05 m,p-Xylene <0.1
Hexane <0.25 o-Xylene <0.05
Methylene chloride <0.5 Styrene <0.05
Methyl t-butyl ether (MTBE) <0.05 Isopropylbenzene <0.05
trans-1,2-Dichloroethene <0.05 Bromoform <0.05
1,1-Dichloroethane<0.05n-Propylbenzene<0.052,2-Dichloropropane<0.05
2,2-Dichloropropane<0.05Bromobenzene<0.05cis-1,2-Dichloroethene<0.05
Chloroform <0.05 1,1,2,2-Tetrachloroethane <0.05
2-Butanone (MEK) <1 1,2,3-Trichloropropane <0.05
1,2-Dichloroethane (EDC) <0.05 2-Chlorotoluene <0.05
1,1,1-Trichloroethane <0.05 4-Chlorotoluene <0.05
1,1-Dichloropropene <0.05 tert-Butylbenzene <0.05
Carbon tetrachloride <0.05 k 1,2,4-Trimethylbenzene <0.05
Benzene <0.03 sec-Butylbenzene <0.05
Trichloroethene<0.02p-Isopropyltoluene<0.05
1,2-Dichloropropane <0.05 1,3-Dichlorobenzene <0.05
Bromodichloromethane <0.05 1,4-Dichlorobenzene <0.05
Dibromomethane<0.051,2-Dichlorobenzene<0.054-Methyl-2-pentanone<1
4-Methyl-2-pentanone<11,2-Dibromo-3-chloropropane<0.5cis-1,3-Dichloropropene<0.05
Cis-1,3-Dicinoroproperie<0.051,2,4-Tricinorobenzene<0.25Toluene<0.05
trans-1,3-Dichloropropene <0.05 Naphthalene <0.05
1,1,2-Trichloroethane <0.05 1,2,3-Trichlorobenzene <0.25
2-Hexanone <0.5

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-10-5.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 402298-27 022222.D GCMS4 MD	
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	e-d4	107	86	114	
Toluene-d8		97	86	115	
4-Bromofluorobenz	zene	112	83	116	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber		< 0.05
Acetone		<5		Tetrachloroethane	< 0.05
1,1-Dichloroethene	•	< 0.05	m,p-Xyle		< 0.1
Hexane		<0.25	o-Xylene	9	< 0.05
Methylene chloride Methyl t-butyl ethe		<0.5 <0.05	Styrene	lbenzene	$< 0.05 \\ < 0.05$
trans-1,2-Dichloroe		<0.05 <0.05	Bromofo		<0.05
1,1-Dichloroethane		<0.05		lbenzene	< 0.05
2,2-Dichloropropar		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth		< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK))	<1	1,2,3-Tr	ichloropropane	< 0.05
1,2-Dichloroethane		< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlori	de	<0.05 k		imethylbenzene	< 0.05
Benzene		< 0.03	•	vlbenzene	<0.05
Trichloroethene 1,2-Dichloropropar		<0.02 <0.05		pyltoluene lorobenzene	<0.05 <0.05
Bromodichloromet		<0.05 <0.05		lorobenzene	<0.05
Dibromomethane	liane	<0.05		lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1		omo-3-chloropropane	<0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene	•	< 0.05	, ,	orobutadiene	< 0.25
trans-1,3-Dichlorop	propene	< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha		< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-10-10.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 402298-28 022223.D GCMS4 MD	
a			Lower	Upper	
Surrogates:	-] 4	% Recovery:	Limit:	Limit: 114	
1,2-Dichloroethane Toluene-d8	-04	$\frac{102}{99}$	$\frac{86}{86}$	$114 \\ 115$	
4-Bromofluorobenz	ene	101	83	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		< 0.05
Acetone		<5		Tetrachloroethane	< 0.05
1,1-Dichloroethene Hexane		<0.05 <0.25	m,p-Xyle o-Xylene		<0.1 <0.05
Methylene chloride		<0.25	Styrene		< 0.05
Methyl t-butyl ether (MTBE)		<0.05		vlbenzene	<0.05
trans-1,2-Dichloroethene		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propylbenzene		< 0.05
2,2-Dichloropropan		< 0.05	Bromobenzene		< 0.05
cis-1,2-Dichloroeth		< 0.05	1,3,5-Tri	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen Carbon tetrachlorid		< 0.05		ylbenzene	< 0.05
Benzene	ae	<0.05 k <0.03		imethylbenzene vlbenzene	< 0.05 < 0.05
Trichloroethene		<0.03		pyltoluene	<0.05
1,2-Dichloropropan		<0.02		lorobenzene	<0.05
Bromodichlorometh		<0.05		lorobenzene	< 0.05
Dibromomethane	liano	< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	-	< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	ine	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-11-5.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 402298-31 022224.D GCMS4 MD	
C .		0/ D	Lower	Upper	
Surrogates: 1,2-Dichloroethane	-d4	% Recovery: 102	Limit: 86	Limit: 114	
Toluene-d8	-44	95	86	114 115	
4-Bromofluorobenz	ene	107	83	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		<0.5		omoethane (EDB)	< 0.05
Chloroethane	1	<0.5	Chlorobe		<0.05
Trichlorofluoromet Acetone	nane	<0.5 <5	Ethylber	retrachloroethane	<0.05 <0.05
1,1-Dichloroethene		<0.05	m,p-Xyle		<0.05
Hexane		<0.05	o-Xylene		< 0.05
Methylene chloride	9	< 0.5	Styrene	-	< 0.05
Methyl t-butyl ethe		< 0.05	•	lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05		lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK) 1,2-Dichloroethane		<1 <0.05	1,2,3-1ri 2-Chloro	ichloropropane	$< 0.05 \\ < 0.05$
1,1,1-Trichloroetha	· /	<0.05 <0.05	4-Chlore		<0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorio		<0.05 k		imethylbenzene	< 0.05
Benzene		< 0.03		vlbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	hane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	<0.05		ichlorobenzene	<0.25
Toluene		<0.05		orobutadiene	<0.25
trans-1,3-Dichlorog 1,1,2-Trichloroetha		<0.05 <0.05	Naphtha 1 2 3 Tri	ichlorobenzene	$< 0.05 \\ < 0.25$
2-Hexanone	ine .	< 0.05	1,2,0-11	iennoi openzene	~0.20
		~0.0			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FB-11-10.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 402298-32 022225.D GCMS4 MD	
a .			Lower	Upper	
Surrogates:	-1.4	% Recovery:	Limit:	Limit: 114	
1,2-Dichloroethane Toluene-d8	-04	$\frac{107}{94}$	86 86	$114 \\ 115$	
4-Bromofluorobenz	ene	103	83	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		< 0.05
Acetone		<5		Tetrachloroethane	< 0.05
1,1-Dichloroethene Hexane		<0.05 <0.25	m,p-Xyle o-Xylene		<0.1 <0.05
Methylene chloride		<0.25	Styrene	÷	<0.05
Methyl t-butyl ether (MTBE)		<0.05		vlbenzene	<0.05
trans-1,2-Dichloroethene		< 0.05	Bromoform		< 0.05
1,1-Dichloroethane		< 0.05	n-Propylbenzene		< 0.05
2,2-Dichloropropan		< 0.05	Bromobenzene		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tri	imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen Carbon tetrachlorid		< 0.05		ylbenzene	<0.05
Benzene	ae	<0.05 k <0.03		imethylbenzene vlbenzene	$< 0.05 \\ < 0.05$
Trichloroethene		<0.03		pyltoluene	<0.05
1,2-Dichloropropan		<0.02		lorobenzene	<0.05
Bromodichlorometh		<0.05		lorobenzene	< 0.05
Dibromomethane	liano	< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	propene	< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SG-07-10.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 402298-35 022226.D GCMS4 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 104 100 105	Lower Limit: 86 86 83	Upper Limit: 114 115 116
Compounds:		Concentration mg/kg (ppm)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		<0.03 <0.05 <0.05 <0.1 <0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SG-08-5.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 402298-36 022227.D GCMS4 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 108 102 109	Lower Limit: 86 86 83	Upper Limit: 114 115 116
Compounds:		Concentration mg/kg (ppm)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		<0.03 <0.05 <0.05 <0.1 <0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SG-09-5.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 402298-37 022228.D GCMS4 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 97 95 102	Lower Limit: 86 86 83	Upper Limit: 114 115 116
Compounds:		Concentration mg/kg (ppm)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		<0.03 <0.05 <0.05 <0.1 <0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SG-10-5.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 402298-38 022229.D GCMS4 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 109 98 108	Lower Limit: 86 86 83	Upper Limit: 114 115 116
Compounds:		Concentration mg/kg (ppm)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		<0.03 <0.05 <0.05 <0.1 <0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SG-11-5.0 02/21/24 02/22/24 02/22/24 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 3245 158th Ave SE 2403-008 402298-39 022211.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 103 98 105	Lower Limit: 84 73 57	Upper Limit: 120 128 146
Compounds:		Concentration mg/kg (ppm)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		<0.03 <0.05 <0.05 <0.1 <0.05		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bl Not Applic 02/22/24 02/22/24 Soil mg/kg (ppr		Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 04-0448 mb 022206.D GCMS4 MD	
~			Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	e-d4	107	86	114	
Toluene-d8 4-Bromofluorobenz		$\begin{array}{c} 97 \\ 105 \end{array}$	$\frac{86}{83}$	$115\\116$	
4-Dromonuorobenz	ene	105	00	110	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1.3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene	< 0.05	
Methylene chloride		< 0.5	Styrene	< 0.05	
Methyl t-butyl ethe		< 0.05	Isopropy	< 0.05	
trans-1,2-Dichloroe		< 0.05	Bromofo	< 0.05	
1,1-Dichloroethane		< 0.05		lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane 1,1,1-Trichloroetha		<0.05 <0.05	2-Chloro 4-Chloro		$< 0.05 \\ < 0.05$
1,1-Dichloropropen		< 0.05		ylbenzene	<0.05
Carbon tetrachlorio		<0.05 k		imethylbenzene	<0.05
Benzene	ue	<0.03 K		vlbenzene	<0.05
Trichloroethene		<0.02		pyltoluene	< 0.05
1,2-Dichloropropan	le	< 0.05		lorobenzene	< 0.05
Bromodichlorometl		< 0.05		lorobenzene	< 0.05
Dibromomethane	liulio	< 0.05	,	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene	-	< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorog	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ine	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applic 02/22/24 02/22/24 Soil mg/kg (ppr		Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 04-0457 mb 022209.D GCMS11 MD	
C .		07 D	Lower	Upper	
Surrogates: 1,2-Dichloroethane	d4	% Recovery: 100	Limit: 79	Limit: 128	
Toluene-d8	-04	100	79 84	128 121	
4-Bromofluorobenz	ene	102	84	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber		< 0.05
Acetone		<5 k		Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle		< 0.1
Hexane		< 0.25	o-Xylene	e	< 0.05
Methylene chloride		< 0.5	Styrene	< 0.05	
Methyl t-butyl ethe		< 0.05	Isopropy	< 0.05	
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05		lbenzene	< 0.05
2,2-Dichloropropan		<0.05 k	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	<0.05
1,2-Dichloroethane	· /	< 0.05	2-Chloro 4-Chloro		<0.05
1,1,1-Trichloroetha 1,1-Dichloropropen		<0.05 <0.05		ylbenzene	<0.05 <0.05
Carbon tetrachlorio		<0.05		imethylbenzene	<0.05
Benzene	le	<0.03		lbenzene	<0.05
Trichloroethene		<0.03	•	pyltoluene	< 0.05
1,2-Dichloropropan		< 0.02		lorobenzene	< 0.05
Bromodichlorometh		< 0.05		lorobenzene	< 0.05
Dibromomethane	lane	<0.05		lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1		omo-3-chloropropane	<0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	<0.25
Toluene	P 0110	< 0.05		orobutadiene	<0.25
trans-1,3-Dichlorop	propene	< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	-	< 0.05	-	ichlorobenzene	<0.25
2-Hexanone		< 0.5	, ,		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 402298-01 (Duplicate)									
		Samp	le D	uplicate					
	Reporting	Resu	lt	Result	RPD				
Analyte	Units	(Wet V	Vt) (V	Wet Wt)	(Limit 20)				
Gasoline	mg/kg (ppm)	<5	<5 <5		nm				
Laboratory Code: La	aboratory Contro	ol Sample	e Percent						
	Reporting	Spike	Recovery						
Analyte	Units	Level	LCS	Criteria	_				
Gasoline	mg/kg (ppm)	40	90	70-130	_				

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 40	Code: 402298-02 (Duplicate)								
		Samp	le Di	uplicate					
	Reporting	Resu	lt 1	Result	RPD				
Analyte	Units	(Wet V	Vt) (V	Vet Wt)	(Limit 20)				
Gasoline	mg/kg (ppm)	<5		<5	nm				
Laboratory Code: La	aboratory Contro	l Sample							
	_		Percent						
	Reporting	Spike	Recovery	Acceptance					
Analyte	Units	Level	LCS	Criteria	_				
Gasoline	mg/kg (ppm)	40	95	70-130					

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 40	02300-01 (Matri	x Spike)					
Analyte	Reporting Units	Spike Level	(Wet wt) Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	116	118	53 - 141	2
Laboratory Code: L	aboratory Contr	ol Sampl	e Percent				
	Reporting	Spike	Recovery	y Accepta	ance		
Analyte	Units	Level	LCS	Criter	ria		
Diesel Extended	mg/kg (ppm)	5,000	108	71-12	26		

34

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 4	02298-01 (Matrix	x Spike)		_	_		
Analyte	Reporting Units	Spike Level	(Wet wt) Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	112	118	53 - 141	5
Laboratory Code: L	aboratory Contr	ol Sampl	e Percent				
	Reporting	Spike	Recovery	y Accepta	ance		
Analyte	Units	Level	LCS	Crite	ria		
Diesel Extended	mg/kg (ppm)	5,000	114	71-12	26		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 402298-24 (Matrix Spike)

Laboratory Code:	402298-24 (Matrix Spike)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	<0.5	54	54	10-142	0
Chloromethane	mg/kg (ppm)	2	< 0.5	69	70	10-126	1
Vinyl chloride	mg/kg (ppm)	2	< 0.05	72	67	10-138	7
Bromomethane	mg/kg (ppm)	2	< 0.5	65	58	10-163	11
Chloroethane	mg/kg (ppm)	2	< 0.5	78	66	10-176	17
Trichlorofluoromethane	mg/kg (ppm)	2	< 0.5	91	88	10-176	3
Acetone	mg/kg (ppm)	10	<5	60	86	10-163	36 vo
1,1-Dichloroethene	mg/kg (ppm)	2	< 0.05	82	78	10-160	5
Hexane	mg/kg (ppm)	2	< 0.25	86	83	10-137	4
Methylene chloride	mg/kg (ppm)	2	< 0.5	80	80	10-156	0
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2 2	< 0.05	77	77	21-145	0
trans-1,2-Dichloroethene 1,1-Dichloroethane	mg/kg (ppm)	2	<0.05 <0.05	80 80	78 78	14-137 19-140	3
2,2-Dichloropropane	mg/kg (ppm)	2	<0.05	80 89	78 81	19-140	3
cis-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2	<0.05	89 81	80	25-135	9 1
Chloroform	mg/kg (ppm)	2	<0.05	81 79	80 78	21-145	1
2-Butanone (MEK)	mg/kg (ppm)	10	<0.05	69	77	19-147	11
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	<0.05	84	80	12-160	5
1,1,1-Trichloroethane	mg/kg (ppm)	2	< 0.05	85	82	10-156	4
1,1-Dichloropropene	mg/kg (ppm)	2	< 0.05	84	84	17-140	0
Carbon tetrachloride	mg/kg (ppm)	2	< 0.05	103	97	9-164	6
Benzene	mg/kg (ppm)	2	< 0.03	82	79	29-129	4
Trichloroethene	mg/kg (ppm)	2	< 0.02	80	79	21-139	1
1,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	81	81	30-135	0
Bromodichloromethane	mg/kg (ppm)	2	< 0.05	82	81	23 - 155	1
Dibromomethane	mg/kg (ppm)	2	< 0.05	83	81	23 - 145	2
4-Methyl-2-pentanone	mg/kg (ppm)	10	<1	82	79	24 - 155	4
cis-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	84	80	28-144	5
Toluene	mg/kg (ppm)	2	< 0.05	80	83	35-130	4
trans-1,3-Dichloropropene	mg/kg (ppm)	$\frac{2}{2}$	< 0.05	84	84	26-149	$0 \\ 2$
1,1,2-Trichloroethane	mg/kg (ppm)	2 10	< 0.05	79 65	81 73	10-205	2 12
2-Hexanone 1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2	<0.5 <0.05	65 84	73 84	15-166 31-137	12
Tetrachloroethene	mg/kg (ppm)	2	<0.05	83	84 82	20-133	1
Dibromochloromethane	mg/kg (ppm)	2	<0.025	78	74	28-150	5
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	<0.05	79	82	28-142	4
Chlorobenzene	mg/kg (ppm)	2	< 0.05	83	82	32-129	1
Ethylbenzene	mg/kg (ppm)	2	< 0.05	85	84	32-137	1
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	83	84	31-143	1
m,p-Xylene	mg/kg (ppm)	4	< 0.1	85	85	34-136	0
o-Xylene	mg/kg (ppm)	2	< 0.05	78	80	33-134	3
Styrene	mg/kg (ppm)	2	< 0.05	83	84	35-137	1
Isopropylbenzene	mg/kg (ppm)	2	< 0.05	85	84	31-142	1
Bromoform	mg/kg (ppm)	2	< 0.05	74	75	21-156	1
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	85	86	23-146	1
Bromobenzene	mg/kg (ppm)	2 2	< 0.05	86	87	34-130	1
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	84	86	18-149	$\frac{2}{2}$
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm)	2	<0.05 <0.05	84 83	86 83	28-140 25-144	2
2-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	2	<0.05	82	85	25-144 31-134	4
4-Chlorotoluene	mg/kg (ppm)	2	<0.05	83	82	31-134	4
tert-Butylbenzene	mg/kg (ppm)	2	<0.05	84	86	30-137	2
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	<0.05	85	85	10-182	0
sec-Butylbenzene	mg/kg (ppm)	2	< 0.05	85	88	23-145	3
p-Isopropyltoluene	mg/kg (ppm)	2	< 0.05	89	88	21-149	1
1,3-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	83	85	30-131	2
1,4-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	82	83	29-129	1
1,2-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	86	85	31-132	1
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	< 0.5	80	83	11-161	4
1,2,4 Trichlorobenzene	mg/kg (ppm)	2	< 0.25	87	89	22-142	2
Hexachlorobutadiene	mg/kg (ppm)	2	< 0.25	83	88	10-142	6
Naphthalene	mg/kg (ppm)	2	< 0.05	85	87	14 - 157	2
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	86	87	20-144	1

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

		a .1	Percent	. .
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2	59	10-146
Chloromethane	mg/kg (ppm)	2	71	27-133
Vinyl chloride	mg/kg (ppm)	2	75	22-139
Bromomethane	mg/kg (ppm)	2	68	10-201
Chloroethane	mg/kg (ppm)	$\frac{2}{2}$	68	10-163
Trichlorofluoromethane	mg/kg (ppm) mg/kg (ppm)	2 10	93 70	$10-196 \\ 52-141$
1,1-Dichloroethene	mg/kg (ppm)	2	82	47-128
Hexane	mg/kg (ppm)	2	83	43-142
Methylene chloride	mg/kg (ppm)	2	83	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	83	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2	82	64-132
1,1-Dichloroethane	mg/kg (ppm)	2	84	64 - 135
2,2-Dichloropropane	mg/kg (ppm)	2	87	52 - 170
cis-1,2-Dichloroethene	mg/kg (ppm)	2	82	64-135
Chloroform	mg/kg (ppm)	2	82	61-139
2-Butanone (MEK)	mg/kg (ppm)	10	79	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	86	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2	86	62-131
1,1-Dichloropropene	mg/kg (ppm)	2	84	64-136
Carbon tetrachloride	mg/kg (ppm)	2 2	105 84	60-139
Benzene Trichloroethene	mg/kg (ppm) mg/kg (ppm)	2	84 83	65-136 63-139
1.2-Dichloropropane	mg/kg (ppm)	2	86	61-145
Bromodichloromethane	mg/kg (ppm)	2	85	57-126
Dibromomethane	mg/kg (ppm)	2	82	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	10	84	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2	82	65-143
Toluene	mg/kg (ppm)	2	86	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2	88	65-131
1,1,2-Trichloroethane	mg/kg (ppm)	2	83	62-131
2-Hexanone	mg/kg (ppm)	10	77	33 - 152
1,3-Dichloropropane	mg/kg (ppm)	2	90	67-128
Tetrachloroethene	mg/kg (ppm)	2	86	68-128
Dibromochloromethane	mg/kg (ppm)	2	82	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2 2	79	66-129
Chlorobenzene Ethylbenzene	mg/kg (ppm) mg/kg (ppm)	2	91 91	67-128 64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	86	64-125
m,p-Xylene	mg/kg (ppm)	4	90	68-128
o-Xylene	mg/kg (ppm)	2	84	67-129
Styrene	mg/kg (ppm)	2	87	67-129
Isopropylbenzene	mg/kg (ppm)	2	88	68-128
Bromoform	mg/kg (ppm)	2	78	56 - 132
n-Propylbenzene	mg/kg (ppm)	2	91	68-129
Bromobenzene	mg/kg (ppm)	2	90	69-128
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	89	69-129
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	89	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	2	88	61-137
2-Chlorotoluene	mg/kg (ppm)	2	90	69-128
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm)	$\frac{2}{2}$	86 89	67-127 69-129
1,2,4-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	2	89 92	69-129
sec-Butylbenzene	mg/kg (ppm)	2	92 90	69-128
p-Isopropyltoluene	mg/kg (ppm)	2	91	69-130
1.3-Dichlorobenzene	mg/kg (ppm)	2	87	69-127
1,4-Dichlorobenzene	mg/kg (ppm)	2	86	68-126
1,2-Dichlorobenzene	mg/kg (ppm)	2	90	69-127
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	85	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	95	64 - 135
Hexachlorobutadiene	mg/kg (ppm)	2	89	50-153
Naphthalene	mg/kg (ppm)	2	90	62-128
1.2.3-Trichlorobenzene	mg/kg (ppm)	2	93	61-126

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 402305-01 (Matrix Spike)

Laboratory Code: 40230	bo-01 (Matrix Spike)		~ .	_	_		
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units		(Wet wt)		MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	<0.5	49 vo	50	50-150	2
Chloromethane	mg/kg (ppm)	2	< 0.5	43 10	71	50-150	0
Vinyl chloride	mg/kg (ppm)	2	< 0.05	77	78	50-150	1
Bromomethane	mg/kg (ppm)	2	< 0.5	86	83	50-150	4
Chloroethane	mg/kg (ppm)	2	< 0.5	82	79	50 - 150	4
Trichlorofluoromethane	mg/kg (ppm)	2	< 0.5	77	78	50 - 150	1
Acetone	mg/kg (ppm)	10	<5	97	103	50-150	6
1,1-Dichloroethene	mg/kg (ppm)	2 2	<0.05 <0.25	84 81	85	50-150	1 4
Hexane Methylene chloride	mg/kg (ppm) mg/kg (ppm)	2	<0.25	85	84 87	50-150 50-150	4 2
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	< 0.05	91	92	50-150	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	87	89	50-150	2
1,1-Dichloroethane	mg/kg (ppm)	2	< 0.05	90	90	50-150	0
2,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	103	100	50 - 150	3
cis-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	90	91	50 - 150	1
Chloroform	mg/kg (ppm)	2	< 0.05	89	89	50-150	0
2-Butanone (MEK)	mg/kg (ppm)	10	<1	94	88	50-150	7
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2 2	<0.05 <0.05	87 88	89 89	50-150 50-150	$\frac{2}{1}$
1,1,1-Trichloroethane 1,1-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2	<0.05	88	89	50-150 50-150	1
Carbon tetrachloride	mg/kg (ppm)	2	<0.05	90	91	50-150	1
Benzene	mg/kg (ppm)	2	< 0.03	89	91	50-150	2
Trichloroethene	mg/kg (ppm)	2	< 0.02	87	89	50-150	2
1,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	85	88	50-150	3
Bromodichloromethane	mg/kg (ppm)	2	< 0.05	85	86	50 - 150	1
Dibromomethane	mg/kg (ppm)	2	< 0.05	85	89	50 - 150	5
4-Methyl-2-pentanone	mg/kg (ppm)	10	<1	86	91	50-150	6
cis-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	86	88	50-150	2
Toluene trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2 2	<0.05 <0.05	83 81	88 87	50-150 50-150	6 7
1,1,2-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	2	<0.05 <0.05	81 81	87 85	50-150 50-150	5
2-Hexanone	mg/kg (ppm)	10	< 0.5	94	98	50-150	4
1,3-Dichloropropane	mg/kg (ppm)	2	< 0.05	78	83	50-150	6
Tetrachloroethene	mg/kg (ppm)	2	< 0.025	85	89	50-150	5
Dibromochloromethane	mg/kg (ppm)	2	< 0.05	81	87	50 - 150	7
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	< 0.05	83	89	50 - 150	7
Chlorobenzene	mg/kg (ppm)	2	< 0.05	83	89	50-150	7
Ethylbenzene	mg/kg (ppm)	2	< 0.05	88	92	50-150	4
1,1,1,2-Tetrachloroethane m,p-Xylene	mg/kg (ppm) mg/kg (ppm)	$\frac{2}{4}$	<0.05 <0.1	82 86	84 91	50-150 50-150	2 6
o-Xylene	mg/kg (ppm)	4 2	<0.1	85	89	50-150	5
Styrene	mg/kg (ppm)	2	<0.05	86	89	50-150	3
Isopropylbenzene	mg/kg (ppm)	2	< 0.05	85	89	50-150	5
Bromoform	mg/kg (ppm)	2	< 0.05	79	84	50 - 150	6
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	91	95	50 - 150	4
Bromobenzene	mg/kg (ppm)	2	< 0.05	86	90	50 - 150	5
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	91	92	50 - 150	1
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2 2	< 0.05	88	87	50-150	1
1,2,3-Trichloropropane	mg/kg (ppm)	2 2	<0.05	87	90 92	50-150	3 4
2-Chlorotoluene 4-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	2 2	$< 0.05 \\ < 0.05$	88 89	92 91	50-150 50-150	4 2
tert-Butylbenzene	mg/kg (ppm)	2	<0.05	88	92	50-150	4
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	89	93	50-150	4
sec-Butylbenzene	mg/kg (ppm)	2	< 0.05	90	93	50-150	3
p-Isopropyltoluene	mg/kg (ppm)	2	< 0.05	92	95	50-150	3
1,3-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	89	92	50 - 150	3
1,4-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	88	90	50-150	2
1,2-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	89	91	50-150	2
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	< 0.5	86	85	50-150	1
1,2,4-Trichlorobenzene	mg/kg (ppm)	2 2	<0.25 <0.25	90 96	96 97	50-150 50-150	6 1
Hexachlorobutadiene Naphthalene	mg/kg (ppm) mg/kg (ppm)	2	<0.25 <0.05	96 87	97 94	50-150 50-150	1 8
1,2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2 2	<0.05	87 90	94 97	50-150 50-150	87
1,2,0 THEIHOTOBEILZEILE	mg/kg (bhm)	4	~0.20	50	51	00-100	'

ENVIRONMENTAL CHEMISTS

Date of Report: 02/27/24 Date Received: 02/21/24 Project: 3245 158th Ave SE 2403-008, F&BI 402298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laborator			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2	75	10-150
Chloromethane	mg/kg (ppm)	2	78	21-140
Vinyl chloride	mg/kg (ppm)	2	86	35-135
Bromomethane	mg/kg (ppm)	2	93	20-151
Chloroethane	mg/kg (ppm)	2	86	21-147
Trichlorofluoromethane	mg/kg (ppm)	2	91	47-143
Acetone	mg/kg (ppm)	10	126	13-169
1,1-Dichloroethene	mg/kg (ppm)	2	88	49-138
Hexane	mg/kg (ppm)	2 2	92 89	61-141
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2	89 92	25-146 65-129
trans-1,2-Dichloroethene	mg/kg (ppm)	2	92 91	62-126
1,1-Dichloroethane	mg/kg (ppm)	2	91 90	64-131
2.2-Dichloropropane	mg/kg (ppm)	2	114	76-150
cis-1,2-Dichloroethene	mg/kg (ppm)	2	92	62-127
Chloroform	mg/kg (ppm)	2	89	67-129
2-Butanone (MEK)	mg/kg (ppm)	10	116	19-171
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	92	73-123
1,1,1-Trichloroethane	mg/kg (ppm)	2	91	66-125
1,1-Dichloropropene	mg/kg (ppm)	2	90	70-131
Carbon tetrachloride	mg/kg (ppm)	2	96	53-135
Benzene	mg/kg (ppm)	2	94	70-130
Trichloroethene	mg/kg (ppm)	2	93	62-116
1,2-Dichloropropane	mg/kg (ppm)	2	91	70-130
Bromodichloromethane	mg/kg (ppm)	2	90	70-130
Dibromomethane	mg/kg (ppm)	2	95	70-130
4-Methyl-2-pentanone	mg/kg (ppm)	10	104	64-137
cis-1,3-Dichloropropene	mg/kg (ppm)	2	96	68-137
Toluene	mg/kg (ppm)	2	89	70-130
trans-1,3-Dichloropropene	mg/kg (ppm)	2	88	70-130
1,1,2-Trichloroethane	mg/kg (ppm)	2	89	70-130
2-Hexanone	mg/kg (ppm)	10	121	55-145
1,3-Dichloropropane	mg/kg (ppm)	2	89	70-130
Tetrachloroethene	mg/kg (ppm)	2	91	69-131
Dibromochloromethane	mg/kg (ppm)	2	89	61-137
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	94	70-130
Chlorobenzene	mg/kg (ppm)	2	90	70-130
Ethylbenzene	mg/kg (ppm)	2	94	70-130
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	86	56-134
m,p-Xylene	mg/kg (ppm)	4	93	70-130
o-Xylene	mg/kg (ppm)	2	90	70-130
Styrene	mg/kg (ppm)	2 2	94	70-130
Isopropylbenzene	mg/kg (ppm)	2	90	67-131
Bromoform	mg/kg (ppm)	2	88	70-130
n-Propylbenzene Bromobenzene	mg/kg (ppm)	2	93 90	70-130 70-130
1,3,5-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	2	90 90	70-130
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	90 92	70-130
1,1,2,2-Tetrachloropenne	mg/kg (ppm)	2	92 90	70-130
2-Chlorotoluene	mg/kg (ppm)	2	89	70-130
4-Chlorotoluene	mg/kg (ppm)	2	91	70-130
tert-Butylbenzene	mg/kg (ppm)	2	93	70-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	90	70-130
sec-Butylbenzene	mg/kg (ppm)	2	90 91	68-131
p-Isopropyltoluene	mg/kg (ppm)	2	93	70-130
1,3-Dichlorobenzene	mg/kg (ppm)	2	91	70-130
1,4-Dichlorobenzene	mg/kg (ppm)	2	91	70-130
1,2-Dichlorobenzene	mg/kg (ppm)	2	87	70-130
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	85	70-130
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	84	66-140
Hexachlorobutadiene	mg/kg (ppm)	2	91	67-141
Naphthalene	mg/kg (ppm)	2	82	69-119
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	84	66-138
, ,		-	~ -	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ţ			Friedman & Bruya, Inc.		FB-06-10.0	FR-060-5,0	FB-U5-20-0	FB-105-15.0	FB-05-10-0	FB-05-5.0	FB-04-20-0	FR-04-15.0	FB-04-10-0	FB-04-5.0	Sample ID		Phone (USS) 295 1800 Email yr With Evalls norses thing in Project specific RLs? -	City, State, ZIP 15500 July, WA	Address 975 5th Ave NW	Company Forallon	Report To Yusilf Pehlijum	862204
Keceived by:	Kelinquished by:	Received by:	Relinquished by:	SI	10	09	80	to	06	50	ho	03	202	OI A.E	Lab ID		nailyphiim@fa	FLOGB AM'~	NW		NWY	
		Jun	buller	SIGNATURE	ļ									he1616	Date Sampled		alloncionsultingi	1				
			l		heel	0661	1115	1100	1058	1052	1013	1006	1957	(1955	Time Sampled		W Project s	REMARKS	32451	PROJEC	SAMPLI	SAMPLE CHAIN OF CUSTODY
			An		F									Soil	Sample Type		pecific RLs	KS	3245 ISON Ave SE	PROJECT NAME	SAMPLERS (signature)	CHAIN
		NN.	ince.	PRIN	Ļ									U)	# of Jars		? - Yes		ι'n.		ture) (OFC
		4	(kn	PRINT NAME	X	K			\times	$\frac{\times}{\times}$			×	\times	NWTPH-Dx		s / No				his	UST
			Sman	ME											NWTPH-Gx BTEX EPA 8021		0		•)		B	ODY
															NWTPH-HCID	A		IN	200- Gant		-rard	
				\square	X	×			×	×			X	\times	VOCs EPA 8260	ANALYSES	HT	INVOICE TO	6	PO#) -	02/
			FI												PAHs EPA 8270 PCBs EPA 8082	SES F		E TO	04	。 #	1	21/2
			2	COM												EQUI						24
				COMPANY												REQUESTED	Default: I	Arc	Rush charg	Standard RUSH	Page # TURN	Dy/NB
		9-21-24	2/21/24	DATE	+									HELD!	X-pertp My 2/21 Notes		⊔ ∪tner Default: Dispose after 30 days	SAMPLE DISPOSAL hive samples	Rush charges authorized by	Standard turnaround RUSH	Page # of TURNAROUND TIME	-
(•	12,00	6830	TIME	1								S, ichnown	- PH For	ЭС S		· 30 days	SAL	d by:		IME	C

CZ

	H		Friedman & Bruya, Inc.		FB-10-20.0	FR-10-15.0	FB-10-10.0	FR-10-5.0	FB-09-20-0	FB-09-15.0	FB-09-10.0	FB-09-5.0	FB-08-20.0	FB-08-15-0	Sample ID		PhoneEmail	City, State, ZIP	Address XX Y	Company COD	Report To	402298
Received by:	Relinquished by:	Received by:	Relinquished by:	SI	30 1	29	38	4	26	ž	ay	23	22	21 A-E	Lab ID				0	A		
		llon	mar	SIGNATURE	Ļ			2-20-24	Ļ					he-61-6	Date Sampled							
			2		0680	0926	0919	E160	1614	1012	1603	ilon	1501	1454	Time Sampled		Project sp	REMARKS		PROJECT NAME	SAMPLE	SAMPLE CHAIN OF CUSTODY
		2.	An		F									Suil	Sample Type		Project specific RLs? -	S	000	I NAME	SAMPLERS (signature)	CHAIN
		$\langle \rangle$	me (PRIN	F									51	# of Jars		? - Yes	Z			ture) (OF C
		50	18m	PRINT NAME			X X	X			X	X			NWTPH-Dx	$\left \right $	s / No	2	M		Sug	TSU
		4	Man	ME											NWTPH-Gx BTEX EPA 8021	$\left \right $	0	0	K		2	ODY
			Ì										1		NWTPH-HCID			ħ		-	Ş	
							×	X				X			VOCs EPA 8260	NALY		INVOICE TO		PO #		0
en			T												PAHs EPA 8270 PCBs EPA 8082	7SES		CETC		#	Ì	02/2
am		T	Tavalles	COV											PCBs EPA 8082	ANALYSES REQUESTED		0				611
pies		1	lon	COMPANY	-											JESTI						Ĺ
Samples received at			•	N												B	Defaul	S/ Archiv	łush ch] Stand	Pa	
		2	2											Ŧ	*		t: Disp	SAMPLE DI Archive samples Other	larges	lard tu	Page #	D4/
a		0	121/24	DATE										THE REAL	- March Not		Default: Dispose after 30 days	SAMPLE DISPOSAL hive samples	Rush charges authorized by	Standard turnaround RUSH	Page # of TURNAROUND TIME	< در
	<u>بر</u>	1-24 1		\square	F-					-			\square	intro-	Notes Notes		ter 30	POSAL	ized by	nd) TIME	r L
	Š	200	0830	TIME									c	- for analysis			days					

R	R	I 11. (2007) 209-0202 R	i, Inc.			569-11-5.0	56-10-5:0	56-09-5,0	56-08-5-0	Sta-07-10.0	FB-11-20.6	FB-11- 17.0	FB-11-10.0	FB-11-5.0	Sample ID		PhoneEmail	City, State, ZIP	Address	Company AND	Report To	Succoh
Received by:	Relinquished by:	Received by:	Relinquished by:	S	×.	7 48	3 %	t &	36	3	રેલ	33	32	31 A-E	Lab ID				C	201	-	
		ful	Wer	SIGNATURE		}								2/20/24	Date Sampled							
						1620	1542	1500	1303	1215	11110	1115	5111	630	Time Sampled		Project s	REMARKS		PROJEC	SAMPLE	SAMPLE CHAIN OF CUSIODI
			An			}								5011	Sample Type		Project specific RLs? -	X	0	PROJECT NAME	SAMPLERS (signature)	CHAIN
		5	We.	PRIN		F								J	# of Jars		? - Yes	\langle			ure)	
		H	B	PRINT NAME		8	8	$\left \right\rangle$	×	*			X	×	NWTPH-Dx		s / No	~	B		Sul	
			BMan	ME	-	X	X	X	XX	X			X	-	NWTPH-Gx 8260 BTEX EPA-8921	$\left \right $	0	0	R		2	
			(-										NWTPH-HCID			Ι			2	
													X	X	VOCs EPA 8260	ANALYSES		INVOICE TO		P	5	
						ļ		ļ							PAHs EPA 8270	YSE		ICE		PO #		
	- 20	H	ara	C		ļ	ļ	ļ			ļ	ļ		ļ	PCBs EPA 8082	S RE		ľO				140
-		Ø	llon	COMPANY		ļ	ļ	ļ			ļ	ļ				REQUESTED						4
			6	ANY		ļ	ļ	ļ	ļ	ļ		ļ	ļ			STEI	De		Ru			24
	Samples received at						<u> </u>										fault	SAMPLE DI Archive samples Other	sh ch	□ Standa □ RUSH_	Page # TURN	J
	K.	20	10											-+-			: Dis	AMPL ve sar	arges	ard tu	RNA	F
	at	1-21	2/21/24	DATE								4		THE P	K-pr		pose :	nples	autho	□ Standard turnaround □ RUSH	ROUN	1
	2	4-12	24	Ē		1			-		-			- Fin	Notes		after	SAMPLE DISPOSAL hive samples er	Rush charges authorized by:	bund	Page # ot TURNAROUND TIME	2
	ĉ	N	6830	TIME		ľ								For analysis	Notes	-	Default: Dispose after 30 days	AL	by:		ME	4
		200	0	ΛE									6	is s	e		iys				E	10

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

May 13, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on May 6, 2024 from the 3245 158th Ave SE 2403-008, F&BI 405104 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0513R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 6, 2024 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 405104 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
405104 -01	B-2-050624
405104 -02	FMW-03-050624
405104 -03	FMW-02-050624
405104 -04	FMW-01-050624
405104 -05	Trip Blank

The 8260D calibration standard did not meet the acceptance criteria for acetone. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/13/24 Date Received: 05/06/24 Project: 3245 158th Ave SE 2403-008, F&BI 405104 Date Extracted: 05/08/24 Date Analyzed: 05/08/24

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
B-2-050624 405104-01	<100	85
FMW-03-050624 405104-02	<100	84
FMW-02-050624 405104-03	<100	85
FMW-01-050624 405104-04	<100	79
Method Blank 04-881 MB	<100	85

ENVIRONMENTAL CHEMISTS

Date of Report: 05/13/24 Date Received: 05/06/24 Project: 3245 158th Ave SE 2403-008, F&BI 405104 Date Extracted: 05/07/24 Date Analyzed: 05/07/24

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
B-2-050624 405104-01	<50	<250	104
$\underset{\scriptstyle{405104\text{-}02}}{\text{FMW-}03\text{-}050624}$	<50	<250	107
FMW-02-050624 405104-03	<50	<250	109
FMW-01-050624 405104-04	<50	<250	104
Method Blank 04-1122 MB2	<50	<250	104

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-2-050624 05/06/24 05/08/24 05/08/24 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2- 405104-01 050817.D GCMS11 IJL	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 94 99 101	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) ne e de nane pene		Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri Hexachl	nzene Cetrachloroethane ene dibenzene frm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene ylbenzene imethylbenzene dibenzene pyltoluene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene	
trans-1,3-Dichlorog 1,1,2-Trichloroetha 2-Hexanone		<0.4 <0.5 <10	Naphtha 1,2,3-Tri	alene ichlorobenzene	<1 <1

ENVIRONMENTAL CHEMISTS

FMW-03-05 05/06/24 05/08/24 05/08/24 Water ug/L (ppb)	50624	Client: Project: Lab ID: Data File: Instrument: Operator:		
-d4 ene	% Recovery: 100 100 97	Lower Limit: 78 84 72	Upper Limit: 126 115 130	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
thane hane er (MTBE) thene eene (EDC) ne e de de anne one pene oropene	$<1 \\ <10 \\ <0.02 \\ <5 \\ <1 \\ <1 \\ <50 \ ca \\ <1 \\ <5 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tri Hexachl Naphtha	oroethene ochloromethane omoethane (EDB) enzene nzene Cetrachloroethane ene cetrachloroethane ene cetrachloroethane enzene imethylbenzene cetrachloroethane ichloropropane otoluene otoluene ylbenzene imethylbenzene imethylbenzene imethylbenzene otoluene otoluene sylbenzene imethylbenzene imethylbenzene imethylbenzene imethylbenzene iorobenzene lorobenzene lorobenzene lorobenzene omo-3-chloropropane ichlorobenzene orobutadiene alene	
oropene ne	<0.4 <0.5 <10		<1 <1	
	05/06/24 05/08/24 Water ug/L (ppb) -d4 ene thane hane hane (EDC) ne e ene (EDC) ne e hane hane	$\begin{array}{ccccccc} 05/08/24 \\ 05/08/24 \\ Water \\ ug/L (ppb) \end{array} & & & & & & & \\ & & & & & & \\ & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-02-08 05/06/24 05/08/24 05/08/24 Water ug/L (ppb)	50624	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 405104-03 050819.D GCMS11 IJL	
Sumonatas		0/ Decourse	Lower	Upper Limit:	
Surrogates: 1,2-Dichloroethane	-d4	% Recovery: 95	Limit: 78	126	
Toluene-d8	-44	97	84	120	
4-Bromofluorobenz	zene	97	72	130	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Dichlorodifluorome	ethane	<1		loropropane	<1
Chloromethane		<10		oroethene	1.7
Vinyl chloride		< 0.02		ochloromethane	< 0.5
Bromomethane		<5		omoethane (EDB)	< 0.01
Chloroethane		<1	Chlorobe		<1
Trichlorofluoromet	hane	<1	Ethylber		<1
Acetone		<50 ca		Cetrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle		<2
Hexane Mathalana abla ida		<5	o-Xylene		<1
Methylene chloride		<5 <1	Styrene	lhongono	<1 <1
Methyl t-butyl ethe trans-1,2-Dichloroe		<1 <1	Bromofo	vlbenzene	<1 <5
1,1-Dichloroethane		<1	n-Propyl		<0 <1
2,2-Dichloropropan		<1	Bromobe		<1
cis-1,2-Dichloroeth		<1 <1		imethylbenzene	<1
Chloroform	ene	<1		Cetrachloroethane	<0.2
2-Butanone (MEK)		<20		ichloropropane	<1
1,2-Dichloroethane		<0.2	2-Chloro		<1
1,1,1-Trichloroetha	. ,	<1	4-Chloro		<1
1,1-Dichloropropen		<1	tert-But	ylbenzene	<1
Carbon tetrachlorie	de	< 0.5	1,2,4-Tri	imethylbenzene	<1
Benzene		< 0.35	sec-Buty	vlbenzene	<1
Trichloroethene		< 0.5		pyltoluene	<1
1,2-Dichloropropan		<1	,	lorobenzene	<1
Bromodichlorometh	hane	< 0.5		lorobenzene	<1
Dibromomethane		<1		lorobenzene	<1
4-Methyl-2-pentan		<10		omo-3-chloropropane	<10
cis-1,3-Dichloropro	pene	< 0.4		ichlorobenzene	<1
Toluene		<1		orobutadiene	< 0.5
trans-1,3-Dichlorop		<0.4	Naphtha		<1
1,1,2-Trichloroetha	ine	<0.5	1,2,3-Tri	ichlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	FMW-01-08 05/06/24 05/08/24 05/08/24 Water ug/L (ppb)	50624	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 405104-04 050820.D GCMS11 IJL	
			Lower	Upper	
Surrogates:	1.4	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	e-d4	91	78	126	
Toluene-d8 4-Bromofluorobenz	zene	$\frac{101}{97}$	$\frac{84}{72}$	$115\\130$	
4-Dromonuorobenz	lene		12	150	
a 1		Concentration	a		Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Dichlorodifluorome	ethane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10		loroethene	4.2
Vinyl chloride		< 0.02		ochloromethane	< 0.5
Bromomethane		<5		omoethane (EDB)	< 0.01
Chloroethane		<1	Chlorob		<1
Trichlorofluoromet	hane	<1	Ethylbe		<1
Acetone		<50 ca		Tetrachloroethane	<1
1,1-Dichloroethene	•	<1	m,p-Xyle		<2
Hexane		<5	o-Xylene	9	<1
Methylene chloride		<5	Styrene	11	<1
Methyl t-butyl ethe		<1		vlbenzene	<1
trans-1,2-Dichloroe		<1	Bromofo		<5
1,1-Dichloroethane 2,2-Dichloropropar		<1 <1	Bromobe	lbenzene	<1 <1
cis-1,2-Dichloroeth		<1		imethylbenzene	<1
Chloroform	elle	<1		Fetrachloroethane	<0.2
2-Butanone (MEK)		<20		ichloropropane	<1
1,2-Dichloroethane		<0.2	2-Chlore		<1
1,1,1-Trichloroetha		<1	4-Chloro		<1
1,1-Dichloropropen		<1		ylbenzene	<1
Carbon tetrachlori		< 0.5		imethylbenzene	<1
Benzene		< 0.35	sec-Buty	lbenzene	<1
Trichloroethene		< 0.5	p-Isopro	pyltoluene	<1
1,2-Dichloropropar		<1	1,3-Dich	lorobenzene	<1
Bromodichloromet	hane	< 0.5		lorobenzene	<1
Dibromomethane		<1		lorobenzene	<1
4-Methyl-2-pentan		<10		omo-3-chloropropane	<10
cis-1,3-Dichloropro	pene	<0.4		ichlorobenzene	<1
Toluene		<1		orobutadiene	< 0.5
trans-1,3-Dichlorop		<0.4	Naphtha		<1
1,1,2-Trichloroetha	une	<0.5	1,2,3-Tr	ichlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Client Sample ID:Method BlaDate Received:Not ApplicsDate Extracted:05/08/24Date Analyzed:05/08/24Matrix:WaterUnits:ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, 3245 158th Ave SE 2 04-1066 mb 050809.D GCMS11 MD	
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8	% Recovery: 106 97	Lower Limit: 78 84	Upper Limit: 126 115	
4-Bromofluorobenzene	98	72	130	
Compounds:	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1		loropropane	<1
Chloromethane	<10		oroethene	<1
Vinyl chloride	< 0.02		ochloromethane	< 0.5
Bromomethane	<5		omoethane (EDB)	< 0.01
Chloroethane	<1 <1	Chlorobe		<1 <1
Trichlorofluoromethane Acetone	<1 <50	Ethylber	Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xyle		<2
Hexane	<5	o-Xylene		<1
Methylene chloride	<5	Styrene		<1
Methyl t-butyl ether (MTBE)	<1	-	lbenzene	<1
trans-1,2-Dichloroethene	<1	Bromofo		<5
1,1-Dichloroethane	<1		lbenzene	<1
2,2-Dichloropropane	<1	Bromobe		<1
cis-1,2-Dichloroethene	<1		imethylbenzene	<1
Chloroform	<1		etrachloroethane	<0.2
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	<20 <0.2	1,2,3-1 r 2-Chloro	ichloropropane	<1 <1
1,1,1-Trichloroethane	<0.2	4-Chloro		<1
1,1-Dichloropropene	<1		ylbenzene	<1
Carbon tetrachloride	< 0.5		imethylbenzene	<1
Benzene	< 0.35		vlbenzene	<1
Trichloroethene	< 0.5		pyltoluene	<1
1,2-Dichloropropane	<1	,	lorobenzene	<1
Bromodichloromethane	< 0.5		lorobenzene	<1
Dibromomethane	<1		lorobenzene	<1
4-Methyl-2-pentanone	<10 <0.4		omo-3-chloropropane ichlorobenzene	<10 <1
cis-1,3-Dichloropropene Toluene	<0.4 <1		orobutadiene	<0.5
trans-1,3-Dichloropropene	<0.4	Naphtha		<0.5 <1
1,1,2-Trichloroethane	<0.4		ichlorobenzene	<1
2-Hexanone	<10	, ,		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/13/24 Date Received: 05/06/24 Project: 3245 158th Ave SE 2403-008, F&BI 405104

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Coue. 40	5104-01 (Dupli	icate)								
	Reporting	Samp	le Dup	olicate	RPD					
Analyte	Units	Resul	lt Re	esult	(Limit 20)					
Gasoline	ug/L (ppb)	<100) <	100	nm					
Laboratory Code: Laboratory Control Sample										
	·	r i i i	Percent							
	Reporting	Spike		Acceptance						
Analyte	Reporting Units	-	Percent	Acceptance Criteria	_					

ENVIRONMENTAL CHEMISTS

Date of Report: 05/13/24 Date Received: 05/06/24 Project: 3245 158th Ave SE 2403-008, F&BI 405104

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	104	72-139	0

ENVIRONMENTAL CHEMISTS

Date of Report: 05/13/24 Date Received: 05/06/24 Project: 3245 158th Ave SE 2403-008, F&BI 405104

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Percent

Laboratory Code: 405104-02 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recoverv	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	85	30-221
Chloromethane	ug/L (ppb)	10	<10	86	50-150
Vinyl chloride	ug/L (ppb)	10	< 0.02	93	50-150
Bromomethane	ug/L (ppb)	10	<5	100	50-150
Chloroethane	ug/L (ppb)	10	<1	103	50-150
Trichlorofluoromethane	ug/L (ppb)	10	<1	97	50 - 150
Acetone	ug/L (ppb)	50	<50	75	18-161
1,1-Dichloroethene	ug/L (ppb)	10	<1	95	50 - 150
Hexane	ug/L (ppb)	10	<5	94	50-150
Methylene chloride	ug/L (ppb)	10	<5	95	50-150
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	98	50-150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1 <1	99 96	50-150
1,1-Dichloroethane 2,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	10 10	<1	96 98	50-150 43-171
cis-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	10	<1	98 97	43-171 10-211
Chloroform	ug/L (ppb) ug/L (ppb)	10	<1	97	50-150
2-Butanone (MEK)	ug/L (ppb)	50	<20	84	10-192
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<0.2	96	50-150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	97	50-150
1,1-Dichloropropene	ug/L (ppb)	10	<1	94	50-150
Carbon tetrachloride	ug/L (ppb)	10	< 0.5	97	50-150
Benzene	ug/L (ppb)	10	< 0.35	99	50-150
Trichloroethene	ug/L (ppb)	10	< 0.5	96	35-149
1,2-Dichloropropane	ug/L (ppb)	10	<1	92	50 - 150
Bromodichloromethane	ug/L (ppb)	10	< 0.5	95	50 - 150
Dibromomethane	ug/L (ppb)	10	<1	98	50 - 150
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	95	50-150
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	90	50-150
Toluene	ug/L (ppb)	10	<1	99	50-150
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ug/L (ppb)	10 10	<0.4 <0.5	92 93	50-150
2-Hexanone	ug/L (ppb)	10 50	<0.5 <10	93 88	50-150 50-150
1,3-Dichloropropane	ug/L (ppb) ug/L (ppb)	10	<10	93	50-150
Tetrachloroethene	ug/L (ppb)	10	<1	101	50-150
Dibromochloromethane	ug/L (ppb)	10	<0.5	97	50-150
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	< 0.01	99	50-150
Chlorobenzene	ug/L (ppb)	10	<1	95	50-150
Ethylbenzene	ug/L (ppb)	10	<1	100	50-150
1,1,1,2 Tetrachloroethane	ug/L (ppb)	10	<1	97	50-150
m,p-Xylene	ug/L (ppb)	20	<2	99	50-150
o-Xylene	ug/L (ppb)	10	<1	99	50 - 150
Styrene	ug/L (ppb)	10	<1	89	50-150
Isopropylbenzene	ug/L (ppb)	10	<1	95	50-150
Bromoform	ug/L (ppb)	10	<5	91	50-150
n-Propylbenzene	ug/L (ppb)	10	<1 <1	94	50-150
Bromobenzene 1,3,5-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	10 10	<1	97 95	50-150 50-150
1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10	<0.2	100	50-150
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	95	50-150
2-Chlorotoluene	ug/L (ppb)	10	<1	95	50-150
4-Chlorotoluene	ug/L (ppb)	10	<1	94	50-150
tert-Butylbenzene	ug/L (ppb)	10	<1	94	50-150
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	93	50-150
sec-Butylbenzene	ug/L (ppb)	10	<1	97	50 - 150
p-Isopropyltoluene	ug/L (ppb)	10	<1	97	50 - 150
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	95	50 - 150
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	96	50-150
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	95	50-150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	94	50-150
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	96 07	50-150
Hexachlorobutadiene Naphthalene	ug/L (ppb) ug/L (ppb)	10 10	<0.5 <1	97 95	50-150 50-150
1,2,3-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<1	95 95	50-150 50-150
1,=,0 1100000000000	de r (hhu)	10	-1	55	00 100

ENVIRONMENTAL CHEMISTS

Date of Report: 05/13/24 Date Received: 05/06/24 Project: 3245 158th Ave SE 2403-008, F&BI 405104

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

	_		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	88	88	46-206	0
Chloromethane	ug/L (ppb)	10	88	90	59-132	2
Vinyl chloride	ug/L (ppb)	10	93	93	64-142	0
Bromomethane	ug/L (ppb)	10	97	104	50 - 197	7
Chloroethane	ug/L (ppb)	10	99	97	70-130	2
Trichlorofluoromethane	ug/L (ppb)	10	97	95	51-159	2
Acetone	ug/L (ppb)	50	69	76	10-140	10
1,1-Dichloroethene	ug/L (ppb)	10	94 99	92	64-140	2
Hexane Methylene chloride	ug/L (ppb) ug/L (ppb)	10 10	99 98	97 94	54-136	$\frac{2}{4}$
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	98 97	94 95	43-134 70-130	4 2
trans-1,2-Dichloroethene	ug/L (ppb)	10	97 97	93	70-130	4
1,1-Dichloroethane	ug/L (ppb)	10	94 94	93 92	70-130	4 2
2.2-Dichloropropane	ug/L (ppb)	10	109	106	64-148	3
cis-1,2-Dichloroethene	ug/L (ppb)	10	98	93	70-130	5
Chloroform	ug/L (ppb)	10	94	91	70-130	3
2-Butanone (MEK)	ug/L (ppb)	50	86	93	47-112	8
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	99	97	70-130	2
1,1,1-Trichloroethane	ug/L (ppb)	10	99	96	70-130	3
1,1-Dichloropropene	ug/L (ppb)	10	90	94	70-130	4
Carbon tetrachloride	ug/L (ppb)	10	100	100	70-130	0
Benzene	ug/L (ppb)	10	99	97	70-130	2
Trichloroethene	ug/L (ppb)	10	96	92	70-130	4
1.2-Dichloropropane	ug/L (ppb)	10	91	91	70-130	0
Bromodichloromethane	ug/L (ppb)	10	96	95	70-130	ĩ
Dibromomethane	ug/L (ppb)	10	104	92	70-130	12
4-Methyl-2-pentanone	ug/L (ppb)	50	99	95	68-130	4
cis-1,3-Dichloropropene	ug/L (ppb)	10	94	90	69-131	4
Toluene	ug/L (ppb)	10	102	97	70-130	5
trans-1,3-Dichloropropene	ug/L (ppb)	10	96	93	70-130	3
1,1,2-Trichloroethane	ug/L (ppb)	10	96	93	70-130	3
2-Hexanone	ug/L (ppb)	50	98	93	45-138	5
1,3-Dichloropropane	ug/L (ppb)	10	94	95	70-130	1
Tetrachloroethene	ug/L (ppb)	10	105	101	70-130	4
Dibromochloromethane	ug/L (ppb)	10	99	94	60-148	5
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	102	98	70-130	4
Chlorobenzene	ug/L (ppb)	10	96	94	70-130	2
Ethylbenzene	ug/L (ppb)	10	103	99	70-130	4
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	104	99	70-130	5
m,p-Xylene	ug/L (ppb)	20	102	98	70-130	4
o-Xylene	ug/L (ppb)	10	101	96	70-130	5
Styrene	ug/L (ppb)	10	89	85	70-130	5
Isopropylbenzene	ug/L (ppb)	10	98	95	70-130	3
Bromoform	ug/L (ppb)	10	96	93	69-138	3
n-Propylbenzene	ug/L (ppb)	10	95	92	70-130	3
Bromobenzene	ug/L (ppb)	10	100	96	70-130	4
1,3,5-Trimethylbenzene	ug/L (ppb)	10	95	91	70-130	4
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	103	99	70-130	4
1,2,3-Trichloropropane	ug/L (ppb)	10	99	94	70-130	5
2-Chlorotoluene	ug/L (ppb)	10	97	90	70-130	7
4-Chlorotoluene	ug/L (ppb)	10	97	93	70-130	4
tert-Butylbenzene	ug/L (ppb)	10	97	91	70-130	6
1,2,4-Trimethylbenzene	ug/L (ppb)	10	96	91	70-130	5
sec-Butylbenzene	ug/L (ppb)	10	98	93	70-130	5
p-Isopropyltoluene	ug/L (ppb)	10	98 100	91	70-130	7
1,3-Dichlorobenzene	ug/L (ppb)	10	100	95	70-130	5
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb)	10 10	98 98	94 94	70-130 70-130	$\frac{4}{4}$
	ug/L (ppb)			94 93		
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	99		70-130	6
1,2,4-Trichlorobenzene Hexachlorobutadiene	ug/L (ppb)	10 10	94 98	88 89	70-130 70-130	7 10
	ug/L (ppb)	10 10	98 90	89 83		10 8
Naphthalene	ug/L (ppb)	10	90	00	70-130	8

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

			Friedman & Bruya, Inc. Ph. (206) 285-8282				Trip BLANK	FMW-01-050624	FMW-02-050624	FMW-03-050624	8-2-050624	Sa		Phone 1425	City, State, 2	Address <u>775</u>	Componer Friedland	Report To	1	
Γ	Re	Re	ı, Inc.				*	50624	050624	0506 AN	624	Sample ID		Phone (425) 245 VOO Emailyprh/inn@farellon consulting Um Project specific RLs? -	City, State, ZIP /SSapuah, WA 98027	Address 975 5th Ave NW	Sur - Uns	Report To YUSUF Pehlivan		
	Received by:	Relinquished by:	Relinquished by:	SIC			OS AB	04 1	03	02 .	OI A-G	Lab ID		Upehlium@fares	£2086 41	winner W	CANSULL'	M		
		604	- no	SIGNATURE	-		1	-			A-G 5/6/24	Date Sampled		Um consulting 20						
							1	1341	1234	1146	1100	Time Sampled		m Project s	REMARKS	3245 1	PROJECT NAME	SAMPLE		
		Michae	Angie				120	}			Hao	Sample Type		pecific RLs	S	3245 158th Ave SE	T NAME	SAMPLERS (signature)		
			- 0	PRIN			ઝ	+			4	# of Jars				Ų,		1/		
		Ed	78	PRINT NA				X	X	X	X	NWTPH-Dx		Yes / No				mal		
		14	Rev	ME		 		X	X	X	×.	NWTPH-Gx	$\left \right $	Vo				Ch	1	
						 						BTEX EPA 8021 NWTPH-HCID	$\left \right $		F	24		ſ		
						 +	-	\mathbf{x}	X	X	×.	VOCs EPA 8260	ANAL		INV AP	24113-008		,		
ł										/~		<u> </u>	PAHs EPA 8270	ALYS		INVOICE TO ρ	801	PO #		
		7	Evallor		Sa			-				PCBs EPA 8082	ES R		I TO					
		r 1 Kin	lor	COM	Samples								EQU			8		8		
				COMPANY	8							· · · · · · · · · · · · · · · · · · ·	YSES REQUESTED				<u> </u>		1	
				Y	ee								B)efau	SA Archiv	⊔ KUSH Rush cha	Sta			
					- ive								1	ılt: D	SAM hive s	SH	ndard	Page # TURN		
		16/24	5/6/24	DATE	received at	als an	Added					No		Default: Dispose after 30 days	SAMPLE DISPOSAL Archive samples Other	□ KUSH Rush charges authorized by:	Standard turnaround	TURNAROUND TIME	~	
		.ትሐት/		TIME	°C	he/9	at lab					Notes		r 30 days	SAL	ed by:	ł		CH 11	

\$\01\24	Rev. 0				IOGHO/SM	AA INC /FOR	
	səqnı	710T bə	sunn fo rədmu ^N e	ersters	615 ca	T bəzunı	u îo redmul
ON 🗆	SHY D	AN b	fbəviəsər zədut\zretinsə	Isnoit	ibbs yı	тв этэW :	səlqmsZ riv
			(bəbəən fi əg	rate pa	redəs e	əsn) stuə t	mmoə rədt(
			bloE	∃¤Ο□	səz 9	sisylsni	Requested a
					səy j	p	Relinguishe
[9dslyDC	DO no toN [Added The BIANK to Co	°N 🖊	s9Y □	siers	aistnoO fo #
C/label	DD no ton CC			°N □	s9Y ⊠	pəl	lqmsZ əmiT
C/label	DD no toN []		°N □	səY 🖄	bə	lqmsZ ətsU
				°N □	s9Y Q	ę	e'UI slqmsZ
le label?	the sampl	it match	seob bus, OOC ent no bebi	vorg n			vollof 9dt 2 ns "on" nislqxe
ON 🗆	SAY	VN 🗆	асе, ћеаdsрасе free?	adsbs9.	ឬ ០ជ នា	airinpər a	səlqmsz əri
ON 🗆	SHY D	ANR	mples, are they intact?	ies no s	uəsən	eals are p	es vbotzus f
umouyu	U D C	N D S	sers used?	nistno	ə əlqm	as 91511q	Vere appro
ON 🗆	SAY D		vo intact (i.e. not broken, (v				Vere all san (.ot9 guixba
ON 🗆	SHY A		(woləd rəwana "on" nislqxə) 🔥	bəifitn	rly ide	asic səlqı	re the sam
aysb)LA	t laborati	as in the second s	ээq эл	sd zsiq	imes syst	o to redmuv
			soməm zariqqids 10\bra				
ON 🗆	SALE		C) i	^* (CO	poten	O-fo-nish	S there a C
	OSÐ\S¶U\	кЯрэЯ □	Па‰Я vd qu bэя́эіЧ □	ter		ar over th Mples arr	us bib woH A
ON 🗆	SIX D		system backs?	၀၀၁/ခ၁			Vere sampl
ике <u>96312917</u> У оС	nometer ID: Flu	ләцт		ə	antere	ple temp	mßNasloo
ON 🗆	SAY D	VN 🗭	oler, are they intact?	00 UO J	uəsəıc	eals are l	s vboteno f
he/91	s and is	IAITINI 	tooden	'IENT	CI CI	holson	BROJECT #
	-		ITION UPON RECEIPT CH	COND	MPLE	WS	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

July 24, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on July 10, 2024 from the 3245 158th Ave SE 2403-008, F&BI 407106 project. There are 21 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0724R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 10, 2024 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 407106 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
407106 -01	SG-10-070924
407106 -02	SG-08-070924
407106 -03	SG-09-070924
407106 -04	SG-05-071024
407106 -05	SG-06-071024
407106 -06	SG-11-071024

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The butane concentration in sample SG-06-071024 exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-10-070924 07/10/24 07/09/24 07/16/24 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 407106-01 1/9.2 071623.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 86	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha				

APH EC9-12 aliphatics480APH EC9-10 aromatics<230</td>

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-08-070924 07/10/24 07/09/24 07/17/24 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 407106-02 1/20 071625.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 84	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics 2,000			

APH EC9-12 aliphatics	1,100
APH EC9-10 aromatics	<500

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-09-070924 07/10/24 07/09/24 07/17/24 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 407106-03 1/19 071626.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 90	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics 3,100			

APH EC5-8 aliphatics	3,100
APH EC9-12 aliphatics	3,000
APH EC9-10 aromatics	<470

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<220

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-05-071024 07/10/24 07/09/24 07/16/24 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 407106-04 1/8.7 071620.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 86	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-06-071024 07/10/24 07/09/24 07/16/24 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 407106-05 1/9.6 071624.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 86	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics 1 900			

Compounds:	ug/m3
APH EC5-8 aliphatics	1,900
APH EC9-12 aliphatics	1,000
APH EC9-10 aromatics	<240

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-11-071024 07/10/24 07/09/24 07/16/24 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 407106-06 1/9.2 071622.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 85	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha				

APH EC9-12 aliphatics620APH EC9-10 aromatics<230</td>

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 07/16/24 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 04-1582 mb 071612.D GCMS8 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 83	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-10-070 07/10/24 07/09/24 07/16/24 Air ug/m3	0924	Client Projec Lab II Data I Instru Opera	et: D: File: ument:	Farallon Consulting, I 3245 158th Ave SE 24 407106-01 1/9.2 071623.D GCMS8 bat		
		%	Lower	Upper			
Surrogates:	Re	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		87	70	130			
1 21011011000000	0110	0.		100			
		Conce	ntration			Conce	ntration
Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
5							
Propene	.1	<13	<7.4		chloropropane	<2.1	< 0.46
Dichlorodifluorome	thane	<9.1	<1.8	1,4-Di		<3.3	< 0.92
Chloromethane		<34	<17		Frimethylpentane	<43	< 9.2
F-114		<19	<2.8		rl methacrylate	<38	< 9.2
Vinyl chloride		<2.4	< 0.92	Hepta		<38	< 9.2
1,3-Butadiene		< 0.41	< 0.18		odichloromethane	0.74	0.11
Butane		<44	<18		oroethene	< 0.99	< 0.18
Bromomethane		<36	< 9.2		-Dichloropropene	<8.4	<1.8
Chloroethane		<24	< 9.2		hyl-2-pentanone	<75	<18
Vinyl bromide		<4	< 0.92		1,3-Dichloropropene	<4.2	< 0.92
Ethanol		<69	<37	Toluer		<69	<18
Acrolein		<1.1	< 0.46		Frichloroethane	< 0.5	< 0.092
Pentane Trichlorofluoromet	h a n a	<54 <21	<18 <3.7	2-Hex	anone chloroethene	<38 <62	<9.2 <9.2
	nane	<21 <44	<5.7 <18		mochloromethane		<9.2 <0.092
Acetone		<44 <79	<18 <32		bromoethane (EDB)	<0.78 <0.71	<0.092 <0.092
2-Propanol 1,1-Dichloroethene		<79 <3.6	<0.92		bromoetnane (EDB) benzene	<0.71 <4.2	<0.092 <0.92
trans-1,2-Dichloroe		<3.6 <3.6	<0.92 <0.92		Denzene	<4.2 <4	<0.92 <0.92
Methylene chloride		<320	<0.92 <92		2-Tetrachloroethane	<1.3	< 0.92 < 0.18
t-Butyl alcohol (TB		<520 <110	<32 <37	Nonar		<1.3 <48	<0.18 <9.2
3-Chloropropene	A)	<110 <29	<9.2		pylbenzene	<48 <90	< <u>9.2</u> <18
CFC-113		<2 <i>5</i> <14	<9.2 <1.8		protoluene	<90 <48	<9.2
Carbon disulfide		<57	<18		lbenzene	<45	<9.2
Methyl t-butyl ethe	r (MTBE)	<66	<18		yltoluene	<45	<9.2
Vinyl acetate	(MIDL)	<65	<18	m,p-X		<8	<1.8
1,1-Dichloroethane		<3.7	< 0.92	o-Xyle		<4	< 0.92
cis-1,2-Dichloroethe		<3.6	< 0.92	Styrer		<7.8	<1.8
Hexane	one	<32	<9.2	Bromo		<19	<1.8
Chloroform		1.9	0.39		l chloride	< 0.48	< 0.092
Ethyl acetate		<66	<18		Frimethylbenzene	<45	< 9.2
Tetrahydrofuran		<8.1	<2.8		Frimethylbenzene	<45	< 9.2
2-Butanone (MEK)		<54	<18		chlorobenzene	<5.5	< 0.92
1,2-Dichloroethane		< 0.37	< 0.092	,	chlorobenzene	<2.1	< 0.35
1,1,1-Trichloroetha		<5	< 0.92	,	chlorobenzene	<5.5	< 0.92
Carbon tetrachlorid		<2.9	< 0.46		Frichlorobenzene	<6.8	< 0.92
Benzene		<2.9	< 0.92		halene	< 0.68	< 0.13
Cyclohexane		<63	<18		hlorobutadiene	<2	< 0.18

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-08-070 07/10/24 07/09/24 07/17/24 Air ug/m3	0924	Client Projec Lab II Data I Instru Opera	t:): File: ment:	Farallon Consulting, I 3245 158th Ave SE 24 407106-02 1/20 071625.D GCMS8 bat		
		%	Lower	Upper			
Surrogates:	Re	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		84	70	130			
G 1			ntration	a	1		itration
Compounds:		ug/m3	ppbv	Comp	ounds:	ug/m3	ppbv
Propene		<28	<16	1 2-Di	chloropropane	<4.6	<1
Dichlorodifluorome	thane	<20	<4	1,4-Di		<7.2	<2
Chloromethane	unano	<74	<36		Frimethylpentane	<93	<20
F-114		<42	<6		l methacrylate	<82	<20
Vinyl chloride		<5.1	<2	Hepta		<82	<20
1,3-Butadiene		< 0.88	< 0.4		odichloromethane	1.5	0.22
Butane		<95	<40		oroethene	<2.1	< 0.4
Bromomethane		<78	<20		-Dichloropropene	<18	<4
Chloroethane		<53	<20		hyl-2-pentanone	<160	<40
Vinyl bromide		<8.7	<2		1,3-Dichloropropene	<9.1	<2
Ethanol		<150	<80	Toluer		<150	<40
Acrolein		<2.3	<1		Frichloroethane	<1.1	< 0.2
Pentane		<120	<40	2-Hex		<82	<20
Trichlorofluoromet	hane	<45	<8	Tetrac	chloroethene	<140	<20
Acetone		<95	<40	Dibroi	nochloromethane	<1.7	< 0.2
2-Propanol		<170	<70	1,2-Di	bromoethane (EDB)	<1.5	< 0.2
1,1-Dichloroethene		<7.9	<2		obenzene	<9.2	<2
trans-1,2-Dichloroe	thene	<7.9	<2	Ethylk	Denzene	<8.7	<2
Methylene chloride		<690	<200	1,1,2,2	2-Tetrachloroethane	<2.7	< 0.4
t-Butyl alcohol (TB	A)	<240	<80	Nonar	1e	<100	<20
3-Chloropropene		<63	<20	Isopro	pylbenzene	<200	<40
CFC-113		<31	<4	2-Chlo	orotoluene	<100	<20
Carbon disulfide		<120	<40	Propy	lbenzene	<98	<20
Methyl t-butyl ethe	er (MTBE)	<140	<40	4-Ethy	yltoluene	<98	<20
Vinyl acetate		<140	<40	m,p-X	ylene	<17	<4
1,1-Dichloroethane		<8.1	<2	o-Xyle		<8.7	<2
cis-1,2-Dichloroethe	ene	<7.9	<2	Styrer		<17	<4
Hexane		<70	<20	Bromo		<41	<4
Chloroform		2.5	0.52		l chloride	<1	< 0.2
Ethyl acetate		<140	<40		Frimethylbenzene	<98	<20
Tetrahydrofuran		<18	<6		Frimethylbenzene	<98	<20
2-Butanone (MEK)		<120	<40		chlorobenzene	<12	<2
1,2-Dichloroethane		< 0.81	< 0.2		chlorobenzene	<4.6	< 0.76
1,1,1-Trichloroetha		<11	<2		chlorobenzene	<12	<2
Carbon tetrachlorid	le	< 6.3	<1		Frichlorobenzene	<15	<2
Benzene		8.4	2.6		halene	<1.5	< 0.28
Cyclohexane		<140	<40	Hexac	hlorobutadiene	<4.3	<0.4

ENVIRONMENTAL CHEMISTS

%LowerUpperSurrogates:Recovery:Limit:4-Bromofluorobenzene9070130ConcentrationConcentrationCompounds:ug/m3ppbyCompounds:ug/m3ppby	
Surrogates:Recovery:Limit:4-Bromofluorobenzene9070130ConcentrationConcentration	
4-Bromofluorobenzene 90 70 130 Concentration Concentration	
Concentration Concentratio	
Compounds: ug/m3 ppbv Compounds: ug/m3 ppl	on
	$\mathbf{b}\mathbf{v}$
Propene <26 <15 1,2-Dichloropropane <4.4 <0.9	
	1.9
	19
	19
	19
1,3-Butadiene <0.84 <0.38 Bromodichloromethane <1.3 <0.1	
Butane 110 48 Trichloroethene <2 <0.	
	3.8
	38
	1.9
	38
Acrolein 2.6 1.1 1,1,2-Trichloroethane <1 <0.	
	19
	19
Acetone21089Dibromochloromethane<1.6<0.12-Propanol<160	
1	
	$1.9 \\ 1.9$
trans-1,2-Dichloroethene<7.5<1.9Ethylbenzene<8.3<1Methylene chloride<660	
	.38 :19
	38
	19
	19
	19
	3.8
	1.9
	3.8
	3.8
Chloroform <0.93 <0.19 Benzyl chloride <0.98 <0.1	
	19
	19
	1.9
1,2-Dichloroethane (EDC) <0.77 <0.19 1,4-Dichlorobenzene <4.3 <0.7	
	1.9
	1.9
Benzene <6.1 <1.9 Naphthalene <1.4 <0.2	27
Cyclohexane <130 <38 Hexachlorobutadiene <4.1 <0.5	38

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-05-07 07/10/24 07/09/24 07/16/24 Air ug/m3	1024	Client Projec Lab II Data Instru Opera	et: D: File: ument:	Farallon Consulting, 1 3245 158th Ave SE 24 407106-04 1/8.7 071620.D GCMS8 bat		
		%	Lower	Upper			
Surrogates:	Re	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		86	70	130			
		Conce	ntration			Conce	ntration
Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D		10	_	1 0 D		2	0.40
Propene	.1	<12	<7		chloropropane	<2	< 0.43
Dichlorodifluorome	thane	<8.6	<1.7	1,4-Di		<3.1	< 0.87
Chloromethane		<32	<16		Frimethylpentane	<41	<8.7
F-114 Viscal ablastida		<18	<2.6	•	l methacrylate	<36	<8.7
Vinyl chloride 1,3-Butadiene		<2.2 <0.38	<0.87 <0.17	Hepta		<36 <0.58	<8.7 <0.087
Butane		<0.38 <41	<0.17 <17		odichloromethane oroethene	<0.58 <0.94	<0.087 <0.17
Bromomethane		<41 <34	<8.7		-Dichloropropene	<0.94 <7.9	<0.17
Chloroethane		<54 <23	<8.7 <8.7		hyl-2-pentanone	<7.9 <71	<1.7 <17
Vinyl bromide		<3.8	<0.87		1,3-Dichloropropene	<3.9	<0.87
Ethanol		<5.8 <66	<35	Toluer		<5.5 <66	<0.87
Acrolein		<00 <1	< 0.43		Frichloroethane	<0.47	<0.087
Pentane		<51	<0.43 <17	2-Hex		<36	<0.087
Trichlorofluoromet	hane	<20	<3.5		chloroethene	<59	<8.7
Acetone	nane	< <u>41</u>	<0.0 <17		nochloromethane	< 0.74	< 0.087
2-Propanol		<75	<30		bromoethane (EDB)	< 0.67	< 0.087
1,1-Dichloroethene		<3.4	< 0.87		benzene	<4	< 0.87
trans-1,2-Dichloroe		<3.4	< 0.87		Denzene	<3.8	< 0.87
Methylene chloride		<300	<87		2-Tetrachloroethane	<1.2	< 0.17
t-Butyl alcohol (TB		<110	<35	Nonar		<46	<8.7
3-Chloropropene	,	<27	<8.7		pylbenzene	<86	<17
CFC-113		<13	<1.7		protoluene	<45	<8.7
Carbon disulfide		<54	<17	Propy	lbenzene	<43	<8.7
Methyl t-butyl ethe	er (MTBE)	<63	<17	4-Ethy	vltoluene	<43	<8.7
Vinyl acetate		<61	<17	m,p-X	ylene	<7.6	<1.7
1,1-Dichloroethane		<3.5	< 0.87	o-Xyle		<3.8	< 0.87
cis-1,2-Dichloroeth	ene	<3.4	< 0.87	Styrer		<7.4	<1.7
Hexane		<31	<8.7	Bromo		<18	<1.7
Chloroform		0.76	0.16		l chloride	< 0.45	< 0.087
Ethyl acetate		<63	<17		Frimethylbenzene	<43	<8.7
Tetrahydrofuran		39	13		Frimethylbenzene	<43	<8.7
2-Butanone (MEK)		<51	<17		chlorobenzene	<5.2	< 0.87
1,2-Dichloroethane		< 0.35	< 0.087		chlorobenzene	<2	< 0.33
1,1,1-Trichloroetha		<4.7	< 0.87		chlorobenzene	<5.2	< 0.87
Carbon tetrachloric	te	<2.7	< 0.43		Frichlorobenzene	<6.5	< 0.87
Benzene		<2.8	< 0.87		halene	0.64	0.12
Cyclohexane		<60	<17	Hexac	hlorobutadiene	<1.9	< 0.17

ENVIRONMENTAL CHEMISTS

Date Received: 07/ Date Collected: 07/		Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	Farallon Consulting, I 3245 158th Ave SE 24 407106-05 1/9.6 071624.D GCMS8 bat		
	%	Lower	Upper			
Surrogates:	Recovery:	Limit:	Limit:			
4-Bromofluorobenzene	87	70	130			
~ .		ntration	~	_		ntration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
Propene	<13	<7.7	1 9 Di	chloropropane	<2.2	< 0.48
Dichlorodifluoromethan		<1.1	1,2-Die 1,4-Die		<2.2 <3.5	<0.48 <0.96
Chloromethane	<36	<1.5		rimethylpentane	<5.5 <45	< 9.6
F-114	<20	<2.9		l methacrylate	<49 <39	<9.6
Vinyl chloride	<2.5	< 0.96	Hepta	-	<39	<9.6
1,3-Butadiene	<0.42	< 0.19	-	dichloromethane	< 0.64	< 0.096
Butane	360 ve	150 ve		proethene	<0.04 <1	<0.19
Bromomethane	<37	<9.6		-Dichloropropene	<8.7	<1.9
Chloroethane	<25	<9.6		nyl-2-pentanone	<79	<19
Vinyl bromide	<4.2	< 0.96		1,3-Dichloropropene	<4.4	< 0.96
Ethanol	<72	<38	Toluer		<72	<19
Acrolein	<1.1	< 0.48		richloroethane	< 0.52	< 0.096
Pentane	180	61	2-Hexa		<39	<9.6
Trichlorofluoromethane		<3.8		hloroethene	<65	<9.6
Acetone	<46	<19		nochloromethane	< 0.82	< 0.096
2-Propanol	<83	<34		promoethane (EDB)	< 0.74	< 0.096
1,1-Dichloroethene	<3.8	< 0.96		benzene	<4.4	< 0.96
trans-1,2-Dichloroethen		< 0.96		enzene	<4.2	< 0.96
Methylene chloride	<330	<96		-Tetrachloroethane	<1.3	< 0.19
t-Butyl alcohol (TBA)	<120	<38	Nonan		<50	<9.6
3-Chloropropene	<30	<9.6	Isopro	pylbenzene	<94	<19
CFC-113	<15	<1.9		rotoluene	<50	<9.6
Carbon disulfide	<60	<19	Propyl	benzene	<47	<9.6
Methyl t-butyl ether (M	TBE) <69	<19	4-Ethy	ltoluene	<47	<9.6
Vinyl acetate	<68	<19	m,p-Xy	vlene	<8.3	<1.9
1,1-Dichloroethane	<3.9	< 0.96	o-Xyle	ne	<4.2	< 0.96
cis-1,2-Dichloroethene	<3.8	< 0.96	Styren	e	<8.2	<1.9
Hexane	<34	<9.6	Bromo		<20	<1.9
Chloroform	3.0	0.61	Benzy	l chloride	< 0.5	< 0.096
Ethyl acetate	<69	<19	1,3,5-1	rimethylbenzene	<47	<9.6
Tetrahydrofuran	<8.5	<2.9	1,2,4-7	rimethylbenzene	<47	<9.6
2-Butanone (MEK)	<57	<19		chlorobenzene	<5.8	< 0.96
1,2-Dichloroethane (ED	,	< 0.096		chlorobenzene	<2.2	< 0.36
1,1,1-Trichloroethane	<5.2	< 0.96		chlorobenzene	<5.8	< 0.96
Carbon tetrachloride	<3	< 0.48		richlorobenzene	<7.1	< 0.96
Benzene	<3.1	< 0.96	Napht		< 0.7	< 0.13
Cyclohexane	<66	<19	Hexac	hlorobutadiene	<2	< 0.19

ENVIRONMENTAL CHEMISTS

Client Sample ID:SG-11-07Date Received:07/10/24Date Collected:07/09/24Date Analyzed:07/16/24Matrix:AirUnits:ug/m3	1024	Client: Projec Lab II Data H Instru Opera	t:): File: ment:	Farallon Consulting, I 3245 158th Ave SE 24 407106-06 1/9.2 071622.D GCMS8 bat		
	%	Lower	Upper			
Surrogates: R	ecovery:	Lower Limit:	Limit:			
4-Bromofluorobenzene	86	70	130			
	Conce	ntration			Conce	ntration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D	10		1 0 D		2.1	0.40
Propene	<13	<7.4		chloropropane	<2.1	< 0.46
Dichlorodifluoromethane	< 9.1	<1.8	1,4-Di		<3.3	< 0.92
Chloromethane	<34	<17		Frimethylpentane	<43	< 9.2
F-114 Vincel ablanida	<19	<2.8	•	l methacrylate	<38	< 9.2
Vinyl chloride	<2.4 <0.41	<0.92 <0.18	Hepta	ne odichloromethane	<38 <0.62	<9.2 <0.092
1,3-Butadiene Butane	<0.41 <44	<0.18 <18		oroethene	<0.62 <0.99	<0.092 <0.18
Bromomethane	<44 <36	<9.2			<0.99 <8.4	<0.18 <1.8
Chloroethane	<36 <24	<9.2 <9.2		-Dichloropropene hyl-2-pentanone	<0.4 <75	<1.8 <18
Vinyl bromide	<24 <4	<9.2 <0.92		1,3-Dichloropropene	<13 <4.2	<0.92
Ethanol	<69	<0.92 <37	Toluer		<4.2 <69	<0.92 <18
Acrolein	<0 <i>9</i> 1.3	-57 0.55		Frichloroethane	<0 <i>5</i>	<0.092
Pentane	$^{1.3}_{<54}$	<18	2-Hex		<0.5 <38	<0.0 <i>92</i> <9.2
Trichlorofluoromethane	<04 <21	<3.7		chloroethene	<58 <62	<9.2
Acetone	56	23		nochloromethane	<0.78	< 0.092
2-Propanol	<79	<32		bromoethane (EDB)	<0.70	<0.092
1,1-Dichloroethene	<3.6	<0.92		obenzene	<4.2	< 0.92
trans-1,2-Dichloroethene	<3.6	<0.92		benzene	<4	< 0.92
Methylene chloride	<320	<92		2-Tetrachloroethane	<1.3	< 0.18
t-Butyl alcohol (TBA)	<110	<37	Nonar		<48	< 9.2
3-Chloropropene	<29	<9.2		pylbenzene	<90	<18
CFC-113	<14	<1.8		protoluene	<48	< 9.2
Carbon disulfide	<57	<18		lbenzene	<45	< 9.2
Methyl t-butyl ether (MTBE)	<66	<18		vltoluene	<45	< 9.2
Vinyl acetate	<65	<18	m,p-X		<8	<1.8
1,1-Dichloroethane	<3.7	< 0.92	o-Xyle		<4	< 0.92
cis-1,2-Dichloroethene	<3.6	< 0.92	Styrer	ne	<7.8	<1.8
Hexane	<32	<9.2	Brome	oform	<19	<1.8
Chloroform	0.49	0.10	Benzy	l chloride	< 0.48	< 0.092
Ethyl acetate	<66	<18	1,3,5-1	Frimethylbenzene	<45	< 9.2
Tetrahydrofuran	<8.1	<2.8		Frimethylbenzene	<45	< 9.2
2-Butanone (MEK)	<54	<18	· ·	chlorobenzene	$<\!5.5$	< 0.92
1,2-Dichloroethane (EDC)	< 0.37	< 0.092	· ·	chlorobenzene	<2.1	< 0.35
1,1,1-Trichloroethane	<5	< 0.92		chlorobenzene	<5.5	< 0.92
Carbon tetrachloride	<2.9	< 0.46		Frichlorobenzene	< 6.8	< 0.92
Benzene	<2.9	< 0.92		halene	< 0.68	< 0.13
Cyclohexane	<63	<18	Hexac	hlorobutadiene	<2	< 0.18

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method E Not Appl: Not Appl: 07/16/24 Air ug/m3	icable	Client Projec Lab I Data Instru Opera	et: D: File: ament:	Farallon Consulting, 3245 158th Ave SE 2 04-1582 mb 071612.D GCMS8 bat		
		%	Lower	Upper			
Surrogates:	R	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		84	70	130			
		Conce	ntration			Concer	ntration
Compounds:		ug/m3	ppbv	Comp	ounds:	ug/m3	ppbv
_							
Propene	. 1	<1.4	<0.8		chloropropane	< 0.23	< 0.05
Dichlorodifluorome	thane	<0.99	< 0.2	1,4-Di		< 0.36	< 0.1
Chloromethane		<3.7	<1.8		Frimethylpentane	<4.7	<1
F-114		<2.1	< 0.3		l methacrylate	<4.1	<1
Vinyl chloride		< 0.26	< 0.1	Hepta		<4.1	<1
1,3-Butadiene		< 0.044	< 0.02		odichloromethane	< 0.067	< 0.01
Butane		<4.8	<2		oroethene	< 0.11	< 0.02
Bromomethane		<3.9	<1		-Dichloropropene	< 0.91	< 0.2
Chloroethane		<2.6	<1		hyl-2-pentanone	<8.2	<2
Vinyl bromide		< 0.44	< 0.1		1,3-Dichloropropene	< 0.45	< 0.1
Ethanol		<7.5	<4	Toluer		<7.5	<2
Acrolein		< 0.11	< 0.05		Frichloroethane	< 0.055	< 0.01
Pentane Trial lang flag and state		<5.9	<2	2-Hex		<4.1	<1
Trichlorofluoromet	nane	<2.2 <4.8	<0.4 <2		chloroethene nochloromethane	<6.8	<1
Acetone 2-Propanol		<4.8 <8.6	<3.5		bromoethane (EDB)	$< 0.085 \\ < 0.077$	<0.01 <0.01
1,1-Dichloroethene		<0.0 <0.4	<0.1		bromoetnane (EDD) obenzene	< 0.46	<0.01
trans-1,2-Dichloroe	thong	<0.4 <0.4	<0.1		Denzene	<0.40 <0.43	<0.1 <0.1
Methylene chloride		<0.4 <35	<0.1 <10		2-Tetrachloroethane	<0.43 <0.14	<0.12
t-Butyl alcohol (TB		<55 <12	<10 <4	Nonar		<0.14 <5.2	<0.02 <1
3-Chloropropene	A)	<3.1	<1		pylbenzene	< 9.8	<2
CFC-113		< 0.1 < 1.5	<0.2		protoluene	<5.2	<1
Carbon disulfide		<6.2	<2		lbenzene	<4.9	<1
Methyl t-butyl ethe	r (MTBE)	<7.2	<2		yltoluene	<4.9	<1
Vinyl acetate		<7	<2	m,p-X		< 0.87	< 0.2
1,1-Dichloroethane		< 0.4	< 0.1	o-Xyle		< 0.43	< 0.1
cis-1,2-Dichloroethe		< 0.4	< 0.1	Styrer		< 0.85	< 0.2
Hexane		<3.5	<1	Bromo		<2.1	< 0.2
Chloroform		< 0.049	< 0.01		l chloride	< 0.052	< 0.01
Ethyl acetate		<7.2	<2		Frimethylbenzene	<4.9	<1
Tetrahydrofuran		< 0.88	< 0.3		Frimethylbenzene	<4.9	<1
2-Butanone (MEK)		<5.9	<2		chlorobenzene	<0.6	< 0.1
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		chlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroetha	. ,	< 0.55	< 0.1		chlorobenzene	< 0.6	< 0.1
Carbon tetrachlorid		< 0.31	< 0.05		Frichlorobenzene	< 0.74	< 0.1
Benzene		< 0.32	< 0.1		chalene	< 0.26	< 0.05
Cyclohexane		<6.9	<2		hlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/24 Date Received: 07/10/24 Project: 3245 158th Ave SE 2403-008, F&BI 407106

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 407106-04 1/8.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	830	830	0
APH EC9-12 aliphatics	ug/m3	470	490	4
APH EC9-10 aromatics	ug/m3	<220	<220	nm

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	100	70-130
APH EC9-12 aliphatics	ug/m3	67	119	70-130
APH EC9-10 aromatics	ug/m3	67	109	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/24 Date Received: 07/10/24 Project: 3245 158th Ave SE 2403-008, F&BI 407106

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 407106-04 1/8.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<12	<12	nm
Dichlorodifluoromethane	ug/m3	<8.6	<8.6	nm
Chloromethane	ug/m3	<32	<32	nm
F-114	ug/m3	<18	<18	nm
Vinyl chloride	ug/m3	<2.2	<2.2	nm
1,3-Butadiene	ug/m3	< 0.38	< 0.38	nm
Butane	ug/m3	<41	<41	nm
Bromomethane	ug/m3	<34	<34	nm
Chloroethane	ug/m3	<23	<23	nm
Vinyl bromide	ug/m3	<3.8	<3.8	nm
Ethanol	ug/m3	<66	<66	nm
Acrolein	ug/m3	<1	<1	nm
Pentane	ug/m3	<51	<51	nm
Trichlorofluoromethane	ug/m3	<20	<20	nm
Acetone	ug/m3	<41	<41	nm
2-Propanol	ug/m3	$<\!\!75$	<75	nm
1,1-Dichloroethene	ug/m3	<3.4	<3.4	nm
trans-1,2-Dichloroethene	ug/m3	<3.4	<3.4	nm
Methylene chloride	ug/m3	<300	<300	nm
t-Butyl alcohol (TBA)	ug/m3	<110	<110	nm
3-Chloropropene	ug/m3	$<\!\!27$	<27	nm
CFC-113	ug/m3	<13	<13	nm
Carbon disulfide	ug/m3	<54	<54	nm
Methyl t-butyl ether (MTBE)	ug/m3	<63	<63	nm
Vinyl acetate	ug/m3	<61	<61	nm
1,1-Dichloroethane	ug/m3	<3.5	<3.5	nm
cis-1,2-Dichloroethene	ug/m3	<3.4	<3.4	nm
Hexane	ug/m3	<31	<31	nm
Chloroform	ug/m3	0.76	0.81	6
Ethyl acetate	ug/m3	<63	<63	nm
Tetrahydrofuran	ug/m3	39	31	23
2-Butanone (MEK)	ug/m3	<51	<51	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.35	< 0.35	nm
1,1,1-Trichloroethane	ug/m3	<4.7	<4.7	nm
Carbon tetrachloride	ug/m3	<2.7	<2.7	nm
Benzene	ug/m3	<2.8	<2.8	nm
Cyclohexane	ug/m3	<60	<60	nm
1,2-Dichloropropane	ug/m3	<2	<2	nm
1,4-Dioxane	ug/m3	<3.1	<3.1	nm
2,2,4-Trimethylpentane	ug/m3	<41	<41	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/24 Date Received: 07/10/24 Project: 3245 158th Ave SE 2403-008, F&BI 407106

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 407106-04 1/8.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<36	<36	nm
Heptane	ug/m3	<36	<36	nm
Bromodichloromethane	ug/m3	< 0.58	< 0.58	nm
Trichloroethene	ug/m3	< 0.94	< 0.94	nm
cis-1,3-Dichloropropene	ug/m3	<7.9	<7.9	nm
4-Methyl-2-pentanone	ug/m3	<71	<71	nm
trans-1,3-Dichloropropene	ug/m3	<3.9	<3.9	nm
Toluene	ug/m3	<66	<66	nm
1,1,2-Trichloroethane	ug/m3	< 0.47	< 0.47	nm
2-Hexanone	ug/m3	<36	<36	nm
Tetrachloroethene	ug/m3	<59	<59	nm
Dibromochloromethane	ug/m3	< 0.74	< 0.74	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.67	< 0.67	nm
Chlorobenzene	ug/m3	<4	<4	nm
Ethylbenzene	ug/m3	<3.8	<3.8	nm
1,1,2,2-Tetrachloroethane	ug/m3	<1.2	<1.2	nm
Nonane	ug/m3	<46	<46	nm
Isopropylbenzene	ug/m3	<86	<86	nm
2-Chlorotoluene	ug/m3	<45	<45	nm
Propylbenzene	ug/m3	<43	<43	nm
4-Ethyltoluene	ug/m3	<43	<43	nm
m,p-Xylene	ug/m3	<7.6	<7.6	nm
o-Xylene	ug/m3	<3.8	<3.8	nm
Styrene	ug/m3	<7.4	<7.4	nm
Bromoform	ug/m3	<18	<18	nm
Benzyl chloride	ug/m3	< 0.45	< 0.45	nm
1,3,5-Trimethylbenzene	ug/m3	<43	<43	nm
1,2,4-Trimethylbenzene	ug/m3	<43	<43	nm
1,3-Dichlorobenzene	ug/m3	< 5.2	<5.2	nm
1,4-Dichlorobenzene	ug/m3	<2	<2	nm
1,2-Dichlorobenzene	ug/m3	<5.2	<5.2	nm
1,2,4-Trichlorobenzene	ug/m3	< 6.5	<6.5	nm
Naphthalene	ug/m3	<2.3	<2.3	nm
Hexachlorobutadiene	ug/m3	<1.9	<1.9	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/24 Date Received: 07/10/24 Project: 3245 158th Ave SE 2403-008, F&BI 407106

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Co	ntroi Sample		Percent	
	Reporting	Spike	Recovery	Accontance
Analyte	Units	Level	LCS	Acceptance Criteria
			<u> </u>	70-130
Propene Dichlorodifluoromethane	ug/m3 ug/m3	$\begin{array}{c} 23 \\ 67 \end{array}$	$\frac{95}{103}$	70-130
Chloromethane	ug/m3 ug/m3	28	105 89	70-130
F-114	ug/m3 ug/m3	$\frac{28}{94}$	89 108	70-130
Vinyl chloride	ug/m3 ug/m3	$\frac{94}{35}$	108 96	70-130
1,3-Butadiene	ug/m3	$\frac{35}{30}$	90 92	70-130
Butane	ug/m3 ug/m3	$\frac{30}{32}$	$\frac{92}{86}$	70-130
Bromomethane	ug/m3	52	109	70-130
Chloroethane	ug/m3	$\frac{32}{36}$	103	70-130
Vinyl bromide	ug/m3	50	101	70-130
Ethanol	ug/m3	$\frac{59}{25}$	76	70-130
Acrolein	0	$\frac{25}{31}$	78 91	
	ug/m3		91 90	70-130
Pentane Trichlorofluoromethane	ug/m3	$\begin{array}{c} 40 \\ 76 \end{array}$	90 97	70-130
	ug/m3			70-130
Acetone	ug/m3	32	99 08	70-130
2-Propanol	ug/m3	33 54	98 104	70-130
1,1-Dichloroethene	ug/m3	54 54	104	70-130
trans-1,2-Dichloroethene	ug/m3	54	105	70-130
Methylene chloride	ug/m3	94	101	70-130
t-Butyl alcohol (TBA)	ug/m3	41	91 02	70-130
3-Chloropropene	ug/m3	42	93 101	70-130
CFC-113	ug/m3	100	101	70-130
Carbon disulfide	ug/m3	42	103	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	89 87	70-130
Vinyl acetate	ug/m3	48	87 105	70-130
1,1-Dichloroethane	ug/m3	55	105	70-130
cis-1,2-Dichloroethene	ug/m3	54	102	70-130
Hexane	ug/m3	48	91 100	70-130
Chloroform	ug/m3	66 40	106	70-130
Ethyl acetate	ug/m3	49	94	70-130
Tetrahydrofuran	ug/m3	40	90 70	70-130
2-Butanone (MEK)	ug/m3	40	76	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	107	70-130
1,1,1-Trichloroethane	ug/m3	74	109	70-130
Carbon tetrachloride	ug/m3	85	106	70-130
Benzene	ug/m3	43	97 79	70-130
Cyclohexane	ug/m3	46	73	70-130
1,2-Dichloropropane	ug/m3	62	105	70-130
1,4-Dioxane	ug/m3	49	106	70-130
2,2,4-Trimethylpentane	ug/m3	63	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/24 Date Received: 07/10/24 Project: 3245 158th Ave SE 2403-008, F&BI 407106

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

	_		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	96	70-130
Heptane	ug/m3	55	93	70-130
Bromodichloromethane	ug/m3	90	110	70-130
Trichloroethene	ug/m3	73	115	70 - 130
cis-1,3-Dichloropropene	ug/m3	61	106	70 - 130
4-Methyl-2-pentanone	ug/m3	55	120	70 - 130
trans-1,3-Dichloropropene	ug/m3	61	100	70-130
Toluene	ug/m3	51	106	70 - 130
1,1,2-Trichloroethane	ug/m3	74	111	70 - 130
2-Hexanone	ug/m3	55	94	70 - 130
Tetrachloroethene	ug/m3	92	117	70 - 130
Dibromochloromethane	ug/m3	120	111	70 - 130
1,2-Dibromoethane (EDB)	ug/m3	100	110	70 - 130
Chlorobenzene	ug/m3	62	107	70 - 130
Ethylbenzene	ug/m3	59	98	70 - 130
1,1,2,2-Tetrachloroethane	ug/m3	93	103	70 - 130
Nonane	ug/m3	71	84	70 - 130
Isopropylbenzene	ug/m3	66	100	70 - 130
2-Chlorotoluene	ug/m3	70	97	70 - 130
Propylbenzene	ug/m3	66	95	70 - 130
4-Ethyltoluene	ug/m3	66	94	70 - 130
m,p-Xylene	ug/m3	120	97	70 - 130
o-Xylene	ug/m3	59	102	70 - 130
Styrene	ug/m3	58	93	70 - 130
Bromoform	ug/m3	140	108	70 - 130
Benzyl chloride	ug/m3	70	104	70 - 130
1,3,5-Trimethylbenzene	ug/m3	66	96	70 - 130
1,2,4-Trimethylbenzene	ug/m3	66	91	70 - 130
1,3-Dichlorobenzene	ug/m3	81	112	70 - 130
1,4-Dichlorobenzene	ug/m3	81	107	70-130
1,2-Dichlorobenzene	ug/m3	81	107	70-130
1,2,4-Trichlorobenzene	ug/m3	100	101	70-130
Naphthalene	ug/m3	71	99	70-130
Hexachlorobutadiene	ug/m3	140	111	70 - 130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Fax (206) 283-5044 Received by: FORMS\COC\COCTO-15_DOC			Friedman & Bruya, Inc. S 5500 4th America Scouth Relinquished by:				SC7-11-071024 06 4	06-071024 05	OY	03	1 02	01	Lab		USO H	City, State, ZIP (NA 980%)	HOTIOG Report To <u>YASUF</u> <u>Pchlivan</u> Company <u>Farallon</u> Address <u>13555</u> SE 36 th SF. 1
	i by:	MAN	SIGNATURE	-			4181 89	3259 3	96 Anes	26 1950	145 241	1	Canister Cc ID I	_	in Plantin		Bellence
		NUC	TURE	LA / SG	-	IA / SG	IA /	305 IA / SG	IA /	J IA / SG	11 IA / SG)	(1)2 IA / (G)	Reporting Level: Flow IA=Indoor Air Cont. SG=Soil Gas ID (Circle One)		nothing com	NOTES:	SAMP PRO
	ANH	Horse	PRIN				1 -29	tt-	10-2-4-201-2	1 -30	26-	12-24-30	Date Vac. Sampled ("Hg)			ES:	SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) PROJECT NAME & ADDRESS 32415 158th Ave SE
	ANHPHAN	Bman	PRINT NAME	-			1008 - 4 1013	9h60 5-2560	9090 - 4 0906	1405 - 5 1409	1329-3 13		Final Vac. ("Hg)	-			ADDRESS
Samples	FBI	FIN	COMPANY				\times	N X	X X 96	× × ×	1335 X X	1951 X X	TO15 Full Scan TO15 BTEXN APH	ANALYSIS REQUESTED	Ap	INVOICE TO	07/10/24 2403-008
Samples recaived at 25	hrjoiled	7/10/24	IY DATE										Chlorinated VOCs Helium	QUESTED	Default:Clean following final report delivery Hold (Fee may apply):	SAMPLE DISPOSAT	Page # of TURNAROUND TIME Standard RUSH Rush charges authorized by:
ñ	11:19	6/1/9	TIME									1 10 000	Notes		lowing ery ply):	RPOSAT.	of

SAN	APLE CONDI	TION UPON REO	CEIPT CH	ECKLIST		
PROJECT # <u>40710</u>	CLIENT	FLN		INITIAL DATE:	s, AP 07/10/	24
If custody seals are p	present on coc	oler, are they int	act?	Ø NA	□ YES	□ NO
Cooler/Sample tempe	erature		•	Therr	nometer ID: Flu	<u>3</u> ℃ _{ke 96312917}
Were samples receive	ed on ice/cold	packs?			□ YES	Ø NO
How did samples arr Ø Over th		□ Picked up by F	&BI	□ FedEx	/UPS/GSO	
Is there a Chain-of-C *or other representative doo	ustody* (COC cuments, letters, a		ES 🗆 NO	Init: Date	als/ AP e: 07(1	0/24
Number of days sam	ples have bee	n sitting prior to	receipt a	t laborato	ory <u>Ø-1</u>	_ days
Are the samples clea	rly identified	? (explain "no" answer	r below)		Ø YES	□ NO
Were all sample cont leaking etc.)? (explain			t broken,		Ø YES	□ NO
Were appropriate sa	mple contain	ers used?	ø ye	S 🗆 N	0. DU	Jnknown
If custody seals are j	present on sai	mples, are they i	ntact?	NA	□ YES	D NO
Are samples requirin	ng no headspa	ace, headspace fr	ree?	Ø NA	D YES	□ NO
Is the following info (explain "no" answer below)	rmation prov	ided on the COC	, and does	it match	the samp	le label?
				[□ Not on C	OC/label
Date Sampled	A Yes D No			[□ Not on C	OC/label
Time Sampled	Ves D No	· · · · · · · · · · · · · · · · · · ·			∃ Not on C	OC/label
# of Containers	Ø Yes □ No					
Relinquished	Ø Yes □ No			1		
Requested analysis	🛛 Yes 🗆 On J	Hold				
	ny additional	l canisters/tubes	received? ber of unu	□ NA	Ø YES tubes	D NO
	(SN: 9)	560, 3251)				
FRIEDMAN & BRUYA, INC./FO	RMS/CHECKIN/SAM	PLECONDITION.doc			Rev.	05/01/24

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

July 24, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on July 10, 2024 from the 3245 158th Ave SE 2403-008, F&BI 407107 project. There are 11 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0724R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 10, 2024 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 407107 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
407107-01	SG-04-071024

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	SG-04-071024	Client:		Farallon Consulting, LLC
Date Received:	07/10/24	Project:		3245 158th Ave SE 2403-008
Date Collected:	07/10/24	Lab ID:		407107-01 1/30000
Date Analyzed:	07/17/24	Data File:		071628.D
Matrix:	Air	Instrument:		GCMS8
Units:	ug/m3	Operator:		bat
Surrogates: 4-Bromofluoroben: Compounds:	% Recovery: zene 110 Concentration ug/m3	Lower Limit: 70	Upper Limit: 130	

APH EC5-8 aliphatics	6,200,000
APH EC9-12 aliphatics	15,000,000
APH EC9-10 aromatics	<750,000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 07/16/24 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 158th Ave SE 2403-008 04-1582 mb 071612.D GCMS8 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 83	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-04-0' 07/10/24 07/10/24 07/17/24 Air ug/m3		Client: Project: Lab ID: Data Fi Instrum Operato	ient:	Farallon Consulting, 3245 158th Ave SE 2 407107-01 1/30000 071628.D GCMS8 bat		
		%	Lower	Upper			
Surrogates:	F		Limit:	Limit:			
4-Bromofluorobenz		116	70	130			
		Concent	nation			Conco	ntration
Compounds:		ug/m3		Com	pounds:	ug/m3	-
Compounds.		ug/ma	ppbv	Com	pounds.	ug/ma	ppbv
Propene		<41,000	<24,000		Dichloropropane	<6,900	<1,500
Dichlorodifluorome	ethane	<30,000	<6,000	1,4-I	Dioxane	<11,000	<3,000
Chloromethane		<110,000	<54,000	2,2,4	-Trimethylpentane	<140,000	<30,000
F-114		<63,000	<9,000	Meth	nyl methacrylate	<120,000	<30,000
Vinyl chloride		<7,700	<3,000	Hept	ane	<120,000	<30,000
1,3-Butadiene		<1,300	<600		nodichloromethane	<2,000	<300
Butane		<140,000	<60,000	Trick	nloroethene	<3,200	<600
Bromomethane		<120,000	<30,000	cis-1	,3-Dichloropropene	<27,000	<6,000
Chloroethane		<79,000	<30,000		ethyl-2-pentanone	<250,000	<60,000
Vinyl bromide		<13,000	<3,000	trans	s-1,3-Dichloropropene	<14,000	<3,000
Ethanol		<230,000	<120,000	Tolu		<230,000	<60,000
Acrolein		<3,400	<1,500	1,1,2	-Trichloroethane	<1,600	<300
Pentane		<180,000	<60,000		xanone	<120,000	<30,000
Trichlorofluoromet	hane	<67,000	<12,000		achloroethene	<200,000	<30,000
Acetone		<140,000	<60,000		omochloromethane	<2,600	<300
2-Propanol		<260,000	<100,000	1,2-I	Dibromoethane (EDB)	<2,300	<300
1,1-Dichloroethene		<12,000	<3,000		robenzene	<14,000	<3,000
trans-1,2-Dichloroe		<12,000	<3,000	•	lbenzene	<13,000	<3,000
Methylene chloride		<1,000,000	<300,000		,2-Tetrachloroethane	<4,100	<600
t-Butyl alcohol (TB	A)	<360,000	<120,000	Nona		<160,000	<30,000
3-Chloropropene		<94,000	<30,000		ropylbenzene	<290,000	<60,000
CFC-113		<46,000	<6,000		lorotoluene	<160,000	<30,000
Carbon disulfide		<190,000	<60,000	_	ylbenzene	<150,000	<30,000
Methyl t-butyl ethe	er (MTBE)		<60,000		hyltoluene	<150,000	<30,000
Vinyl acetate		<210,000	<60,000		Xylene	<26,000	<6,000
1,1-Dichloroethane		<12,000	<3,000	o-Xy		<13,000	<3,000
cis-1,2-Dichloroeth	ene	<12,000	<3,000	Styre		<26,000	<6,000
Hexane		<110,000	<30,000		noform	<62,000	<6,000
Chloroform		<1,500	<300		yl chloride	<1,600	<300
Ethyl acetate		<220,000	<60,000		-Trimethylbenzene	<150,000	<30,000
Tetrahydrofuran		<27,000	<9,000		-Trimethylbenzene	<150,000	<30,000
2-Butanone (MEK)		<180,000	<60,000		Dichlorobenzene	<18,000	<3,000
1,2-Dichloroethane		<1,200	<300		Dichlorobenzene	<6,900	<1,100
1,1,1-Trichloroetha		<16,000	<3,000		Dichlorobenzene	<18,000	<3,000
Carbon tetrachlorie	ae	<9,400	<1,500		-Trichlorobenzene	<22,000	<3,000
Benzene		<9,600	<3,000	-	nthalene	<2,200	<420
Cyclohexane		<210,000	<60,000	Hexa	achlorobutadiene	<6,400	<600

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method E Not Appl: Not Appl: 07/16/24 Air ug/m3	icable	Client Projec Lab I Data Instru Opera	et: D: File: ament:	ent: GCMS8		
		%	Lower	Upper			
Surrogates:	R	ecovery:	Limit:	Limit:			
4-Bromofluorobenz		84	70	130			
		Conce	ntration			Concer	ntration
Compounds:		ug/m3	ppbv	Comp	ounds:	ug/m3	ppbv
_							
Propene	. 1	<1.4	<0.8		chloropropane	< 0.23	< 0.05
Dichlorodifluorome	thane	<0.99	< 0.2	1,4-Di		< 0.36	< 0.1
Chloromethane		<3.7	<1.8		Frimethylpentane	<4.7	<1
F-114		<2.1	< 0.3		l methacrylate	<4.1	<1
Vinyl chloride		< 0.26	< 0.1	Hepta		<4.1	<1
1,3-Butadiene		< 0.044	< 0.02		odichloromethane	< 0.067	< 0.01
Butane		<4.8	<2		oroethene	< 0.11	< 0.02
Bromomethane		<3.9	<1		-Dichloropropene	< 0.91	< 0.2
Chloroethane		<2.6	<1		hyl-2-pentanone	<8.2	<2
Vinyl bromide		< 0.44	< 0.1		1,3-Dichloropropene	< 0.45	< 0.1
Ethanol		<7.5	<4	Toluer		<7.5	<2
Acrolein		< 0.11	< 0.05		Frichloroethane	< 0.055	< 0.01
Pentane Trial lang flag and state		<5.9	<2	2-Hex		<4.1	<1
Trichlorofluoromet	nane	<2.2 <4.8	<0.4 <2		chloroethene nochloromethane	<6.8	<1
Acetone 2-Propanol		<4.8 <8.6	<3.5		bromoethane (EDB)	<0.085 <0.077	<0.01 <0.01
1,1-Dichloroethene		<0.0 <0.4	<0.1		bromoetnane (EDD) obenzene	< 0.46	<0.01
trans-1,2-Dichloroe	thong	<0.4 <0.4	<0.1		Denzene	<0.40 <0.43	<0.1 <0.1
Methylene chloride		$<\!$	<0.1 <10		2-Tetrachloroethane	<0.43 <0.14	<0.12
t-Butyl alcohol (TB		<55 <12	<10 <4	Nonar		<0.14 <5.2	<0.02 <1
3-Chloropropene	A)	<3.1	<1		pylbenzene	< 9.8	<2
CFC-113		< 0.1 < 1.5	<0.2		protoluene	<5.2	<1
Carbon disulfide		<6.2	<2		lbenzene	<4.9	<1
Methyl t-butyl ethe	r (MTBE)	<7.2	<2		yltoluene	<4.9	<1
Vinyl acetate		<7	<2	m,p-X		< 0.87	< 0.2
1,1-Dichloroethane		< 0.4	< 0.1	o-Xyle		< 0.43	< 0.1
cis-1,2-Dichloroethe		< 0.4	< 0.1	Styrer		< 0.85	< 0.2
Hexane		<3.5	<1	Bromo		<2.1	< 0.2
Chloroform		< 0.049	< 0.01		l chloride	< 0.052	< 0.01
Ethyl acetate		<7.2	<2		Frimethylbenzene	<4.9	<1
Tetrahydrofuran		< 0.88	< 0.3		Frimethylbenzene	<4.9	<1
2-Butanone (MEK)		<5.9	<2		chlorobenzene	<0.6	< 0.1
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		chlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroetha	. ,	< 0.55	< 0.1		chlorobenzene	< 0.6	< 0.1
Carbon tetrachlorid		< 0.31	< 0.05		Frichlorobenzene	< 0.74	< 0.1
Benzene		< 0.32	< 0.1		chalene	< 0.26	< 0.05
Cyclohexane		<6.9	<2		hlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/24 Date Received: 07/10/24 Project: 3245 158th Ave SE 2403-008, F&BI 407107

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 407106-04 1/8.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	830	830	0
APH EC9-12 aliphatics	ug/m3	470	490	4
APH EC9-10 aromatics	ug/m3	<220	<220	nm

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	100	70-130
APH EC9-12 aliphatics	ug/m3	67	119	70-130
APH EC9-10 aromatics	ug/m3	67	109	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/24 Date Received: 07/10/24 Project: 3245 158th Ave SE 2403-008, F&BI 407107

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 407106-04 1/8.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<12	<12	nm
Dichlorodifluoromethane	ug/m3	<8.6	<8.6	nm
Chloromethane	ug/m3	<32	<32	nm
F-114	ug/m3	<18	<18	nm
Vinyl chloride	ug/m3	<2.2	<2.2	nm
1,3-Butadiene	ug/m3	< 0.38	< 0.38	nm
Butane	ug/m3	<41	<41	nm
Bromomethane	ug/m3	<34	<34	nm
Chloroethane	ug/m3	<23	<23	nm
Vinyl bromide	ug/m3	<3.8	<3.8	nm
Ethanol	ug/m3	<66	<66	nm
Acrolein	ug/m3	<1	<1	nm
Pentane	ug/m3	<51	<51	nm
Trichlorofluoromethane	ug/m3	<20	<20	nm
Acetone	ug/m3	<41	<41	nm
2-Propanol	ug/m3	<75	<75	nm
1,1-Dichloroethene	ug/m3	<3.4	<3.4	nm
trans-1,2-Dichloroethene	ug/m3	<3.4	<3.4	nm
Methylene chloride	ug/m3	<300	<300	nm
t-Butyl alcohol (TBA)	ug/m3	<110	<110	nm
3-Chloropropene	ug/m3	<27	<27	nm
CFC-113	ug/m3	<13	<13	nm
Carbon disulfide	ug/m3	<54	<54	nm
Methyl t-butyl ether (MTBE)	ug/m3	<63	<63	nm
Vinyl acetate	ug/m3	<61	<61	nm
1,1-Dichloroethane	ug/m3	<3.5	<3.5	nm
cis-1,2-Dichloroethene	ug/m3	<3.4	<3.4	nm
Hexane	ug/m3	<31	<31	nm
Chloroform	ug/m3	0.76	0.81	6
Ethyl acetate	ug/m3	<63	<63	nm
Tetrahydrofuran	ug/m3	39	31	23
2-Butanone (MEK)	ug/m3	<51	<51	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.35	< 0.35	nm
1,1,1-Trichloroethane	ug/m3	<4.7	<4.7	nm
Carbon tetrachloride	ug/m3	<2.7	<2.7	nm
Benzene	ug/m3	<2.8	<2.8	nm
Cyclohexane	ug/m3	<60	<60	nm
1,2-Dichloropropane	ug/m3	<2	<2	nm
1,4-Dioxane	ug/m3	<3.1	<3.1	nm
2,2,4-Trimethylpentane	ug/m3	<41	<41	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/24 Date Received: 07/10/24 Project: 3245 158th Ave SE 2403-008, F&BI 407107

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 407106-04 1/8.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<36	<36	nm
Heptane	ug/m3	<36	<36	nm
Bromodichloromethane	ug/m3	< 0.58	< 0.58	nm
Trichloroethene	ug/m3	< 0.94	< 0.94	nm
cis-1,3-Dichloropropene	ug/m3	<7.9	<7.9	nm
4-Methyl-2-pentanone	ug/m3	<71	<71	nm
trans-1,3-Dichloropropene	ug/m3	<3.9	<3.9	nm
Toluene	ug/m3	<66	<66	nm
1,1,2-Trichloroethane	ug/m3	< 0.47	< 0.47	nm
2-Hexanone	ug/m3	<36	<36	nm
Tetrachloroethene	ug/m3	<59	<59	nm
Dibromochloromethane	ug/m3	< 0.74	< 0.74	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.67	< 0.67	nm
Chlorobenzene	ug/m3	<4	<4	nm
Ethylbenzene	ug/m3	<3.8	<3.8	nm
1,1,2,2-Tetrachloroethane	ug/m3	<1.2	<1.2	nm
Nonane	ug/m3	<46	<46	nm
Isopropylbenzene	ug/m3	<86	<86	nm
2-Chlorotoluene	ug/m3	<45	<45	nm
Propylbenzene	ug/m3	<43	<43	nm
4-Ethyltoluene	ug/m3	<43	<43	nm
m,p-Xylene	ug/m3	<7.6	<7.6	nm
o-Xylene	ug/m3	<3.8	<3.8	nm
Styrene	ug/m3	<7.4	<7.4	nm
Bromoform	ug/m3	<18	<18	nm
Benzyl chloride	ug/m3	< 0.45	< 0.45	nm
1,3,5-Trimethylbenzene	ug/m3	<43	<43	nm
1,2,4-Trimethylbenzene	ug/m3	<43	<43	nm
1,3-Dichlorobenzene	ug/m3	< 5.2	<5.2	nm
1,4-Dichlorobenzene	ug/m3	<2	<2	nm
1,2-Dichlorobenzene	ug/m3	<5.2	<5.2	nm
1,2,4-Trichlorobenzene	ug/m3	< 6.5	<6.5	nm
Naphthalene	ug/m3	<2.3	<2.3	nm
Hexachlorobutadiene	ug/m3	<1.9	<1.9	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/24 Date Received: 07/10/24 Project: 3245 158th Ave SE 2403-008, F&BI 407107

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory Con	Percent				
	Reporting	Spike	Recovery	Accontance	
Analyte	Units	Level	LCS	Acceptance Criteria	
Propene		23	95	70-130	
Dichlorodifluoromethane	ug/m3 ug/m3	$\frac{23}{67}$	$\frac{95}{103}$	70-130	
Chloromethane	ug/m3 ug/m3	28	105 89	70-130	
F-114	ug/m3	$\frac{28}{94}$	89 108	70-130	
	ug/m3 ug/m3	$\frac{94}{35}$	108 96	70-130	
Vinyl chloride 1,3-Butadiene	ug/m3 ug/m3	30 30	96 92	70-130	
Butane	ug/m3 ug/m3	$\frac{30}{32}$	$\frac{92}{86}$	70-130	
Bromomethane	-	$\frac{52}{52}$	109	70-130	
Chloroethane	ug/m3	$\frac{32}{36}$	109	70-130	
	ug/m3				
Vinyl bromide	ug/m3	59 95	114	70-130	
Ethanol	ug/m3	25	76	70-130	
Acrolein	ug/m3	31	91 00	70-130	
Pentane	ug/m3	40	90 97	70-130	
Trichlorofluoromethane	ug/m3	76	97	70-130	
Acetone	ug/m3	32	99	70-130	
2-Propanol	ug/m3	33	98	70-130	
1,1-Dichloroethene	ug/m3	54	104	70-130	
trans-1,2-Dichloroethene	ug/m3	54	105	70-130	
Methylene chloride	ug/m3	94	101	70-130	
t-Butyl alcohol (TBA)	ug/m3	41	91	70-130	
3-Chloropropene	ug/m3	42	93	70-130	
CFC-113	ug/m3	100	101	70-130	
Carbon disulfide	ug/m3	42	103	70-130	
Methyl t-butyl ether (MTBE)	ug/m3	49	89	70-130	
Vinyl acetate	ug/m3	48	87	70-130	
1,1-Dichloroethane	ug/m3	55	105	70-130	
cis-1,2-Dichloroethene	ug/m3	54	102	70-130	
Hexane	ug/m3	48	91	70-130	
Chloroform	ug/m3	66	106	70-130	
Ethyl acetate	ug/m3	49	94	70-130	
Tetrahydrofuran	ug/m3	40	90	70-130	
2-Butanone (MEK)	ug/m3	40	76	70-130	
1,2-Dichloroethane (EDC)	ug/m3	55	107	70-130	
1,1,1-Trichloroethane	ug/m3	74	109	70-130	
Carbon tetrachloride	ug/m3	85	106	70-130	
Benzene	ug/m3	43	97	70-130	
Cyclohexane	ug/m3	46	73	70-130	
1,2-Dichloropropane	ug/m3	62	105	70-130	
1,4-Dioxane	ug/m3	49	106	70-130	
2,2,4-Trimethylpentane	ug/m3	63	96	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/24 Date Received: 07/10/24 Project: 3245 158th Ave SE 2403-008, F&BI 407107

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	Solution Gample	Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Methyl methacrylate	ug/m3	55	96	70-130		
Heptane	ug/m3	55	93	70-130		
Bromodichloromethane	ug/m3	90	110	70-130		
Trichloroethene	ug/m3	73	115	70-130		
cis-1,3-Dichloropropene	ug/m3	61	106	70-130		
4-Methyl-2-pentanone	ug/m3	55	120	70-130		
trans-1,3-Dichloropropene	ug/m3	61	100	70-130		
Toluene	ug/m3	51	106	70-130		
1,1,2-Trichloroethane	ug/m3	74	111	70-130		
2-Hexanone	ug/m3	55	94	70-130		
Tetrachloroethene	ug/m3	92	117	70-130		
Dibromochloromethane	ug/m3	120	111	70-130		
1,2-Dibromoethane (EDB)	ug/m3	100	110	70-130		
Chlorobenzene	ug/m3	62	107	70-130		
Ethylbenzene	ug/m3	59	98	70-130		
1,1,2,2-Tetrachloroethane	ug/m3	93	103	70-130		
Nonane	ug/m3	71	84	70-130		
Isopropylbenzene	ug/m3	66	100	70-130		
2-Chlorotoluene	ug/m3	70	97	70 - 130		
Propylbenzene	ug/m3	66	95	70-130		
4-Ethyltoluene	ug/m3	66	94	70 - 130		
m,p-Xylene	ug/m3	120	97	70-130		
o-Xylene	ug/m3	59	102	70-130		
Styrene	ug/m3	58	93	70-130		
Bromoform	ug/m3	140	108	70 - 130		
Benzyl chloride	ug/m3	70	104	70 - 130		
1,3,5-Trimethylbenzene	ug/m3	66	96	70 - 130		
1,2,4-Trimethylbenzene	ug/m3	66	91	70-130		
1,3-Dichlorobenzene	ug/m3	81	112	70 - 130		
1,4-Dichlorobenzene	ug/m3	81	107	70 - 130		
1,2-Dichlorobenzene	ug/m3	81	107	70 - 130		
1,2,4-Trichlorobenzene	ug/m3	100	101	70 - 130		
Naphthalene	ug/m3	71	99	70-130		
Hexachlorobutadiene	ug/m3	140	111	70-130		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMAS\COC\COCTO-15.DOC			Senttle WA 98108		Fridman 0 D T								N2-11-11-1024	Sample Name		Phone (425) 2950 Email up thing Orallon Consulting view	City, State, ZIP BUUUUL, WA 98006	Address 13555 SE 36th St.	Company Farallon	Report To Y. Dehlivan	±01±0h
тиесетиец ру:		Relinquished by:	Received	Relinguished by									10	Lab ID		nail ype	C WF	Soth S		an	
by:		hed by:		SIGN									9 th	Canister ID		hliven O Para	1 98000	<u>4</u>			
			Mar	SIGNATURE									93	Flow Cont. ID		alloncins					
						IA / SG	IA (SG)	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)		thing con	NOTES:	32	- PROJ	SAME	SAMPI						
		King	H	2									06- he-11-2	Date Sampled			ÿ	3245 158th Ave SE	PROJECT NAME & ADDRESS	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTO
		E	ple.	PRIN										Initial Vac. ("Hg)				th Ave	E & AL	(nature)	IN OF
		Dur	Bmar	PRINT NAME									1034	Field Initial Time				SE	DRESS	7	CUST
		1	8											Final Vac. ("Hg)							ODY
								3					1040	Field Final Time			IN	76	,		FO
	Sal	Fe!	RN	CC									\times	TO15 Full Scan TO15 BTEXN	ANALY	AP	INVOICE TO	2403-00 8	P0#		h &] 01 tO
	nplea	103	S	COMPANY									X	АРН	SIS RE		TO	d d		-	24 -
	Samples received			Y										Chlorinated VOC Helium	ANALYSIS REQUESTED	fina Hold	Defa	Rush charg	n St St		
	t at	pale	1/4	DA	+								**		ED	final report delivery Hold (Fee may apply):	SAMPLE DISPOSAL	Rush charges authorized by:	A Standard	Page # of TURNAROUND TIME	
	23 °C	by 11	10/24	DATE								0141	0	Notes		delivery ly apply)	E DISPO	authoriz		COUND	
		N	121	TIME									AD HITS	tes)SAL	ed by:		TIME	->

	e present on c	ooler, are they inta	ict?	ø na	\Box YES	D NO
Cooler/Sample ten	nperature			The	mometer ID: Flu	3 °C
Were samples rece	ived on ice/col	d packs?		2110	□ YES	⊿ NO
How did samples a Ø Over	the Counter	□ Picked up by F&	₽BI	□ FedE	x/UPS/GSC)
Is there a Chain-of *or other representative	-Custody* (CO documents, letters,	C)? / YEand/or shipping memos	S 🗆 NO	Init Dat	ials/ AP e:07(1	0/24
Number of days sa	mples have be	en sitting prior to 1	receipt at	laborat	ory _Ø_	_days
Are the samples cle	early identified	d? (explain "no" answer b	oelow)		J YES	D NO
Were all sample co leaking etc.)? (explai	ntainers receiv n "no" answer belov	ved intact (i.e. not) »)	broken,		Ø YES	🗆 NO
Were appropriate s	ample contain	iers used?	e yes	S D N	U□ .C	nknown
If custody seals are	present on sa	mples, are they int	act?	Ø NA	D YES	□ NO
Are samples requir	ing no headsp	ače, headspace free	e?	Ø NA	D YES	□ NO
Is the following info (explain "no" answer below	ormation [`] prov ^{w)}	ided on the COC, a	nd does	it match	the sampl	e label?
Sample ID's	🖉 Yes 🗆 No		N		Not on CC	C/label
Date Sampled	🖌 Yes 🗆 No				Not on CO	C/label
Time Sampled	🛛 Yes 🗆 No				Not on CO	C/label
# of Containers	🛛 Yes 🗆 No					
Relinquished	🛛 Yes 🗆 No					
Requested analysis	🛛 Yes 🗆 On H	Hold				
Other comments (us						
Air Samples: Were a						
Number of unused '	TO15 canisters	S Number	of unus	ed TO17	tubes	
		LECONDITION.doc	······		Rev. 05	/01/24

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 16, 2023

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the additional results from the testing of material submitted on October 31, 2023 from the 3245 158th Ave SE, F&BI 310563 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN1116R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 31, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE 2403-008, F&BI 310563 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
310563 -01	Geotech-1-103123
310563 -02	FMW-02-103123
310563 -03	FMW-01-103123
310563 -04	FMW-03-103123
310563 -05	Trip Blank-103123

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/16/23 Date Received: 10/31/23 Project: 3245 158th Ave SE, F&BI 310563 Date Extracted: 11/02/23 Date Analyzed: 11/14/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 50-150)
Geotech-1-103123 $_{310563-01}$	560 x	910 x	93
Method Blank ^{03-2610 MB}	<50	<250	105

ENVIRONMENTAL CHEMISTS

Date of Report: 11/16/23 Date Received: 10/31/23 Project: 3245 158th Ave SE, F&BI 310563

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel										
		Percent	Percent							
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD				
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)				
Diesel Extended	ug/L (ppb)	2,500	96	96	72-139	0				

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 ${\bf k}-{\bf The}$ calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Received by:	Relinquished by: ANHPHAN	Received by: 41 Angle Bman	IGNATURE PRINT	Samples rece		\rightarrow	woter 2	FMW-03-103123 04 1 1 1330 1 1 X X X	FMW-01-103123 03 1220 1220 1X X X	02 A-G	Greatech-1-105123 01 A-E in 31/23 1030 Water 5 X X X X	Sample ID Lab ID Lab ID Lab ID Lab ID Date Type I Sampled Sampled Jars Sampled Jars Sample Jars Sample Jars NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270		Phone (425) 295 (76) Email yochi um Project specific RLs? - Yes / No AP		30445 ISSM AVE SE		SAMPLERS (signature) (Mr. CUSTODY 10/
	HAN F36	- Fun	NAME COMPANY	Samples received at \propto				×	×	×	XXX	NWTPH-GX BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260	A	A.P	INVOICE TO	800-5042	PO#	10/31/23
	10/31/2315:40	10-3-23 1	DATE TIME			Added at 146					1	Notes	Ð	 Arcuive samples Other Default: Dispose after 30 days 	SAMPLE DISPOSAL	□ RUSH Rush charges authorized by:	A Standard turnaround	VW3/C2 Page# 1 of

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

April 17, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on April 5, 2024 from the 3245 158th Ave SE Bellevue WA 2403-008, F&BI 404097 project. There are 17 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0417R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 5, 2024 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 158th Ave SE Bellevue WA 2403-008, F&BI 404097 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
404097 -01	SG-05-040424
404097 -02	SG-11-040424
404097 -03	SG-10-040424
404097 -04	SG-09-040424

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The acetone concentration in sample SG-05-040424 exceeded the calibration range of the instrument. The data were flagged accordingly.

The TO-15 calibration standard for several compounds exceeded the acceptance criteria. The compounds were not detected, therefore this did not represent an out of control condition, and were qualified with a "k" qualifier.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<180

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Date Collected:04/04/24Date Analyzed:04/11/24Matrix:Air		t: ct: D: File: ument: ator:	Farallon Consulting, LLC 3245 158th Ave SE Bellevue WA 404097-01 1/7.3 041021.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	Recovery: zene 92	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<250

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Date Collected:04/04/24Date Analyzed:04/11/24Matrix:Air		t: ct: D: File: ument: ator:	Farallon Consulting, LLC 3245 158th Ave SE Bellevue WA 404097-02 1/10 041023.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 93	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-10-040424 04/05/24 04/04/24 04/11/24 Air ug/m3	Clien Projec Lab I Data Instru Opera	et: D: File: ument:	Farallon Consulting, LLC 3245 158th Ave SE Bellevue WA 404097-03 1/6.9 041024.D GCMS8 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 93	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <170			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<200

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Date Collected:04/04/24Date Analyzed:04/11/24Matrix:Air		t: ct: D: File: ument: ator:	Farallon Consulting, LLC 3245 158th Ave SE Bellevue WA 404097-04 1/8.2 041025.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 91	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<25

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 04/10/24 Air ug/m3	Clien Projec Lab I Data Instru Opera	et: D: File: ument:	Farallon Consulting, LLC 3245 158th Ave SE Bellevue WA 04-0778 mb 041012.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 90	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-05-04 04/05/24 04/04/24 04/06/24 Air ug/m3	0424		ect: ID: File: rument:	Farallon Consulting, 3245 158th Ave SE I 404097-01 1/4.8 040517.D GCMS8 bat		
		%	Lower	Upper			
Surrogates:		ecovery:	Limit:	Limit:			
4-Bromofluorobenz	ene	96	70	130			
		Conce	ntration			Conc	entration
Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
-		0		_		Ū	
Propene		<5.8	<3.4		chloropropane	<1.1	< 0.24
Dichlorodifluorome	ethane	<4.7	< 0.96	1,4-Die		<1.7	< 0.48
Chloromethane		<18	<8.6		rimethylpentane	<22	<4.8
F-114		<10	<1.4	-	l methacrylate	<20	<4.8
Vinyl chloride		<1.2	< 0.48	Hepta		<20	<4.8
1,3-Butadiene		< 0.21	< 0.096		dichloromethane	< 0.32	< 0.048
Butane		<23	< 9.6		proethene	< 0.52	< 0.096
Bromomethane		<19	<4.8		-Dichloropropene	<4.4	< 0.96
Chloroethane		<13	<4.8		nyl-2-pentanone	<39	< 9.6
Vinyl bromide		<2.1	< 0.48		1,3-Dichloropropene	<2.2	< 0.48
Ethanol		<36 k	<19 k	Toluer		<36	< 9.6
Acrolein		< 0.55	< 0.24		richloroethane	< 0.26	< 0.048
Pentane Trichlorofluoromet	h	<28 <11	<9.6 <1.9	2-Hexa	hloroethene	<20 <33	<4.8 <4.8
	nane				nochloromethane		<0.048
Acetone 2-Propanol		220 ve <41	94 ve <17		bromoethane (EDB)	<0.41 <0.37	< 0.048
1,1-Dichloroethene		<41 <1.9	<0.48		benzene	<0.37	<0.048
trans-1,2-Dichloroe		<1.9 <1.9	<0.48		penzene	<2.2	<0.48
Methylene chloride		<1.9 <170	<0.48 <48		-Tetrachloroethane	<0.66	<0.48
t-Butyl alcohol (TB		<58	<40 <19	Nonan		<0.00	<0.030
3-Chloropropene	A)	<15	<4.8		pylbenzene	<25 <47	<4.0 <9.6
CFC-113		<7.4	<0.96		rotoluene	<25	<5.0 <4.8
Carbon disulfide		<30	<9.6		benzene	<20	<4.8
Methyl t-butyl ethe	er (MTBE)	<35	<9.6		vltoluene	<24	<4.8
Vinyl acetate		<34 k	<9.6 k	m,p-Xy		<4.2	< 0.96
1,1-Dichloroethane		<1.9	< 0.48	o-Xyle		<2.1	< 0.48
cis-1,2-Dichloroeth		<1.9	< 0.48	Styren		<4.1	< 0.96
Hexane		<17	<4.8	Bromo		<9.9	< 0.96
Chloroform		0.30	0.062		l chloride		<0.048 k
Ethyl acetate		<35	<9.6		rimethylbenzene	<24	<4.8
Tetrahydrofuran		16	5.4		rimethylbenzene	<24	<4.8
2-Butanone (MEK)		<28	<9.6		chlorobenzene	<2.9	< 0.48
1,2-Dichloroethane		< 0.19	< 0.048		chlorobenzene	<1.1	< 0.18
1,1,1-Trichloroetha		<2.6	< 0.48		chlorobenzene	<2.9	< 0.48
Carbon tetrachlorid		<1.5	< 0.24		Trichlorobenzene	<3.6	< 0.48
Benzene		<1.5	< 0.48		halene	<1.3	< 0.24
Cyclohexane		<33	<9.6		hlorobutadiene	<1	< 0.096

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-11-04 04/05/24 04/04/24 04/06/24 Air ug/m3	0424	Instr	ect:	Farallon Consulting, 3245 158th Ave SE I 404097-02 1/6.8 040518.D GCMS8 bat		
		%	Lower	Upper			
Surrogates:	Re	ecovery:	Limit:	Limit:			
4-Bromofluorobenz	ene	95	70	130			
		Conce	ntration			Conc	entration
Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
• • • • • · · · · · · · · · · · · · · ·		8	P P &	F -		8	PP ····
Propene		<8.2	<4.8		chloropropane	<1.6	< 0.34
Dichlorodifluorome	thane	<6.7	<1.4	1,4-Dio		<2.5	< 0.68
Chloromethane		<25	<12		rimethylpentane	<32	< 6.8
F-114		<14	<2	•	l methacrylate	<28	< 6.8
Vinyl chloride		<1.7	< 0.68	Heptar		<28	< 6.8
1,3-Butadiene		< 0.3	< 0.14		dichloromethane	0.96	0.14
Butane		<32	<14		proethene	< 0.73	< 0.14
Bromomethane		<26	< 6.8		-Dichloropropene	< 6.2	<1.4
Chloroethane		<18	<6.8		nyl-2-pentanone	<56	<14
Vinyl bromide		<3	< 0.68		1,3-Dichloropropene	<3.1	< 0.68
Ethanol		<51 k	<27 k	Toluen		<51	<14
Acrolein		< 0.78	< 0.34		richloroethane	< 0.37	< 0.068
Pentane		<40	<14	2-Hexa		<28	< 6.8
Trichlorofluoromet	hane	<15	<2.7		hloroethene	<46	< 6.8
Acetone		200	84		nochloromethane	0.87	0.10
2-Propanol		<59	<24		promoethane (EDB)	< 0.52	< 0.068
1,1-Dichloroethene		<2.7	<0.68		benzene	<3.1	< 0.68
trans-1,2-Dichloroe		<2.7	< 0.68		enzene	<3	< 0.68
Methylene chloride		<240	<68		-Tetrachloroethane	< 0.93	< 0.14
t-Butyl alcohol (TB	A)	<82	<27	Nonan		<36	< 6.8
3-Chloropropene		<21	<6.8		pylbenzene	<67	<14
CFC-113		<10	<1.4		rotoluene	<35	<6.8
Carbon disulfide		<42	<14		benzene	<33	< 6.8
Methyl t-butyl ethe	er (MTBE)	<49	<14	•	ltoluene	<33	<6.8
Vinyl acetate		<48 k	<14 k	m,p-Xy		<5.9	<1.4
1,1-Dichloroethane		<2.8	<0.68	o-Xylei		<3	< 0.68
cis-1,2-Dichloroeth	ene	<2.7	<0.68	Styren		<5.8	<1.4
Hexane		<24	<6.8	Bromo		<14	<1.4
Chloroform		1.4	0.28		chloride		<0.068 k
Ethyl acetate		<49	<14		rimethylbenzene	<33	<6.8
Tetrahydrofuran		<4	<1.4		rimethylbenzene	<33	<6.8
2-Butanone (MEK)		<40	<14		chlorobenzene	<4.1	< 0.68
1,2-Dichloroethane	, ,	< 0.28	< 0.068		chlorobenzene	<1.6	< 0.26
1,1,1-Trichloroetha		<3.7	< 0.68		chlorobenzene	<4.1	< 0.68
Carbon tetrachlorio	de	<2.1	< 0.34		richlorobenzene	<5	< 0.68
Benzene		<2.2	< 0.68	Napht		<1.8	< 0.34
Cyclohexane		<47	<14	Hexac	hlorobutadiene	<1.5	< 0.14

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-10-040 04/05/24 04/04/24 04/06/24 Air ug/m3	0424	Clier Proje Lab J Data Instr Oper	ect: ID: File: ument:	Farallon Consulting 3245 158th Ave SE I 404097-03 1/4.6 040519.D GCMS8 bat		
		%	Lower	Upper			
Surrogates:	Re	ecovery:	Limit:	Limit:			
4-Bromofluorobenz	ene	94	70	130			
		Conce	ntration			Conc	entration
Compounds:		ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
I. I.		8 -	1.1.			0 -	F F • •
Propene		<5.5	<3.2		chloropropane	<1.1	< 0.23
Dichlorodifluorome	ethane	<4.5	< 0.92	1,4-Die		<1.7	< 0.46
Chloromethane		<17	<8.3		rimethylpentane	<21	<4.6
F-114		<9.6	<1.4		l methacrylate	<19	<4.6
Vinyl chloride		<1.2	< 0.46	Heptar		<19	<4.6
1,3-Butadiene		< 0.2	< 0.092		dichloromethane	2.7	0.40
Butane		<22	<9.2		proethene	< 0.49	< 0.092
Bromomethane		<18	<4.6		-Dichloropropene	<4.2	< 0.92
Chloroethane		<12	<4.6		nyl-2-pentanone	<38	<9.2
Vinyl bromide		<2	< 0.46		1,3-Dichloropropene	<2.1	< 0.46
Ethanol		<35 k	<18 k	Toluen		<35	<9.2
Acrolein		< 0.53	< 0.23		richloroethane	< 0.25	< 0.046
Pentane		<27	<9.2	2-Hexa		<19	<4.6
Trichlorofluoromet	hane	<10	<1.8		hloroethene	<31	<4.6
Acetone		<22	<9.2	Dibron	nochloromethane	1.8	0.21
2-Propanol		<40	<16		promoethane (EDB)	< 0.35	< 0.046
1,1-Dichloroethene		<1.8	< 0.46	Chloro	benzene	<2.1	< 0.46
trans-1,2-Dichloroe	ethene	<1.8	< 0.46		enzene	<2	< 0.46
Methylene chloride	9	<160	<46	1,1,2,2	-Tetrachloroethane	< 0.63	< 0.092
t-Butyl alcohol (TB	A)	<56	<18	Nonan	e	<24	<4.6
3-Chloropropene		<14	<4.6	Isoproj	pylbenzene	<45	<9.2
CFC-113		<7.1	< 0.92	2-Chlo	rotoluene	<24	<4.6
Carbon disulfide		<29	<9.2	Propyl	benzene	<23	<4.6
Methyl t-butyl ethe	er (MTBE)	<33	<9.2	4-Ethy	ltoluene	<23	<4.6
Vinyl acetate		<32 k	<9.2 k	m,p-Xy	vlene	<4	< 0.92
1,1-Dichloroethane	1	<1.9	< 0.46	o-Xylei	ne	<2	< 0.46
cis-1,2-Dichloroeth	ene	<1.8	< 0.46	Styren	e	<3.9	< 0.92
Hexane		<16	<4.6	Bromo	form	<9.5	< 0.92
Chloroform		7.0	1.4	Benzyl	chloride	<0.24 k	<0.046 k
Ethyl acetate		<33	<9.2	1,3,5-T	rimethylbenzene	<23	<4.6
Tetrahydrofuran		<2.7	< 0.92	1,2,4-T	rimethylbenzene	<23	<4.6
2-Butanone (MEK)		<27	<9.2	1,3-Dio	chlorobenzene	<2.8	< 0.46
1,2-Dichloroethane		< 0.19	< 0.046	,	chlorobenzene	<1.1	< 0.17
1,1,1-Trichloroetha	ne	<2.5	< 0.46	1,2-Dio	chlorobenzene	<2.8	< 0.46
Carbon tetrachlorie	de	<1.4	< 0.23	1,2,4-1	richlorobenzene	<3.4	< 0.46
Benzene		<1.5	< 0.46	Napht	halene	<1.2	< 0.23
Cyclohexane		<32	< 9.2	Hexacl	hlorobutadiene	< 0.98	< 0.092

ENVIRONMENTAL CHEMISTS

Client Sample ID:SG-09-Date Received:04/05/2Date Collected:04/04/2Date Analyzed:04/06/2Matrix:AirUnits:ug/m3	24	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:		0520.D CMS8			
	%	Lower	Upper					
Surrogates:	Recovery:	Limit:	Limit:					
4-Bromofluorobenzene	94	70	130					
	Conce	ntration			Conce	entration		
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv		
-	0		_					
Propene	<6.5	<3.8		chloropropane	<1.2	<0.27		
Dichlorodifluoromethane	<5.3	<1.1	1,4-Die		<1.9	< 0.54		
Chloromethane	<20	< 9.7		rimethylpentane	<25	<5.4		
F-114 Viscol al la si da	<11	<1.6		l methacrylate	<22	<5.4		
Vinyl chloride	<1.4	<0.54	Heptar	ne dichloromethane	<22	<5.4		
1,3-Butadiene Butane	<0.24 38	<0.11 16		oroethene	0.36 <0.58	0.054 < 0.11		
Bromomethane	-30 -21	<5.4		-Dichloropropene	<0.58	<0.11		
Chloroethane	<21 <14	<5.4 <5.4		-Dichloropropene nyl-2-pentanone	<4.9 <44	<1.1		
Vinyl bromide	<2.4	<0.54		1,3-Dichloropropene	<2.5	<0.54		
Ethanol	<41 k	<0.54 <22 k	Toluer		<2.5 <41	<0.54 <11		
Acrolein	<0.62	<2.2 K <0.27		richloroethane	<0.29	< 0.054		
Pentane	<0.02 <32	<0.27	2-Hexa		<0.29	<0.054 <5.4		
Trichlorofluoromethane	<52 <12	<2.2		hloroethene	<37	<5.4		
Acetone	<26	<11		nochloromethane	<0.46	< 0.054		
2-Propanol	<20 <46	<11		bromoethane (EDB)	<0.40	< 0.054		
1,1-Dichloroethene	<2.1	<0.54		benzene	<2.5	<0.54		
trans-1,2-Dichloroethene	<2.1	<0.54		penzene	<2.3	<0.54		
Methylene chloride	<190	<54		-Tetrachloroethane	<0.74	<0.11		
t-Butyl alcohol (TBA)	<65	<22	Nonan		<28	<5.4		
3-Chloropropene	<17	<5.4		pylbenzene	<53	<0.4		
CFC-113	<8.3	<1.1		rotoluene	<28	<5.4		
Carbon disulfide	<34	<11		benzene	<27	<5.4		
Methyl t-butyl ether (MTB		<11		vltoluene	<27	<5.4		
Vinyl acetate	<38 k	<11 k	m,p-Xy		<4.7	<1.1		
1,1-Dichloroethane	<2.2	< 0.54	o-Xyle		<2.3	< 0.54		
cis-1,2-Dichloroethene	<2.1	< 0.54	Styren		<4.6	<1.1		
Hexane	<19	<5.4	Bromo		<11	<1.1		
Chloroform	3.5	0.71		l chloride		<0.054 k		
Ethyl acetate	<39	<11		Trimethylbenzene	<27	<5.4		
Tetrahydrofuran	<3.2	<1.1		Trimethylbenzene	<27	<5.4		
2-Butanone (MEK)	<32	<11		chlorobenzene	<3.2	< 0.54		
1,2-Dichloroethane (EDC)	< 0.22	< 0.054		chlorobenzene	<1.2	< 0.21		
1,1,1-Trichloroethane	<2.9	< 0.54	1,2-Die	chlorobenzene	<3.2	< 0.54		
Carbon tetrachloride	<1.7	< 0.27	1,2,4-1	richlorobenzene	<4	< 0.54		
Benzene	<1.7	< 0.54	Napht	halene	<1.4	< 0.27		
Cyclohexane	<37	<11	Hexac	hlorobutadiene	<1.2	< 0.11		

ENVIRONMENTAL CHEMISTS

Date Received: Date Collected: Date Analyzed: Matrix:	Method Blank Not Applicable Not Applicable 04/06/24 Air ug/m3	Pro Lal Da Ins	ent: oject: o ID: ta File: trument: erator:	Farallon Consulting, LLC 3245 158th Ave SE Bellevue WA 04-0768 mb 040511.D GCMS8 bat				
	0	6 Lower	Upper					
Surrogates:	Recovery		Limit:					
4-Bromofluorobenzer			130					
1 2101101140100011101			100					
	Con	centration			Conce	entration		
Compounds:	ug/m	3 ppbv	Compo	unds:	ug/m3	ppbv		
_								
Propene	<1.			hloropropane	< 0.23	< 0.05		
Dichlorodifluorometh			1,4-Dic		< 0.36	< 0.1		
Chloromethane	<3.			rimethylpentane	<4.7	<1		
F-114	<2.			methacrylate	<4.1	<1		
Vinyl chloride	< 0.2		Heptar		<4.1	<1		
1,3-Butadiene	< 0.04			dichloromethane	< 0.067	< 0.01		
Butane	<4.			proethene	< 0.11	< 0.02		
Bromomethane	<3.			Dichloropropene	< 0.91	< 0.2		
Chloroethane	<2.			yl-2-pentanone	<8.2	<2		
Vinyl bromide	< 0.4			,3-Dichloropropene	< 0.45	< 0.1		
Ethanol	<7.5		Toluen		<7.5	<2		
Acrolein	< 0.1			richloroethane	< 0.055	< 0.01		
Pentane	<5.		2-Hexa		<4.1	<1		
Trichlorofluorometha				hloroethene	<6.8	<1		
Acetone	<4.			nochloromethane	< 0.085	< 0.01		
2-Propanol	<8.			promoethane (EDB)	< 0.077	< 0.01		
1,1-Dichloroethene	<0.			benzene	< 0.46	< 0.1		
trans-1,2-Dichloroeth			Ethylb		< 0.43	< 0.1		
Methylene chloride	<3			Tetrachloroethane	< 0.14	< 0.02		
t-Butyl alcohol (TBA)			Nonan		<5.2	<1		
3-Chloropropene	<3.			oylbenzene	<9.8	<2		
CFC-113	<1.			rotoluene	<5.2	<1		
Carbon disulfide	<6.			benzene	<4.9	<1		
Methyl t-butyl ether			•	ltoluene	<4.9	<1		
Vinyl acetate	<7		m,p-Xy		< 0.87	< 0.2		
1,1-Dichloroethane	<0.		o-Xyler		< 0.43	< 0.1		
cis-1,2-Dichloroether			Styren		< 0.85	< 0.2		
Hexane	<3.		Bromo		<2.1	< 0.2		
Chloroform	< 0.04			chloride	<0.052 k	<0.01 k		
Ethyl acetate	<7.			rimethylbenzene	<4.9	<1		
Tetrahydrofuran	<0.5			rimethylbenzene	<4.9	<1		
2-Butanone (MEK)	<5.			hlorobenzene	<0.6	< 0.1		
1,2-Dichloroethane (1				hlorobenzene	<0.23	<0.038		
1,1,1-Trichloroethan				hlorobenzene	<0.6	<0.1		
Carbon tetrachloride				richlorobenzene	<0.74	<0.1		
Benzene	<0.3		Naphtl		<0.26	< 0.05		
Cyclohexane	<6.	9 <2	Hexacl	nlorobutadiene	< 0.21	< 0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/24 Date Received: 04/05/24 Project: 3245 158th Ave SE Bellevue WA 2403-008, F&BI 404097

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 404097-01 1/7.3 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	590	590	0
APH EC9-12 aliphatics	ug/m3	610	600	5
APH EC9-10 aromatics	ug/m3	<180	<180	nm

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	106	70-130
APH EC9-12 aliphatics	ug/m3	67	129	70-130
APH EC9-10 aromatics	ug/m3	67	94	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/24 Date Received: 04/05/24 Project: 3245 158th Ave SE Bellevue WA 2403-008, F&BI 404097

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 404097-04 1/5.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<6.5	<6.5	nm
Dichlorodifluoromethane	ug/m3	<5.3	<5.3	nm
Chloromethane	ug/m3	<20	<20	nm
F-114	ug/m3	<11	<11	nm
Vinyl chloride	ug/m3	<1.4	<1.4	nm
1,3-Butadiene	ug/m3	< 0.24	< 0.24	nm
Butane	ug/m3	38	38	0
Bromomethane	ug/m3	<21	<21	nm
Chloroethane	ug/m3	<14	<14	nm
Vinyl bromide	ug/m3	<2.4	<2.4	nm
Ethanol	ug/m3	<41	<41	nm
Acrolein	ug/m3	< 0.62	< 0.62	nm
Pentane	ug/m3	<32	<32	nm
Trichlorofluoromethane	ug/m3	<12	<12	nm
Acetone	ug/m3	<26	<26	nm
2-Propanol	ug/m3	<46	<46	nm
1,1-Dichloroethene	ug/m3	<2.1	<2.1	nm
trans-1,2-Dichloroethene	ug/m3	<2.1	<2.1	nm
Methylene chloride	ug/m3	<190	<190	nm
t-Butyl alcohol (TBA)	ug/m3	$<\!\!65$	<65	nm
3-Chloropropene	ug/m3	$<\!\!17$	<17	nm
CFC-113	ug/m3	<8.3	<8.3	nm
Carbon disulfide	ug/m3	<34	<34	nm
Methyl t-butyl ether (MTBE)	ug/m3	<39	<39	nm
Vinyl acetate	ug/m3	<38	<38	nm
1,1-Dichloroethane	ug/m3	<2.2	<2.2	nm
cis-1,2-Dichloroethene	ug/m3	<2.1	<2.1	nm
Hexane	ug/m3	<19	<19	nm
Chloroform	ug/m3	3.5	3.3	6
Ethyl acetate	ug/m3	<39	<39	nm
Tetrahydrofuran	ug/m3	<3.2	<3.2	nm
2-Butanone (MEK)	ug/m3	<32	<32	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.22	< 0.22	nm
1,1,1-Trichloroethane	ug/m3	<2.9	<2.9	nm
Carbon tetrachloride	ug/m3	<1.7	<1.7	nm
Benzene	ug/m3	<1.7	<1.7	nm
Cyclohexane	ug/m3	<37	<37	nm
1,2-Dichloropropane	ug/m3	<1.2	<1.2	nm
1,4-Dioxane	ug/m3	<1.9	<1.9	nm
2,2,4-Trimethylpentane	ug/m3	<25	<25	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/24 Date Received: 04/05/24 Project: 3245 158th Ave SE Bellevue WA 2403-008, F&BI 404097

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 404097-04 1/5.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<22	<22	nm
Heptane	ug/m3	<22	<22	nm
Bromodichloromethane	ug/m3	0.36	0.40	11
Trichloroethene	ug/m3	< 0.58	< 0.58	nm
cis-1,3-Dichloropropene	ug/m3	<4.9	<4.9	nm
4-Methyl-2-pentanone	ug/m3	<44	<44	nm
trans-1,3-Dichloropropene	ug/m3	$<\!\!2.5$	<2.5	nm
Toluene	ug/m3	<41	<41	nm
1,1,2-Trichloroethane	ug/m3	< 0.29	< 0.29	nm
2-Hexanone	ug/m3	<22	<22	nm
Tetrachloroethene	ug/m3	<37	<37	nm
Dibromochloromethane	ug/m3	< 0.46	< 0.46	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.41	< 0.41	nm
Chlorobenzene	ug/m3	$<\!\!2.5$	<2.5	nm
Ethylbenzene	ug/m3	<2.3	<2.3	nm
1,1,2,2-Tetrachloroethane	ug/m3	< 0.74	< 0.74	nm
Nonane	ug/m3	<28	<28	nm
Isopropylbenzene	ug/m3	<53	<53	nm
2-Chlorotoluene	ug/m3	<28	<28	nm
Propylbenzene	ug/m3	<27	<27	nm
4-Ethyltoluene	ug/m3	<27	<27	nm
m,p-Xylene	ug/m3	<4.7	<4.7	nm
o-Xylene	ug/m3	<2.3	<2.3	nm
Styrene	ug/m3	<4.6	<4.6	nm
Bromoform	ug/m3	<11	<11	nm
Benzyl chloride	ug/m3	< 0.28	< 0.28	nm
1,3,5-Trimethylbenzene	ug/m3	<27	<27	nm
1,2,4-Trimethylbenzene	ug/m3	$<\!\!27$	<27	nm
1,3-Dichlorobenzene	ug/m3	<3.2	<3.2	nm
1,4-Dichlorobenzene	ug/m3	<1.2	<1.2	nm
1,2-Dichlorobenzene	ug/m3	<3.2	<3.2	nm
1,2,4-Trichlorobenzene	ug/m3	<4	<4	nm
Naphthalene	ug/m3	<1.4	<1.4	nm
Hexachlorobutadiene	ug/m3	<1.2	<1.2	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/24 Date Received: 04/05/24 Project: 3245 158th Ave SE Bellevue WA 2403-008, F&BI 404097

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Co.	introi Sample		Percent	
	Reporting	Spike	Recovery	Accontance
Analyta	Units	Level	LCS	Acceptance Criteria
Analyte Propene		23	115	70-130
Dichlorodifluoromethane	ug/m3 ug/m3	$\frac{23}{67}$	98	70-130
Chloromethane	ug/m3	28	98 75	70-130
F-114	ug/m3	$\frac{28}{94}$	75 97	70-130
Vinyl chloride	ug/m3	$\frac{94}{35}$	97 96	70-130
1,3-Butadiene	0	$\frac{30}{30}$	96 103	70-130
Butane	ug/m3	$\frac{30}{32}$	105 96	
Bromomethane	ug/m3	$\frac{52}{52}$	96 96	70-130
Chloroethane	ug/m3	$\frac{32}{36}$	96 99	70-130
	ug/m3			70-130
Vinyl bromide	ug/m3	59 95	123	70-130
Ethanol	ug/m3	25	104	70-130
Acrolein	ug/m3	31	95 100	70-130
Pentane	ug/m3	40	108	70-130
Trichlorofluoromethane	ug/m3	76	105	70-130
Acetone	ug/m3	32	96	70-130
2-Propanol	ug/m3	33	100	70-130
1,1-Dichloroethene	ug/m3	54	106	70-130
trans-1,2-Dichloroethene	ug/m3	54	108	70-130
Methylene chloride	ug/m3	94	105	70-130
t-Butyl alcohol (TBA)	ug/m3	41	102	70-130
3-Chloropropene	ug/m3	42	97	70-130
CFC-113	ug/m3	100	107	70-130
Carbon disulfide	ug/m3	42	88	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	99	70-130
Vinyl acetate	ug/m3	48	90	70-130
1,1-Dichloroethane	ug/m3	55	108	70-130
cis-1,2-Dichloroethene	ug/m3	54	104	70-130
Hexane	ug/m3	48	109	70-130
Chloroform	ug/m3	66	106	70-130
Ethyl acetate	ug/m3	49	96	70-130
Tetrahydrofuran	ug/m3	40	97	70-130
2-Butanone (MEK)	ug/m3	40	106	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	111	70-130
1,1,1-Trichloroethane	ug/m3	74	107	70-130
Carbon tetrachloride	ug/m3	85	96	70-130
Benzene	ug/m3	43	103	70-130
Cyclohexane	ug/m3	46	95	70-130
1,2-Dichloropropane	ug/m3	62	105	70-130
1,4-Dioxane	ug/m3	49	96	70-130
2,2,4-Trimethylpentane	ug/m3	63	106	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 04/17/24 Date Received: 04/05/24 Project: 3245 158th Ave SE Bellevue WA 2403-008, F&BI 404097

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	98	70-130
Heptane	ug/m3	55	106	70 - 130
Bromodichloromethane	ug/m3	90	103	70 - 130
Trichloroethene	ug/m3	73	108	70 - 130
cis-1,3-Dichloropropene	ug/m3	61	109	70-130
4-Methyl-2-pentanone	ug/m3	55	104	70 - 130
trans-1,3-Dichloropropene	ug/m3	61	102	70-130
Toluene	ug/m3	51	110	70-130
1,1,2-Trichloroethane	ug/m3	74	110	70-130
2-Hexanone	ug/m3	55	91	70 - 130
Tetrachloroethene	ug/m3	92	109	70 - 130
Dibromochloromethane	ug/m3	120	97	70 - 130
1,2-Dibromoethane (EDB)	ug/m3	100	109	70-130
Chlorobenzene	ug/m3	62	105	70 - 130
Ethylbenzene	ug/m3	59	108	70 - 130
1,1,2,2-Tetrachloroethane	ug/m3	93	105	70 - 130
Nonane	ug/m3	71	109	70-130
Isopropylbenzene	ug/m3	66	112	70 - 130
2-Chlorotoluene	ug/m3	70	105	70-130
Propylbenzene	ug/m3	66	107	70-130
4-Ethyltoluene	ug/m3	66	105	70 - 130
m,p-Xylene	ug/m3	120	109	70 - 130
o-Xylene	ug/m3	59	112	70 - 130
Styrene	ug/m3	58	107	70 - 130
Bromoform	ug/m3	140	87	70 - 130
Benzyl chloride	ug/m3	70	98	70 - 130
1,3,5-Trimethylbenzene	ug/m3	66	110	70-130
1,2,4-Trimethylbenzene	ug/m3	66	104	70 - 130
1,3-Dichlorobenzene	ug/m3	81	106	70-130
1,4-Dichlorobenzene	ug/m3	81	105	70-130
1,2-Dichlorobenzene	ug/m3	81	103	70 - 130
1,2,4-Trichlorobenzene	ug/m3	100	102	70 - 130
Naphthalene	ug/m3	71	97	70 - 130
Hexachlorobutadiene	ug/m3	140	100	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COCTO-15.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98108	5500 4th Avenue South	Friedman & Bruya, Inc.					Sbn-09-040424	567-10-040424		SG-05-04042024	Sample Name	SAMPLE INFORMATION	Phone (435)295 Or () Emailypeninmetrallaurralitig. m	City, State, ZIP 550guch, WA 96027		Report To ILASAT PENNINUM	40404
	Received by:	Relinq	Received by:	Relinq						04	40	01	01	Lab ID		aailiypet	N N	NW	(KMA11HIMA	•
	ed by:	Relinquished by:	ed by:	Relinquished by:	SIC					9560	6028	9562	9563	Canister ID		in motivally	A 9602-		Hina	
			he	na	SIGNATURE					FO	300	620	fll	Flow Cont. ID		nuncality				
				in	RE	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / \$G	IA / SG	IA / (SG)	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)		H- (m	NOTES:	105	PROJE	SAMPL
-			0	Ara						1			4/4/24	Date Sampled		land through the St	ŝ	3245 1584	PROJECT NAME & ADDRESS	SAMPLE CHAIN OF CUSTODY
			AN	C.	PRI					th	-30	8.6-	-30	Initial Vac. ("Hg)				Ave	& AD	N OF
			ANHPHAN	amar	PRINT NAME					1445	1326	19:36	1139	Field Initial Time				Ave SE, Bellevie.in	DRESS	CUST
			R	lar	E					0	0	0	0	Final Vac. ("Hg)				llevier	·	YQC
										1452	1336	HHR!	IHA	Field Final Time						0
		ŝ		B						×	×	X	X	TO15 Full Scan	ANALYSIS REQUESTED	76	INVOICE TO	800-80H	PO#	04/05/24
		Samples received	F8B	5	CON	<u> </u>								TO15 BTEXN	SISA'		I TO	8		2
		les	B		COMPANY	<u> </u>	-			×	×	X	×	TO15 cVOCs	REC					24
		1909.			Y									APH	UES	Ho	De	Rus	St	
		Vesi					-		+					Helium	TED	nal re ld (F	SA	ush cha	TUKN Standard	Page #
		at 16_0C	04/05/24 10:39	4/5/24 1039	DATE TIME				ME 04/05/24 ME	X-per YP std TAT		TOR PHURLYSIS	CONTACT PH	Notes		final report delivery Hold (Fee may apply):	SAMPLE DISPOSAL Default:Clean following	Rush charges authorized by:	TUKNAKUUND TIME ndard	

APPENDIX E ECOLOGY CORRESPONDENCE

REMEDIAL INVESTIGATION AND CLEANUP ACTION PLAN 3245 158th Avenue Southeast Bellevue, Washington

Farallon PN: 2403-008

Junk v Defete Archive	Reply Forward G +	All Move	Rules ~ Send to OneNote	Mark Categorize	Follow Up ~	Q № & ~	Av) Low Read Immersive Aloud Reader	Translate	Q Zoom	
Delete	Respond	Apps	Move	Tags	۲ <u>م</u>	Editing	Immersive	Language	Zoom	,
General\All Employees (u										
Cc O Suzy Stump	f; 🗇 John Funderburk; 🔿 Mitchell, T	reasure (ECY)						MOD 771	/2024 9:5	3 AIVI
	GOV is from outside your organization	υ								
You replied to this message	on 7/1/2024 11:55 AM.									
i Yusuf,										i
nank you for this inform	ation.									
	calculations appear to make	sense, and we h	ave not identified cor	ncerns with respect	t to devel	lopment	and application of	site-specif	ic screer	ning
ne general approach and	a calculations appear to make									

APPENDIX F SITE-SPECIFIC SOIL GAS SCREENING LEVEL CALCULATIONS

REMEDIAL INVESTIGATION AND CLEANUP ACTION PLAN 3245 158th Avenue Southeast Bellevue, Washington

Farallon PN: 2403-008

Table 1Calculation of Site-Specific Indoor Air Cleanup Levels and Soil Gas Screening Levels3245 158th Avenue SoutheastBellevue, WashingtonFarallon PN: 2403-008

Petroleum Fraction or Compound ¹	Measured Soil Gas or Air Concentration (µg/m³)	Fraction of Total Concentration (F _i)	ABS _i (unitless)	RfDi _i (mg/kg-day)	Intermediate Factor (IF) (kg-µg-day/ mg-m ³⁾	Total TPH Non-carcinogenic CUL _i for Indoor Air (μg/m ³) (CUL _i =RfDi _i x IF/ABS _i)	F _i /CUL _i	Total Site- Specific Indoor Air TPH CUL = 1/Σ(F _i /CUL _i) (μg/m ³)	Total Site-Specific Soil Gas TPH Screening Level = TPH Air CUL/Attenuation Factor of 0.03 (µg/m ³)
Ecology Example (Ta	ble E-7, Guidance	e for Evaluating V	apor Intrusio	n in Washington	State) ¹				
Aliphatics EC>5-8	319	0.91	1	1.7	1,600	2.72E+03	3.35E-04		
Aliphatics EC>8-12	12	0.03	1	0.029	1,600	4.64E+01	7.40E-04		
Aromatics EC>9-10	6	0.02	1	0.114	1,600	1.82E+02	9.41E-05		
Benzene	0.2	0.0006	1	0.00855	1,600	1.37E+01	4.18E-05		
Toluene	8	0.02	1	1.4	1,600	2.24E+03	1.02E-05		
Ethylbenzene	1.8	0.01	1	0.286	1,600	4.58E+02	1.12E-05		
Xylenes	2.7	0.01	1	0.029	1,600	4.64E+01	1.66E-04		
Naphthalene	< 0.07	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	349.7	1.00					1.40E-03	715	23,832
Sample: SG-05-04042	24					·			
Aliphatics EC>5-8	590	0.49	1	1.7	1,600	2.72E+03	1.81E-04		
Aliphatics EC>8-12	610	0.51	1	0.029	1,600	4.64E+01	1.10E-02		
Aromatics EC>9-10	< 180	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 1.5	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 36	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 2.1	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	< 6.3	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Naphthalene	< 1.3	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	1200	1.00					1.11E-02	90	2,993
Sample: SG-11-04042	24								
Aliphatics EC>5-8	800	0.45	1	1.7	1,600	2.72E+03	1.66E-04		
Aliphatics EC>8-12	970	0.55	1	0.029	1,600	4.64E+01	1.18E-02		
Aromatics EC>9-10	< 250	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 2.2	0.000	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 51	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 3	0.000	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	< 8.9	0.000	1	0.029	1,600	4.64E+01	0.00E+00		
Naphthalene	< 1.8	0.000	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	1770	1.00					1.20E-02	83	2,783

Table 1 Calculation of Site-Specific Indoor Air Cleanup Levels and Soil Gas Screening Levels 3245 158th Avenue Southeast Bellevue, Washington Farallon PN: 2403-008

Petroleum Fraction or Compound ¹	Measured Soil Gas or Air Concentration (μg/m³)	Fraction of Total Concentration (F _i)	ABS _i (unitless)	RfDi _i (mg/kg-day)	Intermediate Factor (IF) (kg-µg-day/ mg-m ³⁾	Total TPH Non-carcinogenic CUL _i for Indoor Air (μg/m ³) (CUL _i =RfDi _i x IF/ABS _i)	F _i /CUL _i	Total Site- Specific Indoor Air TPH CUL = 1/Σ(F _i /CUL _i) (μg/m ³)	Total Site-Specific Soil Gas TPH Screening Level = TPH Air CUL/Attenuation Factor of 0.03 (μg/m ³)
Sample: SG-10-04042	4								
Aliphatics EC>5-8	580	1.00	1	1.7	1,600	2.72E+03	3.68E-04		
Aliphatics EC>8-12	< 170	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Aromatics EC>9-10	< 170	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 1.5	0.000	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 35	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 2	0.000	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	< 6	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Naphthalene	< 1.2	0.000	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	580	1.00					3.68E-04	2720	90,667
Sample: SG-09-04042	4	-			-				
Aliphatics EC>5-8	870	1.00	1	1.7	1,600	2.72E+03	3.68E-04		
Aliphatics EC>8-12	< 200	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Aromatics EC>9-10	< 200	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 1.7	0.000	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 41	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 2.3	0.000	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	< 7	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Naphthalene	< 1.4	0.000	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	870	1.00					3.68E-04	2720	90,667

NOTES:

¹ Calculation of a site-specific TPH indoor air cleanup level and soil gas screening level is based on the example provided in Tables E-5, E-6, and E-7 of the Washington State Department of Ecology's *Guidance for Evaluating Vapor Intrusion in Washington State*, Publication No. 09-09-047, Final March 2022. The intermediate factor is as provided and explained in Table E-5.
$$\begin{split} ABS_i &= \text{inhalation absorption fraction for individual petroleum component} \\ CUL_i &= \text{air cleanup level for individual petroleum component} \\ F_i &= \text{fraction by weight of individual petroleum component} \\ IF &= \text{intermediate factor (see Note 1)} \\ kg &= kilogram \end{split}$$

μg/m³ = micrograms per cubic meter mg/kg-day = milligrams per kilogram per day RfDi_i = inhalation reference does for individual petroleum component

TPH = total petroleum hydrocarbons

Table 1Calculation of Site-Specific Indoor Air Cleanup Levels and Soil Gas Screening Levels3245 158th Avenue SoutheastBellevue, WashingtonFarallon PN: 2403-008

Petroleum Fraction or Compound ¹	Measured Soil Gas or Air Concentration (μg/m³)	Fraction of Total Concentration (F _i)	ABS _i (unitless)	RfDi _i (mg/kg-day)	Intermediate Factor (IF) (kg-µg-day/ mg-m ³⁾	Total TPH Non-carcinogenic CUL _i for Indoor Air (μg/m ³) (CUL _i =RfDi _i x IF/ABS _i)	F _i /CUL _i	Total Site- Specific Indoor Air TPH CUL = 1/Σ(F _i /CUL _i) (μg/m ³)	Total Site-Specific Soil Gas TPH Screening Level = TPH Air CUL/Attenuation Factor of 0.03 (µg/m ³)
Ecology Example (Ta	ble E-7, Guidance	e for Evaluating Va	apor Intrusio	n in Washington	State) ¹				
Aliphatics EC>5-8	319	0.91	1	1.7	1,600	2.72E+03	3.35E-04		
Aliphatics EC>8-12	12	0.03	1	0.029	1,600	4.64E+01	7.40E-04		
Aromatics EC>9-10	6	0.02	1	0.114	1,600	1.82E+02	9.41E-05		
Benzene	0.2	0.0006	1	0.00855	1,600	1.37E+01	4.18E-05		
Toluene	8	0.02	1	1.4	1,600	2.24E+03	1.02E-05		
Ethylbenzene	1.8	0.01	1	0.286	1,600	4.58E+02	1.12E-05		
Xylenes	2.7	0.01	1	0.029	1,600	4.64E+01	1.66E-04		
Naphthalene	< 0.07	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	349.7	1.00					1.40E-03	715	23,832
Sample: SG-04-07102	4								
Aliphatics EC>5-8	6,200,000	0.29	1	1.7	1,600	2.72E+03	1.08E-04		
Aliphatics EC>8-12	15,000,000	0.71	1	0.029	1,600	4.64E+01	1.52E-02		
Aromatics EC>9-10	< 750,000	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 9,600	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 230,000	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 13,000	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	< 39,000	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Naphthalene	< 2,200	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	21,200,000	1.00					1.54E-02	65	2,171
Sample: SG-05-07102	4								
Aliphatics EC>5-8	830	0.64	1	1.7	1,600	2.72E+03	2.35E-04		
Aliphatics EC>8-12	470	0.36	1	0.029	1,600	4.64E+01	7.79E-03		
Aromatics EC>9-10	< 220	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 2.8	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 66	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 3.8	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	< 11.4	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Naphthalene	0.64	0.00	1	0.00086	1,600	1.38E+00	3.58E-04		
Total TPH	1,300.64	1.00					8.38E-03	119	3,978

Table 1Calculation of Site-Specific Indoor Air Cleanup Levels and Soil Gas Screening Levels3245 158th Avenue SoutheastBellevue, WashingtonFarallon PN: 2403-008

Petroleum Fraction or Compound ¹	Measured Soil Gas or Air Concentration (µg/m³)	Fraction of Total Concentration (F _i)	ABS _i (unitless)	RfDi _i (mg/kg-day)	Intermediate Factor (IF) (kg-µg-day/ mg-m ³⁾	Total TPH Non-carcinogenic CUL _i for Indoor Air (μg/m ³) (CUL _i =RfDi _i x IF/ABS _i)	F _i /CUL _i	Total Site- Specific Indoor Air TPH CUL = 1/Σ(F _i /CUL _i) (μg/m ³)	Total Site-Specific Soil Gas TPH Screening Level = TPH Air CUL/Attenuation Factor of 0.03 (µg/m ³)
Sample: SG-06-07102	4				• •				
Aliphatics EC>5-8	1,900	0.66	1	1.7	1,600	2.72E+03	2.41E-04		
Aliphatics EC>8-12	1,000	0.34	1	0.029	1,600	4.64E+01	7.43E-03		
Aromatics EC>9-10	< 240	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 3.1	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 72	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 4.2	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	< 12.5	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Naphthalene	< 0.7	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	2,900	1.00					7.67E-03	130	4,345
Sample: SG-08-07092	4								
Aliphatics EC>5-8	2,000	0.64	1	1.7	1,600	2.72E+03	2.37E-04		
Aliphatics EC>8-12	1,100	0.35	1	0.029	1,600	4.64E+01	7.63E-03		
Aromatics EC>9-10	< 500	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	8.4	0.00	1	0.00855	1,600	1.37E+01	1.98E-04		
Toluene	< 150	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 8.7	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	< 25.7	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Naphthalene	< 1.5	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	3108.4	1.00					8.06E-03	124	4,135
Sample: SG-09-07092									
Aliphatics EC>5-8	3,100	0.51	1	1.7	1,600	2.72E+03	1.87E-04		
Aliphatics EC>8-12	3,000	0.49	1	0.029	1,600	4.64E+01	1.06E-02		
Aromatics EC>9-10	< 470	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 6.1	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 140	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 8.3	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	< 25.3	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Naphthalene	< 1.4	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	6,100	1.00					1.08E-02	93	3,090

Table 1 Calculation of Site-Specific Indoor Air Cleanup Levels and Soil Gas Screening Levels 3245 158th Avenue Southeast Bellevue, Washington Farallon PN: 2403-008

Petroleum Fraction or Compound ¹	Measured Soil Gas or Air Concentration (μg/m³)	Fraction of Total Concentration (F _i)	ABS _i (unitless)	RfDi _i (mg/kg-day)	Intermediate Factor (IF) (kg-µg-day/ mg-m ³⁾	Total TPH Non-carcinogenic CUL _i for Indoor Air (μg/m ³) (CUL _i =RfDi _i x IF/ABS _i)	F _i /CUL _i	Total Site- Specific Indoor Air TPH CUL = 1/Σ(F _i /CUL _i) (μg/m ³)	Total Site-Specific Soil Gas TPH Screening Level = TPH Air CUL/Attenuation Factor of 0.03 (μg/m ³)
Sample: SG-10-07092	4								
Aliphatics EC>5-8	930	0.66	1	1.7	1,600	2.72E+03	2.42E-04		
Aliphatics EC>8-12	480	0.34	1	0.029	1,600	4.64E+01	7.34E-03		
Aromatics EC>9-10	< 230	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 2.9	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 69	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 4	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	< 12	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Naphthalene	< 0.68	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	1,410	1.00					7.58E-03	132	4,398
Sample: SG-11-07102	4								
Aliphatics EC>5-8	850	0.58	1	1.7	1,600	2.72E+03	2.13E-04		
Aliphatics EC>8-12	620	0.42	1	0.029	1,600	4.64E+01	9.09E-03		
Aromatics EC>9-10	< 230	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 2.9	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 69	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 4	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	< 12	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Naphthalene	< 0.68	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	1,470	1.00					9.30E-03	107	3,583

NOTES:

¹ Calculation of a site-specific TPH indoor air cleanup level and soil gas screening level is based on the example provided in Tables E-5, E-6, and E-7 of the Washington State Department of Ecology's *Guidance for Evaluating Vapor Intrusion in Washington State*, Publication No. 09-09-047, Final March 2022. The intermediate factor is as provided and explained in Table E-5.
$$\begin{split} ABS_i &= \text{inhalation absorption fraction for individual petroleum component} \\ CUL_i &= \text{air cleanup level for individual petroleum component} \\ F_i &= \text{fraction by weight of individual petroleum component} \\ IF &= \text{intermediate factor (see Note 1)} \\ kg &= kilogram \end{split}$$

μg/m³ = micrograms per cubic meter mg/kg-day = milligrams per kilogram per day RfDi_i = inhalation reference does for individual petroleum component

TPH = total petroleum hydrocarbons

Table 1Calculation of Site-Specific Indoor Air Cleanup Levels and Soil Gas Screening Levels3245 158th Avenue SoutheastBellevue, WashingtonFarallon PN: 2403-008

Petroleum Fraction or Compound ¹	Measured Soil Gas or Air Concentration (μg/m³)	Fraction of Total Concentration (F _i)	ABS _i (unitless)	RfDi _i (mg/kg-day)	Intermediate Factor (IF) (kg-µg-day/ mg-m ³⁾	Total TPH Non-carcinogenic CUL _i for Indoor Air (μg/m ³) (CUL _i =RfDi _i x IF/ABS _i)	F _i /CUL _i	Total Site- Specific Indoor Air TPH CUL = 1/Σ(F _i /CUL _i) (μg/m ³)	Total Site-Specific Soil Gas TPH Screening Level = TPH Air CUL/Attenuation Factor of 0.03 (μg/m ³)
Ecology Example (Ta	ble E-7, Guidance	e for Evaluating Va	apor Intrusio	n in Washington	State) ¹				
Aliphatics EC>5-8	319	0.91	1	1.7	1,600	2.72E+03	3.35E-04		
Aliphatics EC>8-12	12	0.03	1	0.029	1,600	4.64E+01	7.40E-04		
Aromatics EC>9-10	6	0.02	1	0.114	1,600	1.82E+02	9.41E-05		
Benzene	0.2	0.0006	1	0.00855	1,600	1.37E+01	4.18E-05		
Toluene	8	0.02	1	1.4	1,600	2.24E+03	1.02E-05		
Ethylbenzene	1.8	0.01	1	0.286	1,600	4.58E+02	1.12E-05		
Xylenes	2.7	0.01	1	0.029	1,600	4.64E+01	1.66E-04		
Naphthalene	< 0.07	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	349.7	1.00					1.40E-03	715	23,832
Sample: SG-04-07102	24								
Aliphatics EC>5-8	1,200,000	0.24	1	1.7	1,600	2.72E+03	8.99E-05		
Aliphatics EC>8-12	3,700,000	0.75	1	0.029	1,600	4.64E+01	1.62E-02		
Aromatics EC>9-10	< 99,000	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 350	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 8,300	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 480	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	7,200	0.00	1	0.029	1,600	4.64E+01	3.16E-05		
Naphthalene	< 290	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	4,907,200	1.00					1.64E-02	61	2,036
Sample: SG-05-07102	24								
Aliphatics EC>5-8	530	0.50	1	1.7	1,600	2.72E+03	1.86E-04		
Aliphatics EC>8-12	520	0.50	1	0.029	1,600	4.64E+01	1.07E-02		
Aromatics EC>9-10	< 130	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 1.7	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 40	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 2.3	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	< 6.9	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Naphthalene	< 1.4	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	1,050.00	1.00					1.09E-02	92	3,070

Table 1Calculation of Site-Specific Indoor Air Cleanup Levels and Soil Gas Screening Levels3245 158th Avenue SoutheastBellevue, WashingtonFarallon PN: 2403-008

Petroleum Fraction or Compound ¹	Measured Soil Gas or Air Concentration (μg/m³)	Fraction of Total Concentration (F _i)	ABS _i (unitless)	RfDi _i (mg/kg-day)	Intermediate Factor (IF) (kg-µg-day/ mg-m ³⁾	Total TPH Non-carcinogenic CUL _i for Indoor Air (μg/m ³) (CUL _i =RfDi _i x IF/ABS _i)	F _i /CUL _i	Total Site- Specific Indoor Air TPH CUL = 1/Σ(F _i /CUL _i) (μg/m ³)	Total Site-Specific Soil Gas TPH Screening Level = TPH Air CUL/Attenuation Factor of 0.03 (μg/m ³)
Sample: SG-06-07102	4				• •			-	
Aliphatics EC>5-8	550	0.41	1	1.7	1,600	2.72E+03	1.52E-04		
Aliphatics EC>8-12	780	0.59	1	0.029	1,600	4.64E+01	1.26E-02		
Aromatics EC>9-10	< 130	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 1.7	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 40	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 2.3	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	< 6.9	0.00	1	0.029	1,600	4.64E+01	0.00E+00		
Naphthalene	< 1.4	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	1,330	1.00					1.28E-02	78	2,606
Sample: SG-08-07092	4								
Aliphatics EC>5-8	500	0.51	1	1.7	1,600	2.72E+03	1.88E-04		
Aliphatics EC>8-12	470	0.48	1	0.029	1,600	4.64E+01	1.04E-02		
Aromatics EC>9-10	< 130	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 1.7	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 40	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 2.3	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	8.2	0.01	1	0.029	1,600	4.64E+01	1.81E-04		
Naphthalene	< 1.4	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	978.2	1.00					1.07E-02	93	3,108
Sample: SG-09-07092	4								
Aliphatics EC>5-8	970	0.47	1	1.7	1,600	2.72E+03	1.72E-04		
Aliphatics EC>8-12	1,100	0.53	1	0.029	1,600	4.64E+01	1.14E-02		
Aromatics EC>9-10	< 130	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 1.7	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 39	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 2.3	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	7	0.00	1	0.029	1,600	4.64E+01	7.26E-05		
Naphthalene	< 1.4	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	2,077	1.00					1.17E-02	86	2,859

Table 1 Calculation of Site-Specific Indoor Air Cleanup Levels and Soil Gas Screening Levels 3245 158th Avenue Southeast Bellevue, Washington Farallon PN: 2403-008

Petroleum Fraction or Compound ¹	Measured Soil Gas or Air Concentration (μg/m³)	Fraction of Total Concentration (F _i)	ABS _i (unitless)	RfDi _i (mg/kg-day)	Intermediate Factor (IF) (kg-µg-day/ mg-m ³⁾	Total TPH Non-carcinogenic CUL _i for Indoor Air (μg/m ³) (CUL _i =RfDi _i x IF/ABS _i)	F _i /CUL _i	Total Site- Specific Indoor Air TPH CUL = 1/Σ(F _i /CUL _i) (μg/m ³)	Total Site-Specific Soil Gas TPH Screening Level = TPH Air CUL/Attenuation Factor of 0.03 (μg/m ³)
Sample: SG-10-07092	4								
Aliphatics EC>5-8	710	0.44	1	1.7	1,600	2.72E+03	1.62E-04		
Aliphatics EC>8-12	890	0.55	1	0.029	1,600	4.64E+01	1.19E-02		
Aromatics EC>9-10	< 140	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 1.8	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 41	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 2.4	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	6.8	0.00	1	0.029	1,600	4.64E+01	9.12E-05		
Naphthalene	< 1.4	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	1,607	1.00					1.22E-02	82	2,734
Sample: SG-11-07102	4								
Aliphatics EC>5-8	610	0.43	1	1.7	1,600	2.72E+03	1.57E-04		
Aliphatics EC>8-12	810	0.57	1	0.029	1,600	4.64E+01	1.22E-02		
Aromatics EC>9-10	< 130	0.00	1	0.114	1,600	1.82E+02	0.00E+00		
Benzene	< 1.7	0.00	1	0.00855	1,600	1.37E+01	0.00E+00		
Toluene	< 41	0.00	1	1.4	1,600	2.24E+03	0.00E+00		
Ethylbenzene	< 2.3	0.00	1	0.286	1,600	4.58E+02	0.00E+00		
Xylenes	6.3	0.00	1	0.029	1,600	4.64E+01	9.52E-05		
Naphthalene	< 1.4	0.00	1	0.00086	1,600	1.38E+00	0.00E+00		
Total TPH	1,426	1.00					1.25E-02	80	2,668

NOTES:

¹ Calculation of a site-specific TPH indoor air cleanup level and soil gas screening level is based on the example provided in Tables E-5, E-6, and E-7 of the Washington State Department of Ecology's *Guidance for Evaluating Vapor Intrusion in Washington State*, Publication No. 09-09-047, Final March 2022. The intermediate factor is as provided and explained in Table E-5.
$$\begin{split} ABS_i &= \text{inhalation absorption fraction for individual petroleum component} \\ CUL_i &= \text{air cleanup level for individual petroleum component} \\ F_i &= \text{fraction by weight of individual petroleum component} \\ IF &= \text{intermediate factor (see Note 1)} \\ kg &= kilogram \end{split}$$

μg/m³ = micrograms per cubic meter mg/kg-day = milligrams per kilogram per day RfDi_i = inhalation reference does for individual petroleum component

TPH = total petroleum hydrocarbons

APPENDIX G LABORATORY DISCUSSION REGARDING SOIL GAS SAMPLE RESULTS

REMEDIAL INVESTIGATION AND CLEANUP ACTION PLAN 3245 158th Avenue Southeast Bellevue, Washington

Farallon PN: 2403-008

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

June 5, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the amended results from the testing of material submitted on March 1, 2024 from the 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024 project. The case narrative was expanded.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0314R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

March 14, 2024

Yusuf Pehlivan, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Pehlivan:

Included are the results from the testing of material submitted on March 1, 2024 from the 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024 project. There are 25 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0314R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 1, 2024 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
403024 -01	SG-04-022824
403024 -02	SG-09-022824
403024 -03	SG-05-022824
403024 -04	SG-11-022824
403024 -05	SG-10-022824
403024 -06	SG-08-022824
403024 -07	SG-06-022824

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The MA-APH concentrations in samples F&B 403204-02 through -07 were qualifed due to contamination. The samples were pressurized and screened in order after receipt by the laboratory. Carryover from the source level concentrations observed in sample 403024-01 likely affected the remaining samples in the data set and the affected concentrations were qualified accordingly.

The TO-15 calibration standard for ethanol exceeded the acceptance criteria. The compound was not detected, therefore this did not represent an out of control condition, and were qualified with a "k" qualifier.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received:	SG-04-022824 03/01/24	Client: Project:		Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008
Date Collected:	02/28/24	Lab ID:		403024-01 1/1100
Date Analyzed:	03/06/24	Data File:		030521.D
Matrix:	Air	Instrument:		GCMS8
Units:	ug/m3	Operator:		bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 100	70	130	
	Concentration			

	Concentration
Compounds:	ug/m3
APH EC5-8 aliphatic	
APH EC9-12 aliphat	ics 3,700,000
APH EC9-10 aromat	ics 99,000

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-09-022824 03/01/24 02/28/24 03/14/24 Air ug/m3	Client Projec Lab II Data I Instru Opera	t: D: File: ment:	Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 403024-02 1/5.2 031317.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha	tics 970 lc			

APH EC5-8 aliphatics	970 Ic
APH EC9-12 aliphatics	1,100 lc
APH EC9-10 aromatics	<130

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-05-022824 03/01/24 02/28/24 03/05/24 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 403024-03 1/5.3 030519.D GCMS8 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 99	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 aliphatics530 lcAPH EC9-12 aliphatics520 lcAPH EC9-10 aromatics<130				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-11-022824 03/01/24 02/28/24 03/05/24 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 403024-04 1/5.4 030518.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 97	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

APH EC9-12 aliphatics	810 lc
APH EC9-10 aromatics	<130

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-10-022824 03/01/24 02/28/24 03/05/24 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 403024-05 1/5.5 030517.D GCMS8 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 aliphatics710 lcAPH EC9-12 aliphatics890 lc				

APH EC9-10 aromatics <140

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

 $470 \ \rm lc$

<130

APH EC9-12 aliphatics

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-08-022824 03/01/24 02/28/24 03/05/24 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 403024-06 1/5.3 030516.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 98	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 aliphatics 500 lc				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-06-022824 03/01/24 02/28/24 03/05/24 Air ug/m3	Clien Projec Lab I Data Instru Opera	ct: D: File: ument:	Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 403024-07 1/5.3 030515.D GCMS8 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 99	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

APH EC9-10 aromatics <130

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix:	Method Blank Not Applicable Not Applicable 03/05/24 Air	Client Projec Lab I Data Instru	et: D:	Farallon Consulting, LLC 3245 154th Ave SE, Bellevue, WA 2403-008 04-0498 mb 030511.D GCMS8
Units:	ug/m3	Opera	ator:	bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-04-022824 03/01/24 02/28/24 03/06/24 Air ug/m3	Project: 3245 154th Ave		GCMS8		2403-008
	%	Lower	Upper			
Surrogates:	Recovery		Limit:			
4-Bromofluorobenz			130			
		centration		_		ntration
Compounds:	ug/m3	8 ppbv	Compo	unds:	ug/m3	ppbv
Propene	<1,300	< 770	1 9 Die	hloropropane	<250	<55
Dichlorodifluorome			1,2-Dic 1,4-Dic		<200 <400	<110
Chloromethane	<4,100			rimethylpentane	37,000	7,900
F-114	<2,300			l methacrylate	<4,500	<1,100
Vinyl chloride	<280		Heptar	•	<4,500	<1,100
1,3-Butadiene	<49			dichloromethane	<74	<11
Butane	<5,200			proethene	<120	<22
Bromomethane	<4,300	,		Dichloropropene	<1,000	<220
Chloroethane	<2,900			yl-2-pentanone	<9,000	<2,200
Vinyl bromide	<480			,3-Dichloropropene	<500	<110
Ethanol		<4,400 k	Toluen		<8,300	<2,200
Acrolein	<130			richloroethane	<60	<11
Pentane	<6,500		2-Hexa		<4,500	<1,100
Trichlorofluoromet			Tetrac	hloroethene	<7,500	<1,100
Acetone	<5,200		Dibron	nochloromethane	<94	<11
2-Propanol	<9,500			promoethane (EDB)	<85	<11
1,1-Dichloroethene	<440	<110		benzene	<510	<110
trans-1,2-Dichloroe	thene <440	<110	Ethylb	enzene	<480	<110
Methylene chloride	<38,000	<11,000	1,1,2,2	Tetrachloroethane	<150	<22
t-Butyl alcohol (TB	A) <13,000	<4,400	Nonan	e	<5,800	<1,100
3-Chloropropene	<3,400	<1,100	Isoprop	oylbenzene	<11,000	<2,200
CFC-113	<1,700	<220	2-Chlo	rotoluene	<5,700	<1,100
Carbon disulfide	<6,900			benzene	6,400	1,300
Methyl t-butyl ethe				ltoluene	11,000	2,300
Vinyl acetate	<7,700		m,p-Xy		7,200	1,600
1,1-Dichloroethane			o-Xyler		<480	<110
cis-1,2-Dichloroeth			Styren		<940	<220
Hexane	<3,900		Bromo		<2,300	<220
Chloroform	<54		•	chloride	<57	<11
Ethyl acetate	<7,900			rimethylbenzene	<5,400	<1,100
Tetrahydrofuran	<650			rimethylbenzene	29,000	5,900
2-Butanone (MEK)				hlorobenzene	<660	<110
1,2-Dichloroethane				hlorobenzene	<250	<42
1,1,1-Trichloroetha				hlorobenzene	<660 <820	<110 <110
Carbon tetrachlorid Benzene	le <350 <350		1,2,4-1 Naphtl	richlorobenzene	<820 <290	<110 <55
Cyclohexane	<7,600		1	nlorobutadiene	<290 <230	<00 <22
Cyclollexalle	< <i>1</i> ,000	~4,200	Tiexact	norobutatiene	~200	~44

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-09-022 03/01/24 02/28/24 03/14/24 Air ug/m3	2824	Client Projec Lab II Data I Instru Opera	t: D: File: ment:	Farallon Consulting, 1 3245 154th Ave SE, B 403024-02 1/5.2 031317.D GCMS8 bat		A 2403-008
		%	Lower	Upper	•		
Surrogates:	Re	ecovery:	Limit:	Limit:	:		
4-Bromofluorobenz	ene	99	70	130			
		C	, <u>,</u> .			C	, ,·
0			ntration	0	d		entration
Compounds:		ug/m3	ppbv	Comp	ounds:	ug/m3	ppbv
Propene		<6.3	<3.6	1.2-Di	chloropropane	<1.2	< 0.26
Dichlorodifluorome	thane	<5.1	<1	1,4-Di		<1.9	< 0.52
Chloromethane		<19	< 9.4		Frimethylpentane	27	5.8
F-114		<11	<1.6		vl methacrylate	<21	<5.2
Vinyl chloride		<1.3	< 0.52	Hepta		<21	<5.2
1,3-Butadiene		< 0.23	< 0.1		odichloromethane	2.8	0.42
Butane		28	12		oroethene	< 0.56	< 0.1
Bromomethane		<20	<5.2		B-Dichloropropene	<4.7	<1
Chloroethane		<14	<5.2		hyl-2-pentanone	<43	<10
Vinyl bromide		<2.3	< 0.52		1,3-Dichloropropene	<2.4	< 0.52
Ethanol		<39	<21	Toluer		<39	<10
Acrolein		< 0.6	< 0.26		Frichloroethane	< 0.28	< 0.052
Pentane		<31	<10	2-Hex		<21	<5.2
Trichlorofluoromet	hane	<12	<2.1		chloroethene	<35	<5.2
Acetone		<25	<10		mochloromethane	0.93	0.11
2-Propanol		<45	<18		bromoethane (EDB)	< 0.4	< 0.052
1,1-Dichloroethene		<2.1	< 0.52		obenzene	<2.4	< 0.52
trans-1,2-Dichloroe		<2.1	< 0.52	Ethyll	oenzene	<2.3	< 0.52
Methylene chloride		<180	<52	1,1,2,2	2-Tetrachloroethane	< 0.71	< 0.1
t-Butyl alcohol (TB	A)	<63	<21	Nonar	ne	<27	<5.2
3-Chloropropene		<16	< 5.2	Isopro	pylbenzene	<51	<10
CFC-113		<8	<1	2-Chlo	orotoluene	<27	<5.2
Carbon disulfide		<32	<10	Propy	lbenzene	<26	<5.2
Methyl t-butyl ethe	er (MTBE)	<37	<10	•	yltoluene	<26	<5.2
Vinyl acetate		<37	<10	m,p-X		7.0	1.6
1,1-Dichloroethane		<2.1	< 0.52	o-Xyle	ene	<2.3	< 0.52
cis-1,2-Dichloroethe	ene	<2.1	< 0.52	Styrer		<4.4	<1
Hexane		<18	< 5.2	Bromo		<11	<1
Chloroform		12	2.4		l chloride		<0.052 k
Ethyl acetate		<37	<10		Frimethylbenzene	<26	<5.2
Tetrahydrofuran		<3.1	<1		Frimethylbenzene	<26	<5.2
2-Butanone (MEK)		<31	<10		chlorobenzene	<3.1	< 0.52
1,2-Dichloroethane	· ,	< 0.21	< 0.052	,	chlorobenzene	<1.2	< 0.2
1,1,1-Trichloroetha		<2.8	< 0.52		chlorobenzene	<3.1	< 0.52
Carbon tetrachlorid	le	<1.6	< 0.26		Frichlorobenzene	<3.9	< 0.52
Benzene		<1.7	< 0.52		thalene	<1.4	< 0.26
Cyclohexane		<36	<10	Hexac	chlorobutadiene	<1.1	< 0.1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-05-0228 03/01/24 02/28/24 03/05/24 Air ug/m3	324	Client Projec Lab II Data Instru Opera	et: D: File: ument:	Farallon Consulting, 3245 154th Ave SE, E 403024-03 1/5.3 030519.D GCMS8 bat		2403-008
		%	Lower	Upper			
Surrogates:	Rec	overy:	Limit:	Limit:			
4-Bromofluorobenz		99	70	130			
		Conce	ntration			Conce	ntration
Compounds:	ı	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D		-0.4	-0 F	1 0 D'	1.1	1.0	-0.00
Propene	41	< 6.4	<3.7		chloropropane	<1.2	<0.26
Dichlorodifluorome Chloromethane	thane	<5.2	<1.1	1,4-Di		<1.9	< 0.53
F-114		<20 <11	<9.5 <1.6		Frimethylpentane	<25 <22	<5.3 <5.3
F-114 Vinyl chloride		<11 <1.4	<1.6 <0.53	Hepta	l methacrylate	<22 <22	<0.3 <5.3
1,3-Butadiene		<0.23	<0.55 <0.11		dichloromethane	< 0.36	<0.053
Butane		<25	<0.11		oroethene	$< 0.50 \\ < 0.57$	<0.055
Bromomethane		<23 <21	<5.3		-Dichloropropene	<0.57	<0.11
Chloroethane		<14	<5.3		nyl-2-pentanone	<43	<11
Vinyl bromide		<2.3	< 0.53		1,3-Dichloropropene	<2.4	< 0.53
Ethanol		<40 k	<21 k	Toluer		< <u>4</u> 0	<11
Acrolein		<0.61	<0.26		Trichloroethane	< 0.29	< 0.053
Pentane		<31	<11	2-Hexa		<22	<5.3
Trichlorofluoromet	hane	<12	<2.1		hloroethene	<36	<5.3
Acetone	inanio	<25	<11		nochloromethane	< 0.45	< 0.053
2-Propanol		<46	<19		bromoethane (EDB)	< 0.41	< 0.053
1,1-Dichloroethene		<2.1	< 0.53		benzene	<2.4	< 0.53
trans-1,2-Dichloroe		<2.1	< 0.53		enzene	<2.3	< 0.53
Methylene chloride		<180	<53		-Tetrachloroethane	< 0.73	< 0.11
t-Butyl alcohol (TB		<64	<21	Nonan		<28	<5.3
3-Chloropropene		<17	<5.3	Isopro	pylbenzene	<52	<11
CFC-113		<8.1	<1.1	2-Chlo	rotoluene	<27	<5.3
Carbon disulfide		<33	<11	Propyl	benzene	<26	<5.3
Methyl t-butyl ethe	er (MTBE)	<38	<11	4-Ethy	ltoluene	<26	<5.3
Vinyl acetate		<37	<11	m,p-Xy	ylene	<4.6	<1.1
1,1-Dichloroethane		<2.1	< 0.53	o-Xyle	ne	<2.3	< 0.53
cis-1,2-Dichloroeth	ene	<2.1	< 0.53	Styren		<4.5	<1.1
Hexane		<19	<5.3	Bromo		<11	<1.1
Chloroform		0.28	0.058		l chloride	< 0.27	< 0.053
Ethyl acetate		<38	<11		Trimethylbenzene	<26	<5.3
Tetrahydrofuran		3.5	1.2		rimethylbenzene	<26	<5.3
2-Butanone (MEK)		<31	<11		chlorobenzene	<3.2	< 0.53
1,2-Dichloroethane		< 0.21	< 0.053		chlorobenzene	<1.2	< 0.2
1,1,1-Trichloroetha		<2.9	< 0.53		chlorobenzene	<3.2	<0.53
Carbon tetrachlorie	de	<1.7	< 0.26		richlorobenzene	<3.9	< 0.53
Benzene		<1.7	< 0.53		halene	<1.4	< 0.26
Cyclohexane		<36	<11	Hexac	hlorobutadiene	<1.1	< 0.11

ENVIRONMENTAL CHEMISTS

Date Received:0Date Collected:0Date Analyzed:0Matrix:A	G-11-022824 3/01/24 2/28/24 3/05/24 .ir g/m3	Client Projec Lab II Data I Instru Opera	et: D: File: ument:	Farallon Consulting, 3245 154th Ave SE, E 403024-04 1/5.4 030518.D GCMS8 bat		2403-008
	%	Lower	Upper			
Surrogates:	Recovery:	Limit:	Limit:			
4-Bromofluorobenzene		70	130			
1 Diomonworosonilon			100			
	Conce	ntration			Conce	ntration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D	- -	2.2	10.01		1.0	-
Propene	<6.5	<3.8		chloropropane	<1.2	<0.27
Dichlorodifluorometha		<1.1	1,4-Di		<1.9	< 0.54
Chloromethane	<20	< 9.7		Frimethylpentane	<25	<5.4
F-114 Vinul ablarida	<11	<1.6		l methacrylate	<22	<5.4
Vinyl chloride	<1.4 <0.24	<0.54 <0.11	Hepta		<22	$< 5.4 \\ 0.24$
1,3-Butadiene Butane	<0.24 <26	<0.11 <11		dichloromethane proethene	1.6 < 0.58	<0.24 <0.11
Bromomethane	<26 <21	<11 <5.4			<0.58 <4.9	<0.11 <1.1
Chloroethane	<14	<5.4 <5.4		-Dichloropropene nyl-2-pentanone	<4.9 <44	<1.1
Vinyl bromide	<2.4	<0.54		1,3-Dichloropropene	$<\!$	<0.54
Ethanol	<41 k	<0.54 <22 k	Toluer		<2.5 <41	<0.54 <11
Acrolein	<0.62	<2.2 K <0.27		Trichloroethane	<0.29	< 0.054
Pentane	<32	<0.27	2-Hexa		<0.25	<0.054 <5.4
Trichlorofluorometha		<2.2		hloroethene	<37	<5.4 <5.4
Acetone	<26	<11		nochloromethane	0.60	<0.4 0.070
2-Propanol	<46	<19		bromoethane (EDB)	< 0.41	< 0.054
1,1-Dichloroethene	<2.1	< 0.54		benzene	<2.5	< 0.54
trans-1,2-Dichloroethe		< 0.54		enzene	<2.3	< 0.54
Methylene chloride	<190	<54		-Tetrachloroethane	<0.74	< 0.11
t-Butyl alcohol (TBA)	<65	<22	Nonar		<28	<5.4
3-Chloropropene	<17	<5.4		pylbenzene	<53	<11
CFC-113	<8.3	<1.1		rotoluene	<28	<5.4
Carbon disulfide	<34	<11		benzene	<27	<5.4
Methyl t-butyl ether (MTBE) <39	<11		vltoluene	<27	<5.4
Vinyl acetate	<38	<11	m,p-X	ylene	6.3	1.5
1,1-Dichloroethane	<2.2	< 0.54	o-Xyle	ne	<2.3	< 0.54
cis-1,2-Dichloroethene	e <2.1	< 0.54	Styrer	ie	<4.6	<1.1
Hexane	<19	<5.4	Bromo	form	<11	<1.1
Chloroform	6.4	1.3	Benzy	l chloride	< 0.28	< 0.054
Ethyl acetate	<39	<11	1,3,5-1	Trimethylbenzene	<27	<5.4
Tetrahydrofuran	<3.2	<1.1		Trimethylbenzene	<27	<5.4
2-Butanone (MEK)	<32	<11	,	chlorobenzene	<3.2	< 0.54
1,2-Dichloroethane (E	,	< 0.054		chlorobenzene	<1.2	< 0.21
1,1,1-Trichloroethane	<2.9	< 0.54		chlorobenzene	<3.2	< 0.54
Carbon tetrachloride	<1.7	< 0.27		richlorobenzene	<4	< 0.54
Benzene	<1.7	< 0.54		halene	<1.4	< 0.27
Cyclohexane	<37	<11	Hexac	hlorobutadiene	<1.2	< 0.11

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-10-0228 03/01/24 02/28/24 03/05/24 Air ug/m3	24	Client Projec Lab II Data Instru Opera	et: D: File: ument:	Farallon Consulting, 3245 154th Ave SE, F 403024-05 1/5.5 030517.D GCMS8 bat		2403-008
		%	Lower	Upper			
Surrogates:	Reco	overy:	Limit:	Limit:			
4-Bromofluorobenz		97	70	130			
1 21011011401050112	0110	01		100			
		Conce	ntration			Conce	ntration
Compounds:	ι	ıg/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D				10.01		1.0	
Propene	.1	7.9	4.6		chloropropane	<1.3	<0.28
Dichlorodifluorome	thane	<5.4	<1.1	1,4-Di		<2	< 0.55
Chloromethane		<20	< 9.9		Frimethylpentane	<26	<5.5
F-114 Vincel chloride		<12 <1.4	<1.6 <0.55		l methacrylate	<23 <23	$<\!\!5.5 < \!\!5.5$
Vinyl chloride 1,3-Butadiene		< 0.24	<0.55 <0.11	Hepta	ne odichloromethane	23	$< 5.5 \\ 0.42$
Butane		<0.24 <26	<0.11 <11		oroethene	< 0.59	<0.42
Bromomethane		<20 <21	<5.5		-Dichloropropene	<0.59 <5	<0.11 <1.1
Chloroethane		<15	<5.5		hyl-2-pentanone	<45	<1.1
Vinyl bromide		<2.4	<0.55		1,3-Dichloropropene	<45 <2.5	<0.55
Ethanol		<41 k	<0.55 <22 k	Toluer		<2.5 <41	<0.55
Acrolein		<0.63	<0.28		Frichloroethane	<0.3	< 0.055
Pentane		<32	<11	2-Hexa		<0.5 <23	<5.5
Trichlorofluoromet	hano	<12	<2.2		hloroethene	<37	<5.5 <5.5
Acetone	nane	<26	<11		nochloromethane	1.5	0.18
2-Propanol		<47	<19		bromoethane (EDB)	< 0.42	< 0.055
1,1-Dichloroethene		<2.2	< 0.55		obenzene	<2.5	< 0.55
trans-1,2-Dichloroe		<2.2	< 0.55		oenzene	<2.4	< 0.55
Methylene chloride		<190	<55		-Tetrachloroethane	< 0.76	< 0.11
t-Butyl alcohol (TB		<67	<22	Nonan		<29	< 5.5
3-Chloropropene	/	<17	<5.5	Isopro	pylbenzene	<54	<11
CFC-113		<8.4	<1.1	2-Chlo	orotoluene	<28	<5.5
Carbon disulfide		<34	<11	Propyl	benzene	<27	< 5.5
Methyl t-butyl ethe	er (MTBE)	<40	<11	4-Ethy	vltoluene	<27	< 5.5
Vinyl acetate		<39	<11	m,p-X	ylene	6.8	1.6
1,1-Dichloroethane		<2.2	< 0.55	o-Xyle	ne	<2.4	< 0.55
cis-1,2-Dichloroeth	ene	<2.2	< 0.55	Styrer		<4.7	<1.1
Hexane		<19	<5.5	Brome		<11	<1.1
Chloroform		9.9	2.0		l chloride	< 0.28	< 0.055
Ethyl acetate		<40	<11		Frimethylbenzene	<27	<5.5
Tetrahydrofuran		<3.2	<1.1		Frimethylbenzene	<27	<5.5
2-Butanone (MEK)		<32	<11	,	chlorobenzene	<3.3	< 0.55
1,2-Dichloroethane	· /	< 0.22	< 0.055		chlorobenzene	<1.3	< 0.21
1,1,1-Trichloroetha		<3	< 0.55		chlorobenzene	<3.3	< 0.55
Carbon tetrachlorie	de	<1.7	<0.28		Frichlorobenzene	<4.1	< 0.55
Benzene		<1.8	< 0.55		halene	<1.4	< 0.28
Cyclohexane		<38	<11	Hexac	hlorobutadiene	<1.2	< 0.11

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-08-0228 03/01/24 02/28/24 03/05/24 Air ug/m3	24	Client Projec Lab II Data Instru Opera	et: D: File: ument:	Farallon Consulting, 3245 154th Ave SE, E 403024-06 1/5.3 030516.D GCMS8 bat		2403-008
		%	Lower	Upper			
Surrogates:	Reco	overy:	Limit:	Limit:			
4-Bromofluorobenz		97	70	130			
1 21011011401050112	0110	0.		100			
		Conce	ntration			Conce	ntration
Compounds:	ι	ıg/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D				10.01			
Propene	.1	< 6.4	<3.7		chloropropane	<1.2	<0.26
Dichlorodifluorome	thane	<5.2	<1.1	1,4-Di		<1.9	< 0.53
Chloromethane		<20	<9.5		rimethylpentane	<25	<5.3
F-114		<11	<1.6		l methacrylate	<22	<5.3
Vinyl chloride		<1.4	< 0.53	Hepta		<22	<5.3
1,3-Butadiene		< 0.23	< 0.11		dichloromethane	4.0	0.60
Butane		<25	<11		Dichlemennen	< 0.57	< 0.11
Bromomethane Chloroethane		<21	<5.3		-Dichloropropene	<4.8	<1.1
		<14	<5.3		nyl-2-pentanone	<43	<11
Vinyl bromide		<2.3	< 0.53		1,3-Dichloropropene	<2.4	< 0.53
Ethanol		68 ca	36 ca	Toluer		<40	<11
Acrolein		< 0.61	<0.26 <11		Trichloroethane	<0.29 <22	< 0.053
Pentane Trichlorofluoromet	h	<31	<11 <2.1	2-Hexa	hloroethene	<22 <36	<5.3
Acetone	nane	<12 <25	< <u>2</u> .1 <11		nochloromethane	<36 2.3	$< 5.3 \\ 0.26$
2-Propanol		<25 <46	<11 <19		bromoethane (EDB)	2.3 <0.41	<0.053
1,1-Dichloroethene		<2.1	<0.53		benzene	<0.41 <2.4	<0.053
trans-1,2-Dichloroe		< 2.1	<0.53		penzene	<2.4 <2.3	<0.53
Methylene chloride		<180	<0.53 <53		-Tetrachloroethane	<0.73	<0.55 <0.11
t-Butyl alcohol (TB		<64	<03 <21	1,1,2,2 Nonan		<0.73	<5.3
3-Chloropropene	(1)	<17	<5.3		pylbenzene	<52	<0.5 <11
CFC-113		<8.1	<1.1	-	pyloenzene	<02 <27	<5.3
Carbon disulfide		<33	<11		benzene	<26	<5.3
Methyl t-butyl ethe	er (MTBE)	<38	<11		vltoluene	<26	<5.3
Vinyl acetate		<37	<11	m,p-X		5.7	1.3
1,1-Dichloroethane		<2.1	< 0.53	o-Xyle		2.5	0.58
cis-1,2-Dichloroeth		<2.1	< 0.53	Styren		<4.5	<1.1
Hexane		<19	<5.3	Bromo		<11	<1.1
Chloroform		14	2.9		l chloride	< 0.27	< 0.053
Ethyl acetate		<38	<11		Frimethylbenzene	<26	<5.3
Tetrahydrofuran		<3.1	<1.1		Trimethylbenzene	<26	<5.3
2-Butanone (MEK)		<31	<11		chlorobenzene	<3.2	< 0.53
1,2-Dichloroethane		< 0.21	< 0.053		chlorobenzene	<1.2	< 0.2
1,1,1-Trichloroetha	· ,	<2.9	< 0.53		chlorobenzene	<3.2	< 0.53
Carbon tetrachlorie		<1.7	< 0.26		Trichlorobenzene	<3.9	< 0.53
Benzene		<1.7	< 0.53		halene	<1.4	< 0.26
Cyclohexane		<36	<11	Hexac	hlorobutadiene	<1.1	< 0.11

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SG-06-022824 03/01/24 02/28/24 03/05/24 Air ug/m3	Clien Projec Lab I Data Instru Opera	ct: D: File: ument:	Farallon Consulting, I 3245 154th Ave SE, B 403024-07 1/5.3 030515.D GCMS8 bat		2403-008
	%	Lower	Upper			
Surrogates:	Recovery:	Lower Limit:	Limit:			
4-Bromofluorobenze		70	130			
1 Dromondorobenize	500	10	100			
	Conce	entration			Conce	ntration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
Propene	< 6.4	<3.7		chloropropane	<1.2	< 0.26
Dichlorodifluoromet		<1.1	1,4-Di		<1.9	< 0.53
Chloromethane	<20	<9.5		Trimethylpentane	<25	<5.3
F-114	<11	<1.6		l methacrylate	<22	<5.3
Vinyl chloride	<1.4	< 0.53	Hepta		<22	<5.3
1,3-Butadiene	< 0.23	< 0.11		dichloromethane	< 0.36	< 0.053
Butane	<25	<11		oroethene	< 0.57	< 0.11
Bromomethane	<21	<5.3		-Dichloropropene	<4.8	<1.1
Chloroethane	<14	<5.3		nyl-2-pentanone	<43	<11
Vinyl bromide	<2.3	< 0.53		1,3-Dichloropropene	<2.4	< 0.53
Ethanol	<40 k	<21 k	Toluer		<40	<11
Acrolein	< 0.61	< 0.26		Trichloroethane	< 0.29	< 0.053
Pentane	<31	<11	2-Hexa		<22	<5.3
Trichlorofluorometh		<2.1		hloroethene	<36	<5.3
Acetone	<25	<11		nochloromethane	< 0.45	< 0.053
2-Propanol	<46	<19		bromoethane (EDB)	< 0.41	< 0.053
1,1-Dichloroethene	<2.1	< 0.53		benzene	<2.4	< 0.53
trans-1,2-Dichloroet		< 0.53		oenzene	<2.3	< 0.53
Methylene chloride	<180	<53	1,1,2,2	-Tetrachloroethane	< 0.73	< 0.11
t-Butyl alcohol (TBA		<21	Nonan		<28	<5.3
3-Chloropropene	<17	<5.3	-	pylbenzene	<52	<11
CFC-113	<8.1	<1.1		rotoluene	<27	<5.3
Carbon disulfide	<33	<11		benzene	<26	<5.3
Methyl t-butyl ethe		<11	•	ltoluene	<26	<5.3
Vinyl acetate	<37	<11	m,p-X		<4.6	<1.1
1,1-Dichloroethane	<2.1	< 0.53	o-Xyle		<2.3	< 0.53
cis-1,2-Dichloroethe		< 0.53	Styrer		<4.5	<1.1
Hexane	<19	<5.3	Bromo		<11	<1.1
Chloroform	< 0.26	< 0.053	•	l chloride	< 0.27	< 0.053
Ethyl acetate	<38	<11		Frimethylbenzene	<26	<5.3
Tetrahydrofuran	3.8	1.3		Frimethylbenzene	<26	<5.3
2-Butanone (MEK)	<31 (EDC) <0.91	<11		chlorobenzene	<3.2	< 0.53
1,2-Dichloroethane	. ,	<0.053		chlorobenzene	<1.2	<0.2
1,1,1-Trichloroetha		<0.53		chlorobenzene	<3.2	<0.53
Carbon tetrachlorid		<0.26		richlorobenzene	<3.9	< 0.53
Benzene	<1.7	< 0.53		halene	<1.4	<0.26
Cyclohexane	<36	<11	пехас	hlorobutadiene	<1.1	< 0.11

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 03/05/24 Air ug/m3	Inst	ject:	Farallon Consulting 3245 154th Ave SE 04-0498 mb 030511.D GCMS8 bat	-	A 2403-008
	%	Lower	Upper			
Surrogates:	Recovery:		Limit:			
4-Bromofluorobenz		70	130			
		entration				entration
Compounds:	ug/m3	ppbv	Compo	ounds:	ug/m3	ppbv
D	-1.0	<0.7	1 0 D:	.1.1	-0.99	
Propene Dichlorodifluorome	<1.2 ethane <0.99	<0.7 <0.2		chloropropane	<0.23 <0.36	<0.05 <0.1
Chloromethane	<0.99 <3.7	<0.2 <1.8	1,4-Dic			
F-114	< 3.7	<1.8 <0.3		'rimethylpentane	<4.7 <4.1	<1 <1
Vinyl chloride	<0.26		Heptai	l methacrylate	<4.1 <4.1	<1
1,3-Butadiene	< 0.20	<0.1		dichloromethane	<0.067	< 0.01
Butane	<0.044			oroethene	< 0.007	<0.01
Bromomethane	<3.9			-Dichloropropene	<0.11	<0.02 <0.2
Chloroethane	<2.6			yl-2-pentanone	<8.2	<0.2
Vinyl bromide	<0.44	<0.1		1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	<0.44 <7.5 k		Toluen		<0.45	<0.1 <2
Acrolein	<0.11	<0.05		'richloroethane	<0.055	< 0.01
Pentane	<5.9		2-Hexa		<0.055	<0.01
Trichlorofluoromet		< 0.4		hloroethene	<6.8	<1
Acetone	<pre>state <2.2 <4.8</pre>			nochloromethane	<0.085	< 0.01
2-Propanol	<4.0 <8.6			promoethane (EDB)	< 0.085	<0.01 <0.01
1,1-Dichloroethene		<0.1		benzene	<0.46	<0.01
trans-1,2-Dichloroe		<0.1		enzene	<0.40	<0.1 <0.1
Methylene chloride				-Tetrachloroethane	<0.45	<0.12
t-Butyl alcohol (TB			Nonan		<5.2	<0.02
3-Chloropropene	<3.1	<1		pylbenzene	< 9.8	<2
CFC-113	<1.5			rotoluene	<5.2	<1
Carbon disulfide	<6.2	<0.2		benzene	<4.9	<1
Methyl t-butyl ethe		<2		ltoluene	<4.9	<1
Vinyl acetate	<7	<2	m,p-Xy		< 0.87	< 0.2
1,1-Dichloroethane			o-Xylei		< 0.43	< 0.1
cis-1,2-Dichloroeth			Styren		< 0.85	< 0.2
Hexane	<3.5		Bromo		<2.1	< 0.2
Chloroform	< 0.049			chloride	< 0.052	< 0.01
Ethyl acetate	<7.2			rimethylbenzene	<4.9	<1
Tetrahydrofuran	< 0.59			rimethylbenzene	<4.9	<1
2-Butanone (MEK)				chlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane				chlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroetha	· /	< 0.1		chlorobenzene	< 0.6	< 0.1
Carbon tetrachlorie		< 0.05		richlorobenzene	< 0.74	< 0.1
Benzene	< 0.32		Napht		<0.13 j	<0.025 j
Cyclohexane	<6.9			hlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024 Date Extracted: 03/14/24 Date Analyzed: 03/14/24

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

Sample ID Laboratory ID	<u>Helium</u>
SG-04-022824 403024-01	<0.6
SG-09-022824 403024-02	<0.6
$ SG-05-022824 { 403024-03 } $	<0.6
SG-11-022824 403024-04	<0.6
SG-10-022824 403024-05	<0.6
SG-08-022824 403024-06	<0.6
SG-06-022824 403024-07	<0.6
Method Blank	<0.6

04-0526 MB

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 403045-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	2,900	3,000	3
APH EC9-12 aliphatics	ug/m3	610	580	5
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Con	cror bampio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	81	70-130
APH EC9-12 aliphatics	ug/m3	67	111	70-130
APH EC9-10 aromatics	ug/m3	67	102	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 403045-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	190	190	0
Dichlorodifluoromethane	ug/m3	<5.6	<5.6	nm
Chloromethane	ug/m3	<21	<21	nm
F-114	ug/m3	<12	<12	nm
Vinyl chloride	ug/m3	1.7	1.7	0
1,3-Butadiene	ug/m3	34	34	0
Butane	ug/m3	140	130	7
Bromomethane	ug/m3	<22	<22	nm
Chloroethane	ug/m3	<15	<15	nm
Vinyl bromide	ug/m3	<2.5	<2.5	nm
Ethanol	ug/m3	<43	<43	nm
Acrolein	ug/m3	0.85	0.91	7
Pentane	ug/m3	78	81	4
Trichlorofluoromethane	ug/m3	22	19	15
Acetone	ug/m3	57	59	3
2-Propanol	ug/m3	<49	<49	nm
1,1-Dichloroethene	ug/m3	<2.3	<2.3	nm
trans-1,2-Dichloroethene	ug/m3	<2.3	<2.3	nm
Methylene chloride	ug/m3	<200	<200	nm
t-Butyl alcohol (TBA)	ug/m3	<69	<69	nm
3-Chloropropene	ug/m3	<18	<18	nm
CFC-113	ug/m3	<8.7	<8.7	nm
Carbon disulfide	ug/m3	<36	<36	nm
Methyl t-butyl ether (MTBE)	ug/m3	<41	<41	nm
Vinyl acetate	ug/m3	<40	<40	nm
1,1-Dichloroethane	ug/m3	<2.3	<2.3	nm
cis-1,2-Dichloroethene	ug/m3	<2.3	<2.3	nm
Hexane	ug/m3	50	48	4
Chloroform	ug/m3	1.3	1.3	0
Ethyl acetate	ug/m3	<41	<41	nm
Tetrahydrofuran	ug/m3	<3.4	<3.4	nm
2-Butanone (MEK)	ug/m3	<34	<34	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.23	< 0.23	nm
1,1,1-Trichloroethane	ug/m3	6.2	5.9	5
Carbon tetrachloride	ug/m3	<1.8	<1.8	nm
Benzene	ug/m3	25	25	0
Cyclohexane	ug/m3	<39	<39	nm
1,2-Dichloropropane	ug/m3	<1.3	<1.3	nm
1,4-Dioxane	ug/m3	<2.1	<2.1	nm
2,2,4-Trimethylpentane	ug/m3	350	350	0

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 403045-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<23	<23	nm
Heptane	ug/m3	28	28	0
Bromodichloromethane	ug/m3	< 0.38	< 0.38	nm
Trichloroethene	ug/m3	0.67	0.67	0
cis-1,3-Dichloropropene	ug/m3	<5.2	<5.2	nm
4-Methyl-2-pentanone	ug/m3	<47	<47	nm
trans-1,3-Dichloropropene	ug/m3	<2.6	<2.6	nm
Toluene	ug/m3	63	63	0
1,1,2-Trichloroethane	ug/m3	< 0.31	< 0.31	nm
2-Hexanone	ug/m3	<23	<23	nm
Tetrachloroethene	ug/m3	<39	<39	nm
Dibromochloromethane	ug/m3	< 0.49	< 0.49	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.44	< 0.44	nm
Chlorobenzene	ug/m3	<2.6	<2.6	nm
Ethylbenzene	ug/m3	2.5	2.5	0
1,1,2,2-Tetrachloroethane	ug/m3	< 0.78	< 0.78	nm
Nonane	ug/m3	<30	<30	nm
Isopropylbenzene	ug/m3	<56	<56	nm
2-Chlorotoluene	ug/m3	<30	<30	nm
Propylbenzene	ug/m3	<28	<28	nm
4-Ethyltoluene	ug/m3	<28	<28	nm
m,p-Xylene	ug/m3	<5	<5	nm
o-Xylene	ug/m3	<2.5	<2.5	nm
Styrene	ug/m3	<4.9	<4.9	nm
Bromoform	ug/m3	<12	<12	nm
Benzyl chloride	ug/m3	< 0.3	< 0.3	nm
1,3,5-Trimethylbenzene	ug/m3	<28	<28	nm
1,2,4 Trimethylbenzene	ug/m3	<28	<28	nm
1,3-Dichlorobenzene	ug/m3	<3.4	<3.4	nm
1,4-Dichlorobenzene	ug/m3	<1.3	<1.3	nm
1,2-Dichlorobenzene	ug/m3	<3.4	<3.4	nm
1,2,4-Trichlorobenzene	ug/m3	<4.2	<4.2	nm
Naphthalene	ug/m3	<1.5	<1.5	nm
Hexachlorobutadiene	ug/m3	<1.2	<1.2	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Co	ntroi Sample		Damaant		
	D	Percent			
A	Reporting	Spike	Recovery LCS	Acceptance	
Analyte	Units	Level		Criteria	
Propene	ug/m3	23	111	70-130	
Dichlorodifluoromethane	ug/m3	67	117	70-130	
Chloromethane	ug/m3	28	91 102	70-130	
F-114	ug/m3	94	106	70-130	
Vinyl chloride	ug/m3	35	101	70-130	
1,3-Butadiene	ug/m3	30	105	70-130	
Butane	ug/m3	32	102	70-130	
Bromomethane	ug/m3	52	103	70-130	
Chloroethane	ug/m3	36	103	70-130	
Vinyl bromide	ug/m3	59	116	70-130	
Ethanol	ug/m3	25	140 vo	70-130	
Acrolein	ug/m3	31	113	70-130	
Pentane	ug/m3	40	103	70-130	
Trichlorofluoromethane	ug/m3	76	105	70-130	
Acetone	ug/m3	32	116	70-130	
2-Propanol	ug/m3	33	115	70 - 130	
1,1-Dichloroethene	ug/m3	54	110	70 - 130	
trans-1,2-Dichloroethene	ug/m3	54	110	70 - 130	
Methylene chloride	ug/m3	94	104	70 - 130	
t-Butyl alcohol (TBA)	ug/m3	41	103	70 - 130	
3-Chloropropene	ug/m3	42	100	70-130	
CFC-113	ug/m3	100	112	70-130	
Carbon disulfide	ug/m3	42	107	70-130	
Methyl t-butyl ether (MTBE)	ug/m3	49	100	70-130	
Vinyl acetate	ug/m3	48	99	70-130	
1,1-Dichloroethane	ug/m3	55	110	70-130	
cis-1,2-Dichloroethene	ug/m3	54	107	70-130	
Hexane	ug/m3	48	98	70-130	
Chloroform	ug/m3	66	111	70-130	
Ethyl acetate	ug/m3	49	99	70-130	
Tetrahydrofuran	ug/m3	40	97	70-130	
2-Butanone (MEK)	ug/m3	40	105	70-130	
1,2-Dichloroethane (EDC)	ug/m3	55	114	70-130	
1,1,1-Trichloroethane	ug/m3	74	112	70 - 130	
Carbon tetrachloride	ug/m3	85	113	70-130	
Benzene	ug/m3	43	104	70-130	
Cyclohexane	ug/m3	46	108	70-130	
1,2-Dichloropropane	ug/m3	62	111	70-130	
1,4-Dioxane	ug/m3	49	112	70-130	
2,2,4-Trimethylpentane	ug/m3	63	105	70-130	
,, P 0 1 0 0 1 0		00	100	100	

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory	Some of Sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	108	70-130
Heptane	ug/m3	55	101	70-130
Bromodichloromethane	ug/m3	90	115	70-130
Trichloroethene	ug/m3	73	112	70-130
cis-1,3-Dichloropropene	ug/m3	61	107	70-130
4-Methyl-2-pentanone	ug/m3	55	100	70-130
trans-1,3-Dichloropropene	ug/m3	61	113	70-130
Toluene	ug/m3	51	109	70-130
1,1,2-Trichloroethane	ug/m3	74	115	70-130
2-Hexanone	ug/m3	55	106	70-130
Tetrachloroethene	ug/m3	92	113	70-130
Dibromochloromethane	ug/m3	120	113	70-130
1,2-Dibromoethane (EDB)	ug/m3	100	114	70-130
Chlorobenzene	ug/m3	62	108	70-130
Ethylbenzene	ug/m3	59	111	70-130
1,1,2,2-Tetrachloroethane	ug/m3	93	115	70-130
Nonane	ug/m3	71	112	70-130
Isopropylbenzene	ug/m3	66	113	70-130
2-Chlorotoluene	ug/m3	70	118	70-130
Propylbenzene	ug/m3	66	111	70-130
4-Ethyltoluene	ug/m3	66	109	70-130
m,p-Xylene	ug/m3	120	113	70-130
o-Xylene	ug/m3	59	116	70-130
Styrene	ug/m3	58	102	70-130
Bromoform	ug/m3	140	109	70-130
Benzyl chloride	ug/m3	70	128	70-130
1,3,5-Trimethylbenzene	ug/m3	66	111	70-130
1,2,4-Trimethylbenzene	ug/m3	66	107	70-130
1,3-Dichlorobenzene	ug/m3	81	113	70-130
1,4-Dichlorobenzene	ug/m3	81	111	70-130
1,2-Dichlorobenzene	ug/m3	81	111	70-130
1,2,4-Trichlorobenzene	ug/m3	100	104	70-130
Naphthalene	ug/m3	71	111	70-130
Hexachlorobutadiene	ug/m3	140	111	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/14/24 Date Received: 03/01/24 Project: 3245 154th Ave SE, Bellevue, WA 2403-008, F&BI 403024

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: 403024-07 (Duplicate)						
	Sample	Duplicate	Relative			
Analyte	Result	Result	Percent	Acceptance		
	(%)	(%)	Difference	Criteria		
Helium	0	0	nm	0-20		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 ${\bf k}-{\bf The}$ calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

APPENDIX H ECOLOGY TEE FORM

REMEDIAL INVESTIGATION AND CLEANUP ACTION PLAN 3245 158th Avenue Southeast Bellevue, Washington

Farallon PN: 2403-008

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: 3245 158th Avenue Southeast

Facility/Site Address: 3245 158th Avenue Southeast

Facility/Site No: NA

VCP Project No.: NA

Title: Senior Geologist

Step 2: IDENTIFY EVALUATOR

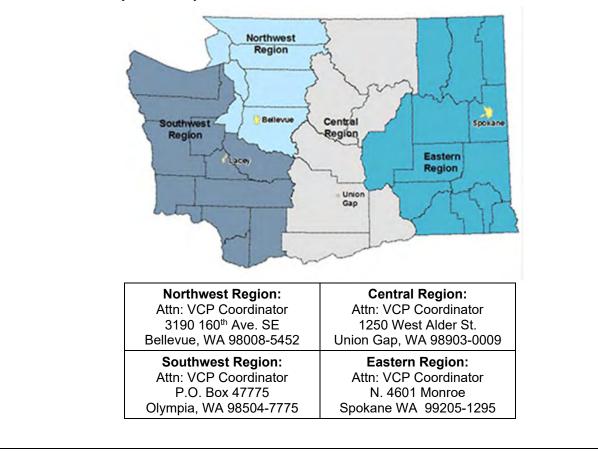
Please identify below the person who conducted the evaluation and their contact information.

Name: Yu	suf Pehlivan
----------	--------------

Organization: Farallon Consulting, LLC

Mailing address:	13555 SE 36 th	¹ Street,	Suite 320
------------------	---------------------------	----------------------	-----------

City: Bellevue		State: WA		Zip code: 98006
Phone: 949-351-6163	Fax:		E-mail: ypehl	ivan@farallonconsulting.com


Step	3: DOC	UMENT EVALUATION TYPE AND RESULTS			
A. Ex	clusion	from further evaluation.			
1. Do	es the S	Site qualify for an exclusion from further evaluation?			
	×Υ	es If you answered "YES," then answer Question 2.			
	🗌 N Unkn	lo or <i>If you answered "NO" or "UNKNOWN," then skip to Step 3B of this form.</i>			
2. Wh	nat is the	e basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.			
Poi	int of Co	ompliance: WAC 173-340-7491(1)(a)			
		All soil contamination is, or will be,* at least 15 feet below the surface.			
		All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.			
Bar	rriers to	Exposure: WAC 173-340-7491(1)(b)			
		All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.			
Un	develop	ed Land: WAC 173-340-7491(1)(c)			
		There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.			
	\boxtimes	For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.			
Background Concentrations: WAC 173-340-7491(1)(d)					
		Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.			
accepta [±] "Und preven [#] "Con	able to E levelopec t wildlife tiguous" ays, exter	based on future land use must have a completion date for future development that is cology. I land" is land that is not covered by building, roads, paved areas, or other barriers that would from feeding on plants, earthworms, insects, or other food in or on the soil. undeveloped land is an area of undeveloped land that is not divided into smaller areas of nsive paving, or similar structures that are likely to reduce the potential use of the overall area			

В.	Simplified evaluation.					
1.	Does the S	ite qualify for a simplified evaluation?				
	🗌 Ye	es If you answered "YES," then answer Question 2 below.				
	🗌 No Unkno	o or wn If you answered " NO " or " UNKNOWN ," then skip to Step 3C of this form.				
2.	Did you co	nduct a simplified evaluation?				
	🗌 Ye	es If you answered "YES," then answer Question 3 below.				
		If you answered " NO, " then skip to Step 3C of this form.				
3.	Was furthe	r evaluation necessary?				
	🗌 Ye	es If you answered "YES," then answer Question 4 below.				
		b If you answered " NO, " then answer Question 5 below.				
4.	If further ev	valuation was necessary, what did you do?				
		Used the concentrations listed in Table 749-2 as cleanup levels. <i>If so, then skip to</i> Step 4 of this form.				
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.				
5.	If no furthe to Step 4 of	r evaluation was necessary, what was the reason? Check all that apply. Then skip this form.				
	Exposure A	nalysis: WAC 173-340-7492(2)(a)				
		Area of soil contamination at the Site is not more than 350 square feet.				
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.				
	Pathway Ar	nalysis: WAC 173-340-7492(2)(b)				
		No potential exposure pathways from soil contamination to ecological receptors.				
	Contaminar	nt Analysis: WAC 173-340-7492(2)(c)				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.				

C. Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. See WAC 173-340-7493(1)(c). Was there a problem? See WAC 173-340-7493(2). Yes If you answered "YES," then answer Question 2 below. If you answered "NO," then identify the reason here and then skip to Question 3 below: While issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. It you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Used the concentrations listed in Evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Used the exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify:			
Yes If you answered "YES," then answer Question 2 below. If you answered "NO," then identify the reason here and then skip to Question 3 below: No No issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?	C.	the problen	n, and (2) selecting the methods for addressing the identified problem. Both steps
If you answered "NO," then identify the reason here and then skip to Question 3 below: No issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?	1.	Was there	a problem? See WAC 173-340-7493(2).
No below: No issues were identified during the problem formulation step. While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?			es If you answered "YES," then answer Question 2 below.
While issues were identified, those issues were addressed by the cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?		□ N	If you answered "NO," then identify the reason here and then skip to Question 5 below:
cleanup actions for protecting human health. 2. What did you do to resolve the problem? See WAC 173-340-7493(3). Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?			No issues were identified during the problem formulation step.
Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?			
Question 5 below. Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. If so, then answer Questions 3 and 4 below. 3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was a problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?	2.	What did y	ou do to resolve the problem? See WAC 173-340-7493(3).
 address the identified problem. If so, then answer Questions 3 and 4 below. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? 			
Check all that apply. See WAC 173-340-7493(3). Literature surveys. Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?			
 Soil bioassays. Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?	3.		
 Wildlife exposure model. Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?			Literature surveys.
 Biomarkers. Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? 			Soil bioassays.
 Site-specific field studies. Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? 			Wildlife exposure model.
 Weight of evidence. Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? 			Biomarkers.
 Other methods approved by Ecology. If so, please specify: 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? 			Site-specific field studies.
 4. What was the result of those evaluations? Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? 			Weight of evidence.
 Confirmed there was no problem. Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? 			Other methods approved by Ecology. If so, please specify:
 Confirmed there was a problem and established site-specific cleanup levels. 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps? 	4.	What was f	the result of those evaluations?
5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?			Confirmed there was no problem.
problem resolution steps?			Confirmed there was a problem and established site-specific cleanup levels.
Yes If so, please identify the Ecology staff who approved those steps:	5.	-	
			es If so, please identify the Ecology staff who approved those steps:
		□ N	0
	-		

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. People with hearing loss can call 711 for Washington Relay Service. People with a speech disability can call 877-833-6341.

APPENDIX I VAPOR BARRIER SPECIFICATIONS

REMEDIAL INVESTIGATION AND CLEANUP ACTION PLAN 3245 158th Avenue Southeast Bellevue, Washington

Farallon PN: 2403-008

stegoindustries.com

DRAGO[®] WRAP VAPOR INTRUSION BARRIER SUMMARY OF PERMEATION AND ATTENUATION TESTING

BACKGROUND

From October 2015 through August 2018, Drago Wrap Vapor Intrusion Barrier was subjected to a series of diffusion and sorption tests to obtain the film's diffusion, partitioning, and permeation characteristics. This testing was designed and overseen by an expert in the permeation of volatile organic compounds (VOCs) at a prominent university. The results of this testing, combined with further modeling and analysis, have been used to empirically determine the attenuation efficacy of Drago Wrap against various hydrocarbons and chlorinated solvents. The purpose of this document is to briefly discuss the theory behind diffusive vapor intrusion (VI); summarize and explain the robust testing protocol utilized; and relay the results of the testing and analysis.

CHEMICALS TESTED

 $f = -D_g \frac{dc_g}{d_z}$

 $S_{gf} = \frac{C_g}{C_f}$

 $f = S_{gf} D_g \frac{dc_g}{d_z} = \frac{P_g}{l} \Delta C$

Drago Wrap has been tested with regard to permeation of the following chemicals: Trichloroethylene (TCE); Perchloroethylene (PCE); the BTEX family: Benzene, Toluene, Ethylbenzene, Xylene; Dichloromethane; 1,4 Dichlorobenzene; Methyl tert-butyl ether (MTBE) and Naphthalene. This list was chosen based on a survey of the most often found chemicals on brownfield projects.

THEORY

The practical purpose behind obtaining permeation, diffusion, and partitioning coefficients is to apply them to the equations governing mass flux per Fick's laws during design of VI mitigation systems. The following briefly explains the theory and physics behind Fick's First Law.

The diffusion coefficient, D_g (units expressed in [m²/s]), is the parameter defining the membrane's resistance to the diffusive mass flux [g/m²s] transported within the membrane as governed by Fick's First Law:

due to a concentration gradient $dc_g/d_z [g/m^4]$ in the membrane layer. If the contaminant source is an aqueous solution adjacent to the membrane, the concentration of the contaminant in the membrane can be related to that in the fluid (at equilibrium) by the partitioning coefficient, S_{af} (where S_{af} is analogous to a Henry's coefficient). It is given by Equation 2 and depends on the solubility of the contaminant in the material:

where c_f is the concentration of the contaminant in the fluid, adjacent to and in equilibrium with, the concentration, c_{q_r} in the membrane.

Thus, the mass flux (f) from the fluid on one side of the membrane to the fluid on the other side (at steady state) is given by:

Stego is involved in the research, design, development, production and distribution of the highest quality construction products in the industry. Stego's technical department offers technical advice and additional information regarding the specific properties of all Stego products. Based on the department's experience, understanding of relevant scientific principles, and knowledge of current industry expert recommendations, Stego can advise on issues related to utility versus cost in order to assist in creating installation best practices. However, Stego does not employ design professionals. Therefore, Stego cannot interpret ASTM installation standards (E1643) and must defer to the project's assigned design professional on final design decisions. Version 1.3 | Last Update: February 1, 2019 | Created: September 12, 2017

Stego Industries, LLC is the exclusive Representative for all products, including Drago® Wrap and accessory products, owned and developed by Stego Technology, LLC, a wholly independent company from Stego Industries, LLC. Drago, the Drago logo, and DragoTack are deemed to be registered and/or protectable trademarks of Stego Technology, LLC. © 2019 Stego Industries, LLC. All Rights Reserved. Installation, Warranty and State Approval Information: www.stegoindustries.com/legal.

(Eq. 3)

(Eq. 1)

(Eq. 2)

where *l* is the thickness of the film/membrane, and ΔC is the difference in concentration between the two sides of the film/membrane at steady state, and the product of the two parameters (S_{gf} D_g) is called the permeation coefficient, P_g (m²/s):

$$P_g = S_{gf} D_g \tag{Eq. 4}$$

It can be gleaned from Equations 1-4 that the diffusion coefficient, D_g , is not enough to characterize the film's mass transfer properties for contaminants moving from below the membrane to above it. Diffusive mass transfer through an intact geomembrane is a 3-step process: partitioning into the geomembrane; diffusion through the geomembrane; and partitioning out of the geomembrane. Both D_g and S_{gf} (or simply P_g) must be known in order to effectively utilize Fick's steady state mass transfer equations. Therefore, to allow for full and complete analysis, Drago Wrap's permeation was fully characterized with all three values (permeation, diffusion, and partitioning coefficients) for each chemical tested. Those values are contained in Table 2. It is also imperative to understand the differences in methodologies between lab and site-specific field-testing setups. If such differences exist, the addition of the phase transition coefficient between water and air, Henry's coefficient (H), may also be required in the analysis. A deeper discussion on accounting for these differences is beyond the scope of this summary. Please contact the Stego Industries' Technical Department for additional assistance.

TESTING METHODOLOGY

Two types of tests and subsequent modeling have been employed in characterizing Drago Wrap's relevant characteristics: diffusion testing, sorption testing, and the finite layer modeling and analysis program, POLLUTE v7 (Rowe and Booker 2004).

The diffusion testing setup used stainless steel double-compartment cells (Figure 1), such that source and receptor volumes were separated by the Drago Wrap membrane. The cell was screwed together, with the membrane secured using two Viton rings (Figure 2) to prevent the loss of contaminant at the connection between each compartment and the membrane. Both the source and receptor were filled with double deionized (DDI) water, and a septum was inserted into the sampling ports to prevent losses. A stock solution of contaminants was added to the source compartment to form a dilute aqueous solution with a known concentration. Before assembly, and after disassembly, the mass of the membrane was recorded.

Stego is involved in the research, design, development, production and distribution of the highest quality construction products in the industry. Stego's technical department offers technical advice and additional information regarding the specific properties of all Stego products. Based on the department's experience, understanding of relevant scientific principles, and knowledge of current industry expert recommendations, Stego can advise on issues related to utility versus cost in order to assist in creating installation best practices. However, Stego does not employ design professionals. Therefore, Stego cannot interpret ASTM installation standards (E1643) and must defer to the project's assigned design professional on final design decisions. Version 1.3 | Last Update: February 1, 2019 | Created: September 12, 2017

Stego Industries, LLC is the exclusive Representative for all products, including Drago® Wrap and accessory products, owned and developed by Stego Technology, LLC, a wholly independent company from Stego Industries, LLC. Drago, the Drago logo, and DragoTack are deemed to be registered and/or protectable trademarks of Stego Technology, LLC. © 2019 Stego Industries, LLC. All Rights Reserved. Installation, Warranty and State Approval Information: www.stegoindustries.com/legal.

DRAGO[®] WRAP VAPOR INTRUSION BARRIER SUMMARY OF PERMEATION AND ATTENUATION TESTING

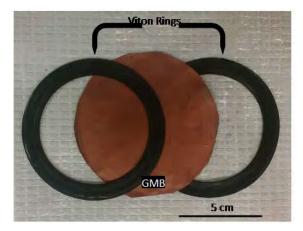


Figure 1: Double Compartment Cell

Figure 2: Membrane and Viton Rings

Sorption testing was also performed to directly measure the partitioning coefficients for each chemical. The sorption testing was conducted using 20-ml vials where a specimen was placed in double deionized water. The mass of the specimen was recorded beforehand. The vials were filled with double deionized water so that there was no airspace in the vial. Known masses of contaminants were added and 50 µl samples were taken daily from the vials for analysis and replaced with double deionized water until equilibrium was reached. The chemical analysis of these specimens was performed in the same manner as chemical analysis of the diffusion tests. This analysis is described in Appendix B.

The results from the diffusion and sorption tests were transduced and analyzed using the finite layer modeling and analysis program, POLLUTE v7, to create the results seen in Table 2.

In addition to whole-film testing, the discrete layers that make up Drago Wrap were tested to determine their respective permeation, diffusion and partitioning coefficients. The results obtained from the mathematical modeling of these tests do not necessarily equate to the values obtained from whole-film permeation testing. In other words, the full membrane benefits from a synergistic effect: the whole is greater than the sum of its parts. Due to its unique design, the testing demonstrated a very important feature to Drago Wrap: its ability to degrade chlorinated solvents like TCE. The results show about a 50-day half-life for TCE when the membrane is installed in its intended orientation. The results in Table 2 come from the most conservative approach to analyzing the results and do not consider these synergies.

RESULTS

As described earlier, the values displayed in Table 2 result from a conservative approach to the analysis of data generated from several phases and years of testing, and subsequent numerical modeling. The preferred methodology for obtaining accurate results requires an aqueous-to-aqueous testing scenario. Table 2 depicts these results. There exist scenarios where mass flux design with Drago Wrap requires additional consideration of phase-change analysis beyond what is offered in Table 2. Please contact the Stego Industries' Technical Department for assistance should the need arise.

Stego is involved in the research, design, development, production and distribution of the highest quality construction products in the industry. Stego's technical department offers technical advice and additional information regarding the specific properties of all Stego products. Based on the department's experience, understanding of relevant scientific principles, and knowledge of current industry expert recommendations, Stego can advise on issues related to utility versus cost in order to assist in creating installation best practices. However, Stego does not employ design professionals. Therefore, Stego cannot interpret ASTM installation standards (E1643) and must defer to the project's assigned design professional on final design decisions. Version 1.3 | Last Update: February 1, 2019 | Created: September 12, 2017

Stego Industries, LLC is the exclusive Representative for all products, including Drago® Wrap and accessory products, owned and developed by Stego Technology, LLC, a wholly independent company from Stego Industries, LLC. Drago, the Drago logo, and DragoTack are deemed to be registered and/or protectable trademarks of Stego Technology, LLC. © 2019 Stego Industries, LLC. All Rights Reserved. Installation, Warranty and State Approval Information: www.stegoindustries.com/legal.

Table 1 – Descriptions of the Tested Chemicals

Chemical	Abbreviation	Family	Use
Benzene	Btex	Aromatic Hydrocarbon	Gasoline byproduct
Toluene	bTex	Aromatic Hydrocarbon	Gasoline byproduct
Ethylbenzene	btEx	Aromatic Hydrocarbon	Gasoline byproduct
M&P-Xylenes	bteX	Aromatic Hydrocarbon	Gasoline byproduct
O-Xylene	bteX	Aromatic Hydrocarbon	Gasoline byproduct
Trichloroethylene	TCE	Chlorinated Hydrocarbon	Dry Cleaning and Solvent
Tetrachloroethylene	PCE	Chlorinated Hydrocarbon	Dry Cleaning and Solvent
Methyl tert-butyl ether	MTBE	Oxygenate	Octane-increasing additive to fuel
Dichloromethane	DCM	Chlorinated Hydrocarbon	Paint Stripper, Decaffeinate, Aerosol propellant
Naphthalene Naphthalene		Polycyclic Aromatic Hydrocarbon	Fumigant, Pyrotechnics, Wetting Agent
1,4-Dichlorobenzne	1,4-DCB	Chlorinated Hydrocarbon	Pesticide, Disinfectant, Deodorant

Table 2 – Aqueous Coefficients

Chemical	Diffusion, D _g [x 10 ⁻¹⁵ m²/s]	Partitioning, S _{gf} [-]	Permeation, P _g [x 10 ⁻¹³ m ² /s]
Benzene	2.6	171	4.5
Toluene	1.5	339	5.1
Ethylbenzene	0.41	764	3.1
M&P-Xylenes	0.4	743	2.9
O-Xylene	0.4	670	2.7
TCE	3.9	251	9.8
PCE	1.1	610	6.6
MTBE	1	1	0.01
DCM	0.95	475	4.5
Naphthalene	0.014	1710	0.25
1,4-DCB	0.94	760	7.1

CONCLUSION

Drago Wrap has proven to be a superior barrier to standard geomembranes like HDPE (by a factor of about 10 to 200 – See Appendix A) for all contaminants where comparisons could be made to HDPE and has remarkably low values for BTEX, TCE; PCE; MTBE; Naphthalene; DCM; and 1,4 DCB with permeation coefficients of the order of magnitude of 10^{-13} – 10^{-14} m²/s. In addition, the testing has shown that chlorinated solvents experience degradation while permeating through the membrane with a half-life of 50 days for TCE when the film is correctly oriented relative to the contaminant source.

Stego is involved in the research, design, development, production and distribution of the highest quality construction products in the industry. Stego's technical department offers technical advice and additional information regarding the specific properties of all Stego products. Based on the department's experience, understanding of relevant scientific principles, and knowledge of current industry expert recommendations, Stego can advise on issues related to utility versus cost in order to assist in creating installation best practices. However, Stego does not employ design professionals. Therefore, Stego cannot interpret ASTM installation standards (E1643) and must defer to the project's assigned design professional on final design decisions. Version 1.3 | Last Update: February 1, 2019 | Created: September 12, 2017

Stego Industries, LLC is the exclusive Representative for all products, including Drago® Wrap and accessory products, owned and developed by Stego Technology, LLC, a wholly independent company from Stego Industries, LLC. Drago, the Drago logo, and DragoTack are deemed to be registered and/or protectable trademarks of Stego Technology, LLC. © 2019 Stego Industries, LLC. All Rights Reserved. Installation, Warranty and State Approval Information: www.stegoindustries.com/legal.

APPENDIX A - COMPARISON TO HDPE (WHERE AVAILABLE)

	Permeation Coefficients- 20-mil Drago Wrap			Permeation Coefficients – 80-mil HDPE ¹			
	Dg (m²/s)	S _{gf} (-)	Pg (m ² /s)	Dg (m ² /s)	S _{gf} (-)	P_g (m ² /s)	Ratio (PgDrago/PgHDPE)
Benzene	2.6x10 ⁻¹⁵	171	4.5x10 ⁻¹³	3.5x10 ⁻¹³	30	1.05 x10	0-21-12-22-21-14-14
Toluene	1.5x10 ⁻¹⁵	339	5.1x10 ⁻¹³	3.0 x10 ⁻¹³	100	3.0 x10 ⁻¹¹	60
Ethylbenzene	4.1x10 ⁻¹⁶	764	3.0x10 ⁻¹³	1.8 x10 ⁻¹³	285	5.1 x10 ⁻¹¹	170
m&p-Xylenes	4.0x10 ⁻¹⁶	743	2.9x10 ⁻¹³	1.7 x10 ⁻¹³	347	5.9 x10 ⁻¹¹	200
o-Xylene	4.0x10 ⁻¹⁶	670	2.7x10 ⁻¹³	1.5 x10 ⁻¹³	240	3.6 x10 ⁻¹¹	130
TCE	3.9x10 ⁻¹⁵	251	9.8x10 ⁻¹³	4.0 x10 ⁻¹³	85	3.4 x10 ⁻¹¹	35
PCE	1.1x10 ⁻¹⁵	610	6.6x10 ⁻¹³		1	1	-
MTBE	1.0x10 ⁻¹⁵	1	1.0x10 ⁻¹⁵	-	.		÷
DCM	9.5x10 ⁻¹⁶	475	4.5x10 ⁻¹³	6.5 x10 ⁻¹³	6	3.9 x10 ⁻¹²	9
Naphthalene	1.4x10 ⁻¹⁷	1710	2.5x10 ⁻¹⁴		10		
1,4-DCB	9.4 x10 ⁻¹⁶	760	7.1x10 ⁻¹³	l de la co	40	1.1	

¹Sangam & Rowe (2001)

Stego is involved in the research, design, development, production and distribution of the highest quality construction products in the industry. Stego's technical department offers technical advice and additional information regarding the specific properties of all Stego products. Based on the department's experience, understanding of relevant scientific principles, and knowledge of current industry expert recommendations, Stego can advise on issues related to utility versus cost in order to assist in creating installation best practices. However, Stego does not employ design professionals. Therefore, Stego cannot interpret ASTM installation standards (E1643) and must defer to the project's assigned design professional on final design decisions. Version 1.3 | Last Update: February 1, 2019 | Created: September 12, 2017

Stego Industries, LLC is the exclusive Representative for all products, including Drago® Wrap and accessory products, owned and developed by Stego Technology, LLC, a wholly independent company from Stego Industries, LLC. Drago, the Drago logo, and DragoTack are deemed to be registered and/or protectable trademarks of Stego Technology, LLC. © 2019 Stego Industries, LLC. All Rights Reserved. Installation, Warranty and State Approval Information: www.stegoindustries.com/legal.

APPENDIX B- CHEMICAL ANALYSIS

The cells were sampled at regular time intervals. During each sampling event, 10 ul to 100 ul was removed from the cell, and that volume was replaced with DDI water so there was no airspace in the cell.

The samples were added to a vial containing 0.4 ml of methanol, 0.01 ml internal standard, and water was added so the total fluid volume in the vial was 1.6 ml. A Solid Phase Micro Extraction (SPME) fiber was inserted into vial headspace and the volatile compounds sorbed onto the fiber. This fiber was analyzed using gas chromatography (GC), and results compared to a certified laboratory standard calibration curve for the contaminant in question. Two types of detectors were used (depending on the cell in question); namely, a mass selective detector and a flame ionization detector. A quality assurance certified lab standard (from a different source to the calibration standards) was assessed during each sampling event.

All laboratory testing was conducted in a Canadian Association for Laboratory Accreditation (CALA) lab and followed CALA methods. This means that rigorous quality assurance practices were followed during chemical analysis. CALA frequently reviews the methods used and the accreditation is renewed every two years.

REFERENCES

Rowe, R. K., and Booker, J. R. (2004). "POLLUTE V.7 - 1D Pollutant Migration through a Non-homogenous Soil." GAEA Environmental Engineering Ltd.

Sangam, H. P., and Rowe, R. K. (2001). "Migration of dilute aqueous organic pollutants through HDPE geomembranes." Geotextiles and Geomembranes, 19(6), 329–357.

Stego is involved in the research, design, development, production and distribution of the highest quality construction products in the industry. Stego's technical department offers technical advice and additional information regarding the specific properties of all Stego products. Based on the department's experience, understanding of relevant scientific principles, and knowledge of current industry expert recommendations, Stego can advise on issues related to utility versus cost in order to assist in creating installation best practices. However, Stego does not employ design professionals. Therefore, Stego cannot interpret ASTM installation standards (E1643) and must defer to the project's assigned design professional on final design decisions. Version 1.3 | Last Update: February 1, 2019 | Created: September 12, 2017

Stego Industries, LLC is the exclusive Representative for all products, including Drago® Wrap and accessory products, owned and developed by Stego Technology, LLC, a wholly independent company from Stego Industries, LLC. Drago, the Drago logo, and DragoTack are deemed to be registered and/or protectable trademarks of Stego Technology, LLC. © 2019 Stego Industries, LLC. All Rights Reserved. Installation, Warranty and State Approval Information: <u>www.stegoindustries.com/legal</u>.

Drago Wrap Vapor Intrusion Barrier, and the technologies that underlie this game-changing vapor intrusion protection product, has undergone extensive testing to determine its ability to attenuate VOCs and other relevant material properties. These tests exposed Drago Wrap to a host of deleterious chemicals that may exist at or below a project site, including various petroleum distillates, chlorinated solvents, etc. The results of these tests are positive and telling; they show that Drago Wrap is extremely impermeable to a wide range of chemical vapors and, more importantly for our current considerations, maintains such impermeability over the course of years of exposure to these deleterious compounds.

While the results of such testing speak extensively to Drago Wrap's ability to resist degradation in extreme exposure conditions, we wished to pursue multiple exposure scenarios to further increase the confidence project team members should have in Drago Wrap as a critical component of the vapor intrusion systems they utilize on their projects. The following pages detail these measures. The conclusions indicate that there were no significant changes in mass or volume of Drago Wrap when exposed to direct contact with soils contaminated with benzene, toluene, ethylbenzene, xylene (collectively known as BTEX), trichloroethylene (TCE), perchloroethylene (PCE, or tetrachloroethylene), cis-1,2-dichloroethylene (C-DCE), trans-1,2-dichloroethylene (T-DCE), and sulfates. Additionally, we tested the post-exposure samples to determine their tensile strength (ASTM E882) and permeance to water vapor (F1249), and we observed that Drago Wrap maintains its ability to meet each corresponding performance threshold for high-performance water vapor barriers: for D882, Drago Wrap remains a Class A Vapor Barrier per ASTM E1745; for F1249, Drago Wrap maintains a permeance well below 0.01 perms.

If additional questions remain regarding any aspect of Drago Wrap, please be sure to contact the Stego Technical Department. We are happy to help and look forward to the opportunity to provide an effective and economical solution to your barrier needs.

Regards,

Mulz

Dan Marks CSI CDT LEED Green Associate Technical Director | Stego Industries, LLC O: (949) 325-2035| F: (949) 325-2062 danmarks@stegoindustries.com

Page 1 of 4

Stego is involved in the research, design, development, production and distribution of the highest quality construction products in the industry. Stego's technical department offers technical advice and additional information regarding the specific properties of all Stego products. Based on the department's experience, understanding of relevant scientific principles, and knowledge of current industry expert recommendations, Stego can advise on issues related to utility versus cost in order to assist in creating installation best practices. However, Stego does not employ design professionals. Therefore, Stego cannot interpret ASTM installation standards (E1643) and must defer to the project's assigned design professional on final design decisions. Version 1.0 | Last Update: April 11, 2017 | Created: April 11, 2017

Stego Industries, LLC is the exclusive Representative for all products, including Drago® Wrap and accessory products, owned by Stego Technology, LLC, a wholly independent company from Stego Industries, LLC. Drago, the Drago logo, and DragoTack are deemed to be registered and/or protectable trademarks of Stego Technology, LLC. Stego and the stegosaurus logo, are deemed to be registered and/or protectable trademarks of Stego Industries, LLC. © 2017 Stego Industries, LLC. All Rights Reserved. Installation and Warranty Information: www.stegoindustries.com/legal.

SETUP

To simulate a hydrocarbon contaminated brownfield site, a senior chemist at a research and testing lab prepared contaminated water to contain 1,000 ppb of each benzene, toluene, ethylbenzene, and xylene (BTEX). Two liters of this mixture were placed in a chamber, 49 cm x 23.5 cm wide by 27 cm tall. ASTM C778 standard 20-30 sand was added to the vessel until it was 5 cm above the original water line. At this level, the sand was damp with no free-standing water. Drago Wrap samples were placed on top of the damp sand, and the entire surface of the membrane were weighted down with sand-filled plastic bags to ensure full contact of the Drago Wrap with the damp sand. The test vessel was covered and sealed. After 30 days of exposure under ambient laboratory conditions (21-25°C), the samples were removed for evaluation.

Simply stated:

We took relatively large amounts of often-seen hydrocarbons resulting from fuel spills and old service station sites and put them into a water table just 2 inches below a sample of Drago Wrap. This can be considered an extreme situation in that water tables are not typically that close to the slab and vapor barrier membrane. After a 30-day exposure, the mass and volume changes were analyzed, and we subsequently tested the material for its water vapor permeance rating and tensile strength.

RESULTS

Mass and Volume

The chemist conducted mass and volume measurements before and after exposure. The following comes directly from her report: "All of the test coupons exhibited slight changes in mass and volume, no matter what their exposure conditions were. Statistical analysis by the two-tailed t-test showed that the changes for the BTEX-exposed coupons were not significantly different from the changes for the control-exposed coupons."

Conclusion: In other words, Drago Wrap mass and volume were not significantly affected by the BTEX exposure.

Tensile Strength

Samples were sent by the lab to our in-house lab and tested per ASTM E882 in both the machine and transverse directions. After the 30-day extreme BTEX solvent exposure, the results were 50.2 lbf/in and 49.6 lbf/in for machine and transverse directions respectively. These results were not significantly different than the water-exposed control samples (48.7 lbf/in, 48.5 lbf/in) or the unexposed samples (48.5 lbf/in, 46.8 lbf/in). For another point of comparison, consider that to be labeled as Class A per ASTM E1745, new-material tensile need only test at 45 lbf/in.

Conclusion: BTEX exposure has little to no effect on Drago Wrap's physical integrity in below-slab applications.

Water Vapor Permeance

The testing lab then sent exposed and control samples to our in-house lab where they were subsequently tested per ASTM F1249. The results were very positive. The permeance of the sample exposed to the BTEX solution (0.00733 perms) increased minimally compared to the control (0.00614 perms), both staying well below the threshold of 0.01 perms.

Conclusion: BTEX exposure had minimal effect on Drago Wrap's ability to retard water vapor.

Page 2 of 4

Stego is involved in the research, design, development, production and distribution of the highest quality construction products in the industry. Stego's technical department offers technical advice and additional information regarding the specific properties of all Stego products. Based on the department's experience, understanding of relevant scientific principles, and knowledge of current industry expert recommendations, Stego can advise on issues related to utility versus cost in order to assist in creating installation best practices. However, Stego does not employ design professionals. Therefore, Stego cannot interpret ASTM installation standards (E1643) and must defer to the project's assigned design professional on final design decisions. Version 1.0 | Last Update: April 11, 2017 I Created: April 11, 2017

Stego Industries, LLC is the exclusive Representative for all products, including Drago® Wrap and accessory products, owned by Stego Technology, LLC, a wholly independent company from Stego Industries, LLC. Drago, the Drago logo, and DragoTack are deemed to be registered and/or protectable trademarks of Stego Technology, LLC. Stego and the stegosaurus logo, are deemed to be registered and/or protectable trademarks of Stego Industries, LLC. © 2017 Stego Industries, LLC. All Rights Reserved. Installation and Warranty Information: www.stegoindustries.com/legal.

SETUP

To simulate a dry-cleaning brownfield site, a senior chemist at a research and testing lab prepared contaminated water to contain 3,600 ppb perchloroethylene (PCE), 12,500 PPB trichloroethylene (TCE), 16,200 PPB CIS-1,2-dichloroethylene (C-DCE), AND 1,700 PPB trans-1,2-dichlorothylene (T-DCE). Two liters of this mixture were placed in a chamber, 49 cm x 23.5 cm wide and 27 cm tall. ASTM C778 standard 20-30 sand was added to the vessel until it was 5 cm above the original water line. At this level, the sand was damp with no free-standing water. Drago Wrap samples were placed on top of the damp sand, and the entire surface of the vapor barrier was weighted down with sand-filled plastic bags to ensure full contact of the Drago Wrap with the damp sand. The test vessel was covered and sealed. After 30 days of exposure under ambient laboratory conditions (21-25°C), the samples were removed for evaluation.

Simply stated:

We took an actual soils report from an old dry cleaning site and recreated the conditions, roughly. In the actual scenario the water table was 20 feet below the vapor barrier. In our setup, we created a contaminated water table just 2 *inches* below Drago Wrap. After a 30-day exposure, the mass and volume changes were analyzed, and we subsequently tested the material for its water vapor permeance rating and tensile strength.

RESULTS

Mass and Volume

The chemist conducted mass and volume measurements before and after exposure. The following comes directly from her report: "All of the test coupons exhibited slight changes in mass and volume, no matter what their exposure conditions were. Statistical analysis by the two-tailed t-test showed that the changes for the chlorinated solvent-exposed coupons were not significantly different from the changes for the control-exposed coupons."

Conclusion: Drago Wrap's mass and volume were not significantly affected by the chlorinated solvent exposure.

Tensile Strength

Samples were sent by the lab to our in-house lab and tested per ASTM E882 in both the machine and transverse directions. After the 30-day extreme chlorinated solvent exposure, the results were 51.2 lbf/in and 49.7 lbf/in for machine and transverse directions respectively. These results were not significantly different than the water-exposed control samples (48.7 lbf/in, 48.5 lbf/in) or the unexposed samples (48.5 lbf/in, 46.8 lbf/in). For another point of comparison, consider that to be labeled as Class A per ASTM E1745, new-material tensile need only test at 45 lbf/in.

Conclusion: Chlorinated solvent exposure has little to no effect on Drago Wrap's physical integrity in below-slab applications.

Water Vapor Permeance

The testing lab then sent exposed and control samples to our in-house lab where they were subsequently tested per ASTM F1249. The results were very positive. The permeance of the sample exposed to the BTEX solution (0.00713 perms) increased minimally compared to the control (0.00614 perms), both staying well below the threshold of 0.01 perms.

Conclusion: Chlorinated solvent exposure had minimal effect on Drago Wrap's ability to retard water vapor.

Page 3 of 4

Stego is involved in the research, design, development, production and distribution of the highest quality construction products in the industry. Stego's technical department offers technical advice and additional information regarding the specific properties of all Stego products. Based on the department's experience, understanding of relevant scientific principles, and knowledge of current industry expert recommendations, Stego can advise on issues related to utility versus cost in order to assist in creating installation best practices. However, Stego does not employ design professionals. Therefore, Stego cannot interpret ASTM installation standards (E1643) and must defer to the project's assigned design professional on final design decisions. Version 1.0 | Last Update: April 11, 2017 I Created: April 11, 2017

Stego Industries, LLC is the exclusive Representative for all products, including Drago® Wrap and accessory products, owned by Stego Technology, LLC, a wholly independent company from Stego Industries, LLC. Drago, the Drago logo, and DragoTack are deemed to be registered and/or protectable trademarks of Stego Technology, LLC. Stego and the stegosaurus logo, are deemed to be registered and/or protectable trademarks of Stego Industries, LLC. © 2017 Stego Industries, LLC. All Rights Reserved. Installation and Warranty Information: <u>www.stegoindustries.com/legal</u>.

SETUP

To simulate the worst possible sulfate exposure, a senior chemist at a research and testing lab prepared water contaminated with 10,000 PPM of SO4 (sulfate.) This sulfate concentration was chosen because it was rated as "very severe" (the highest or worst classification) by UC Berkeley professors conducting research for the Caltrans Long Life Pavement Rehabilitation Strategy (LLPRS) Program. The Chemist took this worst-case scenario concentration and soaked samples of Drago Wrap in it for 28 days. Upon removal, the samples were analyzed for changes in mass and volume, and subsequently the exposed product was tested to determine its tensile strength and water vapor permeance rate.

RESULTS

Mass & Volume

The chemist conducted mass and volume measurements before and after exposure. The following comes directly from her report: "All of the test coupons exhibited slight changes in mass and volume, no matter what their exposure conditions were. Statistical analysis by the two-tailed t-test showed that the changes for the sulfate-exposed coupons were not significantly different from the changes for the control-exposed coupons."

Conclusion: In other words, Drago Wrap's mass and volume were not significantly affected by the sulfate exposure.

<u>Tensile</u>

Samples were sent by the lab to our in-house lab and tested per ASTM E882 in both the machine and transverse directions. After the 28-day extreme sulfate exposure, the results were 49.6 lbf/in and 52.3 lbf/in for machine and transverse directions respectively. These results were not significantly different than the water-exposed control samples (48.7 lbf/in, 50.8 lbf/in) or the unexposed samples (48.5 lbf/in, 46.8 lbf/in). For another point of comparison, consider that to be labeled as Class A per ASTM E1745, new-material tensile need only test at 45 lbf/in.

Conclusion: Sulfate exposure has little to no effect on Drago Wrap's physical integrity in below-slab applications.

Water Vapor Permeance

The testing lab then sent exposed and control samples to our in-house lab where they were subsequently tested per ASTM F1249. The results were very positive. The permeance of the sample exposed to the sulfate solution (0.00734 perms) increased minimally compared to the control (0.00698 perms), both staying well below the threshold of 0.01 perms.

Conclusion: Sulfate exposure had no significant effect on Drago Wrap's ability to retard water vapor.

Page 4 of 4

Stego is involved in the research, design, development, production and distribution of the highest quality construction products in the industry. Stego's technical department offers technical advice and additional information regarding the specific properties of all Stego products. Based on the department's experience, understanding of relevant scientific principles, and knowledge of current industry expert recommendations, Stego can advise on issues related to utility versus cost in order to assist in creating installation best practices. However, Stego does not employ design professionals. Therefore, Stego cannot interpret ASTM installation standards (E1643) and must defer to the project's assigned design professional on final design decisions. Version 1.0 | Last Update: April 11, 2017 | Created: April 11, 2017

Stego Industries, LLC is the exclusive Representative for all products, including Drago® Wrap and accessory products, owned by Stego Technology, LLC, a wholly independent company from Stego Industries, LLC. Drago, the Drago logo, and DragoTack are deemed to be registered and/or protectable trademarks of Stego Technology, LLC. Stego and the stegosaurus logo, are deemed to be registered and/or protectable trademarks of Stego Industries, LLC. © 2017 Stego Industries, LLC. All Rights Reserved. Installation and Warranty Information: www.stegoindustries.com/legal.

DRAGO[®] WRAP VAPOR INTRUSION BARRIER

A STEGO TECHNOLOGY, LLC INNOVATION | VAPOR RETARDERS 07 26 00, 03 30 00 | VERSION: 2/22/2019

1. PRODUCT NAME

DRAGO WRAP VAPOR INTRUSION BARRIER

2. MANUFACTURER

c/o Stego® Industries, LLC* 216 Avenida Fabricante, Suite 101 San Clemente, CA 92672 Sales, Technical Assistance Ph: (877) 464-7834 Fx: (949) 257-4113 www.stegoindustries.com

3. PRODUCT DESCRIPTION

USES: Drago Wrap is specifically engineered to attenuate volatile organic compounds (VOCs) and serve as a below-slab moisture vapor barrier.

COMPOSITION: Drago Wrap is a multi-layered plastic extrusion that combines uniquely designed materials with only high grade, prime, virgin resins.

ENVIRONMENTAL FACTORS: Drago Wrap can be used in systems for the control of various VOCs including hydrocarbons, chlorinated solvents, radon, methane, soil poisons, and sulfates.

.) TECHNICAL DATA

TABLE 4.1: PHYSICAL PROPERTIES OF DRAGO WRAP VAPOR INTRUSION BARRIER

PROPERTY	TEST	RESULTS
Under Slab Vapor Retarders	ASTM E1745 – Standard Specification for Water Vapor Retarders Used in Contact with Soil or Granular Fill under Concrete Slabs	ASTM E1745 Compliant
Water Vapor Permeance	ASTM F1249 – Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor	0.0069 perms
Push-Through Puncture	ASTM D4833 – Test Method for Index Puncture Resistance of Geotextiles, Geomembranes, and Related Products	183.9 Newtons
Tensile Strength	ASTM D882 – Test Method for Tensile Properties of Thin Plastic Sheeting	53.5 lbf/in
Permeance After Conditioning (ASTM E1745 Sections 7.1.2 - 7.1.5)	ASTM E154 Section 8, F1249 – Permeance after wetting, drying, and soaking ASTM E154 Section 11, F1249 – Permeance after heat conditioning ASTM E154 Section 12, F1249 – Permeance after low temperature conditioning ASTM E154 Section 13, F1249 – Permeance after soil organism exposure	0.0073 perms 0.0070 perms 0.0062 perms 0.0081 perms
Hydrocarbon Attenuation Factors	Contact Stego Industries' Technical Department	
Chlorinated Solvent Attenuation Factors	Contact Stego Industries' Technical Department	
Methane Transmission Rate	ASTM D1434 – Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting	7.0 GTR** (mL(STP)/m ² *day)
Radon Diffusion Coefficient	K124/02/95	9.8 x 10 ⁻¹⁴ m ² /second
Thickness		20 mil
Roll Dimensions		14' x 105' or 1,470 ft ²
Roll Weight		150 lb

Note: perm unit = grains/(ft²*hr*in-Hg) ** GTR = Gas Transmission Rate

DRAGO[®] WRAP VAPOR INTRUSION BARRIER

A STEGO TECHNOLOGY, LLC INNOVATION | VAPOR RETARDERS 07 26 00, 03 30 00 | VERSION: 2/22/2019

INSTALLATION

UNDER SLAB: Unroll Drago Wrap over a tamped aggregate, sand, or earth base. Overlap all seams a minimum of 12 inches and tape using Drago[®] Tape. All penetrations must be sealed using a combination of Drago Wrap and Drago Accessories.

Review Drago Wrap's complete installation instructions prior to installation.

AVAILABILITY & COST

Drago Wrap is available nationally through our network of building supply distributors. For current cost information, contact your local Drago distributor or Stego Industries' Sales Representative.

7. WARRANTY

Stego Industries, LLC believes to the best of its knowledge, that specifications and recommendations herein are accurate and reliable. However, since site conditions are not within its control, Stego Industries does not guarantee results from the use of the information provided and disclaims all liability from any loss or damage. Stego Technology, LLC does offer a limited warranty on Drago Wrap. Please see www.stegoindustries.com/legal.

MAINTENANCE

Store Drago Wrap in a dry and temperate area.

9. TECHNICAL SERVICES

Technical advice, custom CAD drawings, and additional information can be obtained by contacting Stego Industries or by visiting the website.

Contact Number: (877) 464-7834 Website: www.stegoindustries.com

10. FILING SYSTEMS

• www.stegoindustries.com

(877) 464-7834 | www.stegoindustries.com

DATA SHEETS ARE SUBJECT TO CHANGE. FOR MOST CURRENT VERSION, VISIT WWW.STEGOINDUSTRIES.COM

*Stego Industries, LLC ("Stego") is the exclusive Representative for Drago Wrap and Pango Wrap. All designated trademarks are the intellectual property of Stego or the entity for which it is acting as a Representative. Installation, Warranty, State Approval Information and Disclosure of Representative Status www.stegoindustries.com/legal. ©2019 Stego Industries, LLC. All rights reserved.

DRAGO[®] WRAP LIMITED WARRANTY ISSUER: STEGO TE<u>CHNOLOGY, LLC ("Stego Tech")</u>

Applicable Date: January 1, 2018 | Revision Date: October 30, 2018 | Version Number: 2.0

P1 of 3

This Drago Wrap Limited Warranty ("the Warranty") commences on the Effective Date and applies to Drago Wrap Vapor Intrusion Barrier (for the purposes of this Warranty "Drago Wrap").

Stego Tech recommends installation of Drago Wrap per ASTM E1643, its published installation instructions, and in accordance with all site-specific recommendations of the project's design team. Drago Wrap is specifically engineered to be installed in conjunction with its proprietary accessories, including Drago[®] Tape, DragoTack[™] Tape, Drago[®] Sealant, and Drago[®] Sealant Form. Additionally, to avoid puncturing Drago Wrap and comply with ASTM E1643, Stego Tech recommends utilizing the Beast[®] Screed system of vapor barrier-safe accessories.

WARRANTY TERMS AND CONDITIONS

1 DRAGO WRAP WARRANTY

Stego Tech recognizes the most current version of ASTM E1745 (at the time of the material purchase) as the governing standard specification for under-slab vapor retarders. Subject to the limitations set forth below, for the Life of the Building[™] Stego Tech warrants that Drago Wrap:

- (a) meets all of the requirements for its designated ASTM E1745 classification;
- (b) has been tested in accordance with each of the following ASTM test methods:
 - i. ASTM E1745 Standard Specification for Water Vapor Retarders Used in Contact with Soil or Granular Fill under Concrete Slabs
 - ii. ASTM F1249 Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor
 - iii. ASTM D1709 Test Methods for Impact Resistance of Plastic Film by Free-Falling Dart Method
 - iv. ASTM D882 Test Method for Tensile Properties of Thin Plastic Sheeting
 - v. ASTM E154 Sections 8, 11, 12, 13 Permeance After Conditioning¹
 - vi. ASTM D1434 Standard Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting
 - vii. ASTM D4833 Standard Test Method for Index Puncture Resistance of Geomembranes and Related Products
- (c) will be free from Manufacturing Composition Defects;
- (d) eligible for input on project-specific installation best practices by a Stego Tech-authorized representative during the preconstruction phase upon reasonable notice, in-person or remotely; and
- (e) eligible for Site Review by a Stego Tech-authorized representative, in-person or digitally, for input on installation prior to concrete placement upon reasonable notice.
- (f) will meet or exceed its published product literature for a period not less than two (2) years from the Date of Installation.

This Warranty is the sole Warranty given by Stego Tech or its Affiliates as to Drago Wrap. All installations or uses of Drago Wrap automatically activate this Warranty. If you do not wish to be bound by the terms of this Warranty, please return the Drago Wrap for a full Refund. Otherwise, all installations will be presumed to have agreed to the terms herein.

2 NOTICE AND CLAIMS

Any Claim pursuant to this Warranty must be Certified and must be made within sixty (60) days of the date discovered or the date it should reasonably have been discovered in order for Stego Tech to evaluate the Claim and replace the Drago Wrap. Claims may be made at any time during the Life of the Building. Such replacement (or at Stego Tech's option, Refund of the verified purchase price) shall be your sole and exclusive remedy for any such Claim.

¹ Standard Test Methods for Water Vapor Retarders Used in Contact with Earth Under Concrete Slabs, on Walls, or as Ground Cover.

DRAGO[®] WRAP LIMITED WARRANTY ISSUER: STEGO TECHNOLOGY, LLC ("Stego Tech")

Applicable Date: January 1, 2018 | Revision Date: October 30, 2018 | Version Number: 2.0

P2 of 3

WARRANTY AND CONDITIONS TO COVERAGE

This Warranty excludes any defect or damage caused by: (a) faulty or improper installation of the Drago Wrap, including the failure to comply with published specification and installation recommendations in effect at the time of installation; (b) improper use, storage or site conditions (e.g noncompliance with the terms of the Drago Wrap Material Safety Data Sheet); (c) any below-concrete slab or similar activity, and any other maintenance, repair, alteration or new installation to the Building that occurs after the completion of the original installation that impacts the Drago Wrap; (d) damage caused by non-Stego Tech materials; (e) factors beyond the reasonable control of Stego Tech or its Affiliates, including, but not limited to, natural disasters such as lightning, floods, windstorms, seismic disturbances, hurricanes, tornadoes, or impact of foreign objects or other violent storms or casualty; (f) damage resulting from any form of misuse, abuse or negligence; (g) structural defects or failures in the Building to which the Drago Wrap is installed.

Your sole remedy under this Warranty is, at Stego Tech's option: (a) Refund of the purchase price paid; or (b) replacement of so much of the Drago Wrap as Stego Tech deems necessary.

WARRANTY EXCLUSIONS

Except where prohibited by law, this Warranty and the remedies expressly stated herein are the exclusive warranties and remedies provided to you with respect to the Drago Wrap and supersede any prior, contrary or additional representations, whether oral or written. No representative, distributor, dealer or any other person is authorized to make, or makes any warranty, representation, condition or promise with respect to the Drago Wrap. ALL OTHER WARRANTIES ARE DISCLAIMED AND EXCLUDED – WHETHER EXPRESS, IMPLIED, OR STATUTORY – INCLUDING ANY **WARRANTY OF MERCHANTABILITY**, ANY **WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE**, AND ANY IMPLIED WARRANTIES OTHERWISE ARISING FROM COURSE OF DEALING, COURSE OF PERFORMANCE, OR USAGE OF TRADE.

In no event shall Stego Tech or its Affiliates be liable for any incidental, special, indirect, consequential damages, including but not limited to lost income or loss of use. This exclusion applies regardless of whether such damages are sought for breach of warranty, breach of contract, negligence, or strict liability in tort or any other legal or equitable theory.

5 SEVERANCE

If any provision in this Warranty is found to be invalid or unenforceable, then the remainder shall have full force and effect, and the invalid provision shall be modified or partially enforced to the maximum extent permitted by law to effectuate the purpose of the Warranty.

DISPUTE RESOLUTION

It is the intention of the parties to use their reasonable best efforts to informally resolve, where possible, any dispute, claim, demand or controversy arising out of the performance of this Warranty by mutual negotiation and cooperation. In the event that the parties are unable to informally resolve a dispute, the Parties agree that such disputes shall be completely and finally settled by submission to arbitration before a single arbitrator under the Judicial Arbitration and Mediation Services (JAMS) Arbitration Rules then in effect. Good faith mediation shall be a condition precedent to initiating arbitration. Unless the parties agree otherwise, the arbitration shall take place in Orange County, California, U.S.A. The award of the arbitrator shall be in writing, shall be final and binding upon the parties, shall not be appealed from or contested in any court and may, in appropriate circumstances, include injunctive relief. Judgment on such award may be entered in any court of appropriate jurisdiction, or application may be made to that court for a judicial acceptance of the award and an order of enforcement, as the party seeking to enforce that award may elect. The prevailing party shall be entitled to recover its attorney fees and costs. This Agreement shall be governed in all respects by the laws of the State of California without regard to the conflict of law provisions thereof. Neither party will consolidate, or seek class treatment for any action unless previously agreed to in writing by all parties.

Applicable Date: January 1, 2018 | Revision Date: October 30, 2018 | Version Number: 2.0

P3 of 3

DEFINITIONS

"Affiliates" means Stego Tech affiliated entities, partners, joint venturers, suppliers, vendors, subcontractors, representatives, and agents.

"*Applicable Date*" means the Limited Warranty applies to material sold on or after January 1, 2018.

"Building" means the building above which Drago Wrap was installed, as verified by Stego Tech.

"Certified" means that you have investigated whether a breach of this Warranty occurred and obtained and provided a qualified inspector report confirming evidence exists of such a Defect. Stego Tech reserves the right to independently verify any Claims.

"Claim" means a claim for relief under the Warranty.

"*Date of Installation*" means the date Drago Wrap was installed, as verified by Stego Tech.

"Effective Date" means date of first sale as verified.

"Life of the Building" means the duration of which the building originally installed atop of the Drago Wrap is in good and working condition.

"Manufacturing Composition Defect" means any condition of the Drago Wrap that does not meet the material's intended design and is disclosed to Stego Tech during the Life of the Building.

"Refund" means Stego Tech providing a monetary return in the amount verified to be the cost of the Drago Wrap subject to the Claim.

"*Site Review*" means a review of representative portions of the Drago Wrap installation (digitally or in-person, when possible, and as determined by Stego Tech authorized representative) prior to concrete placement to help ensure compliance with governing installation standard, ASTM E1643, Stego Tech's installation instructions, and/or, if applicable, the design team's recommendations (e.g. contract documents). Site Reviews are not a full site inspection.

"Stego Tech" means Stego Technology, LLC, a California limited liability company with its principal place of business located at 216 Avenida Fabricante, #101, San Clemente, California 92672. Stego Industries, LLC is the exclusive representative of Drago Wrap and accessory products, owned by Stego Technology, LLC, a wholly independent company.

"Warranty" means this Drago Wrap Limited Warranty.

Stego Industries, LLC is the exclusive Representative for all products, including Drago® Wrap and accessory products, owned by Stego Technology, LLC, a wholly independent company from Stego Industries, LLC. Drago, the Drago logo, and DragoTack are deemed to be registered and/or protectable trademarks of Stego Technology, LLC. Stego and the stegosaurus logo are deemed to be registered and/or protectable trademarks of Stego Industries, LLC. Life of the Building (LOTB) and the LOTB logo are deemed to be registered and/or protectable trademarks of Stego Industries, LLC. Life of the Building (LOTB) and the LOTB logo are deemed to be registered and/or protectable trademarks of Stego Industries, LLC Life of the Building (LOTB) and the LOTB logo are deemed to be registered and/or protectable trademarks of Stego Industries, LLC Life of the Building (LOTB) and the LOTB logo are deemed to be registered and/or protectable trademarks of Stego Industries, LLC Life of the Suite (LC LIF) and Warranty Information: www.stegoindustries.com/legal.

Revision Date: July 30, 2018 | Date of Issue: June 1, 2017 | Version Number: 2.0

SECTION 1: IDENTIFICATION

Product Identifier Product Name: Drago Wrap

Intended Use of the Product

Vapor Intrusion Barrier

Company Name, Address, and Telephone of the Responsible Party

Stego Technology, LLC or C/O Stego[®] Industries, LLC* 216 Avenida Fabricante #101 San Clemente, CA 92672

Emergency Telephone Number

Emergency Number: 1 (800) 424-9300 (24 Hrs.) CHEMTREC Main Contact Number: (877) 464-7834

SECTION 2: HAZARDS IDENTIFICATION

Classification: This product is not classified as hazardous in accordance with 29 C.F.R. § 1910.1200.

Signal word: None.

Pictogram(s): None.

Hazard statement(s): None.

Precautionary statement(s): None.

Hazards not otherwise classified: Polymer film can burn if exposed to excessive temperatures beyond the normal use of the product.

SECTION 3: COMPOSITION / INFORMATION ON INGREDIENTS

Ingredient	CAS Number	% by WT.
Copper	Proprietary*	<10%*

The selections marked with an '*' are proprietary and considered to be Trade Secrets. This is the reason that they are listed as such, or provided as a range.

SECTION 4: FIRST AID MEASURES

The following first aid recommendations are based on an assumption that appropriate personal and industrial hygiene practices are followed.

Inhalation: Not a respirable film. If exposed to fumes from combustion, move subject to fresh air; if breathing is difficult, give oxygen and get medical attention; if victim has stopped breathing, give artificial respiration and get medical attention.

Eye Contact: Not a probable route of exposure. If exposed to fumes from overheating or from combustion, move subject to fresh air. Flush with plenty of water; if irritation continues, get medical attention.

Skin Contact: No treatment necessary. For thermal burns, cool molten materials with water and get medical attention.

Ingestion: Not a probable route of exposure.

Revision Date: July 30, 2018 | Date of Issue: June 1, 2017 | Version Number: 2.0

SECTION 5: FIRE-FIGHTING MEASURES

Unusual Hazards: Polymer film can burn if exposed to excessive temperature beyond the normal use of the product. **Extinguishing Agents:** Use extinguishing media appropriate for surrounding fire: carbon dioxide, foam, dry chemical, and water fog.

Personal Protective: Equipment unnecessary unless resin is burned, which is not an intended use of the product. If resin is burning, wear self-contained breathing apparatus (pressure-demand MSHAINIOSH approved or equivalent) and full protective gear.

Note: See Section 10 for hazardous combustion and thermal decomposition information.

SECTION 6: ACCIDENTAL RELEASE MEASURES

Personal Protection: None necessary. **Procedures:** None necessary.

SECTION 7: HANDLING AND STORAGE

Storage Conditions: Cool, dry storage recommended. Indoor storage recommended.

Avoid storing films in areas containing aromatic hydrocarbons, halogenated compounds, chlorinated compounds, oxidative agents, solvents or other known polyethylene solubilizers, prodegradants, as they may impact the product performance and/or service life.

Handling Procedures: Avoid direct sunlight. Avoiding direct UV exposure of product. Avoid contact with incompatible materials.

Installation Temperature Range: Below 110°F (ambient). Please also see technical and safety data sheets for accessory products installation/application temperature ranges.

In-Service Temperature Range: Below 85°F (soil and slab temperature, beginning 28 days following slab placement). Please also see technical and safety data sheets for accessory products installation/application temperature ranges. Exposure to Ultraviolet Radiation/Weather Events: The amount of time between when Stego Wrap is installed and when

concrete is placed or other complete protection from sunlight and weather events is provided should be minimized while not exceeding 7 days.

Please review the remainder of the SDS and this wrap's technical data sheet for storage and additional information. If any of the conditions cited above pose a problem for the typical installation of Drago Wrap, please contact Stego Industries for additional information and solutions.

SECTION 8: EXPOSURE CONTROLS / PERSONAL PROTECTION

Ingredient	OSHA PEL	ACGIH TWA
Copper	0.1 mg/m ³ (Cu fume)	0.2 mg/m ³ (Cu fume)

Respiratory Protection: None required during handling. Local exhaust to remove fumes from heat sealing and hot wire cutting areas of packaging or bag converting for worker comfort.

Eye Protection: None necessary.

Hand Protection: None necessary.

Engineering Controls (Ventilation): Use local exhaust ventilation when routinely heat sealing this product.

Recommended ventilation is with a minimum capture velocity of 100 ft/min. (30 m/min.) at the point of vapor evolution. Refer to the current edition of *Industrial Ventilation: A Manual of Recommended Practice* published by the American Conference of Governmental Industrial Hygienists for information on the design, installation, use, and maintenance of exhaust systems.

Revision Date: July 30, 2018 | Date of Issue: June 1, 2017 | Version Number: 2.0

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES Continued...

General Physical Form: Solid plastic film.

INFORMATION ON BASIC PHYSICAL AND CHEMICAL PROPERTIES

Appearance	Plastic film
Color:	Copper and Gray
State:	Solid
Odor Characteristics:	None
Odor Threshold:	None
pH:	Not Applicable
Melting Point/Freezing Point:	Not Applicable
Initial Boiling Point and Boiling Point Range:	Not Applicable
Flash Point:	Not Applicable
Evaporation Rate:	Not Applicable
Flammability (solid, gas):	Not Applicable
Upper flammability:	Not Applicable
Lower Flammability:	Not Applicable
Vapor Pressure:	Not Applicable
Vapor Density:	Not Applicable
Relative Density:	Not Applicable
Solubility:	Not Applicable
Partition Coefficient: n-octanol/water:	Not Applicable
Auto ignition-temperature:	Not Applicable
Decomposition temperature:	>325°C (617°F)
Viscosity:	Not Applicable

SECTION 10: STABILITY AND REACTIVITY

Instability: This material is considered stable. Thermal decomposition is dependent on time and temperature.

HAZARDOUS DECOMPOSITION PRODUCTS

Substance	Condition	
Hydrocarbons	Combustion by-product	
Carbon Monoxide	Combustion by-product	
Carbon Dioxide	Combustion by-product	
Copper Fume	Combustion by-product	

Hazardous Polymerization: Product will not undergo hazardous polymerization. Product does not decompose at ambient temperatures.

Incompatibility: Lead azide and lead stiphanate commonly used in high explosive detonators react violently with copper. **Reactivity:** Reacts and binds with polar gases such as Hydrogen sulfide (H_2S), Ozone (0_3), Carbonyl sulfide (COS), Sulfur Dioxide ($S0_2$), Hydrogen chloride (HCI), Formic Acid, Acetic Acid.

Hazardous Decomposition: Under recommended usage conditions, hazardous decomposition products are not expected. Hazardous decomposition products may occur as a result of oxidation, heating, or reaction with another material.

Revision Date: July 30, 2018 | Date of Issue: June 1, 2017 | Version Number: 2.0

SECTION 11: TOXICOLOGICAL INFORMATION

This product, when used under reasonable conditions and in accordance with the directions for use, should not present a health hazard. However, use or processing of the product in a manner not in accordance with the product's directions for use may affect the performance of the product and may present potential health and safety hazards.

Acute Data: No Toxicity data are available for this material.

PRIMARY ROUTES OF EXPOSURE

Skin Contact:	Only if burned.
Eye Contact:	Only if burned.
Respiratory Contact:	Only if burned.

ACUTE EFFECTS OF EXPOSURE

Ingestion: Not a probable route of exposure.

Inhalation: No inhalation risk unless product is heated to point of burning, which in normal applications does not occur. Fumes from combustion are unlikely to be produced during heat shrinking. Local ventilation should be used for comfort. Testing data shows copper/polymer particulate count at approximately 0.007mg/m³, which is well below OSHA PEL of 0.1 mg/m³⁺.

Eye Contact: No eye exposure risk during all product usage except during heating if plastic is heated to point of combustion, which does not occur during the intended use of the product. Fumes from combustion, which have a low toxicity, may be produced during hot wire cutting or heat sealing. Fumes are unlikely to be produced during heat shrinking when used as directed.

Skin Contact: Not irritating when used as directed. Hot polymer created during heat shrinking, wire cutting, or heat sealing, may produce thermal bums.

Chronic Effects of Exposure: None known when used as directed.

Carcinogenicity: None known when used as directed.

SECTION 12: ECOLOGICAL INFORMATION

This material is insoluble in water and not expected to present any environmental problems in normal application, however areas containing aromatic hydrocarbons, halogenated compounds, chlorinated compounds, pH extremities, oxidative agents, solvents or other known polyethylene solubilizers, prodegradants, etc. may impact the product performance and/or service life.

SECTION 13: DISPOSAL CONSIDERATIONS

Procedure: Reclaim if feasible. If product can't be reclaimed, no special requirements are necessary; dispose of as ordinary solid waste. Pick up film for good "housekeeping" and to prevent a slipping hazard. Incineration or landfill in compliance with federal, state and local regulations. *Since regulations vary, consult applicable regulations or authorities before disposal.*

SECTION 14: TRANSPORT INFORMATION

US DOT Hazard Class: Not regulated.

STEGO

DRAGO[®] WRAP SAFETY DATA SHEET

Revision Date: July 30, 2018 | Date of Issue: June 1, 2017 | Version Number: 2.0

SECTION 15: REGULATORY INFORMATION

Workplace Classification: This product is not considered hazardous under the OSHA Hazard Communication Standard (29 C.F.R. § 1910.1200).

CERCLA Information (40 C.F.R. 302.4): Because of the form in which copper is contained within the resin, releases of this material to air, land, or water are not reportable to the National Response Center under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).

Waste Classification: When this product becomes a waste, it is classified as a non-hazardous waste under criteria of the Resource Conservation and Recovery Act (40 C.F.R. 261).

SECTION 16: OTHER INFORMATION

HAZARD RATING

Health: 0 | Flammability: 1 | Reactivity: 0 | Special Hazards: None

Scale: 4 = Extreme | 3 = High | 2 = Moderate | 1 = Slight | 0 = Insignificant

National Fire Protection Association (NFPA) hazard ratings are designed for use by emergency response personnel to address the hazards that are presented by short-term, acute exposure to a material under conditions of fire, spill, or similar emergencies. Hazard ratings are primarily based on the inherent physical and toxic properties of the material, but also include the toxic properties of combustion or decomposition products that are known to be generated in significant quantities.

Rating are based on internal supplier's guidelines, and they are intended for internal use only.

ABBREVIATIONS

ACGIH = American Conference of Governmental Industrial Hygienists OSHA = Occupational Safety and Health Administration TLV = Threshold Limit Value PEL = Permissible Exposure Limit TWA = Time Weighted Average STEL = Short-Term Exposure Limit

Disclaimer: The information contained herein relates only to the specific material identified. Stego Technology, LLC believes that such information is accurate and reliable as of the date of this material safety data sheet, but no representation, guarantee or warranty, expressed or implied, is made as to the accuracy, reliability, or completeness of the information. Stego Technology, LLC urges persons receiving this information to make their own determination as to the information's suitability and completeness for their particular application.

Please read the product statements for all Drago[®] products by navigating here: http://www.stegoindustries.com/legal

DRAGO® WRAP VAPOR INTRUSION BARRIER

INSTALLATION INSTRUCTIONS

Engineered protection to create a *healthy* built environment.

DRAGO® WRAP VAPOR INTRUSION BARRIER

P2 of 4

IMPORTANT: Please read these installation instructions completely, prior to beginning any Drago Wrap installation. The following installation instructions are generally based on ASTM E1643 – *Standard Practice for Selection, Design, Installation, and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs.* There are specific instructions in this document that go beyond what is stated in ASTM E1643 to take into account vapor intrusion mitigation. If project specifications call for compliance with ASTM E1643, then be sure to review the specific installation sections outlined in the standard along with the techniques referenced in these instructions.

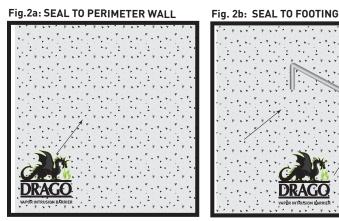
UNDER-SLAB INSTRUCTIONS:

Drago Wrap has been engineered to be installed over a tamped aggregate, sand, or earth base. It is not typically necessary to have a cushion layer or sand base, as Drago Wrap is tough enough to withstand rugged construction environments.

NOTE: Drago Wrap must be installed with the gray facing the subgrade.

Fig.1: UNDER-SLAB INSTALLATION

Unroll Drago Wrap over the area where the slab is to be placed. Drago Wrap should completely cover the concrete placement area. All joints/seams should be overlapped a minimum of 12 inches and taped using Drago[®] Tape. (Fig. 1). If additional protection is needed, install DragoTack[™] Tape in between the overlapped seam in combination with Drago Tape on top of the seam.


NOTE: The area of adhesion should be free from dust, dirt, moisture, and frost to allow maximum adhesion of the pressure-sensitive tape. Ensure that all seams are taped with applied pressure to allow for maximum and continuous adhesion of the pressure-sensitive Drago Tape. Adhesives should be installed above 40°F. In temperatures below 40°F, take extra care to remove moisture/frost from the area of adhesion.

3. ASTM E1643 requires sealing the perimeter of the slab. Extend vapor retarder over footings and seal to foundation wall or grade beam at an elevation consistent with the top of the slab or terminate at impediments such as waterstops or dowels. Consult the structural and environmental engineer of record before proceeding.

SEAL TO PERIMETER WALL OR FOOTING WITH DRAGOTACK TAPE: (Fig. 2a and 2b)

- **a**. Make sure area of adhesion is free of dust, dirt, debris, moisture, and frost to allow maximum adhesion.
- **b**. Remove release liner on one side and stick to desired surface.
- When ready to apply Drago Wrap, remove the exposed release liner and press firmly against DragoTack Tape to secure.
- **d**. If a mechanical seal is needed, fasten a termination bar over the top of the Drago Wrap inline with the DragoTack Tape.

NOTE: If sealing to the footing, the footing should receive a hand float finish to allow for maximum adhesion.

In the event that Drago Wrap is damaged during or after installation, repairs must be made. Cut a piece of Drago Wrap to a size and shape that covers any damage by a minimum of 6 inches in all directions. Clean all adhesion areas of dust, dirt, moisture, and frost. Tape down all edges using Drago Tape. (Fig. 3)

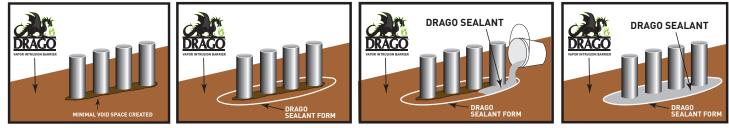
IMPORTANT: ALL PENETRATIONS MUST BE SEALED. All pipe, ducting, rebar, and block outs should be sealed using Drago Wrap, Drago Tape, and/or Drago[®] Sealant and Drago[®] Sealant Form. (Fig. 4a). Drago accessories should be sealed directly to the penetrations.

Fig. 4a: PIPE PENETRATION SEALING

Fig. 4b: DETAIL PATCH FOR PIPE PENETRATION SEALING

DETAIL PATCH FOR PIPE PENETRATION SEALING: (Fig. 4b)

- **a.** Install Drago Wrap around pipe penetrations by slitting/cutting material as needed. Try to minimize void space created.
- **b.** If Drago Wrap is close to pipe and void space is minimized, proceed to step d.
- **c.** If void space exists, then
 - i. Cut a detail patch to a size and shape that creates a 6-inch overlap on all edges around the void space at the base of the pipe.
 - ii. Cut an "X" slightly smaller than the size of the pipe diameter in the center of the detail patch and slide tightly over pipe.
 - iii. Tape the edges of the detail patch using Drago Tape.
- d. Seal around the base of the pipe using Drago Tape and/or Drago Sealant and Drago Sealant Form.
 i. If Drago Sealant is used to seal around pipe, make sure Drago Wrap is flush with the base of the penetration prior to pouring Drago Sealant.


P3 of 4

MULTIPLE PIPE PENETRATION SEALING: (Fig. 5)

NOTE: Multiple pipe penetrations in close proximity may be most efficiently sealed using Drago Wrap, Drago Sealant, and Drago Sealant Form for ease of installation.

- **a.** Cut a hole in Drago Wrap such that the membrane fits over and around the base of the pipes as closely as possible, ensuring that it is flush with the base of the penetrations.
- **b.** Install Drago Sealant Form continuously around the entire perimeter of the group of penetrations and at least 1 inch beyond the terminating edge of Drago Wrap.
- c. Pour Drago Sealant inside of Drago Sealant Form to create a seal around the penetrations.
- **d.** If the void space between Drago Wrap and the penetrations is not minimized and/or the base course allows for too much drainage of sealant, a second coat of Drago Sealant may need to be poured after the first application has cured.

Fig. 5: MULTIPLE PIPE PENETRATION SEALING

BEAST® CONCRETE ACCESSORIES - VAPOR BARRIER SAFE

and lock it down!

Stego Industries* recommends the use of BEAST vapor barrier-safe concrete accessories, to help eliminate the use of non-permanent penetrations in Drago Wrap installations.

Improve efficiency and maintain concrete

floor levelness with the BEAST SCREED SYSTEM!

BEAST® FORM STAKE

The Stego barrier-safe forming system that prevents punctures in the vapor barrier.

IMPORTANT: AN INSTALLATION COMPLETED PER THESE INSTRUCTIONS SHOULD CREATE A MONOLITHIC MEMBRANE BETWEEN ALL INTERIOR INTRUSION PATHWAYS AND VAPOR SOURCES BELOW THE SLAB AS WELL AS AT THE SLAB PERIMETER. THE UNDERLYING SUBBASE SHOULD NOT BE VISIBLE IN ANY AREA WHERE CONCRETE WILL BE PLACED. IF REQUIRED BY THE DESIGN ENGINEER, ADDITIONAL INSTALLATION VALIDATION CAN BE DONE THROUGH SMOKE TESTING.

NOTE: While Drago Wrap installation instructions are based on ASTM E1643 - *Standard Practice for Selection, Design, Installation, and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs,* these instructions are meant to be used as a guide, and do not take into account specific job site situations. Consult local building codes and regulations along with the building owner or owner's representative before proceeding. If you have any questions regarding the above-mentioned installation instructions or products, please call us at 877-464-7834 for technical assistance. While Stego Industries' employees and representatives may provide technical assistance regarding the utility of a specific installation practice or Stego product, they are not authorized to make final design decisions.

STEGO INDUSTRIES, LLC • SAN CLEMENTE, CA • 949-257-4100 • 877-464-7834 • www.stegoindustries.com

*Stego Industries, LLC ("Stego") is the exclusive Representative for Drago Wrap and Pango Wrap. All designated trademarks are the intellectual property of Stego or the entity for which it is acting as a Representative Installation, Warranty, State Approval Information and Disclosure of Representative Status: www.stegoindustries.com/legal. ©2019 Stego Industries, LLC. All rights reserved. 11/2019

APPENDIX J ENGINEERING QA/QC INSPECTION CHECKLISTS

REMEDIAL INVESTIGATION AND CLEANUP ACTION PLAN 3245 158th Avenue Southeast Bellevue, Washington

Farallon PN: 2403-008

	Site Name System Installation QC Checklist Vapor Barrier Installation					
Fac	sility:	Farallon PN:		Date:		
WO	ORK LOCATION:					
Ree	quirement			Assessment		
1.	Geotextile protection has been inst vapor barrier material.	stalled below all	Yes No (Descri	ibe Deficiency)		
2.	Vapor barrier overlap joints are a and sealed in-between with 2-sic Tape. Verify Drago Tape applied t	led Drago Tack	Yes No (Descri	ibe Deficiency)		
3.	Concrete surfaces have been prim are dry prior to applying 2-sid Tape.		Yes No (Describe Deficiency)			
4.	4. Pipe penetrations have been properly sealed with a pipe boot or fabricated pipe boot according to manufacturer's details. Verify that barrier is detailed directly to pipe and not to protective piping wrap.		Yes No (Describe Deficiency)			
5.	5. All holes and openings in the vapor barrier have been repaired and sealed using 12" Drago Tape.		Yes No (Describe Deficiency)			
6.	6. Vapor barrier seals to the edge of walls, footings, and grade beams.		Yes No (Describe Deficiency)			
7.	7. Photo documentation of proper seals and installation.		Yes No (Describe Deficiency)			
8.	8. Smoke test		Yes No (Describe Deficiency)			
Co	<u>mments</u> :					
PR	EPARED BY:		<u>SIGNATURE</u> :			